


! 
' 

( 

' i_ ' 

IMPORTANT NOTICES. , 

Texas· Instruments reserve~, the right to make changes at· an:Y. time to 
improv·e design and to supply the best pos ible product for the. spectr,l]rtl ' · 
of users. · 

Microprocessor Pascal System (TMSW753P or T~Sw754P) is1 copyrig:at:e.a by . 
, , . , , , , ' 

Texas Instruments Ineorporated, and is sole property thereof. ·rtsE!i- 'of: · 
this product is · de:finep - by the licen·se agr.eemerit. SC..;;1 ;.b~tw~ecri the· 
customer. and Texas. ·l~nS:truments. The softwa.re m~y not be~ rep:tqduae-6 ,, Jri, 
any form without. ,,w;ritten permission of' Texas Instrument$• Hd.~~er,, 
application run-time packages· generated· 'ftom the Microp0roce .. ssor Pf!scal' · 
System may be .reproc}.uced for resale exclusively by the custOmei 
purchasing the ~icrop.r:pc:~ssor Pascal Syst~m. · ·· ·- .· 't 

All manuals associated,with Microprocessor Pas~al (MP351).ar~ Pt:int~d 
in· the .. United States of America and ·are copyrigl:lted by.·· 1~~$ · 
Instruments Incorporated, ·.all rights reserved. No .part . of tn'¢'$trt( 
publication's, may be t,epr<;>duced in any manner,-,, including storage .·· iti :, '~.:;' 
retrieval ·system or,. itransmi ttal via· eledtronic. means, · or· ot'he'?''xi · 
reproduction in any form or by any method : Jele,ctronic I iftechanica:~r, ','· o. I 

photocopyin;g,, recording, or>' otherwise) without prior· wiitt~tt::. 
permission ·of Texas. Instruments Incorporated. -- " >i ·· .. /,' 

• :;. ;i' ~ ·-, 

¥-~'. 

r.. 
·'. 

Int:ormation contained :in these publications, is·· bei'ieved '.to b~ acct.lrate 
and reliable. Howeve.r,:, responsibility is assumed nei the( for;"; its": ,u:S'.e!: "·· 
nor for any infring~ment. of patents or rights of othe:i;s· that ~Y 
result from its use .. , NO'.~license cis granted by implicaticm or otbe.r~-ise::. · , 
under any patent or;~Patent right 'of Texas Instruments or· others .• : -: ' · ... 

COPYRIGHT, TEXAS INSTRUMENTS INCORPORATED, .1981 

- -· .. ~- ·---.--- ------------- . -- .. --------._,..-~-------; 



'(" .. 

f 
I' - :-,<' _; 

... ' 

-' 

,:: .. 

. ,,.j 
,, __ I 

-. 
._.; -. 

_____ --_-:._ _______ 

'-

' ..... ~. 

-~ ... 
- . c., 

"\ 
J <r • .. 

·~ 
.,._;.:1 

_ _J 



I . .. __ ._ ..... 

TABLE OF CONTENTS 

SECTION 1. MICROPROCESSOR PASCAL SYSTEM OvERVIEW 

l:... 1 GENERAL . • ~·~ • • • • . • • • • • • . • • • • • c. • • • • • • 

1.1.l Microprocessor Pascal System Features 
1.2 WHAT IS MICROPROCESSOR PASCAL? 
1.3 WHY USE MICROPROCESSOR PASCAL? 
1.4 HOST AND TARGET SYSTEMS • • • •••• 
1.5 SOFTWARE DEVELOPMENT TOOLS •••• 
1.5.l Source Editor •••• 
1.5.2 .Pascal Compiler ••••••• 
1.5.3 Native Code Generator . . 
1.5.4 Host Debugger •••••••••••• 

. . . . 
. . . . . . . . . . .. . 

1.6 EXECUTIVE RUN TIME SUPPORT ••••••••••••• 

SECTION 2. MICROPROCESSOR PASCAL SYSTEM CONCEPTS 

• • 
• • 

2. 1 OVERVIEW • • • • • • • • • • • • • • • • • • • • • • 
2. 2 CONCURRENCY • • • • • • • • • • • • • • • • .• • • • • • • 
2. 3 PROCESS .... ._• • . • • • • • • • • • • •· • • • • • 
2.3.l State Of The Process ..••••••••••• • •• • 
2. 3. 2 Processes _As ·Interrupt Handlers • • • • • • • • • • 
2.3.3 Process Intercommunication • . • • ••.••••••• 
2.4 SOFTWARE ORGANIZATION OF MICROPROCESSOR PASCAL •••••• • 
2 a 4 • 1 SYSTEM • . • • • • • • • • • • • • • • • • • • • 
2. 4 • 2 PROGRAM • • • • • • • • • • • • • • • • • • 
2. 4 . 3 PROCESS ~ . . . . . . . • • . . · • • · · · • • • • • 
2.4.3.1 Procedure • . •••...• ~ ••• • • • • • 
2~4.3.2 Function . • • • •••.•••• · • • • • • 
2.5 LANGUAGE EXTENSIONS TO SUPPORT PROCESSES 
2. 6 MEMORY • • • • • • • • • • • • • • • • • • • • • 
2.6.l System Memory ..••••••.•••• · • • • • • • • 
2.6.2 Stack .. · ...... e..... . ..... . 
2. 6. 3 Heap • • • • • • • · · · · • • • • • • • • 
2 • 7 REENTRANCY • • • • . • • • . • · • · • · • · • • • • • • • • 
2. 8 RECURSION • • • • • • • • . • • • • • • • • • • • • • • • 

i 

1-1 
1-~ 
1-2 
1-3 
1-5 
1-5 
1-5 
1-6 
t-6 
i ... 6 
1-7 

2--1 
2-1 
2-3 
z ... 4 
,2;..._4 
2-4. 
2-5 
2-6 
2-6 
2-7 
2-7 
·2-7 
2-8 
-2-.9 
2 .... 9 
2-9 

·2;;..9 
2-10 
2-10 



. ' . _. . - . . - -- - . -

.~..:;.:.- .. _:.__~·-· . ..:-.:_. - -·--'-•-·----~ c.~ ~--'-·~-~-~-:.·~ ___ · • 

ii 
"':L,_. SECTION 3 .' A SAMPLE MPP Sys·TEM 

OVERVIEW ·• • ,_ ~ • ·• ·• ._ • • • • • • • '. 3-1 "J 
PROBLEM DEFINITION AND STRUCTURING 
THE SAMPLE· SYSTEM • • • • • • • • • 
SAMPLE DEBaG SESSION • • • • • • • 

' . ·~ ..... •'· 

.::: .•· 

SECTION 4. SOURCE EDITOR GUIDE 

r;1 • •• ;J. 

~l :-~ . i ' OVERVIEW • • • • • • • • • • • • • • • • • • • • • • • • • • 
S,·-:4.i.1· The Video Display ••••••••••••••• 
~ -~.1~2· Mieroproce~sor Pascal Source File Defitiition •••••• 
; ~ . 4·. 1; 3 · Coiilmand Summary • • • • • • • • • • • • 
~. : -· 4. 2 · EXAMPLE EDIT SESSIONS ~ • • • • • • • • • • • • • • • • • • • 
7 : -4. 2~1 Creating ·a ~File • • • • • • • • • • • • • • • 
~·c. ~-2~2 Editing An ··Existing File· • • ••• • • • • • • • •. 
~~ J.2,2.1 eorr~cting·The Errors • • • ••••••••••••• 
~· ~4.2.3 · Saving The ·Frle • • • • • • • • • • • • • • • • •••• 

4.2.3.1 To Quit The Editing Process • • • • • • • • • • •• 
4.2.3.2 To Continue Editing Operations •••• 
4~3 EDITOR .COMMANDS AND FUNCTIONS ••••• 
4 ~ 3 ._ l · Param·ee:er .. s·~ . . . . . . . · . . . . . . . . . . . . . 
4~3~2 Optional Parameters • • • • • • • • • • • • •••• 

i _4~3~3 Current Lihe Marker ••••••••••••••••••• 
x .... 4 ti; J ; 4 .. cMD Key ·.; • • • • • • • • • • • • • • • • • . . • . 
:.~4~3.i5 Setup and Termination Commands • • • • ••••••• • 
>· 4. 3 ~ 5 .1 Edi t/cciinpose Modes • • • • • • • • • • • • • • • 
-~ ~4. 3 ~- 5. 2 HELP ·Comma rid • • • • • • • • • • • • • • • • • • ':. t ~ 3 • 5 ~ 3 CHECK . (Syn tax) ·Command • • • • • • • • • • • • • • 
' -~ ~ 3 • 5 .. 4 QU1:T :Command ; • • • • • • • • • • • • 
~4. 3 ~ 5. 5 ABORT Command • • • • • • • • • • • • • • • 

· '4. 3.: 5 .·6 SAVE "command • • • • • • • • • • • • • 
· ". · 4. 3 : 5 • 7 INPUT Command • • • • • • • • • • • • • • • 
.~·-"4.3~6 Cursor Positioning • • • • • • • • • • •••• 
.... '4.3.-6.1 Ro11...:.up Function • • • • • • • • • • 
. -4. 3 ~ 6. 2 · Roll..:.Down Function • • • • • • • • • • • • • • • 

.
5
'. ,; .• -~. 3 ~ 6. 3 New: ~\rn'~:'.·Function • • • • • • • • • • • • • • • • • • • 
:· 1~3.6~4 Tab Furiction • J • • • • • ••• • • • • • • • 

~:;: · 4-. 3. 6 .·5 Back. ~ab Fune t ion • • • • • • • • • • • • • • • 
"'">4.3.;6.6 Set Tab Increment Command • • • • • • • • ••• 

~- - -

~ ·. ·4. 3. 6. 7 Cursor Up Function • • • 
~ ·:.. ·4 .• 3. 6. 8 · Cursor ·Down Function 
C~ 4.3.6.9 Cursor Right Fun~tion 
~ 4.3.6.10 Cursor Left Function 

- 4.3.6.11 Home Function •••• 

. . . . . . . 

4. 3. 6 .12 FIND ·command • • • • • • • • • • 
· .4.3.6.13 Relative P6sitioning 

4.3.6.14 TOP Command •• ~ • 
··4. 3. 6 .15 BOTTOM Command 
4.3..7 Program Modification 

ii 

3-1 
3-1 
3-5 

4-1 
4-1 
4-1 
4-2 
4-5 
4-5 
4-6 
4-7 

·4-8 
4-8 
4-9 
4-10 
4-10 
4-1.1 -
4-11 ._) 
4-11 
4-12 
4-12 
4-12 
4-12 
4-12 
4-13 
4-13 
4-14, 
4-15 
4-15 
4-15 
4-15 
4-15 
4-15 
4-16 
4-16 
4-16 
4-16 
4-16 
4-16 
4-16 
4-17 
4-17 
4-1'. ) 
4-17 .. / 



4.3.7.1 Insert Line Function 
4.3.7.2 Duplicate Line Function • 
4.3.7.3 Clear Line Function • 
4.3.7.4 Delete Line Function 

·-~ ' . , .. _ 

•. . 
1 4.3.7.5 Skip Function • .• 

4.3.7.6 Insert Charactier Function 
4.3.7.7 Delete Line Function 
4.3.7.8 REPLACE Command • 
4.3.7.9 Split Line Function • 
4.3.7.10 INSERT Command • 
4.3.8 Block Commands 

' .. 

4.3.8.1 Start and End Block Functions • 
4.3.8.2 COPY Command 
4.3.8.3 MOVE Command 
4.3.8.4 DELETE Command 
4.3.8.5 PUT Command 

, 4.3.9 SHOW Command .:. c 4.4 ERROR MESSAGES 
4.4.1 Command Syntax Errors • 
4.4.2 Command Processing Errors 
4.4.3 File I/O Errors 
4.4.4 Syntax Checking Error Messages 

.. 

.. ' ~ .. 

·' '·j:,J ' : 
SECTION 5. COMPILER AND NATIVE CODE GENE'RAT-0R 

.. ~- . -~ 

~ 

~!E:·-- ..t.J'...•:.... i .... -:..~: ... i.:_'11.~., .. 1 

- ~: __ , ;__ ;:: .. _J, .. ;..~ ,•.· . r 
···~-- ~.;~.: ... ;·_·! 

5.1 OVERVIEW •. ~'. f.[-'" t:.;~ .• ,;;:d ~-l 
5. 2 COMPILER • "'• • ..;· t·: ~· '··· •. , ~= • ~; ~ , : s.:.:.i 
~: ~: i .1 Co~;!~~~e;r i~;~~~~on Messages .-.- '.,,.. • ,,:; ·~'.~·t.; ~~ '.-; · ':. i: ;~ : $=~ 
5. 2 .1. 2 Compiler Listing • • • : • , ·'·i- •,. '5~2 u : ~. 3co:;:~n=~1~p~r~ns : • ;: ~.: :-; di : -: ~ H JS~ ,94 
5.2.3 COPY Statement • ~ ·:.•·.·····oc • ·• • 

~:r 5.2.4 Separate Compilations .... -.\·,,·-:; •. ·~~'·· $~13 
5.2.4.1 Mechanisms To Obtain Valid System Code • · ~~··~_.,;~.~~· · ~ >s-17 
5. 2. 4 .1.1 The MPP Compiler •. ··- ,: .~ • .: • "~ . .: ~ 5.:..1.f/ 
5. 2. 4 .1. 2 The MPP Code Generator . . • · ..... .,,. • • .. ~ ,. · 5--18 
5. 2. 4. 2 Differences Between Native And Pcode __ Enviro~i!i~;~t~ .· •· • > .. ~>: . ~-J.:? 
5.2.5 Saving Segments •••••••••••.•••• ··!:.): .--:• .• : . . S...;.20 
5. 2. 6 Compiler Error Messages • • • .- "'• ; •.. • •. - •. c 5-21 
5. 2. 6 .1 Syntax Error Number Descriptions ,• •. f .·' .t? • •• : ?.,..·~-1 
5. 2. 6. 2 Other Compiler Error Messages ' '5~32 
5. 3 THE NATIVE CODE GENERATOR • • .". • 5.,..·3;2 
5. 3. 1 CODEGEN • • .. • • .. • • .5°-32 
5. 3 .1.1 CODEGEN Execution Messages ... • 5-3'2 
5.3.1.2 Code Generator Listing • 5-33 
5.3.2 Reverse Assembler • • 5-34 
5.3.2.1 Reverse Assembler .Execution Messages • S-34 
5.3.2.2 RASS Listing File • 5..;;34 
5.3.3. Code Generator Error Messages • S-42 

iii 



. . . - . ·- . -.- ~ . - . ' - - ' 

-·-- ---- -··· -··-···-- --- . ___ ---------'-~--..:..····--'- --~·- ~-·. - -- :. .. ___ -----·-~-~ -·- .. ____ '~~-----:.. - _-_, 

SECTION 6. HOST DEBUGGER GUIDE 

- . · ~:. ;·. 
' ~ - • • ll ~· 

.:.:6 .-1 OVERVIEW .,. .• • • •. • • • • • • • • • • • 
6.a DEBUGGING EXAMPLES • • • • • • • • • • • • • • • • • 
ff: 3 DEBUGGER COMMANDS • • • • • • • • • • • • • • • • 
6·. 3.1 . Kinds of Parameters • • • • • • • • 
6-. 1.2 .. Process and Routine Parameters • • • • • • 
6.-3.:2.1. Process ...... ~ . . . . . ... , · · · · · · · 

·6-.'3.2.2 Routine ................. · · · · · · · · 
&.-3-.} ... · Opt·ional Pa-rameters • • • • • • ••••• • • • • • • • 
6 .• 4 CONDUCTING A DEBUGGING SESSION • • • • • • • • • • • 
6.4.,1. Starti.ng A Session • • • • • • • • • • • • • • · 
6. 4 • 2 DEBUG Commands • • • • • • • • • • • • • • • • 
6. 4 •. .2 •:l GO Command • • • • • • • • • • • • • 
6. 4 .• 2 • 2 QUIT . Conunand • . • • • • • • • • • • • • • • • • • • • 
6 • 4 • 2 • 3 HELP Command • • • • • • • • • • • • • • 
6 • 4 .• 2 • ·4 DEBUG Command • • • • • • • • • • • • • • • • • • • • 
~ .... <. ·2._.~s - LOAD Command • • • • • • • • • • • • • • • • • ; 
6 .•. 4 .... 2~166 ,,. SE ... command • • • • • • • • • • • • • • • • • • • • • 
6~. 4. 2 ,..7 , COPY .. Command • • • • • • • • • • • • • • • • 
6 .. -4 ..• 3 . S.tatus Disp-lay Commands • • • • • • • • • • 
6. 4·. 3 .,1 . Display All Processes Command (OAP) • • • • • • • 
Er.-4~. 3 •. 2 .-· Display. Process Command (DP) • • • • • • •• • • • 
j.4.4 Breakpoints/Single Step •••••••••••••• • • • • 
6.4.4.1 Assign Breakpoint (AB) • • • • • • • • • • • • • 
6.4.4.2 Delete Breakpoint (DB) •••••••••••••••• • 
6,.4.4,.3 Delete All Breakpoints (DAB) •••••••••• • • 
6 ... 4. 4. 4 List Br~l'bints ·.(LB) • • • • • • • • • • • • • • • • • • 
6.4~4,.5 Single-Step Mode (SS) • • • • • • • • • • • • • • 
6~4.S Showing/Modifying Data Commands •••••••••• • • • • 
fi:,..-~. 5 •. 1 Show Frame Cornman (SF) • • • • • • • • • • • 
a: .• 4J;". $. 2 Show .Heap Command (SH) • • • • • • • • • • • • • • • 
G:. 4. 5. 3 Show Common Command (SC) • • • • • • • • • • • • • • 
6' ... 4.5.4 Show .-lndirect Command (SI) ••••••••••• • • 
6-.·'· S. 5 · Show Memory Command (SM) • • • • • • • • • • • • • • 
6" .. 4'.5.6 Modif·Y Frame Command (MF) • • • • • • •• • • • • 
6..-4. S. 7 . Mod-ify Heap Command (MH) • • • • • • • • • • • • • • 
(f. 4:. 5 • 8 ; Modi f,y Common Command (MC) • • • • • • • • • • • • • 
6.4.5.9 • Mod.if.y Indirect Command (MI) ••••• • • • • • • • 
6. 4. 5 .10 Modify Memory Command (MM) • • • • • • • • • 
6:.4'.6 Tra.cing Commands ••••••••••••••• • • • • 
6.4.6.1 Trace Process Command (.TP) • • • • ••••••• 
6.4.6.2. Trace Routine Entry/Exit Command (TR) ••••••••• • 
6. 4. 6. 3 Tr ace Statement Flow Command (TS) • • • • • • • • • • • • 
6.4.6 •. 4 Trace Echo OFF Command (TOFF) •••••••• • • • • • • 
6.4.6.5 Trace Echo ON Command(.TON) • • • • • • • •• • • • • 
6.4.7 Monitor Process Scheduling •••••• • • • • • • • • 
6.4.7.1 Select Default Process Command (SOP) • • • • • •• • 
6.4.7.2 Assign Breakpoint to Process Command (ABP) ••• 
6.4.7.3 Delete Breakpoint from Process Command (DBP) •••• 
6.4.7.4 Hold Process Command (HP) • • • • • • • • • • • • 
6.4.7.5 Release Process Command (RP) • • • • • •••••• • 
6.4.8 Interprocess File Simulation Commands •••• • • • • • 

iv 

,·?\ __ . 
·.-_···) 

.· ~ 

6-1 
6-3 
6-9 
6-9 
6-10 
6-10 
6-10 
6-11 
6-12 
6-12 
6-14 
6-14 
6-15 
6-15 
6-15 
6-16 
6-16 
6-16 
6-17 
6-17 
6-18 
6-19 
6-19 
6-20 - -... ., 
6-20 ) 
6-20·_,' 
6-20 
6-21 
6-21 
6-22 
6-22 
6-23 
6-23 
6-23" 
6-23 
6-23 
6-24 
6-24 
6-24 
6-24 
6-25 
6-25 
6-26 
6-26 
6-26 
6-27 
6-27 
6-27 
6-28 

~=~: -~~-) 



I 
' ·---._.,. 

6. 4. 8 .1 Connect Input File Command (CIF) .• ·· • • • • • • • .• • • • .• 6.:.·2.8 
6. 4. 8. 2 Connect Output File Command (COF} • • • • • • • • ·• .• • • 6-29 
6. 4. 9 Interrupt Simulation Command .(SIMI) • • • • .• • • • • • 6.-.30. 
6.4.10 Selection of CRU Mode Command (CRU) ••••• "' • 1:•c_:~l .•• •.. 6 ... JO 
6. 4 .10 .1 Test CRU Bit Command (TB) • • • • • • .;~ .. : :'.~. ·• b, •• ; 6,;,;,30 
6. 4 .10. 2 Load CRU Value Command (LDCR) • '"· ·-r .';.:.. -~-. ; ·1~-:c-~. 6~ao 
6.4.10.3 Set Bit to Logic One Command (SBO) ••••.• ., ..• ;· • :_,. •; • ;6..,,-:,3.1 
6.4.10.4 Set Bit to Logic Zero Command (SBZ) •••• • ·• •. ;•" ~:".!l' ",:6'~.41 
6.4.10.5 Store CRU Value Command .(STCR) •••.•••• ·• J·Z •• · 6-:u 
6.4.11 Ending A Session • • • • • • • • • •••.•• , ....... , ~.-31 
6. 5 ERROR MESSAGES • • • • • • • • .• ··.r: ·• • · .,.,,·:.c ·• .,. 6.-.41 

7.1 
7.2 
7.3 
7.4 
7.5 
7.6 

,. . . v 
-..... _· 
·- ·:- .;,_ . !; l·~:· 

,.~ ~, 

•r, ..... :. 
SECTION 7. CONVENTIONAL PASCAL PROGRAM EXECUTI_ON .T ·· . ~ 

• ·,J, , • .,,_ ·1, :-!.,~ 

- . r .-.. '• 

OVERVIEW • • • • • • • • • • • • • • • • • • • • • - • ....,.. ·• ··- - ,,._ .. l 
PROGRAM SEGMENTS • • • • • • • • • • • • • · ~-· .: -.. • ,,,_ • '•• ·~ ·1-.l: 
EXECUTION MESSAGES • • • • • • • • • · .- • •- ,,._ '" ..... 7-!2. 
I /0 SUPPORT • • • • • • • • . ~.~· • • ·~ •' : .~ • :::· 1• 2 
RUN-TIME SUPPORT ERROR MESSAGES 
ABNORMAL TERMINATION MESSAGES • • • • • 

• . • •., • ~~·~ • ~. ·.;:-.:.'•-- '7-.. 2 
• • • • • •·:. ·• .~ -:-'•· ~r -~1·.-3;· 

·--,.,. ·.·; ~ ~~ ... 
•; 

.;.... -. "·· '~ ~~· ''ii 

;~. 't- =·.:: '.,.,. ,_ .i 

SECTION 8. THE MICROPROCESSOR PASCAL S1'$''t'ftM.<:;.: - ~· " '> '\. ··!.. 

't-•, •:t ~ ·~ • 'r 4\. ).~ 

,/" - : "-. y ,::· (;~ •', ;, (::.. 

8 .1 OVERVIEW • • • • • • • • • • • • • • •· .;. ··'·-· • ·•• ... t .... ~l; 
8. 2 LANGUAGE VOCABULARY AND REPRESENTATION . • • • • t1. • '" ·1: 8-1 
8.2.1 Character Set ••••••••••••••.• ; ••. :_:. :. ..-: 8-.. J._ 
8. 2. 2 Special Symbols • • • • • • • • • • • • • • __ •.• :r.:.: . 8-l 
8. 2. 3 Keyword Symbols • • • • • • • • • • • • • • • • ..• ··:·• .;,._ • '.: s~.-2 
8. 2. 4 Identifiers • • • • • • • • • • • • • • "-~_. _ •. _. · ,i-~ 
8.2.S Separators • • • • •••••• ·'·• ••••.. •- • ·_-.,,v ••• · .9-.-l 
8. 3 DATA • • • • • • • • · -~" , • _;... ·• ., · 8-·3 
8.3.1 Constants • • • • • • • • • • • • •••• ':.~" .. -.-:·· ·• · •. 8~4. 
8.3.1.1 Integer and Long Integer Constants •••• -.• ~ •.. :.i· - 8-4 
8.3.1.2 Real Constants • • • • •••••• -• ••• 8-.4 
8.3.1.3 String Constants ••••. ~ 8-4 
8.3.1.4 Character Constants ••••••••••••••• '··.... • • •. 8-5 
8.3.2 Variables • • • • • • • • • • • • • • • • • • • • • 8-5 
8.3.2.1 Simple Variables • • • • ••••••••••••• w 8-~ 
8.3.2.2 Qualified Variables • • • • • • • • • • • 8-5 
8. 4 DATA TYPES. • • • • • • • • • • • • • • • • • • • • • • 8-6 
8.4.1 Simple Types • • • • • • • • • • • • • • • • • • • • 8-6 
8.4.1.l Enumeration Types • • • • • • • • • • • • • • 8-6 
8.4.1.2 INTEGER and LONGINT Types • • • • • • • • • • • • • • 8-7 
8.4.1.3 BOOLEAN Type • • • • • • • • • • • • 8-7 
8. 4. 1. 4 CHAR Type • • • • • • • • • • • • . 8-8 
8.4.1.5 Scalar Type................ • • • 8-8 

v 

-· ---_-.-·_ --·-·c-··--~~-.-'7'"·--



. ' 
i'.. 4 .·1. 6 .S4br;an.ge fype • • • • • • • • • • • 
8.·.4 .~1. 7 REA~ Type • • • • • • • • • • • • 
8 i:4. 2 .Structured .. Types • • • • • • • • • 
8.4·<·2.l Array Type • • • • • • • • • • • • • • • 
8. 4 .42. 2. Reco.rd Type • • • • • • • • • • • • • • • • • • • 
8 .~4. 2. 3 Se.t .Type • • • • • • • • • • • • • • • • • 
8 •. 4. .. .-:·2 • 4.. F i,._1 e Type • • • • • • • • • • • • • • • • • • 
8 •. 4 .... 12. 5 Pointer Type • • • • • • • • • • • • • • • • • • • • 
~ ~"4 ~.2" 6 1SE.MAPHORE Type • • • • • • • • • • • • • • • • • 
8. 4. 2. 7 PACKED Types • • • • • .• • • • • • • • • • • • • 
8.4.3 Size Algorithm for PACKED Types • • • • • • • • • • • • 
8.4.4 Type Compatibility ••••••••••••• • • • • 
8.4.5 Overriding the Type Structure •••••••••• • • • 
8 • 5 DECLARAS:'lQNS , • • • • • • • • • • • • • • • • 
8.~ .. 1 Seep; : ~ ~· •••••••••• • • • • • • • • • • • • 
8.5.2· Extent.• .......... ·.···••·····•· 
8-:6•:3 Sy_st.em D.ec1arations • • • • • • • • • • • • • • 
S .~5-*;4 La,.be,1 De.clarations • • • • • • • • • • • • 
8-::5.-5 Data. Dec,larationS • • • • • • • • • • • • • • • 
8 .:5 .• '5 .1 CONSTANT Declaration Part • • • • • • • • • • • • • • 
S .. ~5. 5. 2. TY.PE. Declaration Part • • • • • • • • • • • • 
8 ... S •• ·5. 3 VARIABLE Declaration Part • • • • • • • • • • • • 
8.~~5.4 COMMON Declaration Part • • • • • • • • • • • • • 
8 .. 5 .• :6 ACCESS. Declarations • • • • • • • • • • • • • 
~-·.·5.7 'PROGRAM De'clarations • • • • •••••••• • • • • • 
0·.,s .. ;8 .PROCESS De,clarations • • • • • • • • • • • • • • 
~;·~5.,.,,9 .PROC.EDURE Declarations • • • • • • • • • • • • • • • • • • 
8: •• 5 .• 10 ;FUNC.TION, Dec,larations • • • • • • • • • • • • • • • 
~~.r!i..11 Par.aJllete.r Kinds • • • • • • • • • • • • • • 
~.~Si:l2 EXTE.RN,AL Declarations • • • • • • • • • • ••••••• 
~-:'5..'!~3 .FORWARD Declarations • • • • • • • • • • 
a.. Sc.cl4 Concurrent character is tics • • • • • • • • 
a.;§ .. '15 :conv~en'tional Pascal Program • • • • • • • • • • • • 
8. 6 EXPRESSIONS • • • • • • • • • • • • • 
8 • 6 .1 Operands • • • • • • • • • • • • • • • • · 
8.6.1.1 Set Value. . . . . . . . . . . . . · · · · · · · 
8.6.1.2 Function Calls • • • • •••••••• • • • • • • • 
8. 6. 2 Operators . . . ·. . . . . . . . . . · · · · · · · 
8.6.3 Integer Constant Expressions •••••••••• 
8 • 7 STATEMENTS • • • • • • • • • • • • • • • • • • • • • 
8 .-:7 ~-1 Simple Statements • • • • • • • • • • • • • • • 
8.~7..-:1.1 As,signment Statement • • • • • • • • • 
8.7.1.2 Procedure Statement • • • • • • • • • • • • • • 
8. 7 .1. 3 START Statement • • • • • • • • · • • • 
8.7.1.4 · ESCAPE Statement •••••••••• • · • • 
8.7.1.5 .GOTO Statement •••••••••• • • • • 
8.7.1.6 ASSERT Statement • • • • • • • 
8.7.2 Structured Statements • • • • • • • • • • • 
8.7.2.1 Compound Statement ••••••••• • • • • • • • 
8.7.2.2 IF Statement •••••••••••• • • • • 
8.7.2.3 CASE Statement • • • • • • • • • • • • • • • • 
8.7.2.4 FOR Statement • • • • • • • • • • • • • • • 
8.7.2.5 WHILE Statement ••••••••••• • • • • • • • 
8.7~2.6 REPEAT Statement • • • • •• • • • • • • • • • 

vi 

8-Q 
8-Q 
8-10 
8-10 
8-12 
8-14 
8-16 
8-17 
8-18 
8-19 
8-19 
8-24 
8-25 
8-26 
8-26 
8-26 
8-27 
8-28 
8-28 
8-29 
8-29 
8-30 
8-30 
8-31 
8-31 
8-32 
8-33 
8-34 
8-34 
8~35 
8-35 
8-36 
8-38 
8-39 
8-39 
8-39 
8-40 
8-40 
8-42 
8-42 
8-42 
8-42 
8-42 
8-44 
8-44 
8-45 
8-46 
8-46 
8-46 
8-47 
8-48 
8-49 
8-51 
8-51 



8.7.2.7 WITH Statement • • • • • • • • • • • • • • • • • • • • • 8-52 
8.8 INPUT AND OUTPUT • • • • • • • ~ • • • } .t·~~,~=~-::·;.::~ .~ 8-:5·~ 
8. 8 .1 Sequential File Operations • • • • • • • • • • {-·.· :~ ; Z • • · _8-$4. 
8. 8. 2 Text File Operations • • • • • • • • • • • • ,,-: ~ '»'::··· :.:.. ·• \ 8-.:~5 
8.8.2.1. Text File Read Operation • • • • • • ·.·;. • 'cC -•· '· • , a~S6 
8.8.2.2 Text File Write Operation •••••••••• -.~. '-" .f' • .. ->·8-58 
8.8.3 RANDOM File Operations ••••••••• · ... :c •••• ···8..l60 
8. 8. 4 Binding of File Names • • • • • • • • • • • .- .- • • '~8160 
8.8.5 Passing Files as Parameters • • • • • • • .' • ~-. } .~a.!61 
8. 8. 6 Encode and Decode • • • • · • • • • • • • • • • • •· ' •.• ': • ;.. ., ~826£ 

~· :- ~ . "" - . j ~ ~ .- ·'. "9 
( '· -. 

~ "' .... 
'/"' \ .,. ~', 
~- \ " 
I;. -. i-. '! , 

SECTION 9. PROCESS SYNCHRONIZATION AND PROCESS MANAGEMEN'f>_; .':,;/;, 
;;~'~ ~~ 

9 .1 OVERVIEW • • • • • • • • • • • • • oc .; '~ <\ t ;g..;:1 • 
9. 2 SCHEDULING POLICY • • • • • • • • • • • • : •. ' .• c::j". :. tg :1, ,, 
9.3 EVENTS •••••••••••••••••••••• ·411 '•·- o1 

• ~:.ie \g;~§f 
9.3.1 External Events·. • • • • ••••••••• ~- •••.• -. ,;: .;;9.,fS,,:: 
9. 3. 2 Internal Events • • • • • • • • • • • • • • • • • -:.' : • .~ 9_;5 i 
9 • 4 SEMAPHORES • • • • • • • • • • • • • • • • • • • • / ' "g_; 6 ;_:: 
9.4.1 Abstract Operations on Semaphores •••••••••.•••• "' · 1.~6 r., 

9. 4. 2 Incorrect Use of Semaphores • • • • • • • • • • • • • ~-- .. : '• !·:g,.:s · 
9.4.3 RTS Semaphore Routines ••••••••••••• '• ·.' ·.,~·:,~~. 's9~1f 
9.4.4 Implementation of Semaphores ••••••••••• • • . :, •.• -,. f9..:'iS' 
9. 5 INTERRUPT HANDLING • • • • • • • • • • • .- .,~-- '-. t ... c.'--.::,. ... , -.- '• "'9-..JiS: 
9.5.1 Interrupts Treated as Events • • • • -•""".;. :·-.'.)v."~. ~;94.15\ 
9.5.2 Interrupt Routines • • • • • • • • • •• '_;7. ;:/"-.· 1 3:1.E···.=~~ t .9:4itJ 
9.5.3 General Features of Interrupt Handling· •• ~ .. ·: .;,.:~s .. ~'<:2.L,[:g,~a:t 
9.5.3.1 General Routines • • • • • • • • .~'. ·:. '}J)_)'~ ~,1,9.J,;'.,i; 
9.5.3.2 Techniques of Code Style •••••• : : : 2 .'"' ~' -, ~-_·:.~· ....... ~_-:.·-~!>~'if 
9. 6 SCHEDULING OF DEVICE AND NON-DEVICE PROCESSES • • ."" • • ~ • ·• lg.l'2i 

~: ,· ! :: ... • '.. .'! 

SECTION lO. PROCESS COMMUNICATION 
-.·~· . - ' 
, .. r ·.·, l-~ 

J.: -.... ~./ 
:...: ; 

.' It 
j-: 

"" ? ( 
' ' ' 

10.1 OVERVIEW • • • • • • • • • • • • • • • • • • • •.•• 10...:1·., 
10. 2 SIMPLE COMMUNICATION MECHANISMS • • • • • • • • • • • • • • 10_:.l '; 
10.2.1 Device Communication Using CRU •••••••••••••• 10-1 
10.2.1.1 Procedure CRUBASE • • • • • • • • ·• •• 10-2 
10. 2 .1. 2 Procedure LDCR (Load CRU) • • • • • • • • • • • 10-3 · 
10.2.1.3 Procedure SBO (Set Bit to One) ••••••••••••• 10-3 
10.2.1.4 Procedure SBZ (Set Bit to Zero) • • • • 10-3: 
10.2.1.5 Procedure STCR. (Store CRU) • • • • • • • • • • • • • 10-3 
10.2.1.6 Function TB .(Test Bit) • • • • • • ••••••••• 10-3 
10.2.2 Device Communication Using Memory-Mapped I/O ••••••• 10-3 
10.2.3 Interprocess Communication Using Shared Variables •• 10-5 
10. 2. 4 Interprocess Communication Using Message Buffers • • • 10-6 
10.3 EXECUTIVE RTS FILES •••••••••••••••••••• 10-9 

vii 

.. '• . 



l~O. 3 .1 
10· .• 3. 2 
id' •. 3 .• 3 
' .. ~ 
10.3.4 
10.3.5 
10.3.6 
10.3.7 
10.3.8 
10. J •. 9 
10. 3 .J.O 
10.3.11 
10-~=3. i2 
to~J:.13 

. .. 

Process-Local File Variables • • • • • • • • • • • • • 10-10 
·charinels : • • • ~ • • • • • • • • • • • • • • 10-11 
Devic~ Channels · ·.~ ~ • • • • • • • • • • • • • .; • • • • • • 10-12 
Connection of 'File Variables to Channels ••••••••• 10-12 
Sequential (Non-Text) File Operations • • • • • • • • • • 10-16 
Te.xt File Operations • • • • • • • • • • . • • • • 10-16 
Random File Operations • • • • . • • • • • • • • • 10-19 
Logic~! End of File • • • • • . • • • • • • • • • • • • • 10-20 
Logical End of Consumption • • • . • • • • • • • • • • 10-20 
Buffers Associated With File Variables •••••••••• 10-20 
Connections of Files with Different Component Types • • • 10-21 
Conditional READS and WRITES • . • • • • • • • • • 10-22 
Ch.ann· el. Aborti'ons 10-23 . . . . . . . . . ·- . . . . . . . . 

... 

SECTION 11. PROCESS MANAGEMENT 

.11. I' 
(11.2 

O°VER.VIEW • • • • . • • • • • • • • • • • • • • • • • • • • • • 11-1 

l;L3.i 
,ll.~·. 
11. 5·_ 
. - ' 1 

11.6 
J.l ~ _7"'" 
i1;0·· .. ' .. -~~ 

SYSTEM DECLARATION • • • • • • • • . • • • • • . • • • . 11-1 
PROGRAM DECLARATION • • • . • . . • • • • • • • • • • . • • 11-4 
DECLARATION OF A CONVENTIONAL PASCAL PROGRAM • • • . • • 11-5 
PROCESS DECLARATION • • • • • • • • • . • • • . •..•• 11-7 
CONCURRENT CHARACTERISTICS • . • • • • • • • • • • • . • 11-9 
PROCESS INVOCATION • . • • • • • • • • • • • • • 11-11 
PROCESS TERMINATION • • • • • • . . • • • • • . • • 11-13 

SECTION 12. MEMORY MANAGEMENT 

12 .1 . OVERVIEW • • • . • • • • • • • . • . • . • . • • 12-1 
l~:~ ~ MANAGEMENT OF SYSTEM MEMORY • • . • • . • . • . • • . • 12-1 
12;~~1 Dy~amically Allocated Data Areas • • • • • • • • • • • 12-1 
i2;2:1.i Heaps • • • • • • • • • • • . . • • • • • . • • 12-1 
12~~~2 "sfatically Located Data Areas . . • . . . • • 12-2 
12~3. HIGH-LEVEL USER INTERFACE TO MEMORY MANAGEMENT .••.... 12-2 
12.3.1 Procedure NEW • • • . • • • . • • • • • • • • . • . • 12-2 
12.3.2 Procedure DISPOSE .••••••..•••.•••.• 12-2 
12.4 LOW-LEVEL USER INTERFACE TO MEMORY MANAGEMENT ..•...• 12-3 
12.4.1 Procedure NEW$ .•..•.•.•..•.••••.••.• 12-3 
12.4.2 Procedure FREE$ •••...•••...•..•. 12-3 
12.4.3 Procedure HEAP$TERM . . . . . . . • • . • • • . . . • 12-4 
12. 5 USE OF COMMONS • . • . . • • • . . . . • • . . • • . . . 12-4 
12.6 PROCESS RESOURCES • • • . • • • • . • • • • • • . • 12-5 
12.6.1 Process Stack • . . • . • • • • . • • . . . . • • 12-5 
12.6.2 Process Heap •.••••••••..•••••••..•. 12-6 
12.6.3 Estimating S,pace Requirements of Process Resources •..• 12-6 
12.6.4 Allocation of Process Resources •••••....•••• 12-8 
12.6.4.l Allocation of S¥stem Process or New Program •••• 12-9 

viii 

·' ""'\ 
•.... _.;} 



·,. 

12.6.4.2 Allocation of New Process •••• • ••• - ·''"" ·· -~·:-_ ... ·· .. l~-8. 
12.6.4.3 Allocation of Conventional Pascal" Program. : >:-<·· :~~: r<> • 12·~9 
12 • 7 EXAMPLE • • • • • • • • • • • • • • • • • _ • : •. ,~u ~ ~ '.:_ .. . • ...... . .}'2-9 

- " . 
SECTION. 13. ERROR RECOVERY AND EXCEPTION'HANDL!NG 

' - r : 1 ' -:~ ... ,. , ~ 

13 .1 OVERVIEW • • • • • • • • • • • • • • • • • • , •. ,~ • ··~ :"'· /~{; i:3~l:, 
13. 2 EXECUTIVE RTS DETECTED ERRORS • • • • • • • . • • • • • ··.• '1::3;..;·l:. 

~ ' ; ... '··:- '.1 

13.2.1 User Errors • • • • • • • • • ••••••• ··•• •. ,,~ .. ·13·..:"2 
13.2.2 Scheduling Errors • • • • • • • • • • • • • • • • a_.3 ... 2 
13.2.3 Semaphore Errors • • • • • • • •••• f3--2 
13.2.4 Interrupt Errors • • • • • • • • • • • • •••• ~ 13~2 
13. 2. 5 Process Management Errors • • • • • • • • • • • ·• 13-3 
13.2.6 Exception Errors • • • • • • • • • • • • • • • 13-4 
13.2.7 Memory Management Errors • • • • • •••••••• 13-'4 
13.2.8 File Errors • • • • • • • • •• ~·~ • 13-5 
13.2.9 Host File Errors • • • • • • • • • • • • • • • ' • :. 13-:.1() 
13. 3 RUN-TIME EXECUTION ERRORS • • • • • • • • • • • • • • • ...::. ![3';..Jt{) 
13. 4 CRITICAL TRANSACTIONS • • • • • • • • • • • • • • •. • : • 1'3-11 
13. 5 EXCEPTION HANDLING • • • • • • • • • • • • • • •. • , l:J-1-3 
13. 6 EXAMPLE • • • • • • • • • • • • • • • • • . • • • ,•.. .• t'3~1'5 
13. 7 RECOVERY OF FILES • • • • • • • • • • • • • • • • • -: _ • l\J-1_7 
13. 8 PROCESS MANAGEMENT • • • • • • • • .• • . . • 13.:.17 
13.9 SYSTEM CRASH • • • • • • • • • • • • • • • • • • 13~17 

SECTION 14. IMPLEMENTATION OF DEVICE HANDLERS 

14.1 OVERVIEW •••••••••••••••••••••••••• l~.;,.i·'. 
14. 2 PHYSICAL DEVICE INTERFACE SYSTEMS • • • • • • • • • • • '• • lA"--3<. 
14.2.l Physical Device Interface Initialization Procedure. ~ r ~ ia~t 
14. 2. 2 Physical Device Interface Supervisor Program • • • • • • ·. :_t11.:.·6 :. 
14. 2. 3 Logical Device Interface Process. • • • • • • • • • •.. ~14"'"6 · 
14.2.4 Logical Device Channel. • • • • • • • • • • • • • • • • • 14-6· 
14.2.4.1 Channel Name. • • • • • • • • • 14-7. 
14.2.4.2 Component Length •• ~ • • • • • • • • • • • • • 14-7 
14.2.4.3 Channel Mode. • • • • • • • • • • • • • • • • • • • 14-7 
14.2.4.4 Maximum Number of Connected User Files. • • • • • • 14-8 
14.2.4.5 End of Consumption Handling • • • • • • 14-8 
14.2.4.6 Device Channel Destruction. • • • • • • • • • • 14-8 
14.2.4.7 Device Channel Abortions. • • • • • • • 14-9 
14.2.5 Interrupt Demultiplexer • • • • • • • • • • • 14-9 
14.3 EXAMPLES ••••••••••••••••••••••••• 14-10 
14.3.1 Phnsical Device Interface System for a Line Printer • 14-1 
14.3.2 Logical Device Interface Process for a Cassette 

Drive. • • • • • • • • • • • • • • • • • • • • • • • • • 14-14 
14.3.3 Implementation of Video Display Terminal Handler. • • • • 14-16 

ix 

- ...... 



~ .~-·--·-- - __ -. __ ,.. __ ,_·_.·._ 

14.3.3.1 User Interface and Operation of VDT . . . . . . . . 
14.3.3.2 ImpleJ'l!,entation of Initialization Procedure. 
14.3 .• 3.3 Implementation of Supervisor Program. • • • . . . . . . 
14.3.3.4 Implementation of VDT Screen Logical _Device 

Process. . . . . . . . . . . . . . . . . . . . 
14.3.3.5 Implementation of VDT Keyboard Logical Device 

Process. . . . . . . . . . . . . . . . . . . . 

OPERATIONS 

r· 

SECTION 15. CONFIGURING TARGET SYSTEMS FOR INTERPRETIVE EXECUTION 
~- _,.; 

.. ,....:;'\ . 

..>.....-.'.". 

1 ~-. 1 ·-· OVERVIEW • • • • • • • • • • • • • • • • • • • • • • . • • 
15". 2. · CONFIGURING THE MICROPROCESSOR PASCAL SYSTEM 

INTERPRETIVE RTS FOR THE TARGETY MACHINE • • • 
15.2.1 Specification of RAM Locations •••••••.•.•.•. 
15. 2-. 2 Specification of Restart and LREX Vectors Locations • 
15:2.~3 Allocation of Workspaces in CONFIG •••••••••••• 
15~ .... 2 ~.-4 ExamPle . . . . . . . . . . . . . . . . . . . . . . . . . 
15.~ ,0 USER° CVSTO,MIZATION OF THE INTERPRETIVE RUN TIME 

SUPPORT. ~ • • • • • • • • • • • • . • • . . 
15. ~ -~ 1 Assembly. L'nguage Interrupt Handlers. • • • 
15.3~1.l Pu~e Assembly Language Interrupt Handlers • 
15~3~1.2 be9lar,tion and Calling Conventions for 

~ .... ) . ASSEMBLYEVENT • • • • • • • • • • • • • • • • • • 
15;),1.3 Use of ASSEMBLYEVENT ••••••••••••• 
15.j~2 Crash Routine • • • • • • • • • • • • • •••.. 
15.4 .ASSEMBLY LANGUAGE CODING CONVENTIONS ••••.••• 
15.4.1 Gene~al Format and Example of Assembly Language 

Segment • • • •.. • • • • • • • • • • • • • • • • 
15.4.2 Details of Assembly Language Segment Conventions •••• 

APPENDICES 

APPENDIX A Glossary. . . . . . . . . . . . . . . . . . . . . . . 
APPENDIX B Microprocessor Pascal Reference Card. . . . . . . 
APPENDIX c Microprocessor Pascal Standard Routines . 
APPENDIX D Executive Run Time Support Reference Card . . . . . . 

·'APPENDIX E Micr'oprocessor Pascal System Error and 
Exception Codes . . . . . . . . . . . . . . . . . . . 

APPENDIX F Microprocessor Pascal System vs Wirth .. s 
Pascal . . . . . . . . . . . . . . . . . 

APPENDIX G Microprocessor Pascal System vs TIP . . . . . . . 
APPENDIX H Executive Run-Time Support vs TIPMX . . . . . . . . . 
APPENDIX I BNF of Microprocessor Pascal System . . . . . . . 

x 

14-16 
.····~ 

) 

14-17 
14-18 

14-19 

14-22 

15-1 

15-1 
15-3 
15-6 
15-6 
15-7 

15-9 ) 
15-15 I 

15-15 

15-15 
15-17 
15-20 
15-21 

15-21 
15-23 

A-1 
B-1 
C-1 
D-1 

E-1 

F-1 
G-1 
H-1 
I-1 



APPENDIX J 
APPENDIX K 
APPENDIX L 
APPENDIX M 

FIGURE 1-1 
FIGURE 1-2 
FIGURE 2-1 
FIGURE 2-2 
FIGURE 2-3 
FIGURE 2-4 
FIGURE 2-5 
FIGURE 3-1 
FIGURE 3-2 
FIGURE 4-1 
FIGURE 4-2 
FIGURE 6-1 
FIGURE 8-1 
FIGURE 9-1 
FIGURE 9-2 
FIGURE 9-3 
FIGURE 9-4 
FIGURE 9-5 
FIGURE 9-6 
FIGURE 9-7 
FIGURE 10-1 
FIGURE 10-2 
FIGURE 10-3 
FIGURE 10-4 
FIGURE 10-5 
FIGURE 10-6 
FIGURE 10-7 
FIGURE 10-8 
FIGURE 10-9 
FIGURE 10-10 
FIGURE 10-11 
FIGURE 10-12 
FIGURE 10-13 
FIGURE 10-14 
FIGURE 10-15 
FIGURE 10-16 
FIGURE 10-17 
FIGURE 11-1 

FIGURE 11-2 
1 FIGURE 11-3 
--~ FIGURE 11-4 

FIGURE 11-5 

Interpretive RTS Data Structures. 
MPP 733 ASR DSR Documentation • • 
RTS Clock Interrupt Handler • • • 
Assembly Language Interface: MPX 

LIST OF ILLUSTRATIONS 

.. . . . . . . . 
• • ..... 1·rl_:.._~.. • 

~~ .· .<" •. -. . . . . . . . . . .. . . .• . 
J-1 
K-1 
L-1 
M-1 

THE MICROPROCESSOR PASCAL SYSTEM • • • • 1-4 
RELATIONSHIP BETWEEN THE PASCAL USER AND RX • • 1-7 
SEQUENTIALLY PERFORMED PROCESSES • • • • • • 2-2 

: ~ 1 f'" ·- ,-".'' ·~ 

CONCURRENTLY EXECUTING PROCESSES • • • • • • • i. '- 2-3' 
NESTING OF SYSTEM, PROGRAM, AND PROCESS DECLARATIONS 2-5 
TYPICAL STACK FRAME • • • • • . • • • • • • • • • • 2-.9 _ 
HEAP STRUCTURE • • • • • • • • • • • • • • • • • • • 2-1{),~ ·· 
DIAGRAM OF INPUT/OUTPUT • • • • • • • • • • • • • • 3-2 
COMPILER LISTING OF PRODUCER/CONSUMER PROCESSES 3-:3 -
INPUT FILE EXAMPLE CONTAINING ERRORS • . • • • • • • .4-.6 
A STRING • • • • • • • • • • • • • • • • • • • • 4-11 
DEBUGGING STRATEGIES • • • • • • • • • • • • • • • • 6~14 
ALLOCATION OF STACK AND HEAP • • • • . ·• • • • • s~·3 8' .. , 
EXAMPLES OF THE EXECUTIVE RTS SCHEDULAING POLICY .. , . 9-3. 
SWAP Procedure • • • • • • • . • • • • • • • • • • • 9-~ 
EXAMPLE OF INCORRECT SEMAPHORE USE • • • • ' • • , ~. · • ·· • 9-9 
EXAMPLE OF CORRECT SEMAPHORE USE • • • . • • , • F'~ • , 9-lO. ·. 
EXAMPLE OF SERVICING INTERRUPTS AS EVENTS • • • • • ., 9~ l 7 - , 
SPURIOUS INTERRUPT PROGRAM • • • • • • • • • • • • • 9-i 1 .. 
EXAMPLE OF STYLE FOR INTERRUPT HANDLING.· ••• ·~. . • 9"-23: 
INTERFACE TO ~..EMORY MAPPED I/0 DEVICE . • • ;, . 10•4 .. '. 
MANIPULATION OF MEMORY-MAPPED I/O DEVICE ••• • • :·10-5 ._ 
EXAMPLE OF SEMAPHORE CONTROL OF SHARED VARIABLES • • 10-6 
EXAMPLE IMPLEMENTATION OF MESSAGE BUFFERING DATA • • 10-7 
EXAMPLE IMPLEMENTATION OF MESSAGE BUFFERING • • 10-8 . 
FILE VARIABLES AS PROCESS-LOCAL PORTS . • • • • • . 10-10 
CHANNEL CONNECTIONS • • • • • • . • . • • • • • • • 10-11 
LOGICAL DEVICE AND ASSOCITAED DEVICE CHANNEL • • 10-12 
PAGINATION PROGRAM • • • • • • • • • • • • . • • . • 10-13 
COORDINATE CONVERSION PROGRAM • • • • • • • • • 10-14 -
COMMUNICATION AMONG PROGRAMS AND DEVICES • • • • . • 10-15 
COLUMN INDEX IS INCREMENTED DURING TEXT READ • • 10-17 
EFFECT OF READLN ON READING TEXT FILE ..••• 10-17 
EFFECT OF READING FIRSTY CHARACTER ON LINE • • . . . 10-18 
EFFECT OF EOF(F) WHEN RESULT IS FALSE ••••• 10-19 
POLLING FILES FOR INPUT • • • • • • . • . • . • • • 10-22 
USE OF EOF WITH CONDITIONAL FILES • • • • • • • • • 10-23 
EXAMPLE SYSTEM BODY WHICH STARTS TWO DEVICES 

AND A MAIN PROGRAM • • • • • • • • • • • • • • 11-2 
EXAMPLE OF SYSTEM BODY DECLARATIONS • . • • • • . • 11-3 
SIMPLE, CONVENTIONAL PASCAL PR-OGRAM • • • • • • • • 11-5 
EQUIVALENT MICROPROCESSOR PASCAL SYSTEM • • • • • • 11-5 
Conventional Pascal Program with File I/O • • • 11-6 

xi 



FIGURE 11-6 
tlGURE 11-7 
FIGURE 11-8 
(C :: 

FIGURE ll-9 
FIGURE 12-1 
FIGURE 12-2 
FigURE 12-3 

FIGURE. 
.FfGURE 12-5 
FfGORE 13-1 
FIGURE 13-2 
F?GURE 14-1 

FIGU~E '14-·2 
FI-GURE 14-3 

- ,'':ii 

FIGURE, 14-4 

FIGURE 14-5 

FIGURE 14-6 
FIGURE 14-7 

FIGURE 14-8 

FIGURE 14-9 
.. 

FIGURE 14-10 

FIGU:RE 14-11 

FIGURE 14-12 
FiGURE '14-13 

FIGUR'.E "14-14 
. ~· 

FIGURE 14-15 

FIGURE 14-16 
FIGURE 14-17 
FIGURE 14-18 

FIGURE 14-19 

FIGURE 14-20 
FIGURE 14-21 

FIGURE 14-22 
FIGURE 15-1 
FIGURE 15-2 
FIGURE 15-3 
FIGURE 15-4 
FIGURE 15-5 

EQUIVALENT MICROPROCESSOR PASCAL SYSTEM • • • • 
NESTING OF PROCESSES AND VARIABLES IN SCOPE 
EXAMPLE OF CONCURRENT CHARACTERISTICS WHICH ARE 

11-6 
• • 11-8 

CONSTANT AND VARIABLE • • • • • • • • • • 11-10 
MU~rIPLE DYNAMIC INVOCATIONS OF PROCESSER . • • • . 11-11 
DETERMINING STACK REQUIREMENTS OF A PROCESS • • • . 12-7 
DETERMINING HEAP REQUIREMENTS OF A PROCESS • • • • . 12-7 
USE OF TARGET DEBUGGER TO DETERMINE. STACK AND 

HEAP REQUIREMENTS OF A PROCESS • • • • • • • • 12-8 
PROGRAM WITH CONCURRENT CHARACTERISTICS • • • • • • 12-10 
MEMORY LAYOUT OF STACKS AND HEAPS FOR PARAGRAPH 12.7 12-13 
EXAMPLE SKETCH OF EXECUTION HANDLING •••••••• 13-14 
EXAMPLE OF EXCEPTION HANDLING FOR A PROCESS • • • . 13-16 
Conceptual View of Interface to a 
Logical Device • . • • • • • • • • • • • • • . 14-1 
Interface to Physical Device • • • • • • • • . • • 14-2 
Example Sketch of an Interface Proess • • • • • • . 14-2 
Illustration of Multiple Logical Devices 
on a Single Physical Device • • • • • • • • 
Calling Sequence of Example Physical Device 

• • 14-3 

Interface Initializaton Procedure ••••.•••• 14-4 
Initializaton of Four ASR 733~s • • • • • • • • 14-4 
Implementation of Physical Device Interface 
Initialization Procedure ••••••••.••••• 14-5 
Physical Device Interface System with 
Interrupt Demultiplexer Process • • • • • • . • • . 14-10 
Calling Sequence of Line Printer 
~nit~alization Procedure ••••..• ~ 
Implementation of Line Printer 

14-11 

Initialization Procedure ••••••.•••.••• 14-11 
Implementation of Line Printer 
Supervisor Program. • • . • . • . • • • . • . • 14-12 
Example of Line Printer Device Manipulaton ••••. 14-13 
Implementation of Cassette Logical Device 
Interface Process • • • • • • • . . • • 14:..15 
Example of Connection of 
User Files to a VDT • • • • • • 
VDT Interface System 
Initialization Procedure .••...••••. 
VDT Interface System Supervisor Program . 

14-17 

. . . 14-17 

. . • 14-18 
VDT Screen Logical Device Process . 
Implementation of VDT Screen 

• • • . 14-20 

Worker Procedure. . ••. 
Implementation of VDT Screen 
Exception Handler • . . . • . . 
VDT Keyboard Logical Device Process 
Implementation of VDT Keyboard 

.. 14-21 

. 14-22 

. 14-23 

Worker Procedure. • • • • • • • • . . • . . 14-24 
VDT Physical Device Interface System • • . • • 14-26 
Config. . • . . . • • . • • . • • • • • • • 15-2 
Simple RAM Table. • . • • . . . • . . • . • • • 15-4 
Use of Ram Table in Config •••.••••••••• 15-5 
Config with User Modificatons • • . • ••••• 15-8 
USERINIT. • • • • • • • • • • • • • 15-9 

xii 

) 
__ ../ 



FIGURE 15-6 
FIGURE 15-7 
FIGURE 15-8 
FIGURE 15-9 
FIGURE K-1 
FIGURE K-2 
FIGURE K-3 
FIGURE K-4 
FIGURE K-5 
FIGURE K-6 
FIGURE K-7 
FIGURE K-8 
FIGURE K-9 

FIGURE K-10 

FIGURE K-11 

Figure K-12 

Figure K-13 

: 
" '·· 

TABLE 4-1. 
TABLE 4-2. 

TABLE 5-1. 
TABLE 6-1. 
TABLE 6-2. 
TABLE 6-3. 
TABLE 8-1. 
TABLE 8-2. 

Standard Crash Code • • • • • • • • • _ • . .... •.. .. • • • 15-20 
';• J 

Elaborate Crash Routine • • • • .. • • • • .. • .• 15-21 
Assembly Language Segment • • • • • • • ~ · -~ • • 15-2 :; 

c. 15-23 Assembly Language Segment • • ~ .• ~· •••• 
73 3 ASR Handler Implementation. • • • • • • • • • .. K-3 •. 
ASR Interface System Ini tializaton Procedure. • ·.' •. K~;4,.!· . 
ASR Inter face System Supervisor Program • • • • • ·: •. K.;;;.1: .. · 
ASR Keyboard Logical Device Process • • • • • • • · •. i<:--8 :· 
Implementation of Keyboard Work Procedure • • • ~". K-9 ·· · 
Implementation of Keyboard Exception Handler. • • • . -K-10 .. 
ASR Printer Logical Device Process. • • • . • • ... ~ ·• J{7.1i {. 
Implementation of ASR Printer Work Procedure •••• :tK'""J,~-.. 

d --.·· '1'1''- ' ....... ~ 

Implementation of ASR Cassette Logical 1 • ·-:-. - - ~' 
Device Process.. • • • • • • • • • • • • • • : ;: .: • · l<~~t~ ~
Implementation of ASR Cassette 
Work ·procedure. • • • • • .. • • 
Implementation of ASR Cassette 

. ~ • • .. ·• - • . • r:-;K--~ ~ ... _ .. 

Output Procedure ........... ~ . . . ·• 
Implementation of ASR Cassette 
Input Procedure • .. • • • • • ~ • • • 
ASR Physical Device Interface System. • • • • 

LIST OF TABLES 

•• -K-lq, 
. •. K-18 

SOURCE EDITOR COMMANDS AND FUNCTIONS: 91! .VDT .. • ... 4..-J ·, " 
:r \!. .. ' - ,,.._ ... ~~ 

SOURCE EDITOR COMMANDS AND FUNCTIONS: 
913 AND TMAM 9000 VDTs • • • • • • • ••••• 4.~.4. ~· 

LISTING CONTROL OPTIONS • • • • • • • • • • • • • ~- l • ..:..5~'8 ~- \ 
HOST DEBUG COMMANDS • • • • • • • • • • • • • • : • --6.~2 ., . 
FORMATS FOR ROUTINE PARAMETERS • • • • • • .• ~.6..:J ],,:_ 
STATUS SUMMARY OF ALL EXISTING PROCESSES • • • • • : • '6..;; i''i . 
DEFAULT VALUES • • • • • • • • • • • • • 8.-5.9 ,. 
ERROR CODES RETURNED BY STATUS • • • • • • • • • • • :;S-62 ·_, 

- : .. 
.. ... 

·xiii 

-·--···-~-~-~?'~~ ..... ~--- .. ~~.-:-·-- ''="'~.~~--.........-.. --~ 

- ~-· '• .. ~:_ ::j.~· 
__ . .'.·':.'--



";·: 
- --· ---~~ '-"'-""' ... ..:..:-....-_ . ..::........ ___ --·- _,___--· -· ~...:- .. ~~~----· ~-· ~---...... _ --~~-~-'--"-"-"-""~ 

.. 



' l ......__ __ 

SECTION 1 

MICROPROCESSOR PASCAL SYSTEM OVERVIEW 

1.1 GENERAL 

Microprocessor Pascal is a Texas Instrument's product designed to 
support multi-tasking (concurrency) on Texas Instruments' TM9900 
microprocessors. Concurrency is one of the chief advantages of 
Microprocessor Pascal (MPP) because it provides a high level of 
computer-time saving by performing simultaneous integrated execution 
of a number of processes with a single processdr. 

1.1.1 Microprocessor Pascal System Features 

The Microprocessor Pascal System is intended for applications to be 
executed on small computers that do not have a large, general-purpose 
operating system. Features supported by Microprocessor Pascal System 
are: 

Easy to learn 

Block structured language 

Compiler-enforced compatability checks 

User-defined data structures 

Interrupt handlers coded in Pascal or assembly language 

Concurrent execution of multiple tasks (processes) 

Process synchronization via semaphores 

Direct high-level language single-bit and byte I/O 

File level interprocess communication 

Dynamic creation and reclamation of a process' resources 

Process scheduling according to a multiple-priority schewe 

Ability to customize applications to include only those 
those features of Executive Run-Time Support libraries 
that are required 

1-1 



1~2 _WHAT IS'"'MICROPROCESSOR PASCAL? 

Pascal is a block-structured high-level language develop~d by Niklaus 
Wirth which enables the user to take a reliable, highly structured 
approach to designing and implementing an application program. 
High-level language means that each Microprocessor Pascal instruction 
corresponds~a group of machine level instructions, whereas, a 
low-level language instruction (e.g., 9900 Assembly Language) 
corresponds to a single instruction in machine code. 

~exas Instruments~ Microprocessor Pascal System is a software package 
development and execution of a superset of the Pa.seal language for use 

;;; on. the 9900 Family of microprocessors and TM990 microcomputer modules. 
_Specifically, the Microprocessor Pascal System supports user 

-> development of an application on a host system and execution of that 
apptication on the 9900 or TM990 Target Systems. 

The .Microprocessor Pascal System can be divided into two groups: Host 
and Target. The Host is the system used specifically for the 
development of software. This group includes those tools necessary for 

.entering and developing applications software such as the Editor, 
compiler, etc. 

The Target group is the run-time support for executing the software 
and includes those tools necessary for implementing and maintaining a 

,. .. _Target system environment, e.g., CPU scheduling routines, memory 
management routines, etc. These run-time support routines are grouped 

. jnto. libraries in such a manner that only those routines necessary for 
the execution of the application software can be selected by the user 
for inclusion in the executable object module. Selection and binding 
of the runtime-support software is performed by the link editor, and 
the pbject module produced will~be the module that is executed on the 
Target System. -~ 

Tools provided in the Microprocessor Pascal System for Host software 
development consist of routines enabling the user to enter an 
application into a host computer system.Other tools are available for 
checking for errors in syntax, translating the source code into code 
that is executable by the central processor (CPU) ,- and discovering and 
removing run-time errors that may occur during execution in the target 
system. 

Routines available in the Microprocessor Pascal System for Target 
system run-time support provide the us.er with the means of 
implementing and maintaining a target system environment. The Target 
system environment controls software execution in the target system 
and includes CPU usage, system memory usage, routine calling 
conventions, data structures, etc. These run-time support routines are 
grouped together into libraries; only those routines required by the 
application will be included in the software executing on the target 
system. In addition, the run-time support provided allows the 
Microprocessor Pascal System package to be a concurrent (multitasking) 
system. Run-time routines support simultaneous sharing of a single 
processor by a number of routines (called processes) during execution. 

1-2 



J 
I 

''--··. 

In the Microprocessor Pascal System, these "processe~·" ar·e· separate 
sites of execution with their own environment. 

1.3 WHY USE MICROPROCESSOR PASCAL? 

Concurrency is only one of the advantages of Microproces~or "Pascal. 
The following paragraph points out some of the other advantages. 

An engineer wants to control his factory process with a dedicated 
microcomputer system. His factory process consists of five ind~~~ndent 
sub-processes. The engineer should design his process to satisfy'~· the 
requirements of realtime logic flow, write his software so th~t·the 
sequential execution of the code comprehends the relationship ·between 
the five independent sub-processes realtime logic flow an·a coritrols 
each sub-process independently. This approach requires a "jtip~r~fsor 
program to control which piece of code executes according to,.the 
real time needs (priori ties) of the factory process. Microprocessor· 
Pa.seal System Run Time Support provides this supervisor. Furthermore, 
if the engineer writes his code in a block-structured and- m6dular 
fashion, it will be more reliable and easier to add features t6 later. 
The Microprocessor Pascal System is such a language. Thus, the 
engineer can design and implement the control algorithm for his 
factory process in the same manner in which he perceives it. 

Understanding concurrency and the features that support ib~fri'the 
Microprocessor Pascal System is a prerequisite to making efficient' use 
of the system""s resources. For this reason, the user should make ~s-ure 
that he understands the information defining these concepts which is 
presented in Section 2. ·~ 

• Execution of Microprocessor Pascal· is in one of two modes, '·.each 
supported by its own set of executive run-time libraries: 

Interpretive execution - Pseudo code (or PCODE) refers to 
the code resulting from execution of the Microprocessor 
Pascal compiler. Pseudo code is executed in the target 
via an interpreter (anc for this reason, pseudo code 
may be referred to as interpretive code), a program 
that "looks at" each PCODE instruction in turn and 
executes a set piece of code to perform the task 
indicated. 

Native code - Native machine code (or obiect code) refers 
to the code resulting from execution of the 
Microprocessor Pascal computer and code generator. It 
is generated from the interpretive code produced by the 
Microprocessor Pascal compiler. Native code is executed 
directly by the microprocessor in the target 
environment. 

1-3 



'.·.: -~ -_.:_:/·:·~;:.::.: .: . .. ~ 
__:._ .... _ ... ____ ... -~..::~-·--~-....._~--~-.:..,._.~:.;.;~.:.."-~-..:.:..:.:' ....... ....-.:.:~~----::..'..: .. ~~~.:... .. ~::...:~:.-~~·-~..:::.. .. ..:.:.:......._~· . -· -~-~__.__,_;....,., .. ·~ ""-.... _._,_._ -· -~. ~~-·.'.::~·--~~"---~--- -- ~ ~ 

This manual describes the run-time routines for Microprocessor Pascal 
interpretive execution (MPIX) • Descriptions of run-time support--~ 
routines for the native code . user (MPX) are provided in th~ J 
Microprocessor Pascal Executive User~s Manual (MP385) included in this 
package. 

The information that follows provides an overview look at the 
Microprocessor Pascal System describing in greater detail the system 
components introduced above. Figure 1-1 presents an overview of the 
Microprocessor Pascal System in diagrammatic form. 

PROGRAM PROS1: ----- LEVEL 1 

PROCESS Pfl0C1: 

BEGIN (PROCESS BODY! 
END: 

BEGIN f PROGRAM BODY! 
END: 

PROGRAM PROS2: 

LEVEL2 

LEVELO 

LEVEL 1 

PROCESS PROC2: LEVEL2 

PROCESS PROC2A: 

BEGIN (PROCESS BODY! 
END: 

BEGIN (PROCESS BOOYI 
END: 

LEVEL3 

PROCESS PROC3: - LEVEL 2 

BEGIN (PROCESS BODYI 
ENO: 

BEGIN (PROGRAM BODY! 
ENO; 

BEGIN (SYSTEM BODYI 
ENO; 

FIGURE l-1.THE MICROPROCESSOR PASCAL SYSTEM. 

1-4 



1.4 HOST AND TARGET SYSTEMS 

The user of the Microprocessor Pascal System develops software using 
one of the following host computer systems: 

Single-user FS990 (model 4 or 10} floppy disc development 
system with TX 990 system software 

Single-user TMA..M 9000 table-top computer svstem with 
double-sided, double-density floppy disk drives and 
AMPLUS System software 

Multi-user DS990/10 hard disc minicomputer with DX system 
software 

Once developed, the software can execute on the following target 
systems: 

9900 16-bit Microprocessor chip set 

TM990 Microcomputer module with a memory expansion module 

1.5 SOFTWARE DEVELOPMENT TOOLS 

' \ The Microprocessor Pascal System provides four major tools supporting 
software development on the host computer: 

An intelligent, interactive editor for source preparation 
which has syntax checking capability 

A compiler to generate interpretive code (PCODE} from 
source code 

A code generator to generate 9900 object code 

An interactive debugging interpreter 

Each of these development tools is described briefly below. 

1.5.1 Source Editor 

The Microprocessor Pascal System provides an interactive source editor 
designed t-0 help in the creation and modification of Microprocessor 
Pascal System source files. The editor interacts with the user at a 
video display terminal by displaying a desired portion of the file on 
the screen and allowing a cursor to be moved around within this 
display. Changes may be made to the file by simply typing over the old 
text with the new text, or by adding, moving or deleting complete 
lines or blocks of several lines. The editor helps the user input 

1-5 



correct Pascal statements by syntax checking the complete file on 
command. If an error is detected, an appropriate error message is 
given to allow the user to correct the error before syntax checking 
continues~ The editor also has features which help with the 
indentation of structured statements. In Compose mode, each time a new 
line is added, the editor positions the cursor to the current 
indentation level. The cursor location iS. only a suggested indentation 
level; the user can easily reposition the cursor. 

1.5.2 Pascal Compiler 

The Microprocessor Pascal System provides a compiler that translates 
Microprocessor Pascal System source code into interpretive code. This 
code may be executed interpretively using the Host Debugger or using 
·the interpreter in a target system. This code may also be used as 
input to the Native Code Generator (described in Subsection 1.3.3). 
Interpretive code is characterized by its compact size: a typical 
application generated in PCODE is about half the size of that same 
application generated in 9900 native code) • One key advantage of 
interpretive code is the minimal time required to produce an 
executable system that can be debugged at a functional level. However, 
interpretive code runs somewhat slower than native code. The 
Microprocessor Pascal System Compiler processes the full 
Microprocessor Pascal System language and detects syntactic and 
semantic errors at the source level. 

1.5.3 Native Code Generator 

The Native Code Generator (NCG) translates the interpretive code from 
.the compiler into 9900 native (object) code. Native code is less 
compact than interpretive code and executes five times faster. The 
native code option is provided to satisfy execution-time requirements 

. that cannot be met by interpretive code. 

1.5.4 Host Debugger 

The Microprocessor Pascal System provides an interactive debugger 
which enables the user to debug application systems at a functional 
level (i.e., discover and remove errors that would occur if the 
application was executing on the target system) . The debugger supports 
symbolic referencing of routines, files, etc. Statements can be 
referred to by Pascal statement numbers. Breakpoints can be used to 
stop the execution at any point by specifying the Pascal statement 
number of a particular routine. When execution is suspended, the 
status of the system can be examined. Examples include the status of 
each process in the system, as well as the values of variables for the 
process. Data can also be modified if desired. The execution of the 
system can be traced at various levels including the routine entry and 
exit level, or module statement flow level. Target hardware interfaces 
such as CRU references and interrupts may also be simulated in the 
debugging mode. 

1-6 



Please note: also supplied as an extension to the Microprocessor 
Pascal System are AMPL procs specifically designed to facilitate debug 
of a Microprocessor Pascal Target System. Information of use of these 
procs is provided in Section 19 of this manual. 

1.6 EXECUTIVE RUN TIME SUPPORT 

The executive components of the Microprocessor Pascal System are 
provided in two versions that correspond to the output generated by 
the Microprocessor Pascal System compiler and the output produced·'· by 
the Native Code Generator. The Microprocessor Pascal Interpretive 
Executive (MPIX) supports interpretive execution of PCODE (produced.by 
the compiler). It is generally used for applications for which program 
compaction achieved with interpretation is more important than the 
associated increase in execution speed. The native code run·time 
support library introduced here as the Microprocessor Pascal Executive 
(MPX) supports execution of 9900 Native Code and is generally used for 
time-critical applications. 

Actually, MPX is a set of routines that enables the user application 
to execute using Texas Instruments standalone executive called the 
Realtime Executive (Rx). The Realtime Executive User,s Manual 373) is 
included in the Microprocessor Pascal package. The Realtime Executive 
provides a run-time environment for any 9900-ba application regardless 
of application language. 

Rx capabilities that are applicable to the 
in the Microprocessor Pascal Executive 
through 14 of this manual document the RTS 
run-time support. 

Pascal user are documented 
User's Manual. Sectioni 9 

library for interpret code 

The relationship between Microprocessor Pascal and the Realtime 
Executive is displayed in Figure 1-2. 

1-7 



' ---..._ 

) 

PASCAL USER 

MPX 

., 

Rx 

--------------, 
' ___ :~~:=~~----! 

FIGURE 1-2. RELATIONSHIP BETWEEN THE PASCAL USER AND RX. 

1-8 



SECTION 2 

MICROPROCESSOR PASCAL SYSTEM CONCEPTS 

2. 1 OVERVIEW 

One measure of a system~s performance is the number of processes 
active at the same time, i.e., the level of concurrency within the 
system. (This may or may not be the same as the number of concurrent 
processes resident in the system.) Obviously, a system with 100 
percent concurrency is most efficient regardless of the size of the 
job the system is performing. If everything can happen at once, the 
job will be completed in the briefest period of time. 

Therefore, one goal in designing a computer system is to maximize the 
amount of concurrency in the system using one processor, but making 
the system appear as if it is doing everything at once. Obviously, 
with one processor, only one job can be performed at a time~ but, if 
the appropriate constructs are set up to preserve a job~s environment, 
the processor can switch from job to job in an interleaving fashion, 
servicing each eligible task a little bit at a time. This is as close 
as one can ~et to doing everything at the same time in a single 
processor system. Achieving maximum concurrency is the goal of the 
Microprocessor Pascal System. 

The constructs of the Microprocessor Pascal System are designed to 
support the multitasking concept of concurrency,i.e., one processor 
servicing many tasks or processes. This concept and the constructs in 
the Microprocessor Pascal System supporting it are described in the 
following paragraphs. 

2.2 CONCURRENCY 

To understand a concurrent processing system, simply compare it to the 
more familiar sequential programming system. Sequential programming 
means that one site of execution exists in a system at any one time. 
This program has the undivided attention of the processor and 
execution proceeds sequentially from instruction to instruction 
without interruption. When the program must wait for input or output, 
the processor is idle. 

In a concurrent processing environment, several sites of execution may 
exist. These sites of execution are called processes ' in the 
Microprocessor Pascal System (see 2.3) and are simply separate 
sequential routines. When the execution of a process is blocked 
(waiting for input, output, etc.), the processor merely switches its 
attention to another available process that is not blocked. 

2-1 



The following example illustrates the increased efficiency realized 
when using concurrent rather than sequential processing. This example 
involves a processor controlling a soft drink bottling operation. 
There are several operations involved, each of which are performed at 
a different operating station. 

(1) Anempty bottle is positioned under a filler tube and f·illed. 

(2) The filled bottle is then capped and checked for pressure 
leaks. 

(3) The inspected bottle is then placed in carton until the 
carton is full. 

(4) The full carton is then crated, and placed into inventory. 

In a sequential operation, one bottle must proceed through all of the 
steps before the next bottle can begin. Thus the output rate is 
limited to the amount of time needed to perform all four steps in 
sequence. Figure 2-1 illustrates this sequential operation: time is 
plotted along the horizontal axis. 

--------- -------- ------- ---------- --------- -------- -------- -----
STEP 1 FILL 1 FILL 2 

--------- -------- ------- ---------- --------- -------- -------- -----
STEP 2 CAP 1 CAP 2 

--------- -------- ------- ---------- --------- -------- -------- -----
STEP 3 CARTON 1 ETC. 
--------- -------- ------- ---------- --------- -------- -------- -----
STEP 4 INVEN 1 
--------- -------- ------- ---------- --------- -------- -------- -----

TIME 0 TIME 1 TIME 2 TIME 3 TIME 4 TIME 5 TIME 

FIGURE 2-1. SEQUENTIALLY PERFORMED PROCESSES. 

With concurrency (as illustrated in Figure 2-2), as a step is 
completed, the bottle is immediately passed to the next step: the just 
completed step is immediately repeated on a new bottle. Using 
concurrent processing, the output rate is one bottle per the time 
required for the slowest of the four steps. 

2-2 

6 



--------- -------- --------- --------- -------- --------- --------
STEP 1 FILL 1 FILL 2 FILL 3 FILL 4 FILL 5 FILL 6 

--------- -------- --------- --------- -------- --------- --------
STEP 2 CAP 1 CAP 2 CAP 3 CAP 4 •• ETC 
--------- -------- --------- --------- -------- --------- --------
$TEP 3 CARTON 1 CRTN 2 CRTN 3 . .ETC 
--------- -------- --------- --------- -------- --------- --------
STEP 4 INVEN. 1 INVEN. 2 INVEN 3 
--------- -------- --------- --------- -------- --------- --------

TO Tl T2 T3 T4 TS 

FIGURE 2-2. CONCURRENTLY EXECUTING PROCESSES. 

However, improved processor utilization is not the primary reason the 
Executive Run Time Support supports multitasking: the Executive Run 
Time Support is intended for applications, such as process control, 
that have a high degree of parallelism. Each concurr~nt activity is 
best managed by a separate software module that controls its behavior. 
This one-to-one correspondence between external activity and software 
control programs provides a powerful technique for the breakdown of a 
complex problem into modular components. Such modularity is important 
for the simplification of software development and testing, and for 
the application of previously developed modules to new problems. 

NOTE 

In the terminology of Executive Run Time Support, a program is a 
special case of a process. A task is performed by a process, so 
"multiprocessing" would be a more appropriate term than "multitasking. 
However, "multiprocessing" has been used to describe systems utilizing 
multiple processors, so we will use the term "multitasking". 

2.3 PROCESS 

To permit multitasking, the concept of a process has been introduced 
into the Micprocessor Pascal System language. A process is a 
separately executable collection of instructions with data on which 
the instructions operate and with its own run time environment. Each 
process is independently scheduled for execution on a priority basis, 
and interacts with other processes and the executive as needed. 

In a stand-alone environment having multiple processes (sites of 
execution), the ability to support priority scheduling and context 
switching are essential. In the example in Figure 2-2, a process is 
prepared for each of the four steps to be performed. Because the 
throughput of the system is limited to the speed of the slowest step, 
it would be desirable to give that step priority over any other step. 
In this way, it would never have to wait for the processor to be 
switched from one of the less urgent steps. The executive RTS provides 
for pre-emptive priority scheduling to serve this class of .need, 

2-3 



' - . - -
··-·----· . -· :'..:....'.. ......... -· . _-..:.:=~~~::~·.: _ __;_;~~~~.-:::"-'"~- -··-·--~~_:~::._::.·.,,__:::_ .. ~,._._ -

ensuring that the most urgent process that is ready to execute is the 
active process. A process priority is a user-assigned number that 
indicates the relative urgency of the process; the lower the number, 
the more urgent the process. 

NOTE 

The word "process" will be used many times in this document in a 
context applicable to a system, program, or process. Since both a 
program and a system are a special case of a process and do not differ 
in essential capability, when a distinction among system, program, or 
process is required, the distinction will be clearly made. 

2.3.1 State Of The Process 

When control is switched from a process, the current state of the 
process is saved. If the process were snapshot at some instant, its 
state would indicate the next instruction to be executed as well as 
the current values of all data variables which it can address. The 
state of the process must be resored before the process can resume its 
computation. The state of a process includes at least the machine 
context (workspace pointer, program counter, and status register) 
which is saved in a d~ta structure called the process record. 

In the Microprocessor Pascal System, code produced by the compiler is 
not self modifying, so the state of a process does not include the 
instructions themselves. The instruction stream is invariant with 
respect to the execution of processes. The Microprocessor Pascal 
System compiler also produces references to local data that are 
relative to a local memory region. Invariant code and relative data 
references provide reentrancy (See paragraph 2.7), and allows one copy 
of code to be in simultaneous use by more than one process. 

2.3.2 Processes As Interrupt Handlers 

Processes can also be created to act as hardware interrupt handlers. A 
process can be prepared to control each type of device in the system 
(e.g., an I/O device). When the device encounters an external 
condition that requires the attention of an internal process, it 
signals that fact by posting an interrupt request. Thus, the Executive 
Run Time Support allows the user to write processes in Pascal to 
service interrupts and devices 

2.3.3 Interprocess Communication 

Processes can communicate among themselves and synchronize with each 
other using the Executive Run Time Support. The system demonstrated in 
Figure 2-2 demonstrates this need. In the example, Step 2 must "WAIT" 
for Step 1 to "SIGNAL" completion of the filling operation before the 
capping operation can begin. Similarly, Step 2 must "SIGNAL" Step 3 

2-4 

. 
/ 



( 
I\_ 

that the checking operation is complete. This synchronization activity 
is supported in the executive RTS by the "Semaphore Management" set of 
procedures and functions. Interprocess files are also supported, which 
allow the sending and receiving of messages between processes. 
However, the implementation of these files is different in the 
interpretive mode and the native mode. 

2.4 SOFTWARE ORGANIZATION OF MICROPROCESSOR PASCAL 

The user application is built using a collection of processes nested 
at levels (referred to as "lexical levels") within the outermost 
Microprocessor Pascal construct which is the "System". Lexical levels 
indicate to the RTS the level at which a process in embedded in the 
System. Figure 2-3 illustrates this process organization. 

SYSTEM EXAMPLE; 

PFIOGFIAM l'FIOS1 ; 

PFIOCESS PFIOC1 : 

BEGIN IPFIOCESS BODY! 
ENO: 

BEGIN ll'ROGFIAM BODYI 
END; 

LEVELO 

LEVEL 1 

LEVEL2 

MOGAAMl'AOS2: -------- LEVEL 1 

l'l'IOCESS l'FIOC2; LEVEL2 

PROCESS PFIOC2A: - LEVEL 3 

BEGIN IPFIOCESS BOOYI 
END: 

BEGIN IPFIOCESS BODYI 
END: 

PFIOCESS PFIOC3: - LEVEL 2 

BEGIN IPFIOCESS BODYl 
END: 

BEGIN IPFIOGFIAM BODYl 
END; 

BEGIN !SYSTEM BODYI 
END: 

! "----· FIGURE 2-3. NESTING OF SYSTEM, PROGRAM, AND PROCESS DECLARATIONS~ 

2-5 



As illustrated in Figure 2-3, the System is found at lexical level 0. ~\ 
Programs (special cases of processes) started (spawned) by the System . ) 
reside at lexical level 1. Any processes spawned by programs at 
lexical level 1 reside at lexical level 2, etc. A Program always 
resides at lexical level 1~ its parent is always the System. Processes 
are spawned by "Programs" and by other processes and thus proce·sses 
reside at lexical level 2 or lower. (A process that spawns any other 
process is referred to as that process~ "lexical parent" or 
"ancestor". Conversly, a process spawned by another process is 
referred to as that process~ "child".) Processes are made up of 
standard Pascal procedures and functions. 

MPP System architectural terminology is explained in paragraphs 2.4.1 
to 2.4.3.2. Refer to Section 8 for a description of how to declare and 
implement each construct, using the Microprocessor Pascal System 
language. 

2.4.1 SYSTEM 

The SYSTEM is the outermost level of declarations and executable 
statements in a Microprocessor Pascal System~ all other modules are 
contained within it (i.e., programs are nested within the SYSTEM, and 
processes are nested within programs or within other processes). As 
previously mentioned, Figure 2-3 illustrates this concept of nesting. 

A SYSTEM is the process in which execution 
initializes global parameters and starts the 
contains. A SYSTEM must not have any variables 
exception of variables in COMMONs. (See paragraph 

2 • 4 • 2 PROGRAM 

The SYSTEM 
which it 
possible 

begins. 
programs 
with the 

8.5.3.4) 

A program is a process that is self-contained with respect to 
accessing data.via scope of variables or It corresponds to the PROGRAM 
construct of the Pascal language and has no external data available to 
it except through COMMONs. 

Using the Microprocessor Pascal System, multitasking is possible. 
Because of this feature more than one Program may be declared within 
the same SYSTEM. Processes and routines (procedures and functions) may 
be declared in a PROGRAM within the SYSTEM. In addition, the 
Microprocessor Pascal System also supports sequential Pascal which 
allows only single program environments. 

2-6 



2.4.3 PROCESS 

A process is a specific entity that "owns" a set of resources and 
performs one or a series of computations. 

A process may only be declared within a program, or within another 
process; within a process, procedures and functions may be declared 
along with other processes. A process may have value parameters 
associated with it, and may also have access to all variables which 
are declared global to it. 

2.4.3.l Procedure 

A procedure is a statement or group of statements linked to a name. 
For example: A program consists of a main program labeled: 
PROGRAM MAIN, and x number of subroutines (processes). Assume that 
PROGRAM-MAIN must search ·a list of values for the value O. To 
accomplishg this, the program would contain the following process: 

ZERO SEARCH 
REPEAT 

READ (x) 
UNTIL x = 0 

END 

One need only to include a call to ZERO SEARCH in PROGRAM MAIN to 
accomplish the task. 

2.4.3.2 Function 

A function also links a name to a statement or group of statements; 
however, a function has a 
value, while a procedure has an effect. A function is especially 
useful when a particular calculation is performed repeatedly using 
different data. For example: 

PROGRAM_MAIN; 

BEGIN 

SUMXY = Y + X 

SUMAB = A + B 

END 

2-7 



BECOMES: 

PROGRAM_MAIN; 

FUNCTION SUM(I,J:INTEGER) :INTEGER; 
BEGIN 

SUM: = I + J 
END 

BEGIN 

SUMXY: = SUM(X,Y); 

SUMAB: = SUM(A,B); 

END; 

2.5 LANGUAGE EXTENSIONS TO SUPPORT PROCESSES 

The Pascal language has been extended to form the Microprocessor 
Pascal System language by adding constructs to declare and 
concurrently start processes, each of which is a site of execution. 
The extensions in the Microprocessor Pascal System language have been 
designed to aid the user in the following areas: 

Process declaration is distinct from the declaration of a 
procedure or function 

Process declarations may be nested, and the Pascal scope rules 
of global variables are enforced as usual 

Process parameters may be declared, and the START statement 
allows the passing of process parameters with full type 
checking by the Microprocessor Pascal System compiler. 

Variables within scope of a process are guaranteed to 
even if processes which are lexical ancestors 
terminated. 

exist 
have 

Any process or program which is within scope can be 
concurrently executed with the START statement. To allow all 
program declarations (declared at level one) to be in scope, 
the SYSTEM construct at level zero contains all program 
declarations. 

2-8 



2. 6 MEMORY 

Each program or process has two concepts associated with it to manage 
memory. One of these is called the Stack and the other is called the 
Heap. The Stack is an area allocated to the declared variables of the 
program or process and its procedures. The Heap holds dynamically 
allocated variables, which are not declared but are created and 
destroyed by the procedures NEW and DISPOSE. 

NOTE 

In order to use NEW and DISPOSE, a variable that 
will point to the variable to be created in the 
Heap must be declared in the Stack. 

2.6.l System Memory 

System memory comprises all the data space which is possibly available 
for use. It must, however, be memory which the Executive Run Time 
Support system knows to use. System memory is a resource from which 
the program data structures are constructed. 

2.6.2 Stack 

A stack is implemented by using a block of storage called a stack 
region, out of which stack frames are allocated upon process entry and 
deallocated upon process exit. These stack frames are · managed on a 
last-in, first-out basis. Each frame or activation record corresponds 
to a particular call of a program, process, procedure, or function, 
and includes space for variables, temporaries, and an administration 
area. See Figure 2-4. 

+----------------+-----------+-------------+ I ADMINISTRATION I VARIABLES I TEMPORARIES I 
+----------------+-----------+-------------+ 

Figure 2-4. TYPICAL STACK FRAME. 

2.6.3 Heap 

A heap is an area of memory which may be allocated in arbitrarily 
sized packets which may then be returned and reused. These packets are 
used to hold dynamically allocated variables. Heaps may be one of two 
types: program or nested. Programs have program heaps which are 
created from system memory. A nested heap is allocated out of another 
heap, called the parent, so that a hierarchy of heaps may be created. 

' When a process is started, it is specified either to have its own heap 
(nested) or to share that of its lexical parent. NEW and DISPOSE use 

2-9 

--.. ~----,---~- ----~- - ----------~---~~------~-----·· ----



the heap associated with the process from w.hich they are called. -----\ 
Hence, each procedure, function, process, or program may use only one ) 
heap using NEW and DISPOSE. 

A heap is implemented as a heap region with an administration packet 
and allocated and unallocated packets. All dynamically allocated 
variables are allocated from the heap and returned to the heap in 
program-dependent order (using NEW and DISPOSE). 

+--------------+--------+--------+--------+--------+-------+ 
!ADMINISTRATION! PACKET I UNUSED I PACKET I PACKET I UNUSED! 
+--------------+--------+--------+--------+--------+-------+ 

FIGURE 2-5. HEAP STRUCTURE. 

2.7 REENTRANCY 

Reentrancy is a property of code (of which Microprocessor Pascal 
System code is an example) which allows multiple activated copies or 
calls of a code module to be executing at the same time. These 
activations execute independently of each other, causing modifications 
of separate areas of data though physically using the same code. This 
is made possible by initializing all variables by executable code, not 
using self-modifying code, and keeping local variables and temporaries 
in an unshared data space. As an example, this allows many users to 
execute the same copy of a text editor, though working on different 
text. The controller for a device can be implemented by a routine that 
has as a parameter the identification of the specific instance of that 
device that must be controlled. If the code is reentrant, then the 
same handler can be invoked to control a number of devices. 

2. 8 RECURSION 

Recursion is a .property whereby an algorithm (solution) is expressed 
in terms of itself. This occurs whenever a routine calls itself 
directly (direct recursion), or when a calling routine calls another 
routine which in turn calls the first calling routine (indirect 
recursion) • Implementing recursion requires that data references be 
relative to unshared data spaces for each activation of a routine. The 
reentrant nature of Pascal code easily supports the implementation of 
recursion~ A typical example is that of factorials of positive 
integers: the factorial of N is N times the factorial of N-1 (the 
factorial of zero is l}. This is expressed symbolically as: 

2-10 



, __ 

FACTORIAL(n) := n*FACTORIAL(n-1) 

FACTORIAL(O) := 1 

In Pascal, this could be coded as: 

function factorial (n: integer): integer: 
begin 

assert n >= O; 
if n = 0 then factorial := 1 
else factorial := n * factorial(n - 1) 

end; 

2-11 



) 



SECTION 3 

A SAMPLE MPP SYSTEM 

3 • 1 OVERVIEW 

Much attention has been given to methods for producing good quality 
software. The solution to this problem remains a highly subjective 
one, as any two software designers may use very different methods to 
achieve the same result, namely, a reliable, maintainable software 
product that performs the desired function. However, though ideas of 
method may differ, one point is constant: the software design process 
must become ever more disciplined. 

Software systems must be simple, adaptable, and reliable if they are 
to achieve a long lifetime of use. The purpose of this section is to 
offer a sample of the disciplined software development cycle by 
presenting a simple software system in a step-by-step example which 
shows how the system can be implemented using the Microprocessor 
Pascal System. 

3.2 PROBLEM DEFINITION AND STRUCTURING 

An early design problem is the decision regarding how the system is to 
be structured. Any system can usually be divided into fairly 
independent functional units. Each functional unit should be defined 
so that it can be understood in terms of the inputs it can receive and 
the outputs it is expected to produce. In this way, the interfaces 
between the units form a nearly complete definition of the system. 
Each functional unit can then be designed and implemented one at a 
time. Moreover, a single unit can be systematically tested in 
isolation from all other units in order to verify that it performs the 
required function. It is possible to construct even the most complex 
systems in this incremental fashion. 

In terms of a Microprocessor Pascal System implementation, a 
functional unit can be considered to be a process. A Microprocessor 
Pascal System can be divided into separate processes, each of which 
accepts a set of inputs and produces a set of outputs. A single 
process can be viewed in isolation from other processes. The behavior 
of each process can be verified one at a time, before the process is 
placed into the system in its normal context. 

3.3 THE SAMPLE SYSTEM 

The example chosen for this section is a simple system containing a 
producer process and a consumer process. The two processes communicate 

3-1 



with each other through a message buffer(Figure 3-1). A message in 
this system could be any kind of data structure. However, in the 
example, a message is simply a single character value from A to z. The 
producing process may send a message to the message buffer without 
waiting for the message to be copied by the consuming process. The 
producing process is suspended only if the required buffer space is 
not available, or if the buffer is not available for exclusive access. 
The consuming process copies the character out of the message buffer. 
This process is suspended only if the buffer space is empty or not 
available for exclusive access. 

PRODUCER <----> BUFFER <----> CONSUMER 

FIGURE 3-1. DIAGRAM OF INPUT/OUTPUT. 

In Figure 3-2 on the following pages, a message buffer is declared as 
a COMMON variable which is a record. The "slots" field is the circular 
buffer into which messages are deposited by the producer and fetched 
by the consumer. The "next in" field indicates where the next incoming 
message is to be deposited7 The "next out" field indicates from where 
the next outgoing message is to be fetched. The "exclusive_access" 
field is a semaphore used to guarantee that only one process has 
access to the message buffer at a given instant (see Section 9 for 
additional information on semapho·res). The "not empty" field is a 
semaphore used to ensure that the buffer is not empty when removing 
messages from it. The· "not. full n field is a semaphore used to ensure 
that there is an available space in the buffer when depositing a 
message. 

3-2 

.--......\ 



DY Microprocessor Pascal System Compiler 3.0 6/22/81 17:54:32 PAGE 1 

0 
0 
0 

{$DEBUG,MAP} 

0 SYSTEM 
0 

TUTORIAL: 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
4 
0 
2 
0 
2 
0 
0 
0 

CONST 
Number of slots= 10: {Maximum.number of slots in buffer } 

TYPE 
Slot index= l .. Number of slots: 
Alphabetic= 'A' •• 'z':-. -
Buff er = RECORD 

Next in : Slot index: 
Next-out : Slot:index: 
Not empty : SEMAPHORE: 
Not-full : SEMAPHORE: 
Exclusive access : SEMAPHORE: 
Slots : ARRAY [Slot_index] OF Alphabetic: 

END: 

COMMON 
Message_buffer 

ACCESS 
Message_buffer: 

Buffer: 

PROCEDURE INITSEMAPHORE 

PROCEDURE SIGNAL 

PROCEDURE WAIT 

PROCEDURE SWAP: 

VAR Serna 
Count 

Serna 

Serna 

: SEMAPHORE: 
: INTEGER ) : 

SEMAPHORE ) : 

: SEMAPHORE): 

EXTERNAL: 

EXTERNAL: 

EXTERNAL: 

EXTERNAL: 

FIGURE 3-2. COMPILER LISTING OF PRODUCER/CONSUCER PROCESSES. 
(1 Of 5) . 

3-3 



DX Microprocessor Pascal System Compiler 3.0 6/22/81 17:54:32 PAGE 2 
1 

0 
0 
0 
0 
0 
0 
2 

18 
18 
18 
18 

1 
1 
1 
2 
2 
3 
4 
5 
5 
5 
7 
8 
8 
9 
9 

10 
10 
11 
11 
12 
12 
12 
12 
12 
13 
13 
14 
14 
15 
15 
16 
16 
16 
17 
17 
17 
17 

{$PAGE} I 

PROGRAM PRODUCER; { Produce messages } 

VAR 
Item 
Line 

Alphabetic; 
PACKED ARRAY (1 •• 16] OF CHAR; 

ACCESS 
Message_buffer; 

BEGIN {# PRIORITY = 20; STACKSIZE = 100 } 
{ Initialize item so that first message will be >A> } 

Item := >z>; 
{ Initialize message to inform user of nPRODUCTION" } 

Line := >Item produced: >; 
WITH M = Messa9e buffer DO 

WHILE TRUE f I.e. do forever } 

{ 
END; 

DO BEGIN 
{ Set item to be >PRODUCED> } 

Item); 
IF Item = >z> THEN Item := >A> 

ELSE Item := SUCC 
{ Wait on an empty buffer slot } 

WAIT ( M.Not full ) ; 
{ Wait on exclusive access to the message buffer } 

WAIT ( M.Exclusive access); 
{ Move message to-next available slot in buffer } 

M.Slots [ M.Next in 1 := Item; 
{ Set pointer to next free slot } 

M.Next in:= SUCC ( M.Next in MOD Number of slots); 
{MOD-function produces a-value 0 •• (Number-of slots-1), 

Ie. o •• 9. If the slot just used was 10 then MOD 
will give 0, and SUCC(O) is 1, which is what we want } 

{ Relinquish exclusive access of message buffer } 
SIGNAL ( M.Exclusive access ); · 

{ Signal that another message was >PRODUCED> } 
SIGNAL ( M.Not empty); 

{ Set output message to indicate what was >PRODUCED> } 
Line (16] := Item; 

{ output the message to the user } 
MESSAGE (Line); 

{ Give other processes at this priority a 
chance to execute } 

SWAP; 
END; 

End of PRODUCER program } 

FIGURE 3-2. COMPILER LISTING OF PRODUCER/CONSUMER PROCESSES. 
( 2 of 5) 

3-4 



DX Microprocessor Pascal System Compiler 3.0 6/22/81 17:54:32 PAGE 3 

c··. 
--..:_; .. : 

17 
17 

0 
0 
0 
0 
2 

38 
38 
38 
38 

1 
1 
1 
1 
1 
1 
2 
3 
4 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 
8 
8 
8 
9 
9 

10 
10 
11 
11 
12 
12 
12 
13 
13 
13 
13 
13 
13 

{$PAGE} 

PROGRAM CONSUMER; 

VAR 

{ Consume messages } 

Item : Alphabetic; 
Line : PACKED ARRAY [ 1.. 36] OF CHAR; 

ACCESS 
Message_buffer; 

BEGIN {# PRIORITY = 20; STACKSIZE = 100 } 

{ Initialize message to inform user of "CONSUMPTION". 
NOTE: This message has 20 leading blanks to make it print out 
in a different column to the ... item produced ... messages. } 

Line := ... Item consumed: ... ; 
WITH M = Messa~e buffer DO 

WHILE TRUE t i.e. do forever } 
DO BEGIN 

END; 

{ Wait on an full buffer slot } 
WAIT ( M.Not empty}; 

{ Wait on exclusive access to the message buffer } 
WAIT ( M.Exclusive access); 

{ Get message from slot in buffer } . 
Item:= M.Slots [ M.Next out]; 

{ Set pointer to next free slot } 
M.Next out := SUCC ( M.Next out MOD Number of slots ) ; 

{MOD-function produces a value o •• (Number of slots-1), 
Ie. 0 •• 9. If the slot just used was 10 then MOD 
will give O, and SUCC(O) is 1, which is what we want } 

{ Relinquish exclusive access of message buffer } 
SIGNAL ( M.Exclusive access); 

{ Signal that another message was ... CONSUMED... } 
SIGNAL ( M.Not full ) ; 

{ Set output message to indicate what was ..-CONSUMED... } 
Line[36] := Item; 

{ Output the message to the user } 
MESSAGE ( Line ); 

{ Give other processes at this priority a 
chance to execute } 

SWAP; 

{ End of CONSUMER program } 
END; 

FIGURE 3-2. COMPILER LISTING OF PRODUCER/CONSUMER PROCESSES. 
(3 of 5) 

3-5 



DX ,Microprocessor Pascal System Compiler 3.0 6/22/81 17:54:32 PAGE 4 

·13 {$PAGE} 
13 
13 

1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 

.1 
7 
7 
7 
7 
8 
9 
9 

BEGIN {# STACKSIZE = 300; HEAPSIZE 
{ Code for SYSTEM Tutorial } 

= 500 } 

{ Initialize message buffer } 
WITH M = Message buff er 

DO BEGIN -
{ Initialize first in and first out to the same slot. So 

long as they are the same and within range any initial 
value will work } 

M.Next in := l; 
M.Next-out := l; 

{ Initialize the exclusive access semaphore for only 
one access at a time } 

INITSEMAPHORE ( M.Exclusive access, 1 ); 
{ Initialize the not empty-semaphore for no messages 

currently in buffer } 
INITSEMAPHORE ( M.Not empty, 0 ); 

{ Initialize the not-full semaphore for all messages 
currently empty } 

INITSEMAPHORE ( M.Not full, Number of slots); 
END; -

{ Initialization complete. Start the producer and consumer } 
START Producer; 
START Consumer; 

END. 

SYSTEM TUTORIAL; 
STACK SIZE = 0000 

COMMON TYPE SIZE 
MESSAGE RECORD 30 

FIELD DISP TYPE SIZE 
NEXT IN 0000 SUBRANGE 2 
NEXT-OUT 0002 SUBRANGE 2 
NOT EMPT 0004 SEMAPHORE 2 
NOT-FULL 0006 SEMAPHORE 2 
EXCLUSIV 0008 SEMAPHORE 2 
SLOTS OOOA ARRAY 20 

FIGURE 3-2. COMPILER LISTING OF PRODUCER/CONSUMER PROCESSES. 
( 4 of 5) 

3-6 



PROCEDURE INITSEMA VAR SEMA 

~ROCEDURE SIGNAL SEMA 

PROCEDURE WAIT SEMA 

PROCEDURE SWAP ; EXTERNAL; 
PROGRAM PRODUCER; 

STACK SIZE = 0012 

VARIABLE 
ITEM 
LINE 

DISP 
0000 
0002 

PROGRAM CONSUMER; 
STACK SIZE = 0026 

VARIABLE 
ITEM 
LINE 

DISP 
0000 
0002 

:SEMAPHORE; COUNT 

:SEMAPHORE); EXTERNAL; 

:SEMAPHORE); EXTERNAL; 

TYPE 
SUBRANGE 
STRING 

TYPE 
SUBRANGE 
STRING 

SIZE 
2 
16 

SIZE 
2 
36 

:INTEGER); EXTERNAL; 

FIGURE 3-2. COMPILER LISTING OF PRODUCER/CONSUMER PROCESSES. 
( 5 of 5) 

3.4 SAMPLE DEBUG SESSION 

The text on the following page is a sample debugging session for the 
producer/consumer example; an explanation follows. 

3-7 



HOST DEBUGGER 6/22/81 17:SS:19 

Enter system heap size in (K)bytes: S 
Do you wish to debug the most recently compiled system? 

Please answer YES or NO: YES 

Sys~em heap size = S (K)bytes 
Most recently compiled system will be loaded. 

<>DEBUG(PRODUCER) 

<>DEBUG(CONSUMER) 

<>GO 
run-time support now initialized 

<>GO 
*** Process Created *** PRODUC(2) 

<>GO 
*** Process Created *** CONSUM(3) 

<>SOP (PRODUCER) 

<>AB(PRODUCER,12) 

<>SOP (CONSUMER) 

<>AB (CONSUMER, 8) 

<>SC(MESSAGE) 
common MESSAG 

} These lines appear in 
} the "LOG" file only. 

ESCO (0000) 0001 0001 FOAO F096 FOAA 0000 0000 0000 ( •••••••••••••••• ) 
ESDO (0010) 0000 0000 0000 0000 0000 0000 0000 ( •••••••••••••• 

<>GO 
*** Breakpoint *** 

<>SC(MESSAGE) 
common MESSAG 

PRODUC(2) .PRODUC Statement 12 

ESCO (0000) 0002 0001 FOAO F096 FOAA 0041 0000 0000 ( ••••••••••• A •••• ) 
ESDO (0010) 0000 0000 0000 0000 0000 0000 0000 ( •••••••••••••• 

<>GO 
Item produced: A 

*** Breakpoint *** 

<>SC(MESSAGE) 
common MESSAG 

CONSUM(3) .CONSUM Statement 8 

ESCO (0000) 0002 0002 FOAO F096 FOAA 00·41 0000 0000 ( ••••••••••• A •••• ) 
ESDO (0010) 0000 0000 0000 0000 0000 0000 0000 ( •••••••••••••• ) 

<>GO 
Item consumed: A 

3-8 



*** Breakpoint *** 

{>SC(MESSAGE) 
common MESSAG 

PRODUC(2).PRODUC Statement 12 

ESCO (0000) 0003 0002 FOAO F096 FOAA 0041 0042 0000 ( ••••••••••• A.B •• ) 
ESDO (0010) 0000 0000 0000 0000 0000 0000 0000 ( •••••••••••••• 

<>GO 
Item produced: B 

*** Breakpoint *** 

<>SC(MESSAGE) 
common MESSAG 

CONSUM(3) .CONSUM Sta.temen t 8 

ESCO (0000) 0003 0003 FOAO F096 FOAA 0041 0042 0000 ( ••••••••••• A.B •• ) 
ESDO (0010) 0000 0000 0000 0000 0000 0000 QOOO ( •••••••••••••• 

<>GO 
Item consumed: B 

***Breakpoint*** PRODUC(2).PRODUC 

<>HP (CONSUMER) 

<>DAB (PRODUCER) 

<>GO 
Item produced: C 
Item produced: D 
·tern produced: E 
item produced: F 
Item produced: G 
Item produced: H 
Item produced: I 
Item produced: J 
Item produced: K 
Item produced: L 

Idle Instruction 

<>DAP 
Status Summary of 

Process Name 

0 IDLE$P 
2 PRODUC 
3 CONS UM 

<>SC(MESSAGE) 
common MESSAG 

All Existing 

Site of 
Execution 

IDLE$P 0 
runtime code 
runtime code 

Processes 

Status 

Active 
Wait Serna 

>Hold 

Statement 12 

Enabled Stmt 
Pri Traces Bkpts 

32767 no 
20 no 
20 yes 

ESCO (0000) 0003 0003 FOAO F096 FOAA 004B 004C 0043 ( ••••••••••• K.L.C) 
ESDO (0010) 0044 004S 0046 0047 0048 0049 004A (.D.E.F.G.H.I.J ) 

(~'>HP (PRODUCER) 

3-9 

-.- -.-.- .-~- ::: ':·- --·~----: .. ·--·: ,.- ·- ---- - ~ --



.,.;r_._, _ ____..;;.. _ __._._ __ ~-- --·- -- ----- _, ___ - ;...-~ -~-_.;_,____ ___ -. 

<>RP (CONSUMER) 

<>DAP 
Status Summary of All Existing Processes 

Site of 
Process Name Execu.tion Status 

0 IDLE$P IDLE$P 0 Ready 
2 PRODUC runtime code Wait Serna (h) 
3 CONS UM runtime code >Active 

<>GO 
*** Breakpoint *** CONSUM(3).CONSUM 

<>SC(MESSAGE) 
common MESSAG 

Enabled 
Pri Traces 

32767 
20 
20 

Statement 8 

Stmt 
Bkpts 

no 
no 
yes 

ESCO (0000) 0003 0004 FOAO F096 FOAA 004B 004C 0043 
ESDO (0010) 0044 004S 0046 0047 0048 0049 004A 

( ••••••••••• K.L.C) 
(.D.E.F.G.H.I.J ) 

<>GO 
Item consumed: C 

***Breakpoint*** CONSUM(3).CONSUM 

<>SC(MESSAGE) 
common MESSAG 

Statement 8 

ESCO (0000) 0003 OOOS FOAO F09o FOAA 004B 004C 0043 
ESDO (0010) 0044 004S 0046 0047 0048 0049 004A 

( ••••••••••• K.L.-C) 
(.D.E.F.G.H.I.J ) 1 

<>DAB (CONSUMER) 

<>GO 
Item consumed: D 
Item consumed: E 
Item consumed: F 
Item consumed: G 
Item consumed: H 
Item consumed: I 
Item consumed: J 
Item consumed: K 
Item consumed: L 

Idle Instruction 

<>DAP 
Status Summary of All Existing Processes 

0 
2 
3 

Site of 
Process Name Execution 

IDLE$P 
PRODUC 
CONS UM 

IDLE$P 0 
runtime code 
runtime code 

<>SC(MESSAGE) 

Status 

Active 
Hold 

>Wait Serna 

3-10 

Enabled Stmt 
Pri Traces Bkpts 

32767 no 
20 no 
20 no 

.. ·~ 



common MES SAG 
ESCO (0000) 0003 0004 FOAO F096 FOAA 004B 004C 0043 ( •••••••••• • K.L.C) 
ESDO (0010) 0044 0045 0046 0047 0048 0049 004A ( .D.E.F.G.H. I.J ) 

<>RP (PRODUCER) 

<>GO 
Item produced: M 

Item consumed: M 
Item produced: N 

Item consumed: N 
Item produced: 0 

Item consumed: 0 
Item produced: p 

Item consumed: p 

Item produced: Q 
Item consumed: Q 

Item produced: R 
Item consumed: R 

Item produced: s 
Item consumed: s 

Item produced: T 
Item consumed: T 

Item produced: u 
Item consumed: u 

Item produced: v 

(_ 
Item consumed: v 

ttem produced: w 
Item consumed: w 

Item produced: x 
Item consumed: x 

Item produced: y 
Item consumed: y 

Item produced: z 
Item consumed: z 

Item .produced: A 
Item consumed: A 

Item produced: B 
Item consumed: B 

Item produced: c 
Item consumed: c 

Item produced: D 
Item consumed: D 

Item produced: E 
Item consumed: E 

Item produced: F 
Item consumed: F 

I-tern produced: G 
Item consumed: G 

Item produced: H 
Item consumed: H 

/".Item produced: I 
( Item consumed: I 
l 
'-··:ft em produced: J 

3-171 

- '---~----- --· -- -- - --· - -----·~-~----- --~ :···---· i - - - --.- - . - ---- - ------· ------"·--~~-- -

I 



·. - --~,_::.- .' -·- ----~- ..... ·---- -- ---------·- --'- ----- __ ._ _____ ..._ ___________ _ 

Item produced: L 

l .... . . . . . . . . . . . . 

Item consumed: J 

Item consumed: L 

NOTE. At· this point the CMD key was struck 
causing an anonymous breakpoint to occur. 
The program would have executed forever if 
we had not done this. 

*** Anonymous Bkpt *** 
<>QUIT 

Execution Terminated 
Memory Used (bytes) Maximum = 4046 Current = 2148 

3-12 

. . . . ! . . . . .... . . . . 

·,J 



In the sample debugging session, the message buffer is displayed at 
various points using a nshow Commonn (SC) command. Notice that a 
length of 30 (>lE) bytes starting at displacement 0 is specified each 
time the common is displayed. From the compiler map, it can be seen 
that the last 20 (>14) bytes of the Common comprise the message buffer 
slots. The first four bytes of the Common form nnext inn and the 
nnext outn fields. The semaphore values are not important to 
understanding this example. 

Once the producer and consumer processes have been created, 
breakpoints are set just beyond the point where a message is produced 
or consumed. Since the producer and the consumer both perform a 
nswapn, they manage to keep up with one another, i.e., an item is 
generally consumed as soon as it is produced. To make the example more 
interesting, the consumer is held using the nHold Processn (HP) 
command. The consumer becomes ineligible for execution until an 
explicit nRelease Processn (RP) command is given. This causes the 
producer to completely fill the buffer until no more slots are 
available. When this happens, the producer is suspended on the 
nnot fulln semaphore. At this point, the producer is held (using an HP 
command) and the consumer is released (using an RP command) • This 
causes the consumer to consume all messages in the buffer. When all 
messages are consumed, the consumer is suspended on the nnot emptyn 
semaphore. The example debugging session would continue forever if 
both processes were allowed to continue, so the The session was 
terminated with a QUIT command. 

Notice that a dangerous problem can occur if the wait 
(exclusive access) precedes wait (not empty) in the consumer process. 
Suppose the consumer process is started and becomes suspended on 
nnot emptyn because no messages have yet been deposited into the 
buffer. A producer process then cannot get exctusive access to the 
buffer to deposit a message. The consumer will be waiting forever for 
an item to appear. In fact, all processes sharing the message buffer 
become suspended forever. Semaphores are low-level synchronization 
tools that must be used with great care. Users are therefore 
encouraged to use the mechanism of interprocess files for interprocess 
communication whenever possible, since this is a much safer, 
higher-level interface mechanism. 

