
DNOS ASSEMBL Y LANGUAGE ~

Model 990 Computer
Programmer's Guide

Part No. 2270508·9701 * *
1 August 1981

TEXAS INSTRUMENTS

(
I

© Texas Instruments Incorporated 1981

All Rights Reserved, Printed in U.S.A.

The information and/or drawings set forth in this document and all rights in and to inventions disclosed
herein and patents which might be granted thereon disclosing or employing the materials, methods,
tilclllliqiJilii O(aplics.falu$ described herein, are the exciusive propeny OT Texas Instruments Incorporated.

MANUAL REVISION HISTORY

Model 990 Computer DNOS Assembly Language Programmer's
Guide (2270508-9701)

Original Issue 1 August 1981

'\
I

I

I
I

I I
I I,
I I

~ _______ T_t_le __ to_-I_Ja_i_n_u_m __ b_e_r_O_f_p=a_g=e=s_j_n_t=h=jS==P=U=b=ii=c=a_ti_o_n_i_s_2_0_6_ .. ________________________ ~~

DNOS
Distributed Network Operating System

Software Manuals

The manuals supporting ONOS are arranged in this diagram according to the type of user. The manuals most
beneficial to your needs are those contained in the block identified as your user group and in all the blocks
above that set.

ONOS Operations
Guide
2270502-9701

ONOS System Command
Interpreter (SCI)
Reference Manual
2270503-9701

language users and
communications software

users

Language Reference
Manuals

ONOS Language
Programmer's Guides

ONOS Link Editor
Reference Manual
2270522-9701

ONOS Productivity Tools
User's Guides

ONOS Communications
Software User's Guides and
Programmer's Guides

2280078

2270508-9701

all users and
management

ONOS Concepts and
Facilities
2270501-9701

all users

ONOS Text Editor
Reference Manual
2270504-9701

ONOS Online Diagnostics
and System Log Analysis
Tasks User's Guide
2270532-9701

assembly language user~

Assembly Language
Reference Manual
2270509-9701

ONOS Assembly Lanugage
Programmer's Guide
2270508-9701

ONOS Link Editor
Reference Manual
2270522-9701

ONOS Supervisor Call
(SVC) Reference Manual
2270507-9701

ONOS Messages and
Codes Reference
Manual
2270506-9701

ONOS Master Index to
Operating System Manuals
2270500-9701

systems programmers

ONOS Systems
Programmer's Guide
2270510-9701

ONOS System Generation
Reference Manual
2270511-9701

source code users

ONOS System DeSign
Document
2270512-9701

ONOS SCI and Utilities
Design Document
2270513-9701

iii

UNU~

Distributed Network Operating System
Software Manuals Summary

Concepts and Facilities
Presents an overview of ONOS with topiCS grouped into functions of the operating system. All new users
(or evaluators) of ONOS should read this manual.

Operations Guide
Provides the information nacassaiY to paifoim daily tasks at a ii 990 Computer instaiiation using ONOS.
Step-by-step procedures are presented for such tasks as operating peripherals, Initializing the system,
backing up the system, and manipulating disk flies.

System Command Interpreter (SCI) Referene. M'ny~1
Oescrlbes how to use SCI In both Interactive and batch jobs. Command procedures and primitives are
described, followed by a detailed presentation of all SCI commands in alphabetical order for easy
reference.

Text Editor Reference Manual
Shows how to use the Text Editor interactively on ONOS and includes a detailed description of each of the
editing commands and function keys.

Messages and Codes Reference Menue!
Lists the error messages, informative messages, and error codes reported by ONOS.

Online Diagnostics and System Log Analysis Tasks User's Guide
Provides the information necessary to execute the online diagnostic tasks and the system log analysis
tasks and to interpret the results.

Master Index to Operating System Manuals
Contains a composite index to topics in the ONOS operating system manuals.

Programmer's Guides and Reference Manuals for Languages
Each programmer's guide describes one of the languages supported by ONOS (for example, assembly
language, Pascal, COBOL). Each guide covers operating system information relevant to the use of that
language in the ONOS environment. The details of the language itself, including language syntax and pro
gramming considerations, are in the ianguage reference manual.

Link 'Editor Reference Manual
Oescribes how to use the Link Editor on ONOS to combine separately generated object modules to form a
single linked output.

User's Guides for Productivity Tools
Each user's guide describes one of the productivity tools (for example, TIFORM, Query-990, OBMS-990,
Sort/Merge) supported by ONOS. Each guide explains the function of the processor, its features, and its
interface requirements.

User's Guides and Programmer's Guides for Communications Software
Oescribe the features, functions, and use of the communications software available for execution under
ONOS. For example, there is a user's guide for the ONOS 3780/2780 Emulator software package.

Supervisor Call (SVC) Reference Manual
Presents detailed information about each ONCS supervisor call and general information about ONCS
services.

Systems Programmer's Guide
Discusses the ONOS nucleus and subsystems at a conceptual and functional level and describes how to
modify the system for a specific application environment.

System Generation Reference Manual
Contains the Information needed to perform system generation, including pregeneration requirements,
generation procedures, and Information about postgeneratlon results.

System Design Document
Contains the Information needed to understand the functioning of the system when using a source kit. This
Includes descriptions of the subsystems In detail, naming and coding conventions, module cross
references, data structure details, and Information not found In other manuals.

C!t'" 1.,,111,,1..-. ... "' __ -I!!"III.
WV" iiili illlivv wv w" ... iJw".

Presents design Information about SCI and the ONOS utilities.

iv 2270508·9701

Preface

This manual contains the information necessary for the assembly language applications pro
grammer to assemble, link, and execute programs under DNOS. The manual is designed as a pro
grammer's guide rather than a reference manual so it does not focus on the assembly language
instructions. Information in this manual relates to the assembling and executing of programs
using the two-pass assembler, SDSMAC.

This manual is organized into the following sections and appendixes:

Section

1 Introduction - Presents a brief overview of the steps involved in constructing, assem
bling, linking, installing, and executing an assembly language program.

2 ONOS Concepts and Environments - Introduces the major concepts and features of
the DNOS environment and familiarizes the user with the capabilities of the system.

3 DNOS Assembly Language Program Concepts - Introduces mapping, program
segmentation, task attributes, supervisor calls, and file and device services.

4 Building an Assembly Language Program - Provides a brief description of the Text
EdHor and a sample of the use of the Text Editor commands and editing function keys.
Helpful programming techniques are presented for the construction of a source code
file.

5 Assembling a Program - Describes the Execute Macro Assembler command and files
generated during assembly. Examples of source listing, error message formats, cross
reference listing, and object code are presented.

6 Linking and Installing a Program - Describes the linking operations performed by the
Link Editor. Presents samples of linking and installing tasks, procedures, and overlays
before execution. Sample link maps and a detailed description of the map contents is
given for use in debugging.

7 Executing a Program - Explains the three commands used to execute assembly
language programs.

8 Debugging a Program - Presents the debugging commands and samples of debugging
techniques.

9 Assembly Language Example - Presents a sample of assembling and executing an
assembly language program.

2270508-9701 V

Preface

Appendix

A Abnormal Completion Messages - Lists the ONOS Abnormal Completion Messages
mentioned in Section 5.

B Completion Messages - Lists the ONOS Completion Messages mentioned in Section
5.

C Listing Error Messages - Lists the ONOS Listing Error Messages mentioned in Section
5.

In addition to this manual, the DNOS software manuals shown on the support manual diagram
(frontispiece) contain information related to ONOS SVCs. Further manuals containing useful
ONOS and assembly language information are listed below:

Title Part Number

Model 990 Computer Microcode Development System
Programmer's Guide 2264445-9701

vi 2270508.9701

Contents

Paragraph Title Page

1 - Introduction

1.1 DNOS and Assembly Language ... 1-1
1.2 Entering Programs .. 1-1
1.3 Assembling Programs ... 1-2
1.4 Linking and Installing Programs ... 1-2
1.5 Executing Programs ... 1-2
1.6 Debugging Programs .. 1-2
1.7 DNOS Response Notation .. 1-2

2.1
2.2
2.2.1
2.2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.4.1
2.3.4.2
2.3.5
2.3.5.1
2.3.5.2
2.3.5.3
2.3.5.4
2.4
2.4.1
2.4.2
2.4.3
2.5
2.6
2.6.1
2.6.2
2.7
2.7.1

2270508-9701

2 - ONOS Concepts and Environment

Introduction .. 2-1
Job Structure ... 2-1

Interactive Jobs ... 2-1
Batch Jobs ... 2-2

Using SCI .. 2-2
SCI Description ... 2-2
SCI Activation ' 2-2
Entry of SCI Commands in VDT Mode 2-5
Examples of Using SCI ... 2-5

The Show Background Status (SBS) Command 2-5
The List Directory (LD) Command 2-5

Batch Use of SCI .. 2-6
Batch Stream Format .. 2-6
Batch Command Format ... 2-6
Interactive Execution of Batch Streams and Batch Jobs 2-8
Entering Programs from Sequential Devices 2-9

Directory and File Structure ... 2-9
Establishing Volume Names .. 2-9
Establishing Directories ... 2-9
Establishing Files .. 2-11

Pathnames and Access Names ... 2-11
Synonyms and Logical Names ... 2-12

Synonyms .. 2-12
Logical Names .. 2-12

File Types ... 2-13
Sequential Files ... 2-13

vii

ContentR

Paragraph

2.7.2
2.7.3
2.7.4
2.8
2.8.1
2.8.1.1
2.8.1.2
2.8.2
2.8.2.1
2.8.2.2
2.8.2.3
2.8.2.4
2.8.2.5
2.8.3
2.8.4
2.8.5
2.9
2.10
2.10.1
2.10.2
2.10.2.1
2.10.2.2
2.10.3

3.1
3.2
3.3
3.3.1
3.3.2
3.4
3.5
3.6
3.7
3.8
3.9
3.9.1
3.9.2
3.9.3
3.;0
3.11
3.11.1
3.11.1.1
3.11.1.2
3.11.2

viii

Title Page

Relative Record Files ; 2-13
Key Indexed Files .. 2-14
Concatenated and Multi-File Sets 2-14

1/0 Facilities .. 2-16
1/0 Methods ... 2-16

Resource-Specific I/O ... 2-16
Resource-Independent 1/0 ... 2-17

Interprocess Communication .. 2-17
IPC Uses .. 2-17
I PC Channels .. 2-17
Channel Scope .. 2-17
System-LevellPC Functions ... 2-18
Program-LevellPC Functions .. 2-18

File 1/0 ... 2-18
Device I/O ... 2-18
Spooling .. 2-18

Segments ... 2-19
Message Facilities ... 2-20

Error Messages .. 2-20
On-Line Expanded Error Message Documentation 2-20

Show Expanded Message (SEM) Command 2-21
The? Response .. 2-21

Status Messages .. 2-21

3 - Assembly Language Concepts

Introduction .. 3-1
Program Mapping ... 3-1
Program Segmentation and Procedural Steps , 3-3

Single Task Segment .. 3-3
Task Segment and One or Two Procedures 3-4

Supervisor Calls .. 3-5
The Supervisor Call Block .. 3-5
Entry Vector .. - . - - - - - - 3-6
Sharing Procedure Segments ... 3-7
Reentrant Programming .. 3-7
Overlays ... 3-8

Overlay Structures .. 3-8
Overlay Loading .. 3-8
Relocatable Overlays .. 3-9

Segment Management ... 3-9
TaskAttributes .. 3-10

Privileged ... 3-11
Hardware Privileged .. 3-11
Software Privi leged .. , , , .. , ... 3-11

System , , . , ... " , , , , , 3-11
p~!C'~!!~1 . __ .. ________________ ~-1~

2270508·9701

Paragraph

3.11.4
3.11.5
3.11.6
3.11.6.1
3.11.6.2
3.11.7
3.11.8
3.11.9
3.11.10
3.11.11
3.12
3.12.1
3.12.2
3.13
3.13.1
3.13.2

Contents

Title Page

Memory-Resident .. 3-12
Replicatable .. 3-13
Protected ... 3-13

Delete Protected ... 3-13
Execute Protected ... 3-13

Copyable ... 3-13
Reusable ... 3-13
Updatable .. 3-13
Arithmetic Overflow Protection ... 3-13
Writable Control Storage .. 3-14

Task Termination .. 3-14
Normal Termination .. 3-14
Abnormal Termination .. 3-14

File and Device Services .. 3-14
I/O Concepts .. 3-15
File and Device I/O ... 3-15

4 - Building an Assembly Language Program

4.1 Text Editor Use ... 4-1
4.2 Terminal Use ... 4-1
4.3 SCl Command Use .. 4-2
4.4 Edit Control Functions ... 4-3
4.5 Text Editor Example ... 4-4
4.5.1 Creating a New File ... 4-4
4.5.2 Editing an Existing File .. 4-9
4.6 Programming Techniques ... 4-10

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.4.1
5.2.4.2
5.2.4.3
5.2.4.4
5.3
5.3.1
5.3.2
5.3.3
5.3.4

2270508-9701

5 - Assembling a Program

Operating the Macro Assembler _ 5-1
Format of Generated Files .. 5-3

Source Listing .. 5-3
Error Messages ... 5-7
Cross-Reference Listing ... 5-7
Object Code .. 5-8

Object Code Format ... 5-8
Machine Language Format .. 5-16
Symbol Table ... 5-16
Procedures for Changing Object Code 5-16

Operating the Assembler in Batch Mode 5-19
Batch Stream Structure ... 5-19
Execute Batch Command ... 5-20
Execute Batch Job ... 5-21
Operating from Card Reader ... 5-22

ix

Content.~

Paragraph

6.1
6.2
6.3
604
6.4.1
604.2
604.3
6.4.4
6.5
6.6
6.6.1
6.6.2
6.6.3
6.7
6.7.1
6.7.2
6.7.3
6.8
6.8.1
6.8.2
6.8.3
6.804
6.8.5
6.8.6
6.8.7
6.8.8
6.8.9
6.8.10
6.8.11
6.8.12
6.8.13
6.9

Title Page

6 - Linking and Installing a Program

Supported Features ... 6-1
Link Edit Control File .. 6-1
Link Editor Operation with DNOS .. 6-4
Program Linking and Directives ... 6-5

External Reference Directives ... 6-5
External Definition Directive .. 6-5
Program Identifier Directive ... 6-5
Linking Program Modules ., ... ", , , , , . , ... , .. , , . 6-5

Link Map ... 6-5
Link Editor Examples .. 6-8

Single Task With No Procedure - Example 6-8
Task with Two Attached Procedures - Example 6-10
Link Edit Example With Overlay .. 6-12

Linked Format Output Options ... 6-16
Normal Tagged Object .. 6-16
Compressed Tagged Object ... 6-16
Memory Image Format .. 6-16

Installing a Linked Program .. 6-17
Install Task Segment - IT ... 6-18
Instal! Real-Time Task Segment - IRT 6-21
Install Procedure Segment - IP .. 6-24
Install Overlay - 10 .. 6-25
Install Program Segment - IPS .. 6-26
Delete Task - DT .. 6-29
Delete Procedure - DP ... 6-29
Delete Overlay - DO ... 6-29
Delete Program Segment - DPS 6-30
Modify Task Segment Entry - MTE 6-30
Modify Procedure Entry - MPE .. 6-34
Modify Overlay Entry - MOE .. 6-35
Modify Segment Entry - MSE ... 6-36

Installing Image Format with Link Editor 6-38

7 - Executing a Program

7.1 Introduction .. 7-1
7.2 Executing an Assembly Language Task 7-1
7.2.1 Execute Task - XT .. 7-1
7.2.2 Execute Task and Suspend SCI - XTS : 7-2
7.2.3 Execute and Halt Task - XHT ... 7-3
7.3 SVC Execution of Task ... 7-4
7.4 Batch Stream and Interactive Execution 7-4

X 2270508-9701

Paragraph

8.1
8.2
8.2.1
8.2.2
8.2.3
8.3
8.3.1
8.3.1.1
8.3.1.2
8.3.1.3
8.3.1.4
8.3.1.5
8.3.1.6
8.3.1.7
8.3.1.8
8.3.1.9
8.3.1.10
8.3.1.11
8.3.1.12
8.3.2
8.3.2.1
8.3.2.2
8.3.2.3
8.3.2.4
8.3.2.5
8.3.2.6
8.3.2.7
8.3.2.8
8.3.3
8.3.3.1
8.3.3.2
8.3.3.3
8.3.3.4
8.3.4
8.3.4.1
8.3.4.2
8.3.4.3
8.3.4.4
8.3.4.5
8.3.5
8.3.5.1
8.3.5.2
8.3.6
8.3.6.1
8.3.6.2
8.3.6.3
8.3.6.4

2270508·9701

Contents

Title Page

8 - Debugging a Program

General Information ... 8-1
Modes of Debugging .. 8-1

Unconditional Suspend .. 8-2
Symbols ... 8-2
Expressions .. 8-4

Commands for All Tasks ... 8-5
Data Display Commands ... 8-6

List Breakpoints - LB ... 8-7
List Logical Record - LLR ... 8-7
List Memory - LM .. 8-7
List System Memory - LSM .. 8-8
Show Absolute Disk - SAD .. 8-9
Show Allocatable Disk Unit - SADU 8-10
Show Internal Registers - SIR 8-10
Show Panel - SP .. 8-11
Show Program Image - SPI ... 8-12
Show Relative to File - SRF ... 8-13
Show Value - SV .. 8-13
Show Workspace Registers - SWR 8-14

Data Modification Commands ... 8-14
Modify Absolute Disk - MAD .. 8-14
Modify Allocatable Disk Unit - MADU 8-15
Modify Internal Registers - MIR 8-16
Modify Memory - MM .. 8-17
Modify Program Image - MPI .. 8-17
Modify Relative to File - MRF 8-18
Modify System Memory - MSM 8-20
Modify Workspace Registers - MWR 8-20

Breakpoint Commands .. 8-20
Assign Breakpoints - AB ... 8-20
Delete Breakpoints - DB ... 8-21
Delete and Proceed from Breakpoint - DPB 8-22
Proceed from Breakpoi nt - PB 8-22

Task Control Commands .. 8-23
Activate Task - AT .. 8-23
Halt Task - HT .. 8-23
Resume Task - RT ... 8-24
Execute in Debug Mode - XD .. 8-24
Execute and Halt Task - XHT .. 8-25

Search Commands ... 8-26
Find Byte - FB .. 8-26
Find Word - FW ... 8-26

Controlled Task Commands ... 8-27
Assign Simulated Breakpoint - ASB 8-27
Delete Simulated Breakpoints - DSB 8-28
List Simulated Breakpoints - LSB 8-28
Quit Debug Mode - QD ... 8-29

xi

Contents

Paragraph

8.3.6.5
8.3.6.6
8.4

Title Page

Resume Simulated Task - RST 8-29
Simulate Task - ST .. 8-29

Station Dependent Displays , - - - - - - - - - ______ .8-30

9 - Assembly Language Program Example

9.1 Example Programming ... 9-1
9.2 Review of Text Editing ... 9-2
9.3 Assemble the Program - - _ - ____ , , , , , , , _ , , , , , , , .. 9-3
9.4 Link Edit the Object Code .. 9-4
9.5 Install the Program .. 9-5
9.6 Execute the Program - Symbolic Debugging with Simulation 9-6
9.7 Execute the Program - Breakpoint Debugging 9-8
9.8 Execute the Program - No Debugging 9-10
9.9 Delete Directory ... 9-12

Appendix

A

B

C

Figure

2-1
2-2

3-1
3-2
3-3

4-1

5-1
5-2
5-3

xii

Appendixes

Title Page

Abnormal Completion ... A-1

Completion Messages ... B-1

Error Listing Messages .. C-1

Index

Illustrations

Title Page

SCI Default Main Menu ... 2-4
Directory and File Structure .. 2-10

Mapping ... 3-1
Tasks Sharing Segments ... 3-2
Task Memory Configurations ... 3-4

Assembly Language Program Example 4-6

Source Listing Example .. 5-4
Output Cover Page Example .. '., .. ,."."',"""""""" _ , , , , , , , , , , , ,5-5
Source Statement Listing Example .. 5-6

2270508·9701

Contents

Figure Title Page

5-4 Cross-Reference Listing ... 5-8
5-5 Object Code Example .. 5-9
5-6 External Reference ... 5-14
5-7 Machine Instruction Formats .. 5-17
5-8 Macro Assembly Batch Stream ... 5-20
5-9 Macro Assembly Stream for Cards .. 5-23

6-1 Link Edit Output Listing .. 6-6
6-2 Single Task, No Procedure Example .. 6-9
6-3 Task, Two Attached Procedures Example 6-11
6-4 Overlaid Program Example .. 6-13

7-1 Execution Batch Stream ... 7-4

9-1 Object Code with Symbol Table ... 9-6
9-2 Panel Display ... 9-9

Tables

Table Title Page

1-1 Response Type Indicators .. 1-3
1-2 Field Prompt Notation ... 1-4

4-1 Text Editor Commands ... 4-3
4-2 Edit Control Functions ... 4-3

5-1 Symbol Attributes ... 5-8
5-2 Object Record Format and Tags ... 5-9

6-1 Link Editor Commands ... 6-2

8-1 Debug Commands .. 8-6
8-2 Command Displays ... 8-31

2270508·9701 xiii/xiv

1

Introduction

1.1 DNOS AND ASSEMBLY LANGUAGE

The assembler supported by DNOS is the Model 990 Computer macro assembler (SDSMAC).
SDSMAC supports the 990 computer instruction set as well as an extensive macro language
capability. In addition to the macro capability, SDSMAC supports the following:

• All instructions of the 990/10 and 112 instruction set with map option

• Thirty-one assembler directives

• Three pseudo-instructions

• Use of parentheses in expressions

• Logical operators in expressions

• Relational operators in expressions

• Many output options

• Workspace pointer directive

• Copy source file directive

• Define operation directive

• Transfer vector pseudo instruction

• Common/Program/Data segment directives

1.2 ENTERING PROGRAMS

Assembly language programs may be prepared externally and entered into the system via a card
reader or magnetic tape, or they may be prepared at a terminal using the Text Editor to create a
file of source code. The compose mode of the Text Editor is used and the source code is entered
on a line-by-line basis. Once all of the source code has been entered, the assembly language pro
gram is ready to assemble and execute.

Assembly programs may use supervisor calls to perform I/O and program support functions. The
supervisor calls are defined in the DNOS Supervisor Call (SVC) Reference Manual.

2270508-9701 1·1

1.3 Introduction

1.3 ASSEMBLING PROGRAMS

Assembly language programs are assembled by using the System Command Interpreter (SCI)
Execute Macro Assembler (XMA) command procedure. The appropriate entries are made for each
request. Once all the entries are made, the assembler is activated. When the assembly has com
pleted, a message appears stating that the assembly is complete. The number of errors or warn
ings encountered also appears. If errors are detected, the user should consult Appendix A or
Appendix B, correct the errors, and reassemble the program.

1.4 LINKING AND INSTALLING PROGRAMS

A program must be linked if the assembied program issues references (REFs) to externai pro
grams or modules. The Link Editor is defined in detail in the Link Editor Reference Manual.

The Link Editor is called by the Execute Link Editor (XLE) command. All modules and libraries to
be linked are listed in the link edit control file. The user may also specify the output format.

The output of the Link Editor exists in one of three formats, as defined by the user in the control
stream. Two of the formats, normal tagged object and compressed object, are output to a sequen
tial file and must be installed in the system prior to execution. The third format, image, is installed
by the Link Editor directly to a user specified program file.

Assemb!y !anguage programs are installed as procedures, tasks, or overlays by the various
installation SCI commands or supervisor calls (SVCs).

1.5 EXECUTING PROGRAMS

Assembly language programs can be executed by the Execute Task (XT), the Execute and Halt
Task (XHT), or Execute Task and Suspend SCI (XTS) commands, or the various SVCs.

1.6 DEBUGGING PROGRAMS

The debugging commands supported by ONOS aid the user in removing errors from (debugging) a
program. The debug commands consist of two sets: controlled task commands and commands
for all tasks. The controlled task commands operate on tasks in the debug mode. The other set of
commands may be used on all tasks. Care must be taken in cases where tasks unconditionally
suspend themselves, since some debug commands reactivate tasks.

1.7 ONOS RESPONSE NOTATION

Throughout the manual, the System Command Interpreter (SCI) commands are described and
discussed for the purpose of aiding the user in the assembly and execution of programs. The legal
response type, which may be entered for each particular prompt, is specified in each command
description. These response types are listed and defined in Table 1-1.

1-2 2270508-9701

Introduction 1.7

Table 1·1. Response Type Indicators

Response
Type Definition

Pathname

Devicename

Filename

Stationname

YES/NO

Integer

Integer exp

List

Full exp

Full exp list

Alphanumeric

Character(s)

2270508-9701

I/O resource pathname. This type includes channel name,
devicename, filename and stationname. The pathname may be
specified by a synonym, synonym followed by a path name
(synonym.pathname), logical name, or logical name followed by a
pathname (logical name. pathname). Legal characters in path names
include uppercase alphabetic characters, numbers, $, [,], and back
slash (\). On 911 VDTs, the back slash character is displayed by
pressing the CONTROL and the equal (=) keys. The name must
start with an alphabetic character.

Name of a device (DS01, ST01, etc.).

File name may include disk name, the directory which contains the
file, the file name within a directory, a logical name, or a logical
name and file name (logical name.file name).

Station ID (ST01, ST02, etc.). Users can find out the station ID by
entering the Show Terminal Information (STI) command.

The response to a prompt may be YES, NO, Y, or N.

Hexadecimal or decimal number. Hexadecimal numbers must be
preceded by entry of the> symbol or by entry of a leading zero.

Decimal or hexadecimal values or expression. Composed of
decimal or hexadecimal integers and the operators +, -, *, and I.

List of decimal or hexadecimal values or expressions, separated by
commas.

Integer expression with the additional operators <, >, and (). String
operands are also permitted. In debugger controlled mode, sym
bolic names and the symbols #PC, #WP, #ST, and #Rn are permit
ted. This type is unique to the SCI debugger.

A list of integer expressions separated by commas.

Alphabetic and/or numeric characters or a dollar sign ($), starting
with an alphabetic character. (Used with user IDs, volume names,
etc.)

Set of any characters.

1-3

1.7 Introduction

To assist the user in determining the range of field prompt responses allowed by DNOS, the nota
tion convention shown in Tabie 1-2 is used throughout this manuaL These notation symbois
enclose some prompt responses in the command descriptions to define how DNOS expects the
response type to be entered.

1-4

Table 1·2. Field Prompt Notation

Notation Meaning

Uppercase Enter the response as listed.

Lowercase Enter a response of this type.

No marks The response is required.

[] The response is optional.

{ } The response must be exactly one of the enclosed
items or must be a type of one of the enclosed
items (choices separated by a slash).

Item ... item More than one item of this type may be entered to
the response. Items should be separated by com
mas.

@

()

Synonyms are allowed as responses.

Represents the initial value. If (*) is shown, the
value may be supplied from a synonym set by a
previously used command procedure.

If a list is supplied in a form other than interactive
ly (batch mode or a command procedure calling a
command procedure), the list must be enclosed in
parentheses.

2270508-9701

2

ONOS Concepts and Environment

2.1 INTRODUCTION

This section provides an overview of DNOS and describes some important system capabilities.
Although some of these capabiliMtes are not used in program development, they are included to
familiarize you with the major system features and concepts. This section includes references to
other documentation for more detailed discussion of some topics.

2.2 JOB STRUCTURE

DNOS uses a structure of jobs and tasks to perform the functions of a multitasking operating
system. This job structure facilitates effective resource usage and subsystem isolation.

A job is a collection of cooperating tasks (programs) initiated by command procedures or from
within an executing program. When you iog on at a terminai, an interactive job begins. This job is
associated with the terminal that started it. When you initiate a batch job, that job is not
associated with any particular terminal.

At each terminal, it is possible to have one foreground task and one background task concurrently
active in the interactive job. Any number of jobs can be created as batch jobs.

2.2.1 Interactive Jobs
An interactive job can include tasks operating in the foreground, in the background, or both. A
foreground task can accept data or commands from the terminal as the task operates. However, a
background task, although initiated from the terminal, executes without interaction with the ter
minal until the task is finished. Consequently, you can start a task (for example, updating a data
base) in background mode and perform other activities (such as data collection) in foreground
mode while the background task is active. When complete, the background task returns a
message to the terminal, indicating completion.

Commands entered from interactive terminals are entered in foreground mode. The operating
system responds by displaying the appropriate command prompts. Enter the required informa
tion; the task now begins execution. While the task executes in foreground, SCI is suspended to
avoid interference. User interaction now occurs directly with the foreground task. The DNOS
System Command Interpreter (SCI) Reference Manual describes the commands used to initiate
tasks in all modes.

2270508-9701 2-1

2.2.2 ONOS Concepts and Environment

2.2.2 Batch Jobs
Batch jobs use SCI to process batch commands. In the batch mode, SCI accepts commands from
any sequentially oriented device (typically a disk file of commands) but not from a terminal. Com
mands submitted in a batch command stream must include all parameters required for the opera
tion. Also, the commands included must be suitable for execution in the background mode. Com
mands that initiate operations requiring user interaction (for example, text editing and debugging
commands) are not permitted.

2.3 USING SCI

The following paragraphs discuss the use of SCI. The DNOS System Command Interpreter (SCI)
Refeience Manual contains complete descriptions of SCI commands, plus prOCedureS for
creating new commands and menus.

2.3.1 SCI Description
SCI is the interface between you and the operating system, system utilities, the software develop
ment programs, and application programs. Application programs can interface with you through
user-defined SCI commands and menus.

You can use SCI to activate programs and to pass parameters to the programs during execution.
SCI also allows you to build and maintain tables of variables, called synonyms and logical names,
and their values. SCI allows application programs to access these variables for use in the pro
grams.

To execute an application program via SCI, you can use predefined execution commands such as
Execute Task (XT), Execute COBOL Task (XCT), and Execute Pascal Task (XPT) or you can write
your own SCI command to initiate a program. You can add user-defined commands to the system
library, or you can group them in a separate command library. The .USE primitive (described in the
DNOS System Command Interpreter (SCI) Reference Manual) allows you to specify which com
mand library SCI should use.

You can enter SCI commands from interactive terminals or in batch command streams. In
response to commands entered interactively, SCI displays command prompts a.ssociated with the
command.

When all required prompts have been properly answered, SCI interprets the responses and
initiates the requested operation.

2.3.2 SCI Activation
The following procedure shows the steps to activate SCI at video display terminals:

1. Turn on the terminal if it is not already on.

2. Press the blank orange key.

3. Press the! (exclamation mark) key.

2-2 2270508-9701

DNOS Concepts and Environment 2.3.2

4. ONOS responds by displaying or printing the following message:

ONOS X.X.XX

where X.X.XX is the release version of ONOS.

5. If user identification is required, ONOS displays the following two prompts:

USER 10: PASSCOOE:

Type in the assigned user 10 and press the RETURN key to signal ONOS that an entry
has been made. Next, type in the assigned passcode and press the RETURN key to
signal ONOS that an entry has been made. The characters of the passcode entered by
the user are not displayed to preserve passcode security.

6. ONOS may respond by displaying the following prompt (if it is not already displayed):

JOB NAME:

7. Type in a job name and press the RETURN key to signal ONOS that an entry has been
made. A job name may be any alphanumeric string (maximum of eight characters)
which starts with an alphabetic character or $ and consists of only uppercase
characters.

8. ONOS may respond by displaying the following prompt (if it is not already displayed):

ACCOUNT 10:

9. Type in the assigned account 10 and press the RETURN key to signal that an entry has
been made.

10. ONOS may respond by displaying the following messages:

SYNONYM FILE PATHNAME:
LOGICAL NAME FILE PATH NAME:

11. Type in the pathnames which contain the synonyms and logical names to be used, or
press the RETURN key if the default pathnames are to be used.

12. If the job name entered is already in use with the same user 10, ONOS may respond with
the following prompt:

RECONNECT?:

13. Type in YES or NO and press the RETURN key to signal that an entry has been made.
YES specifies that this terminal is also to be associated with the job name in use. NO
specifies that this terminal is to be associated with a new job.

2270508-9701 2·3

2.3.2 DNOS Concepts and Environment

2-4

14. If the log-on is successful, ONOS may respond with the SCI prompt ([]) or may display
the news fiie if one exists. SCi then waits for the CMD key to be pressed. After the CMD
key is pressed, SCI displays the default main menu and SCI prompt ([]) as shown in
Figure 2-1. The default main menu may be changed at the option of the systems pro
grammer. Use the .MENU and .OPTION SCI primitives to specify the menu and prompt
to be used. Refer to the DNOS System Command Interpreter (SCI) Reference Manual.

15. Begin to operate the terminal by entering the SCI commands that are available as deter
mined by the privilege level associated with the user 10. If a command is entered that is
not authorized for the user's 10, SCI displays an appropriate error message.

16. While executing SCI commands, the terminal should not be turned off. If the terminal is
turned off, device errors are written to the system log and the system may loop in an at
tempt to complete the command.

**
** T E X A SIN S T RUM E N T S **
** DNa S S Y S T E M **
***********************~**************************

Command Groups:

(]

IOEBUG - Interactive Debugger
IDEVICE - I/O Device~
IDIR - Directories
IEDIT - Text Editor
IFILE - File M~nagement
IJOB - Job Management
ILANG - Langua2e Support
ILUNO - Logical Unit Numbers
IMSG - Message Facilities
INAME - Synonyms and Logical Names
/PREXEC - Program Execution
IPFILE - Program Files
/STATUS - Status Reoorts
ISYSMGT - System Management
IVOLUME - Disk Volumes

Figure 2-1. SCI Default Main Menu

2270508·9701

DNOS Concepts and Environment 2.3.3

2.3.3 Entry of SCI Commands in VDT Mode
To enter an SCI command in VDT mode, type the characters (in uppercase letters) of the command
and press the RETURN key. Upon entry of a command, SCI displays the full name of the command
entered and all the field prompts associated with the command. Field prompts provide informa
tion and request parameters to complete command execution. For example, the following field
prompt requests that you identify an output pathname:

OUTPUT PATHNAME:

2.3.4 Examples of Using SCI
The following paragraphs contain examples of specific uses of SCI commands. Consult the
DNOS System Command Interpreter (SCI) Reference Manual for a complete discussion of the SCI
commands.

2.3.4.1 The Show Background Status (SBS) Command. Use the SBS command to view the
status of a program that is currently executing in background mode and that was initiated from
your terminal. Since this command has no associated prompts, the command executes
immediately after you enter SBS and press the RETURN key. A message indicating the state of
the background activity appears, as follows:

[]SBS

SHOW BACKGROUND STATUS

I STATUS-1217 TASK IS ACTIVE

2.3.4.2 The List Directory (LD) Command. Use the List Directory command to list the names of
all files and subdirectories in a directory. The display for this command is as follows:

[]LD

LIST DIRECTORY
PATHNAME:

LISTING ACCESS NAME:
pathname@
[pathname@]

In response to the prompt PATH NAME, enter the pathname of the directory whose file names and
subdirectory names wiil be listed. The @ indicates that the pathname can be specified by a
synonym.

In response to LISTING ACCESS NAME, enter the pathname of the device or file to which the
listing should be written. The brackets ([]) indicate that the response is optional. The default value
is the terminal at which the command is entered. A null response (pressing RETURN while the cur
sor is in a blank field) causes the default value to be accepted. In the following case, the directory
SYS2.DP0080 is listed to the terminal from which the command was executed.

2270508-9701 2-5

2.3.5 DNOS Concepts and Environment

[] LD

LIST DIRECTORY
PATHNAME: SYS2. DPOOBO

LISTING ACCESS NAi"ic:

DIRECTORY LISTING OF: SYS2. DPOOBO
MAX # OF ENTRIES: 101 # OF ENTRIES AVAILABLE: 78

DIRECTORY
ML
TIP

ALIAS OF

*
*

ENTRIES
5

11

LAST UPDATE
05/30/80 13:44:48
05/07/80 of 'i. ...".,. .-, ,

... c::...v~.t:;;.V

CREATION
03/17/80 12:51:06
02/11/80 16:44:21

FILE
BATCH
COBOL
DATA

ALIAS OF RECORDS LAST UPDATE
* 24 06/03/80 08: 16:56
* 3550 05/30/80 14:06:46
* 17 05/07/80 15:31:57

16:21: 50 TUESDAY, JUN 03, 1980.

FMT TYPE
as N SEG
NBS N SEG
BS N SEG

BLK PROTECT
YES
YES
YES

2.3.5 Batch Use of SCI
To use SCI in a batch mode through batch streams, use the Execute Batch (XB) command; or
through a batch job using the Execute Batch Job (XBJ) command. The XB command starts a
background task that is associated with your terminal. XBJ starts a new job, not associated with a
terminal.

The following paragraphs discuss the characteristics of batch SCI and the differences in format
between batch commands and commands entered interactively.

2.3.5.1 Batch Stream Format. The first and last commands of a batch stream should be the
BATCH and EBATCH commands, respectively. The BATCH command initiates the batch SCI
environment. EBATCH indicates that the batch stream contains no more commands to be pro
cessed by SCI.

Upon normal completion of the batch stream executing in background mode, the following
message appears:

BATCH SCI HAS COM PLETED

2.3.5.2 Batch Command Format. When supplying SCI commands in batch stream format,
include the following information for each command:

• The characters of the command

• All required prompts associated with the command

• The parameter values (responses) for the command prompts

2-6 2270508·9701

DNOS Concepts and Environment 2.3.5.2

The following demonstrates the Execute Link Editor (XLE) command in both interactive and batch
form. (Refer to the Link Editor Reference Manual for a complete description of the XLE command.)

Interactive Format. When you enter XLE interactively, the following prompts appear:

[] XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME:

LINKED OUTPUT ACCESS NAME:
LISTING ACCESS NAME:

PRINT WIDTH (CHARS):

pathname@
[pathname@]
[pathname@]
[integer]

(*)
(*)
(*)
(80)

To execute the command, respond to the CONTROL ACCESS NAME prompt by specifying the
pathname of the file or device from which the control stream is to be read. Then, either specify
values or accept the default values for the remaining prompts. If the control stream is contained
in directory .M, file .CONTROL, the linked output is to be written to directory .M, file .OBJECT, the
link editor listing is to be written to directory .M, file . LIST, and an 80-character line is acceptable,
respond as follows:

[] XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME:

LINKED OUTPUT ACCESS NAME:
LISTING ACCESS NAME:

PRINT WIDTH (CHARS):

.M.CONTROL

.M.OBJECT

.M.LlST
80

Batch Format. To execute this command in a batch stream, include the characters of the com
mand, all required and any optional prompts that are specified, and the responses to those
prompts. The following batch command is equivalent to the interactive version shown previously:

XLE CONTROL = .M.CONTROL, LINKED OUTPUT = .M.OBJECT, LISTING = .M.LlST

Notice that the default value for the PRINTWIDTH(CHARS) prompt is accepted by omitting it from
the batch command. Also, you can use abbreviated versions of the specified command prompts.
The abbreviation must be sufficient to uniquely identify the prompt. Often, only the first character
of a command prompt need be entered. For example, the following is equivalent to the previous
example:

XLE C = .M.CONTROL, LO = .M.OBJECT, LIST = .M.LlST

A batch stream consists of one command or a series of commands in this format when preceded
by the BATCH command and followed by the EBATCH command. The file containing the batch
command stream is the input file for the XB and XBJ commands. Consult the DNOS System Com
mand Interpreter (SCI) Reference Manual for more information on batch command construction
and batch capabilities.

2270508·9701 2-7

?_35_3 DNOS Concepts and Environment

2.3.5.3 Interactive Execution of Batch Streams and Batch Jobs. Use the XB command to
execute batch stieams as backgiound activities from an interactive job. After you enter the XB
command and the batch stream begins execution, you can continue to execute SCI commands in
foreground mode. After the batch stream completes, the completion message appears the next
time you press the CMD key. To monitor batch stream execution, you can enter the Show
Background Status (SBS) command from time to time or use the WAIT command. Also, you can
use the Show File (SF) command to view the listing file for the batch stream during the run.

An exampie of the XB command is as foliows:

[] XB

EXECUTE BATCH
INPUT ACCESS NAME:

LISTING ACCESS NAME:
pathname@
pathname@

The INPUT ACCESS NAME is the pathname from which DNOS should read the batch command
stream. The LISTING ACCESS NAME is the pathname of the device or file to which DNOS should
write the results of the batch stream execution. This device or file must not be used by any com
mand in the batch command stream.

