TEXAS INSTRUMENTS

Improving Man’s Effectiveness Through Electronics

Model 990 Computer
TX990 Operating System

Programmer’s Guide
(Release 2)

MANUAL NO. 946259-9701
ORIGINAL ISSUE 1 APRIL 1977
REVISED 15 DECEMBER 1977
REVISED 1 SEPTEMBER 1978

Digital Systems Division

L

(:) Texas Instruments Incorporated 1978
A1l Rights Reserved

The information and/or drawings set forth in this document and all rights in and
to inventions disclosed herein and patents which might be granted thereon disclos-
ing or employing the materials, methods, techniques or apparatus described herein
are the exclusive property of Texas Instruments Incorporated.

INSERT LATEST CHANGED PAGES DESTROY SUPERSEDED PAGES

LIST OF EFFECTIVE PAGES

Note: The portion of the text affected by the changes is

indicated by a vertical bar in the outer margins of
the page.

Model 990 Computer TX990 Operating System Programmer’s Guide
(Release 2) (946259-9701)

OFivimalilsSUet St B e 1 April 1977
ReviSediioie= = r bedondis Cone 20 Sl B Rl e LS R 15 December 1977 (ECN 41915)
RleviSE e M s e e U R 1 September 1978

Total number of pages in this publication is 286 consisting of the following:

PAGE CHANGE PAGE CHANGE PAGE CHANGE
NO . NO . NO. NO. NO. NO .
EOVeTr e i e 0 AppendixéBiDivE S S 0 AppendixeKa)vas Ses 0
Efifective Bagesi-t i s, 0 BalE=BEE it e 0 Kel=TKe9s s e 0
TG AN S s o e e 0 IADpEndixdEIDIvASEEEEE 0 Appendixi B pa i 0
1 Al SR fia o s 0 @HRE@ S = e 0 | Bl TS Aol s S v e 0
ALEOO St o 0 AppendixiDiDive i E 0 AppendxEVEDIyEE IR 0
el e S 0 DIIRCADGH =i e 0 I BV R e R 0
ASeAtE S 0 Appendix EDiv 0 Alphabetical Index Div. . . .0
SRR n e ARl ot 0 IS B e T, (e 0 [ndex-ls=iindex-8iee i 0
ARG e e s 0 Appendiza RV e 0 [fsenisIRGS pOn SRS 0
it T/OYe e e 0 | Bl o Bl e 0 Business Reply 0
B RGeS 0 Appendine G Dive i 0 Cover Blankise Saseeis S 0
O [FR) St - R 0 GElE oG = o o 0 Coyenaeiescie b v A al 0
OB RS SR T v e 0 AnpendixihiDIiyaE g 0
bl ol e S e 0 FEISSRRo s o e 0
IOHIBEel 0% ~ooue See LA 500 0 A pend il SN 0
IR BEG v aan e 2 e 0 RISl s s e 0
Appendix ADiy ot oo ogn 0 AppendpeliRDiy R EE RS 0

A oA S e 0 el 0= o il e 0

946259-9701

PREFACE

This manual enables the user to employ the TX990 Operating System, in its standardized or
customized modular configuration (including associated utility programs), with the user’s
standardized or customized hardware configuration.

The sections and appendixes of this manual are organized as follows:

I General Description — Provides a general description of the TX990 Operating System and
its utility programs.

II Loading the Operating System — Provides several alternative step-by-step procedures for
loading the Operating System.

Il Operator Communication Package (OCP) — Describes the keyboard commands available
to the operator for communicating interactively with the TX990 Operating System (e.g.,
to load a program, abort a task, abort an I/O operation, debug a program, set and clear
breakpoints, et al).

IV~ Control Program — Describes how to use the Control Program to load and execute program
from the console.

\% Programming Tasks — Describes how to program user tasks to run under TX990.

VI Executive Supervisor Calls — Describes how the user can employ the executive manage-
ment capability of the Operating System through programmed supervisor calls.

VII Device and File I/O Supervisor Calls — Describes how the user can employ the executive

management capability of the Operating System for controlling an input/output device or
file.

VIII Diskette OCP System Utility (SYSUTL) Program — Describes the keyboard commands
available to the operator for communicating interactively with diskette devices and files.

IX System Generation (GENTX) Utility Program — Describes how the user can customize an
operating system for a specific hardware and software configuration.

X Diskette/Disc Backup and Initialize (BACKUP) Utility Program — Describes how to copy
(or backup) and verify diskettes, as well as initialize new diskettes.

XI Object Manager (OBJMGR) Utility Program — Describes how to copy standard and
compressed object modules from diskette-, cassette-, or card-files onto diskette or cassette
files and how to organize the files by deleting or adding modules.

XII LIST80/80 (LIST80) Utility Program — Describes how to copy 80-character records
from one device or file to another.

XIII Diskette Dump (DSKDMP) Utility Program — Describes how the user can load, display,
and modify diskettes on an allocation unit basis.

iii Digital Systems Division

e]
e‘—%\@p 946259-9701

A List of Supervisor Calls — Provides a list of all the TX990 Operating System supervisor
calls.

B Device Character Sets — Lists the character sets for the 911 VDT, 913 VDT, 733, 743 or
820 Data Terminals, 804 Card Reader, 810, 306, 2230, 2260 and 588 Line Printers,
33 ASR Teletypewriter.

C User-Supplied Modules — Describes user-supplied software modules that may be required
for unique peripheral devices, user’s extended operations, or user supervisor calls.

D Glossary — Clarifies selected words used in this TX990 Operating System Programmer’s
Guide.

E TX990 Compatibility with RX990 and DX10 — Describes the considerations to be met
to achieve upward compatibility of tasks from the TX990 Operating System to the
RX990 or DX10 Operating System.

1]

Compressed Object Code Format — Describes the compressed object code format.

Task State Codes — Lists and describes the task state codes.

H Printout of Fatal Task Error Codes or Display of Illegal Interrupt Code — Lists and
describes the fatal task error codes and the illegal interrupt code.

I I/O Error Codes — Lists and describes the I/O error codes available to the user, when
coding a program, for printout or display on a terminal device.

J System Tasks — Describes the eight system tasks capable of being included in the TX990
Operating System.

K System Generation using DX 10 Release 3.0 — Steps involved in TX990 system generation
on a DX10 system.

L Support for the 32 I/O Module — Describes the I/O supervisor call and system generation
support for the 32 I/O module supported by TX990 as a special device.

M Support for the 5MT/6MT Module — Describes the I/O supervisor call and system
generation support for the SMT/6MT special device supported by TX990.

The following documents contain additional information related to the TX990 Operating System
and are referenced herein this manual:

Title Part Number

Model 990 Computer Terminal Executive Development 9462589701
System (TXDS) Programmer’s Guide

Model 990 Computer TMS9900 Microprocessor Assembly 943441-9701
Language Programmer’s Guide

Model 990 Computer Model FD800 Floppy Disc System 945253-9701
Installation and Operation

iv Digital Systems Division

S—

946259-9701

Title

Model 990 Computer Model 913 CRT Display Terminal
Installation and Operation

Model 990 Computer Model 911 Video Display Terminal
Installation and Operation

Model 990 Computer Model 733 ASR/KSR Data
Terminal Installation and Operation

Model 990 Computer Model 804 Card Reader Installation
and Operation

Model 990 Computer Models 306 and 588 Line Printers
Installation and Operation

Model 990 Computer PROM Programming Module
Installation and Operation

990 Computer Family Systems Handbook

Model 990 Computer Communications Systems
Installation and Operation

Model 990 Computer DX 10 Operating System
Programmer’s Guide

Model 990 Computer Communications
System Software

Model 990/10 Computer RX990
Operating System Programmer’s Guide

Part Number

943457-9701

945423-9701

945259-9701

945262-9701

945261-9701

945258-9701

945250-9701

945409-9701

945257-9701

9462369701

22500659701

v/vi

Digital Systems Division

946259-9701

TABLE OF CONTENTS
Paragraph Title Page

SECTION I. GENERAL DESCRIPTION

1.1 Overview . . e e e e e e e e e e e e e e 1-1
1.2 Supported Hardware e e e e e e e e e e e e e e 1-2
1.3 File Management Features .. 1-3
1.3.1 VolumeNameso 1-3
1.3.2 Sequential Files o . oL o oL 0L, 1-3
1.3.3 Relative Record Files .. 14
134 Program Files00 ... 14
14 Logical /O L Lo 14
14.1 Pathnames L L0000 L. 1-5
1.4.2 I/OModeso e 1-6
1.5 SupervisorCalls L L. oo e 1-6
1.6 Operator Interfaces e e e e e e 1-6
1.7 System Memory Layout Consrderatrons e e e e e e e e e e e e e 1-6

SECTION II. LOADING THE OPERATING SYSTEM

2.1 Introduction . . . e e e e e e e e e e e e e 2-1
2.2 Loading the TX990 Operatmg System C e e e e e e e e 2-1
2.2.1 Loading from Diskette e e e e e e 2-1
2.2.2 Loading from Cassette Using Drskette/Cassette ROM Loader e e e e 2-2
2.23 Loading from Cassette Using Card/Cassette ROM Loader 2-3
2.3 Initialization . . . e e e e e e e e e e e e e e e e e e 2-4
2.3.1 Initialization Using OCP e C e e e e e e e e e e e 2-4
2.3.2 Initialization Using the Control Program e e e e e e e e e e e 2-5
2.4 Manual System Restart L. 2-5

SECTION III. OPERATOR COMMUNICATION PACKAGE (OCP)

3.1 Introduction . . . e e e e e e e e 3-1
3.2 Activating and Deactlvatmg OCP e e e e e s e e e 3-1
33 LUNOs e e e e e e e e e e e e e 3-1
34 Command Format and Syntax e e e e e e e e e e e e e 3-1
35 OCP Commands . . . e e e e e s e e 32
35.1 OCP Task Support Commands e C e e e e e e 3-5
352 OCP Debugging and Error Recovery Commands e 8 0]
353 OCP I/0 Utility and Status Request Commands 314
354 OCP Time and Date Commands . 317
355 OCP Termination (TE) Command 318
3.6 ErrorMessages . 318

SECTION IV. CONTROL PROGRAM

4.1 Introduction . . . e e e e e e 4-1
4.2 Activating and Deactrvatmg the Control Program e e e e e 4-1
4.3 LUNOs o o o e e e e e e e e 4-1

vii Digital Systems Division

o

946259-9701
TABLE OF CONTENTS (Continued)
Paragraph Title Page
44 Operator Interactionottt e e 4.2
44.1 Prompt Responses. i e 4-2
442 Default Values i 43
443 Special Keyboard Control Keys 4.3
4.5 Accessing Parameters through the Control Program 4.5
4.6 EIror Messages i ittt e e 49
SECTION V. PROGRAMMING TASKS
5.1 Introduction. 5-1
5.2 Task Structure and Programming 5-1
53 Task Scheduling e 53
54 Preventing Accidental Alteration or Destruction of the Operating System 54
5.5 User-Specified End Action Routine in Response to Fatal Errors. 5-6
5.6 Coding Supervisor Calls and Supervisor Call Blocksu..... 5-6
SECTION VI. EXECUTIVE SUPERVISOR CALLS
6.1 Introduction. e e 6-1
6.2 Task Control Supervisor Calls i 6-2
6.2.1 Bid Task Supervisor Call Syg oottt 6-2
6.2.2 Change Priority Supervisor Call 1146. . . . oo oo ittt e e e e e 6-2
6.2.3 Do Not Suspend Supervisor Call 916 oottt it 6-3
6.2.4 Time Delay Supervisor Call 216 ottt e e 6-3
6.2.5 Activate Time Delay Task SupervisorCall Eqg. 6-3
6.2.6 Unconditional-Wait Supervisor Call 616ottt e e 64
6.2.7 Activate Suspended Task Supervisor Call 746 oo ittt e e e 64
6.2.8 End of Task Supervisor Call 416 it e e e 64
629 End of Program Supervisor Call 1645. i 6-5
6.2.10 Get Parameters Supervisor Call 1716 oot ittt e e e e 6-5
6.2.11 Get Own ID Supervisor Call 2016 and 2E1¢ o i 6-5
6.2.12 Make Task Privileged Supervisor Call 2316 i 6-6
6.3 Code Conversion Supervisor Calls. 66
6.3.1 Convert Binary to Decimal ASCII SupervisorCall Ajg oo oo iin it 6-6
6.3.2 Convert Decimal ASCII to Binary SupervisorCallBygv ... 6-7
6.33 Convert Binary to Hexadecimal ASCII SupervisorCallCyg oo in oo ... 6-7
6.3.4 Convert Hexadecimal ASCII to Binary Supervisor Call Dyg « -+« oo oo 6-8
6.4 Memory Allocation Supervisor Calls 6-8
64.1 Get Memory Supervisor Call 1216 . . . o oot i ittt e 6-8
64.2 Release Memory Supervisor Call 1346o oo ot 69
643 Get System Table Supervisor Call 2116 i e 69
64.4 Get Common Data Address Supervisor Call 1046 oo ittt it 6-10
64.5 Return Common Data Supervisor Call 1Bygo it e 6-10
6.5 Intertask Communication Supervisor Calls 6-11
6.5.1 Put Data Supervisor Call 1Cg oottt e e e e e e 6-11
6.5.2 Get Data Supervisor Call 1Do oot e 6-12
6.6 Date and Time Supervisor Calls 316 and 3By oot i ittt 6-12
6.6.1 Get Date and Time Supervisor Call 315 i 6-12
6.6.2 Initialize Date and Time Supervisor Call 3By 6-13
6.7 Enable or Disable Event Key Supervisor Call 3A 6.o oo i i i 6-14

viii

Digital Systems Division

946259-9701

TABLE OF CONTENTS (Continued)

Paragraph Title Page

SECTION VII. DEVICE AND FILE 1/O SUPERVISOR CALLS

7.1 Introduction . . . e 7-1
7.2 1/0 Supervisor Call (00) e e e e e e e e e s s e s e e 7-1
7.2.1 1/0 Operations . . e e e e e e e e e 76
7.2.2 Open Operation (Code 0016) e e e s s e e 7-6
7.2.3 Close Operation (Code Ol) . . . e e e e e e e e e 7.7
7.2.4 Close with EOF Operation (Code 02 16) e e e e e e e e e e e 79
7.2.5 Open Rewind Operation (Code 03¢) 79
7.2.6 Close Unload Operation (Code 04,6) . . . C e e e e e e 7.9
7.2.7 Read Device File Status Operation (Code 05 16) B S 1)
7.2.8 Forward Space Operation(Code 06) 110
7.2.9 Backward Space Operation(Code 074) 110
7.2.10 Read ASCII Operation (Code 09¢) 1711
7.2.11 Read Direct Operation (Code 0A) 1712
7.2.12 Write ASCII Operation (Code OBy) 1712
7.2.13 Write Direct Operation (Code 0Cy) 1714
7.2.14 Write EOF Operation (CodeODy) 1714
7.2.15 Rewind Operation(Code OE) . 1714
7.2.16 Unload Operation (Code OF) . 115
7.2.17 Unlock Operation (Code 4A) « . « « « « « o v o o . 115
7.2.18 Create File Operation (Code 90)¢) . . . Y S)
7.2.19 Assign LUNO to Pathname Operation (Code 91 16) O A3
7.2.20 Delete File Operation (Code 9246) . . . Y A9)
7.2.21 Release LUNO Assignment Operation (Code 9316 O 2%)
7.2.22 Compress File Operation (Code 94) 115
7.2.23 Change File Name (Code 95%) . 116
7.2.24 Unprotect File Operation (Code 964) 116
7.2.25 Write Protect File Operation (Code 97) 116
7.2.26 Delete Protect File Operation (Code 98, 1716
7.2.27 Verify Pathname Syntax (Code 99) . . . B S 1
7.2.28 Coding Examples Using File Management Supemsor Call 0016 7416
73 Supervisor Call 15,4 Support for Tasks Designed to Run Under TX990, Release 1 o . .. 717
7.3.1 Supervisor Call 15,6 SCB Format 1717
7.3.2 Coding Example . . . S
7.4 VDT Character Mode Superv1sor Calls lAu—,, 816 s and 1816 S
7.4.1 VDT Utility SupervisorCall 1A 1719
7.4.2 VDT Character Input Supervisor Call 84 N Bt
7.4.3 VDT Conditional Character Input Supervisor Call 816 B Bt
7.5 Wait for I/O Supervisor Call 01,6 . 172
7.6 Abort 1/O Supervisor Call OF ;¢ Operation 1725
7.7 Abort 1/O Supervisor CallBlock 1IE,¢ 17325

ix Digital Systems Division

946259-9701

Paragraph

8.1
8.2
8.2.1
8.2.2

8.3
8.4
8.5
85.1
85.2
8.5.3
8.5.4
85.5
8.5.6
8.5.7
85.8
8.5.9
8.5.10
85.11
8.5.12
8.5.13
8.5.14
8.5.15
8.5.16
8.5.17
8.5.18
8.6

9.1
9.2
9.3
9.3.1
9.3.2
9.3.3
934
9.3.5
94
9.5
9.6

TABLE OF CONTENTS (Continued)

Title

Page

SECTION VIII. DISKETTE OCP SYSTEM UTILITY (SYSUTL) PROGRAM)

Introduction
Loading SYSUTL .o

Loading SYSUTL Using OCP .

Loading SYSUTL Using the TX990 Operatmg System and the TXDS

Control Program . . e

LUNO:s . . .
SYSUTL Command Format and Syntax .
SYSUTL Commands e

Boot Copy (BC) .

Set System File (SF)

Create File (CF) .

Delete File (DF) .

Compress File (CM) .

Change File Name (CN)

Change Protection (CP)

Define Output (DO)

Map Diskette (MD) .

Map File (MF)

Diskette Dump (DD)

Diskette Load (DL) .

File Dump (FD) .

File Load (FL)

Initialize Date and Time (ID)

Print Time and Date (TI) .

Terminate SYSUTL (TE) .

Change Volume Name (CV)
SYSUTL Error Messages

SECTION IX. SYSTEM GENERATION

Introduction

Preparation for Generatmg a TX990 Operatmg System

Defining the New System . . e e
LUNOs Used by GENTX .
Loading and Executing System Generatron (GENTX) Utr]rty Program
Definition Phase . . .
Construction Phase .
GENTX Error Messages

Assembling the Source Modules .

Linking the Object Modules .

Example of System Generation .

8-1
8-1
8-1

83
84
84
8-5
8-5
8-5
8-6
86
8-6
8-6
8-7
8-7
8-8
89
8-10
8-11
8-11
8-12
8-12
8-12
8-13
8-13
8-13

9-1
9-1
9-1
9-2
9-2
9-3
9-19
9-19
9-20
9-20
9-30

Digital Systems Division

946259-9701

TABLE OF CONTENTS (Continued)
Paragraph Title Page

SECTION X. DISKETTE/DISC BACKUP AND INITIALIZE PROGRAM

10.1 Introduction. L e e 10-1
10.2 LUNOs and Their Uses.ttt i e e e et e it ettt e e 10-1
10.3 Operating Procedure i e 10-1
104 User Interaction with the Backup Utility 10-2
10.5 Error Messages and Recovery. i e 104

SECTION XI. OBJECT MANAGER (OBJMGR) UTILITY PROGRAM

11.1 Introduction. e e 11-1
11.2 LUNOS . .ot e e e e 11-1
113 Loading OBIMGR e e 11-1
11.3.1 Loading OBJMGR Using the TX990 Operating Systemand OCP 11-1
1132 Loading OBJMGR Using the TX990 Terminal Executive Development System 11-2
1133 Loading and Executing OBJMGR Using DX10,Release 3.0. 112
114 Operator Interaction it i e e 11-3
11.5 Error Messages oo it 114

SECTION XII. LIST80/80 (LIST80) UTILITY PROGRAM

12.1 LIST8O0/80. . . . ettt et 12-1
12.1.1 Load and Executing LIST80/80.ottt e e 12-1
12.1.2 LIST80/80 Error MESSages« v oo v v vt et et e et e e et e e et e e 122

SECTION XIII. DISKETTE DUMP (DSKDMP) UTILITY PROGRAM

13.1 Introduction. e 13-1
132 LUNOS . . o e 13-1
13.3 Loading Procedures i 13-1
13.4 Operating Procedures. 13-2
134.1 Increment Sector Number (I). oo e 133
1342 Decrement Sector Number (D). 13-3
1343 Print Display (P) . . . o oottt et e e 133
1344 SetDataMode to ASCIT (A) . . . oottt e e e e 133
134.5 Set Data Mode to EBCDIC (E). oot i e e 133
1346 Set Data Mode to Hexadecimal (H). 134
13.4.7 Modify Displayed Sector Data (M)t 134
134.8 Position Cursor to Sector: Field (New Line). 134
135 Error Messages . . . oo v ittt 13-5

xi Digital Systems Division

946259-9701

Appendix

ZroRE-"TIZIQOMEOooOOow»

Figure

1-1
1-2

5-1
6-1

7-1
7-2
7-3

74
13-1

APPENDIXES
Title) Page
List of Supervisor Calls.t e e A-1
Device Character Sets. . . o v v vttt e e e e e e e e e B-1
User-Supplied Modules. ittt e C-1
GlOSSATY .« v v ittt it et e e e e e e D-1
TX990 Compatibility with RX990and DX10.o it E-1
Compressed Object Code Format o i i it F-1
Task State Codes. . . . v v vttt e e e e e e e e e e G-1
Printout of Fatal Task Error Codes or Display of Illegal Interrupt Code H-1
IO EITOr COdeS . v v v vt et e e e et e et e e e e I-1
System Taskso vttt e e e J-1
TX990 System Generation Using DX10Release 3.2. K-1
Support for the SMT/6MT I/O Interface Special Device L-1
Support for the 32-IN/Transition Detection Module Special Device. M-1
LIST OF ILLUSTRATIONS

Title Page
TX990 Control Flowottt e e e e 1-7
Typical TX990 Operating System Configurationsttt 1-8
TX990 Task Structure e e e 5-1
Intertask Communication Supervisor Call Block 6-11
Supervisor Call Block for I/O Supervisor Call 0046 . . o o oo v v v e et e e 7-2
Bit Manipulation for Direct Read of Card. 7-13

File Management Supervisor Call Block for File Management Supervisor
Call 15 g -« o ettt e e e e e e e 7-19
VDT Utility Supervisor Call Block i i i e i e 7-22
Three Modes of Sector Display.ottt e e e e e 13-5

xii Digital Systems Division

946259-9701

LIST OF TABLES
Table Title Page
2-1 Standard TX990 Device Namesottt ittt et et ettt e e 24
31 Syntax of OCP Commandsottt ittt ettt et et e e e 33
32 OCP General Error Messages v v i ittt ittt et et et et e et e e e e 3-19
33 OCP Operand Error Messages. oo vttt ittt it ettt et ettt e e e eee e 3-20
4-1 Byte-Allocation of COMMON Memoryottt ettt e e e et eie e 4-6
4-2 TXDS Control Program Error Messagesot i i iin et et i i iee e en e 4.9/4-10
6-1 Executive Supervisor Calls. it e e 6-1
7-1 IO Supervisor Calls.t e e e e e 7-1
7-2 SVCO0I/O Operations. v i ittt et et e e et e e e e e e 7-6
7-3 I/O Operations (Record Mode). it et e i 7-8
7-4 Device Code Numbers and File Code Numberst 7-9
7-5 VDT Utility Completion Codesttt ittt it eee e 7-23
8-1 SYSUTL Error Messages v vt v et i i et ettt ettt et e et et e ettt ene e 8-14
9-1 GENT X Prompts. . . oottt e e e e e e e e e e e e 9-4
9-2 System Timing Parameters e 9-7
9-3 GENTX Device Keywords. i e et et e 99
9-4 System Task Definition i it e e e 9-14
9-5 Priority Digits. o e e e 9-15
9-6 GENT X Error Messages . . .o v ittt ittt ettt et e e et e et e et e et e e e 9-19
9.7 TX990 Operating System Modules it e e 9-21
11-1 Brr0r Messages « & v v vttt i e e e e e e e 11-5
13-1 Diskette Dump Utility Directives it i e e 13-4

xiii/xiv Digital Systems Division

3

(o]
@ 946259-9701

M"‘\

- SECTION I

GENERAL DESCRIPTION

1.1 OVERVIEW

The TX990 operating system is an executive that controls task execution in a real time environ-
ment. TX990 executes in the Model 990/4, 990/5, or the Model 990/10 Computer. The memory
protect hardware option (Model 990/4) and memory mapping option (Model 990/10) are not
used by TX990. The maximum memory size is 56K bytes in the Model 990/4 Computer, and 62K
bytes in the Model 990/5 and Model 990/10 Computers.

TX990 may be customized to provide many features for the user and configured to save memory
by excluding features which are not desired. A minimum TX990 system includes a task scheduler,
~ interrupt handler for the clock, and a supervisor call interface, and occupies about 4K bytes of

memory. Additional modules and features (e.g., file management, operator communications
package) are optional according to application requirements.

The task scheduler provides multiple priority level scheduling of Central Processor Unit (CPU)
time and maintains a list of active tasks by priority. There are 131 priority levels available for user
tasks. The scheduler features preemptive scheduling to support real-time event-driven applications
as well as time-sharing applications. During system generation, the user can specify the scheduler to
be a real-time scheduler without time slicing or can specify the scheduler to be time slice oriented.
If time slice oriented, the time slice value is also specified during system generation.

The interrupt handling software operates in conjunction with the prioritized interrupt scheme to
allow the user to assign high interrupt priorities to critical devices or input lines. The clock-interrupt
handler is included in the operating system to support scheduling and time-dependent supervisor
calls. The user may also include custom interrupt handlers.

Tasks request the support of the operating system by executing supervisor calls (SVCs). SVCs are
routed through a supervisor call interface to an associated supervisor call processor. A substantial
number of file management supervisor calls and task control calls are supported by the operating
system. The user may also include custom supervisor call processors if desired.

9

Tasks that execute under TX990 may be classified as either dynamic tasks or tasks linked into the
operating system. When a TX990 operating system is generated, its various parts must be link edited
to form a single linked object module, which can be loaded into memory and executed as an
operating system. Any system or user tasks linked with the other system modules are loaded into
memory when the system is booted, and are memory resident.

Other tasks, called dynamic tasks, that are not linked with the system may reside in diskette files or
- other input media, such as magnetic tapes or cassettes. They may be dynamically loaded and execu-
ted through the use of operator commands or supervisor calls. All user tasks not linked in with the
system are dynamic tasks. (Dynamic tasks are loaded beyond the end of the operating system into
memory called the dynamic task area.) The TX990 operating system may be customized to support
a single dynamic task, multiple dynamic tasks, or no dynamic tasks.

1-1 Digital Systems Division

946259-9701

NOTE

When headers are shown in this manual, the abbreviation V.R.E. has
the following meaning:

V — represents the version number. The version number will
change only when major changes are involved.

R — represents the release number. The release number changes
when a new release is performed. This number becomes
zero when the version number changes.

E — represents the ECN level. This number changes when the
processor code changes, including changes by patches.
The ECN level becomes zero when either the version
number or the release number changes.

For example, 1.0.0 is the first release of a processor.

The abbreviation represents the date of the release where:

YY is the year, and
DDD is the Julian day

78.244 represents September 1, 1978

1.2 SUPPORTED HARDWARE
The Model 990 Computer System hardware supported by TX990 include the following:

Model 990/4, 990/5 or 990/10 Computer
Programmer Panel

FD800 Floppy Disk

Model 911 or 913 Video Display Terminal

Model 733 “Silent 700°* ASR/KSR Data Terminal
Model 743 Data Terminal

Model 306 Line Printer

Model 588 Line Printer

Model 810 Line Printer

Model 820 Keyboard/Printer
Model 2230 Line Printer

Model 2260 Line Printer

Model 804 Card Reader

1-2 Digital Systems Division

946259-9701

33 ASR Teletype Data Terminal
® 5SMT/6MT Serial Interface Module

e 32-In/Transition Detection Module

® Model 979A Magnetic Tape Unit (Model 990/5 or 990/10 Computers
only)

1.3 FILE MANAGEMENT FEATURES

The TX990 operating system optionally provides a file management package to support file
structures and operations on diskettes and file-oriented devices. File management maintains a
directory on all initialized diskettes in the system (see Section X on diskette initialization). This
directory can point to up to 48 files on the diskette. Diskette files consist of blocks of allocation
units. An allocation unit is a logical division of the diskette. A diskette is divided into 333 allocation
units, each consisting of six sectors. Two basic file types are supported: sequential files and relative
record files. Additionally, a special usage of the relative record file, called a program file, is
supported. Some of the features of the file management package and file types are described in the

™ following paragraphs.

1.3.1 VOLUME NAMES. In addition to accessing files on a particular diskette drive (e.g., DSC,
DSC2), file management optionally supports volume names for initialized diskettes. When a diskette
is initialized, the user may assign it a one to four character volume name. If volume name support is
included in the operating system, files on that diskette may be accessed through the volume name
or the diskette drive device name. Addressing a diskette by volume name can be performed
regardless of which drive it may be mounted on.

Volume names are only supported by operating systems which include the module VOLUME (see
{ the section on system generation). The standard TI supplied TX990 operating systems do not
provide volume name support and diskettes may only be accessed by drive name.

1.3.2 SEQUENTIAL FILES. The logical data records in a sequential record file must be accessed
in a sequential manner (i.e., record 1 must be processed before record 2, etc.). When a sequential
file is closed following an access, the operating system saves the position of the last access to the
file. When the file is opened again, the next I/O call accesses the next logical record in the file
instead of the first logical record of the file. To access the first logical record, the file must be
rewound before the access.

The last write operation performed on a file defines the current end of that file. No data can be read
from the media that is beyond the current end of that file. The operating system prevents switching
from a read, backspace or forward space operation to a write or write end-of-file operation until an
end-of-file mark is read; however, when extending a file, a backspace of one record can be followed
by write operations. This precaution prevents writing on data previously stored in a file. Similarly,
the operating system prevents switching from a write operation to a read, forward space, backspace,
or rewind operation until an end-of-file mark is written.

Sequential files are blank compressed: i.e., when a logical record is written to a file, ASCII blanks
are removed from the record. Blanks are restored to the record as it is read from the file.

A sequential diskette file is comprised of logical records in blocks of allocation units. Whenever
possible, the operating system will allocate contiguous blocks of allocation units. Diskette files
may be created by either the Create File operation (code 90,¢), or through the autocreate function
when the file is opened. The operating system allocates additional allocation units to the file as
(«W‘\ needed when writing to the file. Each diskette file can contain a maximum of 20 noncontiguous

*Trademark of Texas Instruments Incorporated

Digital Systems Division

946259-9701

blocks. Each file is terminated by an end-of-file mark. The beginning of the file can be located by
executing a rewind file operation. Subfiles can be created by inserting end-of-file marks within
the file. To add a new record to the end of a existing file or last subfile, read (or forward space)
until the end-of-file mark is detected. Then backspace one record to position the media on the
end-of-file record and write the new record(s).

1.3.3 RELATIVE RECORD FILES. Relative record files are supported on diskette. A relative
record file is comprised on contiguous and noncontiguous blocks of logical records, in or out of
sequence (i.e., in random sequence). Each logical record is identified by a logical record number.
Space is automatically allocated for a relative record file in blocks of contiguous allocation units
when possible and, when not possible, in blocks of noncontiguous allocation units. There is no
maximum number of logical records which can be placed in the file. However, there can be no more
than 20 noncontiguous blocks of allocation units. The beginning of a relative record file is specified
by logical record 0; the end of the relative record file is specified by the highest numbered logical
record, which is automatically identified with an end-of-file mark.

Logical records in a relative record file have a fixed length (which must be an even number of bytes)
defined when the file is created. If the user tries to write a record larger than the specified record
length, the record is truncated. If the record is shorter than the fixed record length, the record is
binary zero filled.

By initially coding the logical record number to zero, the relative record file may be automatically
written or read sequentially until the highest logical record number is reached. After a read or write
1/0 file operation, the logical record number is incremented by the file management task; the logical
record number is also incremented, or decremented, when the relative record file is rewound,
forward spaced or backward spaced. The user may access any record at random by specifying the
desired logical record number. Subsequent accesses may be either random or sequential. When
another relative record number is specified out of sequence, access is at random. When none is
specified, the next record in sequence is accessed.

1.3.4 PROGRAM FILES. Program files are relative record files used to contain a program memory
image; i.e., the linked object of one task segment and possibly one procedure segment and up to
256 overlay segments. Program files are created by the Link Editor in IMAGE format. A program
file may contain only one task and one procedure.

A program file contains several records of system overhead information, and then the linked object
of a program (task, procedure, and overlays). The object code is in a format such that it can be
loaded directly into memory by the image loader. By linking programs into program files, the user
may save diskette space and load time. Programs in program files take 25%-40% less time to load
than programs in compressed or noncompressed object files, and require approximately 25% less
diskette space.

1.4 LOGICALI/O

TX990 uses logical unit numbers (LUNOs) to represent physical devices and files. User tasks are
coded to perform I/O to a LUNO, which is converted by the operating system to represent the
physical device or file to which the LUNO is assigned. This enables a user to code an I/O operation
independent of a specific hardware or file configuration.

LUNOs may be assigned and released by a task using I/O Supervisor Call 00 operations or operator
commands. A LUNO is assigned to a pathname, which may be either a device name (14 characters)
or a file name. Pathname format and syntax is described in the following paragraph. LUNOs may
range in value from O to FFy¢.

1-4 Digital Systems Division

946259-9701

1.4.1 PATHNAMES. A pathname may be the name of a device or a file. If a pathname represents a
device, it is the name (1-4 characters, first must be alphabetic) assigned to that device at system
generation (e.g., CS1, LP, CR).

If a pathname represents a file, it has the following format:

<device name>

Zvolume name> <file name> [/ [<extension of file name>]

The first pathname component is optional, and is the name of the diskette drive or diskette volume
which contains the file. A volume name is 1-4 characters, like a device name. The first character
must be alphabetic; the remaining characters must be alphanumeric. A volume name may only be
used if volume name support is selected during system generation (see Section IX). TI supplied
TX990 systems do not include volume name support. The default value for this pathname
component is defined during system generation.

The second pathname component consists of a colon (:) or period (.) and a 1-7 character file name.
The first character of the file name must be alphabetic; the rest may be alphanumeric.

The third pathname component is an optional 1-3 character extension of the file name. The first
character must be alphabetic or blank; the rest must be alphanumeric or blank. If an extension is
used, it must be separated from the file name by a slash (/) character. Optionally, the slash may be
used alone, and the extension is interpreted to be three blanks. If no slash-extension is used, the
extension is again interpreted as blanks.

The following are examples of legal pathnames:

:FILE File name, 1 to 7 characters; the device name is the
default disk name.

DEV FILE ' Device and file name; the extension is defined as
blanks.

VOL:FILE Volume Name 1 to 4 characters; the extension is
defined as blanks.

:FILE/EXT File name and file extension name; the extension can
be 1-3 chars. The device name is the default disk
name.

DEV:FILE/EXT Complete pathname with no defaults.

VOL:FILE/EXT Complete pathname with no defaults.

DEV:FILE/ Defaults to a blank extension.

VOL:FILE/ Volume name, and file name, extension defaults to

blank extension.

Trailing blanks are allowed at the end of each field (as presented below), but embedded blanks are
not allowed within the field itself.

DSC:FILEYYY/4Bb is the same as :FILE/or :FILE

1-5 Digital Systems Division

946259-9701

NOTE

The above example assumes that DSC was generated as the default
diskette name during system generation.

1.4.2 1/0 MODES. Three I/O modes of operation are employed: file mode, record mode, and
character mode. I/O devices are designated for file, record or character mode of operation during
system generation. An I/O device placed in the file mode is assigned to the calling task when an
open I/O operation is employed and remains assigned to that calling task until a close operation is
performed. An I/O device placed in the record mode remains assigned to the calling task only during
execution of the individual I/O operation. In the record mode, a Video Display Terminal (VDT) has
a LUNO assigned to enable execution of an I/O operation. However, a 911 or 913 VDT is also
capable of being operated in the character mode. The character mode enables the VDT to be
uniquely programmed and accessed by a station number, rather than a LUNO.

1.5 SUPERVISOR CALLS

Tasks request the support of the operating system by executing supervisor calls that are routed
through a supervisor call interface to an associated supervisor call processor. A substantial number
of file management supervisor calls and task control calls are supported by the operating system.
The user may also include his own custom supervisor call processors if desired. The different
supervisor calls provided by TX990 are described in Sections VI and VII.

1.6 OPERATOR INTERFACES

TX990 optionally provides two operator interfaces, the Operator Communications Package (OCP)
and the Control Program. A customized TX990 system may include neither, one, or both of the
interface packages. The Control Program prompts the operator to load and execute any system
utility or user program. It also provides a means of passing parameters to the program. The Operator
Communications Package provides several commands which may be entered by the operator, and
which perform various system functions (e.g., loading or executing programs, and debugging
capabilities). The two operator interfaces are described in Sections IIT and IV.

1.7 SYSTEM MEMORY LAYOUT CONSIDERATIONS

Figure 1-1 shows-the flow of control within a TX990 that includes all options. The task scheduler
initiates execution of a user task as previously described. The task requests support of the executive
by executing SVCs that are processed by the supervisor call interface. I/O supervisor calls are
processed by the I/O Supervisor (I0S), and other supervisor calls are processed by their respective
supervisor call processors. Following execution of a supervisor call, the supervisor call interface
returns control either to the calling task or to the task scheduler, according to the type of supervisor
call. Interrupts from the clock and from active I/O devices are processed by the appropriate handler,
which passes control to a common interrupt return after processing the interrupt. The common
interrupt return passes control to the point in the task or executive at which the interrupt occurred.

Figure 1-2 shows memory maps of four different configurations of TX990. The minimal system
consists of the basic configuration shown in figure 1-2A. This provides a basic task scheduling and
an interrupt processing monitor for a small static system. The minimal TX990 Operating System
includes the data structures, task scheduler, supervisor call interface (with dummy supervisor call
processors), and the interrupt processor. The user tasks in this type of system are linked and loaded
with the system and perform any I/O operations without the aid of TX990.

The addition of supervisor call processor modules, I/O supervisor call processor modules, and Device
Service Routine (DSR) modules results in the configuration shown in figure 1-2B. In this configura-
tion, it is necessary to link and load user tasks with the system.

1-6 Digital Systems Division

946259-9701

&

MO[] [0X)U0) 066X.L “T-T 4nSty

LN3INOJWOD TTYNOILJO S3LVOIANI

VigveE (V)

. “l 0
|
WSVL b—m— — — — e e H do0 |
| |
| L4
1 T U] p—
L= — N 321A3Q “
HOSIAYN3ANS
H
[[—————— 1] °
|| S¥o5593°% ¥31003HOS LanMuELNI
| | zosirudans NOWWOD _
r||||||-L _ - 1 301A3a
- " "
| sol asva |
- H3IWIL |
Lk #] _
—- | |
L

SHITTANVYH LdNUYILNI

J

Digital Systems Division

1-7

946259-9701

The addition of OCP modules as shown in figure 1-2C adds the capability of operator interaction
with the System using OCP commands. Addition of a dynamic task area, also shown in figure 1-2C,
allows the operator to load a task or tasks by OCP command into the dynamic task area for
execution. This capability, along with the use of OCP commands, enables debugging of tasks. Other
user tasks must be linked and loaded with the operating system.

The addition of file management modules, as shown in figure 1-2D, adds the capability of perform-
ing file I/O operations with diskettes. This capability is necessary when the user wants to configure
the Operating System using Terminal Executive Development System (TXDS). TXDS provides the

user with those utilities necessary for software development (see the TXDS Programmer’s Guide,
part number 946258-9701, for details).

BASIC TX990 BASIC TX990
SVC PROCESSORS
USER TASKS 10s
WITH
STANDALONE
/0 DSRS
USER
TASKS
A. B.
BASIC TX990 BASIC TX990
SVC PROCESSORS SVC PROCESSORS
10s 10s
DSRS FILE MANAGEMENT
ocP DSRS
USER ocpP
TASKS
USER TASKS
DYNAMIC
TASK AREA DYNAMIC TASK AREA
C. D.