3-13 



···:"--, 

l 



I .. 
'---··· 

SECTION 4 

THE MPP SOURCE EDITOR 

4.1 OVERVIEW 

The Source Editor allows the user to create new source files and to 
modify existing source files which may be input to the Microprocessor 
Pascal Compiler. The Source Editor can be invoked and operated from a 
Texas Instruments 911, 913, or TMAM 9000 Video Display Terminal (VDT). 
Information on operating these terminals can be found in Volume I of 
the Model 990 Computer DXlO Operating System Reference Manual (part 
number 946250-9701) for the 911 and 913 VDTs, and in the AMPLUS 
Software System User .. s Manual (part number 1603142-9701) ·for the TMAM 
9000 VDT. 

In this section, only the 911 terminal commands 
addressed, although the function response to the 
on the 913 and the TMAM 9000 will be the same. 
equivalent command inputs on these two VDT .. s. 

4.1.1 The Video Display 

and responses will be 
correct command input 

See Table 4-2 for 

Editing occurs on a page basis; a page is 23 lines on the 911. Any 
line displayed on the screen may be edited by positioning the cursor 
at any character on the line to be edited. Lines may be inserted 
between any two lines, and may be inserted or deleted in any order. In 
addition, characters within a line may be inserted, deleted, or 
modified. Positioning the file for display is accomplished by the use 
of the Roll Up, Roll Down, Cursor Up, and Cursor Down functions as 
well as by the Relative Positioning, Top, Bottom, and Find commands. 

4.1.2 Microprocessor Pascal Source File Definition 

A Microprocessor Pascal source file is a file that is determined to be 

syntactically complete by the CHECK command. A Microprocessor Pascal 

source file may be: 

o A module header with any portion of its declaration section 
and its associated body, 

0 The declaration section of a module with one or more of the 
declarations in the order Const, Type, Var, Common,.Access, 
and Submodules. 

4-1 

'. ,--·--_--~--.-.~-·--



4.1.3 Command Summary 

Table 4-1 is a summary of the editor commands and functions as input 
from a 911 VDT. Table· 4-2 is a summary of editor commands and 
functions as input from 913 and TMAm 9000 VDTs. A detailed description 
of each command/function is given in Section 4.3. The commands and 
functions of the Source Editor are divided into five separate classes 
for your convenience. 

4-2 

I 
. ! 



------------------------------------------------------------------------
TABLE 4-1. MPP SOURCE EDITOR COMMANDS AND FUNCTIONS: 911 VDT. 

COMMAND/FUNCTION 
1 o , o 

Setup and Termination 
Help 
Edit/Compose Toggle 
Syntax Check 
Quit 
Abort 
Save 
Input 

Cursor Positioning 
Roll Up 
Roll Down 
New Line 
Tab 
Back Tab 
set Tab 
Cursor Up 
Cursor Down 
Cursor Right 
Cursor Left 
Home (Return to beg. of line) 
Find 
Relative Positioning 
Top 
Bottom 

Program Modification 
Insert Line 
Duplicate Line 
Delete Line 
Skip 
Insert Character 
Delete Character 
Clear Line 
Replace 
Split Line 
Insert 

Block Commands 
Start Block 
End Block 
Copy 
Move 
Delete 
Put 

Show Command 
~. Show 

911 VDT 

CMD/"HELP" 
F7 
CMD/"CHECK" 
CMD/"QUIT" 
CMD/"ABORT" 
CMD/"SAVE" 
CMD/"INPUT" 

Fl 
F2 
RETURN Key 
SHIFT/TAB Key 
FIELD Key 
CMD/TAB <incr> 
Up Arrow 
Down Arrow 
Right Arrow 
Left Arrow 
HOME Key 
CMD/"FIND" <parm> 
CMD/number 
CMD/"TOP" 
CMD/"BOTTOM" 

Blank Gray Key 
F4 
ERASE INPUT 
TAB/Skip Key 
INS CHAR Key 
DEL CHAR Key 
ERASE FIELD Key 
CMD/"REPLACE"<parm> 
F8 
CMD/"INSERT" 

FS 
F6 
CMD/"COPY" 
CMD/"MOVE" 
CMD/"DELETE" 
CMD/"PUT" 

CMD/"SHOW" 
----·-------------------------------------------------------·--------------

4-3 



TABLE 4-2. MPP SOURCE EDITOR COMMANDS/FUNCTIONS: 913 & TMAM 9000 VDT 

COMMAND/FUNCTION 

Setup and Termination 
Help 
Edit/Compose Toggle 
Syntax Check 
Quit 
Abort 
Save 
Input 

Cursor Positioning 
Roll Up 
Roll Down 
New Line 
Tab 
Back Tab 
Set Tab 
Cursor Up 
Cursor Down 
Cursor Right 
Cursor Left 
·Home 
Find 
Relative Positioning 
Top 
Bottom 

Program Modification 
Insert Line 
Duplicate Line 
Delete Line 
Skip 
Insert Character 
Delete Character 
Clear Line 
Replace 
Split Line 
Insert 

Block Commands 
Start Block 
End Block 
Copy 
Move 
Delete 
Put 

Show Command 
Show 

913 VDT 

HELP/"HELP" 
F7 
HELP/"CHECK" 
HELP/"QUITn 
HELP/"ABORT" 
HELP/"SAVE" 
HELP/"INPUT" 

ROLL UP 
ROLL DOWN 
NEW LINE 
TAB 
BACK TAB 
HELP/"TAB" <incr> 
Up Arrow 
Down Arrow 
Right Arrow 
Left Arrow 
HOME 
HELP/"FIND" parm> 
HELP/number 
HELP/"TOP" 
HELP/"BOTTOM" 

INSERT LINE 
F4 
DELETE LINE 
SKIP 
INS CHAR 
DEL CHAR 
CLEAR 
CMD/"REPLACE"<parm> 
FO 
HELP/"INSERT" 

FS 
F6 
HELP/"COPY" 
HELP/"MOVE" 
HELP/nDELETEn 
HELP/"PUTn 

HELP/"SHown 

4-4 

TMAM 9000 VDT 

F9/"HELP" 
F7 
F9/"CHECK" 
F9/"QUITn 
F9/"ABORT" 
F9/"SAVEn 
F9/"INPUT" 

Fl 
F2 
RETURN 
SHIFT TAB 
BACK. TAB 
F9/"TAB" <incr> 
Up Arrow 
Down Arrow 
Right Arrow 
Left Arrow 
HOME 
F9/"FIND" <parm> 
F9/number 
F9/" OP" 
F9/"BOTOM" 

CONTROL 0 
F4 
ERASE INPUT 
TAB SKIP 
INS CHAR 
DEL CHAR 
ERASE FIELD 
F90/"REPLACE" <parm> 
F8 
F9/nINSERT" 

FS 
F6 
F9/nCOPY" 
F9/"MOVEn 
F9/"DELETE" 
F9/"PUT" 

F9/"SHOW" 

'.:~., .... 
<) 



I 

TABLE 4-2. MPP SOURCE EDITOR COMMANDS/FUNCTIONS: 913 & TMAM 9000 VDT 
(Continued) 

NOTE 

Lower-case letters and some special symbols (braces) cannot 
be represented on the .TI 913 VDT. In a file 
created on a 911 (or TMAM 9000) but displayed on a 
913, lower-case letters appear as upper-case and 
unrepresentable symbols are replaced by other 
(displayable) symbols. Editing this same file on a 
913 results in the altered positions of text 
containing only those characters that are 
supported on the 913 (upper-case letters, symbols, 
etc.) 

4.2 EXAMPLE EDIT SESSIONS 

The following edit sessions provide examples depicting the creation of 
a new source file, modification of an existing source file, and saving 
the results of an edit session. 

\_ The Source Editor permits the user to enter and modify data only in 
the first 72 columns of a line. This protects the user from entering 
data intended to be part of the source program in columns 73 through 
80. Furthermore, if a file that has data in columns 73 through 80 in 
edited using this editor, the information in those columns will be 
lost in all lines that are modified during an edit session. 

\ . 
"-:...· 

Unless specifically requested,the compiler will ignore everything in 
columns 73 through 80. 

4.2.1 Creating a File 

The following procedure applies to the creation of a new file using 
the Source Editor. 

To invoke the Source Editor, the user enters the command EDIT after 
the Microprocessor Pascal ·System has been loaded (see Host Systems 
user~s manual for information on loading Microprocessor Pascal under 
the DX/10, TX/4 and AMPLUS operating systems respectively.) 

In response to the EDIT command, the following prompt is displayed: 

INPUT FILE ACCESS NAME: 

4-5 

...... --.. ---- .• - ·i 



If a previously edited file name is displayed, clear the field with 
the TAB/SKIP key and press RETURN. This indicates that a new source ') 
file is to be created. The screen is cleared, The cusor and *EOF is 
displayed in the upper left-hand corner of the screen, and COMPOSE 
MODE is displayed in the lower right-hand corner of the screen, The 
cursor position is at line one, column one of the screen. The display 
indicates that the only record in the file is the end-of-file record 
and that the editor is in COMPOSE mode. 

To begin entering a program, press the RETURN key. Note that line one 
is now a blank line, the end-of-file marker is on line two, and the 
cursor is positioned at line one, column one. You may now begin 
entering a source file by simply typing the data and pressing the 
RETURN key whenever you wish to enter another line. 

4.2.2 Editing An Existing File 

Invoke the Source Editor by entering the EDIT command and the name of 
file to be edited after the INPUT FILE ACCESS NAME: prompt. The file 
will be displayed, beginning at the top of the file. 

Typographical errors corrections, additions and deletions may be made 
by using the edit key and commands as described in section 4.3. 

Following is a sample of how some of the editing techniques are used. 
For this example session, the file in Figure 4-1 will be used as the \ 
input file. ! 

Upon invocation, the following is displayed: 

LINE 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

(Cursor Position) 

[] 
PROGRAM EXAMPLE: 
VAR (4) Add SECOND 

FIRST: INTEGER: 
RESET ( INPUT) : 

(1) Insert ~WHILE NOT EOF DO 
BEGIN _____.,..- READLN(FIRST,SECOND): 

(3) Delete ... END. 
*EOF 

IF FIRS~ = SECOND 
THEN WRITELN('EQUAL',FIRST)~{2) Delete 
ELSE WRITELN(FIRST,'NOT EQUAL',SECOND) 

END: 

FIGURE 4-1. INPUT FILE EXAMPLE CONTAINING ERRORS. 

4-6 

) 



( 
'·-. 

The screen is cleared and the file is displayed, beginning in line one 
of the screen, EDIT MODE is displayed in the lower right hand corner, 
and *EOF is displayed on line 13, after the last line of the source 
file. The cursor is in column one, line one. 

4.2.2.1 Correcting The Errors 

Refer to Figure 4-1. 

(1) Upon examination of the program to be edited, notice that in the 
WHILE statement, the keyword BEGIN, which should follow on the next 
line, has been omitted. In order to insert BEGIN, press the down-arrow 
key seven times, then press the blank grey (INSERT LINE) key, which 
inserts a blank line between lines 6 and 7. The cursor is in column 
one of the blank line. The user then types BEGIN in the proper 
character spaces. 

At this point the user may think that the program is syntactically 
complete. To verify this, press the CMD key, enter the word: CHECK, 
and press the RETURN key. 

(2) The message 

"SEMICOLON MAY NOT PRECEDE AN ELSE" 

is displayed on the bottom line of the screen and the cursor is 
positioned at the keyword "ELSE" (line 7). Press the up-arrow key, the 
HOME key, then the FIELD key to position the cursor on the semicolon 
following the THEN clause. (The same result may be achieved by 
pressing the up-arrow key, then using the right-arrow key to position 
the cursor.) Remove this semicolon, by pressing the space bar, causing 
the semicolon to be replaced by a blank. 

Again, verify that the program is syntactically correct by pressing 
the CMD key, and the . RETURN key in response to the CHECK which is 
already present at the bottom of the screen (from the original entry). 

(3) The error message: 

"MODULE EXPECTED" 

is displayed on the bottom line of the screen and the cursor is 
positioned at the keyword "END" immediately preceeding the *EOF. Press 
the ERASE INPUT key to delete the line containing the extra "END~" 
statement, then again check for syntactical cbrrectness by pressing 
the CMD key and the RETURN key in response to the CHECK already 
present at the bottom of the screen. 

The message: 

"NO SYNTAX ERRORS FOUND" 

is displayed on the bottom line of the screen. The user then .saves the 

4-7 



file as described in Paragraph 4.2.3. 

(4) Notice that the syntax checker did not detect that the variable 
"SECOND" was not declared. This' is an example of the kind of a 
semantic error which is not detected by the syntax checker: they are 
the responsibility of the programmer, but will be identified by the 
compiler if overlooked. 

4.2.3 Saving The File 

After a file has been creat~d or an existing file has been edited, the 
file may be saved by one of two methods: 

4.2.3.1 To Quit Editing Operations 

If the user does not want to edit another source file, Press the CMD 
key and type in the word: QUIT. The user will then be prompted as 
follows: 

OUTPUT FILE ACCESS NAME: 

Respond by typing the pathname of the file to which the edited source 
file is to be written and press the RETURN key. The user will then be 
prompted as follows: 

REPLACE?: 

Respond by typing in the letter "Y" to specify that the data is to be 
placed in the file specified by the pathname entered as the output 
file. The editor is then exited. 

If the user responds with an ~N~ and a carriage return, he specifies 
that the existing file entered in response to the OUTPUT FILE ACCESS 
NAME prompt should not be replaced or have the editing changes 
incorporated. In order to finish the QUIT procedure, the user must 
either: 

(1) Enter a new output file access name where the file and the 
editing will be saved. (The original input file will remain 
intact, unedited), or, 

(2) End the procedure with an ABORT command. In this case, the 
file will remain under the original input file access name, 
without the editing just done. 

If either an invalid pathname is given or an invalid replacement 
option is specified, a file I/O error will occur and an appropriate 
error message will be generated. If no pathname is specified for the 
output file and the RETURN key is pressed, no action is performed and 
the editor prompts for another command. 

4-8 

·.·~ 
. __ .-



r-·· .. 
( 

\___"_. 

4.2.3.2 To Coninue Editing Operations 

If the user wants to edit another file after saving the file just 
edited, press the CMD key and type in the word: SAVE. The user will 
then be prompted as follows: 

OUTPUT FILE ACCESS NAME: 

The user should respond by typing the pathname of the file to which 
the edited source file is to be written and press the RETURN key. The 
user will then be prompted as follows: 

REPLACE?: 

If the user responds with an ~N~ and a carriage return, he specifies 
that the existing file entered in response to the OUTPUT FILE ACCESS 
NAME prompt should not be replaced or have the editing changes 
incorporated. In order to finish the QUIT procedure, the user must 
either: 

(1) Enter a new input file access name where the file and the 
editing will be saved. (The original input file will remain 
intact, unedited), or, 

(2) End the procedure with an ABORT command. In this case, the 
file will remain under the original input file access name, 
without the editing just done. 

If the user responds with a ~y~, the updated file is then saved in the 
file specified by the pathname entered in the OUTPUT FILE ACCESS NAME 
prompt, and the user is then prompted for the pathname of the next 
file to be edited as follows: 

INPUT FILE ACCESS NAME: (file name of the previously edited file) 

In response, the user may: 

(1) Press the RETURN to re-edit the file just 
just saved, 

(2) Press TAB/SKIP to clear the file pathname on the screen, 
and press RETURN to create a new file, 

(3) Enter the pathname of another existing file to be edited. 

If either an invalid pathname is given or an invalid replacement option 
be specified, 
a file I/O error 
will occur and an appropriate error·message will be generated. 
If no pathname is specified for the output file 
when the RETURN key is pressed, 

(__. no action is performed and the editor prompts for another command. 

4-9 

_ ... ,_-· .. ,, 



4.3 EDITOR COMMANDS AND FUNCTIONS 

The following sections describe the commands and functions of the 
Source Editor. Commands may be entered in either upper-case or 
lower-case letters. They are divided into these groups: 

1) Setup and Termination 

2) Cursor Positioning 

3) Program Modification 

4) Block Commands 

6) Show Command 

4.3.1 Parameters 

There are four basic kinds of parameters recognized by the editor. 
These are: 

o Integer Constant - An integer constant parameter is a 
non-negative number less than or equal to 32767 

o Identifier - An identifier parameter is either a :) 
Microprocessor Pascal identifier or Microprocessor Pascal System·~ 1 

reserved word 

o Pathname - A pathname parameter is a valid DXlO, TX4, or AMPLUS 
pathname, depending on which operating system is being used. 

o String - A string parameter is a character string enclosed in 
double quotes ( q double quote is represented by two 
double quotes inside a string) 

4-10 

) 
. _ _/ 



' . 

1------------STRING----------------1 

v v 
("xxxxxx","xxx","xxxxxxxx","xx",etc) 

FIGURE -4-2. A STRING • 

• 
4.3.2 Optional Parameters 

If a parameter is optional, it can·simply be omitted, allowing the 
default value to be assumed. 

Extra commas for optional parameters at the end of a command need not 
appear. For example, the command~ FIND(Identifier), is equivalent to 
FIND(Identifier,l). 

4.3.3 Current Line Marker 

The line on which the cursor is currently positioned 
significant while editing a file. The e~itor automatically 
current line location when the CMD key is pressed during 
session by placing a "+------+" in columns 73 through 80. 

is of ten 
marks the 

an edit 

If the current line already contains a start or end block marker in 
columns 73 through 80 a "+------>" or a "<------+" will result in 
columns 73 through 80 when the CMD (HELP) key is pressed. If both a 
start and end block already appear on the current cursor line, no 
change will occur in columns 73 - 80. 

4.3.4 CMD Key 

The CMD key is used for several purposes within the editor. Generally, 
it will cause the editor to prompt the user for a command. It can also 
be used after an error has occurred to erase the error message 
generated from the screen and to prompt the user for the next command. 

If the user is prompted for information after 
command, pressing the CMD key will cause the 
command mode. However, if the user presses the CMD 
the prompt INPUT FILE ACCESS NAME, the editor will 

4-11 

having entered a 
editor to return to 
key in response to 
abort. 



4.3.S Setup and Termination Commands 

The functions and commands described in this section are used to set 
up the input file for the editor, specify the output pathname for the 
file after it has been modified, and set the mode of editing (i.e., 
compose or edit). 

4.3.5.1 Edit/compose Mode: The editor operates in either compose 
mode or . edit mode. Compose mode is generally used to enter large 
blocks of new program text. Edit mode is most useful when modifying 
portions of existing program text. 

The major difference between compose mode and edit mode is the 
function of the RETURN key. When operating in edit mode, pressing 
RETURN causes the cursor to move to the next line1 in compose mode, 
pressing RETURN causes a blank line to be inserted after the current 
line and the cursor to be positioned on the new line on the first 
non-blank character of the previous line (column 1, if the previous 
line is blank) • 

When creating a new file the editor is invoked in compose mode. The 
user may switch back and forth between edit and compose modes by 
pressing F7, which acts as a toggle switch. The mode of the editor is 
displayed in the lower right-hand corner of the screen. 

4.3.5.2 HELP Command. Pressing CMD and typing "HELP" causes the 
display of a list of available commands, along with short descriptions 
of each. The HELP command also displays the tab increment amount. 

4.3.S.3 CHECK (Syntax) Command. Pressing CMD and typing "CHECK" 
instructs the editor to perform a syntax check of the module being 
edited and allows the user to correct errors as they are discovered. 
This feature has the advantage of helping the user detect common 
syntax errors before a (possibly) time-consuming compile is attempted. 
This command is typically used when the edit session is nearly 
complete. If a syntax error is found, the editor positions the window 
and cursor to the point of the error, allowing the user to correct it. 

NOTE: syntax checking halts on finding the first syntax error. When 
the error is corrected, the CHECK command should be issued again to 
check for other errors. (For example, see 4.2.2.1) 

4.3.S.4 QUIT Command. The QUIT command is used to save the results 
of the most recent edit session and exit the editor. This command is 
entered by pressing CMD and typing in "QUIT". The following prompt is 
then displayed: 

OUTPUT FILE ACCESS NAME: Pathname 

Respond by typing the pathname of the file to which the edited source 
file is to be written and press the RETURN key. The user will then be 
prompted as follows: 

REPLACE?: 

4-12. 

j 



' 

Respond by typing in the letter "Y" to specify that the data is to be 
placed in the file specified by the pathname entered as the output 
file. The editor is then exited. 

If t~e user responds with an ~N~ and a carriage return, he specifies 
that the existing file entered in response to the OUTPUT FILE ACCESS 
NAME prompt should not be replaced or have the editing changes 
incorporated. In order to finish the QUIT procedure, the user must 
either: 

(1) Enter a new output file access name where the file and the 
editing will be saved. (The original input file will remain 
intact, unedited), or, 

(2) End the procedure with an ABORT command. In this case, the 
file will remain under the original input file access name, 
without the editing just done. 

If either an invalid pathname is given or an invalid replacement 
option be specified, a file I/O error will occur and an appropriate 
error message will be generated. If no pathname is specified for the 
output file when the RETURN key is pressed, no action is performed and 
the editor prompts for another command. 

4.3.5.5 ABORT Command. The ABORT command is used to exit the 
editor without saving the results of the current edit session. This 
command is entered by pressing the CMD key and typing the word 
"ABORT". 

4.3.5.~ SAVE Command. The SAVE command is used to save the results 
of the most recent edit session and begin the editing of a new file. 
This command is entered by pressing the CMD key and typing "SAVE". The 
following prompt is then displayed: 

OUTPUT FILE ACCESS NAME: 

The user should respond by typing the pathname of the file to which 
the edited source file is to be written and press the RETURN key. The 
user will then be prompted as follows: 

REPLACE?: 

If the user responds with an ~N~ and a carriage return, he specifies 
that the existing file entered in response to the OUTPUT FILE ACCESS 
NAME prompt should not be replaced or have the editing changes 
incorporated. In order to finish the QUIT procedure, the user must 
either: 

(1) Enter a new input file access name where the file and the 
editing will be saved. (The original input file will remain 
intact, unedited), or, 

"-->' (2) End the procedure with an ABORT command. In this case, the 

4-13 



file will remain under the original input file access name, 
without the editing just done. 

If the user responds with a 'y', the updated file is then saved in the 
file specified by the pathname entered in the OUTPUT FILE ACCESS NAME 
prompt, and the user is then prompted for the pathname of the next 
file to be edited as follows: 

INPUT FILE ACCESS NAME: (name of the previously edited file) 

In response, the user may: 

(1) Press the RETURN to re-edit the file just 
just saved, 

(2) Press TAB SKIP to clear the file pathname on the screen, 
and press RETURN to create a new file, 

(3) Enter the pathname of an existing file to be edited. 

If either an invalid pathname is given or an invalid replacement 
option be specified, a file I/O error will occur and an appropriate 
error message will be generated •. If no pathname is specified for the 
output file when the RETURN key is pressed, -no action is performed and 

..·~ 

the editor prompts for another command. If a legal pathnamed is ) 
supplied and a valid replacement option is specified, the file will be · 
saved in its final, edited form and The following message will be 
displayed: 

SAVE COMMAND EXECUTING 

The user is then prompted for the pathname of the next file to be 
edited with the following prompt: 

INPUT FILE ACCESS NAME: (name of file previously edited) 

The response to the prompt is the pathname of the file which is to be 
edited next. If no pathname is specified (by clearing the field with 
the TAB/Skip key, then pressing the RETURN key, a new file will be 
created. 

4.3.5.7 INPUT Command. The INPUT command is used to stop the 
editing of the current file without saving the results of the most 
recent edit session and begin the editing of another file. This 
command is entered by pressing CMD, typing nINPUTn, and pressing the 
RETURN key. the following prompt is displayed: 

INPUT FILE ACCESS NAME: (name of file previously edited) 

The response to the prompt is to type the pathname of the next file to J 

4-14 



be edited. If no pathname is specified when the RETURN key 
(by clearing the pathname field with the TAB/SKIP key), a 
created. The cursor is positioned at the· first column of 
line of the file. 

is presssed 
new file is 

the first 

The difference between 
4.3.5.5) is that INPUT 
terminating the editing 
editor. 

the use of INPUT and ABORT (described in 
prompts for an input file name after 
of the current edit; ABORT exits the source 

4.3.6 Cursor Positioning 

The functions and commands described in this section are used te9 
position the window and the location of the cursor within the window. 

4.3.6.1 Roll-Up Function: The Roll-Up function is called by 
pressing the Fl key. This function advances the file 23 lines from its 
present location. The cursor remains positioned at the same character 
of the new line as it was on the previous line. 

4.3.6.2 Roll-Down Function: The Roll-Down 
pressing the F2 key. This function reverses the 
present location. The cursor remains positioned 
of the new line as it was on the previous line. 

function is called by 
file 23 lines from its 
at the same character 

4.3.6.3 New Line Function: 
pressing the RETURN key. 

The New Line function is called by 

In edit mode, this function causes the cursor to move to the first 
character of the first token on the next line. 

In compose mode, a blank line is inserted after the current line and 
the cursor is moved to the new (blank) line. The cursor is positioned 
on a new line at the same indentation level as the first token on the 
previous line. If the code to be entered should start at a different 
nesting level, the TAB, Field (backtab), Space Bar, or right and left 
arrow keys can be used to move the cursor to the proper place. 

4.3.6.4 Tab Function: The Tab function is called by simultaneously 
pressing the SHIFT key and TAB/SKIP key. If the cursor is positioned 
on a blank line, the cursor moves one indentation level to the right. 
Otherwise, the cursor moves to-the start of the next token. If the 
cursor is at the last token on a line, the cursor moves one 
indentation level to the right. If the cursor is at column 72, the 
cursor is positioned at the beginning of the line. 

4.3.6.5 Back Tab Function: The Back Tab function is called by 
pressing the FIELD key. If there are no characters to the left of the 
cursor, the cursor moves left one indentation level. If the cursor is 
positioned to the right of the space following the last token on a 
line, the cursor moves to the space following the last token. 
Otherwise, the cursor moves to the start of the previous token. If the 
cursor is at the first token, the cursor moves to the left one 

4-15 



~ "·-= -. -- ~·-. ·~- --·-~ - ~-~-·-····~ ~ ~-

indentation level. If the cursor is at the beginning of a line,. the 
cursor is positioned to the end of the line. 

4.3.6.6 Set Tab Increment Command: The Set Tab Increment command is 
used to set or change the increment amount used for tabs and back 
tabs. The syntax of this command is: 

TAB(Increment) 

NOTE: The increment value must be a positive integer value less than 
72. The default increment value used by the editor for tabs is two. 

4.3.6.7 Cursor-Up Function ( +>= The Cursor-Up function is called 
by pressing the grey up-arrow key. This function causes the cursor to 
move to the previous line. The cursor remains at the same position 
within the line. 

4. 3. 6. 8 Cursor-Down Function ( f): The Cursor-Down function is 
called by pressing the grey down-arrow key. This function causes the 
cursor to be moved to the next line. The cursor remains at the same 
position within the line. 

4.3.6.9 
called 
cursor 
column 
in its 

Cursor-Right Function ~): The Cursor-Right function is 
by pressing the grey right-arrow key. This function causes the 
to be moved one position to the right. If the cursor is in 

72 when the Cursor-Right function is called, the cursor remains 
current position. 

4. 3. 6 .10 Cursor-Left Function ~: The Cursor-Left function is 
called by pressing the grey left-arrow key. This function causes the 
cursor to be moved one position to the left. If the cursor is in 
column one when the Cursor-Left function is called, the cursor remains 
in its current position. 

4.3.6.11 Home Function: The Home function is called by pressing the 
HOME key. This function causes the cursor to be moved to column one of 
the current line. 

4.3.6.12 FIND Command: The FIND command is used to position the 
cursor to the next (or nth) occurrence of a specific identifier or 
string following the current cursor position. The command is entered 
by pressing the CMD key followed by typing a command with the syntax: 

FIND (identifier or string, occurrence number) 

If the occurrence number is not specified, it is assumed to be one 
(i.e., the next occurrence). The search begins at the first character 
following the cursor. If the specified number of occurrences is found, 
the cursor is positioned so that it is on the first character of the 
last occurrence. The line in which the identifier or string is found 
occupies the middle row of the screen. If the specified number is not 
found, the cursor position remains unchanged: and a message: 

n OCCURRENCE(S) NOT FOUND 

4-16 



( 

indicates that the identifier or string was not found the specified 
number of times. 

4.3.6.13 Relative Positioning: A file may be advanced or reversed by 
an arbitrary number of lines relative to the current fil~ position on 
display. This is accomplished by first pressing the CMD key followed 
by the number (integer) of lines to be skipped (either forward or 
backward). If the jump is to go forward, the specified integer is 
preceded· by an optional + (plus sign); for a backward skip, the 
integer must be preceded by a - (minus sign). If the specified jump is 
outside the file boundaries, the skip will stop at the file~s 
beginning or end, depending on the direction of the jump, i.e., the 
cursor is positioned at column one at the top of the file, or, if the 
line is the end-of-file, the cursor is displayed as the last line on 
the screen. Otherwise, the cursor line is displayed as the middle line 
of the screen. 

4.3.6.14 TOP Command: The TOP command is used to position the cursor 
to the first column of the first line in the file being edited. The 
command is entered by pressing CMD, typing "TOP", and. pressing the 
RETURN key. 

4.3.6.15 BOTTOM Command: The BOTTOM command is used to position the 
cursor to the end-of-file marker of the file being edited. The command 
is entered by pressing CMD, typing "BOTTOM", and pressing the RETURN 
key. The cursor is positioned at column one of the end-of-file marker. 

4.3.7 Program Modification 

The functions and commands described in this section are used to 
modify source files. When a line is modified, any data which may be in 
columns 73 through 80 are replaced by blanks to indicate to the user 
that the line has been modified. This deletion of characters from 
columns 73 through 80 does not effect the program being entered, since 
only columns 1 through 72 are used by the compiler. 

4.3.7.1 Insert Line Function: The Insert Line function is called by 
pressing the unlabeled gray (INSERT LINE) key. When this function is 
called, a blank line is inserted immediately before the line on which 
the cursor is presently located. The cursor is placed on the new line 
and remains in the same column. 

4.3.7.2 Duplicate Line Function: The Duplicate Line function is 
called by pressing the F4 key. This function causes a copy of the 
characters from the cursor position to the end of the line on which 
the cursor is currently positioned to a new line immediately following 
the current line. The cursor is moved to the new line and remains in 
the same column. 

4.3.7.3 Clear Line Function: The Clear Line function is called by 
pressing the ERASE.FIELD key. This function causes the line.containing 

·the cursor to be cleared and repositions the cursor at the beginning 

4-17 



-~·~ -~-~-"-- _.:_ __ , __ ,_ ._;.., ___ --------~--··••- • ·- .-----·-• • - • ....0. --~ ··"-•-•- -- -•-••··~•----+- ·-··- ..• --.·~-- •'•L .... "~-.._, __ • __ '•'··•--•-

of the line. 

4.3.7.4 Delete Line Function: The Delete Line function is called by 
pressing the ERASE INPUT key. This function causes the line on which 
the cursor is positioned to be deleted. The cursor is positioned at 
the first character of the first token on the line following the 
deleted line. 

4.3.7.5 Skip Function: The Skip function is called by pressing the 
TAB/SKIP key. This function clears all of the characters on the 
current line from the cursor position to the right margin. The cursor 
position is not changed. 

4.3.7.6 Insert Character Function: The Insert Character function is 
called by pressing the INS CHAR key and typing the new character(s) to 
be inserted into the file. Characters are never lost at the right 
margin; therefore, if a non-blank character is present at the right 
margin, no additional characters can be inserted on the line and the 
beeper is sounded if this is attempted. In this case, the "split line" 
command must be used for breaking up long lines. (See 4.3.7.9) 

4.3.7.7 Delete Character Function: The Delete Character function 
occurs each time the DEL CHAR key is depressed. This causes the 
character in the current cursor position to be deleted. Characters to 
the right of the cursor position are shifted one character position to 
the left and a blank is inserted in column 72. 

··~ .. ··.··.·. 
) 

4.3.7.8 REPLACE Command: The REPLACE command searches for the next ) 
"n" occurrences of an identifier (or string) and replaces each 
occurence with the identifier (or string) specified. The syntax of 
this command is: 

REPLACE (<pattern!>, <pattern2>, <number of occurences>) 

where <pattern!> is to be replaced by <pattern2> and both may be 
identifiers or strings enclosed in double quotes. 

If the command is executed the number of times specified by <repeat 
count> without an error, the cursor is positioned at the first 
character of the last occurrence of <pattern2>. If <pattern!> is not 
found the specified number of times, the cursor is returned to its 
position prior to execution of the command; a message: 

n OCCURRENCE(S) NOT FOUND 

is displayed, indicating the number of occurrences of <pattern!> that 
were not replaced. If the replacing of an occurrence of <pattern!> by 
<pattern2> results in characters being lost (pushed off the end of a 
'line), the command is halted and the cursor is positioned at the 
beginning of the occurance causing the halt. 

4.3.7.9 Split Line Function: The Split Line function is called by 
pressing the FB key. This function causes the current line to be split 
into two lines such that the cursor position indicates the first 

4-18 



character position of the new line. The first character of the new 
line is positioned at the same indentation level as the first token of 
the line that was split. The cursor position is not changed. 

4.3.7.10 INSERT Command: The INSERT command copies a sequential file 
(other than the file being edited) to the position after the line at 
which the cursor is positioned. The INSERT command is called by 
pressing CMD, typing "INSERT", and pressing the RETURN key. The user 
will be prompted for a file name: 

INSERT FILE ACCESS NAME: 

Enter the pathname of the file to be inserted and press the RETURN 
key. The entire file specified will be copied into the file being 
edited. 

4.3.8 Block Commands 

The functions and commands described in this section are used to 
modify files by manipulating designated blocks of lines instead of 
single characters or single lines. 

4.3.8.1 Start and End Block Functions: These functions place markers 
to bracket file sections to be manipulated by the COPY, MOVE, DELETE, 
and PUT commands. 

A start block marker is set by pressing the FS key. Result is a beep 
and the placement of "<-------" in columns 73 through 80. 

An end block marker is set by pressing the F6 key. Result is a beep 
and the placement of "------->" in columns 73 through 80. 

If both the start and end block markers are set on the same line, (if 
you wish to move only one line of text, for example), "<------>" is 
placed in columns 73 through 80 of that line. 

For both functions, the cursor position is used as the location of the 
marker. 

4.3.8.2 COPY Command: The COPY command causes a copy of the block 
designated by the start and end block markers to be inserted between 
the line on which cursor is positioned and the following line. When 
this command is completed, the markers are not modified and the cursor 
is placed in column 1 of the first line of the copied block. If the 
end block marker precedes the start block marker or either marker does 
not exist, a ·message is displayed and no action is taken. To resume 
EDIT, the user must hit the CMD key and enter any command including _a 
blank command. · 

4.3.8.3 MOVE Command: The MOVE command causes the block designated by 
the start and end block markers to be moved to the line following the 

( line on which the cursor is positioned. The order of procedure is: 
''-.C.. 

4-19 



(1) Position the cursor at the beginning of the first line of the 
block to be moved. Press F5 (Start-block arrow set). 

(2) Position the cursor at the beginning of the last line 
of the block to be moved. Press F6 (End-block arrow set). 

(3) Position the cursor at the line preceeding the line where the 
block is to be inserted. 

(4) Press CMD key and enter: MOVE (Ret) 

When this command is completed, the markers are removed from the 
file and the cursor is placed in column 1 of the first line of the 
moved block. 
The designated block cannot be moved to a location that is contained 
within itself. 
If the end block marker precedes the start block marker, or either 
markers does not exist, a message is displayed and no action 
is taken. To resume EDIT, the user must hit the CMD key and 
enter any command including a blank command. 

4 • 3. 8. 4 DELETE Command: The DELETE command causes· the block 
designated by the start and end block markers to be deleted. When this 
command is completed, the markers are removed from the file and the 
cursor is placed in column 1 of the line following the deleted block. 
If the end block marker precedes the start block marker, or either of 
the markers does not exist, a message is displayed and no action is 
taken. To resume EDIT, the user must hit the CMD key and enter any 
command including a blank command. ') 

4.3.8.5 PUT Command: The PUT command causes a copy of the block 
designated by the start and end block markers to be copied to another 
file specified. After the PUT command has been entered, the user will 
be prompted for the pathname of the destination file. 

OUTPUT FILE ACCESS NAME: 

The user should respond by typing the pathname of the file to which 
the block is to be written and press the RETURN key. (If no pathname 
is specified and the RETURN key is pressed, no action is performed and 
the editor prompts for another command.) The user will then be 
prompted as follows: 

REPLACE?: 

If the user responds by typing in letter N to specify that an existing 
file with the entered pathname should not be replaced, no action is 
taken. The message: 

FILE EXISTS AND NO REPLACEMENT IS SPECIFIED 

is displayed. the RETURN or COMO key must be pressed and another 
pathname or a Y response to the REPLACE? prompt entered in order to 
complete the PUT procedure. If the file does not exist, the file will 

4-20 



be created and the data placed in it. 

If the letter Y is entered, the requested replacement takes place. 
NOTE: the old data in the specified file will be lost. To save the 
data in the specified output access file, use the INSERT command 
instead of PUT. (See 4.3.7.10) 

To resume the EDIT, enter any command including the blank 
a legal pathname is given and the valid replacement 
specified, the designated block will be "put" into the 
current form. The following message will be displayed 
command is completing its execution: 

PUT COMMAND EXECUTING 

command. If 
option is 

file in its 
while the 

Should either an invalid pathname or ·an invalid replace response be 
incorrect, a file I/O error will occur and an appropriate error 
message will be displayed. 

4.3.9 SHOW Command 

The SHOW command causes the display of a file other than the one being 
edited during the edit session. After the SHOW command is entered, 
this prompt will be displayed asking for the pathname of the file to 
be shown: 

SHOW FILE ACCESS NAME: 

Respond by entering the pathname of the file to be displayed. Paging 
through the file may be accomplished by use of the Fl and F2 keys, or 
by using the relative positioning function (see 4.3.6.13). Pressing 
the CMD key terminates the show file and returns the file being edited 
to the display. 

4.4 ERROR MESSAGES 

The error messages generated by the Command Processor and Syntax 
Checker are described in the following paragraphs. 

4.4.1 Command Syntax Errors 

When a command or its parameter are improperly formed or recognized by 
the Source Editor, one of the following error messages is returned: 

BAD PARAMETER 
An illegal parameter was found within a command. Parameters can 
only be one of the following: integer constant, identifier, 
string (delimited by double quotes), or pathname. 

INCOMPLETE COMMAND SYNTAX 
A command is improperly terminated. If a command has parameters, 

4-21 



. . 

-•-'------·--~•••---·-·- • -··-- ·~---·-- ---- ••-·-'-- -----~. • ·"--'-------'-"••--~~--·-r-~- ··• - •• •. -.~- ---·--·~·-~-:,-, __ ,.,_ '•.,• 

the parameter list must be enclosed in parentheses. 

INVALID COMMAND NAME 
The command name is not valid. Use the HELP command to find the 
proper command name. 

EXTRANEOUS CHARACTERS 
The command contains extra non-blank characters to the right of 
an otherwise proper command structure. 

TOO MANY PARAMETERS 
The command contains too many parameters. Use the HELP command to 
check the number and meaning of parameters for the command. 

4.4.2 Command Processing Errors 

The following error messages may be generated during execution of an 
EDIT command: 

n OCCURENCE(S) NOT FOUND 
The identifier or string specified in a FIND or REPLACE command 
was not found the specified number of times between the current 
cursor position and the end-of-file marker. 

REPLACEMENT STRING TOO LONG 
Replacement of a string or name in a line would cause characters 
to be lost off the right hand side of a line. 

RESPONSE MUST BE "YES" OR "NO" 
The response given to the "REPLACE?:" prompt must be a yes (y) or 
a no (n) • 

START BLOCK NOT SPECIFIED 
A COPY, MOVE, DELETE, or PUT command was entered but the 
designated block was not completely bracketed. 

END BLOCK NOT SPECIFIED 
A COPY, MOVE, DELETE, or PUT command was entered but the 
designated block was not completely bracketed. 

END BLOCK PRECEDES START BLOCK 
Within the file being edited, the start block marker must precede 

_the end block marker for a MOVE, COPY, DELETE, or PUT command to 
be executed. 

ILLEGAL MOVE 
The designated block in a MOVE command cannot be moved to a 
location within itself. 

4.4.3 File I/O Errors 

4-22 

~\ 

) 



The following errors may be generated when responding to a prompt from 
the editor for an input or output file access name. 

SVC ERROR NO. n 
This error may be generated wheri responding to the editor's 
prompt for an input file access name at the beginning of an edit 
session, or following a SAVE, SHOW, QUIT, INSERT, or PUT command. 
This error occurs if the specified file can not be accessed. The 
SVC status code is given (in hexadecimal) to further clarify the 
error encountered. The meanings associated with each of these 
codes can be found in the User's Manuals associated with the 
relavent system. 

BAD DISK NAME/DISK VOLUME NOT INSTALLED 
The disk name (within a file access name) given as a response to 
an editor prompt does not exist. 

NO FILE DEFINED BY NAME SPECIFIED 
The file access name given by the user in response to an editor 
prompt does not exist. 

FILE EXISTS AND REPLACE NOT SPECIFIED 
The user requests that a file be saved but not replaced, and a 
file of that name already exists, or replace was specified and 
the file is write or delete protected. 

BAD PATHNAME SYNTAX 
(_ The syntax of the file access name entered is invalid. 

UNABLE TO GRANT REQUESTED ACCESS PRIVILEGES 
The user has requested a file in response to a prompt which can 
not be accessed by the editor, i.e., it is already in use. 

4.4.4 Syntax Checking Error Messages 

The CHECK routine begins at the first line of the file and checks each 
line in sequence. The cursor will stop at the first line where a 
syntax error is detected and an error message will display. Once 
corrective action is taken and the CMD RETURN keys are pressed, the 
routine will continue checking the file until another error is 
detected or EOF is reached. 

The following error messages that . may be generated by the syntax 
checking routine of the editor are: 

1 STATEMENT.SEPARATOR EXPECTED 
Statements must be separated by 
or 0 UNTIL•. 

.,., .. --·..,.-o-· 

... 
··;, 

4-23 

••• I I nEND 0 1 nELSE 0 , •oTHERWISE 0 , 



2 MISMATCHED PARENTHESES .···."'\.··-··--
Parentheses do not match in an expression, declaration, or ) 
parameter list. 

3 °] 0 EXPECTED 
A 0 ]" was expected following a set reference or an array 
subscript. 

4 INVALID OPERAND. IN EXPRESSION 
An invalid term was encountered in an expression. 

5 ERROR IN QUALIFIED VARIABLE 
An identifier must follow the " " . of a qualified variable. 

6 ERROR IN TYPE TRANSFER VARIABLE 
A TYPE identifier must follow the ":: 0 of a type transfer 
variable. 

7 CASE ALTERNATIVE ERROR 
A CASE label, "; 0 , "END 0 , or 0 0THERWISE" was expected. 

8 °0F 0 EXPECTED IN CASE STATEMENT 
Incomplete CASE statement found; "OF 0 must precede the included 
list of case alternatives. 

9 MISMATCHED REPEAT/UNTIL PAIR 
An °UNTIL" was not expected to occur at this point in the system. 

10 SEMICOLON MAY NOT PRECEDE AN "ELSE" 
The THEN and the ELSE clauses of an IF statement may not be 
separated by a semicolon. 

11 THEN EXPECTED 
An IF statement is incomplete without a THEN clause. 

12 °: 0 EXPECTED AFTER LABEL 
All stat~ment _labels must be followed by a ": 0 • 

13 STRUCTURED STATEMENT MUST FOLLOW ESCAPE LABEL 
A REPEAT, WHILE, WITH, FOR, IF, CASE, or BEGIN statement must 
follow all escape labels. 

14 ":= 0 EXPECTED IN ASSIGNMENT STATEMENT 
An invalid operator or operand was encountered in an assignment 
statement. 

15 ERROR IN WRITE PARAMETER LIST 
A 0 , 0 or the keyword 0 HEX" was expected in a write parameter 
list. 

16 ESCAPE IDENTIFIER EXPECTED 
The keyword 0 ESCAPE 0 must be followed by an escape label. 

4-24 



/ 
I 
\_ 

17 STATEMENT LABEL EXPECTED 
The keyword "GOTO" must be followed by a statement label. 

18 PROGRAM OR PROCESS NAME MUST FOLLOW START 
A START statement must include a PROCESS, or PROGRAM identifier 
following the keyword "START". 

19 CONTROL VARIABLE EXPECTED 
The control variable of a FOR statement was expected following 
the keyword "FOR". 

20 ":=" EXPECTED IN FOR STATEMENT 
A FOR statement control variable must be followed by a 

21 "TO" OR "DOWNTO" EXPECTED IN FOR STATEMENT 

"·-" .- . 

A "TO" or "DOWNTO" must separate the initial and final 
expressions of a FOR statement. 

t 

22 "DO" EXPECTED IN FOR, WITH, OR WHILE STATEMENT 
A "DO" must be included in all FOR, WITH, and WHILE statements. 

23 INVALID TAGFIELD IN WITH STATEMENT 
A record variable or an identifier was expected in the tagfield. 
of a WITH statement. 

24 STATEMENT EXPECTED 
An unknown keyword or statement beginning was encountered. 

25 ":" EXPECTED AFTER CASE LABEL LIST 
A":" must follow all CASE label lists. 

26 INVALID CASE LABEL 
An enumeration constant was expected as a CASE label. 

27 DECLARATION SEPARATOR EXPECTED (";") 
All declarations must be separated by ";". 

40 ERROR IN LABEL LIST 
A statement label was expected in a LABEL declaration. 

41 "=" EXPECTED IN TYPE OR CONST DECLARATION 
An "=" must follow all TYPE and CONST identifiers that are being 
declared. 

42 CONST IDENTIFIER EXPECTED 
An identifier was expected in a CONST declaration. 

43 TYPE IDENTIFIER EXPECTED 
An identifier was expected in a TYPE declaration. 

44 ":" EXPECTED IN VAR OR COMMON DECLARATION 
A ":" must follow all VAR and COMMON identifiers that are being 
declared. 

4-25 



45 VAR IDENTIFIER EXPECTED 
An i~entifier was expected in a VAR declaration. 

46 COMMON IDENTIFIER EXPECTED 
An identifier was expected in a COMMON declaration. 

47 INVALID OPERAND IN CONST DECLARATION 
An integer term was expected in a CONST expression. 

48 "[" EXPECTED IN ARRAY DECLARATION 
A "[" must precede the index type(s) of all ARRAY declarations. 

49 "OF" EXPECTED IN DECLARATION 
An "OF" was expected in an ARRAY, FILE, SET, or RECORD variant 
declaration. 

50 "END" EXPECTED FOLLOWING RECORD DEFINITION 
An "END" was expected to terminate a RECORD declaration. 

51 "ARRAY" OR "RECORD" MUST FOLLOW "PACKED" 
PACKED structures only includP. ARRAYS and RECORDS. 

52 "FILE" MUST FOLLOW "RANDOM" 
A RANDOM file declaration must include the keyword "FILE" 
following the "RANDOM" specification. 

53 ":" EXPECTED IN RECORD FIELD LIST 
A ":" must separate all identifiers from the TYPE identifier with 
which they are associated. 

54 INVALID TAGFIELD IN RECORD 
A tagf ield type was expected in the variant portion of a RECORD 
declaration. 

55 "(" EXPECTED PRECEDING FIELD LIST 
A "(" was expected in the variant portion of 
declaration. 

56 "··" EXPECTED IN DECLARATION 
A"··" was expected in a subrange declaration. 

57 ENUMERATION CONSTANT EXPECTED 

a RECORD 

An enumeration constant was expected in the declaration section. 

58 INDEX TYPE EXPECTED IN DECLARATION 
An index type was expected in an ARRAY declaration. 

59 SIMPLE TYPE EXPECTED IN DECLARATION 
A simple type was expected in a TYPE declaration or in a SET 
declaration. 

60 ERROR IN IDENTIFIER LIST 
An identifier was expected in an identifier list. 

4-26 

j 



/ 

! 
'"-----

61 PARAMETER LIST EXPECTED 
A "(" was expected following a WRITE, ENCODE, or DECODE procedure 
call. 

70 FILE MUST BEGIN WITH MODULE OR DECLARATIONS 
The file being edited does not begin with an acceptable keyword. 

71 MODULE DECLARATION SECTION EXPECTED 
The module header has been encountered and parsed: declarations 
are expected next. Possibly a "FORWARD" or "EXTERNAL" is 
expected. 

72 SYSTEM MUST BE OUTERMOST MODULE 
A SYSTEM may not occur within any module. 

73 MODULE HEADER MISSING 
A body has been encountered but the corresponding module header 
was missing. 

74 MODULE EXPECTED 
The end-of-file or a module header is expected. 

75 "END" NOT EXPECTED 
An "END" was encountered but not expected in a REPEAT statement. 

76 END-OF-FILE EXPECTED 
The parser has completed an entire system but the file has not_ 
been exhausted. 

77 MODULE IDENTIFIER EXPECTED 
The name of the module must immediately follow the keyword 
"SYSTEM", "PROGRAM", "PROCESS", "PROCEDURE", or "FUNCTION" in a 
module header. 

78 FUNCTION RESULT TYPE EXPECTED 
The FUNCTION header is not complete without the result type of 
the FUNCTION included. 

79 ":" EXPECTED IN PARAMETER LIST 
A ":" must separate all parameters from the TYPE identifier with 
which they are associated in parameter lists. 

80 "BEGIN" EXPECTED 
A "BEGIN" is expected to precede a module body section. 

81 INVALID MODULE TERMINATOR (":" or ".") 
The terminator following a module is missing, or an incorrect 
terminator was encountered. 

82 SYSTEM MAY .NOT HAVE PARAMETERS 
A "(" was encountered following a SYSTEM identifier: parameter 

4-27 



lists are not allowed at the system level. 

90 SYSTEM NESTING LEVEL TOO DEEP FOR PARSER 
The nesting within the file being edited is too deep to be 
handled by the CHECK command. 

91 INVALID ?COPY STATEMENT 
A ?COPY·statement was encountered but is syntactically incorrect. 

92 END OF STRING EXPECTED 
AN ".-" was expected to terminate a string within the file. 

93 END OF COMMENT EXPECTED 
A"}" or "*)"was expected to terminate a comment. 

94 NESTED COMMENTS ENCOUNTERED 
A nested comment was encountered; comments should not be nested. 

95 INVALID NUMBER 
A symbol was encountered that is not allowed in the type of 
number found. It ~ay be a "·" within an integer, or a hexadecimal 
digit within a real number. 

1001 - 1006 INTERNAL PARSER ERROR 
These errors should never be generated by the editor during its 
syntax check. If one should occur, recheck your file using the 
CHECK command. If the problem persists, contact your Texas 
Instruments service representative. 

4-28 

__ ) 



SECTION 5 

COMPILER AND NATIVE CODE GENERATOR 

5 • 1 OVERVIEW 

The Microprocessor Pascal System produces both interpretive code and 
native code. The Microprocessor Pascal Compiler takes the source code 
for a Microprocessor Pascal System as input and produces interpretive 
code for a hypothetical stack computer. The compiler checks for syntax 
and semantic errors. The error messages generated are listed and 
defined in Paragraph 5.2.6.1. 

The Native Code Generator generates 9900 native code from the 
interpretive code produced by the compiler. Although native code is 
larger than interpretive code, certain types of applications may 
require either faster execution speed or critical timing dependencies 
which cannot be met by interpretive code. 

Descriptions of the compiler and the native code generator are 
· presented below. 

5.2 COMPILER 

Presented below is information concerning compiler printouts, compiler 
options, use of the COPY statement, separate compilations, and segment 
saving. 

5.2.1 Compiler Printouts 

The compiler printouts below are execution messages, a compiler 
listing, and a variable map. 

5.2.1.1 Compiler Execution Messages. As the compiler executes, 
messages are output indicating how much of the system has been 
compiled. These messages are output to a file usually sent to the 
user's display. For Example: 

EXECUTION BEGINS 
SCANNER IS FINISHED 
FACTO RIA 
EXAMPLEl 
NO ERRORS IN COMPILATION 
Stack used = 2706 Heap used = 2672 
Execution Ends. 

5-1 



COMPILATION COMPLETE 

The first line appears when execution begins. The last three lines 
indicate normal termination of the compiler and the amount of memory 
(in bytes) used in the compilation. The remaining lines in the message 
a.re generated by the compiler. An explanation of these lines follows: 

The second line in the message appears when the first pass of the 
compiler is completed. (The compiler executes in two passes - scanner 
and parser). The third and fourth lines contain the names (first eight 
characters only) of modules in the system. The name of the module is 
output as its parsing is completed by the compiler. 

The next line indicates no errors were discovered in the compilation. 

When errors are found in the compilation, the message file is 
displayed as follows: 

Execution Begins 
SCANNER IS FINISHED 
ERRORS IN MODULE 
ERROR 
ERRORS IN MODULE 
EXAMPLE2 
FATAL ERRORS IN COMPILATION 
Stack used = 2532 Heap used = 2722 
Execution ENDS. 
ERRORS IN COMPILATION. 

For each module containing errors, an "ERRORS IN MODULE" line is 
output before the module"'s name. The message "FATAL ERRORS IN THE 
COMPILATION" is output following the name of the last module in the 
system and the last line reads "ERRORS IN COMPI.LATION". If all the 
errors found were non-fatal, the message "ERRORS IN COMPILATION" is 
output and the last line reads "COMPILATION COMPLETE". 

5.2.1.2 Compiler Listing. The compiler listing is produced by the 
second pass of the compiler. An example of this listing is shown as 
follows: 

5-2 

) 



DX Microprocessor Pascal System Compiler 3.0 06/22/81 10:10:38 PAGE 

0 PROGRAM EXAMPLE!; 
0 VAR 
0 N: INTEGER; 
2 M: INTEGER; 
4 
0 FUNCTION FACTORIAL(I:INTEGER): LONGINT; 
1 BEGIN { FACTORIA } 
1 IF I = 1 
2 THEN FACTORIAL ·-.- 1 
3 ELSE FACTORIAL ·- I * FACTORIAL ( I-1) .-
4 END; { FACTO RIA 
4 
1 BEGIN { EXAMPLE! 
1 N := S; 
2 M : = FACTORIAL ( N) ; 
3 WRITELN(N:2,' FACTORIAL = , ,M) ; 
4 WRITELN('NORMAL PROGRAM TERMINATION') 
5 END. { EXAMPLE! 

At the top of the listing, data 
version of compiler, and date 
listing is provided next. 

appears identifying the compiler, 
and time of compilation. The source 

The LIST option is the default. When NO LIST is specified in the 
source, any lines appearing between it and the next "LIST" entry will 
not appear unless they contain errors (see options). 

Each line consists of a number followed by the first 72 columns of the 
source line. In a line in the declaration section, the number 
ndicates the byte displacement for the variables within the 

procedures' local stack frame. In the body, the number indicates the 
statement number of the first statement appearing on the line. The 
above information is required for debugging. 

Syntax and semantic errors are also included in the listing as 
illustr~ted next: 

5-3 

} 

} 

} 



. ' 

-~·- ~-~ ·~-···-·--··--·-~·-~- --~-----"-·-~---------<-~--·-- ------ -------------------'-----"~ ~-'·-~-~ _ _,_:_.:._ ___ .~_.:.:_:.::_.· ________ ,-_ _._..._---~--=--~-""'-~-- .. ._; - _._:_· ___ ,. __ , _________ ___: _______ ._-_.~.-- - ~----

A sample listing with error messages: 

DX Microprocessor Pascal System Compiler 
.··~ 

3.0 06/22/81 10:12:23 PAGE ) 

0 PROGRAM EXAMPLE2; 
0 CONST 
0 TW0=2; 
0 TEN = 10; 
0 VAR 
0 X,XTWO,XTEN: REAL; 

12 RESULT: REAL; 
16 

0 PROCEDURE ERROR(ERR:INTEGER); 
1 BEGIN 
1 IF ERR <> 0 
2 THEN WRITELN(~ERROR ##~,ERR:2); 
3 ELSE WRITELN(~NO ERRORS - NORMAL TERMINATION~) 

**** !41 
3 
3 

END; 

1 BEGIN 
1 
2 
3 

**** 
3 
4 
5 
6 
6 
7 

**** 

x := 133.726; 
XTWO := X * TWO 
XTEN := X * TEN; 
!14 
RESULT:= X/((X/XTWO)*XTEN/5.0); 
IF RESULT < 0 
THEN ERROR ( 1) 
ELSE 

IF RESULT = 0 
THENERROR ( 2) 
!52 ! 104 

8 ELSE ERROR(O) 
9 END. 

{ ERROR } 

{ ERROR } 

{ EXAMPLE 2 } 

{ EXAMPLE 2 } 

Four consecutive asterisks are placed in the left-hand margin under a 
line containing errors (setting the line off from the rest of the 
listing. (In cases where a token expected to terminate the previous 
line was not found, the error will be indicated on the first token in 
the next line.) An exclamation point "!" is placed beneath the 
incorrect token. Following the exclamation point is a numeric value 
associated with the error. The meanings associated with these numeric 
values are defined in Appendix E and section 5.2.6.1. 

One error can cause several error messages separated by commas. 

5. 2 .1. 3 Variable Map. The variable . map provides .information 
regarding the various declarations in an application and does not 
address the executable code. The MAP compiler option must be turned on 
or off for the entire compilation. This listing is produced after the 
complete system has been compiled, and it appears after the source 

\ 
j 

·listing. The map is produced in the order in which the declarations / 

5-4 



appear (i.e., the outer blocks are listed before inner block9). In all 
cases only the first eight characters of the each name are listed, all 
displacements are given in hexadecimal bytes, and all sizes (unless 
otherwise stated) are given in decimal bytes. 

An example of the listing produced by the compiler with the MAP option 
specified is shown below: 

DX Microprocessor Pascal System Compiler 3.0 06/22/81 10:14:21 PAGE 

0 {$ MAP } 
0 SYSTEM MAP EXAMPLE; 

_ 0 TYPE -
0 PTR = @ REC; 
0 REC = RECORD 
0 A: INTEGER; 
0 S: SEMAPHORE; 
0 NEXT: PTR 

PREC 

COMMON 

END; 
= PACKED RECORD 

A: 0 •• 255; 
B: BOOLEAN; 
C: CHAR; 
D: -128 •• 127 

END; 

COMl: REC; 
COM2: PREC; 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
0 
4 
4 
6 

PROCEDURE INITSEMAPHORE(VAR SEMA:SEMAPHORE; COUNT: INTEGER); EXTERNAL; 
PROCEDURE SIGNAL(SEMA:SEMAPHORE); EXTERNAL; 

12 
16 
18 

0 
1 
1 
1 
2 
1 
1 
l 
2 
1 
1 
1 

PROCEDURE WAIT(SEMA:SEMAPHORE); EXTERNAL; 

PROGRAM PROG EXAMPLE(OUTPUT, INPUT:TEXT); 
VAR -

BEGIN 

P: @ REC; 
R: REC; 
S: PREC; 
I: INTEGER; 

BEGIN 

PROCEDURE 
BEGIN 

{ ... } 
END; 

{ . . . } 
END; 

{ ... } 
END. 

PRINT_ERROR(N:INTEGER); 

5-5 

{ PRINT ERROR } 

{ PRINT ERROR } 

{ PROG EXAMPLE } 

{ PROG EXAMPLE } 

{ MAP EXAMPLE } 

{ MAP EXAMPLE } 



SYSTEM MAP EXAM; 
STACK SIZE = 0000 

COMMON 
COM! 
COM2 

FIELD 
A 
s 
NEXT 

FIELD 
A 
B 
c 
D 

TYPE 
RECORD 
RECORD 

DISP 
0000 
0002 
0004 

DISP 
0000 
0000 
0002 
0002 

SIZE 
6 
4 

TYPE 
INTEGER 
SEMAPHORE 
POINTER 

TYPE 
SUBRAN(;E 
BOOLEAN 
CHAR 
SUBRANGE 

SIZE 
2 
2. 
2 

SIZE 
8 BITS 
1 BIT 
8 BITS 
8 BITS 

(XXXXXXXX •••••••• ) 
( • ••• • • • • • • • • • • • X) 
(XXXXXXXX •••••••. ) 
( •••••••• XXXXXXXX) 

PROCEDURE IN I TS EMA VAR SEMA :SEMAPHORE; COUNT :INTEGER); EXTERNAL; 

PROCEDURE SIGNAL SEMA :SEMAPHORE); EXTERNAL; 

PROCEDURE WAIT SEMA :SEMAPHORE); EXTERNAL; 

PROGRAM PROG EXA ( OUTPUT :FILE; INPUT :FILE) ; 
STACK SIZE = 0012 

VARIABLE DISP TYPE SIZE 
OUTPUT 0000 FILE 2 
INPUT 0002 FILE 2 
p 0004 POINTER 2 

~ ssse HE8Im i 
I 0010 INTEGER 2 

PROCEDURE PRINT_ER ( N : INTEGER); 
STACK SIZE = 0002 

VARIABLE DISP TYPE SIZE 
N 0000 INTEGER 2 

Each section in the listing begins with a module header. This header 
indicates the module name and whether the module is a system, program, 
process, procedure, or function. Any parameters associated with the 
module are listed after the module name and surrounded by parentheses. 
For each parameter, the name and type classification are provided. 
Reference parameters are preceeded by the keyword VAR. When the module 
is a function, the type of the result is provided following the 
parentheses. When the module is external, the word "EXTERNAL" comes at 
the end of the header. When the module is not external, the stack 
frame size in bytes is provided. 

5-6 



The variable section is listed next. (Parameters are also included in 
the variable section.) For each variable, its name, byte displacement 
in the stack frame, type, and size in bytes is given. If the module 
has no variables, the section is omitted. 

The common section follows the variable section. For each COMMON, its 
name, type, and size in bytes is given. Again, if the module does not 
declare any COMMONS, this section is omitted. 

The record section is listed last. The information presented for each 
record field includes its name, displacement in bytes from the 
beginning of the record, type, size in bytes (or bits, if packed), and 
the bit map which the packed field occupies. If the field is not 
packed, the last column is empty. Each record is separated from the 
others by a header. If no records are· declared in the module, this 
section is omitted. 

5.2.2 Compiler Options 

Various options are available for controlling compiler execution and 
output. These options are listed and defined in Table 5-1. Before 
presenting the table however, information is provided describing 
options and how they work. Options are Boolean objects, each of which 
may have the value TRUE or FALSE independent of the values of other 
options. Options are specified in a special form of a comment shown 
below: 

or 
(*$ option list *) 

{$ option list } 

Upon textual entry to a new Pascal routine, the values of all options 
are saved, but not changed. Since blocks may be nested, these values 
are stacked. Within a block, options may be changed, subject to 
certain restrictions. Upon textual exit of the Pascal block, the 
values of all options are restored to the values they had upon block 
entry. 

Option names may be preceded by NO or RESUME. The presence of an 
option name without a prefix of NO or RESUME in an option control 
comment causes the value of that option to become TRUE (subject to 
restrictions discussed below). If the option identifier appears with 
the prefix NO, the option""s value becomes FALSE. If the option name is 
prefixed with RESUME, the value is set to the value the option had 
upon entry of the smallest enclosing block""s scope. Notice that RESUME 
is not the same as "pop" because resume doesn""t. "pop" the stack (e.g. 
(*$RESUME LIST, RESUME LIST*) has exactly the same effect as (*$RESUME 
LIST*) ) • 

5-7 



. - ·- --~'~·-------=----:__ _:. 

Although option control comments may appear anywhere that a comment 1 

may appear, not all of the, options may be controlled at any point in a 
system. "System sensitive" ,options must have a single value for the 
entire compilation. Since defq.ult values exist for all options in the /~ 
imaginary scope in which ·the system is embedded, control of these ) 
options must be done before the system~s text is entered. Thus, these 
options must appear only in option control comments located before the 
keyword SYSTEM, or before the keyword PROGRAM for a conventional 

·pascal program. The only option in this class is MAP. 

"Routine sensitive" options have a single value for the entire 
statement part of any routine. Options in this class may be changed at 
three different places in a routine: before the beginning of the 
system, between the semicolon ending the routine header and the next 
keyword or symbol, and between the BEGIN and the first statement 
following the BEGIN. The options in this class are DEBUG, NULLBODY, 
and STATMAP. The remaining class of options may legally be set to new 
values at any point in a system where a comment could occur. Table 5-1 
below lists all available options and defines their default values and 
meanings. 

TABLE 5-1. LISTING CONTROL OPTIONS 

OPTION DEFAULT 

COL72 TRUE 

LIST TRUE 

MAP FALSE 

PAGE FALSE This 

MEANING · 

When this option is turned off, the entire source _) 
line is scanned, otherwise only the first 72. 
columns of the source are scanned. This option does 
not obey the normal scope rules so it must be 
explicitely turned on and off when desired. This 
option only applies to the line on which the option 
appears. (INSENSITIVE) 

This option controls.the source listing. Lines with 
errors are always listed with informative error 
messages. (INSENSITIVE) 

This option indicates 
modules and variables 
is described in 
SENSITIVE) 

that a map of the system 
are desired. The map listing 
paragraph 5.2.1.3. (SYSTEM 

option has the immediate effect of 
the next line to be printed at the 
page. The option is turned 
following the line. (INSENSITIVE) 

(Continued) 

5-8 

causing 
top of the next 
off immediately 



TABLE 5-1. LISTING CONTROL OPTIONS (CONTINUED). 

OPTION DEFAULT 

STATMAP FALSE 

DEBUG FALSE 

NULLBODY FALSE 

ASSERTS TRUE 

CK INDEX FALSE 

CKPTR FALSE 

CK SET FALSE 

CK SUB FALSE 

MEANING 

This option indicates that a map of the 
displacement for each statement in 
module is to be generated by the 

. Generator. (ROUTINE SENSITIVE) 

the object 
Native Code 

This option should be used if the code is to be 
debugged in any of the host or target debuggers. 
Statement· level breakpoints may then be used to 
debug the routine. (ROUTINE SENSITIVE) 

This option is used between the BEGIN / END of an 
empty module body. The body must be empty, which 
means that statements may not occur between the 
BEGIN and the END. This option indicates that no 
code is to be generated for the empty body. 
(ROUTINE SENSITIVE) 

This option directs the compiler to generate code 
for ASSERT statements. (INSENSITIVE) 

This option is used to enable run-time checks array 
indices out of bound. (INSENSITIVE) 

This option turns on (off) run-time checks for 
pointers equal to NIL. (INSENSITIVE) 

This option is used to enable run-time checks for 
set element expressions out of bounds. 
(INSENSITIVE) 

This option directs the compiler to produce 
run-time checks for subrange assignments to assure 
that they are in bounds. (INSENSITIVE) 

------------------------------------------------------------------------
5.2.3 COPY Statement 

A copy statement is provided so that source files can be separated 
into individual files. A copy statement is specified as follows: 

?COPY file-access-name 

where "?COPY" must begin in column one of a source line and the rest 
·of the line after the "file-access-name" is treated as a remark. Copy 
.files may have embedded copy statements, but the nesting is limited to 

\__ 8 levels. 

_ .... -
···· 

5-9 

.·. ·j 



Use of copy files has the advantage of making editor 
efficient because the files are smaller. One typical use 
is a set of commonly used declarations which can be 
separately compiled systems. Another example is a set of 
for the Native Code RTS Library. 

sessions more 
of copy files 

included in 
declarations 

The example previously given in Figure 3-2, Section 3, is used in the 
following sample (pages 5-10 to 5-13) to illustrate possible uses of 
the ?COPY statement: 

{$DEBUG,MAP} 

SYSTEM TUTORIAL; 

?COPY USER.SYSDECL 

?COPY USER.PRODUCE 

?COPY USER.CONSUME 

BEGIN {# STACKSIZE = 300; HEAPSIZE = 500 } 
{ Code for SYSTEM Tutorial } 

-).· 
-'';...,,_ 

{ Initialize message buffer } ) 
WITH M = Message buff er 

DO BEGIN -
{ Initialize first in and first out to the same slot. So 

long as they are the same and within range any initial 
value will work } 

M.Next in := 1; 
M.Next-out := 1; 

{ Initialize the exclusive access semaphore for only 
one access at a time } 

INITSEMAPHORE ( M.Exclusive access, 1 ) ; 
{ Initialize the not empty-semaphore for no messages 

currently in buffer } 
INITSEMAPHORE ( M.Not empty, 0 ) ; 

{ Initialize the not-full semaphore for all messages 
currently empty } 

INITSEMAPHORE ( M.Not_full, Number of slots ) ; 
END; 

{ Initialization complete. Start the producer and consumer } 
START Producer; 
START Consumer; 

END. 

CONST 

5-10 



' \..___ 

Number_of_slots = 10; { Maximum number of slots in buffer } 

TYPE 
Slot index= 1 •• Number of slots; 
Alphabetic= .. A ...... z .. ;- -
Buffer = RECORD 

Next in 
Next-out 
Not empty 
Not-full 
Exclusive access : 

Slot index; 
Slot-index; 
SEMAPHORE; 
SEMAPHORE; 
SEMAPHORE; 

. -~- ... ·· ·-

Slots 
END; 

ARRAY [Slot_index] OF Alphabetic; 

COMMON 
Message_buffer 

ACCESS 
Message_buffer; 

Buffer; 

PROCEDURE INITSEMAPHORE 

PROCEDURE SIGNAL 

PROCEDURE WAIT 

PROCEDURE SWAP; 

VAR Serna : SEMAPHORE; 
Count INTEGER); 

Serna : SEMAPHORE); 

Serna : SEMAPHORE); 

EXTERNAL; 

EXTERNAL; 

EXTERNAL; 

EXTERNAL; 

PROGRAM PRODUCER; { Produce messages } 

Alphabetic; 
VAR 

Item 
Line PACKED ARRAY [1 •• 16] OF CHAR; 

ACCESS 
Message_buffer; 

BEGIN {# PRIORITY = 20; STACKSIZE = 100 } 

{ Initialize item so that first message will be .. A .. } 
Item := .. z .. ; 

{ Initialize message to inform user of "PRODUCTION" } 
Line := .. Item produced: .. ; 

WITH M = Message_buffer DO 

5-11 



WHILE TRUE { i.e. do forever } 
DO BEGIN 

{ Set item to be 'PRODUCED' } 
IF Item = 'z' THEN Item := 'A' 

ELSE Item:= succ Item); 
{ Wait on an empty buffer slot } 

WAIT ( M.Not full); 
{ Wait on exclusive access to the message buffer } 

WAIT ( M.Exclusive access); 
{ Move message to-next available slot in buffer } 

M.Slots [ M.Next in ] := Item; 
{ Set pointer to next free slot } 

M.Next in := SUCC ( M.Next in MOD Number of slots ) ; 
{MOD-function produces a-value O •• (Number-of slots-1), 

Ie. o •• 9. If the slot just used was 10 then MOD 
will give O, and SUCC(O) is 1, which is what we want } 

{ Relinquish exclusive access of message buffer } 
SIGNAL ( M.Exclusive access); 

{ Signal that another message was 'PRODUCED' } 
SIGNAL ( M.Not empty); 

{ Set output message to indicate what was ·'PRODUCED' } 
Line [16] := Item; 

{ Output the message to the user } 
MESSAGE (Line); 

END; 

{ Give other processes at this priority a 
chance to execute } 

SWAP; 

{ End of PRODUCER program } 
END; 

PROGRAM CONSUMER; { Consume messages } 

Alphabetic; 
VAR 

Item 
Line PACKED ARRAY [1 •• 36] OF CHAR; 

ACCESS 
Message_buffer; 

BEGIN {i PRIORITY = 20; STACKSIZE = 100 } 

{ Initialize message to inform user of "CONSUMPTION". 
NOTE: This message has 20 leading blanks to make it priQt 
in a different column to the. 'item produced' messages. j 

Line := ' Item consumed: '; 

WITH M = Messa~e_buffer DO 
WHILE TRUE t i.e. do forever } 

5-12 

out 



DO BEGIN 

END; 

{ Wait on an full buffer slot } 
WAIT ( M.Not empty ) ; 

{ Wait on exclusive access to the message buffer } 
WAIT ( M.Exclusive access); 

{ Get message from slot in buffer } 
Item := M.Slots [ M.Next out ] ; 

{ Set pointer to next free slot } 
M.Next out := SUCC ( M.Next out MOD Number of slots ) ; 

{MOD-function produces a value O •• (Number_of_slots-1), 
Ie. 0 •• 9. If the slot just used was 10 then MOD 
will give 0, and SUCC(O) is 1, which is what we want } 

{ Relinquish exclusive access of message buffer } 
SIGNAL ( M.Exclusive access); 

{ Signal that another message was ""CONSUMED"" } 
SIGNAL ( M.Not full); 

{ Set output message to indicate what was '"CONSUMED"" } 
Line[36] := Item; 

{ Output the message to the user } 
MESSAGE (Line); 

{ Give other processes at this priority a 
chance to execute } 

SWAP; 

{ End of CONSUMER program } 
END; 

5.2.4 Separate Compilations 

The Microprocessor Pascal System supports separate compilation of 
system segments. A segment is simply a group of modules (typically a 
program or process) and all inner modules that are to be compiled 
together. This segment may then be saved in the form of a standard 
9900 object module or MPP Pcode module for later use in debugging of 
the complete system. All separately compiled segments must be compiled 
with the same global declaration environment so that they access the 
same global variables. Any modules which are referenced by but not 
included in a segment must be declared EXTERNAL. Any global modules 
that are required only because of their declarations must have 
null bodies and must also be declared EXTERNAL. Any module declared as 
having a null body in a separate compilation of system segments must 
have a body in another system .. segment; otherwise, the module having 
the null body is an unresolved external reference when the system is 
constructed (by the debugger or link editor). 

,"---- · The example given on pages 5-10 through 5-13 can be divided into 
segments as follows: 

5-13 



'· -·- . . - - . . . 
- . -· - ·:· __ :: _____ __;__, __ . _ ____:· .... ---~..;.J.'- -- __ ,, __ __. -~ -·-·-"-~- . 

(SEGMENT 1 - SYSTEM BODY) 

{$DEBUG,MAP} 

SYSTEM TUTORIAL1 

?COPY USER.SYSDECL 

PROGRAM Producer1 EXTERNAL1 

PROGRAM Consumer1 EXTERNAL1 

BEGIN {# STACKSIZE = 3001 HEAP~IZE = 
{ Code for SYSTEM Tutorial } 

500 } 

{ Initialize message buffer } 
WITH M = Message_buffer 

DO BEGIN 
{ Initialize first in and first out to the same slot. So 

long as they are the same and within range any initial 
value· will work } 

M.Next in := 11 
M.Next-out := 11 

{ Initialize the exclusive access semaphore for only 
one access at a time } 

INITSEMAPHORE ( M.Exclusive access, 1 )1 . 
{ Initialize the not empty-semaphore for no messages 

currently in buffer } 
INITSEMAPHORE ( M.Not empty, 0 ) 1 

{ Initialize the not-full semaphore for all messages 
currently empty } -

INITSEMAPHORE ( M.Not full, Number of slots )1 
END1 -

{ Initialization complete. Start the producer and consumer } 
START Producer1 
START Consumer: 

END. 

(SEGMENT 2 - PRODUCER) 

{$DEBUG,MAP} 

SYSTEM TUTORIAL: 

5-14 

. - . -.. ____ _;_ ___ ,: ,· .... 

-~ 
' .. J 

/ 

.. ·~--

_) 



.,..--

( , ____ .· 

?COPY USER.SYSDECL 

PROGRAM PRODUCERi { Produce messages } . 

VAR 
Item Alphabetic1 
Line : PACKED ARRAY [1 •• 16] OF CHARi 

ACCESS 
Message_buffer1 

BEGIN {t PRIORITY = 201 STACKSIZE = 100 } 

{ Initialize item so that first message will be 'A' } 
Item := 'z'1 

{ Initialize message to inform user of nPRODUCTIONn } 
Line := 'Item produced: '1 

WITH M 
WHILE 

DO 

= Messa~e_buffer 
TRUE t i.e. do 
BEGIN 

{ Set item to 
IF Item = 'z' 

DO 
forever } 

be 'PRODUCED' } 
THEN Item := 'A' 
ELSE Item:= SUCC (Item )i 

{ Wait on an empty buffer slot } 
WAIT ( M.Not full )i 

{ Wait on exclusive access to the message buffer } 
WAIT ( M.Exclusive access )i 

{ Move message to-next available slot in buffer } 
M.Slots [ M.Next in ] := Item1 

{ Set pointer to next free slot } 
M.Next in:= SUCC ( M.Next in MOD Number of slots )i 

{MOD-function produces a-value O •• (Number-of slots-1), 
Ie. o •• 9. If the slot just used was 10 then MOD 
will give 0, and SUCC (0) is 1, which is what we wa·nt } 

{ Relinquish exclusive access of message buffer } 
SIGNAL ( M.Exclusive access): 

{ Signal that another message was 'PRODUCED' } 
SIGNAL ( M.Not empty )i 

{ Set output message to indicate what was 'PRODUCED' } 
Line[16] := Item1 

{ Output the message to the user } 
MESSAGE (Line )i 

{ Give other process~s at this priority a 
chance to execute i 

SWAP: 
ENDi 

{ End of PRODUCER program } . 
ENDi 

5-15 



·- .... -

_ .... ._ ,____· -·~·----_:,.___ __ _......:... "'-·~--'--------'..--------·--- -· ------.::--.-~,._.,__: __ :....._~~~.-:-_.__. __ ---·----~-: .• ~~~--~- -.:."'----:~~o-. _-, ___ ,_._; ____ :~, ·-·--."--~~·--:...-'-·-·-~- .... · ... >-•·-·-· .•• ·._ 

BEGIN {$NULLBODY} 
END. 

(SEGMENT 3 - CONSUMER) 

{$DEBUG,MAP} 

SYSTEM TUTORIAL7 

?COPY USER.SYSDECL 

PROGRAM CONSUMER7 { Consume messages } 

VAR 
Item : Alphabetic1 
Line PACKED ARRAY [1 •• 36] OF CHAR7 

ACCESS • 
Message_buffer1 

"BEGIN { # PRIORITY = 20 1 STACKSIZE = 100 } 

{ Initialize ·message to inform user of "CONSUMPTION". 
NOTE: This message has 20 leading blanks to make it print out 
in a different column to the ~item produced~ messages. } 

Line := ~ Item consumed: ~7 

WITH M 
WHILE 

DO 

= Messa~e_buffer DO 
TRUE i i.e. do forever } 
BEGIN 

{ Wait on an full buffer slot } 
WAIT ( M.Not empty ) 1 

{ Wait on exclusive access to the message buffer } 
WAIT ( M.Exclusive access )1 

{ Get message from slot in buffer } 
Item:= M.Slots [ M.Next out ]7 

{ Set pointer to next free slot } 
M.Next out := SUCC ( M.Next out MOD Number of slots ) 1 

{MOD-function produces a value o .. (Number of slots-1), 
Ie. 0 •• 9. If the slot just used was 10 then MOD 
will give O, and SUCC(O) is 1, which is what we want } 

{ Relinquish exclusive access of message buffer } 
SIGNAL ( M.Exclusive access): 

{ Signal that another message was ~CONSUMED~ } 
SIGNAL ( M.Not full )7 

{ Set output message to indicate what was ~CONSUMED~ } 

5-16 

_:_) 

\ 

__ ) 



Line [36] := Item; 
{ Output the message to the user } 

MESSAGE (Line); 
{ Give other processes at this priority a 

chance to execute } 
SWAP; 

END; 

{ End of CONSUMER program } 
END; 

BEGIN {$NULLBODY} 
END. 

In the example above, each one of the segments would be compiled 
separately and saved. When the segments are loaded for execution, 
segment 1 should be loaded first. 

5.2.4.1 Mechanisms To Obtain Valid System Code 

If the system is constructed via separate compilations and certain 
variables are being accessed via scope across 0 compilation 
boundaries 0 , it is absolutely imperative that equivalent variables 
reside in the same "dynamic" location. Two mechanisms, the MPP 
compiler and the MPP code generator, must be carefully controlled in 
'order to prevent system failures during execution. 

5.2.4.1.1 The MPP Compiler: This compiler does not automatically save 
the display pointers on the stack unless it perceives an inner nesting 
level. The compiler can be made to 0 see" the presence of inner nesting 
levels for externally defined procedures through the use of a 
0 NULLBODY" compiler directive, rather than actually declaring the 
procedure as EXTERNAL (See Example of Separate Compilations (Main), 
below). A separate compiling of an inner procedure must inform the 
compiler about the nesting environment (See Example of Separate 
Compilations (Secondary), following). 

EXAMPLE: SEPARl\TE COMPILATIONS (MAIN). 

SYSTEM TEST; 

PROCEDURE CODE_GEN_FOOLER; FORWARD; 

PROGRAM SCOPE(Pl,P2: SOME_TYPE); 
VAR X,Y,Z: SOME TYPE 

5-17 

0 Main Compilation° 

I 

i 
I 

I 



PROCEDURE OUTER(E,F,G: SOME_TYPE); 
VAR P,Q,R: SOME_TYPE; 

PROCEDURE INNER(A,B: SOME_TYPE); 
BEGIN ( * INNER *) 

( * $NULLBODY *) 
END; 

"Forces update· of the display" 
( * INNER *) 

BEGIN (* OUTER *) 
(* PROCEDURE OUTER activity *) 

END; (* OUTER *) 

BEGIN 
(* PROGRAM SCOPE acitivity *) 

END 

BEGIN 
(* SYSTEM TEST activity *) 

END 

(* SCOPE *) 

(* SCOPE *) 

(* TEST *) 

(* TEST *) 

5.2.4.1.2 The MPP Code Generator: In this case, the register 
assignment algorithm tries to optimize code through more effecient use 
of available registers. Variables that would have been stored on the 
stack can be placed in registers. Thus, variable access via scope 
becomes a matter of bookeeping for the code generator, and the 
complete variable environment which is subject to scope access must be 
known during this activity. To stop this activity of the code 
generator, a "FORWARD" reference to a nonexistent procedure can be 
used. Figure 5- showed the main compilation segment containing an 
INNER procedure which might use any of the variables referenced within 
the boundaries of the system. The next sample shows the corresponding 
secondary compilation segment the definition of procedure INNER. 

NOTE: 

1. The stack for each task must be exactly the same between the main 
and any of the secondary--compilation parts when scope access of 
variables is employed. Separate compilations done with without 
observing the preceeding control mechanisms· can result in serious 
run-time error conditions. 

2. Separate compilations at the PROGRAM level are immune to the above 
problem because MPP forbids variables at any system level other than 
COMMON. 

EXAMPLE: SEPARATE COMPILATIONS (SECONDARY). 

SYSTEM DUMMYl; 
PROCEDURE CODE_GEN_FOOLER1 FORWARD1 

5-18 



. ' 

PROGRAM DUMMY2(Pl,P2: SOME TYPE); nsecondary Compilationn 
VAR X,Y,Z: SOME_TYPE; -

PROCEDURE OUTER(E,F,G: SOME TYPE); 
VAR P,Q,R: SOME TYPE -
BEGIN (* INNER *) 
END; (* PROCEDURE INNER activity *) (* INNER *) 

BEGIN (* OUTER *) 

END; 

BEGIN 

END; 

BEGIN 

END. 

( *$ NULLBODY *) 

( * NULLBODY *) 

( * NULLBODY *) 

(* OUTER *) 

(* DUMMY2 *) 

(* DUMMY2 *) 

( * DUMMY! *) 

(* DUMMY! *) 

5.2.4.2 Differences Between Native and Pcode Environments 

When executing in Pcode, it is possible and acceptable to have two 
procedures that have the same name but that can be uniquely identified 
through scope of access: This is not possible in the native code 
environment because the link edit phase has no concept of scope in the 
manner that scope is defined in MPP. 

The example below will compile, save, 
although is will also execute using 
will not correctly link in native code, 
Host debugger. 

and codegen in Pcode, but, 
the Host nEXECUTEn command-;-it 
nor can it be run under the 

EXAMPLE: SCOPE OF PROCEDURES. 

SYSTEM EXAMPLE; 

Program A; 
Process X; 

Begin B. 

Start X; 
END; 

5-19 



~ . . ' ---- ------~~'-----...:;... ---·-----~,__. __ ,_-~-~-- - ·-~--·~-·- -·--- --~---. --~-~. ·- .-.- ._.. .. _, .. _,,._ -~'- '. -·. -..:..... ___ .;,;;..,_:...~.-----~:::-.. _··-····-· . -- -~---''-~--- - -· ·-- _ _,__ _, ·-------·-

Program B: 
Process X: 

BEGIN 

5.2.5 Saving Segments 

The Microprocessor Pascal System provides a utility that takes the 
interpretive code ·generated by the compiler and converts it into a 
standard 990 tagged object file format. (NOTE: only the format is 
changed: the file still contains MPP Pcodes, not 990 object code.) 
This object module can be included in a Host debug session or included 
in an Interpretive RTS target system. 

The utility requests the listing file access name and the segment file 
access name. The input files to this utility are temporary files 
created by the previous compile: therefore, the only time a segment 
and be saved is immediately follwing the compilation. The segment file 
is the output file that will contain the 990 tagged object format 
Pcode file. 

The utility to produce the segment will prompt for the segment number 
to be assigned to this segment, and whether or not debug inform~tion 
is to be placed into the object module. The prompt file is shown 
below: the responses are proceeded by "-->": 

ENTER THE SEGMENT NUMBER: 
-->2 
INSERT DEBUG INFO? (YES/NO): 
-->YES 

The segment number is needed for Interpretive RTS system construction 
and may be any number between 1 and SO. If an invalid segment number 
is specified, the following message is generated: ERROR: BAD SEGMENT 
NUMBER. The debug information is for debugging and must be present if 
this segment is to be debugged. The object modules created by the SAVE 
command include only the modules which are referenced. 

After the segment has been created, a map of the modules in the 
segment and those referenced by the segment is generated. The listing 
produced for segment 2, beginning on page 5-14, is shown below: 

0 

1 

NAME = TUTOR! 

NAME = PRODUC 

MAP FOR SEGMENT 2 LENGTH = 0098 

ASSEMBLED WITH DEBUG INFORMATION 

KIND = EXTERNAL 

KIND = ROUTINE DISP = OOlA 

5-20 

.·~ 

) 



2 

3 

4 

5 

NAME = MESSAG 

NAME = WAIT 

NAME = SIGNAL 

NAME = SWAP 

KIND = COMMON LEN = 30 

KIND = EXTERNAL 

KIND = EXTERNAL 

KIND = EXTERNAL 

The information at the top of the listing indicates the segment 
number, segment length, and debug information status. In the body of 
the listing, each module in the system is indicated by the name and 
number. Each module is also identified as an external module, common 
variable, or internal module. For common variables, the length of the 
common area is given in bytes. For internal modules, the hex 
displacement within the object module is given. 

Saved segments are generally smaller than their unsaved counterparts. 
Additionally, segments saved without debug information are smaller 
than those saved with debug information. Once a segment of routines 
for a System has been thoroughly tested, it may be saved without debug 
information (to conserve space), but still may be used to test other 
parts of the system. 

5.2.6 Compiler Error Messages 

This subsection describes the error messages generated by the 
compiler. Paragraph 5.2.6.1 describes the error messages generated by 
the compiler when it finds errors. Paragraph 5.2.6.2 describes all 
other error messages generated by the compiler. 

5.2.6.1 Syntax Error Number Descriptions. This section 
each error number generated by the compiler. 

describes 

l ERROR IN SIMPLE TYPE - This occurs when a simple type was expected 
but not found, or when a scalar type specification was 
incomplete. 
Action: Make sure the simple type is specified correctly. 

2 IDENTIFIER EXPECTED This occurs when an identifier is expected 
but not found. 
Action: Make sure the identifier is correct. 

3 "SYSTEM" EXPECTED - The keyword SYSTEM was expected but not found. 
Action: Make sure your system starts with SYSTEM or PROGRAM for a 
conventional Pascal program. 

4 ")"EXPECTED - A) was expected to match a ( in an expression, 
parameter list, record variant specification, or scalar 
declaration. 
Action: Make sure that the parentheses are balanced. 

5-21 



5 ":"EXPECTED - A: was ·expected to follow a statement label, 1 

variable declaration, parameter list declaration, case label 
list, or record variant label list. 
Action: Make sure statement label or declaration is specified 
correctly 

7 ERROR IN PARAMETER LIST An invalid symbol was found in a 
parameter list or the parameter list was formed incorrectly. 
Action: Correct parameter list. 

8 "OF" EXPECTED - The keyword OF was expected in an array, file, or 
se declaration or case statement. 
Action: Insert the keyword OF in the declaration. 

9 "(" EXPECTED A was expected to begin a record variant 
specification. 
Action: Insert the ( in the specification. 

10 ERROR IN TYPE - A type definition was expected but not found or 
incorrectly specified. 
Action: Specify type corre.ctly. 

11 "[" EXPECTED - A [ was expected in an array definition but was not 
found. 
Action: Insert a [ in the array definition. 

12 "]" EXPECTED A ] was expected in an array definition, array 
variable reference, or set constant but was not found. 

·:--...\ 
. •) 

Action: Insert the ] where needed. --) 

13 "END" EXPECTED - An END was expected to terminate a record 
definition, case statement, compound statement, or routine bod¥ 
but was not found. 
Action: Insert the END where needed. 

14 11 ; 11 EXPECTED - A ; was expected to terminate a declaration or 
separate a list of statements. 
Action: Insert the ; where needed. 

15 INTEGER CONSTANT EXPECTED - An integer constant was expected but 
no found. 
Action: Insert the integer constant where needed. 

16 "=" EXPECTED - A = was expected in a constant declaration or type 
declaration but was not found. 
Action: Insert the = where needed. 

17 "BEGIN" EXPECTED - A BEGIN was expected to begin a module body. An 
error in the declaration section may cause this error. 
Action: Correct the declaration-section error. 

5-22 

I 



18 ERROR IN DECLARATION PART - An error was found in the declaration 
section and recovery will begin at the next declaration. 
Action: Fix declaration which had the error. 

19 ERROR IN FIELD LIST - The field list does not begin with an 
identifier. 

20 

22 

Action: Fix the error in the field list. 

n II , EXPECTED - A , was expected to separate a list of identifiers 

II 

or labels. 
Action: Use a , to separate a list of items. 

" EXPECTED 
definition. 
Action: Use •• 

A was expected to separate 

to separate subrange constants. 

a subrange 

40 ERROR IN COPY STATEMENT - This error is caused when a syntax error 
is found in a copy statement, when an 'I/O error occurs while 
trying to open a copy file, or when more than 8 levels of nested 
files are copied. 
Action: Correct the copy statement. 

41 STATEMENT EXPECTED This error is caused when a statement in a 

43 

list of statements does not begin with a valid token. 
Action: Fix the statement. 

FORWARD OR EXTERNAL EXPECTED This occurs when one 
keywords FORWARD or EXTERNAL is expected in a 
declaration, but is not found. 
Action: Make sure the routine declaration is correct 
FORWARD and EXTERNAL are spelled correctly, if present. 

of the 
routine 

and that 

SO ERROR IN CONSTANT - An error was found in the kind of constant or 
integer constant expression. 
Action: Fix the constant specification. 

51 ":=" EXPECTED The assignment operator is expected in an 
assignment statement or for statement. This error occurs when a = 
is used instead of a := • 
Action: Fix the assignment statement operator. 

52 "THEN" EXPECTED - THEN is expected after the boolean expression in 
a if statement. 
Action: Fix the if statement. 

53 "UNTIL" EXPECTED UNTIL is expected to terminate a repeat 
statement. 
Action: Fix the repeat statement. 

54 "DO" EXPECTED - DO is expected in a FOR, WHILE, or WITH statement. 
Action: Fix the statement. 



- . 
_,... _ _, _ _...!._-0;--....0.,.____._:_.----"'--"~---~·-_._._ __ ----------- '-L--,·--"'~--··--~~.---·---- , _ ___,.._,_._.,_~,,__.,:_;:__~-..<:...:::;_,, ___ - _....,.., _ _. ___ :._..,_, _ _,__~-- --'·· -- -···-' ~-:-__ ._ 

55 "TO" OR "DOWNTO" EXPECTED - TO or DOWNTO is expected to separate --
the initial and final expression of the for statement. 
Action: Fix the for statement. 

57 "FILE" EXPECTED - FILE is expected after the keyword RANDOM. 
Action: Fix the file definition. 

58 ERROR IN FACTOR - An error was found while processing the operand 
of ari expression. The o~erand was expected but was not found. 
Action: Fix the expression. 

59 ERROR IN VARIABLE A variable was expected but an invalid 
variable identifier was found. 
Action: Fix the variable. 

60 "HEX" EXPECTED HEX was expected to follow a write statement 
parameter but was not found. This may be caused by a missing 
comma in the write statement. 
Action: Fix the write statement. 

80 OPTION IDENTIFIER EXPECTED An identifier was expected in an 
option comment but was not found. 
Action: Fix the option comment. 

81 UNKNOWN OPTION IDENTIFIER - The option name is unknown to the 
option processor. This may be caused by an unsupported option. 
Action: Fix the option comment. 

82 SYSTEM SENSITIVE OPTION NOT ALLOWED HERE - A system sensitive 
option may only be specified before the first symbol of a system. 
Action: Place the option comment at the beginning. 

83 MODULE SENSITIVE OPTION NOT ALLOWED HERE A module sensitive 

84 

option may only be specified between the module header and the 
first declaration, or after the begin statement of the body and 
the first statement. 
Action: Place the option comment at the correct place. 

NULL BODY EXPECTED The null body option 
empty body was not found. Null body may only 
empty begin I end body. 
Action: Fix the null body specification. 

was specified but an 
be used within a 

85 ERROR IN CONCURRENT CHARACTERISTIC SPECIFICATION - The concurrent 
characteristic identifier is not PRIORITY, HEAPSIZE, or 
STACKSIZE. 
Action: Fix the concurrent characteristic specification. 

101 IDENTIFIER DECLARED TWICE The identifier has already been 
declared at this level and cannot be redeclared. 
Action: Use another identifier. 

5-24 



102 LOWER BOUND EXCEEDS UPPER BOUND - The lower bound of a subrange 
specification exceeds the upper bound. 

103 

Action: Fix the subrange definition. 

WRONG KIND OF 
correct kind. A 
example of this 
Action: Use the 

IDENTIFIER The 
procedure identifier 
type of error. 
identifier correctly. 

identifier found is not the 
within an expression is an 

104 IDENTIFIER NOT DECLARED - All identifiers must be declared before 
they are referenced. This is most often caused by a misspelled 
identifier. 
Action: Declare the identifier. 

105 SIGN NOT ALLOWED - The constant operand was not a binary constant 
so a sign is not allowed. 
Action: Correct the constant. 

106 NUMBER EXPECTED - A binary constant was expected but was not 
found 
Action: Correct the constant. 

107 INCOMPATIBLE SUBRANGE TYPES The type of the lower bound and 

108 

uppe bound do not agree. 
Action: Correct the subrange specification~ 

FILE NOT ALLOWED HERE - A pointer may not 
variable and a file may not be the component 
be a field type within a record. 
Action: Fix the pointer specification. 

point to a file 
type of an array or 

110 TAGFIELD TYPE MUST BE SCALAR OR SUBRANGE The record variant 
selector type must be scalar or a subrange. 
Action: Correct the tagfield type specification. 

111 INCOMPATIABLE VARIANT LABEL Record variant label is 

113 

incompatible with the type of the record variant selector type. 
Action: Correct the label specification. 

INDEX TYPE MUST BE SCALAR OR SUBRANGE - The array 
be a scalar or subrange type. This also applies 
variable index expression. 
Action: Fix the array specification. 

index type must 
to the array 

115 SET BASE TYPE MUST BE SCALAR OR SUBRANGE - The set base type must 
be a scalar or subrange type. 

116 

Action: Fix the set specification. 

ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER -
parameter is not the type which was expected for 
standard procedure parameter. 
Action: Correct the standard procedure call. 

5-25 

The type of the 
the particular 



119 REPETITION 
declaration 
must not be 
Action: Fix 

OF PARAMETER LIST NOT 
of a forward routine is 
repeated. 
the routine header. 

ALLOWED 
given, the 

When the 
parameter 

full 
list 

120 FUNCTION RESULT TYPE MUST BE SCALAR, SUBRANGE, OR POINTER - The 
type of the result returned by a function must be scalar, 
subrange, or a pointer. 
Action: Fix the function specification. 

121 FILE VALUE PARAMETER NOT ALLOWED A file must be passed by 

122 

reference to a procedure or function. 
Action: Fix the file parameter specification. 

REPETITION OF THE RESULT TYPE NOT ALLOWED 
declaration of a function declared forward 
type must not be repeated. 
Action: Fix the function specification. 

When the actual 
is given, the result 

123 MISSING RESULT TYPE IN FUNCTION DECLARATION - The type of the 
function was expected but was not found. 
Action: Fix the function specification. 

125 ERROR IN TYPE OF STANDARD FUNCTION PARAMETER - The type of a 
standard function parameter is incompatible with what was 
expected. 
Action: Fix the parameter of the standard function call. 

126 NUMBER OF PARAMETERS DOES NOT AGREE WITH DECLARATION - The number 
of parameter in the call does not agree with the declaration of 
the routine. 
Action: Fix the call parameters. 

127 ACTUAL PARAMETER MUST NOT BE PACKED The actual reference 
parametei must not be packed. 
Action: Pass an unpacked variable by reference and assign its 
returned value to the packed variable. 

129 TYPE CONFLICT IN ASSIGNMENT - The type of the expression . is not 
compatible with the variable on the left hand side of the 
assignment. 
Action: Fix the assignment statement. 

130 EXPRESSION IS NOT A SET - The second operand of an IN operator 
must be a set but it is not. 
Action: Fix the expression. 

131 TESTS FOR POINTER EQUALITY ONLY - The only operators valid on 
pointer t~pes a~e equal to and not equal to. 
Action: Fix the expression. 

5-26 



132 ILLEGAL OPERATOR - The operator is not valid given the types of 
the operands or the expression is misformed. 
Action: Fix the expression. 

134 ILLEGAL TYPE OF OPERA~D(S) The ty~~ of the operands are 
incompatible. 
Action: Fix the expression operands. 

135 TYPE OF EXPRESSION MUST BE BOOLEAN - The type of the expression 
was expected to be boolean but it was not. 
Action: Supply a boolean expression. 

136 SET ELEMENT TYPE MUST BE SCALAR OR SUBRANGE - The type of a set 
constant element must be scalar or subrange but it was not. 
Action: Fix the set constant. 

137 SET ELEMENT TYPES NOT COMPATIBLE - The type of the set constant 
element is not compatible with previous set elements. 
Action: Fix the set constant. 

138 TYPE OF VARIABLE IS NOT ARRAY ~ Array subscripts are allowed only 
on array variables. 
Action: Fix the variable specification. 

139 INDEX TYPE IS NOT COMPATIBLE WITH DECLARATION - The type of the 
array subscript expression is not compatible with the declaration 
of the array. 
Action: Fix the variable specification. 

140 TYPE OF VARIABLE IS NOT RECORD - A field designator is valid only 
after a variable of type record. 
Action: Fix the variable specification. 

141 TYPE OF VARIABLE MUST BE POINTER - A pointer reference is only 
valid on a variable of type pointer. 
Action: Fix the variable specification. 

142 ILLEGAL PARAMETER SUBSTITUTION - The type of the actual parameter 
is not compatible with the declaration of the parameter. 
Action: Fix the call parameter. 

143 ILLEGAL TYPE OF FOR EXPRESSION - The type of the initial and 
final for expressions are not compatible or they are not scalar 
types. 
Action: Fix the for statement. 

144 ILLEGAL TYPE OF CASE SELECTOR - The type of the case selector 
must be scalar or subrange. 
Action: Fix the case selector expression. 

5-27 



146 ASSIGNMENT OF FILES OR SEMAPHORES NOT ALLOWED 
semaphor may not be assigned to other variables. 
Action: Delete file assignment. 

Files and 

147 INCOMPATIBLE CASE LABEL The type of the case label is not 
compatible with the case selector expression. 
Action: Fix the case label. 

148 SUBRANGE BOUNDS MUST BE SCALAR 
constant must be scalar. 

The type of the subrange 

Action: Fix the subrange constants. 

149 INDEX TYPE MUST NOT BE "INTEGER" The index type must be 

152 

bounded, and INTEGER does not have fixed lower or upper bounds. 
Action: Change array specification. 

NO SUCH FIELD IN THIS RECORD - The identifier specified was 
declared to be a field of the record variable. The identifier 
be misspelled. 
Action: Fix the variable specification. 

not 
may 

154 ACTUAL PARAMETER MUST BE A VARIABLE - Only variables may be 
passed by reference to routines and they may not be components of 
packed structures. · 
Action: Pass an unpacked variable instead of an expression. 

156 MULTIDEFINED CASE LABEL - The case label was already defined in 
another alternative. This may be caused by overlapping subranges. 
Action: Fix the case label specification. 

157 CASE LABEL RANGE TOO LARGE - The total range of all labels in a 
case statement must be no larger than 256. 
Action: Use a different method for ranges greater than 256. 

158 MISSING CORRESPONDING VARIANT DECLARATION - The record specified 
in NEW or SIZE was not declared to have variants. 
Action: Fix the NEW or SIZE constant parameter. 

160 PREVIOUS DECLARATION WAS NOT FORWARD A module which was 
previously declared is being redeclared at the same level. 
Action: Correct the routine specification. 

161 MODULE DECLARED FORWARD AGAIN - Two forward declarations for a 
module are not allowed. 
Action: Correct the module specification. 

162 PARAMETER MUST BE A CONSTANT - A constant parameter is expected 
for NEW or SIZE but was not found. 
Action: Correct the parameter specification. 

5-28 



163 MISSING VARIANT IN DECLARATION - The constant value specified in 
a NEW or SIZE was not found in the record variant list. 
Action: Fix the constant specification. 

165 MULTIDEFINED LABEL A statement label must appear only once 
within a module. 
Action: Fix the statement label specification. 

166 MULTIDECLARED .LABEL - A statement label must appear only once in 
the label declaration list. 
Action: Fix the statement label declaration. 

167 UNDECLARED LABEL A statement label must be declared in the 
label declaration section of the module where it is defined and 
referenced. 
Action: Declare the statement label. 

177 ASSIGNMENT TO NON-LOCAL FUNCTION NOT ALLOWED - A value may only 
be assigned to the local function identifier. 
Action: Fix the assignment statement. 

178 MULTIDEFINED RECORD VARIANT LABEL - The record variant label was 
defined in another record variant list .. This may be caused by 
overlapping subranges. 
Action: Fix the record variant label specification. 

179 ILLEGAL ESCAPE - An escape statement may not reference another 
routine at the same lexical level as the current routine. 
Action: Fix the escape statement. 

180 UNACCESSED COMMON VARIABLE - The common variable refer.enced was 
not in the access list of the curr.ent routine. 
Action: Declare access to the common variable. 

181 ASSIGNMENT TO "FOR" VARIABLE IS NOT ALLOWED - The for variable 
may not be modified within the f·or statement. 
Action: Delete the assignment statement. 

182 ACTUAL REFERENCE PARAMETER MUST NOT BE A FOR VARIABLE - A for 
variable may not be passed by referenced to a routine. 
Action: Fix the call statement. 

183 ILLEGAL TYPE TRANSFER - A type transfer was applied to a packed 
element which was larger than the original element. 
Action: Fix the type transfer specification. 

184 TYPE OF COMMON MUST NOT BE A FILE - A common variable may not be 
a file. 
Action: Make the common a global variable. 

5-29 



185 FILE ELEMENT TYPE MUST NOT BE FILE OR POINTER - A file of 
or file of pointers is not allowed. 

files. --\ 

186 

Action: Fix the file specification. 

SET BOUND 
less than 0 
1023. 
A.ct ion: Fix 

OUT OF RANGE - The lower bound of a set must not be 
and the upper bound of a set must not be greater than 

the set specification. 

188 DIVISION BY ZERO - Division by zero is not allowed in an integer 
constant expression. 
Action: Fix the integer constant expression. 

189 STATEMENT MUST BE A STRUCTURED STATEMENT - Escape labels are 
allowed only on structured statements. 
Action: Fix escape label specification. 

190 STATEMENT LABEL IN FOR OR WITH STATEMENT NOT ALLOWED - This is a 
warning message which indicates that a goto statement could 
possibly jump into a for or with statement with undefined 
results. 
Action: Check for jumps into the for or with statement. 

191 VARIABLE DECLARATIONS NOT ALLOWED, AT SYSTEM LEVEL - Global 
variables may not be declared at the system level. 
Action: Make system variables commons. 

192 INVALID NESTING OF SYSTEM, PROGRAM, OR PROCESS Programs may 
only be declared within a system, and processes may only be 
declared within programs or other processes. Systems may not be 
declared within anything. · 
Action: Fix declaration. 

193 REFERENCE PARAMETERS NOT ALLOWED FOR PROGRAM OR PROCESS - Only 
value parameters are allowed for programs or processes. 
Action: Change parameters to value parameters. 

194 POINTER PARAMETERS NOT ALLOWED FOR PROGRAM - Pointers may not be 
passed as parameters to programs because heaps are local to 
programs. 
Action: Fix parameter specification. 

195 "INPUT" AND "OUTPUT" MUST BE DECLARED "TEXT" When specifying 
INPUT or OUTPUT as parameters to programs or processes, they must 
be declared to be text. 
Action: Declare files to be text. 

196 "INPUT" OR "OUTPUT" NOT DECLARED Imp.;t.ic_i;t use of INPUT o~ 
OUTPUT was encountered in a standard I/O routine without a 
declaration. 
Action: Declare the needed text file, INPUT or OUTPUT; or remove 
the reference to the I/0 routine. 

5-30 

I 
/ 



201 FRACTION EXPECTED - The fractional portion of a real number was 
expected but was not found. 
Action: Specify real constant correctly. 

202 STRING CONSTANT MUST NOT EXCEED SOURCE LINE - A string constant 
must not extend across a source line boundary. This error may be 
cause by an unclosed string constant. 
Action: Correct string constant. 

203 INTEGER CONSTANT EXCEEDS RANGE - The integer constant can not be 
represented as a long integer. 
Action: Correct integer constant. 

206 EXPONENT EXPECTED - A real constant was followed by an E but no 
exponent was found. 
Action: Correct real constant. 

207 HEX DIGIT EXPECTED A character other than a hex digit was 
found. Only digits 0 through 9 and letters A through F are hex 
di9its. 
Action: Correct hex constant. 

208 ILLEGAL LONG INTEGER CONSTANT - A real constant was suffixed with 
the letter L which indicates a long integer constant. 
Action: Correct real constant. 

209 NESTED COMMENTS - This is a warning message that indicates that a 
comment was found within another comment. This may indicate a 
previously unclosed comment. 
Action: Check for unclosed comments. 

251 TOO MANY NESTED MODULES - Modules may only be nested to a level 
of 10 or less. 
Action.: Correct routine nesting .. 

252 TOO MANY MODULES DECLARED - Only 256 modules may be declared in 
on compilation. 
Action: Your system is too large to be compiled. A possible 
action is to split the system into separate segments and compile 
the segments separately. 

255 TOO MANY ERRORS IN THIS SOURCE LINE - If more than 9 errors are 
found on any one line, this error message is generated. 
Action: Fix all errors on line. 

258 TOO MANY IDENTIFIERS DECLARED IN LIST - Only 8 identifiers may be 
declared in one identifier list. 
Action: Break declaration up into multiple ·lists. 

304 SET ELEMENT OUT OF RANGE - A set constant element is less than 0 
or greater than 1023. 

( Action: Correct set constant. 
'--· 

5-31 



.. --. - '.·' .. - .• . . . 
--- -~-· =---~ ·- _,, -- - _:·..:~~ - ' --- -------- ·-=-----;_;_.:....__::_ ___ ··-~---- -- ::...~- -- ; --- • - ..___._ __ _ . ~~~ ·.:. .. ~·----~ ~--~-- - - ·- .':. .. 

399 INTERNAL COMPILER ERROR - An inconsistency was found 
compiler which may be caused by previous errors. 

in the.-~ 
. j 

Action: Fix all errors and try again. 

5.2.6.2 Other Compiler Error Messages. The following error messages 
are generated by the compiler in message form rather than error 
number. 

**** 

**** 

UNRESOLVED TYPE - name -- This message is generated when the 
type referenced by a pointer is not declared. Since this is 
the only time forward type references are allowed, a error 
message cannot be generated until the end of the declaration 
section. The type identifie name is given. 
Action: Define the type identifier. 

LABEL UNDEFINED - number -- This message is generated at the 
end of the body when a label is declared and referenced but 
not defined. Each label declared and referenced must precede 
one and only one statement within the body where it is 
declared. 
Action: Define the statement label. 

**** END OF SYSTEM EXPECTED **** -- This message is generated at 
the end of a compilation when the end of the system or 
program is expected but more source is found. This may be 
caused by mismatched begin/end pairs or some other 
mismatched statement. Only one system or program may be 
compiled at one ·time. 
Action: Correct syntax errors. 

5.3 THE NATIVE CODE GENERATOR 

Native 9900 code is generated by the code generator. A utility program 
is also provided that will produce assembler source from the object. 
module produced by the code generator. The information that follows 
describes each of these programs. Listings generated by each program 
are also presented. 

5.3.1 CODEGEN 

As previously described, the intermediate code generated 
compiler can be executed interpretively or converted into 9900 
code. CODEGEN provides the capability to make this conversion. 

by the 
object 

The input to the code generator is the intermediate code produced 
directly by the compiler and not the i_nterpretive code saved by the 
save segment utility. 

\ 
j 

5.3.1.l CODEGEN Execution Messages. The code generator produces , 
messages similiar to the compiler as it executes. These .messages _.,-~ 
indicate how much of the system has been processed. These messages are 

5-32 



normally output to the user~s display and appear as follows: 

Execution begins. 
PRODUCER 
CONSUMER TUTORIAL 
Stack used = 1314 Heap used = 546 
Execution Ends. 
COOGEN EXECUTION COMPLETE. 

The first and last three message lines are generated by the operating 
system. Each of the remaining lines appears as code is generated for 
the module named. Note that only the first eight characters of a 
module name is displayed. 

5.3.1.2 Code Generator Listing. An example of the listing produced 
by the code generator follows: 

MODULE - PRODUCER 
R14 - CONTAINS VALUE OF LOCAL VARIABLE AT DISPLACEMENT 0012 
Rl3 - CONTAINS VALUE OF LOCAL VARIABLE AT DISPLACEMENT 0000 

* LITERAL CODE LENGTH = 0022, TOTAL CODE LENGTH = OlOC 

MODULE - CONSUMER 
R14 - CONTAINS VALUE OF LOCAL VARIABLE AT DISPLACEMENT 0026 
Rl2 - CONTAINS VALUE OF LOCAL VARIABLE AT DISPLACEMENT 0000 

* LITERAL CODE LENGTH = 0036, TOTAL CODE LENGTH = 0106 

MODULE - TUTORIAL 
R14 - CONTAINS VALUE OF LOCAL VARIABLE AT DISPLACEMENT 0000 

* LITERAL CODE LENGTH = 0018, TOTAL CODE LENGTH = OOAO 

For each module processed, the name of the module is listed first. 
· Next, any local variables assigned to registers are listed followed by 

the total length of the object module. The literal data length in 
hexadecimal bytes is also provided. 

Registers R4, RS, R6, R12, and RlS are normally available for global 
allocation. Either the address or value of the most used variables are 
placed into registers. The value of a variable is placed into a 
register only if the module has no lexical sons and if the variable 
contains a single word value. Otherwise, the address of the variable 
is placed in the register. The code generator only indicates if a 
value is placed in a register, because in this case, the location in 
the stack frame is not used. Rather, the value resides in the 
indicated register. 

