
990 COBOL II
Developing the 990 COBOL

User Environment

Digital Systems Group
EDUCATION & DEVELOPMENT CENTER

TEXAS INSTRUMENTS
IN(OI{POI{AII L>

I ·l.'~l'IM

i l.ATHE .
-tHEN HQNI'I;,

UTCH
: I C\<~V BUN .
Hc.Hr-A)X fi(fi,l.
ATCHBCI')I MJ<
.OXES
=RlOOE __
.~:.lIPER ~.l NI~':::'

Copyright 1980
By

Texas Instruments Incorporated
All Rights Reserved

Printed In U.S.A.

The information and/or drawings set forth in this document and all rights in
and to inventions disclosed herein and patents which might be granted
thereon disclosing or employing the materials, methods, techniques or
apparatus described herein are the exclusive property of Texas Instruments
Incorporated.

COB 0 L II

This student guide is ~ot a self-contained document; it is
designed to support live instruction.

ORIGINAL ISSUE JULY 11, 1979

REVISED MARCH 24, 1980

THIS STUDENT GUIDE SUPPORTS

990 COBOL RELEASE 3.2

DXIO RELEASE 3.3

Revisions to this student guide are planned so that the most
current product releases are addressed. However, T! products may
be revised before it is possible for this student guide to be
update~. as a result, there might be slight differences between
your system and the description of products in this student guide.
Therefore, reference should always be made to the most current
reference manuals.

- 1 -

990 COBOL II

This course is intended for the sY$tem analyst or design
programmer who must know the capabilities of the DXIO operating
system and COBOL's interrelationships for proper system design.

The student participating in this course must have successfully
completed the course entitled 990 COEOL I or be experienced in the
use of 990 COBOL and the DXIO operating system.

The format of this courses uses live instruction with worksheets
to test the student's knowledge. Lab exercises comprise about 50
percent of the class time. Suc~essful completion of this course
implies that the user has mastered the material presented for
discussion and has sucessfully completed the worksheets and lab
exercises.

The course materials that are provided to the student include:

* COBOL II Student Guide

* Volume V of the DXIO Reference Manual~
part no. 946250-9705

Optional materials that will be provided as needed include:

* 3780 Communication Emulator Student Guice

* DXIO 3780/2780 Emulator User's Guide
part no. 946289-9701

* 3270 Communication Emulator Student Guide

* DXIO 3270 Interactive Communication Software tICS) User's
Guide
part no. 2250954-9701

Additional ref~rence material includes:

*

*

*

Volume II of the DXIO Reference Manuals
part no. 946289-9702

Volume III of the DX10 Reference Manuals
part no. 946289-9703

Link Edi~or Referenc~ Manual
part no. 949617-9701

- 2 -

The five day agenda for ths course is:

Monday

Tuesday

Wednesday

Thursday

Friday

A.M. COBOL with Reentrant Procedures
Segmentation and Overlays
Key Index Files

P.M. Lab Exercise

A.M. System Command Interpreter

P.M. Lab Exercise

A.M. System Customization
Lab Exercise

P.M. Lab Exercise
Batch Command Streams
Lab Exercise

A.M. System Generation
System Backup and COBOL Installation
DXS COBOL

P.M. Lab Exercise

A.M. Communication Emulators tsel f-paced)

- 3 -

Paragraph

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.3.1
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

TABLE of CONTENTS

Title

MODULE 1 COBOL WITH REENTRANT PROCEDURES

A MULTI-PROGRAMMED SEGMENTED ENVIRONMENT .
USE OF MAPPING • . •
COMPILER OUTPUT. . . . • . . •..
XCP AND XCPF • . . • . • . • .

Page

· • 1-2
· . 1-5
· .1-13
· .1-15

SHARING ONLY THE RUNTIME 1-15
SUMMARY .•.••••........ .1-29
LINKING vs. NOT LINKING. 1-29

MODULE 2 SEGMENTATION AND OVERLAYS

SHARING MEMORY USING COBOL SEGMENTATION. · 2-2
LINK EDITOR OVERLAYS . .. q.. • . . 2-8
STRUCTURE CONSIDERATIONS . ".... · . • 2-8
PARTIAL LINKS••.•. " .. · .. 2-11

MODULE 3 KEY INDEX FILES

KEY INDEX FILES " 3-2
KIF vs. DBMS 3-3
ESTIMATING KIF FILE SIZE 3-5

Disk Organization . · 3-6
ADDITIONAL NOTES · 3-7

MODULE 4 SYSTEM COMMAND INTERPRETER

SYSTEM COMMAND INTERPRETER 4-1
KEYWORD LIST 4-1
SCI PRIMITIVES 4-3
DEFINE PROCEDURE 4-4
END OF PROCEDURE 4-5
ASSIGN SYNONYM 4-5
CONDITIONAL PRIMITIVES 4-5
WRITING MESSAGES 4-7
EVALUATING NUMERIC EXPRESSIONS 4-7
ITERATIVE LOOPS. 4-10
EXIT FROM A PROCEDURE. 4-12
DISPLAYING A FILE.4-12

- 4 -

4.13
4.14
4.15
4.16
4.17
4.18
4.19

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.2.1
7.3
7.4
7.4.1
7.5
7.6
7 • 7
7.8
7.8.1
7.9
7.10

TERMINATING SCI ••.••.••••••
SPECIFYING AN SCI PROCEDURE LIBRARY .•••

• .4-13
• .4-13
• .4-14 BUILDING A DATA FILE • • • • •

THE .SPLIT PRIMITIVE • • • . • .
BIDDING A TASK OR AN OVERLAY
MODIFYING THE SCI INTERFACE. .
DISPLAYING A MENU .•••.••

. 4-18
. • . . .4-19

• .4-23
• • . . • • 4-24

MODULE 5 SYSTEM CUSTOMIZATION

MODIFYING EXISTING SCI . • . • . . • .
MODIFYING THE TERMINAL STATUS •.••.
MODIFYING THE SYSTEM DISK. • . .
NEWS FILE. • • • • • • • . • . • • . • .

· . 5-2
· .5-11

..• 5-14
.5-18

MAIN MENU. • . • • • • •• ••.•.• • .5-18
.5-18 STARTUP AND SIGNOFF TASKS •.•.•.

SEQUENCE OF EVENTS • • . .
COMPLETION CODES • . •
SCI MODE • • • • • . . . • . • • .

MODULE 6 BATCH COMMAND STREAMS

• .5-18
· .5-19

.... 5-19

BATCH STREAMS. . • . . . •...... 6-2
EXECUTE BATCH. . • . •. .•.... . 6-2
KILL BACKGROUND TASK . . • • 6-3
SHOW BACKGROUND STATUS . . . • • 6-3
WAITING FOR BACKGROUND TERMINATION 6-3
BEGIN AND END BATCH. 6-4
ERROR COUNT. 6-4
CREATING A KEY FILE. 6-6
SUMMARY OF USER WRITTEN SCI. . . . 6-8

MODULE 7 SYSTEM GENERATION

DXI0 TASK SCHEDULER.
SYSTEM GENERATION •••...

· . 7-2
7-4

Customized System Generation 7-4
GENERATING A DX10 OPERATING SYSTEM . . 7-5
GENERATE . • . . . • • . . • 7-5

XGEN Prompts. • . . . • 7-5
GEN990 COMMANDS •...•........... 7-11
ASSEMBLE AND LINK GENERATED SYSTEM.. . .7-12
PATCH GENERATED SYSTEM.7-14
TEST GENERATED SYSTEM.. 7-14

System Checkout7-15
INSTALL GENERATED SYSTEM 7-15
SYSTEM UPKEEP. . • 7-16

- 5 -

8.1
8.1.1

8.1.1.1
8.1.1.2
8.1.2

8.1.2.1
8.1.2.2
8.1.3

8.1.3.1
8.1.3.2
8.2
8.3
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.5.1
8.4.6
8.4.6.1
8.5
8.5.1
8.5.2
8.5.3

9.1
9.2
9.3
9.3.1
9.4
9.5

A

B

C

MODULE 8 SYSTEM BACKUP AND COBOL INSTALLATION

SYSTEM BACKUP .•••...•.••....•. 8-2
Copying from Disk to Disk Using Copy

Directory. • • 8-2
CD Command Format •...•....... 8-2
CD Command Example • . . . 8-3

Copying from Disk to Tape Using Backup
Directory. . . • ~ . . e _ • • e • • • • 8-4
BD Command Format 8-4
BD Command Example • . 8-5

Copying from Tape to Disk Using Restore
Directory. . • 8-5
RD Command Format. 8-6
RD Command Example•... 8-6

USE OF THE MODIFY VOLUME INFORMATION COMMAND • 8-6
CREATING SYSTEM FILES. • 8-8
USING DCOPY. • 8-8

Backing Up a System Disk on Disk. . 8-9
Backing, Up a System Disk on Tape. .. ,.8-10
Restoring a System from Magnetic Tape .8-11
Backing Up a Data Disk.8-12
Verifying a Directory Copy 8-12

VC Command Example 8-13
Verifying a Backup or Restore Copy. . .8-13

VB Command Example 8-13
COBOL INSTALLATION.8-13

Removing COBOL Software from a System ... 8-15
Installing COBOL from Magnetic Tape. .8-15
Verifying the Operation of COBOL 8-15

MODULE 9 DX5 COBOL

INTRODUCTION 9-2
DIFFERENCES FROM DXI0.. . ~ 9-2
DEVELOPMENT STEPS ~ 9-4

Linking for DXS 9-4
DXS COBOL EXECUTION. 9-6
MODIFYING DXI0 PROGRAMS TO RUN UNDER DX5 . 9-6

APPENDIXES

INVENTORY SUBROUTINES. A-I

SAMPLE SYSGEN DIALOG . B-1

SAMPLE SOLUTIONS C-l

- 6 -

MODULE 1

COBOL WITH REENTRANT PROCEDURES

OBJECTIVES

*

*

*

Describe the advantages of using shared procedures.

Specifying
structure.

the DXlO Memory Mapping features and

Write Link Control files to install reentrant procedures.

1-1

1.1 A MULTI-PROGRAMMED SEGMENTED ENVIRONMENT

In the multi-programming environment, segmentation is highly
desirable to increase the throughput time. Segmentation also
offers an additional technique to reduce the memory requirements.
Figure 1-1 illustrates a simple multi-programming environment with
two tasks. Each task has three segments in its address space, but
both require the same payroll routine and system library. In most
cases, each user would get a separate copy of the payroll routine
and system library bound into his address space. If both payroll
and system library routines are shareable, it is not necessary to
have two separate copies.

A reentrant routine is one which permits multiple calls and
executions before prior executions are complete. In order to
accomplish this, parameter addresses should be used by indexing
and indirect reference rather than by planting them into
instructions within the subroutine. Temporary storage access
within the program should be by indexed addresses. The index may
be set by the calling ~rogram in order to take care of multiple
calls. It then serves as a stack pointer for the temporary
storage.

1-2

MULTI-PROGRAMMED ADDRESS SPACE

PHYSICAL ADDRESS
SPACE

OPERATING
SYSTEM

MAIN 1
---~----.-..

DATA 1

PAYROLL

SYSLIB
ROUTINES

MAIN 2
--.. .. ----.... _--

DATA 2

PAYROLL

SYSL1B

FREE

WITHOUT REENTRANT
PROCEDURE

TASK 1

TASK 2

PHYSICAL ADDRESS
SPACE

OPERATING
SYSTEM

PAYROLL

SYSLIB
ROUTINES

MAIN 1

DATA 1

MAIN 2

DATA 2

FREE

WITH REENTRANT
PROCEDURE

Figure 1-1 Multi-Programmed Address Space

* A reeentrant routine permits multiple calls and
executions before prior executions are complete.

* A reentrant routine reduces the throughput time.

* A reentrant routine also offers an additional technique
to reduce the memory requirements.

1-3

Figure 1-2 illustrates a memory requirement reduction by sharing a
BASIC interpretive language processor. Should 10 jobs be running
BASIC programs at the same time, the BASIC interpreter could then
require 34,000 bytes plus 5,000 bytes data segment for the tables
and variables. Total memory required for the 10 tasks would be 10
X 134,000 + 5,000) = 390,000 bytes. By sharing a single copy of
the BASIC interpreter segment and using separate copies of the
data segment, actual memory required can be reduced to 34,000 +
50,000 = 84,000 bytes fa 78% reduction) .

. +---------------------------------------+ , ,
r f
1 BASIC INTERPRETER , 34,000 Bytes
I ,
I ,

+---------------------------------------+ , DATA f 5,000 Bytes
, SEGMENT ,

+---------------------------------------+

+---------------------------------------+ r , ,
, BASIC INTERPRETER 34,000 Bytes , ,
+---------------------------------------+
J DATA , 5,000 Bytes
1 SEGMENT ,

+---------------------------------------+

+---------------------------------------+

BASIC INTERPRETER 34,000 Bytes

+-------+-----------------------+-------+
I DATA , J DATA f 5,000 X 10
'SEGMENT' ~SEGMENT J
+-------+ +-------+

Figure 1-2 Saving Memory Through Seqmentation

390,000
Bytes

84,000
Bytes

Up to this point we have assumed that it is possible to produce
physically segmented memories. Well, lets look at the DXIO memory
mapping features.

1-4

1.2 USE OF MAPPING

The TI 990/10 and 990/12 have a mapping scheme for memory which
may be used to divide programs into two or three sections. Under
DXlO the first and the second sections, which are optional, are
called PROCEDURES and they can be shared by more than one run
unit. The third section is called a TASK and it is the unique
mot shared) portion of a any program. Therefore, a prog~am

operating under DXlO may consist of one or two procedures and one
task. These sections are referred to by the names: procedure one
'Pl), procedure two 'P2), and task. The following narrative will
help exhibit the mapping structure.

A SMALL BUT RAPIDLY GROWING ELECTRONICS FIRM

+---------------------+
I f

J C 0 B 0 L r
PI f R E E N T R A N T

I R U N T I M E
J

+---------------------+
P A Y R 0 L L

TASK P R 0 G R A M

, B A T C H

+---------------------+

IMPLEMENTS THEIR PAYROLL "SYSTEM" ON A 990

Figure 1-3

1-5

The DXIO operating system contains facilities which allow several
tasks to share a procedure.

- LATER -

THE FIRM HAS GROWN SUCH THAT THEIR PAYROLL FILE

UPDATES AND ENQUIRES ARE DONE INTERACTIVELY

+---------------------+
C 0 B a L

R E E N T R A N T
R U N T I M E

+---------+---+-------------+---+--------+ r , J ,
, PAYTKA PAYTKA PAYTKA'
J r ,

+-------------+-------------+------------+
Figure 1-4

1-6

The DXIO operating system also has facilities which allow
subroutines mapped into PI and/or P2 to be shared by multiple
tasks so that PI & P2 are said to be reentrant procedures.

AS THE FIRM GROWS

MORE APPLICATIONS ARE ADDED TO THEIR 990

REQUIRING MORE EFFICIENT UTILIZATION

OF THEIR COMPUTER

+------------------------------------+ , f ,
PI COB 0 L ,

P2

R E E N T RAN T ,
RUN TIM E f

r
+------------------------------------+

COM M 0 N
R E E N T RAN T

R 0 UTI N E S
iSCREEN & FILE ACCESS SUBS)

+------------+------+-------------------+---------+----------+
PAY T K B PAY T K B PAY T K B

+-------------------+-------------------+--------------------+

THESE TASKS PERFORM THE SAME UPDATES AND ENQUIRIES

AS THE PREVIOUS TASKS

BUT

THIS TASK USES SIGNIFICANTLY LESS MEMORY

Figure 1-5

1-7

WHEN THEY ADD NEW INTERACTIVE PAYROLL APPLICATIONS

'E.G. SPECIAL MIS-TYPE ENQUIRES NOT PREVIOUSLY SUPPORTED)

+-------------------------+
C 0 B 0 L

R E E N T R A N T
R U N T I M E

+-------------------------+
COM M 0 N

R E E N T RAN T

R 0 UTI N E S

'SAME AS BEFORE)
+------+--------+----------------+------+ ,

fP
PAY T K B PAY T K B 'A

J Y
r T

+---------------+----------------+ K f
f C , ,
+------+

THE NEW TASK ,PAYTKC) IS A NEW IIA PAYROLL APPLICATION

Figure 1-6

1-8

TO FURTHER FILL IN THE PAYROLL PROCESSING PICTURE

+----------------------+ ,
REENTRANT ,

COBOL RUNTIME ,
pI ,

r
+-----+-----------+----------+-----+ , , ,
, IIA SUBS' ,
, P2 , BATCH SUBS ,
, 'P 2 r
~ , r .

+-------++--------+-------+ ,
, , • f ,

'PAYTKB r PA YTKB r PAYTKC r ,
, TK2 J TK2 , TK3 r f

J +--------+-------+------+ +--------+--------+ r P
A PAYTKZ

+-------+ Y TKS
r T ! ,

K +--------------+
JTK4 Y J

+--------+

OF COURSE, MOST PROCESSING WILL BE BATCH!

Figure 1-7

1-9

Figure 1-8 shows the memory requirements for part of the firm's
payroll system.

PI: is the COBOL reentrant runtime - 16.4KB

P2a: is the reentrant I/A Screen and File Management
routines - 10KB

P2b: is the reentrant Batch Report writer and File
Management routines - 25KB

Various IIA and Batch tasks ranging from 10 to 20 KB long.

WHAT SAVINGS CAN BE GAINED BY THIS SCHEME?

+----------------------+
PI

*16.4K)

+-----+-----------+----------+-----+
P2a

t10K) P2b

+-------++--------+-------+ , , , ,
, PAYTKB 'PAYTKB f PAYTKC ,
J '10K) J .10K) , t15K) ,

'2 5K)

" +--------+-------+------+ +--------+--------+ r P r I
J , A PAYTKZ
+-------+ Y ,15K)

, T
r K +--------------+
',20K) Y I
+--------+

Figure 1-8

1-10

PAYTKB PAYTKC PAYTKY PAYTKZ
+--+ ,
I PI 16.4KB 16.4KB 16.4KB 16.4KB ,
f P2a 10KB 10KB ,
I P2b 2SKB 2SKB
J
J TASK 20KB lSKB 20KB lSKB
f , , TOTAL 46.4KB 41.4KB 61.4KB S6.4KB , , TOTAL is 20S.6KB
+--+

Figure 1-9 Whithout Sharing Procedures

PAYTKB PAYTKC PAYTKY PAYTKZ
+--+
J

r PI 16.4KB , , P2 10KB
J , P2 2SKB ,
r TASK 20KB lSKB 20KB lSKB
r , , TOTAL 46.4KB lSKB 4SKB 15KB , , TOTAL is 121.4KB
+--+

Figure 1-10 With Shared Procedures

1-11

WORKSHEET

By considering the following structure, what savings can be gained
in memory by sharing PI and P2?

+-------------+ , ,
, PI 10K r
, r

+----+---------+---+--------+
, J f
r P2 15K P2 10K
f
+---------+----+----+-------+
, , f J
f TASK1 TASK2 TASK3 ,
I 15K 20K 10K
J
+---------+ +-------+

f ,
+---------+

1-12

1.3 COMPILER OUTPUT

The COBOL Compiler puts out PSEG AND DSEG tags for use by the Link
Editor. The PSEG or Program Segment Directive contains reentrant
code and the DSEG or Data Segment Directive contains the non
reentrant portion. Since the segments are tagged, the Link Editor
is able to separate the procedure portion from the task portion in
each subroutine. 'Refer to Figure 1-11.)

COMPILER OUTPUT
+-----------------------------+ , ,
'PROGRAM 'NAME) PSEG'

+------------------~----------+ , ,
, DATA i$DATA) DSEG'
r r
+-----------------------------+

Figure 1-11

1-13

When compiler produced object modules are linked, the PSEGs are
allocated before the DSEGs. Figure 1-12 shows a portion of a link
map.

Note that the first $DATA, or DSEG module, is allocated after the
last PSEG, which in this example is PAYR07. The $DATA or DSEG
modules are said to float to the end of the task. Thus a task
with no reentrant procedures would be allocated in memory by the
Link Editor as shown in Figure 1-12.

SAM P L E LIN K MAP

PROCEDURE 1, RCOBOL ORIGIN = 0000

MODULE NO ORIGIN LENGTH

CRTIM 1 0000 34C9

PHASE 0, PAYTKA ORIGIN = 34EO

J
f ,
f ,

CORRESPONDING "MEMORY MAP"

, , , MEMORY
ORIGIN

MODULE
NAME

MODULE
LENGTH

NO
MODULE NO

CXCBL 2
$DATA 2
C$MAIN 3
PAYROI 4
$DATA 4
PAYR02 5
$DATA 5
PAYR03 6
$DATA 6
PAYR04 7
$DATA 7
PAYR05 8
$DATA 8
PAYR06 9
$DATA 9
PAYR07 10
$DATA 10

ORIGIN

34EO
6BFE
4088
40C8
70EE
433E
7140
4542
71B8
4E42
7302
5370
76EC
5D8A
7A08
61C2
7E24

LENGTH

9BD8
04FO
0010
0276
0051
0204
0078
0900
014A
052E
03EA
OA1A
031C
0428
041C
OA4C
0374

J
r ,
J

0000
34EO
40B8
40C8
433E
4542
4E42
5370
5D8A
61B2
6BFE
70EE
7140
71B8
7302
76EC
7A08
7E24

CRTIM
CXCBL
C$MAIN
PAYR01
PAYR02
PAYR03
PAYR04
PAYR05
PAYR06
PAYR07
$DATA
$DATA
$DATA
$DATA
$DATA
$DATA
$DATA
$DATA

Figure 1-12 Example Link Edit

1-14

34C9
OBD8
0010
0276
0204
0900
052E
OA1A
0428
OA4C
04FO
0052
0078
014A
03EA
031C
041C
0374

1
2,
3
4
5
6
7
8
9

10
2
4
5
6
7
8
9

10

1.4 XCP AND XCPF

XCP or XCPF allows multiple tasks to be executed sharing a common
COBOL runtime as shown in Figure 1-13.

+-----------------------------+ r ,
, COBOL ,

RUN TIM E , ,
+---------+------+---------------+------+---------+
, TASK LOADER , TASK LOADER , TASK LOADER ,
+----------------+---------------+----------------+

PROGRAM 1 PROGRAM 3
PROGRAM 2

+----------------+ +----------------+ , ,
+---------------+

Figure 1-13

·XCP or XCPF consists of the COBOL runtime as PI and a task loader
as the task attached to Pl. The task loader checks the size of
the user's object module; does a dynamic get memory for the amount
of memory required; loads the COBOL program into the allocated
memory: and starts execution of the loaded program.

1.5 SHARING ONLY THE RUNTIME

XCP and XCPF do share the COBOL runtime, but do not allow the user
to use P2 or overlays with a COBOL program. In addition, the
overhead for the .task loader may be significant with large
programs.

*

*

Since you are loading an object program, instead of a
memory image from a program file, the load process will
take a few seconds longer.

The 65KB memory address space is reduced by the small
.200-300 bytes) memory requirements of this task loader.

Thus, the Execute COBOL Task 'XCT) and Execute COBOL Task in
Foreground 'XCTF) were developed to eliminate the restrictions of
XCP and XCPF. Since XCT and XCTF are identical in function,

1-15

except that XCT cannot directly do I/O to the station on which it
is exeucted, the following discussion will use XCTF in text and
examples. Use of XCT or XCTF implies that the user has used the
Link Editor to link his COBOL modules with the COBOL runtime
modules. The COBOL runtime contains three modules:

* RCBPRC - Reentrant runtime intrepreter 'CRTIM).

* RCBTSK - Initial task module .CXCBL).

* RCBMPD Module placed before the first COBOL module to
be executed tC$MAIN).

The modules RCBPRC amd RCBMPD are both reentrant while RCBTSK is
not reentrant and must be placed in the task segment. Thus, the
simple linking of one COBOL program is shown in Figure 1-14.

FORMAT IMAGE
PROC CBLRT
INCLUDE .S$SYSLIB.RCEPRC
TASK PAYTK4
INCLUDE .S$SYSLIB.RCBTSK
INCLUDE .S$SYSLIB.RCBMPD
INCLUDE .COBOL.PAYTK4
END

Figure 1-14 Link Control File for One Cobol Program

1-16

Assume that the program file to be used is named .COBOL.PROG and
that the link edit shown in Figure 1-14 was performed to
.COBOL.PROG. After linking, the program file has a copy of the
reentrant COBOL runtime linked and installed as a procedure number
1 under the name CBLRT. A map of the program file is shown in
Figure 1-15.

. \

FILE MAP OF .COBOL.PROG J/ /~

TODAY IS 16:06:09 TUESDAY, JAN 22, 1980. I f /
! ,. i" '" ~

7~

'~,~' l";.~ f 1- t"~ ,>.~

TASKS: I .

ID NAME LENGTH LOAD PRI SPMRD OVLY PI/lAME P2/SAME
01 PAYTK4 llDE 3600 04 NNNYN Ol/Y

PROCEDURES:
ID NAME LENGTH LOAD/ RES D
01 CBLRT 35F6 0000 N N

OVERLAYS:
ID NAME LENGTH LOAD MAP D OVLY

Figure 1-15 Program File Map of .COBOL.PROG
"

/
/

,I ..

..

/ If -,-

1-17

c. , • v

£,.*"1

./ ;.

--/
~/

" ./ ' v

Figure 1-16 shows why the RCBMPD is required in front of your main
COBOL program when you make up your Link Control stream. All
references within the COBOL runtime environment are direct
refererences. RCBMPD, the reentrant COBOL runtime program,
transfers control to RCBTSK, the COBOL nonreentrant runtime
program; which then transfers control to your program via RCBMPD.

+---------------------+ +---------------------+ , r , I , , , SOME J
r RCBPRC , , REENTRANT , , , , PROGRAM ,
I ,
+---------------------+ +---------------------+ r , r J
, RCBTSK , r , , DATA ,
+---------------------+ ,
, r r
f RCBMPD ,
+---------------------+ , r
, MAIN PROGRAM
I
+---------------------+ +---------------------+

Figure 1-16

Another way to look at this situation is as in Figure 1-16. This
figure depicts a COBOL program 'DATA) in relation to the COBOL
runtime interpreter, which is after all, just a large reentrant
program.

1-18

QUESTION?

HOW WOULD YOU HANDLE THE FOLLOWING PROBLEM:

GIVEN:

*

*

*

Direct referencing required in COBOL runtime environment.

Our mapping HW can accomodate three program segments.

Programs split into program
'non-reentrant) segments. leg.

'reentrant code) and data
PSEGs and DSEGs).

PROBLEM:

HINT:

How to share both PI and P2 procedures with
several, possibly different tasks simultaneously!

The Link Editor
the non-reentrant
do?

can move all the DSEGs down into
.task) segment. What would that

1-19

+------------------+ +------------------+
0000 , , 0000 , r

I • RCBPRC r r .DUMMY) • RCBPRC ,
r , r

+------------------+ +------------------+

+------------------+ +------------------+
3600 , f 3600 , f

'SUBROUTINE I f tDUMMY} SUBROUTINE r
J , , J

+------------------+ +------------------+

+------------------+ +------------------+
3680 , , 3680 r r

, r f f
MAIN PROGRAM , DIFFERENT f

MAIN PROGRAM

+------------------+
42B6 , ,

f DATA 1 , +------------------+ , 430A r ,

+------------------+ r r
4316 , f DATA 1 J

, DATA 2 f , , , +------------------+
r J 43CA f ,
. .

+------------------+ ,
445A f J DATA 2 f

I DATA 3 , +------------------+ , 450E , r
+------------------+ , ,

f DATA 3 J

+------------------+
Figure 1-16

1-20

The solution to this problem is the Link Editor ALLOCATE
command. The ALLOCATE verb allows users to share COBOL
source language programs as procedures. The ALLOCATE verb is
used in the task section of the link control file, after a
TASK or PHASE 0 command and before a PHASE I or a LOAD
command, if any are used. It should normally be placed
immediately following the INCLUDE .S$SYSLIB.RCBTSK statement.
Its appearance causes all data sections associated with
previously allocated executable code sections to be allocated
immediately. That is, all $DATA sections associated with
program sections, in either PI or P2, are allocated space
wherever the ALLOCATE command occurs in the link control
file. However, the procedure cannot call a subroutine
included in the link edit after the ALLOCATE. Figure 1-17
will help illustrate what the ALLOCATE verb does by
contrasting the same link edit stream with and without an
ALLOCATE verb.

.I
" ' ...

,~

D ' .. r '/ " /
/

-- -
.1 '

17 __
,;... I .. ~'

. '-.'

f,., '';''
l'~"

/

.' { f

i •

,"1, .. , -,
: .. ,J

~ ": ,,.
(!('.;

1-21

I'';;' .. ' ,
. "

1:- ..

(, I"~ ·(t /',~:

/.
w / / I '

FORMAT IMAGE f FORMAT IMAGE
PROC RCOBOL f PROC RCOEOL
DUMMY f DUMMY

\ INCLUDE .S$SYSLIB RCBPRC· J INCLUDE .S$SYSLIB.RCBPRC
PROCEDURE PSUB f PROCEDURE PSUB
INCLUDE .COBOL.PAYSCN , INCLUDE .COBOL.PAYSCN
TASK PAYTKB ! TASK PAYTKB
INCLUDE . S$SYSLI-S·.RCBTSK .. , INCLUDE .S$SYSLIB.RCBTSK
INCLUDE .S$SYSLIB.RCBMPD , ALLOCATE
INCLUDE .COBOL.PAYTKB , INCLUDE .S$SYSLIB.RCBMPD
END f INCLUDE .COBOL.PAYTKB , END ,

J
PROCEDURE 1, RCOBOL ORIGIN = 0000 f PROCEDURE 1, RCOBOL ORIGIN=OOOO

f
MODULE NO ORIGIN LENGTH MODULE NO ORIGIN LENGTH

CRTIM 1 0000 3SFS CRTIM 1 0000 3SFS

PROCEDURE 2, PSUB ORIGIN = 3600 PROCEDURE 2, PSUE ORIGIN = 3600

MODULE NO ORIGIN LENGTH MODULE NO ORIGIN LENGTH

PAYSCN 2 3600 0074 PAYSCN 2 3600 0074.
$DATA 2 4316 0030 $DATA 2 42A6 0030

PHASE o , PAYTKB ORIGIN = 3680 PHASE o , PAYTKE ORIGIN = 3680

MODULE NO ORIGIN LENGTH MODULE NO ORIGIN LENGTH

CXCBL 3 3680 OC26 CXCBL 3 3680 OC26
$DATA 3 4346 04EC $DATA 3 42D6 OCEC
C$MAIN 4 42A6 0010
PAYTKB 5 4286 0060
$DATA 5 4832 007E

'POST ALLOCATE)

PHASE 0, PAYTKB ORIGIN = 47C2

MODULE NO ORIGIN LENGTH

C$MAIN 4 47C2 0010
PAYTB2 5 47D2 0060
$DATA 5 4832 007E

Figure 1-17 Use of the ALLOCATE Verb

1-22

0000

W/O
ALLOCATE

+---------------------+
f

RCBPRC , ,
rCRTIM) , ,

+---------------------+
3600 , f

, PAYSCN r
r ,
+---------------------+

3680 I ,
J RCBTSK 'CXCEL) , , ,
+---------------------+

42A6 J ,
I RCBMPD .C $MAIN) J
1 ~

+---------------------+
42B6 f f

, PAYTK2 J
f ,
+---------------------+
I J
, DATA 1 ,
J ,

+---------------------+
4346

DATA 2

+---------------------+
4832 r ,

, DATA 3 , ,
+---------------------+

0000

WITH
ALLOCATE

+---------------------+ r ,
I RCBPRC , ,
I ,CRTIM)

+---------------------+
3600 r ,

, PAYSCN , ,
+---------------------+

3680 r ,
r RCBTSK 'CXCEL) J
, 1

+---------------------+
42A6 r ,

J DATA 1 r
f f

+---------------------+
4206 , J

f ,

f DATA 2
f ,
+---------------------+

47C2 1 ,
1 • RCBMPD ,e $MAIN) f ,
+---------------------+

4702 , ,
, PAYTK2 ,
, f

+---------------------+
4832 , ,

• DATA 3 ,
r

+---------------------+
Figure 1-18 Memory Allocation With and Without the Allocate Verb

1-23

This allocation of the $DATA modules is critical in achieving
the task structure as shown in Figure 1-19.