(A)133422A

Figure 1-2. Typical TX990 Operating System Configurations

1-8 Digital Systems Division

@ 946259-9701

A system configured as shown in figure 1-2A requires less memory for system purposes (overhead)
than the other configurations, and is desirable where minimizing memory overhead. is the mpst
important consideration. The additional support provided by the other configurations requires

that more memory be available for system use.

Systems configured as shown in figure 1-2A and B support user tasks that are identified to the
operating system during system generation and are linked and loaded with the operating system.
These tasks occupy the area of memory beyond the area occupied by TX990, and may be placed in
execution when the operating system is loaded. Operating Systems configured as shown in
figure 1-2C and 1-2D also support these types of tasks but, in addition, they support a dynamic task
area into which tasks may be loaded and executed by OCP commands. The dynamic task area
consists of the available memory beyond the area occupied by the other user tasks.

1-9/1-10 Digital Systems Division

[o]
@ 9462599701

(@"’“\ SECTION I

LOADING THE OPERATING SYSTEM

2.1 INTRODUCTION

The TX990 operating system may be loaded into memory from a diskette or a cassette. Basically,
two methods may be used to load the operating system: (1) a ROM loader can execute and load the
TXBOOT program from diskette which in turn loads the Operating System; or (2) a ROM loader
can execute and load the operating system directly into memory from a cassette. More specifically,
when the operating system is loaded from a diskette, a diskette/cassette ROM loader is utilized and
the TXBOOT loader is loaded from a diskette; when the operating system is loaded from cassette,
a diskette/cassette ROM loader or a card/cassette ROM loader is utilized.

This section provides the step-by-step procedures required to achieve successful loading with each
method. The initilization procedure required to be performed after the operating system is loaded

- into memory is also presented in this section. Two alternative initialization procedures are
presented: one is used when an Operator Communication Package (OCP) is supplied with the
operating system and the other is used when the TX990 Control Program and no OCP is supplied
with the operating system. Any operator interaction with an operating system that does not include
OCP capability must be provided by either user tasks or user-supplied system modules. At the end
of this section, a procedure is provided to manually restart the system in event a system failure does
not cause the contents of memory to be altered.

When an error occurs, the error code is displayed by the indicators on the front of the Programmer
ﬂ"“ Panel and the FAULT indicator is turned on. (See Appendix H, Printout of Fatal Task Error Codes
" or Display of Illegal Interrupt Code.) When an Operator Panel is used in the system, any error which
occurs during loading causes the FAULT indicator to turn on and stay on.

2.2 LOADING THE TX990 OPERATING SYSTEM
The following paragraphs describe four methods for loading a TX990 operating system.

2.2.1 LOADING FROM DISKETTE. Proceed as follows:

1. Insert one of the three operating system diskettes (i.e., the diskette which contains the
{ 913 VDT operating system, the 733 ASR operating system, or the 911 VDT operating
system) into any diskette drive.

2. Sequentially depress the HALT/SIE, RESET, and LOAD switches on the front of the
programmer panel. The TXBOOT program will now load into memory, followed by the
TX990 operating system.

NOTE

The ROM loader tries to load from each of the first four diskette
drives, beginning with diskette drive O, until a READY drive is

- found. If none of the diskette drives indicate READY, the ROM
loader will load from the cassette drive that is in the PLAYBACK
mode and in the READY state.

2-1 Digital Systems Division

(o]
{@@ 9462599701

3. When successful loading of the TXBOOT program and the operating system is completed,
observe the following printed output or display from the system console (provided the 'm”\
Initial Start Task (STASK) module-feature is supplied with TX990):

TX990 V.R.E YY.DDD
MEMORY SIZE (WORDS): 16384 AVAILABLE: 5940

(where the memory size printout or display is in decimal numbers specifying the quantity
of memory words; the size, in words, of the dynamic task area is printed out as available
memory).

NOTE

1. When the user does not include a task that produces an
indication of successful loading of the operating system, the
only possible way to verify successful loading is by usage of the
operating system. -

2. The operating system diskette being used during the loading
procedure must have the diskette boot program written on
allocation units O through 4, and the system file pathname must
be defined. All standard TI diskettes have the diskette boot and
the system file pathname previously defined; however, if the
user wants to create an operating system diskette, the diskette
boot program can be written and the system file pathname can
be defined by using the Set System File (SF) command from M\
the Diskette OCP System Utility (SYSUTL) Program. For !
information relating to SYSUTL, see the Diskette OCP System
Utility (SYSUTL) Program section in this manual.

4. After loading of the operating system is completed (i.e., after the printed output or
display appears on the system console as specified in the previous step), perform the
initialization procedure presented in paragraph 2.3.

2.2.2 LOADING FROM CASSETTE USING DISKETTE/CASSETTE ROM LOADER. Proceed as
follows: -,

1. Place the cassette which contains the TX990 operating system in either of the two
cassette drives of the 733 ASR terminal.

NOTE
For operating instructions covering the cassette unit, refer to the
Model 990 Computer 733 ASR/KSR Data Terminal Installation and
Operation Manual, part number 945259-9701.
2. Rewind the operating system cassette.

3. Place the cassette unit in the PLAYBACK mode and in the READY state.

4. Press the HALT/SIE switch and then the RESET switch on the Programmer Panel.

2-2 Digital Systems Division

(o)
Q@? 946259-9701

5. Place the number 0080,, into memory address 0080,¢ as follows:

a. Press the CLR switch and the 8 switch on the Programmer Panel to set the displayed
value to 0080 .

. b. Press the ENTER MA switch on the Programmer Panel.

c. Press the MDE switch on the Programmer Panel.

6. Load TX990 into memory by pressing the LOAD switch on the Programmer Panel.

7. When loading of the operating system program is completed, observe the following
printed output or display from the system console (provided the Initial Start Task
(STASK) module-feature is supplied with TX990):
TX990 V.R. E . YY.DDD

£~ MEMORY SIZE (WORDS): 16384 AVAILABLE: 5940

(where the memory size printout is in decimal numbers specifying the quantity of
memory words; the size, in words, of the dynamic task area is printed as available
memory).

8. After loading of the operating system is completed (i.e., after the printed output or
display appears on the system console as specified in the previous step), perform the

initialization procedure presented in paragraph 2.3.

(W"" ' 2.2.3 LOADING FROM CASSETTE USING CARD/CASSETTE ROM LOADER. Proceed as
follows:

1. Place the TX990 operating system cassette in either of the two cassette drives of the 733
ASR terminal.

NOTE
For operating instructions covering the cassette unit, refer to the
P Model 990 Computer Model 733 ASR/KSR Data Terminal
Installation and Operation Manual, part number 945259-9701.

2. Rewind the operating system cassette.
3. Place the cassette unit in the PLAYBACK mode and in the READY state.
4. If the system has an Operator Panel instead of a Programmer Panel, proceed to the next

step. If the system has a Programmer Panel, press the HALT/SIE switch and then the

RESET switch.

5. Load the operating system into memory by pressing the LOAD switch on the
Programmer Panel.

23 Digital Systems Division

946259-9701

6. When loading of TX990 is completed, observe the following printed output or display
from the system console (provided the Initial Start Task (STASK) module-feature is
supplied with TX990):

TX990 V.R.E YY.DDD
MEMORY SIZE (WORDS): 16384 AVAILABLE: 5940

(where the memory size printout is in decimal numbers specifying the quantity of
memory words; the size, in words, of the dynamic task area is printed as available
memory).

7. After loading of the operating system is completed (i.e., after the printed output or
display appears on the system console as specified in the previous step), perform. the
initialization procedure presented in paragraph 2.3.

2.3 INITIALIZATION

Two initialization procedures are available: one for use when OCP is included in the operating
system and the other for use when the Control Program is included. When OCP is included in the
operating system, OCP commands may be entered on a system console such as a 733 ASR Data
Terminal, or a 913 or 911 Video Display Terminal. The system console is defined during the system
generation, and LUNO O is assigned to the system console device at that time. Refer to table 2-1 for
a list of the standard TX990 device names.

Table 2-1. Standard TX990 Device Names

Device Device Name
733 ASR/KSR Keyboard/Printer LOG, ASR
743 KSR Keyboard/Printer LOG, ASR
820 KSR Keyboard/Printer LOG, KSR
733 ASR Cassette Unit 1 (Unit on left) CS1
733 ASR Cassette Unit 2 (Unit on right) Cs2
Line Printer LP
Card Reader CR
913 or 911 Video Display Terminal CRT, LOG
Dummy DUMY
Diskette Unit 1 (Unit on left) DSC
Diskette Unit 2 (Unit on right) DSC2
Communication Device COM
Teletype Keyboard/Printer’ LOG, ASR
Teletype Paper Tape Reader! PTR
Teletype Paper Tape Punch! PTP

!Supported by Texas Instruments as a nonstandard item.
2.3.1 INITIALIZATION USING OCP. Proceed as follows:

1. Enter an exclamation point (!) at the keyboard of the system console. This activates OCP,
which responds by printing a period (.) to request entry of a command.

2-4 Digital Systems Division

(o}
{_@;’) 946259-9701

2. Assign LUNO 1 to a printing or display device on which information is to be displayed or
fm printed. Table 2-1 lists device names in the operating system supplied by Texas
Instruments. The standard TX990 assigns LUNO 1 to the system console. The following
is an example of a command to assign LUNO 1 to a line printer. The command is
followed by a carriage return.

AL,LLP.
3. When TX990 includes date and time support, initialize the date and time. The following
command initializes the time and date to 3:42 P.M., February 3, 1976. The command is
followed by a carriage return.

ID,1976,2,3,15,42.

The operating system responds by printing time and date information (updated
approximately), in the following format:

o™ 15:42:18 FEB 3, 1976

At this point, other commands may be entered to perform available functions. The OCP commands
are described in Section III.

2.3.2 INITIALIZATION USING THE CONTROL PROGRAM. Proceed as follows:

1. Enter an exclamation point (!) at the keyboard of the system console. This activates the
Control Program, which prints the following heading and prompt:

“ TXDS V.RE YY.DDD
PROGRAM:
2. Insert the TX990 parts diskette in drive 1.

3. Activate the OCP System Utility Program (SYSUTL) by responding to the PROGRAM:
prompt as follows:

~ PROGRAM: :SYSUTL/SYS*
4. Initialize the time and date by responding to the SYSUTL OP: prompt as follows:
SYSUTL V.R.E YY.DDD SYSTEM UTILITY
OP:ID, <year>, <month>, <day>, <hour>, <minute>. TE.
. SYSUTL returns controls to the Control Program.

2.4 MANUAL SYSTEM RESTART

When the TX990 operating system is used in a Model 990 Computer equipped with a Programmer

Panel, it is possible to restart the system without performing another loading procedure. A restart is

appropriate in the event a system failure did not alter the contents of the system area of memory.
To restart the system, perform the following steps at the Programmer Panel:

2-5 Digital Systems Division

[o]
@ 946259-9701

Transfer control to the Programmer Panel by pressing the HALT/SIE switch.

1.
2.

3.

Press the RESET switch.

Press the CLR switch and observe that the indicators of the display are not lit.

Press the 8 switch and the 10 switch, setting a number of 00AQ,¢s in the display.

Press the ENTER PC switch.

Press the RUN Switch.

NOTE

A standard TI-supplied TX990 Operating System does not execute
Initial Start Task (STASK) after a restart operation and, therefore,

no display or printout is presented on the system console.

Perform the initialization procedure presented in paragraphs 2.3.1 or 2.3.2.

2-6

Digital Systems Division

(o]
@ 946259-9701

f(\ SECTION III

OPERATOR COMMUNICATION PACKAGE (OCP)

3.1 INTRODUCTION

OCP allows the user to interactively request actions from the operating system through a terminal
(e.g., 733 ASR, 743 KSR, 33 Teletype, 820 KSR, 911 or 913 VDT). Actions are initiated by the
user by responding to the OCP command prompt (a period) with one of the OCP commands de-
scribed in paragraph 3.5.

Processing of operator commands is performed by five or more modules of the Operator

Communication Package (OCP). OCP consists of four required modules and five optional command

processor modules. These modules are described in the system generation section of this manual.

The user may modify the OCP commands, add one or more command processors to a command
™, processor module, or add one or more command processor modules to OCP.

3.2 ACTIVATING AND DEACTIVATING OCP
In a TX990 system which includes OCP, it is initiated at the system console by entering an
exclamation mark (!). OCP responds by prompting for a command, displaying a period (.):

!

OCP may not be activated in a system which does not have the OCP modules linked-in (i.e., OCP
{ may not be executed as a dynamic task).

OCP is deactivated by issuing the OCP Terminate (TE) command in response to a prompt:
TE.

3.3 LUNOs
OCP uses two LUNOs, 1 and 2. LUNO 1 is assigned to the device to which all messages or output is
to be directed. LUNO 2 is assigned to the device which contains a file (e.g. object program) being

. input.

3.4 COMMAND FORMAT AND SYNTAX.

Each command consists of a command word, optionally followed by one or more operands. OCP
recognizes a command by the first two letters of the command word; these letters may be followed
by additional letters or by blanks. One or more blanks, or a comma, may separate a command word
and operands. However, embedded blanks are not allowed within the command word or an
operand. More than one command may be entered in a single line, which may contain up to 72
characters and must be terminated by a carriage return (NEW LINE on 911 or 913 Video Display
Terminal). When more than one command is entered on one line, each command must be
terminated with a period (the period may be omitted following the last command on the line).
When an error is detected in a command, any subsequent command on that line is ignored. Two
consecutive commas are interpreted as a null operand, which may be used to omit an optional
operand. When a null operand is entered for a numeric operand, the null operand takes the value of
zero. When a null operand is entered for a character operand, the null operand takes the value of a

3-1 Digital Systems Division

[e]
@ 9462599701

blank. If a command generates printout to a hardcopy device such asa 733 ASR, the printout can
be aborted by pressing the ESCape key. If a line is entered in error and if the carriage return has not
yet been entered, the operator may press the RUB OUT key. This deletes the entry from the OCP
input buffer, and the user can then enter a correct command.

NOTE

All numeric OCP inputs are assumed to be hexadecimal numbers.

The following examples illustrate the manner in which OCP interprets equivalent commands entered

in different ways. The commands in the examples are equivalent and valid.

The complete command word is entered with two

hexadecimal operands separated by commas and

The command word is entered in two-letter form:

b

blanks are used as separators; leading zeros are
omitted; and the period is omitted. (Period is not
omitted when another command is entered on the

The complete command word is entered; an addi-

tional blank is entered; a comma is used as a separator

.DMEM,0000,0010.
terminated with a period.
.DM 0 10
same line.)
.DMEM, 0 10
in one place and a blank in another.
.DM,, 10

.DMXXX,0000 10

.DM 0 10 XYZ 55

In subsequent definitions of OCP commands, the following notation is used.

The command word is entered in two-letter form, and

first operand is entered as a null operand.

The first two letters of the command word are fol-

lowed by other letters; a blank is used as a separator.

This is the same as the second example except for

additional operands, which are ignored.

Angle brackets < > enclose items supplied by the user

Brackets [] enclose optional items

Braces { }enclose alternative items, one of which must be entered
An ellipsis (. . .) indicates that the preceding item may be repeated

Items shown in capital letters must be entered as shown

3.5 OCP COMMANDS
The OCP commands are divided into the following groups: task support commands, debugging
commands, I/O utility and status commands, time and data commands, and the termination
command. Table 3-1 shows every OCP command and its syntax.

Digital Systems Division

946259-9701

Table 3-1. Syntax of OCP Commands

OCP Task Support Commands

AL
<1 t .
ALUNOI ,<luno>,<pathname>
S
RLUNO sune=,
LP i <pathname>{,{<priority>] [P
LPROG »<pathname>{,[<priority>] [P]]
LR <pathname>[,[<priority>] [P]]
LRPROG) ’ ’
EX l <task id>[,< 1>[,< 2>]]
id>[,<par , .
EXECUTE| =™ parmi=1,<parm
IT <pathname>,<task id> [,<priority>] |,<procedure id>] [,P] [,N]
N atnn) N 101) ur ’)
ITASK P priorty P
: IR
Available only l ,<pathname><task id>[,<priority>] [,<procedure id>] [,P] [N]
. . IRTASK
with multiple
dynamic task 1P l .
,<procedure id>.
support. IPROC p
DT .
’ ,<task id>.
DTASK | -
DP I < edure id>
|bProcC ,<procedure id>.
OCP Debugging and Error Recovery Commands
DM I <starting address>[,<ending address>]
s>].
DMEN ,<starting address>[,<ending addres
LM I <address>,<value>[,<value>]
8>, , e>]...
LMEN ,<addre value>[,<valu
5B <add
SBKPT ,<address>,
CB
l CBKPT} [,<address>].
IAD I <value>,<value>
ADD ,<value>,<value>.
ISU l <value>,<value>
SUB ,<value>,<value>.
M
l IMP I ,<address>,<address>.

3-3 Digital Systems Division

946259-9701

Table 3-1. Syntax of OCP Commands (Continued)

OCP Debugging and Error Recovery Commands (Continued)

IDW] <task id>
DWKSP sraskd.
!KT I <task id>
DTASK staskid=.
KI I <1 >
K10 <luno>.

TR [,<address>
TRACE ,<address>].

OCP 1/0 Utility and Status Request Commands

RE
,<luno>.
REWINDI une
FS | <l >< ber>
FSPACE ,<luno>,<number>.
BS } <luno>,< ber>
BSPACE ,<luno>,<number>.
ST l [,<task ID>]
STASK ’)
SI
SI0 | [,<luno>]
Availabl ly with SP
va ,d eony\&‘ll I [,<procedure id>].
multiple dynamic SPROC
task support.
OCP Time and Date Commands
IID I < >,< th>,<day>,<h >,<minute>
1 .
IDATE ,<year>,<month>,<day>,<hour>,<minute
TI I
TIME
OCP Termination Command
Irersmare|
TERMINATE

34 Digital Systems Division

o]
{—@P 946259-9701

m Each group of commands is discussed in detail in a subsequent paragraph.
. 3.5.1 OCP TASK SUPPORT COMMANDS. These commands are processed by either module
OCPLRT or module DOCPLRT, and enable the user to assign and release LUNOs, load programs
into the dynamic task area, and execute programs, through a terminal. DOCPLRT must be used in
- place of OCPLRT to support multiple dynamic tasks.

3.5.1.1 Assign Logical Unit Number (AL or ALUNO). The Assign Logical Unit (AL or ALUNO)
command assigns a logical unit to a pathname. The syntax for the command is as follows:

{QII:UNO} ,<luno>, <pathname>.

The LUNO operand is a hexadecimal number from 0 through FE¢. In systems that include OCP,

LUNO 0 is a system LUNO and may not be assigned by the user. When a previously assigned LUNO

is reassigned, the previous assignment is released unless a task is performing I/O to the LUNO.

When a task is performing I/O to the LUNO, the LUNO is neither released nor reassigned and an
™ error message is printed.

The.following are examples of ALUNO commands:

AL,10,CR. Assign LUNO 10,4 to the card reader.
ALUNO,11,LP. Assign LUNO 11,4 to the line printer.
(@h\ AL,10,:FILE/SYS. Assign LUNO 10,4 to a disc file.

Error messages are discussed in paragraph 3.6 and in Tables 3-2 and 3-3.

Error messages 1 through. 6 (Table 3-3) apply to the AL or ALUNO command.

3.5.1.2 Release Logical Unit Number (RL or RLUNO). The Release Logical Unit (RL or RLUNO)
command releases the assignment of a LUNO to a physical device or file. An attempt to release a

LUNO to which a task is performing I/O results in an error message. The syntax for the command
is as follows:

RL
{RLUNO } ,<luno>.
The LUNO operand specifies a LUNO to be released. The following is an example of an RLUNO
command:
RL,1A. Release LUNO 1A .

Error messages 1 through 4 (table 3-3) apply to this command.

35 Digital Systems Division

o
@ 9462599701

3.5.1.3 Load Program (LP or LPROG). The Load Program (LP or LPROG) command reads the
object code on the specified device and installs it in the dynamic task area. When a task that was
previously installed in the dynamic task area has not terminated, the current task is not installed
and an error message is printed. The snytax for the command is as follows:

LP ,<pathname>[,[<priority>] [,P]].
{LPROG} P Y

The pathname operand is the name of the input device or file appropriate for the module that
contains the object code for the task. OCP assigns LUNO 2 to the device. The priority operand
is the priority level, O through 3, of the task. When the priority operand is omitted, priority level 3
is assigned to the task. The third operand is the letter P to specify that the task executes in the
privileged mode. When the third operand is omitted, the task executes in the nonprivileged
mode.

The task identifier (ID) of a task installed with the LPROG command is 10,¢.

When loading from a cassette, the LPROG command processor does not perform a rewind operation
prior to reading the module. It is necessary for the user to position a cassette to the desired object
module. When loading from a diskette file, the file is automatically rewound.

The following examples show use of LPROG commands:

LPROG,CS]1. Read the object module (i.e., the program or task)
from the cassette in cassette drive 1 and install the
module in the dynamic task area at priority level

3.

LP,CR,2. Read the object module from the card reader and
install the module in the dynamic task area at priority
level 2.

LP,DSC2:IBMUTL/SYS,3,P. Read the object module from the diskette in diskette

drive 2 and install the module in the dynamic task
area at priority level 3 as privileged.

Error messages 1, 2, 5, 6 and 7 through 11 (table 3-3) apply to this command.

3.5.1.4 Load Real-Time Program (LR or LRPROG). The Load Real-Time Program (LR or
LRPROG) command reads the object code on the specified device and installs it in the dynamic
task area. When a task that was previously installed in the dynamic task area has not terminated,
the current task is not installed and an error message is printed. The syntax for the command is
as follows:

LR
{LRPROG } ,<pathname>[,[<priority>] [,P]].

The pathname operand is the name of the input device or file appropriate for the module that
contains the object code for the task. OCP assigns LUNO 2 to the device. The priority operand
is the priority level, 1 through 7F,s of the task. When the priority operand is omitted, priority
level 127 is assigned to the task. The third operand is the letter P to specify that the task exe-
cutes in the privileged mode. When the third operand is omitted, the task executes in the non-
privileged mode.

3-6 Digital Systems Division

@ 946259-9701

The task identifier (ID) of a task installed with the LRPROG command is 10,5

When loading from a cassette, the LRPROG command processor does not perform a rewind opera-
tion prior to reading the module. It is necessary for the user to position a cassette to the desired
object module. When loading from a diskette file, the file is automatically rewound.

The following examples show use of LRPROG commands:

LRPROG, CS1 Read the object module (i.e., the program or task)
from the cassette in cassette drive 1 and install the
module in the dynamic task area at real-time priority
level 7F ¢.

LR,CR1,2 Read the object module from the card reader and
install the module in the dynamic task area at real-
time priority level 2.

LR, DSC2:IBMUTL/SYS,50,P Read the object module from the diskette in diskette
drive 2 and install the module in the dynamic task
area at real-time priority level 50, as privileged.

Error messages 1, 2, 5, 6 and 7 through 11 (table 3-3) apply to this command.

3.5.1.5 Execute Task (EX or EXECUTE). The Execute Task (EX or EXECUTE) command places
the specified task in execution. Execution begins when the task becomes the oldest task on the
active list for its priority level, and no task at a higher priority level is active. The syntax for the
command is as follows:

{EX

EXECUTE} <task id>[,<parameter1>[,<parameter2>]].

The task ID operand is a two-digit hexadecimal operand. The task ID of the task installed in the
dynamic task area is 10,5. Task IDs of resident tasks are assigned when the system is generated.
The parameter operands are optional task parameters, each of which is a hexadecimal number of up
to four digits. When the operands are omitted, TX990 supplies zeros. The task obtains the
parameters by executing a Get Parametet supervisor call, described in Section IV.

The following are examples of EXECUTE commands:
EX,10. Execute task 10, , installed in the dynamic task area.
EX,11,4845,4C50. Execute task 11,5, and passes the characters HELP to the task.
.EXECUTE,10,1C. Execute the task installed in the dynamic task area, and pass the

value 1C,4 (28) to the task.

Error messages 1 and 12 (table 3-3) apply to this command.

3.5.1.6 Install Task (IT or ITASK). The Install Task command loads an object module from a
sequential file into the dynamic task area. The syntax of the command is as follows:

{g ASK} ;<pathname>, <task id>[,[<priority>] [,[<procedure id>] [,P][,N]]]

37 Digital Systems Division

o
@ 946259-9701

The <pathname> is the name of the sequential file or device which contains the object module of
the task being installed, and is required.

The required <task id> parameter is the ID to be assigned to the installed task. Valid IDs are in the
range of 10,4 to EF,4. If a task with same ID is already installed, the task is not installed and a
message is returned! “ID IN USE.”

The optional <priority> parameter is the priority (0 to 3) at which the task will execute. The
default value is 3, the lowest priority.

<Procedure id> is the ID of a previously installed procedure which is to be attached to the task
-when loaded. The task is initialized to begin execution at the procedure entry point, i.e., the proce-
dure end vector. If no value is given, no procedure is attached to the task.

The letter P is used to specify that the task should execute in privileged mode; if not used, the task
is nonprivileged.

The letter N is used to prevent the input file <pathname> from being rewound before the task is
loaded. If N is not used, the file is rewound.

The following examples show the use of the Install Task command:
ITASK, DSC: TASK/OBJ, 30,3,10,P, N

Read the object module from file :TASK/OBJ and install it as task 30,, with priority 3.
Attach procedure 10,4 and make the task privileged. Do not rewind the file.

IT, CS1, CB.

Read the object module from CS]1 and install it as task CB,¢. The task is nonprivileged, has no
attached procedures, and has priority 3.

3.5.1.7 Install Real-Time Task (IR or IRTASK). The Install Real-Time Task command loads an
object module from a sequential file into the dynamic task area. The syntax of the command is as
follows:

IR
{IRTASK} ,<pathname>,<task id>[,[<priority>] [,[<procedure id>] [,P][,N]]]

The <pathname> is the name of the sequential file or device which contains the object module of
the task being installed, and is required.

The required <task id> parameter is the ID to be assigned to the installed task. Valid IDs are in the
range of 10,4 to EF 4.

The optional <priority> parameter is the real-time priority (1 to 7F;¢) at which the task will
execute. The default value is 7F ¢, the lowest priority.

<Procedure id> is the ID of a previously installed procedure which is to be attached to the task
when loaded. If no value is given, no procedure is attached to the task.

The letter P is used to specify that the task should execute in privileged mode; if not used, the task
is nonprivileged.

3-8 Digital Systems Division

o
@ 946259-9701

The letter N is used to prevent the input file <pathname> from being rewound before the task is
(@”’\ loaded. If N is not used, the file is rewound.

The following examples show the use of the Install Real-Time Task command:
IRTASK, DSC: TASK/OBJ,30,5,10,P,N

Read the object module from file :TASK/OBJ and install it as task 30,, with real-time
priority 5. Attach procedure 10,4 and make the task privileged. Do not rewind the file.

IT, CS1, CB.

Read the object module from CS1 and install it as task CB,¢. The task is nonprivileged,
has no attached procedures, and has real-time priority 7F ;¢ .

3.5.1.8 Install Procedure (IPROC). The Install Procedure (IPROC) command reads the specified
file and installs it in the dynamic task area. The syntax for the command is as follows:

& 1P <pathname>,<procedure id>
IPROC P 'SP

The <pathname> is the name of the sequential file or device which contains the object module of
the procedure being installed, and is required.

The <procedure id> specifies the procedure to be installed with the IPROC command. If a proce-
dure with the same id is already installed, the new procedure is not installed and an error message is
returned.

¢ V The end vector entry point of the procedure module is stored so that subsequent tasks installed and
attached to this procedure may automatically begin execution within the procedure at this point.

3.5.1.9 Delete Task (DTASK). The Delete Task command deletes a task from memory and returns
the memory occupied by the task to the available memory pool in the dynamic task area. The
syntax for the command is as follows:

DT .
{DT ASK} <task id>.

- The task previously installed with an ITASK command using the same <task id> is deleted. If a task
with the specified ID is not installed in the dynamic task area, no task is deleted, and an error
message is printed. When a procedure is attached by an ITASK command to the task being deleted,
the task is detached from the procedure. A task linked with the system may not be deleted.

3.5.1.10 Delete Procedure (DPROC). The Delete Procedure command deletes a procedure from
memory and returns the memory to the available memory pool in the dynamic task area. The
syntax for the command is as follows:

DP .
{DPROC} <procedure id>.
The procedure previously installed with an IPROC command using the <procedure id> is deleted
unless one or more tasks are attached. When one or more tasks are attached or a procedure with the
specified ID is not installed, the procedure is not deleted, and an error message is printed.

39 Digital Systems Division

o
%@ 946259-9701

3.5.2 OCP DEBUGGING AND ERROR RECOVERY COMMANDS. These OCP commands are

processed by Command Processor module OCPSLD and OCPTLD, and enable the operator, by use ’Q'\“\
of the system console keyboard, to perform some real debugging operations; dumping and loading

memory, which allows the user to patch his task or to examine different variables in memory;

setting and clearing run-time breakpoints in a task; adding and subtracting hexadecimal addresses;
calculating JMP instruction displacements; and dumping the current workspace of an executing

task. These commands are described in the following paragraphs.

3.5.2.1 Dump Memory (DM or DMEM). The Dump Memory (DM or DMEM) command causes
OCP to print the contents of specified sequential memory locations on the device to which LUNO 1
is assigned. The syntax for the command is as follows:

{gﬁEM } ;<starting address>[,<ending address>].

The starting address operand is a one- to four-digit hexadecimal address of the first memory
location to be displayed. The optional ending address operand is a one- to four-digit hexadecimal
address of the last memory location to be displayed. When the ending address operand is omitted, -
the ending address is equal to the starting address. Contents of eight memory words are printed '
on one line, following the address of the first memory location displayed. The contents are dis-
played in hexadecimal representations and in ASCII character representations, with nonprinting
characters printed as periods. OCP displays a multiple of eight words; when the ending address is
omitted or when the ending address is greater than the starting address by 16 or less, one line is
printed. Similarly, the last line printed includes the contents of the ending address and any addi-

tional words required to fill the line. When the starting address is an odd value, the next lower even
address is used.

The following is an example of a DMEM command and the resulting display of memory contents: ,m\
DM,15,34. Display contents of memory locations 0015, through 0034 16 -

0014=07BA 0796 0568 O05E2 0568 O05E2 0568 OSE2
0024 =0572 0SB0 057C O05BC 0568 O0SE2 0568 05C8 0 .. > . . 1
0034=0568 O0SE2 0568 O05E2 0590 05D4 0568 O5E4 T .

Error message 1 (table 3-3) applies to this command. On a computer equipped with TILINE*, an
attempt to address a nonexistent memory address terminates OCP. On other computers, the com- -
mand is executed, but gives unpredictable results.

3.5.2.2 Load Memory (LM or LMEM). The Load Memory (LM or LMEM) command places
values in memory at specified locations. The syntax for the command is as follows:

{LM

LMEM } , <address>,<value>[,<value>. .. .]

The address operand is a one- to four-digit hexadecimal address into which the first value operand
is placed. The value operand is a one- to four-digit hexadecimal representation of the value to be
placed in a word of memory. When additional values are entered, they are placed in successive ad-
dresses. When the address operand is an odd address, the value is at the next lower even address.
The following is an example of an LMEM command:

LM,0100,FFFF,1284. Place the values FFFF;4 and 1284, in memory words at ad- P
dresses 0100,4 and 01024, respectively. /wﬁ

*TILINE is a registered trademark of Texas Instruments Incorporated.

3-10 Digital Systems Division

o
@ 946259-9701

Error message 1 (table 3-3) applies to this command. On a computer equipped with TILINE, an
‘M\ attempt to address a nonexistent memory address terminates OCP. On other computers, the
, command is executed but the results are unpredictable.

3.5.2.3 Set Breakpoint (SB or SBKPT). The Set Breakpoint (SB or SBKT) command sets a break-

. point in a task. A breakpoint may be set in any resident task or in a task that has been installed in
the dynamic task area, whether or not the task is active. Setting a breakpoint consists of replacing
the contents of the specified breakpoint location with a single-instruction loop (JMP $).

CAUTION

Do not mistakenly set the breakpoint outside of the task area, or a
memory area other than the task area may be.destroyed.

As many as four breakpoints may be active at any one time. The syntax of the command is as
follows:

o~ { gngT} <address>.

The address operand is a one- to four-digit hexadecimal address at which the breakpoint is set. The
following is an example of an SBKPT command:

SB,048C. Set a breakpoint at the instruction at address 048C,¢.

Error messages 1, 6, and 13 (table 3-3) apply to this command. On a computer equipped with
(M\ TILINE, an attempt to set a breakpoint in a nonexistent memory address terminates OCP. On other
computers, the command is executed, but the results are unpredictable.

The user must be careful to set a breakpoint at the address of a single-word instruction, or at the
address of the first word of a multiword instruction. Effects of setting breakpoints at other
locations are unpredictable.

3.5.2.4 Clear Breakpoint (CB or CBKPT). The Clear Breakpoint (CB or CBKPT) command clears
one or all breakpoints in a task or system. A breakpoint may be cleared in any resident task orin a
task that has been installed in the dynamic task area, whether or not the task is active.

When a breakpoint occurs, a CBKPT command must be executed to continue execution of the task.
Clearing a breakpoint consists of restoring the original contents of the breakpoint location. How-
ever, when clearing a breakpoint is requested for a breakpoint location that no longer contains a
single-instruction loop (JMP $) the contents of memory are not altered. The syntax for the
command is as follows:

{(C:gKPT} [<address>}

3-11 Digital Systems Division

%ij@ 946259-9701

The address operand is a one- to four-digit hexadecimal address of a breakpoint to be cleared. When
the address is omitted, all current breakpoints are cleared. The following is an example of a CBKPT
command:

CBKPT,048C. Clear breakpoint at address 048C,.
Error messages 1, 12, and 14 (table 3-3) apply to this command.

3.5.2.5 Add (AD or ADD). The Add (AD or ADD) command provides the sum of two values. The
syntax of the command is as follows:

{AD

ADD } Lvalue>,<value>.

The value operands are one- to four-digit hexadecimal numbers, and are added using the add
machine instruction. The addition follows the rules that apply to the add instruction, and the result
is not modified by the state of the Carry or Overflow bits following the operation. The following
are examples of ADD commands and resulting sums:

ADD,300,700. Adds 300,¢ to 700,¢ and prints the sum 0A0Q .
0AO00

AD,7FFF,8000. Adds 7FFF,4 to 8000,¢ and prints the sum FFFF 4, the maximum
FFFF value that is represented without an overflow.

AD,8000,8000. Add 8000,¢ to 8000,¢ and prints the four least significant digits of
0000 the sum, 0000.

Error message 1 (table 3-3) applies to this command.

3.5.2.6 Subtract (SU or SUB). The Subtract (SU or SUB) command subtracts the first of two
specified values from the second, and prints the difference. The syntax for the command is as
follows:

{ggB} Lvalue> ,<value>.

The first value operand (subtrahend) is the value to be subtracted from the second value operand
(minuend). Both operands are one- to four-digit hexadecimal numbers, and are subtracted using the
subtract machine instruction. The subtraction follows the rules that apply to the subtract instruc-
tion, and the result is not modified by the state of the Carry or Overflow bits following the opera-
tion. The following are examples of SUB commands and resulting differences:

SUB,500,A00. Subtract 500,¢ from A00,4, and prints the difference, 500,4.
0500

SU,FFFF,100. Subtract FFFF4 (-1) from 100,4, and prints the difference, 101,4.
0101

SU,1000,300. Subtract 1000, from 300,¢,, and prints the difference, F300,¢
F300 (-D00y¢).

Error message 1 (table 3-3) applies to this command.

3-12 Digital Systems Division

(o]
q‘r@;‘) 9462599701

m 3.5.2.7 Jump Instruction (JM or JMP). The J ump Instruction (JM or JMP) command builds a jump
instruction having a displacement corresponding to the specified addresses. The JMP command
prints an instruction word with a 1 as the first digit and the displacement in the two least signifi-
cant digits. An asterisk follows the 1 and represents the second hexadecimal digit of a specific jump
instruction;i.e., 0 for JMP, 3 for JEQ, etc. The syntax for the command is as follows:

{?I\;IIP} ,<address>,<address>.

The address operands are one- to four-digit hexadecimal addresses; the first is that of the jump in-
struction being built; the second address is that of the instruction to which control is to be trans-
ferred by the jump instruction. The following are examples of JMP commands and the resulting

instructions:
JMP,109A,10B0. Build a jump instruction to be placed at address 109A,¢ to jump to
1*0A address 10B0,,.
™ JM,109A,1000. Build a jump instruction to be placed at address 109A,4 to jump to
1*B2 address 1000, .

Error messages | and 15 (table 3-3) apply to this command.

3.5.2.8 Dump Workspace (DW or DWKSP). The Dump Workspace (DW or DWKSP) command
causes OCP to print the contents of the workspace of a specified task. When the debugging OCP
described previously is not included, this command will not execute. OCP also prints the task ad-
dress and the workspace pointer register contents. The syntax for the command is as follows:

- {DW } <task id>.

DWKSP

The task ID operand is the task identifier of the task. The task identifier is a one- or two-digit
hexadecimal number assigned when the task was loaded. The following is an example of a DWKSP
command and the resulting printout:

DWKSP,0D. Print contents of workspace of task OD .
, ADR: 20F0 WP: 20F6
o 20F6 = 06BE 06AE 06CA 06AC O6EA 070A O6EA 070A > .

2106 =05E4 0568 O0S5E4 0568 O05E4 0568 O05E4 0568

On the first line, OCP prints the starting address at which the task was loaded, and the contents of
the workspace pointer register. On the next two lines, the contents of the 16 words of the work-
space are printed in the format of the DM command. The address of the first word on each line is
printed as a four-digit hexadecimal number, followed by an equal sign. The address on the first of
these two lines is the address that is in the workspace pointer register. To the right of the equal sign
are eight four-digit hexadecimal numbers that represent the contents of workspace registers 0
through 7 in hexadecimal representation. The ASCII representation of the same values is printed
further to the right, with periods substituted for nonprinting ASCII characters. The contents of
workspace register 8 through F are printed in the same format on the next line.

Error messages 1 and 12 (table 3-3) apply to this command.

3-13 Digital Systems Division

o
@ 946259-9701

3.5.2.9 Kill Task (KT or KTASK). The Kill Task (KT or KTASK) command forces termination of
an executing task. If end action is specified by the task, it is taken. Otherwise, any I/O operations
in progress are terminated in error; all assignments of file-oriented devices to the task are released;
and any files that were opened are closed. The syntax for the command is as follows:

{KT

KT ASK} <task id>.

The task ID operand is the task identifier assigned when the task was installed, and consists of two
hexadecimal digits. The following is an example of a KTASK command:

KTASK,21. Force termination of task 21,4.
Error messages 1, 12, and 16 (table 3-3) apply to this command.

3.5.2.10 Kill I/O Operation (KI or KIO). The Kill I/O Operation (KI or KIO) command terminates
any I/O operation to the specified device. If an I/O operation to the device is in progress, that
operation is terminated in error. The syntax for the command is as follows:

{% o } ,<<luno>.

The LUNO operand is a hexadecimal number, the LUNO assigned to the device on which I/Ois to
be terminated. When the specified device is file-oriented, the command also closes the file, which
releases the assignment of the device to the task. The following example shows a KIO command:

KI0,30. Terminate I/O to the device or file to which LUNO 30,4 is assigned.

Error messages 1 and 17 (table 3-3) apply to this command.

3.5.2.11 Trace (TR or TRACE). Trace (TR or TRACE) displays the current contents of a memory
location on the programmer panel lights. When the contents of memory change, the programmer
panel lights will also change. It has up to one parameter. This parameter is the hexadecimal memory
address. If no parameter is given, the standard display, the Program Counter (PC), will be displayed
on the programmer panel. By entering the command with no parameter, the trace is, in effect,
turned off.

TRACE[,<memory address>].

