

IMPORTANT NOTICES.

Texas Instruments reserves.the right to make changes at an& time to
improve design and to supply the best posible product for the spectrum
of users. B

A.
|

Microprocessor Pascal System (TMSW753P or TMSW754P) 1s copyrlghteﬂ by
Texas Instruments Incorporated, and is sole property thereof. ‘use- v of:.
this product is ~ defined by the license agreement Sc-1 ibetween the'lf
customer and Texas Instruments. The software may not be, reproduced in.
any form without written permission of Texas Instruments. Howeyer:_
application run-time packages generated- ‘from the Microprocessot Pascal
System may be reproduced for resale exclusively by the customer i
purcha51ng the Mlcropwocessor Pascal System. ' R

All manuals associated with Microprdcessor Pascal (MP351) are printed

in' the K United States of BAmerica and are copyrighted by Texas
Instruments = Incorporated, - all rights reserved. No -part of these“
publications: may be reproduced in any manner,. .including storage : in®
retrieval - 'system or stransmittal via ‘electronic. means, - or: othe?w
reproduction in any form or by any method . (electronic, mechanical.

photocopylng, . recording, or. ' otherwise): ,witpout 'prlor wrltte -
permission of Texas Instruments Incorporated. ~ ’ :

Informatlon contained :in these publications, is’ be11eved to be accurate"'

and reliable. However,. responsibility is assumed nelther for: its? use - e
nor for any infringement of patents or rights of others’ that may
result from its use. No:dlicense.is granted by implication or otherwlse;"’”
under any patent or..patent right of Texas Instruments or others. - :

COPYRIGHT, TEXAS INSTRUMENTS INEORPORATEQ, 1981

) -
: ~T
|
'
B . <
. AL [T o - i N) 4 :
- ? . -
" 2 » - LI 13 . . v » L - . - p “ v] "
. . - - N
- -t vt L L A
] 4 a3 =g T T, LR B EE RO I S SR B AR) Y 5 -
N B) - « Ky T . “ .
i . Vo (] Cedas + - R
- . . s P T ¥
£ A7 N 7 o i " .
S 2 b ; :
, (3] . . N
' B . ~ NN : 5
B 2 : o cow
B . < - oo .
g ¢ B . », B
.
B : s u R
ok - g v ! [:
. P '
. M) ¥ N
. PN
) .
- 1
,
. .
o4
A : ~
. P -
. . - - N . . '
Fus - .
- a ~ « !
* o [t .
|3 IS ‘ . K % . . - i
- “ E . B
o N . . -
o - . R ta .
B ; « . «
- . . . S N
P ' . B o -
-+ - i 2 = .
N L ‘ PRSI O
14 e . .
: L B e * .
: ' N R - N ‘ _
[: ol : L -] ‘. " N '
- v & © - N °) " e
- . - - . .
. s - ;
. - . - -~ N N :
I3 . .o ‘
‘ N
] L :
- A :
T
., - - . B - N
. PR - v
. i N T g w » B)) - : i
; . . . - i

TABLE OF CONTENTS

MICROPROCESSOR PASCAL SYSTEM OVERVIEW

SECTION 1.

. L) L] L] o o L] (] L]
. ® o © o o o & o o
. e o o o o o o

7))

Q

-

(=]

D

(§\]

(V]

=9}

E 0o

() s W

L

noo

>Snnwv wn e
OSAA oLoo.vR

AP O (o]
* — NO * o oy
CMMS B o M
c0DO0OO0OM e P oD
nununeHH (0] 10)]
CMUNNUNNNEZ ¢ o 4y o
ARRKME o K
. ODWNE e =
00 M VO H
*OMAUEHO MU MBE
‘HOoO00E SR bz
eRRRWimng
cOO0OULUACKMT OO M
ST OHHEHARKMOOD.Q
c M S eW
0 DMeleD
LOSEM Omd> (=
MrIS L HOAPH
0 o EoundPud
HAHAH HEHEO®MTWOD
2PN NAZTA
m WWOO : »
O nw 3]
— SN
SN NN 0NN WNn O

SECTION 2. MICROPROCESSOR PASCAL SYSTEM CONCEPTS

= . (e X =)

UL P R R O T S I T A It I I R T |

L L] L] o o . L[] L[] . L[] e e .o o . L[] .

-]
..-.-.Aoooooo-.o.oc
Q
® o o o o o) e ©° o o o ¢ o o o o o o
<
oooaoopa.oao e © o 0 o o
0
® o o o o oM e o o o of1] ¢ ¢ o o o o
(@] 9]
® o o o o 2N e e o e) e o & o o o
0]
o..o.owoo-o.ﬂObocooco
® o ¢ o) e O o ¢ o o s X e ¢ o o o o
N M Ay
oooohn@o--oT..o.-
e o o o P e o o o oY ¢ o o o o o
£ 2O (®)
* o ¢ o M OKH o ¢ o ¢ ey o ¢ o o o o
o eH = A
* o o o Fe] e * o o o) e o o o o o
4+ O 1]
¢ o 0 0VDO ¢ o o o o e % o o o o
n 3 o
S e o) M LIZ e o o o o H e o 0 o o o
Owx 30
uo.wwMHoo.o-MCQQOco
e o L O o ¢ s e e O e v e o e s
AH ON —

* o o ,ﬂMo.ooom-Yoooo
(R | ~
ao.uhAtAo-oe B e QO ¢ ¢ o o
‘B0 - oB =)

b e NHE o+ + T OK B e o e
O wWHWo o c g e [= >
N oOunuwn 0o . o-CN
Wm n nE s oA = z O
B oo omE BOocOU (S MT_
HENLPODOLHUODO NS HPL DKWY
SO OCOO0OENO0AMPDRE NG OEHM
KOO P H HEH MEMX o™ oOZb
WNOSPPFSPP Z2=0nmMHAdO
om (@] — N [RS
oA 7] o o] F [« 4
= K3 Nl ~ANMOO ~ANM

° . L] L] L] L] L] L L] L] L] L] . L] L] L] . . L]

NANANNNNNNNNNNNNN NN

T4
2*74.1.1" The Video DiSPlay « « « « « « o o « « « « .
:_'Q.l.Z, Mlcroprocessor Pascal Source File Definition
;2 4,133 Command SUMMALY « « « o o o o o o s o o o
“>74,2° EXAMPLE EDIT SESSIONS +: « « ¢ o « o o o o « =
*:"4,2:1 cCreating-‘a File o o o o v 4 4 4 4 0 0 0 e
*<. 4,2;2 Editing An Existing File' « « « « o« « o« « .
- 4.2,2.1 Correcting The Errors « « « « o« « o« « + o
" 78.,2.3° Saving The File « « ¢ o « o o o o o o o o
4.2.3.1 To Quit The Editing Process . « « « « « &
4.2.3.2 To Continue Editing Operations . o e e e
4.3 EDITOR COMMANDS AND FUNCTIONS . « « « « « o &
4.3.1 Parameters . « o« « ¢ o o o o o o e o o o
4:3.2 Optional Parameters . « « « « « « « o« « + .
. .4.3.3 Current Line Marker . « « « « « « « « & & &
18,374 OMD REY ¢ « « o o o o o o o o o o o o o o &
~-4.3:5 Setup and Termination Commands
~4.3:5.1 Edit/Compose ModeS « « « « o« « o« o o o
- 4.3:5.2 HELP ‘Command e o o s o o o o e
-.4.3.5.3 CHECK (Syntax) Command .+ .+ .+ v u ou oo,
"~4.3.5:4 QUIT ComMand * « « « « « o « o o o o o o &
"4.3¢5.5 ABORT Command « « « ¢ ¢ ¢ ¢ o ¢ o o o o @
. "4.3:5.6 SAVE Command & « + « o o o o o o o o o =
_*'4.3.5.7 - INPUT Command ot e e e e e e e e e e e
5°74.3.6 Cursor Positioning . . « + ¢ ¢ 4 4 4 . . .
©..4.3.6.1 RO11-UP FUNCEION "« « v o o o o « o o o
g,’4.3;6.2> Roll=Down Function . . « « « « ¢ « + « .
"-.4.3.6.3 New L¥ne Function . « « « ¢ « « o o o . .
- 8.3.6.4 Tab FURCEIiON o « « v « o o o o« o o o o &
= 4.3.6.5 - Back. Tab FUNCtion « « « « v « « « « « « .
+'4.3.6.6 Set Tab Increment Command . « « « « « « &
;"4.3.6.7 Cursor Up Function . « « « &« ¢ &« « o o« &
*> "4.3.6.8 ' Cursor ‘Down Function . « « « « « « « « .
>. 4.3.6.9 Cursor Right Function . « « « « « &« « + &
2 4.3.6.10 Cursor Left Function . « « « « « o« o « &
- 4.3.6.11 Home FUnction « « « « &« o« « o « o o o« o =
4.3.6.12 FIND Command =« « o « o o o « o o o o« o o
.4.3.6.13 Relative Positioning o
4.3.6.14 TOP Command + « « « « ¢ « « o o o o o« o« &«
"4.3.6.15 BOTTOM Command « « « o « « o o o o o o« &
4.3.7 Program Modification « ¢ « ¢ . .

OVE RVI EW e o o o o e s e o . L)

ii

“3.1 . e e .

“3-2_ PROBLEM DEFINITION AND STRUCTURING

3.3° THE SAMPLE'SYSTEM . « « « « o « o « « « o &

-3 -.4 SMPLE) DEBUG SESS ION e e e e o o o e o e o
SECTION 4. SOURCE EDITOR GUIDE

,".‘;'}. . 1- - Y .

01 OVERVIEW . . o e P ° e o . e o e ° ° . . °

SECTION 3. A SAMPLE MPP SYSTEM -

L] . [[.] L] L) L] [L] [[[[. L] [. [[[

L] L[] L] L[]] . L[] . .

L]

gomooxlmmmwl-'l-'l—'

4-10

T
=
[

4-13

4-11

4-12
4-12
4-12
4-12
4-12
4-13
4-13

4-14

4-15
4-15
4-15
4-15
4-15
4-15
4-16
4-16
4-16
4-16
4-16
4-16
4-16
4-17
4-17
4-1'

4-17"

oL

4.3.7.1 1Insert Line Function . . ¢ « ¢ ¢ o & o o o ¢ o o« o« o « o 4=17
«3.7.2 Duplicate Line Function . . « « « & & & & ¢ ¢« ¢« ¢ o o o o 4-17
«3.7.3 Clear Line FUNcCtion « « « « o « o o o o o o & g o 4-17
«3.7.4 Delete Line Function . « « ¢ o« ¢.0 o o o700 & ' f‘ 4-18
.3.7.5 Skip Function . . . « o ¢« ¢ ¢ o o o 2T e w o 4=-18
.3.7.6 1Insert Character Function . . -« & ¢ « o0 % o o) sivels . 4-18
.3.7.7 Delete Line Function .« « « « « ¢ & & o« o o & & o« 0o o & . 4-18
.3.7.8 REPLACE Command . « « « « o o o « o o o o o o « « o « « o 4-18
.3.7.9 Split Line Function . « « « « v ¢ ¢« & & o & & o« o o « « . 4-18
.3.7.10 INSERT COmmMand « « « « o « o o o « o o o o o o o o o o« o 4=19
.3.8 Block Commands =« « « « &« ¢ o o o o ¢ 2 %" 6 o s+ o o o o o 4=19
.3.8.1 Start and End Block Functions « . « « ¢« « ¢« « ¢« o « « « . 4-19
-3.8.2 COPY Command .+ « & « ¢ ¢ & o o o o o o o o + o s o o o = 4-19
«3.8.3 MOVE Command =« « « ¢ o « o o o o o & o o o o aygsTis e el k4- 19
-3.8.4 DELETE Command « « « « « o & o o o o o o s a_w:w 2. o:+¢ 4=20
.3.8.5 PUT Command « « « « « « « « o o o o s o o & & 4inia,n o ir 4=20
-3.9 SHOW Command .« « « & & o o o o « o o o o 0 070 o, 3 0 o o
.4 ERROR MESSAGES s e s s s s e e e e e o e o s . ne -~ : . e e
-4.1 Command SyntaX EIIOIS « « « =« o o o o « o o o o o;o e oo
-4.2 Command Processing Errors . « « « « o« o o o o &0 0 0 ¥ &
+4.3 File I/O EITOLS &« « ¢ v o o o o o o o o o o a0 3.0 s 0 s o
.4.4 Syntax Checking Error Messages L
of i

SECTION 5. COMPILER AND NATIVE CODE’ GENERATOR

E'” ..L»» L L..w

1 OVERVIEW « v v o o o o o v oo e e e e e o ooy ¥ §¢g .
¢2 COMPILER « « « o o o « o o o o o o o5 e'e o » e el
2.1 Compiler Printouts . « « ¢ o o o o ofeve o e e
.2.1.1 Compiler Execution Messages . . « « « « o ;. L8 efelal
«2.1.2 Compiler Listing .« « « ¢ ¢ o ¢ ¢ ¢ o o o wa e e
«2.1.3 Variable Map .« « « « ¢ o ¢ ¢ o o o o« s o o 16 . e
«2.2 Compiler OPtions « « « « o« o « ¢ o o o o o & e e e
-2.3 COPY Statement . « « o« ¢ o« ¢ o o o o o o o & e e
-2.4 Separate Compilations e o o o o o o o s o o7& .. ‘.
.2.4.1 Mechanisms To Obtain Valid System Code . . TS
.2.4.1.1 The MPP Compiler . « « « « ¢ o« o o o « & e s e
-2.4.1.2 The MPP Code GENEratoOr =« « o« « « o o o o o 27e 0 o o
.2.4.2 Differences Between Native And Pcode Envir ronments . . ;.
«2.5 Saving Segments .« « + ¢ ¢ 0 o o o e 0. e o . e ¥ Soee e
«2.6 Compiler Error MesSsSages « « « o« o o o o o o o &7e ioid o o
«2.6.1 Syntax Error Number DescCriptions .« « o o« o« o« & o & o0
.2.6.2 Other Compiler Error Messages B R R R R S
.3 THE NATIVE CODE GENERATOR « « « « « o o o o o o o a0 & o o
e3.1 CODEGEN « « « v v o o o o o o o o o oo o o o o a7s o o o
-3.1.1 CODEGEN Execution MeSSages .+ « « o o o o & o o, s o o« o
.3.1.2 Code Generator Listing .« « « o« « « o &« o o e o o o o o
3.2 Reverse Assembler . . . « ¢ ¢ ¢ ¢ s & o o o o o e e e .
.3.2.1 Reverse Assembler Execution Messages . . « « « & « « &
.3.2.2 RASS Listing File . « ¢ o ¢ ¢ o o ¢ o o o o o o o o o o
.3.3. Code Generator Error Messages . « « o+ « o o o o o o o o =

cuUuotuInn Tttty LT LT U

B

iii

oo - .

NN NLNNNNANNN AN GG GG

iv

“ SECTION 6. HOST DEBUGGER GUIDE
el OVERVIEW o « o o o o o o s s o o s s o o o o «
+2 . DEBUGGING EXAMPLES . . « « « o « o« o « o « o &
.3 DEBUGGER COMMANDS « « « « « « o « o o o o o o
.3.1 Kinds of Parameters . « « « o o o o o o o o o
.3.2. Process and Routine Parameters . « « « « « .
©3.2.1 ProCeSS « o o« « « o o o o s s o s s o s e .
¢3.2.2 ROULINE o ¢ o ¢ o o o o o o o o o o o o o
«3.3.. Optional Parameters . « « « ¢ « « o o o o o
.4A CONDUCTING A DEBUGGING SESSION . ¢« ¢ o ¢ ¢ o =«
«4.1 Starting A SesSSion ¢« ¢« ¢ ¢ ¢ o o o o o o o .
4.2 DEBUG Commands =« « « o o o o s o o o o o o o
ed4.2.1 GO Command =« ¢ ¢ ¢ o o o o o o o o o o o o
e4.2.2 QUIT CommANd « ¢ o ¢ o o o o o o o o o o @
e4.2.3 HELP Command . « « « o o o o o o o o o o o
+4.2.4 DEBUG Command . « ¢ o o o o s o o o o o o o«
e§.2.5 . LOAD Command =« « « o o o o s o o o o o o =
4.2,6 . SECommand =« « « o o o o o o o o o o o o o
e4.2.7 . COPY.COMMANA =« « « « o o o o o o o o o o o
+4.3 Status Display Commands . . « « « « « « o o &
.4.3.1 . Display All Processes Command (DAP)
6€.4.3.2 . Display Process Command (DP) . . « « « « &
6.4.4 Breakpoints/Single Step « « « « ¢« ¢ ¢ ¢ o o @
6.4.4.1 Assign Breakpoint (AB) . ¢« « « « ¢ ¢« ¢ o &
6.4.4.2 Delete Breakpoint (DB) . . « « « ¢ « « & &
6.4.4.3 Delete All Breakpoints (DAB) . « « « « « &
6.4.4.4 List Br&dkpoints (LB) « « « ¢ ¢ o « o o o &
6.4.4.5 Single-Step Mode (SS) « « ¢ o« o ¢ « o o o =&
6,4.5 Showing/Modifying Data Commands . . « « « « .
6+%8.5.1 Show Frame Comman (SF) =« « « « o = o « o =«
6.4.5.2 Show Heap Command (SH) . .+ « ¢ ¢ o o « o &
6.4.5.3 Show Common Command (SC) =« « « « « « « « &
6.4.5.4 Show.Indirect Command (SI) =+ « « « « o« « .
6+4.5.5 . Show Memory Command (SM) .« « « « « « « « &
6.4.5.6 - Modify Frame Command (MF) . . « « « « « &« .
6.4.5.7 - Modify Heap Command (MH) . . « « « « ¢ .« .
6.4.5.8 ; Modify Common Command (MC) =« « « « « « o &
6.4.5.9 ' Modify Indirect Command (MI)
6.4.5.10 Modify Memory Command (MM) . . « « « « + &
6.4.6 Tracing Commands « « « o o o o o o o o o o
6.4.6.1 Trace Process Command (TP) c o o o o o o
6.4.6.2 . Trace Routine Entry/Exit Command (TR) . . .
6.4.6.3 Trace Statement Flow Command (TS)
6.4.6.4 Trace Echo OFF Command (TOFF) . « « « « « &
6.4.6.5 Trace Echo ON Command (TON) . . « « « « « .
6.4.7 Monitor Process Scheduling . « « « « « ¢ « &
6.4.7.1 Select Default Process Command (SDP) . . .
6.4.7.2 Assign Breakpoint to Process Command (ABP)
6.4.7.3 Delete Breakpoint from Process Command (DBP)
6.4.7.4 Hold Process Command (HP) . ¢« ¢ ¢« ¢ ¢ o o &
6.4.7.5 Release Process Command (RP) . « « « ¢ o &
6.4.8 1Interprocess File Simulation Commands«

. . . . L[] . L] .] . .

