
68xxx UniFLEX®
Utility Commands

COPYRIGHT © 1984 by
Technical Systems Consultants, Inc.

111 Providence Road
Chapel Hill, North Carolina 27514

All Righ ts Reserved

LnfflEX@regfstered In U.S. Patent CIld Trooa1lark Offf03.

Revision Date

A 12/84

B 02/86

C 08/86

MANUAL REVISION HISTORY

Change

Original Release, 68000 UniFLEX Utility Commands

Manual Update for 68xxx.
Additional commands and miscellaneous corrections.

Manual Update for Version 2.0 of 68xxx UniFLEX.
New commands: kermit, newuser, su
Revised software: cc, devcheck, dir, headset,
load68k, login, move, re120, rel68k, remove,
set_termcap, shell
Revised text only: at, badblocks, diskrepair,
dperm, echo, env, int, makdev, password, perms,
ttyset, tune

COPYRIGHT INFORMATION

This entire manual Is provided for the personal use and enj oyment of the purchaser. Its
contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in .
whole or In part, by any means is prohibited. Use of this program and manual, or any part
thereof, for any purpose other than single end use by the purchaser is prohibited.

DISClAIMER

The supplied software is intended for use only as described in this manual. Use of
undocumented features or parameters may cause unpredictable results for which Technical
Systems Consultants, Inc. cannot assume responsibility. Although every effort has been
made to make the supplied software and its documentation as accurate and functional as
possible, Technical Systems Consultants, Inc. will not assume responsibility for any
damages incurred or generated by such material. Technical Systems Consultants, Inc.
reserves the right to make changes in .such material at any time without notice.

Preface

The UniFLEX~ Operating System supports- a wide variety of commands. Some
commands are for the general manipulation of files--for example,
creating files,deleting them, moving them about the system, and listing
their contents. Other commands serve to create and control tasks.
Still others perform general system maintenance.

This document provides a detailed description of each of the commands
available with the operating system.

UniFLEX~ Registered in u.S. Patent and Trademark Office

iii

Preface

iv

Syntax Conventions

The following conventions are used Ln syntax statements throughout this
manual.

1. Items that are not enclosed in angle brackets, '<' and '>',
or square brackets, '[' and ']', are "keywords" and should
be typed as shown.

2. Angle brackets. '<' and '>', enclose descriptions which the
user must replace with a specific argument. Expressions
enclosed only in angle brackets are essential parts of the
command line. For example, in the command

addusr <user_name>

the name of a user must be specified in the place indicated
by <user_name>.

3. Square brackets. '[' and ']'. indicate optional items.
These items may be omitted if their effect is not desired.

4. The underscore character, _, is used to link separate
words that describe one term, such as "user" and "name".

5. Characters other than spaces that are not enclosed in angle
brackets or square brackets must appear in the command line
as they appear in the syntax statement.

6 • If the word "1 ist" appears as part of a term
statement, that term consists of one or
elements described by the rest of the term.
spaces. For example. the term

<user name_list>

represents a list of user names.

in a syntax
more of the

separated by

7. Some utilities support optional features. known as options.
which alter the effect of the command. An option usually
consists of either a single character or a single
character, followed by an equals sign. '='. followed by an
argument. An "option string" is a plus sign followed by
one or more options. An option string may contain any
number of single-character options but only one option
which takes an argument. An option requiring an argument
must be the last option in an option string. Thus, the
command line must contain a separate option string for each
option requLrLng an argument. It mayor may not contain a
separate option string for each single-character option.

<continued)

The following are valid option strings:

+abcdefg
+abc=<arg>

The following are not valid option strings:

+abc=<arg>de
+a=<arg>b=<arg>

Unless specifically stated in the documentation about a
particular command, option strings may appear anywhere on
the command line after the command name.

Many common terms appear (often as abbreviations) in more than one
syntax statement. The manual does not explain these terms each time
they appear. However, the following table describes each one.

Table 1. Common Terms Used in Syntax Statements.

Term

arg
char
dev
dir
file_name
perms
splr
str

Meaning

Argument
Character
Device
Directory
A valid file name
Permissions
Spooler
String

addpath

addusr
alterpage
at
atexecute

atinfo
backup
badblocks
bcompare
blockcheck

chd
compare

copy
crdir
create

date
delusr
devcheck
dir

diskrepair

dperm

dump

echo

edit

end

env
fdncheck

filetype
find
format
free

TSC 8/7/86

Command Summaries

Add a name to the list of directories the shell program
searches when looking for an executable file.
Add a new user to the system.
Alter the size of the paging space on a disk.
Submit commands for execution at a later date and time.
Prepare the "at" subsystem for execution and initiate the
"at daemon" that handles the lists of commands submitted
by the "at" cwnmand.
Display the current status of the "at" subsystem.
Backup or restore files.
Add the specified block to the file of bad blocks.
Compare two files byte by byte.
Check the integrity of the allocation of all blocks used
in files and of the free list on the specified device.
Change the user's working directory.
Compare two text files line by line and report the
differences.
Copy a directory or a file to the specified destination.
Create a directory.
Create an empty file for each file name on the command
line.
Create a file defining the capabilities of each terminal
on the system.
Display or set the
Remove a user from
Check a device for
List either the
about a file.

time and date.
the system.
I/O errors.
contents of a directory or information

Check and, optionally, repair inconsistencies in the
logical structure of a disk.
Set the default permissions for the creation of files by
the current shell program or by tasks generated by the
current shell program.
Send both a hexadecimal and an ASCII listing of a file to
standard output.
Write the arguments on the command line to standard
output.
Invoke the text editor in order to create a new text file
or edit an existing one.
Stop the job currently being printed by the specified
pr int er progr am.
Display or change environment variables.
Check the integrity of the structure of the file
descriptor nodes (fdns) on the specified disk.
Attempt to identify the type of the specified file.
Search for a string in a file or in standard input.
Format a disk for system use.
Report the amount of free and used space on the specified
device.

(continued)

Command Summaries-2

hangup

headset

help

history
idle

info

insp
int
jobs

kermit
kill
lib-gen68k
libinfo
link
list

10ad68k

log
login

ls

mail

makdev
more
mount

move
newuser
next
nice
owner
page
password
path

perms
print
prompt

pstop

TSC 8/7/86

Specify the action that the shell program is to take when
it receives a hangup interrupt.
Change information in the binary header of an executable
file.
Display a brief description of the use and syntax of the
specified command.
Display the details of recent activity on the system.
Idle the specified printer program when it completes the
current print job.
Display the contents of the information field associated
with the specified binary file.
Activate a printer spooler for the specified device.
Send a program interrupt to another task.
Report the task IDs and starting times of all background
tasks originated by the user from the current shell
program.
Transfer a file from one machine to another.
Delete the specified file name from the file system.
Create a new library or update an existing one.
Display information about a library.
Establish a new link to an existing file.
Write the contents of the specified file to standard
output.
The "load68k" command is the 6 8xxx UniFLEX.
1 inking-loader.
Terminate the current shell program.
Give a new user access to the operating system and
establish the standard environment for the current shell
program.
List either the contents of a directory or information
about a fil e.
Send mail to someone else or display any mail belonging
to the user.
Create a special type of file, representing a device.
Display ASCII data with user control.
Insert a block device at a node of the directory tree
structure or display the mount table.
Move a file from one place to another.
Temporarily log in as a new user.
Restart an idled printer program.
Lower the priority of the specified command.
Change the owner of a file.
Format a file in pages.
Set or change a user's password.
Write the path name of the working directory to standard
output.
Change the permissions associated with a file.
Send a file to the specified printer spooler.
Define the prompt and reprompt strings issued by the
shell program.
Deactivate the specified printer spooler.

(continued)

purge
qdb
relinfo

rel20
rel68k

remove
rename
rerun

resume
setpath

shell

shutup
status

stop
strip
su

suspend
tail
time

touch

ttyset

tune

unmount
update_all

wait

TSC 8/7/86

Command Summaries-3

Delete a file from the specified printer-spooler queue.
The "qdb" command is a machine-language debugging system.
Display information about an executable or relocatable
file.
The "reI20" command is the 68020 relocating assembler.
The "reI68k" command a the 68000/68010 relocating
assembler.
Remove the specified file name from the file system.
Change the name of the specified file.
End the current print job, return the file to the print
queue, and idle the specified printer program.
Resume execution of a suspended task.
Display or redefine the names of the directories that the
shell program searches when looking for an executable
file.
Interactively specify the capabilities of each terminal
on the system.
The shell program is a command interpreter which is the
primary interface between the user and the operating
system.
Take the system from multi-user mode to single-user mode.
Write to standard output a report on the status of all
tasks belonging to the user.
Bring the system to a halt.
Remove the symbol table from an executable binary file.
Temporarily log in as a new user without changing the
working directory.
Suspend the execution of a task.
Write the end of the specified file.
Execute the specified command and report to standard
error the amount of time required.
Set the time of the last modification of a file to the
current date and time.
Examine or adjust the parameters associated with the
user's terminal.
Change the specified parameters in a file containing a
copy of the UniFLEX Operating System.
Unmount a previously mounted device from the file system.
Process a set of files, performing the specified
operation on each file if it is newer than the file it is
compared to.
Wait for a background task to complete before accepting
any mor e input.

Syntax Summaries

/etc/addusr <user_name>

alterpage <dev_name> [+pqv]

at <when> [+bdmrwx]

/etc/atexecute [+krs]

atinfo [+hp]

backup <dev_name> [<file_name_list> 1 [+aAbBCdDelLnNpqrRtTVzZ]

/etc/badblocks <dev_name> <address_list> [+dmpqsv]

/etc/blockcheck <dev_name>

chd [<dir_name>]

copy [<source_name_list>] <dest_file_name> [+bBcdDFlLnopPtTzZ]

/etc/crt_termcap <ttycap~file> <ttyassoc_file> <termcap_file>
/etc/crt_termcap +d

date [[<mm>-<dd>-<yy>] <hr>:<min>[:<sec>]

/etc/delusr <user_name> [+x]

/etc/devcheck <dev_name_list> [+bcdDfrsvV]

dir [<file_name_list>] [+abdflrsSt]

/etc/diskrepair <dev_name_list> [+abfmnpqruvz]

dperm [<perms_list>]

dump <file_name> [+i]
dump <file_name_1ist>

echo [<arK-list>] [+1]

TSC 8/7/86 (continued)

Syntax Summaries-2

end <splr_name>

env [<param_Iist>]

/etc/fdncheck <dev_name>

/etc/format<xx> [+BCdfFILmMnPqrsv]

headset <file_name_list> [+aAbBcCdfIStXZ]

history [<file_name>]

idle <splr_name>

/etc/insp <splr_name> [+f]

jobs

kermit cl[te] <dev_name> <esc_char>
kermit r[l][dit] <dev_name>
kermit s[l][dit] <dev_name>

kill <file_name_list> [+dlpqs]

lib-gen68k o=<old_Iib> n=<new_Iib> [u=<update>] [<del_list>] [+al]

libinfo <library_name_Iist> [+emM]

list [<file_name_list>] [+l<num>]

load68k <file_name_list> [+aAbBcCdDefFiIILmMnNoPqrRsStTuUwWxXyYZ]

TSC· 8/ 7/86 (continued)

Syntax Summaries-3

log

login <user_name>

ls [<file_name_list>] [+abdflrsSt]

mail [<file name list>] - -
/etc/makdev <file_name> <dev_type> <maj_dev_num> <min_dev_num>

more [<file_name_list>]

/etc/mount [<dev_name> <dir_name> [r]]

move <file_name_l> <file_name_2> [+klps]
move <file_name_list> <dir_name> [+klps]

newuser [<user_name>]

next <splr_name>

nice <command_name>

owner <new_owner> <file_name list>

page [<file_name_list>] [+fl<num>p]

password [<user_name>]

path

<print> [<file_name_list>] [+m]

prompt <prompt_str> [<reprompt_str>]

pstop <splr_name>

relinfo <file_name_list> [+ehrs]

re120 <file_name_list> [<param_list>] [+abefFiIJ1LnosSu]

re168k <file_name_list> [<param_list>] [+befFiIJ1LnosStu]

remove <f ile_name_list> [+dklpqw]

TSC 8/7/86 (continued)

Syntax Summaries-4

rerun <splr_name>

resume <task_ID>

/etc/set_termcap <ttycap_file> <ttyassoc_file> <termcap_file)
/etc/set_termcap +d

shell [+abclnvx] [<argument_list>]

/etc/shutup [[-]<minutes>]

status [+alswx]

/etc/stop [[-]<minutes>]

su [<user_name>]

suspend <task_ID>

tail <file_name> [<count>]

time <command_name>

ttyset [<param_list>] [+]

/etc/tune <file_name> [<param_Iist>]
/etc/tune <file_name> [+r]

/etc/unmount <dev_name>

update_all [<make_file_name>] [+q]
update_all <make_file_name> [<ar&-list>] [+q]

wait [<task_ID>]
wait any

TSC 8/7/86

addpath-l

addpath

Add a name to the list of directories the shell program searches when
looking for an executable file.

SYNTAX

DESCRIPTION

The "addpath" command, which is part of the shell program, adds a name
to the end of the list of directories the shell program searches when
looking for an executable file. This list, which is known as the search
path, is searched sequentially. By default, the search path consists of
the following directories: the user's working directory,
"<home_dir>/bin", "/bin", and" /usr/bin". (The home directory is the
user's login directory, as specified in the password file.) If the user
is the system manager, the search path also includes the file "/etc",
which is searched after "<home_dir>/bin" and before "/bin".

Arguments

EXAMPLES

A list of the names to add to the search
path. The names are added to the end of the
list in the order the user specifies them on
the command line.

1. addpath /usr/games
2. addpath •• bin

The first example adds the name "/usr/games" to the end of the list of
directories to search.

The second example adds the parent directory of the user's working
directory and the directory "bin" in the user's working directory to the
end of the list of directories to search.

TSC 2/13/86 <continued}

addpath-2

NOTES

• The "addpath" command is only effective whil e the shell program
under which it is invoked is running. The list of directories
searched by the login shell can be permanently altered by placing
the appropriate command in the file". startup" in the user's home
directory. The shell program automatically executes this file each
time the user logs in.

SEE ALSO

setpath
shell

TSC 2/13/86

addusr-l

addusr

Add a new user to the system.

SYNTAX

/etc/addusr <user_name>

DESCRIPTION

The "addusr" command is used to add a new user to the system. The
specified user name must be unique to the system. It must be between
one and eight letters long. All letters must be lowercase. Only the
system manager may use this command.

The "addusr" command performs the following tasks:

1. Adds the new name to the bottom of the password file,
"/etc/log/password".

2. Assigns a user ID to the user.

3. Creates a home directory owned by the new user with
"rwxr-x" permissions. If the directory "/usr" exists,
the name of the home directory is

/usr/<user_name>

Otherwise, it is simply

4. Puts a file named ".mail" in the user's home directory.

The system manager or the new user should use the "password" command to
ensure protection of the new user's personal files.

Arguments

TSC 2/13/86

A unique name assigned to the new user for use
in response to the login prompt.

(continued)

addusr-2

EXAMPLES

1. / etc/addusr chris

This example adds the user name "chris" to the bottom of the file
"/etc/log/password", assigns a user ID, and creates the directory
"/usr/chris" or "/chris"--which is owned by "chris" and has permissions
"rwxr-x" •

ERROR MES SAGES

Error assigning owner to "<dir_name>": <reason>
The operating system returned an error when "addusr" tried to make
the specified user the owner of "<dir_name>". This message is
followed by an interpretation of the error returned by the operating
system.

Error assigning owner to ". mail": <reason>
The operating system returned an error when "addusr" tried to make
the specified user the owner of the fil e ". mail". This message is
followed by an interpretation of the error returned by the operating
system.

Error creating "<dir_name>": <reason>
The operating system returned an error when "addusr" tried to
a home directory for the new user. This message is followed
interpretation of the error returned by the operating system.

Error creating ". mail ": <reason>

create
by an

The operating system returned an error when "addusr" tried to create
the file ".mail". This message is followed by an interpretation of
the error returned by the operating system.

Error creating "." file: <reason>
The operating system returned an error when "addusr" tried to create
the file ".". This message is followed by an interpretation of the
error returned by the operating system.

Error creating " •• " file: <reason>
The operating system returned an error when "addusr" tried to create
the fil e " •• ". This message is followed by an interpretation of the
error returned by the operating system.

Error
The
the
the

locking password file: <reason>
operating system returned an error when "addusr" tried to lock

password file. This message is followed by an interpretation of
error returned by the operating system.

TSC 2/13/86 (continued)

addusr-3

Error opening "/etc /log/password": <reason>
The operating system returned an error when "addusr" tried open the
password file. This message is followed by an interpretation of the
error returned by the operating system.

Name must be 1 to 8 lowercase letters.
The specified user name must be between one and eight letters long.
All letters must be lowercase.

Password file is locked. Try again later.
The c·ommands "addusr", "delusr", and "password" all lock the
password file so that two people cannot try to alter it at the same
time. This message indicates that one of these commands currently
has the password file locked.

Syntax: /etc/addusr <user_name>
The "addusr" command expects exactly one argument. This message
indicates that the argument count is wrong.

The name "<user_name>" is already in use.
The specified user name must be unique to the system.

You must be system manager to run "addusr".
Only the system manager may execute the "addusr" command.

SEE ALSO

delusr
mail
password
perms

TSC 2/13/86

alterpage-l

alterpage

Alter the size of the paging space on a disk.

SYNTAX

alterpage <dev_name> [+pqv]

DESCRIPTION

The "alterpage" command alters the SLZe of the paging space on the disk
associated with the specified device. The command prompts the user to
specify the new size as an increase or decrease compared to the current
size or as the total amount of paging space. The user may specify the
size as either blocks or kilobytes. The program prompts for all
necessary information as it runs (see MESSAGES).

When "al terpage" completes its task, it invokes the "diskrepair" command
in order to correct the logical inconsistencies introduced by changing
the size of the paging space. If the disk being altered is associated
with the root device, "alterpage" suspends all tasks while it is running
and, after altering the disk and running "diskrepair", intentionally
stops the system. The user must then reboot the operating system.

Arguments

<dev_name> The name of the block device associated with the
disk to alter.

Options Available

p Tell "diskrepair" to run with prompts.
q Tell "diskrepair" to run in quiet mode.
v Tell "diskrepair" to run in verbose mode.

EXAMPLES

1. alterpage /dev/fdO +p

This example causes "alterpage" to alter the paging size on the disk
associated with device "/dev/fdO". When "alterpage" finishes, it calls
"diskrepair", which, because the 'p' option was specified, prompts the
user for permission before making changes which require the deletion of
either files or directories.

TSC 8/19/86 (continued)

alterpage-2

NOTES

• If the user invokes "alterpage" on a disk in a mounted device, the
command unmounts the disk before altering the size of its paging
space. The device remains unmounted after the command terminates •

• Paging space must be contiguous. Therefore, the extent to which
"alterpage" can extend the paging space depends on the way in which
the file system uses the volume space, which immediately precedes
the paging space. The "alterpage" command cannot extend the paging
space into volume space that is used by the file system. A user who
needs more paging space than "al terpage" can provide must reformat
the disk.

The "alterpage" command always alters the size of the paging space
by or sets the size of the paging space to a multiple of 8 blocks.
If the user specifies an amount that is not a multiple of 8,
"alterpage" uses the largest multiple of 8 that is less than the
number actually specified.

MESSAGES

Altering size of paging space on device "<dev_name>".
The "alterpage" command prints this message before prompting the
user for the change to make.

Altering size of paging space on root device.
System will stop when complete. Continue?

This message warns the user that the device being altered is the
root device and that the system will intentionally shut down after
the alteration is complete. The user should respond with a 'y' for
"yes" to continue; with an 'n' for "no" to prevent the change.

Can increase size by
blocks «num_4>K).

The "alterpage"
possible increase
possible size.

<num_l> blocks «num_2>K) to a maximum of <num_3>

command calculates and reports both the maximum
in the size of the paging space and the maXlmum

Checking and repairing logical structure of the disk.
The program "diskrepair" is now rebuilding the disk.

Current size of paging space is <num_l> blocks «num_2>K).
This message shows the size of the paging space in both blocks and
kilobytes.

TSC 8/19/86 (continued)

Decrease size by <num~> blocks «num_2>K)?
The "alterpage" command issues this prompt before
size of the paging space in order to give the
verify the choice. The user should respond with a
with an 'n' for "no".

Enter amount to decrease size (blocks or kilobytesK):

alterpage-3

decreasing the
user a chance to
'y' for "yes";

If the user opts to decrease the size of the paging space, the
"alterpage" command prompts for the amount by which to decrease it.
If the value specified is a pure number, "al terpage" assumes that it
represents a number of blocks. If the value is a number with the
letter 'K' or 'k' appended to it, "alterpage" assumes that it
represents a number of kilobytes.

Enter amount to increase size (blocks or kilobytesK):
If the user opts to increase the size of the paging space, the
"alterpage" command prompts for the amount by which to increase it.
If the value specified is a pure number, "alterpage" assumes that it
represents a number of blocks. If the value is a number with the
letter 'K' or 'k' appended to it, "alterpage" assumes that it
represents a number of kilobytes.

Enter desired size of paging space (blocks or kilobytesK):
If the user opts to specify the size of the paging space, the
"alterpage" command prompts for the desired size. If the value
specified is a pure number, "alterpage" assumes that it represents a
number of blocks. If the value is a number with the letter 'K' or
'k' appended to it, "alterpage" assumes that it represents a number
of kilobytes.

Increase size by <num_1> blocks «num_2>K)?
The "alterpage" command issues this prompt before
size of the paging space in order to give the
verify the choice. The user should respond with a
with an 'n' for "no".

Lowest unused block is block number <num>.

increasing the
user a chance to
'y' for "yes";

This message reports the number of the first unused block in the
contiguous stretch of unused blocks adjacent to the paging space.
The "alterpage" command cannot extend the paging space past this
block.

Maximum size is limited to <num_1> blocks «num_2>K).
The "alterpage" command calculates and reports the maximum possible
size of the paging space.

New size is <num 1> blocks «num_2>K).
The "alterpage" command calculates and reports the size of the
paging space after making the specified change.

TSC 8/19/86 (continued)

alterpage-4

No ". badblocks" file on "<dev_name>".
Normally the "alterpage" command reads the bad-blocks file so that
it can avoid placing blocks containing I/O errors in the paging
space. This message is a warning to the user that the disk being
altered does not contain a bad-blocks file.

Paging space starts at block <num>.
The "alterpage" command determines and reports the address of the
first block of the paging space.

Reading disk.
The program is reading the disk to determine its structure. This
process may be time-consuming, depending on the size of the disk.

Select 'i', 'd', 's', or 'e' for increase, decrease, specify, or exit:
This prompt is the first in the series of interactive prompts that
allows the user to change the paging space.

Set size of paging space to <num_l> blocks «num_2>K)?
The "alterpage" command issues this prompt before setting the size
of the paging space in order to give the user a chance to verify the
choice. The user should respond with a 'y' for "yes"; with an 'n'
for "no".

Suspending all tasks.
The program is altering the paging space of the root device and must
suspend all tasks before proceeding.

ERROR MESSAGES

Cannot al ter paging space on a "backup" disk.
The disk in the specif ied device was cr ea ted by the "backup" command
and cannot be altered by "alterpage".

Cannot call "diskrepair".
The operating system returned an error when "alterpage" tried to
invoke the "diskrepair" command. Most likely "diskrepair" is
missing from the system or the user does not have permission to run
it.

Cannot decrease a size of O.
The disk does not contain any paging space.

Cannot increase size beyond <num_l> blocks «nu~2>K).
The user tried to increase the size of the paging space beyond the
maximum possible size.

TSC 8/19/86 (continued)

alterpage-5

Cannot increase the size of the paging space.
The paging space already occupies as much room on
possibly can. A user who needs more paging space
disk.

the disk as it
must reformat the

Cannot suspend running tasks: <reason>
The "a1terpage" command must suspend all running tasks when it runs
on the root device of a system, but it could not do so. This
message is followed by an interpretation of the error returned by
the operating system.

"<dev_name>" has contiguous-file space below the paging space.
You must reformat the disk.

On a structurally sound disk the paging space always precedes the
contiguous file space. The "a1terpage" command cannot function if
the contiguous file space precedes the paging space. The only way
to correct this problem is to reformat the disk.

"<dev_name>" is not a block device.
The device specified must be a block device.

"diskrepair" terminated abnormally (status = <num».
The "diskrepair" command received a program interrupt from the
operating system. The termination status indicates what kind of
interrupt it was. The user should try to invoke "diskrepair" on its
own.

Error getting status of the root directory: <reason>
The operating system returned an error when "alterpage" tried
the status of the root directory. This message is followed
interpretation of the error returned by the operating system.

Error opening "<dev_name>": <reason>

to get
by an

The operating system returned an error when "alterpage" tried to
open the specified device. This message is followed by an
interpretation of the error returned by the operating system.

Error reading free list: <reason>
The operating
read the free
followed by an
system.

system returned an error when "alterpage" tried to
list of the specified device. This message is
interpretation of the error returned by the operating

Error reading SIR on device: <reason>
The operating system returned an error when "alterpage" tried to
read the system information record (SIR) of the specified device.
This message is followed by an interpretation of the error returned
by the operating system.

TSC 8/19/86 (continued)

alterpage-6

Error seeking on "<dev_name>": <reason>
The operating system returned an error when "a1terpage" tried to
seek on the specified device. This message is followed by an
interpretation of the error returned by the operating system.

Error unmounting device: <reason>
The operating system returned an error when "a1terpage" tried to
unmount the specified device. This message is followed by an
interpretation of the error returned by the operating system.

Error writing new SIR to device: <reason>
The operating system returned an error when "a1terpage" tried to
write the new system information record (SIR) to the specified
device. This message is followed by an interpretation of the error
returned by the operating system.

Invalid option: '<char>'.
The option specified by <char> is not a valid option to the
"a1terpage" command.

No device specified.
The user invoked the "a1 terpage" command with one or more opt ions
but did not specify a device.

Out-of-range block found.
The "a1 terpage" command
working on the disk.
command to correct this

Run "diskrepair".
encountered an out-of-range block while

The user should invoke the "diskrepair"
prob1 em.

Syntax: a1terpage <dev_name> [+pqv]
The "a1 terpage" command expect s exactly one argument, which may be
accompanied by a list of options. This message indicates that the
user specified neither a device nor any options.

The size can only be decreased by <num_l> blocks «num_2>K).
The "a1terpage" command cannot decrease the size of the paging space
by the amount requested.

The size can only be increased by <num_l> blocks «num_2>K).
The "a1 terpage" command cannot increase the size of the paging space
by the amount requested.

You may specify only one device.
The "a1terpage" command expects exactly one argument. This message
indicates that the user specified more than one.

You must be system manager to run "a1terpage".
Only the system manager may execute the "a1 terpage" command.

SEE ALSO

diskrepair

TSC 8/19/86

at-l

at

Submit commands for execution at a later date and time.

SYNTAX

at <when> [+bdmrwx]

DESCRIPTION

The "at" command submits connnands read from standard input for execution
at a later date and time, which are specified by the <when> argument.
If standard input is a terminal, the prompt "at»" is issued to
standard error, requesting another line. To stop entering lines, the
user must type the end-of-file character (control-D) as the first
character of a line.

Arguments

<when> The date and time to execute the connnands.

Format for Arguments

<when> [<time>]
[<time>] <date>
[<time>] <day>
now

The <time> parameter may be of the form <hh>:[<mm>] where <hh> is the
hour number (0 through 23 inclusive), and <mm> is the minute number (0
through 59 inclusive, 0 by default). A twenty-four hour clock is
assumed unless the user appends "am" or "pm" (or "AM" or "PM") to the
<time> parameter (in which case the hour number <hh> must be between 1
and 12 inclusive). The <time> parameter may also be a keyword which
describes the time of day (see Keywords). If the <time> parameter is
omitted, 00:00 (midnight) is assumed.

The <date> parameter may be of the form [<mm>/]<dd> or <dd>[.<mm>] or
[<mm>-] <dd> where <mm> is a number representing the month of the year (1
through 12 inclusive) and <dd> is a number representing the day of the
month (1 through 31 inclusive, see NOTES). If the month <mm> is
omitted, it defaults to the next month if both the day of the month <dd>
and time <time> have passed in the current month or to the current month
if they have not. The <date> parameter may also be of the form <month>
<dd> or <dd> <month> where <month> is a keyword describing a month of
the year (see Keywords), and <dd> 1S a number between 1 and 31
inclusive.

TSC 8/4/86 (continued)

at-2

The <day> parameter is a keyword describing a day of the week (see
Keywords). The keyword "now" requests execution as soon as possible.

Keywords

A keyword is recognized by any sequence of adjacent characters,
beginning with the first character, that is unique to that keyword. For
example, "su" , "sun", "sund" , "sunda", and "sunday" are all recognized
as the keyword "sunday". However, "s" is not, since two other keywords,
"september" and "saturday", also start with that sequence.

Keywords known to "at" are

Months

january
february
march
april
may
June
jUly
august
september
october
november
december

Weekdays

sunday
monday
tuesday
wednesday
thursday
friday
saturday

Time of Day

midnight
noon

Miscellaneous

now

Options Available

b

d

m

r

w
x=<cmd>

TSC 8/4/86

When the specified time arrives and execution of the
list of commands begins. do not wait for its
completion before starting to execute commands
queued by other "at" calls.
If the list of commands has expired (i.e., the
"atexecute" command discovers that over an hour has
passed since the requested execution time), tell
"atexecute" to execute the commands at the first
opportunity instead of deleting them.
Mail messages to the user telling at what times
execution of the list of commands began and ended.
Resubmit the commands on successful completion with
the same <time> parameter.
Execute on working days only.
Execute the command supplied as
instead of obtaining a list
standard input (see NOTES).

an argument «cmd»
of commands from

(continued)

at-3

EXAMPLES

1. at 5:00pm wednesday <wed_cmnds
2. at
3. at 8:am "+rwmx=shell startday"

The first example submits commands for execution at 5:00 P.M.
Wednesday. The commands are read from the file "wed_cmnds".

on a

The second example submits commands for execution at midnight. These
commands are read from standard input. If standard input is a terminal,
the prompt "at»" requests the next command in the list being
submitted. The user must type an end-of-file character as the first
character on the line in order to end the list.

The third example submits the command "shell startday" for execution at
8:00 A.M. on working days only and requests that the command be
resubmitted upon successful completion (the quotation marks are
necessary because of the space character embedded in the command). This
example sends time stamps to the user through the system mail when the
command begins and when the command successfully ends.

NOTES

• The time parameter <when> is the next occurrence of that time. For
example, the command "at 14:00 1" should be read as "at the next
14:00 hours on the first of a month" instead of as "on the next
first of the month at 14:00 hours. II Notice the difference in meaning
if it is currently noon on the first of the month.

If the user types a keyboard interrupt (control-C),
being submitted by "at" are discarded, and control
calling procedure (usually the shell program).

the commands
returns to"the

• If the argument to the 'x' option contains a space or any other
character which has special meaning to the shell program (such as
the matching characters, the pipe symbol, or the symbols for I/O
redirection), the user must enclose the option string which contains
the 'x' option in quotation marks (see the third example). command.

• If the user represents a day of the month with a number that ~s
greater than the largest day of that month, "at" interprets it as
the last day of the month. For example, "2/31" always refers to the
last day of February.

• If a list of submitted commands expires (the requested execution
time passes by more than an hour and the 'd' option has not been
requested) and the 'r' option has been requested, the list of
commands is not executed, but is resubmitted with the same <time>
parameter as though it had been executed.

TSC 8/4/86 (continued)

at-4

ERROR MESSAGES

at error: Unknown option:
The option <char> is
Available) •

<char>
not known to "at" (see SYNTAX and Options

at error: Unrecognizable string: <str>
The characters <str> could not be deciphered by "at" (see Format of
Arguments) •

at error: Ambiguous string: <str>
The characters <str> are not unique to one keyword (see Keywords).

at error: Invalid construction of date and time.
The date and time specified contain conflicting information (see
Format of Arguments).

at error: Month number is out of range.
The month number specified is less than 1 or greater than 12 (see
Format of Arguments).

at error: Day of month is out of range.
The day of the month specified is less than 1 or greater than 31
(see Format of ~rguments).

at error: Hour number is out of range.
The hour number specified is greater than 23 (see Format of
Arguments) •

at error: Minute number is out of range.
The minute number specified is greater than 59 (see Format of
Arguments) •

at error: "AM" or "PM" with twelve hour clock only.
Either "AM" or "PM" was used with an hour number which was not
between 1 and 12 inclusive (see Format of Arguments).

at warning: 'r' option ignored with 'now' keyword.
The repeat option 'r' is ignored if the <time> parameter is "now".
The commands are not resubmitted upon successful completion.

at warning:
The option
ignored if

'w' option ignored with 'now' keyword.
that requests execution on working days
the time specification is "now".

at warning: restart /etc/atexecute

only,
, ,
w , is

The commands have been queued, but they cannot be successfully
executed unless the "a texecute" command is run before the execution
time arrives.

TSC 8/4/86 (continued)

SEE ALSO

atexecute
atinfo
shell

TSC 2/13/86

at-S

atexecute-l

atexecute

Prepare the "at" subsystem for execution and ini tiate the "at daemon"
that handles the lists of commands submitted by the "at" command.