The code generator also has a statement map option 
allows it to display the hexidecimal displacement in 
for each Pascal statement. An example of the listing 
STATMAP option is specified is: 

5-33 

(STATMAP) which 
the object module 
produced when the 



MODULE - PRODUCER 
Rl4 - CONTAINS VALUE OF LOCAL VARIABLE AT DISPLACEMENT 0012 
Rl3 - CONTAINS VALUE OF LOCAL VARIABLE AT DISPLACEMENT 0000 

1 0044 2 004C 3 0062 4 006A 5 006E 6 0078 7 0082 
8 0088 9 .0094 10 OOAO 11 OOAE 12 OOCO 13 OOCC 14 OOD8 

15 OOE4 16 OOF2 17 OOFC 
* LITERAL CODE LENGTH = 0022, TOTAL CODE LENGTH = OlOC 

MODULE - CONSUMER 
Rl4 - CONTAINS VALUE OF LOCAL VARIABLE AT DISPLACEMENT 0026 
Rl2 - CONTAINS VALUE OF LOCAL VARIABLE AT DISPLACEMENT 0000 

1 0058 2 006E 3 0076 4 007A 5 0086 6 0092 7 OOA2 
8 OOBA 9 OOC6 10 OOD2 11 OODE 12 OOEC 13 OOF6 

* LITERAL CODE LENGTH = 0036, TOTAL CODE LENGTH = 0106 

MODULE - TUTORIAL 
Rl4 - CONTAINS VALUE OF LOCAL VARIABLE AT DISPLACEMENT 0000 

1 0034 2 003C 3 0044 4 004E 5 0060 6 0070 7 0082 
8 008A 9 0092 

* LITERAL CODE LENGTH = 0018, TOTAL CODE LENGTH = OOAO 

The statement map appears immediately before the code length messages. 
For each statement, the statement nu~ber and its appropriate 
hexadecimal dsplacement are printed. 

5.3.2 Reverse Assembler 

The Reverse Assembler (RASS) provides a TMS9900 · family assembly 
language source program that corresponds to an object module generated 
by the code generator. The output of reverse assembler may be directly 
assembled. Submitting an object module to the reverse assembler to 
obtain the assembly language source code allows the Q.ser to perform 
manual optimization when appropriate. The assembly language source 
code also allows debugging at the machine language level. 

5.3.2.1 Reverse Assembler Execution Messages. The reverse assemble 
outputs messages similar to the compiler and code generator. Such 
messages indicate the name of the module being processed. 

Execution begins 
PRODUCER 
CONSUMER 
TUTORIAL 
Stack used = 1906 Heap used = 1352 
Execution ends 
REVERSE ASSEMBLY IS COMPLETE.: 

5.3.2.2 Rass Listing File. Below is an 
listing for the module FACTORIA. The 
directive containing the module name. 

5-34 

example 
listing 

of the assembly 
begins with an IDT 

·~ I 



( 
""--· 

Following this line are the DEF directive and the REF directives. Next 
comes the PSEG directive. The comment line to the right of the PSEG 
directive provides a heading for location counter values and the 
contents of each data work area displayed. These contents are 
indicated in hexadecimal and ASCII representations. Non-printable 
characters are displayed as periods. When the data word represents a 
relocatable address, the hexadecimal value is followed by a plus sign 
( +) • 

After the directives, another comment provides a heading for the 
instructions which follow. For each instruction the listing shows the 
location counter value and the value of the word or words of the 
machine language instruction in hexadecimal format. The file ·that 
contains the listing (OUTPUT) may be used as a source code file for 
the assembler. The values that appear at the right end of most lines 
are treated as comments by the assembler. 

EXAMPLE: RASS LISTING. 

* 
IDT "'PRODUCER"' 7/ 1/81 13:42: 3 

* 
CSEG "'MES SAG"' 

MES SAG BSS 30 
* 

DEF PRODUC 
REF SIGNAL 
REF WAIT 
REF SWAP 
REF MSG$ 
REF S$PRCS 
REF E$PRCS 
REF CALL$ 
REF STAT$ 
REF I$DIVC 
REF EXIT$P 

* LC HEX CHAR 
PSEG 

PRODUC EQU $ 
PR ·EQU 7 R7 
CODE EQU 8 RB 
LF EQU 9 R9 
SP EQU 10 RlO 
LO EQU $ 

DATA L0022-LO 
DATA LOOFC-LO 
DATA >0000 0004 0000 
DATA >0000 0006 0000 

DOOOB DATA >0012 0008 0012 
DOOOA DATA >0001 OOOA 0001 .. 
DOOOC DATA >0014 oooc 0014 
DOOOE DATA >0064 OOOE 0064 .d 

5-35 



DATA >4974 0010 4974 It 
/~ 

DATA >656D 0012 656D em 
DATA >2070 0014 2070 p ,_/ 

DATA >726F 0016 726F ro 
DATA >6475 0018 6475 du 
DATA >6365 OOlA 6365 ce 
DATA >643A OOlC 643A d: 
DATA >2020 OOlE 2020 

D0020 DATA >0010 0020 0010 .. 
* LC WORD (S) 
L0022 EQU $ 

MOV @D0008-LO(CODE) ,*SP+ 0022 CEA8 0008 
MOV @DOOOA-LO(CODE),*SP+ 0026 CEA8 OOOA 
MOV @DOOOC-LO(CODE) ,*SP+ 002A CEA8 oooc 
MOV @DOOOE-LO(CODE) ,*SP+ 002E CEA8 OOOE 
CLR *SP+ 0032 04FA 
DATA CALL$,S$PRCS 0034 
LI Rl5,STAT$ 0038 020F 0000 
BL *Rl5 003C 069F 
DATA >0000 003E 0000 
MOV LF,R12 0040 C309 
INCT Rl2 0042 05CC 
BL *R15 0044 069F 
DATA >0001 0046 0001 
LI Rl3,>005A 0048 020D 005A 
BL *Rl5 004C 069F 
DATA >0002 004E 0002 -,) 
MOV CODE,R6 0050 C188 
AI R6, >0010 . 0052 0226 0010 
MOV R12,R5 0056 Cl4C 
LI R4,>0008 0058 0204 0008 

L005C EQU $ 
MOV *R6+,*R5+ 005C CD76 
DEC R4 005E 0604 
JNE L005C 0060 16FD 
BL *R15 0062 069F 
DATA >0003 0064 0003 
LI Rl4,MESSAG 0066 020E 0000+ 
BL *Rl5 006A 069F 
DATA >0004 006C 0004 

L006E EQU $ 
BL *Rl5 006E 069F 
DATA >0005 0070 0005 
CI R13,>005A 0072 028D 005A 
JNE L0082 0076 1605 
BL *R15 0078 069F 
DATA >0006 007A 0006 
LI Rl3,>0041 007C 020D 0041 
JMP L0088 0080 1003 

L0082 EQU $ 
BL *R15 0082 069F 
DATA >0007 0084 0007 
INC Rl3 0086 058D 'i 

-// 

L0088 EQU $ 

5-36 



I 

i 



* ·~ 
DEF CONS UM / 

REF SIGNAL 
REF WAIT 
REF SWAP 
REF MSG$ 
REF S$PRCS 
REF E$PRCS 
REF CALL$ 
REF STAT$ 
REF I$DIVC 
REF EXIT$P 

* LC HEX CHAR 
PSEG 

CONSUM EQU $ 
PR EQU 7 R7 
CODE EQU 8 RS 
LF EQU 9 R9 
SP EQU 10 RlO 
LO EQU $ 

DATA L0036-LO 
DATA LOOF6-LO ' 
DATA >0000 0004 0000 . . 
DATA >0000 0006 0000 •• 

D0008 DATA >0026 0008 0026 .& 
f>OOOA DATA >0001 OOOA 0001 -.. 
DOOOC DATA >0014 oooc 0014 
DOOOE DATA >0064 OOOE 0064- .d 

DATA >2020 0010 2020 
DATA >2020 0012 2020 
DATA >2020 0014 2020 
DATA >2020 0016 2020 
DATA >2020 0018 2020 
DATA >2020 OOlA 2020· 
DATA >2020 OOlC 2020 
DATA >2020 OOlE 2020 
DATA >2020 0020 2020 
DATA >2020 0022 2020 
DATA >4974 0024 4974 It 
DATA >656D 0026 656D em 
DATA >2063 0028 2063 c 
DATA >6F6E 002A 6F6E on 
DATA >7375 002C 7375 SU 
DATA >6D65 002E 6D65 me 
DATA >643A 0030 643A d: 
DATA >2020 0032 2020 

00034 DATA >0024 0034 0024 .$ 
* LC WORD(S) 
L0036 EQU $ 

MOV @00008-LO(CODE) ,*SP+ 0036 CEA8 0008 
MOV @DOOOA-LO(CODE) ,*SP+ 003A CEA8 OOOA 
MOV @DOOOC-LO(CODE) ,*SP+ 003E CEA8 oooc 
MOV @DOOOE-LO(CODE) ,*SP+ 0042 CEA8 OOOE /-

CLR *SP+ 0046 04FA 

5-38 





MOVB @>0019(R6) ,@>0023(R13) OOD8 DB66 0019 0023 
-·-~ 

BL *RlS OODE 069F 
DATA >OOOB OOEO OOOB 

"/ 

MOV Rl3,*SP+ OOE2 CE8D 
MOV @D0034-LO(CODE) ,*SP+ OOE4 CEA8 0034 
DATA -CALL$,MSG$ OOE8 
BL *RlS OOEC 069F 
DATA >OOOC OOEE oooc 
DATA CALL$,SWAP OOFO 
JMP · L007A OOF4 10C2 

LOOF6 EQU $ 
BL *RlS OOF6 069F 
DATA >OOOD OOF8 OOOD 
MOV @DOOOA-LO(CODE) ,*SP+ OOFA CEA8 OOOA 
DATA CALL$,E$PRCS OOFE 
B @EXIT$P 0102 0460 0000 
END 

* 
IDT ... TUTORIAL ... 7/ 1/81 13:42:11 

-* 
CSEG ... MES SAG ... 

MESSAG BSS 30 
* 

DEF SYS TM$ 
REF IN I TSE 
REF PRODUC 
REF CONS UM ) 
REF S$PRCS __ / 

REF E$PRCS 
REF CALL$ 
REF STAT$ 
REF EXIT$P 

* LC HEX CHAR 
PSEG 

SYS TM$ EQU $ 
PR EQU 7 R7 
CODE EQU 8 R8 
LF EQU 9 R9 
SP EQU 10 RlO 
LO EQU $ 

DATA L0018-LO 
DATA L0092-LO 
DATA >0000 0004 0000 
DATA >0000 0006 0000 

D0008 DATA >0000 0008 0000 
DOOOA DATA >012C OOOA 012C . , 
DOOOC DATA >01F4 oooc 01F4 
DOOOE DATA >0001 OOOE 0001 
DOOlO DATA >0008 0010 0008 
D0012 DATA >0004 0012 0004 .. 
D0014 DATA >0006 0014 0006 
D0016 DATA >OOOA 0016 OOOA 
·* LC WORD(S) \ 

_, 

L0018 EQU $ 

5-40 



c 

MOV @D0008-LO(CODE) ,*SP+ 
CLR *SP+ 
SETO *SP+ 
MOV @DOOOA-LO(CODE) ,*SP+ 
MOV @DOOOC-LO(CODE),*SP+ 
DATA CALL$,S$PRCS 
LI R15,STAT$ 
BL *Rl5 
DATA >0000 
BL *R15 
DATA >0001 
LI R14,MESSAG 
BL *Rl5 
DATA >0002 
MOV @DOOOE-LO(CODE) ,*R14 
BL *R15 
DATA >0003 
MOV @DOOOE-LO(CODE) ,@>0002(R14) 
BL *Rl5 
DATA >0004 
MOV Rl4,*SP 
A @DOOlO-LO(CODE) ,*SP+ 
MOV @DOOOE-LO(CODE) ,*SP+ 
DATA CALL$,INITSE 
BL *Rl5 
DATA >0005 
MOV R14,*SP 
A @D0012-LO(CODE) ,*SP+ 
CLR *SP+ 
DATA CALL$,INITSE 
BL *Rl5 
DATA >0006 
MOV R14,*SP 
A @D0014-LO(CODE) ,*SP+ 
MOV @D0016-LO(CODE) ,*SP+ 
DATA CALL$,INITSE 
BL *Rl5 
DATA >0007 
DATA CALL$,PRODUC 
BL *R15 
DATA >0008 
DATA CALL$,CONSUM 

L0092 EQU $ 
BL *Rl5 
DATA >0009 
CLR *SP+ 
DATA CALL$,E$PRCS 
B @EXIT$P 
END 

0018 
OOlC 
OOlE 
0020 
0024 
0028 
002C 
0030 
0032 
0034 
0036 
0038 
003C 
003E 
0040 
0044 
0046 
0048 
004E 
0050 
0052 
0054 
0058 
005C 
0060 
0062 
0064 
0066 
006A 
006C 
0070 
0072 
0074 
0076 
007A 
007E 
0082 
0084 
0086 
008A 
000c 
008E 

0092 
0094 
0096 
0098 
009C 

CEA8 
04FA 
073A 
CEA8 
CEA8 

020F 
069F 
0000 
069F 
0001 
020E 
069F 
0002 
C7A8 
069F 
0003 
CBA8 
069F 
0004 
C68E 
AEA8 
CEA8 

069F 
0005 
C68E 
AEA8 
04FA 

069F 
0006 
C68E 
AEA8 
CEA8 

069F 
0007 

069F 
0008 

069F 
0009· 
04FA 

0460 

0008 

OOOA 
oooc 
0000 

0000+ 

OOOE 

OOOE 

0010 
OOOE 

0012 

0014 
0016 

0000 

0002 

·The reverse assembler is specifically designed to process the object 
modules produced by the code generator and has limited application for 
processing other object modules because it cannot recognize which 

5-41 



words are data and which are instructions. 

5.3.3 Code Generator Error Messages 

The following error messages are generated by the code generator when 
an internal error has occurred. With few exceptions, the user should 
contact the loca:l Regional Training Center to resolve the problem 
signaled. 

BADOP <number> IN STATEMENT <number> 

BAD OPERAND <number> IN STATEMENT <number> 

BAD STATE <number> IN STATEMENT <number> 

STATEMENT <number> TOO COMPLEX -- NO REGISTERS The user may correct 
this error by simplifing the statement indicated. 

TEMPORARIES NOT FREED IN STATEMENT <number> 

The following error messages are fatal internal errors; the code 
generation process will stop if one of these errors occurs. 

CANNOT FIND LABEL 

END OF FILE ON PCODE 

INVALID LABEL 

SET LITERAL TOO LONG 

STACK OVERFLOW 

STRING LITERAL TOO LONG 

TOO MANY COMMONS REFERENCED 

TOO MANY EXTERNALS REFERENCED 

s-42 

_ __../ 



SECTION 6 

HOST DEBUGGER GUIDE 

6 • 1 OVERVIEW 

A flaw or error in software is commonly called a bug. The act of 
correcting/removing these bugs is known as debugging. While the Source 
Editor helps the user construct a syntactically correct program, the 
Microprocessor Pascal System language, along with the compiler# helps 
the user discover and correct semantic errors. Because Pascal itself 
prohibits the use of semantically inconsistent operations on data, the 
user is freed from many traditional debugging chores. 

The design, implementation, and testing of large, ·complex systems is a 
difficult task. The ideal approach to this problem is to break up 
large pieces of software into small, independent units. The smaller 
modules can then be examined individually to ensure that they perform 
as desired. If the interfaces between the modules are well defined and 
the modules work correctly by themselves, it is reasonable to assume 
that the entire system will perform correctly when the modules are 
combined. 

In addition, the Host Debugger is an interactive debugging tool that 
is useful in observing the b.ehavior of Microprocessor Pascal Systems 
as they evolve; and as such is also a useful design tool. It can be 
used to ensure that modules perform correctly by themselves. The 
debugger is also useful foI monitoring and altering the interfaces 
between modules and concurrent processes. The Debugger.-s user 
interface is designed to facilitate the debugging effort. Whenever the 
Debugger expects a response from the user, a prompting message 
(usually consisting of the characters "'<>n) is displayed. The HELP 
command can be used at any time to determine the correct syntax for a 
command. 

A complete history of a debugging.session can be obtained on hard copy 
if desired. User input commands, debugger responses, trace 
information, and status displays are sent to a log file, stored on 
disc at some user determined pathname. At times it is helpful to use 
this information to track the steps that resulted in a certain state 
in the program. HELP displays are not echoed on the log file. Note 
also that the log file does not contain any user input, output, or 
messages. 

Table 6-1 is a summary of the debugger command names. A detailed 
·aescription of each command is given in Paragraph 6.3. 



' . - . 
---- ··~---'-~· -----·- -· -- _ _, ·-- _-_ ..... ___ . _ _.,__:_ ___ ;__·--·~- ... -·- .. - --~ ~ ,;_._~_,_;___~- ...:-""- --~-- .. .,. - _,. .. ________ , --~-- ---- ____ ._-;, - -

-----------------------------------------------------------------------· 
TABLE 6-1. HOST DEBUG COMMANDS 

COMMAND NAME 

Getting Started/Finished 
GO 
QUIT 
HELP 
DEBUG 
LOAD 
SE 
COPY 

Process Status Displays 
DP 
OAP 

Breakpoints/Single Step 
AB 
DB 
DAB 
LB 
SS 

Showing/Modifying Data 
SF 
SH 
SC 
SI 
SM 
MF 
MH 
MC 
MI 
MM 

Tracing Execution 
TP 
TR 
TS 
TOFF 
TON 

MEANING 

Resume execution 
Quit debugging session 
Help command 
Debug process 
Load saved segment 
Show unresolved Externals 
Copy commands from file 

Display Process 
Display All Processes 

Assign Breakpoint 
Delete Breakpoint 
Delete All Breakpoints 
List Breakpoints 
Single-Step execution mode 

Show Frame 
Show Heap 
Show Common 
Show Indirect 
Show Memory 
Modify Frame 
Modify Heap 
Modify Common 
Modify Indirect 
Modify Memory 

Trace Process scheduling 
Trace Routine entry/exit 
Trace Statement-flow 
Trace echo OFF 
Trace echo ON 

(Continued) 

6-2 

\ 



TABLE 6-1. HOST DEBUG COMMANDS.. (CONTINUED) 

Monitor Process Scheduling 
SDP 
ABP 
DBP 
HP 
RP 

Interprocess File Simulation 
CIF 
COF 

Interrupt Simulation 
SIMI 

Selection of CRU Mode 
CRU 

6.2 DEBUGGING EXAMPLES 

Select Default Process 
Assign Breakpoint to Process 
Delete Breakpoint from Process 
Hold Process 
Release Process 

Connect Input File 
Connect Out:put File 

Simulate Interrupt 

Select CRU mode 

A system to be monitored using the Host Debugger -:must be compiled with 
the DEBUG option set. This is done by inserting a {$DEBUG} option 
comment into the source code before it is compiled (see Subsection 
5. 2.2 for the available ·compiler options). Consider the "following 
example: 



.. -·· ·· .. 
----·-· ·---- -- ~--·--- --- ·- - ·--~·-- _.r..-·-·······- ,_ -"-- -· 

X Microprocessor Pascal System Compiler 3.0 02/28/81 10:25:55 PAGE I 

S 0 {$ DEBUG, MAP } 
T 0 PROGRAM EXAMPLE; 
A 0 VAR 
T 0 
E 2 
M 4 
E 0 
N 1 
T 1 

N: INTEGER; 
M: INTEGER; 

(FORMAL PARAMETER) 

FUNCTION 
BEGIN 

FACTORIAL(I:INTEGER): INTEGER; 

N 
u 
M 
B 
E 
R 
s 

2 
3 
4 
4 
1 
1 
1 
2 
3 

BEGIN 

IF I 
. THEN 

ELSE 
END; 

<= 1 
FACTORIAL := 
FACTORIAL := 

{# STACKSIZE=200 } 
N:= 5; 
M:= FACTORIAL (N) 

END. 

PROGRAM EXAMPLE ; 
STACK SIZE = 0004 

.VARIABLE 
N 
M 

DISP 
0000 
0002 

1 
I * FACTORIAL(I-1) 

TYPE 
INTEGER 
INTEGER 

SIZE 
2 
2 

.FUNCTION FACTORIA ( I 
STACK SIZE = 0004 

:INTEGER) :INTEGER; 

VARIABLE DISP 
I 0000 

TYPE 
INTEGER 

SIZE 
2 

{ FACTORIAL } 

{ FACTORIAL } 

{ EXAMPLE} 

{ EXAMPLE } 

In the program 0 EXAMPLE 0 , the variable 0 n° is at displacement 0 in the 
stack frame for 0 example"; the variable "m" is at displacement 2. The 
value parameter "I 0 in the function °FACTORIAL 0 is stored at 
displacement 0 in FACTORIAL~s stack frame. The function result is 
stored at displacement 2. The statement numbers are listed in the body 
section. 

The following is an example of an interactive debugging session. All 
user input commands are preceded by the characters <>. Output messages 
from the debugger are displayed following many of the commands, 
although some commands do not evoke a response from the debugger. 
Explanatory comments about the example walk-through are enclosed 
between braces { }. 

6-4 



{ start of debugging session } 

HOST DEBUGGER 02/28/81 10:29:08 
System heap size = 5 (K)bytes 
Most recently compiled system will be loaded. 

<>DEBUG(EXAMPLE) { breakpoint when EXAMPLE process is created } 

<>GO { execute } 
run-time support now initialized 

<>GO { resume execution } 
*** Process Created *** EXAMPL(l) 

<>AB(FACTORIAL, 1) { assign breakpoint to statement 1 of FACTORIAL } 

<>AB(EXAMPLE, 1) { assign breakpoint to statement 1 of EXAMPLE } 

<>LB { list breakpoints } 
Breakpoints for Process EXAMPL(l) 

EXAMPL 1 
FACTOR 1 

<>DB (EXAMPLE, 1) { delete breakpoint from statement 1 of EXAMPLE } 

<>LB { list breakpoints } 
Breakpoints for Process EXAMPL(l) 

FACTOR 1 

<>AB(EXAMPLE, 3) { assign breakpoint to statement 3 of EXAMPLE 

<>AB(EXAMPLE, 2) { assign breakpoint to statement 2 of EXAMPLE 

<>AB(EXAMPLE, 1) { assign breakpoint to statement 1 of EXAMPLE 

<>LB { list breakpoints } 
Breakpoints for Process EXAMPL(l) 

EXAMPL 1 
EXAMPL 2 
EXAMPL 3 
FACTOR 1 

<>GO { resume execution } 
*** Breakpoint *** EXAMPL(l).EXAMPL Statement 1 

<>DP { display process - default process chosen } 
Static/Dynamic Calling Order for Process EXAMPL(l) 

Stack Size (words) = 200 
Stack Used (words) Maximum = 2 Current = 2 

Call Order 
1 

Name 
EXAMPL 

6-5 

Statement 
1 

} 

} 

} 



. . . . . . ' ' ' . 
••• -J. ,..:;_~,- --------- _'_,.:_ __ - __ -_, __ , ____ , __ , _____ -~~··---~--·--'---'-· • ~-· ·-·~---

<>SF(EXAMPLE) { show frame for EXAMPLE } 
stack frame for EXAMPL(l).EXAMPL 

ClOO (0000) 0000 0000 · ( •••• 
{ frame as exists prior to execution of statement 1 :} 

<>SF(FACTORIAL) { show frame for FACTORIAL } 
stack frame not found 

{ as of yet, FACTORIAL as not been called } 

<>GO { resume execution } 
***Breakpoint*** EXAMPL(l).EXAMPL Statement 2 

<>DP { display process - default process chosen } 
Static/Dynamic Calling Order for Process EXAMPL(l) 

Stack Size (words) = 200 
Stack Used (words) Maximum = 2 Current = 2 

Call Order Name Statement 
1 EXAMPL 2 

{ only EXAMPLE has been called } 

<>SF -{show frame for default routine} 
stack frame for EXAMPL(l).EXAMPL 

ClOO (0000) 0005 0000 ( •••• 
{ N = 51 stored at displacement 0000 of EXAMPLE } 

<>GO { resume execution } 
***Breakpoint*** EXAMPL(l).FACTOR Statement 1 

<>DP { display process - default process chosen } 
Static/Dynamic Calling Order for Process EXAMPL(l) 

Stack Size (words) = 200 
Stack Used (words) Maximum = 18 Current = 18 

Call Order 
1 
2 

{ FACTORIAL called } 

Name 
EXAMPL 

FACTOR 

Statement 
2 
1 

<>SF { show frame for default routine } 
stack frame for EXAMPL(l) .FACTOR 

Cl22 (0000) 0005 0000 ( •••• 
{ FACTORIAL called with I = 5 } 

<>GO { resume execution } 
***Breakpoint*** EXAMPL(l).FACTOR Statement 1 

<>DP { display process - default process chosen } 

--_'.~.
.·) 

:-,'··'"" 

Static/Dynamic Calling Order for Pr·ocess EXAMPL ( 1) _) 

Stack Size (words) = 200 

6-6 



/' ,-

Stack Used (words) Maximum = 35 Current = 35 

Call Order 
1 
2 
3 

{ FACTORIAL called 

Name 
EXAMPL 

FACTOR 
FACTOR 

recursively } 

Statement 
2 
3 
1 

<>SF { show frame for default routine } 
stack frame for EXAMPL(l).FACTOR 

Cl44 (0000) 0004 0001 ( •••• 
{ FACTORIAL called with I = 4 } 

<>GO { resume execution } 
***Breakpoint*** EXAMPL(l).FACTOR Statement 1 

<>DP { display process - default process chosen } 
Static/Dynamic Calling Order for Process EXAMPL(l) 

Stack Size (words) = 200 
Stack Used (words) Maximum = 52 Current = 52 

Call Order 
1 
2 
3 
4 

{ FACTORIAL called 

Name 
EXAMPL 

FACTOR 
FACTOR 
FACTOR 

recursively again } 

Statement 
2 
3 
3 
1 

<>SF { show frame for default routine } 
stack frame for EXAMPL(l).FACTOR 

Cl66 (0000) 0003 0001 ( •••• 
{ FACTORIAL called with I = 3 } 

<>GO { resume execution } 
***Breakpoint*** EXAMPL(l).FACTOR Statement 1 

<>DP { display process - default process chosen } 
Static/Dynamic Calling Order for Process EXAMPL(l) 

Stack Size (words) = 200 
Stack Used (words) Maximum = 69 Current = 69 

Call Order Name Statement 
1 EXAMPL 2 
2 FACTOR 3 
3 FACTOR 3 
4 FACTOR 3 
5 FACTOR 1 

{ FACTORIAL called recursively again } 

'----- <>SF { show frame for default routine } 
stack frame for EXAMPL(l).FACTOR 

Cl88 (0000) 0002 0001 ( •••• 

6-7 



··--.-···--·------·--~-- -·--- -- .:...-»---·--·----~:<--

{ FACTORIAL called with I = 2 } 

<>GO { resume execution } 
***Breakpoint*** EXAMPL(l).FACTOR Statement 1 

<>DP { display process - default process chosen } 
Static/Dynamic Calling Order for Process EXAMPL(l) 

Stack Size (words) = 200 
Stack Used (words) Maximum = 86 Current = 86 

Call Order 
1 
2 
3 
4 
5 
6 

{ FACTORIAL called 

Name 
EXAMPL 

FACTOR 
FACTOR 
FACTOR 
FACTOR 
FACTOR 

recursively again } 

Statement 
2 
3 
3 
3 
3 
1 

<>SF { show frame for the default routine } 
stack frame for EXAMPL(l).FACTOR 

ClAA (0000) 0001 0001 ( •••• • 
{ FACTORIAL called with I = 1 } 

<>GO { resume execution } 
***Breakpoint*** EXAMPL(l).EXAMPL Statement 3 

<>DP { display process - default process chosen } 
Static/Dynamic Calling Order for Process EXAMPL(l) 

Stack Size (words) = 200 
Stack Used (words) Maximum = 86 Current = 2 

Call Order Name Statement 
1 EXAMPL 3 

{ function FACTORIAL complete } 

<>SF { show frame for default routine } 
stack frame for EXAMPL(l).EXAMPL 

ClOO (0000) 0005 0078 ( ••• x 
{ value of M is >78 = 5 factorial; stored at displacement 0002 } 

<>GO { resume execution } 
*** Process Terminated *** EXAMPL(l) 

Stack Used (words) = 86 

<>OAP { display all processes } 
Status Summary of All Existing Processes 

Site of 
Process Name Execution 

0 IDLE$P IDLE$P 0 

Status 

Active 

6-8 

Enabled Stmt 
Pri Traces ·Bkpts 

32767 no 

j 



1 EXAMPL 
{ only IDLE process active } 

>Terminated yes 

<>QUIT 

Execution Terminated 
Memory Used (bytes) Maximum = 3012 Current = 1246 

6.3 DEBUGGER COMMANDS 

A Host Debugger command is similar to a procedure call in 
Microprocessor Pascal or AMPL. (AMPL "A Microprocessor Prototyping 
Lab", is a useful tool for debugging at the the target machine level.) 
The following constraints must be observed: 

• 
- A debugger command name is followed by a possibly empty list in 

parenthesis. (NOTE: if the list is empty, then the pa~enthesis are 
not used.) 

- Parameters are separated by commas (as in a normal MPP system 
call). 

- Only one debug command may appear on an input line. Continuation 
of a command across an input li~e boundary is not allowed. 

Command names may be· written using either upper-case, or lower-case 
characters~ the debugger treats every lower-case character as if it 
were its upper-case equivalent (the command "SF" is the same as "sf"). 

Parameters are written using lower-case characters. The brackets: [ ] 
are used to indicate that the enclosed symbol is optional. Items 
within angle brackets < > are defined by the user. 

Examples: 

SF ( [<routine>], [<displacement>], [<length>] ) 

This is the syntax for the SF (Show Frame) command. All three 
parameters as described in a later section, are optional, so in this 
case, the ( ) could be empty, i.e., the command becomes SF. 

SM ( <address>, [<length>] ) 

This is the syntax for the SM (Show Memory) command. The first 
parameter must be present~ the second parameter is optional. 

6.3.1 Kinds of Parameters 

There are. four basic types of parameters recognized by the debugger. 
These are: 

6-9 



( 1) integer constant - An inte,ger constant parameter 
can be either in hex or decimal format. By 
default, all numerals,, (strings of digits) are 
interpreted in decimal. Any numeral beginning with 
the character >or #, however, is interpreted in 
hex. For example, the number twenty-two may be 
represented by 22, >16, or #16. Hex integer values 
may contain from 1 to 4 hex digits. 

(2) name - A name parameter has the same syntax as a 
Microprocessor Pascal identifier. The debugger 
maintains routine names and common names which 
must be unique within the first six characters. A 
name parameter may be longer than six characters, 
but only the first six characters are significant. 

(3) string - A string parameter is a character string 
enclosed in single quotes (a, single quote is 
represented by two single quotes inside a string). 

(4) qualified routine - A qualified %Outine parameter 
consists of an integer or name, followed by a 
period, followed by an integer or name. 

6.3.2 Process and Routine Parameters 

6.3.2.1 Process. Debugger commands definitions make extensive use ) 
of two special kinds of parammeters: process parameters and routine 
parameters. 

A process may be represented at the source code level by a SYSTEM, 
PROGRAM, or PROCESS. The term process is used to refer to a specific 
entity that "owns" a set of resources and performs some succession of 
computations. See also Paragraph 2.4.3. 

A process parameter specifies a process, either by name or by a unique 
positive integer assigned by the debugger. A process name, when given 
as a parameter, must refer to the most recently created process of 
that name. To refer to an older instance of a process, the process 
number must be given. Process numbers are displayed in the far left 
column of the DAP (Display All Processes) display. 

6.3.2.2 
sequence 
The term 
PROGRAM, 

Routine. A routine is considered to 
of source statements that is delineated 

routine can be used to refer to the 
PROCESS, PROCEDURE, or FUNCTION. 

be any executable 
by a BEGIN-END pair. 
body of a SYSTEM, 

A routine parameter must not only specify a routine, but also the 
process which caused it to be invoked. A routine parameter can be 
written in one of six different ways. 

For example, one can refer to the process CARDREADER which is 

6-10 



represented at the source code level as a PROCESS. CARDREADER can also 
be referred to as a routine when talking about the individual 
statements which comprise its body. 

TABLE 6-2. FORMATS FOR ROUTINE PARAMETERS. 

(Note: EXAMPLE is process number 4 and has been selected as the 
default process.) 

EXAMPLE 

(1) process name.routine name EXAMPLE.DUMMY 

(2) process name.routine number EXAMPLE.3 

(3) process number.routine name 4.DUMMY 

(4) process number.routine number 4.3 

(5) routine name DUMMY 

(6) routine number 3 

------------------------------------------------------------------------
Each of the example routine parameters in Table 6-2 refers to the same 
routine. EXAMPLE contains a procedure DUMMY which is number 3 in the 
dynamic calling sequence. If a routine name or number is simply given 
(as in form 5 and 6), the default process is implicitly specified. 
Therefore, for nDUMMYn to be equivalent to nEXAMPLE.DUMMYn, EXAMPLE 
must be the default process. A routine name, when given as a 
parameter, always refers to the most recent activation of the routine. 
To refer to an older activation, the routine ... s dynamic calling number 
must be given (see the DP command). 

In the first four forms presented above, the process is specified 
explicitly either by name or by number according to the rules for 
process parameters stated previously. 

The syntax of a "routinen parameter is: 

[ <process>. ] <routine> 

where the <process> parameter (along with the period separator) is 
optional, if the process parameter identifies the default process. 

6.3.3 Optional Parameters 

If a parameter is optional, it can be omitted, forcing the default 
value to be assumed. However, since parameters are positional, extra 

6-11 



--- ___ __..:_____:. ____ ..:_~----- -~ -·--·-- . --~--'-·--

commas are sometimes required if parameters are omitted. For example, 
the length parameter in the Show Frame command (SF) can be given ~ 
without specifying the displacement, as in "SF(TEST,,12)". The latter , 
command results in showing 12 bytes of the stack frame for the routine 
TEST, starting at the default displacement (zero). Note that the 
consecutive commas are required in this case. 

If a command has no parameters or all of its parameters are· optional, 
the command name may be given by itself or may be followed by a set of 
parentheses. For example, the command "SF" is equivalent to "SF ( )". 
Also, extra commas for optional parameters at the end of a command 
need not appear. For example, the command "SF(MYROUTINE,,)" is 
equivalent to "SF(MYROUTINE)". 

6.4 CONDUCTING A DEBUGGING SESSION 

6.4.1. Starting A Session 

If the Debug option has been placed in the compiler code, the debug 
session may be initiated after compiler execution is. complete by 
entering the command: DEBUG, followed by a RETURN/NEW LINE. The 
Debugger then asks the question: "Do you wish to debug the most 
recently compiled system?". If the response is YES, the code for the 
most recently compiled system is loaded. An error occurs if no object 
code is found, i.e., there was nothing previously compiled. If the 
response is NO, the debugger assumes that the object code to be 
debugged is·to be loaded explicitly by the user via LOAD commands (See 
Paragraph 6.3.4.5). Therefore, it is not necessary to recompile a 
·system each time it is to be debugged, provided the object is saved. 
(Note: that debugging a saved file uses up less space than debugging a 
file generated as the last program compiled.) 

For relatively large and complex systems it is advantageous to divide 
the system into segments that can be separately compiled and saved 
(see Paragraph 5.2.5). A considerable amount of time can be saved if a 
change to a large system only involves editing and compiling a 
relatively small portion of it. The Host Debugger supports this mode 
of development by allowing code segments to be loaded explicitly by 
the user. The debugger automatically "links" references from one code 
segment to another. The diagram in Figure 6-1 illustrates the 
alternative debugging strategies. 

NOTES ON FIGURE 6-1: 

The rectangular shapes represent Microprocessor Pascal Development 
System commands. Each rhomboid shape represents the interactive user 
terminal. 

A software development session usually begins with the user creating 
or modifying source code using the syntax-checking Source Editor. 

·The created source code is then sent to the compiler and tr~nsformed 
into interpretive code. The interpretive code can either be debugged 

6-12 



( 
'--· 

immediately or can be transformed by the SAVE command into a form 
suitable for later use by the debugger. 

The boxes above the dotted line illustrate a single system from the 
EDIT phase through the DEBUG phase. 
' . . 
The SAVE command box illustrates that interpretive code can be 
collected into a library of interpretive code segments suitable for 
loading into the debugger. 

When the Host Debugger is started, the user is informed if unresolved 
external references are detected in the interpretive code. Unresolved 
references must be resolved by explicit user commands to the debugger 
(via the LOAD command). Unresolved references are caused by undefined· 
FORWARD or EXTERNAL routines or undefined NULLBODY routines. In Figure 
6-1, two interpretive code segments (previously compiled and saved) 
were loaded into the debugger using commands of the form 
LOAD(~Interpretive Codel~) and LOAD(~Interpretive Code2~). As 
mentioned previously, if the program to be debugged is the previously 
compiled and saved system, the user need not use the LOAD command. 

6-13 



USER 
TERMINAL 

EDIT SOURCE 
(SYNTAX-

------------
THE SAVE COMMAND 

COMPILE iNTERP
RETIVE 
CODE 

IS USEFUL MAINLY FOR 
LARGE MICROPROCESSOR 
PASCAL SYSTEMS 

INTERPRETIVE CODE 

SAVE 

••• .__ _ _,. I NTERP

RETIVE 
CODE (N) 

INTERP
RETIVE 
CODE2 

INTERP
RETIVE 
COD El 

FIGURE' 6-1. DEBUGGING STRATEGIES. 

6.4.2 DEBUG Commands 

USER 
TERMINAL 

DEBUG 

The debuggger prompts the user for commands with the characters 0 <> 0 • 

Immediately after the debugger is started, a limited set of commands 
enables the debugging session to be set up properly. For example, 
commands may be given to load interpretive code (LOAD) , to display a 
list of unresolved references (SE) , to debug certai~ processes 
(DEBUG) , and to execute a file of previously built commands (COPY) . 
The initially valid commands also include: GO, QUIT,and HELP. 

6.4.2.1 GO Command. This command is used to resume execution of the 
user~s system after it has become suspended for some reason, e.g., 
encountering a breakpoint. It is also used to start execution of the 
user~s system when the debugger is initially invoked. Entering a blank 
command line is equivalent to entering a GO command. 

6-14 

-~ 

. \ 
) 



After the initial GO command has been given, a message should also 
appear: 

RUN-TIME SUPPORT NOW INITIALIZED 

At this point, before user processes are created, file connections 
should be made using the CIF and COF commands. A subsequent GO command 
causes execution to begin. 

The Executive RTS creates a process called the idle process with the 
lowest priority. The idle process is always ready and is the last 
member of the scheduling queue, priority 32767. Its name as can be 
seen via the OAP command is 0 IDLE$P". If this process becomes active, 
the following message is displayed by the debugger: · 

IDLE INSTRUCTION 

Execution of the IDLE INSTRUCTION places the processor in an idle 
state, where it remains until an interrupt occurs. When the idle 
process becomes active unexpectedly, the user may invoke the display 
commands DP and OAP to attempt to discover why no other processes are 
active. Processes that are supended pending an interrupt can be 
relaeased by using the SIMI command, which simulates an interrupt and 
allows execution to resume. 

·6.4.2.2 QUIT Command. 
debugging session. 

6.4.2.3 HELP Command. 
concerning available 
syntax is: 

This command is used to terminate the current 

This command is used to display information 
debugger commands and their parameters. The 

HELP ( [<command name>] 

The optional parameter is the name of a debugger command. If a command 
name is given, detailed information for the specific command is 
displayed; otherwise, a summary of all commands is displayed •. (Under 
some host systems, only the latter function is allowed.) 

6.4.2.4 DEBUG Command. This command is used to select a specified 
process for debugging. When a process is selected for debugging, a 
breakpoint occurs every time a process of the given name is created. 
The syntax is: 

DEBUG (<process name>,[<flag>] 

The process name parameter must be the name of a process; a process 
number is not allowed, as the process is yet to be createde (and the 
process number assigned) when the debug command in issued. This 
enables the command to be specified before any process of the given 
name has been created. The flag parameter is.one of the Boolean values 
TRUE or FALSE (or T and F). The value TRUE selects the process for 
debugging; the value FALSE indicate.s the process is not selected for 
debugging. If the flag parameter is not given, the default value of 

6-15 



TRUE is assumed. 

6.4.2.5 LOAD Command. This command is used to load a previously 
compiled and saved code segment. The syntax is: 

LOAD ( ~<pathname>~ ) 

The single pathname parameter is a string enclosed in single quotes. 
The pathname is the name of the file in which the code segment was 
saved. The· LOAD command and the Microprocessor Pascal System~s SAVE 
capability provide a convenient means of separately compiling large 
and small systems. The LOAD command also enables the user to replace 

·standard EXTERNAL run-time support routines with specially constructed 
versions. 

If the debugger detects that the module be·ing loaded was not saved 
with debug information, the following warning is issued. 

WARNING: MODULE NOT SAVED WITH DEBUG INFORMATION 

If the system to be debugged is not the most recently compiled one, at 
least one LOAD command must be given to load a previously compiled 
system. Note that the first module loaded must contain either the body 
of the system to be debugged or a dummy system body (nullbody) with 
the same name as the system to be debugged. 

6.4.2.6 SE Command. This command is used to show the names of any 
unresolved external routines. The syntax is: 

SE 

The list of unresolved externals (if any) contains the names of 
routines which were declared as EXTERNAL but have not yet been 
defined. This command is used primarily in conjunction with the LOAD 
command. The same name may be repeated in the list. Each entry 
corresponds to a reference to the given external routine. 

6.4.2.7 COPY Commmand. This command is used to execute a series of 
commands from an external file. The syntax is: 

COPY ( ~<pathname>~ ) 

The COPY command provides a convenient way to perform a sequence of 
frequently executed commands without having to individually enter the 
commands from the terminal. The single pathname parameter is a string 
enclosed in single quotes. The pathname is the name of the file in 
which the sequence of commands is written. For example, when the 
debugger is initially invoked, a series of LOAD commands may be 
required to load all code segments comprising a system. The LOAD 
commands can be stored in a file and a single COPY command issued to 
execute all the LOAD commands. COPY commands cannot be nested; i.e., a 
COPY file must not contain COPY commmands. 

6-16 



,...-,. 
( 

6.4.3 Status Display Commands 

Two commands are provided to display the status of processes being 
debugged. The DAP (Display All Processes) command is used to obtain 
the status of all processes in the system. The DP (Display Process) 
command shows the state of a single process. These c9~mapds operate on 
a user specified process or the default process. 

6.4.3.1 Display All Processes Command (DAP). This command lists the 
status of every process currently known to the system. Consider the 
following Table: 

-----------------------~------------------------------------------------

TABLE 6-3. STATUS SUMMARY OF ALL EXISTING PROCESSES. 

PROCESS SITE OF ENABLED STMT 
NAME EXECUTION STATUS PR! TRACES BKPTS? 

1 ASR733 runtime code Wait Serna 6 p no 
2 CSX IN runtime code Wait Serna 6 p no 
6 FORMAT runtime code >Wait Serna 6 s,, p yes 
3 CSX IN Terminated S,R,P yes 
7 FORMAT runtime code Hold 6 p no 
4 CSXOUT ' CS XO UT 7 Wait File 6 p no 
5 CSXOUT PUTCHA 10 Ready 6 p no 
8 KEY IN KEY IN 3 Active 6 no 
9 PRINT PRINT 5 Ready 6 no 

------------------------------------------------------------------------

The integer in the first column is a unique identification number for 
each process. The process can be referred to by this identification 
number in commands that require a process parameter. 

The next column contains process names. Each of the process names are 
indented to shows its static lexical nesting level. 

The site of execution indicates a routine name and statement number 
unless the process is currently executing in run-time support code. In 
the example, the site of execution displayed is "runtime code". 

The status column indicates the current status of each process as 
follows. "Active" identifies the currently active process. "Ready" 
indicates the process is ready for execution. The status of a waiting 
process is indicated as "Wait" and identifies the reason for the wait. 
These reasons include "Wait File" (waiting for file management 
services), "Wait Mem" (waiting for memory management services) , ~wait 
Serna" (waiting on a semaphore) , or "Wait Pres" (waiting for process 

6-17 



. . 

~•'"-'- _" _ _,, _____ o__:_:___-' _____ ~~-:;..:_ ___ -_::__ - . - . 
--'o·---- ---·-·-'----"--- --·-

management services). The status "Hold" indicates use of the Hold 
Process command (HP) to temporarily hold the process from normal ) 
scheduling. If the process cannot be immediately held (e.g., the 
process is waiting on a semaphore) / the status displayed ("Wait Serna") 
is followed by "H" indicating the pending hold. The default process is 
indicated by the character ">" which immediately preceeds the status. 

In the PRI column, the priority is listed for each process. 

The next column lists the kind of traces enabled for each process 
where P is a process scheduling trace, S is a statement trace, and R 
is a routine entry/exit trace. 

The last column shows whether or not statement breakpoints are set for 
each process. 

6.4.3.2 Display Process Command (DP). This command displays detailed 
status of a single process. The syntax of this command is: 

DP ( [<process>] ) 

If <process> is not specified, the default process is assumed. 
Consider the following example: 

( STATIC/DYNAMIC CALLING ORDER FOR PROCESS CSXIN(2) ) 

Stack size (words) = 1484 
Stack used (words) Maximum = 1440 Current = 1146 

Call Order Name Statement 
ASR733 ( 1) 

1 CSX IN 5 
2 SETUP 12 
3 COMMAN 27 
4 LINEIN 7 
5 GE TC HA 8 

The top line of the display indicates the name and number 
of the process being displayed. 
The second line shows the maximum 
amount of stack space available for the process. The third 
line indicates how much of the stack has been 
used and how much is currently being used. The body of the display 
names all routines nested within the process 
and all ancestor processes. 
Each name is indented to indicate its static lexical nesting level. 
The current statement number for each routine i·s al:so listed. 

The call order, listed in the left column, represents the order 
in which the routines were called dynamically. 
This number can be used as the value of a routine parameter 
in subsequent commands to specify a given routine. 

6-18 

\ 

) 



Note that routine number 1 is always the process being displayed. 
Any names displayed before routine number 1 are ancestor 
processes. 
The ancestors of a process must be displayed since their stack frames 
are accessible. 
Another DP command can 
be given to display the status of the desired ancestor. 

6.4.4 Breakpoints/Single Step 

Microprocessor Pascal 
source statements are numbered by the compiler~ 
the compiled code is supplied with these numbers if the 
DEBUG compiler option is turned on. 
This allows breakpoints to be set and reset for any 
Microprocessor Pascal 
statement. 
If two statements appear on the same source line, the statement 
number listed by the compiler is that of the first statement on 
the line. 
When a breakpoint is encountered, execution is suspended 
so the user can examine/modify the state of the system. 
Upon encountering a breakpoint, the debugger displays a 
message: 

***Breakpoint*** pname(i).rname Statement n 

"pname" is the name of the process, "i" is the process number, 
"rname" is the routine in which the breakpoint was encountered, and 
"n" is the statement number for the breakpoint. 

When a breakpoint is encountered, the breakpoint message is issued 
before the specified statement is executed. 

Breakpoints are associated with individual processes. Therefore, a 
routine which is called from two separate processes can be 
breakpointed at different statements according to which process 
invoked the routine. 

In addition to statement breakpoints, execution can be suspended at 
any statement by simply pressing the CMD key (this feature is not 
currently on all host development systems.) When the CMD key is 
pressed, the debugger displays the following message before 
interacting with the user for further commands: 

*** Anonymous Bkpt *** 

6.4.4.1 Assign Breakpoint (AB). This command is used to assign a 
statement breakpoint to any routine. The syntax of this command is: 

AB ( <routine>, [<statement number>] ) 

6-19 



". 
~·-_,__·-~· :-, __ -~---'--..:...L~--·- ..... ~-~·· .,____,_:. __ ,,,.,.,,:,. ___ _:.. _ __: .. __ ~·•-•-'-...:....__:_." __ ,,__,._:._. __ ~ -·--···~'-""" ~-~-'.·-··-· -~·_::i:.:~~-1~· . - :. -~ . - ~ . 

The <routine> parameter (routine name or call number obtained via DP 
command) identifies the routine which contains the breakpoint. The 
<statement number>, if given, specifies at which statement to 
breakpoint; the default statement number is 1. (REMEMBER: the 
breakpoint is exclu_sive to the specified process/procedure.) 

6.4.4.2 Delete Breakpoint (DB). This command is used to delete a 
statement breakpoint from any routine. The syntax is: 

DB ( <routine>, [<statement number>] 

The <routine> parameter (routine name or call numbe~ obtained via DP 
command) identifies the routine which contains the breakpoint. The 
<statement number>, if given, indicates which breakpoint to delete; 
the default statement number is 1. 

6.4.4.3 Delete All Breakpoints (DAB). This command is used to delete 
all breakpoints from any process in the system. The syntax is: 

DAB ([<process>]) 

The <process> parameter specifies the process in which breakpoints are 
to be deleted. The default is the "Default Process". 

6.4.4.4 List Breakpoints (LB). This command is used to list all 
breakpoints set in the specified process. The syntax is: 

LB ( [<process>] ) 

The <process> parameter (identification number obtained via OAP 
command) is optional. If no process is given, the default process is 
assumed. The list displays the process name, routine name, and 
statement number for each breakpoint set in the specified process. 

6.4.4.S Single-step Mode (SS). This command is used to perform 
single-step execution. The syntax is: 

SS ( [<process>] , [<flag>] ) 

The <process> parameter (process name or identification number 
obtained via OAP command) is optional. If no process is given, the 
default process is assumed. The <flag> parameter must be the Boolean 
value (TRUE or FALSE,or Tor F). A TRUE value turns on the single-step 
mode; a FALSE value turns off single-step mode. If the flag parameter 
is not given, a value of TRUE is assumed as the default. While in 
single-step mode, statements are executed one at a time. A breakpoint 
is forced between every statement. A message is displayed: 

*** SINGLE-STEP *** PNAME(I) .RNAME STATEMENT n 

where "pname" is the name of the process, "i" is the process number, 
"rname" is the routine name of the currently executing routine, and n 
is the statement number. 

6-20 

' . ' 
I _,,,' 



Any single-step message is written before the statement is executed. 
To execute the specified statement, a GO command or a blank command 
line must be entered. 

6.4.5 Showing/Modifying Data Commands 

There are four kinds of variables that can be examined and modified 
using the debugger. These are stack variables, heap variables, common 
variables, and indirect variables (VAR parameters). Commands are also 
provided to examine and modify absolute memory locations. 

The following example is the display resulting from an SF (show frame) 
command. The format of the output in this example is similar to the 
output format of the other show variable commands. The stack frame in 
the example is 26 (hex) bytes in length. 

A4DA (0000) FFFF 0000 0001 5341 4050 4C45 2020 0000 ( .••••• SAMPLE •• ) 
A4EA (0010) 0002 0004 0006 0008 OOOA OOOC OOOE 0010 ( .•.•••••••.•••.• ) 
A4FA (0020) 0012 0014 0016 ( .••.•• 

The display is split into "words". (A word is sixteen bits and is 
displayed as four Hex digits.) The first word of every display line is 
the absolute memory address of the first data word displayed on that 
line. In the example, the data displayed on the first line starts at 
memory address A4DA. Immediately following the address is the 
displacement into the specified stack, heap, or common area. The 
displacement is enclosed in parentheses. In the example, the 
displacement for the first line is zero (0000). For consistency 
throughout the display, the displacement is given using a hexadecimal 
format. Each line contains up to eight words of data. At the end of 
each line, the data is displayed as a string of 16 ASCII characters 
enclosed in parentheses; those bytes which represent non-printable 
ASCII characters are displayed as periods. Notice that the only 
printable characters in this example are those for the string "SAMPLE" 
which starts at displacement 6 ( >5341 on the first line). 

6.4.5.1 Show Frame Command (SF). This command is used to display a 
stack frame or some part of a stack frame. The syntax is: 

SF ( [<routine>], [<displacement>], [<length>] 

A stack frame is created each time a routine is entered. The stack 
frame contains the parameters and local variables for the routine. 
Using the stack displacements listed by the compiler, the value of any 
parameter or variable may be found by displaying the appropriate stack 
frame. 

The <routine> parameter specifies the routine for which the stack 
frame is to be displayed (this parameter can be identification number 
obtained via the OAP command). If the <routine> parameter is not 
given, the latest routine called as part of the default process is 
assumed to be the default routine. To show a stack frame of a routine 
which has multiple instances, the dynamic calling number must be given 

6-21 





,--·. c--

entire common area is displayed. If the <displacement> 
extend beyond the length of the common, only the 
specified common are displayed. 

and <length> 
bytes in the 

6.4.5.4 Show Indirect Command (SI). This command is used to 
a value arrived at indirectly via a pointer contained by a 
(similar to indirect addressing used by the assembly 
programmer). The syntax 

SI ( <routine>, <displacement>, [<length>] ) 

display 
variable 
language 

The <routine> parameter (which can be specified by name or call 
number) is the routine to which the variable - parameter belongs. The 
<displacement> parameter is the byte displacement of the variable in 
the given routine stack frame. The <length> parameter is the number of 
bytes to be displayed (length defaults to 1). 

6.4.5.5 Show Memort Command (SM). This command is used to 
contents of an abso ute memory location. The syntax is: 

SM ( <address>, [<length>] ) 

show the 

The <address> is the address of the memory area to be displayed. The 
<length> is the length, in bytes, to be displayed. If no length is 
specified, one word is displayed. 

6.4.5.6 Modify Frame Command (MF). This command is used to modify a 
·single word value in the specified stack frame. The syntax is: 

MF (<routine>, [<displacement>], [<verify value>], <new value>) 

The first two parameters have the same meaning as in the SF command. 
The <verify· value> is the old value for the word to be modified. If 
the <verify value> does not match the <old value>, an error occurs. 
The final parameter is the <new value> for the word. In all of the 
modify commands, no check is performed if the <verify value> is 
omitted; the specified location is modified regardless of its current 
contents. 

6.4.5.7 Modify Heap Command (MH). This command is used to modify a 
single word value in heap. The syntax is: 

MH <address>, [<displacement>], [<verify value>], <new value>) 

The first two parameters have the same meaning as in the SH command. 
The <verify value> is the old value for the word to be modified. If 
the <verify value> does not match the old value, an error occurs. The 
final parameter is the <new value> for the word. 

6.4.5.8 Modify Common Command (MC). This command is used to modify a 
single word in a common. The syntax is: 

I 

MC (<common name>, [<displacement>], [<verify value>], <new value>) 

6-23 

'. - :-.. ' 



The first two parameters have the same meaning as in the SC command. 
The <verify value> is the old value for the word to be modified. if -""'\ 
the <verify value> does not match the old value, an error occurs. The 
final parameter is the <new value> for the word. 

6.4.5.9 Modif:( Indirect Command (MI). This command is used to modify 
a single word indirect variable (VAR parameter). The syntax 

MI (<routine>, <displacement>, [<verify value>], <new value> 

The first two parameters have the same meaning as in the SI command. 
The <verify value> is the old value for the word to be modified. If 
the <verify value> does not match the old value, an error occurs. The 
final parameter is the <new value> for the word. 

6.4.5.10 Modify Memory Command (MM). This command is used to modify 
the contents of any single (word) location in memory. This is the most 
dangerous command in the debugger~s vocabulary so extreme caution 
should be exercised. The syntax is: 

MM ( <address>, [<verify value>], <new value> ) 

The first parameter is the address of the word to be modified. The 
second parameter is used to verify the old value for the word. If the 
<verify value> does not match the old value, an error message occurs. 
The third parameter is the <new value> for the word. 

6.4.6 Tracing Commands 

Tracing commands are available for tracing functions, examining the 
behavior of the scheduling algorithm, observing the dynamic behavior 
of routine calls and exits, and determining the actual control flow of 
statements. Trace data is written to the user~s terminal and to a log 
file so a hard copy can be obtained upon termination of the debugging 
session. For convenience, however, the display of trace data at the 
terminal can be suppressed using the TOFF (Trace OFF) command and 
enabled again using TON (Trace ON) . Each of the trace commands are 
described below. 

6.4.6.1 Trace Process Command (TP) This command turns process 
scheduling tracing on or off for the specified process. The syntax is: 

TP ( [<process>], [<flag>] ) 

The <process> parameter is optional and may be either the process name 
or the identification number obtained via the DAP command. If 
<process> is omitted, the default process is assumed. The <flag> 
parameter must be one of the Boolean values TRUE or FALSE (or T or F) . 
A TRUE value enables tracing; a FALSE value disables tracing. If 
<flag> is omitted, a value of TRUE is assumed as the default. Process 
scheduling tracing causes a trace to be generated each time the given 
process is scheduled (i.e., becomes active or inactive). This enables 
the user to examine the 9ehavior of the scheduling algorithm. An 

6-24 



~xample follows. 

*** Trace *** ASR733(1) Process Active 
*** Trace *** ASR733 ( 1) Process Inactive 
*** Trace *** CSXIN(2) Process Active 
*** Trace *** CSXIN ( 2) Process Inactive 
*** Trace *** FORMAT(6) Process Active 
*** Trace *** FORMAT(6) Process Inactive 
*** Trace *** CSXOUT(4) Process Active 

6.4.6.2 Trace Routine Entry/exit Command (TR). This command turns 
routine entry/exit tracing on or off for the specified process. The 
syntax is: 

TR ( [<process>], [<flag>] ) 

The <process> parameter is optional. If <process> is specified, the 
default process is assumed. <Flag> must be one of the Boolean values 
TRUE or FALSE ( T and Fare also accepted as abbreviations). A TRUE 
value enables tracing; a FALSE value disables tracing. If <flag> is 
not given, a value of TRUE is assumed as the default. When routine 
tracing is enabled for a process, each routine entry or exit is 
traced, excluding calls to run-time support code. The trace 
information consists of the process name and number, the routine name, 
and whether the routine was entered or exited. An example follows. 

*** Trace *** CSXIN(2) .CSXIN Routine Entry 
*** Trace *** CSXIN(2) .SETUP Routine Entry 
*** Trace *** CSXIN(2) .COMMAN Routine Entry 
*** Trace *** CSXIN(2) .LINEIN Routine Entry 
*** Trace *** CSXIN(2) .GETCHA Routine Entry 
*** Trace *** CSXIN(2) .GETCHA Routine Exit 
*** Trace *** CSXIN(2).LINEIN Routine Exit 

6.4.6.3 Trace Statement Flow Command (TS). This command turns 
statement execution tracing on or off for the specified process. The 

'"-· ·syntax is: 

6'-25 



TS ( [<process>], [<flag>] ) 

The <process> parameter is optional and may be either the process name 
or identification number obtained via the DAP command. If <process) is 
omitted, the default process is assumed. The <flag> parameter must be 
one of the Boolean values· TRUE or FALSE ( T and F are also acc·epted as 
abbreviations). A TRUE value enables tracing: a FALSE value disables 
tracing. If the <flag> parameter is not given, a value of TRUE is 
assumed as the default. When this trace is enabled for a process, a 
new line is written to the trace file each time a statement 
instruction is encountered (statement instructions only exist in 
routines compiled with the DEBUG option). The line contains the 
process name and number, the routine name, and the statement number 
that was executed. 

The trace information for statements is written before the specified 
statement is executed. An example follows. 

Example: 

*** Trace 
*** Trace 
*** Trace 
*** Trace 
*** Trace 

*** 
*** 
*** 
*** 
*** 

CSXIN(2) .CSXIN 
CSXIN(2) .CSXIN 
CSXIN(2) .CSXIN 
CSXIN(2) .SETUP 
CSXIN(2) .SETUP 

Statement 1 
Statement 3 
Statement 4 
Statement 1 
Statement 2 

6.4.6.4 Trace Echo Off Command (TOFF). This 
trace information from being displayed on 
command has no parameters. 

command prevents all 
the terminal. The TOFF 

This command only affects the display of trace data at the interactive 
terminal: the trace information is still written to the log file. By 
using this command, it is possible to obtain an execution trace of a 
system when it is impractical to examine a large amount of trace data 
interactively. 

6.4.6.5 Trace Echo ON Command (TON). This command enables the 
display of all trace information at the terminal. Please note that 
terminal display of trace information is the default. The TON command 
has no parameters. 

6.4.7 Monitor Process Scheduling 

The commands described below provide the user with limited control 

6-26 

-"" I 
_j 



over the scheduling of processes. The user can "hold" a process, 
temporarily blocking it from becoming active until he explicitly 
releases it, and can assign process breakpoints forcing a breakpoint 
immediately before a process becomes active (scheduled for execution). 

6. 4. 7 .1 Select Default Process Commnand .(SDP). This command is used 
to select the default process. The syntax is: 

SDP ( <process> 

The single parameter indicates the process to be selected as the 
default process. If a name is given, it refers to the most recent 
instance of the process. A number may be given to select a former 
instance of a particular process. The number of a process can be found 
in the left column of the display from the DAP (display all processes) 
command. 

The specified process is used as a 
having process parameters; this 
notation for later commands. 

default 
provides 

in 
a 

subsequent 
convenient 

commands 
shorthand 

The user~s SYSTEM is implicitly chosen to be the default process when 
the debugger is invoked. The SDP command may be used to change this 
default. Note: only a previously created process can be selected as 
the default process. Also, since many commands allow implicit 
reference to the default process, a default process to exist at all 
times. For this reason, whenever the default process terminates, the 
currently active process is chosen as the new default process by the 
debugger and the user is so notified. The message output when this is 
the case is: 

*** Default Process Terminated *** name(n) 
***New Default Process *** new_name(m) 

where "name(n)" is the name 
process and "new name(m)" 
default process. -

and process number of the terminated 
is the name and process number of the new 

6. 4. 7 •. 2 Assi n Break oint To Process Command (ABP) • This command is 
used to set a process reakpoint. T e syntax is: 

ABP ([<process>]} 

If the process parameter is not specified, the default process is 
assumed; however, the parenthesis must always be specified. Process 
breakpoints persist until they are deleted using DBP or until the 
process terminates. 

6.4.7.3 Delete Breakpoint From Process Command (DBP). This command 
is used to delete a process breakpoint before a specified process. The 
syntax is: 

DBP (<process>) 

6-27 



where <process> can be specified by name or identification number 
(obtained via the OAP command), or may be the default process. If the 
process parameter is not specified, the default process is assumed; 
however, the parenthesis must always be specified. 

6. 4. 7. 4 Hold P·rocess Command (HP) • This command is used to 
temporarily suspend a process. When a process is held, it is not 
eligible for execution until an explicit release command is given· by 
the user. The syntax is: 

HP ( <process> ) 

where <process> can be specified by name or identification number 
(obtained via the OAP command), or may be the default process. If the 
process parameter is not specified, the default process is assumed; 
however, the parenthesis must always be specified. 

This command can be issued regardless of the current status of a 
process. For example, a process may be waiting on a semaphore when an 
HP command is issued. While, the HP command does not take affect until 
the semaphore is signaled, this delay remains transparent to the user. 

6.4.7.5 Release Process Command (RP). This command releases a 
process which was previously "held" by an HP command. It makes the 
specified process eligible for execution via the normal scheduling 
algorithm. The syntax is: 

RP ( <process> ) 

where <process> can be specified by name or identification number 
(obtained via the OAP command), or may be the default process. If the 
process parameter is not specified, the default process is assumed; 
however, the parenthesis must always be specified. 

6.4.8 Interprocess File Simulation Commands 

Executive RTS interprocess files are simulated by the debugger with 
extensions allowing host files and devices to be connected to RTS 
channels as producers or consumers of components (See Section 10). Two 
debug commands are provided with which the user may specify a run-time 
mapping of internal channel names to external host file names. At 
debug time, the user can utilize the Connect Input File (CIF) and 
Connect Output File (COF) commands to specify that a particular host 
file is to a act as a producer and/or consumer to a particular 
channel. The functions SETNAME and FILENAMED should not be used for 
this purpose. 

6.4.8.1 Connect 
user to specify 
of components) 
actually made 
channel. If the 
host connection 

Input File command (CIF) . This command allows the 
a particular host file to be used as input (a producer 
to a particular channel. The host connection is 
when the first reading file variable connects to the 
channel already has reading files connected to it, the 
takes place when all previously connected reading 

6-28 

~' 
I 

_j 



files become disconnected (by calling RESET, REWRITE, or CLOSE) • Once 
the connection has taken place, a READ from a connected file variable 
will return the next buffered channel component if it exists. If no 
components are buffered in the channel when the READ is done, a host 
request is made to transfer the next component from the connected host 
file. The syntax is: 

CIF ( '<INTERNAL CHANNEL NAME>', '<input host file name>' ) 

NOTE: the INTERNAL CHANNEL NAME may not be more than 7 characters. 

Both the <internal channel name> and <input host file name> are string 
parameters and, as such, must be enclosed in eithr single quotes or 
double quotes. The <internal channel name> may be no more than eight 
characters long. The <input host file name> identifies the file to be 
connected to the specified channel as a producer of components. An 
example of the use of this command is: 

This causes the host file DSC2:SIMULAT/DTA to be connected as a 
producer of components to the channel named F when the first consuming 
file variable connects to the channel. If the <input host file name> 
is the user's terminal, "ME"~ i.e., CIF ('input', 'me'), then the user 
is prompted for input whenever host requests are made. 

6.4.8.2 Connect Output File Command (COF). This command allows the 
user to specify a particular host file to be used as output (a 
consumer of components) from a particular channel. The host connection 
is actually made when the first writing file variable connects to the 
channel. If the channel already has files that write connected to it, 
the host connection takes place when all such connected files become 
disconnected (by calling RESET, REWRITE, or CLOSE) and another writing 
file connects to the channel. Once the connection has taken place, a 
WRITE to a connected file variable will transfer the component to the 
connected host file. The syntax of this command is: 

COF ( '<INTERNAL CHANNEL NAME>', '<output host file name>' 

Both the <internal channel name> and <output host file name> are 
string parameters and, as such, must be enclosed in ether single or 
double quotes. The <internal channel name> may be no more than eight 
characters long The <output host file name> identifies the file to be 
connected to the specified channel as a consumer of components. An 
example of the use of this command is: 

COF('F','DSC2:SIMULAT/OUT') 

This causes the host file DSC2:SIMULAT/OUT to be connected as a 
consumer of components from the channel named F when the first 
producing file variable connects to the channel. 

6-29 



---~---._: -,_...._.~ _, ~ .. _;_·; _ __: ·~-- ,,.-_.::::-_-~-----~----- -·--~---~-·-.::....__ --- ---- ------ ~ --~-·--- -- - . 

6.4.9 Interrupt Simulation Command (SIMI) 

This command is used to simulate an interrupt at the specified level. 
The syntax is: 

SIMI ( <level> ) 

If a process is waiting on the specified interrupt, execution of this 
command causes the process to react as if the interrupt had actually 
occurred. If the processor mask does not currently allow the 
interrupt, the interrupt is maintained by the debugger as a "pending 
interrupt" until the mask is raised (at which time the simulated 
interrupt is serviced) • 

6.4.10 Selection of CRU Mode Command (CRU) 

The CRU debugger command is used to control how CRU instructions are 
handled. The syntax is: 

CRU [<process>], <cru mode>) 

The <process> parameter (process name or identification number 
obtained via the DAP command) specifies to which process the command 
applies. If omitted, the default process is used. The second parameter 
specifies how CRU instructions are to be handled. The value of the 
second parameter must be one of the following: EXECUTE, OFF, or DEBUG. 
If EXECUTE is specified, CRU instructions are directly executed. If 
OFF is specified, all CRU instructions are ignored. If DEBUG is 
specified, all CRU input and output is simulated by the user. The 
default mode for CRU instructions is DEBUG. 

The CRU instructions, TB, LDCR, SBO, SBZ, and STCR are standard 
procedures that may be called at any point in the user~s program. The 
interaction that results when each of these instructions is called are 
described below. 

6.4.10.1 Test Cru Bit Command (TB). The following message for input 
is displayed: 

"TEST CRU BIT" ADDRESS = nnnn, TRUE OR FALSE?: 

The user is expected to respond with a TRUE or FALSE value. 

6.4.10.2 Load Cru Value Command (LDCR). 
displayed: 

The following message is 

"LOAD CRU VALUE" ADDRESS = nnnn, WIDTH = nn, VALUE = nnnn 

This message displays the value that is to be loaded into the 
specified CRU address. 

6.4.10.3 Set Bit to Logic One Command (SBO). 
is displayed: 

6-30 

The following message 



( , __ 

"SET BIT TO ONE" ADDRESS = nnnn 

This message displays the CRU address to be set to the value one. 

6.4.10.4 Set Bit to Logic Zero Command (SBZ). The following message 
is displayed: 

"SET BIT TO ZERO" ADDRESS = nnnn 

This message displays the CRU address to be set to the value zero. 

6.4.10.5 Store Cru Value Command (STCR). 
prompt for input are displayed: 

The following message and 

"STORE CRU VALUE" ADDRESS = nnnn, WIDTH = ~n, VALUE?: 

The user is expected to respond with the value to be stored. 

6.4.11 Ending A Session 

The user may halt a debug session at any point by issuing a QUIT 
command. 

6.5 ERROR MESSAGES 

This section lists and explains debugger error messages. The messages 
are concerned with syntax, breakpoint, show/modify command errors, and 
miscellaneous errors. 

COMMAND SYNTAX ERRORS 

When a command is improperly formed or cannot be recognized by the 
debugger, one of the following error messages is generated. 

COMMAND IS NOT VALID 
This error occurs when the specified command is not currently 
valid. The HELP command can be used to display a list of all 
debugger commands. However, when the debugger issues its initial 
prompt "<>", only a limited subset of these commands are valid. 
The initially valid commands are: HELP, GO, QUIT, LOAD, SE, 
DEBUG, and COPY. 

INCOMPLETE COMMAND 
This error occurs when a command is improperly terminated. If a 
command has parameters, the parameter list must be enclosed in 
parentheses. 

6-31 



. . ... ~ .. - ___ , ____________________ ,_.: ___ . 

EXTRA CHARACTERS WILL BE IGNORED 
This error occurs when the command contains extra 
the right of an otherwise proper command. This 
represents only a warning. 

characters to 
message usually 

TOO MANY PARAMETERS 
This error occurs when the command contains too many 
Use the HELP command to check the number and 
parameters for the command. 

parameters. 
meaning of 

MISSING PARAMETER(s) 
This error occurs when the command is missing one or more 
required (non-optional) parameters. Use the HELP command to check 
the number and meaning of parameters for the command. 

WRONG KIND OF PARAMETER 
This error occurs when the command 
of the wrong kind, for example, an 
where an identifier is expected. 

PARAMETER SYNTAX ERROR 

contains a parameter that is 
integer constant appearing 

This error occurs when a command parameter is improperly formed. 
Parameters can only be one of the following: integer constant, 
identifier, string (delimited by single quotes), integer constant 
or identifier followed by a period followed by an integer 
constant or identifier. 

PARAMETER MUST BE A BOOLEAN VALUE 
This error occurs when a Boolean-valued parameter was expected 
and was not received (either TRUE, FALSE, T, or F). Use the HELP 
command to check which parameter are Boolean. 

UNRECOGNIZED CRU MODE 
This error occurs when a CRU command is given and the CRU mode is 
not EXECUTE, DEBUG, or OFF. 

PATHNAME MUST BE A STRING 
This error occurs 
COPY(pathname) is 
quotes. 

when a file 
not specified 

pathname parameter, e.g., 
as a string, between single 

BREAKPOINT COMMAND ERRORS 

The following errors may occur when using the breakpoint commands, AB, 
DB, DAB, and LB. Some of these are merely warnings. Note that LB (list 
breakpoints) can be used to list the breakpoints that are set for a 
given process. 

BREAKPOINT ALREADY ASSIGNED 
This message indicates that a breakpoint is already assigned to 
the specified routine and statement number. This message is a 
warning (no action is performed) • 

6-32 

.----... . . , 
.) 



( 

\. 
'c_· 

NO SUCH BREAKPOINT 
This error indicates an attempt was made to delete a non-existent 
breakpoint. This message is a warning (no action is performed). 

NO BREAKPOINTS SET 
This message is the result of a LB (list breakpoints) command and 
states that no breakpoints were set. 

NON-EXISTENT STATEMENT NUMBER 
This message indicates that 
referenced when attempting to 
compiler listing to ensure 
assign breakpoint command does 
number listed. 

a non-existent statement number was 
assign a breakpoint. Check the 
that the statement number in the 
not exceed the maximum statement 

SHOW/MODIFY COMMAND ERRORS 

The following errors can result from the use of the show and modify 
commands: SF, SH, SC, SI, SM, MF, MH, MC, MI, and, MM. 

NO SUCH ROUTINE 
This message indicates an error in a routine parameter. If a 
routine name was specified as a parameter, the name was probably 
misspelled. ~f a dynamic calling number was specified, check to 
make sure there is such a dynamic calling number listed using the 
DP (display process) command. 

NO SUCH PROCESS 
This message indicates an error in a process parameter. If a 
process name was specified as a parameter, the name was probably 
misspelled. If a process number was specified, check to make sure 
that the process exists (use the DAP command). 

STACK FRAME NOT FOUND 
This error occurs when the stack frame for a routine does not 
exist. Either the routine parameter is in error (bad name or 
dynamic calling number) or the routine is not currently active 
(has "returned" or has never been called) . 

INVALID HEAP PACKET 
This error occurs when the address of a heap packet is incorrect. 
Only heap packets which have been allocated dynamically (by NEW) 
can be displayed or modified. 

COMMON NOT FOUND 
This error occurs when the common name parameter is incorrect. 
Double check the common name given with the one declared in your 
source code. 

6-33 



_..,•"-"-· .... ;_,· '.: : ..:,,._ ~:.. -:~ ... -~.---- --~~:.:~- -~---~-~----· _______ _. __ ._..:_ ~~-~ _;.~·.:.:.:-.::.:.~,:--·-·_:__.,,_;: ---· 

BAD DISPLACEMENT 
This error occurs when a bad displacement into a memory area is 
specified. ~his can happen in one of the following cases: the 
displacement is beyond the length of the specified stack frame: 
the displacement is beyond the length of the specified heap 
packet: the displacement is beyond the length of the specified 
common area. 

VERIFY ERROR 
This error occurs when a modify command (MF, MH, MC, MI, MM) 
contains a verification value and the value to be modified does 
not match the verification value. In this case, the memory 
location is not modified with the new value. 

MISCELLANEOUS. ERRORS 

The following errors are general in nature and as such are.considered 
miscellaneous. 

CANNOT GET SYSTEM MEMORY 
This error indicates that sufficient system memory space is not 
available. The user~s system memory requirements should be 
examined and possibly modified. 

TOO MANY MODULES IN SEGMENT 

NO 

This error occurs when a single segment contains more than 256 
routines (internal and external) and commons. This is a f-ixed 
size constraint. To avoid this error, split the segment into two 
separate segments. 

INTERPRETIVE CODE FOUND: USE LOAD COMMAND 
This is a warning message which indicates 
~ontaining the interpretive code for the user 
found. The LOAD command can be used to load a 
code segment. 

the default file 
system was not 
previously saved 

WARNING: MODULE NOT SAVED WITH DEBUG INFORMATION 
This·warning message indicates that the module being loaded does 
not contain debugging information. If desired, the module should 
be recompiled and resaved with debug information. 

UNRESOLVED EXTERNALS: USE LOAD OR SE 
This error occurs when the user~s system contains references to 
external routines which have not as yet been resolved. The SE 
command displays a list of unresolved routine names. The LOAD 
command can be used to load saved code segments. 

INVALID SAVE FILE 
This error occurs when the file contained in a LOAD command 
either does not exist or cannot be opened. The file name given by 
the user is probably incorrect. 

6-34 

-:-0\ 
·\ 

·) 

) 

• 



(~ 

CANNOT REDEFINE AN EXTERNAL 
This error occurs when the debugger detects two external routine 
definitions in separate code segments. The first definition for 
an external routine is the one used in all subsequent references. 

CANNOT OPEN COPY FILE 
This error occurs when a COPY command is given and the COPY file 
either does not exist or cannot be opened for some reason. 

CANNOT NEST COPY COMMANDS 
This error occurs when an attempt is made to include COPY 
commands in COPY files. Nested COPY commands are not allowed. 

ALREADY SPECIFIED FOR DEBUG 
This error occurs when the user performs two separate DEBUG 
commands for the same process. 

NOT SPECIFIED FOR DEBUG 
This error• occurs when the user specifies DEBUG(process, false) 
and the process was never specified for debugging. 

PROCESS IS NOT HELD 
This error occurs when an RP (release process) command is given 
for a process which is not presently held. 

PROCESS IS ALREADY HELD 
This error occurs when an HP (hold process) command is given for 
a process which is already held • 

.. 
NO PROCESS WAITING ON INTERRUPT 

This error occurs when an attempt was made to service an 
interrupt and no waiting process exists. 

INTERRUPT LEVEL MUST BE IN RANGE 1 .• 15 
This error occurs when a SIMI command parameter is not in the 
range 1 to 15. 

MORE URGENT INTERRUPT IN PROGRESS 
This error occurs when a SIMI command is given and the interrupt 
cannot be serviced because a more urgent interrupt is in 
progress. 

WAITING PROCESS LESS URGENT THAN INTERRRUPT 
This error occurs when a SIMI command is given and the only 
waiting interrupt process is less urgent than the interrupt level 
specified. 

BAD INTERNAL FILE NAME 
This error occurs if the internal file name parameter in a CIF or 
COF command is improperly formed. 

6-35 



BAD EXTERNAL FILE NAME 
This error occurs if the external file name parameter in a CIF or ~ 
COF command is improperly formed. 

INTERNAL ERROR; OR UNKNOWN ERROR 
These errors should not normally occur. The probable cause for 
such errors is that some data structures used by the debugger 
were destroyed either explicitly (using the modify memory 
command) or implicitly by the user~s system. Contact your Texas 
Instruments~ Regional Technology Center (RTC) if such an error 
occurs and its cause cannot be determined. 

6-36 



SECTION 7 

CONVENTIONAL PASCAL PROGRAM EXECUTION 

7 • 1 OVERVIEW 

The Microprocessor Pascal System provides an executive that will load 
a conventional Pascal program and execute it without any interactive 
debugging capability. The program must be a single PROGRAM with no 
SYSTEM and/or PROCESSes and no Executive Run Time Support calls. Only 
standard Microprocessor Pascal System routines may be called. This 
capability is useful when writing a general utility in Pascal or when 
testing an algorithm on a set of data. 

7.2 PROGRAM SEGMENTS 

After the user enters the EXECUTE command, (and after responding to 
prompts for an output file), and memory), the executive brings up the 
following prompt: 

DO YOU WANT TO EXECUTE THE LAST PROGRAM COMPILED? 

The default response is yes (the user simply presses the RETURN key to 
give the default response). In response to a "No" reply, the following 
prompt is displayed: 

ENTER PATHNAME OF MAIN SEGMENT: 

To resolve any external references in the program to be executed, the 
execute program prompts the user for the pathname of each required 
external segment: 

ENTER PATHNAME OF EXTERNAL SEGMENT: 

If the external references are to be ignored, no pathname is specified 
and the RETURN key is pressed. 

Note that the concurrent characteristics specified in the program are 
ignored. The amount of stack and heap given to the user's program is 
one area_of memory used as needed for either stack or heap. In the DX 
version, the combined amount of stack and heap is requested 
automatically in the user program (see Subsection 8.2.13). In the TX 
version, the total remaining amount of memory.is given to the user for 
stack and heap. 

7-1 



7.3 EXECUTION MESSAGES 

After the complete program has been loaded, control is given to the 
I 

user~s program as indicated by the following message: 

EXECUTION BEGINS 

After the user~s program has completed execution normally, control is 
passed back to the executive and the following message is displayed: 

NORMAL USER PROGRAM TERMINATION 

If the user~s program terminated abnormally, the follo~ing message 
preceeds the stack and heap utilization message: 

ABNORMAL USER PROGRAM TERMINATION 

7.4 I/O SUPPORT 

The user~s program may utilize I/O supported by Microprocessor Pascal 
to access host files. All Microprocessor Pascal files are supported 
including TEXT, SEQUENTIAL, and RANDOM files (see paragraph 8.4.2.4.). 

The destination of the output file is ·specified during the initial 
prompt (following entry of the EXECUTE command). All other files 
required by the program may be connected to the host file via the 
SETNAME procedure (see Appendix C, paragraph C.2). If the SETNAME 
procedure is not used, the run-time support will prompt the user for 
the pathname ~o be connected to the file as follows: 

~filename~ FILE: 

Note: The pathname may contain synonyms when running under DX/10. 

7.5 RUN TIME SUPPORT ERROR MESSAGES 

If an error is found during an I/O operation, the following message 
will be generated: 

I/O ERROR - ee - NAME= filename 

where "ee" is either the I/O error type (described in Appendix E) or 
the I/O service call status, and "filename" is the file variable name. 

If an error is found during a TEXT I/O operation, the following 
message will be generated: 

TEXT FILE I/O ERROR : ee NAME= filename 

where "ee" is the TEXT I/0 error type (described in Appendix E) and 
"filename" is the file variable name. 

7-2 



The following error messages are generated by the heap management 
routines when an error is found: 

HEAP OVERFLOW - no more heap space is available to allocate 
the current heap packet. 

INVALID HEAP . PACKET POINTER - the pointer being DISPOSEd 
does not point to a valid heap packet. 

Normally, when an error is found by the run time support routines, the 
user's program is halted and control is passed back to the execute 
program. When this happens, the following message is generated: 

HALT CALLED 

7.6 ABNORMAL TERMINATION MESSAGES 

If the user's program is terminated abnormally, the following message 
will be displayed indicating the type of the error that occurred. 

*** RUN TIME ERROR DETECTED *** reason 

The "reason" for the termination will be one of the following: 

INVALID OPCODE - an illegal interpretive code operator was found. 

STACK OVERFLOW - the user's program consumed the entire allocated 
stack area. 

INVALID CALL - an unresolved procedure was called. 

DIVIDE BY 0 - a divide by 0 was attempted. 

FLOATING POINT - a floating point underflow or overflow was 
detected. 

SET RANGE - a set element less than 0 or greater than 1023 was 
detected. 

ASSERT - an ASSERT statement failed. 

CASE - no CASE statement alternative was found. 

SUBSCRIPT - an array subscript expression was not within the 
declared bounds. 

POINTER - a pointer equal to NIL was referenced. 

SUBRANGE - an assignment of a value to a subrange variable was 
not within the declared bounds. 

"HALT" CALLED - a run time support error was found. 

7-3 



After the error message appears, a trace back message is generated. 
The first line of the trace back message contains: 

0 

or 

the name 
occurred 
or from 
example: 

and number of the routine in which the error 
if the program was loaded from interpretiye code 
a segment saved with debug information. For 
~ROUTINE~ name STATEMENT NUMBER = nn 

o the words ~RUN·TIME SUPPORT~ if segment was not saved with 
debug information. 

Under the routine name (or nRUN-TIME SUPPORT" header), information is 
presented indicating how the routine was called • 

. . 

7-4 

.----... 
. I 

·i ,. 

--··· 



( 

SECTION 8 

MICROPROCESSOR PASCAL SYSTEM LANGUAGE 

8. 1 OVERVIEW 

Texas Instruments 
Pascal language, 
and the run-time 
System. 

has built language extensions into the basic Wirth 
customizing it to support the software development 

executive features of the Microprocessor Pascal 

This section examines T.I's.Microprocessor Pascal System language. The 
purpose of the information presented is to define the various elements 
of this language and the structures comprised by these elements. In 
order to learn how to program with Pascal (or any other high-level 
language), the user should consult one of the many books specifically 
published for that purpose. 

8.2 LANGUAGE VOCABULARY AND REPRESENTATION 

The Microprocessor Pascal System language is composed of symbols. 
These symbols are made up of various combinations of elements from the 
language's character set. In turn, these symbols comprise the language 
vocabulary. This vocabulary consists of identifiers, numbers, strings, 
operators, and keywords. The Microprocessor Pascal System character 
set and vocabulary are defined below. 

8.2.1 Character Set 

The Microprocessor Pascal System character set consists of the letters 
A - z and a - z, the digits 0 - 9, and the special characters 

+ - * I II 
. . , ' :='<>() 

8.2.2 Special Symbols 

[] {}#1/\@ 

The special characters listed above are used to make up special 
symbols. Special symbols are used for operators (logical and 
arithmetic) and delimiters. These special symbols are as follows: 

+ 
( 

* I 
] 

:= = <> < 
{ } 

<= >= . . > : : @ , ... * /\ 
Note: ( •• ) is a substitute for [ ] which is used to delimit array 
indices and sets; (* *) is a substitute for { } which is used to 
delimit comments; and @ is a substitute for /\ which is used with 

8-1 



pointer types. These alternate symbols are provided since the symbols ~ 
they replace are not available on all systems. ) 

8.2.3 Keyword Symbols 

Keyword symbols are reserved words with fixed meanings; they may not 
be declared as identifiers (see Paragraph 8.2.4). Each keyword is 
composed of letters and is interpreted as a single symbol. These 
keywords are listed below. 

ACCESS ELSE MOD REPEAT 
AND END NIL SEMAPHORE 
ANYFILE ESCAPE NOT SET 
ARRAY FALSE OF START 
ASSERT FILE OR SYSTEM 
BEGIN FOR OTHERWISE TEXT 
BOOLEAN FUNCTION OUTPUT THEN 
CASE GOTO PACKED TO 
CHAR IF PROCEDURE TRUE 
COMMON IN PROCESS TYPE 
CONST INPUT PROGRAM UNTIL 
DIV INTEGER RANDOM VAR 
DO LABEL REAL WHILE 
DOWN TO LONG INT RECORD WITH 

8.2.4 Identifiers 

Identifiers are used as names denoting user-defined or predefined 
entities. An identifier consists of a letter or $ followed by any 
combination of letters, digits, or the $ or symbols. Upper and 
lower-case letters are allowed but a lower-case letter is treated as 
the corresponding upper-case letter (e.g., the identifier DATA SIZE is 
the same as the identifier Data Size). Identifiers may not cross 
cardline boundaries and thus may not-be more than 72 characters in 
length. All characters in an identifier are significant. However, an 
identifier used to denote a system, program, process, procedure, 
function, or common should be unique within its first six characters. 
To avoid conflict with any run-time support routines, the names of 
user-defined routines should not possess any $ characters. Also, if 
AMPL is to be used for target debugging, routine names should not 
contain any characters. 

Examples: 
Legal Identifiers 

x 
$VAR 
LONG IDENTIFIER 
NUMBER 3 
READ 

\ 
_./ 

8-2 



Illegal Identifiers 
ARRAY ( Reserved word ) 

ROOT3 ( Can't start with 
jRDVAL ( Can~t start with j ) 
MAX VALUE ( Can~t contain blank 
TOTAL-SUM ( Can't contain - ) 

Please note that some identifiers are standard, 
i.e., they are predeclared 
with a given meaning. However, identifiers may be redefined by the user 
with the result that the standard meaning no longer applies. 
For example, redefining the name associated with a standard routine 
prevents the standard routine from being called. 

8.2.5 Separators 

Separators are spaces, ends of lines, comments, or remarks that are 
used to offset Pascal language elements. For example in 

WHILE X<lO 

a space separates WHILE and X. It is not equivalent to write: 

WHILEX<lO 

At least one separator must occur between any 
identifiers, keywords or special symbols. However, no 
occur within any of these elements. 

two constants, 
separator may 

A comment is special case of separator. A comment is any sequence of 
characters beginning with (* or { and ending with *) or }. However (* 
or { does not begin a comment within a string. Comments may not be 
nested. A warning message is generated if an open comment symbol is 
found within a comment. 

A remark is any sequence of characters beginning with a " and 
extending to the end of the line •• However, " appearing within a 
string does not begin a remark. Examples follow: 

8.3 DATA 

{ This is a comment } 
(* This is also a comment *) 
" the rest of the line is a remark 
STRING: = '"This is not a remark'; 

Data refers to the information manipulated by a computer program. In 
the Microprocesor Pascal System data can be constants or variables. 

8-3 



8;3.1 Constants 

Constants are named entities that do not change this value within a 
system. Constants may be integer constants, long integer constants, 
real constants, string constants, character constants, or Boolean 
constants. 

8.3.1.1 Integer and Long Integer Constants. An integer 
constant is written ·as a sequence of decimal digits or 
hexadecimal digits preceded by a # sign. Either form may 
by the letter "L" to indicate a LONGINT constant (A 
refers to a larger range of whole numbers than does 
Paragraph 8.4.1.2.) 

Examples: 
Legal INTEGER and LONGINT constants 

133 
#26B 
#AFL 
00022 
252410L 

a sequence of 
be followed 
long integer 
integer--see 

8.3.1.2 Real Constants. Real constants can be written as sequences 
of decimal digits separated by a decimal point, or with the use of 
exponential notation. In the use of exponential notation, the decimal 
point must be surrounded by decimal digits. The general syntax allowed 
is: 

.nnn.nnn or nnn.nnnEmm or nnnEmm 

The number nnnEmm represents the real number nnn times 10 to the power 
mm. 

Examples: 
Lega~ REAL constants 

11. 75 
726E2 
9.8E-4 
102.4E+2 

Illegal Numbers 
.005 ( Decimal point not surrounded by digits ) 
75.E-2 ( Decimal point not surrounded by digits ) 
2.0El.5 ( REAL exponent not allowed ) 
#47A.2 ( HEX notation illegal with decimal point ) 

8.3.1.3 String Constants. A string constant is written as a sequence 
of characters enclosed by apostrophes. The length of the string' may 
from 2 to 70 characters. Any ASCII character code may be represented 
in a string by a # followed by two hexadecimal digits. This enables 
unprintable characters to be included in strings. Within a string, ~ 
is represented by ~~ and # is represented by ##. A string constant is 
defined as a: 

8-4 



( 

PACKED ARRAY [! •• length] OF CHAR 

where length is the number of characters in the string. NOTE: length 
must be 2 or greater. 

Examples: 
Legal STRING constants 

' THIS IS A STRING ' 
'UNPRINTABLE CHARACTER #OD' 
'EXAMPLE ##3' 
'CAN,,.'T' 

8.3.1.4 Character Constants. A character constant is written as one 
character enclosed by apostrophes. The character may be represented by 
two hexadecimal digits preceded by a # (its ASCII code). As in a 
string constant, the character ' is represented by ,,.,,. and # is 
represented by ##. 

Examples: 
Legal CHARACTER constants 

'7' 

'+' 
'#OF' 

8.3.1.5 Boolean Constants. 
TRUE or FALSE. 

8.3.2 Variables 

A Boolean constant is declared as either 

Variables are data structures that change their values during 
execution. Every variable has a type associated with it. The type 
determines the values the variable may assume and the operations that 
may be performed on the variable itself. Types, their meanings and 
representations are discussed in Paragraph 8.4. 

A variable may be either a simple identifier which represents an 
entire variable or a qualified variable which represents a component 
of a variable of a structured type (see Paragraph 8.4.2). 

8.3.2.1 Simple Variables. A simple variable is an identifier that 
references the entire variable. The form of the simple variable is as 
follows: 

<variable identifier> 

Identifiers are defined in Paragraph 8.2.4. 

~· 8.3~2.2 Qu~lified varaibles. As previously stated, qualified 
·~· variables represent the component variables of structured types. These 

qualified variables are made up of variable identifiers. The way in 

8-5 



which these variable identifiers are used as qualified variables 
depends upon the structure of the type being referenced. These 
qualified variables include array variables, record variables, and 
pointer variables. These variables will be discussed in paragraph 8.4 
which details data types. 

8.4 DATA TYPES 

Data types are associated with variables. The data type defines the 
values a variable may assume and the operations that can be performed 
on the variable. Each variable is associated with one and only ·one 
data type. 

A variable may be either a simple type or a structured type. The 
simple types consist of the standard types INTEGER, LONGINT, REAL, 
BOOLEAN, and CHAR; plus user-defined scalar or subrange types. 
Structured types consist of variables having more than one component. 
For structured types, the user must indicate the types of the 
components and the structuring method. The structuring methods 
available consist of arrays, records, sets, pointers, semaphores, and 
files. 

A type declaration introduces an identifier as the name of a data 
type. The form of a type declaration is described in Paragraph 8.5.3. 

8.4.1 Simple Types 

Simple types consist of the standard types INTEGER, LONGINT, BOOLEAN, 
C.HAR, or REAL, or user-defined scalar or subrange types. In addition, 
these simple types make up a special class of type called an 
enumeration type. Enumeration types and the various simple types are 
described below. 

8.4.1.1 Enumeration Types. With the exception of type REAL, the 
simple types support enumeration. Enumeration means that the variables 
have a set of distinct values upon which a linear ordering is defined. 

Enumeration types are used for counting purposes; for example, to 
index into an array or to control the number of iterations of a FOR 
statement. 

The basic operators for variables of enumeration type are the 
assignment operator (:=) and the relational operators described below: 

< 
= 
> 
<= 
<> 
>= 

less than 
equal 
greater than 
less than or equal 
not equal 
greater than or equal 

Three standard functions can be applied to enumeration types: 

8-6 



SUCC(X) the successor of X 

PRED(X) the predecessor of X 

ORD(X) the integer ordinal value of X (applies to all 
enumeration types except INTEGER and LONGINT) 

8.4.1.2 Integer and Longint Types. A value of type integer is an 
element of a finite set of whole numbers which range from -32768 to 
32767 (signed 16-bit quantity). A value of type LONGINT belongs to a 
set of whole numbers ranging from -2147483648 to 2147483647 (signed 
32-bit quantity). A non-suffixed integer constant is of type INTEGER 
if its value lies within the range given above, or LONGINT if its 
value lies outside the subrange defined by INTEGER but within the 
subrange defined by LONGINT. If an integer constant is suffixed with 
an L, it is of type LONGINT. . . 

The basic operators defined for INTEGER and LONGINT operands are: 

+ unary plus or add 
negate or subtract 

* multiply 
I divide (produces REAL result) 
DIV integer divide (divide and truncate) 
MOD modulus-> A MOD X =A - ((A DIV X) * X)) 

Please note 
its use in 
definition. 

that the definition of the MOD operator (above) supports 
the Pascal language; it is not the standard math 

The standard functions applying to arguments of type INTEGER and 
LONGINT are: 

Function 

ABS (X) 
SQR(X) 
CHR(X) 

ODD (X) 

FLOAT(X) 
LINT(X) 

TRUNC (X) 

Value 

Absolute value of x. 
x * x 
The character with the 
ordinal value of x. 
TRUE if x is odd, 
FALSE otherwise. 
X converted to REAL value. 
The INTEGER X converted to 
a LONGINT value. 
The LONGINT X converted to 
an INTEGER value. 

Result Type 

INTEGER (LONGINT) 
INTEGER (LONGINT) 
CHAR 

BOOLEAN 

REAL 
LONG INT 

INTEGER 

The standard function LOCATION may be used to obtain the address of an 
unpacked variable. LOCATION may also be used to obtain the entry point 
of a routine. In both cases the result type returned by LOCATION is of 
type INTEGER. 

The arithmetic relational operators apply to INTEGER or LONGINT 

8-7 



operands and yield a Boolean result. 

8.4.1.3 Boolean Type. A value of type boolean is one of the logical 
truth values denoted by the reserved words TRUE and FALSE. 

Operators defined for Boolean operands which yield Boolean values are: 

NOT logical negation 
AND logical conjunction 
OR logical disjunction 

The constants TRUE and FALSE are predeclared keywords so that the 
ordinal value of FALSE is strictly less than TRUE (FALSE < TRUE). 
Thus, the relational operators apply to BOOLEAN operands and yield a 
Boolean result. Notice that each of the 16 Boolean operations can be 
defined using the Boolean operators listed above and the relational 
operators. For example, if P and Q are of type BOOLEAN, 

p <= Q 
p = Q 
p <> Q 

expresses implication (P implies Q) 
expresses equivalence 
expresses exclusive OR 

Because of the precedence ·rules, expressions involving Boolean and 
relational operators may have to be paienthesized to obtain the 
desired result. 

8.4.1.4 Char Type. A variable of type character has a value which is 
a printable character •. This value is represented by its ASCII ordinal 
value. Character constants are written as a single character 
surrounded by apostrophes (single quotes). A character constant can be 
written by specifying its hex value: e.g., ~#OD~ is an ASCII carriage 
return. 

The following standard function applies to characters: 

ORD(X) The result (of type INTEGER) is the ordinal 
value of the character x. 

8.4.1.5 Scalar Type. A scalar type is a user-defined type. The 
values of a scalar type are elements of a set of identifiers specified 
by the user. Each identifier defines a value. The order in which these 
identifiers are written defines the order of the scalar type. The form 
of a scalar type declaration is: 

( <scalar identifier list> 

where <scalar identifier list> is a list of identifiers separated by 
commas. 

Examples: 
TYPE DAYS = (MON,TUES,WED,THURS,FRI,SAT,SUN): 

COLOR = (WHITE,RED,ORANGE,YELLOW,GREEN,BLUE, 
PURPLE,BLACK): 

8-8 

··1 
-• • __ J 

\ 

.) 



The standard type BOOLEAN may be represented by the scalar type: 

TYPE BOOLEAN= (FALSE,TRUE); 

which defines the standard identifiers FALSE and TRUE, and specifies 
that FALSE < TRUE. 

The standard function ORD returns the ordinal number of a scalar 
value. The ordinal number of the first identifier in a scalar type is 
zero. Each identifier that appears as a value in a scalar type cannot 
be used for any other purpose within that scope (i.e., a scalar type 
definition does not open a new scope and the normal scope rules still 
apply). 

8.4.1.6 Subrange Type. A type may be defined as a subrange of any 
previously defined enumeration type by specifying the least and 
largest values in the subrange. The form of a subrange type is: 

<enumeration constant> .• <enumeration constant> 

An <enumeration constant> is a constant 
type. The first <enumeration constant> 
second <enumeration constant> is the upper 
be less than or equal to the upper bound. 

value of some enumeration 
is the lower bound and the 

bound. The lower bound must 

Examples: 

.. 

TYPE DIGITS= '0' •• '9'; 
WORKDAYS= MON •. FRI; 
INDEX = 1.. 100; 

Note: The type DAYS, as defined in Paragraph 8.4.1.5, is used as the 
enumeration type for the subrange WORKDAYS. 

8.4.1.7 REAL Type. The type REAL may be 
numbers. The range of absolute values that 
approximately l.OE-78 to l.OE75. However, 
precision in representations of up to six 
24-bit mantissa is involved). 

used to represent REAL 
can be represented is 
the user can only expect 
significant figures (a 

The following operators accept operands of type REAL and yield a real 
value: 

+ unary plus or add 
negate or subtract 

* multiply 
I divide 

The assignment operator may be used to assign a REAL value to a REAL 
variable. The relational operators are .defined for REAL operands and 
yield a Boolean result. 

The standard functions accepting a REAL argument and producing a' REAL 
result are: 

8-9 



ABS (X) 
SQR(X) 

absolute value of X 
X squared 

---~ 

Standard functions 
TRUNC(X) 
ROUND(X) 

with a REAL argument yielding INTEGER results 
truncate the fractional part of X 

are: 

round X to. the nearest integer, i.e., 
TRUNC(X + 0.5) if X >= 0 or 
TRUNC(X - 0.5) if X < 0 

The standard functions, LTRUNC and LROUND, yield a result of type 
LONGINT. 

8.4.2 Structured Types 

Structured types are made up of components of other types. Structured 
types include arrays and records (which can either be PACKED or 
UNPACKED), sets, files, pointers, and semaphores. 

8.4.2.1 Array Type. An array is an ordered collection of variables 
all of which are of the same type. Arrays are declared as follows: 

ARRAY [ <index type list> ] OF <component type> 

The <component type> may be of any simple or structured type except 
FILE type (see Paragraph 8.4.2.4). Note that the <component type> may 
itself be an array type. The <index type list> is a list of <index 
types> separated by commas. The number of <index types> in the 
declaration determines the dimension of the array. There is no limit 
to the number of dimensions an array may have. Each <index type> must 
be one of the enumeration types: BOOLEAN, CHAR, subrange, or scalar. 
Thus, the number of components in an array is static (fixed at compile 
time). 

Examples of One-Dimensional Arrays: 
VAR VECTOR, ARRAYROW: ARRAY [l •• lO]OF REAL; 

SICKDAYS: ARRAY [DAYS] OF BOOLEAN; 

A component of an array is specified by the name of the array 
by an expression of the <index type> defining the component~s 
position within the array. For example, referring 
one-dimensional arrays declared above, 

followed 
relative 
to the 

ARRAYROW[3] specifies the third component of the array ARRAYROW. 
The value of this component can be any real number. 

Similarly, referring to the other one-dimensional array SICKDAYS, when: 

then 
TYPE DAYS = (Mon,Tues,Wed,Thurs,Fri,Sat,Sun) 

SICKDAYS[Tues] refers to the second component of the array SICKDAYS. 
The value of this component can be either True or False. 

Arrays with two or more dimensions are called multi-dimensional 

8-10 

. J 

~, 

'\ 
I . ,/ 

_ _/ 



r arrays. These may be defined in terms of one-dimensional arrays since 
the type 

( 
\-:._ .· 

( 
' .. 
·-~-:--"" 

ARRAY [Tl, T2] OF BOOLEAN 

is equivalent to 

ARRAY [Tl] OF 
ARRAY [T2] OF BOOLEAN 

Examples of Multi-Dimensional Arrays: 
VAR TABLE:ARRAY [0 •• 10, 10 •• 20] OF INTEGER; 

BOOK:ARRAY [l •• MAX, 1 •• 80, 1 •• 66] OF CHAR; 

The. only operator between array operands of compatible types is 
assignment (:=). 
Examples: 

Using the array type definitions given above, 
SICKDAYS[FRI] := TRUE; 

and 

VECTOR [ 1] : = 3 .1415; 
TABLE [ 1, 20] : = 3 7; 
BOOK[5,l,25] := ~Z~; 

ARRAYROW := VECTOR 

which is equivalent to 

FOR I := 1 TO 10 DO 
ARRAYROW(I] :=VECTOR(!]; 

A special array type called a STRING is defined to be a 

PACKED ARRAY [1 •• <integer constant>] OF CHAR 

Packed arrays are discussed in Paragraph 8.4.2.7. 

The <integer constant> specifies the length of the string. It must be 
equal to or greater than 2. The number of characters in a string 
constant implicitly determines its type (the length of string); it can 
be up to 70 characters. The limit is 70 because line length is 72, and 
the string must be enclosed in quotes and not split across lines. To 
assign a string constant to a variable of type string, the lengths of 
each must match exactly. A character constant is not considered to be 
the same as a string constant; therefore a single character may not be 
assigned to a variable of type string. The basic operators for 
variables of type string are assignment (:=) and the relational 
operators (<,: =, >, <=, <>, >=). 

8-11 



Examples: 
TYPE STRG =PACKED ARRAY [1 •• 6] OF CHAR; 
VAR WORD1,WORD2:STRG; 
BEGIN 
WORDl := ~PASCAL~; 
WORD2 := ~RECORD~; 

IF WORDl < WORD2 
THEN ••• 
WHILE WORD2 <> WORDl DO • • • 

The standard procedures for arrays are: 

PACK (A, I, Z) 

UNPACK ( Z, A, I) 

means: FOR J := u TO v DO 
Z [J] : = A [J-U+I] 

means: FOR J := U TO V DO 
A [J-U+I] := Z [J] 

where A is a variable of type ARRAY[M •• N] OF Tl, 

{starting at element 
I of array A, move 
V-U elements to 
array z, starting 
at element I.} 

{starting at element 
1 of array Z, move 
V-U elements to 
array A, starting 
at element I.} 

Z is a variable of type PACKED ARRAY[U •• V] OF T2, 
Tl and T2 are compatible types, and 
I is an integer where (N-M-I) > = (V-U) 

UNPACK provides an efficient way to move all the elements of a packed 
array to an unpacked array, and PACK provides the converse function, 
i.e., moves sufficient elements of anunpacked array to fill ·a packed 
array. 

8.4.2.2 RECORD Type. A record type consists of a number of 
components of possibly different types. These components are called 
fields. Each field in a record type must have a distinct name. A field 
of a record can be of any type except a FILE type (see paragraph 
8.4.2.4). The form of a record type definition is: 

RECORD <field list> END 

where <field list> can have a <fixed part> or a <variant part> or 
both. 

The <fixed part> is simply an arbitrary number of <record section>s 
separated by semicolons. A <record section> can be empty (contains 
nothing at all). If present, the <record section> must be in the form: 

<field identifier list> : <type> 

where <field identifier list> is a li~t of field identifiers separated 

8-12 

) 



by commas. The word "END" must be placed after the l.ast field in a 
record has been defined. 

Examples: 
TYPE COMPLEX = 

RECORD 
RE, IM: REAL 

END; 
DATE = 

RECORD 
MONTH:(JAN,FEB,MAR,APR,MAY,JUN,JUL, 

AUG,SEP,OCT,NOV,DEC); 
DAY: 1.. 31; 
YEAR: INTEGER 

END; 
VAR VOLTAGE:COMPLEX; 

EXPIRE:DATE 

A record variable is used to reference a field within a record. A 
record variable specifies the name of the record followed by the name 
of the field identifier (separated from each other by a period). For 
example, using the record declared above: 

and 

VOLTAGE.RE specifies the field "RE" in the record "VOLTAGE". 
The value of this variable must be a REAL number. 

EXPIRE.YEAR specifies the field "YEAR" in the record "EXPIRE". 
The value of this variable must be an integer. 

The only operator applying to records as structures is that of 
assignment (:=).The assignment operator applies to operands which are 
records of exactly the same type. For example, using the record type 
definitions given above, 

and 

VAR INITIAL,FINAL:DATE; 
Cl,C2,C3:COMPLEX; 

INITIAL.DAY := 20; 
FINAL.YEAR := 1978; 

Cl.RE := 3.4; 
C3.IM := 5.8; 

INITIAL := FINAL; 

which is equivalent to 

INITIAL.MONTH := FINAL.MONTH; 
INITIAL.DAY := FINAL.DAY; 
INITIAL.YEAR := FINAL.YEAR; 

~ ~ A record may als6 have a variant part. The variant section is used to 
allow individual records to have some differences in their structure. 

8-13 



Based on the value of a field in the record (referred to as the 
"tagfield"), a particular set of "variant" fields for the record is 
selected. This permits a method for "overlaying" data since the record 
need only be as large as the largest variant part. 

The <variant part> of a record has the following form: 

CASE <tagfield>:<tagtype> OF <variant list> 

where <tagfield> is a field identifier of type <tagtype>. The 
<tagfield> (along with the ":" separator) is optional. However, the 
<tagtype> is required. The <tagtype> may be a standard type identifi~r 
(BOOLEAN, CHAR, INTEGER, or LONGINT) or a user defined type 
identifier. The <variant list> is an arbitrary number of <variant>s 
separated by semicolons. A <variant> can be empty (contains nothing at 
all). If present, the <variant> must have the form: 

<case label list>: ( <field list> ) 

A <case label list> is a list of <case label>s separated by commas. A 
<case label> is either a constant value or subrange value. The <case 
label> must be compatible with the <tagtype> for the variant section. 

Example: 
TYPE CODE = (CREATE,CHANGE,DELETE): 
VAR UPDATE = 

RECORD 
UPDATE DATE:DATE: 
CASE ACTION: CODE OF 

CREATE:(INITIAL VAL:INTEGER): 
CHANGE: (CHANGE TYP: (ADD,SUB,REPLACE): 
CHANGE VAL: INTEGER): 
DELETE:( ) : 

END: 

NOTE: every field name in a record must be distinct, even those field 
names appearing in different variant parts of the record. See 
Paragraph 8.4.2.7 for a discussion on PACKED records. 

An alternate way of implementing the case statement is to remove the 
tag field. In this way, the record length is shortened by one word. In 
the above example, the case statement would appear as follows: 

CASE CODE OF 

8.4.2.3 Set Type. A set type is used to define variables whose 
values are sets. A set type specifies a base type: a value of the set 
is then any subset of values from the base type. The syntax is: 

SET OF <base type> 

where the <base type> is any enumeration type. 

Set values are written as a list of set elements separated by commas 

8-14 

I 
; 

c_/ 



and enclosed in the set brackets [ and ]. A set element is an 
expression of the base type or a subrange of values of the base type. 
The empty set is denoted by [ ]. 

A set is always based at zero. The lower bound of the set must have an 
ordinal value greater than or equal to zero; the maximum element must 
have an ordinal value less than or equal to 1023. Therefore, a set may 
have at most 1024 elements and the size of the set is determined by 
the value of the maximum element 

NOTE: Based on the above definition, the set of INTEGERS is not 
valid. 

Examples: 
TYPE CHARSET = SET OF CHAR; 

RANGESET =SET OF 0 •• 7; 
COLOR:(RED,YELLOW,ORANGE,BLUE); 

VAR WEEK,WEEKEND:SET OF DAYS; 
SHADEl, SHADE2 :SET OF COLOR; 
HUE:COLOR; 

Note: The type DAYS was defined in Paragraph 8.4.1.5. 

The basic operators for sets are: 

+ set union 
set difference 

* set intersection 
<= set inclusion (contained in) 
>= set inclusion (contains) 
< proper set inclusion 
> proper set inclusion 
= set equality 
<> set inequality 
IN set membership 
:= assignment 

The operands for these operations must be compatible sets (in the case 
of the IN operation, the first operand is a set member, the second 
operand is a set). The result of a relation is a Boolean value. The 
result of the other operators is a set value that is compatible with 
the operands. 

Examples: 
(4,5,6] + (5,4,3) = (3,4,5,6] 
(4,5,6) * (5,4,3) = [4,5] 
(2,3,4] - (5,4,3] = [2] 
( [ 2 , 3 , 4] < [ 2 , 3 , 4] ) = FALSE 
( [ 2 , 3 I 4 ] = [ 2 , 3 , 4 ] ) = TRUE 
( [ 2 , 3 , 4] > = [ 2 , 3 , 4 ] ) = TRUE 

8-15 



Using the set type definitions given above, 

WEEKEND := [SAT, SUN]: 
WEEK :=WEEKEND+ [MON •• FRI]: 

SHADE! := [RED, YELLOW] * [YELLOW,ORANGE]: 
SHADE2 := [YELLOW •• BLUE]: 

IF SHADE! <> [YELLOW] THEN • 
IF HUE IN SHADE2 THEN • • 

8.4.2.4 File Type. A file type is a data structure made up of a 
sequence of components all of which are of the same predeclared type 
(e.g., standard, scalar, structured, etc.) The form of a file type 
declaration is one of the following: 

NF:.NJ FILE OF <component type> or RANDOM FILE OF <component type> or 
TEXT 

The <component type> of a file can be of any type except a pointer 
type or file type. (It is recommended that the component type not 
contain pointers as a substructure, although the language makes no 
such restriction.) The number of a file"'s components indicates the 
length of the file. This number is no~ fixed and may be increased 
according to the storage medium with which the file is associated. 

Files are sequential files u~less declared otherwise by the use of the 
prefix RANDOM. The components of a sequential file are accessed in 
their order of placement in the file. 

The pref ix RANDOM designates a random file in which components are 
accessible by their component number. This numbering is defined by 
default to be the natural ordering of the sequence of the components: 
the first component is number zero. 

A special type of sequential file is a TEXT file. TEXT is a 
predeclared type defined by: 

TYPE 
TEXT:FILE OF PACKED ARRAY [1 .• 80]0F CHAR: 

INPUT and OUTPUT are standard predeclared TEXT files. 

Examples: 
TYPE REC = 

RECORD 
NAME:PACKED ARRAY (1 .. 15) OF CHAR: 
ID NUM: INTEGER: 

END:-
IFILE = FILE OF INTEGER: 

VAR EMPLOYEE:RANDOM FILE OF REC: 
TEMP:TEXT: 
F:IFILE: 

8-16 



( 
\. •.... 

A special file type predeclared to the system is the type ANYFILE. The 
type ANYFILE is used to pass file parameters to modules. When ANYFILE 
is used as a formal parameter, the actual parameter may be any file 
type (i.e., ANYFILE is a generic type). 

An example of the use of ANYFILE as a formal parameter is demonstrated 
below. 

Example: 
PROGRAM EXAMPLE (FACTS:ANYFILE: ••• ): 

BEGIN 

END: 

{ EXAMPLE } 

{ EXAMPLE } 

PROGRAM P (INPUT,OUTPUT:TEXT): 

VAR INFO:TEXT: 
DATA:FILE OF INTEGER: 

BEGIN { p } . . . 
START EXAMPLE ( INFO, • . . ) ; . . . 
START EXAMPLE (DATA,. . . ) ; . . . 

END: { p } 

Standard procedures and functions are provided for file manipulation. 
Paragraph 8.8 contains more information about the various file types and 
how they are managed. 

NOTE: the us of ANYFILE is restricted, in that the READ/WRITE standard 
procedures are called differently or RANDOM and SEQUENTIAL files: 
therefore, the code in the body of the procedure with the ANYFILE 
declaration has to be written explicitly for either RANDOM or 
SEQUENTIAL file I/O. 

8.4.2.S Pointer Type. Variables can be referenced indirectly by 
means of a pointer. A pointer can be thought of as an address. 
Microprocessor Pascal restricts this address to be the location of an 
object of the type specified in the pointer declaration. 

or 
<pointer type> = 
<pointer type> = 

@<type identifier> 
<typ~ identifier> 

where <pointer type> is a pointer to variables of <type identifier> 
and <type identifier> must not be a file .type (the type pointed to is 
usually a record type). The symbol@ or identifies <pointer type> as 
a pointer. <Type identifier> need not be defined before the pointer 
type is defined, provided it is declared sometime later in the 
declaration section. (This is a forward type declaration: · such 
declarations are only permitted with pointer types.) 