-3.5.3 OCP I/O UTILITY AND STATUS REQUEST COMMANDS. These OCP commands are
processed by Command Process Module OCPIOU or DOCPIOU, and enable the operator, by use of
the system console keyboard, to perform various I/O utility and status request commands.
DOCPIOU should be included to support multiple dynamic tasks.

3.5.3.1 Rewind Device (RE or REWIND). The Rewind Device (RE or REWIND) command
initiates a rewind operation on a rewindable device or file. The syntax for the command is as
follows:

{RE

REWIND } ,<luno>.

3-14 Digital Systems Division

{@}9 9462599701

The LUNO operation is a hexadecimal number, the LUNO assigned to the device or file to be re-
wound. When the LUNO is assigned to a device that is not rewindable, the command is ignored. The
following is an example of a REWIND command:

RE,2C. Rewind the device to which LUNO 2C, is assigned.
Error messages 1, 17, and 18 (table 3-3) apply to this command.

3.5.3.2 Forward Space (FS or FSPACE). The Forward Space (FS or FSPACE) command forward-
spaces a sequential file or device a specified number of records. When the file or device forward
spaces to an end-of-file (EOF) record, it remains positioned at the record following the end-of-file
record. The syntax for the command is as follows:

{ggpACE} <luno><number>.

The LUNO operand is the LUNO to which the device or file to be forward-spaced is assigned. When
the LUNO is assigned to a device other than a cassette or magnetic tape, the command is ignored.
The number, a one- to two-digit hexadecimal value, is the number of records to be forward spaced.
The following is an example of an FSPACE command:

FS,1C,5. Forward space the device to which LUNO 1C, is assigned 5 records.
Error messages 1, 17, 18, and 19(table 3-3) apply to this command.

3.5.3.3 Backspace (BS or BSPACE). The Backspace (BS or BSPACE) command backspaces a
sequential file or device a specified number of records. When the cassette tape is at the beginning-of-
tape marker, the command is ignored. The syntax for the command is as follows:

{ ggPACE} ;<luno>,<number>.

The LUNO operand is the LUNO to which the device to be backspaced is assigned. The number, a
one- or two-digit hexadecimal value, is the number of records to be backspaced. The following is
an example of a BSPACE command:

BSPACE,2E,10. Backspaces the device to which LUNO 2E,q is assigned 10, records.

Error messages 1, 17, 18, and 19 (table 5-4) apply to this command.

3.5.3.4 Task Status (ST or STASK). The Task Status (ST or STASK) command causes OCP to
print the current status of all tasks. The syntax for the command is as follows:

ST .
{ ST ASK} [<task id>].

3-15 Digital Systems Division

@ 946259-9701

No operand is required; however, if <task id> is supplied, only the status of that one task will be

printed. The following is an example of an STASK command and the resulting printout: m\
ORIGINAL CURRENT
ID PRIORITY FPRIORITY ADDR WF PC ST STATE
FO 00 1F84 04
F1 0o 1FEA 04
OR 01 1062 04
oc Qo0 204E 04
on 01 SCB4 04
OF 01 01 26A2 26A8 2ZB0O4 B40F 00
1& 01 21¢4E 04
10 R3F SESA SEAOD &2AE CCOF 0%

21:18:36 JUN 7, 1978

OCP prints a heading, followed by a line for each task. In the first column, OCP prints the task ID.
OCP prints the installed priority level of the task in the second column. The third column shows
the task’s current priority if the task is active or suspended. The next four columns contain four-
digit hexadecimal addresses. The first of these, under the heading ADDR, is the address of the
task. Next, under the heading WP, is the value to be placed in the workspace pointer register when
the task is executed. In the column headed PC is the program counter contents, and in the column
headed ST is the status register contents. The contents of the WP, PC, and ST registers are the
contents at the most recent execution of the task. The seventh column, headed STATE, contains
the task state code used by task management. These codes are listed in Appendix G. The last
column, headed PROC, is only specified if multiple dynamic tasks are allowed. It contains the
procedure identifier if a procedure is attached to the task. It is blank when no procedure is attached ™
to the task.

Task identifiers and priority levels are assigned at system generation, except for tasks in the dynam-
ic task area, which have identifiers and priority levels assigned by the ITASK or IRTASK command.

Task addresses are those into which the tasks were loaded when the system was loaded, or during
execution of the ITASK or IRTASK command.

3.5.3.5 Status of I/O (SI or SIO). The Status of I/O (SI or SIO) command-request causes OCP to
print the status of all assigned LUNOs or of a particular LUNO. The syntax for the command is as
follows:

{30} [,<luno>]

No operand is required. The following is an example of an SIO command and the resultant
printout:

SI.

LUNO PATHNAME TASK ID SYSLUN
FO DSC -
F1 DSC2 —
00 LOG -
01 LOG —
06 DSC:TXCCAT/SYS — -
10:11:10 JAN 5, 1977

ZZ <K<

3-16 Digital Systems Division

946259-9701

OCP prints a heading, followed by a line for each LUNO and, in the first column, OCP prints the
hexadecimal digits of the LUNO. The PATHNAME column contains the device, or file name to
which the LUNO is assigned; and the SYSLUN column contains YES for LUNOs designated for
system use and NO for other LUNOs. The Task ID column contains hyphens for LUNOs that are
not assigned to tasks, or the task identifier of tasks to which LUNOs are assigned. A LUNO for a
file-oriented device is assigned to a task from the time the task issues an Open supervisor call. This
call specifies the LUNO until the task terminates or issues a Close supervisor call for the LUNO. A
LUNO for a record-oriented device is assigned to a task only during an I/O operation. If the status is
requested for a LUNO which has not been assigned, the header line only will be printed.

S1,20.
LUNO PATHNAME TASK ID SYSLUN

3.5.3.6 Procedure Status (SP or SPROC). The Procedure Status (SPROC) command causes OCP to
print the current status of procedures. The syntax for the command is as follows:

ggROC [<procedure id>].
The status of the specified procedure will be printed. When the <procedure id> is omitted, the
status of all procedures will be printed. The following is an example of a SPROC command and the
resulting printout.

SP

ID ADR # TASKS
27 BE60 01
0:02:37 JAN 1, 0
OCP prints a heading, followed by a line for each procedure. In the first column, OCP prints the
procedure identifier. Column two contains the address at which the procedure was loaded. OCP
prints the number of tasks to which the procedure is attached in the third column. Procedure
identifiers are assigned by the IPROC command. The number of tasks to which the procedure is
attached is incremented each time an ITASK command specifies attachment of that procedure and
is decremented each time a DTASK command deletes a task to which that procedure had been
attached.
3.5.4 OCP TIME AND DATE COMMANDS. The OCP date and time commands are:
® Initialize Date and Time (ID or IDATE)
® Print Time and Date (TI or TIME)
These OCP commands are processed by Command Processor Module OCPTAD and enable the

operator, by use of the system console keyboard, to initialize time and date for the Operating
System. The above listed commands are described in the following paragraphs.

3-17 Digital Systems Division

(o)
4@ 946259-9701

3.5.4.1 Initialize Date and Time (ID or IDATE). The Initialize Date and Time (ID or IDATE)
command initializes the date and time values for the system. The syntax for the command is as m%\
follows:

{igATE} Lyear>,<month>,<day>,<hour>,<minute>.

The year operand is the four-digit decimal number of the years 1975 through 1999, and the month
operand is the decimal number of the month, 1 through 12. The day operand is a one- or two-digit
decimal number, 1 through 31, and the hour operand is a one- or two-digit decimal number, 0
through 23. The PM hours are specified by the sum of 12 and the hour. The minute is the decimal
number of the minute, O through 59. The second is set to zero when the command is entered. After
the command is entered, the time and date will be written to the log for verification. The following
example shows an IDATE command:

1D,1976,2,12,17,29. Initialize the time and date to 5:29 PM, February 12, 1976.
5:29:00 FEB 12,1976 ™
Error message 1 (table 3-3) applies to this command.

3.5.4.2 Print Time and Date (TI or TIME). The Print Time and Date (TI or TIME) command
causes OCP to print the time and date. The syntax for the command is as follows:

)
TIME) *

The command requires no operands. The following example shows a TIME command and the
resulting output:

TL
9:29:12 FEB 13,1976

When the date and time have not been initialized, the time printed is the elapsed time from the
most recent loading of the Operating System.
~
3.5.5 OCP TERMINATION (TE) COMMAND. The syntax for the TERMINATE (TE) command
is as follows:

{TERMINATE |
TERMINATE
The command requires no operands.

3.6 ERROR MESSAGES

OCP prints two categories of error messages. The messages in the general category are shown in
table 3-2. These messages are not related to any specific command. The messages in the operand
category apply to one or more operands of specific commands. These messages are listed in
table 3-3 and are numbered to allow them to be associated with the commands to which they apply.
The numbers do not represent an error code, but are arbitrarily assigned for identification purposes.

3-18 Digital Systems Division

946259-9701

When more than one OCP command is entered on a line, and an error occurs, the command in error
(or that caused the error) and all subsequent commands in the statement must be entered again. It is
sometimes necessary to supplement the error message information with information obtained by
executing other OCP commands (ST, SI, DM, DW, etc.) to determine which commands have
executed correctly. System generation documentation provides information about the tasks actually
in the system, their identifiers, and their priority levels. It is also helpful to enter the commands
individually so that any error messages are printed following entry of the command. However, the
user must exercise care to avoid reexecuting a command that executed correctly and will provide
undesirable results if it is executed again.

When LUNO 1 is assigned to a device that is off line, or when LUNO 1 is not assigned and a
command is used which generates a listing (DMEM,STASK,SIO), OCP ignores the command and
prompts the user with a period(.).

Table 3-2. OCP General Error Messages
Message. Meaning Recovery

* INVALID COMMAND * The command word is not valid. Check the command word, and
reenter correctly.

1/0 ERROR, TERMINATED An I/O error was detected Input from the system console was
during reading of the command. not received correctly or the device

timed out.

OUTPUT ERROR -An error was detected during This message is printed when LUNO
output and execution of the 1 has not been assigned. Check device
command has been terminated. for errors.

UNDEFINED ERROR TX990 returned an error code to This is a system error. Make another

OCP that is not recognized by OCP. attempt to enter the command. If
eITor reoccurs, reinitialize the

system.
MISSING SYS MSG OCP could not locate the text for OCP is incorrectly configured or
an OCP error message. incorrectly programmed. First verify

that the proper OCP modules were
linked with the system, and relink
and reload the system if they were
not. If all required modules were
linked, and these modules were
supplied by Texas Instruments,
contact your Texas Instruments
representative. If user-supplied
QOCP modules are involved, refer
to error message information in
paragraph 6.2.2 and verify the
coding of the OCP module.

3-19 Digital Systems Division

946259-9701

/f

‘utede puewwod 3y} I9jue pue jurod

-3jBaIq B IB9[O ‘pUBWIIOD S Ue Jo A1ud

smofjoj afessall ay} Uayp "s}9019 ONN'T

dI0W SUIBIUOD 1By} 066X.L MAU & 9jeIouald
‘A[aATIBUIS)[Y "UlBSR PUBWILIOD 91} 191U

pue ‘ONN'T Pasnun Ue 9SES[oI ‘PUBLLILOD

‘gS‘d1“IV J7110 TV ue jo Anjud a8essaw oy uayp

‘poleIaual sem
woIsAS 9y} usym pouSIsse soWeU dJ1ASp

d1TV 9y} JO 9UO YHM PUBWIIOD Y} 191Uy
"ONN'T WaIsAs st 0 ONN'T

dDO sopnjur walsAs ay) usypm "ONN’T

TH “IV 1991109 3Y) Y}IM PUBLLWOD JY} INug
"9t 4 ySnoiys

TE“TV ‘ONNT PIeA B YIIm puewulod 3y} 19juy

"pesopo
u29q sey ON()'T oY} 11je ureSe puewwod

a3 191us ‘pauado Usaq SBY PUEB ‘901A3p

Pa1usLI0-9[i] & 03 paudisse st ONN'T 2Y? JI

*paroidwod sey uoriado oY) 1916 urede

puBWIWOd 3y} 191U ‘ssa1foid ur st ONN'T

J1°Td “1IV ay} 03 uonjerado (/] Spow piodal e Jf

‘Md ‘dl ‘sg ‘puerado jo adA} 3991100

‘Sd ‘9d ‘T AUl YIIM puewIlIOod Y} I91Ud ‘paIdjud

‘I ‘NI ‘NS sem puerado suswnuuou e jng ‘painb

‘av ‘4D ‘ds -91 st puerado JlIaWINU B USYA, ‘PUBLL

‘WT‘Nd ‘X3 -wod 939[dwod 3y} I91UI ‘PalIWo

‘AT T “IV u9aq sey puerado pannbar e uaypm
0} sanddy K130009Y

Tiny st
puBWIWO) 3y} AQ pasn BaIe d|qe) YL

*3UWBU 9]A9D PIEAU]

*paseajar 10 paudis
-seal 9q JouuBd QN[WaISAS ¥

-uonesyoads ONNT PIEAUL

*3[qE[IBAR S3UI003q
ONNT 2Y? [un paudissear Jo pases|
-a1 aq jouued pue Asnq st ONNT YL

*pI{eAUT a1e spuesado alow 10 AUQ

Sutueapy

saSessapy Jonrg puerddQ JDO °€-€ dIqeL

TINd VEIV 974V1L

HOIAHA avd

ONNT WALSAS iON

ONNT avd

dSN NI ONN'T

(S) 4ou¥d ANVIddO

affessopy

PquInN
aBessopy

ivision

tal Systems D

igi

D

3-20

9462599701

‘uleSe puBWIWOD 3Y)} 133U PUB ‘YsB} 3y} JO
UOI}BUIULI3) 3010J O} PUBWWOD JSVLY ©

191U ‘A[9ATIBUIS)Y "UlESE pUBWWOD 3y} -Sunnoaxs Appuslino st

d1 15)U9 ‘UONNOaXd sa)a1dwIod yse) Y} UM BAIE)SB} O[WEUAP 2y} UI YSB] 13sn Y

*19pBO][9y} 9pn[ouf 0} ta}sAS
Ay} 3ulfaI ‘walsAs ay} ur Jou sI Japeo|
oy} JJ "urede puewwod Y} 193u? ‘paja[d *waIsAs 2y} ur papn[our jou SI 1o
d1 -WO0J Udaq sey JuIpeo] JUaLIND UaYAY osn U A[JUSLIND SI S[NPOW ISPEO] Y],

*A1owaw o azis ay) Sul

-58910Ul AQ 10 SO[NPOW 1aM3J YIIm WIISAS
a3 Supjurjar Aq eale yse) drweuAp 2y}
JO az1s a1} aseaIdU] ‘aZIs JBY] UBY) 1a51e]

Skl B 91Nn03X9 0, “MSV.LS Aq pajund "BaJe Se} d1weuAp ay) 10 ad1g|
dT SI BaIE MSB) OIWRUAp 9y} JO 9zIs aY[001 st papeo] Suraq weidoid ayJ,
"peO] pue

s[npouw Idyjoue ure}qo 1o ‘utede snpow

3y} peal 0} urede puewIod aY} AU pue *s[npow

d1 P100a1 1811J 9Y} JB WNIpaw 3y} UOIISOJ PeO[Suipear a[Iym palinddo 101ig
*SapIsal

s[npou 193[qo Y} YoIYym UO Wnipawl

a1 Sutuonsodar Jnoyim urese puew
-wod JT 9y} 191UD ‘10113 9y} apLIIaA0 O,
*p10031 9} JO WNSYI9Yd Y3 Sur308110
INOYIIM PalJIpow uaaq sey [npou 393[(qo
3} JO P1093I1 B USYM [BWIOU ST IO1ID

SIYJ, ‘PeOJ pue 9[npolu Iayjoue ure}qo

10 ‘plodal 3y} peai 0} }dwalie 1ayjoue
BN "10113 Ul PI0D3I 3Y) SI PEAI pIOdal

1sB] 9y, *A[91BINOOR PI0JAI B PBaAI 0} J[qE -s[npow peoj Suipeal
d1 -un st [Npow 3y} Speal Jey} OIAP YL 9[IYym PalIndd0 10113 WNSYIAY)
0} sanpddy A13A009y Sutueapy

(panunuo)) sadessopy Jorrg puedQ §30 ‘¢-€ JIqBL

C. ¢ C

DONINNMA SYL

JAavoTaid LNVD

114 LNOM

A0Y¥d 0/1

JOoIdd WNSHOTHO

aBessopy

11

01

L

Jaquny
afessopy

Ivision

tal Systems D

igi

.

D

3-21

946259-9701

‘PUBWLIWOD OIS UE 193Ud ‘Juswiudisse

™ ONI1T 3n0qe 1qnop ut J1 "ONNT 1031
‘sd ‘SH ‘4¥ -102 3} YIIM UleSe puewILIOd Y} Ijuy

I " A1885303U A19A0031 ON

‘uon

-ONIISUl J[& JO a8uel 3y} UIYiim i uon
-ONIISUl Y} JO UOLJBUIISIP 3y} JBY) OS 9p0d

Jo syuawsas oy} 1aploal ‘A[AANIBUIA)[Y “UON}
-ONIISUL JI[B JO PBAISUI SUOIIONIISUL JO

‘WWf UONBUIQWIOD 10 UOT}ONIISU IQYJOUE 3s()

*1091100 10U JI SJUSIUOD Y] }091109

0] pueWWOd WHNT & 191ug "sjutodyealq
aA11o® ULIBI[O INOYIIM SB] mau & Sulpeo]

Aq 10 10110 Sunwerdoid e jJo jnsal e se

‘gD PoAe[19A0 U33Q SeY UOIIONIISUT § JI[UL

‘jutod jeY) puoAaq 21nd9XI J0U [[IM YSkl

3} ‘19A9MOH “paiinbal s puewIOd 19Y1InJ

OU ‘S]U9)U0J 31091109 3y} SI UOIIONIISUL

$ dIN[243 Usyp ‘puelillod WHINT ue

YIIM UOTIdNIISUT 1931109 Y} 191U ‘10119 Ul

$ dJA[L SUTBIUOD UOIIBIO] A} UIYA “urede
P2I191ud 9q 0] PI3U 10U S0P PUBLLIOD Y}

‘gS ‘108 A[snolaaid sem jutodyealq 9yl usypm

* A[1091100 WI9)SAS ay} yulf Jo/pue 91eIauagd

‘Wa)sAs a1 01 paUl] 10 WaAISAS 3y} 0}

PaYIIUSPI JOU SeM dSB} 3} INq ‘1031100

SI 191J1USPT Y] UdYA “IS1JIIUAPI 1001

-102 3} Y}IM PUBLLWOD 3} IIUD ‘A30al

"Md -10dUul I191J1USPI JY) PAIdIUI SBY 1asn oY)

AN ADXH 9sneoaq punoj aq JOUURD XSk} Y} USYM

0} sanddy A19A009Y

-paudisse
10U Jo pijeAut st ON'T Payroads sy L

‘Suruuni jou st yse} payjioads YL

"uon
-ONIISUl JNS B YIIm Paydeal aq Jouued
pueiado puooss oy} ur SSAIPPE Y],

*3[qe} 9y} wolj

paaowar st yutodyealq Inqg ‘parsyfe
10U 21 UOI}EO0] 3} JO SIUIUO)) "UON
-ONIISul § JINf B UIBJUOD JOU S0P Ing
185 Jutodyealq B pey UONEd0] YL

‘uononIsul § JINI © sure}
-Uo0d UO[IBd0] Y} 10 ‘UOIIBIO] SIY} B
195 u29q Apeaife sey jurtodyeaiq y

‘punoj 9q jouued yse} payroads ayJ,

Surueopy

(panunuo)) safessapy Jorrg puerndQ JJO "€-€ dqeL

OoNNTavd

ONINNMNY LON

HONVY 40 1No

$ JNT LON

L3S AQVAITV

aNNO4 LON

aessol

L1

91

S

14!

€l

4!

JPquInN
agessop

Ivision

tal Systems D

Digi

3-22

946259-9701

LI
dd
“dl ‘LI

'sq ‘sd

"Sq ‘Sd ‘Td

03 sorddy

C

‘pa1d9jes sem (I einpadord

"I Is1poue 133795 paydelie 10 (] 38} pifeaur uy aravd
“payoeIIe Sse)
'S3ISE} payoelie 3 919[3(d sey] pajo[ep Juteq 21npadoid oy, AJHOVLLYV SYSVL iON
‘pasn Apeaije sl
{1 19Y)oue 199]0S pay1oads [2inpaooid 10 yse} oy, qSN NI Al
* K18$5309U AI19A0031 ON] "Pa10819p -uonjerado peysenbar
St JOH 94} uaym sasead uonerado Yy oy} Sunnp pe1o91ep sem JOH UV AT13-40-ANHd
‘urede

PUBUIUIOD 31} I8}US PUE sk} 3y} JO
UOIJRUIULId) 3010] O} PUBWIWOD JSV.IY
© 12)U9 ‘A[9ATIBUIS)[Y "UleSe puewIuiod v “yyse}
Y 19)ud ‘paje[dwod sey se) dY) uaym © 01 paudisse st ONN'T Paymoads oy, FTIVIIVAV LON ddN0STY

A13A009Y Surueapy a8essapy

(penunjuo)) safessapy Joxxg puerddQ J30 °€-€ dqeL

C C C

(44

1C

0c

61

81

RquInN
dFessop

Digital Systems Division

3-23/3-24

[}
%@ 9462599701

(ﬁ‘h\ SECTION IV

CONTROL PROGRAM

4.1 INTRODUCTION

The TX990 Control Program provides a simple interface which allows a terminal operator/user to
load and execute programs. It can also be used to pass parameters to a program being executed. The
following paragraphs describe how to use the Control Program, as well as the mechanism used to
pass parameters to initiated tasks (programs).

4.2 ACTIVATING AND DEACTIVATING THE CONTROL PROGRAM
The Control Program, like OCP, may not be executed unless it is linked in with the TX990

operating system. Activation of the Control Program is different between systems which include
OCP and systems which do not.

In an operating system which does not include OCP, the control program is activated by entering an
exclamation point (!) at a terminal.

In a system which does include OCP, the Control Program must be activated through OCP:
1. Enter! at a terminal, activating OCP.
2. Respond to the OCP command prompt (.) as shown:
~ EX, 16. TE.
3. The above command executes task 16,4 (the Control Program) and terminates OCP.

After the Control Program has been executed, the following printout or display is presented at the
system console:

TXDS 2.3.0 78.244
PROGRAM:
o~

This display indicates that the Control Program is in execution and that the operator may respond
to the PROGRAM: prompt by specifying the program to be loaded and executed. The display
heading indicates the name of the monitor (TXDS), the revision status (Release 2.3, change level
0), and the release date of the system (the 244th day of 1978).

The Control Program may be terminated by entering only a return or a new line in response to the
PROGRAM: prompt. OCP, if included in the system, may be bid by entering an exclamation point
(1) at a terminal.

4.3 LUNOs
The Control Program assigns LUNO 2 to a pathname given in response to the PROGRAM : prompt
(i.e., the file or device from which the desired program is to be loaded).

Digital Systems Division

o
‘[@9 946259-9701

4.4 OPERATOR INTERACTION
The Control Program assists in program loading and execution by printing out or displaying ﬁ‘\
prompts on the system console, sequentially, as follows: ‘

PROGRAM:
INPUT:
OUTPUT:
OPTIONS:

The following paragraphs describe the prompts and user responses.

4.4.1 PROMPT RESPONSES. The Control Program prompts the user to enter the program path-
name, input pathname, output pathname, and option-selections. The Control Program checks
each pathname for syntax. If the syntax is not correct, the Control Program will prompt the user
again. After all of the responses to the prompts are entered, the Control Program loads and/or
executes the specified program.

Only one pathname can be entered in response to the PROGRAM: prompt. When the program is to)
be loaded as a privileged task (enabling the task to execute certain supervisor calls), the user must

enter the pathname followed by a “P”. A task, when not linked with the operating system, can be

made privileged when it is loaded or by issuing a Make Task Privileged SVC at execution. All tasks

linked with TX990 are privileged. When the task is loaded, it is assigned task ID 10y .

Should the user desire to execute a task already in memory, the task ID, preceded by a hexadecimal
sign (>) must be entered in response to the PROGRAM: prompt. For example, after the TXEDIT
utility program has been loaded into memory, it can be reexecuted as follows:

TXDS V.R.E YY.DDD

PROGRAM: >10
INPUT: DSC:TASK2/SRC
OUTPUT: DSC:SCRATCH/SRC
OPTIONS: (carriage return)

4.4.1.2 INPUT: Prompt. The operator’s response to the INPUT: prompt is used to specify the
pathname(s) of input information needed by the program during its execution. The operator can Y
enter zero to three input pathnames separated by commas. The Control Program will check each
parameter for syntax. If the syntax is wrong, the Control Program will prompt the user again. The

user must enter the entire line again.

4.4.1.3 OUTPUT: Prompt. The operator’s response to the OUTPUT: prompt is used to specify the
pathname for storage of the output information resulting from execution of the program. Up to
three pathnames (separated by commas) can be entered in response to the OUTPUT: prompt.

4.4.1.4 OPTIONS: Prompt. The operator’s response to the OPTIONS: prompt is used to specify
the option(s) selected from the total alternative options available for the program which is to be

loaded and executed.

4-2 Digital Systems Division

@ 946259-9701

4.4.2 DEFAULT VALUES. Except for the PROGRAM: prompt, default values for the Control
(Wa’\ Program prompts are determined by the program being executed.

If the user intends to execute a task already in memory without reloading it, he must enter the task
ID; no default value is allowed.

If the user intends to load the program from a device (not a file), the device name must be specified
(i.e., there is no default value). If a file pathname is entered (see Section I on pathnames), the user
may leave both the device/volume name and the file extension fields unspecified.

When a PROGRAM: pathname does not specify the diskette volume name or drive, the Control
Program starts a search for the file beginning with the diskette drive that is the default-substitute
defined during system generation. For a standard TI-supplied system, the default-substitute is DSC.
If the file is not on the diskette of the first default diskette transport drive, the Control Program
will concatenate a 2 to DSC and the file search would then proceed to DSC2. In the same manner,
the search continues to DSC3 and to DSC4. The search is only effective when the diskette
default-substitute is the main diskette drive and when its device-name identifier is comprised of

o~ three characters, (i.e., DSC or any other three characters). It should also be noted that whenever the
user specifies the device-name identifier in response to the PROGRAM: prompt, only the specified
device (e.g., the specified diskette transport drive) is searched.

When the user enters only a slash (/) as the extension field in the PROGRAM: prompt pathname,
the extension will default to SYS and SYS will be substituted into the pathname before any drives
are searched. If neither the extension nor a slash is entered, the extension is assumed to be blanks.

4.4.3 SPECIAL KEYBOARD CONTROL KEYS. The special keyboard control keys are described
as follows:

1. RUBOUT/DELETE LINE/ Allows the operator to reenter a parameter.
ERASE FIELD Pressing the RUB OUT key causes a line feed
followed by a carriage return. The operator may

then enter the line again.

2. CONTROL H/Back Arrow Allows the operator to backspace by character
and correct a typing error.

~ 3. Carriage Return/NEW LINE Causes TXDS Control Program to terminate if
the carriage return or NEW LINE was the only
entry in response to the PROGRAM: prompt,
otherwise terminates a prompt line entry.

4. ESCAPE/RESET If an ESCAPE or RESET is entered during a
print out, the TXDS Control Program
terminates.

5., Causes a default to be activated when entered as
the response to the INPUT: or OUTPUT:
prompts.

6. & In any prompt line, pressing the & key as the
first character in the response causes the TXDS
Control Program to restart with the PROGRAM:

(W"’\ . prompt.

Digital Systems Division

@ 9462599701

7. % When entered after a prompt line entry, in place
of a carriage return, permits the next prompt
line to be entered without being prompted by
the TXDS Control Program. When a prompt line
is terminated with an asterisk (*) followed by a
carriage return, no more prompts are given and
default-substitutes are made by the utility
program for those pathnames not entered. The
experienced user can enter all or several of the
parameters on one prompt line.

The following examples utilize the asterisk (*) feature in lieu of the INPUT:, OUTPUT:, and
OPTIONS: prompts:

Example 1:

To load the TXEDIT utility program after the TXDS Control Program has been loaded, the
asterisk (*) is used as presented in the following example:

TXDS V.R.E YY.DDD

PROGRAM: DSC:TXEDIT/SYS*DSC:TASK2/SRC*DSC:SCRATCH/SRC*
(where DSC:TASK2/SRC is the INPUT: pathname; DSC:SCRATCH/SRC is the OUTPUT:
pathname; and the OPTIONS: entry is provided by the default-substitution specified in the
TXEDIT utility program.)
The above can also be entered as follows:

TXDS V.R.E YY.DDD

PROGRAM: DSC:TXEDIT/SYS
INPUT: DSC:TASK2/SRC*DSC:SCRATCH/SRC*

Example 2:

To load the SYSUTL utility program after the TXDS Control Program has been loaded, the
asterisk (*) is used as follows:

TXDS V.R.E YY.DDD

PROGRAM: :SYSUTL/SYS*#*CF,.TEMP/OBJ

(where the INPUT: and OUTPUT: parameters are null and the OPTIONS: parameter is
CF,:TEMP/OBJ.)

NOTE
1. In the above examples, it is necessary to press the carriage

return key at the end of the parameter line to cause the
program to be loaded and executed.

44 Digital Systems Division

@ 946259-9701

2. If a parameter line ends with an asterisk (*) and a pathname is
(“” T not entered for each prompt, then default substitutes are made
by the utility program for those pathnames not entered.

Example 3:

The following example utilizes the comma (,) to cause a default-substitution to be made in the
OUTPUT: pathname below.

TXDS V.R.E YY.DDD

PROGRAM: :TXMIRA/SYS
INPUT: :TASK1
OUTPUT: ,CRT
OPTIONS: M800,X,L

(where the OUTPUT: pathname defaults to a substitute specified in the TXMIRA Assembler
™ utility program.)

The following example utilizes both the asterisk (*) and the comma (,) special keyboard controls:

To load the TXMIRA Assembler utility program after the TXDS Control Program has been
loaded, the asterisk (*) is used as follows:

TXDS V.R.E YY.DDD
(W\ PROGRAM: :TXMIRA/SYS*:TASK!1*,CRT*M800,X,L

(where TASK1 is the INPUT: pathname and where the OUTPUT: pathname is the
default-substitute provided in the TXMIRA Assembler utility program.)

4.5 ACCESSING PARAMETERS THROUGH THE CONTROL PROGRAM
The responses to the prompts of the Control Program are entered into a block of memory known as
COMMON memory. The task which is being loaded and executed then accesses COMMON memory
for the information contained in these responses. The response-information is stored in the bytes of
COMMON memory in an organized nammer using the format presented in table 4-1. The
@' programmer, when coding a user utility program or a user applications program, will find it
necessary to become familiar with the format of COMMON memory. Access to the
response-information in COMMON memory is provided to the programmer by the use of Get
COMMON Data supervisor call 10,4 (see Section 6). Get COMMON Data returns the memory
address and the byte-size of COMMON to the task. The Control Program can only execute in an
operating system which was generated with at least 170 bytes of COMMON memory. The user must
take this into consideration when performing system generation.

A typical example of an operator’s response-entries to the TXDS Control Program’s prompts is
presented below, immediately followed by the hexadecimal and ASCII representation in binary
code of the operator’s response that is placed in the COMMON memory block.

TXDS V.R.E YY.DDD

PROGRAM: :TXLINK/
INPUT: :TXTST,/,CSI
f\ OUTPUT: :TXTST2/OBJ,LP
OPTIONS: ITXT,M4000

45 Digital Systems Division

946259-9701

Table 4-1. Byte-Allocation of COMMON Memory
Parameter Byte(s) Explanation

PROGRAM: 0-15 To be coded with the same pathname information that is
entered in response to a PROGRAM: prompt.

NOTE

The response-entries to the PROGRAM:, INPUT:, and OUTPUT: prompts are
placed in byte-groups of 16 bytes each. The device name is entered in the first four
bytes, left-justified, and space-filled with zeros. A colon is placed in the fifth byte if
the program name is a diskette file name; otherwise a binary zero is placed in the
fifth byte. The file name is entered in the sixth through twelfth bytes, left-justified,
and space-filled with binary zeros. A slash is placed in the thirteenth byte when a
diskette file is to be referenced by the pathname being entered; otherwise a binary
zero is placed in the thirteenth byte. The extension is placed in the fourteenth
through sixteenth bytes, leftjustified, and space-filled with binary zeros. Whenever
the device, file, or extension is to be defaulted by the utility or the user’s task, the
binary field relating to the device, file, or extension will be space-filled with binary
zeros. When the total parameter (which includes the device, file, and extension
fields) is defaulted, a colon (:) is placed in the fifth byte and a slash is placed in the
thirteenth byte and all the fields become space-filled with binary zeros.

INPUT: #1 16-31 To be coded with the same pathname information that is
entered for the first INPUT: parameter.

INPUT: #2 32-47 To be coded with the same pathname information that is
entered for the second INPUT: parameter.

INPUT: #3 48-63 To be coded with the same pathname information that is
entered for the third INPUT: parameter.

OUTPUT: #1 64-79 To be coded with the same pathname information that is
entered for the first OUTPUT: parameter.

OUTPUT: #2 80-95 To be coded with the same pathname information that is
entered for the second OUTPUT: parameter.

OUTPUT: #3 96-111 To be coded with the same pathname information that is
entered for the third OUTPUT: parameter.

OPTION: 112-143 To be coded with the character-entries that the operator
entered in response to the OPTIONS: prompt. The charac-
ters entered in response to the OPTIONS: prompt will be
-copied into 112-143. Up to 30 characters can be entered
and copied into COMMON memory and following the last
character entered is a binary zero.

4-6 Digital Systems Division

946259-9701

Table 4-1. Byte-Allocation of COMMON Memory (Continued)

Chaining 144-159 Used for the chaining pathname, which is the pathname of

Pathname the next program to be loaded and executed if the chaining
flag in byte 160 is set to a nonzero number. The chaining
pathname is initialized so that the first four bytes each have
a binary zero, the fifth byte has a colon, the sixth through
twelfth bytes each contain a binary zero, the thirteenth byte
contains a slash, and the fourteenth through sixteenth bytes
each contain a binary zero.

Chaining 160 This is the chaining flag byte which is set to a nonzero number

Flag by a user program or a utility program when it is desired to
chain from the end of one program to the pathname specified
in bytes 144-159. The object program which is at the path-
name specified in bytes 144-159 is then loaded and executed.
One program (a user’s task or TXDS utility program) can
chain to another by setting the chaining flag in memory
(byte 160), placing the access name (i.e., the chaining path-
name) for the new program in bytes 144-159 and executing
an End-of-Program 16,¢ supervisor call. The INPUT:
OUTPUT:, and OPTIONS: prompts can be used as required
to pass parameters to the new program.

Batch Mode 161 Set if batch job control stream is in progress. The TXDS
Flag Control Program loads and executes the object program
which is in the pathname specified in bytes Bisbit®, &/— 15

Batch 162 Set when a program terminates in error during a batch
Error stream.
Chaining 163 Chaining Error Flag. Set when the program chained termi-
Error nates in error.
Default 164-167 Default system console print device declared at time of system
Print generation.
Reserved 168-170 Reserved for later enhancements.
4-7

Digital Systems Division

946259-9701

The above responses to the prompts are placed into the COMMON memory block as follows:

Byte Hexadecimal Representation (Upper Row)
Address and ASCII Representation (Lower Row)
0-15 0000 0000 3A54 584C 494E 4B00 2F00 0000
T X L I N K . /.
16-31 0000 0000 3A54 5854 5354 0000 2F20 0000
.. .. : T X T ST .. [
3247 0000 0000 3A00 0000 0000 0000 2F00 0000
48-63 4353 3100 0000 0000 0000 0000 0000 0000
C S 1
64—79 0000 0000 3A54 5854 5354 3200 2F4F 424A
. . : T XT ST 2 . /0 B J
80-95 4C50 0000 0000 0000 0000 0000 0000 0000
LP
96—111 0000 0000 3A00 0000 0000 0000 2F00 0000
112-143 4954 5854 2C40 3430 3030 O - UNDEFINED
I T XT , M 40 00 s
144—159 0000 0000 2A00 0000 0000 0000 2F00 0000
. .. I .. /.
160 00
161 00
162 00
163 00
164—167 4C4F 4720 This assumes that LOG was defined as system
L O G default print device during system generation.
168—n Not used.
4-8

Digital Systems Division

946259-9701

, 4.6 ERROR MESSAGES
{ Refer to table 4-2 for a list of error messages, the reason for each error, and the recovery method.

Table 4-2. TXDS Control Program Error Messages
Error Reason Recovery

nn-BAD PGM LOAD nn represents error code Reenter parameter
listed in error appendix I.

—BAD PGM LOAD Can’t find object file. Reenter parameter

nn—CAN’T BID TASK nn represents the task state Reenter parameter
code of task 1044 listed in
state code appendix G.

CAN’T GET COMMON- System was configures without Configure a system
™ ABORTED COMMON. with 170 bytes of
common

4-9/4-10 Digital Systems Division

@ 946259-9701

SECTION V
PROGRAMMING TASKS

5.1 INTRODUCTION

A program that executes under the TX990 operating system is also referred to as a task. The task
consists of a data division and a procedure division. These divisions may be assembled as a single
module or as two or more separate modules linked to form a single object module. The structure of
a task is described in this section.

This section also includes a description of the programming considerations for writing tasks to be
executed under TX990, and detailed descriptions of the supervisor calls by which a user task
requests the support of TX990. Also included is a description of task scheculing.

P 5.2 TASK STRUCTURE AND PROGRAMMING
Logically, a task consists of a data division and a procedure division. Figure 5-1 shows the task
structure supported by TX990, and the relationship of the first three words of the task to the data
and procedure divisions. The data division contains the workspaces required by the task and all
other data structures (tables, supervisor call blocks, buffers, constants, etc.). The procedure division
contains the executable code for the task. When the task is assembled as a single module, the logical
division of the task into a data division and a procedure division is optional; however, the task
should be organized so that the procedure division may be shared with other tasks should it become

desirable.
WORD O INITIAL WP CONTENTS DATA DIVISION
WORD 1 INITIAL PC CONTENTS
WORD 2 END ACTION ADDRESS
W . ~
" . -
WORKSPACE

PROCEDURE DIVISION

(ﬂm\ (A)133423

Figure 5-1. TX990 Task Structure

51 Digital Systems Division

946259-9701

The first three words of the data division contain the addresses of the initial workspace, the
procedure entry point, and the end action entry point, respectively. The contents of the first word
are placed in the WP register when the task begins execution. The user places the address of the
initial workspace (16-word memory area accessible as 16 workspace registers) in that word. The
second word contains the address of the entry point to the procedure division, which is placed in
the PC when the task begins execution. The third word controls end action. When the value in the
third word is greater than 15, the value is interpreted as the address of an end action routine,
described in greater detail in paragraph 5.5. When the value is 15 or less, this value has no
significance other than to indicate that no end action is to be taken.

When a procedure division is shared with several data divisions, the shared procedural part is re-
ferred to as a procedure; and each separate data division, or each unique combination of a data
division and procedure division, is referred to as a task. Normally, each of the procedure and data
divisions are separately assembled, and in some cases are independently linked. The only case when
a procedure and tasks are linked together occurs when each is predefined and linked with TX990
modules to produce a new TX990 operating system.

Initial execution of each task, in any case, is indicated by the second word in the task module.
When tasks and procedures are linked together with the TX990 system modules, each task may
directly reference labels in the procedure. Therefore, the initial PC (second word) in each task may
directly reference an address in the procedure. Execution may also begin in the task, and direct
branches or external references to labelled addresses in the procedure are allowed. However, when
the tasks are dynamically loaded (tasks loaded which are not linked with the system and residing
on some input media other than the system disk), TX990 forces initial execution.to the entry
point of the procedure. This entry point is indicated by the end vector assembled into the proce-
dure. At task installation time (Install Task OCP command), TX990 automatically sets initial
task execution to begin in the attached procedure.