SYNTAX

/etc/atexecute [+krs]

DESCRIPTION

The "atexecute" command initiates the handling of lists of commands that
have been submitted through the "at" command. It first prepares the
directory containing the lists submitted ("/usr/gen/at"), then spawns
the daemon, or continuous background task, that executes these lists.

The command fails if the system is in single-user mode.
lists of commands (those whose execution time has passed
one hour) that were submitted through "a t" without the ' d'
removed.

Options Available

k Keep all lists of commands, including those which
have expired.

r Remove all lists of commands, regardless of their
execution times.

s Permit execution ~n single-user mode.

The "at daemon"

All expired
by more than
option are

The "at daemon" (from now on referred to as the daemon) "handles the
execution of lists of commands submitted through the "at" command. It
normally sleeps until an event occurs to indicate that there is
something for it to do. These events are "alarm" interrupts, ''bangup''
interrupts, and interrupts from the "at" command.

The "alarm" and "at" interrupts indicate to "atexecute" that it must
search the list of files containing lists of commands (called submitted
files) to see if one is ready for execution. Any submitted file whose
requested execution time has passed is ready for execution. If no file
is ready for execution, the daemon computes the time until something
will be ready to execute and sleeps for that amount of time. If at
least one file is ready for execution, the daemon selects a file for
execution.

TSC 2/13/86 (continued)

atexecute-2

If more than one file is ready to run, the daemon selects the files in
order of ascending execution time. If two or more files have the same
requested execution time, the files submitted with the 'b' option are
selected before those submitted without it. Otherwise, the order of
selection is indeterminable.

Submitted files have names of the form "###ff:lF#######A?" where each pound
sign, '#', is a digit (0-9), 'A' is the letter 'A', and '?' is any
upper- or lowercase letter. Encoded in that file name are the requested
execution time and the execution flags. (The "atinfo" command decodes
that information.)

After a file has been selected for execution, the first number in its
name is changed to its corresponding letter of the alphabet (e.g., 0
becomes 'A', 1 becomes 'B', etc.). A shell program is invoked to
process the selected command list. The daemon waits for the shell
program to complete before selecting another file unless the file was
submitted with the 'b' option. When the shell ends, "atexecute" removes
the file and searches to see if any remaining files are ready for
execution.

If the daemon receives a "hangup" interrupt, it terminates gracefully as
soon as possible. It terminates immediately if it is sleeping, but if
it is currently executing a file, it waits until that file completes
before terminating. In all cases, the daemon immediately breaks the
communication link between "at" and itself.

Format of the ''holidays'' File

The "at" daemon handles the "at" option 'w' (execute on working days
only). The daemon looks for a file called "/usr/gen/at/holidays". If
it does not find the file, the daemon assumes that all days of the week
are working days and that there are no holidays. If it finds the file
''hoI idays", it expects it to contain a list of days of the week which
are not working days and a list of dates which are holidays.

The first line of the file "holidays" is a list of keywords, separated
by spaces, naming the days of the week which are not working days. A
maximum of five nonworking weekdays is accepted. (See "at" for
information on keyWords.)

On the second and subsequent lines, the dates of the year that are
holidays (nonworking days) are listed, one per line. The format for the
date. is the same as that for the <date> parameter described for the "at"
command. A maximum of thirty holiday dates is accepted.

TSC 2/13/86 (continued)

atexecute-3

NOTES

The 'k' and 'r' options are mutually exclusive and may not be
specified together.

If a file submitted through "at" with the 'r' option expires, it is
resubmitted before it is removed .

• Communications between "at" and the daemon are made through a file
called "/tmp/atxc trpid", which contains the task number of the
daemon and other information. If the daemon discovers that this
file has been deleted or corrupted, it terminates.

• The system manager can avoid having
command every time the system is booted
command in the file "/etc/startup":

to execute the "atexecute"
by putting the following

/etc/atexecute +ks

ERROR MESSAGES

atexecute error: 'k' incompatible with 'r'
The 'k' option (keep all expired files) ~s incompatible with the 'r'
option (remove all submitted files).

atexecute error: 'r' incompatible with 'k'
The 'r' option (remove all submitted files) ~s incompatible with the
'k' option (keep all expired files).

atexecute error: System is in single-user mode.
The "atexecute" command does not allow itself to run if the system
is in single-user mode unless the user specifies the's' option.

atexecute error: /tmp/atxctrpid already exists
The file that allows communication between the "at" command and the
"at" daemon already exists. Probably, the "atexecute" command is
not necessary as a daemon is already running on the system.
However, if "at" commands are warning that they are unable to awaken
the daemon, the system manager should remove this file and try the
"atexecute" command again.

atexecute warning: no holidays
The file "/usr/gen/at/holidays" could not be found or could not be
deciphered. No hol idays (nonworking days) are recognized.

SEE ALSO

at
atinfo

TSC 2/13/86

atinfo-l

atinfo

Display the current status of the "at" subsystem.

SYNTAX

atinfo [+hp]

DESCRIPTION

The "atinfo" command examines the "at" subsystem and writes its current
status, consisting of the status of the "at" daemon and a table of
submitted lists of commands, to standard output. If the user specifies
the 'h' option, the file containing the information on nonworking days
and holidays is also displayed.

The 'p' option allows a user to examine and remove files that the same
user previously submitted. The system manager may examine or remove any
fil e. In response to the prompt "? ", the user may type an ' l' to
examine (list) the list of commands, an 'r' to remove the list of
commands, or an 'n' to go to the next list of commands. A carriage
return must follow the character. Typing only a carriage return is the
same as typing an 'n' followed by a carriage return. The 'p' option
causes "atinfo" to write all information to standard error. Otherwise,
it writes all information to standard output.

Options Available

h List the file containing information about holidays.
p Prompt to list and remove each list of commands submitted.

EXAMPLES

1. atinfo +p

This example displays the current status of the "at" subsystem. After
displaying an entry for each file in the queue submitted to "at" by the
user, the "atinfo" command prompts for instructions on listing or
removing the commands in that file.

MESSAGES

"at" daemon is available, process id is <num>
The "at" subsystem is currently active and is available for the
execution of lists of commands. The process ID of the "at" daemon
is <num>.

TSC 2/13/86 (continued)

atinfo-2

"at" daemon is not available
The "at" subsystem is not currently active. Lists of commands
submitted by the "at" command cannot be executed until the subsystem
is activated by the "atexecute" command.

ERROR MESSAGES

atinfo warning: Cannot be examined
The file has either been selected for execution or removed.
Therefore, it may not be examined.

atinfo warning:
The fil e has

Cannot be removed
either been selected

Therefore, it may not be removed.

'<char>~ unknown. Use '1', 'n', or 'r",

for execution or removed.

The "at" command cannot recognize the character typed in response to
the question-mark prompt. The recognizable responses are '1', 'n',
and

, ,
r •

syntax: atinfo [+hp]
The "atinfo" command contains either an argument which is not an
option string or an unknown option.

SEE ALSO

at
atexecute

TSC 2/13/86

backup-1

backup

Backup or restore files.

SYNTAX

backup <dev_name> [<file_name_list>] [+aAbBCdDelLnNpqrRtTVzZ]

DESCRIPTION

The "backup" command is used to create and maintain archival backups of
files or directories on the system. Although the program is named
"backup", it can operate in four distinct modes, selected by options:
create mode, append mode, catalog mode, and restore mode. In create
mode "backup" copies the specified files or directories to the backup
device. It destroys any data that are already on the backup device. In
append mode, "backup" adds the specified files or directories to the
backup device beyond all existing files. Thus, it is possible to append
to a backup device a file with path and file names identical to those of
an existing backup file. In catalog mode "backup" lists the contents of
the backup device in much the same format as that used by the "dir" and
"Is" commands. In restore mode it retrieves files or directories from a
backup device.

The "backup" command stores files and directories on, and retrieves them
from, block devices only. In most cases the backup device is some sort
of disk, probably a floppy disk, but streaming tape devices may also be
used. The "backup" command uses a unique file structure on backup
devices, which is completely different from the standard UniFLEX file
structure. Therefore, backup devices must not be mounted onto the
UniFLEX file system using the "mount" command. The only way to read
devices written by "backup" is to use "backup" in restore mode. The
only other UniFLEX command which the user should use on a backup device
is "devcheck".

If the backup device is a disk, it should generally be formatted before
the backup operation begins. Although the UniFLEX file structure
created by the format command is destroyed by "backup", the raw
media-formatting is essential. During the backup process, the user is
given the opportunity to request that ''backup'' format disks before
writing to them.

Backups may extend over more than one volume of the
There are no restrictions on the sizes of files copied.
"backup" breaks files into segments and stores each
different volume.

TSC 2/13/86

backup medium.
If necessary,

segment on a

(continued)

backup-2

The "backup" command writes all prompts and error messages to standard
error. It writes everything else to standard output.

Arguments

<dev_name>
<file_name_list>

Name of the backup device.
List of the names of files and
to process. Default is
directory.

directories
the working

If the user specifies a directory name as
create, or append mode, the program processes
directory. If the user also specifies the
restores all files within the given directory

an argument in restore,
only the files within that
... d' option, the program
and its subdirectories.

Options Available

a=<days>

A
b
B

C

d

D

e

1

TSC 2/13/86

Copy only those files which are no older
than the specified number of days. A value
of 0 specifies files created since midnight
on the current day; a value of I specifies
files created since midnight of the previous
day, and so forth.
Append to a previous backup.
Print sizes of files in bytes.
Do not backup or restore files which end in
" • bak" •
Print a catalog of the files on an existing
backup. If the user specifies the ... c ...
option, "backup" ignores all the names in
<fil e_name_list >.
Backup or restore entire directory
struc tures.
Do double-buffered writes to the tape if the
hardware supports it. 'When the "backup"
command performs double-buffered writes, it
splits the buffer it would normally use in
half. 'When the first half is filled,
"backup" writes it to the tape while it is
filling the second half. When the second
half is filled and the first half has been
written to the tape, "backup" writes the
second half to the tape while refilling the
first half. Writing continues in this
manner until the operation is complete.
Erase the tape prior to writing. This
option may only be used in create mode. The
process of erasing a tape automatically
retensions it.
List file names as they are copied or
restored.

(continued)

L
n

N

P

q

r

R
t [=<f ile_name>]

T[=<length>]

V=<volume_name>

z

z

TSC 2/13/86

backup-3

Do not unlink files before restoring.
Only restore a file if the copy on the
backup device is newer than the copy at the
destination. If the destination file does
not exist, the program restores the fil e
(unless prohibited by another option, such
as the 'B' option).
Do not prompt for the initial volume.
Prompt the user with each file name to
determine whether or not the specified
procedure (backup or restore) should be
performed on that particular file.
Suppress all printing except for prompts and
error messages. This option is useful when
"backup" is running in the background.
Retension the tape before starting the
specified procedure. This option is used to
eliminate any slack in the tape. The drive
winds the tape forwards until it reaches the
physical end of the tape, then rewinds it.
If the backup procedure spans more than one
tape, "backup" r etensions each tape.
Restore files from an archive.
Backup only those files which have been
created or modified since the date in the
specified file. When the backup is
finished, update the date in the file (see
NOTES). If the user does not specify a
file, the default is ".backup.time".
The backup device is a streaming tape device
with a tape of the specified length (in
feet). The default length is 450 feet.
Currently, the "backup" command supports
tapes 300, 450, or 600 feet long.
Each set of backup volumes has a name. By
default, the "backup" command prompts for
the volume name. The user may avoid the
prompt by specifying the name with the 'v'
option. The name may contain as may as
forty characters.
When it is operating in create or append
mode, the "backup" command sets a flag in
the header for each file indicating whether
or not it is a contiguous file. By default,
when operating in restore mode, it preserves
the file type. The user may, however, use
the 'z' option to specify that all files
should be restored as contiguous files.
When it is operating in create or append
mode, the "backup" command sets a flag in
the header for each file indicating whether

(continued)

backup-4

or not it is a contiguous file. By default,
when operating in restore mode, it preserves
the file type. The user may, however, use
the 'z' option to specify that no files
should be restored as contiguous files.

All modes except catalog mode are quiet. The '1' option allows the user
to see what the program is actually doing.

The 'n' option is only used in restore mode.

The 't' option can be used only in create and append modes. If the user
specifies the 't' option, but the "backup time" file specified as its
argument does not yet exist, "backup" copies all the files and
directories listed on the command line. Thus, a user may obtain a full
backup (either without the 't' option or with a nonexistent '~ackup
time" file) or a partial backup, which includes only those files created
since the last backup.

EXAMPLES

1. backup /dev/fdO +1
2. backup /dev/ fdO +c
3. backup /dev/fdO +lR
4. backup /dev/fdO +ld file! file2 dirl dir2
5. backup /dev/fdO +ld file1 file2 dirl dir2 +a=5
6. backup /dev/fdO +ltT=300
7. backup /dev/fdO +lAt=backup_time
8. backup /dev/fdO +lRn file! dir2

The first example
dey ice "/ dey / f dO" •
device.

backs up all files in the working directory to the
The file names are listed as they are copied to the

The second example lists the contents of the backup on "/dev/fdO". If
this command is executed just after the command in the first example, a
detailed listing of the files copied is printed. The format of this
listing is very similar to that of the commands "dir" and "ls". .

The third example restores all of the files, excluding subdirectories
and their contents, from the backup on "/dev/fdO". If this command is
executed just after the command in the first example, the files backed
up in that example are restored.

The fourth example copies (in order) the files "file1" and "file2", then
all files and directories contained in the directories "dirl" and
"dir2" •

TSC 2/13/86 (continued)

backup-S

The fifth example performs the same function as the fourth example
except that it copies only those files which are five days old or less.

The sixth example creates the same backup as the first example, but only
copies the files created or modified after the time contained in the
file ".backup.time". If this file does not exist, all the files are
copied. This example specifies that the backup device is a streaming
tape device with a 300-foot tape.

The seventh example adds a set of files to a previously created
In particular, it adds exactly the files which were created or
since the creation of the fil e "backup_time".

backup.
modified

The eighth example restores the file "filel" from the backup. It then
restores the files contained in "dir2" on the backup, creating the
directory "dir2" if necessary. This example does not restore any
subdirectories in "dir2" or any files or directories contained in
subdirectories in "dir2".

NOTES

• When using append mode, the user must place the final volume of the
backup medium in the backup device. Because the "backup" command
always expects to receive the volumes in order, it issues a message
saying that the user has inserted the wrong volume and prompts for
permission to continue. In this case the user does want the last
volume in the drive and should respond with a y to the prompt.
The program then appends files to that volume, requesting new
volumes as necessary.

• In restore mode, file names or directory names on the command line
are used to select the files or directories to be restored. The
program searches the entire backup for each argument specified. If
multiple files satisfy the restoration criteria, the program
restores them all, destroying the older version as the new one is
restored. Thus, the user must provide all backup volumes (in order)
for each argument to ensure proper restoration.

• When files are restored, they are generally restored to the same
directory location as the user specified when they were backed up.
As files are backed up, "backup" makes an indication of the path
name for each file. When files are restored, the program uses the
path name to place the file in its proper directory location. If
the path name is relative (i.e., does not begin with 'I'), the path
name of the restored directory is also relative. Thus, files backed
up with a relative path name may be restored to a directory location
different from the one in which they were created. An example
should make this clear. If the working directory is backed up,
either by specifying no source files or by using the directory name

• , the files are backed up with a relative path of When

TSC 2/13/86 (continued)

backup-6

these files are restored, they are placed in the directory "
which might not be the same directory they originally came from.
This feature allows the manipulation of entire file systems in a
general fashion. To specify a unique directory location for a file,
the user should specify its entire path name, starting with 'I' .

• It is possible to restore backed up data onto the device currently
being used as the root device or system disk. Two possible problems
arise, however. First of all, if the UniFLEX operating system is
restored from a backup, the result is not bootable. In such a case,
the UniFLEX file must be copied from the origipal master disk and
installed in order to allow booting. The second problem occurs if
the shell program or the device "ttyOO" is restored over the current
shell or "ttyOO". This operation leaves unreferenced files in the
file system. Unreferenced files must be corrected with the
"diskrepair" command. In general, it is always a good idea to run
"diskrepair" on the root device after restoring backed-up data to
it.

MESSAGES

Several of the following messages prompt the user for a positive or
negative response. The program interprets any response that does not
begin with an upper- or lowercase 'n' as a positive response.

Backup to "<file_name>"
Catalog of backup on "<file_name>"
Restore backup from "<file_name>"
Upda te backup on u<f il e_name>"

These messages are printed when "backup" begins. They notify the
user of the function about to be performed.

Copy "<file_name>" (yin)?
Restore "<f il e_name>" (yin)?

If the user specifies the 'p' option, the program prints
these prompts before it takes any action. A response of 'n'
indicates that the operation should not be performed for the
file. Any other response is interpreted as "yes".

Device model name?

one of
or 'N'

given

The user should respond to this prompt with the model name which
corresponds to the volume being formatted. Refer to the
documentation for the format program for the available models.

Do' 'you wish to abort "append" function and create a new backup?
This message is printed at the initiation of the "append" operating
mode if an invalid header (indica ting a bad backup format) is
detected. The user has the option of aborting from "append" mode
and switching to "create" mode.

TSC 2/13/86 (continued) .

backup-7

••• Erasing tape
If the user specifies the 'e' option, this message appears while the
drive erases the tape. Because the drive winds the tape forwards
until it reaches the physical end of the tape, then rewinds it, this
procedure may take several minutes.

Format program name?
This prompt is issued in response to a "format" request for the next
volume. The user should respond with the name of the appropriate
formatting program for the given device.

Insert next volume - Hit C/R to continue:
This prompt is issued when the program needs a new backup volume.
The user should type a carriage return only when the next volume has
been placed in the device. When creating new backups or when
appending to an old one, the user may enter the character 'f' or
'F', followed by a carriage return. If the program is in append
mode, it automatically switches to create mode and starts a new
backup. The 'f' and 'F' both indicate that the volume has been
inserted in the drive, but that it must be formatted before
continuing. If the user specifies an 'f', "backup" first tries to
read the file "/etc/format. control" (the format-control file).

The format-control file may contain instructions for formatting all
media in all drives the same way or different instructions for
formatting media in different drives. In the first case, the first
line of the file should contain the file specification of the
formatting program (e.g., "/etc/formatfd"); the second, the model
name. In the second case, the first character of the first line of
the file must be an asterisk, '*'. The file specification for a
device must immediately follow the asterisk. The second and third
lines of the file should then contain the file specification of the
formatting program and the model name, respectively, for formatting
media in the specified device. This pattern of three lines may be
repeated to specify formatting instructions for other devices. The
first character of any line specifying a device must be an asterisk.

If the format-control fil e does not exist, "backup" prompts the user
for the information necessary to format the volume. If the
format-control file contains formatting instructions for individual
devices and the user specifies a device that is not described in the
file, "backup" prompts the user as if the format-control file did
not exist.

If the user specifies an 'F' in response to the prompt to continue,
"backup" immediately prompts for the information necessary to format
the volume. Thus, the 'F' can be used to change the type of
formatting being used during the backup operation.

If for any reason the formatting operation fails, "backup" again
prompts the user to insert the next volume, and if the user tries to

TSC 2/13/86 (continued)

backup-S

format a disk, prompts for formatting instructions. These
instructions become the default instructions that "backup" uses if
the user subsequently specifies an 'f' in response to the prompt to
continue.

link "<file_name 1>" to "<file_name_2>"
copy "<f il e_name>"
=c:== Copying from "<dir_name>"

The program prints these messages as it takes the corresponding
action during a creation operation •

••• Retensioning tape
If the user specifies the 'r' option, this message appears while the
drive retensions the tape. Because the drive winds the tape
forwards until it reaches the physical end of the tape, then rewinds
it, this procedure may take several minutes •

••• Spacing to EOT
When the "backup" command begins an append operation, it must first
locate the logical end of the tape. To do so, it reads the tape
track by track until it reaches the logical end. Once "backup"
finds the end, the drive must rewind the tape to the beginning and
wind it to the logical end of the tape before it will allow "backup"
to write to the tape. This procedure may take several minutes'.

This is Volume <number_l> -- Expected Volume <number_2> -
Continue?

The program expects the user to insert volumes in sequential order.
If a volume appears out of order, "backup" pr ints this message. If
the user types anything except an 'n' or an 'N' as the first
character of the response to the message, "backup" ignores the fact
that the volumes are out of order and continues with the backup.
Otherwise, it prompts the user for another volume. If the program
is in restore mode, it is important to insert volumes sequentially
because "backup" cannot correctly restor-e files that are broken
across volumes if the volumes are inserted out of order •

••• Using <number> tape buffers
The ''backup'' command tries to obtain as much memory as possible to
use as a buffer when it is working with a tape device so that it can
m1n1m1ze the number of times it needs to access the tape. This
message tells the user the number of Sl2-byte blocks that it was
able to obtain.

Volume name?
Each set of backup volumes has a name. The user should enter the
name in response to this prompt. The name may contain as many as
forty characters.

TSC 2/13/86 (continued)

backup-9

Volume <number> of "<vol_name>"
Whenever a new volume is inserted and properly validated, the
program prints this message, which indicates the name of the backup
volume and its sequence number.

ERROR MESSAGES

"backup" must run with system manager privileges!
Currently running as: <user_number>

Some features of "backup" require privileges only available to the
system manager. In most installations the program will be installed
so that these privileges are given to the program. If this message
is printed, the user should check with the system manager.

'd' option only allowed for streaming tape (+T).
The 'T' option must be used with the 'd' option.

"<dev_name>" is not a block device
"<dev_name>" is not a tape device

The destination device for the backup must be a block device or, if
the user specifies the 'T' option, a streaming tape device. This
message indicates that the specified device (which is always the
first argument) is not such a device.

'e' option allowed only in create mode.
The 'e' option is incompatible with the 'A', 'C', or 'R' option.

'e' option only allowed for streaming tape (+T).
The 'T' option must be used with the 'e' option.

***Error: <problem> "<file_name>": <reason>
The operating system returned an error when ''backup'' tried to
perform the action described by <problem> on <file name>. This
error message is followed by an interpretation of the error returned
by the operating system. The program tries to continue for all
errors except "device full" during restore mode.

"<file_name>" not located - try again?
When using the program in restore mode, the user may specify which
files or directories to restore. If the program cannot find a
specified file or directory after searching the entire backup, it
prints this message. If the response is not 'n' or 'N', the program
searches the entire archive again. This option is allowed because
volumes need not be inserted in order of their creation when the
program is in restore mode. If one volume is left out or if the
final volume is inserted before the entire archive has been
processed, some files might not be processed. Note that if the user
specifies more than one file name or directory name, the program
processes the entire archive for each file before proceeding to the
next one.

TSC 2/13/86 (continued)

backup-lO.

-- Formatting not allowed during Catalog/Restore or on tape
The user may not format a disk if the program is in either
or restore mode or if the backup device is a streaming tape

*** Inval id Volume Header -- Not a "backup" disk ***

catalog
device.

The program validates each backup volume before using it. If this
validation fails, the program prints this message to indicate that
something is wrong. The user then has another chance to insert the
proper volume and continue. If validation fails while the program
is in append mode, the user may abort from append mode and create a
totally new backup instead.

'r' option only allowed for streaming tape (+T).
The 'T' option must be used with the 'r' option.

('t' or 'a') and ('C' or 'R') are incompatible options
'a' and 't' are incompatible options
'A' and 'c' are incompatible options
'A' and 'R' are incompatible options
'R' and 'c' are incompatible options

.The program can run in only one of its four operating modes at a
time. Specifying certain combinations of options implies the
execution of more than one operating mode and is therefore illegal.

Invalid option: <char>
The option specified by <char> is not a valid option to the ''backup''
command.

** Warning: directory "<dir_name>" is too large!
** Some directories were ignored
** Warning: directory u<dir_name>u is too large!
** Some ·files were ignored

The program uses some internal tables during the backup process (not
during restore or catalog). If the limits of these tables are
exceeded (highly unlikely), these messages appear.

SEE ALSO

format

TSC 2/13/86

badblocks-l

badblocks

Add the specified block to the file of bad blocks.

SYNTAX

/etc/badblocks <dev_name> <address_list> [+dmpqsv]

DESCRIPTION

The "badblocks" command adds the specified blocks to the file
"/ • bad blocks" (also known as the bad-blocks file) on the specified
device. The blocks in this file are inaccessible to the operating
system. Thus, the user can remove a bad block from circulation by
putting it in the bad-blocks file. When it has added all the specified
blocks to the bad-blocks file, "badblocks" calls "diskrepair".

Arguments

<address_list>

Options Available

d
lIF<address>

TSC 8/4/86

The name of the device which contains the bad
blocks.
A list of the addresses of the blocks to
place in the bad-blocks file. The user may
specify the addresses in hexadecimal,
decimal, or octal. The "badblocks" command
interprets an address that begins with "OX"
or "Ox" (leading character is a zero) as a
hexadecimal address; one beginning with a "0"
(zero) that contains no digits greater than
7, as octal; any other address, as decimal.
Thus, the following addresses are equivalent: .

OX40 = Ox40 = 0100 = 64

The user should be careful not to use a
leading 0 with a decimal address because
"badblocks" will interpret it as an octal
address if none of the digits is greater than
7.

Do not run "diskrepair".
If a block must be used for mapping, use the
one specified by this option. The address_ is
specified in the same way as an address used
as an argument to the "badblocks" command (see
Arguments). By default, "badblocks" takes a

(continued)

badblocks-2

p

q
s

v

EXAMPLES

block for mapping from the free list.
However, if structural problems or media
errors make it impossible to do so, the 'm'
option can be used to tell "badblocks" which
blocks to use for any necessary mapping. The
'm' option may be used up to twelve times in
one command, but it should never be necessary
to use it more than twice.
Prompt for permission to . make repairs while
running "diskrepair".
Use quiet mode when running "diskrepair".
Ignore the validity of the system information
record (SIR) when determining the size of the
disk, the size of the fdn space, and the size
of the paging space. This option should not
be used unless the "badblocks" command fails
due to problems in the SIR.
Run "diskrepair" in verbose mode and report
the number of bad blocks in the bad-blocks
file.

1. /etc/badblocks /dev/wO 596 10321
2. /etc/badb1ocks /dev/wO 596 10321 +pv

The first example places block numbers 596 and 10321 into the file
"/.badblocks" on the disk in drive wOo It then calls "diskrepair".

The second example places block numbers 596 and 10321 into the file
"/.badblocks" on the disk in drive wOo It then calls "diskrepair" with
the 'p' and 'v' options.

MESSAGES

Total bad blocks = <num_of_bad_blocks>
If the user specified the 'v' option, the "badblocks" command sends
this message to standard output when it successfully completes its
job.

ERROR MESSAGES

The error messages listed in this section are those messages which are
returned by the "badblocks" command. A user who is running "badblocks"
without the 'd' option may receive other error messages, which come from
the "diskrepair" command and are explained in the documentation for
"di skr epai rtf.

TSC 8/4/86 (continued)

badblocks-3

Cannot allocate memory for bad-block map.
The operating system could not allocate enough memory for the
bad-block map. The user should use the "headset" command to
increase the size of the "bad blocks " program. If the problem
persists, it may mean that the volume size in the SIR is too large.
In such a case the user should execute "badblocks" with the's'
option.

Cannot call "/etc /diskr epair".
The "badblocks" command cannot
"/etc/diskrepair" •

open device.

read or execute the file

Cannot
The
open

operating system returned an error when "badblocks" tried to
the specified device or read its fdn.

Cannot read indirection block.
This error message indicates that either the root directory or the
file "/.badblocks" is damaged. The user should salvage as much of
the data on the disk as possible, then reformat the disk.

Cannot read System Information Record.
The SIR is so badly damaged physically that "diskrepair" cannot read
it. The user may be able to salvage information from the disk, but
must eventually reformat it.

Cannot status the root directory.
The "bad blocks " command cannot read the fdn which descr ibes the root
directory. The user may be able to salvage some information from
the disk, but must eventually reformat it.

Data space overlaps contiguous-file space.
The information in the SIR indicates that the data space overlaps
the contiguous-file space. The user should execute "diskrepair" to
fix this problem. If and only if "diskrepair" fails to fix the
problem, the user should execute "badblocks" with the's' option.

Data space overlaps paging space.
The information in the SIR indicates that the data space overlaps
the paging space. The user should execute "diskrepair" to fix this
problem. If and only if "diskrepair" fails to fix the problem, the
user should execute "badblocks" with the's' option.

Disk too large or bad size in SIR.
The "badblocks" command checks to see that the size of the disk is
within the range that it can handle. The current limit is
approximately 400 Megabytes. If the data in the SIR indicate that
the disk is larger than this limit, "badblocks" issues this error
message. This error is also fatal to "diskrepair". The user should
salvage as much information as possible and reformat the disk.

TSC 2/ 13/86 (continued)

badblocks-4

Error reading ". badblocks" file.
The "badblocks" command must read the file "/.badblocks" before it
adds any blocks to the file. This message indicates that it
encountered an I/O error when it tried to read the file.

Error reading block <block_num>.
The specified block contains an I/O error.

Error reading fdn <fdn_num> in block <block num>.
The specified fdn contains an I/O error.

Error writing block <block_num>.
The operating system returned an I/O error when ''badblocks'' tried to
write to the specified block.

Error writing fdn <fdn_number> in block <block_num>.
The operating system returned an I/O error when "badblocks" tried to
write to the specified fdn.

"/etc/diskrepair" terminated abnormally, status = <status>
The "diskrepair" command received a program interrupt from the
operating system and terminated with the termination status
indicated. The user cannot determine the source of such an error;
however, it is not indicative of a problem with either "diskrepair"
or the device. The "badblocks" command should be rerun, for the
problem may not recur.

Invalid argument to 'm' option
The argument to the 'm' option must be a decimal number.

Invalid option: '<char>'.
The option specified by <char> is not a valid option to the
"badblocks" command.

No ". badblocks" file on "<d ev_name > " •
In order for the "badblocks" command to succeed, the bad-blocks file
must already exist. The user should salvage as much information as
possible, reformat the disk, and verify that the "format" program
created a bad-blocks file.

No device specified.
The user did not specify a device on the command line.

No free blocks available for mapping.
The "badblocks" command needed a block to use for mapping in
extending the file "/ .badblocks", but no blocks were available. The
user can reexecute "badblocks" with the 'm' option. It is wise to
specify as the argument to the 'm' option a block which is in the
paging space.

TSC 2/13/86 (continued)

badblocks-S

Not a block device.
'The "badblocks" command can only operate on a block device.

Only one device may be specified.
'The user must specify exactly one device on the command line.

Output directed to specified device.
When putting blocks in the bad-blocks file, it is impractical to try
to redirect the output to the device that is being repaired. 'The
user should reexecute "badblocks" without redirecting the output or
redirecting it to a different, mounted device.

Paging space overlaps contiguous-file space.
'The information in the SIR indicates that the paging space overlaps
the contiguous-file space. 'The user should execute "diskrepair" to
fix this problem. If and only if "diskrepair" fails to fix the
problem, the user should execute "badblocks" with the's' option.

SIR fdn block count error: <size>
, 'The number of blocks reserved for fdns exceeds either 65,535 (the

maximum allowed by UniFLEX) or the size of the disk. 'This error is
also fatal to "diskrepair". The user should salvage as much
information as possible and reformat the disk.

SIR pointer to free space is invalid.
'The "badblocks" command needs a block from the free space to use for
mapping in extending the bad-blocks file; however, because an
internal pointer to the free space is invalid, it cannot obtain the
necessary block. The user should should reexecute "badblocks" using
the 'm' option. It is wise to specify as the argument to the 'm'
option a block which is in the paging space.

Too many occurrences of the 'm' option.
'The user may not specify the 'm' option more than twelve times.

SEE ALSO

diskrepair
format

TSC 2/13/86

bcompare-l

bcompare

Compare two files byte by byte.

SYNTAX

DESCRIPTION

The "bcompare" command compares two files byte by byte and reports the
differences to standard output. The output is in the following form:

The address that is reported is the offset from the beginning of the
file, which is not necessarily the beginning of the data. Some UniFLEX
files have headers which precede the data.

Arguments

<f il e_name 1 >
<f il e_name_2>

Options Available

s=<start_byte>

EXAMPLES

The name of the first file to use.
The name of the file to compare to
<file_name_l>.

Perform the comparison
the byte specified by the
<end_byte>. The number
greater than the number
starting byte.

up to and including
hexadecimal number

specified must be
specifying the

Begin the comparison at the byte specified by
the hexadecimal number <start_byte>. The
number specified must be greater than or
equal to O.

1. bcompare test_l test_2
2. bcompare test_l test_2 +s=lOOO
3. bcompare test_l test_2 +e=lOOO

The first example does a byte-by-byte comparison of the files "test_I"
and IItest_2". Any differences are reported to standard output, which
defaults to the user's terminal.

TSC 2/13/86 (continued)

bcompare-2

The second example does a byte-by-byte comparison of the files "test_l"
and "test_2" beginning with the 4,097th byte. Any differences are
reported to standard output, which defaults to the user's terminal.

The second example does a byte-by-byte- comparison of the files "test_I"
and "test_2" from the beginning of the files up to and including the
4,097th byte. Any differences are reported to standard output, which
defaults to the user's terminal.

NOTES

Although
files, it
command,

the "bcompare" command is used mainly for comparing binary
can also compare text files. However, the "compare"
which compares text files line by line, is also available.

MESSAGES

"<one_file>" is longer tha~ "<the_other_file>".
At the end of the comparison, "bcompare" reports any difference in
the length of the two files.