8-17 



, --~ 

. \ 

Besides pointing to variables of the type declared, a pointer type can ·; 
also point to the predefined constant NIL (i.e., the pointer points to 
nothing at all). 

An example of the use of a pointer types follows: 

TYPE PTR = @LIST; {PTR points to a record of type LIST} 
LIST = 

RECORD 
VALUE:REAL; 
LOC:O •• #FF; 
NEXT:PTR; 

END; 
VAR P : PTR 

The variable pointed to by the <pointer type> is a pointer variable. 
This pointer variable takes the form of: 

<variable> 
or <variable>@ 

The value of the pointer variable is undefined until a value is 
assigned to it (an address) or until a NEW is performed on it to 
allocate an area of dynamic storage. (As mentioned above, the constant 
NIL can also be assigned to it.) 

Using the type and variable declarations given above: 
NEW(P) 
P@.VALUE := 13.5 

The operators applying to pointer operands with compatible types are: 

:= assignment 
= equal (the result is TRUE if the operands point 

to the same "address") 
<> not equal 

Typical uses of pointers are for constructing linked lists and binary 
tree data structures. A linked list of records can be created easily 
by defining a record which contains one field which is a pointer to 
the next record. Similarly, a binary tree of records can be 
constructed by defining a "right link" pointer and "left link" pointer 
for the record. In addition, pointer types are used when dynamically 
allocating data from the heap. 

8.4.2.6 Semaphore Type. The type semaphore is used in connection 
with low-level synchronization of processes. While the internal 
representation of a semaphore is transparent to the user, the 
underlying concept used by the support routines is that of the 
counting semaphore. Operations on variables of type SEMAPHORE are 
performed by various functions and procedures which must be declared 
EXTERNAL by the programmer (see Paragraph 8.5.10 for EXTERNALS) 

8-18 



Aritmetic operations are not valid for SEMAPHORE operands. A variable 
of type SEMAPHORE is considered to have the same space requirements as 
a variable of type pointer (Paragraph 8.5.2.5). Information on how 
semaphores work is provided in Chapter 9. 

8.4.2.7 Packed Types. Packing a data structure results the in 
storing (where possible) of several of its components in one data 
word. A structure is declared to be packed by placing the keyword 
PACKED before the word "ARRAY" or "RECORD" (the concept of packing is 
meaningless for other structured data types). Packing economizes the 
storage requirements of a data structure but may cause a loss in 
efficiency of access of its components, i.e., while data storage 
requirements are reduced, execution time and code size may be 
increased by use of the ~PACKED~ type. 

An example of a packed type is a string type which is discussed in 
Paragraph 8.4.2.1. A string type is a packed array of characters. 
Passing an element of a packed structure to a procedure as a VAR 
parameter· (by reference) is not permitted. 

8.4.3 Size Algorithm for PACKED Types 

If a type occurs in a packed structure, as much storage 
by the size algorithm will be allocated to it, 
following restrictions. 

o Only enumeration types are packed. 

as specified 
subject to the 

o Every structured type starts on a new word boundary and occupies 
an integral number of words or a fraction of a word. 

The size algorithm specifies the internal representation of the value 
of a type in terms of bits or words. Thus, either a portion of a word 
or an integral number of words is allocated. As a result, if a type 
requires more than one word, it always uses an integral number of 
words, and not an integral number of words plus a fraction of another 
word. Consequently, gaps of unused bits may occur. If a type occurs in 
an unpacked structure, the size is a lower bound~ the actual size is 
an integral number of words selected to facilitate efficient access to 
the type. 

The size associated with each type is defined as follows: 

CHAR: 1 word (8 bits in a packed structure). 

INTEGER: 1 word (16 bits). 

LONGINT: 2 words (32 bits). 

BOOLEAN: 1 word (1 bit in a packed structure). 

SCALAR TYPE: Let N be the ordinal of the largest member of the 

8-19 



enumeration, and define the number required NR(N) to be the 
least value I such that N, < 2**I (2 to the Ith power). Then 
the scalar type required R(N) bits. 

EXAMPLE: 

TYPE COLORS = [RED,ORANGE,GREEN,YELLOW]: 

In this case, N = 3 and the least value for I is 2 (i.e., 3 
<2**2). 

SUB-RANGE TYPE: Let ~ and u be the lower and upper bounds of the 
the subrange. Then if L >= O, the size- is the same as for a 
scalar type which has the ordinal of the largest member of 
its enumeration equal to u. If L < 0, the size is 
Max(NR(-L-1) ,NR(ABS(U)) + 1. 

EXAMPLE: 
TYPE MY COLORS= [ORANGE •• YELLOW] 
In this-case, U = 2 and the least value for I is 2 (i.e., 2 
<2**2). 

REAL: 2 words (24 bit mantissa, 8 bit (excess 64) exponent) 

POINTER 
TYPE: 1 word (16 bits) 

ARRAY: One element, or at least one bit of an element (in the 
case of an element greater-than the size of a word), always 
falls to the left-most (Most-Significant) bit of the word. 

All elements within an array are the same size. 

If the array is not packed, each element occupies one or 
more consecutive words. Let S be the size of an element, 
that is, the size of the component type. If the array has 
(E) elements, the size of the array is E*S. 

Examples: (Assume a S-bit element (ES) and a 16-bit word) 

(1) Array size: 1 element (not packed) 

0 4IS lS 
----- -----------1 

ES Blank I 
(2) Array size: 3 elements (not packed) 

0 4 s lS 0 4 s 15 0 4 s lS 

ES Blank ES Blank ES Blank 

<---1st Word----> <---2nd Word----> <---3rd Word----> 

8-20 

.~ 
I 

/ 



If the array is not packed, each element occupies the 
smallest number of words necessary to contain it, e.g., 
5-bit elements requre 1 word each~ a 17-bit or 29-bit 
element would require two words each, etc. Each element is 
right-justified within the words allocated to it, and is 
continguous. For example: (Assume a 21-bit element (E2l)and 
a 16-bit word) 

(3) Array size: 1 element (not packed) 

0 11-15 0 15 

---------------- -----1-------------------
Blank <---------E21-----------> 

<-----1st Word------->1<----2nd Word-----> 

If the array is packed, but the 
B bits, only one element may be 
Each element will occupy one or 
the elements are positioned 
packed. (See example 3, above) 

element size is 
placed within a 
more words. In 
as in arrays 

greater than 
single word. 
this case, 

that are not 

If the array is packed and the element size is equal to or 
greater than B bits, the elements are packed as follows: 

(4) Example: B-bit elements packed (EB) 

0 7 B 15 

EB EB 

<----1 WORD-----> 

(5) Example: 7-bit elements packed (E7) 

1~1=-----~1~1: _____ :51 

Bl E7 B E7 

<-----1 WORD------>1 

B-21 



(6)Example: 6-bit elements packed (E6) 

10 2 718 lS 

B E6 B E6 

<=----1 WORD------> 

(7) Example: S-bit elements packed (ES) 

0 4 s 9 10-14 lS 

ES ES ES B 

<------1 WORD-----> 

(8) Example: 4-bit elements packed (E4} 

0 s 9 13 

E4 E4 E4 E4 

(9}Example: 3-bit elements packed (E3} 

0 3 6 9 12 lS 

E3 E3 E3 E3 E3 

<==-===-1 WORD--==-> 

(10} Example: 2-bit elements packed (E2} 

0 2 4, ETC •••••••••• l S 
-- -- --1--1--1--1--1--1 
E2 E2 E2IE2IE2IE2,E2,E21 l_l_l_l_l_I __ _ 
<--------1 WORD------->I 

(11} Example: 1-bit elements packed (El} 

I 0 11 12 I 3 I 4 1 s I 6 I 7 8 9 10 11 12 13 14 lS 

El,il ii ii ii ;i ;i ;1 ;1 ~l ~l ;1 ;i ;i El El 

_I_ - - - - - - - - - - - - - -<------------------1 WORD--------------------->! 

8-22 

) 
·--/ 



RECORD: The size of a record type is the number of consecutive words 
needed to contain the fields in the fixed part plus the largest 
field list in the variant part. Fields are allocated in the order 
of the declaration. 

If a record is not packed, a field occupies one or more words as 
required by the size of its associated type. 

If the record is packed, the packing algorithm works as follows: 

1) If a record 
next "unused" 
unused bits in 
already in the 

field is sixteen or more bits, it is allocated the 
word(s) in the record and is right-justified. Any 

the current word are left empty~ any fields 
current word are right-justified. For example: 

(12) Assume the current word already contains a 6-bit field~ 
The next record field contains 18 bits. 

6 bits Blank 

<-Current Word--> 

Add 18-bit field: 

~-------- ------ ~---------------1~-1--------------1 
Blank 6 bits <---18 bit record >\ Blank 

<-Current Word-> <--Next Word--->/<=---3rd Word---> 

2) If the record field is fifteen bits or less, and if there 
are sufficient unused bits in the current word, the field is 
placed, left-justified, in the unused bits of the current 
word. If there is insufficient space in the current word, 
the field is placed, left-justified, in the next word, and 
the right-most unused bits of the current word are shifted 
so that the rightmost field in the current word is shifted 
so that it is right-justified and the unused bits are 
somewhere in the center of the word. For example: 

8-23 



(13) Assume a record consisting of three fields: one field of 
5 bits, one of 7 bits, and one of six bits. 

Place 5-bit field: 

0 15 

sbi~~1--~1~~;------
<-Current Word----> 

8-24 

.~ 
' ) 



Add 7-bit field: 

10 15 

5 bits 7 bits B 

<--Current Word==> 

Add 6-bit field: 

0 0 

5 bits B 7 bits Blank 6 bits 

<--Current Word---> <---Next Word---> 

The complete record is now placed and occupies two words: 
the size of the packed record is four bytes. 

Field lists within the variant part overlay one another. 

SET: The size of a ·set type depends on the size of its base type. If 
a base type of a set has an upper bound with ordinal value N, a 
set requires N DIV 16 + 1 words. 

FILE: 1 word 

The standard function SIZE applies to any type. SIZE(T) yields a 
result of type INTEGER which is the number of addressable units 
(bytes) required to represent the type T. 

8.4.4 Type Compatibility 

Types are distinct if they are explicitly or implicitly declared in 
different parts of the program. A type is explicitly declared using a 
TYPE declaration. A type may be implicitly declared in a VAR 
declaration or in other places where a name is not explicitly 
associated with a type (as it is in a TYPE declaration). Types that 
are not distinct are identical. 

Two types are compatible if one of the following is true: 

8-25 



1) They are identical types. 

2) Both are subranges of a single enumeration type. 

3) Both are string types with the same length. 

4) Both are pointer types which point to identical types. 

5) Both are set types with compatible base types. 

6) Both are file types with compatible element types. 

Note: arrays and records are compatible only if they are identical. 

There is no implicit conversion of types except from INTEGER and 
LONGINT to REAL and between INTEGER and LONGINT (implicit conversion 
takes place when there is no explicit operator or function showing the 
conversion to be necessary) • 

8.4.5 Overriding the Type Structure 

The type of a variable is meant to be an invariant property of that 
variable. However, it is possible to override the type of an existing 
variable using type-transfer. 

A type transfer is implemented by the following code: 

<variable>::<type transfer> 

The <type transfer> is a type identifier and the variable is treated 
as the type given in the <type transfer>. A type transfer does not 
perform a value conversion; all that is altered is the apparent type 
of the variable, i.e., the bit pattern that is the value of the 
<variable? is treated as though it is the value of a variable of type 
<type transfer>. Also, the type transfer does not change the way the 
original variable is accessed and does not apply to any further 
accessing of that variable. For example: 

TYPE BYTE= 0 •• #FF 
RECTYPE = 

PACKED RECORD 
MSBYTE,LSBYTE:BYTE 

VAR V:ARRAY[0 .• 9] OF INTEGER; 
R:RECTYPE; 

Using the above type and variable declarations: 
. . , 

R.MSBYTE := V[O] ::BYTE 
V[l] ::BYTE := R.LSBYTE 

8-26 



There is one restriction applying to type transfer: the size of the 
variable must be at least as large as the size of the type being 
transferred to; e.g., a packed byte (8-bit packed component)cannot be 
transferred to type INTEGER; an INTEGER must not be transferred to 
type LONGINT. 

8.5 DECLARATIONS 

The text of a Microprocessor Pascal System consists of declarations of 
objects and a sequence of statements that operate on the declared 
objects. Objects that may be declared are labels, constants, data 
types, variables, commons, programs, processes, and routines 
(procedures and functions). Declarations are used to associate unique 
names to each object. As a general rule, the identifier naming an 
object must be explicitly declared before it can be used in any 
statement. This redundancy enables the compiler to detect spelling 
errors and the inconsistent use of declared objects. In addition to 
explicit declarations, implicit declarations are used in 
Microprocessor Pascal System. Examples of implicit declarations are: 
FOR control variables, ESCAPE labels, and WITH variables (these are 
defined later in this section). 

8.5.1 Scope 

Each declaration has a scope, which is thought of as the range of the 
system text over which the declaration is effective. The unit of scope 
for explicitly declared objects is a Microprocessor Pascal System 
module (system, program, process, procedure, or function). Thus, once 
an identifier is declared for some object (e.g., a variable) that 
object can only be accessed by use of that identifier throughout the 
module (except when the identifier is redeclared within some inner 
unit of the scope module). Modules may only be declared to a maximum 
nesting level of ten. 

Other units of scope include FOR statements (implicit declaration of 
the control variable), record type declarations, structured statements 
(implicit declaration of ESCAPE labels), and WITH statements (implicit 
declaration of synonyms for record variables). 

8.5.2 Extent 

Extent is the time during system execution that a computational 
quantity may be considered to exist. The extent of a variable is the 
time during which space is allocated for the variable. The extent of 
statically declared quantities is the duration of the execution of the 
unit of scope in which the quantities are declared (with the exception 
of COMMON variables, whose extent is the entire system execution). 

8-27 



The extent of dynamically allocated variables is that portion of 
system execution between the call of NEW which creates these variables 
and the call (if any) to DISPOSE which frees the space allocated to 
them. 

8.5.3 System Declaration 

A Microprocessor Pascal System is the superstructure containing all 
the programs and processes of a single user task. The system 
declarations define all globally known items, such as constants, 
types, commons, and utility routines. All programs are also defined 
within the system. · 

The syntax of a system is as follows: 

SYSTEM <identifier> ; 
<system block> • 

where <system block> is as follows: 

<label declaration part> 
<system data declarations> 
<access declaration part> 
<system routine declarations> 
<process body> 

where <system routine declarations> may be any of the following: 

<program declarations> 
<procedure declarations> 
<function declarations> 

and <process body> is of the form: 

BEGIN <concurrent characteristics> 
<statement list> 

END 

The <concurrent characteristics> are described in Paragraph 8.5.12. 

The <system data declarations> are described in Paragraph 8.5.3; they 
do not include any <variable declaration part>s. In the <system 
block>, any of the declaration parts may be missing. 

Example: 
SYSTEM EXAMPLE SYSTEM; 

LABEL . • • 11 label declarations 
CONST • . • " constant declarations 
TYPE • . • " type declarations 
COMMON . . • 11 common declarations 
PROCEDURE • • • 11 utility p·rocedure declarations 
FUNCTION . • . 11 utility function declarations 

8-28 

I 
_/ 



8.5.4 

PROGRAM • • • " program declarations 
BEGIN " system bod¥ 

{# concurrent characteristics J 
END; 

Label Declarations 

Label declarations specify all labels that may be referenced within 
the body section of a module by a GOTO statement. 

Label declarations are of the form: 

LABEL <integer list>; 

The <integer list> is simply a list of unsigned integer constants 
-separated by commas. 

Example: 
LABEL 3,15; 

A label which marks a statement must be declared in the label 
declaration section of the module. Only one statement may be prefixed 
with a given label and labels may not be multiply declared in a single 
scope. 

(_ 8.5.5 Data Declarations 

\.._>· 

The <data declarations> section consists of a combination of four 
separate declaration parts: 

<constant declaration part> 
<type declaration part> 
<variable declaration part> 
<common declaration part> 

These declaration parts may be repeated any number of times within a 
module. These individual declaration parts are described in subsequent 
sections. The <system data declarations> are the same as the <data 
declarations> listed above except that <system data declarations> may 
not include any <variable declaration part>s. 

To facilitate the use of the ?COPY statement, Microprocessor Pascal 
allows declaration parts within the <data declarations> to appear in 
any order. NOTE: Caution must be taken when this is done because it 
increases the possibility of unintentionally redeclaring some data 
item(s). The following example illustrates this point. 

Example: 
SYSTEM TEST; 
TYPE T = • • . 

o I 

PROGRAM SAMPLE; NOTE: Within the procedure, 

8-29 



VAR X,:T; the variables X and Y may not 
TYPE T = . . . 
VAR Y~T; 

be compatible, since the type -~~ 
T has been redeclared between ; . . • the two variable declarations • 

BEGIN { SAMPLE } . . . 
END; { SAMPLE } 

8.5.5.1 CONSTANT Declaration Part. A constant declaration introduces 
an identifier as a synonym for a constant. The value associated with 
the constant identifier may not be changed during system execution. · 

Constant declarations are of the form: 

CONST <constant declaration list> 

where <constant declaration list> is one or more of the following: 

<identifier> = <constant> ; 

where <constant> may be a 
character constant, integer 
defined constant identifier. 

Example: 
CONST MAX = 100; 

ASTERISK = ""*""; 
ONE_HALF = 0.5; 

signed 
constant 

real constant, string constant, 
expression, or a previously 

The constant declaration part is the only place where integer constant 
expressions can be used in place of an integer constant. 

8.5.5.2 TYPE Declaration Part. A TYPE declaration associates an 
identifier with a data typ~. Data types are discussed in Paragraph 
8.4. A data type determines the set of values a variable of that type 
may assume, along with the set of basic operations that may be 
performed on the variables. 

Type declarations are of the form: 

TYPE <type declaration list> 

where <type declaration list> is one or more of the following: 

<identifier> = <type> ; 

and <type> is defined in Paragraph 8.4. 

Example: 
TYPE VECTOR= ARRAY (1 •• 10] OF REAL; 

DAYS = (MON,TUES,WED,THURS,FRI,SAT,SUN); 
DIGITS= ""0"" •• ""9""; 

8-30 



COMPLEX = 
RECORD 

RE, IM: REAL; 
END; 

8.5.5.3 VARIABLE Declaration Part. A variable declaration defines a 
named data structure that can contain values of a single type. 
Variable declarations are not allowed at the system level. 

Variable declarations are of the form: 

VAR <variable declaration list> 

where <variable declaration list> is one or more of the following: 

<identifier list> : <type> ; 

where <identifier list> is a list of identifiers separated by commas. 

Example: 
VAR NYEARS:INTEGER; 

AMOUNT,VALUE,RATE:REAL; 
TEN YEARS:VECTOR; 
PROFIT:ARRAY [1 •• 10] OF BOOLEAN; 

The type VECTOR was defined in the example in Paragraph 8.5.3.2. 

8.5.5.4 COMMON Declaration Part. A COMMON declaration is used to 
declare variables that can be shared with modules falling within the 
scope of the common declaration or with externally compiled modules. 
Common variables are not allocated on the stack; therefore they exist 
during the entire life of the system. This makes it possible to "save" 
the value of a "local" variable from one activation of a module to the 
next. Since this location may be externally referenced, all references 
to the same common identifier reference the same location. 

Common declarations are of the form: 

COMMON <common declaration list> 

where <common declaration list> is one or more of the following: 

<identifier list> : <type> ; 

where <identifier list> is a list of identifiers separated by commas. 

Example: 
COMMON ROOT1,ROOT2:REAL; 

INITIAL_VALUE,FINAL_VALUE:INTEGER; 
I 

Note that common identifiers must be unique within their first six 
characters. 

8-31 



8.5.6 ACCESS Declarations 

An access declaration serves to identify all common variables that are 
to be· referenced in the body containing the access declaration. Any 
common variable access not legalized by an access declaration will 
cause an error. 

Access declarations are of the form: 

ACCESS <identifier list> : 

where <identifier list> is a list of identifiers separated by commas. 

Example: 
ACCESS ROOT1,ROOT2; 

The normal scope rules do not apply to access declarations. Thus, even 
in a module falling within the scope of an access declaration at a 
higher level, the common variable is not accessible unless an explicit 
access declaration appears in that module. Each access declaration 
must fall within the scope of the common declaration of the identifier 
for which access is declared. 

8.5.7 PROGRAM Declarations 

A program declaration specifies an independent process that does not 
share any global variables (with the possible exception of commons) 
with any other programs. · 

A program declaration is of the form: 

PROGRAM <identifier> (<program parameter> ; •.. <program parameter>); 
<program block> : 

A <program parameter> is as follows: 

<identifier list> <type identifier> 

where <identifier list> is simply a list of identifiers separated by 
commas and <type identifier> is either a standard type identifier or a 
user defined type identifier. All program parameters are value 
parameters (Paragraph 8.5.11). The type of a program parameter must 
not be a pointer type because there is a distinct heap region for each 
program. 

A <program block> - is similar to a <system block> except it allows 
declarations of variables and processes within programs. Therefore a 
program block is as follows: 

<label declaration part> 
<data declarations> 

8-32 

-""" 
) 



<access declaration part> 
<program routine declarations> 
<process body> 

___ ; ..... -- .. -

where <program routine declarations> may be any of the following: 

<process declarations> 
<procedure declarations> 
<function declarations> 

and <process body> is described in Section 8.5.1. 

Example: 
SYSTEM • • • ; 

PROGRAM EXAMPLE PROGRAM(PARM1,PARM2:INTEGER; PARM3:ANYFILE); 
CONST • • • - n constant declarations 
TYPE • • • n type declarations 
VAR • • • n variable declarations 
PROCEDURE • " procedure and function 
PROCESS • n process declarations 

BEGIN n program body 
- {# concurrent characteristics } 
END; 

BEGIN n system body 
END;{# concurrent characteristics } 

8.5.8 PROCESS Declarations 

declarations 

A process declaration specifies a subordinate process to either a 
program or another process. A process has access to variables declared 
globally to it. 

A process declaration is of the form: 

PROCESS <identifier> (<process parameters>) ; 
<process block> ; 

where <process parameters> are optional; they are the same as <program 
parameters> except <process parameters> may include pointer types (see 
Paragraph 8.4.2.5 for description of Pointer Types). 

A <process block> is the same as a <program block> defined above. Note 
that processes may be declared within other processes. 
Example: 

SYSTEM • • • 

PROGRAM • 

PROCESS EXAMPLE PROCESS( {value parameters} ); 
n local declarations including other processes 

BEGIN 

8-33 



"- .·. 

concurrent characteristics {# } 
END; .... -~ 

BEGIN n program body 
END; { # concurrent characteristics } 

BEGIN " system body 
END;{# concurrent characteristics } 

8.5.9 PROCEDURE Declarations 

A procedure declaration specifies a routine that is invoked to perform 
an action; return is made to the calling routine once the action is 
completed. 

A procedure declaration is of the form: 

/ 

PROCEDURE <identifier> (<procedure parameter> ; ••• ;<procedure parameter>); 
<procedure block> ; 

where <procedure parameters> are optional. 

<procedure parameter> may be either: 

<identifier list> : <type identifie~> 

or 

VAR <identifier list> : <type identifie·r> 

The first case indicates that the parameters are value parameters and 
the second case indicates that the parameters are reference 
parameters. 

A <procedure block> is similar to a <process block> except that 
processes may not be declared within procedures. Therefore a procedure 
block is as follows: 

Example: 

<label declaration part> 
<data declarations> 
<access declaration part> 
<procedure and function declarations> 
<compound statement> 

PROCEDURE EXAMPLE PROCEDURE 
(VALUE PARAMETER:INTEGER; 
VAR REFERENCE PARAMETER: INTEGER); 

" local declaritions 
BEGIN " body of procedure 
END; 

8-34 

I 



I . 
~-

8.5.10 FUNCTION Declarations 

A function declaration specifies a routine which is invoked within an 
expression to return a single value. 

A function declaration is of the form: 

FUNCTION <identifier> (<function parameters>) : <type identifier> 
<function block> ; 

where <function parameters> are the same as <procedure parameters> and 
a <function block> is the same as a <procedure block>. 

Notice that the type of the function result must also be supplied. The 
type of a function must either be a simple type or a pointer type. 
Structured result types are not allowed. The statement section of a 
function should have at least one assignment statement assigning a 
value to the function identifier or the function will return an 
undefined result. 

Example: 
FUNCTION EXAMPLE FUNCTION 

(VALUE PARAMETER: INTEGER) :INTEGER; 
" locaI declarations 

BEGIN " body of function 
EXAMPLE FUNCTION := VALUE_PARAMETER; 

END; 

One source of error that is difficult to discover involves a function 
that not only returns a value through the function identifier, but 
also changes the \lalue of non-local variables. An action that changes 
the value of a non-local variable is called a side-effect. The 
following rules can be followed to ensure that side effects do not 
occur: 

1) The left hand side of an assignment statement should not be 
a non-local variable, a variable parameter, or a common 
variable. 

2) Procedures should not be invoked from within functions. 

8.5.11 Parameter Kinds 

There are two kinds of parameter passing: 

1) Value substitution This is the normal or default 
situation. The actual parameter is evaluated and the 
resulting value is assigned to the corresponding formal 
parameter. This is referred to as call by value. This kind 
of parameter passing prevents the called module from 
changing the value of the actual parameter in the calling 
module. 

8-35 



2) Variable substitution - The address of the actual parameter 
is passed to the called module. This address is used by the 
called module to access the actual parameter indirectly. 
This form of parameter passing is kn~wn as call by 
reference. When the parameter is passed by reference, an 
assignment made to the formal parameter in the called 
routine changes the actual parameter in the calling module. 
Variable parameter substitution is specified by placing the 
reserved word VAR before the formal parameter section. 

Value parameter transmission provides security against inadvertant 
changes to program values as well as an efficient way to pass simple 
variables as parameters. However, passing structured data such as 
large arrays by value would prove to be inefficent. 

8.5.12 EXTERNAL Declarations 

A program, process, procedure, or function can be declared to be 
externally defined. To do this, the identifier EXTERNAL is placed 
after the routine header, and the routine block is omitted. from the 
listing. EXTERNALS are useful when separately compiled programs or 
processes need to be invoked by other modules. An EXTERNAL routine 
should not reference any global data except that which is passed to it 
in the <parameter list>. 

The form of an external declaration is one of the following: 

or 

or 

or 

Example: 

PROGRAM <identifier> (<program parameters>) ; EXTERNAL 

PROCESS <identifier> (<process parameters>) ; EXTERNAL ; 

PROCEDURE <identifier> (<procedure parameters>) ; EXTERNAL ; 

FUNCTION <identifier> (<function parameters>) 
<type identifier> ; EXTERNAL 

FUNCTION SQRT (X:REAL) :REAL; EXTERNAL; 

8.5.13 FORWARD Declarations 

A program, process, procedure, or function may be forwardly declared. 
This is necessary in direct or mutual recursion in which two or more 
modules call each other. 

The form of a forward declaration is one of the following: 

PROGRAM <identifier> (<program parameters>) FORWARD 
or 

PROCESS <identifier> (<process parameters>) ; FORWARD 
or 

PROCEDURE <identifier> (<procedure parameters>) ; FORWARD ; 

8-36 



or 
FUNCTION <identifier> (<function parameters>) 

<type identifier> ; FORWARD ; 

When the 
parameters 
declaration 
at the same 

module is subsequently declared, 
and the function result type must 
of a module forwardly declared must 
level. 

Example: 
FUNCTION F (X:REAL) :REAL; FORWARD; 

PROCEDURE P (M:REAL); 

BEGIN { P } 
X := F(A) 

END; { P } 

FUNCTION F; 

BEGIN 
p (T) 

END; 

{ F } 

{ F } 

8.5.14 Concurrent Characteristics 

with its block, the 
be omitted. The actual 
have its block defined 

r The <concurrent characteristics> specify parameters concerned with 
multiprogramming. Such parameters indicate the memory requirements and 
the priority of a system, program or process. (Memory requirements 
must be set if the user has more than one site of execution in his 
code.) 

The <concurrent characteristics> as used in the <process body> 
(defined in Paragraph 8.5.1) must be coded in one of two ways: 

{# <concurrent characteristic list> } 
or 

(*# <concurrent characteristic list> *) 

where the <concurrent characteristic list> is one or more <concurrent 
characteristic>s separated by semicolons. Each <concurrent 
characteristic> is of the form: 

<concurrent keyword> = <concurrent value> 

8-37 



- - ··- .· ... :.....· ... 

The <concurrent keyword>s and 
below. 

their associated meanings are given 

KEYWORD MEANING 

PRIORITY 

HEAPSIZE 

STACKSIZE 

Relative urgency of the system, 
program, or process 

Number of words allocated for the 
system, program, or process heap 

Size of the stack region, in words, 
to be used by the system, program, 
or process 

The <concurrent value> may be a parameter of the program or process, 
an integer constant, or an integer constant identifier. These 
compile-time specifications may only appear immediately following the 
initial BEGIN of a system, program, or process declaration. (See 
Section 12 for complete details on how to choose appropriate values 
for STACKSIZE and HEAPSIZE.) 

NOTE: Implementation of stacks and heaps differs slightly between 
.Interpretive and Native execution modes. 

INTERPRETIVE MODE: A program or process stack and heap requirements 

.'·.~.-·.: 

.· ~ 
. ) 

are allocated out of the heap of the parent. The default 
values for stack heap are both zero~ however, a heap size .) 
specification of zero implies the sharing of the parent~s 
heap. A program or process cannot give heap to a process it 
has started unless enough heap is explicitely allocated to 
the parent by a HEAPSIZE concurrent parameter. Figure 8-1 
illustrates stack and heap allocation from parent to 
offspring. 

NATIVE MODE: All available memory is allocated to the System. Program 
and process stacks and heaps are allocated directly from 
this heap, i.e., stacks/heaps are not nested within the 
parent~s heap. The default stack size parameter is defined 
in the CONFIG module and can be redefined by the user to 
whatever meets his requirements. The default for heapsize is 
to share the global heap with all other processes. 

8-38 



I SYSTEM ST ACK 0 SYSTEM HEAP 

FIGURE 8-1. ALLOCATION OF STACK AND HEAP. 

8.5.15 Conventional Pascal Program 

A system may consist of a single conventional Pascal program. This 
program must be the only program {or process) in the system; no 
processes can be declared {nested) within it. 

The syntax for a conventional Pascal program is: 

PROGRAM <identifier> : 
<program block> • 

where the <program block> does not include process declarations. 

Notice that in this form, no program parameters are allowed (or are 
even necessary). All parameters are supplied implicitly by the system. 
Also, when this form is used, no system header or system block need be 
given and concurrent characteristics are ignored. 

8-39 



8.6 EXPRESSIONS 

Expressions are constructs denoting rules of computation for obtaining 
values of variables and generating new values by the application of 
operators. Expressions are comprised of operands and operators. 

8.6.1 Operands 

Operands are used to reference values of constants o~ variables. 

An operand may be one of the following: 

<integer constant> 
or 

<real constant> 
or 

<string constant> 
or 

<character constant> 
or 

<constant identifier> 
or 

NIL 
or 

<set> 
or 

<variable> 
or 

<function call> 

Additional information on set values and function calls is presented 
below. 

8.6.1.1 Set Value. A set value may either be denoted by a set 
variable or a set constructor. 

A set constructor has the following form: 

[ <set element list> ] 

where <set element list> is zero or more <set element>s separated by 
commas. If a set constructor has zero elements, it denotes the empty 
set. Each <set element> may be one of the following: 

<expression> 
or 

<expression> <expression> 

8-40 

. """ I 
' I 



The <expression> set element defines 
be a member of the set. The second 
subrange of values to be members of 
values are included in the range). 

the value of the <expression> to 
form of a set element specifies a 
the set (the lower and upper 

All expressions within a set element list must be the same type. If 
the first form of a set element is used, the element in the set 
represented by the ordinal value of the expression is set. If the 
second form of a set element is used, each element between the first 
expression value and the second expression value are set including the 
two expression values. If the first expression value is greater than 
the second expression value, it is assumed to be an empty set 
element(specifies no members at all). Also no set element expression 
may be less than zero or greater than 1023. 

Examples: 
[RED,YELLOW] 
[MON •• THURS, SAT] 
[ ] 

8.6.1.2 Function Calls. A function call is used to invoke a 
function(with or without parameters) which computes a single value. 

A function call has the following form: 

<function identifier> (<actual parameter>, ••• ,<actual parameter>) 

where each <actual parameter> may be either a variable or an 
expression. 

Each actual parameter must match the type of the formal parameter. 
Implicit type conversions are performed if the formal parameter is of 
type REAL and the actual parameter is either of type INTEGER or 
LONGINT, or if the formal parameter is of type LONGINT or INTEGER and 
the actual parameter of type INTEGER or LONGINT. Therefore, if a 
formal value parameter is of type REAL, an actual parameter of type 
INTEGER is converted to type REAL before it is passed. 

8.6.2 Operators 

An operator specifies an operation to be performed on one or two 
operands. An operator can only be applied to two operands if their 
data types are compatible i.e., of the same type. Some operators 
accept mixed types. In these .. cases, if one operand is of type REAL and 
the other is of type INTEGER or LONGINT, the latter is converted to 
'REAL and thus the result is REAL• Also, if one operand is of type 
LONGINT and the other is of type INTEGER, the INTEGER operand is 
converted to LONGINT, and thus the result is LONGINT. 

8-41 



The "/" operator always produces a REAL result but may accept INTEGER 
operands. Also, the DIV and MOD operators only accept INTEGER or --\ 
LONGINT operands and produce INTEGER or LONGINT results. ) 

In order to evaluate an expression, it is necessary to know the 
meaning of each operator and its precedence, which specifies the order 
in which the operators are to be applied. 

The operators are: 

Group 1 : Multiplying operators: 

* multiplication; set intersection 
I real division 
DIV integer division (divide and truncate) 
MOD modulus, A MOD x =A - ((A DIV X) * X} 

Group 2 : Adding operators: 

Group 3 

+ addition; unary plus; set union 
subtraction; unary minus; set difference 

Relational operators: 

= equal 
<> not equal 
< less than; proper set inclusion 
> greater than; proper set inclusion 
<= less than or equal; set inclusion 
>= greater than or equal; set inclusion 
IN set membership 

Logical operators: 

Group 4 
Group 5 
Group 6 

When used on strings, 
ordering according to 
character set (ASCII} . 

NOT 
AND 
OR 

Negation 
Conjunction 
Disjunction 

the relational operators denote alphabetical 
the character sequence of the underlying 

The list of operators is in order of precedence, with groups of higher 
precedence listed first. In an expression, operators of highest 
precedence are evaluated first, and within each group, the operators 
have equal precedence and are evaluated from left to right within the 
expression. Parentheses may be used to explicitly determine the order 
of evaluation. 

Examples: 
Expression 

2 + 3 * 5 
15 DIV 4 * 4 

8-42 

Value 

17 
12 



( 

\"-.. 

The <expression> set element defines the value of the <expression> to 
be a member of the set. The second form of a set element specifies a 
subrange of values to be members of the set (the lower and upper 
values are included in the range). 

All expressions within a set element list must be the same type. If 
the first form of a set element is used, the element in the set 
represented by the ordinal value of the expression is set. If the 
second form of a set element is used, each element between the first 
expression value and the second expression value are set including the 
two expression values. If the first expression value is greater than 
the second expression value, it is assumed to be an empty set 
element(specifies no members at all). Also no set element expression 
may be less than zero or greater than 1023. 

Examples: 
[RED,YELLOW] 
[MON •• THURS, SAT] 
[ ] 

8.6.1.2 Function Calls. A function call is used to invoke a 
function(with or without parameters) which computes a single value. 

A function call has the following form: 

<function identifier> (<actual parameter>, ••• ,<actual parameter>) 

where each <actual parameter> may be either a variable or an 
expression. 

Each actual parameter must match the type of the formal parameter. 
Implicit type conversions are performed if the formal parameter is of 
type REAL and the actual parameter is either of type INTEGER or 
LONGINT, or if the formal parameter is of type LONGINT or INTEGER and 
the actual parameter of type INTEGER or LONGINT. Therefore, if a 
formal value parameter is of type REAL, an actual parameter of type 
INTEGER is converted to type REAL before it is passed. 

8.6.2 Operators 

An operator specifies an operation to be performed on one or two 
operands. An operator can only be applied to two operands if their 
data types are compatible i.e., of the same type. Some operators 
accept mixed types. In these cases, if one operand is of type REAL and 
the other is of type INTEGER or LONGINT, -the latter is converted to 
REAL and thus the result is REAL.- Also, if one operand is of type 
LONGINT and the other is of type INTEGER, the INTEGER operand is 
converted to LONGINT, and thus the result is LONGINT. 

8-41 



The "/" operator always produces a REAL result but may accept INTEGER 
operands. Also, the DIV and MOD operators only accept INTEGER or 
LONGINT operands and produce INTEGER or LONGINT results. 

In order to evaluate an expression, it is necessary to know the 
meaning of each operator and its precedence7 which specifies the order 
in which the operators are to be applied. 

The operators are: 

Group 1 : Multiplying operators: 

Group 2 

Group 3 

* multiplication: set intersection 
I real division 
DIV integer division (divide and truncate) 
MOD modulus, A MOD x =A - ((A DIV X) * X) 

Adding operators: 

+ addition: unary plus: set union 
subtraction: unary minus: set difference 

Relational operators: 

= 
<> 
< 
> 
<= 
>= 
IN 

equal 
not equal 
less than: proper set inclusion 
greater than: proper set inclusion 
less than or equal: set inclusion 
greater than or equal: set inclusion 
set membership 

Logical operators: 

Group 4 
Group 5 : 
Group 6 

-
When used on strings, 
ordering according to 
character set (ASCII) • 

NOT 
AND 
OR 

Negation 
Conjunction 
Disjunction 

the relational operators denote alphabetical 
the character sequence of the underlying 

The list of operators is in order of precedence, with groups of higher 
precedence listed first. In an expression, operators of highest 
precedence are evaluated first, and within each group, the operators 
have equal precedence and are evaluated from left to right within the 
expression. Parentheses may be used to explicitly determine the order 
of evaluation. 

Examples: 
Expression 

2 + 3 * 5 
15 DIV 4 * 4 

8-42 

Value 

17 
12 

' i 
.1 

_) 

__ ) 



NOT (5 + 5 >= 20) 
6 + 6 DIV 3 
3 < 5 OR 2 >= 6 AND 1 > 2 

In a Boolean expression of the form 

X AND Y 

TRUE 
8 
TRUE 

if X is FALSE, Y is not evaluated and the value of the expression is 
FALSE. In a Boolean expression of the form 

XOR Y 

if X is TRUE, Y is not evaluated and the value of the expression is 
TRUE. This method of Boolean expression evaluation is called flow of 
control evaluation or short circuit evaluation. 

8.6.3 Integer Constant Expressions 

Integer constant expressions are nearly identical to regular 
expressions except all operands must be constants either of type 
INTEGER or LONGINT and only the following operators are valid: 

+ unary plus or add 
negate or subtract 

* multiply 
DIV divide 
MOD modulus 

8. 7 STATEMENTS 

Statements describe the actions which a system performs on its data. 
Statements can be simple or structured; structured statements contain 
components consisting of other statements. Simple statements include: 
the assignment statement, procedure call statement, START statement, 
ESCAPE statement, GOTO statement, and ASSERT statement. Most 
structured statements are used to control the sequence in which 
statements are to be executed. They are used to form loops, branches, 
and transfers (the control structures of the language). The structured 
statements are: the compound statement, IF statement, CASE statement, 
FOR statement, WHILE statement, REPEAT statement, and WITH statement. 

8.7.1 Simple Statements 

Simple statements contain no other statements. The various kinds of 
simple statements are defined below. 

8.7.1.1 Assignment Statement. An assignment statement specifies that 
an <expression> is to be evaluated and the resulting value is to be 
assigned to a <variable>. The form of an assignment statement is: 

8-43 



<variable> := <expression> 

This statement reads <variable> becomes <expression>. 

Examples: 
X := A * NEXT DIV 2; 
FOUND := z > TOTAL; {boolean expression} 
COUNT := COUNT + l; 
VALUE2 := SQR(VALUE); 
WORD := ~PASCAL~; 

Direct assignments may be made to. variables of any type except files 
or semaphores. The type of <expression> must be compatible with that 
of the <variable> (type compatibility is described in Paragraph 
8.4.3). The exception to this rule is in the case of an implicit 
conversion. An expression of type INTEGER can be implicitly converted 
to either LONGINT or REAL and an expression of type LONGINT can be 
implicitly converted to either INTEGER or REAL. For example, after 
writing 

VAR A REAL; 
B ,C : INTEGER; 

you can write: 
A := B+C; 

when B and C are combined, the integer result will be converted to a 
REAL number when stored in A. 

Another use of the assignment statement is within the body of a 
FUNCTION where the function result is assigned to a variable that is 
the same as the function identifier in the calling routine. In this 
case, the type of the <expression> must be compatible with the result 
type of the function (see Paragraph 8 5 8) 

8.7.1.2 Procedure Statement. A procedure statement activates the 
specified procedure. The form of a procedure statement is one of the 
following: 

<procedure name> ( <parameter list> ) 
or 

<procedure name> 

where <parameter list> is a list of the actual parameters, separated 
by commas, which are substituted for the formal parameters declared in 
the procedure heading in the "Declarations" part of a Microprocessor 
Pascal System (see Paragraph 8.5.7). 

If a <parameter list> is specified, the actual parameters must match 
in number and type with the corresponding formal parameters that are 
declared in the procedure heading. If no <parameter list> is 
specified, the corresponding procedure must be declared to have no 
parameters. An empty parameter list (containing only a matched set of 

8-44 

I 
__) 



\ 

I 
'--

parentheses) in a procedure statement is equivalent to having no 
parameter list at all. 

8.7.1.3 START Statement. A start statement is similar to a procedure 
statement except it invokes a program or process to execute 
concurrently within the system. The form of a START statement is one 
of the following: 

START <identifier> ( <parameter list > ) 
or 

START <identifier> 

where the <identifier> may be a <program name> or a <process name>. 
The <parameter list> is a list of actual parameters, separated by 
commas, which are substituted for the formal parameters given in the 
program or process declaration (Paragraphs 8.5.5 and 8.5.6). 

If a <parameter list> is specified, the actual parameters must match 
in number and type with the corresponding formal parameters that are 
indicated in the program or process declaration. If no <parameter 
list> is specified, the corresponding program or process must be 
declared to have no parameters. 

8.7.1.4 ESCAPE Statement. The ESCAPE statement is a structured jump 
statement. It is used to terminate execution of a structured 
statement, procedure, function, process, or program. The form of an 
ESCAPE statement is: 

ESCAPE <identifier> 

where the <identifier> may be an escape label, a procedure name, a 
function name, a process name, or a program name. 

An escape label, followed by a colon, may prefix any structured 
statement~ Each escape label is implicitly declared by its appearance 
in the program and may be referenced only within the structured 
statement it precedes. 

An ESCAPE statement may only be used within the statement labeled by 
the corresponding escape label or within the scope of the procedure, 
function, process, or program mentioned •. An ESCAPE from a structured 
statement causes processing to be continued at the statement 
immediately following the labeled statement. When an ESCAPE is 
executed from a module, control returns from the most recent 
activation of that module. 

Any structured statement prefixed by an escape label may contain any 
number of ESCAPE statements which reference that label. The escape 
label and all ESCAPE statements that reference the label must be 
contained in the same module; it is not valid to escap~ across module· 
bo~ndaries. Also within any module, ESCAPE statements may not 
reference any other module declared at the same leveL, but may.refer 

8-45 



to its direct ancestors. An ESCAPE <process name> or an ESCAPE 
<program name> is only legal if the <process name> or <program name> ) 
specified is that of the innermost process or program. 

Example: 
LOOP: WHILE I <= N DO 

BEGIN 
IF EOF 

THEN ESCAPE LOOP; 
READ(VAL); 
SUM := SUM + VAL; 
I := I + l; 

END; 

If an escape label and a 
structured statement, the 
escape label. 

statement 
statement 

label 
label 

are used on the same 
must appear before the 

8.7.1.5 GOTO Statement. The GOTO statement transfers control to the 
statement having the specified label. The form of a GOTO statement is: 

GOTO <label> 

where the <label> must be an unsigned integer value. The <label> must 
be explicitly declared in the LABEL declaration. A &statement label is 
an unsigned integer which can be prefixed to any statement within its 
declared scope. If the <label> is not declared or does not appear as a 
statement label in the system, a syntax error occurs. 

Example: 
PROGRAM SAMPLE; 
LABEL 2; 

BEGIN 

2: I := I + 1; 

END. 

IF VECTOR[!] < 100 
THEN GOTO 2; 

It is not legal to jump into or out of a module, nor is it recommended 
to jump into a FOR or WITH statement. Labeled statements within FOR 
and WITH statements are flagged as possible locations of errors; this 
does not effect the execution of the system, provided that a jump does 
not occur into the FOR or WITH statement. However, if control is 
passed• from outside the FOR or WITH statement to the labeled 
statement, unpredictable results will occur. 

8-46 



If a statement label and an escape label are both necessary on the 
same structured statement, the statement label must appear first. 

NOTE: The use of GOTO statements is not recommended; it is seldom (if 
ever) necessary to use them. The use of other Pascal control 
structures has been shown to be more useful in terms of basic software 
engineering principles. 

8.7.1.6 ASSERT Statement. The ASSERT statement allows the programmer 
to test whether or not a condition is true at a given point in the 
system. The form of an ASSERT statement is: 

ASSERT <expression> 

where <expression> must be of the type BOOLEAN. 

If the compiler option ASSERTS is turned on, code is generated so that 
the <expression> in the ASSERT statement is evaluated when encountered 
at execution time. If the result is TRUE, execution continues; 
otherwise a run-time error occurs. If the compiler option ASSERTS is 
turned off, no code is produced for the ASSERT statement. The default 
value for the ASSERTS option is TRUE (i.e., turned ON). 

Examples: 
ASSERT X <> 100; 
ASSERT FOUND; 
ASSERT LIMIT <= MAX; 

The ASSERT statement is useful in system testing since it can be 
included anywhere in the system where a certain condition or relation 
should evaluate to true during the execution of the system. 

8.7.2 Structured Statements 

Structured statements contain other statements and are used to control 
the sequence of execution of these statements. Structured statements 
are used to form the language control structures such as loops, 
branches, and transfers. Structured statements include the compound 
statement, the conditional statements IF and CASE, the repetitive 
statements FOR and REPEAT, and the WITH statement. 

8.7.2.1 Compound Statement. A compound 
statements enclosed by the keywords BEGIN 
compound statement is: 

BEGIN <statement 'list> END 

8-47 

statement 
and END. 

is a sequence of 
The form of a 



where the <statement list> consists of zero or more statements, simple 
or structured, and separated by semicolons. The BEGIN and END act as ·--..._ 
delimiters around the compound statement. ) 

The sequence of statements that make up the <statement list> are 
executed one by one in the order in which they appear, but the entire 
sequence is treated as a single statement. 

Example: 
BEGIN 

EXCHANGE : = X 1 : 
Xl := X2: 
X2 := EXCHANGE 

END: 

Semicolons are used to separate statements in the compound statement. 
No semicolon is part of. any individual statement. Therefore a 
semicolon need not follow the last statement in the <statement list>. 
If one does occur, it is assumed that a statement exists between the 
semicolon and the symbol END: i.e., an empty statement which specifies 
that no action is to be taken. Most empty statements do not alter the 
flow of statement control but the user should be wary of their use. 
For example, 

BEGIN 
SUM := X + Y + SUM: 
X := X + S: 
y := y - 2: 
WRITELN (SUM) : 
{ <empty> } 

. END: 

8.7.2.2 IF Statement. The IF statement specifies that a <statement> 
is to be executed only if a given condition is TRUE: otherwise an 
alternative <statement> if present is executed. One form of an IF 
statement is: 

IF <expression> THEN <statement> 

where the <expression> must be of type BOOLEAN and the <statement> may 
be simple or structured (e.g., compound, IF, etc.). If the 
<expression> evaluates to false, control passes to the next statement 
in sequence after the THEN clause. For example, 

IF COUNT <= MAX 
THEN READ(X[I]): 

X[I] := MAX + 1 

Another form of the IF statement is: 

IF <expression> THEN <statement> ELSE <statement> 

8-48 



If the <expression> evaluates to TRUE, the THEN clause is executed; 
otherwise the second <statement> alternative, the ELSE clause, is 
executed. For example, 

IF X < Y 
THEN MAX := Y 
ELSE MAX := X; 

An ambiguity arises regarding multiple ELSE clauses in nested IF 
statements. The dangling ELSE problem is resolved by always 
associating an ELSE with the most recent unmatched THEN preceding it; 
any other desired interpretation requires either restructuring the IF 
statement, or adding a BEGIN/END to create a compound statement that 
can be used as the <statement> in a THEN or an ELSE clause. 

Example: 
IF A > B 

THEN 
IF B > C 

THEN MIN := C 
ELSE MIN := B; 

is equivalent to: 

IF A > B 
THEN 

BEGIN 
IF B > C 

END; 

THEN MIN := C 
ELSE MIN. := B 

There are no semicolons in an IF statement; it is wrong to put 
semicolons before the THEN or ELSE statements. 

Misplaced semicolons can cause syntax errors in an IF statement. For 
example, a syntax error always occurs whenever a semicolon immediately 
precedes the symbol ELSE. This would create two separate statements: 
an IF statement, followed by an unknown statement which begins with 
the keyword ELSE. The existence of the empty statement may cause some 
misplaced semicolons to remain undetected by the compiler since the 
resulting constructs may be syntactically correct. However, they can 
cause logical errors in the system which are not immediately apparent. 

8.7.2.3 CASE Statement. A CASE statement allows a statement to be 
selected for execution depending on the evaluation of an <expression> 
at run-time. The form of a CASE statement is: 

CASE <expression> OF 
<case label list> <statement>; 

<case label list> <statement> 
OTHERWISE <statement list> 

END 

8-49 



where the <expression> must be of an enumeration type, the <case label 
list> is a list of one or more <case label>s separated by commas, and 
the <statement list> is a list of zero or more Pascal statements, 
simple or structured, separated by semicolons. The <case label list> : 
<statement> combination may be repeated zero or more times within the 
CASE statement, each occurence must be separated from the previous one 
by a semicolon. The OTHERWISE clause is optional; however, if the 
value of the <expression? is not one of the <case label>'s, a runtime 
error will occur. 

The <case label> is either a constant value or a subrange value of the 
same enumeration type as the <expression> to be used as the selector. 
The <case label> is not a <statement label>, i.e. a <case label> may 
not be referenced by a GOTO statement. All <case label>s within a 
single CASE statement must be unique. The range limit of <case label>s 
within any CASE statement is 256. 

The value of the <expression> at run-time is used as the selector for 
the CASE statement. If the <case label> indicated by the selector is 
present in the CASE statement, the corresponding component statement 
is executed. If the <case label> is not present and an OTHERWISE 
clause is included, the <statement list> following the OTHERWISE is 
executed. If the selected <case label> is not present and there is no 
OTHERWISE clause, a run-time error occurs. 

Examples: 
CASE NUM OF 

0 •• 3,8: TOTAL :=TOTAL+ NUM; 
4,6,7: TOTAL := TOTAL - NUM; 
5,9: TOTAL := TOTAL ~IV 2 

END; 

·CASE ALFA OF 
~A~ .• 'M': CH := SUCC(ALFA); 
'N' •• 'z': CH:= PREC(ALFA) 
OTHERWISE WRITELN('NOT IN ALPHABET'); 

INT := ORD(ALFA) 
END; 

8.7.2.4 FOR Statement. A FOR statement allows repeated execution of a 
given statement for an increasing or decreasing progression of values 
which are assigned to the control variable of the FOR statement. A FOR 
statement is useful if the required number of repetitions is known 
beforehand. The form of a FOR statement is one of the following: 

FOR <identifier> := <initial value> TO 
<final value> DO <Statement> 

or 
FOR <identifier> := <initial value> DOWNTO 

<final value> DO <statement> 

8-50 

) 
_, 



where the <identifier> is the control variable, and the <intial value> 
and <final value> must both be of an enumeration type (a set type is 
not an enumeration type}. 

The control variable is implicitly declared by its appearance in the 
FOR statement and has scope only within the FOR statement. The value 
of the control variable may not be changed within the FOR statement 
either by assignment or by passing it as a reference parameter to a 
routine. Because the control variable is implicitely declared for the 
scope of the FOR statement, problems may occur if a variable of the 
same name is also declared in the procedure. For example: 

VAR I. INTEGER; 

. . . 
FOR I=l TO 10 

In this case, the variable I declared as VAR is inaccessible within 
the scope of the FOR loop. In order to access both the control 
variable and procedure variables within the FOR loop, the control 
variable must have a different name to the procedure variables. this 
is also the case with nested FOR loops. For· example: 

FOR I:=l TO 10 DO BEGIN 
FOR I:= 100 TO 200 DO BEGIN 
END; 

Within the inner loop, the value of I will be 100 to 200 and the 
control variable for the outer loop is not accessible. 

The control variable is assigned the <initial value> prior to the 
first execution of the <statement>. If the <intial value> is greater 
(less} than the <final value> in the TO (DOWNTO} case the <statement> 
is never executed. Otherwise, after each execution of the <statement>, 
the control variable is incremented (decremented} by one until the 
value of the control variable is greater (less} than the <final value> 
in the case of TO (DOWNTO}. Both the <initial value> and the <final 
value> are only evaluated once, prior to the first execution of the 

· <statement>, so the total number of repetitions to be made is 
determined before the execution of the FOR statement. 

Examples: 
FOR I := N DOWNTO 1 DO 

SUM:= SUM+ A(I]; 

FOR DAY := MON TO FRI DO 
BEGIN 

READ (HRS, RATE} ; 
PAY := RATE * HRS; 

END; 

8-51 



8.7.2.5 WHILE Statement. A WHILE statement allows for the repeated 
execution of a given statement as long as the specified condition is 
true; the total number of repetitions is greater than or equal to 
zero. The ·form of a WHILE statement is: 

_WHILE <expression> DO <statement> 

where the <expression> must be of type BOOLEAN. 

The <expression> is evaluated before the execution of the <statement>. 
If the <expression> is initially false the <statement> is not executed 
at all; otherwise, the <statement> is executed repeatedly as long as 
the <expression> eval~ates to true. The <expression> is evaluated 
before each execution of the <statement>. For example: 

I := 1; 
WHILE I <= MAX DO 

BEGIN 
VALUE:= AMT[I] + TAX[I+2]; 
I := I + 1 

END; 

8.7.2.6 REPEAT Statement. A REPEAT statement allows 
statements to be repeatedly executed as long as 
condition is false. The form of a REPEAT statement is: 

a sequence of 
the specified 

REPEAT <statement list> UNTIL <expression> 

where the <expression> must be of type BOOLEAN and <statement list> is 
a list of zero or more statements, simple or structured, separated by 
semicolons. REPEAT/UNTIL act as statement delimiters similar to 
BEGIN/END in a compound statement. 

The <statement list> is executed once before the initial evaluation of 
the <expression>. If the <expression> initially evaluates to true, the 
<statement list> is executed only once; otherwise the <statement list> 
is repeatedly executed until the <expression> evaluates to true. Tl.e 
<expression> is evaluated after each execution of the <statement 
list>. For example, 

I : = 1; 
REPEAT 

IF A[I] > A[I+l] 
THEN 

BEGIN 
TEMP : = A [ I ] ; 
A[I] := A[I+l]; 
A [ I+ 1 ] : = TEMP 

END; 
I := I + 1 

UNTIL I >= LENGTH; 

8-52 

--~) 



8.7.2.7 WITH Statement. A WITH statement can be one of two distinct 
forms or a combination of both of them. This statement is used to 
simplify references to components of a record variable (see 
explanation in Paragraph 8.4.2.2). The form of a WITH statement is: 

WITH <record variable> DO <statement> 

This form allows all components of the specified <record variable> to 
be denoted by field identifiers within the scope of the WITH 
statement. For example: 

WITH INITIAL DO 
BEGIN 

MONTH := SEP; 
DAY := 9; 
YEAR := 1978 

END; -

is equivalent to 

INITIAL.MONTH := SEP; 
INITIAL.DAY := 9; 
INITIAL.YEAR := 1978; 

{ VAR INITIAL:DATE } 

Nested WITH statements of this form are also useful and may be written 
using a shorthand notation be replacing the <record variable> with a 
list of <record variables> separated by commas (as shown below). 

Example of nested WITH: 

TYPE DATE = RECORD 

VAR 

MONTH: (JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV, 
DAY: 1.. 31; 
YEAR: INTEGER; 

END; 

INFO= RECORD PACKED ARRAY [l .• 10] OF CHAR; 

NAME: 
NUMBER:l •• 10; 

END; 

START DATE:DATE; 
EMPLOYEE:INFO; 

WITH START_DATE, EMPLOYEE DO 

BEGIN 

MONTH :=MAR; 

8-53 



DAY : =30 i· 
YEAR :=1980; 
NAME :=BOB; 
NUMBER :=5; 

END; 

Note: Records must have separate field names. 

A more reliable form of the WITH statement defines an <identifier> 
representing a synonym for the <record variable>. This form of a WITH 
statement is: 

WITH <identifier> = <record variable> DO <statement> 

where the <identifier> used as the synonym is implicitly declared 
within the WITH statement and is only accessible within the scope of 
the WITH statement. 

This form of the WITH statement may also be expanded to create 
synonyms for more than a single <record variable> by giving a list of 
synonym assignments, separated by commas. For example, 

WITH I = INITIAL, F = FINAL DO 
BEGIN 

I.MONTH := AUG; 
F.MONTH := MAY; 
I.DAY := 28 ;. 
F.DAY := 20; 
I. YEAR : = 19 7 5 ; 
F.YEAR := 1978 

END; 

is equivalent to 

INITIAL.MONTH := AUG; 
INITIAL.DAY := 28; 
INITIAL.YEAR := 1975; 

FINAL.MONTH := MAY; 
FINAL.DAY := 20; 
FINAL.YEAR := 1978; 

{ VAR INITIAL,FINAL:DATE } 

This use of WITH is more reliable because variables in the scope of 
the WITH statement must be entirely spelled out (eliminating 
confusion, for example, in a case in which a local variable has the 
same name as a field of a record). 

8.8 INPUT AND OUTPUT 

Statements are included in the Microprocessor Pascal System for 

8-54 

l 
. ~-/ 

_/ 
i 



accessing and manipulating files. These I/O statements are examined 
below for sequential, text and random files. 

8.8.1 Sequential File Operations 

Before values can be read from a sequential file (see Paragraph 
8.4.2.4 for definition), a RESET statement must be executed. This 
statement opens the file for reading and causes I/O to start at the 
file's beginning. READ returns the next value from the file. For a 
sequential file, reading may proceed until the last component is read. 
Then the sequential file is in the end-of-file state which is 
indicated by the function EOF. When reading a file via the 
Microprocessor Pascal READ statement, the component of the file being 
read is assigned to some user-declared variable. The type of the file 
component being read must be the same as the user declared variable it 
is being assigned to. This user declared variable cannot be an element 
of a packed structure. If the file is positioned for I/O at the 
end-of-file, nothing is read and an error exception occurs. 

The general form of READ is as follows: 

READ (<file variable>, <variable>, ••• , <variable>) 

where components of the file indicated by <file variable> are read into 
successive user <variables>. The component types of the file being read 
and the user <variables> must be the same. 

A file to be written to must be opened for WRITE by 
the procedure REWRITE. When applying the Microprocessor Pascal 
statement WRITE to a file, a user declared 
variable of a type compatible with the component type of the file is 
used. The value of this user-declared variable becomes the next 
component of the file. 

The general form of WRITE is as follows: 

WRITE (<file variable>, <variable>, ••• , <variable>) 

where successive values of user <variables> are written into successive 
component of the file identified by the <file variable>. The component 
types of the file being written to and the user <variables> must be 
compatible. 

Sequential file variables may be opened for reading or writing but not 
both simultaneously. 

NOTE: Within the same system (or stand-alone program), when inputing 
a file from the host debugger, the file cannot be opened for writing 
then closed, without executing a CIF command. Neither can the file 
be reopened for reading unless a COF command is issued. (See also 
paragraph 6.3.10) 

8-55 



Examples of READ and WRITE follow. 

PROGRAM COPYSEQ7 
TYPE REC = 

RECORD 
NAME:PACKED ARRAY [1 •• 10] OF CHAR; 
ID_NUM: INTEGER1 ," 

END1 
VAR EMPLOYEE :.REC 1 

OLDCOPY,NEWCOPY:FILE OF REC7 
BEGIN 

RESET ( OLDCOPY) 1 
REWRITE(NEWCOPY)1 

WHILE NOT EOF(OLDCOPY) DO 
BEGIN 

READ(OLDCOPY,EMPLOYEE)1 
WRITE(NEWCOPY,EMPLOYEE)7 

END1 
END. 

8.8.2 Text File Operations 

(NOTE: because only 1 
record is specified, 
only 1 record is read, 
then written. As a re
sult, the records in 
OLDCOPY are read into 
the record EMPLOYEE, 
and EMPLOYEE is w~itten 
into record the next 
record of file NEWCOPY. 

. -.,._ 

l 

Input and output data for many devices such as card punches, card 
readers, line printers, and CRT terminals are in the form of 
characters. The physical properties of these devices naturally divide 
files of characters into lines. A file of characters which is divided ~) 
logically into lines by end-of-line markers is called a text file. 

Both input and output to and from text files are two-stage operations. 

Writing to a file proceeds line by line. Ther are two statements for 
for writing to text files: WRITE and WRITELN. There are two forms of 
WRITELN: either with or without parameters. 

The WRITE statement writes the file component values irito a line 
buffer (write does not output directly to the file). The line buffer 
is output either when the buffer becomes full (80 characters), or when 
a WRITELN without parameters is executed. A WRITELN with parameters is 
equivalent to a WRITE with the same parameters, followed by a WRITELN 
without parameters. 

SIMILARILY, when reading from a file, the READ statement takes file 
components from the line buffer and places them into variables. READLN 
also has two forms: with and without parameters. A READLN without 
parameters causes a new line to be fetched from the file and placed 
into the line buffer. A READLN with parameters is equivalent to a READ 
with the same parameters, followed by a READLN without parameters. 

A RESET command must be used prior to the first READ or READLN 
statement to open a file for reading. The RESET does an automatic 
READLN. If this is not anticipated, the input might be shifted ~y one , 
line from that which is expected. _) 

8-56 



~ 
I 

When the last nonblank character of a line is read, a READLN operation 
changes the value of the EOLN function from true to false. For more 
details concerning the text file operations, see Paragraph 10.3.6. 

Two standard text files are predefined in conventional Microprocessor 
Pascal System programs: INPUT and OUTPUT. If they are used in the 
Microprocessor Pascal System, they may be passed as parameters to a 
program via the parameter list; however, they must be declared if they 
are to be used within 'that program. 

An example of reading and writing to a text file follows. 

PROGRAM COPYTEXT; 
VAR CH:CHAR; 

ORIGINAL,COPY:TEXT; 
BEGIN 

RESET(ORIGINAL); 
REWRITE (COPY) ; 

WHILE NOT EOF(ORIGINAL) DO 
BEGIN 

·END. 

WHILE NOT EOLN(ORIGINAL) DO 
BEGIN 

READ(ORIGINAL,CH); 
WRITE (COPY ,CH) ; 

END; 
WRITELN (COPY); 
READLN(ORIGINAL); 

END; 

This example works well when both the ORIGINAL and the COPY files are 
associated with a VDT device because one line is written before 
another line is read. 

8.8.2.1 Text File READ Operation. A READ procedure statement has the 
form: 

READ (<file variable>, <variable>, ••• , <variable>) 

where <file variable> must indicate a text file and the user 
<variables> may be of types INTEGER, LONGINT, BOOLEAN, CHAR, REAL, or 
string (PACKED ARRAY[l •• n] OF CHAR). The user <variable> must not be 
an element of a packed structure. 

The file INPUT is assumed to be the default <file variable> if one is 
not explicitly given in the READ statement~ 

Examples follow: 

READ(<variable>, <variable>) 

8-57 



is equivalent to 

READ(INPUT, <variable>, <variable>) 

similarly 

and 

READLN 

is equivalent to 

READLN(INPUT) 

READLN(<variable list>) 

is equivalent to 

READ(<variable list>); 
READLN 

For each of the types mentioned above, the following action is 
performed for a READ operation: 

If <variable> is of type CHAR, the value read is the 
next character in the text file (blanks are significant 
characters) • 

If <variable> is of type BOOLEAN, the character T or F 
(or the standard identifier TRUE or FALSE) is read. 

If <variable> is of type string with length L, the next 
L characters are read from the text file (blanks are 
significant characters) • 

If <variable> is of type INTEGER, LONGINT, or REAL, the 
next series of digits corresponding to the definition 
of a constant of that type are read from the text file. 
This includes hexadecimal constants for INTEGER and 
LONGINT types. 

Values to be read may not cross line boundaries. For 
the types INTEGER, LONGINT, REAL, and BOOLEAN, all 
leading blanks are skipped; entirely blank lines are 
also ignored. 

Although formatted read parameters are not allowed in 
READ statements, it is possible to perform formatted 
input using DECODE. Read parameters passed to DECODE 
may be of the form 

<variable>:M 

8-58 

~ 
/ 



where M is the field width. 

8.8.2.2 Text File WRITE Operation. A WRITE procedure statement has 
the form: 

WRITE (<file variable>, <parameter>, ••• , <parameter>) 

where <file variable> must be a text file and <parameter> may have one 
of the following forms: 

<expression> 
or 

<expression> <field width expression> 
or 

<expression> <field width expression> : <decimal digits> 

where <expression> represents the value to be written, <field width 
expression> specifies the minimum field width into which the value is 
to be written, and <decimal digits> specifies the number of digits to 
be output after the decimal point for RE;AL values. 

The file OUTPUT is assumed to be the default <file variable> if one is 
not explicitly given in the WRITE statement. 

Examples: 
WRITELN 

is equivalent to 

WRITELN (OUTPUT) 

similarly 

and 

WRITE(<parameter>) 

is equivalent to 

WRITE(OUTPUT, <parameter>) 

WRITELN(<parameter list>) 

is equivalent to 

WRITE(<parameter list>); 
WRITELN 

The value to be written may be of type INTEGER, LONGINT, CHAR, 
BOOLEAN, REAL, or string. The value written is never split across two 
lines so WRITELNs may be performed implicitly. If the specified field 

8-59 



width is greater than the line length an error occurs. If the value is 
less than one, at least one space is used. When no field width is 
given, a default field width is supplied by the compiler. Table 8-1 
gives the default values. 

TYPE 
INTEGER 
LONG INT 
BOOLEAN 
CHAR 
REAL 
String 

TABLE 8-1. DEFAULT VALUES. 

DEFAULT FIELD WIDTH 
10 
15 

5 
1 

15 
Length .of string 

------------------------------------------------------------------------
The specified field width is the minimum field width. 
If the value requires less than the specified width, an 
adequate number of preceding blanks are written such 
that the specified number of characters are written. If 
the field is not real and the value requires more than 
the specified width, the necessary additional space is 
allocated and used. If the field is real, a fatal 
RUNTIME error occurs. 

For each of the types mentioned above, the following 
action is performed for a WRITE operation: 

If the value is of type CHAR, the character value is 
written with possible leading blanks. 

If the value is of 
identifier TRUE or FALSE 
appropriate number of 
width is less than five, 
written. 

type BOOLEAN, the standard 
is written, preceded by an 
blanks. If the specified field 
the character T or F will be 

If the value is of type string, the entire string is 
written with possible leading blanks. If the specified 
field width is less than the length of the string, the 
entire string is written. 

If the value is of type INTEGER or LONGINT, the value 
WRITE 

the 
is written as a string of decimal digits. If the 
<expression> is followed by the identifier HEX, 
value is written as a string of hexadecimal digits. 

If the value is of type REAL, the value is written as a 
string of characters either in fixed point notation or 

8-60 

) 
/ 



in floating point notation with a coefficient and scale 
factor. Fixed point notation is only used if the 
<decimal digits> expression is specified. 

8.8.3 RANDOM File Operations 

A RANDOM file may be opened simultaneously for reading and writing by 
executing a REWRITE statement. A RANDOM file may be opened exclusively 
for reading by executing a RESET statement. The READ and WRITE 
procedures for a RANDOM file are similar to those for a sequential 
file, except for the inclusion of an argument that specifies which 
element in the file is to be accessed. The EOF function returns a 
value of TRUE if a nonexistent file element is referenced. Note that 
if record N is written, the records 0 through N exist, even though 
values may not have been written to all of these records. A major 
difference between a RANDOM file and a sequential or text file is that 
only a single variable is allowed in both the READ and the WRITE 
statements. 

The general form of READ for a RANDOM file is: 

READ (<file variable>, <record number>, <variable>) 

where the 
must be 
with the 
specified 

<file variable> must be a RANDOM file, the <record number> 
an integer expression, and the <variable> must be compatible 
components of the specified file. The <record number> 
is treated as a LONGINT value. 

The value of the <record number> is used to determine which record of 
the file is to be accessed. Therefore an error occurs if the resulting 
value is less than zero or if the referenced component does not exist. 
This integer value is not automatically incremented after each READ 
statement is executed. 

The general form for a RANDOM file WRITE statement is: 

WRITE (<file variable>, <record number>, <variable>) 

where the <file variable> must be a RANDOM file, the <record number> 
must be an integer expression, and the <variable> must be compatible 
with the component type of the file. 

The value obtained from the <record number> represents the position in 
the file which is to be accessed. If this value is less than zero, an 
error occurs. The execution of a WRITE statement does not 
automatically increment the value of the specifed <integer 
expression>. 

8.8.4 Binding of File Names 

The default name associated with a file is the first eight characters 
of the file variable. This name can be changed by calling the r6utine 

8-61 



SETNAME specifing the new file name. 

Example: 
SETNAME(OUTPUT,~PRINTER~) ~ 

8.8.5 Passing Files as Parameters 

File variables may 
When a procedure 
parameter must be 
requires a file 
value. 

be passed to modules by reference and by value. 
or function requires a file as a parameter, the 

passed by reference. If a program or process 
to be passed as a parameter, it must be passed by 

If a file is passed by value, the called routine operates on its local 
file variable which is initialized to have the same characteristics as 
the one passed. (Note, when a file is passed by value, the file itself 
is not passed. Rather, a connection to the file is passed.) Thus, the 
file must be opened only in the process (RESET or REWRITE) in which it 
is used. 

The standard identifiers INPUT and OUTPUT may be declared as 
parameters of programs since READ and WRITE operations use those file 
variables as defaults. If INPUT and OUTPUT are to be used within a 
program of the· system, They must be declared as variables in that 
program. 

The ·function FILENAMED may be used when invoking a program or process 
with a file parameter. In this case only the name of the file is 
passed. 

Example: 
START COPY(FILENAMED(~CARDREADER~) ,FILENAMED(~PRINTER~)) ~ 

It should be noted that in the Debugger, host files cannot be 
connected implicitly. The CIF and COF commands must be used. 

8.8.6 Encode and Decode 

The procedures ENCODE and DECODE function similar to the text file 
procedures WRITE and READ respectively, except a memory array is used 
instead of a file. This allows binary values to be converted to ASCII 
strings and also parts of strings to be converted to binary values. 
These procedures also allow a primitive form of string manipulation 
whereby substrings may be extracted and appended to other strings. 

The form of the· ENCODE and DECODE procedures are as follows: 

ENCODE (<string>, <index>, <status>, <parameters>) 
and 

DECODE (<string>, <index>, <status>, <parameters>) 

8-62 



where <string> is the variable of type string into which values are 
encoded or from which values are decoded. <Index> is the initial index 
into the string. <Index> specifies an integer indicating where in the 
string is the value to be encoded or decoded. This index may either be 
a integer constant or a variable which is incremented by the number of 
characters encoded or decoded. <Status> must be a variable which is 
given a value indicating the status of the encode or decode 
operations. The possible error codes returned by <status>, and their 
associated meanings are listed below: 

TABLE 8-2. ERROR CODES RETURNED BY STATUS. 

STATUS VALUE RETURNED 
0 

MEANING 
No error 

1 
2 
3 
4. 
5 
6 
7 

Bad parameter passed to I/O routine 
Field width too large for logical record 
Incomplete data (READ operation) 
Invalid character in field (READ only) 
Data value too large (READ only) 
Attempt to READ past end-of-file 
Field larger than logical record size. 

<Parameters> for ENCODE may be of the form discussed in Paragraph 
8.8.2.2 for the WRITE procedure statement. The <parameters> for DECODE 
are similar except that <variable>s must be used instead of 
<expression>s. 

Examples: 
VAR STRG8: PACKED ARRAY [1 •• 8] OF CHAR; 

STRG4:PACKED ARRAY [1 •• 4] OF CHAR~ 
CH:CHAR; 
STAT,N,NUM:INTEGER; 

Using the variable definitions given above, 

1) If STRG8 was the string '12345678' 
and STRG4 was the string 'ABCD' 

ENCODE ( STRG8,3, STAT, STRG4 : 4) 

will redefine the STRG8 to the value 
'12ABCD78'. 

2) If N has the value 2 and CH has the 
value 'z' 

ENCODE( STRG4,N, STAT, CH ) 

increments N to 3 and redefines the 

8-63 



3) 

4) 

5) 

6) 

string STRG4 to be ~AZCD~ 

If another application of the ENCODE 
statement is applied, STRG4 will have 
the value ~AZZD~. 

If NUM=26 and STRG8 = ~R = > 

ENCODE (STRG8,6, STAT, NUM:3 HEX) 

redefines STRG8 to the value ~R = >01A~ 

If STRG8 = ~12345678~ 

DECODE (STRG8, 3, STAT, NUM:2) 

identifies NUM as 34. 

If ST ... 4 = ~ABCD~ and N=l, the first time 

DECODE (STRG4, N, STAT, CH ) 

is executed CH will have the value A, the 
second time the value B and so on. An error 
code of 3 is passed back if one decodes (reads) 
beyond four characters. 

8-64 

) 
-_./ 



( 

SECTION 9 

PROCESS SYNCHRONIZATION AND PROCESS MANAGEMENT 

9. 1 OVERVIEW 

The Executive Run Time Support (RTS) supports multiprogramming 
(sometimes called multitasking). Multiprogramming refers to the 
interleaved execution of two or more routines (processes) in the same 
computer. If the processes executing in a Microprocessor Pascal System 
are viewed over a time frame of several seconds, each appears to be 
progressing at a non-zero rate. However, if the processor is followed 
for several milliseconds, its switching among several processes is 
apparent. Repetitive switching of processes causes interleaving of the 
processes~ progression through the algorithms and gives the impression 
that the processes are executing concurrently. 

In a system with one sequential program, the central processor 
executes the program instructions sequentially. If execution is 
temporar_ily halted while the program awaits some system resource, the 
processor goes idle. The processor becomes active again only when the 
program is ready to resume execution. 

The execution of concurrent processes in the Microprocessor Pascal 
System is different. Instructions that are successive in code are not 
necessarily executed by the processor in succession. Rather, the 
intervention of other instructions resident elsewhere in code occurs 
when the CPU services interrupts,etc. An interrupt can occur any time, 
causing the currently active process to be delayed while another 
process services the interrupt. In all cases, when the active routine 
becomes suspended, its state is saved and restored later. 

9.2 SCHEDULING POLICY 

Each process is a separate entity with respect to execution on the 
host processor(s). The scheduling policy of the Executive RTS 
determines which of several concurrent processes in a system will be 
in execution at any instant; selection is based on process readiness 
and process priority. 

Each process in the Microprocessor Pascal +un-time environment is in 
one of two states: 

1) Ready To Execute: This "ready'' state includes active processes 
and the process that is currently executing. 

9-1 



2) Suspended: blocked and waiting for 
to change (an event to occur) 
execute. 

a condition in the system 
before it can become ready to 

The relative priorities of processes determine which of several ready 
processes becomes active. Each process has a priority represented by a 
user-assigned, non-negative integer. The value 0 indicates the 
greatest urgency; 32766 indicates the least urgency. The range zero to 
fifteen is reserved for device processes that are usually associated 
with interrupt handlers. 

The priority of a process will often be described in terms of 
"urgency" to avoid ambiguity between the numeric value of the 
scheduling parameter "priority" and the relative priority of one 
process to another; confusion can arise since small numeric values of 
priority (e.g., interrupt handlers) correspond to great urgency. 

A scheduling decision is made by the Executive RTS whenever a blocked 
process becomes ready or an active process becomes blocked. Currently 
one processor is managed, and there exists only one active process 
assigned to that processor. The fundamental characteristic of the 
Executive RTS scheduling policy is that the active (executing) process 
is never less urgent than any of the ready processes. 

The following scheduling algorithm is used for the one processor: 

1) All processes that are ready for execution reside 
in an ordered structure called a ready queue. · The 
ordering of the queue is based upon priority: a 
more urgent process (one with lower arithmetic 
value of priority) precedes those with less 
urgency. The first process in the ready queue is 
the active (executing) process. 

2) The Executive RTS creates a process called the idle 
process with the least possible urgency, priority 
32767; this priority is reserved for use by the 
Executive RTS. The idle process is always ready and 
is the last member of the ready queue. If this 
process ever becomes active, it places the 
processor in an idle state (executes the IDLE 
instuction) in which it remains until an interrupt 
occurs. 

3) If the active process is suspended, the next 
process on the ready queue becomes the active 
process. Since the ready queue is ordered by 
priority, the most urgent process that is ready is 
given the processor. 

4) If a process is changed from the suspended state to 
the ready state, it is inserted into the ready 
queue based on its priority. If the process is a 
device process, i.e., has priority in the range 

9-2 



5) 

zero to fifteen, it is inserted in front of 
processes with. the same priority: if it is not a 
device process, it is inserted after processes with 
the same priority. (The reason for this distinction 
between device and non-device processes is 
discussed in Section 9.5.) 

If the process 
in front of the 
is preempted, 
Otherwise, the 
urgent as all 
active. 

which just became ready is inserted 
active process, then the processor 
and the new process becomes active. 
previously active process is as 
other ready processes and remains 

It is a good practice to design a multiprogramming system in such a 
way that it works correctly regardless of the relative rates at which 
individual processes progress. With such a design, each process can be 
generally understood in terms of its sequential code1 global 
interactions are explicitly indicated by points of interprocess 
synchronization. Figure 9-1 illustrates the application of the 
Executive RTS scheduling algorithm to a series of process activations 
and suspensions. 

TIME ACTIVE 
COMMENTS 

TO A: 16 B: 18 C : IDL.E A is aetiw• 

T1 A: 16 0: 16 B : 18 C : IOL.E 0 ti.c:om" r•.Ov; is insan•d 

in ttl• r-.dy qu•u• 

T2 D: 16 B : 18 C: IOL.E A blocks and is susp•nded; 

0 b.cDmft activ• 

---I T3 E: 8 0: 16 B : 18 C : IDL.E E (a d•viu proc-1 is in•rted -- in th• rudy qu•u• and p,.. 

empu O. 

T• F:7 E:8 I I 0: 16 B: 18 C : IDL.E F (a dewiC9 pr- with a 

priority hiiaft•r thM E's) p,... 

tmpu E 1nd b.com• active 

TS E:8 0: 16 B: 18 C: IDLE F bloclcl and is su11?9nded; 

E becomft active. 

T6 0: 16 A: 16 B : 18 C: IOL.E E blocks 1nd is IUICl•nded; 

A. bec:am• ••adv 
D ia ttl• ac:tiH prac-

FIGURE 9-1. 'EXAMPLES OF THE EXECUTIVE RTS SCHEDULING POLICY. 

9-3 



In Figure 9-1 the ready queue is represented as a horizontal series of 
boxes. Each process (box) is labeled with a letter and a priority 
number. The first box in the ready queue is the active process. Time 
moves vertically from top to bottom. Comments to the right of each 
queue describe the action performed. 

The execution of the RTS scheduling policy displayed in Figure 9-1 
results in process "B" never becoming active. In fact, B will never 
become active unless a-11 other processes in queue with greater urgency 
become blocked or terminate execution. A process of higher urgency 
that becomes ready will always interrupt the currently active process. 
Once the more urgent process terminates (or becomes blocked) the 
previously active process will resume execution (unless another higher 
priority process has become ready). This "preemptive scheduling with 
resumption" is designed for event-driven systems in which the event is 
some real-world occurrence that demands the immediate attention of the 
computer. (See Paragraph 9.3). 

It is possible for the processor to alternate among a collection of 
computation-bound processes by use of the RTS utility: 

PROCEDURE SWAP; EXTERNAL; 

This "SWAP" procedure removes the first non-device process from the 
queue and inserts it behind the last process with the same priority. 
Figure 9-2 illustrates this. 

TIME ACTIVE 
COMMENTS 

TO 

t 
A:2 I B: 25 I I c = 25 1 D: IDLE A call's SWAP 

T1 A:2 l c = 25 I B: 25 f D: IDLE Queue status after 

SWAP 

FIGURE 9-2. SWAP PROCEDURE. 

A purpose of SWAP is to implement time slicing. SWAP is called to 
force an active non-device process to relinquish the processor. This 
swapping of the active process prevents it from running longer than 
its user-specified execution time (time slice). 

The following RTS utility routine: 

TYPE NON DEVICE PRIORITY= 16 •• 32766; 

PROCEDURE SETPRIORITY(VAR OLDVALUE: NON_DEVICE_PRIORITY; 
NEWVALUE: NON_DEVICE_PRIORITY); EXTERNAL; 

9-4 



changes the priority of the first non-device process in the scheduling 
queue. The position of that process in the queue of ready processes 
may have to be modified in order to remain consistent with the 
Executive RTS scheduling policy. Notice that SETPRIORITY cannot be 
used to modify the priority of a device process or to change a 
non-device process into a device process. 

9.3 EVENTS 

Synchronizing the action of a proces with the actions of other 
processes is achieved by means of an event, which causes the actions 
to seem to coincide or act together in time. 

Real-time programming is concerned with the control of events (input) 
that do not wait for the computer. The central problem is that the 
computer must be able to receive data and react to it as fast as it 
arrives; otherwise the computer falls behind. In the Microprocessor 
Pascal System, the event mechanism is used to control the actions of 
concurrent processes within a computer. External events are 
synchronized via interrupt handlers. 

9.3.1 External Events 

For example, a process may be waiting for an event to occur, so that, 
when the event happens, the process can either service the event, 
proceed with the process, or perform some other action. Until the 
event happens, the waiting process is considered by the Executive RTS 
to be suspended and thus, it does not compete for the CPU. 

9.3.2 Internal Events 

The event upon which a process waits may be generated by another 
process. Processees that have related responsibilities often must 
communicatee among one another, either through shared memory or some 
other form of message-passing protocol. Successful communication 
between processes requires synchronization to ensure that they do not 
interfere with each other. Internal events are synchronized via 
semaphores. For example, if one process wants to place an item into 
the next available space in a buffer, the CPU must ensure that the 
receiving process does not modify pointers to the buffer until 
transfer is complete. Usually, a system designer cannot determine the 
rates at which individuals processes progress, so semaphores provide a 
low-level primitive structure for synchronizing otherwise asynchronous 
processes. 

9-5 



9.4 SEMAPHORES 

The fundamental tool in the Executive RTS for the synchronization of 
processes is the semaphore. A semaphore event is an internally 
generated event. A semaphore represents some event on which processes 
synchronize. A process may ensure that an event has occurred by 
performing a WAIT operation on the associated semaphore before 
proceeding. If the event has already occurred, the process continues 
execution; if not the process is suspended until the event occurs. A 
process may signal the occurrence of an event by performing a SIGNAL 
operation on the associated semaphore. If some process is waiting for 
the event, then that process is made ready for execution; otherwise, 
the occurrence of the event is recorded in the semaphore unt.il a 
subsequent WAIT operation occurs for that event. 

Processes that await the same event are delayed in the same semaphore 
queue. The Executive RTS orders a semaphore queue by the sequence in 
which processes are delayed in the queue. They are managed by the 
Executive RTS in a first-in, first-out queuing strategy (FIFO) which 
favors the longest delayed process. That is, the next time the awaited 
event occurs by a SIGNAL operation, the process which has been 
awaiting the event for the longest period of time is activated. 

The semaphores of the Executive RTS are counting (general) semaphores 
in the sense that an occurrence of an event is not lost, even if no 
process is waiting when an event occurs. A count is kept in a 
semaphore of the number of events that have occurred (by SIGNAL) but 
have not been received (by WAIT). 

9.4.1. Abstract Operations on Semaphores 

A semaphore may be viewed as having two components: 
indicating the number of unserviced occurrences of the 
event and a (possibly empty) queue of processes waiting for 
to occur. The abstract algorithms for the operations WAIT 
are described below. 

PROCEDURE WAIT(EVENT: SEMAPHORE); 
{ENSURE THAT AN OCCURRENCE OF EVENT 

HAS HAPPENED BEFORE PROCEEDING.} 
BEGIN 

{START INDIVISIBLE OPERATIONS } 
EVENT.COUNT := EVENT.COUNT - 1; 
IF EVENT.COUNT < 0 

a counter 
associated 
the event 
and SIGNAL 

THEN {SUSPEND THE CALLING PROCESS ON EVENT.QUEUE}; 
{END INDIVISIBLE OPERATIONS} 

END {WAIT}; 

9-6 



( 
\ 

PROCEDURE SIGNAL(EVENT: SEMAPHORE); 
{SIGNAL THE OCCURRENCE OF EVENT.} 
BEGIN 

{START INDIVISIBLE OPERATIONS} 
EVENT.COUNT := EVENT.COUNT + l; 
IF EVENT.COUNT <= 0 

THEN {MAKE THE FIRST PROCESS ON 
EVENT.QUEUE READY FOR EXECUTION} 

{END INDIVISIBLE OPERATIONS} 
END {SIGNAL}; 

These operations must be indivisible in the sense that they have 
exclusive access to the semaphore EVENT. If two processes had 
simultaneous access to the same semaphore, then they might modify 
EVENT.COUNT or EVENT.QUEUE in such a way that an occurrence of the 
associated event would be lost~ Note that WAIT and SIGNAL may cause a 
process to be removed from or inserted into the scheduling queue. When 
a signaled process is made ready, the Executive RTS scheduling 
algorithm determines whether the SIGNALer or SIGNALee will be the 
active process. 

Since a semaphore acts as an event counter, it must be initialized to 
the proper count before it can be used. The value of an uninitialized 
semaphore is interpreted to be an erroneous count value and/or queue 
value. The INITSEMAPHORE operation initializes a semaphore with an 
event count and has the following abstract algorithm: 

TYPE NONNEG = 0 •• 32767; 

PROCEDURE INITSEMAPHORE(VAR EVENT: SEMAPHORE; 
COUNT: NONNEG); 

{INITIALIZE EVENT WITH AN EVENT COUNT.} 
BEGIN 

EVENT.QUEUE := {EMPTY QUEUE, I.E. NO WAITERS}; 
EVENT.COUNT := COUNT; 

END {INITSEMAPHORE}; 

Notice that a semaphore may be initialized with a count of zero. The 
maximum event count which a semaphore may hold by successive SIGNAL 
operations without corresponding WAIT operations is 32767. If the 
event count overflows, the process which causes the overflow by a 
SIGNAL fails. 

INITSEMAPHORE may not be able to acquire the RTS-maintained data 
structure for a semaphore if memory is full. Any operation on an 
uninitialized semaphore causes the calling process to fail. One can 
check that a semaphore is valid and initialized by calling 

FUNCTION CKSEMAPHORE(SEMA: SEMAPHORE): BOOLEAN; 
EXTERNAL; 

9-7 



which returns TRUE for a valid SEMA. 

-\ 

As is discussed in detail in Paragraph 9.4.4, each semaphore is -J 

implemented by a data structure that is allocated within a data area 
that is managed by the Executive RTS. For that data structure to be 
reclaimed by the Executive RTS, 

PROCEDURE TERMSEMAPHORE(VAR EVENT: SEMAPHORE): EXTERNAL: 

must be called by the last process that uses the associated semaphore. 
Note: TERMSEMAPHORE must be called before a semaphore is reintialized 
for reuse. 

9.4.2 Incorrect Use Of Semaphores 

Care must be taken in the usage of semaphores. Figure 9-3 illustrates 
an incorrect usage. Two processes are considered. One is placing a 
value into a memory cell. The other process will use this value. The 
semaphore DATA AVAILABLE is used to synchronize the transaction. 

9-8 



SYSTEM TEST; 

TYPE 
NONNEG = 0 •• 32767; 

PROCEDURE INITSEMAPHORE(VAR SEMA: SEMAPHORE; 
COUNT: NONNEG) ; EXTERNAL; 

PROCEDURE SIGNAL(SEMA: SEMAPHORE); EXTERNAL; 
PROCEDURE WAIT(SEMA: SEMAPHORE); EXTERNAL; 

PROGRAM SYNCHRONIZE; 
VAR 

DATA: INTEGER; 
DATA AVAILABLE: SEMAPHORE; 

PROCESS_PRODUCER; 
BEGIN 

WHILE TRUE DO BEGIN 
{PRODUCE DATA} 
SIGNAL(DATA AVAILABLE); 
END {LOOP FOREVER}; 

END {PRODUCER}; 

PROCESS CONSUMER; 
BEGIN 

WHILE TRUE DO BEGIN 
WAIT(DATA AVAILABLE); 
{CONSUME DATA} 
END {LOOP FOREVER}; 

END {CONSUMER} ; 

BEGIN 
INITSEMAPHORE(DATA AVAILABLE, 0); 
START PRODUCER; -
START CONSUMER· 

END {SYNCHRONIZEf; 

BEGIN 
START SYNCHRONIZE; 

END {TEST}. 

FIGURE 9-3. EXAMPLE OF INCORRECT SEMAPHORE USE. 

~n general this is not a correct solution to the problem since there 
is no guarantee that CONSUMER has finished processing DATA when 
PRODUCER gets ready to place another value into DATA. Such a guarantee 
could be made if CONSUMER had a greater . urgency than PRODUCER and 
would process DATA without having to relinquish the processor to wait 
for some other event. However, it is unwise to structure a system so 
the scheduling policy is an implicit requirement for the success of an 
algorithm. The general solution requires a semaphore with which the 

9-9 



receipt of DATA is acknowledged. Figure 9-4 demonstrates correct 
implementation of the semaphores. 

SYSTEM TEST; 

TYPE 
NONNEG = 0 •• 32767; 

PROCEDURE INITSEMAPHORE(VAR SEMA: SEMAPHORE; 
COUNT: NONNEG) ; EXTERNAL; 

PROCEDURE SIGNAL(SEMA: SEMAPHORE); EXTERNAL; 
PROCEDURE WAIT(SEMA: SEMAPHORE); EXTERNAL; 

PROGRAM SYNCHRONIZE; 
VAR 

DATA: INTEGER; 
DATA AVAILABLE: SEMAPHORE; 
DATA_RECEIVED: SEMAPHORE; 

PROCESS PRODUCER; 
BEGIN 

WHILE TRUE DO BEGIN 
WAIT(DATA RECEIVED); 
{PRODUCE DATA} 
SIGNAL(DATA AVAILABLE); 
END {LOOP FOREVER}; 

END {PRODUCER} ; 

PROCESS CONSUMER; 
BEGIN 

WHILE TRUE DO BEGIN 
WAIT(DATA AVAILABLE); 
{CONSUME DATA} 
SIGNAL(DATA RECEIVED); 
END {LOOP FOREVER}; 

END {CONSUMER}; 

BEGIN 
INITSEMAPHORE(DATA AVAILABLE, 0); 
INITSEMAPHORE(DATA-RECEIVED, 1); 
START PRODUCER; 
START CONSUMER; 

END { SYNCHRONIZE}; 

BEGIN 
START SYNCHRONIZE; 

END { TEST }. 

FIGURE 9-4. EXAMPLE OF CORRECT SEMAPHORE USE. 

9-10 



The semaphore DATA RECEIVED is initialized to 
activation of PRODUCER can proceed from the WAIT 
beginning of its loop. 

"1" so the first 
operation at the 

Another example of incorrect usage of semaphore involves a condition 
called "deadlock". This takes plac~ when a situation .is created in 
which two or more processes are suspended awaiting a condition that 
cannot happen because there is no active process to cause the needed 
event to occur. 

For example, if two simultaneously executing processes (A and B) both 
require exclusive access to resources (X and Y), the following 
sequence will result: 

A gets X A requests Y 

B gets Y B requests X 

In the above example, neither A nor B will ever resume execution, as A 
will be waiting for Y (which B has) and B will be waiting for X (which 
A has). To prevent a situation such as this, one or both processes 
must check the availability of succeeding resources and, if 
unavailable, release those already acquired. 

9.4.3 RTS Semaphore Routines 

Microprocessor Pascal has a standard (predefined) type called 
SEMAPHORE. A variable of type SEMAPHORE may only be passed as a 
parameter to routines which implement semaphore operations; arithmetic 
operations are not permitted on SEMAPHORES. 

Semaphore routines are supplied by the Executive RTS and are declared 
by the user as EXTERNAL routines. The following types are assumed to 
be declared by the user: 

TYPE NONNEG = 0 •• 32767; 
SEMAPHORESTATE = ( awaited·, zero, signaled ) ; 

RTS semaphore operations are as follows •. 

9-11 



. . . 
~-~-~~,.-··-~-----:._.:___.:,,·.__ .. --"'•:----- ,· __ _._-,- .. ~--~.c.:-~-·· -· -~---'--"-'--"'"-•-~------~ -------~---··--. -

PROCEDURE SIGNAL( SEMA: SEMAPHORE); EXTERNAL; 

This procedure performs the SIGNAL operation on semaphore SEMA. If a 
process is waiting for a signal to be sent through SEMA, then activate 
the first member of the waiting queue for SEMA; otherwise, increment 
the semaphore count of signals sent but not received. If the event 
count of SEMA overflows, then the caller of SIGNAL fails. 

PROCEDURE WAIT( SEMA: SEMAPHORE); EXTERNAL; 

This procedure performs the WAIT operation on semaphore SEMA. If a 
signal has been sent to the semaphore SEMA but not received, then 
decrement the event count of SEMA and return; otherwise, suspend the 
calling process in the event queue of SEMA. If a process performs a 
WAIT operation on a semaphore which has been attached to an interrupt 
level that is more urgent than the process calling WAIT, an exception 
occurs. 

PROCEDURE INITSEMAPHORE( VAR SEMA: SEMAPHORE; 
COUNT: NONNEG ); EXTERNAL; 

This procedure initializes the semaphore SEMA to have no waiters for 
the SEMA event and to have an event count equal to COUNT. SEMA does 
not receive interrupt events. 

PROCEDURE TERMSEMAPHORE ( VAR SEMA: SEMAPHORE ) ; 
EXTERNAL; 

This procedure notifies the Executive RTS that SEMA is no longer in 
use. If SEMA has a queue of waiting processes at the time this routine 
is called, an error is assumed, the calling process fails, and the 
semaphore is not terminated. 

FUNCTION SEMAVALUE( SEMA: SEMAPHORE ) : INTEGER; EXTERNAL; 

This function returns the value in the count field of the semaphore, 
i.e., initial count of the SEMA semaphore plus the cumulative total of 
the number of SIGNAL operations minus the cumulative total of the 
number of WAIT operations on SEMA. Notice that a positive value of 
SEMAVALUE(SEMA) is the number of occurrences of the SEMA event that 
have happened but have not been serviced at the time of the call to 
SEMAVALUE. In other words, a positive value is the excess of SIGNAL 
operations over WAIT operations. A negative value of SEMAVALUE(SEMA) 
is the number of processes waiting for the SEMA event to occur. That 
is, a negative value is the excess of WAIT operations over SIGNAL 

9-12 



( 
\ ___ . 

operations. A zero value of SEMAVALUE(SEMA) indicates no process is 
waiting for the SEMA event and no unserviced SEMA events have 
occurred. The result returned by this function must be used with care. 
It accurately reflects the state of SEMA at the time SEMAVALUE was 
called~ There is no reason to assume that the state does not change 
immediately thereafter. SEMAVALUE can be safely used if it is known 
that the system is in an invariant state (e.g., interrupts are masked) 
or if there is additional knowledge about SEMA (e.g., the caller of 
SEMAVALUE is the only process to wait on SEMA). 

FUNCTION SEMASTATE( SEMA: SEMAPHORE): SEMAPHORESTATE; 
EXTERNAL; 

This function returns the state of SEMA. The AWAITED state indicates 
SEMA has processes waiting for an event which has not occurred. The 
SIGNALED state means that the event has occurred but not been 
serviced. The ZERO state holds if the number of SIGNAL and WAIT 
operations are equal. Note that AWAITED, ZERO, and SIGNALED are 
equivalent to SEMAVALUE returning negative, zero, and positive values, 
respectively. The same caution must be taken- in interpreting the 
result of SEMASTATE as was described above for SEMAVALUE. One 
application of SEMASTATE is to activate all processes waiting on a 
semaphore: 

WHILE SEMASTATE( SEMA ) = AWAITED DO 
SIGNAL( SEMA ); 

For the above code to truly empty the queue of SEMA and not send 
unwanted signals, the test on the state of SEMA and the following 
SIGNAL must be performed as an indivisible operation (e.g., interrupts 
should be masked). 

PROCEDURE WAITSIGNAL( WAITFOR, SIGNALTHE: SEMAPHORE); 
EXTERNAL: 

Two operations are performed by the above routine in one indivisible 
step: a WAIT operation on the WAITFOR semaphore and a SIGNAL on the 
SIGNALTHE semaphore. This routine is useful to receive an event (by 
WAIT) and to issue an event (by SIGNAL) in one indivisible step 
without intervening instructions. It is not equivalent to 

SIGNAL( SIGNALTHE ); WAIT( WAITFOR ); 

since the signal to SIGNALTHE could activate a process with a great 
enough urgency that the active process. would be preempted before WAIT 
could be called. If a process performs a WAIT operation on a WAITFOR 
semaphore which has been attached to an interrupt level that is more 
urgent than the priority of that process, an exception occurs. 

9-13 



PROCEDURE CSIGNAL( SEMA: SEMAPHORE; 
VAR WAITER: BOOLEAN); EXTERNAL; 

This procedure peforms a SIGNAL operation only if a waiter on the SEMA 
event exists; i.e.,the value of SEMASTATE(SEMA) is AWAITED. If there 
is at least one waiter for the SEMA event, then the first member of 
the waiting queue is activated and WAITER is returned TRUE. Otherwise, 
no SIGNAL operation is done and WAITER is returned FALSE. The test and 
signal are performed in one indivisible operation. One application of 
this routine is to activate all the processes that are waiting on an 
event: 

REPEAT 
CSIGNAL( SEMA, WAITER 

UNTIL NOT WAITER; 

In this example, CSIGNAL is not equivalent to 

IF SEMASTATE( SEMA ) = AWAITED THEN SIGNAL( SEMA ) 

since this statement is not indivisible: 
SEMASTATE determines a waiting process 
handler can activate that process before 
clause above. 

an interrupt can occur after 
exists, and the interrupt 
SIGNAL is called in the THEN 

PROCEDURE CWAIT( SEMA: SEMAPHORE; 
VAR RECEIVED: BOOLEAN); EXTERNAL; 

This procedure performs a WAIT operation only if an unserviced event 
has been recorded by SEMA but has not been previously received (the 
value of SEMASTATE(SEMA) is SIGNALED). The caller of CWAIT ensures 
that a SEMA event has already happened, or the CWAIT call does 
nothing. RECEIVED is returned TRUE if a signaled event was received 
and FALSE otherwise. The test and wait are peformed in one indivisible 
operation. This routine is useful for a process to receive events 
which have already happened without the possibility of the calling 
process being suspended. CWAIT can be used in an interrupt-handling 
process to accept only a signal that has already been sent. In this 
case, it is not possible to wait for the signal to occur since the 
handler must remain in a state in which interrupts can be accepted. 

The CSIGNAL and CWAIT operations allow one to implement polling for 
the occurrence of events rather than suspension and activation. 
Polling is repetitive testing for a condition or until a change is 
noted. 

9-14 

./ 



9.4.4 Implementation of Semaphores 

When a variable of type SEMAPHORE is declared in the Microprocessor 
Pascal System the item that is allocated in the user~s stack frame is 
not the structure that implements a semaphore but a reference (e.g., 
pointer) to that structure. Procedure INITSEMAPHORE must be called to 
allocate the semaphore structure (in an area managed by the Executive 
RTS) and initialize the reference to it~ TERMSEMAPHORE must be called 
to deallocate the semaphore. This treatment permits the Executive RTS 
to manage all semaphores in a system and to ensure that semaphores can 
be addressed by all processes, even in the presence of memory mapping. 

Each of the semaphore utility routines (except 
TERMSEMAPHORE) has as a parameter a semaphore passed 
being passed is a reference to the semaphore, 
structure that implements it. Similarly, a semaphore 
in one process and passed (by value) to another, and 
can then terminate. Allocated in the first process 
the semaphore structure that is in the data space 
Executive RTS. If the first process terminates 
TERMSEMAPHORE), the actual semaphore still exists. 

9.5 INTERRUPT HANDLING 

INITSEMAPHORE and 
by value. What is 
not a copy of the 
can be declared 
the first process 
is a reference to 
managed by the 
(without calling 

A hardware interrupt is a stimulus from the external environment of a 
processor to pass an event to a process executing within the 
processor. The technique for interrupt handling uses the event 
mechanism of semaphores. A correspondence is established between an 
interrupt and a semaphore: when the interrupt occurs, a SIGNAL 
operation is performed on the semaphore, thus activating a device 
process to respond to the interrupt. A device process waits for the 
event associated with the semaphore~ that event can be caused directly 
or indirectly by the occurrence of an interrupt. Indirect activation 
can be used to demultiplex an interrupt level. One process receives 
the interrupt and determines the nature of the interrupt and the event 
to which it corresponds~ the associated semaphore is then signaled to 
activate a device process to handle the interrupt. The means also 
exists to implement assembly language interrupt handlers. Several 
interrupt routines dedicated to this function are described in 
Paragraph 9.5.2. 

9.5.1 Interrupts Tre~ted as Events 

An interrupt may be viewed as an event which is externally generated. 
A semaphore may be designated to the Executive RTS to be the event 
mechanism by which an external interrupt activates a process which 
awaits an interrupt of a fixed urgency level. 

9-15 



)' 

The event technique of handling interrupts is used as follows: A ', 
process which is to service all interrupts at level N executes a 
WAIT(SEMA) and is activated from the semaphore WAIT operation when an 
interrupt occurs. The priority of the process must be at least as 
urgent as the level (N) of the interrupt. The SEMA semaphore must 
previously have been initialized by calling the INITSEMAPHORE routine 
and must have been designated to the Executive RTS to receive all 
interrupt signals by calling EXTERNALEVENT(SEMA,N). This latter 
routine "attaches" the SEMA semaphore to the level N interrupt. After 
the process has serviced the interrupt, it again executes a WAIT(SEMA) 
operation and is suspended until the next level N interrupt. Figure 
9-5 illustrates a clock device service program which is passed a 
semaphore that has been attached to an interrupt level. 

9-16 

·.··~ 
\ 

'· ) 



\ 

SYSTEM EXAMPLE; 
CONST LEVEL_5 = 5; 
TYPE INTERRUPT LEVEL= 0 •• 15; 

NONNEG = O •• j2767; 

PROCEDURE INITSEMAPHORE( VAR SEMA: SEMAPHORE; 
COUNT: NONNEG ); EXTERNAL; 

PROCEDURE WAIT( SEMA: SEMAPHORE); EXTERNAL; 
PROCEDURE EXTERNALEVENT( SEMA: SEMAPHORE; 

LEVEL: INTERRUPT_LEVEL ) ; EXTERNAL; 

PROGRAM CLOCKDEVICE( CLOCKINTERRUPT: SEMAPHORE; 
LEVEL: INTERRUPT LEVEL ) ; 
{ SERVICE INTERRUPTS FROM A CLOCK DEVICE } 
BEGIN 
{ PRIORITY=LEVEL; STACKSIZE=200; HEAPSIZE=O } 

WHILE TRUE DO { FOREVER } BEGIN 
{ ENABLE INTERRUPTS FROM CLOCK DEVICE }; 
WAIT( CLOCKINTERRUPT ); i DISABLE INTERRUPTS FROM CLOCK DEVICE }; 

SERVICE CLOCK INTERRUPT . 
} 
END { FOREVER LOOP }; 

END { CLOCKDEVICE }; 

PROCEDURE INITCLOCKDEVICE( LEVEL: INTERRUPT LEVEL); 
{ CREATE CLOCK DEVICE SERVICE PROGRAM } 
VAR CLOCKINTERRUPT: SEMAPHORE; 
BEGIN 

INITSEMAPHORE( CLOCKINTERRUPT, 0 ); 
{ FIRST WAIT ON CLOCKINTERRUPT CAUSES SUSPENSION } 

EXTERNALEVENT( CLOCKINTERRUPT, LEVEL 5 ) ; 
START CLOCKDEVICE( CLOCKINTERRUPT, LEVEL 5 ); 

END { INITCLOCKDEVICE }; -

BEGIN { EXAMPLE } 
{ PRIORITY=l; STACKSIZE=200; HEAPSIZE=O } 

INITCLOCKDEVICE( LEVEL 5 ); 
END { EXAMPLE }. 

FIGURE 9-5. EXAMPLE OF SERVICING INTERRUPTS AS EVENTS. 

The Executive RTS actually permits the association of an alternate 
event with an interrupt by means of procedure ALTEXTERNALEVENT, which 
is described below. .Such an event is intended to be used to handle 
unexpected or spurious interrupts. If an interrupt occurs and the 
(primary) external event semaphore associated with the interrupt does 
not have a waiting process, then the alternate event (if any) 

9-17 



associated with the interrupt level is signaled. Such a capability is 
useful for devices whose interrupts cannot be disabled by software but 
whose device process might have to suspend itself while awaiting the 
availability of a resource. For example, consider a printer that 
generates an interrupt when it is taken off-line. If the device 
handler for the printer is waiting for some process to place a line in 
a buffer and thus is not suspended on the primary semaphore associated 
with the printer interrupt, then a spurious interrupt process could be 
invoked via the alternate semaphore to respond if the printer goes 
off-line. Alternate interrupt events permit the user to respond in 
such a situation that would otherwise have to be treated as a 
system-design error. 

9.5.2 Interrupt Routines 

The current implementation of the 
interrupts to be awaited by user 
restart interrupt and is used 
complete RTS system, not a single 

Executive RTS does not allow level O 
processes. Level 0 is the system 

by the Executive RTS to restart the 
process. 

The following types are assumed to be declared by the user. 

TYPE INTERRUPT LEVEL: 0 •• 15: 
INTERRUPT RESULT: -1 •• 15: 
REGISTERS-= (RO, Rl, R2, R3, R4, RS, R6, R7, RS, R9, RlO, Rl 1, 

R12,R13,R14,Rl5): 
WP= ARRAY[RO •• RlS] OF INTEGER: 

The following routines are available in the Executive RTS if the user 
declares the following calling sequences as EXTERNAL. 

FUNCTION INTLEVEL: INTERRUPT_RESULT: EXTERNAL: 

This function returns the interrupt level of the hardware interrupt 
currently in service (0 through 15) or returns -1 if no interrupt is 
in progress. 

Each of the following routines affect an attribute of a semaphore. The 
state of the semaphore with respect to its waiting processes or 
unreceived signals is not changed by the call of the routine. 

9-18 



·'-...-. 

.. --.....---

PROCEDURE EXTERNALEVENT( SEMA: SEMAPHORE; 
LEVEL: INTERRUPT LEVEL ) ; EXTERNAL; 

This procedure attaches the SEMA semaphore to the LEVEL interrupt as 
the primary receiver of an interrupt event. The same semaphore may be 
attached to more than one interrupt level as the primary or secondary 
receiver. Note that the priority of any process waiting on such a 
semaphore must be set in such a way that only one interrupt associated 
with the semaphore can be active at a given instant. That is, the 
priority of the waiting process must be at least as urgent as the most 
urgent interrupt. One interrupt level may be attached to no secondary 
semaphores, or to the semaphore which is the primary receiver of an 
interrupt event. If the LEVEL interrupt had been attached to a primary 
semaphore before the call of EXTERNALEVENT, then that semaphore is no 
longer attached, and the SEMA semaphore becomes the primary semaphore. 

PROCEDURE ALTEXTERNALEVENT(SEMA: SEMAPHORE; 
LEVEL: INTERRUPT_LEVEL ) ; EXTERNAL; 

This procedure attaches the SEMA semaphore to the LEVEL interrupt as 
the alternate receiver of an interrupt event. The same semaphore may 
be attached to more than one interrupt level as primary or secondary 
re-ceiver. But one interrupt level may be attached to none or one 
semaphore which is the secondary receiver of an interrupt event. If 
the LEVEL interrupt had been attached to a secondary semaphore before 
the call of ALTEXTERNALEVENT, then that semaphore is no longer 
attached, and the SEMA semaphore becomes the secondary semaphore. 

PROCEDURE NOEXTERNALEVENT(LEVEL: INTERRUPT LEVEL); 
EXTERNAL; 

This procedure detaches any semaphore which has been designated as the 
primary receiver of interrupt events for the LEVEL interrupt. If no 
semaphore has been so designated, this routine does nothing. 

PROCEDURE NOALTEXTERNALEVENT ( LEVEL: INTERRUPT LEVEL ) ; 
EXTERNAL; 

This procedures detaches any semaphore which has been designated as 
the secondary receiver of interrupt events for the LEVEL interrupt. If 
no semaphore has been so designated, this routine does nothing. 

9-19 



PROCEDURE ASSEMBLYEVENT(VAR INTERRUPT WP: WP: 
INTERRUPT_PC: INTEGER: LEVEL: INTERRUPT_LEVEL): EXTERNAL: 

This procedure associates the INTERRUPT WP workspace and the 
INTERRUPT PC assembly language program counter with the LEVEL 
interrupt- as the primary receiver of an event. Upon an interrupt 
occurring at the appropriate level, the machine will execute a BLWP 
using this workspace pointer and program counter before calling any 
Pascal handler. Depending upon the actions of the interrupt handler, 
the interrupt wili either be handled entirely in assembly language or 
in Pascal as well. The workspace to be used can be a Pascal variable 
or COMMON, and may be on the stack or in heap. The program counter 
should be passed using the LOCATION function, with the assembly 
language routine declared EXTERNAL (and the symbol DEFed in assembly 
language). The same workspace may be used for several levels if 
desired. See the Microprocessor Pascal Executive User~s Manual (MP385) 
for forms of the handler in native code. 

This routine is not supported in the Host Debugger and cannot be 
called under the Host Debugger. 

PROCEDURE NOASSEMBLYEVENT(LEVEL: INTERRUPT_LEVEL): EXTERNAL: 

.. ~ . ~) 
. - •,;-

This procedure disassociates any assembly language interrupt handler 
which had been designated as the receiver of an interrupt event. After 
calling this routine, Pascal will handle the next interrupt (if one ~) 
occurs) for the LEVEL interrupt. If no assembly language interrupt 
handler had been so designated, this routine does nothing. 

This routine is not supported in the Host Debugger and cannot be 
called under the Host Debugger. 

Figure 9-6 illustrates the use of one program that waits on more than 
one event. Program SPURIOUS waits on the alternate external event for 
interrupt levels zero through fifteen. If an unexpected (spurious) 
interrupt occurs, then a diagnostic message is printed, and the system 
is terminated. Note that the priority of SPURIOUS must be 0 since the 
program must have at least as great an urgency as any interrupt with 
which it is connected. A program such as SPURIOUS is useful primarily 
while a system is being initialized. In general, each interrupt level 
should have its own spurious interrupt handler so it is possible to 
attempt recovery. Since it has no knowledge of the particular devices 
associated with each interrupt, SPURIOUS cannot clear any interrupt 
that it handles; there is no alternative but to terminate the system. 

