
MACINTOSH® TOOLBOX INTERFACE

Macintosh Toolbox Interface (TI Part Number 2559092-0001)

__ griginal .. !~~u~ .. . :.uu·• , ••.••••••••••••••••••••••••. .,. *•. M• ••••••• December 198 8

... C.<JPYi?:gl>..t,,@1988 by ExperTelligence, Inc;; .. _All.Rights Reserved,
· Copyright © 1988 by Texas Instruments Incorporated. All Rights
R~sezyed. , . ·

No p_art of this publication, qiay be,:reproduced, stored in a retrieval
system, or transmitted,. in :a.DY form, pr by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior
written permission of ExperTeUigence, Inc. and Texas Instruments
~corp~rated ..

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by1 the Government is subject to
restrictions. as set .fortb in subdivision (c)(l)(ii) of the Rights in
,Technical Data and Cqmputer Software, clause at 52.227-7013.

~ ,f {

. ~.ExperTelligence; Inc .
. 5638 HollisterAvenue
Goleta,. ~alifomia-93117

' '·
... Te;xas Instruments Incorporated

Data Systems.Group
P.O. Box2909 - MIS 2151
Austin Texas 78769-2909

,, ' , " .

Finder, MultiFinder, and Apple Desktop Bus are trademarks of Apple
Computer, Inc., ; . · · · . ·. , · · .1 .

· · · Apple, AppleTalk, Image Writer, Macint~sh and silhouetted apple
logo are registered tra<lemarks of Apple Computer, Inc.

MacWrite, MacPaint, and MacDraw are registered trademarks of
CLARIS Corporation.

Explorer, microExplorer, andNuBus are trademarks ofTexas
Instruments Incorporated.

TMON is a trademark of ICOM Simulations, Inc .

. PostScript is a·registered trademark of Adobe Systems Incorporated.

Helvetica and Times are registered trademarks of LinoType Co.

"Inside Macintosh", Volumes I-V, copyright © 1985, 1986, and 1988
by Apple Computer, Inc., Addison Wesley, Reading, MA.

1

l.1
. 1.2

1.3
1.4

1.4.1
1.4.2
1.4.3

1.5
1.6
1.7
1.8
1.9

1.10
1.11
1.12
1.13
1.14
1.15
1.16'

2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3
3.1
3.2

3.2.1
3.2.2
3.2.3

3.3
3.3.1
3.3.2
3.3.3

3.4

Contents

About This Manual... xi

Everything You Always Wanted to Know About the
microExplorerTM Toolbox
Introduction · ~ ... ; 1-1
The TbServer: How the microExplorer Communicates
With the Macintosh... 1-1
What's in a NaI11C? 1-3
What Are VARs and How Did They Get into Lisp?................ 1-3

True VAR Variables... 1-3
Pseudo VAR Variables 1-4
VARs That Aren't ;................................... 1-4

Who Lives Where?-................................... 1-5
Toolbox Interface StructiJres in the Load Band . 1-5
Procedure Pointers 1-:6
Heap Management.. 1-6
Flavors and Records 1-6
Accessors and Fields... 1-7
NotinROM... 1-7
That is Illogical.. 1-7
MultiFinderTM .. 1-8
User Interface Guidelines.. 1-8
;Debugging... 1-8
·Putting It All Together: Making a Macintosh Application......... 1-9

, Resource Manager
· ·Introduction ,';', :·. 2-1

Creating, Opening, and Closing Resource Files. 2-1
Checking for Errors.. 2-2
Setting the Current Resource File..................................... 2-2
Getting Resource Types 2-3
Getting, Counting, and Disposing of Resources 2-4
Getting Resource Information... 2-6
Modifying Resources 2-8

Quick Draw
Introduction... 3-1
GrafPorts . 3-1

GrafPort..................... 3-1
CGrafPort (color grafPort).. 3-2
GrafPort and CGrafPort Routines............................... 3-3

Cursor Handling.. 3-7
Cursor... 3-7
Color Cursor.. 3-7
Cursor Handling Routines . 3-7

Icon Handling... 3-9

Macintosh Toolbox Interface v

Contents

3.5
3.6
3.7
3.8
3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

4
4.1

4.1.1
4.1.2
4.1.3
4.1.4

4.2
4.3
4.4
4.5

5
5.1
5.2

6
6.1
6.2
6.3

7
7.1
7.2
7.3
7.4
7.5
7.6

vi

Pen and Line Drawing... 3-9
Text Drawillg • . • • • • • . . • • • • • 3-12
Drawing in Color... 3-14
_Operations on Color Tables...... 3-15
Operations on Pixel Patterns..... 3-16
Calculations With Rectangles.... • 3-17
Graphic Operations on Rectangles . 3-21
Graphic Operations on Ovals 3-21
Graphic Operations on Round-Cornered Rectangles 3-22
Graphic Operations on Arcs and Wedges........................... 3-24
Calculations With Regions.. 3-25
Graphic Operations on Regions . • 3-29
Creating Pixel Maps 3-29
Bit Transfer Operations.. 3-30
Pic:tuI'es. ... • • • . • • • • • • . • • • . • . . . • . • • • . . • . . • • • • • • • . • . • • . . • • . . • • • • 3-32
CalcuJ.8.tions With Polygons . 3-33
Graphic Operations on Polygons..................................... 3-34
Calculations With Points 3-35
Miscellaneous Routines 3-36
Customizing QuickDraw Operations................................. 3-38

Color Manager
Introduction. 4-1

Graphic J)evices 4-1
Color Tables.. 4-1
Inverse Tables ... : 4-1
Using the Color Manager... 4-1

Color· C·onversion Traps.. 4-1
·Color Table Management.. 4-2
Eiror Handling . 4-3
Search and Complement Procedures................................. . 4-3

Palette Manager
Introduction... 5-1
Color Palette Manager Routines...................................... 5-1

Color Picker
Introduction.·.... 6-1
Color Picker Package Routines....................................... 6-1
Color Picker Conversion Routines................................... 6-1

Font Manager
futroduction... 7-1
Initializing the Font Manager 7-1
Getting Font Information.. 7-1
Keeping Fonts in Memory . 7-3
Advanced Routines 7-3
Fractional Width Routines .. 7-3

Macintosh Toolbox Interface

8
8.1
8.2

9
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

10
10.1
10.2
10.3
10.4
10.5
10.6
10.7

11
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

12
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

Contents

Event Manager
Introduction . 8-1
Event Manager Traps.. 8-3

Window Manager
Introduction . 9-1
Initialization and Allocation.. 9-1
Window Display. 9-5
Mouse l.ocation. 9-7
Window Movement and Sizing . 9-9
Update Region Maintenance... 9-10
Miscellaneous Routines.. 9-11
Low-Level Routines.. 9-13
Color Window Manager Traps.. 9-13

Control Manager
Introduction . 10-1
Initialization and Allocation.. 10-2
Control Display 10-4
Mouse l.ocation.. 10-5
Control Movement and Sizing . 10-6
Miscellaneous. Routines. 10-7
Control Manager Color Traps. 10-8

Menu Manager
Introduction 1 1-l
Initialization and Allocation.. 11-1
Forming the Menus :............................... 11-3
Forming the Menu Bar.. 11-4
Choosing From a Menu.. 11-5
Controlling the Appearance of an Item.. 11-6
Miscellaneous Routines. 11-8
Menu Manager Color Traps . 11-9

TextEdit
Introduction . 12-1
Initialization and Allocation.. 12-1
Accessing the Text of an Edit Record................................ 12-2
Insertion Point and Selection Range.................................. 12-2
Editing . 12-3
Text Display and Scrolling . 12-4
Scrap Handling . 12-5
Advanced Routines................................... 12-6

Macintosh Toolbox Interface vii

Content.t

13
13.1
13.2
13.3
13.4
13.5
13.6
13.7

14
14.l
14.2

15
15.1
15.2
15.3
15.4
15.5

16
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

17
17.l
17.2
17.3

18
18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

viii

Dialog Manager
Introduction.............. 13-1
Initialization... 13-1
Creating and Disposing of Dialogs................................... 13-1
Handling Dialog Events... 13-5
Invoking Alerts... 13-7
Manipulating Items in Dialogs and Alerts . 13-8
Dialog Manager Color Traps.. 13-9

Desk Manager
Introduction............. 14-1
Desk Manager Traps '.. 14-1

Scrap Manager
Introduction... 15-1
Getting Desk Scrap Information...................................... 15-1
Keeping the Desk Scrap on the Disk................................. 15-2
Writing to the Desk Scrap,. ... · 15-2
Reading From the Desk Scrap... 15-2

Toolbox Utilities
Introduction..... 16-1
Fixed-Point Arj.thrnetic 16-1
String Manipulation : 16-1
Byte Manipulation.. 16-2
Bit Manipulation.. 16-2
Other Operations on Long Integers.................................. 16-3
Graphic Utilities ~.. 16-3
Miscellaneous Utilities... 16-4
Fixed Point Arithmetic... 16-5

Package Manager
Introduction.. 17-1
International Utilities Package . 17-1
Standard File Package... 17-2

Me111ory Manager
Introduction... 18-1
Initialization and Allocation 18-1
Heap Zone Access 18-2
Allocating and Releasing Relocatable Blocks. 18-2
Allocating and Releasing Non-Relocatable Blocks................. 18-3
Freeing Space in the Heap . 18-5
Properties of Relocatable Blocks..................................... 18-6
Grow Zone Operations.. 18-6
Miscellaneous Routines 18-7

Macintosh Toolbox Interface

18.10
18.11

19
19.1
19.2

20
20.1
20.2

21
21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9

22
22.1
22.2
22.3
22.4
22.5
22.6

23
23.1
23.2

24
24.1
24.2
24.3

25
25.1
25.2
25.3

Macintosh Toolbox Interface

Memory Manager Utilities .. .
Accessing Memory

Segment Loader
Introduction .. .
Segment Loader Traps .. .

Operating System Event Manager
Introduction .. .
Operating System Event Manager Routines

File Manager
Introduction ~
Initializing the File 1/0 Queue
Accessing Volumes .. .
Accessing Files .. .
Changing Information About Files
Hierarchical Directory Routines
Working Directory Routines .. .
Accessing Queues-
File Control Blocks .. .

Printing Manager
Introduction .. .
Initialization and Termination .. .
Print Records and Dialogs .. .
Printing-... .
Error Handling
Low-Level Driver Access

Device Manager
Introduction
Device Manager Traps .. .

Disk Driver
Introduction .. .
Disk Driver Traps .. .
Advanced Disk Driver Traps

Serial Driver
Introduction .. .
Changing Serial Driver Information
Getting Serial Driver Information

Contents

18-8
18-9

19-1
19-1

20-1
20-1

21-1
21-8
21-9

21-12
21-17
21-20
21-21
21-22
21-22

22-1
22-1
22-1
22-3
22-4
22-5

23-1
23-1

24-l
24-1
24-2

25-1
25-1
25-3

ix

Contents

26
26.1
26.2

26.2.1
26.2.2
26.2.3
26.2.4
26.2.5
26.2.6

26.3
26.4

27
27.1
27.2
27.3
27.4
27.5
27.6
27.7

28
28.1
28.2
28.3
28.4
28.5
28.6
28.7

29
29.1
29.2
29.3
29.4

Appendix A

Appendix 8

Sound Manager
lnttod.uction. 26-1
Sound Manager Conunands 26-1

General Commands • 26-2
Synchronization CoDlDlands . 26-3
Modifier Control Commands..................................... 26-4
Scaling and Note Conunands . 26-5
Wave Table Synth CoDlD1811ds......... 26-6
Sampled Sound Synth Commands.............................. 26-6

Original Sound Driver Traps.. 26-7
Sound Manager Traps... 26-8

Operating System Utilities
lnttod.uction........................ 27-1
Pointer and Handle Manipulation 27-1
Date and Thne Operations... 27-2
Paranieter RAM Operations... 27-4
Queue Manipulation.. 27-4
Trap Dispatch Table Utilities.. 27-4
Miscellaneous Utilities... 27-5

List Manager Package
Introduction.. 28-1
Creating and :r;:>isposing of Lists... 28-1
Adding and Deleting Rows and Colunms :. 28-3
Operations on Cells.. 28-4
Mouse Location . 28-5
Accessing Cells... 28-5
Llst Display 28-7

Error Handling
Introduction ~.. 29-1
Signaling an Error.. 29-1
Suppressing Errors : 29-3
Restarting From an Error.. 29-4

Resource Types... A-1

Result Codes... B-1

Macintosh Toolbox Interface

Purpose

Who Should
Use. This
Manual

Structure of the
Document

Macintosh Toolbox Interface

ABOUT THIS MANUAL
This reference manual documents each Toolbox function and provides
examples of how to use them.

For readability and ease of use we have kept the descriptions as short
and simple as possible. In most cases, these brief descriptions will be
more than sufficient. If you desire additional information about a
particular routine, please refer to the volume and page number of Inside
Macintosh listed in brackets after the definition of each routine.

This reference manual is designed for Lisp programmers who need to
use the Toolbox routines. All the examples are written in Lisp and the
arguments and conventions refer to Lisp data types. Nevertheless, this
manual might not meet your casual expectations.

The problem is that these Toolbox functions merely give access to the
Macintosh operating system. The Macintosh OS, on the other hand, is
a piece of sophisticated software w~ch is something of a milestone in
the computer industry. When you decide to use the Macintosh
Toolbox, you have committed yourself to learning a new OS which is
markedly different from anything which has come before.

You must understand the structure of the Macintosh OS and its unique
way of doing business. For example, the Macintosh's highly
developed notion of a resource is both unique and central to the
understanding of how many Macintosh features are implemented.
Therefore, knowing how to call the tb:!OpenRefFile function is one
thing; knowing what to do with an open "Res" file is something else
again.

Another difference is that there are many varied and subtle interactions
among Toolbox functions. The tb:!WaitNextEvent function you see
in main event loops is just one example. You are not just calling some
mathpack trig utility; you are manipulating the internal data structures of
a complex OS in real time. You bear sole responsibility for supporting
all Macintosh OS conventions ... whether you are aware of them or not.

This document is composed of 29 chapters organized in the same way
as Inside Macintosh. Each chapter begins with a short introduction
describing the specific Toolbox feature.

xi

Style and
Conventions

The following notational conventions help you recognize Toolbox
functions, methods, and arguments. The table below defines the three
typefaces used in this manual and their respective meanings.

Typeface

boldface

italics

·monowidth

Meaning

Indicates a function, method, or symbol name.

Indicates an argument to a function or method.
Names in italics can be replaced by any appropriate
value you choose to substitute.

Indicates sample code or program output.

The naming convention adopted for the Toolbox Interface says that if
Inside Macintosh documents a symbol name, then that symbol appears
in the Toolbox as tb:!name.

Furthennore, you will notice that many of the symbols mentioned in the
text appear in upper and lower case. For example, the flavor which
implements a Macintosh color graph port appears as tb:!cGrafPort
rather than all lower case as most Explorer™ symbols are documented.
These mixed case symbols are simply following the convention
established in the Macintosh's Pascal-oriented documentation. Since
the Lisp system uppercases all symbols internally, the symbols
tb:!cGrafPort, tb:!cgrafport, and TB:!CGRAFPORT are all the
same as far as Lisp is concerned.

Macirttosh Toolbox lrtterface

EVERYTHING YOU
KNOW ABOUT THE

Chapter 1
ALWAYS WANTED TO
TOOLBOX INTERFACE

Introduction

The TbServer:
How the
microExplorer
Communicates
With the
Macintosh

Macintosh Toolbox Interface

1.1 The standard Macintosh interface is probably the most important
aspect of any Macintosh application. It is this interface that sets those
applications apart as the easiest to leam and use.

If you are familiar with one Macintosh application, MacDraw® for
example, you should be immediately familiar with navigating any other
Macintosh application.

To the user, the. screen appears to act like a desktop, and the various
windows like sheets of paper. Actually, this appearance is an illusion
carefully maintained by the programmer. For every possible action the
user can make, including dragging, growing, zooming, closing,
scrolling through_ the contents, or switching to another window, the
programmer must call the necessary functions to maintain this illusion.

The Macintosh Toolbox is a collection of more than· 700 specialized
routines stored in read-only memory (ROM) that can be called to
perform such tasks as drawing a rectangle, displaying a window, or
pulling down a menu. While the Macintosh Toolbox is very complex
and difficult to master using traditional languages, programming is
made easier with the Toolbox Interface.

Rather than providing a simplistic, statically typed interface using
macros or requiring developers to invoke remote procedure calls to
programs written in C, the ToolBox Interface was implemented with the
dynamic nature of Lisp in mind. It is implemented with rapid
debugging, accurate _error checking, and an object-oriented approach to
programming in mind. The ToolBox Interface lets you write code
calling Macintosh Toolbox routines in the same way you would call a
typical Lisp function on any Lisp machine.

The ToolBox Interface consists of two parts: Lisp code on the
.microExplorer'™ and assembly language code in the fonn of a Toolbox
server application on the Macintosh. The microExplorer consists of a
Texas Instruments Lisp chip (generally referred to as a Lisp machine)
and a Macintosh connected by the NuBus'™. The Lisp machine can
send calls to and receive calls from the Macintosh via the NuBus.

1.2 When a Macintosh function is called from Lisp, the number and
type of the arguments are checked. If correct, the trap number and the
data from the arguments are then placed into a packet of memory
(actually, a piece of memory that can be accessed by both the Macintosh
and the microExplorer). If no return value is needed (for example,
when calling a line drawing function), the packet is queued and Lisp
continues execution without waiting for the trap to be run. Of course, if
the trap returns a value, Lisp must wait for the data.

1-1

Everything You Always Wanted to Know ...

1·2

On the Macintosh side of the bus, a Toolbox· server is receiving the
packets sent to it by Lisp and invoking the appropriate Toolbox
functions. This process is complicated by the fact that there are many
different Toolbox calling conventions, and data can be passed in byte,
word, or long lengths. The server handles this for you by using the
information contained in the "TRAP" resources.

There can be up to eight servers running at once. Each application you
defme that uses the ToolBox Interface must have its own Toolbox
server. The first of these servers is built into the microExplorer driver.
It conununicates on *application-channel* 8. For the most part, this
server is hidden from users.

An unobvious feature of these Toolbox servers is that they automatically
take care of the standard initialization functions common to all
Macintosh applications: t b: !In it Graf, tb: ! lnitFonts,
tb:!InitWindows, tb:!lnitMenus, tb:!TElnit, tb:!InitDialogs,
and tb:!lnitCursor. The documentation for each of these traps
mentions that there is no need for you to call it directly.

Since the default Toolbox server is running in the microExplorer
application, a fatal Toolbox error may cause the microExplorer
application to terminate, thereby crashing the Lisp machine. Therefore,
when making Toolbox calls, you should launch an independent
Toolbox server. MultiFinder™ launches the application named
"TbServer" (note the lack of a separating space) in the
:microExp:MACSYS: folder. A fatal error in one of these stand-alone
Toolbox server applications will not harm the Lisp machine. At any
time, you can kill the Toolbox server. Of course. you can launch and
kill servers as much as you want throughout a session. See the
functions defined below to determine how to do this.

tb:launch-default-tb-server &optional kill-and-relaunch-p Function
tb:launch-default-tb-server launches a Toolbox server and
initializes it. Normally, this function can be called from your login-init
file. This function causes a Toolbox server to be available to run your
calls to the Toolbox from any microExplorer process.

tb:kill-default-tb-server Function

tb:kill-default-tb-server causes the default Toolbox server to shut
down and reset itself. If a Toolbox server has an untimely exit (whether
by signaling a Macintosh system error, by doing an exit to shell from
any debugger, or by explicitly calling the tb: !ExitToShell trap on the
microExplorer), you still must call tb:kill-default-tb-server.
Calling this function adjusts the value of certain global variables and
allows you to relaunch a new server without causing problems.

Alternately, instead of calling tb:kill-default-tb-server before you
call tb:Jaunch-default-tb-server again, you may simply call
tb:launch-default-tb-server with an argument oft which is the
equivalent of calling tb:kill-default-tb-server followed by
tb: launch-def ault-t b-server.

Macintosh Toolbox Interface

What's in a
Name?

What Are V ARs
and- How Did
They Get Into
Lisp?

True VAR
Variables

Macintosh Toolbox Interface

Everything You Always Wanted to Know ...

To determine which Toolbox servers are running, look at the Apple
Menu under the MultiFinder applications list. You can switch to other
applications or to the microExplorer by clicking in one of their windows
or selecting them from the Apple® Menu.

If a Toolbox server exits unexpectedly, there are several ways to shut it
down and bring it back up. If you are running a debugger (such as
ICOMs TMON™ debugger), system errors will cause you to enter the
debugger automatically. From the debugger, you can exit to shell and
that will close the default Toolbox server. Be careful when exiting to
shell under MultiFinder because multiple applications can be running at
the same time. Make sure you are exiting Toolbox server and not some
other application. Remember, when you return to the Lisp
environment, be sure to execute the form (tb:launch-default-tb
server t) again. The t argument makes certain the microExplorer side
and the Macintosh side are in sync.

If no main event loop is running in the Toolbox server (this is the
default), you may have to click the mouse several times in another
application's window in order to switch from the Toolbox server to that
application.

1.3 You may notice that some of the names of the traps documented in
this manual differ from the names as they appear in Inside Macintosh.
The most obvious difference is that most of the names in this manual
begin with a bang("!") character. The naming convention followed in
most of the traps is a bang followed by the assembly language name of
the trap, not the high level, or Pascal, name. Most traps are named the
same in Pascal and assembly language, but do not always assume the
names will be the same. For example, the Macintosh trap PBOpen
exists in the Toolbox Interface as tb:!Open.

1.4 VAR variables are a contrivance invented for Pascal because
Pascal functions cannot return multiple values. Pascal treats V ARs
differently depending on the data length of the variable. Unfortunately,
these declarations found their way into the Macintosh Toolbox and
consequently were introduced into Lisp in order to avoid changing
calling conventions in dozens of traps. For each trap that requires VAR
arguments, there is. an alternate trap name that performs the same
operation but does not return information with VAR arguments.
Instead, these traps return the information as function results. These
trap names are identical to the VAR trap names except the ! is missing.
For example, the VAR-less version of t b: ! Pt To Ang I e is
tb:PtToAngle.

1.4.l The only true VAR variables for the microExplorer are: (VAR
integer), (VAR longint), (VAR string), (VAR character), and (VAR
restype). When calling traps that use these VAR variables, you must
wrap the variable in a VAR form.

1·3

Everything You Always Wanted to Know ...

Example:

Example:

Pseudo VAR
Variables

V ARs That Aren't

1-4

(tb:!GetResinfo han (VAR id) (VAR type) (VAR name))

The variables id, type, and nnme may be local or global, and may or
may not have any value. After invoking the Toolbox function, these
variables will be set to their respective values.

The Lisp compiler is very smart. When compiling:

(defun foo O
(let ((type "")

(name ""J
(id nil))

(tb:!GetResinfo han (VAR id) (VAR type) (VAR name))
type))

the compiler notices that both name and type are constants and doesn't
understand V ARs, so it actually sets both variables to the same empty
string. Thus, this function will actually return the wrong value because
it treats type and name as the same string. Instead, define foo as
follows:

(defun foo (&aux type name id)
(let ((type nil)

(name nil)
(id nil))

(tb:!GetResinfo han (VAR id) (VAR type) (VAR name))
type))

1.4.2 Since Macintosh data types are really instances, window
pointers and pointers may optionally be passed as V ARs. For VAR
window pointers (e~g., tb:!FindWindow) and VAR control records
(e.g., tb:!FindControl), it is best to call using the VAR form because
then the trap will return the same instance (as opposed to another
instance with the same pointer). See Chapters 9and10 on the Window
Manager and the Control Manager, respectively.

VAR pointers are often used to pass information into a trap as well as to
return information. Therefore, if you pass a VAR argument, make sure
that its value is an instance of tb:mac-pointer.

1.4.3 Sometimes traps are declared to take VAR arguments when
they really take a data structure that may be modified by the trap. In this
situation, just pass the data structure.

Since VA~ handles are instances in Usp. just pass the instance to the
trap and the :handle instance variable will be modified by the trap.

VAR Fontlnfo, SFReply, PenState, Points, Rectangles, and
EventRecords are in another category. Since these instances are true
Lisp objects (not pointers to Macintosh objects). you need only pass the
instance. Do not put the (VAR ...) form around these arguments. The
functions with these argument types do, however, wait for the instances
to be modified by the ROM call.

Macintosh Toolbox Interface

Who Lives
Where?

Toolbox
Interface
Structures in
the Load Band

Macintosh Toolbox Interface

Everything You Always Wanted to Know ...

1.5 Most data structures used by Macintosh Toolbox traps reside in
the Macintosh heap. Pointers or handles to these objects are
encapsulated by instances of an appropriate flavor. The two most
important data types used by the Toolbox are tb:mac-handle and
tb:mac-pointer. For the Toolbox Interface, these and all data types
are instances of flavors. This means that the address of a tb:mac
pointer is really stored in the instance variable :pointer of an instance
of the flavor tb:mac-pointer.

For example, the result of doing a (make-instance 'tb:window) ·is
an instance of a Macintosh window. It contains, however, only a single
instance variable : pointer which points to where the window is stored
in the Macintosh heap. The rest of the information about the window
resides entirely in Macintosh memory. The only way to access or
change the Macintosh data structure is through so-called instance
accessors. Thus, while it may appear to a user that a field like window
kind is an instance variable, it is noto

A handful of data structures which are both small and frequently used
are actually true-instances, and the information is copied back and forth
when the trap is invoked. The most common examples of these are
rectangles and points. Because these data structures are true instances,
it is faster to use the methods provided to do calculations directly on
rectangles and points than to send the information across the bus, and
then wait for MultiFinder to give the CPU to the server and return the
result.

Other data structures that reside as true Lisp objects include:
tb:eventrecord, tb:sfreply, and tb:fontinfo.

1.6 Each tb:mac-handle and tb:mac-pointer instance normally
holds a dynamic Macin.tosh-relative address. These addresses are
dynamic in the sense that they become invalid when the Macintosh is
rebooted. If these instances should be saved in a load band, then on the
next reboot they will effectively introduce random Macintosh addresses
into Toolbox execution. Therefore, pointers and handles may not be
saved in a microExplorer load band.

CAUTION: Handles, pointers, and any Toolbox Interface
structures which include a handle or a pointer cannot be
saved in a microExplorer load band. This applies to any
Toolbox data structure which include handles or pointers
directly or indirectly (and that includes almost everything).

The only exceptions are the trivial case of NIL handles and pointers and
the special case of a constant pointer to a Macintosh global variable--the
only Macintosh addresses guaranteed to remain constant across boots.

1-5

Everything You Always Wanted to Know ...

Procedure
Pointers

Heap
Management

Flavors and
Records

1. 7 Many traps -take procedure pointers as arguments. These
arguments are pointers to routines which are expected to lie in
Macintosh memory. These routines are called during the execution of
the traps and are expected to follow Pascal calling conventions. Using
the name of a Lisp function as a procedure pointer will not work. For
this reason it is best to pass tb:!nilPtr in these parameters. However,
if you install a routine into Macintosh memory (perhaps written in
assembly language or another language on the Macintosh), you may use
a pointer to it with these routines. If you do so, be very careful that the
routines you write follow the correct calling conventions, -as there is no
checking done whatsoever on these routines. Read Inside Macintosh
carefully for the descriptions of the traps which use procedure pointers
for details on these calling conventions.

1.8 All of the Macintosh memory allocated to a particular Macintosh
application is located in its heap. This means that if you plan to create
large handles or use lots of color pictures, etc .• you must allocate
enough memory in the "SIZE" -1 resource to hold the data you want to
keep in Macintosh memory. In addition, heed the warnings in the
Inside Macintosh chapter th.at discusses memory management including:
not keeping pointers to unlocked handles, not leaving large locked
handles in the middle of the heap, and remembering to dispose of
handles no longer in use.

For your safety and convenience, many data structures that are defmed
by Inside Macintosh as pointers to Pascal records are actually allocated
as handles. As traps using these data structures are invoked, the handle
is first locked, then dereferenced for you automatically. Upon
completion of the trap, the locking status is returned to its original
condition.

1.9 To allocate new Macintosh data structures, the universal way is
make an instance of its flavor. The :init method will automatically
create the Macintosh object of the correct size in one of two ways. -
Flavors that mix in tb:AutoHandleTo (like tb:RGBColor)
automatically create a handle of the necessary size, while flavors that
mix in tb:SystemCreatedTo (like tb:window) automatically call the
appropriate trap. to allocate the object (in this case,
tb: !NewCWindow).

At times, you may need to get an instance without having it
automatically generate a Toolbox data structure. Use tb:make·
instance-no-init for this purpose.

Macintosh Toolbox Interface

Accessors and
Fields

Not in ROM

That is Illogical

Macintosh Toolbox Interface

Everything You Always Wanted to Know ...

1.10 Since the Macintosh data structures exist in Macintosh memory,
not micro Explorer memory, a mechanism is needed to access the fields
of Toolbox records. Instance accessors perform this operation. Since
all Macintosh data types are defined as flavors, the instance accessors
are methods. You can access a field in the same way that you get the
value of an instance variable. Fields may be set by passing a new value
for a field to the method or by using a setf form. Since these fields are
not in Lisp memory, some overhead does exist in accessing the data.
You can look at all of the fields in many records by doing a describe
on the record. Similarly, a tb:describe-class on a flavor name will
tell you the instance accessors and their offsets defmed for a flavor.

MultiFinder considers Window Manager data structures as being owned
by the Window Manager. Therefore, these data structures should never
be modified directly by an application. This includes all of the fields in
a grafPort and the window record itself. Instead use the traps provided
by the Toolbox to modify these fields.

1.ll A handful of Toolbox routines are not in the Macintosh ROM.
Most of these perform very simple operations like fetching a value from
low memory. Many of these routines have Lisp equivalents.

In managers like the File Manager where both high and low-level
function calls are provided, only those in ROM are supported. These
traps are more complete and provide more control than the so-called
high-level Pascal functions.

1.12 Given the limited development environment of the Macintosh,
the authors of the Toolbox provided a number of low-level arithmetic
traps that make no sense to a Lisp programmer. Logical operators,
bignums, and trig functions are more complete in the Lisp environment
and much faster than sending the data across the bus for processing.
For these reasons, some traps have not been implemented. Others were
implemented for completeness, but should not be used.

1-7

Everything You Always Wanted to Know ...

MultiFinder

User Interface
Guidelines

Debugging

1-8

1.13 Since all microExplorer applications must mn under
MultiFinder, it is important to emphasize a few points contained in the
MultiFinder Development Package. Most importantly, observe the
limitations mentioned above regarding the Window Manager and
understand that the Event Manager has been modified extensively. You
should use the new Event Manager call !WaitNextEvent. Call this
function often enough so the system does not lock up without giving the
user a chance to do something. (Remember, MultiFinder does not do
preemptive scheduling).

It is very important to tell MultiFinder how much memory your
application requires using the "SIZE" -1 resource.

Any Macintosh application (e.g., Mac Write®) may be launched with the
Lisp function launch (e.g., (tb:launch "hd:MacWrite")).

1.14 Macintosh programmers have gone to a great deal of trouble to
make their programs operate in a consistent manner, yet it is possible to
use the traps to create applications that are inconsistent with the
established guidelines. Before you create a new Macintosh application,
carefully read Chapter 2 of Inside Macintosh, The Macintosh User
Interface Guidelines. Pay particular attention to the discussion
supporting the Edit menu (cut, copy, paste, etc.) so that data can be
transferred between your application and other Macintosh applications.

Adapting an existing application to mn on tbe Macintosh can be
particularly difficult, but no application has been commercially
successful unless those adaptations have been made.

For design tools that make writing consistent Macintosh applications
easier and faster or for assistance in converting an existing application,
contact ExperTelligence.

1.15 While the dynamic runtime error checks prevent you from
making many errors, the low-level non-typed nature of the Macintosh
ROM tends to produce errors that are sometimes difficult to debug.
You can use debuggers like TMON to view your heap in hexadecimal
notation. To enter the debugger, simply type (tb:!Debugger).

CAUTION: Many traps can write anywhere in memory
(even outside your application's heap). There is no hard
ware protection, so it is possible to crash the Macintosh
system. If you make catastrophic errors within your own
heap, however, you can often exit-to-shell, restart your
Toolbox server, and continue without rebooting.

When you enter the debugger, make sure that you are in your
application's heap. Look at the Macintosh global variable in location
#x.910 to check the name and avoid confusion.

Macintosh Toolbox Interface

Putting It All
Together:
Making a
Macintosh
Application

Everything You Always Wanted to Know ...

1.16 All microExplorer applications that use the Toolbox Interface are
invoked the same way. Each application is represented by a double
clickable icon that exists somewhere on the Macintosh desktop. This
icon is linked via a "NAME" resource to Lisp code on the
microExplorer side of the machine.

tb:define-mac-application is the macro that links the Macintosh
icon to the Lisp code and the Lisp code to the Macintosh icon, allowing
you to launch your application from either the Macintosh or the Lisp
machine side of the microExplorer.

Every application has an entry point, a single function that launches and
starts running the entire application. It is this function that we use to
th: define-mac-application.

The TbServer application is the Toolbox server. It provides access to
the various Toolbox routines. During development of your application,
you'll want to use the default Toolbox server provided. It's very handy
for testing and debugging. You can add any necessary resources to the
TbServer application (pictures, icons, cursors, etc.).

Once your application is debugged, however, you need to create your
own copy of the TbServer application to run your application as a stand
alone, double-clickable Macintosh application. To do that, perform the
following operations:

On the Macintosh side:

• Make a copy of the TbServer application and give it your
application's name.

• Copy any pictures, icons, or other resources required by your
application into your copy of the TbServer application using ResEdit
or some other resource editor.

On the Lisp machine side:

• Link your application to the Macintosh icon described above using
the Lisp macro tb:define-mac-application. This creates a
resource of type "NAME" that contains the flavor to instantiate
during the boot process (that is, when your application icon is
double-clicked).

tb:define-mac-application name &optional args Macro

Macintosh Toolbox Interface

&key :directory :lisp-function :server-name

Name is the name of your application. When launching from the Lisp
side, name is the symbol that you pass to tb:launch-mac
application. Ar gs are the list of arguments to the Lisp function, if
any, that are passed to :lisp-function's Lisp function. The :lisp
function value is a symbol that is the name of the entry point to the
Lisp application that you want to run when you tb:launch-mac-

1-9

Ewrything You Always Wanted to Know ...

1-10

Example:

application or double-click on the corresponding Macintosh icon.
The :server-name argument is a string that contains the current name
of your application icon. :server-name is very important when
launching your application from the Lisp side of the microExplorer
because without this information the system is unable to locate the
corresponding icon.

When doing a tb:launch-mac-application the microExp folders on
all mounted volumes are searched for the application named by the
keyword :server-name. If :directory is supplied (or a list of
directories), a search of all mounted volumes for :directory (a folder
name) is done. This search is only one deep, that is, :directory
should be on a mounted volume's desktop. When the directory is
found it is searched for the application named by :server-name.
When the file is found a "NAME" resource is added to its resource file.
This "NAME" resource contains the name given above.

(tb:define-mac-application color-qix (&optional length)
(:directory "microexp:toolbox-examples:"
:lisp-function 'tb:tb-qix
:server-name "color-qix"))

tb:launch-mac-application name Function

Example:

Name is the symbol that you used in tb:define-mac-application.
Note that the search path is defined as described above when doing your
tb:define-mac-application.

(tb:launch~mac-application 'color-qix)

tb:mac-application-cleanup &optional reinitialize-p Function

Shuts down all Macintosh applications launched from the
microExplorer, including the default Toolbox server. If reinitialize-p is
true, tb:mac;.application-cleanup will reinitialize the application
channels.

tb:select-application &optional (application tb:CurApName) Function

This function causes the MultiFinder to select application as the current
application. That is, this is the programmatic version of clicking on a
different window or clicking on an application name in the Apple
Menu. application may be an instance of tb:mac-pointer or tb:mac
handle or it may be a string matching the name of the application as it
would appear in the Apple Menu. ,

Macintosh Toolbox Interface

Introduction

Creating,
Opening and
Closing
Resource Files

Chapter 2
RESOURCE MANAGER

2.1 The Resource Manager is a collection of routines used to manage
resources. Resources are data structures that define various objects
used by the Macintosh: menus, windows, dialog boxes, and so on.
Resources are kept in a resource file. At the beginning of every resource
file is a resource map that contains information about all the resources in
the resource file. When the resource file is opened, its resource map is
read into memory. The resource map tells the Resource Manager how
many resources are in the file, their types, their IDs, and their names.
The individual resources in the resource file are loaded into memory as
needed.

The resources in memory can be made purgeable, meaning they can be
thrown out when the Memory Manager needs more memory. When the
Memory Manager purges a resource, it is removed from memory such
that it can be reloaded when it is later needed. Making non-vital
resources purgeable gives the Memory Manager greater flexibility and
generally improves the performance of the machine.

Resources are distinguished by two properties: their resource type and
their resource ID. There are about fifty Apple-defined resources types,
such as "MENU", "WIND", and "DITL". Resource types are listed in
Appendix A. The resource type is a string of four characters where case
and blanks are significant. The resource ID is a 16-bit integer. Up to
65,536 different resources of the same type can exist, but many of
these resource IDs are reserved and are not available. for your use. A
resource name is a string of up to 255 characters.

2.2 The following traps are used to create, open, and close resource
files. Macintosh files are divided into two forks: the data fork and the
resource fork. The data fork is always empty. The resource fork
contains all the individual resource's data and a resource map, which
includes a list of the resources in the file.

tb:!CreateResFile fileName [1-114] Function

Example:

Creates a file with the namefileName on the current volume or in the
current working directory in HFS (Hierarchical File System), and puts a
default resource map in the resource fork.

(tb:!CreateResFile "mySampleResFile")

Before you can work with a newly created file, you must open it with
the trap tb:!OpenResFile.

tb:!OpenResFile fileName [1-115] Function

ktacintosh Toolbox Interface

Opens the resource fork of the ftleftleName, loads in it's resource map,
and returns a refNum (reference number) which is used when you need
to specify the file.

2-1

Resource Manager

Example: (setf resFileRefNum (tb:!OpenResFile "mySampleResFile"))
... > 378

tb:!OpenRFPerm fileName VRejNum permission [IV-17] Function

Similar to tb:!OpenResFile except this trap allows you to defme a
permission and a VRefNum for the fde. See Chapter 21 on the File
Manager for information on the VRefNum argument. For available
permissions, see tb:!fsCurPerm et al.

tb: !CloseResFile re[Num [1-115] Function

Coses the fde which has a reference number rejNum and removes that
file's resource map from memory.

Checking for 2.3 , This routine checks for errors.

Errors

tb:!ResError [1-116] Function

Setting the
Current
Resource File

Checks to see if the last Resource Manager trap used was successful
and returns an error code if it was not.

This trap is normally needed because Resource Manager traps do not
individuaUy return result codes. Instead, you typically call the trap and
then you call tb:!ResError to se~ if the trap worked.

However, a feature of the Toolbox Interface is that it will automatically
signal non-zero result codes for you if the global variable tb:*signal
mac-oserr* is true. Therefore, you will need tb:!ResError only if
you set this variable to false.

2.4 The following traps modify the order in which the resource maps
in memory are searched.

These traps manipulate only the current resource file, the first resource
file in the open resource fde list. That is, they only search "one deep"
into the list. When you read or get information about a resource of a
particular resource type or resource ID, all the open resource files are

·searched for that resource, not just the current file. To force the
Resource Manager to search only the current resource fde, use the "one
deep" traps.

tb: ! CurResFile [1-116] Function

Returns the rejNum (reference number) of the current resource file.

Example: (setf theCurrentResFile (tb:!CurResFile)) => 284

2-2 lJ.{acintosh Toolbox Interface

Resource Manager

th:! HomeResFile theResource [I-117] Function

Searches through the resource maps of all open resource f'tles for a
resource with the handle theResource. If found, it returns a reference
number to the resource file.

tb:!UseResFile refNum [I-117] Function

Getting
Resource Types

Makes the resource file with the reference number of rejNum the current
resource file, the first to be searched by the Resource Manager.

2.S The following traps return resource types or the number of
resource types.

tb:!CountTypes
tb:!CountlTypes

[I-117] Function
[IV-15] Function

Example:

tb:!CountTypes returns the number of resource types in all open
resource files.

tb:!Count!Types is similar except that it searches only "one deep" in
the current resource file.

(tb:!CountTypes) => 38

tb:GetlndType index [I-117] Function
[I-117] Function
[IV-15] Function
[IV-15] Function

th:! GetlndType VAR theType index
tb:GetHndType index
tb:!GetllndType VAR theType index

tb:GetlndType returns the index'th resource type in all open resource
files. The maximum value for index is the value returned by
tb:!CountTypes.

tb:!GetlndType is similar except that it modifies theType to be the
resource type.

t b: Get 1 Ind Type and t b: ! Get 1 Ind Type are similar to
tb:GetlndType and tb:!GetindType respectively except that they
search only "one deep" in the current resource file.

Example: (tb:getindType 6) => "FONT"
(tb:!GetindType (VAR theType) 6)
theType => "FONT"

Macintosh Toolbox Interface 2-3

Resource Manager

Getting,
Counting, and
Disposing of
Resources

2.6 These routines get, count, and load resources.

tb: !SetResLoad load [I-118] Function

Example:

Nonnally, when you call a resource that is not in memory, it is loaded
into memory from the file. However, if you set resLoad to Nil.. by:

(tb: ! SetResLoad nil)

the resource is not automatically loaded from the file if not already in
memory.

CAUTION: Do not use this trap unless you fully
understand the Resource Manager.

th:! CountResources theType
tb:!CountlResources theType

[I-118] Function
[IV-15] Function

Example:

tb:!CountResources returns the number of resources of type
theType in all open resource files.

tb:!CountlResources is similar except that it searches only "one
deep" in the current resource: file. ·

(tb:!CountResources "FONT") •> 95

tb:!GetlndResource theType index
tb:!GetllndResource theType index

[l-118] Function
[IV-15] Function

Example:

tb:!GetlndResource indexes into the resources of type theType.
This trap returns the handle to the index'th resource of theType. There
is no relationship between a resource's ID and its index.

tb:!GetllndResource is similar except that it searches only "one
deep" in the current resource file.

NOTE: The trap tb:!UseResFile, which changes the first resource
file to be searched, does not affect the order of the resources in the
resource map.

To get the handle to the first "FONT" resource in the open resource
files, do the following:

(setf theRes (tb: !GetindResource "FONT" 2))

Macintosh Toolbox Interface

Resource Manager

tb:!GetResource theType the/D
tb: GetResource theType the/D
th:!GetlResource theType theTD
tb:GetlResource theType the/D

[I-119] Function
[I-119] Function
[IV-16] Function
[IV-16] Function

Example:

tb:!GetResource returns a handle to the resource with a resource type
theType (a string of four characters) and a resource ID number the/D.
If the resource is not found, tb:!GetResource returns a NIL handle
(i.e., a handle of zero) and tb:!ResError returns noErr. You must
either check the handle returned by th: !GetResource or use the
alternate function tb:GetResource.

tb:GetResource is similar except that it signals tb:!resNotFound if
the resource does not exist.

t b : ! G et 1 Res o u r c e and t b : G e t1 Res o u r c e are similar to
tb:!GetResource and tb:GetResource, respectively, except that
they search only "one deep" in the current resource file.

If a resource does exist, the following example will return the handle to
the resource of "MENU" resource type with a resource ID of 1.

(setf theRes (tb:!GetResource "MENU" 128))

tb:!RGetResource theType the/D
tb:RGetResource theType the/D

[V-30] Function
[V-30] Function

tb:!RGetResource is similar to tb:!GetResource except that if the
resource is not found in the system file, ROM is searched .. If the
resource is not found, tb:!RGetResource returns a NIL handle (i.e.,
a handle of zero) and tb:!ResError returns noErr. You must either
check the handle returned by tb:!RGetResource or use the alternate
function tb:RGetResource.

tb:RGetResource is similar except that it signals tb:!resNotFound
if the resource is not found.

th:!GetNamedResource theType name
tb:!GetlNamedResource theType name

[I-119] Function
[IV-16] Function

tb:!GetNamedResource is similar to tb:!GetResource except that
you must specify the resource you want by its resource type and its
name.

tb:!GetlNamedResource is similar to tb:!GetNamedResource
except that it searches only "one deep" into the current resource file.

If you want to get the handle to the Scrapbook desk accessory, do the
following:

Example: (setf theRes (tb: !GetNamedResource "MENU" "Apple"))

Macintosh Toolbox Interface 2·5

Resource Ma11llger

tb:!LoadResource theResource [I-119] Function

Ensures that a resource with the handle theResource exists in memory,
and reloads it from its resource file if not already in memory.

tb:!ReleaseResource theResource [I-120] Function

Given a handle to the resource theResource, this trap sets the resource
handle in the resource map to NIL and then releases the handle data.
Tiris means that the resource data contained in the handle is lost. Refer
to Inside Macintosh for more information about using this trap.

tb:!DetachResource theResource [I-120] Function

Getting
Resource
Information

Sets the resource handle theResource in the resource map to NIL, but
does not release the handle of data so the resource data contained in the
handle is not lost. Refer to Inside Macintosh for more information
about using this trap.

2. 7 All resources can be identified by the following three parameters:
a resource type, a resource ID, and a resource name. The resource type
(a four character string) and resource ID (a 16-bit integer) are required.
Specification of a resource name (a string of up to 255 characters) is
optional.

tb:!UniqueID theType
tb:!UniquellD theType

[I-121] Function
[IV-16] Function

Example:

tb:!UniqueID returns a resource ID which has not been used by any
other resource of the resource type theType in any of the currently
opened resource files.

tb:!UniquelID is similar except that it searches only "one deep" in the
current resource file.

Appendix A contains a list of reserved resource types that should not be
used when creating application def'med resources. Resource ID's less
than 128 are reserved for the system and also should not be used.

To get an unused "DITL" (dialog item list) resource ID, do the
following:

(setf newResID (tb:!UniqueID "DITL")) => 7823

tb:GetReslnfo theResource [I-121] Function
[I-121] Function tb:!GetReslnfo theResource VAR the/D VAR theType

VAR name

tb:GetReslnfo returns information about a resource with the handle
theResource. The trap returns three values: the resource's resource ID
(a 16-bit integer), the resource's resource type (a four character string),
and the resource's name (a string of up to 255 characters).

Macintosh Toolbox Interface

Example:

Resource Manager

tb:!GetReslnfo is similar except that it modifies the/D, theType, and
name to be the resource ID, type, and name, respectively.

Suppose you have a resource handle h and wish to determine its
resource type. You would do the following:

(setf h (tb:!GetResource "MENU" 128))
(multiple-value-bind (theID theType name)

(tb:getResinfo h)
... body within which ...
theID => 128
theType => "MENU"
name => "Apple"

tb:!GetResAttrs theResource [I-121] Function

Returns the resource attributes (resAttributes) of the resource
theResource. The resource attributes are a group of tlags that tell the
Resource Manager the status and properties of a resource. The
following constant masks may be used to examine the resource
attributes returned by this function.

tb:!resSysHeap
th:! resPurgable
tb:!resLocked
tb: ! resProtected
tb:!resPreload
tb: ! resChanged

[I-111] Constant
[I-111] Com.1tant
[I-111] Constant
[I-111] Constant
[I-111] Constant
[I-111] Constant

These are constant masks for the resource attributes indicating this
resource is to be read into system heap, is purgeable, is locked, is
protected, is to be preloaded, or has been changed (and therefore needs
to be written), respectively.

tb:!MaxSizeRsrc theResource [IV-16] Function

Returns the resource size by looking at the resource map. The trap
tb:!SizeResource also returns the resource size but is much slower as
it must read the information from the disk.

th: !SizeResource theResource [I-121] Function

Returns the size, in bytes, of the resource theHandle.

tb:!RsrcMapEntry theResource [IV -16] Function

Macintosh Toolbox Interface

Returns an offset into the resource map of the entry for the resource
theResource.

2-7

Resource Manager

Modifying
Resources

2.8 Except for tb:!UpdateResFile and th:!WriteResource, the
following routines described in this section change the resomce map in
memory and not the map in the resource file itself.

2-8

tb:!SetReslnfo theResource the/D name [1-122] Function

Changes the resource information of the resource specified in
theResource. The resource ID is changed to the/D and the resource
name is changed to name. Do not change a resource's ID unless you
know exactly what you are doing.

th:!SetResAttrs theResource attrs [1-122] Function

Sets the resource attributes of theResource to attrs. See the trap
th:!GetResAttrs for the attributes table.

th:? Changed Resource theResource [1-123] Function

Used after the resource information, resource attributes, or resource
data of theResource has been changed. This trap sets the res<; hanged
resomce attribute of the resomce. When the resource file is updated, or
when the th: !WriteResource trap is called with the resource
theResource, the Resource Manager writes any changes to the resource

· file.

th:!ChangedResource verifies that there is sufficient disk space to
write out the modified file. The th:!ResError trap returns an error if
there is not enough disk space to save the changed resource. Check the
error code returned by that trap before proceeding with the
th:!WriteResource trap.

th:!AddResource theData theType the/D name [1-124] Function

Example:

Add resources to a resource file. Given a handle theData, this trap adds
theData to the resource map of the current resource file giving it a
resource type of theType, a resource ID of the/D, and a resource name
of name.

(setf resHandle (tb:!NewHandle 30))
(tb:!AddResource resHandle "TEST" 1 "testResource")

th: !RmveResource theResource [1-124] Function

Removes theResource from the resource map. This differs from the
th:!DetachResource and th:!ReleaseResource traps which set the
resource handle to NIL, but leave the resource in the resource map.
Refer to Inside Macintosh before using this trap.

th:!UpdateResFile refNum [1-125] Function

Does the required housekeeping necessary to keep the resource file
consistent with the resource map. This trap updates all of the resources
which have their th:!resChanged attributes set to the resomce file.

Macintosh Toolbox Interface

Resource Manager

tb: !WriteResource theResource [1-125] Function

Example:

Checks the resChanged resource attribute of theReso11rce (see
tb:!resChanged). If resChanged is set, the trap writes the resource
out to the resource file and clears the resChanged attribute of
theResource. Unlike the tb:!ChangedResource trap, this trap does
not check for sufficient disk space.

The following example creates a new handle, makes a resource of type
"TEST" with a resource ID of 1 and then writes it to the current
resource file.

(setf current (tb:!CurResFile))
(tb:!CreateResFile 0 ResFile 0)

(setf refnum (tb:!OpenResFile 0 ResFile 0))

(setf resHandle (tb:!NewHandle 30))
(tb:!AddResource resHandle "TEST" 1 "test resource")
(tb:!WriteResource reshandle)
(tb: ! CloseResFile refnum)
(tb:!UseResFile current)

tb:!SetResPurge install [1-126] Function

Calling (tb:!SetResPurge t) tells the Memory Manager to call the
Resource Manager when it attempts to purge any purgeable blocks in

_memory. The Resource Manager then verifies that the handle is a
resource, and if so, calls the tb: !W riteResource trap if the resource's
resChanged resource attribute is set (see tb:!resChanged).

tb: ! GetResFileAttrs refNum [1-127] Function

Returns the file attributes of the resource file with a file reference
number rejNum. The file attributes tell the Resource Manager the status
and properties of the resource file. The following mask constants may
be ~ed to examine the resource f.de attributes returned by this function.

th: !ma pChanged
tb:!mapCompact
tb:!mapReadOnly

[1-126] Constant
[I-126] Constant
[I-126] Constant

These constants are masks for the resource file attribute indicating that
the resource map has been changed and therefore needs to be written,
should be compacted when written, or is read-only respectively.

tb:!SetResFileAttrs refNum attrs [1-127] Function

Macintosh Toolbox Interface

Sets the file attributes of the resource file with a reference number
rejNum.

2-9

Introduction

Chapter 3
QUICKDRAW

3.1 QuickDraw is the name given to the group of over one hundred
Macintosh Toolbox traps that draw and manipulate graphic objects.
There are traps for drawing and manipulating simple graphic objects
such as:

• Lines
• Rectangles
• Round-cornered rectangles
• Ovals
• Arcs
• Text

and more complex graphic objects, including:

• Polygons - A group of connected straight lines.
• Pictures - A list of QuickDraw drawing commands which can be

played back.
• Regions - A rectangle which contains a group of graphic objects.

In most cases, a new grat'Port is automatically set up when you create a
window. Just call the trap tb:!SetPort to make the new window's
grafPort the current grafPort.

Methods are provided for most of the functions that draw or perform
calculations on graphic objects. By calling the method instead of the
function, portability between systems is greatly simplified. In addition,
it is often faster to invoke the method than the function. If possible, use
the method given rather than the function.

GrafPorts 3.2 The most frequently used grat'Port traps are tb:!GetPort and
tb:!SetPort.

GrafPort 3.2.1 To create a new grat'Port object, make an instance of the
tb:grafPort flavor.

tb:grafPort [1-148] Flavor

Macintosh Toolbox Interface

This flavor defines a black-and-white grafPort. It is unlikely that you
will ever have to explicitly create a tb:grafPort instance. Normally,
you will use a flavor which has tb:grafPort flavor as a mixin.
tb:grafPort instances have the following instance accessor methods:

• :DEVICE
• :PORTBITSBASEADDR
• :PORTBITSROWBYTES
• :PORTBITSBOUNDSTOP
• :PORTBITSBOUNDSLEFf
• :PORTBITSBOUNDSBOTTOM
• :PORTBITSBOUNDSRIGHT

;O
;2
;6
;8
;10
;12
;14

[integer]
[pointer]
[integer]
[integer]
[integer]
[integer]
[integer]

3-1

QuiclcDraw

• :PORTRECITOP ;16 [integer]
• :PORTRECTLEFf ;18 [integer]
• :PORTRECTBOTIOM ;20 [integer]
• :PORTRECfRIGHT ;22 [integer]
• :VISRGN ;24 [rgnhandle]
• :CLIPRGN ;28 [rgnhandle]
• :BKPATONE ;32 [unsigned-integer]
• :BKPATI'WO ;34 [unsigned-integer]
• :BKPATIHREE ;36 [unsigned-integer]
• :BKPATFOUR ;38 [unsigned-integer]
• :FILLPATONE ;40 [unsigned-integer]
• :FILLP A 'ITWO ;42 [unsigned-integer]
• :FILLPA'ITHREE ;44 [unsigned-integer]
• :FILLPA1FOUR ;46 [unsigned-integer]
• :PNLOCV ;48 [integer]
• :PNLOCH ;50 [integer]
• :PNSIZEV ;52 [integer]
• :PNSIZEH ;54 [integer]
• :PNM ODE ;56 [integer]
• :PNPATONE ;58 [unsigned-integer]
• :PNPATI'WO ;60 [unsigned-integer]
• :PNPATTHREE ;62 [unsigned-integer]
• :PNPA1FOUR ;64 [unsigned-integer]
• :PNVIS ;66 [integer]
• :TXFONT ;68 [integer]
• :TXFACE ;70 [style]
• :TXM:ODE ;72 [integer]
• :TXSIZE ;74 [integer]
• :SPEXTRA ;76 [fixed]
• :FGCOLOR ;80 [longint]
• :BKCOLOR ;84 [longint]
• :COLRBIT ;88 [integer]
• :PICSAVE ;92 [handle]
• :RGNSAVE ;96 [handle]
• :POLYSAVE ;100 [handle]
• :GRAFPROCS ;104 [qdprocsptr]

The only instance variables of a tb:grafPort instance you are likely to
be interested in are the tb:PortRect ones· which de:fme the boundary
rectangle of the tb:grafPort instance.

Exa.mple: (setf gp (make-instance 'tb:grafport))
(tb:!GetPort gp) => T gp #<GRAFPORT Pointer 010E6C>

CGrafPort 3.2.2 To create a new color grafport, make an instance of the
(color grafPort) tb:cGrafPort flavor.

tb:cGrafPort [V-50] Flavor

This flavor defines a color grafPort data structure. It is unlikely that you
will ever have to explicitly create an instance of this flavor. Normally,
you will use a flavor which mixes in the tb:cGrafPort flavor such as

Macintosh Toolbox Interface

Example:

GrafPort and
CGrafPort

Routines

QuickDraw

th: Window or tb:DialogRecord. tb:cGrafPort instances have the
following instance accessor methods:

• :DEVICE ;O [integer]
• :PORTPIXMAP ;2 L pixmaphandle]
• :PORTVERSION ;6 [integer]
• :GRAFVARS ;8 [handle]
• :CHEX1RA ;12 [integer]
• :PENLOCHFRAC ;14 [integer]
• :PORTRECITOP ;16 [integer]
• :PORTRECTLEFr ;18 [integer]
• :PORTRECTBO'ITOM ;20 [integer]
• :PORTRECI'RIGHT ;22 [integer]
• :VISRGN ;24 [rgnhandle]
• :CUPRGN ;28 [rgnhandle]
• :BKPIXPAT ;32 [pixpathandle]
• :RGBFGCOLORRED ;36 [unsigned-integer]
• :RGBFGCOLORGREEN ;38 [unsigned-integer]
• :RGBFGCOLORBLUE ;40 [unsigned-integer]
• :RGBBKCOLORRED ;42 [unsigned-integer]
• :RGBBKCOLORGREEN ;44 [unsigned-integer]
• :RGBBKCOLORBLUE ;46 [unsigned-integer]
• :PNLOCV ;48 [integer]
• :PNLOCH ;50 [integer]
• :PNSJZEV ;52 [integer]
• :PNSJZEH ;54 [integer]
• :PNM ODE ;56 [integer]
• :PNPIXPAT ;58 [pixpathandle]
• :FILLPIXPAT ;62 [pixpathandle]
• :PNVIS ;66 [integer]
• :TXFONT ;68 [integer]
• :TXFACE ;70. [style]
• :TXM:ODE ;72 [integer]
• :TXSIZE ;74 [integer]
• :SPEXTRA ;76 [fixed]
• :FGCOLOR ;80 [longint]
• :BK COLOR ;84 [longint]
• :COLRBIT ;88 [integer]
• :PICSAVE ;92 [handle]
• :RGNSAVE ;96 [handle]
• :POLYSAVE ;100 [handle]
• :GRAFPROCS ;104 [cqdprocsptr]

(setf cgp (make-instance 'tb:cgrafport))
(tb:!GetFort cgp) => T cgp #<CGRAFFORT Pointer 010E6C>

3.2.3 These traps and methods are used to create, modify, and
dispose of grafPorts and cGrafPorts. Most of the time you will not use
grafPorts directly; instead you will use windows and dialogrecords
which are extended types of grafPorts.

tb:!InitGraf pointer [1-162] Function

Macintosh Toolbox Interface

Initializes the QuickDraw global variables. Since QuickDraw has
already been initialized by the TbServer, do not use this function.