ERROR MESSAGES

Error opening "<file_name>": <reason>
The operating system returned an error when ''bcompare'' tried open
the file <file_name>. This message is followed by an interpretation
of the error returned by the operating system.

Error seeking in "<f il e_name>": <reason>
The operating system returned an error when "bcompare" tried to seek
1n the file <file_name>. This message is followed by an
interpretation of the error returned by the operating system.

Invalid end byte specified: "<str >".
The string used to specify the end byte is not a valid hexadecimal
number.

Invalid option: '<char>'.
The option specified by <char> is not ·a valid option to the
"bcompare" command.

Inval id start byte specified: "<str>".
The string used to specify the start byte is not a valid hexadecimal
number.

Multiple end bytes specified!
The user may not specify more than one end byte.

TSC 2/13/86 (continued)

bcompare-3

Multiple start bytes specified!
The user may not specify more than one start byte.

Start byte beyond end byte.
The value of the argument to the's' option must be less than or
equal to the value of the argument to the 'e' option.

Syntax: bcompare <file_name_l> <file_name_2> [+esJ
The "bcompare" command expects at least two and no more than four
arguments and options on the command line. This message indicates
that the sum of the arguments and options is less than 2 or greater
than 4.

SEE ALSO

compare

TSC 2/13/86

blockcheck-l

blockcheck

Check the integrity of the allocation of all blocks used in files and of
the free list on the specified device.

SYNTAX

/etc/blockcheck <dev_name>

DESCRIPTION

The "blockcheck" command checks the integr ity of the allocation of all
blocks used in files and of the free list on the specified device. It
locates problems such as duplicate blocks, missing blocks, and invalid
block addresses.

This command is primarily intended for use by the "diskrepair" utility,
which calls it. It may also be used on its own. However, "blockcheck"
can only check the disk; it cannot repair it. If the output from the
command suggests that the disk is damaged, the user should execute
"diskrepair" on the disk.

The "blockcheck" command should be executed only when no other tasks are
active on the system. Otherwise, the results are unpredictable.

Arguments

The name of the device to check. It must be a
block device.

EXAMPLES

1. /etc/blockcheck /dev/fdO

This example checks the integrity of the the allocation of blocks on the
disk in floppy dr ive O.

ERROR MESSAGES

Cannot check a "backup" disk.
The disk in the specified device was created by the "backup" command
and cannot be checked by the "blockcheck" command.

Cannot read boot block.
When "blockcheck" tr ied to read the boot sector, it detected an I/O
error.

~

TSC 2/13/86 (continued)

blockcheck-2

Invalid option: '<char>'.
The option specified by '<char>' is not a valid option to the
"blockcheck" command.

SEE ALSO

devcheck
diskrepair
fdncheck

TSC 2/13/86

chd-l

chd

Change the user's working directory.

SYNTAX

chd [<dir_name>]

DESCRIPTION

The "chd" command, which is part of the shell program, changes the
user's working directory to the directory specified on the command line.
If no directory is specified, the default is the user's home directory
(the directory entered on logging in). The user must have execute
permission in the directory specified.

Arguments

EXAMPLES

The name
directory.

1. chd /usr/mark
2. chd book
3. chd

of the directory to use as the working
Default is the user's home directory.

The first example changes the working directory to the directory
"/usr/mark".

The second example changes the working directory to the directory
"book", which resides in the current working directory.

The third example changes the working directory to the user's home
directory.

ERROR MESSAGES

Home directory is not known.
The shell program to which the user issued the "chd" command is not
the user s login shell. It does not know what the user's home
directory is and, therefore, cannot execute the command.

Cannot change directories.
The operating system returned an error when the shell program tried
to change directories. This message is preceded by an
interpretation of the error produced by the operating system.

TSC 2/13/86 (continued)

chd-2

SEE ALSO

shell

TSC 2/13/86

compare-l

compare

Compare two text files line by line and report the differences.

SYNTAX

DESCRIPTION

The "compare" command compares two text files and indicates how they
differ. The information provided is usually sufficient to allow the
user to change one file into the other. By default, the "compare"
command considers that it is in the same place in each of the files if
three lines match.

The output from the command reports sets of lines which have been
deleted from, added to, or changed in either file. These messages are
written from the point of view of how to change the first file into the
second file. For instance, the message

File "<file_name>" lines deleted

means that if the lines following the message are deleted from
<file_name>, the two files will be the same.

The program also reports the presence of additional lines in a file with
the following message:

File "<file_name>" has additional lines

This message is not from the point of view of changing one file into the
other. Rather, it means that the file mentioned in the message is the
file that contains additional lines.

If a set of lines is deleted from one file and the following line is
changed as well, "compare" reports all those lines as lines that have
been changed rather than inserted or deleted.

The "compare" command can handle files of any size, but can only process
250 lines at a time. If the files differ in any spot by 250 lines, the
program reports 250 lines changed in each file and continues comparing
them.

TSC 2/13/86 (continued)

compare-2

Arguments

<f il e_name 1 >
<f il e_name_2>

Options Available

The name of the first file to use.
The name of the file to compare
<f il e"':'name_l > •

to

<window_size> Use the integer <window_size> as the number of
matching lines required before considering the
files synchronized. The number specified must
be between 1 and 250. The default is 3.

EXAMPLES

1. compare /usr/michael/test lusr/cathy/test
2. compare test test.bak +5

The first example compares the file "test" in the directory
"/usr/michael" to the file "test" in the directory "/usr/cathy".

The second example compares the two files "test" and "test.bak" in the
working directory. The window size for the comparison is five lines.

ERROR MESSAGES

Invalid option: '<char>'.
The option specified by '<char>' is not a valid oPtion to the
"compare" command.

Syntax: compare <file_name_l> <file_name_2> [+<window_size>1
The "compare" command expects exactly two arguments. This message
indicates that the argument count is wrong.

SEE ALSO

bcompare

TSC 2/13/86

copy-l

copy

Copy a directory or a file to the specified destination.

SYNTAX

copy [<source_name_list>] <dest_file_name> [+bBcdDFlLnopPtTzZ]

DESCRIPTION

The "copy" command allows the user to copy files or directories to the
specified destination file. By default, if the destination file does
not exist, "copy" creates it as a regular file. If the user does not
specify a source file, the working directory is copied.

If the destination file specified is not a directory, the "copy" command
can be used simply to make a copy of a regular file or a special file (a
block or character device).

If both the source file and the destination file are directories, the
"copy" command copies the source directory and all files within that
directory that are not directories themselves to the destination
directory. By default, it does not copy subdirectories or their
contents. If the user specifies more than one source file, "copy"
copies them to the destination directory in the order they are listed on
the command line. If the corresponding file does not exist in the
destination directory, "copy" creates it. If the corresponding file
already exists, it is deleted and recreated before copying takes place.
Thus, the contents of the file are lost and replaced by the contents of
the file being copied. In addition, any links to that file are broken.

The "copy" command always makes a copy with the same permissions as the
original file. The user must have execute permission in the directory
in which copies are to be made. It is also necessary to have write
permission in the file being copied to and, if the destination file
specified on the command line is a directory, in that directory as well
(unless the 'L' option is specified).

Arguments

<source_name>

TSC 2/13/86

The name of the source file or directory to
copy. Default is the working directory.
The name of the file in which to place the
copy of the source file. The destination
file may be any type of file.

(continued)

copy-2

Options Available

b Do not copy a file unless it already exists in the
destination directory.

B Do not copy any files with names ending in ". bak".
c Do not copy a file if it already exists in the destination

directory.
d Copy the entire directory structure (all subdirectories

and all their contents to the bottom of the directory
tree) of each directory specified on the command line.

D When copying a directory to the destination directory,
append the name of the source file to the name of the
destination directory. If a directory with the resulting
name already exists, the copying proceeds as usual. If
the parent directory for the resulting name already
exists, the "copy" command creates the new directory and
proceeds as usual. If the parent directory does not
exist, the copy command reports an error.

F If the destination file does not exist, create it as a
regular file, not a directory. This option is always
implied unless the 'T' option is in effect.

1 List the name of each file as it is copied and the name of
the new copy.

L If a file that already exists in the destination directory
is to be updated, do not delete and recreate it before
copying to it. Rather, overwrite the old contents with
the new. This option preserves any links to the copy.

n Copy a file only if it is newer than the corresponding
file in the destination directory or if no corresponding
file exists.

o Retain original ownership of the file. The system manager
must explicitly invoke this option in order to retain the
original ownership of the file. For all other users, the
use of the 'd', 'D', 'P', or 'T' option implies the '0'
option. They may also invoke the option explicitly.

p Prompt the user for permission to copy each file.
P Preserve the modification time of the source file in the

copy.
t If a specified source file is a directory, copy it only if

that directory already exists in the destination
directory.

T If the destination file does not exist, create it as a
directory.

z By default, the "copy" command preserves contiguity: a
file that is contiguous is copied to a contiguous file; a
file that is not, is copied to a noncontiguous file. The
user may, however, use the 'z' option to specify that all
files should be copied to contiguous files.

Z By default, the "copy" command preserves contiguity: a
file that is contiguous is copied to a contiguous file; a
file that is not, is copied to a noncontiguous file. The

TSC 2/13/86 (continued)

user
files

EXAMPLES

1. copy
2. copy
3. copy
4. copy
5. copy
6. copy
7. copy
8. copy

copy-3

may, however, use the 'z' option to specify that all
should be copied to noncontiguous files.

lusr/bin
file name 1 file name 2 /usr/bin +In
lusr/bin +BP
tests lusr/bin +bLp
lusr lusr2 +do
tests /usr2/usr/tests +t
gen /usr2 +D
gen /usr2/gen

The first example copies all regular files in the working directory to
"/usr/bin".

The second example copies the specified files to "/usr/bin" only if the
source copy is newer than the version in "/usr /bin" or if no copy by
that "ame exists in "/usr/bin". The command lists the name of each file
as it is copied and the name of the new copy.

The third example copies all regular files in the working directory,
except those with names ending in ".bak'\ to the directory "/usr/bin".
As it makes each copy, it preserves the last modification time of the
sour ce f il e.

The fourth example copies "tests" from the working directory to the
directory "/usr/bin" if and only if the file "/usr/bin/tests" exists.
If "tests" is a directory, all regular files in that directory which
already exist in "/usr/bin/tests" are also copied •

. The fifth example copies the entire structure of the directory "/usr" to
the directory "/usr2". The '0' options tells the "copy" command to
preserve ownership as it copies the files. Only the system manager may
execute this form of the command.

The sixth example copies "tests" from the working directory to
"/usr2/usr/tests" if "tests" is a regular file. If "tests" is a
directory, the "copy" command copies from "tests" those directories with
corresponding directories in "usr2/usr/tests". It also copies all
regular files in any directories it copies, whether or not those files
have corresponding files in the destination directory.

The seventh example copies "gen" to the directory "/usr2. If "gen" is a
directory, the "copy" command copies it to the directory "/usr2/gen".

The last example has the same effect as the seventh example.

TSC 2/13/86 (continued)

copy-4

NOTES

• The options for the "copy" command are not position-independent.
They must appear at the end of the command line •

• Because the destination file can 'be a regular file, it is possible
for the user to inadvertently specify that more than one file be
copied to a regular file. In such a case "copy" copies the source
files one at a time to the destination file. The result is a copy
of the last file to be copied.

ERROR MESSAGES

"Copy" must run with System Manager privilege!
Currently running as: <user_ID>

In order to function properly the "copy" command must be owned by
"system" and have its user ID bit set ("s+" permission).

Copying over myself!
This message is a warning that a loop exists somewhere in the
specified copying procedure. The command continues, ignoring the
loop. For instance, if the user asks to copy the entire directory
structure of the root directory to the directory "/usr2", the
command recognizes a loop when it prepares to copy the directory
"/usr2" to the destination file. The copying procedure continues,
but none of the subdirectories from "/usr2" is copied to the
destination file.

"<dest_file_name>" is a directory - +F ignored!
The user specified the 'F' option, but the destination file already
exists and is a directory. The "copy" command continues, ignoring
the 'F' option.

***Error: <problem> "<f i1 e_name>": <reason>
The operating system returned an error when "copy" tried to perform
the action described by <problem> on <file_nam~>. This error
message is followed by an interpretation of the error returned by
the operating system.

Inconsistent options - aborting
Certain options, such as 'b' and 'c', conflict with each other. If
the user specifies conflicting options, the program aborts.

Invalid option: '<char>'.
The option specified by '<char>' is not a valid option to the "copy"
command.

Syntax: copy [<source_name_list>] <dest_Hle_name> [+bBcdDFILnopPtT]
The "copy" command expects at least one argument. This message
indicates that the argument count is wrong.

TSC 2/13/86 (continued)

** Warning: directory "<dir_name>" is too large!
** Some files were ignored

copy-5

The "copy" command cannot copy mor ethan 500 files from a singl e
directory. In order to make the command succeed, the user should
split the offending directory into two or more directories.

** Warning: directory "<dir_name>" too large!
** Some directories were ignored.

The "copy" command cannot process a file if the total number of
directories in every directory between that file and the directory
specified on the command line exceeds 50. In order to make the
command succeed, the user should start at a lower point in the
directory tree.

TSC 2/13/86

crdir-l

crdir

Create a directory.

SYNTAX

DESCRIPTION

The "crdir" command creates a directory for each name listed as an
argument to the command. The user must have write permission 1n the
parent directory (the directory in which the new directory is created)
of each directory created. Each new directory contains the entry ".".
which represents the directory itself. and the entry" •• ". which
represents its parent directory.

By default, "crdir" creates a directory with "rwxrwx" permissions.
However, any default permissions set by the "dperm" command override
these permissions. The owner may, of course, change the permissions at
any time by using the "perms" command.

Arguments

<dir_name list>

EXAMPLES

1. crdir book

A list of the names of directories to
create. All directories used in the name,
except the last component of the name, must
already exist.

2. crdir /usr/sarah/book

The first example creates the directory "book" in the working directory.

The second example creates the directory "book" in the directory
"/usr/sarah". If the directory "/usr/sarah" does not already exist, the
command fail s.

ERROR MESSAGES

Error creating "<dir_name>": <reason>
The operating system returned an error when "crdir" tried to create
the specified directory. This message is followed by an
interpretation of the error returned by the operating system.

TSC 2/13/86 (continued)

crdir-2

Error linking "<dir_name>" to its "." f He": <reason>
The operating system returned an error when "crdir" tried to link
the "." entry to the directory itself. This message is followed by
an interpretation of the error returned by the operating system.

linking " •• " to parent of "<dir_name>": <reason> Error
The
the
by

operating system returned an error when "crdir" tried to link
newly created directory to its parent. This message is followed
an interpretation of the error returned by the operating system.

Error setting owner for u<dir_name>": <reason>
Initially, the "crdir" command creates the new directory with the
owner "system". It then changes the owner to the user who executed
the command. In this case, the operating system returned an error
when "crdir" tried to change the owner of the directory. This
message is followed by an interpretation of the error returned by
the operating system.

Syntax: crdir <dir_name_list>
The "crdir" command expects at least one argument.
indicates that the argument count is wrong.

SEE ALSO

dperm
kill
perms

TSC 2/13/86

This message

create-l

crea te

Create an empty file for each file name on the command line.

SYNTAX

DESCRIPTION

The "create" command creates an empty file for each name specified on
the command line. If the file does not exist, it is created with
"rw-rw-" permissions, and the owner is the user who executes the
command. If the file already exists, the owner and permissions remain
intact. However, the file is truncated to a length of O.

Arguments

The name of the fil e to create. The last
component of a file name may not contain more
than fourteen characters. The "create" command
ignores any additional characters.

EXAMPLES

1. create test
2. create /usr/julie/test

The first example creates the file "test" in the user's working
directory.

The second example creates the file "test" 1n the directory
"/usr/ julie".

ERROR MESSAGES

Error creating "<f il e_name>": <reason>
The operating system returned an error when "create" tried to create
<file_name>. This message is followed by an interpretation of the
error returned by the operating system.

Syntax: create <f il e_name_list>
The "create" command requires at least one argument.
indicates that the argument count is wrong.

SEE ALSO

edit

TSC 2/13/86

This message

crt_termcap-l

Create a file defining the capabilities of each terminal on the system.

SYNTAX

/etc/crt_termcap <ttycap_file> <ttyassoc_file> <termcap_file>
/etc/crt_termcap +d

DESCRIPTION

The "crt_termcap" command creates a file ("termcap") which describes the
capabilities of each terminal on the system. This file makes it
possible for programs to operate on many different terminals regardless
of the indiv idual characteristics of the termina Is. The "crt_termcap"
command or the "set_termcap" command must be used to create the file
"termcap" before any programs which need that file can operate
successfully.

Arguments

<ttyassoc_file>

<termcap_fil e>

Options Available

Input file describing functional
capabilities of each type of terminal that
may be used on the system.
Input file associating each active port with
a particular kind of terminal.
Output file combining information from the
two input files.

d Use the file
"/etc/ttylist" for
<termcap_f i1 e>.

"/etc/ttycap" for <ttycap_file>,
<ttyassoc_file>, and "/etc/termcap" for

The "crt_termcap" command uses two input files to produce one output
file. The first input file describes the functional capabilities of
each terminal on the system. The second file indicates what type of
terminal is on each active port in the system. These files must each
conform to a particular format. The following two sections describe
these formats.

Format of the File "ttycap"

The file "ttycap" contains one logical entry for each terminal on the
system. The format of an entry is

<terminal_name> <capability_list>

TSC 2/13/86 (continued)

where <terminal_name> is a character string (it may contain as many as
ten characters) which identifies the terminal, and <capability_list> is
a list describing the capabilities of the terminal. Each item in this
list has the following format:

<keyword> = <value_list>

where <keyword> is a two-character sequence representing a function such
as clearing the screen and <value_list> is a list containing decimal
values, hexadecimal values, or both. Each value in the list must be
separated from the following one by a plus sign, '+'. No spaces may
appear between the values and the plus signs. All hexadecimal values
must consist of two digits preceded by a dollar sign, '$'. The
following are valid value strings:

1+2+3
$01+$ff+$80

The keywords currently supported are

ho
cu
cd
cl
cr
cs
nr
nc
wt

1S

bl

bm

fm
pc
ku
kd

kl

kr

kh
kO-k9

TSC 2/13/86

Home cursor.
Move cursor up without modifying display.
Move cursor down.
Move cursor left.
Move cursor right.
Clear entire screen.
Number of rows on screen (first row is 1).
Number of columns on screen (first column is 1).
Number of seconds to wait between clearing the screen
function and sending more information to the terminal.
A string of characters sent to the terminal when
processing begins in order to initialize the terminal.
Clear the current line from the present cursor
position through the end of the line without moving
the cur sor.
Place the terminal in "background" mode. In this mode
characters are written to the terminal with a lower
intensity (brightness) than usual.
Place the terminal in foreground (normal) mode.
Position the cursor to an absolute location.
Sent by the terminal in response to the up-arrow key.
Sent by the terminal 1n response to the down-arrow
key.
Sent by the terminal in response to the left-arrow
key.
Sent by the terminal in response to the right-arrow
key.
Sent by the terminal in response to the home key.
Sent by the terminal in response to other special
keys.

(continued)

The following entry describes a ct82 terminal manufactured by Southwest
Technical Products, Corporation:

ct82:ho=16 cu=01 cd=02 cr=09 cl=04 cs=30+07+l2 nr=20 nc=82
ku=01 kd=02 kr=09 kl=04 is=28+18+30+19+30+20+30+07 bl=06
bm=28+OS fm=28+2l+30+07 wt=l pc=$Ob+$ff+$Ol+$ff+$SO:

Not all terminals can support all the functions described here. All the
information required to create the list of values should be contained in
the manual describing the particular terminal. As can be seen from the
previous example, definitions for all keywords are not necessary for the
correct functioning of the utilities that use the file "termcap".
However, definitions for the following keywords are essential:

cs, ho, nr, nc, and either pc or cu, cd, cl, and cr

The keyword "pc" enables a utility to position the cursor to any
absolute location on the screen. Some terminals do not support this
feature, in which case the utilities must use relative positioning of
the cursor (using ho, cu, cd, cl, and cr) instead. Since the absolute
positioning of the cursor is different on almost all terminals, the
value string associated with the keyword "pc" is rather complex. At a
minimum, absolute cursor positioning requires the desired row and column
numbers to be sent to the terminal as part of a control sequence.
Different terminals require the row and column portions of the sequence
to be in different forms. There must be a method of transforming the
desired row and column numbers, supplied in the range of 0 to some
maximum, into the form required by a specific terminal. Two special
portions of the the "pc" value string, called escape sequences,
accomplish this transformation. Each escape sequence is replaced by the
row or column number in the proper form, as defined by the information
in the escape sequence. The escape sequence has the following format:

$ff+<flag>[+<bias>]

where <flag> is a set of 8 bits which describes the particular
operation. These bits are explained in the following table (0 is the
r igh tmo s t bi t) :

TSC 2/13/86 (continued)

Bit Value Meaning
=== ===== ===

o 0 This is a row reference.
1 This is a column reference.

1 0 No bias is necessary.
1 A bias must be added to the value before use.

2 0 Use the value as is.
1 Subtract the value from the maximum row or

column before use.
3 0 Do not convert the value to BCD.

1 Convert the value to BCD.
4 0 Do not convert the value to decimal ASCII.

1 Convert the value to decimal ASCII.
5 *** Unused. Must be O.
6 *** Unused. Must be O.
7 0 Value required if bits 0-6 are not all O.

1 Value required if bits 0-6 are all O.

A bias must be specified as part of the escape sequence if an only if
bit 1 of the flag is set to 1. Some examples should make this mechanism
clearer. Consider the following "pc" s tr ing for the ct82:

pc=$Ob+$ff+$01+$ff+$80

The SOb is required by the ct82 to initiate cursor positioning. The $ff
is the start of an escape sequence. Its flag of $01 means that bit 0 is
1, and all other bits are o. Thus, the escape sequence is a row
reference with no bias. The binary value is used as is. It is not
converted to either binary coded decimal (BCD) or decimal ASCII. The
second $ff starts the next escape sequence. Its flag of $80 means that
all bits from bit 0 through bit 6 are O. Bit 7 is 1, as it must be if
all other bits are O. This flag is a column reference (bit 0 is 0), but
~n all other respects it means the same thing as the previous flag.

In order to position the cursor on a ct82 terminal to row 18, column 10,
a utility must send the following characters to the terminal:

Character Meaning
========= =====================================

SOb
$09
$11

Initiate cursor positioning.
Column 10 (0 is the leftmost column).
Row 18 (0 is the uppermost row).

As another example consider the following cursor-positioning string
for an Ambassador terminal manufactured by Ann Arbor Terminals:

The $lb and
positioning.
means that

TSC 2/ 13/86

pc=$lb+$Sb+$ff+$12+$01+$3b+$ff+$l3+$01+$48

$Sb are required by this terminal to initiate cursor
The $ff begins the first escape sequence. Its flag of $12

bits 1 and 4 are 1, and all other bits are O. Thus, the

(continued)

escape sequence is a row reference with a bias (the next number in the
value list, SOl) that must be added to the binary value before use. The
binary value is used as is. It should be sent in decimal ASCII. The
S3b following the bias is required by this terminal as a row/column
separator. The second Sff starts the second escape sequence. Its flag
of S13 means the same thing as a flag of $12 except that bit 0 is 1,
indicating that this flag is a column reference. The $48 immediately
following the bias of $01 is required by this terminal to terminate
cursor positioning.

In order to position the cursor on this terminal to row 18, column 10, a
utility must send the following characters to the terminal:

Character
=========

$lb $5b
$31 $38

$3b
$31 $30

$48

Meaning
=============================

Initiate cursor positioning.
Row 18 in decimal ASCII
(0 relative, +1 bias).
Row/column separator.
Column 10 in decimal ASCII
(0 relative, +1 bias).
Terminate cursor positioning.

As a final example, consider the cursor-positioning string for an
Infoton 100 terminal from Infoton:

pc=$lb+$66+$ff+$03+$20+$ff+$02+$20

The $lb and the $66 are required by the terminal to initiate cursor
positioning. The $ff starts the first escape sequence. Its escape flag
of $03 means that bits 0 and 1 are 1, and all other bits are O. Thus,
the escape sequence is a column reference with a bias of $20 that must
be added to the binary value before use. The next escape sequence .has
the flag $02, which means that only bit 1 is 1. All other bits are O.
Thus, this escape sequence is a row reference with a bias of $20. In
order to position the cursor on this terminal to row 18, column 10, a
utility must send the following characters to the terminal:

Character
=========

SIb $66
$29
$31

Meaning
=================================

Initiate cursor positioning.
Column 10 (0 relative, +$20 bias).
Row 18 (0 relative, +$20 bias).

Format of the File "ttyassoc"

The second file used by the "crt_termcap" command contain,s a list
indicating what type of terminal is actually connected to each port on
the system. This file, called "ttyassoc'" for terminal association file,
can be created very simply using the file "/etc/ttylist", which 16

TSC 2/13/86 (continued)

supplied on all systems. The file "ttylist" can, in fact, be used as
the file "ttyassoc" if it is modified to appear exactly as described in
this section. All that is required in "tty list" is a plus or minus
sign, '+' or '-', in column 1, followed by a space, followed by a
two-digit number representing a terminal. The file "ttyassoc" requires
two additional fields. Existing programs which use the file "ttylist"
ignore anything beyond the terminal number, so the file can be modified
to look like the file "ttyassoc" without affecting the rest of the
system.

The file "ttyassoc" contains one 1 ine for each terminal on the system.
Each line has the following format:

+ <nn> : <terminal_type> [<name>]

An explanation of this format follows:

<nn>

<terminal_type>

<name>

A two-digi t number representing the
terminal.
rhe type of terminal attached to the port.
rhis name should be one of the terminals
described in the file "ttycap". The name
may contain as many as ten characters.
A descriptive name, used primarily for
documentation. This name is normally the
name of the person most commonly using the
terminal. However, it has no functional
meaning and need not be present.

If the file "/etc!ttylist" is used as the "ttyassoc" file, inactive
ports require as an absolute minimum the entry

- nn:::

for the "crt_termcap" command to function properly. The colons used as
field separators must appear even if the fields are empty.

ro access the file "ttylist" as the file "ttyassoc" the user must
specify "/etc/ttylist" as the second argument on the command line.

EXAMPLES

1. /etc/crt_termcap /etc/ttycap /etc/ttyassoc /etc/termcap
2. /etc/crt_termcap +d

rhe first example combines the information in the files "/etc/ttycap"
and "etc/ttyassoc" to form the file" /etc/termcap".

rsc 2/13/86 (continued)

The second example is equivalent to the first example.

NOTES

Unless the
be supplied;
1n the order

user specifies the 'd' option, all three arguments must
there are no default file names. Arguments must appear
specified in the syntax statement.

• The user can specify any file names as the three arguments to
"crt_termcap" •

• All util ities which use the "termcap" funct ions expect the
"/etc/termcap" to exist. Although any name can be specified as
third argument to the "crt_termcap" command, if the output file
not named "/etc/termcap", it should be linked to a file that is.

ERROR MESSAGES

*** Can't access ttyassoc file "<file_name>1I

file
the
is

The utility did not have read permissions 1n the file specified as
the "ttyassoc" file.

*** Can't access ttycap file "<file_name>"
The utility did not have read permissions 1n the file specified as
the "ttycap" file.

Can't find description of the terminal "<term_name>".
A terminal name specified in the "ttyassoc ll file was not one of the
terminal names contained in the "ttycap" file. The "termcap" file
will not be created.

*** ERROR: <system_error_message> while <action>
This general class of error messages describes any system errors
encountered while performing such functions as reading, writing,
opening, or closing files.

Syntax: crt_termcap <ttycap_file> <ttyassoc_file> <termcap_file>
crt_termcap +d

Unless the user specifies
exactly three arguments.

the 'd' option, "crt_termcapll expects
Otherwise, it expects no arguments. This

message indicates that the argument count is wrong.

*** Unrecognized option "<char_I>", Terminal = <terminal_name>,
Last valid option "<char_2>".

The option shown is not one of the legal options allowed 1n the
"ttycap" file. The file "termcap" will not be built.

SEE ALSO

TSC 2/13/86

date-1

date

Display or set the time and date.

SYNTAX

date [[<mm>-<dd>-<yy>] <hr>:<min>[:<sec>]]

DESCRIPTION

The "date" command has two forms: one with an argument and one without.
Any user may execute the "date" command without an argument. In
response, the system returns the current date and time. The system
manager may also use the "date" command with an argument to set the date
and time.

Arguments

<mm>

<dd>
<yy>

<hr>

<min>

<sec>

EXAMPLES

A number from 1 to 12 inclusive representing the
month.
A number from 1 to 31 inclusive representing the day.
A two-digit number representing the last two digits of
the year.
A number from 0 to 23 inclusive representing the hour.
(Time must be expressed as 24-hour-clock time.)
A number from 0 to 59 representing minutes past the
hour.
A number from 0 to 59 representing seconds past the
minute. The default is O.

1. date 7-13-84 15:47:28
2. da te 11: 53
3 • da te 7 -13 17: 5
4. date

The first example sets the date to July 13, 1984, and the time to
3 : 47 : 28 P. M.

The second example sets the time to 11:53 A.M. The date defaults to the
date stored in memory.

The third example sets the date to July 13 and the time to 5:05 P.M.
The value for the year defaults to the stored value, and the value for
seconds defaults to O.

TSC 2/13/86 (continued)

date-2

The fourth example displays the date and time currently stored in
memory.

ERROR MESSAGES

Error opening "/act/history": <reason>
Whenever the system manager sets the date, the "date" command must
make two entries in the file "/act/history". The operating system
returned an error when "date" tried to open that file. This message
is followed by an interpretation of the error returned by the
operating system.

Error seeking to EOF in "/act /history": <reason>
Whenever the system manager sets the date, the
make two entries in the file "/act/history".
returned an error when "date" tried to seek to
This message is followed by an interpretation
by the operating system.

Error writing to "/act/history": <reason>

"da te" command must
The operating system

the end of that file.
of the error returned

Whenever the system manager sets the date, the "date" command must
make two entries in the file "/act/history". The operating system
returned an error when "date" tried to write to that file. This
message is followed by an interpretation of the error returned by
the operating system.

Invalid <arg> specified.
The value specified for the argument shown in the error message is
not within the acceptable range.

Only the system manager may change the date!
The user who tried to change the date is not the system manager.

Syntax: date [[<mm>-<dd>-<yy>] <hr>:<min>[:<sec>]
The syntax of the command line is incorrect. Most probably, the
arguments specifying the time are missing.

SEE ALSO

history

TSC 2/13/86

delusr-l

delusr

Remove a user from the system.

SYNTAX

/etc/delusr <user_name> [+x]

DESCRIPTION

The "delusr" command removes the specified user from the system. It
removes the corresponding entry from the file "/etc/log/password" and
descends the user's directory tree, deleting all files and
subdirectories within it except those for which the owner does not have
write permission. The "del usr" command prompts for permission to delete
files protected in this way. If permission to delete such a file is
denied and the file is a subdirectory, "delusr" does not delete anything
within that subdirectory. If the user's home directory is empty after
all the deletions have been made, "delusr" also deletes that directory.
Only the system manager may execute this command.

Arguments

The name of the user to delete from the system.

Options Available

x Do not delete any files.

EXAMPLES

1. /etc/delusr chris

This example deletes the
"chris" from the file
directory tree beginning
deletes all files and

line containing the entry for the user name
"/etc/log/password". It also descends the

at the specified user's home directory and
subdirectories for which the owner has write

permission. If the owner does not have write permission, "de1usr"
prompts for permission to delete the file. If the home directory is
empty after all the deletions are complete, "delusr" deletes that
directory also.

ERROR MESSAGES

Cannot delete a user with an ID of 0 or 1.
The "delusr" command cannot delete a user whose ID is 0 or 1.

TSC 2/13/86 (continued)

delusr-2

Cannot execute "remove".
"<user_name>" not removed from system.

The "remove" command, which is called by "delusr" is not in "/bin"
or "/usr/bin". The command aborts without editing the password
file.

Error creating "<file_name>": <reason>
The operating system returned an error when "delusr" tried to create
<file_name>. This message is followed by an interpretation of the
error returned by the operating system.

Error locking password file: <reason>
The operating sYl:ltem returned an error when "delusr" tried to lock
the password file. This message is followed by an interpretation of
the error returned by the operating system.

Error opening "<file_name>": <reason>
The operating system returned an error when "delusr" tried
<file_name>. This message is followed by an interpretation
error returned by the opera ting sy st em.

Invalid option: '<char>'

to open
of the

The option specified by <char> is not a val id option to the "delusr"
command.

Name must be 1 to 8 lowercase letters.
The specified user name must be between one and eight letters long.
All letters must be lowercase.

Password file is locked. Try again later.
The commands "addusr", "delusr", and "password" all lock the
password file so that two people cannot try to alter it at the same
time. This message indicates that one of these commands currently
has the password file locked.

Syntax: /etc/delusr <user_name> [+x]
Th~ "delusr" command expects exactly
indicates that the argument count is

one argument.
wrong.

"<user_name>" is not in the password file.

This message

The file" /etc/log/password" does not contain an entry for the
specified user name.

You must be system manager to run "del usr".
Only the system manager may execute the "delusr" command.

SEE ALSO

addusr
remove

TSC 2/13/86

devcheck-l

devcheck

Check a device for I/O errors.