The XBJ command allows you to create the job stream commands and execute a batch SCI job
independent of a terminal. Consequently, you can continue to execute SCI commands in
foreground or background mode. A description of the XBJ command is as fo!lo'vA,,'s:

[] XBJ

EXECUTE BATCH JOB
JOB NAME: alphanumeric

USE CURRENT USER ID?: YES/NO (YES)
LOGICAL NAME TABLE PATHNAME: [filename@]

SYNONYM TABLE PATHNAME: [fi!ename@]

The response to the JOB NAM E prompt is a one-to-eight character, user-defined name for the job.
If the response to the USE CURRENT USER ID? prompt is NO, a prompt for another user 10
appears. (Some installations may require a passcode and/or account ID with the new user ID.) The
LOGICAL NAME TABLE PATHNAME is a file containing the logical names to be passed to the
new job. The logical name table is created using the Snapshot Name Definition (SND) command,
described in the DNOS System Command Interpreter (SCI) Reference Manual. To pass the logical
names of the creating job, enter a null response (the default). The SYNONYM TABLE PATHNAME
is the file name containing the set of synonyms to be used by the new job. (The synonym table is
also created using the SND command.) The synonym table must specify the Input Access Name
and the Listing Access Name for the XBJ command. As in the XB command, the Input Access
Name is the file that contains the batch commands, and the Listing Access Name specifies the
file or device to which the results of the batch job should be written. If you enter a null response to
the SYNONYM TABLE PATHNAME prompt, DNOS prompts for the INPUT ACCESS NAME and
LISTING ACCESS NAME as in the XB command. The DNOS System Command Interpreter (SCI)
Reference Manual contains further information on the XBJ command.

2-8 2270508-9701

ONOS Concepts and Environment 2.3.5.4

2.3.5.4 Entering Programs from Sequential Devices. You can use any sequential file of pro
gram source code for input to the compilers or assembler. If necessary, copy source code that has
been key punched on a card deck to a sequential disk file. Program source code, entered by the
Text Editor or Copy Concatenate (CC) command, can be read from devices. An example using the
CC command to copy the source code from cards to a disk file is as follows:

[] CC

COPY/CONCATENATE
INPUT ACCESS NAME(S):
OUTPUT ACCESS NAM E:

REPLACE?:
MAXIMUM RECORD LENGTH:

2.4 DIRECTORY AND FILE STRUCTURE

CR01
.USER.SOURCE
NO

DNOS file management allows you to build, organize, and access directories and files. A file con
sists of a named collection of data. The data in the file can be generated by you (for example,
source code or documentation) or by the system (for example, object code or listing files). A direc
tory is a relative record file that contains the information necessary to locate other files and
describes the characteristics of those files. It does not contain user data.

2.4.1 Establishing Volume Names
Volume names are alphanumeric character strings of as many as eight characters that identify
the disk on which a file is found. The first character of a volume name must be an alphabetic
character. For example, VOL 1 could be the volume name of a disk.

The Initialize Disk Surface (IDS) command prepares the disk surface for initialization by the
Initialize New Volume (INV) command. The IDS command must be performed prior to the first INV
command. It is not necessary to perform another IDS before any further initializations of the disk.

The INV command assigns volume names to disks. Once a volume is initialized by an INV com
mand, all access to files on that volume must include the volume name in the pathname or access
name, unless the volume is the system disk or unless a device is specified.

One disk drive on each system (usually DS01) is designated to hold the system disk. The system
disk contains all required operating system components, including the loader program, system
program files, and temporary system files. The system disk is the default volume when no volume
name is specified. For example, .PROOF designates a file named PROOF on the system disk.

2.4.2 Establishing Directories
Each disk volume has a file directory named VCATALOG, where DNOS maintains a volume table
of contents. The files described in VCATALOG are data files or directory files (Figure 2-2).

DNOS directories contain the names of and pointers to other files. Directories do not contain user
data. Typically, related files are contained in a directory. Directories can also contain subdirec
tories. Both directories and subdirectories are created by the Create Directory File (CFDIR) com
mand. A subdirectory can be created under a directory only after the directory has been created.
For example, subdirectory VOL 1.S0URCE.PROGRAMA can not be created unless directory
VOL 1.S0URCE already exists.

2270508·9701 2-9

2.4.2 DNOS Concepts and Environment

LEVEL 1---+ USER
FILES

LEVEL 2-+

LEVEL 3

2279937

I
USER
FILES

VCATALOG I DIRECTORY I

USER
DIRECTORIES

SYSTEM
FILES

USER
DIRECTORIES

I

LEVEL n -+

USER
DIRECTORIES

Figure 2·2. Directory and File Structure

SYSTEM
DIRECTORY

It is convenient to group related files into a single directory. For example, all source files for a pro
gram might be in a directory named VOL 1.S0URCE.PROGRAMA; all listings generated from
assembly or compilation of source modules for this program might be in a directory named
VOL 1.LlSTING.PROGRAMA. (Refer to Section 3 for more information on aiternative ways to struc
ture files for programs.)

Do not assign file names that might be confused with DNOS system file names. Most system file
or directory names begin with S$.

2-10 2270508·9701

DNOS Concepts and Environment 2.4.3

2.4.3 Establishing Files
After initializing a disk volume and creating directories and subdirectories, you can create files
that are accessible either under the volume or under a directory or subdirectory. The following
commands are available to create files:

• Create Key Indexed File (CFKEY)

• Create Relative Record File (CFREL)

• Create Sequential File (CFSEQ)

• Create Program File (CFPRO)

• Create Image File (CFIMG)

• Create File (CF)

The CF command requires the subsequent selection of a file type. These commands are
described in detail in the DNOS System Command Interpreter (SCI) Reference Manual.

2.5 PATHNAMES AND ACCESS NAMES

A file on a disk volume is referenced by its pathname. A pathname is a concatenation of the
volume name, names of the directory levels leading to the file (excluding VCATALOG), and the file
name itself. Each component of a pathname cannot exceed eight characters in length. A com
plete path name must not exceed 48 characters including periods. The components of the
path name are separated by periods, as in the following examples:

VOL 1.AG ENCY.RECORDS

MYDIRECT.MYDIRCTA.MYFILE

VOLTWO.DEB

EMPLOY01.USRA.PAYROLL

EM PLOY01.USRB.CATALOGX.PA YROLL

An access name may be a device name, volume name or file pathname. For device names, you
must use certain default names (except for special devices). Example device names include ST02
for terminal number 2, LP01 for line printer number 1, and DS03 for disk number 3.

2270508-9701 2·11

2.6 DNOS Concepts and Environment

You can reference a volume on which a file resides through either the device name or the volume
name. Omitting the voiume name and beginning the pathname with a period indicates that the fiie
is on the system disk. Samples of valid names for devices and files are as follows:

File Identifier

CR01
DS02.MYCAT.MYFILE
.MYCAT.MYFILE
VOLlD.MYCAT.MYFILE

2.6 SYNONYMS AND LOGiCAL NAMES

Meaning

Device name
Device name, directory name, file name
System disk, directory name, file name
Volume name, directory name, file name

DNOS supports use of synonyms and logical names for 1/0 resources. Synonyms are used to
abbreviate long text strings. Logical names are used to abbreviate resource names, define
resource access, and pass parameters associated with the resource (devices, files, or channels).

2.6.1 Synonyms
Synonyms are abbreviations of one or more characters in length that are commonly used in place
of long path names or portions of path names. These synonyms. are always available to foreground
tasks. Background tasks receive a copy of the foreground synonyms when the background task is
initiated. At terminals requiring log-on, user-defined synonyms are associated with that user's ID
and are available whenever the user logs on at any terminal. Use the Assign Synonym (AS) and
Modify Synonym (MS) commands to define synonyms andto modify defined synonyms. When you
enter a synonym in response to an SCI command prompt, the synonym is replaced by the actual
text string.

When an SCI command is executed in foreground mode, you can use a synonym only as the first
or only component of a pathname (device name or file name). For example, if A is a synonym for
directory VOL 1.S0URCE and B is a synonym for PROGRAMA in that directory, A.PROGRAMA is
an acceptable file name. However, VOL 1.S0URCE.B or A.B are not acceptable. Refer to the ON OS
System Command Interpreter (SCI) Reference Manual for use of synonyms in batch streams in the
background mode.

2.6.2 Logical Names
A logical name is a user-specified, alphanumeric string of up to eight characters. Programs use
logical names to access 1/0 resources. An 1/0 resource can be a device, an IPC channel, a file, or a
set of concatenated files. You have the option of assigning a LUNO to a logical name that maps to
an access name. (A LUNO is a logical unit number that represents a file or device; see paragraph
2.8.4.)

Since each logical name is associated with a set of parameters (the set assigned to the cor
responding 11.0 resource), logical names provide a means of passing the parameters assigned to a
given resource. Use the Assign Logical Name (ALN) command to specify values for these
parameters. The ONOS System Command Interpreter (SCI) Reference Manual contains a detailed
description of this command.

2-12 2270508-9701

ONOS Concepts and Environment 2.7

Some examples of the types of parameters associated with logical names are as follows:

• File characteristics

• Access privileges

• Spooler information

• File creation

• Auto-generate path name

• Job temporary files

2.7 FILE TYPES

DNOS supports the following file types: sequential, relative record, and key indexed.

2.7.1 Sequential Files
Sequential files are variable-record-Iength files whose records are always read, written, and
accessed serially (that is, record 0 must be accessed first, record 1 must be accessed next, and so
on). Some examples of using sequential files are as follows:

• As an input file for card images. If a logical record length of 80 is specified, the sequen
tial file can be treated as a card reader by the program reading the file.

• As an output file. In this function, the file can resemble the line printer.

• As a location for listing files from DNOS processors.

2.7.2 Relative Record Files
Relative record files are also called random access files. Unlike sequential files, relative record
files may be accessed in any order. Each record has a unique record number, which you specify to
access that individual record. The operating system increments the caller's record number after
each read or write so that sequential access is permitted. One end-of-file (EOF) record is main
tained wherever it was last specified by a program. The range of record numbers is from 0 to one
less than the number of records in the file. The maximum number of records in a relative record
file is 2 to the 24th power. The records are fixed in length, and the length must be specified during
file creation.

Relative record files are useful when each record in the file is already associated with a unique
value ranging from 0 to n; for example, in an inventory file, the item number can be specified as
the record number. Consequently, information about item number i can be obtained by accessing
record number i.

2270508·9701 2-13

2.7.3 DNOS Concepts and Environment

Special types of relative record files available in DNOS are directory, program, and image files.
These files provide special interface mechanisms that are used primarily for memory images,
memory swapping, and diagnostic dumps.

• Directory Files - Contain names of and pointers to other files

• Program Files - Contain program images and an internal directory of the images

~ Image Files - Special-puipose files used piimaiily by the opeiating system fOi memoiY
images, memory swapping, and diagnostic dumps.

2.7.3 Key Indexed Files
A key indexed file (KIF) allows iandom access to its records via a key. The key is a character string
of up to 100 characters, located in a fixed position within each file record. From 1 to 14 individual
keys may be specified. For example, the records in an employee file might be accessed by keys
that indicate the employee's id, name, and social security number.

Keys can overlap one another, with certain restrictions, within the record. Although the keys can
be structured anywhere within a record, they must appear in the same relative position in all
records in the file. One key must be specified as the primary key; the other keys are secondary
keys. The primary key must be present in all records, but secondary keys are optional.

In addition to supporting random access, KIFs include the following characteristics:

• Records can be accessed sequentially in the sort order of any key.

• At file creation, any key can be designated as allowing duplicates, which means that
two or more records in the file can have the same value for this key.

• At file creation, any key except the primary key can be designed as being modifiable.
This means that when a record is being rewritten, the key value may change. Also; a
secondary key value that is missing in the record can be added later on a rewrite.

• Keys can overlap.

• Records can be of variable length and can change in size on a rewrite.

~ Searching on partlal keys is allowed.

• Records are automatically blank suppressed.

• Record-level locking is supported.

• The size of the file can increase.

• File integrity is maintained through pre-image logging of modified blocks. Before a
record is modified on disk, it is copied to a backup area in the file overhead area. Conse
quently, system failures cause the loss of only the last 1/0 operation.

• Records of odd or zero length are not allowed.

2-14 2270508-9701

DNOS Concepts and Environment 2.7.4

2.7.4 Concatenated and Multifile Sets
Sequential and relative record files can be logically concatenated by setting the values of a
logical name to the pathnames of a set of files. Logical concatenation allows access to the files,
in sequence, without requiring that they be physically concatenated. (When required, physical
concatenation can be performed by the Copy/Concatenate SCI command.) A multifile set is a set
of key indexed files, the pathnames of which are the values of a logical name. The files in the set
are associated in a nonreversible manner. Individual components of concatenated and multifile
sets can be on separate disks.

Several restrictions apply to the concatenation of files. The files must be of the same type and
may not be special use files such as directories, program files, key indexed files, or image files.
Relative record files to be concatenated must have the same logical record size. A concatenation
cannot contain both blocked and unblocked records, and any LUNO assigned to a file must be
released before concatenating the file.

The following special rules apply to combining key indexed files in a multifile set:

• At the first definition of the multifile set, all but the first file must be empty.

• None of the files can be a member of an existing multifile set.

• All of the files must have the same physical record size.

• The files must have the same key definitions. In subsequent definitions of these sets,
the same files must be associated in the same order, and none of the original set can be
omitted. One empty file can be added at the end (but not at any other position).

• You cannot use key indexed file operations to individually access key indexed files of a
multifile set. You can access these files only by using operations that examine physical
records or absolute disk addresses.

The multifile set of key indexed files permits a larger key indexed file than one disk can store.
When a key indexed file can no longer expand because there is insufficient space on the disk, you
can create a new file on another disk. By using a logical name, the two files can be used as one.
The second file is used as an extension of the first. For example, assume the first file contains
5000 physical records. When physical record 5001 is required, the first physical record of the sec
ond file, record 0, is used.

Only a few of the file utility operations of the I/O Operations SVC apply to concatenated and
multivolume sets. They are as follows:

Code

91
93
99

Operation

Assign LUNO
Release LUNO
Verify Pathname

The Assign Logical Name (ALN) SCI command associates files collectively with a logical name.
Actual logical concatenation or creation of a multifile set occurs when a LUNO is assigned to the
logical name. You can access a concatenated file only for the duration of the logical name. You
must specify the files in the concatenation order desired. You can specify by pathname, synonym,

2270508·9701 2-15

2.8 DNOS Concepts and Environment

logical name, or a logical name and pathname combination. However, all forms must resolve to
valid path names. fa,!! files in the concatenation or multifiie set must be pracreated and online
when the logical name is used.

The last file in a concatenation set can be expandable. All other files become nonexpandable
until the logical name is released or the job terminates.

When a single end-of-file (EOF) mark appears at the end-of-medium (EOM), the end-of-file is masked.
This allows concatenated files to be accessed logically as a single file without the return of in
termediate end-of-file marks. Note that any intermediate end-of-file mark not at the end-of
medium is always returned. If two end-of-file marks are encountered at the end-of-medium, a
single end-of-file is returned.

Several users can access the same concatenated or multifile set if the access privileges permit.
Two concatenated files are identical when they consist of the same pathnames in the same order.
To maintain file integrity, an error is returned if any of the precreated files of a concatenated file
are being accessed independently. A concatenated file is deleted by deleting the individual files.

2.8 110 FACILITIES

I/O resource management in ONOS allows a program to request resources dynamically during
execution. When a resource is requested but is not available, the program or the user is notified
immediately. The request for resources is not queued and the program is not suspended. This
allows the program to either abort or retry the request, thereby avoiding a deadlock situation.

I/O resources are allocated to programs according to access privileges that the program requests
when issuing an open operation. If the requested privilege is compatible with previously granted
requests, the open completes without error. The program is then guaranteed the type of access
requested (exclusive, exclusive write, shared, or read only).

2.8.1 110 Methods
ONOS supports I/O operations to various types of devices, files, and IPC channels, all of which are
referred to as I/O resources. ONOS also supports communication between programs using IPC
channels.

Two methods of I/O are available: resource-specific and resource-independent. Resource-specific
I/O uses special features of one particular device or file. Resource-independent I/O allows the
user to specify I/O for any of several devices without concern for special features. Both types of
I/O allow a program to interact with predefined devices, files, and channels. The interaction
occurs through the use of LUNOs.

2.8.1.1 Resource-Specific 110. Resource-specific 1/0 operations assume device, channel, or
file peculiarities. For example, activating the graphic capability on the 911 VOT is a resource
specific I/O operation. Other such operations include the following:

• Extended VOT operations

• Create/delete fi les and other file-specific I/O uti! ity operations

• Direct disk i/O

2-16 2270508-9701

ONOS Concepts and Environment 2.8.1.2

• Random access operations to key indexed and relative record files

• IPC master-slave channel owner operations

2.8.1.2 Resource·lndependent 1/0. When resource-independent I/O is used, application pro
grams do not distinguish between devices, files, and channels. Also, a program can read and
write data records independently of the type of device or file used. Examples of such types of
operations include read, write, forward space, and write EOF. All devices, files (including KIF),
and channels support resource-independent access.

2.8.2 Interprocess Communication
Interprocess communication (lPC) enables two or more tasks to exchange information via com
munication channels. IPC channels are created by the Create IPC Channel (CIC) command, or the
Create IPC Channel I/O SVC. In each channel, one task must be designated as the owner of the
channel. The channel owner task controls use of the channel. Requester tasks (slaves) have less
flexibility and fewer privileges.

2.8.2.1 IPC Uses. IPC is used for four primary reasons:

• Synchronization - Tasks may synchronize activities by passing messages via IPC.

• Queue serving - A channel owner may serve a queue of requests from other tasks.

• Interception - Channel owner tasks receive requests from queues, interpret or modify
the information, and pass the changed data to another task or device.

• Messages - Any variety of uses determined by the programs involved.

2.8.2.2 IPC Channels. An IPC channel is a logical path used for communications between two
tasks. Two types of IPC channels are available in DNOS: master/slave channels and symmetric
channels. For a master/slave channel, the owner of the channel (the master) interprets and/or
executes messages transmitted on the channel by requesters (slaves). Special commands must
be used by the owner to appropriately read and write the messages. For a symmetric channel, the
owner and requestor(s) issue simple Read and Write commands. These commands must match
each other. The Read command of one task is processed as soon as the other task issues a Write
command and vice versa.

2.8.2.3 Channel Scope. The scope of a channel governs access to various jobs and tasks. The
scope is determined by the channel type: global, job-local, or task-local.

• Global Channel - Not replicated (only one exists in the whole system) and accessible
by any task in the system. The channel must first be used by the owner task. The owner
task cannot be automatically bid (made ready for execution) by an AL command. Multi
ple tasks can concurrently use a global channel that permits shared access.

• Job-Local Channel - Replicated once for each job and accessible by any task in the
job. The channel can be shared and the owner task may be automatically bid by an AL
command.

• Task-Local Channel - Replicated once for each requester task (many per job) in any
job. The channel cannot be shared, and the owner must be automatically bid by an AL
command from a requester task.

2270508·9701 2-17

2.8.2.4 DNOS Concepts and Environment

2.8.2.4 System·Level IPC Functions. SCI commands are available to perform the following
system=!evel !PC functions:

• Create IPC Channel (CIC)

• Deiete iPC Cnannel (DIG)

• Assign LUNa (AL)

• Release LUNa (RL)

• Show Channel Status (SCS)

2.8.2.5 Program·Level IPC Functions. All program-level access to IPC occurs through the use
of SVCs. Operations used by a master/slave channel owner are special 110 SVCs; operations used
by requesters and by symmetric channel owners are standard I/O SVCs. In general, owner tasks
get information from the channels and return an owner-determined response. However, requester
tasks use IPC SVCs in a transparent manner; the effect of each call depends on the owner task.
Refer to the ONOS Supervisor Call (SVC) Reference Manual for more details about channel opera·
tions.

2.8.3 File 1/0
ONOS provides disk file I/O support for application and system programs. Disk file I/O is per
formed through the same SVC mechanism used to perform 110 to devices. Assembly language
programs must directly incorporate the SVC mechanism to perform 110.

2.8.4 Device 1/0
A device may be specified by either a device name or by a logical name. All standard ONOS 110 is
performed to LUNas rather than to physical resources. A LUNa, specified in an 110 operation, is a
hexidecimal number that represents a file, channel, or device. ONOS maintains a list of LUNas
that indicate corresponding physical devices. LUNas can be assigned by the AL command, or by
use of an Assign LUNa SVC, and can have one of three scopes as follows:

• Global LUNas are defined (and are available) for all tasks and jobs.

• Job-local LUNas are defined (and are available) for all tasks in a job.

• Task-local LUNas are defined only for the task that assigns them.

2.8.5 Spooling
The spooling of data can occur during job execution as output is generated by one or more tasks.
Spooling is the process of receiving data destined for a particular device (or type of device) and
writing that data to a temporary file (or files). The spooler subsystem schedules the printing of job
local and permanent files among available printing devices. You can impiement spooiing in two
ways, either by the PF command, or by sending output to a logical name.

If you use the PF command, specify the following options:

• Banner Sheet - A cover sheet containing the job name, user ID, time, and date.

• Forms - A particular form for printing devices.

2-18 2270508-9701

DNOS Concepts and Environment 2.9

• Device Class Type - Any of a class of devices (class name definition). For example,
you can specify any line printer, or any printer that prints uppercase/lowercase, without
naming a specific printer.

• Format Selection - Either FORTRAN control characters (blank, 0, 1, or + in column
one) or ASCII control characters.

• Multiple Copies - Multiple copies for a file or files.

• Priority - Files for printing based on an assigned priority.

To use a logical name, you must assign the logical name, using the ALN command, and specify
the options (which are the same as those for the PF command.) You can use the logical name in
programs and utility commands, such as SCI, in either batch or interactive mode.

As an example, let's assume you have assigned the logical name OUT and specified the following
options:

• LP02

• standard format

• 2 copies

Each time you send a file or listing to OUT, the spooler schedules two copies of OUT to print on
LP02 in standard format. You can design strategies according to your specific needs.

2.9 SEGMENTS

A task in DNOS consists of various program sections, each of which has certain features (at
tributes). The attributes of some sections may be different from others. A program section is called
a segment. A task in DNOS can consist of up to three "segments." The number of segments in
a task depends in part on the attributes that can be assigned to the various sections of the pro
gram. In general, if all sections of a program have the same attributes, only one segment is need
ed; if a division of the program is made into sections with differing attributes, multiple segments
may be needed.

The user can build the program, specifies appropriate division of the program to the Link Editor,
and installs the segments on a program file. The actual movement of segments into memory dur
ing execution varies, depending on whether or not the program explicitly requests certain
segments. In most cases, DNOS handles segment changes without user action required.

To install a task, specify an initial set of segments (up to three) and the desired mode of access to
those segments. To execute a task from an executing program, load the initial segment set (if
necessary) and grant the desired access. Use the appropriate SCI command to execute a task
from SCI.

2270508-9701 2-19

2.10 DNOS Concept!5 and Environment

2.10 MESSAGE FACILITIES

The DNOS Messages and Codes Reference Manual describes all system codes and messages in
detail and should be consulted if the system displays only the error code. For systems that have
the full message displayed, the paragraphs that follow discuss the components of termination
messages and two methods of showing expanded error messages. Later sections discuss the use
of condition codes and messages in application programs. The DNOS Systems Programmer's
Guide gives instructions for creating and modifying messages.

2.10.1 Error Messages
When an error occurs, SCI displays the message on the bottom line of the terminal screen and
inhibits further operation until you acknowledge the message by pressing the CMD key or the
RETURN key. Errors may be generated within SCi during SCi command execution or by any utiiity
activated by an SCI command.

The error messages consist of three parts: the error source indicator, a unique identifier, and the
message. The error source indicators are as follows:

Indicator

I
W
U
S
H

US
UH
SH

UHS

Meaning

Informative message
Warning message
User error message
System error message
Hardware error
User or system error
User or hardware error
System or hardware error
User, hardware, or system

The unique identifier is a code containing the category of the message (such as SVC, Pascal, or
utility). This code may be followed by an identifier for a specific message within that category.

For example, if you attempt to access a nonexistent file, the following error message appears:

U SVC-0315 filename DOES NOT EXIST (SF; 5)

where filename is the name of the file you tried to access. If you need additionai information
about an error, use on-line expanded error messages or refer to the DNOS Messages and Codes
Reference Manual.

2.10.2 On·Line Expanded Error Message Documentation
If your system supports expanded message information on-line, both the Show Expanded
Message (SEM) command and the? response to the error messages are available.

2-20 2270508-9701

ONOS Concepts and Environment 2.10.2.1

2.10.2.1 Show Expanded Message (SEM) Command. Use the SEM command to display an
expanded description of a termination code. Enter SEM to activate the procedure. You are promp
ted to specify the type of error (such as SVC or SCI) and the message identifier. These appear in
the second field of the termination message. An example of the SEM command display is as
follows:

[]SEM

SHOW EXPANDED MESSAGE
MESSAGE CATEGORY: SVC

MESSAGE ID: 0315

The following information appears on the terminal:

Explanation
The specified file or channel does not exist.

Action
If the file or channel pathname is specified as intended, create the file or channel and retry
the operation. Otherwise, retry the operation specifying the intended pathname.

2.10.2.2 The? Response. If you enter a question mark (?) immediately after receiving an error
message, SCI uses the error category and message iD to dispiay the expanded deSCiiption of the
error. SCI displays the original message and the same information as the SEM command.

2.10.3 Status Messages
Several SCI commands display status messages to inform you of the actions being taken during
command execution. These messages appear on the bottom line of the terminal screen.
Acknowledge the message by pressing the CM D key or RETURN key so that operation can con
tinue. Expanded status messages can be secured in the same way as error messages.

2270508-9701 2-21/2-22

3

Assembly Language Concepts

3.1 INTRODUCTION

A program is a collection of machine instructions and data that direct the activities of the com
puter to perform a particular function. A program that executes under ONOS is called a task.
There may be several activations of the same program at a given time but each activation is a dif
ferent task. For example, the System Command Interpreter (SCI) is a program and each station
may have, as a task, a unique activation of the SCI program. A program becomes a task when
ONOS assigns a runtime iO. Multiple copies of a task may share common procedure or data
segments.

3.2 PROGRAM MAPPING

The 990/10 and 990/12 computer hardware has a 20-bit memory address bus and can address
1024K words of memory. The logical address space available to a task is limited, by a 16-bit byte
address, to 64K bytes. This difference is resolved by ONOS mapping the logical address space of
the task into the physical address space of the computer. As shown in Figure 3-1, the mapping
hardware can map one, two, or three segments of logical address space into one, two, or three
segments of physical address space.

64K
MAXIMUM

2279939

2270508·9701

PHYSICAL ADDRESS
SPACE

Figure 3·1. Mapping

2048K
MAXIMUM

3-1

3.2 Assembly l ;:mglJage Concepts

The segments in physical address space need not be contiguous. Since DNOS maintains
separate mapping parameters for each task, each task may consist of one, two, Oi thiee segments
with a total size of 64K bytes. A program includes one unique segment called a task segment. The
task segment must contain the workspace address, the entry point, and the end action entry
point. A program may also contain sharable segments called procedures. Figure 3-2 illustrates
two tasks sharing two segments of memory. The two tasks could be, but need not be, instances of
the same program. For example, both tasks might be instances of the SCI program executing at
different stations.

The 990 computer instructions which control mapping are privileged. (Use of these instructions by
non privileged user tasks causes task termination.) DNOS memory management controls mapping
so that the mapping function is transparent to user tasks.

2279941

3·2

PHYSICAL ADDRESS
SPACE

Figure 3·2. Tasks Sharing Segments

2270508-9701

Assembly Language Concepts 3.3

3.3 PROGRAM SEGMENTATION AND PROCEDURAL STEPS

Mapping allows users to segment programs as:

• Single segments, including both data and executable code. When installed on a pro
gram file, these segments are called task segments, and each instance of the program
in execution is called a task.

• Two separately loadable segments consisting of a procedure segment and a task seg
ment.

• Three separate segments, consisting of two procedure segments and a task segment.

Since ONOS manages memory in 32-byte blocks, the following boundary rules apply for programs
consisting of two or three separate segments:

• The first procedure segment (if any) begins at address 0 in the logical address space
seen by the executing program.

• The second procedure segment (if any) begins on the first 32-byte boundary immedi
ately following the first procedure in the logical address space seen by the executing
program.

• The task segment begins on the 32-byte boundary immediately following the last pro
cedure in the logical address space seen by the executing program.

These memory boundary requirements are supported by the Link Editor, as defined in the Link
Editor Reference Manual.

Figure 3-3 illustrates the possible memory configurations for programs under ONOS. The follow~
ing paragraphs outline the processes for achieving any of these configurations. The maximum
allowable memory for each task in any configuration is 64K bytes.

3.3.1 Single Task Segment
Part A of Figure 3-3 illustrates a program consisting of a task segment. The following process
generates this configuration:

1. The source program is assembled (perhaps in several modules).

2. If more than one object module is involved, the object code is linked into one module by
the Link Editor.

3. The linked object module is installed on a program file as a task segment using the
Install Task (IT) command, or as a function of the Link Editor FORMAT IMAGE command.

4. The installed task is executed using an SCI command or SVC operation.

2270508-9701 3-3

3.3.2 Assembly Language Concepts

2279940

r
64K t BYTES .-

MAXIMUM

TASK
SEGMENT

A. SINGLE SEGMENT PROGRAM

r
64K 1 BYTES .-

MAXIMUM

l

PROCEDURE
SEGMENT

TASK
SEGMENT

B. TWO SEGMENT PROGRAM

64K
BYTES +

MAXIMUM

r
PROCEDURE

SEGMENT

PROCEDURE
SEGMENT

TASK
SEGMENT

32 BYTE
..- BOUNDARY

32 BYTE +- BOUNDARY

32 BYTE +- BOUNDARY

C e THREE SEGMENT PROGRAM

Figure 3·3. Task Memory Configurations

3.3.2 Task Segment and One or Two Procedures
Parts Band C of Figure 3-3 illustrate a program with a task segment and procedure segment(s).
The following process generates this configuration.

3-4

1. The various modules of the program are separately assembled.

2. The two (or three) segments of the program are linked by the Link Editor. To be separ
;:itAly IO;:irl;:,IJIA, thA proGAdureB mUBt be specified by the PROCEOUR;::: C0mmEH1d -1:0 t~e

Link Editor. The task must be specified with a TASK or PHASE 0 command.

2270508-9701

Assembly Language Concepts 3.4

3. The procedure(s) is installed using the Install Procedure (IP) command or by the Link
Editor FORMAT IMAGE command.

4. The task segment is installed using the IT command with the ATTACHED PRO
CEDURES? option selected. The procedure IDs specified during the IP command are
entered in response to the prompts of the ATTACHED PROCEDURES? option prompts.

5. The installed task is executed using an SCI command or SVC operation.

3.4 SUPERVISOR CALLS

The interface between application programs and DNOS is the supervisor call (SVC). In programs
written in a high level language, most supervisor calls are provided in the run-time package for the
language and are transparent to the user. However, the high level language programmer may
write SVCs to perform functions not otherwise available. The assembly language programmer
must code all supervisor calls.

Supervisor calls are implemented as an extended operation (XOP) in DNOS. Specifically, XOP 15
is the means of entry to the SVC processor of DNOS. The address supplied with the XOP instruc
tion is that of the user's supervisor call block. The following is an example of the code for a SVC:

XOP @SCB,15 EXECUTE SVC DEFINED IN BLOCK SCB

The assembly language includes a directive that provides a convenient and meaningful substitute
for the XOP command. The DXOP directive defines a symbolic operation code for an XOP. The
following example defines SVC as XOP 15:

DXOP SVC,15 DEFINES SVC AS XOP 15

When you include the DXOP at the beginning of your program, you may code an, SVC as follows:

SVC @SCB EXECUTE SVC DEFINED IN BLOCK SCB

3.5 THE SUPERVISOR CALL BLOCK

The DNOS supervisor call block is the data structure that defines the supervisor call. The
statements described in the preceding paragraph apply to all DNOS supervisor calls. The dif
ference between SVCs is the content and format of the supervisor call block.

A supervisor call block consists of at least one byte, and as many additional bytes as the SVC
requires. The first byte (and only byte for some SVCs) contains the opcode that defines the SVC.
Opcodes >00 through >7F are reserved for SVCs supported by DNOS. The user may define SVCs
for applications in the range of >80 through >FF. Creation of user-defined SVGs is described in
the DNOS Systems Programmer's Guide.

The second byte of many SVCs is the return code byte. DNOS returns a satisfactory completion
code (zero in most cases) in this byte when the operation completes successfully. DNOS returns
an error code in this byte when the operation completes in error.

2270508·9701 3-5

3.6 Assembly Language Concepts

Some of the DNOS SVCs provide several different operations as determined by a sub-opcode in
the third byte of the supervisor caii biock. in these cases, the actuai operation to be performed is
selected by the opcode and the sub-opcode.

Some of the bytes in the supervisor call blocks of some SVCs contain the result of the requested
operation after the operation has completed. That is, the system returns values in some fields of
some supervisor call blocks.

The additional bytes of the call blocks of SVCs may contain various types of information related
to the operation which are provided by the user:

• Flags

• Input or output data

• Addresses of input or output data

• Size or count values

• Identifiers

• Task parameters

~ I I It.-InC!
L..VI"'-'~

• Character stri ngs

The specific supervisor call block for each SVC is described in the DNOS Supervisor Call (SVC)
Reference Manual.

3.6 ENTRY VECTOR

DNOS transfers control to a task via an entry vector in the task segment. The first three words of
the task segment must consist of the following vector:

First Word:
Second Word:
Third Word:

For example:

WSPACE

*
*
*

3-6

Initial workspace address (WP).
initiai entry point address (PC).
End action entry point address.

lOT 'TASK'
REF PROC1, ERPROC
DATA WSPACE
DATA PROC1
DATA ERPROC
BSS 32 WORKSPACE

Task Data

END

2270508-9701

Assembly Language Concepts 3.7

If the end action entry point address is zero, ONOS terminates the task when a fatal error is
detected. If the address is not zero, control is transferred to the specified address whenever a
fatal task error occurs. If no end action routine exists or when the end action routine executes an
End Task SVC, ONOS releases resources from the task and takes it out of execution.

3.7 SHARING PROCEDURE SEGMENTS

A program may have one or two procedure segment(s) which contain code or data to be shared
with a second activation of the program or with a different program. In the case where two or more
tasks using the procedure segment are active concurrently, the procedure segment must be reen
trant to b,e sharable (refer to the paragraph on reentrant programming for more information). If
there will never be two or more tasks active at the same time using the procedure segment, the
procedure segment may contain modifiable code or data storage and still be sharable.

To be reentrant, a procedure segment must not contain any data storage that is modified during
execution, including a workspace. Also, all tasks that include a shared procedure segment must
be linked so that any memory addresses in the task segment that are referenced by the procedure
segment contain the same code or data storage in each individual task segment.

Refer to section on linking and the Link Editor Reference Manual for command descriptions and
further linking information.

3.8 REENTRANT PROGRAMMING

A procedure is called reentrant if it may be shared by several users at the same time without loss
of data. A procedure is called pure if it contains only unmodifiable code and constant data; it is,
effectively, read only. Pure procedures are reentrant. Moreover, every program may be split into a
pure part containing only executable code and another part containing data and code which is
modified at run time.

ONOS supports shared pure procedures. (Nonreentrant procedures may be shared, but ONOS
does not guarantee data integrity.) Further, the 990 language processors and the 990 Link Editor
support a special construction which simplifies reentrant coding. That is, if an assembly
language program uses the Program Segment (PSEG) directive to denote executable code, the
Common Segment (CSEG) directive to denote common data, and the Oata Segment (DSEG) direc
tive to denote locally used data for modules included in a procedure, the Link Editor separates the
program accordingly:

• Executable code into the procedure segment

• Data into the task segment

• Common data into the task segment

If the PROCEDURE directive is used during link edit, the procedure segment created during link
ing contains no OSEGs. If all the volatile storage is in DSEGs, then the procedure will be reentrant.

A shared procedure must either be installed on the program file on which the task is installed, or
on the shared program file, .S$SHAREO.

2270508-9701 3-7

3.9 Assembly Language Concepts

For further information, consult the Link Editor Reference Manual.

3.9 OVERLAYS

Overlays are part of a program that resides on disk until explicitly requested. When requested, the
overlay replaces part of the program previously in memory. The use of overlays can reduce the
amount of memory required by a program to the amount required for the largest segment needed
at one time. Programs that do not use overiays are ioaded in their entirety into memory for
execution.

In the subsequent discussion of overlays, the following definitions apply:

• Phase - The smallest functional unit that can be loaded as a logical entity during
execution. The linked object output by the Link Editor contains one object module for
each phase.

• Root Phase - The main or memory resident phase (level 0) of a program.

• Level - The point at which a new phase begins, identified by a level number in the
overlay structure. Phases having the same level number and same parent (preceding)
phase are loaded at the same location and are mutually exclusive (they cannot be in
memory at the same time).

• Path - A series of phases starting with the root phase and including a successive,
higher numbered phase at each level.

The memory requirements of a program can be reduced significantly if it is split into two or more
overlays that share the same overlay area. A root phase that is not overlaid must be added to the
program to control the loading of the overlays. However, overlays increase execution time by the
time required to load the overlays. An effective scheme is to overlay seldom-used phases of a pro
gram and retain common code in the root phase.

3.9.1 Overlay Structures
Overlay structures are defined by the user and generated by the Link Editor. The structure of an
overlaid program is dependent upon the relationships between the phases in the program. Phases
that do not have to be in memory at the same time can overlay each other. These phases are con
sidered to be independent in that they do not reference each other either directly or indirectly.
Independent phases can be assigned the same load address and are loaded only when referenced.
Refer to the Link Editor Reference Manual on organizing overlay structures.

3.9.2 Overlay Loading
In the root segment or in phases in memory, the user loads overlays from a program file into
memory with the Automatic Over!ay Manager or by issuing the Load Overlay SVC ca!1.

When the Link Editor is used to produce overlaid programs, the user can specify (by use of the
LOAD command) that the Link Editor include an Automatic Overlay Manager in the linked output.
The overlay manager performs automatic overlay loading during execution of the overlaid pro
gram. The LOAD command is only appiicabie when the IMAGE format is selected.

3-8 2270508-9701

Assembly Language Concepts 3.9.3

3.9.3 Relocatable Overlays
Overlays are usually loaded into memory at the load address determined during link edit.
However, a user may load an overlay elsewhere in memory. Modules installed as relocatable
overlays in a program file can be relocated by the Load Overlay SVC. This enables users to load
overlays where space is available rather than where link edited. However, the relocatable overlay
cannot have references to other overlays.

3.10 SEGMENT MANAGEMENT

In addition to program segments already described, disk- or memory-based program segments
may be provided. These program segments may be dynamically mapped into or removed from the
memory area of the task.

Disk-based program segments are installed on program files using the Install Procedure/Program
Segment SVC. They are loaded into memory and mapped into memory areas of tasks by the seg
ment manager. The segment manager maintains a count of the tasks that require the program
segment, and disposes of program segments that are no longer required. When the program seg
ment contents have not changed, or when changes to the disk copy are not permitted, segment
manager releases the memory space occupied by the program segment. Otherwise, segment
manager writes the program segment to the program file and releases the memory space.

A task may request the segment manager to hold a program segment in memory even when no
task currenHy requires the program segment. This allows passing data to another task that may
not be currently executing. When the program segment is no longer required, a task may request
the segment manager to release the program segment.

Memory-based program segments are created by the segment manager as uninitialized program
segments, and are mapped into the memory area of the task that requests their creation. The task
then writes the required data into the program segment. Shared memory-based program
segments are a means of passing data between tasks in the same job or in different jobs. A task
must reserve this type of segment or the memory is released when the segment is released.

Attributes are defined for a segment when it is installed. The attributes of a task segment are
specified in the Install Task SVC that installs the task on a program file. Similarly, the attributes of
a procedure segment or a disk-based program segment are specified in the Install Pro
cedure/Program Segment SVC. The attributes of a memory-based program segment are specified
when the program segment is created by the segment manager. The segment attributes are as
follows:

• Readable. The segment may be accessed in memory for read operations.

• System. The segment may only be accessed by system tasks.

• Memory resident. The segment remains accessible in memory.

• Replicatable. More than one copy may exist in memory.

• Share protected. Segment may not be shared concurrently by two or more tasks.

2270508·9701 3-9

3.11 Assembly Language Concepts

• Writable control store. Segment contains executable code that accesses writable con
troi store.

• Execute protected. Segment contents may not be executed.

• Write protected. Segment contents may not be altered in memory.

• Updatable. Segment will be written to its permanent file position on disk if it has been
marked mod ified.

• Reusable. Segment may be used consecutively without reloading. This segment may
reside on the software cache list while memory space is available for it.

• Copyable. Segment may be replicated by copying the segment from the memory copy.

• Privileged. Segment has been installed in a program file as a privileged task segment.
The task can execute hardware privileged instructions.