References from the procedure to data within tasks, in all cases, must be indirect. Each task begins
execution with a unique workspace. Thus, a procedure references a task through pointers in the
workspace. Indexed or indirect addressing may be used. Procedures, in order to be shared, must
be reentrant. General requirements for reentrant programming are described in the Model 990
Computer TMS9900 Microprocessor Assembly Language Programmer’s Guide, part number
943441-9701.

In addition to dividing a task into data and procedure divisions, the user may make parts of the task
into overlays, using the Link Editor. TX990 supports the automatic overlay loading capability of
the Link Editor, as described in the Model 990 Computer Link Editor Reference Manual, part
number 949617-9701.

Briefly, to create an overlayed program the user should assemble each intended overlay as a separate
module, placing the output from the assemblies into separate files. All calls to overlay modules must
be Branch and Load Workspace Pointer (BLWP) instructions, with the entry point of the overlay as
the operand (no indexing or register operand is allowed). Next, the program must be linked, using
the Link Editor. The user specifies the overlay structure of the problem through various link editor
commands. The link editor LOAD directive must be used, to notify the Link Editor that automatic
overlay loading is desired. See the Link Editor Reference Manual for more explanation of overlayed
programs and usage of the Link Editor.

5-2 Digital Systems Division

946259-9701

5.3 TASK SCHEDULING

The task scheduler uses a priority scheme with 131 levels and maintains a list of active tasks by
priority level. A task is added to the active list according to its priority in each of the following
cases:

® When the task is placed in execution (bid).

® When the task completes a time slice if the time slice option was selected at SYSGEN
time.

® When the task becomes ready for the CPU after being suspended either at the task’s
request or by the TX990 I/O supervisor.

The 131 priority levels are defined as follows:

PRIORITY: DESCRIPTION: PRIORITY RANK:
0 System functions and tasks Highest
Real-Time 1 User’s real-time monitor and control tasks 4
®
°
.
Real-Time 127 User’s real-time monitor and control tasks
1 User’s highest priority data processing tasks
2 User’s data processing tasks v
3 User’s lowest priority data processing tasks Lowest

The user should not use priority level O except for system functions. The real-time priorities are
designed for user applications which monitor and control processes. Normally, the user is expected
to use these priorities in conjunction with an interrupt handler which will “bid”’ a real-time task
which will then perform control using CRU instructions. The remaining priorities (1, 2, 3) are
designed to satisfy the user’s computation, I/O, and data processing applications.

The scheduler has two features which may be selected at SYSGEN time. These are the time slice
option and the task sentry option.

The task sentry option prevents a task from monopolizing the CPU resource by automatically
lowering the running priority of the task which becomes compute bound. If this feature is selected
during system generation, each task which remains in execution beyond the time limit established
will have its priority lowered by 1. For example, a priority O task will become real-time priority
1, a real-time priority 127 task will become priority 1, and a priority 3 task will remain at priority
3. The task’s original priority will be restored when it is reactivated after it issues a supervisor call
which causes it to be suspended.

A task which issues a do-not-suspend supervisor call (SVC 9) may still have its priority lowered as
described, but it will not be preempted until the expiration of its do-not-suspend time.

5-3 Digital Systems Division

946259-9701

(A time slice is a period of execution of a task, beginning when the scheduler passes control to the
task.) A time slice ends when any of the following occurs:

® The system preempts the task upon expiration of the maximum time period allowed for a
time slice.

® The task executes a supervisor call that suspends the task.

® The scheduler preempts the task due to a higher priority task becoming ready for the
CPU.

When the currently executing task completes a time slice, the task scheduler passes control to the
oldest task on the active list for the highest priority (0). If there is no task on the active list for
priority 0, the oldest task on the active list for the next highest priority receives control.

If the time slice option is not selected at SYSGEN time, then the task will not be suspended until
it is preempted or it suspends, provided that the task sentry option is not exercised and the task
exceeds the task sentry time limit.

The maximum time period allowed for a time slice and the maximum time period allowed for the
task sentry are parameters which may be specified when the system is generated.

Task management maintains a state code for each task. The state codes are listed in Appendix G.

5.4 PREVENTING ACCIDENTAL ALTERATION OR DESTRUCTION OF THE OPERATING
SYSTEM

An important consideration in programming user tasks is that the tasks do not interfere with
the proper operation of the operating system. TX990 executes in either the Model 990/4, the Model
990/5, or the Model 990/10 Computer. Programming considerations to prevent accidental altera-
tion or destruction of the operating system are different in each model.

In the Model 990/10 Computer, user tasks may execute in either the privileged or nonprivileged
mode. An attempt to execute any of the following assembly instructions (described in the Model
990 Computer TMS 9900 Microprocessor Assembly Language Programmer’s Guide part number
943441-9701) in the nonprivileged mode will result in a fatal error:

e RSET
e IDLE

e CKOF
e CKON
e LREX

° SBO, when the effective CRU address is EQO,¢ or greater
e SBZ, when the effective CRU address is EOO,¢ or greater

e TB, when the effective CRU address is EOO;¢ or greater

5-4 Digital Systems Division

o
@ 946259-9701

(’W‘\ e LDCR, when the effective CRU address is EO0, or greater

e STCR, when the effective CRU address is EOO,¢ or greater
e LIMI

e LMF (only available in computers having map option)

e LDS (only available in computers having map option)

e LDD (only available in computers having map option)

Although privileged and non-privileged modes are not used in the Model 990/4 Computer and the
Model 990/5 Computer, the user should generally avoid using the above instructions. If necessary
the user may execute some of the above instructions with care; however, the system may operate
improperly or fail to operate.

™. Execution of an RSET instruction has unpredictable results. Execution of an IDLE instruction
places the computer in the Idle mode until an interrupt occurs. The CKOF and CKON instructions
control the real-time clock, which is used by the system to allot execution times to tasks according
to the scheduling algorithm. A CKOF instruction must not be executed, and a CKON instruction
should not be required. Execution of an LREX instruction transfers control of the program that
controls the programmer panel, stopping system operation. Execution of an LIMI instruction may
interfere with the system control of interrupts. An LIMI instruction with an operand of 0 inhibits
all interrupts except for power up and programmer’s panel. This instruction is permissible if the user
reenables interrupts by executing an LIMI instruction having an operand of 15 as soon as possible.
W A user task should use the Do Not Suspend supervisor call to inhibit suspension of the task at the
end of the current time slice rather than an LIMI instruction. Integrity of system time is lost if
interrupts are not reenabled within 8.3 ms (60-Hz line frequency) or 10 ms (50-Hz line frequency).
In addition, time critical I/O such as communications or the card reader may be inhibited and data
lost.

The operating system uses the higher-order Communications Register Unit (CRU) addresses for
dedicated purposes. None of the CRU instructions (SBO, SBZ, TB, LDCR, or STCR) should access
any CRU addresses greater than DFF;s . For example, if workspace register 12 contained 1BFO,
as the CRU base address, an SBO instruction with a displacement of 8 results in an effective CRU
L address of E00Q,¢, a dedicated address. Displacements less than 8 would result in valid addresses.
The same base address in workspace register 12 would result in accessing dedicated addresses if an
STCR instruction to store 8 or more bits were attempted. Refer to the Model 990 Computer
Assembly Language Programmer’s Guide, part number 943441-9701, for details of CRU addressing.

The user may write routines to perform extended operations (XOP). Since an XOP routine running
under TX990 in the Model 990/4, 990/5, or 990/10 Computers can execute privileged instructions,
the same precautions that exist for tasks executing in the privileged mode applies to XOP routines.
Additional information about programming extended operations is included in Appendix C, entitled
“User-Supplied Modules™.

5-5 Digital Systems Division

[e]
@ 9462599701

5.5 USER-SPECIFIED END ACTION ROUTINE IN RESPONSE TO FATAL ERRORS

The user specifies end action by placing the address of an end-action routine in the third word of ﬂw\
the user task. When TX990 detects a fatal error and terminates the task abnormally, control

transfers to the address in the third word unless that word initially contained a value of 15 or less.

This allows the user to supply a routine to perform any required terminating function.

TX990 places the appropriate error code in the third word of the task after obtaining the end action
routine address. After performing end action, or when the error is detected and no end action is
specified, TX990 releases all 1/O devices, closes all files, and removes the task from execution. The
task error codes are listed in Appendix H, entitled ‘“Printout of Fatal Task Error Codes and Illegal
Interrupt Code™.

When a task that has taken end action is to be reexecuted without reloading, the end-action routine
must restore the end-action-routine address in the third word of the task.

5.6 CODING SUPERVISOR CALLS AND SUPERVISOR CALL BLOCKS

A user task requests support of the operating system by executing a supervisor call, XOP Level 15.

A supervisor call block contains one or more bytes that define the supervisor call. The first byte of a ™
supervisor call block contains the code of the supervisor call. Subsequent bytes are used as described

for specific supervisor calls, when required.

The supervisor call may be coded in either of two ways. The first example shows a supervisor call
coded as an XOP instruction:

XOP @SCBA,15 Perform extended operation 15, by passing the
address corresponding to @SCBA to the system.

Alternatively, a symbol may be defined for supervisor calls using DXOP directive, as follows:
DXOP SVC,15 Define symbol SVC for extended operation 15.

Supervisor calls following that directive may use the defined symbol, SVC, in the operation field
and the address of the supervisor call block in the operand field as follows:

SVC @SCBA Perform extended operation 15 using the supervisor
call block at address @SCBA.

Supervisor call blocks are coded using BYTE directives, DATA directives, or both. Some supervisor
call blocks must be aligned on word boundaries (i.e., they must have even addresses). Use of a
DATA directive assures word alignment, but a BYTE directive does not perform word alignment.
The descriptions of supervisor calls in the previous paragraphs identify the supervisor call blocks
that must be word-aligned.

The following examples show coding for supervisor call blocks:

SCBA BYTE >10,0 Place 10,6 , the code for a Get Common Data Address
supervisor call, in a byte at location SCBA. The second
byte contains 0.

SCBB DATA >0300,DTBUF Place 034 , the code for a Get Date and Time supervisor
call, in the first byte of a two-word block at location
SCBB, a word boundary. The second byte of the block A
contains 0, and the last two bytes contain the address /’W\
corresponding to location DTBUF, a five-word buffer into
which the function places the date and time.

5-6 Digital Systems Division

@ 9462599701

Alternatively, the label for a supervisor call block may be supplied with an EQU directive, as

(MM follows:

SCBB EQU §

DATA >300, DTBUF Assign label SCBB to current location. Place 03 in the first
byte of a two-word block and the address corresponding to
location DTBUF in the second word of the block, as in the
preceding example.

The preceding example produces the intended result only if the current location is a word-aligned
location. When the statements in the example follow a BYTE directive or a TEXT directive the
location may not be word-aligned, and, if it is not, SCBB will not be the address of the supervisor
call block. The following example will provide the desired result:

SCBB EVEN
DATA >0300, DTBUF If the location is not word-aligned, increment the location
to a word boundary and assign label SCBB to the result.
™. Otherwise, assign label SCBB to the location. Build the

supervisor call blocks as in the preceding example.

5-7/5-8 Digital Systems Division

946259-9701

6.1 INTRODUCTION

SECTION VI

EXECUTIVE SUPERVISOR CALLS

Executive supervisor calls (SVCs) in the TX990 operating system provide the user with the ability
to control activities/operations in the user program, and to request services from the operating
system. Table 6-1 shows the executive supervisor calls provided by TX990.

Table 6-1. Executive Supervisor Calls

SVC Name

Bid Task

Change Priority

Do Not Suspend
Time Delay

Activate Time Delay
Unconditional Wait
Activate Suspended Task
End-of-Task
End-of-Program

Get Parameters

Get Own ID

Make Task Privileged

Convert Binary to Decimal

Convert Decimal ASCII to Binary
Convert Binary to Hexadecimal ASCII
Convert Hexadecimal ASCII to Binary

Get Memory

Release Memory

Get System Table

Get COMMON Data
Return COMMON Data

Put Data
Get Data

Get Date and Time
Enable or Disable Event Key
Initialize Time and Date

Hexadecimal
SVC Code

6-1

Digital Systems Division

(o]
@ 946259-9701

6.2 TASK CONTROL SUPERVISOR CALLS

Task control SVCs are used to schedule and control the execution of tasks. These SVCs are
discussed in the following paragraphs.

6.2.1 BID TASK SUPERVISOR CALL 5. Bid Task supervisor call 5, activates the specified
task. The supervisor call block contains three, six, or eight bytes, aligned on a word boundary. Byte
0 contains the code, and the system returns a value in byte 1. Byte 2 contains the task identifier
assigned to the task being bid. If the task is a linked-in task, the task ID was assigned during system
generation. In systems supporting multiple dynamic tasks, the ID of a dynamic task is assigned by
the IT OCP command. In single dynamic task systems, the task identifier of the task in the dynamic
task area is 10,4. Byte 3 is unused. Bytes 4 through 7 may contain parameters to be passed to the
task. The task obtains the parameters by executing a Get Parameters supervisor call.

When the system is unable to locate the specified task, it returns a -1 in byte 1 of the supervisor call
block. Otherwise, the system returns the current task state code in that byte. The task state code
for a terminated task is 4. Other task state codes are listed in Appendix G. When the task state code
is not equal to 4, the supervisor call is ignored.

Bid task call block:

o) 5 ERROR CODE

TASK ID RESERVED

BID PARAMETER 1

6
(A)137478 BID PARAMETER 2

The following are examples or coding for supervisor call blocks for Bid Task calls:

SCBB DATA >0500,>1000,>4845,>4C50 Supervisor call block for a Bid Task call to
bid task 10,¢, and pass the ASCII repre-
sentations of characters HELP to the task.

SCBA DATA >0500,>1A00 Supervisor call block for a Bid Task call to
bid task 1A;s. Undefined data from bytes
corresponding to bytes 4 through 7 of the
supervisor call block is passed to the task
as parameters.

6.2.2 CHANGE PRIORITY SUPERVISOR CALL 11,,. Change priority supervisor call 11,
changes the priority of the calling task to a specified value. The supervisor call block contains two
bytes and does not need to be aligned on a word boundary. Byte O contains the code, and byte 1
contains the new priority value. The valid priority levels are O through 3 (0 is usually reserved for

system tasks), and real-time priority levels are 1 through 127. The real-time priority is selected by
setting bit 0 of byte 1 toa 1.

The system returns the previous priority value in byte 1. When the priority level is not valid, the
previous priority level is not altered, and the system returns >80 in byte 1.

Change priority call block: o 701 7

0 11,6 PRIORITY

\REAL TIME
(A)137479

6-2 Digital Systems Division

o
{_@@ 9462599701

The following is an example of coding for a supervisor call block for a Change Priority call:

SCBP BYTE >11,1 Change the priority of the calling task to 1.

6.2.3 DO NOT SUSPEND SUPERVISOR CALL 9,4. Do Not Suspend supervisor call 9,4 prevents
the calling task from being suspended or preempted by the system CPU scheduler. The task may
suspend itself by executing an I/O supervisor call, a Time Delay, Wait for I/O, or Unconditional
Wait supervisor call. The supervisor call block contains two bytes and does not need to be aligned
on a word boundary. Byte O contains the code, and byte 1 contains 0 or a positive number. When
byte 1 contains O, the task will not be suspended for 200 ms. When byte 1 contains a number, the
task will not be suspended for that number of system time units. Suspension of a task may be in-
hibited for a period from 1 to 255 system time units.

The length of a system time unit is 50 ms.

0 9 NUMBER OF SYSTEM
TIME UNITS

o™, Do not suspend call block
' (A)137490

The following is an example of coding for a supervisor call block for a Do Not Suspend call:

SCBIBYTE9, 5 Inhibit suspending of calling task for five
system time units.

The Do Not Suspend supervisor call should be used instead of an LIMI instruction to inhibit sus-
. pension of a task. When a task manipulates a data structure that is used by several tasks, the task
/,W’\ should complete its alterations to the data structure before any of the tasks that use the data
execute again. The Do Not Suspend supervisor call allows such a task to lock out other tasks while

changing the data.

6.2.4 TIME DELAY SUPERVISOR CALL 2,4. Time Delay supervisor call 2,4 suspends the calling

task for a specified time period. The supervisor call block contains four bytes, aligned on a word

boundary. Byte O contains the code, and byte 1 contains zero. Bytes 2 and 3 contain the number

of system time units during which the task is to be suspended. The range of time-delay-suspension

periods is from 1 to 32,767 system time units. When a negative number is used, the task is sus-
~ pended for 1 system time unit. The system time unit is defined in the preceding paragraph.

Time delay call block: o 2 0
2 | NUMBER OF SYSTEM TIME UNITS TO DELAY

(A)137481

The following example shows coding for a supervisor call block for a Time Delay call:

SCBT DATA >200,40 Suspend the calling task for 40 system time
units.

6.2.5 ACTIVATE TIME DELAY TASK SUPERVISOR CALL E. Activate Time Delay Task
supervisor call E,s activates the specified task if it is in the time delay state. The supervisor call
block contains three bytes, and need not be aligned on a word boundary. Byte O contains the code,
and the system returns a value in byte 1. Byte 2 contains the task identifier assigned to the task.

ﬂ""\ When the system is unable to locate the task in the system, it returns -1 in byte 1 of the supervisor
call block. Otherwise, the system returns the current task state code in that byte. The task state
code for a task in time delay is 5. Other task state codes are defined in Appendix G.

6-3 Digital Systems Division

(o)
@ 946259-9701

Activate time delay call block:

(o} E' 6 ERROR CODE

2 TASK ID

(A)137482

The following is an example of coding of a supervisor call block for an Active-Time-Delay Task
call:

SCBR BYTE >E00,>13. Activate task 13,4, a task in a time delay.

6.2.6 UNCONDITIONAL WAIT SUPERVISOR CALL 6,,. Unconditional Wait supervisor call
6,6 suspends the calling task indefinitely, unless an Activate Suspended Task supervisor call that
specifies the task has already been executed. In that case, execution resumes immediately. Other-
wise, the calling task remains suspended until another task executes an Active Suspended Task
supervisor call for this task. The supervisor call block consists of a single byte that contains the
code, and need not be aligned on a word boundary.

Unconditional Wait call block: o 6

(A)137483

The following is an example of coding a supervisor call block for an Unconditional Wait call:
SCBW BYTE >6 Suspend the calling task unconditionally.

6.2.7 ACTIVATE SUSPENDED TASK SUPERVISOR CALL 716. Activate Suspended Task
supervisor call 7,, activates the specified suspended task. When the specified task has not yet been
suspended by an Unconditional Wait supervisor call, the effect of this supervisor call is to activate
the task immediately following execution of an Unconditional Wait supervisor call. The supervisor
call block consists of three bytes, and need not be aligned on a word boundary. Byte O contains the
code, and the system returns a value in byte 1. Byte 2 contains the task identifier assigned when the
task was loaded.

When the system is unable to locate the task in the system, it returns a -1 in byte 1 of the supervisor
call block. Otherwise, the system returns the task state code in that byte. The task state code for
a suspended task is 6,4 . Other task state codes are defined in Appendix G.

Activate suspended task call block:
0 7 ERROR CODE

2 TASK ID

(A)137484

The following is an example of coding for a supervisor call block for an Active Suspended Task call:
SCBSBYTE >7,0>11 Activate task 11,4, previously suspended.

6.2.8 END OF TASK SUPERVISOR CALL 4,,. End of Task supervisor call 4,4 closes all LUNOs
assigned by the task and terminates the task. The supervisor call block consists of a single byte that
contains the code, and need not be aligned on a word boundary.

6-4 Digital Systems Division

(o]
@? 946259-9701

End task call block:

(@ﬁ (o] 4

(A)137485

The following is an example of coding for a supervisor call block for an End-of-Task call:

SCBE BYTE >4 Terminate calling task normally.

6.2.9 END OF PROGRAM SUPERVISOR CALL 16,,. End-of-Program supervisor call 1646
terminates a task. The supervisor call block consists of a single byte that contains the code, and
need not be aligned on a word boundary. The function of an End-of-Program call is to close all
LUNGOs assigned by the task, to terminate the task, and to execute the rebid task which is normally
the TXDS control program. The rebid task is discussed in Appendix J.

End program call block: © 86
(A)137486
-~ The following is an example of coding for a supervisor call block for an End of Program call:
SCBP BYTE >16 Terminate calling task normally.
6.2.10 GET PARAMETERS SUPERVISOR CALL 17,;. Get Parameters supervisor call 1746
obtains task parameters passed to the task by an EXECUTE OCP command or by a Bid Task
supervisor call. When a task includes a Get Parameters supervisor call, it must be the first supervisor
call in the task. The supervisor call block consists of six bytes, aligned on a word boundary. Byte 0
contains the code, and byte 1 contains zero. The system places the parameters in bytes 2 through 5,
(@i‘”‘ in the same order in which they were placed in the EXECUTE command or in the Bid Task call.
Get parameters call block: 17,6 o
2 BID PARAMETER 1
4 BID PARAMETER 2
(A)137487
The following is an example of a supervisor call block for a Get Parameter call:

o SCBG DATA >1700,0,0 Obtain task parameters in two words at location SCBG+2.
6.2.11 GET OWN ID SUPERVISOR CALL 20,4 and 2E,;. Get Own ID supervisor call, 20,¢ or
2E,¢, returns the Task ID of the user task in byte 1 of the call block. The call block contains two
bytes and need not be aligned on a word boundary. Byte 0 contains the code, and byte 1 is the task
ID returned by the system.

Get own ID call block: 0 20, £OR 2E, 4 TASK 1D
(A)137488
The following are examples of coding of the Get-Own-ID supervisor calls:
SCBB BYTE >20,0
or
@ SCBB BYTE >2E,0

6-5 Digital Systems Division

(o]
{@) 946259-9701

SVC 20,6 is not available on the RX990 or DX10 systems. SVC
2E;¢ should be used where compatibility is required.

NOTE

6.2.12 MAKE TASK PRIVILEGED SUPERVISOR CALL 23,,. This supervisor call will make the
calling task privileged, which allows the task to perform direct disc I/O, to execute a Get System
Table supervisor call, and to execute privileged instructions on a Model 990/10 computer. The
supervisor call block contains two bytes and need not be aligned on a word boundary. Byte O is the
code and byte 1 is unused.

Make task privileged call block: o 23,4 RESERVED

(A)137439
The following is an example of the Make Task Privileged supervisor call:

SCBBBYTE >23,0

6.3 CODE CONVERSION SUPERVISOR CALLS
The code conversion group of supervisor calls consist of four supervisor calls that convert the binary
value in a word to ASCII characters, or a group of ASCII characters to a binary value. The super-
visor calls are described in the following paragraphs.

6.3.1 CONVERT BINARY TO DECIMAL ASCII SUPERVISOR CALL A,,. Convert Binary to
Decimal ASCII supervisor call A;s converts the binary value in task workspace register O to the
ASCII representation of the equivalent decimal value. The supervisor call block consists of eight
bytes, and need not be aligned on a word boundary. Byte O contains the code and byte 1 contains
zero. The system places an ASCII minus sign in byte 2 when the value being converted is negative,
or a blank in that byte when the value is zero or positive. The converted value is placed in bytes
3 through 7, right-justified with leading blanks.

Convert binary to decimal ASCII call block: Ajg z{ul X
2z u 2 SIGN CONVERTED
(@) LQM;L‘_g Blewmks (0] S;gneol ;
1 lLeading 2ewes T | Unsigneol 4 VALUE
(A)137490 6
The following is an example of coding a supervisor call block for a Convert Binary to Decimal
ASCII call:
SCBD BYTE >A,0,0,0,0,0,0,0 Convert value in workspace register O to decimal
ASCII and place the result in the supervisor call
block.

The following examples show typical values and the results:

Register 0 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
0001,¢ 2046 204 2046 2046 2046 3146
7FFF 4 2046 33 3216 3716 3646 3716
FFFFm 2D 16 2015 2016 2016 2016 31 16

6-6 Digital Systems Division

(o]
Y‘r@? 946259-9701

6.3.2 CONVERT DECIMAL ASCII TO BINARY SUPERVISOR CALL B,¢. Convert Decimal

ﬁ‘m ASCII to Binary supervisor call B;4; converts the ASCII characters in bytes 2 through 7 of the super-
visor call block to a binary value, and places the value in task workspace register 0. The supervisor
call block consists of eight bytes and need not be aligned on a word boundary. Byte O contains the
code; and the system returns a value in byte 1. The calling task places the sign of the decimal value
in byte 2, which may be the ASCII representation of +, -, zero, or blank. A - identifies the value as
negative, and +, blank, or zero identifies the value as zero or positive. The ASCII representations of
the decimal digits are entered in bytes 3 through 7, right-justified with leading blanks or ASCII
zeros. When the system is able to perform the complete conversion correctly, it returns a zero in
byte 1. When one or more of the characters are not valid, or the decimal number is not within the
range of -32,768 to 32,767, the system is not able to complete the conversion, and returns a value
of -1 in byte 1.

Convert decimal ASCII to binary call block: o Byg RETURNED VALUE
2 SIGN AsSCII
~ 4
VALUE
(A)137491 6

The following example shows the coding of a supervisor call block for a Convert Decimal ASCII
to Binary call:

SCBB BYTE >B,0,0’, °, <°,*3°,“7°,“8” Convert 378 to its binary equivalent and place the
result in workspace register 0.

The following examples show typical ASCII values and results.

Byte 2 Byte 3 Byte 4 Byte § Byte 6 Byte 7 Register 0 Byte 1

2Bs 2046 2046 2046 2045 3146 0001 ¢ 0
2016 2016 2016 2016 31 16 41 16 Undefined FF16
3046 3346 324 3716 3616 3716 TFFF 4 0
2Dy6 3046 3046 3046 3046 3146 FFFF 0
m CONVERT BINARY TO HEXADECIMAL ASCII SUPERVISOR CALL C,s. Convert

Binary to Hexadecimal ASCII supervisor call C,¢, converts the binary value in task workspace
register O to the ASCII representation of the equivalent hexadecimal value. The supervisor call block
consists of six bytes, and need not be aligned on a word boundary. Byte O contains the code, and
byte 1 contains zero. The system returns the result in bytes 2 through 5.

Convert binary to hex ASCII call block 0:

16

2

RETURNED VALUE
a4

(A)137492

6-7 Digital Systems Division

o
%@ 946259-9701

The following is an example of coding of a supervisor call block for a Convert Binary to Hexadeci-
mal ASCII call:

SCBH BYTE >(C,0,0,0,0,0 Convert the value in workspace register 0 to hexadecimal
and place the result in the supervisor call block.

The following examples show typical values and the results:

Register 0 Byte 2 Byte 3 Byte 4 Byte 5
00016 3046 3046 304 314
7TFFF 4 3716 4646 4646 46,6
FFFF¢ 4646 4646 4646 46,6

6.3.4 CONVERT HEXADECIMAL ASCII TO BINARY SUPERVISOR CALL D,,. Convert Hexa-
decimal ASCII to Binary supervisor call D,s converts the ASCII characters in bytes 2 through 5 of
the supervisor call block to a binary value, and places the value in task workspace register 0. The
supervisor call block consists of six bytes, and need not be aligned on a word boundary. Byte 0 con-
tains the code, and the system returns a value in byte 1. The calling task places the ASCII charac-
ters representing the hexadecimal digits in bytes 2 through 5. When the system is able to perform
the complete conversion correctly, it returns a zero in byte 1. When one or more of the characters is
not valid, the system is not able to complete the conversion, and returns a value of -1 in byte 1.

Convert hex ASCII to decimal call block i)

D6 RETURNED VALUE
2
. ASCIl VALUE
(A)137493
The following is an example of coding a supervisor call block for a Convert Hexadecimal ASCII to
Binary call:
SCBH BYTE >D,0,0°,3’,‘F’,‘4’ Convert 03F4,, to binary.

The following examples show typical ASCII values and results:

Byte 2 Byte 3 Byte 4 Byte 5 Register 0 Byte 1

3046 3046 3046 3146 0001 0
30 16 3015 3315 4B16 Undefined FF16
3716 4616 4616 4616 7FFF16 0
4616 4646 4646 4646 FFFF 4 0

6.4 MEMORY ALLOCATION SUPERVISOR CALLS
The memory allocation group of supervisor calls consist of five supervisor calls that allow the user
to access various blocks of memory. These supervisor calls are described in the following paragraphs.

6.4.1 GET MEMORY SUPERVISOR CALL 12,,. Get Memory supervisor call 12, allocates
a specified number of contiguous 32-byte blocks to the calling task. Each block is aligned on a
word boundary. The address of the first byte in the first block is returned in user task workspace
register 9. The supervisor call block consists of four bytes, aligned on a word boundary. Byte O
contains the code, and the system returns a value in byte 1. Bytes 2 and 3 contain the number of
blocks desired.

6-8 Digital Systems Division

(o)
Q]@ 946259-9701

The TX990 Operating System allocates memory in the dynamic task space. If the requested
memory is not available, TX990 returns a -1 in byte 1 of the supervisor call block.

Get memory call block:

1246 ERROR CODE

2 NUMBER OF 32-BYTE BLOCKS TO GET

(A)137494

The following is an example of a supervisor call block for a Get Memory call:

SCBG DATA >1200,16 Allocate 256 words of memory to the calling task and return
the address of the memory area in workspace register 9.

6.4.2 RELEASE MEMORY SUPERVISOR CALL 13,,. The Release Memory supervisor call 134

returns memory to the available pool in the dynamic task area. The calling task places the address of
the first byte of the first block of memory that would be released in task workspace register 9. The
supervisor call block consists of four bytes, aligned on a word boundary. Byte O contains the code,

~ and byte 1 contains zero. Bytes 2 and 3 contain the number of blocks that would be released.
Release memory call block:
0 18y 0
2 | —NnuMBER OF-BLOCGKS TO BE-REEEASED —

(A)137495

The following is an example of a supervisor call block for a Release Memory call:

SCBR DATA >1300,16 Release 256 words of memory starting at the address specified
in workspace register 9.

6.4.3 GET SYSTEM TABLE SUPERVISOR CALL 21,¢. Get System Table supervisor call 214
returns to the caller the address of the system table in which pointers to data structures within
TX990 are located. This call can only be made by a privileged task. The supervisor call block
contains four bytes, bytes 0 through 3, and must be aligned on a word boundary. Byte O contains
the supervisor-call code; byte 1 is unused; and bytes 2 and 3 are returned by the system and con-
tain the address of the system table.

The system table has the following format:

® Word 0 is a pointer to the system time and date block. The time and date blocks consist
of five words with the following data:

year, Julian day, hour, minute, and second.
® Word 1 is a pointer to the first element in the Task-Status-Block (TSB) chain.
® Word 2 is a pointer to the first element in the Physical-Device-Table (PDT) chain.
® Word 3 is a pointer to the first element in the Logical-Device-Table (LDT) chain.

® Word 4 is a pointer to the default disc name.

o WS is apoivies ts e debonlt privter vane

6-9 Digital Systems Division

o]
%@ 946259-9701

e Word 6 is a pointer to the Device Name Table (DNT).

@ Word §is a pointer to the first element in the Procedure Status Block (PSB) chain.

Get system table call block:
0 21,¢ RESERVED

2 RETURNED ADDRESS

(A)137496
Coding example:

SCBB DATA >2100,0

with the address of the system table returned in the second word of the call block.
NOTE

SVC 21,4 is not supported on the RX990 and DX10 systems.

6.4.4 GET COMMON DATA ADDRESS SUPERVISOR CALL 10,6. Get Common Data Address
supervisor call 10,4 causes the system to return the address of the beginning of the COMMON
area of memory in task workspace register 9, and the size of the area (in bytes) in task workspace
register 8. The size of the COMMON area is a system parameter specified at system generation.
The supervisor call block consists of two bytes and need not be aligned on a word boundary. Byte 0
contains the code, and the system returns a value in byte 1.

When no intertask common has been specified for the system, the system returns a -1 in byte 1 of
the supervisor call block. Otherwise, the system returns 0 in that byte.

Get COMMON call block: o 10 ERROR CODE

16

(A)137497

The following is an example of coding a supervisor call block for a Get Common Data Address
supervisor call:

SCBG BYTE >10.0 Supply address and size of common memory in workspace
register 9 and 8, respectively.

6.4.5 RETURN COMMON DATA SUPERVISOR CALL 1B,4. Return Common Data supervisor
call 1B¢ performs no operation in TX990 Operating System. The call is included for compatibility
with DX10 Operating System. The supervisor call block consists of single byte that contains the
code, and need not be aligned on a word boundary.

Return COMMON call block: © B g

(A)137498
The following is an example of the coding of a supervisor call block for a Return Common Data call:

SCBR BYTE >1B Perform a no-operation.

6-10 Digital Systems Division

946259-9701

‘ 6.5 INTERTASK COMMUNICATION SUPERVISOR CALLS
(Wm The Intertask Communication supervisor calls allow the user to pass messages between tasks. The
system must include Intertask Communication and buffers for messages specified during system
generation.

The Intertask Communication supervisor calls are the Put Data and the Get Data supervisor calls.
Each call specifies an identifier that corresponds to a queue of data messages. Put Data calls that
specify a given identifier place the data messages in the queue in the order in which the calls are
executed. Get Data calls that specify the same identifier retrieve the data messages in the first-in
first-out sequence.

Messages are queued in buffers supplied by Buffer Management. The number of buffer pools, the
sizes of the buffers, and the numbers of buffers in each pool are specified during system generation.
The number of characters required for a message buffer includes the overhead (eight characters per
message). When a task executes a Put Data supervisor call to place an 80-character message in a
buffer, the system requests a buffer at least 88 characters in size. Buffer pools must be specified to
provide an adequate number of buffers of adequate size to support the Intertask Communication
i supervisor calls in the concurrently executing tasks.
6.5.1 PUT DATA SUPERVISOR CALL 1C,. Put Data supervisor call 1C¢ places a message
from a specified buffer in the user’s task into a queue of data messages. The supervisor call block
consists of 12 bytes aligned on a word boundary as shown in figure 6-1. Byte O contains the code
and the system places a status code in byte 1 at the completion of the operation. Byte 2 contains
the Purge flag in the most significant bit. The Purge flag should be set to zero for a Put Data
supervisor call. Byte 3 contains the identifier, a number less than 255. Bytes 4 and 5 contain the
address of the buffer that contains the message. Bytes 6 and 7 are not used by the Put Data

W“ supervisor call. Bytes 8 and 9 contain the number of characters in the message. Bytes 10 and 11
- contain zero.

The operation places the specified number of characters from the specified buffer into the queue
corresponding to the identifier. The system returns zero in byte 1 when the operation completes
successfully, and -1 (FF,¢) in byte 1 when memory is not available in a queue for the message.

RELATIVE o] 1 2 3 4 5 6 7 (o] 1 2 3 4 5 6 7
ADDRESS

o] CODE STATUS

2 P (o] (o] (0] (o] 0] (0] o] IDENTIFIER

4 BUFFER ADDRESS

6 MESSAGE LENGTH

8 ACTUAL MESSAGE LENGTH

10 (o] (0]

W“" (A 137510

Figure 6-1. Intertask Communication Supervisor Call Block

6-11 Digital Systems Division

{_@’? 946259-9701

The following is an example of coding for a supervisor call block for a Put Data supervisor call:

SCBP DATA >1C00 Place message in buffer at address
MSG1 in queue for identifier 15.
Message contains 80 characters.

BYTE 0 FLAGS

BYTE 25 IDENTIFIER
DATA MSGl BUFFER ADDRESS
DATA O NOT USED

DATA 80 80 CHARACTERS
DATA 0 ZERO REQUIRED

6.5.2 GET DATA SUPERVISOR CALL 1D;6. Get Data supervisor call 1D,¢ obtains a message
from a specified queue and places it in the specified buffer in the user’s task. The supervisor call
block consists of 12 bytes aligned on a word boundary as shown in figure 6-1. Byte O contains the
code and the system places a status code in byte 1 at completion of the operation.

Byte 2 contains the Purge flag in the most significant bit. When the Purge flag is set to 1, the super-
visor call deletes all the messages in the specified queue and does not place a message in the
specified buffer. When the Purge flag is set to 0, the supervisor call performs the normal operation.
Byte 3 contains the identifier of the queue from which the message is obtained. Bytes 4 and 5 con-
tain the address of the buffer into which the message is placed. Bytes 6 and 7 contain the maximum
number of characters to be placed in the buffer. The system places the number of characters
actually received in bytes 8 and 9 at completion of the operation. Bytes 10 and 11 contain zero.

When the Purge flag is set to 0, the operation transfers a message from the queue associated with the
specified identifier to the user’s buffer. Messages in the queue are transferred in first-in first-out ”m’\
order. The number of characters transferred is the number of characters in the message or the
number of characters specified in bytes 6 and 7 of the supervisor call block, whichever is less. When
the Purge flag is set to one, the operation deletes all the messages in the queue associated with the
specified identifier. The system returns zero as a status code in byte 1 when the operation com-
pletes successfully. When there is no message in the specified queue, the system returns -1 (FF4) in
byte 1. The following is an example of coding for a supervisor call block for a Get Data supervisor

call:

SCBG DATA >1D00 GET DATA Obtain a message up to 64 charac- o~
BYTE O NORMAL OPERATION ters in length (or the first 64 char-
BYTE 35 IDENTIFIER acters of a longer message) from the
DATA RMSG BUFFER ADDRESS queue for identifier 35 and place
DATA 64 64 CHARACTERS the message in a buffer at location
DATA O ACTUAL MESSAGE LENGTH RMSG.
DATA O ZERO REQUIRED

6.6 DATE AND TIME SUPERVISOR CALLS 3,4 and 3B,4. The Date and Time supervisor calls
allow the user to initialize the date and time and to obtain the date and time.

The Date and Time supervisor calls are Initialize Date and Time (3B;4) and Get Date and Time
(316)-

6.6.1 GET DATE AND TIME SUPERVISOR CALL 3,4. Date and Time supervisor call 3,4 returns

date and time in binary form. The supervisor call block consists of four bytes, aligned on a word

boundary. Byte O contains the code, and byte 1 contains zero. Bytes 2 and 3 contain the addresses -
of a five-word area into which the function places the result. The binary values corresponding to the M%\
year, day, hour, minute, and second are placed in the first through fifth words of that area, respec-

tively.

6-12 Digital Systems Division

{l@ 946259-9701

~ Date and time call block:

(A)137499

Buffer block:

(A)137500

o 3 o
2 BUFFER ADDRESS

0 YEAR

2 DAY

4 HOUR

6 MINUTE

8 SECOND

The following is an example of coding for a supervisor call block for a Date and Time call:

SCBT DATA >300,DAT

Place date and time data in a five-word area at location
DAT.

6.6.2 INITIALIZE DATE AND TIME SUPERVISOR CALL 3B,4. This SVC stores the date and
time information given in the specified block.

The 4-byte call block has the following format:

BYTE

SVC CODE

ERROR CODE

DATE/TIME BLOCK ADDRESS

The SVC code, error code, and reserved bytes have the same use as in preceding SVC descriptions.
Bytes 2-3 contain the address of a block of data which contains the date and time. The data block
is a 6-word block of the form:

BYTE
m (¢] YEAR
‘ 2 DAY IN YEAR
4 HOUR (0—23)
6 MINUTE
8 SECOND
6-13

Digital Systems Division

%@ 946259-9701

Each data word should be a binary value. The following is an example of an Initialize Data and

Time SVC:

EVEN

IDATIM BYTE >3B SVC CODE
BYTE 0 ERROR CODE
DATA BLOCK ADDRESS OF DATA BLOCK

BLOCK DATA 1978 YEAR (1978)
DATA 84 DAY (MARCH 25)
DATA 8 HOUR (8 A M)
DATA 3 MINUTE (8:03)
DATA 15 SECOND (8:03:15)
SvC @IDATIM

6.7 ENABLE OR DISABLE EVENT KEY SUPERVISOR CALL 3A,¢. The Event Key supervisor
call (3A,¢) allows a task to enable or disable an event key on a user’s terminal. When the event key
is enabled, a user can cause a task level interrupt to a task defined workspace and program counter
by striking a DSR defined event key. After the user strikes the event key, control is turned over to
the task at the new WP and PC at its next activation. The value of the event key will be stored in
RO, and the conditions (WP, PC, ST) of the task is saved in R13-R15.