* o .] o o L]] L4 .

. . . L] . . . L) . [. L]] . . . [] . . . L] . [] o] L] L] [. (] . L] [° .

® o © 8o 0 o & o © ¢ 6 o © ¢ 6 o o g 6 g 6 o 0 ¢ O ¢ ©° g o 9, ® 9 O ¢ © o ° ¢ o g °o o * o

® e ® o o o o

L[] . L[] . L[]) L[] . L] . L] 0 .] L] [} L] o ,° . .] L] . L]] L] [] L] . L[]] L]] L[] e 0 [}

o e o o e o

L]

L) . L] . L) ° L] . . o L] . . L) L]] [. L] [[. . L) L] [L] [. . L] .] ° L) .

[. L[] . L[] L[] . .] .] . [} .]] L[] .] 3] [} L[] . . . L[]] [] [L] . L[] . .) .o 3

L] [L] L[] [.

e o o ® o o o e o 8 o * o * o ¢ o o o * o e o o o ¢ o e o © o 8 o o o o o . . e o

R
N
/ x ‘

Q0 0O 0O 0O QD 0O 0O CO QO OO OO COCO COCO 0O OO QOO QO O O O

O\O\O\O\O\O’\O\G\G\G\O\

U’!-bnbnbnb-b-h-hlhlh-h

NSNS
AU WN

Test CRU Bit Command (TB)

. o e e o o e o o

HHHHHHHOmm
HHoooooo

Ending A Session . .
RROR MESSAGES

. . .

Load CRU Value Command (LDCR)
Set Bit to Logic One Command (SBO)
Set Bit to Logic Zero Command (SBZ)
Store CRU Value Command .(STCR)

L

.1l Connect Input File Command (CIF).

.2 Connect Output File Command (COF)
Interrupt Simulation Command (SIMI) .
Selection of CRU Mode Command (CRU)

SECTION 7. CONVENTIONAL PASCAL

OVERVIEW . ¢« « « &

PROGRAM SEGMENTS = . « . « . .« .
EXECUTION MESSAGES .« ¢« « « .+ .
I/o SUPPORT e L] L] L] L] L] L] L] L] L]

RUN-TIME SUPPORT ERROR MESSAGES
ABNORMAL TERMINATION MESSAGES .

SECTION 8. THE MICROPROCESSOR

OVERVIEW . « ¢ « o« o &
LANGUAGE VOCABULARY AND

REPRESENTATION

.l Character Set . . . «
.2 Special Symbols . « . « « . &
.3 Keyword Symbols
.4 Identifiers .« « ¢« ¢« ¢ ¢ o o @
.5 Separators . . ¢« ¢ ¢ ¢ o . .

DATA .+ ¢ o o ¢ o o o o o o o o
.1l Constants
.l.1 1Integer and Long Integer Con
.1.2 Real Constants . e e o o
.1.3 String Constants
.l.4 Character Constants
.2 Variables . ¢« ¢« ¢« ¢« ¢ ¢« ¢ o .
.2.1 Simple Variables
«2.2 Qualified Variables

DATA TYPES = 2 « » o o o o o &
.1 Simple Types . ¢« ¢« « ¢« & + &
.l.1 Enumeration Types
.1l.2 INTEGER and LONGINT Types .
.1.3 BOOLEAN TYypPe .« « « & o« & &
1.4 CHAR TYDPE « « + « « o « o &
.1.5 Scalar TypPe « « « « o o « =

l....ol...t..(ﬂ'.....

PROGRAM

L] L] e o ‘e L] . o ‘e
. . . . e ‘e o e .
. L] L3 ‘e . [‘. L] .
et P
o T E .
e o o o P elia e
- LN L T .-
) e % e ‘e i.e e L O
o oy r - s - P
. e &' ex e e o e . e
- = 5. P
. e .o~ e ° o e e e
- .. . W
e e &' Te e ieT Ve ° .
o o 3 . ¢ e Jes e ..
e e e.. "o . . e .
o & W e o ‘ ‘e e
. S

L] [° L]
. . . o
. . [.
. . [. -
. . e [
[. L3 °

PASCAL SYSTEM

EXECUTION™ = = .

nts

o o o o o o e o @ o e o ©® o o o o o o o o .0 L]

® o ® 4 o o 6 o o o o

e o Wle Ve 8 re e lw b 7"-1:'
o e e e e el T2
S T L
* o - : o o wel-_e ‘e 7-2
e e e e fe we e i dA=3
R ar len L vl

i - : oA l

AT I

e e e o dee M e e Bl
B " A - T §
o -
e e e e lenedE . . 8-1
e o o si e se el e e 8 2
e o o o 7:“4"' e e’ e e - 8"2
R Py
e o oo e i e e - 8=3
e o o o "4 . Lo e e 8"’4
e o o & “a e {d& o o g 8—«4
e e o o o @ le te e 8—4
o o o o ¢35 s o e e 8-4
« o o o T Te e e 8 - 5
e o o o o oe o « B8=5
e e o s e s 4 o « B8-5
e « o s o o o o « 8-5
e s+ e o+ s s s o « B-6
c e o o o o o o+ 8-6
e ¢« o« o o o o o+ B8-6
e o o s o e o o o 8=7
T - 2
e e« o o s+ o o o . .8-8
e e o o o« o o o o B8-8

ES

4
.

2
L)
U'lU"

vo
&

4

e o e g

.
1o

AT
HO®IB
o

w@m@mmmmmmmmmmmmmm@mmmmmmmm@

£
[}
'é}‘np‘fm
=
=

- L]
L3

&.'5 15
8.6 EX
8.6.1
1.1
.2

ST

R N I
N,\I\IO\:O\O\G\

e o o
NNNNNNNNNNNN
e o o o o o

o 00 G0 G G B G0 0000 W W D AW W WP

L] . [] [] L[]

DN NN Wk
L]

AU WNHE oaudwNH

» o o o o
o o o o o

tSana&ge Type . .

5.1 CONSTANT Declaration Par
.2 TYPE Declaration Part .
.3 VARIABLE Declaration Par

COMMON Declaration

ACCESS Declarations
PROGRAM Declarations
PROCESS Declarations
PROCEDURE Declarations
FUNCTION Declarations

Parameter Kinds . .

2 EXTERNAL Declarations
FORWARD Declarations

Concurrent Character
Convent10na1 Pascal:
PRESSIONS e o o o
Operands . « « . .
Set Value
Function Calls .
Operators « « « "¢ &

Integer Constant ExXpressions

ATEMENTS . '« « « o
Simple Statements .

Assignment Statement

Procedure Statemen
START Statement .

- ESCAPE Statement
GOTO Statement " .
ASSERT Statement

Structured Statements
Compound Statement

IF Statement . .
CASE Statement .
FOR Statement . .
WHILE Statement .
REPEAT Statement

4.1.6 o o o o
«471.7 REAL TYPE « « « o o o
4.2 Structured. TYpes .« « «
«4¢2.1 Array TYPE =« o « o o o
«4.2.2 Record Type « « « « o o
4.2.3 Set TYPE =« o« o ¢ o o &
«4<2.4 File Type . « « « « « .
.4,2.5 Pointer Type
.4,2.6 ,SEMAPHORE TYype .« « « .
«4.2.7 PACKED TypesS =« « « «
.4.3 Size Algorithm for PACKED
.4.4 Type Compatibility . . .
.4.5 Overriding the Type Struct
.5 DECLARATIONS . e o o o o
5.1 SCOPE « « ¢ ¢ ¢ 4 4 e o o
5.2 EXtent .« ¢« ¢ o o &+ o o
+5.3 System Declarations . . .
}.544 Label Declarations . . .
<55 Data DeclarationS
5.

5

Part

.o.c.o.o.ffc(‘l‘.looooﬂoeoongo.o.o

istics
Program

. . [.
. . [.
. [

t . .
. o . .
. . o .
. . . .
. . . .
. . .

. . .

.] . .
. . e o
. . . .
.] . [
. . [.

vi

s

© o o o o o o o o 4 o o o o o s ¢ o o o o o o o o (D eMJe o e s o s s s o

e o 0 o o o ¢ o o o o o L] e o

@ ® o o o © o © o © o © o © o © & © o © o 0 o o o o o o o o N e e o & o o 6 o o

e o o o o o * o o o e o .

. . . . L[] . L[] . . ° . . .

. 0 L] . L[] . L] . .] L] . . 0 L] 3 L] L] . L] [} L]] L] L[] L] L] L] L] L] L[] L] L] L] . L]] L] . . .

) .] . [] L] . [[. (] . [. [L] [. L) . . [[. [L] [L] L] L] [} L] . L] [[)

e o o o * o e o o o (] .]

[. L) o ° L) . [. L] . L} [. L) L] [. . L] [. [[[. . . . [(]

¢ o © o o o .

e & e 0 9 0 o 0 o O ¢ 0 ¢ o ¢ & o 0 o 6 o, o o o oo O o 0 ¢ o o o o O ¢ o o o o o

° o . Y .] . e o o . . .

[. .]) . L) . [. . [. (] . [] . . [. . L] [. . . . L] L] L] L) . . . L) L] . .) [. [°

® e & ¢ 0 e ° o 0 ¢ 6 g ° g 0 g 0 g ° g 6 o o g 6 g o ¢ o 2 o g 6 9 o ¢ 6 o o g oo a2 o

® o o o o oo e o o o * o] e o o * o e o o o e o o o o o ® o © o o o o o L] e ©® o o o © o o o © o o ¢ o o] .

e o .] L] . . o ®] e o L] e o o] L4] L] e o o] L] . .] .] L] L] * o L] L] L] * o o ° L] o

@ ® o © o © o 0 o 6 o o e © o o o © e o ¢ 6 o e o

e o o o ¢ o e o o o o o

8-9
8-9

8-10
8-10

8-12
8-14
8-16
8-17
8-18
8-19
8-19
8-24
8-25
8-26
8-26
8-26
8-27
8-28
8-28
8-29
8-29
8-30
8-30
8-31
8-31
8-32
8-33
8-34
8-34
8-35
8-35
8-36
8-38
8-39
8-39
8-39
8-40
8-40
8-42
8-42
8-42
8-42
8-42

8-44

8-44
8-45
8-46
8-46
8-46
8-47
8-48
8-49
8-51
8-51

5

8.7 c e o o s o s e s e o e o @
8.8 INPUT AND OUTPUT =« &« « o o o o o o s o o o s o
8.8.1 Sequential File Operations =« « « « o « '« o &
8.8.2 Text File Operations =« « « o« ¢ o ¢ o o o o o
8.8.2.1 . Text File Read Operation . . « « « « « « &
8.8.2.2 Text File Write Operation . « « « « « ¢ ¢« &
8.8.3 RANDOM File Operations . « « « « o o o o o &
8.8.4 Binding of File NameS . « « « o ¢ o o o o o &
8.8.5 Passing Files as Parameters e e o e o o o e o
8.8.6 Encode and Decode . « ¢ « o o o o o o o o o o
SECTION 9. PROCESS SYNCHRONIZATION AND PROCESS

9.1 OVERVIEW .« « ¢ o 2 o o o o o o o o o s s oo s
9.2 SCHEDULING POLICY ¢« « ¢ o o o o o o o o o o o »
9.3 EVENTS =« ¢ ¢ ¢ o o o o o o o o o o o o o o o s
9.3.1 External EventS « « « « o o o o o o o o o o o
9.3.2 Internal EVeNntS « « « o« o o o o o o o o o o o
9.4 SEMAPHORES =« « ¢ o o o o o o o o o o o o o o =
9.4.1 Abstract Operations on Semaphores . . « « « .
9.4.2 1Incorrect Use of Semaphores . « « « « ¢ « o .
9.4.3 RTS Semaphore Routines . « « « o« ¢ o o o o &
. 9.4.4 Implementation of Semaphores . . « « « « « &
(9.5 INTERRUPT HANDLING =+ « o o o o o o o o o o o o
M 9.5.1 1Interrupts Treated as Events =« « « ¢ o« o o &
9.5.2 1Interrupt Routines . « « ¢« ¢ ¢ o« ¢ o o & o o
9.5.3 General Features of Interrupt Handling '. . .
9.5.3.1 General ROUtINES =+ « « + o o o s o o o o o
9.5.3.2 Techniques of Code Style .« « « « « « o o &«
9.6 SCHEDULING OF DEVICE AND NON-DEVICE PROCESSES .

SECTION 10. PROCESS COMMUNICATION

10,1 OVERVIEW « « o « o o o o o o o o o o o « '« o
10.2 SIMPLE COMMUNICATION MECHANISMS .« « o o o« o s
10.2.1 Device Communication Using CRU « « « « &« « &
10.2.1.1 Procedure CRUBASE .+ « « & & o « o « o o &
10.2.1.2 Procedure LDCR (Load CRU) =« ¢ ¢ « « o « =«
10.2.1.3 Procedure SBO (Set Bit to One) « « « « « =«
10.2.1.4 Procedure SBZ (Set Bit to Zero) . « . .« .
10.2.1.5 Procedure STCR.(Store CRU) « « « « o« « « &
10.2.1.6 Function TB (Test Bit) « « « ¢ « o « .
10.2.2 Device Communication Using Memory-Mapped I/O

10.2.3
10.2.4

Interprocess Communication Using Shared Variables
Interprocess Communication Using Message Buffers
~- 10. 3 EXECUTIVE RTS FILES

.2.7 WITH Statement

vii

Y e e e
e @ . L] -
PR - ¢
» iy -
o e e . L
e,
. o e e o
. e .
e e o ¢ @
ey
. o e e o
. o o . .
LT
. . LR) .
. ne
e e e o o
. " e e
. o ‘e @ .
. DR
. PP S
. ¢ e ‘o O
IRV , 2
Gy &g L.\. -
s N
e e: 0 . Ll
P AT, wel LiE
7 ‘e e .
e LT T
L £ 1Y T
e ‘o o' e’ 4
- ey oAy
Y .ol
o o . . .
LS g R
: B Haas
‘o o e . .
W CoR
o o . e o
[A
T e
o
"
. e o . °
R T
e
O . e o e
P .
. . . e o
.
.
. . e o .
. . o e .
. . e e .
L] L] L] . L]
. °
. . .
. . ° .

e e o o
P e Tl T4
ENEIETE
P
te . e *
e BUie —e
A Sl e
‘e ® -Q .
e e_“e .
e o o o
- VT
e o o o
e %

e o _.'o)

PRI

{

oA -‘o‘ R o e .\

4

L 't
. o 0

V‘

o

g N al
e e o o .0

s
T
2
343 5

NN

A
Y. § e

L i

:IJ;

]
, e e

gy o .

‘O‘D :9-*;:‘ ‘ l N et 1 e

T AR
WA -
B B L LTI R RULIEC SV IS i S

h |9 ZI
~e»—zif
oW 25

¥

E

By e o

¢

e
-~ 4
=

-

10 1
10-1"
10-1"
10-2"
10-3
10-3
10-3°
10-3
10-3
10-3
10-5
10-6
10-9 -

e el el i a Y
oooooo,.o,o‘o

e o o o e e 2,
e o o o o o ¢ o o

10.3. 10
10.3.11
10 3.12
10 3013

a f';'.?-,

ALl OVERVIEW « « o« o o o o o o o « o o &
11.2 SYSTEM DECLARATION . . . « + « & . .
11.3' PROGRAM DECLARATION o . . .
11.4. DECLARATION OF A CONVENTIONAL PASCAL
11.5; PROCESS DECLARATION
11.6 CONCURRENT CHARACTERISTICS .
11.7° PROCESS INVOCATION
11.8 PROCESS TERMINATION

l 2 l OVERVIEW L] L] L] L] . L] L] . L] . L] . L]

12.6.4.1 Allocation of System Process or New Program

(Channels L4 O . e o . o [. [. [. . [. [

Process—Local F11e Variables . « . « « &

Deévice Channels "= « « « « o o « « o« o
Connection of ‘File Variables to Channels
Sequential (Non-Text) File Operations .
Text File Operations . . « « « « « . &
Random File Operations . . « « « « « .
Logical End of File. « ¢ ¢ « ¢ o o « &
Logical End of Consumption
Buffers Associated With File Variables . . .
Connections of Files with Different Component Types
Conditional READs and WRITES . « « ¢ « o o o o o o &
Channel Abortions . « « o o ¢« ¢ ¢ & o o o o o o o o

. L[]] L[] ° [.] 'Y
o o o o o o o o o
e & o o o o o o o
e © o © o o o e o

.
.
’
.
.
. .
. .
. .
. .
.

SECTION 1ll. PROCESS MANAGEMENT

oooogno.
o
2

.
. . . .
. . . .
. . 3 .

SECTION 12. MEMORY MANAGEMENT

12,2 MANAGEMENT OF SYSTEM MEMORY .« « « « « o « o o o o o &«
12. 251 Dynamically Allocated Data Areas « « « « « « o o o &
12,2:1. l HEeaps « « ¢ o ¢ o o o o o o s o o s o o o o o o
12,2.2 Statlcally Located Data Areas =« « « « o s o o o o &
12. 3 HIGH-LEVEL USER INTERFACE TO MEMORY MANAGEMENT
12.3.1 Procedure NEW . + o« « ¢ o o o o o o o o o o o o o @
212.3.2 Procedure DISPOSE . . « « o o« o« o o o o o o o o o
12.4 LOW-LEVEL USER INTERFACE TO MEMORY MANAGEMENT
12.4.1 Procedure NEWS . « ¢ v v « o o & e o o e o s o o @
12.4.2 Procedure FREES .« v ©¢ ¢ ¢ o o o o o o o o o o o o =«
12.4.3 Procedure HEAPSTERM .« . « « « o« o o o o o o o o o
12.5 USE OF COMMONS ¢ ¢ & ¢ o o o o o o o o o o o o s o o =
12.6 PROCESS RESOURCES « &« « « o & o o o o o o o o o o o
12.6.1 Process Stack . . e o o o s & s e e s e o e o o @
12.6.2 Process HEAP + « « o« « « o o o o o o o o o o o o o
12.6.3 Estimating Space Requirements of Process Resources .
12.6.4 Allocation of Process RESOULCES =« « « « o« o « o o

viii

e o] ° e o L]

. e o o o ¢ o o o

e o © o o o e o o o e o o . * o e e

10-10

10-11 =™
10-12 =

10-12
10-16
10-16
10-19
10-20
10-20
10-20
10-21
10-22
10-23

11-1
11-1
11-4
11-5
11-7
11-9
11-11
11-13

12-1
12-1
12-1
12-1
12-2
12-2
12-2
12-2
12-3
12-3
12-3
12-4
12-4
12-5
12-5
12-6
12-6
12-8
12-9

S
e

12.6.4.2 Allocation of New ProcCess .« « « « % o o o =

12.6.4.3 Allocation of Conventional
1 2 L) 7 EXAMPLE . [L[] L[] . . L] . [. . L[]

SECTION. 13. ERROR RECOVERY AND

1 3 . l OVERVI EW . . [] 3 .