• Software privileged. Segment has been installed in a program file as a software privi
leged task segment. The task can issue privileged supervisor calls.

• Overflow protected. Segment has been installed in a program file with overflow protec
tion. During execution, arithmetic overflow is detected as a fatal task error.

3.11 TASK ATTRIBUTES

Task attributes are determined during task installation in response to prompts during the IT com
mand or the Install Task SVC. The attributes are:

• Privileged (Hardware and Software)

• System

• Priority

• Memory-Resident

• Replicatable

• Protected, Delete and Execute (990/12 only)

• Copyable

• Reusable

• Updatable

• Arithmetic Overflow Protected (990/12 only)

• Writable Control Storage (990/12 only)

3-10 2270508-9701

Assembly Language Concepts 3.11.1

3.11.1 Privileged
There are two kinds of privilege: hardware and software. The Link Editor cannot be used to install
privileged tasks on a program file. These tasks must be installed using the Install Task SVC, or the
IT command.

3.11.1.1 Hardware Privileged. The PRIVILEGED? prompt of the IT command or the correspond
ing flag for the Install Task SVC indicates whether or not a task may issue privileged instructions.
Only tasks installed as privileged tasks may issue privileged hardware instructions. Most pro
grams are nonprivileged and may not use the following 990 Computer assembly language
instructions:

• Computer Control Instructions (RSET, IDLE, LREX, L1MI)

• Real Time Clock Instructions (CKON, CKOF)

• Mapping Instructions (LMF, LDD, LDS)

• I/O Instructions (S80, S8Z, T8, LDCR, STCR) when the communications register unit
(CRU) address is greater than >EOO.

3.11.1.2 Software Privileged. Task specified as having software privileges may execute all
system SVCs. The SOFTWARE PRIVILEGED?: prompt of the IT command or the corresponding
flag for the Install Task SVC commands determine privilege. Nonprivileged tasks may not use the
following SVCs:

Install Disk Volume
Unload Disk Volume
Initialize Disk Volume
Disk Management
Direct Disk I/O
Open File Unblocked
Install Task
Install Procedure/Segment
Install Overlay

3.11.2 System

Delete Task
Delete Procedure/Segment
Delete Overlay
Kill Task
Read/Write TSB
Read/Write Task
Assign Space on Program File
Initialize Time and Date

A task is either a system task or a user task. System tasks execute in system memory address
space (coexistent with other portions of the system).

A task is defined as a system task by the Install Task SVC or by the user responding YES to the
SYSTEM TASK? prompt in the IT command during task installation. The Link Editor cannot be
used to install a system task.

2270508-9701 3-11

::U 1.3 Assembly Language Concepts

3.11.3 Priority
DNOS iequiies that each task be instaiied on a piogiam file at a defined piioiity level. DNOS PiO
vides the following 132 levels of installed priority:

(Highest)

(Lowest)
(Floating)

o
R1-R127

1
2
3
4

Critical System Tasks (Reserved for ONOS)
Real-time priorities
Foreground interactive tasks
Foreground compute-bound tasks
Background tasks
(Priority 1 and 2)

Priority level 0 is intended for the most critical system functions and is reserved for ONOS internal
use oniy. The remaining system tasks are distributed appropriateiy among the iower priority
levels with regard to their relative importance.

Real-time priorities provide the user the capability to supercede all except the most important
system tasks. For applications which require prompt access to the CPU, ONOS forgoes some
routine maintenance of system duties in an effort to schedule real-time tasks.

Priorities 1, 2, 3, and 4 satisfy requirements of most installations. Priority levels 1 and 2 are used
mainly by programs requiring user interaction. Priority level 1 gives quick response for programs
interacting with the user's terminal, while priority level 2 is adequate for programs requiring multi
ple disk accesses.

For programs requiring user interaction and multiple disk accesses, execution priority level 4
automatically switches between priority levels 1 and 2 as the program executes. Therefore, pro
grams requiring user attention can be serviced quickly.

Priority level 3 is for programs executing in batch or background mode, which require no user
interaction.

The priority level of a task is assigned during task installation in response to the PRIORITY?
prompt of the IT command or the Install Task SVC. The real-time task priorities are assigned with
the Install Real-Time Task (IRT) command or the Install Real-Time Task SVC.

ONOS executes tasks according to their priority level by allocating the CPU to the highest priority
task awaiting execution. As newly-bid tasks enter the system, the tasks awaiting execution are
requeued according to the newly-bid task priorities.

If time slicing is enabled, tasks execute for a fixed interval of time. Upon expiration of a time slice,
the task is rescheduled. Time slicing allows tasks of equal priority to share the CPU in a round
robin fashion. (Time slicing and slice value are determined during system generation).

3.11.4 Memory-Resident
Tasks may be memory resident (always in memory) or disk resident (in memory when active, but
possibly swapped to the disk when not active). Most user tasks should be disk resident to free
memory for other tasks, since some supervisor calls depend on the DNOS swapping facility.
Memory-resident tasks must be installed on the utilities program file .S$UTIL, or the shared pro
gram file .S$SHARED, or on the applications program file defined during system generation.

3-12 2270508-9701

Assembly Language Concepts 3.11.5

These tasks are disk-resident tasks until an Initial Program Load (IPL) is performed. Certain sup
port features which depend on swapping (such as dynamic memory allocation) are not available
to a memory-resident task.

A memory-resident task, even if terminated, occupies memory until deleted from the program file
and an IPL is performed.

Memory-resident tasks are installed on program files by the IT command or the Install Task SVC.
The Link Editor cannot be used to install memory-resident tasks on a program file. Tasks are
deleted from program files by the Delete Task (DT) command or the Delete Task SVC. Task
residency is determined during installation in response to the MEMORY RESIDENT? prompt.

3.11.5 Replicatable
Tasks specified as replicatable may have multiple copies concurrently in memory. Replicatable
tasks are frequently used in multiterminal environments or in industrial applications where
several similar device types are controlled. A replicatable task allocates multiple copies of a task
in memory simultaneously and conserves disk space and time. Allocating tasks in this way,
avoids the requirement of installing a copy of the same task with a different 10 for each concur
rent activation of the program. Replicatability is determined by the installation response to the
REPLICATABLE? prompt.

3.11.6 Protected
A task may be delete and/or execute protected. Protection is specified during the iT command
and Install Task SVC.

3.11.6.1 Delete Protected. A delete-protected task cannot be deleted with the Delete Task (DT)
command or the Delete Task SVC without removing protection with the Modify Task Entry (MTE)
command. Delete protection is specified by the DELETE PROTECT? prompt during installation.

3.11.6.2 Execute Protected. Execute protection applies when a task contains oniy data and is
not to be executed. Execute protection is specified by the Install Task SVC or by the EXECUTE
PROTECT? prompt when using the IT command and applies to only the 990/12 computer.

3.11.7 Copyable. A task may be specified as copyable by responding to the IN MEMORY
COPYABLE? prompt of the IT command or by a flag of the Install Task SVC. A copyable task may
be copied from a copy in memory rather than from the disk copy.

3.11.8 Reusable. The IN MEMORY REUSABLE? prompt of the IT command or flag of the Install
Task SVC specifies that after the task terminates, the task segment can be reused by another
activation of the task. It does not have to be copied either from disk or memory.

3.11.9 Updatable. The UPDATABLE? prompt of the IT command or flag of the Install Task SVC
specifies that the task segment on disk may be updated from the in-memory copy.

3.11.10 Arithmetic Overflow Protection. The 990/12 allows detection of overflow or underflow
in arithmetic operations. This condition is signaled as a task error. Overflow detection is deter
mined by the OVERFLOW CHECKING? prompt of the IT command or by a flag of the Install Task
SVC.

2270508-9701 3-13

3.11.11 Assembly Language Concepts

3.11.11 Writable Control Storage. The 990/12 microcode resides in a special memory called the
controi store. The controi store consist of the Read Oniy Memory controi store (not discussed
here) and the writable control store. The writable control store is composed of random-access
memory (RAM) devices which contain user-written microcode. The writable control store is loaded
by either DNOS or an assembly language instruction.

A portion of the writable control store and three Extended Operation (XOP) levels are reserved for
Texas Instruments use. DNOS uses XOP levels 13, 14, and 15 and writable control store addresses
>810 through >9FF to implement system routines. The user should not load microcode routines
into these locations. Refer to the Microcode Development System Programmer's Guide for further
information on control store management.

Use of the writable control storage is enabled or disabled by the WRITABLE CONTROL
STORAGE? prompt of the IT command or by a flag of the Install Task SVC.

3.12 TASK TERMINATION

Tasks executing under DNOS may terminate normally or abnormally. In either case, the task
should make provision for termination. If a task does not explicitly terminate using an End Task
SVC, it either loops indefinitely or it attempts to exceed its memory bounds and causes abnormal
termination. A task in an infinite loop may be killed externally by using the Kill Task (KT) or Kill
Background Task (KBT) commands or by pressing first the RESET (blank orange) then the CON
TROL X key when the task is running in the SCI foreground mode.

3.12.1 Normal Termination
To terminate normally, a task executes an End Task SVC. DNOS then releases the resources of
the task and takes it out of execution. Disk-resident tasks are removed from memory. Memory
resident tasks remain in memory and occupy space but do not execute.

3.12.2 Abnormal Termination
If a task commits a fatal error (for example, illegal instruction, supervisor cail, or memory
reference), and the task entry vector includes an end action address, the routine at that address is
activated. Typically, the end action routine executes an End Action Status SVC, outputs the
returned data, and executes an End Task SVC. However, it is possible for the end action routine to
implement error recovery procedures. If the end action routine commits errors or if the task
includes no end action routine, DNOS unconditionally aborts the task and reports the error to the
system log.

3.13 FILE AND DEVICE SERVICES

DNOS supports input and output operations to various types of devices, and to several types of
fiies. in addition, DNOS supports communication between programs, in which each program is
analogous to a peripheral device of the other. To include all types of I/O, this manual refers to
devices, files, and communication channels between programs as I/O resources.

3-14 2270508-9701

Assembly Language Concepts 3.13.1

3.13.1 1/0 Concepts
DNOS supports two concepts of 1/0 to resources. Many 1/0 operations apply to various devices
and are essentially the same for each device. This concept is called resource-independent 1/0.
Resource-independent 1/0 allows the programmer to code 1/0 for terminals, magnetic tape units,
line printers, card readers, and for sequential files, independently of the device or file.

A problem with resource-independent I/O is that operation of the resource is restricted to a mode
that is common to other resources. Resource-specific 1/0 allows the programming of specific
capabilities of the device. Resource-specific 1/0 supports terminals, special industrial devices,
relative record files, key indexed files, and interprocess communication.

3.13.2 File and Device 1/0
Several utility operations are required to support device 1/0. A device may be specified by either a
device name or by a logical name. The utility that manages logical names is used to assign a
logical name. All 1/0 requires Logical Unit Numbers (LUNOs) which are assigned and deleted by
another utility.

File 1/0 combines the support of the file management and 1/0 capabilities of ONOS for three types
of disk files. The file types are:

• Sequential files

• Relative record files

• Key indexed files

Files may be accessed by a pathname or by a logical name, and a LUNO is required for 1/0. The
utility functions required for device 1/0 apply to file 1/0 also. In addition, functions exist to create a
file, delete a file, verify or change the pathname, apply or change protection, and add or delete an
alias.

2270508-9701 3·15/3·16

4.1 TEXT EDITOR USE

4

Building an Assembly
Language Program

The Text Editor interactively creates and modifies files of textual data. The data in these files may
be assembly language source code, high level language source code, or material that is to be
printed, such as software documentation, memos, or drafts.

The user, working interactively, invokes and operates the Text Editor from a Model 911 Video
Display Terminal (VDT). Most of the editing functions are available at both the VDT and hard copy
terminals, but the means of invoking a particular function may vary depending on the terminal
type and its current mode of operation. This manual assumes the use of a 911 VDT, being
operated in VDT mode. Details about operation of a hard copy terminal can be found in the DNOS
Text Editor Reference Manual.

The Text Editor is invoked by use of the Execute Text Editor (XE) command. The prompt for the
filename allows the user to create a new file or edit an existing file.

To create a new file using the Text Editor, no pathname is entered when the editor is invoked.
When the Text Editor is used to modify the data in an existing file, the user specifies the file name
when the Text Editor is invoked. Each record in the input file is numbered, relative to the start of
the file. The editor is terminated by use of the Quit Edit (QE) command. The user may abort the
edit, by answering YES to the ABORT? prompt. In this case all modifications and new data are
discarded. Answering NO to this prompt causes the edited file to be saved in the output file
specified in response to the OUTPUT FILE ACCESS NAME prompt.

Errors detected by the Text Editor are described in the DNOS Messages and Codes Reference
Manual.

4.2 TERMINAL USE

Text editing consists of four major types of operations:

• Command selection and specification

• Edit control

• Data display

• Data entry

Command selection and specification includes the selection of Text Editor functions that assist
the user with the management of the text in the source file. The commands are listed in Table 4-1.
Most of these commands have parameters that are supplied by the user, or, in many cases, by

2270508-9701 4-1

.43 Bllilrling an Assembly Language Program

default. After entering each parameter, press the TAB, RIGHT FIELD, or RETURN key to store the
paiameter. In addition, any System Command Interpreter (SC!) command may be called during
text editing. The terminal must be in the command mode before selecting any command. The ter
minal is placed in the command mode by pressing the CMD key.

Edit control consists of the operations that control the immediate editing of data. The operations
available are: altering the current file position, adding data by line, and deleting data by line, alter
ing cursor position, adding data by character, and deleting data by character. Edit control opera
tions have no parameters.

Data display manages the display of data on the device.

Data entry operations controi the actual entering of data into the file.

Command selection from the 911 VDT is accomplished by keying in the command and responding
to the prompts presented on the display screen. Edit control is performed by using the cursor con
trol keys and some of the function keys.

Data entry or editing may occur on any record displayed on the screen by positioning the cursor
anywhere within the line that contains the record to be edited. Records may be inserted between
any lines, and may be inserted or deleted in any order. In addition, characters within a line may be
inserted, deleted, or modified. The Show Line (SL) command, and the Roll Up, Roll Down, Cursor
Up, and Cursor Down edit control functions listed in Table 4-2 position the file for display.

4.3 SCI COMMAND USE

The Text Editor is initiated when the user selects and completes the XE command and terminates
when the user enters and completes the QE command. Whenever the terminal is in the command
mode, the Text Editor is suspended and the user may select any SCI command. The commands
selected when the terminal is in the command mode and the Text Editor is suspended are not
necessarily Text Editor commands. The Text Editor remains suspended until the XE command or
another Text Editor command is selected. Then the Text Editor is reactivated, the state that
existed at the time of suspension is restored, and the entered command is processed. Any Text
Editor command entered after the Text Editor has been terminated with the QE command causes
the following message to be displayed:

U EDITOR-0009 COMMAND IS ALLOWED ONLY WHILE EDITING

If the user quits SCI (by entering the Quit (Q) command) while the editor is suspended, the QE
command is automatically invoked, and the user must supply edit-termination information.

Table 4-1 displays the valid commands of the Text Editor. For further information concerning the
uSe of the Text Editor refer to the ONOS Text Editor Reference Manual.

4·2 2270508-9701

Building an Assembly Language Program 4.4

Table 4·1. Text Editor Commands

CL - Copy Lines

DL - Delete Lines

DS - Delete String

FS - Find String

IF - Insert File

ML - Move Lines

MR - Modify Roll

MRM - Modify Right Margin

4.4 EDIT CONTROL FUNCTIONS

MT - Modify Tabs

QE - Quit Editor

RE - Recover Edit

RS - Replace String

SL - Show Line

SVL - Save Lines

XE - Execute Text Editor

XES - Execute Text Editor
with Scaling

Edit Control functions are those that specify to the Text Editor precisely where within the file the
modifications are to be made. Refer to Table 4·2 for the edit control functions supported and keys
specified on the 911 VDT.

2270508-9701

Table 4·2. Edit Control Functions

Edit Control Function

Command Mode
Roll (Display) Up
Roll (Display) Down
Duplicate To Tab
Clear To Tab
Display/Suppress Line Numbers 1

Edit Mode/Compose Mode 2

Begin Line

Forward Tab 3

Erase Rest of Line
Forward Space One Character
Backspace One Character
Back Tab (Left Field)
Right Margin (Right Field)
Left Margin
Erase Characters on Line
Delete Line

911 VOl
Key Pressed

RETURN

CMD
F1
F2
F4
F5
F6
F7

TAB/SKIP (shifted)
TAB/SKIP
CHAR - (shifted)
CHAR-
FIELD -
FIELD - (shifted)
ENTER
ERASE FIELD
ERASE INPUT

4-3

4.5 Building an Assembly Language Program

Table 4·2. Edit Control Functions (Continued)

Edit Control Function

Insert Line
Repeat (Input of Key)
I nsert Character
Delete Character
Move Cursor Up
Move Cursor Down

Move Cursor Right
Move Cursor Left

Move Cursor Home
Uppercase 2

Notes:

911 VOT
Key Pressed

Blank Gray Key
REPEAT (plus key)
INS CHAR
DEL CHAR

(Up Arrow)
(Down Arrow)

-(Right Arrow)
-(Left Arrow)

HOME
UPPERCASE LOCK

1 Alternates display of line numbers (74 data characters) with no display of line numbers (80
data characters) each time key is pressed.

2 Alternates modes each time the key is pressed.

3 SHIFT key must be pressed concurrently with the TAB/SKIP key to achieve the tab function
on the 911 VDT.

4.5 TEXT EDITOR EXAMPLE

The following paragraphs show examples of the Text Editor functions for creating a new file and
for modifying an existing file. These examples provide a quick reference for the more common
uses of the Text Editor. This simple program, RESPONSE, is also used in Section 9 to
demonstrate the linking, installing, executing, and various debugging techniques discussed in
this manual. Details of editor operations can be found in the DNOS Text Editor Reference Manual.

4.5.1 Creating a New File
The following procedure applies to creating a new file using the Text Editor on a 911 VDT in the
VDT mode. The example assumes that you are properly logged-on, and that SCI is active. Refer to
preceding section for details on log-on and activating SCI.

Create a directory .USER, on the system disk, with the Create File Directory (CFDIR) command.
Enter CFDIR and press the RETURN key. Respond to the prompts as follows:

[] CFDIR

CREATE DIRECTORY FILE
PATHNAME: .USER

It.. A" ..- r-..,..I""\
lifiMA e,\f, Hie;:': I;,)

DEFAULT PHYSICAL RECORD SIZE:

4-4 2270508-9701

Building an Assembly Language Program 4.5.1

Throughout the examples, files are automatically created in this directory.

Enter XE and press RETURN to activate the Text Editor. The following prompt appears:

[]XE

EXECUTE TEXT EDITOR
FILE ACCESS NAME:

Press the RETURN key to indicate that no input file is to be edited. (Press the TAB SKIP key if
there is a file pathname displayed.) The screen is cleared and the following display'is presented in
the first four columns of row one, with the cursor in column one, row one:

*EOF

This display indicates the only record in the file is the end-of-file record. To begin entering data,
press the RETURN key to enter the first blank line into the file. The end-of-file record is now in line
two and the cursor is in row one, column one, with the rest of the line blank. Enter data by posi
tioning the cursor and keying the data. Press the RETURN key to return to column one and receive
a new line. Enter the short assembly language program shown in Figure 4-1. Use the following col
umn numbers to promote program readability.

1. The LABEL field begins in coiumn 1

2. The OPERATION field begins in column 8

3. The OPERATOR field begins in column 13

4. The COMMENT field begins in column 26 or any column on a line with an asterisk (*) in
column 1

Any of the edit control functions may be used during data entry, as may any SCI commands (press
the CMD key to enter the command mode before entering an SCI command). Text editor com
mands return the Text Editor to the edit mode upon completion.

Once all the data has been entered, the Text Editor is terminated by calling the QE command.
First, press the CM D key to enter the command mode, then enter QE and press the RETURN key.
The following prompt appears:

[]QE

QUIT EDIT
ABORT?: NO

2270508·9701 4-5

4.5.1 Building an Assembly Language Program

**
* BEGINNING OF DATA SECTION
**

IDT 'RESPONSE'

* OPENING DATA WORDS
* 1. WORKSPACE POINTER
* 2, PC VALUE AT START OF PROGRAM
* 3. END ACTION ITEM (IF ANY)
**
*

WSP
OPEN

MSSGO

DATA WSP
DATA START
DATA 0
BSS 32
DATA 0
BVTE }O,)20
DATA 0
DATA 0
DATA 0
DATA 0
DATA 0
BYTE }B,)20
DATA 0
DATA GREET
DATA 0
DATA MSSG1-GREET

WORKSPACE POINTER ADDRESS
PC AT PROGRAM BEGINNING
END ACTION (NONE SPECIFIED)
WORKSPACE REGISTERS
110 REQUEST
OPEN LUND }20

I/O REQUEST
WRITE ASCII TO LUND)20

MESSAGE LOCATION

MESSAGE LENGTH

*
**********************~*** * SPECIFY THE FIRST MESSAGE
**
* GREET DATA)OAOD

4·6

TEXT 'HELLO, PLEASE INPUT NUMBER OF ITEMS '
TEXT 'SOLD TODAY. lJSE 4-DIGIT NUMBERS. '
DATA :>OAOD

Figure 4·1. Assembly Language Program Example (Sheet 1 of 3)

2270508-9701

Building an Assembly Language Program 4.5.1

MSSGl DATA 0 liD REQUEST
BYTE)B,~20 WRITE TO LUND)20
BYTE 0,)40 WRITE WITH REPLY
DATA ITE~l1
DATA 0 CHARACTERS SPECIFIED IN INPUT ROUTE
DATA 10 MESSAGE LENGTH
DATA STRl LOCATION OF INPUT PARAMETERS

STRl DATA STORE SAVE PARAMETERS IN STORE
DATA 4 STORE FOUR CHARACTERS
DATA 0

STORE BSS 12
ITEMl DATA)OAOD

TEXT lITEM 1
MSSG2 DATA 0 I/O REGUEST

BYTE)B,)20 WRITE TO LUND)20
BYTE 0,)40 WRITE WITH REPLY
DATA ITEM2 MESSAGE LOCATION
DATA 0
DATA 10 MESSAGE LENGTH
DATA STR2

STR2 DATA STORE+4 2ND ITEM CHARACTERS STORE LOCATION
DATA 4
DATA 0

ITEM2 DATA)OAOD
TEXT I ITEM 2

MSSG3 DATA 0 lID REQUEST
BYTE)B,)20 WRITE TO LUND)20
BYTE 0,)40 WRITE WITH REPLY
DATA ITEM3 MESSAGE LOCATION
DATA 0
DATA 10 11ESSAGE LENGTH
DATA STR3

STR3 DATA STORE+6 3RD ITEM CHARACTERS STORE LOCATION
DATA 4
DATA 0

ITEM3 DATA)OAOD
TEXT I ITEM 3

MSSG4 DATA 0 110 REQUEST
BYTE)B,)20 WRITE TO LUNO)20
DATA 0
DATA GODDBY MESSAGE LOCATION
DATA 0
DATA CLOSE-GOODBY MESSAGE LENGTH

Figure 4·1. Assembly Language Program Example (Sheet 2 of 3)

2270508-9701 4-7

4.5.1 Building an Assembly Language Program

*
**********************~***
* FINAL MESSAGE DISPLAYED
**********************~***

* GOODBY

CLOSE

EOP

*
START

DATA
TEXT
TEXT
DATA
DATA
BYTE
DATA
DATA
DATA
DATA
BYTE

XOP
XOP
XOP
XOP
XOP
XOP
XOP
XOP
END

>OAOD
'THANK YOU FOR YOUR PURCHASE. I

I HAVE A NICE DAY. I

)'OAOD
o
1, :~'20
o
o
o
o
)'04,0

@DPEN, 15
@MSSGO, 15
@MSSG1, 15
@MSSG2115
@MSSG3, 15
@MSSG4, 15
@CLOSE, 15
@EOP, 15
START

liD REGUEST
CLOSE LUND)20

TERMINATE TASK

OPEN LUND)20
OPENING MESSAGE
INPUT 1
I~JPUT 2
INPUT 3
EXIT MESSAGE
CLOSE FILE, UNLOAD/REWIND
TERMINATE TASK

Figure 4·1. Assembly Language Program Example (Sheet 3 of 3)

The reply to the ABORT? prompt allows you to either accept (NO response) or discard (YES
response) the data you entered. A YES response ignores all the data entered and leaves the file in
its original form. Accept the data by pressing the RETURN key to accept the default value (NO).
The example uses the NO response. The following display appears:

QUIT ED!T
OUTPUT FILE ACCESS NAME:

REPLACE?: NO
MOD LIST ACCESS NAME:

The cursor appears after the colon in the first line of the display. Enter the pathname of the new
output file, .USER.SOURCE and press the RETURN key. An entry is required since there is no input
file.

Press the RETURN key to accept the NO default value of the REPLACE? prompt. The NO response
allows you to avoid aCCidentally destroying an existing file.

Press the RETURN key in response to the MOD LIST ACCESS NAME prompt.

4-8 2270508·9701

Building an Assembly Language Program 4.5.2

Once the file has been created, the Text Editor is no longer active and the terminal returns to com
mand mode. The SCI prompt [] and a menu appear.

4.5.2 Editing an Existing File
The following example shows the general procedures for editing an existing file by using the Text
Editor. The file used as input is the one shown in Figure 4-1.

First, press the CMD key to enter command mode. Enter XE and press the RETURN key. The
following appears:

[]XE

EXECUTE TEXT EDITOR
FILE ACCESS NAME: .USER.SOURCE

The sample file, .USER.SOURCE, is displayed. (Enter .USER.SOURCE as the FILE ACCESS NAME
response, if .USER.SOURCE is not displayed). Press the RETURN key to display the first
24-records from the file. The Text Editor is in the edit mode, the cursor is in column one, row one,
and line numbers are displayed. In this example, we are going to modify the message, HELLO,
PLEASE INPUT NUMBER OF ITEMS SOLD TODAY. USE 4-DIGIT NUMBERS. We are going to
change HELLO to GOOD MORNING. To modify the message, perform the following:

1. Enter the command mode by pressing the CMD key.

2. Type RS to specify the Replace String command and press the RETURN key.

3. The prompts appear. Enter the following responses:

[] RS

REPLACE STRING
NUMBER OF OCCURRENCES:

START COLUMN:
END COLUMN:

STRING:
CHANGE:

1
14
18
HELLO
GOOD MORNING

4. Press RETURN to activate the command processor.

5. When the Text Editor completes the string replacement, the line containing the old
string, now changed, is displayed with the cursor in column one.

The RS command replaces the string HELLO with the string GOOD MORNING. Note that the
occurrence number indicates that it replaces the first occurrence of the word HELLO that starts in
column 14. Care should be taken that the occurrence number corresponds to the intended
replacement. The advantage of using the RS command is that the text editing system finds the
word in the file for you and replaces it without your having to manually delete the word and insert
the correction.

2270508-9701 4-9

4.6 Building an Assembly Language Program

Alternatively, the file can be edited manually. Once you have entered the file using the XE com
mand, you can page through the text using the F1 function key to page forward, and the F2 func
tion key to page backward. When you find the text you want to change, position the cursor over
the word to be corrected. Use the DEL CHAR key to delete the word or characters. Then press the
!NS CH.A,R key and type in the characters to be inserted. Note that you can also locate a particular
word in a file by using the FS command to find a specified string or word. The FS command
operates very similarly to the RS command.

Once the modifications to the file are complete, press the CMD key to enter the command mode.
Type QE and press the RETURN key. The following appears:

[JQE

QUIT EDIT
ABORT?: NO

Press RETURN in response to the ABORT? prompt to save the modified file. The following
appears:

QUIT EDIT
OUTPUT FILE ACCESS NAME:

REPLACE?:
MOD LIST ACCESS NAM E:

.USER.SOURCE
NO

Press RETURN to accept .USER.SOURCE as the output file. Enter Y in response to the REPLACE?
prompt and press the RETURN key twice. The Text Editor now terminates and the SCI prompt []
and menu return.

4.6 PROGRAMMING TECHNIQUES

The first step in developing an Assembly Language program is to clearly define the problem that
the program is to solve and produce a good flowchart of the proposed solution. Try to break up the
program into a series of subfunctions that can be coded in small modules: two to three hundred
lines is a good limit for the size of a single module.

Determine what data you \rAJill need, both global and local to a subfunction, and how you wi!1 struc
ture the data. Plan your subroutine linkage: calling, parameter passing, and returning protocols.

Data structures can be made global by using the External Reference (REF) and External Definition
(DEF) directives or by putting them into a CSEG. If a CSEG is used, have only one source version
of each ,CSEG. Trlis version is copied into the modules requiring the CSEG information by the
COPY directive.

4·10 2270508·9701

Building an Assembly Language Program 4.6

Techniques that can be used for subroutine calls include using the Branch (B), Branch Indirect
(BIND), Branch and Link (BL), Branch and Push Link to Stack (BLSK), or Branch and Load
Workspace Pointer (BLWP) instruction. With the BL instruction, it is necessary to save the con
tents of register 11 before making a call from the called routine. This instruction is faster than the
BLWP instruction and takes less memory. An advantage of using the BLWP instruction is that a
fresh set of registers is available for use and the contents of the previously used set can be
accessed by using register 13 as an index register. Status information can be passed back to the
calling routine by placing data in bits 0-5 (status bits) of register 15. When the Return with
Workspace Pointer (RTWP) instruction is executed, the contents of register 15 become the con
tents of the status register, and the calling routine can test the appropriate bits.

When coding individual modules, clearly identify the module using the Page Title (TITL) and Pro
gram Identifier (lOT) directives. Comments should be included at the beginning of the program
stating the name and function of the module plus any useful information concerning parameters,
calling conventions, and various programming methods used in coding the program. Instead of
constants, use meaningful symbolic names defined with the Define Assembly-Time Constant
(EQU) directive. Segmentation (use of the CSEG, DSEG, and PSEG directives) is mainly useful for
coding shared procedures or RAM/ROM partitioned programs, but it can be used as documenta
tion. Document the function or meaning of externally referenced symbols as well as locally
defined symbols.

2270508·9701 4·1114·12

5

Assembling a Program

5.1 OPERATING THE MACRO ASSEMBLER

The Macro Assembler is executed by the DNOS System Command Interpreter (SCI) in either
background or batch mode.

To execute the Macro Assembler in background mode, enter the Execute Macro Assembler (XMA)
command and press RETURN.

The XMA command prompts appear:

[] XMA

EXECUTE MACRO ASSEM BLER
SOURCE ACCESS NAME: pathname@
OBJECT ACCESS NAME: [pathname@]
LISTING ACCESS NAME: pathname@
ERROR ACCESS NAME: [pathname@]

OPTIONS: [characters]
MACRO LIBRARY PATHNAME: [pathname@]

PRINT WIDTH (CHARS): integer
PAGE LENGTH (LINES): integer

(*)
(*)
(*)
(*)
(-*)
(*)
(80)
(60)

Enter the pathname or device name in response to the prompts described below. The Wait com
mand may be entered after the last response.

[] WAIT

- WAITING FOR BACKGROUND TASK TO COMPLETE -

When the assembler terminates normally, the following message is displayed:

I ASSEMBLR-0001 MACRO ASSEMBLY COMPLETE, XXXX ERROR(S), YYYY WARNING(S)

The message displays the number of errors and warnings encountered, if any. Refer to Appendix
B for the completion messages.

A description of the prompts follows:

SOURCE ACCESS NAME
The input file or device containing assembly language code to be assembled.

2270508·9701 5-1

5.1 Assembling a Program

OBJ ECT ACCESS NAM E
The object code output fiie or device. if this parameter is null, no object output is produced.
This is useful for preliminary assemblies to check for errors; since the assembler produces
no output, it operates faster.

LISTING ACCESS NAME
The assembly listing file or device. If DUMY is entered, no assembly listing is produced.

ERROR ACCESS NAME
The assembly error output. This file may be viewed by entering the Show File (SF) command.
If the ERROR ACCESS NAME is null, or if it is the same as the listing file, then errors are
displayed on the terminal by the Show Background Status (SBS) command. If the device
DUMY is specified, no error iisting is produced.

The error file contains a complete list of any source records which cause assembly errors
along with the other errors. If a condition is sensed which prevents the assembler from conti
nuing, a message is written to the error file stating what has occurred. Then the user must
enter the SBS command to view the error messages output by the assembler. Appendix A
contains a list of abnormal completion messages and possible causes.

OPTIONS

5-2

Output and list options for the assembler. The user specifies any (or all) of the following op
tions, separated by commas.

XREF - Prints a cross-reference listing at the end of the source and object listing file.

RXREF - Prints a reduced cross-reference listing at the end of the source and object listing
file.

SYMT - Includes a symbol table with the output object code. This option must be specified
to allow fully symbolic debugging.

TUNLST - Limits the listing for TEXT directives to a single line.

BUNLST - Limits the listing for BYTE directives to a single line.

DUNLST - Limits the listing for DATA directives to a singie iine.

MUNLST - Limits the listing for a macro expansion to a single line. TEXT, BYTE, and DATA
statements and Macro usage often expand to produce multiple lines of code. If these op
tions are selected, the statements appear in the listing but the expansion does not. For ex
ample, the source statement TEXT 'ABCDEF' produces the listing:

41 TEXT 'ABCDEF'
42
43
44
45
46

2270508-9701

Assembling a Program 5.2

With the TUNLST option specified, only the line 41 TEXT 'ABCDEF' is produced in the listing.

FUNL - Overrides the unlist directives.

NOLIST - Suppresses all listing output, except to the error file. Overrides other directives
and keywords.

12 - Specifies the full 990/12 instruction set. If the 990/12 instruction set is not specified, the
Macro Assembler defaults to the 990/10 instruction set.

Any of the Option Key words may be abbreviated; for example, any of the following may be
used for the TU N LST option:

T
TU
TUN
TUNL
TUNLS
TUNLST

To select more than one option, enter a list of keywords separated by commas. The keywords
may appear in any order. To select all the options, one could enter the line:

OPTIONS: X,S,T,B,D,M

The options specified for this parameter are in addition to any options specified by OPTION
directives in the source. (Refer to the Assembly Language Reference Manual.)

MACRO LIBRARY PATHNAME
A directory containing macro definitions for this assembly. This path name specification is
equivalent to specifying the same pathname in a LlBIN directive, except that this path name
becomes the system macro library and is retained through stacked assemblies. This
path name is printed on the cover sheet of the first module only.

PRINT WIDTH (CHARS)
Specifies the length of the lines to be written to the output fHe.

PAGE LENGTH (LINES)
Specifies the number of lines per page in the listing file.

5.2 FORMAT OF GENERATED FILES

The assembler prints a source listing of the assembly code and the error or warning messages
when these conditions are encountered. This section discusses the source listing, the error and
warning codes output by the assembler, and the object code format.

5.2.1 Source Listing
The source listing shows the source statements and the resulting object code. A typical listing is
shown in Figure 5-1.

2270508·9701 5-3

5.2.1 Assembting a p;ogram

SDSMAC
A~"r::OO Il..IAMC'C T A DI r::
n",,,,t;;,.ww , .. ". ,, ,"w PAGE 0001

SOURCE ACCESS NAME=
OBJECT ACCESS NAME=
LISTING ACCESS NAME=
ERROR ACCESS NAME=
OPTIONS=

· USER. SOURCE
· USER. OBJECT
· USER. LISTING
· USER. ERROR

MACRO LIBRARY PATHNAME=

RESPONSE SDSMAC

0001 0000
0002 0000
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014 0000 0006'
0015 0002 0142'
0016 0004 0000
0017 0006
0018 0026 0000
0019 0028 00

0029 20
0020 002A 0000
0021 002C 0000
0022 002E 0000
0023 0030 0000
0024 0032 0000
0025 0034 OB

0035 20
0026 0036 0000
0027 0038 003E'
0028 003A 0000
0029 003C 0050
0030
0031
0032
0033
0034

5-4

PAGE 0002

**
* BEGINNING OF DATA SECTION
**

IDT 'RESPONSE'
**
* OPENING DATA WORDS
* 1. WORKSPACE POINTER
* 2. PC VALUE AT START OF PROGRAM
* 3. END ACTION ITEM (IF ANY)
******~***

*

WSP
OPEN

MSSGO

*

DATA WSP
DATA START
DATA 0
BSS 32
DATA 0
BYTE :>01)-20

DATA 0
DATA 0
DATA 0
DAfA 0
DATA 0
BYTE)OB, :>20

DATA 0

WORKSPACE POINTER ADDRESS
PC AT PROGRAM BEGINNING
END ACTION (NONE SPECIFIED)
WORKSPACE REGISTERS
I/O REGUEST
OPEN LUNO)-20

I/O REQUEST
WRITE ASCII ON LUND ~20

DATA GREET MESSAGE LOCATION
DATA 0
DATA MSSG1-GREET MESSAGE LENGTH

**
* SPECIFY THE FIRST MESSAGE
**
*

Figure 5·1. Source Listing Example

2270508-9701

Assembling a Progran 5.2.1

The assembler produces a cover page as the first output in the listing. This cover page contains a
table that provides a record of the files and devices used during the assembly process. Figure 5-2
is an example of this output when a macro library is specified. A macro library is a directory con
taining files of macro definitions. The assembler directives LlBIN and LlBOUT identify macro
libraries where macro definitions are read and written.

The output has two sections:

• A listing of the parameters that were passed to the assembler via SCI.

• A list of access names encountered during the first pass of the assembly.

In the first section, any parameters that have no values are left blank. The fields in the second sec
tion are labeled as follows:

LINE - This field contains the record number in which the access name was encountered.

KEY - This field contains one of the following:

LI (indicating a LlBIN usage)

LO (indicating a LlBOUT usage)

single character (a single character key assigned to a copy file)

SDSMAC

ACCESS NAMES TABLE

SOURCE ACCESS NAME=
OBJECT ACCESS NAME=
LISTING ACCERSS NAME=
ERROR ACCESS NAME=
OPTIONS=

· USER. SRC. TEST 1

· USER. LIST. TEST!

XREFISYMT,TUNLST,MUNLST
· SDSMAC. MACRODEF MACRO LIBRARY PATHNAME=

LINE KEY NAME

0001 LI . SDSMAC. MACRODEF
=).SDSMAC.MACRODEF

0001 LO MACROS
=).SDSMAC. MACRODEF

0002 A DSC. SYSTEM. TABLES.DOR
=>DS01. SYSTEM.TABLES.DOR

0003 LI . SDSHAC. MACRODEF
=>.SDSMAC.MACRODEF

Figure 5·2. Output Cover Page Example

2270508-9701

PAGE 0001

5-5

5.2.1 Assembling a Program

NAM E - This field contains two access names. The first name is the name that appears in
the source record. The second name, fOilowing the;;;;;; >, is the jesuit oi synonym substitution
in the first name.

Each page of the source listing has a title line at the top of the page. Any title supplied by a TITL
directive is printed on this line, and a page number is printed to the right of the title area. The
printer skips a line below the title line, and prints a line for each source statement listed. The line
for each source statement contains a source statement number, a location counter value, object
code assembled, and the source statement as entered. When a source statement results in more
than one word of object code, the assembler prints the location counter value and object code on
a separate line succeeding the source statement. The source listing lines for some example
source statements are shown in Figure 5-3:

The source statement number, 0014 in the example, is a four-digit decimal number. Source
records are numbered in the order in which they are entered, whether they are listed or not. The
TITL, LIST, UNL, and PAGE directives are not listed, and source records between a UNL directive
and a LIST directive are not listed. The difference between source record numbers printed
indicates how many source records are not listed.

The next field on a line of the listing contains the location counter value, a hexadecimal value. In
the example, 0000 is the location counter value. Not all directives affect the location counter, and
those that do not affect the location counter leave this field blank. Specifically, the directives IDT,
REF, DEF, DXOP, EOU, SREF, LOAD, and END leave the location counter field blank.

The third field normally contains a single blank. However, the assembler places a dash in this
field when warnings are detected.

The fourth field contains the hexadecimal representation of the object code placed in the location
by the assembler, 0006 in the example. The apostrophe following the fourth field indicates that
the content, 0006, is program-relocatable. A relocatable address is an address which is relative to
the base address of a particular code segment. The link editor will modify the address by adding
the base address of the segment to it when the base address is determined. A program
relocatable address is an address relative to the beginning of a program segment (PSEG). A quote
(") in this location indicates the location is data-relocatable, the address is relative to the base
address of a data segment (DSEG). A plus (+) indicates the label is relocatable with respect to a
common segment (CSEG). All machine instructions and the BYTE, DATA, and TEXT directive use
this field for object code. The EOU directive places the value corresponding to the label in the
object code field.