3.3

:open
:open
tb:!OpenPort grafPort
tb:!OpenCPort cGrafPort

Method of tb:grafPort
Method of tb:cGrafPort

[I-163) Function
[V-67) Function

The two methods above allocate space in the Macintosh heap via a
tb:!NewPtr and then call tb:!OpenPort or tb:!OpenCPort,
respectively. The two functions set up the various fields of the given
grafPort (or cGrafPort). You will rarely need to call either of these
functions because they are called by the Window Manager when a new
window is created.

CAUTION: Never use tb:!OpenPort or tb:!OpenCPort
without allocating space via tb:!NewPtr. It is not sufficient
to merely make an instance of tb:grafport.

You will nonnally want to save the current port before using the :open
methods or traps because they will cause the new port to be the current
grafPort. Calling the methods or traps from the top level will cause the
new grafPort to become the current grafPort.

tb:!InitPort grafPort
tb:!lnitCPort cGrafPort

[1-164] Function
[V-67] Function

These are internally called traps and should not be used.

:dispose
:dispose
tb:!ClosePort gratport
tb:!CloseCPort cGrafPort

Method of tb:gratPort
Method of tb:cGratPort

[V-164] Function
[V-68) Function

Example:

These functions and methods close a grafPort (or cGrafPort), disposing
of any data objects that may have been created. You should never need
to call these, except if you are working with off-screen bitmaps, as they
are called intemally by tb:!CloseWindow.

;;;Example of creating, opening, getting, setting, and closing a
(defun ALLOC-NEW-GRAFPORT ()

new graf Port

(let ((temp-port (make-instance 'tb:cgrafport))
(cgp nil))

(tb:!GetPort temp-port)
(setf cgp (make-instance 'tb:cgrafport))
(send cgp :open)
(tb:!SetPort temp-port)
cgp))

(setf cgp (alloc-new-grafport))
... work with off screen bitmap ...
(send cgp :dispose)

tb:!SetPort grafPort

; save current graf Port
; make new cgrafPort
; allocate Bi lnlt structs
; restore original port
; return a new color gp

; deallocate memory

[I-165] Function

Makes gra/Port the current grafPort. This means that all further
QuickDraw traps will refer to and act upon grafPort. You usually call

Macintosh Toolbox lntelface

Example:

QuickDraw

this trap after receiving an activate event or an update event for a
window. T.o call this trap, do the following:

(tb: ! SetPort myWindow)

All further QuickDraw commands will be drawn into the window
my Window.

It is a good idea to save the current grafPort using the trap tb:!GetPort
before using tb:!SetPort. You can then restore the original grafPort
when you are :finished.

th: Get Port
tb:!GetPort grafPort

[I-I 65] Function
[1-165] Function

Example:

tb:GetPort returns the current grafPort. The current grafPort is the
grafPort in which all QuickDraw traps are drawn. If the current
grafPort is a window, GetPort will return a window instance instead of
a grafPort. Notice in the example below how the current grafPort is
saved before operations on a different port are done, and then how the
original grafPort is restored.

tb:!GetPort is similar except that it updates grafPort with the new
grafPort information.

(defun 1!'00 ()
(let ((temp-port (make-instance 'tb:cGrafPort)))

(setf temp-port (tb:GetPort)) ;save current port In It
(tb: ! SetPort myWindow)

.• .some operations on a different grafport ...
(tb: !SetPort temp-port))) ;sat back to original port

tb:!GraIDevice device [1-165] Function

Sets the current grafPort field device to the integer value specified in
device. You will never call this trap.

tb: !SetPortBits bitMap
tb: !SetCP~rtPix pixMap

[l-165] Function
[V-76] Function

These traps set the bitMap (or the pixMap) of the current grafl>ort to a
previously defined bitmap (or pixMap). They are useful for graphic
animation where you create an off-screen grafPort, draw into it, and
then copy it into the on-screen grafPort using tb:!CopyBits.

tb:!PortSize width height [1-165] Function

Sets the width and height of the grafPort's portRect. This does not
affect the screen; it merely changes the size of the "active area" of the
grafPort. You will never call this trap. It is normally called by the
Window Manager.

tb:!MovePortTo leftGlobal topGlobal [1-166] Function

Macilflolh Toolbox Interface

This trap is only called internally. You will never call this trap. It is
normally called by the Window Manager.

3.5

QukkDraw

tb:!SetOrigin h v [1-166] Function

Sets the local coordinate system of the grafPort. The integers h and v are
the new coordinates of the grafPort portRect's top and left coordinates.
See the discussion in Inside Macintosh.

:clip rect-or-region
tb:!SetClip region
tb:!ClipRect rect

Method of tb:grafPort
[1-166] Function
[1-167] Function

Example:

Sets the grafPort's clipRegion equivalent to region or rect.

(defun FOO ()
(let ((w (make-instance 'tb:window :title

"Half of a Color Circle"))
(r (make-instance 'rect :left 10 :top 10

(tb: ! SetPort w)
(send r :FrameOval)
(send w :clip

(make-instance

(send r :FillCOval)
(sleep 5)

:right 110 :bottom 110)))

; clip to left half
'rect :left 10 :top 10

:right 60 :bottom 110))
; fill half a clrcle

(send w :dispose)))
tb:!GetClip region [1-167] Function

Changes region to be equivalent to the current grafPort's clipRegion.
This is the opposite of tb:!SetClip.

tb:!BackPixPat pixPat
tb:!BackPat pattern

[V-74] Function
[1-167] Function

Example:

Set the background pattern of the current gra:fPort to the given pixPat (or
pattern). To set the background pattern of the current grafPort to light
gray, do the following:

(tb: ! Back!? at tb: ! ltgray)

tb:!OpColor RGBColor [V-77] Function

Sets the operand red, blue, and green colors used by tb:!AddPin,
tb:!SubPin, and tb:!Blend drawing modes if the current grafPort is a
color grafPort.

tb:!HiliteColor RGBColor [V-77] Function

Overides the system color and allows you to change the highlighting
color used by the current port if the current grafPort is a color grafPort.

tb:!CharExtra fixed [V-77] Function

Specifies the number of pixels to widen every character, excluding the
space character, in a line of text.

Macintosh Toolbox Interface

tb:!blend
tb:!addPin
tb: !addOver
tb:!subPin
tb:!adMax
tb:!subOver
tb:!asMin

Quic/cD1·aw

th: !transparent

[V-59] Constant
[V-59] Constant
[V-59] Constant
[V-59] Constant
[V-59] Constant
[V-59] Constant
[V-59] Constant
[V-59] Constant

Cursor
Handling

Cursor

Color Cursor

Cursor Handling
Routines

These constants represent the color QuickDraw arithmetic transfer
modes.

3.3 A cursor is the small image that appears on the screen and is
controlled by the mouse. The mouse position is always linked to the
cursor position. You can't reposition the cursor through software; the
only control you have is whether or not it is visible and what shape it
will assume.

3.3.1 Normally you can get the cursor you need from a resource
using tb:!GetCursor. If, however, you were writing a cursor editor
and needed a blank cursor object, you could make an instance of the
tb:cursor flavor. The system would then automatically give you a
handle 68 bytes long.

3.3.2 A color cursor is a handle 96 bytes long. Color cursors are
much more complicated than regular cursors. Normally, you will use·
tb:!GetCCursor to get a color cursor. To get a blank cursor to use in
a cursor editor, for example, make an instance of the tb:cCursor
flavor.

3.3.3 Cursor handling routines are the functions that control the
appearance and visibility of the cursor.

tb: !InitCursor [1-167] Function

Sets the cursor to the arrow cursor and makes it visible. This trap is
called for you initially when you launch the TbServer.

tb:!GetCursor cursor/D
tb:!GetCCursor cursor/D

[1-474] Function
[V-75] Function

Macintosh Toolbox Interface

Return a handle to a cursor with the given resource ID of cursor/D in the
"CURS" resource. The Toolbox Utility trap tb:!GetCursor can be
used to select any cursor. There are four predefined cursors shown
below and defined by the following constants:

3.7

QuiclcDraw

Standard Cursors

1 Beam Cursor crossCursor p 1 us Cursor watchCursor

tb: !IBeamCursor
tb:!PlusCursor
tb: ?Watch Cursor
tb:!CrossCursor
tb: !ArrowCursor

[I-474] Constant
[l-474] Constant
[l-474] Constant
[1-474] Constant
[1-474] Constant

These are the "CURS" resource IDs for standard cursors.

• iBeam selects text
• thin cross draws graphics
• thick plus selects cells in structured documents
• watch indicates a long wait
• arrow points

Example: (tb:!SetCursor (tb:!GetCursor tb:!WatchCursor))

;;;Another example that changes cursors
(defun FOO ()

(dotirnes (i 16)
(tb:!SetCursor (tb:!GetCursor
(sleep 1))

(tb: ! InitCursor))

tb:!SetCursor cursor
tb:!SetCCursor cursor

(1 + (mod i 4))))

[I-167] Function
[V-75] Function

Set the current cursor to the one specified in cursor.

tb:!ShowCursor
tb:!HideCursor

Makes the cursor visible or invisible.

tb: !ObscureCursor

[I-168] Function
[I-168] Function

[1-168] Function

Hides the cursor until the next time the mouse is moved.

tb:!DisposCCursor cursor [V-75] Function

Disposes of the memory associated with a color cursor.

tb: ! AllocCursor [V-75] Function

Reallocates color cursor memory. See Inside Macintosh before using.

Macintosh Toolbox Inte1face

QuiclcDraw

tb:!ShieldCursor shieldRect point (1-4 7 4] Function

Removes the cursor from the screen if the cursor and the rectangle
shieldRect intersect.

Icon Handling 3.4 These traps are used to create and dispose of icons.

tb:!Getlcon icon/D
tb:!GetCicon icon/D
tb:Getlcon ic_on/D

(1-473] Function
[V-76] Function
[1-473] Function

Get an icon (or a color icon) from a resource with an ID icon/D.
tb:Getlcon signals an OSErr is the icon is not found

tb:!Plotlcon rect Icon
tb:!PlotCicon rect clcon

[1-4 73] Function
[V-76] Function

Draw the icon whose handle is icon (or clcon) in rect.

tb: !DisposCicon cl con [V-76] Function

Disposes of the color icon.

Pen and Line
Drawing

3 .5 Two data structures are used when drawing with the pen:
tb:PenState and th: Pattern. To get a new pen state or pattern , make
in instance of the tb:PenState or tb:Pattern flavor, respectively.

tb:PenState [l-169] Flavor

This flavor defines an "empty" pen state data structure. An instance of
this flavor is passed to the trap tb:!GetPenState. The trap updates
various information about the pen in the current grafPort.

:PnLocV
:set-PnLocV integer
:PnLocH
:set-PnLocH integer

Pen location as point coordinates.

:PnSizeV
:set-PnSizeV integer
:PnSizeH
:set-PnSizeH integer

Pen size as height and width

:PnMode
:set-PnMode integer

Pen drawing mode (e.g., tb:!patCopy).

Macintosh Toolbox Interface

Method of tb: PenState
Method of tb: PenState
Method of t:b: PenState
Method of tb:PenState

Method of tb:PenState
Method of tb:PenState
Method of tb:PenState
Method of tb:PenState

Method of th: PenState
Method of tb:PenState

3.9

QuickDraw

3-10

:PnPatl
:set-PnPatl 16b-integer
:PnPat2

Method of th: PenState
Method of th: PenState
Method of tb: PenState
Method of th: PenState
Method of tb:PenState
Method of tb:PenState
Method of tb: PenState
Method of th:PenState

:set-PnPat2 I 6b-integer
:PnPat3
:set-PnPat3 I 6b-integer
:PnPat4
:set-PnPat4 I 6b-integer

tb:Pattern

:one

The 8-byte pen pattern expressed as four 16-bit integers.

[I-146] Flavor

A tb:Pattern instance consists of 8 bytes of data organized into four
16-bit unsigned integer instance variables.

:set-one I 6b-unsigned-integer
:two

Method of tb: Pattern
Method of tb:Pattern
Method of tb: Pattern
Method of th: Pattern
Method of th: Pattern
Method of th: Pattern _
Method of th: Pattern
Method of th: Pattern

:set-two I 6b-unsigned-integer
:three
:set-three I 6b-unsigned-integer
:four
:set-four I 6b-unsigned-integer

tb:!Black
tb:!dkGray
tb:!ltGray
tb:!White

th:! HidePen

Variable
Variable
Variable
Variable

These are the predefined patterns for solid black, dark gray, light gray,
and solid white. They are effectively constants since the pattern they
represent never changes. However, they are classed as variables rather
than constants because they reside on the Macintosh side and must be
reestablished each time the Toolbox server is launched.

[I-168] Function

Makes the pen in the current grafPort invisible. All further effects of
QuickDraw traps which use the pen will be invisible. Actually,
tb:!HidePen decrements the pnVis counter. See Inside Macintosh for
details.

tb:!ShowPen [I-168] Function

Makes the pen in the current grafPort visible. All further effects of
QuickDraw traps which use the pen will be visible. Actually,
th:!ShowPen increments the pnVis counter. See Inside Macintosh for
details.

tb: !GetPen point [I-169] Function

Returns the current location of the gratPort pen in point.

Macintosh Toolbox Interface

QuickDraw

Example: (setf pt (make-instance 'tb:point)) ; get a point Instance
(tb: ! Get Pen pt) ; set It to current pos
pt => t<POINT x=O y•O> ; examine It

The point now has the coordinates of the current grafPort's pen.

tb:!GetPenState penState [1-169] Function

Example:

Returns the current grafPort's pen status in penState. A PenState
instance is passed to the trap and the PenState is returned in the instance.

(setf pnstate (make-instance 'tb:PenState))
(tb:!GetPenState pnstate)
(send pnState :pnMode) ~> 8

In this example, the current pen mode is tb: ! patCopy.

tb:!SetPenState penState [1-169] Function

Sets the current grafPort's pen status to the values of the penState
instance.

tb: !PenSize width height [1-169] Function

Sets the current grafPort's pen width (in pixels) to width, and its height
to height.

tb: !PenMode mode [1-169] Function

Sets the transfer mode which QuickDraw uses to draw onto the
grafPort's bitmap. The constants defining the available transfer modes
follow.

tb:!patCopy
tb:!patOr
tb:!patXOr
tb:!patBic
tb:!notPatCopy
tb:!notPatOr
tb:!notPatXOr
tb: !notPatBic

These are QuickDraw transfer modes.

tb:!PenPixPat pixPat
tb: !PenPat pattern

[1-157] Constant
[1-157]. Constant
[I-157] Constant
[1-157] Constant
[1-157] Constant
[1-157] Constant
[1-157] Constant
[1-157] Constant

[V-74] Function
[I-170j Function

Set the pen pattern of the current grafPort to the pixPat or pattern
specified.

tb: ?Pen Normal [l-170] Function

Macintosh Toolbox Interface

Restores the current grafPort's pen status to the default value. The
default pen's width is one pixel, it's height one pixel. The pen mode is
tb:!patCopy and the pen pattern is black.

3-11

QuiclcDraw

:moveTo Method of tb:Point

Moves the pen to the location specified by point.

tb:!MoveTo h v [I-170] Function

Moves the pen to the horizontal position h and the vertical position v in
the current grafPort's local coordinate system.

tb:!Move dh dv [I-170] Function

:lineTo

Moves the pen dh horizontally, dv vertically, from its present position.

Method of tb:Point

Draws a line from the pen's present position to point and leaves the pen
there.

th: ?Line To h v [I-170] Function

Draws a line from the pen's present position to a point with local
coordinates (h,v) and leaves the pen at (h,v).

tb:!Line dh dv [1-171] Function

Draws a line from the pen's present position to a point which is located
at a distance dh horizontally and dv vertically away, and leaves the pen
there.

Text Drawing 3.6 These routines control the characteristics of text elements:
assigning type styles, setting pen modes, etc.

3-12

tb:!TextFont font [1-171] Function

Sets the current gratPort's font to the font indicated. To determine the
font number of a desired font, use the Font Manager trap
tb:!GetFNum.

tb:!TextFace face [1-171] Function

Sets the current grafPort's character style. The presently defined
character styles are:

tb:!Bold
th: !Italic
tb: ! Underline
tb:!Outline
tb:!Shadow
tb:!Condense
tb:!Extend

[1-152] Constant
[1-152] Constant
[1-152] Constant
[1-152] Constant
[1-152] Constant
[1-152] Constant
[1-152] Constant

Additive masked used to defined text styles. To get any combination of
character styles you must add the masks together. For example, to set

Macintosh Toolbox Interface

Example:

QuickDraw

the current gratPort's text character style to Bold and Underline do the
following:

(tb:!TextFace (+ tb:!bold tb:!Underline))

tb: !TextMode mode [I-171] Function

Sets the current gratPort's text transfer mode as indicated by the integer
in mode. See tb: !PenMode for the various pen transfer modes.

tb:!TextSize size [I-171] Function

Sets the current gratPort's font size as indicated in size. To determine if
a font of the desired size exists, call the Font Manager trap
tb:!RealFont.

tb:!SpaceExtra integer [I-172] Function

Sets the average number of pixels to pad out the spaces in a line of text.

tb: !DrawChar character [I-172] Function

Draws character at the present pen position and advances the pen the
character's width. -

tb: !Drawstring string [I-172] Function

Draws the given string at the present pen position and advances the pen
the width of the string. ·

tb:!DrawText textBuf offset byteCount [I-172] Function

Draws byteCount number of characters, starting at offset (an integer),
into a text buffer pointed to by textBuf and advances the pen the width
of the text.

tb: !CharWidth character [I-173] Function

Returns the width, in pixels, of the character indicated in character.

tb:!StringWidth string [I-173] Function

Returns the width of string in pixels, i.e, the sum of all the component
character widths.

tb:!Textwidth textBuf offset byteCount [I-173] Function

Returns the width, in pixels, of byteCount number of characters in a text
buffer pointed to by textBuf, starting at offset.

tb:!MeasureText byteCount textAddr charLocs [N-25] Functions

Macintosh Toolbox Interface

This is an array-based version of the trap tb:!TextWidth. It returns an
array of the character widths in charLocs of the byteCount number of

3.13

characters starting at textAddr. The object pointed to by charLocs should
be at least (byteCount * 2) bytes in size.

tb:!GetFontlnfo Fontinfo [I-173] Function

tb:Fontlnfo

:Ascent
:Descent
:WidMax
:Leading

Example:

Drawing in
Color

Returns infonnation (ascent, descent, etc.) about the current grafPort's
font in the data structure Fontinfo. To create a new object suitable for
use as this trap's argument, make an instance of the tb:Fontlnfo
flavor.

[I-173] Flavor

This flavor defines a Fontinfo data structure. The :init method for this
flavor automatically calls tb: !GetFontlnfo ~o initialize the new
instance. Therefore, it is generally not necessary for you to call
tb:!GetFontlnfo yourself.

widMax __.._

{
------- ascent 1i ne

ascent

-..:-1r.-... .___ base line

Init Option of th: Fontinfo
lnit Option of lb: Fontinfo
Init Option of tb:Fontlnfo
Init Option of th: Fontinfo

descent { _______ _
descent Hne

The above diagram explains the th: Fontinfo instance variables.

(setf info (make-instance 'tb:fontinfo))
-> #<Fontinfo ascent:12 descent:3 widmax:15 leading:l>

(send info :ascent) •> 12

For reasons of efficiency, tb:Fontlnfo instances reside on the
microExplorer unlike most of the Toolbox objects.

3. 7 These routines will enable applications to do color drawing. All
nonwhite colors will appear as black on black-and-white output devices.
Colors in cGratPorts are represented by RGBColor objects. To create a
new RGBColor object, make an instance of the tb:RGBColor flavor.

tb:RGBColor [V-48] Flavor

3.14

This flavor represents a color as three 16-bit unsigned integers
corresponding to the saturation levels for red, green, and blue.

Macintosh Toolbox Interface

:red
:set-red 16b-unsigned-integer
:green
:set-green l 6b-unsigned-integer
:blue
:set-blue l 6b-unsigned-integer

QuickDraw

Method of tb:RGBColor
Method of tb:RGBColor
Method of tb:RGBColor
Method of tb:RGBColor
Method of tb:RGBColor
Method of tb:RGBColor

These methods read and write the color state of the flavor.

Example: (make-instance 'tb:RGBColor)

:= &optional red green blue Method of tb:RGBColor

Sets the RGBColor to the given red, green, and blue values.

tb:!RGBForeColor RGBcolor
tb:!ForeColor color

Set the foreground color of the current grafPort.

tb:!RGBBackColor RGBcolor
tb:!BackColor color

Set the background color of the current grafPort.

tb:!ColorBit whichBit

[V-68] Function
[1-173] Function

[V-68] Function
[1-17 4] Function

[14 74] Function

Tells QuickDraw into which color plane to draw (0-31).

tb:!GetForeColor RGBcolor
tb:!GetBackColor RGBcolor

[V-69] Function
[V-69] Function

Operations on
Color Tables

Returns the RGB components of the foreground (or background) colors
set in the current port. This call works for both grafPorts and
cGrafPorts.

3.8 These procedures create and dispose of color tables.

tb:!GetCTable integer [V-77] Function

Allocates and returns a handle to a new color table data structure and
initializes it using the information in the "clut" resource whose resource
ID is integer.

tb:!DisposCTable colorTable [V-77] Function

Disposes of the colorTable.

Macintosh Toolbox Interface 3-15

Operations on
Pixel Patterns

3.9 These routines create, modify, and dispose of pixel patterns. To
create a new pixel pattern, make an instance of the tb:pixPat flavor.

3-16

tb:pixPat [V-55] · Flavor

This flavor defines a pixel pattern. tb:pixPat instances have the
following instance accessor methods:

• :PAITYPE
• :PATMAP
• :PATDATA
• :PATXDATA
• :PATXV AUD
• :PATXMAP
• :PATlDATAONE
• :PATlDATATWO
• :PATlDATATHREE
• :PATlDATAFOUR ·

;O
;2
;6
;10
;14
;16
;20
;22
;24
;26

[integer]
C pixmaphandle 1
Chanelle]
Chanelle J
C integer]
[hanelle]
[integer]
[integer]
[integer]
C integer]

tb: !NewPixPat [V-72] Function

:dispose

Creates a new pixel pattern data structure and all its associated data
structures, and returns a handle to it. The preferred method of creating a
pixPat is to make in instance of the tb: pixPat flavor as shown above.

tb:!DispospixPat pixPat _
Method of th: pix Pat

[V-73] Function

Dispose of a pixel pattern data structure and all its associated data
structures.

tb:!CopyPixPat srcPixPat dstPixPat [V-73] Function

Copies the pixel pattern in the source pixPat to the pixel pattern in the
destination pixPat.

tb:!GetPixPat integer [V-73] Function

Creates a new pixel pattern using the information stored in the "ppat"
resource whose resource ID is integer.

tb:!MakeRGBPat pixPat RGBColor [V-73] Function

Creates a new pattem that approximates RGBColor and returns it in the
pixel pattern pixPat.

Macintosh Toolbox Interface

Calculations
With Rectangles

tb:Rect

:top
:top

QuickDraw

3.10 Calculation routines are independent of the current coordinate
system. A calculation will operate the same regardless of which
grafPort is active. To create a new rectangle, make an instance of the
tb:Rect flavor.

Some of the following traps which have equivalent flavor methods also
carry the comment that the method version is faster. In these particular
cases, the trap functionality does not require the use of Macintosh
system data structures or of Macintosh hardware. Therefore, the
methods simply perform the trap's function in ordinary Lisp code using
flavor data structures on the microExplorer side. If you choose to use
the trap version, however, the trap must be sent to the Macintosh for
execution and results from the Macintosh-side must be returned to those
same flavor data structures back on the microExplorer side. Therefore,
the results are the same, but using a method to get them is significantly
faster.

[I-141] Flavor _

This flavor defines a rectangle. All of the information related to this
rectangle is maintained in instances of this flavor on the microExplorer
side.

:set-top integer
:left

Init Option of tb:Rect
Method of tb:Rect
Method of tb: Rect

Init Option of tb:Rect
Method of tb:Rect
Method of th: Rect

Init Option of tb: Rect

:left
_:set-left integer
:bottom
:bottom
:set-bottom integer
:right

Method of tb:Rect
Method of tb:Rect

Init Option of tb:Rect
Method of tb:Rect
Method of tb:Rect

:right
:set-right integer

:= args ...

These values define the sides of the rectangle.

Method of tb:Rect

This method is a general purpose "rectangle definition" operator whose
action depends upon the number and type of its arguments. In each
case, the argument(s) define the new top, left, bottom, and right co
ordinates of the modified rectangle.

• One argument is a tb:Rect instance (i.e., simple assignment).
• Two arguments are two tb:Point instances similar to tb:!Pt2Rect,
• Four arguments are top, left, bottom, and right specifications similar

to tb:!SetRect.

Macintosh Toolbox Interface 3 -1 7

QuickDraw

3·18

Example: (setf r (make-instance 'tb:rect))
•> t<RECT 50,50 100,100>

;;;sets x1 ,y1 x2,y2 (left,top rlght,bottom)
(send r := 1 2 5 6) => t<RECT 1,2 5,6>
(setf pl (make-instance 'tb:point :h 3 :v 4))
-> #<POINT x=3 y=4>
(setf p2 (make-instance 'tb:point :h 7 :v 8))

=> #<POINT x-7 y=8>

;;;sets to rect enclosed by two points
(send r :- pl p2) -> t<RECT 3,4 7,8>
(setf r2 (make-instance 'tb:rect :left 0 :top 0

:right 5 :bottom 5))
=> t<RECT 0,0 5,5>

;;;sets to values from another rect
(send r := r2) =>.t<RECT 0,0 5,5>

tb:!SetRect rect left top right bottom [1-174] Function

:width
:height

:center-x
:center-y

Sets the rectangle's coordinates. The methods are significantly faster
than the trap (see explanation under Calculations With Rectangles). See
also the := method of tb:Rect.

Method of tb:Rect
Method of tb:Rect

Return the rectangle's width and height, respectively.

Method of th: Rect
Method of tb:Rect

Return the rectangle's center coordinate on the x and y axes,
respectively.

:center &optional point Method of tb:Rect

Returns the rectangle's center coordinates as a point. If the optional
point is supplied, it moves the rectangle to be centered around the given
point.

:offset dh dv
tb:!OffsetRect rect dh dv

Method of tb:Rect
[1-17 4] Function

Example:

Offset the rectangle by the horizontal value dh and the vertical value dv.
The method is significantly faster than the trap (see explanation under
Calculations With Rectangles).

(setf r (make-instance 'tb:rect))
=> t<RECT 50,50 100,100>

(send r :offset 10 20)
=> #<RECT 60,70 110,120>

Macintosh Toolbox Interface

QuiclcDraw

:insert dh dv
tb:!lnsetRect rect dh dv

Method of tb:Rect
[1-175] Function

Example:

Enlarge or shrink the rectangle rect by amounts dh and dv. The value
dh is added to the rectangle's left coordinate and subtracted from the
right coordinate. The value dv is subtracted from the rectangle's top
coordinate and added to the rectangle's bottom coordinate. The method
is significantly faster than the trap (see explanation under Calculations
With Rectangles).

(setf r (make-instance 'tb:rect))
=> t<RECT 50,50 100,100>

(send r :inset 10 20)
•> f<RECT 60,70 90,80>

:intersection rectB
:intersection-p rectB
tb:!SectRect rectA rectB dstRect

Method of tb:Rect
Method of tb:Rect

[1-175] Function

Example:

:union rectB

Calculate dstRect, the intersection of the two rectangles rectA and rectB.
Note that the method :intersection destructively modifies rectA. If
you only want to test whether two rectangles intersect, use the method
:intersection-p. All of the above return. true if the rectangles intersect
and false if they do not. The methods are significantly faster than the
trap (see explanation under Calculations With Rectangles above).

(setf r (make-instance 'tb:rect))
=> f<RECT 50,50 100,100>

(setf rl (make-instance 'tb:rect :left 0 :top 0
:right SQ :bottom 50))

=> t<RECT 0,0 50,50>
;;;After computing the Intersection, It returns frue If they Intersect
(send r :intersection rl) => NIL
r => t<RECT 50,50 50,50>

th:! UnionRect rectA rectB dstRect
Method of tb:Rect

[1-175] Function

Return· a rectangle dstRect which is the smallest rectangle enclosing the
two rectangles rectA and rectB. Note that the method :union
destructively modifies rectA.

:inside-p point-or-rect
th: !PtlnRect point rect

Method of tb:Rect
[1-175] Function

Macintosh Toolbox Interface

Return true if the point is in the rectangle and false if it is not. The
method is significantly faster than the trap (see explanation under
Calculations With Rectangles). ·

3-19

QuickDraw

3.20

Example: (setf pt (make-instance
(setf rl (make-instance

(setf r2 (make-instance

(send rl :inside-p pt)
(send rl : inside-p r2)

'tb:point :h 5 :v 5))
'tb:rect :left 0 :top 0 :right 10
:bottom 10))
'tb:rect :left 1 :top 1 :right 6
:bottom 6))

; check to see If pt Is In r1
; check to see If r2 Is Inside r1

th: !Pt2Rect ptA ptB rect [1-175] Function

Modifies rect to be the smallest rectangle that encloses the two points
ptA and ptB. Returns true if the point is in the rectangle and false if it is
not. The method is significantly faster than the trap (see explanation
under Calculations With Rectangles). See also the : = method of
th:Rect.

th:PtToAngle rect point
th:!PtToAngle rect point VAR angle

[1-175] Function
[l-175] Function

:equal rectB

th:PtToAngle returns the angle calculated from the center of the
rectangle rect to the point indicated. th: !PtToAngle is similar except it
modifies angle to be the calculated result.

NOTE: These traps are slow and are not accurate unless rect is a
square.

th:!EqualRect rectA rectB
Method of tb:Rect

[I-176] Function

Example:

Return true if the rectangles rectA and rectB are equal. The method is
significantly faster than the trap (see explanation under Calculations
With Rectangles above).

(setf rl (make-instance 'tb:rect))
=> t<RECT 50,50 100,100>

(setf r2 (make-instance 'tb:rect))
=> t<RECT 50,50 100,100>

(send rl :equal r2) => T

:empty-p
th:!EmptyRect rect

Method of tb:Rect
[1-176] Function

Example:

Return true if the rectangle is empty, false if it is not. The method is
significantly faster than the trap (see explanation under Calculations
With Rectangles above).

(setf rl (make-instance 'tb:rect :left 50 :top 50
:right 25 :bottom 25))

=> t<RECT 50,50 25,25>
(send rl :empty-p) => T

Macintosh Toolbox Interface

Graphic
Operations on
Rectangles

QuickDraw

3.11 These procedures perform graphic operations on rectangles.
These traps do not move the pen. ·

:frame
tb:!FrameRect rect

Method of tb:Rect
[1-176] Function

:paint

Draw an outline just inside the rectangle, using the current grafPort's
pen size, pen mode, and pen pattern. If there is a region open, the
rectangle is added to this region.

tb: !PaintRect re ct
Method of tb:Rect

[1-177] Function

:erase

Fill the rectangle rect with the current grafPort's pen pattern and transfer
mode.

tb: !EraseRect rect
Method of tb:Rect

[1-177] Function

:invert

Fill the rectangle rect with the current grafPort's background pattern
(bkPat) using the transfer mode tb:!patCopy.

th: !InvertRect rect
Method of tb:Rect

[1-177] Function

:fill pattern

Invert every pixel inside the rectangle; every white pixel becomes black,
every black one becomes white.

:fillC pixPatHandle
Method of tb:Rect
Method of tb:Rect

[1-1771 FWlction
[V-69] Function

tb:!FillRect rect pattern
tb:!FillCRect rect pixPatHandle

Graphic
Operations on
Ovals

tb:Oval

Macintosh Toolbox Interface

Fill the given rectangle rect with the patte~ specified by pattern (or
pixPatHandle) using the tb:!patCopy transfer mode.

3.12. An oval is defined by the smallest rectangle in which it will fit.
If the rectangle you specify is a square, QuickDraw draws a circle.
These traps do not move the pen.

Flavor

This flavor defines an oval. This flavor mixes in the tb:Rect flavor so
that tb:Oval has all the initialization options and instance variables of
tb:Rect.

3-21

QuickDraw

:frame
:frameOval
tb:!FrameOval rect

Method of tb:Oval
Method of tb:Rect

[I-177] Function

:paint
:paintOval

Draws an oval that fits just inside the rectangle, using the current
grafPort's pen mode, pen size, and pen pattern. If there is a region
open, the rectangle is added to this region.

tb: !PaintOval rect

Method of tb:Oval
Method of tb:Rect

[I-178] Function

:erase
:eraseOval

Fill the oval that fits inside the rectangle with the current grafPort's
transfer mode and pen pattern.

tb: !EraseOval rect

Method of tb:Oval
Method of tb:Rect

[I-178] Function

Fill the oval that fits inside the rectangle with the current grafl>ort's
background pattern (bkPattern) using the transfer mode tb:!patCopy.

:invert
:invertOval
tb:!lnvertOval rect

Method of tb:Oval
Method of tb: Rect

[I-178] Function

Invert every pixel inside the oval that fits inside the rectangle; every
white pixel becomes black, every black one becomes white.

:fill pattern
:flllOval pattern
:flllCOval pixPatHandle
th: !FillOval rect pattern
tb:!FillCOval rect pixPatHandle

Method of tb:Oval
Method of tb:Rect
Method of tb:Rect

[I-178] Function
[V-68] Function

Fill the oval that fits inside the rectangle with the pattern pattern (or
pixPatHandle) using the tb:!pat(:opy transfer mode.

Graphic
Operations on
Round-Cornered
Rectangles

3.13 Round cornered rectangles are rectangles whose corners are
defined by ovals. The oval is defined by two arguments: ova/Width
and ova/Height. The same oval is used for all four corners of the round
cornered rectangle. These traps do not move the pen.

3-22 Macintosh Toolbox Interface

QuickDraw

ovolWidth ovolHeight

1

tb: RoundRect Flavor

This flavor defines a rectangle in which the comers are asymmetrically
rounded as if each comer contained an oval rather than a circle. This
flavor mixes in tb:Rect so it shares all initialization options and
instance variables with tb:Rect.

:OvalWidth integer
:Oval Width
:set-OvalWidth integer
:OvalHeight

lnit Option of tb:RoundRect
Method of tb:RoundRect
Method of tb:RoundRect

lnit Option of tb:RoundRect
Method of tb:RoundRect
Method of tb:RoundRect

:Oval Height .
:set-OvalHeight integer

:frame

These values control the degree and the orientation of the asymmetrical
rounding of the rectangle comers.

tb:!FrameRoundRect rect ovalWidth ova/Height
Method of tb:RoundRect

[l-178] Function

:paint

Draw an outline just inside the round-cornered rectangle, with the
diameter of curvature ova/Width and ova/Height (two integers) on a
rectangle, using the current grafPort's pen mode, pen size, and pen
pattern. If there is a region open, the rounded rectangle is added to this
region.

tb:!PaintRoundRect rect ovalWidth ova/Height
Method of th: RoundRect

[I-179] Function

:erase

Fill the round-cornered rectangle, with the diameter of curvature
ovalWidth and ova/Height (two integers) on a rectangle, with the current
grafPort's pen pattern and transfer mode.

tb:!EraseRoundRect rect ovalWidth ova/Height
Method of tb:RoundRect

[I-179] Function

Macintosh Toolbox Interface

Fill the round-cornered rectangle, with the diameter of curvature
ovatwidth and ova/Height (two integers) on a rectangle, with the current
grafPort's background pattern (bkPattern) using the transfer mode
tb:!patCopy.

3-23

QuickDraw

:invert
tb:!InvertRoundRect rect ova/Width ova/Height

Method of tb:RoundRect
[1-179] Function

:till pattern

Invert every pixel inside the round-cornered rectangle, with the diameter
of curvature ova/Width and ova/Height (two integers) on a rectangle.
Every white pixel becomes black, every black one white.

Method of tb: RoundRect
tb:!FillRoundRect rect ova/Width ova/Height pattern
tb:!FillCRoundRect rect ova/Width ova/Height pixPatHandle

[1-179] Function
[V-69] Function

Fill the round-cornered rectangle, with the diameter of curvature
ova/Width and ova/Height (two integers) on a rectangle, with the pattern
using the tb:!patCopy transfer mode.

Graphic
Operations on
Arcs and
Wedges

3 .14 These procedures perform graphic operations on arcs and
wedge-shaped sections of ovals. These traps do not move the pen.

Arcs and wedges are defined by three parameters:

• A startAngle, which is where the orientation the arc starts.
• An arcAngle, which is the compass of the arc (in degrees).
• A bounding rectangle.

start Angle- = O

.arc An9le= -45

st.artAngle = 0 start/tingle-= o

r

. . .
\ .
... ! ..

~= .
...

!FrameArc

. . . .
: /
: i
~I

th: !FrameArc rect startAngle arcAngle

.arcAngle= 45 arcAngle= 45 ,.
I

r

!FrameArc

start Angle = 0

! arc Angle= 45
: .

[!:J
!Pai ntArc

[1-180] Function

Draws an arc of the oval that fits inside the rectangle rect, using the
current grafPort's pen size, pen mode, and pen pattern. StartAngle and
arcAngle are integers. If there is a region open, the arc is not added to
the region.

Macintosh Toolbox Interface

QuiclcDraw

tb:!PaintArc rect startAngle arcAngle [1-180] Function

Fills the wedge of the oval that fits inside the rectangle rect with the
current grafPort's pen pattern and transfer mode. StartAngle and
arcAngle are integers.

tb: !EraseArc rect startAngle arcAngle [1-180] Function

Fills the wedge of the oval that fits inside the rectangle rect, with the
current grafPort's background pattern (bkPattern) using the transfer
mode tb:!patCopy. StartAngle and arcAngle are integers.

tb:!InvertArc rect startAngle arcAngle [1-181] Function

Inverts every pixel inside the wedge of the oval that fits inside the
rectangle; every white pixel becomes black, every black one becomes
white. StartAngle and arcAngle are integers.

tb:!FillArc rect stanAngle arcAngle pattern
tb:!FillCArc rect startAngle arcAngle pixPatHandle

[l-181] Function
[V-69] Function

Calculations
With Regions

tb_:Region

Fills the wedge of the oval that fits inside the rectangle with the pattern
specified in pattern (or pixPatHandle) using the tb:!patCopy transfer
mode. -

3.JS Regions are complex graphic objects that are defined by the
boundary of the saved graphic object framing traps. Regions are created
by calling the trap tb:!NewRgri. The Region is defmed by calling the
trap tb:!OpenRgn which saves all the relevant QuickDraw traps until
tb:!CloseRgn is called. When tb:!CloseRgn is called, the region
defmition is put in the new region and it can then be manipulated and
drawn. To create a new region, make an instance of the th: Region
flavor.

[1-142] Flavor

This flavor defines a QuickDraw region. Upon instantiation, it defmes
an empty region.

:rgnSize 16b-unsigned-integer Method of th: Region

This is the size of the region in bytes.

Macintosh Toolbox Interface 3.25

QuickDraw

:rgnBBoxTop 16b-integer
:rgnBBoxTop

Method of tb:Region
Method of tb:Region
Method of th: Region
Method of tb:Region
Method of tb:Region
Method of tb:Region
Method of tb:Region
Method of tb:Region
Method of tb:Region
Method of tb: Region
Method of tb: Region
Method of tb:Region

:set-rgn 8 Box Top l 6b-integer
:rgnBBoxLeft l 6b-integer
:rgnBBoxLeft
:set-rgnBBoxLeft l 6b-integer
:rgnBBoxBottom 16b-integer
: rgn 8 BoxBottom
:set-rgnBBoxBottom l 6b-integer
:rgnBBoxRight 16b-integer
:rgnBBoxRight
:set-rgnBBoxRight l 6b-integer

tb:!NewRgn

. These are the boundaries of the region expressed in the top, left,
bottom, and right attributes of the bounding rectangle.

[1-181] Function

Allocates a relocatable block for a new empty region and returns a
handle to the region. The preferred method for creating a new region is
to make an instance of the tb:region flavor.

tb:!nilRgn Constant

:open

This constant is a tb:Region instance with coordinates of (0 0 0 0).
This constant is used in Lisp for those situation where the Macintosh's
documentation says to pass a (Pascal) NIL as a region. ·

tb: !OpenRgn .
Method of tb:Region

[1-181] Function

:close

Make QuickDraw save all further line drawing calls for incorporation
into the region. The QuickDraw traps that are included in the definition
of the region include tb:!Line, tb:!LineTo and all the tb:!Frame
traps (except tb:!FrameArc). The methods related to these traps
(:frame, for example) will also be saved in the region.

CAUTION: You can only have one region and one polygon
open at the same time. If you have more than one open at a
time, strange things will happen to the saved data
structures.

tb:!CloseRgn region
Method of tb:Region

[1-182] Function

Terminate the recording of the line drawing traps by QuickDraw. All the
saved drawing commands are used to build up a region structure and the
resulting structure is saved in region. Regions have a maximum size of
32K bytes. You can determine the size of a region by calling the
Memory Manager trap tb:!GetHandleSize.

:dispose
tb:!DisposeRgn region

Method of tb:Region
[1-182] Function

Dispose of a region, de-allocating the relocatable block in memory.

Macintosh Toolbox Interface

:= args ...

QuickDraw

Method of th: Region

This is a general purpose region modification operator whose exact
operation depends upon the number and type of its arguments. In each
case, the arguments .imply a new set of region coordinates, such as:

• One argument which is an instance of th:Region similar to
th:!CopyRgn.

• One argument which is nil, implying an empty region similar to
th: !SetEmptyRgn.

• Tne argument which is an instance of th: Rect similar to
!RectRgn.

• Two arguments which are instances of th:Point (the comers of a
rectangle).

• Four arguments which are the top, left, bottom, and right coordin
ates of a rectangle similar to th:!SetRectRgn.

th: !CopyRgn srcRegion dstRegion [1-183] Function

Creates a copy of the source region srcRegion in the destination region
dstRegion.

th:!SetEmptyRgn region [1-183] Function

· Destroys the previous structure and sets region back to a null (empty)
region.

th:!SetRectRgn region left top right bottom [1-183] Function

Destroys the previous structure and sets region to the rectangle defined
by the coordinates left, top, right, and bottom (all of which are
integers).

th:!RectRgn region rect [1-183] Function

:offset dh hv

Destroys the previous structure and sets region to the rectangle rect.
th:!RectRgn is the same as tb:!SetRectRgn except the rectangle is
specified by a rectangle rather than its coordinate points.

tb:!OffsetRgn region dh dv
Method oftb:Region

[1-183] Function

:inset dh hv

Moves the region a distance of dh horizontally and dv vertically.

NOTE: The following traps use a lot of Macintosh stack space, at least
twice the size of the total region.

th:!lnsetRgn region dh dv
Method of th: Region

[1-184] Function

Macintosh Toolbox Interface

Enlarges or shrinks region by a horizontal amount dh and a vertical
amount dv. If the value of dh or dv is positive, the region is shrunk in
that coordinate's direction; if the value is negative, the region is grown
in the coordinate's direction.

3-27

QuickDraw

:intersection srcRegion Method of th: Region
[1-184] Function tb:!SectRgn srcRegionA srcRegionB dstRegion

Calculate the intersection of the two regions srcRegionA and
srcRegionB and place the result in the destination region dstRegion.
Note that the method destructively modifies the instance to which it is
sent.

:union srcRegion Method of th: Region
[1-184] Function tb:!UnionRgn srcRegionA srcRegionB dstRegion

Calculate the union of the two regions srcRegionA and srcRegionB and
place the result in the destination region dstRegion. Note that the
method destructively modifies the instance to which it is sent.

tb:!DiffRgn srcRgnA srcRgnB dstRgn [1-184] Function

Calculates the difference of the two regions srcRgnA and srcRgnB and
places the result in the destination region dstRgn.

tb:!XorRgn srcRgnA srcRgnB dstRgn [1-185] Function

Calculates the difference between the union and the intersection of the
two regions srcRgnA and srcRgnB and places the result in the
destination region dstRgn.

:inside-p point-or-rect
tb:!PtlnRgn point region
tb:!RectlnRgn rect region

Method of th: Region
[1-185] Function
[1-185] Function

th: !PtlnRgn returns true if the point is in the region specified.
tb:!RectlnRgn returns true if any part of the rectangle is in the region.
:inside-p performs either functions depending upon the type of its
arguments.

:equal regionB Method of th: Region
LI-185] Function tb:!EqualRgn regionA regionB

Return true if the two regions regionA and regionB are absolutely
identical in size, shape, and location.

:empty-p
th: !EmptyRgn region

Return true if region is an empty region.

Method of th: Region
[I-185] Function

Macintosh Toolbox Interface

Graphic
Operations on
Regions

:frame

Quic/cDraw

3.16 These routines all depend on the coordinate system of the current
grafPort. If a region is drawn in a different grafPort than the one in
which it was defined, it may not appear in the proper position inside the
port. These traps do not move the pen.

tb:!FrameRgn region
Method of th: Region

[I-186] Function

:paint

Draw an outline just inside the region using the current grafPort's pen
size, pen mode, and pen pattern. If the region is open, the outside
outline of the region being framed is added to the open region's
boundary. Under no circumstances will the frame go outside the region
boundary.

CAUTION: If there are more than 25 intersections of a line
with the outline of a region, strange things start happening
and may eventually cause the Macintosh to die.

th: !PaintRgn region
Method of tb:Region

[I-186] Function

:erase

Paint the region with the current grafPort's pen pattern and transfer
mode.

tb:!EraseRgn region
Method of th: Region

[I-186) Function

Fill the region with the current grafPort's background pattern
(bkPattern) using the transfer mode tb:!patCopy.

:invert
tb:!lnvertRgn region

Method of th: Region
[I-186] Function

Invert every pixel inside the region; every white pixel becomes black,
every black one becomes white.

:till &optional pattern Method of tb:Region
[I-187) Function
[V-69] Function

tb:!FillRgn region pattern
tb:!FillCRgn region pixPatHandle

Creating Pixel
Maps

tb:PixMap

Macintosh Toolbox Interface

Fill the region with the pattern using the tb:!patCopy transfer mode.

3.17 These procedures create, modify, and dispose of pixel maps. To
create a new pixel map, make an instance of the tb:PixMap flavor.

[V-52] Flavor

This flavor describes a pixel map. tb:PixMap instances have the
following instance accessor methods:

3-29

QuiclcDraw

• :BASEADDR
• :ROWBYTES
• :BOUNDSTOP
• :BOUNDSLEFf
• :BOUNDSB01TOM
• :BOUNDSRIGHT
• :PMVERSION
• :PACK.TYPE
• :PACKSIZE
• :HR.ES
• :VRES
• :PIXEL TYPE
• :PIXELSIZE
• :CMPCOUNT
• :CMPSIZE
• :PLANEBYTES
• :PMTABLE
• :PMRESERVED

;O
;4
;6
;8
;10
;12
;14
;16
;18
;22
;26
;30
;32
;34
;36
;38
;42
;46

[pointer]
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[longint]
[fixed]
[fixed]
[integer]
[integer]
[integer]
[integer]
[longint]
[ctabhanclle]
[longint]

tb:!NewPixMap [V-70] Function

:dispose

Creates a new pixMap data structure and returns a handle to it. The
preferred method of creating a pixMap is to make an instance of the
tb:PixMap flavor.

th: !DisposPixMap pixMap
Method of tb:PixMap

[V-70] Function

Dispose of the pixel map and all its associated data structures.

tb:!CopyPixMap srcPixMap dstPixMap [V-70] Function

Copies a pixel map from the source pixMap to the destination pixMap.

Bit Transfer
Operations

3.18 These procedures perform bit transfer operations on either
bitMaps or pixMaps. When using these routines with pixMaps, be sure
to set the type bits in the : row 8 ytes field correctly or you may crash
the system. (See figure 3 on page 52 of Inside Macintosh Volume V.)
To create a new bitmap, make an instance of the tb:BitMap flavor.

3-30

th: Bit Map

This flavor defines a new bitmap.

:baseAddr
:set-baseAddr pointer

This is the pointer to the bitmap array.

:row Bytes
:set-rowBytes pointer

[1-144] Flavor

Method of th: Bit Map
Method of th: Bit Map

Method of tb:BitMap
Method of th: Bit Map

This is the width of a row in the bitmap measured in bytes.

Macintosh Toolbox Interface

QuickDraw

:boundTop
:set-boundTop 16b-integer
:boundLeft

Method of tb:BitMap
Method of th:BitMap
Method of tb:BitMap
Method of tb:BitMap
Method of tb:BitMap
Method of tb:BitMap
Method of tb:BitMap
Method of tb:BitMap

:set-boundLeft 16b-integer
: bound Bottom
:set-boundBottom 16b-integer
: boundRight
:set-boundRight l 6b-integer

These values define the bounding rectangle of the bitmap.

:scroll dh dv updateRegion Method of tb:Rect
[I-187] Function tb:!ScrollRect rect dh dv updateRegion

Scroll the bits (pixels) that are inside the rectangle that is the intersection
of rect and the grafPort's visRgn, clipRgn, portRect, and portBits'
boundaries. This intersecting rectangle is scrolled by a distance of dh
horizontally and dv vertically. The bits scrolled off the screen are lost
and the space created by the scroll is filled with the current gra:tPort's
background pattern (bkPattern). This newly created area is added to the
update region updateRegion.

tb:!CopyBits srcbits dstBits srcRect dstRect mode region [I-188] Function

Transfers the part of the source bitMap (or source pix.Map) defined by
the rectangle srcRect, to the part of the destination bitMap (or destination
pix.Map) def"med by the rectangle dstRect, using a transfer mode mode
(an integer) and a mask region. If you don't want to clip to the masked
region, pass tb:!nilRgn.

tb:!SeedFill srcPointer dstPointer srcRow dstRow height
words seedll seedV

[IV-24] Function

From a source bitMap, calculates a destination bitMap which has the bits
set only where the paint can leak from a starting seed point. This is like
the MacPaint® bucket tool.

tb:!SeedCFill srcBitMap dstBitMap srcRect dstRect seedH
seedV procpointer matchData

[V-71] Function

From a source bitMap (or a source pixMap, calculates a destination
bitMap (or a destination pix.Map) which has the bits set only where the
paint can leak from a starting seed point. This is like the MacPaint
bucket tool. Usually, tb:!nilPtr will be passed as the procPointer.
See Inside Macintosh Volume V for more details.

tb:!CalcMask srcPointer dstPointer srcRow dstRow
height words

[IV-24] Function

Macintosh Toolbox Interface

From a source bitMap, calculates a destination bitMap which has the bits
set only where the paint could not leak from any of the outer edges.
This is like the MacPaint lasso tool.

3-31

tb:!CalcCMask srcBits dstBits srcRect dstRect RGBColor [V-72] Function
procPointer longlnt

From a source pixMap, calculates a destination pixMap which has the
bits set only where the paint could not leak: from any of the outer edges.
This is like the MacPaint lasso tool. Usually tb:?nilPtr will be passed
as the procPointer.

tb:!CopyMask srcBits mask:Bits dstBits srcRect maskR.ect
dstRect

IV-24] Function

This trap is like tb:!CopyBits except it copies from the bitMap srcBits
to dstBits using mask:Bits as the mask.

Pictures 3.19 These procedures open, close, modify, and dispose of pictures.

3.32

To make a new picture, make an instance of tb:Picture flavor

tb:Picture [1-159] Flavor

:PicFrame

:picsize

This flavor defines a QuickDraw picture.

CAUTION: Do not call tb:!OpenPicture or create a new
Picture object if another picture is· already open. Always
resize the clipRgn to a suitably sized rectangle (using the
trap tb:!ClipRect) before calling tb:!OpenPicture.

lnit Option of tb:Picture

This flavor defines a QuickDraw data structure. Creating an instance of
this flavor has the side effect of opening the picture so that QuickDraw
begins recording all the calls to drawing routines and picture comments.

Method of tb:Picture
This is the picture size in bytes.

: picframeTop Method of tb:Picture
Method of tb:Picture
Method of tb:Picture
Method of tb:Picture

: picframeLeft
: picframeBottom
: picframeRight

Example:

These values describe the enclosing rectangle of the pie Frame.

(set£ myRect (make-instance 'tb:rect))
(make-instance 'tb:Picture :picFrame myRect)

tb:!OpenPicture rect [1-189] Function

Makes QuickDraw begin recording all the calls to drawing routines and
picture comments. It returns a handle to the picture that has a picture
frame defined by rect. The preferred method for creating a picture is to
make an instance of the tb:Picture flavor.

Macintosh Toolbox Interface

QuickDraw

CAUTION: Do not call tb:!OpenPicture or create a new
Picture object if another picture is already open. Always
resize the clipRgn to a suitably sized rectangle (using the
trap tb:!ClipRect) before calling tb:!OpenPicture.

:close
tb:!ClosePicture

Method of tb:Picture
[1-189] Function

Stop the recording of QuickDraw calls for the currently open picture.

tb:!PicComment kind dataSize dataHandle [1-189] Function

:draw

Inserts a picture comment of type kind into the currently open picture.
Any additional infonnation is passed in da.taHandle, its size in da.taSize.

tb:!DrawPicture picture rect
Method of th: Picture

[1-190] Function

Draw all of the picture inside its picture frame into rect.

:dispose
tb: ! Kill Picture picture

Method of tb:Picture
[1-190] Function

Calculations
with Polygons

tb:Polygon

:polysize

Dispose of the picture, releasing any memory it uses.

3.20 These procedures create, modify, and dispose of polygons. To
make a new polygon, make an instance of the tb:Polygon flavor.

[1-159] Flavor

This flavor defmes a data structure for a QuickDraw polygon data
structure. Making an instance of this flavor has the effect of opening the
new polygon so that QuickDraw starts saving all line-drawing calls.

CAUTION: Do not instantiate tb:!OpenPoly or create
another polygon object while another region or polygon is
still open.

Method of th: Polygon
This is the polygon size in bytes.

:polyframeTop Method of tb:Polygon
Method of tb:Polygon
Method of tb:Polygon
Method of th: Polygon

: polyframeLeft
: polyframeBottom
:polyframeRight

These values describe the enclosing rectangle of the polygon.

Macintosh Toolbox Interface 3.33

Quic/cDraw

tb: !OpenPoly [I-190] Function

:close

Tells QuickDraw to start saving all line-drawing calls, returning a new
polygon. The preferred method for creating a polygon is to make an
instance of the tb: Polygon flavor.

CAUTION: Do not instantiate tb:!OpenPoly or create
another polygon object while another region or polygon is
still open.

th: !ClosePoly
Method of th: Polygon

[I-190] Function

Stop the saving of the QuickDraw calls. The maximum size of a
polygon is 32K bytes. If you need to know the size of a polygon, use
the Memory Manager trap tb:!GetHandleSize.

:dispose
tb:!KillPoly polygon

Method of tb:Polygon
[I-191] Function

Dispose of the polygon.

:offset
tb:!OffsetPoly polygon dh dv

Method of tb:Polygon
[I-191] Function

Move polygon a horizontal distance of dh and a vertical distance dv.

Graphic
Operations on
Polygons

3.21 These routines perform graphic operations on polygons. They
do not move the pen.

CAUTION: If any line intersects the outline of a polygon
more than 50 times, strange things will happen.

3.34

:frame
tb:!FramePoly polygon

Method of th: Polygon
[I-192] Function

:paint

Play back the QuickDraw calls that define the polygon using the current
grafPort's pen size, pen mode, and pen pattern.

tb:!PaintPoly polygon
Method of th: Polygon

LI-192] Function

:erase

Paint the polygon with the current grafPort's pen pattern and transfer
mode.

tb:!ErasePoly polygon
Method of tb:Polygon

[I-192] Function

Fill the polygon with the current grafPort's background pattern
(bkPattern) using the transfer mode tb:!patCopy.

Macintosh Toolbox Interface

QuiclcDraw

:invert
tb:!InvertPoly polygon

Method of tb:Polygon
[I-192] Function

Invert every pixel inside the polygon; every white pixel becomes black,
every black one becomes white.

:till &optional pattern Method of th: Polygon
[I-192] Function
[V-69] Function

tb:!FillPoly polygon pattern
tb:!FillCPoly polygon pixPatHandle

Calculations
with Points

tb:Point

:h 16b-integer
:h

Fill the the polygon with the pattern using the tb:!patCopy transfer
mode.

3.22 These routines perform calculations using points. Notice that
some of these traps are matched with equivalent methods. Of these
trap/method sets, some carry the comment that the method is faster. See
the previous paragraph Calculations With Rectangles for an explanation
of the speed difference. To create a new point, make an instance of the
tb:Point flavor.

[I-139] Flavor

This flavor defines a QuickDraw pointer. All data associated with a
point is stored in one of these instances on the microExplorer side.

:set-h l 6b-integer ·
:v 16b-integer
:v
:set-v 16b-integer

Init Option of th: Point
Method of th: Point
Method of tb:Point

Init Option of tb:Point
Method of tb:Point
Method of tb:Point

These values def"me the horizontal and vertical coordinates of the point.

NOTE: For your convenience, the tb:EventRecord flavor uses
tb:Point as a mix.in. Therefore, if you have an event record which
contains point information, then you can use that tb:EventRecord
instance anywhere a tb:Point instance is needed.

:add dh-or-srcPoint &optional hv
tb:!AddPt srcPoint dstPoint

Method of tb:Point
[I-193] Function

Add the coordinates of point srcPoint and dstPoint and return the
resulting point in dstPoint. The methods are significantly faster than the
trap (see explanation under Calculations With Rectangles). :add
accepts one tb:Point instance or two positions as arguments.