+-----------------------+ , ,
f C 0 B 0 L

R E E N T R A N T
R U N T I M E

+-----------------------+
COM M 0 N

R E E N T RAN T

R 0 UTI N E S

iSAME AS BEFORE)

+---------+------+--.-------------+----------+
p

PAY T K B PAY T K B ~ ..
y

T

+----------------+----------------+ K
r C ,
+----------+

Figure 1-19

1-24

Figure 1-20 shows the link control stream for PAYTKC, which
is not the same task as PAYTKB, but shares the same PI and
P2. -PXYTKB must have been previously link edited.

FORMAT IMAGE
PROC RCOBOL
DUMMY
INCLUDE .S$SYSLIB.RCBPRC
PROC PSUBS
DUMMY
INCL .COBOL.PAYIOI
INCL .COBOL.PAYI02
INCL .COBL. PAYFIN
INCL .COBOL.PAYCMN
INCL .COBOL.PAYSCN
TASK PAYTKC
INCL .S$SYSLIB.RCBTSK
ALLOCATE
INCL .S$SYSLIB.RCEMPD
INCL .COBOL.PAYTKC
END

Figure 1-20 Link Control Stream for PAYTKC

PSUBS contains a DUMMY statement because PSUBS was already
installed on the program file by the Link Editor as shown in
Figure 1-21 which shows the link maps for both PAYTKE and
PAYTKC. Note that .PAYTKC is larger than .PAYTKB, but the
the $DATAs of PSUBS remain in the same positions in the task
due to the ALLOCATE verb. Note also that DATA 10 is not in
the same position, because of the increased size of .PAYTKC.

1-25

PROCEDURE 1, RCOBOL ORIGIN=OOOO PROC EDURE 1, RCOBOL ORIGIN=OOOO
MODULE NO ORIGIN LENGTH MODULE NO ORIGIN LENGTH

CRTIM 1 0000 34C9 CRTIM 1 0000 34C9

PROCEDURE 2, PSUBS ORIGIN=34EO PROCEDURE 2, PSUBS ORIGIN=34EO
MODULE NO ORIGIN LENGTH MODULE NO ORIGIN LENGTH
PAYIOI 2 34EO 0204 PAYI01 2 34EO 0204
SDATA 2 6978 0078 SDATA 2 6978 0078
PAYI02 3 36E4 0900 PAYI02 3 36E4 0900
SDATA 3 69FO 014A $DATA 3 69FO 014A
PAYFIN 4 3FE4 052E PAYFIN 4 3FE4 052E
$DATA 4 6B3A 03EA $DATA 4 6B3A 03EA
PAYFOU 5 3412 OA1A PAYFOU 5 4512 OAIA
SDATA 5 6F24 031C $DATA 5 6F2C 031C
PAYCMN 6 4F2C 0428 PAYCMN 6 4F2C 0428
$DATA 6 7240 041C SDATA 6 7240 041C
PAYSCN 7 5354 OA4C PAYSCN 7 5354 OA4C
SDATA 7 765C 0374 $DATA 7 765C 0374

PHASE 0, PAYTKB ORIGIN=5DAO PHASE 0, PAYTKC ORIGIN=5DAO
MODULE NO ORIGIN LENGTH MODULE NO ORIGIN LENGTH

CXCEL 8 5DAO OBD8 CXCBL 8 5DAO OBD8
SDATA 8 79DO 04FO $DATA 8 79DO 04FO

-------- POST ALLOCATE -------- -------- POST ALLOCATE -------

PHASE 0, PAYTKB ORIGIN=7ECO PHASE 0, PAYTKC ORIGIN=7ECO
MODULE NO ORIGIN LENGTH MODULE NO ORIGIN LENGTH

CSMAIN 9 7ECO 0010 C$MAIN 9 7ECO 0010
PAYTKB 10 7EDO 0276 PAYTKC 10 7EDO 1476
$DATA 10 8146 0052 $DATA 10 9346 07D6

Figure 1-21 Link Maps for PAYTKB and PAYTKC

1-26

PAYTKB

+------------------+
0000

RCBPRC

tCRTIM)

.+------------------+
34EO , , , PSUB's PSEGs , , ,

+------------------+
SDAO , , , RCBTSK 'CXCBL) J

r ,
+------------------+

6978 , , , PSUB's $DATA J
J ,
+------------------+

79DO , r , RCBTSK's $DATA , , ,
+------------------+

7ECO J r , RCBMPD .C$MAIN) f , ,
+------------------+

7EDO f r
f PAYTKB 'MAIN) , , f

+------------------+
8146 I f

f PAYTKB's $DATA J , r
+------------------+

0000

PI

34EO
P2

SDAO

6978
T

79DO
A

7ECO ,..
,::,

7EDO

K

9346

Figure 1-22

1-27

PAYTKC

+------------------+
J\\\\\\\\\\\\\\\\\\ ,
J\ \ \ \ \ RCBPRC \ \ \ \ \ f
J\\\\\\\\\\\\\\\\\\ J
f\ \ \ \ \ .CRTIM) \ \ \ \ J
f\\\\\\\\\\\\\\\\\\ I
+------------------+
J\\\\\\\\\\\\\\\\\\ f
J\ PSUB' s PSEGs \ \ ,
1\\\\\\\\\\\\\\\\\\ ,
+------------------+
'J\\\\\\\\\\\\\\\\\\ ,
1\ RCBTSK 'CXCBL) \ ,
f\\\\\\\\\\\\\\\\\\ f

+------------------+ r ,
, PSUB ' s $DATA ,
J

+------------------+
r J
f RCBTSK 's $DATA ,
r f

+------------------+
f J
'RCBMPD .C $MA IN) , , ,
+------------------+
r 1
, PAYTKC 'MAIN) f , ,
+------------------+
! r
J PAYTKC' s $DATA ,
, J

+------------------+

Another way to look at this structure is execute a Map
Program File 'MPF) command. Figure 1-23 shows the MPF's
output and the corresponding logical strucutre of the firm's
payroll system. Note that PAYTKA is a seperate program that
shares only the COBOL runtime.

FILE MAP OF .COBOL.PROG
TODAY IS 10:02:08 TUESDAY, JAN 22, 1980

ASKS:
ID NAME LENGTH LOAD PRI SPMDP OVLY PI/SAME P2/SAME INSTALL
01 PAYTKA 3CB8 34EO 04 NNNYN lOIN 01/20/80
02 PAYTKB 23F8 SDAO 04 NNNYN lOIN Ol/Y 01/20/80
03 PAYTKC 3D7C SDAO 04 NNNYN lOIN Ol/Y 01/21/80
04 PAYTKY 4E28 96AO 04 NNNYN lOIN 02/Y 01/21/80
05 PAYTKZ 3A84 06AO 04 NNNYN 10/N 02/Y 01/22/80

ROCDURES:
ID NAME LENGTH LOAD RES D
01 PSUBS 28CO 34EO N N
02 PSUBB 61A8 34EO N N

VERLAYS:
ID NAME LENGTH LOAD MAP D OVLY INSTALL

+---------------------+
f f

REENTRANT ,
COBOL RUNTIME

PI

+-------+--------+------------+-----+ , r',
, I/A SUBS ,
'P2 BATCH SUBS

P2

+-------+-+------+---------+
, , r r
WAYTKA r PAYTKB r PAYTKC
, TK1 , TK2 , TK3

+-------+ , +--------+---------+---------+ +--------+ r P' ,
f , A f P A YT K Z ,

+---------+ Y TK5
, T
, K +-------------------+

Y J
TK4 1

+--------+
Figure 1-23 Program File Map for .COBOL.PROG

1-28

1.6 SUMMARY

Using the ALLOCATE verb it is possible to construct run units
whose first procedure consists of the truly reentrant portion
of the COBOL runtime system, called .S$SYSLIB.RCBPRC, and
whose second procedure is a set of non-reentrant COBOL and/or
assembly language runtimes. The $DATA sections for the
routines can be forced to loaded immediately after the non
reentrant portion of the COBOL runtime system, called
.S$SYSLIB.RCBTSK, by using the ALLOCATE verb. Even though
the tasks associated with the two different run units may be
different, the $ DATA areas are located in identical
locations, thereby allowing the direct references in the
second procedure to be completed successfully. Structures as
shown in Figure 1-23 can be built by adhering to the
following rules for COBOL:

*

*

*

*

*

*

Sharing of .S$SYSLIB.RCBPRC with multiple tasks or
multiple executions of the same task does not
require the ALLOCATE verb since RCBPRC is truly
reentrant and does not address a $DATA directly.
RCBPRC could also be in P2.

The shared procedure must always contain the same
modules. If a module is changed in PI or P2, the
entire group of tasks must be link edited again to
recreate the original structure.

Modifications may be made to
after the ALLOCATE command
relink of all tasks.

modules
without

which occur
requiring a

PI and/or P2 must always be installed by the first
module linked and DUMMY must be used after this
first installation.

In COBOL, RCBTSK must always be the first module in
the TASK or PHASE 0 portion of the link edit.
ALLOCATE is usually put immediately after RCBTSK,
but does not have to go there. Caution should be
exercised when using ALLOCATE in a different place
with COBOL.

In debugging complex task structures, it is best to
keep a full set of memory maps produced by the Link
Editor. If problems arise, check the addresses
generated for the $DATAs in the procedures.

1.7 LINKING vs. NOT LINKING

A COBOL program may be executed without being
under certain conditions. The program may
subroutines and may not contain overlays.

1-29

linked first
not call any

The first

restriction while requIrIng the use of the link editor does
not require you to install the linked output on a program
file. There are three distinct advantages to linking and
installing the linked output on a program file. They are:

1. Linked programs load faster than unlinked programs
since the link editor converts object code into
image format which is executable code. A task
loader is not required as when using XCP.

2. COBOL programs, when linked into two sharable
procedure areas and a nonsharable task are, require
less memory at runtime when multiple executions of
the program occur at different stations at the same
time. If less memory is required, the necessity to
roll programs in and out of memory will be reduced.

3. Unlinked programs all run at the same priority as
the COBOL runtime interpreter 'task >8A in .SSDS).
Linked COBOL programs may each be assigned a
individual priority. This allows the user to
finetune a program by assigning a priority that
will improve execution.

It is advisable to link all programs of one type -e.g.,
payroll, A/P, A/R, etc.) into the same program file. This
will allow for the maximization of shared code.

1-30

WORKSHEET 1

Write link control files to install the COBOL RUNTIME as
procedure 1, user specified library 'ULIB) as procedure 2,
and attach two tasks ~ASKl, TASK2) to both PI and P2. ULIB
consists of three sub-programs .INSUB, ADDNUM, OUTSUB).
TASKI and TASK2 consist of one program called PROGI and PROG2
respectively. All of the programs are stored in the
directory TI.COBOL.OBJ.

1-31

1-32

MODULE 2

SEGMENTATION AND OVERLAYS

OBJECTIVES

*

*

*

Use the COBOL segmentation feature to
memory among units of the same program.

share available

Use link edited overlays to load large programs into a
limited memory space.

Write and execute link control streams to create overlaid
tasks.

2-1

2.1 SB~RING MEMORY USING COBOL SEGMENTATION

Since available main memory is frequently an important
consideration to the minicomputer applications programmer, such a
person should become familiar with methods of overlapping usage of
this resource, TI 990 COBOL provides two powerful techniques for
sharing main memory, COBOL segmentation and link edited overlays

COBOL segmentation is a syntactical division of the PROCEDURE
DIVISION of a single COBOL program into shareable units, called
segments. Link edited overlays, on the other hand, divide the
task in question into shareable units which consist of separately
compilable, whole COBOL programs. Several im~ortant differences
exist between the two approaches as shown in Figure 2-1.

In general, segmentation is more nearly transportable between
different COBOL systems but lacks the flexibility'of modular
program development provided by link edited overlays.

NOTE

A programmer may legally use both sharing
techniques in the same task. That is, a link
edited, overlaid program unit may also be
segmented.

2-2

+-----------------------------~+-----------------------------+
, SEGMENTATION , LINK EDITED OVERLAYS ,

+------------------------------+-----------------------------+ r
, * SUBSET OF REGULAR ANSI
r STANDARDS. , ,
f ,
, * COMMUNICATION BETWEEN
r SEGMENTS IS VIA ANY
r NON-CALL CONTROL VERE
, OR MECHANISM SUCH AS
, GO TO, PERFORM, AND
f NORMAL CONSECUTIVE
, STATEMENT EXECUTION. , ,
J * SHAREABLE UNITS MAY
r RESIDE ON DISK-BASED
, PROGRAM FILE .XCT) OR
, RELATIVE RECORD FILE
, .XCP). ARE LOADED BY
, EITHER AUTOMATIC OVER
, -LAY LOADER .XCT} OR
, COBOL RUNTIME LOADER,
, C$XLDR .XCP) . , , ,
r
f
r

, , , ,
r ,
r ,
J , , , , , , , ,
J , , ,
r
J , ,
r
I , ,
r ,

* NOT AN ANSI FEATURE.
IMPLEMENATION VARIES
FROM ONE OPERATING
SYSTEM TO ANOTHER.

* COMMUNICATIONS BETWEEN
SHAREABLE UNITS IS VIA
CALL VERB 'WITH A UTO- r
MATIC OVERLAY LOADER ,
ASSISTANCE). J ,

r , ,
* SHAREABLE UNITS RESIDE r

ON DISK-BASED PROGRAM I
FILE. ,

* LOAD OVERLAY SVC CALL
BY AUTOMATIC OVERLAY
LOADER LOADS THEM INTO
MEMORY AS NEEDED.

I
f
f
I ,
f
I
f

+------------------------------+-----------------------------+
Figure 2-1

Using segmentation effectively is very analogous to using link
edited overlays. The user must seek out ways to divide the progam
unit into more or less independent pieces. The term independent
is used here to mean that, within each piece, a high percentage of
all control references are internal, and the piece performs one or
at most a few easily discernable logical functions such as update
a log file, generate a single report, etc.

The independent pieces, or units which share memory, are called
segments. Each segment in turn consists of one or more sections.
Segments are identified by an integer number between 0 and 127.
The formal structure of a segment is as follows:

2-3

section-name SECTION segment-number.
paragraph-name. sentence ...

The notation used here is the same as that used in the COBOL
manual. A typical segment then might be coded as follows:

TEST-SEQ-OUTPUT SECTION 60.

DO-OUTPUT.

OPEN OUTPUT SEQ-FILE

MOVE QUOTES TO SEQ-REC.

PERFORM POST-ELAPED-TIME.

PERFORM SEQ-OUTPUT-LOOP LIMIT TIMES.

PERFORM POST-ELAPSED-TIME

CLOSE SEQ-FILE.

TEST-SEQ-INPUT SECTION 60.

DO-INPUT.

OPEN INPUT SEQ-FILE

PERFORM POST-ELAPSED-TIME.

PERFORM SEQ-OUTPUT-LOOP LIMIT TIMES.

PERFORM POST-ELAPSED-TIME.

CLOSE SEQ-FILE.

GO TO END-OF-60.

SEQ-PERFORMS SECTION 60.

SEQ-OCTPUT-LOOP.

Th'RITE SEQ-REC.

SEQ-INPUT-LOOP.

READ SEQ-FILE RECORD.

END-OF-60.

Notice that in this example, the segment was divided into three
SECTIONs. We could have just as easily structured the segment as
one section with more paragraph2. For example, it could also have
been coded:

2-4

TEST-I-O SECTION 60.

TEST-SEQ-OUTPUT.

OPEN OUTPUT SEQ-FILE.

MOVE QUOTES TO SEQ-REC.

PERFORM POST-ELAPSED-TIME.

PERFORM SEQ-OUTPUT-LOOP LIMIT TIMES.

PERFORM POST-ELAPSED-TIME.

CLOSE SEQ-FILE.

TEST-SEQ-INPUT.

OPEN INPUT SEQ-FILE.

PERFORM POST-ELAPSED-TIME.

PERFORM SEQ-OUTPUT-LOOP LIMIT TIMES.

PERFORM POST-ELAPSED-TIME.

CLOSE SEQ-FILE.

GO TO END-OF-60.

SEQ-OUTPUT-LOOP,

WRITE SEQ-REC.

SEQ-INPUT-LOOP.

READ SEQ-FILE RECORD.

END-OF-60.

This second confiquration of the source program would be logically
identical to the first and would also have identical sharing
attributes as the first. So, while at least one SECTION label
must be used to identify the segment, additional SECTICN labels
with the same segment-number could just as easily be paragraph
names.

Remember segments are the unit of sharing, not sections. All
sections of a single segment must be grouped together in the
source program.

Just as in the case with overlays, at least one segment must
remain resident at all times. This segment is called the root,

2-5

dependent, or fixed segment. The root does not share main memory
with any other segment. All the other segments are called
independent segments and one at most will be in memory at one
time. Independent segments then share a single piece of memory.
Whenever one independent segment references another, the
referenced segment is copied into memory before execution
procedes. N€edless to say, one does not want to go back and forth
between segments too often. .Refer to Figure 2-2.)

+--------------+
, FIXED ,
f SEGMENTS I
+--------------+
, INDEPENDENT I
, SEGMENT AREA I
+--------------+

COMPUTER MEMORY

, ,
, +-------------+
, , INDEPENDENT ,
, I SEGMENT ,
J +-------------+ , +-------------+
, , INDEPENDENT ,
J , SEGMENT ,
, +-------------+

Figure 2-2

Segment numbers are assigned as follows:

*

*

*

If one wants the segment to be in the
number between a and 49, inclusive.

root, assign a

If one wants the segment to be independent, i.e.,
shareable, assign a number between 50 and 127, inclusive.

Sections without segment numbers are assigned to
number O.

segment

Segment numbers should be assigned using the following additional
guidelines:

*

*

Logic Recuirements - Segments which must be available for
reference at all times, or which are referred to
frequently, are normally classified as being one of the
fixed segments. Segments which are used less frequently
are normally classified as being one o~ the independent
segments, depending on logic recuirernents.

Frequency of Use Generally, the more frecuently a

2-6

*

segment is referred to, the lower its segment number; the
less frequently it is referred to, the higher its segment
number.

Relationship Between Sections - Sections which frequently
communicate with one another should be given the same
segment numbers.

When segmentation is used, the entire PROCEDURE DIVISION must be
in sections. Since the DECLARATIVES must consist of segments,
using DECLARATIVES forces the entire program to be in sections.

NOTE

Segments in the DECLARATIVES always belong to
the root. Therefore, they must have segment
numbers less than 50.

Figure 2-3 shows an example of a segmented COBOL program.

Fixed
Segments

Independent
Segments

PROCEDURE DIVISION

PROCESS-LOAN SECTION.

GET-CUSTOMER-NUMBER SECTION 10.

MONTH-PROCEDURE SECTION 52.

HOME-LOAN SECTION 100.

Figure 2-3

2-7

2.2 LINK EDITOR OVERLAYS

When memory space is at a premium, the user may find it
advantageous to use overlays in his programs. Programs that do
not use overlays are loaded in their entirety into the system and
remain in memory while execution continues. Programs that use
overlays conserve memory space since each overlay is resident in
memory only when it is called. The total memory space required by
the program is that memory which is required to hold the root
portion and the longest overlay path.

For example, consider the structure shown in Figure 2-4. If the
length of each path is given as in Figure 2-4, this program would
require hexadecimal l18E bytes of memory.

PROCEDURE PRCI

--+--,
PROCEDURE , PRC2 ,

--+--,
PHASE 0 MAINPROG

+------------+------------------+ , ,
, r

PHASE 1 J PROGI PEASE 1 PROGIA , --+--, ')096E Bytes)
+----------+-----------------+ , ,
I ,

PHASE 2 , PROG2 PHASE 2 , PROG3
--+-- --+--

.)10B2 Bytes) .)118E Bytes)

Figure 2-4

2.3 STRUCTURE CONSIDERATIONS

The structure of an overlaid program is dependent upon the
relationships between the phases in the program. Phases~that do
not have to be in memory at the same time can overlay each other.
These phases are considered to be independent in that they do not
reference each other directly or indirectly. Independent phases
can be assigned the same load address and can be loaded only when
referenced. When a specific phase is called, all phases in its

2-8

path must be in memory.

Figure 2-5 shows an example of the link control file necessary to
construct the overlay structure given in Figure 2-4.

PROC PRCI

PROC PRC2

PHASE 0, MAINPROG

PHASE 1, PROGI

PHASE 2, PROG2

PHASE 2, PROG3

PHASE 1, PROGIA

END

Figure 2-5

Figure 2-6 shows an example of an overlay that has been installed
on a program file. This assun:es that a copy of the procedure
RCOBOL, which in this example is the COBOL runtime, is already
resident in the system program file.

*

*

DUMMY COMMAND causes the Link Editor to suppress the
linked output for the procedure, task, or phase in which
it appears.

PHASE COMMAND specifies the level and name of the overlay
phase. Phases at level 1 or higher are disk resident
overlays and are loaded into memory when called by a
phase already in memory. Phase 0 is always a memory
resident phase. .Corresponds to a module designated by a
TASK command.)

2-9

*

,I x
I'" i' \

LOAD COMMAND causes the Automatic Overlay Manager to be
included in the linked output. The LOAD command is only
applicable when IMAGE format is being used and should
appear in the root phase. The random library .S$SYSLIB
is also required with the LOAD command.

LIBRARY .S$SYSLIB
FORMAT IMAGE, REPLACE
PROC RCOEOL
DUMMY
INCL .RCBPRC)
PHASE 0, CLCK
INCL .RCBTSK)
LOAD
INCL
INCL
PHASE
INCL
PHASE
INCL
PHASE
INCL
END

.RCBMPD)
TI.COEOL.OBJ.CLCKMAIN
1, CLCKl
TI.COBOL.OBJ.CLCKSUBI
2, CLCK2
TI.COBOL.OBJ.CLCKSUB2
1, CLCK3
TI.COBOL.OBJ.CLCKSUB3

Figure 2-6 Link Control Stream to Install an Overlaid Task

Figure 2-7 shows the map of the program file after execution of
the link control file specified in Figure 2-6.

FILE MAP OF TI.COBOL.PROGF
TODAY IS 15:32:26 TUESDAY, JAN 22, 1980

TASKS: MAXIMUM POSSIBLE = 10
ID NAME LENGTH LOAD PRI S P M R D E 0 C OVLY PI/SAME P2/SAME
01 CLCK l5D2 3620 4 R 03 lOIN

PROCEDURES: MAXIMUM POSSIBLE = 5
ID NAME LENGTH LOAD M DEW C

OVERLAYS: MAXIMUM POSSIBLE = 10
ID NAME LENGTH LOAD MAP D OVLY
01 CLCKI 0140 49FO
02 CLCK2 0202 4COO 01
03 CLCK3 OleO 49FO 02

Figure 2-7

2-10

2.4 PARTIAL LINKS

A partial link is useful when a very large or complicated
structure is being defined as may be the case with a large overlay
structure. A partial link enables you to link various modules
that are to be included as part of the executable output.
References that occur within a functional grouping will be
resolved. The PARTIAL command requires that a TASK or a PHASE
command be included in the link control file. The output from the
partial link may be either normal ~SCII) or compressed object.
The ouput is not executable and must be linked again before
execution.

Figure 2-8 shows an example of how a partial link would be
included as part of a larger link control file.

PARTIAL
TASK PRTPHS
INCL TI.COBOL.OBJ.RElO
INCL TI.COBOL.OBJ.ISlO
END

[] XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: TI.LCF.PARTL

LINK OUTPUT ACCESS NAME: TI.COBOL.OBJ.PLOBJ
LISTING ACCESS NAME: TI.LMAP.PARTL

PRINT WIDTH: 80

FORMAT IMAGE, REPLACE
LIBR .S$SYSLIB
LIBR TI.COEOL.OBJ
PROC RCOBOL
DUMMY
INCL 'RDBPRC)
PHASE 0, STOCK
INCL aRCBTSK)
LOAD
INCL
INCL
PHASE
INCL
PHASE
INCL
END

tRCBMPD)
-STOCKO)

1, UPDATE
'PLOBJ)

1, FILMNG
'RWFILE)

Figure 2-8

2-11

WORKSHEET

Write a link control file to construct the following overlay
structuree Choose your own procedure, task, and overlay names.
Parentheses .) denote modules to be incl uded.

PROCEDURE *RCBPRC)

--+--,
, ;RCBTSK) ,

PHASE 0 , .RCBMPD) ,
, 'MA INPROG) , ,

+------------+---------+-------------------+ , J , , , ,
PHASE 1 I .SUBl) 'PHASE 1 I .SUB 5)

--+-- , --+-,

PHASE 2

I ,
PHASE 1 J 'SUB2) ,

r
+-------------+---------------+
, f , ,
, -SUB3) PHASE 2 , .SUB 4)

--+-- --+--

2-12

LAB EXERCISE

1) Create a directory for yourself, if you do not already have
one, under TI.COBOL. Allow yourself room for about 20 entries.
You may wish to create subdirectories under this directory.

[] CFDIR

CREATE DIRECTORY FILE
PATHNAME: TI.COBOL.JONES

MAX ENTRIES: 20
DEFAULT PHYSICAL RECORD SIZE:

2} Create a key index file that has a record format that
corresponds to the sample data listed below. Use the Create Key
Indexed File ~FKEY} command to create the your file. The part
number is the primary key and the descrip~ a secondary key.
Use the Copy Sequential File to KIF ~ommand to copy the
sample data to your file. The sample data has been stored in
TI.DATA.COBOL.PARTSFL.

+---+ , ,
, Part Number Description Cost Quantity Reorder
, Level
'Pos.l-S Pos.6-25 Pos.26-30 Pos.3l-35 Pos.36-40
I
+---+ , , 43219 Handle 00500 10090 00400 ,
I 34583 Wrench 04500 00980 00080 , , 10051 Saw 04000 01650 00200 ,
r 19768 Hammer 02000 02000 00500 ,
I 32154 Level 02500 00900 00030
J , 61532 Pliers 01500 02500 00500 , , 34599 Wrench 05000 01700 00100 , , 29984 Screw Driver 01000 04500 00500 , , 82314 Nails 00002 00100 00050 ,
+---+

2-13

3) You must write a COBOL program that will perform 3 functions:

a. receive inventory

b. issue inventory

c. print a report that lists thos~ items which need
to be reordered

You will
functions.
number and
You should
similar to

be provided with subroutines that perform these
You need only code a program that will accept a part

the quantity from the screen and drive the subroutines.
display a menu of the 3 functions as well as screens
these.

+---+ , ,
, STOCK ISSUE ,
I r
r PART NUMBER J , ,
I DESCRIPTION xxxxxxxxxxxxxxxxxxxx , , ,
f QUANTITY , , ,
I *Parts Issued* .*Parts NOT Issued*) ,
, J

+---+

+---+ I ,
, STOCK RECEIPT ,
I
, PART NUMBER
1
, DESCRIPTION xxxxxxxxxxxxxxxxxxxx ,
, QUANTITY ,
, *Parts Received* .*Parts NOT Received*) ,
+----------~--------------------------------+

2-14

The subroutines, their function, and reouired parameters are:

SUBROUTINE FUNCTION PARAMETERS

RDINV reads inventory file
~ust be key index
file you created)

PART NUMBER
DESCRIPTION
STATUS

RECPT updates file to reflect
receipt of inventory

PART NUMBER
QUANTITY
STATUS

ISSUE updates file to reflect
inventory that has been
issued

PART NUMBER
QUANTITY
STATUS

REORD generates a report of all
items in the inventory
that should be reordered

SSTAT displays the current status
of a given part number

PART NUMBER

SSTAT does not have to be called by your program but must be
linked since it is called by RECPT an ISSUE. The STATUS parameter
indicates whether the operation performed was successful or not.
A value of zero will be returned to your program if the operation
completed successfully. You ~st assiqn the synonym:'.~lf._~_..tQ...'y~ .. ur
invent~. ~i.l~ and the syno!lZ1lL:!RB" :to a seguentic.l file or device
~"'1ffrl recei ve the reofae-r report. Your program should not use
the lower half of the screen since this area will be used by the
subroutines. The object modules for these subroutines are stored
under TI.DATA.CO~ . ..
4) Once you have tested your program without the subroutines, you
must link and execute the COBOL runtime, your program, and the
subroutines 3 different ways.

a. The subroutines should be linked so that they are
entrant. Test this with someone else. Two or
more people should be able to link their task so
that they share a common procedure that contains
the subroutines.

b. Link using overlays where the subroutines called
by your program are each a separate overlay.

c. Link using overlays where 2 levels are required.
Hint RECPT and ISSUE can both call SSTAT into
memory.

5) Using the compiler listing and the link map, you should be
able to determine the amount of memory recuired for each of these
three methods.

2-15

WORKSHEET

This worksheet requires an understanding of the material to be
tested in the previous exercise. It is presented here as an aid
to completing section 4 of that exercise.

Diagram the three structures that you are going to create with the
Link Editor.

2-16

MODULE 3

KEY INDEX FILES

OBJECTIVES

* Utilize KIF structure in application programs.

* Specify the advantages and disadvantages of KIF and DBMS.

* Estimate the disk allocation required for a key index
file.

* Describe the physical structure of a key index files.

3-1

3.1 KEY INDEX FILES

When using key index files .KIF), the user should be aware of the
requirements and/or limitations imposed by not only the system but
also ANSI standards. KIF logic is an option that is selected at
when a system generation is performed. COBOL requires this logic
to support indexed file structures. There are some limitations
imposed on DXIO KIF when using COBOL due to the standards set
forth by ANSI. According to the ANSI X3.23-l974 COBOL standard:

* Duplicate primary keys are not allowed.

*

*

*

Alternate or secondary keys may not overlap
key.

primary

Secondary keys may overlap each other but they may not
overlap the leftmost character.

All keys that have been defined for a file must be
defined in the COBOL program regardless of whether or not
they will be used by that application.

Release 3.3.0 and all later releases of DXIO support either
sequential or hashed placement of keys in a KIF file. Earlier
releases support only hashed placement. Sequential placement is
generally faster if the user has loaded the data in sequence. It
may become necessary to offload this data and reload it whenever
file fragmentation offsets this benefit. This module will use
examples implemented on a system with sequential placement.
Appendix A contains similar information for an implementation
using hashed placement.

With sequential placement in a KIF file, all reads to the file are
performed with the read by key supervisor call. This implies that
it is not any faster to perform a read by primary key than it is
to perform a read using a secondary key. This is true for all KIF
files using se~uential placement and running under DXIO release
3.3.0 or later.

One consideration that may be important on a system with a
restricted amount of memory, is the memory requirements for KIF
logic. KIF logic, when included, will require approximately 2K
words of additional memory in the operating system plus an
additional 180 words for every disk drive that is defined.

It should also be noted here that defining a KIF file causes two
entries to be used in the directory in which it was defined. This
is due to the amount of overhead that is requ:red to store the
file attributes in the directory.

3-2

DIRECTORY LISTING OF: TI.COBOL
MAX # OF ENTRIES: 11 # OF ENTRIES AVAILABLE: 7

DIRECTORY ALIAS ENTRIES LAST UPDATE CREATION
CLASS * 23 03/19/80 09:42:01 03/15/80 12:10:38

FILE ALIAS RECORDS LAST UPDATE FMT TYPE BLK PROTECT
ACCT * 11 03/16/80 10:24:25 BS N SEQ YES
BATCH * 2027 02/18/80 11:37:14 BS N SEQ YES WRT DEL
SALES * 113 03/15/80 14:01:25 ES N SEQ YES

12:02:26 THURSDAY, JUN 19, 1980

After creating a KIF file the directory appears as:

DIRECTORY LISTING OF: TI.COBOL
MAX # OF ENTRIES: 11 # OF ENTRIES AVAILABLE 5

DIRECTORY ALIAS ENTRIES LAST UPDATE CREATION
CLASS * 23 03/19/80 09:42:01 03/15/80 12:10:38

FILE ALIAS RECORDS LAST UPDATE FMT TYPE BLK PROTECT
ACCT * 11 03/16/80 10:24:25 BS N SEQ YES
BATCH * 2027 02/18/80 11:37:14 BS N SEQ YES WRT DEL
PMFL * 394 03/19/80 12:04:07 ES N KEY YES
SALES * 113 03/15/80 14:01:25 BS N SEQ YES

12:04:43 THURSDAY, JUN 19,1980

3.2 KIF vs. DEMS

There are advantages and disadvantages to using either key index
files or a data base management system for the 990 which should be
weighed in light of the specific needs at each installation.
There are a couple of factors that may strongly influence any
decision regarding a change from KIF to DBMS. One, is this a new
application or is it tied to other applications, and two, is there
a large demand to insert records or portions of a record an
unpredictable or variable number of times.