0014 0000 0006.1

0015 0002 0142'
0016 0004 0000
0017 0006

5-6

DATA WSP
DATA START
DATA 0

WSP ._- ass 32

WORKSPACE POINTER ADDRESS
PC AT PROGRAM BEGINNING
END ACTION (NONE SPECIFIED)
WORKSPACE REGISTERS

Figure 5·3. Source Statement Listing Example

2270508·9701

Assembling a Program 5.2.2

The fifth field contains the first n-characters of source statement as supplied to the assembler,
where n equals a print width between 20 and 80, inclusive. Spacing in this field is determined by
the spacing in the source statement. The four fields of source statements will be aligned in the
listing only when they are aligned in the same character positions in the source statements or
when tab characters are used.

5.2.2 Error Messages
The assembler prints the following error message on successive lines of the listing when an error
is detected:

* * * error description * * *

LAST ERROR AT XXXX

The second line identifies the statement in which the previous error was detected.

At the end of the listing is an error summary, as follows:

NNNN ERRORS, LAST ERROR AT XXXX,YYYY WARNINGS

NNNN is the count of errors in the assembly. XXXX identifies the last error detected in the
assembly. YYYY is the count of the warnings in the assembly. The second lines of the error
messages link the error messages so that the user may begin at the error summary message and
readily locate all error messages. In an error-free assembly, the final message is:

NO ERRORS, NO WARNINGS or NO ERRORS, XXXX WARNINGS

Several errors detected by the assembler (such as arithmetic overflow while evaluating expres
sions) are considered to be only warnings. The programmer should examine the code generated
when warning messages occur since the results mayor may not be the code expected. Warning
messages are written only to the error file and are not included in the listing. However, a dash is
placed in column 11 of the listing where the warning error occurred. Warning messages do not
include an indication of a previous warning or error. Refer to the Appendix C for listing error
messages.

5.2.3 Cross· Reference Listing
The assembler prints an optional cross-reference listing following the source listing. The format
of the listing is shown in Figure 5-4. In the LABEL column, the assembler prints each symbol
defined or referenced in the assembly program. In the second column, the attributes of the sym
bol are indicated as a list of single characters. The characters that appear in the second column,
and their meanings, are listed in Table 5-1. The VALUE column contains a four-digit hexadecimal
number assigned to the symbol. The DEFN column is the statement number of the defined sym
bol. For undefined symbols, the fourth column is left blank. The REFERENCE column contains a
list of the statement numbers that reference the symbol. This column is left blank if the symbol is
unused. An apostrophe in the value column means that the content is program-relocatable.

2270508-9701 5-7

5.2.4 Assembling a Program

CROSS REFERENCE

LABEL VALUE DEFN REFERENCES

ADDT 01A8' 0325 0314
ADSR D OlAO' 0316 0342 0343 0348 0349
GT 0006 0997

Figure 5·4. Cross Reference Listing

Table 5-1 shows the characters that appear in the second column of the cross-reference and their
meanings.

5.2.4 Object Code

Character

R
D
U
M
S
L

Table 55 1. Symbol Attributes

Meaning

External reference (REF)
External definition (DEF)
Undefined
Macro name
Secondary reference (SREF)
Force load (LOAD)

The assembler produces object code to load into the 990 computer. This object code may be
linked to other object code modules (or programs) or loaded directly. Object code consists of
records containing up to 71 ASCII characters each. The format, described in the next paragraph,
permits corrections of errors without reassembling the program (discussed in Procedures on
Changing Object Code paragraph). An example of output object code is shown in Figure 5-5.

5.2.4.1 Object Code Format. The object record consists of a number of tag characters, each
followed by one to three fields as defined in Table 5-2. The first character of a record is the first
tag character, which tells the loader which field or fields follow the tag. The next tag character
follows the end of the field or fields associated with the preceding tag character. When the
assembler has no more data for the record, the assembler writes tag character 7 followed by its
field in turn followed by the tag character F. The assembler then fills the rest of the record with
blanks and a sequence number, and begins a new record with the appropriate tag character.

5-8 2270508·9701

Assembling a Program 5.2.4.1

0015CRESPONSEAOOOOC0006C013CBOCOOA0006A0026BOOOOB0020BOOOOB00007F2ilF
BOOOOBOOOOBOOOOBOB20BOOOOC003EBOOOOB004ABOAODB4845B4C4CB4F2CB20507F1CFF
34C45B4153B4520B494EB5055B5420B4E55B4D42B4552B204FB462OB4954B454D7F187F
B5320B534FB4C44B2054B4F44B4159B2E20B2055B5345B2034B2D44B4947B49547F199F
B204EB554DB4245B5253B2EOOA0086BOAODBOOOOBOB20B0040COOA8BOOOOBOOOA7F1C8F
C0096C009CB0004BOOOOA009CAOOA8BOAODB4954B454DB2031B202OBOOOOBOB207F1D1F
B0040COOC6BOOOOBOOOAGOOCOCOOAOB0004BOOOOBOAODB4954B454DB2032B20207F1EFF
BOOOOBOB20B0040COOE4BOOOOBOOOACOODECOOA2B0004BOOOOBOAODB4954B454D7F1CEF
B2033B2020B2000AOOFOBOOOOBOB20BOOOOCOOFCBOOOOB0032BOAODB5448B414E7F1F1F
B4B20B594FB5520B464FB5220B594FB5552B2050B5552B4348B4153B452EB20487F197F
B4156B4520B4120B4E49B4345B2044B4159B2EOOA012CBOAODBOOOOB0120B00007F1E6F
BOOOOBOOOOBOOOOB0400B2FEOC0026B2FEOC0032B2FEOC0088B2FEOCOOB2B2FE07F195F
COODOB2FEOCOOFOB2FEOC012EB2FEOC013A7F7D9F
2013C7FECOF

RESPONSE

Figure 5·5. Object Code Example

Table 5·2. Object Record Format and Tags

Tag Field 1 Fie!d 2 Field 3

MODULE DEFINITION
0 PSEG Length Program ID (8)
M DSEG Length $DATA 0000

RESPOOOl
RESP0002
RESP0003
RESP0004
RESP0005
RESP0006
RESP0007
RESP0008
RESP0009
RESP0010
RESP001!
RESP0012
RESP0013
RESP0014
RESP0015

M Blank Common Length $BLANK Common #
M CSEG Length Common Name (6) Common #
M CBSEG Length $CBSEG CBSEG # *

ENTRY POINT DEFINITION
1 Absolute Address
2 P-R Address

LOAD ADDRESS
9 Absolute Address
A P-R Address
S D-R Address
P CoR Address Common or CBSEG #

DATA
B Absolute Value
C P-R Address
T D-S Address
N CoR Address Common or CBSEG #

EXTERNAL DEFINITIONS
5 P-R Address Symbol (6)
6 Absolute Value Symbol (6)
W D-R/C-R Address Symbol (6) Common #

2270508·9701 5-9

5.2.4.1 Assembling a Progra.m

5-10

Table 5-2. Object Record Format and Tags (Continued)

Tag Field 1

EXTERNAL REFERENCES
3 P-R Address of Chain
4 Absolute Address of Chain
X D-R/C-R Address of Chain
E Reference Index Number

SYMBOL DEFINITIONS
G P-R Address
H Absolute Value
J D-R/C-R Address

FORCE EXTERNAL LINK
U 0000

SECONDARY EXTERNAL REFERENCE
V P-R Address of Chain
Y Absolute Address of Chain
Z D-R/C-R Address of Chain

CHECK SUM
7 Value

IGNORE CHECK SUM *
8 Any Value

LOAD BIAS *
o Absolute Address

END OF RECORD
F

REPEAT COUNT (FORTRAN OPTION) *
R Value

PROGRAM 10 (SYMT OPTION) *
P-R Address

COBOL SEGMENT REFERENCE *
Q Record Offset

Notes:

Field 2

Symbol (6)
Symbol (6)
Symbol (6)
Absolute Offset

Symbol (6)
Symbol (6)
Symbol (6)

Symbol (6)

Symbol (6)
Symbol (6)
Symbol (6)

Repeat Count

Program 10 (8)

CBSEG #

Field 3

Common #

Common #

Common #

All field widths are four-characters unless otherwise specified by numbers in parentheses

If the first tag is >01, the file is in compressed object format

P-R Program Segment Relative (address)
D-R Data Segment Relative (address)
CoR Common Segment Relative (address)

* Not generated during assembly.

2270508-9701

Assembling a Program 5.2.4.1

Tag Character 0
This tag character is followed by two fields.

Field 1 - The number of bytes of program-relocatable code.

Field 2 - The program identifier assigned to the program by an lOT directive. When no lOT
directive is entered, the field contains blanks. The linker uses the program identifier to name
the program. The number of bytes of program-relocatable code determines the load bias for
the next module or program. The assembler places a single tag character 0 at the beginning
of each program.

Tag Character M
This tag character is used when data or common segments are defined in the program and is
followed by three fields. COBOL also uses this tag for special code segments.

Field 1 - The length, in bytes, of data- or common-relocatable code.

Field 2 - The data or common segment identifier. The identifier is a six-character field con
taining the name $OATA (there must be a blank after $OATA) for data segments and $BLANK
for blank common segments. If a named common segment appears in the program, an M tag
will appear in the object code with an identifier field corresponding to the operand in the
defining CSEG directive(s). The name $CBSEG is used for COBOL special code segments.

Field 3 - A four-character hexadecimal number defining a unique "common number" to be
used by other tags which reference or initialize data of that particular segment. For data
segments, this common number is always zero. For common segments (including blank
common), a common number is assigned to each segment beginning with one and ending
with the number of different common segments. The maximum number of common
segments that a program may contain is 126.

Tag Characters 1 and 2
These tag characters are ~sed with entry addresses.

1 - Used when the entry address is absolute.

2 - Used when the entry address is program-relocatable.

Field 1 - The entry address in hexadecimal. One of these tags may appear at the end of the
object code file. The associated field is used by the loader to determine the entry point at
which execution starts when the loading is complete.

Tag Characters 9, A, S, and P
These tag characters are used with load addresses for data that follows. Tag P contains two
fields, all the other tags contain only one field.

9 - Used when the load address is absolute.

A - Used when the load address is program-relocatable.

2270508·9701 5-11

5.2.4.1 Assembling a Program

S - Used when the load address is data-relocatable.

P - Used when the load address is common-relocatable.

Field 1 - The address at which the following data word is to be loaded. A load address is re
quired for a data word that is to be placed in memory at some address other than the next ad
dress. The load address is used by the loader.

Field 2 - The common number for tag character P.

Tag Characters B, C, T, and N
These tag characters are used with data words. Tag N contains two fields; all the other tags
contain only one field.

B - Used when the data is absolute (an instruction word or a word that contains text
characters or absolute constants).

C - Used for a word that contains a program-relocatable address.

T - Used for a word that contains a data-relocatable address.

N - Used for a word that contains a common-relocatable address.

Field 1 - The data word. The loader places the data word in the memory location specified
in the preceding load address field or in the memory location that follows the preceding data
word.

Field 2 - The common number for tag character N.

Tag Characters 5, 6, and W

5-12

These tag characters are used for external definitions, Tag W consists of three fields; the
other two tags contai n two fields.

5 - Used when the location is program-relocatable.

6 - Used when the location is absolute.

V'J - Used when the location is data- or common-relocatable.

The fields are used by the Link Editor to provide the desired linking to the external definition.

Field 1 - The defined value of the external symbol.

Field 2 - The symbol which is being defined.

Field 3 - The common number for tag character V..J.

2270508-9701

Assembling a Program 5.2.4.1

Tag Characters 3, 4, and X
These tag characters are used for external references. Fields 1 and 2 are used by the linker to
provide the desired linking to the external reference.

3 - Used when the last appearance of the symbol in field 2 of the tag is in program
relocatable code.

4 - Used when the last appearance of the symbol is in absolute code.

X - Used when the last appearance of the symbol is in data- or common-relocatable
code.

Field 1 - The location of the last appearance of the symbol.

When the location of the last appearance is absolute zero, no location in the pro
gram requires the address corresponding to the reference.

When the location of the last appearance is (_not) absolute zero, that location
serves as the base address of a back chain. The various locations of uses of an ex
ternal reference are chained together with each link in the chain pointing to a loca
tion which has appeared previously in the object code. Thus the contents of the
base address of the back chain is the address of the immediately preceding link in
the chain. The location of the final link will contain absolute zero.

Field 2 - The external reference.

Field 3 - Tag character X, which gives the common number.

For each external reference in a program, there is a tag character in the object code with a
location or an absolute zero, and the symbol referenced.

Figure 5-6 illustrates the chain of the external reference (EXTR).

The object code contains the following tag and fields:

4COOEEXTR

At location COOE, the address COOA points to the preceding appearance of the reference. The
chain includes both absolute and relocatable addresses. The absolute addresses are COOE, COOA,
C006, C002, BOOE, BOOA, B006, and B002. The relocatable addresses are 029E, 029A, 0298, 0294,
0290, and 028E. Each location points to the preceding appearance, except for location 028E,
which contains zero. The zero identifies location 028E as the first appearance of EXTR, the end of
the chain.

Tag Character E
This tag character is also used for external references. An E tag is used when a non-zero
quantity is to be added to a reference.

Field 1 - The index into references identified by 3, 4, V, X, Y, and Z tags in the object code.

2270508·9701 5-13

5.2.4.1 Assembling a Program

0229 * DEMONSTRATE EXTERNAL
0230 * REFERENCELiN~iNG

0231 * 0232 REF EXTR
0233 028C RORG
0234 028C C820 MOV @EXTR,@EXTR

02SE O~OO

0290 028E'
0235 0292 28EO XOR @EXTR,3

0294 0290'
0236 'BOOO. AORG)BOOO

0237 BOOO 3220 LDCR @EXTR,8
B002 '0294'

0238 B004 0420 BLWP @EXTR
B006 B002

0239 B008 0223 AI 3, EXTR
BOOA "B006

0240 BOOC 38AO MPY @EXTR,2
BOOE 'BOOA

0241 0296 RORG
0242 0296 C820 MOV ctEXTR,@EXTR

0298 BOOE
029A 0298'

J'I\ ,.fIIIi\ 029C 28EO XOR a.-v..,.", ""
v~ ... '" .I:.AII'\I~

029E 029A'
0244 COOO AORG)COOO
0245 COOO 3220 LDCR @EXTR,8

COO2 029E'
0246 C004 O~20 BLWP @EXTR

C006 COO2
0247 cooa 0223 AI 3, EXTR

COOA C096
0248 cooe 38AO MPY @EXTR,2

COOE CoOA

Figure 5·6. External Reference

Field 2 - The value to be added to the reference after the reference is resolved.

The list is maintained by order of occurrence (the first entry in the list is the symbol located
in field 2 of the first 3, 4, V, X, Y, or Z tag.) The index to that reference in the E tag would be
0000.

Tag Characters G, H, and J

5-14

These tag characters are used when the symbol table option is specified with the assembler.
Tag J contains three fields. all the other tags contain two fields.

2270508·9701

Assembling a Program 5.2.4.1

G - Used when the location or value of the symbol is program-relocatable.

H - Used when the location or value of the symbol is absolute.

J - Used when the location or value of the symbol is data- or common-relocatable.
Field 1 - The location or value of the symbol.

Field 2 - The symbol to which the location is assigned.

Field 3 - The common number for tag character J.

Tag Character U
This tag character is generated by the LOAD directive. The symbol specified is treated as if it
were the value specified in an INCLUDE command to the loader.

Field 1 - All zeros.

Field 2 - The symbol to be defined. Refer to the LOAD directive in the Assembly Language
Reference Manual for further information.

Tag Characters V, Y, and Z
These tag characters are used for secondary external references. The three fields are used
by the Link Editor to provide linking to the secondary external reference.

V - Used when the last appearance of the symbol is in program-relocatable code.

Y - Used when the last appearance of the symbol is in absolute code.

Z - Used when the last appearance of the symbol is in data- or common-relocatable
code.

Field 1 - The location of the last appearance of the symbol.

Field 2 - The symbol that is used as the secondary external reference.

Field 3 - The common number for tag character Z.

Tag Character 7
This tag character precedes the checksum, which is an error detection word. The checksum
is formed as the record is being written. It is the two's complement of the summed 8-bit
ASCII character values from the first tag through tag 7.

Field 1 - The checksum value.

Tag Character 8
This tag character is used to ignore the checksum and is not generated at assembly.

Field 1 - The checksum value to be ignored.

2270508-9701 5-15

5.2.4.2 Assembling a Prngram

Tag Character 0
This tag character is used to specify a load bias and is not generated during assembly.

Field 1 - The absolute address used by the loader to relocate the symbols when loading.
The Link Editor does not accept the 0 tag.

Tag Character F
This tag character indicates the end of record. It may be followed by blanks.

Tag Character R
This tag character is generated during FORTRAN compilation and represents the repeated
count of an absolute value (B tags).

Tag Character I
This tag character represents the base address of a module and is generated by the Link
Editor.

Field 1 - The base address of the named module in the linked object.

Field 2 - lOT name of the module.

Tag Character Q
This tag character is generated during COBOL compilation. This tag is the segment identifier
to the overlay directory entry.

Field 1 - The record offset.

Field 2 - CBSEG number.

The last record of an object module has a colon (:) in the first character position of the record,
followed by blanks or a time and date identifying stamp.

5.2.4.2 Machine Language Format. Some of the data words preceded by tag character B repre
sent machine instructions. Comparing the source listing with the object code fields identifies the
data words that represent machine instructions. Figure 5-7 shows the manner in which the bits of
the machine instructions reiate to the operands in the source statements for each format of
machine instruction.

5.2.4.3 Symbol Table. When the SYMT option is specified, the symbol table is included in the
object code file. One entry, using tag character G or H as appropriate, is supplied for each symbol
defined in the assembly.

5.2.4.4 Procedures for Changing Object Code. In most cases, changing the object code to cor
rect errors in a program is not recommended. Ali changes or corrections to a program should be
made in the source code. Then the program should be reassembled. Failure to follow this princi
ple can make subsequent correction or maintenance of the program impossible. The information
in the following paragraphs is intended for those rare instances when reassembly is not possible.
Any changes made directly to the object code should be thoroughly documented to show what
the program actually does, not what the source code says it does. To correct the object code
w!thou! reassemb!!ng e. p~ogramj ch~tlg~ the oblect code by cha.nging or ~dding on~ or more

5-16 2270508·9701

3,9

,

4

6

2

5

8

18

18

7

7

7

10

1 1

1 1

1 1

12

12

19

20

21

16

15

14

1'3

17

X

WIB

To

o
TS

S
NUM.
DISP

REG
COUNT

M
BC

CKPT
COND

o
1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

o LENGTH
S LENGTH
WIDTH

POS
CONST
NOT USED

NU

2279942

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Assembling a Program 5.2.4.4

2 3 4 5 6 7 8 9 10 112 3 1 1 14 15164 .31

:8 T [J I d 0
X B

S - TS
1 X X X

1 1 0 xl NUM I
0 o 0 1 X X X X

0 1 X X X X I DISP I NOT USED

0 0 1 0 X X I COUNT I[J 0 0 0 0 1 0 X XX

~ REG 0 0 0 0 0 0 X XX

0 0 0 0 1 0 1 XX

0 0 0 0 1 1 X XX 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 , 1 X X

0 0 1 1 0 0 0 0 0 0 X X X X

0 0 0 0 , 1 0 o , ~I REG I -0 0 0 0 0 0 0 0 0 , , , , X

0 0 0 0 0 0 0 0 1 0 X X X X

0 0 1 1 0 0 0 0 0 0 , 0 0 0
BC

0 0 0 0 0 0 X X X X

I
CKPT I 0 0 1 1 1 0 0 0 X X Td D

0 0 0 0 0 0 0 0 1 0 , 0 , , INOT USEDI

I 0 0 0 0 0 0 0 0 1 0 0 0 X xl COND I TS S

0 0 0 0 1 1 1 1 1 1 I 0 LENGTHII S LENGTHI

0 0 1 1 0 0 0 0 X X 81 II N~I US!;D

I
0 0 1 1 1 0 0 0 0 0 POS

0 0 , 1 0 0 0 0 0 0 1 X X X

0 0 0 0 0 0 0 0 0 1 1 1 0 X I S LENGTHI~I COUNT I~
0 0 1 1 0 0 0 0 0 0 1 t 0 xl CONST II REG II DISP

IS A BIT OF THE OPERATION CODE THAT IS EITHER 0 OR 1 ACCORDING TO THE
SPECIFIC INSTRUCTION IN THE FORMAT
IS A BIT IN THE OPERATION CODE THAT IS 0 IN INSTRUCTIONS THAT OPERATE ON
WORDS, AND 1 IN INSTRUCTIONS THAT OPERATE ON BYTES
IS A PAIR OF BITS THAT SPECIFY THE ADDRESSING MODE OF THE DESTINATION
OPERAND, AS FOLLOWS;

00 = WORKSPACE REGISTER ADDRESSING
o t = WORKSPACE REGISTER INDIRECT ADDRESSING
10 = SYMBOLIC MEMORY ADDRESSING WHEN 0 = 0
10 = INDEXED MEMORY ADDRESSING WHEN 0 * 0
11 = WORKSPACE REGISTER INDIRECT AUTOINCREMENT ADDRESSING

IS THE WORKSPACE REGISTER FOR THE DESTINATION OPERAND

I

IS A PAIR OF BITS THAT SPECIFY THE ADDRESSING MODE OF THE SOURCE OPERAND
AS SHOWN FOR To
IS THE WORKSPACE REGISTER FOR THE SOURCE OPERAND
IS THE NUMBER OF BITS TO BE TRANSFERRED
IS A TWO'S COMPLEMENT NUMBER THAT REPRESENTS A DISPLACEMENT
IS A WORKSPACE REGISTER ADDRESS
IS A SHIFT COUNT
IS A MAP REGISTER FILE NUMBER (0 OR 1)
I S A BYTE COUNT
IS A CHECKPOINT REGISTER ADDRESS
IS A LOGICAL SEARCH CONDITION (EQ t~T J.ETC.)
IS A BYTE COUNT OF THE DESTINATION Ot-"ERAND
I S A BYTE COUNT OF THE SOURCE OPERAND
IS THE NUMBER OF BITS CONTAINED IN THE OPERAND
IS A BIT POSITION
IS A CONSTANT TO BE ADDED TO OR SUBTRACTED FROM A WORKSPACE REGISTER
IS A GROUP OF BITS NOT USED IN THE INSTRUCTION
NOT USED

Figure 5·7. Machine Instruction Formats

2270508-9701 5-17

5.2.4.4 Assembling a Program

records. One additional tag character is recognized by the loader to permit specifying a load
point. The additional tag character D, may be used in object records changed or added manually.

Tag character D is followed by a load bias (offset) value. The loader uses this value instead of the
load bias computed by the loader itself. The loader adds the load bias to all relocatable entry
addresses, external references, external definitions, load addresses, and data. The effect of the D
tag is to specify the area of memory for loading. The tag character D and the associated field must
precede the assembler generated object code.

NOTE

Both linked object code and object code ioaded by the boot ioader
can be changed without reassembling the program. However, the
Link Editor will not accept tag character D in changed or added
object records.

Correction qfthe object code may require only changing a character or a word in an object code
record. The' user may duplicate the record up to the character or word in error, replace the incor
rect data with the correct data, and duplicate the remainder of the record up to the tag character 7.
Because the changes the user has made will cause a checksum error when the checksum is
verified as the record is loaded, the user must change tag 7 to tag 8.

When more extensive changes are required, the user may write an additional object code record
or records. Begin each record with a tag character 9, A, S, or P, followed by an absolute load
address or a relocatable load address. This may be an address into which an existing object code
record places a different value. The new value on the new record will override the other value
when the new record follows the other record in the loading sequence. Follow the load address
with a tag character B, C, or N, and an absolute data word or a relocatable data word. Additional
data words preceded by appropriate tag characters may follow. When additional data is to be
placed at a non-sequential address, write another load address tag character (9, A, S, or P), the
load address and data words, and precede with the appropriate tag character (B, C, or N). When
the record is full, or all changes have been written, write tag character F to end the record.

When additional memory locations are loaded as a result of changes, the user must change field 1
of tag character 0 which contains the number of bytes of relocatable code. For example, when the
object file written by the assembler contains >1000 bytes of relocatable code, and the user adds 8
bytes in a new object record, additional memory locations will be loaded. Therefore, the user must
find the first 0 tag character in the object code file and change the value following the tag value
from 1000 to 1008. The 7 tag character must be changed to a tag 8 in that record.

When added records place corrected data in locations previously loaded, the added records must
follow the incorrect records. The loader processes the records as they are read from the object
medium. The last record that affects a given memory location determines the contents of that
location at execution time.

The object code records that contain the external definition fields, the external reference fields,
the entry address field, and the final program start field must follow all other object records. An
additional field or record may be added to include reference to a program identifier \Nith the tag
character 4. In this case, Field 1 contains 0 and Field 2 contains the first six characters of the IDT

5-18 2270508·9701

Assembling a Program 5.3

character string. External definitions may be added using tag character 5 or 6 followed by the
relocatable or absolute address, respectively, in Field 1. Field 2 contains the first six characters of
the defined symbol, left justified and blank filled to the right.

5.3 OPERATING THE ASSEMBLER IN BATCH MODE

Operating the Macro Assembler in batch mode requires two steps:

1. Prepare the batch command stream.

2. Execute the batch command stream using the Execute Batch (XB) or the Execute
Batch Job (XBJ) command.

Refer to the DNOS System Command Interpreter (SCI) Reference Manual for information related
to batch mode execution and batch stream examples.

5.3.1 Batch Stream Structure
The Batch command stream for macro assembly is depicted in Figure 5-8.

Any sequential media (cards, cassette, magnetic tape, or sequential file) may be used for the
batch stream.

The parameters for records in a Macro Assembly batch stream are the following:

BATCH and EBATCH
In order to remove unwanted synonyms and default values, the BATCH command should be
the first command in any batch stream and the EBATCH command should be the last com
mand.

XMA record
Specifies the Macro Assembly and supplies the required parameters. Parameters are sup
plied in the following format:

field prompt = value

The prompts assign the first, second, and other parameters associated with the command. A
prompt is either the full field prompt associated with each parameter, or an abbreviation that
includes enough characters to identify the field prompt. Often, only the first character of a field
prompt has to be entered. For example, to specify the source file .ALFILE, the following
characters may be used:

SOURCE = .ALFILE

or

S = .ALFILE

2270508-9701 5-19

5.3.2 Assembling a Program

BATCH
XMA S=.ALFILEI O~.ALOB~, L=.ALLIST
EBATCH

Figure 5·8. Macro Assembly Batch Stream

When a prompt takes a list as input, the list must be enclosed in parentheses:

OPTIONS = (X,T,U)

Each prompt response must be separated from other responses by a comma. For exampie, the
following record assembles a source file named .SOURCE, producing an object file (.OBJECT), a
listing file (.LlST), and reporting errors to .ERR; the options selected are cross reference (XREF)
and symbol table (SYMT); no macro library is to be used:

XMA S = .SOURCE,OB = .OBJECT,L = .LlST,E = .ERR,OP = (X,S)

The only required parameters are SOURCE and LISTING. Other parameters may use initial values
as indicated in the paragraph on background processing.

5.3.2 Execute Batch Command
To execute a batch stream, enter the Execute Batch (XB) command and press RETURN. The
following appears:

Prompts:

EXECUTE BATCH
INPUT ACCESS NAME:

LISTING ACCESS NAME:

Prompt Details:

INPUT ACCESS NAME:

pathname@
pathname@

The pathname from which SCI should read the batch command stream.

LISTING ACCESS NAME:
The pathname of a device or file to which SCI should write the results of the batch command
stream execution. This device or file must not be used by any command in the batch com
mand stream.

Example:

5-20

In the following exampie, the XB command will execute a batch stieam fiom a file and output
the results of the batch command stream to a line printer.

[] XB
EXECUTE BATCH

INPUT ACCESS NAME: MY.BATCH
I r-\1"\-4I
1 __) I

2270508-9701

Assembling a Program 5.3.3

5.3.3 Execute Batch Job
The Execute Batch Job (XBJ) command allows a user to create a batch job with different
operating parameters than those of the creating job.

To execute the XBJ command, enter XBJ and press RETURN. The following appears:

Prompts:

EXECUTE BATCH SCI JOB
JOB NAM E: alphanumeric

USE CURRENT USER 10?: YES/NO (YES)
LOGICAL NAME TABLE PATHNAME: [filename@]

SYNONYM TABLE PATHNAME: [filename@]

If NO is the response to the USE CURRENT USER 10? prompt, the following prompts are
displayed:

EXECUTE BATCH SCI JOB
USER 10: alphanumeric

PASSCOOE: [characters]
ACCOUNT 10: [characters]

If the user's response to the SYNONYM TABLE PATHNAME prompt is null, the following
prompts are displayed on the user's terminal:

I N PUT ACCESS NAM E: pathname@
LISTING ACCESS NAME: pathname@

Prompt Details:

JOB NAME:
A one- to eight-character, user-defined string by which the user wishes to reference the job.

USE CURRENT USER ID:
If YES is specified, the current user 10 is used. If the response is NO, the user must specify a
new user 10.

USER 10:
The user 10 to be associated with the new job. A response to this prompt is required if the
response to the USE CURRENT USER 10? prompt was NO.

PASSCOOE:
The passcode corresponding to the user 10 of the new job.

ACCOUNT 10:
A 1- to 16-character string that is the account 10 for the new job.

2270508-9701 5-21

5.3.4 Assembling a Program

LOGICAL NAME TABLE PATHNAME:
The fiie name containing the iogicai names to be passed to the new job. A nuii response
passes the creating job's logical names. Any other entry is considered a file name containing
logical names established by the Snapshot Name Definition (SND) command. The default for
this prompt is a null value.

SYNONYM TABLE PATHNAME:
The file name containing the set of synonyms to be used by the new job. The file must have
been created via the SND command and must include the new job's input and listing access
names in its parameter list. If a null response is entered, the INPUT ACCESS NAME and
LISTING ACCESS NAME prompts are displayed at the user's terminal.

INPUT ACCESS NAME:
The pathname of a device or file where the job command stream resides.

LISTING ACCESS NAME:
The pathname of a device or file where the job execution results are to be listed.

Example:

In the following example, suppose a batch job is created that creates a file, outputs data to the
file, prints the file contents, then deletes the file. The command stream to perform these func
tions resides in a file named SYS1.KC0017.INPUT, and the logical names and synonyms of the
creating job will be passed to the new job. The XBJ command could be used to create and execute
the batch job as shown below:

[] XBJ
EXECUTE BATCH SCI JOB

JOB NAME: BATCH
USE CURRENT USER ID?: YES

LOGICAL NAME TABLE PATHNAME:
SYNONYM TABLE PATHNAME:

INPUT ACCESS NAME:
LISTING ACCESS NAME:

5.3.4 Operating from Card Reader

SYS1.KC0017.IN PUT
LP01

To execute a batch stream on a deck of cards in the card reader, the macro assembly stream
should be in the prescribed order as shown in Figure 5-9.

5-22 2270508·9701

Assembling a Program 5.3.4

Execute the assembly stream by entering the XBJ command and entering CR01 in response to the
I N PUT ACCESS NAM E prompt, as shown below:

[] XBJ

EXECUTE BATCH JOB
JOB NAME: BATCH

USE CURRENT USER ID?: YES
LOGICAL NAME TABLE PATHNAME:

SYNONYM TABLE PATHNAME:
INPUT ACCESS NAME: CR01

LISTING ACCESS NAME: .USER.LFILE

EBATCH

(

(SOURCE CODE

BATCH

2279938

Figure 5-9. Macro Assembly Stream for Cards

2270508-9701 5-2315-24

6

Linking and Installing a Program

6.1 SUPPORTED FEATURES

The Link Editor links separate object modules together to form a single program which runs under
DNOS.

The following Link Editor features are supported by DNOS:

• Automatic overlay loading

• Random libraries

• Sequential libraries

• ASCII, compressed and image format

• Absolute memory partitioning.

For more information about these features, consult the DNOS Link Editor Reference Manual.

6.2 LINK EDIT CONTROL FILE

The first step in performing a link edit run is to write a control file defining the link edit functions.
The control file can be written using the DNOS Text Editor. The control file contains link edit com
mands and the names of any object modules. Object modules not included in the control file may
be on disk, tape, cassette, cards, or diskette.

Table 6-1 presents a brief description and syntax for the Link Editor commands. Refer to the Link
Editor Reference Manual for complete details on the commands.

2270508·9701 6-1

6.2 Linking and Installing a Program

6-2

Table 6·1. Link Editor Commands

Command Description

LIBRARY

AUTO

NOAUTO

SEARCH

FIND

PROCEDURE

TASK

PHASE

ALLOCATE

LOAD

NOLOAD

SHARE

PARTIAL

NOTGLOBAL

ALLGLOBAL

GLOBAL

DUMMY

Symbol Resolution Commands

Specifies the libraries to be searched for unresolved external
references

Specifies use of automatic symbol resolution

Inhibits use of automatic symbol resolution

Specifies that the symbols in the random or sequential libraries
specified are to be resolved when this command is issued

Specifies that the symbols in the random or sequential libraries
specified are to be resolved when this command is issued

Procedure, Task and Overlay Linking Commands

Defines a phase be installed as a procedure

Defines a phase be installed as a task

Specifies a new object module in the linked object file and
states the level and name of the phase

Controls the relative position of program, data, and common
segments

Includes the overlay manager when the FORMAT IMAGE com
mand is used

Specifies that the overlay manager and its tables be excluded
from the linked output

Specifies modules to share the same data area

Performs a partial link edit and outputs a normal tagged object
or compressed tagged object output file

Identifies symbols defined in the current phase as not global

Declares all external definitions in the current phase to be
global symbols

Identifies symbols defined in the current phase as global

Suppresses the linked output for the defined phase, procedure,
or task in which it appears

2270508·9701

Linking and Installing a Program 6.2

Table 6·1. Link Editor Commands (Continued)

Command Description

Procedure, Task and Overlay Linking Commands (Continued)

ADJUST

SYMT

NOSYMT

INCLUDE

FORMAT

MAP

NOMAP

PAGE/NOPAGE

ERROR/NOERROR

PROGRAM

DATA

COMMON

2270508-9701

Specifies alignment of a phase or module within a phase

Symbol Processing Commands

Includes the symbol tables in the linked object module

Omits the symbol tables from the linked object module

Execution and Listing Option Commands

Defines the modules or files of modules to be included in the
linked object output

Defines the format of the linked output (normal tagged object,
compressed tagged object, or memory image format)

Controls the format of the iink map

Suppresses the load map listing

Controls the format of the output listing

Specifies whether link editor is to continue after it encounters
an error

Absolute Memory Partitioning Commands

Specifies the starting location counter value for the program
segments

Defines the starting location counter value for data segments

Defines the starting location counter value for the specified
common segments

6-3

6.3 Linking and Installing a Program

6.3 LINK EDITOR OPERATION WITH DNOS

The Link Editor is executed by entering the Execute Link Editor (XLE) command. Enter XLE and
press the RETURN key. The following appears:

[] XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME:

LINKED OUTPUT ACCESS NAME:
LISTING ACCESS NAME:

PRINT WIDTH (CHARS):

pathname@
[pathname@]
[pathname@]
integer

(*)
(*)
(*)
(80)

After entering the last response to the prompts, enter the WAIT command. The message

I LlNKER-0001 LINK EDITOR COMPLETED, 0 ERRORS, 0 WARNINGS:

appears on the screen when the linking process terminates. Press the CMD key to return to the
command mode.

The prompts for the XLE command are described below:

CONTROL ACCESS NAME:
The path name of the Link Editor control file. The control file can be on a sequential disk file,
or any sequential device such as a tape unit, cassette unit, or card reader.

LINKED OUTPUT ACCESS NAME:
The access name of the sequential device or file where the output of the Link Editor is writ
ten. If the object output is not desired, the user may specify DUMY which will suppress the
generation of the output. Use of the DUMY value allows for a trial run to ensure that no errors
occur.

If the FORMAT command specifies the IMAGE option, the entry made in response to the
LINKED OUTPUT ACCESS NAME prompt must be a DNOS program file or a DNOS image file.

LISTiNG ACCESS NAME:
The access name of the device or file where the load map listing is written. If the listing out
put is not desired, the user may specify DUMY which will suppress the listing. The value
entered in response to the prompt can be any valid DNOS access name, synonym, or device
name.

For a description of the load map listing, refer to the DNOS Link Editor Reference Manual.

PRINT WIDTH (CHARS):
The width of the print line.

6-4 2270508·9701

Linking and Installing a Program 6.4

The following example shows the responses for the prompts when the control file is on
.USER.CNTRLlNK, the output file is .USER.LNKOUT, the listing device is line printer one (LP01),
and the initial PRINT WIDTH (CHARS): value is accepted:

[] XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAM E:

LINKED OUTPUT ACCESS NAME:
LISTING ACCESS NAME:

PRINT WIDTH (CHARS):

.USER.CNTRLlNK

.USER.LN KOUT
LP01
80

6.4 PROGRAM LINKING AND DIRECTIVES

Since the assembler includes directives that generate the information required to link program
modules, it is not necessary to assemble an entire program in the same assembly. A long program
may be divided into separately assembled modules to avoid a long assembly or to reduce the sym
bol table size. Also, modules common to several programs may be combined as required. Pro
gram modules may be linked by the Link Editor to form a linked object module that may be stored
on a library and/or loaded as required. The following paragraphs define the linking information
that must be included in a program module.

6.4.1 External Reference Directives
Each symbol from another program module must be placed in the operand field of an REF or
SREF directive in the program module that requires the symbol.

6.4.2 External Definition Directive
Each symbol defined in a program module and required by one or more other program modules
must be placed in the operand field of a DEF directive.

6.4.3 Program Identifier Directive
Program modules linked by the Link Editor should include an lOT directive. The module name
specified in the lOT directive should be unique.

6.4.4 Linking Program Modules
The Link Editor matches symbols from REF directives and symbols from DEF directives in a
similar manner within a program phase. The Link Editor follows linking commands to determine
the modules to be linked. lOT character strings are not matched with REF directive operands.

6.5 LINK MAP

Figure 6-1 shows the DNOS format of the output listing generated by the Link Editor. This exam
ple linked three modules to form a task. The three modules are named SUBT1, SUBR1, and MODX,
and the task itself is named LSCAN.

2270508-9701 6-5

6.5 Linking and Installing a Program

LINKER
COMMAND LIST

TASK LSCAN
LIBRARY . MSK.EXO
T"I~I CH InTi
~ "'~ • '"'vw ...

INCL .SUBR1
INCL . MODX
END

LINK£R
LINK MAP

CONTROL FILE = . MSK. EXO.MODCOM

LINKED OUTPUT FILE = DUMY

LIST FILE = ,MSK. LST

OUTPUT FORMAT = ASCII

LINKER

PHASE 0, LSCAN ORIGIN = 0000 LENGTH = 0056

MODULE NO ORIGIN LENGTH

SUBTl
SUBR1
MODX

NAME
DC$AMP
*SUBRl

1
2
3

VALUE
002A
0034

0000
0034
0040

NO
1
2

NAME

0034
OOOC
0016

D E F I

VALUE
DC$RET 002C
*SUBTl 0"""0

TYPE

INCLUDE
INCLUDE
INCLUDE

DATE

04/26/80
04/26/80
04/26/80

N I T ION S

NO NAME VALUE
1 DC$TX 002E
1

NO
1

U N RES C L V E D REF ERE N C

NAME COUNT NO NAME COUNT NO NAME COUNT NO

SUBR 1 ~
.1

**** LINKING COMPLETED

Figure 6·1. Link Edit Output Listing

6-6

PAGE 1

PAGE 2

PAGE 3

ENTRY = 0000

TIME CREATOR

13:27:49 SDSMAC
13:30:29 SDSMAC
13:33:35 SDSMAC

NAME VALUE NO
*MODX 0040 3

E S

NAME COUNT NO

2270508·9701

Linking and Installing a Program 6.5

Page one in the example, titled COMMAND LIST, is the list of the control file used to control the
linking operations. This list is generated at the beginning of each Link Edit. Page two, titled LINK
MAP, lists the parameters entered at the terminal when the Link Editor was activated. This page
also gives the format of the output from the Link Editor (ASCII in the example). The last page, page
three, is the actual link map. The PHASE name, address of the ORIGIN, LENGTH of the linked ob
ject code, and the execution ENTRY point are defined in the top line.

The subdivisions of the link map are listed below:

MODULE
The module names (identified by the IDT directives) included in the phase.

ORIGIN
The beginning of the module relative to the beginning of the program.

LENGTH
The length of the module, in bytes.

TYPE
The method by which the module was included in the phase (INCLUDE, SEARCH com-
mand, LIBRARY auto resolution).

TIME
The time the module was created.

CREATOR
The assembler or compiler that generated the module (SDSMAC).

DEFINITIONS
The entries under this heading describe all external definitions (DEFs) in the phase.