SYNTAX

/etc/devcheck <dev_name_list> [+bcdDfrsvV]

DESCRIPTION

The "devcheck" command checks the specified device for I /0 errors. As
it checks the device, it prints informative messages, which tell the
user what part of the device is being checked. It always checks the
boot sector and the system information record (SIR). By default, it
also checks the fdn space, the paging space, the volume space, and, if
the disk contains any, the contiguous-file space. Every time it finds a
bad block, it prints a message giving the address of the block 1n both
decimal and hexadecimal. When it is finished, "devcheck" prints a
message reporting the total number of bad blocks on the disk.

The user may determine which block "devcheck" is currently testing by
typing control-C. The "devcheck" command catches this interrupt and
returns a message of the following format:

-- Current block: Ox<hex_address>

In order to interrupt "devcheck" the user must type control- \.

If a floppy disk contains one or more bad blocks, it should probably be
discarded. If a hard disk contains one or more bad blocks, these should
be removed by either running the "badblocks" program, rerunning
"devcheck" with the 'b' option, or reformat ting the disk with the
addresses of all bad blocks placed in the file "/. badblocks" (also known
as the bad-blocks file). It is wise to run this command immediately
after formatting a disk.

Arguments

Options Available

b

c

TSC 8/4/86

A list of the names of the devices to check.
They must be block devices.

Put all bad blocks in the file "/.badblocks"
and, unless the user also specifies the 'd'
option, call the "diskrepair" command after
doing so (see the 'D' option).
Check only the contiguous-file space.

(continued)

devcheck-2

d

f
r=<range>

s
v
V

TSC 8/4/86

Do not
blocks
the 'b'

call "diskrepair" after putting bad
in "/.badblocks". This option requires
option and is incompatible with the 'D'

opt ion.
Specifies.a list of options to use when calling
"diskrepair" after putting bad blocks into the
bad-blocks file. This option requires the 'b'
option and is incompatible with the 'd' option.
Check only the fdn space.
Check only the blocks in the specified range
(inclusive). The format for the range is one
of the following:

or

where the user may specify the addresses in
hexadecimal, decimal, or octal. The "devcheck"
command interprets an address that begins with
"OX" or "Ox" (leading character is a zero) as a
hexadecimal address; one beginning with a "0"
(zero) that contains no digits greater than 7,
as octal; any other address, as decimal. Thus,
the following addresses are equivalent:

OX40 = Ox40 = 0100 = 64

The user should be careful not to use a leading
o with a decimal address because "devcheck"
will interpret it as an octal address if none
of the digits is greater than 7.

If the user does not specify
default value is O. If the
specify <num_2> , the default
address of the last block on the
Check only the paging space.
Check only the volume space.

<num_l> , the
user does not

value is the
disk.

By default, the "devcheck" command simply tries
to read each block on the disk. This procedure
may fail to identify bad spots which are
pattern-sens1t1ve. If the user specifies the
'V' option, "devcheck" performs a more rigorous
test on each block. First of all, it reads the
block and copies the contents to a buffer.
Secondly, it writes a specific pattern
(determined by the address of the block) to the
block. Next, it reads and verifies that

(continued)

devcheck-3

pattern. Finally, it copies the original data
from the buffer back to the block. Obviously,
using the 'V' option substantially increases
the length of time needed to check the device.

EXAMPLES

l. /etc/devcheck /dev/fdO
2. /etc/devcheck /dev/fdO +v
3. /etc/devcheck /dev / fdO +bD=v

The first example checks the entire device ~n floppy drive 0 for I/O
error s.

The second example checks the boot sector, the SIR, and the volume space
of the device in floppy drive 0 for I/O errors.

The third example checks the entire disk in floppy drive 0 for I/O
errors. All bad blocks detected are put into the bad-blocks file. If
it puts any blocks into the bad-blocks file, "devcheck" calls
"diskrepair" with the 'v' option.

MESSAGES

Can't read '.badblocks' file - continuing without list.
The "devcheck" command encountered an I/O error when it tried to
read the file ".badblocks".

File '.badblocks' not found - continuing with check.
The device specified does not contain a file named". badblocks", or
due to damage in the logical structure of the disk, "devch"eck"
cannot locate the file.

ERROR MESSAGES

"<dev_name>" is not a block device.
The device specified is not a block device.

Cannot execute "badblocks".
The "devcheck" command attempted to call "badblocks" to put a bad
block into the bad-blocks file. However, the "badblocks" program
could not be executed. Most probably the "badblocks" program does
not exist on the system disk or the user does not have permission to
execute it.

TSC 8/4/86 (continued)

devcheck-4

Cannot execute "diskrepair".
The "devcheck" command attempted to call "diskrepair" after having
put bad blocks into the bad-blocks file. However, the "diskrepair"
program could not be executed. Most probably the "diskrepair"
program does not exist on the system disk or the user does not have
permission to execute it.

Error opening "<dev_name>" : <reason>
The operating system returned an error when "devcheck" tried to open
the specified device. This message is followed by an interpretation
of the error returned by the operating system.

Invalid option: '<char>'.
The option specified by '<char>' is not a valid option to the
"devcheck" command.

No ".badb10cks" file, 'b' option ignored.
A ".badblocks" file must exist on the disk being tested in order for
the 'b' option to be valid.

Syntax: /etc/devcheck <dev name_list> [+bcdDfrsvV]
The "devcheck" command expects at least one argument. This message
indicates that the argument count is wrong.

The '<char>' option requires the 'b' option.
The option specified by <char> requires that the user also specify
the 'b' option. The option specified by <char> is ignored.

SEE ALSO

badb10cks
diskrepair
format

TSC 8/4/86

dir-l

dir

List either the contents of a directory or information about a file.

SYNTAX

dir [<file_name_list>] [+abdflrsSt]

DESCRIPTION

The "dir"
specified
about the
directory

command is used to list either the names of the files in the
directory or, if the argument is not a directory, information

specified file. By default, the names of the files in a
are listed in alphabetic order with several names per line.

Format of the Output

The information given about a file is presented on one line, which
contains several fields. These fields are described in this section in
the order in which they appear.

<file_name>
<size>

<perms>

TSC 8/4/86

The number of the file descriptor node (fdn)
which describes the file in question. This
field is not present unless the user
specifies the 'f' option.
The name of the file being described.
The size of the file in blocks. If the file
is a device, "dir" places the major and
minor device numbers in this field.
A single character specifying the type of
file. The character 'b' represents a block
device; , c', a character device; , d', a
directory; 'p', a pseudoterminal; and 'z', a
contiguous file. If the field is blank, the
file is a regular file.
This field, which ~s composed of six
columns, indicates what permissions are
associated with the file. The first three
columns represent permissions for the user
who owns the file; the last three for other
users. Permissions are always presented in
the order read, write, and execute. They
are represented by the letters 'r', 'w', and
'x'. A hyphen in a column means that the
corresponding permission is denied. For
example, if the permission field contai~s
the sequence "rwxr-x", the user who owns the
file may read, write, and execute the file,
whereas other users may only read and

(continued)

dir-2

<owner>
<last_mod_time>

Arguments

<file_name list>

Options Available

execute it.
The link count is the number of directory
entries which point to a file. The link
count for a directory is always at least 2
because the "." entry within the directory
itself points to the same fdn as the
directory entry for that file in its parent
directory.
The user name of the owner of the file.
The time and date at which the file was last
modified.

A list of the names of files to process.
The default is the working directory.

a List all files in a directory, including those whose names
begin with a period, '.'. This option has no effect if
the specified file is not a directory.

b List the file size in bytes rather than blocks. This
option implies the '1' option.

d If a file within the directory being processed is a
directory, list the names of all the files it contains.
Continue this process for all directories which are
descendants of the specified directory. This option
allows the user to see the entire directory structure. It
has no effect if the specified file is not a directory.

f List the number of the file descriptor node for each file.
This option implies the '1' option.

1 If the specified file is a directory, give detailed
information about each file in the directory. This option
has no effect if the specified file is not a directory
because 1n such a case the information is automatically
given.

r If the specified file is a directory, reverse the order in
which the files would otherwise be listed. This option
has no effect if the specified file is not a directory.

s If the specified file is a directory, list one file name
on each line. This option is useful for creating a file
which contains the names of all the files in a directory.
This option has no effect if the specified file is not a
directory.

S Print a summary of the information after listing all
files.

t Sort files by the time of their most recent modification.
By default, the most recently modified file is listed
first.

TSC 8/4/86 (continued)

dir-3

EXAMPLES

1. dir +1
2. dir /usr/jay +abdfS
3. dir memo +f
4. dir /usr /marcy +rt
S. dir /usr/marcy +s

The first example lists information about each file In the working
directory whose name does not begin with a period.

The second example lists information about all files, including those
whose names start with a period, in the directory "/usr/ jay" <the 'f'
and the 'b' option both imply the '1' option). In addition, the command
displays a list of the files in each subdirectory that is a descendant
of "/usr/jay". The information includes the fdn number of each file.
The size of each file is shown in bytes. At the end of the output is a
summary showing the total number of directories processed, the total
number of nondirectory files processed, and the total number of blocks
used by all the files.

The third example
working directory,

displays information about the file "memo" in the
The information includes the fdn number of the file.

The fourth example lists the names of those files in the directory
"/usr/marcy" which do not begin with a period. The names are sorted by
the time of the last modification with the sense of the sort reversed so
that the most recently modified file is the last one In the list.

The fifth example lists the names of those files in the directory
"/usr/marcy" which do not begin with a period. One name appears on each
line.

ERROR MESSAGES

Invalid option: '<char>'.
The option specif ied by , <char>' is not a val id option to the "dir"
command.

** Warning: directory "<dir_name>" is too large!
** Some directories were ignored

The "dir" command cannot process a file if the total number of
directories in every directory between that file and the directory
specified on the command line exceeds 50. In order to make the
command succeed, the user should start at a lower point in the
directory tree.

TSC 2/13/86 (continued)

dir-4

** Warning: directory u<dir_name>" is too large!
** Some files were ignored

The "dir" command cannot list more than 500 names of files from a
single directory. In order to make the command succeed, the user
should split the offending directory into two or more directories.

SEE ALSO

ls

TSC 2/13/86

diskrepair-1

diskrepair

Check and, optionally, repair inconsistencies in the logical structure
of a disk.

SYNTAX

/etc/diskrepair <dev_name_Iist> [+abfmnpqruvz]

Arguments

A list of the names of the devices to check.

Options Available

a Automatically place in the file "/ .badblocks" any bad
blocks encountered, and continue to run "diskrepair" until
the disk is fixed.

b Perform "blockcheck" only.
f Perform "fdncheck" only.
m Ignore missing blocks.
n Do not attempt to fix errors.
p Prompt for permission to repair.
q Use quiet mode.
r Rebuild the free list whether or not it is In error.
u Report on the usage of disk blocks.
v Use verbose mode.
z Do not print messages about possible errors in the sizes

of files.

DESCRIPTION

The "diskrepair" util ity checks the structure of the disk or disks
specified in <dev_name_Iist>. The structure of the disk refers to the
layout of and the connections among files, directories, free space,
paging space, and other information that makes up the file system. Any
inconsistencies in the structure are reported and, optionally, repaired.
Although "diskrepair" does not methodically search for and repair media
(I/O) errors, it can take care of any bad blocks it encounters. If the
, a' option is in ef feet when "diskr epair" encounters an I/O error. it
calls the ut il ity "/etc/badblocks", which places the of fending block in
the file "/.badblocks".

While it 1S operating, "diskrepair" calls two other util ities-
"blockcheck" and "fdncheck", which are both loca ted in the directory
"/etc". "Blockcheck" is concerned with the allocation of blocks on the
disk. It locates problems such as duplicate blocks, missing blocks, and
invalid block addresses. ''Fdncheck'' is concerned with the directories
on the disk. It locates problems such as unreferenced files, file names

TSC 2/13/ 8() (continued)

diskrepair-2

with invalid associated files, and so forth.

There are two major modes of operation, simple and verbose. The simple
mode is selected by default; the verbose mode is selected by the 'v'
option. In the verbose mode udiskrepair" reports all detected errors.
In the simple mode it reports only those errors which require the
deletion of files or of directory entries. If executed in simple mode,
"diskrepair" issues a message upon completion which informs the user
whether or not the ,disk is in need of repair.

By default, all detected errors are automatically repaired (if
possible). Two options exist to alter the handling of errors. The 'n'
option instructs "diskrepair" not to repair any errors. The "'p' option
instructs "diskrepair" to prompt the user for permission to repair the
errors it reports. In verbose mode this option causes "diskrepair" to
prompt the user regarding all errors. In the simple mode, the user is
prompted only for those errors which require the deletion of files or of
directory entries; all other errors are automatically repaired without
prompting. It should be noted that most repairs result in a loss of
data. The user can generally infer which data have been lost from the
messages displayed.

When using the command in simple mode (without the 'v' option), the user
need not understand what types of checks are made by "diskrepair". The
only decisions required are whether or not to delete the reported files.
In verbose mode, much more information is given to the user. While this
document is not intended to give full details of this information, the
following list shows most of the inconsistencies in disk structure for
which "diskrepair" checks. First, however, a few def initions are in
order. A "file descriptor node" (or fdn) is an area on the disk which
contains all the information the system needs about a file. There
should always be one fdn per file on the disk. A UniFLEX directory
entry is simply a file name and a pointer to the proper fdn. There may
be multiple directory entries pointing to the same fdn (multiple names
for the same file). Each pointer to an fdn is called a "link" to that
file. If there is a file with no links, it is considered
"unreferenced". "Out-of-range" refers to a pointer to a disk block or
to an fdn which is beyond the valid number of blocks or fdns for the
disk being tested. Here now, is a partial list of inconsistencies that
"diskrepair" checks for.

1. Blocks duplicated in files or free list
2. Out-of-range blocks or fdns
3. Missing blocks
4. Bad free list
5. Unreferenced files
6. Inactive' fdns
7. Unknown fdn type
8. Incorrect link counts
9. Incorrect free block or free fdn count

10. Invalid sizes in System Information Record

TSC 2/13/86 (continued)

diskrepair-3

Unreferenced files are handled in one of two ways. First, an attempt is
made to give the file a name by putting it into the directory
"lost+found" in the root directory of the disk being tested. The name
given to the file is of the form Iff ile<fdn>", where <fdn> represents the
fdn number of the file. In order for this procedure to work, the
directory "lost+found" must already exist on the disk being checked, and
it must have room for the entry. (This directory is created when the
user makes a system disk.) Initially, the lost-and-found directory has
room for thirty-two entries--including "." and " •• ". A user who wants
to increase the capacity of the lost-and-found directory must first
create enough files in it to add another block to its size, then delete
the files. This procedure should not be attempted on a disk that lS

already damaged. If it is not possible to put the unreferenced file
into the "lost+found" directory (because there is either no directory
"lost+found" or no room in it), "diskrepair" deletes the file (or
prompts for permission to delete it if the 'p' option was specified).

If an error is associated with an fdn, a display of pertinent data from
that fdn is printed. The display includes the fdn number of the file,
its size in bytes, its owner, the time of its last modification, and one
of the following types:

block device
character device
contiguous file
directory
inactive
pipe
pseudo terminal
regular file
unknown

The "diskrepair" utility should generally be run only In single-user
mode on an otherwise inactive system. It should never be run on an
active disk. If the 'n' option is not specified (the disk may be
written to), "diskrepair" attempts to unmount the disk being tested. If
the device being tested is the system disk (or root device), all running
tasks are suspended until "diskrepair" is complete. If the disk being
tested is the system disk, and if a repair is made which requires
writing to the System Information Record (block number 1), "diskrepair"
stops the system upon completion and issues an appropriate message
instructing the user to reboot the operating system. This procedure is
necessary to prevent conflicts between the written data and similar data
kept in memory.

Detailed descriptions of the options follow.

TSC 2/13/86 (continued)

diskrepair-4

The 'a' Option

The 'a' option automatically places any bad blocks found by "diskrepair"
in the file "I.badblocks". It also runs "diskrepair" continuously until
either the disk is fixed or the program has executed ten times.

The 'b' Option

The 'b' option instructs "diskrepair" to run only the "blockcheck"
portion of the utility. This procedure is often considerably faster,
but still provides a fairly complete assessment of the validity of the
disk structure.

The 'f' Option

The ' f' option instructs "diskrepair" to run only the "fdncheck" portion
of the utility. This option is useful if a problem is suspected in the
directory structure, but the result is by no means a thorough check of
the structure of the disk.

The 'm' Option

The operating system maintains a list of blocks available for use called
the free' list. A missing block is any block in the volume space which
is not a part of any file and is not in the free list. The existence of
such blocks is a harmless error in the structure of the disk.
''Diskrepair'' generally places these blocks in the free list. The 'm'
option, however, instructs "diskrepair" not to rebuild the free list
solely on account of missing blocks. This option reduces the time
required for "diskrepair" to run if missing blocks are the only problem
in the free list.

The 'n' Option

The 'n' option tells "diskrepair" to report all errors but to make no
attempt to fix .them. Therefore, "diskrepair" opens the device for
reading only. This option is useful for checking the structure of a
disk without risking the loss of data during repairs.

Th~ 'p' Option

If the user specifies the 'p' option, "diskrepair" reports e.ach error,
followed by a prompt requesting permission for the proposed repair. All
prompts require an answer of either 'y' ("yes") or 'n' ("no").

Many repairs result in the loss of data. (The user can generally infer

TSC 2/13/86 (continued)

diskrepair-5

what has been lost from the messages "diskrepair" displays,) Judicious
use of the 'n' and 'p' options not only allows the user to assess the
damage to the disk and decide which information may be sacrificed during
the repair process but also provides the opportunity to try to salvage
the data before repairing the disk.

The 'q' Option

This option inhibits certain warnings and messages from "diskrepair".
Several conditions exist which, while not technically errors in disk
structure, may cause problems. These conditions usually result 1n a
warning message; the 'q' option inhibits them.

The 'r' Option

By default, if "diskrepair" finds that the free list is in error, it
rebuilds it. The 'r' option instructs "diskrepair" to rebuild the free
list whether or not it contains errors. This option is useful if the
free list is known to be bad or if the user wants to reduce
fragmentation within the list.

The
, ,

u Option

The 'u' option generates a report on the block usage of the specified
device. This report is printed at the end of the "diskrepair"
operation. It contains statistics on (1) the number of each type of
file in the file system and the total number of files in the system, (2)

·the number of unused blocks and the number of used blocks, including a
breakdown of how the used blocks are allocated, and (3) the number of
free fdns and the number of fdns in use.

The 'v' Option

"Diskrepair" operates in one of two modes: simple or verbose. Simple
mode is selected by default; verbose mode is selected by the 'v' option.
In simple mode "diskrepair" reports only those errors which require the
deletion of either files or directory entries. In verbose mode all
errors are reported. In addition, informative messages are printed
describing what phase "diskrepair" is performing.

In verbose mode the 'p' option causes "diskrepair" to prompt for
permission regarding all errors. In simple mode the user is prompted
only for those errors which require the deletion of either files or
directory entries; all other errors are automatically repaired without
prompting.

TSC 8/4/86 (continued)

diskrepair-6

The 'z' Option

Normally, "diskrepair" reports a possible
The 'z' option suppresses such messages.
effect, the 'z' option is redundant.

EXAMPLES

1. /etc/diskrepair /dev/wO
2. /etc/diskrepair /dev/wO +n
3. /etc/diskrepair /dev/fdO +pv
4. /etc/diskrepair /dev/fdO +ru
5. /etc/diskrepair /dev/fdO +mq

error iri the size of a file.
If the 'q' option 1S in

The first example checks the logical structure of the disk in drive wOo
By default, "diskrepair" tries to fix every error it encounters. These
repairs may result in the loss of data from the disk.

The second example checks the logical structure of the disk in drive wO,
reports those errors which require the deletion of either files or
directory entries, but performs no repairs.

The third example checks the logical structure of the disk in floppy
drive O. "Diskrepair" reports all errors it finds and prompts for
permission before making any repairs.

The fourth example checks the logical structure of the disk in floppy
drive O. "Diskrepair" rebuilds the free list no matter what and prints
a summary of block usage when it is finished.

The fifth example also checks the logical structure of the disk in
floppy drive O. It does not rebuild the free list solely on account of
missing blocks. Neither does it print the warnings and messages that
result from problems which are not technically errors in the structure
of the disk but which may cause problems.

NOTES

If a user invokes "diskrepair" on the system disk while the system
is in multi-user mode, the operating system suspends all other tasks
while "diskrepair" is running. In such a case any open pipes or any
open files that do not have names may appear to "diskrepair" to be
logical inconsistencies on the disk when, if fact, they are not.
Invoking the command with the 'n' option under these circumstances
prevents "diskrepair" from altering a disk that is actually intact.

• "Diskrepair" cannot solve all
example, it does not methodically
media problems (but see the 'a'

TSC 8/4/86

the problems a disk may have. For
search for and repair physical
option). As for problems with the

(continued)

diskrepair-7

logical structure of the disk, "diskrepair" can only repair an error
if the damaged information is redundant--that is, if there is some
way of determining what the information should be. It cannot, for
instance, fix a badly damaged SIR; nor can it repair a disk if the
root directory is severely damaged. It is therefore imperative that
up-to-date backups of all important files be maintained.

ERROR MESSAGES

Blockcheck terminated abnormally.
"Blockcheck" received a program
The user cannot determine the
is not indicative of a problem
device. "Diskrepair" should
recur.

Cannot check a "backup" disk.

interrupt from the operating system.
source of such an error; however, it
with either "diskrepair" or the

be rerun, for the problem may not

The disk in the specified device was created by the "backup" command
and cannot be checked by the "diskrepair" command.

Cannot read boot block.
When "diskrepair" tried to read the boot sector, it detected an I/O
error.

Cannot call /etc/blockcheck.
"Diskrepair" cannot read or execute the file "/etc/blockcheck".

Cannot call /etc/fdncheck.
"Diskrepair" cannot read or execute the file" /etc/fdncheck".

Cannot read System Information Record.
The SIR is so badly damaged physically that "diskrepair" cannot re<id
it. The user may be able to salvage some information from the disk,
but must eventually reformat it.

Cannot stat root.
"Diskrepair" cannot read the fdn which describes the root directory.
The user may be able to salvage some information from the disk, but
must eventually reformat it.

Cannot stat std. output.
"Diskrepair" cannot read
standard output. The user
terminal as standard output.

Conflicting options.

the fdn
should

of whatever file
rerun "diskrepair"

is open as
with the

The options specified on the conunand line conflict with each .other.

TSC 8/4/86 (continued)

di skr epair-8

Device is busy.
Any alterations that "diskrepair" makes must be made when the disk
is not in use. Therefore, "diskrepair" determines whether or not
the specified disk is mounted, and, unless the user specifies the
'n' option, it tries to unmount a mounted disk before proceeding.
This error message means that either some user's working directory
is on the specified disk or some user is accessing a file on that
disk.

Disk needs repair I
The structure of the disk is not logically sound. The user should
rerun "diskrepair" to correct the problems.

Error reading block <block_num>.
Error reading fdn <fdn_number> in block <block_num>.
Error writing block <block_num>.
Error writing fdn <fdn_num> in block <block_num>.

"Diskrepair" encountered a physical error on the disk. If the' a'
option is in effect, "diskrepair" calls the program
"/etc/badblocks", which places the offending block in the file
"/.badblocks". If the 'p' option is also in effect, "diskrepair"
prompts the user for permission to call this utility. The user
should grant permission.

If the 'a' option is not in effect, but either the 'p' or 'n' option
is in effect, "diskrepair" prompts for permission to continue. If
the user chooses to continue when the 'n' option is not in effect,
the results are entirely unpredictable. They depend on precisely
which block is damaged. Continuing with "diskrepair" may cause
further damage to the disk. We suggest that the user respond
negatively to the prompt to continue whenever "diskrepair" reports
an I/O error and innnediately rerun "diskrepair" with the 'a' option.

ERROR UPDATING SIR. DI SK IS BAD I
"Diskrepair" encountered an I/O error when it tried to make the
necessary changes in the SIR. The user should try again to execute
"diskrepair". If the error persists, the user cannot salvage any of
the data on the disk.

/etc/blockcheck is invalid.
The version of the "blockcheck" command is not the correct one.

/etc/fdncheck is invalid.
The version of the "fdncheck" command is not the correct one.

Fdncheck terminated abnormally.
"Fdncheck" received a program interrupt from the operating system.
The user cannot determine the source of such an error; however, it
is not indicative of a problem with either "diskrepair" or the
device. "Diskrepair" should be rerun, for the problem may not
recur.

TSC 8/4/86 (continued)

diskrepair-9

Intentional system stop. Reboot UniFLEX.
If the SIR of the root device must be updated, "diskrepair" kills
all tasks running on the system and locks up the system so that no
new tasks can begin. It then modifies the SIR. This procedur e is
necessary to prevent conflicts between the written data and similar
data kept in memory. After updating the SIR, "diskrepair" stops the
system and prints this error message. The user must reboot the
system before proceeding.

Invalid option: '<char>'.
The option specified by '<char>' 1S not a valid option to the
"diskrepair" command.

No device specified.
The user did not specify a device on the command line.

No such device.
The user specified a nonexistent device on the command line.

Not a block device.
"Diskrepair" can only operate on block devices.

Output directed to device under test.
When testing the structure of a disk, it is impractical to try to
redirect the output (the results of the test) :0 a file on the disk
being tested. The user should reexecute "diskrepair" without
redirecting the output or redirecting it to a different, mounted
device.

Permission denied.
A user who executes "diskrepair" without the 'n' option must have
both read and write permission on the specified device. A user who
executes "diskrepair" with the 'n' option needs only read
permission.

Problems encountered. Diskrepair should be rerun.
"Diskrepair" may encounter more problems than it can fix
run. For example, it can only handle a certain number of
or out-of-range blocks. If "diskrepair" cannot fix all
it encounters, or if it encounters an I/O error but
operation, it prints this error message when it finishes.

Unmount error: <error_num>

during one
duplicate

the errors
continues

"Diskrepair" encountered some problem other than a busy device when
it tried to unmount the device. The accompanying error number is
the number of the UniFLEX error that caused the failure. The user
should consult the operating system manual for an explanation of the
error.

TSC 8/4/86 (continued)

diskrepair-lO

SEE ALSO

badblocks
blockcheck
fdncheck

TSC 8/4/86

dperm-l

dperm

Set the default permissions for the creation of files by the current
shell program or by tasks generated by the current shell program.

SYNTAX

dperm [<perms_list>]

DESCRIPTION

Every time a user creates a file, the operating system assigns it a set
of permission bits which determines whether or not the user who owns the
file and other users may read, write, or execute the file. The
permissions assigned depend on the command used to create the file. The
editor, for example, creates all files with "rw-rw-" permissions, which
allow the user who owns the file, as well as other users, to read and
write, but not execute, the file. The default permission for "crdir"
are "rwxrwx"; for create, "rw-rw-"; for "makdev", "rw-r--".

The "dperm" command, which is part of the shell program, is used to set
the default permissions for the creation of a file. It allows the user
to instruct the system always to deny certain permissions, independent
of how the fi1~ is created. It is possible to independently turn off
any of the permission bits for the user who owns the file and other
users. If the user specifies no arguments, the operating system removes
the existing default permissions.

It is only possible to deny permissions with the "dperm" command. The
"perms" command may be used to add permissions to individual files.
This command overrides the defaults set by "dperm".

Arguments

A list defining the permission bits to be used
as defaults.

Format for Arguments

TSC 8/4/86

The first character of an element in a
permissions list specifies if the argument
applies to the user who owns the file ('u') or
to other users ('0'). The second character
must be a minus sign, '-', which indicates that
the following permissions are to be denied.
The minus sign is followed by one, two, or
three of the characters 'r', 'w', and 'x' (for
read, write, and execute).

(continued)

dperm-2

EXAMPLES

1. dperm o-rwx
2. dperm u-w o-wx
3. dperm

The first example sets the default permissions so that the operating
system denies all permissions to other users whenever it creates a file.

The second example sets the default permissions so that the operating
system denies write permission to the user who owns the file, and both
write and execute permission to other users whenever it creates a file.

The third example removes all default permissions.

NOTES

• The "dperm" command is only effective while the shell program under
which it is invoked is running. The default permissions for files
created by the login shell can be permanently altered by placing the
appropriate command in the file ". startup" in the user's home
directory. This file is automatically executed each time the user
logs in.

ERROR MESSAGES

Error in permissions specification.
The format of the permissions list is incorrect. Most likely, the
user has specified a plus sign, '+', instead of a minus sign, or has
used an invalid character (see Format for Arguments).

SEE ALSO

perms

TSC 8/4/86

dump-l

dump

Send both a hexadecimal and an ASCII listing of a file to standard
output.

SYNTAX

dump <file name> [+i]
dump [<f il-;_name_list >]

DESCRIPTION

The "dump" command sen~s a hexadecimal and an ASCII 1 isting of a file to
standard output. The two versions of the file appear side by side. A
line of output consists of the address in the file at which that line
starts, the hexadecimal contents of the byte at that address and of the
following fifteen bytes, and the sequence of characters represented by
these bytes. A nonprintable character appears as a period, '.', in the
ASCII part of the dump.

The user may interrupt the "dump" command at any time by typing a
control-C. Normally, a control-C returns the user to the shell program.
However, if the "dump" command is in interactive mode and is actually
dumping information when the user types a control-C, "dump" stops the
output and prompts for another address.

Arguments

Options Available

The name of the file to dump.
standard input.

The default is

i Enter interactive mode. The 'i' option may only be used
if exactly one file name appears on the command line. If
the user specifies the ' i' option, the "dump" command
prompts for the address at which to begin. The address is
relative to the first byte in the file, whose address is
O. An address preceded by a period is a decimal address;
otherwise it is a hexadecimal address. The user may
specify a single address, a range of addresses (two
addresses separated by a hyphen, '-'), or an initial
address and an offset (an address followed by either a
comma or a space, followed by a number). In the first
case, the "dump" command displays sixteen bytes of
information, beginning with the specified address. In the
second- case, it displays all the bytes from the first to
the second address inclusive. In the third case,' it

TSC 2/13/86 (continued)

dump-2

EXAMPLES

begins displaying
continues for as

1

dictates.

bytes at
many bytes

1. dump memo /usr/cynthia/letter
2. dump letter +i

the
as

address specified and
the following number

The first example sends both a hexadecimal and an ASCII listing of the
file "memo", which is the working directory, and the file "letter",
which is in the directory "/usr/cynthia", to standard output.

The second example enters interactive mode and prompts the user for the
address at which to begin the dumping the file "letter".

ERROR MESSAGES

Cannot interactively dump multiple files.
The 'i' option may not be used if more than one file name appears on
the command line.

Cannot interactively dump standard input.
If the user specifies no file name on the command line, the default
is standard input. The 'i' option may not be used in such a case.

Error opening "<f il e_name>": <reason>
The operating system returned an error when "dump" tried open
<file name>. This message is followed by an interpretation of the
error returned by the operating system.

Inval id option' <char>': ignored.
The option specified by <char> is not a valid option to the "dump"
command. The command ignores it.

TSC 2/13/86

echo-l

echo

Write the arguments on the command line to standard output.

SYNTAX

echo [<arg_1ist>] [+1]

DESCRIPTION

The "echo ll command writes the
output. Every nonhexadecimal
by a space character; the last
return.

Arguments

arguments in <ar&-list> to standard
argument except the last one 1S followed

argument is followed by a carriage

A list of arguments to write to standard output.

Format for Arguments

<ar&-list> Each element in <arg_ list> consists either of a
string or of a hexadecimal number preceded by a
plus sign, ' +' • The "echo" command writes a
space character after each str ing argument; no
space appears after a hexadecimal argument.

Options Available

1 Do not write a carriage return after echoing the argument
list.

EXAMPLES

1. echo This 1S a test!
2. echo This 1S a test! +7 +1 >/dev/tty03

The first example writes the string "This is a test!" to standard
output, which defaults to the user's terminal.

The second example writes the string "This is a test!", followed by a
bell character (hexadecimal 7), to standard output. Standard output 1S

terminal 3. The output is not followed with a carriage return (the "+1"
is the option "plus el", not the hexadecimal argument "plus one").

TSC 8/4/86

edit-l

edit

Invoke the text editor in order to create a new text file or edit an
existing one.

SYNTAX

DESCRIPTION

The "edit" command may be used with zero, one, or two arguments.
Normally, the user specif ies one argument. In such a case, "edi til 0 pens
the specified file for editing and reads as much of the file as possible
into the edit buffer. At the end of an editing session of a preexisting
file, the editor renames the original file by appending the letters
".bak" to its name. If this addition would result in a file name of
more than fourteen characters (the maximum allowed by the operating
system), the editor shortens the original name before adding the suffix.
If a backup file already exists, the editor prompts for permission to
delete it.

If the user specifies no arguments, the editor prompts for the name of
the file at the end of the editing session, before returning control to
the operating system. It does not accept the name of an existing file.
If only one file name is specified, the operating system opens that file
for editing, creating it first if necessary. In either case, the editor
creates files with "rw-rw-" permissions.

If the user specifies two file names, the operating system makes a copy
of the first file specified, gives it the name specified by the second
argument, and opens it for editing. If a file with that name already
exists, the editor prompts for permission to delete it before
proceeding. In such a case, the editor creates the new file with the
same permissions as the old file.

Arguments

Options Available

The name of the file to open for editing, or,
if two file names are specified, the name of
the file to copy.
The name to give to the copy of the file
specified by <file_name_l>. It is this copy
that is opened for editing.

b Do not save the original copy of the file as a backup file
at the end of the editing session.