:sub dh-or-srcPoint &optional hv
tb:!SubPt srcPoint dstPoint

Method of tb:Point
[I-193] Function

Macintosh Toolbox Interface

Subtract the coordinates of points srcPoint and dstPoint and return the
resulting point in dstPoint. The methods are significantly faster than the

3.35

QuickDraw

trap (see explanation under Calculations With Rectangles). :sub
accepts one tb:Point instance or two positions as arguments.

:= h-or-srcPoint &optional v
tb:!SetPt point h v

Method of tb:Point
[1-193] Function

Set the horizontal coordinate of the point to h, and its vertical coordinate
to v. The methods are significantly faster than the trap (see explanation
under Calculations With Rectangles). :=accepts one tb:Point instance
or two positions as arguments.

:equal ptB
tb:!EqualPt ptA ptB

Method of th: Point
[1-193] Function

Return true if ptA is equal to ptB. The method is significantly faster
than the trap (see explanation under Calculations With Rectangles
above).

tb:!LocalToGlobal point [1-193] Function

Converts the point from the grafPort's local coordinate system to a
global coordinate system with the origin at the top left coordinate of the
grafPort's bitMap.

tb:!GlobalToLocal point [1-193] Function

Converts the point from global coordinates to the gra:fPort's local
coordinate system . This trap is most often used to convert a point that
contains the mouse position, which is in global coordinates, into the
local coordinates of the current grafPort.

Miscellaneous 3.23 These routines perform miscellaneous utility functions.

Routines

3-36

tb:!Random [1-194] Function

Returns a pseudo random 16-bit integer(± 32,767).

tb:!GetPixel h v [1-195] Function

Returns true if the pixel at horizontal coordinate Ii and vertical coordinate
v is black, false if it is white.

tb:!GetCPixel h v RGBColor [V-69] Function

Example:

Sets RGBColor to be the RGB value of the pixel at horizontal
coordinate hand vertical coordinate v.

(setf myRGB (make-instance 'tb:RGBColor))
(tb:!GetCPixel 25 44 myRGB) => T

Macintosh Toolbox Interface

QuickDraw

tb:!SetCPixel h v RGBColor [V-69] Function

Sets the color of the pixel (designated by h and v) to RGBColor.

tb: !Stufffiex pointer string LI-195] Function

Stuffs the hexadecimal value in string into memory starting at the
location pointer.

CAUTION: This is a potentially dangerous trap as no range
checking is done. You could easily overwrite vital
application or system information unless you know exactly
what you are doing.

:scale srcRect dstRect Method of tb:Point
[1-195] Function tb: !ScalePt point srcRect dstRect

Multiply the point's horizontal coordinate by the ratio of the destination
rectangle's width to the source rectangle's width, and multiply the
point's vertical coordinate by the ratio of the destination rectangle's
height to the source rectangle's height. The result is returned in point.

:map srcRect dstRect Method of th: Point
LI-196] Function th: !MapPt point srcRect dstRect

Map the point in the rectangle srcRect to an equivalent position in the
rectangle dstRect. The result is returned in point.

:map srcRect dstRect
th:!MapRect resultRect srcRect dstRect

Method of th:Rect
[1-196] Function

Map the rectangle resultRect within the source rectangle srcRect to an
equivalently positioned rectangle in the destination rectangle dstRect.
The result is returned in resultRect.

:map srcRect dstRect Method of th: Region
[1-196] Function tb:!MapRgn region srcRect dstRect

Map the region region in the rectangle srcRect to an equivalently
positioned region in the rectangle dstRect.

:map srcRect dstRect Method of tb:Polygon
[1-197] Function th:!MapPoly polygon srcRect dstRect

Map the polygon polygon in the rectangle srcRect to an equivalently
positioned polygon in the .rectangle dstRect.

th:! GetMaskTable [IV 25] Function

Macintosh Toolbox Interface

Returns a pointer to a ROM table containing some useful bit masks. See
Inside Macintosh.

3.37

QuickDraw

Customizing
QuickDraw
Operations

3.33

3.24 These are low-level QuickDraw traps, the bottleneck routines.
See Inside Macintosh pages I-198 through I-200 for more details if you
want to use them.

tb:!SetStdProcs
tb:!SetStdCProcs
tb:!StdText
tb: !StdLine
tb:!StdRect
tb: ! StdRRect
tb:!StdOval
tb:!StdArc
tb: ! StdPoly
tb:!StdRgn
tb:!StdBits
tb: !Std Comment
tb: !StdTxMeas
th: !StdGetPic
tb: !StdPutPic

Macintosh Toolbox Interface

Introduction

Graphic Devices

Color Tables

Inverse Tables

Using the Color
Manager

Color
Conversion
Traps

Chapter 4
COLOR MANAGER

4.1 The Color Manager acts as the interface between Color
QuickDraw and the display device. It provides a consistent way of
displaying color independently of the display device. However, for
most applications you will not want to use the Color Manager. Instead,
use the Palette Manager.

4.1.1 Every graphic device is characterized by a data structure
gDevice which contains information about that particular graphic device.

4.1.2 The complete set of colors in use at any given time for a
particular gDevice is kept in a color table record. This table contains a
list of all the colors, their concrete values, and their ROB values.

4. l.3 The inverse tables are used to map an ROB value into the
nearest equivalent concrete color available for that device.

4.1.4 Normally, you will not use the Color Manager directly; it is
called indirectly when you use Color QuickDraw.

4.2 These routines are used for color conversion.

tb:!Color2Index myColor [V-141] Function

Example:

Returns the index of an available color that most closely resembles the
absolute color specified by myColor, an instance of tb:RGBColor.

(setf myColor (make-instance 'tb:RGBColor))
(send myColor := 0 O 65535) ; Set myColor to blue.
(setf blue-index (tb:!Color2Index myColor)) => 6

tb:!lndex2Color index aColor [V-141] Function

Example:

Sets aColor, an instance of tb:RGBColor, to the absolute color that
corresponds to the color table index index.

(setf myColor (make-instance 'tb:RGBColor))
(tb: ! Index2Color 3 rnyColor) ; Get the third color In the table
(send myColor :red) => 56683
(send rnyColor :green) => 2242
(send rnyColor :blue) => 1698

tb:!lnvertColor myColor [V-141] Function

Macintosh Toolbox Interface

Sets myColor, an instance of tb:RGBColor, to the complement of the
color myColor.

4-1

Color Manager

Example: (setf myColor (make-instance 'tb:RGBColor))
(send myColor := O O 65535) ; Set myColor to blue.
(tb: ! InvertColor myColor) ; Get complement of blue.
(send myColor :red) => 65535
(send myColor :green) => 65535
(send myColor :blue) => 0

tb:!RealColor color [V-141] Function

Example:

Returns true if the color in color, an instance of tb:RGBColor, exists
in the current device's color table.

(setf myColor (make-instance 'tb:RGBColor))
(send myColor :=- 65535 65535 65535) ; Set myColor to white
(tb: ! RealColor myColor) •> T ; Is It real?

tb:!GetSubTable myColors iTabRes targetTbl [V-142] Function

Maps the absolute colors in the color table myC olors onto the nearest
available colors and then stores them in the colorSpec value fields of ·
myColors.

tb:!MakeITable cTabH iTabH res [V-142] Function

Color Table
Management

Generates an inverse color table for the color table cTabH with a
resolution of res bits per channel.

4.3 These routines control color table management.

tb:!GetCTSeed [V-143] Function

Generates a unique seed value that can be placed in the CTSeed field of
a color table created by an application to uniquely distinguish it .

tb:!ProtectEntry index protect [V-143] Function

Protects or unprotects the entry index in the current grafDevice's color
table. If protect is true, the entry is protected; if false, it is unprotected.

tb:!ReserveEntry index reserve [V-143] Function

Reserves or unreserves the entry index in the current grafDevice's color
table. If reserve is true, the entry is reserved; if false, the entry is
unreserved.

tb:!SetEntries start count aTable [V-143] Function

Sets the values of count number of entries, starting at start, in the
current grafDevice's color table, using the ColorSpecs pointed to by
aTable.

Macintosh Toolbox Interface

Color Manager

th:!RestoreEntries srcTable dstTable selection [V-145] Function

Sets a selection of entries from the color table srcTahle into the color
table dstTable. Selection points at a ReqListRec data structure. See
Inside Macintosh for details.

th:!SaveEntries srcTable resultTable selection [V-144] Function

Error Handling

th:!QDError

Search and
Complement
Procedures

Sets a selection of entries from the color table srcTable into the color
table resultTable. Selection points at a ReqListRec data structure. See
Inside Macintosh for details.

4.4 This trap is used to determine the last QuickDraw or Color
Manager error that occurred.

[V-145] Function

Returns the error code of the last QuickDraw or Color Manager trap.

4.5 These routines allow an application to override the inverse table
matching code.

th: !AddSearch searchProc [V-14 7] Function

Prepends a procedure to the current device record's procedure search
list. searchProc is a pointer to a procedure in Macintosh memory.

th:!AddComp compProc [V-14 7] Function

Adds a procedure to the head of the current device record's list of
complement procedures. compProc is a pointer to a procedure in
Macintosh memory.

th:!DelSearch searchProc [V-14 7] Function

Removes a custom search procedure from the current device record's
list of search procedures. searchProc is a pointer to a procedure in
Macintosh memory.

th: !DelComp compProc [V-14 7] Function

Removes a custom complement procedure from the current device
record's list of complement procedures. compProc is a pointer to a
procedure in Macintosh memory.

th:!SetClientlD id [V-14 7] Function

Macintosh Toolbox Interface

Sets the gd.ID field in the current device record to id to identify this
client program to its search and complement procedures.

4.3

Introduction

Color Palette
Manager
Routines

Chapter 5
PALETTE MANAGER

S.1 The Palette Manager is used to manage shared color resources,
provide exact colors for imaging, and initiate color table animation.

S.2 These routines initialize the Palette Manager and create, modify,
and dispose of palettes.

tb:!NewPalette entries srcColors srcUsage srcTolerance [V-161] Function

Ex.ample:

Creates a new palette with entries colors from the color table srcColors,
and returns the new palette as the result. tb: ?New Palette sets the
usage and tolerance fields of the new palette to srcUsage and
srcTolerance, respectively.

(setf myColors (tb:!GetCTable 127))
(setf myPalette (tb:!NewPalette 20 myColors 0 0))

tb:!GetNewPalette paletteID [V-162] Function

Ex.ample:

Gets a palette object from the Resource Manager and initializes it.

NOTE: A palette ID of 0 is reserved for the system palette resource
which is used as the default palette for non-color windows and color
windows without assigned palettes.

(setf myPalette (tb:!GetNewPalette 128))

tb: ?Dispose Palette my Palette [V-162] Function

Disposes of the palette myPalette and its associated data structures.

Example: (tb:!DisposePalette myPalette)

tb: !ActivatePalette srcWindow [V-162] Function

Attempts to provide the color environment described in srcWindow's
palette.

tb:!SetPalette dstWindow srcPalette cUpdates [V-162] Function

Changes dstWindow's palette to srcPalette. If you want the window to
be updated whenever its color environment changes, pass T in
cUpdates; otherwise, pass NIL.

Example: (setf myWindow (make-instance 'tb:window))
(setf myPalette (tb:!GetNewPalette 128))
(tb:!SetPalette myWindow myPalette t)

Macintosh Toolbox Interface 5·1

tb:!GetPalette srcWindow [V-163] Function

Retums the palette associated with srcWindow.

tb: !PmForeColor dstEntry [V-163] Function

Sets the foreground color of the current cGratJ>ort to the color in palette
entty dstEntry in the cmrent palette.

tb: !PmBackColor dstEntry [V-163] Function

Sets the background color of the current cGratPort to the color in palette
entry dstEntry in the cmrent palette.

tb:!AnimateEntry dstWindow dstEntry srcRGB [V-164] Function

Changes the ROB value of dstEntry in the palette associated with
dstWindow to srcRGB.

tb:!AnimatePalette dstWindow srcCTab srclndex
dstEntry dstlLength

[V-164] Function

Starting at srclndex, the next dstLength entries are copied from srcCTab
to dstWindOw's.palette beginning at dstEntry.

tb:!GetEntryColor srcPalette srcEntry dstRGB [V-164] Function

Sets dstR.GB to the color in the entry srcEntry in srcPalette.

tb:!SetEntryColor dstPalette dstEntry srcRGB [V-165] Function

Sets the color in the entry srcEntry in srcPalette to srcRGB.

tb:GetEntryUsage srcPalette srcEntry
tb:!GetEntryUsage srcPalette srcEntry VAR dstUsage

VAR dstTolerance

[V-165] Function
[V-165] Function

tb:GetEntryUsage returns two values: the usage and the tolerance
values of entry number srcEntry in the palette srcPalette.
tb:!GetEntryUsage is similar except it modifies dstUsage and
dsfl'olerance to be the usage and tolerance values.

tb:!SetEntryUsage dstPalette dstEntry srcUsage srcTolerance [V-165] Function

Modifies the usage and tolerance values of srcEntry in the palette
srcPalette to srcUsage and srcTolerance, respectively.

tb:!CTab2Palette myCTab myPalette srcUsage srcTolerance [V-165] Function

Copies the color table myCTab into the palette myPalette. If the
myPalette is not the same size as the color table, myPalette is resized.
The usage and tolerance fields of the new entries are set to srcU sage and
srcTolerance, respectively.

Macintosh Toolbox Interface

Example: (setf myColors (tb: !GetCTable 127))
(tb:!CTab2Palette myColors myPalette 0 0)

Palette Manager

tb:!Palette2CTab myPalette myCTab [V-166] Function

Macintosh Toolbox Interface

Copies the palette myPalette into the color table myCTab. If the color
table is not the same size as myPalette, the color table is resized.

5.3

Introduction

Color Picker
Package
Routines

Chapter 6
COLOR PICKER

6.1 The Color Picker is a package that enables an application to ask
you to select colorso The package also contains utilities to convert
colors between the different color representational schemes.

6.2 This routine displays the Color Picker dialog box.

tb:!GetColor where prompt inColor outColor [V-17 4] Function

Example:

Color Picker
Conversion
Routines

Displays the Color Picker dialog box at a point where with a prompt
string prompt. The color displayed is inC olor and the selected color is
returned in outColor only if you click the OK button. Both inColor and
outColor are instances of tb:RGBColor. If you click OK, Tis
returned. If you cancel, NIL is retumedo

(setf where (make-instance 'tb:point))
(setf inColor (make-instance 'tb:RGBColor))
(setf outColor (make-instance 'tb:RGBColor))
(tb:!GetColor where "Pick a color" inColor outColor)
(send outColor :red) => 65535
(send outColor :green) => 17508
(send outColor :blue) => 15005

6.3 The Color Picker provides routines for converting between the
RGBcolor data structures and three other color data structures:
CMYColor, HSLColor, and HSVColor. These data structures enable
you to use alternate color models. The srnallFract data type mentioned
in the accessor methods below is a floating point number between zero
and one.

tb:CMYColor [V-176] Flavor

:cyan
:magenta
:yellow

This flavor defines a CMY color. A new instance of this flavor defaults
to black.

:set-cyan smallFract
:set-magenta smallFract
:set-yellow smallFract

Method of th:CMYColor
Method of tb:CMYColor
Method of tb:CMYColor
Method of tb:CMYColor
Method of tb:CMYColor
Method of tb:CMYColor

Macintosh Toolbox Interface

These are the three component values of a CMY color expressed as a
SrnallFract numbers.

6-1

Color Picker

:= &optional cyan magenta yellow Method of tb:CMYColor

Sets the CMYColor to the given cyan, magenta ,and yellow values.
The argwnents are smallFract numbers.

tb:HSLColor [V-176] Flavor

:hue
:saturation
:lightness

This flavor defines an HSL color. A new instance of this flavor
defaults to black.

:setmhue smallFract
:set-saturation smallFract
:set-lightness smal/Fract

Method of tb:HSLColor
Method of tb:HSLColor
Method of tb:HSLColor
Method of tb:HSLColor
Method of tb:HSLColor
Method of tb:HSLColor

These are the three component values of an HSL color expressed as
SmallFract numbers.

:=&optional hue saturation lightness Method of tb:HSLColor

Sets the HSLColor to the given hue, saturation, and lightness values.
The arguments are smallFract numbers.

tb:HSVColor [V-176] Flavor

This flavor defines a HSV color. A new instance of this flavor defaults
to black.

:hue
:saturation
:value
:set-hue smallFract
:set-saturation smallFract
:set-value smallFract

Method of tb:HSVColor
Method of tb:HSVColor
Method of tb:HSVColor
Method of tb:HSVColor
Method of tb:HSVColor
Method of tb:HSVColor

These are the three component values of an HSV color expressed as
SmallFract numbers.

:= &optional hue saturation value Method of tb:HSVColor

Sets the HSVColor to the given hue, saturation, and value values. The ·
argument values are smallFract numbers.

tb:!CMY2RGB cColor rColor
tb:!RGB2CMY rColor cColor

[V-175] Function
[V-175] Function

This pair of functions converts between a CMY color to an ROB color.

tb:!HSL2RGB hColor rColor
tb:!RGB2HSL rColor hColor

[V-17 5] Function
[V-175] Function

This pair of functions converts between a HSL color to an ROB color.

Macintosh Toolbox Interface

tb:!HSV2RGB hColor rColor
tb:!RGB2HSV rColor hColor

Color Picker

[V-175] Function
[V-175] Function

This pair of functions converts between a HSV color to an RGB color.

tb:!Fix2Sma11Fract f
tb:!Sma11Fract2Fix s

[V-175] Function
[V-175] Function

This pair of function converts between a fixed-point number and a
smallFract number and returns the converted value.

Macintosh Toolbox Interface

Introduction

Initializing the
Font Manager

Chapter.7
FONT MANAGER

7.1 The Font Manager is used by QuickDraw to generate and display
various character fonts. The only time you will use these traps is when
your application includes a Font or a Style menu. Use the Menu
Manager trap tb:!AddResMenu, with a resource type "FONT", to
generate the Font menu. This trap adds the names of all the fonts in the
currently opened resource files to the menu. The Style menu is built up
like a normal menu by appending each item to the menu. Use the trap
tb:!RealFont to see if a font of a particular size is available. If it is,
use the Menu Manager trap tb:!SetltemStyle to outline the font size
item.

With the introduction of the Macintosh Plus two new traps and a new
data structure, the tb:FontMetric record, were added to the Font
Manager. These traps are used for supporting fractional character
widths and are of interest only if you are printing directly to a laser
printer or making some other use of PostScript®.

The Font Manager has also been changed to handle color fonts. These
changes are transparent to the user.

7.2 The routine which initializes the Font Manager should be called
once before calling any other Font Manager routine or any Toolbox
routine that will call the Font Manager.

th: !InitFonts [1-222] Function

Getting Font
Information

Initializes the Font Manager. You do not need to call this function as it
is called for you when you launch a ThServer.

7.3 These routines identify font names and numbers and determine
whether a font of the desired size exists.

tb:GetFontName fontNum [1-223] Function

Example:

Returns the font name of the font number fonrNum. Use this trap
instead of tb:!Getli'ontName. To get the name of the font that has a
font number of 4, do:

(GetFontName 4) => "Monaco"

tb:!GetFontName fontNum VAR theName [1-223] Function

Macintosh Toolbox Interface

Modifies theName to be the font name of the font numberfontNum. To
get the name of the font that has a font number of 4, do:

7.1

Font Manager

7-.2

Example: (tb: !GetFontName 4 (VAR theName))
theName => "Monaco"

tb:GetFNum fontName [1-223] Function

Returns the font number of the font named in the stringfontName. Use
this trap instead of tb:!GetFNum. The constants representing the
currently defmed font numbers are shown below.

tb:!SystemFont
tb:!ApplFont
tb:!NewYork
tb:!Geneva
tb:!Monaco .
tb:!Venice
tb:!London
tb:!Athens
tb:!SanFran
tb:!Toronto
tb:!Cairo
tb:!LosAngles
tb:!Times®
tb: ! Helvetica®
tb:!Courier
tb:!Symbol
tb:!Mobile

[1-219] Constant
[1-219] Constant
[I-219] Constant
[I-219] Constant
[I-219] Constant
[I-219] Constant
[I-219] Constant
[I-219] Constant
[I-219] Constant
[I-219] Constant
[1-219] Constant
[1-219] Constant
[1-219] Constant
[I-219) Constant
[1-219] Constant
[1-219] Constant
[1-219] Constant

tb:!SystemFont is the number of the default system font such as is
used in menu titles. tb:!ApplFont is the number of the default
application font. The remaining constants represent the standard fonts.

Example:

NOTE: The presence of these constants are unrelated to the fonts which
are actually installed on any given Macintosh. The Macintosh OS will
substitute a font if the requested font is not installed.

To get the number of the New York font, do the following:

(GetFNum "NewYork") -> 2

tb: !GetFNum fontName VAR theNum [I-223] Function

Modifies theNum to be the font number of the font namedfontName.

Example: · (setf theNum 0)
(tb:!GetFNum "NewYork" (VAR theNum))
theNum •> 2

th: !RealFont fontNum size [1-223] Function

Returns true if the fontfontNum exists in the particular font size size.

Example: ;;;Does New York font exist In 12 point?
(tb: !RealFont tb: !NewYork 12) => T

Macintosh Toolbox Interface

Keeping Fonts
in Memory

Font Manager

7 .4 This trap is ·used to prevent font information from being purged
from memory.

tb: !SetFontLock lockF lag [I-223] Function

Advanced
Routines

Prevents the purging of the most recently used font's resource if
lockFlag is true. If lockFlag is false, purging is allowed.

7 .5 This routine is not normally used by an application directly, but
may be of interest to advanced programmers who want to bypass the
QuickDraw routines that deal with text.

tb:!FMSwapFont inRec [I-223] Function

Fractional -
Width Routines

This is an internally used trap. See Inside Macintosh for more details.

7 .6 These routines were added to the Font Manager to support
fractional character widths.

tb:!SetFScaleDisable scaleDis · [IV-32] Function

Tells the Font Manager whether- to scale a font of another size if it
cannot find one of the required size.

tb:!FontMetrics theMetrics [IV-32] Function

Modifies theMetrics, an instance of the tb:FMetricRec flavor, with
infonnation about the cunent font.

tb:FMetricRec [IV-32] Flavor

:A seen ti
:AscentF
:Descent[
:DescentF

:Leading!
:LeadingF

Macintosh Toolbox Interface

This flavor defines the data structure used to record font information
(cf. tb:!FontMetrics). ·

Method of tb:FMetricRec
Method of tb:FMetricRec
Method of tb:FMetricRec
Method of tb:FMetricRec

Record the number of pixels the font extends above (ascent) and below
(descent) the baseline. Each pixel count is represented by two integers:
an integral count and a fractional count representing the 16 bits to the
right of the decimal.

Method of tb:FMetricRec
Method of tb:FMetricRec

Record the number of pixels of white space between the descenders of
one line and the ascenders of the next line down. Each pixel count is

7.3

Font Manager

7-4

:WidMaxl
:WidMaxF

represented by two integers: an integral count and a fractional count
representing the 16 bits to the right of the decimal.

Method of tb:FMetricRec
Method of tb:FMetricRec

Record the number of pixels of the widest character in the font. Each
pixel count is represented by two integers: an integral count and a
fractional count representing the 16 bits to the right of the decimal.

:WTabHandle Method of tb:FMetricRec

A handle to the global width table describing this font.

tb: !SetFractEnable fractEnable [IV-32] Function

Enables or disables fractional font widths.

Macintosh Toolbox Interface

Introduction

Chapter 8
EVENT MANAGER

8.1 The Event Manager is your application's link to its user. When
the user presses the mouse button, types on the keyboard, or inserts a
disk in the disk drive, your application is notified by means of an event.
A typical Macintosh application program is event-driven, meaning it
decides what to do by asking the Event Manager for events and
responding to them in the appropriate manner.

The Event Manager is probably the most used Toolbox Manager and
tb:EventRecord the most used, and most useful, Toolbox flavor. All
Macintosh applications are event-driven with a main event loop at their
core. At the center of the main event loop are the Event Manager traps
tb:!GetNextEvent and tb:!WaitNextEvent. These traps take a
tb:EventRecord instance as an argument. If there is an event,
information about it is returned in various fields of the
tb:EventRecord instance. If you pass a tb:EventRecord instance
to the trap, you can then access the various fields of the record by using
the instance variables.

If a t b : E v en t Rec o r d instance is passed to the trap
tb:!GetNextEvent or tb:!WaitNextEvent and there is an event,
the information returned in the instance depends on the type of event.
The event type can be determined from the :what instance variable.
The time the event was recorded is found in the :when instance
variable. The current position of the mouse is found in : V anq : H.
The information returned in the message field depends on the event
type. For window-related events, Update and Activate, the window
pointer of the window in question is in :message Window. For key
down events, the character of the key pressed is in :messageChar.

tb:EventRecord [1-249] Flavor

:What

:When

Macintosh Toolbox Interface

This flavor records the information returned by tb:!WaitNextEvent
and tb: !GetNextEvent.

Method of tb:EventRecord

Returns the event code as an integer. The defined event codes are
represented by event code constants (e.g., t b : ! mouse Down)
documented in paragraph 8.2.

Method of tb:EventRecord

Returns the time of the event as an integer.

8-1

Event Manager

8·2

:Message Method of tb:EventRecord

Returns the variable message portion of the event as an integer. TI1e
meaning of this value depends totally upon the associated event code,
: What. Therefore, the value returned by this method cannot be used
until it is "interpreted" in the light of the event code. The alternate
methods :MessageWindow, :MessageChar, :MessageKey, and
:MessageDrNum described below return interpreted values.

: Message Window Method of tb:EventRecord

Assuming that the event record instance records an event related to a
window, this method returns :Message interpreted as a tb:Window
instance.

:MessageDrNum Method of tb:EventRecord

Assuming that the event record instance corresponds to an event code of
tb:!diskEvt, then this method returns :Message interpreted as an
integer drive number.

:MessageChar Method of tb:EventRecord

Assuming that the event record instance records an event related to a
key, this method returns : Message interpreted as a Lisp character
object.

:Message Key Method of tb:EventRecord

:V
:H

:Modifiers

Assuming that the event record instance records an event related to a
key, this method returns :Message interpreted as an integer keyboard
key code.

Method of tb:EventRecord
Method of tb:EventRecord

Return the coordinates of the mouse at the time the event occurred. If
these coordinates are needed for a point argument to some function,
then just pass the event record instance itself. The tb:EventRecord
flavor mixes in the tb:Point flavor so that an event record instance can
be used anywhere a point instance is required.

Method of tb:EventRecord

Returns the modifier flags associated with this event as an integer. The
defined event modifiers are represented by event modifier masks (e.g.,
tb:!activeFlag) documented paragraph 8.2.

Macintosh Toolbox Interface

Event Manager
Traps

Event Manager

8.2 The most used trap in the Event Manager is
tb:!WaitNextEvent. All applications have at their core a routine
which repeatedly calls the trap t b: ! Wait Next Event. This trap
modifies its EventRecord argument to be the next event in the event
queue, provided there is one. The Main Event Loop (MEL) keeps
calling tb:!WaitNextEvent until the trap returns true; then MEL calls
the relevant event handler routine.

tb: !GetNextEvent eventMask anEventRecordinstance
tb: !EventA vail eventMask anEventRecordinstance

[l-257] Function
[l-259] Function

tb:!GetNextEvent is called to locate the next available event of the
type specified by eventMask. If such an event exists, the trap returns
true with information about the event in various fields of the event
record. If the event was located in the event queue,
tb:!GetNextEvent also removes it from the queue. Normally, one
passes tb:!e~eryEvent in eventMask. This tells the Event Manager to
return the next eve~t in the event queue regardless of type.

NOTE: If using MultiFinder, tb:!WaitNextEvent should be used
instead of tb: !GetNextEvent. All microExplorer applications use
MultiFinder.

tb:!EventAvail is similar except that if it finds an event in the event
queue, it leaves the event there instead of removing it.

tb:!WaitNextEvent eventMask anEventRecordinstance sleep region Function

Macintosh Toolbox Interface

Allows an application to use the CPU more efficiently. It helps reduce
the null event traffic an application sees by allowing the caller to
specify, in addition to anEventRecord and eventMask, a time value
sleep for which to relinquish the processor if no events are pending, and
a region (global coordinates) which describes the current cursor
position.

The time value (in 1/60th of a second ticks) allows an application to
sleep until a real event occurs or the specified time has passed. The
region describing the current mouse position simplifies the application's
cursor tracking; the application receives a "mouse-moved" event only
when the mouse strays outside the given region. The global variable
tb:!nilrgn (an empty region) is provided in case you want to default
this argument.

It is recommended that any new application use tb:!WaitNextEvent
whenever possible, enabling background events to get as much time as
possible.

NOTE: If your application calls tb:!WaitNextEvent do not call the
Desk Manager trap tb:!SystemTask.

Symbolic constants for the eventMask argument and for the event codes
returned by the :what message to the event record are listed below.

3.3

Event Manager

Example:

Example:

;;; create eventrecord Instance only once so main event
;;; loop doesn't need to create a new Instance over and over
(defun initialize()

; ; create event record
. (set£ *event* (make-instance 'tb:EventRecord))

... other init code ...)

(catch 'EVENT-LOOP-EXIT
(loop ·

(when (tb:!WaitNextEvent tb:!everyEvent *event* 0
tb: ! nilrgn)

(case (the fixnum (send *event* :what))
(t. tb: ! nullEvent nil)
(t.tb:!mouseDown (MouseDownHandler))
(#.tb:!keyDown (KeyDownHandler))
... other event handlers ..•))))

. To find out which window a mouse-down event is in, call the Window
Manager trap tb:!FindWindow. See Chapter 9 on the Window
Manager for details).

Most of the time we ignore mouse-up events generated when the mouse
button is released. The only times you need to know about mouse-up
events are when tracking a drag selection, highlighting, and tracking the
mouse while the button is still down. In these cases it is better to use
the other Event Manager mouse button traps like tb:!StillDown,
tb: !WaitMouseUp, or tb: !Button. Use tb: !StillDown for
tracking a drag selection.

To test for a double click in an object, see if the difference between
• : When and the previous click in the object is less than

tb:*DoubleTime*. Technically, the trap tb:!GetDblTime returns
the user's latest choice for a double click interval, but calling this each
time takes too much time communicating across the bus. For this
reason tb:*DoubleTime* has the value at boot time.

(defun initialize()
.. . add this to the initialize routine ...
(set£ *lasttime* 0)
... other init code ...)

(defun MouseDownHandler ()
"handler for all mouse down events"
(let ((elapsed 0))

;; Double cllck occurs If this click occurred less than
;; tb:*DoubleTlme* ticks since the last click.
(setf elapsed (- (send *event* :When) *lasttime*))
(if (<= elapsed tb:*DoubleTime*)

(... then double click detected ...)
(... else single click detected ...))

(set£ *lasttime* (send *event* :When))))

KeyDown events are generated whenever the user presses a key on the
keyboard. AutoKey events (repeating KeyDown events) are generated
when the user holds down a key for a specified period of time. The
length of time is specified by the user with the control panel desk
accessory.

Macintosh Toolbox Interface

Exo.mple:

Exo.mple:

Event Manager

KeyDown and AutoKey are almost always handled the same way. You
get the character of the key depressed from the EventRecord by doing:

(setf theKey (send *event* :MessageChar))

There are two types of window related events: activate events and
update events. There are two types of activate events: a deactivate
event which effects the current active window, and an activate event
which effects the window which is to become the active window. You
can detennine which of these two types the current activate event is by
applying the th:!activeFlag mask to the :Modifiers instance variable
or calling th: !activeFlag-p with the : Modifiers values as its
argument. To make such a determination, do the following:

(if (tb:!activeFlag-p (send *event* :modifiers))
(activateHandler)
(deactivateHandler))

The following constants serve as masks for the value returned by the
:Modifiers message to a th:EventRecord instance. Alternately, the
predicate functions apply the matching mask to their argument, an event
record modifier value.

tb:!activeFlag [1-253] Constant
Function th:!activeFlag-p eventRecordModifier

th:!htnState

The constant is a mask of the event record modifier bit which is set if
th:!activeEvt event code represented an activate event; reset if it
represented a deactive event. redicate. function tests its argument, an
event record modifier, for this bit.

th:!htnState-p eventRecordMod.ifier
[1-253] Constant

Function

th:!cmdKey

The constant is a mask of he event record modifier bit which is. set if the
mouse button is still down. The predicate function tests its argument,
an event record modifier, for this bit.

tb:!cmdKey-p eventRecordModifier
[I-253] Constant

Function

th: !shift Key

The constant is a mask of he event record modifier bit which is set if the
Command Key down. The predicate function tests its argument, an
event record modifier, for this bit.

tb:!shiftKey-p eventRecordModifier
[1-253] Constant

Function

Macintosh Toolbox Interface

The constant is a mask of he event record modifier bit which is set if the
Shift Key is down. The predicate function tests its argument, an event
record modifier, for this bit.

8-5

Event Manager

th: !al phaLock [1-253] Constant
Function tb:!alphaLock-p eventRecordModifier

The constant is a mask of he event record modifier bit which is set if the
Caps Lock key is down. The predicate function tests its argument, an
event record modifier, for this bit.

tb: ?option Key
tb:!optionKey-p eventRecordModifier

[1-253] Constant
Function

The constant is a mask of he event record modifier bit which is set if the
Option key is down. The predicate function tests its argument, an event
record modifier, for this bit.

tb:!controlKey
tb: !controlKey-p eventRecordM odifier

[1-253] Constant
Function

The constant is a mask of he event record modifier bit which is set if the
Control key is down. The predicate function tests its argument, an
event record modifier, for this bit.

The following constants are event masks used to in the eventMask
argument to functions such as t b : ! W a i t N ex t Eve n t ,
tb: !GetNextEvent, and tb: !FlushEvents.

tb:!mDownMask
tb:!mUpMask -
tb:!keyDownMask
tb:!keyUpMask
tb:!autoKeyMask
tb:!updateMask
tb: !diskMask
tb:!activMask
tb:!networkMask
tb:!driverMask
tb:!app.lMask
tb:!app2Mask
tb: !app3Mask

[1-254] Constant
[I-254] Constant
[I-254] Constant
[I-254] Constant
[1-254] Constant
[I-254] Constant
[1-254] Constant
[I-254] Constant
[I-254] Constant
[I-254] Constant
[I-254] Constant
[I-254] Constant
[I-254] Constant

These are the event masks corresponding to the event codes described
below (e.g., tb: !mDownMask is the mask for the tb: !mouseDown
event code). These masks may be used ~dividually or summed
together to specify the events of interest (i.e., the eventMask argument)
for functions such as tb:!WaitNextEvent. tb:!GetNextEvent, and
tb:!FlushEvents. The mask for all possible events is
tb:!everyEvent. (See the caution concerning tb:!app4Mask.)

tb:!everyEvent [l-254] Constant

An event mask specifying all possible events.

The following constants are event codes returned by
tb:!WaitNextEvent and tb:!GetNextEvent.

Macintoslr Toolbox Interface

Event Manager

th:!nullEvent [1-249] Constant

Event code indicating that there is no event to process.

th: !mouseDown [1-249] Constant

Event code indicating that the mouse button was pressed; The event
record records where and when the mouse button was pressed. The
event record itself can be passed to any mouse down handling code
which requires a th:Point instance since th:Point is a mixin of
tb:EventRecord.

th: !mouse Up [1-249] Constant

Event code indicating that the mouse button was pressed. The event
record records where the mouse was released. This event is seldom
handled directly by application code. The meaning of a th: !mouseU p
event usually depends upon the particular th:!mouseDown event
which preceded it. Therefore, if the time and place the mouse button
was released is important, then the th: !mouseDown handler typically
calls a specialized tracking handler which watches for th:!mouseUp
and acts accordingly.

th: !keyDown [1-249] Constant

th:!keyUp

th: !autoKey

Event code indicating that a key was pressed. The :messageChar
message to the event record will return the character object representing
the key which was pressed.

[1-249] Constant

Event code indicating that a key was released. There is seldom any
need for an application to handle this event since "repeat" keystrokes
caused by the user holding down one key continuously is reported
through the th:!autoKey event code ..

[1-249] Constant

Event code similar to tb:!keyDown except that it is really one of the
"repeat" keys caused when the user holds a key down. This event is
usually handled the same as th:!keyDown.

th:!updateEvt [1-249] Constant

th:!diskEvt

Macintosh Toolbox Interface

Event code indicating that the window recorded in the event record
needs to be refresh~d. The :messageWindow message to the event
record will return the window which needs updating.

This event is most commonly posted when a window was closed.
Thereby, uncovering another window which then receives this
th:!updateEvt so that it can replace the black space left by the window
which was just closed.

[1-249] Constant

8-7

Ewmt Manager

8·8

Event code indicating that a floppy disk was inserted.

tb: !activeEvt [1-249] Constant

Event code indicating that the window recorded in the event record was
previously active and has now become inactive or it was previously
inactive and has become active. Apply the tb: !activeFlag mask to the
result of the : Modifiers message to the event record to distinguish the
two.

tb: !networkEvt [1-249] Constant

Event code indicating network activity.

tb: !driverEvt [1-249] Constant

tb: !app lEvt
tb: !app2Evt
tb: !app3Evt

Event code indicating device driver activity.

[1-249] Constant
[1-249] Constant
[1-249] Constant

Event codes for events signaled by an application via tb:!PostEvent.

tb: !app4Evt
tb: !app4Mask

[1-249] Constant
[1-254] Constant

This event code was originally reserved for the application's use, but it
has since been preempted by the MultiFinder which is required for the
operation of the microExplorer.

CAUTION: microExplorer applications may not use
tb:!app4Evt or tb:!app4Mask as their use will interfere with
the operation of the MultiFinder.

tb:!GetMouse mouseLoc [1-259] Function

Modifies mouseLoc, an instance of tb:Point, with the the current
location of the mouse in the local coordinates of the current grafPort.

Example: (setf mouseLocation (make-instance 'tb:Point))
(tb:!GetMouse mouseLocation)

mouseLocation •> t<POINT x•99 Y""'127>

tb:!Button [1-259] Function

Returns irue if the mouse button is pressed down.

th: !StillDown [1-259] Function

Returns true if the mouse button is down and there are no other mouse
events in the event queue.

Macintosh Toolbox Interface

Event Manager

tb:!WaitMouseUp [1-259] Function

This trap is the same as th:!StillDown except that if the mouse button
is not down, tb:!WaitMouseUp removes the preceding mouse-up
event before returning false.

tb:!GetKeys keyMap [1-259] Function

Example:

Returns a key Map of the current state of the keyboard. The key Map is a
128-bit record. If you need to know the actual key pressed on the
keyboard and not just the ASCII character equivalent, the key code can
be extracted from the event record by doing:

(setf keyCode (send *event* :rnessa9eKey))

The key code mapping to the keyboard is given in Inside Macintosh
pages I-251 and V-191, 192.

tb: ?Tick Count [1-260] Function
Returns the current number of ticks (1/60'ths of a second) since the
system last started up.

NOTE: Don't rely on the tick count to be exact. It is usually accurate
to within one tick but if you are accessing the disk or serial ports
extensively, ticks can be lost.

tb: !GetDblTime [1-260] Function

Returns the current setting, in ticks (1/60th of a second), for the
maximum time difference between mouse-down events to be considered
a double-click. 'This value is set by the Control Panel desk accessory.

tb:!GetCaretTime [1-260] Function

Macintosh Toolbox Interface

Returns the time, in ticks (1/60th of a second), between blinks of the
caret, i.e., the insertion point in a TextEdit record. (The "caret" is
typically the I-Beam cursor.)

8-9

Introduction

Initialization
and Allocation

Chapter 9
WINDOW MANAGER

9.1 The diagram below illustrates the primary components of a
window.

goAwayBox title

L l
_['] Edit Window

drag bar

1
zoom box

~kSi

l2J

/growl con

+-- growBox

From a user's point of view, a window is the only means of viewing
data. Actually, of course, a window is an illusion carefully maintained
by the programmer. For every possible action the user can make,
including dragging, growing, zooming, closing, scrolling through the
contents, or switching to another window, the programmer must call the
necessary functions to maintain this illusion.

In order to understand how to use these functions you need to
understand the entire main event loop which encompasses not only the
Window Manager, but the Event Manager, QuickDraw, the Control
Manager, the Menu Manager, the Dialog Manager, and the Desk
Manager.

9.2 These routines are used to initialize windows and allocate the
necessary memory in the Macintosh heap.

tb:!lnitWindows [I-281] Function

Macintosh Toolbox Interface

htitializes the Window Manager. You should never need to call this
function since windows are initialized for you when you launch a
ThServer.

9.1

Window Manager

th: Window
tb:CWindow

:wStorage

: boundsRect

:title

: visi hie

:behind

[1-276] Flavor
[V-199] Flavor

This flavor defines a color Quic.kDraw window data structure.
th:CWindow is effectively a synonym for th: Window. The Toolbox
Interface does not currently implement the old-style, non-color
QuickDraw windows. All methods and initialization options of
tb:Window also apply to tb:CWindow.

Furthermore, tb:Window and tb:CWindow both have
tb:cGrafPort as a mixin. As such, they inherit all of the instance
accessor methods belonging to color grafPorts, and can be used in any
routine that requires a tb:cGrafPort instance.

Init Option of th: Window

This is nominally a pointer to where to store the window. In the current
Toolbox Interface implementation, it should always be defaulted to
th:!nilPtr, the default, which causes a new instance to be created.

Init Option of th: Window

This is a tb:Rect instance defining the bounds of new window in
global coordinates. Defaults a something appropriate to the current
screen size.

Init Option of th: Window

This is the string to be used in the title bar. Defaults to "New Window".
If the specified title is too long to fit in the title bar, it will be truncated.

Init Option of th: Window

If this option is true, then the new window will immediately become
visible. The default is true.

Init Option of th: Window

If this option is a pointer to a window, then the new window will be
created behind the specified window. If this option is tb:!onePtr, the
default, then the new window will be created in front of all other
windows.

:goAwayFlag Init Option of th: Window

:refCon

If this option is true, the default, then a GoAway box will be drawn in
the window frame.

Init Option of th: Window

This option represents a 32-bit integer of programmer-defined
information which will be permanently associated with the new
window. The default is 0. While this user hook is needed in C and
Pascal environments, the preferred alternative on the microExplorer is to

Macintosh Toolbox Interface

:procID

Window Manager

mix tb:Window into your own window flavor which has the extra
instance variables you need.

lnit Option of th: Window

This integer option determines what kind of window is created.
Constants defining the available window types are shown below. The
default is tb:!zoomDocProc.

tb: Window instances have the following instance accessor methods in
addition to those it inherits from tb:cGrafPort.

• :WINOOWKIND ;108 [integer]
• :VISIBLE ;110 [boolean]
• :HILITED ;111 [boolean]
• :GOAWAYFLAG ;112 [boolean]
• :ZOOMFLAG ;113 [boolean]
• :STRUCRGN ;114 [rgnhandle]
• :CONTRGN ;118 [rgnhandle]
• :UPDATER.ON ;122 [rgnhandle]
• :WINDOWDEFPROC ;126 [handle]
• :DATAHANDLE ;130 [handle]
• :TITLEHANDLE ;134 [handle]
• :TITLEWIDTH ;138 L integer]
• :CONI'R.OLLIST ;140 [controlhandle]
• :NEXTWINDOW ;144 [pointer]
• :WINDOWPIC ;148 [pichandle]

tb:GetWMgrPort [I-28] Function
tb:GetCWMgrPort [V-210] Function

These two traps return the Window Manager port as a grafPort or
cGrafPort, respectively. The Window Manager port is generally off
limits. It belongs strictly to the Window Manager. In fact, Are You
M ultiFinder Friendly? recommends that you, "Consider the call
GetWMgrPort to be for amusement only."

tb:!GetWMgrPort grafi'ointer
tb:!GetCWMgrPort cGrafi'ointer

[I-28] Function
[V-210] Function

The Window Manager port is generally off limits. It belongs strictly to
the Window Manager. In fact, Are You MultiFinder Friendly?
recommends that you, "Consider the call GetWMgrPort to be for
amusement only."

tb:!NewWindow wStorage boundsrRect title visible
procID behind goAwayFlag refCon

tb:!NewCWindow wStorage boundsrRect title visible
procID behind goAwayFlag refCon

[I-281] Function

[V-207] Function

Macintosh Toolbox Interface

Create new windows, initialize the fields, create all the associated
structures, and return a window pointer to the new window.

You should always leave wStorage set to the default value of
tb:!nilPtr. The boundsRect is the rectangle that bounds the new

9.3

Window Manager

9-4

window. The proc/D (an integer) indicates the type of window wanted
and are defmed by the constants shown below.

The argument behind is a window pointer and is used if you want the
new window to be created in back of the window pointed at by behind.
Normally, you would pass tb:!onePtr and the window would be
created in front of all the other existing windows. The refCon (a 32-bit
integer) field is a place to put information of relevance to the window. It
is suggested that you do not use this field. Instead, create a new flavor
with any additional fields as instance variables.

tb:!documentProc
tb: !dBoxProc
tb:!plainDBox
tb:!altDBoxProc
t b: ! noG row DocProc
tb:!zoomDocProc
tb:!zoomNoGrow
tb: ! rDocProc

[I-273] Constant
[1-273] Constant
[l-273] Constant
[1-273] Constant
[1-273] Constant
[1-273] Constant
[1-273] Constant
[1-274] Constant

These constants are used as the proc/D initialization option to
tb: Window flavors. The general appearance of these windows is
shown in the Standard Types of Windows figure below. Notice that the
degree of rounding of tb:!rDocProc can be controlled by adding by
"incrementing" this constant before using it as a proc/D initialization
option. See Inside Macintosh I-274 for details.

documentProc o noGrowDocProc 4 rDocProc 16

dBoxProc 1 plainDBox 2 altDBoxProc 3

8

Standard Types of Windows

Macintosh Toolbox Interface

Window Manager

Example: (defflavor tb:TEWindow
(text)

Window
Display

(tb: Window)
:gettable-instance-variables
:settable-instance-variables
:inittable-instance-variables)

(defmethod (tb:TEWindow :after :init) (init-options)
(declare (ignore init-options))
(let ((prtRect (send self :portRect)))

(send prtRect :inset 3 3)
(setf text

(make-instance 'tb:TERec :viewRect prtRect
:destRect prtRect))))

(defmethod (tb:TEWindow :after :dispose) ()
(send text :dispose))

tb: !GetNewWindow window/D wStorage behind
tb:!GetNewCWindow window/D wStorage behind

[I-283) Function
[V-207] Function

These traps are the same as tb:!NewWindow and
tb:!NewCWindow except most of the information about the new
window is saved in a previously defined resource of type "WIND"
which has a resource ID window ID. Additionally, for color windows a
window color table resource of type "wctb" will be loaded if one is
available with the ID windowID.

tb:!CloseWindow window [I-283] Function

You should never need to call this function. tb:!CloseWindow is
used if you passed your own storage pointer in wStorage when creating
the window.

:dispose
tb:!DisposeWindow window

Method of th: Window
[I-284] Function

Dispose of the window if you passed th: !nilPtr in wStorage when
creating the window.

9.3 These routines control the display characteristics of a window
determining whether it is visible or invisible, active or inactive, etc.

:set-title string
tb:!SetWTitle window string

Set the title of the window.

Method of tb: Window
[I-284] Function

Macintosh Toolbox Interface 9.5

Window Manager

:title
tb:GetWTitle window
tb:!GetWTitle window VAR string

Method of tb:Window
[I-284] Function
[I-284] Function

Example:

:select

tb:GetWTitle returns the title of the window as a string.
tb:!GetWTitle is similar except that it updates string with the title
string.

(tb:!GetWTitle win (VAR title))
title •> "A New Title"

tb:!SelectWindow window
Method of th: Window

[I-284] Function

:hide

Make the selected window the active window by doing all the necessary
highlighting and generating the appropriate activate events. See the
example of a main event loop to understand when to use this trap.

tb:!HideWindow window
Method of tb:Window

[I-285] Function

:show

Make the window invisible. If the window is the front window, it
unhighlights the window, brings forward the next window, and
generates the appropriate activate events.

tb:!ShowWindow window
Method of th: Window

[I-285] Function

Make the window visible.

:erase Method of tb: Window

Erases the content region of the window.

tb:!ShowHide window showFlag [I-285] Function

If showFlag (boolean) is true, tb:!ShowHide makes the window
visible if the window is invisible. If the window is already visible, it
does nothing. If showFlag is false, it makes the window invisible if the
window is visible and does nothing if the window is already invisible.

NOTE: Unlike tb:!HideWindow or tb:!ShowWindow, this
function never changes the highlighting or front to back ordering of
windows.

tb:!HiliteWindow window fHilite [I-286] Function

Normally, you will not call this trap since the :select message will
automatically highlight the window. Highlighting a nonactive window
is contrary to Macintosh User Interface Guidelines.

tb:!BringToFront window [I-286] Function

Normally, you will not call this trap since the :select message will
automatically bring the window to the front.

Macintosh Toolbox Interface

Window Manager

tb:!SendBehind windowA windowB [1-286] Function

Nonnally, you will not call this trap since the :select message will
usually achieve the desired effect.

tb: !FrontWindow [1-286] Function

Returns the front-most window.

NOTE: Providing you have created a new window by making an
instance of tb:Window, tb:!FrontWindow will return the same
window instance. This can be very useful if you have stored additional
local information in the window instance.

tb:!DrawGrowlcon window [1-287] Function

Mouse Location

Redraws the Growlcon and associated lines. Call this trap after
receiving an activate or update event.

9.4 These routines are used to decipher the meaning of a mouse-down
event.

tb:FindWindow point [1-287] Function
[1-287] Function tb:!FindWindow point VAR whichWindow

Given a point, tb:FindWndow returns two values: a partCode if the
point 1s in a recognized window, and a window Ptr if it applies. Call
this trap after receiving a mouse-down event from the Event Manager
trap tb:!WaitNextEvent.

tb:!FindWindow is similar except that it modifies whichWindow to
be the new partCode.

Example: (defun mousedownHandler (thePt)
"handler for all mouseDown events"
(multiple-value-bind (partCode win)

(tb:FindWindow thePt)
(case (the fixnum partCode)

(f.tb:!inMenuBar (inMenuBarHandler thePt))
Ct. tb: ! inSysWindow (ignore)) ; handled by WaltNextEvent
(f.tb:!inContents (inContentHandler win thePt))
(t. tb: ! inDr.ag (inDragHandler win thePt))
(f.tb:!inGrow (inGrowHandler win thePt))
(f.tb:!inGoAway (inGoAwayHandler win thePt))
(f.tb:!inZoomin (inZoominHandler win thePt))
(.f. tb: ! inZoomOut (inZoomOutHandler win thePt)))
(otherwise (ignore)))))

Macintosh Toolbox Interface 9.7

Window Manager

tb:!inDesk

NOTE: The (the fixnum ...) form around partCode allows the
compiler to use a microcoded dispatch function rather than a series of
compares. Since we are dispatching on the numeric value of the
symbols such as tb:!inMenuBar, we need the#. reader macro to
force evaluation of the symbols (because case normally dispatches on
the symbols themselves).

t b: !inMenuBar
tb:!inSysWindow
th: !in Contents
tb:!inDrag
tb:!inGrow
tb:!inGoAway
tb:!inZoomln

[I-287] Constant
[I-287] Constant
[I-287] Constant
[l-287] Constant
[1-287] Constant
[I-287] Constant
[I-287] Constant
[1-287] Constant
[1-287] Constant tb: !inZoomOut

These constants collectively def'me the possible partCodes which may be
returned by tb:!FindWindow or tb:FindWindow. This integer
code identifies the part of the window on which the mouse was clicked.
The mouseDown handler of the event loop would normally dispatch on
this partCode to determine the appropriate response to the mouse click.
Typical responses are as follows:

tb:!inDesk -This partCode can be safely ignored.

tb:!inMenuBar - Call tb:!MenuSelect (q.v.).

tb:!inSysWindow - The user clicked on a Desk Accessory. See the
Desk Manager for details.

tb:!inDrag - Call tb:!DrawWindow.

t b : ! i n G r o w - First call t b : ! G r o w W i n d o w and then
tb: !Size Window.

tb:!inGoAway - First call tb:!TrackGoAway and if it returns true,
then dispose of the window.

tb:!inZoomin or tb:!inZoomOut - Call tb:!TrackBox and if it
returns true, then call tb:!ZoomWindow.

tb:!inContents -The action depends upon what controls. if any. your
window has. In general, if your window does have controls, call
tb:!FindControl to determine which control was selected and then
implement a control-specific dispatch similar to this one.

If your window does not have associated controls, then treat this
partCode as a non-specific mouse event.

tb:!TrackGoAway window point [1-288] Function

Called when there is a mouse-down event in the goAwayBox of a
window. It highlights the goAwayBox until the mouse button is

Macintosh Toolbox Interface

Window Manager

released and returns T if the mouse was still inside the goAwayBox
when released. If tb:!TrackGoAway returns true, send the window a
:dispose message.

tb: !TrackBox window point partCode [IV-50] Function

If the trap th:!FindWindow returns a result of tb:!inZoomln or
tb:!inZoomOut, call tb:!TrackBox giving the current window
window, the current mouse position point, and the partCode returned by
the trap tb:!FindWindow. If the trap result is true, call the trap
tb:!ZoomWindow.

tb:!ZoomWindow window partCode front [IV-50] Function

Zooms window according to partCode and will bring the window to the
front if front is true.

:inside-p point Method of tb: Window

Window
Movement and
Sizing

Returns true if point is inside the window.

9.5 These procedures control the movement and size of a window.

:move h v &optional (front t)
tb:!MoveWindow window h v front

Method of th: Window
[I-289] Function

Move window to a point with coordinates (h,v) where h and v are
expressed in global coordinates. If front is true (the default) and
window is not the active window, tb:!SelectWindow is called to
make it the active window.

tb:!DragWindow window point boundsRect [I-289] Function

Drags an outline of window starting at the point point, specified in
global coordinates, limiting the drag area to boundsRect. (See Inside
Macintosh for details).

tb:!GrowWindow window point rect [I-289] Function

Macintosh Toolbox Interface

Draws a grow image of window, with size rect, that tracks the mouse
starting at point. Point should be in global coordinates. When the
mouse button is released, the trap returns two values: the new height
and width of window.

Window Manager

Example:

:width
:height

(defun inGrowHandler (win startPt)
(let ((sizeRect (make-instance 'tb:rect

:top 100 :bottom 300
: left 100 : right 300)))

(multiple-value-bind (newHeight newWidth)
(tb:!GrowWindow win startPt sizeRect)

(when (and (/• 0 newHeight) (/= 0 newWidth))
;; then new values aren't O, so the size DID change

(tb:!SizeWindow win newWidth newHeight t)))))

Method of tb: Window
Method of tb: Window

Return the width and height of the window, respectively.

tb:!SizeWindow window width height /Update [I-290] Function

Update Region
Maintenance

:in val

Resizes window to width and height. If /Update is true, any newly
created part of the content's region is put into the update region.

9.6 These routines control the areas that will be affected during an
update event.

Method of tb: Window

Adds the entire portRect of self into the update region of the window
whose gratPort is the cwrent port. .

:in val
tb:!InvalRect rect

Method of tb:Rect
[I-291] Function

:in val

Add rect into the update region of the window whose grafPort is the
current port.

tb:!InvalRgn region
Method of tb: Region

[I-291] Function

Add region into the update region of the window whose grafPort is the
current port.

:valid
tb:!ValidRect rect

Method of tb:Rect
[I-292] Function

:valid

Remove rect from the update region of the window whose grafPort is
the current port.

tb:!ValidRgn region
Method of tb:Region

[1-292] Function

Remove region from the update region of the window whose grafPort is
the current port.

Macintosh Toolbox Interface

Window Manager

tb:!BeginUpdate window
tb:!EndUpdate window

[1-292] Function
[1-293] Function

Miscellaneous
Routines

Call tb:!BeginUpdate upon receipt of an update event for window.
Call tb:!EndUpdate when you are finished handling an update event
for window.

9. 7 The following section outlines the miscellaneous Window ·
Manager routines.

tb:!SetWRefCon window longlnt
tb:!GetWRefCon window

[1-293] Function
[l-293] Function

You should never need to use these traps. If you need to store
additional information about a window, create a new flavor of window
that contains any additional fields required.

tb:!SetWindowPic window picture [1-293] Function

Stores picture in the window record of window so that when the
window's contents are to be drawn, the Window Manager draws picture
instead of generating an update event.

tb:!GetWindowPic window [1-293] Function

Returns any picture handle that may be associated with window.

:pin
tb:!PinRect rect point

Method of tb:Rect
[l-293] Function

Returns two values indicating the vertical and horizontal coordinates of
the point within the rectangle rect that is closest to the point point. The
method is faster than the function.

:dragGray point &key :limitRect :slopRect :axis Method of th: Region
:actionProc

tb:!DragGrayRgn region point limitRect slopRect axis [1-294] Function

Macintosh Toolbox Interface

actionProc

Pulls a dotted gray outline of the region around following the
movements of the mouse until the mouse button is released. All points
and rectangles are in the local coordinates of the current grafPort. The
axis value should be one of the constants tb:!noConstraint,
tb:!hAxisOnly, or tb:!vAxisOnly as described below. The
actionProc should always be tb:!nilPtr. If the mouse button is
released within slopRect, the function returns multiple values dh and dv.
If the mouse button is released outside slopRect both returned values are
-32768 (#x8000). Refer to Inside Macintosh for details.