13.2 EXECUTIVE RTS DETECTED ERRORS . . . « o & o o o 270
13.2.]1 User Errors =« « o o o o o o o o o o o o o o o' @
13.2.2 Scheduling Errors =« « « o o o o o o o o o o o o« &
13.2.3 Semaphore Errors « « « o« o o o o o s o s o o o o
13.2.4 InterruPt ErXrors . « « « « o o « o s s o o o o s =
13.2.5 Process Management Errors . « « « « o o o o o o &
13.2.6 EXception Errors . « « o « o « o o o o o o o o o
13.2.7 Memory Management Errors . . « « + o « o o o s o &
13.2.8 File Errors « « « o o o« o o o s o o o o o o o o .
13.2.9 Host File Errors . . . e o e s s 4 e s e s e o
13.3 RUN-TIME EXECUTION ERRORS e o o o & o o o o s » e e
13.4 CRITICAL TRANSACTIONS .« « « « o o o o o o o o o o
13.5 EXCEPTION HANDLING « « « s « o s o s o o o & o e o e
13.6 EXAMPLE .« +. &« « o o o o o o o o s o o o s o oo o =
13.7 RECOVERY OF FILES «. ¢ o 2 « o s o s o o o o o oo ‘o
13.8 DPROCESS MANAGEMENT . « &« o & ¢ o o o o o o o o o o &
13.9 SYSTEM CRASH « « « « o o o o o o o o o s s o o o o »
SECTION 14. IMPLEMENTATION OF DEVICE HANDLERS
14.1 OVERVIEW &« « & 2 2 « o o o o o s o o o o s o o o o «

14.2 PHYSICAL DEVICE INTERFACE SYSTEMS . ¢« ¢ « o ¢ « o =
14.2.1 Physical Device Interface Initialization Procedure.

14.2.2 Physical Device Interface Supervisor Program . .
14.2.3 Logical Device Interface ProCesS. . « « « « o o o @
14.2.4 Logical Device Channel. « « « « o o o « o o o & . .
14.2.4.1 Channel Name€:. « « « « s o« o o o s o o 6 o o o o
14.2.4.2 Component Lengthe « ¢ ¢ ¢ &« ¢ ¢ o o o o o o o o
14.2.4.3 Channel Mode€:. « « « « +« o o o o o o o o o o o o @
14.2.4.4 Maximum Number of Connected User Files.
14.2.4.5 End of Consumption Handling . « « « « « « o« « « =
14.2.4.6 Device Channel Destruction. « . « « « « « o« « « &
14.2.4.7 Device Channel Abortions. « « « « « o« ¢ ¢ o o o &
14.2.5 1Interrupt DemultipleXer . « « « « « o o o o o o o =
14.3 EXAMPLES. &« &« « o s o « o o a a s a o o o o o o o o =
14.3.1 Phvsical Device Interface System for a Line Printer

14.3.2 Logical Device Interface Process for a Cassette
Drlve L] L] L] L] L] L] L] L Ld L] . L] Ll L] . L] L] L] L] L] L] . L]

14.3.3 Implementation of Video Display Terminal Handler. .

ix

™

® o ® o e o 0 o 0 o & o o o o o 6’

EXCEPTION 'HANDLING

. o o . . e o . :o:‘vt“o: e e 0

. . RS
® 0: 0 o 0 o o o e o 6 ¢ 0 o 0 o 0 g
. o -

Pascal Program ”th*i@ffﬁi

.
T e
e
e
.
L
e
.
.

128

: 1209
v 12-9

AR

y

o l‘
PN

“%:$t»01"e
EEWNDNDRONR R

il = AN
v

13-5

. 1a-3

“. 1243

143
21826
*14 6
14-6-
14-7
14-7
14-7"
14-8
14-8
14-8
14-9
14-9
14-10
14-1

14-14
14-16

ca ORI USSR USSR S

14.3.3.1 User Interface and Operation of VDT
14.3.3.2 Implementation of Initialization Procedure. . . .
14.3.3.3 Implementation of Supervisor Program. . . . « . &
14.3.3.4 Implementation of VDT Screen Logical Device

Process. L] . L] L L] L L] L] o L] L] L] L] L L] L] L] L] . L]
14.3.3.5 Implementation of VDT Keyboard Logical Device
Process. L * L] L] . L] L] L] L L] L] L] L] L L L L] . . L

- OPERATIONS

-

e ?
. ~
N -

SECTION 15,'CONFIGURING TARGET SYSTEMS FOR INTERPRETIVE EXECUTION

——n

OVERVIEW o . e o o o o o e o @
- CONFIGURING THE MICROPROCESSOR PASCAL SYSTEM
INTERPRETIVE RTS FOR THE TARGETY MACHINE

.1 Specification of RAM Locations.
.2 Specification of Restart and LREX Vectors Locations
+3 Allocation of Workspaces in CONFIG. . « « « « « « &
.4 Example e e s e a2 e = s s = s 8 s e s s 8 8 & » o
- USER CUSTOMIZATION OF THE INTERPRETIVE RUN TIME
SUPPORT. e o o o o o o e o ® s e o s e s s e o o o o
Assembly Language Interrupt Handlers. . . . « « . .
1 Pure Assembly Language Interrupt Handlers
2 Declaration and Calling Conventions for
i3 ASSEMBLYEVENT &« « « v o o o o o o o o o « o o &
d.3 Use of ASSEMBLYEVENT . . « ¢ « o« & o « o« o o o« &
2 Crash Routine c e o e s e o o o o o o
ASSEMBLY LANGUAGE CODING CONVENTIONS. o o o o
.1 General Format and Example of Assembly Language

» Segment .« . . ¢ i e e 4 4 e e e e e e e e e o o
15.4.2 Details of Assembly Language Segment Conventions .

APPENDICES

APPENDIX A GlOSSALY. « =« o o o o o o s o o o o« o o s o o
APPENDIX B Microprocessor Pascal Reference Card.
APPENDIX C Microprocessor Pascal Standard Routines
APPENDIX D Executlve Run Time Support Reference Card . . .
APPENDIX E Microprocessor Pascal System Error and

Exception Codes . . . « e e e e e
APPENDIX F Microprocessor Pascal System vs erth s

Pascal o« ¢ ¢ ¢« ¢ ¢ o o o s o o o o e o o o o
APPENDIX G Microprocessor Pascal System vs TIP
APPENDIX H Executive Run-Time Support vs TIPMX . . . « . .
APPENDIX I BNF of Microprocessor Pascal System

14-16 .

14-17
14-18

14-19
14-22

15-1

15-1
15-3

15-9
15-15
15-15

15-15
15-17
15-20
15-21

15-21
15-23

\ J
e

APPENDIX J
APPENDIX K
APPENDIX L
APPENDIX M

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
'FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
- FIGURE

FIGURE

- FIGURE
FIGURE
FIGURE

!
| OB WNDFFEFNNFEFNDRFROBWND RN

PRRRFRPRROOO0OOOVOERDEWWN DN NN -
e X=X=R=RX=X=N 1

| I T I

N D W N

10-8

10-9

10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
11-1

11-2
11-3
11-4
11-5

Interpretive RTS Data Structures.
MPP 733 ASR DSR Documentation . .
RTS Clock Interrupt Handler . . .
Assembly Language Interface: MPX

e [] L] L]
Ll TS
e e e @

LIST OF ILLUSTRATIONS

THE MICROPROCESSOR PASCAL SYSTEM
RELATIONSHIP BETWEEN THE PASCAL USER AND RX
SEQUENTIALLY PERFORMED PROCESSES

CONCURRENTLY EXECUTING PROCESSES « o
AND PROCESS DECLARATIONS

NESTING OF SYSTEM, PROGRAM,
TYPICAL STACK FRAME . . ¢ ¢ ¢ o o o ¢ o o o
HEAP STRUCTURE . ¢« « o o o ¢ o o s o« o o o o
DIAGRAM OF INPUT/OUTPUT

COMPILER LISTING OF PRODUCER/CONSUMER PROCESSES

INPUT FILE EXAMPLE CONTAINING ERRORS
ASTRING « « o « « o« o o o o o o o« o o« o o &
DEBUGGING STRATEGIES . « « « « ¢ o « o « « &
ALLOCATION OF STACK AND HEAP . . . « . . .

EXAMPLES OF THE EXECUTIVE RTS SCHEDULAING POLIC
SWAP ProceduUr® « « o« o o o o o o s o o o = .

-

EXAMPLE OF INCORRECT SEMAPHORE USE . . .
EXAMPLE OF CORRECT SEMAPHORE USE «
EXAMPLE OF SERVICING INTERRUPTS AS EVENTS

EXAMPLE OF STYLE FOR INTERRUPT HANDLING. .
INTERFACE TO MEMORY MAPPED I/O DEVICE . .
MANIPULATION OF MEMORY-MAPPED I/O DEVICE .

SPURIOUS INTERRUPT PROGRAM . . . « &« o o =« ;\

'S :0‘:“..“%‘0 7.:‘,03{.‘"':"0 f|-< e o o

EXAMPLE OF SEMAPHORE CONTROL OF SHARED VARIABLES

EXAMPLE IMPLEMENTATION OF MESSAGE BUFFERING DATA

EXAMPLE IMPLEMENTATION OF MESSAGE BUFFERING
FILE VARIABLES AS PROCESS-LOCAL PORTS . . .
CHANNEL CONNECTIONS =« ¢ ¢« o o o o o o o o o
LOGICAL DEVICE AND ASSOCITAED DEVICE CHANNEL
PAGINATION PROGRAM . ¢ ¢« ¢ o o ¢ o o o o o &
COORDINATE CONVERSION PROGRAM . .« « ¢ « o o
COMMUNICATION AMONG PROGRAMS AND DEVICES . .
COLUMN INDEX IS INCREMENTED DURING TEXT READ
EFFECT OF READLN ON READING TEXT FILE . . .
EFFECT OF READING FIRSTY CHARACTER ON LINE .
EFFECT OF EOF(F) WHEN RESULT IS FALSE . . .
POLLING FILES FOR INPUT . . « « o « o o o &
USE OF EOF WITH CONDITIONAL FILES . « . .« &
EXAMPLE SYSTEM BODY WHICH STARTS TWO DEVICES
AND A MAIN PROGRAM . o « o ¢ o o o o o o &«
EXAMPLE OF SYSTEM BODY DECLARATIONS
SIMPLE, CONVENTIONAL PASCAL PROGRAM
EQUIVALENT MICROPROCESSOR PASCAL SYSTEM . .
Conventional Pascal Program with File I/O .

xi

e o * 0

e o o & o o o -0 e'e. @ o

te s

re:(ig

L e T v .
‘e e @ L) * -9 e o .

L] . L] [}

Y. -
[

[() L) [e o o [L] [] LI] e . * ‘e @ e o e o

O W WVW O BB WWN NN NN
~ [}

J-1

K-1 -

L-1
M-1

7
i

} !
NN D

L 1
=0 UT W
(=)

e

L T T T I |
¥

| :

|
-
o
1

¥

ot

FIGURE
FIGURE
FIGURE

FIGURE
FIGURE

FIGURE
FIGURE

FIGURE'

FIGURE
FIGURE
FIGURE
FIGURE

FIGURE "

FIGURE

FIGURE "

FIGURE

FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE

FIGURE
FIGURE

FIGURE
FIGURE
FIGURE

FIGURE

FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

11-6

11-7

11-8

11-9
12-1
12-2
12-3

'12-5

13-1
13-2
14-1
14-2
14-3
14-4

14-8
14-9

14-10

14-11

‘'14-12
14-13

‘14-14

14-15

14-16
14-17
14-18

14-19

14-20
14-21

14-22
15-1
15-2
15-3
15-4
15-5

EQUIVALENT MICROPROCESSOR PASCAL SYSTEM . . .
NESTING OF PROCESSES AND VARIABLES IN SCOPE .
EXAMPLE OF CONCURRENT CHARACTERISTICS WHICH ARE
CONSTANT AND VARIABLE . « « + o o o« o s o o
MULTIPLE DYNAMIC INVOCATIONS OF PROCESSER . .
DETERMINING STACK REQUIREMENTS OF A PROCESS .
DETERMINING HEAP REQUIREMENTS OF A PROCESS . .
USE OF TARGET DEBUGGER TO DETERMINE STACK AND
. HEAP REQUIREMENTS OF A PROCESS . « .« « « « .
PROGRAM WITH CONCURRENT CHARACTERISTICS . .

MEMORY LAYOUT OF STACKS AND HEAPS FOR PARAGRAPH 12.

EXAMPLE SKETCH OF EXECUTION HANDLING
EXAMPLE OF EXCEPTION HANDLING FOR A PROCESS .
Conceptual View of Interface to a

Logical Device . . ¢ ¢ ¢ o ¢ o« o o « o o o« &
Interface to Physical Device . . . « « « .+ &
Example Sketch of an Interface Proess
Illustration of Multiple Logical Devices

on a Single Physical Device « « .« . .
Calling Sequence of Example Physical Device
Interface Initializaton Procedure
Initializaton of Four ASR 733°s . . « « « .« .
Implementation of Physical Device Interface
Initialization Procedure. . « « « « o o« o« « &
Physical Device Interface System with
Interrupt Demultiplexer Process . « « « « + &
Calling Sequence of Line Printer
Initialization Procedure. . « « « « « .« « « .
Implementation of Line Printer

Initialization Procedure. . « « « ¢ « o « « &
Implementation of Line Printer

Supervisor Program. . « « o o« o o o o o o o =
Example of Line Printer Device Manipulaton. .
Implementation of Cassette Logical Device
Interface Process . .« « « o o o .o o o o o o @
Example of Connection of

User Files tOo @ VDT . &« ¢« ¢ o o o o o o o o o«
VDT Interface System

Initialization Procedure. . . « « ¢« « « « « &
VDT Interface System Supervisor Program . . .
VDT Screen Logical Device Process « .
Implementation of VDT Screen

Worker Procedur@. . . « « o o o o o o « o o @
Implementation of VDT Screen

Exception Handler . . ¢ ¢ « o « o « « o o + =
VDT Keyboard Logical Device Process
Implementation of VDT Keyboard

Worker ProcedUr@. .« « « « o o o o o o o o «
VDT Physical Device Interface System . .
Confige ¢ o ¢« o o« ¢ ¢ o« o o o o o @
Simple RAM Table.
Use of Ram Table in Config. .
Config with User Modificatons
USERINIT. . ¢ ¢ o o o o o o =

xii

o e o o

o 8 Je o

P
~—

FIGURE 15-6 Standard Crash Code . « « ¢ « « « o o.0 o.0.s « « « 15=20
FIGURE 15-7 Elaborate Crash Routine « « <. s & . 15-21
FIGURE 15-8 Assembly Language Segment T .
FIGURE 15-9 Assembly Language Segment . . « « o o o. ¢ o o« o o o 15=-23
FIGURE K-1 733 ASR Handler Implementation. . . . e e o o o o K=3.
FIGURE K-2 ASR Interface System Initializaton Procedure. « « <. K-4.
FIGURE K-3 ASR Interface System Supervisor Program K=72
FIGURE K-4 ASR Keyboard Logical Device Process « K=8;
FIGURE K-5 Implementation of Keyboard Work Procedure K=9
FIGURE K-6 Implementation of Keyboard Exception Handler. . . . K-10..
FIGURE K-7 ASR Printer Logical Device ProcesS. . « s« .« o «.5 s K—Il
FIGURE K-8 Implementation of ASR Printer Work Procedure. . EE le2ﬁ
FIGURE K-9 Implementation of ASR Cassette Logical ; -

Device ProCeSS. « « « « o o o o o o o o « o .Mgg. K-13~
FIGURE K-10 Implementation of ASR Cassette

Work Procedure. . « o« « o« « o o o o« o« o o o « « o o=K=14.
FIGURE K-11 Implementation of ASR Cassette . Com ot

Output Procedur€. . « « « « « o o o« « o s« o o » ¢« o K=15_
Figure K-12 Implementation of ASR Cassette

Input Procedure . « « « « o o = o o o o o o o o ,..tK-lﬁ
Figure K-13 ASR Physical Device Interface System. K-18

LIST OF TABLES

TABLE 4-1. SOURCE EDITOR COMMANDS AND FUNCTIONS: 911 VDT 4=3..
TABLE 4-2. SOURCE EDITOR COMMANDS AND FUNCTIONS: o AEES
913 AND TMAM 9000 WTS L] Ll L] L] L L] L] L] L] . L] . L ’. 4 4~

TABLE 5-1. LISTING CONTROL OPTIONS . « « o« « « o o« « « o o o« o« «°5=8"
TABLE 6-1. HOST DEBUG COMMANDS e o e e e e o o o o o -0-6=2..
TABLE 6-2. FORMATS FOR ROUTINE PARAMETERS o o o e B lL‘
TABLE 6-3. STATUS SUMMARY OF ALL EXISTING PROCESSES e e e . .. 6=17
TABLE 8-1. DEFAULT VALUES . ¢ ¢ « o o o o o s o o o s o o o o » &?59ﬁ
TABLE 8-2. ERROR CODES RETURNED BY STATUS . . « « « « « « « « « 8-62"

xiii

SECTION 1
MICROPROCESSOR PASCAL SYSTEM OVERVIEW

1.1 GENERAL
Microprocessor Pascal is a Texas Instrument”s product designed to
support multi-tasking (concurrency) on Texas Instruments” TM9900
microprocessors. Concurrency 1is one of the chief advantages of
Microprocessor Pascal (MPP) because it provides a high level of
computer-time saving by performing simultaneous integrated execution
of a number of processes with a single processor.
l1.1.1 Microprocessor Pascal System Features
The Microprocessor Pascal System is intended for applications to be
executed on small computers that do not have a large, general-purpose
operating system. Features supported by Microprocessor Pascal System
are:

- Easy to learn

- Block structured language

- Compiler-enforced compatability checks

- User-defined data structures

= Interrupt handlers coded in Pascal or assembly language

- Concurrent execution of multiple tasks (processes)

- Process synchronization via semaphores

- Direct high-level language single-bit and byte I/O

- VFile level interprocess communication

- Dynamic creation and reclamation of a process” resources

- Process scheduling according to a multiple-priority scheme

- Ability to customize appliéations to include only those

those features of Executive Run-Time Support libraries
that are required

1-1

e e e

)

1.2 WHAT IS.MICROPROCESSOR PASCAL?

Pascal is a block-structured high-level language developed by Niklaus
Wirth which enables the wuser to take a reliable, highly structured
approach to designing and implementing an application programe.
High-level 1language means that each Microprocessor Pascal instruction
corresponds™a group of machine 1level instructions, whereas, a
low-level language instruction (e.g., 9900 Assembly Language)
corresponds to a single instruction in machine code.