NAME - The symbol specified by the DEF statement.

VALUE - The address within the phase associated with the symbol.

NO - The number of the module within the phase in which the symbol is DEFed.

2270508·9701

NOTE

Names that are DEFed within the phase but not referenced (REFed)
within the program are preceded by an asterisk (*). Symbols that are
self-defining (absolute) are identified by a trailing asterisk (*).

6-7

6.6 Linking and Installing a Program

UNRESOLVED REFERENCES
The entries under this section of the listing defines any references that are unresolved within
the phase.

NAME - The symbol that was referenced and could not be found.

COUNT - The number of times the symbol was referenced.

NO - The module within the phase in which the reference occurred.

Unresolved references cause a warning message to be output at the end of the link map. The
message is of the form:

n WARNINGS

where n is the number of unresolved references.

NOTE

Partial link edits do not produce a warning message for unresolved
references.

The end of the Link Edit processing is indicated by the following message:

* * * * LINKING COMPLETED

6.6 LINK EDITOR EXAMPLES

The following paragraphs contain examples of Link Edits on a DNOS system. Provided for each
example is the complete Link Map (containing a copy of the control file) and the parameters
entered when the Link Editor is called from a VDT.

6.6.1 Single Task With No Procedure - Example
The example shown in Figure 6-2 illustrates the use of the Link Editor to build a task consisting of
two modules with no attached procedures. The parameters entered in response to the prompts
are as follows:

[] XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME:

LINKED OUTPUT ACCESS NAME:
LISTING ACCESS NAME:

PRINT WIDTH (CHARS):

.USER.TEST1
DUMY
.USER.TEST1 L
80

Note that no linked output is created since the LINKED OUTPUT ACCESS NAME: DUMY, was
used. The default value was used in response to the PRINT WIDTH (CHARS) prompt

6-8 2270508-9701

LINKER
COMMAND LIST

TASK RANDOM
INCLUDE . USER. TESTX
INCLUDE . USER. SORT
END

LINKER
LINK MAP

CONTROL FILE = . USER. TEST1

LINKED OUTPUT FILE = DUMY

LIST FILE = . USER. TEST1L

OUTPUT FORMAT = ASCII

LINKER

Linking and Installing a Program 6.6.1

PAGE 1

PAGE 2

PAGE 3

PHASE 0, RANDOM ORIGiN = 0000 LENGTH = COSE ENTRY = 0000

MODULE

TESTX
SORT

NO ORIGIN LENGTH

1 0000 0032
2 0032 002C

TYPE DATE TIME CREATOR

INCLUDE 04/26/80 13:09:29 SDSMAC
INCLUDE 04/26/80 13: 12:48 SDSMAC

DEFINITION

NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO

SORT 0032 2

**** LINKING COMPLETED

Figure 6·2. Single Task, No Procedure Example

2270508-9701 6-9

6.6.2 Linking and Installing a Program

The control file defines the task name as being RANDOM, with files TESTX and SORT included by
use of the !NCLUDE command. The default format, ASC!!, is used.

The Link Map shows that PHASE 0, RANDOM, begins at relative address 0000 and has a length of
>005E bytes. Module TESTX is >32 bytes in length and begins at relative address 0000, and
module SOAT is >2C bytes in length and begins at relative address >32.

Only one external definition, SORT, is made.

6.6.2 Task with Two Attached Procedures - Example
The example shown in Figure 6-3 is a Link Edit for a program having a task, CONTRl, and two
attached procedures, TABLE and ROUT. The parameters entered when the Link Editor is activated
from the VDT are as follows:

[] XlE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME:

LINKED OUTPUT ACCESS NAME:
LISTING ACCESS NAME:

PRINT WIDTH (CHARS):

.USER.EXC.TWOP
DUMY
.USER.lST
80

Note that within the control file, the procedures are defined before the task. On the Link Map, the
procedures are also presented first. Page three of the example contains the Link Map for Pro
cedure 1, TABLE, which has an origin at relative address 0000 and a length of eight bytes. One
module, ALPHA, is included in TABLE and it is taken from random library .USER.EXO.

Procedure 2, ROUT, is shown in the Link Map on page four of the example and consists of one
module, BETA, which has a relative origin of >20 and a length of eight bytes. BETA is specified by
an INCLUDE command and is read from the random library .USER.EXO. Note that BETA contains
one external definition, B$BY, that is not referenced. External definitions that are not referenced
are denoted by a preceding asterisk (*).

PHASE 0, shown on page five of the example, is defined by the TASK command and is named
CONTRL. CONTRl consists of one module, TGAMA, specified by the INCLUDE command and
read from the random library .USER.EXO. CONTRl has an origin at relative address >40 and a
length of >3C bytes. CONTRl contains no external definitions.

The two procedures have to be installed before the task is installed using the Install Procedure
(IP) and the Install Task (IT) commands, respectively.

The output format of the Link Edit is ASCII.

6-10 2270508·9701

LINKER
COMMAND LIST

LIBRARY . USER. EXO
PROCEDURE TABLE
INCL (ALPHA)
PROC ROUT
INCLUDE (BETA)
TASK CONTt<L
INCL (TGAMA)
END

LINKER
LINK MAP

CONTROL FILE = . USER. EXC. TWOP

LINKED OUTPUT FILE = DUMY

LIST FILE = . USER. LST

OUTPUT FORMAT = ASCII

LIBRARIES

NO ORGANIZATION PATHNAMF

1 RANDOM . USER. EXG

LINKER

PROCEDURE 11 TABLE ORIGIN = 0000

MODULE NO ORIGIN I.ENGTH TYPE

Linking and Installing a Program 6.6.2

PAGE 1

PAGE 2

PAGE 3

LENGTH = 0008

DATE TIME CREATOR

ALPHA 1 0000 0008 INCLUDE,l 04/26/90 13: 52:07 SDSMAC

DEFIN1TIONS

NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO

M$A 0000 1 M$B 0002 1 MfC 0004 1 M$D 0006 1

Figure 6·3. Task, Two Attached Procedures Example (Sheet 1 of 2)

2270508·9701 6-11

6.6. 6.6.3 Linking and Installing a Program

LI LINKER PAG

PR
PHASE 01 T$CAL ORIGIN = 0040 LENGTH = OOAO ENTRY = 0000

Me

BE MODULE NO ORIGIN LENGTH TYPE DATE TIME CRE~

ROOT 2 0040 0050 INCLUDE 04/26/80 15:20:37 SDSIW

N~

LINKER PAG
B~

PHASE 1, O$ONEA ORIGIN = 0090 LENGTH = 0028 ENTRY = 0000

Ll
MODULE NO ORIGIN LENGTH TYPE DATE TIME CRE~

p~ MOOt 3 0090 OC28 INCLUDE 04/26/80 15:20:37 SDS~

Me

T(DEFINITIONS

*-1 NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE

SUBR1 0090 3

LINKER PA(
6.E
Th
tUi PHASE 2, O$TWOA ORIGIN = 00B8 LENGTH = 0028 ENTRY = 0000
thl

MODULE: NO ORIGIN LENGTH TYPE DATE TIME CRE~

Th
ce MOD2 4 00B8 0028 INCLUDE 04/26/80 15:31: 12 SDSt
me
ta!

Th DEFINITIONS
O~
an NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE
be

SUBR2 00B8 4

6·' 6·14 227

Linking and Installing a Program 6.6.3

LINKER PAGE 7

PHASE 2; O$TWOB ORIGIN = 00B8 LENGTH = 0028 ENTRY = 0000

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR

MOD3 5 00B8 0028 INCLUDE 04/26/80 15:31:50 SDSMAC

DEFINITIONS

NAME VALUE NO NAME VALU~ NO NAME VALUE NO NAME VALUE NO

SUBR3 OOBB 5

LINKER PAGE 8

PHASE 11 O$ONEB ORIGIN = 0090 LENGTH = 0034

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR

MOD4 6 0090 CC2C INCLUDE 04/26/80 15:40:57 SDSMAC
MODDAT 7 OOBe 0008 INCLUDE 04/26/80 15:47: 16 SDSMAC

DEFINITIONS

NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO

SUBR4 0090 6 TABLE OOBe 7

**** LINKING COMPLETED

Figure 6·4. Overlaid Program Example (Sheet 3 of 3)

2270508-9701 6-15

6.7 Linking and Installing a Program

6.7 LINKED FORMAT OUTPUT OPTIONS

The following paragraphs define the listing output options. The link edit FORMAT command
defines the format of the linked object code.

The syntax of the FORMAT command is as follows:

FORMAT
ASCII
COMPRESSED
IMAGE [,REPLACE] [,priority]

There are three formats supported by the Link Editor: normal tagged object, compressed tagged
object, and memory image format. The default is 4.

6.7.1 Normal Tagged Object
This format consists of ASCII characters and ASCII control tag characters. Except for COBOL, it
must be output to a sequential file, Except for COBOL, the normal tagged object is not executable
and must be installed or loaded as a task/procedure/overlay before it can be executed. Normal
tagged object format is generally transportable between 990 computer systems and can be linked
again if generated using a PARTIAL command. Normal tagged object is the default value for the
FORMAT command.

6.7.2 Compressed Tagged Object
This format is a condensed version of the normal tagged object and can only be output to a file
that supports binary data. Except for this, compressed object is treated as normal tagged object.
Compressed object results in a savings of disk space as compared to the normal tagged format.
The difference between compressed and normal object is that in compressed the numeric fields
are expressed in binary instead of ASCII. Also, in compressed format, the binary 01 is used
instead of tag O.

6.7.3 Memory Image Format
Memory image format appears exactly as the program appears in memory and is loaded directly
to a DNOS Program File or a DNOS Image File.

When the IMAGE format is selected, the user may enter the REPLACE parameter which causes
the new procedures, tasks, or overlays to replace existing ones of the same name, in the program
file (defined by the LINKED OUTPUT ACCESS NAME). The task execution priority is defined by the
priority parameters (1,2,3 or 4). The default priority value is 4.

In ONOS, the IMAGE format can aiso be used to instaii the Linked Output on an image Fiie, a
unique file type containing the loadable image for the loader. It is used for the Initial Program
Load. Refer to following paragraphs on installing the image file with the Link Editor.

The Link Editor cannot be used to install memory-resident, system, or privileged tasks on a
program file. These tasks must be installed using the Install Task SVC, or the Install Task (IT)
command.

6-16 2270508-9701

Linking and Installing a Program 6.8

6.8 INSTALLING A LINKED PROGRAM

Under DNOS, programs are called tasks. A task may be segmented to include sharable pro
cedures and may also include overlays. After link edit, and before program execution, the task and
its procedures and overlays must be installed on a program file (unless this step is bypassed by
use of the IMAGE format option of the Link Editor). Either the system program file or a program
file created by the Create Program File (CFPRO) command may be used to install the task. To
create the program file, .USER.PROGA for the example program, enter CFPRO and press
RETURN. Enter the responses displayed below:

[] CFPRO

CREATE PROGRAM FILE
PATHNAME:

MAX NUMBER OF TASKS:
MAX NUMBER OF PROCEDURES:

MAX NUMBER OF OVERLAYS:
INITIAL ALLOCATION:

SECONDARY ALLOCATION:
EXPANDABLE?:

.USER.PROGA
255
255
255
85

YES

All of the install commands in this section allow the program file and the object file to be
specified by file name or by LUNO. The manner in which the program file is selected is arbitrary.
There is an important difference between selecting the object file by LUNO and selecting the
object file by path name. Files specified by pathname are rewound when opened, but files
specified by LUNO are not rewound when opened. Therefore, if the same object file contains pro
cedures, tasks, and overlays, it must be specified by LUNO for the commands to correctly install
all of the object code in a program.

Procedures, tasks and overlays must be installed in the following order:

1. Procedures, if any, must be installed first.

2. The task is installed after the procedures.

3. Overlays are installed last.

Thus, object files containing more than one object (procedure, task, overlay) must be ordered with
the procedures first, task second, and overlays last.

To install object files, enter the installation commands necessary and answer the prompts (press
ing the RETURN key after each response).

Do not install a task on the S$UTIL file. Use the program file .S$SHARED to install shared pro
cedures. The .S$SHARED program file is used as the default program file for a bid with no LUNO
specified. It is recommended that you install tasks in your own program file. This recommenda
tion also applies to installing real-time tasks, procedures, and overlays.

The following paragraphs discuss the commands which install, delete, and modify programs. For
complete command descriptions, refer to the DNOS System Command Interpreter (SCI)
Reference Manual. '

2270508-9701 6-17

6.8.1 Linking and Installing a Program

Installing or modifying a task or procedure to be memory resident requires an Initial Program Load
(lPL) be performed before the task or procedure is in memory.

6.8.1 Install Task Segment - IT
The IT command places an ex.ecutable task on a program file. If the task has attached procedures:
the procedures must be installed before the IT command. For an explanation of the task attributes
(priority, privileged, system, memory resident, and replicatable) consult Section 3.

The IT command and prompts are described below:

Prompts:

INSTALL TASK SEGMENT
PROGRAM FILE OR LUNO: {filename@/integer} (*)

TASK NAME: [alphanumeric]
TASK ID: [integer]

OBJECT PATHNAME OR LUNO: {pathname@/integer} (*)
PRIORITY: [integer] (4)

DEFAULT TASK FLAGS?: YES/NO (YES)
ATTACHED PROCEDURES?: YES/NO (NO)

If the response to the DEFAULT TASKS FLAGS?: prompt was NO, the following sets of prompts
are displayed on the user's terminal:

DEFINE TASK FLAGS
PRIVILEGED?: YES/NO

SYSTEM TASK?: YES/NO
MEMORY RESIDENT?: YES/NO

REPLICATABLE?: YES/NO
DELETE PROTECT?: YES/NO

IN MEMORY COPYABLE?: YES/NO
IN MEMORY REUSABLE?: YES/NO

UPDATABLE?: YES/NO
SOFTWARE PRIVILEGED?: YES/NO

(NO)
(NO)
(NO)
(YES)
(NO)
(NO)
(NO)
(NO)
(NO)

After the responses to the previous prompts are entered, the following prompts are displayed on
the user's terminal:

990/12 FLAGS
EXECUTE PROTECT?: YES/NO

OVERFLOW CHECKING?: YES/NO
WRITABLE CONTROL STORAGE?: YES/NO

(NO)
(NO)
(NO)

if the response to the ATTACHED PROCEDURES: prompt was YES, the foiiowing set of prompts is
displayed on the user's terminal:

6-18

ATTACH TASK PROCEDURES
1ST PROCEDURE ID:

P1 FROM TASKS PROGRAM FILE?:
integer
[YES/NO]

2ND PROCEDURE 'D: rintonorl (m
i.;.;, ~'-'.;.i ,--,

P2 FROM TASKS PROGRAM FILE?: [YES/NO]

(0)
(YES)

(YES)

2270508·9701

Linking and Installing a Program 6.8.1

Prompt Details:

PROGRAM FILE OR LUNO:
The file name of or the LUNO assigned to the program file on which the task segment is to be
installed. If a LUNO is specified in response to this prompt, it must be assigned to the pro
gram file prior to the execution of the IT command. If zero is specified, the .S$SHARED pro
gram file is assumed.

TASK NAME:
A user-defined character string, up to eight ASCII characters, which is the name of the task
segment to be installed on the specified program file. If zero or a null response is specified,
the system will assign the lOT name of the object module as the task segment name.

TASK 10:
A hexadecimal value which will be associated with the installed task segment. If zero or a
null response is specified, the system assigns an available 10.

OBJECT PATHNAME OR LUNO:
The pathname of or the LUNO assigned to a device or file where the object module of the
task segment resides.

PRIORITY:
The integer value which represents the execution priority level of the task. Priorities may
range from zero through four. Priorities zero through three are fixed, with priority zero as the
highest level and three the lowest. Priority four is dynamically managed by the operating
system. Four is the default priority level.

DEFAULT TASK FLAGS?:
If NO is entered in response to this prompt, the user has the option to set the task flags. If
YES is entered, the initial values are used for the flags.

PRIVILEGED?:
If YES is entered, the task is allowed to execute privileged hardware instructions. Privileged
hardware instructions should be executed cautiously and only by the user who is very
familiar with the system.

SYSTEM TASK?:
If YES is entered, the task is allowed to execute in system memory space. Tasks should be
executed in system memory space with caution and only by the user who is very familiar with
the system.

MEMORY RESIDENT?:
If YES is entered, and the task is installed on the program file .S$SHARED of the applications
program file specified at system generation the task will be loaded into memory during initial
program load (IPL) and remain in memory when terminated.

REPLICAT ABLE?:
If YES is entered, there may be multiple copies of the task in memory Simultaneously.

2270508-9701 6-19

6.8.1 Linking and Installing a Program

DELETE PROTECT?:
!f YES is entered, the task segment cannot be deleted from the program file unless the
Modify Task Segment Entry (MTE) command is used to unprotect the task segment prior to
the execution of the Delete Task Segment (DT) command. If NO is specified, the task seg
ment may be deleted by the DT command.

IN MEMORY COPYABLE?:
If YES is entered, the task segment may be copied from memory rather than being copied
from disk. This situation may occur if the task is in memory, and another user wishes to ex
ecute the task.

IN MEMORY REUSABLE?:
If YES is entered, the task segment memory may be reused by another task rather than being
copied from disk or from one memory location to another.

UPDATABLE?:
If YES is entered, the data of a task may be modified, and the task segment will be written to
disk with the new data modifications when the task terminates.

SOFTWARE PRIVILEGED?:
If YES is entered, the task is allowed to execute privileged supervisor calls.

EXECUTE PROTECT?:
If YES is entered, execution of the task segment is prohibited. The protection is enforced on
lyon a 990/12 computer.

OVERFLOW CHECKING?:
If YES is entered, the occurrence of arithmetic overflow will cause control of the task to pass
to the task's end action routine. Overflow checking is enforced only on a 990/12 computer.

WRITABLE CONTROL STORAGE?:
If YES is entered, the task uses the writable control storage area. Writable control storage is
available only on a 990/12 computer.

ATTACHED PROCEDURES?:
If YES is entered in response to this prompt, the user will be prompted for the ID(s) of pro
cedure segments attached to this task segment and asked if the procedures reside on the
same program file as the task.

1ST PROCEDURE iD:
The integer value representing the 10 of a procedure attached to the task segment. If zero is
entered, there are no procedures.

P1 FROM TASKS PROGRAM FILE?:
If YES is entered, the attached procedure segment whose 10 was specified for the 1 ST PRO
CEDURE 10: prompt resides on the same program file as the task segment. If NO is entered,
that procedure segment must reside on the .S$SHARED program file.

2ND PROCEDURE 10:

6-20

The integer value representing the 10 of a procedure segment attached to the task segment.
If zero is entered, there is no 2nd procedure.

2270508·9701

Linking and Installing a Program 6.8.2

P2 FROM TASKS PROGRAM FILE?:
If YES is entered, the attached procedure segment whose ID was specified for the 2ND PRO
CEDURE lD: prompt resides on the same program file as the task. If NO is entered, that pro
cedure segment must reside on the .S$SHARED program file.

6.8.2 Install Real-Time Task Segment - IRT
The IRT command places an executable real-time task on a program file. If the task has attached
procedures, the procedures must be installed before the IRT command. For an explanation of the
task attri~utes (priority, privileged, system, memory resident, and replicative) consult Section 3.
The previously mentioned restrictions on installing tasks also apply to installing real-time tasks.
The prompts for installing a real-time task are similar to the IT command and are described in the
paragraph on installing a task.

Prompts:

INSTALL REAL-TIME TASK SEGMENT
PROGRAM FILE OR LUNO: {filename@linteger} (*)

TASK NAME: [alphanumeric]
TASK ID: [integer]

OBJECT PATHNAME OR LUNO: {pathname@/integer} (*)
PRIORITY: integer

DEFAULT TASK FLAGS?: YES/NO (YES)
ATTACHED PROCEDURES?: YESiNO (NO)

If the response to the DEFAULT TASKS FLAGS?: prompt was NO, the follOWing prompts are
displayed on the user's terminal:

DEFINE TASK FLAGS
PRIVI LEG ED?: YES/NO

SYSTEM TASK?: YES/NO
MEMORY RESIDENT?: YES/NO

REPLICATABLE?: YES/NO
DELETE PROTECT?: YES/NO

IN MEMORY COPYABLE?: YES/NO
IN MEMORY REUSABLE?: YES/NO

UPDATABLE?: YES/NO
SOFTWARE PRIVILEGED?: YES/NO

(NO)
(NO)
(NO)
(YES)
(NO)
(NO)
(NO)
(NO)
(NO)

After the responses are entered for the previous prompts, the following prompts are displayed on
the user's terminal:

990/12 FLAGS
EXECUTE PROTECT?: YES/NO

OVERFLOW CHECKING?: YES/NO
WRITABLE CONTROL STORAGE?: YES/NO

2270508·9701

(NO)
(NO)
(NO)

6-21

6.8.2 Linking and Installing a Program

If the response to the ATTACHED PROCEDURES: prompt was YES, the following prompts are
displayed on the user's terminal:

ATTACH TASK PROCEDURES
1ST PROCEDURE 10:

Pi FROM TASKS PROGRAM FilE?:
2ND PROCEDURE 10:

integer
[YES/NO]
[integer]
[YES/NO]

(0)
(YES)
(0)
(YES) P2 FROM TASKS PROGRAM FILE?:

Prompt Details:

PROGRAM FILE OR LUNO:
The file name or the LUNO assigned to the program file on which the task segment is to be
installed. If a LUNO is specified in response to this prompt, it must be assigned to the pro
gram file prior to execution of the IRT command. If zero is specified, the .S$SHAREO pro
gram file is assumed.

TASK NAME:
A user-defined character string, up to eight ACSII characters, which is the name of the task
segment to be installed on the specified program file. If zero or a null response is entered,
the system assigns the lOT name of the object module as the name of the task segment.

TASK 10:
A hexadecimal value which will be associated with the installed task segment. If the
response to this prorT!pt is zero or a null response is entered, the system assigns an available
10.

OBJECT PATHNAME OR LUNO:
The pathname of or the LUNO assigned to the device or file where the object module for the
task segment resides.

PRIORITY:
The integer value which represents the execution priority level of the task segment. Priorities
may range from 1 through 127, with 1 being the highest priority.

DEFAULT TASK FLAGS?:
If NO is entered in response to this prompt, the user has the option to set the task flags. If
YES is entered, the initial values are used for the flags.

PRIVILEGED?:
If YES is entered, the task is allowed to execute privileged hardware instructions. Privileged
hardware instructions should be executed cautiously and only by the user who is very
familiar with the system.

SYSTEM TASK?:

6-22

If YES is entered, the task is allowed to execute in system memory space. Tasks should be
executed in system memory space with caution and only by the user who is very familiar with
the system.

2270508·9701

Linking and Installing a Program 6.8.2

MEMORY RESIDENT?:
If YES is entered, and the task is installed on the program file .S$SHARED or the application
program file specified at system generation, the task will be loaded into memory during in
itial program load (IPL) and remain in memory when terminated.

REPLICAT ABLE?:
If YES is entered, there may be multiple copies of the task in memory simultaneously.

DELETE PROTECT?:
If YES is entered, the task segment cannot be deleted from the program file unless the
Modify Task Segment Entry (MTE) command is used to unprotect the task segment prior to
the execution of the Delete Task Segment (DT) command. If NO is specified, the task seg
ment may be deleted by executing the DT command.

IN MEMORY COPYABLE?:
If YES is entered, the task segment may be copied from memory rather than being copied
from disk. This situation may occur if the task is in memory and another user wishes to
execute the task.

IN MEMORY REUSABLE?:
If YES is entered, the task segment memory may be reused by another task rather than being
copied from disk or from one memory location to another.

UPDATABLE?:
If YES is entered, the data of the task segment may be modified, and the task segment will be
written to disk with the new data modifications after the task terminates.

SOFTWARE PRIVILEGED?:
If YES is entered, the task is allowed to execute privileged supervisor calls. Privileged super
visor calls should be executed cautiously and only by the user who is very familiar with the
system.

EXECUTE PROTECT?:
If YES is entered, execution of the task is prohibited. The protection is enforced only on a
990/12 computer.

OVERFLOW CHECKING?:
If YES is entered, the occurrence of arithmetic overflow causes control of the task to pass to
the task's end action routine. Overflow checking is available only on a 990/12 computer.

WRITABLE CONTROL STORAGE?:
If YES is entered, the task uses the writable control storage area. Writable control storage is
available only on a 990/12 computer.

ATTACH ED PROCEDURES?:
If YES is entered in response to this prompt, the user will be prompted for the ID(s) of pro
cedure segments attached to this task segment and asked if the procedures reside on the
same program file as the task.

1 ST PROCEDURE ID:
The integer value representing the ID of a procedure segment attached to the task segment.
If zero is entered, there are no procedures.

2270508-9701 6-23

6.8.3 Linking and Installing a Program

P1 FROM TASKS PROGRAM FILE?:
!f YES is entered, the attached procedure segment whose !D was specified for the 1ST PRO"
CEDURE ID: prompt resides on the same program file as the task segment. If NO is entered,
that procedure segment must reside on the .S$SHARED program file.

,.., .. i "'"' 1""\1"""\"-"""1"""'\, 'F""'\r- Ir""II!I.

£I"U r-nU\..d::uunt: IU:

The integer value representing the ID of a procedure segment attached to the task segment.
If zero is entered, there is no 2nd procedure segment.

P2 FROM TASKS PROGRAM FILE?:
If YES is entered, the attached procedure segment whose ID was specified for the 2ND PRO
CEDURE ID: prompt resides on the same program file as the task segment. If NO is entered,
that procedure segment must reside on the .S$SHARED program file.

6.8.3 Install Procedure Segment - IP
The IP command places a procedure on a program file and assigns a procedure ID for use by
subsequent IT commands. The previously mentioned restrictions on installing tasks also apply to
installing procedures. The IP command and prompts are described below:

Prompts:

INSTALL PROCEDURE SEGMENT
PROGRAM FILE OR LUNO:

PROCEDURE NAME:
PROCEDURE ID:

OBJECT PATHNAME OR LUNO:
MEMORY RESIDENT?:

DELETE PROTECT?:

{ filename@linteger}
[alphanumeric]
[integer]
{ pathname@/integer}
YES/NO
YES/NO

(*)

(*)
(NO)
(NO)

After responses are entered for the previous prompts, the following prompts are displayed on the
user's terminal:

990/12 FLAGS
EXECUTE PROTECT?:

WRITE PROTECT?:
WRITABLE CONTROL STORAGE?:

YES/NO
YES/NO
YES/NO

(NO)
(NO)
(NO)

Prompt Details:

PROGRAM FILE OR LUNO:
The file name of, or the LUNO assigned to, the program file on which the procedure segment
is to be installed. If a LUNO is specified in response to this prompt, it must be assigned to
the program file prior to execution of the IP command. If zero is specified, the ,S$SHARED
program file is assumed.

PROCEDURE NAME:

6·24

A user-defined character string, up to eight characters, that identifies the procedure seg
ment. If the procedure name is not specified, the system wiii assign the lOT name of the
object module as the procedure name.

2270508-9701

Linking and Installing a Program 6.8.4

PROCEDURE 10:
A hexadecimal integer that will be assigned as the 10 of the procedure segment. If zero or a
null response is specified, the system assigns an 10.

OBJECT PATHNAME OR LUNO:
The name of, or the LUNO assigned to, a device or file where the object module for the pro
cedure segment resides.

MEMORY RESIDENT?:
If YES is entered, and the procedure segment is installed on the program file .S$SHARED or
the applications program file specified at system generation, the procedure segment will be
loaded into memory during initial program load (lPL) and will stay in memory even when
terminated.

DELETE PROTECT?:
If YES is entered, the procedure segment cannot be deleted from the program file unless the
Modify Procedure Segment Entry (MPE) command is used to unprotect the procedure seg
ment prior to the execution of the Delete Procedure Segment (DP) command. If NO is
specified, the procedure segment may be deleted by executing the DP command.

EXECUTE PROTECT?:
If YES is entered, the procedure segment cannot be executed. The protection is enforced
only on a 990/12 computer.

WRITE PROTECT?:
If YES is entered, the procedure segment cannot be modified when in memory. The protec
tion is enforced only on a 990/12 computer.

WRITABLE CONTROL STORAGE?:
If YES is entered, the procedure segment uses the writabie control storage area. Writable
control storage is available only on a 990/12 computer.

6.8.4 Install Overlay - 10
The 10 command places an overlay associated with a task on the program file with the task. The
task must be installed before the overlay and may be specified by name or installed 10. The
previously mentioned restrictions on installing tasks also apply to installing real-time tasks. The
10 command and prompts are described below:

Prompts:

INSTALL OVERLAY
PROGRAM FILE OR LUNO:

OVERLAY NAME:
OVERLAY 10:

OBJECT PATHNAME OR LUNO:
RELOCATABLE?:

DELETE PROTECT?:
ASSOCIATED TASK NAME OR 10:

2270508-9701

{fi lename@linteger}
[alphanumeric]
[integer]
{pathname@linteger}
YES/NO
YES/NO
[{ character(s)/i nteger}]

(*)

(*)
(NO)
(NO)
(*)

6-25

6.8.5 Linking and Installing a Program

Prompt Details:

PROGRAM FILE OR LUNO:
The file name of, or LUNO assigned to, the program file on which the overlay is to be installed.
If a LUNO is specified in response to this prompt, it must be assigned to the program file
prior to the execution of the 10 cornmand. if le(O is specified, the .S$SHARED program fiie is
assumed.

OVERLAY NAME:
A user-defined character string, a maximum of eight characters, that is unique to the pro
gram file. If a null response is specified, the system uses the lOT name of the object module
as the name of the overlay.

OVERLAY 10:
An integer value in the range of 1 through 255 that is associated with the overlay name and is
unique to the program file. If zero or a null response is specified, the system will assign an ID
to the overlay.

OBJECT PATHNAME OR LUNO:
The name of, or the LUNO assigned to, the device or file where the object module for the
overlay resides.

RELOCATABLE?:
If YES is entered, the overlay is allowed to be loaded at an address other than its natural load
address.

DELETE PROTECT?:
If YES is entered, the overlay cannot be deleted from the program file unless the Modify
Overlay Entry (MOE) command is used to unprotect the overlay prior to the execution of the
Delete Overlay (DO) command. If NO is specified, the overlay may be deleted by executing
the DO command.

ASSOCIATED TASK NAME OR 10:
The name or 10 of a previously installed task segment on the same program file as the
overlay. The overlay is automatically deleted when the task segment is deleted.

6.8.5 Install Program Segment - IPS
The iPS command allows the user to install a segment on a program file and assign a segment ID.
The IPS command and prompts are described below:

Prompts:

6·26

INSTALL PROGRAM SEGMENT
PROGRAM FILE OR LUNO:

SEGMENT NAME:
SEGMENT 10:

OBJECT PATHNAME OR LUNO:
DEFAULT SEGMENT FLAGS?:

{fi lename@linteger}
[alphanumeric]
[integer]
{ pathname@/integer}
YES/NO

(*)

(*)

(YES)

2270508-9701

Linking and Installing a Program 6.8.5

If the response to the DEFAULT SEGMENT FLAGS?: prompt is NO, the following set of prompts is
displayed on the user's terminal:

DEFINE SEGMENT FLAGS
SYSTEM SEGMENT?: YES/NO

MEMORY RESIDENT?: YES/NO
DELETE PROTECT?: YES/NO

UPDATABLE?: YES/NO
SHARABLE?: YES/NO

REPLICATABLE?: YES/NO
IN MEMORY REUSABLE?: YES/NO
IN MEMORY COPYABLE?: YES/NO

(NO)
(NO)
(NO)
(NO)
(NO)
(NO)
(NO)
(NO)

After the responses are entered for the previous prompts, the following prompts are displayed on
the user's terminal:

990/12 FLAGS
EXECUTE PROTECT?: YES/NO

WRITE PROTECT?: YES/NO
WRITABLE CONTROL STORAGE?: YES/NO

Prompt Details:

PROGRAM FILE OR LUNO:

(NO)
(NO)
(NO)

The file name of, or the LUNO assigned to, the program file on which the program segment is
to be installed. If a LUNO is specified in response to this prompt, it must be assigned to the
program file prior to execution of the IPS command. If zero is specified, the .S$SHARED pro
gram file is assumed.

SEGMENT NAME:
A user-defined character string, up to eight characters, composed of characters which are
legal in pathnames. The segment name must be unique to the specified program file. If zero
or a null response is specified, the IDT name of the object file will be used as the segment
name.

SEGMENT ID:
A hexadecimal integer value that wiil be assigned as the 10 of the program segment by the
user. If zero or a null response is specified, the system will assign the 10.

OBJECT PATHNAME OR LUNO:
The pathname of, or the LUNO assigned to, the device or file where the object module for the
program segment resides.

DEFAULT SEGMENT FLAGS?:
If YES is entered, the initial values are used for the flags. If NO is entered, the user has the
option of which program segment flags will be modified.

SYSTEM SEG M ENT?:
If YES is entered, the program segment may only be accessed by a system task.

2270508-9701 6-27

6.8.5 Linking and Installing a Program

MEMORY RESIDENT?:
If YES is entered; and the program segment is installed on the program file .S$SHARED or
the applications program file specified at system generation, the program segment will be
loaded into memory during initial program load (lPL) and remain in memory even when ter
minated.

DELETE PROTECT?:
If YES is entered, the program segment cannot be deleted from the program file unless the
Modify Program Segment Entry (MSE) command is used to unprotect the program segment
prior to the execution of the Delete Program Segment (DPS) command. If NO is specified, the
program segment may be deleted by executing the DPS command.

UPDATABLE?:
If YES is entered, the data of a program segment may be modified, and the program segment
will be written to disk with the new data modifications after the program segment is no
longer used.

SHARABLE?:
If YES is entered, the program segment may be shared concurrently with more than one task.

REPLICATABLE?:
If YES is entered, there may be multiple copies of the program segment in memory
simultaneously.

IN MEMORY REUSABLE?:
If YES is entered, the program segment in memory may be reused after termination by
another task rather than a new copy being read from disk.

IN MEMORY COPYABLE?:
If YES is entered, the program segment may be copied from memory rather than being copied
from disk. This situation may occur when the program segment is in memory and another
user wishes to use the program segment.

EXECUTE PROTECT?:
If YES is entered, execution of the program segment is prohibited. The protection is enforced
only on a 990/12 computer.

WRITE PROTECT?:
If YES is entered, the program segment may not be modified in memory. The protection is
enforced only on a 990/12 computer.

WRITABLE CONTROL STORAGE?:

6-28

If YES is entered, the program segment uses the writable control storage area. Writable con
trol storage is available only on a 990/12 computer.

2270508·9701

Linking and Installing a Program 6.8.6

6.8.6 Delete Task - DT
The DT command removes a previously installed task from a program file. The task may be
deleted by either name or by installed ID. If associated overlays exist, they are also deleted. The
task may be specified by name or by installed I D, as shown below:

Prompts:

DELETE TASK SEGMENT
PROGRAM FILE OR LUNO:

TASK NAME OR ID:

Prompt Details:

PROGRAM FILE OR LUNO:

{ filename@linteger} (*)
{ alphanumericlinteger}

The file name of, or LUNO assigned to, the program file on which the task segment has been
installed. If a LUNO is specified in response to this prompt, it must be assigned to the pro
gram file prior to execution of the DT command.

TASK NAME OR ID:
The name or 10 of the task segment on the specified program file.

6.8.7 Delete Procedure - DP
The DP command removes a previously instaiied procedure from a program fiie. The procedure
may be specified by name or by installed ID, as shown below:

Prompts:

DELETE PROCEDURE SEGMENT
PROGRAM FILE OR LUNO:
PROCEDURE NAME OR ID:

Prompt Details:

PROGRAM FILE OR LUNO:

{ filename@linteger} (*)
{ alphanumericiinteger}

The file name of, or the LUNO assigned to, the program file in which the procedure segment
has been installed. If a LUNO is specified in response to this prompt, it must be assigned to
the program file prior to execution of the DP command.

PROCEDURE NAME OR ID:
The name or ID of the procedure segment to be deleted from the specified program file.

6.8.8 Delete Overlay - DO
The DO command removes a previously installed overlay from a program file. The overlay may be
specified by name or by installed 10, as shown below:

Prompts:

DELETE OVERLAY
PROGRAM FILE OR LUNO: { filename@linteger} (*)

OVERLAY NAME OR ID: { alphanumeric/integer}

2270508·9701 6-29

6.8.9 Linking and Installing a Program

Prompt Details:

PROGRAM FILE OR LUNO:
The file name of, or the LUNO assigned to, the program file on which the overlay has been
installed. If a LUNO is specified in response to this prompt, it must be assigned to the pro
gram fiie prior to execution of the DO command.

OVERLAY NAME OR ID:
The name or ID of the overlay installed on the specified program file that is to be deleted.

6.8.9 Delete Program Segment - DPS
The DPS command is used to delete a segment from a specified program file. The program seg
ment may be specified by name or be instal!ed !D, as shown below:

Prompts:

DELETE PROGRAM SEGMENT
PROGRAM FILE OR LUNO:

SEGMENT NAME OR ID:

Prompt Details:

PROGRAM FILE OR LUNO:

{fi lename@linteger} (*)
{ alphanumericlinteger}

The filename of, or the LUNO assigned to, the program file on which the program segment
has been installed. If a LUNO is specified in response to this prompt, it must be assigned to
the program file prior to execution of the DPS command.

SEGMENT NAME OR ID:
The name or ID by which the program segment is known on the specified program file.

6.8.10 Modify Task Segment Entry - MTE
The MTE command allows the user to alter the data supplied when the task was installed. The
values displayed are those defined during installation. Any of the displayed values may be
changed, or the displayed value can be accepted by pressing the RETURN key. Refer to the IT
command paragraph for the prompt descriptions for the task attributes, When the MTE command
is called, the following appears:

Prompts:

6-30

MODIFY TASK SEGMENT ENTRY
PROGRAM FILE PATH NAME:

MODULE NAME OR ID:
filename@ (*)
{ alphanumericlinteger}

2270508·9701

Linking and Installing a Program 6.8.10

After the responses to the PROGRAM FILE PATHNAME: and MODULE NAME OR 10: prompts
have been entered, the following set of prompts is displayed on the user's terminal:

MODIFY TASK ENTRY FOR ID <n>
NAM E: alphanumeric

REAL TIME?: YES/NO
PRIORITY: integer

MODIFY FLAGS?: YES/NO
ATTACHED PROCEDURES?: YES/NO

(*)
(*)
(*)
(YES)
(NO)

where <n> is the ID of the task to be modified. (This 10 is for user information only and may not be
modified.)

If YES was entered in response to the MODIFY FLAGS? prompt, the following prompts are
displayed on the user's terminal:

MODIFY TASK FLAGS

PRIVILEGED?: YES/NO
SYSTEM TASK?: YES/NO

MEMORY RESIDENT?: YES/NO
REPLICATABLE?: YES/NO

DELETE PROTECT?: YES/NO
IN MEMORY COPYABLE?: YES/NO
IN MEMORY REUSABLE?: YES/NO

UPDATABLE?: YES/NO
SOFTWARE PRIVILEGED?: YES/NO

(*)
(*)
(*)
(*)
(*)
(*)
(*)
(*)
(*)

After the responses to the previous prompts are entered, the following prompts are displayed on
the user's terminal:

990/12 FLAGS
EXECUTE PROTECT?: YES/NO

OVERFLOW CHECKING?: YES/NO
WRITABLE CONTROL STORAGE?: YES/NO

(*)
(*)
(*)

If the response to the ATTACHED PROCEDURES?: prompt was YES, the following set of prompts
is displayed on the user's terminal:

MODIFY TASK·ATTACHED PROCEDURES

1ST PROCEDURE 10: integer
P1 FROM TASKS PROGRAM FILE?: YES/NO

2ND PROCEDURE 10: integer
P2 FROM TASKS PROGRAM FILE?: YES/NO

Prompt Details:

PROGRAM FILE PATH NAME:

(*)
(*)
(*)
(*)

The file name of the program file on which the task segment to be modified has been
installed.

2270508-9701 6-31

6.8.10 Linking and Installing a Program

MODULE NAME OR ID:
The task name or ID of the task segment installed on the specified program file.

NAME:
The name of the task. If the task 10 was entered, the system automatically places the

REAL TIME?:
If YES is entered, the task segment to be modified was installed as a real-time task segment

PRIORITY:
If YES was entered in response to the REAL TIME?: prompt, the priority value specified must
be in the range of 1 through 127 (inclusive). If NO was entered, the priority value specified
must be in the range of 0 through 4 (inclusive).

MODIFY FLAGS?:
If YES is entered, the user has the option of modifying the task flags.