TSC 2/13/86 (continued)

edit-2

n Do not read any text into the edit buffer. This option
allows the user to make large insertions at the beginning
of a file.

y If only one argument appears on the command line, at end
of the editing session automatically replace any existing
backup file with the original copy of the file being
edited. If two arguments appear on the command line and
the second file specified already exists, delete that file
at the beginning of the editing session.

EXAMPLES

1. edit /etc/log/motd +b
2. edit test +ny
3. edit test oldtest

The first example opens Lhe message-of-the-day file for editing. At the
end of the editing session the original file is deleted.

The second example opens the file "test" in the working directory for
editing but does not read any of it into the edit buffer. If the file
does not exist, the editor creates it. At the end of the session the
"edi til command automatically replaces any existing backup file with the
original copy of "test".

The third example makes a copy of the file "test", names it "oldtest",
and opens it for editing. If a file named "oldtest" already exists, the
editor asks for permission to delete it.

MESSAGES

Delete existing copy of new file?
The file specified by <file_name_2> already exists. If the user
responds with a 'y', the editor deletes the existing copy of the
file and opens the new file for editing. If the user responds with
an 'n', the editor leaves the existing file intact and returns the
user to the operating system.

File already exists
File name?

The "edit" command was executed with no arguments on the command
line. At the end of the editing session, when the editor prompted
for the name of the file, the user specified an existing file.
Under these circumstances, the editor does not accept the name of an
existing f He.

TSC 2/13/86 (continued)

edit-3

ERROR MESSAGES

Cannot create new file
The editor cannot open the file specified by <file_name_2>. Most
probably, either the user specified a path name that could not be
followed or the user does not have the permissions necessary to open
the file.

Cannot open edit file
The editor cannot open the file specified by <file_name_l>. Most
probably, either the user specified a path name that could not be
followed or the user does not have the permissions necessary to open
the file.

Cannot read edit file
The editor encountered an I/O error trying to read the specified
file.

Edit file does not exist
The user has specified two file names on the command line, but
<file_name_l> does not exist.

New file is the same as the old file
Both <file_name_I> and <file_name_2> refer to the same file. (If
their names are not the same, they are links to the same file.)

Too many file names specified.
The "edit" command requires zero, one, or two arguments. This
message indicates that the argument count ~s wrong.

Unknown option specified
An option on the command line is not a valid option to the "edit"
command. The command ignores the option and proceeds.

SEE ALSO

dperm
The UniFLEX Text Editor

TSC 2/13/86

end-l

end

Stop the job currently being printed by the specified printer program.

SYNTAX

end <splr_name>

DESCRIPTION

The "end" command stops the job currently being printed by the specified
printer program. It discards the unprinted part of the file and starts
printing the next job in the print queue, if one exists.

Arguments

The name of the printer program to stop.

EXAMPLES

1. end spr

This example tells the printer program associated with "spr" to stop
printing the current job, to discard the rest of that file, and to start
printing the next job in the print queue, if one exists.

NOTES

• The "end" command is one of five commands that are linked to the
file "/etc/prcon", which controls the printing of files.

ERROR MESSAGES

Cannot find spooler directory for "<splr_name>".
The directory "/usr /gen" does not contain a directory for the
specified spooler.

Error opening "<f il e_name>": <reason>
The operating system returned an error when "end" tried to open the
specified file. This message is followed by an interpretation of
the error returned by the operating system.

TSC 2/13/86 (continued)

end-2

Error reading "<file_name>": <reason>
The operating system returned an error when "end" tried to read the
specified file. This message is followed by an interpretation of
the error returned by the operating system.

n<splr_name>" is already idle.
The "end" command is effective only on an active spooler.

Syntax: end <splr_name>
The "end" command expects exactly one argument.
indicates that the argument count is wrong.

You must be system manager to run "end".
Only the system manager may execute the "end" command.

SEE ALSO

idle
insp
next
print
pstop
purge
rerun

TSC 2/13/86

This message

env-l

env

Display or change environment variables.

SYNTAX

env [<param_list>]

DESCRIPTION

The "env" command is part of the shell program. Depending on the form
invoked, it displays the value of one or more environment variables,
deletes the specified environment variable, changes the value of an
existing environment variable, or creates a new one.

The standard ~nvironment for a shell program is established by the
"login" command. Standard variables are HOME, the user's home
directory; MAIL, the location of the user's mailbox; PATH, the list of
directories searched by the shell program when it is looking for an
executable file; SHELL, the name of the login program; TERM, the type of
terminal in use; and USERNAME, the name used to log in. The user may
define additional variables. A shell program passes its environment to
each child task.

Arguments

A list of the variables to manipulate.

Format for Arguments

Each item in the list of variables must have the following format:

<name>[=[<value>]]

where <name> is the name of the environment variable to manipulate and
<value> is the value to assign to the specified environment variable.
If the user does not specify a name, the "env" command displays the name
and value of each environment variable. The value is a string.
Therefore, if the string contains any space characters, it must be
enclosed in single or double quotation marks. If the user specifies an
equals sign, '=', but does not specify a value, the "env" command
deletes from the environment the specified variable.

When setting the value of the variable PATH, the user must place a
colon, ':', after the name of each directory except the last one. The
user may specify the working directory either by placing an empty field
in the string (by beginning the string with a colon, by ending the
string with.a colon, or by placing two colons side-by-side) or by using

TSC 8/4/86 (continued)

env-2

a period,

EXAMPLES

1.
2.
3.
4.
5.

, , . ,

env
env
env
env
env

in any field to represent the working directory.

NC=100
NC
NC=
PATH=:/usr/bob/bin:/usr/larry/bin:/bin:/usr/bin

The first example displays a list of each environment variable and its
value.

The second example defines an environment variable "NC" and sets its
value to the string "100".

The third example displays the name "NC" and its value.

The fourth example deletes the variable "NC" from the environment.

The fifth example defines the search path for the shell program as the
user's working directory, followed by the directories "/usr/bob/bin",
"/usr/larry/bin", "/bin", and "/usr/bin". The shell program searches
the directories in the order the user specifies them.

SEE ALSO

login
UniFLEX System Calls: exece

TSC 8/4/86

fdncheck-l

fdncheck

Check the integrity of the structure of the file descriptor nodes (fdns)
on the specified disk.

SYNTAX

/etc/fdncheck <dev_name>

DESCRIPTION

The "fdncheck" command checks the integrity of the structure of the file
descriptor nodes (fdns) on the specified disk. An fdn contains all the
information that the operating system needs to know about a file. This
information includes, but is not limited to, the type of file, the owner
of the file, the size of the file, and the addresses of all the blocks
that are a part of the fil e. The "fdncheck" command locates probl ems
such as unreferenced files, directory entries with invalid associated
files, and so forth.

This command is primarily intended for use by the "diskrepair" utility,
which calls it. It may also be used on its own. However, "fdncheck"
can only check the structure of the disk; it cannot repair it. If the
output from the command suggests that the structure of the fdns is
damaged, the user should execute "diskrepair" on the disk.

The "fdncheck" command should be executed only when no other tasks are
active on the system. Otherwise, the results are unpredictable.

Arguments

EXAMPLES

The name of the device to check •. It must be a
block device.

1. /etc/fdncheck /dev/fdO

This example checks the structure of the fdns on the disk in floppy
drive O.

ERROR MESSAGES

Cannot check a "backup" disk.
The disk in the specified device was created by the "backup" command
and cannot be checked by the "fdncheck" command.

TSC 2/13/86 (continued)

fdncheck-2

Cannot read boot block.
When "fdncheck" tried to read the boot sector, it detected an I/O
error.

Invalid option: '<char>'.
The option specified by '<char>' is not a valid option to the
"fdncheck" command.

SEE ALSO

blockcheck
devcheck
diskrepair

TSC 2/13/86

filetype-l

filetype

Attempt to identify the type of the specified file.

SYNTAX

DESCRIPTION

The "filetype" command attempts to identify the type of the specified
file. It looks at the first few bytes of the file to determine whether
or not it is a binary file. If it is, it tries to identify it as one of
the types it can recognize. If it does not recognize the type, it
identifies the file as an "unknown" file. If the file is not a binary
file, the "filetype" command looks at the first character of each line
in the first block of the file. It tallies this information and uses it
to attempt to identify the file. If it does not recognize the type, it
identifies the file as a "regular text" file.

The "filetype" command uses the following format to report its results
to standard output:

"<file_name> is a[n] "<file_type>" file.

It sends one message for each name listed on the command line. Types of
files recognized by the "filetype" command are as follows:

68000 Binary
common block binary
current BASIC compiled
nonshared, not separate I and D (instruction and data space)
nonshared, separate I and D
overlapped text and data
relative
relocatable binary
shared, not separate I and D
shared, separate I and D
standard Pascal
system Pascal
VSAM indexed

TSC 2/13/86 (continued)

filetype-2

6809 Binary
6809 absolute binary
6809 common block binary
6809 current BASIC compiled
6809 original BASIC compiled
6809 relative
6809 relocatable binary
6809 segmented, no text binary
6809 shared-text binary
6809 standard Pascal
6809 system Pascal
6809 VSAM indexed

Text (both 68000 and 6809)
----[assembler or] COBOL text

BASIC precompiler text
BASIC text
C text
empty
packed
Pascal text
Sort/Merge parameter
text-processor text

Special files (both 68000 and 6809)
block device
character device
directory

Arguments

<file_name_list> A list of the names of files to process.

EXAMPLES

1. filetype chapter_l
2. filetype /etc/formatfd /etc/mount

The first example attempts to identify the type of the file "chapter_I"
in the working directory.

The second example attempts to identify the types of the files
"formatfd" and "mount" in the directory "/etc".

TSC 2/13/86 (continued)

filetype-3

ERROR MESSAGES

Error opening "<file_name>": <reason>
The operating system returned an error when "filetype" tried to open
the file <file_name>. This message is followed by an interpretation
of the error returned by the operating system.

Error processing "<file_name>": <reason>
The operating system returned an error when "filetype" tried to
process the file <file_name>. This message is followed by an
interpretation of the error returned by the operating system.

Error reading "<f ile_name>": <reason>
The operating system returned an error when "filetype" tried to read
the file <file_name>. This message is followed by an interpretation
of the error returned by the operating system.

Syntax: filetype <file_name_list>
The "filetype" command requires at least one argument. This message
indicates that the argument count is wrong.

TSC 2/13/86

find-l

find

Search for a string in a file or in standard input.

SYNTAX

DESCRIPTION

The "find" command looks in the specified f He and sends to standard
output a list of all lines, accompanied by line numbers, that contain
the specified string. By default, upper- and lowercase characters are
distinct. The "find" command cannot search directories, devices, or any
file it interprets as a binary file (a file which begins with a
nonprintable ASCII character other than a horizontal tab character, a
form-feed character, or a carriage return).

Arguments

Specifying a String

The string to search for.
The second string to search for if the
"and" operator is used.
A list of the names of files to search.
The files specified should be regular text
files--not directories, special files, or
binary files. The default file is standard
input.

The user may completely specify a string or may take advantage of the
matching characters recognized by the "find" command. Because'some of
these matching characters also have special meanings to the shell
program, strings which use them must be enclosed in single or double
quotation marks.

\ When used just before any matching character, including
itself, the backslash character negates the matching
ability of the character.

? The question mark matches any character except a new-line
character.

< A left-hand angle bracket specifies that the following
string must be found at the beginning of a line. It
loses its matching ability if it is not the first
character of the string.

TSC 2/13/86 (continued)

find-2

> A right-hand angle bracket specifies that the preceding
string must be found at the end of a line. It loses its
matching ability if it is not the last character of the
string.

& The "and" operator may be used between two strings (see
the syntax statement). The Iff ind" command repor ts only
those lines on which both strings occur.

[] Square brackets enclose a list or a range of characters
from which the "find" command can choose when looking for
a string. A list of characters consists of adjacent
characters. A range consists of two characters separated
by a hyphen.

The exclamation point may be used in conjunction with the
square brackets. If it is the first character inside the
brackets t the "find" command can choose from all
characters not specified in the brackets when looking for
a string.

Options Available

Any options used with the "find" command must appear immediately after
the command name.

b Skip files whose names end in ".bak".
c Instead of writing the lines that contain the specified

string to standard output t report the number of lines
containing the string.

n Do not print line numbers.
s List the names of all files skipped.
u Do not distinguish between upper- and lowercase

characters.

EXAMPLES

1. find +u syntax test
2. find +bu "<syntax" test trial
3. find +u 'syntax&statement' test
4. find +c "\<" test
5. find +u '[a-e]nd' test
6. find +su "standard output" *

The first example writes to standard output all lines from the file
"test" which contain the string "syntax". The command does not
distinguish between upper- and lowercase characters.

TSC 2/13/86 (continued)

find-3

The second example writes to standard output all lines from the files
"test" and "trial" which contain the string "syntax" at the beginning of
the line. The command does not search files whose names begin with
".bak", nor does it distinguish between upper- and lowercase characters.
Because matching characters are used to specify the string, the string
must be enclosed in either single or double quotation marks.

The third example writes to standard
"test" which contain both the
"statement". The command does not
lowercase characters.

output all lines from the file
string "syntax" and the string
distinguish betw~en upper- and

The fourth example writes to standard output the number of lines in the
file "test" which contain a left-hand angle bracket. The matching
ability of the angle bracket is negated because of the backslash
character which precedes it.

The fifth example writes to standard output all lines from the file
"test" which contain any of the following str ings: "and", "bnd", "cnd",
"dnd" , or "end". The command does not distinguish between upper- and
lowercase characters.

The sixth example writes to standard output all lines from all files in
the working directory which contain the string "standard output". It
also writes to standard output the names of all the files in the
directory that it does not search (directories, devices, and any file it
interprets as a binary file). The command does not distinguish between
upper- and lowercase characters.

NOTES

• The "find" command cannot search a file referenced simply as "core"
although it can search one referenced as " •• /core".

ERROR MESSAGES

Error opening "<file_name>": <reason>
The operating system returned an error when "find" tried to open the
specified file. This message is followed by an interpretation of
the error returned by the operating system.

Error processing "<f ile_name>": <reason>
The operating system returned an error when "find" tried to process
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

TSC 2/13/86 (continued)

find-4

File "<file_name>" is not a text file.
The "find" command cannot search directories~ devices, or any file
it interprets as a binary file (a file which begins with a
nonprintable ASCII character other than a horizontal tab character,
a form-feed character, or·a carriage return).

Invalid option: '<char>'. Command aborted.
The option specified by <char> is not a valid option to the "find"
command.

Syntax: find [+bcnsu] <str_l>I&<str_2>1 [<f ile_name_list> 1.
The "find" command expects at least one argument. This message
indicates that the argument count is wrong.

SEE ALSO

shell

TSC 2/13/86

format-l

format

Format a disk for system use.

SYNTAX

/etc/format<xx> [+BCdfF1LmMnPqrsv]

Options Available

B
C=<contig>

d=<dev_name>
f=<blocks>

F

l=<f ile_name>
L
m=<model_code>
M
n
P
q
r=<page_space>

v

DESCRIPTION

Write boot sector only. Do not format disk.
Reserve <contig> cylinders for contiguous
f il es.
Format the device <dev_name>.
Establish <blocks> blocks for file descriptor
nodes (fdns).
Perform UniFLEX structural formatting only.
Do not format the medium.
Take bad sector addresses from <file_name>.
Take bad sector addresses from terminal.
Use <model_code> for disk parameters.
Take disk parameters from terminal.
Do not prompt for information on disk volume.
Prompt for disk parameters.
Use quiet mode.
Reserve <page_space> cylinders for paging
space.
When formatting is complete, write a list of
bad blocks to the specified file.
Verify the disk after formatting.

The family of "format" commands is used to prepare disks for system use.
This document 18 a general description of all "format" commands;
specific "format" commands are documented elsewhere. The specific
commands generally have a suffix appended to the general name
"/etc/format". They perform media formatting as well as UniFLEX
structural formatting. Only the system manager may execute this
command.

If the system is unable to collect the physically contiguous memory
required by the hardware to format a disk, an appropriate message is
issued, asking whether or not the user is willing to wait. If the user
responds with an 'n', the "format" command abor ts. If the user responds
with a 'y', the program sleeps for a short time and then tries again.
If the required memory is repeatedly unavailable, it may be necessary to
go into single-user mode where the reduced number of tasks almost always
yields enough memory for formatting.

TSC 2/13/86 (continued)

format-2

Complete descriptions of the options follow.

The ' B' Option

The 'B' option instructs the "format" command to write the boot sector
onto the specified disk without first formatting the disk. The system
assumes that the specified disk has previously been formatted. It
writes only the boot sector (sector number 0).

The 'c' Option

The 'c' option reserves space on the disk for contiguous files, which
can be accessed more quickly than noncontiguous files. The formatting
program tries to reserve space that is completely contiguous. However,
if necessary, it allows some bad blocks to interrupt the contiguous-file
space. If the disk contains a large number of bad blocks, the "format"
command may not be able to honor a request for contiguous-file space.
The syntax for this option is

C=<contig>

where <contig> is a decimal number which specifies the number of
cylinders to reserve for contiguous files. For example, "C=20" reserves
twenty cylinders for contiguous files. (For a definition of "cylinder"
and other terms, see Appendix A.) The amount of contiguous-file space to
reserve depends entirely on the way in which a particular site uses the
operating system.

The 'd' Option

Each specific "format" command operates on a particular disk unit untess
another device is explicitly specified. If this default disk has been
mounted (using the "mount" command), it is automatically unmounted prior
to the formatting operation. The 'd' option allows the user to specify
the device to be formatted. Its syntax is

d=<file_name>

where <file_name> is the complete file specification of the desired
block device.

The ' f' Option

Formatted UniFLEX disks use fdn blocks to hold information about files
on the disk. Each fdn block contains eight fdns. By default, "format"
uses 3% of the total disk space for fdn blocks. This default value may

TSC 2/13/86 (continued)

be overridden by the 'f' option, which allows the user to
decimal number of fdn blocks to establish on the disk.
block must be allocated for fdns on every formatted disk.

The 'F' Option

format-3

specify the
At least one

The 'F' options instructs the "format" command to forego formatting the
medium and proceed with only the UniFLEX structural formatting (the
creation of both the boot sector and the system information record
[SIR], the initialization of the file descriptor nodes [fdns], the
creation of the root directory, and the reservation of any swap space
and contiguous-file space).

The '1' and 'L' Options

If "format" detects media errors (see the 'v' option), it notifies the
user of these errors and automatically omits the faulty sectors from the
available space on the disk by placing them 1n a file called
".badblocks" in the root directory of the disk. As a result, any
program which physically accesses blocks from the disk (by directly
reading blocks from the device rather than by opening and accessing them
from a file) receives an I/O error if it accesses any of these bad
blocks. Programs 1 ike "devcheck", which do access the disk physically,
are aware of the existence of the ". badblocks" file and ignore all the
blocks contained in that file.

It is also possible to specify in advance a list of bad sectors which
"format" should omit from the available space. "Format" places the
specified sectors in the file ".badblocks", thus omitting them from the
available space on the disk. This list is specified with the '1' or 'L'
option. These options are most commonly used on hard disks. Hard disk
manufacturers often provide a list of bad spots that have been detected
on a particular drive. The '1' and 'L' options allow the user to be
certain that such spots are considered bad by "format". The bad spots
must be specified as logical, 512-byte sector addresses. If the
manufacturer's list of bad spots is given in 40-byte ranges or in
256-byte sectors, the user should refer to Appendix B for conversion to
physical sector numbers. The physical sector numbers must then be
converted to logical sector numbers, which take into account the sector
interleaving. Appendix C contains a table of conversions from physical
to logical sector numbers.

Using the '1' or 'L' option, the user then specifies the bad sectors to
"format" by means of a head address, a cylinder address, and a logical
sector number. The syntax for identify ing a bad sector is as follows:

<HD> / <CYL> / <SC>

where <HD> is decimal number representing the head number or surface

TSC 2/13/86 (continued)

format-4

number (0 through (no. of heads - 1)); <CYL> is a decimal number
representing the cylinder number (0 through (no. of cylinders - 1));
and <SC> is either a decimal number representing the logical, 512-byte
sector number (1 through 16 or 17 for mini-Winchesters) or an asterisk,
'*', which indicates all sectors on the specified surface. For example,
head number 1, cylinder number 57, sector number 2, is specified as

1/57 I 2

For Winchester drives the user may also specify the sector as

• <num>

where <num> is decimal number representing the number of bytes from the
"index position". Alternatively, the user may specify the head,
cylinder, and sector as

where <hex_num> is a hexadecimal number representing the logical
block-number.

These bad sector addresses may be specified from either the terminal or
from an existing disk file. If they are to be specified from the
terminal, the 'L' (uppercase) option should be used. "Format" then
prompts the user for bad sector addresses, one per line, before
beginning the formatting procedure. The list is terminated by typing a
control-D as the first character of a line. If the bad sectors are to
be specified from a disk file, the '1' (lowercase) option should be
used. The syntax for this option is

For example, if the file containing the bad sector addresses is called
"bad-spots" and is located in the "/etc" directory, the option to use is

l=/etc/bad-spots

This file should contain one sector address per line. Each address
should conform to one of the formats described previously.

The 'm' and 'M' Options

Specific parameters about disk type and size are supplied through
'm' or 'M' (model) option. The syntax for the 'm' option is

m=<model_code>

the

TSC 2/13/86 (continued)

format-5

where <model_code> is coded information about the particular drive type
and size. A list of valid codes is provided with the documentation of
each "format" command.

The 'M' option does not take parameters on the command line, but instead
causes "format" to prompt the user for the information. The user's
response should be in the same format as that described for the 'm'
option. In addition, the 'M' option asks to display a list of the
models it knows about and their associated codes. The user can then use
this information with the current 'M' option or with 'm' options on
subsequent "format" commands. If neither the 'm' nor the 'M' option is
specified, the model defaults to the standard drive supplied with the
hardware.

The 'n' Option

The "format" command prompts the user for a "f ile system name", "volume
name", and "volume number" unless the 'n' option is specified to inhibit
such prompts.

The 'p' Option

The 'P' option may be specified in place of the 'm' or 'M' option. It
tells "format" to prompt the user for the disk parameters. These
parameters include the number of cylinders, the number of heads, the
cylinder number at which to begin reduced write, the cylinder number at
which to begin write precompensation, and the stepping (seek) rate. All
responses should be in decimal unless otherwise indicated. This option
is automatically invoked if the user specifies the 'm' option with an
unknown code or makes an invalid selection with the 'M' option.

The 'q' Option

Before actually starting to format the disk, "format"
prompt to the terminal to ask if the user is ready to
(quiet) option suppresses this prompt. In addition,
informative messages from "format" if no errors are
formatting.

The 'r' Option

normally sends a
continue. The 'q'
it inhibits all

encountered during

The 'r' option is used to reserve paging space on the disk. The syntax
for this option is

r=<page_space>

TSC 2/13/86 (continued)

format-6

where <page_space> is a decimal number which specifies the number of
cylinders to reserve. For example, "r=20" reserves twenty cylinders for
paging space. (For a def inition of "cylinder" and other terms, see
Appendix A.) The amount of paging space necessary varies from one system
to another. The system manager must try to anticipate the maximum
number of tasks that will run on the system at anyone time and the size
of each task. For example, thirty-two 256-Kbyte tasks require 8 Mbytes
of memory. The amount of physical memory available should be subtracted
from the amount of memory needed and enough paging space allocated for
the difference. Appendix D, which lists the cylinder sizes of various
disks, can be used to determine the number of cylinders to reserve.
Note that paging space is not necessary on data disks and that by
default, "format" does not reserve paging space.

The "s" Option

The "s" option instructs the "format" command to write a list of any bad
blocks it encounters to the specified file after the completion of the
formatting procedure. The syntax for this option is

The program specifies each bad sector as

<HD>/<CYL>/<SC>

where <HD> is a decimal number representing the head number or surface
number (0 through (no. of heads - 1)); <CYL> is a decimal number
representing the cylinder number (0 through (no. of cylinders - 1));
and <SC> is a decimal number representing the logical, 5l2-byte sector
number (1 through 16 or 17 for mini-Winchesters).

The .. v' Opt ion

The "v" (verify) option instructs "format" to verify the media after
formatting. If this option is specified, "format" individually
verifies every sector on the disk. It first writes an arbitrary pattern
to each sector; then reads and verifies each one. Because verification
of a large disk may take a long time, the "format" command prints
symbols to indicate its progress. It prints an asterisk, '*', each time
it finishes writing fifty sectors; a dollar sign, '$', each time it
finishes reading and verifying fifty sectors. It reports any sectors
which fail this test to the user.

The need for the "v" option depends on the hardware involved and is
discussed in the documentation of each specific "format" command. The
option is often desirable when the user is formatting a floppy disk
because floppies do not automatically verify all written data. Some
Winchester disk units perform automatic verification of all written

TSC 2/13/86 (continued)

format-7

da ta; others do not.

NOTES

Examples and error messages are discussed in the documentation for
each individual "format" command.

ERROR MESSAGES

*** Error writing contiguous space free map ***
The disk contains too many bad blocks for the "format" command to
honor the request for contiguous-file space.

SEE ALSO

System calls: create_contiguous

j) ... i

TSC 2/13/86 (continued)

format-8

Appendix A
Definitions of Disk Drive Terminology

The following definitions apply to this document.

Head: A device which transfers data from one disk surface.
Normally there is one head per recording surface.

Track: All the sectors accessible by one head on one surface
without moving the head assembly.

Cylinder: All tracks accessible by all heads without moving
the head assembly. Cylirlder address is the corresponding
position of the head assembly.

Standard 8-inch floppy disks have 77 cylinders, numbered 0 through 76.
The distinction between a track and a cylinder on a floppy is sometimes
overlooked. The term track is often incorrectly used in place of
cylinder.

The tables in Appendix B, C, and D may not apply to all hardware. The
user should consult the documentation from the vendor.

TSC 2/13/86 (continued)

format-9

Appendix B
Conversion to Physical Sector Numbers for Mini-Winchesters

The following tables can be used to convert a 40-byte range or 256-byte
physical sector number into the 5l2-byte physical sector number required
by "format" for mini-Winchesters. A single 40-byte range or 256-byte
sector may cross a 512-byte sector boundary and therefore map onto two
512-byte sectors.

TSC 2/13/86

Table B-1. Conversion from 40-byte Range
to 512-byte Sectors

4O-byte
Zone

0-10
11-20
21-30
31-40
41-50
51-60
61-70
71-80
81-90
91-100

101-110
111-120
121-130
131-140
141-150
151-160
161-170
171-180
181-190
191-200
201-210
211-220
221-230
231-240
241-250

512-byte
Sector(s)

1
1-2
2-3
3
3-4
4-5
5
5-6
6-7
7
7-8
8-9
9
9-10
10-11
11
11-12
12-13
13-14
14
14-15
15-16
16
16-17
17

(continued)

format-l 0

TSC 2/13/86

Table B-2. Conversion from 256-byte Sectors
to 512-byte Sectors

---------------------------------------~----
256-byte
Sector

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

512-byte
Sector (s)

1
1-2
2
2-3
3
3-4
4
4-5
5
5-6
6
6-7
7
7-8
8-9
9
9-10
10
10-11
11
11-12
12
12-13
13
13-14
14
14-15
15
15-16
16-17
17
17

(continued)

format-ll

Appendix C
Conversion from Physical to Logical Sector Number

The following table gives the logical, 512-byte sector number that
corresponds to a given physical, 5l2-by te sector for mini-Winchester
disks. To use this table, the user must know the sector interleave used
by the specific "format" command.

Table C-l. Conversion from Physical to Logical Sector
Number

--
Logical Sector No. for Interleave of

Physical ---
Sector No. 2 3 4 5 6 7 8 9 10
--

I 1 1 1 1 1 1 1 1 1
2 10 7 14 8 4 6 16 3 13
3 2 13 10 15 7 11 14 5 8
4 11 2 6 5 10 16 12 7 3
5 3 8 2 12 13 4 10 9 15
6 12 14 15 2 16 9 8 11 10
7 4 3 11 9 2 14 6 13 5
8 13 9 7 16 5 2 4 15 17
9 5 15 3 6 8 7 2 17 12

10 14 4 16 13 11 12 17 2 7
11 6 10 12 3 14 17 15 4 2
12 15 16 8 10 17 5 13 6 14
13 7 5 4 17 3 10 11 8 9
14 16 11 17 7 6 15 9 10 4
15 8 17 13 14 9 3 7 12 16
16 17 6 9 4 12 8 5 14 11
17 9 12 5 11 15 13 3 16 6

--

TSC 2/13/86 (continued)

format-12

Appendix D
Cylinder Sizes for Various Disks

The 'r' option requires the specification of the number of cylinders to
reserve for paging space. To calculate this number the user must know
how much paging space is desired and the size of each cylinder.

Mini-Winchester disks contain between 8 and 9 Kbytes of storage per
track, depending on the controller. The number of tracks per cylinder
is dependent on drive type and can be obtained from the hardware
documentation or from the documentation of the specific "format"
command. Note that the number of tracks per cylinder is the same as the
number of heads in the drive. For example, consider a Computer Memories
model 5619 mini-Winchester disk. This device has 306 cylinders and six
heads. Twenty cylinders are required to reserve 1 Mbyte of swap space
(20 cyl. * 6 tracks/cyl. * 8.5 Kbytes/track).

The following table provides the necessary cylinder sizes for floppy
disks.

Table D-1. Cylinder Sizes for Various Formats of Floppy
Disks

Sides

Single
Single
Double
Double

TSC 2/13/86

Density

Single
Double
Single
Double

8" Disk

Sectors
per cy I

8
16
16
32

Kbytes
per cyl

4
8
8

16

5" Disk

Sectors
per cy I

5
8
8

16

Kbytes
per cyl

2.5
4
4
8

free-l

free

Report the amount of free and used space on the specified device.

SYNTAX

DESCRIPTION

The "free" command reports the amount of space remaining and the on
amount of space used on the specified device. It reports the total
number of free blocks available for use in files, the number of blocks
in use, the total number of file descriptor nodes (fdns) available, the
number of fdns in use, and--if the disk was formatted with any--the
amount of contiguous-file space available and the amount in use.

The number of fdns available tells the user how many more files can be
created on the device (assuming that sufficient free blocks remain for
use in the files). If the number of available fdns drops to 0, no more
files can be created on the disk, no matter how many free blocks remain.

Arguments

Options Available

A list of the names of the devices to report
on. The devices may be either mounted or
unmounted.

d Provide more detailed information with the output. This
extra information includes the names of the file system
and the volume if they were specified when the disk was
formatted, as well as the amount of swap space on the
disk.

EXAMPLES

1. free /dev/fdO

This example reports both the number of fdns available and the number of
free blocks on the disk in floppy drive O.

TSC 2/13/86 (continued)

free-2

ERROR MESSAGES

Cannot open <dev_name>
The "free" command returns this error message for any of the
following reasons: the device specified does not exist; the device
specified exists, but no hardware is connected to it; the device
exists, hardware is connected to it, but no disk is in the device.

<dev_name> is not a block device.
The specified device must be a block device.

Invalid option: '<char>'.
The option specified by '<char>' is not a valid option to the "free"
command.

TSC 2/13/86

hangup-l

hangup

Specify the action that the shell program is to take when it receives a
hangup interrupt.

SYNTAX

DESCRIPTION

The "hangup" command, which is part of the shell program, specifies
whether or not the shell program should termina te if it receives a
hangup interrupt. When hangup is "on", the shell progr am termina tes on
receipt of a hangup interrupt. When hangup is "off", the shell program
ignores hangup interrupts.

Arguments

Either the string "on" or the string "off".

EXAMPLES

1. hangup on
2. hangup off

The first example instructs the shell program to terminate if a hangup
interrupt ~s received.

The second example instructs the shell program to ignore han~up
interrupts.

NOTES

• The "hangup" command is only effective while the shell program under
which it is invoked is running. The "on" or "off" condition is
propagated to all child tasks of the shell program. That is, if
hangup is "off", all child tasks of the shell program ignore the
hangup interrupt unless they specifically take action to handle the
interrupt. If hangup is "on", all child tasks of the shell program
terminate on receiving a hangup interrupt unless they specifically
take action to handle the interrupt.

SEE ALSO

shell

TSC 2/13/86

headset-l

headset

Change information in the binary header of an executable file.

SYNTAX

headset <file_name_list> [+aAbBcCdfIStXZl

DESCRIPTION

The "headset" command can alter certain portions of the binary header of
an executable object module. Features such as whether or not the module
is shared-text, whether or not the module can produce a core dump, and
the initial stack size can be altered without reloading the module. The
characters used for options are identical to those used when invoking
the loader with the "load68k" command. Those options which do not take
an argument can be disabled by preceding the character with a minus
sign, " instead of the usual plus sign, '+'.

Arguments

Options Available

a=<num>

A=<num>

TSC 8/4/86

A list of the names of the files to
process.