Texas Instruments” Microprocessor Pascal System is a software package
development and execution of a superset of the Pascal language for use
on the 9900 Family of microprocessors and TM990 microcomputer modules.

f}mgpecifically, the Microprocessor Pascal System supports user
" _development of an application on a host system and execution of that

.application on the 9900 or TM990 Target Systems.

The Microprocessor Pascal System can be divided into two groups: Host
and Target. The Host 1is the system used specifically for the
development of software. This grouo includes those tools necessary for

" .entering and developing applications software such as the Editor,

compiler, etc.

The Target group is the run-time support for executing the software
and includes those tools necessary for implementing and maintaining a
Target system environment, e.g., CPU scheduling routines, memory
management routines, etc. These run-time support routines are grouped

. into. libraries in such a manner that only those routines necessary for

the execution of the application software can be selected by the user
for inclusion in the executable object module. Selection and binding
of the runtime-support software is performed by the link editor, and

.. the object module produced willupe the module that is executed on the

Target System. -

Tools provided in the Microprocessor Pascal System for Host software
development consist of routines enabling the user to enter an
application into a host computer system. Other tools are available for
checking for errors in syntax, translating the source code into code
that is executable by the central processor (CPU), and discovering and
removing run-time errors that may occur during execution in the target
system.

Routines available in the Microprocessor Pascal System for Target
system run-time support provide the user with the means of
implementing and maintaining a target system environment. The Target
system environment controls software execution in the target system
and includes CPU usage, system memory usage, routine calling
conventions, data structures, etc. These run-time support routines are
grouped together into libraries; only those routines required by the
application will be included in the software executing on the target
system. In addition, the run-time support provided allows the
Microprocessor Pascal System package to be a concurrent (multitasking)
system. Run-time routines support simultaneous sharing of a single
processor by a number of routines (called processes) during execution.

1-2

i /
, ;
~_

In the Microprocessor Pascal System, these "processes" are separate
sites of execution with their own environment.

1.3 WHY USE MICROPROCESSOR PASCAL?

Concurrency is only one of the advantages of Microprocessor ' Pascal.
The following paragraph points out some of the other advantages.:

An engineer wants to control his factory process with a dedicated
microcomputer system. His factory process consists of five indepéndent
sub-processes. The engineer should design his process to satisfy” the
requirements of realtime logic flow, write his software so that the
sequential executicon of the code comprehends the relatlonshlp between
the five independent sub-processes realtime loglc flow and coritrols
each sub-process independently. This approach requires a supervisor
program to control which piece of code executes according to_ the
realtime needs (priorities) of the factory process. Microprocessor
Pascal System Run Time Support provides this supervisor. Furthermore,

if the engineer writes his code in a block-structured anéd - modular

fashion, it will be more reliable and easier to add features to later.
The Microprocessor Pascal System 1is such a language. Thus, the
engineer can design and implement the control algorithm for his
factory process in the same manner in which he perceives it. '

Understanding concurrency and the features that support iﬁfinithe
Microprocessor Pascal System is a prerequisite to making efficient“use
of the system”s resources. For this reason, the user should make ‘sure

that he understands the 1nformat10n defining these concepts’ whxch is
presented in Section 2.

. -
Execution of Microprocessor Pascal’ is in one of two modes,» each
supported by its own set of executive run-~time libraries: :

Interpretive execution - Pseudo code (or PCODE) refers to
the code resulting from execution of the Microprocessor
Pascal compiler. Pseudo code is executed in the target
via an interpreter (and@ for this reason, pseudo code
may be referred to as interpretive code), a program
that "looks at" each PCODE instruction in turn and

executes a set piece of code to perform the task
indicated.

- Native code - Native machine code (or object code) refers
to the code resulting from execution of the
Microprocessor Pascal computer and code generator. It
is generated from the interpretive code produced by the
Microprocessor Pascal compiler. Native code is executed

directly by the microprocessor in the target
environment. :

This manual describes the run-time routines for Microprocessor Pascal
- interpretive execution (MPIX). Descriptions of run-time support-
- routines for the native code wuser (MPX) are provided 1in the
Microprocessor Pascal Executive User”®s Manual (MP385) included in this
package.

The information that follows provides an overview look at the
Microprocessor Pascal System describing in greater detail the system
components introduced above. Figure l-1 presents an overview of the
Microprocessor Pascal System in diagrammatic form.

SYSTEM EXAMPLE: LEVELO =
PROGRAM PROS1; ——————————————== |EVEL1 =
PROCESS PROCT; —— LEVEL2

BEGIN (PROCESS BODY)
END;

BEGIN (PROGRAM BOOY)
ENOD:

PROGRAM PROS2; — - LEVEL1 —

PROCESS PROC2A; —— LEVEL3

BEGIN (PROCESS BODY)
END:

BEGIN (PROCESS BODY)
END;

PAOCESS PROC3; === LEVEL2

BEGIN (PROCESS 800Y)
ENOD:

BEGIN (PROGRAM BODY)
END;

BEGIN (SYSTEM BODY)
ENO:

FIGURE l-1.THE MICROPROCESSOR PASCAL SYSTEM. -

1-4

)

1.4 HOST AND TARGET SYSTEMS
The wuser of the Microprocessor Pascal System develops software using
one of the following host computer systems:
- Single-user FS990 (model 4 or 10) floppy disc development
system with TX 990 system software
- Single-user TMAM 9000 table-top computer system with
double-sided, double-density floppy disk drives and
AMPLUS System software

- Multi-user DS9%20/10 hard disc minicomputer with DX system
software

Once developed, the software can execute on the following target
systems:
- 9900 l6-bit Microprocessor chip set

- TM990 Microcomputer module with a memory expansion module

1.5 SOFTWARE DEVELOPMENT TOOLS

The Microprocessor Pascal System provides four hajor tools supporting
software development on the host computer:

= An intelligent, interactive editor for source preparation
which has syntax checking capability

- A compiler to generate interpretive code (PCODE) from
source code

A code generator to generate 9900 object code

An interactive debugging interpreter

Each of these development tools is described briefly below.

1.5.1 Source Editor

The Microprocessor Pascal System provides an interactive source editor
designed to help in the creation and modification of Microprocessor
Pascal System source files. The editor interacts with the user at a

video display terminal by displaying a desired portion of the file on
the screen and allowing a cursor to be moved around within this
display. Changes may be made to the file by simply typing over the old
text with the new text, or by adding, moving or deleting complete
lines or blocks of several lines. The editor helps the user input

1-5

o Ve e it L

correct Pascal statements by syntax checking the complete file on

command. If an error is detected, an appropriate error message is

given to allow the user to correct the error before syntax checking
continues. The editor also has features which help with the
indentation of structured statements. In Compose mode, each time a new
line is added, the editor positions the cursor to the current
indentation level. The cursor location is only a suggested indentation
level; the user can easily reposition the cursor.

1.5.2° Pascal Compiler

.The Microprocessor Pascal System provides a compiler that translates

.. ‘Microprocessor Pascal System source code into interpretive code. This
- code may be executed interpretively using the Host Debugger or using

‘the interpreter in a target system. This code may also be used as

input to the Native Code Generator (described in Subsection 1.3.3).

- Interpretive code 1is characterized by its compact size: a typical
application generated in PCODE is about half the size of that same

application generated in 9900 native code). One key advantage of
interpretive code 1is the minimal time required to produce an
executable system that can be debugged at a functional level. However,
interpretive code runs somewhat slower than native code. The

. Microprocessor Pascal System Compiler processes the full

. Microprocessor Pascal System language and detects syntactic and

.semantic errors at the source level.

1.5.3 Native Code Generator

‘The Native Code Generator (NCG) translates the interpretive code from
-the compiler into 9900 native (object) code. Native code is less

compact than interpretive code and executes five times faster. The
native code option is provided to satisfy execution-time requirements

. that cannot be met by interpretive code.

1.5.4 Host Debugger

The Microprocessor Pascal System provides an interactive debugger
which enables the user tc debug application systems at a functional
level (i.e., discover and remove errors that would occur if the
application was executing on the target system). The debugger supports
symbolic referencing of routines, files, etc. Statements can be
referred to by Pascal statement numbers. Breakpoints can be used to
stop the execution at any point by specifying the Pascal statement
number of a particular routine. When execution 1is suspended, the
status of the system can be examined. Examples include the status of
each process in the system, as well as the values of variables for the
process. Data can also be modified if desired. The execution of the
system can be traced at various levels including the routine entry and
exit level, or module statement flow level. Target hardware interfaces
such as CRU references and interrupts may also be simulated in the
debugging mode.

1-6

Please note: also supplied as an extension to the Microprocessor
Pascal System are AMPL procs specifically designed to facilitate debug

of a Microprocessor Pascal Target System. Information of use of these
procs is provided in Section 19 of this manual.

1.6 EXECUTIVE RUN TIME SUPPORT

The executive components of the Microprocessor Pascal System are
provided in two versions that correspond to the output generated by
the Microprocessor Pascal System compiler and the output produced-'by
the Native Code Generator. The Microprocessor Pascal Interpretive
Executive (MPIX) supports interpretive execution of PCODE (produced.by
the compiler). It is generally used for applications for which program
compaction achieved with interpretation is more important than the
associated increase in execution speed. The native code run time
support library introduced here as the Microprocessor Pascal Executive
(MPX) supports execution of 9900 Native Code and is generally used for
time-critical applications.

Actually, MPX is a set of routines that enables the user application
to execute using Texas Instruments standalone executive called the
Realtime Executive (Rx). The Realtime Executive User”s Manual 373) is
included in the Microprocessor Pascal package. The Realtime Executive
provides a run-time environment for any 9900-ba application regardless
of application language.

Rx capabilities that are applicable to the Pascal user are documented
in the Microprocessor Pascal Executive User”s Manual. Sections 9
through 14 of this manual document the RTS library for interpret code
run-time support. \ .

The relationship between Microprocessor Pascal and the Realtime
Executive is displayed in Figure 1-2.

1-7

e < e e o e e T

FIGURE l1-2. RELATIONSHIP BETWEEN THE PASCAL USER AND RX.

1-8

SECTION 2

MICROPROCESSOR PASCAL SYSTEM CONCEPTS

2.1 OVERVIEW

One measure of a system”s performance is the number of processes
active at the same time, i.e., the level of concurrency within the
system. (This may or may not be the same as the number of concurrent
processes resident in the system.) Obviously, a system with 100
percent concurrency is most efficient regardless of the size of the
job the system is performing. If everything can happen at once, the
job will be completed in the briefest period of time.

Therefore, one goal in designing a computer system is to maximize the
amount of concurrency in the system using one processor, but making
the system appear as if it is doing everything at once. Obviously,
with one processor, only one job can be performed at a time; but, if
the appropriate constructs are set up to preserve a job“s environment,
the processor can switch from job to job in an interleaving €£fashion,
servicing each eligible task a little bit at a time. This is as close
as one can get to doing everything at the same time in a single
processor system. Achieving maximum concurrency is the goal of the
Microprocessor Pascal System. '

The constructs of the Microprocessor Pascal System are designed to
support the multitasking concept of concurrency,i.e., one processor
servicing many tasks or processes. This concept and the constructs 1in
the Microprocessor Pascal System supporting it are described in the
following paragraphs.

2.2 CONCURRENCY

To understand a concurrent processing system, simply compare it to the
more familiar sequential programming system. Sequential programming
means that one site of execution exists in a system at any one time.
This program has the wundivided attention of the processor and
execution proceeds sequentially from instruction to instruction
without interruption. When the program must wait for input or output,
the processor is idle. :

In a concurrent processing environment, several sites of execution may
exist. These sites of execution are called processes: in the
Microprocessor Pascal System (see 2.3) and are simply separate
sequential routines. When the execution of a process is blocked
(waiting for input, output, etc.), the processor merely switches its
attention to another available process that is not blocked.

The

involves

There are several operations involved, each of which are performed

following

example

controlling

a different operating station.

(1)
(2)

(3)

(4)
' In

limited

to

illustrates the increased efficiency realized

when using concurrent rather than sequential processing. This
a processor

example

a soft drink bottling operation.

at

An empty bottle is positioned under a filler tube and filled.

The filled bottle is then capped and checked for pressure

leaks.

The inspected bottle is then placed in carton until the

carton is full.

The full carton is then crated, and placed into inventory.

the

of

can

plotted along the horizontal axis.

STEP 1 ! FILL 1
sz T
g S
e
“““““ e
FIGURE
With concurrency

2-1.

(as

begin.

Thus

the

SEQUENTIALLY PERFORMED PROCESSES.

2-2)1

output
time needed to perform all four steps in
sequence. Figure 2-1 illustrates this sequential operation;

as a

time is
CAP 2
ETC.
TIME 5 |TIME 6

rate

a sequential operation, one bottle must proceed through all of the
steps before the next bottle
amount

is

step is

completed, the bottle is immediately passed to the next step; the just

completed

step

is
concurrent processing,

immediately
the

illustrated in Figure
repeated on
output rate

required for the slowest of the four steps.

a new

bottle.
is one bottle per the time

Using

-~

)

str 1) Fiin 1| ez | Fmp s | Rt e | wrin s | Fiin e

ser 2 1| cap1 |cap2 |cap3 | cap4 | ..ETC

st s TN CARTON 1| CRTN 2 | CRTN 3 | ..ETC

P e T

T 0 | | 2 | | | ™5
FIGURE 2-2. CONCURRENTLY EXECUTING PROCESSES.

However, improved processor utilization is not the primary reason the
Executive Run Time Support supports multitasking; the Executive Run
Time Support is intended for applications, such as process control,
that have a high degree of parallelism. Each concurrent activity is
best managed by a separate software module that controls its behavior.
This one-to-one correspondence between external activity and software
control programs provides a powerful technique for the breakdown of a
complex problem into modular components. Such modularity is important
for the simplification of software development and testing, and for
the application of previously developed modules to new problems.

NOTE

In the terminology of Executive Run Time Support, a program is a
special case of a process. A task 1is performed by a process, so
"multiprocessing” would be a more appropriate term than "multitasking.
However, "multiprocessing" has been used to describe systems utilizing
multiple processors, so we will use the term "multitasking”.

2.3 PROCESS

To permit multitasking, the concept of a process has been introduced
into the Micprocessor Pascal System language. A process 1is a
separately executable collection of instructions with data on which
the instructions operate and with its own run time environment. Each

process is independently scheduled for execution on a priority basis,
and interacts with other processes and the executive as needed.

In a stand-alone environment having multiple processes (sites of
execution), the ability to support priority scheduling and context
switching are essential. 1In the example in Figure 2-2, a process is
prepared for each of the four steps to be performed. Because the
throughput of the system is limited to the speed of the slowest step,
it would be desirable to give that step priority over any other step.
In this way, it would never have to wait for the processor to be
switched from one of the less urgent steps. The executive RTS provides
for pre-emptive priority scheduling to serve this class of need,

2-3

ensuring that the most urgent process that is ready to execute is the

active process. A process priority is a user-assigned number that -

indicates the relative urgency of the process; the lower the number,
the more urgent the process.

NOTE

The word "process" will be used many times in this document in a
context applicable to a system, program, or process. Since both a
program and a system are a special case of a process and do not differ
in essential capability, when a distinction among system, program, or
process is required, the distinction will be clearly made.

2.3.1 State Of The Process

When control is switched from a process, the current state of the
process is saved. If the process were snapshot at some instant, its
state would indicate the next instruction to be executed as well as
the current values of all data variables which it can address. The
state of the process must be resored before the process can resume its
computation. The state of a process includes at least the machine
context (workspace pointer, program counter, and status register)
which is saved in a data structure called the process record.

In the Microprocessor Pascal System, code produced by the compiler is
not self modifying, so the state of a process does not include the
instructions themselves. The instruction stream 1is invariant with
respect to the execution of processes. The Microprocessor Pascal
System compiler also produces references to 1local data that are
relative to a local memory region. Invariant code and relative data
references provide reentrancy (See paragraph 2.7), and allows one copy
of code to be in simultaneous use by more than one process.

2.3.2 Processes As Interrupt Handlers

Processes can also be created to act as hardware interrupt handlers. A
process can be prepared to control each type of device in the system
(e.g., an I/0 device). When the device encounters an external
condition that requires the attention of an internal process, it
signals that fact by posting an interrupt request. Thus, the Executive
Run Time Support allows the user to write processes in Pascal to
service interrupts and devices

2.3.3 Interprocess Communication

Processes can communicate among themselves and synchronize with each

other using the Executive Run Time Support. The system demonstrated in
Figure 2-2 demonstrates this need. In the example, Step 2 must "WAIT"
for Step 1 to "SIGNAL" completion of the filling operation before the
capping operation can begin. Similarly, Step 2 must "SIGNAL" Step 3

2-4

.

that the checking operation is complete. This synchronization activity
is supported in the executive RTS by the "Semaphore Management" set of
procedures and functions. Interprocess files are also supported, which
allow the sending and receiving of messages between processes.
However, the implementation of these files 1is different in the

- interpretive mode and the native mode.