9·11

Window Manager

9·12

tb: !noConstraint
tb: ! hAxisOnly
tb:!vAxisOnly

[I-295] Constant
[1-295] Constant
[1-295] Constant

Example:

These three constant are used as axis arguments to Window Manager
and Control Manager functions which may wish to constrain mouse
movement in some way. The choices are unconstrained motion,
horizontal motion only, or vertical motion only.

tb: ; with this, we don't have to prefix everything with tb:
(defun test-draggrayrgn ()

(let ((event (make-instance 'EventRecord))
(pt (make-instance 'Point))
(w (make-instance 'Window

:title "Press any key to exit"
:boundsrect (make-instance 'Rect

:left 50 :top 50

slopr r drgrgn rgn)
(! Setl?ort w)

:right 350 :bottom 300)))

(setf slopr (send (send w :portrect) :inset 50 50))
(send slopr :frame)

(setf r (send (send (make-instance 'Rect) := slopr)
:inset 50 50))

(setf rgn (send (make-instance 'Region) := r))
(send rgn :union (send r :offset 25 25))
(setf drgrgn (make-instance 'Region))
(send rgn : fill)
(catch 'EVENT-LOOP-EXIT

(loop ;throw to EVENT-LOOP-EXIT to exit this loop
(when (!WaitNextEvent !everyEvent event 10

!nilRgn)
;;then we have an event we are supposed to process

(case (the fixnum (send event :what))
(t . ! mouseDown

(!GlobalToLocal (send pt :=event))
(when (send rgn :inside-p pt)

;;then mouse clicked Inside our region
(send drgrgn := rgn)
(multiple-value-bind (dy dx)

, (send drgrgn :dragGray
pt :sloprect slopr)

(when (and (not (= 0 dx dy))
(not (= tx8000 dx dy)))

;;then It was moved and It stayed In bounds
(send (send (send rgn :erase)

:offset dx dy) :fill)))))
(t . ! keyDown

;;a key was pressed, that's our signal to quit
(send w :dispose)
(throw 'EVENT-LOOP-EXIT nil))))))))

tb:!GetGrayRgn [V-208] Function

Returns the current desktop region.

Macintosh Toolbox Interface

Window Manager

tb:!SetDeskCPat pixPat [V-210] Function

Low-Level
Routines

Color Window
Manager Traps

Sets the desktop pattern to the given pixel pattern.

9.8 These are all low-level Window Manager traps and are unlikely
ever to be used. See Inside Macintosh for more details.

tb:!CheckUpdate
tb:!ClipAbove
tb:!SaveOld
tb:!DrawNew
tb:!PaintOne
tb:!PaintBehind
tb:!CalcVis
tb:!CalcVisBehind

9.9 These traps control the color characteristics of a given window.

tb:!SetWinColor window CTabHandle [V-207] Function

tb:WinCTab

Sets the window's color table. If window has no auxiliary window
record, a new one is created with CTabHan.dle and added to the head of
the auxiliary window list. If window has an auxiliary window record,
its_ contents are replaced by CTabHandle. After setting the window's
color table, the window is automatically redrawn in the new colors.

[V-202] Flavor

This flavor defines a color window color table. All fields must be
individually set after instantiation.

:set-content.value partCode
:set-frame.value partCode
:set-text.value partCode
:set-hilite. value partC ode
:set-title bar. value partC ode

Method oftb:WinCTab
Method of tb:WinCTab
Method of tb: WinCTab
Method of tb:WinCTab
Method of tb: WinCTab

These methods initialize partCodes for the color tnhle and must be set to
the constants tb: ! wCon tentC olor, t b: ! w F ra meC olor,
th: !wTextColor, tb: ! wHiliteColor, and tb: !wTitleBarColor
respectively.

:content.red
:content.blue
:content.green
:set-content.red 16b-unsigned-integer
:set-content.blue 16b-unsigned-integer
:set-content.green l 6b-unsigned-inte ger

Method of tb:WinCTab
Method of tb: WinCTab
Method of tb:WinCTab
Method of tb:WinCTab
Method of tb:WinCTab
Method of tb:WinCTab

These methods handle the RGB color for the window background.

Macintosh Toolbox Interface 9-13

Window Ma1tt1ger

:frame.red
:frame.blue
:frame.green
:set-frame.red l 6b-unsigned-integer
:set-frame.blue l 6b-unsigned-integer
:set-frame.green l 6b-unsigned-integer

Method of tb: WinCTab
Method oftb:WinCTab
Method of th: WinCTab
Method of tb: WinCTab
Method of tb: WinCTab
Method of tb: WinCTab

These methods handle the ROB color for the window frame.

:text.red
:text.blue
: text.green
:set-text.red l 6b-unsigned-integer
:set-text.blue l 6b-unsigned-integer
:set-text.green l 6b-unsigned-integer

Method of tb: WinCTab
Method of tb: Win(,"'Tab
Method of tb: WinCTab
Method of tb: WinCTab
Method of tb: WinCTab
Method of tb: WinCTab

These methods set the ROB color for window text.

:hilite.red
: hilite.blue
: hilite.green
:set-hilite.red l 6b-unsigned-integer
:set-hilite.blue l 6b-unsigned-integer
:set-hilite.green l 6b-unsigned-integer

Method of tb:WinCTab
Method of th: WinCTab
Method of tb: WinCTab
Method of tb: WinCTah
Method of tb: WinCTab
Method of th: WinCTab

These methods set the ROB color for the hilite lines in the title bar when
the window is highlighted.

: titlebar. red
:titlebar .blue
: titlebar .green
:set-titlebar .red l 6b-unsigned-inte ger
:set-titlebar.blue l 6b-unsigned-integer
:set-titlebar.green l 6b-unsigned-integer

Method of tb: WinCTab
Method of th: WinCTab
Method of tb: WinCTab
Method of th: WinCTab
Method of tb: WinCTab
Method of tb: WinCTab

These methods set the ROB colors for the (unhighlighted) title bar
background.

:ctsize
:set-ctsize integer

The number of partCodes in the table less one.

tb:!wContentColor
tb:!wFrameColor
th: !wTextColor
tb: !wH iliteColor
tb: !wTitleBarColor

Method of tb: WinCTab
Method of tb: WinCTab

[V-204] Constant
[V-204] Constant
[V-204] Constant
[V-204] Constant
[V-204] Constant

These constants serve as partCode identifiers for the window color table
structure. In particular, they are the initial values of the
:content.value, :frame.value, :text.value, :hilite.value, and
:titlebar.value instance variables of the tb:winCTab flavor,
respectively.

Macintosh Toolbox Interface

Window Manager

tb:!Ge.tAuxWin window AuxWinRec [V-207] Function

Sets AuxWinRec to be the window's auxiliary window record. If
window has an auxiliary record, th: !GetAuxWin returns true. If
window does not have an auxiliary record, tb:!GetAuxWin returns
false and sets AuxWinRec to the default auxiliary record. If window is
tb:!nilPtr, tb:!GetAuxWin returns true and AuxWinRec becomes
the default record.

tb:AuxWinRec [V-201] Flavor

Creates a new, uninitialized auxiliary window record object.

:awnext
:setmawnext AuxWinHandle

Handle of next record on the list.

:awowner
:set-awowner WindowPtr

Pointer to this window's owner window.

:awctable
:set-awctable CTabHandle

Handle to window's color table.

Method of tb:AuxWinRec
Method of tb:AuxWinRec

Method of tb:AuxWinRec
· Method of tb:AuxWinRec

Method of tb:AuxWinRec
Method of tb:AuxWinRec

:awrefcon Instance Variable of tb:AuxWinRec

This instance variable is reserved for the application's use.

tb:!GetWVariant window [V-208] Function

Returns the variant code for window.

Macintosh Toolbox Interface 9.15

Introduction

Chapter 10
CONTROL MANAGER

10.1 A control is an object in a window that is selected by pressing
the mouse button while the cursor is within the bounds of the object.
This either causes an immediate action or changes the value of a
program parameter which will have some later effect. The Control
Manager is used to create, change, and dispose of controls. There are
four predefined controls: buttons, check boxes, radio buttons, and
scroll bars. See the illustration below for examples of each of these
items.

(Button 1 J

(Button 2 J
Scroll Bar

D Check BoH 1 O Radio Button 1

r8l Check BoH 2 O Radio Button 2

l8l Check BoH 3 ® Radio Button 3

The available controls are identified by integer proc/Ds which have the
following symbolic names in the Toolbox Interface:

tb:!pushButProc [1-315] Constant

A button is used when you want the reaction to occur immediately after
the mouse button has been pressed.

tb: !checkBoxProc
tb: !radioButProc

[1-315] Constant
[1-315] Constant

Check boxes ; and radio buttons are generally ru::ranged in groups and
are used to display settings. The difference between them is that only
one radio button of a group can be "on" at a given time, whereas any or
all check boxes in a group can be "on" at the same time.

th: !scrollBarProc [I-315] Constant

Scroll bars ; enable the user to change the part of the window that is
displayed. They are used when the contents of a window are bigger
than the window's display area.

tb:!useWFont [1-315] Constant

Macintosh Toolbox Interface

Add this constant to tb:!pushButProc, tb:!checkBoxProc,
th:! radioButProc, or th: !scrollBarProc to create a procID which
will use the window's gratPort font for annotating the control.

10-1

Control Manager

Initialization
and Allocation

I 0.2 These routines create and dispose of controls.

10·2

tb:ControlRecord [I-317] Flavor

This flavor defines a new control according to its initialization options.
An instance of this flavor may be used anywhere a ControlHandle is
called for.

NOTE: Since controls belong to windows, make sure that when
creating a control there is a window present.

:theWindow pointer
:owner

Init Option of tb:ControlRecord
Method of tb:ControlRecord

This is the pointer to the window which this control belongs to. The
default is the frontmost window.

:boundsRect rect
:top

Init Option of tb:ControlRecord
Method of tb:ControlRecord
Method of tb:ControlRecord
Method of tb:ControlRecord
Method of tb:ControlRecord

:bottom
:left
:right

:title string
:title

This is a rectangle defined in the containing window's local coordinates
of where this control will appear. The default is the rectangle defined
by (50 50 100 100). The rect argument is a tb:Rect instance of a list of
four integers defining the corners of the rectangle. The methods
correspond to the tb:Rect instance variables.

:set-title StringPointer

Init Option of tb:ControlRecord
Method of tb:ControlRecord
Method of tb:ControlRecord

This is a string of up to 255 characters which becomes the title of the
control. The string may be empty. If it is too long, it is truncated. The
default is "Control Title".

:visible visible-p
:vis

lnit Option of th: Control Record
Method of tb:ControlRecord
Method of th:ControlRecord :set-vis byte

If this option is true, then the control will be visible. For the
initialization option, true is non-nil. For the methods, true is 1 and
false is 0. The default is true.

Macintosh Toolbox Interface

:value 16b-integer
:min 16b-integer
:max 16b-integer
:value
:min
:max
:set-value 16b-integer
:set-min 16b-integer
:set-max 16b-integer

Control Manager

Init Option of tb:ControlRecord
Init Option of tb:ControlRecord
Init Option of th: Control Record

Method of tb:ControlRecord
Method of tb:ControlRecord
Method of tb:ControlRecord
Method of tb:ControlRecord
Method of tb:ControlRecord
Method of tb:ControlRecord

These specify the integer initial value, the maximum value, and the
minimum value allowed for this control. Default is the range of 0 .. 10
with an initial value of 0.

:proclD 16b-integer Init Option of tb:ControlRecord

This integer value defines the type of control. The standard types (push
buttons, radio buttons, check boxes, and scroll bars) are represented by
the constant symbols tb:!pushButProc et al. defined above. The
default is a push button.

:refCon 32b-integer
:refCon

Init Option of th: Control Record
Method of tb:ControlRecord
Method of tb:ControlRecord :set-refCon 32b-integer

This is a 32-bit integer reserved for the application's use. A hook such
as this is needed in C or Pascal environments; but a better alternative on
the microExplorer is to define a new flavor which uses
tb:ControlRecord as a mixin and then add your extra instance
variable to that.

:defProc
:set-defProc handle

Method of th: Control Record
Method of tb:ControlRecord

This is a handle to the Macintosh function which defmes this control.

:controlAction
:set-controlAction procPointer

Method of tb:ControlRecord
Method of tb:ControlRecord

This is a pointer to the control's default action procedure.

:next Method of tb:ControlRecord

This is a handle to the next control.

:hilite
:set-hilite partCode

Method of tb:ControlRecord
Method of tb:ControlRecord

Macintosh Toolbox Interface

This is the control partCode to be highlighted. A value of 255 means
that all controls are shown as inactive.

10-3

Control Manager

tb:!NewControl theWindow boundsRect title visible value
min max procID rejCon

[I-319] Function

Example:

Creates a new control of type proc/D, associated with the window
theWindow, and returns a handle ControlHandle to this new control. It
is bound by the rectangle boundsRect and has the title name title. It can
have a range of values from min to max, with its initial value being that
specified in value.

To set up a simple push button, do the following:

(setf controlRect
(make-instance 'tb:rect :left 23 :top 79

:right 95 :bottom 97))
(setf myControl (tb:!NewControl myWindow controlRect

0 0K0 t 100 0 100 0 0))

tb:!GetNewControl controlID theWindow [I-321] Function

:dispose

This trap operates in the same manner as tb:!NewControl except that
it gets the control definition information from a resource of type
"CNTL" with a resource ID controlID.

tb:!DisposeControl theControl
Method of tb-:ControlRecord

[I-321] Function

Dispose of the control theControl and remove it from the control list and
releases any memory it uses.

tb:!KillControls theWindow [I-321] Function

Disposes of all the controls associated with the window theWindow.
The traps t b : ! CI o s e Window and t b: ! Dispose W i n do w
automatically dispose of any controls associated with the window.

Control Display 10.3 These procedures affect the appearance of a control but not its
size or location.

10·4

tb:!SetCTitle theControl title [I-321] Function

Set the title string of theControl to title. (See also :set-title method.)

tb:GetCTitle theControl
tb:!GetCTitle theControl VAR title

[I-321] Function
[I-321] Function

Example:

tb:GetCTitle returns the title string of the control theControl.
tb: !GetCTitle is similar except that title is modified to be the title
string. (See also :title method.)

(tb:!GetCTitle myControl (VAR title))
title => "A new title"

Macintosh Toolbox Interface

Control Manager

:hide
tb:!HideControl theControl

Method of tb:ControlRecord
[1-322] Function

Make tlleControl invisible.

:show
th: !ShowControl theC ontrol

Method of th: Control Record
[1-322] Function

Make theControl visible.

tb:!DrawControls theWindow [1-322] Function

Draws all the controls associated with theWindow.

tb:!DrawlControl theControl [IV-53] Function

Draws tlleControl if it is visible within the window.

tb:!HiliteControl theC.ontrol hiliteState [1-322] Function

Highlights theC ontrol according to the state specified in hiliteState. See
Inside Macintosh for additional information on hiliteState.

tb:!UpdtControl theWindow update [IV-53] Function

Mouse Location

Draws all the controls associated with the window theWindow that are
in the update region update.

I

10.4 These routines handle the various responses to pressing a mouse
button.

tb:FindControl thePt theWindow [1-323] Function
[1-323] Function tb:!FindControl thePt theWindow VAR whichControl

Macintosh Toolbox Interface

tb:FindControl is called when a mouse-down event is recorded in the
content region of a window; this trap checks to see if thePt is inside any
of the active controls associated with theWindow. If the event
happened while the mouse was inside a control, the trap returns two
values: the partCode for the part of the control the point is in and the
control's handle.

tb:!FindControl is similar to th:Finrlrontrol except that
whichControl is modified to be the partCode and no value is returned.

The tb:!FindControl and tb:FindControl traps expect the mouse
position in local coordinates, whereas the Window Manager
tb:!FindWindow and tb:FindWindow traps expect the mouse
position in global coordinates. You must convert the mouse position's
coordinate system using the QuickDraw trap tb:!GlobalToLocal.

10.5

Control Manager

tb: ! inButton
tb: !in Ch eek Box
tb: ! in U pButton
tb:?inDownButton
tb:!inPageUp

[I-316] Constant
[I-316] Constant
[I-316] Constant
[I-316] Constant
[I-316] Constant
[I-316] Constant
[1-316] Constant

th: !inPageDown
tb:!inThumb

These constants name the standard control types as returned by
tb:!FindControl and tb:FindControl.

tb:!inButton - Simple push button.
tb:!inCheckBox - Check box or radio button.
th:!inUpButton -The up arrow of a scroll bar.
tb:!inDownButton -The down arrow of a scroll bar.
th:!inPageUp -The page-up region of a scroll bar.
th: !inPageDown -The page-down region of a scroll bar.
tb:!inThumb -The thumb region of a scroll bar.

th:!TrackControl theControl startPt actionProc [1-323] Function

If th: !FindControl or tb: Find Control returns a partCode, call the
trap th:!TrackControl to track the mouse. This involves calling a
track action procedure, the type of action depending on what type of
control theControl is.

For example, a mouse-down event in the thumb of a scroll bar, calls a
procedure which outlines the thumb while the mouse button is still
down. th:?TrackControl returns when the user lets up the mouse
button. tb:!TrackControl returns either the partCode returned by
tb:!FindControl, or 0, which means the user moved the mouse out of
the control before releasing the mouse button. In the latter case, the
pi:ogram should do nothing. Pass tb:!nilPtr in actionProc.

tb:!TestControl theControl thePoint [I-325] Function

Returns the partCode of the part of the control theControl that the point
thePoint is in.

Control
Movement and
Sizing

10.5 These routines are called when moving, dragging, or resizing a
control.

10-6

tb: !MoveControl theControl h v [1-325] Function

Moves the position of theControl to the point (h,v) in the local
coordinate system of its window, and draws theC ontrol in its new
position.

Macintosh Toolbox Interface

Control Manager

tb:!DragControl theControl startPt limitRect slopRect axis . [l-325] Function

Drags a dotted outline of theControl starting at the point startPt and
draws the Cont r o I in its new position. This is similar to
tb:!DragGrayRgn.

tb:!SizeControl theControl width height [1-326] Function

Changes the size of theControl's boundary rectangle to the new width
and height specified and redraws theControl.

tb:!SetCtlValue theControl theValue [1-326] Function

Set the current value of theControl to theValue and redraw theControl
with its new value. (See also :set-value method.)

tb:!GetCtlValue theControl [1-326] Function

Returns the current value of theControl. (See also :value method.)

tb:!SetCtlMin theControl minValue [1-326] Function

Sets the minimum value of theControl to minValue and redraws
theControl with its new minimum value. (See also :set-min method.)

tb:!GetCtlMin theControl [l-327] Function

Returns the minimum value of theControl. (See also :min method.)

tb:!SetCtlMax theControl maxValue [1-327] Function

Sets the maximum value of theControl to maxValue and redraws
theControl with its new maximum value. (See also :set-max method.)

tb:!GetCtlMax theControl [1-327] Function

Miscellaneous
Routines

Returns the maximum value of theControl. (See also :max method.)

10.6 These routines set and return various fields of the control record.

tb:!SetCRefCon theControl data [I-327] Function

Sets the refCon field value of theControl to data.

tb:!GetCRefCon theControl [l-327] Function

Returns the value of the refCon field of theC ontrol.

tb:!SetCtlAction theControl actionProc [l-328] Function

Sets the field that contains a pointer to an action procedure of theControl
to actionProc.

Macintosh Toolbox Interface 10-7

Control Manager

tb:!GetCtlAction theControl [1-328] Function

Returns a pointer to the action procedure of theControl.

tb:!GetCVariant theControl [V-222] Function

Control
Manager Color
Traps

Returns the variant code of the color control theControl.

10. 7 When a new control is created inside a color window, a new
color control is created and a color table is associated with it. The color
table is created from the color table associated with the color window
and can be modified using the trap tb:!SetCtlColor.

If the control was created using the trap th: !GetNewControl, and
there is a "cctb" (control color table) resource with the same resource ID
as the "CNTL" resource used to created the control, then the control
color table specified by the "cctb" resource is used to create the color
table for the new control.

tb:!SetCtlColor theControl newColorTable [V-222] Function

10·8

Example:

·Sets theControfs color table to be newColorTable.

(setf cTab (tb:!GetCTable 127))
(tb:!SetCtlColor myControl cTab)

tb:!GetAuxCtl theControl acHandl [V-222] Function

Sets acHandl to be the auxiliary control record for the color control
theControl. If theControl used the default colors, tb:!GetAuxCtl
returns false. If theControl has its own color table or if theControl is
tb:!nilPtr, tb:!GetAuxCtl returns true.

Macintosh Toolbox Interface

Introduction

Initialization
and Allocation

Chapter 11
MENU MANAGER

11.1 The Menu Manager is used to:

• Create menus
• Build menu bars
• Modify the properties of menus
• Modify the properties of menu items
• Dispose of the menus
• Allow the user to choose from a menu

Menu bars are formed from a list of menus. Menus consist of a title and
a list of menu items.

Menu Titles

s . File./ Edft ~w
Enabled Items

Disabled Items

<
< ~

Hilited Items
,/

Em~) ti.~ ·rn~sh

Erase Disk
s~~ t s1 ..:n-1 up
lh~~ H~n~Hnder "'

Shut Down

Menu Items

11.2 These routines create and dispose of menus.

tb:!InitMenus [1-351,V-243] Function

tb:Menulnfo

Initializes the Menu Manager. You will never need to call this trap as it
is called for you when you launch a TbServer.

[I-345] Fhtvor

This flavor defines a menu.

:menulD 16b-integer
:menu ID

Init Option of tb:Menulnfo
Method of tb:Menulnfo
Method of tb:Menulnfo :set-menulD 16b-integer

Macintosh Toolbox Interface

This is the menu ID. It must be unique within an application. The ID
may be the same as its own "MENU" resource ID, if any, but it must
not be the same as any other resource ID being used. The default is 50.

11·1

Menu Manager

11-2

:menuTitle string Init Option of tb:Menulnfo

This is the title string of the menu. The default is ''Menu".

:menu Width
:set-menu Width pixels
:menuHeight
:set-menuHeight pixels

Method of tb:Menulnfo
Method of tb:Menulnfo
Method of tb:Menulnfo
Method of tb:Menulnfo

These are the menu's width and height measured in pixels.

:menuProc
:set-menuProc handle

Method of tb:Menulnfo
Method of tb:Menulnfo

This is the handle to the menu's definition procedure.

:menuEnableFlags
:set-menuEnableFlags 32b-integer

Method of tb:Menulnfo
Method of tb:Menulnfo

This is a 32-bit integer composed of 32 boolean flags. Bit 0 is set if the
menu itself is enabled. Bits l though 31 are set if the corresponding
menu item is enabled

:menuData
:set-menuData string

Method of tb:Menulnfo
Method of tb:Menulnfo

Example:

This is a string of up to 255 characters containing the menu title and
other data.

The following example demonstrates the creation of a new Menulnfo
instance:

(setf myMenu (make-instance 'tb:menuinfo :menuID 128
:menuTitle "Sample Menu"))

tb:!NewMenu menu/D menuTitle [1-351] Function

Example:

Allocates memory for a new menu and returns a handle to it. The new
menu has the title specified in the string menuTitle and the menu· ID
specified in the integer menu!D. The preferred method for creating new
menus is to make an instance of tb:Menulnfo.

To create a menu with a menu ID of 128 and a title "Sample Menu," do
the following:

(setf myMenu (tb:!NewMenu 128 "Sample Menu"))

tb:!GetMenu resource/D [1-351,V-243] Function

Uses the information in a "MENU" resource, with a resource ID
specified by the integer resource/D, to create a new menu and returns a
handle to the menu.

Macintosh Toolbox Interface

Menu Manager

:dispose
th: !DisposeMenu menu

Method of th: Menu Info
[1-352] Function

Forming the
Menus

Dispose of menus created by th:!NewMenu. For menus created by
th:!GetMenu, use th:!ReleaseResource. ·

NOTE: Remove the menu from the menu bst using the trap
th:!DeleteMenu before disposing of it.

11.3 These procedures fonn new menus.

:appendltem data Method of th:Menulnfo
[1-352,V-243] Function th: !AppendMenu menu data

Example:

Append the string data to the menu indicated m menu. Call these traps
repeatedly to add to menus. To add three menu items to a previously
created menu named myMenu, do the following:

(tb:!AppendMenu myMenu "Firstitem;Seconditem;Thirditem")

The trap also recognizes meta characters which control the appearance
of the menu items. The presently defined meta characters are:

x;y separates menu items x and y in the data string. For example, the
above example would have created a three line menu.

"n prefixes an icon number n, indicating that the icon should appear
in the menu with the item.

creates a dividing line between items.

! c indicates that the menu item is to be marked with the character c
that follows.

<c indicates that the character c that follows specifies the character
style of the menu item. The allowed character styles are:

B Bold
I Italic
U Underline
0 Outline
S Shadow

I c associates a keyboard equivalent with the character c that follows.

(x disables the following menu item x in the data string.

Macintosh Toolbox Interface 11 ·3

Menu Manager

Example:

To add an item which is disabled, has icon 128, is in italics, and has
command key equivalent M, do the following:

(tb:!AppendMenu myMenu "(Messy Item~l28<I/M")

tb:!AddResMenu menu resType [I-353,V-243] Function

Example:

Adds to a menu, using the resource names- of all the resources of
resType in all the open resource files. To add to the standard Apple
menu, which consists of all the available desk accessories, do the
following:

(setf appleMenu (tb:!NewMenu 128 "Apple"))
(tb: !AddResMenu appleMenu "DRVR")

tb:!InsertResMenu menu resType afterltem [I-353,V-243] Function

This trap is the same as tb:!AddResMenu except it adds the resource
names starting after the menu item with the index afterltem (an integer)
in menu. If afterltem is 0, it adds before the first menu item. If
after/tem is larger than the number of items in the menu, the new item is
a<lded after the last menu item.

Forming the
Menu Bar

11.4 These procedures create, modify, and delete menus and menu
bars.

11-4

tb:!lnsertMenu menu before/D [I-353,V-244] Function

Example:

Inserts menu into the menu list before the menu whose menu ID is
before/D. If before/D is 0, menu is inserted at the end. To insert the
menu created in the example for tb:!AppendMenu do:

(tb: ! InsertMenu myMenu 0)

tb: !DrawMenuBar [I-354,V-244] Function

Redraws the menu bar and includes any changes that have been made
since the last tb:!DrawMenuBar.

tb: !DeleteMenu menu/D [I-354] Function

Removes the menu whose menu ID is menu/D from the menu bar.

tb: !Clear MenuBar [I-354,V-247] Function

Removes all the menus from the menu list.

tb:!GetNewMBar menuBar/D [I-354,V-247] Function

Creates a menu bar from a previously defined "MBAR" resource, which
has a resource ID of menuBar/D, and returns a handle to the new menu
bar.

Macintosh Toolbox Interface

Menu Manager

tb:!GetMenuBar . [I-355] Function

Creates a copy of the current menu bar and returns a handle to it.

tb:!SetMenuBar menuList [I-355] Function

Choosing From
a Menu

Sets the current menu list to the given menu list.

11.5 These procedures control the functions related to the selection of
menu items: exposing menus, highlighting menu items, etc.

tb:!MenuSelect startPoint [1-355,V-244] Function

Example:

This trap is called when there is a mouse-down event in the menu bar.
The value of startPoint is extracted from the where field of the event
record returned by the Event Manager trap tb:!GetNextEvent. The
trap draws the menu and highlights the selected menu item. The menu
ID and the menu item number are returned when the mouse button is
released. tb:!MenuSelect is an unusual trap because it does a
multiple value return. To call this trap, do:

(multiple-value-bind (menuID menuitemNumber)
(tb: !MenuSelect *event*)

(when (/= 0 menuID)
(MenuitemHandler menuID menuitemNumber)))

The variable 'inenu/D is set to the selected menu's menu ID, and
menu/temNumber to the selected menu item's item number. Notice we
used *event* instead of a point, since tb:Point is a mixin of
tb:EventRecord.

tb:!MenuKey character [1-356,V-244] Function

Macintosh Toolbox Interface

The Menu Manager allows you to associate a key on the keyboard with
an item in the menu bar. Instead of having to select a menu item with
the mouse, you can select a menu item by pressing the Command Key
and the key associated with the menu item.

To handle keyboard equivalents (a command character key
combination), call the trap tb:!MenuKey whenever you receive a
KeyDown event and the tb:!cmdKey flag is set in the modifier field of
the event record.

If there is a menu item associated with the key, the trap returns two
values: the menu's menu ID and menu item number. If there is no
menu item associated with the key, the trap returns a menu ID of zero.

11-S

Menu Manager

Example: (when (tb:!cmdKey-p (send *event* :modifiers))
(multiple-value-bind (menuID menuitemNu:mber)

(tb:!MenuKey (send *event* :messageChar)))
(when (/= 0 menuID)

(MenuitemHandler menuID menuitemNumber))))

th: !HiliteMenu menu/D [1-357,V-244] Function

Highlights the title of the menu specified in men ul D. Call
th: !HiliteMenu 0 after th: !MenuSelect or th: !MenuKey to
dehighlight the selected menu.

th:! MenuChoice [V-240) Function

Called if the tb: !MenuSelect trap returns 0. It determines if the
mouse button was released while inside a disabled item. If so, it retums
two values: the menuID and menultem number of the disabled item.

th:!PopUpMenuSelect menu top left popUpltem [V-241] Function

Draws the pop-up menu whose handle is menu, at the vertical position
top and horizontal position left (in global coordinates), highlighting the
menu item popUpltem. Returns the menu item and menu ID of the
menu item selected.

Controlling the
Appearance of
an Item

11.6 These routines create, modify, and delete individual items
appearing on a given menu.

11·6

th:!Setltem menu item itemString [1-357] Function

Changes the text of the menu item in item to itemString.

Example: ;;; Change the second Item.
(tb: !Setitem myMenu 2 "New Item")

th:Getltem menu integer [I-358] Function
[I-358] Function tb:!Getltem menu integer VAR itemString

Example:

.th:Getltem returns the text of the menu item in item. th:!Getltem is
similar except it modifies itemString to be the menu item text.

(tb:Getitem myMenu 2) => "New Item"
(tb:!Getitem myMenu 2 (VAR itemString))
itemString => "New Item"

th:!InsMenultem menu item.String item [IV-55] Function

Inserts the item itemString after the item number item in menu.

Macintosh Toolbox Interface

Menu Manager

:deleteltem
tb:!DelMenultem menu item

Method of tb:Menulnfo
[N-56] Function

Delete the item numbered item from menu.

tb:!Disableltem menu item [1-358,V-246] Function

· Disables (makes unselectable) the menu item number item in menu.

tb:!Enableltem menu item [1-358,V-246] Function

Enables (makes selectable) the menu item number item in menu.

tb:!Checkltem menu item checked [1-358] Function

Puts a checkmark on menu item item in menu if checked is true. It
removes the checkmark if checked is false.

th: !CommandMark
th:! check Mark
tb:!diamondMark
tb: !appleMark

[1-220] Constant
[1-220] Constant
[1-220) Constant
[1-220] Constant

These four characters are used as item marks in menus and elsewhere.
Notice that these constants represent character objects on the
microExplorer rather than character codes as in C.

· tb:!SetltemMark menu item character [1-359,V-246] Function

Example:

Places character before the menu item item in menu.

To set the mark of the menu item numbered myltem in the menu
myMenu to cliamondMark, do the following:

(tb:!SetitemMark myMenu 3 tb:!diamondMark)

tb:GetltemMark menu item
tb:!GetltemMark menu item VAR character

[1-359,V-246] Function
[1-359,V-246] Function

Example:

tb:GetltemMark returns the marking character of the menu item item
of menu. tb:!GetltemMark is similar except that it updates character
with the marking character.

(tb:GetitemMark myMenu 3) => f\x
(tb:!GetitemMark myMenu 3 (VAR itemMark))
itemMark => t\x

tb:!Setltemlcon menu item icon/D [1-359,V-246] Function

Macintosh Toolbox Interface

Searches the open resource files for the icon numbered icon/D and sets
the item icon of the menu item item in menu to the new icon.

11-7

tb:Getltemlcon menu item
tb:!Getltemlcon menu item VAR iconlD

[1-360,V-246] Function
[1-360,V-246] Function

Example:

tb:Getltemlcon returns the icon number of the item icon of the menu
item item in the menu menu. tb:!Getltemlcon is similar except that it
modifies iconlD to be the icon riumber.

(Getitemicon myMenu 1) => 10
(tb:!Getitemicon myMenu 1 (VAR icon))
icon =-> 10

tb:!SetltemStyle menu item style [1-360] Function

Example:

Changes the character style of the menu item item to style. The
currently defmed styles are: tb:!Bold, tb:!ltalic, tb:!Underline,
tb: !Outline, th: !Shadow, tb: !Condense, and tb: ! Extend.
These styles can be summed to specify, say, bold italic.

To set an item to underline and italics, do the following:

(setf chStyle (+ tb:!Underline tb:!Italic))
(tb:!SetitemStyle myMenu 1 chStyle)

tb:GetltemStyle menu item
tb:!GetltemStyle menu item VAR style

[1-360,V-247] Function
[1-360,V-247] Function

Example:.

tb:GetltemStyle returns the character style of menu item item.
tb:!GetltemStyle is similar except that it modifies style with the
character style.

(GetitemStyle myMenu 1) => 3
(tb:!GetitemStyle myMenu 1 (VAR chStyle))
chStyle => 3

tb:GetltemCmd menu item
tb:!GetltemCmd menu item VAR cmdChar

[V-240] Function
[V-240] ·Function

tb:Getlte~Cmd returns the Command Character (the Menu
Key Board equivalent) of the menu item number item in the menu whose
handle is menu. tb:!GetltemCmd is similar except that it modifies
cmdChar to be the Command Character.

tb:!SetltemCmd menu item cmdChar [V-240] Function

Sets the Command Character (the Menu Key Board equivalent) of the
menu item number item in the menu whose handle is menu to the
character specified in cmdChar.

Miscellaneous
Routines

11.7 These procedures perform miscellaneous functions relating to
menus.

11-8 Macintosh Toolbox Interface

Menu Manager

tb:!CalcMenuSize menu [I-361] Function

Recalculates the dimensions of menu. This is an internally used trap.

tb:!CountMltems menu [I-361] Function

Returns the number of items in menu.

tb:!GetMHandle menu/D [I-361] Function

Returns the handle of the menu specified by menu/D.

tb:!FlashMenuBar menu/D [l-361] Function

Example:

Inverts the title of the menu menu/D. To flash the menu bar, do the
following:

;;; Flash the menu bar.
(tb: ! F lashMenuBar 0)
(tb : ! F lashMenuBar 0)

Invert to black.
Return to normal.

tb:!SetMenuFlash count [1-361] Function

Menu Manager
Color Traps

Sets the number of times a menu item blinks when selected. This is
normally set from the Control Panel desk accessory.

11.8 These routines control the color characteristics of menus and
menu bars.

tb:!lnitProcMenu resourceID [V-238] Function

This trap should only be called if the application has a custom menu bar
proc.

tb:!DelMCEntries menu/D menultem [V-238] Function

Deletes entries from the menu color information table for the given
menu/D and menultem.

tb:!GetMClnfo [V-239] Function

Returns a copy of the current menu color information table.

NOTE: This is not the same type of structure as a color table. (See
Inside Macintosh Volume V, pages 231-234.)

tb:!SetMCinfo menuCTable [V-239] Function

Sets the current menu's color information table to menuCTable.

Macintosh Toolbox Interface 11-9

Menu Manager

11-10

tb:!DispMClnfo menuCTbl [V-239] Function

Disposes of the menu color information table menuCTbl.

tb:!GetMCEntry menu/D menultem [V-239] Function

Returns a pointer to the color information table entry for the menu item
menultem in the menu menu/D,

tb:!SetMCEntries numEntries menuCEntries [V-239] Function

Takes the pointer menuCEntries to a.I'! a..rray of numEntries nu..-nber of
color information records and adds the information to the current color
information table.

Macintosh Toolbox Interface

Introduction

Initialization
and Allocation

tb:!TEinit

tb:TERec

Chapter 12
TEXTEDIT

12.1 TextEdit is a set of text editing routines. These routines allow
you to write a simple text editor which supports cutting, copying, and
pasting. The TextEdit data structure is called a TextEdit Record (a
tb:TERec. This record contains all the information necessary to draw
the text: the font, the font size, where to draw it, and the text
characters.

12.2 These routines initialize TextEdit, allocate handles for text, and
dispose of unneeded memory.

[1-383] Function

Initializes TextEdit. You will never need to call this routine as it is
called for you automatically when you launch a TbServer. _

[1-377] Flavor

This flavor defines a TextEdit record data structure.

:destRect rect
:destRectTop
: destRectLeft

Init Option of tb:TERec
Method of tb:TERec
Method of tb:TERec
Method of tb:TERec
Method of tb:TERec

: dest RectBottom
:destRectRight

This is the destination rectangle, the rectangle in which the text is drawn
to fit. The coordinates are in the local coordinate system of the current
gratPort. The default is (50 50100100).

:viewRect rect
:viewRectTop
:viewRectLeft

Init Option of tb:TERec
Method of tb:TERec
Method of tb:TERec
Method of tb:TERec
Method of tb:TERec

: view RectBottom
:viewRectRight

Macintosh Toolbox Interface

This is the view rectangle, the area of the drawn text which is actually
shown. The coordinates are in the local coordinate system of the
current gratPort. The default is (50 50 100 100).

tb:TERec instances have the following additional instance accessor
methods:

• :LINEHEIGHT
• :FONTASCENT
• :SELSTART
• :SELEND
• :WORDBREAK.

;24
;26
;32
;34
;38

[integer]
[integer]
[integer]
[integer]
[procptr]

12-1

TextEdit

• :CLIKLOOP ;42 [procptr]
• :JUST ;58 [integer]
• :TELENGTH ;60 [integer]
• :HTEXT ;62 [handle]
• :CRONLY ;72 [integer]
• :TXFONT ;74 [integer]
• :TXFACE ;76 [style]
• :'IXMODE ;78 [integer]
• :TXSIZE ;80 [integer]
• :INPORT ;82 [grafptr]
• :NLINES ;94 [integer]

tb:!TENew destRect viewRect [1-383] Function

:dispose

Returns a new TextEdit record which supports only a single font, size,
style, and color and which has a destination rectangle destRect and a
view rectangle viewRect. The destRect and viewRect are specified in
the local coordinates of the current port.

The TextEdit record is associated with the current grafPort. Remember
to set the current port to the port in which you want the text to appear.

tb: !TEDispose hTE
Method of tb:TERec

[1-383] Function

Accessing the
Text of an Edit
Record

Dispose of the TextEdit record hTE.

12.3 The following routines get and set the specified text.

tb:!TESetText text length hTE [1-383] Function

Sets the text of the TextEdit record hTE to the first length characters in
the text buffer text.

tb: !TEGetText hTE [1-384] Function

Insertion Point
and Selection
Range

Returns a handle to the text in the TextEdit record hTE.

12.4 These routines control the placement and highlighting of text
selections.

tb:!TEldle hTE [1-384] Function

12-2

Causes a blinking caret to appear at the TextEdit record insertion point.
This trap should be called from the main event loop. You should call

Macintosh Toolbox Interface

Editing

TextEdit

this trap only when there is a TextEdit record associated with the active
window.

tb: !TE Click pt extend hTE [1-384] Function

Called when a mouse-down event is recorded in the content region of an
active window containing a TextEdit record. Set extend to T if the Shift
key is being held down.

The point pt should be in local coordinates, so call the QuickDraw trap
tb:!GlobalToLocal for the point, which is gotten from either
tb:!GetMouse or from the event record, before passing it to the trap.

tb:!TESetSelect selStart selEnd hTE [1-385] Function

Sets the selection range of the TextEdit record hTE to start at selStart
and end at selEnd. To make an insertion point, make selStart equal to
selEnd.

tb:!TEActivate hTE [1-385] Function

Called when you receive an Activate event for a window that has an
associated TextEdit record.

tb:!TEDeactivate hTE [1-385] Function

Called when you receive a Deactivate event for a window that has ari
associated TextEdit record.

12.S These routines are used to cut, copy, paste, insert, and delete
text.

tb: !TE Key key hTE [1-385] Function

Example:

Inserts the character key at the insertion point of the TextEdit record
hTE. If hTE's selStart is not equal to selEnd (that is, a range of text is
highlighted), the text between selStart and selEnd is first deleted. This
trap is called when you receive a key-down event, and the current active
window has a TextEdit record associated with it.

(tb:!TEKey (send *event* :MessageChar) myTEHand1e)

tb:!TECut hTE [1-385] Function

Cuts the text from the TextEdit record hTE, starting at selStart and
ending at selEnd, and puts it in the TextEdit scrap.

tb:!TECopy hTE [1-386] Function

Copies the text from the TextEdit record hTE, starting at selStart and
ending at selEnd, and puts it in the TextEdit scrap.

Macintosh Toolbox Interface 12·3

TextEdit

tb: !TEPaste hTE [1-386) Function

Pastes the contents of the TextEdit scrap into the TextEdit record llTE at
its current insertion point. H hTEs selStart is not equal to selEnd (that
is, a range of text is highlighted), the text between selStart and selEfld is
first deleted.

tb:!TEDelete hTE [1-387] Function

Deletes the text from selStart to selEnd in the TextEdit record hTE.

th: !TElnsert text length hTE [1-387] Function

Example:

Inserts length number of characters from the buffer pointed to by text
into the TextEdit record hTE.

; ;; Output "hallo world." to a TERac
(setf hndl

(tb: !NewHandle "hello world.")
(tb:!hLock hndl) ;
(setf text-ptr (tb:deref hndl)) ;
(tb:!TEinsert text-ptr 12 myTEHandle)
(tb: ! DisposHandle hndl)

; get a handle to string

lock the handle, then .. :
darafaranca It Into a ptr

; o~utput the string
; dlspon of our handle

If you had started with a handle to a string rather than the string itself,
then lock and dereference that handle into a pointer as shown above.
When you are finished with this temporary pointer, then unlock it with
th:!hUnlock rather than disposing of it.

Text Display
and Scrolling

12.6 These routines and constants control the display of text.

12·4

th: !teJustLeft
th:!teJustCenter
tb:!teJustRight
th: !teForceLeft

[1-376] Constant
[1-376] Constant
[1-376] Constant
[1-376] Constant

These constants are used as the just argument values in TextEdit
functions. They specify the justification of text.

tb:!TESetJust hTE just [1-387] Function

Sets the justification of the text in the TextEdit record hTE. The value
of the just argument should be one of the following: tb:!teJustLeft,
tb:!teJustCenter, tb:!teJustRight, or tb:!teForceLeft.

tb:!TEUpdate rUpdate hTE [1-387] Function

Called when an update event is received in the main event loop and there
is a TextEdit record associated with the current active window.

Macintosh Toolbox Interface

TextEdit

th: !Text Box text length box just [1-388] Function

Draws length number of characters from the text buffer text inside the
rectangle box with justification just. The value of the just argument
should be one of the following: th:!teJustLeft, th:!teJustCenter,
th:!teJustRight, or h:!teForceLeft.

th: !TEScroll hTE dh dv [1-388] Function

Scrolls the text within hTE's view rectangle a distance of dh pixels
horizontally and dv pixels vertically.

th: !TEPinScroll dh dv h [IV-57] Function

The same as th: !TEScroll except it stops scrolling once the last line
has scrolled into the view rectangle.

th:!TEAutoView auto hTE [IV-57] Function

If auto is true, automatic scrolling is enabled. If auto is false, automatic
scrolling is disabled.

th:!TESelView hTE [IV-57] Function

If the selection range of the TextEdit record hTE is not in the TextEdit
record's view rectangle, this trap scrolls the text.

Scrap Handling 12.7 These routines control your application's scrap handling.

th:!TEFromScrap

Copies the desk scrap to the TextEdit scrap.

tb: !TEToScrap

[1-389] Function

[1-389] Function

Copies the TextEdit scrap to the desk scrap. You must call the Scrap
Manager trap tb:!ZeroScrap to clear the desk scrap first or this trap
will not work properly.

tb: !TEScrapHandle

Returns a handle to the TextEclit scrap.

th: !TEGetScrapLen

Returns the length of the TextEdit scrap.

th: !TESetScrapLen length

Sets the length of the TextEdit scrap to length.

Macintosh Toolbox Interface

[I-389] Function

[I-389] Function

[1-390] Function

Text Edit

Advanced
Routines

12.8 This routine is used in advanced applications only.

12·6

tb:!SetWordBreak wBrkProc hTE [I-390] Function

Installs in the :wordBreak instance variable of hTE a special routine
which will call the word break routine pointed at by wBrkProc.

tb:!SetClikLoop clikProc hTE [I-390] Function

Installs in the :clikLoop instance variable of hTE a special routine
which will call the click loop routine pointed at by clikProc.

tb:!TECalText hTE [I-390] Function

Recalculates the linestarts array of the TextEdit record hTE. This trap
should be called after doing anything that affects the number of
characters that can be displayed in a line, like resizing the destRect of
hTE.

Macintosh Toolbox Interface

Introduction

Initialization

Chapter 13
DIALOG MANAGER

13.1 The Dialog Manager creates and manipulates a special type of
window used to get information to or from the user. If the window
requires the user to input information, it is know as a dialog box. If it
provides the user with information, it is known as an alert. One
example of a dialog box is the window that is brought up when you
select the "Save As ... " menu item in a standard "File" menu. This
dialog box asks for the name of the new file.

Alerts are used to tell the user about errors or to provide some
information that the user can act upon: whether or not you want to
continue an operation, for example.

The specifications (templates) for dialog boxes and alerts are not easily
built using the Macintosh Toolbox. They are usually created with a
resource editor.

13.2 These procedures initialize the Dialog Manager, set the sound
·associated with alerts, and set the font that will be used on text
appearing within a dialog box.

th: !InitDialogs restartProc [1-411] Function

Initializes the Dialog Manager. You will never need to call this routine
because it is called for you when you launch a TbServer.

th:!ErrorSound soundProc [1-411] Function

Sets the sound made by alerts to that def'med in soundProc. Passing
th: !nilPtr turns off the sound.

th:!SetDAFont fontNum [1-412] Function

Creating and
Disposing of
Dialogs

Sets the font appearing in the dialog box or alert to fontNum. This trap
effects only the text (static or editable) displayed in the dialog. It does
not effect the item titles.

13.3 These routines create and dispose of dialog boxes.

th:DialogRecord [1-408] Flavor

Macintosh Toolbox Interface

This flavor creates a dialog record. An instance of this flavor may be
used anywhere a dialog pointer is needed. This flavor mixes in the
th: Window flavor.

13-1

Dialog Manager

13-2

:dStorage pointer Init Option of tb:DialogRecord

This option controls memory allocation for the dialog box. If this value
is tb: !nilPtr, the default, then a new dialog box is allocated on the
heap. Otherwise, this option must be a pointer to at least 176 bytes of
storage.

: boundsRect rect Init Option of tb:DialogRecord

:title string

This option is a rectangle which controls the size and location of the
dialog box. The default is related to the screen size.

lnit Option of tb:DialogRecord

This string becomes the title of modeless dialog boxes. Specify an
empty string as a title for modal boxes. The default is "New Dialog".

:visible visible-p Init Option of tb:DialogRecord

If this option is true, the dialog box will be visible when created. The
default is true.

:proclD integer lnit Option of tb:DialogRecord

This option specifies the type of dialog box. Use one of the Window
Manager procIDs such as tb:!documentProc (q.v.). The default is
tb:!documentProc. See Standard Types of Windows figure below
for an illustration of the available procIDs.

: behind windowPtr lnit Option of tb:DialogRecord

This is a pointer to a window which this dialog box will appear behind.
If this option is lb: !onePtr, which is the default, then the dialog box is
the frontmost window.

:goAwayFlag goAway-p Init Option of tb:DialogRecord

If this option is true, then the modeless dialog boxes only will have a
close box in the window frame. The default is false.

:refCon 32b-integer Init Option of tb:DialogRecord

This option is a 32-bit integer which is reserved for the application and
defaults to 0. A hook such as this is needed in C or Pascal
environments, but on the microExplorer a better way to attach
application-spec;ific information to a dialog box is to mix
tb:DialogRecord into your own flavor. You flavor then defines the
extra instance variables you need.

Macintosh Toolbox Interface

:items handle
:items

Dialog Manager

:set-items handle

lnit Option of tb:DialogRecord
Method of tb:DialogRecord
Method of tb:DialogRecord

:text ff

Handles to the dialog box's item list of controls. They default to an
empty handle and usually load from a resource.

:set-textH TEHandle
Method of tb:DialogRecord
Method of tb:DialogRecord

Handles to the current editText item.

:editField
:set-editField integer

Method of tb:DialogRecord
Method of tb:DialogRecord

The editText item number-1. If there is no editText item in the dialog,
this value is -1.

:aDefltem
:set-aDefltem integer

Method of tb:DialogRecord
Method of tb:DialogRecord

Example:

This is the default button item number for modal dialogs and alerts.
The following is an example of how to create a DialogRecord object.

(setf boundsRect
(make-instance 'tb:Rect :left 112 :top 55

:right 239 :bottom 108))
(setf myitems (tb:!GetResource "DITL" 128))
(setf myDialog (make-instance 'tb:DialogRecord

:boundsrect boundsRect !it:,ems myitems))

tb:!NewDialog dStorage boundsRect title visible proc/D [1-412] Function

Macintosh Toolbox Interface

behind goAwayFlag rejCon items

Creates a new dialog box returning a dialog pointer. If you want to
allocate the memory for the dialog box (which must be at least 176 bytes
long), pass a pointer to this memory as dStorage. Most of the time you
won't, so just pass tb:!nilPtr. The boundsRect is the rectangle that
defines the boundary of the new dialog window. The proc/D specifies
the type of dialog box required.

The pointer behind is used if you want the newly created dialog box to
be created behind an already existing window. Normally, you pass
tb:!onePtr and the dialog box is created in front of all the existing
windows. Items is a handle to the dialog items (also known as controls
or the item list) associated with the new dialog box. Items are usually
created with a resource editor and read in with the Resource Manager.

13-3

Dialog Manager

13-4

The dialog window types available are:

!CJ !CJ

1'111

documentProc o noGrowDocProc 4 rDocProc 16

dBoxProc plainDBox 2 altDBoxProc 3

ID E!l!

a
Standard Types _of Windows

tb:!GetNewDialog dialoglD dStorage behind [1-413,V-284] Function

Creates a new dialog box using information in a previously dermed
"DLOG" resource which has a resource ID dialoglD. If you want to
allocate the memory for the dialog box (which must be at least 176 bytes
long), pass a pointer to this memory as dStorage. Normally, you will
not, so just pass tb:!nilPtr. The behind argument is only used if you
want to display the new dialog box behind an existing window. The
usual value is tb:!onePtr.

tb:!CloseDialog dialog [1-413] Function

Disposes of the dialog box dialog, but does not dispose of the dialog
record or the item list. Use this trap if you passed a dStorage pointer
when you created the dialog box.

:dispose
tb:!DisposDialog dialog

Method of tb:DialogRecord
[l-415] Function

Dispose of the dialog box dialog by calling tb:!CloseDialog and then
release the memory occupied by the dialog's item list and dialog record.
Use this trap if you did not pass a dStorage pointer when you created
the dialog box.

Macintosh Toolbox Interface

Dialog Manager

tb:!CouldDialog dialog/D
tb:!FreeDialog dialog/D

[1-415,V-284] Function
[1-415,V-285] Function

Handling
Dialog Events

tb:!CouldDialog ensures that the "DLOG" resource which has a
resource ID dialog/D is in memory and makes it unable to be purged.

tb:!FreeDialog undoes the effect of tb:!CouldDialog, allowing the
"DLOG" resource with the resource ID dialog/D to be purged.

13.4 These routines control the handling of events which occur within
a dialog window.

tb:ModalDialog filterProc
tb:!ModalDialog filterProc VAR item.Hit

[1-415] Function
[1-415] Function

tb:ModalDialog repeatedly gets and handles events in a modal dialog
window. When the trap detects a valid event inside a dialog item, it
returns the number of the item that was hit. Always pass tb:!nilPtr in
filter Proc.

tb:!ModalDialog is similar except that it modifies item.Hit with the
number of the selected dialog item.

CAUTION: This trap assumes that the frontmost window
is a dialog window. It does not work if it is evaluated
from the Lisp Listener (it crashes!).

To handle a modal dialog box safely, do the following:

Example: tb:
(defun myModalDialog ()

(let* ((myDialogBox (!GetNewDialog dialogResID !nilPtr
!onePtr))

(item.Hit (ModalDialog !nilPtr)))
(!DisposDialog myDialogBox)
item.Hit))

tb: !IsDialogEvent the Event [1-416] Function

If your application includes any modeless dialog boxes, call this trap
from the main event loop after calling the function tb:!GetNextEvent
or tb:!WaitNextEvent. This trap returns true if the event specified in
theEvent needs to be handled as part of a dialog. If the trap returns true,
you should pass the event to the trap tb: !DialogSelect for it to
handle. See Inside Macintosh for more details.

tb:DialogSelect theEvent [1-417] Function
[1-417] Function tb:!DialogSelect theEvent VAR dialog VAR item.Hit

Macintosh Toolbox Interface

tb:DialogSelect returns three values. The first value is true if
theEvent is associated with an enabled dialog box. If the first value is
true, the second value is the dialog pointer of the associated dialog box.
The last value returned is the number of the selected dialog item in the

13-5

Dialog Manager

13·6

Example:

dialog box. If the first value is false, the second and third values have
no meaning.

tb:!DialogSelect also returns tme if theEvent is associated with an
enabled clialog box. However, it modifies dialog and item.Hit to be the
dialog box and item selected.

This trap does not handle keyboard equivalents for menu items. If you
wish to support keyboard equivalents, check for a key-down event. If
the event was a key.down event, call the Menu Manager trap
tb:!MenuKey before proceeding.

; ;; ••. In the main event loop .••
(when (tb:!WaitNextEvent tb:!everyEvent *event* 0

tb: ! nilRgn))
; ; Check for menu keyboard equivalent
(setf MenuKey-p

(and(• tb:!keyDown (send *event* :What))
(tb:!omdKey-p (send *event* :modifiers))))

(if (and (not MenuKey-p) (tb:!IsDialogEvent *event*))
; ;then this Is a dialog event without a command key
(multiple-value-bind (result whichDialog itemHit)

(tb:DialogSelect *event*) ·
.. .process the dialog selection ...)

; ;else process a normal event
...))

tb: !DlogCut theDialog [1-418] Function

Applies the TextEdit routine tb:!TECut to the currently selected edit
text item in theDialog if it has one.

tb: !DlogCopy theDialog [1-418] Function

Applies the TextEdit routine tb: !TECopy to the currently selected edit
text item in theDialog if it has one.

tb:!DlogPaste theDialog [1-418] Function

Applies the TextEdit routine tb: !TEPaste to the currently selected edit
text item in theDialog if it has one.

tb: !DlogDelete theDialog [1-418] Function

Applies the TextEdit routine tb:!TEDelete to the currently selected edit
text item in theDialog if it has one.

tb:!DrawDialog dialog [1-418] Function

Draws the dialog box dialog.

Macintosh Toolbox Interface

Invoking Alerts

Dialog Manager

13.5 Alerts are used to report errors or give warnings to the user.
They display a Standard Alert Icon and an OK button, in addition to any
other items in the alert template.

Standard Alert Icons

Stop Note Caution

tb:!Alert a/erdD fi/terProc [1-418,V-284] Function

Creates and displays an alert defined in the "ALRT" resource which has
a resource ID alert/D.

tb:!stoplcon
th:!notelcon
th: !cautionlcon

[1-420] Constant
[1-420] Constant
[1-420] Constant

11 ALRT11 resource resource IDs for the standard alert icons.

th:!StopAlert alerdD filterProc [1-419,V-284] Function

Acts in the same manner as th:!Alert except that it draws a Stop icon in
the top left hand comer before drawing the remainder of the alert
window.

th:!NoteAlert alert/D fi/terProc [1-420,V-284] Function

Acts in the same manner as th:!Alert except that it draws a Note icon
in the top left hand comer before drawing the remainder of the alert
window.

tb:!CautionAlert a/ert/D filterProc [1-420,V-284] Function

Acts in the same manner as th:!Alert except it draws a Caution icon in
the top left hand comer before drawing the remainder of the alert
window.

th:!CouldAlert alert/D [1-420,V-285] Function

Ensures that the 11 ALRT11 resource with a resource ID alert/D is in
memory and makes it unable to be purged.

th: !FreeAlert alert/D [1-420,V-285] Function

Macintosh Toolbox Interface

Undoes the effect of th:!CouldAlert, allowing the 11ALRT11 resource
with the resource ID alerdD to be purged.

13.7

Dialog Manager

Manipulating
Items in
Dialogs and
Alerts

13.6 These routines modify the dialog items within a dialog box or an
alert window.

13-8

tb:!ParamText para'friJ paraml param2 param3 [1-421] Function

Provides a means of changing the text in statText items by allowiitg you
to substitute the strings para'friJ to param3 for the special strings ""0" to
"Aj" •

tb:GetDltem dialog itemNo [1-421] Function
[1-421] Function tb:!GetDitem dialog itemNo VAR type item box

Example:

tb:GetDltem returns three values: the type number, item handle, and
enclosing rectangle of the dialog item number item in the dialog box
dialog.

tb:!GetDltem is similar except that it modifies type, item, and box to
be the type number, item handle, and enclosing rectangle. Notice that
item must be initialized to a handle and box must be initialized to a
rectangle.

(multiple-value-bind (type myitem box)
(GetDitem myDialog 1)

... code using type, myitem, and box ...)

(setf type 0)
(setf myitem (make.-instance 'tb:mac-handle))
(setf box (make-instance 'tb:Rect))
(tb:!GetDitem myDialog 1 (VAR type) myitem box)
... code using type, myitem, and box ...

tb:!SetDitem dialog itemNo type item box [1-421] Function

Sets the type, item, and box of the dialog item number item in the dialog
box dialog.

tb:!HideDltem dialog itemNo
tb:!ShowDltem dialog itemNo

[IV-59] Function
[IV-59] Function

Hides or shows the item numbered itemNo in the dialog box dialog.

tb:!UpdtDialog dialog updateRgn IV-60] Function

Draws all the items of the dialog box dialog that are in the update region
updateRgn.

tb:!FindDltem dialog thePoint [IV-60] Function

Returns the item number minus one of the dialog box dialog that the
point thePoint is in. If the point is not inside any dialog item, the trap
returns -1.