Specifies the minimum number of pages to
allocate to this task at all times. The
minimum value for the argument is 0; the
maximum, 32767. The default is O. The
operating system tries to honor the
specified number, but if it cannot, it uses
as many pages as it needs.
Specifies the maximum number of pages to
allocate to this task at all times. The
m~n~mum value for the argument is 0; the
maximum, 32767. The default is O. The
operating system tries to honor the
specified number, but if it cannot, it uses
as many pages as it needs.
Specifies the maximum size to which the
task may grow during execution. The
argument <task_size> may be "128K", "256K",
"512K", "1M", "2M", "4M", "8M", "16M",
"32M", "64M" , "128M", "256M", "51 2M", "IG",
" 2 G" , " 4G" , ','.9~,,~.'1:1" , ":Lo" , "sma 11" ,
"medium", or "large". All letters may be
in upper- or lowercase. The size of a task
specified by'S' (or "small"), 'M' (or

(continued)

headset-2

B

c=<source_type>

C=<config_num>

d

f

I

TSC 8/4/86

"medium"), or 'L' (or "large") loS

vendor-dependgll J;:. Typic;:~11Yl ho~~ver:, ' S'
specifies l28K; 'M',thesize of physical
memory; 'L', the maximum size allowed to a
task.· The default is "128K". If the task
size specified by the user (or the default)
is not large enough to hold the code from
all the modules being loaded, the loader
automatically adjusts the size to the
smallest value that can contain all the
code.
Set a bit 1.n the binary header of the
output module which tells the operating
system to zero neither the bss segment nor
any memory allocated while the task is
running.
Sets a flag in the binary header of the
output module which indicates the type of
source code from which the module was
created. The argument <source_type> may be
"ASSEMBLER", "C", "COBOL", "FORTRAN", or
"PASCAL". The names can be specified in
either upper- or lowercase.
By default, the loader uses the
configuration number of the current
hardware. The user may, however, use the
'c' option to specify a configuration
number which overrides the default. This
option is useful when loading a module for
a machine other than the one on which it is
running.
Set the "no core dump" bit 1.n the binary
header.
Produce a demand-load executable module
(one whose text segment is loaded only as
needed). In such a module the text and
data segments each begin on a 5l2-byte
boundary. Preceding the 'f' option with a
minus sign instead of a plus sign removes
the demand-load nature of the module. The
alignment of the text and data segments on
512-byte boundaries, however, persists.
Enable processing of floating-point
interrupts. This option is only useful on
a system with an MC68881 floating-point
coprocessor.
Specifies the initial stack size, which is
written into the binary header of the
module produced by the loader. The
hexadecimal number is the number of bytes
to reserve. The default is 0, in which

(continued)

z

EXAMPLES

headset-3

case the system assigns the default stack
size of 4K.
Produce a shared-text executable module.
Specif ies
which only
which is
high-order
file.

a 32-bit hexadecimal number, of
the high-order 7 bits are used,
used to mask out any of the
7 bits in all addresses ln the

Align the text and data segments on
512-byte boundaries, padding with null
bytes as necessary. Preceding the 'z'
option with a minus sign instead of a plus
sign makes the module a demand-load module
if its text and data segments are already
aligned on 512-byte boundaries.

1. headset mathtest +t -d +S=2000
2. headset run_l run_2 +tB +a=IO

The first example makes the executable object module "mathtest" a
shared-text module. It turns off the "no core dump" bit, so that the
program can produce core dumps, and sets the initial stack size to
hexadecimal 2000.

The second example changes the headers in the files "run_I" and "run_2".
Both modules become shared-text modules. The operating system will zero
neither the bss segment nor any memory allocated while the task is
running. The minimum page allocation is set to ten pages.

NOTES

The user may make a change in a header which results in an
inconsistent header. In such a case the "headset" command makes
whatever adjustments are necessary ln the fields which were not
changed to remove the inconsistency. The user is notified of these
adjustments. For example, if the user alters the initial stack
size, the task size might have to be changed. If this change is
necessary, "headset" notifies the user and adjusts the task size to
the appropriate value. Adjustments may also be made when either the
mlnlmum or maximum page allocation is altered. If the task size
specified by the user is not large enough to hold the code from all
the modules being loaded, "headset" automatically adjusts the size
to the smallest value that can contain all the code.

• If the user changes either the minimum
allocation so that the minimum is
"headset" automatically adjusts them

TSC 8/4/86

or the maximum
gr ea t er than

according to

value for page
the maximum,

the following

(continued)

headset-4

rules. The value for the maximum is always greater than or equal to
the value for the minimum. The value for the maximum can be 0, but
if it is greater than 0, it must be at least 4.

MESSAGES

allocation to <num>. File "<f ile_name>": changed max page
The user specified a minimum page
current maximum page allocation.
to the minimum.

allocation that was above the
The utility set the maximum equal

File "<file_name>": changed min page allocation to <num>.
The user specified a maximum page allocation that was below the
current minimum page allocation. The utility set the minimum equal
to the maximum.

File "<f ile_name>": task size set to <task_size>.
The "headset" command had to adjust the task size either because the
user specified an initial stack size that made the module larger, or
because the task size specified on the command was too small for the
calculated size of the module.

ERROR MESSAGES

Error opening "<file_name>": <reason>
The operating system returned an error when "headset" tried to open
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

Error processing "<f He_name>": <reason>
The operating system returned an error when "headset" tried to
process the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error reading "<f He_name>": <reason>
The operating system returned an error when "headset" tried to read
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

Error seeking in "<f il e_name>": <reason>
The operating system returned an error when "headset" tried to seek
in the specified f He. This message is followed by an
interpretation of the error returned by the operating system.

Error writing to "<file_name>": <reason>
The operating system returned an error when "headset" tried to write
to the specified file. This message is followed by an
interpretation of the error returned by the operating system.

TSC 8/4/86 (continued)

headset-5

File "<file_name>" is not a binary file.
The specified file does not contain a binary header.

File "<f ile_name>" is not a regular file.
The specified file is either a device or a directory.

File "<f il e_name>" is not executable.
The specified file is not an executable binary file.

Illegal configuration specified.
The configuration type must be between 0 and 255 inclusive.

Illegal hex number: <hex_num>.
The number specified is not a valid hexadecimal number.

Illegal maximum page allocation specified.
The maximum page allocation must be between 0 and 32767 inclusive.

Illegal minimum page allocation specified.
The minimum page allocation must be between 0 and 32767 inclusive.

Il~egal task size specified.
The argument specified is not a valid argument to the 'b' option.

Incompatible options: 'f' and 'z'
The 'f' and 'z' options cannot be specified simultaneously.

Inval id option: '<char>'.
The option specified by <char> is not a valid option to the
"headset" command.

Minimum page allocation greater than maximum.
Both the 'a' and 'A' options appeared on the command line, but the
minimum page allocation specified was greater than the maximum.

Unknown source type specified.
The argument specified is not a val id argument to the ' c' option.

SEE ALSO

load68k
reI info
rel68k

TSC 8/4/86

help-1

help

Display a brief description of the use and syntax of the specified
command.

SYNTAX

DESCRIPTION

The ''help'' command returns a br ief descr iption of the use and syntax of
the specified command. To obtain this information it looks for a file
1.n the directory "/gen/help" with the same name as the specif ied
command. Descriptions of most UniFLEX commands are available. If the
user does not specify a command name, or if the command specified is
''help'', the "help" command displays a list of all the commands it can
help with and prompts for the name of a specific command. Typing a
carriage return terminates the command.

Arguments

A list of the names of commands about
which the user wants information.

EXAMPLES

1. help copy kill
2. help

The first example displays a brief description of the use and syntax of
the "copy" command, followed by a brief description of the "kill"
command.

The second example displays a list of all the commands that the ''help''
command can help with, followed by a prompt for the name of a specific
command.

NOTES

• The user may add files to "/gen/help". When the "help"
executed, it simply looks for the specified file in
reads the contents, and writes it to standard output.

TSC 2/13/86

command is
"/gen/help" ,

(continued)

help-2

• If the file specified is a directory, the "help" command lists the
contents of the directory and asks what command the user would like
help with. If the command specified is not in that directory,
''help'' prompts for permission to search "/gen/help".

ERROR MESSAGES

Cannot help with <command_name>.
No description of the specified command is available to the ''help''
command.

Error opening "<f il e_name>": <r eason>
The operating system returned an error when "help" tried to open the
file <file_name>, which describes the specified command. This
message is followed by an interpretation of the error returned by
the operating system.

Error reading "<file_name>": <reason>
The operating system returned an error when "help" tried to read the
file <file_name>, which describes the specified command. This
message is followed by an interpretation of the error returned by
the operating system.

Too many files in directory.
The "help" command cannot function if the directory "/gen/help"
contains more than 500 entries.

TSC 2/13/86

history-l

history

Display the details of recent activity on the system.

SYNTAX

history [<file_name>]

DESCRIPTION

The operating system is capable of maintaining a record of certain
activities such as logging in and logging out. If a file named
"/act/history" exists, this accounting procedure automatically makes an
entry in it each time the system is booted or stopped, each time it goes
from single-user to multi-user mode, each time the system manager sets
the date, and each time any user logs in or out.

A listing of the history file is unintelligible.
must be used to extract the information from the
the "history" command has the following form:

The "history" command
file. The output from

If the activity being recorded is a user logging in or logging out, the
first piece of information is a two-digit number corresponding to the
terminal that was used. Otherwise, it is a two-letter code which
indicates the type of activity involved. The codes are as follows:

bt The system was booted.
su The system entered single-user mode.
mu The system entered multi-user mode.
st The system was stopped.
bd Time and date just before setting date.
ad Time and date set with "date" command.

If the user was logging in, the appropriate user name appears in the
second field. For all other ~ctivities, this field ~s empty.

The third field is the time and date at which the activity took place.
The time and date are taken from the values stored in memory. When the
system is first booted, these values are unlikely to be correct. The
system manager should, therefore, set the date immediately after booting
the system.

TSC2/13/86 (continued)

history-2

Arguments

The name of the file to use as the history file.
Default is ·"/act/history". Any file used should
have the same format as "/act/history".

EXAMPLES

I. history
2. history /act/history.584

The first example displays the details of recent activity on the system
as they are recorded in the default file, "/act/history".

The second example displays the details of activity of the system as
they are recorded in the file "/act/history.584". Such a file might
contain the data accumulated in "/act/history" during the month of Hay,
1984.

ERROR HESSAGES

Error opening "<f i1 e_namE.>": <reason>
The operating system returned an error when "history" tried to open
the file <file_name>. This message is followed by an interpretation
of the error returned by the operating system.

Error reading "<file_name>": reason
The operating system returned an error when ''history'' tried to read
the file <file_name>. This message is followed by an interpretation
of the error returned by the operating system.

Syntax: history [<file_name>]
The "history" command expects exactly one argument.
indicates that the argument count is wrong.

TSC 2/13/86

Th is mes sage

idle-l

idle

Idle the specified printer program when it completes the current print
job.

SYNTAX

idle <splr_name>

DESCRIPTION

The "idle" command idles the printer program associated with the
specified spooler when it completes the current print job. If no job is
being printed, it idles the printer program immediately. A user can
still put print jobs in the print queue, but the printer program does
not print them while it is idle. The idled state is useful for
temporariiy stopping the printer while the ribbon or paper is changed.
The "next" command restarts an idled spooler.

Arguments

The name of the printer program to idle.

EXAMPLES

1. idle spr

This command idles the printer program associated with the spooler
"spr". The printer spooler continues to accept files into the queue.

NOTES

The "idle" command is one of five commands that are linked to the
file "/etc/prcon", which controls the printing of files.

ERROR MESSAGES

Cannot find spooler directory for "<splr_name>".
The directory "/usr/gen" does not contain a directory for the
specified spooler.

Error creating ".idl*splr?": <reason>
The operating system returned an error when "idle" tried to
the file ".idl*splr?". This message is followed
interpretation of the error returned by the operating system.

create
by an

TSC 2/13/86 (continued)

idle-2

Error opening "<file_name>": <reason>
The operating system returned an error when "idle" tried to open the
specified file. This message is followed by an interpretation of
the error returned by the operating system.

Error reading "<file_name>": <reason>
The operating system returned an error when "idle" tried to read the
specified file. This message is followed by an interpretation of
the error returned by the operating system.

"<splr_name>" is already idle.
The "idle" command is effective only on an active spooler.

Syntax: idle <splr_name>
The "idle" command expects
indicates that the argument

exactly one argument.
count is wrong.

You must be system manager to run "idle".
Only the system manager may execute the "idle" command.

SEE ALSO

end
insp
next
print
pstop
purge
rerun

TSC 2/13/86

This message

info-l

info

Display the contents of the information field associated with the
specified binary file.

SYNTAX

DESCRIPTION

A binary file may have space, called the information field, for storing
textual information associated with the file. This information includes
things like the version number and release date of the file as well as
other useful information pertaining to the file. The "info" command
displays the contents of the information field.

Arguments

<f il e_name list> A list of the names of the files for which
to display the information field.

EXAMPLES

1. info /uniflex
2. info /bin/edit /usr /bin/ info

The first example displays
copyright information for the
itself.

the version number,
file "/uniflex", the

release date, and
operating system

The second example displays version numbers, release dates, and
copyright information for the UniFLEX Text Editor ("/bin/edit") and the
"info" command ("/usr/bin/info").

ERROR MESSAGES

Error opening "<file_name>": <reason>
The operating system returned an error when "info" tried to open the
file <file_name>. This message is followed by an interpretation of
the error returned by the operating system.

Error processing "<f il e_name>": <reason>
The operating system returned an error when "info" tried to process
the file <file_name>. This message is followed by an interpretation
of the error returned by the operating system.

TSC 2/13/86 (continued)

info-2

Error reading "<f ile_name>": <reason>
The operating system returned an error when "info" tried to read the
file <file_name>. This message is followed by an interpretation of
the error returned by the operating system.

seeking in "<f il e_name>": <reason> Error
The
the
by

operating system returned an error when "info" tried to seek to
appropriate location in <file_name>. This message is followed
an interpretation of the error returned by the operating system.

Error writing to "standard output": <reason>
The operating system returned an error when "info" tried to write
the output of the "info" command to standard output. This message
is followed by an interpretation of the error returned by the
operating system.

"<file_name>" has no information field.
The optional information field is not present in the specified file.

"<file_name>" is not a binary file.
The specified file lacks the header which identifies it as a binary
file. The argument to the "info" command must be a binary file.

"<file_name>" is not a regular file.
The specified file is a directory or a special file
character device). The argument to the "info" command
regular fil e.

Syntax: info <f il e_name_list >

(a block or
must be a

The "info" command requires at least one argument.
indicates that the argument count is wrong.

Th is mes sage

SEE ALSO

addinfo
UniFLEX 68000 Assembler Manual

TSC 2/13/86

insp-l

insp

Activate a printer spooler for the specified device.

SYNTAX

/etc/insp <splr_name> [+f]

DESCRIPTION

The "insp" command activates a printer spooler. The name used as
<splr_name> must be the same as the last component of a device in the
directory "/dev". To activate the printer spooler, "insp" creates a
background task, which runs continuously until a "pstop" command stops
it. In addition, it creates a file in the spooler directory called
".mrk*splr?", which contains the task ID of the background task. The
background task, which is also called the printer program, checks the
contents of the spooler directory approximately every 20 seconds. It
sends any files present to the printer and deletes them from the spooler
directory. Of course, the original copies of the files are still
intact; only the references to them in the spooler directory are
deleted. Each print job is preceded by a banner page, which shows the
name of the file (the name of the user followed by a number), and a
form-feed character.

Only the system manager may execute this command. The command must be
executed for each printer every time the system is booted. A simple way
to ensure that all spoolers are activated each time the system is booted
is to place the appropriate commands in the file "/etc/startup". This
file 1S executed every time the system goes from single- to multi-user
mode.

Arguments

Options Available

The last component of the name
of the device for which to
activate a printer spooler.

f Suppress both the banner page and the form-feed character
which are normally printed before each print job.

EXAMPLES

1. /etc/insp ppr
2. /etc/insp spr +f

TSC 2/13/86 . (continued)

insp-2

The first example activates a printer
associated with the device "/dev/ppr".
each print job with a banner page and a

spooler for the parallel printer
By default~ the printer precedes
form-feed character.

The second example activates a printer spooler for the serial printer
associated with the device "/dev/spr". The 'f' option suppresses both
the banner page and the initial form-feed character.

ERROR MESSAGES

Cannot find "/usr/gen/<splr_name>".
There is no spooler directory by the specified name.

Error creating "<file_name>": <reason>
The operating system returned an error when "insp" tried to create
the specified file. This message is followed by an interpretation
of the error message returned by the operating system.

Error forking <task>: <reason>
The operating system returned an error when "insp" tried to fork.
This message is followed by an interpretation of the error message
returned by the operating system.

Error opening "<file_name>": <reason>
The operating system returned an error when "insp" tried to open the
specified file. This message is followed by an interpretation of
the error message returned by the operating system.

writing "<file_name>": <reason> Error
The
the
of

operating system returned an error when "insp" tried to write
specified file. This message is followed by an interpretation

the error message returned by the operating system.

File' .mrk*splr?' already exists - spooler not invoked.
The system shut down before a "pstop" command was sent to the device
in question. When this happens~ whether due to an oversight 1n the
shut-down procedure or to a system crash~ the background task is
interrupted, but the ".mrk*splr?" f He remains 1n the spooler
directory. The solution to this problem is to issue a "pstop"
command to the appropriate device.

Syntax: /etc /insp <splr_name> [+f]
The "insp" command expects exactly one argument. This message
indicates that the argument count is wrong.

You must be system manager to run "insp".
Only the system manager may execute the "insp" command.

TSC 2/13/86 (continued)

SEE ALSO

end
idle
next
print
pstop
purge
rerun

TSC 2/13/86

insp-3

int-l

int

Send a program interrupt to another task.

SYNTAX

DESCRIPTION

The "int" command sends the specified interrupt to the task identified
by the task ID on the command line. If the user does not specify an
interrupt, a termination interrupt (SIGTERM) is sent. A task ID is
reported by the shell program whenever the user executes a task in the
background. An ID can also be determined by the "jobs" command.

Arguments

A list of the task IDs of the tasks to
interrupt. A task ID of 0 specifies all
tasks associated with the user's terminal and
owned by the user.
The number associated with the interrupt the
user wishes to send. The plus sign, '+', is
necessary to distinguish the number of the
interrupt from the task ID.

Table I describes the po ssible interrupt s.

TSC 8/4/86 (continued)

int-2

Table 1. Table of Interrupts

Name Number Description A C D I R

-------------------------------------~-----------------------------
SIGHUP
SlGINT
SIGQUIT
SIGEMT
SIGKILL
SlGPIPE
SIGSWAP
SlGTRACE
SIGTIME
SIGALRM
SlGTERM
SlGTRAPV
SIGCHK
SIGEMl'2
SIGTRAP1
SIGTRAP2
SIGTRAP3
SIGTRAP4
SIGTRAP5
SIGTRAP6
SIGPAR
SIGILL
SIGDIV
SIGPRIV
SIGADDR
SIGDEAD
SIGWRIT
SIGEXEC
SIGBND
SIGUSRl
SIGUSR2
SIGUSR3
SIGABORT
SIGSPLR
SIGINPUT
SIGDUMP

SIGUNORDERED

SIGINEXACT
SIGFPDIVIDE
SIGUNDERFLOW
SIGOPERAND
SIGOVERFLOW
SIGSNAN

TSC 8/4/86

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37-41
42

43
44
45
46
47
48

49-63

Hangup
Keyboard
Quit
A~line (Axxx) emulation trap
Task kill
Broken pipe
Swap error
Trace
Time limit
Alarm
Task terminate
TRAPV instruction
CHK instruction.
F-line (Fxxx) emulation trap
TRAP #1 instruction
TRAP #2 instruction
TRAP #3 instruction
TRAP #4 instruction
TRAP #5 instruction
TRAP lfo6-14 instruction
Parity error
Illegal instruction
Division by 0
Privileged instruction
Address error
A child task terminated
Write to read-only memory
Data or stack space violation
Segmentation violation
User-defined interrupt #1
User-defined interrupt #2
User-defined interrupt #3
Program abort
Spooler signal
Input is ready
Take memory dump
System-defined interrupts
MC68881 branch or set on
unordered operand
MC68881 inexact result
MC68881 division by 0
MC68881 underflow
MC68881 invalid operand
MC68881 overflow
MC68881 signaling not-a-number
Vendor-defined interrupts

+ + - + +
+ + - + +
+ + + + +
+ + + + +

+ - - - +
+ + - + +
+ + - - +
+ + - + -
+ + + - +
+ + - + +
+ + - + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + - +
+ + + - +
+ + + + +
+ + + - +
+ + + - +
- + - + +
+ + + - +
+ + + - +
+ + + - +
+ + - + +
+ + - t +
+ + - + +
+ - - - +
+ + - + +
+ + - + +
o + + + +

+ + - + +

+ + - + +
+ + - + +
+ + - + +
+ + - + +
+ + - + +
+ + - + +

. (continued)

Notes: A = Default state is "abort" (otherwise, "ignore")
C = Interrupt can be caught
D = Produces a core dump
I = Interrupt can be ignored
R = Resets to default state when triggered
o = See NOTES

Options Available

s Send a soft interrupt to the specified task. A soft
interrupt tells the operating system not to wake a
sleeping task unless the task was put to sleep by the
system call, "sys stop". In such a case, the system wakes
the task and delivers the specified interrupt. Otherwise,
the interrupt remains pending until another event wakes
the task.

EXAMPL.ES

1. int 263
2. int +5 149
3. int 149 +5
4. int 313 314 +30 +5

int-3

The first example sends a termination interrupt (SIGTERM) to task number
263.

The second example sends a SIGKILL interrupt to task number 149. No
program can trap or ignore a SIGKILL interrupt.

The third example is identical to the second one. The order of the
arguments is irrelevant.

The fourth example sends a soft user-defined interrupt to tasks 313 and
314. If either task is sleeping, the interrupt to that task remains
pending until another event wakes the task (unless the task was put to
sleep by the system call "sys stop", in which case the system wakes the
task and delivers the interrupt).

MESSAGES

[Soft] interrupt <int_num> sent to task <task_ID>.
The "int" command sends this message to standard output each time it
successfully sends an interrupt to a task.

TSC 2/ 13/86 (continued)

iut-4

ERROR MESSAGES

Error sending [soft] interrupt <int_num> to task <task_ID>: <reason>
The operating system returned an error when "int" tried to send the
interrupt. This message is followed by an interpretation of the
error returned by the operating system.

Illegal interrupt specified: <int_num>
The number specified must be an integer between 1 and the number of
signals, inclusive. At the time of this writing the number of
signals is 63.

Illegal task ID specified: <task_ID>
The task ID specified contains some characters that are not digits.
A legal task ID contains only digits.

Syntax: int <task_ID_list> [+<int_num>] [+s]
The "int" command expects at least one task ID and no more than one
interrupt number. This message indicates that the argument count is
wrong.

SEE ALSO

jobs

TSC 2/13/86

jobs-l

jobs

Report the task IDs and starting times of all background tasks
originated by the user from the current shell program.

SYNTAX

jobs

DESCRIPTION

The "jobs" command, which is part of the shell program, reports the task
IDs and starting times of all background tasks originated by the user
from the current shell program. The task IDs are preceded by the letter
'T', for "task". This letter is not part of the task ID.

EXAMPLES

1. jobs

This example is the only valid form of the "jobs" command.
the task ID and starting time of all active background tasks
by the user from the current shell program ••

ERROR MESSAGES

No tasks active.
The user has no active tasks In the background.

SEE ALSO

int

TSC 2/13/86

It reports
or igina ted

kermit-l

kermit

Transfer a file from one machine to another.

SYNTAX

kermit cl[te] <deY_name> <esc_char>
kermit r[l][dit] <deY_name>
kermit s[l][dit] <deY_name>

Arguments

c

r

s

TSC 8/4/86

Connect the two machines. The letters 'c',
'r', and's' each specify the mode of
operation for "kermit". The user may
specify only one of these letters.
Receive a file from another machine. The
letters 'c', 'r', and's' each specify the
mode of operation for "kermit". The user
may specify only one of these letters.
Send a file to another machine. The
letters 'c', 'r', and's' each specify the
mode of operation for "kermit". The user
may specify only one of these letters.
The name of the device to use to
communicate with the other machine. By
default, "kermit" uses "/dev/modem". If
the user specifies the 't' option, the
argument <dey name> must appear on the
command line. If the 'e' option is also
present, <deY_name> and <esc_char> should
appear in the same order as the 't' and 'e'
options. If the user does not specify the
't' option, this argument should not appear
on the command line.
The ASCII character to use as the first
character of the escape sequence for
breaking a "kermit" connection. When the
user types the escape character, "kermit"
holds it until it receives the next
character. If that character is a 'c' or a
'C', "kermit" closes the connection between
machines. If it is another escape
character, "kermit" passes a single escape
character to the receiving machine. Any
other character causes "kermit" to send a
bell (control-G) to the sending terminal
and to wait for another character. The
default escape character is 'A'

(continued)

kermit-2 .

Options Available

If the user specifies the 'e' option, the
argument <esc_char> must appear on the
command line. If the 't' option is also
present, <esc_char> and <dev_name> should
appear in the same order as the 't' and 'e'
options. If the user does not specify the
't' option, this argument should not appear
on the command line.
A list of the names of the files to
transf ere

d Provide debugging information. The user may specify this
option once, twice, or three times. Each repetition of
the letter tells "kermit" to supply more detailed
debugging information.

i By default, "kermit" maps a carriage return (hexadecimal
OD) to a carriage return followed by a line-feed character
(hexadecimal OA) on output, discards line-feed characters
on input, and masks all characters to 7 bits. When the
user specifies the 'i' option, "kermit" does not alter a
carriage return on output, does not discard line-feed
characters on input, and sends or receives all 8 bits of
each character.

1 Execute on the local machine--that is, on the machine to
which the terminal in use is connected. When running
locally "kermit" communicates with the other machine
through "/dev/modem" or the device specified with the 't'
argument. By default, "kermit" runs on the remote machine
and communicates with the local machine through the
standard I/O channels. The '1' option is mandatory with
the' c' argument. Without it, "kermit" terminates.

DESCRIPTION

The "kermit" command provides a protocol for moving files from one
UniFLEX system to another. It is provided with both the 6809 and 68xxx
operating systems to facilitate the process of upgrading to a 68xxx
system. Although "kermit" is not infallible, it does go to great
lengths to ensure that data transfer is error-free.

In order to use "kermit", the user must have a physical connection
between two machines. Normally, a terminal port from one machine is
connected to a terminal port on the other machine. The connection can
be a simple cable or a more complex arrangement including a modem on
each end. Except for the case of the remote machine in a transfer in
login mode, the terminal port should not be enabled for login.

TSC 8/4/86 <continued)

kermit-3

The "kermit" command can operate in local or remote mode. When the
program is in local mode, all communication with the other machine takes
place through a port other than the user's terminal. When it is in
remote mode, communication takes place through the user's terminal.

EXAMPLES

The "kermit" command supports two methods of transferring files:
"direct" and "login". To use direct mode the user must be able to
execute commands on two separate terminals--one connected to the sending
machine; one, to the receiving machine. In direct mode, communication
normally takes place through the device "/dev/modem". The user may
override this choice of device with the 't' argument, but whatever
device is to be used must be linked to the serial port that is connected
to the other machine. Thus, if the connection runs from the port
associated with "/dev/ttyOl" on machine A to the port associated with
"/dev/tty02" on machine B, the user must execute the following command
on machine A:

link /dev/ttyOl <comm_dev>

and the following command on machine B:

link /dev/tty02 <comm_dev>

where <comm_dev> is the name of the device to use for communication,
usually "/dev/modem".

The terminal configuration of the two ports linked to the communication
device must be identical. If the default configurations or the hardware
values are not the same, the user must use the "ttyset" command on one
or both ~chines to make them identical.

Once the configurations are the same and the appropriate links have been
made as just described, the user is ready to begin transferring files.
The first step is to invoke the command

kermit rl

on the machine that is to receive the files. This command tells
"kermit" to receive a file in local mode. If the file does not begin to
arrive withing approximately 1 minute, this command "times out" and
terminates. Thus, the user has a little less than a minute to execute
the following command on the sending machine:

TSC 8/4/86 (continued)

kermit-4

When the transfer begins and when it ends, "kermit" sends an appropriate
message to each machine. When the transfer is complete, "kermit"
terminates at both ends.

A user who does not have direct physical access to a terminal on each
machine must transfer files in "login" mode. In this mode the terminal
port used for communication on the remote machine must be enabled for
"login". A port is so enabled when the first character of the entry
corresponding to that port in the file "/etc/ttylist" is a plus sign,
'+'. This machine must be in multi-user mode. It is not necessary to
create a link for communication as communication from the remote machine
takes place over the line to the remote terminal. The port used for
communication on the local machine must be disabled for "login". It may
operate in either mu1ti- or single-user mode. The link between the
communication device and the terminal being used must be established
just as in direct mode, and the configuration of the terminal must match
the configuration of the terminal being used at the remote machine.

To establish the connection between machines, use the following command
on the local machine:

kermit cl

This command tells the operating system to establish the connection
between the two machines, so that the user can invoke commands on the
remote machine from the terminal connected to the local machine. Once
"kermit" estab1 ishes this connection, the terminal on the local machine
behaves as if it were plugged in directly to the remote machine. The
operating system sends everything typed on the terminal (with the
exception of the escape character) to the remote machine; any output
from the remote machine appears on the terminal from which the "kermit
c1" command was invoked.

The first thing to do is to log in to the remote machine from the local
terminal. It is not necessary to create any links or to alter the
configuration of the local terminal. To transfer a file from the remote
to the local machine, the user begins by invoking the following command:

kermit s <file_name>

which tells the operating system to send the specified file from the
remote machine to the local machine. The absence of the '1' option
specifies that communication 1S to take place through the terminal
currently in use. The system waits approximately 30 seconds before
beginning to send the file. If no "kermit" is invoked at the receiving
end within approximately 60 seconds after transmission begins, the
"kermit" on the remote machine "times out" and terminates.

TSC 8/4/86 (continued)

kermit-5

In order to invoke "kermit" at the receiving end, the user must break
the "kermit" connection by typing the escape character (',..' by default),
followed by a 'c' or a 'C'. When the UniFLEX prompt returns, the
command to invoke the receiving "kermit" can be executed:

kermit rl

NOTES

• The "kermit" command is suppl ied as is,
Technical Systems Consultants. Problems with
reported to us, and we will forward them to
it to us.

Following is a statement
distribution of KERMIT
Computing Activities:

of
from

the
the

pol icy on
Columbia

with no support from
the program can be

the party who supplied

commercial use and
University Center for

The KERMIT file transfer protocol has always been open, available,
and free to all. The protocol was developed at the Columbia
University Center for Computing Activities, as were the first
several KERMIT programs. Columbia has shared these programs freely
with the worldwide computing community since 1981, and as a result
many individuals and institutions have contributed their own
improvements or new implementations in the same spirit. In this
manner, the number of different systems supporting KERMIT
implementations has grown from three to about sixty in less than
three years. If Columbia had elected to keep the protocol secret,
to restrict access to source code, or to license the software, the
protocol would never have spread to cover so many systems, nor would
the programs be in use at so many sites, nor would the quality -of
many of the implementations be so high.

Although KERMIT is free and available to anyone who requests it, it
is not in the "public domain". The protocol, the manuals, the
Columbia implementations, and many of the contributed
implementations bear copyright notices dated 1981 or later, and
include a legend like

Permission is granted to any individual or institution to
copy or use this document and the programs described in
it, except for explicitly commercial purposes.

This copyright notice is to protect Kermit, Columbia University, and
the various contributors from having their work usurped by _others
and sold as a product. In addition, the covering letter which we
include with a KERMIT tape states that KERMIT can be passed along to
others; "we ask only that prof it not be your goal, credit be given

TSC 8/4/86 (continued)

kermit-6

where it is due, and that new material be sent back to us so that we
can maintain a definitive and comprehensive set of KERMIT
implementations."

Within this framework, it is acceptable to charge a reproduction fee
when supplying KERMIT to others." The reproduction fee may be
designed to recover costs of media, packaging, printing, shipping,
order processing, or any computer use required for reproduction.
The fee should not reflect any program or documentation development
effort, and it should be independent of how many implementations of
KERMIT appear on the medium or where they came from. It should not
be viewed as a license fee. For instance, when Columbia ships a
KERMIT tape, there is a $100.00 reproduction fee which includes a
2400' reel of magnetic tape, two printed manuals, various flyers, a
box, and postage; there is an additional $100.00 order processing
charge if an invoice must be sent. The tape includes all known
versions of KERMIT, including sources and documentation.

Commercial institutions may make unlimited internal use of KERMIT.
However, a question raised with increasing frequency is whether a
company may incorporate KERMIT into its products. A hardware vendor
may wish to include KERMIT with its standard software. A software
house may wish to incorporate KERMIT protocol into its
communications package, or to distribute it along with some other
product. A timesharing vendor or dialup database may wish to
provide KERMIT for downloading. All these uses of KERMIT are
permissible, with the following provisos:

A KERMIT program may not be sold as a product in and of
itself. In addition to violating the prevailing spirit of
sharing and cooperation, commercial sale of a product
called KERMIT would violate the trade mark which ~s held
on that name by Henson Associates, Inc., creators of The
Muppet Show.

Existing KERMIT programs and documentation may be included
with hardware or other software as part of a standard
package, provided the price of the hardware or software
product is not raised significantly beyond costs of
reproduction of the KERMIT component.

KERMIT protocol may be included in a multi-protocol
communication package as one of the communication options,
or as a communication feature of some other kind of
software package, in order to enhance the attractiveness
of the package. KERMIT protocol file transfer and
management should not be the primary purpose of the
package. The price of the package should not be raised
significantly because KERMIT was included, and the
vendor's literature should make a statement to this
effect.