When the user task issues the supervisor call, the luno assigned to the task is mapped to a physical
device. Only one task can be interrupted for a given device. For example, if two tasks issue a super-
visor call for the same device, the last task to issue the SVC is the one that will be interrupted.

The event keys for TX990 are defined as follows:

733 ASR, 743 KSR: CONTROL/X
911 VDT: COMMAND Key
913 VDT: HELP Key

The following is a description of the Event Key supervisor call block:

0 > 3A ERROR CODE
2 LUNO FLAGS
4 WORKSPACE
6 PROGRAM COUNTER
8 RESERVED
6-14

Digital Systems Division

946259-9701

Byte Contents

SVC code: >3A
Error Codes:
01,6 — Event Table full
31,6 — Event Task not part of system
FF,6 — Luno not assigned to terminal device.

Ll =]

2 Luno: The Logical Unit Number of the terminal
whose event key is to be enabled or disabled.
3 Flags:

Bit 0: If equal to 0, enable event key
If equal to 1, disable event key
Bits 1-7: Reserved and must be zero.

4 Workspace: } Event key interrupt vectors
6 Program Counter:
8 Reserved and must be zero.

NOTE

SVC >3A will not be supported on any other Texas Instruments
operating systems.

6-15/6-16 Digital Systems Division

o)
%@ 946259-9701

SECTION VII

DEVICE AND FILE I/0 SUPERVISOR CALLS

7.1 INTRODUCTION

The TX990 Operating System provides several supervisor calls used for performing I/O to devices
and files. Supervisor call 00 may be used to perform many general I/O and file management
operations which apply to many different types of devices and files. Three supervisor calls to
perform character mode I/O to Video Display Terminals are provided. Also provided are a Wait for
I/O SVC and two Abort I/O SVCs. Table 7-1 lists the I/O supervisor calls. The following paragraphs
describe each SVC separately.

Table 7-1. 1/O Supervisor Calls

-~ Hexadecimal
SVC Name SVC Code
General I/O 00
TX990 release 1.0 file management 15
VDT utility 1A
VDT character input 8
VDT conditional character input 18
, Wait for I/O 1
(Abort I/O by LUNO
Abort I/0O by call block 1E
NOTE
SVC’s 15, 1A, 8, 18, and 1E are not fully supported on RX990
and DX10 systems. See Appendix E for further information.
~ 7.2 1/0 SUPERVISOR CALL (00)

- The general I/O supervisor call (SVC 00) is used to perform I/O to devices and files, and to perform
many file manipulation operations. The SVC is programmed by coding the appropriate bytes in the

call block, as shown in figure 7-1.
The coding of the bytes is described below.
] Byte 0 Coded by user with 00, (for supervisor call 00).

e Bytel Error status code returned by TX990. For the list of error status codes, see
Appendix I — I/O Error Codes.

° Byte 2 Coded by user with the I/O operations code (described in paragraph 7.2.1).

. Byte 3 Coded by user with the LUNO number to be associated with the I/O device or

file to be utilized for the I/O operation. The LUNO is ignored during Create

/"M ’ File, Delete File, Compress File, Unprotect File, Write Protect File, and Delete
Protect File Operations.

7-1 Digital Systems Division

4
0.1 001g ERROR STATUS CODE
2,3 OPCODE LUNO
I 2 2
4.5 lesYlerdleol] 1t L] ! inTPlRevR 12| aR2 | 2| &2 2 REQUIRED
FOR DEVICE
] OR SEQUENTIAL
FILE OPERATIONS
6,7 DATA BUFFER ADDRESS
8,9 READ CHARACTER COUNT
! EQUIRED
FOR- RELATIVE
RECORD FILE
OPERATIONS
10,11 WRITE CHARACTER COUNT
12,13 REPLY BUFFER ADDRESS OR
LOGICAL RELATIVE RECORD NUMBER
14,15 LOGICAL RELATIVE RECORD NUMBER REQUIRED
FOR
T OP CODES
DATA FILE 9016-99
16,17 | 3] 3 2 3] 33 a3 33 3] 3] Tvee AT TveE 1672516
1 L 1
18,19 LOGICAL RELATIVE RECORD SIZE
20,21 NOT USED
22,23 PATHNAME POINTER
24,25 NOT USED
26,27 NOT USED
28,29 NOT USED
ONLY
NECESSARY
FOR DX10
20.31 NOT USED COMPATIBILITY
.
32,33 NOT USED
34,35 NOT USED
NOTE 1: SYSTEM FLAGS NOTE 2! USER FLAGS NOTE 3: UTILITY FLAGS
BSY = BUSY FLAG INT = INTIATE FLAGS AC = AUTO-CREATE FLAG
ERR = ERROR FLAG RPY = REPLY FLAG I = IGNORED
EOF = END-OF-FILE FLAG AP = ACCESS PRIVILEGE AT = ALLOCATION TYPE
FLAG (CONTIGUOUS/
| = IGNORED NONCONTIGUOUS)
L = LOCK AND UNLOCK
FLAG
[od =

(8)1359088

IGNORED

COMMUNICATION TIME=-
OUT FLAG

Figure 7-1. Supervisor Call Block for 1/0 Supervisor Call 00,

Digital Systems Division

946259-9701

° Byte 4,bit 0 TX990 places a 1 in the busy bit during an I/O operation. When the task
r codes the Initiate I/O flag to 1, it must monitor this bit when waiting for
the I/O to complete.

e Byted,bit1 TX990 places a 1 in the error bit when the I/O operation terminates in
error. It is O for normal termination.

® Byte4,bit2 The operating system sets this bit to 1 when it detects an end-of-file
‘ record; otherwise, it is set to 0.

® Byted4, Unused.
bit 3-7

NOTE

Bytes 5 through 15 are ignored by I/O operation codes 90,4 through
99.6.

® Byte 5,bit0 Coded by the user with the initiate I/O flag. When this bit is set to 1,
the operating system will begin the specified I/O operation and return
control to the task before the I/O is completed. When this bit is set to 0,
the operating system will not return control to the task until the I/O
operation is completed. This bit is useful when buffering 1/O.

‘ e Byte5,bit1 Coded by the user with the reply flag. This bit should only be set to 1
(’W\ when the I/O operation is a write and the LUNO specifies an interactive
device. When the bit is set to 1, the specified write will be followed by a

read, allowing the task to receive a reply from the interactive device. When

this bit is 1, byte 12-13 must contain the address of a reply block. A reply

block is a 3-word block: the first word is coded by the user and must con-

tain the buffer address that contains the characters entered in reply to the

write operation; the second word must contain the maximum number of

characters expected to be entered (usually the size of the reply buffer);

the third word will be returned by the operating system and will contain

~ the number of characters actually entered in reply to the write operation.

® Byte 5,bit 2 Ignored by TX990.

i Byte 3, Coded by the user to attain the access privilege, during an open opera-
bit 3-4 tion. These bits are ignored during another operation.

00 — Exclusive all flag indicating that only one task may open the file
concurrently.

10 — Shared flag indicates more than one task may open the file con-
currently. This bit should only be set when doing an open operation
to a relative record file.

7-3 Digital Systems Division

{@@ 946259-9701

Byte 5, bit 5

Byte 5, bit 6

Byte 5, bit 7

Bytes 6-7

Bytes 8-9

Bytes 10-11

Bytes 12-13

Bytes 12-15

Bytes 16-34

Bytes 16-17

Bytes 16-17,

Coded by the user to lock or unlock a logical relative record. When set,
this flag specifies that the logical relative record is to be locked for all
read operations and unlocked for all rewrite operations. A locked record
cannot be read or rewritten by any task except the locking task, and then
the locking task must use the same LUNO. Any task can unlock a record
using a 4A,s I/O operation. When this flag is zero, then current status
(Iocked or unlocked) is unchanged.

Coded by the user with the communications timeout flag. See the Com-
munications manual for more detail.

Not used by TX990.

The user must code these bytes to contain the starting address of the I/O
buffer.

The user must code these bytes when using a read 1/O operation code.
The bytes must contain the maximum number of characters to be read.
When the record length specified exceeds the maximum number of charac-
ters that the device or file allows, only the number of characters that
are supported by the device or file applies. Not used for write operations.

When a Write I/O operation is used, bytes 10-11 will contain the number
of characters to be written. When the character count exceeds the maxi-
mum number of characters for the device or file, the maximum number of
characters for the device or file applies. When a Read 1/O operation is
used, the operating system will return the actual number of characters
read in these bytes.

When the user sets the reply flag to 1, these bytes must contain the
address of the reply block described above. These bytes need not be
appended to the above bytes if the I/O operations are directed to sequen-
tial devices or files.

When the user is doing I/O operations to relative record files, these bytes
contain the logical record number. The operating system will update

these bytes after I/O operations. These bytes need not be appended to
the above bytes, except when directing I/O to a relative record file.

Need not be appended to the above bytes except when using I/O opera-
tion codes 90,4 through 99.

Utility Flags.

Need to be zero for DX10 compatibility. TX990 ignores it.

bit 0-2, 4-5, 7, 9-10

Bytes 16-17,
bit 3, 8

Need to be one for DX10 compatibility. TX990 ignores it.

74

Digital Systems Division

946259-9701

® Bytes 16-17, User sets to one to request automatic logical file creation. It is set during
bit 6 an assign 1/O device or file operation and causes a file to be created during
an Open I/O operation.

® Bytes 16-17, For DX10 compatibility only, these bits should be coded:

bit 11-12
Code Meaning
00 Normal record image
01 Blank suppression
10,11 Reserved for new data formats

These bits are ignored by TX990. All sequential files are blank suppressed
under TX990.

® Bytes16-17, Set to one when creating a noncontiguous file or to a zero when creating
bit 13 a contiguous file. TX990 will ignore the bit if it is set to zero and will
create a noncontiguous file without flagging an error. TX990 supports

only non-contiguous files. This bit is ignored except during create file
operations.

® Bytes 16-17, Set to one of the following codes to specify the file type when the file is
bit 14-15 created. This field is ignored except for create file or assign luno with
auto-create operations.

Code Meaning

00 undefined

01 sequential file

10 relative record file

11 key index file (not supported in TX990)

® Bytes 18-19 When using create file or assign luno with auto-create operations to create
a realtive record file, the user must code these bytes with the number of
characters in each record (i.e., record size). These bytes are ignored when
creating a sequential file.

® Bytes 20-21 These bytes are not used by TX990.

® Bytes22-23 The user must code these two bytes with address of a pathname. These
bytes are used for Assign LUNO. Create File, Delete File, Change the
Name, Unprotect File, Write Protect File, Delete Protect I/O operations.
All other operations ignore this field. The pathname is in the following

format:
Count Pathname
Byte n Byte 1-n

Digital Systems Division

(e}

I}

946259-9701
The first byte at the pathname address is the character count. The follow-
ing bytes are the pathname itself.
® Byte 24-35 Need only be appended for DX10 compatibility.

7.2.1. 1/0 OPERATIONS. The I/O SVC may be used to perform all of the operations listed in
Table 7-2, by coding the correct I/O opcode in byte 2 of the call block, and correctly defining the
remaining fields in the call block. The opcode for each operation is given in the table.

Table 7-2. SVC 00 I/O Operations

Operation

Open

Close

Close with end-of-file
Open with rewind
Close and unload
Read device status
Forward space
Backward space
Read ASCII

Read direct

Write ASCII

Write direct

Write end-of-file
Rewind

Unload

Unlock

Create file

Assign LUNO to pathname
Delete file

Release LUNO assignment
Compress file

Assign new file name
Unprotect file

Write protect file
Delete protect file
Verify pathname

NOTE

The following paragraphs describe each operation in detail.

Hexadecimal

Opcode

00
01

02
03
04
05

06
07
09
0A
0B
0C
0D
OE
OF
4A
90
91

92
93
94
95
96
97
98
99

Most of the “ninety” opcodes do not apply to device operations
(exceptions are Assign and Release LUNO). Table 7-3 shows which
of the other operations apply to which devices.

7.2.2 OPEN OPERATION (CODE 00,). The Open operation is specified by placing code 00, in
byte 2 of supervisor call block. A description of how the Open operation controls the I/O device
and the file on the medium of the I/O device is presented in the following subparagraphs.

7-6

Digital Systems Division

@ 946259-9701

7.2.2.1 Controlling the I/O Device. When a device is designated during system generation to be in

(@M the file mode (i.e., available to be utilized by only one program), the open operation causes the
device to be assigned solely to the calling program until a close operation (i.e., Close, Close with
EOF, or Close Unload is executed. In addition, when a device is designated during system genera-
tion to be in the file mode, an open operation (i.e., Open or Open Rewind) must be performed be-
fore any other file management operation is executed. Until an open operation is executed, files on
diskettes are not located and file management operations to manipulate them cannot be initiated or
performed.

The following device operation(s) result from execution of an open operation:

® Dummy No operation.
® 9110r913VDT Performs a line feed and a carriage return.

® 733 ASR Keyboard/ Performs a line feed and a carriage return.
Printer, KSR, or 820

® 33 ASR Teletype Performs a line feed and a carriage return.
Keyboard/Printer

® 33 ASR Teletype Two bells are output and a RUB OUT key must be entered.
Paper Tape Punch,
and Reader

® Other devices No operation.

When a device responds to an open operation, the operating system returns the device code
number (table 7-3) to bytes 6 and 7 of the supervisor call block, which bytes are usually used for
data buffer address field.

7.2.2.2 Controlling the Diskette File. When a relative record file is to be exclusively accessed, the
shared access flag in byte 5 of the supervisor call block, for the open operation, must be set to zero.
Sequential files are always exclusively accessed. The file then remains assigned to the program until
the program is terminated or until a close operation is executed. In response to an open operation
to a file, the operating system returns the file code number (table 7-4) to bytes 6 and 7 of the

M supervisor call block (which bytes are usually used for the data buffer address), code 01FF, to
indicate that a sequential file has been opened or code 02FF,4 to indicate that a relative record file
has been opened. When the auto create flag is set during the assign LUNO to pathname operation,
the open operation causes a file to be created if the file does not already exist. When a relative
record file is opened, the record size is returned in bytes 8-9 of the call block.

7.2.3 CLOSE OPERATION (CODE 01 ;4). The close operation is specified by placing code 01,4 in
byte 2 of File Management Supervisor Call Block 00,¢. When specified by the user, the close opera-
tion releases the I/O device and the file on the medium of the I/O device from the calling task.
When a task assigns more than one LUNO to an I/O device and opens them, a close operation
should be executed for all LUNOs for which an open operation was performed. When a close
operation is executed to a diskette file, the file is released from the task and any records locked
by the task are released. When I/O device is designated to be in the file mode during system
generation, a close operation (or close with EOF or close unload) must be executed to release
the file from the calling task.

Digital Systems Division

946259-9701

733 ASR/KSR
1/0 Code/Operation or 743 KSR
(Hexadecimal) Keyboard/Printer
00,, R
OPEN
01, R
CLOSE
02, R
CLOSE-WRITE EOF
03, R
OPEN-REWIND
04, R
CLOSE-UNLOAD
05,4 1
READ DEVICE STATUS
06, I
FORWARD SPACE
07, i
BACKWARD SPACE
09, R
READ ASCII
0A,, E
READ DIRECT
0B, R
WRITE ASCII
0C,q E
WRITE DIRECT
oD, R
WRITE EOF
O, I
REWIND
OF ¢ |
UNLOAD
4A,, E
UNLOCK

Card
Reader

R

E

Table 7-3. I/O Operations (Record Mode)

Line
Printer

R

Note: Unlock I/O operation used for relative record diskette files.

R — Response
I - Ignored
E - Error

733 ASR

Cassette Units

R

913/911
VDT
(Record Mode)

R

Dummy
Device

R

979A

33 ASR 33 ASR 33 ASR Magnetic

Keyboard/Printer ~ Punch Reader Tape Unit

R R R R
R R R R
R R R R
R R R R
R R R R
R R R R
I I 1 R
I 1 I R
R E R R
E E R R
R R E R
L R L R
R R E R
I I I R
1 I I R
1 E E L

Digital Systems Division

ﬂ%\

(l@ 946259-9701

Table 7-4. Device Code Numbers and File Code Numbers

Device/File Name Device Code Number File Code Number

Dummy 0000

743 KSR or 733 ASR/KSR Keyboard/Printer 0001

Line Printer 0002

733 ASR Cassette Unit 0003

Card Reader 0004

911 or 913 Video Display Terminal 0005

33 ASR Keyboard/Printer 0001

33 ASR Paper Tape Punch 0003

33 ASR Paper Tape Reader 0003

Diskette 0006

Communication Device 0007

979 A Magnetic Tape Unit 0008

Sequential Record File 01FF ¢
™, Relative Record File 02FF ;¢

No physical device operation(s) results from execution of a close operation.

7.2.4 CLOSE WITH EOF OPERATION (CODE 02,¢). The close with EOF operation is specified
by I/O operation code 02,,. The operation consists of the close operation previously described
and a write EOF operation for the specified device. When the device specified is the keyboard/
printer, the printer performs three line-feed operations. When the device specified is the line printer,
the printer performs a form-feed operation. When the device specified is the 911 or 913 VDT, only

m the close operation is performed. The close with EOF operation is an illegal operation for the card

« reader and the system returns the appropriate error status code. When the device specified is the
paper-tape punch, an ASCII EOF is punched (DC3, CR, LF, DC3, null, null, null, null) and 80 null
frames are punched for trailer. If a close with EOF operation is executed to a diskette file, the cur-
rent position of the file is stored as the end-of-file. The close with EOF operation for relative record
writes the end-of-file to the record number in bytes 12 through 15 of the SCB.

7.2.5 OPEN REWIND OPERATION (CODE 03,,). The open rewind operation is specified by I/O
operation code 03,5. The operation consists of an open operation previously described, and a
rewind operation. When the device is the line printer, the device performs a formfeed operation.

o When the device is a VDT, the system blanks the screen and positions the cursor on column 0 of
the last row, the home position. When the device is a cassette unit, the device rewinds the cassette
and places it in the ready state. When the device is the keyboard/printer or the card reader, only
the open operation is performed.

When the paper-tape punch is opened with rewind, two bells are output and the user then turns
on the punch and presses the RUB OUT key. When the RUB OUT key has been pressed then 80
null frames are punched for leader. For a sequential diskette file, the current record is the first
record in the file, and for a relative record file, the record number in the SCB is set to zero.

7.2.6 CLOSE UNLOAD OPERATION (CODE 04). The close unload operation is specified by
I/O operation code 04,4. This operation consists of a close operation previously described, and an
unload operation. When the device is the line printer, the device performs a form-feed operation.
When the device is a cassette unit, the device rewinds the cassette to the clear area at the beginning

of the tape. When the device is a keyboard/printer or the card reader, only the close operation
is performed.

7-9 Digital Systems Division

(o]
@@ 946259-9701

When the device is the 33 ASR paper-tape punch, 80 null frames are punched. A close unload
operation to a diskette file causes the file to be closed. ™

7.2.7 READ DEVICE FILE STATUS OPERATION (CODE 05,5). The read device-file status
operation is specified by I/O operation code 05,4. The operation is ignored by all devices except
the 33 ASR, the magnetic tape unit, and diskette files.

When the device is the 33 ASR, the read character count (bytes 8 and 9) is cleared.

The Read Device Status operation returns two bytes of status information as follows for Magnetic
Tape Units:

First Byte: 80,¢ — Tape unit on-line, write ring installed.
40,¢ — Tape unit on-line, no write ring installed.
20,6 — Tape unit off-line.

Second Byte: 806 — Phase encoded recording, 1600 bits per inch (bpi).
00 — Non-return to zero inverted (NRZI) recording, 800 bpi. -

When the device-file is a diskette file, file characteristics and format are stored in the user’s buffer
address, which is specified by bytes 6, 7 of the supervisor call block. The buffer must contain 3
words. The operating system will return a O in word 1. Word 2 will contain the logical record
length when file is a relative record file; otherwise it will contain a zero. Word 3 will contain the
physical record length and will be 128.

7.2.8 FORWARD SPACE OPERATION (CODE 06,,). The forward space operation is specified

by I/O operation code 06,¢. The operation is ignored by all devices except the 733 ASR cassette .
and the magnetic tape units. The operation moves the tape forward a specified number of records ™
or unit an end-of-file record is read. The number of records to be read is placed in bytes 10 and 11

of the supervisor call block. When an end-of-file record is read, the tape is positioned at the beginn-

ing of the record following the end-of-file.

The forward space operation causes a diskette file to skip records in the forward direction. Bytes

10 and 11 of the Supervisor Call Block (SCB) contain the number of records to be skipped. For a

relative record file, file management updates the record number in the SCB. If an end-of-file occurs

before the specified number of records has been skipped, the end-of-file flag in the SCB is set,

and the operation stops. The next operation accesses the first record following the end-of-file. T
Following the operation, bytes 10 and 11 of the supervisor call block contain the number of records
remaining to be skipped; zero when an end-of-file did not occur.

7.2.9 BACKWARD SPACE OPERATION (CODE 07,¢). The backward space operation is spec-
ified by I/O operation code 07,5. The operation is ignored by all devices except the 733 ASR
cassette and the magnetic tape units. The operation moves the tape a specified number of records in
the reverse direction. Bytes 10 and 11 of the Supervisor Call Block (SCB) contain the number of
records to be moved. The backward space operation causes a diskette file to skip records in the
reverse direction. The number of records to be skipped is placed in bytes 10 and 11 of the SCB.
For a relative record file, file management updates the record number in the SCB. For a sequential
file, if an end-of-file occurs before the specified number of records has been skipped, the operation
stops. The next operation accesses the first record after the EOF. Following the operation, bytes
10 and 11 of the SCB contain the number of records remaining to be skipped; zero when an end-
of-file did not occur.

7-10 Digital Systems Division

946259-9701

7.2.10 READ ASCII OPERATION (CODE 09,4). The read ASCII operation, code 09,4, reads a
record of the specified file and stores the data, packed two characters per word in the buffer at
the address in bytes 6 and 7 of the Supervisor Call Block (SCB). The maximum number of char-
acters in the buffer is placed in bytes 8 and 9 of the SCB. The actual number of characters stored is
placed in bytes 10 and 11 of the SCB. This number will be the number of characters in the record
or the value in bytes 8 and 9, whichever is less. If an end-of-file occurs, file management sets the
EOF bit in the SCB and sets the character count in bytes 10 and 11 of the SCB to zero. When the
file is a relative record file and no end-of-file was encountered and the read operation is successful,
file management increments the record number in bytes 12 through 15 of the SCB.

NOTE

The ASCII characters listed for each device in Appendix B are the
valid characters for that device, and are stored with the most signifi-
cant bit set to zero. Except as noted for the card reader, other
characters are ignored. When the device specified is a Magnetic Tape
Unit, the Read ASCII operation reads the current record and trans-
fers the available characters to the specified buffer in memory.

When the device specified is a VDT, the operation sounds a tone to request the user to enter the
characters at the keyboard. Characters are transferred to a buffer until the user enters a carriage
return (New Line on a 913 VDT) or the number of characters specified in bytes 8-9 are entered.
A carriage return is not included in the character count. If only a carriage return is entered, a zero
is returned in the character count word in the SCB. When the device is the keyboard/printer, the
user may correct the most recently-entered character by entering a backspace (CTRL/H). The
character is deleted, and the printer performs a backspace and a line feed operation. When the
device is a VDT, the most-recently entered character may be corrected by entering the left arrow
(<), which deletes the character in the buffer and backspaces the cursor.

When the device specified is a 733 ASR cassette unit, the operation transfers characters from the
cassette to the specified buffer until an end-of-record is detected or the number of characters
specified in bytes 8-9 are read. The maximum number of characters in a cassette record is 83.
When the number of characters to be read is less than the number of characters in the record,
the remaining characters in the record are not available. An end-of-file record on the cassette
is a record having a DC3 (X-OFF) character as the first character. The cassette unit does not pro-
vide a logical end-of-medium indication, but does provide a physical end-of-tape indication. The
physical end-of-tape indication may indicate either end of the tape.

When the device specified is a card reader, the operation reads a card and transfers the characters
read to the specified buffer. The number of characters specified is transferred up to a maximum of
80 characters. When the number of characters specified is greater than 80, only 80 characters are
read and transferred. When fewer than 80 characters are specified, the remaining characters on
the card are not available. Characters other than those listed in Appendix B for the card reader are
placed in the buffer as spaces, and the system returns an error status code when these characters
are read. The end-of-file record for the card reader has a slash in the first column and an asterisk
in the second column (/*).

The read ASCII operation is an illegal operation for the line printer, and the system returns an
error status code.

7-11 Digital Systems Division

@ 946259-9701

When the device specified is the cassette unit, the system sets the most significant bit of each
character to zero and stores the characters two per word. The read operation terminates when a
complete physical record has been read. When the device specified is a Magnetic Tape Unit, the
Read Direct operation is the same as the Read ASCII (09,¢) operation.

7.2.11 READ DIRECT OPERATION (CODE 0A ;). The read direct operation is specified by 1/O
operation code 0A 4. The operation reads the number of characters specified as the record length
in bytes 8 and 9 of the Supervisor Call Block (SCB). The operation transfers the characters to the
buffer at the address in bytes 6 and 7 of the SCB without any characters translation and places the
number of characters read in bytes 10 and 11 of the SCB.

When the device specified is the cassette unit, the system sets the most significant bit of each
character to zero and stores the characters two per word. The read operation terminates when a
complete physical record has been read. When the device specified is a Magnetic Tape Unit, the
Read Direct operation is the same as the Read ASCII (09,4) operation.

When the device specified is the card reader, a column on the card is stored in a word of the buffer.
The four most significant bits of the word are set to zero; the holes in the card are stored as ones, in
the order shown in figure 7-2. The entire record is transferred to the buffer, and the end-of-file
record is underfined for a read direct operation.

When the device specified is the 33 ASR paper-tape reader, each frame contains one byte of
information in ASCII format.

A diskette file read direct operation is identical to the read ASCII operation for a diskette file.

When the device is a 733, 743, or 820 keyboard/printer, the least significant 7 bits of each input
character are stored in the buffer. An input carriage return character terminates the I/O and is
not stored in the buffer.

When a read direct operation is attempted on the other devices, the system returns an error status
code.

7.2.12 WRITE ASCII OPERATION (CODE O0B,¢). The write ASCII operation, code 0B;¢, trans-
fers the data in the buffer at the address in bytes 5 and 7 of the Supervisor Call Block (SCB) to
the specified file. The characters in the buffer are packed two per word. Bytes 10 and 11 of the SCB
contain the number of characters to be written. When the file is a relative record file and the write
operation is successful, file management increments the record number in bytes 12 through 15 of
the SCB. A write ASCII operation clears any end-of-file indication for the current record or for a
subsequent record.

NOTE

Each device recognizes the characters listed for the device in Appen-
dix B. Other characters are ignored.

7-12 Digital Systems Division

946259-9701

MEMORY WORD
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CARD

COLUMN(!T ?T ﬁ?ﬁﬁ‘ﬁit

(A)132855
Figure 7-2. Bit Manipulation for Direct Read of Card

When the device specified is a Magnetic Tape Unit, the Write ASCII operation transfers data from
the specified user buffer and writes the available characters to tape.

When the device specified is the keyboard/printer, the characters are printed. An HT character
results in a space, and an FF character results in eight line feed operations. When the device
specified is the line printer, the characters are also printed. Model 306 and Model 588 Line Printers
recognize the SO(OE,4) character as specifying a line of elongated characters. The SO character
should be the first character of the line, and causes the printer to print double-width characters on
the entire line. The number of characters per line is one-half the normal number of characters;i.e.,
40 characters per 80-character line, or 66 characters per 132-character line.

When the device specified is a cassette unit, the characters are written on the cassette. A carriage
return in the buffer is translated to an ETB (17,¢) character. The maximum number of characters
to be written is 83. When the buffer has been written, the system then writes a carriage return, a
line feed, a DC4 (record off) character, and a DEL (rub out) character to indicate an end of
physical record. When the reply bit is set, the response is read from the other cassette unit.

When a write ASCII operation is attempted on the card reader, the system returns an error status
byte.

When the device specified is the 33 ASR paper-tape punch, characters are written a byte at a time
in the ASCII format. A carriage return in the buffer is translated to an ETB (17,¢) character. The
system punches an ASCII end-of-record (CR, LF, DC3, null, null, null, null) when the buffer is
exhausted. When a write ASCII operation is attempted on the 33 ASR paper-tape reader, the system
returns an error status byte.

7-13

Digital Systems Division

@ 946259-9701

7.2.13 WRITE DIRECT OPERATION (CODE 0C,;). The write direct operation is specified by
the 1/O operation code 0C,¢. The operation writes a record without performing any translation,
writing the characters from the buffer at the address in bytes 6 and 7 of the Supervisor Call Block
(SCB). The number of characters to be written is specified in bytes 10 and 11 of the SCB.

When the device specified is the cassette unit, the seven least significant bits of each byte are written
on the cassette. The maximum number of characters per record is 83. If a DC4 character is
embedded in the buffer, the system writes the character and also a DC2 (record on) to continue
the operation. To assure that the last record is actually written on the tape, the user task should
place a carriage return in the buffer. When the reply bit is set, the response is read on the other
cassette unit. When the device specified is a Magnetic Tape Unit, the Write Direct operation is the
same as the Write ASCII (0B,¢) operation.

When the device specified is the 33 ASR paper-tape punch, all eight bits of each byte are punched
on the paper tape. If a DC4 (14,¢) character is embedded in the buffer, the system punches the
character and also a DC2 (record on, 12,4) to continue the operation. The system punches an
end-of-record (DC3, null, null, null) when the buffer is exhausted.

When the device specified is a line printer, the seven least significant bits are sent to the printer and
the installed options will determine how the characters are interpreted.

A diskette file write direct operation is identical to the write ASCII operation for a file.

When the device is a 733, 743, or 820 keyboard/printer, all eight bits of every character in the
buffer are transmitted to the device.

When the write direct operation is attempted on any other device, the system returns an error
status code.

7.2.14 WRITE EOF OPERATION (CODE 0D,¢). The write EOF operation is specified by 1/O
operation code OD;s. The operation consists of writing the end-of-file record defined for the
specified device. When the device is a Magnetic Tape Unit, the operation writes the Magnetic Tape
EOF mark.

When the device specified is the cassette unit, the operation writes a DC3 (X-OFF) character on
the cassette. When the device is the keyboard/printer, the operation performs three line-feed
operations. When the device is the line printer, the operation performs a form-feed operation. When
the device is the VDT, the operation is ignored. When the device is the card reader, the system
returns an error status code, and no operation is performed.

When the device specified is a 33 ASR paper-tape punch, an ASCII end-of-file is punched.

When the unit specified is a diskette file, the write EOF operation writes the end-of-file record.
There is no limit to the number of end-of-file records that may be written to a sequential file but
there may be only one for relative record files. For a relative record file the end-of-file is written in
the record specified (bytes 12-15 of the supervisor call block).

7.2.15 REWIND OPERATION (CODE 0OE,¢). The rewind operation is specified by I/O operation
code OE,s. When the device specified is the cassette unit, the operation rewinds the cassette tape to
the clear area at the beginning of the tape, and then moves the tape in the forward direction to the
beginning of tape marker, illuminating the READY indicator on the 733 ASR. When the specified
device is the line printer, the operation performs a form feed operation. When the device is a Magne-

tic Tape Unit, the operation rewinds the tape to the load point and places the unit in the ready
state.

7-14 Digital Systems Division

[o]
{@ 946259-9701

A diskette file rewind operation simulates the rewinding of a cassette file, causing the next read

(QWA or write operation performed on the file to access the first record in the file (not a subfile). After
a sequential file has been opened and records written to it, the file cannot be rewound until an
EOF mark is written or the file is closed. When the file is a relative record file, file management
places a zero in bytes 12-15 (logical relative record number) of the supervisor call block.

The rewind operation is ignored by other devices.

7.2.16 UNLOAD OPERATION (CODE OF,¢). The unload operation is specified by operation
code OF ;4. The operation is ignored by all devices and files except the cassette and magnetic tape
unit. The unload operation for the cassette unit consists of rewinding the cassette tape to the clear
area at the beginning of the tape. For the magnetic tape unit, the operation consists of rewinding
the tape to the physical beginning in preparation for unloading the reel.

7.2.17- UNLOCK OPERATION (CODE 4A). The unlock operation, code 4A;s, unlocks a
relative record file record that has been locked by a previous read. The record to be unlocked is
specified in bytes 12 through 15 of the supervisor call block.

7.2.18 CREATE FILE OPERATION (CODE 90,). The create file operation is specified by
placing code 90,4 in byte 2 of file management supervisor call 00,¢. To create a file, code utility
flag byte 16, logical relative record size bytes 18 and 19, and pathname pointer byte 22. Bytes 5
through 15 are ignored.

7.2.19 ASSIGN LUNO TO PATHNAME OPERATION (CODE 91,,). The assign LUNO to
pathname operation is specified by placing code 91,4 in byte 2 of the Supervisor Call Block (SCB).
The user must code byte 3 of the SCB with the LUNO, and byte 22-23 with the pathname pointer
W to the file or device. When the user sets the auto-create bit 6 of bytes 16-17 to a 1, the user must
also code bits 11-15 of bytes 16-17 and bytes 18, 19 of the SCB. If the diskette file does not al-
ready exist it will be created when an open operation is executed using the LUNO in byte 3.
Diskette files are not located by file management until they are opened, therefore the user may
assign LUNOs to diskette files before the diskette which contains the file is actually loaded. Unlike
diskette files, devices are located when the LUNO is assigned. Bytes 5 through 15 are ignored.

7.2.20 DELETE FILE OPERATION (CODE 924). The delete file operation is specified by

placing code 92,4 in byte 2 of the Supervisor Call Block (SCB). The file identified by the pathname

™ specified in bytes 22 and 23 is deleted when this operation is executed. When the file to be deleted
: does not exist, an error is returned. Bytes 5 through 21 are ignored.

7.2.21 RELEASE LUNO ASSIGNMENT OPERATION (CODE 93,¢). The release LUNO assign-
ment operation is specified by placing code 93,4 in byte 2 of the Supervisor Call Block (SCB). The
user must code byte 3 with the LUNO number which is to be released from its previously assigned
pathname. Bytes 5 through 23 are ignored.

7.2.22 COMPRESS FILE OPERATION (CODE 94,¢). The compress file operation is specified
by placing 94, in byte 2 of the Supervisor Call Block (SCB). The user must also code bytes 22-23
of the SCB with the pathname pointer to the file that is to be compressed. It is beneficial to com-
press files that have contained a large number of records and then rewritten so they contain fewer
records than the original file. The compress operation will return the unused allocation units be-
yond the end-of-file which are not being used by the current file. Bytes 5 through 21 are ignored.

7-15 Digital Systems Division

@ 9462599701

7.2.23 CHANGE FILE NAME (CODE 95,,). The user must code bytes 22 and 23 with the :
pointer to the new pathname and code byte 3 with the LUNO which must be previously assigned ™
to the old file pathname which is to be changed. Bytes 5 through 21 are ignored. :

7.2.24 UNPROTECT FILE OPERATION (CODE 96,6). The user must code bytes 22-23 with
the pathname pointer to the file that is to be unprotected. If the file is already opened using an
open I/O device-file operation, the file will not be unprotected until the file is closed. Bytes 5
through 21 are ignored.

7.2.25 WRITE PROTECT FILE OPERATION (CODE 97,4). The user must codes bytes 22-23 of
the supervisor call block with the pathname pointer to the file that is to be write protected. If the
file is already opened, the file will not be write protected until the file is closed. Bytes 5 through 21
are ignored.

7.2.26 DELETE PROTECT FILE OPERATION (CODE 98,4). The user must codes bytes 22-23 -
of the supervisor call block with the pathname pointer to the file that is to be delete protected.
If the file is already opened, the file will not be deleted protected until the file is closed. Delete

protected files are also write protected. Bytes 5 through 21 are ignored.

7.2.27 VERIFY PATHNAME SYNTAX (CODE 99:6). The user must code bytes 22-23 of the
supervisor call block with the pathname pointer to the pathname that is to be verified. If the syntax
is correct, the error status byte will be 0, otherwise it will contain an error code. See error code,

Appendix I. /m%\

7.2.28 CODING EXAMPLES USING FILE MANAGEMENT SUPERVISOR CALL 00,. The
following is a coding example for a supervisor call block that will write a record to LUNO 8. LUNO
8 must have been previously assigned to an interactive device. The reply flag is set to 1 indicating
that a read will follow the write.

SCBO DATA 0

BYTE >0B,8 Write a record to LUNO 8

DATA >0040 The flag word of the SCB indicates that this will -~
be an output with reply.

DATA OBUFF The record will be written from the memory
buffer OBUFF.

DATA O

DATA 80 80 characters will be written from the memory
buffer.

DATA RBLK The reply control block is located at RBLK.

An example of a reply block is as follows:

RBLK DATA RBUFF Place the reply in the memory buffer RBUFF.
DATA 40 Input up to 40 characters.
DATA 0 The number of characters actually inputed will

be returned by the system in this data word.

7-16 Digital Systems Division

{_%\é:; 946259-9701

The following example shows how File Utility Supervisor Call 00,4 assigns LUNO 6 to the diskette
~ file DSC:TEXT/SRC. If the file does not already exist it will be created when an OPEN operation
is performed on LUNO 6.

SVCBLK EVEN

BYTE >00,>00

BYTE >91,>06 Assign LUNO 6 to a file.

BSS 12

DATA >1285 Set the auto-create flag to create a noncontiguous
sequential file.

DATA O

DATA O

DATA PATHNM PATHNM refers to a memory buffer that has the
ASCII representation of the file pathname.

BSS 12

PATHNM BYTE 16
~™ TEXT DSC :TEXT /SRC

The following example shows an I/O file write operation supervisor call, writing to the logical
relative record 56 in the relative record file that LUNO 3C,¢ has been previously assigned.

SCBF DATA O

BYTE >0B,>3C Write to the file that LUNO 3C,, is assigned.
DATA O All the flag bits are turned off.
‘ DATA FILOUT Write it from the memory buffer FILOUT.
DATA O Unused word.
DATA 20 Write 20 bytes.
DATA O
DATA 56 Write it to record 56 of the relative record file.
7.3 SUPERVISOR CALL 15, SUPPORT FOR TASKS DESIGNED TO RUN UNDER TX990,
RELEASE 1.0
The TX990 Operating System also supports the file utility supervisor call for tasks that were
ﬁ@ generated to run under the 1.0 version of the TX990 Operating System.
NOTE

SVC 15,6 may not be supported on future releases; therefore, the
user should use discretion in using/not using this SVC.

File utility supervisor call 15,4 performs the following functions:
® Assigns a LUNO to a device

® Releases a LUNO assignment.

7.3.1 SUPERVISOR CALL 15, SCB FORMAT. The file utility supervisor call block for file
. utility supervisor call 15,6 consists of 12 bytes aligned on a word boundary. As shown in figure 7-3,
f”’“‘ the content of the supervisor call block is as follows:

717 Digital Systems Division

{_@p 946259-9701

® 15,6 (supervisor call code) in byte 0
® A byte reserved for a status code, byte |
® Utility operation code in byte 2, either of the following:
01 Assign LUNO to device
03 Release LUNO assignment
® User flags in byte 3, as follows:
Zeros in bits 0 through 4
File Allocation bit — bit 5. Ignored by TX990.
File Type — bits 6 and 7, set to zero for a device.
® LUNO in byte 4 (FF, is illegal)
® Validation identifier in byte 5. Not applicable to TX990.
® Record length in bytes 6 and 7. Not applicable to TX990.

® Device name in bytes 8 through 11, consisting of up to four characters left-justified with
trailing spaces (not required for release function).

The status codes returned by the system in byte 1 at the completion of the function are listed in
the error appendix.

7.3.2 CODING EXAMPLE. The example below assigns LUNO 2 to cassette transport drive 2.

DATA >1500 Supervisor call code.
DATA >0100 Assign opcode.
DATA >0200 Luno.

DATA 0

TEXT ‘C82° Cassette drive 2.