Macintosh Toolbox Interface

Dialog Manager

tb:GetIText item
th:!GetIText item VAR text

[I-422] Function
[I-422] Function

Example:

th:GetlText returns the text of the item if the dialog item item is a
static or editable text item. tb:!GetlText is similar except it modifies
text to be the item text.

To get the text from the editable text item with a handle myltem, do the
following:

(tb:GetIText myitem) => "Samp1e Item0

(tb:!GetIText myitem (VAR text))
text => 0 Samp1e Item"

tb:!SetIText item text [I-422] Function

Sets the text of the item to text, a string, if the dialog item item is a static
or editable text item.

th:!SellText dialog itemNo strtSel endSel [I-422] Function

Sets the selection range of the text starting at strtSel and ending at
endSel if the item number item of the dialog box dialog is a text item.
To select all the text of an editable item, pass 0 for strtSel and 32767
(#x7FFF) for endSel.

th:! GetAlrtStage [I-422] Function

Returns the stage of the last alert.

th:! ResetAlrtStage [I-423] Function

Dialog Manager
Color Traps

Macintosh Toolbox Interface

Sets the alert stage to zero.

13. 7 The Macintosh II Dialog Manager has been expanded to support
color dialog boxes. A color dialog box can be explicitly created using
the trap tb:!NewCDialog. If you use the traps tb:!GetNewDialog
or th: !Alert to create the dialog or alert, you can specify the creation of
a color dialog or alert by having a color table resource of the same
resource ID as the resource specifying the dialog box or alert. For
example, if a dialog box was created with the trap
th:!GetNewDialog, then the dialog color table resource "dctb"
should have the same resource ID as the "DLOG" resource that specifies
the dialog box.

If an alert was created using the traps th: !Alert, th: !StopAlert,
th: !NoteAlert, or th: !CautionAlert, the alert color table resource
"actb" should have the same resource ID as the "ALR T" resource that
specifies the alert.

13-9

Dialog Manager

13-10

tb:!NewCDialog dStorage boundsRect title visible prodD
behind goAwayFlag rejCon items

[V-283] Function

Example:

This trap creates a new color dialog box. The arguments are the same
as for the trap tb:!NewDialog.

H you want to allocate the memory for the dialog box (which must be at
least 176 bytes long), pass a pointer to this memory as dStorage. If
not, pass tb:!nilPtr. The boundsRect is the rectangle that defines the
boundary of the new dialog window. The prodD specifies the type of
dialog box required.

The pointer behind is used if you want the newly created dialog box to
appear behind an already existing window. Nonnally, you pass
tb:!onePtr and the dialog box is created in front of all the existing
windows. Items is a handle to the dialog items (controls) associated
with the new dialog box.

This trap returns a color dialog pointer CDialogPtr.

(setf boundsRect
(make-instance 'tb:Rect :left 112 :top 55

:right 239 :bottom 108))
(setf myitems (tb:!GetResource "DITL" 130)) -
(setf myDialog (tb:NewCDialog tb:!nilPtr boundsRect ""-t

1 tb: ! onePtr nil 0 myitems))

Macintosh Toolbox Interface

Introduction

Desk Manager
Traps

Chapter 14
DESK MANAGER

14.1 The Desk Manager traps are used to support desk accessories.
To use desk accessories inside a program you only need to use four
traps:

• tb:!SystemTask - called from the Main Event Loop.

• tb: !OpenDeskAcc - called when a desk accessory has been
selected from the Apple menu.

• tb:!SystemClick - called if the Window Manager trap
tb:!FindWindow returns tb:!inSysWindow.

• tb:!SystemEdit - called if a standard Edit menu item was selected.

14.2 These traps open and close desk accessories and respond to
mouse-down events.

tb:!OpenDeskAcc theAcc [I-440] Function

Example:

Opens the desk accessory with the name theAcc and displays it.

(defun AppleMenuHandler (menuitem)
(if (= 1 menuitem)

; ;then handle the "About ..• " dialog box
...)

; ;else open the selected desk accessory
(tb: ! OpenDeskAcc

(tb:Getitem AppleMenu menuitem))))

tb:!CloseDeskAcc refNum [I-440] Function

Closes a desk accessory. You can get the refNum from the desk
accessory's window record. The rejNum is kept in the :window Kind
instance variable.

tb:!SystemClick theEvent theWindow [I-441] Function

When a mouse-down event occurs and the Window Manager trap
tb:!FindWindow returns tb:!inSysWindow, your application
should call this trap to handle the event.

tb:!SystemEdit editCmd [I-441] Function

Macintosla Toolbox Interface

Called when there is a mouse-down event in the menu bar and one of
the five standard edit functions was selected. If this function returns
nil, your application should do the required editing.

14-1

Desk Manager

14-2.

tb:!Undo
tb:!Cut
tb:!Copy
tb:!Paste
tb:!Clear

These are the standard edit functions editCmd values.

tb:!SystemTask

[1-441] Constant
[1-441] Constant
[1-441] Constant
[1-441] Constant
[1-441] Constant

[1-442] Function

Performs all the periodic events for any open desk accessories. This
trap should be called once in the main event loop if you wish to support
desk accessories. If your application calls tb:!WaitNextEvent
instead of tb:!GetNextEvent, do not call this function.

t b: ! S ystemE vent theEvent

This is an internal trap used by the Event Manager.

tb:!SystemMenu menuResult

This is an internal trap used by the Menu Manager.

[1-442] Function

[1-443] Function

Maci111osh Toolbox Interface

Introduction

Getting Desk
Scrap
Information

Chapter 15
SCRAP MANAGER

15.1 The Scrap Manager is used for accessing and manipulating the
desktop scrap file. The only trap of note in the Scrap Manager is
lnfoScrap, which returns a pointer to information about the desk scrap.

15.2 These routines provide information about the data that is stored in
the desktop scrap file.

tb:ScrapStuff [I-457] Flavor

Titls flavor records information about the desk scrap.

:scrapSize Method of tb:ScrapStuff

This is the size of the scrap in bytes.

:scrapHandle Method of tb:ScrapStuff

:scrapCount

:scrapState

:scrap

This is a handle to the scrap if it is in memory or a NIL handle if it is
not.

Method of tb:ScrapStuff

This integer changes every time th: !ZeroScrap is called. If this count
changes, then you can assume that the desk scrap has changed.

Method of tb:ScrapStuff

Titls value indicates where the desk scrap is:

• positive
• zero
• negative

=>inmemory
=>on disk
=>hasn't been initialized by tb:!ZeroScrap

Method of tb:ScrapStuff

This is a pointer to a string naming the scrap (typicaHy "Cliphoard
File").

tb:! lnfoScrap [I-457] Function

Macintosh Toolbox Interface

The trap tb:!_InfoScrap returns a pointer to information about the
desk scrap. Use tb: !InfoScrap, it's easier.

15-1

Scrap Manager

th: !InfoScrap
th:!_InfoScrap

[I-457] Fllllction
'[I-457] Function

Example:

Keeping the
Desk Scrap on
the Disk

th:!InfoScrap returns an instance of type th:ScrapStuff which
contains information about the desk scrap. th:!_ InfoScrap is similar
except it returns a pointer to the instance.

(setf myScrapinfo (tb:!InfoScrap))
(send myScrapinfo :scrapSize) -> 0
(send myScrapinfo :scrapCount) => 9

15.3 These functions load and unload desk scrap from memory.

th:!UnloadScrap [I-458] Fllllction

Writes the desk scrap in memory to the ScrapFile on disk.

th:! LoadScrap [I-458] Function

Writing to the
Desk Scrap

Loads the desk scrap from the ScrapFile on disk into memory.

15~4 These routines write to the desk scrap, add new data, or clear the
scrap. ·

th:!ZeroScrap [I-458] Function

Example:

Oears the scrap in memory and changes the scrap count. Call this
function before putting anything into the desk scrap.

(send (tb:!InfoScrap) :scrapCount) •> 9
(tb: ! ZeroScrap) => noErr
(send (tb:!InfoScrap) :scrapCount) -> 17

th:!PutScrap length theType source [I-459] Function

Reading From
the Desk Scrap

Puts the data pointed to by source, of type theType with a length length,
into the desk scrap.

15.5 This trap reads information from the desk scrap.

th:GetScrap hDest theType [I-459] Function

15-2

Gets the scrap of type theType from the desk scrap, which is at an
offset of offset into the desk scrap, and copies it to the handle hDest.

Macintosh Toolbox Interface

The trap returns the size of the copied data. See Inside Macintosh for
details. Use this trap instead of tb:!GetScrap.

tb:!GetScrap · h.Dest theType offset [1-459] Function

Macintosh Toolbox Interface

Gets the scrap of type theType from the desk scrap, which is at an
offset of offset into the desk scrap, and copies it to the handle hDest.
The trap returns the size of the copied data. See Inside Macintosh for
details.

15·3

Introduction

Fixed-Point
Arithmetic

Chapter 16
TOOLBOX UTILITIES

16.1 The Toolbox Utilities are a collection of traps that are used for:

• Fixed-point arithmetic
• String manipulation
• Byte and bit manipulation
• . Graphics utilities ·

None of the arithmetic traps apply to the microExplorer environment.
These are documented for completeness only.

16.2 The Toolbox fixed-point numbers can be considered 32-bit
integers. A fixed-point number is essentially two 16-bit integers
packed into a 32-bit integer. See Inside Macintosh, page I-79, for more
details. To get at the two fields of a fixed-point number use the traps
tb:!HiWord and tb:!LoWord. It is best to use Lisp functions to
perform these operations.

tb:!FixRatio numer denom [1-467] Function

Returns the fixed-point quotient of the two integers numer and denom.

tb:!FixMul a b [1-467] Function

Returns the result of multiplying the two fixed-point numbers a and b.

th·: !FixRound x [1-467] Function

String
Manipulation

Rounds the fixed-point number x up to the nearest integer.

16.3 The following functions manipulate strings. It is important not
to confuse the Pascal types StringHandle and Str255.

tb:!NewString theString [1-468] Function

Creates a relocatable string StringHandle containing a he text string of
up to 255 characters. To get a string handle to the string "sample
string", do the following:

Example: (setf sampleStringHandle
(tb: ! NewString "sample string"))

Macintosh Toolbox lnteiface 16·1

Toolbox Utilities

tb:!SetString h theString [I-468] Function

Sets the relocatable string h to the string theString where the string is
limited to 255 chard.Cters.

tb: !GetString stringID [I-468] Function

Returns a handle to a "STR "type resource (there is a space after the
R), which has the resource ID stringID.

th: !GetlndString strList/D index [I-468] Function

Returns the indexth string from a "STR.#" resource with the resource ID
strList/D.

t b: mx-string-to-mac-string theS tring Function

Copies theString from the microExplorer to a relocatable string in
Macintosh memory and returns a handle to the Macintosh string. This
is the same as tb: !NewString.

tb:mac-string-to-mx-string theString Function

Copies the string pointed at by theString from Macintosh memory to the
microExplorer and returns a Lisp string. TheString can be either a
tb:mac-pointer or a tb:mac-handle.

Byte
Manipulation

16.4 The following three traps are very involved. Refer to Inside
Macintosh for details.

tb:!Munger h offset ptrl lenl ptr2 len2

See Inside Macintosh.

tb: !PackBits srcPtr dstPtr srcBytes
tb:!UnPackBits srcPtr dstPtr dstBytes

[I-468] Function

[I-470] Function
[I-470] Function

Used for packing and unpacking MacPaint® documents.

Bit
Manipulation

16.5 The bit numbering scheme used for bit oriented traps is the most
significant bit of the first 32-bit word is zero, the most significant bit of
the next 32-bit word is 32, and so on. It is better to use Lisp functions
to perform these operations.

16-2

tb:!BitTst bytePtr bitNum [I-471] Function

Returns true if the bit number bitNum from the pointer bytePtr is set,
and false if it is not.

Macintosh Toolbox Interface

tb: !BitSet bytePtr bitNum
tb:!BitClr bytePtr bitNum

Toolbox Utilities

[1-471] Function
[1-471] Function

Set or clear the bit number bitNum from the pointer bytePtr.

tb:!BitAnd value! value2
tb:!BitOr value! value2
tb:!BitXor value! value2

[1-471] Function
[1-471] Function
[1-471] Function

Perform a logical AND, logical OR, or logical XOR, respectively, on
the two 32-bit integers valuel and value2.

tb: !BitNot value

Performs a logical NOT on the 32-bit integer value.

tb:!BitShift value count

[1-471] Function

[1-472] Function

Shifts the 32-bit integer value count bits to the left if count is positive,
or count bits to the right if count is negative.

Other
Operations on
Long Integers

16.6 These routines also perform operations on long integers. It is
better to use Lisp functions to perform these operations.

Graphic
Utilities

tb:!HiWord ~
tb:!LoWord x·

[1-472] Function
[1-472] Function

Return the integer in the most significant or_least significant 16 bits of
the 32-bit integer x, respectively.

16. 7 These routines act on icons, cursors, patterns, and pictures.

tb: ?Screen Res [1-473] Function

Example:

Returns two values indicating the resolution of the Macintosh being
used. The number of horizontal pixels per inch is the first value
returned and the number of vertical pixels per inch is the second.

(multiple-value-bind (scrnHRes scrnVRes)
(tb: ! ScreenRes)

scrnHRes => 72
scrnVRes => 72

tb:!Getlcon iconlD [1-473] Function

Returns a handle to the "ICON" resource with the resource ID iconlD.

Macintosh Toolbox Interface 16-3

Toolbox Utilities

tb:!Plotlcon theRect the/con [I-473] Function

Draws the icon the/con inside the rectangle theRect.

tb:!GetPattern pat/D (1-473] Function

Returns a handle to the "PAT "resource (there is a space after the T),
which has the resource ID pat/D.

tb:!GetlndPattern patList/D index (1-473] Function

Returns the indexth pattern from the "PAT#" re.source that has the
resource ID patList/D.

tb:!GetCursor cursor/D (1-474] Function

Returns a handle to the "CURS" resource with the resource ID
cursorID.

The Standard Cursor resource ID's are: tb: !IBeamCursor,
. tb:!CrossCursor, tb:!PlusCursor, and tb:!WatchCursor.

Standard Cursors

i BeamCursor crossCursor plus Cursor watchCursor

tb:!ShieldCursor shieldRect offsetPt · [I-4 7 4] Function

Hides the cursor if the cursor and shieldRect intersect.

tb:!GetPicture picID [I-475] Function

Returns a handle to the "PICT" resource with the resource ID picID.

Miscellaneous
Utilities

16.8 The following traps perform miscellaneous utility functions. It
is better to use Lisp functions to perform these operations.

16-4

tb:!DeltaPoint ptA ptB (1-475] Function

Subtracts the point ptB from the point ptA and returns the resulting
point as a 32-bit integer. The vertical coordinate of the point is the high
order 16 bits and the horizontal coordinate of the point is the low order
16 bits.

Macintosh Toolbox Interface

tb:!SlopeFromAngle angle
tb: !AngleFromSlope slope

Toolbox Utilities

[1-475] Function
[1-476] Function

Converts between an angle angle and a slope dh/dv as a fixed-point
number.

Fixed-point
Arithmetic

16.9 arithmetic is better handled by the microExplorer than the
Macintosh. Therefore, the following traps should not be used:

tb:!Long2Fix x
tb:!Fix2Long x

[IV-65] Function
[IV-65] Function

Converts x between a longlnt and a f'ixed-point number.

tb:!Fix2Frac x
tb:!Frac2Fix x

[IV-65] Function
[IV-65] Function

Converts x between a fixed-point and a fractional number.

tb:!Fix2X x
tb:!X2Fix x

[IV-65] Function
[IV-65] Function

Converts x between a fixed-point and an extended number.

tb:!Frac2X x
tb:!X2Frac· x

[IV-65] Function
[IV-65] Function

Converts x between a fractional and an extended number.

tb:!FracSin x
tb:!FracCos x

[IV-64] Function
[IV-64] Function

Returns the sine or cosine respectively of the f'ixed radian argument x.
x is of type fixed and the result is of type fract.

tb:!FracSqrt x [IV-64] Function

Returns the square root of x, with x interpreted as an unsigned fract in
the range of 0 through 4-(2-3°), inclusive.

tb:!FracMul x y [IV-64] Function

Returns x multiplied by y. See Inside Macintosh for details.

th: !FracDiv x y [IV-64] Function

Returns x divided by y. See Inside Macintosh for details.

tb:!FixATan2 x y [IV-65] Function

Returns the arctangent of y divided by x in radians.

Macintosh Toolbox Interface 16-5

Toolbox Utilities

tb:!FixDiv x y [IV-64] Function

Returns x divided by y. See Inside Macintosh for details.

Macintosh Toolbox Interface

Introduction

International
Utilities
Package

Chapter 17
PACKAGE MANAGER

17.1 The Package Manager provides access to packages, the sets of
data structures, and routines that are stored as resources and brought
into memory only when needed.

17 .2 The routines in this package access country-dependent
information such as the formats for numbers, currency, dates, and
times. Use of this package will enable you to make your application
country-independent.

th:IUDateString dateTime form [1-504] Function
[1-504] Function
[1-505] Function
[1-505] Function

th:!IUDateString dateTime form VAR result
th:IUDatePString dateTime form intlParam
th:!IUDatePString dateTime form VAR result intlParam

th:IUDateString returns the date contained in dateTime (which is
returned by the trap th:!GetDateTime) as a string. The format of this
string is determined by form which is one of the constants described
below.

h:-!IUDateString is similar to th:IUDateString except it modifies
result with the string.

th:IUDatePString is similar to th:IUDateStr~ng except that the
. form argument is overridden by the data format in intlParam.

th:!IUDatePString is similar to th:!IUDateString except that the
form argument is overridden by the data format in intlParam.

th:shortDate
tb:longDate
tb:abbrevDate

[1-504] Constant
[1-504] Constant
[1-504] Constant

These are constants for use in the data format form argument to
tb: IUDateString and th: !IUDateString.

th: IUTimeString dateTime wantSeconds
th:!IUTimeString dateTime wantSeconds VAR result
tb:IUTimePString dateTime wantSeconds intlParam
th:!IUTimePString dateTime wantSeconds VAR result

[1-505] Function
[1-505] Function
[1-50!'] Function
LI-505] Function

Macintosh Toolbox Interface

initParam

tb: IUTimeString returns the time contained in dateTime (which is
returned by the trap th:!GetDateTime) as a string. If wantSeconds is
true, the time of day is returned with seconds included. If wantSeconds
is false, only the hours and minutes are returned.

tb:!IUTimeString is similar to tb:IUTimeString except that it
modifies result to the formatted string.

17-1

Package Manager

th: !IUMetric

tb:IUTimePString is similar to tb:IUTimeString except the format
is determined by the resource intlParam rather than the default resource.

tb:!IUTimePString is similar to tb:!IUTimeString except the
format is determined by the resource intlParam rnther than the default
resource.

[I-505] Function

Returns true if international resource 0 specifies that the metric system is
to be used.

tb:!IUGetlntl the/D [I-505] Function

Returns a handle to the international resource (resource type "INTL")
which has a resource ID the/D.

tb:!IUSetlntl rejNum the/D intlParam [I-506] Function

Sets the international resource (resource type "INTL") resource ID
the/Din the resource file with a reference number rejNum to the data
specified by intlParam.

th; !IUMagString aPtr bPtr aLen bLen
tb:!IUMagIDString aPtr bPtr aLen bLen

[1-506] Function
[I-507] Function

tb:!IUMagString compares a string starting at aPtr and having a
length aLen, with a string starting at bPtr and having a length bLen,
using both primary and secondary ordering. Returns -1 if aPtr string is
less than bPtr string, 0 if aPtr string is equal to bPtr string, and 1 if aPtr
string is greater than bPtr string.

tb:!IUMagIDString is similar except it uses only the primary
ordering.

Standard File
Package

17 .3 The routines in this package present the standard user interface
when a file is to be saved or opened. These routines use the SFR.eply
data structure.

tb:SFReply

:good

:IType

17-2

[I-519] Flavor

This flavor def.mes a user's reply to a query for an input file namestring.
tb:SFReply objects are true microE:xplorer instances.

Method of tb:SFReply

If true, then the user specified a filename and then clicked on Open or
Save. If false, then the user clicked on Cancel.

Method of tb:SFReply

This is a four-character string identifying the file type of the user's
selection. This field is unrelated to the Lisp pathname type component.

Macintosh Toolbox Interface

:vRefNum

:version

:fName

Package Manager

Method of tb:SFReply

This is nominally the volume reference number of the user's selection.
In the hierarchical file system as is used on the microExplorer, it
effectively identifies the volume and directory.

Method of tb:SFReply

This is nominally the file version number. However, since many
Macintosh utilities assume version 0, this field is not particularly
important yet.

Method of tb:SFReply

This is a string naming the file on the Macintosh file system.

NOTE: For files with Explorer-style names, this string is a
concatenation of the Lisp pathname name and type components
separated by a period (e.g., "FOO. LISP").

tb:!SFPutFile where prompt origName dlgHook reply
th: !SFPPutFile where prompt origName dlgHook reply

dlg/D filterProc

[1-519] Function
[l-523] Function

Macintosh Toolbox Interface

tb:!SFPutFile displays a "Save as ... " cijalog box at the point where
with a prompting string prompt and a default tName reply origName.
The dialog result is returned in reply, an instance of tb:SFReply. The
dlgHook andfilterProc ~e not available now, so pass tb:!nilPtr.

tb:!SFPPutFile is similar except it allows you to define your own
dialog box, which has a resource ID dlg/D.

I CJ Hard-Skiue I
Cl Lisp Folder ~ c=i Hard-Skiue
Cl MacPaint

) Cl MacWrite llt

I
(~:j•~c1

Cl MPW (Drh~H)
Cl Old ToolDoc
Cl Prolog IQ]

Saue document as: (S<W<~)

11 I (Cancel)

17-3

Package Mtllfager

17-4

Example: (setq where (make-instance 'tb:Point :H 133 :V 78))
(setq reply (make-instance 'tb:SFReply))
(tb:!S!'PutFile where "Save document as:• nn tb:!nilPtr

reply)

tb:!SFGetFile where prompt jileFilter numTypes typeList [1-523) Function
dlgHook reply

tb:!SFPGetFile where prompt jileFilter numTypes typeList [1-526) Function
dlgHook reply dlglD jilterProc

tb:!SFGetFile displays an "Open" dialog box, at the point where,
with a prompt string prompt (not displayed in the dialog box). The
dialog box will display a scrolling window containing the names of all
files of~e types (four-character OS type names) in typeList which'is a
lot of file types (see example) on the current disk volume. If you pass
nil for typeList and 0 for numTypes, then all files will be displayed.
The dialog result is returned in result. The dlgHook andfilterProc
arguments are not available now, so pass tb:!nilPtr.

tb: !SFPGetFile is similar except it allows you to define your own
dialog box, which has a resource ID dlgID.

~ Hard-Skiue

Example:

CJ MacPaint
CJ MacWrlte
CJ MPW

(
(

~: j(~(t)
Drh~<~)

CJ Old ToolDoc
CJ Prolog ..

CJ SmallTalk
CJ System Folder
CJ Tools

(
(

Open

Cancel

(setq where (make-instance 'tb:Point :H 133 :V 78))
(setq typeList ' (11 TEXT 11))

(setq reply (make-instance 'tb:SFReply))
(tb:!SFGetFile where • 11 tb:!nilPtr l typeList tb: !nilPtr

reply)

NOTE: The file types in typeList are Macintosh OSTypes and are
unrelated to Lisp pathname type components. In particular, the fact that
the Macintosh OS file type of "TEXT'' in this example means the same
as a Lisp file type of "TEXT" is just a coincidence.

Macintosh Toolbox Interface

)
)

Introduction

Initialization
and Allocation

Chapter 18
MEMORY MANAGER

18.1 The Memory Manager is used to create and manipulate blocks of
memory in the Macintosh memory. There are two types of memory
blocks: relocatable and non-relocatable. Relocatable blocks of memory
are created with the trap tb:!NewHandle. Non-relocatable blocks of
memory are created with the trap tb:!NewPtr. It is best to stay away
from non-relocatable blocks because they give rise to fragmented heaps
- which quickly degrades the performance of and amount of memory
available to a Macintosh program.

The relocatable blocks are referred to by handles which are really
indirect pointers. The handle is a pointer to a place in memory where
the actual pointer to the block is kept. The reasoning behind this is that
when the Memory Manager is allocating new blocks of memory it
sometimes finds it necessary to move blocks around in memory to make
room for the new block. Having handles (indirect pointers) means it
can move the blocks around without invalidating all the references to the
other blocks.

Some of the more useful Memory Manager OSUtility traps are also
documented at the end of this section.

18.2 These routines initialize, modify, and create new heap zones.

tb:!SetApplBase startPtr [11-28] Function

Sets the base of the application heap to startPtr.

CAUTION: This trap is very dangerous and should not be
used.

tb: !InitZone ptr [11-29] Function

Creates and initializes a new heap zone. Ptr points to a block of
memory containing the four variables startPtr, limitPtr, cMoreMasters,
and pGrowZone. See Inside Macintosh for details.

CAUTION: This trap is very dangerous. Use it only if
you know exactly what you are doing.

tb:!GetApplLimit [11-29] Function

Macintosli Toolbox Interface

Returns the current application heap's limitPtr, the highest address to
which it can grow.

18-1

Memory Manager

tb: !SetApplLimit zoneLimit [Il-30) Function

Sets the highest address of the current application heap to zoneLimit.

CAUTION: This trap is very dangerous. Never use this
trap.

tb:!MoreMasters [Il-31) Function

Allocates another block of master pointers. ·This should be done at the
beginning of a program if you expect to be creating a lot of relocatable
memory blocks.

Heap Zone 18.3 These routines provide access to heap zones.

Access

tb:!GetZone [Il-31] Function

Returns two values: a pointer to the current heap zone and an operating
system result code.

tb:!SetZone hz [Il-31) Function

Sets the current heap zone to the zone pointed to by hz.

CAUTION: This trap is very dangerous. Use this trap
only .if you know exactly what you are doing.

tb:!SystemZone [Il-32) Function

Returns a pointer to the System Zone, the zone that the Macintosh
Toolbox uses as its own private memory.

tb:!ApplicZone [Il-32] Function

Returns a pointer to the original Application Zone.

Allocating and
Releasing
Relocatable
Blocks

18.4 These routines allocate new blocks of relocatable memory and
release those that are no longer needed.

18·2

tb:!NewHandle logicalSize [Il-32] Function

Returns two values: a handle to a relocatable object in memory with the
size specified in logicalSize, and an OSErr.

Macintosh Toolbox Interface

tb: !nilHndl

Memory Manager

Constant

Thi., constant is an instance of tb:rnac-hondle is a :handle instance
variable of zero. Use this constant wherever the inside Macintosh
documentation says to use a (Pascal) NIL for a handle argument.

tb: !DisposHandle h [11-33] Function

Disposes of a handle to a relocatable block in memory that has the
handle h.

CAUTION: Once a handle has been disposed of, all
references to the handle become invalid. If you try to
dispose of an already disposed handle, it will damage the
master pointer block.

tb:!GetHandleSize h [Il-33] Function

Returns the logical size of the handle has an integer.

tb:!SetHandleSize h newSize [11-34] Function

Sets the logical size of the handle h to the value newSiz~.

tb:!HandleZone h [11-34] Function

Returns two values: a zone pointer to the heap zone that contains the
handle h, and an OSErr.

tb: !RecoverHandle p [Il-35] Function

Returns a handle to the relocatable object pointed to by p.

tb:!ReallocHandle h logicalSize [11-35] Function

Allocating and
Releasing Non
Relocatable
Blocks

Allocates a new relocatable block with a size logica/Size and updates the
handle h to point to this new block. This trap is used when a handle has
been purged.

18.S These routines allocate new blocks of non-relocatable memory
and release those that are no longer needed.

tb:!NewPtr logicalSize [11-36] Function

Macintosh Toolbox Interface

Returns two values: a pointer to a non-relocatable object in memory
with a size of logica/Size, and an OSErr. Creating non-relocatable
blocks causes fragmentation of the heap. When the heap becomes
fragmented, large areas become unusable and the machine slows down.
(See Inside Macintosh for details).

18·3

Memory Manager

Example.·

tb:!nilPtr

tb:!onePtr

When you need a block of memory, it is best to create it with
tb:!NewHandle and then temporarily lock it in memory when it is
needed.

The File Manager trap tb:!Read requires that you pass it a pointer to
the buffer where it will place the read information. To create this
buffer, you first create a new relocatable block of the required size:

(setf myBufferHandle (tb:!NewHandle myBufferSize))

Now, lock it by doing:

(tb:!HLock myBufferHandle)

This stops the Memory Manager from moving it while you are using it.
Next, get a pointer to the buffer (the handle is a pointer to a pointer):

(setf myBufferPtr (tb:deref myBufferHandle))

myBufferPtr now points to the start of the buffer. After filling the
required fields of the block, pass the pointer to the trap:

(send paramBlock :ioBuffer myBuffer~tr)
(tb:!Read paramBlock)

After calling the trap, do not forget to unlock the handle. Leaving it
locked has the same effect as creating a non-relocatable block, it
fragments the heap. So do the following:

(tb:!HUnLock myBufferHandle)

Constant

This constant is an instance of tb:mac-pointer with a :pointer
instance variable of zero. Use this constant wherever the Inside
Macintosh documentation says to use a (Pascal) NIL as a pointer
argument.

Constant

This constant is an instance of tb:mac-pointer with a :pointer
instance variable of #xFFFFFF. Use this constant wherever the Inside
Macintosh documentation says to use a (Pascal) -1 as a pointer
argument.

tb:!DisposPtr p [Il-36] Function

18-4

Disposes of a non-relocatable block in memory which is pointed to by
p.

CAUTION: Once a pointer has been disposed of, all
references to the pointer become invalid. If you try to
dispose of an already disposed pointer it will damage the
master pointer block.

Macintosh Toolbox Interface

Memory Manager

tb: !GetPtrSize p [Il-37] Function

Returns the logical size of the pointer p.

tb:!SetPtrSize p newSize [Il-37] Function

Sets the logical size of the pointer p to a new value newSize.

tb:!PtrZone p [ll-38] Function

Returns the heap zone pointer of the heap that contains the non
relocatable block p.

Freeing Space 18.6 These routines free space in the heap.

in the Heap

tb:!FreeMem [Il-38] Function

tb:!MaxMem

Returns the amount of free memory in the current heap zone.

[ll-38] Function

This trap compacts the current heap zone, purges everyt~g purgeable,
and returns two values: the size of the largest contiguous free block and
the maximum number of bytes that the heap zone can be grown to.

tb:!CompactMem cbNeeded [ll-39] Function

Compacts the current heap by moving all relocatable blocks towards the
bottom of the heap (it does not purge any!) until a contiguous space of a
least cbN eeded is available.

tb:!ResrvMem cbNeeded [ll-39] Function

Creates a free space for a block with a size of cbNeeded bytes. When
you need to create a handle that will exist for a long time, call. the trap
tb:!ResrvMem early in your program. The trap will reserve the
required memory near the bottom of the heap. This reduces any heap
fragmentation problems.

tb: !PurgeMem cbNeeded [II-40] Function

Purges purgeable blocks from the current heap zone until cbNeeded
contiguous bytes are free or all the purgeable blocks have been purged.

tb:!EmptyHandle h [Il-40] Function

Purges the handle h.

Macintosh Toolbox Interface 18·5

Memory Manager

Properties of
Relocatable
Blocks

18. 7 These routines lock and unlock handles and make them
purgeable or unpurgeable.

tb:!HLock h
tb:!HUnlock h

[Il-41] Function
[Il-41] Function

tb:!HLock locks the handle h. This stops the Memory Manager from
moving the block while it is being used. b:!HUnlock removes the
lock.

To reduce the probability of heap fragmentation, call the trap
tb:!MoveHHi before you lock a handle. This trap will move the
handle to the edge of the nearest non-relocatable block assuring it
doesn't add to fragmentation .•

tb:!HPurge h
tb:!HNoPurge h

Makes the handle h purgeable or not purgeable.

tb:!HSetRBit h
tb:!HClrRBit h

Sets or clears the resource bit in the handle h.

tb:!HGetState h

Returns the flags of the handle h.

tb:!HSetState h theState

Sets the flags of the handle h to theState.

[Il-41] Function
[Il-42] Function

[IV-79] Function
[IV-79] Function

[IV-79] Function

[IV-80] Function

Grow Zone
Operations

18.8 These routines perform operations which affect the grow zone.

tb:!SetGrowZone growZone [Il-42] Function

Sets the current heap grow zone procedure to that defined in growZone.

CAUTION: This trap is very dangerous.

tb:!GZSaveHnd [Il-43] Function

Returns a handle that must not be moved by the growZone function.

Macintosh Toolbox Interface

Miscellaneous
Routines

Memory Manager

18.9 These routines perform miscellaneous Memory Manager
operations.

tb:!BlockMove sourcePtr destPtr byteCount [11-44] Function

Moves a block of byteCount bytes starting at sourcePtr to destPtr.

th:block-move source dest count (11-44] Function

th:!TopMem

A more generalized version of th:!BlockMove. Moves count
elements from source to dest. source and dest can be pointers, handles
or Lisp arrays Note that count is a number of elements, not bytes.
However, when both source and dest are either pointers or handles,
count is assumed to be in bytes.

[11-44] Function

Returns a pointer to the end of memory.

th: !MemError [11-44] Function

- Returns the last Memory Manager error number.

th: !MaxBlock [IV-77] Function

Returns the free space available without purging the current heap zone.

th:!PurgeSpace [IV-78] Function

Returns two values: the total number of bytes that could be obtained by
purging all purgeable blocks, and the largest contiguous space in bytes
that would exist after the purge. This is done without actually purging
anything.

tb:!MaxApplZone · [11-30] Function

Grows the application heap zone to ApplLlmit.

th:!MoveHHi h [11-44] Function

Floats the handle h as high up the current heap as is possible.

th: !StackSpace [IV-78] Function

Returns the amount of space between the current stack pointer and
Heap End.

th:!NewEmptyHandle [IV-78] Function

Creates a new empty handle.

Macintosh Toolbox Interface 18-7

Memory Manager

Memory
Manager
Utilities

18.10 These are a collection of memory management utilities used for
converting and manipulating handles and pointers. The only traps you
are likely to use are:

18·8

• tb:!HandToHand to duplicate a handle.
• tb!!HandAndHand to append one handle onto another.
• tb:!PtrAndHand to add data onto the end of a handle.

tb:!HandToHand theHandle [Il-374] Function

Example:

Makes a copy of the handle in theHandle and returns two values: the
handle to the copy, and an Operating System result code~ ff you need to
make a copy of the handle myffandle, you could do the following:

(set£ myHandle (tb:!NewHandle 10))
(multiple-value-bind (newHandle result)

(tb:!HandToHand myHandle)
...)

A copy of the handle my Handle will be returned in new Handle.

tb:!PtrToHand srcPtr size [Il-375] Function

Example:

Returns two values: a new handle which is a copy of the size bytes
starting at srcPtr, and an OSErr. To make a relocatable copy of a non
.relocatable block myPointer, do the following:

(s~tq pointerSize (tb:!GetPtrSize myPointer))
(multiple-value-bind (newHandle result)

(tb:!PtrToHand myPointer pointerSize)
...)

A handle to the new relocatable block will be returned in newHandle.

tb:!PtrToXHand srcPtr dstHndl size [Il-375] Function

Example:

Takes an existing handle dstHndl and makes it a copy of the size bytes
starting at srcPtr and returns an error code as a result. To set the
existing handle myffandle to the contents of the pointer myPointer,
do the following:

(set£ pointerSize (tb:!GetPtrSize myPointer))
(set£ result

(tb:!PtrToXHand myPointer myHandle pointerSize))

th: !HandAndHand aHndl bHndl [Il-375] Function

Appends the data in aHndl onto the end of the handle bHndl and returns
an error code as a result.

tb:!PtrAndHand ptr hndl size [Il-376] Function

Appends the data (size number of bytes) starting at ptr, onto the handle
hndl and returns an error code as a result.

Macintosh Toolbox Interface

Accessing
Memory

Memory Manager

18 .11 These routines are used for accessing the contents of
Macintosh memory directly.

tb:deref theHandle Function

Dereferences theHandle once and returns the resulting pointer.
Remember to lock theHandle before doing this or the resulting pointer
may become invalid. The most common use of tb:deref is in the File
Manager. Many File Manager routines require pointers to buffers. You
can allocate the buffer with tb:!NewHandle. Then, when using a File
Manager routine, you can lock the buffer and then use tb:deref to get a
pointer to the buffer .. After the File Manager routine is finished, the
buffer can be unlocked. This will help prevent heap fragmentation.

The following routines allow you to access Macintosh memory directly.
Make sure when attempting to access 16-bit or 32-bit values that the
location you specify lies on an even address, or you will cause an
address error on the Macintosh.

tb:fetch thePointer offset
tb:fetchword thePointer offset ·
tb:fetchbyte thePointer offset

Function
Function
Function

Returns the 32-bit, 16-bit, or 8-bit integer value, respectively, at the
location which is off set bytes beyond the location pointed at by
thePointer. ·

tb:fetchhandle theHandle offset
tb:fetchwordhandle theHandle offset
tb:fetchbytehandle theHandle offset .

Function
Function
Function

Returns the 32-bit, 16-bit, or 8-bit integer value, respectively, at the
location which is offset bytes beyond the location indirectly pointed at
by theHandle.

tb:fetchrect thePointer offset rect Function

Sets rect to be the rectangle which is offset bytes beyond the location
pointed at by thePointer.

tb:fetchrecthandle theHandle offset rect Function

Macintosh Toolbox Interface

Sets rect to be the rectangle which is offset bytes beyond the location
indirectly pointed at by theHandle.

18-9

Memory Manager

18-10

tb:stow thePointer offset theValue
tb:stowword thePointer offset theValue
tb:stowbyte thePointer offset tlieValue

Function
Function

·Function

Stores theValue as a 32-bit, 16-it, or 8-bit integer value, respectively,
into the location which is offset bytes beyond the location pointed at by
thePointer.

tb:stowhandle theHandle offset theValue
tb:stowwordhandle theHandle offset theValue
tb:stowbytehandle theHandle offset theValue

Function
Function
Function

Stores theValue as a 32-bit, l&.bit, or 8-bit integer value, respectively,
into the location which is offset bytes beyond the location indirectly
pointed at by theHandle.

Macintosh Toolbox Interface

Introduction

Segment Loader
Traps

Chapter 19
SEGMENT LOADER

19.1 The Segment Loader traps are advanced and obscure. You are
advised to read the Segment Loader documentation in Inside Macintosh
befo~ even attempting to use any of them.

19. 2 These routines are included in the documentation for
completeness only. Please refer to Inside Macintosh for details.

tb:CountAppFiles
tb:!appOpen
tb:!appPrint

[Il-57] Function
(11-58] Constant
[II-58] Constant

-

This trap should be called when your application is started. If your
apj>lication is launched from the MultiFinder (by a user double-clicking
on its icon or by double-clicking on one of your application's
documents), the MultiFinder passes to your application information
about any documents that were selected to be opened with your
application. tb:!CountAppFiles returns two values. The first is
either the constant tb:!appOpen or tb:!appPrint and indicates
whether the documents are to be opened or printed, respectively. The
second is the number of documents selected.

tb:launch name [Il-57] Function

Macintosh Toolbox Interface

Launches a Macintosh application. Name is a full pathname specifying
the application to launch. tb:launch returns a Toolbox OSErr which
tells whether or not the launch was successful.

19-1

Chapter 20
OPERATING SYSTEM EVENT MANAGER

Introduction

Operating
System Event
Manager
Routines

20.1 These traps will almost never be used. The Toolbox Event
Manager has all the traps necessary to handle any possible event. The
only OS Event Manager trap you might possibly use is
tb:!PostEvent, which places a user-defined event in the event queue.

20.2 These routines post, remove, and access events.

tb:!PostEvent eventCode eventMsg [Il-68] Function

Example:

Returns an OSErr. Event types tb:!applEvt, tb:!applEvt, and
tb:!app3Evt are available as user-definable events. Do not use
tb:!app4Evt as it is now used by MultiFinder. To support your own
event type it is necessary to have an event handler procedure for that
event number in the main event loop. Then, when you want to generate
an event, call the trap tb: !PostEvent.

To generate an event which has the event code of tb:!applEvt and the
current time as the message, do the following:

(setf secs (tb:!GetDateTime))
(tb:!PostEvent tb:!applEvt secs)

tb:!FlushEvents eventMask stopMask [Il-69] Function

Example:

Removes events from the event queue as specified by the given event
masks. Returns 0 if all events were removed from the queue.
Otherwise, it returns the event code of the event that caused the flush to
stop.

; ;;flush out all events from the queue.
(tb: !FlushEvents tb: !everyEvent 0)

tb:!GetOSEvent theEvent eventMask
tb:!OSE,·entAvail theEvent event:Afask

[Il-69] Function
[Il-70] Function

Macintoslr Toolbox Interface

Given a tb:EventRecord instance, tb:!GetOSEvent updates that
instance to be the next available event of a specified type or types, and
removes it from the event queue. If an event is found in the event
queue, tb:!GetOSEvent returns -1; otherwise, it returns 0.

tb:!OSEventAvail is similar except it does not remove the event from
the queue.

20·1

OSBvent Manager

20-2

Example:

NOTE: Since tb:EventRecords are true instances on the
microExplorer, you cannot pass a.pointer to an tb:EventRecord
object. Instead, allocate a block of memory the same size as an
tb:EventRecord (16 bytes) and pass a pointer to this block. You can
access the various fields of the tb:EventRecord using fetch.

(setf eventPtr (tb:!NewPtr 16))
(tb:!GetOS~vent eventPtr tb:!everyEvent)

th: !SetEventMask theMask [II-70] Function

. Sets the system event mask to the event mask specified.

tb:!GetEVQHdr [II-71] Function

Returns a pointer to the event queue.

Macintosh Toolbox Intelface

Introduction .

Chapter 21
FILE MANAGER

21.1 The File Manager is the part of the Macintosh Toolbox that deals
with the creation and manipulation of volumes, files, and directories.
With the File Manager you can:

• Open files and working directories.
• Read and write files.
• Create new files and directories.
• Get and set information about volumes, files, and directories.

Almost all of the File Manager traps take one argument--a parameter
block. A parameter block is a data structure containing fields that
control the actions of the trap. There are seven types of parameter
blocks used by the File Manager, each represented by a flavor:

• tb:ioParam
• tb:fileParam
• tb:volumeParam
• tb:ClnfoPBRec
• tb: CMovePBRec
• tb:WDPBRec
• tb:FCBPBRec

NOTE: When one of the above flavors is instantiated, a significant
amount of Macintosh memory is allocated. Therefore, to keep the
Macintosh memory from filling up, always send your parameter block
instance a :dispos·e message when you exit the block in which the
instance is bourid.

tb:ParamBlockRec [11-98] Flavor

This is the base flavor upon which all of the other File Manager
parameter block flavors are built. This flavor is never directly
instantiated.

:ioCompletion
:set-ioCompletion procPtr

Method of tb:ParamBlockRec
Method of tb:ParamBlockRec

:ioResult

Macintosh Toolbox Interface

This is a pointer to a procedure to be executed at the end of an
asynchronous call. It is automatically set to nil for synchronous calls.

Method of tb:ParamBlockRec

This is the result code of the operation. For asynchronous calls, it is set
to 1 upon receipt of the call and then set to the final result code upon
completion.

21-1

File Manager

21-2

:ioNamePtr
:set-ioNamePtr StringPtr

Method of tb:ParamBlockRec
Method of tb:ParamBlockRec

:ioVRefNum

This is a pointer to the volume namestring or to the file namestring
optionally prefixed with the volume.

:set-io VRetNum l 6b-integer
Method of tb:ParamBlockRec
Method of tb:ParamBlockRec

tb:ioParam

:ioRefNum

Depending upon the operation, this is either a volume reference number
or a drive number.

[Il-100] Flavor

This flavor defines the parameter block needed for 1/0 on open files.
This flavor is built on tb:ParamBlockRec.

:set-ioRetN um 16b-integer
Method of tb:ioParam
Method of tb:ioParam

This is the file's path reference number.

:ioVersNum
:set-ioVersNum 8b-integer

Method of tb:ioParam
Method of tb:ioParam

This is the file version number. This field is nominally the same as the
Lisp pathname version component, but major pieces of Macintosh
software ignore it so it .is nonnally zero.

:ioPermssn
:set-ioPermssn Sb-integer

Method of tb:ioParam
Method of tb:ioParam

This instance variable controls the file access pennission. Its value is
one of the f9llowing constants.

th: !fsRdPrem
tb:!fsWrPerm
tb:!fsRdWrPerm
tb:!fsRdWrShPerm
tb:!fsCurPerm

[IV-120] Constant
[N-120] Constant
[IV-120] Constant
[IV-120] Constant
[N-120] Constant

These constants provide the values for the :ioPermssn instance
variable of the tb:ioParam flavor. These constants represent read
only, write-only, exclusive read-write, shared read-write, and whatever
is currently allowed, respectively.

:ioMisc
:set-ioMisc pointer

Method of tb:ioParam
Method of tb:ioParam

The values of these instance variables vary with the operation and are
nonnally tb:!nilPtr.

Macintosh Toolbox Interface

File Manager

:ioBuffer
:set-ioBuff er pointer

Method of tb:ioParam
Method of tb:ioParam

These are pointers to the read-write data buffer.

:ioReqCount
:set-ioReqCount 32b-integer

Method of tb:ioParam
Method of tb:ioParam

:ioActCount

These are the number of bytes to be read, written, or allocated.

Method of tb:ioParam

This 32-bit integer is the number of bytes actually read, written, or
allocated.

:ioPosMode
:set-ioPosMode 16b-integer

Method of tb:ioParam
Method of tb:ioParam

This controls the positioning of the file for reads and writes. Its value
should be one of the following constants.

tb:!fsAtMark
tb:!fsFromStart
tb: ! fsFromLEO F
tb: ! fsFromMark

[IV-100] Constant
[IV-100] Constant
[N-100] Constant
[IV-100] Constant

tb:!rdVerify

These constants provide the value for the :ioPosMode instance
variable on the tb:ioParam flavor. These constants represent position
at current mark, relative to start of file, relative to logical EOF, and
relative to current mark, respectively. (See also tb:!rdVerify.)

[IV-100] Constant

If this value is added to any of the position mode constants above, then
it indicates that a verify should be done for writes.

:ioPosOffset
:set-ioPosOffset 32b-integer

Method of tb:ioParam
Method of tb:ioParam

This specifies the byte offset relative to the position specified by
:ioPosMode.

tb:FileParam [II-101] Flavor

:ioFRefNum

This flavor defines the parameter block needed needed to change
information about files. This flavor is built on tb:ParamBlockRec.

:set-ioFRefN um l 6b-integer
Method of tb:fileParam
Method of th: fileParam

This is the file's path reference number.

Macintosh Toolbox Interface 21-3

File Manager

21·4

:ioFVersNum
:set-ioFVersN um 8b-integer

Method of tb:tileParam
Method of tb:fileParam

This is the ftle version number. This field is nominally the same as the
Lisp pathname version component, but major pieces of Macintosh
software ignore it, so it is normally zero.

:ioFDirindex Method of tb:fileParam

:ioFIAttrib

This 16-bit integer is a unique sequence number of the file on the
volume. It can be used for indexing files on the volume.

Method of tb:fileParam

If bit 0 ofthis 8-bit integer is 0, the file is locked.

:ioFIVersNum
:set-ioFIVersNum 8b-integer

Method of tb:fileParam
Method of tb:fileParam

This is the file version number. This field is nominally the same as the
Lisp pathname version component, but major pieces of Macintosh
software ignore it, so it is normally zero.

:ioFIFndrlnfoFdType
:set-ioFIFndr lnfoFdType 8b-integer

Method of tb:fileParam
Method of tb:fileParam

This four-character string is the OS file type. This field is unrelated to
the Lisp pathname type component.

: ioFIFnd r InfoC reator
:set-ioFIFndrlnfoCreator 8b-integer

Method of tb:fileParam
Method of tb:fileParam

This four-character string identifies the creator of the file. When you
double-click in a file, the Finder™ uses this field to determine which
application should be launched.

:ioFIFndrlnfoFdFlags Method of tb:fileParam

These are flags used by the Finder. This field may be interrogated by
using the constant masks defined below.

th: !fsHasBundle
tb: !Flnvisible

[11-85] Constant
[II-85] Constant

These two constants are used as masks for :ioFIFndrlnfoFdFlags.
Their respective bits indicate that the associated file has a bundle and
that the file Icon is invisible.

:ioFIFndrlnfoFdLocationV
:set-ioFIFndr InfoFdLocation V 16b-integer
:ioFIFndrlnfoFdLocationH
:set-ioFIFndrlnfoFdLocationH l 6b-integer

Method of th:fileParam
Method of tb:fileParam
Method of tb:fileParam
Method of tb:fileParam

These coordinates represent the point at which the ftle's icon is located.
Initialize these values to 0 when creating a file.

Macintosh Toolbox Interface

File Manager

:ioFIFndrlnfoFdFldr Method of th: fileParam

th:!ITrash
th: !fDesktop
th:!fdisk

:ioFIStBlk
:ioFILgLen
:ioFIPyLen

This is an integer indicating where the file's icon will appear. A
positive number represents the folder with that number. Non-positive
values have meanings indicated by the following constants.

[Il-85] Constant
[Il-85] Constant
[Il-85] Constant

These constants are used in the :ioFIFndrlnfoFdFldr field to indicate
that the icon is in the trash, on the desktop, or on disk respectively.

Method of th:fileParam
Method of th:fileParam
Method of th:fileParam

These integers represent the first allocation block of the data fork (16
bits) and its logical and physical EOF (32 bits).

:ioFIRStBlk
:ioFIRLgLen
:ioFIRPyLen

Method of th:fileParam
Method of th:fileParam
Method of tb:fileParam

:ioFIMdDat
:ioFICrDat

:ioDirID

These integers represent the first allocation block of the resource fork
(16 bits) and its logical and physical EOF (32 bits).

Method of tb:fileParam
Method of tb:fileParam

These 32-bit integers are the modification and creation dates of the file
in universal time.

Method of th:fileParam

This is the directory ID as a 32-bit integer.

th:volumeParam [Il-102] Flavor

Macintosh Toolbox Interface

This flavor is built upon th:ParamBlockRec and defines a parameter
block suitable for dealing directly with volumes. tb:volumeParam
instances have the following instance accessor methods:

• :IOVOLINDEX ;28 [integer]
• :IOVCRDATE ;30 [longint]
• :IOVLSBKUP ;34 [longint]
• :IOVA1RB ;38 [integer]
• :IOVNMFLS ;40 [integer]
• :IOVDIRST ;42 [integer]
• :IOVBLLN ;44 [integer]
• :IOVNMAIBLKS ;46 [integer]
• :IOV ALBLKSJZ ;48 [longint]
• :IOVCLPSIZ ;52 [longint]

21·5

File Mt11t11ger

• :IOALBLST
• :IOVVNXI'FNUM
• :IOVFRBLK
• :IOVSIGWORD
• :IOVDRVINFO
• :IOVDREFNUM
• :IOVFSID
• :IOVBKUP
• :IOVSEQNUM
• :IOVWRCNT
• :IOVFILCNT
• :IOVDIRCNT
• :IOVFNDRINFOl
• :IOVFNDRINF02
• :IOVFNDRINF03
• :IOVFNDRINF04
• :IOVFNDRINF05
• :IOVFNDRINF06

· • :IOVFNDRINF07
• :IOVFNDRINF08

tb:ClnfoPBRec

;56 [integer]
;58 [longint 1
;62 [integer]
;64 [integer 1
;66 [integer]
;68 [integer]
;70 [integer]
;72 [longint]
;76 [integer]
;78 [longint]
;82 [longint]
;86 [longint]
;90 [longint]
;94 [longint]
;98 [longint]
;102 [longint]
;106 [longint]
; 110 [longint]
;114 [longint]
; ll 8 [longint]

Flavor

This flavor is built upon tb:ParamBlockRec and defines a parameter
block for use· with tb: !GetCatlnfo and th: !SetCatlnfo to get and set
information about files and directories within a directory. Notice that
there are several pairs of instance accessor methods which access the

· same field of the block. This is because tb:!GetCatlnfo and
tb:!SetCatlnfo work with either files or directories. One set of
instance accessors is for file information and the other set is for
directory information. tb:ClnfoPBRec instances have the following
instance accessor methods:

• :IOFVERSNUM ;26
• :FILLER! ;27
• :IOFDIRINDEX ;28
• :IOFLATI'RIB ;30
• :FILLER2 ;31
• :IOFLFNDRINFOFDTYPE ;32
• :IODRUSRWDSFRRECITOP ;32
• :IODRUSRWDSFRRECTLEFr ;34
• :IOFLFNDRINFOFDCREATOR ;36
• :IODRUSRWDSFRREcrBOITOM ;36
• :IODRUSRWDSFRRECTRIGHT ;38
• :IOFLFNDRINFOFDFLAGS ;40
• :IODRUSRWDSFRFLAGS ;40
• :IOFLFNDRINFOFDLOCATIONV ;42
• :IODRUSRWDSFRLOCATIONV ;42
• :IOFLFNDRINFOFDLOCATIONH ;44
• :IODRUSRWDSFRLOCATIONH ;44
• :IOFLFNDRINFOFDFLDR ;46
• :IODRUSRWDSFR.VIEW ;46
• :IODIRID ;48
• :IDDRDIRID ;~

[signedbyte]
[signedbyte]
[integer]
[signedbyte]
[signedbyte]
[ostype]
[integer]
[integer]
[ostype]
[integer]
[integer J
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[longint]
[longint]

Macintosh Toolbox Interface

File Manager

• :IOFLSTBLK ;52 [integer]
• :IODRNMFLS ;52 [integer]
• :IOFLLGLEN ;54 [longint]
• :IOFLPYLEN ;58 [longint]
• :IOFLRSTBLK ;62 [integer]
• :IOFLRLGLEN ;64 [longint]
• :IOFLRPYLEN ;68 [longint]
• :IOFLCRDAT ;72 [longint]
• :IODRCRDAT ;72 [longint]
• :IOFLMDDAT ;76 [longint]
• :IODRMDDAT ;76 [longint]
• :IOFLBKDAT ;80 [longint]
• :IODRBKDAT ;80 [longint]
• :IOFLXFNDRINFOFDICONID ;84 [integer]
• :IODRFNDRINFOFRSCROLL V ;84 [integer]
• :IOFLXFNDR.INFOFDUNUSEDl ;86 [integer]
• :IODRFNDRINFOFRSCROLLH ;86 [integer]
• :IOFLXFNDR.INFOFDUNUSED2 ;88 [integer]
• :IODRFNDRINFOFROPENCHAIN ;88 [longint]
• :IOFLXFNDR.INFOFDUNUSED3 ;90 [integer]
• :IOFLXFNDRINFOFDUNUSED4 ;92 [integer]
• :IODRFNDRINFOFRUNUSED ;92 [integer]
• :IOFLXFNDRINFOFDCOMMENT ;94 [integer]
• :IODRFNDRINFOFRCOMMENT ;94 [integer]
• :IOFLXFNDRINFOFDPUTAWAY ;96 [longint]
• :IODRFNDRINFOFRPUTAWAY ;96 [longint]
• :IOFLPARID ;100 [longint]
• :IODRPARID ;100 [longint J
• :IOFLCLPSIZ ;104 [longint]

This flavor is built upon tb:ParamBlockRec and defines a parameter
block which is used with the trap tb:!CatMove, which is used to
move files from one directory to another. tb:CMovePBRec instances
have the following instance accessor methods:

• :FILLER! ;24 [longint]
• :IONEWNAME ;28 [pointer]
• :Fll..LER2 ;32 [longint]
• :IONEWDIRID ;36 [longint]
• :FILLER.3-1 ;40 [longint]
• :FILLER.3-2 ;44 [longint]
• :IODIRID ;48 [longint]

tb:WDPBRec Flavor

Macintosh Toolbox Interface

This flavor is built upon tb:ParamBlockRec and defines a parameter
block which is used with traps that deal specifically with working
directories. tb:WDPBRec instances have the following instance
accessor methods:

• :IOVREFNUM ;22 [integer]
• :FILLER! ;24 [integer]
• :IOWDINDEX ;26 [integer]

21-7

• :IOWDPROCID ;28 [longint]
• :IOWDVREFNUM ;32 [integer]
• :FILLER2-1 ;34 [integer]
• :FILLER2-2 ;36 [integer]
• :FILLER2-3 ;38 [integer]
• :FILLER2-4 ;40 [integer]
• :FILLER2-5 ;42 [integer]
• :FILLER2-6 ;44 [integer]
• :FILLER2-7 ;46 [integer]
• :IOWDDIRID ;48 [longint]

tb:FCBPBRec Flavor

Initializing the
File 1/0 Queue

This flavor is built upon tb:ParamBlockRec and defines a parameter
block which is used with the trap tb:!GetFCBlnfo. tb:FCBPBRec
instances have the following instance accessor methods:

• :IOREFNUM ;24 [integer]
• :FILLER ;26 [integer J
• :IOFCBINDX ;28 [longint]
• :IOFCBFLNM ;32 [longint]
• :IOFCBFLAGS ;36 [integer]
• :IOFCBSTBLK ;38 [integer]
• :IOFCBEOF ;40 [longint]
• :IOFCBPLEN ;44 [longint]
• :IOFCBCRPS ;48 [longint]
• :IOFCBVREFNUM

· • :IOFCBCLPSIZ .
;52 [integer]
;54 [longint]

• :IOFCBP ARID ;58 [longint]

The uses of each field of each parameter block are discussed in the traps
that use the block. For simple file 1/0, you will normally be interested
in the following seven fields in an ioParam parameter block:

:ioNamePtr
:ioVRefNum
:ioRefNum
:ioBuffer

:ioPosMode

:ioPosOffset

:ioReqCount

- A pointer to a string that contains the name of a Itle.
- The volume on which the file resides.
- The reference number of the open file.
- A buffer in memory which is used for read and write

operations.
- The positioning mode in the file which determines

from where the read/write operation is to start.
- The offset in the file of the read/write operation.