PRIVILEGED?:
If YES is entered, the task is allowed to execute privileged hardware instructions. Privileged
hardware instructions should be executed cautiously and only by the user who is very
familiar with the system.

SYSTEM TASK?:
If YES Is entered, the task is allowed to execute in system memory space. For the task to be
modified to become a system task, the task's load address must be greater than or equal to
>COOO. Tasks should be executed in system memory space with caution and only by the user
who is very familiar with the system.

MEMORY RESIDENT?:
If YES is entered and the task is installed on the .S$SHARED program file or the applications
program file specified at system generation, the task will be loaded into memory during
initial program load (IPL) and remain in memory when terminated.

REPLICATABLE?:
If YES is entered, there may be multiple copies of the task in memory Simultaneously.

DELETE PROTECT?:
If YES is entered, the task is protected against accidental deletion.

IN MEMORY COPYABLE?:
If YES is entered, the task segment may be copied from memory rather than being copied
from disk. This situation may occur if the task is in memory and another user wishes to exe
cute the task.

IN MEMORY REUSABLE?:

6·32

If YES is entered, the program segment in memory may be reused after termination by
another task, rather than a new copy being copied from disk or being copied from one
memory location to another.

2270508-9701

Linking and Installing a Program 6.8.10

UPDATABLE?:
If YES is entered, the data of a task may be modified, and the task segment will be written to
disk with the new data modifications when the task terminates.

SOFTWARE PRIVILEGED?:
If YES Is entered, the task is allowed to execute privileged supervisor calls. Privileged super
visor calls should be executed with caution and only by the user who is very familiar with the
system.

EXECUTE PROTECT?:
If YES is entered, execution of the task segment is prohibited. The protection is enforced
only on a 990/12 computer.

OVERFLOW CHECKING?:
If YES is entered, the occurrence of arithmetic overflow will cause control of the task to pass
to the task's end-action routine. Overflow checking is available only on a 990/12 computer.

WRITABLE CONTROL STORAGE?:
If YES is entered, the task uses the writable control storage area. Writable control storage is
available only on a 990/12 computer.

ATTACHED PROCEDURES?:
If YES is entered, the user has the option of modifying the procedures to be attached to the
task segment.

1ST PROCEDURE ID:
The integer value representing the ID of a procedure segment attached to the task segment.
If zero is entered, there are no procedure segments.

P1 FROM TASKS PROGRAM FILE?:
If YES is entered, the attached procedure segment with an ID specified for the 1ST PRO
CEDURE ID: prompt resides on the same program file as the task segment. If NO is entered,
the procedure segment must reside on the .S$SHARED program file.

2ND PROCEDURE ID:
The integer value representing the ID of a procedure segment attached to the task segment.
If zero is entered, there is no 2nd procedure segment.

P2 FROM TASKS PROGRAM FILE?:
If YES is entered, the attached procedure segment with an ID specified for the 2ND PRO
CEDURE ID: prompt resides on the same program file as the task segment. If NO is entered,
the procedure segment must reside on the .S$SHARED program file.

2270508-9701 6-33

6.8.11 Linking and Installing a Program

6.8.11 Modify Procedure Entry - MPE
The MPE command allows the user to modify the data supplied when the procedure was installed.
The values displayed are those defined when the procedure was installed. Any of the displayed
values may be changed, or the displayed value can be accepted by pressing the RETURN key.
When the MPE command is called, the following appears:

Prompts:

MODIFY PROCEDURE SEGMENT ENTRY
PROGRAM FILE PATHNAME: filename@ (*)

MODULE NAME OR ID: {alphanumeric/integer}

After the responses to the PROGRAM FILE PATHNAME and MODULE NAME OR ID prompts have
been entered, the following set of prompts are displayed on the user's terminal:

MODIFY PROCEDURE ENTRY FOR ID <n>
NAME: alphanumeric

MEMORY RESIDENT?: YES/NO
DELETE PROTECT?: YES/NO

(*)
(*)
(*)

where <n> is the ID of the procedure to be modified. (This ID is for user information only and may
not be modified.)

After the responses to the above prompts are entered, the following prompts are displayed on the
user's terminal:

990/12 FLAGS
EXECUTE PROTECT?: YES/NO

WRITE PROTECT?: YES/NO
WRITABLE CONTROL STORAGE?: YES/NO

(*)
(*)
(*)

Prompt Details:

PROGRAM FILE PATHNAME:
The file name of the program file where the procedure segment to be modified has been
installed.

MODULE NAME OR iD:
The procedure name or ID of the procedure segment installed on the specified program file.

NAME:
The name of the procedure segment. If the procedure ID was entered, the system auto
matically places the associated procedure name in the response field of this prompt.

MEMORY RESIDENT?:

6-34

If YES is entered, and the procedure segment is installed on the program file .S$SHARED or
the applications program file specified at system generation, the procedure segment will be
loaded into memory during initial program load (IPL) and remain in memory even when
terminated.

2270508·9701

Linking and Installing a Program 6.8.12

DELETE PROTECT?:
If YES is entered, the procedure segment is protected against accidental deletion.

EXECUTE PROTECT?:
If YES is entered, execution of the procedure segment is prohibited. The protection is
enforced only on a 990/12 computer.

WRITE PROTECT?:
If YES is entered, procedure data cannot be modified in memory. The protection is enforced
only on a 990/12 computer.

WRITABLE CONTROL STORAGE?:
If YES is entered, the procedure uses the writable control storage area. Writable control
storage is available only on a 990/12 computer.

6.8.12 Modify Overlay Entry - MOE
The MOE command allows the user to alter the data supplied when the overlay was installed. The
values defined when the overlay was installed are displayed. Any of the entries may be changed,
or the displayed value may be accepted by pressing the RETURN key. When the MOE command is
called, the following appears:

Prompts:

MODIFY OVERLAY ENTRY
PROGRAM FILE PATHNAME:

MODULE NAME OR ID:
filename@ (*)
{ alphanumeric/integer}

After the responses to the previous prompts have been entered, the following prompts are
displayed on the user's terminal:

MODIFY OVERLAY ENTRY FOR ID <n>
NAME: alphanumeric

RELOCATABLE?: YES/NO
DELETE PROTECT?: YES/NO

(*)
(*)
(*)

where <n> is the ID of the overlay to be modified. (This ID is for user information only and may not
be modified.)

Prompt Details:

PROGRAM FILE PATHNAME:
The file name of the program file on which the overlay is installed.

MODULE NAME OR ID:
The overlay name or ID of the overlay installed on the specified program file.

NAME:
The name of the overlay. If the overlay ID was entered, the system automatically places the
associated overlay name in the response field of this prompt.

2270508-9701 6-35

6.8.13 Linking and Installing a Program

RELOCATABLE?:
If YES is entered; the overlay is allowed to be loaded at an address other than its natura! load
address.

DELETE PROTECT?:
if YES is entered, the overiay is protected against accidentai deietion.

6.8.13 Modify Segment Entry - MSE
The MSE command allows the user to modify the attributes of a segment installed on a program
file. The attribute values displayed are those defined when the segment was installed. Any of the
displayed values may be changed, or the displayed values can be accepted by pressing the
RETURN key. When the MSE command is called, the following appears:

Prompts:

MODIFY PROGRAM SEGMENT ENTRY
PROGRAM FILE PATHNAME: filename@ (*)

MODULE NAME OR ID: {alphanumericlinteger}

After the responses to the PROGRAM FILE PATHNAME: and MODULE NAME OR 10: prompts
have been entered, the following set of prompts is displayed on the user's terminal:

MODIFY PROGRAM SEGMENT ENTRY FOR ID <n>
NAME: alphanumeric

SYSTEM SEGMENT?: YES/NO
MEMORY RESIDENT?: YES/NO

DELETE PROTECT?: YES/NO
UPOATABLE?: YES/NO
SHARABLE?: YES/NO

REPLICATABLE?: YES/NO
IN MEMORY REUSABLE?: YES/NO
IN MEMORY COPYABLE?: YES/NO

(*)
(*)
(*)
(*)
(*)
(*)
(*)
(*)
(*)

where <n> is the ID of the segment to be modified. (This 10 is for user information only and may
not be modified.)

After the responses to the previous prompts are entered, the following prompts are displayed on
the user's terminal:

990/12 FLAGS
WRITE PROTECT?: YES/NO

EXECUTE PROTECT?: YES/NO
WRITABLE CONTROL STORAGE?: YES/NO

Prompt Details:

PROGRAM FILE PATHNAME:

(*)
(*)
(*)

The file name of the program file on which the program segment to be modified has been
installed.

6·36 2270508·9701

Linking and Installing a Program 6.8.13

MODULE NAME OR ID:
The segment name or ID of the program segment installed on the specified program file.

NAME:
The name of the program segment. If the segment ID was entered, the system automatically
places the associated segment name in the response field of this prompt.

SYSTEM SEGMENT?:
If YES is entered, the program segment may only be accessed by a system task.

MEMORY RESIDENT?:
If YES .s entered, and the program segment is installed on the program file .S$SHARED or the
applications program file specified at system generation, the program segment will be loaded
into memory during initial program load (IPL) and remain in memory even when terminated.

DELETE PROTECT?:
If YES is entered, the program segment is protected against accidental deletion.

UPDATABLE?:
If YES is entered, the data of a program segment may be modified, and the program segment
will be written to disk with the new data modifications after the task is terminated or if the
task maps the program segment out of its addressable memory area.

SHARABLE?:
If YES is entered, the program segment may be shared concurrently with more than one task.

REPLICATABLE?:
If YES is entered, there may be multiple copies of the program segment in memory
simultaneously.

IN MEMORY REUSABLE?:
If YES is entered, the program segment in memory may be reused after termination by
another task; rather than a new copy being copied from disk or being copied from one
memory location to another.

IN MEMORY COPYABLE?:
If YES is entered, the program segment may be reused by copying the segment to more than
one memory location rather than copying the segment from disk.

WRITE PROTECT?:
If YES is entered, the program segment may not be modified. The protection is enforced only
on a 990/12 computer.

EXECUTE PROTECT?:
If YES is entered, execution of the program segment is prohibited. The protection is enforced
only on a 990/12 computer.

WRITABLE CONTROL STORAGE?:
If YES is entered, the program segment uses the writable control storage area. Writable con
trol storage is available only on a 990/12 computer.

2270508-9701 6-37

6.9 Linking and Installing a Program

6.9 INSTALLING IMAGE FORMAT WITH LINK EDITOR

The IMAGE format, selected by use of the FORMAT command, allows the Link Editor to install
linked output memory images directly to a specified ONOS program file or to a DNOS image file.
This feature allows the user to bypass the actual installation of tasks, procedures, and overlays.
Linked output programs can replace existing programs or they can be added to the file. When the
IMAGE format is selected and the overlays, tasks, and procedures are installed on a program file,
the identifiers (IDs) of these overlays, tasks, and procedures are automatically assigned by the
system. The assigned ID appears on the Load Map for the appropriate procedure, task, or phase.
In order to load an overlay using a Load Overlay SVC, reference the overlay by name in the calling
program, as shown:

REF overlay name

DATA overlay name

The Link Editor resolves the reference and stores the assigned overlay 10 as the DATA statement
operand. The 10 may then be used in the supervisor call block.

6·38

NOTE

If the task name matches the overlay name, the task 10 is stored in
the DATA statement.

2270508·9701

7

Executing a Program

7.1 INTRODUCTION

Many commands are provided to execute tasks. Three of these commands are used for assembly
language tasks, while the others are used for executing tasks of the various language processors
available for the 990 computer.

7.2 EXECUTING AN ASSEMBLY LANGUAGE TASK

The three commands for executing assembly language tasks each serve a particular function.
These commands are described and their syntax given in the following paragraphs.

7.2.1 Execute Task - XT
The XT command is used to execute a task and to leave SCI active during task execution. This
command is used for most tasks, except those being debugged and terminal interactive tasks.

Prompts:

EXECUTE TASK
PROGRAM FILE OR LUNO:

TASK NAME OR 10:
PARM1:
PARM2:

STATION ID:

Purpose:

{ filename@linteger}
{ alphanumericlinteger}
integer
integer
{integer/ME}

(*)
(*)
(0)
(0)
(*)

The XT command activates a program that does not interact with the user's terminal. Two
16-bit words of information can be passed to the program being activated in response to the
PARM1 and PARM2 prompting messages of the XT command. The operating system
automatically assigns a run-time 10 to each program that it activates and displays the run
time ID at the user's terminal upon successful activation of the program. A task activated by
the XT command cannot access event characters entered at the user's terminal.

Prompt Details:

PROGRAM FILE OR LUNO:
The file name of or the LUNO assigned to the program file on which the task to be ex
ecuted has been installed. If a LUNO is specified in response to this prompt, it must be
assigned prior to the execution of the XT command. If zero is specified, the .S$SHAREO
program file is assumed.

2270508·9701 7-1

7.2.2 Executing a Program

TASK NAME OR ID:

file.

PARM1: and PARM2:
Decimal or hexadecimal numbers in the range of 0 through 65535 representing a value
to be passed to the program.

STATION 10:
The number (i.e., 2, not ST02) of the station with which the executing task is to be
associated. A zero, or the characters ME indicates the user's terminal. A >FF indicates
the task is not to be associated with a station.

A task should not be associated with a station unless it is used by the task for terminal
I/O. If a station ID is specified through the XT command and SCI is quit (via the QUIT SCI
command) before the task terminates, log on to SCI may not be performed until the task
terminates.

7.2.2 Execute Task and Suspend SCI ~ XTS
The XTS command activates the specified task and suspends SCI until the task terminates. This
command should be used for terminal interactive tasks to avoid contention between SCI and the
task for terminal access.

Prompts:

EXECUTE TASK AN 0 SUSPEN D SCI
PROGRAM FILE OR LUNO:

TASK NAME OR ID:
PARM1:
PARM2:

STATION 10:

{fi lename@linteger}
{ alphanumeric/integer}
integer
integer
{ j nteger/M E}

(*)
(*)
(0)
(0)
1*\
\ I

Purpose:

The XTS command activates an interactive program and automatically suspends SCI to pre
vent it from interfering with the execution of the program. If SCI were not suspended, it would
continue to interpret data entered at the terminal as though that data were intended for SCI,
and an error would result. This command is also used to make event characters available to a
task other than SCI.

Prompt Details:

7·2

PROGRAM FILE OR LUNO:
The file name of or the LUND assigned to the program file on which the task to be ex
ecuted has been installed. If a LUNO is specified in response to this prompt, it must be
assigned prior to the execution of Ule Xi command. If zero is specified, the .S$SHARED
program file is assumed.

TASK NAME OR ID:
Either the name or !D under \"/hich the program is installed on the specified proqram
file.

2270508·9701

Executing a Program 7.2.3

PARM1: and PARM2:
Decimal or hexadecimal numbers in the range of 0 through 65535 representing a value
to be passed to the program.

STATION 10:
The number (Le., 2, not ST02) of the station with which the executing task is to be
associated. A zero, or the characters ME indicates the user's terminal. A >FF indicates
the task is not to be associated with a station.

A task should not be associated with a station unless it is used by the task for terminal
1/0. If a station 10 is specified through the XT command and SCI is quit (via the QUIT SCI
command) before the task terminates, log on to SCI may not be performed until the task
terminates.

7.2.3 Execute and Halt Task - XHT
The XHT command places a task in memory in a suspended state so that it can be debugged.
Typically, the user places the task to be debugged in memory using XHT, establishes the debug
environment (including breakpoints), and then activates the task using the Resume Task (RT)
command.

Prompts:

EXECUTE ANO HALT TASK
PROGRAM FILE OR LUNO:

TASK NAME OR 10:
PARM1:
PARM2:

STATION 10:

Purpose:

{ filename@linteger}
{ alphanumericlinteger}
integer
integer
{ i nteger/M E}

(*)
(*)
(0)
(0)
(*)

The XHT command places a task in memory in a suspended state so that it can be debugged.
Typically, the user places the task to be debugged in memory using XHT, establishes the
debug environment (including breakpoints), and then activates the task using the Resume
Task (RT) command.

Prompt Details:
PROGRAM FILE OR LUNO:

The file name of or the LUNO assigned to the program file on which the task has been
installed. If a LUNO is specified in response to this prompt, it must be assigned prior to
the execution of the XHT command. If zero is specified, the .S$SHAREO program file is
used.

TASK NAME OR 10:
The name or the associated installed 10 of the task whose execution is to be halted.

PARM1:
An integer value to be passed to the task being halted, determined by the programmer
who wrote the task.

2270508·9701 7-3

7.3 Executing a Program

PARM2:
A second integer vaiue to be passea to the tasK oelng haited, determined by the
programmer who wrote the task.

STATION ID:
The station ID (e.g., 1, 2) with which the task is to be associated or the two-character
pseudo device name of ME. If >FF is entered, the task is not associated with any
station.

7.3 SVC EXECUTION OF TASK

The Execute Task supervisor call is used to initiate the execution of a task installed on any pro
gram file. If the task specified in the call is already active and was defined as being replicatable
(during installation), another copy of the task is placed in execution. The replicated task can share
procedures with previous activations of the task. If the call is issued for a task that is active but is
not replicatable, the system returns an error to the calling task.

Refer to the DNOS Supervisor Call (SVC) Reference Manual for a complete description of the
supervisor call block.

7.4 BATCH STREAM AND INTERACTIVE EXECUTION

Execution of an assembly language task may also be performed in a batch stream. The batch
command stream for executing a task is depicted in Figure 7-1.

Refer to the section on assembling a program in this manual or the DNOS System Command
Interpreter (SCI) Reference Manual for more information on batch stream operations.

BATCH
XT PR=.USER.PF, T=TESTl, PARM1=O, PARM2=O, S=ME
EBATCH

Figure 7·1. Execution Batch Stream

7-4 2270508-9701

8

Debugging a Program

8.1 GENERAL INFORMATION

Flaws in software are commonly called "bugs". The process of removing flaws from software is
called debugging. Modern programming techniques can drastically reduce the number of bugs in
a program; however, the bugs which remain tend to be subtle and hard to find. DNOS provides
several levels of debugging support, as follows:

• Several System Command Interpreter (SCI) commands provide debugging capabilities
without requiring a special mode of operation.

• A special mode of operation allows a single task to be examined in detail during the
execution process.

Since all of the debug commands interact with the terminal, special care must be taken when
debugging a program that uses the terminal, because two processes requesting terminal support
can be confusing to the user. If the program being debugged requests use of a terminal, two ter
minals should be used: one for executing the program and one for debugging.

8.2 MODES OF DEBUGGING

There are two sets of debug commands:

• Commands used for debugging all tasks.

• Controlled task commands used for tasks that have been put into the debug mode
through the use of the Execute Debug (XD) command.

2270508-9701

NOTE

Putting a task into debug mode affects the execution of all debug
commands as follows:

Symbolic expressions may be used in place of integer expres
sions as responses to commands involving a controlled task.

Every command functions as if the controlled task is uncondi
tionally suspended.

Every command leaves the controlled task unconditionally
suspended.

8-1

8.2.1 Debugging a Program

Tasks which unconditionally suspend themselves can be
momentarily reactivated by some of the debug commands.

The CMO key automatically suspends the controlled task
when executing the Proceed from Breakpoint (PB), Delete and
Proceed from Breakpoint (OPB), or Resume Task (RT) com
mands.

8.2.1 Unconditional Suspend
Most of the debugging commands require that the task being debugged be unconditionally
suspended either before or during the debug command. The "unconditional suspend" task state
under DNOS (task state 6) is the state in which the task is dormant until activated by a command.
There are several ways for a task to become unconditionally suspended:

• The task is bid with the suspend option selected. Either a supervisor call, the Execute
and Halt Task (XHT) command, or the .OBIO SCI primitive suspend a task when the task
is bid.

The XHT command is used for tasks normally executed by an Execute Task (XT) com
mand. XHT places the task in a suspended state for debugging and displays the run 10
of the task to the user. If the user desires to execute and halt the task, and
simultaneously place it in controlled mode, the Execute Debug (XO) command may be
used with no input for the RUN !O prompt. The XO command performs the XHT and
saves the run 10 as the default for the Debugger commands.

The .OBIO primitive is used for tasks that interface through SCI, such as command pro
cessors which are normally bid using the .BIO and .OBIO primitives, described in the
DNOS System Command Interpreter (SCI) Reference Manual. When the .OBID primitive
is executed through SCI, the task is bid and immediately placed in a suspended state.
The run ID of the task is saved in the synonym $$BT or it may be obtained by issuing a
Show Task Status (STS) command.

• The task suspends itself.

• The task executes a breakpoint (XOP 15,15).

• The task is suspended by the SCI debug commands.

Once the task has been placed in a suspended state, the Debugger may be used to assign break
points, simulate execution, display memory, and perform other debugging functions. When the
debugging session is over, the task may be terminated by the Kill Task (KT) command. If the task
was put into controlled mode by an XO command, it may be killed by responding YES to the KILL
TASK? prompt of the Quit Debug (00) command.

8.2.2 Symbols
The debug support provided allows symbolic debugging; whereby, the user can specify labels
within the task being debugged rather than memory addresses. This method of debugging is both
convenient and meaningful since the source code list can be used as reference for the symbolic

8-2 2270508-9701

Debugging a Program 8.2.2

labels used. Symbolic constants consist of the link edit phase name, a period (.), the module iden
tifier name (lOT), a period (.), and the symbol, an assembly language label. The syntax is defined
as:

phase name.IDT name.symbol

NOTE

To have full symbolic capability, both the assembler and Link Editor
must have used the SYMT option.

If the assembler did not use the SYMT option, but the Link Editor did, then symbols of the follow
ing form are available:

phase name.lDT name

If either the phase name or the lOT name of a symbol is omitted, the immediately preceding phase
name or lOT name is used. The syntax is as follows:

.IDT name.symbol (no phase name)

phase name .. symbol (no lOT name)

.. symbol (no phase or lOT name)

Examples:

PHASE1.MOD1.XYZ References Phase = PHASE1
lOT = MOD1

Label = XYZ

.MOD2.MNO References Phase = PHASE1
lOT = MOD2

Label = MNO

.. ABC References Phase = PHASE1
lOT = MOD2

Label = ABC

Four words of memory per symbol are required to store symbol values.

If the task being debugged is a single routine installed without being linked, then the symbolic
constant consists of a period (.), the characters of the module identifier name, a period (.), and the
characters of the symbol, as follows:

.lOT name.symbol

2270508·9701 8-3

8.2.3 Debugging a Program

NOTE

Symbols may only be used for commands affecting a task that has
been placed in the debug mode by the Execute Debug (XD) command.

Symboi encoding uses a hashing method which sometimes pro
duces a seeming duplication of values for a symbol. In such cases,
use another symbol.

8.2.3 Expressions
Constants (and symbolic constants for tasks in the debug mode) may be combined using the
operators +, -, *, I, (), and < > to form expressions v/hich may be used as command operands.
The operators have the following meanings:

Operator

+

*
I
()

<>

Meaning

Unary plus or addition
Unary minus or subtraction
Multiplication
Division
Evaluation order
Indicated memory location contents

NOTE

The right angle bracket, >, is regarded as a hexadecimal number
indicator rather than the right part of < > whenever there are hex
adecimal digits immediately following. Thus, no conflict arises.

Expressions are evaluated according to the following rules:

8-4

• Subexpressions delimited by () and < > are evaluated first with the innermost expres
sion evaluated before any other leve!s.

• Unless otherwise instructed by parentheses or angle brackets, unary + and - are
evaluated first, multiplication and division are evaluated second, and addition and sub
traction last.

• For operators at the same level, evaluation proceeds left to right.

• Arithmetic treats all constants as unsigned numbers .

2270508·9701

Debugging a Program 8.3

For example, if .IOTNAM.BEGIN is memory address >7A, and if memory address >7F contains
>3B, then the expression FF/(IOTNAM.BEGIN + 5 + -2 + 3*>F) is evaluated as follows:

>FF/«.IDTNAM.BEGIN + 5> + -2 + 3*>F)
>FF/«>7A + 5> + -2 + 3*>F)
>FF/«>7F> + -2 + 3*>F)
>FF/(>3B + -2 + >20)
>FF/(>3B + (-2) + >2D)
>FF/(>39 + >2D)
>FF/>66
2

These symbols may be used in expression lists in the same way as constants or symbolic con
stants. For example,

#PC + NAME.IOT - #R15

is a valid expression.

Several special symbols are allowed in expressions. These special symbols are:

Symbol

#PC
#WP
#ST
#Rn

Description

Contents of the Program Counter
Contents of the Workspace Pointer
Contents of the Status Register
Contents of the Workspace Register whose number
corresponds to the number (0 through 15) given for n.

Character strings are also allowed in expressions. A character string is of the form 'XXXX_'
where X is any valid ASCII character. The apostrophe can be represented in a character string by
using double apostrophes. A character string may be any length, but only the leftmost four
characters are significant. Strings shorter than four characters are right-justified with leading
zeros. The value of a character string is an expression in the ASCII hexadecimal representation of
the characters expressed as a 32-bit number.

String

'ABCD'
'A'

'ABCDE'

'A"B'

8.3 COMMANDS FOR ALL TASKS

Value

41424344
00000041
41424244
00000020
00412742

The SCI commands described in the following paragraphs may be used for all tasks. These com
mands are most frequently used in debugging; however, may be used whenever SCI is active.

2270508-9701 8-5

8.3.1 Debugging a Program

Many of the debug commands require the run-time task 10 returned by the XT or XHT commands.
Make note of the run-time task ID when the task is placed in execution. The Show Task Status
(STS) command may be used to identify the run-time 10 (which identifies the task to ONOS).

8.3.1 Data Display Commands
1 nese ;::'\",I commands dispiay the contents of memory, registers and specified breaKpoint
addresses. Table 8-1 lists the paragraphs associated with each command for easier referencing.

8-6

Table 8·1. Debug Commands

Debug Command Paragraph Reference

Activate Task
Assign Breakpoints
Assign Simulated Breakpoints
Delete and Proceed From Breakpoint
Delete Breakpoints
Delete Simulated Breakpoints
Execute and Halt Task
Find Byte
Find Word
Halt Task
Initiate Debug Mode
List Breakpoints
List Logical Record
List Memory
List Simulated Breakpoints
List System Memory
Modify Absolute Disk
Modify Allocatable Disk Unit
Modify Internal Registers
Modify Memory
Modify Program Image
Modify Relative to File
Modify System Memory
Modify Workspace Registers
Proceed from Breakpoint
Quit Debug Mode
Resume Simulated Task
Resume Task
Show Absolute Disk
Show Allocatable Disk Unit
Show Internal Registers
Show Panel
Show Program Image
Show Relative to File
Show Value
Show Workspace Registers
Simulate Task

8.3.4.1
8.3.3.1
8.3.6.1
8.3.3.3
8.3.3.2
8.3.6.2
8.3.4.5
8.3.5.1
8.3.5.2
8.3.4.2
8.3.4.4
0') -i -i
U I.I

8.3.1.2
8.3.1.3
8.3.6.3
8.3.1.4
8.3.2.1
8.3.2.2
8.3.2.3
8.3.2.4
8.3.2.5
8.3.2.6
8.3.2.7
8.3.2.8
8.3.3.4
8.3.6.4
8.3.6.5
8.3.4.3
8.3.1.5
8.3.1.6
8.3.1.7
8.3.1.8
8.3.1.9
8.3.1.10
8.3.1.11
8.3.1.12
8.3.6.6

2270508·9701

Debugging a Program 8.3.1.1

8.3.1.1 List Breakpoints - LB. The LB command is used for displaying the breakpoints for a
specified task. If the breakpoints are to be displayed for a system task, the user must have a
privileged user ID.

Prompts:

LIST BREAKPOINTS
RUN 10: integer (*)

Prompt Details:

RUN ID:
A valid run ID in the user's job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

8.3.1.2 List Logical Record - LLR. The LLRcommand lists the contents of a record or records in
a file. The contents of the record or records specified are listed in both hexadecimal and ASCII
representation. The amount displayed per record is a maximum of decimal 512 (hexadecimal 200)
or the logical record length of the file, whichever is less.

Prompts:

LIST LOGICAL RECORD
PATHNAME:

STARTING RECORD:
NUMBER OF RECORDS:

LISTING ACCESS NAME:

Prompt Details:

PATHNAME:

pathname@
integer
[integer]
[path name @]

(*)
(0)

The pathname that identifies the file in which the records to be listed reside.

STARTING RECORD:
A decimal or hexadecimal integer that identifies the first record whose contents are to
be listed.

NUMBER OF RECORDS:
A decimal or hexadecimal integer that identifies how many records are to be listed. A
null response specifies that all records are to be listed.

LISTING ACCESS NAME:
The device name of a device or the pathname of a file to which the LLR command
should write the contents of the record(s) specified. The default value is the terminal
local file.

8.3.1.3 List Memory - LM. The LM command is used to list the specified memory area of a
task to a specified output device or file. If the task is not unconditionally suspended, it is tem
porarily suspended while the listing is being formatted.

2270508-9701 8-7

8.3.1.4 Debugging a Program

Prompts:

LIST MEMORY
RUN 10: integer

STARTING ADDRESS: full exp
NUMBER OF BYTES: [fuli expj

LISTING ACCESS NAME: [pathname@]

(*)

Prompt Details:

RUN 10:
A valid run ID in the user's job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

STARTING ADDRESS:
The integer value which is the starting address of the memory area to be listed.

NUMBER OF BYTES:
The integer value which is the number of bytes of memory to be listed, beginning with
the specified starting address. The default value is 16 bytes.

LISTING ACCESS NAME:
The device name or file name of the device or file where the memory list is to be output.
The default value is the terminal local file.

8.3.1.4 List System Memory - LSM. The LSM command is used to list the memory occupied
by the DNOS operating system. This command is similar to the List Memory (LM) command,
except the user specifies an overlay name or 10 instead of a run 10.

The LSM command is intended for use only by someone very familiar with DNOS source code.

Prompts:

LIST SYSTEM MEMORY
OVERLAY NAME OR 10:

STARTING ADDRESS:
NUMBER OF BYTES:

LISTING ACCESS NAME:

{integer/alphanumeric}
integer
[integer]
[pathname@]

Prompt Details:

8-8

OVERLAY NAME OR ID:
The overlay name or integer value specified in the Install Overlay (10) command which is
the ID of the overlay whose memory is to be listed. By executing the Map Program File
(MPF) command on the kernel program file, (whose name is specified at system genera
tion, the user may inspect the acceptable overlay names and associated IDs.

STARTING ADDRESS:
The integer expression which is the starting address of the memory area to be listed.

2270508-9701

Debugging a Program 8.3.1.5

NUMBER OF BYTES:
The integer value which is the number of bytes of memory to be listed, beginning with
the specified starting address. The initial value is >40 bytes.

LISTING ACCESS NAME:
The device name or file name where the memory list is to be output. The default value is
the terminal local file.

8.3.1.5 Show Absolute Disk - SAD. The SAD command is used to print the contents of a
specified absolute address on a disk and may be executed only by privileged users. The contents
of sixteen bytes are printed per line, with the address of the first byte printed as the first entry on
the line. The contents of each pair of bytes are shown as four hexadecimal digits. At the right end
of the line, the contents are printed as ASCII characters. The bytes that contain values that corres
pond to printable ASCII characters are translated and printed as ASCII characters; nonprinting
ASCII characters are printed as periods.

Prompts:

SHOW ABSOLUTE DISK
DISK UNIT:

TRACK:
SECTOR:

FIRST WORD:
NUMBER OF WORDS:

OUTPUT ACCESS NAM E:

Prompt Details:

DISK UNIT:

devicename@
integer exp
integer exp
integer exp
[integer exp]
[pathname@]

(0)

(*)

The device name assigned to the disk during system generation. Normally, the
characters DS01 are used for the system disk and DSxx for other disks on the system;
where xx is a two digit decimal number less than or equal to ten (for example DS02).

TRACK:
The integer value that is the starting track address from which to begin printing the con
tents of the disk.

SECTOR:
The integer value that is the starting sector address, within the specified disk track,
from which to begin printing the contents of the disk.

FIRST WORD:
The integer value that is the word offset, within the specified disk sector, from which to
begin printing the contents of the disk.

NUMBER OF WORDS:
The integer value that is the number of words of the specified sector to print. The
default value is the disk sector size.

2270508·9701 8-9

8.3.1.6 Debugging a Program

OUTPUT ACCESS NAME:
The device name or file name of a device or file where the contents of the specified
absolute disk address is to be printed. The default value is the terminal local file.

8.3.1.6 Show Allocatable Disk Unit - SADU. The SADU command is used to output the con
tents of the specified aiiocatabie disk units (ADUs) to the specified device.

All disks on a DNOS system are addressed in ADUs, the basic addressable disk unit in a DNOS
system. The maximum number of ADUs on a disk is 65,535. Therefore, if a disk contains more than
65,535 sectors, multiple sectors are used as ADUs.

Prompts:

SHOW ALLOCATABLE DISK UNIT
DISK UNIT:

ADU NUMBER:
SECTOR OFFSET:

FIRST WORD:
NUMBER OF WORDS:

OUTPUT ACCESS NAME:

devicename@
integer exp
integer exp
integer
[integer exp]
[pathname@]

(0)

(*)

Prompt Details:

DISK UNIT:
The device name assigned to the disk during system generation. Normally, the
characters DS01 are used for the system disk and DSxx for other disks on the system,
where xx is a two-digit decimal number greater than one (e.g., DS02).

ADU NUMBER:
The integer value that is the ADU with contents to be listed.

SECTOR OFFSET:
The integer value that is the sector of the ADU with contents to be listed.

FIRST WORD:
The integer value that is the word offset, within the specified sector, from which to
begin listing the contents of the ADU.

NUMBER OF WORDS:
The integer vaiue that is the number of words of the specified sector to list. The default
value is the disk ADU size.

OUTPUT ACCESS NAME:
The device or file name where the contents of the specified ADU are to be listed. The
default value is the terminal local file.

8.3.1.7 Show Internal Registers - SIR. The SIR command is used to display the task state and
the contents of the internal registers of a task: program counter (PC), workspace pointer (WP),
workspace register (WR), status register (ST), memory, and breakpoints. The STATE field is the

8-10 2270508·9701

Debugging a Program 8.3.1.8

state of the task before it was suspended to show the contents of the internal registers. The re
mainder of the display reflects the internal register values in effect after the task was suspended.

The character string representation of the status register follows the hexadecimal value and may
include the following characters:

L = Logical greater than P = Parity
A = Arithmetic greater than X = XOP in progress
E = Equal S = Privileged mode
C = Carry M = Map file
0 = Overflow

If the internal registers are to be shown for a system task, the user must have a privileged user 10.

Prompts:

SHOW INTERNAL REGISTERS
RUN ID: integer (*)

Prompt Details:

RUN 10:
A valid run ID in the user's job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

8.3.1.8 Show Panel - SP. The SP command is used to display the debug panel for a specified
task. If the task is not unconditionally suspended, it will be temporarily suspended while the
panel is being formatted and displayed. The displayed task state is the state of the task before it
was suspended. The debug panel consists of the following:

• Internal registers

• Workspace reg isters

• Breakpoints

• Memory display

• Task state

The SP command also shows the character string representation of the status register.

If the debug panel to be displayed is for a system task, the user must have a privileged user 10.

Prompts:

SHOW PANEL
RUN ID:

MEMORY ADDRESS:

2270508-9701

integer
[full exp]

(*)

8-11

8.3.1.9 Debugging a Program

Prompt Details:

RUN ID:
A valid run ID in the user's job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

MEMORY ADDRESS:
The integer value that is the starting memory address for the memory portion of the
debug panel display. The default value is the current PC address.

8.3.1.9 Show Program Image - SPI. The SPI command is used to display the disk-resident
memory image of a module (defined as a task, procedure, segment, or overlay) for a specified
program.

Prompts:

SHOW PROGRAM IMAGE
PROGRAM FILE:

OUTPUT ACCESS NAM E:
MODULE TYPE:

MODULE NAME OR ID:
ADDRESS:

LENGTH:

filename@
[pathname@]
{T/P/O/S}
{ alphanumericlinteger}
integer
integer

(*)
(*)
(*)
(*)
(*)
(040)

Prompt Details:

8-12

PROGRAM FILE:
The file name of or the LUNO assigned to the program file on which the program (task,
procedure, overlay, or segment) has been installed. If a LUNO is specified in response
to this prompt, it must be assigned prior to the execution of the SPI command. If zero is
specified, the .S$SHARED program file is assumed.

OUTPUT ACCESS NAM E:
The device name or file name where the display of the memory image of the program is
to be written. The default value is the terminal local file.

MODULE TYPE:
The type of program with a memory image to be displayed. The following characters are
val id responses:

T = Task
P = Procedure
0 = Overlay
S = Program Segment

MODULE NAME OR ID:
The characters or the associated ID that identifies the program on the specified pro
gram file.

ADDRESS:
The integer value that is the starting address of the memory image to be displayed.

2270508-9701

Debugging a Program 8.3.1.10

LENGTH:
The integer value that is the number of words of the memory image to be displayed.

8.3.1.10 Show Relative to File - SRF. The SRF command is used to display any word or group
of words within a file. It assumes that the user has knowledge of the file structure and allows the
user to address any word within the file.

Prompts:

SHOW RELATIVE TO FILE
PATHNAME:

RECORD NUMBER:
FIRST WORD:

NUMBER OF WORDS:
OUTPUT ACCESS NAM E:

Prompt Details:

PATHNAME:

filename@
integer
integer
[integer]
[pathname@]

The name of the file with a record to be displayed.

RECORD NUMBER:

(*)
(*)
(*)

(*)

The integer value that is the record number within the file to be displayed.

FIRST WORD:
The integer value that is the byte offset within the record to be displayed.

NUMBER OF WORDS:
The integer value that is the number of words of the record to display. The default is to
display the whole record.

OUTPUT ACCESS NAM E:
The pathname of a device or file where the results of the SRF command are to be listed.
The default is the terminal local file.

8.3.1.11 Show Value - SV. The SV command is used to display the value of a specified expres
sion. The hexadecimal, decimal, and ASCII representations of the value are given.

Prompts:

SHOW VALUE
EXPRESSION: full exp

Prompt Details:

EXPRESSION:
The integer and/or character(s) expression with a value to be displayed. If a task is being
debugged and is a controlled task, the expression may be symbolic.

2270508-9701 8-13

8.3.1.12 Debugging a Program

8.3.1.12 Show Workspace Registers - SWR. The SWR command is used to display the current
workspace of a task. If the task is not unconditionally suspended, it is temporari!y suspended
while the workspace is displayed.

If the terminal requesting the command is a VDT, the SWR command functions the same as the
Show Panel (SP) command. If the workspace to be displayed is for a system task, the user must
have a privileged user 10.

Prompts:

SHOW WORKSPACE REGISTERS
RUN 10: integer (*)

Prompt Details:

RUN 10:
A valid run ID in the user's job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

8.3.2 Data Modification Commands
These commands are used to place specified data on a disk or change data at an absolute word
address. Modification of specified ADUs, internal registers, memory image, or programs may be
accomplished using these debugging commands.

8.3.2.1 Modify Absolute Disk - MAD. The MAD command is used to place specified data on a
disk at a specified absolute track, sector, and word address and may only be executed by privi
leged users. Data is entered in groups of word values to be placed on disk. Word values must be
separated from each other with a comma and loaded on disk in successive addresses. The
verification parameter allows the user to enter a string of words to be compared to the data at the
specified address. If there is not a correspondence between the string of words and the data at
the specified address, the modification does not take place.

Prompts:

NOTE

Since the MAD command has the capability to write anything,
anywhere on the disk, and can therefore destroy the ONOS system
image, the verify option should always be used.

MODIFY ABSOLUTE DISK
DISK UNIT:

OUTPUT ACCESS NAME:
TRACK:

SECTOR:
FIRST WORD:

VER!F!C,l1.T!ON DATA:
DATA:

8-14

devicename@
[pathname@]
integer exp
integer exp
integer exp
[integer(s)]
integer(s)

1*\
\ J

2270508·97u~

Debugging a Program 8.3.2.2

Prompt Details:

DISK UNIT:
The device name of the disk device assigned during system generation. Normally, the
characters DS01 are used for the system disk and DSOx for other disks on the system,
where x is a digit greater than one.

OUTPUT ACCESS NAM E:
The device or file name where the contents of the specified absolute disk address are to
be printed. The default value is the terminal local file.

TRACK:
The integer value which is the starting track address from which to begin the disk
modification.

SECTOR:
The integer value which is the starting sector address, within the specified disk track,
from which to begin the disk modification.

FIRST WORD:
The integer value which is the starting word address, within the specified disk sector,
from which to begin the disk modification.

VERI FICATION DATA:
If specified, the integer value contained in the specified starting address. If more than
one integer is specified, they must be separated by commas; it is assumed these values
are contained in successive words, beginning with the specified first word.