The following points illustrate the advantages and benefits to be
derived from implementing a traditional file structure using KIF.

*

*

*

Sequential
sequence.

Keys easy access of data in a specific

Multiple Keys -- can define up to 14 different
these keys may overlap .except p~imary key).

keys and

Blank Suppression -- compression of records to conserve
the required disk storage.

3-3

*

*

*

*

Variable Length Records -- can have records that vary
length within the same key index file.

in

Utilities -- file utilities to ease maintainence efforts
,CSK, CKS, MD}.

ANSI COBOL specifies a standard -- while the actual file
may not be transportable, the file structure as
implemented in the application program is more nearly
transportable on computers whose compilers conform to
these standards.

Ease of Training -- less training required when working
with KIF which has come to be known as a conventional
file structure.

When implementing a data base management system,' there are some
distinct advantages to be gained.

*

*

*

*

*

*

*

*

Variable Length Records -- can have records that vary in
length within the same DBMS file.

Ordering of Data -- ordering of data within the record in
a manner that is not available with a conventional file.

Faster Updates -- updating of items is in general, faster
than with KIF.

Hashed Keys -- hashing of keys makes the insertion of
records much faster. .No index, table, or balance trees
to maintain.)

Query -- simplifies inquIrIes to the file
reduce the effort of report writing.

and may also

Data Independence -- user need not know the actual data
structure to access a given field. Unlike a traditional
file, you do not have to know a fields position in
relation to the rest of the record.

Security -- if security is an installed feature of the
DBMS, you can go beyond the file level ~hich is probably
the only security available, if any, in a conventional
file) and assign security to the lowest data element in
the file.

Logging -- logging may be an optionally installed feature
with DBMS which provides an easier means of maintaining
an audit trail and ensuring data integrity.

* Limited Redundancy of Data -- it is not necessary to
duplicate fields so frequently in different files.

* Utilities several utililites are available to make
maintenance of the data base an easier job.

3-4

* Estimating File Size -- it is far easier to determine the
actual amount of disk storage that will be required for a
given file. The estimate is also very accurate.

PK

FI F2 F3 F3 F3 F3 ??

* IS INSERTION A PROBLEM?

* WITH DBMS CAN INSERT A VARIABLE NUMBER OF FIELDS INTO THE
RECORD.

* WITH KIF CAN SOLVE PROELEM WITH AN INDEXING SCHEME BUT IT
IS VERY DIFFICULT TO THEN DETERMINE HOW MANY RECORDS TO
ACCESS.

Figure 3-1

3.3 ESTIMATING KIF FILE SIZE

When a key index file is created using the sequential placement
scheme, the maximum size of the file can be calculated fairly
accurately. The user must know the value of a number of
parameters before an estimate of the file size can be made. The
required parameters are:

* Physical record size

* Average blank-suppressed logical record size

* The size of each key

* ADU size of the disk which will contain the file

* Maximum number of logical records

* Will the input data be sorted when loaded?

3-5

The accuracy of the user's estimate is dependent upon the accuracy
of these parameters. The most difficult parameter to estimate is
the average logical record size. Since KIF blank suppresses all
logical records, the user must be able to estimate the actual
number of characters that will be stored.

3.3.1 Disk Organization.

KIF allocates disk space to meet three distinct reauirements. The
first area is used for prelogging. Should an error occur, such as
a power failure, the prelog area is used to restore the file to
its original state when it is next opened. The second area·
contains the nodes of the balanced trees or B-Trees. This is the
beginning of the indexing structure for each key. The third area
contains physical records that are used to store the actual data
records and additional B-Trees nodes.

The size of the prelog area may be determined as follows:

.18 * K) + 3 = NPR for prelog

where:

K = number of keys
NPR = number of physical records

The space required for B-Trees may be determined as follows:

'PRS - 20 f
, KS + 6 I = X

+- -+

+- -+
f#LR , +
,-x ,

where:

PRS =
KS =
#LR =

+
'SPLIT * ,

physical
key size
maximum

+- -+ -+
f#LR r ,= NPR for B-Trees
I X I r

record size

number of logical records
SPLIT = 0.1 if input sorted, else 0.25
r , +- -+
J , and J , mean round down or up

+- -+ , nearest integer
to the

This calculation must be performed for each key that has been
defined.

3-6

The area to be used for data records and additional B-Tree space
is determined as follows:

JPRS - 16 r
lLRS + 6 I = X

+- -+

+- -+
fiLR , = NPR for data . rx- J

where:

LRS = average blank suppressed logical record size
.if there is only one key in the file, do not

count the key as part of the record)

The total number of physical records is then:

K
NPR data + NPR prelog + ~ NPR 8-Tree i = NPR total

i=l

3.4 ADDITIONAL NOTES

As stated earlier there are 18K + 3 physical records at the
beginning of the file for logging, where K is the number of keys.
Records are written to this area before being updated to prevent a
loss of data should an error occur before the update is complete.
Based upon the maximum number of records to be loaded, an
allocation is made for the nodes of the 8-Trees. The remaining
space will contain the data. If the file grows beyond its initial
size, additional disk allocations are made to contain B-Tree nodes
and data.

Within each node of the 8-Tree there are a few words of overhead
and several pairs of keys and pointers. At higher levels of
nodes, the key value indicates the largest key value that resides
in the node to which it points in the next lower level. At the
lowest level of nodes, the pointer for a key indicates the hash
bucket that the logical record is in.

It is permissable to load records for which one or more of the
secondary keys has not been given a value. The user may then
rewrite the record at a later time and give the key a value by
accessing the record using the primary key or a secondary key that
has a value.

Keys may be up to 100 characters in length, however it is more
efficient in terms of disk storage if the key is not defined as
being a large number of characters. Also, when fewer keys are
defined, less overhead is required.

3-7

+-+-+-+-+------+
r fR' J f\\\\\\ J

+-+-+-+-+------+
/ \

/ \
/ \

/ \
/ \

/ \
+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+
f IF f ~, fR J\ , < - - - - - - - - - - - - > f , r r f f '\ r

+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+
/ \ \ \

/ \ \ \
/ \ \ \

/ \ \ \
/ \ \

/ \ \
\

\
+-+-+-+-+-----+ +-+-+-+-+-+-+-+ +-+-+-+-+-----+ +-+-+-+-+-----+
r Je r rF 1\ \ \ \ \ , < - - >' JI r 'K' 1M f\ J < - - >' 10' fR 1\ \ \ \ \ f < - - >' r , , , f '\ r

+-+-+-+-+-----+ +-+-+-+-+-+-+-+ +-+-+-+-+--_._-+ +-+-+-+-+-----+
J \ / 1\ f \ / r \
'\ / \ \ ••• / r \
r \ / \ \ / \

+-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ , J f , f f , , f , r r J r • , f J J ,
+-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
fA I fOl 'G r fJ J 'L , 'N' fP r J , f , , ,

+-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ ,
J r , , , f , , f , , , f , f f f , ,

+-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
IB 1< - > JE , < - - - - - - > IE , < - > 'K 1< - > 1M J < - - - - > 10 , < - > lQ , < - -" • • - > , I< -> J 1<-> J f

+-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ , I r , r r 1\r 1\1 1\'
, f f\' f\' f ,

+-+ +-+ +-+ +\+ +\+ +\+ +-+ +\+ +\+ +-+
rc J IF , fIJ f\J "'J 1\' 'Rf 1\' ~, , ,

+-+ +-+ +-+ +\+ +\+ +\+ +-+ +\+ +\+ +-+
1\'

""
f\' l\' 1\' T\f 1\' 1\' f\f f\ ,

+-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+

Figure 3-2 Key Index File B-Tree

3-8

MODULE 4

SYSTEM COMMAND INTERPRETER

OBJECTIVES

*

*

*

Read and interpret existing SCI commands.

Write user-defined SCI commands.

Utilize SCI primitives to improve performance.

4-1

4.1 SYSTEM COMMAND INTERPRETER

The interface between the user and the sytem is a very powerful
tool called the System Command Interpreter 'SCI). This highly
flexible language enables the user to tailor the system functions,
capabilities, and resources to the needs of his specific
environment. SCI can be executed either in batch mode or from an
SCI procedure. SCI consists of SCI primitives, existing SCI
commands, and SCI menus. A procedure, or PROC, is an SCI command
procedure.

In this section, we discuss how a user can write SCI command
procedures unique to an application or modify existing commands.
A command procedure is a series of instructions written in the SCI
language which define a command to SCI. Since SCI is an
interpretive language, SCI interprets one statement at a time.

All SCI statements have the following format:

[b I a n k 's)] < 0 per a tor> b I an k 's) [< k e ywo r d 1 is t >]

where:

operator -- SCI primitive or an existing SCI command.

keyword li3t Required prompts or parameters .must be
seperated by commas).

Denotes an optional string.

< > Denotes a string that must be supplied by the user.

4.2 KEYWORD LIST

A keyword list has the form:

.,~~'
< K e yw 0 r d > = [* Y<Typ e > [I < D e f a u 1 t Val u e >)]

where:

Keyword -- Any string that the u~er supplies for the purpose
of prompting the operator. ~rompts are displayed when the
PROC is executing in foreground.)

* -- Indicates that this is an optional keyword and that the
operator need not reply to this prompt.

4-2

Type Indicates the type of response that is valid for
this keyword.

Default Value A value that will be displayed as the
default response to the keyword.

The following keyword types are valid:

*

*

*

STRING any character string ~uotation marks,
parentheses, and commas are not permitted) or a character
string enclosed in quotation marks 'quotation marks are
not permitted).

ACNM -- a file pathname or a device name.

INT -- a hexadecimal or decimal integer expression.

* YESNO
N.

any alphabetic string beginning with an Y or an

*

*

NAME -- an alphanumeric
alphabetic ch.f17act~r. _ ~ . :

If (::)";;~:O~d t~pe !;s
disMY~d.

string which begins with an
. !:' . \. ~

given, the keyword will not be

Whenever you desire to use the reply to a keyword as a parameter \
in the PROC, the amper'epnd ;&) is reauired to properly evaluate
the value of the keyword~ Since synonyms may be used whenever a
reply is made to 'a keyword, this is a common occurence wi th the
type ACNM, (the use· of the symbol @ allows synonyms to be
evaluated. If you wish to evaluate a keyword which may contain a
synonym, use the format @&<keyword> .

. PROC TEST ~EST SCI PROCEDURE) = 4,
INPUT PATHNAME = ACNM '@SPATH)
.SYN SPATH = @&INPUT PATHNAME
SF FILE PATHNAME = @SPATH
.EOP

In this example, note the use of the symbols @ and & to evaluate
synonyms and keywords. Also note the commands that begin with a
period, these are SCI primitives. Inclusion of the Show File .SF)
command demonstrates how you may include any existing SCI command
in an SCI procedure.

4.3 SCI PRIMITIVES

SCI primitives perform predefined operations. They may be
executed in an SCI procedure, in a batch stream, or interactively
as an SCI command. All SCI primitives begin with a period.

4-3

The following is a list of the SCI pr.imitives and their
parameters:

PRIMITIVE
COMMAND

.PROC

.EOP
• DATA
.EOD
.SYN
.EVAL
.BID
.OBID
.DBID
.OVLY
.SPLIT
.IF
.ELSE
.ENDIF
. LOOP
.UNTIL
.WHILE
.REPEAT
.EXIT
. USE
.MENU
.STOP
.SHOW
MSG
.OPTION

PARAMETERS

<name> ['<full name»] [=<int>,] [<keyword list>]

<acnm> [,EXTEND= YIN] [,SUBSTITUTION= Y/N] [,REPLACE= YIN]

<name>="<string>"
<name>=<int expression>

[,PARMS= '<string»]
[,PARMS= '<string»]
[,PARMS= t<string»]
[,PARMS= '<string»]

TA S K = < in tin arne> [, L UNO = < i n t >] [, COD E = < in t >]
TASK=<int/name> [,LUNO=<int>] [,CODE=<int>]
TASK=<int/name> [,LUNO=<int>] [,CODE=<int>]
OVLY=<int/name> [, LUNO=<int>] [,CODE=<int>]
LIST=<string>, FIRST=<name> [,REST=<name>]
"<string>", <relational operator>, "<string>"

"<string>", <relational operator>, "<string>"
"<string>", <relational operator>, "<string>"

[<acnm>] [<,acnm>]
<menu name>
TEXT = "<string>" [,CODE = <int>]
<acnm>
TEXT = "<string>" [,REPLY = <name>]
[, PROMPT=" < s tr ing>"] [, MENU=" <name>"]

.n 0 tap rim i t i ve)
[,PRIMITIVES= YIN]

4.4 DEFINE PROCEDURE

.PROC begins the definition of an SCI procedure.
following format:

It has the

.PROC <name> ['<full name»] [=<inteqer>]
.' _, _ ,-?l [,<keyword list>]

where:

name -- Mnemonic used to call the procedure.

full name Full name of the command which will be
displayed wren the command is called.

integer -- Integer value in the range of 0 to 7 which
indicates tte privledge level of the command.

4-4

4.5 END OF PROCEDURE

.EOP indicates the end of the procedure definition. It has the
following format:

.EOP

~~RO~r~~d ~E~:t~~e s~~~~!~ed.r~h~~e d;!;~i~i~_~~~~~~~g~~~~1~
omitted •

4.6 ASSIGN SYNONYM

.SYN assigns a value to a synonym. It has the following format:

.SYN <name> = "<value>"

where:

name -- The synonym name, which may be any character string.

value String, character string, variable or a
concatentated expression.

This is the only command used in the Assign Synonym ~S)
procedure. The @ symbol will allow you to access the value of the
synonym by placing it in front of the synonym name.

SYNONYM VALUE
-----------+------------

C r TI.COEOL
S , C. SOURCE
o .OBJECT

@@?MAIN is equivalent to TI.COBOL.SOURCE.MAIN

@C~O.MAIN is equivalent to TI.COBOL.OBJECT.MAIN

4.7 CONDITIONAL PRIMITIVES

The primitives .IF, .ELSE, and .ENDIF provide for the conditional
execution of an SCI command stream. Their format is as follows:

4-5

·IF <operand 1>, <rel~tion>, <operand 2>

.SCI command stream 1)
.ELSE

'SCI command stream 2)

"'-
. ENDIF .. , / (

I '.: {'

where:

relation -- EQ, NE, GT, GE, LT, LE

The .ELSE primitive is not required when using .IF however, every
.IF must be terminated by a .ENDIF. The .IF statements may be
nested up to a maximum of 32 levels deep.

* THIS PROCEDURE IS CALLED "EXP"
*

-EXP 'EXAMPLE PROC) = 5,
INPUT PATHNAME = ACNM r@$PATH) ,
DISPLAY OR PRINT? = STRING 'DISPLAY)
.SYN $PATH = @&INPUT PATHNAME
*

!PRIVLEDGE LEVEL 5

!ASSIGN SYNONYM SPATH

* IS THE FILE TO BE DISPLAYED OR PRINTED?
*
.IF &DISPLAY OR PRINT?, GE, P

PF FILE PATHNAME = @SPATH,
ANSI FORMAT = N,
LISTING DEVICE = LPGI,
DELETE = N,
NUMBER OF LINES = ""

.ELSE
SF FILE PATHNAME = @$PATH

.ENDIF

IPERFORM PRINT FILE

!PERFORM SHOW FILE

The .IF determines whether or not the response to the keyword
DISPLAY OR PRINT? is greater than or equal to P. If it is, the
the file will be printed, else the file will be displayed.

Note that comments may be included by placing an asterisk in the
first position. Comment~ may also be placed on a command line by
using an exclamation point preceeded by one or more blanks.

Note also that the synonym SPATH begins with a dollar sign. If a
synonym has no value, as will be the case when this PROC is first
executed, the synonym itself will be displayed. The use of the
dollar sign will prevent this from happening.

4-6

The operator keys in:

[] EXP

and the following appears:

EXAMPLE PROC
INPUT PATHNAME:

DISPLAY OR PRINT?: DISPLAY

4.8 WRITING MESSAGES

The command MSG may be used to communicate with the operator from
an SCI procedure. While the MSG command is not an SCI primitive,
it is very useful when defining a PROC. This command may also be
used to accept a response to the message. It has the format:

MSG TEXT = "<string>" [,REPLY = <name>]

where:

string Any character string that is to be displayed.

name -- A synonym that will be assigned to the response if a
reply was requested.

When the MSG command is executed, the message will be displayed at
the bottom of the screen. The procedure will then halt execution
until the operator res~onds to the message. tStriking the RETURN
key will cause the procedure to continue.)

4.9 EVALUATING NUMERIC EXPRESSIONS

The primitive .EVAL may be used to evaluate a numeric ex?ression.
The results of the expression will be converted to a deci~al,
ASCII string and stored as the value of a synonym. The format is:

.EVAL <name> = "<value>"

where:

name -- The synonym to which the value of the expression is
assigned.

4-7

value -- The numeric expression.

* *
* EXAMPLE SCI PROC USING n.EVALn AND "MSG"
* *
.PROC FP 'FIND PRODUCT) = 1,
ENTER MULTIPLICAND = INT,
ENTER MULTIPLIER = INT
.USE
.SYN A = &ENTER MULTIPLICAND
.SYN B = &ENTER MULTIPLIER
.SYN HEX = ""
.IF @A, GE, >

.SYN HEX = YES
.ENDIF
.IF @B, GE, >

.SYN HEX = YES
.ENDIF
.EVAL P = @A * @B
.IF @HEX, EQ, YES

!
!CHECK TO SEE IF EITHER OF
!THE NUMBERS ENTERED WAS A
!HEXADECIMAL VALUE

MSG T = "HEX NUMBERS CONVERTED TO DECIMAL"
.ENDIF
MSG TEXT = "THE PRODUCT IS @plI
.SYN A = ""
• S YN B = "" _ .. .-.

. EOP

The command FP accepts two integer values and calculates the
product. I: either of the values entered is a hexadecimal
number then the message HEX NUMEERS CONVERTED TO DECIMAL is
displayed: Remember, .EVAL evaluates the expression and
stores it as ASCII decimal.

Notice that the synonym is evaluated within the wessage
text. Also, the synonyms A and B were assigned null values
at the end of the procedure so that synonym table overflow
:nay be avoided.

4-8

WORKSHEET

Write a procedure that will execute a program which updates
an inventory file. You should prompt the operator to
determine which operation is to be executed. The options
which can be selected are a receipt, an issue, or the
printing of a reorder report. Assume that there are 3
separate programs to perform each of these operations. The
task names are RECPT, ISSUE, and REORD. Assume all the
programs are stored under TI.INV.OBJ.

If the reorder option is selected, you should perform a
print file on TI.INV.REORD and display a completion message
when the printing is complete.

You should validate the option selected and display an error
message where appropriate.

The keywords for the Execute COBOL Program Foreground IXCPF)
command are:

OBJECT ACCESS NAME:
DEBUG MODE: NO

MESSAGE ACCESS NAME:
SWITCHES: 00000000

FUNCTION KEYS: NO

The keywords for the Print File IPF) command are:

FILE PATHNAME 'S):
ANSI FORMAT?: NO

LISTING DEVICE:
DELETE AFTER PRINTING?: NO

NUMBER OF LINES/PAGE:

4-9

4.10 ITERATIVE LOOPS

The primitives .LOOP, .UNTIL, .WHILE, and .REPEAT may be
used to create a loop within the procedure. The format for
their use is:

.LOOP

.UNTIL "<operand 1>", <relation>, "<operand 2>"

.WHILE "<operand 1>", <relation>, "<operand 2>"

.REPEAT

where:

relation -- EQ, NE, GT, GE, LT, LE

The loop must be i~jtiated by a .LOOP statement and
te.rmiriaEed by' ~._~:gEP~ATsta.tement. The-toop"-rnust conta'in at
least one .WHILE or .UNTIL but may contain more than one.
The statements between the .LOOP and .REPEAT will be
continuously executed as long as the condition in the .WHILE
is true or they will be executed until the condition in a
.UNTIL becomes true. As soon as the loop is terminated by
one of the conditions, the statement following the .REPEAT
will be executed. If either of the conditional statements
causes the loop to terminate, the branch out of the loop is
immediate, that is, no statements between the conditional
and .REPEAT will be executed .

. LOOP

SCI statemetns

.UNTIL or .WHILE

SCI statements

.REPEAT

4-10

* *
* EXAMPLE SCI PROC US ING ". EVAL", "MSG", AND ". LOOP"
* *
.PROC FP 'FIND PRODUCT) = 1,
ENTER MULTIPLICAND = INT,
ENTER MULTIPLIER = INT
.USE
.SYN A = &ENTER MULTIPLICAND
.SYN B = &ENTER MULTIPLIER
.SYN HEX = "", AGAIN = ""
.IF @A, GE, >

.SYN HEX = YES
.ENDIF
.IF @B, GE, >

.SYN HEX = YES
.ENDIF
.EVAL P = @A * @B
.IF @HEX, EQ, YES

!CHECK TO SEE IF EITHER OF
!THE NUMBERS ENTERED WAS A
!HEXADECIMAL VALUE

MSG T = "HEX NUMEERS CONVERTED TO DECIMAL"
.. ENDIF
MSG TEXT = "THE PRODUCT IS @P"
* *
*
*

COMPUTE THE SQUARE OF THE PRODUCT
IF REQUESTED, CONTINUE TO COMPUTE THE SQUARE

* *
• LOOP

MSG TEXT = "FIND THE SQUARE? 'Y/N)", REPLY = AGAIN
.WHILE @AGAIN, GE, Y

.EVAL S = @P * @P
MSG TEXT = liTHE SQUARE OF @P IS @S"
.EVAL P = @S

. REPEAT

.S'YN A="", B=""

.SYN HEX="", AGAIN=""

.EOP

This extension to the previous example shows a method for
using a loop. As long as the operator responds in the
affirmative to the message FIND THE SQUARE?, the procedure
will continue to perform that calculation. The last .EVAL
sets the synonym P equal to the synonym S. The same
operation could have been performed using a .SYN statement.

4-11

4.11 EXIT FROM A PROCEDURE

The .EXIT statement allows you to terminate the execution of
a command procedure. If a .EXIT is executed, the PROC is
terminated immediately; no other commands will be executed.
It has the format:

.EXIT

EXP 'EXAMPLE PROC) = 5,
INPUT PATHNAME = ACNM '@$PATH) ,

.IF @DP, NE, >3C

.EXIT

.ELSE

.ENDIF

4.12 DISPLAYING A FILE

PRIVLEDGE LEVEL 5

The primitive .SHOW can be used to display the contents of a
specified file. It has the format:

.SHOW <acnrn>

where:

acnm -- A valid pathname.

SF 'SHOW FILE),
FILE PATHNAME = *ACNM '@SFP)
.SYN SSF$P = u&FILE PATHNAME"
.IF n&FILE PATHNAME", NE, ""
.SHOW @&FILE PATHNAME
.ENDIF

4-12

4.13 TERMINATING SCI

The primitive .STOP will cause execution of SCI to be
terminated. It has the following format:

.STOP [TEXT = "<string>" [,CODE = <int>]]

where :_--' I " V,n: II) I,\./ __ • ___ ._r'-'·
I

)

TEXT -- A string which may be passed back to the foreground
terminal local file in place of the normal batch stream

1 ~.1 message.

) CODE -- May be used to set the synonym $$BC.
I ..

The .STOP command may be used in any application of SCI. However,
the parameters TEXT and CODE, only have meaning when this
primitive is used in a batch stream. Batch streams are discussed
in Module 6.

4.14 SPECIFYING AN SCI PROCEDURE LIBRARY

SCI normally searches the system procedure library, .S$PROC,
whenever it is given a command. The user may specify that an
alternate directory or library be used to find the command. The
primitive .USE may be used for this purpose. It has the following
format:

. USE [< acnrn>] [, <acnrn>]

where:

acnrn -- The valid pathname of a directory to be used as the
SCI procedure library. The default is .S$PROC.

This command is especially useful in the application environment.
It enables the user to place commands in different libraries and
still use them within the same command procedure. This may also
be used to make the system more secure from unauthorized use of a
command.

If two directories are specified, SCI will search the first
directory for the command to be executed. If it is not found, the
second directory will then be searched. This feature would allow
placing user-defined PROCs for a given application in one
directory while allowing the use of system PROCs within these
commands.

4-13

.USE TI.GNLEDGER, .S$PROC

4.15 BUILDING A DATA FILE

Data may be copied directly into a file through the use of the
.DATA and .EOC primitives. All statements between these two
commands will be placed in a specified file. The format is:

.DATA <pathname> [,EXTEND = <YES/NO>]
[,SUBSTITUTION = <YES/NO>]
[,REPLACE = <YES/NO>]

.EOD

where:

pathname -- A valid pathname that indicates where the file
is to be stored.

EXTEND This indicates whether or not the file should be
opened extended. This allows you to concatenate several
files together or to append additional records to the end of
a file. The default is NO.

SUBSTITUTION This allows the user to use synonyms and
keywords in the text which will be eV2luated and the values
substituted before being written to the file. The default
is NO.

REPLACE -- Specifies whether the data stream is to replace
an existing file. The default is YES.

This is a useful command for build ina files from within the
procedure. This is especially useful whenJyou wish to build a
temporary file, add to, or substitute in an existing file.

4-14

EMPINFO 'QUERY ON EMPLOYEE INFO) = 4,
PASSWORD = STRING,
EMPLOYEE NUMBER = INT
.IF @$$ST, LT, 06

MSG TEXT = "PRIVLEDGED COMMAND, FOR ACCOUNTING ONLY"
.EXIT

.ENDIF

.IF @$$ST, GT, 08
MSG TEXT = "PRIVLEDGED COMMAND, FOR ACCOUNTING ONLY"
.EXIT

.ENDIF
* *
* APPEND QUALIFICATION TO QUERY STATEMENT
* *
.DATA TI.EMP.QEISRC, EXTEND=YES, SUESTITUTION=YES

WHERE EMPN EQ &EMPLOYEE NUMBER
BY KEY BY LIST

.EOD

* *
* BID THE QUERY TASK
* *
.BID TASK=>CO, LUNO=>lO, PARMS='3, 4, @MR, &PASSWORD, 60,

80, .LIST@$$ST, R, N, N, N, N, N, N, TI.QEI@$$ST,
.LIST@$$ST, .TEMPQ@$$ST, .QUERYLIB.ERRMSG, , @MT)

* * * SHOW THE QUERY OUTPUT
* *
.SHOW .LIST@$$ST
* *
* DELETE TEMPORARY LISTING AND WORK FILES
* *
DF PATHNAME = .LIST@$$ST
DF PATHNAME = .TEMPQ@$$ST

This procedure accepts a password and an employee number that will
be used by the QUERY 990 processor. A query file already exists
which will cause information to be retrieved from a DBMS employee
file. A statement that indicates which employee is desired must
be appended to the end of the query file. Note, this PRoe will
only execute from stations 6, 7, and 8. The synonym $$ST, which
contains the station number, has been concatenated with the file
names to give unique temporary files.

4-15

WORKSHEET

Write a PROC that will accept a task name from the screen. That
name should then be used as the file name for source, object and
listing files when compiling the program. It will also be the
task name in the link control file. Build the link control file
in your procedure. Use the synonym $$LU to retrieve the luna from
the AL ,assign luna) command. Use $$LU where required. Your PROC
should then compile, link, and execute the task.

The format for the Execute COBOL Compiler Foreground tXCCF)
command is:

SOURCE ACCESS NAME:
OBJECT ACCESS NAME:

LISTING ACCESS NAME:
OPTIONS:

PRINT WIDTH: 80
PAGE SIZE: 55

PROGRAM SIZE 'LINES): 1000

The format for the Execute Linkage Edi tor 'XLE) command is:

CONTROL ACCESS NAME:
LINKED OUPUT ACCESS NAME:

LISTING ACCESS NAME:
PRINT WIDTH: 80

The format of the Execute COBOL Task Foreground 'XCTF) command is:

PROGRAM FILE LUNa:
TASK ID OR NAME:

DEBUG MODE: NO
MESSAGE ACCESS NAME:

SWITCHES: 0000000
FUNCTION KEYS: NO

The format of the Assign LUNa ,AL) command ic:·

LUNa:
ACCESS NAME:

PROGRAM FILE?: NO

The format of the Release LUNa 'RL) command l' c: •
LUNO:

4-16

A suggested sequence of events is as follows:

1. Prompt for the task name -- command name and keywords.

2. Compile the program -- XCC or XCCF.

3. Build link control file .DATA through .EOD.

4. Execute the link editor XLE.

5. Assign a luno to your program file -- AL.

6. Execute the task XCT or XCTF.

7. Release the luno RL.

If any commands are executed in background, such as the Link
Editor, a WAIT command should be executed after that command.
This will prevent the next foregound command from being executed
before a required background task has terminated.

4-17

4.16 THE .SPLIT PRIMITIVE

The .SPLIT primitive assigns the first term from a value list to a
synonym and assigns the rest of the list to another synonym. It
has the following format:

.SPLIT LIST = <list>, FIRST = <name 1> [,REST = <name 2>J

where:

LIST -- Defines the value list.

FIRST -- Defines a synonym given to first term.

REST -- Defines a synonym given to the remainder of the
value list.

ADST 'APPEND DAILY SALES TOTALS) = 2,
DAILY SALES FILE'S) = *NAME .@$DSF) ,
OUTPUT FILE = NAME
.SYN $DSF = &DAILY SALES FILE
.SYN OF = &OUTPUT FILE
.SPLIT LIST = @$DSF,

FIRST = DAY,
REST = $DSF

.SHOW TI.SALES.@DAY
HSG TEXT = "DOES TOTAL BALANCE WITH SUMMARY SHEET? 'Y/N)",

REPLY = BAL
.IF @BAL, EQ, Y

AF INPUT ACCESS NAME = TI.SALES.@DAY,
OUTPUT PATHNAME = TI.SALES.@OF

.ENDIF

. IF @$DSF, NE, ""
ADST OUTPUT FILE = @OF

.ENDIF

.SYN $DSF="" , OF="" , DAY="", BAL=""

This example accepts the names of several files that will be
displayed one at a time. If the operator responds in the
affirmative to the message DOES TOTAL BALANCE WITH SUMMARY SHEET?,
the file currently displayed will be appended to a common file.
The PROC then calls itself to display and append the next file.

Instead of calling itself again, the PROC could also have been
written to use the .LOOP primitive. A third method of writting
this PROC allows the user to key in all of the file names at the
same time. Each file name is seperated by a comma as in the first
method, however, the keyword type is ACNM. 'I'his gives the added

4-18

advantage of allowing SCI to determine that a valid file name was
entered. Commas are not usually permitted with type ACNM,
however, they are permitted as delimiters if the keyword type has
been enclosed in parentheses. The Copy/Concatenate eC) command
is an example of this usage.