2.4 SOFTWARE ORGANIZATION OF MICROPROCESSOR PASCAL

The user application is built using a collection of processes nested
at levels (referred to as "lexical 1levels") within the outermost
Microprocessor Pascal construct which is the "System". Lexical levels
indicate to the RTS the level at which a process in embedded in the
System. Figure 2-3 illustrates this process organization.

SYSTEM EXAMPLE; LEVELO ===
PROGRAM PROS!; =———mmmms | CYEL]
PROCESS PROC1; === LEVEL2 ===

BEGIN (PROCESS 8ODY) -
END;

BEGIN (PROGRAM B8ODY)
END:

PROGRAM PROS2: LEVEL 1 ﬁ
PROCESS PROC2; =—m—cmemmes | EVEL 2 =
PROCESS PROC2A; - LEVEL3

BEGIN (PROCESS BODY)
END:

BEGIN (PROCESS BODY)
END:

PROCESS PROC3; === LEVEL2

BEGIN (PROCESS BODY)
END:

BEGIN (PROGRAM 80ODY)
END;

BEGIN (SYSTEM BODY)
ENO:

FIGURE 2-3. NESTING OF SYSTEM, PROGRAM, AND PROCESS DECLARATIONS.

As illustrated in Figure 2-3, the System is found at lexical level 0.

Programs (special cases of processes) started (spawned) by the System

reside at lexical 1level 1. BAny processes spawned by programs at
lexical level 1 reside at lexical 1level 2, etc. A Program always
resides at lexical level 1l; its parent is always the System. Processes
are spawned by "Programs" and by other processes and thus processes
reside at lexical level 2 or lower. (A process that spawns any other
~ process is referred to as that process” "lexical parent" or
"ancestor". Conversly, a process spawned by another process is
referred to as that process” "child".) Processes are made up of
standard Pascal procedures and functions.

MPP System architectural terminology is explained in paragraphs 2.4.1
to 2.4.3.2. Refer to Section 8 for a description of how to declare and
implement each construct, using the Microprocessor Pascal System
language. ’

2.4.1 SYSTEM

The SYSTEM is the outermost 1level of declarations and executable
statements in a Microprocessor Pascal System; all other modules are
contained within it (i.e., programs are nested within the SYSTEM, and
processes are nested within programs or within other processes). As
previously mentioned, Figure 2-3 illustrates this concept of nesting.

A SYSTEM is the process in which execution begins. The SYSTEM

initializes global parameters and starts the programs which it -

contains. A SYSTEM must not have any variables with the possible
exception of variables in COMMONs. (See paragraph 8.5.3.4)

2.4.2 PROGRAM

A program 1is a process that 1is self-contained with respect to
accessing data.via scope of variables or It corresponds to the PROGRAM
construct of the Pascal language and has no external data available to
it except through COMMONs.

Using the Microprocessor Pascal System, multitasking is possible.
Because of this feature more than one Program may be declared within
the same SYSTEM. Processes and routines (procedures and functions) may
be declared in a PROGRAM within the SYSTEM. In addition, the
Microprocessor Pascal System also supports sequential Pascal which
allows only single program environments.

2-6

2.4.3 PROCESS

A process is a specific entity that "owns" a set of resources and
performs one or a series of computations.

A process may only be declared within a program, or within another
process; within a process, procedures and functions may be declared
along with other processes. A process may have value parameters
associated with it, and may also have access to all variables which
are declared global to it.

2.4.3.1 Procedure

A procedure 1is a statement or group of statements linked to a name.
For example: A program consists of a main program labeled:
PROGRAM_MAIN, and x number of subroutines (processes). Assume that
PROGRAM MAIN must search -a 1list of values for the value 0. To
accomplishg this, the program would contain the following process:

ZERO_SEARCH
REPEAT
READ (x)
UNTIL x = 0
END

One need only to include a call to ZERO_SEARCH in PROGRAM MAIN to
accomplish the task.

2.4.3.2 Function

A function also links a name to a statement or group of statements;
however, a function has a

value, while a procedure has an effect. A function is especially
useful when a particular calculation is performed repeatedly using
different data. For example:

PROGRAM_ MAIN;

g
=
>
<
]
s
+
b

n
a
=
&
[}
>
+
w

2=-7

i b 2 Bt D L Z SIS . PR e el e el e e e e e

BECOMES :

PROGRAM_MAIN;

. .

.]

FUNCTION SUM(I,J:INTEGER) : INTEGER;

BEGIN
SUM: =1 + J
END
BEGIN
SUMXY: = SUM(X,Y):
SUMAB: = SUM(A,B);
END;

2.5 LANGUAGE EXTENSIONS TO SUPPORT PROCESSES

The Pascal language has been extended to form the Microprocessor
Pascal System 1language by adding constructs to declare and
concurrently start processes, each of which is a site of execution.
The extensions in the Microprocessor Pascal System language have been
designed to aid the user in the following areas:

- Process declaration 1is distinct from the declaration of a
procedure or function

- Process declarations may be nested, and the Pascal scope rules
of global variables are enforced as usual

- Process parameters may be declared, and the START statement
allows the passing of process parameters with full type
checking by the Microprocessor Pascal System compiler.

- Variables within scope of a process are guaranteed to exist

even if processes which are 1lexical ancestors have
terminated.

- Any process or program which 1is within scope can be
concurrently executed with the START statement. To allow all
program declarations (declared at level one) to be in scope,
the SYSTEM construct at level =zero contains all program
declarations. '

2-8

2.6 MEMORY

Each program or process has two concepts associated with it to manage
memory. One of these is called the Stack and the other is called the
Heap. The Stack is an area allocated to the declared variables of the
program or process and its procedures. The Heap holds dynamically
allocated variables, which are not declared but are created and
destroyed by the procedures NEW and DISPOSE.

NOTE

In order to use NEW and DISPOSE, a variable that
will point to the variable to be created in the
Heap must be declared in the Stack.

2.6.1 System Memory

System memory comprises all the data space which is possibly available
for use. It must, however, be memory which the Executive Run Time
Support system knows to use. System memory is a resource from which
the program data structures are constructed. .

2.6.2 Stack

A stack is implemented by wusing a block of storage called a stack
region, out of which stack frames are allocated upon process entry and
deallocated upon process exit. These stack frames are managed on a
last-in, first-out basis. Each frame or activation record corresponds
to a particular call of a program, process, procedure, or function,
and includes space for variables, temporaries, and an administration
area. See Figure 2-4.

o S ¥ SR — T W +

| ADMINISTRATION | VARIABLES | TEMPORARIES |
e o it +

Figure 2-4. TYPICAL STACK FRAME.

2.6.3 Heap

A heap is an area of memory which may be allocated in arbitrarily
sized packets which may then be returned and reused. These packets are
used to hold dynamically allocated variables. Heaps may be one of two
types: program or nested. Programs have program heaps which are
created from system memory. A nested heap is allocated out of another
heap, called the parent, so that a hierarchy of heaps may be created.
When a process is started, it is specified either to have its own heap
(nested) or to share that of its lexical parent. NEW and DISPOSE use

2-9

the heap associated with the process from which they are called.
Hence, each procedure, function, process, or program may use only one .

heap using NEW and DISPOSE.

A heap is implemented as a heap region with an administration packet
and allocated and unallocated packets. All dynamically allocated

variables are allocated from the heap and returned to the heap in
program—-dependent order (using NEW and DISPOSE) .

e b ———— Fomm tm—m————— Fomm————— tmm———- +
| ADMINISTRATION| PACKET | UNUSED | PACKET | PACKET | UNUSED]
o ————— fm——————— e ———— tom——————— tm——————— tmm————— +

FIGURE 2-5. HEAP STRUCTURE.

2.7 REENTRANCY

Reentrancy is a property of code (of which Microprocessor Pascal
System code is an example) which &llows multiple activated copies or
calls of a code module to be executing at the same time. These
activations execute independently of each other, causing modifications
of separate areas of data though physically using the same code. This
is made possible by initializing all variables by executable code, not
using self-modifying code, and keeping local variables and temporaries
in an unshared data space. As an example, this allows many users to
execute the same copy of a text editor, though working on different
text. The controller for a device can be implemented by a routine that
has as a parameter the identification of the specific instance of that
device that must be controlled. If the code is reentrant, then the
same handler can be invoked to control a number of devices.

2.8 RECURSION

Recursion is a property whereby an algorithm (solution) 1is expressed
in terms of itself. This occurs whenever a routine calls itself
directly (direct recursion), or when a calling routine calls another
routine which in turn calls the first calling routine (indirect
recursion). Implementing recursion requires that data references be
relative to unshared data spaces for each activation of a routine. The
reentrant nature of Pascal code easily supports the implementation of
recursion. A typical example is that of factorials of positive
integers: the factorial of N 1is N times the factorial of N-1 (the
factorial of zero is 1l). This is expressed symbolically as:

2-10

FACTORIAL(n)

FACTORIAL(0)

In Pascal,

this

:= n*FACTORIAL(n-1)

1

could be coded as:

function factorial (n: integer): integer;

begin

assert n >= 0;
if n = 0 then factorial := 1
else factorial := n * factorial(n - 1)

end;

2-11

w

// ™. N

SECTION 3

A SAMPLE MPP SYSTEM

3.1 OVERVIEW

Much attention has been given to methods for producing good quality
software. The solution to this problem remains a highly subjective
one, as any two software designers may use very different methods to
achieve the same result, namely, a reliable, maintainable software
product that performs the desired function. However, though ideas of
method may differ, one point is constant: the software design process
must become ever more disciplined.

Software systems must be simple, adaptable, and reliable if they are
to achieve a long lifetime of use. The purpose of this section is to
offer a sample of the disciplined software development cycle by
presenting a simple software system in a step-by-step example which
shows how the system can be implemented using the Microprocessor
Pascal System. :

- 3.2 PROBLEM DEFINITION AND STRUCTURING

An early design problem is the decision regarding how the system is to
be structured. Any system can usually be divided into fairly
independent functional units. Each functional unit should be defined
so that it can be understood in terms of the inputs it can receive and
the outputs it is expected to produce. In this way, the interfaces
between the units form a nearly complete definition of the system.
Each functional unit can then be designed and implemented one at a
time. Moreover, a single unit can be systematically tested in
isolation from all other units in order to verify that it performs the
required function. It is possible to construct even the most complex
systems in this incremental fashion.

In terms of a Microprocessor Pascal System implementation, a
functional unit can be considered to be a process. A Microprocessor
Pascal System can be divided into separate processes, each of which
accepts a set of inputs and produces a set of outputs. A single
process can be viewed in isolation from other processes. The behavior
of each process can be verified one at a time, before the process is
placed into the system in its normal context.

3.3 THE SAMPLE SYSTEM

" The example chosen for this section is a simple system containing a

producer process and a consumer process. The two processes communicate

with each other through a message buffer (Figure 3-1). A message in __
this system could be any kind of data structure. However, in the
example, a message is simply a single character value from A to Z. The
producing process may send a message to the message buffer without
waiting for the message to be copied by the consuming process. The
producing process is suspended only if the required buffer space is
not available, or if the buffer is not available for exclusive access.
The consuming process copies the character out of the message buffer.
This process is suspended only if the buffer space is empty or not
available for exclusive access.

Cmm——D>

FIGURE 3-1. DIAGRAM OF INPUT/OUTPUT.

In Figure 3-2 on the following pages, a message buffer is declared as

a COMMON variable which is a record. The "slots" field is the circular
buffer into which messages are deposited by the producer and fetched

by the consumer. The "next_in" field indicates where the next incoming -
message is to be deposited. The "next_out" field indicates from where p.
the next outgoing message 1is to be fetched. The "exclusive_access"
field is a semaphore used to guarantee that only one process has
access to the message buffer at a given instant (see Section 9 for
additional information on semaphores). The "not_empty" field is a
semaphore used to ensure that the buffer is not empty when removing
messages from it. The "not_full" field is a semaphore used to ensure
that there 1is an available space in the buffer when depositing a
message.

3-2

‘«

D¥ Microprocessor Pascal System Compiler 3.0 6,/22/81 17:54:32 PAGE 1

{$DEBUG,MAP}

SYSTEM TUTORIAL;

CONST
Number_of_slots = 10; { Maximum number of slots in buffer }
TYPE
Slot_index = l..Number_of_ slots;
Alphabetic = “A“..°27;
Buffer = RECORD
Next_in : Slot_index;
Next_out : Slot_index;
Not_empty ¢ SEMAPHORE;
Not_ full : SEMAPHORE;
Exclusive_access : SEMAPHORE;
Slots : ARRAY [Slot_index] OF Alphabetic;
END;
COMMON

Message_buffer : Buffer;

ACCESS
Message_buffer;

PROCEDURE INITSEMAPHORE (VAR Sema : SEMAPHORE;
: Count : INTEGER); EXTERNAL;
(PROCEDURE SIGNAL (Sema : SEMAPHORE) ; EXTERNAL;
PROCEDURE WAIT (Sema : SEMAPHORE) ; EXTERNAL;
PROCEDURE SWAP; EXTERNAL;

OOOMOMO&MOOOOOOOOOOOOOOOOOOOOOOOOOO0.0000

FIGURE 3-2. COMPILER LISTING OF PRODUCER/CONSUCER PROCESSES.
(1 of 5)

3-3 -

DX Microprocessor Pascal System Compiler 3.0 6/22/81 17:54:32 PAGE 2

0 {spaGe} S
0 .
0 PROGRAM PRODUCER; { Produce messages }
0 .
0 VAR
0 Item : Alphabetic;
2 Line : PACKED ARRAY [l..16] OF CHAR;
18
18 ACCESS
18 Message_buffer;
18
BEGIN {# PRIORITY = 20; STACKSIZE = 100 }

et el et e el il Yy e '
NNNNOAOAOAUIE A WWNDNNNDDFRFOOWWOOLIULOIUTE WN N

Initialize item so that first message w111 be “aA” }

Item :=

lz’.

In1t1allze message to inform user of "PRODUCTION" }

Line :=
WITH M
WHILE
DO

END;

“Item produced: “;

= Message buffer DO
TRUE T.e. do forever }
BEGIN

Set item to be “PRODUCED” }

IF Item = “Z° THEN Item := “A”

ELSE Item := SUCC (Item);
{ wait on an empty buffer slot }

WAIT (M.Not_full);

{ wait on eXclusive access to the message buffer }

WAIT (M.Exclusive_access);

Move message to next available slot in buffer }

M.Slots [M.Next in] := Item;

Set pointer to next free slot }

M.Next_in := SUCC (M.Next_in MOD Number_of slots);
MOD function produces a value 0..(Number “of slots-1),
Ie. 0..9. If the slot Just used was 10 then MOD
will give 0, and SUCC(0) is 1, which is what we want }
Relinquish exclusive access of message buffer }

SIGNAL (M.Exclusive_access); '

{ signal that another message was “PRODUCED” }

SIGNAL (M.Not_empty);

{ Set output message to indicate what was “PRODUCED” }

Line([l6] := Item;

{ Output the message to the user }

MESSAGE (Line);

{ Give other processes at this priority a
chance to execute

SWAP;

NG

{ End of PRODUCER program }

END;

FIGURE 3-2. COMPILER LISTING OF PRODUCER/CONSUMER PROCESSES.

(2 of 5)

DX Microprocessor Pascal System Compiler 3.0 6/22/81 17:54:32 PAGE 3

17 {$PAGE} o |
17
PROGRAM CONSUMER; { consume messages }
VAR

- = wwww
OCOVVWHVOPONINANNVINBBRBWNRERRHREREREODOONODO O

el el el e
WM N

o e e
wWwwww

Item : Alphabetic;
Line : PACKED ARRAY [l1..36] OF CHAR;

ACCESS
Message_buffer;

100 }

BEGIN {# PRIORITY = 20; STACKSIZE

{ Initialize message to inform user of "CONSUMPTION".
NOTE: This message has 20 leading blanks to make it print out
in a different column to the “item produced” messages.

Line := ~ Item consumed: “;
WITH M = Message_buffer DO
WHILE TRUE i.e. do forever }
DO BEGIN

{ wait on an full buffer slot }
WAIT (M.Not empty):;
{ wait on exclusive access to the message buffer }
WAIT (M.Exclusive_access);
Get message from slot in buffer }
Item := M.Slots [M.Next_out];
{ set pointer to next free slot !}
M.Next_out := SUCC (M.Next out MOD Number_of_ slots);
{ MOD function produces a Value 0..(Number of slots-1),
Ie. 0..9. If the slot just used was 10 then MOD
will give 0, and SUCC(0) is 1, which is what we want }
Relinquish exclusive access of message buffer
SIGNAL (M.Exclusive_access);
Signal that another message was “CONSUMED” }
SIGNAL (M.Not full); A
[set output message to indicate what was °“CONSUMED” }
Line[36] := Item;
{ output the message to the user }
MESSAGE (Line);
{ Give other processes at this priority a
chance to execute
SWAP;

END;

{ End of CONSUMER program }
END;

FIGURE 3-2. COMPILER LISTING OF PRODUCER/CONSUMER PROCESSES.
{3 of 5)

3-5

DX ‘Microprocessor Pascal System Compiler 3.0 6/22/81 17:54:32 PAGE ¢ ~

¥ .
.

13 {space}
13
13

- =

BEGIN {# STACKSIZE = 300; HEAPSIZE = 500 }
Code for SYSTEM Tutorial }

{ Initialize message buffer }
WITH M = Message_buffer
DO BEGIN
Initialize first in and first out to the same slot. So
long as they are_ the same and within range any initial
value will work
M.Next_in := 1;
M.Next_out := 1;
Initialize the exclusive access semaphore for only
one access at a time
INITSEMAPHORE (M.Exclusive_access, 1);
Initialize the not empty semaphore for no messages.
currently in buffer
INITSEMAPHORE (M.Not_empty, 0);
Initialize the not full semaphore for all messages
‘currently empty
INITSEMAPHORE (M.Not_full, Number_of_slots);
END;

{ In1t1al1zat10n complete. Start the producer and consumer }
START Producer;
START Consumer;

VWODONNNNNOAOAVTNUTE B BWNDON DN -

END.