DATA:
The integer value to replace the existing value contained in the specified first word. If
more than one value is specified, they must be separated by commas; it is assumed
these values are to replace the existing values contained in successive words, begin
ning with the first word.

8.3.2.2 Modify Allocatable Disk Unit - MADU. The MADU command is used to modify a
specified allocatable disk unit (ADU). If verification data does not match the data already on the
disk, modification will not be performed.

All disks on a DNOS system are addressed in ADUs. The maximum number of ADUs on a disk is
65,535. Therefore, if a disk contains more than 65,535 sectors, multiple sectors are used as ADUs.
AD Us are the basic addressable disk unit in a DNOS system.

Prompts:

MODIFY ALLOCATABLE DISK UNIT
DISK UNIT:

OUTPUT ACCESS NAME:
ADU NUMBER:

SECTOR OFFSET:
FIRST WORD:

VERIFICATION DATA:
DATA:

2270508-9701

devicename@
[path name@]
integer exp
integer exp
integer exp
[integer exp list]
integer exp list

(*)

8-15

8.3.2.3 Debugging a Program

Prompt Details:

DISK UNIT:
The device name of the disk assigned during system generation. Normally, the
characters DS01 are used for the system disk and DSOx for other disks on the system,
where x is a digit greater than one.

OUTPUT ACCESS NAM E:
The device or file name where the results of the ADU modification are to be listed. The
default value is the terminal local file.

ADU NUMBER:
The integer value which is the ADU with contents to be modified.

SECTOR OFFSET:
The integer value which is the sector of the ADU with contents to be modified.

FIRST WORD:
The integer value which is the starting word offset, within the specified sector, where
modifications of the ADU are to begin.

VERIFICATION DATA:
If specified, the integer value contained in the specified first word address. If more than
one integer is specified, they must be separated by commas; it is assumed these values
are contained in successive words, beginning with the specified first word.

DATA:
The integer value to replace the existing value contained in the specified first word. If
more than one value is specified, they must be separated by commas; it is assumed
these values are to replace the existing values contained in successive words, begin
ning with the first word.

8.3.2.3 Modify Internal Registers - MIR. The MIR command is used to modify the internal
registers of a task: program counter (PC), workspace pointer (WP), and status register (ST). If the
task being debugged is not a privileged task, then only bits 0 through 6 of the status register can
be modified with this command. If the task is not unconditionally suspended, it is temporarily
suspended while the command is interacting with the register modification.

As in the Modify Memory (MM) command, the MIR command is interactive; the RETURN key may
be pressed after the register and its contents have been displayed and/or modified to cause the
next register and its contents to be displayed. Also, by pressing the Command (CMD) key, SCI is
returned to command mode.

If the internai registers to be modified are for a system task, the user must have a privileged user
ID.

Prompts:

MODIFY INTERNAL REGISTERS
RUN ID: inteaer

8-16

(*\
\ !

2270508-9701

Debugging a Program 8.3.2.4

Prompt Details:

RUN 10:
A valid run ID in the user's job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

8.3.2.4 Modify Memory - MM. The MM command is used to modify the memory image of a
task, starting at the address specified. If the task is not unconditionally suspended, it is tem
porarily suspended while the command is interacting. Swapping does not affect the modification
process. Consecutive memory addresses, and their values, may be displayed andlor modified by
pressing the RETURN key. Pressing the Command (CMD) key will return SCI to command mode.

Prompts:

MODIFY MEMORY

Prompt Details:

RUN 10:

RUN ID: integer
ADDRESS: full exp

(*)

A valid run ID in the user's job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

ADDRESS:
The integer value of the first memory address to be modified.

8.3.2.5 Modify Program Image - MPI. The MPI command is used to modify a program (defined
to be a task, procedure, or overlay) in a specified program file.

Prompts:

MODIFY PROGRAM IMAGE
PROGRAM FILE: filename@ (*)

OUTPUT ACCESS NAME: [pathname@] (*)
MODULE TYPE: {T/P/O/S} (*)

MODULE NAME OR 10: {alphanumericlinteger} (*)
ADDRESS: integer (*)

VERIFICATION DATA: [integer(s)]
DATA: integer(s)

CHECKSUM: [integer(s)]
RELOCATION OF DATA?: [YES/NO ... YES/NO]

Prompt Details:

PROG RAM FI LE:
The file name of or the LUNO assigned to the program file on which the program (task,
procedure, segment, or overlay) to be modified has been installed. If a LUNO is
specified in response to this prompt, it must be assigned prior to the execution of the
MPI command. If zero is specified, the .S$SHARED program file is assumed.

2270508-9701 8-17

8.3.2.6 Debugging a Program

OUTPUT ACCESS NAM E:
The device name or file name where the results of the memory image modification of
the program are to be written. If a null response is specified, the terminal local file is
used.

MODULE TYPE:
The type of program with a memory image to be modified. The following characters are
valid responses:

T = Task
P = Procedure
0 = Overlay
S - Program Segment

MODULE NAME OR 10:
The character(s) or the associated 10 which identifies the program on the specified pro
gram file.

ADDRESS:
The integer value which is the starting address of the memory image to be modified.

VERIFICATION DATA:
If specified, the integer value contained in the specified starting address. If more than
one integer is specified, they must be separated by commas; it is assumed these values
are contained in consecutive memory addresses, beginning with the specified starting
address.

DATA:
The integer value to replace the existing value contained in the specified starting
address. If more than one value is specified, they must be separated by commas; it is
assumed these values are to replace the existing values contained in consecutive
memory addresses, beginning with the specified starting address.

CHECKSUM:
The checksum is an exclusive OR of each word of new data. If the checksum is not
known and a null response is entered, the checksum will be printed to the device or file
specified in response to the OUTPUT ACCESS NAME: prompts.

RELOCATION OF DATA?:
If YES is specified, the data value will be relocated \tvhen the task is loaded into memory
for execution. NO specifies that the data value will not be relocated. If a list of data
values are specified in response to the DATA prompt and relocation is desired, the user
must specify which values are to be relocated. That is, a YES or NO response must be
entered for each corresponding data value. If there is a list of YES or NO responses,
they must be separated by commas.

8.3.2.6 Modify Relative to File - MRF. The MRF command changes data at an absolute word
address within a file. It is assumed that the user has knowledge of the file and disk structure.
Addresses above 64K (65,536) bytes must have a record number and sector offset supplied by the
user. Words below 64K bytes can be addressed directly and the sector is located by the program.
Verification should be used, when possible.

8-18 2270508-970i

Debugging a Program 8.3.2.6

Prompts:

MODIFY RELATIVE TO FILE
PATHNAME: filename@

[pathname@]
integer
integer

(*)
(*)
(*)
(*)

OUTPUT ACCESS NAM E:
RECORD NUMBER:

FIRST WORD:
VER!FICATION DATA: [i nteger ... integer]

DATA: integer ... integer
CHECKSUM: [integer]

Prompt Details:

PATHNAME:
The file name with contents to be modified.

OUTPUT ACCESS NAM E:
The device name or file name where the results of the MRF command will be listed. If a
nuH response is specified, the terminal local file is used.

RECORD NUMBER:
The integer value which is the physical record number within the file to be modified. If
the specified word address is over 64K bytes, the user must supply the sector offset as
the response to this prompt.

FIRST WORD:
The integer value which is the starting byte offset where the modification of the record
is to begin. The byte offset must be on an even boundary.

VERIFICATION DATA:
If specified, the integer value contained in the specified first word address. If more than
one integer is specified, they must be separated by commas; it is assumed these values
are contained in successive word addresses, beginning with the specified first word
address.

DATA:
The integer value to replace the existing value contained in the specified first word
address. If more than one value is specified, they must be separated by commas; it is
assumed these values are to replace the existing values contained in successive word
addresses, beginning with the specified first word address.

CHECKSUM:
The checksum is an exclusive OR of each word of new data. If the checksum is not
known and a null response is entered, the checksum will be printed to the device or file
specified in response to the OUTPUT ACCESS NAME: prompt.

2270508·9701 8-19

8.3.3.3 Debugging a Program

8.3.3.3 Delete and Proceed from Breakpoint - DPB. The OPB is used to proceed from a brei
point at which a task is currently stopped and to delete that breakpoint. !f the breakpoint h
already been deleted, the command functions as if it were a Proceed from Breakpoint (F
command.

Prompts:

DELETE AND PROCEED FROM BREAKPOINT
RUN 10: integer

DESTINATION ADDRESS(ES): [full exp list]
(*)

Prompt Details:

RUN ID:
A valid run ID in the user's job. Current run IDs may be obtained by executing the She
Task Status (STS) command.

DESTINATION ADDRESS(ES):
The integer value(s) of the address(es) within the task which are additional breakpoir
to be set. A null response specifies that no new breakpoints are to be set.

8.3.3.4 Proceed from Breakpoint - PB. The PB command is used to resume execution of
task that is stopped at a breakpoint without deleting the breakpoint. The task is resume
executing the instruction at the breakpoint at which it is currently stopped; however! the bree
point remains active. If the task is not currently at a breakpoint, the user is notified by a warnil
message that the task is not at a breakpoint, and the task remains in whatever state it was
before the PB command.

The PB command may also be used to assign new breakpoints in the specified task by respondil
to the DESTINATION ADDRESS(ES) prompt. Breakpoints are set, if possible, at all the specifil
destination addresses. If no destination address(es) is specified, the task resumes execution b
no breakpoints are set.

Prompts:

PROCEED FROM BREAKPOINT
RUN ID:

DESTINATION ADDRESS(ES):
integer (*)
[full exp list]

Prompt Details:

8-22

RUN ID:
A valid run ID in the user's job. Current run IDs may be obtained by executing the She
Task Status (STS) command.

DESTINATION ADDRESS(ES):
The integer value(s) of the address(es) within the task where the new breakpoints are
occur. Addresses must be separated by a comma. The default value is no ne
breakpoints.

2270508·9"

Debugging a Program 8.3.4

8.3.4 Task Control Commands
The control commands are used to unconditionally suspend and activate the task during the
debugging process.

8.3.4.1 Activate Task - AT. The AT command is used to activate an unconditionally sus
pended task.

Prompts:

ACTIVATE TASK
RUN 10: integer (*)

Prompt Details:

RUN ID:
A valid task run ID in the user's job. Current run IDs may be obtained by executing the
Show Task Status (STS) command.

8.3.4.2 Halt Task - HT. The HT command is used to unconditionally suspend a task at the end
of the current time slice. If the task is already unconditionally suspended, it has no effect on the
task. If the task is not in the active state, the HT command waits five seconds for the task to reach
unconditional suspend, then gives the user the option of aborting or continuing to wait. This
option occurs every five seconds if the task is not active and the HT command is executed.

If the task cannot be suspended, the following message is displayed:

UNABLE TO SUSPEND TASK. CURRENT STATE5XX. CONTINUE COMMAND?

If a YES response is entered, another attempt is made to suspend the task. If unsuccessful, the
message is displayed again. A NO response to the preceding message causes the following
message to be displayed:

DO YOU WISH TO LEAVE SUSPENSION PENDING?

A YES response leaves the suspension pending, while a NO response terminates the suspension
attempt.

If the specified task is a system taSk, the user must have a privileged user 10.

Prompts:

HALT TASK
RUN 10: integer (*)

Prompt Details:

RUN 10:
A valid run ID in the user's job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

2270508-9701 8-23

8_3,04.3 Debugging a Program

8.3.4.3 Resume Task - RT. The RT command is used to activate a task at the point at which it
was suspended. The specified task must be unconditionally suspended '"A/hen this command is
executed or an error is indicated. The Delete Breakpoint (DB) and the RT command, Delete and
Proceed from Breakpoint (OPB) or Proceed from Breakpoint (PB) commands must be used to
restart a task halted at a breakpoint. The RT command should be used instead of the Activate
Task (AT) command, to reactivate a task halted by the Halt Task (HT) command.

Prompts:

RESUME TASK
RUN 10: integer (*)

Prompt Details:

RUN 10:
The response to this prompt must be a valid run 10 in the user's job. Current run IDs may
be obtained by executing the Show Task Status (STS) command,

8.3.4.4 Execute in Debug Mode - XD. The XO command is used to place a specified task into
controlled mode. The run-time 10 is optional but cannot be the 10 of a system task. If no run-time
10 is specified, an automatic call is made to the Execute and Halt Task (XHT) command to place
the task into execution.

The symbol table object file is optional and its presence determines whether symbolic expres
sions are allowed on any of the subsequent debug commands. If a symbol table was specified to
the Link Editor (SYMT option was selected) and if the controlled task symbol table object file is
specified, then symbolic expressions involving symbols in the object code symbol table may be
used in commands that call for string parameters.

The debugger may be used to simulate 990 computer object code. The command defaults to the
object code of the host computer.

Only one task for each station may be in debug mode at a given time.

Prompts:

EXECUTE IN DEBUG MODE
RUN 10:

SYMBOL TABLE OBJECT FILE:
990i12 OBJECT CODE?:

[integer]
[fi lename@]
YESiNO

(*)
(*)
(YES)

Prompt Details:

8-24

RUN 10:
A valid run 10 in the user's job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

If a null response is specified, the prompts for the Execute and Halt Task (XHT)
command are displayed. Refer to the XHT command for information concerning
responses to these prompts.

2270508-9'101

Debugging a Program 8.3.4.5

SYMBOL TABLE OBJECT FILE:
The file name specified to the Link Editor if the SYMT option has been selected. By
specifying this file name in response to the prompt, the user is allowed to use symbolic
expressions which involve symbols in the object code symbol table on any debug
command prompt which calls for a character(s) response. If a null response is entered,
no symbol table file is used and symbolic expressions are not allowed.

990/12 OBJECT CODE?:
If YES is entered in response to this prompt, the debugger will simulate 990/12 object
code if executing on a 990/12 computer. If NO is entered, the debugger will simulate
990/10 object code whether executing on a 990/10 or 990/12 computer.

8.3.4.5 Execute and Halt Task - XHT. The XHT command is used to place a task in memory in
a suspended state so that it can be debugged. Typically, the user places the task to be debugged
in memory using XHT, establishes the debug environment (including breakpoints), and then
activates the task using the Resume Task (RT) command.

Prompts:

EXECUTE AN D HALT TASK
PROGRAM FILE OR LUNO: {fi lename@/integer} (*)

(*)
(0)
(0)
(*)

TASK NAME OR 10:
PARM1:
PARM2:

STATION ID:

Prompt Details:

PROGRAM FILE OR LUNO:

{ alphanumericlinteger}
integer
integer
{integer/ME}

The file name of or the LUNO assigned to the program file on which the task has been
installed. If a LUNO is specified in response to this prompt, it must be assigned prior to
the execution of the XHT command. If zero is specified, the .S$SHARED program file is
used.

TASK NAME OR 10:
The name or the associated installed 10 of the task whose execution is to be halted.

PARM1:
An integer value to be passed to the task being halted, determined by the programmer
who wrote the task.

PARM2:
A second integer value to be passed to the task being halted, determined by the pro
grammer who wrote the task.

STATION 10:
The station ID (e.g., 1, 2) with which the task is to be associated or the two-character
pseudo device name of ME. If >FF is entered, the task is not associated with any
station.

2270508-9701 8-25

8.3.5 Debugging a Program

8.3.5 Search Commands
The search commands are used to search for the specified va!ue(s) in a memory area of a task.

8.3.5.1 Find Byte - FB. The FB command is used to search for the specified value(s) in a
memory area of a task; with the search beginning on a byte boundary. If the specified value is
found, the corresponding memory address is displayed. If the task is not unconditionally
suspended, it is temporarily suspended while the search is performed.

Prompts:

FIND BYTE
RUN 10: integer

VALUE(S): full exp list
STARTING ADDRESS: [full exp]

ENDING ADDRESS: [full exp]

(*)

Prompt Details:

RUN 10:
A valid run 10 in the user's job. Current run IDs may be obtained by executing the Show
Task Status (STS) command.

VALUE(S):
The integer value(s) to find in the memory area of the task.

STARTING ADDRESS:
The integer value which is the starting address of the memory area to be searched. The
default is zero.

ENDING ADDRESS:
The integer value which is the ending address of the memory area to be searched. The
default is end of task.

8.3.5.2 Find Word - FW. The FW command is used to search for the specified value(s) in a
memory area of a task; with the search beginning on a word boundary. If the specified value is
found, the corresponding memory address is displayed. If the task is not unconditionally
suspended, it is temporally suspended while the search is performed.

Prompts:

FIND WORD

Prompt Details:

RUN ID:

RUN 10: integer
VALUE(S): full exp list

STARTING ADDRESS: [full exp]
ENDING ADDRESS: [full exp]

(*)

A valid run !D in the user's job. Current run IDs may be obtained by executinq the Show
Task Status (STS) command.

8-26 2270508·9701

Debugging a Program 8.3.6

VALUE(S):
The integer value(s) to find in the memory area of the task.

STARTING ADDRESS:
The integer value which is the starting address of the memory area to be searched. If an
odd address is specified, the address is rounded up to the nearest even value. The
default is zero.

ENDING ADDRESS:
The integer value which is the ending address of the memory area to be searched. The
defau It address is the end of task.

8.3.6 Controlled Task Commands
The control commands allow control and trace execution of instructions in a task until:

• The execution of a specified number of instructions has been simulated.

• A specified address is placed in the PC.

• A breakpoint or simulated breakpoint occurs.

8.3.6.1 Assign Simulated Breakpoint - ASB. The ASB command is used to set up a breakpoint
on a range of values for memory as follows:

• Memory alteration (A)

• CRU access (C)

• Program Counter value (P)

• Memory references (R)

• Status register value (S)

A memory write operation, which does not change the value in memory, is not a memory altera
tion. The breakpoints set with this command are only valid during a Simulate command. Break
points, in this case, are conditions which stop execution but allow execution to be resumed by an
operator command, either by using the Resume Simulated Task (RST) command or by pressing
the F3 function key. Each simulated breakpoint is assigned a number which is displayed at the
completion of the ASB command. When a breakpoint occurs during simulation, a panel and the
breakpoint number are displayed along with the display string.

Prompts:

ASSIGN SIMULATED BREAKPOINT
ON (A,C,P,R,S):

FROM:
THRU:

COUNT:
DISPLAY:

2270508·9701

{A/C/P/RIS}
full exp
[full exp]
full exp
[full exp]

(PC)

(1)

8-27

8.3.6.2 Debugging a Program

Prompt Details:

ON (A,C,P,R,S):
The characters A, C, P, R, S are valid responses to this prompt and have the following
meanings:

FROM:

A = Memory alteration
C = CRU access
P = Program Counter value
R = Reference (memory)
S = Status Register value

The integer expression that specifies the lower address limit for breakpointing.

THRU:
The integer expression that specifies the upper address limit for breakpointing. The
default value is the value specified for the FROM: prompt.

COUNT:
The integer expression that specifies the number of times this breakpoint is to be
encountered before execution is halted. The default value is one.

D!SPLAY:
The integer expression that specifies the memory address to be displayed when this
breakpoint is reached. The default value is the PC value at the time the breakpoint is
reached.

8.3.6.2 Delete Simulated Breakpoints - DSB. The DSB command is used to allow the user to
delete a list of simulated breakpoints assigned with the Assign Simulated Breakpoint (ASB)
command.

Prompts:

DELETE SIMULATED BREAKPOINTS
BREAKPOINT NUMBERS: [full exp list/ALL]

Prompt Details:

BREAKPOINT NUMBERS:
The integer value that specifies the number of the breakpoint to delete, which was the
breakpoint number returned by the ASB command. If the characters ALL are entered, all
the simulated breakpoints are deleted. The default is the breakpoint at which the task is
stopped. Current simulated breakpoints may be obtained by executing the List
Simulated Breakpoints (LSB) command.

8.3.6.3 List Simulated Breakpoints - LSB. The LSB command is used to display all current
simulated breakpoints. When the breakpoints are listed, the first column of the display lists the
numbers assigned when the breakpoints were set; the numbers start at one and are consecutive.
The TYPE column lists letters for the ON prompt of 8 n Assign Simulated Breakpoint command to
identify the value on which the breakpoint was set, and the FROM and THRU columns list the

8-28 2270508-9701

Debugging a Program 8.3.6.4

corresponding operand addresses. The COUNT column lists the count operand entered when the
breakpoints were set, and the REMAINING column lists the number of times the program has yet
to go through the breakpoint. The DISPLAY column lists the display operand.

When the operands represent CRU addresses or ST register values, the operands are listed as
hexadecimal numbers.

Prompts:

None

8.3.6.4 Quit Debug Mode - QD. The QD command is used to take a controlled task out of
debug mode. The user has the option of killing the task at this pOint. If the user chooses not to kill
the task, it will be left unconditionally suspended; but the user may still issue any of the general
SCI commands. The Resume Task (RT) or Proceed from Breakpoint (PB) commands (depending on
whether the task is at a breakpoint) may be used to activate the task.

The RT command is discussed in the task control commands paragraphs.

Prompts:

QUIT DEBUG MODE
KILL TASK?: YES/NO (YES)

Prompt Details:

KILL TASK?:
If YES is entered, the current executing task will be killed. The task then executes its
end-action routine. If NO is entered, the current executing task will be unconditionally
suspended.

8.3.6.5 Resume Simulated Task - RST. The RST command is used to allow the user to resume
simulation following a breakpoint, a simulated breakpoint, or simulation of a specified number of
instructions. The last entered values for the FOR: and TO: prompts of the Simulate Task (ST) com
mand are used as the RST limits. Upon reaching a terminating condition (breakpoint, simulated
breakpoint, time-out or the value specified for the TO: prompt), a panel and termination reason are
displayed. Simulation may be continued by pressing the F3 function key or terminated by press
ing the Command (CMD) key, which returns SCI to the command mode.

8.3.6.6 Simulate Task - ST. The ST command is used to provide controlled and traced execu
tion of the instructions in a task. Controlled execution continues until the execution of a specified
number of instructions has been simulated or until a specified address is placed in the PC or until
a breakpoint or simulated breakpoint occurs. Simulation may be continued by pressing the F3
function key.

Simulated execution continues without operator intervention and locks out further SCI com
mands. Following simulation of the instruction whose address is specified by the response to the
TO: prompt, SCI displays the panel and halts simulation. The user can regain SCI capabilities by
pressing the Command (CMD) key to return to command mode.

2270508-9701 8-29

8.4 Debugging a Program

When the number of specified simulations has been performed, SCI displays the following
message and haits simuiation:

TIME OUT

Prompts:

SIMULATE TASK
FOR:

FROM:
TO:

[full exp]
[full exp]
[full exp]

(*)

Prompt Details:

FOR:
The integer expression that specifies the number of instruction simulations to be per
formed and must be less than or equal to 32,767. When the specified number of simula
tions has been performed, SCI displays the following message and halts simulation:

TIME OUT

If a null response is entered for this prompt, the value specified in a previous ST com
mand is used; if no previous ST commands were executed, a one is used.

FROM:

TO:

The integer expression that specifies the address of the first instruction to be
simulated. If a null response is entered in response to this prompt, simulation begins at
the instruction with an address in the PC.

The integer expression that specifies the address of the last instruction to be
simulated. The integer expression entered may be less than that entered for the FROM
command. If a null response is entered in response to this prompt, simulation con
tinues until a breakpoint or simulated breakpoint is encountered or until the user
presses the CMD key, returning SCI to command mode.

Messages:

8-30

STOP AT TRAP NO. X

where X is the number of the simulated breakpoint set through the Assign Simulated Break
point (ASB) command.

2270508-9701

Debugging a Program 8.4

8.4 STATION DEPENDENT DISPLAYS

As mentioned previously, the displays generated by debugging SCI commands vary in format and
content depending on the display device. High-speed display terminals (such as Video Display
Terminals) display more information than slower, hard copy terminals. Table 8-2 lists the display
generated by several of the debug commands in varying environments.

Table 8·2. Command Displays

Hard Copy
Command Regular

AB
DB
PB

DBP
LB BRKPTS
HT
RT
MM INTERACT
LM TLF
FW MSG OR TLF
FB MSG OR TLF
SIR INT REG

MWR INTERACT
SWR WKSPC
SP PANEL
SV VALUES
XD

ASB
DSB
LSB
ST

RST

QD

BRKPTS = Breakpoints
INTERACT = Interactive

Hard Copy
Debug

BRKPTS

INTERACT
TLF

MSG OR TLF
MSG OR TLF

INT REG
INTERACT

WKSPC
PANEL

VALUES

SIMULATED BRKPTS
TRAPHOR'TIMEOUT'

TRAPHOR'TIMEOUT'

INT REG = Internal registers
MSG = Message
PANEL = Debug panel

2270508·9701

VOl VOl
Regular Debug

PANEL
PANEL
PANEL
PANEL

BRKPTS BRKPTS
PANEL
PANEL

INTERACT INTERACT PANEL
LF TLF

MSG OR TLF MSG + PAN EL OR TLF
MSG OR TLF MSG + PANEL OR TLF

PANEL PANEL
INTERACT INTERACT PANEL

PANEL PANEL
PANEL PANEL

VALUES VALUES
PANEL

BRKPT NO. + PANEL
PANEL

SIMULATED BRKPTS
TRAPHOR'TIMEOUT'

+ PANEL
TRAPHOR'TIMEOUT'

+ PANEL

TIMEOUT = Time-out
TLF = Terminal local file
TRAPHOR = Trap number
WKSPC = Workspace

8-31/8·32

9

Assembly Language Program Example

9.1 EXAMPLE PROGRAMMING

This paragraph describes a simple procedure for creating and executing an assembly language
program using DNOS. This brief program is assembled with the SYMT command entered in the
OPTIONS?: prompt of the Execute Macro Assembler (XMA) command.

This program may be assembler without the Symbol Table by omitting the SYMT OPTION in the
XMA command; however, symbolic debugging cannot be performed without the Symbol Table.

The program is debugged in three different ways:

• Symbolic Debugging - The Symbol Table is supplied to the linked object making the
addresses of the labels in the program recognizable to the debugger.

• Breakpoint Debugging - Breakpoints are assigned to addresses in the executed pro
gram. When a breakpoint is reached, execution halts, and the panel is displayed, show
ing the address values of the breakpoint.

• Simulated Debugging - Used in the same example as the symbolic debugging. The
address values are displayed for the address range specified during the Assign
Simulated Breakpoints (ASB) command until a breakpoint or end of execution is
reached.

The examples also explain how to write messages to the terminal, or to an assigned file by assign
ing a Logical Unit Number (LUNO) to the terminal or file.

An example is supplied, near the end of the section, describing the execution of a previously
debugged program.

For more detailed information on how to code a program, consult the Assembly Language
Reference Manual.

The brief assembly language example given in this section displays a message and requests the
input of three numbers. The program, for this example, was used as the Text Editor Example
(Figure 4-1) and entered in file .USER.SOURCE.

The procedures given in this section are for use on a 911 VDT.

2270508-9701 9-1

9.2 Assembly Language Program Example

The directory .USER, previously created in the section on building a program, is used to simplify
fiie references during assembiy and execution. A suggested syntax is as foiiows:

Source file:
Object fi Ie:
Listing file:
Link edit listing file:
Linked output file:
Error file:
Message file:
Link edit control file:

.USER.SOURCE

.USER.OBJECT

.USER.L1STI NG

.USER.LN KLiST

.USER.LNKOUT

.USER.ERROR

.USER.MESSAGE

.USER.CNTRLlNK

The volume name is optional if the system disk (0801) is used, and it may be omitted.

The .USER.SOURCE file is already created. The remaining files, except .USER.MESSAGE are
created automatically by the following procedures. It is necessary to create the file
.USER.MESSAGE, using the Create File Sequential (CFSEQ) command, as shown below:

[] CFSEQ

CREATE SEQUENTIAL FILE
PATHNAME: .USER.MESSAGE

LOGICAL RECORD LENGTH: <Press RETURN>
PHYSICAL RECORD LENGTH:

INITIAL ALLOCATION:
SECONDARY ALLOCATION:

EXPAN DABLE?:
BLAN K SURPRESS?:

FORCED WRITE?:

<Press RETURN>
<Press RETURN>
<Press RETURN>
YES
NO
NO

The messages produced by the program are written to this file instead of the terminal, since SCI
has command of the terminal.

9.2 REVIEW OF TEXT EDITING

.A. quick review on entering the program into the computer is discussed in this paragraph.

9-2

1. Power up the computer and terminal and log-on using the procedures given in Section 2.

2. Invoke the Text Editor by entering the Execute Editor (XE) command. The following
parameter appears:

[] XE

EXECUTE TEXT EDITOR
FILE ACCESS NAME: <Press TAB key>

3. Press the unlabeled gray key or the RETURN key to create the first blank line above the
~ EOF rec(li'("L

2270508·9701

Assembly Language Program Example 9.3

4. Type in the program source code.

5. Press CMD, after entering the source code, to leave the compose mode.

6. Enter the Quit Editor (QE) command to quit the Text Editor. Select the following
parameters:

[] QE

QUIT EDIT
ABORT?: NO

QUIT EDIT
OUTPUT FILE ACCESS NAME: .USER.SOURCE

REPLACE?: NO
MOD LIST ACCESS NAME: <Press RETURN>

9.3 ASSEMBLE THE PROGRAM

1. Invoke the macro assembler by entering XMA command and select the following
parameters:

[] XMA

EXECUTE MACRO ASSEM BLER
SOURCE ACCESS NAME: .USER.SOURCE
OBJECT ACCESS NAME: .USER.OBJECT
LISTING ACCESS NAME: .USER.LlSTING
ERROR ACCESS NAME: .USER.ERROR

OPTIONS: SYMT
MACRO LIBRARY PATHNAME: <Press RETURN>

PRINT WIDTH (CHARS): 80
PAGE LENGTH (LINES): 60

2. Enter the Wait command.

[] WAIT

-WAITING FOR BACKGROUND TASK TO COMPLETE-

3. When the assembly completes, the following message is displayed:

I ASSEMBLER-0001 MACRO ASSEMBLY COMPLETE, 0000 ERROR(S) 0000
WARNING(S)

4. Press the RETURN key to return to the command mode.

2270508·9701 9-3

9.4 Assembly Language Program Example

9.4 LINK EDIT THE OBJECT CODE

9-4

1. First create a command file for the Link Editor. Invoke the Text Editor by entering XE
command. Press the TAB key to clear the display.

[] XE

INITIATE TEXT EDITOR
FILE ACCESS NAME: <Press TAB key>

2. Place the Text Editor in compose mode by pressing F7 and then press the unlabeled
gray key for the first blank line above the EOF* record.

3. Enter the following lines into the control file:

TASK TEST
INCLUDE ,USER,OBJECT
END

4. Leave the compose mode by pressing the CMD key.

5. Quit the Text Editor by entering QE. Select the following parameters:

[] QE

QUIT EDIT

QUIT EDIT

ABORT?: NO

OUTPUT FILE ACCESS NAME: .USER.CNTRLlNK
REPLACE?: N

MOD LIST ACCESS NAME: <Press RETURN>

6. Invoke the Link Editor by entering the Execute Link Editor (XLE) command. Select the
following parameters:

[] XLE

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: .USER.CNTRLiNK

LINKED OUTPUT ACCESS NAME: .USER.LNKOUT
LISTING ACCESS NAME: .USER.LNKLIST

PRINT WIDTH (CHARS): 80 <Press RETURN>

7. The SCI prompt [] appears, enter the WAIT command and press RETURN key. The
following display appears:

[] WAIT

-WA!T!NG FOR BACKGROUND TASK TO COMPLETE-

2270508·9701

Assembly Language Program Example 9.5

When the Link Editor terminates, the following is displayed:

I LlNKER-0001 LINK EDITOR COMPLETED, 0 ERROR(S), 0 WARNING(S)

8. Press the CM D key to return to command mode.

9.5 INSTALL THE PROGRAM

The program must now be installed as a DNOS task by use of the Install Task (IT) command. A pro
gram file is required for the IT command. The .USER.PROGA program file created in Section 6, can
be used in this example. Perform the following steps to install the task:

1. Enter the IT command to place the program on .USER.PROGA program file. Specify the
following parameters:

[] IT

INSTALL TASK SEGMENT
PROGRAM FILE OR LUNO: .USER.PROGA

TASK NAM E: TEST
TASKID: 0

OBJECT PATHNAME OR LUNO: .USER.LNKOUT
PRIORITY: 4

DEFAULT TASK FLAGS?: YES
ATTACHED PROCEDURES: NO

The installed ID is displayed in the following form when the installation is completed:

TASK NAME = TEST
TASK ID = >run-time ID

2. Press the CMD key to return to the command mode.

3. The program uses LUNO >20 and the LUNO must be assigned to either the VDT or the
file .USER.MESSAGE. For the first examples the LUNO is assigned to .USER.MESSAGE.
Call the Assign Luno (AL) command and respond as follows:

[] AL

ASSIGN LUNO

LUNO: >20
ACCESS NAME: .USER.MESSAGE

PROGRAM FILE?: NO

The message ASSIGNED LUNO: >20 is then displayed.

4. Press the CMD key to return to the command mode.

2270508-9701 9-5

9.6 Assembly Language Program Example

9.6 EXECUTE THE PROGRAM - SYMBOLIC DEBUGGING WITH SIMULATION

Symbolic debugging involves the use of the Symbol Table. During the XMA command, the
OPTIONS: SYMT must be entered to include the Symbol Table in the object code. Inclusion of the
Symbol Table allows you to reference addresses by the label name rather than the address on any
SCI command where an address is required, such as SP and AB. An example of the object code
containing the Symbol Table information is shown in Figure 9-1.

Notice the tag character, address, and label are presented at the bottom of the code. For example,

G012ECLOSE

To execute the program:

1. Use the Execute and Halt Task (XHT) command. Use of this command activates the task
but does not begin execution. When XHT is entered, the following prompt is displayed.
Respond as shown:

[] XHT

EXECUTE AN D HALT TASK
PROGRAM FILE NAME OR LUNO: .USER.PROGA

TASK NAME OR ID: TEST
PARM1: 0
PARM2: 0

STATION ID: ME

The following message appears:

RUNTIME TASK 10 = >run-time ID

2. Note that the run·time 10 of the task is returned on the display. Remember the run-time
10 for the next step. Return to the command mode.

0015CRESPONSEAOOOOC0006C013CBOOOOA0006A0026BOOOOB0020BOOOOB00007F2ilF
BOOOOBOOOOBOOOOBOB20BOOOOC003EBOOOOB004ABOAODB4845B4C4CB4F2CB20507F1CFF
B4C45B4153B4520B494EB5055B5420B4E55B4D42B4552B204FB462OB4954B454D7F187F
B5320B534FB4C44B2054B4F44B4159B2E20B2055B5345B2034B2D44E4947B49547F199F
B204EB554DB4245B5253B2EOOA0086BOAODBOOOOBOB20B0040COOABBOOOOBOOOA7F1CBF
C0096C009CB0004BOOOOA009CAOOABBOAODB4954B454DB2031B202OBOOOOBOB207FIDIF
B0040COOC6BOOOOBOOOACOOCOCOOAOB0004BOOOOBOAODB4954B454DB2032B20207F1EFF
BOOOOBOB20B0040COOE4BOOOOBOOOACOODECOOA2B0004BOOOOBOAODB4954B454D7FICEF
B2033B2020B2000AOOFOBOOOOBOB20BOOOOCOOFCBOOOOB0032BOAODB544BB414E7FIF1F
B4B20B594FB5520B464FB5220B594FB5552B2050B5552B4348B4153B452EB20487F197F
B4156B4520B4120B4E49B4345B2044B4159B2EOOA012CBOAODBOOOOB0120B00007FIE6F
BOOOOBOOOOBOOOOB0400B2FEOC0026B2FEOC0032B2FEOCOOBBB2FEOCOOB2B2FE07F195F
COODOB2FEOCOOFOB2FEOC012EB2FEOC013A7F7D9F
G012ECLOSE G013AEOP GOOFCGOODBYG003EGREET GOOABITEMl 7F26AF
GOOC6ITEM2 GOOE4ITEM3 G0032MSSGO G0088MSSGl GOOB2MSSG2 7F2A7F
GOODOMSSG3 GOOFOMSSG4 G00260PEN 2013CG013CSTART G009CSTORE 7F150F
G0096STRl GOOCOSTR2 GOODESTR3 G0006WSP 7F5C1F

RESPONSE

Figure 9·1. Object Code with Symbol Table

9-6

RESPOOOl
RESP0002
RESP0003
RESP0004
RESP0005
RESP0006
RESP0007
RESP0008
RESPOo09
RESPOOI0
RESP0011
RESP0012
RESP0013
RESP0014
RESP0015
RESP0016
RESP0017
RESP001S

2270508-9701

Assembly Language Program Example 9.6

3. Place the task in the debug mode by entering the Execute Debug (XD) command. Res
pond to the following prompts (answer NO to the 990/12 OBJECT CODE, if using 990/10
system.), as shown:

[l XD

EXECUTE I N DEBUG MODE
RUN ID: >run-time ID

SYMBOL TABLE OBJECT FILE: .USER.LNKOUT
990/12 OBJECT CODE?: YES

4. The contents of the panel appear.

5. Assimulated breakpoints may be assigned to aid in debugging by entering the ASB
command, as follows:

[lASB

ASSIGN SIMULATED BREAKPOINT
ON (A,C,P,R,S): PC (default)

FROM: >14E
THRU: >14E

COUNT: 1
DISPLAY:

The panel display and message SIMULATED BREAKPOINT 1 appear. Press the
RETURN key.

6. To begin execution of the task, use the Simulate Task (ST) command. The prompts and
responses are as follows:

[] ST

SIMULATE TASK

FOR: 100
FROM: <Press RETURN>

TO: <Press RETURN>

The panel display for address >14E appears on the screen, with the message STOP AT
TRAP #1. Press the CMD key to return to the command mode.

7. To exit the debug mode, enter the Quit Debug (QD) command and respond as below:

[l QD

QUIT DEBUG MODE
KILL TASK?: NO <Press RETURN>

2270508-9701 9-7

9.7 Assembly Language Program E.xample

8. To resume execution from the breakpoint enter the Resume Task (RT) command, as
shown beiow:

[] RT

RESUME TASK
RUN 10: >run-time 10 <Press RETURN>

9. The test program has executed. Perform a Show File (SF) command on the file
.USER.MESSAGE. The following messages appear in the file.

GOOD MORNING, PLEASE INPUT NUMBER OF ITEMS SOLD TODAY. USE 4-DIGIT
NUMBERS.

ITEM 1
ITEM 2
ITEM 3
THANK YOU FOR YOUR PURCHASE. HAVE A NICE DAY.

Press the CM 0 key to return to the command mode.

10. Execute the Release Luno (RL) command, to release LUNO >20 assigned to
.USER.MESSAGE, as shown below:

[] RL

RELEASE LUNO
LUNO: >20

11. Delete file .USER.MESSAGE with the Delete File (OF) command, as shown below:

[] DF

DELETE FILE
PATHNAME(S): .USER.MESSAGE

9.7 EXECUTE THE PROGRAM - BREAKPOINT DEBUGGING

In this example, the RESPONSE program is debugged using assigned breakpoints, and the
responses are written to USER.MESSAGE file.

1. Create the .USER.MESSAGE file and assign LUNO >20 to the file, as shown above.

9·8 2270508·9701

RUN

Assembly Language Program Example 9.7

2. To execute the task, use the XHT command. Use of this command activates the task but
does not begin execution. The XHT command is useful when the debugging commands
are to be used for the task. When XHT is entered, the following prompt is displayed.
Respond as shown:

[] XHT

EXECUTE ANO HALT TASK
PROGRAM FILE NAME OR LUNO: .USER.PROGA

TASK NAME OR 10: TEST
PARM1: 0
PARM2: 0

STATION 10: ME

The following message appears:

RUNTIME TASK 10 = >run-time 10

3. Note that the run-time 10 of the task is returned on the display. Remember the run-time
10 for the next step. Return to the command mode.

4. To assign breakpoints and stop execution of the task at location >146, enter the Assign
Breakpoints (AB) command. Respond to the following prompts as shown:

[] AB

ASSIGN BREAKPOINTS
RUN 10:

ADDRESS(ES):
>run-time 10
>146

The panel showing the address values of the WORKSPACE REGISTERS, BREAK
POINTS (0146), and MEMORY appear on the screen. A panel display similar to the one in
Figure 9-2 appears:

ID=FD STATE=O(:' WP=0006 PC=0142 <:PC)=2FEO !:n=o18F M
W (I R K S P A r" E R E C; I ~; T E R ~=;

0006 0000 0000 0000 0000 0000 0000 0000 0000
0016 0000 0000 0000 0000 0000 0000 0000 0000

B R E A I< P 0 I N T :3
0146

M E M [I R y

0142 2FEO 002/::- 2FCF 0032 2FEO OO:::E 2FEO OOB:=: I. • 81. I . . 2 I . I.
0152 2FEO OODt. 2FEO OOF(:' 2FEO 0134 2FEO 0140 I. I. / . .4 / . . @
0162 COOO 0008 0000 0000 002(:, 0001 :~:OO2 6002 . ~~ o. \.