CC ,COPY/CONCATENATE),
INPUT ACCESS NAME '5)= 'ACNM),
OUTPUT ACCESS NAME=ACNM,
REPLACE?=YESNO iNO),
MAXIMUM RECORD LENGTH = *INT
.BiD TASK=>34,CODE=2,
PARMS= I.&INPUT ACCESS NAME),
@&OUTPUT ACCESS NAME,
NO,&REPLACE,NO,&MAXIMUM RECORD LENGTH)

4.17 BIDDING A TASK OR AN OVERLAY

Most of the existing SCI commands as well as many that the user
will write himself, cause a task or an overlay to be bid from a
program file and executed. The primitives .BID, .CBID, .DBID, and
.OVLY may be used for this purpose. When used in place of an
existing SCI command they will cause execution to be considerably
faster since the SCI command does not have to be evaluated. .BID
bids a task to be executed in foreground and .OBID will cause the \
task to be executed in background. .DBID bids a task and then
places it in a suspended state 'state >6) for the purpose of
debugging it, e.g. setting breakpoints etc. As such, this is not
a suitable command for use with COBOL applications. The command
.OVLY is used by many of the existing SCI commands since they are
disk resident features of the operating system. A good example of
this is the text editor iXE), which is installed as overlay >3
iE$EDIT) on the system program file.

The format for these primitives is:

I' :"1
.BID TASK=<int/name> [,LUNO=<int>] [,CODE=<int>]

[,PARMS=< .string»]

.QBID TASK=<int/name> [,LUNO=<int>] [,CODE=<int>]
[,PARMS=< 'string»]

:'It,', i"'-f.. /" .
'~...o.s-HrTASK=< int/name> [, LUNO=<int)] [,CODE=< int>]

[, PARMS=< .str ing))]

.OVLY OVLY=< in t/name > [, LUNO=< in t>] [, CODE=< int>]
(,PARMS=< 'string»]

where:

TASK A hexadecimal nurober for the task or overlay id or

4-19

the name of that task or overlay.

LUNO -- A hexedicimal number that is the luno assigned to
the program file from which this task or overlay is being
bid. If this parameter is omitted, the system program file,
.S$PROGA, is assumed. This program file should be used only
for software supplied by Texas Instruments.

CODE -- A value in the range of 0 to 255 that may be
accessed as a binary value by the task or overlay.

PARMS -- A string of characters or parameters, seperated by
commas, that may be accessed by the task or overlay.

UPINV = 5
* *
* ASSIGN A LUNG TO THE PROGRAM FILE
* *
.OVLY OVLY=>lB, LUNO=O, PARMS= t6,0,TI.COBOL.PROGF,Y,ALL,Y)
* * * EXECUTE COBOL TASK IN FOREGROUND
* *
.BID TASK=>02, LUNO=@ALL, PARMS= r,N,DUMY,OOOOOOOO,N)
* *
* RELEASE THE LUNO
* *
.OVLY OVLY=>lB, LUNC=O, PARMS= .30,@ALL)

This example causes the task on the program file TI.COBOL.PROGF,
whose id is >2, to be executed. First a luno must be assianed to
that program file and then the task is bid to execute In the
foreground. When the task is terminated, the assigned luno will
be released. The synonym ALL was used instead of $$LU. This is
the synonym normally assigned by this processor.

Notice that .PROe and .EOP where not used. They are not required
unless the PRoe is being defined interactively. Also, since no
keywords were defined, the operator will key in the command and
then the procedure will begin execution.

4-20

WORKSHEET

Modify the procedure of the previous worksheet so that all of the
functions are implemented using primitives. It is always a good
practice to include comments in your procedure, however, this
becomes a real necessity when using primitives to bid a task or an
overlay.

The procedures XCC and XCCF are written as:

XCC .EXECUTE COBOL COMPILER <VERSION 3.2.0 79173» =2,
SOURCE ACCESS NAME = ACNM '"@$$S"},
OBJECT ACCESS NAME = ACNM ."@XCCOB"},
LISTING ACCESS NAME = ACNM ."@XCCL"},
OPTIONS = *STRING ."@XCCO"),
PRINT WIDTH = INT tSO),
PAGE SIZE = INT .55),
PROGRAM SIZE .LINES) = INT t1000)

! '.BID should be used for XCCF)
.QBID TASK = >S7, LUNO = >10,
PARMS = .@&SOURCE ACCESS NAME, @&OBJECT ACCESS NAME,
@&LISTING ACCESS NAME, "&OPTIONS",&PRINT WIDTH,
&PAGE SIZE, @M'EMORY, &PROGRAM SIZE iLINES))

The procedures AL and RL are written as:

AL .ASSIGN LUNO},
LUNO=*INT,
ACCESS NAME=ACNM,
PROGRAM FILE?=YESNO ~O}
.IF &LUNO, EQ, ""
.OVLY OVLY=>lB,LUNO=O,

RL tRELEASE LUNO),
LUNO=INT
.OVLY OVLY=>lB,LUNO=O,
PARMS= .30,$LUNO)

PARMS= .6,0,@&ACCESS NAME,Y,ALL,&PRCGRAM FILE?)
.SYN $$LU="@ALL"
.ELSE
.OVLY OVLY=>lB,LUNO=O,
PARMS= i6,&LUNO,@&ACCESS NAME,N,ALL,&PROGRAM FILE?)
.ENDIF
.SYN ALL=""

4-21

The procedure XLE is written as:

XLE -EXECUTE LINKAGE EDITOR) =2,
CONTROL ACCESS NAME = ACNM .n@XLEC n) ,
LINKED OUTPUT ACCESS NAME = *ACNM .n@XLEOBn),
LISTING ACCESS NAME = *ACNM .n@XLELn),
PRINT WIDTH = INT .80)

.QBID TASK = >86, LUNO = >10,
PARMS = .@&CONTROL ACCESS NAME,
@&LINKED OUTPUT ACCESS NAME,
@&LISTING ACCESS NAME,
4096,&PRINT WIDTH)

The procedures XCT and XCTF are written as:

XCT .EXECUTE COBOL TASK <VERSION: 3.2.0 79173»,
PROGRAM FILE LUNO = INT *"@XCTpn),
TASK 1D OR NAME = STRING ."@XCTTn),
DEBUG MODE = YESNO .NO),
MESSAGE ACCESS NAME = *ACNM tn@XCTL"),
SWITCHES = *STRING ."00000000"),
FUNCTION KEYS = YESNO .NO)

'.BID should be used for XCTF)
.QBID TASK = &TASK 10 OR NAME, LUNO = "&PHOGRAM FILE LUNO",
PARMS = .,"&DEBUG MODE",@&MESSAGE ACCESS NAME,
"&SWITCHES",&FUNCTION KEYS)

4-22

4.18 MODIFYING THE SCI INTERFACE

The .OPTION primitive allows the user to modify some of the
characteristics of the SCI interface. The user may change the
command prompt, the main menu, and disallow the use of primitives.
In a user environment these features are useful for customizing a
system as well as helping to make the system more secure from
unauthorized use. .

The format of the .OPTION primitive is:

.OPTION [,PROMPT=<"string">] [,MENU=<"name">]
[,PRIMITIVES=Y/N]

where:

PROMPT An alternate command
string of characters, which
displayed in place of the
terminal is in command mode.
appears on the lower left part

prompt may be supplied. This
must be less than 50, is
default prompt whenever the
On a 911 VDT, the prompt
of the screen.

MENU A menu name may be entered here. This menu is
displayed as the main menu. The default main menu is stored
in .S$PROC.M$LC. The user may supply a different main menu
without using this primitive if the file name is M$LC. The
next paragraph in this module explains the use of menus.

PRIMITIVES -- The use of primitives may be disallowed by
specifying NO to this option. This will prevent the use of
primitives by users not authorized to exercise their
functions. Primitives may be disallowed from the primary
level only, that is from a batch stream or interactively
while SCI is in the command or menu display cycle. They may
still be used from a PROC. The default is YES.

The following example demonstrates the use of the prompt and
menu options. This segment of code might be installed in
the PROC M$OO so that when a specific user logs on to the
system a new command prompt and main menu will be
established for that user. The use of M$OO is discussed in
Module 5.

4-23

M$OO

.IF @$$UI, EQ, BCM013

.OPTION PROMPT = "Command?" MENU = YRMENU

.ENDIF

When user BCM013 logs on the system the text Command? is
displayed on the terminal and the contents of the file M$YRMENU
from a specified procedure directory is displayed as the main
menu.

The next example demonstrates the use of the menu and primitives
options to control these features at terminals ST09 and greater .

. IF @$$ST, GE, 09

.USE TI.GNLEDGER.PROC, TI.PAYROLL.PROC

.OPTION MENU = USER, PRIMITIVES = NO

.ENDIF

The main menu and all accessible PROCs must be stored in one or
the other of the two directories specified by the .USE command.
This ~nd disallowing the use of primitives from these stations
will enhance security on the system.

4.19 DISPLAYING A MENU

You can cause menus to be displayed that contain either commands
to perform some function or still other menu names. The .MENU
primitive will cause the specified menu to be displayed the next
time SCI is in the menu display cycle, i.e., just before it
prompts for the next command. You may also cause menus to be
displayed by using a slash ./) in front of the menu name. All
menus must be in the procedure directory and must be a file name
of the format M$name where "name" is the menu name. "dddd" in the
next example represents the directory name. Recall that the
default procedure directory is .S$PROC unless changed by a .USE
command.

4-24

MENUS
.MENU JAPPL

dddd.M$JAPPL

*** JOE'S PART SHOP ***

APPLICATION MENUS

/GEN
/PAY
/INV
/M~SC

GENERAL LEDGER APPLICATIONS
PAYROLL APPLICATIONS
INVENTORY APPLICATIONS
MISCELLANEOUS UTILITIES

dddd.M$PAY

SELECT ONE OF THE FOLLOWING PAYROLL APPLICATIONS

/HOUR
/SAL
/EOM
/QURT
/YEAR

dddd.M$HOUR

HOURLY PAYROLL REPORTS
SALARIED PAYROLL REPORTS
MONTHLY PAYROLL REPORTS
QUARTERLY PAYROLL REPORTS
YEARLY PAYROLL REPORTS

HOURLY PAYROLL REPORTS

/GER
/DREG
/PFM
/CHECKS
/CKREG
/SSR
/CR

GROSS EARNINGS REPORT
DEDUCTION REGISTER
PAYROLL FILES MAINTENANCE
PRINT PAYROLL CHECKS
CHECK REGISTER
FICA SUMMARY
CREDIT UNION TRANSFERS

4-25

dddd.M$DREG

DEDUCTION REGISTER

DRTOT
DRUP
PRDR

dddd.PRDR

DEDUCTION REGISTER TOTALS
UPDATE MASTER FILE W/REGISTER CALCULATIONS
PRINT DEDUCTION REGISTER

PRDR .PRINT DEDUCTION REGISTER) = 3,
OUTPUT DEVICE = ACNM *LP02)

4-26

LAB EXERCISE

Write a procedure that will accept a number between -5 and +5,
compute the cube of that number, and then display the result. You
must test for the upper and lower bounds of the allowable range.
If the boundaries are violated, display an error message and
accept a new value. The PROC may not terminate until a value
within the allowable range has been entered.

,.\ 6'"

4-27

LAB EXERCISE

Write a procedure that will print multiple copies of a given file
and optionally delete that file when the printing is complete.
You will have to prompt for the pathnaroe of the file, the number
of copies, and whether or not to delete the file.

, I

4-28

LAB EXERCISE

Write a procedure that may be used to save a file while that file
is being text edited. If this is an existing file, then store the
new version using the existing file name. If this is a new file,
prompt for the file pathname and then store the file. Your
procedure should then reenter the text editor for that file. The
commands XE, QE, and QE$l may be used to accomplish this.

The procedure for the Text Editor ~E) command is:

XE -INITIATE TEXT EDITOR),
FILE ACCESS NAME = *ACNM '@XE)

.OVLY OVLY=3, LOOO=O, CODE=O,
PARMS= *@&FILE ACCESS NAME,@MR,@MRM,@XEM,@MT)

The procedure for the Quit Edit ~E) command is:

OE -QUIT EDIT),
ABORT? = YESNO ~O)
.IF fI&ABORT fI , LT, fly"
QE$l
.ELSE
.OVLY OVLY=4,CODE = 9,PARMS= 'Y",)
.ENDIF
.SYN XES="fI, XESC="", XEEC="", XEM=""

The procedure for the QE$l command is written:

QE$l IQUIT EDIT},
OUTPUT FILE ACCESS NAME=ACNM .@XE) ,
REPLACE?=YESNO ~O),
MOD LIST ACCESS NAME=*ACNM
.OVLY OVLY=4, LUNO=O, CODE=9,

PARMS=.N,"@&OUTPUT FILE ACCESS NAME",&REPLACE,
"@&MOD LIST ACCESS NAME")

.SYN XE = "&OUTPUT FILE ACCESS NAMEfI

.SYN $$S = fI&OUTPUT FILE ACCESS NAME"

4-29

4-30

MODULE 5

SYSTEM CUSTOMIZATION

OBJECTIVES

*

*

*

Modify existing SCI commands.

Permanently modify the status of terminals.

Utilize the news file, login and logoff, main
completion code features of SCI.

5-1

menu, and

5.1 MODIFYING EXISTING SCI

Many of the existing SCI commands display default parameters to be
used in the execution of the procedure. Once you understand how
the procedure has been written, it is usually not very difficult
to modify the procedure to fit the needs of the user's
installation. An example of an existing command that the user may
wish to mod ify is the Ini t ial ize System *IS) command. The forma t
of the IS command is:

~
.,I_~~:IAL_~~E _ THE SYSTEM) _ =, 4

lOT-+- ' --,------,
r.Y' @ $ $ C C , NE , 0

.EXIT

.ENDIF
ISL
.BID TASK=3,PARMS= rp, 01
.BID TASK=3,PARMS= .P, 02
.BID TASK=3,PARMS='P, 03
. BID TASK=3 ,PARMS= ,P, 04
.BID TASK=3,PARMS= .p, 09
.BID TASK=3,PARMS= .p, OA
.BID TASK=3,PARMS= .p, OB
.BID TASK=3,PARMS= iP, 00
.BID TASK=3,PARMS= ip, OE
. BID TASK=3, PARMS= ip, D.LJ..- d'II'Dr'
.BID TASK=3,PARMS= .p, @lOj
.OVLY OVLY=) 23, CODE=4 ,--PARMS= ."WARMSTART PROCEDURE COMPLETE",)

assigning
executing

The following example will cause a TTY device, such as a Model 820
KSR, to be assigned a priveledge level of three with no login
required. Three 911 VDTs are to require login, with a maximum
privilege level of 4 on two of the VDTs and 7 on the third. A
global luno has been assigned to a user's program file that is
used in the execution of the application tasks. The luno has been
delete protected to ensure that it is assigned throughout the day.
Since the same volumes are used every day for most processing,
these volumes will be installed at this time as well.

5-2

IS .INITIALIZE THE SYSTEM} = 4,
INSTALL DEFAULT VOLUME? = *YESNO iYES}
IDT
.IF @$$CC,NE,O
.EXIT
.ENDIF
ISL
*
:===1!NSTALL THE DEFAULT VOLUMEi]===================================

.IF "&INSTALL DEFAULT VOLUMES?", GE, "Y"
IV UN="DS02", VN="TI"
IV UN="DS03", VN="APPL"
.ENDIF
*
:===[INITIALIZE THE TERMINAL~======================================

_MTS TN="ST01", NS="ON", NM="TTY", LR="NO", UPC="3", DM="TTY"
MTS TN="ST02", NS="ON", NM="VDT", LR="YES", UPC="4"
MTS TN="ST03", NS="ON", NM="VDT", LR="YES", UPC="4"
MTS TN="ST04", NS="ON", NM="VDT", LR="YES", UPC="7"
*
:====~SSIGN GLOBAL LUNO TO APPLICATION PROGRAM FILE AND PROTE~===

AGL LUNO=>99, AN="APPL.PROGF", PF="YES"
MLP PROTECT="P", LUNO=>99
*
.BID TASK=3,PARMS= 'P, 01
.BID TASK=3,PARMS= ,P, 02
.BID TASK=3,PARMS= ep, 03
.BID TASK=3,PARMS= 'P, 04
.BID TASK=3,PARMS= .p, 09
.BID TASK=3,PARMS= 'P, OA
.BID TASK=3,PARMS='P, OB
.BID TASK=3,PARMS= tp, 00
.BID TASK=3,PARMS= ap, OE
.BID TASK=3,PARMS= ep, OF
.BID TASK=3,PARMS= .P, 010}
.OVLY OVLY=>23, CODE=4, PARMS= ."WARMSTART PROCEDURE COMPLETE",)

In the last example several commands such as the Modify Terminal
Status 'MTS} and Install Volume tIV) commands were used to perform
functions from the IS command. Whenever an SCI command is used as
part of another command, the writer usually supplies all the
required keywords to that command. The keywords may be
abbreviated, however, and all the keywords may not be required.

If the keyword is optional, such as DEFAULT MODE ~TY/VDT) in the
MTS command, it is not necessary to include it unless you do not
wish the default parameter to be used. Remember, optional
keywords were designated by placing an asterisk in front of the
keyword type when the procedure was defined.

5-3

If the keyword is used, it may be abbreviated but a few guidelines
should be followed.

*

*

*

*

The abbreviation must begin with the
the original keyword.

same character as

Any characters used in the abbreviation must also appear
in the original keyword and in the same order.

Digits in the original keyword must
abbreviation and in the same order.

Characters which follow a special
original keyword are ignored.

be used

character

in the

in the

* Use the first character that follows a blank in the
original keyword as part of the abbreviation.

* Be careful that an abbreviation could not be taken for
more than one keyword.

If a command is used without supplying the keywords and their
values, the command and all keywords will be displayed at the
station. The Initialize Date and Time .IDT) and Initialize System
Log 'ISL) commands are used in this manner by the IS command.

I "J~,' -

5-4

Another command that is easily modified is the IDT .initialize
date and time) command. It is written as follows:

IDT tINITIALIZE DATE AND TIME) =4,
YEAR = INT,
MONTH = STRING,
DAY = INT,
HOUR = INT,
MINUTE = INT
.SYN SIDTS = "&MONTH"
.SYN $YEAR$ = "&YEAR"
IDT$l M="&MONTH"
.BID TASK = >19,

PARMS = .20,@$YEAR$,@IDT,&DAY,&HOUR,&MINUTE)
.SYN IDT = ""
.SYN $YEAR$ = ""

This command could be modified so that the user does not have to
enter the year. The procedure would then have to be modified once
a year to keep it current.

IDT -INITIALIZE DATE AND TIME) =4,
MONTH = STRING,
DAY = INT,
HOUR = INT,
MINUTE = INT
.SYN IDT = "&MONTH"
IDT$l M=It&MONTH It
.BID TASK = >19,

PARMS = .20,1980,@IDT,&DAY,&HOUR,&MINUTE)
.SYN SIDTS = Itlt

5-5

WORKSHEET

Modify the command procedure Execute COBOL Compiler 'XCC) so that
the user enters a file name a directory name, and the number of
lines in the program. These should be the only prompts or
keywords that appear on the screen. The parameter OPTIONS should
always default to a cross reference listing. PRINT WIDTH and PAGE
SIZE should always be 80 and 55 respectiv1ey. The source, object,
and listing access names should always be ddd.SRC.nnn, or
ddd.OBJ.nnn, or ddd.LST.nnn where "ddd" is the directory name the
user entered and "nnn" is the file name.

XCC ~XECUTE COBOL COMPILER <VERSION: 3.2.0 79173» =2,
SOURCE ACCESS NAME = ACNM t@$$S"),
OBJECT ACCESS NAME = ACNM ~@XCCOB"),
LISTING ACCESS NAME = ACNM ."@XCCL"),
OPTIONS = *STRING ."@XCCO"),
PRINT WIDTH = INT -80),
PAGE SIZE = INT .55),
PROGRAM SIZE ~INES) = INT.lOOO)
. SYN MEMX = "&PROGRAM SIZE 'LINES)"
.EVAL MEMORY = "@MEMX / 500 * 7168"
.IF "@MEMORY" ,GT, "30840"
.EVAL MEMORY = "30840"
.ENDIF
.IF "@MEMORY" ,LT, "7168"
.EVAL MEMORY = "6144"
.ENDIF
.SYN XCCOB = "&OBJECT ACCESS NAME"
.IF "@&SOURCE ACCESS NAME", EQ, "@&OBJECT ACCESS NAME"
MSG T="ERROR: SOURCE AND OBJECT ARE SAME NAME"
.EXIT
.ENDIF
.IF "@&SOURCE ACCESS NAME", EQ, "@&LISTING ACCESS NAME"
MSG T="ERROR: SOURCE AND LISTING ARE SAME NAME"
.EXIT
.ENDIF
.QBID TASK = >87, LUNO = >10,
PARMS = -@&SOURCE ACCESS NAME, @&OBJECT ACCESS NAME,
@&LISTING ACCESS NAME, "&OPTIONS",&PRINT WIDTH,
&PAGE SIZE,@MEMORY,&PROGRAM SIZE -LINES))
. SYN $XCC SO = "&OPTIONS", $ $S = "&SOURCE ,ACCES NAME",
XCCL = "&LISTING ACCESS NAME", MEMORY = "", MEMX = ""

5-6

One command procedure that the user may wish to modify or add to
is Q$SYN. This command is called by the Quit ~) command when you
sign off a terminal. Its function is to delete many of the system
synonyms so that synonym table overflow does not occur.

Some synonyms assigned by some of the utilities and some of the
software are not included. From time to time the user may find a
synonym that was not deleted by either the procedure that assigned
it or by Q$SYN. You could add such synonyms to this procedure or
any that axe created by your own procedures. It is not always
desireable to delete all synonyms created by a procedure at the
termination of the procedure, but rather leave them so that they
may be accessed by other command proceudres. $$LU is a good
example of a synonym created by the AL command. It is available
to other procedures that may be invoked but should be deleted
eventually to conserve storage in the synonym table. It will be
deleted by Q$SYN.

Note that the synonym table is stored in .S$TCALIB when a user
signs off provided that the user was logged in with a user ide
Each record in this file is 864 bytes of which 804 bytes are
available to store synonyms and their values.

CQ$S~)
.SYN $$OB="", $$RI="", $$VN=II" , PFD="" , SFP=II",
AAP="", ITT="", LLRP=" " , XCPL=" " ,
SPIA="", SPII="", SPIT="", XCTL="",
SRFF="II, SRFP=II" , SRFR="", LDP="",
XE = "", $$BT="", XDD=II" , XLEOB="" ,
$$LU="", $$S="", BDD=" " , BDS="",
$$LD="", CDM=II", CDC="", $$PF="",
$$ML="", $$OP="", XLEC="", XLEL="",
XMAO="", XMAL="", XMAE="", XMAOP="",
XFCO="", XFCL="", XFCE="", XFCOP="",
XCCL="", XCCO="", XCCOB="", XCPO="",
XFTP="", XFTT="", XCTP="", XCTT="",
CFKL="", CFKPN="", CFKLRL="", CFKKN="",
CFKPRL="", CFKKS="", CFKIA="", CFKM="",
CFKSA="", CFKMS="", RPGPL="", $RPGU="",
RPGP=" " , RPGL="", RPGB="", RPGS="" ,
XMAOPL="", XMAMC="",

For the following software, you may wish to add:

SORT/MERGE

~SMi 990

Misc.

XSMFNM, XSMSEQ, XSMNXT

__ DDPSii, PSs€-,~

$$BC, ~6.c.. / lJo /QoT vcf'....£,

5-7

LAB EXERCISE
/

Write a procedure that will/accept a directory name and then use
that directory name to store from 1 to 10 files. The files are
currently in the directory TI.COBOL. There are currently 4 files
in this directory with the names TCTEMPI through TCTEMt:.4e Use the
command procedure UNIQUE to give unique names to fhe:Eiles as they
are copied to your directory. UNIQUE will generate names with the
format .S$TMPxn where "x" is your station number and "n" is the
Nth file to be copied. Set up a loop to increment the input file
name and prompt whether or not you wish to continue with the next
file to he copied. ---lIi. ___ ._

5-8

LAB EXERCISE

Modify the previous lab exercise so that up to 100 files may be
copied from any directory. Also modify the output filename to be
something other than .S$TEMPxn. Be ~ure UNIQUE is in your own
directory before making any modifications to it.

5-9

LAB EXERCISE
,'~

Modify the Create Key Indexed File (~FKE_~_·).-) command so that the
starting position of the key defaults to the next available
position after the previous key that was created. For example, if
the primary key begins in position I and has a length of 5, the
next key that is defined should show position 6 as a default value
for START POSITION.

Also modify the default for MODIFIABLE so that NO will be the the
default for the primary key and YES will be the default for all
other keys. Be careful with all synonym assignments.

Be sure that you have copied all necessary commands into your
directory before attempting any modifications. Execute a Map Key
File ~KF) command to verify that the file was created with the
desired attributes. A suggested test of your PROC would be to
create a file with the following attributes.

KEY
I
2
3

I,'

I

START
COLUMN

1
6

26

LENGTH
5

20
10

MODIFIABLE
N
Y
Y

5-10

DUPLICATES
ALLCWED

N
Y
N

5.2 MODIFYING THE TERMINAL STATUS

The Modify Terminal Status 'MTS) command allows the user to modify
certain conditions associated with each station in a
configuration. The attributes associated with a station that the
user may modify include:

* On-line/off-line status

* VDT/TTY mode

* Login required"

* Privilege code

A series of MTS commands is typically included in the IS command
as was done in a previous example. This enables the user to
tailor the system to meet his requirements. One drawback to this
method is that unauthorized users can gain access to a system that
is not physically locked by performing an IPL on the system. The
user may then bid SCI before the IS command is executed.

A solution to this problem is to modify the terminal status data
on the system disk. This will not only prevent unauthorized use
of the system, but will significantly speed up the execution of
the IS -command where several terminals are involved.

Terminal status ~. n mation is maintained in the ..§.y.s.t..eln
£,QrnrnllPications Area... .SeA , a procedure shared by the active SCI
tasks. This proce ure resides on the system pr~~r~~ jr'le
•• S$PROGA) and contains entries for stations~TOl throu :39:

The initial status for all stations is set equivalent to the
following MTS responses:

MODIFY TERMINAL STATUS
TERMINAL NAME: STxx

NEW STATUS eON/OFF): ON
NEW MODE ~TY/VDT): TTY

LOGIN REQUIRED?: NO
USER PRIVILEGE CODE: 7

DEFAULT MODE ~TY/VDT): VDT

There is a 16 word area allocated in the SCA for each of the 39
stations SCI is capable of supporting. The information affected
by the MTS command is contained in two of these 16 words in the
following manner:

5-11

byte I bit: 0 1 2 3 4 5 6 7

o
+-----+-----+-----+-----+-----+uft.?-~+-----+-----+
f onl J r 11 "i - V J)) r
, off- , user privilege f current terminal mode ,
J 1 ine , code r ,
+-----+-----+-----+-----+-----+-----+-----+-----+
, f

1 , station ID in binary

+-----+-----+-----+-----+-----+_._---+-----+-----+

+-----+-----+-----+-----+-----+-----+-----+-----+
flogin J default J 'no((:'f" Vj)J ,

16 'req'd' user privilege 'default terminal mode
, ? J code r
+-----+-----+-----+-----+-----+-----+-----+-----+ , ,

17 0 0 0 0 0 0 0 0'

+-----+-----+-----+-----+-----+-----+-----+-----+

Byte 0, bit 0:

/

.. 0 = o~-=l in-~-J
I = off-line

~-----.----.--~--

Stations marked as off-line cannot access SCI and can only be used
as physical I/O devices by the DXIO operating system. In
addition, stations marked off-line are not listed by the List
Terminal Status ~TS) command. It may be desireable to mark all
stations not physically generated in the system as being off-line
to remove them from the LTS listing. Remember that the SCA will
contain entries for stations STOI through ST39 regardless of the
number of stations actually specified during SYSGEN. All stations
are initially marked as being on-line.

Byte 0, bits 1-3:

0-7 = User Privilege Code

This field contains the user privilege code associated with this
station when login is not required and, therefore, a user ID and
associated privilege code are not available to SCI.

5-12

Byte 0, bits 4-7:

> 1 = TTY mode - D if '> 0 l-v .

>F = VDT mode -,Itt.(.. OJJ --
This field describes the mode of the station to SCI which
determines how menus are to be displayed, etc.

Byte 1:

>01 - >27 = Station ID in binary

The station ID in binary .>01 through >27) is maintained here and
must be preserved when bits in the preceding byte 'byte 0) are
modified with the Modify Program Image 'MPI) command.

Byte 16, bit 0:

o = LOGIN not required
1 = LOGIN re9uired/----

Login required indicates that a user must supply a valid User ID
and optionally a password to access SCI. All stations are
initially marked such that login is not required.

Byte 16, bits 1-3:

0-7 = Default User Privilege Code

The default user privilege code is used to establish a maximum
user privilege code for this station regardless of the privilege
code associated with a user ID at login or the user privilege code
assigned via the MTS command to the station. All stations are
initially given a default privilege code value of 7. This value
can only be modified by using the MPI command.

Byte 16, bits 4-7:

>1 = Default TTY mode -n,1"' ~rl"
>F = Defaul t VDT mode -/ttL G ~

. --
This defines an upper limit on the capabilities of the physical
device associated with this station ide Stations marked in VDT
mode can be operated in either VDT or TTY mode. Stations marked
in TTY mode may be operated only in TTY mode. An INVALID MODE
CHANGE error will be received when attempting to set NEW MODE =
VDT with the MTS command if the default mode has been established
as TTY. Actual TTY devices should be altered to indicate the
default mode as TTY.

5-13

The fields that you might wish to permanently alter on the system
disk are:

* On/Off-line status .from on to
physically present in the system).

off for devices not

* LOGIN reauired .from no to yes to insure system
integrity).

* User Privilege Code .fromG)to 1,2, ••. ,6 as appropriate).

* Current Terminal Mode
stations) .

tfrom TTY to VDT for all VDT

* Default User Privilege Code
appropriate). This field
command.

.f r om 7 to 1 , 2 , .•. , 6 as
is not accessible by the MTS

* Default Mode -from VDT
device). This field
command.

5.3 MODIFYING THE SYSTEM DISK

to TTY for any physical
is not accessible by the

TTY
MTS

Modifying the system disk is accomplished through the Modify
Program Image iMPI) command as follows

MODIFY PROGRAM IMAGE
:V~tn--A'J(5.--6~hfi~ PROGRAM FILE:

'- ..-- OUTPUT ACCESS NAME:
IttJJ "PD 00 ~(j - } ~ MODULE TYPE:

G ts4 0 - l~ MODULE NAME OR ID:
~ (9 ,0 ~ .3 ~ ADD RE S S :

VERIFICATION DATA:

(
DATA:

" CHECKSUM:
)-Z /3'1ff l W/#~~f ,"b~.

where:

.S$PROGA
iJL.4",,1I1. (,,,"f 6N .. r-C~£A/I/

PR tor PROCEDURE)
S C A .0 r 0 2 - - ve r i f Y wit h M P F)
>xxxx -
>yyyy
>zzzz
> z z z z - L£~V,E :4 .t:/~N"

xxxx the address of the station entrys ibyte 0 or byte
16) to be modified

yyyy -- the current disk data

zzzz -- the value to be written to the disk
optional)

aCHECKSUM is

The address of the station entry can be computed from the address
of ST39 which is >0020. Since each station entry requires 16
words, the address of ST38 would be >0040. Each station's entry
address can then be computed until then address of the entry for
STOl is computed as >04EO.

5-14

/~-~~iYi]
(ThiS example shows how you would modify ST37 to be off-line.

\.

'--MODIFY PROGRAM IMAGE
PROGRAM FILE: .S$PROGA

OUTPUT ACCESS NAME:
MODULE TYPE: PR

MODULE NAME OR ID: SCA
ADDRESS: >0060

VERIFICATION DATA: >7125
DATA: >F125

CHECKSUM:

byte / bit: a 1 2 3 4 5 6 7

+-----+-----+-----+-----+-----+-----+-----+-----+
'0 f 1 1 l' a a a 1 r

o r on- 'user pr ivi1ege J current terminal mode f
, 1 ine , code f ,

+-----+-----+-----+-----+-----+-----+-----+-----+ ~ , a a 1 a a 1 a 1
l' station ID in binary ,

+-----+-----+-----+-----+-----+-----+-----+-----+

Becomes:

byte / bit: a 1 2 3 4 5 6 7

+-----+-----+-----+-----+-----+-----+-----+-----+
f l' 1 1 l' a a a l'

a r off- , user privilege J current terminal mode r
, 1 ine J code' •
+-----+-----+-----+-----+-----+-----+-----+-----+
'0 a 1 a a 1 a 1 J

1 station ID in binary ,

+-----+-----+-----+-----+-----+-----+-----+-----+
The following will be displayed:

VERIFICATION DATA
0060 7125
CURRENT IMAGE
0060 7125 5354 3337 0000 0000 0000 0000 0000
NEW IMAGE: CHECKSUM = F125
0060 F125 5354 3337 0000 0000 0000 0000 0000

This example shows how you would modify ST04 to come up in VDT
mode with login required.