7-18 Digital Systems Division

{@p 946259-9701

RELATIVE

/m»\ ADDRESS

’ 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

T T T T T Y T Y T T T T T T

o 1516 STATUS CODE @
2 UTILITY OP CODE 0 o 0 0 o AL TYPE
4 LUNO VALIDATION IDENTIFIER
6 RECORD LENGTH
8 DEVICE NAME , CHAR. 1 DEVICE NAME, CHAR, 2
10 DEVICE NAME, CHAR, 3 DEVICE NAME, CHAR, 4

{ NOTE: (@ RETURNED BY SYSTEM. ALL OTHER ITEMS SUPPLIED BY USER AS

APPLICABLE
(A)133424

Figure 7-3. File Management Supervisor Call Block for File Management Supervisor Call 15,¢

. 7.4 VDT CHARACTER MODE SUPERVISOR CALLS 1A, 84, and 18.
m With these supervisor calls, the user task can position the VDT cursor, write or read fields of data on
the VDT screen, and input characters from the VDT keyboard. The following supervisor calls are
used for character mode operation:

e VDT Utility Supervisor Call 1A;¢
e VDT Character Input from Station Keyboard Supervisor Call 84
e VDT Conditional Character Input from Station Keyboard Supervisor Call 18,6

In the character mode, the user task first executes a VDT utility supervisor call 1A;s, to open the
VDT. Subsequent device 1/O operations are performed using character input supervisor calls and
utility supervisor calls. The VDT is taken out of the character mode by the VDT utility supervisor
call that specifies the close device I/O operation.

One or more VDTs may be designated in character mode or record mode, when the system is
generated. VDTs designated in record mode may also use character mode I/O operations. Character
mode device I/O operations address the VDT by the station number which is assigned to the VDT
when the system is generated.

The VDT character mode SVC 1A;¢ is not supported by the DX10 system software.

74.1 VDT UTILITY SUPERVISOR CALL 1A,. VDT utility supervisor call 1A, allows the
following seven VDT I/O operations with a 911 or 913 VDT.

7-19 Digital Systems Division

946259-9701

® Opens the VDT, placing it in the character mode

® Positions the cursor

® Tabs the cursor to an unprotected field on the screen
® Reads a field of characters from the screen

® Writes a field of characters to the screen

® Writes a character in a specified number of character positions on the screen

® Closes the VDT, terminating the character mode.

One or more of the above VDT I/O operations may be specified in this supervisor call by setting
a bit to 1 in byte 2 of the supervisor call block. When more than one VDT I/O operation is speci-

fied, the operations are performed in the sequence indicated in the above list of seven VDT I/O
operations.

The open device I/O operation must be performed before any other device I/O operation or super-
visor call to the VDT. The user task supplies the station number of the VDT to be opened and
requests the open VDT operation. The result is to enable character mode operation of the VDT.
When the RC flag is set to 1, the VDT open operation places the maximum values of row and
column in bytes 6 and 7 of the supervisor call block, which is normally the buffer address.

The cursor position VDT operation positions the cursor at any character of any line of the screen.
The user task supplies the station number of the VDT and the row and column to which the cursor
is to be moved.

The tab VDT operation positions the cursor at the leftmost character of an unprotected field. When
characters are written on the screen, they are written either as protected or as unprotected charac-
ters. When the cursor is at a position that contains a protected character, the tab VDT operation
skips protected characters leaving the cursor at the leftmost character of the unprotected field to
the right of the original position of the cursor. When the cursor is at a position that contains an un-
protected character, the tab VDT operation moves the cursor to the leftmost character of the
current unprotected field. The user task supplies the station number of the VDT for the tab VDT
operation.

The read characters VDT operation reads a field of characters from the screen at the cursor
position. The task may specify a number of characters to be read, or may read all the characters in
an unprotected field. This VDT operation also moves the cursor to the position following the last
character read. The user task supplies the station number of the VDT, the number of characters
to be read, and the address of a buffer in which are placed the characters read from the screen.

The write characters VDT operation writes a field of characters to the screen at the cursor position.
The task specifies a maximum number of characters to be written. The operation terminates before
writing the maximum number of characters if the operation detects a character having the most
significant bit set. In that case, the operation negates the character code, writes the resulting char-
acter, and terminates. The user task supplies the station number of the VDT, the maximum number
of characters and the address of the buffer.

7-20 Digital Systems Division

946259-9701

The write character (propagate) VDT operation writes the first character in the buffer into a field
of characters on the screen at the cursor position. The task specifies the number of times the char-
acter is to be written. The user task supplies the station number of the VDT, the number of
characters to be written, and the address of the buffer that contains the character.

The VDT close operation must be performed to terminate the character mode of the VDT. The
VDT may then be opened for record mode operations when the VDT has been designated for both
modes. The user task supplies the station number of the VDT to be closed.

The user may specify that the operations of a VDT supervisor call be followed by a beep tone, or

that the cursor remain disabled following the operations. All device I/O operations return the row
and column of the cursor position at completion.

7.4.1.1 VDT Utility Supervisor Call Block. VDT utility supervisor call block, shown in figure 7-4,
consists of the following:

® The code, 1A ¢, in byte 0.
L Byte | reserved for a completion code (table 4-3).
® Operation flags in byte 2, as follows:

PR flag — bit 0, set to one to write protected characters. Set to zero to write un-
protected characters.

RC flag — bit 1, set to one to cause an open VDT operation. The maximum values
for row and column are placed in bytes 6 and 7 of the supervisor call block.

PC flag — bit 2, set to one for a position cursor VDT operation.
T flag — bit 3, set to one for a tab VDT operation.
R flag — bit 4, set to one for a read VDT operation.
W flag — bit 5, set to one for a write VDT operation.
WP flag — bit 6, set to one for a write propagate device I/O operation.
C flag — bit 7, set to one for a close VDT operation.
® The station number in byte 3.
® Control flags in byte 4, as follows:
B flag — bit 0, set to one to provide a beep tone following the operations specified.

CD flag — bit 1, set to one to disable the cursor following the operations specified.

® The row, for a position cursor device I/O operation, in bits 3 through 7 of byte 4. The
range of values is O through B¢ for a 913 VDT, or 0 through 17,4 for a 911 VDT.
Returned by the system after each call.

® The column for a position cursor device I/O operation, in bits 1 through 7 of byte 5.
The range of values is 0 through 4F 4. Returned by the system after each call.

7-21 Digital Systems Division

946259-9701

. The address of a buffer in bytes 6 and 7. A read device I/O operation transfers characters
into the buffer, a write function transfers characters out of the buffer, and a write
propagate device I/O operation copies the first character in the buffer into one or more
character positions on the screen. When bit 1 of byte 2 is set to one during an open
operation, the maximum values of row and column are placed in bytes 6 and 7.

° The number of characters for a read operation, in bytes 8 and 9. When zero, read the
entire unprotected field. Otherwise, read the specified number of characters.

° The maximum number of characters to be written in a write operation, or the number of
characters to be written in a write propagate operation, in bytes 10 and 11. In a read
operation, the system returns the actual number of characters read in these bytes.

The system returns a completion code in byte 1. The codes are listed in table 7-5.

RELATIVE
ADDRESS [¢) 1 2 3 4 5 6 7 o) 1 2 3 4 5 6 7
T T T T T T T T T T T T T T

0 1A.6 COMPLETION CODE O)
PRB REL.,
ADDR,

2 PR rRc | PC T R w P c STATION NUMBER

2 B cD ROW COLUMN

6 BUFFER ADDRESS

8 NUMBER OF CHARACTERS — READ

10 NUMBER OF CHARACTERS

NOTE () RETURNED BY SYSTEM,ALL OTHER ITEMS SUPPLIED BY USER,
(A)Y132858

Figure 74. VDT Utility Supervisor Call Block

7-22 Digital Systems Division

946259-9701

Code
(Hexadecimal)

0
1

(AN N

80

NOTE 1

Table 7-5. VDT Utility Completion Codes

Description

Satisfactory completion.
Illegal station number.

Illegal cursor position specified.

No unprotected field found in tab function.

No unprotected field found in read function of

unspecified length (Note 1)

VDT currently in record mode or assigned to

another task.

When a read function that has no specified length does not read a pro-
tected field, the full screen of characters is read before the operation is
terminated in error. Contents of memory locations immediately above

the buffer are destroyed when the buffer size is less than the screen
size (960 characters for 913 VDT). (1920 characters for 911 VDT).

7.4.1.2 Coding Example. The following are examples of coding for supervisor call blocks for VDT

utility calls.

SCBV DATA >1A00,>A402,>4300,WBUFF,0,8

SCVCT DATA >1A00,>5802,0,RBUFF,5,0

SCBVC DATA >A100,>2902,>8220,RBUFF 4,0

Station 2 is already opened, position

the cursor at column O of row 3,
and write eight protected charac-
ters from buffer at location WBUFF,
leaving the cursor disabled.

Open station 2, tab cursor, and

read five characters into buffer at
location RBUFF, with cursor

enabled.

Station 2 is already opened, posi-

tion the cursor at row 2, column 32,
read 4 characters into buffer at
location RBUFF, close station 2,
and sound a beep tone.

7-23

Digital Systems Division

946259-9701

7.4.2 VDT CHARACTER INPUT SUPERVISOR CALL 8,,. The character input supervisor call,
code 8, inputs a character from a specified station keyboard. The calling task is suspended until
the character is transferred. The system places the character in the most significant byte of the task
workspace register 0. The supervisor call block consists of three bytes, and need not be aligned on a
word boundary. Byte O contains the code, and the system returns a value in byte 1. Byte 2 contains
the station number. When the system is unable to locate the station, it returns -1 in byte 1. When
the station has not been opened in the character mode, or when power is off at the station, the
system returns 80, in byte 1. Otherwise, the system returns zero in that byte.

VDT character input call block: 0 8 ERROR CODE
2 STATION NUMBER
(A)137501
VDT conditional character input call block: 18,6 ERROR CODE
2 STATION NUMBER

(A)137502

The following is an example of coding for a supervisor call block for a character input from station
keyboard supervisor call:

SCBC BYTE 8,0,2 Input a character from station 2 and place the
character in the most significant byte of
workspace register 0.

74.3 VDT CONDITIONAL CHARACTER INPUT SUPERVISOR CALL 18,. Conditional
character input supervisor call 18,5 inputs a character from a specified station keyboard. When a
character is entered, the function sets the equal bit (bit 2) of the status register to 1 and places the
character in the most significant byte of workspace register 0. When a character has not been
entered, the function sets the equal bit of the status register to 0, indicating a “not equal” status. In
either case, the function returns control to the calling task immediately. The supervisor call block
consists of three bytes, and need not be aligned on a word boundary. Byte O contains the code, and
the system returns a value in byte 1. Byte 2 contains the station number. When the system is unable
to locate the station, it returns -1 in byte 1. When the station has not been opened in the character
mode, or when power is off at the station, the system returns 80, in byte 1. Otherwise, the system
returns zero in that byte.

The following is an example of coding for a supervisor call block for a conditional character input
from station keyboard supervisor call:

SCBT BYTE >18,0,5 Input a character from station 5 and place it on the
most significant byte of workspace register O if a
character has been entered at the keyboard.

7.5 WAIT FOR I/O SUPERVISOR CALL 01.

Wait for I/O supervisor call 01,4 places the calling task in suspension pending completion of a
specified I/O operation. Wait for I/O supervisor call block 01, contains four bytes aligned on a
word boundary as shown below. Byte 0 contains the supervisor call code and byte 1 contains a zero.
Bytes 2 and 3 contain the address of the second word in the supervisor call block that defines the
I/O operation. When the specified I/O operation is not in progress, control is immediately returned
to the calling task.

7-24 Digital Systems Division

{_@) 946259-9701

2 SCB ADDRESS + 2

(A)137503
The following example shows coding for a supervisor call block for a wait for I/O call:

SWBW DATA >100,SCB5+2 Suspend the calling task pending completion of jche
I/O operation defined in the SCB at location

SCBS.

NOTE

The system will modify the original call block SCB by setting to

f/ecr)o bit 0 of byte 5, which is set by the user to indicate initiate

Y) 7.6 ABORT I/O SUPERVISOR CALL OF,, OPERATION.

' Abort I/O supervisor call OF s terminates I/O operations on the specified 1/O device. The calling
task is suspended during execution of the abort I/O supervisor call. If the device is file-oriented, it
becomes unassigned. If the device is busy, the system sets the error flag in the supervisor call block
for the current operation. No device operation is performed, and the medium remains positioned as
the last I/O operation left it. That is, tape in a cassette is not backspaced or rewound, nor are the
remaining cards of a deck read. Abort I/O supervisor call block OF s consists of two bytes which
need not be aligned on a word boundary as shown below. Byte 0 contains the code and byte 1
contains the LUNO assigned to the device.

(MM 0 Fie LUNO

(A)137504

The system returns zero as a status code in byte 1 when the operation completes successfully and -1
(FF) when the LUNO specified in the SCB has not been defined.

The following example shows the coding for a supervisor call block for an abort /O call:
7.7 ABORT I/O SUPERVISOR CALL BLOCK 1E

F SCBA BYTE >F>11 Abort I/O to the device to which LUNO 11, is
- assigned.

An error code of 06,¢ is returned by the system to the I/O SCB of the I/O operation being aborted.

7.7 ABORT I/O SUPERVISOR CALL BLOCK 1E.

Abort supervisor call 1E;s terminates an I/O operation defined by a specified Supervisor Call Block
(SCB). The abort operation supervisor call block consists of four bytes aligned on a word boundary
as shown below. Byte O contains the code, and the system returns a status code in byte 1. Bytes 2
and 3 contain the address of the second word in the SCB for the operation to be terminated.

0 1E4¢ STA'TUS CODE

(A)137505 2 SCB ADDRESS + 2
A 7

The following is an example of coding for a supervisor call block for an abort supervisor call:

W SCBA DATA >1E00 ABORT I/O Operation Abort the I/O operation defined in a
' DATA SCBZ+2 Address supervisor call block at location SCBZ.

7-25 Digital Systems Division

@ 946259-9701

An error code of 06,4 is returned by the system to the I/O SCB of the I/O operation being aborted.

NOTE

This SVC is not supported by the DX10 system; therefore, SVC
F1¢ should be used for aborting I/O.

7-26 Digital Systems Division

(o]
@ 946259-9701

“ SECTION VIII
DISKETTE OCP SYSTEM UTILITY (SYSUTL) PROGRAM
8.1 INTRODUCTION
Basically, SYSUTL provides the operator with additional keyboard-command-control capability for
use with diskette devices and files and, therefore, functions as a diskette-related supplement to the
Operator Communication Package (OCP). The SYSUTL commands are listed as follows:
BC — Boot Copy MD — Map Diskette
SF — Set System File MF — Map File
CF — Create File DD — Diskette Dump
DF — Delete File DL — Diskette Load
CM — Compress File FD — File Dump
o™ CN — Change File Name FL — File Load
CP — Change Protection ID — Initialize Date and Time
DO — Define Output TI — Print Time and Date

TE — Terminate
CV — Change Volume Name

In general, SYSUTL is a module of TX990 and a diskette-resident extension of the OCP module
(described in Section III of this manual). SYSUTL may be executed under OCP or under the

Terminal Executive Development System (TXDS) using console control in a manner similar to OCP.
W The following paragraphs describe the loading procedure, LUNOs, syntax, and the individual
commands. The last paragraph in this section covers the SYSUTL error messages.

8.2 LOADING SYSUTL

SYSUTL can be loaded using the OCP module or in conjunction with the Control Program. When
using the OCP module, perform the procedure itemized in paragraph 8.2.1. When using the Control
Program perform the procedure itemized in paragraph 8.2.2.

8.2.1 LOADING SYSUTL USING OCP. Load the program as follows:

o 1. After loading the QCP' in accordance with the procedure itemized in the section entitled
Operator Communication Package, observe the printout or display on the system console
of the period (.) prompt.

2. Place the object moduie for SYSUTL in either the cassette or floppy diskette drive and
ready the device.

3. Usiqg OCP’s LP (Load Program) command, load the SYSUTL object module from
the input media into memory as follows:

LP,DSC2:SYSUTL/SYS Load from floppy diskette DSC2 the object
module file SYSUTL/SYS.

81 Digital Systems Division

[e)
@ 946259-9701

10.

An alternate method for loading the SYSUTL object module from cassette follows:

LP,CS1. Load SYSUTL object module from cassette
unit 1.

Enter OCP’S EX (Execute) command to execute SYSUTL and terminate OCP as follows:
EX,10.TE. Executes SYSUTL and terminates OCP
Observe the following printout or display on the system console:

SYSUTL V.R.E YY.DDD SYSTEMS UTILITY

After SYSUTL has started execution, the SYSUTL module causes the OP: prompt to
be printed or displayed on the system console as follows:

SYSUTL V.R.E YY.DDD SYSTEMS UTILITY
OP:

At this step in the procedure, one or more SYSUTL commands, with a limit of up to 76
characters on one line, may be entered on the system console. An example follows:

OP: MD,DSC2.SF,DSC2:SYSFIL/SYS
NOTE

All of the commands must be entered on the same OP: line and not
carried to another line.

After SYSUTL executes the commands entered in the preceding step, observe that the
OP: prompt is again printed out or displayed on the system console.

At this step in the procedure, the operator has the choice of entering another SYSUTL
command or terminating SYSUTL by entering a terminate response to the prompt as
follows:
OP: TE.

NOTE

If an error occurs during execution of a command, the appropriate
error message is issued.

If TXDS is in the system, observe that SYSUTL has terminated when the following print-
out or display is produced on the system console:

TXDS V.R.E YY.DDD

PROGRAM:

8-2 Digital Systems Division

@ 9462599701

8.2.2 LOADING SYSUTL USING THE TX990 OPERATING SYSTEM AND THE TXDS
/W’\ ‘ CONTROL PROGRAM. Load the program as follows:

1. After loading the TX990 Operating System in accordance with the loading procedure in
the section entitled Loading the TX990 Operating System, bid the TXDS Control Pro-
gram. This can be accomplished by use of the OCP module or without use of the OCP
module. When the OCP module is used, enter EX,16.TE. in response to OCP’s period (.)
prompt to bid the TXDS Control Program and proceed to the next step. When the OCP
module is not present, enter an exclamation point (!) to bid the TXDS Control Program
and proceed to the next step.

2. Observe the following printout or display on the system console:

TXDS V.RE. YY.DDD
PROGRAM:
™ 3. Enter the pathname of the SYSUTL object module in response to the PROGRAM.:

prompt as follows:

PROGRAM: :SYSUTL/SYS

4. Depress the carriage return key and observe that the INPUT: prompt is printed out or
displayed on the system console.

NOTE

(”m\ The asterisk (*) feature can be used in lieu of the carriage return/

NEW LINE entry to by pass the remaining prompts (Input, Output,
Options).

5. Make a null entry by depressing the carriage return and observe that the OUTPUT:
prompt is printed out or displayed on the system console.

6. Make a null entry by depressing the carriage return and observe that the OPTIONS:
prompt is printed out or displayed on the system console.

7. In response to the OPTIONS: prompt, only one SYSUTL command can be entered on
the system console (with a limit of up to 30 characters on the same line). For example:

OPTIONS: MD,DSC2
NOTE

1. When multiple SYSUTL commands are to be entered, the
response to the OPTIONS: prompt must be a carriage return
(i.e., a null entry). This will cause SYSUTL to print or display
the OP: prompt on the system console to which prompt the
operator responds with one or more SYSUTL commands (with
a limit of up to 76 characters on one line).

2. A SYSUTL command may not be continued on the next line.

-
3 Digital Systems Division

o
@ 946259-9701

3. When multiple SYSUTL commands are entered, SYSUTL
processes each individual command, one at a time, until it has
no more commands to process, at which time the operator can
enter a TE (Terminate) SYSUTL command. This, in turn,
causes the TXDS Control Program to be rebid.

8 After the SYSUTL command entry is made in response to the OPTIONS: prompt,
observe that the TXDS Control Program is rebid and the following printout or display
is presented on the system console:

TXDS V.RE YY.DDD
PROGRAM:

8.3 LUNOs

SYSUTL uses LUNO 0, LUNO 6, and LUNO 7. LUNO 0 is assigned to the system console. All com-
munications between operator and task, including error messages, are performed through LUNO 0.
LUNO 6 is assigned by SYSUTL to the diskette being accessed by all diskette-related commands.
LUNO 7 is internally assigned to the default print device upon loading SYSUTL and is used as
the SYSUTL output LUNO for any printer output. The user has the option to redirect any printed
output, excluding error messages, to a device other than the default print device by executing
the Define Output (DO) command (described in one of the paragraphs below).

8.4 SYSUTL COMMAND FORMAT AND SYNTAX

Each command consists of a command word, optionally followed by one or more operands.
SYSUTL recognized a command by the first two letters of the command word, the command key.
These letters may be followed by additional letters or by blanks. One or more blanks, or a comma,

may separate a command key and its operands. However, embedded blanks are not allowed within
the command word or an operand.

If Systems Utility is executed using OCP, more than one command may be entered in a single line,
which may contain up to 72 characters and must be terminated by a carriage return (NEW LINE on
913 VDT). When more than one command is entered on a line, each command must be terminated
with a period, except the last command on the line, then it may be omitted. When an error is
detected in a command, any subsequent command on that line is ignored.
SYSUTL syntax also entails the following items and/or rules:

° Angle brackets <> enclose items required to be supplied By the user

° Brackets [] enclose optional items
L] Braces { } enclose alternative items, one of which must be entered
L An ellipsis (. . . .) indicates that the preceding items may be repeated

L Items shown in capital letters must be entered as shown

® Ppathname is described in 1.4.1.

8-4 Digital Systems Division

o]
ir{\[z‘:; 946259-9701

8.5 SYSUTL COMMANDS

W\ SYSUTL provides commands to initialize the time and date and to display the time and date.

‘ SYSUTL also provides a command to define a listing device for the display commands. All the re-
maining commands deal with functions that involve the diskette. SYSUTL has a command to in-
voke every file utility operation: create a file; delete a file; compress a file; change a file name; and
change protection on a file. SYSUTL also supports maintenance functions for the diskette: map the
diskette, which displays the file names along with various information of all the files on the
diskette; map file, which displays information for a single file; disc dump, which displays absolute
locations on the diskette; disc load, which writes to absolute locations on the diskette; file dump,
which displays physical sectors within a file; and file load, which writes to physical sectors within
a file.

SYSUTL provides two commands for maintenance of a system diskette. The first command is

Boot Copy (BC) which copies the TXBOOT program to diskette. The second command is Set

System File (SF), which allows the user to define any object file as the file that will be loaded as

the Operating System. The system file pathname must be defined before the Operating System

loading procedure is performed. (Refer to the loading procedure in Section II of this manual for
™ additional information.)

If a null entry is made wherever a device is to be specified, the default-substitute will be the system
diskette which is specified during system generation. There will be no other defaults.

All numeric output is in decimal except the output from the Diskette Dump (DD) and File Dump
(FD) commands. These dumps are in hexadecimal.

8.5.1 BOOT COPY (BC). The Boot Copy (BC) command causes a copy of the TXBOOT program
~ to be written on the specified diskette. A diskette ROM loader cannot be used to load the Operating
System or astand-alone program from diskette until the TXBOOT program is written to the diskette

that will be used during loading. The syntax of the command is presented as follows:

BC,{<device>. ‘}

<volume>.
The operand must be a one-to-four-character diskette or volume name. There is no
default-substitute for the device operand. Upon executing the BC command, the TXBOOT program
is copied to physical tract O of the specified diskette. The following is an example of the Boot Copy

i (BC) command:

OP:BC,DSC2. The TXBOOT program is copied to physical track
0 of DSC2.

8.5.2 SET SYSTEM FILE (SF). The Set System File (SF) command defines a diskette file to be
loaded as the Operating System or as a stand-alone program. The syntax is as follows:

SF,<pathname>.

The file designated by the specified pathname is the file that contains the linked object code that is
to be loaded and executed as the Operating System or as a stand-alone program. Refer to the
diskette/cassette ROM loader description for further details on loading. An example of the Set
System File (SF) command follows:

. OP:SF,DSC:TX990/SYS. The file TX990/SYS on DSC is to be used as the
/’WA Operating System file when the diskette is booted.
8-5

Digital Systems Division

[o]
{—@;} 946259-9701

8.5.3 CREATE FILE (CF). The Create File (CF) command creates a sequential or relative record
file. The syntax for the command is as follows:

CF <pathname>[,<RR>,<record length>].

The pathname operand is the name assigned to the file upon its creation. The newly created file is a
noncontiguous sequential file unless the optional operand ‘RR’ follows the pathname. If ‘RR’ is
specified, the file is created as a noncontiguous relative record file with the specified record length.
For relative record files, the recrod length must be given. Record length is assumed to be decimal
unless preceded by >’. All files are created unprotected and have a protection code of U’.

The following are examples of the CF command:
OP:CF,DSC2:FILE/SEQ. Create sequential file named ‘FILE/SEQ’ on DSC?2.

OP:CF,VOL1:RELREC,RR >80. Create relative record file names ‘RELREC’ with
record length of 80, on the diskette with the
volume name VOLI.

8.5.4 DELETE FILE (DF). The Delete File (DF) command deletes the specified file from the
diskette. The syntax for the command is as follows:

DF,<pathname>.
The following question is issued:
ARE YOU SURE???

Only one character is accepted. If any response is entered other than a ‘Y’ for ‘yes’, the delete file
command is ignored. Upon entering a ‘Y’, the specified file is deleted from the diskette. An
example of the DF command follows:

OP:DF,DSC:TEMPFIL

ARE YOU SURE??”? Y Upon entering Y’, the file ‘TEMPFIL’ is deleted from
DSC.

8.5.5 COMPRESS FILE (CM). The Compress File (CM) command returns to the Operating System
all allocation units (AUs) beyond the EOF for the specified pathname.

CM,<pathname>.

The pathname operand must be a valid pathname as defined in the section in this manual entitled
File Management Executive Supervisor Calls. The Compress File command compresses the desig-
nated file to its minimum size. The following is an example of the CM command:

OP: CM,:0OCPFIL/SRC. Compresses file ‘OCPFIL/SRC’ on system default diskette.
8.5.6 CHANGE FILE NAME (CN). The Change File Name (CN) command changes the file name
and extension of an existing file to the new pathname as specified. The syntax of the command is as

follows:

CN,<old pathname> ,<new pathname>.

8-6 Digital Systems Division

e‘_\ﬁ@p 9462599701

Both the old pathname and new pathname operands must be valid pathnames as defined in section I

m of this manual. The file with the specified old pathname retains all its directory information such as
protection code and file type. Only the name of the file on the diskette is changed. The following
is an example of the CN command:

OP: CN,DSC2:0CPFL1,DSC2:0CPFIL/SYS. Changes the name of the file that is cur-
rently listed in the file directory on DSC2
as OCPFLI1 to the new file name OCPFIL/
SYS.

8.5.7 CHANGE PROTECTION (CP). The Change Protection (CP) command changes the file
protection code of the specified file to the new protection code. The syntax of the command is
as follows:

U
CP,<pathname>, (D
W

The pathname operand must be a valid pathname. The existing protection code of the specified
file is changed to the newly defined protection code. The second operand is a one-character
abbreviation of the possible protection code as follows:

U — Unprotect File (File is Unprotected)
D — Delete Protect File (Protects File from Being Deleted)
W — Write Protect File (Protects File from Being Written On or Deleted)

ﬁw“\ If the specified file is already open, the new protection will not be in effect until the file is closed.
The following is an example of the CP command:

OP: CP,DSC:LIST80/SYS,W. Protects the file ‘LIST80/SYS’ on DSC from being written
over or deleted.

8.5.8 DEFINE OUTPUT (DO). The Define Output (DO) command directs the displays of several
SYSUTL commands to the specified device. The syntax of the command is as.follows:

™ DO <device>.

All displays are directed to the default print device until changed. The DO command allows the
printed output of the following commands to be directed to the specified device:

MD — Map Disc

MF — Map File

DD — Disc Dump

FD — File Dump

TI — Print Time and Date

ID — Initialize Date and Time.

87 Digital Systems Division

[o]
@ 946259-9701

The device operand is a one- to four-character device name.

If SYSUTL is terminated and then rebid without reloading, the use of the last output device
assigned will be resumed. The following is an example of the DO command:

OP: DO,LP. Redirects all displays (excluding error messages) to the line
printer until the DO command is reexecuted.

OP: DO. Displays are resumed to the default print device, which
is the system console for standard TI supplied Operating
Systems.

8.5.9 MAP DISKETTE (MD). The Map Diskette (MD) command maps the specified diskette by

file name, by extension, or maps every file on the diskette to the display device. The syntax for the
command is as follows:

MD <device> ,<extension>}
<volume> <file name>
If no device is specified, the operating system diskette is used. The device operand is a one- to four-
character device name that is to be mapped. The extension operand consists of a slash immediately
followed by a one- to three-character extension name which will be used to map the diskette. To

map the diskette according to a specified file name, a colon must be entered and immediately fol-
lowed by a one- to seven-character file name.

The Map Disc command outputs the Diskette Identification field, the total number of allocation
units on the specified diskette, and the number of available and bad Allocation Units (AUs) on the
diskette. MD also lists the name of all files on the diskette, their file type, file protection code, and
the total number of AUs allocated to each file. The command output is terminated with the print-
ing of the time and date.

The following are examples of legal MD commands:

MD,DSC2:FILE/. Map all files with the name FILE and any extension
on DSC2.

MD,VOL2:FILE/. Map all files with the name FILE and any extension
on the diskette with volume name VOL2.

MD,VOL/OB]J. Map all files with the extension OBJ on volume VOL.

MD,/SRC. Map all files on the default disc with the extension
SRC.

MD,VOL3. Map all files on volume VOL3.

MD,: TASK1/. Map all files on the default disc with the name

TASK1 and any extension.

It is not legal to give both a file name and an extension in a Map Diskette command.

8-8 Digital Systems Division

(o}
%@@ 946259-9701

PN The output of the MD command may be directed to any desired device using the Define Output
' command. Output of the MD command is sorted alphabetically by file name and extension. The
following are examples of the Map Disc command:

OP: MD. Maps all of the default diskette.

DISC I. D. : TX990 1/27/77

DSC ALLOC. UNITS(TOTAL): 333 FREE: 0 BAD: 0
FILE TYPE PT ALLOC. UNITS
DSKDMP/SYS S u 18
IBMUTL/0BJ S U 20
SCRATCH/SRC S u 8
SCRTCH S u 102
SOURCE/SRC S U 8
W\ SYS012 S U 8.
‘ SYS0127/SYS S U 102
TEMP/SRC S u 8
TEMP/TMP S U 7
TXEDIT/SYS S u 22
TXTST1/SRC S u 8
TXTST2/0BJ S u 8
TXTST3/0BJ S u 8
10:45:35 FEB 3, 1977
OP: MD,/SYS. Maps all files on default diskette with the extension ‘SYS’.
DISC I. D. : TX990 1/27/77
DSC ALLOC. UNITS(TOTAL). 333 FREE: O BAD: 0
FILE TYPE PT ALLOC. UNITS
DSKDMP/SYS S u 18
SYS0127/SYS S U 102
TXEDIT/SYS S U 22
10:46:08 FEB 3, 1977

8.5.10 MAP FILE (MF). The Map File (MF) command outputs pertinent information of the
specified file to the defined output device. The syntax for the command is as follows:

MF ,<pathname>.

89 Digital Systems Division

o
%‘—L‘B\[J]’ﬁ) 946259-9701

The pathname operand specifies the name of the file that is to be mapped and the device on which
it is located. This command displays the type of file, whether sequential or relative record, the
file-protection code, the record length if it is a relative record file, and the number of allocation
units (AU) contained in the file. The MF command also outputs the starting allocation unit num-
ber and the number of units contained in each block allocated to the specified file. The command
output is terminated with the printing of the time and date. The following are examples of the Map
File (MF) command for a sequential record file.

OP: MF,DSC:DSKDMT/SYS. Map file ‘DSKDMT/SYS’ on diskette DSC.

NAME: DSKDMT/SYS TYPE:S PT:U REC LENGTH: #A. U. ¢ 18
START ALLOC. UNIT # OF UNITS
200 16
240 2

10:46:52 FEB 3, 1977

8.5.11 DISKETTE DUMP (DD). The diskette Dump (DD) command causes SYSUTL to print the
contents of the specified absolute diskette locations on the defined display device. The syntax for
the command is as follows:

DD[, <device>] <alloc unit>,<sector>[,<start byte>[,<end byte>]].
DD, T[,<device>] <track>,<sector>[,<start byte>[,<end byte>]].

The Diskette Dump command may be executed in either of two modes: by allocation unit or phys-
ical track. If the diskette is to be accessed by track, a “T”’ must be entered immediately after the
command key ‘DD’. The optional device operand is a one- to four-character name. If the device
operand is omitted, the default system diskette as specified during system generation is used. The
allocation unit operand is a one- to three-digit number that specifies the desired allocation unit.
If the dump is to be performed by physical diskette track, the track operand is a one- to two-digit
number that specifies the desired track. The sector operand is a one- to two-digit number that
designates a sector on the allocation unit or track. The next two operands are one- to four-digit
numbers that specify the starting and ending byte addresses within the sector to be printed. When
only the starting byte is entered, the contents of the word that contains the specified byte as well
as the remainder of the sector, are printed. When both the starting and ending byte addresses are
omitted, the contents of the entire sector are printed.

All numeric operands (allocation unit, track, sector, starting and ending byte) are assumed to be
decimal unless otherwise preceded by a <>’ for hexadecimal. The following is an example of the
Diskette Dump (DD) command and the resulting printout:

OP: DD,12,0,>10>30 Dumps sector O of allocation unit 12, byte 10,4 through
30,6 on default diskette.

0010 3641 3043 3043 3041 4231 3030 3837 4631 6A 0C 0C OA B1 00 87 F1
0020 3445 4620 5458 3939 3030 3535 FF42 3036 4E F TX 99 00 55 .B 06
0030 4130 A0

10:47:41 FEB 3, 1977

8-10 Digital Systems Division

{—@} 946259-9701

The contents of sixteen bytes are printed per line following the address of the first byte printed on
/@”‘\ the line. The contents of each pair of bytes are shown as four hexadecimal digits. At the right end
‘ of the line, the contents are printed as ASCII characters. The bytes that contain values that corre-
spond to printable ASCII characters are translated and printed as ASCII characters. The nonprinting
ASCII characters are printed as periods. The display is terminated with the printing of the time and
date.

8.5.12 DISKETTE LOAD (DL). The Diskette Load (DL) command places the specified data on
a diskette at a specified address. The Diskette Load command may be performed by allocation units
or by physical track. The syntax for the command is as follows:

DL [,<device>],<allocation unit> <sector>,<starting byte> <data>[,<data>...]
DL, T[,<device>] ,<track> <sector>,<starting byte> <data>[,<data>....]

If the diskette is to be accessed by .rack, a ‘T’ must be entered immediately after the command key
‘DL’. The optional device operand is a one- to four-character device name. If the device operand is
omitted, the default-substituted system diskette as specified at SYSGEN time is used. The
allocation-unit operand is a one- to three-digit number which specifies the allocation unit to be ac-
= cessed. A number consisting of one to two digits is entered for the track operand if the diskette is
to be accessed by physical track. The sector is a one- to two-digit number that specifies a sector on
the allocation unit or track that is to be loaded. The starting byte is a one- to four-digit byte address
into which the first data value is placed. If the byte address is odd, the previous even-byte address
will be used. When additional words of data are entered, they are placed in successive addresses.

All numeric operands (allocation unit, track, sector, starting byte, data) are assumed to be decimal
unless otherwise preceded by a =’ for hexadecimal. The following is an example of a Diskette
Load (DL) command:

r OP: DL,DSC2,1,3,>20,>5448,>4453,32,57. Place the ASCII codes for the characters
T, X, D, and S in bytes 20,4 through
23,6 and decimal data in bytes 244

through 27,¢ of sector 3 of allocation unit
1 on DSC2.

CAUTION

The DL command has the capability of modifying any data on the
system diskette, including the Operating System file and Operating

- System file structures. Verify the address by performing a DD com-
mand that specifies the same allocation unit or track, and sector be-
fore entering a DL command. When the contents do not agree with
the contents of the bytes to be altered, determine the correct AU
track and sector before proceeding.

8.5.13 FILE DUMP (FD). The File Dump (FD) command causes SYSUTL to print the contents
of a specified physical sector of a specified diskette file. The syntax of the command is as follows:

FD,<pathname>, <sector>[,<starting byte>[,<ending byte>]].

The pathname operand specifies the name of the file and the diskette unit on which it is located
that is to be dumped. The sector operand is the number of the sector that is to be accessed relative
to the beginning of the file. The next two operands, the starting and ending byte, are one- to four-
digit addresses within the sector to be printed. When only the starting byte is entered, the contents

@ of the word that contains the specified byte are printed. When the byte addresses are omitted, the

< contents of the entire sector are printed. The contents are printed in hexadecimal representation
and in ASCII character representation. A nonprinting character is represented by a period. The dis-
play is terminated with the printing of the time and date.

811 Digital Systems Division

[o]
@ 946259-9701

All numeric operands (sector, starting byte, ending byte) are assumed to be decimal unless other-
wise preceded by <>’ for hexadecimal. The following is an example of a File Dump (FD) command
and the resulting output:

OP: FD,DSC2:SYSUTL/SYS,1,,>36. Dumps sector 1, bytes 0 through 36,4 of
file SYSUTL/SYS on DSC2.

8.5.14 FILE LOAD (FL). The File Load (FL) command places the specified data in specified
bytes of a diskette file record. The syntax for the command is as follows:

FL <pathname> <sector>,<starting byte>,<data>[,<data>....]

The pathname operand specifies the name of the file and the diskette unit on which it is located
that is to be accessed. The sector operand is a one- to two-digit number presenting the sector to
be loaded relative to the beginning of the file. The starting byte is a one- to four-digit address into
which the first data value is placed. When an odd number is entered for the starting byte, the value
is placed in the even address immediately preceding the odd value. When additional words of data
are entered, they are placed in successive addresses.

All numeric operands (sector, starting byte, data) are assumed to be decimal unless otherwise
preceded by a <’ for hexadecimal. The following is an example of an FL command:

OP: FL,DSC:TEMPFIL,2,0,>444D >4879. Places 444D, and 4879, into bytes
0 through 3 of the second sector in
TEMPFIL on DSC.

8.5.15 INITIALIZE DATE AND TIME (ID). The Initialize Date and Time (ID) command
initializes the date and time values for the system. The syntax for the command is as follows:

ID,<year> <month> <day>,<hour>,<minute>.

The year operand is the four-digit decimal number of the years 1976 through 1999, and the month
operand is the decimal number of the month 1 through 12. The day operand is a one- or two-digit
decimal number, 1 through 31, and the hour operand is a one- or two-digit decimal number, 0
through 23. The minute is the decimal number of the minute O through 59. The second is set to
zero when the command is entered. An example of an ID command follows:

OP: ID,1977 2,12,17,29 Initialize the time and date to 5:29 PM, February 12, 1977.
17:29:00 FEB 12,1977

85.16 PRINT TIME AND DATE (TI). The Print Time and Date (TI) command causes SYSUTL
to print the time and date. The syntax for the command is as follows:

TL

The command requires no operands. The following example shows a TI command and the resultant
output.

OP: TL

9:29:12 FEB 13, 1977

8-12 Digital Systems Division

946259-9701

When the date and time have not been initialized, no date is printed and the time printed is the
elapsed time from the most recent loading of the Operating System or from system restart.

8.5.17 TERMINATE SYSUTL (TE). The Terminate SYSUTL (TE) command terminates execu-
tion of SYSUTL and releases all related LUNOs. If the TXDS Control Program is linked with the
TX990 Operating System, it will be rebid. The syntax for the command is as follows:

TE.

The command requires no operands.

8.5.18 CHANGE VOLUME NAME (CV). The change volume (CV) command causes SYSUTL to
change the volume name of a diskette to a new volume name. The syntax for the command is as
follows:

CV, | <device>
<volume>

] > <volume>.

The first parameter defines the old volume name or device. The second parameter defines the new
volume name. It is wise to avoid volume names that are also device names, because the TX990
operating system will not be able to find the correct volume.