(This is related to :ioPosMode.)
- The number of bytes to read/write.

21.2 The following routine initializes the File Manager.

tb:!InitQueue [11-103] Function

Oears the File Manager queue of all calls except the current one.

21-8 Macintosh Toolbox Interface

Accessing
Volumes

21.3 These routines provide access to volumes.

File Manager

tb:!MountVol volumeParam [IV-128] Function

Example:

Mounts the volume in the drive specified by :ioVRefNum. If no
volumes are already mounted, this one becomes the default volume.

;;; Mount a volume In drive number drvNum and
;;;return the drlve's reference number.
(defun mount-volume (drvNum)

(declare (values drive-refNum))
(let ((paramBlock (make-instance 'tb:volumeParam)))

(send paramBlock :ioVRefNum drvNum)
(tb: !MountVol paramBlock))
(progl (send paramBlock :ioVRefNum)

(send paramBlock :dispose))))

tb:!GetVollnfo volumeParam
tb:!HGetVinfo volumeParam

[IV-129] Function
[IV-130] Function

Example:

tb:!GetVollnfo returns information about the volume specified by
:ioVollndex, ::ioVRefNum, and :ioNamePtr. If :ioVollndex is
positive, the File Manager attempts to use it to find the volume. For
instance, if::ioVollndex is 2, the File Manager will look for the
second mounted volume. If :ioVollndex is negative, the File
Manager uses :ioNamePtr and :ioVRefNum to fmd the volume. If
:ioVollndex is 0, the File Manager uses :ioVRefNum only.

tb:!HGetVinfo is similar except it returns more information.

;;; Return a volumeParam with Info about the volume named name.
(defun get-volume-info (theName)

(declare (values tb:volumeParam))
(let ((paramBlock (make-instance 'tb:volumeParam))

(theNameHandle (tb:!NewString theName))
(tb:!HLock theNameHandle)
(send paramBlock :ioNamePtr

(tb:deref theNameHandle))
(tb:!GetVolinfo paramBlock)
paramBlock))

tb:!SetVoUnfo volumeParam [IV-131] Function

Modifies information about the volume specified by :ioVRefNum.
Precede this trap by a call to tb:!HGetVInfo to fill in the fields of the
tb:volumeParam, then change the fields you want modified. Finally,
call this trap to write out the modifications.

tb:!GetVol volumeParam [N-131] Function

Macintosh Toolbox Interface

Returns the default volume's reference number and name. The default
volume's reference number is returned in :ioVRefNum. A pointer to
the default volume's name is returned in :ioNamePtr if :ioNamePt.r
is not tb:!nilPtr. If a default directory was set, a pointer to its name

21·9

File Manager

21-10

Example:

and its working directory number will be returned in :ioVRetNum and
:ioNamePtr.

;;; Return a tb:volumeParam block with the default volume's
;;; reference number and a pointer to Its name.
(defun get-volume ()

(declare (values tb:volumeParam))
(let ((paramBlock (make-instance 'tb:volumeParam)))

(tb: !GetVol paramBlock))
paramBlock))

tb:!HGetVol WDPBRec [IV-132] Function

Example:

Returns the default volume and default directory last set by either
tb:!SetVol or tb:!HSetVol. The volume reference number of the
default volume will be returned in :ioVRefNum. The volume
reference number on which the default directory exists is returned in
:ioWDVRefNum. The directory ID of the default directory is
returned in :ioWDDirID.

;;; Return a tb:WDPBRec with Information about the default volume
;;; and the default directory.
(defun h-get-volume O

(declare (values tb:WDPBRec))
(let ((paramBlock (make-instance 'tb:WDPBRec)))

(tb: ! HGetVol paramBlock))
paramBlock))

tb:!SetVol volumeParam [IV-132] Function

Example:

Sets the default volume to the mounted v.olume specified by
:ioNamePtr and :ioVRetNum. This also sets the root of the volume
as the default directory.

;;; Make a volume the default volume.
(defun set-volume (theName VRefNum)

(declare (values OSErr))
(let ((paramBlock (make-instance 'tb:volumeParam))

(theNewHandle (tb:!NewString theName)))
(tb:!HLock theNameHandle)
(send paramBlock :ioNamePtr

(tb:deref theNameHandle))
(send paramBlock : ioVRefNum VRefNum)
(progl (tb: ! SetVol paramBlock) return OSErr

(tb:!DisposHandle theNameHandle)
(send paramBlock :dispose))))

tb:!HSetVol WDPBRec [IV-133] Function

Sets both the default volume and default directory, which are specified
by :ioNamePtr, :ioVRefNum, and :ioWDDirlD.

Macintosh Toolbox Interface

Example: ;;; Make a volume the default volume and a directory the
, ,, default directory
(defun h-set-vo1 (theName VRefNum WDDirID)

(dec1are (va1ues tb:WDPBRec))

File Manager

(1et ((paramBlock (make-instance 'tb:WDPBRec))
(theNewHand1e (tb:!NewString theName)))

(tb:!HLock theNameHandle)
(send paramB1ock :ioNamePtr

(tb:deref theNameHand1e))
(send paramB1ock :ioVRefNum VRefNum)
(send paramB1ock :ioWDDirID WDDirID)
(progl (tb: ! HSetVo1 paramBlock) return OSErr

(tb:!DisposHandle theNameHandle)
(send paramBlock :dispose))))

th: !Flush Vol volumeParam [IV-133] Function

Example:

Flushes the volume (writes descriptive information, the volume buffer,
and all access path buffers) specified by :ioNamePtr and
:io VRefNum.

; ;; Example of flushing a volume.
(defun flush-volume (theName VRefNum)

(declare (values OSErr))
(let ((paramBlock (make-instance 'tb:volumeParam))

(theNewHandle (tb:!NewString theName)))
(tb:!HLock theNameHandle)
(send paramBlock :ioNamePtr

(tb:deref theNameHandle))
(send paramBlock :ioVRefNum VRefNum)
(progl (tb: ! FlushVol paramBlock) return OSErr

(tb:!DisposHandle theNameHandle)
(send paramBlock :dispose))))

tb:!UnmountVol volumeParam [IV-134] Function

Example:

Unmounts the volume specified by :ioNamePtr or :ioVRefNum by
flushing it, closing all open files on the volume, and releasing the
memory used by the volume.

CAUTION: Do not unmount the startup volume.

(defun unmount-volume (theName VRefNum)
(declare (values OSErr))
(let ((paramBlock (make-instance 'tb:volumeParam))

(theNewHandle (tb:!NewString theName)))
(tb:!HLock theNameHandle)
(send paramBlock :ioNamePtr

(tb:deref theNameHandle))
(send paramBlock :ioVRefNum VRefNum)
(progl (tb: ! Unmount Vol paramBlock) return OSErr

(tb:!DisposHandle theNameHandle)
(send P,aramBlock :dispose))))

tb:!OffLine volumeParam [IV-134] Function

Macintosh Toolbox Interface

Places the volume specified by :ioNamePtr or :ioVRefNum off-line
by calling PBFlushVol and releasing the memory used by the volume.

21-11

FU. Manager

Example: (defun flush-volume (theName VRefNum)
(declare (values OSErr))
(let ((paramBlock (make-instance 'tb:volumeParam))

(theNewHandle (tb:!NewStrinq theName)))
(tb: ! HLock theNameHandle)
(send paramBlock :ioNamePtr

(tb:deref theNameHandle))
(send paramBlock :ioVRefNum VRefNum)
(proql (tb: ! OffLine paramBlock)) ; return OSErr

(tb:!DisposHandle theNameHandle)
(send paramBlock :dispose))))

tb:!Eject volumeParam [IV-135] Function

Example:

Flushes the volume specified by :ioNamePtr or :ioVRefNum,
places it off-line and ejects the volume.

(defun eject (theName VRefNum)
(declare (values OSErr))
(let ((paramBlock (make-instance 'tb:volumeParam))

(theNewHandle (tb:!NewStrinq theName)))
(tb: !HLock theNameHandle)
(send paramBlock :ioNamePtr

(tb:deref theNameHandle))
(send paramBlock :ioVRefNum VRefNum)
(progl (tb: ! Eject paramBl.ock)) return OS Err

(tb:!DisposHandle theNameHandle)
(send paramBlock :dispose))))

Accessing Files 21.4 These routines are for creating, modifying, and deleting files.

21·12

tb:!Create fileParam
tb:!HCreate fileParam

[Il-107] Function
[IV-146] Function

Example:

tb:!Create creates a file with the name specified in the :ioNamePtr
instance variable on the volume specified by : i o V Re fN um.
tb:!HCreate is similar except it allows directory ID to be specified in
:ioDirID.

;;; Create a file named theName on the volume VRefNum and return
;;; the File Manager result code.
(defun create-file (theName VRefNum)

(declare (values OSErr)
(let ((paramBlock (make-instance 'tb:fileParam))

(theNewHandle (tb:!NewStrinq theName)))
(tb:!HLock theNameHandle)
(send paramBlock :ioNamePtr

(tb:deref theNameHandle))
(send paramBlock :ioVRefNum VRefNum)
(progl (tb: ! Create paramBlock)) ; return OSErr

(tb:!DisposHandle theNameHandle)
(send paramBlock :dispose))))

Macintosh Toolbox Interface

File Manager

;;; Create a flle named theName on the volume VRefNum In the
;;; directory DlrlD and return the Fiie Manager result coda.
(defun h-create-fi1e (theName VRefNum DirID)

(dec1are (va1ues OSErr))
(1et ((paramB1ock (make-instance 'tb:fi1eFaram))

(theNewHand1e (tb:!NewString theName)))
(tb:!HLock theNameHand1e)
(send paramB1ock :ioNameFtr

(tb:deref theNameHandle))
(send paramBlock : ioVRefNum VRefNum)
(send paramBlock : ioDirID DirID) ; specify directory ID
(progl (tb: ! Create paramBlock)) ; return OSErr

(tb:!DisposHand1e theNameHand1e)
(send paramB1ock :dispose))))

tb:!DirCreate fileParam [IV-146] Function

Example:

Creates a new directory with name specified by :ioNamePtr on the
volume specified by :io VRefNum. The parent of the new directory is
specified in :ioDirlD if it is 0, the new directory will be placed in the
root directory. The directory ID of the new directory is returned in
:ioDirID.

;;; Create a directory named theName on the volume VRefNum In the
;;; directory DlrlD and return the new directory's directory ID.
(defun create-directory (theName VRefNum DirID)

(declare (va1ues ioDirID))
(let ((paramB1ock (make-instance 'tb:fileFaram))

(theNewHandle (tb:!NewString theName)))
(tb:!HLock theNameHandle)
(send paramBlock :ioNameFtr

(tb:deref theNameHand1e)).
(send paramBlock :ioVRefNum VRefNum)
(send paramBlock :ioDirID DirID)
(tb: ! DirCreate paramBlock))
(tb:!DisposHandle theNameHandle)
(progl (send paramBlock :ioDirID) ; return loDlrlD

(send paramBlock :dispose))))

tb:!Open ioParam
tb:!HOpen ioParam

[II-108] Function
[N-136] Function

Macintosh Toolbox Interface

tb:!Open opens an access path to the file specified in :ioNamePtr, on
the volume :ioVRefNum. The path reference number is returned in
:ioRefNum. The field :ioPermssn specifies what access permission
is to be allowed. (See :ioPermssn method of tb:ioParam.)

The field :ioMisc specifies the access path buffer. If :ioMisc is
tb:nilPtr, the normal case, the File Manager allocates the buffer itself.

tb:!HOpen.is similar except it allows a directory ID to be specified in
:ioDirlD.

21-13

File MaMger

21-14

Example: ;;; Open a file named theName on the volume VRefNum and return
;;; Its refNum.
(defun open-file (theName VRefNum)

(declare (values ioRefNum))
(let ((paramBlock (make-instance 'tb:ioParam))

(theNewHandle (tb:!NewString theName)))
(tb: ! HLock theNameHandle)
(send paramBlock :ioNamePtr

(tb:deref theNameHandle))
(send paramBlock : ioVRefNwn VRefNwn)
(tb: ! Open paramBlock)
(tb:!DisposHandle theNameHandle)
(progl (send paramBlock : ioRefNwn) ; return loRefNum

(send paramBlock :dispose))))

;;; Open a file named theName on the volume VAefNum In the
;;; directory DlrtD and return Its refNum.
(defun h-open-file (theName VRefNum DirID)

(declare (values ioRefNwn))
(let ((paramBlock (make-instance 'tb:ioParam))

(theNewHandle (tb:!NewString theName)))
(tb: ! HLock theNameHandle)
(send paramBlock :ioNamePtr

(tb:deref theNameHandle))
(send paramBlock :ioVRefNum VRefNum)
(send paramBlock : ioDirID DirID) specify directory ID
(tb: ! Open paramBlock)
(tb:!DisposHandle theNameHandle)
(progl (send paramBlock : ioRefNum) ; return loRefNum

(send paramBlock :dispose))))

tb:!OpenRF fileParam
tb:!HOpenRF fileParam

[Il-109] Function
[11-109] Function

tb:!OpenRF is the same as tb:!Open except it opens the resource
fork instead of the data fork. This trap should not be used for open.ing
resource files. Use the Resource Manager trap tb:!OpenResFile
instead.

tb:!HOpenRF is similar except it allows a directory ID to be specified
in :ioDirID.

CAUTION: Do not put anything except resources in the
resource fork or you may risk causeing the File Manager to
die.

tb:!Read ioParam [11-110] Function

Tries to read :ioReqCount bytes from the file whose access path
reference number is :ioRefNum, and puts them in a buffer pointed to
by :ioBuffer. The starting position of the operation is specified by
:ioPosMode and :ioPosOffset. The values for :ioPosModes are
defined with that method.

The number of bytes actually read is returned in :ioActCount. The
position of the mark at the end of the read is returned in :ioPosMode.

Macintosh Toolbox Interface

Example:

File Manager

To read from a file with a reference number myRefNum into a handle,
do the following:

iii Read from a file Into a handle and return the number of bytes
; ;; actually read.
(defun read-handle (myRefNum myBufferHandle myReqCount

(declare (values ioActCount))
(let ((paramBlock (make-instance 'tb:ioParam)))

(tb:!SetHandleSize myBufferHandle myReqCount)
(tb:!HLock myBufferHandle)
(send paramBlock :ioRefNum myRefNum)
(send paramBlock :ioBuffer

(tb:deref myBufferHandle))
(send paramBlock :ioReqCount myReqCount)
(tb:!Read paramBlock)
(tb:!HUnlock myBufferHandle)
(progl (send paramBlock :ioActCount)

(send paramBlock :dispose))))

tb:!Write ioParam [Il-110] Function

Example:

Tries to write :ioReqCount bytes from the buffer pointed to by
:ioBuffer, and puts them in a file whose access path reference number
is :ioRefNum. The starting position of the operation is specified -by
:ioPosMode and :ioPosOffset. The number of bytes actually
written is returned in :ioActCount. The position of the mark at the
end of the write is returned in :ioPosMode.

To write the contents of a buffer whose handle is mvBufferHandle
onto the end of a file with a refNum myRefNum, do the following:

; ;; Write to a flle from a handle and return the number of bytes
; ;; actually written.
(defun write~handle (myRefNum myBufferHandle)

(declare (values ioActCount))
(let ((paramBlock (make-instance 'tb:ioParam))

(myBufferSize (tb:!GetHandleSize
myBufferHandle)))

(tb:!HLock myBufferHandle)
(send paramBlock :ioRefNum myRefNum)
(send paramBlock :ioBuffer

(tb:deref myBufferHandle))
(send paramBlock :ioReqCount myBufferSize)
; ; Write relatlve to the end of the flle.

(send paramBlock :ioPosMode tb:!fsFromLEOF)
(tb: !Write paramBlock)
(tb:!HUnlock myBufferHandle)
(progl (send paramBlock :ioActCount)

(send paramBlock :dispose))))

tb: !GetFPos ioParam [Il-111] Function

Macintosh Toolbox Interface

Returns the position of the mark of the file with a reference number
:ioRefNum in :ioPosOffset. To get the mark of the file with a
reference number myRefNum, do the following:

21-15

21-16

Example: ;;; Return the mark of the flle myRefNum;
(defun get-file-pos (myRefNum)

(declare (values ioPosOffset))
(let ((paramBlock (make-instance 'tb:ioParam)))

(send paramBlock :ioRefNum myRefNum)
(tb:!GetFPos paramBlock)
(progl (send paramBlock :ioPosOffset)

(send paramBlock :dispose))))

tb:!SetFPos ioParam [Il-111] Function

Example:

Sets the position of the mark of the file with a reference number
:ioRefNum to the position specified by :ioPosMode and
: io PosOffset.

;;; Set the mark of flle myRefNum to fPos.
(defun set-file-pos (myRefNum fPos)

(declare (values ignore))
(let ((paramBlock (make-instance 'tb:ioParam)))

(send paramBlock :ioRefNum myRefNum)
(send paramBlock :ioPosMode tb:!fsFromStart)
(send paramBlock :ioPosOffset fPos)
(progl (tb:!SetFPos paramBlock)

(send paramBlock :dispose))))

tb:!GetEOF ioParam [Il-112] Function

Example:

Returns in :ioMisc the logical EOF of the file with a reference number
:ioRefNum.

(defun get~eof (myRefNum)
(declare (values logical-EOF))
(let ((paramBlock (make-instance 'tb:ioParam)))
·(send paramBlock :ioRefNum myRefNum)
(tb: ! GetEOF paramBlock)
;; Since :loMlsc Is a pointer, convert It to a number.
(progl (send (send paramBlock :ioMisc) :pointer)

(send paramBlock :dispose))))

tb:!SetEOF ioParam [Il-112] Function

Example:

Sets the logical EOF of the file with a reference number :ioRetNum to
the value in :ioMisc.

(defun set-eof (myRefNum myEOF)
(declare (values logical-EOF))
(let ((paramBlock (make-instance 'tb:ioParam)))

(send paramBlock :ioRefNum myRefNum)
;; Convert myEOF to a pointer for loMlsc.
(send paramBlock :ioMisc

(make-instance 'tb:mac-pointer
:pointer myEOF))

(progl (tb:!GetEOF paramBlock)
(send paramBlock :dispose))))

Macintosh Toolbox Interface

File Manager

tb:!Allocate ioParam [II-113] Function

Example:

Adds :ioReqC011nt bytes to the file with a reference number
:ioRefNum, and sets the physical EOF to one byte beyond the last
block allocated. To add my AllocSize bytes to the file with an
:ioRefNum of myRefNum, do the following:

(defun allocate (myRefNum myAllocSize)
(declare (values ioActCount))
(let ((paramBlock . (make-instance 'tb: ioParam)))

(send paramBlock :ioRefNum myRefNum)
(send paramBlock :ioReqCount myAllocSize)
(tb: ! Allocate paramBlock)
(progl (send paramBlock :ioActCount)

(send paramBlock :dispose))))

tb:!FlushFile ioParam [II-114] Function

Example:

Writes the access path buffer of the file with a reference number
:ioRefNum to the volume.

(defun flush-file (myRefNum)
(declare (values ignore))
(let ((paramBlock (make-instance 'tb:ioParam)))

(send paramBlock :ioRefNum myRefNum)
(tb:!FlushFile paramBlock)
(send paramBlock :dispose))

tb:!Close ioParam [II-114] Function

Example:

Changing
Information
About Files

Closes the :file with a reference number :ioRefNum and disposes of
the access path. To close the file with a reference number
myRefNum, do the following:

(defun close-file (myRefNum)
(declare (values ignore))
(let ((paramBlock (make-instance 'tb:ioParam)))

(send paramBlock :ioRefNum myRefNum)
(tb: ! Close paramBlock)
(send paramBlock :dispose))

21.5 These traps set and return infonnation in mes and affect various
aspects of the file itself (its name, version number, locked status, etc.).

tb:!GetFilelnfo fileParam [II-115] Function

Macintosh Toolbox Interface

tb:!GetFilelnfo returns file information about the specified file on a
volume specified by the volume reference number :ioVRefNum. The
file can be specified by two methods: by index in :ioDirlndex or by
name in :ioNamePtr. See Inside Macintosh page 11-115 for the fields
the trap returns, andll-101 for the contents of the returned fields.

21~17

File Manager

21-18

tb:!GetFilelnfo is most often used to set up a file info parameter
block to use with the trap tb:!SetFilelnfo. See the example for
tb: !SetFilelnfo.

tb:!HGetFinfo is similar except it allows a directory ID to be
specified in :ioDirID.

;; Return a flleParam block containing Info about the file theName.
(defun get-file-info (theName VRefNum)

(declare (values fileParam))
(let ((paramBlock (make-instance 'tb:fileParam))

(theNameHandle (tb:!NewString theName)))
(tb: !HLock theNameHandle)
(send paramBlock :ioNamePtr

(tb:deref theNameHandle))
(send paramBlock :ioVRefNum VRefNum)
(tb:!GetFileinfo paramBlook))
paramBlock))

tb:!SetFilelnfo fileParam [11-116] Function

Example:

tb: !SetFilelnfo sets the file information of a specified file on a
volume specified by the volume reference number :ioVRetNum. The
file can be specified in two manners: by index in :ioDirlndex or by
name in :ioNamePtr. See Inside Macintosh page 11-116 for the fields
the trap requires, and 11-101 for the contents of the passed fields.

This trap is most often used to set the f°tle type and creator of a newly
created file. First, set up the parameter block using the trap
tb:!GetFilelnfo. Then, set the :iofdType and :iofdCreator field
to the desired values. Finally, pass the parameter block to
t b: ! SetFilelnfo.

tb:!HSetFlnfo is similar except it allows a directory ID to be specified
in :ioDirlD.

;;; Set a file's type and creator.
(defun set-file-info (theName VRefNum theType

theCreator)
(declare (values ignore))
(let ((paramBlock (tb:get-file-info theName VRefNum)))

(send paramBlock :ioFlFndrinfofdType theType)
(send paramBlock :ioFlFndrinfofdCreator theCreator)
(tb:!SetFileinfo paramBlock)
(send paramBlock :dispose)))

tb:!SetFilLock fileParam
tb: !RstFilLock fileParam

[11-116] Function
[11-117] Function

tb:!SetFilLock and b:!RstFHLock lock and unlock respectively the
me specified by :ioNamePtr on the volume which has a volume
reference number :ioVRefNum.

tb:!HSetFLock and tb:!RstFilLock are similar except they allow a
directory ID to be specified in :ioDirID.

Macintosh Toolbox Interface

Example: (defun lock-file (theName VRefNum)
(declare (values OSErr))

File Manager

(let ((paramBlock (make-instance 'tb:fileParam))
(theNameHandle (tb:!NewString theName)))

(tb:!HLock theNameHandle)
(send paramBlock :ioNamePtr

(tb:deref theNameHandle))
(send paramBlock : ioVRefN\lm VRefNum)
(progl (tb: ! SetF ilLock paramBlock)) ; return OSErr

(tb:!DisposHandle theNameHandle)
(send paramBlock :dispose))))

(defun unlock-file (theName VRefNum)
(declare (values OSErr))
(let ((paramBlock (make-instance 'tb:fileParam))

(theNameHandle (tb:!NewString theName)))
(tb:!HLock theNameHandle)
(send paramBlock :ioNamePtr

(tb:deref theNameHandle))
(send paramBlock :ioVRefNum VRefNum)
(progl" (tb: ! RstF ilLock paramBlock)) ; return OSErr

(tb:!DisposHandle theNameHandle)
(send paramBlock :dispose))))

tb:!SetFilType :ioPara.m [11-117] Function

Sets the version number of the file specified by :ioNamePtr on the
volume with a volume reference number :io VRefNum.

~OTE: Using the file version number is not a good idea. The
Resource Manager, the Segµient Loader, and the Standard File Package
will only work with files whose version number is 0. Changing the
version number, or using anything but the default version nuµiber 0,
can create some very insidious bugs.

tb:!Rename ioParam [11-118] Function

Renames the file specified by :ioNamePtr on the volume with a
volume reference number :ioVRefNum to the name pointed to by
:ioMisc.

Example: ;;; Change a file name from theName to newName.
(defun rename-file (theName newName VRefNum)

(declare (values OSErr))
(let ((paramBlock (make-instance 'tb:ioearam))

(theNameHandle (tb:!NewString theName))
(newNameHandle (tb:!NewString newName)))

(tb: ! HLock theNameHandle)
(tb:!HLock newNameHandle)
(send paramBlock :ioNameetr

(tb:deref theNameHandle))
(send paramBlock :ioVRefNum VRefNum)
(send paramBlock :ioMisc (tb:deref newNameHandle))
(progl (tb: ! Rename paramBlock)) ; return OSErr

(tb:!DisposHandle theNameHandle)
(tb:!DisposHandle newNameHandle)
(send paramBlock :dispose))))

Macintosh Toolbox Interface 21-19

File Manager

tb:!Delete ftleParam [11-119] Function

Example:

tb:!Delete deletes the file specified by :ioNamePtr on the volume
with a volume reference number :io VRefNum.

tb: !ff Delete is similar except it allows a directory ID to be specified in
:ioDirID. tb:!HDelete can be used to delete. empty directories as
well as files. To delete the file named theName on the volume with a
volume reference number VRetNum, do the following:

;;; Delete the file named theName.
(defun delete-file (theName VRefNum)

(let ((paramBlock (make-instance 'tb:fileParam))
(theNameHandle (tb:!NewString theName)))

(tb: !HLock theNameHandle)
(send paramBlock :ioNamePtr

(tb:deref theNameHandle))
(send paramBlock :ioVRefNum VRefNum)
(proql (tb: ! Delete paramBlock)) ; return OSErr

(tb:!DisposHandle theNameHandle)
(send paramBlock :dispose))))

Hierarchical
Directory
Routines

·21.6 These routines are for examining and changing information
about directories.

21-20

tb:!GetCatlnfo CinfoPBRec [IV-155] Function

Gets information about the files and directories in a file catalog. See
Inside Macintosh for details.

tb:!SetCatlnfo ClnfoPBRec [IV-155] Function

Sets information about the files and directories in a file catalog. - See
Inside Macintosh for details.

tb:!CatMove CMovePBRec [IV-155] Function

Moves files or directories from one directory or another. The name of
the file or directory to be moved is specified by :ioNamePtr.
:ioVRefNum specifies either the volume reference number or working
directory reference number which contains the file or directory to be
moved. The name and directory ID of the directory to whlch the file or
directory is to be moved is specified by :ioNewName and
:ioNewDirID.

Macintosh Toolbox Interface

Example:

Working
Directory
Routines

File Manager

;;; Move a flle or directory named theName from directory oldDlrlD
;;; Into the directory named newName with ID newlD.
(defun move-directory

(theName old.DirID newName newDirID VRefNum)
(declare (values ignore))
(let ((param.Block (make-instance 'tb:CMovePBRec))

(theNameHandle (tb:!NewString theName))
(newNameHandle (tb:!NewString newName)))

(tb:!HLock theNameHandle)
(tb: ! HLock newNameHandle)
(send param.Block :ioNamePtr

(tb:deref theNameHandle))
(send paramBlock :ioVRefNum VRefNum)
(send param.Block :ioNewName

(tb:deref newNameHandle))
(send param.Block :ioNewDirID newDirID)
(send param.Block :ioDirID old.DirID) -
(progl (tb: ! CatMove paramBlock)) ; return OSErr

(tb:!DisposHandle theNameHandle)
(tb:!DisposHandle newNameHandle)
(send paramBlock :dispose))))

21.7 These routines open and close working directories.

tb:!OpenWD WDPBRec [IV-155] Function

Example:

Takes the directory specified by :ioVRefNum, :ioWDDirlD, and
:ioWDProclD and makes it a working directory. It returns a working
directory reference number in :ioVRefNum.

;;; Make directory specified by theName, VRafNum, 'directory ID
;;; WDDlrlD, and loWDProclD a working directory. The working
;;; directory reference number Is returned.
(defun open-wd (theName VRefNum WDDirID WDProcID)

(declare (values ioVrefNum))
(let ((param.Block (make-instance 'tb:WDPBRec))

(theNameHandle (tb,!NewString theName)))
(tb:!HLock theNameHandle)
(send param.Block :ioNamePtr

(tb:deref theNameHandle))
(send paramBlock :ioVRefNum VRefNum)
(send paramBlock :ioWDProcID WDProcID)
(send paramBlock :ioWDDirID WDDirID)
(tb: !OpenWD param.Block))
(progl (send param.Block :ioVRefNum)

(tb:!DisposHandle theNameHandle)
(send param.Block :dispose))))

tb:!CloseWD WDPBRec [IV-155] Function

Macintosh Toolbox Interface

Releases the working directory whose working directory reference
number is specified by :ioVRefNum.

21-21

File Manager

Example: ;;; Close working directory WDAefNum.
(defun close-wd (WDRefNum)

(let ((paramBlock (make-instance 'tb:WDl?BRec))
(send paramBlock :ioVRefNum WDRefNum)
(progl (tb: ! CloseWD paramBlock)

(send paramBlock :dispose))))

tb:!GetWDinfo WDPBRec [IV-155] Function

Returns infonnation about a working directory. The working directory
is specified by :ioVRefNum and :ioWDlndex. If :ioWDlndex is
0, the :ioVRefNum is assumed to contain the working directory
reference number. Otherwise, :ioWDlndex should contain the index
number of the directory. In this case, if :ioVRefNum is not 0, it is
assumed to be a volume specification and only directories on that
volume will be indexed. If :ioWDProdD is not 0, only working
directories with that ID are indexed; otherwise all working directories
are indexed.

:ioWDVRefNum always returns the volume reference number.
:ioVRefNum returns a working directory reference number if a
working directory reference number is passed in that field; otherwise it
returns a volume reference number. The volume name is returned in
:ioNamePtr.

Accessing
Queues

21.8 The following are very low-level traps. You will never need to
use them and they can be very dangerous.

tb:!GetFSQHdr

Returns a pointer to the header of the File 1/0 Queue.

tb:!GetVCBQHdr

[Il-125] Function

[Il-126] Function

Returns a pointer to the header of the Volume Control Block Queue.

tb:!GetDrvQHdr [Il-128] Function

Returns a pointer to the header of the Drive Queue.

File Control
Blocks

21.9 THis is a very low-level traps. You should never need to use.
It can be very dangerous.

21-22

tb:!GetFCBinfo FCBPBRec [IV-179] Function

Returns infonnation about the specified open file. See Inside Macintosh
for details.

Macintosh Toolbox Interface

Chapter 22
- PRINTING MANAGER

Introduction 22.1 The Printing Manager is used to print files with a printer, usually
the Image Writer®.

Initialization 22.2 These routines open and close the Printing Manager.
and Termination

tb:!PrOpen [II-157] Function

Prepares the Printing Manager for use.

tb:!PrClose [II-157] Function

Shuts down the Printing Manager and releases any memory it uses.

Print Records 22.3 These routines control print records and dialog boxes.
and Dialogs

tb:THPrint [II-149] Flavor

Macintosh Toolbox Interface

This flavor defines a print record with the following instance accessor
methods: .

• :IPRVERSION
• :IDEV
• :IVRES
• :IHRES
• :RPAGETOP
• :RPAGELEFf
• :RPAGEBOTfOM
• :RPAGERIGHT
• :RPAPER.TOP
• :RPAPERLEFT
• :RPAPERBOTfOM
• :RPAPERRIGHT
• :WDEV
• :IPAGEV
• :IPAGEH
• :BPORT
• :FEED
• :PRINFOPTl
• :PRINFOPT2
• :PRINFOPT3
• :PRINFOPT4
• :PRINFOPT5

t integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[integer]
[byte]
[byte]
[integer]
[integer]
[integer]
[integer]
[integer]

22-1

Printing Manager

22·2 .

• :PRINFOPT6 [integer]
• :PRINFOPT7 [integer]
• :IROWBYTES [integer]
• :IBANDV [integer]
• :IBANDH [integer]
• :IDEVBYTES [integer]
• :IBANDS [integer]
• :BPATSCALE [byte]
• :BULTlilCK [byte]
• :BULOFFSET [byte 1
• :SCAN [integer]
• :BXINFOX [byte]
• :IFSTPAGE [integer]
• :Il.SI'PAGE [integer]
• :!COPIES [integer]
• :BJOOCLOOP [byte]
• :FFROMAPP· [byte]
• :PIDLEPROC [pointer]
• :PFll.ENAME [pointer]
• :IFILEVOL [integer]
~ :BFILEVERS [byte]

tb: !PrintDef~ult hPrint [11-158] Function

Example:

Sets the fields of hPrint to the default values kept in the printer resource
file.

(setf hPrint (make-instance 'tb:THI?rint))
(tb: !PrintDefault hPrint)·

tb:!PrValidate hPrint [11-158) Function

Example:

Checks if the print recQrd hPrint is consistent with the current version of
the Printing Manager and the currently installed printer. It returns nil if
this is correct.

NOTE: Never can tb:!PrVaUdate between the printing of pages of a
document.

(setf hl?rint (make-instance 'tb:THPrint))
(tb:!PrValidate hPrint)

tb:!PrStlDialog hPrint [11-158] Function

Example:

Displays the printing style dialog box (Page SetUp ...); any changes to
the default values are saved in hPrint. The trap returns true if the OK
button was chosen, false if the Cancel button was chosen.

(setf hPrint (make-instance 'tb:THPrint))
(when (tb:!PrStlDialog hPrint)

... continue printing with information from user ...)

Macintosh Toolbox Interface

Printing

Printing Manager

tb: ! Pr Job Dialog hPrint [Il-158] Function

Example:

Displays the job dialog box (Print ...). Any changes to the default
values are saved in hPrint. The trap returns true if the OK button was
chosen, false if the Cancel button was chosen.

(set hPrint (make-instance 'tb:THPrint))
(when (tb: !PrJobdialog hPrint)

... continue printing with information from user ...)

tb: !Pr JobMerge hPrintSrc hPrintDst [Il-159] Function

Copies all the information set by tb:!Pr JobDialog from the print
record hPrintSrc to the print record hPrintDst.

22.4 These routines open and close printing grat'Ports, start and finish
the printing of a specified page, and control the printing of a previously
spooled document.

tb:!PrOpenDoc hPrint pPrPort pIOBuf . [Il-159] Function

Sets up a new printing grafPort using information in the print record
hPrint and returns the grafPort. The pointers pPrPort and pIOBuf are
set to tb:!nilPtr.

tb:!PrOpenPage pPrPon pPageFrame [Il-159] Function

Starts a.new page. If it is spool printing, pPageFrame is the rectangle
used for scaling. This trap completely reinitializes the current grat'Port
so be sure to set the desired properties, such as font type and size,
before proceeding. If you do not want the page scaled, pass the rPage.
rectangle from your print record in pPageFrame. See the example for
tb: !PrPicFile.

CAUTION: Do not call the QuickDraw trap tb:!OpenPicture
while a printing page is open.

tb:!PrClosePage pPrPort

Finishes printing the current page.

tb:!PrCloseDoc pPrPort

Closes the printing grafport pPrPort.

tb:!PrPicFile hPrint pPrPort pIOBuf pDevBuf prStatus

[Il-160] Function

[Il-160] Function

[Il-160] Function

Prints a previously spooled document about which there is information
in hPrint. Usually tb:!nilPtr is passed for pPrPort, pIOBuf, and
pDevBuf. Pass an instance of tb:TPrStatus in prStatus.

Macintosh Toolbox Interface 22-3

Printing Manager

tb:TPrStatus

Example:

[11-616] Flavor

This flavor defines a print status record with d1e following instance
accessor methods:

• :ITOTPAGES [integer]
• :ICURPAGE [integer]
• :ITOTCOPIES [integer]
• :ICURCOPY [integer]
• :ITOTBANDS [integer]
• :I CURB AND [integer]
• :FPGDIRTY [boolean]
• :FIMAGING [boolean]

... Print a on• page document .
tb:
(defun print-1-page ()

(let ((hPrint (make-instance 'THPrint))
(myPrPort nil)
(myPrStatus nil))

(!PrintDefault hPrint)
(when (and (!PrStlDialog h~rint)

(-! PrJobDialog hPrint))
(set£ myPrPort

(!PrOpenDoc hPrint !nilPtr !nilPtr))
(!PrOpenPage myPrPort

(make-instance 'rect
:left (send hPrint :rpageleft)
:top (send hPrint :rpagetop)
:right (send hPrint :rpageright)
:bottom (send hPrint :rpagebottom)))

... draw the document here ...
(!PrClosePage myPrPort)
(!PrCloseDoc myPrPort)
(when (• !bSpoolLoop (send hPrint :bJDocLo~p))

(setf myPrStatus (make-instance 'TPrStatus))
(!PrPicFile hPrint !nilPtr !nilPtr !nilPtr

myPrStatus)))))

Error Handling 22.5 These routines control error handling within the File Manager.

22-4

tb:!PrError [11-161] Function

Returns the result code of the last Printing Manager routine.

tb:!PrSetError iErr [11-161] Function

Sets the Printing Manager errorCode to iErr. This is useful for
cancelling a printing operation.

Macintosh Toolbox Interface

Printing Manager

Low-Level
Driver Access

22.6 Using the low-level printer traps is not a good id~a because it
will make your code dependent on the printer and the printer driver.
See Inside Macintosh for details on these traps.

tb:!PrDrvrOpen
tb: !PrDrvrClose
tb:!PrCtlCall zWhichCtl lParaml 1Param2 lParam3
tb:!PrDrvrDCE
tb:!PrDrvrVers

Macintosh Toolbox lnteiface

[11-163] Function
[11-163] Function
[11-163] Function
[11-163] Function
[11-163] Function

22-5

Introduction

Device Manager
Traps

Chapter 23
DEVICE MANAGER

23.l The Device Manager is mostly used for directly calling the low
level device drivers like the Serial Driver or Printer Driver. The only
time you will be likely to use it is to read or write data through the serial
ports.

All the Device Manager traps, like the File Manager traps, use parameter
blocks. All the Device Manager traps~ with the exception of
tb:!Control and tb:!Status, use the standard File Manager
tb:ioParam parameter block instance. The traps tb:!Control and
tb: !Status use a tb:controlParam instance.

23.2 These routines open, close, read from, write to, get infonnation
from, and send information to the device driver.

tb:!Open paramBlock [11-178] Function

Example:

Opens the device driver referred to by :ioNamePtr, with a read/write
pennission specified by :ioPermssn, and returns a reference number
in :ioRdNum. The drive number, if there is one, is specified by
:io VRefNum. To open the print port (port B) serial driver for output,
do the following:

;;; Use the Device Manager to open the Sound Driver. ·
(let ((paramBlock (make-instance 'tb:ioParam))

(drvrhnd (tb: !NewString ".Sound"))
(drvrName nil)))

(tb: ! HLock drvrhnd)
(setf drvrName (tb:deref drvrhnd))
(send paramBlock :ioNamePtr drvrName)
(send paramBlock :ioPermssn tb:!fsCurPerm)
(tb: ! Open paramBlock))

tb:!Close paramBlock [11-178] Function

Closes the device driver with the reference number ioRejNum.

tb:!Read paramBlock [11-178] Function

Macintosh Toolbox Interface

Tries to read :ioReqCount bytes from the device driver with a
reference number :ioRefNum, and puts them in a buffer pointed to by
:ioBuffer. The drive number, if there is one, is specified by
:io VRefNum. The actual number of bytes read is returned in
:ioActCount.

23-1

Device Manager

23-2

Example: (let ((paramBlock (make-instance 'tb:ioParam))
(myBufferHandle (tb:!NewHandle m.yReqCount))
(m.yBufferPtr (tb:deref myBufferHandle)))

(tb:!Hlock m.yBufferHandle)
(send paramBlock :ioRefNUm myRefNum)
(send paramBlock :ioBuffer myBufferPtr)
(send paramBlock :ioReqCount myReqCount)
(progl (tb: ! Read paramBlock))

(tb:!HOnlock myBufferHandle)))

tb:!Write paramBlock [Il-179] Function

Example:

Tries to write :ioReqCount bytes from a buffer pointed at by
:ioBuffer, to the device driver with a reference number :ioRefNum.
The drive number, if there is one, is specified by :ioVRefNum. The
actual number of bytes read is returned in :ioActCount.

;;; Use the Device Manager to tell the Sound Driver to sound a
;;; 440Hz tone for one second
(let ((paramBlock (make-instance 'tb: ioParam))

(buff (tb: !NewHandle 100))
(buffPtr nil))

(tb: ! HLock buff)
(setf buffPtr (tb:deref buff))
(send paramBlock :ioBuffer buffPtr)
(tb:stowword buffPtr 0 -1)
(tb:stowword buffPtr 2 1780)
(tb:stowword buffPtr 4 255)
(tb:stowword buffPtr 6 60)
(send paramBlock :ioReqCount 8)
(tb:!Write paramBlock))

tb:!Control paramBlock [Il-179] Function

Example:

Sends control information to the device driver with a reference number
:ioRefNum. The drive number, if any, is put in :ioVRefNum. The
type of information is specified by :csCode. and the information is
passed in :csParam.

For example, the Disk Driver trap tb:!DiskEject is actually a
tb:!Control trap with a csCode = ejectCode. (7). We can define a
function DiskEject which takes care of everything as follows:

;;; Eject the disk In drive drvNum
(defun DiskEject (drvNum)

(let ((paramBlock (make-instance 'tb:controlParam)))
(send paramBlock :ioVRefNum drvNum)
(send paramBlock :ioCRefNum -5)
(send paramBlock :csCode 7)
(tb: ! Control paramBlock)))

tb:!Status paramBlock [Il-179] Function

Returns control information about the device driver with a reference
number :ioRefNum. The drive number, if any, is put in
:ioVRefNum. The type of information returned is specified by
:csCode and the information is passed in :csParam.

Macintosh Toolbox Interface

Device Manager

tb:!KillIO paramBlock [11-179] Function

Macintosh Toolbox Interface

·stops any current 1/0 requests from being processed. It also removes
all pending 1/0 requests of the device driver which has a reference
number :ioRefNum.

23·3

Chapter 24
DISK DRIVER

Introduction 24. l The Disk Driver is a Macintosh device driver used for storing
and retrieving information on Macintosh 31'2- inch disks.

Disk Driver
Traps

24.2 These traps should only be used if you are writing a low-level
disk editor like FEdit or a copy protection scheme.

tb:!DiskEject drvNum

Ejects the disk from the drive drvNum.

tb:!SetTagBuffer buf!Ptr

Sets the file tag buffer to buffPtr.

tb:!DriveStatus drvNum

[11-214] Function

[11-214] Function

[11-215] Function

Returns a tb:DrvSts instance containing the status of the drive
drvNum.

tb:DrvSts [11-215] Flavor

This flavor def'mes a drive status record with the following instance
· accessor methods:

• :1RACK
• :WRITEPROT
• :DISKINPLACE
• :INSTALLED
• :SIDES
• :QLINK
• :QTYPE
• :DQDRIVE
• :DQREFNUM
• :DQFSID
• :1WOSIDEFMf
• :NEEDSFLUSH
• :DISKERRS

[integer]
[byte]
[byte]
[byte]
[byte]
[pointer]
[integer]
[integer]
[integer]
[integer]
[byte]
[byte]
[integer]

Example: (setf status (tb: !DriveStatus 1))
(send status :writeProt)

Macintosh Toolbox Interface 24·1

Advanced Disk
Driver Traps

24-2

24.3 Drive numbers are now dynamically assigned and there are three
new Disk Driver control calls.

• Return the Disk Drive's media Icon
• Retum the Disk Drive's physical Icon
• Retum infonnation about a Disk Drive

When a Disk Driver tb:!Control call is made with a :csCode of 21, a
pointer to a data structure is returned in the :csParam field of the
parameter block. This data structure, consists of an icon, a mask icon,
and a Pascal string all describing the disk drive whose logical drive
number is in the :ioRefNum field. The data structure pointed to
typically describes the disk media.

When a Disk Driver tb:!Control call is made with a :csCode of 22, a
pointer to an icon and a mask icon for the disk drive whose logical drive

· number is in the :ioRetNum field is returned in the :csParam field of
the parameter block. The icon pointed to typically describes the
physical drive.

When a Disk Driver tb:!Control call is made with a :csCode of 23, a
32-bit value is returned containing status information about the disk
drive whose logical drive number is in the :ioRetNum.

The low-order byte of the value returned specifies the drive type. The
types currently defmed are specified by the following bits:

Bit

• ·O
• 1
• 2
• 3
• s
• 6
• 7

Meaning

No such drive
Unspecified drive
400K byte drive
SOOK byte drive
3.2M byte drive
6.4M byte drive
HD-20

RESERVED
RESERVED

Bits 8 through 11 of the value returned specify the drive attributes.
These attributes are indicated by bit flags. The bit flags defined are:

Bit
• 8
• 9
• 10
• 11

Meaning

Set for primary drive, clear for secondary drives.
Set if SCSI drive, clear if IWM .
Set if drive is fixed, clear if removable.
Set for extemal drive, clear for internal.

Macintosh Toolbox Interface

Introduction

Chapter 25
SERIAL DRIVER

25. l The Serial Driver allows you to transmit and receive data
through the two serial ports. You use the Device Manager traps to
open the ports, and to read and write data through the ports. The Serial
Driver traps are used to get and set the status of the serial ports, and to
reconfigure the ports.

1he driver names and reference numbers of the serial drivers are:

Driver

• Modem Port Input
• Modem Port Output

• Printer Port Input
• Printer Port Output

Driver Name

.Ain
A Out

.Bin

.BOut

Reference Number

-6
-7

-8
-9

Changing Serial 25.2 These routines enable you to initialize and reset driver
Driver information.

Information

tb:!SerReset refNum serConfig [11-250] Function

Macintosh Toolbox Interface

Resets and initializes the driver· refNum with the configuration
serConfig. The configuration is built up by adding four values together:
the baud rate, the number of stop bits, the parity, and the nwnber of
data bits. 1he values to be added together are as follows:

Baud Rate:

Description Constant Value

• 300baud tb:!Baud300 380
• 600baud tb:!Baud600 189
• 1200baud tb:!Baudl20 94
• 1800baud tb:!Baudl800 62
• 2400baud tb: !Baud2400 46
• 3600baud tb:!Baud3600 30
• 4800baud tb:!Baud4800 22
• 7200baud tb: !Baud7200 14
• 9600baud th: !Baud9600 10
• 19200baud tb:!Baud19200 4
• 57600baud tb:!Baud57600 0

Stop Bits:

Description Constant Value

• 1 stop bit tb:!StoplO #x4000
• 1.5 stop bits tb:!Stopl5 #x8000
• 2 stop bits tb:!Stop20 #xCOOO

.25-1

25·2

Example:

Parity:
Description

• noparity
• oddparity
• even parity

Data Bits:
Description

• 5 data bits
• 6 databits
• 7 data bits
• 8 data bits

Constant

th: !NoParity;
th: !OddParity;
th: !EvenParity

Constant

th:!DataS
th:!Data6
tb:!Data7
tb:!Data8

Value

0
4096
12288

Value

0
2048
1024
3072

To set the modem out serial port to a baud rate of 9600, one stop bit,
with no parity bits, and 7 data bits, do the following:

(tb:!SerReset -7 (+ tb:!Baud9600
tb: ! StoplO
tb: ! NoParity
tb: !Data7))

th: !SerSet.Buf rejNum serBPtr serBLen [Il-251] Function

Example:

Sets the buffer of the driver refNum to serBptr, which has a length
serBLen. ·

(setf my~ufHandle (tb: !NewHandle 128))
(tb:!HLock myBufHandle)
(setf myBufPtr (deref myBufHandle))
(tb:!SerSetBuf -7 myBufPtr 128)

th: ?Ser HS hake rejNum flags [11-251] Function

tb:SerShk

Sets the handshake and other information for the driver refNum. The
flags parameter should be a tb:SerShk instance.

[11-253] Flavor

This flavor defmes a serial driver handshake data structures with the
following instance accessor methods:

• :FXON [byte].
• :FCTS [byte]
• :XON [char]
• :XOFF [char]
• :ERRS [byte]
• :EVTS [byte]
• :FINX [byte]

Macintosh Toolbox Interface

Serial Driver

th: !swOverrunErr
th: !swOverrunErr-p
th:! hwOverrun Err
th:! hwOverrunErr-p
tb:!parityErr

[11-254] Constant
[11-254] Function

[Il-252, 254] Constant
[Il-252,254] Function
[11-252, 254] Constant
[11-252, 254] Function
[11-252, 254] Constant
[11-252, 254] Function

tb: ! parityErr-p
tb:!framingErr
tb: !framingErr-p

The constants represent masks which may be applied to the :errs
instance variable of a th:SerShk instance or the :cumErrs instance
variable of a th:SerStaRec instance to determine what kind of errors
occurred. tb:!swOverrunErr applies only to ·:cumErrs.

The functions are predicates which take the relevant instance variable
and return true if the associated mask bits are true.

tb:!ctsEvent
tb:!ctsEvent-p
tb: ! break Event
th:! breakE vent- p

[11-252, 254] Constant
[Il-252, 254] Function
[Il-252, 254] Constant
[11-252, 254] Function

Example:

The constants represent masks which may be applied to the :evts
instance variable of a th:SerShk instance to determine whether a
change in CTS or break status will cause the serial driver to post an
event.

The functions are predicates which take the :evts instance variable
value and return. true if the associatea status change will post an event..

(setf mySerShk (make-instance 'tb:SerShk))
(tb:!SerHShake -7 mySerShk)

tb:!SerSetBrk refNum
tb:!SerClrBrk refNum

[11-252] Function
[ll-253] Function

Getting Serial
Driver
Information

Sets or clears break mode in the driver rejNum.

25.3 These routines return the size and status of a specified driver.

th:!SerGetBuf refNum [11-253] Function

Macintosh Toolbox Interface

Returns the size of the driver rejNum's buffer. If an error occurs,
th:!SerGetBuf either signals or returns the OSErr depending upon the
value of tb:*signal-mac-oserr*.

25-3

25·4

tb:ISerStatus rejNum [ll-253] Function

Returns a th:SerStaRec instance with the status of the driver rejNum.
If an error occurs, tb:!SerStatus either signals or returns the OSErr
depending upon the value of tb:*signal-mac-oserr*.

tb:SerStaRec [ll-253] Flavor

This flavor defmes a serial driver status record with the following
instance accessor methods:

• :CUMERRS [byte]
• :XOFFSENT [byte]
• :RDPEND [byte]
• :WRPEND [byte]
• :CTSHOW [byte]
• :XOFFHOID [byte]

Macintosh Toolbox Interface

Introduction

Sound Manager
Cotnmands

Chapter 26
SOUND MANAGER

26.1 The Sound Manager has been totally rewritten for the Macintosh
IT. The Macintosh Il contains a custom sound chip so most of the
sound generation processing has been offloaded from the CPU.

The new Sound Manager is downwardly compatible with the old Sound
Driver. All the old Sound Driver traps are supported by the new Sound
Manager, but the organization and theory of the new Sound Manager is
quite different, reflecting the complete difference in hardware.

The new Sound Manager is based around two new objects: the
synthesizer and the channel. A synthesizer is a driver that accepts
sound generation or modification commands and translates them into
sound. A channel is simply a queue of commands that are associated
with a particular synthesizer. There are four types of synthesizers
supported by the Sound Manager:

• Note Synthesizer -The Note Synthesizer generates simple sounds.
A simple monophonic melody of notes can be played with the note
synthesizer. Each note has a specified frequency, amplitude, and
duration. The timbre of the sound can be changed at any time
during the melody.

• Wave Table Synthesizer - The Wave Table Synthesizer generates
sounds using wave tables. The timbre of the sound is specified by a
table of 8-bit samples. This table specifies one cycle of the sound.
Each sample in the table is a signed byte.

• MIDI Synthesizer -The MIDI Synthesizer generates MIDI data to
drive external MIDI sound generators.

• Sampled Sound Synthesizer - The Sampled Sound Synthesizer
generates sound from a sample buffer of 8-bit signed bytes.

The Sound Manager allows modifiers, small routines that modify
commands, to be associated with a channel. These modifiers can
modify, expand, or block commands passed to the channel.

26.2 To create a new sound command, make an instance of
tb:SndConnnand.

tb:SndCommand [V-483] Flavor

This flavor defines a sound command.

Macintosh Toolbox Interface 26-1

Sound Manager

:cmd
:set-cmd 16b-integer

Method of tb:SndCommand
Method of tb:SndCommand

:paraml
:param2

This is an integer identifying the command. The Macintosh sound
command names (such as "InitCmd") have been turned into Lisp
constants in the MACTOOLBOX package (e.g., tb:!lnitCmd).
Therefore, while the following paragraphs document the individual
command numbers in the manner of Inside Macintosh [V-486], you
may use the equivalent symbolic constants when setting this instance
variable.

:set-paraml 16b-integer
:set-param2 32-bit integer

Method of tb:SndCommand
Method of tb:SndCommand
Method of tb:SndCommand
Method of tb:SndCommand

These instance variables in the sound command hold miscellaneous
arguments such as duration or pitch values. The exact meaning varies
with the command.

If the high order of :cmd is set, then :param2 contains a pointer to
some memory location.

NOTE: If the synthesizer is sent a command it cannot act upon, it
ignores it.

General 26.2.1 These are the general. commands.
Commands

tb:!NullCmd

cmd = 0 paraml = 0 param2 =NIL

Has no effect because the Sound Manager does not pass them on to the
synthesizer.

tb:!InitCmd

cmd = 1 paraml = 0 param2 = init

Sent to a synthesizer or modifier by the Sound Manager when it is first
linked to a channel. If the application passed an init parameter when
calling the trap tb:!SndNewChannel, this information is passed in
param2. The init parameter has the following masking currently
defined:

tb:!initChanLeft
th: !initChanRight

[V-486] Constant
[V-486] Constant

These InitCmd :param2 init values specify left and right stereo
channels.

Macintosh Toolbox Interface

Sound Manager

tb: !initChanO
tb: !initChanl
th:!initChan2
tb: !iuitChan3

[V-486] Constant
[V-486] Constant
[V-486] Constant
[V-486] Constant

These InitCmd:param2 init values specify channels 0-3, respectively,
for wave table only.

tb: !initSRate22k
tb: ! initSRate44k

[V-486] Constant
[V-486] Constant

These InitCmd:param2 initvalues specify sample rates.

tb:!initMono
th: !initStereo

[V-486] Constant
[V-486] Constant

These InitCmd : param2 init values specify monophonic and
stereophonic channels, respectively.

tb:!FreeCmd

and = 2 paraml = 0 param2 =NIL

Causes the synthesizer and modifiers to stop processing commands
after the current sound has finished playing.

tb: !QuietCmd.

and = 3 paraml = 0 param2 = NIL

Causes the immediate termination of generation of the current sound.

th: !FlushCmd

and= 4 paraml = 0 param2 = NIL

Causes all commands to be immediately flushed from the channel.

Synchronb:ation 26.2.2 Sound Manager channels can he synchronized by using the
Commands CallBack comma:ncJ or the Synch command. When a channel is created

by using the trap tb:!SndNewChannel, a CallBack routine can be
specified. This routine can be used to synchronize the channel with
some event or command.

Macintosh Toolbox Interface

The Sync command causes the Sound Manager to stop all processing on
a channel until the same command is received on one or more other
channels. When all the channels have reached the same Sync
command, they all proceed.

26-J

th:!WaitCmd

crnd = 10 paraml =duration param2=NIL

Causes a pause for the specified duration in the processing of
commands.

th:!PauseCmd

crnd = 11 paraml = 0 param2 =NIL

Causes the processing of a command to pause for an indefinite amount
of time.

th:! ResumeCmd

crnd = 12 paraml = 0 param2 =NIL

Causes the continuation of the processing of commands for a channel
that was halted by a PauseCmd.

th:!CallBackCmd

crnd = 13 paraml = user-defined] param2 = user-defined2

. Calls· the channel's CallBack procedure, passing the two command
arguments to the routine. ·

th:!SyncCmd

crnd = 14 paraml = count param2 = identifier

Causes the channel to wait for a Sync command with the same value as
identifier from count other channels. When the conditions are met, the
channel proceeds.

th: !EmptyCmd

crnd =.15 paraml = 0 param2 =NIL

Sent only by the Sound Manager.

Modifier Control 26.2.3 These commands control the modifiers.
Commands

tb: !TickleCmd

cmd = 20 paraml = 0 param2 =NIL

26·4 Macintosh Toolbox Interface

Sound Manager

Sent regularly by the Sound Manager to synthesizers and modifiers that
require periodic actions.

tb: !RequestNextCmd

cmd = 21 paraml = count param2=NIL

Sent by the Sound Manager when a modifier returns a result of T, that
is, the modifier requests another command. The value count is the
number of times in succession that this modifier has asked to send
another command.

tb:!HowOftenCmd

cmd = 22 paraml =period param2 =pointer

Tells the Sound Manager to send a Tickle command every period to the
modifier that is pointed to by pointer.

tb:!WakeUpCmd

cmd = 23 paraml =period param2 =pointer

Tells the Sound Manager to send a Tickle command after period amount
of time has elapsed, to the modifier that is pointed to by pointer.

Scaling and Note 26.2.4 These are the scaling and note commands.
Commands

Macintosh Toolbox Interface

tb:!NoteCmd

cmd = 40 paraml =duration param2 = amp+frequency

Plays a note with the specified amp and frequency for duration amount
of time. If the channel is monophonic, all processing stops until the
note finishes. If the channel is polyphonic, processing continues
without intenuption.

tb:!RestCmd

cmd = 41 paraml =duration param2=NIL

Causes the channel to rest for duration amount of time. This command
may not result in complete silence as previous notes may still be
decaying. This command differs from W aitCmd because it causes the
currently sounding note to go into the release and decay stages, whereas
W aitCmd causes a complete pause on the channel. ·

26-5

Sound Manager

tb:!FreqCmd

and = 42 paraml = 0 param2 =frequency

Changes the frequency of the currently sounding note to frequency. If
no note is sounding, a note is triggered.

tb:!AmpCmd

and= 43 paraml =amplitude param2 =_NIL

Sets the amplitude of the current note to amplitude. If no note is
playing, then the amplitude of the next note triggered will be amplitude.

tb: !TimbreCmd

and= 44 paraml =timbre param2=NIL

Sets the timbre of the channel to the timbre indicated by the timbre code
timbre.