5-15

MODIFY PROGRAM IMAGE
PROGRAM FILE: .S$PROGA

OUTPUT ACCESS NAME:
MODULE TYPE: PR

MODULE NAME OR ID: SCA
ADDRESS: >0480 - J7lf>if

VERIFICATION DATA: >7104
DATA: >7F04 ~hange to VDT mode)

CHECKSUM:

byte / bit: 0 1 2 3 4 5 6 7

+-----+-----+-----+-----+-----+-----+-----+-----+ o 1 1 1 o o o 1
o ., on- , user privilege

, line' code
, cur rent terminal mode
J

+-----+-----+-----+-----+-----+-----+-----+-----+
'0 0 0 0 0 1 0 0

1 J station ID in binary
J
+-----+-----+-----+-----+-----+-----+-----+-----+

Becomes:

byte / bit: 0 1 2 3 4 5 6 7

+-----+-----+-----+-----+-----+-----+-----+-----+
10'1 1 1 1 1 1 1 r

o J on- 'user privilege r current terminal mode J
, 1 i ne , cod err
+-----+-----+-----+-----+-----+-----+-----+-----+
, 0 a 0 a a 1 a a

1 r station ID in binary

+-----+-----+-----+-----+-----+-----+-----+-----+

The following will be displayed:

VERIFICATION DATA
0480 7104
CURRENT IMAGE
0480 7104 5354 3034 0000 0000 0000 0000 0000
NEW IMAGE: CHECKSUM = 7F04
0480 7F04 5354 3034 0000 0000 0000 0000 0000

This example shows how you would modify ST04 to come up in VDT
mode with login required.

5-16

MODIFY PROGRAM IMAGE
PROGRAM FILE: .S$PROGA

OUTPUT ACCESS NAME:
MODULE TYPE:

MODULE NAME OR ID:
ADDRESS:

VERIFICATION DATA:
DATA:

CHECKSUM:

PR

SCA ~"'"
>0060t!.§,..} -
>7FOO
>FFOO .require login)

byte / bit: 0 1 2 3 4 5 6 7

+-----+-----+-----+-----+-----+-----+-----+-----+ '0' 1 1 l' 1 1 1 l'
16 'w/out r default user , default terminal mode r

'log in r pr i vilege code , , + _____ +_J ___ + _____ + _____ + _____ + _____ + _____ + _____ + , .,
17 , 0 0 0 0 0 0 0 0 f , ,

+-----+-----+-----+-----+-----+-----+-----+-----+

Becomes:

byte / bit: 0 1 2 3 4 5 6 7

+-----+-----+-----+-----+-----+-----+-----+-----+
'1' 1 1 1 r 1 1 1 l'

16 flogin' defaul t user , defau1 t terminal mode ,
Ireq 'd r pr i vilege code r :
+-----+-----+-----+-----+-----+-----+-----+-----+ , ,

17 J 0 0 a a a a 0 a
r

+-----+-----+-----+-----+-----+-----+-----+-----+

The following will be displayed:

VERIFICATION DATA
0490 7FOO
CURRENT IMAGE
0490 7FOO 0000 0000 0000 0000 0000 0000 0000
NEW IMAGE: CHECKSUM = FFOO
0490 FFOO 0000 0000 0000 0000 0000 0000 0000

5-17

5.4 NEWS FILE

SCI has a facilitiy for displaying messages to the user on an as
needed basis. This facility is called the news file and is a
sequential file stored in .S$NEWS. The user may create or modify
this file with the Text Editor. The news file, if it exists, will
be displayed each time a user bids SCI or logs on.

5.5 MAIN MENU

The main menu is the first menu displayed if the terminal is in
VDT mode. It will be displayed every time the terminal is in the
menu display cycle provided no other menus have been called for.
The main menu shipped with a system is stored in .S$PROC.M$LC. If
you wish to change the main menu to something other than the one
that has been ~ by Texas Instruments, you may use the menu
option of the(.OPTION/~rimitive as explained in Module 4. You may
also wish to~ a main menu that is system wide. If so, you
should first create a new menu with the Text Editor and store it
in a temporary file. To replace the main menu, all stations on
the system but one must be either off, in TTY mode, or displaying
a menu other than the one supplied with the system. The

te ~C) command may be used to copy your new menu to

) -----------
5.6 STARTUP AND SIGNOFF TASKS

You may wish to have a certain procedure performed every time
someone either bids or quits SCI. An example of such a task is a
user written task that will compute the amount of time that a user
has been logged onto the system. You can write procedures to
perform these startup and signoff tasks and store the~~he PROC
library. The command procedures must be called~M$O~ for the
s tar t u p pro c e d u rea n d M $ 0 I for the s i g no f f pro c e d u r e. '--r j

~()~ If;)/Lt:J/'i?}N,9-

5.7 SEQUENCE OF EVENTS

The sequence of events for SCI when login is required is:

1. Accept and validate user ID and optional passcode.

2. Retrieve user synonym table and set certain system
synonyms e.g., $$ST, $$UI, $$CC, $$MO, ME, etc.

3. Display news file if .S$NEWS exists.

4. Execute M$OO i1 it exists.

5. Display main menu .M$LC or menu specifiE=d by .OPTION) if

5-18

in. VDT mode.

At signoff:

6. Copy synonym table to .S$TCALIB.

7. Execute M$Ol if it exists.

When login is not required the same seauence of events occurs
except for steps 1 and 6 and the first part-of step 2.

5.8 COMPLETION CODES

Most of the existing command processors such as the assembler, the
various compilers, and the link editor, set a compl~tion code that
may be accessed through the sysnonym $$CC. If your procedure or
batch stream executes any of the processors, it is a good practice
to check the value of $$CC after their completion. This can be
accomplished with the .IF statement. The status of the completion
code should be one of the following:

>0000 No warnings or errors

>4000 Warnings

>8000 Errors

COBOL users 'may also set the right most byte of the condition code
from their program. Execution of a STOP literal statement in a
COBOL program will cause the literal or code created by the user
to be set in the condition code.

>0033 Implies normal completion with a user code of 33.

5.9 SCI MODE

The synonym $$MO contains a two digit hexadecimal code for the
current mode of a station.

>00 Batch mode
>01 TTY mode
>OF VDT mode

5-19

CLE ~OMPILE, LINK, AND EXECUTE) = 5,
FILE NAME = ACNM
.USE
.SYN CS = "TI.SRC", CO = "TI.OBJ", CL = "TI.LST"
*
* === COMPILE PROGRAM ===
*
XCCF SOURCE = @CS.&FILE NAME,

OBJECT = @CO.&FILE NAME,
LISTING = @CL.&FILE NAME

*
* === IF NO WARNINGS OR ERRORS, BUILD LINK CONTROL FILE ---
*
.IF @$$CC, EQ, 0

*

.DATA TI.LCF.&FILE NAME, SUBSTITUTION = YES
LIBRARY .S$SYSLIB
FORMAT IMAGE ,REPLACE
PROC RCOBOL
DUMMY
INCLUDE 'RCBPRC)
TASK &FILE NAME
INCLUDE 'RCBTSK)
INCLUDE .RCBMPD)
INCLUDE @CO.&FILE NAME
END

.EOD

* === EXECUTE LINK EDITOR ===
*

XLE

WAIT
*

CONTROL
LINKED
LISTING

= TI.LCF.&FILE NAME,
= TI.PROGF,
= TI.LMAP.&FILE NAME

* === IF NO WARNINGS OR ERRORS, EXECUTE PROGRAM ---
*

.IF @$$CC, EQ, 0
AL LUNO = "",

ACCESS = TI.PROGF,
PROG FILE = YES

XCTF PROG FILE LUNO = @$$LU,
TASK ID OR NAME = &FILE NAME

RL L UNO = @ $ $ L U
.ENDIF

.ENDIF

.SYN CS="", CO="", CL=""
QSSYN

5-20

LAB EXERCISE

Write a procedure that will link a COBOL object program as a DXlO
task. The procedure must create the link control file, execute
the link editor, and optionally create the program file if it does
not already exist. The keywords that should be used by your
procedure and their meaning are:

OBJECT ACCESS NAME -- pathname of the COBOL object program

APPLICATION NAME -- name to be given to the task

PROGRAM FILE NAME -- name of the program file that is to
receive the linked output

1st LINK TO THIS OUTPUT FILE -- has this program file been
been used before, if not, then you will have to create the
program file

LIBRARY ACCESS NAME -- library to be searched in an effort
to resolve references .optional keyword)

LISTING ACCESS NAME -- file or device to which the link map
is to be sent

Your procedure should create a temporary file to contain the link
control file and then delete this file when the link editor has \
terminated. Use $$ST to create a unique file name. Be sure that
you erase any synonyms that are generated by your procedure.

5-21

5-22

MODULE 6

BATCH COMMAND STREAMS

OBJECTIVES

* Write and execute a batch stream.

* Use all applicable SCI functions in a batch stream.

6-1

6.1 BATCH STREAMS

The user can commmunicate with SCI in background using commands
that are in a batch stream. SCI in the batch stream does not
interact with the terminal when a batch stream is being executed.
This implies that all commands in the batch stream must be in the
proper format. That is, all commands must include required
keywords and responses.

The batch feature is very useful when executing a very long task
or a series of tasks. Operator intervention is not required
except to place the batch stream into execution. Once the batch
stream has begun execution, the foreground of the station is
available to the user.

6.2 EXECUTE BATCH

The XB command is used to place a batch stream into execution.

[] XB

EXECUTE BATCH)
(

/" E~'''' I XL (tl"t M-ptH f:}J INPUT ACCESS NAME: ~~ ~/,~~ ~-

LISTING ACCESS NAME:

where:

INPUT ACCESS NAME -- sequential media containing the batch
commands

LISTING ACCESS NAME -- file or device to be used for listing
the batch stream and any messages that are generated by it

Commands are entered in a batch stream in the same manner that
they are entered in an SCI procedure. If a command is to be
entered, it must include the required keywords and a valid
response. You may abbreviate keywords but must follow the same
rules that where required for abbreviating keywords in a PROC.
All primitives are valid for inclusion in a batch stream.

Certain commands may not be used in a batch stream. They are:

* All Debug and Text Editor commands

* Act iva te Task tAT) command

* Kill Background Task 'KBT) command

* Show Background Status ~TS) command

6-2

*

*

Modify Synonym 'MS) command

Execute GEN990 .XGEN) command

6.3 KILL BACKGROUND TASK

The KBT command allows you to terminate the execution of any
background activitiy at the station.

[] KBT

6.4 SHOW BACKGROUND STATUS

The SBS command will display a message that describes the status
of background activity at the station.

[] SBS

SHOW BACKGROUND STATUS

AWAITING COROUTINE ACTIVATION

l!~ L ~. -)f~J' ~ nfof ~ .£Xf1.P.JrJh'TL~ MS

6.5 WAITING FOR BACKGROUND TERMINATION

The WAIT command will lockout the foreground of a terminal while a
background task is executing. After starting the execution of
background task, simply key in the command WAIT. This command may
be aborted to free up the foreground by striking the CMD key on a
911 VDT or by striking CTRL and X on a TTY device. A message
similar to those displayed by the SBS command will then appear and
the foreground becomes available.

6-3

[] WAIT

--WAITING FOR BACKGROUND TASK TO COMPLETE--

-- FOREGROUND COMMAND EXECUTING --

6.6 BEGIN AND END BATCH

Two commands may be used to begin and terminate the batch stream.
The BATCH command will cause the user and station IDs to be listed
at the beginning of the batch stream listing as well as the input
and listing access names from the XB command. The date and time
will also be listed. You may optionally include the synonym table
by including the keyword LS = YES. The purpose of this command is
to delete all the system synonyms from the synonym table before
execution of the batch stream begins so that synonym table
overflow does not occur.

The EBATCH command will cause the date and time to be placed at
the end of the batch stream listing. The synonym table may be
included in the listing by using the same keyword LS = YES. If
the keyword TEXT = "xxxxx" is used, the user supplied text is
supplied in place of the usual batch stream completion message.

Recall that the primitive .STOP may be used to send a message to
the for~ground terminal local file from a batch stream as well as
setting the synonym $$BC. It may be placed anywhere in the batch
stream or used in place of the EBATCH command.

6.7 ERROR COUNT

The Error Count f(~J command may be useful when working with a
very lengthy b~ stream. This command will check ths value of
the condi tion code .$$CC) and if it is greater than 0, increment
the synonym SESC by one. If placed after each batch stream
command, the user may check for successful completion of that
command. The total number of errors may be displayed at the end
of the batch stream by using .STOP. This will eliminate the need
to check the batch stream listing if no errors were encountered
since error messages become a part of the listing.

If the user has set the condition code from a COBOL program, you
may wish to modify this PROC since it assumes that any value for
$$CC greater than zero is an error.

6-4

Use of primitives to bid a task or a system utility does not allow
the condition code to be set. If the user needs to check the
condition code after performing a specific function, the task or
utility should be bid by using a PROC and not a primitive.

BATCH
.SYN CS=TI.COBOL.SRC
.SYN CO=TI.COBOL.OBJ
.SYN CL=TI.COBOL.LST
XCC SOURCE=CS.MAIN,

EC

OBJECT=CO.MAIN,
LISTING=CL.MAIN

XCC SOURCE=CS.SUBl,
OBJECT=CO.SUBl,
LISTING=CL.SUBI

EC
XCC SOURCE=CS.SUB2,

OBJECT=CO.SUB2,
LISTING=CL.SUB2

EC
• IF @EC, GT, 0

.STOP TEXT="CANNOT LINK -- @EC ERRORS IN COMPILE PHASE"
.ENDIF
• DATA TI.COBOL.LCF.PROGI

LIBRARY .S$SYSLIB
LIBRARY TI.COBOL.OBJ
FORMAT IMAGE, REPLACE

.EOD

PROC RCOBOL
DUMMY
INCL
PROC
INCL
TASK
INCL
ALLOCATE
INCL
INCL
END

*RCBPRC)
SUBS
-SUBl)

MAIN
iRCBTSK)

-RCBMPD)
'MAIN}

.SUB2)

XLE CONTROL ACCESS NAME=TI.COBOL.LCF.PROGl,
LINKED QUTPUT=TI.COBOL.PROGF,
LISTING ACCESS NAME=TI.COBOL.LMAP.PROG1

EC
EBATCH TEXT="@EC ERRORS ENCOUNTERED"

Figure 6-1

6-5

6.8 CREATING A KEY FILE

To create a key indexed file in batch mode, the batch stream must
include a CFKEY command followed by 1 to 14 KEY commands and an
ENDKEY command. The keywords for the CFKEY command are:

PATHNAME
LOGICAL RECORD LENGTH
PHYSICAL RECORD LENGTH
INITIAL ALLOCATION
SECONDARY ALLOCATION
MAXIMUM SIZE

'required)
'required)

-required)

The keywords for the KEY command are:

START POSITION
KEY LENGTH
DUPLICATES?
MODIFIABLE?

trequired)
'required)

The ENDKEY command does not have any keywords.

The commands must be entered in order and must all be present.

BATCH LS=Y
*
* === CREATE MASTER INVENTORY FILE ===
*
CFKEY PN="TI.INV.MSTR", LRL=80, MS=3500
KEY SP=l, KL=5, DUP=N, MOD=N
KEY SP=6, KL=20, DUP=Y, MOD=Y
KEY SP=48, KL=6, DUP=N, MOD=Y
ENDKEY
*
* === MAP KEY FILE TO VERIFY ATTRIBUTES ---
* === DETERMINE FILE ALLOCATION OF NEWLY CREATED FILE
*
MKF PN="TI.INV.MSTR"
MD PN= "TI . INV. MSTR ", SF=N
EBATCH

Figure 6-2

!

1"" u p> /1 i' IJ1T Ij hfll11 -)(g
I

6-6

LAB EXERCISE

Write and execute a batch stream that will compile the program
that you wrote for the lab exercise in Module II. The batch
stream should then build the link control files required by that
exercise and execute the Link Editor for each control file. Be
sure to check for succesful completion of the Link Editor after
each link.

6-7

6.9 SUMMARY OF USER WRITTEN SCI

SCI procedures and batch streams should be written to simplify the
execution of application programs and various system tasks. Two
basic rules should be kept in mind when writing SCI procedures and
batch streams.

------(_10 Release synonyms as soon as ~ib~~

2. Use SCI primitives whenever possible.

The first rule will help prevent synonym table overflow. The
synonym table is a fixed length and may overflow if the user
requires the use of many synonyms. The user should always release
synonyms as soon as they are no longer needed. The following
examples delete thelr synonyms after the COBOL program has been
executed. If the user written SCI does calls any system SCI
procedures, then it would be a good idea to also call Q$SYN to
delete any.system synonyms.

The second rule will improve the execution speed of your procedure
or batch stream. When SCI calls a procedure, it must locate the
procedure file, open the file, execute the instructions, and close'
the file. All of this is time consuming. Figures 6-3 and 6-4
show the same SCI procedure written with and without SCI
primitives. Timings were run from the point when the SCI command
was entered until the first application program input was
requested. When not using primitives, the procedure took
approximately 11.2 seconds while the second example which used
primitives took only about 6.5 seconds. Table 6-1 shows a
detailed comparison of timings.

DDA .DEMAND DEPOSIT ACCOUNTING DEMO)
AS SYN = INDEXI, VAL = .DATA.DDA.INDEXI
AS SYN = MAIN, VAL = .DATA.DDA.MAIN
AS SYN = PEOPLE, VAL = .DATA.DDA.PEOPLE
AS SYN = SYSFILE, VAL = .DATA.DDA.SYSFILE
AS SYN = THINGS, VAL = .DATA.DDA.THINGS
AS SYN = STOPS, VAL = .DATA.DDA.STOPS
AS SYN = PRTFIL, VAL = .DATA.DDA.PRTFIL
AS SYN = PRTFL2, VAL = .DATA.DDA.PRTFL2
XCTF P = >51, TASK = >12, DEBUG = NO, MESS = DUMY
.SYN INDEXI = "", MAIN = "", PEOPLE = "", SYSFIL = ""
.SYN THINGS = "", STOPS = "", PRTFIL = "" PRTFL2 = ""
Q$SYN

Figure 6-3 Using SCI Command Procedures

6-8

DDA .DEMAND DEPOSIT ACCOUNTING DEMO)
.SYN INDEX1 = .DATA.DDA.INDEX1
.SYN MAIN = .DATA.DDA.MAIN
.SYN PEOPLE = .DATA.DDA.PEOPLE
.SYN SYSFIL = .DATA.DDA.SYSFIL
.SYN THINGS = .DATA.DDA.THINGS
.SYN STOPS = .DATA.DDA.STOPS
.SYN PRT~IL = .DATA.DDA.PRTFIL
.SYN PRTFL2 = .DATA.DDA.PRTFL2
.BID TASK = >12, LUNO = >51, PARMS = ',NO,DUMY)
.SYN INDEX1 = "", MAIN = "", PEOPLE = "", SYSFIL = ""
.SYN THINGS = "", STOPS = "", PRTFIL = "", PRTFL2 = ""

Figure 6-4 Using Primitives

Table 6-1

PROCEDURES PRIMITIVES

STEP CUMULATIVE STEP CUMULATIVE
STEP PROCEDURE FUNCTIONS TIME TIME TIME TIME

1
2
3
4

Assign DCA & Process Start
Process 8 Synonyms
Bid COBOL Program
Begin COBOL Processing
-includes file and runtime
processing}

6-9

0.33
3.70
2.90
4.30

0.33
4.03
6.93

11.23

0.33
0.33
1.50
4.30

0.33
0.66
2.16
6.46

6-10

MODULE 7

SYSTEM GENERATION

OBJECTIVES

*

*

*

*

Describe the function of the system task scheduler~

Perform a system generation for a given configuration.

Assemble, link, patch,
system.

test, and install

Modify an existing system configuration.

7-1

a generated

7.1 DXlO TASK SCHEDULER

The DXlO Operating System requires that each task have a defined
priority level. There are 132 priority levels:

Highest o DXlO internal use

Rl-R127 J if? J- C~ 11r11)1'I} Real-time priorities _
6)(' ,..,.',-.t:.

Lowest 1,2,3 Interactive and batch mode

4 Floating priority

Level zero is intended for the most critical system functions and
is reserved for DXlO internal use only.

Real-time priorities provide the user with the capability to
supercede all but the most important system tasks. For
applications which require an expedious access to the CPU, DXlO
will delay some routine maintenance of system duties in an effort
to schedule real-time tasks.

Priorities one, two, three and four are designed to satisfy the
reauirements of most installations. Priority level
qUIck response for programs which interact with
terminal, while level two is adequate for programs
multiple-disk accesses. Priority four automatically

one gives
the users
reouirinq
switches

prograTTl priority levels between levels one and two as the
executes.

~riority level three is for batch streams and tasks not requirinq
user interaction. At this level tasks access the CPU only when no
higher priority tasks .interactive, real time or system) are
waiting for execution.

DXlO always schedules the highest priority task waiting for
execution.

o

o - System
PRIORITY STRUCTURE

Rl ... R127 ,
.J.

Rl-R127 - Real-Time

h-ofl~l -
Lt --2

Foreground Interactive

Foreground Compute-Bound
2 3

3 - Background tBatch)

Figure 7-1

7-2

Four SYSGEN parameters determine how the scheduler works:

1. TIME SLICING -@~ j),lFf)0L.} •• Y,iS'

If the time slicing option is selected, then CPU time for a given
priority level will be allocated on a round robin basis among all
the active tasks on that queue.

If time slicing is not chosen, then the first task on a queue will
be allocated CPU time until it terminates, is suspended, or an
external event causes a rescheduling.

2. LENGTH OF TIME SLICE
~'i~------______ ~~ ~ letO rtf_

A mul tiple of ~~~~sec intervals. ---0<-
. 3. TASK SENTRY - YES;@----- Vi!--1)1Jt-'f

U~rJf--S iI#t~
Task Sentry is a SYSGEN option which guards against CPU lock out.
DXlO always executes the highest priority task in the system:
therefore, it is possible to lock out lower priority tasks for
seconds at a time.

When a task remains compute bound at any priority for a specified
ntimber of 50 millisecond intervals, the Task Sentry will lower the
priority of the task by one. This lowering process continues for
as long as the task remains compute bound or until the task
reaches priority three. When the task does suspend, the task
sentry will restore the task to its proper priority.

4. SENTRY TIME ------------_._---r;:; ~ .~
A mul tiple of ~) msec intervals.

The scheduling may be affected by these events:

* PREEMPTIVE BIDDING - A higher priority task always gets
the CPU when it becomes active.

*

*

*

The executing task suspends.

A time delayed task is due to be activated.

The priority of the executing task is lowered by the Task
Sentry -if Task Sentry is active in the system).

* A task completes a time slice fif the time slice option
was included in the system).

7-3

TIME
SLICE

Table 7-1 Interacting Factors in Scheduling

YES

NO

TASK SENTRY

YES NO
+-----------------------+-----------------------+

round robin on queue

task bumped when
sentry time up

round robin on Queue

when Queue is
exhausted, next queue
is called

+-----------------------+-----------------------+ , , f

, first task on queue 'highest task hogs CPU f
, gets CPU until sentry' as long as it wants
, time up, then bumped f
, J

+-----------------------+-----------------------+

7.2 SYSTEM GENERATION

DX10 is a modular operating system which can be tailored for each
user's needs. Customizing the system causes resources to be
utilized more efficienctly.

7.2.1 Customized Sys~em Generation.

Tailoring the operating system provides the following benefits:

*

*

*

*

*

Reduces disk and memory space requirements by eliminating
unnecessry modules, such as Device Service Routines
'DSRs) for equipment not included in the system.

Eliminates replication of DSRs for multiple installations
of a device type.

Adds DSRs for non-standard devices.

Adds user defined routines as operating system Supervisor
Calls .SVCs).

Adds user
Processors

defined
.XOPs) .

routines

7-4

as Extended Operation

* Adjusts operating system parameters for
in a given installation.

7.3 GENERATING A DXIO OPERATING SYSTEM

System creation includes the following steps:

1. ~GEN1

2. {fi&Sl
3.~:m

4. ffi;]l

Generate

Assemble and Link

Patch the Generated System

Test the Generated System

5. Perform an IPL and checkout system

6. IGS Install the Generated System

best efficiency

When performing a system generation on a new disk, the following
steps must be performed initially:

1. INV Initialize the New Volume

2. CFDIR Create the Directory .S$SYSGEN ------

7.4 GENERATE
r::-;:::::.:r-;--- J N J~'7 ~
I_X~ is an interactive program that, by prompting for information,
will allow a user to generate a new DXIO system. The Sysgen
utility uses prompting and tutorial displays to guide the user
through the generation process. It creates a configuration file
and a source file which must be assembled and linked to the rest
of the system. Sysgen can be performed in a short period of time.

Requirements include information on the device confiauration and
programs to be included, such as an interrupt decoder. This
information should be gathered before beginning the XGEN process.

7.4.1 E~prompts.

DATA DISC
Disk driveJibjc b containslthe standard DXIO object modules in
~YSGEN~~ The Qefault is DS01.

~------TARGET DISC
Disk drive onto /which created fileJ are to be p la ce.d7 The
default is DSOl.~ -

7-5

INPUT , __ .--------r-~rl1
[Na~~-_2~-~.~-~~~wJ ~? be modified. If you are creating a new
system, leave thlS field blank.

OUTPUT r-" RTrI __ ---"'
Name of the lsyst~1n- bej ~g ck-;ated] Name should be 1 to 5
characters with the first char~cter being alphabetic.

LINE
Power frequency for the location of the system. tJj§~ __ ~-~
hertz; Europe = 50 hertz. The default is 60 her~

TIME SLICING ENABLED.: YES
If the system has time slicing then a task will execute for
one time slice value before being suspe~ and another task
is allowed to execute. Thetgefault is YES)

TIME SLICE VALUE .:: I ~
If Time Slicing is enabled then the length of the time slice
must be designated. Its value ;s multiple of system time
units -50 Msec). TheE!efault iB lJsystem time unit.

TASK SENTRY ENABLED .-; Nb
The Task Sentry will reduce the priority of a task that has
executed fora given period of time. Without the sentry, a
task could theoretically maintain control of the CPU. The
rdef~i~_ N?J

TASK SENTRY VALUE-----
IA~-~~rc The length of time, in system time units, that a task may

If~i execute before its priority is lowered. This is applicable
, / JI3ftCJ! only if Task Sentry is enabled. The defaul t is 60 system
], 0 1,.,,1:. . .
') ~i e/ l?IK l4 t 1 me u n 1 t s •

).'O/l'A,v~ABLE--- ,II/EN ~ "-p h01f1i.., (5fr/LT>,,)
Size of the sytem table containing system log messages,
Intertask Communication Areas, buffered SVC blocks, and many
system built tables. A memory estimator is availaQle in the

n<. 1 ~E;ndix to Vo V of rence ft1anuals that is
very useful with this prompt. INo default va u is given.

COMMON -;: (JJ)J." I\l f lJ /i/~ £:;
The user may optionally include his own object code thct
define~a common area in memory for use by user tasks. There
is [no default value.}])£rI'JV&,..T :.(tvoNIi)

INTERRUPT DECODER -. Df-rf'luL--T: /;"~/JJIJ~T
The user may supply the object code of his own interrupt
decoder. There is rn~_deE~_~.f_!~al~ Jj!';;~VI-'-::" A/(} Nt.

FILE MANAGEMENT TASKS :- ~
The number of file managers to be included
The default value is sufficient for nearly all
a large number of disk drives will be in use.