L . i

SYSTEM TUTORIAL;
STACK SIZE = 0000

COMMON TYPE - SIZE

MESSAGE_ RECORD 30

FIELD DISP TYPE SIZE

NEXT IN 0000 SUBRANGE 2

NEXT_OUT 0002 SUBRANGE 2

NOT _EMPT 0004 SEMAPHORE 2

NOT_FULL 0006 SEMAPHORE 2

EXCLUSIV 0008 SEMAPHORE 2 '
SLOTS 000A ARRAY 20

FIGURE 3-2. COMPILER LISTING'OF PRODUCER/CONSUMER.PROCESSES.
' (4 of 5)

i

~_PROCEDURE INITSEMA (VAR SEMA :SEMAPHORE; COUNT : INTEGER) ;

~ROCEDURE SIGNAL (SEMA ¢:SEMAPHORE) ; EXTERNAL;
PROCEDURE WAIT (SEMA :SEMAPHORE) ; EXTERNAL;
PROCEDURE SWAP ; EXTERNAL;

PROGRAM PRODUCER;
STACK SIZE = 0012

VARIABLE DISP TYPE SIZE
ITEM 0000 SUBRANGE 2
LINE 0002 STRING 16

PROGRAM CONSUMER;
STACK SIZE = 0026

VARIABLE DISP TYPE SIZE
ITEM 0000 SUBRANGE 2
LINE 0002 ‘ STRING 36

FIGURE 3-2. COMPILER LISTING OF PRODUCER/CONSUMER PROCESSES.

(5 of 5)

/

K~3.4 SAMPLE DEBUG SESSION

The text on the following page is a sample debugging session for the

producer /consumer example; an explanation follows.

EXTERNAL;

[T S UU-S- 1 JUS-NUp NP SRS SSEPLESPE A PR RS e e S S

HOST DEBUGGER 6/22/81 17:55:19

Enter system heap size in (K)bytes: 5

Do you wish to debug the most recently compiled system?

Please answer YES or NO: YES

System heap size = 5 (K)bytes

Most recently compiled system will be loaded.

<>DEBUG (PRODUCER)
<>DEBUG (CONSUMER)

<>GO
run~-time support now initialized

<>GO
*** pProcess Created *** PRODUC(2)

<>GO :
*** Process Created *** CONSUM(3)

<>SDP (PRODUCER)
<>AB (PRODUCER, 12)
<>SDP (CONSUMER)
<>AB (CONSUMER; 8)

<>SC (MESSAGE)
common MESSAG

E5C0 (0000) 0001 0001 FOAO FO096 FOAA 0000 0000 0000
E5D0 (0010) 0000 0000 0000 0000 0000 0000 0000

<>GO
*** Breakpoint ***

»<>SC(MESSAGE)
common MESSAG

PRODUC (2) . PRODUC

; These lines appear in
the "LOG" file only.

(o--o.o-.--ooooo-)

('Ocoouooono.oo)

Statement 12

E5CO (0000) 0002 0001 FOAO F096 FOAA 0041 0000 0000 (..cceeceesecAonss)

E5D0 (0010) 0000 0000 0000 0000 0000 0000 0000

<>GO
Item produced: A

*** Breakpoint *** CONSUM(3) .CONSUM

<>SC (MESSAGE)
common MESSAG

(ceeeeenceceaee)

Statement 8

E5CO (0000) 0002 0002 FOAO FO096 FOAA 0041 0000 0000 (..ceoeeecocBuoas)

E5D0 (0010) 0000 0000 0000 0000 0000 0000 0000

<>GO
Item consumed: A

3-8

(eeeeeecccccaee)

*** Breakpoint *** PRODUC(2) .PRODUC Statement 12

¢>SC (MESSAGE)
common MESSAG
E5C0 (0000) 0003 0002 FOAO F096 FOAA 0041 0042 0000 (eeeececeeeeseAB..)

E5D0 (0010) 0000 0000 0000 0000 0000 0000 0000 (eeeesceccacecce)
<>GO
Item produced: B ‘
*** Breakpoint *** CONSUM(3) .CONSUM Statement 8
<>SC (MESSAGE)

common MESSAG
ESCO (0000) 0003 0003 FOAO F096 FOAA 0041 0042 0000 (eeeceecscessA.B..)

E5D0 (0010) 0000 0000 0000 0000 0000 0000 0OOOO P |
<>GO
Item consumed: B
*** Breakpoint *** PRODUC (2) . PRODUC Statement 12
<>HP (CONSUMER)
<>DAB (PRODUCER)
<>GO

Item produced:

_ Item produced:
(" ‘tem produced:
~ ftem produced:
Item produced:
Item produced:
Item produced:
Item produced:
Item produced:
Item produced:
Idle Instruction

CRGHINDO™ME OO

<>DAP -
Status Summary of All Existing Processes
Site of Enabled Stmt
Process Name Execution Status Pri Traces Bkpts
0 IDLESP IDLESP 0 Active 32767 no
2 PRODUC runtime code Wait Sema 20 no
3 CONSUM runtime code >Hold 20 yes

<>SC (MESSAGE)

common MESSAG
ES5CO0 (0000) 0003 0003 FOAO F096 FOAA 004B 004C 0043 (eceeeeeeeeessK.L.C)
E5D0 (0010) 0044 0045 0046 0047 0048 0049 0042 . («D.E.F.G.H.I.J)

("~ ">HP (PRODUCER)

—?

<>RP (CONSUMER)

<>DAP
Status Summary of All Existing Processes
Site of Enabled Stmt
Process Name Execution Status Pri Traces Bkpts
0 IDLESP IDLESP 0 Ready 32767 no
2 PRODUC runtime code Wait Sema (h) 20 no
3 CONSUM runtime code >Active 20 yes
<>GO
*** Breakpoint *** CONSUM(3) .CONSUM Statement 8
<>SC (MESSAGE) |
common MESSAG
ES5CO0 (0000) 0003 0004 F0AO F096 FOAA 004B 004C 0043 (ccceeeeeceesK.L.C)
E5D0 (0010) 0044 0045 0046 0047 0048 0049 004a (.D.E.F.G.H.I.J)
<>GO
Item consumed: C
*** Breakpoint *** CONSUM(3) .CONSUM Statement 8
<>SC (MESSAGE)
common MESSAG o _
E5C0 (0000) 0003 0005 FOAO FO096 FOAA 004B 004C 0043 (eeeceeeseseK.L.C)
ES5DO0 (0010) 0044 0045 0046 0047 0048 0049 004n (.D.E.F.G.H.I.J)‘.J)
<>DAB (CONSUMER)
<>GO :
Item consumed: D
Item consumed: E
Item consumed: F
Item consumed: G ’
Item consumed: H
Item consumed: I
Item consumed: J
Item consumed: K
Item consumed: L
Idle Instruction
<>DAP
Status Summary of All Existing Processes
Site of Enabled Stmt
Process Name Execution Status Pri Traces Bkpts
0 IDLESP IDLESP 0 Active 32767 no
2 PRODUC . runtime code Hold 20 no
3 CONsuM runtime code >Wait Sema 20 no _
<>SC (MESSAGE) | 7

o

common MESSAG
" ES5CO0 (0000) 0003 0004 FOAO F096 FOAA 004B 004C 0043
E5D0 (0010) 0044 0045 0046 0047 0048 0049 004A

<>RP (PRODUCER)

<>GO
Item

Item
Item
Item
Item
Item
Item
Item
Item
Item
(\ Item
;Item
Item
Item
Item
Item
‘Item
Item
Item
Item
Item
4Item
- Item

&¥item

!

produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:
produced:

produced:

N K X ¥ < & 13 ®n ™ O ™M O Z o=

e

g +H o @

m o OO W »

Item
Item
Item

Item

Ttem

Item
Item
Item
Item
Item
Item
Item
Item
Item
Item
Item
Item
Item
Item
Item
Item
Item

Item

consumed:

consumed:
consumed:
consumed:
consumed:
consumed:
consumed:
consumed:

consumed:

consumed:

consumed:
consumed:
consumed:
consumed:
consumed:
consumed:
consumed:
consumed:
consumed :
consumed:

consumed:

consumed

-consumed:

l<><2<!c'.‘.l-§tn‘wlo’ﬂ023

N

H O @@ =29 M O O W »

e e

Item produced: L

*** Anonymous

<>QUIT

Execution Terminated
Memory Used (bytes)

Item Consumed: J

Item consumed: L

NOTE. At this point the CMD key was struck
causing an anonymous breakpoint to occur.
The program would have executed forever if
we had not done this.

Bkpt *#**

4046 Current = 2148

Maximum =

3-12

o e s

In the sample debugging session, the message buffer is displayed at
various points using a "Show Common"™ (SC) command. Notice that a
length of 30 (>1lE) bytes starting at displacement 0 is specified each
time the common is displayed. From the compiler map, it can be seen
that the last 20 (>14) bytes of the Common comprise the message buffer
slots. The first four bytes of the Common form "next_in" and the
"next_out" fields. The semaphore values are not important to
understanding this example.

Once the producer and consumer processes have been created,
breakpoints are set just beyond the point where a message is produced
or consumed. Since the producer and the consumer both perform a
"swap", they manage to keep up with one another, i.e., an item is
generally consumed as soon as it is produced. To make the example more
interesting, the consumer is held using the "Hold Process" (HP)
command. The consumer becomes ineligible for execution until an
explicit "Release Process" (RP) command is given. This causes the
producer to completely f£fill the buffer until no more slots are
available. When this happens, the producer is suspended on the
"not_full" semaphore. At this point, the producer is held (using an HP
command) and the consumer is released (using an RP command). This
causes the consumer to consume all messages in the buffer. When all
messages are consumed, the consumer is suspended on the "not_empty"
semaphore. The example debugging session would continue forever if
both processes were allowed to continue, so the The session was
terminated with a QUIT command.

- Notice that a dangerous problem can occur if the wait
(exclusive_access) precedes wait (not_empty) in the consumer process.
Suppose the consumer process 1is started and becomes suspended on
"not_empty" because no messages have yet been deposited into the
buffer. A producer process then cannot get exclusive access to the
buffer to deposit a message. The consumer will be waiting forever for
an item to appear. In fact, all processes sharing the message buffer
become suspended forever. Semaphores are low-level synchronization
tools that must be used with great care. Users are therefore
encouraged to use the mechanism of interprocess files for interprocess
communication whenever possible, since this is a much safer,
higher-level interface mechanism.

puyS,

RN

SECTION 4
THE MPP SCURCE EDITOR

4.1 OVERVIEW

The Source Editor allows the user to create new source files and to
modify existing source files which may be input to the Microprocessor
Pascal Compiler. The Source Editor can be invoked and operated from a
Texas Instruments 911, 913, or TMAM 9000 Vvideo Display Terminal (VDT).
Information on operating these terminals can be found in Volume I of
the Model 990 Computer DX10 Operating System Reference Manual (part
number 946250-9701) for the 911 and 913 VDTs, and in the AMPLUS
Sofgware System User”s Manual (part number 1603142-9701) -for the TMAM
9000 vDT.

In this section, only the 911 terminal commands and responses will be
addressed, although the function response to the correct command input
on the 913 and the TMAM 9000 will be the same. See Table 4-2 for
equivalent command inputs on these two VDT’s.

4.1.1 The Video Display

Editing occurs on a page basis; a page is 23 lines on the 91l1. Any
line displayed on the screen may be edited by positioning the cursor
at any character on the 1line to be edited. Lines may be inserted
between any two lines, and may be inserted or deleted in any order. In
addition, characters within a 1line may be inserted, deleted, or
modified. Positioning the file for display is accomplished by the use
of the Roll Up, Roll Down, Cursor Up, and Cursor Down functions as
well as by the Relative Positioning, Top, Bottom, and Find commands.

4.1.2 Microprocessor Pascal Source File Definition

A Microprocessor Pascal source file is a file that is determined to be
Syntactically complete by the CHECK command. A Microprocessor Pascal
source file may be:

o A module header with any portion of its declaration section
and its associated body,

o The declaration section of a module with one or more of the
declarations in the order Const, Type, Var, Common, . Access,
and Submodules.

4-1

4.1.3 Command Summary

Table 4-1 is a summary of the editor commands and functions as input
from a 911 VDT. Table 4-2 is a summary of editor commands and
functions as input from 913 and TMAm 9000 VDTs. A detailed description
of each command/function is given in Section 4.3. The commands and

functions of the Source Editor are divided into five separate classes
for your convenience.

4-2

COMMAND/FUNCTION

Setup and Termination

Help .
Edit/Compose Toggle
Syntax Check

Quit

Abort

Save

Input

Cursor Positioning

Roll Up

Roll Down
New Line -
Tab

Back Tab

Set Tab
Cursor Up
Cursor Down .
Cursor Right
Cursor Left

Home (Return to beg. of line)

Find

Relative Positioning
Top

Bottom

Program Modification

Insert Line

Duplicate Line

Delete Line

Skip

Insert Character

Delete Character

Clear Line N
Replace

Split Line

Insert

Block Commands

Start Block
End Block
Copy

Move

Delete

Put

Command

Show

4-3

TABLE 4-1. MPP SOURCE EDITOR COMMANDS AND FUNCTIONS: 911 VDT.

911 vDT

CMD/"HELP"
F7
CMD/"CHECK"
CMD/"QUIT"
CMD/"ABORT"
CMD/"SAVE"
CMD/" INPUT"

Fl

F2

RETURN Key .
SHIFT/TAB Key
FIELD Key

CMD/TAB <incr>

Up Arrow

Down Arrow

Right Arrow

Left Arrow

HOME Key
CMD/"FIND" <parm>
CMD/number
CMD/"TOP"
CMD/"BOTTOM"

Blank Gray Key

F4

ERASE INPUT
TAB/Skip Key

INS CHAR Key

DEL CHAR Key

ERASE FIELD Key
CMD/"REPLACE" <parm>
F8

CMD/" INSERT"

F5

F6
CMD/"COPY"
CMD/"MOVE"
CMD/"DELETE"
CMD/"PUT"

CMD/"SHOW

TABLE 4-2. MPP SOURCE EDITOR COMMANDS/FUNCTIONS: 913 & TMAM 9000 VDT

COMMAND/FUNCTION

Setup and Termination

‘Help

Edit/Compose Toggle
Syntax Check

Quit

Abort

Save

Input

Cursor Positioning
Roll Up

Roll Down

New Line

Tab

Back Tab

Set Tab

Cursor Up

Cursor Down

Cursor Right

Cursor Left

Home

Find

Relative Positioning
Top

Bottom

Program Modification

Insert Line
Duplicate Line
Delete Line

Skip

Insert Character
Delete Character
Clear Line
Replace

Split Line
Insert

Block Commands
Start Block
End Block

Copy

Move

Delete

Put

Show Command
Show

913 vDT

HELP/"HELP"
F7
HELP/"CHECK"
HELP/"QUIT"
HELP/"ABORT"
HELP/"SAVE"
HELP/"INPUT"

ROLL UP

ROLL DOWN

NEW LINE

TAB

BACK TAB
HELP/"TAB" <incr>
Up Arrow

Down Arrow

Right Arrow

Left Arrow

HOME

HELP/"FIND" parm>
HELP/number

" HELP/"TOP"

HELP/"BOTTOM"

INSERT LINE

F4

DELETE LINE

SKIP

INS CHAR

DEL CHAR

CLEAR
CMD/"REPLACE"<parm>
FO

HELP/" INSERT"

FS5

F6
HELP/"COPY"
HELP/"MOVE"
HELP/"DELETE"
HELP/"PUT"

HELP/"SHOW"

4-4

TMAM 9000 VDT

F9/"HELP"

F7

F9/"CHECK"

F9/"QUIT"
F9/"ABORT"
F9/"SAVE" ,
F9/"INPUT"

Fl

F2

RETURN

SHIFT TAB

BACK. TAB
F9/"TAB" <incr>
Up Arrow

Down Arrow
Right Arrow
Left Arrow

HOME

F9/"FIND" <parm>
F9/number

F9/" op"
F9/"BOTOM"

CONTROL O

F4

ERASE INPUT

TAB SKIP

INS CHAR

DEL CHAR

ERASE FIELD
F90/"REPLACE" <parm>
F8

F9/"INSERT"

F5

Fé
F9/"COPY"
F9/"MOVE"
F9/"DELETE"
F9/"PUT"

F9/"SHOW"

S

-

T

TABLE 4-2. MPP SOURCE EDITOR COMMANDS/FUNCTIONS: 913 & TMAM 9000 VDT
(Continued)

NOTE

Lower-case letters and some special symbols (braces) cannot
be represented on the .TI 913 VDT. In a file
created on a 911 (or TMAM 9000) but displayed on a
913, 1lower-case letters appear as upper-case and
unrepresentable symbols are replaced by other
(displayable) symbols. Editing this same file on a
913 results in the altered positions of text
containing only those characters that are
supp?rted on the 913 (upper-case letters, symbols,
etc.

4.2 EXAMPLE EDIT SESSIONS

The following edit sessions provide examples depicting the creation of
a new source file, modification of an existing source file, and saving
the results of an edit session.

The Source Editor permits the user to enter and modify data only in
the first 72 columns of a line. This protects the user from entering
data intended to be part of the source program in columns 73 through
80. Furthermore, if a file that has data in columns 73 through 80 in
edited using this editor, the information in those columns will be
lost in all lines that are modified during an edit session.

Unless specifically requested,the compiler will ignore everything in
columns 73 through 80.

4.2.1 Creating a File

The following procedure applies to the creation of a new file using
the Source Editor. '

To invoke the Source Editor, the user enters the command EDIT after
the Microprocessor Pascal System has been loaded (see Host Systems
user“s manual for information on loading Microprocessor Pascal under
the DX/10, TX/4 and AMPLUS operating systems respectively.)

In response to the EDIT command, the following prompt is displayed:

INPUT FILE ACCESS NAME:

If a previously edited file name is displayed, clear the field with
the TAB/SKIP key and press RETURN. This indicates that a new source
file is to be created. The screen is cleared, The cusor and *EOF is
displayed in the upper left-hand corner of the screen, and COMPOSE
MODE 1is displayed in the lower right-hand corner of the screen, The
cursor position is at line one, column one of the screen. The display
indicates that the only record in the file is the end-of-file record
and that the editor is in COMPOSE mode.

To begin entering a program, press the RETURN key. Note that line one
is now a blank line, the end-of-file marker is on line two, and the
cursor is positioned at line one, column one. You may now begin
entering a source file by simply typing the data and pressing the
RETURN key whenever you wish to enter another 1line.

4.2.2 Editing An Existing File

Invoke the Source Editor by entering the EDIT command and the name of
file to be edited after the INPUT FILE ACCESS NAME: prompt. The file
will be displayed, beginning at the top of the file.

Typographical errors corrections, additions and deletions may be made
by using the edit key and commands as described in section 4.3.