Wave Table Synth 26.2.S The following command affects the wave table.
Commands

th: !WaveTableCmd

and = 60 paraml = length param2 =pointer

Specifies the wave table to be used with the succeeding note commands.
The wave table is pointed to by pointer and its length is specified by
length.

Sampled Sound 26.2.6 These are sampled sound synthesizer commands.
Synth Commands

tb:!SoundCmd

and = 80 paraml = 0 param2 =pointer

Specifies the sound to be played by successive note commands. The
pointer argument points to the sound description.

Macintosh Toolbox Interface

Original Sound
Driver Traps

th:!swMode
tb:!ftMode
tb:!ffMode

Sound Manager

tb:!BufferCmd

cmd = 81 paraml = 0 param2 =pointer

Plays the sound pointed to by the argument pointer with the most recent
frequency and amplitude settings.

tb:!RateCmd

cmd = 82 paraml = 0 param2 =rate

Sets the playback rate of succeeding buffer commands. The argument
rate is a multiplier of the original sample rate.

26.3 These traps were a part of the old Sound Driver, but are still
supported by the current version.

[II-225] Constant
LII-225] Constant
[Il-225] Constant

These are mode constants used in synthesizer records to identify the
synthesizer as a square-wave, four-tone, or free-from synthesizer,
respectively.

tb:!StartSound synthRec numBytes completionRtn [II-231] Function

Example:

Starts generating the sound described by the buffer synthRec, which
has a size numBytes. If completionRtn is tb:!onePtr, the sound will
be produced synchronously. If completionRtn is tb:!nilPtr, the sound
will be produced asynchronously.

;;; Define a function which plays a square wave at 440 Hz for
;;; 2 seconds.
(defun 440hz () .

(let ((SWSynthRecPtr (tb: !NewPtr 8))); alloc space:1 tone
(tb:StowWord SWSynthRecPtr 0 tb:!swMode);mode:swMode
(tb:StowWord SWSynthRecPtr 2 1780) ; count=440HZ
(tb: StowWord SWSynthRecPtr 4 255) ; amplltude:max
(tb:StowWord SWSynthRecPtr 6 (* 60 2)); duratlon:2 secs
(tb: ! StartSound SWSynthRecPtr 8 tb: ! nilPtr) ; start it
(tb:!DisposPtr SWSynthRecPtr)))

th: !StopSound [Il-232] Function

Macintos/1 Toolbox Interface

Immediately stops the current tb:!StartSound call and then executes
the completion routine if there is one. It also cancels all other
tb:!StartSound calls that have been queued.

26-7

Sound Manager

tb:!GetSoundVol [ll-232] Function

Returns the current speaker volume. The value returned can range from
0 (no sound) to 7 (the loudest possible sound).

tb:!SetSoundVol level [11-233] Function

Sets the speaker volume to the desired value (from 0 to 7).

Sound Manager
Traps

26.4 These traps deal with sound channels.

26·8

tb:SndChannel [V-481] Flavor

:next Chan
:first Mod
:callBack

:user Info

This flavor defines a sound channel. After creating the
tb:SndChannel instance, call tb: !SndNewChannel to initialize it.

Method of tb:SndChannel
Method of tb:SndChannel
Method of tb:SndChannel

These are the pointers to the next channel, the first modifier, and the call
back procedure for a channel, respectively.

:set-userlnfo 32b-integer
Method of tb:SndChannel
Method of tb:SndChunnel

This value is reserved for the use of the application.

tb:!SndPlay chan sn4Hdl async [V-477] Function

Plays the "snd "resource specified by sndHdl. The "snth" resource is
added to the channel for each synthesizer and modifier in the resource
list. The commmldS in the "snd " resource are then passed to the
channel. If chan is tb:!nilPtr and there are no modifiers in the
resource list, a note synthesizer is created

tb: !SndNewChannel chan synth init userRoutine [V-477] Function

Creates a new channel between the application and a synthesizer. If the
argument chan is tb:!nilPtr, the Sound Manager will allocate memory
for the channel. The synth argument specifies which synthesizer is to
be used. If the synth argument is 0, a note synthesizer is created. The
following synthesizers with their respective synth are presently
supported:

Macintosh Toolbox Interface

Macintosh Toolbox Interface

Sound Manager

• note Synth 1
• wave Table Synth 3
• sampled Synth 5
• :MIDI Synthln 7
• MIDI Synth Out 9

The init value is used as the argument for the InitCmd command. The
value will depend on the synthesizer used. The userRoutine argument
is a pointer to a routine that is called when a CallBackCmd is sent. If
userRoutine is tb:!nilPtr, any CallBackCmds are ignored.

26·9

Introduction

Pointer and
Handle
Manipulation

Chapter 27
OPERATING SYSTEM UTILITIES

27 .1 The Operating System Utilities are a collection of useful routines
that:

• Manipulate hanclles and pointers (memory management utilities)
• Convert strings
• Manipulate date and time operations

27 .2 These routines are a collection of memory management utilities
used for converting and manipulating handles and pointers. The only
traps you will be likely to use are:

• tb:!HandToHand, used to duplicate a handle.
• tb:!HandAndHand, used to append two handles.
• tb:!PtrAndHand, used to add data to the end of a handle.

tb:!HandToHand theHandle [11-374] Function

Example:

Makes a copy of the handle in theHandle, and returns two values: the
handle to the copy and an OSErr. If you need to make a copy of the
handle myHandle, you could do the following:

(setf myHandle (tb:!NewHandle 10))
(multiple-value-bind (newHandle result)

(tb:!HandToHand myHandle)
... code using newHandle and result ...)

A copy of the handle my Handle will be returned in new Handle.

tb:!PtrToHand srcPtr size [11-375] Function

Example:

Returns two values: a new handle which is a copy of the size bytes
starting at srcPtr, and an Operating System result code. To make a
relocatable copy of a non-relocatable block myPointer, do the
following:

(setf pointerSize (tb:!GetPtrSize myPointer))
(multiple-value-bind (newHandle result)

(tb:!PtrToHand myPointer pointerSize)
... code using newHandle and result ...)

A handle to the new relocatable block will be returned in new Handle.

tb:!PtrToXHand srcPtr dstHandl e size [11-375] Function

Macintosh Toolbox Interface

Takes an existing handle dstHandle and sets it to a copy of the size
bytes starting at srcPtr and returns an error code as a result. To set the
existing handle myHandle to the contents of the pointer myPointer,
do the following:

27·1

Operating System Utilities

Example: (setf pointerSize (tb:!GetPtrSize myPointer))
(tb:!PtrToXHand myPointer myHandle pointerSize) => OSErr

tb:!HandAndHand aHndl bHndl [Il-375] Function

Appends the data in aHndl to the end of the handle bHndl and returns an
error code as a result.

tb:!PtrAndHand ptr hndl size [Il-376] Function

Appends the data, size number of bytes starting at ptr, to the handle
hndl and returns an error code as a result.

Date and Time
Operations

27.3 The Date and Time traps enable you to get and set the time and
date. You will usually use the traps tb:!GetTime and tb:!SetTime to
do this.

27-2

tb:DateTimeRec [Il-378] Flavor

This flavor defines a date and time structure.

:year
:set-year
:month
:set-month
:day
:set-day
:hour
:set-hour
:minute
:set-minute
:second
:set-second
:dayOfWeek
:set-dayOfWeek

Method of tb:DateTimeRec
Method of tb:DateTimeRec
Method of tb:DateTimeRec
Method of tb:DateTimeRec
Method of tb:DateTimeRec
Method of tb:DateTimeRec
Method of tb:DateTimeRec
Method of tb:DateTimeRec
Method of tb:DateTimeRec
Method of tb:DateTimeRec
Method of tb:DateTimeRec
Method of tb:DateTimeRec
Method of tb:DateTimeRec
Method of tb:DateTimeRec

These values represent the year (1904-2040), month (1-12), day (1-31),
hour (0-23), minute (0-59), second (0-59), and day of the week (1-7,
where l=Sunday).

tb:!ReadDateTime ptr

This is an internal trap. Ptr is a pointer to a longint.

tb:!GetDateTime &optional VAR secs

[Il-378] Function

[Il-378] Function

Returns the number of seconds since midnight, 1 January 1904 in the
local time zone.

Note that universal time in Common Lisp is defined as the number of
seconds since midnight, 1 January 1900 Greenwich Mean Time
(GMT). Therefore, universal time on the microExplorer differs from

Macintosh Toolbox Interface

Operating System Utilities

universal time on the Macintosh by four years plus the local time zone.
Since the microExplorer universal time is relative to GMT, then all
microExplorers in the world who are set to the coJTCct local time should
return identical universal times. Macintosh systems, on the other band,
willl return universal times which vary with the local time zone.

tb:!SetDateTime secs [11-379] Function

Sets the clock time to secs, the number of seconds since midnight, 1
January 1904.

th: !Date2Secs ptr [11-379] Function

Example:

Given a tb:DateTimeRec instance pointed at by ptr, returns the
number of seconds since midnight, 1 January 1904.

(setf myDate (make-instance 'tb:DateTimeRec))
(send myDate :set-year 1988)
(send myDate :set-month 7)
(send myDate :set-day 27)
(tb: ! HLock myDate)
(setf secs (tb:!Date2Secs (tb:deref myDate)))
(tb: !Hunlock myDate)
secs -> 2668809600

tb:!Secs2Date secs ptr [11-380] Function

Converts secs, the number of seconds since midnight, 1January1904,
into a tb:DateTimeRec pointed at by ptr.

Example: (setf myDate (make-instance 'tb:DateTimeRec))
(tb: !HLock myDate)
(tb: !Secs2Date 1000000 (tb:deref myDate))
(tb: ! HUnlock myDate)
(send myDate :year) => 1904
(send myDate :month) => 1
(send myDate :day) => 12

tb:!GetTime [11-380] Function

Example:

Gets the number of seconds since midnight, 1 January 1904 (from
tb:!GetDateTime) and converts the value into a tb:DateTimeRec
instance which is returned.

(setf myDate (tb:!GetTime))
(send myDate :year) => 1988
(send myDate :month) => 8
(send myDate :day) => 30

th: !SetTime date [11-380] Function

Macintosh Toolbox Interface

Takes the day and date in date and converts the values into the number
of seconds since midnight, 1 January 1904, and sets the clock chip to
the number of seconds.

27·3

Operating System Utilities

Parameter RAM
Operations

27 .4 These routines are used to read from and write to parameter
RAM.

tb: !lnitUtil

An intemally called trap.

tb: !GetSysPPtr

[Il-380] Function

[Il-381] Function .

Returns a pointer to the copy of the parameter RAM kept in memory.

Queue
Manipulation

27.S Normally, you will not need to use these utilities. They are
included in this docwnentation for completeness only.

tb:!Enqueue qEntry theQueue [Il-382] Function

Adds the entry pointed to by qEntry to the queue theQueue.

tb:!Dequeue qEntry ·theQueue [Il-383] Function

Removes the element qEntry from the queue theQueue.

Trap Dispatch
Table Utilities

27 .6 These traps are used for getting and setting the address of trap
routines (usually in ROM). There. will be never be any need to use
these unless you are interested in doing low-level coding such as
disassembling the ROM.

27-4

tb:!SetTrapAddress trapAddr trapNum
tb:!SetOSTrapAddress trapaddr trapnum

[Il-384] Function

Install a routine with address trapAddr in the trap dispatch table. The
routine is installed under the trap number trapNum. These traps are
identical.

tb:!GetTrapAddress trapNum
tb:!GetOSTrapAddress trapnum

[11-384] Function

Returns the address of the routine currently installed in the trap dispatch
table under the trap number trapNum. These two traps are identical.

tb:!SetToolTrapAddress trapaddr trapnum

Installs a routine with address trapAddr in the trap dispatch table. The
routine is installed as a Toolbox trap under the trap number trapNum.

tb:!GetToolTrapAddress trapnum

Returns the address of the Toolbox trap routine currently installed in the
trap dispatch table under the trap number trapNum.

Macintosh Toolbox Interface

Miscellaneous
Utilities

Operating System Utilities

27. 7 These traps perform miscellaneous operating system utility
functions.

tb:!Delay numTicks [II-384] Function

Example:

Waits for numTicks number of ticks (1/60ths of a second) and returns
the time in ticks since the Macintosh was turned on.

; ;; wait for 1 second
(tb:!Oelay 60) => 121634

tb:!SysBeep duration [II-385] Function

Causes the system beep sound to be made for duration number of ticks.

NOTE: On the Macintosh Il, duration is ignored and the sound played
is the default error sound.

th:! GetMMUMode [V-592] Function

Returns the address translation mode currently in use.

When the Macintosh IT boots up, it defaults to a 24-bit addressing
mode, the same as the Macintosh, Macintosh Plus, and Macintosh SE.

The addressing-mode constants are defined as:

• tb: ! :!al.se32b 24-bit addressing mode
• th: ! tz:oue3 2b 32-bit addressing mode

Macintosh Toolbox Interface 27 .5

Introduction

Creating and
Disposing of
Lists

tb:ListRec

:rView rect

Chapter 28
LIST MANAGER PACKAGE

28.1 The List Manager Package is a tool for storing and updating data
elements within a list and for displaying the list in a rectangle within a
window. The lists handled by the List Manager are not Lisp lists. Do
not confuse the two.

28.2 The routines that follow are used to create and dispose of lists.
To create a new ListRec object, use make-instance.

[IV-263] Flavor

This flavor defines a list structure. All List Manager functions def'med
to take a list handle will accept instances of this flavor. -

htit Option of tb:ListRec

This is the list's display rectangle (excluding scroll bars) in local
coordinates. The default is (50 50 100 100).

:dataBounds pseudo-rect htit Option of tb:ListRec

This is the boundary of list cells. A rectangle specification is used
where the values represent cell coordinates rather than pixels number as
usual. The default is (0 0 5 10).

:cSize pseudo-point htit Option of tb:ListRec

This is the size of a cells in pixels. A point specification is used where
the two v-h "coordinates" actually represent the length of the sides of
the cells. The default is a "zero" size cell which actually tells the List
Manager to figure it out.

:theProc proc/D htit Option of tb:ListRec

This defaults to 0 indicating a standard text-only list.

:theWindow windowPtr Init Option of tb:ListRec

This is the window owning the list. The default is the frontmost
window.

:drawlt visible-p htit Option of tb:ListRec

If this option is true (the default), then the list is drawn on theWindow.

:hasGow growBox-p htit Option of tb:ListRec

If this. option is true (the default), the window will have a grow box.

Macintosh Toolbox Interface 28-1

List Manager Package

28-2

:scrollHoriz scroll·p
:scrollVert scroll·p

Init Option of tb:ListRec
Init Option of tb:ListRec

If true (the default), the list will have a horizontal or vertical scroll bar,
respectively.

tb:ListRec instances have the following instance accessor methods:

• :RVIEWTOP [integer]
• :RVIEWLEFT [integer]
• :RVIEWHOITOM [integer]
• :RVIEWRIGHT [integer]
• :PORT [pointer]
• :INDENTH [integer]
• :INDENTV [integer]
• :CELLSJZEH [integer]
• :CELLSIZEV [integer]
• :VISIBLEfOP [integer]
• :VISIBLELEFr [integer]
• :VISIBLEBOTTOM [integer]
• :VISIBLERIGHT [integer]
• . :VSCROLL [handle]
• :HSCROLL [handle]
• :SELFLAGS [byte]
• :I.ACTIVE [boolean]
• :LISTFLAGS [byte]
• :CLICKTil\IB [longint]
• :CLIKLOCH [integer]
• :CLIKLOCV [integer]
• :MOUSELOCH [integer]
• :MOUSELOCV [integer]
• :LCLIKLOOP [pointer]
• :LASTCLICKH [integer]
• :LASTCLICKV [integer l
• :REFCON [pointer]
• :LISTDEFPROC [handle]
• :USERHANDLE [handle]
• :DATABOUNDSTOP [integer]
• :DATABOUNDSLEFT [integer]
• :DATABOUNDSBOTTOM [integer]
• :DATABOUNDSRIGHT [integer]
• :CELLS [handle]
• :MAXINDEX [integer]

tb:!LNew rView dataBounds cSize theProc theWindow
drawlt hasGrow scrollHoriz scrollV ert

[IV-270] Function

Creates a new list and returns a handle to it. The new list's grafPort is
set to theWindow's port. The list will be displayed in the rectangle
rView. dataBounds is a rectangle specifying the array dimensions of
the list. cSize is a point giving the width and height of each cell, in
pixels. If drawlt is true, the list will be displayed. Scrol/Horiz and
scrollV ert are boolean values. If they are true, a horizontal scroll bar

Macintosh Toolbox Interface

Example:

List Manager Package

and a vertical scroll bar will appear. If hasGrow is true, the scroll bars
are sized to allow room for a size box.

;;; Make a new list. rVlew Is big enough to show five llnes.
(setf rView (make-instance 'tb:Rect

:left 10 :top 10
:right 200 :bottom 90))

;;; The list Is one column by ten rows.
(setf dataBounds (make-instance 'tb:Rect

;;; Leave cSlze unspecified.

:left 0 :top 0
:right l :bottom 10))

(setf cSize (make-instance 'tb:Point))
;;; Give the llst a horizontal and a vertical scroll bar.
(setf myList (tb:!LNew rView dataBounds cSize 0 myWindow

nil nil t t))

tb:!LDispose lHandle [N-271] Function

Adding and
Deleting Rows
and Columns

Disposes of the list data structure .

•
28.3 These routines insert new rows and columns and delete existing
rows and columns.

tb:!LAddColumn count colNum lHandle [N-271] Function

Example:

Inserts count number of colU.mns starting at the column specified by
colNum. ·

;;; Add 1 column.
(tb:!LAddColwnn l l myList)

tb:!LAddRow count rowNum lHandle [N-271] Function

Example:

Inserts count number of rows starting at the row specified by rowNum.

;;; Add 10 rows.
(tb:!LAddRow 10 11 myList)

tb:!LDelColumn count colNum lHandle [IV-271] Function

Deletes count number of columns starting at the coJumn specified by
colNum.

tb:!LDelRow count rowNum /Handle [IV-272] Function

Deletes count number of rows starting at the row specified by rowNum.

Macintosh Toolbox Interface 28-3

List Manag• Package

Operations on
Cells

· 28.4 These routines perfonn operations on cells.

28·4

tb:!LAddToCeH dataPtr dataLen theCell IHandle [IV-272] Function

Example:

Appends the data pointed to by dataPtr, of length dataLen, to the cell
specified by theCell in IHandle.

;;; Add. 10 bytes of data pointed at by dataPtr to cell (1, 3)
;;; In myLlst.
(send theCell :- 1 3)
(tb:!LAddToCell dataPtr 10 theCell myList)

tb:!LClrCell theCell IHandle [IV-272] Function

Oears the contents of theCell.

tb:LGetCeH dataPtr dataLen theCell IHandle
tb:!LGetCell dataPtr VAR dataLen theCell IHandle

[IV-272] Function
[IV-272] Function

Example;·

tb:LGetCell copies the data in theCell to the location specified by
dataPtr, with dataLen specifying the maximum number of bytes allowed
and returns the actual number of bytes copied.

tb:!LGetCell is similar except it modifies dataLen to contain the
number of bytes copied.

;;; Get the data In. cell ·(1, 3).
(send t~eCell := 1 3)
(tb:LGetCell dataPtr 10 theCell myList) => 10

tb:!LSetCell dataPtr dataLen theCell IHandle [IV-272] Function

Example:

Places the data pointed to by dataPtr, with length dataLen, int9 the
specified cell theCell.

;;; Set the data In cell (1, 3) to the 10 bytes pointed at by dataPtr.
(send theCell :• 1 3)
(tb:!LSetCell dataPtr 10 theCell myList)

tb:!LCellSize cSize /Handle [IV-273] Function

Sets the cellSize field in the list record.

tb:!LGetSelect next theCell IHandle [IV-273] Function

H next is false, tb:!LGetSelect returns true if theCell is selected, or
false if it is not. H next is true, tb:!LGetSelect modifies theCell to be
the cell coordinates of the next selected cell in the row that is greater
than or equal to theCell. If there are no more cells in the row, it returns
in theC ell the cell coordinates of the next selected cell in the next row.
ff there are no more rows, nil is returned.

Macintosh Toolbox Interface

Example: ,,, Any cells selected?
(send theCell := 0 0)
(tb:!LGetSelect t theCell myList) =>NIL

List Manager Package

tb:!LSetSelect setlt. theCell IHandle [IV-273] Function

Example:

Mouse Location

If setlt is true, tb:!LSetSelect selects theCell, and· redraws it if it is
visible and was. previously unselected. If setlt is false, it deselects the
cell theCell and redraws if necessary.

;;; Select cell (1, 3).
(send theCell :• 1 3)
(tb:!LSetSelect t theCell myList)

28.S These routines respond to a click of the mouse button.

th:! LClick point modifiers IHandle [IV-273] Function

Example:

Called when there is a mouse-down event in the destination rectangle or
its scroll bars, this routine keeps control until the mouse button is
released. Point is the mouse location in local coordinates. modifiers is
the modifiers word from the event record. /Handle is the list to be
tracked. The result is true if a double-click occurred.

(setf dblClkFlag (tb:!LClick *event*
(send *event* :modifiers)
myList))

tb:!LLastClick /Handle [IV-273] Function

Example:

Accessing Cells

Returns the cell coordinates of the last cell clicked in as two values. If
no cell has been clicked in since tb:!LNew, the value returned is
negative.

;;; Set theCell to the last cell clicked In.
(multiple-value-bind (v h)

(tb:!LLastClick myList)
(send theCell := h v)) =>#<POINT x=-1 y=-1>

28.6 These routines search for, find, or return cells and cell
information.

tb:LFind theCell /Handle [IV-274] Function
[N-274] Function tb:!LFind VAR offset VAR len theCell /Handle

Macintosh Toolbox Interface

b:LFind returns two values. Given a cell in theCell, it returns the
offset and length in bytes of the cell's data. th:! LFind is similar
except it modifies offset and len to be the offset and length values.

28-5

Lilt M01tagu Package

28·6

tb:!LNextCell hNext vNext theCell lHandle [IV-274] Function

Example: ·

Given a cell in theCell, returns in tlieCell the next cell in the list.

;;; Get the cell below (1, 3)
(send theCell := l 3)
(tb:!LNextCell nil t theCell myList)
the~ell => #<POINT x•l y-4>

;;; Get the cell to the right of (1, 3).
(send theCell :• l 3)
(tb:!LNextCell t t theCell myList)
theCell => #<POINT x=O y-4>

tb:!LRect cellRect theCell lHandle [IV-274] Function

Returns the local (QuickDraw) coordinates of theCell in cellRect. If an
invalid cell is specified, (0,0) (0,0) is returned in cellRect.

tb:!LSearch dataPtr dataLen searchProc theCell IHandle [IV-274] Function

Searches for the first cell greater than or equal to theCell that contains
the specified data. If such a cell is found, true is returned and the cell
coordinates are retumed in theCell. If' searchProc is NIL, the
International Utilities Package function tb:!IUMagIDString is called
to compare the specified data with the contents of each cell. If
searchProc is not NIL, the routine pointed to by searchProc is called.

tb:!LSize listWidth listHeight /Handle [IV-274] Function

Example:

Causes the bottom right of the list to be adjusted so that the list is the
height and width indicated by listWidth and listHeight. The contents of -
the list and the scroll bars are adjusted and redrawn as necessary. This
routine is usually called immediately after the Window Manager
procedure th: !Size Window.

;;; Change the size of the myLlst's vRect to 200 wide by 150 tall.
(tb:!LSize 200 150 myList)

Macintosli Toolbox Interface

List Manager Package

List Display . 28. 7 These routines affect the manner in which lists are displayed.

tb:!LDraw theCell lHandle [IV-275] Function

Makes the List Manager's grafPort the current port, sets the clipping
region to the cell's rectangle, and calls the list definition procedure to
draw the cell. It restores the clipping region and port before exiting.

tb:!LDoDraw drawlt lHandle [IV-275] Function

Sets the List Manager's drawing mode to the state specified by drawlt.
If drawlt is true, changes made by most List Manager calls will cause
some sort of drawing to take place. If drawlt is false, all cell drawing is
disabled.

tb:!LScroll cCols dRows lHandle [IV-275] Function

Scrolls the given list by the number of coluinns and rows specified by
cCols and dRows. ·

tb:!LAutoScroll !Handle [IV-275] Function

Scrolls the list until the first cell is visible.

tb:!LUpdate theRgn /Handle [IV-275] Function

Redraws any visible cells in lHandle that intersect theRgn and redraws
the controls, if necessary.

tb:!LActivate act lHandle [IV-276] Function

Macintosh Toolbox Interface

Activates or deactivates the list specified by lHandle. The act parameter
should be set to true to activate the list, or false to deactivate the list.
Call this trap when receiving an activate event for a window which
contains a list.

28-7

Introduction

Chapter 29
ERROR HANDLING

29.1 The Macintosh Toolbox uses several different methods to signal
errors. The File Manager, for example, returns OSErrs (negative
numbers) or 0 to indicate that no errors exist. In contrast, the Resource
Manager stores the error code for the last Resource Manager call in a
low memory location that is accessed by !ResError.

In order to simplify proper error checking, the Toolbox Interface is
linked into the Texas Instruments error handling system. For more
information on the error handling system see in the Texas Instruments
Explorer Lisp Reference manual.

All Toolbox calls that return an OSErr automatically check for a zero
result. If an error is detected and if tb:*signal-mac-oserr* is true, it
signals an tb:OSErr condition which displays the Inside Macintosh
name and comment for the particular error. After the execution of any
Resource Manager trap that returns a ResError, the error handling
mechanism checks for an error. If an error exists, a signal is generated
in the standard Common Lisp manner. This checking is done internally
without the overhead of calling !ResError.

tb:*signal-mac-oserr* Variable

Signaling an
Error

If this variable is true, then the traps which are documented to return
result codes will signal a tb:OSErr condition is that result code is
negative. If the result code is non-negative,· then it is returned.

If this variable is false, the these traps unconditionally return their result
codes regardless of value.

29.2 The following routine allows you to explicitly signal an error
condition. Notice that none of the following flavors, methods, or
functions observe tb:*signal-mac-oserr*. This trap function code
uses tb:*signal-mac-oserr* to decides whether to call tb:signal
oserr or not, but tb:signal-oserr and all processing it initiates
ignores the variable.

tb:toolbox-error Condition

This is the flavor on which all Toolbox Interface error signals are built.
This flavor i& built on lisp:error.

tb:toolbox-warn Condition

Macintosh Toolbox Interface

This is the flavor on which all Toolbox Interface warning signals are
built. This flavor is built on sys:warn.

29·1

Error Hantlling

29-2

tb:OSErr

:oserr
:oserr

Condition

This is the flavor that records Toolbox Interface result code errors. It is
built on tb:toolbox-error. When this flavor is instantiated, the
:oserr initialization option is used to look up the associated signal
names and error message in tb:*OSErr-alist*. This table lookup
approach avoids having to define all Macintosh result codes with
defsignal forms.

This condition offers a :no-action proceed type which causes the
signal to simply return with the original result code.

Init Option of tb:OSErr
Method of tb:OSErr

This value is the non-zero integer result code which caused tb:OSErr
to be signaled. This is a required initialization option.

:trap-symbol
:trap-symbol

Init Option of tb:OSErr
Method of tb:OSErr

This value is the name of the Toolbox Interface function which signaled
the tb:OSErr as a symbol. This symbol can be used to disambiguate
identical result codes which are signaled by different traps.

t b: *OSErr-alist* Variable

This association list is used to associate the integer result codes returned
by various traps with error sign~ names and a default error message.
·Each entry in this list has the form: ·

(oserr signal-name message)

where oserr is the integer result code, signal-name is the symbol or list
of symbols represent~g the Macintosh result code mnemonic symbols,
and message is a brief test string describing the error.

The list of signal names in one entry typically includes some additional
symbols which classify the type of the signal. For example, all result
code symbols associated with file system errors will carry the additional
signal name of tb:!FS-Error. These classification signal names can
be used in error handlers to intercept whole families of errors without
having to enumerate each individual signal.

Macintosh Toolbox Interface

Error Handling

tb:find-oserr id Function

This function allows convenient interrogation of the OSErr database
represented by tb:*OSErr-alist*. If id is sufficient to identify one or
more entries in the alist, then a list of those entries is returned.
Otherwise, it returns nil. An entry is formatted as follows:

(oserr signal-name message-string)

where signal-name is a symbol or list of symbols.

If id is an integer, then it is taken to be an OSErr and the unique entry
corresponding to that OSErr is returned as a one element list. If id is a
symbol, then it is taken to be a signal name and all entries which include
that signal name are returned in a list. If id is a string, then it is taken to
be a substring of an error message and all entries which include that
substring in their message are returned in a list.

tb:signal-oserr oserr trap-symbol &optional format-string &rest args Function

Suppressing
Errors

If oserr is non-negative, the function does nothing and returns zero.
Otherwise, the function signals a tb:OSErr error condition with
appropriate auxiliary information. oserr is used to look up the signal
names and default message strings from tb:*oserr-alist*. Ifformat
string is specified, it overrides the default message in tb:*oserr
alist*. Trap-symbol is the name of the Macintosh trap which returned
oserr and is available in the condition object to clarify duplicate result
codes. If an error is signaled and a handler chooses the :no-action
proceed type, then oserr is returned.

29.3 Many times you will want to bypass the automatic error handling
provided and handle some OSErrs with your own code. To make
handling these errors easier, the following macros are provided.

tb:suppress-oserr &body body
tb:suppress-oserr-if condition-form &body body

Macro
Macro

If an tb:OSErr error condition is signaled inside of body, then
tb:suppress-oserr automatically responds with a proceed type of
:no-action. That is, the processing of body proceeds without
signaling errors.

tb:suppress-oserr-if is similar except it resumes only if condition
form is true.

tb:suppress-some-oserrs error-list &body body Macro

Macintosh Toolbox Interface

If an tb:OSErr error condition on error-list is signaled inside of body,
then body is automatically resumed with a proceed type of :no-action.

In the example below, if !GetVollnfo returns the error code
tb:!nsvErr, it will not be signaled.

29-3

Error HaNlling

Example: (suppress-some-oserrs (tb:!nsvErr) (tb:!GetVolinfo pb))

Restarting From· 29.4 The following macros ~ow you to restart after an error.

an Error
tb:oserr-restart format-string format-args &body body Macro
tb:oserr-restart-if cond-form format-string format-args &body body Macro

tb:oserr-restart executes body, with a restart for tb:OSErr in effect
that will try body over. format-string and format-args a..~ used to
identify this proceed option, enabling the user to decide whether or not
to use the restart.

If the user chooses to go to the restart provided, tb:oserr-restart
throws back to the top of body and body is executed again. If body
retums nonnally, the values of the last fonn in body are returned from
the tb:oserr-restart.

tb:oserr-restart-if is similar except that the proceed option is offered
only if cond-form is true.

Macintosh Toolbox Interface

Macintosh Toolbox Interface

Appendix A
RESOURCE TYPES

The following resource types have been predefined. Notice that in
resource type strings, both case and blanks are significant.

"actb"
"ADBS"
11ALRT11

"atpl"

"bmap"
"BNDL"
"boot 11

11CACH11

"cctb"
"CDEF"
"cicn"
"cl st"
"clut 11

"CNTL"
"CODE",
"crsr"
"ct ab"
"CURS"

"dctb"
"DITL"
"DLOG"
"DRVR"
"DSAT"

"fctb"
"finf"
"FKEY"
"FMTR"
"FOND"
"FONT"
"FREF"
"FRSV"
"FWID"

"gama"

"ICN#"
"ICON"
"ictb"
"!NIT"
"insc"
"INTL"
"INT#"
"itlO"

Alert color table
Apple Desktop BusTM service routine
Alert template
Internal AppleTalk® resource

Bit maps used by the Control Panel
Bundle
Copy of boot blocks

RAM cache code
Control color table
Control definition function
Color Macintosh icon
Cached icon lists used by Chooser and Control Panel
Color look-up table
Control template
Application code segment
Color cursor ·
Used by the Control Panel
Cursor

Dialog color table
Item list in a dialog or alert
Dialog template
Desk accessory or other device driver
System startup alert table

Font color table
Font information
Command-Shift-number routine
3 1/2-inch disk formatting code
Font family record
Font
File reference
IDs of fonts reserved for system use
Font widths

Color correction table

Icon list
Icon
Color table dialog item
Initialization resource
Installer script
International resource
List of integers owned by Find File
Date and time formats

A-1

A·2

"itll"
"itl2"
"it lb"
"itlc"

"KCAP"

"KCHR"
"R!1AP"
"KSWP"

"LDEF"
"lmem"

"MBAR"
"MBDF"
"mcky"
"mctb"
"MDEF"
"MENU"
"mitq"
"MMAP"
"mppc"

"NBPC"
'.•NFNT"
"nrct"

"PACK"
"PAT II.

"PAT#"
"PDEE"
"PICT"
"pltt"
"ppat"
"PREC"
11PRER11

"PRES"
"PTCH"

"RDEV"
"ROvr"
"ROvf"

"SERO"
"SICN"
"snd"
"snth"
"STR"
"STR:fl:"

"wctb"
"WDEF"
"WIND"

Names of days and months
International Utilities Package sort hooks
International Utilities Package script bWldles
International configuration for Script Manager

Physical layout of keyboard (used by Key Caps desk
accessory)
ASCil mapping (software)
Keyboard mapping (hardware)
Keyboard script table

List definition procedure
Low memory globals

Menu bar
Default menu definition procedure
Mouse tracking
Menu color infonnation table
Menu definition procedure

·Menu
Internal memory requirements for MakeITable
Mouse tracking code ·
AppleTalk configuration code

AppleTalk bundle
128KROMfont
Rectangle p<>sitions

Package
Pattern (the space is required)
Pattemlist
Printing code
Picture
Color palette
Pixel pattern
Print record
Device type for Chooser
Device type for Chooser
ROM patch code

Device type for Chooser
Code for overriding ROM resources
List of ROM resources to override

RAM Serial Driver
Script symbol
SoWld (the space is required)
Synthesizer
String (the space is required)
String list

Window color table
Window definition function
Window template

Macintosh Toolbox Interface

General System
Errors (VBL
Mgr, Queueing,
Etc.)

IO System
Errors

Macintosh Toolbox Interface

Appendix B
RESULT CODES

When a result code is signaled as a tb:OSErr condition (e.g., by
tb:signal-oserr), the symbolic result code name is attached to that
error condition instance as a signal name. For example, using
tb:signal-oserr to signal a result code of -1 would result in the error
condition tb:!qErr being signaled. This error signal could be handled
by any condition handler listing tb:!qErr as one of its conditions.

Some result codes have several signal names associated with them. A
condition handler listing any of these alternative signal names can
handle such a signal. For example, result codes -17 though -22 will
signal errors tb:!controlErr through tb:!unitEmptyErr as described
above. Furthermore, there will also be an additional signal name of
tb:!DM-Error associated with each of these signals meaning that a
condition handler for tb:!DM-Error will intercept all driver errors.

The mapping of result code numbers, associated signal names, and
error messages is maintained in the association list tb:*OSErr-alist*.

NOTE: Result codes are not necessarily unique. For example, -1
represents both tb:!qErr, "Queue element not found during deletion",
and tb:!iPrSavPFil, "Problem saving print file". Therefore, signaling
a result code of -1 will result in a condition instance with both signal
names attached. The :trap-symbol instance variable of the condition
instance may help to disambiguate the result code.

tb:!noErr 0 No error
tb:!qErr -1 Queue element not found during deletion
tb: !vTypErr -2 Invalid queue element
tb:!corErr -3 Core routine number out of range
tb: !tunimpErr -4 Unimplemented core routine
tb:!seNoDB -8 No debugger installed to handle Debugger

command

tb: !controlErr -17 Driver can't respond to this control call
tb: !statusErr -18 Driver can't respond to this status call
tb: !readErr -19 Driver can't respond to this read call
tb: !writErr -20 Driver can't respond to this write call
tb: !badUnitErr -21 Driver reference number doesn't match unit

table
tb:!unitEmptyErr -22 Driver reference number specifies NIL handle

in unit table
tb: !openErr -23 Requested r/w permission doesn't match

driver's open permission
tb: !closErr -24
tb: ! !dRemovErr -25 Tried to remove an open driver
tb: !tdlnstErr -26 Drvrinstall couldn't find driver in resources
tb: !abortErr -27 IO call aborted by KillIO
tb: !ilOAbortErr -27 IO abort error (Printing Manager)

B-1

Result Codes

File System
Error Codes

Font Manager
Error Codes

Disk, Serial
Ports, Clock
Specific Errors

tb: !notOpenErr -28 Couldn't rd/wr/ctl/sts because driver was not
opened

tb: !dirFulErr -33
tb: !dskFulErr -34
tb:!nsvErr -35
tb:!ioErr -36
tb: !bdNamErr -37

tb: !fnOpnErr -38
tb:leotErr -39
tb: !posErr -40
tb: !mFulErr -41
tb: !tmfoErr -42
tb: lfnfErr -43
tb:!wPrErr -44
tb: !tLckdErr -45
tb: !vLckdErr -46
tb:!tBsyErr -47
tb: !dupFNErr -48
tb:!opWrErr -49
tb: !paramErr -50
tb:!rfNwnErr -51
tb:!gfpErr -52
tb: !volOffLinErr -53
tb:lpennErr . -54
tb:!volOnLinErr -55
tb: !nsDrvErr · -56
'tb: !noMacDskErr -57

tb:!extFSErr -58
tb:!fsRnErr -59

tb: !badMDBErr -60
tb:!wrPennErr -61

Directory full
Disk full
No such volume
IO error (bummers)
There may be no bad names in the
final system!
File not open
End of file
Tried to position to before start of file (r/w)
Memory full (open) or file won't fit (load)
Too many files open
File not found
Diskette is write-protected
File is locked
Volume is locked
File is busy (delete)
Duplicate filename (rename)
File already open with write permission
Error in user parameter list
Refnum error
Get file position error
Volume not on line error (was ejected)
Permissions error (on file open)
Drive volume already on-line at MountVol
No such drive (tried to mount a bad drive num)
Not a Macintosh diskette (signature bytes are
wrong)
Volume in question belongs to an external fs
File system internal error: during rename the
old entry was deleted but could not be restored
Bad master directory block
Write permissions error

tb:!fontDecError -64 Error during font declaration
tb:!fontNotDeclared-65 Font not declared
tb:!fontSubErr -66 Font substitution occurred

tb: !firstDskErr -84
tb: !lastDsk:Err -64
tb: !noDriveErr -64
tb: ! offLinErr -65
tb: !noNybErr -66
tb: !noAdrMkErr -67
tb:!dataVerErr -68
tb: !badCksmErr -69
tb: !badBtSlpErr -70
tb: lnoDtaMkErr -71
tb: !badDCksum -72

First in the range of low-level disk errors
Last in the range of low-level disk errors
Drive not installed
R/w requested for an off-line drive
Couldn't fmd 5 nibbles in 200 tries
Couldn't find valid addr mark
Read verify compare failed
Addr mark checksum didn't check
Bad addr mark bit slip nibbles
Couldn't find a data mark header
Bad data mark checksum

Macintosll Toolbox Interface

Scrap Manager
Error Codes

Storage
Allocator Error
Codes

New System
Error Codes

Macintosh Toolbox Interface

tb: !badDBtSlp -73
tb:!wrUnderrun -74
tb: ! cantStepErr -75
tb: !tkOBadErr -76
tb: !initIWMErr -77
tb:!twoSideErr -78
tb: !spdAdjErr -79
tb:!seek:Err -80
tb:!sectNFErr -81
tb: !fmtlErr -82
tb: !fmt2Err -83
tb:!verErr -84
tb: !clkRdErr -85
tb: !clkWrErr -86
tb: !prWrErr -87
tb: !prlnitErr -88
tb: !rcvrErr -89
tb: !breakR.ecd -90

Bad data mark bit slip nibbles
Write underrun occurred
Step handshake failed
Track 0 detect doesn't change
Unable to initialize IWM

Result Codes

Tried to read 2nd side on a I-sided drive
Unable to correctly adjust disk speed
Track number wrong on address mark
Sector number never found on a track
Can't find sector 0 after track format
Can't get enough sync
Track failed to verify
Unable to read same clock value twice
Time written did not verify
Parameter RAM written didn't read-verify
InitUtil found the parameter RAM uninitialized
SCC receiver error (framing, parity, OR)
Break received (SCC)

tb:!noScrapErr -100 No scqip exists error
tb:!noTypeErr -102 No object of that type in scrap

tb: !memFullErr -108
th: !nilHandleErr -109
tb: !mem WZErr -111
tb:!memPurErr -112 ·

Not enough room in heap zone
Handle was NIL in th:! HandleZone or other
tb:!WhichZone failed (applied to free block)
Trying to purge a locked or non-purgeable
block

tb: !memAdrErr -110 Address was odd or out of range
tb: !memAZErr -113 Address in zone check failed
tb: !memPCErr -114 Pointer Check failed
tb:!memBCErr -115 Block Check failed
tb: !memSCErr -116 Size Check failed
tb:!memLockedErr-117 Trying to move a locked block

tb:!dirNFErr -120
tb:!tmwdoErr -121
tb:!badMovErr -122
tb: !wrg VolTypErr-123

tb:!volGoneErr -124

(tb:!MoveHHi)

Directory not found
No free WDCB available
Move into offspring error
Wrong volume type error (operation not
supported for MFS)
Server volume has been disconnected

Rendt Cotks

Resource tb: !resNotFound -192 Resource not found

Manager Error tb: !resFNotFound -193 Resource file not found
tb: ! addResFailed -194 tb:!AddResource failed Codes (Other tb: laddRetFailed -195 AddReference failed

than 1/0 errors) tb: !nnvResFailed -196 tb:!RmveResource failed
tb: !nnvRetFailed -197 RmveReference failed
th: !resAttrErr -198 Attribute inconsistent with operation
tb: fmapReadErr -199 Map inconsistent with operation

Miscellaneous tb: !evtNotEnb 1 Event not enabled at tb:!PostEvent

Result Codes

Color tb: !cMatchErr -150 tb:!Color2lndex failed to fmd an index

Quickdraw and tb:!cTempMemErr -1~1 Failed to allocate memory for temporary

Color Manager structures

Errors

tb:!cNoMemErr -152 Failed to allocate memory for structure
tb:!cRangeErr -153 Range error on colorTable request
tb: !cProtectErr -154 ColorTable entry protection violation
tb: !cDevErr -155 Invalid type of graphics device
tb: !cResErr -156 Invalid resolution for tb:!MakeITable

Errors for tb: !iTabPurgErr -9

Color2lndex/IT tb:!noColMatch -10

ab Match

Errors for tb: !qAllocErr -11

MakeITable tb: !tblAllocErr -12
tb:!overRun -13
tb: !noRoomErr -14

Errors for tb: !seOutOtR.ange -15

SetEntry tb: !seProtErr -16
tb: !i2CRangeErr -17
tb: !gdBadDev -18
tb: !reRangeErr -19
th: !selnvRest -20
tb: !seNoMemEIT -21

More Errors tb: !unitTblFullErr -29 Unit table has no more entries
tb: !dceExtErr -30 DCE extension error
th: !dsBadSlotlnt 51 Unserviceable slot interrupt
tb:!dsBadSANEopcode 81 Bad opcode given to SANE Pack4
tb:!memROZWam -99 Soft error in ROZ
th: !memROZError -99 Hard error in ROZ
tb:!updPixMemEIT -125 Insufficient memory to update a pixmap

B-4 Macintosh Toolbox Interface

Menu Manager

Sound Manager
Error Returns

Errors Specific
to the Start
Manager

Macintosh Toolbox Interface

Result Codes

tb:!mBarNFnd -126 System error code for 'MBOF not found
tb:lhMenuFind.Err -127 Could not find HMenu's parent in

th: !MenuKey

tb: !noHardware -200 No hardware support for this synthesizer
tb:!notEnoughHardware-201No more channels for this synthesizer
tb: !queueFull -203 No room in the queue
tb: lresProblem -204 Problem loading resource
tb: !badChannel -205 Invalid channel queue length
tb: !badFonnat -206 Handle to "snd " resource was invalid

The following errors may be generated during system Init. If they are,
they will be logged into the slnfo may and returned each time a call
to the slot manager is made (for the card which generated the error).

tb:!smSOMlnitErr -290 Error, SOM could not be initialized
- tb: I smSRTinitErr -291 Error, Slot Resource Table could not be .

initialized
tb:!smPRAMinitErr -292 Error. Slot Resource Table could not be

initialized
tb: !smPrilnitErr -293 Error, Cards could not be initialized
tb: !smEmptySlot -300 No card in slot
tb:!smCRCFail -301 CRC check failed for declaration data
tb: !smFormatErr -302 FHeader Format is not Apple's
tb: !smRevisionErr -303 Wrong revision level
tb: !smNoOir -304 Directory offset is Nil
tb:lsmLWTstBad -305 Long Word test field<> #x.5A932BC7
tb: !smNoslnfoArray -306 No slnfoArray. Memory Mgr error
tb:!smResrvErr -307 Fatal reserved error. Reserved field<> 0
tb: !smUnExBusErr -308 Unexpected BusError
tb: !smBLFieldBad -309 ByteLanes field was bad
tb: !smFHBlockRdErr-310 Error occurred during _sGetFHeader
tb: !smFHBlkDispErr -311 Error occurred during _sDisposePtr

(Dispose of FHeader block)
tb: ! smDisposePErr -312 _DisposePointer error
tb: !smNoBoardsRsrc -313 No Board sResource
tb:!smGetPRErr -314 Error occurred during _sGetPRAMR.ec

tb: !smNoBoardld -315
tb: !smlntStatVErr -316

(See SIMStatus)
No Board Id
The InitStatusV field was negative after
primary or secondary init

tb: !smlntTblVErr -317 An error occurred while trying to initialize
the Slot Resource Table

tb: !smNoJmpTbl
tb: !smBadBoardld

tb: !smBusErrTO

-318
-319

-320

SOM jump table could not be created
Board.Id was wrong, re-init the PRAM
record
BusError time out

The following errors may be generated at any time after system lnit and
will not be logged into the slnfo may.

B-5

tb:!smBadR.etld -330 Reference Id not found in List
tb:!smBadsList -331 Bad sList: ldl < ld2 < Id3 ... format is

not followed
tb:lsmReservedErr -332 Reserved field not zero
tb: lsmCodeRevErr -333 Code revision is wrong
tb: !smCPUErr -334 Code revision is wrong
tb:!smsPointerNil -335 LPointer is nil (From sOffsetData. If this

error occurs, check slnfo rec for more
information.)

tb: lsmNilsBlockErr -336 Nil sBlock error (Don't allocate and try to
use a nil sBlock)

tb:!smSlotOOBErr -337 Slot out of bounds error
tb:lsmSelOOBErr -338 Selector out of bounds error
tb: !smNewPErr -339 _NewPtr error
tb:!smBlkMoveErr -340 _BlockMove error
tb:!smCkStatusErr -341 Status of slot= fail
tb:lsmGetDrvrNamErr-342 Error occurred during _sGetDrvrName
tb:!smDisDrvrNamErr-343 Error occurred during _sDisDrvrName
tb:!smNoMoresRsrcs-344 No more sResources
tb:!smsGetDrvrErr -345 Error occurred during _sGetpriver
tb: I smBadsPtrErr -346 Bad pointer was passed to sCalcsPointer
tb: lsmByteLanesErr -347 NumByteLanes was determined to be zero
tb:!smOffsetErr -348 Offset was too big (temporary error,

should be fixed)
tb: !smNoGoodOpens -349 No opens were successful in the loop
tb:lsmSRTOvrFIErr -350 SRT overflow
tb:lsmRecNotFnd -351 Record not found in the SRT

Device Manager tb:!slotNumErr
Slot Support

-360 Invalid slot # error

Error

SysEnvirons
Errors

tb: !envNotPresent -5500 Returned by glue
tb:!envBadVers -5501 Version non-positive
tb:lenvVersTooBig -5502 Version bigger than call can handle

Macintosh Toolbox Interface

INDEX

= arcAngle ofArgs 3-24
:= Method of tb:HSVColor 6-2 tb: !ArrowCursor Constant 3-8
:= Method of tb:HSLColor 6-2 arthmetic transfer modes 3-7
:= Method of tb:CMYColor 6-2 :Ascent !nit Option of tb:Fontlnfo 3-14
:=Method of tb:Region 3-27 :AscentF Method of tb:FMetricRec 7-3
:= Method of tb:Point 3-36 :Ascent! Method oftb:FMetricRec 7-3
:=Method oftb:RGBColor 3-15 tb: !asMin Constant 3-7
:=.Method oftb:Rect 3-18 tb: !Athens Constant 7-2

tb: !autoKey Constant 8-7
A tb: !autoKeyMask Constant 8-6
tb: abbrevDate Constant 17-1 tb: AuxWinRec Flavor 9-15

"actb" Resource 13-9 :awctable Method oftb:AuxWinRec 9-15
tb: !ActivatePalette 5-1 :awnext Method oftb:AuxWinRec 9-15
tb: !activeEvt Constant 8-8 :awowner Method of tb:Aux WinRec 9-15
tb: !activeAag Constant 8-5 :awrefcon Instance Variable of tb:Aux WinRec
tb: !activeAag-p 8-5 9-15
tb: !activMask Constant 8-6

:add Method oftb:Point 3-35 B
tb: !AddComp 4-3 tb: !BackColor 3-15
tb: !addOver Constant 3-7 tb: !BackPat 3-7
tb: !addPin Constant 3-7 tb: !BackPixPat 3-7
tb: !AddPt 3-35 :baseAddr Method of tb:BitMap 3-30
tb: !AddResMenu 11-4 tb: !Baud300 et al. Constants 25-1
tb: !AddResource 2-8 tb: !BeginUpdate 9-11
tb: !AddSearch 4-3 :behind Init Option of tb:DialogRecord 13-2

:aDefltem Method of tb:DialogRecord 13-3 :behind Init Option of tb:Window 9-2
tb: !adMax Constant 3-7 tb: !BitAnd 16-3 ·
tb: !Alert 13-7 tb: !BitClr 16-2

alert 13-1, 13-7 tb: BitMap Flavor 3-30
tb: !Allocate 21-18 tb: !BitNot 16-3
tb: !AllocCursor 3-9 tb: !BitOr 16-3
tb: lalphaLock Constant 8-6 tb: !BitSet 16-2
tb: !alphaLock-p 8-6 tb: !BitShift 16-3

"ALRT" Resource 13-7 tb: !BitTst 16-2
tb: !altDBoxProc Constant 9-4 tb: !BitXor 16-3
tb: !AmpCmd Sound Command 26-6 tb: !Black Variable 3-10
tb: !AngleFromSlope 16-4 tb: !blend Constant 3-7
tb: !AnimateEntry 5-2 tb: block-move 18-7
tb: !AnimatePalette 5-2 tb: !BlockMove 18-7
tb: lapplEvt Constant 8-8 :blue Method oftb:RGBColor 3-15
tb: !applMask Constant 8-6 tb: !Bold Constant 3-13
tb: !app2Evt Constant 8-8 :bottom Method oftb:ControlRecord 10-2
tb: !app2Mask Constant 8-6 :bottom Method oftb:Rect 3-18
tb: !app3Evt Constant 8-8 :bottom Init Option of tb:Rect 3-18
tb: !app3Mask Constant 8-6 :boundBottom Method of tb:BitMap 3-31
tb: !app4Evt Constant 8-8 bounding rectangle of Arcs 3-24
tb: lapp4Mask Constant 8-8 :boundLeft Method of tb:BitMap 3-31

:appendltem Method oftb:Menulnfo 11-3 :boundRight Method oftb:BitMap 3-31
tb: !AppendMenu 11-3 :boundsRect Init Option of tb:DialogRecord 13-2
tb: .!appleMark Constant 11-7 :boundsRect Init Option of tb:ControlRecord 10-2
tb: !ApplFont Constant 7-2 :boundsRect Init Option of tb:Window 9-2

application font 7-2 :boundTop Method of tb:BitMap 3-31
tb: !ApplicZone 18-2 tb: !breakEvent Constant 25-3
tb: lappOpen Constant 19-1 tb: !breakEvent-p 25-3
tb: !appPrint Constant 19-1 tb: !BringToFront 9-6

Macintosh Toolbox Interface Index-1

Gneral Index

tb: lbtnState Constant 8-5 Color Picker 6-1
tb: tbtnState-p 8-S color table 4-1
tb: IButreremd Sound Command 26-7 tb: ICoJor2Iodex 4-1

button 10-1 tb: !ColorBit 3-16
tb: !Button 8-8 tb: !command.Mark Constant 11-7

tb: !CompactMem 18-5
c tb: !Condense Constant 3-13
tb: !Cairo Constant 7-2 :content.blue Method of tb: WinCTab 9-13
tb: ICalcCMask 3-32 :content.green Method oftb:WinCTab 9-13
tb: !CalcMask 3-31 :content.red Method of tb:WmCTab 9-13
tb: ICalcMenuSize 11-9 tb: !Control 23-2
tb: ICalcVis 9-13 control 10-1
tb: !CalcVisBehind 9-13 :controLAction Method oftb:ControlRecord 10-3

:callBack Method of tb:SndCbannel 26-8 tb: !controlKey Constant 8-6
tb: ICallBackCmd Sound Command 26-4 tb: !controlKey-p 8-6
tb: ICatMove 21-22 tb: ControlRecord Flavor 10-2
tb: ICautionAlert 13-7 tb: !Copy Constant 14-2
tb: tcautionlcon Constant 13-7 tb: ICopyBits 3-31

"cctb" Resource 10-8 tb: ICopyMask 3-32
:center Method oftb:Rect 3-19 tb: ICopyPixMap 3-30
:center-x Method oftb:Rect 3-19 tb: !CopyPixPat 3-17
:center-y Method of tb:Rect 3-19 tb: !CopyRgn 3-27

tb: cGrafPort Flavor 3-2 tb: !CouldAlert 13-7
tb: !CbangedR.esource 2-8 tb: ICouldDialog 13-5
tb: ICbarExtra 3-7 tb: ICountlResources 2-4
tb: !CbarWulth 3-14 tb: !CountlTypes 2-3

check boxes 1 tb: CountAppFiles 19-1
tb: lcbeckBoxProc Constant 10-1 tb: ICountMitems 11-9
tb: !Checkltem 11-7 tb: ICountResources 2-4
tb: lcheckMark Constant 11-7 tb: !CountTypes 2-3
tb: !Cbeck:Update 9-13 tb: !Courier Constant 7-2
tb: ClnfoPBRec Flavor 21~6 tb: !Create 21-12
tb: !Clear Constant 14-2 tb: 1createResFJ1e 2-1
tb: IClearMenuBar 11-4 tb: !CrossCursor Constant 3-8

:clip Method of tb:grafPort 3-6 :cSize Init Option of tb:ListRec 28-1
tb: IClipAbove 9-13 tb: ICTab2Palette 5-2
tb: !ClipRect 3-6 tb: !ctsEvent Constant 2S-3
tb: !Close 23-1 tb: lctsEvent-p 2S-3
tb: !Close 21-18 :ctsize Method oftb:WinCTab 9-14

:close Method of tb:Region 3-26 tb: !CurResPile 2-2
:close Method of tb:Polygon 3-34 "CURS" Resource 3-8, 16-4
:close Method of tb:Picture 3-33 tb: !Cut Constant 14-2

tb: !OoseCPort 3-4 tb: CWmdow Flavor 9-2
tb: !OoseDeskAcc 14-1 :cyan Method of tb:CMYColor 6-1
tb: !OoseDialog 13-4
tb: !OosePicture 3-33 D
tb: IOosePoly 3-34 tb: IDataS et al. Constants 2S-2
tb: IClosePort 3-4 :dataBounds !nit Option oftb:ListRec 28-1
tb: IOoseResFile 2-2 tb: !Date2Secs 27-3
tb: ICloseRgn 3-26 tb: DateTimeRec Flavor 27-2
tb: ICloseWD 21-23 :day Method oftb:DateTimeRec 27-2
tb: !OoseWmdow 9-S :dayOfWeek Method of tb:DateTimeRec 27-2

"clut" Resource 3-16 tb: !dBoxProc Constant 9-4
:cmd Method of tb:SndCommand 26-2 "dctb" Resource 13-9

tb: lcmdKey Constant 8-5 tb: define-mac-application 1-9
tb: tcmdK.ey-p 8-S :defProc Method of tb:ControlRecord 10-3
tb: !CMY2RGB 6-2 tb: !Delay 27-5
tb: CMYColor Flavor 6-1 tb: !DelComp 4-4

CMYColor 6-1 tb: !Delete 21-21
"CNTL" Resource 10-4, 8 :deleteltem Method of tb:Menulnfo 11-7

1Ddex·2 Macintoslr Toolbox Interface

General Index

tb: IDeleteMenu 11-4 tb: !DlogCut 13-6
tb: IDelMCEntries 11-9 tb: !DlogDelete 13-6
tb: !DelMenultem 11-7 tb: !DlogPaste 13-6
tb: IDeISearch 4-3 tb: !documentProc Constant 9-4
tb: !DeltaPoint 16-4 tb: !DragControl 10-6
tb: !Dequeue 27-4 :dragGray Method oftb:Region 9-11
tb: deref 18-9 tb: !DragGrayRgn 9-11