£r:--;
"-=~/

7-6

in the system.
systems unle~
The/default is

------"-.-~------


~~~ cr~ J~ 
CLOCK ':"...s-~ ~ .5- 1/ #0 6/JTb Cq~//".,~/ UJb = /-r-----
~iS the 1interrupt levelJof the system clock. Thej9"efault 

IO 
The user may have a startup task executed every time an IPL 
is performed. The task must be installed on the system 
program file, .S$PROGA. If this option is desired, enter the 
installed IO of the task. There is no default value. AJoNE 

OVERLAYS -= ~ vf/- rolf\' .ovt.y ('o~ 
The number of system overlay areas. ~E~a~c~h~~Q~v~e_r_J~a~y __ ~a~r~e~a~ 
~qkireS 400 words.~dding overlays may reduce the number of 
dIS accesses for system tasks. The ~efault IS 2:] 

SYSLOG :: ~ 
Maximum number of system log messages that may be queued 
before being sent to the log file. Area for thls is 
allocated in the sytem table. If the value supplied is ~ ~ 
small, meQsages may be lost. If the value su lied is too 
19rge, the table may overfIQ~. The default is 6 ----

should be at least 
at least one ADU. 

I/O BUFFERS 
Area used for special devices andJinitiate IIO cal~ This 
value will be added to the [Ytem ta Ie area. Size IS given 
in bytes. The (aet~~~yte~ -;/Y.A-S ejJ~ 

I'fTJ£!' /~ ~ 

INTERTASK /lNI OuT ~w nvcrl ;f/--{tJIA£J.! 
Size of the area within the sytem table area which is 
dedicated forllnf,eri~ik ;OmmuojCationJ such as that generated 
by~ETOA~A an PUTDAXA S~C calls. ThIS may be required for 
.§9lIT MERGE __ a~d. th 3780 communication emulator. It is 
require for The default is 100 bytes. 

i1.-p),/£/ //~ 
KIF z y£ .. S't 

Include AOgiC to suppor~ key index fileS?l Requires 
approximately 2K words i_be s stern root. This is necessary 
for COBOL. The default is YES. 

SEQUENTIAL PLACEMENT z yEf 

~~;~ri~~;e~~!~~~ b:h~~~~~ ~~: ~~~e~~if~ ~~s~shed placement 

COUNTRY CODE -: lJS 
This parameter identifies the country where the system is 
installed. A list of the available country codes may be 
~d by entering a question p.) mark twice. The/oe£ault is 
us. ) . 

7-7 



POWER FAIL :-Nc'- \.AIL (:)OM) HJJvE 
If the system has a backup power supply, 911 VDTs ma~e 
included in the power recovery feature. T~ f!Ie_fa~l t __ ~s N!f 

SCI BACKGROUND:...2~/:t; 2 l~jJ J t &;\lO4.3 
This is the~xrrnum1[umber Of SCI tasks}that can be executing 
in the background at one time. If a request is made for an 
additional background task, the task will.A queued. Each 
background task be first requires~words of system 
table area. The e ault is 2. 

SCI FOREGROUND I jo~t! C~lyJ> ft40 17"710))..j 
This is the maximum number of SCI tasks that cen be executina 
in the foreground at one time. An error will be generated if 
an attempt is made to exceed this number. A good oractice is 
to have~e-fOreground task available for each terminal~hat 
is being used for program development or the execution of 
application ~s. Each foreground task beyond the first 
will require ~words of system table area. The default is 
8. 

BREAKPOINT :: S-
The maximum number of Breakpoints used in debugging~_sL 
thattjy be present in the system at one time. The ~lt 

Jis 16. 
\'"""--_ ... -

CARD 1 
L,,)C.~' The [interrupt level for the half of the exp2nd~ card used 

for expansion chassis 1 to 4. Interrupts within those 
chassis ~ill be given distinctive interrupt positions. 
Strike lRETf!..RJf/to indicate no expansion chassis. 

CARD 2 
The interrupt level for the half of the expander card used 
for expansion chassis 5 to 7. 

DEVICE 
At this point, each device to be included in the system must 
be specified. The prompts for each device are different and 
based on the characteristics of the device. Each device must 
be specified seperately even though multiple devices of one 
device type are to be included. The hardware confiauration 
of each device must be known before the devic~ may be 
defined. To begin the definition of a device, enter the 
appropriate device mnemonic as given below: 

* CR Card Reader 

* LP Line Printer 

* K820 820 Terminal 

* ASR 733 ASR 

7-8 



* KSR KSR 

r* VDT] 
~ 

911 or 913 CRT ~RT may also be entered) 

Mag Tape * MT 

* DK Floppy Diskette .single sided/densi ty) 

1* co~7 Communications 

* SD Nonstandard Device 

The following pages explain some of the parameters that must be 
defined for a few of the more common devices. 

K820 

CRU 
What is the CRU address of the device. This is needed for 
I/O operations. Determined by the hardware configuration. 
Should be given on the top of the chassis. The default is 
>00. 

ACCESS TYPE 
A r'ecord oriented device has exclusive access only during an 
I/O operation. A file oriented device has exclusive access 
from open to close. The default is/~ECO~. 

TIME OUT 
Time given, in seconds, for an I/O 
has not occurred during the allotted 
an error has occurred with the 
operation. A time out is generally 
device. The default is O. 

operation. If operation 
time, the system ?ssumes 
device and aborts the 

not asigned to a keyboard 

CHARACTER QUEUE CRT:. 10 0 ~ } C 
The number of unsolicited characters entered at the keyboard 
which will be buffered between I/O requests. Any Chara£)ers 
entered over this maximum will be lost. Theldefault is 6 ------ -. 

INTERRUPT 
Interrupt level assigned to the device. This is determined 
by the hardware configuration. Multiple devices may share 
the same interrrupt level. A decoder will determine which 
device generated the interrupt. The default is 6. 

VDT oR C ~r 

CRU 
The default is >100. 

7-9 



ACCESS TYPE 
The defaul t is ~§OR~ 

TIME OUT 
The default iS~~ 

CRT TYPE -:.. 11/ 
In~e whether this is 

(ls 9111) 

r -----, 

a 911 VDT or a 913 VOT. The /default 

----'-- " .. / 

3270 CRU ADDRESS hI? 
If this device is to be 
emulator, then the CRU 
here. Strike RETURN if 

used with the 3270 communication 
address of the emulator must be given 
this option is not to be used. 

CHARACTER QUEUE ' t~ -, 0 IS" 
The default is 6. 

INTERRUPT 
The default is 10. 

EXPANSION CHASSIS 
Indicate which expansion chassis this device is located on. 
This prompt is only displayed if the interrupt level entered 
was the same as that assigned to the expander card. 

EXPANSION POSITION-__ _ 
Indicate the gnterrupt level in the expansion Chassis~ that is 
assigned to the device. This prompt is only displaye if the 
interrupt level entered was the same as that assigned to the 
expander card. 

The default is >60. 

ACCESS TYPE 
The defaul t is J'iIiil C~ 

TIME OUT /" !()7 IIIG#flf \!!..~!!! .. ~/ 
The default is n@fseconds. 

PRINT MODE (tJllIRL. flo - Jll> jJ~ 
Indicate whether this is a~ or a parallel line printer. 
The ro 1 0 :1--S-s e ria 1 ~ the' - 22 )-OJ and 2 2 6 0 are par all e 1 . The 
default is SERIAL. 

EXTENDED f f C\ : yj;,r 1 (() >Nt) 

If the line printer has the extended character set, then the 
logic for those characters needs to be included for the 
device. The default is NO. 

7-10 



3270 CRU ACRESS ,~ 
The default i~~ 

INTERRUPT ~ 
The default iSUl~ 

DS -:}) ((I(' 

TILINE 
Indicate the TILINE address for this device. 
value is deVlce ependent. 

The default 

DRIVES 
Indicate the TnUrnber of diS~ drives supported by this 
controller. From 1 to 4 drlve can be suppororted by a 
single controller. Each will have the same TILINE address 
and int~rrupt level. The default is 1. 

DEFAULT RECORD SIZE ty,O: ~PJ' -

SVC 

Size of the default physical record. Should be eql!t9to the 
size of an ADU on the system disk. The default is 64 bytes. 

User-defined supervisor calls may be included with 
operating system and then accessed throuah XQP J~l 
Information on SVC structure may be foundJi£:Volum~ of 
DXlO reference manuals. Tbi1 prompt is reoue . 

]beginning label of the SVC code Strike RETURN for 

the 
15. 
the 
the 

XOP J1'ylif ~ / S-
User-defined Extended opera~jQ~OPS) may be installed at 
XOP Levels 0 through 14. <YOi~me_ V of the DXIO reference 
manuals contains the informatlcn needed to create an XOP. If 
a user-defined XOP is to be included, indicate here the 
level, else strike RETURN. 

7.5 GEN990 COMMANDS 

GEN990 operates in two modes: 

1. Ge ne rate Mod e -:: It/'rIC/J 11r-JJ PPO.M r/S 
2. Command Mode 

The generate mode will ·be used in responding to the prompts 
described earlier. The command mode will be used as needed arad is 
entered by issuing a command. The commands are given in Table 7-
2. 

7-11 



Table 7-2 GEN990 Commands 

COMMAND SHORT FORM 

WHAT W, ? 

LIST 

CHANGE C 

DELETE D 

GENERATE G 

STOP 

HELP 

SAVE 

BUILD B 

RESULT 

Provide an explanation of the 
given parameter~ If none is 
is specified, an explanation 
will be given of the para
meter just prompted. 

Print out value %hJ a GEN990 
parameter. If r L is in-
dicated, all defined para
meter values are printed. 
GEN990 requests a listing 
device. 

Change th~ value of a given 
parameter. The original 
valu~ of the parameter is 
displayed first. 

Delete a device. This may 
only be ~used after a chan~e 
$ommand was issued~ and the 
device name displayed. 

Return to generate mode. 

Terminate GEN990. 

Abort whatever action is in 
process and return to command 
mode. 

Save the previously defined 
parameters, putting them on 
the output file. Useful when 
a sysgen cannot be completed 
at that time. 

Build the configuration, the 
source, and the link control 
files, and terminate GEN990. 

7.6 ASSEMBLE AND LINK GENERATED SYSTEM 

GEN990 will build the following: 

7-12 



1. Configuration File 

2. Source File 

3. Link Edit Control Stream 

G o,..;;:,C-
J) , S'oulf'cE 

).,,vf( f rIP n 
!J l G-J 11'( }1 

lJl'oBJ/CT 
P~t·I/F)L.. 

4. The Batch Stream necessary to complete the System 
Generation 

11£tP L JlVUl't-IJP - /i'iJ;1 ~ j't! A'p/rr6/).,L):, 
Once GEN990 has reached successful completion, it is necessary to 
assemble and link the operating system. This is done with the 
Assemble and Link Generated System ~LGS) command as shown in 
Figure 7-2. 

~~ 
ASSEMBLE AND LINK GENERATED SYSTEM 

TARGET DISK: 

SYSTEM NAME: 

Disk unit which contains the GEN990 
output files. 
Name of output given in GEN990. 

//J)$DATA LISTING: 

(

/ ~ATCH LISTING: 
File name for Macro Assembler listing. 
File name for batch SCI listing. 

l/t,e.()~J , J' 
_ p~C/f-::J 
~~~~~ Figure 7-2 ALGS Command 

[] ALGS

ASSEMBLE AND LINK GENERATED SYSTEM

TARGET DISK: DSOI
SYSTEM NAME: SYSI

D$DATA LISTING: .S$SYSGEN.SYSl.D$LIST
BATCH LISTING: .S$SYSGEN.SYSl.BTCHLIST

Figure 7-3 Example ALGS Command

As the ALGS process will execute in the background, you may wish
to issue a WAIT command. ALGS will normally take about 30
minutes. The following message will be displayed upon successful
completion.

~LGS NORMAL TERMINATION
~ --

7-13

7.7 PATCH GENERATED SYSTEM

Once ALGS has sucessfully completed, the operating system must be
patched before an IPL may be performed. This is done with the
Patch Generated System .PGS) command as shown in Figure 7-4.

[] PGS

PATCH GENERATED SYSTEM
TARGET DISK: Disk containing all of the files

output by GEN990 and ALGS.
SYSTEM NAME:

BATCH LISTING:
Name of output given in GEN990.
File name for batch SCI listing.

Figure 7-4' PGS Command

[] PGS

PATCH GENERATED SYSTEM
TARGET DISK: DSOI
SYSTEM NAME: SYSI

BATCH LISTING: .S$SYSGEN.SYSl.PGSLIST

Figure 7-5 Example PGS Command

PGS executes in the background, as did ALGS.
command. PGS should take about 5 minutes.

~1rC 17 r7~flJr:1 Mvt.P I((T--=-tfJ

7.8 TEST GENERATED SYSTEM

Issue a WAIT

The system is now ready to be tested. Execute the Test Generated
System ~GS) command and perform and IPL to start the system
checkout procedure. Should the system fail to work properly,
performing another IPL will cause the original system image to be
reloaded.

[] TGS

TEST GENERATED SYSTEM
TARGET DISK: Disk unit specified as the taraet disk

during GEN990, ALGS, and PGS. ~
SYSTEM NAME: Name of output given in GEN990.

Figure 7-6 TGS Command

7-14

[] TGS

TEST GENERATED SYSTEM
TARGET DISK: 0501
SYSTEM NAME: SYSI

Figure 7-7 Example TGS Command

7.8.1 System Checkout.

TGS will set the new operating system up so that it may be loaded,
by performing an IPL, and tested. Follows steps similar to these:

1. Perform an IPL.

2. Bid SCI from a terminal and initialize the system.

3. Bid SCI at each terminal. Do not exceed the foreground
limit specified in GEN990.

4. Execute an SCI command from each terminal. Send a file
to each disk and tape drive on the system as well as the
li~e~prjnters, ASR~, and KSRs.

(---- (-~ ~~ ~
Should any of these steps fail, the system is not fully
operational. Check the hardware configuration, does it reflect
the device descriptions given GEN990? If the new system does not
function properly, another IPL will load the original system.

7.9 INSTALL GENERATED SYSTEM

Once the system checks out, it is ready to be installed as the
primary operating system. This may be done with the Install
Generated System rIGS) command. The IGS command modif ies the
volume information on the specified disk pack to select a new
operating system as the primary system.

[] IGS

INSTALL GENERATED SYSTEM
TARGET DISK: Disk unit specified as the target disk

during GEN990, ALGS, PGS, and TGS.
SYSTEM NAME: Name of output given in GEN990.

Figure 7-8 IGS Command

7-15

[] IGS

INSTALL GENERATED SYSTEM
TARGET DISK: DSOl
SYSTEM NAME: SYSl

Figure 7-9 Example IGS Command

The system is now ready to be fully operational. Each IPL will
cause the new system to be loaded into memory.

7.10 SYSTEM UPKEEP

SCI provides several commands for maintaining your
Included among these are the following:

* List Device Configuration ~DC)

* Show Memory Status ISMS)

* Show Memory Map fSMM)

7-16

system.

The List Device Configuration *LDC) command causes the devices
that have been included in the system configuration to be listed.
Figure 7-10 shows an example of this command. Volume II of the
DXIO reference manuals contains a description of the output
generated by the LDC command.

[] LDC

LIST DEVICE CONFIGURATION
LISTING ACCESS NAME:

DEVICE

CM01
CSOI
CS02
DKOI
DK02
DSOI
DS02
DS03
EMOI
LPOI
LP02
MTOI
STOI
ST02
ST03
ST04
ST05
ST06
ST07
ST08
ST09
STI0
TMOI

TYPE ADDRESS

COMM 0020
CASSETTE 0000
CASSETTE 0000
DISK 01CO
DISK 01CO
DISK F800
DISK F800
DISK F820
NON-STANDARD0540
PRINTER 0060
PRINTER 0460
MAG TAPE F880
KEYBOARD 0000
VDT 0580
VDT OSAO
VDT 0480
VDT 04AO
VDT OSCO
VDT 05EO
VDT 04CO
VDT 04EO
KEYBOARD 0440
NON-STANDARD0500

INT CHAS

6
6
6
3
3

15
15

7
10
14
10
12

6
10
10
10
10
10
10
10
10
10
10

1

1

1
1
1
1
1
1
1
1
1
1

Figure 7-10 LDC Command

POS

6

15

7
14

3
11

8
9
4

10
2

12

ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

The sysgen dialog that produced the previous configuration example
may be found in Appendix B.

7-17

The Show Memory Status 'SMS) command is useful in finding the size
of the operating system, in seeing how much memory the system
recognizes it has, in determining the efficiency of the system
table area, and in finding the Foreground/Background limit for SCI
tasks. The output of the SMS command, which is shown in Figure 7-
11, is explained in Volume II of the DXIO reference manuals.

[] SMS

SHOW MEMORY STATUS
LISTING ACCESS NAME:

SHOW MEMORY STATUS

TOTAL MEMORY SIZE = 176 K t.vo~i~r
DXI0 as SIZE = 43.5 K ~cKpr USER AREA = 132.5 K wo~OJ

(I,jAC{;1 'iN!$" ,MhA ~uSYSTE~ TA;~ A;;; = 6Q616 _WORD ~
CURRENT USAGE = 4927 WORDS LARGEST AREA US~ 8087 WORDS

SCI INFORMATION
FOREGROUND LIMIT = 10 TERMINALS CURRENTLY ACTIVE =

BACKGROUND ACTIVE LIMIT = 3 TASKS ACTIVE/WAITING =

Figure 7-11 SMS Command

~/tV DyT£f

6 TERMINALS
2/ 0 TASKS

The Show Memory Map 'SMM) command also displays information about
system memory and the size of the operating system. This command
also gives the user information on the amount of memory that is in
use, the usage of the system disk, and the usage of the CPU. A
graphic representation of physical memory is displayed that
indicates the installed and run IDs of any tasks or procedures
that are active in the system. Buffers in memory are also
identified. The SMM command does not have any prompts.

[] SMM

7-18

LAB EXERCISE

Perform a partial sysgen but do not include all of the devices
that are currently installed on the system. Terminate the sysgen
being sure to save the configuration.

Execute the XGEN command again and complete the previous sysgen.

Assemble and link the generated system. Patch and test the
generated system and determine that the newly created system is
functional. Do not install the generated system. Perform another
IPL to reload the primary system. Don't forget to use the IS
command.

7-19

7-20

MODULE 8

SYSTEM BACKUP AND COEOL INSTALLATION

8.1 SYSTEM BACKUP

The user is responsible for backing up the system disk and data
files either on disk or on magnetic tap. The backup copies can
be made using the Copy Directory ~D) , ackup Directory 'BD) ,
Restore Directory aRD), or the Disk Copy/Restore *DCOPY) command.

The type of media *disk or tape) being used determines the command
that is used to perform the copy. Copy Directory copies one
hie r arc h y 'd i s k) to an 0 the r hie r arc h y 'd is k) • B a c k up D ire c tor y
copies a hierarchy 'disk) to a sequential medium ~agnetic tape).
Restore Directory, copies a sequential medium 'Illagnetic tape) to a
hierarchy ~isk).

DCOPY can be used to copy from disk to disk, from disk to tape, or
from tape to disk.

P~I'UNEf' Clf£("K,£/tlJonJflb 'A) ~ 10 r 1'.Ab~~ I';~-r
8.1.1 Copying from Disk to Disk Using Copy Directory.

The Copy Directory ~D) command allows users to copy a set of
files under one directory on a d·isk to another directory on a
disk. The contents of the source directory do not change as a
result of the copy operation. Files and directories that do not
exist in the destination directory are automatically created by
Copy Directory. The CD command creates the topmost directory
equal in size to the topmost directory being copied.

The CD command copies all files and aliases in a directory, except
files named .S$ROLLA and .S$CRASH, unless the user limits the CD
command with directives and options. Directives are supplied to
the CD command in the form of a control file as described in the
Volume II of the DXlO reference manuals. The options ere
described in Table 8-1.

8.1.1.1

/

1J.r£ ,VPL i'l1fJ't,E IF

~
/ /" r-t7' r 11f'~ J (.f/I1

[] CD
COpy DIRECTORY Y {)f;.~.TtYV' ()N ovTjJ"T

INPUT PATHNAME:
OUTPUT PATHNAME j) tdl1 ~

CD Command Format.

CONTROL ACCESS NAME:
LISTING ACCESS NAME:

OPTIONS: ADD,ALIAS/ 4~k~£

8-1

The user should respond to the CD prompts as follows:

INPUT PATHNAME: Enter the pathname identifying the
topmost directory of the set of files to
be copied. Optionally, the pathname
identifies a single file when only one
file is being copied.

OUTPUT PATHNAME: Enter the pathname that identifies the
directory to which DXIO copies the file
or set of files identified by the input
pathname.

CAUTION

The output pathname MUST specify a directory.
For example, to copy .MY.FILES to .YOUR.FILES,
specify .MY.FILES as the input pathname and
.YOUR as the output pathname. Do not use
.YOUR.FTLES for the output pathname as the
resulting file pathname would be
.YOUR.FILES.FILES.

CONTROL ACCESS
NAME:

Press RETURN to specify that no control
file is to be used.

LISTING ACCESS
NAME:

Enter the device name of the file
pathname to which DXIO should list a
summary of the results of the copy
operation. Press RETURN to have the
listing displayed at the terminal.

OPTIONS: Enter one or more of the following
options separated by commas:

ADD
ALIASES
NOALIASES
REPLACE

Press RETURN to accept the default options
of ADD,ALIASES. See Table 8-1 for a
description of the available options.

NOTE

Although a control file, a master pathname,
and a copy pathname are all optional responses
to prompting messages, a control file must be
specified if either of the other responses is

8-2

not given. Both a master pathname and a copy
pathname must be provided if a control file is
not specified.

8.1.1.2 CD Command Example.

The following example shows the use of the CD command to copy the
contents of th~ directory named VOLl.MYFILES to the directory
named VOL2.HISFILES:

[] CD
COpy DIRECTORY

INPUT PATHNAME: VOLl.MYFILES
OUTPUT PATHNAME: VOL2.HISFILES

CONTROL ACCESS NAME:
LISTING ACCESS NAME:

OPTIONS: ADD,ALIASES,REPLACE

The pathnames specified for the CD, BD, RD, VC, and VB commands
canno-t start with disk unit names ie.g., DS02.ABCFILES). Use
volume names such as MYDSC.ABCFILES.

Table 8-1 CD, RD, BD Options

Option Purpose

ADD

REPLACE

ALIASES

NOALIASES

BLOCK

NOBLOCK

Files are to be copied unless a file with
the same name and at the same level already
exists in the destination directory.

Files are to be copied even if a file with
the same name and at the same level already
exists on the destination directory. The
existing file is deleted and replaced with
the file being copied.

All aliases associated with a file being
copied are to be copied unless an alias
already exists with the same name and at
the same level in the destination directory.

No aliases are to be copied.

BLOCK specifies that records will be grouped
in 9600-byte blocks. Each block will be
written as a physical record.

NOBLOCK specifies that each record will be
written seperately without blocking.

8-3

MULTI MULTI specifies that the directory spans
more than one magnetic tape volume.

When multiple tapes must be used and the end
of the tape IS encountered, the following
message is displayed at the terminal:

MOUNT TAPE X. TYPE TO QUIT, Y TO CONTINUE.

where X is the number of the next volume. The
command can be terminated by entering a $.
'Control then returns to SCI without finishing
the process. Otherwise, it is necessary to
mount the next tape. When the tape is ready,
enter Y. If the tape is not ready or if an
error is received, such as a wrong volume
number, the error is displayed at the terminal
and the tape prompt is reprinted. The prompt
will be reprinted until the user enters $ or
the tape is in the ready position. When Y is
entered and the tape is in the ready position,
the command continues processing.

NOMULTI Multiple tapes will not be used.

8.1.2 Copying from Disk to Tape Using Backup Directory.

The Backup Directory 'ED) command allows users to copy a set of
files under a directory to a sequential file or to a magnetic tape
device, excluding cassette tapes, in a format th~t allows later
restoration of the backup copy by a Restore Directory tRD)
command. The Verify Backup .VB) command can be used to verify a
copy made by Backup Directory.

Backup Directory copies all files and aliases in a directory,
except the files named .S$ROLLA and .S$CRASH, unless the user
limits the BD command with directives and options. Directives are
supplied in the form of a control file as described in Volume II
of the DXlO reference manuals. Options are described in Table 8-
1.

8.1.2.1 BD Command Format.

[] BD
BACKUP DIRECTORY

DIRECTORY PATHNAME:
SEQUENTIAL ACCESS NAME: f1 r6/, ~ 2. etc.

CONTROL ACCESS NAME:
LISTING ACCESS NAME:

OPTIONS: ALIASES, NOBLOCK) GlOC,V(

8-4

The user should respond to the BD prompts as follows:

DIRECTORY
PATHNAME:

SEQUENTIAL ACCESS
NAME:

CONTROL ACCESS
NAME:

LISTING ACCESS
NAME:

OPTIONS:

Enter the pathname identifying the
topmost directory of the set of files to
be copied. Optionally, the pathname
identifies a single file when only one
file is being copied.

Enter the name of the device or a
pathname identifying the sequential file
to which DXIO should backup the directory.

Enter the device name or file pathname
from which DXIO reads control directives
to control the copy operation.

Enter the device name of the file
pathname to which a summary of the results
of the backup operation are to be listed.
Press RETURN to have the listing displayed
at the terminal.

Enter one or more of the following
options, separated by commas, to specify
whether files and aliases being copied
are to replace files and aliases of the
same name on the destination directory:

ALIASES
NOALIASES
BLOCK
NOBLOCK

Press RETURN to accept the default options
of ALIASES,NOBLOCK. Refer to Table 8-1 for
an explanation of the options.

8.1.2.2 BD Command Example.

The following example shows the use of the BD command to copy the
contents of the directory named .SAMPLE to the magnetic tape
mounted on the device named MTOl:

[] BD
BACKUP DIRECTORY

DIRECTORY PATHNAME: .SAMPLE
SEQUENTIAL ACCESS NAME: MTOI

CONTROL ACCESS NAME:
LISTING ACCESS NAME:

OPTIONS: ALIASES,NOBLOCK

8.1.3 Copying from Tape to Disk Using Restore Directory.

8-5

The Restore Directory ffiD) command restores a set of files from a
sequential file or magnetic tape to a directory on a disk volume.
The options are described in Table 8-1.

8.1.3.17 RD~~m~~~~ __ ~_~rma-tJ -lJIp£ -=? DLr'f

1l RD
RESTORE DIRECTORY

SEQUENTIAL ACCESS NAME:
DIRECTORY PATHNAME:

LISTING ACCESS NAME:
OPTIONS: ADD

The meaning of the RD prompts is the same as in the BD command.

8.1.3.2 RD Command Example.

The following example shows the use of the the use of the RD
command to copy the contents of the magnetic tape mounted on the
device named MTOI to a directory on disk named .SAMPLE:

8.2

[] RD
RESTORE DIRECTORY

SEQUENTIAL ACCESS NAME: MTOI
DIRECTORY PATHNAME: .SAMPLE

LISTING ACCESS NAME:
OPTIONS: ADD

1 it'vTI
USE OF THE MODIFY VOLUME INFORMATION COMMAND

If a system disk has been backed up using any of ~reViOUSlY
described commands, the Modify Volume Information ~VI) command
must be used before an Initial Program Load IIPL) can e performed
using the backup disk. This step is not required if the backup
was made using the DCOPY command.

The following functions may be performed by the MVI command:

* L - List

* C - Change

* Q - Quit

The files and information that may be designated by the MVI
command are:

* S - System Image

* o - System Overlay File

* P - System Program File

8-6

* L - System Loader File

* V - Volume Name

The user should respond to the MVI command as shown in the
following example.

[] MVI

MODIFY VOLUME INFORMATION ((7/\ ~ /~) ,F F~o'" Wfr/JinMrr
CONTROL ACCESS NAME: ME --J ~ ... ~ r'-c,.

MVI
DISK? DS02 'enter disk drive or volume name to be modifed)
COMMAND IL/C/Q)? f
WHICH ITEM ~,O,P,L,V)? S
PRIMARY: SYS1 'enter name of primary system)
SECONDARY
SELECT: P
COMMAND IL/C/O)? C
WHICH ITEM .S,O,P,L,V)? °

'T"

PRIMARY: S$OVLYA ~ntered by user)
SECONDARY: '
SELECT: P
COMMAND .L/C/Q)? C
WHICH ITEM ~,O,P,L,V)? i
PRIMARY: S$PROGA -entered by user) ~
SECONDARY: , Vol,. tJAit.
SELECT: P ~ ctltrrJ,6U
COMMAND .L/C/Q)? C ~~
WHICH ITEM .S,O,P,L~? ~
PRIMARY: illOADER .entered by user)
SECONDARY:
SELECT: P

The user should verify the entries that were made by listing the
information.

COMMAND .L/C/Q)? L
PRIMARY SECONDARY

SYSTEM IMAGE: SYSI
PROGRAM FILE: S$PROGA
OVERLAY FILE: S$OVLYA

LOADER FILE: S$LOADER
WCS FILE:

DIAGNOSTIC: --------
VOLUME NAME: TICOBOL

COMMAND 'L/C/Q)? Q
MVI TERMINATED:

8-7

SELECT
P
P
P
P
P
P
N

• ..r!f I? 01/ /-")

8.3 lCRE~-;YSTE-;: FILE.? /Yo '/ ~;::: ON 8uvf
If this backup is to be used as a system disk, two additional
system files must be present on the disk. They are .S$ROLLA and
.S$CRASH. These files will not be copied by any of the previous
backup procedures that have been described. They must be created
with the Create System Files tCSF) command. The CSF command
appears as:

[] CSF

CREATE SYSTEM FILES
VOLUME NAME:-
MEMORY SI ZE: (§5 - 7Or.I"JL nPt

The user should supply the name of the backup volume and the
amount of memory that is installed on his system. It is very
important that these files be created to conform to the actual
memory size.

8.4 USING DCOPY

The Disk Copy/Restore ~COPY) command copies and optionally
verifies disks used in the operating system. The copy is from
disk to magnetic tape, magnetic tape to disk, or disk to disk.
The copy is performed track by track with no disk compression.
Disk Copy requires that the destination disk be error free and of
th€ same type as the source disk when the copy is from disk to
disk.

NOTE

One or more system files on the system disk
are updated when DCOPY is terminated.
Therefore, when making a copy of the system
disk, verify the copy before terminating
DCOPY.

Disk Copy/Restore is faster than Copy Directory, Backup Directory,
and Restore Directory because no disk compression is performed.

The following is an example of a DCOPY operation which transfers
data from disk to disk:

8-8

[] DCOPY

DISK COPY/RESTORE

ANSWER 'Y/N) QUESTIONS WITH Y FOR YES
OR ANY OTHER CHARACTER EXCEPT $ FOR NO

RESPOND ANYTIME WITH $ TO RESTART

LISTING DEVICE NAME LPOl
VERIFY ONLY? .Y/N) N
DEFAULT? 'YIN) N - ur! Dt"hv~T
COpy WITHOUT VERIFY? 'Y/N) N
PAUSE ON ERROR? .Y/N) Y
FORCED WRITE AFTER READ ERROR .Y~) Y I
USE ADD MAPS FOR CONTROL? 'YIN) W - 1>'('11 W 1J~u M~
MASTER DEVICE DS02

VOLUME ANYTHING
COpy DEVICE DS03

VOLUME SCRATCH
MOUNT DESIRED VOLUMES. TYPE CR WHEN READY
COPY AND VERIFY COMPLETE
QUIT .Y/N) Y
SYSTEM DISK READY? .Y/N) Y
DISK COpy TERMINATED

For a more complete description of the DCOPY prompts, refer to
Volume II of the DXIO reference manuals.

While DCOPY is generally faster that CD, BD, or RD, there are
several advantages in using the directory utility commands instead
of Disk Copy/Restore. Disk fragmentation can be eliminated if the
copy is made with Copy Directory, Backup Directory and Restore
Directory; no disk compression is done when DCOPY is used to make
the copy. When the CD, BD, or RD command is being used to make a
copy, other activities can be going on at the same time; no other
activity may be taking place on the disks involved, while a Disk
Copy/Restore is executing. DCOPY requires that the destination
disk be of the same type as the source disk; Copy Directory does
not have that requirement.

8.4.1 Backing Up a System Disk on Disk.

To backup a system on disk using Copy Directory, perform the
following steps:

1. Place the backup disk in a secondary disk drive.

2. Use the Initialize New Volume .INV) command to
initialize the disk in the secondary drive.

3. Use the Copy Directory ~D) command to copy the contents

8-9

of the system disk to the disk in the secondary drive.

4. Use the Create System Files ~SF) command to create the
system roll and crash files on the disk in the secondary
drive.

5. Use the Modify Volume Information tMVI) command to
establish the name of the primary system, the system
overlay file, program file, and loader file.

6. Use the Unload Volume tUV) command to unload the volume
in the secondary disk drive.

7. Remove the backup disk from the secondary drive.

Optionally, the backup copy may be perform using the DCOPY command
as as described previously.

8.4.2 Backing Up a System Disk on Tape.

The user who has only one disk drive faces a special problem in
backing up the system: the system disk must be copied to another
disk. This can be done using magnetic tape and the Disk
Copy/Restore ~COPY) command. The procedure to backup a disk with
only one disk drive is as follows:

1. Mount the tape in the tape drive.

2. Press RESET, then LOAD on the tape drive. The READY
light will come on when the tape is in position.

3. Use the DCOPY command to copy the system disk to
magnetic tape.

4. Use the DCOPY command again to copy the magnetic tape to
the backup disk. After the DCOPY command hES been
entered and the initial prompts hEve been answered,
DCOPY responds with this message: 'MOUNT DESIRED
VOLUMES. TYPE CR WHEN READY.' At this point, remove
the system disk from the disk drive and mount the backup
disk. Press RETURN when the backup disk is ready.

5. After the copy, DCOPY prompts with: 'SYSTEM DISK
READY? ~/N) '. Before answering this prompt, rewove the
backup disk and replace the system disk. Then enter a
'Y' in response to the prompt.

CAUTION

Responding with a Y to the 'SYSTEM DISK
READY? ~/N)' prompt with any disk in the drive
other than the system disk used to begin

8-10

execution DCOPY may result in a system crash,
destruction of data on the disk, or both.

To backup a system on magnetic tape using Backup Directory,
perform the following steps:

1. Mount the backup tape in the tape drive.

2. Press RESET, then LOAD on the tape drive. The READY
light comes on when the tape is in position.

3. Use the Backup Directory ;BD) command to copy the
contents of the system disk to the tape.

4. Use the Assign LUNO tAL) command to assign a LUNO to the
magnetic tape drive.

5. Use the Rewind LUNO .RWL) command to rewind the tape.

6. Use the Verify Backup NB) command to verify the copy,
if desired.

7. Press UNLOAD on the tape drive.

8. Remove the tape from the tape drive.

NOTE

The operating system cannot be loaded directly
from tape. A minimal system should be kept on
disk to allow the Restore Directory·command or
the Disk Copy/Restore command to be used to
copy the contents of the tape to disk. If the
copy to tape was made with Backup Directory,
the copy back to disk must be made using
Restore Directory. If the copy to tape was
made by the Disk Copy/Restore -DCOPY) command,
the copy back to disk must be made by DCOPY.

8.4.3 Restoring a System from Magnetic Tape.

To restore the system disk using Restore Directory, perform the
following steps:

1. Place the disk with the minimal system on it on OSOI.
Then initialize the system.

2. Mount the tape in the magnetic tape drive.

8-11

3. Press RESET, then LOAD on the tape drive. The READY
light will come on when the tape is in position.

4. Place the backup system disk in a secondary disk drive.

5. Use the Initialize New Volume ~NV) command to
initialize the disk in the secondary drive.

6. Use the Restore Directory ~D) command to copy the
contents of the magnetic tape to the backup disk in the
secondary drive.