When a volume name for a disc has not been defined, it may be defined by using the device name, as
follows:

CV,DSC2,VOL2.

8.6 SYSUTL ERROR MESSAGES

The error messages capable of being issued by SYSUTL are listed in table 8-1. When more than one
SYSUTL command is entered on a line and an error occurs, the command in error (or that caused
the error) and all subsequent commands in the statement must be entered again. Unless otherwise
noted, when an error occurs, the command is ignored and SYSUTL prompts for input.

Table 8-1. SYSUTL Error Messages

Message Meaning Recovery
INVALID COMMAND# The command word is not valid. Check the command word, and re-
enter correctly.
I/0 ERROR, IGNORED An 1/0 error was detected during Input from the system console was not
reading of the command. received correctly. Check the device,

and reenter the entire line.

OUTPUT ERROR An error was detected during output This message is printed when the user
and execution of the command has has entered an ESC character to ter-
been terminated. minate output, or if LUNO 1 has not

been assigned. If neither of these
applies, check device for errors.

813 Digital Systems Division

9462599701

Message

UNDEFINED ERROR

OPERAND ERROR(S)

BAD DEVICE

DEVICE OFF LINE

INVALID DISC
ADDRESS

BAD FILE NAME
INVALID INPUT
PARAMETER

DUPLICATE FILE NAME

FILE NAME UNDEFINED

DISKETTE FULL

FILE DELETE PRO-
TECTED — UNABLE
TO DELETE

INVALID FILE PRO-
TECTION SPECIFIED

Table 8-1. SYSUTL Error Messages (Continued)

Meaning

1. TX990 returned an error code to
SYSUTL that is not recognized by
SYSUTL.

2. Attempted SF with write
protect on.

One or more operands are invalid.

Invalid device name.

Specified device not on line.

Invalid track, AU, or sector
specified.

Specified pathname has a syntax
error.

Bad parameter in supervisor call
block.

File already exists with specified
filename.

Specified file does not exist.

No available allocation unit or
diskette.

Delete File command. Attempted
to delete file that is write-protected
or delete-protected.

Change File protection command.
Protection specified is not valid
character: ‘U’, ‘D’, or ‘W’.

Recovery

1. This is a system error. Make an-
other attempt to enter the com-
mand. If error recurs, reinitialize
the system.

2. Turn off write protect.

When a required operand has been
omitted, enter the complete com-
mand. When a numeric operand is re-
quired, but a nonnumeric operand was
entered, enter the command with the
correct type of operand.

Enter the command with one of the
device names assigned when the sys-
tem was generated.

Check diskette device. If power off or
diskette not installed in drive, correct
and reissue command.

Check command operands and reenter
correctly.

Check pathname input and reenter
correctly.

Reload and execute SYSUTL.

Check file name and reenter correctly.

Check file name and reenter correctly.

Delete any unnecessary files and/or
compress files. Printer command.

If you wish to delete the specified file,
it must first be unprotected.

Reenter file-protection code,

8-14

Digital Systems Division

3

946259-9701

Message

UNABLE TO READ DISC

UNABLE TO WRITE DISC

CAN’T OPEN OUTPUT
LUNO

CAN'T LOAD PAST END
OF SECTOR

UNABLE TO GET
REQUIRED MEMORY

UNABLE TO GET COMMON

FILE DIRECTORY EMPTY

INPUT PARAMETER OUT
OF RANGE OF SECTOR.

Table 8-1. SYSUTL Error Messages (Continued)

Meaning

Error occurred while reading
diskette.

Error occurred while writing to
diskette.

SYSUTL output LUNO is already
in use by another task.

Diskette Load or File Load command.
Specified sector not in range of file.

Memory required to execute speci-
fied command is not available.

Error occurred in trying to get
COMMON.

Map Diskette command. Attempted
to map a diskette which has no files
on it.

Byte address specified not in range
of sector.

Recovery

Reenter command.

Reenter command.

If a record mode I/O-operation to the
LUNO is in progress, enter the com-
mand again after the operation is com-
pleted. If the LUNO is assigned to a
file-oriented device that has been
opened, enter the command again
after the LUNO has been closed.

Check desired sector number and
reenter command correctly.

Verify that TX990 has COMMON. If
not, the system must be regenerated
to include COMMON.

Check device name and reenter corr-

rectly.

Check input and reenter command
correctly.

8-15/8-16

Digital Systems Division

o]
{@? 946259-9701

~ SECTION IX

SYSTEM GENERATION

9.1 INTRODUCTION

The GENTX utility program provides the user with the capability of generating an operating system
customized to the user’s specific hardware and software configuration. Basically, the customized
operating system is generated as follows:

e First, GENTX is used to produce source code for two source modules: TXDATA and
TASKDF. The TXDATA source module is used for providing the data needed by the
operating system to enable its communicating with (i.e., controlling) each device in the
user’s total hardware configuration. (Whenever another device is added to the user’s
hardware configuration, it is necessary to add data to the TXDATA source module.) The
~ TASKDF source module is used for providing the data needed by the operating system to
) enable execution of any of the various TI-supplied modules/tasks (e.g., File Management,
Operator Communications Package, Start Task, Diagnostic Task, etc.) or of any user-
supplied tasks/programs (including user-utilities).

® Second, an assembler is used to assemble the TXDATA and TASKDF source modules
into object modules.

® Third, a linker is used to link TXDATA and TASKDF object modules to other selected

object modules such as a user task/program, the File Management utility program, the

(‘*"’“ Operator Communications Package, Start Task, Diagnostic Task, etc. This linked object
| module is the resultant customized Operating System.

The following paragraphs describe these steps in detail.

9.2 PREPARATION FOR GENERATING A TX990 OPERATING SYSTEM

In preparation for generating a customized TX990 operating system, the user must select the

peripheral devices to be included in his system and assign Communications Register Unit (CRU)

addresses and interrupt levels for each of those devices which can be obtained from the chart that
~ is pasted on top of the Model 990/4, Model 990/5, or Model 990/10 computer chassis.

The user must write and assemble a Device Service Routine (DSR) for each type of device not
supported by any of the TI-supplied TX990 modules. The DSR must process interrupts generated
by the device and I/O calls to the device. The devices supported by TI-supplied modules are listed
in Section I. The user must also write and assemble user-supplied routines (e.g. supervisor calls, ex-
tended operations) and include the object code when linking the system. Appendix C contains
detailed information about writing such routines.

9.3 DEFINING THE NEW SYSTEM

Definition of a new operating system is accomplished by executing the GENTX utility program.
GENTX prompts the user to define various parameters, as well as devices connected in the system.
After all parameters have been defined GENTX builds two source modules, TXDATA and
TASKDF, which form part of the operating system kernel.

9.1 Digital Systems Division

[o]
@ 946259-9701

9.3.1 LUNOS USED BY GENTX. GENTX uses the system console for user interactions and
LUNO 10,6 for file output.

9.3.2 LOADING AND EXECUTING SYSTEM GENERATION (GENTX) UTILITY PROGRAM.
GENTX may be loaded and executed using a TX990 or DX10 Operating System. The following
paragraphs describe how to load and execute GENTX using a TX990 Operating System, or TXDS,
or DX10 release 3.2 system.

9.3.2.1 Loading and Executing Using TXDS. When executing GENTX using TXDS Control
Program in a system without OCP, place the GENTX object module in the appropriate input device
and perform the following steps:

1. Enter an exclamation point (!).
2. Enter the GENTX pathname to the “PROGRAM:” prompt as follows:

PROGRAM: :GENTX/SYS* If the object program for GENTX is in diskette
file, :GENTX/SYS.

PROGRAM: CS1* If on Cassette 1.
PROGRAM: CR* If on Card Reader.
After GENTX starts executing it will display the following title message:
GENTX V.R.E YY.DDD TX990 SYSGEN

9.3.2.2 Loading and Executing GENTX with TX990 Using OCP. When executing GENTX on a
TX990 system using OCP, place the GENTX object module in the appropriate input device and
perform the following steps:

1. Enter an exclamation point (!) at the keyboard of the system console to activate OCP.
OCP responds by printing a period (.) to request a command.

2. Enter an OCP command to load GENTX in the dynamic task area. The following are
examples of commands to load GENTX:

LP,CS1,3. Load task GENTX at priority level 3 when the
object module is on Cassette Unit 1.

LP,CR,3. Load task GENTX at priority level 3 when the
object module is in the Card Reader.

LP,:GENTX/SYS. Load task GENTX at priority level 3 when the
object module is in diskette file.

3. Enter the following OCP command to execute GENTX and terminate OCP:

EX,10.TE. Execute the task in the dynamic task area,
GENTX and terminate OCP.

9-2 Digital Systems Division

(o)
@ 946259-9701

o~ After GENTX starts executing it will display the following message:

i

GENTX V.RE YY.DDD TX990 SYSGEN

9.3.2.3 Loading and Executing GENTX with DX10 Release 3.2. For details on the DX10 release
3.2 process, refer to Appendix K.

9.3.3 DEFINITION PHASE. GENTX begins execution in the definition phase, in which GENTX
requests the user to enter system parameters and constructs an internal table of data from which
GENTX later constructs the source statements for TXDATA and TASKDF. GENTX prints the
request on the system console, and the user enters the parameters on the keyboard of the same
device. In the following paragraphs, numeric parameters are specified as hexadecimal or decimal
numbers according to the type of number that normally would be used. Either hexadecimal or
decimal values may be entered for any numeric parameter. A hexadecimal number is preceded by a
greater-than (>) character. If at anytime the user wishes to terminate GENTX, enter an asterisk.
Table 9-1 shows all of the prompts which may be displayed by GENTX, and gives information
concerning correct replies. The following paragraphs describe each prompt.

9.3.3.1 General System Definitions. The first prompt displayed by GENTX is as follows:
MEMORY AVAILABLE—-

The user enters the amount of memory (bytes) available to GENTX to be used for table storage
(there is no default value). The total memory available may be calculated by subtracting the size
of GENTX (36506 bytes) from the total memory available. The suggested memory allocation
is 200010 byteS.

(The following prompts are requesting timing information that will be used by the task -scheduler
within the new TX990 Operating System being generated.

LINE FREQ.—

The user enters the powerline frequency, a decimal value followed by a carriage return. The valid
parameters are 50 for 50-Hz power-line frequency or 60 for 60-Hz powerline frequency. When a
carriage return only is entered, GENTX uses the default value, 60.

(@"‘ The next request is as follows:
TIME SLICING (Y or N) —

The user enters a Y (Yes) if time slicing is desired or an N (No) if time slicing is not desired. The
default is Y. If a Y, or default, is entered, the following prompt is issued:

TIME SLICE VALUE—

The user enters the number of system time units the task scheduler will give a task per time slice.
A system time unit is equivalent to 50-ms. The default is 1.

The next request is as follows:

TASK SENTRY (Y or N) —

9-3 Digital Systems Division

946259-9701

The user enters Y (Yes) if the task sentry option is desired, or an N (No) if it is not. The default is
N. If a Y is entered, the following prompt is issued:

TASK SENTRY VALUE-—

The user enters the number of system time units the task sentry will give a task before lowering its
priority. The default is 60.

Table 9-1. GENTX Prompts

Discussed in

Request Range Default Paragraph

MEMORY AVAILABLE — Note 7 none 9.3.3.1
LINE FREQ. 50 or 60 60 9.3.3.1
TIME SLICING (Y or N) YorN Y 9.33.1
TIME SLICE VALUE Note 1 1 9.3.3.1
TASK SENTRY (Y or N) YorN N 93.3.1
TASK SENTRY VALUE Note 1 60 9.3.3.1
COMMON SIZE Primarily limited 0 9.33.1

by size of available

memory.
OF EXP CHASSIS 1-7 0 9.3.3.1
CHASSIS 1 - 4 INT LEVEL 3,4,6,7 None 9.3.3.1

(990/4)

3,4,6-15 None

(990/5 or 990/10)
CHASSIS 5 -7 3,4,6,7 None 9.3.3.1

(990/4)

3,4,6-15 None

(990/5 or 990/10)
CHASSIS 0-7 None 9.3.3.2
DEV NAME Note 2 None 9.3.3.2
DEV TYPE Listed in table 7-3. None 9.3.3.2
LEFT CASS/PTP NAME Note 2 None 9.3.3.2
RIGHT CASS/PTR NAME Note 2 None 9.3.3.2

9-4 Digital Systems Division

946259-9701

Table 9-1. GENTX Prompts (Continued

Discussed in
Request Range Default Paragraph
STATION # 1-127 None 9.3.3.2
CRU BASE ADDR 0->1FFE Device de- 9.3.3.2
pendent
TILINE ADDR >F800 - >FBEO Device de- 9.3.3.2
pendent
ACCESS MODE FILE, RECORD, Listed in 9332
or CHARACTER table 7-3.
INT LEVEL 3,4,6,7 Device de- 9.3.3.2
(990/4) pendent
3,4,6-15
(990/5 or 990/10)
INT POSITION 0-15 None 9.3.3.2
TIMEOUT COUNT Note 1 Device de- 9.3.3.2
pendent
OF DRIVES 1-4 9.3.3.2
CRU INT LINE 0-31 15 9.3.3.3
ENTRY LABEL OF DSR Note 3 None 9.3.3.3
ENTRY LABEL OF ROUTINE Note 3 None 9.3.3.3
INT BRANCH LABEL Note 3 None 9.3.3.3
EXTENSION DATA Note 3 None 9.3.3.3
SVC # Note 4 None 9.3.3.4
ENTRY LABEL Note 4 None 9.3.34
XOP # 1-14 None 9.3.3.5
WORKSPACE LABEL Note 5 None 9.3.3.5
ENTRY LABEL Note 5 None 9.3.3.5
TASK ID # 0-0F, None 9.3.3.6
11 -FE
PRIORITY LEVEL Note 6 None 9.3.3.6
INITIAL STATE 0-3 0 9.3.3.6

9-5 Digital Systems Division

946259-9701

Table 9-1. GENTX Prompts (Continued)

Discussed in

Request Range Default Paragraph

INITIAL DATA LABEL Note 6 None 9.3.3.6
MULTIPLE DYNAMIC TASKS (Y OR N) Y or N N 9.3.3.6
OF DYNAMIC TASKS 1-256 None 9.3.3.6
OF PROCEDURES 0-128 None 9.3.3.6
CONSOLE DEV NAME Device name of a None 9.3.3.7

733 ASR, 733 KSR,

911 VDT, or 913

VDT
DEFAULT DISC DEV Note 8 None 9.3.3.7
DEFAULT PRINT DEV Any printing device DUMY 9.3.3.7
ASSIGN LUNO 1-FO None 9.3.3.7
DEV NAME Device name None 9.3.3.7
OF SPARE DEV LUNO BLOCKS 0-63 6 9.3.3.7
OF SPARE FILE LUNO BLOCKS 0-63, Note 9 6 9.3.3.7
OF FILE CONTROL BLOCKS 0-53,Note 9 6 9.3.3.7
OF DEFAULT BUFFERS 1-20 0 9.3.3.7
BUFFER SIZE 2-1024 None 9.33.7
OF GENERAL BUFFERS 1-50 0 9.3.3.7
BUFFER SIZE 1-1024 None 9.3.3.7
UPPER THRESHOLD — 1-99 None 9.3.3.8
LOWER THRESHOLD — 1-99 None 9.3.3.8
Notes:

1. Any positive value that would have practical significance is accepted. The

actual limit 1 - 65,535.

2. Device names consist of one to four characters, the first of which must be

alphabetic.

3. These inputs apply to user-supplied DSRs for non supported devices.

4. These inputs apply to user-supplied supervisor call routines.

Digital Systems Division

946259-9701

5. These inputs apply to extended operation routines.

6. These inputs apply to tasks.

7. Memory available for use by GENTX.

8. Disc device name as it appeared in the name request.

9. Not prompted if no diskettes are defined in the system.

Table 9-2. System Timing Parameters

Parameter Unit of Measurement Use How Specified

Real Time 8.3 ms. for 60 Hz. Used to derive System Time Determined by power line

Clock Cycle 10 ms. for 50 Hz. Unit and to define maximum frequency.
time period for a time slice

System Time Unit Real Time Clock Used to define Timeout 6 cycles (50 ms.) for

Cycles Counts, Time Delays, and 60 Hz. 5 cycles (50 ms.)

Do Not Suspend periods. for 50 Hz.

Maximum time System Time Units Used by Scheduler. During system generation.

period for a

Time Slice

Timeout Counts System Time Units Used by I0S and DSR to During system generation.

detect device errors.

Time Delay System Time Units Used by Scheduler. Time Delay supervisor call.
Do Not Suspend System Time Units Used by Scheduler. Do Not Suspend supervisor
periods. call.

The next request is as follows:

COMMON SIZE—

The user enters the number of bytes to be allocated for the COMMON area of memory, followed by
a carriage return. The address and size of the COMMON area is supplied to a task in response to a
Get COMMON Data Address supervisor call. If a TXDS system is being generated, enter at least 170

(must be an even number). When the user enters a carriage return only, no COMMON area is alloca-
ted in memory.

The next request is as follows:
OF EXP CHASSIS —

The user enters the number of CRU expansion chassis connected in the system, a decimal value,
0 through 7, followed by a carriage return. When the user enters a carriage return only, GENTX uses
the default value, 0. The response to this request causes GENTX to request interrupt level assign-
ments for the expansion chassis. Chassis 1 through 4 share an interrupt level, and chassis 5 through
7 share another interrupt level. When the response to this request is 0, explicitly or by default, the
next two requests are omitted.

9-7 Digital Systems Division

946259-9701

When the response to the number of expansion chassis is greater than 0, GENTX prints the
following request:

CHASSIS 1-4 INT LEVEL —

The user specifies the interrupt level for chassis number 1 through 4, a decimal value followed by a
carriage return. When the response to the number of expansion chassis is less than 5, the next
request is omitted.

When the response to the number of expansion chassis is greater than 4, GENTX prints the
following request:

CHASSIS 5-7 INT LEVEL —

The user specifies the interrupt level for chassis number 5 through 7, a decimal value followed by a
carriage return.

9.3.3.2 Supported Peripheral Device Definitions. The peripheral devices connected to the CRU
through the CPU chassis are defined as a group. Each device, if it conforms to the standard interrupt
interface configuration, may be placed on the same interrupt level as another device with like
constraints. The standard interrupt interface configuration is that CRU bit 15 from the base address
of the device will be “set” when an interrupt occurs. Table 9-3 shows which supported devices may
share an interrupt level. The user must determine if a special device conforms to this requirement.

The peripheral devices connected to the CRU through each expansion chassis are also defined as
a group. The devices on expansion chassis 1-4 share an interrupt level, and the devices on expansion
chassis 5-7 share another interrupt level. Each device within an expansion chassis has a unique
interrupt identifier for use in interrupt decoding.

Expansion chassis interrupts may also be shared with devices connected to the CRU through the
CPU if the devices conform to the standard interface configuration.

The following request begins the peripheral-device definition portion of the definition phase:
CHASSIS —

The user enters a digit, 0 through 7, followed by a carriage return, to specify the group of devices
to be defined.

A response of 0 specifies that the subsequent device definitions (until the next chassis request) are
those of devices connected within the CPU. A response of 1 through 7 specifies that subsequent
device definitions are those of devices connected through expansion chassis 1 through 7, respective-
ly. The response to this request must be consistent with the response to the number of the
expansion-chassis request described previously. A response of a carriage return only terminates the
device-definition portion of the definition phase.

GENTX issues the following request to identify the first device to be defined in the chassis:

DEV NAME —

The user enters a user-defined device name, consisting of up to four characters, the first of which
must be alphabetic, the rest may be alphanumeric. The device name is followed by a carriage return.
GENTX then requests the appropriate device information as described in the following paragraphs.
When the user enters a carriage return only, GENTX terminates the current chassis definition, and

9-8 Digital Systems Division

946259-9701

repeats the “CHASSIS —” request for the next chassis. If the user wishes to correct an invalid input
of a previously defined device, he may enter the name of that device in response to the “DEV
NAME —” prompt and reenter all the following requests for the device type and CRU base, etc. If a
user is defining a disc drive, then it is necessary to make the name 3 characters long.

Following the request for a device name, GENTX issues the following request to identify the type
of device. The type of device will determine the succeeding questions that will be asked.

DEV TYPE —

The user enters a device-type keyword, as listed in table 9-3, followed by a carriage return. If a
carriage return only is entered, the device definition for the above requested device name is deleted.

Table 9-3. GENTX Device Keywords

Default Multiple
Device Default Default Default Interrupt Devices per
Type Access Time-Out CRU Level Interrupt
Keyword Device Mode Count Base (CPU Only) Level
TTY ASR33 Teletype RECORD 8192 0 6 Yes
ASR 733 ASR Electronic RECORD 8192 0 6 Yes
Data Terminal
KSR 733 or 743 KSR RECORD 8192 0 6 Yes
Electronic Data
Terminal
K820 Keyboard/Printer RECORD 8192 0 6 Yes
LP Line Printer FILE 4096 6046 6 Yes
FLP 2230 or 2260 Line FILE 4096 604 6 Yes
Printer
CR* Card Reader FILE 4096 404 4 No
V913 913 Video Display RECORD None COy¢ 3 Yes
CcOM Communications None None None None N/R
Device
FD Diskette Drive None 512 8046 7 N/R
Vo1l 911 Video Display RECORD None COy6 3 Yes
Terminal
MT 979A Magnetic Tape FILE 512 F8806** 9 Yes
SD Special Device RECORD None None None U/D

N/R - Not Recommended

U/D - User decision

*Card reader must have an exclusive interrupt assignment.
**Magnetic Tape is a TILINE device with a default of >F880.

99 Digital Systems Division

@@ 946259-9701

If the user enters one of the first eleven keywords in the table, the device is supported
by TX990 Operating System. The last keyword, SD (special device) specifies a nonsupported device.

Additional GENTX requests for information on nonsupported devices are described in paragraph
“Defining Other Peripheral Devices”.

When the user enters the keyword V911 or V913 as the device type, GENTX requests the
following:

STATION # —

The user enters a decimal number, 1 through 127, followed by a carriage return. The number is the
station number used in character mode I/O to the Video Display Terminal (VDT). There is no
default for station number.

When the user enters the keyword ASR or TTY, GENTX prints the following requests: the name
for the left cassette/paper-tape punch, and the right cassette/paper-tape reader:

LEFT CASS/PTP NAME —
RIGHT CASS/PTR NAME —

Following each request, the user enters a user-defined device name, one to four characters, the first
of which must be alphabetic. The device name is followed by a carriage return. The user assigns the
cassette or paper-tape units to LUNOs by means of these device names.

The next request for each TX990 supported device, except a communications or TILINE device,
is as follows:

CRU BASE ADDR—-

The user enters the CRU base address as a hexadecimal value followed by a carriage return. A
greater-than character (>) entered as the first character identifies the entry as hexadecimal in the
range of numbers O through 1FFE,s. The CRU base address is the CRU address shifted one bit
position to the left (multipled by 2), and must be an even number. On top of each chassis is a chart
which defines the CRU base for each device. If a carriage return is entered, a standard base will be
used. Defaults are listed in table 9-3.

For TILINE devices the following prompt will appear in place of the CRU BASE ADDR prompt:
TILINE ADDR—-

The user enters the TILINE address of the device being defined. This value must be a multiple of
>20 between >F800 and >FBEQ, inclusive.

The fourth request for each device, except diskette or a communications device, is as follows:

ACCESS MODE—

9-10 Digital Systems Division

o
{_{\@gp 946259-9701

m The user enters one of the following keywords, followed by a carriage return:

® FILE, for a file-oriented device, or for a 913 or 911 VDT that is to be used in either the
file mode or the character mode,

® RECORD, for a record-oriented device, or for 913 or 911 VDT that is to be used in the
record mode, as well as character mode (if a VDT is to be used as a system console, it

must be in RECORD mode).
® CHAR,fora913 0r911 VDT to be used in the character mode only.

When the user enters a carriage return only, the default access mode for the specified device applies.
Default access mode for devices are listed in table 9-3.

One of the two formats is used for the fifth request, depending on whether the device is connected
to the CRU through the CPU or through an expansion chassis. When the device is connected

through the CPU (CHASSIS - 0), the request is as follows:
INT LEVEL —

The user enters a decimal or hexadecimal value followed by a carriage return. The entry represents
the interrupt level for the device. If a carriage return only is entered, a standard level will be used.
Defaults are listed in table 9-3. The user must not enter the interrupt level of the CLOCK, which is
5. When the device is connected through an expansion chassis (chassis entry not equal to zero), the
request is as follows:

(W“ INT POSITION —

The user enters a decimal value followed by a carriage return. The entry represents the interrupt
identifier returned by the expansion chassis when a device generates an interrupt. The interrupt
identifier is a number in the range of O through 15 and is determined by connections within the
CRU expansion chassis.

The sixth request for each device, except a diskette or a communications device, is as follows:
TIME-OUT COUNT —

The user enters a decimal value followed by a carriage return. The value represents the number of
system time units to be used as a timeout count for the device. This timeout count will be used by
the DSR to determine how long to wait on a device before determining that a timeout error has
occurred. When the user enters a carriage return only, the default value for the specified device
applies. Default values for devices are listed in table 9-3. Entering a zero specifies no timeout.

If the device is a diskette or magnetic tape, the following request is made instead of the timeout
count request:

OF DRIVES—

The user must enter a number in the range of one to four.

9-11 Digital Systems Division

0 946259-9701

If the user wishes to define more than one diskette drive he enters the first name and a 2, 3, 4 is
concatenated onto the first three characters of the disc name up to the number entered for # OF
DRIVES— prompt, thus all drives are defined from the first name entered. The names that were
generated may not be used again, nor may they have already been used.

If the user wants to generate a system with more than one diskette controller, he can do so by
entering a different three-character name so that the names generated by concatenating a 2, 3, 4
are different than the disc names that have already been defined.

When the device is a supported device, GENTX next repeats the device name request to define
another device.

9.3.3.3 Special Device Definition. Special devices are those which are not supported by TI supplied
modules. When the device type request is printed, the user may enter the keyword SD.GENTX
requests the same six parameters as for supported devices, then prints the following request:

CRU INT LINE —

The user enters a number in the range of zero through 31, followed by a carriage return. The
number represents the displacement from the base address to the CRU line that is set when an inter-
rupt occurs.

The next request for a nonsupported device is as follows:

ENTRY LABEL OF DSR —

The user enters the entry label of the Device Service Routine (DSR) for the device followed by a
carriage return. The entry point required in response to this request is the entry point for supervisor
call processing. The user supplies the DSR for the device when he links the TX990 system together.

The next request for a nonsupported device is as follows:
ENTRY LABEL OF ROUTINE —

The user enters the entry label of the interrupt routine for the device, usually a part of the DSR,
followed by a carriage return.

The next request for a nonsupported device is as follows:
INT BRANCH LABEL —

The user enters the label of the interrupt branch followed by a carriage return. Typically an inter-
rupt routine performs processing common to any interrupt for the device, then branches to perform
processing appropriate to the context of the interrupt. For example, an unsolicited interrupt usually
requires different processing than the interrupts that occur while performing an I/O operation
specified in a supervisor call. The label to which the unsolicited interrupt causes the system to
branch is supplied in response to the above request.

The next request for a nonsupported device is as follows:

EXTENSION DATA —

9-12 Digital Systems Division

% 946259-9701

, The user enters a source statement in assembly language, followed by a carriage return. The user
W\ may enter an exclamation point (!) following each field of the source statement to tab to the
beginning of the next field. Specifically, entering an exclamation point positions the following

character at position 8, 13, or 31.

The source statement will be entered in the source file for TXDATA following the source state-
ments supplied by GENTX for the PDT for the device. GENTX repeats the request until the user
enters a carriage return only, which terminates the definition for the device. Subsequent source
statements are placed following the initial statement. The group of source statements entered in
response to this series of requests forms an extension to the PDT that contains device-related data.
When the user terminates the definition of the device, GENTX repeats the device name request to
define another device.

9.3.3.4 Defining User-Supplied Supervisor Calls. When the user has terminated the
peripheral-device portion of the definition phase, GENTX prints the following request:

SVC# —

The user enters a hexadecimal number, followed by a carriage return. The number represents the
call code of a user-supplied supervisor call (XOP level 15). The valid codes begin at 80,4 and extend
as far as required to include all user-supplied calls. For example, if three supervisor calls are supplied
by a user, the call codes must be 80,4, 81,4, and 82,4. They may be entered in any order, but must
all be included. Similarly, if a single supervisor call were supplied, its call code would be 80,¢. When
the user enters a carriage return only, GENTX omits the next request and terminates the supervisor-
call portion of the definition phase.

(ﬂ ’ When the user has entered a supervisor-call code, GENTX prints the following request:

ENTRY LABEL —

The user enters the entry label of the supervisor-call code, followed by a carriage return. The user

must supply the supervisor-call routine when linking the TX990 operating system. GENTX then
repeats the SVC number request.

9.3.3.5 Defining Extended Operations. When the user has terminated the supervisor call portion of
w the definition phase, GENTX enters the extended operation portion of the definition phase and
prints the following request:

XOP # —

The user enters a decimal number, 0 through 14, followed by a carriage return. The number
represents the level of a software implemented extended operation. The user supplies an XOP
routine for the extended operation. When the user enters a carriage return cnly, GENTX omits the
next two requests and terminates the extended operation portion of the definition phase. For
further details concerning extended operation routines refer to Appendix C.

When the user enters an XOP number, GENTX prints the following request:

WORKSPACE LABEL —

The user enters the label of the workspace of the XOP routine, followed by a carriage return.
GENTX then prints another request:

ENTRY LABEL —

9-13 Digital Systems Division

[e]
t@ 946259-9701

The user enters the label of the entry to the XOP routine, followed by a carriage return.

The user must supply the object programs that process the XOP when linking the TX990 Operating
System. GENTX then repeats the XOP number request.

9.3.3.6 Defining Tasks. When the user terminates the extended operation portion, GENTX enters
the task definition portion. During this phase of system definition, GENTX adds to the internal
table of data from which it will generate the source statements for TASKDF. Both system tasks,
and user-supplied tasks must be defined at this time if they are to be linked with the new TX990
Operating System. Table 9-4 shows the task IDs for the system tasks under the “ID” column, the
priority level of each task is under the “PRIORITY” column, and the label on the first word of each
task is under the “DATA LABEL” column. Each system task, and its purpose, is described in
Appendix J. '

Table 9-4. System Task Definition

Task ID Priority Data Label
FMP1 >F0 0 FMP1
FMP2 >F1 0 FMP2
FMP3 >F2 0 FMP3
FMP4 >F3 0 FMP4
FUR >B 1 FUR
VOLUME >C 0 VOLUME
DTASK >D 1 DIAGTS
ocp >F 1 OoCP
CNTROL >16 1 CNTROL
STASK >10 1 STRT

The user may select a task ID for his tasks but they must not be the same ID as a system task ID.
Task IDs 1-F,s and FO,, —FF,s are reserved for system tasks. The task ID will be used to bid the
task, or to execute the task from OCP. The priority level will define which tasks will use the most
time slices. Priority level zero is the highest available priority level. The data label is a defined (using
the assembler directive, DEF) label on the first three words of a task. These words define the initial
Workspace, Program Counter, and End Action address. A reference (an assembler REF directive)
will be generated inside the TASKDF module, so that the TX990 Operating System will have the
information needed to begin execution of that task.

The following requests are made by GENTX asking for the above information.

TASK ID # —

The user enters a number, followed by a carriage return. The number represents the task ideqtiﬁer
by which the task is identified to the system, and must be less than FF . Identifier 10,4 is assigned
to the dynamic-task area, and user tasks should be assigned identifiers greater than 1044 . Whep 'the
user enters a carriage return only, GENTX terminates the task-definition portion of the definition
phase, and begins requesting information for assigning LUNOs.

For each task, GENTX prints three requests following entry of the task identifier. The first request
is as follows:

PRIORITY LEVEL —

The user enters a one to four character priority value (0 to 3 or R1 to R127), followed by a carriage
return. Priority level O should be used only for system tasks.

9-14 Digital Systems Division

@ 946259-9701

m The second request is as follows:
INITIAL STATE —
The user enters a value of 0, 1, 2, or 3. The default is 0. Refer to Table 9-5.

The third request is as follows:

INITIAL DATA LABEL—

The user enters the label on the first word in the task, followed by a carriage return. Then GENTX
repeats the task ID request. When all tasks have been defined and the user has terminated the
task-definition portion, GENTX asks if the system is to support multiple dynamic tasks.

Table 9-5. Initial States

Value Meaning

0 Privileged; not active at initial load of operating
system, restart, or power restart.

1 Privileged; active at initial load of operating
system or restart; not active at power restart.

(M T 2 Privileged; not active at initial load of operating
) system or restart; active at power restart.

3 Privileged; active at initial load of operating
system, restart, or power restart.

The request is as follows:
MULTIPLE DYNAMIC TASKS (Y OR N) —

The user should enter Y or N. If the response is N or the default, GENTX proceeds to the Assign
LUNO phase. If the response is Y, GENTX requests the maximum number of dynamic tasks
allowed to be in the dynamic task area at one time, as follows:

OF DYNAMIC TASKS —

The user enters a decimal number between 1 and 255, inclusive. Then GENTX requests the
maximum number of procedures allowed to be installed in the dynamic task area at one time, as
follows:

OF PROCEDURES —

The user enters a decimal number between 0 and 127, exclusive. GENTX then proceeds to the
Assign LUNO phase.

(ﬂm\ 9.3.3.7 Information For Assigning LUNOs. The following information is used to generate: names
‘ for LUNO assignments; memory blocks that will be reserved for device LUNOs; and file LUNOs and
memory blocks that will be reserved for communication devices.

9-15 Digital Systems Division

(o]
% 946259-9701

The following request is made by GENTX asking for the device name of the system console. Most ﬂ
of the utilities, and the Operator Communication Package (OCP) interact with the user through the A
system console. The request is as follows:

CONSOLE DEV NAME —

The user enters the device name (previously assigned) for the system console, followed by a carriage
return. The device must be either device type ASR, KSR, or VDT. When the device is device type
VDT, it must have been previously defined for the record mode. The user may enter a carriage
return only to specify no system console.

GENTX makes the following request:

DEFAULT DISC DEV —

The user must enter the diskette device name (previously defined) as it appeared in the name

request. The user may enter a carriage return to specify no defauit disc. The default disc name is

used when a utility is referring to the system disc; it is also used when no disc name is appended to o
the pathname of a file.

GENTX makes the following request:

DEFAULT PRINT DEV —

The user enters the device name (previously defined) for the system default printers. The device can
be any printing device. The user may enter a carriage return to specify the Dumy device. The
device is used by some of the TIsupplied utilities when no listing device is specified. It is a required m
parameter in a TX990 Operating System that supports a Terminal Executive Development System. ‘

Next, GENTX prints the following request:

ASSIGN LUNO —

The user enters a hexadecimal value, followed by a carriage return. The range of values is 1 through
EF,¢. The value represents a LUNO by which a device is accessed for I/O operations. When the user
enters a carriage return only, GENTX skips the next request of the definition phase. Otherwise,
GENTX requests the name of the device to be assigned to the LUNO, as follows:

DEV NAME —

The user enters the device name previously assigned to a device. GENTX then repeats the assign
LUNO request.

The next request is as follows:

OF SPARE DEV LUNO BLOCKS —

The user enters a decimal number followed by a carriage return. The number represents the number
of device logical unit blocks to be provided in the system in addition to those numbers assigned
previously. When the ALUNO OCP command of the File Utility supervisor call is included in a
TX990 system, there must be logical unit blocks for all LUNOs that will be assigned at one time.
When the user enters a carriage return only in response to the request, GENTX provides six addi-
tional blocks. In systems which support multiple dynamic tasks, more blocks may be necessary.

"’"’“ﬁ)

9-16 Digital Systems Division

(o]
{_@;; 946259-9701

The next request, if a diskette has been defined, is as follows:

OF SPARE FILE LUNO BLOCKS —

The user enters a decimal number followed by a carriage return. The number represents the number
of file logical unit blocks to be provided in the system. There must be file logical unit blocks for all
LUNOs that will be assigned to files at one time. When the user enters a carriage return, GENTX
provides six additional blocks.

The next request, if a diskette has been defined, is as follows:
OF FILE CONTROL BLOCKS —

The user enters a number between 0 and 50. The number represents the maximum number of files
that can be open at any time. If File Management is to be used with TXDS, a minimum of three File
Control Blocks are required. When the user enters a carriage return, GENTX provides six additional

P blocks.

The next request is as follows:
OF DEFAULT BUFFERS —

The user enters a decimal number from 0 to 20. If a carriage return is entered, no buffers are
reserved and GENTX skips the size request. If GENTX accepts the number, it requests the size of
the buffer in bytes by presenting the following prompt:

~ BUFFER SIZE —
The user must enter a decimal number from two to 1024.
The next request is:
OF GENERAL BUFFERS —
The user enters a decimal number from 0 to 50. If a carriage return is entered, no buffers are
allocated and GENTX omits the next request and terminates the general buffer portion of the
o definition phase.
If GENTX accepts the number it requests:
BUFFER SIZE —
The user enters a decimal number from 1 to 1024 which represents the number of bytebs in each
buffer. GENTX then repeats the GENERAL BUFFER request. The default and general buffers are
simply reserved areas in the system table area which may be accessed by user tasks via the Get Data
and Put Data SVCs.
9.3.3.8 Communication Threshold Definition. If a device name was defined as a communications
device by entering “COM” for the “DEV TYPE—" request, GENTX requests the communications
thresholds as follows:
(Nm UPPER THRESHOLD —

LOWER THRESHOLD —

9-17 Digital Systems Division

o
@ 946259-9701

(The user is referred to the Communications Systems Manual for a detailed explanation of
thresholds.) The user enters decimal numbers, from 1 to 99, and the upper threshold must be
greater than or equal to the lower. If in error, the sequence will be repeated.

9.3.3.9 Suggestions For Defining Devices. The following request of GENTX are repeated until the
user enters a carriage return only in response. This allows an indefinite number of each item to be
defined, as appropriate for the application. These requests are as follows:

CHASSIS

SVC#

XOP#

TASK ID#

ASSIGN LUNO

OF GENERAL BUFFERS

When the same chassis number is entered by the user in response to a subsequent chassis request,
additional devices entered following the second entry of the chassis number are added to the group
originally defined. This allows definition of devices by function or by physical arrangement rather
than by connection within the computer. That is, in the following example, the line printer and
card reader are connected through the CPU, and the VDT is connected through expansion chassis 1:

CHASSIS -0

DEV NAME — LIPR
DEV TYPE — LP

DEV NAME —
CHASSIS — 1

DEV NAME — GTTY
DEV TYPE — V913

DEV NAME —
CHASSIS — 0

DEV NAME — CRDR
DEV TYPE — CR

When the same device name, supervisor call number, extended operation number, task identifier,
or LUNO is entered again, the previously entered information is replaced by the new information,
redefining the item. To delete a device name, enter the chassis number and the device name. Then
enter a carriage return only in response to the device type request.

9-18 Digital Systems Division

946259-9701

9.3.4 CONSTRUCTION PHASE. After the last request of the Definition Phase of GENTX, the
Construction Phase is entered. During the construction phase, GENTX generates source statements

for TXDATA and TASKDF using the responses entered by the user during the definition phase.
GENTX prints the following request:

TASKDF OUTPUT FILE NAME —

The user may enter the full file name or device name. If the file does not exist it will be created.

The user may inhibit output of TASKDF by entering a carriage return only. GENTX then prints the

final request as follows:

TXDATA OUTPUT FILE NAME —

The user enters the full file or device name. When the file does not exist it will be created. The

user may inhibit output of TXDATA by entering a carriage return only. GENTX then terminates

bidding the rebid task.

NOTE

3

DX10 output file names must be full pathnames; synonyms are

not accepted.

9.3.5 GENTX ERROR MESSAGES. Table 9-6 lists the error messages or warnings produced by

GENTX.