:Descent lnit Option oftb:Fontlnfo 3-14 tb: !DragWmd.ow 9-9
:DescentF Method of tb:FMetricRec 7-3 :draw Method of tb:Picture 3-33
:Descent! Method oftb:FMetricRec 7-3 tb: !DrawlControl 10-5
desk accessories 14-1 tb: !DrawChar 3-13
desk. scrap 15-1 tb: !DrawControls 10-5
:destR.ect lnit Option of tb:TERec 12-1 tb: !DrawDialog 13-6
:destRectBottom Method oftb:TERec 12-1 tb: !DrawGrowicon 9-7
:destR.ectLeft Method of tb:TBRec 12-1 :draw It Init Option of tb:ListRec 28-1
:destRectRigbt Method oftb:'IERec 12-1 tb: !DrawMenuBar 11-4
:destRectTop Method oftb:TERec 12-1 tb: !DrawNew 9-13

tb: !DetachResource 2-6 tb: !DrawPicture 3-33
device drivers 23-1 tb: !DrawString 3-14
dialog box 13-1 tb: !DrawText 3-14

tb: DialogRecord Flavor 13-1 tb: !driverEvt Constant 8-8
tb: DialogSelect 13-5 tb: !drivetMask Constant 8-6
tb: !DialogSelect 13-5 tb: !DriveStatus 24-1
tb: ldiamondMaik Constant 11-7 tb: DrvSts Flavor 24-1
tb: !Diff'Rgn 3-28 :dStorage Init Option oftb:DialogRecord 13-2
tb: !DirCreate 21-13 :editFreld Method of tb:DialogRecord 13-3

directories 21-1
tb: !Disableltem 11-7 E
tb: !Disk:Eject 24-1 tb: !Eject 21-12
tb: ldisk:Evt Constant 8-7 :empty-p Method of tb:Region 3-28
tb: ldiskMask Constant 8-6 :empty-p Method of tb:R.ect 3-20
tb: IDispMCinfo 11-10 tb: !EmptyCmd Sound Command 26-4
tb: IDisposCCursor 3-9 tb: !EmptyHandle 18-5
tb: IDisposCicon 3-9 tb: !EmptyRect 3-20
tb: !DisposCTable 3-16 tb: IEmptyRgn 3-28
tb: !DisposDialog 13-4 tb: !Enableltem ll-7

:dispose Method of tb:DialogRecord 13-4 tb: !EndUpdate 9-11
:dispose Method of tb:TERec 12-2 tb: !Enqueue 27-4
:dispose Method oftb:Menulnfo 11-3 :equal Method oftb:Region 3-28
:dispose Method of tb:CootrolRecord 10-4 :equal Method of tb:Rect 3-20
:dispose Method of tb: Window 9-5 :equal Method oftb:Point 3-36
:dispose Method of tb:Region 3-26 tb: !EquaIPt 3-36
:dispose Method of tb:Polygon 3-34 tb: !EqualRect 3-20
:dispose Method oftb:PixMap 3-30 tb: !EqualRgn 3-28
:dispose Method of tb:Picture 3-33 :erase Method of tb:Window 9-6
:dispose Method oftb:pixPat 3-17 :erase Method of tb:RoundRect 3-23
:dispose Method of tb:grafPort 3-4 :erase Method of tb:Region 3-29
:dispose Method of tb:cGrafPort 3-4 :erase Method of tb:Rect 3-21

tb: !DisposeControl 10-4 :erase Method of tb:Polygon 3-34
tb: !DisposeMenu 11-3 :erase Method of tb:Oval 3-22
tb: !DisposePalette 5-1 tb: !EraseArc 3-25
tb: !DisposeRgn 3-26 :eraseOval Method of tb:Rect 3-22
tb: IDisposeWindow 9-5 tb: !EraseOval 3-22
tb: IDisposHandle 18-3 tb: IErasePoly 3-34
tb: IDisposPixMap 3-30 tb: !EraseRect 3-21
tb: !DispospixPat 3-17 tb: !EraseRgn 3-29
tb: IDisposPtr 18-4 tb: !EraseRoundRect 3-23
tb: ldkGray Variable 3-10 tb: !ErrorSound 13-1

"DLOG" Resource 13-4 tb: !EvenParity Constant 25-2
tb: !DlogCopy 13-6 event 8-1

Macintosh Toolbox Interface Index-3

General Index

event queue 8-3
tb: tBventAvail 8-3
tb: BventRecord Flavor 8-1
tb: teveryBvent Constant 8-6
tb: !Extend Constant 3-13

F
tb: FCBPBRec Flavor 21-8
tb: lfDesktop Constant 21-5
tb: lfdisk Constant 21-5
tb: fetch 18-9
tb: fetchbyte 18-9
tb: fetchbyt:ebandle 18-9
tb: fetcltbandle 18-9
tb: fetcbrect 18-9
tb: fetchrecthandie 18-9
tb: fetchword 18-9
tb: fetcbwordbandle 18-9
tb: lffMode Constant 26-7
tb: FileParam Flavor 21-3

files 21-1
:fill Method of tb:RoundRect 3-24
:fill Method of tb:Region 3-29
:fill Method of tb:Rect 3-21
:fill Method of tb:Polygon 3-35
:fill Method of tb:Oval 3-22

tb: !FillArc 3-25
:fillC Method oftb:Rect 3-21

tb: !FillCArc 3-25
:fillCOval Method of tb:Rect 3-22

tb: IFillCOval 3-22
tb: !FillCPoly 3-35
tb: !FillCRect 3-21
tb: IFtllCRgn 3-29
tb: IFillCRoundRect 3-24

:fillOval Method of tb:Rect 3-22
tb: IFillOval 3-22
tb: IFillPoly 3-35
tb: !FillRect 3-21
tb: IFillRgn 3-29
tb: IFillRoundRect 3-24
tb: find-oserr. 29-3
tb: FindControl 10-5
tb: !FmdControl 10-5
tb: !FindDitem 13-8
tb: !Find.Wmdow 9-7
tb: Find.Window 9-7
tb: !Flnvisible Constant 21-4

:firstMod Method of tb:SndChannel 26-8
tb: !Fix2Frac 16-5
tb: tFix2Long 16-5
tb: !Ftx2Smal1Fract 6-3
tb: !Fix2X 16-5
tb: !FixATan2 16-5
tb: !FixDiv 16-5
tb: IFixMul 16-1
tb: IFixRatio 16-1
tb: IFJXR.ound 16-1
tb: IFlashMenuBar 11-9
tb: IFlushCmd Sound Command 26-3

Index-4

tb: !FlusbBvents 20-1
tb: !FlushFile 21-18
tb: !FlushVol 21-11
tb: FMetticRec Flavor 7-3
tb: IFMSwapFont 7-3

:fName Method oftb:SFReply 17-3
"FONT" Resource 1
fontnumber 7-2

tb: Fontinfo Flavor 3-14
tb: FontMettic 7-1
tb: IFontMettics 7-3
tb: !ForeColor 3-15

:four Method of tb:Pattem 3-10
tb: 1Frac2Fix 16-5
tb: 1Frac2X 16-5
tb: !FracCos 16-5
tb: !FracDiv 16-5
tb: !FracMul 16-5
tb: !FracSin 16-5
tb: !PracSqrt 16-5

:frame Method oftb:RoundRect 3-23
:frame Method of tb:Region 3-29
:frame Method of tb:Rect 3-21
:frame Method of tb:Polygon 3-34
:frame Method of tb:Oval 3-22
:frame.blue Method of tb:WmCTab 9-14
:frame.green Method of tb:WinCTab 9-14
:frame.red Method oftb:WinCTab 9-14

tb: !FrameArc 3-24
:frameOval Method of tb:Rect 3-22

tb: !FrameOval 3-22
tb: !FramePoly · 3.-34
tb: !FrameRect 3-21
tb: !FrameRgn 3-29
tb: IFrameRoundRect 3-23
tb: lframingBrr Constant 25-3
tb: !framingErr-p 25-3
tb: !FreeAlert 13-7
tb: IFreeCmd Sound Command 26-3
tb: !FreeDialog 13-5
tb: !FreeMem 18-5
tb: !FreqCmd Sound Command 26-6
tb: !FrontWmdow 9-7
tb: lfsAtMark Constant 21-3
tb: lfsCurPenn Constant 21-2
tb: !fsFromLBOF Constant 21-3
tb: lfsFromMark Constant 21-3
tb: !fsFromStart Constant 21-3
tb: !fsHasBundle Constant 21-4
tb: !fsRdPrem Constant 21-2
tb: !fsRdWrPenn Constant 21-2
tb: !fsRdWrShPenn Constant 21-2
tb: !fsWrPenn Constant 21-2
tb: !ftMode Constant 26-7
tb: !ITrash Constant 21-5

:tType Method oftb:SFReply 17-2

G
tb: !Geneva Constant 7-2
tb: !GetllndResource 2-4

Macintosh Toolbox Interface

General Index

tb: GetllndType 2-3 tb: IGetindType 2-3
tb: !GetllndType 2-3 tb: Getltem 11-6
tb: !GetlNamedResource 2-5 tb: !Getltem 11-6
tb: GetlResource 2-5 tb: GetltemCmd 11-8
tb: IGetlResource 2-5 tb: IGetltemCmd 11-8
tb: !GetAlrtStage 13-9 tb: Getltemlcon 11-8
tb: IGetAppJLimit 18-1 tb: !Getltemlcon 11-8
tb: !GetAuxCtl 10-8 tb: GetltemMark 11-7
tb: !GetAuxWin 9-15 tb: !GetltemMark 11-7
tb: !GetBack:Color 3-16 tb: GetltemStyle 11-8
tb: !GetCaretTime 8-9 tb: !GetlteniStyle 11-8
tb: !GetCatlnfo 21-21 tb: GetIText 13-9
tb: !GetCCursor 3-8 tb: !GetIText 13-9
tb: !Getacoo 3-9 tb: !GetKeys 8-9
tb: !GetClip 3-6 tb: !GetMask:Table 3-37
tb: !GetColor 6-1 tb: !GetMCEntry 11-10
tb: !GetCPixel 3-36 tb: !GetMCinfo 11-9
tb: !GetCRefCon 10-7 tb: !GetMenu 11-2
tb: !GetCTable 3-16 tb: !GetMenuBar 11-5
tb: GetCTitle 10-4 tb: !GetMHandle 11-9
tb: !GetCTitle 10-4 tb: !GetMMUMode 27-5
tb: !GetCtlAction 10-7 tb: !GetMouse 8-8
tb: IGetCtlMax 10-7 tb: !GetNamedResource 2-5
tb: IGetCtlMin 10-7 tb: IGetNewConlrOI 10-4
tb: !GetCtlValue 10-7 tb: IGetNewCWindow 9-5
tb: !GetCTSeed 4-2 tb: !GetNewDialog 13-4
tb: IGetCuisor 16-4 tb: IGetNewMBar 11-5
tb: IGetCuisor 3-8 tb: IGetNewPalette 5-1
tb: !GetCVariaot 10-8 tb: !GetNewWmdow 9-5
tb: GetCWMgrPort 9-3 tb: IGetNextEvent 8-3
tb: IGetCWMgrPort 9-3 tb: !GetOSEvent 20-1
tb: !GetD~teTime 27-2 tb: !GetOSTrapAddress 27-4
tb: !GetDblTime 8-9 tb: !GetPalette 5-2
tb: GetDitem 13-8 tb: !GetPattem 16-4
tb: !GetDitem 13-8 tb: !GetPen 3-11
tb: IGetDrvQHdr 21-24 tb: !GetPenState 3-11
tb: !GetEntryColor 5-2 tb: !GetPicture 16-4
tb: GetEntryUsage 5-2 tb: !GetPixel 3-36
tb: !GetEntryUsage 5-2 tb: !GetPixPat 3-17
tb: !GetEOF 21-17 tb: GetPort 3-5
tb: IGetEVQHdr 20-2 tb: !GetPort 3-5
tb: !GetFCBinfo 21-24 tb: !GetPtrSize 27-1, 2
tb: !GetFilelnfo 21-18 tb: IGetPtrSize 18-5
tb: GetFNum 7-2 tb: !GetResAttIS 2-7
tb: !GetFNum 7-2 tb: !GetResFtleAttIS 2-9
tb: !GetFontlnfo 3-14 tb: GetReslnfo 2-6
tb: GetFontName 7-1 tb: !GetReslnfo 2-6
tb: IGetFontName 7-1 tb: GetResource 2-5
tb: !GetForeColor 3-16 tb: !GetResource 2-5
tb: !GetFPos 21-16 tb: GetScrap 15-2
tb: !GetFSQHdr 21-24 tb: !GetScrap 15-3
tb: !GetGrayRgn 9-12 tb: !GetSoundVol 26-8
tb: !GetHandleSize 18-3 tb: !GetString 16-2
tb: !Getlcon 16-3 tb: !GetSubTable 4-2
tb: Getlcon 3-9 tb: !GetSysPPtr 27-4
tb: !Getlcon 3-9 tb: !GetTime 27-3
tb: !GetlndPattem 16-4 tb: !GetToolTrapAddress 27-4
tb: !GetlndResource 2-4 tb: !GetTrapAddress 27-4
tb: !GetlndString 16-2 tb: IGetVCBQHdr 21-24
tb: Getlndl'ype 2-3 tb: IGetVol 21-10

Macintosh Toolbox Interface Index-5

General Index

tb: !GetVollnfo 21-9 tb: !HOpen 21-14
tb: !GetWDinfo 21-23 tb: !HOpeoRF 21-15
tb: !GetWindowPic 9-11 :hour Method of tb:DateTimeRec 27-2
tb: GetWMgrPort 9-3 tb: !HowOftenCmd Sound Command 26-5
tb: IGetWMgrPort 9-3 tb: !HPurge 18-6
tb: IGetWRefCon 9-11 tb: !HSetRBit 18-6
tb: GetWTitle 9-6 tb: !HSetState 18-6
tb: !GetWTitle 9-6 tb: !HSetVol 21-11
tb: !GetWVariant 9-15 tb: !HSL2RGB 6-2
tb: !GetZone 18-2 tb: HSLColor Flavor 6-2
tb: !GlobalToLocal 3-36 HSLColor 6-1

:goAwayFlag Init Option of tb:DialogRecord 13-2 tb: !HSV2RGB 6-3
:goAwayFlag lnit Option oftb:Window 9-2 tb: HSVColor Flavor 6-2
:good Method oftb:SFR.eply 17-2 HSVColor 6-1

tb: IGrafDevice 3-5 :bue Method of tb:HSVColor 6-2
tb: grafPort Flavor 3-1 :hue Method of tb:HSLColor 6-2

:green Method oftb:RGBColor 3-15 tb: !HUnlock 18-6
tb: !GrowWmdow 9-9 tb: !bwOverrunErr Constant 25-3
tb: IGZSaveHnd 18-6 tb: !bwOvemmErr-p 25-3

H I
:H Method of tb:EventRecord 8-2 tb: !IBeamCursor Constant 3-8
:h Method of tb:Point 3-35 "ICON" Resource 16-3
:b Init Option of tb:Point 3-35 tb: !inButton Constant 10-6

tb: IHandAndHand 27-1, 2 tb: !inCheckBox Constant 10-6
tb: !HandAndHand 18-8 tb: !inContents Constant 9-8

handles 18-1 tb: !inDesk Constant 9-8
tb: !HandleZone 18-3 tb: !lndex2Color 4-1
tb: !HandToHand 27-1 tb: !inDownButton Constant 10-6
tb: IHandToHand 18-8 tb: !inDrag Constant 9-8

:hasGow Init Option oftb:ListRec 28-1 tb: !InfoScrap 15-2
. tb: lbAxisOnly Constant 9-12 tb: !inGoAway Constant 9-8

tb: !HOrRBit 18-6 tb: !inGrow Constant 9-8
tb: IHCreate 21-12 tb: !initChann Constant 26-3

heap zones 18-1 tb: !initChanLeft Constant 26-2 ·
:height Method of tb: Window 9-10 tb: !initCbanRight Constant 26-2
:height Method oftb:Rect 3-19 tb: !InitCrnd Sound Command 26-2

tb: !Helvetica Constant 7-2 tb: !InitCPort 3-4
tb: !HGetState 18-6 tb: !InitCursor 3-8
tb: !HGetVinfo 21-9 tb: !InitCursor 1-2
tb: IHGetVol 21-10 tb: !InitDialogs 13-1

:hide Method oftb:ControlRecord 10-5 tb: !InitDialogs 1-2
:hide Method oftb:Window 9-6 tb: !InitFonts 7-1

tb: !HideControl 10-5 tb: !InitFonts 1-2
tb: IHideCursor 3-9 tb: IInitGraf 1-2, 3-4
tb: !HideDitem 13-8 tb: !InitMenus 1-2, 11-1
tb: !HidePen 3-11 tb: !initMono Constant 26-3
tb: !HideWmdow 9-6 tb: !InitPort 3-4

:hilite Method of tb:ControlRecord 10-3 tb: !InitProcMenu 11-9
:hilite.blue Method oftb:WinCTab 9-14 tb: !InitQueue 21-9
:hilite.green Method oftb:WinCTab 9-14 tb: !initSRate22k Constant 26-3
:hilite.red Method oftb:WinCTab 9-14 tb: !initSRate44k Constant 26-3

tb: !HiliteColor 3-7 tb: !initStereo Constant 26-3
tb: IHiliteControl 10-5 tb: !InitUtil 27-4
tb: !HiliteMenu 11-6 tb: !InitWindows 1-2, 9-1
tb: !Hilite Wmdow 9-6 tb: !InitZone 18-1
tb: !HiWord 16-3 tb: !inMenuBar Constant 9-8
tb: !HLock 18-6 tb: !inPageDown Constant 10-6
tb: !HNoPurge 18-6 tb: !inPageUp Constant 10-6
tb: !HomeResFtle 2-3 insertion point 12-2

lndex-6 Macintosh Toolbox Interface

tb: !InsertMenu 11-4
tb: !InsertResMenu 11-4

:inset Method of tb:Region 3-27
tb: !InsetRect 3-19
tb: !InsetRgn 3-27

:inside-p Method oftb:Window 9-9
:inside-p Method of tb:Region 3-28
:inside-p Method of tb:Rect 3-19

tb: !InsMenultem 11-6
instance accessors 1-7

tb: !inSysWindow Constant 9-8
:intersection Method of tb:Region 3-28
:intersection Method oftb:Rect 3-19
:intersection-p Method oftb:Rect 3-19

tb: !inThumb Constant 10-6
"INTL" Resource 17-2

tb: !inUpButton Constant 10-6
:inval Method of tb: Window 9-10
:inval Method oftb:Region 9-10
:inval Method oftb:Rect 9-10

tb: !InvalRect 9-10
tb: !InvalRgn 9-10

:invert Method of tb:RoundRect 3-24
:invert Method of tb:Region 3-29
:invert Method of tb:Rect 3-21
:invert Method of tb:Polygon 3-35
:invert Method of tb:Oval 3-22

tb: !InvertA.rc 3-25
tb: !InvertColor 4-1

:invertOval Method of tb:Rect 3-22
tb: !InvertOval 3-22
tb: !lnvertPoly 3-35
tb: !InvertRect 3-21
tb: !InvertRgn 3-29
tb: !InvertRoundRect 3-24
tb: !inZoomln Constant 9-8
tb: !inZoomOut Constant 9-8

:ioActCount Method oftb:ioParam 21-3
:ioBuffer Method of tb:ioParam 21-3
:ioCompletion Method of tb:ParamBlockRec 21-1
:ioDirID Method oftb:fileParam 21-5
:ioFDirlndex Method of tb:fileParam 21-4
:ioFIAttrib Method of tb:fileParam 21-4
:ioFlCrDat Method of tb:fileParam 21-5
:ioFIFndrlnfoCreator Method oftb:fileParam 21-4
:ioFIFndrlnfoFdFlags Method of tb:fileParam 21-4
:ioFIFndrlnfoFdFldr Method oftb:fileParam 21-5
:ioFIFndrlnfoFdLocationH Method of tb:fileParam

21-4
:ioFlFndrlnfoFdLocation V Method of tb:fileParam

21-4
:ioFIFndrlnfoFdType Method oftb:fileParam 21-4
:ioFlLgLen Method of tb:fileParam 21-5
:ioFlMdDat Method of tb:fileParam 21-5
:ioFlPyLen Method of tb:fileParam 21-5
:ioFlRLgLen Method oftb:fileParam 21-5
:ioFlRPyLen Method oftb:fileParam 21-5
:ioFlRStBlk Method of tb:fileParam 21-5
:ioFlStBlk Method of tb:fileParam 21-5
:ioFlVersNum Method oftb:fileParam 21-4

Macintosh Toolbox Interface

General Index

:ioFRefNum Method oftb:fileParam 21-3
:ioFVersNum Method oftb:fileParam 21-4
:ioMisc Method of tb:ioParam 21-2
:ioNamePtr Method oftb:ParamBlockRec 21-2

tb: ioParam Flavor 21-2
:ioPermssn Method oftb:ioParam 21-2
:ioPosMode Method oftb:ioParam 21-3
:ioPosOffset Method of tb:ioParam 21-3
:ioRetNum Method of tb:ioParam 21-2
:ioReqCount Method oftb:ioParam 21-3
:ioResult Method of tb:ParamBlockRec 21-1
:ioVersNum Method oftb:ioParam 21-2
:ioVRefNum Method oftb:ParamBlockRec 21-2

tb: !lsDialogEvent 13-5
tb: !Italic Constant 3-13

:items Method of tb:DialogRecord 13-3
:items Init Option of tb:DialogRecord 13-3

tb: IUDatePString 17-1
tb: !IUDatePString 17-1
tb: IUDateString 17-1
tb: !IUDateString 17-1
tb: !IUGetlntl 17-2
tb: !IUMaglDString 17-2
tb: !IUMagString 17-2
tb: !IUMetric 17-2
tb: !IUSetlntl 17-2
tb: IUTimePString 17-1
tb: !IUTimePString 17-1
tb: IUTimeString 17-1
tb: !IUTimeString 17-1

K
tb: !key Down Constant 8-7
tb: !keyDownMask Constant 8-6
tb: !keyUp Constant 8-7
tb: !keyUpMask Constant 8-6
tb: kill-default-th-server 1-2
tb: !KillControls 10-4
tb: !KillIO 23-3
tb: !KillPicture 3-33
tb: !KillPoly 3-34

L
tb: !LActivate 28-7
tb: !LAddColumn 28-3
tb: !LAddRow 28-3
tb: !LAddToCell 28-4
tb: launch 19-1
tb: launch-default-th-server 1-2
tb: launch-mac-application 1-10
tb: !LAutoScroll 28-7
tb: !LCellSize 28-4
tb: !LCiick 28-5
tb: ILClrCell 28-4
tb: !LDelColumn 28-3
tb: ILDelRow 28-3
tb: !LDispose 28-3
tb: !LDoDraw 28-7
tb: !LDraw 28-7

:Leading Init Option oftb:Fontlnfo 3-14

Index-7

:LeadingF Method of tb:FMetricRec 7-3
:Leadingl Method oftb:FMetricRec 7-3
:left Method oftb:ControlRecord 10-2
:left Method oftb:Rect 3-18
:left Init Option of tb:Rect 3-18

tb: LFind 28-5
tb: ILFind 28-5
tb: LGetCell 28-4
tb: ILGetcell 28-4
tb: ILGetSelect 28-4

:lightness Method of tb:HSLColor 6-2
tb: !Line 3-13

:lineTo Method of tb:Point 3-12
tb: !LineTo 3-12

list 28-1
tb: ListRec Flavor 28-1
tb: ILLastCJ.ick: 28-5
tb: fl.New 28-2
tb: ILNextCell 28-6
tb: !Load.Resource 2-6
tb: ILoadScrap 15-2
tb: ILoc:alToGlobal 3-36
tb: !London Constant 7-2
tb: !Long2Fix 16-5
tb: longDate Constant 17-1
tb: ILosAngles Constant 7-2
tb: !LoWord 16-3
tb: ILRect 28-6
tb: ILScroll 28-7
tb: ILSearcb 28-6
tb: !LSetCell 28-4
tb: ILSetSelect 28-5
tb: ILSize 28-6
tb: tltGray Variable 3-10
tb: ILUpdate 28-7

M
tb: mac-application-cleanup 1-10
tb: mac-string-to-mx-string 16-2

:magenta Method of tb:CMYColor 6-1
tb: IMakelTable 4-2
tb: IMakeRGBPat 3-17

:map Method of tb:Region 3-37
:map Method of tb:Rect 3-37
:map Method of tb:Polygon 3-37
:map Method of tb:Point 3-37

tb: lmapCbanged Constant 2-9
tb: lmapCompact Constant 2-9
tb: IMapPoly 3-37
tb: IMapPt 3-37
tb: !mapReadOnly Constant 2-9
tb: IMapRect 3-37
tb: IMapRgn 3-37

:max Method of tb:ControlRecold I 0-3
:max Init Option oftb:ControlRecord 10-3

tb: IMaxAppJZone 18-7
tb: IMa:xBlock: 18-7
tb: !MaxMem 18-5
tb: !MaxSizeRsrc 2-7

''MBAR" Resource 11-5

Index·8

tb: lmDownMask Constant 8-6
tb: IMeasureText 3-14
tb: !MemError 18-7

Menu Bar 11-1
menu item meta characters 11-3

tb: IMenuCboice 11-6
:menuData Method of tb:Menulnfo 11-2
:menuEnableFlags Method of tb:Menulnfo 11-2
:menuHeigbt Method of tb:Menulnfo 11-2
:menulD Method oftb:Menulnfo 11-1
:meoulD Init Option oftb:Meoulnfo 11.:1

tb: Menulnfo Flavor 11-1 ·
tb: !Menu.Key 11-5

:menuProc Method of tb:Menulnfo 11-2
tb: !MenuSelect 11-5

:menuTide Init Option of tb:Menulnfo 11-2
:menuWidthMetbodoftb:Menulnfo 11-2
:Message Metbodoftb:EventRecord 8-2
:MessageCbar Method of tb:EventRecord 8-2
:MessageDrNum Method of tb:EventReconl 8-2
:MessageKcy Method of tb:EventRecord 8-2
:MessageWmdow Method of tb:EventRecord 8-2
MIDI Synthesizer 26-1
:min Method of tb:ControlRecord 10-3
:min Init Option of tb:ControlRecord 10-3
:minute Method oftb:DateTimeRec 27-2

tb: !Mobile Constant 7-2
tb: ModalDialog 13-5
tb: !ModalDialog 13-5

Modem Port Serial Driver 25-1
:Modifiers Method of tb:EventRecord 8-2

ib: !Monaco Constant 7-2
:month Method oftb:DateTimeRec 27-2

tb: !MoreMasters 18-2
tb: !MountVol 21-9
tb: !mouseDown Constant 8-7
tb: lmouseUp Constant 8-7

:move Method oftb:Wmdow 9-9
tb: !Move 3-12
tb: !MoveControl 10-6
tb: !MoveHHi 18-7
tb: !MovePortTo 3-6

:moveTo Method.oftb:Point 3-12
tb: !MoveTo 3-12
tb: !MoveWmdow 9-9
tb: !Munger 16-2
tb: !mUpMask Constant 8-6
tb: mx-string-to-mac-string 16-2

N
"NAME" Resource 1-9

tb: lnetworkEvt Constant 8-8
tb: !networkMask Constant 8-6
tb: !NewCDialog 13-10
tb: INewControl 10-4
tb: !NewCWindow 9-3
tb: !NewDialog 13-3
tb: !NewEmptyHandle 18-7
tb: INewHandle 18-2
tb: !NewMenu 11-2

Macintosh Toolbox Interface

tb: !NewPalette 5-1
tb: !NewPixMap 3-30
tb: !NewPixPat 3-16
tb: INewPtr 18-3
tb: !NewRgn 3-26
tb: !NewString 16-1
tb: !NewWmdow 9-3
tb: !New York Constant 7-2

:next Method oftb:ControlReconl 10-3
:nextChan Method of tb:SndChannel 26-8

tb: lnilHndl Constant 18-3
tb: !nilPtr Constant 18-4
tb: lnilRgn Constant 3-26
tb: lnoConsttaint Constant 9-12
tb: lnoGrowDocProc Constant 9-4

non-relocatable blocks 18-1
tb: INoParity Constant 25-2

Note Synthesizer 26-1
tb: !NoteAlert 13-7
tb: !NoteCmd Sound Command 26-5
tb: !notelcon Constant 13-7
tb: !notPatBic Constant 3-12
tb: !notPatCopy Constant 3~12
tb: !notPatOr Constant 3-12
tb: !notPatXOr Constant 3-12
tb: !NullCmd Sound Command 26-2
tb: !nullEvent Constant 8-7

0
tb: !ObscureCursor 3-9
tb: !OddParity Constant 25-2
tb: !OffLine 21-12

:offset Method oftb:Region 3-27
:offset Method of tb:Polygon 3-34
:offset Method oftb:Rect 3-19

tb: !OffsetPoly 3-34
tb: !OffsetRect 3-19
tb: !OffsetRgn 3-27

:one Method oftb:Pattem 3-10
onedeep 2-2

tb: !onePtr Constant 18-4
tb: !OpColor 3-7
tb: !Open 23-1
tb: !Open 21-14

:open Method of tb:Region 3-26
:open Method of tb:grafPort 3-4
:open Method of tb:cGrafPort 3-4

tb: !OpenCPort 3-4
tb: !OpenDeskAcc 14-1
tb: !OpenPicture 3-32
tb: !OpenPoly 3-34
tb: !OpenPort 3-4
tb: !OpenResFile 2-1
tb: !OpenRF 21-15
tb: !OpenRFPerm 2-2
tb: !OpenRgn 3-26
tb: !OpenWD 21-22
tb: !optionKey Constant 8-6
tb: !optionKey-p 8-6

:oserr Method of tb:Oserr 29-2

Macintosll Toolbox Interface

General Index

:oserr Init Option of tb:Oserr 29-2
tb: OSErr Condition 29-2
tb: *OSErr-alist* Variable 29-2
tb: oserr-restart 29-4
tb: oserr-restart-if 29-4
tb: !OSEventAvail 20-1
tb: !Outline Constant 3-13
tb: Oval Flavor 3-21

:OvalHeight Method of tb:RoundRect 3-23
:OvalHeight Init Option of tb:RoundRect 3-23
:OvalWidth Method of tb:RoundRect 3-23
:OvalWidth Init Option of tb:RoundRect 3-23
:owner Method of tb:ControlReconl 10-2

p
tb: !PackBits 16-2

:paint Method oftb:RoundRect 3-23
:paint Method of tb:Region 3-29
:paint Method of tb:Rect 3-21
:paint Method of tb:Polygon 3-34
:paint Method of tb:Oval 3-22

tb: !PaintArc 3-25
tb: !PaintBehind 9-13
tb: !PaintOne 9-13

:paintOval Method of tb:Rect 3-22
tb: !PaintOvaI 3-22
tb: !PaintPoly 3-34
tb: !PaintRect 3-21
th: !PaintRgn 3:..29
tb: !PaintRoundRect 3-23

palette 5-1
tb: !Palette2CTab 5-3

:paramn Method of tb:SndCommand 26-2
tb: ParamBlockRec Flavor 21-1

parameter block 21-1
tb: !ParamText 13-8
tb: !parityErr Constant 25-3
tb: !parityErr-p 25-3

partCode 9-7
tb: !Paste Constant 14-2

"PAT "Resource 16-4
tb: !patBic Constant 3-12
tb: !patCopy Constant 3-12
tb: !patOr Constant 3-12
tb: Pattern Flavor 3-10
tb: !patXOr Constant 3-12
tb: !PauseCmd Sound Command 26-4
tb: !PenMode 3-12
tb: !PenNormal 3-12
tb: !PenPat 3-12
tb: !PenPixPat 3-12
tb: !PenSize 3-11
tb: PenState Flavor 3-10
tb: !PicComment 3-33

:PicFrame Init Option of tb:Picture 3-32
:picframeBottom Method oftb:Picture 3-32
:picframeLeft Method of tb:Picture 3-32
:picframeRight Method oftb:Picture 3-32
:picframeTop Method of tb:Picture 3-32
:picsize Method of tb:Picture 3-32

Index:-9

<hMral Index

"P:ICT" Resource 16-4 tb: !Pt:tToHand 27-1
tb: Picture Flavor 3-32 tb: !Pt:tToHand 18-8

:pin Method of tb:Rect 9-11 tb: IPt:tToXHand 27-1, 2
tb: IPinRect 9-11 tb: IPt:tToXHand 18-8
tb: PixMap Flavor 3-29 tb: IPtJZone 18-5
tb: pixPat Flavor 3-16 tb: PtToAngle 3-20
tb: lplainDBox Constant 9-4 tb: !PtToAngle 3-20
tb: IPlotClcon 3-9 tb: !PurgeMem 18-5
tb: IPlotlcon 16-3 tb: !PurgeSpace 18-7
tb: !Plotlcon 3-9 tb: !pusbButProc Constant 10-1
tb: IPlusCursor Constant 3-8 tb: IPutScrap 15-2
tb: IPmBack.Color 5-2
tb: f PmForeColor 5-2 Q

:PnLocH Method oftb:PenState 3-10 tb: IQDBrror 4-3
:PnLocV Method oftb:PenSt• 3-10 tb: IQuietCmd Sound Command 26-3
:PnMode Method of tb:PenState 3-10
:PnPatn Method of tb:PenState 3-10 R
:PnSizeH Method of tb:PenState 3-10 radio button 10-1
:PnSizeV Method of tb:PenState 3-10 tb: !radioButProc Constant 10-1

tb: Point Flavor 3-35 tb: !Random 3-36
:polyframeBottom Method of tb:Polygon 3-33 tb: !RateCmd Sound Command 26-7
:poly&ameLeft Method oftb:Polygon 3-33 tb: !rDocProc Constant 9-4
:polyframe~ght Method of tb:Polygon 3-33 tb: !rdVerify Constant 21-3
:poly&ameTop Method of tb:Polygon 3-33 tb: !Read 23-1

tb: Polygon Flavor 3-33 tb: !Read 21-15
:polysi7.e Method of tb:Polygon 3-.33 tb: !ReadDateTime 27-2

tb: IPopUpMenuSelect 11-6 tb: !RealColor 4-2
tb: !PortSize 3-6 tb: IRealFont 7-2
tb: IPostEvent 20-1 tb: ·1ReallocHandle 18-3

"ppat" Resource 3-17 tb: IRecoverHandle 18-3
tb: IPrClose 22-1 tb: Rect Flavor 3-18
tb: IPrCloseDoc 22-3 tb: !RectlnRgn 3-28
tb: IPtOosePage 22~3 tb: IRectRgn 3-27
tb: f PrCtlCall 22-5 :red Method oftb:RGBColor 3-15
tb: IPrDrvrClose 22-5 :refCon lnit Option of tb:DialogRecord 13-2
tb: IPrDrvrDCE 22-5 :reteon Method of tb:Contro~cord 10-3
tb: !PrDrvtOpen 22-5 :reteon lnit Option oftb:ControlRecord 10-3
tb: IPrDrvrVers 22-5 :reteon Init Option of tb:Window 9-2
tb: IPrError 22-4 tb: Region Flavor 3-25

print records 22-1 tb: !ReleaseResource 2-6
tb: IPrintDefault 22-2 relocatable blocks 18-1

Printer Port Serial Driver 25-1 tb: !Rename 21-20
tb: IPrJobDialog 22-3 tb: IRequestNextCmd Sound Command 26-5
tb: IPrJobMerge 22-3 tb: !resChanged Constant 2-7

:procID Init Option of tb:DialogRecord 13-2 ResError 29-1
:procID lnit Option oftb:ControlRecord 10-3 tb: IResBnor 2-2
:proclD Init Option of tb:Wmdow 9-3 tb: IReserveEntry 4-2

tb: IPrOpen 22-1 tb: !ResetA.lrtStage 13-9
tb: IPrOpenDoc 22-3 tb: !resLocked Constant 2-7
tb: IPrOpenPage 22-3 resource ID 2-1
tb: !ProtectEntry 4-2 resource name 2-1
tb: !PrPicFile 22-3 resource type 2-1
tb: IPrSetBrror 22-4 resources 2-1
tb: !PrStlDialog 22-2 tb: !resPreload Constant 2-7
tb: !PrValidate 22-2 tb: !resProtected Comtant 2-7
tb: 1Pt2Rect 3-20 tb: !resPurgable Constant 2-7
tb: !PtlnRect 3-19 tb: !ResrvMem 18-5
tb: !PtlnRgn 3-28 tb: !resSysHeap Comtant 2-7
tb: IPtrAndHand 27-1, 2 tb: !RestCmd Sound Command 26-5
tb: !PtrAndHancl 18-8 tb: !RestoreE.nuies 4-3

Iadex-10 Macintosh Toolbox Interface

tb: !ResumeCmd Sound Command 26-4
tb: !RGB2CMY 6-2
tb: !RGB2HSL 6-2
tb: IRGB2HSV 6-3
tb: !RGBBackColor 3-15
tb: RGBColor Flavor 3-15
tb: !RGBForeColor 3-15
tb: RGetResource 2-5
tb: !RGetResource 2-5

:rgnBBoxBottom Method of tb:Region 3-26
:rgnBBoxLeft Method of tb:Region 3-26
:rgnBBoxRight Method of tb:Region 3-26
:rgnBBoxTop Method of tb:Region 3-26
:rgnSize Method of tb:Region 3-25
:right Method of tb:ControlReconl 10-2
:right Method of tb:Rect 3-18
:right Init Option of tb:Rect 3-18

tb: !RmveResource 2-8
tb: RoundRect Flavor 3-23

:rowBytes Method oftb:BitMap 3-30
tb: !RsrcMapEnuy 2-7
tb: IRstFilLock 21-19

:rView Init Option oftb:LlstRec 28-1

s
Sampled Sound Synthesizer 26-1, 6

tb: ISanFran Constant 7-2
:saturation Method of tb:HSVColor 6-2
:saturation Method of tb:HSLColor 6-2

tb: !SaveEntries 4-3
tb: !SaveOld 9-13

:scale Method of tb:Point 3-37
tb: fScalePt 3-37

:scrap Method of tb:ScrapStuff 15-1
:scrapCount Method oftb:ScrapStuff 15-1
:scrapHandle Method oftb:ScrapStuff 15-1
:scrapSize Method oftb:ScrapStuff l5-1
:scrapState Method oftb:ScrapStuff 15-1

tb: ScrapStuffFlavor 15-1
tb: !ScreenRes 16-3

:scroll Method of tb:Rect 3-31
scroll bars 1

tb: !scrollBarProc Constant 10-1
:scrollHoriz Init Option of tb:ListRec 28-2

tb: !ScrollRect 3-31
:scrollVert Init Option of tb:ListRec 28-2
:second Method oftb:DateTimeRec 27-2

tb: !Secs2Date 27-3
tb: !SectRect 3-19
tb: !SectRgn 3-28
tb: !SeedCFill 3-31
tb: !SeedFill 3-31

:select Method oftb:Window 9-6
tb: select-application 1-10

selection range 12-3
tb: !SelectWindow 9-6
tb: !SelIText 13-9
tb: !SendBehind 9-7
tb: !SerClrBrk 25-3
tb: !SerGetBuf 25-3

Macintosh Toolbox Interface

General Index

tb: !SerHShake 25-2
tb: !SerReset 25-1
tb: !SerSetBtk 25-3
tb: !SerSetBuf 25-2
tb: SerShk Flavor 25-2
th: !SerStatus 25-4

:set-aDefltem Method oftb:DialogReconl 13-3
:set-awctable Method of tb:AuxWinRec 9-15
:set-awnext Method oftb:AuxWinRec 9-15
:set-awowner Method of tb:AuxWinRec 9-15
:set-baseAddr Method of tb:BitMap 3-30
:set-blue Method oftb:RGBColor 3-15
:set-bottom Method oftb:Rect 3-18
:set-boundBottom Method oftb:BitMap 3-31
:set-boundLeft Method oftb:BitMap 3-31
:set-boundRight Method oftb:BitMap 3-31
:set-boundTop Method of tb:BitMap 3-31
:set-cmd Method of tb:SndCommand 26-2
:set-content.blue Method oftb:WinCTab 9-13
:set-content.green Method of tb: WinCTab 9-13
:set-content.red Method oftb:WinCTab 9-13
:set-content.value Method oftb:WinCTab 9-13
:set-controlAction Method of tb:ControlReconl

10-3
:set-ctsize Method oftb:WinCTab 9-14
:set-cyan Method oftb:CMYColor 6-1
:set-day Method oftb:DateTimeRec 27-2
:set-dayOtweek Method oftb:DateTimeRec 27-2
:set-defProc Method of tb:ControlRecord J 0-3
:set-editField Method of tb:DialogReconl 13-3
:set-four Method oftb:Pattem 3-10
:set-frame.blue Method oftb:WinCTab 9-14
:set-frame.green Method oftb:WinCTab 9-14
:set-frame.red Method oftb:WinCTab 9-14
:set-fnune.value Method oftb:WinCTab 9-13
:set-green Method oftb:RGBColor 3-15
:set-h Method of tb:Point 3-35
:set-hilite Method oftb:ControlReconl 10-3
:set-hilite.blue Method oftb:WinCTab 9-14
:set-hilite.green Method of tb:WinCTab 9-14
:set-hilite.red Method of tb:WinCTab 9-14
:set-hilite.value Method oftb:WinCTab 9-13
:set-hour Method of tb:DateTimeRec 27-2
:set-hue Method of tb:HSVColor 6-2
:set-hue Method oftb:HSLColor 6-2
:set-ioBuffer Method of tb:ioParam 21-3
:set-ioCompletion Method of tb:ParamBlockRec

21-1
:set-ioF1FndrinfoCreator Method of tb:fileParam

21-4
:set-ioFIFndrinfoFdLocationH Method of

tb:fileParam 21-4
:set-ioFIFndrinfoFdLocationV Method of

tb:fileParam 21-4
:set-ioF1FndrlnfoFdType Method oftb:fileParam

21-4
:set-ioFIVersNwn Method oftb:fileParam 21-4
:set-ioFRetNum Method oftb:fileParam 21-3
:set-ioFVersNum Method of tb:fileParam 21-4
:set-ioMisc Method oftb:ioParam 21-2

Index-11

General Index

:set-ioNamePtt Method oftb:ParamBlock:Rec 21-2
:set-ioPennssn Method of tb:ioParam 21-2
:set-ioPosMode Method oftb:ioParam 21-3
:set-ioPosOffset Method of tb:ioParam 21-3
:set-ioRetNum Method of tb:ioParam 21-2
:set-ioReqCount Method oftb:ioParam 21-3
:set-ioVersNum Method oftb:ioParam 21-2
:set-io VRe:tNum Method of tb:ParamBlockRec

21-2
:set-items Method of tb:DialogRecord 13-3
:set-left Method oftb:Rect 3-18 ·
:set-lightness Method of tb:HSLColor 6-2
:set-magenta Method of tb:CMYColor 6-1
:set-max Method of tb:ControlRecord 10-3
:set-menuData Method of tb:Menulnfo 11-2
:set-menuEnableRags Method of tb:Menulnfo

11-2
:set-menuHeight Method of tb:Menulnfo 11-2
:set-menulD Method oftb:Menulnfo 11-1
:set-menuProc Method of tb:Menulnfo 11-2
:set-menu Width Method of tb:Menulnfo 11-2
:set-min Method of tb:ControlRecord 10-3
:set-minute Method oftb:DateTimeRec 27-2
:set-month Method oftb:DateTimeRec 27-2
:set-one Method oftb!Pattem 3-10
:set-OvalHeigbt Method of tb:RoundRect 3-23
:set-OvalWidth Method of tb:RoundRect 3-23
:set-paraml Method oftb:SndCommand 26-2
:set-param2 Method oftb:SndCommand 26-2
:set-PnLocH Method oftb:PenState 3-10
:set-PnLocV Method oftb:PenState 3-10
:set-PnMode Methodoftb:PenState 3-10
:set-PnPatn Method oftb:PenState 3-10
:set-PnSizeH Method oftb:PenState 3-lO
:set-PnSizeV Method oftb:PenState 3-10
:set-red Method oftb:RGBColor 3-15
:set-refCon Method oftb:ControlRecord 10-3
:set-rgnBBoxBottom Method of tb:Region 3-26
:set-rgnBBoxLeft Method oftb:Region 3-26
:set-rgnBBoxRight Method of tb:Region 3-26
:set-rgnBBoxTop Method of tb:Region 3-26
:set-right Method oftb:Rect 3-18
:set-rowBytes Method oftb:BitMap 3-30
:set-saturation Method of tb:HSVColor 6-2
:set-saturation Method of tb:HSLColor 6-2
:set-second Method oftb:DateTimeRec 27-2
:set-text.blue Method oftb:WinCTab 9-14
:set-text.green Method oftb:WinCTab 9-14
:set-text.red Method oftb:WinCTab 9-14
:set-text.value Method oftb:WinCTab 9-13
:set-textH Method of tb:DialogRecord 13-3
:set-three Method oftb:Pattem 3-10
:set-title Method of tb:ControlRecord 10-2
:set-title Method oftb:Wmdow 9-5
:set-titlebar.blue Method oftb:WinCTab 9-14
:set-titlebar.green Method oftb:WinCTab 9-14
:set-titlebar.red Method oftb:WinCTab 9-14
:set-titlebar. value Method of tb: WinCTab 9-13
:set-top Method oftb:Rect 3-18
:set-two Method of tb:Pattem 3-10

lnde:x-12

:set-userlnfo Method of tb:SndCbannel 26-8
:set-v Method of tb:Point 3-35
:set-value Method of tb:ControlRecord 10-3
:set-value Method of tb:HSVColor 6-2
:set-vis Method of tb:ControlRecord 10-2
:set-year Method of tb:DateTimeRec 27-2
:set-yellow Method oftb:CMYColor 6-1

tb: !SetApplBase 18-1
tb: !SetAppJLimit 18-2
tb: !SetCatlnfo 21-21
tb: ISetCCursor 3-9
tb: !SetClientlD 4-4
tb: !SetOikLoop 12-6
tb: !SetClip 3-6
tb: !SetCPixel 3-37
tb: !SetCPortPix 3-6
tb: !SetCRefCon 10-7
tb: !SetCTitle 10-4
tb: !SetCtlAction 10-7
tb: !SetCtlColor 10-8
tb: !SetCtlMax 10-7
tb: !SetCtlMin 10-7
tb: !SetCtlValue 10-7
tb: !SetCursor 3-9
tb: !SetDAFont 13-1
tb: !SetDateTime 27-3 ·
tb: !SetDeskCPat 9-13
tb: !SetDitem 13-8
tb: !SetEmptyRgn 3-27
tb: !SetEntries 4-3
tb: !SetEntryColor 5-2
tb: !SetEnttyUsage 5-2
tb: !SetEOF 21-17
tb: !SetEventMask 20-2
tb: !SetFilelnfo 21-19
tb: !SetFilLock 21-19
tb: !SetFilType 21-20
tb: !SetFontLock 7-3
tb: !SetFPos 21-17
tb: !SetFractEnable 7-4
tb: !SetFScaleDisable 7-3
tb: !SetGrowZone 18-6
tb: !SetHandleSize 18-3
tb: !Setltem 11-6
tb: !SetltemCmd 11-8
tb: !Setltemlcon 11-7
tb: !SetltemMark 11-7
tb: !SetltemStyle 11-8
tb: !SetIText 13-9
tb: !SetMCEntries 11-10
tb: !SetMCinfo 11-9
tb: !SetMenuBar 11-5
tb: !SetMenuFlash 11-9
tb: !SetOrigin 3-6
tb: !SetOSTrapAddress 27-4
tb: !SetPalette 5-1
tb: !SetPenState 3-11
tb: !SetPort 3-5
tb: !SetPortBits 3-6
tb: !SetPt 3-36

Macintosh Toolbox Interface

General Index

tb: !SetPtrSize 18-5 tb: !StackSpace 18-7
tb: !SetRect 3-19 startAngle of Arcs 3-24
tb: !SetRectRgn 3-27 tb: !StartSound 26-7
tb: !SetResAttrs 2-8 tb: !Status 23-2
tb: !SetResFtleAttrs 2-9 tb: !StdArc 3-38
tb: !SetResinfo 2-8 tb: !StdBits 3-38
tb: !SetResLoad 2-4 tb: !StdComment 3-38
tb: !SetResPurge 2-9 tb: !StdGetPic 3-38
tb: !SetSoundVol 26-8 tb: !StdLine 3-38
tb: !SetStdCProcs 3-38 tb: IStdOval 3-38
tb: !SetStd.Procs 3-38 tb: !StdPoly 3-38
tb: !SetString 16-1 tb: !StdPutPic 3-38
tb: !SetTagBuffer 24-1 tb: !Std.Rect 3-38
tb: ISetTime 27-3 tb: !StdRgn 3-38
tb: ISetToolTrapAddress 27-4 tb: !StdRRect 3-38
tb: !SetTrapAddress 27-4 tb: IStdText 3-38
tb: !SetVol 21-10 tb: !StdTxMeas 3-38
tb: ISetVollnfo 21-9 tb: !StillDown 8-8
tb: !SetWinColor 9-13 tb: !StoplO et al. Constants 25-1
tb: ISetWindowPic 9-11 tb: IStopAlert 13-7
tb: !SetWordBreak 12-6 tb: !stoplcon Constant 13-7
tb: ISetWRefCon 9-11 tb: !StopSound 26-7
tb: !SetWTitle 9-5 tb: stow 18-10
tb: !SetZone 18-2 tb: stowbyte 18-10"
tb: ISFGetFtle 17-4 tb: stowbytehandle 18-10
tb: !SFPGetFile 17-4 tb: stowbandle 18-10
tb: !SFPPutFtle 17-3 tb: stowword 18-10
tb: !SFPutFile 17-3 tb: stowwordhandle 18-10
tb: SFR.eply Flavor 17-2 "STR " Resource 16-2
tb: !Shadow Constant 3-13 tb: !StringWidth 3-14
tb: !ShieldCursor 16..4 tb: !StuffHex 3-37
tb: IShieldCursor 3-9 :sub Method of tb:Point 3-35
tb: !shift:Key Constant 8-5 tb: lsubOver Constant 3-7
tb: !shiftKey-p 8-5 tb: lsubPin Constant 3-7
tb: shortDate Constant 17-1 tb: !SubPt 3-35

:show Method of tb:ControlRecord- 10-5 tb: suppress-osen 29-3
:show Method of tb:Window 9-6 tb: suppress-oserr-if 29-3

tb: !ShowControl 10-5 tb: suppress-some-osens 29-3
tb: !ShowCursor 3-9 tb: !swMode Constant 26-7
tb: IShowDitem 13-8 tb: !swOvemmErr Constant 25-3
tb: IShowHide 9-6 tb: !swOvemmErr-p 25-3
tb: IShowPen 3-11 tb: !Symbol Constant 7-2
tb: IShowW'uidow 9-6 tb: !SyncCmd Sound Command 26-4
tb: *signal-mac-osetr* Variable 29-1 tb: !SysBeep 27-5
tb: signal-oserr 29-3 system font 7-2

"SIZE" Resource 1-6 tb: !SystemClick 14-1
tb: ISizeControl 10-7 tb: !SystemEdit 14-1
tb: ISizeResource 2-7 tb: !SystemEvent 14-2
tb: ISizeWindow 9-10 tb: !SystemFont Constant 7-2
tb: ISlopeFromAngle 16-4 tb: !SystemMenu 14-2

smallFract data type 6-1 tb: !SystemTask 14-2
tb: !Sma11Fract2Fix 6-3 tb: !SystemTask 8-3

"snd " Resource 26-8 tb: ISystemZone 18-2
tb: SndChannel Flavor 26-8
tb: SndCommand Flavor 26-1 T
lb: !SndNewOlannel 26-8 TbServer application 1-2, 1-9
tb: !SndPlay 26-8 tb: ITEActivate 12-3

"snth" Resource 26-8 tb: ITEAutoView 12-5
tb: !SoundCmd Sound Command 26-6 tb: ITECalText 12-6
tb: !SpaceExtra 3-13 tb: !TEClick 12-3

Macintosh Toolbox Interface Index-13

General Index

tb: tTBCopy 12-3
tb: ITBCut 12-3
tb: ITEDeactivate 12-3
tb: ITEDelete 12-4
tb: ITBDispose 12-2
tb: !teForceLeft Constant 12-4
tb: ITBFromScrap 12-5
tb: tTBGetScrapLen 12-5
tb: tTBGetText 12-2
tb: ITBidle 12-2
tb: ITBinit 12-1
tb: ITBinit 1-2
tb: ITBJnsert 12-4
tb: lteJustCenter Constant 12-4
tb: lteJustLeft Constant 12-4
tb: lteJustRight Constant 12-4
tb: ITEKey 12-3
tb: ITENew 12-2
tb: ITEPaste 12-4
tb: ITEPinScroll 12-5
tb: TERec Flavor 12-1
tb: ITBScrap.Handle 12-5
tb: tTEScroll 12-5
tb: ITESelView 12-5
tb: ITESetJust 12-4
tb: tTBSetScrapLen 12-5
tb: ITESetSelect 12-3 ·
tb: ITESetText 12-2
tb: ITestControl 10-6
tb: ITBToScrap 12-5
tb: ITEUpdate 12-4

text styles 3-13
:text.blue Method oftb:WinCTab 9-14
:text.green Method of tb:WinCTab 9-14
:texLred Method oftb:WinCTab 9-14

tb: !TextBox 12-5
TextEdit Record 12-i

tb: ITextFace 3-13
tb: !TextFont 3-13

:textH Method of tb:DialogRecord 13-3
tb: !TextMode 3-13
tb: !TextSize 3-13
tb·: ITextwidth 3-14

:theProc Init Option of tb:ListRec 28-1
:the Window Init Option of tb:ListRec 28-1
:theWindow Init Option oftb:ControlRecord 10-2

tb: lHPrint Flavor 22-1
:three Method oftb:Pattem 3-10

tb: ITickCount 8-9
tb: !TickleCmd Sound Command 26-4
tb: !TimbreCmd Sound Command 26-6
tb: !Times Constant 7-2

:title Init Option of tb:DialogRecord 13-2
:title Method oftb:ControlRecord 10-2
:title lnit Option of tb:ControlRecord 10-2
:title Method oftb:Window 9-6
:title Init Option of tb:Wmdow 9-2
:titlebar.blue Method oftb:WinCTab 9-14
:titlebar.green Method of tb:WmCTab 9-14
:titlebar.red Method of tb:WmCTab 9-14

lnde:x-14

tb: toolbox-error Condition 29-1
tb: toolbox-warn Condition 29-1

:top Method oftb:ControlRecord 10-2
:top Method oftb:Rect 3-18
:top Init Option of tb:Rect 3-18

tb: ITopMem 18-7
tb: !Toronto Constant 7-2
tb: TPrStatus Flavor 22-4
tb: ITrackBox 9-9
tb: ITrackControl 10-6
tb: !TrackGoAway 9-8
tb: !transparent Constant 3-7

"TRAP" Resource 1-2

u

:trap-symbol Method oftb:Oserr 29-2
:trap-symbol Init Option of tb:Oserr 29-2
:two Method of tb:Pattem 3-10

tb: !Underline Constant 3-13
tb: !Undo Constant 14-2

:union Method of tb:Regi.on 3-28
:union Method oftb:Rect 3-19

tb: IUnionRect 3-19
tb: tueionRgn 3-28
tb: IUniquelID 2-6
tb: !UniqueID 2-6
tb: !UnloadScrap 15-2
tb: IUnmountVol 21-11
tb: !UnPackBits 16-2
tb: !updateEvt Constant 8-7
tb: lupdateMask Constant 8-6
tb: !UpdateResFile 2-8
tb: IUpdtControl 10-5
tb: !UpdtDialog 13-8
tb: IUseResFile 2-3 · .

:userlnfo Method of tb:SndChannel 26-8
tb: luseWFont Constant 10-1

v
:V Method oftb:EventRecord 8-2
:v Method of tb:Point 3-35
:v Init Option of tb:Point 3-35
:valid Method of tb:Regi.on 9-10
:valid Method of tb:Rect 9-10

tb: !ValidRect 9-10
tb: IValidRgn 9-10

:value Method of tb:ControlRecord 10-3
:value Init Option of tb:ControlReconl 10-3
:value Method of tb:HSVColor 6-2
VAR 1-3

tb: !vA:xisOnly Constant 9-12
tb: !Venice Constant 7-2

:version Method oftb:SFReply 17-3
:viewRect Init Option of tb:TERec 12-1
:viewRectBottom Method oftb:TERec 12-1
:viewRectLeft Method of tb:TERec 12-1
:viewRectRight Method of tb:TERec 12-1
:viewRectTop Method of tb:TERec 12-1
:vis Method oftb:ControlRecord 10-2
:visible Init Option of tb:DialogRecord 13-2

Macintosh Toolbox Interface

General Index

:visible Init Option of tb:ControlRecord. 10-2
:visible lnit Option of tb: Window 9-2

tb: volumeParam Flayor 21-5
volumes 21-1
:vRefNum Method of tb:SFReply 17-3

w
tb: IWaitCmd Sound Command 26-4
tb: IWaitMouseUp 8-9
tb: !WaitNextEvent 8-3
tb: IWakeUpCmd Sound Command 26-5
tb: !WatchCursor Constant 3·8

Wave Table Synthesizer 26-1
tb: IWaveTableCmd Sound Command 26-6
tb: !wContentColor Constant 9-14
tb: WDPBRecFlavor 21-7
tb: lwFrameColor Constant 9-14

:What Methodoftb:EventRecord 8-1
:When Method of tb:EventRecord 8-1

tb: !wHiliteColor Constant 9-14
tb: !White Variable 3-10

:WidMax Init Option of tb:Fontlnfo 3-14
:Wid.MaxF Method of tb:FMetricRec 7-4
:WidMaxl Method oftb:FMetricRec 7-4
:width Method oftb:Window 9-10
:width Method of tb:Rect 3-19

tb: WinCTab Flavor 9-13
window 9-1

tb: Window Flavor 9-2
tb: !Write 23-2
tb: !Write 21-16
tb: !WriteResource 2-9

:wStorage Init Option of tb:Window 9-2
: WTabHandle Method of tb:FMetricRec 7-4-

tb: lwTextColor Constant 9-14
tb: lwTitleBarColor Constant 9-14

x
tb: !X2Fix 16-5
tb: !X2Frac 16-5

.tb: IXorRgn 3-28

y
:year Method of tb:DateTimeRec 27-2
:yellow Method of tb:CMYColor 6-1

z
tb: !Z.CroScrap 15-2
tb: lzoomDocProc Constant 9-4
tb: !zoomNoGrow Constant 9-4
tb: !Zoom Window 9-9
tb: l_InfoScrap 15-1, 15-2

Macintosh Toolbox Interface lndex-15