TSC 8/4/86 (continued)

kermit-7

Credit for development of the KERMIT protocol should be
given to the Columbia University Center for Computing
Activities, and customers should be advised that KERMIT is
available for many systems for only a nominal fee from
Columbia and from various user group organizations, such
as DECUS and SHARE.

Columbia University holds the copyright on the KERMIT protocol, and
may grant permission to any person or institution to develop a
KERMIT program for any particular system. A commercial institution
that intends to distribute KERMIT under the conditions listed above
should be aware that other implementations of KERMIT for the same
system may appear in the standard KERMIT distribution at any time.
Columbia University encourages all developers of KERMIT software and
documentation to contribute their work back to Columbia for further
distribution.

Finally, Columbia University does not warrant in any way the KERMIT
software nor the accuracy of any related documentation, and neither
the authors of any KERMIT programs or documentation nor Columbia
University acknowledge any liability resulting from program or
documentation errors.

These are general guidelines, not a legal document to be searched
for loopholes. To date, KERMIT has been freely shared by all who
have taken the time to do work on it, and no formal legalities have
proven necessary. The guidelines are designed to allow commercial
enterprises to participate in the promulgation of KERMIT without
seriously violating the KERMIT user community's trust that KERMIT
will continue to spread and improve at no significant cost to
themselves. The guidelines are subject to change at any time,
should more formal detail prove necessary.

Commercial organizations wishing to provide KERMIT
customers should write a letter stating their plans
agreement to comply with the guidelines listed above.
should be addressed to:

KERMIT Distribution
Columbia University Center for Computing Activities
812 West 115th Street
New York, NY 10025

TSC 8/4/86

to their
and their'
The letter

kill-l

kill

Delete the specified file name from the file system.

SYNTAX

DESCRIPTION

The "kill" command deletes the specified file name from the file system.
If the file is one whose link count is 1 (i.e., the file has no other
links), the file is deleted and all information is lost. If the file is
one that has mUltiple links, only the named link is deleted.

If the file is an empty directory (containing only the special
directories "." and " •• ") and the user specifies the 'd' option, the
directory is deleted. The "kill" command cannot delete a nonempty
directory. The user must have write permission In the directory
containing the file being deleted.

Arguments

Options Available

A list of the names of the files to delete
from the file system.

d Even if the specified file lS a directory, delete it. The
directory must be empty.

1 List the name of each file as it 1S deleted.
p Prompt the user for permission before deleting each file.
q Do not report any errors.
s Do not proceed to the next file name in the list if an

error 1S encountered.

EXAMPLES

l. kill test file -
2. kill test* +pd
3. kill test* +q
4. kill test* +s

The first example deletes the file "test_file" from the file system if
it is not a directory.

TSC 2/13/86 (continued)

kill-2

The second example prompts for permission to delete each file in the
working directory whose name begins with the characters "test". If the
user responds to the prompt with anything but a 'y' or a'Y', the file
in question remains intact. If the user responds with a 'y' or a 'Y'
("yes"), the file is deleted from the file system--as long as it is not
a nonempty directory. The command prints the name of each file as it is
deleted.

The third example deletes all nondirectory files in the working
directory whose names begin with the characters "test". No prompts are
given; no names are listed; no errors are reported. To learn the
results of the command the user must list the contents of the working
directory and compare it with the contents before the command was
issued.

The fourth example begins to delete all nondirectory files in the
working directory whose names begin with the characters "test". The
command aborts as soon as it encounters any error. Because error
messages are not suppressed, the user can tell whether or not the
command succeeded.

NOTES

• The "kill" command
directory. However,
working directory.

guards against deleting the user's working
it cannot guard against deleting another user's

ERROR MESSAGES

Entry does not exist: <file_name>
The user tried to delete a nonexistent file.

Entry is a directory: <file_name>
The ''kill'' command cannot delete a directory unless the user
specifies the 'd' option. This message only occurs when exactly one
argument is given to the "kill" command. If more than one argument
is specified, the message is not printed, but directories remain
intact.

May not delete a special directory: <dir_name>
The "kill" command cannot delete the directories

May not delete nonempty directory: <dir_name>

" " . and " •• ".

The specified file is a nonempty directory. The "kill" command
cannot delete a directory unless it is empty (contains just "." and
" .. ").

TSC 2/13/86 (continued)

kill-3

May not delete the working directory: <dir_name>
The specified file is the user's working directory, which may not be
deleted.

Path cannot be followed: <file_name>
One or more of the directories which make up the name of the file do
not exist.

Permissions deny
The directory
therefore, may
deleted.

deleting file: <file_name>
containing <file_name> is write protected and,
not be modified. The specified file cannot be

Syntax: kill <file_name_list> [+dlpqs]
The "kill" command expects at least one argument. This message
indicates that the argument count is wrong.

Unknown option: <char>
The option specified by <char> is not a valid argument to the "kill"
command.

SEE ALSO

remove

TSC 2/13/86

lib-gen68k-l

lib-gen68k

Create a new library or update an existing one.

SYNTAX

lib-gen68k o=<old_lib> n=<new_lib> [u=<update>] [<del_list>] [+al]

DESCRIPTION

The "lib-gen68k" command either creates a new library of reloca table or
executable modules or updates an existing library. Each module in a
library must have a name. The name is assigned to a module by either
the ''name'' directive in the relocating assembler or the 'N' option of
the linking-loader. The "lib-gen68k" command does not accept a module
without a name. As it runs, "lib-gen68k" produces a report describing
the action that it takes for each module in the library. The report
includes the name of the module and the file from which it was read (the
old library or one of the update files).

Arguments

o=<old_Iib> The name of an existing library file which was
previously created by the "lib-gen68k" command.
If "lib-gen68k" is being called to create a new
library, rather than to update an existing one,
this argument is inappropriate. The 'n'
argument, the '0' argument, or both must appear
on the command line.

n=<new_Iib> The name of a new library. If a file with this
name already exists, "lib-gen68k" deletes it
without warning before writing the new library.
If the user does not specify a name for the new
library, it defaults to the name of the old
library. In such a case Ilib-gen68k" puts the
new library in a scratch file, deletes the old
library, and renames the scratch file with the
name of the old library. The 'n' argument, the
'0' argument, or both must appear on the command
line.

u=<update> The name of a file containing modules to add to
the library. Modules of the same name are
replaced by modules from the update file. The
user may specify up to 25~ update files by
repeating the "u=<update>" argument for each one.
However, when updating a large number of modules,
it may be simpler to concatenate the modules by
listing all of them with the "list" command and
redirecting the output to a file. The user can

TSC 2/13/86 (continued)

lib-gen68k-2

then update all the modules with only one
invocation of the "'u'" option rather than ,having

Options Available

to invoke it for each module.
A list of the names of modules
old library!

to delete from the

a Produce an abbreviated report, which contains information
only about modules that were replaced, added, or deleted.

1 Suppr-ess the production of a report.

EXAMPLES

1. lib-gen68k n=binlib u=one u=two u=three
2. lib-gen68k o=binlib u=new +a
3. lib-gen68k o=binlib u=newmods n=newlib transpose add +1

The first example creates a new library named "binlib" which contains
all the modules from the files "one", "two", and "three".

The second example updates the library "binI ib" by adding or replacing
modules from the fil e "new". The command produces an abbrevia-ted
report.

The third example updates the library "binI ib" by adding or replacing
modules from the file "newmods" and by deleting the modules named
"transpose" and "add". The updated library is written to the file
"newlib". The old 1 ibrary is deleted.

ERROR MESSAGES

An old or new library name must be specified.
The "'n'" argument, the "'0'" argument, or both must appear on the
command line.

Invalid option: ... <char>
The option specified by "'<char>'" is not a valid option to the
"lib-gen68k" command.

No index fo~nd in <lib_name>
The "lib-gen68k" command creates every library with an index. This
message indicates either that the file specified is not a library or
that it is a library, has been badly damaged, and can no longer be
used.

TSC 2/l3/86 {continued}

lib-gen68k-3

Record not found in <module_name>
One of the files in the list of names of modules to delete from the
old library was not found in that library. The command ignores that
file name and continues.

Record with no name found in <module_name>
Every relocatable or executable module that goes into a library must
have a name. The user should remake the specified module and give
it a name.

Unknown argument: <str>
The argument specified by <str> is not a valid argument to the
"lib-gen68k" command.

Unrecognizable record in <module_name>
All modules in a library must be either executable or relocatable.

SEE ALSO

68xxx UniFLEX Relocating Assembler and Linking Loader

TSC 2/13/86

libinfo-l

libinfo

Display information about a library.

SYNTAX

libinfo <library_name_Iist> [+emM]

DESCRIPTION

The "libinfo" command produces a list of the entry points and module
names contained in a library produced by the "lib-gen68k" command. The
user can optionally display only the entry points or only the module
names. Information about a particular module within a library can also
be displayed.

Arguments

Options Available

e

m

EXAMPLES

A list of the names of the libraries to
report on.

Display only entry points Ln the specified
1 ibrary.
Display only module names Ln the specified
library.
Display information about module <mod_name>.

1. libinfo testlib
2. libinfo runl ib +m
3. libinfo /lib/mathlib +M=Arctan

The first example lists all entry points and module names in the library
"testl ib".

The second example lists all the module names contained in the library
"run 1 ib".

The third example displays the entry points and module names in the
module "Arctan" in the library "/lib/mathlib".

TSC 2/13/86 (continued)

libinfo-2

NOTES

• The 'M' option is incompatible with both the 'e' and 'm' options.
If the user specifies incompatible options, "libinfo" uses the 'M'
option and ignores any others.

ERROR MESSAGES

Error opening "<f ile_name>" : <reas<?n>
The operating system returned an error when "libinfo" tried to open
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

Error reading "<file_name>" : <reason>
The operating system returned an error when "libinfo" tried to read
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

Error seeking to <location> in "<file_name>" : <reason>
The operating system returned an error when "libinfo" tried to seek
to the specified location (in hexadecimal) in the specified file.
This message is followed by an interpretation of the error returned
by the operating system.

"<file_name>" is not a library!
The file specified does not have the correct format for a library
created with the "lib-gen68k" command.

Invalid option: '<char>'.
The option specified by '<char>' is not a valid option to the
"libinfo" command.

*** 'M' taken, others ignored ***
The 'm' and 'e' options are incompatible with the 'M' option. If
the user specifies incompatible options, "libinfo" uses the 'M'
option and ignores any others.

SEE ALSO

lib-gen68k
reI info

TSC 2/13/86

link-I

link

Establish a new link to an existing file.

SYNTAX

DESCRIPTION

The "link" command establishes a new link to an existing file. If the
command is successful, both <file_name_I> and <file_name_2> refer to the
same file.

A link cannot cross a volume boundary. A user must have write
permission in the parent directory in which the new link is created;
however, write permission in the directory containing the original copy
of the file is unnecessary. Only the system manager may make a link to
a directory.

Arguments

The name of the existing file to which to
establish a link.
The name to link to the existing file.

EXAMPLES

1. link /usr/susan/.editconfigure .editconfigure

This example creates a file named ".editconfigure" in the user's working
directory and links it to the existing file ".editconfigure" in the
directory "/usr/susan".

ERROR MESSAGES

Cannot link across devices
The specified file names reside on different volumes and, therefore,
cannot be linked.

Entry already exists: <file_name_2>
The "link" command cannot link an existing file to another fil e.
The file specified by <file_name_2> must be a nonexistent file.

Entry does not exist: <file_name_l>
If the file to which the link is to be made does not exist, it is
impossible to link the files.

TSC 2/13/86 (continued)

link-2

Entry is a directory: <file_name_l>
The existing file specified is, in fact, a directory, not a regular
file. Only the system manager can link to a directory.

Invalid option: '<char>'.
The option specified by '<char>' is not a valid option to the "link"
command.

Path cannot be followed: <file_name>
One or more of the directories which make up the name of the file do
not exist.

Permissions deny access: <file_name>
The user does not have permission to access the specified file. If
the file is the existing file, <file_name_l>, the user does not have
execute permission in the parent directory. If the file ~s

<file_name_2>, the user does not have write permission in the parent
directory.

Syntax: link <file_name_l> <file_name_2>
The "link" command expects exactly two arguments.
indicates that the argument count is wrong.

SEE ALSO

copy
move

TSC 2/13/86

This message

list-I

list

Write the contents of the specified file to standard output.

SYNTAX

list [<fiIe_name_list>] [+l<num>]

DESCRIPTION

The "list" command writes the contents of the specified file to standard
output. If the user specifies more than one file, the files are listed
one after the other with no space between them.

The default file name is standard input. A plus sign, '+', may also be
used as an argument to indicate standard input.

Arguments

A list of the names of the files
to standard output. The
standard input.

Options Available

Include line numbers in the listing.

to write
default is

I
<num> The number of the line at which to begin listing the

file.

EXAMPLES

I. list test
2. list test +120 »test.out
3. list part_1 part_2 + part_3 >whole_thing

The first example writes the file "test" to standard output, which
defaults to the user's terminal.

The second example also writes the file "test" to standard output.
However, in this case standard output is redirected so that the listing
is appended to the contents of the file "test.out". The listing is
accompanied by line numbers and starts at line 20 of the file.

The third example writes the files "part_I" and "part_2" , followed by
the text entered from standard input, followed by "part_3", to the file
"whole_thing" •

TSC 2/13/86 (continued)

list-2

ERROR MESSAGES

Error listing "<file name>": <reason>
The operating system returned an error when "list" tried to write
<file_name> to standard output. This message is followed by an
interpretation of the error returned by the operating system.

Error opening "<file_name>": <reason>
The operating system returned an error when "1 ist" tr ied to open the
file <file_name>. This message is followed by an interpretation of
the error returned by the operating system.

Error reading "<f il e_name>": <reason>
The operating system returned an error when "list" tried to read the
file <file_name>. This message is followed by an interpretation of
the error returned by the operating system.

Invalid option: '<char>'. Command aborted!
The option specified by <char> is not a valid option to the "list"
command.

Invalid starting line number. Command aborted!
The string used to specify the number of the starting line of the
listing either is not a string of digits or is too large.

SEE ALSO

more
page

TSC 2/13/86

10ad68k-l

10ad68k

The "load68k" command is the 68xxx UniFLEX linking-loader.

SYNTAX

load68k <file_name_list> [+aAbBcCdDefFiI1LmMnNoPqrRsStTuUwWxXyYZ]

DESCRIPTION

The "load68k" command accepts as input one or more relocatable binary
modules and produces as output either a relocatable module or an
executable module. The relocatable modules used as input must have been
produced by the relocating assembler or the linking-loader. Options are
available for producing load and module maps as well as a global symbol
table. Starting addresses for text and data segments can be adjusted
for the particular hardware being used. The page size can also be
adjusted. The loader can search libraries produced by the UniFLEX
"lib-gen68k" utility in order to resolve external references.

The user can place all desired options in a file rather than specifying
them individually on the command line. The operating system comes with
one such file, the file "/lib/std_env", which describes the environment
of the hardware 1n use. The loader always reads this file before
processing any other options. It then processes options in the order in
which they appear on the command line. If an option is specified more
than once (e.g., once in a file and once on the command line), the last
specification overrides all others.

Arguments

<file_name list> A list of the names of the files to load.

Options Available

Those options which do not take an argument can be disabled by
preceding the character with a minus sign, " instead of the
usual plus sign, '+'.

a=<num>

A=<num>

TSC 8/4/86

Specifies the m1n1mum number of pages to
allocate to this task at all times. The
minimum value for the argument is OJ the
maximum, 32767. The default 1S O. The
operating system tries to honor the
specified number, but if it cannot, it
uses as many pages as it needs.
Specifies the maximum number of pages to
allocate to this task at all times. The
minimum value for the argument is OJ the

(continued)

load68k-2

B

c=<source_type>

C=<config_num>

d

TSC 8/4/86

maximum, 32767. The default is o. The
operating system tries to honor the
specified number, but if it cannot, it
uses as many pages as it needs.
Specifies the maximum size to which the
task may grow during execution. The
argument <task_size> may be "128K",
"256K", "512K", "1M", "2M", "4M", "8M",
"16M", "32M", "64H" , "128M", "256M",
"512M", "1 G", "2G", "4G", "S", "M" , "L",
"small", "medium", or "large". All
letters may be in upper- or lowercase.
The size of a task specified by'S' (or
"small"), 'M' (or "medium"), or 'L' (or
"large") 1S vendor-dependent. Typically,
however, ' S' specifies 12SK; 'M', the size
of physical memory; 'L', the maximum size
allowed to a task. The default is "128K".
If the task size specified by the user (or
the default) is not large enough to hold
the code from all the modules being
loaded, the loader automatically adjusts
the size to the smallest value that can
contain all the code.
Set a bit in the binary header of the
output module which tells the operating
system to zero neither the bss segment nor
any memory allocated while the task is
running. This option may not be effective
on all machines.
Set a flag in the binary header of the
output module which indicates the type of
source code from which the module was
created. The argument <source_type> may
be "ASSEMBLER", "C", "COBOL", "FORTRAN",
or "PASCAL". The names may be specified
in either upper- or lowercase letters.
By default, the loader uses the
configuration number of the current
hardware. The user may, however, use the
'c' option to specify a configuration
number which overrides the default. This
option is useful when loading a module for
a machine other than the one on which it
is running.
Set the "no core dump" bit in
header. This option may not
on all machines.

the binary
be effective

Specifies the starting address of the data
segment. If the user does not specify the
option, the starting address defaults to

(continued)

e

f

F [=<f ile_name>]

1.

I

l=<library_name>

L

TSC 8/4/86

10ad68k-3

the address specified in "/lib/std_env".
If the user specifies the option without
an argument, the data segment starts
immediately after the text segment.
Print each occurrence of all unresolved
external . references. By default, the
loader prints only the first occurrence.
Produce a demand-load executable module
(one whose text segment is loaded only as
needed). Preceding the 'f' option with a
minus sign instead of a plus sign removes
the demand-load nature of the module. The
alignment of the text and data segments on
5l2-byte boundaries, however, persists.
Specifies the name of a file of options to
pro~ess. If the user does not specify an
argument, the loader reads the file
"ldr_opts" in the working directory. The
'F' option may be used repeatedly but may
not be nested.
Write all global symbols to the symbol
table of the binary file. By default, the
loader includes a symbol table in a
relocatable module but
executable one.
Enable processing of
interrupts. This option is
a system with an MC6888l
coprocessor.

not in an

floating-point
only useful on
floating-point

Specifies the name of a library to search.
The '1' option may be used up to twelve
times l.n a single invocation of the
loader. If the library name specified
begins with a slash, 'I', the loader first
looks for the library as specified. 'If it
is not found or if the name does not begin
with a slash, the loader searches the
working directory, then the directory
"lib" in the working directory, and
finally the directory "/lib" for the
specified library. If the user specifies
less than twelve libraries, the loader
automatically searches the library
"Syslib68k" in the working directory after
it has finished searching the libraries
specified by the user. The loader always
processes the libraries in the order in
which the user specifies them on the
command line.
Do not search any libraries for unresolved
external references.

(continued)

load68k-4

m

n

N=<module_name>

q

r

R

s

TSC 8/4/86

Produce load and module maps and write
them to standard output (see the 'M'
option) •
Specifies the name of the file in which to
put the output of the ·'m' option (load and
module maps) and the s option (a global
symbol table). The information in this
file is purely textual. The user may edit
or list the file like any other text file.
If the 'm' or's' option is used without
the 'M' option, the loader sends the
information to standard output.
Produce an executable module with separate
instruction and data space.
Specifies the internal name of the module
produced by the loader.
Specifies the name to give to the binary
file.
Specifies the page size. The hexadecimal
number should always be a power of 2;
otherwise, the results are unpredictable.
The "load68k" command uses the page size
to determine the starting address of the
data segment when it immediately follows
the text segment (the data segment starts
at the next page boundary). The default
is 0 (i.e., the loader rounds the starting
address to the next even location after
the end of the text segment).
Suppress quad-word alignment
segments.

of all

Produce a relocatable module as output.
Do not search any libraries for external
references even if the user specifies them
with the '1' option.
Produce a relocatable module as output.
Search "/lib/sysl ib68k" and any libraries
specified by the user for external
references.
Write the global symbol table to standard
output (see the 'M' option).
Specifies the initial stack size, which is
written into the binary header of the
module produced by the loader. The
hexadecimal number is the number of bytes
to reserve. The default is 0, in which
case the system determines the initial
size of the stack.
Produce a shared-text executable module.
Specifies the starting address of the text
segment. If the user does not specify the

(continued)

u

w

w

y

y

TSC 8/4/86

10ad68k-5

option, the linking-loader uses the
starting address specified in the file
"/lib/std_env". If no address is
specified there, the starting address
defaults to O. If the user specifies the
'T' option without an argument, the
starting address also defaults to O. If,
however, the 'x' option is in effect, the
starting address never defaults to 0, but
instead defaults to the first page
boundary following the bss segment of the
file specified by the 'x' option.
Do not print any "unresol ved" messages
when producing a relocatable module.
Specifies the trap number for system
calls. The default is hardware-dependent.
The user can specify the argument as
either "TRAPn" where n is a number
between 0 and 15 inclusive, or as a string
of four hexadecimal digits which represent
a bit pattern to use as the system call.
Load modules contalnlng instructions
specific to the MC68020 microprocessor.
Do not load modules containing
instructions specific to the MC68020
microprocessor.
Specifies the name of the file whose
symbol table is to form the basis of the
new symbol table. By default, the new
module loads into memory immediately after
the sped f ied file. To be saf e, in
conjunction with the 'x' option the user
should always specify the 'T' option
without an argument, so that it overrides
any starting address in the file
II 1 lib Istd_env ".
Specifies a 32-bit hexadecimal number, of
which only the high-order 7 bits are used,
which is used to mask out any of the
high-order 7 bits in all addresses in the
file.
Load modules contalnlng instructions
specific to the MC68881 coprocessor.
Do not load modules containing
instructions specific to the MC68881
coprocessor.

(continued)

load68k-6

z Align the text and data segments on
Sl2-byte boundaries, padding with null
bytes as necessary. Preceding the 'z'
option with a minus sign instead of a plus
sign- makes the module a demand-load module
if its text and data segments are already
aligned on Sl2-byte boundaries.

EXAMPLES

1. 10ad68k *. r +F=/ lib/ldr_environ +t + l=Clib +o=tester
2. 10ad68k tl.r t2.r +T=20000 +iN=mod +P=2000 +c=C +o=test
3. 10ad68k sqrt +msM=loadmap +l=mathlib +i
4. 10ad68k temp?r +reo=combined.r
S. 10ad68k tl.r t2.r +a=lO +A=lOO +b=2M +l=testlib +do=test

The first example loads all files in the working directory whose names
end with ".r". The loader reads the file "/lib/ldr_environ" and
processes the options therein. It uses the library "Clib" to resolve
external references. The executable output module, which is a
shared-text module, is named "tester".

The second example loads the the files specified and produces a binary
file named "test". The internal module-name is "mod". The text segment
begins at 20000 hexadecimal, and the data segment follows it at the next
page boundary (page size is 2000 hexadecimal). The source code is "C".
All global symbols are inserted in the symbol table of the binary file.

The third eXample loads the file "sqrt" and, by default, produces a
binary file named "sqrt.o". The loader searches the library "mathlib"
for unresolved external references. It produces load and module maps,
as well as a symbol table, and writes them to the file "loadmap". A1l
global symbols are added to the symbol table of the binary file.

The fourth example loads the files in the working directory whose names
match the pattern "temp?r" and produces a relocatable module named
"combined.r". The loader prints each occurrence of all unresolved
external references rather than only the first occurrence of each.
Because the 'r' option is specified, the loader does not search any
libraries.

The fifth example loads the files "tl. r" and "t2. r" and produces the
binary file named "test". The minim~ page a1location is set to 10; the
maximum, to 100. The task size of the module is set to 2 Megabytes.
The executable module cannot produce a core dump.

TSC 8/4/86 {continued}

load68k-7

NOTES

. If the file" /lib/std_env" contains information about the starting
address of the text segment, the data segment, or both, and if the
user wishes to override this standard configuration, starting
addresses for both text and data segments should be specified •

• If the minimum and maximum values for page allocation provided by
the user make no sense, the loader automatically adjusts them
according to the following rules. The value for the maximum 1S

always greater than or equal to the value for the minimum. The
value for the maximum can be 0, but if it is greater than 0, it must
be at least 4.

SEE ALSO

68xxx UniFLEX Relocating Assembler and Linking-Loader

TSC 8/4/86

log-l

log

Terminate the current shell program.

SYNTAX

log

DESCRIPTION

The "log" command, which is part of the shell program, terminates the
current shell. If that shell program is a single-user shell, the
command puts the system into multi-user mode. If the shell program is
the user's login shell, the "log" command terminates the user's session
with the operating system. Otherwise, the "log" command returns control
to the program which called the current shell.

EXAMPLES

1. log

This example, which is the only valid form of the "log" command,
terminates the current shell program. Depending on the nature of that
shell, the command either puts the system in multi-user mode, returns
control to the program which called the shell, or terminates the user's
session with the operating system.

NOTES

• The operating system accepts the synonym "logout" for "log".

SEE ALSO

login
shell

TSC 2/ 13/86

login-l

login

Give a new user access to the operating system and establish the
standard environment for the current shell program.

SYNTAX

login <user_name>

DESCRIPTION

The "login" command gives a new user access to the operating system and
establishes the standard environment for the current shell program. If
the user does not have a password, the system automatically honors the
command. If the user does have a password, the system requests it. If
it is entered correctly correctly, the new user is given access to the
operating system. Otherwise, the system returns an error message,
followed by a login prompt. The "login" command is part of the shell
program.

Standard Environment

A list of the parameters which define the standard environment follows.
The user can create, delete, or change these parameters with the "env"
command.

HOME

MAIL

PATH

TSC 8/4/86

The name of the user's home directory--that is, of
the directory that the user enters by default upon
logging in. The "login" command reads the password
file (" /etc/log/password") to determine the
appropriate name.
The location of the user's mailbox. If the user's
home directory contains a file named ".mail", the
"login" command sets MAIL equal to the file
specification of that file. Otherwise, MAIL is not
defined.
The list of directories the shell program searches
when looking for an executable file. This list,
which is known as the search path, is searched
sequentially. By default, the search path consists
of the following directories: the user's working
directory, "<home_dir>" /bin", "/bin", and
"/usr/bin". If the user is the system manager, the
search path also includes the file "/etc", which is
searched after "<home_dir>/bin" and before "/bin".
The user may alter this parameter with the
lIaddpath" or the "setpath" command, as well as with
the "env" command.

(continued)

login-2

SHELL

TERM

USERNAME

Arguments

EXAMPLES

The name of the user's login program--that is, of
the program that begins execution when the user
logs in. The "login" command reads the password
file (" /etc/log/password") to determine the
appropriate name. If the corresponding field in
that file is empty, the "login" program sets SHELL
to "/bin/shell".
The type of the terminal as listed in the file
"/etc/ttylist". If the terminal type is "modem",
the "login" command prompts the user for the type
of terminal. To be useful the user's response
should be a string that is defined in the file
"/etc/termcap". Typing a carriage return in
response to this prompt leaves the type as "modem".
If the file "/etc/ttylist" does not contain an
entry for the terminal, TERM is not defined. In
such a case, or if the user selects a string that
is not def ined in "/etc/termcap", programs
requiring special terminal capabilities cannot
function properly.
The user name used to log,in.

The name of the user to put in contact with the
operating system.

1. login lesl ie

This example tells the operating system to give the user whose user name
is "leslie" access to the operating system. It also establishes values
for the standard environment parameters for the current shell program.

NOTES

• The value of TERM for a pseudoterminal is "PTY".

ERROR MESSAGES

"login" allowed only for the "login shell".
The "login" command can only be executed from a shell program that
was started by a previous "login" command.

Login incorrect!
The combination of the user name specified and the password entered
is invalid. This message is followed by a login prompt.

TSC 8/4/86 (continued)

login-3

No "login" name specified.
The user did not specify a user name on the command line.

Not allowed in single-user mode.
The "login" command can only be executed when the system ~s in
multi-user mode.

SEE ALSO

addpath
env
log
setpath
shell

TSC 8/4/86

ls-l

ls

List either the contents of a directory or information about a file.

SYNTAX

ls [<file_name_list>] [+abdflrsSt]

DESCRIPTION

The "ls" command is identical to the "dir" command.

SEE ALSO

dir

TSC 2/13/86

mail-l

mail

Send mail to someone else or display any mail belonging to the user.

SYNTAX

DESCRIPTION

The "mail" command sends mail to the specified user. If no recipient is
specified, the "mail" command displays any mail belonging to the user.
In order for a user to be able to receive mail, the file
"/usr/<user_name>/ • mail " must exist. The permissions on this file
should be set to "rw----" so that other users may not read or directly
alter the contents.

The system automatically checks for mail each time a user logs in. If
the user does have mail, the system displays the message, '~ou have
mail". The user may request to see the mail by issuing the "mail"
command without an argument. The user may also use this command at any
time to find out if any mail is waiting to be read. If the user has no
mail, the command reports, "No mail". If there is mail, the "mail"
command displays it (complete with a header which shows the time and
date the mail was received and the user name of the person who sent it)
and asks whether or not it should be saved.

There are three possible responses to this question. If the user types
an 'n', the system deletes the contents of the file ".mail ". If the
user responds with a ' y', the "mail" command transf ers the mail to
another file in the login directory called "mailbox" and deletes the
contents of the file ".mail". If the file "mailbox" does not exist,
''mail'' creates it. If it does exist, ''mail'' appends the contents of
".mail" to "mailbox". If the user responds with a carriage return, the
file ".mail" is left intact.

If the user specifies an argument with the "mail" command, the command
reads standard input until it finds an end-of-file character (control-D)
as the first character on a line, and sends it to the specified user.

Arguments

TSC 2/13/86

A list of the names of users to whom to
send the mail •

(continued)

mail-2

EXAMPLES

1. mail john
2. mail john mary <memo
3. mail

The first example accepts input from standard input, which defaults to
the user's terminal, until it encounters a control-D as the first
character on a line. Themail is sent to the user whose user name is
"john".

The second example mails the contents of the file "memo" to users "john"
and "mary". ,
The third example displays the user's mail.

NOTES

Sometimes users alter things in the file system which make it
impossible to execute the "mail" command. In order for the "mail"
command to function properly, the file" /bin/mail" must be owned by
"system" and must have the user ID bit set.

ERROR MESSAGES

Cannot find "<user_name>" in the password file.
The file "/etc/log/password" does not contain an entry for the user
<user_name>. Any other users specified on the command line will
receive the mail.

Cannot find your name in the password file.
The file" /etc/log/password" does not contain an entry for the user
issuing the command. This situation is extremely unlikely to oc.cur.

Error creating "<file_name>": <reason>
The operating system returned an error when "mail" tried to create
<file_name>. This uiessage is followed by an interpretation of the
error returned by the operating system.

Error opening "<f ile_name>": <reason>
The operating system returned an error when "mail" tried to open
<file_name>. This message is followed by an interpretation of the
error returned by the operating system.

Error reading "<f ile_name>": <reason>
The operating system returned an error when "mail" tried
<file_name>. This message is followed by an interpretation
error returned by the operating system.

to read
of the

TSC 2/13/86 (continued)

mail-3

Error wrLtLng "<file_name>": <reason>
The operating system returned an error when "mail" tried to write to
<file_name>. This message is followed by an interpretation of the
error returned by the operating system.

User "<user_name>" has no mail box.
The login directory of the specified user does not contain a file
named" .mail". Therefore, that user cannot receive mail.

SEE ALSO

perms
shell

TSC 2/13/86

makdev-l

makdev

Create a special type of file, representing a device.

SYNTAX

DESCRIPTION

The "makdev" command creates a special
device. This type of file allows the
for the corresponding physical device.
this command.

type of file which represents a
user to access the device drivers

Only the system manager may use

Arguments

TSC 8/4/86

The name of the file to create. The last
component of the name of a special file that
represents a block device must consist of a
string of letters followed by a string of
digits. The last component of the name of the
special file that represents the character
device associated with that block device must
consist of the same string of letters,
followed by the letter 'c', followed by the
same string of digits.
A letter designating whether the device is a
block device, 'b'; a character device, 'c'; or
a pseudoterminal, 'p' (not available on all
systems).
A number which tells the operating system
which set of device drivers to use for the
specified device. The correspondence between
a major device number and a device driver is
hardware-dependent.
A number which tells the operating system
which physical device to associate with
<file_name>. The correspondence between a
minor device number and a physical device is
hardware-dependent.

(continued)

makdev-2

EXAMPLES

1./etc/makdev /dev/fd1 b 0 1
2. /etc/makdev /dev/fdc1 c 3 1

The first example creates a
represents a block device.
device number, 1.

special file named "/dev/fd1", which
Its major device number is 0; its minor

The second example .creates a special file named "/dev/fdc1", which
represents the character device associated with the block device
"/dev/fd1". Its major device-number is 3; its minor device number, 1.

NOTES

• Every disk requires both a block device and a corresponding
character device in order to function properly.

ERROR MESSAGES

'<char>' is not a valid type of device.
The argument <dev_type> must be a 'b', for a block device;
for a character device; or a 'p' for a pseudoterminal.

Error creating "<file_name>": <reason>

a
, ,

c ,

The operating system returned an error when "makdev" tried to create
the special file <file_name>. This message is followed by an
interpretation of the error returned by the operating system.

Invalid major device number: <num>
The number specified as the major device number is invalid.

Invalid minor device number: <num>
The number specified as the minor device number is invalid.