Error
INVALID INPUT
INPUT ERROR

*MULTIPLY DEFINED
INPUT*

o *LUNO 0 ASSIGNED
TO CONSOLE*

INVALID DEV

ASSIGN ERROR

OPEN ERROR
CLOSE ERROR

" *STORAGE ALLOC.
ERROR*

Table 9-6. GENTX Error Messages

Reason
Response not valid.
Response not within range.

The input has already been pre-
viously defined.

User tried to assign LUNO O to a
device other than the console.

The device type name was not valid

Could not assign LUNO 10 to the
output device or file.

Could not open output device or
file.

Could not close, or release output
device of file.

GENTX table area exhausted. Mem-

ory area not large enough.

Recovery
Reenter response.
Reenter response.
Reenter response.
Select a LUNO other than 0.
Reenter response.
See table 7-3. Reenter response.
Release some LUNOs and re-
execute the task; or an invalid

device name was entered. Re-
enter response.

Reexecute task and increase
size of the MEMORY
AVAILABLE request.

9-19

Digital Systems Division

@ 946259-9701

9.4 ASSEMBLING THE SOURCE MODULES

After termination of GENTX, the user must assemble the two source modules, TXDATA and
TASKDF. Assembly is accomplished by executing the TXDS Assermbler, TXMIRA. Each source
module is assembled separately.

For detailed instructions for operating TXMIRA consult the TXDS Programmer’s Guide.
9.5 LINKING THE OBJECT MODULES
After assembling the two modules it is necessary to use the Object Manager to select the TI-supplied
object modules that support features of the TX990 operating system. Selection of these features is
made from the object module files residing on the diskette which contains the TX990 parts and an
object file residing on the system diskette. The files are described below:
e :DSRLIB/OBJ — Object file that contains DSR modules supplied by Texas Instruments;
° :DYNTSK/OBJ — Object file that contains modules to support multiple dynamic tasks;
e :OCPLIB/OBJ — Object file that contains OCP modules supplied by Texas Instruments;

. :FMPLIB/OBJ - Object file that contains FILE MANAGEMENT. modules supplied by
Texas Instruments;

:CNTROL/OBJ — Object file that contains the TXDS control program;

:TXLIB/OBJ — Object file that contains TX990 modules supplied by Texas Instruments.
The user must create a file that will contain all the object modules he wishes to link to form the
new operating system. This new file will contain modules from each of the object library files. The
user should refer to table 9-7 to select the modules which support the desired features. The modules
should be selected from the files in the following order:

:DSRLIB/OBJ

:DYNTSK/OBIJ

:OCPLIB/OBJ

:FMPLIB/OBJ

:CNTROL/OBJ

:TXLIB/OBJ

9-20 Digital Systems Division

946259-9701

‘TI6V.LS opnjour 1snul WajsAg
SLAA 10] SAUIUD 44 1.(d PUE
LN dpnpout 1snl YLVAX.L

‘pasni st Qf] Spowr 1330eIeyd AJuo
sso[un ‘g1 GV.LS 2pnjour jsnwr way
-SAS "SLAA 10J SaHIU . 1d PUe

++ LN UIeIu0d isnil YIVAXL

SISV €€L 103 SAUIUD 44 [(AJ PUE
*%LN(UIeIuod 1snwl VIVAX.L

"s19)ULd
aUI'T 10§ SALIIUD 44 LA PUE
*+N(UIe1u0d 1snl VIVAX.L

*$9119)SIp 10] SALIJUd

++(LAd) d1qeL 901A9(] [e!
-SAUJ PUB 4 (ILNQ) 9[qeL sweN
901A3(J UTBIUOD ISNW VI VAXL

S3JON

- AW XINTD oyp Sutsn £4q VIVAXL ut peoeyd are sLAd PUB SINA s
-dDO 10] PAPN[OUL 8q ISNUI YSIIAISE U YIIm SYSA U} JOUO 4

* €8L

* 00L

* 122!

CLe

X 1601

00Z-001
X [eord£y,

00Z1-009
X [eotd4,

yuswaSeuepy dDO 10}

nyg pammbay
10j pannbay

pannbay (s9149) azIS

areunxoxddy

sonpoyy wasAs SuneradQ 066X.L “L-6 A19eL

¢ C C

901A9p Q/] [elruanbes
e se 110ddns [(JA 116

O/1 epou 3[1j 10 P1093I
103 yoddns TA €16

110ddns U 93395880
pue 19juLij/pIeoq
-Ao3] 078 10 YSV €€L

ypoddng 19jung sur]
09CT PUe 0ETT S[PPON

110ddns 9119381 00804

a1y pay
-[)UOpI 9q ISNUI SYSBY [V
“o[NPOW UOUIFA(SeL

‘BIEp
uonezijenur derj ‘s19poo

-op 1dniI9}ul ‘UoIIBUIIO]
-ur uorjeIngjuod urelsAg

uonoung

116d4Sd

£16dSd

€eLdSd

dsad’1d

USAAdI

q17asa

JaXSVL

Vivaxl,

aurep

Ivision

Digital Systems D

9-21

946259-9701

("s/066 ® 01 paydsuuod
st 1ojunid usym YSAJT jo soerd
Ur pasn 2q ISnw S[npow Smyl)

('s/066 ® 01 pajoouuod st Ozg

10 ‘cp/ ‘€€ uayM YSQ jo doerd
UL PIsn 9q Jsnw S[Npowr SWy)

('s/066 ® 01 pajosuuod I Oz

10 €€/ UsYM €€,¥SA Jo 2oeld
Ul pasn 2q jsnuw J[npow SHyL)

LN I10J SOMUS ,,IAd Pue
#+ILNQ UIEIUOO 180w YIVAXL

SYSV 10 SAIMUS 4. J1(dd PUE
#x LN Uleuod jsnul y1VAxX.L

SISA
€€L 0] sSUe ..J(dd Pue
% LN UlEIUOD IsnWl VIVAXL

‘S10pBY
pIB) 10] SSIUS ,.T(dd Pue
#*« INQ UIBIUOD 1SNl VIVAXL

*SIJUL]
ourT I0J SSLUD 4, 1A PUE
++INQ UreIuoo jsnwr yIvaxl

sajoN

A@ISVL juswdSeuey
uy sty Mg
Joj paxinboy

dJ0 10§
panmbay

@

“Amn XINTD oY1 Sursn 4q Y LVAXL Ul paoeld ore STAd PUB SINA +x
*dD0 0] papnjour aq JsnuIl YSIIAISE UB YIIm SYS oY} JO oUQ 4

00v

00L

00LT

818

09%1

00L

999

09¢

pamnbay (sa1hq) dz1g

eunxorddy

(penunuo)) ssnpoyy wayshg SuneradQ 066X.L "L-6 AI9EL

1oddns 1oyunid surf gzg
10 018 “88S “90€ SI9PON

yoddng 19jurig

/p1e0QASY 0TS I0 €L ‘€EL
11oddng

191Ul j/p1e0qA3Y] 0Z8

10 U] 91)9sSE) pUE

Iyun/preoqAsy YSV €€L

110ddng
adeg, sneusey VeL6

yoddns adA1919 ££YSY

110ddns 19juny p1eoqAay
gSH 0T8 10 ‘e ‘€€L

110ddns 1opeay pie)

1ioddns 193urig Sur
018 PUE ‘885 ‘90¢ S[OPOI

uonoung

¢066d1

206648

C066dSV

6L6dSd

ALLYISA

ASAASA

YSAIO

dSAdT

swreN

ivision

s

Digital Systems D

9-22

946259-9701

"ANEdDO0 PUe ‘QT1Sd00
‘0¥ddO0 “T41dO0 “JISLIO0
‘OASINA ‘NSYAND “4dNSOI
‘NNAMSL 9pnour 1snl WIdIsAg

‘4O/MSINAC: Ut st
1 {pamof[e a1e $3Se] JTWeuAp
srdnnw j1 NOI4OO Jo soed
Ur pasn 2q 1snw s[npour sty J,

"ANddD0 pue

‘04ddd0 “19..dO0 “MSLdO0
OASINA ‘NSYAND “4dNSOI
‘NNISL 9pn[our 1SN WoIsAS

"aNddd0 Pue “I4LdO0 “ASLII0

‘OASANA ‘NSIYAND “4dNSOI
‘NNAMSL 2pnjout Jsnw WajsAg

"ANHAdOO0 PUE ‘0¥ddI0 “MSLdO0

OASINA ‘NSIYAND “4dNSOI
NNIISL spnout 3snut woaisAg

"ANddOO0 PUE ‘D¥ddD0 “T41Ld00

‘0ASINA ‘NSYAND “4dNSOl
‘NNIMSL 9pnjour 1snur wajsAg

-a[npow
UO0119939(] UOTHSUBIL, NI-CE
9y} [013UOD O} I[NpoW YS(

"orpIaU] O/ LIN9/LINS
Y} [onuod 01 Impow YSq

S9)ON

09¢

168

LSL

X 929

X L6l

X X 11874

LLT

ces

pannboy (sa14g) az1§

9jeunxoxddy

dd0 10}
pammnbay

AMISYL juaurSeuepy
uy sty Mg
10} pamnboy

(panunuo)) sanpopy waysAg Sunyesado 066XL “L-6 9L

§ C C

SPUBLIWIOd JOO O
PUB SV.LY ‘dSIMd

SpPUBWILIOD

dO0 9ovdsd pue
‘HOVdSd ‘ANIMTY
‘OIS ASVLS ‘D0UdS

SPUBWILIOd J)O

HOVdSd pue ‘GOVdsd
‘ANIMTA ‘OIS SVIS

ainpadoid urew JH0

so|qe}
uornjeIndijuod gHo

aseq e1ep 400

11oddns
901A9D [e10adS S[NpOW

uo1199319(] UOTHSUBIL, N[-ZE

11oddns
901A0p [e1oads LIN9/LINS

uonoun,j

dT11Ldd0

NoI1ddod

NOIddO0

Jdddd0

TdLdO0

JSLdO0

4I'1d00

dsSasia

LNSISa

swreN

Digital Systems Division

9-23

946259-9701

I}

"0¥ddd0 Pue “T41dD0 MSLID0

‘OASINA ‘NSIAND “d4dNSOI1
‘NNANSL spn[oul 1snul WajsAg
"T90/MSINAQ: ut st

s[npoui STy J, “s3Se} OIWBUAD
srdnjnuw 1roddns 01 1Y T1dD0
Jo 9oe[d ur papnpour 99 Isnjy

4TS L pue ‘ANEdD0
‘0¥ddO0 “191dD0 “MSLdO0
‘0ASUNA ‘NSYAND “4dNSOIl
‘NNAMSL opn[our 1snur wajsAg

"NddDO0 pue

‘0¥ddD0 “19.1LdD0 ASLdO0
‘OASYNA ‘NSIAND “4dNSOI
‘NNAMSL 9pnfour 3snur waisAg

"dNddD0 pue

‘0¥ddd0 “191dD0 “JS1dO0
‘OAS¥NA ‘NSIAND “4dNSOI
‘NNAMSL opnjour isnur wajskg

S3J10N

JAANSV.L
uf sy

X 001

8¢€€l

[9ALIp 1I0] UOT}ISS
elep Juswradeurul o[t

110ddns SweU SWN[OA

wreidoid jo11uod SOX.L

s[npowt
UuOnIULJap /20uaIvfal
[BUISIX3 Awwnp JO0O

spuewwod 400 ‘dd ‘dI ‘Ld
628 “dI ‘LI X4 471 °d1‘Td “IV

SPUBWILIOD
dO0 d41LNOIXd Pue YT

6Ly ‘DOYT ‘ONNTY ‘ONNTV

96¥
LSS
JuswdSeuepy dd0 10} paxnbay (s9149) amng
g pannbay ajeunxoxddy

Joj pannbay

(panunuo)) sanpopy waysAg Sunyesad 066XL L6 2198L

SPUBWILLIOD
dJ0 d1vdl pue JANIL

spueuuiod gHO JAf
pue ‘dNs ‘aqv ‘Laagd
‘LAS ‘WANA ‘WEN'T

uonpoung

[§

TdNAXL

ANNTOA

aI'TdNA

TOYULND

TOYLND

aNddd0

LdT1d00d

L1d71d00

av.idoo

a’1sddo
awrep

Digital Systems Division

9.24

946259-9701

‘NNAXSL pue YdNSOI
apNIoUT JSNUI WaISAS oY,

-Juswadeuey 314 JO 1531 3y} INO

-U}Im 9[npoul sy} A[uo apnjout
Aew 19sn oy} painbai st y10ddns
ONMNT @ses[a1 pue udisse A[uo J|

S3jON

XX X

>

+X

iX

X
yuawdSeuey

LA
Joj pannbayy

dd0 103
pammbayg

“WaIS AS SY} UI POPNIOUI ST 9ALIP Surpuodsa1ioo aiy Ji A[U0 pannbay |

pannbay

STGT Ied 10SIA
-1adns 10J asoy) Surpnout

$901A3DP PUE SA[TJ 10 SON('T
91L aseaja1 pue ugisse surejuo)

9166 01 9106 sepodado 10]
8€1 9p0ooap apoodo Arjrn o1

s10ss9001d apoodo
1uswWeSeURW S[1J ISYI0 aY}

+0S 1oddns 03 saurnor Amn

$o[1J 10j s108s0001d

0% 2oedsyoeq pue premiog
08§ $9[1J 10J 10ss9901d 211IpM
TS sa[1J 10} 10ssa001d peay
9¢¢ s9[1J 10} 10ssa001d 350D
9Ly sa[1J 10§ 10ss9001d uadQ

15p029p 9p0odo pue JALIP
514 urews juswageury o[l

 9ALIP 10J UOT}I3s
001 BJBp JUdUogeuru A

€ 9ALIP 10J UOI1038
001 B]Ep JUdWaZRURW oI

T 9ALIP 10J UOT}O8S

001 BIEP JUsWafeuBW 1
(sa14g) 271§ uonounyj
aeunxoxddy

(panunuo)) sappojy usd)sAs SunesddQ 066X.L L6 AI9EL

¢

C

C

OASINA

ASLANA

TILANA

dSa4INd

LIIMNA

AvIaInNd

SOTONA

NAdONWA

dNIXL

PdNAX L

EdNIXL

CdNAXL

awreN

Digital Systems Division

9-25

946259-9701

«c (

‘SLAA 10] sanus
(gSY) yooig snel§ preoq 110ddns indur
-9 ureluod IsnwW YILVAXL 0T apour 19)9RIBYD IJA €16

aunnoI [[ed
ocy Iosiaradns ANMIN IJA €16

-0130] JsB) pIq

‘urpuey 10119 JO1U0

auin /eyep ‘Juowedeurwt
Aefop auwn ‘saunnoil
Surenanb ‘Guissaooid

umjar JOX pue idniiajur
‘s10ss9001d 1dnirsyur [euraiul

X 7951 “IS[pURY YO0 ‘INPAYOS

Aymn a1y 103 sa[npowt
swreu 9fueyd pue ‘uon
067 -o9101d a3ueypd S SuIBRIUO)

Anmn oy
10] se[npour ssardurod pue

X 206 ‘919[op ‘9318010 9} SUIBIUOD)

91393SIP 2y} UO S|V
$9)BOO[[BAP OS[E ‘91193SIP
X 86C 3y} UO S}V $21BO0[[V

a1y renoned e 10§
X $S1 A1010911p 3[1j 9} SOYIIBAG

sajON AMISVL jusurdfeueyy dJ0 10y pamuboy (sayAg) azis uonounyg

uj Isry g pamnbay ajeunxoxddy
10j pannboy

(panupuo)) sanpopy ur)sAg SunessdQ 066X.L L6 AIqEL

€I6VLS

€160AS

LOO¥XL

Igh.an

JASHO

ASHTIA

LINOTV

J1qIas

aweN

Ivision

tal Systems D

igi

D

9-26

946259-9701

“ddNnsol pue
NNOAMSL opnjout 3snw WalsAg

"SWIAISAS TNV Ul Pasn)

"(90/MSINAQ:

Ul ST 9[NPOUI SIYJ, “S3se}
otuwreuAp ajdnynur y10ddns o3
10p10 U DASWAN JO 998[d Ut
pasn 9q Isnul S[NPOwr SIyJ,

*NNAMNSL 9pn[our 1snuwi walsAg

papnjout are sanpout
€16JDAS 10 ‘C16VIS ‘TT6DAS
‘T16V.LS J1 1ussaid aq 1sny

‘SLAA 10J setjue

(gS31) Wooig sniels pieoq
-A93] 3y} ureluod Isnu Vv IVAax.L

S3JON

A@ISVL
ug st

{44 Iapeo] apnpour 399fQ
9¢ [Teo 10s1a1adns Koy 1udAy
SauIINoI
[1e9 10s1A12dNS UOISISAUOD
X X P8€ Areuiq/[eurosp /[eWldspeXay
X o€l sunnoI juswadeuewW Iajjng
061 OASWHN se sweg
uonipuo) 1ag
9¢ pue AIOWSJ UIn}ay/19n
auUIINOI [[Bd
X X 896 1ostaradns 3ndinQ/indug
[1ed 1osiazadns 116 LAA
91 10 ‘€16 LAA Y1 59p0de(
110ddns jndur
0Le spour IaoeIeyd LAA 116
e
L6S Tostaradns Aamn LAA 116
JusuraSeuepy dD0 103 pannbay (sa14g) 271§ uonoun,j
andg pannbay Jjeunxoxddy
10} pannbay

(panunjuo)) sanpopy waisAg SunesadQ 066 XL L6 AqEL

¢ C C

JATASL

ALNIAH

NSJIAND

OW4N4glL

JASWANA

JASWAN

YdNSoI

0ddLdd

[T6VLS

T16DAS

awreN

Ivision

Digital Systems D

9-27

946259-9701

.

-o[qissod 10U ST 11BISAI [BNUEBW
pue ‘“JJJ Uo AJUO $91NI9X2
LILSXL ‘ANIXI Surmorjoy
paoeld ST TYLSX.L USYM “BaIE
3se} JIWeuAp 10 AIOWaW 10w
apisoxd 0y QNHX L d[npour Sur
-mof[roJ paoerd aq Ajeuonido Aepy

“d4dNSsoI pue
NNAMSI 9pNoul 1SnUI WoISAS

"fIO/MSINAQ: Ul St a[npour STy,

-110ddns yse}
srweuAp o[dnijnw 10j parinbay
-sof1j weidoid woij sefewlf speo]

"[4O/ASINAQ: Ul St A[npow ST,

*syse} onweuAp ojdinui 3roddns
0] 19p10 Ul YATISL seoe[doy

S3JON

AaXSVL
uf sr]

o130]
X 981 }1B1SaI [ENUBW PUB [RIITU]
8LI Jse) onsoudeiq

aurnoI sypes Josiaradng
961 Lvaind/Ivarao
seunnol [[es Iosiaredns
$SOIpPY UOWIO)) 195) pue
‘owIL], pue 21B(] ZIEHIU]
‘owr], pue aje(199 “se],
popuadsng 91BATIOY ‘JIBM
[euonipuodun) ‘Aliond
a3uey) ‘Aefo(q s, ‘puads
-n§ JON o(“¥seL jo pug
‘s19youreIRg 190) ‘YseL, pid

88T :uonouny 3roddns yse],
yoddns
6L e} StwreuAp sjdniny
SLY Ispeo] adewt weidold
yIS Iapeo] s[npour 393(qQ
judwfeurpy dDO 10} paxnbay (sa14g) 21§ uorjouny
SLE paxmbay sjeunxorddy

1o pannboy

(panunuo)) sapnpopy walsAg Sunerado 066X.1L L6 A9eL

LALSXL

ASVLId

WOLILIL

NNAXSL

ASINAA

AATONI

AATASLA

awreN

Ivision

tal Systems D

igi

D

9-28

‘ANHIX.L JO peaye payul] aq jsnut
MSV.LS ‘}elsal [enuew e Sur
-MO[[0] SV .LS 9IN93Xa 0} palssp
ST} Uayp - 2101 Jeynuapt

58] PouSIsse SI 3] “Bale JSE)
JIWRUAD 9y} UI PI[[BISUI YSB)

Iasn 18I11J Y3 Aq PIB[I9A0 9q [[IM
11 9I5UM ‘BOIR YSB) JTWIRUAD o)
Ul pa3eoo] st 31 ‘ANAX.L Suimoroy
PaYUI] ST SV LS USUM “A[[nyssad
-Ons paIndaxa sey IJI aYr 18y}
J1edIpul 03 pue wasAs unerado
3} JO [9A9] UOISIADI 3} AJT3

-uap1 01 TdJ yoes jo uonsdwod
3y} Je uonNoaxa surdaq YSV.LS
*}Ie)$al [enuBW B Surnp pue IdI
ue Jurinp Yy10q paynoaexs aq o}

ANIX.L pue LYISX1 usamiaq

Ivision

Digital Systems D

9-29

946259-9701

pooed aq Afreuondo Aepy 90¢ 3se1 dnreps [eniuy ASVIS
s[npow
uonIujap/souaiajal
X (474 [eu1a)Xs Awwnp 066X.L ANIXL
S3JO0N A@ISVL juswaSeuepy dDO 10} pannbayy (sa14g) sz1S uoroung aweN
uf 1817 g pannbay Jeunxorddy

1oy pamnbay

(panunuo)) sappopy wasAs Sunesad 066X.L L-6 AqeL

C .. ¢ C ¢ o

@ 946259-9701

There is no defined order in which modules must be included, although user-supplied object m.,\
modules and programs must be included before the object module TXEND, ip file: TXLIB{OBJ It 4
is logical to place a DSR with the other DSRs, a supervisor call routine with the supervisor call

routines, and a task with the other tasks.

After the file has been generated by the Object Manager (OBJMGR), the user must link it with the
two object modules, TXDATA and TASKDF. TXDATA must be first in the link sequence and
TASKDF must be second.

Because many modules which may be incorporated in a customized TX990 system are optional, the
modules TXEND and OCPEND contain many dummy symbol definitions. When optional modules
are included, the link editing process results in multiply defined symbol errors, as shown in the
following:

SYMBOL MULTIPLY DEFINED *W*W*W*W *W *W*W W *W W W W W * W * W *
SYMBOL = ALRSET , MODULES =47, 49

SYMBOL MULTIPLY DEFINED *W*W*W*W *¥W *W*W ¥ W W ¥ W W ¥ W kW * kW W * =
SYMBOL =BADID MODULES =42, 49

Such errors do not result in an incorrect link edit. To be“sure that the multiply defined symbols are

not caused by fatal errors, compare the second number given after MODULES in the error message

to the module numbers given in the link map for: OCPLRT, OCPIOU, OCPEND, or TXEND.

The following is an example of part of such a link map:
OCPTAD 48 657A 01F8 INCLUDE 01/14/77 14:07:24 SDSMAC ‘
OCPEND 49 6772 0016 INCLUDE 09/15/77 11:26:28 SDSMAC
TXEND 50 6788 0142 INCLUDE 10/05/77 13:15:42 SDSMAC

If the numbers match, the error is nonfatal and is to be expected.

After the files have been linked to form a new TX990 operating system, the new object module file
containing the new TX990 must be defined as the system file by using the System Utility
(SYSUTL) command “SF”. Also, the TXBOOT program must be copied to the diskette by using -
the SYSUTL command “BC”. ‘

9.6 EXAMPLE OF SYSTEM GENERATION
The materials needed are:

® The TX990 parts diskette (diskette #1)
® The TXDS system diskette (one of TXDS system diskettes #2, 3, 4)

® A scratch disc on which the system can be built.

9-30 Digital Systems Division

946259-9701

NOTE

Operator responses to prompts presented on the system console
are underlined in the following procedure. Prompts are not under-
lined.

1. Load diskette #1 (TXPARTS) in diskette drive 2 (right). Load diskette #2, #3, or #4
(TXDS system) in diskette drive 1 (left).

2. Load the TX990 Operating System into memory by pressing the following keys on the
Programmer’s Panel.

a. Halt
b. Reset
c. Load

After the TX990 Operating System is loaded into memory the following message will be
printed out or displayed on the system console:

TX990 VR.E YY.DDD
MEMORY SIZE (WORDS): 24576 MEMORY AVAILABLE: 16749

3. Bid TXDS by entering an exclamation point (!) on the terminal. The following display
will appear on the system console:

TXDS VRE YY.DDD
PROGRAM:

4. Load a scratch diskette in drive #1.

5. [Initialize the scratch diskette by responding to the prompts printed out or displayed on
the system console as follows:

TXDS VRE YY.DDD
PROGRAM: :BACKUP/SYS*
TXBACK V.R.E YY.DDD BACKUP/INITIALIZE

OUTPUT DISC OR VOLUME NAME? DSC
THE OUTPUT DISC MUST BE INITIALIZED
INITIALIZE DSC 2(Y/N) Y

DISCI.D. ? SCRATCH

VOLUME NAME ? SCR

CHECKING DSC
NOTE

Section 10.4 describes the Backup Utility in detail.

9-31 Digital Systems Division

o
@ 946259-9701

6. After the diskette has been initialized, the user must bid the System Generation
(GENTX) Utility by responding to the prompts printed out or displayed on the system
console as presented below. When no response to a prompt is indicated, the user must
enter a carriage return/NEW LINE to cause the default-substitute to be used.

TXD

PROGRAM:

S V.R.EE YY.DDD
:GENTX/SYS*

GENTX V.RE YY.DDD

TX990 SYSGEN

MEMORY AVAILABLE — 2000

LINE FREQ. —

TIME SLICING (Y or N) —
TIME SLICE VALUE—
TASK SENTRY (Y or N)—
COMMON SIZE — 170

OF EXP CHASSIS —
CHASSIS - 0

a. For ASR System

DEV NAME - LOG
DEV TYPE — ASR

LEFT CASS/PTP NAME — CS1
RIGHT CASS/PTR NAME — CS2

CRU BASE ADDR —
ACCESS MODE —
INT LEVEL —
TIME-OUT COUNT —

b. For911 System:

DEV NAME — LOG

DEV TYPE — V911
STATION # — 1

CRU BASE ADDR —
ACCESS MODE —
INT LEVEL —
TIME-OUT COUNT —

c. For913 System:
DEV NAME - LOG
DEV TYPE — V913
STATION # — 1
CRU BASE ADDR —
ACCESS MODE —
INT LEVEL —

TIME-OUT COUNT —

Take default (table 9-1)
Take default (table 9-1)
Take default (table 9-1)
Take default (table 9-1)

Take default (table 9-3)
Take default (table 9-3)
Take default (table 9-3)
Take default (table 9-3)

Take default (table 9-3)
Take default (table 9-3)
Take default (table 9-3)
Take default (table 9-3)

Take default (table 9-3)
Take default (table 9-3)
Take default (table 9-3)
Take default (table 9-3)

9-32

Digital Systems Division

/N

@ 9462599701

d.

Resume system generation:

DEV NAME — DSC
DEV TYPE — FD
CRU BASE ADDR —
INT LEVEL —

OF DRIVES — 2.

DEV NAME — LP
DEV TYPE — [P
CRU BASE ADDR —
ACCESS MODE —
INT LEVEL —

TIME-OUT COUNT —
DEV NAME-—
CHASSIS —
SVC # —
XOP # —
TASK ID # — >F0
PRIORITY LEVEL — 0
INITIAL STATE —
INITIAL DATA LABEL — FMPI
TASK ID # —>F1
PRIORITY LEVEL — 0
INITIAL STATE —
INITIAL DATA LABEL — FMP2
TASK ID# — >B
PRIORITY LEVEL — 1
INITIAL STATE —
INITIAL DATA LABEL — FUR
TASK ID # — >C
PRIORITY LEVEL — 0
INITIAL STATE —

INITIAL DATA LABEL — VOLUME

TASKID # —>D_
PRIORITY LEVEL —1
INITIAL STATE —
INITIAL DATA LABEL — DIAGTS
TASKID # — >F_
PRIORITY LEVEL — 1
INITIAL STATE —
INITIAL DATA LABEL — OCP
TASK ID # — >16 —
PRIORITY LEVEL —1
INITIAL STATE —

INITIAL DATA LABEL — CNTROL

TASK ID #-—

MULTIPLE DYNAMIC TASKS (Y or N)—

CONSOLE DEV NAME — LOG
DEFAULT DISC DEV — DSC
DEFAULT PRINT DEV — LP

Generate floppy
Take default (table 9-3)

Take default (table 9-3)
Two drives: DSC and DSC2

Take default (table 9-3)
Take default (table 9-3)
60on 911 system or
take default (table 9-3)
Take default (table 9-3)
Terminate sequence

TMP1

Take default (table 9-1)
FMP2

Take default (table 9-1)
FUR

Take default (table 9-1)
Volume name support
Take default (table 9-1)
Diagnostic Task

Take default (table 9-1)
Add in OCP

Take default (table 9-1)
TXDS CONTROL
Take default (table 9-1)

Terminate sequence
Take default (table 9-1)

9-33

Digital Systems Division

(e}
{@ 946259-9701

ASSIGN LUNO — 1
DEV NAME — LOG

ASSIGN LUNO — Terminate sequence

OF SPARE DEV LUNO BLKS — Take default (table 9-1)
OF SPARE FILE LUNO BLKS — Take default (table 9-1)
OF FILE CONTROL BLOCKS — Take default (table 9-1)
OF DEFAULT BUFFERS — None

OF GENERAL BUFFERS— Take default (table 9-1)
OF GENERAL BUFFERS — Terminate sequence

TASKDF OUTPUT FILE NAME — :TASKDF/SRC ~ Note 1
TXDATA OUTPUT FILE NAME — :.TXDATA/SRC Note 2

END TX990 SYSGEN

7. Select the TI-supplied object modules to support the desired TX990 Operating System
features and copy them to the scratch diskette by responding to the prompts as follows:

TXDS V.RE YY.DDD

PROGRAM: :OBJMGR/SYS*

OBJMGR V.RE YY.DDD OBJECT MANAGER

OUTPUT FILE: DSC:TXPART/OBJ
INPUT FILE: DSC2:DSRLIB/OBJ
REWIND INPUT FILE? Y

FPYDSR ? C_
DSR9Il 7 S Cif 911 VDT
DSR9I3 ? S Cif 913 VDT
DSR733 ? C_ S if no ASR733
LPDSR ? C
FLPDSR ? D

Notes:
1. Constructs a source program for the task definitions and puts them in the file: TASKDF/SRC.

2. Constructs a source program for the TX990 Operating System data structures and puts them
in the file :TXDATA/SRC.

9-34 Digital Systems Division

-

@ 9462599701

INPUT FILE: DSC2:0CPLIB/OBJ
REWIND INPUT FILE? Y_

OCPTSK

END-OF-FILE

INPUT FILE: DSC2:FMPLIB/OBJ
REWIND INPUT FILE? Y

VOLUME
TXFMP1
TXFMP2
TXFMP3
TXFMP4
TXFMP

END-OF-FILE
INPUT FILE: DSC2:CNTROL/OBJ
REWIND INPUT FILE? Y

?

9

D D D =D D .

A

bpppbp

CNTROL ? C
END-OF-FILE

INPUT FILE: DSC2:TXLIB/OBJ
REWIND INPUT FILE? Y

TXROOT
TITTCM
EVENTK
IMGLDR
CRTPRO
STA913
SVC 913
STA911
SVCI1l
IOSUPR

END-OF-FILE

9

D e oD D D D mD D -0 -

A olofetole

INPUT FILE:

END OBJECT MANAGER

All of OCP is included,
without multiple dy-
namic task support

No DSC3
No DSC4
Rest of file

Cif 913 VDT
Cif 913 VDT
Cif911 VDT
Cif911 VDT
Rest of file

9.35

Digital Systems Division

@ 946259-9701

8. Remove diskette #1 from drive #2 and load diskette #2 or #3 or #4 in drive #2.

9. Assemble TASKDF and TXDATA for linking with the selected TI-supplied modules as
follows:

TXDS V.R.E YY.DDD

PROGRAM: :TXMIRA/SYS Assemble TXDATA
INPUT: :TXDATA/SRC

OUTPUT: :TXDATA/OBJ,: TXDATA/LST Put listing on diskette
OPTIONS: CLS

TXMIRA V.R.EE YY.DDD ASSEMBLER

TXDS V.RE YY.DDD

PROGRAM: 2>10 Assemble TASKDF
INPUT: TASKDF/SRC

OUTPUT: :TASKDF/OBJ,:TASKDF/LST Put listing on diskette
OPTIONS: CLS

TXMIRA V.RE YY.DDD ASSEMBLER

10. Link the system as follows:
TXDS V.RE YY.DDD

PROGRAM: :TXLINK/SYS

INPUT: :TXDATA/OBJ, :TASKDF/OBJ,:TXPART/OBIJ
OUTPUT: :NEWSYS/SYS,:NEWSYS/LST

OPTIONS: CLITX990
TXLINK V.RE YY.DDD LINK EDITOR

11. Remove diskette #2 or #3 or #4 from drive #2 and load diskette #1 in drive #2.

12. Mark the newly-linked system as the system file as follows:

TXDS V.REE YY.DDD
PROGRAM: :SYSUTL/SYS*

SYSUTL V.RE YY.DDD SYSTEM UTILITY
OP: SF,:NEWSYS/SYS. TE.

TXDS V.RE YY.DDD
PROGRAM:

9-36 Digital Systems Division

~

{’@P 946259-9701

13.

14.

15.
16.

Load into memory the new TX990 Operating System by pressing the HALT, RESET,
and LOAD keys on the Programmer Panel:

TX990 V.RE YY.DDD
MEMORY SIZE (WORDS): 24576 AVAILABLE: 14631

Bid TXDS via OCP by entering an exclamation point (!) to bid OCP; then respond to the
period (.) prompt as follows:

|

T EX, 16. TE. (Execute TXDS)
TXDS V.RE YY.DDD

Remove diskette #1 from diskette drive #2 and insert diskette #2 into drive #2.
Copy TXDATA, TASKDF and LINK MAP LISTINGS to LP as follows:

PROGRAM: :TXCCAT/SYS
INPUT: TXDATA/LST,:TASKDF/LST,:NEWSYS/LST

OUTPUT: LP
OPTIONS: RO
TXCCAT V.RE YY.DDD COPY/CONCATENATE

9-37/9-38 Digital Systems Division

@ 946259-9701

W\ SECTION X
DISKETTE/DISC BACKUP AND INITIALIZE PROGRAM

10.1 INTRODUCTION

The Diskette Backup and Initialize Utility Program (BACKUP) may be used for two functions:
initializing a diskette and copying (backing up) files to a diskette. It allows the user to: back up an
entire diskette, partially backup a diskette, simply initialize a new diskette, or partially backup
several diskettes to a single diskette.

The backup utility can copy and verify files, or copy or verify files separately. Errors are listed at
the system console. Files that have no data are identified by warning messages.

Before writing to the output diskette, BACKUP checks to see if it is initialized. If not, it requests
o~ the user to initialize the diskette, prompting for required information. When copying files, BACKUP
¢ generates contiguous files on the output diskette, thus reducing fragmentation of disk space.

BACKUP also initialize the directory and allocation bit map on the output diskette, and can
designate a system file if requested by the user.

10.2 LUNOs AND THEIR USES

LUNOs S, 6, 10 and 11 are used. All LUNOs are assigned by BACKUP and are released when
BACKUP terminates. LUNO 5 is assigned to the output diskette. LUNO 6 is assigned to the input
diskette. LUNO 10 is assigned to the input file, and LUNO 11 is assigned to the output file.

10.3 OPERATING PROCEDURE
To load the Diskette Backup Utility and place it in execution under TX990, perform the following
steps using the OCP:

1. Place the object module for BACKUP in the appropriate device and ready the device.

2. Enter the appropriate command to load the module. For example:

(@N LP,CS2. Loads the object code from cassette drive 2.

LP,DSC:BACKUP/SYS Loads the object code from diskette file
DSC:BACKUP/SYS.

3. Enter the appropriate command to execute the task.
EX,10.TE. Execute the program just loaded. If the backup
utility was linked to the system, the user need only to

execute the task ID assigned to it at that time.

To place the backup utility under execution using the Terminal Executive Development System,
perform step 1 above. If the TXDS Control Program is not executing, bid task 16,5 if OCP is active.

EXECUTE,16.TE.

10-1 . L
Digital Systems Division

o
{@ 946259-9701

TXDS lists its heading and asks for input as follows:

TXDS V.RE YY.DDD
PROGRAM: DISC:BACKUP/SYS*

The user enters DSC:BACKUP/SYS* in response to the prompt: “PROGRAM:” The object code in
the diskette file, DSC:BACKUP/SYS, is loaded and executed by the control program. Alternatively,
the user can enter the cassette drive name.

PROGRAM: CS1*
Then the object code on cassette drive 1 is loaded and executed.

10.4 USER INTERACTION WITH THE BACKUP UTILITY
When BACKUP is executed, it displays a heading:

TXBACK V.R.E YY.DDD BACKUP/INITIALIZE
After the heading is displayed, BACKUP requests the output diskette name:
OUTPUT DISC OR VOLUME NAME?

The user enters either a device name or the volume name of the diskette to be initialized or copied
to.

NOTE

I3

A user response of to any BACKUP prompts terminates the
utility. A user response of “&’ to any prompt returns BACKUP to
the above prompt, “OUTPUT DISC OR VOLUME NAME?”.

After the user specifies the output disketté, BACKUP checks it to see if it is initialized. If so,
BACKUP prompts the following:

DELETE ALL FILES ON XXXX? (Y/N)

where XXXX is the output device name. The user enters Y if he desires to delete any preexisting
files on the diskette without regard to any file protection. BACKUP clears all directory entries and

resets the allocation bit map on the diskette. If the user enters N, BACKUP prompts the
“INITIALIZE XXXX? (Y/N)” message as described below.

NOTE

The delete all option will delete all files including delete protected
files.

If the output diskette is not initialized, BACKUP displays the following:
THE OUTPUT DISC MUST BE INITIALIZED

If the diskette must be initialized, or the user response to the “DELETE ALL FILES” message was
N, BACKUP prompts the following:

INITIALIZE XXXX? (Y/N)

10-2 Digital Systems Division

o
%@ 946259-9701

. where XXXX is the output device name. If the user answers Y, the diskette is initialized. BACKUP
f prompts the message:

DISCID. ?

The user must enter a 1 to 32 character title for the diskette. The title is displayed by the SYSTUL
Map Disc (MD) command. The following message is then displayed:

VOLUME NAME ?

The user may enter a 1 to 4 character volume name. The volume name will be used to access files on
the diskette if volume name support is included in the user’s customized TX990 Operating System.
The volume name should not be the same as a device name. If the user enters only a carriage return,
no volume name is defined for the diskette. Diskette initialization takes about four minutes.

In order to copy files to a diskette without destroying all of the files on the diskette, the user must
respond N to both the “DELETE ALL FILES” and “INITIALIZE” prompts.

After the diskette is initialized, erased, or left intact, the user may copy and/or verify the files on
any diskette. BACKUP prompts the following two messages, in order:
COPY FILES? (Y/N)
VERIFY FILES? (Y/N)
If the user responds with a Y to either prompt, BACKUP requests the pathname of the files to be
copied/verified, as follows:
m INPUT PATHNAME?
Valid responses must have one of the following formats.
NULL/CARRIAGE RETURN ENTIRE DISKETTE
VOL ENTIRE DISKETTE
VOL:FILE/ ALL FILES ON THE DISKETTE OR VOLUME WITH
~ THIS FILE NAME
:FILE/ ALL FILES ON DEFAULT DISKETTE WITH THIS FILE
NAME
VOL/EXT ALL FILES ON THE DISKETTE OR VOLUME WITH
THIS EXTENSION
JEXT ALL FILES ON DEFAULT DISKETTE WITH THIS
EXTENSION
VOL:FILE/EXT ONLY THIS FILE
VOL:FILE ONLY THIS FILE
/”M :FILE/EXT THIS FILE FROM THE DEFAULT DISC
' :FILE THIS FILE FROM THE DEFAULT DISC

10-3 Digital Systems Division

@ 946259-9701

where VOL = DISKETTE NAME OR VOLUME NAME
FILE = FILE NAME
EXT = FILE NAME EXTENSION

If the output diskette already contains a file with the same name as one of the input files, the
existing file is deleted and the copied file replaces it. After the sp<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>