9-20 

) 



SYSTEM TEST; 

TYPE 
INTERRUPT LEVEL= 0 •• 15; 
INTERRUPT-RESULT= -1 .• 15; 
NONNEG = 0 .. 32767; 

PROCEDURE INITSEMAPHORE( VAR SEMA: SEMAPHORE; 
COUNT: NONNEG ); EXTERNAL; 

PROCEDURE WAIT( SEMA: SEMAPHORE); EXTERNAL; 
PROCEDURE ALTEXTERNALEVENT( SEMA: SEMAPHORE; 

LEVEL: INTERRUPT LEVEL); EXTERNAL; 
FUNCTION INTLEVEL:-INTERRUPT_RESULT; EXTERNAL; 

PROGRAM SPURIOUS; 
VAR 

SPURIOUS INTERRUPT: SEMAPHORE; 
MSG: PACKED ARRAY[l.&30] OF CHAR; 
N, STAT: INTEGER; 

BEGIN 
{ PRIORITY = l; STACKSIZE = 200; HEAPSIZE = 0 } 

INITSEMAPHORE( SPURIOUS INTERRUPT, 0 ); 
FOR I := 1 TO 15 DO -

ALTEXTERNALEVENT( SPURIOUS INTERRUPT, I); 
WAIT( SPURIOUS INTERRUPT); -
MSG := ~SPURIOUS INTERRUPT AT LEVEL ??~ 
N := 29; 
ENCODE( MSG, N, STAT, INTLEVEL: 2); 
MESSAGE ( MSG ) ; 
{ TERMINATE EXECUTION } 

END { SPURIOUS }; 

BEGIN { PRIORITY = l; STACKSIZE =200} 
START SPURIOUS; 
{ START OTHER USER PROGRAMS } 

END { TEST }. 

FIGURE 9-6. SPURIOUS INTERRUPT PROGRAM. 

9.5.3 General Features of Interrupt Handling 

9.5.3.1 General Routines. All hardware interrupts may be disabled by 
calling 

PROCEDURE MASK; EXTERNAL; 

except for level zero interrupt which is always enabled. This routine 
causes the interrupt mask in hardware to be set to zero. By using this 
routine an algorithm can ensure that it finishes a series of steps 
without being interrupted until the algorithm calls 

9-21 



PROCEDURE UNMASK; EXTERNAL; 

This routine enables interrupts which are more urgent than the 
priority of the calling process. The interrupt mask is set to the 
greater of zero and the calling process~s priority minus one; this 
value is the default mask at which any process executes. 

The interrupt mask of the processor is always set according to the 
mask of the process that is executing. If a process has called MASK, 
then it cannot be interrupted; however it can relinquish the processor 
by waiting for an event (either interrupt or semaphore) or by 
signaling a process with greater urgency. The priority of the new 
process determines the mask of the processor. 

9.5.3.2 Techniques of Code Style. Figure 9-7 illustrates several 
stylistic features of interrupt handling and interfacing. (This is an 
abstraction of the example in Figure 9-5.) 

9-22 



SYSTEM EXAMPLE; 
CONST LEVEL_S = S; 
TYPE INTERRUPT LEVEL= 0 •• 15; 

NONNEG = O •• j2767; 

PROCEDURE INITSEMAPHORE( VAR SEMA: SEMAPHORE; 
COUNT: NONNEG ); EXTERNAL; 

PROCEDURE WAIT( SEMA: SEMAPHORE); EXTERNAL; 
PROCEDURE EXTERNALEVENT( SEMA: SEMAPHORE; 

LEVEL: INTERRUPT_LEVEL ); EXTERNAL; 

PROGRAM DEVICE( INTERRUPT: SEMAPHORE: 
LEVEL: INTERRUPT LEVEL); 
{ SERVICE INTERRUPTS FROM A DEVICE } 
BEGIN 
{ PRIORITY=LEVEL; STACKSIZE=200; HEAPSIZE=O } 

{ PERFORM LOCAL INITIALIZATION } 
WHILE TRUE DO { FOREVER } BEGIN 

{ ENABLE INTERRUPTS FROM DEVICE } 
WAIT( INTERRUPT); 
{ DISABLE INTERRUPTS FROM DEVICE } 
{ SERVICE DEVICE INTERRUPT } 
END { FOREVER LOOP } ; 

END { DEVICE }; 

PROCEDURE INITDEVICE( LEVEL: INTERRUPT LEVEL); 
{ CREATE DEVICE SERVICE PROGRAM } -
VAR INTERRUPT: SEMAPHORE; 
BEGIN 

{ INITIALIZE DEVICE } 
INITSEMAPHORE( INTERRUPT, 0 ) ; 

{ FIRST WAIT ON INTERRUPT CAUSES SUSPENSION } 
EXTERNALEVENT( INTERRUPT, LEVEL 5 ); 
START DEVICE( INTERRUPT, LEVELS): 

END { INITDEVICE }: 

BEGIN { ·EXAMPLE } 
{ PRIORITY=!; STACKSIZE=200; HEAPSIZE=O } 

INITDEVICE( LEVEL 5 ); 
END { EXAMPLE }. 

FIGURE 9-7. EXAMPLE OF STYLE FOR INTERRUPT HANDLING. 

9-23 

-------- ----"'----- - - I 

I 



The code to interface to the device is partitioned into two modules. 
Program DEVICE actually responds to interrupts. It has two parameters: 
INTERRUPT, the semaphore on which it will wait for an interrupt to 
occur, and LEVEL, the interrupt level associated with the device which 
must be used to specify the concurrent characteristic PRIORITY (and 
hence the mask of DEVICE). Since the semaphore that is associated with 
the interrupt is passed as a parameter instead of being allocated and 
identified as an external event within DEVICE, this handler can be 
activated either directly by an interrupt or indirectly by an 
interrupt demultiplexer. The body of DEVICE has the structure of a 
block of initialization code followed by a perpetual loop in which 
individual interrupts are serviced. The loop should begin with code 
that manipulates the device so that interrupts are enabled. Then a 
call is made to the Executive RTS to suspend the process until the 
next interrupt. After the interrupt occurs, further interrupts are 
disabled, and code is executed to handle the last interrupt (which 
generally involves some type of acknowledgment to the hardware) • 
Finally, a branch is made back to the top of the loop to re-enable 
interrupts and start the sequence again. 

Note that there are two senses in which interrupts can be disabled 
within a device process. One is via the processor mask. If an 
appropriate priority has been chosen for the process, the processor 
mask of the device process protects it from further interrupts at the 
same level; however such an interrupt is held pending until the mask 
is raised. The other way to disable interrupts is to command the 
device interface not to permit them. In general it is wise, while 
servicing an interrupt, to disable further interrupts via the device 
interface since the processor mask could be raised if the handler had 
to suspend itself while waiting for a resource and a process with 
lesser urgency was activated. 

The other module of the device handler is the procedure INITDEVICE 
which can be called to create an instance of the device process. The 
parameter to INITDEVICE is the interrupt level to be associated with 
the device. A semaphore INTERRUPT is declared, initialized, and 
connected to the interrupt at level LEVEL. Then program DEVICE is 
started with INTERRUPT and LEVEL as parameters. In general it is a 
good practice to isolate the creation of a device process within a 
routine such as INITDEVICE that has as its parameters the externally 
known characteristics of the device. Such an initialization routine 
can be invoked as needed without the user having to be aware of the 
details of process creation and initializtion. 

It may appear incorrect for INITDEVICE to declare the semaphore 
INTERRUPT, pass it (by value) to program DEVICE, and then return, thus 
deallocating the variable INTERRUPT. A variable of type SEMAPHORE is 
actually a reference to an RTS-managed data structure. A semaphore 
passed by value is implemented by passing a reference to the 
associated structure. When a procedure returns in which a semaphore is 
declared, the data cell that contained a reference (pointer) to the 
structure is deallocated; the structure is deallocated only if 
TERMSEMAPHORE is called. 

9-24 



9.6 SCHEDULING OF DEVICE AND NON-DEVICE PROCESSES 

The Executive RTS scheduling policy that is presented in Pararaph 9.2 
treats the scheduling of device and non-device processes having the 
same urgency in a different manner. A device process (one with 
priority 0-15) preempts a process with the same priority; a non-device 
process does not. Such a distinction may appear to be inconsistent. 
However, as was discussed in that section, it is a good design 
practice to structure a system of processes so they interact correctly 
regardless of their relative priorities. Priority should affect only 
the urgency that is associated with the execution of a process, not 
its algorithmic behavior. The choice for the treatment of processes 
with the same priority was based primarily upon the efficiency of the 
resulting implementation. The archit.ecture of the TI 990/9900 and the· 
data structures used within the Executive RTS make it significantly 
easier to place a non-device process in the scheduling queue than to 
preempt the active process; the converse is true for a device process. 
Such considerations of efficiency are important since it will not be 
uncommon for one process to activate another with the same priority. 
For device processes in particular, interrupt multiplexing results in 
one process ·signaling (scheduling) another process with the same 
priority, so preemption is appropriate. 

9-25 



. ''\ 
. I 

'/ 

~) 



SECTION 10 

PROCESS COMMUNICATION 

10 • 1 OVERVIEW 

A process must communicate with its external environment to perform 
any practical function. A process can communicate with other processes 
and with devices which behave similarly to processes. The vehicle of 
that communication can be as simple as shared memory, or it may be 
very sophisticated, such as the Executive RTS interprocess file 
system. This section describes the different mechanisms available to 
the user for communication and is divided into two parts. The first 
part discusses low-level mechanisms such as CRU, memory mapped I/O and 
shared memory. The second part discusses the more sophisticated 
Executive RTS logical file system which is used to comm.unicate with 
both devices and processes in an independent manner using standard 
Microprocessor Pascal System input/output operations. 

10.2 SIMPLE COMMUNICATION MECHANISMS 

Simple. communication mechanisms are easily implemented and usually 
require very little overhead. They are, however, the most primitive 
forms available and should only be used to implement more flexible 
communication systems. The mechanisms to be discussed here include: 

o Device communication using CRU 

o Device communication using memory-mapped I/O 

o Interprocess communication using shared variables 

o Interprocess communication using message buffers 

10.2.1 Device Communication Using CRU 

The Communications Register Unit (CRU) is the general-purpose, 
command-driven hardware interface of the TI 990/9900 family and is 
used to communicate with many supported devices. The CRU is addressed 
as a data space consisting of 4K consecutive bits which are addressed 
by the CRU input/output commands as independent bits or in groups of 
up to 16 bits. The CRU is addressed only by these input/output 
commands. The CRU bus is totally separate from the memory bus. 
Furthermore, input and output bits may be separate and unrelated so 
the CRU is best visualized as a 4096-bit input register and a 4096-bit 
output register. 

10-1 



Most devices are interfaced through 16 consecutive bits of the CRU -~ 
space. Therefore, the CRU commands access the CRU space using a base ) 
address and, in some cases, a bit displacement: the base is a variable 
and the displacement is a constant. This . design facilitates the 
implementation of a reentrant device handler which services identical 
devices having unique CRU bases. 

The following standard procedures and function are provided for CRU 
access in Microprocessor Pascal. These routines are pre-declared 
within the compiler and should not be declared by the user. The 
responsibility for manipulation of the CRU base is given to the user. 

TYPE 
BASE RANGE= 0 •• #lFFE: 
WIDTH RANGE= 1 •• 16: 
DISPLACEMENT_RANGE = -128 •• 127: 

PROCEDURE CRUBASE(BASE: BASE_RANGE) 

PROCEDURE LDCR(WIDTH: WIDTH_RANGE: VALUE: INTEGER) 

PROCEDURE SBO(DISPLACEMENT: DISPLACEMENT_RANGE) 

PROCEDURE SBZ(DISPLACEMENT: DISPLACEMENT_RANGE) 

PRODEDURE STCR(WIDTH: WIDTH_RANGE: VAR VALUE: INTEGER) 

FUNCTION TB(DISPLACEMENT: DISPLACEMENT_RANGE): BOOLEAN 

The parameters DISPLACEMENT and WIDTH must be compile-time constants: 
permitting non-constant parameters would complicate in-line expansion 
of these routines. 

10 • 2. -1. 1 PROCEDURE CRUBASE. 

PROCEDURE CRUBASE(BASE: BASE_RANGE) 

This procedure establishes a routine-local CRU base. The value of the 
single parameter BASE is twice that of the actual hardware CRU 
address. This is the value that will be placed in Rl2 and allows a 
more efficient in-line expansion. The actual hardware address is used 
to bias CRU displacements. This value will be used as the CRU base in 
subsequent CRU operations done in the current routine. Each routine 
doing CRU operations has a routine-local CRU base which can be 
manipulated only by that routine. It is possible ·for CRUBASE to be 
called more than once in a particular routine to modify the current 
CRU base. 

10-2 

.) 



10.2.1.2 PROCEDURE LDCR (Load CRU). 

PROCEDURE LDCR(WIDTH: WIDTH_RANGE; VALUE: INTEGER) 

This procedure outputs the WIDTH least significant bits of VALUE to 
consecutive CRU bits beginning at the established CRU base. The 
parameter WIDTH must be a compile-time constant. 

10.2.1.3 Procedure SBO (Set Bit to One). 

PROCEDURE SBO(DISPLACEMENT: DISPLACEMENT_RANGE) 

This procedure outputs a 
of the established CRU 
CRU base is the hardware 
parameter to CRUBASE 
compile-time constant. 

"l" to the CRU bit whose address is the sum 
base and DISPLACEMENT. The value used for the 
address which is half the value of the 

The parameter DISPLACEMENT must be a 

10.2.1.4 PROCEDURE SBZ (Set Bit to Zero). 

PROCEDURE SBZ(DISPLACEMENT: DISPLACEMENT_RANGE) 

This procedure outputs a "0" to the CRU bit whose address is the sum 
of the established CRU base and DISPLACEMENT •. The value used for ·the 
CRU base is the hardware address which is half the value of the 
parameter to CRUBASE. The parameter DISPLACEMENT must be a 
compile-time constant. 

10.2.1.s PROCEDURE Ster Store Cru). 

PROCEDURE STCR(WIDTH: WIDTH_RANGE; VAR VALUE: INTEGER) 

This procedure inputs the WIDTH CRU bits at the established base into 
the least significant bits of VALUE. All other bits of VALUE are 
cleared. The parameter WIDTH must be a compile-time constant. 

10.2.1.6 FUNCTION TB (Test Bit). 

FUNCTION TB(DISPLACEMENT: DISPLACEMENT_RANGE): BOOLEAN 

This function returns the value of the CRU bit whose address is the 
sum of the established CRU base and DISPLACEMENT. The value used for 
the CRU base is the hardware address which is half the value of the 
parameter to CRUBASE. The value TRUE is returned if the CRU bit is n1n 
and FALSE is returned if the CRU bit is non. The parameter 
DISPLACEMENT must be a compile time constant. 

10-3 



10.2.2 Device Communication Using Memory-Mapped I/O 

Some devices are interfaced'.to the processor on the memory and address 
busses. Communication to these devices is done by reading and writing 
into "memory locations" dedicated to the device. This type of I/O is 
referred to as memory-mapped I/O and is supported by the Executive 
RTS. The user describes the structure of the device~s dedicated memory 
space in the type declaration of a packed record, referred to as a 
control record. Figure 10-1 is an example device control record 
represented first as a diagram, then as a Pascal type declaration. The 
MAP option of the compiler can be used to che.ck that the template 
formed by the type declaration of the packed record matches the bit 
placements required. 

BIT NUMBER 0 1 2 3 4 5 6 7 8 9 10 11 12 13 .14 15 

INPUT BYTE OUTPUT BYTE 

TYPE 

OI,III -----,UNUSED SPACE 

r- ~PUT INTERRUPTS ENABLED 
OUTPUT INTERRUPTS ENABLED 

...... 

BYTE = 0 •• #00FF; 
TEN BIT= 0 •• #03FF; 

DEVICE_INSTANCE = CONTROL RECORD; 
CONTROL RECORD = PACKED RECORD 

INPUT BYTE 
OUTPUT BYTE 
OUTPUT-INTERRUPTS ENABLED 
INPUT INTERRUPTS ENABLED 
UNUSED SPACE 
ERROR ON OUTPUT 
ERROR-ON-INPUT 
OUTPUT BUSY 

END: 

IEO,EI,OBI IB 

r r r- h;PUT BUSY 
OUTPUT BUSY 

ERROR ON INPUT 
ERROR ON OUTPUT 

: BYTE; 
:BYTE; 

BOOLEAN; 
BOOLEAN; 
TEN BIT; 
BOOLEAN; 
BOOLEAN; 
BOOLEAN; 

FIGURE 10-1. INTERFACE TO MEMORY MAPPED I/O DEVICE. 

A variable must be declared as a pointer to a control record of (type 
DEVICE_INSTANCE) and initialized to the address of the control space. 
A type transfer will probably be necessary to assign an integer to the 
pointer. It is suggested that the address of the control space be 
passed as a process parameter allowing the process to be reentrant. 

10-4 

•. ~ 
/ 

\ , 
. ..../ 



Manipulation of the control space is done indirectly t.hrough a ·1ocal 
pointer of type DEVICE INSTANCE. Such a technique facilitates both the 
implementation of reentrant device handlers and migration from a 
prototype system to the target system. A device handler is reentrant 
because multiple instances of it may exist, each manipulating a 
different control space of identical structure. The migration is 
simplified because of the ease in selecting the location of the 
control space which may be different in the prototype and target 
systems. Figure 10-2 is an example of control space manipulation. 

PROCESS DEVICE HANDLER(ADDRESS: INTEGER); 
VAR CONTROL RECORD REF: @CONTROL RECORD; 

CH: CHAR;- - -
BEGIN 
CONTROL RECORD REF::INTEGER := ADDRESS: 
WITH CONTROL RECORD REF@ DO BEGIN 

WHILE TRUE-DO BEGIN 
WHILE INPUT BUSY AND OUTPUT BUSY DO {POLL}: 
IF NOT INPUT BUSY THEN BEGIN 

CH:= CHR(INPUT BYTE): 
INPUT BUSY := TRUE {START INPUT OF NEXT BYTE}; 
{DO SOMETHING WITH CH} 
END {IF}: 

IF NOT OUTPUT BUSY THEN BEGIN 
OUTPUT BYTE-:= ORD(~*~): 
OUTPUT-BUSY := TRUE {START OUTPUT OF BYTE}: 
END {IF} 

END {WHILE TRUE} 
END {WITH CONTROL RECORD REF@} 

END {PROCESS}: - -

FIGURE 10-2. MANIPULATION OF MEMORY-MAPPED I/O DEVICE. 

NOTE: If the same control space were to be manipulated 
one process concurrently, synchronization would be 
guarantee exclusive access to the control space. 

10.2.3 Interprocess Communication Using Shared Variables 

by more than 
necessary to 

The simplest form of interprocess communication is accomplished 
through the sharing of variables such as integers or simple record 
structures. The Microprocessor Pascal scqpe rules allow processes to 
share variables with other processes within which they are nested. 
Also, variables in a heap can be shared among processes since pointers 
may be passed as parameters to processes. However, only a single 
process should be allowed to operate on a variable at a time. 
Therefore, a semaphore is used to guarantee exclusive access to each 
shared variable while it is being manipulated. This is done by 
treating each shared variable as a resource and allocating this 

10-5 



resource to a single process at a time. The most convenient way to 
represent a shared variable is as a record structure containing a 
semaphore (initialized to n1n) used to guarantee mutual exclusion with 
respect to the record. Code accessing a shared variable must be 
bracketed within a WAIT and a SIGNAL to ensure exclusive access. 
Figure 10-3 is an example of declaring and modifying a shared 
variable. 

VAR 
B: {SHARED} RECORD 

MUTEX: SEMAPHORE; 
NEXT: 1. .10; 
END {b}; ... 

WITH B DO BEGIN {INITIALIZE SHARED VARIABLE} 
INITSEMAPHORE(MUTEX, 1); 
NEXT := 1 
END {WITH B}; 

WITH B DO BEGIN WAIT(MUTEX) {GUARANTEE MUTUAL EXCLUSION}; 
NEXT := NEXT MOD 10 + l; 
SIGNAL(MUTEX) {RELEASE EXCLUSIVE ACCESS} END {WITH B}; ... 

WITH B DO BEGIN {DATA NO LONGER SHARED} 
TERMSEMAPHORE (MUTEX); END { WITH B } ; 

FIGURE 10-3. EXAMPLE OF SEMAPHORE CONTROL OF SHARED VARIABLES. 

10.2.4 Interprocess Communication Using Message Buffers 

A message buffer is a shared data structure through which messages are 
transferred and buffered among processes. A message is any structure 
which can be copied from one process to another; examples are a string 
of characters, an integer, an array, a record or a pointer. A process 
may send a message through a message buffer without waiting for the 
message to be copied by the consuming process. The producing process 
is suspended only if the buffer space required is not available. 

Since message buffers are implemented by the user, they may be viable 
alternatives in applications where the Executive RTS interprocess file 
system is not adequate. Figure 10-4 is an example implementation of a 
message buffer. 

10-6 



CONST 
MAX MESSAGES= 10 {MAXIMUM MESSAGES TO BUFFER}; 

TYPE -
POLAR COORDINATES = RECORD R, THETA: REAL END; 
MESSAGE = POLAR COORDINATES; 
MESSAGE INDEX =-1 •• MAX MESSAGES; 

-o. ~ -

MESSAGE BUFFER = {SHARED} RECORD 
MUTEX: SEMAPHORE {ENSURES MUTUAL EXCLUSION}; 
NOT_EMPTY: SEMAPHORE; 
NOT FULL: SEMAPHORE; 
NEXT IN: MESSAGE INDEX; 
NEXT-OUT: MESSAGE INDEX; 
BUFFER: ARRAY [MESSAGE INDEX] OF MESSAGE; 
END {MESSAGE_BUFFER}; -

FIGURE 10-4. EXAMPLE IMPLEMENTATION OF MESSAGE BUFFERING DATA. 

The declaration of the message buffer is in the form of a record. 
The first element is a semaphore MUTEX that is used to ensure 
mutual exclusion of processes accessing the record. 
The semaphore NOT E~PTY is used to ensure that the buffer is 
not empty when removing messages from it. The count field of the 
semaphore NOT EMPTY 
is always the-number of messages currently contained in BUFFER. 
Therefore, a process performing a wait on NOT EMPTY is suspended 
if no messages are present; otherwise the count of messages is 
decremented. The semaphore NOT FULL is used to ensure that 
there is an available element Tn BUFFER to contain a message. The 
count field of the semaphore NOT FULL 
is always the number of elements-of BUFFER not 
containing messages. Therefore, a process executing a wait on 
NOT FULL is suspended if the buffer space is not available; 
otherwise the number of available elements is decremented. The· 
variable NEXT IN indicates the next element of BUFFER to contain 
incoming messages. The variable NEXT OUT indicates the next element 
of BUFFER containing a message to be sent. The variable BUFFER is 
managed as a circular buffer of messages. 

The operations on message buffers are INITIALIZE, SEND, RECEIVE, and 
TERMINATE and are shown in Figure 10-5. 

10-7 



PROCEDURE INITIALIZE(VAR B: MESSAGE_BUFFER); 
BEGIN WITH B DO BEGIN 

INITSEMAPHORE(MUTEX, 1) {ALLOW 1 PROCESS TO ACCESS AT A TIME}; 
INITSEMAPHORE(NOT EMPTY, 0) {NUMBER OF MESSAGES PRESENT}{ 
INITSEMAPHORE(NOT-FULL, MAX MESSAGES) {AVAILABLE BUFFERSj; 
NEXT IN := 1 {INDEX OF FIRST IN-COMING MESSAGE}{ 
NEXT-OUT:= 1 {INDEX OF FIRST OUT-GOING MESSAGEj; 
END TwITH B} ·· 

END {INITIALIZE} . 

PROCEDURE SEND(VAR B: MESSAGE_BUFFER; M: MESSAGE); 
BEGIN WITH B DO BEGIN 

WAIT(NOT FULL) {WAIT UNTIL A BUFFER IS AVAILABLE}; 
WAIT(MUTEX) {GET EXCLUSIVE ACCESS TO RECORD}; · 
BUFFER[NEXT IN] := M {INSERT MESSAGE IN BUFFER}; 
NEXT IN:= NEXT IN MOD MAX MESSAGES+ 1 {UPDATE INDEX}; 
SIGNAL(MUTEX) {RELEASE ACCESS TO RECORD}; 
SIGNAL(NOT EMPTY) {INDICATE ANOTHER MESSAGE PRESENT}; 
END {WITH B} 

END {SEND}; 

PROCEDURE RECEIVE (VAR B: MESSAGE BUFFER, VAR M: MESSAGE).; 
BEGIN WITH B DO BEGIN 

WAIT(NOT EMPTY) {WAIT UNTIL A BUFFER IS AVAILABLE}; 
WAIT(MUTEX) {GET EXCLUSIVE ACCESS TO RECORD}; 
M := BUFFERrNEXT OUT] {REMOVE MESSAGE FROM BUFFER}; 
NEXT OUT:= NEXT-OUT MOD MAX BUFFERS+ 1 {UPDATE INDEX}; 
SIGNAL(MUTEX) {RELEASE EXCLUSIVE ACCESS}; , 
SIGNAL(NOT FULL) {INDICATE ANOTHER AVAILABLE BUFFER}; 
END {WITH B} · 

END {RECEIVE}; 

PROCEDURE TERMINATE(VAR B: MESSAGE_BUFFER); 
BEGIN WITH B DO BEGIN 

WAIT(MUTEX); 
TERMSEMAPHORE(MUTEX); 
TERMSEMAPHORE(NOT EMPTY); 
TERMSEMAPHORE(NOT-FULL); 
END {WITH B}· -

END {TERMINATE}; 

FIGURE 10-5. EXAMPLE IMPLEMENTATION OF MESSAGE BUFFERING. 

NOTE: A dangerous problem can occur if the WAIT(MUTEX) precedes 
WAIT(NOT_EMPTY) in procedure RECEIVE. Suppose a process executes 
RECEIVE and is suspended on NOT EMPTY because no messages are present 
to receive. Then MUTEX is left in a locking state. Any other process 
that executes SEND or RECEIVE is suspended on the MUTEX mutual 
exclusion semaphore. Therefore, no other process is able to SEND a 
message for the first process to RECEIVE. All processes sharing the 
message buffer become suspended forever. Semaphores are low-level 
synchronization tools that must be used with great care. Interprocess 
files (Paragraph 10.2) provide a much higher level interface and 

10-8 

\ 
_) 



,· 
I 

/ 

should be used when possible. 

10.3 EXECUTIVE RTS FILES 

Typically files are associated with storage media such as disc or 
magnetic tape. However, many operating systems also allow devices to 
be treated as files. Therefore, the term logical file is used to 
indicate any communication medium with which programs can perform 
log!cal I/O (device independent I/O). A logical file can be a disc 
file in a directory, a VDT, a card reader, a line printer, a spooler, 
etc. Because of the uniform interface used in logical I/O, programs do 
not have to be aware of unique characteristics of .devices or disc 
files when doing logical I/O. 

The Executive RTS logical files are manipulated through variables of 
type FILE. A FILE type is a structure which consists of a sequence of 
components which are all of the same type. The number of components, 
called the length of the file, is not fixed and may grow to any size 
depending on the so·urce or destination of the file components. 

Allowing logical files to include interactive devices, such as video 
display terminals (VDTs), permits the sequence of components to be 
generated in real time by an intelligent source (a human at the 
keyboard), as opposed to simply reading previously generated 
components from a storage medium. The generation of these components 
may also be 'influenced by output of the program, which is produced in 
real-time and displayed on the screen of the VDT. Both the program and 
the human are probably influenced by each other in their real-time 
interactions. In an abstract sense, the program and the human 
interacting with each other form a system of two cooperating 
processes. 

The Executive RTS approach to interprocess communication is to treat 
it as a form of 109ical I/O: cooperating processes may communicate 
with each other using the Executive RTS logical files. One process may 
read file components which are being written concurrently by another 
process. This is very similar to the interaction described above 
because the input is generated and the output consumed in real-time by 
the processes rather than being stored on or retrieved from some 
storage device. In the Executive RTS, a logical file can be associated 
with a device, a disc file, or another process. 

NOTE: The Microprocessor Pascal System (on the Target system) supports 
logical I/O to only those logical file types for which the r·elevent 
como component subsystem is availa:ble. 

The Executive RTS file I/O provides a consistent logical interface 
between system components, which include both hardware devices and 
software programs. This allows systems to be constructed from modular 
components, each of which is understood in terms of its inputs and 
outputs. In this way, the interfaces between the comp~nents form a 
nearly complete definition of the system. 

10-9 



PROCESS 

INPUT 
FILE I 

-----,-1 VARIABLE I 
FILE 
VARIABLE -------__ ,, OUTPUT 

FIGURE 10-6. FILE VARIABLES AS PROCESS-LOCAL PORTS. 

Each component can be designed and implemented independently and can 
be tested in isolation from other units to verify that it performs its 
required function. A system component can be replaced by a 
"plug-compatible" test component that injects test data into the 
system or monitors the data generated by other parts of the system. 
("Plug-compatible" means that test. component has the same interface 
structure as the "real" component.) 

10.3.1 Process-Local File variables 

A Microprocessor Pascal file variable is actually a process-local port 
which interfaces the process with its external environment as 
illustrated in Figure 10-6. In referencing this figure, please note: 
the file should be opened for access (RESET for input and REWRITE for 
output) only after it has been passed to the process (i.e., the file .) 
must be opened only in the process in which it is used). _.1 

Each file variable has a name in the form of a character string, which 
indicates with which logical unit it is associated. A file variable 
declared in the VAR section is initially given the name of the 
identifier of the variable (truncated to eight characters). For 
example, a file variable declared as 

VAR 
printer: text; 

has an initial name of "PRINTER". (NOTE;Lower case letters are not 
significant; MPP converts all characters to uppercase.) The standard 
function FILENAMED can be used when passing files by value. Its 
calling sequence is: 

FUNCTION FILENAMED(S: "any string"): anyfile; 

The result of the function is a file with the initial name equal to 
the specified string. For example, 

PROGRAM COPY(in, out: text); FORWARD; 

START COPY( FILENAMED(~READER~), FILENAMED(~PRINTER~) ); 

10-10 



causes the standard INPUT and OUTPUT files of COPY to be named 
"READER" and "PRINTER", respectively. The standard procedure SETNAME 
can be used to modify the name of a file variable to the specified 
string. Its calling sequence is: 

PROCEDURE SETNAME(VAR F: ANYFILE~ S: "ANY STRING")~ 
' 

Lower case characters in S are insignifiacnt and trailing blanks are 
stripped. For example: 

SETNAME(F, ~MAGTAPE ~) 

changes the name of F to "MAGTAPE". 

10.3.2 Channels 

Channels are shared data structures through which file variables are 
linked to devices and to other file variables. A channel conducts 
information among file variables and devices and synchronizes the 
execution of the participating processes. Channels may optionally have 
the capability to buffer components, allowing produ'cers to proceed 
before components are consumed. Figure 10-7 illustrates the 
connections among file variables and devices with channels. 

I \ 
I DEVICE +---< CHANNEL >-------+ FILE 

I 1 1 
\ I VARIABLE 

PROCESS 
\_;-

1----+ FILE 

\ 11 l_I VARIABLE 
I 

< CHANNEL > 
\ I\ I I I I \ FILE 

\----+ VARIABLE 
I I I I PROCESS 

I 
DEVICE I \ 

__ I----< CHANNEL >-------+ FILE 
\_ I \ / l_I VARIABLE 

FIGURE 10-7. CHANNEL CONNECTIONS. 

Each channel has a name, in the form of a character string, 
identical to the names of all file variables connected to it. 
are automatically maintained by the Executive RTS and 
completely transparent to the user •. 

10-11 

which is 
Channels 
may be 

. - .. - -- ~- -,....--- ·~ : 



10.3.3 Device Channels 

Each physical device in a system is identified by an alphanumeric name 
from one to eight characters in length and has a dedicated channel of 
the same name. Therefore, any logical I/O done with the channel 
"PRINTER" results in physical I/O on the device "PRINTER" (Figure 
10-8) • 

DEVICE 
~PRINTER~ / CHANNEL \ 

/----< ~PRINTER~ > 
\_!- \ _____ .! 

FIGURE 10-8. LOGICAL DEVICE AND ASSOCIATED DEVICE CHANNEL 

This means that the user can dynamically select a device for I/O by 
calling the standard procedure SETNAME for a locally declared file 

·variable. When the file is opened with a' REWRITE, it becomes connected 
to the corresponding device channel. 

10.3.4 Connection of File Variables to Channels 

Before a file can be used for I/O, it must be opened. Microprocessor 
P~scal files are opened for writing and reading by the standard 
procedures REWRITE and RESET, respectively. Both of these procedures 
close the file first if it was previously opened and then open it in 
the appropriate mode. The standard procedure CLOSE simply closes the 
file if opened. This RTS procedure must be explicitly declared if 
used. Its calling sequence is: 

PROCEDURE CLOSE( VAR F: anyfile ); EXTERNAL; 

Exiting a routine in which a file variable is declared also causes an 
implicit close operation on the file. 

When a file variable is opened, it is connected to a channel of the 
same name as the file. If no channel exists by that name, one is 
implicitly created and given the appropriate characteristics. A file 
variable is disconnected from a channel when it is closed. If no file 
variables are left connected to a particular channel as a result of a 
close, that channel is normally destroyed. 

As an example, consider a pagination program which reads lines from 
its input file and formats them into pages with headings and page 
numbers (Fig~re 10-9). 

10-12 



PROGRAM PAGINATION ( INPUT : TEXT; 
OUTPUT TEXT ) ; 

VAR 
CH 
PAGE NUMBER 
LINE-NUMBER 
HEADING 

CHAR; 
INTEGER; 
INTEGER; 
PACKED ARRAY (.1 •• 72.) OF CHAR; 

BEGIN {PAGINATION} 
RESET (INPUT) ; 
REWRITE(OUTPUT); 
FOR I := 1 TO 72 

DO BEGIN {READ FIRST LINE INTO HEADING}; 
IF EOLN THEN CH:=' ' 

ELSE READ (CH); 
HEADING[!] := CH 

END {FOR I := l to 72}; 
READLN; 
PAGE NUMBER := l; 
WHILE NOT EOF 

DO BEGIN 
WRITELN( HEADING, 'PAGE', PAGE NUMBER: 1); 
WRITELN; 
LINE NUMBER := 3; 
WHILE LINE NUMBER = 56 

AND NOT EOF 
DO BEGIN 

WHILE NOT EOLN 
DO BEGIN 

READ(CH); 
WRITE (CH) 

END; 
WRITELN; 
READLN; 
LINE NUMBER := LINE NUMBER + 1 

END {WHILE LINE NUMBER ~ 56 AND NOT EOF}; 
PAGE (OUTPUT) ; 
PAGE NUMBER := PAGE NUMBER + 1 

END {WHILE NOT EOF} 
END {PAGINATION}. 

FIGURE 10-9. PAGINATION PROGRAM • . 

Assuming that there is a card reader named READER and a line printer 
named PRINTER, this program can be used to list a deck of cards by 
invoking it as follows: 

START PAGINATION( FILENAMED('READER'), FILENAMED('PRINTER') ); 

10-13 



When the standard file INPUT is opened with RESET, it. is connected to 
the device channel named READER. The standard file OUTPUT is 
implicitly opened with a REWRITE on entry to the program, and is 
connected to the device channel named PRINTER. The program then copies 
the text from the reader to the printer adding headings, page numbers, 
and page separations. When EOF is detected on !NP.UT, the program 
terminates causing the automatic closing (and disconnection) of both 
files. 

Now consider the program in Figure 10-10, which reads polar 
coordinates from a text file and writes both the polar coordinates and 
equivalent rectangular coordinates to another text file. 

PROGRAM COORDINATE CONVERSION 

VAR 
R REAL; 
THETA REAL; 

FUNCTION cos x REAL 

FUNCTION SIN x REAL 

BEGIN {COORDINATE CONVERSION} 
REWRITE(OUTPUT)~ 

INPUT : TEXT; 
OUTPUT TEXT); 

REAL; EXTERNAL; 

REAL; EXTERNAL; 

WRITELN(~POLAR TO RECTANGULAR COORDINATE CONVERSIONS'); 
WRITELN; 
WRITELN {SKIP TWO LINES}; 
WRITELN(~ ':20, ~R~:lO ~THETA~:lO, ~X':lO, 'Y':lO); 
WRITELN {SKIP ONE LINEf; 
RESET (INPUT) ; 
WHILE NOT EOF 

DO BEGIN 
READLN(R, THETA); 
WRITELN(' ~:20, r:l0:2, THETA:10:2, 

R*COS(THETA) :10:2, R*SIN(THETA) :10:2) 
END {WHILE NOT EOF} 

END {COORDINATE_CONVERSION}; 

FIGURE 10-10. COORDINATE CONVERSION PROGRAM. 

This program can also be invoked to read from the card reader and 
print on the line printer as follows: 

START COORDINATE CONVERSION 
( FILENAMED('READER'), FILENAMED(~PRINTER') ); 

However, the output is not segmented into pages and is printed over 
perforations in the paper. It is possible to allow the program 
PAGINATION (Figure 10-9) to process the output of 
COORDINATE CONVERSION (Figure. 10-10) before it is printed. Figure 
10-11 illustrates the relationship between the two programs that can 
be accomplished if the Executive RTS logical files are utilized for 

10-14 



( 

interprocess communication. 

/ DEVICE I "'READER"" 

DEVICE 
""PRINTER"" 

I 
--------------------> 

I 

I 
<------------------

COORDINATE 
CONVERSION 

PROGRAM 

v 
PAGINATION 

PROGRAM 
1' I \ /.~~- -~~~~~~~~~ 

FIGURE 10-11. COMMUNICATION AMONG PROGRAMS AND DEVICES. 

The following invocations initialize this system: 

START COORDINATE CONVERSION 
(FILENAMED(""READER""), FILENAMED(""PRIVATE"")): 

START PAGINATION 
(FILENAMED(""PRIVATE·), FILENAMED(""PRINTER"")): 

In this case, the output of COORDINAT.E CONVERSION is transmitted as 
the input to PAGINATION through a channel named PRIVATE. This channel 
is created automatically by the first program that attempts to connect 
to it. When COORDINATE CONVERSION detects EOF on its input file, it 
terminates, causing its output file to be disconnected from the 
channel. This causes an EOF indication on the input file of PAGINATION 
because it is connected to same channel. PAGINATION then terminates, 
causing both of its files to be closed, which causes the automatic 
destruction of the channel PRIVATE. 

The Executive RTS logical files facilitate the production of general 
purpose utilities like PAGINATION which can be used in many different 
configurations to perform· commonly needed functions. 

A single channel may have more than one reading and/or writing file 
variable connected to it. However, it is possible to limit either or 
both for a particular channel, thus providing a way to implement both 
shared access and exclusive access devices. 

10-15 



10.3.S Sequential (Non-Text) File Operations 
I 

Sequential files are used to transmit or receive values to or from 
their associated channels in "binary" (memory image) format. There is 
no automatic data conversion when using sequential files. The standard 
procedure READ is. used to receive into a variable the next component 
from the channel. The execution of this procedure may cause suspension 
of the process if the next component has not yet been produced. The 
reading process is activated again when the component becomes 
available. The standard procedure WRITE is used to transmit the value 
of a variable as the next component to the channel associated with the 
file. If no buffer is available for the new component and no other 
file variable connected to the channel is waiting for a component, the 
process is suspended. It is activated again when a buffer becomes 
available or another process reads from the channel. 

10.3.6 Text File Operations 

Text files are used to transmit or receive file components to or from 
their associated channels in "character" format. The components of a 
text file are lines of text which are encoded and decoded 
automatically when text file operations are performed. Associpted with 
each text file is a line buffer, which contains the component being 
encoded or decoded, and a column index which indicates the current 
character position within the line buffer. 

Operations on a text file cause the column index to be incremented as 
characters are produced or consumed in the line buffer. Figure 10-12 
illustrates the effects on the column index during the read of a real 
number from a text file. 

10-16 

') 



VAR 
F: TEXT; 
R: REAL; 

~ii~ERl ____ l ____ 3 
I ____ · 1 ____ 

1 
1 ____ 

4 
l ____ l ____ o I ____ · 1 ____ 

3 1~1 1 ____ 
8 

1 ____ 
3 

I 

* 
I 

COLUMN INDEX BEFORE READ(F, R) 

~ii~ERl ____ l ____ 
3 

I ____ · l ____ 
1 

1 ____ 
4 

l ____ l ____ o I ____ · 1 ____ 
3 

l ____ 
1 

1 ____ 
8 

1 ____ 
3 

I 

* 
I 

COLUMN INDEX AFTER READ(F, R) 

FIGURE 10-12. COLUMN INDEX IS INCREMENTED DURING TEXT READ. 

As the column index is incremented off the end of the line buffer, it 
is logically placed at the beginning of the next line. However, for a 
reading text file, the next component is not received from the channel 
until it is needed. The standard procedure READLN is used to logically 
advance the column index to the beginning of the next line, but does 
not cause the next component to be received from the channel. Figure 
10~13 illustrates the effect of READLN on a text file. 

LINE BUFFER BEFORE READLN 

I 
COLUMN INDEX BEFORE READLN 

LINE BUFFER AFTER READLN 

EMPTY BUFFER - NEXT COMPONENT NOT READ YET 

* 
\ 
COLUMN INDEX AFTER READLN 

FIGURE 10-13. EFFECT OF READLN ON READING TEXT FILE. 

10-17 



The standard procedure RESET 
index at the beginning of 
received from the channel. A 
the next component to be 
(Figure 10-14.) 

leaves the text file 
the first line, but the 
READ performed at this 
received before any 

LINE BUFFER AFTER RESET AND READLN 

EMPTY BUFFER - NEXT COMPONENT NOT READ YET 

* 
\ 
COLUMN INDEX AFTER RESET AND READLN 

LINE BUFFER AFTER READ(CH) 

\ 
COLUMN INDEX AFTER READ(CH) CH CONTAINS ~p~ 

with the column 
line has not been 
time will cause 
decoding is done 

FIGURE 10-14. EFFECT OF READING FIRST CHARACTER ON LINE. 

The standard function EOLN is used to detect the end of line when 
reading a text file. It returns TRUE if the last character on a 
line has been read. Logically, there is a blank character between 
lines, so when EOLN = TRUE, the column index is not at the beginning 
of the next line. 

However, reading the blank character or performing a READLN places it 
there. 

The standard function EOF is used to detect the logical end of file 
for both sequential and text files. (The cause of logical end of file 
is discussed in Section 10.3.8.) If EOF(F) is TRUE, then no 
information can be read from F. For reading text files, EOF(F) can 
only be TRUE if the column index is at the beginning of the line. If 
the column index is at the beginning of the line and the line buffer 
is empty and EOF is called, an attempt is made to receive the next 
component from the channel. If it is received, EOF returns FALSE. If 
the attempt fails, EOF returns TRUE. Figure 10-15 illustrates the 
effect of EOF when FALSE is returned. 

10-18 

) 



( 

( 
'•. 

LINE BUFFER AFTER RESET AND READLN 

EMPTY BUFFER - NEXT COMPONENT NOT READ YET 

* 
\ 
COLUMN INDEX AFTER RESET AND READLN 

LINE BUFFER AFTER EOF(F) 

L~:--'~1~1~1~1_1 __ ~_1~1_1~1~1--~__1_-~1~ 
\ 

COLUMN INDEX AFTER EOF(F) RETURNS FALSE 

FIGURE 10-15. EFFECT OF EOF(F) WHEN RESULT IS FALSEa 

The standard procedure WRITELN is used to transmit a writing text 
f ile .. s line buffer as the next component of the channel associated 
with the file. WRITELN also causes the column index to be placed at 
the beginning of the next line. An implicit WRITELN is performed if a 
WRITE causes the column index to go beyond the end of the line buffer. 

10.3.7 Random File Operations 

Random files are aupported in Host "execute" mode, but are not yet 
implemented in the Host .. debug .. mode. If an attempt is made to "debug" 
a system contianing random file, the message: 

RANDOM FILES NOT IMPLEMENTED 

will be displayed. 

Random files are supported in the Target "native" mode, but not target 
interpretive mode (i.e., random files are supported in the Host 
execute and Target Mpx modes, but not in Host debug or Target MPIX 
modes. 

The operation of random files is very similar to the operation of 
sequential files, except that a "record number" is included in the 
parameter list for the standard procedures READ and WRITE, i.e,: 

READ(f,<record number>,<variable>); 
WRITE(f ,<record number>,<variable>); 

The first record in a file is record O. If record n is written, then 
every record 0 through n exists, although they may not contain "correct" 
data. 

10-19 



10.3.8 Logical End of File 

The standard function EOF is used to detect the logical end of file 
for files opened for reading. If EOF(F) is FALSE and F is a sequential 
file opened for reading, it is possible to read at least one more 
component. If EOF(F) is FALSE and F is a text file opened for reading, 
it is possible to read at least one more character. If EOF(F) is TRUE 
and a READ(F, .•• ) is attempted, a run-time exception occurs. 

A logical end of file occurs on all reading files connected to a 
channel if end of transmission has occurred on the channel and all 
buffered components have been consumed. End of transmission means that 
all writing files connected to the channel have closed. Once end of 
transmission occurs on a channel, all reading files must close before 
the end of transmission status is removed. Files attempting to connect 
to a channel with an end of transmission status are suspended until 
the status is removed and are then connected. 

10.3.9 Logical End of Consumption 

A logical end of consumption occurs on a channel when all connected 
reading files become closed. Normally this is not considered an 
exception, and connected writing files may continue to write to the 
channel. However, attempts to write to the channel cause suspension 

·.~. 
_;.;,/ 

until reading files become connected again. J 
The Executive RTS procedure F$STEOC (F) (read as "set end of 
consumption") may be called to indicate that end-of-consumption on 
channels associated with F is to be handled in a similar manner to end 
of transmission. In this case, when all reading files disconnect, no 
files are allowed to connect to the channel until all connected 
writing files close. The Executive RTS function F$EOC(F) returns a 
boolean value indicating that end-of-consumption has occurred on the 
channel associated with the file F. The calling sequences for F$STEOC 
and F$EOC are: 

PROCEDURE F$STEOC(VAR F: ANYFILE); EXTERNAL; 

FUNCTION F$EOC(VAR F: ANYFILE): BOOLEAN; EXTERNAL; 

10.3.10 Buffers Associated With File variables 

As discussed previously, each text file has a line buffer associated 
with it. A reading sequential file has a look-ahead buffer used when 
EOF is called. EOF returns TRUE if end of transmission has occurred on 

·the associated channel and all buffered components are consumed. 
Otherwise, it returns FALSE and receives the next component. into the 
look-ahead buffer. This ensures that another component is available to 
be read from the file which is contained in the look-ahead buffer. The 
first READ after a call to EOF retrieves the component from the 

10-20 



look-ahead buffer rather than the channel. 

These buffers are also used by the channel to allow producers to 
proceed before components are consumed. The Executive RTS procedure 
F$CHBUFFERS(F,N) may be used to ensure that any channels associated 
with F have the capability of buffering at least N components before 
producers are suspended. The calling sequence of F$BUFFERS is: 

procedure f$chbuffers(var f: anyfile; n: integer); external; 

A call to F$CHBUFFERS may cause more buffers to be allocated to a 
channel. If so, these buffers remain the property of the channel until 
all files disconnect. 

10.3.11 Connections of Files with Different Component Types 

File variables connected to a common channel may have components of 
different types. However, the lengths of the components· must be the 
same. Consider the following type declarations: 

type 
FILETYPEl =FILE OF ARRAY [1 •• 2] OF INTEGER; 
FILETYPE2 = FILE OF RECORD FIELD!, FIELD2: INTEGER END; 
FILETYPE3 = FILE OF INTEGER; 

FILETYPEl and FILETYPE2 have components of the same size so variables 
of these types may be connected to the same channel. However, 
FILETYPE3 has components that are shorter than the components of 
FILETYPEl or FILETYPE2. Therefore, a variable of this type cannot be 
connected to the same channel that variables of the first two types 
are connected. 

One of the characteristics of a channel is the channel component 
length. This is initialized to the component length of the first file 
variable to connect to it. Any sequential file variables which 
subsequently connect to the channel must have an identical component 
length. Any text file variables which subsequently connect to the 
channel will automatically have a maximum line length which is the 
same as the channel component length. The Executive RTS function 
F$CLENGTH(F) returns the component length of the file F. If F is an 
open text file, then this is the maximum line length. The calling 
sequence of F$CLENGTH is: 

FUNCTION F$CLENGTH(VAR F: ANYFILE); EXTERNAL; 

If a text file is the first file variable to connect to a channel, the 
channel is given a component length equal to the default maximum line 
length of the text file. The initial default is 80 but may be modified 
by the Executive RTS procedure F$STLENGTH(F,LENGTH). For example, if 
F$STLENGTH(F,132) is executed and F is the first file variable to 
connect to a channel, the component length of that channel would be 
132. The calling sequence of F$STLENGTH is: 

10-21 



PROCEDURE F$STLENGTH(VAR F: ANYFILE; LENGTH: INTEGER); EXTERNAL; 

10.3.12 Conditional READS and WRITES 

Each sequential file has a conditional attribute, represented by a 
boolean, which indicates that each READ and WRITE is to be performed 
only on the condition that a buffer is available and it is not 
necessary to wait. If a buffer is not available, the READ or WRITE is 
not performed. The Executive RTS procedure F$CONDITIONAL can be used 
to alter the conditional attribute of a sequential file. (Text and 
random files may not have the conditional attribute.) The calling 
sequence of F$CONDITIONAL is: 

PROCEDURE F$CONDITIONAL(VAR F: ANYFILE; CONDITIONAL: BOOLEAN);EXTERNAL 

Calling this procedure causes the conditional attribute to be set to 
CONDITIONAL. The attribute defaults to FALSE so that normally, READS 
and WRITES wait for buffers. The function F$LASTSUCCESSFUL(F) 
indicates that the last channel transfer made by F was successful. Its 
calling sequence is: 

FUNCTION F$LASTSUCCESSFUL(VAR F: ANYFILE): BOOLEAN; EXTERNAL; 

Figure 10-16 illustrates how conditional I/0 can be used to poll 
several files for inputs. ) 

PROGRAM POLLFILES(FILEl, FILE2, FILE3, FILE4: FILE OF INTEGER); 
VAR I: INTEGER; 
BEGIN {POLLFILES} 
F$CONDITIONAL(FILE1, TRUE); 
F$CONDITIONAL(FILE2, TRUE); 
F$CONDITIONAL(FILE3, TRUE); 
RESET(FILEl); 
RESET(FILE2); 
RESET(FILE3); 
REWRITE ( FILE4) ; 

WHILE TRUE DO BEGIN {POLL EACH FILE} 
READ(FILEl, I) {WILL NOT WAIT FOR COMPONENT}; 

IF F$LASTSUCCESSFUL(filel) THEN WRITE(FILE4, 
READ(FILE2, I) {WILL NOT WAIT FOR COMPONENT}; 

IF F$LASTSUCCESSFUL(file2) THEN WRITE(FIL~4, 
READ(FILE3, I) {WILL NOT WAIT FOR COMPONENTJ; 

IF F$LASTSUCCESSFUL(FILE3) THEN WRITE(FILE4, 
END {WHILE TRUE DO BEGIN} 

END {POLLFILES}. 

FIGURE 10-16. POLLING FILES FOR INPUT. 

10-22 

I) ; 

I) ; 

I) ; 

} 
_/ 



The conditional attribute does NOT ensure that a process proceeds 
without suspension during I/O operations. It is necessary for the 
Executive RTS to schedule access to shared channel control data 
structures. Therefore an I/0 operation may cause suspension until the 
necessary structures are accessible by the calling process. This, 
however, should be a relatively short suspension. 

As discussed previously, the standard function EOF normally causes a 
component from the channel to be received into the look-ahead buffer 
to ensure that one is available. However, if the file has the 
conditional attribute and EOF is called, the next component is 
received only if it has been produced. Otherwise, the look-ahead 
buffer is left empty and the result of EOF is FALSE, indicating that 
the end of transmission has not occurred on the associated channel. 
Therefore, for conditional files, EOF = FALSE indicates only that 
another READ attempt may be made without causing an exception, and 
EOF = TRUE indicates that another read attempt will unconditionally 
cause an exception. 

Figure 10-17 illustrates the use of EOF to detect end of transmission 
on the channel associated with a conditional file. Since EOF may cause 
a channel transfer, the function F$LASTSUCCESSFUL should be called 
after every EOF to indicate the success of the channel transfer to the 
look-ahead buffer. When EOF = FALSE and F$LASTSUCCESSFUL = TRUE, the 
READ(F,I) is guaranteed to be successful, as indicated by the ASSERT 
after the READ. 

PROGRAM SERVER(f, FILE OF INTEGER); 
VARI i : INTEGER; 
BEGIN {SERVER} 
F$CONDITIONAL(F, TRUE) {ESTABLISH F TO BE CONDITIONAL}; 
RESET(F}; 
WHILE NOT EOF(F) DO BEGIN {EOF MAY BE UNSUCCESSFUL} 

IF F$LASTSUCCESSFUL(F) THEN BEGIN {COMPONENT IN BUFFER} 
READ(F, I}; ASSERT F$LASTSUCCESSFUL(F); 
"PROCESS I" 
END {IF F$LASTSUCCESSFUL(F} THEN ••• }; 

END {WHILE NOT EOF(F) DO ••• }; 
end {server}; 

FIGURE 10-17. USE OF EOF WITH CONDITIONAL FILES. 

10.3.13 Channel Abortions 

The Executi·ve RTS provides the capability for a user to abort 
channels. This normally causes all file variables connected to the 
channel being aborted to become disconnected. Any subsequent READS or 
WRITES of a disconnected file variable results in an exception until 
the file is opened again. Any files suspended on the channel being 
aborted are activated with an exception. The Executive RTS routine 
used to abort channels is: 

10-23 



PROCEDURE F$CHABORT(VAR F: ANYFILE); EXTERNAL; 
{read as "channel abort"} 

which aborts all channels having the same name as F. The standard 
procedure SETNAME can be used to set the name of F to the name of the 
channel to be aborted. The file F does not have to be connected to the 
channel. 

Channel abortions may be used to cancel I/O on a device by aborting 
the device channel. A device channel is not destroyed when aborted so 
that the device has the capability of restarting. 

10-24 



SECTION 11 

PROCESS MANAGEMENT 

11.1 OVERVIEW 

The Microprocessor Pascal System has the features of conventional 
Pascal plus more; several of the extended constructs were added to 
support concurrent processes. This section describes how concurrent 
processes are declared, invoked, and terminated. 

Remember, both a program and a system are a special case of a process, 
and do not differ in essentia.l capability. When a distinction among 
system, program, or process is required, the distinction will be 
clearly made •. 

11.2 SYSTEM DECLARATION 

Microprocessor Pascal System defines the SYSTEM as the language 
construct 'within which all other constructs are nested; the SYSTEM is 
the outermost level of declarations and executable statements. 
Declarations at the system level are considered to be at lexical level 
zero; program declarations nested within the SYSTEM are at lexical 
level one; process declarations are nested within programs or other 
processes, starting at lexical. level two. 

The statements of the system body are executed before any statements 
in a program or process. This process (called the system process) is 
created by the Executive RTS which executes the system body and 
terminates when it reaches the END statement of the system body. 
Properties of this process can be controlled with the concurrent 
characteristics clause of the system body definition. These properties 
are the PRIORITY, STACKSIZE, and HEAPSIZE of the system process. 

The system body is considered to be a bootstrap program which is 
executed in a Pascal environment. Within the system body, COMMONS can 
be initialized and programs can be started to cause a system of 
several programs to begin execution concurrently. Typically each 
peripheral device is serviced by a program which is passed parameters 
that characterize that device. Figure 11-1 illustrates how a system of 
two CRT devices and one copy of a main program are started from the 
system body. 

11-1 



SYSTEM EXAMPLE: 

TYPE 
ALFA= PACKED ARRAY[l •• 8] OF CHAR; 

PROGRAM CRT( CRU BASE, INTERRUPT LEVEL: INTEGER; 
DEVICE NAME: ALFA); 
BEGIN 

{ . . . } 
END { CRT } ; 

PROGRAM MAIN; 
BEGIN 

{ . . . } 
END {Main }; 

BEGIN { Example } 
{# PRIORITY = l; STACKSIZE = 

START CRT( #OCO, 3, ~CRTOl 
START CRT( #OEO, 4, ~CRT02 
START MAIN; 

END { EXAMPLE } • 

200; HEAPSIZE = 0 } 
.- ) ; .. ) ; 

FIGURE 11-1. EXAMPLE SYSTEM BODY WHICH STARTS 
TWO DEVICES AND A MAIN PROGRAM. 

Notice in Figure 11-1 that the CRT program is statically declared once , 
but is dynamically invoked twice; two unique copies of the CRT program ) 
execute concurrently. 

The priority-concurrent characteristic illustrated in Figure 11-1 sets 
the priority of the system process to one. The interrupt mask of the 
system process is zero (the mask of any process is always the greater 
of zero and one less than its priority}. Having an interrupt mask of 

• zero means that no interrupts are recognized by the processor until 
the mask is lowered to some value between one and fifteen. 

This happens when some process of lower urgency (than one} executes. 
When the environment of the system process is created by the Executive 
RTS before the system process begins, the environment initialization 
executes an RSET instruction. RSET is a hardware instruction that 
resets directly connected peripheral devices and those CRU devices 
that provide for reset in the interface with the CRU. Since all 
devices may not be reset by the environment initialization, and 
because serv1c1ng interrupts from uninitialized devices can produce 
errors, the execution of the system process with all interrupts masked 
allows it to call routines to reset and initialize devices. The 
recommended technique of initialization and bqot9trap by the syste~ 
process is to set the priority of the system process to one and to 
call procedures from the system body which reset and initialize each 
peripheral device. These procedures are referred to as physical device 
interface initialization procedures in Paragraph 14.2 (Physical Device 
Interface Systems) • 

11-2 



/ 
I 

Declarations in the SYSTEM mainly include programs but may also 
include routines (procedures and functions) which are globally 
available to the entire system (e.g., provided by the run-time 
support) • Constants declared at the system level can correspond to 
global values such as special characters (e.g. const line feed = #OA;) 
or CRU addresses (e.g. const front_panel lights= #lFEO;). Types 
declared at the system level can define run-time support data 
structures. COMMONS might correspond to interrupt and XOP transfer 
vectors or other global, fixed-address words in memory space. Programs 
must be declared at the system level. This allows program identifiers 
to be within scope of any executable statement. A program or routine 
declared at the system level may have its body replaced by EXTERNAL or 
FORWARD to support separate compilation. Figure 11-2 illustrates 
declarations in a system. 

SYSTEM EXAMPLE: 

CONST { Constants Global To The Entire System } 
LINE FEED = #OA; 
FRONT_PANEL_LIGHTS = #lFEO; 

TYPE { Data Structures Implemented By 
The Run-Time Support } 

PROCESSID = @ PROCESSID; 
ALFA= PACKED ARRAY[l •• 8] Of Char; 

COMMON { Data Structures At Fixed Addresses 
In Memory Space } 

INTERRUPT TRAP VECTORS: ARRAY[0 •• 15] OF 
RECORD WP, PC: INTEGER END; 

PROGRAM CRT( CRU BASE, INTERRUPT LEVEL: INTEGER; 
DEVICE NAME: ALFA ) ; 
EXTERNAL; 

PROGRAM MAIN; 
BEGIN 

{ . . . } 
END {Main }; 

FUNCTION MY$PROCESS: PROCES.SID; 
EXTERNAL { Provided By Executive RTS }; 

BEGIN { Example } 
{# PRIORITY = l; STACKSIZE = 

START CRT( #OCO, 3, ~CRTOl 
START CRT( #OEO, 4, ~CRT02 
·sTART MAIN; 

END { Example }. 

200; HEAPSIZE = 0 } 
"' ) ; 
~ ) ; 

FIGURE 11-2. EXAMPLE OF SYSTEM BODY DECLARATIONS. 

11-3 



A VAR section is not allowed in the SYSTEM block, so no variables ·~ 
exist in the scope of the executable statements of the syste~ body or / 
in the scope of programs declared at level one. 

11.3 PROGRAM DECLARATION 

• 
The Microprocessor Pascal System allows more than one program to be 
declared in the SYSTEM construct. Pascal is oriented to one program 
that has one site of execution and one set of local data in one stack. 
A program is a natural encapsulation of an algorithm which is, to a 
great extent, independent of other concurrent activity in the same 
processing system. The fact that the Microprocessor Pascal System 
allows for multitasking causes the need for multiple programs in the 
same system. 

A program is declared at lexical level one within the SYSTEM 
construct. There are no variables global to a program (no variables at 
the SYSTEM level). Program parameters must be passed by value and must 
not be referenced by pointers. This means a program references no data 
space external to itself (except possibly for COMMONS which must be 
explicitly named in ACCESS statements). This data space address 
restriction better enables the Executive RTS to manage the resources 
of a program in an environment where there is more memory than the 
logical address space of a TI 990/9900 processor (65,536 bytes). A 
16-bit memory reference in this environment is mapped to a unique 
physical memory location by hardware, and this capability is called ) 
memory mapping. The current version of the Executive RTS does not 
support this environment, but future systems will assign each program 
a unique logical address space that can be temporarily extended by the 
ACCESS statement to allow addressing a COMMON. Thus, the fact that a 
program limits data space addressability is consistent with the bounds 
of a logical address space enforced by memory mapping. 

A program, like a process, has a site of execution, a machine context, 
and local data in a stack. In this sense, then, a program is no 
different than a process in that both independently execute with other 
concurrent activities. Except for the facts that a program must be 
declared at lexical level one and addresses no data space outside 
itself (except for COMMONS), a program does not differ in capability 
from a process. 

The fact that a program shares no data space with other concurrent 
programs (except for COMMONS) does not prohibit a program or a nested 
process from receiving data from another program or process in another 
data space. Data can be transmitted through interprocess files among 
processes (or programs) that do not share data space. This feature is 
used in building programs which service peripheral devices. The 
program construct is a convenient encapsulation of device handling 
algorithms which operate independently of other activities, receive or 
transmit data through interprocess files, and do not share data space 
with other programs. Paragraph 10.3 presents information on 

11-4 

I 
./ 



interprocess files; Section 14 explains the construction of device 
handlers. 

11.4 DECLARATION OF A CONVENTIONAL PASCAL PROGRAM 

A conventional Pascal program in a non-concurrent environment is shown 
below: 

PROGRAM USER; 
{ Declarations } 
BEGIN 

{ Executable Statements } 
END. 

FIGURE 11-3. SIMPLE, CONVENTIONAL PASCAL PROGRAM. 

Figure 11-4 presents the Microprocessor Pascal System equivalent to 
this program. 

SYSTEM DUMMY; 

PROGRAM USER; 
{ Declarations } 
BEGIN 

{ Executable Statements } 
END; 

BEGIN 
START USER; 

END. 

FIGURE 11-4. EQUIVALENT MICROPROCESSOR PASCAL SYSTEM. 

The conventional program is compiled without being nested within a 
SYSTEM body. The program cannot have nested PROCESS declarations and 
can neither declare program parameters nor declare the standard text 
files of INPUT and OUTPUT. The conventional Pascal program of 
Figure 11-3 is considered logically equivalent to that shown in Figure 
11-4. In the Microprocessor Pascal System, the user~s conventional 
program, is considered to be nested within a default system body which 
STARTS the user~s program. 

The standard files INPUT and OUTPUT may be referenced within a 
conventional Pascal program but must not be declared since they are 
predefined for the program (See Section 8). Figure 11-5 shows a 
program which uses OUTPUT and is compiled as a conventional program in 
a non-current environment. 

11-5 

' . i 



PROGRAM USER: 
{ Declarations } 
BEGIN 

WRITELN( ~START EXECUTION~): 
{ O~her Executable Statements 

END. 

}{Write To OUTPUT File} 

FIGURE 11-5. CONVENTIONAL PASCAL PROGRAM WITH FILE I/O. 

Figure 11-6 displays its Microprocessor Pascal System equivalent. 

SYSTEM EXAMPLE: 
PROCEDURE INIT SYSTEM: 
BEGIN -

{ Initialize Peripheral Devices 
And Start Supporting Processes } 

END: 

PROGRAM USER( Output: Text ) 1 
{ DECLARATIONS } 
BEGIN 

WRITELN( ~START EXECUTION~ ) 1 
{ Other Executable Statements 

END: ~ 

BEGIN 
INIT SYSTEM1 

{ Write To OUTPUT File } 
} .. 

START USER( Filenamed( ~PRINTER~) )1 
END. 

FIGURE 11-6. EQUIVALENT MICROPROCESSOR PASCAL SYSTEM. 

If the program in Figure 11-6 is the only user-written code to execute 
on a processor, no peripheral devices (physical devices) will be 
initialized or enabled, and no other processes will be started before 
the WRITELN statement. Therefore, the destination of the write to the 
OUTPUT file is not defined. A conventional program which uses files 
(including INPUT or OUTPUT) must never start file operations until 
peripheral devices have been initialized or other processes have been 
started. 

If a program is compiled within a SYSTEM body and if it references the 
standard text files INPUT and/or OUTPUT, these files must be declared 
as program parameters. If the program in Figure 11-5 above is compiled 
within a SYSTEM, then it must declare parameter OUTPUT since it 
references that file. Also, the SYSTEM code must pass the program 
parameter at the START of the program. 

11-6 

-~ 
I 

_./ 



Notice that the procedure INIT SYSTEM is called to 
peripheral devices and start supporting processes before 
is started. When USER executes the WRITELN statement, its 
to the PRINTER channel instead of being lost. 

initialize
program USER 
output goes 

In order to establish 
conventional program using 
source text of the program 
rules: 

the environment for input/output of a 
file operations, it is recommended that the 
be transformed according to the following 

1. Add declarations for the standard files INPUT and OUTPUT as 
program parameters. For example: 

CHANGE program PROG: 
TO program prog(input, output: TEXT): 

2. Compile the source text of the program as nested within a 
SYSTEM. The COPY statement- (see Paragraph 5.2.3) in the 
declarations of the SYSTEM may be a convenient way to 
include the text of the program within the SYSTEM. 

3. Add code to the SYSTEM body causing peripheral devices to be 
initialized or supporting processes to be started. 

4. Add a START statement which starts the program and passes 
its input and output files. 

/ 11. 5 PROCESS DECLARATION 

A process is declared within a program or another process starting at 
lexical level two. Because of the scope rules of Pascal, variables 
global to a process are addressable by the process. This is the case 
if these variables are local to a program (or some other process) 
which is a lexical ancestor of the process in question. Figure 11-7 
illustrates the nesting of processes and their variables in scope. 

11-7 



SYSTEM EXAMPLE: 

{ No VAR Section Allowed At SYSTEM Level } 

PROGRAM PROG; 

-""-' 
', .·.· ) 

VAR GLOBAL: CHAR;<-----------------

PROCESS PROCl; 
VAR A: CHAR; 

B: CHAR;<------------------

PROCESS PROC2; 
VAR A: CHAR;<-------

BEGIN 
{ The Following 

Variables Are 
Addressable By 
process PROC2: 

} 
END { PROC2 }; 

BEGIN 
END { PROCl }; 

BEGIN 
END { Prog }; 

BEGIN { System Body } 
END. 

1 

A 
B 

GLOBAL 

FIGURE 11-7. NESTING OF PROCESSES AND VARIABLES IN SCOPE. 

A process declaration may not be nested within a procedure or·, 
function. This avoids a serious problem of addressability of 
variables; once the process has started executing, the variables that 
are local to the procedure or function are addressable to the process 
according to scope rules. However, these variables would have 
existence only when the procedure or function is active. The extent of 
a computational quantity is the time during execution that the 
quantity may be considered to exist. The extent of the local variables 
of the procedure of function is shorter than the extent of the 
process. Passing parameters to a process by reference is likewise 
prohibited, because the extent of the parameters passed is independent 
of the extent of the process to which the parameters are passed. 

Once a process (or program) begins execution by means of the START 
statement, its extent is independent of other processes. When a 
process terminates, the Executive RTS causes its local va·r iables to 
remain until all lexical descendants of the terminated process finish. 
Thus the Executive RTS ensures that the extent of local variables of a 

11-8 

-/ 

_/ 



.·' 

process is at least as long as the extent of lexically descendent 
processes which can address these variables (by scope rules). (Since a 
program has a self-contained data space, no other process must wait on 
a program to terminate.) As illustrated in Figure 11-7 above, the 
Executive RTS ensures that variables A and B (local variables of 
process PROCl) exist at least until process PROC2 terminates, and 
GLOBAL exists at least until both PROCl and PROC2 terminate. All 
variables within scope are guaranteed to exist by the Executive RTS. 

A program and all its nested processes share data space 
addressability; on a processor with memory mapping, the data space of 
a program and all its nested processes are in the same logical address 
space. A program and its processes may share data space by means of 
variables in a stack (achieved by nesting process declarations) or by 
means of variables in heap (achieved by sharing pointers which 
reference the heap data). Process synchronization (as explained in 
Paragraph 9.4) may be required to coordinate the sharing of data among 
concurrent processes. 

11.6 CONCURRENT CHARACTERISTICS 

Each system, program, and process has three concurrent 
characteristics: ·PRIORITY, STACKSIZE, and HEAPSIZE. These determine 
the execution and Pascal environment requirements of the corresponding 
block. 

The PRIORITY characteristic is related to the urgency of a process 
relative to the urgencies of other processes. Priority is a 
non-negative number ranging from zero to 32767 (where zero indicates 
the greatest urgency, and the· range zero to fifteen is reserved for 
device processes-- see Section 9). Concurrent processes which are 
ready (not blocked) compete to be assigned to a processor. The 
scheduling policy keeps the most urgent ready process assigned to the 
processor. For example, a ready device process (priority from 0 to 15) 
always preempts any ready process of priority 16 or greater. On the 
other hand, a single process of priority 32767 never executes until 
all other processes have terminated or are blocked. Priority 32767 is 
reserved for the IDLE process (started by the Executive), which 
executes when all user processes are suspended or terminated. 

The priority of a process determines its interrupt mask which enables 
interrupts only of greater urgency than the process~s priority. This 
means that non-device processes (with priority between 16 and 32766, 
inclusive) execute with an interrupt mask of 15. Device processes 
(with priority between zero and 15, inclusive) execute with an 
interrupt mask which is the greater of zero and the process~s priority 
of the process minus one. 

The default priority of the system process is one. If no priority is 
stated for a program, then its default is 32766, which may not be 
adequate for the program to be responsive to real-time requirements. 
If no priority is stated for a process, then it inherits the priority 
of its lexical parent (which is either a process or a program). A 

11-9 



negative PRIORITY or a user PRIORITY >=32767 is considered illegal and 
causes an exception for the process attempting a START of process with 
such a PRIORITY. 

The STACKSIZE·concurrent characteristic is the number of words of 
storage which the process intends to use for its local variables and 
the variables associated with all subsequent dynamic routine calls. 
Space for this stack is contiguously allocated from the heap of the 
lexical parent. 

A non-zero value of the HEAPSIZE concurrent characte~istic indicates 
to the Executive RTS that the declared process requires a private heap 
upon which its heap requests NEW and DISPOSE operate. This private 
heap is nested within the heap of the declared process~s lexical 
parent. This new nested heap is created by allocating a contiguous 
area of memory from the parent~s heap and initializing it by the 
Executive RTS to be a heap structure. The non-zero HEAPSIZE parameter 
is the number of words of storage which the process intends to use in 
a nested heap. If HEAPSIZE is zero, no nested heap is created, and the 
parent~s heap is used as the child~s heap. 

A process references only one heap using NEW and DISPOSE. This heap 
(whether nested or the parent~s) must be large enough to include all 
subsequent heap allocations of data, other heaps, and the stacks of 
nested processes which are started. The default for an unstated 
HEAPSIZE is zero. This is interpreted to mean use of the parent~s 
heap. 

A process (or a program) may declare its concurrent characteristics to 
be constant or to be the value of a process parameter which is passed~ 
when the process is first started. Figure 11-8 illustrates that 
program CRT has a STACKSIZE and HEAPSIZE which are constant and a 
PRIORITY which is passed as one of its parameters. 

TYPE 
ALFA= PACKED ARRAY[l •• 8] OF CHAR; 

PROGRAM CRT( CRU BASE, INTERRUPT LEVEL: INTEGER; 
DEVICE NAME: ALFA); 
BEGIN -
{# PRIORITY = INTERRUPT LEVEL; 

STACKSIZE = 300; HEAPSIZE = 120 } 

{ Executable Statements } 

END { CRT } ; 

FIGURE 11-8. EXAMPLE OF CONCURRENT CHARACTERISTICS 
WHICH ARE CONSTANT AND VARIABLE. 

11-10 



Section 12 discusses in detail how to select the proper STACKSIZE and 
HEAPSIZE for a process. 

11.7 PROCESS INVOCATION 

A program or process is initially invoked with the START statement. In 
the START statement, the program or process identifier is names (the 
identifier must be in scope) and process parameters are passed (if 
they exist) much like a procedure call. However, while in a procedure 
call, the calling routine resumes after the called procedure; in a 
process call, the called process continues execution concurrently with 
the calling process. A program or process is statically declared once 
but may be dynamically invoked more than once as required. Figure 11-9 
below illustrates a program and two nested processes. 

SYSTEM EXAMPLE: 

PROGRAM PROG; 
VAR GLOBAL: CHAR; 

PROCESS PROC 1 ; 
VAR A: CHAR; 

B: CHAR; 

PROCESS PROC2; 
BEGIN 
END { PROC2 }; 

BEGIN 
START PROC2; 

END { PROCl }; 

BEGIN 
START PROCl; 
START PROC 1 ; 

END { Prog }; 

BEGIN 
START PROG; 

END { Example }. 

FIGURE 11-9. MULTIPLE DYNAMIC INVOCATIONS 
OF PROCESSES. 

11-11 



- ·_.,_ ·~-·· , -· 

Notice in Figure 11-9 that the system process starts one copy of 
program PROG, PROG starts two copies of process PROCl, and each copy 
of PROCl starts one copy of process PROC2. The single copy of PROG 
causes one instance of the variable GLOBAL to exist. Each of the two 
instances of PROCl has a unique set of variables A and B. One instance ·J 
of process PROCl cannot address the A and B variables belonging to the 
other instance of process PROCl; each instance of PROCl can address 
its own local copies of variables A and B. The variables of the first 
instance of pr,ocess PROCl are addressable by the single instance of 
process PROC2 (which it starts). The same is true for the second 
instance of PROCl and its single instance of PROC2· (which it starts) •. 

The START statement is not the only way to refer to a process by name. 
The Executive RTS maintains a process identification which is the 
dynamic "name" of a process and is assigned by the Executive RTS for 
each unique instance of a process. A process identification is 
declared by the user as follows: 

TYPE PROCESSID = e PROCESSID 
{i.e., a pointer to something}; 

The type PROCESSID is a pointer to an undefined data structure 
(undefined to the user) which is implemented by the Executive RTS. The 
following function: 

FUNCTION MY$PROCESS: PROCESSID; EXTERNAL; 

returns the process identification of 
essentially answers the question, "Who 
function: 

the 
am 

calling process; it 
I?". Another useful 

FUNCTION P$LASTPROCESS(P: PROCESSID): PROCESSID; EXTERNAL; 

returns the identification of the last process successfully started by 
process P or returns NIL if the last attempted start of a process by P 
was unsuccessful. The initial value of this function is NIL. Therefore 
the following call: 

P$LASTPROCESS(MY$PROCESS); 

returns the identification of the last process successfully started by 
the calling process. Once process identifications have been captured 
by using the MY$PROCESS or P$LASTPROCESS routines, the process 
identifications may be passed to other Executive RTS routines managing 
processes, such as process abort. 

The following function 

FUNCTION P$SUCCESSFUL(P: PROCESSID): BOOLEAN; EXTERNAL; 

11-12 



returns a boolean status to indicate the success of the last process 
management operation done by process P. The initial status is FALSE. 
After a START statement the result of 

P$SUCCESSFUL(MY$PROCESS); 

is TRUE or FALSE indicating 
respectively. Process creation 
candidate process could not 
candidate process w~s illegal. 

that a process was or was not created 
may fail if the resources of the 
be acquired, or if the priority of the 

The following proc.edure 

START$TERM(VAR OLDVALUE: BOOLEAN; NEWVALUE: BOOLEAN); 

is used to control the mode of exception handling when processes 
cannot be successfully started. If the START$TERM flag is TRUE when an 
unsuccessful START is encountered by a process, then the process which 
called START fails. If the START$TERM flag is FALSE, then a process 
which calls START and does not successfully start a process does not 
fail. The unsuccessful START is ignored. The default value of the 
START$TERM flag is TRUE for the system or a program, and· a started 
process inherits the START$TERM flag of its lexical parent. 

11.8 PROCESS TERMINATION 

A process terminates normally when its execution reaches the END 
closes the declaration of the process body. An ESCAPE statement 
references the current process~s statically declared identifier 
causes the process to terminate normally. 

which 
which 
also 

A process can be involuntarily terminated by another process by means 
of the following procedure of the Executive RTS: 

PROCEDURE P$ABORT(P: PROCESSID); EXTERNAL; 

After calling P$ABORT(P), process Pis marked to be aborted, and is 
aborted when the process is again active (not suspended on a 
semaphore), has returned from all nested Executive RTS calls (e.g. has 
returned from a heap request), and is not nested within user-defined 
critical transactions of code. The Executive RTS causes process P to 
encounter an ABORTED exception which is considered abnormal. Section 
13 gives more information on process aborting, user-defined critical 
transactions, and exception handling. 

The following 

P$ABORT(MY$PROCESS); 

11-13 



causes the calling process to terminate. This technique is useful for 
a routine, which is shared by more than one process~ It is more 
general than an ESCAPE statement since an ESCAPE must specify a 
lexical parent and this P$ABORT be used in a routine that may be 
called from an arbitrary process. Please note that P$ABORT causes an 
abnormal exception and ESCAPE causes a normal termination. 

When a process terminates, its resources (such as its stack, 
administration areas) are reclaimed by the Executive RTS. 
variables of a terminated process or program are retained 
lexical descendent processes exist. Only then are the local 
no longer addressable and destroyed. 

11-14 

heap, and 
The local 
until no 
variables 



SECTION 12 

MEMORY MANAGEMENT BY THE RTS 

12. 1 OVERVIEW 

This section describes the memory management features of the Executive 
RTS and shows how concurrent characteristics should be chosen for a 
process to satisfy stack and heap requirements. 

12.2 MANAGEMENT OF SYSTEM MEMORY 

The paragraphs that follow address the topic of RTS memory management 
as it applies to dynamically allocatable system memory and statically 
allocatable system memory. 

12.2.1 Dynamically Allocated Data Areas 

All data space is managed by the Executive RTS in areas dynamically 
allocated from system memory. The only exception to this is that the 
static location of data areas on a target processor such as CSEGs (or 
COMMONS), DSEGs, and interrupt and XOP workspaces are chosen by the 
user. These static data areas are not part of system memory and are 
not directly manipulated by the Executive RTS. 

System memory for the Host Debugger is determined from the user's 
reply to the "SYSTEM HEAP IN KBYTES" prompt. One contiguous area is 
created which is as large as the user's request. System memory on a 
target processor is specified by the user in a RAM configuration table 
in the "CONFIG" module described in Section 15 covering the 
specification of RAM locations. Disjoint contiguous areas of RAM are 
allowed in the target processor. 

12.2.1.1 Heaps: Data space in programmable memory (RAM) that is 
available to a process is managed by a heap structure. A heap is an 
area of allocated (used) space' and an area of unallocated (free) 
space. At any time (under program control), free areas may become 
allocated and allocated areas may be freed. In addition, freed areas 
may be reused (reallocated). 

Heaps are one of two types: program or nested. Program heaps are the 
heaps of programs or the system process, and are returned to system 
memory when the program and all its nested processes terminate, or 
when the system process terminates. When a process with a non-zero 
HEAPSIZE characteristic begins, nested heaps are created within the 
heap. These offspring ' are returned to the parent when the process 
which causes the nested heap to be created terminates. Packets 

12-1 



allocated out of a nested heap remain allocated even if the process 
which caused the nested heap to be created terminates. The packets -~ 
which were in the nested heap are considered to be in the parent~s 
heap and remain addressable. 

Since all processes lexically nested within a program either use th~ 
program heap or a heap nested within the program heap, a program heap 
is a logical division of data space for memory mapping. The 
Microprocessor Pascal System language ensures that no references or 
pointers may be passed outside of a program. Thus, no referencing 
across map space boundaries is allowed. The data space may be 
temporarily extended within a routine which has an ACCESS statement of 
a COMMON. But the preferable way to pass data among processes that 
reside in separate programs and data spaces is through the 
interprocess file mechanism provided by the Executive RTS. 

12.2.2 Statically Located Data Areas 

Statically allocated data areas on a target processor are not located 
by the Executive RTS. A COMMON declared in Microprocessor Pascal 
causes the Microprocessor Pascal compiler to generate a CSEG with a 
name which is the first six characters of the COMMON name. The user 
may use CSEGs and DSEGs as needed in assembly language modules and may 
need· to control the static placement of these areas in memory space. 
The link editor PROGRAM, COMMON, and DATA commands or the use of 
modules with BSS directives (to place succeeding modules at specific 
addresses) allow the user to position these data areas. Interrupt and 
XOP trap workspaces are also located by the user anywhere he chooses. 

12.3 HIGH-LEVEL USER INTERFACE TO MEMORY MANAGEMENT 

The basic operations on heaps are allocation and deallocation done by 
the standard procedures NEW and DISPOSE, respectively. These routines 
manipulate packets of the process~s heap. 

12.3.1 Procedure NEW 

NEW(PTR) {PTR is a pointer to some type}; 

This routine returns a pointer in PTR to a new, allocated heap packet. 
This routine is pre-declared by the compiler. 

12.3.2 Procedure DISPOSE 

DISPOSE(PTR) {PTR must be a pointer to a heap packet}; 

12-2 



This routine returns a heap packet referenced by PTR to the free area 
for reuse. The value of PTR is returned as NIL. This routine is 
pre-declared by the compiler. 

12.4 LOW-LEVEL USER INTERFACE TO MEMORY MANAGEMENT 

NEW$ and FREE$ implement the standard procedures NEW and DISPOSE, 
respectively, and can be called for unusual memory allocation 
requiring variable-size packets. The declarations to use these. 
features are as follows: 

TYPE POINTER = @SOME_TYPE; {POINTER TO SOME TYPE} 

BYTE LENGTH= 0 •• 32767; 

PROCEDURE NEW$(VAR PTR: POINTER; LENGTH: BYT~_LENG~H); EXTERNAL; 

PROCEDURE FREE$ (VAR PTR: POINTER); EXTERNAL; 

PROCEDURE HEAP$TERM(VAR OLDVALUE: BOOLEAN; NEWVALUE: 
BOOLEAN); EXTERNAL; 

12.4.1 Procedure NEW$ 

PROCEDURE NEW$(VAR PTR: POINTER; LENGTH: BYTE_LENGTH); 
EXTERNAL; 

This procedure allocates a contiguous area from the current process~s 
heap in bytes of LENGTH or more, and returns a pointer to the area in 
PTR. 

12.4.2 Procedure FREE$ 

PROCEDURE FREE$(VAR PTR: POINTER); EXTERNAL; 

This routine returns an allocated area to the free area for reuse. PTR 
is a pointer to the area to be freed and is set to NIL; the packet is 
returned to the heap from which it was allocated. 

12.4.3 Procedure HEAP$TERM 

PROCEDURE HEAP$TERM(VAR OLDVALUE: BOOLEAN; NEWVALUE: 
BOOLEAN) ; EXTERNAL; 

This routine allows user control over heap overflow. Heap overflow 
occurs when available space cannot satisfy a request. The routine 
manipulates a process-local flag maintained by the Executive RTS that 
indicates whether heap exhaustion should cause error termination. The 
old flag is returned in OLDVALUE, and NEWVALUE is the new value of the 
flag. If the flag is TRUE, a heap overflow causes fatal error 

12-3 



termination for. the process calling NEW or NEW$. If the flag is FALSE, 
no error occurs and NIL is returned as the value of pointers returned 
by NEW and NEW$. The default value of the HEAP$TERM flag is TRUE for 
the system or a program, and a started process inherits the HEAP$TERM 
flag of its lexical parent. 

12 • 5 USE OF COMMONS. 

The Microprocessor Pascal System language prohibits passing of 
references or pointers outside of a program. The Executive RTS keeps 
all data of a program and its lexically nested processes within the 
program .heap. This allows the Executive RTS to dispose a program heap 
when the program and all lexically nested processes have terminated. 
The data space may be temporarily extended within a routine which has 
an ACCESS statement of a COMMON. However if a COMMON has a pointer, 
the user should be aware of the following problem: If the pointer in 

. the COMMON is assigned a value by passing it to NEW or NEW$, then the 
heap packet referenced by the COMMON pointer is allocated from the · 
heap of the process calling NEW or NEW$. This heap is a nested heap or 
the program heap of the calling process. When the calling process~s 
parent program or the calling program itself terminates and all its 
nested processes terminate, the program heap and all the data 
contained therein are disposed. Therefore, the pointer in the COMMON 
still has a value. However, it references an area of data space which 
may be allocated again by the Executive RTS. This may potentially 
cause errors whenever the COMMON pointer is used, and its data 
structure is disturbed. 

There are two ways to solve this problem. The first is to avoid the 
use of pointers in a COMMON and to store data structures directly in 
the COMMON (rather than to use the indirect reference of the pointer). 
The second is to write a program (or a nested process) which 
dynamically allocates the data structures referenced by pointers in a 
COMMON and then not allow the program (or process) to terminate. Thus 
its program heap is never disposed, and the data structures referenced 
in the COMMON are forever allocated. The following example routine 
suspends the calling process forever. 

PROCEDURE SUSPEND: 
VAR 

FOREVER: SEMAPHORE: 
BEGIN 

INITSEMAPHORE(FOREVER, 0); 
WAIT (FOREVER) ; 

END; 

12-4 

) 



12.6 PROCESS RESOURCES 

The data structures created by the Executive RTS when a process is 
STARTed are in two classes: the process's stack and the process's 
heap. The following discussion also applies to a program or the system 
process. 

12.6.1 Process Stack 

A process has process parameters passed to it and global variables 
declared in the process module. These are stored along with a 30-byte 
administration area in one heap packet referred to as the process 
global frame. This packet is disposed when the process has terminated 
and all its lexically nested processes (if any) have terminated. 

The process stack is allocated as another heap packet and is used to 
hold instances of routines which the process calls. The heap packet 
holding the process stack is disposed when the process terminates. 

Each instance of a routine called within a process requires space in 
the process stack (called a stack frame) for the parameters passed to 
it along with its local variables plus a 14 byte administration area. 
The MAP option of the compiler produces a listing in which the 
STACKSIZE value is given for each routine. The stack requirements of a 
process can be determined by summing stack frame sizes for the most 
deeply nested set of dynamic routine calls. When Executive RTS 
services are called, the user should consider that STARTing a process 
requires about 250 words of stack. File operations also require about 
250 words of stack. 

When a system process, a program, or a process is STARTed, the 
STACKSIZE concurrent characteristic is used by the Executive RTS to 
allocate the stack for the new process. If STACKSIZE is not stated, is 
zero, or is a small number, then enough is allocated for the process's 
global frame to hold its parameters and global variables and the 
process stack is large enough for the process to execute the process 
termination code in the Executive RTS. However, this may not be enough 
space for the process to execute the algorithms that the user has 
coded~ a stack overflow, which is a fatal erro~ for the process may 
result. A larger value of STACKSIZE is the sum of the words allocated 
for the process's parameters and global variables, the 30 bytes in one 
heap packet for the process global frame, and the process stack. The 
latter is contained in one heap packet with 150 bytes of 
administration area added at the end. (The new process's process 
record is located at the end of the heap packet of the process stack.) 
A negative STACKSIZE is considered an error causing an exception for 
the process attempting to START a new process with a negative 
STACKSIZE. 

12-5 

-! 
i 
I 



12.6.2 Process Heap 

The system process and any program are always given a new program 
heap. This program heap is allocated as one contiguous packet from 
system memory, even if the HEAPSIZE concurrent characteristic of the 
system or program is zero or not stated. If a HEAPSIZE greater than 
zero is given, then the new program heap is large enough for the user 
to allocate a call to NEW or NEW$. (Smaller packets may also be 
allocated up to HEAPSIZE words, but the "checkerboarding" of available 
space must be considered.) For an unstated or zero HEAPSIZE, no 
available space is left in the new program heap after the system 
process or program is created. 

When a process (lexical level of two or greater) is STARTed, it 
inherits the heap of its lexical parent if its HEAPSIZE concurrent 
characteristic is zero or not stated. NEW or NEW$ called within the 
new process acquires packets from a program heap or a parent~s nested 
heap which is nested in a program heap (or nested in another nested 
heap which is nested in a program heap, etc.). If the HEAPSIZE 
concurrent characteristic of a new process (lexical level of two or 
greater) is greater than zero, then the new process uses a new nested 
heap which is nested within its parent~s heap. The nested heap appears 
to the parent~s heap as one contiguous, allocated packet but appears 
to the nested process as a heap structure. Calls to NEW or NEW$ by the 
process acquire packets from the nested heap of the process. 

The creation of heaps by the Executive RTS allows for the localization 
of the data space required by processes. The system process and each 
program are always given a new heap structure from which they allocate 
structures that are local to the system process or program. A process 
(lexical level of two or greater) may be restricted to a maximum heap 
usage by STARTing it with a new nested heap local to the process, or a 
process may be allowed to share the heap of its parent. 

A new heap structure is allocated by the Executive RTS as one 
contiguous packet from a parent heap. The heap structure requires 26 
bytes of administration areas plus HEAPSIZE words where an unstated 
HEAPSIZE is considered to be zero. A negative HEAPSIZE is considered 
an error and causes an exception for the process attempting a START of 
a new process with a negative HEAPSIZE. 

12.6.3 Estimating Space Requirements of Process Resources 

Since the resources of processes are dynamically allocated by the 
Executive RTS, the space requirements for a system of several 
processes is difficult to state precisely. When a system is initially 
debugged, it is wise to allocate more space for process stacks and 
process heaps than necessary in order for the system to execute 
without exhausting data space. After processes have executed and been 
debugged, the user may reduce STACKSIZE and HEAPSIZE parameters of 
processes. 

12-6 



The Host Debugger may be used to determine the stack requirements of a 
process. The process should have executed all paths of dynamic calling 
sequences to force it to use as much stack as possible. After the user 
is certain that a process has executed its most deeply nested set of 
routine calls, the DP (Display Process) command indicates how much 
stack has been used. Figure 12-1 gives an example of the DP command. 

The process being debugged in Figure 12-1 was started with a STACKSIZE 
of 2S6 words. Notice that the maximum stack usage of 171 words and the 
current stack usage of 119 words are shown. This process could have 
been started with a STACKSIZE of 171 words without encountering a 
stack overflow exception. 

<>DP (TEST) 
Static/Dynamic Calling Order for Process TEST(2) 

Stack Size (words) = 2S6 
Stack Used (words) Maximum = 171 Current = 119 

Call Order 
1 
2 
3 
4 

Name 
TEST 
PASSl 
GE TL I NE 
GETCHAR 

Statement 
3 
7 
7 
1 

FIGURE 12-1. DETERMINING STACK REQUIREMENTS OF A PROCESS. 

The heap requirements of a process can also be determined with the 
Host Debugger. A process should have executed all NEW and NEW$ calls 
to allocate as much heap space as it needs. Then use the SOP command 
(Select Default process) followed by the SH command with no parameters 
(Show Heap). Figure 12-2 shows an example of this. 

SOP (PROG) 

SH 
HEAP AT COOO ROVER: COlO HPMIN: 

MAXUSED: 004E CURUSED: 004E MUTEX: 
COlO HPMAX: COA4 
BFF8 PARENT: B4D6 

COSS (0000) 0000 0000 0000 0000 

C062 (0000) 0000 0000 0000 0000 0000 0000 0000 -0000 
C072 (0010) 0000 0000 

C078 (0000) BFEA 0000 COOO ElOl 7FFE 0000 0000 0000 
C098 (0020) 0000 0000 0.000 0000 C062 COSS 

( • 0 •••••• 

( ................ ) 
( ... . 
( . . . . . . . . . . . . . . . . ) 
( ••••••••• b.X ) 

FIGURE 12-2. DETERMINING HEAP REQUIREMENTS OF A PROCESS. 

12-7 



The MAXUSED field of the SH command is shown as hexadecimal 4E bytes. 
Therefore, the process can have a HEAPSIZE of decimal 39 words 
(corresponding to 4E bytes) without exhausting its heap space. 

The Target Debugger may also be used to determine the stack and heap 
requirements of a process. Figure 12-3 shows an example of the SP 
command (Show Process). 

?SP 

SHOW PROCESS "EX AM 
STACK BASE = 3D94 
STACK SIZE = 0138 
HEAP SIZE = 0E9E 
PRIORITY = 32766 

PL II AT 3EC8 
STACK LIMIT = 3EC8 
STACK USED (MAX) = 
HEAP USED (MAX) = 

OlOE 
0516 

STACK BOUNDARY'= 
STACK USED (CUR) = 
HEAP USED (CUR) = 

NO OUTSTANDING EXCEPTIONS 
NEXT PROCESS IN LIST = 3FA6 
QUEUE POINTER = 0000 

NEXT PROCESS IN QUEUE = 0000 

CREATORS ID = 00 MY ID = 01 

FIGURE 12-3. USE OF TARGET DEBUGGER TO DETERMINE STACK 
AND HEAP REQUIREMENTS OF A PROCESS. 

3E9E 
0100 
0516 

The "STACK USED (MAX)" and the 
hexadecimal bytes and allow the 
requirements of the process. 

"HEAP USED (MAX)" fields are in 
user to calculate the space 

12.6.4 Allocation of Process Resources 

A precise statement of the allocation rules of process resources is 
given below for several cases. 

12.6.4.1 Allocation Of System Process Or New Program. A program heap 
is created from system memory (all data space managed by the Executive 
RTS). If HEAPSIZE is greater than zero, then the program heap 
initially has HEAPSIZE words of available space. If HEAPSIZE is zero 
or not stated, the program heap has no available space after the 
system process or program is created. The process global frame is 
allocated from the program heap. The stack of the new system process 
or program is allocated as one heap packet from system memory. 

For a new program, note that lexically nested 
STARTS are allocated from the program~s heap. 
should have a HEAPSIZE concurrent characteristic 
for nested processes to be allocated plus 102 
managerial area. 

processes which it 
Therefore the program 
which is large enough 
bytes of additional 

12.6.4.2 Allocation Of New Process. A new process at lexical level two 

12-8 

) 



or greater is given resources according to the following rules. If 
HEAPSIZE is greater than zero, then a nested heap is allocated from 
the parent's heap. For a new process at lexical level two, the 
parent's heap is the program heap. For a new process at lexical level 
three, the parent's heap is the nested heap of the process at lexical 
level two or the program heap of the program at lexical level one. 
Thus the parent's heap for any new process is the program heap or. a 
nested heap of a lexical parent process. The nested heap initially has 
HEAPSIZE words of available space. If HEAPSIZE is zero or not stated, 
the new process inherits the parent's heap and uses it for all its 
data resources. The process global frame is allocated from the new 
process' heap. The stack of the new process is allocated as one heap 
packet from the parent's heap. 

12.6.4.3 Allocation Of Conventional Pascal Program. A Pascal program 
begins with the PROGRAM construct and is written and-compiled without 
being nested within a SYSTEM. The Microprocessor Pascal System does 
not allow it to have program parameters, to be nested within a SYSTEM, 
to have nested PROCESS declarations, or to declare the standard INPUT 
or OUTPUT text files. 

If HEAPSIZE is zero or not stated, then the program uses system memory 
for allocating its heap packets. If HEAPSIZE is greater than zero, 
then a new program heap is created with HEAPSIZE words of available 
space. If STACKSIZE is zero or not stated, then a process stack is 
allocated as a heap packet from system memory and has 250 words of 
space for routine calls within the conventional program. A non-zero 
STACKSIZE causes a stack to be allocated from system memory with the 
requested size. 

12.7 EXAMPLE 

The following program demonstrates how to determine 
characteristics for programs and processes. 

12-9 

concurrent 



SYSTEM EXAMPLE: 

PROGRAM COPIER; 
VAR LINE: PACKED ARRAY [1 •• 134] OF CHAR; 

PROCEDURE TRANSFER; 
VAR I;J: INTEGER; C: CHAR; 
BEGIN 

{Code Which Calls other routines} 
END; 

PROCESS READER; 
VAR CARD: PACKED ARRAY [1 •• 80] OF CHAR; 
BEGIN {PRIORITY = 100; STACKSIZE = 340; HEAPSIZE = 15} 

TRANSFER; 
END; 

PROCEDURE PRODUCE_DATA; 
BEGIN 

{Code Which Calls Other Routines} 
END; 

PROCESS WRITER; 
VAR IMAGE: PACKED ARRAY [1 •• 134] OF CHAR; 
BEGIN {PRIORITY = 100; STACKSIZE = 167; HEAPSIZE = O} 

PRODUCE DATA; 
END; -

BEGIN {Copier} 
{PRIORITY = 16; STACKSIZE = 317; HEAPSIZE = 715} 
START READER; 
START WRITER; 

END; 

BEGIN {Example} 
{PRIORITY = 1; STACKSIZE = 250} 
START COPIER; 

END. 

FIGURE 12-4. PROGRAM WITH CONCURRENT CHARACTERISTICS. 

Process READER needs 80 bytes of stack space for its global frame (for 
variable CARD) plus stack space for procedure TRANSFER and the 
routines which it calls (not shown). The user must sum the stack space 
required for each routine called by TRANSFER. For example, TRANSFER 
itself requires about 6 bytes (for variables I, J, and C) plus the 14 
byte administration area in the, stack for the execution of TRANSFER. 
In this example, we assume the user has determined that TRANSFER and 
the routines which it calls require about 300 words. The STACKSIZE of 
READER is set to 300 words plus 80 bytes (40 words) for the global 
frame of READER, or 340 words. 

12-10 



For this example, READER needs a nested heap of 30 bytes, so a 
HEAPSIZE of 15 words is requested. From this nested heap, the 
Executive RTS allocates the global frame of READER (holding variable 
CARD of 80 bytes). However the HEAPSIZE of READER does not include 
this size because the Executive RTS makes sure that the nested heap of 
READER has 15 words of available space after READER is created. The 
packet which contains the heap of READER is allocated from the parent 
heap of COPIER. The size of the packet for the nested heap of READER 
is equal to 26 bytes of administration area for the heap, a packet 
allocated to hold the process global frame of READER comprised of 30 
bytes of administration area plus 80 bytes for CARD, and the requested 
available space of 15 words. The total size of the nested heap of 
READER is 26+30+80+30 bytes or 83 words. This 83-word packet is 
allocated from the heap of COPIER. 

The stack of READER is allocated in one heap packet. The length of 
this packet is equal to the requested STACKSIZE of 340 words minus the 
space for the parameters and variables of process READER (80 bytes for 
CARD). A 150 byte administration area is added to the end of the 
stack. Therefore the size of the packet holding the stack of READER is 
680-80+150 bytes or 375 words and is allocated from the heap of 
COPIER. 

Process WRITER needs 134 bytes for its variables (variable IMAGE), and 
about 200 bytes for the calls of PRODUCE DATA and the routines it 
calls. So the STACKSIZE of WRITER is 134+200 bytes or 167 words. 
WRITER needs no heap space: its HEAPSIZE is zero. Even if WRITER did 
need heap space, a zero HEAPSIZE parameter causes WRITER to use the 
heap of its parent which is COPIER. 

The space requirements of WRITER are comprised of (1) a heap packet to 
hold its global frame of 134 bytes (for IMAGE) plus 30 bytes 
(administration area) or 82 words, and (2) a heap packet for its stack 
of 200 bytes (167 words STACKSIZE minus 134 bytes for IMAGE) plus 150 
bytes (administration area) or 175 words. 

Program COPIER uses 134 bytes of stack (the size of variable LINE) 
plus the requirements to START READER and WRITER: thus 250 words for 
the STARTs and 67 words for its global variable LINE. Therefore 
STACKSIZE of COPIER is 317 words. COPIER needs no heap for the 
algorithm of the program COPIER, but it does need heap space to 
allocate to its nested processes (READER and WRITER). An instance of 
READER needs a packet of 83 words for its nested heap and a packet of 
375 words for its stack. An instance of WRITER needs a packet of 82 
words for its global frame (No nested heap is created), and a packet 
of 175 words for its stack. Therefore, the HEAPSIZE of COPIER is 
83+375+82+175 words or about 715 words. If additional instances of 
READER or WRITER are STARTed, then HEAPSIZE of COPIER must be 
increased. 

12-11 



The program heap of COPIER is allocated as one heap packet from system 
memory. The packet size consists of 26 bytes of administration area 
for the program heap plus the global frame of COPIER. The global frame 
of COPIER is equal to 30 bytes of administration area and 134 bytes 
for LINE plus 715 words of HEAPSIZE. HEAPSIZE then is 26+30+134+1430 
bytes or 810 words. The stack of COPIER is allocated in one packet 
from system memory of size equal to 317 words of STACKSIZE minus 134 
bytes for LINE plus 150 bytes of administration area. This calulates 
to 634-134+150 bytes or 375 words. 

System EXAMPLE has no global variables and STARTS COPIER. The START 
call requires about 250 words, so the STACKSIZE of EXAMPLE is 250 
words. EXAMPLE does not call NEW or NEW$ and the resources of program 
COPIER are allocated from system memory and not from the heap of 
EXAMPLE, so the HEAPSIZE of EXAMPLE is zero. With a zero HEAPSIZE, a 
program heap is still created for EXAMPLE but it holds only the global 
frame of EXAMPLE. The packet holding its global frame is 30 bytes of 
administration area plus zero bytes for the global data of EXAMPLE or 
15 words. The program heap is allocated as one heap packet from system 
memory and is equal to 26 bytes of administration area·plus the 15 
word packet for the global frame plus zero words of HEAPSIZE, or 28 
words. The stack of EXAMPLE is allocated as one heap packet from 
system memory and has a size of 250 words STACKSIZE minus zero bytes 
for the global variables of EXAMPLE plus 150 bytes of administration 
area, or 325 words. 

Figure 12-5 illustrates the allocation of the memory resources for the 
example in Paragraph 12-7. 

12-12 

··.--...._.,. · .. · ... ) 

) 



PROCEDURE TRANSFER: 

Stack Frame: Administration 14 bytes 
. I' J, c 6 bytes 
Routines Called 580 bytes 

600 bytes = 300 words 

PROCESS READER: 

Stacksize: CARD 80 bytes 
TRANSFER 600 bytes 

680 bytes = 340 words 

Heapsize: Nested 30 bytes = 15 words 

Size of Heap: Heap Admin 26 bytes 
Global Frame 30 bytes 
Global Var's 80 bytes 
Avail Space JO bytes 

166 bytes = 83 words 

PROCESS WRITER: 

/ 
Stacksize: IMAGE 134 bytes 

PRODUCE_ DATA 200 bytes 

334 bytes = 167 words 

Heapsize: (Parent""s Heap) 0 

PROGRAM COPIER: 

Stacksize: Start processes 500 bytes 
LINE 134 bytes 

634 bytes = 317 words 

Heapsize: Reader Stack 600 bytes 
Reader Stack Admin 150 bytes 
Reader Nested Heap 166 bytes 
Writer Stack 200 bytes 
Writer Stack Admin 150 bytes 
Writer Global Frame 30 bytes 
Writer Global Var"s 134 bytes 

1430 bytes = 715 words 

FIGURE 12-5. MEMORY LAYOUT OF STACKS AND HEAPS FOR PARAGRAPH 12.7. 

12-13 



.... 



f 
\ 

'-._, 

13 • 1 OVERVIEW 

SECTION 13 

ERROR RECOVERY AND 
EXCEPTION HANDLING 

As a process executes, it may encounter an exception such as division 
by zero or subscript out of range. The ability of a process to deal 
with and possibly recover from exceptions is called exception 
handling. The me.chanism by which a process in the interpretive 
execution mode can recover from exceptions and reprocess lost work is 
explained in this section. 

13.2 EXECUTIVE RTS DETECTED ERRORS 

Errors detected by Executive RTS routines are classified according to 
the type of code which detected the error. Each error has a class code 
associated with it. Within each class code, errors are assigned a 
reason code. The error messages from the Host Debugger are of the 
following form: 

CLASS 
CODE ERROR MESSAGE 

(1) User Error: reason code for error 
(2) Scheduling Error: reason for error 
(3) Semaphore Error: reason for error 
(4) Interrupt Error: reason for error 
(5) Process Mgmt Error: reason for error 
(6) Exception Error: reason for error 
(7) Memory Mgmt Error: reason for error 
(8) File Error: reason for error 
(9) Host File Error: operating system error code 

NOTE: The error reason codes are shown in parentheses to the left of 
each error message. 

13-1 



13.2.1 User Errors 

A user error can be forced .by calling the routine EXCEPTION as .1 

supplied in the Executive RTS Library. The process which executes this 
routine fails with some designated.reason code (as specified by the 
user as a parameter to EXCEPTION). 

13.2.2 Scheduling Errors 

The following errors pertain to the scheduling of processes. 

1) INVALID QUEUE 
This error should not be seen by the user. It indicates a system 
error which probably resulted from RTS code being accidently 
modified. 

2) PRIORITY ERROR 
This error occurs if 
priority (in the range 
be set to an interrupt 

13.2.3 Semaphore Errors 

1) INVALID SEMAPHORE 

SETPRIORITY is called with an interrupt 
Oto 15). The priority of a process cannot 
priority. 

This error occurs primarily in cases when a semaphore is used 
before it has been initialized by INITSEMAPHORE or after it has 
been terminated by TERMSEMAPHORE~ otherwise it is a run-time 
support error which may be a result of system data structures 
being accidently destroyed. 

2) COUNT ERROR 
This error can occur when INITSEMAPHORE is called with a count 
value that is not in the range 0 to 32767. A semaphore cannot be 
initialized to a,negative value. 

4) COUNT OVERFLOW 
This error occurs whenever the counter associated with a given 
semaphore becomes equal to 32767, meaning that no more events can 
be signaled until some waiters perform a wait. 

13.2.4 Interrupt Errors 

The following errors pertain to the handling of interrupts. 

2) LEVEL INVALID 
This error occurs when the priority passed to one of the routines 
ALTEXTERNALEVENT, EXTERNALEVENT, NOALTEXTERNALEVENT, or 
NOEXTERNALEVENT is not in the range 0 to 15. 

13-2 



\ 

3) SEMAPHORE INVALID 
This error results from an attempt to use a semaphore before it 
has been initialized. 

4) INTERRUPT NOT HANDLED 
This error occurs when an interrupt is signaled and there is no 
process waiting to service the interrupt. 

6) HANDLER PRIORITY ERROR 
This error occurs when a waiting interrupt handler is less urgent 
than a signaled interrupt. 

13.2.5 Process Management Errors 

The following errors are detected in process management run-time 
support code. 

1) NOT A PROCESS 
This error occurs when a run-time support routine is called which 
expects a process parameter and the parameter either points to 
something which is not a process or the process has terminated. 
Examples are the procedures P$LASTPROCESS and P$SUCCESSFUL, which 
both take an input parameter which must be a pointer to a 
process. Recall that a process pointer can be obtained by calling 

, the the function MY$PROCESS. 

2) ABORTED 
This error occurs in an aborted process after the user~s system 
calls the procedure P$ABORT to abort the process·. 

3) NOT STARTED - INVALID PRIOIRTY 
This error occurs when it is not possible to start a user process 
because the priority given in the concurrent characteristics for 
the process is not in the range O through 32766. 

4) NOT STARTED - NEGATIVE STACKSIZE 
The "stacksize" given in the concurrent characteristics for the 
process must be non-negative. 

5) NOT STARTED - NEGATIVE HEAPSIZE 
The "heapsize" given in the concurrent characteristics for the 
process must be non-negative. 

6) NOT STARTED - PROCESS IS IN ASSEMBLY LANGUAGE 
User processes cannot be written in assembly language. 

7) NOT STARTED - NO MEMORY FOR SEMAPHORE 
This error indicates there was not sufficient memory for 
allocation of a semaphore used by the process. 

13-3 



8) NOT STARTED - NO MEMORY FOR PROCESS HEAP 
This error indicates there was not sufficient memory for 
allocation of the process heap. 

9) NOT STARTED - NO MEMORY FOR PROCESS STACK 
This error indicates there was not sufficient memory for 
allocation.of .the process stack. 

10) NOT STARTED - NO MEMORY FOR PROCESS FRAME 
This error indicates there was not sufficient memory for 
allocation of the initial stack frame for the process. 

13.2.6 Exception Errors 

The following errors are those which can be encountered during 
exception handling. 

1) HANDLER NOT ESTABLISHED FROM PROCESS 
This error is received if the ONEXCEPTION 
a user's procedure or function. The call 
occur in the body of a process or program. 

2) HANDLER CANNOT HAVE PARAMETERS 

routine is· called from 
of ONEXCEPTION must 

This error occurs if a candidate exception handler passed to the 
ONEXECPTION routine was defined to have parameters. 

3) HANDLER CANNOT BE IN ASSEMBLY LANGUAGE 
An exception handler must be written in Microprocessor Pascal, 
not in assembly language. 

4) HANDLER LOCAL VARIABLES TOO LARGE FOR STACK 
This error occurs if a candidate exception handler passed to the 
ONEXECEPTION routine contains too many local variables. 

13.2.7 Memory Management Errors 

The following errors pertain to memory management problems which may 
occur. 

1) INVALID HEAP 
This error should only occur if the integrity of the user's 
system heap is accidently destroyed either by run-time support 
code or by the user's code. 

2) HEAP OVERFLOW 
This error indicates that the available heap space has been 
exhausted. 

13-4 

.-.~ 

"··, 

) 



3) HEAP PACKET ERROR 
This error occurs when a heap packet is passed to a routine such 
as DISPOSE and the heap packet is invalid. 

13.2.8 File Errors 

The following errors pertain to file management problems. 

1) TEXT CONVERSION, PARAMETER OUT OF RANGE 
This error occurs when a parameter to an encode or decode routine 
is out of range. For example, the index parameter must be a 
positive integer. 

2) TEXT CONVERSION, FIELD WIDTH TOO LARGE 
This error occurs when a field width in a write statment is 
larger than the logical record length of the file. 

3) TEXT CONVERSION, INCOMPLETE DATA 
This error occurs when a data value 
syntactically incomplete, for example, the 
a real number. 

read or decoded is 
value "l.OE" given for 

4) TEXT CONVERSION, INVALID CHARACTER IN TEXT FIELD 
This error occurs when a field being read contains a character 
which is invalid for the particular data type, for example, the 
character "·" when reading an integer value. 

5) TEXT CONVERSION, VALUE TOO LARGE 
This error occurs when some data value being read 
be represented as the particular data type, 
attempting to read "32768" as an integer value. 

6) TEXT READ PAST END OF FILE 

is too large to 
for example, 

This error occurs when an attempt is made to read past the end of 
a file. 

7) TEXT FIELD EXCEEDS RECORD SIZE 
This error occurs when a specified field width is greater than 
the logical record size of the file. 

8) FILE IS NOT OPEN FOR READING 
This error occurs when a read attempt is made and the file was 
not opened for reading. A file must be opened for reading using 
RESET. 

9) FILE IS NOT OPEN FOR WRITING 
This error occurs when a write attempt is made and the file was 
not opened for writing.· A file must be opened for writing using 
REWRITE. 

13-5 



10) SEQUENTIAL READ PAST END OF FILE 
This error occurs when an attempt is made to read past the end of 
file for a sequential file. 

50) NO SYSTEM MEMORY FOR FILE DESCRIPTOR 
This error occurs when there is not sufficient memory space with 
which to allocate a file descriptor. 

51) RANDOM FILES NOT IMPLEMENTED 
Random files are not currently implemented. 

52) FILE COMPONENT LENGTH IS INCOMPATIBLE WITH CHANNEL 
This error occurs when a file is opened that has a logical record 
length that is smaller than the component length as declared in 
the user~s system. 

53) NO SYSTEM MEMORY FOR DESCRIPTOR OF FILE PARAMETER BY VALUE 
This error occurs when there is not sufficient memory space with 
which to allocate a file descriptor being passed as a process 
parameter. 

54) PARAMETER TO F$CHBUFFERS EXCEEDS 255 
The system procedure F$CHBUFFERS was called with a parameter 
greater than 255. 

55) FILE PARAMETER TO F$CONDITIONAL IS NO SEQUENTIAL! 
A TEXT or RANDOM file was specified to be conditional. Only 
sequential files are allowed to be conditional. 

56) FILE PARAMETER TO F$STLENGTH IS NOT CLOSED 
A file variable must be closed before it can be specified as a 
parameter to F$STLENGTH. 

57) F$STLENGTH COMPONENT LENGTH IS NOT IN [1 •• 8191] 
F$STLENGTH was called with a component length greater than 8191 
or less than 1. Only the values 1 •• 8191 are allowed. 

58) F$STLENGTH COMPONENT LENGTH GREATER THAN DECLARED FOR FILE 
The sequential file specified to F$STLENGTH has a declared 
component length which is less than that specified to F$STLENGTH. 

60) RESET CALLED FOR CHANNEL MASTER BEFORE F$CREATECHANNEL 
F$CREATECHANNEL must be called before a master file can be 
opened. 