Following 1is a sample of how some of the editing techniques are used.
For this example session, the file in Figure 4-1 will be used as the
input file.

Upon invocation, the following is displayed:

LINE (Cursor Position)

1 (1

2 PROGRAM EXAMPLE;

3 VAR g (4) Add SECOND
4 FIRST: INTEGER;

5 RESET (INPUT) ;

6 (1) Insert WHILE NOT EOF DO

7 BEGIN READLN (FIRST, SECOND) ;

8 IF FIRST = SECOND

9 THEN WRITELN(“EQUAL”,FIRST)[;]«—(2) Delete
10 ELSE WRITELN(FIRST, “NOT EQUAL”,SECOND)
11 END;

12 (3) Delete —————p END.

13 *EOF ' '

FIGURE 4-1. INPUT FILE EXAMPLE CONTAINING ERRORS.

)

The screen is cleared and the file is displayed, beginning in line one
of the screen, EDIT MODE is displayed in the lower right hand corner,
and *EOF is displayed on line 13, after the last line of the source
file. The cursor is in column one, line one.

4.2.2.1 Correcting The Errors

Refer to Figure 4-1.

(1) Upon examination of the program to be edited, notice that in the
WHILE statement, the keyword BEGIN, which should follow on the next
line, has been omitted. In order to insert BEGIN, press the down-arrow
key seven times, then press the blank grey (INSERT LINE) key, which
inserts a blank line between lines 6 and 7. The cursor is in column
one of the blank 1line. The user then types BEGIN in the proper
character spaces.

At this point the user may think that the program is syntactically
complete. To verify this, press the CMD key, enter the word: CHECK,
and press the RETURN key. ' :

(2) The message
"SEMICOLON MAY NOT PRECEDE AN ELSE"

is displayed on the bottom line of the screen and the cursor is
positioned at the keyword "ELSE" (line 7). Press the up-arrow key, the
HOME key, then the FIELD key to position the cursor on the semicolon
following the THEN clause. (The same result may be achieved by
pressing the up-arrow key, then using the right-arrow key to position
the cursor.) Remove this semicolon, by pressing the space bar, causing
the semicolon to be replaced by a blank.

Again, verify that the program is syntactically correct by pressing
the CMD key, and the RETURN key in response to the CHECK which is
already present at the bottom of the screen (from the original entry).

(3) The error message:
"MODULE EXPECTED"

is displayed on the bottom line of the screen and the cursor is
positioned at the keyword "END" immediately preceeding the *EOF. Press
the ERASE INPUT key to delete the line containing the extra "END;"
statement, then again check for syntactical correctness by pressing
the CMD key and the RETURN key in response to the CHECK already

present at the bottom of the screen.
The message:

"NO SYNTAX ERRORS FOUND"

is displayed on the bottom line of the screen. The user then saves the

4-7

file as described in Paragraph 4.2.3.

(4) Notice that the syntax checker did not detect that the variable
"SECOND"™ was not declared. This' 1is an example of the kind of a
semantic error which is not detected by the syntax checker; they are
the responsibility of the programmer, but will be identified by the
compiler if overlooked.

4.2.3 Saving The File

After a file has been created or an existing file has been edited, the
file may be saved by one of two methods:

4.2.3.1 To Quit Editing Operations

If the user does not want to edit another source file, Press the CMD
key and type in the word: QUIT. The user will then be prompted as
follows:

OUTPUT FILE ACCESS NAME:
Respond by typing the pathname of the file to which the edited source
file 1is to be written and press the RETURN key. The user will then be

prompted as follows:

REPLACE?:

Respond by typing in the letter "Y" to specify that the data is to be

placed in the file specified by the pathname entered as the output

file. The editor is then exited.

If the user responds with an “N”“ and a carriage return, he specifies
that the existing file entered in response to the OUTPUT FILE ACCESS
NAME prompt should not be replaced or have the editing changes
incgrporated. In order to finish the QUIT procedure, the user must
either:

(1) Enter a new output file access name where the file and the
editing will be saved. (The original input file will remain
intact, unedited), or,

(2) End the proceaure with an ABORT command. In this case, the
file will remain under the original input file access name,
without the editing just done.

If either an invalid pathname is given or an invalid replacement
option 1is specified, a file I/O error will occur and an appropriate
. error message will be generated. If no pathname is specified for the
output file and the RETURN key is pressed, no action is performed and
the editor prompts for another command.

3

4.2.3.2 To Coninue Editing Operations

If the user wants to edit another file after saving the file Jjust
edited, press the CMD key and type in the word: SAVE. The user will
then be prompted as follows:

OUTPUT FILE ACCESS NAME:

The user should respond by typing the pathname of the file to which
the edited source file is to be written and press the RETURN key. The
user will then be prompted as follows:

REPLACE?:

If the user responds with an “N° and a carriage return, he specifies
that the existing file entered in response to the OUTPUT FILE ACCESS
NAME prompt should not be replaced or have the editing changes
incgrporated. In order to finish the QUIT procedure, the user must
either:

(1) Enter a new input file access name where the file and the
editing will be saved. (The original input file will remain
intact, unedited), or,

(2) End the procedure with an ABORT command. In this case, the
file will remain under the original input file access name,
without the editing just done.

If the user responds with a “Y”®, the updated file is then saved in the
file specified by the pathname entered in the OUTPUT FILE ACCESS NAME
prompt, and the wuser is then prompted for the pathname of the next
file to be edited as follows:

INPUT FILE ACCESS NAME: (file name of the previously edited file)

In response, the user may:

(1) Press the RETURN to re-edit the file just
just saved,

(2) Press TAB/SKIP to clear the file pathname on the screen,
and press RETURN to create a new file,

(3) Enter the pathname of another existing file to be edited.

If either an invalid pathname is given or an invalid replacement option
be specified,

a file I/0 error

will occur and an appropriate error message will be generated.

If no pathname is specified for the output file

when the RETURN key is pressed,

no action is performed and the editor prompts for another command.

4.3 EDITOR COMMANDS AND FUNCTIONS ' ‘i>

The following sections describe the commands and functions of the

Source

Editor. Commands may be entered in either upper-case or

lower-case letters. They are divided into these groups:

1)
2)
3)
4)
6)

4.3.1

Setup and Termination
Cursor Positioning
Program Modification
Block Commands

Show Command

Parameters

There are four basic kinds of parameters recognized by the editor.
These are:

(o]

Integer Constant - An integer constant parameter is a
non-negative number less than or equal to 32767

Identifier - An identifier parameter is either a
Microprocessor Pascal identifier or Microprocessor Pascal System -’
reserved word

Pathname - A pathname parameter is a valid DX10, TX4, or AMPLUS
pathname, depending on which operating system is being used.

String - A string parameter is a character string enclosed in
double quotes (3 double quote is represented by two
double quotes inside a string)-

4-10

("XXXXXX","XxXx", "XXxxxxxXx","'xx",etc)

)

STRING PARAMETERS

FIGURE 4-2. A STRING.

>
4.3.2 Optional Parameters

If a parameter is optional, it can ‘simply be omitted, allowing the
default value to be assumed.

Extra commas for optional parameters at the end of a command need not
appear. For example, the command: FIND(Identifier), is equivalent to
FIND(Identifier,l1).

4.3.3 Current Line Marker

The line on which the cursor is currently positioned is often
significant while editing a file. The editor automatically marks the
current line location when the CMD key 1is pressed during an edit
session by placing a "+=====- +" in columns 73 through 80.

If the current 1line already contains a start or end block marker in
columns 73 through 80 a "+-===-- >" or a "<Ke==———- +" will result in
columns 73 through 80 when the CMD (HELP) key is pressed. If both a
start and end block already appear on the current cursor line, no
change will occur in columns 73 - 80.

4.3.4 CMD Key

The CMD key is used for several purposes within the editor. Generally,
it will cause the editor to prompt the user for a command. It can also
be used after an error has occurred to erase the error message
generated from the screen and to prompt the user for the next command.

If the user is prompted for information after having entered a
command, pressing the CMD key will cause the editor to return to
command mode. However, if the user presses the CMD key in response to
the prompt INPUT FILE ACCESS NAME, the editor will abort.

4-11

4.3.5 Setup and Termination Commands

The functions and commands described in this section are used to set
up the input file for the editor, specify the output pathname for the
file after it has been modified, and set the mode of editing (i.e.,
compose or edit).

4.3.5.1 Edit/compose Mode: The editor operates in either compose
mode or edit mode. Compose mode 1is generally used to enter large
blocks of new program text. Edit mode is most useful when modifying
portions of existing program text.

The major difference between compose mode and edit mode is the
function of the RETURN key. When operating in edit mode, pressing
RETURN causes the cursor to move to the next line; in compose mode,
pressing RETURN causes a blank line to be inserted after the current
line and the cursor to be positioned on the new line on the first
non-blank character of the previous line (column 1, if the previous
line is blank).

When creating a new file the editor is invoked in compose mode. The
user may switch back and forth between edit and compose modes by
pressing F7, which acts as a toggle switch. The mode of the editor is
displayed in the lower right-hand corner of the screen.

4.3.5.2 HELP Command. Pressing CMD and typing "HELP" causes the
display of a list of available commands, along with short descriptions
of each. The HELP command also displays the tab increment amount.

4.3.5.3 CHECK (Syntax) Command. Pressing CMD and typing "CHECK"
instructs the editor to perform a syntax check of the module being
edited and allows the user to correct errors as they are discovered.
This feature has the advantage of helping the user detect common
syntax errors before a (possibly) time-consuming compile is attempted.
This command 1is typically used when the edit session is nearly
complete. If a syntax error is found, the editor positions the window
and cursor to the point of the error, allowing the user to correct it.

NOTE: syntax checking halts on finding the first syntax error. When

the error is corrected, the CHECK command should be issued again to
check for other errors. (For example, see 4. .1)

4.3.5.4 QUIT Command. The QUIT command is used to save the results
of the most recent edit session and exit the editor. This command is
entered by pressing CMD and typing in "QUIT". The following prompt is
then displayed:

OUTPUT FILE ACCESS NAME: Pathname
Respond by typing the pathname of the file to which the edited source
file is to be written and press the RETURN key. The user will then be
prompted as follows:

REPLACE?:

4-12

Respond by typing in the letter "Y" to specify that the data is to be
placed in the file specified by the pathname entered as the output
file. The editor is then exited.

If the user responds with an “N” and a carriage return, he specifies
that the existing file entered in response to the OUTPUT FILE ACCESS
NAME prompt should not be replaced or have the editing changes
incgrporated. In order to finish the QUIT procedure, the user must
either: .

(1) Enter a new output file access name where the file and the
editing will be saved. (The original input file will remain
intact, unedited), or,

(2) End the procedure with an ABORT command. In this case, the
file will remain under the original input file access name,
without the editing just done.

If either an invalid pathname is given or an invalid replacement
option be specified, a file I/O error will occur and an appropriate
error message will be generated. If no pathname is specified for the
output file when the RETURN key is pressed, no action is performed and
the editor prompts for another command.

4.3.5.5 ABORT Command. The ABORT command is used to exit the
editor without saving the results of the current edit session. This
command is entered by pressing the CMD key and typing the word
"ABORT". ‘

4.3.5.6 SAVE Command. The SAVE command is used to save the results
of the most recent edit session and begin the editing of a new file.
This command is entered by pressing the CMD key and typing "SAVE". The
following prompt is then displayed:

OUTPUT FILE ACCESS NAME:

The user should respond by typing the pathname of the file to which
the edited source file is to be written and press the RETURN key. The
user will then be prompted as follows:

REPLACE?:

If the user responds with an “N”° and a carriage return, he specifies
that the existing file entered in response to the OUTPUT FILE ACCESS
NAME prompt should not be replaced or have the editing changes
incorporated. In order to finish the QUIT procedure, the user must

either:

(1) Enter a new input file access name where the file and the
editing will be saved. (The original input file will remain
intact, unedited), or, ;

(2) End the procedure with an ABORT command. In this case, the

4-13

file will remain under the original input file access name,
without the editing just done. _

If the user responds with a “Y”, the updated file is then saved in the
file specified by the pathname entered in the OUTPUT FILE ACCESS NAME
prompt, and the wuser is then prompted for the pathname of the next
file to be edited as follows: -

INPUT FILE ACCESS NAME: (name of the previously edited file)
In response, the user may:

(1) Press the RETURN to re-edit the file just
just saved,

(2) Press TAB SKIP to clear the file pathname on the screen,
and press RETURN to create a new file,

(3) Enter the pathname of an existing file to be edited.

If either an invalid pathname is given or an invalid replacement
option be specified, a file I/O error will occur and an appropriate
error message will be generated. If no pathname is specified for the
output file when the RETURN key is pressed, -no action is performed and
the editor prompts for another command. If a legal pathnamed is
supplied and a valid replacement option is specified, the file will be
saved in its final, edited form and The following message will be
displayed:

SAVE COMMAND EXECUTING

The user is then prompted for the pathname of the next file to be
edited with the following prompt:

INPUT FILE ACCESS NAME: (name of file previously edited)

Thg response to the prompt is the pathname of the file which is to be
edited next. If no pathname is specified (by clearing the field with
the TAB/Skip key, then pressing the RETURN key, a new file will be
created.

4.3.5.7 INPUT Command. The INPUT command 1is used to stop the
editing of the current file without saving the results of the most
recent edit session and begin the editing of another file. This
command is entered by pressing CMD, typing "INPUT", and pressing the
RETURN key. the following prompt is displayed:

INPUT FILE ACCESS NAME: (name of file previously edited)

The response to the prompt is to type the pathname of the next file to

4-14

be edited. If no pathname is specified when the RETURN key is presssed
(by clearing the pathname field with the TAB/SKIP key), a new file is
created. The cursor is positioned at the first column of the first
line of the file.

The difference between the use of INPUT and ABORT (described in
4.3.5.5) 1is that INPUT prompts for an input file name after
terminating the editing of the current edit; ABORT exits the source
editor. .

4.3.6 Cursor Positioning

The functions and commands described in this section are used te
position the window and the location of the cursor within the window.

4.3.6.1 Roll-Up Function: The Roll-Up function is called by
pressing the Fl key. This function advances the file 23 lines from its
present location. The cursor remains positioned at the same character
of the new line as it was on the previous line. .

4.3.6.2 Roll-Down Function: The Roll-Down function is called by
pressing the F2 key. This function reverses the file 23 lines from its
present location. The cursor remains positioned at the same character
of the new line as it was on the previous line.

4.3.6.3 New Line Function: The New Line function 1is called by
pressing the RETURN key.

In edit mode, this function causes the cursor to move to the first
character of the first token on the next line.

In compose mode, a blank line is inserted after the current line and
the cursor is moved to the new (blank) line. The cursor is positioned
on a new line at the same indentation level as the first token on the
previous line. If the code to be entered should start at a different
nesting 1level, the TAB, Field (backtab), Space Bar, or right and left
arrow keys can be used to move the cursor to the proper place. ‘

4.3.6.4 Tab Function: The Tab function is called by simultaneously
pressing the SHIFT key and TAB/SKIP key. If the cursor is positioned
on a blank line, the cursor moves one indentation level to the right.
Otherwise, the cursor moves to-the start of the next token. If the
cursor is at the last token on a 1line, the cursor moves one
indentation 1level to the right. If the cursor is at column 72, the
cursor is positioned at the beginning of the line.

4.3.6.5 Back Tab Function: The Back Tab function is called by
pressing the FIELD key. If there are no characters to the left of the
cursor, the cursor moves left one indentation level. If the cursor is
positioned to the right of the space following the last token on a
line, the cursor moves to the space following the 1last token.
Otherwise, the cursor moves to the start of the previous token. If the
cursor is at the first token, the cursor moves to the left one

4-15

~indentation level. If the cursor is at the beginning of a 1line, the

cursor is positioned to the end of the line.

4.3.6.6 Set Tab Increment Command: The Set Tab Increment command is
used to set or change the increment amount used for tabs and back
tabs. The syntax of this command is:

TAB (Increment)

NOTE: The increment value must be a positive integer value 1less than
72. The default increment value used by the editor for tabs is two.

4.3.6.7 Cursor-Up Function (+): The Cursor-Up function is called
by pressing the grey up-arrow key. This function causes the cursor to
move to the previous 1line. The cursor remains at the same position
within the line. ’ .

4.3.6.8 Cursor-Down Function (+): The Cursor-Down function is
called by pressing the grey down-arrow key. This function causes the
cursor to be moved to the next line. The cursor remains at the same
position within the line.

4.3.6.9 Cursor-Right Function 9): The Cursor-Right function is
called by pressing the grey right-arrow key. This function causes the
cursor to be moved one position to the right. If the cursor is in
column 72 when the Cursor-Right function is called, the cursor remains
in its current position.

4.3.6.10 Cursor-Left Function (- : The Cursor-Left function is
called by pressing the grey left-arrow key. This function causes the
cursor to be moved one position to the 1left. If the cursor is in
column one when the Cursor-Left function is called, the cursor remains
in its current position.

4.3.6.11 Home Function: The Home function is called by pressing the

HOME key. This function causes the cursor to be moved to column one of
the current line.

4.3.6.12 FIND Command: The FIND command is used to position the
cursor to the next (or nth) occurrence of a specific identifier or
string following the current cursor position. The command is entered
by pressing the CMD key followed by typing a command with the syntax:

FIND (identifier or string, occurrence number)

If the occurrence number is not specified, it is assumed to be one
(i.e., the next occurrence). The search begins at the first character
following the cursor. If the specified number of occurrences is found,
the cursor is positioned so that it is on the first character of the
last occurrence. The line in which the identifier or string is found
occupies the middle row of the screen. If the specified number is not
found, the cursor position remains unchanged; and a message:

n OCCURRENCE(S) NOT FOUND

4-16

indicates that the identifier or string was not found the specified
number of times.

4.3.6.13 Relative Positioning: A file may be advanced or reversed by
an arbitrary number of lines relative to the current file position on
display. This is accomplished by first pressing the CMD key followed
by the number (integer) of 1lines to be skipped (either forward or
backward). If the jump is to go forward, the specified integer is
preceded by an optional + (plus sign); for a backward skip, the
integer must be preceded by a - (minus sign). If the specified jump is
outside the file boundaries, the skip will stop at the file“s
beginning or end, depending on the direction of the jump, i.e., the
cursor is positioned at column one at the top of the file, or, if the
line 1is the end-of-file, the cursor is displayed as the last line on
the screen. Otherwise, the cursor line is displayed as the middle 1line
of the screen.