Figure 9·2. Panel Display

2270508-9701 9-9

9.8 Assembly Language Program Example

5. Enter the RT command to reach the specified assigned breakpoint in the program. The
fnllnutinn ~nno.~rQ nn tho. Q",ro.o.n·
I"'IIVVVIII~ Ut-'t-',""UI"-' VI' \.llv ",",V.""'''''II.

[] RT

RESUME TASK
RUN 10: >run-time ID <Press RETURN>

6. Task execution begins.

7. To display memory contents of the assigned breakpoint, the Show Panel (SP) command
or the Show Internal Registers (SIR) is entered. In this example the SP command is
used. Respond to the prompts as follows:

[] SP

SHOW PANEL
RUN ID: >run-time ID

MEMORY ADDRESS: >146

The panel values for address >146 appear on the screen in the section MEMORY.

8. To resume execution of the task, the Proceed from Breakpoint (PB) command must be
entered, The following prompts appear:

[] PB

PROCEED FROM BREAKPOINT
RUN ID: >run-time ID

DESTINATION ADDRESS(ES): <Press RETURN>

9. Execution is complete. View the ,USER.MESSAGE file with the SF command. The
following appears in the file:

GOOD MORNING, PLEASE INPUT NUMBER OF ITEMS SOLD TODAY. USE 4-DIGIT
NUMBERS.

ITEM 1
ITEM 2
ITEM 3
THANK YOU FOR YOUR PURCHASES. HAVE A NICE DAY.

10. Press the RETURN key to enter the command mode.

11. Execute the RL command to release LUNO >20 assigned to .USER.MESSAGE and
delete the file.

9.8 EXECUTE THE PROGRAM - NO DEBUGGING

This method is used when the task has previously been debugged and is ready to execute.

9-10 2270508·9701

Assembly Language Program Example 9.8

1. Assign LUNO >20 to the terminal with the AL command, as shown below:

[] AL

ASSIGN LUNO
LUNO: >20

ACCESS NAME: ME
PROGRAM FILE?: NO

The message ASSIGNED LUNO: >20 appears. Return to the command mode.

2. Execute the program using the Execute Task and Suspend SCI (XTS) command. Select
the following parameters:

[] XTS

EXECUTE TASK AN 0 SUS PEN D SCI
PROGRAM FILE OR LUNO: .USER.PROGA

TASK NAME OR 10: TEST
PARM1: 0
PARM2: 0

STATION 10: ME

3. The test program now executes. The greeting and ITEM 1 appear. Enter a four-digit
number in response. The next ITEM # appears after the four-digit response is complete.
Enter another 4-digit number for all ITEM # prompts (1 through 3). The closing message
appears. Below is an example of what appears:

= = FOREGROUND COMMAND EXECUTING = =
GOOD MORNING, PLEASE INPUT NUMBER OF iTEMS SOLD TODAY. USE 4-DIGiT
NUMBERS.

ITEM 1 2571
ITEM 23123
ITEM 34619
THANK YOU FOR YOUR PURCHASE. HAVE A NICE DAY.

4. After the closing message, the RUNTIME TASK 10 = >run-time 10 appears on the
screen.

5. Press the CMD key to return to the initial SCI menu.

6. Delete the task entry by using the Delete Task (DT) command as follows:

2270508·9701

[] DT

DELETE TASK
PROGRAM FILE OR LUNO: .USER.PROGA

TASK NAM E OR 10: TEST

9-11

9.9 Assernb!y Language Program Example

9.9 DELETE DIRECTORY

To delete the directory .USER from the system disk, enter the Delete Directory (DO) command, as
shown below:

[] DD

DELETE DIRECTORY
PATH NAM E: .USER

LISTING ACCESS NAME: <Press RETURN>
ARE YOU SURE: YES

The directory created and aii fiies in it are now deleted. Return the terminai to the command
mode.

9-12 2270508·9701

Appendix A

Abnormal Completion Messages

The following messages are issued by the assembler upon abnormal completion of processing. In
addition to these messages, a number of messages are issued to the user in the assembly listing
file and/or in the file specified in response to the ERROR ACCESS NAME prompt of the XMA
procedure.

The codes listed below are defined in the DNOS Messages and Codes Reference Manual.

Message

SOURCE FILE 110 ERROR, CODE = XXXX
OBJECT FILE 110 ERROR, CODE = XXXX

LIST FILE 1.0 ERROR, CODE = XXXX
TEMP FILE 1.0 ERROR, CODE = XXXX

The messages listed below are assembler bugs. If the message reappears on subsequent
assemblies, load a fresh copy of the assembler from a backup disk. If the error still persists, con
tact your customer representative.

2270508-9701

Assembler Bugs

ATTEMPT TO POP EMPTY STACK - SDSMAC BUG
DIRECTIVE EXPECTED - SDSMAC BUG

UNEXPECTED END OF PARSE - SDSMAC BUG
ERROR MAPPING PARSE - SDSMAC BUG

INVALID OPERATION ENCOUNTERED - SDSMAC BUG
NO OP CODE - SDSMAC BUG

INVALID LISTING ERROR ENCOUNTERED
SYM BOL TABLE ERROR

MACRO EXPANSION ERROR
BUG - INVALID SDSLIB COMMAND ID

UNKNOWN ERROR PASSED, CODE = XXXX

A·1/A·2

Appendix B

Completion Messages

The following messages are issued by the assembler upon completion of processing. In addition
to these messages, a number of messages are issued to the user in the assembly listing file
and/or in the file specified in response to the ERROR ACCESS NAM E prompt of the XMA
procedure.

For this set of messages, the internal message code and the message 10 in this manual are
identical.

I ASSEMBLR-0001 MACRO ASSEMBLY COMPLETE, ?1 ERROR(S), ?2 WARNING(S)

Explanation:
The macro assembler has completed normally, although there may have been errors or warn
i ngs generated from the sou rce code.

User Action:
No action is required.

USH ASSEMBLR-0002 MACRO ASSEMBLY ABNORMAL TERMINATION
Explanation:
The macro assembler has terminated before completing the assembly of the source code.
The exact nature of the error is explained by the message in the file specified in response to
the ERROR ACCESS NAME prompt.

User Action:
The action to take depends on the message in the file specified in response to the ERROR
ACCESS NAME prompt.

US ASSEMBLR-0003 MEMORY REQUIRED EXCEEDS SYSTEM CAPACITY

Explanation:
The macro assembler was unable to secure enough memory to complete the requested
assembly. If there are any source lines in the file specified in response to the LISTING
ACCESS NAME prompt, the assembler was unable to complete the cross reference.

User Action:
If the system memory is relatively small, it may help to run the assembly when the system is
less busy. If there is no shortage of physical memory, reduce the memory requirements of
the program. The major items that use memory are macros and symbols. If the program con
tains macros that have no parameters or other macro variables, consider replacing the
macro calls by source lines which are brought into the progam using a COpy statement. If
the program contains macros with large amounts of text, assemble the macros into a macro
library and use the LlBIN statement or provide a library pathname for the MACRO LIBRARY

2270508·9701 B-1

Completion Messages

PATH NAME prompt. If the program has many symbols, break it into two or more parts (using
the REF command fOi ieferences between parts) and use the Link Editor to combine the
parts.

USH ASSEMBLR-0004 END ACTION TAKEN BY MACRO ASSEMBLER

Explanation:
The macro assembler was forced to the end action address either by executing an instruc
tion that caused a task error or by the user killing the task.

User Action:
If the end action was not forced by user action, call a customer representative for
assistance.

USH ASSEMBLR-0005 ERROR ATTEMPTING TO OPEN THE SPECIFIED ERROR ACCESS NAME

Explanation:
The macro assembler was unable to open the file specified for the ERROR ACCESS NAME
prompt.

User Action:
Check the response to ERROR ACCESS NAME to be sure the syntax is correct and that all
directories in the path name exist. If this does not correct the problem, call a customer
representative for assistance.

USH ASSEMBLR-0006 ERROR ATTEMPTING TO ACCESS SYNONYMS

Explanation:
The macro assembler received an error from the SCI routine S$GTCA.

User ,~ction:
This is an unexpected internal error. Cal! a customer representative for assistance.

B·2 2270508·9701

Appendix C

Error Listing Messages

This appendix contains a list of error and warning messages produced by the assembler. Error
messages are printed in the listing file, when an error is detected, with the statement where the
error occurred. Warning error messages are written only to the error file and are not included in
the listing. A dash is placed in column eleven of the listing where the warning error occurred.
Warning messages do not include an indication of a previous warning or error. Note that a warn
ing is a dash (-) in column II of the assembled program listing.

Error Message

Absolute value required.

Attempt to index by
register zero.

Bad access name syntax.

'CEND' assumed.

Close (")") missing.

Comma missing.

Common table overflow.

Conditional assembly
nesting error.

'DEND' assumed.

Directory open error.

Directory read error.

Directory required.

2270508-9701

Possible Causes

A warning

A warning

A warning

Too many common segments used (127 maximum).

An if-then-else construct is in error. Conditions which could
cause this are:
a. Missing ASM EN D'S
b. Surplus ASMEND'S
c. Surplus ASMELS'S

A warning.

Check that any synonyms are val id and that no other pro
cessor is currently writing to the MARCO library.

An 1/0 error was encountered while trying to read a macro
library Directory. Verify that no other processor is currently
writing to that macro library.

The access name specified is not an existing directory.
Verify that all synonyms are correct and that the macro
library does indeed exist; it can not be auto-created.

C-1

Error Listing Messages

Error Message

Directory write error.

Displacement too big.

'DSEG' assumed.

Duplicate definition.

Error expanding call.

Error on copy open.

Expression syntax error.

Indirect (*) missing.

Invalid $ASG variable.

Invalid character in
symbol - blank used.

Invalid Condition

C-2

Possible Causes

Verify that no other processor is currently writing to that
macro library_

An instruction requiring an operand with a fixed upper limit
was encountered which overflowed this limit. An example is
the 'JMP' instruction, whose single operand must evaluate
to within >7F words distance from the current program
counter.

This is a warning that the following two statements have the
same resu It:

CSEG ' $DATA'
DSEG

a. The symbol appears more than once in the label field of
the source.

b. The symbol appears as an operand of a REF statement
as well as in the label field of the source.

c. An attempt was made to define a macro variable or
macro language label which was previously defined in
the macro.

The symbol in the operand field of the $CALL statement is
not a defined macro.

The access name specified as the operand of copy directive
can not be opened. Check that the synonyms are correct
and that the file is not currently being written to by another
processor,

a. Unbalanced parentheses.
b. Invalid operations on relocatable symbols.

a. An attempt was made to change the length component
of a variable.

b. An attempt was made to change the attribute com
ponent or the value component of a macro variable
which was declared as a macro language label.

c. The target variable is not present or is not a symbol.

A warning (Note 1). The legal characters to be used in
symbols under SDSMAC are A-Z, 0-9, ";", and "$".

The List Search instructions require conditions to be
~np~ifiArl ::I~ nnp fif thA nnAr::lnrl~ Thp ffillnwinf'i ::Irp Ipf'i.::al
-~r-=-''''''''---'''''''''-" ---- ""'----- --" ... ---- --.'.- .."....-_.-. ...,,-- ----:- --:----.:.------;;;; ..,..----. -"",-,;;;;,--.=

conditions: EO, NE, HE, L, GE, LT, LE, H, LTE, GT.

2270508·9701

Error Message

Invalid CRU or shift
value.

Invalid directive in
absol ute code.

Invalid expression.

Invalid macro
expression.

Invalid macro variable.

I nval id model statement.

Invalid opcode.

Invalid option.

Invalid relocation
type.

Invalid use of
conditional assembly.

Invalid use of REF'd
symbol.

Invalid $ASG expression.

Invalid $IF expression.

Label required.

2270508-9701

Error Listing Messages

Possible Cause

A warning

The directives PEND, DEND, CEND have no meaning in
absolute code.

May indicate invalid use of a relocatable symbol in
arithmetic.

Invalid construct in $ASG statement.

The target variable specified on a $ASG or $GOTO verb is
not a valid target variable.

A macro symbol in a model statement must be followed
with either a colon operator (:) or end-of-record.

The second field of the source record contained an entry
that is not a defined instruction, directive, pseudo-op, DX
OP, DFOP, or macro name.

A warning. The only legal options are:

XREF
SYMT
NOLIST
MUNLST
RXREF

(or suitable abbreviation).

TUNLST
BUNLST
DUNLST
FUNL

Only PSEG relocatable or absolute symbols are allowed as
the operand of an 'EN D' statement.

A conditional assembly directive may not appear as a model
statement.

REF'd symbols may appear in expressions only under
certain conditions (see the 990/10 manual).

The expression is not present.

The expression either is not present or does not evaluate to
an integer value.

$NAME statements must begin with a label of maximum
length 2. $MACRO statements must begin with a label of
maximum length 6.

C-3

Error Listing Messages

Error Message

Macro definition
discarded due to
errors.

Macro library read
error.

Macro library write
error.

Macro string
overflow.

Macro symbol truncated.

Max macro nesting stack
depth overflow.

Memory exceeded.

Missing $END.

Model statement
truncated.

Open 'C Missing

C-4

Possible Causes

An error was detected during the assembly of the macro
definition. Use of the macro name in succeeding lines will
cause error messages.

A 'UBIN' was in effect and the statement was a macro in a
specified macro library, but an I/O error was encountered
when reading it.

The current 'UBOUT' library could not be used at com
pletion of a macro definition. Check that the macro is not
currentiy begin written by another processor.

In building a concatenated string, the length of the string
exceeded 225 characters.

A warning. The maximum length for a macro symbol is two
characters. The following are legal macro symbols: A, A.S,
B2.SV.

The following are illegal macro symbols: CNT, CNT.A,
PM2.SL.

a. A macro calls itself recursively more than the allowed
maximum number of times.

b. More levels of macro calling have been used than the
allowed maximum.

The program counter overflowed the value >FFFF.

A warning. When expanded, the model statement exceeded
80 characters in length.

.A. parenthesized operand is required with the Extract Fie!d,
Extract Value, Insert Field, and Invert Order of Field Insert
instruction.

2270508·9701

Error Message

Operand conflict PASS1!
PASS2.

SUB

SUB

Operand missing.

'PEND' assumed.

Register required.

String required.

String truncated.

Symbol truncated.

Symbol required.

Symbol used in both REF
and DEF.

Syntax error.

'TO' missing.

2270508-9701

Error Listing Messages

Possible Causes

During pass 1, the assembler defaults currently undefined
symbols as register names if that symbol is used in an
ambiguous way, as shown in the example below. If during
the pass 2 it is discovered that the symbol was not a register
name, this error results.
An example is:

BL SUB

EQU $
If this example had been coded as follows, no ambiguity
would have existed due to the explicit" @" sign:

BL @SUB

EQU $

On instructions having a fixes number of operands, too few
appeared before encountering a blank. On instructions hav
ing a variable number of operands, such as 'DATA', a com
ma may have been encountered with no operand following
it. An expression extending beyond the 60th column could
cause this problem.

A warning.

A warning. Check the syntax for the directive in question to
determine the maximum length for the string.

A warning. The maximum length for a symbol is six
characters.

This is a conflicting, duplicate definition.

'TO' is a required part of the syntax for the $ASG Macro
verb.

C-s

Index

Modify Internal Registers (MIR) 8.3.2.3
Modify Memory (MM) 8.3.2.4
Modify Overlay Entry (MOE) 6.8.12
Modify Procedure Entry (MPE) 6.8.11
Modify Program Image (MPI) 8.3.2.5
Modify Relative to File (MRF) , , , , , ,8,3.2.6
Modify Segment Entry (MSE) 6.8.13
Modify Synonym (MS) 2.6.1
Modify System Memory (MSM) 8.3.2.7
Modify Task Entry (MTE) 6.8.10
Modify Workspace Registers

(MWR) 8.3.2.8
MOE 6.8.12
MPE 6.8.11
M PI 8.3.2.5
MRF .. '" ., '" " .. 8.3.2.6
MRW 8.3.2.8
MS 2.6.1
MSE 6.8.13
MSM 8.3.2.7
MTE 6.8.10
Normal Tagged Object FORMAT 6.7.1
PARTIAL Link Editor 6.7.1
PB 8.2, 8.3.3.1, 8.3.3.3,

8.3.3.4, 8.3.4.3, 8.3.6.4, 9.7
PROCEDURE 3.8
Proceed from Breakpoint

(PB) 8.2,8.3.3.1,8.3.3.3,
8.3.3.4, 8.3.4.3, 8.3.6.4, 9.7

Q 4.3
QD 8.2.1, 8.3.6.4, 9.6
QE 4.1,4.5.1,4.5.2
Quit Debug Mode (QD) ... 8.2.1,8.3.6.4,9.6
Quit Edit (QE) 4.1, 4.5.1,4.5.2
Quit (Q) 4.3
Release LUNO (RL) 9.8
Replace String (RS) 4.5.2
Resume Simulated Task

(RST) 8.3.6.1, 8.3.6.5, 8.3.6.6
Resume Task (RT) 8.2,8.3.3.1,8.3.3.2,

8.3.4.3, 8.3.4.5, 8.3.6.4, 9.6
RL 9.8
RS 4.5.2
RST 8.3.6.1, 8.3.6.5, 8.3.6.6
RT 8.2, 8.3.3.1, 8.3.3.2,

8.3.4.3, 8.3.4.5, 8.3.6.4, 9.6
SAD 8.3.1.5
SADU 8.3.1.6
SBS 2.3.4.1
Selection 4.2
SEM 2.10.2.1
SF 9.6
Show Absolute Disk (SAD) 8.3.1.5
Show Allocatable Disk Unit

(SADU) 8.3.1.6
Show Background Status (SBS) 2.3.4.1
Show Expanded Message (SEM) .. 2.10.2.1
Show File (SF) , , 9.6
Show Internal Registers

(SIR) ... _. _ . _ , .. _ - .8.3.1.7; 8.3.3.1~ 9.7
Show Line (SL) 4.2

Index-4

Show Panel
Ic:::.P\ A ~ 1 A A ~ 1 1? A ,.....,. I•. "" •, .• -'"",,, .••• -, ...,.

Show Program Image (SPI)
Show Relative to File (SRF)
Show Task Status (STS)
Show Val ue (SV)
Show Workspace Registers

(SWR) " .. .
Simulate Task (ST) 8.
SIR 8.3.1.7,8.
SL•..
Snapshot Name Definitions (SND)
SND
SP 8.3.1.8, 8.~
SPI
SRF
ST 8,
STS
SV
SWR
TASK

Link Edit
Usage, SCi
User-Defined
XB 2.3.5, 2.3
XBJ 2.3.5, 2.3
XCT
XD 8.2, 8.2.1, 8.2
XE 4.1,4
XHT 7.2.3, 8.2.1, 8.3.4.4, 8
XLE 2.3.5.
XMA
XPT
XT 2.3.1,7
XTS

Commands:
Breakpoint Debug , . , ,
Controlled:

Debug '"
Task

Data:
Display Debug
Modification Debug

p.et?ug .: 8.2
LInK Eonor
Search Debug
Simulate Debug
Task Control Debug
Text Editor ,

Common Segment 4
Common Segment (CSEG) Directive
Common-Relocatable
Communications
Compressed Tagged:

Object FORMAT Command
Object Link Editor Output Format

Concatenated File
Configuration~ Task Memory ., .. .
Constants

Symbolic

2:

Control:
Debug Commands, Task 8.3.4
File, Link Editor 6.2
Functions, Edit 4.2,4.4, T4-2

Control Storage Task Attributes 3.11.11
Controlled:

Debug Commands 8.2
Execution 8.3.6.6
Mode 8.2,8.3.4.4,8.3.6.4
Task Commands 8.3.6

Copies, Multiple 2.8.5
Copyable Task Attributes .. 3.11.7,6.8.1, 6.8.5
Cover Page Example, Output F5-2
Create Directory File (CFDIR)

Command 2.4.2,4.5.1
Create File 2.4.3,4.5.1
Create File Sequential (CFSEQ)

Command 9.5
Create IPC Channel (CIC) Command 2.8.2
Create I PC Channel SVC 2.8.2
Create Logical Name SVC 2.7.4
Create Program File (CFPRO)

Command 6.8
Create Segment SVC 3.10
Cross-Reference Listing 5.2.3, F5-4

Assembler 5.1
CSEG Directive 3.8,4.6

DATA Directive 5.1,6.9
Data:

Display 4.2
Debug Commands 8.3.1

Entry Operations 4.2
Modification Debug Commands 8.3.2
Relocatable 5.2.4.1
Segment 5.2.4.1

Data Segment (DSEG) Directive 4.6
Data Word 5.2.4.1, 5.2.4.4

Absol ute 5.2.4.4
Relocatable 5.2.4.4

DB Command 8.3.3.1,8.3.3.2
DD Command 9.9
Debug:

Commands 8.2~ 8.3, T8-1
Breakpoint 8.3.3
Controlled 8.2
Data Display 8.3.1
Data Modification 8.3.2
Searc h 8.3.5
Simulate 8.3.6
Task Control 8.3.4

Mode 8.2,8.3.4.4,8.3.6.4
Panel. 8.3.1.8, 8.3.3.2
Symbolic 8.2.2
Unconditionally Suspended 8.2

Debugging 8.1
Example:

Execute Breakpoint 9.7
Execute Symbolic 9.6

Programs 1.6
DEF Directive 4.6,6.4.2,6.4.4

2270508·9701

Index

Default:
Main Menu F2-1
Program File 6.8

Delete and Proceed from Breakpoint
(DPB) Command 8.2,8.3.3.1,

8.3.3.3, 8.3.4.3
Delete Breakpoints (DB)

Command 8.3.3.1,8.3.3.2,8.3.4.3
Delete Directory (DD) Command 9.9
Delete File (DF) Command 9.6
Delete Overlay (DO) Command 6.8.8
Delete Procedure (DP) Command 6.8.7 .
Delete Program Segment (DPS)

Command 6.8.9
Delete Protected Task Attributes 3.11.6.1
Delete Simulated Breakpoints

(DSB) Command 8.3.6.2
Delete Task (DT) Command .. 3.11.4,6.8.6,9.8
Delete Task SVC 3.11.4
Device:

Class Type 2.8.5
Display 8.4
I/O 2.8.4, 3.13.2
Services 3.13

DF Command 9.6
Directive 5.2.1

BLSK 4.6
Branch and Push Link to Stack

(BLSK) 4.6
BYTE 5.1
Common Segment (CSEG) 4.6
CSEG 3.8, 4.6
DATA 5.1,6.9
Data Segment (DSEG) 4.6
DEF 4.6, 6.4.2, 6.4.4
DSEG 3.8, 4.6
EQU , .4.6
External Definition (DEF) 4.6,6.4.2
External Reference (REF) 4.6,6.4.1
I DT 4.6, 5.2.4.1, 6.4.1, 6.4.3, 8.2.2
LIBIN 5.1
LOAD 5.2.4.1
Page Title (TITL) 4.6
Program 6.4
Program Identifier (lDT) 4.6,6.4.3
Program Segment (PSEG) 4.6
PSEG 3.8,4.6
REF 4.6,6.4.1,6.4.4
Secondary External Reference

(SREF) 5.2.4.1
SREF 6.4.1
TEXT , . " '" 5.1
TITL 4.6

Directory:
File 2.4.2
Structure 2.4, F2-2
VCATALOG 2.4.2

Disk-Based Segments 3.10
Disk Fi Ie 3.13.2

Index-5

Index

Disk-Resident:
Memory Image 8.3.1.9
Task 3.4.1
Task Attributes 3.11.4

Display:
Data 4.2

Debug Commands 8.3.1
Device 8.4
Panel F9-2

Displays:
Com mand T8-2
Station-Dependent. 8.4

DNOS Assembly Language 1.1
DO Command 6.8.8
DP Command 6.B.7
DPB Command 8.2,8.3.3.1,8.3.3.3,8.3.4.3
DPS Command 6.8.9
DSB Command 8.3.6.2
DSEG Directive 3.8,4.6
DT Command 3.11.4, 6.8.6, 9.8
DUMY Command 6.3
DUNLST Assembler Option 5.1
DXOP Instruction 3.5

EBATCH Command 2.3.5.1,5.3.1
Edit Control Functions 4.2,4.4, T4-2
Editing File 4.5.2
End Action:

Entry Poi nt 3.6
Routine 3.6

End Action Status SVC 3.4.2
End-of-Record 5.2.4.1
End Task SVC 3.4.1
Entering Programs 1.2, 2.3.5.4
Entry:

Address 5.2.4.1, 5.2.4.4
Point, End Action 3.6
SCI Command , , , , , 2.3.3
Vector 3.6

EQU Directive 4.6
Error Message 2.10.1,8.2.2,8.3.3.1

Assembler 5.2.2
Online Expanded 2.10.2
? Response 2.10.2.2

Evaluation, Expression 8.2.3
Execute and Halt Task

(XHT) Command 7.2.3,8.2.1,
8.3.4.4, 8.3.4.5, 9.6

Execute Batch Job (XBJ)
Command 2.3.5, 2.3.5.3, 5.3.3

Execute Batch (XB)
Command .,., 2.3.5, 2.3.5.3, 5.3.2

Execute Breakpoint Debugging
Example 9.7

Execute COBOL Task (XCT)
Command 2.3.1

Execute in Debug Mode
(XD) Command 8.2,8.2.1,8.2.2,8.3.4.4

Execute Link Editor
(XLE) Command ~3 5?, 6.3, 9.4

Index-6

Execute Macro Assembler
(XMA) Command 5.1,9.3

Execute No Debugging 9.8
Execute Pascal Task (XPT) Command .. 2.3.1
Execute:

Programs 1.5
Protected Task Attributes 3.11.6.2
Symbolic Debugging Example 9.6

Execute Task and Suspend SCI
(XTS) Command 7.2.2,9.8

Execute Task (XT)
Com mand 2.3.1, 7.2.1, 8.2.1

Execute Text Editor (XE)
Command 4.1,4.5.1,4.5.2

Execution:
Batch:

Job, Interactive 2.3.5.3
Stream 7.4, F7-1
Stream, Interactive 2.3.5.3

Controlled 8.3.6.6
Interactive 7.4
Program __ 7.1
Simulated 8.3.6.6
SVC Program 7.3

Expanded Error Message, Online 2.10.2
Expression:

Evaluation 8.2.3
Symbolic 8.2,8.3.4.4

Expressions 8.3.1.11
External Definition 5.2.4.1,5.2.4.4
External Definition (DEF)

Directive 4.6,6.4.2
External Reference 5.2.4.1,5.2.4.4, F5-6
External Reference (REF)

Directive 4.6,6.4.1

Field Prompt Notation T1-2
File:

Concatenated 2.7.4
Create 2.4.3, 4.5.1
Default Program 6.8
Directory 2.4.2
Disk 3.13.2
Editino 4.5.2
Format 5.2
Image 6.7.3
Installation; Link Editor Image 6.9
I/O 2.8.3, 3.13.2
Key Indexed 2.7.3
Link Editor Control. 6.2
Multivolume 2.7.4
Program ... 2.7.2,3.9.3, 3.10,6.7.3,6.8,6.8.1
Relative Record 2.7.2
Sequential 2.7.1
Services 3.13
System Image 6.7.3
Type '" .2.7
.S$SHARED Program 3.8,3.11.4,6.8
.S$UTIL Program 3.11.4, 6.B

Find 8yte (FB) Comma!1o 8.3.5.1

2270508·9701

Find Word (FW) Command 8.3.5.2
Foreground Task 2.2.1
Format:

Batch:
Command 2.3.5.2
Stream 2.3.5.1

Command, IMAGE. 6.7.3
Compressed Tagged Object

Link Editor Output. 6.7.2
File 5.2
IMAGE 3.9.2,6.3,6.8
Link Editor Command, IMAGE 6.9
Linked Object Code 6.7
Machine Instruction 5.2.4.2, F5-7
Memory Image Link Editor Output ... 6.7.3
Normal Tagged Object Link Editor

Output 6.7.1
Object Code 5.2.4.1
Object Record T5-2
Output Option, Link Editor 6.7
Selection 2.8.5

FORMAT Command 6.3,6.7
Compressed Tagged Object 6.7.2
Memory Image 6.7.3
Normal Tagged Object 6.7.1

Forms 2.8.5
FUNL Assembler Option 5.1
F3 Key 8.3.6.1, 8.3.6.5

Global:
Channel 2.8.2.3
LUNO 2.8.4

Halt Task (HT) Command 8.3.4.2,8.3.4.3
Hardware Privi leged Task

Attributes 3.11.1.1
HT Command 8.3.4.2,8.3.4.3

Identifier, Module 8.2.2
IDS Command 2.4.1
lOT Directive 4.6,5.2.4.1,6.4.1,6.4.3,8.2.2
Imaae:

Disk-Resident Memory 8.3.1.9
File 6.7.3

Installation, Link Editor 6.9
System 6.7.3

FORMAT Command, Memory 6.7.3
Link Editor Output Format, Memory .. 6.7.3
Memory 8.3.2.4
Prog ram 8.3.2.5

IMAGE Format. 3.9.2,6.3,6.8
Command 6.7.3,6.9

INCLUDE Command 6.6.2,6.6.3
Initial Program Load (IPL) 6.7.3,6.8,6.8.1
Initialize Disk Surface (IDS) Command .. 2.4.1
Initialize New Volume (INV) Command .. 2.4.1
Install Overlay (10) Command 6.8.4
Install Procedure (IP)

Command 3.10,6.6.2,6.8.3
Install Procedure/Segment SVC 3.10

2270508-9701

Index

Install Program Segment (IPS)
Command 3.10,6.8.5

Install Real-Time Task (IRn Command .. 6.8.2
Install Task:

Example 9.5
SVC 3.10,3.11.1,6.7.3

Install Task (IT) Command 3.10,3.11.1,
6.6.2,6.7.3,6.8.1,9.5

Installation:
Link Editor Image File 6.9
Overlay 6.8
Procedure 6.8
Prog ram 6.8
Task 6.8

Installing Programs 1.4
Instruction:

BIND 4.6
BL 4.6
BLWP 4.6
Branch and Link (BL) 4.6
Branch and Load Workspace

Pointer (BLWP) 4.6
Branch Indirect (BIND) 4.6
DXOP 3.5
Return with Workspace Pointer

(RTWP) 4.6
RTWP 4.6
XOP 3.5

Interactive:
Execution 7.4

Batch Job 2.3.5.3
Batch Stream 2.3.5.3

Job 2.2.1
Interception IPC Use 2.8.2.1
Internal Registers 8.3.1.7
Interprocess Communication

(I PC) 2.8.1.3, 2.8.2
INV Command 2.4.1
10 Command 6.8.4
110:

Concepts 3.13.1
Device 2.8.4,3.13.2
Facilities 2.8
File 2.8.3,3.13.2
Methods 2.8.1
Resource-Independent 2.8.1.2,3.13.1
Resource Management 2.8
Resource-Specific 2.8.1.1,3.13.1

IP Command 3.10,6.6.2,6.8.3
IPC:
. Channel 2.8.2.2

Functions:
Program Level. 2.8.2.5
System Level 2.8.2.4

Use 2.8.2.1
Interception 2.8.2.1
Message 2.8.2.1
Queue Servicing 2.8.2.1
Synchronization 2.8.2.1

I PL 6.7.3, 6.8, 6.8.1

Index-7

Index

I PS Com mand 3.10, 6.8.5
iRT Command 6.8.2
IT Command 3.10,3.11.1,6.6.2,

6.7.3, 6.8.1, 9.5

Batch 2.2.2
Description 2.2
Interactive 2.2.1

Execution Batch 2.3.5.3
Structure 2.2

Job-Local:
Channel 2.8.2.3
LUNO 2.8.4

JOB NAME Prompt 2.3.2

KBT Com mand 3.4
Key Indexed File (KIF) 2.7.3
KIF 2.7.3
Kill Background Task (KBT) Command ... 3.4
Kill Task (KT) Command 3.4,8.2.1
KT Command , 3.4,8.2.1

LB Command 8.3.1.1
LD Command 2.3.4.2
Level:

IPC Functions, Program 2.8.2.5
Overlay 3.9
Priority 3.11.3

L1BIN Directive 5.1
Library Option, Macro 5.1
Link Editor 1.4,3.3,3.9.1,5.2.4.1

Command:
IMAGE Format 6.9
LOAD 3.9.2
PARTIAL 6.7.1
TASK 6.6.4

Commands 6.2, T6-1
Control File 6.2
Example 6.6,9.4

Overlay 6.6.4, F6-5
Single Task, No Procedure ... 6.6.1, F6-2
Task, Two Attached

Procedures 6.6.2, F6-3
Two Procedures. 6.6.3, F6-4

Format Output Option 6.7
Image File Installation 6.9
Operation 6.3
Output:

Format, Compressed Tagged
Object. 6.7.2

Format, Memory Image 6.7.3
Format, Normal Tagged Object 6.7.1
Listing 6.5, F6-1

Support Features 6.1
Link Map 6.5
Linkage Program 6.4

Module 6.4.4
Linked:

n i,...,.... f'",.,j", c" "'. a 7 VLlJt;iiv i. ;";VUV i vi i i i(;i" •••••••••••••••• v.;

Output Suppression , " ... 6,3

Index-8

Linking Programs 1.4
List Breakpoints (LB) Command 8.3.1.1
List Directory (LD) Command 2.3.4.2
List Logical Record (LLR) Command .. 8.3.1.2
List Memory (LM) Command 8.3.1.3
List Simulated Breakpoints (LSB)

Command 8.3.6.3
List System Memory (LSM)

Command 8.3.1.4
Listing:

Assembler Cross-Reference 5.1
Cross-Reference 5.2.3, F5-4
Example, Source F5-1
Link Editor Output 6.5, F6-1
Option, Assembler 5.1
Source 5.2.1

LLR Command 8.3.1.2
LM Command 8.3.1.3
Load:

Address 5.2.4.1, 5.2.4.4
Bias 5.2.4.1, 5.2.4.4

LOAD:
Directive 5.2.4.1
Link Edit Command 3.9.2

Load Overlay SVC 3.9.2, 3.9.3, 6.9
Loading, Overlay 3.9.2
Logical:

Address Space 3.2
Name 2.3.1, 2.8.4

Definition 2.6.2
Table 2.3.5.3

Unit Number 2.8.4,3.13.2,6.8,6.8.1
Log-On 2.3.2
LSB Command 8.3.6.3
LSM Command 8.3.1.4
LUNO 6.8,6.8.1

Global 2.8.4
Job-Local 2.8.4
Task-Local 2.8.4

Machine Instruction , , , , , .. , 5.2.1
Format 5.2.4.2, F5-7
Source Statement F5-3

Macro Library Option 5,1
MAD Command 8.3.2.1
MADU Command 8.3.2.2
Main Menu, Default F2-1
Management:

I/O Resource 2.8
SVC, Segment 3.10

Manager, Automatic Overlay 3.9.2
Map, Link 6.5
Mapping F3-1

Program 3.2
Master/Slave Channel 2.8.2.2
Memory:

Area 8.3.1.3
Configuration, Task F3-3
Image 8.3.2.4

ni i," Q" i,.,j"'.....O >:) ... 1"\
i.,,;i';;;.,"i '\J~iU"i i i. •••••••• c •••••••• v.v. i.;;:}

FORMAT Command 6.7.3

2270508·9701

Index

Link Editor Output Format 6.7.3
System 8.3.2.7

Memory-Based Segment 3.10
Memory-Resident:

Task '" 3.4.1

No Debugging, Execute 9.8
NOLIST Assembler Option 5.1
Normal:

Tagged:
Object FORMAT Command 6.7.1

Task Attributes ... 3.11.4,6.8.1,6.8.3,6.8.5
Menu, Default Main F2-1
Message:

Assembler Error 5.2.2

Object Link Editor Output
Format 6.7.1

Task Termination 3.4.1
Notation:

AssemblerWarning 5.2.2
Error 2.10.1, 8.2.2, 8.3.3.1

Field Prompt. T1-2
Response 1.7

Facilities 2.10
I PC Use 2.8.2.1 Object Code 5.2.4
On line Expanded Error 2.10.2
Status 2.10.3

Change 5.2.4.4
Example F5-5

Warning 8.3.3.4
? Response, Error 2.10.2.2

MIR Command 8.3.2.3

Format 5.2.4.1
Linked 6.7

Symbol Table 8.3.4.4, F9-1
MM Command 8.3.2.4 Object:
Modification: FORMAT Command:

Debug Commands, Data 8.3.2
Task Attributes 6.8.10

Compressed Tagged 6.7.2
Normal Tagged 6.7.1

Modify Absolute Disk (MAD)
Command 8.3.2.1

Link Editor Output Format:
Compressed Tagged 6.7.2

Modify Allocatable Disk Unit
(MADU) Command 8.3.2.2

Modify Internal Registers (MIR)
Command 8.3.2.3

Normal Tagged 6.7.1
Record:

Format T5-2
Tags T5-2

Modify Memory (MM) Command 8.3.2.4
Modify Overlay Entry (MOE)

Command 6.8.12
Modify Procedure Entry (MPE)

Command 6.8.11
Modify Program Image (MPI)

Command 0.""", ••••• 8.3.2.5

Online Expanded Error Message 2.10.2
Option:

Assembler:
Listi ng 5.1
Output 5.1

BUNLST Assembler 5.1
DUNLST Assembler " 5.1

Modify Relative to File (MRF)
Command 8.3.2.6

FUNLAssembler 5.1
Link Editor Format Output 6.7

Modify Segment Entry (MSE)
Command 6.8.13

Macro Library 5.1
MUNLST Assembler 5.1

Modify Synonym (MS) Command 2.6.1
Modify System Memory (MSM)

Command 8.3.2.7
Modify Task Entry (MTE) Command ... 6.8.10
Modify Workspace Registers (MWR)

Com mand 8.3.2.8
Module:

Identifier 8.2.2
Linkage, Program 6.4.4

MOE Command '" .6.8.12

NOLIST Assembler 5.1
RXREF Assembler 5.1
Symbol Table

Assembier 5.1,5.2.4.1,5.2.4.3
SYMT Assembler 5.1,5.2.4.3,8.2.2,

8.3.4.4, 9.1, 9.6
TUNLST Assembler 5.1
XREF Assembler 5.1
990/12 Assembler 5.1

Output:
MPE Command 6.8.11 Cover Page Example F5-2
MPI Command 8.3.2.5 Format:
MRF Command , 8.3.2.6 Compressed Tagged Object Link
M RW Com mand 8.3.2.8 Editor 6.7.2
MS Command 2.6.1 Memory Image Link Editor 6.7.3
MSE Command '" " .6.8.13 Normal Tagged Object Link
MSM Command 8.3.2.7 Editor 6.7.1
MTE Command 6.8.10 Listing, Link Editor 6.5, F6-1
Multiple Copies 2.8.5
Multivolume File 2.7.4

Option:
Assembler 5.1

MUN LST Assembler Option 5.1 Link Editor Format 6.7

2270508-9701 Index-9

Index

81
r"\ •• _

vvt::
A

Ove
In
LI
Li
L~
M
p,
P
R
R
8'

Pag
Pan

D
D

PAF
Pat!
Pat!
PBI

Pha
a

Phy
Prin

.E

.[

.[

.E

.C

.l
Pric

L
T

Priv
T

U
PRC
Prol

Ir
P
R
8
8
8

Pro'
(F

Prot
o
E
E

F

Inde

w
z
:i
CJ
z
o
..J
c(

t
~
o

USER'S RESPONSE SHEET

Manual Title: Model 990 Computer ONOS Assembly Language

Programmer's Guide (2270508-9701)

Manual Date: 1 August 1981 Date of This Letter: ------_

User's Name: _____________ _ Telephone: _________ _

Company: ________________ _ Office/Department: _______ _

Street Address: ___________________________ _

City/State/Zip Code: __________________________ _

Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the
following space. If there are any other suggestions that you wish to make, feel free to include
them. Thank you.

Location in Manual Comment/Suggestion

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
FOLD ON TWO LINES (LOCATED ON REVERSE SIDE), TAPE AND MAIL

FOLD ---------------------

111111

(' BUSINESS REPLY MAIL "'I
I~ FIRST CLASS PERMIT NO. 7284 DALLAS. TX ~

POSTAGE WlU BE PAID BY ADDRESSEE

TEXAS INSTRUMENTS INCORPORATED
DATA SYSTEMS GROUP

.ATTN: TECHNICAL PUBUCATIONS
P.O. Box 2909 MIS 2146
Austin, Texas 78769

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

- - -- -- -- -- -- -- -- -- -- -- -- -- -- ~- --
FOLD

I Cover Part No. 2310002·0001
I

I
I
I

."
TEXAS

INSTRUMENTS