61) RESET CALLED FOR CHANNEL MASTER AND MASTER~S MODE IS WRITING 
F$STMODE was previously called to establish the mode of the file 
as WRITING. Only REWRITE may be used to open this file. 

62) RESET CALLED FOR CHANNEL MASTER AND MASTER~S MODE IS USERMODE 
F$USERMODE was previously called to indicate that the user will 
establish the mode of this file. Therefore, the system routine 
F$WAIT must be called before the file is opened. 

13-6 

.···.·~ 
/ 



63) RESET CALLED FOR CHANNEL MASTER AFTER F$WAIT AND USER'S MODE IS 
READING 

REWRITE must be called if user's mode is reading. 

64) RESET CALLED FOR CHANNEL MASTER BEFORE CLOSE AND F$WAIT 
F$USERMODE was previously called to indicate that the user will 

l • • • 

establish the mode of this file. Therefore, once the file is 
open, CLOSE must be called to close it and F$WAIT called again to 
determine the mode of the next user. 

65) REWRITE CALLED FOR CHANNEL MASTER BEFORE F$CREATECHANNEL 
F$CREATECHANNEL must be called before a master file can be 
opened. 

66) REWRITE CALLED FOR CHANNEL MASTER AND MASTER'S MODE IS READING 
F$STMODE was previously called to establish the mode of this file 
as READING. Only RESET may be used to open this file. 

67) REWRITE CALLED FOR CHANNEL MASTER BEFORE F$WAIT 
F$USERMODE was previously called to indicate that the user will 
establish the mode of this file. Therefore, F$WAIT must be called 
to determine the mode of the next user. 

68) REWRITE CALLED FOR CHANNEL MASTER AND USER'S MODE IS WRITING 
F$USERMODE was previously called to indicate that the user will 
establish the mode of this file and the user's mode is writing. 
Therefore, a RESET must be done to open the master file for 
reading. 

69) REWRITE CALLED FOR CHANNEL MASTER BEFORE CLOSE AND F$WAIT 
F$USERMODE was previously called to indicate that the user will 
establish the mode of the file. Therefore, once the file is open, 
CLOSE must be called to close it and F$WAIT must be called to 
determine the next user's mode. 

70) F$MASTER CALLED AND FILE NOT CLOSED 
A file must be closed before F$MASTER can be called on it. 

71) F$MASTER CALLED TWICE FOR SAME FILE 
F$MASTER can be called only once for a particular file. 

72) NO SYSTEM MEMORY FOR F$MASTER STRUCTURES 
There is not sufficient memory space with which to allocate 
structures needed by a master file. 

73) F$EOC CALLED AND F$STEOC NOT CALLED FOR FILE 
A call to F$STEOC must be made befor~ the function F$EOC can be 
called. 

74) FILE PARAMETER TO F$STEOC IS NOT CHANNEL MASTER 
F$STEOC may not be called unless F$MASTER is called first. 

13-7 

·-- -.~-.-~-- '-"-- -:---------1 



75) F$STEOC CALLED AFTRER $CJIBATECHANNEL 
F$STEOC must be called before F$CREATECHANNEL. ""') 

76) PARAMETER TO F$STMODE IS NOT IN [READING, WRITING, USERMODE] 

77) 

78) 

79) 

80) 

The parameter to F$STMODE is not of type MODE where 
MODE = ( READING, WRITING, USERMODE ) • 

FILE PARAMETER TO F$STMODE IS NOT CHANNEL MASTER 
F$STMODE can only be called after F$MASTER and before 
F$CREATECHANNEL. 

F$STMODE CALLED AFTER F$CREATECHANNEL 
F$STMODE can only be called after F$MASTER and before 
F$CREATECHANNEL. 

FILE PARAMETER TO F$ULENGTH IS NOT CHANNEL MASTER 
F$ULENGTH can only be called after F$MASTER and before 
F$CREATECHANNEL. 

F$ULENGTH CALLED AFTER F$CREATECHANNEL 
F$ULENGTH can only be called after F$MASTER and before 
F$CREATECHANNEL. 

81) F$CREATECHANNEL CALLED BEFORE F$MASTER 
F$MASTER must be called before F$CREATECHANNEL. 

82) F$CREATECHANNEL CALLED BEFORE F$STMODE 
F$STMODE must be called before F$CREATECHANNEL. 

83) F$CREATECHANNEL CALLED TWICW 
F$CREATECHANNEL can only be called once for a particular file. 

84) FILE PARAMETER TO F$WAIT IS NOT CHANNEL MASTER 
F$MASTER and F$CREATECHANNEL must be called before F$WAIT . for a 
particular file. 

85) F$WAIT CALLED AND F$CREATECHANNEL NOT CALLED 
F$CREATECHANNEL must be called before F$WAIT for a particular 
file. 

86) FILE PARAMETER TO F$WAIT IS NOT CLOSED 
CLOSE must be called to close the file before F$WAIT is called. 

87) FILE PARAMETER F$XACCESS IS NOT CHANNEL MASTER 
F$MASTER and F$CREATECHANNEL must be called before F$WAIT for a 
particular file. 

88) F$XACCESS CALLED AFTER F$CREATECHANNEL 
F$XACCESS must be called before F$CREATECHANNEL. 

13-8 

. __ ./ 



\·' . 

~-

103) CONDITIONAL READ OR WRITE FAILED (nonfatal error) 
A READ or WRITE was performed on a file which was established as 
conditional, and the attempt failed due to insufficient buffers. 
This is not a fatal error, and the READ or WRITE may be attempted 
again. 

104) CHANNEL ABORTED 
Some process has 
connected. The file 
REWRITE or RESET. 

aborted the channel to which a user~s file is 
may be closed with CLOSE and reopened with 

106) NO SYSTEM MEMORY FOR CHANNEL BUFFERS 
This error occurs when system memory cannot be obtained to 
allocate the buffers for a channel. 

200) NO SYSTEM MEMORY FOR CHANNEL 
This error occurs when system memory cannot be obtained to 
allocate a channel. 

201) NO SYSTEM MEMORY FOR PATHNAME 
This error occurs when system memory cannot be obtained to 
allocate space for the pathname of a channel. 

202) INVALID PATHNAME 
This error indicates that a file pathname is syntactically 
incorrect. 

203) ATTEMPT TO OPEN DEVICE IN AN UNSUPPORTED MODE 
This error occurs when an attempt is made to open a device 
mode that is not supported, for example, opening the printer 
input. 

204) DEVICE CHANNEL NOT INITIALIZED BEFORE USER CONNECTED 

in a 
for 

This error indicates that a device handler did not create a 
device channel before user code attempted to connect to the 
channel. 

205) ATTEMPT TO INITIALIZE DEVICE CHANNEL WITH SAME NAME AS EXISTING 
USER CHANNEL 
This error indicates that a device handler attempted to create a 
device with the same name as some existing user channel. 

206) ATTEMPT TO OPEN MULTIPLE DEVICE CHANNELS OF SAME NAME WITH 
CONFLICTING MODES 
This error indicates that a device handler attempted to create a 
device channel with the same name as some existing device 
channel. 

207) IMPLICIT HOST FILE CONNECTION NOT ALLOWED 
Host connection must be made explicitly using the CIF and COF 
debugger commands. 

13-9 



13.2.9 Host File Errors 

If a host file error is detected, a message is printed which contains ) 
. a hexadecimal error code for either a DX or TX operating system 

(depending on which host system you are running). The appropriate file 
error message can be found in a.DX or TX operating system manual. 

13.3 Run-Time Execution Errors 

Errors encountered at run-time cause a message of the following form: 

Run-Time Error: reason for error 

The reason for error message is one of the error messages described 
below. 

1) INVALID OPCODE 
This error indicates that the interpreter encountered an illegal 
opcode during execution. This may have been caused by an error in 
the compilation of the program. 

2) STACK OVERFLOW 
This error occurs when 

· exhausted. The problem can 
stack size parameter. 

the allocated stack memory region is 
normally be remedied by increasing the 

3) UNRESOLVED PRODEDURE CALL . ) 
This error occurs when a "call" instruction is encountered and 
the routine being called is not known to the interpreter. This 
kind of error is normally detected at compile-time. If a change 
is made to a system, the collect program should be executed to 
ensure that references to routines are not unresolved. 

4) DIVISION BY ZERO 
This error occurs when division by zero is detected. The 
offending expression should be checked and corrected to avoid 
this error. 

5) FLOATING POINT ERROR 
This error occurs when a REAL value is too large or too small to 
be represented. The range of absolute values that can be 
represented is about L.OE-78 to 1.0E75. 

6) SET ELEMENT OUT OF RANGE 
This error indicates that a member of a set has an ordinal value 
less than 0 or greater than 1023. This problem can be solved by 
restructuring the set or breaking it into more than one set if 
necessary • 

. 7} ASSERT ERROR 
This error occurs when the expression in an ASSERT statement 
evaluates to "false". Either the expression was improperly formed > 

13-10 



L. 

' 

or a logical error occurred at some point in the program. 

8) MISSING OTHERWISE IN CASE 
This error occurs when the selector expression in a CASE 
statement does not evaluate to any of the case labels present and 
there is no OTHERWISE clause to be used as the default statement. 
If there are no logical errors in the program, an OTHERWISE 
clause should be added so that unanticipated label values will be 
handled uniformly. 

9) ARRAY INDEX ERROR 
or 
12) LONGINT ARRAY INDEX 

This error occurs when a array index is out of bounds for the 
array. The error may have been caused by an incorrectly formed 
index expression(s). Alternatively, the array definition may be 
incorrect. 

10) POINTER EQUALS NIL 
This error occurs when a reference is attempted through a pointer. 
which has the value NIL. No check is made to ensure that the 
pointer points to a valid (allocated) heap packet. To avoid this 
error, make sure that all pointers have a valid, non-NIL value 
before they are used. 

11) SUBRANGE ASSIGNMENT ERROR 
or 
13) LONGINT SUBRANGE ERROR 

This error occurs when a subrange variable is given a value that 
is outside its range. This could be the result of an 
unanticipated assignment, or function result. Expressions should 
be examined to ensure that their values are in bounds: 
alternatively, the subrange bounds may have to be altered. 

13.4 CRITICAL TRANSACTIONS 

Concurrent 
references 
shared data 
operations 
referencing 

processes which share data 
to the data to avoid errors. 
are preceded and succeeded by 
to prevent more than one 
shared data. 

must synchronize their 
Typically, the references to 
semaphore WAIT and SIGNAL 
process from simultaneously 

Consider that a process has executed a WAIT on a semaphore, has 
proceeded from that operation and is referencing the protected object 
(data), and then encounters an exception and aborts. Since the aborted 
process may not have finished its operations on the shared data, the 
data could be left in an inconsistent state. Another problem is that 
the aborted process is not able to SIGNAL the semaphore which protects 
the shared data upon which other sharing processes WAIT. The semaphore 
could be left in a state that it is never signaled again, and other 
sharing processes may be left suspended on the semaphore forever. 

13-11 

I 

---~_., ...... --.·--------·- .... __,_.,,_ __ ~-··-- -::-_v-, -~.,-~------~-----·-~·--- -i 



The problem outlined above shows that a section of code is sensitive 
and is designated here as a critical transaction. The following ·~ 
routine r 

PROCEDURE CT$ENTER: EXTERNAL: 

indicates the entry of a critical transaction of the user~s code. 
While a process is within a critical transaction as defined by the 
user, it is treated specially: process abort is remembered and not 
allowed until the process leaves the critical transaction. The entry 
and exit of critical transactions may be nested, that is, code within 
a critical transaction may call another critical transaction to 
implement it. 

PROCEDURE CT$EXIT: EXTERNAL: 

The above routine indicates the exit of a critical transaction. Fatal 
errors encountered by a· process, such as stack overflow, cause a 
process to fail even if it is within a critical transaction. 

The Executive RTS manages many resources for concurre.nt processes 
using semaphores. When a user process is executing this RTS code, it 
is not apparent to the user that semaphores are being used to protect 
shared data and to keep it consistent. As an example, a heap resource 
is managed with a semaphore in the heap administration record. If a 
process was aborted while it was executing a heap request (such as a 
NEW request), the heap resource is left inconsistent, and other 
processes will be suspended forever at their next operation on the 
same heap. 

Critical transactions of code within the Executive RTS are bracketted 
by routines which are similar in function to CT$ENTER and CT$EXIT. 
Therefore, resources maintained by the Executive RTS are protected 
from the aborting of processes. 

The concept of a critical transaction applies to more than a section 
of code which uses semaphores to synchronize concurrent processes that 
share data. A transaction can be defined to be a series of operations 
which may be executed by more than one process such that all of the 
operations must be completed (in possibly a stri~t order). An example 
is a command/response transaction in which a process sends a request 
to another process which in turn responds to the requester. If a 
command is sent and the requester process waits for a response, but 
the command servicing process fails, the requester could wait forever. 
The recovery of this user-defined transaction is implemented with a 
protocol implemented by the user. 

13-12 

' ) 
.J 



13.5 EXCEPTION HANDLING 

Within the text of a process (or program) a user may call the 
following run-time support routine: 

PROCEDURE ONEXCEPTION(HANDLER_LOCATION: INTEGER); 
EXTERNAL; 

(read as "on exception") where HANDLER LOCATION is derived by 

LOCATION (PROCEDURE IDENTIFIER) 

and PROCEDURE IDENTIFIER is the name of a procedure which is to be 
designated the exception handler for the process. 

When an exception occurs, all routines which are currently active in 
the stack of the process are forced by the run-time support to 
immediately return, and a call of the exception handler procedure is 
forced as though it were called from the body of the process. The 
exits of all routines which are currently active are done as though an 
"ESCAPE <routine name>" statement were called for each active routine. 
All data which had been local to the routines are ·lost. However, the 
parameters and variables declared in the process are left intact and 
in the same state as at the time of the exception. The process data 
are addressable to the exception handler and other routines which it 
calls to reprocess lost work. 

/ The call of ONEXCEPTION must occur in the body of a process or 
program. The calling process fails if ONEXCEPTION is called from a 
procedure or function. The procedure which is designated as an 
exception handler cannot have any parameters and cannot be implemented 
in assembly language. 

Once the exception handling procedure is invoked, it can fix or 
reinitialize as appropriate; then it can repeat the lost work of the 
process or can exit. Since the exception procedure was forcibly called 
by the run-time support and the return point from the procedure is 
undefined, an exit by the exception routine is interpreted to be an 
ESCAPE <process name>; that is, the process terminates. 

Notice that the exception handling procedure stays active throughout 
reprocessing after an exception. However, if another exception occurs, 
the execution of the exception handler is lost (b'y a simulated ESCAPE) 
and restart is caused by the forced call issued by run-time support. 
If variables are required to inform the exception handler that an 
exception occurred or how to reprocess, then these variables should be 
declared as process variables so they are left intact after all 
exceptions. 

The Executive RTS allows a process to repeatedly fail for the same 
reason and restart ad infinitum. The user must be cognizant that a 
process which repeatedly fails should be allowed to terminate. 

13-13 



Following is an example sketch of exception handling. 

PROCESS EXAMPLE {( ••• PROCESS PARAMETERS IF APPROPRIATE ••• )}; 
VAR { ••• PROCESS VARIABLES IF APPROPRIATE ••• } 

PROCEDURE ACCOMPLISH WORK; 
{THIS ROUTINE DOES THE NORMAL, MAIN} 

PROCESSING OF PROCESS EXAMPLE.} 
BEGIN 

{ ••• MAIN PROCESSING ••• } 
END {ACCOMPLISH_WORK}; 

PROCEDURE EXCEPTION HANDLER { ••• NO PARAMETERS ALLOWED ••• }; 
VAR { ••• ROUTINE VARIABLES IF APPROPRIATE ••• } 
BEGIN 

{ ••• HANDLE EXCEPTION ••• } 
IF {CONTINUING WORK WOULD BE USEFUL} 
THEN ACCOMPLISH WORK {CALL ROUTINE WHICH ACCOMPLISHES 

- ALL THE WORK OF PROCESS EXAMPLE}; 
{OTHERWISE EXIT EXCEPTION HANDLER AND PROCESS EXAMPLE} 

END {EXCEPTION_HANDLER}; -

BEGIN 
ONEXCEPTION( LOCATION 
ACCOMPLISH WORK; 

END {EXAMPLET; 

EXCEPTION HANDLER) ); 

FIGURE 13-1. EXAMPLE SKETCH OF EXECUTION HANDLING. 

Code written by the user which services an exception can determine the 
current cause of the exception by calling the following two routines: 

FUNCTION ERR$CLASS: INTEGER; EXTERNAL; 
FUNCTION ERR$REASON: INTEGER; EXTERNAL; 

Class codes and reason codes for each error are explained in Paragrahs 
13.2 and 13.3 and are listed in Appendix E. 

The exception codes of the current process may be cleared by calling 

PROCEDURE ERR$RSET; EXTERNAL; 

If a process terminates after an exception without clearing its 
exception codes with ERR$RSET, then the exception codes are available 
to the process termination serv1c1ng of the Executive RTS which 
reports abnormal process termination. If a process terminates with 
zero exception codes, because no exception ever occurred for the 
process or ERR$RSET had been called, then the process is considered by 
the Executive RTS to be terminating normally. The only difference is 
in the reporting of abnormal termination by the Executive RTS. 

13-14 

__ _/ 



( 

'·~ . ,· 

(. 

i 
I 

A user can force an exception with 

PROCEDURE EXCEPTION(CLASSCODE, REASONCODE: 
INTEGER); EXTERNAL; 

The process which executes this routine fails with the designated 
exception, and its exception handler is invoked. One class of errors 
is designated USER ERROR and is never used by the Executive RTS. The 
user may call the EXCEPTION procedure with a class of USER ERROR and 
any reason code. 

A process (or program) that has not called ONEXCEPTION is considered 
to have no exception handling code with which it can handle errors. 
The environment of every process includes a default exception handler 
which causes the process to abort. This default handler is invoked to 
service an exception otherwise not serviced by user-written code. If 
an exception occurs, the process is terminated as though an ESCAPE 
<process name> was called. 

If reprocessing after an exception is not desired, the following 
routine 

PROCEDURE RE$START; EXTERNAL; 

causes the entire system to restart exactly as it did from application 
of power or from toggling an external reset switch. Low-level 
initialization is done to establish the Executive RTS data structures 
and the code declared in the SYSTEM is executed. 

13.6 EXAMPLE 

The following example illustrates exception handling for a process. 

CONST 
USER ERROR = 1; 
SCHEDULING ERROR = 2; 
SEMAPHORE ERROR = 3 ; 
INTERRUPT-ERROR = 4; 

{ •••• ADDITIONAL CLASS ERROR CODES •••• } 

INVALID QUEUE = 1; 
PRIORITY ERROR = 2; 
NOT A PROCESS = 1; 
ABORTED = 2; 

{ •••• ADDITIONAL REASON ERROR CODES •• ~.} 

FIGURE 13-2 •. EXAMPLE OF EXCEPTION HANDLING FOR A PROCESS. 
(Sheet 1 of 2) 

13-15 

' . '. . ~ . >. . 



PROCEDURE ONEXCEPTION(HANDLER LOCATION: INTEGER); EXTERNAL; 
FUNCTION ERR$CLASS: INTEGER; EXTERNAL; 

PROCESS EXAMPLE; 
VAR I, J, K: INTEGER; 

NUMBER OF EXCEPTIONS: INTEGER; 

PROCEDURE' ACCOMPLISH_WORK; 
BEGIN 

{DO MAIN PROCESSING HERE.} 
END {ACCOMPLISH_WORK}; 

PROCEDURE EXGEPTION_HANDLER; 
BEGIN 

NUMBER OF EXCEPTIONS := NUMBER OF EXCEPTIONS + l; 
IF NUMBER-OF EXCEPTIONS = 3 - -
THEN - -

CASE ERR$CLASS OF 
USER ERROR: ACCOMPLISH WORK 

{TRY MAIN PROCESSING ~GAIN.}; · 
{OTHER CASES AS APPROPRIATE, i.e. 

SEMAPHORE ERROR: •••••• 
FILE ERROR: •••••••••.• } 

END {CASE ERR$CLASS OF}; 
{EXIT EXCEPTION HANDLER AND PROCESS EXAMPLE.} 

END {EXCEPTION_HANDLER}; 

BEGIN {EXAMPLE} 
{PRIORITY=lOO; STACKSIZE=400; HEAPSIZE=O} 

I := 0; 
{INITIALIZE AND SET UP} 
{THIS CODE IS DONE EXACTLY ONCE.} 
J := 1; 
NUMBER_OF_EXCEPTIONS := 0; 

ONEXCEPTION( LOCATION( EXCEPTION HANDLER ) ) ; 
ACCOMPLISH WORK; 

END {EXAMPLET; 

FIGURE 13-2. EXAMPLE OF EXCEPTION HANDLING FOR A PROCESS. 
(Sheet 2 of 2) 

13.7 RECOVERY OF FILES 

A variable of type FILE may be declared local to a routine. If 
execution of the routine is terminated by a user-called ESCAPE 
statement during normal processing or by a simulated ESCAPE during 
exception processing, the file variable is automatically closed. A 
process parameter or a variable declared local to a process is not 
affected by the Executive RTS during exception processing.·The user 
may desire to declare files as process parameters or process variables 

13-16 

" I 
j 



to keep them in an open state during recovery processing by an 
exception handler. 

13.8 PROCESS MANAGEMENT 

A process identification is the dynamic "name" of a process which is 
assigned by the Executive RTS when a process is created. The user may 
define a process identification as follows: 

TYPE PROCESSID = @ PROCESSID 
{i.e. a pointer to something}; 

The process identification of the current (calling) process is 
returned by 

FUNCTION MY$PROCESS: PROCESSID; EXTERNAL; 

and the identification of the last process successfully started by 
process P is returned by 

FUNCTION P$LASTPROCESS(P: PROCESSID): PROCESSID; EXTERNAL; 

A process can be involuntarily terminated by another process by means 
of the following run-time support procedure: 

PROCEDURE P$ABORT(P: PROCESSID); EXTERNAL~ 

If P$ABORT(P) is called, process P receives an ABORTED exception which 
causes it to fail. If process P is within a critical transaction 
defined by the user (by routines CT$ENTER and CT$EXIT) or by the 
Executive RTS modules, then the ·critical transaction is finished and 
the process is immediately caused to fail. Upon failure process P can 
terminate abnormally or recover using exception handling. 

These routines are covered in more detail in Section 11 on Process 
Management. 

13.9 SYSTEM CRASH 

Non-recoverable errors are defined to cause a system crash. Under the 
Debugger, a message is issued indicating the crash. Executing 
stand-alone, the system crash code in the module ~USERINIT~ will be 
entered. The errors for each crash condition are discussed below. 

1) Interpretive RTS is unable to boot the system, probably 
because of insufficient memory. 

2) A system, program, or process fails without having established 
an exception handler. 

3) An interrupt occurs at a level for which no handler 
\'-'-'- has been specified at the time of the occurrence of the interrupt. 

13-17 



4) An unimplemented interrupt or XOP occurs and cannot be serviced. 

5) The scheduling queue has been destroyed: further scheduling is 
impossible. 

6) RAM made available to Interpretive RTS is found to be 
in error. An address specified to be RAM is either bad, ROM, or 
unimplemented memory. 

7) An interrupt has occurred for which the handler~s priority 
is not urgent enough. 

13-18 

-·~\ 

' '! 



SECTION 14 

IMPLEMENTATION OF DEVICE HANDLERS 

14 .1 OVERVIEW 

The Executive RTS device management system interfaces (supported) 
physical devices to the Executive RTS logical file system. 
Conceptually, logical devices are processes executing concurrently and 
communicating with other processes through the Executive RTS logical 
file system. Each logical device has at least one dedicated channel 
through which it communicates with the rest of the system as 
illustrated in Figure 14-1. However, no physical device is capable of 
communicating with processes directly through an Executive RTS 
channel. Therefore, the implementation of a logical device requires an 
interface process which communicates with the channel through a file, 
interfaces to the physical device through CRU (or memory-mapped I/O) , 
and synchronizes its execution with the device through interrupts (see 
Figure 14-2) • 

LOGICAL 
DEVICE 

DEVICE 

CHANNEL 

PROCESS 

PROCESS 

PROCESS 

FIGURE 14-1. CONCEPTUAL VIEW OF INTERFACE TO A LOGICAL DEVICE. 

14-1 



LOGICAL DEVICE 

1-
PROCESS 

INTERFACE DEVICE 
PROCESS 

PROCESS CHANNEL 

\ CRU INTERRUPTS 

PROCESS 

PHYSICAL 
DEVICE 

FIGURE 14-2. INTERFACE TO PHYSICAL DEVICE. 

Figure 14-3 illustrates. the implementation of an interface process. 

PROCESS INTERFACE PROCESS( ••• ); 
VAR -

F: FILE OF SOME TYPE {FILE ASSOCIATED WITH CHANNEL}; 
COMPONENT: SOME TYPE; . . . 

BEGIN {INTERFACE_PROCESS} 

RESET(F); 
WHILE NOT EOF(F) DO 

BEGIN 
READ(F, COMPONENT) {RECEIVE COMPONENT FROM CHANNEL}; 
"OUTPUT COMPONENT TO DEVICE THROUGH CRU" 
WAIT{COMPLETION INTERRUPT); 
END lWHILE NOT EOF( F )}; . . . 

END {INTERFACE_PROCESS}; 

FIGURE 14-3. EXAMPLE SKETCH OF AN INTERFACE PROCESS. 

A single physical device may actually be more than one logical device. 
For example, an ASR 733 is a single physical device (it has a single 
device controller) but can be viewed as three logical devices: two 
cassette drives and a keyboard/printer. Outside of the interface 
processes, these logical devices appear to be. independent. However, 
the · interface processes are dependent on each other and must 
coordinate use of the single physical device among themselves. Figure 
14-4 illustrates a physical device consisting of more than one logical 
device. 

14-2 

··~ 



( 

( 
\·.·~~ 

PHYSICAL DEVICE 
WITH TWO LOGICAL 

DEVICES 

INTERFACE 
PROCESS 

Ill II 
CRU INTERRUPTS 

/// // 
PHYSICAL 

DEVICE 

\\\ \\ 
CRU INTERRUPTS 

\\\ \ \ 

INTERFACE 
PROCESS 

LOGICAL DEVICE 

DEVICE 
CHANNEL 

LOGICAL DEVICE 

DEVICE 
CHANNEL 

PROCESS 

PROCESS 

PROCESS 

PROCESS 

PROCESS 

PROCESS 

FIGURE 14-4. ILLUSTRATION OF MULTIPLE LOGICAL DEVICES 
ON A SINGLE PHYSICAL DEVICE. 

14.2 PHYSICAL DEVICE INTERFACE SYSTEMS 

A physical device interface system is a collection of software modules 
which interfaces a particular type of physical device (such as a KSR 
745} to the Executive RTS file system. These systems are reentrant, 
allowing a single copy of the code to manage any number of supported 
devices. The components of a physical device interface system may 
include the following: 

o an initialization procedure 

o a supervisor program 

o one or more logical device interface processes 
o one or more logical device channels 

o an optional interrupt demultiplexer process 



14.2.l Physical Device Interface Initialization Procedure 

A physical device interface initialization procedure is a 
user-callable, level-one procedure which is called to initialize an 
instance of the system for a particular physical device. The 
parameters to the procedure identify the CRU base address (or memory 
address for memory-mapped I/O), the interrupt level, and the names of 
each of the logical devices on the physical device. Some interface 
systems may require other information during initialization. An 
example calling sequence of a physical device interface initialization 
procedure for the, ASR 733 is given in Figure 14-5. 

TYPE 
CRU_ADDRESS = 0 •• #lFFE; 
INTERRUPT LEVEL= 0 •• 15; 
ALFA= PACKED ARRAY [ 1 •• 8 ] OF CHAR; 

PROCEDURE ASR (BASE: CRU ADDRESS; 
LEVEL: INTERRUPT LEVEL; 

PRINTER KEYBOARD: ALFA; -
LEFT-CASSETTE: ALFA; 

RIGHT-CASSETTE: ALFA); EXTERNAL; 

FIGURE 14-5. CALLING SEQUENCE OF EXAMPLE PHYSICAL DEVICE 
INTERFACE INITIALIZATION PROCEDURE. 

A call to this procedure initializes one instance of the ASR 733 
device interface system to service a physical device at CRU address 
BASE and interrupt level LEVEL. The names of each of the logical 
devices are also specified. This procedure is called from the SYSTEM 
body for each ASR 733 on the system. Figure 14-6 illustrates how four 
ASR devices are initialized on a single system. 

SYSTEM EXAMPLE; 

BEGIN {SYSTEM EXAMPLE} 

{CONFIGURE PHYSICAL DEVICE INTERFACE SYSTEMS} 
ASR$ (0000, 6, ""SYSLOG ... '"INPUT ... '"OUTPUT .- ) ; , 
ASR$(0020, 7, ""STOl ... ""CS03 ... ""CS04 ... ) ; 

ASR$ ( 0040, 8, ""ST02 ... "°cso5 ... ""CS06 ~) ; , 
ASR$ ( 0060, 9, ""ST03 ... ""CS07 ... ""CS09 .- ) 1 , 

END {SYSTEM EXAMPLE}. 

FIGURE 14-6 •. INI'li'IAL.IZATION OF FOUR ASR 733""s. 

14-4 



The only interfaces to a physical device interface system are (1) the 
Executive RTS logical file system via channels and (2) the physical 
device interface initialization procedure. Outside of these two 
isolated interfaces, the implementation of a physical device interface 
system is insignificant and can be modified without affecting the rest 
of the system. Therefore, a physical device interface system is a good 
example of a modular software component with an isolated, well-defined 
interface. 

The initialization procedure starts the physical device interface 
supervisor program with appropriate parameters and waits for it to 
complete initialization. A semaphore should be initialized by the 
procedure and passed to the program to be signaled upon completion of 
initialization. The procedure can then execute a WAIT on the semaphore 
to ensure that channels associated with logical devices are created 
before the user ... s programs are started. A possible implementation of 
the ASR$ initialization procedure is illustrated in Figure 14-7. 

PROGRAM ASRSUPERVISOR(BASE: CRU_BASE; 
LEVEL: INTERRUPT_LEVEL; 

PRINTER KEYBOARD: TEXT; 
LEFT-CASSETTE: TEXT; 

RIGHT CASSETTE: TEXT; 
INITIALIZATION-COMPLETE: SEMAPHORE); FORWARD; 

PROCEDURE ASR (BASE: CRU ADDRESS; 
LEVEL: INTERRUPT LEVEL; 

PRINTER_KEYBOARD: ALFA; -

VAR 

LEFT-CASSETTE: ALFA; 
RIGHT_CASSETTE: ALFA); 

INITIALIZATION COMPLETE: SEMAPHORE; 
BEGIN {ASR} 
INITSEMAPHORE(INITIALIZATION COMPLETE, 0); 
START ASR$SUPERVISOR(BASE, LEVEL, 

FILENAMED(PRINTER KEYBOARD), 
FILENAMED(LEFT CASSETTE), 
FILENAMED(RIGHT CASSETTE), 
INITIALIZATION COMPLETE) ; 

WAIT(INITIALIZATlON COMPLETE); 
TERMSEMAPHORE(INITIALIZATION COMPLETE); 
END {ASR$}; -

FIGURE 14-7. IMPLEMENTATION OF PHYSICAL DEVICE INTERFACE 
INITIALIZATION PROCEDURE. 

14..;5 

--- - -=-----.~---~-------- -·-,- ----~--- - --. __ , ____ ,_--=-·-~----c;;:;-,·---------.-.,-------.-·-·--~,....,----0-:------,------··-'7-~-..........-~---:-



14.2.2 Physical Device Interface Supervisor Program 

This program has the responsibility of completely initializing the ~". 
interface system and reporting back to the initialization procedure 
that initialization has been completed. Other processes in the 
interface system are lexically nested within this program and can 
communicate with each other through the program.-s variables. Once 
initialization is c-omplete, the program may terminate, or may function 
as a logical device interface process or an interrupt demultiplexer 
process. If it terminates, most of its resources are reclaimed; 
however, the global variables are preserved as long as there are 
active nested processes. Terminating the program after initialization 
allows only the resources that are required for initialization to be 
reclaimed. The shell of the deceased program also provides an 
encapsulated environment for the active processes in the system. 

14.2.3 Logical Device Interface Process 

A logical device interface process is a process which interfaces the 
logical device channel to the physical device. It has the 
responsibility of (1) communicating with the user.-s process through a 
channel, (2) editing the information to be communicated with the 
device (possibly to add or delete control characters or to respond to 
keyboard edit commands), (3) communicating with the physical device 
through CRU or memory-mapped I/O, (4) synchronizing its execution with 
the device through interrupts, (5) synchronizing with other interface 
processes in the same physical device interface system, (6) handling 
device errors, and (7) restarting on channel abort. Logical device 
interface processes should have a priority equal to the interrupt 
level corresponding to the physical device. This ensures that no 
hardware interrupts from the device preempt the interface process. 

14.2.4 Logical Device Channel 

The Executive RTS provides file and channel routines which assist the 
implementation of device handlers. A device interface system needs 
more control over the characteristics and behavior of the associated 
channels than do user programs. Each file variable in a logical device 
interface process associated with a device channel is established as 
the channel master. This allows the interface process to manipulate 
the channel in ways prohibited to normal processes and identifies the 
process to handle channel abortions. A file is established as a 
channel master by calling the routine 

PROCEDURE F$MASTER(VAR F: ANYFILE); EXTERNAL; 

where F is the file variable. This does not cause channel creation or 
connection but does indicate that F is to be master of any channel 
that it creates. Each channel may have zero or one master, and a 
master must be the creator of the channel. The characteristics of a 
channel to be created by a master file are identified after F$MASTER 
is called and before the channel is created. These channel 

14-6 

) 
_j 



characteristics are also characteristics of the master file. The 
characteristics include the following. 

o name - defaults to name of file 

o component length - defaults to file component length 

o mode (reading or writing) 

o maximum number of users - defaults to 32767 

o end of consumption handling 

Once the characteristics of the channel have been established, the 
channel must be created by a call to the routine 

PROCEDURE F$CREATECHANNEL(VAR F: ANYFILE); EXTERNAL; 

If a channel already exists having the same name and mode, an 
exception occurs. 

14.2.4.1 Channel Name. The standard procedure setname can be used to 
assign the name given to the created channel. · 

14.2.4.2 Component Length. The component length of a channel can be 
dictated by the master file or can be implicitly initialized to the 
component length of the first connecting user file. The routine 

PROCEDURE F$STLENGTH(VAR F: ANYFILE; LENGTH: INTEGER); 
external; ' 
{read as "set length"} 

is used to modify the component length of the file F to LENGTH. If F 
is a sequential file, LENGTH must be less than or equal to the length 
of its initial component and READ/WRITE operations will only affect 
the first LENGTH bytes of specified variables. Normally, LENGTH (or 
the default component length) is used for the component length of the 
channel. However, one can indicate that the component length of the 
channel is to be set to the component length of the first connecting 
user file by calling the routine 

PROCEDURE F$ULENGTH(VAR F: ANYFILE); EXTERNAL; 
{read as "user defined length"} 

In this case, the component length of F is used as an upper limit of 
the component length of the channel. If the first user file to connect 
is a text file, the component length of the channel is set to the 
component length of the master. 

14.2.4.3 Channel Mode. The mode of a·channel indicates which wc;y 
information flows with respect to the master file. When the master is 
opened, its mode is always equal to the mode of the channel. However, 
it is possibl~ for a master file to wait for the first user ·to open 
the channel to see which mode the user opens it. The mode of a channel 

14-7 



) . 
is established by ,the routine 

PROCEDURE F$STMODE(VAR F: ANYFILE; M: CHANNEL_MODE); 
EXTERNAL; , 
{read as "set mode"} 
{where channel_mode = (reading, writing, usermode)}. 

If the mode of the channel is READING, the master file can only be 
opened by the RESET routine. If the mode is WRITING, then only REWRITE 
may be used. If the mode is USERMODE, the master file must wait until 
the first user connects to the channel by calling the routine 

PROCEDURE F$WAIT(VAR F: ANYFILE; VAR M: MODE); EXTERNAL; 

This procedure suspends the calling process until a user connects to 
it and returns the mode of the user file in M. The master file should 
then be opened in the opposite mode. This is illustrated in Figure 
14-13. 

14.2.4.4 Maximum Number of Connected User Files. 
number of user files are allowed to connect to a 
master file may specify that users have exclusive 
while they have it open by calling the routine 

Normally, any 
device. However, the 
access to the device 

PROCEDURE F$XACCESS(VAR F: ANYFILE); EXTERNAL; 

Users attempting'to open a device which is being used exclusively by 
another user are suspended until the device is released. 

14.2.4.5 End of Consumption Handling. Normally, end of consumption 
on a channel is not significant as is end of transmission. However, it 
is possible to have end of consumption handled similarly to end of 
transmission. The routine 

PROCEDURE F$STEOC(VAR F: ANYFILE); EXTERNAL; 
{read as "set eoc"} 

must be 
for the 
on the 
writing 

called to indicate 
channel of which F is 
channel, no other 

files are closed. The 

that end of consumption is to be handled 
master. When end of consumption occurs 
files are allowed to connect until all 
function 

FUNCTION F$EOC(VAR F: ANYFILE): BOOLEAN 

returns a boolean which indicates that end of consumption has not 
occurred on the channel associated with F and that at least one more 
component can be written to the channel without being suspended 
forever. When end of consumption is detected on F, it is normally 
closed and some buffered components may be lost. The capability of 
handling end of consumption is necessary if the user is allowed to 
close a file open for reading before end of file is detected. 

14.2.4.6 Device Channel Destruction. 
termination of the stack frame in 

14-8 

Device 
which 

channels exist until 
the master file exists. 

... ..-:--.'\ 

.· \ 
' .. ) 

) 
./ 



Therefore, if the master ,file is a parameter to the logical device 
interface process, the associated channel will exist at least until 
that process exits. 

14.2.4.7 Device Channel Abortions. As discussed in Paragraph 
10.2.13, a user may abort a device channel and cause all connected 
files to be disconnected. It also causes an exception to occur in the 
logical device interface process. If a device is to restart 
automatically, it should have an exception handler which detects the 
channel abortion and restarts processing of the logical device 
interface process. When the exception occurs, the channel still exists 
with the same characteristics. Processing should continue at the point 
that the file is opened (or F$WAIT is called). If an exception handler 
is not provided, the logical device interface process terminates with 
the exception and the device channel is destroyed. 

14.2.5 Interrupt Demultiplexer 

An interrupt demultiplexer is a process which waits for an interrupt 
from a physical device, determines the logical device for which the 
interrupt is intended, and signals a semaphore corresponding to the 
logical device (Figure 14-8). An interrupt demultiplexer is only 
necessary when more than one logical device on a physical device needs 
to share a common interrupt. An alternative to demultiplexing 
interrupts is to allow each logical interface process to test the 
device interrupt until one of them claims it. This is a much slower 
method but does not require the overhead of the interrupt process. 

14-9 



FIGURE 14-8. PHYSICAL DEVICE INTERFACE SYSTEM WITH 
INTERRUPT DEMULTIPLEXER PROCESS 

An interrupt demultiplexer process should have a priority equal to the 
level of interrupt it services. This en~ures that no hardwar~ _) 
interrupts from the device being serviced can occur. However, when the 
logical device interface process is activated due to the signal, it 
preempts the interrupt process since both processes are device 
processes and their priorities are the same. 

14.3 EXAMPLES 

In this Section several cases of device handlers are studied. Partial 
designs and implementations are presented and are accompanied by 
discussions of the reasoning used to arrive at them. Since many 
different types of devices are considered, the examples should serve 
as a starting point in the implementation of most device handlers. 

14.3.1 Physical Device Interface System for a Line Printer 

A line printer is one of the simplest devices to handle. There is only 
one logical device and it can be opened in only one mode (output}. 
Therefore, only one logical device interface process is required and 
no interrupt demultiplexer is required. Basically, the only processing 
required of the system is the addition of carriage control on output. 

14-10 

I __ / 



The initialization procedure for the line printer is given in Figure 
14-9. 

PROCEDURE LP$(BASE: CRU_BASE;
LEVEL: INTERRUPT LEVEL; 
~AME: ALFA; -
LINE LENGTH: .INTEGER; 
FILE-ORIENTED: BOOLEAN) 

FIGURE 14-9. CALLING SEQUENCE OF LINE PRINTER 
INITIALIZATION PROCEDURE. 

The integer LINE LENGTH indicates the number of columns per line on 
the particular -device. The boolean FILE ORIENTED indicates that this 
particular device is to be used by a maximum of one user at a time. In 
other words, a user is granted exclusive access to the device as long 
as the file is opened. If the device is to be used as a report 
printer, it is important that lines of several users not be 
intermixed. Therefore, in this case FILE ORIENTED should be specified 
as TRUE. If it is to be used as a log device, available to any number 
of users at a time, then FILE ORIENTED should be FALSE. The parameter 
NAME is the name of the logical device channel to which user.-s files 
connect. Figure 14-10 illustrates the implementation of the 
initialization procedure. 

PROGRAM LP$SUPERVISOR(INFILE: TEXT; 
BASE: CRU BASE; 
LEVEL: INTERRUPT LEVEL; 
LINE LENGTH: INTEGER; 
FILE-ORIENTED: BOOLEAN; 
INITIALIZATION COMPLETE: SEMAPHORE); FORWARD; 

PROCEDURE LP$(BASE: CRU_BASE; 
LEVEL: INTERRUPT LEVEL; 
NAME: ALFA; -
LINE LENGTH: INTEGER; 
FILE-ORIENTED: BOOLEAN 
VAR 

INITIALIZATION COMPLETE: SEMAPHORE; 
BEGIN {LP$} 
INITSEMAPHORE(INITIALIZATION COMPLETE, 0); 
START LP$SUPERVISOR(FILENAMED(NAME), 

BASE, LEVEL, LINE LENGTH, FILE ORIENTED, 
INITIALIZATION COMPLETE) ; -

WAIT( INITIALIZATION COMPLETE); 
TERMSEMAPHORE(INITIALIZATION COMPLETE); 
END {LP$}; -

FIGURE 14-10. IMPLEMENTATION OF LINE PRINTER 
INITIALIZATION PROCEDURE. 

14-11 



Since there is only one process required to service the device, it is 
convenient to allow the supervisor program to exist as that process· ~, 
after initialization is complete. Therefore, the supervisor progra~: ·· · ) 
also takes the place of the logical device interface process. / 

PROGRAM LP$SUPERVISOR(INFILE: TEXT; 
BASE: CRU_BASE; 
LEVEL: INTERRUPT LEVEL;-
LINE LENGTH: BOOLEAN; 
FILE=ORIENTED: BOOLEAN; 
INITIALIZATION COMPLETE: SEMAPHORE); 

VAR 
CH: CHAR; 
INTERRUPT: SEMAPHORE; 

PROCEDURE LP$PUT(CH: CHAR); FORWARD; 

BEGIN {LP$SUPERVISOR} 
{PRIORITY = LEVEL; 

STACKSIZE = LP$STACKSIZE; 
HEAPSIZE = LP$HEAPSIZE} 

INITSEMAPHORE(INTERRUPT, 0); 
EXTERNALEVENT(INTERRUPT, LEVEL); 
F$MASTER(INFILE) {ESTABLISH INFILE AS CHANNEL MASTER}; 
IF FILE ORIENTED THEN F$XACCESS(INFILE); 
F$STLENGTH(INFILE, LINE LENGTH) {ESTABLIS,H MAXIMUM LENGTH}; 
F$ULENGTH(INFILE) {ALLOW USER~S SEQUENTIAL FILE OF SHORTER 

COMPONENT LENGTH TO BE USED AS THE CHANNEL COMPONENT LENGTH}; ) 
F$STMODE(INFIILE,READING) {ESTABLISH MODE OF CHANNEL}; 
F$CREATECHANNEL(INFILE} {CREATE CHANNEL}; 
SIGNAL(INITIALIZATION_COMPLETE) {ALLOW PROCEDURE TO CONTINUE}; 

{INITIALIZATION IS .COMPLETE} 

WHILE TRUE DO {DO FOREVER} BEGIN 
RESET(INFILE) {WAIT FOR USER TO OPEN}; 
WHILE NOT EOF(INFILE} DO BEGIN 

WHILE NOT EOLN(INFILE) DO BEGIN 
READ(INFILE, CH); 
LP$PUT(CH) {OUTPUT CHARACTER TO DEVICE}; 
END {WHILE NOT EOLN}; 

IF CH >= ~ ~ {IF LAST CHARACTER WAS NOT CONTROL CHARACTER} 
THEN LP$PUT(LINE FEED) {OUTPUT CARRIAGE CONTROL}; 

READLN(INFILE) {GET NEXT LINE FROM CHANNEL}; 
END {WHILE NOT EOF(INFILE) }; 

LP$PUT(FORM_FEED) !ADVANCE FORM TO TOP OF PAGE}; 
END {WHILE TRUE DO 

END {LP$SUPERVISOR ; 

FIGURE 14-11. IMPLEMENTATION OF LINE PRINTER SUPERVISOR PROGRAM. 

14-12 



The program first associates the semaphore INTERRUPT with the 
interrupt level of the device. It then establishes INFILE as a master 
file, initializes the characteristics of the logical device channel 
and creates the .channel. The semaphore INITIALIZATION COMPLETE is then 
signaled to allow the initialization procedure to continue. At this 
point the program changes roles and becomes the logical device 
interface process. The WHILE TRUE DO loop is executed forever copying 
file sequences to the line printer. Within this loop it opens INFILE 
for reading and proceeds to read lines from it until the logical end 
of file occurs at which time it outputs a form feed to eject the last 
page printed., loops back, and RESETS INFILE waiting for the next user. 
Within each line, characters are read one at a time and output to the 
device by the procedure LPPUT. At the end of each line a test is made 
to see if the last character in the line is a control character. If it 
is, it is assumed that the user is doing his own carriage control and 
no additional carriage control is added. If the last character is not 
a control character, a line feed is output to the device. (The 
implementation of PAGE(F) is WRITELN(F,FORM FEED) so that the carriage 
control is at the end of the line.) Figure 14-12 illustrates an 
example implementation of LP$PUT. 

PROCEDURE LP$PUT(CH: CHAR); 
{OUTPUT CH TO DEVICE THROUGH CRU} 
BEGIN {LP$PUT} 
CRUBASE(BASE); 
SBO (STROBE) ; 
WHILE TB(NOT DEMAND) DO BEGIN {WAIT FOR DEMAND} 

SBO(INTERRUPT ENABLE) {ENABLE INTERRUPTS}; 
WAIT(INTERRUPT) {WAIT FOR INTERRUPT}; 
SBZ(INTERRUPT CLEAR) {CLEAR INTERRUPT}; 
SBZ(INTERRUPT-ENABLE) {DISABLE INTERRUPTS}; 
SBO (STROBE) ; -
END; {WHILE TB(NOT DEMAND)} 

LDCR( 7, -1 - ORD(CH)) {OUTPUT INVERTED CHARACTER}; 
SBZ( STROBE); 
END {LP$PUT}; 

FIGURE 14-12. EXAMPLE OF LINE PRINTER DEVICE MANIPULATION. 

This procedure is lexically nested within LP$SUPERVISOR and can access 
its parameters and variables. This procedure waits until the device is 
ready to accept a character, outputs the character (actually the 
inverse of the character) with an LDCR, and returns. Interrupts are 
normally disabled on the device. The only time they are enabled is 
while an interrupt is being waited upon. Therefore, unsolicited 
interrupts will not occur when they are not .expected. 

14-13 



The performance of this handler can be increased by placing the code 
for LP$PUT in-line, thus avoiding the overhead of one procedure call 
for each character. 

14.3.2 Logical Device Interface Process for a Cassette Drive 

This example is chosen to illustrate the handling of a device that may 
be opened for either input or output but only one at a time. The 
logical device channel is initialized to have a mode of USERMODE which 
indicates that the first user file to connect to the channel 
establishes the mode. The routine F$WAIT causes suspension until the 
first user file is connected and then indicates the mode that the 
user's file is in. The process then goes into a read loop or a write 
loop depending on the mode of the user. Once the transmission is 
complete, CLOSE is called to close the file and F$WAIT is called 
again. (See Figure 14-13). 

14-14 

_,/ 



PROCESS CASSETTE_DRIVE(F: TEXT; 
INITIALIZATION COMPLETE: SEMAPHORE); 

VAR 
USERS MODE: FILE_MODE; 
CH: CHAR; 

BEGIN {CASSETTE DRIVE} 
F$MASTER ( F) ; - ~ 
F$XACESS (F) {ALLOW SINGLE USER AT A TIME}; 
F$STLENGTH'F, 80) {ESTABLISH MAXIMUM LENGTH}; 
F$ULENGTH(F) {ALLOW USER~S SEQUENTIAL FILE OF SHORTER 

COMPONENT LENGTH TO BE USED AS THE CHANNEL~S COMPONENT LENGTH}; 
F$STMODE(F, USERMODE) {ALLOW USER TO INITIALIZE MODE}; 
F$STEOC(F) {SET END OF CONSUMPTION FLAG}; 
F$CREATECHANNEL(F) {CREATE CHANNEL}; 
SIGNAL(INITIALIZATION_COMPLETE); 

WHILE TRUE DO BEGIN 
F$WAIT(F, USERS MODE) {WAIT FOR USER TO CONNECT TO CHANNEL}; 
CASE USERS MODE-OF 

READING:-BEGIN {USER OPENED FOR READING} 
REWRITE(F) {OPEN CHANNEL FOR WRITING}; 
WHILE NOT F$EOC(F) DO BEGIN 

GETCH(CH) {GET FIRST CHARACTER ON LINE}; 
WHILE CH <> CARRIAGE RETURN DO 

WRITE(F, CH) {WRITE CHARACTER TO FILE}; 
GETCH(CH) {GET NEXT CHARACTER IN RECORD}; 
END {WHILE CH<> CARRIAGE RETURN}; 

WRITELN(F) {SEND LINE TO CHANNE~}; 
· END {WHILE NOT F$EOC(F)}; 

END {READING}• 
WRITING: BEGIN tusER OPENED FOR WRITING} 

RESET(F) {OPEN CHANNEL FOR READING}; 
WHILE NOT EOF(F) DO BEGIN 

WHILE NOT EOLN(F) DO BEGIN 
READ(F, CH); 
PUTCH(F, CH); 
END {WHILE NOT EOLN(F}}; 

PUTCH(CARRIAGE RETURN) {ADP CARRIAGE RETURN}; 
READLN(F) {GET-NEXT COMPONENT FROM CHANNEL}; 
END {WHILE NOT EOF(F)}; 

PUTCH(END FI~E CHARACTER); PUTCH(CARRIAGE RETURN); 
END {WRITTNGJ;- -

END {CASE}; 
CLOSE(F); 
END {WHILE TRUE DO}· 

END {CASSETTE_DRIVE1: 

·FIGURE 14-13. IMPLEMENTATION OF CASSETTE LOGICAL DEVICE 
INTERFACE PROCESS. 

14-15 



14.3.3 Implementation of ,a Video Display Terminal Handler 

This example illustrates the complete implementation of a device 
handler for the 911 video display terminal. It is a very thorough 
example containing a high degree of technical detail. Therefore, 
several modules of the handler are presented separately with 
appropriate discussions. These modules may have much of the technical 
detail removed to preserve clarity. At the end of this example, the 
entire implementation is presented as a complete Microprocessor 
Pascal-compilable module with all technical detail present (Figure 
14-22) • 

14.3.3.1 User Interface and Operation of VDT. The 911 VDT is a very 
versatile device which can be treated in many different ways by a 
device handler. The device handler implemented in this example is 
relatively simple, supporting only line-oriented I/0 with automatic 
cursor control. (The user is not free to format the screen and control 
the cursor himself.) This handler does allow the device to be opened 
for both reading and writing at the same time. User programs 
communicate with the VDT through text files or sequential files having 
a component length of 80 bytes or less. Performing a RESET on a file 
having the same name as the VDT device will cause the file to be 
connected to the keyboard. A REWRITE on a file having the same name as 
the VDT device will cause the file to be connected to the screen. When 
the user~s program requests input from the keyboard the entire screen 
is rolled up one line leaving the last line blank. The cursor then 
appears in the first column of the last line indicating to the 
keyboard operator that input is being requested. Characters input from 
the keyboard are then echoed in high intensity on this line and can be 
edited using control characters before the line is transmitted to the 
user~s program. A carriage return will transmit the edited line to the 
user~s program and will allow the displayed line to be rolled up the 
screen. 

When a user~s program writes a line to the screen, all available lines 
are rolled up and the output is displayed on the last available line 
in low intensity. (If a read is in progress, then all but the last 
line are rolled up and the output is displayed on the next to the last 
line of the screen. If a read is not in progress, all lines are rolled 
up and the output is displayed on the last line.) One very useful 
feature of this handler is that it allows output to continue while the 
operater is editing a line of input. Also, keyboard input is displayed 
in high intensity and is rolled up the screen with the output lines 
which are in low intensity. 

The VDT is actually treated as two logical devices, the screen and the 
keyboard, having the same device name. The handler is implemented with 
two logical device interface processes, one for each of the logical 
devices. There are also two channels having the same name but opposite 
modes. User files attempting to connect are connected to the channel 
of the appropriate mode. Figure 14-14 illustrates the connections of 
user files to the device channels for a VDT named "VDTOl". 

14-16 



'-......:..... 

'VDT01' ... CHANNEL ... OUTPUT 

SCREEN 'VDT01' FILE 

USER'S PROGRAM 

'VDT01' .. CHANNEL .. INPUT 

KEYBOARD 'VDT01' FILE 

FIGURE 14-14. EXAMPLE OF CONNECTION OF USER FILES TO A VDT. 

The VDT physical device interface system is initialized by calling the 
procedure VDTINIT which has the following calling sequence: 

TYPE 
CRU ADDRESS= O •• #lFFE1 
INTERRUPT LEVEL= 0 •• 151 
ALFA= PACKED ARRAY [1 •• 8] OF CHAR1 

PROCEDURE VDTINIT( 
BASE: CRU_ADDRESS1 
LEVEL: INTERRUPT LEVEL1 
NAME: ALFA 1 -
FILE ORIENTED: BOOLEAN )1 
EXTERNAL1 

14.3.3.2 Implementation of Initialization Procedure. Figure 14-15 
illustrates the implementation of the procedure VDTINIT which is 
invoked to initialize the entire system. 

PROCEDURE VDTINIT) 
BASE: CRU_ADDRESS; 
LEVEL: INTERRUPT LEVEL; 
NAME: ALFA1 -
FILE ORIENTED: BOOLEAN ) ; 

VAR -
INITIAuIZATION COMPLETE: SEMAPHORE; 

BEGIN -
INITSEMAPHORE( INITIALIZATION COMPLETE, 0 )1 
START VDTSUPERVISOR( BASE, LEVEL, FILE ORIENTED, NAME, 

INITIALIZATION COMPLETE ) ; -
WAIT( INITIALIZATION COMPLETE); 
TERMSEMAPHORE( INITIALIZATION COMPLETE ) ; 
END; -

FIGURE 14-15. VDT INTERFACE SYSTEM INITIALIZATION PROCEDURE. 

14-17 



14.3.3.3 Implementation of Supervisor Program. THE VDT physical 
device interface system supervisor program is responsible for 
initializing the device and processes in the system, and informing the 
initialization procedure that initialization is complete. Figure 14-16 
illustrates the implementation of the VDT supervisor program. 

PROGRAM VDTSUPERVISOR( 
BASE: CRU_ADDRESS; 
LEVEL: INTERRUPT LEVEL; 
FILE ORIENTED: BOOLEAN; 
NAME: ALFA; 
INITIALIZATION COMPLETE: SEMAPHORE); 

VAR 
PARTIAL COMPLETION: SEMAPHORE; 
OUTPUT LINE: INTEGER; 
EXCLUSIVE ACCESS TO PHYSICAL DEVICE: SEMAPHORE; 

PROCSS VDTKEYBOARD (OUTFILE: TEXT; LEVEL: INTERRUPT_LEVEL); 

END; 

PROCESS VDTSCREEN(INFILE: TEXT; LEVEL: INTERRUPT_LEVEL); 

END; 

BEGIN {VDT$SUPERVISOR} 
{PRIORITY = LEVEL; 

STACKSIZE = VDTSUPERVISOR STACK; 
HEAPSIZE = VDTSUPERVISOR HEAP} 

CRUBASE(BASE) {SET CRU BASE TO INITIALIZE DEVICE}; 
SBZ(SELECT WORD WO Wl) {SELECT WORD ZERO}; 
SBO(ENABLE-DISPLAY-WO) {ENABLE DISPLAY}; 
OUTPUT LINE:= 24 TLAST LINE AVAILABLE FOR OUTPUT}; 
INITSEMAPHORE(PARTIAL COMPLETION, 0); 
INITSEMAPHORE(EXCLUSIVE ACCESS TO PHYSICAL-DEVICE, 1); 
START VDTKEYBOARD(FILENAMED(NAME)~ LEVEL); 

WAIT(PARTIAL COMPLETION); 
START VDTINIT$SCREEN(FILENAMED(NAME LEVEL); 

WAIT(PARTIAL COMPLETION); 
SIGNAL(INITIALIZATION COMPLETE); 
TERMSEMAPHORE(PARTIAL-COMPLETION); 
END {VDTINIT$SUPERVISOR}; 

FIGURE 14-16. VDT INTERFACE SYSTEM SUPERVISOR PROGRAM. 

14-18 



The concurrent characteristics for this program specify that its 
priority is to be the same as the interrupt level of the device being 
serviced. The constants VDTSUPERVISOR STACK and VDTSUPERVISOR HEAP are 
constants defined at the system level. The first thing done by the 
program is the initialization of the physical device. Because a master 
reset is done when the Executive RTS initializes, most of the 
initialization of . the device has already taken place. The only thing 
left to be done is to enable the display on the screen. Then the 
semaphore PARTIAL COMPLETION is initialized to zero. This semaphore is 
used by the program to wait for completion of each process started. 
The semaphore EXCLUSIVE ACCESS TO PHYSICAL DEVICE is initialized to 
one. This semaphore is-used by the logical device interface processes 
(VDTKEYBOARD and VDTSCREEN) to synchronize access to the physical 
device. The integer OUTPUT LINE is then initialized to 24. This 
variable is used by the nested processes to indicate the last 
available line for output. The logical device interface processes are 
then initiated with the START statement. A WAIT(PARTIAL COMPLETION) is 
performed after each initiation to wait until that process has 
initialized all necessary structures. Then the semaphore 
INITIALIZATION COMPLETE is signaled to indicate to the initialization 
procedure that it may proceed. The last thing done is the termination 
of the semaphore PARTIAL_COMPLETION since it is needed no longer. 

14.3.3.4 Implementation of VDT Screen Logical Device Process. The 
VDT screen logical device process has the responsibility of 
transferring the information from the file INFILE to the VDT screen 
through the CRU. Figure 14-17 illustrates the implementation of this 
process. 

14-19 



PROCESS VDTINIT$SCREEN(INFILE: TEXT; LEVEL: INTERRUPT_LEVEL); 

PROCEDURE VDTINIT$SWORK; 

END; 

PROCEDURE VDTINIT$SEXCEPTION; 

END; 

BEGIN {VDTINIT$SCREEN} 
{PRIORITY =· LEVEL; 

STACKSIZE = VDTINIT$SCREEN STACK} 
F$MASTER(INFILE) {ESTABLISH-INFILE AS CHANNEL MASTER}; 
IF FILE ORIENTED THEN F$XACCESS(INFILE) • 
F$STLENGTH(INFILE, SCREEN LINE LENGTH) tsET MAX LINE LENGTH}; 
F$ULENGTH(INFILE) f ALLOW USER~S SEQUENTIAL FILE OF SHORTER 

COMPONENT LENGTH : . 
F$STMODE(INFILE, READING) {SET MODE OF SCREEN CHANNEL}: 
F$CREATECHANNEL(INFILE) {CREATE SCREEN CHANNEL}: 
SIGNAL(PARTIAL COMPLETION): 
ONEXCEPTION( LOCATION(VDTINIT$SEXCEPTION) ) {ESTABLISH EXCEPTION 

HANDLER}: 
VDTINIT$SWORK {INVOKE SCREEN WORK PROCEDURE}; 
END {VDTINIT$SCREEN}: 

FIGURE 14-17. VDT SCREEN LOGICAL DEVICE PROCESS. 

The nested procedure VDTSWORK does the majority of the work after the 
necessary structures are initialized. The nested procedure 
VDTSEXCEPTION is the exception handler for this process. The channel 
characteristics of the screen device channel are initialized through 
the file INFILE. INFILE is established as a channel master by the 
routine F$MASTER. If the device is to be file oriented 
(FILE ORIENTED=TRUE) the routine F$XACCESS is called to set the 
maximum number of users to one. The routine F$STLENGTH is then called 
to set the maximum line length for user~s text files or maximum 
component length for user~s sequential files. The call to F$ULENGTH 
indicates that the user~s component length is to be used if it is 
shorter. The mode of the device channel is then specified by calling 
the procedure F$STMODE. The modes of the two identically-named 
channels are what distinguish them from each other. The call to 
F$CREATECHANNEL creates the channel (but INFILE is still not opened) • 
The semaphore PARTIAL COMPLETION is then signaled to indicate to the 
supervisor program that initialization of the device channel is 
complete. The Executive RTS procedure ONEXCEPTION is called to 
establish VDTSEXCEPTION as the exception handler and the procedure 
VDTSWORK is called to perform the transfer of information from INFILE 
to the screen. The implementaion of VDTSWORK is illustrated in FIGURE 
14-18. 

14-20 

\ 
! 



PROCEDURE VDTINIT$SWORK; 
VAR 

CH: CHAR; 
OLDCURSOR: INTEGER{ 

BEGIN {VDTINIT$SWORKj 
CRUBASE (BASE) ; 
REPEAT RESET{INFILE) ;{COPY FILES FOREVER} 

WHILE NOT EOF{INFILE) DO BEGIN 
WAIT(EXCLUSIVE ACCESS TO PHYSICAL DEVICE); 
SBO(SELECT WORD WO Wl); - -
STCR(ll, OLDCURSOR) {SAVE ORIGINAL CURSOR ADDRESS}; 
VDTINIT$ROLLUP{OUTPUT LINE); 
WHILE NOT EOLN{INFILE) DO BEGIN 

READ{INFILE, CH); 
SBZ{SELECT WORD WO Wl); 
LDCR{ 7, ORD{CHT )-{LOAD INTO CHARACTER BUFFER}; 
SBO(SET LOW INTENSITY WO) {LOW INTENSITY}; 
SBO{WRITE DATA STROBE-WO) {STROBE DATA TO SCREEN}; 
SBZ{MOVE CURSOR WO) {MOVE CURSOR RIGHT}; 
END {WHILE NOT EOLN(INFILE)}; 

{RESTORE CURSOR ADDRESS TO OLDCURSOR} 
SBO(SELECT WORD WO Wl): 
LDCR{ll, OLDCURSOR); 
SIGNAL{EXCLUSIVE ACCESS TO PHYSICAL DEVICE); 
READLN{INFILE); - - - -
END {WHILE NOT EOF{INFILE)}; 

UNTIL ETERNITY; 
END {VDTINIT$SWORK}; 

FIGURE 14-18. IMPLEMENTATION OF VDT SCREEN WORKER PROCEDURE. 

The code within the outer-most REPEAT loop copies a single file 
sequence from INFILE to the screen. The RESET opens INFILE for reading 
and connects it to the device channel. The code within the WHILE NOT 
EOF(INFILE) copies a single line from INFILE to the screen. The 
process will be suspended each time through this loop at the 
EOF{INFILE) until a connected user file writes a line. Within the loop 
the process maintains exclusive access to the physical device while it 
rolls lines up and copies the characters from the line buffer of 
INFILE to the screen. Also, the cursor position is saved before each 
line is written and restored before exclusive access to the device is 
released. Therefore, except for the short amount of time that the line 
is being displayed, the cursor~s position is maintained by the 
keyboard process to indicate which character is being edited in the 
edit line. 

Aborting the logical device channel for the screen causes all file 
variables connected to the channel to become disconnected. Any 
subsequent READ of a disconnected user file variable results in an 
exception until that file is opened again. Any files suspended on the 
channel being aborted are activated with an exception and an exception 
will occur for the process VDTSCREEN since INFILE is' the master of the 

_, .. · channel. 

14-21 



Any exception of VDTSCREEN causes an implicit escape from VDTSWORK and 
an implicit invocation of VDTSEXCEPTION. The implementation of 
VDTSEXCEPTION is illustrated in Figure 14-19. 

The only exception handled by this routine is one of class 
F$$CLASS FILE ERROR (file errors) and reason F$$REASON CHANNEL ABORT 
(channel- abortion). All other exceptions are ignored and cause a 
termination of VDTSCREEN with the exception still present. 

If the exception is a channel abort, the exception is reset (cleared) 
and VDTSWORK is invoked to restart the transfer. Since the VDT screen 
device channel has a master, it is not destroyed when aborted. 
Therefore, it is not necessary to initialize the channel again. The 
RESET in VDTSWORK will first close INFILE and will then connect INFILE 
to the channel again. At this time, user files are allowed to connect 
to the channel. 

PROCEDURE VDTINIT$SEXCEPTION; 
BEGIN {VDTINIT$SEXCEPTION} 
IF ERR$CLASS = F$$CLASS FILE ERROR 

AND ERR$REASON = F$$REASON-CHANNEL ABORT 
THEN BEGIN - -

ERR$RSET {CLEAR ERROR}; 
VDTINIT$SWORK {INVOKE WORK PROCEDURE AGAIN}; 
END {THEN}; 

{NO OTHER EXCEPTIONS ARE HANDLED. 
OTHER EXCEPTIONS WILL CAUSE PROCESS TERMINATION WITH 
ERROR CODE AND NO ERROR RECOVERY} ; 

END {VDTINIT$SEXCEPTION}; 

FIGURE 14-19. IMPLEMENTATION OF VDT SCREEN EXCEPTION HANDLER. 

14.3.3.S Implementation of VDT Keyboard Logical Device Process. The 
VDT keyboard logical-device process has the responsibility of reading, 
editing and echoing characters input from the keyboard and 
transferring edited lines to users through the file OUTFILE. Figure 
14-20 illustrates the implementation of this process. 

The nested procedure VDTKWORK does the majority of the work after the 
necessary structures are initialized. The nested procedure 
VDTKEXCEPTION is the exception handler for this process. The channel 
characteristics of the keyboard device channel are initialized through 
the file OUTFILE. The initialization of this channel is identical to 
the initialization of the screen channel with the exception of the 
channel mode. The screen channel is given the mode READING and the 
keyboard channel is given the mode WRITING. After the channel is 
created, the semaphore PARTIAL COMPLETION is signaled to indicate to 
the supervisor program that-initialization of the device channel is 
complete. The procedure VDTKEXCEPTION is established as the exception 
handler and the procedure VDTKWORK is invoked to perform the transfer 

14-22 



of information from the keyboard to the user through OUTFILE. A 
simplified version of VDTKWORK is illustrated in Figure 14-21. 

PROCESS VDTIN-IT$KEYBOARD (OUTFILE-: TEXT; LEVEL: INTERRUPT_LEVEL); 
VAR 

INTERRUPT: SEMAPHORE; 
BEGIN {VDTINIT$KEYBOARD} 
{PRIORITY = LEVEL; 
STACKSIZE = VDTINIT$KEYBOARD STACK} 

INITSEMAPHORE(INTERRUPT, 0); -
EXTERNALEVENT(INTERRUPT, LEVEL) {ASSOCIATE SEMAPHORE WITH 

INTERRUPT LEVEL}; 
F$MASTER(OUTFILE) {ESTABLISH OUTFILE AS CHANNEL MASTER}; 
IF FILE ORIENTED THEN F$XACCESS(OUTFILE); 
F$STLENGTH(OUTFILE, SCREEN LINE LENGTH) {SET MASIMUM LINE 

LENGTH}; - -
F$ULENGTH(OUTFILE) {ALLOW USER~S SEQUENTIAL FILE OF SHORTER 

COMPONENT LENGTH}; 
F$STMODE(OUTFILE, WRITINGl {SET MODE OF KEYBOARD CHANNEL}; 
F$CREATECHANNEL(OUTFILE) {CREATE CHANNEL}; 
SIGNAL(PARTIAL COMPLETION); 
ONEXCEPTION( L0CATION(VDTINIT$KEXCEPTION) ) {ESTABLISH EXCEPTION 

HANDLER}; 
VDTINIT$KWORK {INVOKE WORK PROCEDURE}; 
END {VDTINIT$KEYBOARD}; 

~ 

FIGURE 14-20. VDT KEYBOARD LOGICAL DEVICE PROCESS. 

14-23 



PROCEDURE VDTINIT$KWORK; 
VAR 

CH: CHAR; CURSOR: INTEGER; 
BEGIN {VDTINIT$KWORK} REWRITE(OUTFILE); 
REPEAT {FOREVER COPYING LINES} 

WAIT(EXCLUSIVE ACCESS TO PHYSICAL DEVICE); 
OUTPUT LINE : = -23 ; - - -
VDTINIT$ROLLUP(24) {RESERVE LINE AT BOTTOM FOR EDITING}; 
0 RNABLE CURSOR DISPLAY" 
REPEAT' {GET CHARACTER FROM KEYBOARD} 

"ENABLE KEYBOARD INTERRUPT" 
SIGNAL(EXCLUSIVE ACCESS .TO PHYSICAL DEVICE); 
WAIT(INTERRUPT);- - - -
WAIT(EXCLUSIVE ACCESS TO PHYSICAL DEVICE); 
"ACKNOWLEDGE AND DISABLE-KEYBOARD-INTERRUPT" 
"INPUT CHARACTER FROM KEYBOARD INTO CH 0 

{EDIT CHARACTER} 
IF CH = BACKSPACE THEN 

IF COLUMN(OUTFILE) > 0 THEN BEGIN "MOVE CURSOR LEFT" 
F$BSPACE(OUTFILE); 
END {THEN IF COLUMN(OUTFILE) > 0 THEN BEGIN} 

ELSE {NOTHING TO DO} 
ELSE IF CH = RUBOUT THEN 

WHILE COLUMN(OUTFILE) > 0 DO BEGIN 
"MOVE CURSOR LEFT" 
F$BSPACE(OUTFILE); 
END {ELSE IF CH = RUBOUT THEN) 

ELSE IF CH <> CARRIAGE RETURN AND CH <> DC3 THEN BEGIN 
IF CH = DC2 {RIGHT ARROW} 

THEN "READ CH FROM SCREEN"; 
IF EOLN(OUTFILE) 

THEN F$BSPACE(OUTFILE) {REPLACE LAST CHARACTER}; 
WRITE(OUTFILE, CH); 
IF CH >= ~ ~ THEN BEGIN {DISPLAY CHARACTER} 

IF NOT EOLN(OUTFILE) 
THEN {MOVE CURSOR RIGHT}; 

END { IF CH>=~ ~THEN}; 
END {ELSE IF CH<> CARRIAGE RETURN THEN}; 

UNTIL CH < ~ ~ OR CH > ~-~; -
{BLANK REST OF LINE} 
OUTPUT_LINE := 24 {INDLUDE IN NEXT ROLL UP}; 
SIGNAL(EXCLUSIVE ACCESS TO-PHYSICAL DEVICE); 
IF CH = DC3 THEN-REWRITE(OUTFILE) ELSE WRITELN(OUTFILE); 
UNTIL ETERNITY; 

END {VDTINIT$KWORK}; 

FIGURE 14-21. IMPLEMENTATION OF VDT KEYBOARD WORKER PROCEDURE. 

The REWRITE opens OUTFILE for writing and connects it to the device 
channel. The code within the outer-most REPEAT loop inputs a single 
line from the keyboard and transmits it to the user through the file 
OUTFILE. The code within the nested REPEAT inputs a character from the 
keyboard and edits it. There are only two_ places within the outer-most 

14-24 



REPEAT that the process may be suspended for a significant amount of 
time. These are the WAIT(INTERRUPT) and the last statement of the loop 
(REWRITE or WRITELN). Therefore, the process has exclusive access to 
the physical device except at these places. Exclusive access is 
acquired with the first statement of the loop with the 
WAIT(EXCLUSIVE ACCESS TO PHYSICAL DEVICE) and is released just before 
waiting on the interrupt. It Is acquired· again after the interrupt 
occurs and released again just before the WRITELN (or REWRITE). The 
Executive RTS procedure 

PROCEDURE F$BSPACE(VAR F: TEXT); EXTERNAL; 

causes the column index of F to be decremented if it is greater than 
zero. The function 

FUNCTION COLUMN(VAR F: TEXT): INTEGER; EXTERNAL; 

returns the current value of the column index of F. The standard 
function EOLN(F) can be used when F is open for writing. It returns 
FALSE if another character can be written to F without causing an 
implicit WRITELN(F). If it is TRUE, writing another character will 
cause an implicit WRITELN(F). 

The exception handler for the keyboard process is very similar to the 
exception handler for the screen process. The entire VDT physical 
device interface system is presented in Figure 14-22. 

14-25 



SYSTEM VDTINIT$HANDLER; 
{HIERARCHICAL RELATIONSHIPS AMONG MODULES IN VDTINIT$HANDLER: 

-...... 
VDTINIT$HANDLER. • • • NULL-BODIED SYSTEM ENVIRONMENT ) 

VDTINIT$SUPERVISOR ••••• PHYSICAL DEVICE SUPERVISOR PROGRAM 
VDTINIT$ROLLUP •••••• INTERNALLY USED PROCEDURE 
VDTINIT$KEYBOARD • • • • .KEYBOARD LOGICAL INTERFACE PROCESS 

VDTINIT$KWORK. • • • • .KEYBOARD WORKER PROCEDURE 
VDTINIT$KEXCEPTION • • .KEYBOARD EXCEPTION HANDLER 

VDTINIT$SCREEN •••••• SCREEN LOGICAL INTERFACE PROCESS 
VDTINIT$SWORK. • • • •• SCREEN WORKER PROCEDURE 
VDTINIT$SEXCEPTION ••• SCREEN EXCEPTION HANDLER 

VDTINIT$ •••••••••• PHYSICAL DEVICE INITIALIZATION 
PROCEDURE} 

CONST 

VDTINIT$SUPERVISOR STACK= 200; 
VDTINIT$SUPERVISOR-HEAP = 400; 
VDTINIT$KEYBOARD STACK = 200; 
VDTINIT$SCREEN_STACK = 400; 

{CRU INPUT BIT ASSIGNMENTS} 
TEST LOW INTENSITY WO = 7; 
KEYBOARD-DATA WO =-8; 
KEYBOARD-DATA-READY WO = 15; 
KEYBOARD-DATA-MSB WT = 11; 
TERMINAL-READY Wl-= 12; 
PREVIOUS-WORD SELECT Wl = 13; 
KEYBOARD-PARITY ERROR Wl =14; 
KEYBOARD DATA ERROR wT = 15; 

{CONTROL CHARACTERS} 
BACKSPACE = >to8>; 

{CRU OUTPUT BIT ASSIGNMENTS} 
SET LOW INTENSITY WO = 7; 
WRITE DATA STROBE-WO = 8; 
MOVE CURSOR WO = TO; 
ENABLE BLINKING CURSOR WO = 11; 
ENABLE-KEYBOARD-INTERRUPT WO = 12; 
ENABLE-HI LOW INTENSITY WO = 13; 
ENABLE-DISPLAY WO = 14; 
SELECT-WORD WO-Wl = 15; 
ENABLE-CURSOR DISPLAY Wl = 12; 
ACKNOWLEDGE KEYBOARD Wl = 13; 
ENABLE BEEP-Wl = 14; 

CARRIAGE RETURN= >too>; 
DC2 = >tT2> {RIGHT ARROW};. 
DC3 = >#13> {END OF FILE CHARACTER}; 
RUBOUT = >t7F>; 

MAXINT = 32767; 
SCREEN LINE LENGTH= 80; 
F$$CLASS FILE ERROR= 8 {EXCEPTION CLASS FOR FILE ERRORS}; 
F$$REASON CHANNEL ABORT = 104 {EXCEPTION REASON FOR CHANNEL 

ABORTIONS} ; -
CURSOR OF 24th LINE = 23*80; 
LAST CURSOR ON-SCREEN = 24*80-1; 
ETERNITY = FALSE; 

FIGURE 14-22. VDT PHYSICAL DEVICE INTERFACE SYSTEM. (PAGE 1 of 7) 

14-26 

} 
/ 



TYPE 
CRU ADDRESS= 0 •• #lFFE; 
INTERRUPT LEVEL= 0 •. 15; 
ALFA= PACKED ARRAY [ 1 •. 8 ] OF CHAR; 
NONEGg = O •• MAXINT; 
CHANNEL MODE= (READING, WRITING, USERMODE); 
WORD = PACKED RECORD CASE INTEGER OF 

0: (MOST SIGNIFICANT CHAR, LEAST SIGNIFICANT CHAR: CHAR ) ; 
END {WORD}; - - -

{EXECUTIVE RTS ROUTIINES} 
FUNCTION COLUMN(VAR F: TEXT): INTEGER; EXTERNAL; 
PROCEDURE F$BSPACE(VAR F: TEXT); EXTERNAL; 
PROCEDURE F$CREATECHANNEL(VAR F: ANYFILE); EXTERNAL; 
PROCEDURE F$MASTER(VAR F: ANYFILE); EXTERNAL; 
PROCEDURE F$STMODE(VAR F: ANYFILE; MODE: CHANNEL MODE); EXTERNAL; 
PROCEDURE F$STLENGTH(VAR F: ANYFILE; LENGTH: INTEGERR; EXTERNAL; 
PROCEDURE F$ULENGTH(VAR F: ANYFILE); EXTERNAL; 
PROCEDURE F$XACCESS(VAR F: ANYFILE); EXTERNAL; 

FUNCTION ERR$CLASS: INTEGER; EXTERNAL; 
FUNCTION ERR$REASON: INTEGER; EXTERNAL; 
PROCEDURE ERR$RSET; EXTERNAL; 
PROCEDURE ONEXCEPTION(HANDLER_LOCATION: INTEGER); EXTERNAL; 

PROCEDURE INITSEMAPHORE(VAR S: SEMAPHORE; N: NONNEG); EXTERNAL; 
PROCEDURE TERMSEMAPHORE(VAR S: SEMAPHORE); EXTERNAL; 
PROCEDURE SIGNAL(S: SEMAPHORE); EXTERNAL; 
PROCEDURE WAIT(S: SEMAPHORE); EXTERNAL; , 
PROCEDURE EXTERNALEVENT(S: SEMAPHORE; LEVEL: INTERRUPT_LEVEL); 

EXTERNAL; 

PROGRAM VDTINIT$SUPERVISOR( 
BASE: CRU ADDRESS; 
LEVEL: INTERRUPT LEVEL; 
FILE ORIENTED: BOOLEAN; 
NAME7 ALFA; 
INITIALIZATION COMPLETE: SEMAPHORE); 

VAR PARTIAL COMPLETION: SEMAPHORE; 
OUTPUT LINE: INTEGER; 
EXCLUSIVE ACCESS TO PHYSICAL DEVICE: SEMAPHORE; 

FIGURE 14-22. VDT PHYSICAL DEVICE INTERFACE SYSTEM. (PAGE 2 of 7) 

14-27 



PROCEDURE VDTINIT$ROLLUP(LAST LINE: INTEGER); 
{ ROLL LINES 1 THROUGH LAST LINE UP ONE ROW LEAVING LINE 

LAST LINE BLANK} -
VAR CHBYTE: 0 •• 255; CURSOR, CURSOR AT LAST LINE: INTEGER; 

BEGIN {VDTINIT~ROLLUP} ASSERT LAST LINE-> 0 AND LAST LINE <= 24; 
CRUBASE(BASE) {ESTABLISH CRU BASE}; 
SBZ(SELECT WORK WO Wl); 
CURSOR AT LAST LINE := (LAST LINE-1) * 80; 
FOR CURsOR OF NEXT COLUMN IN-LAST LINE 

:= CURSOR AT LAST LINE To CuRSOR AT LAST LINE + 79 DO BEGIN 
CURSOR :=-CURSOR OF NEXT COLUMN IN LAST LINE; 
CHBYTE := ORD( ... - ... ); - - - -
FOR ROW := LAST LINE DOWNTO 1 DO BEGIN 

SBO( SELECT WORD WO Wl ) { SELECT WORD 1 }; 
LDCR( 11, CURSOR-) T POSITION CURSOR ON SCREEN}; 
SBZ( SELECT WORD WO Wl ) { SELECT WORD 0 }; 
LDCR( 8, CHBYTE) {-WRITE LAST BYTE INTO SCREEN BUFFER}; 
STCR( 8, CHBYTE) {READ LAST VISIBLE CHARACTER}; 
SBO( WRITE DATA STROBE WO ) {STROBE BUFF BYTE TO SCREEN}; 
CURSOR := CURSOR - 80 T SET CURSOR TO SAME COLUMN OF 

PREVIOUS LINE } ; 
END { FOR ROW } ; 

END { FOR CURSOR OF NEXT COLUMN IN LAST LINE }; 
sBoc SELECT woRD wo wr > {-SELECT-WORD 1 T; 
LDCR( 11, CURSOR-AT-LAST LINE) { LEAVE CURSOR HERE}; 
{ LEAVE WORD ONE-SELECTED } 
END { VDTINIT$ROLLUP }; 

PROCESS VDTINIT$KEYBOARD( OUTFILE: TEXT; LEVEL: INTERRUPT LEVEL ) · 
VAR INTERRUPT: SEMAPHORE; I ') I 

FIGURE 14-22. VDT PHYSICAL DEVICE INTERFACE SYSTEM. (PAGE 3 of 7) ' 
__ .) 

14-28 



( 

PROCEDURE VDTINIT$KWORK; 
VAR 

CH: CHAR; CURSOR: INTEGER; 
BEGIN { VDTINIT$KWORK } 
CRUBASE ( BASE ) ; 
REWRITE( OUTFILE ); 
REPEAT { FOREVER COPYING LINES } 

WAIT( EXCLUSIVE ACCESS TO PHYSICAL_DEVICE ) ; 
OUTPUT LINE := 23; - -
VDTINIT$ROLLUP( 24 ) { RESERVE LINE AT BOTTOM FOR EDITING}; 
SBO( ENABLE CURSOR DISPLAY Wl ); 
REPEAT { GET CHARACTER FROM KEYBOARD } 

SBZ( SELECT WORD WO Wl ); 
SBO( ENABLE-BLINKING CURSOR WO); 
SBO( ENABLE-KEYBOARD-INTERRUPT WO ) ; 
SIGNAL( EXCLUSIVE ACCESS TO PHYSICAL DEVICE); 
WAIT( INTERRUPT >T - - -
WAIT( exclusive access to physical device); 
SBZ( SELECT WORD WO Wl-) T SELECT WORD ZERO}; 
SBZ( ENABLE-KEYBOARD INTERRUPT WO ); 
STCR( 15, CH::INTEGER ); -
CH := CH: :.WORD.MOST SIGNIFICANT CHAR; 
SBZ( ENABLE BLINKING CURSOR WO ); 
SBO( SELECT-WORD WO Wl ) {SELECT WORD ONE }; 
SBO( ACKNOWLEDGE-KEYBOARD Wl ); 

{ EDIT CHARACTER }- -
SBZ( SELECT WORD WO Wl { SELECT WORD ZERO}; 
IF CH = BACKSPACE THEN 

IF COLUMN( OUTFILE ) > 0 
THEN BEGIN 

SBO( MOVE CURSOR WO ) {MOVE CURSOR LEFT}; 
F$BSPACE(-OUTFILE) {WILL NOT CAUSE SUSPENSION}; 
END { THEN IF COLUMN( OUTFILE ) > 0 THEN BEGIN } 

ELSE { NOTHING TO DO } 
ELSE IF CH = RUBOUT THEN 

WHILE COLUMN( OUTFILE ) > 0 DO BEGIN 
SBO( MOVE CURSOR WO ) {MOVE CURSOR LEFT }; 
F$BSPACE(-OUTFILE ); 
END· { ELSE IF CH = THEN WHILE COLUMN( OUTFILE ) > 0 } 

ELSE IF CH <> CARRIAGE RETURN AND CH <> DC3 THEN BEGIN 
IF CH = DC2 { RIGHT ARROW } 

THEN STCR( 7, CH::INTEGER) { READ CH FROM SCREEN}; 
IF EOLN( OUTFILE ) 

THEN F$BSPACE( OUTFILE) { REPLACE LAST CHARACTER}; 
WRITE( OUTFILE, CH); 
IF CH >= ~ ~ THEN BEGIN { DISPLAY CHARACTER } 

LDCR( 8, ORD( CH) ); 
SBO( WRITE DATA STROBE WO); 
IF NOT EOLN( OUTFILE )-

THEN SBZ( MOVE CURSOR WO ) {MOVE CURSOR RIGHT}; 
END { IF CH>= ~-~ THEN-}; 

END { ELSE IF CH <> CARRIAGE RETURN THEN } ; 
UNTIL CH < ~ ~ OR CH > ~-~; -

FIGURE 14-22. VDT PHYSICAL DEVICE INTERFACE SYSTEM. (PAGE 4 of 7) 

14-29 



{ BLANK REST OF LINE } 
SBO( SELECT WORD WO Wl ); 
SBZ( ENABLE-CURSUR DISPLAY Wl ) { TURN CURSOR OFF }; 
LDCR( 11, CURSOR)-{ GET CURRENT CURSOR ADDRESS }; 
SBZ( SELECT WORD WO Wl ); 
IF EOLN( OUTFILE-) THEN BEGIN 

SBZ( MOVE CURSOR WO ) { MOVE CURSOR RIGHT }; 
CURSOR : =-CURSOR-+ 1 ; 
END { IF EOLN( OUTFILE ) }; 

LDCR ( 8 , ORD ( .- .- ) ) ; 
FOR I := CURSOR TO LAST CURSOR ON SCREEN DO BEGIN 

SBO( WRITE DATA STROBE WO ) T STROBE.- .- TO SCREEN}; 
SBZ( MOVE CURSOR WO ) T MOVE CURSOR RIGHT }; 
END { FOR-}; -

OUTPUT LINE := 24 { INCLUDE IN NEXT ROLL UP }; 
SIGNAL( EXCLUSIVE ACCESS TO PHYSICAL DEVICE ) ; 
IF CH = DC3 THEN REWRITE( OUTFILE ) ELSE WRITELN( OUTFILE ) ; 
UNTIL ETERNITY; 

END { VDTINIT$KWORK }; 

PROCEDURE VDTINIT$KEXCEPTION; 
BEGIN { VDTINIT$KEXCEPTION } 
IF ERR$CLASS = F$$CLASS FILE ERROR 

AND ERR$REASON = F$$REASON-CHANNEL ABORT 
THEN BEGIN - -

ERR$RSET {CLEAR ERROR}; 
VDTINIT$KWORK { INVOKE WORK PROCEDURE AGAIN}; 
END { THEN}; 

{ NO OTHER EXCEPTIONS ARE HANDLED. 
OTHER EXCEPTIONS WILL CAUSE PROCESS TERMINATION WITH . ) 
ERROR CODE AND NO ERROR RECOVERY } ; 

END { VDTINIT$KEXCEPTION }; 

BEGIN { VDTINIT$KEYBOARD } 
{# PRIORITY = LEVEL; 

STACKSIZEE= VDTINIT&KEYBOARD_STACK } 
INITSEMAPHORE( INTERRUPT, 0 ) ; 
EXTERNALEVENT( INTERRUPT, LEVEL ) { ASSOCIATE SEMAPHORE WITH 

INTERRUPT LEVEL }; 
F$MASTER( OUTFILE) {ESTABLISH OUTFILE AS CHANNEL MASTER}; 
IF FILE ORIENTED THEN F$XACESSs( OUTFILE ); 
F$STLENGTH( OUTFILE, SCREEN LINE LENGTH ) { SET MAXIMUM LINE 

LENGTH}; - -
F$ULENGTH( OUTFILE } { ALLOW USER.-S SEQUENTIAL FILE OF SHORTER 

COMPONENT LENGTH}; 
F$STMODE( OUTFILE, WRITING) { SET MODE OF KEYBOARD CHANNEL}; 
F$CREATECHANNEL( OUTFILE ) { CREATE CHANNEL }; 
SIGNAL( PARTIAL COMPLETION ) ; 
ONEXCEPTION( LOCATION( VDTINIT$KEXCEPTION ) ) { ESTABLISH 

EXCEPTION HANDLER}; 
VDTINIT$KWORK { INVOKE WORK PROCEDURE' } ; 
END { VDTINIT$KEYBOARD }; 

FIGURE 14-22. VDT PHYSICAL DEVICE INTERFACE SYSTEM. (PAGE 5 of 7) 

14-30 



\ ..... _ 

PROCESS VDTINIT$SCREEN( INFILE: TEXT; LEVEL: INTERRUPT LEVEL); 

PROCEDURE VDTINIT$SWORK; 
VAR 

CH: CHAR~ 
OLDCURSOR: INTEGER; 

BEGIN { VDTINIT$SWORK } 
CRUBASE ( BASE ) ; 
REPEAT RESET( INFILE );{COPY FILES FOREVER} 

WHILE NOT EOF( INFILE ) DO BEGIN 
WAIT( EXCLUSIVE ACCESS TO PHYSICAL DEVICE); 
SBO( SELECT WORD WO Wl-);- -
STCR ( 11, OLDCURSOR-) { SAVE ORIGINAL CURSOR ADDRESS } ; 
VDTINIT$ROLLUP( OUTPUT LINE); 
WHILE NOT EOLN( INFILE-) DO BEGIN 

READ( INFILE, CH); 
SBZ( SELECT WORD WO Wl ); 
LDCR( 7, OIID( CH-) T { LOAD INTO CHARACTER BUFFER}; 
SBO( SET LOW INTENSITY WO ) {LOW INTENSITY}; 
SBO( WRITE DATA STROBE-WO ) { STROBE DATA TO SCREEN}; 
SBZ ( MOVE CURSOR WO ) T MOVE CURSOR RIGHT } ; 
END { WHILE NOT EOLN( INFILE ) }; 

{ RESTORE CURSOR ADDRESS TO OLDCURSOR } 
SBO( SELECT WORD WO Wl ); 
LDCR( 11, OLDCURSOR-); 
SIGNAL( EXCLUSIVE ACCESS TO PHYSICAL DEVICE); 
READLN( INFILE );- - - -
END { WHILE NOT EOF( INFILE ) }; ~ 

UNTIL ETERNITY; 
END { VDTINIT$SWORK }; 

PROCEDURE VDTINIT$SEXCEPTION; 
BEGIN { VDTINIT$SEXCEPTION } 
IF ERR$CLASS = F$$CLASS FILE ERROR 

AND ERR$REASON = F$$REASON-CHANNEL ABORT 
THEN BEGIN - -

ERR$RSET {CLEAR ERROR}; 
VDTINIT$SWORK { INVOKE WORK PROCEDURE AGAIN}; 
END { THEN}; 

{ NO OTHER EXCEPTIONS ARE HANDLED. 
OTHER EXCEPTIONS WILL CAUSE PROCESS TERMINATION WITH 
ERROR CODE AND NO ERROR RECOVERY } ; 

END { VDTINIT$SEXCEPTION }; 

FIGURE 14-22. VDT PHYSICAL DEVICE INTERFACE SYSTEM. (PAGE 6 of 7) 

14-31 



BEGIN { VDTINIT$SCREEN } 
{# PRIORITY = LEVEL; 

STACKSIZE = VDTINIT$SCREEN STACK } 
F$MASTER( INFILE) { ESTABLISH INFILE AS CHANNEL MASTER}; 
IF FILE ORIENTED THEN F$XACESSs( INFILE ) • 
F$STLENGTH( INFILE, SCREEN LINE LENGTH) { SET MAX LINE LENGTH}; 
F$ULENGTH( INFILE ) { ALLOW USER~S SEQUENTIAL FILE OF SHORTER 

COMPONENT LENGTH }; 
F$STMODE( INFILE, READING) { SET MODE OF SCREEN CHANNEL }; 
F$CREATECHANNEL( INFILE) {CREATE SCREEN CHANNEL}; 
SIGNAL( PARTIAL COMPLETION); 
ONEXCEPTION( LOCATION(VDTINIT$SEXCEPTION) ) { ESTABLISH EXCEPTION 

HANDLER } ; 
VDTINIT$SWORK { INVOKE SCREEN WORK PROCEDURE }; 
END { VDTINIT$SCREEN }; 

BEGIN { VDTINIT$SUPERVISOR } 
{# PRIORITY = LEVEL; 

STACKSIZE = VDTINIT$SUPERVISOR STACK; 
HEAPSIZE = VDTINIT$SUPERVISOR HEAP } 

CRUBASE( BASE) { SET CRU BASE TO INITIALIZE DEVICE }; 
SBZ( SELECT WORD WO Wl ) {SELECT WORD ZERO}; 
SBO( ENABLE-DISPLAY-WO ) {ENABLE DISPLAY}; 
INITSEMAPHORE( PARTIAL COMPLETION, 0 ); 
INITSEMAPHORE( EXCLUSIVE ACCESS TO PHYSICAL DEVICE, 1 ); 
START VDTINIT$KEYBOARD( FILENAMED(-NAME), LEVEL); 

WAIT( PARTIAL COMPLETION); 
START VDTINIT$SCREEN( FILENAMED( NAME), LEVEL); 

WAIT( PARTIAL COMPLETION ) ; 
SIGNAL( INITIALIZATION COMPLETE ) ; 
TERMSEMAPHORE( PARTIAL-COMPLETION ) ; 
END { VDTINIT$SUPERVISOR }; 

PROCEDURE VDTINIT$( BASE: CRU ADDRESS; 
LEVEL: INTERRUPT LEVEL; -
NAME: ALFA; -
FILE ORIENTED: BOOLEAN ) ; 

{ INITIALIZE A PHYSICAL DEVICE INTERFACE SYSTEM FOR A 911 VDT } 
VAR INITIALIZATION COMPLETE: SEMAPHORE; 

BEGIN { VDTINIT$ } -
INITSEMAPHORE( INITIALIZATION COMPLETE, 0 ); 
START VDTINIT$SUPERVISOR( -

BASE, LEVEL, FILE ORIENTED, NAME, INITIALIZATION COMPLETE ) ; 
WAIT( INITIALIZATION COMPLETE); -
TERMSEMAPHORE( INITIALIZATION COMPLETE ) ; 
END { VDTINIT$ }; -

BEGIN {$ NULLBODY } 
END. 

FIGURE 14-22. VDT PHYSICAL DEVICE INTERFACE SYSTEM. (PAGE 7 of 7) 

14-32 

) 



15.l OVERVIEW 

SECTION 15 

CONFIGURING TARGET SYSTEMS 
FOR INTERPRETIVE EXECUTION 

Once a user~s system has been compiled and debugged on the host 
system, it is ready to be configured into an object load module for 
the target machine. During this configuration, a simple description of 
the target machine must be given to identify such things as ROM/RAM 
addresses and the location of the target machine~s restart vector. The 
user may also incl~de his own assembly language interrupt handlers and 
system crash handler at this time. The result of this configuration 
process is a 9900 object load module which may be debugged using AMPL 
or programmed into ROM for execution on the target system. At the end 
of this section is an example showing the steps necessary to configure 
Pascal System into an object load module for a hypothetical target 
machine. 

! 15.2 CONFIGURING THE MICROPROCESSOR PASCAL SYSTEM INTERPRETIVE RTS 
FOR THE TARGET MACHINE 

Configuration of a target system requires the user to build a simple 
specification of the target machine into one of the Interpretive RTS 
modules, "CONFIG". CONFIG contains the specification of the system~s 
RAM organization and the locations of the system restart and LREX 
vectors. Usually, the version of CONFIG supplied to the user (see 
Figure 15-1) will not contain the correct specifications for the 
system being configured and hence will require some of the 
modifications outlined in Paragraph 15.2.1 and 15.2.2. 

15-1 



IDT ... CONFIG"' 
TITL ... CONFIG: CONFIGURATION MODULE ... 

* * THIS MODULE DEFINES THE CONFIGURATION OF THE USER ... S 
* MICROPROCESSOR PASCAL SYSTEM 
* -

DEF $RAMTB,$RESTA,$LREX 
DEF INT$WP,BAD$WP 
DEF I1WP$,I2WP$,I3WP$,I4WP$,I5WP$,I6WP$,I7WP$ 
DEF I8WP$,I9WP$,IlOWP$,IllWP$,Il2WP$,Il3WP$ 
DEF Il4WP$,Il5WP$ 

********************************************************** 
* THIS MODULE SPECIFIES THE FOLLOWING CONFIGURATION * 
* PARAMETERS: * 
* 1) INTERRUPT WORKSPACES (IlWP$~I15WP$) * 
* THESE ARE THE WORKSPACES FOR RUN-TIME SUPPORT * 
* INTERRUPT HANDLING. * 
* 2) BAD INTERRUPT AND XOP TRAP WORKSPACE (BAD$WP) * 
* THIS IS THE WORKSPACE FOR UNSERVICED INTERRUPTS * 
* AND XOP ... S. * 
* 3) INTERPRETER WORKSPACE ( INT$WP) * 
* THIS IS THE WORKSPACE OF THE MICROPROCESSOR * 
* PASCAL CODE INTERPRETER. * 
* IT MUST BE THE LAST WORKSPACE ALLOCATED, BECAUSE * 
* SYSTEM STRUCTURES ARE ALLOCATED IN THE MEMORY * 
* FOLLOWING THIS WORKSPACE. * 
* 4) RAM CONFIGURATION ($RAMTB) * 
* THIS IS THE ADDRESS OF A LIST OF PAIRS, OF * 
* LENGTH-IN-BYTES, START-ADDRESS * 
* OF VALID RAM TO BE USED BY RTS. * 
* THIS LIST MUST BE TERMINATED BY AN ENTRY WITH * 
* LENGTH-IN-BYTES = 0. * 
* 5) RESTART BLWP VECTOR ADDRESS ( $RESTA) * 
* THIS IS THE ADDRESS OF THE RESTART BLWP VECTOR. * 
* THIS WILL BE ZERO (LEVEL ZERO INTERRUPT BLWP) * 
* OR >FFFC (LREX INSTRUCTION BLWP) * 
* OR THE ADDRESS OF ANY USER DEFINED BLWP VECTOR * 
* FOR DOING A SYSTEM ... RESTART.... * 
* 6) LREX BLWP ADDRESS VECTOR ( $LREX) * 
* THIS IS THE ADDRESS OF THE LREX BLWP VECTOR TO BE * 
* COPIED INTO HIGH MEMORY. IF THERE IS TO BE NO * 
* LREX BLWP OR HIGH MEMORY IS ROM, THEN THIS * 
* SHOULD BE ZERO. * 
********************************************************** 

FIGURE 15-1. CONFIG. (Sheet 1 of 2) 

15-2 

~J 



/.-· ********************************************************** 
* THE ENTRIES FOR THIS MODULE SPECIFY: * 
* 1) RAM FROM AOOO TO AFFF, * 
* RAM FROM COOO TO CFFF, * 
* RAM FROM FFOO TO FFFF * 
* 2) RESTART IS THE SAME AS A LEVEL ZERO INTERRUPT * 
* 3) THERE IS NO LREX BLWP VECTOR * 
********************************************************** 
STATIC 
IWP$SZ 

IlWP$ 
I2WP$ 
I3WP$ 
I4WP$ 
I5WP$ 
I6WP$ 
I7WP$ 
I8WP$ 
I9WP$ 
Il0WP$ 
IllWP$ 
Il2WP$ 
Il3WP$ 
Il4WP$ 
Il5WP$ 

BAD$WP 
INT$WP 

EQU 
EQU 
DORG 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
BSS 
EQU 

>AO Ob 
>18 
STATIC+IWP$SZ->20 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
>20-IWP$SZ 
>20 
$ 

KEEP FROM OVERLAPPING 

THIS WORKSPACE MUST BE LAST! 
********************************************************** 

PSEG 
$RAMTB DATA 

DATA 
DATA 
DATA 

$RESTA EQU 
$LREX EQU 

END 

>B000-INT$WP,INT$WP 
>1000,>COOO 
>100,>FFOO 
0 
0 RESTART IS LEVEL 0 INTERRUPT 
0 NO LREX BLWP VECTOR 

Figure 15-1. CONFIG. (Sheet 2 of 2) 

15.2.1 Specification of RAM Locations 

Configuration of the target system requires a description of the 
system~s RAM (the RAM table) to be inserted into the module CONFIG •. 
Often, no additional work is required to specify the target systemr 
the user simply fills in the RAM table that is contained in CONFIG 
with the addresses and sizes of the target machine~s RAM memory 
segments. The RAM table is a list of data value pairs. The first value 
of the pair is the length in bytes of the RAM segment and the second 
value is the starting address of that segment. The list is terminated 
with an entry that has a zero specified for the length. The RAM table 
for a target system with RAM from Hex addresses AOOO to AFFF, COOO to 

15-3 



C7FF, DOOO to DOFF, and FFOO to FFFF is shown in Figure 15-2. 

Figure 15-3 is a copy of the source for CONFIG (without some of its 
documentation) as it would appear after being modified for a target 
machine with the same RAM segments as used in the previous example. 

$RAMTB DATA >1000,>AOOO 
DATA >800,>COOO 
DATA >100,>DOOO 
DATA >100,>FFOO 
DATA 0 

AOOO - AFFF 
COOO - C7FF 
DOOO - DOFF 
FFOO - FFFF 

FIGURE 15-2. SIMPLE RAM TABLE. 

15-4 



* 
* 
* 
* I 

IDT "'CONFIG"' 
TITL "'CONFIG: CONFIGURATION MODULE"' 

THIS MODULE DEFINES THE CONFIGURATION OF THE 
MICROPROCESSOR PASCAL SYSTEM. 

' . 
DEF $RAMTB,$RESTA,$LREX 
DEF INT$WP,BAD$WP 

USER"'S 

DEF IlWP$,I2WP$,I3WP$,I4WP$,I5WP$,I6WP$,I7WP$ 
DEF I8WP$,I9WP$,IlOWP$,IllWP$,Il2WP$,Il3WP$ 
DEF Il4WP$,Il5WP$ 

STATIC EQU >AOOO 
IWP$SZ EQU >18 

DORG STATIC+IWP$SZ->20 
IlWP$ BSS IWP$SZ 
I2WP$ BSS IWP$SZ 
I3WP$ BSS IWP$SZ 
I4WP$ BSS IWP$SZ 
I5WP$ BSS IWP$SZ 
I6WP$ BSS IWP$SZ 
I7WP$ BSS IWP$SZ 
I8WP$ BSS IWP$SZ 
I9WP$ BSS IWP$SZ 
Il0WP$ BSS IWP$SZ 
IllWP$ BSS IWP$SZ 
Il2WP$ BSS IWP$SZ 
Il3WP$ BSS IWP$SZ 
Il4WP$ BSS IWP$SZ 
Il5WP$ BSS IWP$SZ 

BSS >20-IWP$SZ KEEP FROM OVERLAPPING 
BAD$WP BSS >20 
INT$WP EQU $ THIS WORKSPACE MUST BE LAST! 
********************************************************** 

PSEG 
********************************************************** 
$RAMTB DATA >B000-INT$WP,INT$WP 

DATA >800,>COOO RAM 
DATA >100,>DOOO 
DATA >100,>FFOO TABLE 
DATA 0 

********************************************************** 
$RESTA EQU 0 
$LREX EQU 0 

END 

RESTART IS LEVEL 0 INTERRUPT 
NO LREX BLWP VECTOR 

FIGURE 15-3. USE OF RAM TABLE IN CONFIG. 

Note that the RAM table in Figure 15-3 has been changed. The memory 
specified in the RAM table is linked together to form the system data 
structures, for example the system heap. Actual RAM not included in 
the RAM table will not be used for these system data structures. In 
the example of Figure 15-3 the first >188 bytes of real RAM, locations 
>AOOO through >Al87, are not included in the RAM table. Instead, these 
locations are used for the allocation of sixteen workspaces, nilWP$n 

15-5 



to 0 Il5WP$ 0 and "BAD$WP 0 • Although not shown in this example, 
additional real RAM could have been excluded from the RAM table for 
use by the user""s assembly language modules. The symbol "INT$WP 0 

should always mark the beginning of the RAM specified in the RAM 
table, and hence the begining of the Interpretive RTS data structures. 

15. 2. 2 Specification of Restart and LREX Vectors r.ocations 

The symbol $RESTA within CONFIG, should be equated to the address of a 
BLWP vector to be used for a system restart. If $RESTA is zero, then a 
system restart is the same as a level 0 interrupt. If $RESTA is >FFFC, 
then a system restart is the same as an LREX instruction. The LREX 
vector is of ten used for the restart in systems that have real level 0 
interrupts. Finally, $RESTA may be a value other than 0 or >FFFC, in 
which case a restart is distinct from level 0 interrupts and LREX 
instructions. 

In some systems, the LREX instruction is used for restarting or 
reloading the system. The LREX transfer vector is located in high 
memory at Hex locations >FFFC through >FFFF. If these locations are in 
RAM then the Executive Run Time Support must load these locations with 
the proper values. A user specifies which values should be copied into 
high memory by creating a copy of the transfer vector and equating 
this copy""s address to the symbol $LREX in CONFIG. If high memory is 
ROM or if there is to be no LREX vector, then $LREX should be left 
zero. 

15.2.3 Allocation of Workspaces in CONFIG 

In addition to the RAM table and locations of the restart and LREX 
vectors, CONFIG contains several workspaces. The supplied version of 
CONFIG, shown in Figure 15-1, defines seventeen workspaces. InWP$ 
defines the interrupt workspace for interrupts at level 0 n°. These are 
the workspaces used for interrupt handling in the RTS. BAD$WP is the 
bad interrupt and XOP workspace. This is the workspace. which isr 
usually specified in the transfer vectors of all unimplemented 
interrupts and XOPS (See Section 17.4). INT$WP is the Microprocessor 
Pascal System interpreter workspace. This workspace occupies the first 
16 words of RAM specified in the RAM table. All other wor!<spaces 
defined within CONFIG (including IlWP$-I15WP$ and BAD$WP) should be 
allocated in RAM space which has been excluded from the RAM table. 

The workspace for an unimplemented interrupt at level n may be omitted 
to save space by simply changing the line 

In WP$ BSS IWP$SZ 

to the following and moving the line after the declaration of BAD$WP. 

In WP$ EQU BAD$WP 

15-6 



( 
i, -

This specifies the BAD$WP workspace as the workspace for the level n 
interrupt. Unimplemented interrupts for level n would then behave like 
XOPs, should one occur. 

15.2.4 Example 

As an example consider the following system: 

1) RAM in locations >BOOO to >BFFF and >0000 to >DFFF 

2) ROM in locations >0000 to >9FFF, >COOO to >CFFF and 
>FFOO to >FFFF 

3) A user defined restart routine. 
requires a workspace (BGN$WP) and has an 
(BGN$PC). 

This routine 
entry point 

Figure 15-4 is a version of CONFIG (without most of its documentation) 
that might be used for this system. 

15-7 

-- -~. .--- -~ -; -



. ··-. . . 

. .. .... _ . - - ~- -·- -- .. ·- -- ~--- -~· --·- •... 

IDT "'CONFIG"' 
TITL "'CONFIG: CONFIGURATION MODULE"' 

* 
* THIS MODULE DEFINES THE CONFIGURATION OF THE USER"'S 
* MICROPROCESSOR PASCAL SYSTEM. 
* 

.. DEF 
DEF 
DEF 
DEF 
DEF 
REF 

STATIC EQU 
IWP$SZ EQU 

IlWP$ 
I2WP$ 
I3WP$ 
I4WP$ 
I5WP$ 
I6WP$ 
I7WP$ 
I8WP$ 
I9WP$ 
I10WP$ 
IllWP$ 
I12WP$ 
I13WP$ 
Il4WP$ 
I15WP$ 

DORG 
SSS 
SSS 
BSS 
SSS 
SSS 
SSS 
BSS 
BSS 
SSS 
SSS 
SSS 
BSS 
SSS 
SSS 
BSS 
SSS 

BAD$WP SSS 
BGN$WP SSS 
INT$WP EQU 

$RAMTB,$RESTA,$LREX 
INT$WP,BAD$WP 
IlWP$,I2WP$,I3WP$,I4WP$,I5WP$,I6WP$,I7WP$ 
I8WP$,I9WP$,IlOWP$,IllWP$,Il2WP$,Il3WP$ 
I14WP$,I15WP$ 
BGN$PC <--- ADDED 
>BOOO <--- CHANGED 
>18 
STATIC+IWP$SZ->20 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
IWP$SZ 
>20-IWP$SZ KEEP FROM OVERLAPPING 
>20 
>20 <--- ADDED 
$ THIS WORKSPACE MUST BE LAST! 

********************************************************** 

$RAMTB 

$RESTA 
$LREX 

PSEG 
DATA 
DATA 
DATA 
DATA 
EQU 
END 

>COOO-INT$WP,INT$WP <--- CHANGED 
>1000,>DOOO 
0 
BGN$WP,BGN$PC <--- ADDED 
0 NO LREX BLWP VECTOR 

FIGURE 15-4. CONFIG WITH USER MODIFICATIONS. 

The RAM table of Figure 15-4 reflects the two RAM memory segments, but 
notice that the ROM memory segment addresses have no effect on CONFIG. 
The workspace BGN$WP has been added to CONFIG along with the restart 
vector $RESTA. 

15-8 

.--.... 

. ) 

___ / 



15.3 USER CUSTOMIZATION OF THE INTERPRETIVE RUN TIME SUPPORT 

The Interpretive RTS may be customized by the user in two ways: 
assembly language interrupt handlers, and user-coded crash routines. 
Both of these customizations involve additions and• changes to the· 
module "USERINIT" (the user initialization module). USERINIT as it it 
supplied to the user is shown in Figure 15-5. 

IDT ""USERINIT"" 
* ROUTINE LIST: 
* RSET$, SYS$CR 
* COPY MODULES: 
* NONE 
* MACRO DEFINITIONS: 
* NONE 
* EXTERNAL ROUTINES: 
* SEG0-SEG63 
* EXTERNAL DATA: 
* $EXEC, $LREX, $RAMTB, $RESTA, BAD$WP, INT$WP, 
* IlWP$, I2WP$, I3WP$, I4WP$, ISWP$, I6WP$, 
* I7WP$, I8WP$, I9WP$, Il0WP$, Il1WP$, I12WP$, 
* Il3WP$, Il4WP$, I15WP$ 
* MODULE CONSTANTS: 
RO EQU 0 
Rl EQU 1 
R2 EQU 2 
Rl2 EQU 12 

DEF SYS$CR,IN$PC,$SEGTB,RSET$ 
REF INT$WP,BAD$WP 
REF $RAMTB,$EXEC,$RESTA,$LREX 
REF IlWP$,I2WP$,I3WP$,I4WP$,ISWP$,I6WP$,I7WP$,I8WP$ 
REF I9WP$,I10WP$,IllWP$,Il2WP$,Il3WP$,Il4WP$,Il5WP$ 
REF SEGO,SEG1,SEG63 REQUIRED SEGMENTS 
SREF SEG2,SEG3,SEG4,SEG5,SEG6,SEG7 
SREF SEG8,SEG9,SEG10,SEG11,SEG12,SEG13,SEG14,SEG15 
SREF SEG16,SEG17,SEG18,SEG19,SEG20,SEG21,SEG22,SEG23 
SREF SEG24,SEG25,SEG26,SEG27,SEG28,SEG29,SEG30,SEG31 
SREF SEG32,SEG33,SEG34,SEG35,SEG36,SEG37,SEG38,SEG39 
SREF SEG40,SEG41,SEG42,SEG43,SEG44,SEG45,SEG46,SEG47 
SREF SEG48,SEG49,SEG50,SEG51,SEG52,SEG53,SEG54,SEG55 
SREF SEG56,SEG57,SEG58,SEG59,SEG60,SEG61,SEG62 

* MODULE VARIABLES: 
PSEG 

FIGURE 15-5. USERINIT. (Sheet 1 of 6) 

15-9 

I_ 
I 



*********************************************************** 
* IF THIS MODULE IS LOADED AT ADDRESS ZERO, THEN * 
* THE TRAP VECTORS (WHICH FOLLOW) OF THE MACHINE * 
* ARE ALREADY INITIALIZED. OTHERWISE, MICROPROCESSOR * 
* PASCAL INITIALIZATION MOVES THE FOLLOWING DATA TO * 
* ABSOLUTE ADDRESS ZERO. * 
*********************************************************** 
TRAPS EQU $ CONFIGURATION OF TRAP VECTORS 

DATA INT$WP,RSET$ LEVEL 0 
DATA IlWP$,IN$PC LEVEL 1 
DATA I2WP$,IN$PC LEVEL 2 
DATA I3WP$,IN$PC LEVEL 3 
DATA I4WP$,IN$PC LEVEL 4 
DATA I5WP$,IN$PC LEVEL 5 
DATA I6WP$,IN$PC LEVEL 6 
DATA I7WP$,IN$PC LEVEL 7 
DATA I8WP$,IN$PC LEVEL 8 
DATA I9WP$,IN$PC LEVEL 9 
DATA I10WP$,IN$PC LEVEL 10 
DATA Il1WP$,IN$PC LEVEL 11 
DATA Il2WP$,IN$PC LEVEL 12 
DATA Il3WP$,IN$PC LEVEL 13 
DATA Il4WP$,IN$PC LEVEL 14 
DATA I15WP$,IN$PC LEVEL 15 
DATA BAD$WP,BAD$PC XOP 0 
DATA BAD$WP,BAD$PC XOP 1 
DATA BAD$WP,BAD$PC XOP 2 
DATA BAD$WP,BAD$PC XOP 3 
DATA BAD$WP,BAD$PC XOP 4 
DATA BAD$WP,BAD$PC' XOP 5 
DATA BAD$WP,BAD$PC XOP 6 
DATA BAD$WP,BAD$PC XOP 7 
DATA BAD$WP,BAD$PC XOP 8 
DATA BAD$WP,BAD$PC XOP 9 
DATA BAD$WP,BAD$PC XOP 10 
DATA BAD$WP,BAD$PC XOP 11 
DATA BAD$WP,BAD$PC XOP 12 
DATA BAD$WP,BAD$PC XOP 13 
DATA BAD$WP,BAD~PC XOP 14 
DATA BAD$WP,BAD$PC XOP 15 

********************************~************************** 
*PANEL BSS >20 
* 

~'RONT PANEL WORKSPACE GOES * 
AT ADDRESS >80 IF NECESSARY * 

*********************************************************** 
TITL ... RSET$: 
15-

SYSTEM STARTUP CODE ... 