4.3.6.14 TOP Command: The TOP command is used to position the cursor
to the first column of the first line in the file being edited. The
command is entered by pressing CMD, typing "TOP", and. pressing the
RETURN key.

4.3.6.15 BOTTOM Command: The BOTTOM command is used to position the
cursor to the end-of-file marker of the file being edited. The command
is entered by pressing CMD, typing "BOTTOM", and pressing the RETURN
key. The cursor is positioned at column one of the end-of-file marker.

4.3.7 Program Modification

The functions and commands described in this section are used to
modify source files. When a line is modified, any data which may be in
columns 73 through 80 are replaced by blanks to indicate to the user
that the 1line has been modified. This deletion of characters from
columns 73 through 80 does not effect the program being entered, since
only columns 1 through 72 are used by the compiler.

4.3.7.1 1Insert Line Function: The Insert Line function is called by
pressing the unlabeled gray (INSERT LINE) key. When this function is
called, a blank line is inserted immediately before the line on which
the cursor is presently located. The cursor is placed on the new line
and remains in the same column.

4.3.7.2 Duplicate Line Function: The Duplicate Line function is
called by pressing the F4 Kkey. This function causes a copy of the
characters from the cursor position to the end of the 1line on which
the cursor is currently positioned to a new line immediately following
the current 1line. The cursor is moved to the new line and remains in
the same column. ‘

4.3.7.3 Clear Line Function: The Clear Line function is called by
pressing the ERASE FIELD key. This function causes the line containing
"the cursor to be cleared and repositions the cursor at the beginning

4-17

of the 1line.

4.3.7.4 Delete Line Function: The Delete Line function is called by
pressing the ERASE INPUT key. This function causes the line on which
the cursor is positioned to be deleted. The cursor 1is positioned at
the first character of the first token on the line following the
deleted line. ‘

4.3.7.5 Skip Function: The Skip function is called by pressing the
TAB/SKIP Kkey. This function clears all of the characters on the
current line from the cursor position to the right margin. The cursor
position is not changed.

4.3.7.6 Insert Character Function: The Insert Character function is
called by pressing the INS CHAR key and typing the new character(s) to
be inserted into the file. Characters are never 1lost at the right
margin; therefore, if a non-blank character is present at the right
margin, no additional characters can be inserted on the line and the
beeper is sounded if this is attempted. In this case, the "split line"
command must be used for breaking up long lines. (See 4.3.7.9)

4.3.7.7 Delete Character Function: The Delete Character function
occurs each time the DEL CHAR key 1is depressed. This causes the
character in the current cursor position to be deleted. Characters to
the right of the cursor position are shifted one character position to
the left and a blank is inserted in column 72.

4.3.7.8 REPLACE Command: The REPLACE command searches for the next
"n" occurrences of an identifier (or string) and replaces each
occurence with the identifier (or string) specified. The syntax of
this command is:

REPLACE (<patternl>, <pattern2>, <number of occurences>)

where <patternl> is to be replaced by <pattern2> and both may be
identifiers or strings enclosed in double quotes.

If the command is executed the number of times specified by <repeat
count> without an error, the cursor is positioned at the first
character of the last occurrence of <pattern2>. If <patternl> 1is not
found the specified number of times, the cursor is returned to its
position prior to execution of the command; a message:

n OCCURRENCE(S) NOT FOUND

is displayed, indicating the number of occurrences of <patternl> that
were not replaced. If the replacing of an occurrence of <patternl> by

<pattern2> results in characters being lost (pushed off the end of a

‘line), the command is halted and the cursor is positioned at the

beginning of the occurance causing the halt.

4.3.7.9 gplit Line Function: The Split Line function is called by
pressing the F8 key. This function causes the current line to be split
into two 1lines such that the cursor position indicates the first

4-18

~

character position of the new line. The first character of the new
line is positioned at the same indentation level as the first token of
the line that was split. The cursor position is not changed.

4.3.7.10 INSERT Command: The INSERT command copies a sequential file
(other than the file being edited) to the position after the 1line at
which the cursor 1is positioned. The INSERT command is called by
pressing CMD, typing "INSERT", and pressing the RETURN key. The user
will be prompted for a file name:

INSERT FILE ACCESS NAME:

Enter the pathname of the file to be inserted and press the RETURN
key. The entire file specified will be copied into the file being
edited.

4.3.8 Block Commands

The functions and commands described in this section are used to
modify files by manipulating designated blocks of 1lines instead of
single characters or single lines.

4.3.8.1 Start and End Block Functions: These functions place markers
to bracket file sections to be manipulated by the COPY, MOVE, DELETE,
and PUT commands.

A start Dblock marker is set by pressing the F5 key. Result is a beep
and the placement o0f "<====w=- " in columns 73 through 80.

An end block marker is set by pressing the F6 key. Result is a beep
and the placement of "—-===—==- >" in columns 73 through 80.

If both the start and end block markers are set on the same line, (@f
you wish to move only one line of text, for example), "<====-=- >" is
placed in columns 73 through 80 of that line.

For both functions, the cursor position is used as the location of the
marker.

4.3.8.2 COPY Command: The COPY command causes a copy of the block
designated by the start and end block markers to be inserted between
the 1line on which cursor is positioned and the following line. When
this command is completed, the markers are not modified and the cursor
is placed in column 1 of the first line of the copied block. If the
end block marker precedes the start block marker or either marker does
not exist, a 'message is displayed and no action is taken. To resume
EDIT, the user must hit the CMD key and enter any command 1ncludlng
blank command.

4.3.8.3 MOVE Command: The MOVE command causes the block designated by
the start and end block markers to be moved to the line following the
line on which the cursor is positioned. The order of procedure is:

.complete the PUT procedure. If the file does not exist, the file will

(1) Position the cursor at the beginning of the first line of the
block to be moved. Press F5 (Start-block arrow set).

(2) Position the cursor at the beginning of the last line o
of the block to be moved. Press F6 (End-block arrow set).

(3) Position the cursor at the line preceeding the line where the
block is to be inserted.

(4) Press CMD key and enter: MOVE (Ret)

When this command is completed, the markers are removed from the
file and the cursor is placed in column 1 of the first line of the
moved block.

The designated block cannot be moved to a location that is contained
within itself. -

If the end block marker precedes the start block marker, or either
markers does not exist, a message is displayed and no action

is taken. To resume EDIT, the user must hit the CMD key and

enter any command including a blank command.

4.3.8.4 DELETE Command: The DELETE command causes the block
designated by the start and end block markers to be deleted. When this
command .is completed, the markers are removed from the file and the
cursor is placed in column 1 of the line following the deleted block.
If the end block marker precedes the start block marker, or either of
the markers does not exist, a message is displayed and no action is

taken. To resume EDIT, the user must hit the CMD key and enter any ~
command including a blank command.

4.3.8.5 PUT Command: The PUT command causes a copy of the block
designated by the start and end block markers to be copied to another
file specified. After the PUT command has been entered, the user will
be prompted for the pathname of the destination file.

OUTPUT FILE ACCESS NAME:

The user should respond by typing the pathname of the file to which
the block is to be written and press the RETURN key. (If no pathname
is specified and the RETURN key is pressed, no action is performed and
the editor prompts for another command.) The user will then be
prompted as follows:

REPLACE?:
If the user responds by typing in letter N to specify that an existing
file with the entered pathname should not be replaced, no action Iis
taken. The message:
FILE EXISTS AND NO REPLACEMENT IS SPECIFIED

is displayed. the RETURN or COMD key must be pressed and another
pathname or a Y response to the REPLACE? prompt entered in order to

N

4-20

~ be created and the data placed in it.

If the letter Y is entered, the requested replacement takes place.
NOTE: the o0ld data in the specified file will be lost. To save the
data in the specified output access file, use the INSERT command

instead of PUT. (See 4.3.7.10)

To resume the EDIT, enter any command including the blank command. If
a legal pathname is given and the valid replacement option is
specified, the designated block will be "put" into the file in its
current form. The following message will be displayed while the
command is completing its execution:

PUT COMMAND EXECUTING

Should either an invalid pathname or an invalid replace response be
incorrect, a file I/0 error will occur and an appropriate error
message will be displayed.

4.3.9 SHOW Command

The SHOW command causes the display of a file other than the one being
edited during the edit session. After the SHOW command is entered,
this prompt will be displayed asking for the pathname of the file to
be shown:

SHOW FILE ACCESS NAME:

-

Respond by entering the pathname of the file to be displayed. Paging
through the file may be accomplished by use of the Fl and F2 keys, or
by wusing the relative positioning function (see 4.3.6.13). Pressing
the CMD key terminates the show file and returns the file being edited
to the display.

4.4 ERROR MESSAGES

The error messages generated by the Command Processor and Syntax
Checker are described in the following paragraphs.

4.4.1 Command Syntax Errors

When a command or its parameter are improperly formed or recognized by
the Source Editor, one of the following error messages is returned:

BAD PARAMETER) |
An illegal parameter was found within a command. Parameters can
only be one of the following: integer constant, identifier,

string (delimited by double quotes), or pathname.

INCOMPLETE COMMAND SYNTAX]
: A command is improperly terminated. If a command has parameters,

4-21

the parameter list must be enclosed in parentheses.

INVALID COMMAND NAME
The command name is not valid. Use the HELP command to find the
proper command name.

EXTRANEOUS CHARACTERS
The command contains extra non-blank characters to the right of

an otherwise proper command structure.

TOO MANY PARAMETERS
The command contains too many parameters. Use the HELP command to
check the number and meaning of parameters for the command.

4.4.2 Command Processing Errors

The following error messages may be generated during execution of an
EDIT command:

n OCCURENCE (S) NOT FOUND
The identifier or string specified in a FIND or REPLACE command
was not found the specified number of times between the current
cursor position and the end-of-file marker.

REPLACEMENT STRING TOO LONG
Replacement of a string or name in a line would cause characters
to be lost off the right hand side of a line.

RESPONSE MUST BE "YES" OR "NO"
The response given to the "REPLACE?:" prompt must be a yes (y) or
a no (n).

START BLOCK NOT SPECIFIED
A COPY, MOVE, DELETE, or PUT command was entered but the

designated block was not completely bracketed.

END BLOCK NOT SPECIFIED .
A COPY, MOVE, DELETE, or PUT command was entered but the
designated block was not completely bracketed.

END BLOCK PRECEDES START BLOCK
Within the file being edited, the start block marker must precede
.the end block marker for a MOVE, COPY, DELETE, or PUT command to
be executed.

ILLEGAL MOVE
The designated block in a MOVE command cannot be moved to a
location within itself. -

4.4.3 File I/O Errors

~—

The following errors may be generated when responding to a prompt from
the editor for an input or output file access name.

SVC ERROR NO. n
This error may be generated when responding to the editor’s
prompt for an input file access name at the beginning of an edit
session, or following a SAVE, SHOW, QUIT, INSERT, or PUT command.
This error occurs if the specified file can not be accessed. The
SVC status code is given (in hexadecimal) to further clarify the
error encountered. The meanings associated with each of these
codes can be found in the User”s Manuals associated with the

relavent system.

BAD DISK NAME/DISK VOLUME NOT INSTALLED
- The disk name (within a file access name) given as a response to
an editor prompt does not exist.

-

NO FILE DEFINED BY NAME SPECIFIED .
The file access name given by the user in response to an editor
prompt does not exist.

FILE EXISTS AND REPLACE NOT SPECIFIED
The user requests that a file be saved but not replaced, and a
file of that name already exists, or replace was specified and
the file is write or delete protected.

BAD PATHNAME SYNTAX
The syntax of the file access name entered is invalid.

UNABLE TO GRANT REQUESTED ACCESS PRIVILEGES .
The user has requested a file in response to a prompt which can
not be accessed by the editor, i.e., it is already in use.

4.4.4 Syntax Checking Error Messages

The CHECK routine begins at the first line of the file and checks each
line in sequence. The cursor will stop at the first line where a
syntax error is detected and an error message will display. Once
corrective action 1is taken and the CMD RETURN keys are pressed, the
routine will continue checking the file until another error is
detected or EOF is reached.

The following error messages that may be generated by the syntax
checking routine of the editor are:

1 STATEMENT.SEPARATOR EXPECTED -
Statements must be separated by ";", "END", "ELSE", "OTHERWISE",

or "UNTIL".

4-23

10

11

12

13

14

15

16

MISMATCHED PARENTHESES
Parentheses do not match in an expression, declaration, or
parameter list.

"]"™ EXPECTED

A "]" was expected following a set reference or an array
subscript.

INVALID OPERAND IN EXPRESSION
An invalid term was encountered in an expression.

ERROR IN QUALIFIED VARIABLE
An identifier must follow the "." of a qualified variable.

ERROR IN TYPE TRANSFER VARIABLE
A TYPE identifier must follow the "::" of a type transfer
variable.

CASE ALTERNATIVE ERROR
A CASE label, ";", "END", or "OTHERWISE" was expected.

"OF" EXPECTED IN CASE STATEMENT
" Incomplete CASE statement found; "OF" must precede the included
list of case alternatives.

MISMATCHED REPEAT/UNTIL PAIR
An "UNTIL" was not expected to occur at this point in the system.

SEMICOLON MAY NOT PRECEDE AN "ELSE"
The THEN and the ELSE clauses of an IF statement may not be
separated by a semicolon.

THEN EXPECTED
An IF statement is incomplete without a THEN clause.

":" EXPECTED AFTER LABEL
All statement labels must be followed by a ":".

STRUCTURED STATEMENT MUST FOLLOW ESCAPE LABEL
A REPEAT, WHILE, WITH, FOR, IF, CASE, or BEGIN statement must
follow all escape labels.

":=" EXPECTED IN ASSIGNMENT STATEMENT

An invalid operator or operand was encountered in an assignment
statement.

ERROR IN WRITE PARAMETER LIST
A "," or the keyword "HEX" was expected in a write parameter
list.

ESCAPE IDENTIFIER EXPECTED
The keyword "ESCAPE" must be followed by an escape label.

4-24

17

18

19

20

21

22

23

24
25
26
27
40

41

42

43

44

STATEMENT LABEL EXPECTED
The keyword "GOTO" must be followed by a statement label.

PROGRAM OR PROCESS NAME MUST FOLLOW START
A START statement must include a PROCESS, or PROGRAM identifier
following the keyword "START".

CONTROL VARIABLE EXPECTED
The control variable of a FOR statement was expected following
the keyword "FOR".

":=" EXPECTED IN FOR STATEMENT
A FOR statement control variable must be followed by a ":=".

"TO"™ OR "DOWNTO" EXPECTED IN FOR STATEMENT
A "To" or "DOWNTO" must separate the initial and final
expressions of a FOR statemgnt.

"DO" EXPECTED IN FOR, WITH, OR WHILE STATEMENT
A "DO" must be included in all FOR, WITH, and WHILE statements.

INVALID TAGFIELD IN WITH STATEMENT
A record variable or an identifier was expected in the tagfield.
of a WITH statement.

STATEMENT EXPECTED
An unknown keyword or statement beginning was encountered. -

":" EXPECTED AFTER CASE LABEL LIST
A ":" must follow all CASE label lists.

INVALID CASE LABEL
An enumeration constant was expected as a CASE label.

DECLARATION SEPARATOR EXPECTED (";")
All declarations must be separated by ";".

ERROR IN LABEL LIST
A statement label was expected in a LABEL declaration.

"=n EXPECTED IN TYPE OR CONST DECLARATION
An "=" must follow all TYPE and CONST identifiers that are being
declared.

CONST IDENTIFIER EXPECTED
An identifier was expected in a CONST declaration.

TYPE IDENTIFIER EXPECTED
An identifier was expected in a TYPE declaration.

":" EXPECTED IN VAR OR COMMON DECLARATION

A ":" must follow all VAR and COMMON identifiers that are being
declared.

4-25

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

VAR IDENTIFIER EXPECTED f?)
An identifier was expected in a VAR declaration. B

COMMON IDENTIFIER EXPECTED
An identifier was expected in a COMMON declaration.

INVALID OPERAND IN CONST DECLARATION
An integer term was expected in a CONST expression.

"["™ EXPECTED IN ARRAY DECLARATION
A "[" must precede the index type(s) of all ARRAY declarations.

"OF" EXPECTED IN DECLARATION
An "OF" was expected in an ARRAY, FILE, SET, or RECORD variant
declaration. ‘

"END" EXPECTED FOLLOWING RECORD DEFINITION
An "END" was expected to terminate a RECORD declaration.

"ARRAY" OR "RECORD" MUST FOLLOW "PACKED"
PACKED structures only include ARRAYs and RECORDs.

"FILE" MUST FOLLOW "RANDOM"
A RANDOM file declaration must include the keyword "FILE"
following the "RANDOM" specification.

":" EXPECTED IN RECORD FIELD LIST ' |)
A ":" must separate all identifiers from the TYPE identifier with
which they are associated.

INVALID TAGFIELD IN RECORD
A tagfield type was expected in the variant portion of a RECORD
declaration.

"(" EXPECTED PRECEDING FIELD LIST

A "(" was expected in the variant portion of a RECORD
declaration.

".." EXPECTED IN DECLARATION
A ".." was expected in a subrange declaration.

ENUMERATION CONSTANT EXPECTED
An enumeration constant was expected in the declaration section.

INDEX TYPE EXPECTED IN DECLARATION
An index type was expected in an ARRAY declaration.

SIMPLE TYPE EXPECTED IN DECLARATION)]
A simple type was expected in a TYPE declaration or in a SET
declaration.

ERROR IN IDENTIFIER LIST - ~)
An identifier was expected in an identifier list. ' :

4-26

61

70

71

72

73

74
75

76

77

78

79

80

81

82

PARAMETER LIST EXPECTED
A "(" was expected following a WRITE, ENCODE, or DECODE procedure
call.

FILE MUST BEGIN WITH MODULE OR DECLARATIONS
The file being edited does not begin with an acceptable keyword.

MODULE DECLARATION SECTION EXPECTED
The module header has been encountered and parsed; declarations
are expected next. Possibly a "FORWARD" or "EXTERNAL" is
expected.

SYSTEM MUST BE OUTERMOST MODULE
A SYSTEM may not occur within any module.

MODULE HEADER MISSING
A body has been encountered but the corresponding module header

was missing.

MODULE EXPECTED
The end-of-file or a module header is expected.

"END" NOT EXPECTED
An "END" was encountered but not expect<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>