7. Use the Create System Files ~SF) command to create the
system roll and crash files.

8. Use the Modify Volume Information .MVI) command to
establish the name of the primary system, and the system
overlay file, the program file, and the loader file.

9. Press UNLOAD on the tape drive.

10. Remove the tape from the tape drive.

8.4.4 Backing Up a Data Disk.

To make a backup copy of a data disk, follow the steps outlined
above for backing up a system disk and omit u~ing the Create
System Files ~SF) command or the Modify Volume Information ~VI)
command. The CSF and MVI commands need to be used only if the
disk is going to be used as a system disk.

8.4.5 Verifying a Directory Copy.

The Verify Copy MC) command can be used to verify a copy made by
Copy Directory. The VC command compares a set of files under a
master directory against a set of files under a copy directory to
determine which files in each set match. The VC command detects
matches by comparing the file type, file use, file name, and file
contents of files at corresponding levels of each set of files.
The results of the verify operation are listed at a device or are
copied to a file specified by the user.

8-12

8.4.5.1 VC Command Example.

The following example shows the use of the VC command to compare
the set of files under the directory named VOLl.MYFILES against
the set of files under the directory named VOLl.HISFILES:

[] VC
VERIFY COPY

MASTER PATHNAME: VOLl.MYFILES
COpy PATHNAME: VOLl.HISFILES

CONTROL ACCESS NAME:
LISTING ACCESS NAME: LPOI

8.4.6 Verifying a Backup or Restore Copy.

The output of a Backup Directory tBD) command or Restore Directory
'RD) command can be verified by using the Verify Backup WB)

command. The VB command compares a set of files on a sequential
file or on magnetic tape to a set of files under a given directory
on a disk file to see which files in each set match. Verify
Backup detects matches by comparing the file type, file use, file
name, and contents of files at a device or a file specified by the
user. The results of the verify operation are listed at a device
or copied to a file specified by the user.

8.4.6.1 VB Command Example.

The results of the following example are that the set of files
under the directory named VOLl.MYFILES are compared against the
set of files under the directory named VOLl.HISFILES. The summary
result of the verify operation will be written to the line
printer.

[] VB
VERIFY BACKUP

SEQUENTIAL ACCESS NAME: VOLl.MYFILES
DIRECTORY PATHNAME: VOLl.HISFILES

LISTING ACCESS NAME: LPOI
MULTI-VOLUME?:

8.5 COBOL INSTALLATION

The COBOL disk COBOLINS contains both the object files and the
batch stream necessary to install COBOL on DXIO version 3.X. A
disk map of COBOL INS showing the contents of this disk, the batch
stream listings, and problem notification are contained in che
product documentation package.

8-13

• C o1JOAJ 1)J5
The installation batch stream is stored as the file
COBOLINS.INSTALL on the disk volume COBOLINS. In order to install
the COBOL Compiler and runtime support on a system, install this
disk, assign the synonym OSC and execute the batch stream. The
synonym OSC must be assigned to the disk on which COBOL is to be
installed.

1. Put the disk with volume name COBOLINS in disk drive
OS02 on a functioning 3.X system and load it. Be sure
to leave the write/protect on as you will not be writing
out to the disk.

2. To install the disk, execute the command:
IV UNIT=DS02, VOLUME=COBOLINS

3. To assign the synonym, execute the command:
AS S=DSC, V=DSOI

4. To execute the batch stream, execute the command:
XB Input=COBOLINS.INSTALL, LIST=.LISTING

The IV command installs the volume COBOLINS on the secondary disk
unit OS02. The Assign Synonym .AS) command causes COBOL to be
installed on OSOI. The XB command accepts commands from the file
COBOLINS.INSTALL and executes them. These commands will:

1. Automatically delete any previously installed version of
COBOL.

2. Install COBOL and its overlays.

3. Apply any patches required for proper execution of the
processor on your system.

4. The output generated by the batch stream output will be
placed in a file called .LISTING which may be examined
wi th a Show File .SF) or Pr int File *PF) command to
insure that COBOL was properly installed. A 0027 error
on a OF command, a 285F or 3158 error on a DT command, a
0026 error on a CFDIR command, or a 0001 error on a RL
command, are normal and should be ignored.

It will normally take 3 to 5 minutes for this batch stream to
execute. During this time you may wish to check the status of the
batch stream for completion and proper execution. Executing the
SCI commands SBS or WAIT should be used for this purpoee.

If you are installing COBOL from your system disk you
copy the installation media to yeur system disk.
sysnonym COBOLINS to the directory .COBOLINS and
previously outlined.

8-14

must first
Assign the

precede as

8.5.1 Removing COBOL Software from a System.

If you are generating a target system, it may be necessary to
remove the COBOL software from the system disk. Executing the
following commands will achieve this result. It is never
necessary to have language software on a system that is not going
to be used for development. If all of the applications have been
linked and installed in program files, this is sufficient to
execute the applicat~ons.

AS S=DSC, V=DSOI

DT P=DSC.SSDS, T=CCBOL
DT P=DSC.SSDS, T=RCOBOL
DP P=DSC.SSDS, T=RCOBOL
DP P:=DSC. S$PROGA, P=RCOBOL
DF P=DSC.S$SYSLIB.RCBPRC
DF P=DSC.S$SYSLIB.RCBMPD
OF P=DSC.S$SYSLIB.RCBTSK
DD P=DSC.S$SYSLIB.S$SUBS
OF P=OSC.S$PROC.XCC
DF P=DSC.S$PROC.XCCF
DF P=OSC.S$PROC.XCP
DF P=DSC.S$PROC.XCPF
DF P=DSC.S$PROC.XCT
DF P=DSC.S$PROC.XCTF

The last four PROCs should not be deleted from .S$PROC if they
will be called by any user-written PROCs.

8.5.2 Installing COBOL from Magnetic Tape.

In order to install COBOL from a magnetic tape, the user must
first create a directory on either the system disk or a secondary
disk. A Restore Di rectory 'RD) is then issued to move the
contents of the magnetic tape to the directory. The same sequence
as previously described is then executed, except that the disk is
already installed.

8.5.3 Verifying the Operation of COBOL.

To test COBOL, a sample program is provided on the disk. The
program must be compiled and executed.

1. XCCF SOURCE=COBOLINS.TESTCASE, OBJECT=.TSTOBJ, LIST=ME

2. XCPF OBJECT=.TSTOBJ, DEBUG MODE?=NO

8-15

8-16

MODULE 9

DXS COBOL

OBJECTIVES

* Describe the differences between DXI0 COBOL and DXS
COBOL.

* Explain changes necessary
application on a DXS system.

9-1

to execute a DXI0 COBOL

9.1 INTRODUCTION

DXS is an operating system which provides an applications oriented
runtime only environment. No support is given for the development
of COBOL application programs. DXS COBOL is upwardly compatible
with DXIO COBOL, with few or no modifications necessary. DXlO
COBOL programs may be executed on DXS systems if modifications are
made to adapt them to the DXS system requirements.

9.2 DIFFERENCES FROM DXIO

There are three major differences between DXIO and DXS COBOL.

1. DXS is an unmapped system.

The memory available on systems running DXS is 64kb. This memory
is divided between the memory resident portion of the operating
system, the user's application program, and the system overlay
area. .Refer to Figure 9-1.) The maximum size of a COBOL program
is limited by the amount of memory that is required by the memory
resident portion of the operating system and the COBOL runtime.
When you IPL the system, it responds with the amount of memory
available to the user. Program size can be computed while
developing on the DXIO system during the link edit phase. The
user will then know if there is enough memory available to load
the program, before actually trying to do so. If the amount of
memory available is not enough to support a COBOL program, the
user will have to incorporate programming techniques, such as
overlays and segmentation, into his programs.

9-2

+-------------~-----------------+ , , , ,
SYSTEM ROOT ,

+-------------------------------+
J r
J

, USER PROGRAM
or

SCI

+-------------------------------+ r r
, r
, OVERLAY AREA ,
J ,
+-------------------------------+

Figure 9-1 DXS Memory

2. DXS is a single-tasking operating system.

Since DXS is a single-tasking operatins system, it does not
support inter task communication. This capability requires a
multi-tasking operating system. TIFORM990, SORT/MERGE, and
DEMS990 all require intertask communication if these utilites are
called under program control. Therefore these utilities cannot be,
executed from program control under DXS.

NOTE

SORT/MERGE cannot be called from within a
program. SORT/MERGE is supported as a stand
alone task.

Because DXS is a single-user station, the UNIT clause on the
ACCEPT statement is not supported. All I/O is directed to the
system console. COBOL programs that interface through the
intertask communication area cannot be supported under DXS.

3. Program chaining under DXS functions differently.

DXS cannot support one task bidding another, with the bid task
returning control to the calling task, once the bid task has
terminated. Therefore, program chaining, using the C$CBID

9-3

subroutine, works differently on a DXS system than on a DXIO
system. Under DXS, the bid task cannot return control back to the
bidding task. The bid task can, how~ver, rebid the bidding task,
placing it back into execution at the beginning of is executable
code. Under DXS the bidding task using the C$CBID subroutine must
have a value of 8 through 12 in the FLAGS data item of the calling
sequence, otherwise an error is returned.

9.3 DEVELOPMENT STEPS

DXS is a non-development system. Development
application programs must be done on a DXlO
development steps are:

of DXS
system.

1. Develop source code using the DXIO Text Editor.

COBOL
The

2. Compile the source code using the DXIO XCC or XCCF
commands.

3. If the application program requires system routines,
link the program using the DXS libraries.

4. Use dual/sided, double/density, flexible diskettes to
transport application to the DXS system.

As can be seen, the aevelopment process is the same up to the
linking step, as long as program size is not a factor.

9.3.1 Linking for DXS.

Because the output of the link editor will be transported to the
DXS system, the user must ensure th~t the files being transported
have the correct blocking factor size. The easiest way to do this
is create a directory with a 288 byte physical record size. All
files to be moved to the DXS system should be output to this
directory. .

NOTE

Make sure the pathnames being used on the DXS
system do not exceed the three level
restriction.

To link the DXS object code produced by the DXS compiler the user
must change three include statements in the link control stream.
These are the three modules that make up the COBOL runtime. The
three statements that must be modified are:

9-4

replace
replace
replace

.S$SYSLIB.RCBPRC

.S$SYSLIB.RCBTSK

.S$SYSLIB.RCBMPD

with
with
with

NOTE

.DXS.S$SYSLIB.RCBPRC

.DXS.S$SYSLIB.RCBTSK

.DXS.S$SYSLIB.RCBMPD

It is assumed that the DXS COBOL object is
installed on the DXIO system disk under the
directory .DXS.

These three include statements will bring in the necessary DXS
system routines rather than the corresponding DXIO routines.

FORMAT IMAGE
PROC COBOLRTM
INCLUDE .DXS.S$SYSLIB.RCBPRC
TASK CBLTASKI
INCLUDE .DX5.S$SYSLIB.RCBTSK
INCLUDE .DXS.S$SYSLIB.RCBMPD
INCLUDE TI.MPROGI
INCLUDE TI.SPROGI
END

Figure 9-2

If a LOAD command is used in the link control stream, you must be
sure to include a LIBRARY directive for the DXS system library.
The LOAD command will then pull in the DXS overlay manager from
the DX5 system library.

FORMAT IMAGE
PROC COBOLRTr-1
LIBRARY .DXS.S$SYSLIB

LOAD

Figure 9-3

9-5

9.4 DXS COBOL EXECUTION

For user convience, the same commands used to execute COBOL tasks
and programs under DXIO are used with DXS. Because the DXS system
is a single-tasking system, executing with the XCT/XCTF or
XCP/XCPF commands has basically the same effect. Executing either
in foreground or background mode places the task into execution in
a manner similar to the foreground mode of the DXIO system. When
the XCT or XCTF command is entered the system will prompt for TASK
ID or NAME. The user must enter the TASK ID for the task to be
executed. DXS does not support mapping the name to the ID.

9.5 MODIFYING DXIO PROGRAMS TO RUN UNDER DX5

There may be a few changes that need to be made. Most of these
changes are a result of the differences between DXIO and DXS
COBOL. The areas that need to be addressed are:

*

*

*

If TIFORM990 or DBMS990 are called from the COBOL program
they must be removed. DX5 does not support either of
these utilities.

If SORT/MERGE is called from a program, the call must be
removed and the sort operation performed external to the
program.

If program chaining is being performed, the method of
chaining must be examined to see which must be performed;
modification or deletion.

I f a nonreturning *to the ca 11 ing progr am) cha in is
being performed, then simply modify the FLAGS in
the data item of the calling sequence.

If return to the calling program -after execution
of the called program terminates) is to be
performed, then this application must be redesigned
to fit the single-tasking environment of DXS.

After the necessary modifications have been made,
the user should recompile the source code then
estimate the program size to ensure it will fit in
the memory available on the DX5 system.

* The user should create directories that will correspond
to the blocking buffers established during the DX5
sysgen. Usually these will be 288 bytes.

The user should now reI ink the object code produced by the
compiler, making sure to use the DXS include statements in the
link control stream. Next, copy the created directory containing
the generated files to media compatible with the DXS system.
Finally, execute the COBOL application on the DX5 system.

9-6

APPENDIX A

INVENTORY SUBROUTINES

A-I

IDENTIFICATION DIVISION.
PROGRAM-ID. RDINV.

* * * THIS SUBROUTINE IS USED TO READ THE INVENTORY FILE.
* *

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTERe TI-990-10.
OBJECT-COMPUTER. TI-990-10.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT STOCK-FILE, ASSIGN TO RANDOM, "PIF";
ORGANIZATION IS INDEXED;
ACCESS IS DYNAMIC;
RECORD KEY IS PART;
ALTERNATE RECORD KEY IS DESC WITH DUPLICATES;
FILE STATUS IS FILE-STATUS.

DATA DIVISION.
FILE SECTION.
FD STOCK-FILE

LABEL RECORD IS STANDARD.
01 STOCK-RECORD.

03 PART
03 DESC
03 COST
03 QUANTITY-aN-HAND
03 REORDER-LEVEL

WORKING-STORAGE SECTION.
01 FILE-STATUS
01 TAG
01 BLANK-LINE
LINKAGE SECTION.
01 PART-NO
01 DESCRIPTION
01 STATIS

PIC X'5).
PIC X .20).
PIC 999V99.
PIC 9 .5) .
PIC 9'5).

PIC XX.
PIC X.
PIC X .aO) VALUE SPACES.

PIC 9 -5) .
PIC X.2 0) .
PIC 9.

PROCEDURE DIVISION USING PART-NO, DESCRIPTION, STATIS.
DECLARATIVES.
FILE-ERRORS SECTION O.

USE AFTER ERROR PROCEDURE ON STOCK-FILE.
CHECK-ERRORS.

IF FILE-STATUS = 99 DISPLAY "RECORD UNAVAILABLE "
LINE 23, ACCEPT TAG POSITION 0, GO TO READ-RECORD.

IF FILE-STATUS = 23 DISPLAY "INVALID PART NUMBER "
LINE 23,

ELSE DISPLAY "ERROR -- FILE STATUS = "
LINE 23, DISPLAY FILE-STATUS POSITION O.

ACCEPT TAG POSITION O.
CLOSE STOCK-FILE.

EXIT-ERRORS.
EXIT PROGRAM.

END DECLARATIVES.
MAIN-ROUTINE SECTION 1.
SET-KEY.

MOVE 1 TO STATIS.
MOVE SPACES TO DESCRIPTION.

A-2

OPEN INPUT STOCK-FILE.
MOVE PART-NO TO PART.

READ-RECORD.
DISPLAY BLANK-LINE LINE 23.
READ STOCK-FILE RECORD KEY IS PART.
MOVE 0 TO STATIS.
MOVE DESC TO DESCRIPTION.
CLOSE STOCK-FILE.

EXIT-ROUTINE.
EXIT PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM-ID. RECPT.

* *
* THIS SUBROUTINE ADDS TO THE QUANTITY ON HAND.
* *

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990-l0.
OBJECT-COMPUTER. TI-990-l0.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT STOCK-FILE, ASSIGN TO RANDOM, "PIF":
ORGANIZATION IS INDEXED;
ACCESS IS DYNAMIC;
RECORD KEY IS PART;
ALTERNATE RECORD KEY IS DESC WITH DUPLICATES:
FILE STATUS IS FILE-STATUS.

DATA DIVISION.
FILE SECTION.
FD STOCK-FILE

LABEL RECORD IS STANDARD.
01 STOCK-RECORD.

03 PART
03 DESC
03 COST
03 QUANTITY-aN-HAND
03 REORDER-LEVEL

WORKING-STORAGE SECTION.
01 FILE-STATUS
01 l'AG
01 BLANK-LINE
LINKAGE SECTION.
01 PART-NO
01 QUANTITY
01 STATIS

PIC X is) .
PIC X -20).
PIC 999V99.
PIC 9 -5) •
PIC 9 '5).

PIC XX.
PIC X.
PIC X .80) VALUE SPACES.

PIC 9.5) •.
PIC 9 '5) •
PIC 9.

USING PART-NO, QUANTITY, STATIS. PROCEDURE DIVISION
DECLARATIVES.
FILE-ERRORS SECTION O.

USE AFTER ERROR PROCEDURE ON STOCK-FILE.

A-3

CHECK-ERRORS.
IF FILE-STATUS = 99 DISPLAY "RECORD UNAVAILABLE "

LINE 23, ELSE MOVE 0 TO TAG.
IF TAG = 1 GO TO READ-RECORD.
IF TAG = 2 GO TO UPDATE-RECORD.
IF FILE-STATUS = 23 DISPLAY "INVALID PART NUMBER "

LINE 23,
ELSE DISPLAY "ERROR -- FILE STATUS = "

LINE 23, DISPLAY FILE-STATUS POSITION O.
ACCEPT TAG POSITION O.
CLOSE STOCK-FILE.

EXIT-ERRORS.
EXIT PROGRAM.

END DECLARATIVES.
MAIN-ROUTINE SECTION 1.
SET-KEY.

MOVE 1 TO STATIS.
OPEN 1-0 STOCK-FILE.
MOVE PART-NO TO PART.

READ-RECORD.
DISPLAY BLANK-LINE LINE 23.
MOVE 1 TO TAG.
READ STOCK-FILE RECORD KEY IS PART.
MOVE 0 TO STATIS.
ADD QUANTITY TO QUANTITY-ON-HAND.

UPDATE-RECORD.
DISPLAY BLANK-LINE LINE 23.
MOVE 2 TO TAG.
REWRITE STOCK-RECORD.
DISPLAY "Display Stock Status? 'YIN) "

LINE 23.
ACCEPT TAG POSITION O.
DISPLAY BLANK-LINE LINE 23.
IF TAG = "y" CALL "SSTAT" USING PART-NO.
CLOSE STOCK-FILE.

~XIT-ROUTINE.

EXIT PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM-ID. ISSUE.

* *
* THIS SUBROUTINE ISSUES STOCK IF THE QUANTITY ON HAND

IS AT LEAST AS LARGE AS THE QUANTITY REQUESTED. *
* *

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-CCMPUTER. TI-990-10.
OBJECT-COMPUTER. TI-990-10.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

A-4

SELECT STOCK-FILE, ASSIGN TO RANDOM, "PIF":
ORGANIZATION IS INDEXED;
ACCESS IS DYNAMIC;
RECORD KEY IS PART:
ALTERNATE RECORD KEY IS DESC WITH DUPLICATES;
FILE STATUS IS FILE-STATUS.

DATA DIVISION.
FILE SECTION.
FD STOCK-FILE

LABEL RECORD IS STANDARD.
01 STOCK-RECORD.

03 PART
03 DESC
03 COST
03 QUANTITY-ON-HAND
03 REORDER-LEVEL

WORKING-STORAGE SECTION.
01 FILE-STATUS
01 TAG
01 BLANK-LINE
LINKAGE SECTION.
01 PART-NO
01 QUANTITY
01 STATIS

PIC X 115) •
PIC X -20).
PIC 999V99.
PIC 9 .5) •
PIC 9 *5) •

PIC XX.
PIC X.
PIC X .80) VALUE SPACES.

PIC 9 -5) •
PIC 9 *5) •
PIC 9.

USING PART-NO, QUANTITY, STATIS. PROCEDURE DIVISION
DECLARATIVES.
FILE-ERRORS SECTION O.

USE AFTER ERROR PROCEDURE ON STOCK-FILE.
CHECK-ERRORS.

IF FILE-STATUS = 99 DISPLAY "RECORD UNAVAILABLE "
LINE 23, ELSE MOVE a TO TAG.

IF TAG = 1 GO TO READ-RECORD.
IF TAG = 2 GO TO UPDATE-RECORD.
IF FILE-STATUS = 23 DISPLAY "INVALID PART NUMBER "

LINE 23,
ELSE DISPLAY "ERROR -- FILE STATUS = "

LINE 23, DISPLAY FILE-STATUS POSITION O.
ACCEPT TAG POSITION O.
CLOSE STOCK-FILE.

EXIT-ERRORS.
EXIT PROGRAM.

END DECLARATIVES.
MAIN-ROUTINE SECTION 1.
SET-KEY.

MOVE 1 TO STATIS.
OPEN 1-0 STOCK-FILE.
MOVE PART-NO TO PART.

READ-RECORD.
DISPLAY BLANK-LINE LINE 23.
MOVE 1 TO TAG.
READ STOCK-FILE RECORD KEY IS PART.
IF QUANTITY-ON-HAND < QUANTITY GO TO DISPLAY-STATUS.
MOVE 0 TO STATIS.
SUBTRACT QUANTITY FROM QUANTITY-ON-HAND.

UPDATE-RECORD.

A-S

DISPLAY BLANK-LINE LINE 23.
MOVE 2 TO TAG.
REWRITE STOCK-RECORD.

DISPLAY-STATUS.
DISPLAY "D i sp1 ay Stock S ta tus? .y IN) "

LINE 23.
ACCEPT TAG POSITION O.
DISPLAY BLANK-LINE LINE 23.
CLOSE STOCK-FILE.
IF TAG = "Y" CALL "SSTAT" USING PART-NO.

EXIT-ROUTINE.
EXIT PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM-ID. REORD.

* * * THIS SUBROUTINE PRINTS A LISTING OF ALL ITEMS WHERE
* THE QUANTITY ON HAND IS LESS THAN OR EQUAL TO THE
* REORDER LEVEL.
* *

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990-10.
OBJECT-COMPUTER. TI-990-10.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT STOCK-FILE ASSIGN TO RANDOM, "PIF"~

ORGANIZATION IS INDEXED;
ACCESS IS SEQUENTIAL;
RECORD KEY IS PART;
ALTERNATE RECORD KEY IS DESC WITH DUPLICATE3i
FILE STATUS IS FILE-STATUS.

SELECT PRINT-FILE ASSIGN TO PRINT, "RR"
ORGANIZATION IS SEQUENTIAL;
ACCESS IS SEQUENTIAL;
FILE STATUS IS PRINT-STATUS.

DATA DIVISION.
FILE. SECTION.
FD STOCK-FILE

LABEL RECORD IS STANDARD.
01 STOCK-RECORD.

03 PART
03 DESC
03 COST
03 QUANTITY-ON-HAND
03 REORDER-LEVEL

FD PRINT-FILE
LABEL RECORD IS OMITTED.

PIC X'5).
PIC X ,20) .
PIC 999V99.
PIC 9 .5) .
PIC 9.5).

01 PRINT-RECORD PIC X *80).
WORKING-STORAGE SECTION.

A-6

01 FILE-STATUS PIC XX.
01 PRINT-STATUS PIC XX.
01 TAG PIC X.
01 BLANK-LINE PIC X '80} VALUE SPACES.
01 FLAG PIC 9.
01 DATE-IN.

03 YEAR PIC 99.
03 MONTH PIC 99.
03 DAYS PIC 99.

01 1ST-HEADING.
03 FILLER PIC X *31} VALUE SPACES.
03 FILLER PIC X '17} VALUE "I N V E N T o R Y".
03 FILLER PIC X *32} VALUE SPACES.

01 2ND-HEADING.
03 FILLER PIC X i33) VALUE SPACES.
03 FILLER PIC X *14) VALUE "REORDER REPORT" •
03 FILLER PIC X -13) VALUE SPACES.
03 DATE-O.

05 MONTH-O PIC Z9.
05 FILLER PIC X VALUE "/".
05 DAYS-O PIC 99.
05 FILLER PIC X VALUE "/".
05 YEAR-O PIC 99.

03 FILLER PIC X .12) VALUE SPACES.
01 3RD-HEADING.

03 FILLER PIC X '7) VALUE SPACES.
03 FILLER PIC X '4} VALUE "PART" .
03 FILLER PIC X .6) VALUE SPACES.
03 FILLER PIC X .11) VALUE "DESCRIPTION".
03 FILLER PIC X ,15) VALUE SPACES.
03 FILLER PIC X *4} VALUE "COST".
03 FILLER PIC X *5} VALUE SPACES.
03 FILLER PIC X '8) VALUE "QUANTITY" .
03 FILLER PIC X '5) VALUE SPACES.
03 FILLER PIC X .7) VALUE "REORDER" .
03 FILLER PIC X .8} VALUE SPACES.

01 4TH-HEADING.
03 FILLER PIC X '6} VALUE SPACES.
03 FILLER PIC X .6} VALUE "NUMBER".
03 FILLER PIC X *41) VALUE SPACES.
03 FILLER PIC X *7) VALUE "ON HAND".
03 FILLER PIC X ,6} VALUE SPACES.
03 FILLER PIC X *5} VALUE "LEVEL" .
03 FILLER PIC X .9} VALUE SPACES.

01 DETAIL-LINE.
03 FILLER PIC X *7) VALUE SPACES.
03 PART-O PIC 9 ,5) •
03 FILLER PIC X '5) VALUE SPACES.
03 DESC-O PIC X '20} .
03 FILLER PIC X *4} VALUE SPACES.
03 COST-O PIC ZZZ.99.
03 FILLER PIC X.6} VALUE SPACES.
03 QUANTITY-ON-HAND-O PIC ZZ,ZZ9.
03 FILLER PIC X.6) VALUE SPACES.
03 REORDER-LEVEL-O PIC ZZ,ZZ9.

A-7

03 FILLER PIC X -9) VALUE SPACES.
PROCEDURE DIVISION.
DECLARATIVES.
STOCK-ERRORS SECTION O.

USE AFTER ERROR PROCEDURE ON STOCK-FILE.
CHECK-STOCK.

IF FILE-STATUS = 99 DISPLAY "RECORD UNAVAILABLE"
LINE 23, ACCEPT TAG POSITION 0, GO TO READ-RECORD,

ELSE DISPLAY "ERROR -- FILE STATUS = "
LINE 23, DISPLAY FILE-STATUS POSITION O.

ACCEPT TAG POSITION O.
CLOSE STOCK-FILE.
IF FLAG = 1 CLOSE PRINT-FILE.
GO TO EXIT-ROUTINE.

PRINT-ERRORS SECTION 1.
USE AFTER ERROR PROCEDURE ON PRINT-FILE.

CHECK-PRINT.
IF PRINT-STATUS = 93 DISPLAY "DEVICE NOT AVAILABLE"

LINE 23,
ELSE DISPLAY "ERROR -- PRINT STATUS = "

LINE 23, DISPLAY PRINT-STATUS POSITION O.
ACCEPT TAG POSITION O.
CLOSE STOCK-FILE, PRINT-FILE.
GO TO EXIT-ROUTINE.

END DECLARATIVES.
MAIN-ROUTINE SECTION 3.
OPEN-FILES.

OPEN INPUT STOCK-FILE.
OPEN OUTPUT PRINT-FILE.
MOVE 1 TO FLAG.
MOVE LOW-VALUES TO DESC.
START STOCK-FILE KEY> DESC.
ACCEPT DATE-IN FROM DATE.
MOVE MONTH TO MONTH-O.
MOVE DAYS TO DAYS-a.
MOVE YEAR TO YEAR-O.

PRINT-HEADINGS.
WRITE PRINT-RECORD FROM 1ST-HEADING AFTER 2 LINES.
WRITE PRINT-RECORD FROM 2ND-HEADING AFTER 1 LINE.
WRITE PRINT-RECORD FROM BLANK-LINE AFTER 1 LINE.
WRITE PRINT-RECORD FROM 3RD-HEADING AFTER 1 LINE.
WRITE PRINT-RECORD FROM 4TH-HEADING AFTER 1 LINE.
WRITE PRINT-RECORD FROM BLANK-LINE AFTER 1 LINE.

READ-RECORD.
READ STOCK-FILE NEXT RECORD WITH NO LOCK

AT END CLOSE STOCK-FILE, PRINT-FILE,
GO TO EXIT-ROUTINE.

IF REORDER-LEVEL < QUANTITY-aN-HAND GO TO READ-RECORD.
MOVE PART TO PART-a.
MOVE DESC TO DESC-O.
MOVE COST TO COST-a.
MOVE QUANTITY-ON-HAND TO QUANTITY-ON-HAND-O.
MOVE REORDER-LEVEL TO REORDER-LEVEL-O.
WRITE PRINT-RECORD FROM DETAIL-LINE AFTER 1 LINE.
GO TO READ-RECORD.

A-8

EXIT-ROUTINE.
EXIT PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM-ID. SSTAT.

* * * THIS SUBROUTINE DISPLAYS THE STATUS OF A PART NUMBER.
* *

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. TI-990-10.
OBJECT-COMPUTER. TI-990-10.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT STOCK-FILE, ASSIGN TO RANDOM, "PIF";
ORGANIZATION IS INDEXED;
ACCESS IS DYNAMIC;
RECORD KEY IS PART;
ALTERNATE RECORD KEY IS DESC WITH DUPLICATES;
FILE STATUS IS FILE-STATUS.

DATA DIVISION.
FILE SECTION.
FD STOCK-FILE

LABEL RECORD IS STANDARD.
01 STOCK-RECORD.

03 PART
03 DESC
03 COST
03 QUANTITY-ON-HAND
03 REORDER-LEVEL

WORKING-STORAGE SECTION.
01 FILE-STATUS
01 TAG
01 COST-D
01 QUANTITY-ON-HAND-D
01 REORDER-LEVEL-D
01 BLANK-LINE
01 N
LINKAGE SECTION.

PIC X *5) •
PIC X .20).
PIC 999V99.
PIC 9 -5) .
PIC 9.5).

PIC
PIC
PIC
PIC
PIC
PIC
PIC

XX.
X.
ZZZ.99.
ZZ,ZZ9.
ZZ,ZZ9.
X tao) VALUE
99.

01 PART-NO PIC 9.5).
PROCEDURE DIVISION USING PART-NO.
DECLARATIVES.
FILE-ERRORS SECTION O.

USE AFTER ERROR PROCEDURE ON STOCK-FILE.
CHECK-ERRORS.

SPACES.

IF FILE-STATUS = 99 DISPLAY "RECORD UNAVAILABLE "
LINE 23, ACCEPT TAG POSITION 0, GO TO READ-RECORD.

IF FILE-STATUS = 23 DISPLAY "INVALID PART NUMBER "
LINE 23,

ELSE DISPLAY "ERROR -- FILE STATUS = "

A-9

LINE 23.
ACCEPT TAG POSITION O.

EXIT-ERROR.
EXIT PROGRAM.

END DECLARATIVES.
MAIN-ROUTINE SECTION 1.
SET-KEY.

OPEN INPUT STOCK-FILE.
MOVE PART-NO TO PART.

READ-RECORD.
DISPLAY BLANK-LINE LINE 23.
READ STOCK-FILE RECORD KEY IS PART.
PERFORM DISPLAY-STATUS THRU DS-EXIT.
CLOSE STOCK-FILE.

EXIT-ROUTINE.
EXIT PROGRAM.