FIGURE 15-5. USERINIT. (Sheet 2 of 6) 

15-10 

) 
/ 



* ABSTRACT: 
* THIS MODULE IS PROVIDED BY THE USER. IT IS 
* POSITION-DEPENDENT BECAUSE TRAP VECTORS WHICH 
* CAN BE IN ROM MUST REFERENCE STATICALLY LOCATED 
* CODE AND DATA SPACE AT LOCATIONS DEFINED HEREIN. 
* NOTICE HOWEVER THAT ALTHOUGH THIS MODULE DEF~S 
* SYMBOLS, ALL OF MICROPROCESSOR PASCAL INTERPRETIVE 
* CODE RUN-TIME SUPPORT IS POSITION-INDEPENDENT 
* AND DOES NOT DEPEND ON ITS LOCATION OR THE LOCATION 
* OF USER-WRITTEN CODE. THE ONLY REF~S IN THIS 
* MODULE ARE TO SEGMENT LOCATIONS, TO THE ENTRY 
* POINT OF THE INTERPRETER, AND TO USER-DEFINED 
* CONFIGURATION INFORMATION. THE USER MAY PLACE 
* MICROPROCESSOR PASCAL SEGMENTS (WHICH ARE POSITION-
* INDEPENDENT} ANYWHERE IN CODE SPACE, AND MUST BUILD 
* A 64-ENTRY SEGMENT TABLE WHICH IS GIVEN BELOW. 
* ADDITIONALLY, THIS ROUTINE INITIALIZES ALL OF RAM. 
* CALLING SEQUENCE: 
* LIMI 0 
* B @RSET$ 
* EXCEPTIONS AND CONDITIONS: 
* THE FIRST ENTRY IN THE 
* ENOUGH FOR ALL OF 
* (ABOUT 1300 BYTES 
* EXTERNALS LIST: 
* ROUTINES: NONE 
* VARIABLES: NONE 

RAM TABLE MUST BE LARGE 
SYSTEM INITIALIZATION 
(DECIMAL}} 

* OTHER: EXECPC, SEG0-SEG63 
* LOCAL DATA: 
VAL DATA >FFOO 
ZERO DATA 0 
ALTZER DATA >5555 
ALTONE DATA >AAAA 
* ENTRY POINT: 
RSET$ EQU $ 

RSET 
* 

LWPI INT$WP 
* 

FORCE AN ADDRESSING ERROR 

RSET VECTOR PC POINTS HERE 
USER IS RESPONSIBLE TO RESET 
THE MACHINE 
ESTABLISH WORKSPACE IF BRANCH 
TO RSET$ INSTEAD OF BLWP 

FIGURE 15-5. USERINIT. (Sheet 3 of 6) 

15-11 



*********************************************************** 
* INITIALIZE MEMORY TO GARBAGE 
* 

* 
* 

* (PRIMARILY FOR DEBUGGING: ALL THAT IS NEEDED IS FOR * 
* THE USER TO SET UP THE RAMTABLE BY EITHER CODE OR * 
* DATA STATEMENTS. ) * · 
*********************************************************** 

LI R2,$RAMTB 
MOV @2 (R2) , RO RO . -.- START ADDRESS 
MOV *R2, Rl Rl := LENGTH 
A RO ,Rl Rl := ADDR FIRST NON-RAM WORD 
LI RO,INT$WP 
AI RO, >20 

ZAP EQU $ 
MOV @ALTZER, *RO 
CLR RS INSTRUCTION JUST TO CLEAR BUS 
c @ALTZER, *RO 
JNE EOB 
MOV @ALTONE, *RO 
CLR RS INSTRUCTION JUST TO CLEAR BUS 
c @ALTONE,*RO 
JNE EOB 
MOV @VAL, *RO+ ZAP RAM WORD 
c RO,Rl 
JL ZAP 
JMP NEXT AB 

* 
EOB EQU $ RAM REALLY ISN~T 

MOV RO,Rl Rl := ADDRESS OF BAD RAM 
LI RO ,6 CRASH CODE 6 = ROM/RAM ERROR 
B @SYS$CR CRASH 

* 
NEXT AB EQU $ 

AI R2,4 
c *R2 ,@ZERO END OF RAM TABLE? 
JEQ OUT IF YES, GO ON 
MOV @2 ( R2) , RO RO := START ADDRESS 
MOV *R2, Rl Rl := LENGTH 
A RO ,Rl Rl := ADDR FIRST NON-RAM WORD 
JMP ZAP 

* 
OUT EQU $ 
*********************************************************** 
* END OF RAM TABLE AND MEMORY INITIALIZATION * 
*********************************************************** 

* 

* 
* 

LI 

LI 
MOV 
AI 
BL 

RO,TRAPS 

R12,SEG63 
*Rl 2, Rl 2 
R12,SEG63 
*R12 

FIGURE lS-S. 

PASS ADDRESS OF TRAPS 
CONPIGURATION 

BRANCH TO·RTS 
INITIALIZATION 
(SEG63, ENTRY=O) 

USERINIT. (Sheet 4 of 6) 

lS-12 

!-

) 



,.--

(' 
' 
\..... -

*********************************************************** 
* IMMEDIATELY FOLLOWING THE BL MUST BE: * 
* 1) THE ADDRESS OF THE RAM/ROM TABLE * 
* 2) THE ADDRESS OF THE INTERPRETER ENTRY POINT * 
* 3) THE ADDRESS OF CRASH CODE * 
* 4) THE ADDRESS OF THE RE$START BLWP VECTOR * 
* 5) THE ADDRESS OF THE LREX BLWP VECTOR (IF RAM IN * 
* HIGH MEMORY, ELSE A ZERO ENTRY) * 
* 6) THE SEGMENT TABLE ( 6 4 ENTRIES) * 
*********************************************************** 
* 
* 
* 

* 
* 

* 

* 
* 

* 
* 
* 
$SEGTB 

* 
* 
* 
* 
* 
* 
* 
* 

DATA $RAMTB 1) THE ADDRESS OF THE RAM/ROM 
TABLE 

DATA $EXEC 2) THE ADDRESS OF INTERPRETER 
ENTRY POINT 

DATA SYS$CR 3) ADDRESS OF CRASH CODE 

DATA $RESTA 4) THE ADDRESS OF RE$START 
BLWP VECTOR 

DATA $LREX 5) THE ADDRESS OF THE LREX 
BLWP VECTOR (IF RAM IN 

EQU 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

HIGH MEMORY, ELSE 0) 

$ 6) THE 64 ENTRY SEGMENT TABLE 
SEG0,SEG1,SEG2,SEG3,SEG4,SEG5,SEG6,SEG7 
SEG8,SEG9,SEG10,SEG11,SEG12,SEG13,SEG14,SEG15 
SEG16,SEG17,SEG18,SEG19,SEG20,SEG21,SEG22,SEG23 
SEG24,SEG25,SEG26,SEG27,SEG28,SEG29,SEG30,SEG31 
SEG32,SEG33,SEG34,SEG35,SEG36,SEG37,SEG38,SEG39 
SEG40,SEG41,SEG42,SEG43,SEG44,SEG45,SEG46,SEG47 
SEG48,SEG49,SEG50,SEG51,SEG52,SEG53,SEG54;SEG55 
SEG56,SEG57,SEG58,SEG59,SEG60,SEG61,SEG62,SEG63 

THE USER~S INITIAL PROCESS 
MUST BE IN SEGMENT 1. 
THE USER CAN USE ADDITIONAL 
SEGMENTS AS NEEDED. 

UNUSED SEGMENT ENTRIES 
ARE ZERO. 

********************************************************** 

FIGURE 15-5. USERINIT. (Sheet 5 of 6) 

15-13 



IN$PC EQU 
LIM! 
MOV 
JEQ 
BLWP 

N0$ASM EQU 
* 

$ 
0 
R7 ,R7 
N0$ASM 
R7 
$ 

SERVICE INTERRUPT 

WP NOT ZERO, DO ASM LANG 

* PASS INTERPRETER~S WORKSPACE IN R9 
* PASS ADDRESS OF SEG63, PROCEDURE 1 IN RlO 
* 

* 

LI 
LI 
MOV 
AI 
B 

R9, INT$WP 
Rl0,SEG63 
@2 (RlO) , RlO 
R10,SEG63 
*RlO BRANCH TO RTS 

(SEG63, ENTRY 1) 
********************************************************** 
* CODE FOR STANDARD TM990 SYSTEM 
***************************************************.****** 
BAD$PC EQU $ 

LIM! 0 
JMP SYS$CR 

* 
SYS$CR EQU $ 

LIM! 0 
IDLE 
JMP SYS$CR 

* 
END RSET$ ENTRY POINT OF STANDARD SYSTEM 

FIGURE 15-5. USERINIT. (Sheet 6 of 6) 

15-14 



15.3.1 Assembly Language Interrupt Handlers 

There are two different ways that the user may handle interrupts using 
assembly language for interpretive execution: 

1) Pure assembly language handling of interrupts outside 
the Microprocessor Pascal environment. All 
communication with the Microprocessor Pascal 
environment should be through common memory areas. 

2) An interrupt handling capability in which the user has 
the option of handling an interrupt with both assembly 
language and pascal routines. This system uses a 
procedure (ASSEMBLYEVENT) that is declared as an 
external procedure in thee user~s Pascal code. NOTE: 
ASSEMBLYEVENT is not supported in debug mode either the 
host or target system. 

For a complete discussion of Interrupt Handling in Pascal using 
EXTERNALEVENT and ALTEXTERNALEVENT see Paragraph 9.5 of this manual. 

15.3.1.1 Pure Assembly Language Interrupt Handlers. The module 
"USERINIT" contains the interrupt transfer vectors. Each interrupt 
level that is to convey valid interrupts must have its own dedicated 
workspace. All interrupt levels that are to be considered as conveying 
spurious interrupts share a common workspace as described in Paragraph 
15.2.3 above. The program counter to be provided in the transfer 
vector should be the entry point of the assembly language code of the 
handler ~or interrupts at that level. 

Thus the "USERINIT" module should be changed to provide the symbols 
for the dedicated workspace(s) and program counter(s). The "CONFIG" 
module should also be modified so that each workspace is allocated in 
RAM outside the RAM area available for MPIX. 

The very first instruction of the assembly language code must be a 
"LIMI O". Once the interrupt mask is set it should not be changed 
while the interrupt handler is executing. The mask is reset by the 
processor when the RTWP, the last instruction in the interrupt 
handler, is executed. This interrupt handler is executing outside the 
Pascal environment and communication with Pascal code is possible only 
via common memory areas. 

15.3.1.2 Declaration and Calling Conventions of ASSEMBLYEVENT. The 
ASSEMBLYEVENT routine is declared by the user to be external in his 
Microprocessor Pascal code prior to the receipt of any interrupts. The 
format of the declaration is 

PROCEDURE ASSEMBLYEVENT(VAR WPX: WORKSPACE; PCX: INTEGER; 
LEVELX: INTERRUPT_LEVEL); EXTERNAL; 

c; For further details see Paragraph 9.5, Section 9. 

15-15 

--- -·-·---- -- ~-·----~ . ,., ·-·~-' ---. ,--·----~ .-,.--- ... ·-· -- ·--·--· ' 



Unlike the pure assembly language handling of interrupts the modules ~1 
"USERINIT" and "CONFIG" should provide a single workspace for all 
interrupt levels. In addition to this, as indicated in the procedure 
declaration above, the Pascal code must supply the user~s assembly 
language code with its own workspace and the entry point of-that code. 
The Pascal Type ~workspace~ is declared as below. 

TYPE WORKSPACE= ARRAY[l •• 16] OF INTEGER; 
{* and for example *} 
VAR WP : WORKSPACE; 
{* and *} 
PROCEDURE ASM3; EXTERNAL; 

The allocation of an assembly language interrupt handler (for example 
called "ASM3") to interrupt level three then looks as follows: 

ASSEMBLYEVENT(WP,LOCATION(ASM3) ,3); 

Or if the workspace structure is dynamically allocated from the heap 
by, 

NEW (POINTER) ; 

where POINTER is declared as 

POINTER: @WORl{SPACE; 

the allocation of the assembly language interrupt handler would then 
look like the following: 

ASSEMBLYEVENT(POINTER@,LOCATION(ASM3) ,3); 

Another external routine is provided for the user to sever the 
connection of an assembly language interrupt handler with any 
particular interrupt level. The procedure is called NOASSEMBLYEVENT 
and should be declared as follows in the user~s Microprocessor Pascal 
code: 

PROCEDURE NOASSEMBLYEVENT(LEVEL: INTERRUPT_LEVEL); EXTERNAL; 

Thus, a call to NOASSEMBLYEVENT, to deallocate an assembly language 
interrupt handler from level 3, looks as follows: 

NOASSEMBLYEVENT(3); 

For further details see Paragraph 9.5. 

15-16 



---( 
\' 

15.3.1.3 Use of ASSEMBLYEVENT. In MPIX, interrupts that are to be 
handled via an ASSEMBLYEVENT, are initially dealt with by the System 
interrupt Handler in the same workspace, IWP$, with the transfer 
vector in the nusERINIT" module set to ·a different program counter, 
InPC (where 'n' is the interrupt level). When an interrupt occurs a 
branch through the appropriate vector is executed. The system 
interrupt handler first looks to see if any user written interrupt 
handling procedures have been attached to the interrupt level at which 
the interrupt occured, by the execution of an ASSEMBLYEVENT. If this 
is the case then the interrupt mask is set to zero (ie all interrupts 
are masked) and control is then passed to the entry point of this 
assembly language procedure. 

NOTE: The first two parameters of the call to ASSEMBLYEVENT are a 
transfer vector. The interrupt mask should not be altered inside the 
interrupt handler. When the assembly language handling of interrupts 
is completed, the user has two choices of action: 

1) If he wishes to perform processing of this interrupt in 
Microprocessor Pascal in addition to the his assembly 
language handler, the user simply executes an 'RTWP' 
instruction. In this case the return is into the 
context of the System Interrupt Handler. The System· 
Interrupt Handler then proceeds to look for any Pascal 
semaphore that is allocated to this interrupt level by 
EXTERNALEVENT. If one is not found or the EXTERNALEVENT 
semaphore has no processes waiting on it, then the. 
System interrupt handler looks for an ALTEXTERNALEVENT 
semaphore. If this is not found or if it also has no 
processes waiting on it then the system interrupt 
handler will assume that the interrupt was spurious and 
a system crash will occur. If a process is found 
waiting on either semaphore the semaphore will be 
signaled, the user's interrupted workspace will be 
restored and the Pascal interrupt handler become 
active. 

2) If no further processing of this interrupt is required 
then the user may return directly to the interrupted 
workspace without invoking any Pascal interrupt 
handlers. There are many different ways of actually 
doing this in assembly language. The following is just 
one example, using 3 words of code. 

LI R14,R 
R RTWP 

This code causes. two 'RTWP' instructions to be executed in a row. 

15-17 

. :''·.·:.>: 



The MPIX ASSEMBLYEVENT method of handling interrupts is intended to be 
used in situations where it is essential to respond to interrupts very 
quickly and yet desirable to do the interrupt initializatiQn at the ) 
Pascal level. Relative to handling interrupts entirely in Pascal, use 
of ASSEMBLYEVENT trades a faster interrupt response time for an 
Assembly coded interrupt service routine. 

An example interrupt service routine to be connected by ASSEMBLYEVENT 
is presented below. Note: In this revision, the entry point for an 
assembly language interrupt handler must be an odd number for MPIX. 

IDT '"TIC 
*********************************************************** 
* 
* 
* 
* 
* 
* 

INTERRUPT SERVICE ROUTINE "INSTALLED" BY 
ASSEMBLYEVENT 

* 
* 
* 
* 
* 
* 

*********************************************************** 
DEF TIC 
EVEN forces word alignment 

TIC EQU $+1 defines entry point 
*********************************************************** 

LI 
SBC 
INC 

·er 
JL 
CLR 

BYEBYE LI 
R RTWP 

END 

Rl2,>100 
3 
RO 
RO, 1000 
BYEBYE 
RO 
Rl4 ,R 

point to TMS9901 
reset the interrupt 
RO := RO + 1 MOD 1000; 

return to the caller 

The Pascal mainline code which does the interrupt initialization is 
presented below. 

SYSTEM ASMBYEV; 

TYPE 

INTLVL = 0 .• 15; 

WP= ARRAY[0 .. 15] OF INTEGER; 

PROCEDURE TIC ; EXTERNAL; 
PROCEDURE INITSEMAPHORE VARS : SEMAPHORE ; VALUE : INTEGER); 

EXTERNAL; 
PROCEDURE ASSEMBLYEVENT VAR X: WP; PC: INTEGER; LEVEL : INTLVL ) ; 

EXTERNAL; 
PROCEDURE WAIT ( S : SEMAPHORE); EXTERNAL; 

15-18 

/ 



PROGRAM CLKINT; 

( * PURPOSE: 
PROVIDE REAL TIME CLOCK FOR MPIX : 
INITIALIZE TMS 9901 FOR 100.02 MS CLOCK INTERRUPTS *} 

CONST 

CLKCRU = #0100; 
CLKLVL = 3; 
INTBIT = O; 
CLKBIT = 3 ; 
COUNTS = 4689; 

VAR 
INTERRUPT, SOME OTHER: SEMAPHORE; 
INTERRUPT PC: INTEGER; 
INTERRUPT-WP: WP; 

BEGIN (* PROGRAM CLKINT *) 
(*# STACKSIZE = 256; HEAPSIZE = 64; PRIORITY = CLKLVL *} 

INITSEMAPHORE (INTERRUPT, 0 }; 
INTERRUPT PC := LOCATION( TIC } ; 
ASSEMBLYEVENT( INTERRUPT WP, INTERRUPT PC, CLKLVL }; 
INTERRUPT WP[O] := O; - -
CRUBASE (-CLKCRU }; 
LDCR( 15, COUNTS* 2 + 1 }; 
SBZ ( INTBIT } ; 
SBO ( CLKBIT } ; 

(* SET INTERRUPT ON *} 
(* ENABLE CLOCK INTERRUPT *} 

"TIC: INTERRUPT_WP [ 0] := INTERRUPT_WP[O] + 1 MOD 1000; 
(* END; 

BEGIN 
START CLKINT; 

END. 

CLKINT *} 

(*# STACKSIZE = 256 *} ( * ASMBYEV *} 

( * ASMBYEV *} 

If necessary, the execution of a Pascal segment of code can follow the 
Assembly language segment if EXTERNALEVENT also couples the same 
semaphore used in the ASSEMBLYEVENT routine. In this case the Pascal 
code must execute a WAIT on this semaphore before the first interrupt 
is allowed to occur. In addition, the second RTWP must be eliminated 
from the Assembly coded module (delete: LI R14,R }. 

15-19 



For example, after the comment in CLKINT, the user could add: 

REPEAT 
WAIT(INTERRUPT}; 
SIGNAL(SOME OTHER}; 

UNTIL FALSE -

provided EXTERNALEVENT was called prior to the loop with the same 
semaphore. 

15.3.2 Crash Routine 

The label SYS$CR marks the point in USERINIT to which control will 
transfer if a system crash occurs. The code which is provided in 
USERINIT (shown in Figure 15-6} idles with interrupts masked. In a 
customized system a system crash might cause an automatic restart, the 
activation of an alarm, or the transmission of a message. 

SYS$CR EQU $ 
LIMI 0 
IDLE 
JMP SYS$CR 

FIGURE 15-6. STANDARD CRASH CODE. 

More elaborate crash routines can be developed. Figure 15-7 is a 
routine which will flash the front panel lights of a 990/4 or 990/10 
with the crash code and exception codes when the system crashes. 

As when adding interrupt code to USERINIT, use only a LIMI 0 if 
interrupts are to be masked in the crash routine. 

15-20 

\ 
I 



,,,.~-· 

VECTOR 
NEWWP 
SHOW 

WAIT 

DATA 
BSS 
LI 
LDCR 
SWPB 
LDCR 
LI 
SRA 
DEC 
JNE 
B 
DEF 

SYS$CR EQU 
LIM! 
BLWP 

LIGHTS SETO 
BL 
MOV 
BL 
SETO 
BL 
LI 
MOV 
MOV 

* 

NEWWP,LIGHTS 
>20 
R12,>1FE0 
Rl, 8 
Rl 
Rl, 8 
R0,50000 
Rl,14 
RO 
WAIT 
*Rll 
SYS$CR 
$ 
0 
@VECTOR 
Rl 
@SHOW 
@ 2 *RO ( Rl 3 ) , Rl 
@SHOW 
Rl 
@SHOW 
Rl,INT$WP 
@ 2 *RS ( Rl ) , Rl 
@ > 3 E ( Rl) , Rl 

BL @SHOW 
JMP LIGHTS 

SPIN FOR ONE SECOND 
40 CLOCKS 
10 CLOCKS 
10 CLOCKS 

CRASH$ POINT 

FLASH FRONT PANEL 

SHOW CRASH CODE 

FLASH FRONT PANEL 

WORKSPACE OF INTERPRETER 

SHOW EXCEPTION CODES 
OF CURRENT PROCESS 

FIGURE 15-7. ELABORATE CRASH ROUTINE. 

15.4 ASSEMBLY LANGUAGE CODING CONVENTIONS 

It is possible by following the conventions outlined in this section 
to write assembly language routines which are callable from 
Microprocessor Pascal. A segment may consist of assembly language 
routines which may be declared and called as any other external 
procedures or functions. 

15.4.1 General Format and Example of Assembly Language Segment. 

Figure 15-8 gives a general format for an assembly language segment. 
Figure 15-9 gives an example of an assembly language segment written 
according to this format. 

15-21 



IDT --sEGn.-

PRCS EQU 
ENTRY EQU 
SP EQU 
CALLER EQU 
MKSIZ EQU 
SEGCOD EQU 

DEF 
routl EQU 
rout2 EQU 
rdutx EQU 

SEGn 
DEF 
DATA 
DATA 
DATA 

RB 
Rl2 
Rl4 
Rl5 
-14 
((segment_number)*2 

routl,rout2 
(0*256 + SEGCOD) 
(1*256 + SEGCOD) 
((x-1)*256 + SEGCOD) 

SEGn 
entryl-SEGn 
entry2-SEGn 
entryx-SEGn 

LIT DATA value 

entryl DATA 0 
DATA parms*2 

n = segment number 

process record pointer 
my routine address 
my first parameter 
my caller.-s stack frame 
administration area size 
+ 1) 

segment dictionary 
displacement to first entry point 
displacement to second entry point 
displacement to .-x.-th entry point 

local literal 

assembly language flag 
parameter size (bytes) 

* code for routine 

* 

* 

... 
use of local literal 

MOV @LIT-entryl(ENTRY),Rl 

B *Rll 

entry2 DATA 0 
DATA parms*2 ... 

return 

assembly language flag 
parameter size (bytes) 

code for routine - FUNCTION 

AI SP,MKSIZ 
MOV result,*SP+ 
B *Rll 

entryx DATA 0 
DATA parms*2 

code for routine 

B *Rll 
END 

FIGURE 15-8. 

administration area for function 
return function result 
return 

assembly language flag 
parameter size ( bytes 

return 

ASSEMBLY LANGUAGE SEGMENT. 

15-22 

i 

--~) 

, __ .... 



This assembly language segment example contains just one external 
procedure which performs XOP 15 with one parameter passed by address. 

IDT 
PRCS EQU 
ENTRY EQU 
SP EQU 
CALLER EQU 
MKSIZ EQU 
SEGCOD EQU 

DEF 
SVC EQU 

DEF 
SEG2 DATA 
ENTRYl DATA 

DATA 
MOV 
XOP 
B 
END 

"SEG2" 
RB 
Rl2 
Rl4 
Rl5 
-14 
5 
SVC 
SEGCOD 
SEG2 
ENTRY1-SEG2 
0 
2 
*SP, RO 
*RO, 15 
*Rll 

PROCESS RECORD POINTER 
MY ROUTINE ADDRESS 
MY FIRST PARAMETER 
MY CALLER"S STACK POINTER 
ADMINISTRATION AREA SIZE 
(SEGMENT NUMBER*2)+1 

GET ADDRESS OF SVC CALL BLOCK 
INITIATE THE I/O 

FIGURE 15-9. ASSEMBLY LANGUAGE SEGMENT. 

15.4.2 Details of Assembly Language Segment Conventions. 

Each assembly language routine in the segment should have a DEF for 
the routine name. The symbol should be defined by an EQU statement 
which defines the routine number and segment number. The value should 
have the form: 

routine number * 256 + SEGCOD 

where SEGCOD is segment number * 2 + 1. 

The first routine in a segment is number 0 and so on. 

The segment dictionary must be defined by a symbol of the form "SEGn", 
where "n" is the number of the segment. The dictionary should be 
labeled by the segment name, and each entry in the dictionary should 
be of the form: 

DATA routine-SEGn 

where "routine" is the label of the routine preamble. The routine 
preamble consists of two words of data, the first of which must be 
zero (0) which indicates that the routine is an assembly language 
routine, and the second word indicates the size of the parameter area 
for the routine in bytes. 

15-23 



The registers available for use by the assembly language routine are 
RO through R6. Registers RS through RlS may be used if they are saved 
and restored by the routine. Register R7 is used for interrupts and 
should not be changed by the user. Some of the registers used by the 
Microprocessor Pascal System interpreter may be useful by the routine. 
The dedicated registers are described below: 

R7 - address of next instruction handler 
RS - address of the process record 
R9 - address of the current work space (register set) 
RlO - address of next available work space 
Rll - return address 
Rl2 - assembly language routine entry point address 
Rl3 - caller~s program counter 
Rl4 - address of my parameters 
RlS - address of my caller~s stack frame 

The parameters of the routine may be accessed via the SP (Rl4) 
register. The first parameter may be referenced via *SP, the second 
parameter may be referenced via @2(SP), and so on for as many 
parameters as were passed. If the assembly language routine is a 
function, the administration area for the function must be discarded 
by decrementing SP by the administration area size (14 bytes). The 
function result must then be pushed on the stack using *SP+ 
references. 

An assembly language routine should be coded so that it is position 
independent. This may be done by using "jump" instructions rather than 
"branch" instructions, and by referencing local data or literals as 
follows: · 

@literal-entry(Rl2) 

When writing assembly language, masking of interrupts should be done 
with a LIM! O. Do not use any other interrupt masks and do not adjust 
the mask via an RTWP instruction. If a BLWP instruction is used, the 
workspace pointer, program counter, and status register of the caller 
and must remain in Rl3 - RlS of the callee~s workspace. 

15-24 

j 



APPENDIX A 

GLOSSARY 

active process: The single process which is 
executing (assigned to the processor). 

currently 

address space, logical: A hypothetical contiguous memory 
area which is addressable by software, generally 
limited in size by the instruction set of the 
computer. For example, the 990/10 has a logical 
address space of 65,536 bytes, thus allowing a memory 
reference to consume a maximum of 16 bits. 

address space, physical: The actual physical memory 
(hardware) which is available to a computer system; on 
the 990/10, a 16-bit logical address is mapped to some 
physical memory location through a hardware function 
referred to as memory mapping. 

blocked process: A process which is not currently eligible 
for execution because it is waiting for some resource 
or some signal before it can continue. 

breakpoint: A point in a system at which execution can be 
suspended, especially for debugging purposes. 

buffer, line: A data area associated with each text file 
which contains the component (line) being encoded or 
decoded. 

buffer, look-ahead: A data area associated with each file 
opened for reading which contains the component which 
will be read next. For text files, the line buffer 
doubles as a look-ahead buffer. 

call by reference: A kind of parameter 
address of the actual parameter is 
module and this address is used to 
parameter indirectly, sometimes 
substitution. 

passing in which the 
passed to the called 

access the actual 
called variable 

call. by value: A kind of parameter passing in which the 
actual parameter is evaluated and the resulting value 
is assigned to the corresponding formal parameter, 
sometimes called value substitution. 

channel: A shared data 
variables are linked 

A-1 

structure 
to devices 

through 
and to 

which 
other 

file 
file 



variables. 

channel, device: A dedicated channel associated with a 
device which connects a file variable to that device. 

concurrency: The property of several distinct processes 
whose execution proceeds at the same time. 

concurrent characteristic: One of several characteristics 
associated with the definition of a process, including 
the priority of the process, the amount of stack data 
space required, and the amount of heap data space 
required for it to execute. 

critical transaction: A sensitive sequence of code which 
must be allowed to execute from top to bottom, with no 
possibility of another process being scheduled during 
the sequence. 

CRU (communication register unit): The 
command-driven hardware interface 
family, used to communicate with 
devices. 

general-purpose, 
of the TI 990/9900 

many supported 

deadlock: The situation when two (or more) processes become 
blocked waiting for conditions that can never hold 
because of a circular dependency; each process is 
waiting on a condition that cannot occur because some 
other process is not active to cause it. 

device channel: A dedicated channel associ~ted with a 
device, which connects a file variable to that device. 

device, logical: A device with which programs can perform 
logical (device-independent) I/O. 

device, physical: A device which communicates with programs· 
through CRU or memory-mapped I/O and interrupts. 

end of consumption: The state of a channel 
connected reading files become closed. 

end of file: The state of a channel and 
reading files when all connected writing 
closed. 

when all 

all connected 
files become 

event: Something noteworthy that 
. externally (in the real world) or 

the Executive RTS). 

takes place 
internally 

either 
(inside 

exception: 
system, 
range. 

An error detected 
e.g. divide by 

A-2 

during 
zero or 

the execution of a 
subscript out of 

) 



L 

exception handling: The ability of a process to deal with 
exceptions and to possibly recover from them. 

extent: The time during system execution that a 
computational quantity may be considered .to exist; the 
extent of a variable i~ the time during which space is 
allocated for the variable. 

file variable: A process-local port which interfaces the 
process with its external environment. 

first-in first-out (FIFO) queue: A queue in which the 
components which arrive first are the first ones to 
leave. 

heap: A data area which holds dynamically allocated 
variables which are not declared, but are created and 
destroyed by the procedures NEW and DISPOSE. 

heap, program: A heap region that is allocated from system 
memory. 

heap, nested: A heap region that is allocated from another 
heap, called the parent, so that a hierarchy of heaps 
may be created. 

heap packet: An arbitrary size data area allocated from a 
heap. 

heapsize: A concurrent characteristic which s~ecifies the 
size of the heap require1 by a process; a zero value 
means to use the parent's heap, a non-zero value means 
to allocate a private heap from the parent's heap 
(nested heap) • 

idle process: A process with the lowest possible priority 
which becomes active when no other processes are ready 
to execute. 

interleaving: Repetitive switching of 
create the illusion of many 
concurrently. 

processes, 
processes 

used to 
executing 

interpretive code: Code produced by the MicroTIP compiler 
which can be executed by an interpreter or can be 
translated into 9900 native code by the code 
generator. 

interrupt: A stimulus from the external environment of a 
processor to pass an event to a process executing 
within the processor. 

interrupt demultiplexer: 
interrupt from a 

A process which waits for an 
physical device, determines the 

A-3 



logical device for which the interrupt is intended, and 
signals a semaphore corresponding to the logical 
device. 

I/O, logical: Devi~e-independent I/O 

I/O, memory-mapped: I/0 which is performed by reading an~ 
writing to "memory locations" which are dedicated to a 
device. 

I/O, physical: Device-dependent I/O. 

mask, interrupt: The hardware mask (specifically bits 12 
through 15 of the ST register) which determines the 
enabled interrupt levels. 

memory-mapped I/O: I/O which is performed by reading and 
writing to "memory locations" which are dedicated to a 
device. 

memory mapping: A hardware function whereby a logical 
address is mapped to a physical memory location. 

message: Any data which can be copied from one process to 
another, examples are a string of characters, an 
integer, an array, a record, or a pointer. 

message buffer: A shared data structure through which 
messages are transferred and buffered among processes. 

module: Any unit of Pascal which may be invoked, that is, 
either a system, program, process, procedure, or 
function. 

multiprocessing: The concurrent execution of several 
possibly on different communicating processes, 

processors. 

multiprogramming: The practice of having several 
execution within one program at the 
(concurrent processes). 

sites of 
same time 

multitasking: A term used interchangeably with 
multiprogramming. 

native code: Code which can be executed by a specific 
computer, e.g. TI 9900 code. 

preempted process: A process 
scheduling policy, must 
another process. 

which, because of the 
relinquish the processor to 

priority: A property of 
relative urgency of 

a process which 
the process; a 

indicates the 
lower priority 

A-4 



,.,.-· 
\ 

number means the process is more urgent than one of a 
higher number. 

process: A separately executing entity which has its own 
run-time environment for its data. 

process record: A data area maintained by run-time 
code for every instance of a process, which 
all necessary information about the process 
state 

processor: A single CPU hardware device. 

support 
contains 
and its 

program: A process that is self-contained with respect to 
accessing data via scope of variables or pointers; it 
corresponds to the program construct of the standard 
Pascal language. 

ready process: A process which is ready to execute, i.e. it 
is not currently blocked for any reason •. 

recursion: A property whereby an algorithm is expressed in 
terms of itself; this occurs whenever a routine calls 
itself either directly or indirectly (through a series 
of calls) • 

reentrancy: A property of code which allows multiple copies 
of a code module to be executing at the same time; the 
code must not be self-modifying and data references 
must be relative to the stack region. 

scheduling policy: A discipline enforced by the Executive 
RTS which determines the assignment of a processor to 
one of several processes. 

scheduling queue: A queue containing all processes which 
are ready to execute, in an order based upon priority. 

scope: The range over which the declaration of a construct 
is effective 

semaphore: A low-level structure associated with an event 
on which processes wish to synchronize. 

SIGNAL operation: An operation performed on a semaphore by 
a process which signals the occurrence of a particular 
event. 

spurious interrupt: An unexpected interrupt. 

stack: .The data area allocated to a process from which 
individual stack frames are allocated. 

A-5 

• I 

I 



stacksize: A concurrent characteristic which specifies the 
number of words of storage which the process intends to 
use for its local variables and the variables 
associated with all susequent dynamic routine calls; 
this space is allocated from the heap of the lexical 
parent. 

stack frame: A contiguous data 
activation of a routine, used 
local variables, temporary 
linkage information. 

area allocated for every 
to hold parameter values, 
variables, and return 

suspended process: A process which is blocked, waiting for 
some change in the state of the system. 

system: A process which comprises the outermost 
declarations and executable statements 
execution begins. 

level of 
in which 

urgency: The degree to which a process requires attention, 
expressed in terms of its priority; a lower priority 
number indicates a greater urgency. 

WAIT operation: An operation performed on a semaphore by a 
process to wait for the occurrence of a particular 
event before proceeding. 

A-6 



APPENDIX B 

Microprocessor Pascal REFERENCE CARD 

BATCH 
CO DEGEN 
COLLECT 
COMPILE 
COPYSRC 
DEBUG 
DELETE 
DXSC 
EDIT 
EXECUTE 
GENMAP 
PRINT 
PURGE 
RASS 
QUIT 
SAVE 
SCI 
SHOW 
SPLIT 
WAIT 

DXlO COMMAND SUMMARY 

- BACKROUND COMPILE 
- GENERATE NATIVE CODE 
- COLLECT RUN TIME SUPPORT 
- COMPILE SYSTEM 
- SOURCE PREPROCESSOR 
- DEBUG SYSTEM 
- DELETE TEMPORARY FILES 
- DISKETTE CONVERSION 
- EDIT MODULE 

EXECUTE PROGRAM 
- GENERATE ROUTINE MAP 
- PRINT FILE 
- PURGE SYNONYMS 
- REVERSE ASSEMBLE OBJECT 
- QUIT SESSION 
- SAVE SEGMENT 
- EXECUTE "SCI" COMMAND 

SHOW FILE 
- SPLIT OBJECT 
- WAIT ON BACKGROUND 

AMPLUS COMMAND SUMMARY 

* * INTERPRETIVE-CODE SOFTWARE DEVELOPMENT DISKETTE * * 
* * NON FLOATING-POINT SYSTEM BOOTSTRAP * * 

COMPILE - COMPILE A SYSTEM 
DEBUG - SOURCE DEBUGGER 
EDIT - TEXT EDITOR 

COPY - COPY "TEXT" FILE 

EXECUTE - EXECUTE PROGRAM 
SAVE - SAVE SEGMENT 

SHOW - SHOW "TEXT" FILE 

AMPL - INTERPRETIVE-CODE TARGET DEBUGGER AMPL PROCEDURES 

B-1 



* * NATIVE-CODE SOFTWARE DEVELOPMENT DISKETTE * * 
* * * * FLOATING-POINT SYSTEM BOOTSTRAP 

COMPILE - COMPILE A SYS.TEM 
CODEGEN CODEGEN A SYSTEM 

GENMAP 
RASS 
SPLIT 

GENERATE AMPL MAP 
REVERSE ASSEMBLER 
SPLIT OBJECT MODULES EDIT - TEXT EDITOR 

COPY - COPY "TEXT" FILE SHOW SHOW "TEXT" FILE 

AMPL - NATIVE-CODE TARGET DEBUGGER AMPL PROCEDURES 

SOURCE EDITOR COMMAND SUMMARY 

Command/Function 

Setup and Termination 

Help 
Edit/Compose Toggle 
Syntax Check 
Quit 
Abort 
Save 
Input 

·cursor Positioning 
Roll Up 
Roll Down 
New Line 
Tab 
Back Tab 
Set Tab Increment 
Cursor Up 
Cursor Down 
Cursor Right 
Cursor Left 
Home 
Find 
Relative Positioning 
Top 
Bottom 

Program Modification 
Insert Line 
Duplicate Line 
Delete Line 
Skip 
Insert Character 
Delete Character 
Clear Line 
Replace 
Split Line 

B-2 

911 VDT Key 

CMD/"HELP" 
F7 
CMD/"CHECK" 
CMD/"QUIT" 
CMD/"ABORT" 
CMD/"SAVE" 
CMD/"INPUT" 

Fl 
F2 
RETURN 
SHIFT TAB SKIP 
FIELD 
CMD/"TAB(increment)" 
up-arrow 
down-arrow 
right-arrow 
left-arrow 
HOME 
CMD/"FIND(parameters)" 
CMD/number 
CMD/"TOP" 
CMD/"BOTTOM" 

unlabeled gray key 
F4 
ERASE INPUT 
TAB SKIP 
INS CHAR 
DEL CHAR 
ERASE FIELD 
CMD/"REPLACE(parameters)" 
F8 



c 

Insert 
Block Commands 
Start Block 
End Block 
Copy 
Move 
Delete 
Put 

Show Command 
Show 

B-3 

CMD/"INSERT" 

FS 
F6 
CMD/"COPY" 
CMD/"MOVE" 
CMD/"DELETE" 
CMD/"PUT" 

CMD/"SHOW" 

I 

I 



HOST DEBUGGER COMMAND SUMMARY 

Command Name 

Getting Start_ed/Finished 
GO 
QUIT 
HELP ( [command name] ) 
LOAD ("pathname") 
SE 
COPY ( "pathname" ) 

Status Displays 
DP ( [process]) 
OAP 

Breakpoints/Single Step 
AB(routine,[statement number]) 
DB(routine,[statement number]) 
DAB(process) 
LB ( [process] ) 
SS([process], [flag]) 

Showing/Modifying Data 

Meaning 

Resume execution 
Quit debugging session 
Help command 
Load saved segment 
Show unresolved Externals 
Copy commands from file 

Display Process 
Display All Processes 

Assign Breakpoint 
Delete Breakpoint 
Delete All Breakpoints 
List Breakpoints· 
Single-Step execution mode. 

SF([routine],[displacement],[length]) Show Frame 
SH([address],[displacement],[length]) Show Heap 
SC(common name,[displacement], [length]) Show Common 
SI(routine,displacement, [length]) Show Indirect 
SM(address,[length]) Show Memory 
MF(routine, [displacement],[verify value] ,new value) Modify Frame 
MH(address,[displacement],[verify value],new value) Modify Heap 
MC(common name, [displacement], [verify value],new value)Modify Common 
MI(routine,displacement,[verify value] ,new value) Modify Indirect 
MM(address,[verify value],new value) Modify Memory 

Tracing Execution 
TP([process], [flag]) 
TR([process], [flag]) 
TS([process], [flag]) 
TOFF 
TON 

Monitor Process Scheduling 
SDP(process) 
DEBUG(process name, [flag]) 
ABP(process) 
DBP(process) 
HP(process) 
RP(process) 

Interprocess File Simulation 

Trace Process scheduling 
Trace Routine entry/exit 
Trace Statement flow 
Trace echo OFF 
Trace echo ON 

Select Default Process 
Debug process 
Assign Breakpoint to Process 
Delete Breakpoint from Process 
Hold Process 
Release Process 

CIF("internal file","external file") Connect Input File 
COF("internal file","eXternal file") Connect Output File 

Interrupt Simulation 
SIMI (level) 

Selection of CRU Mode 
CRU([process],cru mode) 

SIMulate Interrupt 

select CRU mode 

B-4 



TARGET DEBUGGER COMMAND SUMMARY 

Command Name 

Getting Started/Finished 
INIT 
HELP 
GO 
STAT 
HALT 
QUIT 

Status Displays/Selection of Default 
DAP 
SDP(process) 
DP ( [process]) 

Show/Modify Memory 

Meaning 

Initialization Command 
Help Command 
Resume Execution 
Current Status of the Emulator 
Halt the Emulator 
Terminate AMPL Debugger Session 

Process 
Display All Processes 
Select Default Process 
Display Process 

SF([name], [displacement], [length]) 
SH([address], [displacement], [length]) 
SP ([process]) 

Show Frame 
Show Heap 
Show Process 
Show Memory 
Modify Memory 

SM(address, [length]) 
MM(address,old value,new value) 

Brea~points/Single-Step 
AB(name, [statement]) 
DB(name, [statement]) 
LB 
DAB 
SS ([flag]) 

Tracing Execution 
TP ([flag]) 
TR( [flag]) 
TS([flag]) 
DT( [count]) 

B-5 

Assign Breakpoint 
Delete Breakpoint 
List Breakpoints 
Delete All Breakpoints 
Single-Step 

Trace Process Scheduling 
Trace Routine Entry/Exit 
Trace Statement Flow 
Display Trace 



) 



\ ... __ _ 

,,. ... 
'• 
~-

APPENDIX C 

Microprocessor Pascal STANDARD ROUTINES 

The standard procedures and functions supported in Microprocessor 
Pascal are described in this section. In addition to the predeclared 
standard routines, there are several routines which the user may call 
by first declaring them to be EXTERNAL. The standard routines are 
categorized according to the function they serve. 

C 1 DATA CONVERSION ROUTINES 

FUNCTION FLOAT(X) - x may be of type INTEGER or LONGINT, the result is 
the converted REAL value 

FUNCTION LINT(X) - x may be of type INTEGER, LONGINT or REAL, the 
result is the converted LONGINT value 

FUNCTION TRUNC(X) - x is of type LONGINT or REAL, the result is the 
truncated INTEGER value 

FUNCTION LTRUNC(X) - same as TRUNC, except result is of type LONGINT 

FUNCTION ROUND(X) - x is of type REAL, the result is the rounded 
INTEGER value defined as: 

= TRUNC(X + 0.5), X>=O 
= TRUNC(X - 0.5) I X<O 

FUNCTION LROUND(X) - same as ROUND, except result is of type LONGINT 

PROCEDURE DECODE(S, N, STAT, Q) - s is a variable of type string. N is 
an INTEGER starting index into s. STAT is a 
returned status code, and Q is a nread parametern. 
This procedure converts the ASCII string starting 
at the Nth component of S to its internal form and 
places the value in the variable Q. Q may be a 
list of read parameters. 

PROCEDURE ENCODE(S, N, STAT, P) - This procedure converts 
the "write parameter" P into an ASCii 
is placed into the string starting 
component of s. The STAT parameter is 
status code from the operation. P may 
write parameters. 

C-1 

the value of 
string which 
at the Nth 
the returned 
be a list of 



C.2 FILE MANIPULATION ROUTINES 

FUNCTION EOF(F) : BOOLEAN - F is a file variable, the result, of type 
BOOLEAN is true if the file F is not open for 
input or is in the end-of-file state. 

FUNCTION EOLN(F) : BOOLEAN - F is a text file variable, the result, of 
type BOOLEAN is true if the last character of the 
curtent line in the file F has been read. 

FUNCTION FILENAMED(S) : ANYFILE - s is a string constant which 
specifies the file name, the result, of type 
ANYFILE is the file variable which is connected to 
the file with name s. 

PROCEDURE RESET(F) - This procedure opens the file F for input and 
positions it to read its first component. If the 
file is empty, EOF(F) becomes TRUE, otherwise it 
becomes FALSE. 

PROCEDURE REWRITE(F) - This procedure makes the file F empty and opens 
it for output. EOF(F) becomes TRUE. A REWRITE 
operation is automaticully performed on the file 
OUTPUT. 

PROCEDURE READ read.logical record (or data item from TEXT file). 
See Section 8 for the form of a text file "read 
parameter". 

PROCEDURE READLN - read next logical record from TEXT file 

PROCEDURE WRITE - write logical record (or data item to TEXT file) • 
See Section 8 for the form of a text file "write 
parameter". 

PROCEDURE WRITELN - write logical record to TEXT file 

PROCEDURE SETNAME(F, PATHNAME) - This procedure is used to bind a 
logical file name F to a physical file path name. 
PATHNAME is a string of any length. 

PROCEDURE MESSAGE(S) - This procedure is used to write the string S to 
the system log file. 

C-2 

) 



C.3 HEAP MANAGEMENT ROUTINES 

Dynamic memory areas referred to as heap packets may be allocated and 
deallocated using the procedures NEW and DISPOSE. 

PROCEDURE NEW(P) or 

PROCEDURE NEW(P, Tl, ••. , Tn) - This procedure is used to allocate a 
new dynamic memory area and return a pointer to it 
in the variable P. The size of the heap packet to 
be allocated is implicitly equal to the size of 
the variable which P points to. If P points to a 
record variable with variants, the tag values Tl 
through Tn may be given so the allocated packet is 
exactly as large as needed for the specified 
variants. 

PROCEDURE DISPOSE(P) - This procedure deallocates 
pointed to by P. The value of P 
NIL. 

the 
is 

heap 
then 

packet 
set to 

C.4 MISCELLANEOUS ROUTINES 

FUNCTION PRED(X) - This function returns a value that is the 
predecessor of X which must be an enumeration type 
value. 

FUNCTION SUCC(X) 

FUNCTION ORD(X) 

FUNCTION ODD(X) 

FUNCTION ABS(X) 

FUNCTION SQR(X) 

FUNCTION CHR(X) 

This function 
successor of 
value. 

returns a value that is the 
X where must be an enumeration type 

- This function returns the integer ordinal value of 
X which is of type BOOLEAN, CHAR, or scalar type. 

- This function returns the BOOLEAN 
the INTEGER or LONGINT value 
otherwise. 

value TRUE if 
x is odd: FALSE 

- This function returns the absolute value of the 
INTEGER, LONGINT, or REAL value X. 

- This function returns the squared value of the 
INTEGER, LONGINT, or REAL value X. 

- This function returns the character with ordinal 
value X which must be of type BOOLEAN, INTEGER, or 
scalar type. 

PROCEDURE PACK(A, I, Z) - This procedure packs components of the array 
A into the packed array z, starting at the Ith 
component of A. The component types of the two 
arrays must be compatible. 

C-3 



PROCEDURE UNPACK(Z, A, I) - This procedure unpacks components of the 
packed array z into the array A, starting at the 
Ith component of A. 

FUNCTION SIZE(X) - This function returns the integer size (in bytes) 
of X which may be a type identifier or a variable. 

FUNCTION LOCATION(X) - This function returns the integer location of 
the unpacked variable or module x. 

C.5 CRU ROUTINES 

The following standard procedures and functions allow access to the 
hardware CRU instructions. 

PROCEDURE CRUBASE(BASE) - This procedure allows the user to set the 
CRU base register (Rl2) to the value specified by 
the expression BASE which must be of type INTEGER. 

PROCEDURE LDCR(WIDTH, VALUE) - This procedure implements the load CRU 
instruction. WIDTH must be an integer constant 
which specifies the number of bits of the integer 
VALUE to be transferred to the specified CRU 
address implied by the last CRUBASE. 

PROCEDURE SBO(DISP) - This procedure implements the 
SBO which sets the bit to logic 
the integer constant displacement 
last CRUBASE. 

CRU instruction 
one specified by 

DISP from the 

PROCEDURE SBZ(DISP) - This procedure implements the CRU instruction 
SBZ which sets the bit to logic zero specified by 
the integer constant displacement DISP from the 
last CRUBASE. 

PROCEDURE STCR(WIDTH, VALUE) - This procedure implements the store CRU 
instruction. WIDTH must be an integer constant 
which specifies the number of bits of the integer 
the value at the specified CRU address implied by 
the last CRUBASE to be transferred to VALUE. 

FUNCTION TB(DISP) BOOLEAN - This procedure implements the TB 
instruction which tests the bit specified by the 
integer constant displacement DISP from the last 
CRUBASE. This function returns a BOOLEAN value. 

C-4 

·~ 
/ 

) 



C.6 USER DECLARED UTILITY ROUTINES 

The following procedures and functions are not pre-declared in 
Microprocessor Pascal System but may be declared by the user to be 
EXTERNAL routines using the declarations shown and invoked to perform 
the functions indicated. 

FUNCTION ARCTAN(X:REAL):REAL - This function returns the arc tangent 
for the value X specified. 

FUNCTION COS(X:REAL):REAL - This function returns the cosine for the 
value X specified. 

FUNCTION EXP(X:REAL) :REAL - This function returns the exponential 
value for the value X specified. 

FUNCTION LN(X:REAL):REAL - This function returns the natural logarithm 
for the value X specified. 

FUNCTION SIN(X:REAL):REAL - This function returns the sin for the 
value X specified. 

FUNCTION SQRT(X:REAL):REAL - This function returns the square root for 
the value X specified. 

c-s 



i 

I 

) 
.. ,.,,./ 

_) 



''-- . 

- .~---- - --- - -

APPENDIX D 

INTERPRETIVE RUN TIME SUPPORT REFERENCE CARD 

This appendix lists the user-callable RTS routines. This listing is 
presented as a quick reference for the programmer. The enumeration is 
categorized; within each category routines are alphabetized. Unless 
otherwise stated, the routines listed are applicable to MPIX. 

D.1 PROCESSOR MANAGEMENT (SCHEDULING) ROUTINES 

type priority= o •• 32766; 

procedure setpriority( var oldvalue: priority; 
newvalue: priority); external; 

procedure swap; external; 

D.2 SEMAPHORE ROUTINES 

D.2.1 Semaphore Operations 

type nonneg = 0 •• 32767; 
semaphorestate = (awaited, zero, signaled); 

function cksemaphore( sema: semaphore): boolean; external; 
procedure csignal( sema: semaphore; 

var waiter: boolean); external; 
procedure cwait( sema: semaphore; 

var received: boolean); external; 
procedure initsemaphore( var sema: semaphore; 

count: nonneg ); external; 
function semastate( sema: semaphore ): semaphorestate; external: 
function semavalue( sema: semaphore ): integer; external; 
procedure signal( sema: semaphore ); external; 
procedure termsemaphore( var sema: semaphore); external; 
procedure wait( sema: semaphore ); external; 
procedure waitsignal( waitfor, signalthe: semaphore ) ; external; 

D.2.2 Semaphore Attributes 

type interrupt_level = o .. 15; 

procedure altexternalevent( ·sema: semaphore; 
level: interrupt level); external; · 

procedure externalevent( sema: semaphore; 
level: interrupt level ) ; external; 

procedure noaltexternalevent( level: interrupt level ) ; 
external; - -

D-1 



procedure noexternalevent( level: interrupt_level ); 
external; 

D.3 INTERRUPT ROUTINES 

type interrupt_result = -1 •. 15; 

function intlevel: interrupt result; external; 
procedure mask; external; -
procedure unmask; external; 
procedure assemblyevent( var interrupt_wp: wp; 

interrupt_pc: integer; level: interrupt_level); external; 
proedure noassemblyeve?t( level: interrupt_level); exteral; 

D.4 PROCESS MANAGEMENT 

type processid = @ processid; 

function my$process: processid; external; 
procedure p$abort( p: processid ) ; external; 
function p$lastprocess( p: processid ): processid; 

external; 
procedure start$term( var oldvalue: boolean; 

newvalue: boolean); external; 
function p$successful( p: processid ): boolean; 

external; 

D.5 MEMORY MANAGEMENT 

type 
pointer =@ integer { or @any other structure }; 
byte_length = o •. 32767; - -

procedure free$( var ptr: pointer); external; 
procedure heap$term( var oldvalue: boolean; 

newvalue: boolean); external; 
procedure new~( var ptr: pointer; length: byte_length ) ; 

external; 

D.6 FILE ROUTINES (MPIX ONLY) 

D-2 



type channel_mode = ( reading, writing, usermode ) ; 

procedure close( var f: anyfile ); external; 
function column( var f: text ) : integer; external; 
procedure f$bspace( var f: text); external; 
procedure f$chabort( var f: anyfile ); external; 
procedure f$chbuffers( var f: anyfile; 

minbufs: integer ); external; 
function f$clength( var f: anyfile ): integer; external; 
procedure f$conditional( var f: anyfile; 

is cond: boolean); external; 
procedure f$createchannel( var f: anyfile ); external; 
function f$eoc( var f: anyfile ): boolean; external; 
function f$lastsuccessful( var f: anyfile ): boolean; external; 
procedure f$master( var f: anyfile ); external; 
function f$nextch( var f: text): char; external; 
procedure f$steoc( var f: anyfile ); external; 
procedure f$stlength( var f: anyfile; length: integer ) ; external; 
procedure f$stmode( var f: anyfile; 

m: f$$channel mode ) ; external; 
procedure f$ulength( var f: anyfile ); external; 
procedure f$wait( var f: anyfile; 

var users mode: f$$channel mode ); external; 
procedure f$xaccessc var f: anyfile >;external; 
procedure ioterm( var f: anyfile; 

var oldv: boolean; newv: boolean); external; 
procedure page( var f: text); external; 
function status( var f: anyfile ): integer; external; 

D.7 ERROR RECOVERY AND EXCEPTION HANDLING 

procedure ct$enter; external; 
procedure ct$exit; external; 
function err$class: integer; external; 
procedure err$rset; external; 
function err$reason: integer; external; 
procedure exception( classcode, reasoncode: integer ); 

external; 
procedure onexception( handler location: integer ) ; 

external; -
procedure re$start; external; 

D.8 CRU ROUTINES 

The following standard routines should &not be declared by the user. 

type base range= 0 •• #lFFE; 
width range= 1 .• 16; 
displacement range= -128 •• 127; 

- I 

procedure crubase( base: base range); 
procedure ldcr( width: width_range; value: integer ) ; 

D-3 



procedure sbo( displacement: displacement_range ) ; 
procedure sbz ( displacement: 'displacement range ) ; 
procedure stcr( width: width range; var value: integer ) ; 
function tb( displacement: dfsplacement_range ): boolean; 

0.9 ASSEMBLY LANGUAGE INTERFACE 

procedure ckof; external; 
procedure ckon; external; 
procedure idle; external; 
procedure lrex; external; 
procedure rset; external; 

D-4 

-·'""'\ 
j 

) 



/ 

APPENDIX E 

MICROPROCESSOR PASCAL SYSTEM ERROR AND EXCEPTION CODES 

E.1 HOST RUN-TIME ERROR MESSAGES 

The following list consists of all of the errors that can be generated 
by the host executive while using the Microprocessor Pascal System. If 
one of these errors is generated under Amplus a message of the 
following form will be displayed: 

INTERPRETER ERROR : ee 
. 

where the "ee" represents the specific error that occurred. If one of 
these errors is generated under DX, a message of the following form 
will be displayed: 

Class/Reason = OOee 

the meanings associated with these digits (hexadecimal) are given in 
the list below. 

01 Invalid Opcode 
02 Stack Overflow 
03 Invalid Procedure Call 
04 Division by Zero 
05 Floating Point Error 
06 Set Range Error - element < 0 or > 1023 
07 Assert Error 
08 Case Alternative Error 
09 Array Index Error 
OA Pointer Error 
OB Subrange Assignment Error 
OC Array Longint Index Error 
OD Longint Subrange Assignment Error 
14 Halt Called 

E-1 



E.2 I/O ERROR MESSAGES 

The following errors are generated by both the DXlO system and the 
Amplus system. They represent the errors that occur as a result of 
invalid file manipulation. The general form of this type of error is: 

I/0 ERROR : ee SS filename 

where "ee" is the actual error that was encountered; the meaning 
associated with each value is given in the list below. The "ss" 
represents the standard SVC status code associated with the particular 
error that was generated; their meanings can be found in either the 
Amplus Software System User .. s Manual (MP375), or the DX 10 OPERATING 
SYSTEM REFERENCE MANUAL - VOL. 6 ERROR REPORTING AND RECOVERY. The 
name of the file in which the error was detected is given by 
"filename". 

0 
1 
2 
3 
4 
5 
6 
7 

Open Error Status 
Open State Error 
Close Error Status 
Close State Error 
Read Error Status 
Read State Error 
Write Error Status 
Write State Error 

E.2.1 Text I/O Error Messages 

Text file errors which occur on either the DXlO system or the Amplus 
system are generated whenever text files are incorrectly manipulated. 
When one of theses errors occurs, a message of the following form is 
displayed: 

TEXT FILE I/O ERROR : ee filename 

where "ee" represents the specific error that was generated; the 
meanings associated with these values are given below. The text file 
connected with the error encountered is given by "filename". 

0 Normal completion 
1 Parameter out of range 
2 Field width too large 
3 Incomplete data 
4 Invalid character in field 
5 Value too large 
6 Read past end of file 
7 Field exceeds record size 

E-2 



( 

E.3 SYNTAX ERROR MESSAGES 

The following is a list of errors that are generated by the compiler. 
If one of the~e errors should occur it will appear in the source 
listing generated by the compiler, positioned directly below where the 
error was detected. The error is given as an integer value preceded by 
an "!"~ an abbreviated description of each error value is given below. 

1 
2 
3 
4 
5 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
22 
40 
41 
43 
50 
51 
52 
53 
54 
55 
57 
58 
59 
60 
80 
81 
82 
83 
84 
85 

101 
102 
103 
104 

error in simple type 
identifier expected 
'SYSTEM' expected 
')' expected 
':' expected 
error in parameter list 
'OF' expected 
"'(' expected 
error in type 
'['expected 
']' expected 
'END' expected 
'~' expected 
integer constant expected 
'=' expected 
'BEGIN' expected 
error in declaration part 
error in field list 
','expected 
' •. ' e~pected 
error in copy statement 
statement expected 
'FORWARD' or 'EXTERNAL' expected 
error in constant 
':=' expected 
'THEN' expected 
'UNTIL' expected 
'DO' expected 
'TO' or 'DOWNTO' expected 
'FILE' expected 
error in factor 
error in variable 
'HEX' expected 
option identifier expected 
unknown option identifier 
system sensitive option not allowed here 
module sensitive option not allowed here 
null body expected 
error in concurrent characteristic specification 
identifier declared twice 
lower bound exceeds upper bound 
wrong kind of identifier 
identifier not declared 

E-3 



105 
106 
107 
108 
110 
111 
113 
115 
116 
119 
120 
121 
122 
123 
125 
126 
127 
129 
130 
131 
13 2 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
146 
147 
148 
149 
152 
154 
156 
157 
158 
160 
161 
162 
163 
165 
166 
167 
177 
178 
179 
180 
181 
182 

sign not allowed 
number expected 
incompatible subrange types 
file not allowed here 
tagfield type must be scalar or subrange 
incompatible variant label 
index type must be scalar or subrange 
set base type must be scalar or subrange 
error in type of standard procedure parameter 
repetition of parameter list not allowed . 
function result type must be scalar, subrange or pointer 
file value parameter not allowed 
repetition of result type not allowed 
missing result type in function declaration 
error in type of standard function parameter 
number of parameters does not agree with declaration 
actual parameter must not be packed 
type conflict in assignment 
expression is not a set 
tests for pointer equality only 
illegal operator 
illegal type of operand(s) 
type of expression must be Boolean 
set element type must be scalar or subrange 
set element types not compatible 
type of variable is not array 
index type is not compatible with declaration 
type of variable is not record 
type of variable must be pointer 
illegal parameter substitution 
illegal type of FOR expression 
illegal type of CASE selector 
assignment of files or semaphores not allowed 
incompatible CASE label 
subrange bounds must be scalar 
index type must not be integer 
no such field in this record 
actual parameter must be a variable 
multidefined case label 
case label range too large 
missing corresponding variant declaration 
previous declaration was not forward 
module declared forward again 
parameter must be constant 
missing variant in declaration 
multidefined label 
multideclared label 
undeclared label 
assignment to non-local function not allowed 
multidefined record variant label 
illegal escape 
unaccessed common variable 
assignment to 'FOR' variable not allowed 
actual reference parameter must not be 'FOR' variable 

E-4 



/ 

183 illegal type transfer 
184 type of COMMON must not be file 
185 file element type must not be file or pointer 
186 set bounds out of range 
188 division by zero 
189 statement must be structured statement 
190 label in FOR or WITH statement not allowed 
191 variable declarations not allowed at SYSTEM level 
192 invalid nesting of SYSTEM, PROGRAM, or PROCESS 
193 reference parameters not allowed for PROGRAM or PROCESS 
194 pointer parameters not allowed for PROGRAM 
195 INPUT or OUTPUT must be declared TEXT 
196 INPUT or OUTPUT not declared 
201 fraction expected 
202 string constant must not exceed source line 
203 integer constant exceeds range 
206 exponent expected 
207 hex digit expected 
208 illegal long integer -constant 
209 nested comments 
251 too many nested modules 
252 too many modules declared 
255 too many errors in this source line 
258 too many identifiers declared in list 
304 set element out of range 
399 internal compiler error 

E.4 Executive RTS Error and Exception Codes 

The Executive RTS error and exception codes are divided into an 
integer-valued class and an integer-valued reason code. For a 
particular class, reason codes are unique to the class. The following 
constant declarations document all exception codes generated by the 
Executive RTS. 

const 

{ system crash codes } 

unable to boot system = 1; 
no exception handler = 2; 
no-interrupt-handler = 3; 
illegal interrupt or xop = 4; 
scheduling queue In error = 5; 
ROM_RAM_partition_error = 6; 

{ class codes } 

user error = 1 . , 
scheduling_ error = 2; 
semaphore error = 3 . , 
interrupt=error = 4 ·. 

I 

E-5 



process_mgmt_error 5: = 
exception_error = 6: 
memory_mgmt_error = 7: 
file error = 8: 

interpreter_ error = 99: 

{ reason codes } 

{ scheduling error } 
scheduling queue invalid = 1: 
scheduling=queue priority_error = 2: 

{ semaphore error } 
semaphore invalid 
semaphore-count error 
semaphore-operation error 
semaphore-count overflow 
semaphore:in_handler_priority_error 

= 
= 
= 
= 
= 

= 1; 
= 2; 

{ interrupt error } 
interrupt invalid 
interrupt-level invalid 
interrupt-semaphore invalid = 3: 
interrupt-not handled = 4: 
interrupt-incorrect trap vector = 5; 
interrupt handler_priority_error = 6; 

{ exception error } 

1: 
2: 
3: 
4· I 

5: 

exception handler not established from process = 1: 
exception-handler-cannot have parameters = 2; 
exception-handler-cannot-be in assembly language = 3; 
exception_handler=local_variables_too_large_for_stack = 4; 

{ process mgmt. error } 
not_a_process = 1: 
aborted - 2; 
not started invalid priority = 3; 
not-started-negative stacksize = 4: 
not-started-negative-heapsize = 5: 
not-started-process Is in assembly language = 6: 
not-started-no memory for-semaphore = 7: 
not-started-no-memory-for-process heap = 8: 
not-started-no-memory-for-process-stack = 9: 
not=started=no=memory=for=process=frame = 10: 

{ memory mgmt. error } 
heap invalid ='l: ·' 
heap-overflow error = 2: 
heap=packet_error = 3; 

o-• _ _...,:.-• .:_._ • 

E-6 

·~ -. 

) 
' _/ 



\. . ...:.._ 

{ file error } 
normal completion 
text conversion parameter out of range 
text-conversion-field width too large 
text-conversion-incomplete aata
text-conversion-invalid character in text field 
text-conversion-value too large 
text-read past end of-file 
text-field exceeds-record size 
file-is not open for reading 
file-is-not-open-for-writing 
sequential read past-end of file 
no system memory for-file descriptor 
random files not-implemented 
file component length is incompatible with channel 
no system memory for aescriptor of file parameter by value 
parameter-to f$chbuffers exceeds 2~5 - - -
file parameter to £$conditional is not sequential 
file-parameter-to-f$stlength is-not closed 
f$stlength component length is not in [ 1 •• 8191 ] 
f$stlength-component-length-greater than declared for file 
f$reset called for channel master before-f$createchannel 
f$reset-called-for-channel-master-and master~s mode is writing 
f$reset-called-for-channel-master-and-master~s-mode~is-usermode 
f$reset-called-for-channel-master-after f$wait-and user~s mode 

= O; 
= 1; 
= 2; 
= 3; 
=.4; 
= 5; 
= 6; 
= 7; 
= 8; 
= 9; 
= 10; 
= 50; 
= 51; 
= 52; 
= 53; 
= 54; 
= 55; 
= 56; 
= 57; 
= 58; 
= 60; 
= 61; 
= 62; 
= 63; 

- is reading - - - - - - -
f$reset called for channel master before close and f$wait = 64; 
f$rewrite called for channel master before f$createchannel = 65; 
f$rewrite-called-for-channel-master-and master~s mode is reading= 66; 
f$rewrite-called-for-channel-master-before f$wait - - = 67; 
f$rewrite-called-for-channel-master-and user~s mode is writing = 68; 
f$rewrite-called-for-channel-master-before close ana £$wait = 69; 
f$master called and file not-closed- - - - = 70; 
£$master-called-twice for same file = 71; 
no system memory for r$master structures = 72; 
f$eoc called and-f$steoc not called for file = 73; 
file parameter to f$steoc is-not channel master = 74; 
f$steoc called-after f$createchannel - = 75; 
parameter to f$stmode is not in [ reading, writing, usermode ] = 76; 
file parameter to f$stmode is not channel master = 77; 
f$stmode called after f$createchannel - = 78; 
file parameter to f$ulength is not channel master = 79; 
f$ulength called after f$createchannel - = 80; 
f$createchannel called-before £$master = 81; 
f$createchannel-called-before-f$stmode = 82; 
f$createchannel-called-twice - = 83; 
file parameter to f$wait is not channel master = 84; 
f$wait called and-f$createchannel not called = 85; 
file parameter to-f$wait is not closed = 86; 
file-parameter-to-f$xaccess-is not channel master = 87; 
f$xaccess called after f$createchannel - = 88; 
conditional read-or write failed (nonfatal error) = 103; 
channel aborted - - = 104; 
no_system_memory_for_channel_buffers = ] 06; 

E-7 



no system memory for channel 
no-system-memory-for-pathname 
invalid pathname- -
attempt-to open device in an unsupported mode 
device channel not initialized before· user connected 
attempt to initialize device channel with same name as 

- existing user channel - - - - -
attempt to open multiple device channels of same name with 

- conflicting~modes - - - - - -

{ interpreter error } 
{ run time errors } 
invalid opcode 
stack overflow 
unresolved procedure call 
division by zero -
floating-poTnt error 
set element out of bounds 
assert error 
missin~ otherwise in case 
array index error-
pointer equals nil 
subrange assignment error 
longint array index
longint-subrange error 
escape to exception handler 
run_time_support_error 

= 1; 
= 2; 
= 3; 
= 4; 
= 5; 
= 6; 
= 7; 
= 8; 
= 9; 
= 10; 
= 11; 
= 12; 
= 13; 
= 19; 
= 20; 

E.5 AMPLUS/DX SVC I/O ERROR CODES 

= 200; 
= 201; 
= 202; 
= 203; 
= 204; 
= 205; 

= 206; 

The following is a partial list of SVC I/O errors which could be 
generated by the Microprocessor Pascal Sytem. 

Code 
(Hexadecimal) 

00 
01 

. 02 
03 
04 
05 
06 
07 
11 
12 
15 
19 
lA 
lB 
lC 

Description 

No Error 
Illegal Luno 
Illegal Operation Code 
Luna Is Not Yet Opened 
Record Lost Due To Power Failure 
Illegal Memory Address 
Time Out, or Abort 
Read Check Error 
Device Error 
No Address Mark Found 
Data Check Error 
Diskette Not Ready 
Write Protect 
Equipment Check Error 
Invalid Track or Sector 

E-8 

~ 

_) 

\ 
.__/ 



lD 
lE 
20 
21 
22 

23 
24 
25 
26 
27 
28 
29 
2A 
2B 
2C 
2D 
2E 
2F 
30 
31 
3B 
3E 
3F 

Seek Error or ID Not Found 
Deleted Sector Detected 
Luno Is In Use 
Bad Disc Name 
Pathname Has a Syntax Error (Amplus) 
Luno Previously Assigned (DX) 
Illegal Operation Code 
Bad Parameter in PRB 
Diskette Is Full 
Duplicate File Name 
File Name Is Undefined 
Illegal Luno 
System Buffer Area Full 
System Can~t Get Memory 
File Management Error 
Can't Release System Luno 
File Is Protected 
Abnormal File Management Termination 
File Utility Doesn't Exist In System 
Non-Existent Record - File Not Initialized 
Event Key SVC Task Not In System 
Invalid Access Privilege · 
File Control Block Error 
File Directory Full 

( E.6 Code Generator Error Messages 

The following error messages are generated by the code generator when 
an internal error has occurred. With few exceptions, the user should 
contact the TI MOS Hot Line to resolve the problem signaled. 

BADOP <number> IN STATEMENT <number> 

BAD OPERAND <number> IN STATEMENT <number> 

BAD STATE <number> IN STATEMENT <number> 

STATEMENT <number> TOO COMPLEX -- NO REGISTERS 
The user may correct this error by simplifing the statement 
indicated. 

TEMPORARIES NOT FREED IN STATEMENT <number> 

The following error messages are fatal internal errors; the 
code generation process will stop if one of these errors occurs. 

CANNOT F~ND LABEL 

END OF FILE ON PCODE 

INVALID LABEL 

SET LITERAL TOO LONG 

E-9 



STACK OVERFLOW 

STRING LITERAL TOO LONG 

TOO MANY COMMONS REFERENCED 

TOO MANY EXTERNALS REFERENCED 

The following is a list of the task code error messages passed back by 
the DXlO operaton system. In most cases they point to a hardware 
problem in the system. These should be reported directly to your local 
systems engineer. If the fault is believed to be caused by the 
microprocessor Pascal System, the user should have his source and any 
other pertinent data collected and sent to the HOTLINE for evaluation. 

Error Code 

01 

02 

03 

Meaning 

A nonrecoverable memory parity error occurred. 

The task tried to execute an undefined 
instruction. 

'The task accessed an illegal TILINE address; the 
illegal address could be an address of a memory 
location that is not provided for the system 
installed. 

04 The task tried a supervisor call with an illegal 
supervisor call code. 

05 The task tried to access a memory address outside 
of its memory area • 

• 

06 The task tried to execute a privileged 
instruction. 

07 The task was terminated with a kill task SVC. 

08 The installed memory configuration is not big 
enough to allow the task to be loaded. 

09 The accessed map segment was not present in memory. 

OA An execute protection violation occurred. 

OB The task performed a write to a write protected 
segment. 

OC The task caused a condition where the stack 
parameters were exceeded (stack overflow). 

OD A hardware breakpoint address error occurred. 

E-10 

~.·· ... · . : _:) 



( 

'"----

OE Time out error (the 12 ms. clock expired). 

OF An overflow protection violation occurred. 

10 Task aborted by terminal (Reset, CMD key 
sequence) 

NOTE 

In both the device and task error messages, a station 
ID of FF(HEX) means no station. 

E-11 



' " 
) 

) 
_/ 



APPENDIX F 

MICROPROCESSOR PASCAL SYSTEM VS WIRTH~S PASCAL 

F.1 SPECIAL SYMBOLS 

The following Microprocessor Pascal System special symbols are not 
supported in the Wirth and Jensen version of Pascal. 

II # : : 

F. 2 KEYWORDS 

The following Microprocessor Pascal keywords are not supported in 
Pascal: 

ACCESS 
ESCAPE 
RANDOM 

The following 
identifiers in 
TEXT TRUE 

F.3 IDENTIFIERS 

ANYFILE 
LONG INT 
SEMAPHORE 

ASSERT 
OTHERWISE 
START 

COMMON 
PROCESS 
SYSTEM 

Microprocessor Pascal keywords are predefined 
Pascal: BOOLEAN CHAR FALSE INPUT INTEGER OUTPUT REAL 

In Pascal, identifiers may not contain the symbols $ or • Most 
versions of Pascal impose a restriction on the maximum number of 
significant characters in an identifier~ Microprocessor Pascal does 
not make that restriction. 

The following standard Pascal identifiers are not known in 
Microprocessor Pascal System: 

ARCTAN cos EXP GET 
LN MAX INT PUT SIN 
SQRT 

F. 4 CONSTANTS 

Hexadecimal and LONGINT constants are not supported in Pascal. 

Pascal does not allow hexadecimal characters embedded within string or 
character constants. 

F-1 



F.5 REMARKS 

Remarks are not supported in Pascal, only conventional comments are 
available. 

F.6 SYSTEM AND PROCESS DECLARATIONS 

Pascal does not support a SYSTEM or PROCESS declaration or a START 
statement to invoke them. Pascal only supports conventional Pascal 
programs. 

F.7 CONSTANT DECLARATIONS 

Integer constant expressions are not allowed in the constant 
declaration section of a Pascal program. 

F.8 COMMON AND ACCESS DECLARATIONS 

Pascal does not support COMMON or ACCESS declarations. 

F.9 PROCEDURE OR FUNCTION PARAMETERS 

Microprocessor Pascal System does not support procedures or functions 
to be passed as parameters to other procedures or functions as Pascal 
does. 

F.10 STANDARD DATA TYPES 

The standard data types LONGINT, SEMAPHORE, and ANYFILE are not 
supported in Pascal. 

F.11 SUBRANGE LOWER BOUNDS 

In Pascal, a subrange must have a lower bound that is strictly less 
than the upper bound rather than possibly equal to the upper bound. 

F.12 TYPE TRANSFER 

Type structures of Pascal variables may not be overridden by 
performing a type-transfer as in Microprocessor Pascal System. 

F-2 

) 



F.13 OPERATOR PRECEDENCE 

Microprocessor Pascal System uses an operator precedence similar to 
that of ALGOL and FORTRAN as opposed to that of Pascal. 

F.14 START STATEMENT 

The START statement is not supported in Pascal. Only conventional 
Pascal programs are recognized. 

F.15 ESCAPE STATEMENT 

Pascal does not support the ESCAPE statement. 

F.16 ASSERT STATEMENT 

The ASSERT statement is not supported in Pascal. 

F.17 GOTO STATEMENT 

Microprocessor Pascal limits GOTOs to the local routine only: global 
GOTO statements are not allowed. 

F.18 CASE STATEMENT 

Pascal does not support the OTHERWISE clause in CASE statements. 

F.19 FOR STATEMENT 

The control variable of a FOR statement must be explicitly declared in 
Pascal. 

F.20 WITH STATEMENT 

Pascal supports only one form of the WITH statement: the <identifier> 
= <record variable> form is known only in Microprocessor Pascal 
System. 

F.21 SEQUENTIAL I/O 

Pascal's sequential input and output is handled by the GET and PUT 
statements, and the file variable pointer: Microprocessor Pascal uses 
READ and WRITE to perform I/O operations on sequential files. 

F-3 



F. 2 2 HEX OUTPUT 

Pascal does not support the HEX output·option which 
Microprocessor Pascal System 

F.23 RANDOM FILES 

Pascal does not support RANDOM files. 

F.24 ENCODE AND DECODE 

is available 

The ENCODE and DECODE procedures are not supported in Pascal. 

F.25 STANDARD PROCEDURES AND FUNCTIONS 

in 

The following standard procedures and funtions are not supported in 
Pascal: 

LINT 
MESSAGE 

LOCATION 
SETNAME 

LROUND 
SIZE 

LTRUNC 

The CRU routines which are supported by Microprocessor Pascal System 
are not allowed in Pascal. 

F.26 OPTIONS 

Microprocessor Pascal System and Pascal support entirely different 
sets of compiler options. The form of option specification is also 
significantly different between Pascal and Microprocessor Pascal 
System. 

F-4 

-~ 

) 
··.;_;:-· 

. . ) 
._/ 

) 
j 



APPENDIX G 

Microprocessor Pascal System VS TIP 

G. 1 KEYWORDS 

The following TIP keywords are not supported in Microprocessor Pascal 
System: 

DECIMAL FIXED 

The following Microprocessor Pascal System keywords are not supported 
in TIP: ANYFILE PROCESS SEMAPHORE START SYSTEM 

G. 2 CONSTANTS 

Decimal, fixed, and extended precision real constants are not 
supported in Microprocessor Pascal System. 

G.3 SYSTEM AND PROCESS DECLARATIONS 

TIP does not support a SYSTEM or PROCESS declaration or a START 
statement to invoke them. 

G.4 CONSTANT EXPRESSIONS 

Microprocessor Pascal System supports integer constant expressions 
only in the CONST section and does not support any other type of 
constant expression in the CONST section. 

G.5 PROCEDURE OR FUNCTION PARAMETERS 

Microprocessor Pascal System does not support procedures or functions 
to be passed as parameters to other procedures or functions. 

G.6 QUESTION MARK PARAMETERS 

Microprocessor pascal System does not support question mark upper 
bound array or set parameters. 

G-1 



G.7 FUNCTION SIDE EFFECTS 

Microprocessor Pascal System does not enforce 
rules described in TIP. 

G.8 EXTERNAL ROUTINES 

function side effects 

Microprocessor Pascal System only supports external Pascal routines 
but not external Fortran or external Cobol routines. External Fortran 
may be supported in future Microprocessor Pascal versions. 

G.9 STANDARD DATA TYPES 

Microprocessor Pascal System does not support the standard data types 
FIXED or DECIMAL. It also only supports the default precision of REAL. 
TIP does not support the standard data types ANYFILE and SEMAPHORE. 

G.10 DYNAMIC ARRAYS AND SETS 

Microprocessor Pascal System does not support dynamic arrays or sets. 

G.11 PACKING ALGORITHM 

,_._,-' 

In M~croprocessor Pascal structures always occupy a full number of ) 
words and may not be packed with other elements in a word. 

G.12 TYPE COMPATIBILITY 

In Microprocessor Pascal System, records and arrays must be 
non-distinct types to be compatible. In Microprocessor Pascal System, 
sets are compatible if they have compatible base types, but they may 
have different lengths. 

G.13 START STATEMENT 

The START statement is not supported in TIP. 

G .14 GOTO LABELS 

Microprocessor Pascal does not detect when a GOTO statement jumps into 
. a FOR or WITH statement, but it does flag every label within a FOR or 

WITH 

G-2 



G.15 CASE STATEMENT 

In Microprocessor Pascal the range of the case labels may be no 
greater than 256. 

G.16 FOR STATEMENT 

The FOR I IN <set> DO form of the FOR statement is not supported in 
Microprocessor Pascal System. 

G.17 FORMATTED TEXT INPUT 

Formatted text input is not supported in Microprocessor Pascal System. 

G.18 READ VARIABLES 

Microprocessor Pascal does not allow the variables in a READ statement 
to be elements of a packed structure. 

G.19 RANDOM FILE I/O 

Microprocessor Pascal only allows RANDOM file READ and WRITE 
statements to have a single read or write variable. 

G.20 WRITE PARAMETERS 

In Microprocessor Pascal System, both 
require write parameters which are 
allowed as write parameters. 

RANDOM and sequential files 
variables; expressions are not 

G.21 STANDARD PROCEDURES AND FUNCTIONS 

The following 
Microprocessor 

DEC 

The following 
Microprocessor 

COLUMN 
EXP 

The following 
Microprocessor 

CLOSE 
IOTERM 
TIME 

TIP standard functions are 
Pascal System: 

FIX UB 

TIP standard functions may 
Pascal System: 

STATUS ARCTAN 
LN SIN 

TIP standard procedures are 
Pascal System: 

DATE 
G-
WR I TEE OF 

G-3 

EXTEND 
SETMEMBER 

not supported 

be user declared 

cos 
SQRT 

not supported 

HALT 
SKIPFILES 

in 

in 

in 



In Microprocessor Pascal System, the standard function FLOAT does not 
~llow the second parameter which specifies the precision of the real 
value. 

In Microprocessor Pascal System, the standard procedure SETNAME allows 
an arbitrary length string for the pathname rather than only a 8 
character string. 

In Microprocessor Pascal System, the following standard procedures are 
provided to access the CRU hardware: 

CRUBASE LDCR SBO SBZ 
STCR TB 

G.22 OPTIONS 

Microprocessor Pascal System does not support the following options: 

370 980 990 CK OVER 
CKPREC CKTAG FORINDEX GLOBALOPT 
GLOBALS LISTOBJ OPTIMIZE PROBER 
PROBES ROUND STANDARD UNSAFEOPT 
WARNINGS WIDELIST 

G-4 

-""" I 
I 

I 

I 
) 



APPENDIX H 

EXECUTIVE RUN-TIME SUPPORT VS TIPMX 

i.l INTRODUCTION 

rhe TI Pascal Microprocessor Executive (TIPMX) is the predecessor of 
:he Executive RTS. TIPMX must be used with object modules generated by 
the TI Pascal (TIP) compiler, not the Microprocessor Pascal (MPP) 
3ystem compiler. The capabilities of the Executive RTS are generally a 
3uperset of those of TIPMX. This section describes the changes that 
nay have to be made to convert a TIPMX application to execute under 
the Executive RTS. Appendix G of the Microprocessor Pascal System 
Jser~s Manual enumerates the differences between the Microprocessor 
?ascal System and TIP languages. 

H. 2 CRU ACCESS 

All references to the CRU must be modified to use the new procedures 
/. and function provided by the Microprocessor Pascal System language. 

The CRU interface was changed so the Microprocessor Pascal System 
compiler can generate more efficient CRU accesses than the TIP 
compiler can. 

The software base address is used rather than the hardware base 
address. For example on the 101 board, the CRU base of 9901 is 100 in 
MPP and 80 in TMX. 

H.3 PROCESS DECLARATION AND INVOCATION 

The TIP language has no concept of ~process" so the procedure 
STARTPROCESS is used to create and invoke an instance of procedure as 
a process. Every TIP procedure that is used as a process must be 
converted into a Microprocessor Pascal System, program, or process, 
with appropriate concurrent characteristics. 

H-1 



·"· 

TIPMX: 
{process } procedure clock( interrupts: integer ): 

Executive RTS: 
program clock( interrupts: integer ): 

be9in . 
ti stacksize = clock_stack_size: priority = clock_priority } 

end· { clock } : 

A process is started under TIPMX by a call. to procedure STARTPROCESS. 
The statement START is used with MPP System, and successful creation 
is indicated by the function P$SUCCESSFUL. 

TIPMX: 
startprocess( location( clock.), clock_stack_size, clock_priority, 

interrupts_per_tick, process_number, successful): 

Executive RTS: 
start clock( interrupts_per_tick ): 
successsful := p$successful( my$process ) : 

Stack and heap requirements have to be recalculated. for Executive RTS 
and specified as concurrent characteristics. 

H.4 TERMINATION OF SEMAPHORES 

Each semaphore in TIPMX is local to the process in which it is 
declared and is deallocated automatically when that process 
terminates. A variable of type SEMAPHORE in Microprcessor Pascal 
System contains a reference to an RTS-managed structure that 
implements the semaphore. If the resources associated with a semaphore 
are to be reclaimed by the Executive RTS, the last process that uses a 
semaphore must call procedure TERMSEMAPHORE with that semaphore as 
parameter. 

CAUTION: It is important to realize that the procedure INITSEMAPHOFE 
allocates a new semaphore every time it is called in the 
Microprocessor Pascal System. In TIPMX, it doesn~t. 

H.5 MEMORY ~.ANAGEMENT 

Heap is allocated differently in TIPMX and MPP. In MPP, a nested heap 
is allocated out of another heap, called the parent, so that a 
hierarchy of heaps may be created. TIPMX maintains a free pool of 
memory from which all heap requests are allocated. Heap "packets" are 
allocated on a first fit bisis for stack regions, process records, and 
general user work area. 

H-2 



H.6 SYNCHRONIZATION WITH INTERRUPTS 

The Executive RTS treats interrupts as implicit signals to associated 
semaphores. This means that the Executive RTS procedure WAIT is used 
for synchronization with interrupts and SIGNAL can be used to simulate 
an interrupt. To convert TIPMX interrupt processes, a semaphore must 
be declared within scope and initialized to zero. This semaphore must 
then be associated with the appropriate interrupt level using the 
Executive RTS procedure EXTERNALEVENT. All occurrences of 
WAITINTERRUPT must then be changed to WAIT( s ) where "s" is the 
interrupt semaphore. For example: 

H-3 



TIPMX: 

{ process } CLOCK(INTERRUPTS:INTEGER); 
BEGIN 

) 
{ CLOCK } ,_ 

WHILE TRUE DO 
BEGIN 

END; 

FOR I := 1 TO INTERRUPTS DO 
BEGIN 

CKON$; 
WAITINTERRUPT; 
CKOF$ 

END; 
SIGNAL(TICK) 

END; 

EXECUTIVE RTS : 

PROGRAM CLOCK(INTERRUPTS:INTEGER); 
VAR 

INTERRUPT: SEMAPHORE; 
BEGIN 
{# STACKSIZE=CLOCK_STACK_SIZE; PRIORITY=CLOCK PRIORITY } 

INITSEMAPHORE(INTERRUPT, 0); 
EXTERNALEVENT(INTERRUPT, CLOCK PRIORITY); 
WHILE TRUE DO -

END; 

BEGIN 
FOR I := 1 TO INTERRUPTS DO 

BEGIN 
CKON; 
WAIT (INTERRUPT) ; 
CKOF 

END; 
SIGNAL(TICK) 

END; 

H.7 SCHEDULING POLICY 

{ CLOCK } 

{ CLOCK } 

{ CLOCK } 

The scheduling policy of the Executive RTS is simpler to understand 
and more consistent than that of TIPMX. The differences pertain to the 
treatment of device processes. 

For example, suppose device process A activates a device process B 
that has a lesser urgency than A. Under TIPMX, process B becomes a 
non-interrupt pr,ocess: 

H-4 

) 

/ 



ready 
B: 5 

active 
process 

+-------+ +-------+ +-------+ +-------+ 
I A: 3 1--->I C: 7 1--->I D: 16 1--->I idle I 
+-------+ +-------+ +-------+ +-------+ 

+-------+ +-------+ +-------+ +-------+ +-------+ 
I A: 3 1--->I C: 7 1--->I B: 5 1--->I D: 16 1--->I idle I 
+-------+ +-------+ +-------+ +-~-----+ +-------+ 

(See Section 
arrangement 
urgencies of 
preserved: · 

9.1 for an explanation of these diagrams.) Note that the 
of the scheduling queue is not consistent with the 
the processes. Under the Executive RTS, priorities are 

ready 
B: 5 

active 
process 

+-------+ +-------+ +-------+ +-------+ 
I A: 3 1--->I C: 7 1--->I D: 16 1--->I idle I 
+-------+ +-------+ +-------+ +-------+ 

+-------+ +-------+ +-------+ +-------+ +-------+ 
I A: 3 1--->I B: 5 1--->I C: 7 1--->I D: 16 1--->I idle 
+-------+ +-------+ +-------+ +-------+ +-------+ 

This difference should present no problems since the activation of one 
device process from another usually occurs when interrupts are being 
demultiplexed, in which case both processes will have the same 
priority and hence the same treatment under both executives: 

ready 
B: 3 

active 
process 

+-------+ +-------+ +-------+ +-------+ 
I A: 3 1--->I C: 7 1--->I D: 16 1--->I idle I 
+-------+ +-------+ +-------+ +-------+ 

+-------+ +-------+ +-------+ +-------+ +-------+ 
I B: 3 1--->I A: 3 1--->I C: 7 1--->I D: 16 1--->I idle I 
+-------+ +-------+ +-------+ +-------+ +-------+ 

H.8 INTERPROCESS FILES 

The concept of a "channel" has been introduced into the MPX 
interprocess file system. An MPX channel is basically equivalent to a 

and a 
both 

TIPMX file connection. TIPMX allows multiple writing files 
single reading file in a single file connection while MPX allows 
multiple reading and multiple writing files on a single channel •. There 

H-5 



,. , ... 

---···'"'··- ------·- ~---·-···-·- ---··--. . . ...: _____ '.,_~~------~.-:, .. ...._. __ .,.-~-~~>----· 

are several system file routines available in MPX to facilitate the 
implementation of device handlers that are not available in TIPMX. The 
standard function FILENAMED is avaliable in•MPX to specify the names 
of files passed as parameters to· processes. This capa·bility does not 
exist in TIPMX. 

H-6 

/~\ 
' .··} 

/ 

\ 
j 



APPENDIX I 

BNF of MICROPROCESSOR PASCAL SYSTEM 

I.1 GENERAL 

rhe syntax of a programming language describes the form which a 
?rogram in the language may take. In a language such as Microprocessor 
Pascal, the syntax may be expressed very concisely by extended 
Backus-Naur Form or BNF. 

In BNF, each element of the language is defined by -means· of 
=quation-like rules called productions, in which the entity being 
3efined is written to the left of the symbol "::="and the definition 
is written to the right of that symbol. The definition may be 
=xpressed in terms of language elements which are defined by previous 
~r subsequent productions. The following symbols are used in writing 
jefinitions: 

::= for productions 

< > for enclosing non-terminal symbols, i.e. entities which 
are defined by a production 

] for enclosing entities which are optional 

{ } for enclosing entities which may be repeated zero or more 
times 

for representing alternation, e.g. A I B I C 
means A or B or C 

I-1 



I.2 DECLARATION SYNTAX 

<system> 

<system block> 

··.. - SYSTEM <identifier> ~ <system block> • 

::=<label declaration part> 
<constant declaration part> 
<type declaration part> 
<common declaration part> 
<access declaration part> 
<system routines> 
<body> 

<label declaration part> ::= 
LABEL <statement label> { , <statement label> }- ; 
I <empty> 

<empty> .. -.. -
<statement label> ::= <digit> { <digit> } 

<constant declaration part> ::= 
CONST <constant declaration> 
{ <constant declaratlon> } 
I <empty> 

<constant declaration> ::= 
<identifier> = <constant> ; 
I <identifier> = <integer constant expression> 

<type declaration part> ::= 
TYPE <type declaration> { <type declaration> } 
I <empty> 

<type declaration> ::= <identifier> = <type> ; 

<variable declaration part> ::= 
VAR <variable declaration> 
{ <variable declaration> } 
I <empty> 

<variable declaration> ::= <identifier list> : <type> 

<identifier list> ::=<identifier> { , <identifier> } 

<common declaration part> ::= 
COMMON <variable ·declaration> 
{ <variable declaration> } 
I <empty> 

<access declaration part> ::= 
ACCESS <identifier list> ; 
I <empty> 

<system routines> ::= { <system routine> } 

I-2 

j 



<system routine> ::= <program declaration> I <procedure declaration> 
I <function declaration> 

<program declaration> ::= 
<program header> <program block> ; 

I <program header> FORWARD ; 
<program header> EXTERNAL [ PASCAL 

<program header> ::=PROGRAM <identifier> 
[ <program parameter list> ] ; 

<program parameter list> ::= 
<program parameter> { ; <program parameter> } 

<type identifier> <program parameter>::= <identifier list> 

<program block> ::= <label declaration part> 
<constant declaration part> 
<type declaration part> 
<variable declaration part> 
<common declaration part> 
<access declaration part> 
<program routines> 
<body> 

<program routines> ::= { <program routine> } 

<program routine> ::=<process declaration> I <procedure declaration> 
I <function declaration> 

<procedure declaration> ::= ~ 
<procedure header> <block> ; 

I <procedure header> FORWARD ; 
<procedure header> EXTERNAL [ PASCAL ] ; 

<procedure header> ::=PROCEDURE <identifier> [ <parameter list> ; 

<parameter list> 

<any parameter> 

<block> 

<routines> 

<routine> 

::= <any parameter> { ; <any parameter> } 

::= [VAR] <identifier list> : <type identifier> 

::= <label declaration part> 
<constant declaration part> 
<type declaration part> 
<variable declaration part> 
<common declaration part> 
<access declaration part> 
<routines> 
<body> 

::= { <routine> } 

::=<procedure declaration> I <function declaration> 

I-3 



function declaration> ::= 
<function header> <block> ; 

I <function header> FORWARD ; 
<function header> EXTERNAL [ PASCAL ] ; 

function header> ::=FUNCTION <identifier> 
<result type> ; 

<parameter list> 

process declaration> ::= 

:process header> 

:body> 

<process header> <program block> ; 

I <process header> FORWARD ; 
<process header> EXTERNAL [ PASCAL 

::=PROCESS <identifier> 
[ <program parameter list> ] ; 

::=<compound statement> 

I-4 

. 
I 

_) 

) 



I. 3 TYPE SYNTAX 

<type> 

<simple type> 

<type identifier> 

<scalar type> 

<subrange type> 

::= <simple type> I <structured type> 

::=<scalar type> I <subrange type > 
I <type identifier> 

::=<identifier> I ANYFILE I BOOLEAN I CHAR I 
I INTEGER I LONGINT I REAL SEMAPHORE I TEXT 

::= <scalar identifier> { , <scalar identifier> } 

::= <enumeration constant> •• <enumeration constant> 

<enumeration constant> ::= 
<character constant> I <boolean constant> 
I <scalar identifier> I <integer constant> 

<scalar identifier> ::=<identifier> 

<structured type> ::= [ PACKED ] <unpacked structured type> 
I <pointer type> I <file type> I <set type> 

<unpacked structured type> ::= 

<array type> 

<index type> 

<record type> 

<field list> 

<fixed part> 

<record section> 

<array type> I <record type> 

: := ARRAY " [" <index type> { , <index type> } "] " 
OF <type> 

::=BOOLEAN I CHAR I <scalar type> I <subrange type> 
I <identifier> 

::= RECORD <field list> END 

::=<fixed part> I <fixed part> : <variant part> 
I <variant part> 

::=<record section> { : <record section> } 

::= <field identifier> { , <field identifier> } 
<type> I <empty> 

<field identifier> ::=<identifier> 

<variant part> 

<tagf ield type> 

<tagf ield> 

<variant> 

::=CASE [ <tagfield> ] <tagfield type> OF 
<variant> { : <variant> } 

.. -.. - BOOLEAN I CHAR.,! INTEGER I LONGINT I <identifier> 

: : = <identifier> : 

::= <variant label list> 
I <empty> 

I-5 

<field list> 



<variant label list> ::= 

<variant label> 

<set type> 

<pointer type> 

<file type> 

<result type> 

<variant label> { , <variant label> } 

::=<enumeration constant> 
I <enumeration constant> <enumeration constant> 

::=SET OF <simple type> 

::=~<type identifier> 

::= RANDOM] FILE OF <type> 

::=BOOLEAN I CHAR I INTEGER I LONGINT I REAL 
I SEMAPHORE <identifier> 

I-6 

. .../' 



I.4 STATEMENT SYNTAX 

<statement> 

<simple statement> 

::= [ <statement label> 
I [ <statement label> : 
<structured statement> 

] <simple statement> 
[ <escape label> : ] 

::=<empty statement> I <assignment statement> 
I <procedure statement> I <start statement> 

I <escape statement> I <goto statement> 
<assert statement> 

<empty statement> ::=<empty> 

<assignment statement> ::= 
<variable> := <expression> 

<procedure statement> ::= 
<procedure identifier> [ <actual parameter list> ] 

<procedure identifier> ::=<identifier> 
' 

<actual parameter list> ::= 
( <actual parameter> { , <actual parameter> } ) 

<actual parameter> ::=<expression> I <variable> 

<start statement> ::= START <process identifier> 
[ <actual parameter list > ] 

<escape statement> ::=ESCAPE <escape label> 
I ESCAPE <routine identifier> 

<escape label> ::=<identifier> 

<routine identifier> ::= 
<program identifier> I <process identifier> 
I <procedure identifier> I <function identifier> 

<goto statement> ::=GOTO <statement label> 

<assert statement> ::=ASSERT <expression> 

<structured statement> ::= 
<compound statement> I <conditional statement> 
I <repetitive statement> I <with statement> 

<compound statement> ::= 
BEGIN <statement> { ; <statement> } END 

<conditional statement> ::= 

<if statement> 

<if statement> I <case statement> 

::=IF <expression> THEN <statement> 
[ ELSE <statement> ] 

I-7 

r 

r 

-. ~ --.-.---~-·---- --- ---,-------------.---~----- --------~---~r 



~case statement> ::=CASE <expression> OF <case element> 
{ ; <case element> } 
[ OTHERWISE <statement> { ; <'statement> } ] 
END 

~case element> ::=<case label list> : <statement> I <empty> 

~case label list> ::=<case label> { , <case label> } 

~case label> ::= <enumeration constant> 
I <enumeration constant> •• <enumeration constant> 

~repetitive statement> ::= 
<for statement> I <while statment> 
I <repeat statement> 

~for statement> ::=FOR <control variable> <generator> DO 
<statement> 

<control variable> ::=<identifier> 

<generator> 

<initial value> 

<final value> 

<while statement> 

::= := <initial value> TO <final value> 
I := <initial value> DOWNTO <final value> 

: : = 

.. -.. -

.. -.. -

<expression> 

<expression> 

WHILE <expression> DO <statement> 

<repeat statement> ::=REPEAT <statement> { : <statement> } 
UNTIL <expression> 

<with statement> ::=WITH <with variable list> DO <statement> 

<with variable list> ::= 
<with variable> { , <with variable> } 

<with variable> ::=<record variable> 
I <identifier> = <record variable> 

I-8 



( 

:.S EXPRESSION SYNTAX 

:expression> ::=<boolean term> 
I <expression> OR <boolean term> 

:boolean term> ::= <boolean factor> 
I <boolean term> AND <boolean factor> 

:boolean factor> ::= [NOT] <boolean primary> 

:boolean primary> ::=<simple expression> I <boolean primary> 
<relational operator> <simple expression> 

:relational operator> ::= = I <> I < I <= I > I >= I IN 

:simple expression>::= <term> I <adding operator> <term> 
I <simple expression> <adding operator> <term> 

~adding operator> 

~term> 

.. -.. -

.. -.. -
+ I -
<factor> I <term> <multiplying operator> <factor> 

~multiplying operator> ::= * I I I DIV I MOD 

:::factor> ::= ( <expression> ) 
I <function identifier> [ <actual parameter list> J 
I <set> I <unsigned constant> I <variable> 

<function identifier> ::= 
<identifier> 

<set> 

<element list> 

<element> 

: : = 

: : = 

.. -.. -

11 [ 11 [ <element list> J 11 J " 

<element> { , <element> } 

<expression> I <expression> •• <expresssion> 

<unsigned constant> ::=<constant identifier> I <boolean constant> 
<scalar identifier> I NIL 
<character constant> I <string constant> 
<integer constant> I <real constant> 

<constant identifier> ::=<identifier> 

I-9 



I.6 VARIABLE SYNTAX 

<variable> ::= <variable identifier> I <component variable> 
I ·<type-transferred variable> 

<variable identifier> ::=<identifier> 

<component variable> ::= 
<indexed variable> I <field designator> 
I <referenced variable> 

<indexed variable> ::= <array variable> "[" <expression> 
{ , <expression> } "]" 

<array variable> ::=<variable> 

<field designator> ::=<record variable> • <field identifier> 

<record variable> ::=<variable> 

<referenced variable> ::= <pointer variable> A 

<pointer variable> ::=<variable> 

<type-transferred variable> ::= 
<variable> :: <type identifier> 

I-10 



I.7 INTEGER CONSTANT EXPRESSION SYNTAX 

<integer constant expression> ::= 
<integer constant term> 
I <adding operator> <integer constant term> 
I <integer constant expression> <adding operator> 
<integer constant term> 

<integer constant term> ::= 
<integer constant factor> 
I <integer constant term> <intmult operator> 
<integer constant factor> 

<intmult operator> ::= * I DIV I MOD 

<integer constant factor> :.:= 
( <integer 

I <integer 
<integer 

constant expression> 
constant identifier> 
constant> 

<integer constant identifier> ::=<identifier> 

I-11 



I.8 LEXICAL SYMBOL SYNTAX 

<symbol> 

·<constant> 

<separator> 

<comment> 

<open comment> 

<close comment> 

<remark> 

<special symbol> 

<keyword symbol> 

<identifier> 

<letter> 

<digit> 

::= <special symbol> I <keyword symbol> 
I <identifier> I <constant> 

::= <enumeration constant> I <real constant> 
I <string constant> I <constant identifier> 

::= <space> I <end of the logical source record> 
I <comment> <remark> 

::= <open comment> <any sequence of graphic 
characters not containing <close comment> > 
<close comment> 

. ·- "{" .. - (* 

··- "}" .. - *) 

::= " <any sequence of graphic characters 
extending to the end of the logical 
source record> 

::= +1-l*jll=l<j>I (!> j·l,l;l:l@l"["l"l" 
I ( • I • > I<= >=I<> • • I : = : : 

::=ACCESS I AND I ANYFILE I ARRAY I ASSERT I BEGIN 
BOOLEAN I CASE CHAR I COMMON I CONST I DIV I DO 
DOWNTO I ELSE I END I ESCAPE I FALSE I FILE 
FOR I FUNCTION I GOTO I IF I IN I INPUT I INTEGER 
LABEL I LONGINT I MOD NIL I NOT I OF I OR 
OTHERWISE I OUTPUT I PACKED PROCEDURE 
PROCESS I PROGRAM I RANDOM I REAL I RECORD 
REPEAT I SEMAPHORE I SET I START I TEXT I THEN 
TO I TRUE I TYPE I UNTIL VAR I WHILE I WITH 

::=<letter> { <letter> I _I <digit> } 

::= AIBICIDIEIFIGIHIIIJIKILIMINIOIPIOIR 
ISlTIUIVIWIXIYIZI$ 

::= Olll2l3l4ISl6l7l8l9 

<boolean constant> ::=FALSE I TRUE 

<character constant> ::= '<character>' 

<string constant> ::='<character> <character> { <character> }' 

<character> ::=<graphic character> I i<hexdigit> <hexdigit> 

<graphic character> ::=<special character> I <letter> 
I <space> I <nonstandard character> 

<digit> 

I-12 



( 

<special character>::= +.J-l*l/l=l<l>l(l)l 0 lrl~l=l@l"'"'l"lttl 1"£"1"1" 
l"{"ln}n -

<space> •• - n n .. -
<nonstandard character> ::= 

<hexdigit> 

<integer constant> 

<digits> 

<real constant> 

<scale factor> 

<sign> 

<any other character available on a particular 
system or device> 

.. -.. - <digit> I A I B I c I D E F 

··- <digits> [ L ] .. -
I t <hexdigit> { <hexdigit> } [ L ] 

.. -.. - <digit> { <digit> } 

::= <digits> • <digits> 

I <digits> • <digits> E <scale factor> 
<digits> E <scale factor> 

::= [ <sign> ] <digits> 

::= + I -

I-13 





I 
\ 

APPENDIX J 

INTERPRETIVE RTS DATA STRUCTURES 

This appendix describes the data structures used by the the 
Interpretive Run Time Support. The user initialized data structures 
are discussed first, such as the RAM configuration table, the segment 
table, and the trap table. The Run Time Support data structures are 
discussed next, such as the process record, global data structures, 
and process local data structures. The data structures used by the 
interpreter are discussed, such as the interpreter~s registers and 
local variables, and stack areas, and finally the interpreted code 
itself is discussed. 

J.1 USER INITIALIZED DATA STRUCTURES 

The data structures described in this section must be initialized by 
the user and exist in either the "USERINIT" module or the "CONFIG" 
module. 

J.1.1 RAM Configuration Table 

This table describes the configuration of RAM memory used as data 
space by Interpretive RTS. It is included anywhere in the user~s code 
space (ROM) • 

#00 ---------------
length 

#02 ---------------
start address 

* 
* 
* 

length=O 

Length of contiguous RAM (16-bit logical 
value in number of bytes) 

Address at which contiguous RAM starts 

Length and start are repeated for each 
contiguous RAM area. 

End of table is indicated by a length of 
zero. 

J-1 



J.1.2 Segment Table 

The following configuration information is included ·anywhere in the 
user's code space (ROM). An Interpretive RTS-based system starts in a 
user:-written code module ("USERINIT") from application of power or 
from toggling an external reset switch. This module must perform 
low-level initialization and branch to Interpretive RTS, initialization 
at entry zero in segment 63. Before branching to Interpretive RTS, 
register 11 (Rll) must point to the structure shown in Table J-2 
below. 

configuration 
-#08 ---------------

address of 
interp. entry 

-#06 ---------------
crash address 

-#04 ---------------
address of 

re$start BLWP 
-#02 ---------------

#00 

address of 
LREX BLWP 

segment table 
* 
* 
* 

Address of RAM configuration table 

Entry .point address of interpreter 
(REF and DATA of the symbol $EXEC) 

Address in user-written code to service 
a system crash. Crash code is in RO. 

Address of BLWP vector used by RE$START 
routine. 

Address of BLWP vector which is copied 
to >FFFC. 

<-- Address of segment table 

The crash address points to user-written code at which Interpretive 
RTS branches if a system crash occurs. At the crash, the workspace is 
the current machine workspace, and register zero (RO) contains the 
crash code. 

The address of the LREX BLWP vector, if not zero, is used to copy this 
vector to absolute address >FFFC in the case that RAM is located at 
>FFFC. If the address of the LREX BLWP vector is zero, then no copy is 
done. 

The segment table consists of addresses of each valid interpretive 
segment in the entire system being executed. The segment table may 
contain up to 64 total segments. Each segment consists of a dictionary 
table which has entries for all routines and common modules which may 
be accessed by the routines in the segment. 

J-2 

) 



J.1.3 Traps Configuration Table 

The following configuration information is included anywhere in the 
user~s code space (ROM). An Interpretive RTS-based system starts in a 
user-written code module ("USERINIT") from application of power or 
from toggling an external reset switch. This module must perform 
low-level initialization and branch to Interpretive RTS initialization 
at entry zero in segment 63. Before branching to Interpretive RTS, 
register zero (RO) may be zero indicating that trap vectors are 
already initialized in place at absolute address zero. Otherwise 
register zero must point to the following structure. 

#00 --------------- <-- RO points here at entry to RTS 
int level 0 WP Interrupt level 0 workspace 

#02 ---------------
int level 0 PC 

* 
* 
* 

#3C ---------------
int level 15 WP 

#3E ---------------
int level 15 PC 

#40 ---------------
XOP level 0 WP 

#42 ---------------
XOP level 0 PC 

* 
* 
* 

#7C ---------------
XOP level 15 WP 

#7E ---------------
XOP level 15 PC 

Interrupt level 0 program counter 

Interrupt level 15 workspace 

Interrupt level 15 program counter 

XOP level O workspace 

XOP level 0 program counter 

XOP level 15 workspace 

XOP level 15 program counter 

J-3 



J.1.4 Interrupt Workspace Record 

The following record is a typical workspace used for fielding 
interrupts. Each workspace pointer in low memory points to an 
interrupt transfer workspace which is initialized upon system startup. 
The workspaces for the different interrupt levels are overlaid so that 
registers R0-R3 should never be used. 

#00 ----------------- <-RO 
* 
* 
* 
* 

#08 -----------------
scratch 

registers 
* 
* 
* 

#OE -----------------
Int ASSEMBLYEVENT 
UP (or Level 0) 

#10 -----------------
int ASSEMBLYEVENT 
PC (or Level 0) 

#12 -----------------
interpreter WP 

#14 -----------------
standard 

Code 
#16 -----------------

linkage 

#18 -----------------
interrupt 

Level 
#lB -----------------

return 
context 

* 
#lF -----------------

Unused 

Scratch registers 

Interrupt workspace specified 
in ASSEMBLYEVENT (or zero) 

Interrupt PC specified in 
ASSEMBLYEVENT (or zero) 

Interpreter Workspace 

Address of standard interrupt 
interrupt code 

Linkage register 

Interrupt Level of this 
workspace 

Addresses of previous routine~s 
PC,WP, and Status register. 

J-4 



J.2 INTERPRETIVE RUN TIME SUPPORT DATA STRUCTURES 

The data structures described in this section are used by Interpretive 
Run Time Support to manage processes, and the memory area associated 
with a process. The process record is the fundamential data structure 
used by Interpretive Run Time Suppont. From it one •can· get to all 
other data structures used by the Interpretive Run Time Support. All 
data structures except the process record are given in alphabetical 
order. 

J.2.1 Process Record 

The process record is the fundamental structure which is used by 
Interpretive RTS to access all other data structures. A unique process 
record exists for each instantiation of a process. The pointer 
returned by the RTS functions MY$PROCESS and P$LASTPROCESS point to a 
process record. Note that fields indicated by a "*" are not used by 
Kernel RTS. The layout of the process record is shown below: 

#00 ---------------
level 0 

#02 ---------------
level 1 

#04 ---------------
* 
* 
* 

#14 ---------------
level 10 

#16 ---------------
unused 

#20 ---------------
stack base 

#22 ---------------
stack limit 

#24 ---------------
stack boundary 

#26 ---------------
global frame 

#28 ---------------
local frame 

#2A ---------------
top of stack 

#2C ---------------
program counter 

#2E 
______________ .,_ 

segment table 
#30 ---------------

current segment 
#32 -------------~-

Display level 0 frame pointer 

Display level 1 frame pointer 

Display level 10 frame pointer 

Base of stack address for process 

End of stack address for process 

Maximum amount of stack used address 

Global stack frame for process 

Currently active stack frame for process 

Top of evaluation stack for process 

Address of next instruction to execute 

Address of segment table 

Address of current segment table dictionary 

J-5 



#32 ---------------
"output" file 

#34 ---------------
"input" file 

#36 ---------------
unused 

#38 ---------------
priority 

#3A ---------------
packed data 

#3B ---------------
packed data 

#3C ---------------
RTS record 

#3E ---------------
packed data 

#3F ---------------
reason code 

#40 ---------------
except. handler 
dictionary entry 

#41 ---------------
packed data 

#42 ---------------
first rts frame 

#44 ---------------
rts nesting 

count 
#45 ---------------

Address of "output" file descriptor 

Address of "input" file descriptor 

Priority of the process 

Successflag (1 bit) 
(returned by the p$successful function). 

Interrupt level in progress when this 
process was activated (5 bits). Negative 
one means no interrupt in progress. 

Unused (2 bits) 

Unused (4 bits) 

Interrupt mask of the process (4 bits) 

Address of executive record 

Exception outstanding boolean (1 bit) 
(If true, then an exception has occurred __ ) 
but the process has not yet failed because -
it is nested with RTS code or a 
user-defined criti~al transaction.) 