DISPLAY-STATUS.
MOVE COST TO COST-D.
MOVE QUANTITY-ON-HAND TO QUANTITY-ON-HAND-D.
MOVE REORDER-LEVEL TO REORDER-LEVEL-D.
DISPLAY "+--+"

LINE 16, POSITION 19.
PERFORM BOUNDARY THRU B-EXIT

VARYING N FROM 17 BY 1 UNTIL N = 24.
DIS P LA Y II +--+ "

LINE 24, POSITION 19.
DISPLAY "STOCK STATUS" LINE 17, POSITION 35.
DISPLAY "PART NUMBER" LINE 19, POSITION 22.
DISPLAY "DESCRIPTION" POSITION 22.
DISPLAY "COST" POSITION 22.
DISPLAY "QUANTITY ON HAND" POSITION 22.
DISPLAY "REORDER LEVEL" POSITION 22.
DISPLAY PART LINE 19 POSITION 40.
DISPLAY DESC POSITION 40.
DISPLAY COST-D POSITION 4D.
DISPLAY QUANTITY-ON-HAND-D POSITION 40.
DISPLAY REORDER-LEVEL-D POSITION 40.
ACCEPT TAG.
PERFORM CLEAR-SCREEN THRU CS-EXIT

VARYING N FROM 16 BY 1 UNTIL N = 25.
DS-EXIT. EXIT.
BOUNDARY.

DISPLAY " ,n LINE N, POSITION 19.
DISPLAY " f" LINE N, POSITION 62.

B-EXIT. EXIT.
CLEAR-SCREEN.

DISPLAY BLANK-LINE LINE N.
CS-EXIT. EXIT.

A-IO

APPENDIX B

SAMPLE SYSGEN DIALOG

8-1

================== GEN990-AUTO SYSGEN
DATA DISC: -DS01)
TARGET DISK: ~SOl)
INPUT:
OUTPUT: SYS1

LINE: .60)
TIME SLICING ENABLED? ~ES)
TIME SLICE VALUE: tI)
TASK SENTRY ENABLED? ~O)

TABLE: ?

RELEASE 3.3.0 ------------------------------------

WHAT LENGTH IN WORDS DO YOU WANT THE SYSTEM TABLE TO BE: ?
THE SYSTEM TABLE AREA IS A MEMORY RESIDENT, RESERVED AREA THAT IS USED
TO MAINTAIN SYSTEM DATA STRUCTURES. THE SIZE OF THIS AREA IS HIGHLY
DEPENDENT ON THE SYSTEM CONFIGURATION. A GUIDELINE TO FOLLOW WHEN
SPECIFING THIS AREA IS AS FOLLOWS:

SYSTEM TABLE SIZING
FEATURE

BASE SYSTEM AREA *
ACTIVE FOREGROUND SCI **
ACTIVE BACKGROUND SCI **
ADDITIONAL PER INSTALLED DISK

»> ENTER ANY KEY TO CONTINUE «<

ADDITIONAL vlORDS
1100 WORDS

300 WORDS
350 WORDS
200 WORDS

* SYSTEM AREA FOR A SINGLE TERMINAL SYSTEM; WITH 1 FOREGROUND

**
AND 1 BACKGROUND SCI ALLOWED; AND ONLY THE SYSTEM DISK INSTALLED
THESE ESTIMATES ARE FOR NOMINAL LOADING.

GEN990 PROVIDES NO DEFAULT FOR THIS PARAMETER:
TABLE: 5K

COMMON: .NONE)
INTERRUPT DECODER: ~ONE)

FILE MANAGEMENT TASKS: .2)
CLOCK: .5}
ID: 'NONE)
OVERLAYS: -2)
SYSLOG: .6)
BUFFER. MANAGEMENT: .1K)
I/O BUFFERS: ,0 }
INTERTASK: dOO} 512
KIF? ,YES}
SEQUENTIAL PLACEMENT?: ~ES)
COUNTRY CODE: .US)
POWERFAIL: .NO)
SCI BACKGROUND: ,2)
SCI FOREGROUND: .8) 10
EREAKPO INT: .16)
CARD 1: 10
CARD 2:

DEVICE: K820
eRU: .)00)
ACCESS TYPE: .RECORD)

B-2

TIME OUT: .0)
CHARACTER QUEUE: .6)
INTERRUPT: .6)

DEVICE: VDT
CRU: .>100) 0580
ACCESS TYPE: ~ECORD)
TIME OUT: .0)
CRT TYPE: .911)
3270 CRU ADDRESS: ~ONE)
CHARACTER QUEUE: .6)
INTERRUPT: .10)
EXPANSION CHASSIS: tl)
EXPANSION POSITION: 7

DEVICE: VDT
CRU: ->100) OSAO
ACCESS TYPE: ~ECORD)
TIME OUT: .0)
CRT TYPE: .911)
3270 CRU ADDRESS: ~ONE)
CHARACTER QUEUE: .6)
INTERRUPT: ,10)
EXPANSION CHASSIS: ,1)
EXPANSION POSITION: 14

DEVICE: VDT
CRU: .>100) 0480
ACCESS TYPE: ~ECORD)
TIM,E OUT: .0)
CRT TYPE: .911)
3270 CRU ADDRESS: ~ONE)
CHARACTER QUEUE: .6)
INTERRUPT: .10)
EXPANS ION CHASS IS: ,1)
EXPANSION POSITION: 3

DEVICE: VDT
CRU: .)100) 04AO
ACCESS TYPE: ~ECORD)
TIME OUT: .0)
CRT TYPE: .911)
3270 CRU ADDRESS: ~ONE)
CHARACTER QUEUE: .6)
INTERRUPT: .10)
EXPANS ION CHASS IS: .1)
EXPANSION POSITION: 11

DEVICE: VDT
CRU: .>100) OSCO
~CCESS TYPE: ~ECORD)
TIME OUT: .0)
CRT TYPE: .911)
3270 eRU ADDRESS: ~ONE)
CHARACTER QUEUE: ·6)

B-3

INTERRUPT: .10)
EXPANS ION CHASS IS : .1)
EXPANSICN POSITION: 8

DEVICE: VDT
CRU: .<100) 05EO
ACCESS TYPE: ~ECORD)
TIME OUT: .0)
CRT TYPE: .911)
3270 CRU ADDRESS: ~ONE)
CHARACTER QUEUE: .6)
INTERRUPT: .10)
EXPANSION CHASSIS: .1)
EXPANSION POSITION: 9

DEVICE: VDT
CRU: .)100) 04CO
ACCESS TYPE: .RECORD)
TIME OUT: .0)
CRT TYPE: .911)
3270 CRU ADDRESS: ~ONE)
CHARACTER QUEUE: ·6)
INTERRUPT: .10)
EXPANSION CHASSIS: .1)
EXPANSION POSITION: 4

DEVICE: VDT
CRU: ,)100) 04EO
ACCESS TYPE: 'RECORD)
TIME OUT: .0)
CRT TYPE: ,911)
3270 CRU ADDRESS: ~ONE)
CHARACTER QUEUE: .6)
INTERRUPT: .10)
EXPANSION CHASSIS: .1)
EXPANSION POSITION: 10

DEVICE: K820
CRU: ,)100) 0440
ACCESS TYPE: ,RECORD)
TIME OUT: ,0)
CHARACTER QUEUE: ,6)
IN':I:ERRUPT: .6) 10
EXPANS ION CHASS IS : ,1)
EXPANSION POSITION: 2

DEVICE: DS
TILINE: 'P800)
DRIVES: ,1) 2
DEFAULT RECORD SIZE: .864)
INTERRUPT: .13) 15

DEVICE: DS
TILINE: .P800) OF820
DRIVES: .1)

8-4

DEFAULT RECORD SIZE: ~64) 288
INTERRUPT: .13) 7

DEVICE: MT
TILINE: -F800)
DRIVES: .1)
INTERRUPT: .9) 12

DEVICE: LP
CRU: .)60)
ACCESS TYPE: ~ILE)
TIME OUT: ;30)
PRINT MODE: EERIAL)
EXTENDED? ~O) Y
3270 CRU ADDRESS: ~ONE)
INTERRUPT: .14)

DEVICE: LP
CRU: .)60) 0460
ACCESS TYPE: ~ILE)
TIME OUT: .30)
PRINT MODE: EERIAL)
EXTENDED? ~O) Y
3270 CRU ADDRESS: ~ONE)
INTERRUPT: .14) 10
EXPANSION CHASS IS: -1)
EXPANSION POSITION: 15

DEVICE: CM
CRU: .)140) 020
COMM PACKAGE: -3780)
BUFFER SIZE: '0) 512
INTERRUPT: .8) 6

DEVICE: SD
CRU: -)20) 0500
INTERRUPT CRU BIT: ~A)
NAME: Ttrl
KSB: 'NONE)
DSR WORKSPACE: PDTM01
INTERRUPT ENTRY: TMINT2
~DT FILE: .S$SYSGEN.PDT$TM01
DSR FILE: .S$SYSGEN.DSR$TM2
JVERRIDE? ,YES)
INTERRUPT: rl5) 10
EXPANSION CHASSIS: '1)
EXPANSION POSITION: 12

JEVICE: SD
:RU: .)20) 0540
INTERRUPT CRU BIT: ~A)
~AME: EM
KSB: .NONE)
JSR WORKSPASE: PDE~101
INTERRUPT ENTRY: EMINT2

B-5

PDT FILE: .S$SYSGEN.PDTEMOI
DSR FILE: .S$SYSGEN.DSR$EM2
OVERRIDE? .YES)
INTERRUPT: t15) 10
EXPANS ION CHASS IS: ,1)
EXPANSION POSITION: 6

DEVICE:

SVC:
XOP:

CONFIGURATION FILE IS COMPLETE. DO YOU WANT TO SAVE IT? ~ES)
********** CONFIGURATION FILE SAVED **********
******** D$DATA SOURCE FILE IS NOW BEING BUILT **********
****** THE LINK EDIT COMMAND STREAM SOURCE FILE IS BEING BUILT ******
******** BATCH FILE FOR SYSGEN COMPLETION IS NOW BEING BUILT *******
DO YOU NEED INSTRUCTIONS TO COMPLETE THE SYSGEN? N
********* GEN990 TERMINATED **********

8-6

APPENDIX C

SAMPLE SOLUTIONS

C-l

MODULE 1

Worksheet 1

WITHOUT SHARED PROCEDURES

TASKI TASK2 TASK3

+-------------------------------------+ , , PI 10K 10K 10K
r P21 15K
r P22 10K 10K
J TASK 15K 20K 10K'
I TOTAL 40K 40K 30K
I , TOTAL is 110K
+-------------------------------------+

WITH SHARED PROCEDURES

TASK1 TASK2 TASK3
+-------------------------------------+
f r
J PI 10K r
I P21 15K J
, P22 10K
f TASK 15K 20K 10K
'TOTAL 40K 30K 10K ,
, TOTAL is 80K
+-------------------------------------+

Savings is 30K

C-2

Worksheet 2

LIBRARY
PROCEDURE
DUMMY
INCLUDE
PROCEDURE
INCLUDE
INCLUDE
INCLUDE
TASK
INCLUDE
ALLOCATE
INCLUDE
INCLUDE
END

LIBRARY
PROCEDURE
DUMMY
INCLUDE
PROCEDURE
DUMMY
INCLUDE
INCLUDE
INCLUDE
TASK
INCLUDE
ALLOCATE
INCLUDE
INCLUDE
END

TI.COBOL.OBJ
RCOBOL

.S$SYSLIB.RCBPRC
ULIB
HNSUB)
.ADDNUM)
IQUTSUB)

TASKI
.S$SYSLIB.RCBTSK

.S$SYSLIB.RCBMPD
'PROGl)

TI.COBOL.OBJ
RCOBOL

.S$SYSLIB.RCBPRC
ULIB

IINSUB)
'ADDNUM)
aQUTSUB)

TASK2
.S$SYSLIB.RCBTSK

.S$SYSLIB.RCBMPD
.PROG2)

C-3

MODULE 2

Worksheet 1

LIBRARY
LIBRARY
PROCEDURE
DUMMY
INCLUDE
PHASE 0,
INCLUDE
LOAD
INCLUDE
INCLUDE
PHASE 1,
INCLUDE
PHASE 1,
INCLUDE
PHASE 2,
INCLUDE
PHASE 2,
INCLUDE
PHASE 1,
INCLUDE
END

.S$SYSLIB
TleCOBOL.OBJ
RCOBOL

tRCBPRC}
ROOT
.RCBTSK}

'RCBMPD}
tMAINPROG}

BEGIN
'SUBI }

MANIP
.SUB2 }

CALCI
-SUB3 }

CALC2
.SUB4)

QUIT
*SUB 5)

C-4

MODULE 4

Worksheet 1

• PROC UPINV -RECEIPT tR), ISSUE."

APPENDIX C

SAMPLE SOLUTIONS

C-l

MODULE 1

Worksheet 1

WITHOUT SHARED PROCEDURES

TASKl TASK2 TASK3
+-------------------------------------+
, J

'PI 10K 10K 10K
P21 15K
P22 10K 10K

J TASK 15K 20K 10K
'TOTAL 40K 40K 30K
r
f TOTAL is lIOK
+-------------------------------------+

WITH SHARED PROCEDURES

TASKl TASK2 TASK3
+-------------------------------------+

PI 10K
P21 15K
P22 10K
TASK 15K 20K 10K
TOTAL 40K 30K 10K

, TOTAL is BOK
+-------------------------------------+

Savings is 30K

C-2

Worksheet 2

LIBRARY
PROCEDURE
DUMMY
INCLUDE
PROCEDURE
INCLUDE

TI.COBOL.OBJ
RCOBOL

.S$SYSLIB.RCBPRC
ULIB
'INSUB)
tADDNUM)

MODULE 4

Worksheet 1

.PROC UPINV ~ECEIPT ,R), ISSUE '1), REORDER REPORT .P)) = 4,
ENTER OPTION = STRING
.SYN I = TI.INV.OBJ
.SYN OPT = &ENTER OPTION
* * === VALIDATE OPTION ===
*
.IF @OPT, NE, R

• IF @OPT, NE, I
.IF @OPT, NE, P

MSG TEXT = "INVALID OPTION"
.ENDIF

.ENDIF
.ENDIF
* * === DETERMINE OPTION SELECTED
*
.IF @OPT, EQ, R

.SYN PROG = RECPT
.ENDIF
.IF @OPT, EQ, I

.SYN PROG = ISSUE
.ENDIF
.IF @OPT, EQ, P

.SYN PROG = REORD
.ENDIF
*
* === EXECUTE PROGRAM ---
*
XCPF OBJECT ACCESS NAME = @I.@PROG,

DEBUG MODE = NO,
MESSAGE ACCESS NAME = ""
SWITCHES = 00000000,
FUNCTION KEYS = NO

*
* === IF OPTION = "P" EXECUTE "REORD"
*
• IF @OPT, EQ, P

PF FILE PATHNAME = TI.INV.REORD,

!NOT REQUIRED
!NOT REQUIRED
!NOT REQUIRED
!NOT REQUIRED

AND PRINT REPORT

ANSI FORMAT = NO, !NOT REQUIRED
LISTING DEVICE = LPOl,
DELETE AFTER PRINTING = YES,
NUMBER OF LINES/PAGE = "" !NOT REQUIRED

MSG TEXT = "PRINTING OF REORDER REPORT COMPLETE"
.ENDIF
.SYN I = "", OPT = "", PROG = ""
.EOP

C-s

Worksheet 2

CLE ~OMPILE, LINK, AND EXECUTE) = 5,
FILE NAME = ACNM
.SYN CS=TI.COBOL.SRC
.SYN CO=TI.COBOL.OBJ
.SYN CL=TI.COBOL.LST
* * === COMPILE PROGRAM
*
XCCF SOURCE = @CS.&FILE NAME,

OBJECT = @CO.&FILE NAME,
LISTING = @CL.&FILE NAME

*
* === IF NO WARNINGS OR ERRORS, BUILD LINK CONTROL FILE ---
*
• IF @$$CC, EQ, 0

*

.DATA TI.COBOL.LCF.&FILE NAME, SUBSTITUTION = YES
LIBRARY .S$SYSLIB
FORMAT IMAGE,REPLACE
PROC RCOBOL
DUMMY
INCLUDE 'RCBPRC)
TASK &FILE NAME
INCLUDE tRCBTSK)
INCLUDE 'RCBMPD)
INCLUDE @CO.&FILE NAME
END

.EOD

* === EXECUTE LINK EDITOR ===
*

XLE

WAIT
*

CONTROL
LINKED
LISTING

= TI.COBOL.LCF.&FILE NAME,
= TI.COBOL.PROGF,
= TI.COBOL.LMAP.&FILE NAME

* === IF NO WARNINGS OR ERRORS, EXECUTE PROGRAM ---
*

.IF @$$CC, EQ, 0
AL LUNO = "",

ACCESS = TI.COBOL.PROGF,
PROG FILE = YES,
DISPLAY = NO

XCTF PROG FILE LUNO = @$$LU,
TASK ID OR NAME = &FILE NAME

RL LUNO = @$$LU
.ENDIF

.ENDIF

.SYN CS = "" CO = "" CL = ""
Q$SYN

C-6

Worksheet 3

CLE ~OMPILE, LINK, AND EXECUTE) = 5,
FILE NAME = ACNM
.SYN CS=TI.COBOL.SRC
.SYN CO=TI.COBOL.OBJ
.SYN CL=TI.COBOL.LST
.SYN F=&FILE,NAME
* * === COMPILE PROGRAM ===
*
.BID TASK=>S7, LUNO=>10, PARMS= .@CS.@F, @CO.@F, @CL.@F,

"" SO, 55, 6144, 1000)
* * === IF NO WARNINGS OR ERRORS, BUILD LINK CONTROL FILE ---
*
.IF @$$CC, EO, 0

*

.DATA TI.COBOL.LCF.@F, SUBSTITUTION = YES
LIBRARY .S$SYSLIB
FORMAT IMAGE,REPLACE
PROC RCOBOL
DUMMY
INCLUDE tRCBPRC)
TASK @F
INCLUDE ~CBTSK)

INCLUDE .RCBMPD)
INCLUDE @CO.@F
END

.EOD

* === EXECUTE LINK EDITOR ===
*

*

.OBID TASK=>S6, LUNO=>10, PARMS= ."TI.COBOL.LCF.@F",
"TI.COBOL.PROGF", "TI.COBOL.LMAP.@F", 4096, SO)

WAIT

* --- IF NO WARNINGS OR ERRORS, EXECUTE PROGRAM ===
*

.IF @$$CC, EO, 0
.OVLY OVLY=>lB, LUNO=O,

PARMS= .6,0,"TI.COBOL.PROGF",Y,ALL,Y,N)
.BID TASK=@F, LUNO=@ALL,

PARMS = ., N , " " , II " , II ")

.OVLY OVLY=>lB, LUNO=O, PARMS= .30,@ALL)
.ENDIF

.ENDIF

.SYN CS = "" CO = "" CL = "" F = ""

C-7

Lab Exercise 1

CUBE ~UBE A NUMBER THAT IS BETWEEN -5 AND +5),
ENTER A NUMBER = INT
.SYN N = &ENTER A NUMBER
. LOOP

.LOOP

.WHILE @N, GT, 5
MSG TEXT = "+NVALID NUMBER, TRY AGAIN"
CUBE
.EXIT
• REPEAT

.WHILE @N, LT, -5
MSG TEXT = "-NVALID NUMBER, TRY AGAIN"
CUBE
.EXIT
.REPEAT
.EVAL CUBEN = @N * @N * @N
MSG TEXT = liTHE CUBE OF @N IS @CUBEN"
.SYN N = "", CUBEN = nIt

Lab Exercise 2

PR .PRINT REPORT)=4,
FILE ACCESS NAME=ACNM,
HOW MANY COPIES?=INT,
ANSI FORMAT?=YESNO aNa) ,
DELETE AFTER PRINTING?=YESNO ~O)
.SYN FAN = "@&FILE ACCESS NAME"
.SYN HMC = "&HOW MANY COPIES"
.SYN AF = "&ANSI FORMAT"
.SYN DEL = "NO"
.LOOP
.WHILE @HMC, GE, 1
* * === IF LAST COPY, SET DELETE PARAMETER ---
*

*

.IF @HMC, EQ, 1
.SYN DEL = n&DELETE AFTER PRINTING"

.ENDIF

PF FILE PATHNAME = @FAN,
ANSI FORMAT = @AF,
LISTING DEVICE = LPOl,
DELETE AFTER PRINTING = @DEL

.EVAL HMC=@HMC-l

. REPEAT

.SYN FAN="", HMC="", AF="" , DEL=""

C-8

Lab Exercise 3

SAVE
.IF "@XE", EQ, " "

MSG TEXT = "OUTPUT FILE PATHNAME", REPLY = "XE"
.ENDIF
QE$l OUTPUT FILE ACCESS NAME = "@XE",

REPLACE = YES,
MOD LIST ACCESS NAME = ""

XE FILE ACCESS NAME = "@XE"

MODULE 5

Worksheet 1

XCC ~XECUTE COBOL COMPILER <VERSION: 3.2.0 79173» =2,
FILE NAME = ACNM ."@XCCF")
DIRECTORY NAME = ACNM ."@XCCD") ,
PROGRAM SIZE 'LINES) = INT .1000)
.SYN D=@&DIRECTORY NAME
.SYN F=&FILE NAME
.SYN S=@@D.SRC.@F
.SYN O=@@D.OBJ.@F
.SYN L=@@D.LST.@F
.SYN MEMX = "&PROGRAM SIZE 'LINES)"
.EVAL MEMORY = "@MEMX / 500 * 7168"
.IF "@MEMORY" ,GT, "30840"
.EVAL MEMORY = "30840"
.ENDIF
.IF "@MEMORY" ,LT, "7168"
.EVAL MEMORY = "6144"
.ENDIF
* * === DELETE UNNECESSARY MESSAGES AND SYNONYM ASSIGNMENT --
* === MODIFY .OBID PARAMETERS ===
*
.OBID TASK = >87, LUNC = >10,
P ARMS = .@ @ @S, @ @ @O, @ @ @L , X, 80, 55,

@MEMORY,&PROGRAM SIZE aLINES))
* * === MODIFY SYNONYM ASSIGNMENTS
*
.SYN XCCD = &DIRECTORY NAME
.SYN XCCF = &FILE NAME
.SYN MEMORY="", MEMX="", S="", 0="", L="", D="", F=""

C-9

Lab Exercise 1

CFILE ~OPY FILE) = 7,
INPUT DIRECTORY NAME = ACNM,
OUTPUT DIRECTORY NAME = ACNM
.SYN IDN = @&INPUT DIRECTORY NAME
.SYN ODN = @&OUTPUT DIRECTORY NAME
.. SYN FN=O
* *
* INCREMENT INPUT FILE NUMBER
* GENERATE UNIQUE FILE NAME AND COpy
* AS LONG AS OPERATOR ENTERS "Y"
* *
. LOOP

.EVAL FN = @FN+1

.SYN FILE = TCTEMP@FN
UNIQUE SYNONYM = F
CC INPUT = @@IDN.@FILE,

OUTPUT = @@CDN.@F,
REPLACE = YES

MSG TEXT="@@IDN.@F COPIED TO @@ODN.@F"
MSG TEXT="CONTINUE 'Y/N)", REPLY=ANS

.WHILE @ANS, EQ, Y

. REPEAT

.SYN IDN="", ODN="", FN="", FILE="" , F="",
$$UN$l="", $$UN$2="", ANS=""

Lab Exercise 2

UNIQUE GENERATE UNIQUE FILENAME),
SYNONYM TO BE ASSIGNED=NAME ."@$$UN$2")
.SYN $$UN$2=&SYN
.IF "@$$UN$l",EQ,"$$UN$l"
.EVAL $$UN$1="@$$ST*100" !MODIFY MULTIPLIER
.ENDIF
.SYN &SYN=CFILE@$$UN$l !MODIFY FILE NAME
.EVAL $$UN$l="@$$UN$l+l"
.IF @$$UN$1,GT,"@$$ST*lOO+99" !MODIFY VALIDATION
. S YN $ $ UN $1 = ''''
.ENDIF

C-IO

Lab Exercise 3

CFKEY ~REATE KEY INDEXED FILE),
PATHNAME = ACNM,
LOGICAL RECORD LENGTH = INT,
PHYSICAL RECORD LENGTH = *INT,
INITIAL ALLOCATION = *INT,
SECONDARY ALLOCATION = *INT,
MAXIMUM SIZE = INT
.IF "@CFKKN", NE, "CFKKN"
MSG T="ERROR: INVALID CFKEY SEQUENCE; CFKEY BEFORE ENDKEY"
.SYN CFKL="", CFKPN="" , CFKFLRL="",
CFKPRL="", CFKKS= , CFKIA="", CFKM= ,
CFKSA="" , CFKMS= , CFKKN=""
.EXIT
.ENDIF
.SYN CFKKN = 1,
CFKL = "",
CFKKS = "1",
CFKPN = "@&PATHNAME",
CFKFLRL = "&LOGICAL RECORD LENGTH",
CFKPRL = "&PHYSICAL RECORD LENGTH",
CFKIA = "&INITIAL ALLOCATION",
CFKSA = "&SECONDARY ALLOCATION",
CFKMS = "&MAXIMUM SIZE",
*
* === ADD FOLLOWING SYNONYM ASSIGNMENT
*
CFKM = "NO"
.IF "&PHYSICAL RECORD LENGTH", EQ, ""
.SYN CFKPRL = 0
.ENDIF
.IF "&INITIAL ALLOCATION", EQ, .. "
.SYN CFKIA = 0
.ENDIF
.IF "&SECONDARY ALLOCATION", EQ, ""
.SYN CFKSA = 0
.ENDIF
.IF "@$$MO", NE, 0
CFK$l
ENDKEY
.ENDIF

C-l1

KEY -KEY DESCRIPTION FOR KEY NUMBER @CFKKN),
START POSITION = INT ." @CFKKS") ,
KEY LENGTH = INT,
DUPLICATES? = YESNO ~O),

*
* === MODIFY THE DEFAULT FOR THE FOLLOWING KEYWORD
*
MODIFIABLE? = YESNO '@CFKM),
ANY MORE KEYS? = *YESNO eYES)
.IF "@CFKKN", EQ, "CFKKN"
MSG T="ERROR: INVALID CFKEY SEQUENCE; KEY BEFORE CFKEY"
.EXIT
.ENDIF
*
* === DELETED .IF STATEMENT ===
*
.SYN CFKKS = "&START POSITION"
*
* MODIFY FOLLOWING PARAMETER LIST
* @CFKM BECOMES &MODIFIABLE
*
.SYN
CFKL="@CFKL, .@CFKKS, &KEY LENGTH, &DUPLICATES, &MODIFIABLE, Y) "
. EVAL CFKKN = @CFKKN+l

*
* === ADD THE FOLLOWING .SYN AND .EVAL STATEMENTS
*
.SYN CFKM = "YES"
• EVAL CFKKS = "@CFKKS + &KEY LENGTH"
.IF "&ANY MORE KEYS", LT, Y
.SYN CFKKS = ""
.ENDIF

No modifications of CFK$l or ENDKEY are required.

C-12

Lab Exercise 4

ACL .AUTOMATED COBOL LINK)=5,
OBJECT ACCESS NAME=ACNM .@$$XCC$OB),
APPLICATION NAME=NAME,
PROGRAM FILE NAME=ACNM,
1st LINK TO THIS OUTPUT FILE=YESNO ~O),
LIBRARY ACCESS NAME=*ACNM .@ACLLIB),
LISTING ACCESS NAME=ACNM
.SYN ACLAN=&APPLICATION
.SYN XCCOB=@&OBJECT
.SYN ACLLIB=@&LIBRARY
*
* === IF FIRST LINK CREATE PROGRAM FILE

*
.IF &lst, GE, Y

.OVLY OVLY=>lB, LUNO=O,
PARMS= tl4, &PROGRAM, 25,10,20,85," II , YES)

.ENDIF

*
* === SET LIBRARY COMMAND ===
*
.IF @ACLLIB, NE, ""

.SYN LIBRARY="LIERARY @ACLLIB"
.ELSE

• SYN LIBRARY="; NO LIBRARY USED"
.ENDIF

*
* === BUILD LINK CONTROL FILE ---
*
.DATA .S$ACL@$$ST, SUBSTITUTION=YES

@LIBRARY

.EOD
*

FORMAT IMAGE, REPLACE
PROCEDURE RCOBOL
DUMMY
INCLUDE .S$SYSLIB.RCBPRC
PROCEDURE @ACKANTION
INCLUDE .S$SYSLIB.RCBMPD
INCLUDE @XCCOB
TASK @ACLAN
INCLUDE .S$SYSLIB.RCBTSK
END

* === EXECUTE LINK EDITOR ===

*
.OBID TASK=>86, LUNO=>10,

PARMS= '.S$ACL@$$ST, &PROGRAM, &LISTING, 4096, 80)
*
.OVLY OVLY=>23, CODE=lO !WAIT COMMAND
*
* === DELETE TEMPORARY LINK CONTROL FILE --
*
.OVLY OVLY=>lB, LUNO=O, PARMS= .8, .S$ACL@$$ST)
. SYN LIBRARY="", ACLAN=""

C-13

MODULE 6

Lab Exercise 1

BATCH
"SYN C=TI. COBOL
XCC SOURCE=@C.SRC.STOCK, OBJECT=@C.OBJ.STOCK, LIST=@C"LST.STOCK
.IF @$$CC, GT, a

.STOP TEXT="ERRORS IN THE COMPILE PHASE
.ENDIF
. DATA @C.LCF.STOCKREN, SUBSTITUTION=YES

FORMAT IMAGE, REPLACE, 4
PROCEDURE RCOBOL
DUMMY
INCLUDE
PROCEDURE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
TASK
INCLUDE
ALLOCATE
INCLUDE
INCLUDE
END

.S$SYSLIB.RCBPRC
INVSUBS
@C.OBJ.RDINVO
@C.OBJ.RECPTO
@C.OBJ.ISSUEO
@C.OBJ.REORDO
@C.OBJ.SSTATO
STOCKREN
.S$SYSLIB.RCBTSK

.S$SYSLIB.RCBMPD
@C.OBJ.STOCKO

.EOD
XLE CONTROL=@C.LCF.STOCKREN, LINK OUT=@C.PROGF,

LIST=@C.LMAP.STOCKREN
EC
.DATA @C.LCF.STOCKOVL, SUBSTITUTION=YES

FORMAT IMAGE, REPLACE, 4
LIBRARY .S$SYSLIB
PROCEDURE RCOBOL
DUMMY
INCLUDE
PHASE 0,
INCLUDE
LOAD
INCLUDE
INCLUDE
INCLUDE
PHASE 1,
INCLUDE
PHASE 1,
INCLUDE
PHASE 1,
INCLUDE
PHASE 1,
INCLUDE
END

.EOD

'RCBPRC)
STOCKOVL
'RCBTSK)

'RCBMPD)
@C.OBJ.STOCKO
@C.OBJ.SSTATO
RDINV
@C.OBJ.RDINVO
RECPT
@C.OBJ.RECPTO
ISSUE
@C.OBJ.ISSUEO
REORD
@C.OBJ.REORDO

C-14

XLE CONTROL=@C.LCF.STOCKOVL, LINK OUT=@C.PROGF,
LIST=@C.LMAP.STOCKOVL

EC
.DATA @C.LCF.STOCKOV2, SUBSTITUTION=YES

FORMAT IMAGE, REPLACE, 4
LIBRARY .S$SYSLIB
PROCEDURE RCOBOL
DUMMY
INCLUDE
PHASE 0,
INCLUDE
LOAD
INCLUDE
INCLUDE
PHASE 1,
INCLUDE
PHASE 1,
INCLUDE
INCLUDE
PHASE 2,
INCLUDE
PHASE 1,
INCLUDE
END

'RCBPRC)
STOCKOV2
'RCBTSK)

'RCBMPD)
@C.OBJ.STOCKO
RDINV2
@C.OBJ.RDINVO
RCVISU
@C.OBJ.RECPTO
@C.OBJ.ISSUEO
SSTAT2
@C.OBJ.SSTATO
REORD2
@C.OBJ.REORDO

.EOD
XLE CONTROL=@C.LCF.STOCKOV2, LINK OUT=@C.PROGF,

LIST=@C.LMAP.STOCKOV2
EC
.SYN C=""
Q$SYN
EBATCH TEXT="THERE ARE @EC ERRORS IN THE BATCH STREAM"

C-lS

C-16