Exception class code (7 bits) 

Exception reason code 

* Index in dictionary of segment where 
exception handler procedure is located. 

* Segment number where exception handler 
procedure is located (7 bits) 

* External boolean is always TRUE ( 1 bit) 

* Address of stack frame at which RTS 
code was first entered. 

* Number of times currently nested within 
RTS code. 

J-6 

) 



#45 ---------------
packed data 

#46 ---------------
object pointer 

#48 ---------------
next process 
of all 
processes 

#4A ---------------
last started 

#4C ---------------
next process 
in queue 

#4E ---------------
verification 

#50 ---------------
queue pointer 

#52 ---------------
creator ... s id 

#53 ---------------
my id 

Unused ( 4 bi ts) 

* Type of object upon which RTS 
code is operating (4 bits) 
(none=O, exception=l, file=2, heap=3, 
interrupt=4, process=5, queue=6, 
semaphore=?, scheduling queue=8, 
critical transaction=9). 

* Address of object upon which RTS 
code is operating 

Address of next process record in a 
circular, one-way list of all process 
records. 

Address of process record last started 
by this process. 

Address of next process record in a queue 
(semaphore or scheduling queue) or nil 
if this process is the last member or 
is not in a queue. 

Address of this process record (used 
to verify a processid referencing this 
process record. 

Address of the queue record in which 
this process is enqueued (semaphore 
or scheduling queue or nil) 

See explanation below. 

See explanation below. 

The field of the process record called nmy id" (displacement #53) is 
set to a value as follows. A global count MOD 32767 is kept .of all 
processes started (stored in process management record). If this count 
is less than 256, then it is stored in nmy id" when the process is 
first created. If this count is greater than or equal to 256 at the 
time a process is first created, then the most significant byte of the 
count is stored in nmy id" of the new process record. 

The field of the process record called ncreator ... s idn (displacement 
#52) in a new process record is set to the value of "my id" of the 
process which created the new process. 

J-7 

-_. ~· 



,- . - '·' .... 
-- . \->..:~ ·_' '"" -... ---~- ··..:..~> --~·~.;~ ·-'-

J.2.2 Channel Record 

The following record is referenced by Channel Control Records and by 
File Descriptors. It is used for buffer management. This record is not 
used in Kernel RTS. 

#00 ---------------
monitor 

#02 ---------------first empty 
#04 ---------------last empty 
#06 ---------------

empty present 

#08 ---------------first full 
#OA ---------------last full 
toe ---------------full present 

#OE ---------------
component length 

total buffers 
#OF ---------------

channel status 

J.2.3 Channel Buffer Record 

Address of monitor record to control 
access to channel record 

Address of first empty buffer record 

Address of last empty buffer record 

Semaphore upon which a producer waits 
for an empty buffer. 

Address of first full buffer record 

Address of last full buffer record 

Semaphore upon which a consumer waits 
for a full buffer. 

Channel component length 

Total buffers (8 bits) 

Channel status (8 bits) 

Several of the following records form a linked list starting at a 
Channel Record or one record may be referenced by a File Descriptor. 
This record is not used in Kernel RTS. 

#00 ---------------
next 

#02 ---------------
reply channel 

#04 ---------------
buff er 

* 
* 
* 

Address of next channel buffer record 

Unimplemented 

J-8 

) 



J.2.4 Channel Control Record 

The following record is referenced from a pathname record and exists 
for each channel. It is used for synchronization during channel 
connections. This record is not used in Kernel RTS. 

#00 ---------------
channel 

#02 ---------------
packed data 

#03 ---------------
producers 

#04 ---------------
minimum buffers 

#05 ---------------
packed data 

#06 ---------------
master 

Address of channel record 

End-of-consumption significant boolean 
( 1 bit) 

Number of consuming files (7 bits) 

Number of producing files 

Minimum channel buffers 

Device channel boolean (1 bit) 

Unused (7 bits) 

Address of master record if device 
channel boolean is TRUE. 

r- J.2.5 Channel Directory Record 
,_ 

- ~ - I 

l_. 

The following record is referenced by the Executive Record and exists 
once in RTS. This recorCI is not used in Kernel RTS. 

#00 ---------------
rnoni tor 

#02 ---------------
temp sema 

#04 ---------------
pathnames 

#06 ---------------
tmp 

Address of monitor record to control 
access to channel directory. 

Temporary semaphore usea during channel 
termination synchronization 

Address of first pathname record 

80 byte card buff er 

J-9 



J.2.6 Executive Record 

The following record exists once in the Run Time Support system and 
points to all other fundamental data structures. Every process record 

·has a pointer to this record. 

#00 ---------------
interrupt record 

#02 ---------------
active process 

#04 ---------------
ready queue 

#06 ---------------
verification 

#08 ---------------
system memory 

#OA ---------------
process mgmt. 

#OC ---------------
channel direct. 

Address of interrupt record 

Address of the active process record. 

Address of queue record holding all ready 
processes not more urgent than active. 

Address of location(#02) above. 

Address of heap record for all data space 
used by Interpretive RTS. 

Address of process management record. 

* Address of channel directory record. 

J-10 

\ 
i 

_./ 



\ 
,,,-
\ __ 

J.2.7 File Descriptor 

A file is implemented by the following record. In Microprocessor 
Pascal a file variable is a pointer to a file descriptor. This record 
is not used in Kernel RTS. 

#00 ---------------
column index 

#02 ---------------
last column 

#04 ---------------
line buffer 

#06 ---------------
channel 

#08 ---------------
error status 

#OA ---------------
reply channel 

#OC ---------------
pathname 

#OE ---------------
next pathname 

#10 ---------------
minimum buffers 

#11 ---------------
packed data 

#12 ---------------
packed data 

#14 ---------------
verification 

#16 ---------------

Current column index in line buffer 
(one relative index) 

Index of last column in line buffer 
(one relative index) 

Address of data in channel buffer record 

Address of channel record (NIL if file 
is closed) 

Unimplemented 

AC.dress of pathname record 

Address of next pathname 

Minimum channel buffers 

End-of-consumption significant boolean 
( 1 bit) 

Terminate on error boolean (1 bit) 

Conditional boolean (1 bit) 

Unused (3 bits) 

File type - sequential=O, text=l, 
random=2 (2 bits) 

Component length (13 bits) 

File state - closed=O, 
open-writing=!, eoc-writing=2, 
open-reading=3, eof-reading=4 (3 bits) 

Address of this file descriptor 

J-11 



#16 ---------------
master 

#18 ---------------
process files 

#lA ---------------
length 

Address of master record 

Address of next file descriptor in 
a linked list of files declared by 
by this process. This linked list is 
created when this process terminates. 

For a sequential file, this is the 
declared component length. 
For a text file, this is the maximum 
default line length. 

J-12 

··.~ 
->-...:~ j 

-·-..... 

/ 
_ _/ 



J.2.8 Heap Record 

The system process has a heap, each program has a heap, and each 
process with a non-zero heapsize concurrent characteristic has a heap. 
Each heap is administered through the following heap record. A heap 
record is referenced from each process mark. 

#00 ---------------
free packet 

#02 ---------------
minimum ptr. 

#04 ---------------
maximum ptr. 

#06 ---------------
parent heap 

#08 ---------------
maximum used 

#OA ---------------
current used 

#OC ---------------
mutex semaphore 

#OE ---------------
verification 

Address of free packet 

Value of smallest valid heap pointer 

Value of largest valid heap pointer 

Address of heap record in which this 
heap is nested 

Maximum amount of allocated space ever 
used in this heap (16-bit logical value 
of number of bytes) 

Current amount of allocated space used 
in this heap (16-bit logical value 
of number of bytes) 

Semaphore ensuring mutually exclusive 
access to heap data structures 

Address of this heap record 

J.2.8.1 Free Heap Packet. A heap packet which is not allocated must 
be at least six bytes in length and has the following format. 

#00 ---------------
size 

#02 ---------------
previous ptr. 

#04 ---------------
next ptr. 

#06 ---------------
* 
* 
* 

Size of this packet (16-bit logical 
value of number of bytes) 

Address of previous free heap packet 

Address of next free heap packet 

Remainder of packet 

J-13 



J.2.8.2 Allocated Heap Packet. A heap packet, which is allocated by a ~ 
process, is referenced by the process through a pointer and has the ) 
following format. 

-#02 ---------------

#00 

size+! 

* 
* 
* 

J.2.9 Interrupt Record 

Size of this packet plus one (16-bit 
logical value of number of bytes) 

<-- pointer 
Remainder of packet 

The following record is referenced by the Executive Record and exists 
once in RTS. 

. ' 

#00 ---------------
external event 

#02 ---------------
alternate event 

#04 ---------------

* 
* 
* 

#3C ---------------

#40 ---------------
no event 

Level 0 external event semaphore 

Level 0 alternate event semaphore 

Level 1 external, alternate semaphores 

Level 15 external, alternate semaphores 

"No event" semaphore to which the above 
32 semaphores are connected in default 
state • 

J-14 

' 

_) 



J.2.10 Master Record 

The following is referenced by the File Descriptor of a master file. 
This record is not used in Kernel RTS. 

#00 ---------------
user connects 

#02 ---------------
packed data 

J.2.11 Monitor Record 

Semaphore upon which master process 
waits for first user to connect 

Channel mode - reading=O, writing=l, 
user-mode=3, no-mode=4 (2 bits) 

Exclusive access boolean (1 bit) 

Boolean indicating that component 
length is to be specified by user 
(f$ulength routine) (1 bit) 

Channel created boolean (1 bit) 

Users connected boolean (1 bit) 

User mode - reading=O, writing=l, 
user-mode=3, no-mode=4 (2 bits) 

Unused (5 bits) 

Mode of master file - closed=O, 
open-writing=!, eof-writing=2, 
open-reading=3, eof-reading=4 (3 bits) .. 

The following data structure is used by low-level synchronization in 
RTS while managing a channel directory or a channel. This. record is 
not used in Kernel RTS. 

#00 ---------------
urgent Urgent semaphore 

#02 ---------------
mutex Mutual exclusion semaphore 

#04 ---------------
verification Address of this monitor record 

J-15 



J.2.12 Pathname Record 

Several of the following records form a linked list starting at the 
Channel Directory Record. This record is not used in Kernel RTS. 

#00 ---------------
next 

#02 ---------------
reading cc 

#04 ---------------
writing cc 

#06 ---------------
cc terminates 

#08 ---------------
packed data 

#OA ---------------
pathname 

* 
* 
* 

Address of next pathname record 

Address of reading channel control record 

Address of writing channel control record 

Semaphore upon which file openers wait 
when channel is closing (or not ready) 
or channel has a master specifying 
exclusive access. All waiters on this 
semaphore are signaled when channel 
is terminated or reset. 

Device pathname boolean (1 bit) 

Number of references to pathname (15 bits) 

Character string of pathname 
(first byte is length) 

J-16 

. 'J 
_/ 



J.2.13 Process Management Record 

The following record is referenced by the Executive Record and exists 
once in RTS. In the &"full" RTS, when a process terminates, it 
switches from its normal stack and executes termination RTS code in 
the following stack area. 

#00 ---------------
number of starts 

#02 ---------------
unused 

#04 ---------------
mutex semaphore 

#06 ---------------
stack 

* 
* 
* 

J.2.14 Queue Record 

Number of started processes MOD 32767 

Semaphore ensuring mutual exclusion in 
process management 

Stack in which a process executes that 
is terminating itself 

A queue record is referenced by a Semaphore Record or by the ready 
queue field of the Executive Record. 

#00 ---------------
first member 

#02 ---------------
verification 

Address of process record of first 
member of queue 

Address of this queue record 

J-17 



J.2.15 Semaphore Record 

A semaphore is a pointer to a semaphore record described below. 

#00 ---------------
count 

#02 ---------------
waiters 

#04 ---------------
verification 

#06 level 

Count of semaphore (returned by 
SEMAVALUE function) • 

Address of queue record in which 
waiting processes are enqueued. 

Address of this semaphore record 

Level associated with semaphore 

J-18 

:···~ 
l •. / 



J.3 PROCESS STACK 

The stack for a process is allocated as two separate regions, the 
first is the stack frame for the process frame, and the second is the 
stack to be used by routines which are called from the process. The 
second stack region is disposed when a process terminates. The first 
stack region is disposed when process variables contained in it are no 
longer addressable by the process or any lexically nested processes. 
The two regions have the following format: 

process mark Administration area for process 
--------------- <-- global frame 

process Stack frame for process variables 
stack frame 

--------------- <-- stack base 
first mar.k Administration area for first routine 

first 
stack frame 

* 
* 
* 

current mark 

local 
stack frame 

next mark 

evaluation 
stack 

* 

Stack frame for first routine 

Stack frame of intermediate routines 

Administration area for current routine 
<-- local base 

Stack frame for currently active routine 

Administration area for next routine 

Area where expressions are evaluated and 
parameters are passed. 

<-- top of stack 

* Rest of available stack 
* 

--------------- <-- stack limit 

J-19 



J.3.1 Stack Frame 

Each stack frame contains the values of the variables and parameters 
for a given routine. This area may also contain temporaries used for 
"for" statements and "with" statements. The stack frame consists of 
four regions, any ot which may be zero length. A stack frame is,shown 
below: 

parameters 

structured 
parameters 

local 
variables 

temporaries 

J.3.2 Administration Area 

Parameter variables 

Structured value paramete·rs are copied 
into this area. 

Local variables 

Compiler generated temporaries 

The administration area is used to describe the currently active 
routine and to describe how to return to the caller of the current 
routine. The administration area has the following form: 

-#OE ---------------
CRU base 

-#OC ---------------
statement # 

-#OA ---------------
old PC 

-#08 ---------------
old display 

-#06 ---------------
old dictionary 

-#04 ---------------
old local base 

-#02 ---------------
descriptor 

--------------- <--

Current CRU base address 

Current statement number 

Program counter of caller 

Old value of display level 

Segment dictionary of caller 

Local base of caller 

Current routine descriptor 
Frame pointer 

J-20 

,~I 

) 

\ 
) 

~ 



J.3.3 Process Mark 

The administration area below the frame of a process is used to hold 
information about the process. 

-#lC ---------------
mutex semaphore 

-#lA ---------------
process files 

-#18 ---------------
process heap 

-#16 ---------------
packed data 

-#15 ---------------
references 

-#14 ---------------
priority 

-#12 ---------------
"output" file 

-#10 ---------------
"input" file 

-#OE ---------------
CRU base 

-#OC ---------------
statement # 

-#OA ---------------
old PC 

-#08 ---------------
old display 

-#06 ---------------
old dictionary 

-#04 ---------------
old local base 

-#02 ---------------

Semaphore ensuring mutually exclusive 
access to this process mark. 

Address of first file descriptor in 
a linked list of files declared by 
by this process. This linked list is 
created when this process terminates. 

Address of heap record for this process 

Boolean which is true if this process 
created this process~s heap, or is false 
if this process is sharing a nested heap 
(1 bit). 
Boolean equal to process heap termination 
flag (1 bit). 
Boolean equal to process start termination 
flag (1 bit). 
Lexical level of this process (5 bits). 

Number of references to this process 
frame by processes which can address 
this frame. 

Priority of this process 

Address of "output" file descriptor 

Address of "input" file descriptor 

Current CRU base addresE 

Current statement nu~ber 

Contains zero 

Contains zero 

Contains zero 

Global frame pointer of lexical parent 
if the lexical level of 'this process 
is >= 2, otherwise contains zero. 

descriptor Routine descriptor of process 
--------------- <-- Global frame pointer 

J-21 



.. · 
- ~· . . -· 

. .,. --·-·--·--- - . -·--- --- __ _._ ------ __ , _________ - .. _. ___ .....,_ ____ --~----:..:.·· 

J.4 DICTIONARY TABLE 

Each interpretive. segment begins with a.dictionary table which has 
entries for all routines and common modules which may be accessed by 
the routines in that segment. The dictionary may contain up to 256 
total entries, and each entry will be one of the following: 

internal 
Displacement from beginning of segment 
dictionary to the routine descriptor 
for the "internal" module. 

external 
"External" module entry for a routine 
which is not local to this segment. 
The upper byte contains the index in 
the external segment of the external 
module, and the lower byte contains 
the (segment table number * 2) + 1 
which indicates that it is an external 
module entry. 

common 
"Common" module entry contains the 
address of the common data area. 

J.5 ROUTINE DESCRIPTOR 
I 

The routine descriptor contains information about a routine which is ·-~ 
used when the routine is called, such as the lexical level, data frame ,_} 
size, parameter size, and start of code for routine. The routine 
descriptor also contains a label table which is used by jump 
instructions and by the escape instruction. Each entry in the label 
table and the start of code entry are relative displacements from the 
beginning of the routine descriptor to the location in the 
interpretive code for that label. The first label in the label table 
is used for routine "escapes" and points to the epilogue for the 
routine. 

When the routine 
additional word 
data frame size 
includes only 
parameters have 

is a "system", "program", or "process", there is one 
in front of the routine descriptor which contains the 

for the process and the frame size in the descriptor 
the size of the parameter area after any structured 
been copied. 

When a segment has been "saved" with "debug" information, each routine 
descriptor has additional information preceding the routine descriptor 
which provides information for debugging. This information includes 
the routine name, number of statements in the routine, and number of 
temporaries in stack frame used for FOR and WITH statement variables. 

J-22 



The complete routine descriptor is shown below: 

-#OC ---------------
temporary size 

-#OA ---------------
# statements 

-#08 ---------------
routine name 

-#02 ---------------
frame size 

#00 ---------------
start of code 

#02 ---------------
parameter size 

#04 ---------------
frame size 

#06 ---------------

#08 
lexical level 

label table 
* 
* 
* 

--------------- < 
routine code 

Size of temporary variable area (bytes) 

Number of statements in routine 

Name of routine ( 6 characters 

Process frame size (bytes) 

Start of code (displacement) 

Parameter area size (bytes) 

Data frame size for this routine (bytes) 

Lexical level of routine ( *2 ) 

Label Table 

Interpretive code for routine 

J-23 

-· ·- ---------. I 

I 



J.6 INTERPRETER REGISTERS AND LOCAL VARIABLES 

The registers and data area used by the interpreter 
this section. The interpreter~s data area is 
includes its registers. 

#00 ---------------

is 
shown 

register.s Interpreter~s worK space 
#20 ---------------

unused 
#26 ---------------

described in 
below which 

cswitch Address of context switch handler 
#28 ---------------

process Address of current process 
#2A ---------------

unused 
#2C ---------------

debug handler Address of routine entry/exit debug handler 
#2E ---------------

error handler Address of error handler 
#30 ---------------

trace word AMPL debugging trace word 
#32 ---------------

debug flags AMPL debugging flags 
#34 ---------------

break point AMPL breakpoint table 
table (table is terminated with a zero) 

#50 ---------------
Registers RO through R6 are temporary registers used by the 
interpreter. Some of the registers used of the interpreter have 
special purposes. These registers are described below: 

R7 - This register normally contains the address of the decode 
instruction handler. When an interrupt has occurred, this 
address is changed to the context switch hanaler so that 
after the current instruction has be executed, the interrupt 
process can be given control. 

RS - This register contains a pointer to the current process 
record. 

R9 - This register points to the work space for the interpreter. 

RlO - This register points to an area of available memory which 
may be used when the interpreter does a "BLWP RlO". 

Rll - This register contains . the address of the instruction 
handler or the return address of a "BL" instruction. 

Rl2 - This register contains the instruction opcode. The upper 
byte is >10 and the lower byte is the instruction opcode. 

J-24 

~-i 

J 

_j 



(. ,, : 
'"'-'. 

This word is used by the instruction decoder to select the 
appropriate instruction handler. When an assembly language 
module is called, this register points to the first word of 
the module. 

Rl3 - This register contains the address of the next interpreted 
instruction to be executed. 

Rl4 - This register contains the address of the top of the 
evaluation stack in the process stack. During an expression 
evaluation, values are pushed and popped from this stack. 
This register points to the next available word. 

Rl5 - This register contains the address of the currently active 
routine's stack frame. It points to the routine's first 
variable and the administration area is immediately in front 
of the stack frame. 

The AMPL area is used by the &Target &Debugger so that breakpoints and 
traces can be handled. The AMPL flag word contains flags which are 
used to indicate whether single step, process trace, routine 
entry/exit trace, and/or statement trace are to be performed. 

J-25 

- --
I 



J.7 INTERPRETIVE CODE DESCRIPTION 

The interpretive code is designed to be as compact as possible. Since 
the major design goal is to minimize the length of the code generated, 
the most frequently used operations have a short form in which the 
operand is folded into the opcode. 

Instructions in the interpretive code are specified by a one-byte 
opcode followed by zero or more operand bytes. The operands are one of 
four basic types: 

UB - unsigned byte. The value of the operand is in one byte and in the 
range o .• 255. 

SB - signed byte. The value of the operand is in one byte and in the 
range -128 •• 127. 

V variable length. This operand is one or two bytes in length. The 
operand is one byte long if the first byte is in the range 0 •• 127 
(most significant bit = 0). Otherwise, the most significant bit 
of the first byte is 1 and operand requires two bytes in the 
range 128 •• 32767. 

W - word. This operand is two bytes long and aligned on a word 
boundary 

When an operation is to be performed on a LONGINT or REAL or a 
comparison of a SET or STRING, an escape opcode is followed by the 
actual opcode, such as a LOP operator followed by an ADD operator. 

All operators manipulate the evaluation sta~k by loading (pushing) 
values onto the stack and storing (pulling) values from the stack. For 
most operand types, the value alone is stored on the stack, but for 
string operands only the address of the string is s~ored on the stack, 
and for set operands the length of the set is pushed on top of the set 
value. 

Each interpretive code operator is described in the following tables 
by giving the hexadecimal value of the opcode, the symbolic name with 
possible operands, and finally the state of the evaluation stack 
before and after the operation has been performed. In some cases the 
semantics of the operation are given instead of the state of the 
stack. $MACRO pcode 

J-26 

.. _ . ·.. - -
-~- -- ·-< ···-- ~ .• 

. \ 

<'"\ 
., .~·--:>) 

) 
I _ _,,. 



op 

$END 

00 EQ 

01 GE 

02 GT 

03 LE 

04 LT 

05 NE 

06 ADD 

07 DIV 

08 MOD 

09 MUL 

OA SUB 

OB NEG 

OC ABS 

OD SQR 

OE 

OF 

10 

11 

12 

CV! 

CVL 

CVR 

CVBI 

CVBL 

name before 

OPERAND2 
OPERANDl 

OPERAND2 
OPERAND! 

OPERAND2 
OPERANDl 

OPERAND2 
OPERANDl 

OPERAND2 
OPERANDl 

OPERAND2 
OPERAND! 

OPERAND2 
OPERANDl 

OPERAND2 
OPERANDl 

OPERAND2 
OPERANDl 

OPERAND2 
OPERAND! 

OPERAND2 
OPERANDl 

OPERAND 

OPERAND 

OPERAND 

stack 

OPERANDl = OPERAND2 

OPERANDl >= OPERAND2 

OPERANDl > OPERAND2 

OPERANDl <= OPERAND2 

OPERANDl < OPERAND2 

OPERAND! <> OPERAND2 

OPERANDl + OPERAND2 

OPERANDl / OPERAND2 

OPERANDl MOD OPEFAND2 

OPERANDl * OPERAND2 

OPERANDl - OPERAND2 

- OPERAND 

ABS (OPERAND) 

SQR(OPERAND) 

operand is converted from INTEGER to specified type 

after 

operand is converted from LONGINT to specified type 

operand is converted from REAL to specified type 

operand below top of stack is converted from INTEGER to 
specified type 

operand below top of stack is converted from LONGINT 
to specified type 

J-27 



13 

14 

15 

16 

17 

18 

19 

!A 

lB 

lC 

lD 

lE 

lF 

20 

21 

22 

23 

24 

25 

26 

27 

LDX,V 

STX,V 

LDG,V 

STG,V 

LDL,V 

STL,V 

ADDRESS 

ADDRESS 
VALUE 

VALUE 

VALUE 

load value at ADDRESS + V words 

store VALUE at ADDRESS + V words 

load value at global frame + V words 

store VALUE at global frame + V words 

load value at local frame + V words 

store VALUE at local frame + V words 

RTNF,V return from a function and leave value at local frame 
+ V words on top of stack 

ODD 

RNDR 

IXB 

IXBO 

IXBl 

IXP,UB 

VALUE 

VALUE 

LOWER 
INDEX 
ADDRESS 

INDEX 
ADDRESS 

INDEX 
ADDRESS 

LOWER 
INDEX 
ADDRESS 

IXPO,UB INDEX 
ADDRESS 

IXPl,UB INDEX 
ADDRESS 

ODD(VALUE) 

ROUND(VALUE) 

load byte at (INDEX - LOWER) bytes 
from ADDRESS 

load byte at INDEX bytes from ADDRESS 

load byte at (INDEX - 1) bytes from 
ADDRESS 

BITDISP := (LOWER - INDEX) MOD UB; 
ADDRESS := ADDRESS + (LOWER - INDEX) 

DIV UB; 

BITDISP := LOWER MOD UB; 
ADDRESS := ADDRESS + LOWER DIV UB; 

BITDISP := (LOWER - 1) MOD UB; 
ADDRESS := ADDRESS + (LOWER - 1) DIV UB; 

DECT,V decrement temporary at local frame + v words by one 

INCT,V 

LDT,V 

STT,V 

IDX,V 

IDXO,V 

increment temporary at local frame + V words by one 

VALUE 

LOWER 
INDEX 
ADDRESS 

INDEX 
ADDRESS 

load temporary at local frame + V words 

store VALUE in temporary at local frame 
+ V words 
ADDRESS := ADDRESS + (INDEX - LOWER) 

* v * 2; 

ADDRESS := ADDRESS + INDEX * V * 2; 

J-28 



28 

29 

2A 

2B 

2C 

2D 

2E 

2F 

30 

31 

32 

33 

34 

35 

36 

37 

38 
39 

3A 

3B 

3C 

(. 

IDXl, V INDEX 
ADDRESS 

ADDRESS := ADDRESS + (INDEX - 1) * V * 2; 

CIDX,W LOWER LOWER 
INDEX 

check if INDEX is between 
LOWER and W (upper bound) INDEX 

CIDXO,W INDEX INDEX check if INDEX is between 
0 and W (upper bound) 

CIDXl,W INDEX INDEX check if INDEX is between 
1 and W (upper bound 

CSUB,Wl,W2 VALUE VALUE check if VALUE is between 
Wl (lower) and W2 (upper) 

JMPG,UB,V jump to label UB if value at local frame + V words 
is greater than value at local frame + V + 1 words 

JPG,SB,V add SB to PC if value at local frame + V words is 
greater than value at local frame + V + 1 words 

JMPL,UB,V jump to label UB if value at local frame + V words 
is less than the value at local frame + V + 1 words 

JPL,SB,V add SB to PC if value at local frame + V words 
is less than the value at local frame + V + 1 words 

JMP,UB jump to label UB 

JP,SB add SB to PC 

JMPF,UB VALUE if VALUE = FALSE then jump to label UB 

JPF,SB VALUE if VALUE = FALSE then add SB to PC 

JMPT,UB VALUE if VALUE = TRUE then jump to label UB 

JPT,SB VALUE if VALUE = TRUE then add SB to PC 

JMPX,UB,Wl,W2,(JUMP TABLE) case jump 

JPX,SB,Wl,W2, (JUMP TABLE) case jump 
DIF SET2 SE Tl - SET2 

SE Tl 

INN SET VALUE IN SET 
VALUE 

INT SET2 SE Tl * SET2 
SETl 

SEL VALUE [ VALUE ] 

J-29 



30 SRG UPPER 
LOWER 

3E UNI SET2 
SE Tl 

3F LABL 

40 LDNIL 

41 LIN 

42 LOUT 

43 LOB ADDRESS 

44 STB VALUE 
ADDRESS 

45 ADD! VALUE 

46 SUB! VALUE 

47 MARK 

48 RTNP 

49 ASS RT 

4A CASE 

4B CPTR VALUE 

4C INCA,V ADDRESS 

40 LAG,V 

4E LAL,V 

4.P MOV,V SOURCE 
DEST 

50 COM,UB 

51 CSP,UB 

52 CUP,UB 

53 CXP,UB 

54 ECP,UB 

55 LDC,UB 

56 LDP,UB BITDISP 

[ LOWER •• UPPER 

SET! + SET2 

label comment 

NIL 

INPUT file 

OUTPUT file 

load byte at ADDRESS 

store byte VALUE at ADDRESS 

VALUE + 1 

VALUE - 1 

function call mark 

return from procedure 

assert error 

case alternative error 

error if VALUE = nil 

ADDRESS + V * 2 

load address of global frame + V words 

load address of local frame + V words 

move V words from SOURCE address to DEST 
address 
load address of common UB 

call standard procedure UB 

call local procedure UB 

call external procedure UB 

· escape to level UB 

load constant UB 

load field in word at ADDRESS starting 

J-30 

.·~ 
,/ 

- ·.'::.-· 

.,'\ 
I 

_/ 

I 
_/ 

~1 
. I 

I 

I 
I 
I 



c 

S7 

S8 

S9 

SA 

SB 

SC 

SD 

SE 

SF 

60 
61 

62 

63 

64 
6S 

66 

67 

68 

69 

6A 

6B 

* 
* 

6F 

70 

* 

ADDRESS 

LDPS,UB BITDISP 
ADDRESS 

LEX,UB 

LOCP,UB 

STP,UB VALUE 
BITDISP 
ADDRESS 

LAC,UB,string 

ADJ,UB 

LDCM,UB,set 

LDM,UB 

STM,UB 

ADDRESS 

SET 
ADDRESS 

STAT,UB 
CSET,W SET 

LDC,W 

LDCL,Wl ,W2 

LDCR,Wl ,W2 
LOP,OP 

ROP,OP 

SETOP,OP 

STGOP,OP,UB 

CRU,OP 

SCOM,OP 

unused opcodes 

LDC,0 

at bit BITDISP of length UB bits 

load field in word at ADDRESS starting at 
bit BITDISP of length UB bits with sign 
extension 

load base of lexical level UB 

load address of procedure UB 

pack VALUE into word at ADDRESS starting at 
bit BITDISP of length UB bits 

load address of string constant of length 
UB bytes 

adjust set so that it is UB words long 

load set constant of length UB words 

load set at ADDRESS of length UB words 

store SET at ADDRESS of length UB words 

statement number UB 
error if set is larger than W words 

load constant w 

load LONGINT constant Wl and W2 

load REAL constant Wl and W2 
next operator is LONGINT opcode 

next operator is REAL opcode 

next operator is SET opcode 

next operator is STRING opcode where 
the strings are UB bytes long 

next operator is CRU operator 

statement comment 

load constant 0 

J-31 



* 
7F 

so 
* 
* 

SF 

90 

* 
* 

LDC,15 

LDL,0 

LDL,15 

STL,0 

9F · STL, 15 

AO 
* 
* 

AF 

BO 
* 
* 

BF 

co 
* 
* 

CF 
DO 
* 
* 

D7 

DS 
* 
* 

DF 

EO 

* 
* 

E7 

ES 
* 
* 

EF 

FO 
* 
* 

F7 

FS 

LDG,O 

LDG, 15 

JPF,l 

JPF,16 

JP,l 

JP,16 
LDX,O 

LDX,7 

STX,O 

STX,7 

LAL,O 

LAL,7 

LEX,1 

LEX,S 

INCA, 1 

INCA,S 

VALUE 

VALUE 

VALUE 

VALUE 

ADDRESS 

ADDRESS 

VALUE 
ADDRESS 

VALUE 
ADDRESS 

ADDRESS 

ADDRESS 

load constant 15 

load value at local frame + 0 words 

load value at local frame + 15 words 

store VALUE at local frame + 0 words 

store VALUE at local frame + 15 words 

load value at global frame + 0 words 

load value at global f~ame + 15 words 

jump forward 1 byte if VALUE = FALSE 

jump forward 16 bytes if VALUE = FALSE 

jump forward 1 byte 

jump forward 16 bytes 
load value at ADDRESS + 0 words 

load value at ADDRESS + 7 words 

store VALUE at ADDRESS + 0 words 

store VALUE at ADDRESS + 7 words 

load address of local frame + 0 words 

load address of local frame + 7 words 

load address of lexical level 1 

load address of lexical level 8 

ADDRESS + 2 

ADDRESS + 16 

J-32 

··~ 

i 



(. 
"--··· 

* unused opcodes 
* 

FF 

J-33 



"'··~·. -·-

' --. -""" 

__ :.-



APPENDIX K 

MPP DX/SC DISKETTE I/0 UTILITY PROGRAM 

K.1 INTRODUCTION 

This utility program is being provided so that a DXlO user may be able 
to read and write files to a SC formatted diskette. This format is 
used by the Rx File Manager as well as the AMPLUS Software Development 
System. Only single-density, single-sided diskettes are supported. 

The utility program is designed to process one diskette per 
invocation. Therefore all commands are performed on one diskette. The 
utility program tries to optimize access to the diskette until another 

. directory is to be processed. Also the system level directory is not 
written out until the end of the session. 

K.2 DXSC PROC 

The DXSC proc invokes the utility program. The SCI prompt is shown 
below: 

DXSC DISKETTE I/O UTILITY PROGRAM 
COMMAND FILE: input command file 
LISTING FILE: listing file 

DISKETTE NAME: diskette drive name 

The COMMAND FILE parameter specifies the file from which commands are 
read. The command syntax will be described below. The default for this 
file is ME which allows commands to be interactively entered at the 
VDT. The LISTING FILE parameter specifies the file to which a log of 
the session is sent. All error messages are also sent to this file. 
The default for this file is ME which displays the messages on the VDT 
as the commands are processed. The DISKETTE NAME parameter specifies 
th name of the drive which contains the diskette to be processed. The 
default for this name is DKOl which is the standard name for the drive 
1 diskette. 

K.3 COMMANDS 

The commands to the utility program are described in this section. 
Each command must be entered one per line without any embedded blanks. 
A command is identified by a command character which must be entered 
in column one. If the command requires parameters, they must be 
entered on the same line with commas separating them. 

K-1 



All names are assumed to be 8 characters or less. File names may ' 
either be a single name or a directory name and member name with a 
period separating the, such as "directory.member". DXlO file names may .'"":"") 
be any length as long as they fit on the command line. One level of _, 
synonym mapping is performed on DXlO file names. 

All numbers ·must be integers with an optional leading "# 0 symbol· 
indicating a hexadecimal number. 

Each command will be described by indicating its parameters and 
describing any output messages or displays generated by the command. 

K.3.1 Display Menu 

This command displays a menu of commands which are supported by the 
diskette utility program. This menu is displayed each time a syntax 
error is detected in a command or when an unrecognized command is 
found. The menu is shown below. 

A(du dump) ,number 
C(reate dir) ,name,entries 
D(elete file) ,name 
I(nit disk) ,volume name,entries,volume id 
M(ap disk) 
P(atch adu),number,disp,list 
Q(uit) 
R(ead file) ,diskette name,DX pathname 
V(erify file) ,diskette name,DX pathname 
W(rite file) ,diskette name,DX pathname 

K-2 

_) 



K.3.2 Display Location Unit - A 

This command allows one allocation unit (AU) to be displayed on the 
listing file. The format of the command is as follows: 

A,number 

The unit number must be given and must range from 0 to 2001. An 
example of the display is shown below. 

- DUMP OF AU - 0 >0000 
(00) 0000 lOFF 4D50 4958 2020 2020 07D2 0000 ( •••• MPIX .... ) 
(10) 464D 0015 0004 0080 0000 0000 0000 0001 (FM ••••••••••••••••• ) 
(20) 0080 0001 0000 0054 0003 E8FF 0001 004D ( ••••••••• T •••.••••• M) 
(30) 0000 554E 5553 4544 0000 0000 0000 0000 ( •• UNUSED ••••••••••• ) 
(40) 0000 0000 0000 0000 0000 0000 0000 0000 ( ................... ) 
(50) 0000 0000 0000 0020 494E 5445 5250 5245 ( ••••••••••• INTERPRE) 
(60) 5449 5645 2052 554E 2D54 494D 4520 5355 ( TIVE RUN-TIME SU ) 
(70) 5050 4F52 5420 2020 2020 2020 2020 2020 (PPORT ) 

K.3.3 Create Directory - C 

This command creates a directory. The format of the command is as 
follows: 

C,name,entries 

The name of the directory must be given as well as the maximum number 
of directory entries. The following message is displayed on the 
listiAg file to indicate that the directory has been created. 

CREATE DIRECTORY "name" ENTRIES = number 

K.3.4 Delete File/Directory - D 

This command deletes a file or directory. The format of the command is 
as follows: 

D,file name 

The name of the file or directory must be given. If a directory name 
is given, the directory and all of its files will be deleted. The 
following message is displayed on the listing file to indicate that 
the file or directory has been deleted. 

DELETE FILE "file name" 

K.3.5 Initialize Volume - I This command initializes 
information for a diskette. If the diskette has not been 
before, it is formatted and must be initialized before any 
written to it. The format of the command is as follows: 

K-3 

the volume 
initialized 
data can be 

I 



I,name,entries,volume id 

The name of the volume must be given first, followed by the number of 
directory entries for the volume level directory, and finally the 
volume identification must be given. The volume identification may be 
up to 40 characters long. The following message is displayed on te 
listing file to indicate that the volume has been initialized. 

INITIALIZE VOLUME 0 name 0 ENTRIES = number 

This command may also be used to reinitialize an existing volume by 
simply using the command 0 I" without any additional parameters. This 
will delete all files and directories from the diskett~, thus 
producing a clean volume. The following message is displayed on the 
listing file to indicate that the volume has been reinitialized. 

REINITIALIZE VOLUME 0 name 0 

K.3.6 Map Diskette - M 

This command produces a display on the listing file which describes 
the contents of. the diskette. An example of the display is shown 
below. 

MAP OF - MPIX 
TOTAL ADUS = 2002 

ID = INTERPRETIVE RUN-TIME SUPPORT 
FREE ADUS = 355 

NAME 'TYPE PROT RECL ADU LEN DATE 
****** MAX ENTRIES = 25 CUR ENTRIES = 14 

HELP BS YES 80 . 25 2 8/22/80 
COLLECT REL YES 256 27 136 8/22/80 
COPY REL YES 256 95 48 8/22/80 
KERNEL BS YES 80 119 3 8/22/80 
MPIX BS YES 80 122 4 8/22/80 
CONFIG BS YES 80 306 27 8/22/80 
US ERIN IT BS YES 80 333 70 8/22/80 
MATH$ DIR YES 84 1375 6 8/22/80 

***** MAX ENTRIES = 5 CUR ENTRIES = 4 
PC ODE NBS YES 128 1381 16 8/22/80 
PROCFIL BS YES 80 1397 9 8/22/80 
SEGMENT BS YES 80 1406 23 8/22/80 
XREF BS YES 80 1429 5 8/22/80 

***** 
****** 

K-4 

-~ 
I .. / 

) 



The volume name and volume identification are given on the first line. 
The total number of allocation units and number of free allocation 
units are given next. Then for each file or directory one line of 
information is given. The name of the file or directory is given in 
the first column. The type of file is in the second column, BS 
indicates a blank suppressed sequential file, NBS indicates a 
non-blank suppressed sequential file, REL indicates a relative record 
file, and DIR indicates a directory. The next column indicates if te 
file is protected. The fourth column gives the logical record length 
in bytes of the file. The next column gives the allocation unit where 
the file begins. The sixth column gives the length in allocation units 
of the file. Finally the last column gives the date of the last update 
made to the file. For directories for the maximum number of entries 
and current number of entries is also given. 

K.3.7 Patch Allocation Unit - P 

This command is used to patch one or more words in an allocation unit. 
It should be used with extreme caution because there is no 
verification performed. The format of the command is as follows: 

P,number,disp,list 

The allocation unit number is given first and must range from 0 to 
2001. The byte displacement of the first word to patch is given next. 
The displacement must be greater than or equal to 0 and less than 128. 
A dump of the patched allocation unit is displayed on the listing 
file. 

K.3.8 Read File - R 

This command reads a file from the diskette to a DXlO file. The format 
of the command is as follows: 

R,file name,source pathname 

The diskette file name is given first followed by the DXlO file 
pathname. The following message is displayed on the listing file to 
indicate that the file is being read. 

READ FILE "file name" 

K.3.9 Verify File - V 

This command reads a file from the diskette and verifies it with a 
DXlO file. The format of the command is as follows: 

V,file name,source pathname 

The diskette file name is given first followed the DXlO file pathname. 
The following message is displayed on the listing file to indicate 

K-5 



that the file is being verified. 

VERIFY FILE "file name" 

K.3.10 Write File - W 

This command writes a file to the diskette from a DXlO file. The 
format of the command is as folows: 

W,file name,source pathname 

The diskette file name is given first followed by the DXlO file 
pathname. The following message is displayed on the listing file to 
indicate that the file is being read. 

WRITE FILE "file name" 

K.3.11 Quit Session - Q 

This command terminates the utility program session. 

K.4 ERROR MESSAGES 

Each error message generated by the utility program is described in 
this section. 

* CANNOT ALLOCATE AU * - The diskette is too full to create 
the directory or the file being written is too large to 
fit on the diskette. 

* DIRECTORY FULL * - The directory does not have enough room 
for another entry. 

* DIRECTORY NAME ALREADY EXISTS - The directory name given 
already exists. 

* DISK I/O ERROR - OP = opcode - STATUS = error - An error was 
found while performing I/O to the diskette. The "opcode" 
indicates th I/O operation being performed and the "erroru 
indicates teh error status returned by the service call. 

* DISKETTE NOT INITIALIZED - COMMAND IGNORED * - The diskette 
must be initialized before any other command processing 
is allowed. 

* END OF FILE ON HOST FILE - An end of file was found on the 
DXlO h?st. ~ile before the ~nd of the diskette file was found. 

* ERROR IN COMMAND SYNTAX - The previous command had a syntax 
error in it. 

) 

-._) 

* FILE IS A DIRECTORY * - The file being read or verified is a _) 

K-6 



( 

I 
\..._::.. .... 

: '~ . 

directory but not a file. 

* FILE NOT FOUND * - The file name given is not present on the 
diskette. 

* FILES DO NOT VERIFY * - The diskette file does not verify with 
the DXlO host file. 

* HOST FILE I/O ERROR - OP = opcode - STATUS = error - An error 
was found while processing a DXlO file. The "opcode" 
indicates the I/O operation being performed and the "error" 
indicates tH error status returned by the service call. 

* INCOMPATIBLE FILE TYPES * - The diskette file being read or 
verified is not compatible with the DXlO hot file. 

* INCONSISTENT AU NUMBER * - An allocation unit is being freed 
which ahs already been marked as being free. This error 
indicates that some information on the diskette may have 
been desroyed. 

* INVALID AU NUMBER * - The allocation unit number must be greater 
than or equal to 0 and less than 2002. 

* INVALID DISPLACEMENT * - The byte displacement given in the 
patch command' is less than 0 or greater than 127. 

* INVALID DISK NAME * - The disk name given in the SCI prompt 
is not a disk device name. 

*INVALID HOST FILE TYPE* - The DXlO host file being.written 
to the diskette is not a relative record or sequential file. 

* NAME IS NOT A DIRECTORY * - The directory named is a file 
but not a directory. 

* NOT A SINGLE DENSITY DISKETTE * - The disk name given in the SCI 
prompt is not a single density diskette device name. 

* TOO MANY ENTRIES * - The number of directory entries is limited 
to 400. 

* TOO MANY SECONDARY EXTENTS - The diskette is too fragmented. 

K-7 

.... -.. · · .. · .. 



_) 

__ / 



c·· 

APPENDIX L 

RTS CLOCK INTERRUPT HANDLER 

Microprocessor Pascal Executive RTS supplies several clock handling 
routines which use the TMS 9901 interval timer to provide a timed wait 
facility for Microprocessor Pascal processes. The clock handler also 
provides for time-slicing. for non-interrupt priority processes. 

PROGRAM CLKINT; EXTERNAL; 

AD This program initializes the clock handling routines and sets the 
TMS 9901 to generate clock interrupts at a given rate. For MPX, the 
9901 generates an interrupt every 10.048 milliseconds; for MPIX the 
interval is 100.02 milliseconds. 

The program 
counter which 
since system 
(31 bits). 

maintains a common CLOCK containing an elapsed time 
registers the number of milliseconds which have elapsed 
startup. This counter will wrap around every 24.8 days 

The program implements time-slicing for non-interrupt priority 
processes by calling the procedure SWAP once every five interrupts. 
This corresponds to once every 50.24 milliseconds for MPX and once 
every 500.1 milliseconds for· MPIX. Time slicing ensures that among 
non-device processes of equal priority no one process will maintain 
exclusive control of the processor; SWAP reorders the scheduling queue 
so that other processes may execute. Note that time-slicing has no 
effect if the most urgent non-device process is the only process of a 
given priority. 

PROCEDURE TWAIT(VAR S: SEMAPHORE; MS: LONGINT; VAR B: BOOLEAN): 
external; 

This procedure performs a timed wait on semaphore S for MS 
milliseconds. Variable B is set to TRUE if the semaphore is signalled 
before MS milliseconds elapse: B is set to FALSE if the time-out 
occurs before S is signalled. 

The procedure inserts semaphore S into a delay queue and then use.s the 
elapsed-time counter initialized by CLKINT to check when the semaphore 
is signalled. 

PROCEDURE DELAY(MS: LONGINT) 1 EXTERNAL; 

This procedure provides a timed delay of execution for Microproce.ssor 
Pascal System processes. MS is the number of milliseconds that a 
process is to be delayed. 

DELAY operates by initializing a semaphore and then calling TWAIT .to 

L-1 

- . -·-:·--: ··-··--:-·-;-· _,_,_"'. __ .- ---- - ----...,... ----· _, ___ _ 



perform a timed wait on this semaphore. 

L-2 



APPENDIX M 

ASSEMBLY LANGUAGE INTERFACE: MPX 

M.1 GENERAL 

When writing assembly language programs to be used with MPX, certain 
conventions must be followed to allow the assembly language routines 
to interface with MPX and the parts of the application written in 
Microprocessor Pascal. These conventions apply to the way in which the 
assembly language code is structured, how routines are called, and 
which registers may be used. This section details these conventions. 

When using the MPX routine linkage mechanisms, the routines must be 
structured according to the proper module format (i.e., procedure, 
function, process). These linkage and module format conventions give 
the code certain properties which increase the reliability and 
flexibility of the software. The standard or optimized linkage 
conventions produce code which is reentrant. These reentrant 
procedures may be executing within· more than one process at a time 
without erroneous results. By using the same portion of code to do two 
or more concurrent tasks, memory space is conserved. The standard 
linkage conventions also produce code which is recursive, allowing the 
procedure to call itself. This property can be very useful when 
solving certain types of complex problems. 

Suggestion: ~o become familiar with the required prologue and epilogue 
of your source modules, try the following: write a Pascal routine with 
the appropriate calling sequence; compile it; run it through CODEGEN; 
then reverse assemble it using RASS. 

M.2 LINKAGE CONVENTIONS 

There are two types of linkage supported for procedure/function 
linkage. The standard linkage provides a modularized approach to 
writing these routines. It allows the calling procedure to know 
nothing about the called procedure except the arguments passed between 
them (no registers must be saved, etc.). The optimized linkage 
provides a faster linkage mechanism for routines which will not call 
any other routines or need any local storage. 

M.2.1 Standard Procedure/Function Linkage 

The standard procedure/function linkage supports parameter passing, 
local storage, reentrancy, and recursion. It acheives these by using 
the stack data structure illustrated in Figure M-1. In this stack, 
stack frames grow from the bottom toward high memory while 9900 
workspaces grow from the top toward low memory. The stack region is 

M-1 



.. ·'·'----·-·--- _. _____ :, -- .: 

allocated when the process is created. A stack overflow error occurs 
when there is not enough stack for another procedure call (the 
stackframes and workspaces overlap). The calling routine~s stack 
pointer (RlO) and local frame pointer (R9) are shown on the left. <'"\ 
These pointers, other system pointers, and the routine~s general . .J 

registers are contained in the workspace pointed to by the workspace 
pointer shown on the left. The called routine gets a new workspace 
allocated ~or it which is pointed to by the workspace pointer shown on 
the right. Registers R9 and RlO in this workspace point to its local 
frame and stack shown on the right. This type of routine nesting 
repeats for as many routines as are called. As routines return to 
their caller, their stack frame and workspace are returned to the 
unused portion of the stack. 

M-2 

j 
j 



Calling Routine Called Routine 
·+-----------------+<--process stack base 

( ) 
( previous ) 
( stack ) 
( frames ) 
( ) 

R9(LF)-->(-----------------) 
( ) 
( parent ) 
( stack ) 
( frame ) 
( ) 

R10(SP)-->(-----------------)<--R9(LF) 
( passed ) 
( parameters ) 
( ) 
(- - - - - - - - -) 
( local ) 
( storage ) 
(-----------------)<--RlO(SP) 
( ) 
( ) 
( unused ) 
( stack ) 
( ) 
( ) 
(-----------------)<--Workspace Pointer 
( ) 
( workspace ) 
( ) 

Workspace Pointer-->(-----------------) 
( parent ) 
( workspace ) 
( ) 

(-----------------) 
( ) 
( previous ) 
( workspaces ) 
( ) 
( ) 
+-----------------+<--process stack limit 

FIGURE M-1. STANDARD STACK NESTING 

M-3 



-
------~-~ ~·---

The stack frame for a standard procedure/function is determined by the 
routine prologue described in Sections M.3.1 and M.3.2. Basically, the 
routine prologue specifies how many parameters the cal~ed routine 
expects the calling routine to have pushed and how much local storage 
the called routine needs. Both the parameters and local .storage are 
referenced using R9(LF) as the base register. 

The standard procedure/function has three data areas that it may use 
to accomplish its purpose.· It may use any of the general registers 
(described in Subsection M.4), local storage, and the stack. The 
general registers should be used for frequently accessed data or if 
only a few words of storage are needed. If the general registers do 
not provide enough data space, then either local storage or the stack 
must be used. Local storage is an area reserved in the stack 
immediately above the passed parameters at the time the 
procedure/function is called. This storage remains through any calls 
this routine makes until the time that it returns. Therefore, this 
space should be used for data which must remain during nested routine 
calls. The stack can be used as scratchpad storage between nested 
calls as long as the stack pointer is returned to its proper value 
before any routines are called. This use of the stack for scratchpad 
data reduces the stack requirements by reusing the same memory 
locations for data and passed parameters. 

When a 
for the 
include 
storage. 
occurs. 

routine is called, there must be enough unused stack to allow 
standard linkage memory requirements. These requirements 
the new workspace, the passed parameters, and any local 
When enough stack does not exist, a stack overflow error 

To make use of the standard procedure/function linkage, the routine ) 
must be called in the proper manner. An example of a call using the 
standard routine linkage is as follows: 

MOV @PARMO,*RlO+ PUSH PARAMETER 0 
MOV @PARMl, *RlO+ PUSH PARAMETER 1 

MOV @PARMn,*RlO+ PUSH PARAMETER n 
DATA CALL$ CALL ROUTINE 
DATA routine name 

This code pushes ~n~ parameters and then calls the routine. All 
linkage functions are acheived by the standard MPX routine CALL$$. 
Errors will result if the actual number of parameters passed is 
different than the number of parameters expected by the called 
routine. The called routine references the passed parameters at 
displacements 0 to 2*n off of R9 as follows: 

MOV 
MOV 

MOV 

*R9 ,@PARMO 
@ 2 ( R9 ) , @PARM 1 

@2*n (R9) ,@PARMn 

GET PARMO 
GET PARM! 

GET PARMn 

M-4 



f any local storage is specified, this storage starts at displacement 
(2*n)+2 off of R9 and extends for as many bytes as specified. 

When the called routine has completed, it returns via 
branch and link to the appropriate procedure or function 
This routine deallocates the stack regions allocated 
routine (parameters, local storage, and workspace) 
execution of the calling routine. 

M.2.2 Optimized Linkage 

a branch or 
exit routine. 
to the called 
and resumes 

An alternative to the standard procedure/function linkage is the 
optimized linkage mechanism. This linkage executes much faster but 
does not perform many of the functions of the standard linkage. The 
optimized linkage allocates a new workspace for the called routine, 
but it does not initialize any registers (i.e., SP or LF) in this new 
workspace. The optimized linkage does not allocate any local storage 
for the called process. Any routine which was called with the 
ptimized linkage cannot call ot9er routines. 

Figure M-2 illustrates the stack after an optimized procedure/function 
linkage. The calling routine's workspace pointer and registers are 
shown on the left, while the called routine's workspace pointer is 
shown on the right. Register 13 in the new routine's workspace points 
to the previous workspace. This is the link through which passed 
parameters are accessed. 

M-5 



Calling Routine Called Routine 

+-----------------+<--process stack base 
( ) 
( previous ) 
( stack ) 
( frames ) 
( ) 

R9(LF)-->(-----------------) 
( ) 
( parent ) 
( stack ) 
( frame ) 
( ) 

RlO(SP)-->(-----------------) 
( ) 
( ) 
( unused ) 
( stack ) 
( ) 
( ) 
(-----------------)<--Workspace Pointer 
( ) 
( workspace ) 
( ) 

Workspace Pointer-->(-----------------)<--Rl3 
· ( parent ) 

( workspace ) 
( ) 

(-----------------) 
( ) 
( previous ) 
( workspaces ) 
( ) 
( ) 
+-----------------+<--process stack limit 

FIGURE M-2. Optimized Stack Nesting 

The only data area directly available to an optimized 
procedure/function is the general registers in the new workspace. The 
optimized linkage does not allocate any local storage or update the 
stack pointer. 

The calling sequence to an optimized procedure/function is identical 
to the calling sequence for a standard procedure/function. This 
similarity allows the calling routine to call other routines without 
knowing how the routines are coded (either standard or optimized). 
When the MPX linkage routine determines that the called routine is 
using the optimized linkage, it branches directly to the new routine~s 
code. 

The called routine must access any parameters using the stack pointer 
of the previous routine. The called routine is also responsible for 

M-6 

) 



updating the callers stack pointer before it returns. The called 
routine can reference the passed parameters as follows: 

MOV @ 2 0 ( Rl 3 ) , Rl PUT CALLERS SP IN Rl 
AI Rl,-(2*n) DECREMENT CALLERS SP 
MOV Rl,@20(R13) UPDATE CALLERS SP 
MOV *Rl+ ,@PARMO GET PARMO 
MOV *Rl+,@PARMl GET PARMl 

MOV *Rl+ ,@PARMn GET PARMn 

If a function result is to be returned, it may be done as follows: 

MOV @RESULT,@20(R13) RETURN FUNCTION RESULT 

When the optimized procedure/function has completed, it returns to the 
calling routine via a return with workspace pointer (RTWP) 
instruction. This takes the saved workspace pointer, program counter, 
and status from registers R13 through RlS and restores them. 

M.2.3 Process Linkage 

The process linkage mechanism is very similar in use to the standard 
procedure/function linkage. Parameters are passed in an identical 

·manner and the process is called in an identical manner. The called 
process gets the parameters in an identical manner. However, the 
effect on the stack is quite different. The initial code of a process 
contains calls to the executive which create a new stack region (along 
with a process record and other process data structures) for the new 
process to execute from. Once this initial code has executed the 
calling procedures stack returns to the state it was in prior to 
pushing parameters and calling the process. The new processes~ stack 
and process record are allocated from the heap region of its calling 
process. If the calling process does not have a heap, the stack and 
heap are allocated from the system heap. 

When calling a process, the caller must have 458 bytes of available 
stack. This stack is necessary to support the procedure calls required 
to start the new process. The calling process must also have enough 
heap to supply a process record and the stack for the called process. 

M.3 SOURCE MODULE FORMAT 

To make use of the MPX linkage mechanisms, routines 
in a certain structure. It is this structure which 
mechanism to operate. The basic structure consists 
segments within the routine: 

M-7 

-- .- ···:·.:. -.,- .. ,,. ~-....,, -- . 

·.·· ... 
- " - :;· .. 

must be formatted 
allows the linkage 
of the following 



--~----· --·---~~ 

+-----------------+ 
( routine ) 
( descriptor ) 
(-----------------) 
( routine , ) 
( prologue ) 
(-----------------) 
( ) 
( routine ) 
( body ) 
( ) 
( ) 

(-----------------) 
( routine ) 
( epilogue ) 
+-----------------+ 

The routine desriptor contains constants needed by the linkage routine 
upon routine entry. The routine prologue contains any code necessary 
to start the routine. The routine body is the code which actually 
performs the purpose of the routine. The routine epilogue is the code 
required to exit the routine. 

M.3.1 Standard Procedure 

A standard procedure requires a desriptor, body, and epilogue. The 
desriptor contains the following information: 

+-----------------+<--procedure address 
( start ) Offset to beginning of 
( offset ) procedure body (in bytes) 
(-----------------) 
( end ) 
( off set ) 
(-----------------) 
( local size ) 
( ) 

(-----------------) 
( frame size ) 
( ) 
(-----------------) 
( IR$LO ) 
( ) 
+-----------------+ 

Off set to procedure 
epilogue (in bytes) 

Size of local storage needed · 
(in bytes) 

Size of total stack frame 
(in bytes) 

System defined constant 

The start offset defines the offset to be added to the procedure 
address for the initial procedure program counter. The end offset 
defines the off set to be added to the procedure address in case the 
procedure is aborted. The local size specifies how many bytes should 
be allocated from the stack when the procedure is called for use as 
local storage. The frame size specifies the total stack frame size 
including passed parameters and local storage. Both the local size and 
frame size should be even values. IR$LO is a system defined constant 

M-8 

··\ 



required by the linkage routine. 

The procedure body consists of· the assembly language staements 
required to acheive the procedure~s desired effect. This will vary 
from procedure to procedure. 

The procedure epilogue contains a branch to the MPX procedure exit 
routine EXIT$P: This routine r~~urns execution to the calling routine. 

0.3.2 Standard Function 

The standard function format is very similar to the standard procedure 
format, the only difference being that the epilogue section of the 
function must return the function result. A standard function epilogue 
consists of the following: 

BL @EXIT$n 
DATA mmmm 

In this example, nnn is the length of the result in words and nmmmm" 
is the displacement into the stack frame in bytes of the result. The 
EXIT$n routine returns the function result at the stack pointer of the 
calling routine and returns execution to the calling routine. 

0.3.3 Process 

The standard process format contains a descriptor, prologue, body, and 
f"' epilogue. The desrciptor contains the following information: 

" ' . 

M-9 



+-----------------+<--process address 
( start ) Offset to beginning of 
( offset ) process body (in bytes) 
(-----------------) 
( ,end ) 
( off set ) 
(-----------------) 
( 0 ) 
( ) 

(-----------------) 
( parameter ) 
( size ) 
(-----------------) 
( IR$LO ) 
( ) 

(-----------------) 
( frame size ) 
( ) 

(-----------------) 
( lexical ) 
( level ) 
(-----------------) 
( process ) 
( priority ) 
(-----------------) 
( process ) 
( stack size ) 
(-----------------) 
( process ) 
( heap size ) 
+-----------------+ 

Offset to process 
epilogue (in bytes) 

Zero constant 

Size of passed parameters 
(in bytes) 

System defined constant 

Size of stack frame needed for 
process body (in bytes) 

Lexical nesting level 

Process priority 

Size of stack region to be 
allocated for process (in words) 

Size of heap required for 
process (in words) 

The start offset, end offset, IR$LO, and frame size have the same 
meaning as for a standard procedure or function. The parameter size 
specifies how many bytes of parameters that the calling routine has 
pushed onto the stack. The lexical level specifies the number of 
levels that this process is nested within other processes. The lexical 
level of a system is O, a process called from the system has a lexical 
level of 1, a process called from that process has a lexical level of 
2, etc. The process priority specifies the relative urgency of this 
process compared to other processes. The lower the numerical prioity, 
the greater the urgency. The process stack size specifies how many 
words of stack will be required for the routines within the process. 
The process heap size specifies how many words of heap memory the 
process will need. A process requires a heap if it calls another 
process or allocates heap packets using the heap management routines. 

The prologue of a process is required to actually initialize the 
process data structures and schedule the process according to its 
priority. The prologue contains the following start up code: 

M-10 

··~ 

I 

) 



( 
\ 

MOV @ >A ( RB ) , * Rl 0 + PASS FRAME SIZE 
MOV @>C(RB) ,*RlO+ PASS LEX LEVEL 
MOV @>E(RB) ,*RlO+ PASS PRIORITY 
MOV @ > 10 ( RB ) , * Rl 0 + PASS STACK SIZE 
MOV @ > 1 2 ( RB ) , * Rl 0 + PASS HEAP SIZE 
DATA CALL$ CALL START PROCESS 
DATA S$PRCS 

This code passes the necessary parameters from the process descriptor 
to the process start procedure S$PRCS. 

The epilogue of a process permanently suspends execution of the 
process so that it does not compete with other processes for 
execution. The epilogue contains the following termination code: 

MOV 
DATA 
DATA 
B 

@>C(RB),*RlO+ 
CALL$ 
E$PRCS 
@EXIT$P 

PASS LEX LEVEL 
CALL PROCESS TERMINATION ROUTINE 

COMPLETE TERMINATION PROCESSING 

This code passes the necessary parameter from the process descriptor 
to the process termination routine and then branches to the procedure 
exit routine to finish the termination processing. 

M.3.4 Optimized Procedure/Function 

The optimized procedure/function format contains very little except 
the routine body. The format of an optimized routine is as follows: 

+-----------------+<--descriptor 
( 0 ) 
(-----------------)<--body 
( ) 
( routine ) 
( body ) 
( ) 
( ) 
(-----------------)<--epilogue 
( RTWP ) 
+-----------------+ 

The zero constant indicates to the linkage routine CALL$$ that this 
routine is in an optimized format. The return with workspace pointer 
(RTWP) instruction returns to the calling routine when this routine is 
finished. 

M.4 REGISTER USAGE 

MPX uses certain registers within procedure, function, and process 
workspaces to maintain system level pointers. These registers must not 
be changed by the application software or erroneous results may occur. 
The following registers may not be changed at any time: 

M-11 

. ' 



Rl3 - Old Workspace Pointer. This register maintains 
a link to the prvious routine~s workspace. 

Rl4 - Old Program Counter. This register maintains a 
link to the previous routine~s program counter. 

When using the standard linkage mechanism, the following 
registers are assigned special purposes and may not be altered by 
the application software: 

R7 - Process Record Pointer. This register contains 
the address of the process record for this process. 

RS - Code Base. This register contains the adrres of 
this routine and may be used as a base register. 

R9 - Local Frame. This register contains the address 
of this routine~s stack frame which contains passed 
parameters and local storage. 

RlO Stack Pointer. This register contains this 
routine~s stack pointer. 

The remaining registers RO, Rl, R2, R3, R4, RS, R6, Rll, Rl2, and 
RlS may be used by the application softwar&. Of these, Rl2 is 
reserved as the CRU base if any CRU operations are to be 
performed. Rll is the subroutine link register and may be used as 
such for subroutine linkage outside of the MPX environment. 

M.5 EXAMPLE PROGRAM 

The MPX demonstration program is included at 
section as an example of an an ssembly 
interfacing with the MPX environment. The 
application is to blink a light emitting 
continually. 

the end of this 
language program 
purpose of the 
diode on and off 

The demonstration program contains four routines. Of these, three 
are processes and one is a procedure. The system process, SYSTM$, 
calls the level one process, PRCSl. Because PRCSl is of lesser 
urgency than SYSTM$, it does not gain control of the processor at 
this time. SYSTM$ continues execution in its process termination 
code. Once SYSTM$ has been permanently suspended, PRCSl gains, 
control. It initializes a semaphore in its local storage and then 
calls the process, TIME, passing a time constant and the 
semaphore as parameters. Because TIME is of lesser urgency than 
PRCSl, it does not gain control of the processor at this time. 
PRCSl continues execution by initializing its CRU base (Rl2) to 
zero. It then WAITs for the semaphore to be signalled. When PRCSl 
becomes suspended due to its WAIT, TIME gains control. It calls 
the DELAY procedure passing the time constant which was passed to 
it. DELAY enters a loop which repeats as many times as the time 

M-12 

~ 
I 
I 



constant and then returns. At this point, TIME SIGNALS the 
semaphore passed to it. This SIGNAL causes PRCSl (which is more 
urgent than TIME) to be reactivated. PRCSl turns the LED off via 
a Set Bit to Zero instruction and then WAITS on the semaphore 
again. This causes it to be suspended again and TIME resumes 
execution. TIME loops back to call DELAY again. Once DELAY 
returns, it again SIGNALS the semaphore. This SIGNAL reactivates 
PRCSl which then turns the light back on via a Set Bit to One 
instruction. PRCSl then loops back to WAIT to turn the light off 
in an infinite loop. 

This demonstration program illustrates how a problem can be 
divided into simpler tasks which execute independently. In this 
example, the TIME process could be replaced by another process 
which used an interval timer connected to an interrupt to perform 
the delays. This major system modification would not effect the 
other processes within the system. 

The following is the source to the demonstration program. 

TITL 'MPX DEMO PROGRAM' 
IDT 'DEMOPGM ' 

************************************************************************' 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 

THIS SYSTEM CONTAINS THREE PROCESSES AND ONE PROCEDURE 
WHICH BLINK AN L.E.D. ON AND OFF CONTINUALLY 

THIS PROGRAM IS DESIGNED TO RUN ON A TM990/101 CPU 
BOARD WITH EXPANSION MEMORY. IF IT IS DESIRED FOR THIS 
PROGRAM TO EXECUTE ON A TM990/100M BOARD, THEN A LIGHT EMITTING 
DIODE SHOULD BE CONNECTED TO THE CRU LINE AT BASE ZERO IN 
SUCH A WAY THAT WHEN THE LINE IS LOW, THE LIGHT IS ON. 

* 
* 
* 
* 
* 
* 
* 
* 
* 

************************************************************************ 
DEF SYS TM$ * MODULE DEFINITION 
REF IR$LO * <-+ 
REF CALL$ * 
REF S$PRCS * 
REF E$PRCS * EXTERNAL REFERENCES 
REF EXIT$P * TO MPX MODULES 
REF WAIT * 
REF IN I TSE * 
REF SIGNAL * <-+ 

M-13 



PSEG 
*********************************************************************** 
* 
* 
* 

SYSTEM PROCESS 

*********************************************************************** 
* DESCRIPTOR 
***** 
SYSTM$ EQU 

DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

***** 

$ 
TOP1-SYSTM$ 
BOT1-SYSTM$ 
0 
0 
IR$LO 
0 
0 
1 
400 
0 

* PROLOGUE 
***** 
TOPl 

***** 
* 
***** 

***** 

MOV 
MOV 
MOV 
MOV 
MOV 
DATA 
DATA 

BODY 

@>000A(R8) ,*RlO+ 
@>000C(R8) ,*RlO+ 
@>000E(R8) ,*RlO+ 
@ > 0 0 10 ( RS ) , * Rl 0 + 
@>0012(R8) ,*RlO+ 
CALL$ 
S$PRCS 

DATA CALL$ 
DATA PRCSl 

* EPILOGUE 
***** 
BOTl MOV 

DATA 
DATA 
B 

@>000C(R8) ,*RlO+ 
CALL$ 
E$PRCS 
@EXIT$P 

* OFFSET TO THE BEGINNING OF CODE ~BODY~ 
* OFFSET TO PROCESSS TERMINATION CODE 
* ZERO CONSTANT 
* PARAMETER SIZE = 0 
* SYSTEM REQUIRED DATA WORD 
* FRAME SIZE = 0 
* LEXICAL LEVEL = 0 
* PROCESS PRIORITY = 1 
* STACKSIZE = 400 
* HEAPSIZE = 0 
* 
* 
* 
* FRAME SIZE 
* LEXICAL LEVEL 
* PROCESS PRIORITY 
* STACKSIZE 
* HEAPSIZE 
* START THIS PROCESS (WHICH IS THE SYSTEM) 
* 
* 
* 
* 
* BEGIN THE NEXT LEVEL PROCESS 
* 
* 
* 
* 
* PUT THE LEXICAL LEVEL ON THE STACK FOR 
* THE PROCESS TERMINATION CODE 
* 
* 

M-14 

--~' 

) I 



(-·. 
:,. 

\ ...... : 
. ·:· 

*********************************************************************** 
* 
* PRCSl PROCESS 
* 
*********************************************************************** 
* DESCRIPTOR 
***** 
PRCSl EQU $ 

***** 

DATA TOP2-PRCS1 
DATA BOT2-PRCS1 
DATA 0 
DATA 0 
DATA IR$LO 
DATA 2 
DATA 1 
DATA 30 
DATA 500 
DATA 2000 
DATA 32000 

* PROLOGUE 
***** 
TOP2 

***** 
* 
***** 

MOV 
MOV 
MOV 
MOV 
MOV 
DATA 
DATA 

BODY 

@>000A(R8) ,*RlO+ 
@>OOOC(RB) ,*RlO+ 
@>OOOE(RB) ,*RlO+ 
@>0010(R8),*R10+ 
@>0012(R8) ,*RlO+ 
CALL$ 
S$PRCS 

MOV R9, *RlO+ 
CLR *RlO+ 
DATA CALL$ 
DATA INITSE 
MOV @>14(R8) ,*RlO+ 
MOV *R9, *RlO+ 
DATA CALL$ 
DATA TIME 
CLR R12 

LOOPl MOV *R9,*R10+ 
DATA CALL$ 
DATA WAIT 

***** 
* 
***** 
BOT2 

SBZ 0 
MOV *R9, *RlO+ 
DATA CALL$ 
DATA WAIT 
SBO 0 
JMP LOOPl 

EPILOGUE 

MOV @>C(RB) ,*RlO+ 

* OFFSET TO BEGINNING OF CODE 'BODY' 
* OFFSET TO PROCESS TERMINATION CODE 
* ZERO CONSTANT 
* PARAMETER SIZE = 0 
* SYSTEM REQUIRED DATA WORD 
* FRAME SIZE = 2 
* LEXICAL LEVEL = 1 
* PROCESS PRIORITY = 30 
* STACKSIZE = 500 
* HEAPSIZE = 2000 
* TIMING CONSTANT = 32000 
* 
* 
* 
* TOTAL STACKFRAME SIZE 
* LEXICAL LEVEL 
* PROCESS PRIORITY 
* STACKSIZE 
* HEAPSIZE 
* START THIS PROCESS. 
* 
* 
* 
* 
* PUT THE SEMAPHORE ADDRESS ON THE STACK 
* SEMAPHORE INITIAL VALUE = 0 
* INITIALIZE THE SEMAPHORE. 
* 
* PASS TIME DELAY CONSTANT 
* PASS SEMAPHORE 
*START PROCESS 'TIME'. 
* 
* INITIALIZE CRU BASE 
* PUT THE SEMAPHORE ADDRESS ON THE STACK. 
* WAIT FOR THE SEMAPHORE TO BE SIGNALED • 
* 

. 
* TURN LIGHT OFF 
* PUT SEMAPHORE ADDRESS ON STACK 
* WAIT FOR SEMAPHORE TO BE SIGNALED 
* 
* TURN LIGHT ON 
* REPEAT FOREVER 
* 
* 
* 
* LEXICAL LEVEL IS NEEDED FOR PROCESS TERM 

M-15 

• .....,. •. -,or,:_;-~--~~·~-._,- - V- , ----- ------ •-.o-...-~ T~--1- .,.....~~ -- •:· •. --.-:·••-: .--_,.....,....,,c,...;--::;- ~...-•-.;-:.-:..,--..-: -...-- ·--,.--.-,..-,.,.,._,....__..,, ,_" -~ ---.-- --~· -· -.~- ,,,.__. :•• 

... · '• . -. . ·' .. :~;._ - . ~ . 
. , .. - . ·. '···,·: ·-- .. :-.. -· , .. -; ·-.--



<• .. ··' 

DATA CALL$ 
DATA E$PRCS 
B @EXIT$P 

* 
* 
* 

M-16 

I 
I . ~~/ 



*********************************************************************** 
* 
* TIME PROCESS 
* 
*********************************************************************** 
* DESCRIPTOR 
***** 
TIME EQU $ 

DATA TOP3-TIME 
DATA BOT3-TIME 
DATA 0 
DATA 4 
DATA IR$LO 
DATA 4 
DATA 2 
DATA 40 
DATA 50 
DATA 0 

***** 
* PROLOGUE 
***** 
TOP3 EQU $ 

MOV @>A(RB) ,*RlO+ 
MOV @ > C ( RB ) , * Rl 0 + 
MOV @>E(RB) ,*RlO+ 
MOV @>10 (RB) , *RlO+ 
MOV @ > 12 ( RB ) , * Rl 0 + 
DATA CALL$ 
DATA S$PRCS 

***** 
* BODY 
***** 
LOOP2 MOV *R9, *RlO+ 

DATA CALL$ 
DATA DELAY 
MOV @ 2 ( R9 ) , * Rl 0 + 
DATA CALL$ 
DATA SIGNAL· 
JMP LOOP2 

***** 
* EPILOGUE 
***** 
BOT3 MOV @>C (RB), *RlO+ 

DATA CALL$ 
DATA E$PRCS 
B @EXIT$P 

* 
* OFFSET TO BEGINNING OF CODE 'BODY' 
* OFFSET TO PROCESS TERMINATION CODE 
* ZERO CONSTANT 
* PARAMETER SIZE = 4 
* REQUIRED DATA WORD 
* FRAME SIZE = 4 
* LEXICAL LEVEL = 2 
* PROCESS PRIORITY = 40 
* STACKSIZE = 50 
* HEAPSIZE = 0 
* 
* 
* 
* 
* TOTAL FRAME SIZE 
* LEXICAL LEVEL 
* PROCESS PRIORITY 
* STACKSIZE 
* HEAPSIZE 
* 
* 
* 
* 
* * PASS DELAY CONSTANT 
* CALL DELAY PROCEDURE 
* 
* PASS SEMAPHORE 
* SIGNAL THE SEMAPHORE 
* 
* REPEAT FOREVER 
* 
* 
* 
* PUT LEXICAL LEVEL ONTO THE STACK 
* PROCESS TERMINATION CODE 
* 
* 

M-17 



.:r... 

*********************************************************************** 
* 
* 
* 

DELAY PROCEDURE 

*********************************************************************** 
* DESCRIPTOR 
***** 
DELAY EQU $ 

DATA TOP4-DELAY 
DATA BOT4-DELAY 
DATA 0 
DATA 2 
DATA IR$LO 

* 
***** 
* BODY 
***** 
TOP4 EQU $ 

CLR R2 
LOOP3 EQU $ 

c R2, *R9 
JGT BOT4 
INC R2 
JMP LOOP3 

***** 
* EPILOGUE 
***** 
BOT4 EQU $ 

B @EXIT$P 
END 

* * OFFSET TO THE BEGINNING OF CODE ~BODY~ 
* OFFSET TO THE PROCEDURE TERMINATION CODI 
* LOCAL VARIABLE SIZE = 0 
* FRAME SIZE = 2 
* REQUIRED SYSTEM DATA WORD 

* THIS PROCEDURE DELAYS 
* FOR THE AMOUNT OF TIME 
* IT TAKES TO EXECUTE 
* N LOOPS, IN WHICH 
* REGISTER R2 IS INCREMENTED 
* BY ONE AS A TIME WASTING 
* OPERATION. N IS THE 
* PARAMETER PASSED TO IT 
* BY PROCESS "TIME". 
* N IS FOUND BY *R9 
* BECAUSE R9 IS A POINTER 
* TO THE PROCEDURE~S LOCAL 
* FRAME, WHERE PARAMETERS 
* ARE PUT BY THE CALLER. 
* 

M-18 

----.... 



,---. 
r -

$CREATECHANNEL • • 13-8 
$DEBUG • • • • • • • • 3-3 
$EXEC • • • • • • • • • 15-9 
$LREX • • • • • • • • • 15-2 
$NULLBODY • • • • • 5-16 
$PAGE • • • • • 3-4 
$RAMTB • • • • 15-2 
$RESTA • • • • • • 15-2 
$RESUME •••••••• 5-7 
$SEGTB • • • • • • •• 15-9 
$VAR • • • • • • • 8-2 
AB • • • • • • • •. 3-8 
ABNORMAL TERMINATION MESSAGES 7-3 
ABNORMALLY •• 7-2,13-17 
ABORT COMMAND • • • • • 4-8 
A~P • • • • • • •• 6-3,6-27 
ABS •••••••••• 8-7,8-10, 

8-20 
ABSTRACT OPERATIONS ON SEMAPHORES 

9-6 
/- ACCESS DECLARATIONS • • 6-22, 8-32 
I ADD • • • • • • • • • • 8-7 

ADDR ••••••••• 15-12 
ALLOCATION OF CONVENTIONAL PASCAL 

PROGRA.M • • • • • : 12-9 
ALLOCATION OF NEW PROCESS 12-8 
ALLOCATION OF PROCESS RESOURCES 

12-8 
ALLOCATION OF SYSTEM PROCESS OR 

12-8 
ALLOCATION OF WORKSPACES IN CONFIG 

15-6 
ALTEXTERNALEVENT ••• 9-17 
AMPL • • • • • • • 1-7,6-9, 

AMPLUS 
8-2,15-1 

• • 1-5, 4-1, 
4-5,4-10 

ANYFILE • • • • 8-2 
ARITMETIC • • • 8-19 
ARRAY ••••••••• 8-10,8-21 
ARRAY TYPE • • • • • • 8-10 
ASR$ ••••••••• 14-4,14-5 
ASR$SUPERVISOR • • • • 14-5 
ASSEMBLY LANGUAGE CODING 

CONVENTIONS •••• 15-21 

INDEX 

I-1 

ASSEMBLY LANGUAGE INTERRUPT 
HANDLERS ••••• 9-15,15-1, 

ASSEMBLYEVENT 
ASSERT STATEMENT 

15-9, 15-15 
••• 9-20,15-15 

ASSIGN BREAKPOINT AB 
ASSIGN BREAKPOINT TO 

COMMAND • • • 
ASSIGNMENT STATEMENT 

ASTERISKS • • • • • 
BACK TAB FUNCTION 

• 7-3,8-43, 
8-47,13-10 

• 6-19 
PROCESS 

• 6-27 
• 8-35,8-43, 

8-44. 
• • 5-4 

• 4-15 
BACKSPACE • • • • • 14-24, 

14-26,14-29 
•• 15-10,15-14 

. 15-2,15-3, 
15-5,15-6, 

BAD$PC 
BAD$WP 

15-7 
RADOP • • • • • • • • • 5-42 
BGN$PC •••••••• 15-7,15-8 
BGN$WP •••••••• 15-7,15-8 
BINDING OF FILE NAMES • 8-61 
BKPT ••.•..... 3-12,6-19 
BLOCK COMMANDS •••• 4-3,4-4, 

4-10,4-19 
BOOLEAN TYPE . • • • • 8-8 
BOOTSTRAP ••••••. 11-1,11-2 
BOTTOM COMMAND •••• 4-17 
BRACKETS • • • • • 6-9,8-15 
BREAKPOINTS SINGLE STEP 6-2,6-19 
BUFFER .••••••• 3-2,10-6 
BUFFERS ASSOCIATED WITH FILE 

VARIABLES • • • • • 10-20 
CALL$ • • . • • • • 5-35 
CASE STATEMENT •• 7-3,8-43, 

8-49,13-11 
CASSETTE •••.••• 14-14,14-15 
CHANNEL ABORTIONS ••• 14-9,14-26 
CHANNEL MODE ••••• 14-7,14-22 
CHANNEL NAME ••••• 6-29,14-7 
CHANNELS • 6-28,14-6 
CHAR TYPE • • • . • 8-8 
CHARACTER CONSTANTS • 
CHARACTER SET • • • • 
CHECK SYNTAX COMMAND 
CHECKERBOARDING • • • 

• 8-4,8-5,8-8 
• 8-1,8-42 

4-12 
• 12-6 

i 
~ 
I 



CIF • • • • 6-28, 6-29 
CKINDEX • • • • • • • • 5-9 
CKPTR • • • • • 5-9 
CK SEMAPHORE • • •, • 9- 7 
CKSET • • • • • 5-9 
CKSUB • • • • • • • 5-9 
CLEAR LINE FUNCTION •• 4-17 
CLOCKINTERRUPT •• 9-17 
CMD KEY •••••••• 3-12,4-7 
CODE GENERATOR ERROR MESSAGES 5-42 
CODE GENERATOR LISTING 5-33 
CODEGEN •••••••• 5-19,5-32 
CODEGEN EXECUTION MESSAGES 5-32 
COEFFICIENT • • • • • • 8-61 
COF •••••••••• 6-28,6-29 
COLLECT • • • • • • • • 13-10 
COMMAND PROCESSING ERRORS 4-22 
COMMAND SUMMARY • • • • 4-2 
COMMAND SYNTAX ERRORS • 4-21,6-31 
COMMON DECLARATION PART 8-29,8-31 
COMMONS 8-27 
COMPILER • • • • • 1-2,1-5 
COMPILER AND NATIVE CODE GENERATOR 

5-1 
COMPILER ERROR MESSAGES 5-21,5-32 
COMPILER EXECUTION MESSAGES 5-1 
COMPILER LISTING ••• 5-1,5-2, 

6-33 
COMPILER-ENFORCED • 1-1 
COMPONENT LENGTH ••• 13-6,14-7 
COMPOUND STATEMENT 8-43 
CONCURRENCY •••••• 1-1,1-3 
CONCURRENT CHARACTERISTICS 8-34 
CONDITIONAL READS AND WRITES 10-22 
CONDUCTING A DEBUGGING SESSION 

6-12 
CONFIG • • • • • • • • 15-1 
CONFIGURATIONS • • • • 10-15 
CONFIGURING TARGET SYSTEMS FOR 

INTERPRETIVE ••• 15-1 
CONFIGURING THE MICROPROCESSOR 

PASCAL SYSTEM ••• 15-1 
CONNECT INPUT FILE COMMAND CIF 

6-28 
CONNECT OUTPUT FILE COMMAND COF 

6-29 
CONNECTIONS OF FILES WITH DIFFERENT 

10-21 
CONST • • . • • • . • . 8-28 
CONSTANT DECLARATION PART 8-29, 

8-30 
CONSTANTS • • • • • • • 8-3 
CONVENTIONAL PASCAL PROGRAM 

EXECUTION • • • • • 7-1 

I-2 

COPY COMMAND •• 4-19,6....:16, 
6-35 . 

COPY STATEMENT •••• 4-28,5-9, 
8-29,11-7 

CORRECTING THE ERRORS • 4-7 
CPU •••••••••• 1-2,9-1,9-5 
CRASH ROUTINE ••••• 15-20,15-21 
CREATING A FILE • • • • 4-5 
CRITICAL TRANSACTIONS • 11-13, 

13-11,13-12 
CRU •• • 6-30,6-31, 

10-1 
CSEGS • • ••••• 12-1,12-2 
CSIGNAL • • • • • • • • 9-14 
CT$ENTER ••••••• 13-12,13-17 
CT$EXIT • • 13-12,13-17 
CURRENT LINE MARKER • • 4-11 
CURSOR • • • • • • • • 4-1 
CURSOR-DOWN • • • • • • 4-16 
CURSOR-LEFT • • • • • • 4-16 
CURSOR-RIGHT • • • • • 4-16 
CURSOR-UP • • • • • • • 4-16 
CURSOR AT LAST LINE • • 14-28 
CWAIT • • • • • • • 9-14 
DAB • • • • • • • • 6-2,6-20, 

OAP • • • • • • • 
DATA DECLARATIONS • 
DATA TYPES • • • • 
DB • • • • • • • • 

6-32 
• 6-15 

• • 8-28 
• • 8-6 

6-20,6-32 
• 6-27 DBP • • • 

DEADLOCK 
DEBUG 

• • • • • • • 9-11 
••••••• 1-6,3-8, 

5-9' 6-2' 
10-19 

DEBUG COMMAND • • 
DEBUGGER • • • • • 

• 6-9,6-15 
•• 1-6,6-1 

DEBUGGER COMMANDS • 6-9,6-10, 
6-15,6-31, 
13-9 

DECLARATION • • • • • • 8-25 
DECLARATION OF A CONVENTIONAL 

PASCAL • • • • • • 11-5 
DECODES • • • • • . • • 8-64 
DELETE ALL BREAKPOINTS DAB 6-20 
DELETE BREAKPOINT DB • 6-20 
DELETE BREAKPOINT FROM PROCESS 

COMMAND • • • • 6- 2 7 
DELETE COMMAND • • • • 4-20 
DELETE LINE FUNCTION • 4-18 
DELIMITERS •••••• 8-1,8-48, 

8-52 
DEMULTIPLEXER ••••• 14-9,14-10 
DESCENDANTS • • • • 11-8 

) 
__ _,/ 



( 

DETAILS OF ASSEMBLY LANGUAGE 
SEGMENT • • • • • • 15-23 

DEVICE CHANNEL ABORTIONS 14-9 
DEVICE CHANNEL DESTRUCTION 14-8 
DEVICE CHANNELS •••• 10-12,13-9, 

14-3, 14-8, 
14-16 

DEVICE COMMUNICATION USING CRU 
10-1 

DIFFERENCES BETWEEN NATIVE AND 
PCODE • • • • • • • 5-19 

DISCONNECTION • • • • • 10-14 
DISPLAY ALL PROCESSES COMMAND DAP 

6-17 
DISPLAY PROCESS COMMAND DP 6-18 
DOWN-ARROW •••••• 4-7,4-16 
DUPLICATE LINE FUNCTION 4-17 
DYNAMICALLY ALLOCATED DATA AREAS 

12-1 
EDIT • • • • • • • • • 4-3 
EDITING AN EXISTING FILE 4-6 
EDITOR • • • • • • •• 1-5 
EDITOR COMMANDS AND FUNCTIONS 4-2, 

4-10 
ENCODE AND DECODE • • • 8-62 
END OF CONSUMPTION HANDLING 14-7, 

14-8 
• 4-20 

10-20 
END-BLOCK • • • • • • 
END-OF-CONSUMPTION 
END-OF-FILE • • • • •• 4-6,4-27, 

8-55 
END-OF-LINE • • • • . • 8-56 
ENDING A SESSION • • 6-31 
EOF • • • • • ••• 4-6,10-19 
EOLN • • • • • • • 10-18 
ERR$CLASS • • • • • 13-14 
ERR$REASON • • 13-14 
ERR$RSET • • • • • • • 13-14 
ERROR MESSAGES • • 7-2 
ERROR RECOVERY AND EXCEPTION 

HANDLING • • • • . • 13-1 
ESCAPE STATEMENT • • • 8-43 
ESTIMATING SPACE REQUIREMENTS OF 

PROCESS • • • • • • 12-6 
EXAMPLE EDIT SESSIONS • 4-5 
EXCEPTION ERRORS • 13-4 
EXCEPTION HANDLING • • 13-1 
EXECUTION MESSAGES 5-1,5-32, 

5-34, 7:2 
EXECUTIVE 
EXECUTIVE 

. EXECUTIVE 
(EXECUTIVE 

••••• 1-1,1-3 
RTS DETECTED ERRORS 13-1 
RTS FILES • • 10-9 
RUN TIME SUPPORT· 1-7, 

2-3, 9-1 . 

I-3 · 

--- -·~ -·-. -o-·,·-::-::·.-., - --· ·-: . 

EXIT$P •••••••• 5-35,5-40 
EXPRESSIONS •••••• 8-35,8-40 
EXTERNAL DECLARAT.IONS • 8-36 
EXTERNALEVENT ••••• 9-16,9-17 
EXTERNALS • • • . • • • • 5- 4 2 , 6- 2 
F$$CLASS_FILE_ERROR •• 14-22, 

14-26,14-30 
F$$REASON_CHANNEL_AB • 14-22, 

14-26,14-30 
F$BSPACE ••••• 14-24, 

14-27,14-29 
F$BUFFERS • • • • • • • 10-21 
F$CHABORT • • • • • • • 10-24 
F$CHBUFFERS •••••• 10-21,13-6 
F$CLENGTH • • • • • • • 10-21 
F$CONDITIONAL ••••• 10-22,13-6 
F$CREATECHANNEL • • 13-6,14-7 
F$EOC • • • • • • • 10-20,13-7, 

14-8,14-15 
F$LASTSUCCESSFUL ••• 10-22,10-23 
F$MASTER ••••••• 13-7,14-6 
F$STEOC •••••••• 10-20,13-7, 

14-8 
F$STLENGTH •••••• 10-21,13-6, 

14-7,14-12 
F$STMODE • • • • • • • 13-6 
F$ULENGTH ••••••• 13-8,14-7 
F$USERMODE •••••• 13-6,13-7 
F$WAIT •••••••• 13-6,14-8, 

F$XACCESS • 
14-14 

•••• 13-8,14-8, 
14-12 

• • • 14-15 F$XACESS • • • • 
F$XACESSS • • • • 
FILE ERRORS • • • • • 

• 14-30,14-32 
• 13-5,13-10, 

14-22,14-26 
FILE I/O ERRORS • • 4-22 
FILE TYPE ••••••• 8-10,8-12, 

8-16' 10-9 
FIND COMMAND • • • 4-16 
FORWARD DECLARATIONS • 5-28,8-36 
FREE • • • • • • • • • 12-1 
FREE$ • • • • • • • • • 12-3 
FUNCTION CALLS •••• 8-40,8-41 
FUNCTION DECLARATIONS • 8-28,8-33 
FUNCTION TB TEST BIT • 10-3 
GENERAL FEATURES OF INTERRUPT 

HANDLING • • • 9-21 
GENERAL ROUTINES • • • 9-21 
GO COMMAND •••• 6-14,6-21 
GOTO STATEMENT • • • • 8-43 
HALT ••••••••• 4-18,6-31, 

7-3 

. I 
I . I 
I 



HEAP ••••••••• 2-9,8-32, 
8-38 

HEAP$TERM ••••••• 12-3,12-4 
HEAPSIZE • • • • • • • 8-38 
HELP COMMAND ••••• 4-12,4-22 
HOLD PROCESS COMMAND HP 6-18,6-28 
HOME FUNCTION· ••••• 4-16 
HOST AND TARGET SYSTEMS 1-5 
HOST DEBUGGER • • • • • 3-8 
HOST DEBUGGER GUIDE • • 6-1 
HOST FILE ERRORS • • • 13-10 
HP''• ••••••••• 6-28,6-35 
HPMAX ••••••••• 12-7 
HPMIN • • • • ••• 12-7 
I$DIVC •• 5-35,5-37 
IDENTIFIERS •••••• 8-1,8-2 
IDLE$P •••• 3-9,6-8, 

6-15 
IMPLEMENTATION OF DEVICE HANDLERS 

14-1,14-6 
IMPLEMENTATION OF INITIALIZATION 

PROCEDURE ••••• 14-17 
IMPLEMENTATION OF SEMAPHORES 9-15 
IMPLEMENTATION OF SUPERVISOR 

PROGRAM • • • • 14-18 
IMPLEMENTATION OF VDT KEYBOARD 

LOGICAL • • • • 14-22 
IMPLEMENTATION OF VDT SCREEN 

LOGICAL • • •••• 14-19 
IN$'P.C • • • • • • • 15-9,15-10, 
. '?,:,' 15-14 

INCORRECT USE OF SEMAPHORES 9-8 
INITCLOCKDEVICE • • 9-17 
INITSEMAPHORE ••••• 9-7,13-2 
INPC ••••••••• 15-17 
INPUT COMMAND • • • • • 4-14 
INSERT CHARACTER FUNCTION 4-18 ... 
~NSERT COMMAND •••• 4-19,4-21 
INSERT LINE FUNCTION • 4-17 
INTEGER AND LONG INTEGER CONSTANTS 

8-4 
INTEGER AND LONGINT TYPES 8-7,8-58 
INTEGER CONSTANT EXPRESSIONS 8-30, 

8-43 
H{'DERNAL EVENTS • . • • 9- 5 

,!N.!.P.E.RPRETIVE RTS FOR THE TARGET 
15-1 

INT_E.~PROCESS COMMUNICATION USING 
8 ~.:,M,ESSAGE BUFFERS • • 10-1, 10-6 · • 

INTERPROCESS COMMUNICATION USING ' ... .,,, ' 

.~ SHARED VARIABLES • 10-1,10-5 
INTER~ROCESS FILE s IMULATION 
-u.~·COMMANDS • • • • • 6-28 

I-4 

INTERRUPT DEMULTIPLEXER 9-24,14-3, 
4-9I14-10 -, 

INTERRUPT ERRORS • • • 13-2 
INTERRUPT HANDLING 9-15,15-15 
INTERRUPT ROUTINES 9-18 
INTERRUPT SIMULATION COMMAND SIMI 

6-30 
INTERRUPTS TREATED AS EVENTS 9-15 
INWP$ • • • • • • • 15-6 
IWP$ ••••••••• 15-17 
IWP$SZ • • •••• 15-5,15-6 
IWP$SZ- • • • • • • 15-3,15-5, 

15-8 
KEYWORD SYMBOLS • • • • 8-2 
KINDS OF PARAMETERS •• 4-10,6-9 
LABEL DECLARATIONS •• 8-28,8-29 
LANGUAGE EXTENSIONS TO SUPPORT 

PROCESSES • • • 2-8 
LANGUAGE VOCABULARY AND 

REPRESENTATION 8-1 
LB •••••••••• 6-2,6-20 
LDCR • • • • • • • 6-30,10-3 
LIST BREAKPOINTS LB • • 6-20 
LITERAL ••••.••• 15-24 
LOAD COMMAND • • • • • 6-16 
LOAD CRU VALUE COMMAND LDCR 6-30 
LOC • • • • • • • • • • 8-18 
LOGICAL DEVICE CHANNEL 14-6 
LOGICAL DEVICE INTERFACE PROCESS 

14-6 
LOGICAL END OF CONSUMPTION 10-20 
LOGICAL END OF FILE • • 10-20 
LONGINT .••• 8-2,8-7 
LOOK-AHEAD 10-20,10-21 
LOW-LEVEL ••.•••• 1-2,12-3 
LP$ • • • • • • • • 14-11 
LP$HEAPSIZE • • • • • • 14-12 
LP$PUT .••• 14-12,14-13 
LP$STACKSIZE • 14-12 
LP$SUPERVISOR •.••• 14-11,14-12 
LREX • • • • • 15-1 
LROUND . • • • • • • • 8-10 
LSBYTE . . . • • • 8-26 
LTRUNC • • • • • • • • 8-10 
MANAGEMENT OF.SYSTEM MEMORY 12-1 
MAXIMUM NUMBER OF CONNECTED USER 

14-8 
MAXINT •••. 14-26,14-27 
MAXUSED ~ ••• 12-7,12-8 
MC • • • . •• 6-2,6-23 
ME • • • • • • • • 5-3 8 
MECHANISMS TO OBTAIN VALID SYSTEM 

5-17 
MEMORY MANAGEMENT • • • 12-1 



( 
' 

MEMORY-MAPPED • • • 10-1,10-4 
MESSAGE BUFFER •••• 10-7 
MESSAGE INDEX ••• 10~7 
MF •• -. • • • 6-2,6-23 
MH • • • • • • • • 6-2,6-23 
MI • • • • • • • .' 6-2,6-24 
MICROPROCESSOR PASCAL SOURCE FILE 

DEFINITION • • • • 4-1 
MICROPROCESSOR PASCAL SYSTEM 

FEATURES • • • • • 1-1 
MICROPROCESSOR PASCAL _SYSTEM 

OVERVIEW • • • • • 1-1 
MM •••••••••• 6-2,6-24 
MOD • • • • • • • • • • 8-42 
MODIFY COMMON COMMAND MC 6-23 
MODIFY FRAME COMMAND MF 6-23 
MODIFY HEAP COMMAND MH 6-23 
MODIFY INDIRECT COMMAND MI 6-24 
MODIFY MEMORY COMMAND MM 6-24 
MONITOR PROCESS SCHEDULING 6-3, 

MOVE COMMAND 
MP • • 19 • • • 

MPIX • • • • • 

6-26 
••• 4-19,4-22 

•••• 1-4,9-20 
•••• 1-4,1-7 

MPX • • • • • • 1-4,1-7 
• 1-1 

1- c; 

• 8-37,9-1, 
9-3 
11-3,11-12 

NATIVE CODE GENERATOR • 1-6,1-7, 

MULTI-TASKING • • • • 
MULTI-USER • • • • 
MULTIPROGRAMMING 

MY$PROCESS 

5-1, 5-9, 
5-32 

NESTED • • • • • • 2-5 
NEW LINE FUNCTION • • • 4-15 
NEW$ • • • • • • • • • 12-3 
NO$ASM • • • • • • • • 15-14 
NOALTEXTERNALEVENT •• 9-19,13-2 
NOASSEMBLYEVENT •••• 9-20,15-16 
NOEXTERNALEVENT •••• 9-19,13-2 
NULLBODY ••••••• 5-9,5-19 
ODD • • • • • • • • 8-7 
ONEXCEPTION • • • • • • 13-4, 13-13 
OPCODE •••••••• 7-3,13-10 
OPTIONAL PARAMETERS •• 4-11,6-11 
ORD • • • • • • • • • • 8- 7 
OTHER COMPILER ERROR MESSAGES 
OVERLAY • • • • • • • • 8-25 
OVERRIDING THE TYPE STRUCTURE 
P$ABORT • • • • • • 11-13 
P$LASTPROCESS • • • • • 11-12 
P$SUCCESSFUL • • • 11-12 
PACKED TYPES • • • • • 8-19 
PAGINATION • • • • 10-12 

5-32 

8-26 

, ... 
-._1, ·, :,..., . 

I-5 

PARALLELISM • • • • 2-3 
PARAMETER • • • • • 4-10, 4-11 
PARSER •••• 4-27,4-28 
PASCAL COMPILER •••• 1-3,1-6, 

4-1,5-1, 
12-2 

PASSING FILES AS PARAMETERS 8-62 
PCODE • • • • • • • • • 1-3 
PHYSICAL DEVICE INTERFACE 

INITIALIZATION PROCEDURE 14-4 
PHYSICAL DEVICE INTERFACE 

SUPERVISOR PROGRAM 14-5 
PHYSICAL DEVICE INTERFACE SYSTEMS 

11-2, 14-J.·:1 
PLUG-COMPATIBLE • • • • 10-10 A J ·~ ~:··! 
POINTER TYPE ••••• 8-17 
POLLFILES • • • • • • • 10-22 
POLLING •••••••• 9-14,10-22 
PROBLEM DEFINITION AND STRUCTURING 

3-1 ,, 
PROCEDURE CRUBASE • • • 10-2 
PROCEDURE DECLARATIONS 8-28,8~33 
PROCEDURE DISPOSE • • 12-2 
PROCEDURE FREE$ • • 12-3 
PROCEDURE HEAP$TERM 12-3 ·· 
PROCEDURE LDCR LOAD CRU 10- 3" 
PROCEDURE NEW • • • • • 12-2 ·:-.'.:~_,_· 

PROCEDURE NEW$ • • • • 12-3 
PROCEDURE SBO • • • 10-3 ,;:r;1} 
PROCEDURE SBZ • 10-3 
PROCEDURE STATEMENT • • 8-44, g:..;.45,,;i: 

8-57,8-59,. 
8-6 3 · .. :'·~:·~·./ .: 

PROCEDURE STCR STORE CRU 10-l· •~- - '·_
PROCESS AND ROUTINE PARAMETERS. ·r - T~ 

6-10 ) ''· I 

PROCESS COMMUNICATION • 10-1 - ·- .. · »:;· 
PROCESS DECLARATION • • 2-8, 8-~"33; ': 

8-38, 8~45 / 
11-7,11-8 

PROCESS DECLARATIONS • 2-5,2-8, 
8-33,11-5 

PR.OCESS HEAP ••••• 8-38,12-6, 
13-4 

PROCESS INVOCATION • • 11-11 
PROCESS MANAGEMENT • • 9-1, ll_;yy. 

11...;13 ,ilJ";.:;ir!, 
13-17 

PROCESS RESOURCES • • • 1-r, t:::li1-S::jC 
12::..6·,:::.11-0 

PROCESS STACK • • • 8.;~:fa ,-{-2;zJ131,J 
12~9 ... !3-4 

PROCESS SYNCHRONIZATION AND Pi:(OC~SS 
MANAGEMENT • • • • g~ 1 , '-' 



PROCESS TERMINATION •• 11-13,14-30 
PROCESSES AS INTERRUPT HANDLERS 

2-4 
PROGRAM DECLARATION • ·• 8-32,11-4 
PROGRAM MODIFICATION • 4-3,4-4, 

4-10, 4-17 
PROGRAM SEGMENTS • 7-1 
PROGRAM-DEPENDENT • • • 2-10 
PURE ASSEMBLY LANGUAGE INTERRUPT 

' 'HANDLERS ••••• 15-15 
PUT_COMMAND •••••• 4-20,4-21 
QUALIFIED VARIABLES •• 8-5,8-6 
QUEUING • • • • • • 9-6 
QUIT COMMAND ••••• 4-3,4-4, 

4-8,4-12 
RAMTABLE ••••• 15-12 
RANDOM FILE OPERATIONS 8-61,10-19 
RANGES • • • • 5-28 
RASS • • • • • • • • • 5-34 
RASS LISTING FILE • • • 5-34 
RE$START ••••••• 13-15,15-13 
READ~ • • • • • • • • • 8-58 
READtN • • • • • • 8-58 
REA~·coNSTANTS •• 8~4 
REAL 'TYPE • ·. ~' • • • • • 8-9' 
REALTIME • ·• ~ • • l:-3, 1-7 
RECO~O TYPE'·'~ ,~ .• ' • • • 8-12 
RECOVERY, OF FILES ••• 13-16 
REENTRANty··;·'·· ~:· .• ~-; •· ) 2~4,2-10 
REFERENCE PARAMETER • • 8-34 
REIN.ITI,A{.IZE • • • • •· 13-J,~ 
REBATIVF,; POSITIONING • 4-3,4-7 
RELEASE 0 ROCESS COMMAND RP 6-28 
REPEAT STATEMENT . .. • -S-4 3, 8- 5 2 
REPLA-CE COMMAND • • • • 4-18 , 4- 2 i 
REVERSE ASSEMBLER • • .- •.. 5- 34 i 5- 4 i' 
REWRITE • • • • • • • • 8- 5 5 . ·' 
ROLL-DOWN • • • • • 4-15 
ROLL-UP • • • • • • • • 4..-'l 5 . , . 
RSET ,. • • • • • • • 11-2;15:-i~l ·:~ 
RTS·'. ~ • • • • • • • 1- 7 
RTS SEMAPHORE ROUTINES 9-11 
RUN TIME SUPPORT ERROR MESSAGES 

7-2 
RUNTIME •••.•••• 3-9,6-17, 
~3.r,-~.l· . 8-60 
RUN'Fi'ME-SUPPORT • • • • 1-2 
RX •• • ••••••• 1-7,1-8 
SA.MPJ!.E·· QEBUG <SESSION • 3-7 
SAMPLE MPP SYSTEM • • • 3-1 
SAVE COMMAND· ••••• 4-1315-20;,.: 

6-13 c" 
SAV:ING. THE FILE • • • • 4-8, 4-9 ~ .. ' 
SBO • • ·.· • • • • 6- 3 0 .. ~ ,; 

I-6 

SBZ • • • • • • • • 6-31 
SC • • • • • • • • 6-33 
SCALAR TYPE • • • • 8-8 
SCANNER . • • • • • • • • 5-1 , 5- 2 
SCHEDULING ERRORS • 13-2 
SCHEDULING POLICY • • • 9-1 
SCOPE •·• • • • • • 2-6 
SOP •••••••••• 6-3,6-27 
SE COMMAND • • • • 6-16,6-34 
SELECTION OF CRU MODE COMMAND 6-30 
SEMAPHORE • • • • • • • 9- 6 
SEMAPHORE ERRORS • 13-2 
SEMAPHORE TYPE • • • • 8-18 
SEQUENTIAL FILE OPERATIONS 8-55 
SET BIT TO LOGIC ONE • 6-30 
SET BIT TO LOGIC ZERO • 6-31 
SET TAB INCREMENT COMMAND 4-16 
SET TYPE • • • • • 8-14 
SET VALUE ••••••• 8-15,8-40 
SETNAME •••••••• 7-2,10-11 
SETPRIORITY •••••• 9-4,13-2 
SETUP AND TERMINATION COMMANDS 

SF • • • 
SH • • • 
SHOW COMMAND 

4-12 
• • • 6-2i 
• • • • • 6-22 
••••• 4-3,4-4, 

4-10,4-21 
SHOW COMMON COMMAND SC 6-22 
SHOW HEAP COMMAND SH 6-22 
SHOW INDIRECT COMMAND SI 6-23 
SHOW MEMORY COMMAND SM 6-23 
SHOWING MODIFYING DATA COMMANDS 

6-21 
SI ••••• 6-23,6-24, 

6-33 
SIGNALS . . . . 2-4,9-12, 

9-13 
SIMI • • • • • 6-3,6-30 
SIMPLE COMMUNICATION MECHANISMS 

SIMPLE STATEMENTS 
SIMPLE TYPES 
SIMPLE VARIABLES 
SIN • • • • • • 

10-1 
8-43 

• 8-6 
• 8-5,8-36 

• • 10-14 
SINGLE-BIT • • • • 1-1 
SINGLE-STEP •••••• 6-2,6-20, 

6-21 
SINGLE-USER •••••• 1-5 
SIZE ALGORITHM FOR PACKED TYPES 

8-19 
SKIP FUNCTION • • • • • 4-18 
SM-· •..•• • •••••• 6-2,6-9, 

~; . ..: 6- 2 3 , 6- 3 3 
· SOFTWARE DEVELOPMENT TOOLS 1-5 

.. 
··'~-...,, 

' .. -. ~ 



SOFTWARE ORGANIZATION OF 
MICROPROCES.SOR PASCAL 2- 5 

SOURCE EDITOR • • • 1-5 
SP • • • • • • • • 5-35 
SPAWNED • • • • • • 2-6 
SPECIAL SYMBOLS •• 4-5,8-1,8-3 
SPECIFICATION OF RAM LOCATIONS 

12-1,15-3 
SPECIFICATION OF RESTART AND LREX 

15-6 
SPLIT LINE FUNCTION 4-18 
SPURIOUS INTERRUPT • • 9-21 
SQR. - ••• 8-7,8-10,,.-

SQRT 
SRA • 
SREF 

8-44 
• • • • • • • • • 8-36 

••••••• 15-21 
• • • • • • • • • 15-9 

SS 
ST 

•••••••••• 6-2,6-20 
•••••••••• 8-20,8-21, 

14-4 
STACK • • • 2-9 
STACKSIZE • • • • • • • 3-4 
START AND END BLOCK FUNCTIONS 4-19 
START STATEMENT • • • • 8-43 
START$TERM • • • • • • 11-13 
START-ADDRESS • • • • • 15-2 
START-BLOCK • • • • • • 4-20 

( .. ~~~~~I~G •A• S~S~I~N • • • ~=~; 
'~~~ 

STATE OF THE PROCESS • 2-4 
STATICALLY LOCATED DATA AREAS 12:;-~, 
STATMAP • • • • • • • • 5-9 
STATUS DISPLAY COMMANDS 6-17 

rr··, 

r .•• ' • .' 

STORE CRU VALUE COMMAND STCR 6-31 
STRING CONSTANTS • • • 8- 4, 8- 5 ... 
STRUCTURED STATEMENTS • 1-6 
STRUCTURED TYPES ••• 8-5,8-6, 

8-10 
STWP ••••••••• 5-37,5-39 
SUBRANGE TYPE ••••• 5-25,8-9 
succ . . . . . . . . . 8-7 
SVC • • • • • • •• 4-23,15-23 
SWAP • • • • • 9-4 
SWPB ••••••••• 15-21 
SYNTAX CHECKING ERROR MESSAGES 

4-23 
SYNTAX ERROR NUMBER DESCRIPTION~ - . 

- 5-21 _, ,-,·2 
SYNTAX-CHECKING • • 6-1·2 - ,, 

.. "'! \_,. 

SYSTEM • • • • • • • • 2-6 
SYSTEM CRASH • • • • •'', 13-17~ · ·.~~ ::.. )r( 

- SYSTEM DECLARATION • • a-28 ~11-1 •ir-: 
1 ' SYSTEM MEMORY • • • • • 1-2, 2-9 - . 
~--.TAB FUNCTION • • • • •. 4..:152'r:,. "·.'f'".' C? 

I-7 

TAGFIELD ••••••• 4-25,5-25, 
8-14 

TAGTYPE • • • • 8-14 
TARGET • • • • • • • • 1-2 
TB •••••••• 6-30,10-2, 

14-13 
TECHNIQUES OF CODE STYLE 9-22 
TERMSEMAPHORE • • • • • 9-8 
TEST CRU BIT COMMAND TB 6-30 
TEXT FILE.OPERATIONS • 8-56,8,..57, 

r 10-16 ,:~ .,,, .... , 
THE MJ?P CODE GENERATOR 5-~J, ~;~:~.--:-1 
THE N~TIVE 

1
:,CODE GENERATO~-~~s!.~~~~?1 

THE .. SAMPLE SYSTEM • • • 3-·1 -. . .. 
TIME-CRITICAL APPLICATIONS .107 
THj!NG • •. • • • .. • . • • 5-L··. ·.r~:: .. ~ .~·~ 
TMAM9000.: •• ;.. • • 1~5,4 ... 1~·4...:~ 
TOFF COMMAND. • • • 6-2, 6_::2~; ;:~ 

· 6-..2§ T ~~--~·.; 
TOP ,_COMMAND • • • • • - 4-17 :'~ .,,;:~;;~" 
'l'P .. - • . ~ .. • . : ; • • • • • 6- 2 r 6~ 2 ~ t-l35T 
TR •• ~ • • • • • 6-2~6~~§~~~ 
TRACE ECHO OFF COMMAND ··TOF:f'. 1~-6P.·:.i::i 
TRACE ECHO ON CO~ND TON · 6-~6J.:'E5:i 
TRACE PROCJ;:SS COMMA,ND TP 6-2~TJA2H 
TRACE ROUTINE ENTRY EXIT-cO~N0::2q 

_ 6- 2 5" ~:.vc::•aR 
TRACf1 .. ~TATEMENT FLOW COMMAND .. ':t'~'V13:'..:":H 

TRACING COMMANDS 
TRUNCATE - • : ~ • • -·- . ' 

6-2 5 ... ..,.~·~·~r:r~ 
- .. ' '"~ }J. "'-~ "."'."• ~:--.)1 

• 6-24 --.;~r• ·~1;, 
a..., 7 ,a .. :..ifi; ::--~ 

I -'t>.~-.:,~.t \,J 

8-4 2 :, Z.i:E .. 13.H 
TYPE COMPATIBILITY • • a,..25, a'?.t4.:ar,;. 
TY~* 0 ..QEC.LARA'f.ION 'PART • 8-.29 •:-~;~Q:scr 
TYP.E""'.TAAN~FER • • • 8-2.6 ;·~·c':T',•'?<,T 
UNMASK ' ·: ._· ' : ·,·· ._·· • • •. 9- 2 2 ' .;.-;; .,':~;:.; 

,, . ·-· ..... ~ ,) .• "'._ .. ,l'l 

UNPACK · ., . • • • • • • 8-1:2 , -,:::: .. : c:.; 
UNUSED SPACE • • • • • 10-4 · _ , 
UP-~RROW •. • • • · • • • 4-7, 4-16 
USE OF A.SSEMBLYEVENT • 15-li,15~1S 
USE OF COMMONS •••• 12-4. 
USER CUSTOMIZATION OF THE 

INTERPRETIVE • 15-9 
USER ERRORS • • • • • • 13-2 · ... !'.Jr 
USER INTERFACE AND OPERATION 14-16 
VARIABLE DECLARATION :PART· -· 87,f~~l'f-iT.J'B 

. ~-31 x~ 
VARIABLE MAP • • ,; ;>fi5'.. ·:·5~-li,S'ti~f''.!1iL..2 
VARIABLE-SIZE •'~-····-!c 12..,.J. :>L.:·=.nM~ 
VARIANTS . • • • • • r:5- 2 8 :c 3'.T • .i<; S 
vDT$SUPERVISOR • • • • 14-18 
VDTINIT$ • • • • ,T; :14'.;:..26;;154;..!32: 
VDTINIT$HANDLER • .. 14~26 , OB2 



VDTKEYBOARD • • • • 14-18,14-ln 
VDTKWORK... • .·14-22,14-23 
VDTSCREEN ••••••• 14-18,14-21 
WAITSIGNAL •••.•• · 9-13 
WIDTH RANGE • • • • • • 10-2 
WP$ .-. • • • • 15-2 
WP$-I • • • • • • • 15-2,15-6 
WRITELN • • • • • • • • 8-56 

I-.8 
._../ 

J i . I 

I 
'1 

i-
i 