Syntax: /etc/makdev <file_name> <dev_type> ~aj_dev_num> ~in_dev_num>
The "makdev" command expects exactly four arguments. The command
line does not conform to the syntax.

You must be system manager to run "makdev".
Only the system manager may execute the "makdev" command.

TSC 8/4/86

more-l

more

Display ASCII data with user control.

SYNTAX

DESCRIPTION

The "more" connnand displays data on the user's terminal. It lets the
user both control the number of lines displayed at a time and skip
lines.

If the list of file names is omitted, the "more" command accepts data
from standard input. It displays enough lines to fill the terminal's
screen, then prompts for a command. If the list of file names contains
a single name, the "more" command displays enough lines to fill the
terminal's screen, then prompts for a command. The prompt contains the
percentage of the file that has been displayed. If the list of file
names contains mul tiple names, the "more" command introduces each file
with a prompt and indicates when it reaches the end of each file.

Arguments

User Control

The list of files to display with user
control.

The "more" command prompts the user for a command with the prompt
''More? ". Unless "more" is reading from standard input, this prompt is
preceded by either the percentage of the file listed, "«n>%) ", or the
message, "Beginning: <f ile_name> " where <f il e_name> is the name of the
file whose contents are about to be to displayed. In response to the
prompt, the user types a single-character command telling the "more"
command what to do next. The single-character command should not be
followed by a carriage-return. The "more" command sends a control-G
(bell) to the terminal if the character typed is not a command. A list
of commands follows.

The space command, ,starts at the next line (or at the first
line of the next file) and displays lines until it either
fills the screen or reaches the end of the file.

The period command, ' .', starts at the next line (or with the
first line of the next file) and displays lines until it
either displays enough lines to scroll half of the screen or
reaches the end of the file.

TSC 2/13/86 (continued)

more-2

The carriage-return command displays the next line (or the first
line of the next file) if there is one.

The's' or 'I' response requests a search for a character
string. When the ''more'' command issues the prompt, "Search
string? ", the user should type either the string to find,
followed by a carriage return, or just a carriage return,
which tells "more" to search for the most recently specified
string. The ''more'' command starts at the next line (or with
the first line of the next file) and searches for the
specified string. If it finds the string, it displays lines,
starting with the line in which the search string first
appears, until it either fills the screen or reaches the end
of the file. If it does not find the string, it does not
alter the display unless the input is coming from a pipe, in
which case "more" terminates.

If ''more'' cannot accept a character, it sends a control-G
(bell) to the terminal. The command does not accept control
characters. Nor does it accept any characters after it fills
the search-string buffer. Typing a character-delete character
(usually a control-H) as the first character in response to
the prompt, "Search str ing? ", or typing a line-delete
character (usually a control-X) any time while entering the
search string returns the "more" command to the ''More?''
prompt.

The 'n' response stops processing the current file and begins
processing the next file in the list of file names, if there
is one. If the input is coming from a pipe, "more"
termina tes.

The 'p' response stops processing the current file and begins
processing the preceding file in the list of file names, if
there is one. If no previous file exists, "more" begins
processing the current file again. If the input is coming
from a pipe, "more" terminates.

The 'q' response ends the "more" command. An end-of-file
character (control-D) performs the same function.

The 'r' response rewinds the current file and begins processing
it. If the input is coming from a pipe, "more" terminates.

TSC 2/13/86 (continued)

more-3

EXAMPLES

1. more hello. c
2. more *.c
3. list hello. c I more

The first example displays the fil e "hello. c" at the terminal with user
control. It first clears the screen, then lists enough lines from the
file to fill the screen. It then requests a command from the user by
issuing a prompt that indicates the percentage of the file that it has
displayed.

The second example displays at the terminal with user control all of the
files in the working directory whose names contain the suffix ".c". It
first clears the screen, then introduces the first file by issuing a
prompt containing its name. This prompt is a request for a command.
After executing the first command, "more" prompts the user for another
command with a prompt that indicates the percentage of the file that it
has already displayed. When "more" reaches the end of the first file,
it introduces the next file. This process continues until "more" has
processed all the files in the list.

The third example displays at the terminal with user control the output
from the "list" command. It first clears the screen, then lists enough
lines to fill the screen. After filling the screen, "more" prompts the
user for a command.

NOTES

• The ''more'' command uses the UniFLEX terminal capabilities
information ("termcap") if that information is available for the
terminal being used. If the "more" command seems to be handling a
terminal poorly, the system manager should verify that the terminal
capabilities for that terminal are correctly set.

• If no terminal capabilities are available for the terminal in use,
the "more" command assumes that there are eighty columns to a line
and twenty lines on the screen. It also assumes that the backspace
character (hexadecimal 08) moves the cursor one place to the left
and that the space character (hexadecimal 20) moves the cursor one
place to the right and clears the character at that place.

• The "more" command does not use the last column of a line. Some
terminals automatically advance to the next line after writing to
the last column of a line; others do not. The last column is not
used to avoid having to differentiate between the two types of
terminals. Lines longer than the width of the terminal are split
and displayed as two lines.

TSC 2/13/86 (continued)

more-4

• The "more" command displays all control characters as ""'x" where "'x'"
is the key which, if struck while the "control" key is depressed,
normally produces that control character. For example, it displays
each embedded tab character (control-I) as ""'I" •

• The "more" command automatically clears the screen before displaying
any data.

ERROR MESSAGES

Broken pipe
The ''more'' command caught a broken~pipe interrupt. A broken-pipe
interrupt immediately stops the "more" command.

File is not a regular file: <file_name>
The file specified exists but is not a regular data file. The
''more'' command works only with regular data files.

Hang up
The "more" command caught a hang-up interrupt. A hang-up interrupt
immediately stops the "more" command.

Input must come from a file or a pipe
Data from standard input must come from a pipe or a redirected data
file. This message indicates that standard input is something other
than a pipe or a redirected data file, such as a terminal.

INTERRUPTI
The "more" command caught a keyboard interrupt.
interrupt immediately stops the "more" command.

Invalid option: '<char>'.

A keyboard

The option specified by '<char>' is not a valid option to the "more"
command.

Output must go to a terminal
Standard output must be a character-special file (i.e., a terminal).
This message indicates that it is not.

Quit
The "more" command caught a qui t interrupt.
immediately stops the "more" command.

SEE ALSO

list
page

TSC 2/ .i3/ 86

A quit interrupt

IDOunt-l

mount

Insert a block device at a node of the directory tree structure or
display the mount table.

SYNTAX

/etc/mount [<dev_name> <dir_name> [r]]

DESCRIPTION

When used with arguments the "mount" command temporarily inserts a block
device at a node of the directory tree structure. As long as the device
is mounted, any references to <dir_name> actually access the root
directory of the device mounted there. Any files in the directory at
which the device is mounted are inaccessible for the duration of the
mount.

When used without arguments the "mount" command writes to standard
output a table of information about all the devices currently mounted on
the system. This "mount table" tells where, when, and by whom each
device was mounted.

Arguments

Options Available

The name of the device to mount. It must be a
block device.
The name of the directory on which to mount the
specified device.

r Mount the device for reading only. This option must not
be preceded by a plus sign. It is useful when trying to
salvage data from a damaged disk because it prevents
inadvertent writing to the disk, which could make matters
worse.

EXAMPLES

1. /etc/mount /dev/fdO /usr2
2. /etc/mount /dev/wO /usr2 r

The first example mounts the disk in floppy drive 0 on the directory
"/usr2". References to "/usr2" now access the root directory of that
disk.

TSC 2/13/86 (continued)

DIOunt-2

The second example mounts the hard disk in dr ive wO as "/usr2". Because
the 'r' option appears on the command line, no user may write to the
disk.

NOTES

• When a user's working directory is the root directory of a mounted
device, the command "chd •• " does not change the working directory.

MESSAGES

"<dev_name>" mounted as "<dir_name>" a t <time_stamp> by "<user_name>".

ERROR MESSAGES

Error mounting "<dev_name>" on "<dir_name>": <reason>
The operating system returned an error when "mount" tried to insert
the specified device in the directory tree. This message is
followed by. an interpretation of the error returned by the operating
system.

Error opening "/etc/mtab": <reason>
The operating system returned an error when "mount"
the file containing the mount table. This message is
interpretation of the error returned by the operating

Error processing "<f il e_name>": <reason>

tried to read
followed by an
system.

The operating system returned an error when "mount" tried to process
<file_name>. This message is followed by an interpretation of the
error returned by the operating system.

Syntax: /etc/mount [<dev_name> <dir_name> [r]]
The "mount" command expects exactly two arguments and,
the single option 'r'. This command indicates that the
does not conform to the syntax.

Warning: Directory "<dir_name>" is not empty.

optionally,
command line

The directory on which the user wants to mount the specified device
is not empty. The "mount" command continues, but files in that
directory are not accessible as long as the device is mounted.

SEE ALSO

unmount

TSC 2/13/86

move

Move a file from one place to another.

SYNTAX

move <file_name_l> <file_name_2> [+klps]
move <file_name_list> <dir_name> [+klps]

DESCRIPTION

move-l

The "move" command moves files from one place to another. If the first
form of the "move" command is used, it moves <file_name 1> to
<file_name_2> and deletes <file_name_l> from the file system. If the
second form is used, it moves each file named in <file_name_list> to
<dir_name>. In either case, if a file with the same name as the file
created by the "move" command exists, it is deleted without warning.

Directories and special files (block devices and character devices) may
not be moved. The user must have write and execute permissions in the
parent directory of each file being moved and in the directory to which
the files are moved. Each original file is removed, and the last
component of the file name is unchanged.

A file may not be moved from one device to another unless the user has
read permission on the file. A file may not be moved to itself.

Arguments

The name of the file to move. <f i1 e_name 1 >
<f ile_name_2> The name of the file to which to move

<f il e_name_l > •
The name of the directory to which to move all
the specified files.

Options Available

k Do not remove the original file from the file system.
1 List the name of each file as it is moved.
p Prompt for permission to replace existing files.
s Stop as soon as an error is encountered.

EXAMPLES

1. move test oldtest +1
2. move test /usr/elaine
3. move test /usr/elaine/oldtest +kp
4. move * /usr/elaine +s

TSC 2/13/86 (continued)

move-2

The first example moves the file "test" in the working directory to the
file "oldtest" in the working directory. The "move" command issues a
message describing the move. In effect, this command renames the
original file.

The second example moves the file "test" from the working directory to
the directory "/usr/elaine". The last component of the file name is
preserved, so the name of the new file is "/usr/elaine/test".

The third example moves the file "test" from the working directory to
the file "oldtest" in the directory "/usr/elaine". If the file
"/usr/elaine/oldtest" already exists, the user is prompted for
permission to delete the file. If permission is denied, the move does
not take place. Even if the move takes place, the original files remain
intact.

The fourth example moves all the files in the working directory to the
directory "/usr/elaine". The last component of each file name is
preserved. The command aborts if it encounters an error.

NOTES

• Normally, the "move" command links ·the new file to the original file
and deletes the original one. Because a link between files on
different devices is not permitted, an attempt to "move" a file to a
different device results in the copying of the original file to the
new file, followed by the deletion of the original file.

MESSAGES

U<file_name_l>" copied to "<f ile_name_2>"
This message is produced only if both the '1' and 'k' options are
specified. It means that <file_name_l> has been copied to
<file_name_2> , but that the original file remains intact. This
message indicates that the two files are on different devices.

U<f il e_name_l>u linked to u<f ile_name_2>"
This message is produced only if both the '1' and 'k' options are
specified. It means that the two files have been linked but that
the original file remains intact (the user specified the 'k'
option) •

"<file name_l>" moved to "<file_name_2>"
This is the normal message issued by the "move" command if the ' l'
option is in effect. It means that <file_name_l> has been either
linked or copied to <file_name_2>, and that <file_name_l> has been
deleted.

TSC 2/13/86 (continued)

move-3

ERROR MESSAGES

Cannot move a block special file: <file_name>
The file <file_name> is a block special file (block device) and may
not be moved.

Cannot move a character special file: <file_name>
The file <file_name> is a character special file {character device}
and may not be moved.

Cannot move across devices: <file_name>
The file <file_name> is read protected and, therefore, cannot be
moved across devices.

Directory is not accessible: <dir_name>
The user does not have the necessary permissions (write and execute)
to move a file to <dir_name>.

"<file_name_l>" and "<file_name_2>" are the same file.
The user tried to move a file to itself. If <file_name 1> and
<fi1e_name_2> are different, they are links to the same file.

Invalid option: '<char>'.
The option specified by <char> is not a valid option to the "move"
command.

Permissions deny access: <file_name>
The user does not have write permission in the parent of the
specified directory.

SEE ALSO

copy
link

TSC 8/4/86

newuser-l

newuser

Temporarily log in as a new user.

SYNTAX

newuser [<user_name>]

DESCRIPTION

The "newuser" command allows the user to log in as another user without
logging out. If a name is specified on the command line, that name
becomes the new login name. If no name is specified, "system" is used.
If a password exists for the login name specified, "newuser" prompts for
the password. The advantage of this command is that when finished as
this new user, the user does not need to log in again but simply logs
out and returns to the state that existed prior to the execution of the
"newuser" command.

Arguments

The name of the user as whom to temporarily
log in. The defaul t name is "system".

EXAMPLES

1. newuser mary

This example temporarily logs in the user as "mary" (assuming the user
knows the password if one exists).

NOTES

• The "newuser" command creates an environment for the
just as the "login" command does, with the exception
of the parameter TERM is taken from the parent task.
defined in the parent task's environment, "newuser"
value from the file "/etc/ttylist".

SEE ALSO

log
login
su

TSC 8/4/86

shell program
that the value
If TERM is not
determines its

next-l

next

Restart an idled printer program.

SYNTAX

next <splr_name>

DESCRIPTION

The "next" command restarts a printer program which has been idled by
the "idle" or "rerun" command.

Arguments

The name of the printer program to restart.

EXAMPLES

1. next spr

This example restarts the printer program associated with "spr".

NOTES

• The "next" command is one of five commands that are linked to the
file "/etc/prcon", which controls the printing of files.

ERROR MESSAGES

Cannot find spooler directory
The directory "/usr/gen"
specified spooler.

for "<splr_name>".
does not contain

Error opening "<file_name>": <reason>

a directory for the

The operating system returned an error when "next" tried to open the
specified file. This message is followed by an interpretation of
the error returned by the operating system.

Error reading "<f ile_name>": <reason>
The operating system returned an error when "next" tried to read the
specified file. This message is followed by an interpretation of
the error returned by the operating system.

TSC 2/13/86 (continued)

next-2

Error \Ullinking ".idl*splr?": <reason>
The operating system returned an error when "next" tried to \Ullink
the file ".idl*splr?". This message is followed by an
interpretation of the error returned by the operating system.

"<splr_name>" is not idle.
The "next" command is effective only on an idle spooler.

Syntax: next <splr_name>
The "next" command expects exactly one argument. This message
indicates that the argument count is wrong.

You must be system manager to run "next".
Only the system manager may execute the "next" command.

SEE ALSO

end
idle
insp
print
pstop
purge
rerun

TSC 2/13/86

nice-l

nice

Lower the priority of the specified command.

SYNTAX

nice <command_name>

DESCRIPTION

The "nice" command lowers the priority assigned to the specified task by
subtracting 5 from the number that would normally be assigned (the lower
the number, the lower the priority). For example, a user might send a
long compilation, the results of which are not immediately needed, to
the operating system with the "nice" command. The system executes more
pressing tasks immediately and works on the compilation when nothing
else is running.

Arguments

<command_name> The name of the command to execute.

EXAMPLES

1. nice Is
2. n~ce pascal test.p

The first example lowers the priority of the command "ls".

The second example lowers the priority of the compilation of the pascal
program "test. p".

ERROR MESSAGES

No command or a built-in command specified.
The "nice" command expects exactly one argument, and that argument
may not be one of the commands, such as "jobs" or "wai til, that is a
part of the shell program.

SEE ALSO

shell
status

TSC 2/13/86

owner

Change the owner of a file.

SYNTAX

DESCRIPTION

The "owner" command changes the owner of the specified file.
system manager may execute this command.

Arguments

owner-l

Only the

The user name or user ID of the new owner
of the file.
A list of the names of the files on which
to change the owner.

EXAMPLES

1. owner system /usr/john/*
2. owner 110 /usr/john/*

The first example changes the owner of all the files in the directory
"/usr/john" to "system".

The second example changes the owner of all the files in the directory
"/usrl john" to the user whose ID is 110.

ERROR MESSAGES

Error changing owner for "<f ile_name>": <reason>
The operating system returned an error when "owner" tr ied change the
owner of the specified file. This message is followed by an
interpretation of the error returned by the operating system.

"<name>" is not a val id user name.
The specified name is not in the password file and, therefore, is
not a valid user name.

<num> is not a valid user identification number.
The specified number is not in the password file and, therefore, is
not a valid user ID.

TSC 2/13/86 (continued)

owner-2

Syntax: owner <new_owner> <file_name_list>
The "owner" command expects at least two arguments. This message
indicates that the argument count is wrong.

You must be system manager to run "owner".
Only the system manager may execute the "owner" command.

TSC 2/13/86

page-l

page

Format a file in pages.

SYNTAX

page [<file_name_list>] [+fl<num>p]

DESCRIPTION

The "page" command formats a file for printing on a line printer or for
viewing on a crt terminal. The output is formatted with sixty-six lines
per page. Nine of the e lines are used for a header, which includes the
name of the file, the current date and time, and the page number. Each
page is terminated with a form-feed character. The output is sent to
standard output. Thus, I/O redirection and pipes may be used in
conjunction with the command.

Arguments

A list of the names of the files to format.
The default is standard input.

Options Available

f

1
<num>

p=<num>

TSC 2/13/86

Replace the form-feed character at the end of the
page with the appropriate number of line-feed
characters.
Precede each line with a line number.
Print <num> lines at a time to the terminal. After
outputting <num> lines the "page" command puts the
terminal in hold mode. In order to see the next
page of output, the user must type whatever
character releases the hold. Usually, this
character is the escape character. However, it may
change depending on the parameters that are set with
the "ttyset" command. This option disables the
header. It is not meant for use with a printer.
The only option which may be used in conjunction
with this option is the '1' option.
Format the file with <num> lines per page, nine of
which are used by the header. The minimum value for
the argument is 10; the default is 66. This option
is not meant for use with a terminal.

<continued)

page-2

EXAMPLES

1. page text +123
2. page chap_l chap_2 +fp=49 ~ppr

The first example formats the file "text" with twenty-three lines per
page and sends it to the user's terminal. The header is absent, but
each line is preceded by a line number.

The second example formats the files "chap_1" and "chap_2" with
forty-nine lines per page (nine used as header) and pipes the output to
the printer "ppr". Each page is terminated with the appropriate number
of line-feed characters rather than a form-feed character.

ERROR MESSAGES

Error opening "<f He_name>": <reason>
The operating system returned an error when "page" tried
<file_name>. This message is followed by an interpretation
error returned by the operating system.

Error reading "<file_name>": <reason>

to open
of the

The operating system returned an error when "page" tried to read
<file_name>. This message is followed by an interpretation of the
error returned by the operating system.

File: <file_name> - No EOL found after 512 characters - aborted!
The "page" command buffers input internally. If no carriage return
is encountered after 512 characters, the command aborts. Most
probably, the specified file is a binary file.

Invalid option: '<char>'
The option specified by <char> is not a val id option to the "page"
command.

Too few lines per page for 'p' option.
The user specified a number less than 10 as the argument to the 'p'
option. Since the header uses nine lines, the argument must be
greater than or equal to 10.

SEE ALSO

list
more
ttyset

TSC 2/13/86

password-l

password

Set or change a user's password.

SYNTAX

password [<user_name>]

DESCRIPTION

The "password" command sets or changes a user's password. Only the
system manager may change another user's password. When a user invokes
the command, the operating system prompts for the existing password (if
there is one). If the password is entered correctly, the system prompts
for the new password. Generally, a password should contain five or six
lowercase, random characters. After the new password is entered, the
system prompts for it again to verify it. If the second entry agrees
with the first, the password is entered in the password file. In order
to maintain the secrecy of the password, the operating system does not
echo the characters typed 1n response to the prompts for either the
existing or the new password.

Arguments

EXAMPLES

1. password

The name of user whose password is being
changed. The default is the user invoking the
command.

2. password greg

The first example changes the password of the user who invoked the
command.

The second example uses the form of the command which is restricted to
use by the system manager. It changes the password associated with the
user name "greg".

ERROR MESSAGES

Cannot find "<user_name>" in the password file.
The file" /ete/log/password" does not contain an entry for the user
<user_name>.

TSC 8/4/86 (continued)

password-2

Cannot find your name in the password file.
The file "/etc/log/password" does not contain an entry for the user
issuing the command. This situation is extremely unlikely to occur.

Error linking "/tmp/pswd" to "/etc/log/password": <reason>
The operating system returned an error when "password" tried to link
the new version of the password file to the old password file. This
message is followed by an interpretation of the error returned by
the operating system.

Error locking password file: <reason>
The operating system returned an error when "password" tried to lock
the password file. This message is followed by an interpretation of
the error returned by the operating system.

Error opening "<file_name>": <reason>
The operating system returned an error when "password" tried to open
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

Error unlinking "<file_name>": <reason>
The operating system returned an
unlink the specified file. This
interpretation of the error returned

error when "password" tried to
message is followed by an

by the operating system.

Error writing "<f He_name>": <reason>
The operating system returned an error
write to the specified file. This
interpretation of the error returned by

when "password" tried to
message is followed by an

the operating system.

Only the system manager may change another's password.
Use of the form of the "password" command that takes an argument is
limited to the system manager.

Password file is locked. Try again later.
The commands "addusr", "delusr", and "password" all
password file so that two people cannot try to alter it at
time. This message indicates that one of these commands
has the password file locked.

Password not correct. Permission denied!
The user did not enter the existing password correctly.

Retry different - password unchanged.

lock the
the same
currently

The first and second entries of the new password were not identical.
The password command aborts, leaving the original password in place.

Syntax: password [<user_name>]
The "password" command expects no more than one argument. This
message indicates that the argument count is wrong.

TSC 8/4/86

path-l

path

Write the path name of the working directory to standard output.

SYNTAX

path

DESCRIPTION

The "path" command writes the path name of the working directory,
followed by a carriage return, to standard output. The path name, also
called the file specification, is the unique path from the root
directory through the directory tree to the file in question.

EXAMPLES

1. path

This example is the only valid form of the "path" command. It writes
the name of the working directory, followed by a carriage return, to
standard output, which defaults to the user's terminal. Of course, the
user may redirect standard output.

ERROR MESSAGES

Directory structure is corrupt
The directory path from the root directory, '/',
directory is corrupt. Therefore, the "path"
determine the path name of the working directory.

SEE ALSO

chd

TSC 2/13/86

to the working
command cannot

perms-l

perms

Change the permissions associated with a file.

SYNTAX

DESCRIPTION

Every time a user creates a file, the operating system assigns it a set
of permission bits which determines whether or not the user who owns the
file and other users may read, write, or execute the file. The
permissions assigned depend on the command used to create the file. The
editor, for example, creates all files with "rw-rw-" permissions, which
allow the user who owns the file, as well as other users, to read and
write, but not execute, the file. The default permission for "crdir"
are "rwxrwx"; for create, "rw-rw-"; for "makdev", "rw-r--".

Read permission allows a regular file to be read. A user cannot execute
commands such as "list" and "copy" without read permission on the file
in question. Write permission allows a file to be modified. Execute
permission allows the name of the file to be used as a command.

Permissions for directories are similar to those for normal files. Read
permission allows the user to read the names and addresses that are
actually in the directory. Write permission allows the creation or
deletion of files in the directory. Execute permission allows the
directory to be searched for a name used as part of a file specification
or file name. The user must have execute permission to successfully use
a directory as the argument to the "chd" command.

In addition to these permissions, each file has associated with it a
user ID bit. If this bit is set for a given file, any user executing
the file has the same privileges as the owner of the program for the
duration of the task.

The "perms" command changes the permission bits associated with a file.
Only the owner of a file or the system manager may change the
permissions associated with it.

Arguments

TSC 8/4/86

The list
Permission
changed.

of permission bits
bits not mentioned

to alter.
are not

A list of the names of the files for which
to alter the permissions.

(continued)

perms-2

Format for Arguments

<perms.:.Jist>

EXAMPLES

The first character of an element in the
permissions list specifies whether the argument
applies to the user"who owns the file ('u') or
to others ('0'). The second character
specifies whether to add ('+') or remove ('-')
the permissions in question. The second
character is followed by one, two, or three of
the characters 'r', 'w', and 'x' (for read,
write, and execute). The user ID bit is set or
cleared with one of the following arguments:
"s+" or "s-".

1. perms o-wx inventory
2. perms o+x u+x script
3. perms o-rw o+x s+ inventory script

The first example removes write and execute permissions for other users
from the file "inventory" in the working directory.

The second example gives execute permissions on the file "script" to
both the user who owns it and to other users.

The third example removes read and write permissions for others from the
files "inventory" and "script". It also sets execute permissions for
others, as well as the user ID bit. Thus, although other users may
neither read from nor write to the files, they may execute them. While
they are executing them, they have the same permissions on all files as
the owner of these files does.

ERROR MESSAGES

Error changing permissions for "<f ile_name>": <reason>
The operating system returned an error when "perms" tried change the
permissions on the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error processing
The operating
determine the
followed by an
system.

TSC 8/4/86

"<f il e_name>": <reason>
system returned an error when "perms" tried to
original permissions on the file. This message is

interpretation of the error returned by the operating

(continued)

perms-3

Syntax: perms <perms_list> <file_name_list>
The "perms" command expects at least two arguments.
indicates that the argument count is wrong.

This message

Unrecognizable character, '<char>', found in permissions list.
Command aborted!

A character following a plus or minus sign in an element in the
permissions list was not an 'r', 'w', or 'x'. The command aborts
without altering any permissions.

SEE ALSO

dir
dperm

TSC 8/4/86

print-l

print

Send a file to the specified printer spooler.

SYNTAX

<print> [<file_name_list>] [+m]

DESCRIPTION

The <print> command, which may have several different names on any
system, sends the specified file to a printer spooler for printing. The
<print> command usually has a name which represents the particular
printer to use for output. For example, if two printers are available,
one might be called "lprinter" for line printer and the other, "daisy"
for daisy wheel printer. Thus, the user selects the output device by
selecting the command name which represents the desired device. If the
user does not specify a file, <print> takes its input from standard
input. The command can, therefore, be used in a pipe.

Once the file has been sent to the printer spooler, the <print>' command
prints a message of the following form:

"<f ile_name>" pr inted on <dev_name> as "<user_name<num»"

where <file_name> is the name of the file printed (if available);
<dev_name> is the name of the printer device to which the file was
routed; and the last item is the name which the system assigns to the
print file. This name, as well as the device name, is needed if it
becomes necessary to delete the file from the print queue (see "purge").

Arguments

Options Available

A list of the names of the files to route
to the printer spooler. The default is
standard input.

m Suppress the message announcing that the file has been
sent to the printer spooler.

EXAMPLES

1. spr instructions
2. ppr /usr/jennifer/manual/instructions +m

TSC 2/13/86 (continued)

print-2

The first example sends the file "instructions" in the working directory
to the printer spooler for the device "spr".

The second example sends the file "instructions" in the directory
II/usr / jennifer/manual" to the printer spooler for the device "ppr". The
message announcing that the file has been queued is suppressed.

ERROR MESSAGES

Cannot find "<file_name>".
The <print> command cannot locate the specified file.

Cannot find your name in the password file.
The file "/etc/log/password" does not contain an entry for the user
issuing the command. This situation is extremely unlikely to occur.

Error creating n<f ile_name>n: <reason>
The operating system returned an error when <print>
the specified file. This message is followed by an
of the error returned by the operating system.

Error linking n<file_name>lI: <reason>

tried to create
interpretation

The operating system returned an error when <print> tried to link
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

Error opening n<file_name>": <reason>
The operating system returned an error when <print> tried to open
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

Error reading n <f il e_name>": <reason>
The operating system returned an error when <print> tried to read
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

Error writing n<file_name>": <reason>
The operating system returned an error when <print> tried to write
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

lI<f ile_name>n is not a regular file. File not queued.
The <print> command cannot print directories or special files (block
devices and character devices).

Invalid option: '<char>'. File not spooled.
The option specified is not a valid option to the <print> command.

TSC 2/13/86 (continued)

SEE ALSO

end
idle
insp
next
pstop
purge
rerun

TSC 2/13/86

print-3

prompt-l

prompt

Define the prompt and reprompt strings issued by the shell program.

SYNTAX

prompt <prompt_str> [<reprompt_str>]

DESCRIPTION

The "prompt" command, which is part of the shell program, defines the
prompt and reprompt strings returned by the operating system. The
prompt string is the string issued by the operating system when it is
ready to accept a command. The reprompt string is the string issued by
the operating system when the user has entered a line terminated by the
combination of a backs lash character and a carriage return. This
combination of characters tells the shell program that the line is
incomplete.

Both the prompt and the reprompt strings should be enclosed in single or
double quotation marks. Neither string may be more than fourteen
characters long. The first tilde, '-', in each string is replaced in
the prompt by the current time expressed in the form <hr>:<min>, which
represents the hours and minutes on a 24-hour clock.

Arguments

<reprompt_s tr >

EXAMPLES

1 • prompt'%'

The string to use as the new prompt. By
default, the shell program issues the
following prompt: ++
The string to use as the reprompt string, the
prompt returned by the operating system when
the user enters a line terminated by a
backslash character followed by a carriage
return. By default, the shell program issues
the following two-character reprompt: +>

2. prompt'- -->' 'cont: '

The first example changes the prompt to a percent sign, followed by a
space.

The second example sets the prompt to the current time, followed by a
space, followed by an arrow, followed by another space. It changes the
reprompt string to "cont: "

TSC 2/13/86 (continued)

prompt-2

NOTES

• The "prompt" command is only effective while the shell program under
which it is invoked is running. The prompt and continuation prompt
of the login shell can be permanently altered by placing the
appropriate command in the file ".startup" in the user's home
directory. This file is automatically executed each time the user
logs in.

SEE ALSO

shell

TSC 2/13/86

pstop-l

pstop

Deactivate the specified printer spooler.

SYNTAX

pstop <splr_name>

DESCRIPTION

The "pstop" command deactivates the specified printer spooler by
interrupting the background task created by the corresponding "insp"
command. The background task finishes printing the current task (if one
exists), then deletes the ".mrk*splr?" file in the appropriate spooler
directory. A deactivated printer spooler neither prints files nor
accepts them into the print queue. Any files that are in the print
queue when the "pstop" command is issued remain in the queue. All
active spoolers should be stopped before the system is shut down. Some
data may be lost if this command is executed while a job is being
printed.

Arguments

The name of the printer spooler to deactivate.

EXAMPLES

1. pstop ppr

This example sends an interrupt to the background task associated with
the printer spooler "ppr". The spooler finishes printing the current
print job, if one exists, before it stops.

NOTES

• The "pstop" command is one of five commands that are linked to the
file "/etc/prcon", which controls the printing of files.

ERROR MESSAGES

Cannot find spooler directory for "<splr_name>".
The directory "/usr/gen" does not contain a directory for the
specified spooler.

TSC 2/13/86 (continued)

pstop-2

Error opening "<f He_name>": <reason>
The operating system returned an error when "pstop" tried to open
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

Error reading "<f He_name>": <reason>
The operating system returned an error when "pstop" tried to read
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

Error writing "<f ile_name>": <reason>
The operating system returned an error when "pstop"
the specified file. This message is followed by an
of the error returned by the operating system.

Syntax: pstop <splr_name>
The "pstop" command expects exactly one argument.
indicates that the argument count is wrong.

You must be system manager to run "pstop".

tried to write
interpretation

Th is mes sage

Only the system manager may execute the "pstopll command.

SEE ALSO

end
idle
insp
next
print
purge
rerun

TSC 2/13/86

purge-l

purge

Delete a file from the specified printer-spooler queue.

SYNTAX

DES CR !PTION

The "purge" command deletes a file from the specified printer-spooler
queue.

Arguments

EXAMPLES

The name of the device on which the file is
to be printed.
A list of the names of the files to delete
from the printer-spooler queue. Each name
must be the one assigned to the file by the
<print> command. This name consists of the
name of the user, followed immediately by a
three-digit string.

1. purge lprinter john23l

This example removes the file named "john231" from the printer-spooler
queue for the device "lprinter".

NOTES

or if for
to the
list of

• If the <print> command was invoked with the 'm' option
some other reason the user does not know the name assigned
file by the <print> command, it may be possible to obtain a
all the files in the queue by issuing the following command:

dir /usr/gen/<splr_name>

TSC 2/13/86 (continued)

purge-2

ERROR MESSAGES

Cannot find file "<file_name>".
The file specified is not in the spooler directory.

Cannot find spooler directory "/usr/gen/<splr_name>".
There is no spooler directory by the specified name.

Cannot purge
The purge
directory,

"<f ile_name>".
command cannot

nor can it purge
purge a directory from the

a file whose name begins with a
spooler
period.

Error unlinking "<file_name>": <reason>
The operating system returned an error when "purge"
the specified file. This message is followed by an
of the error returned by the operating system.

Syntax: purge <splr_name> <file_name_list>
The "purge" command expects at least two arguments.
indicates that the argument count is wrong.

You do not own "<file_name>". File not purged.

tried to unlink
interpretation

Th is mes sage

Only the system manager may purge a file that belongs to someone
else.

SEE ALSO

print

TSC 2/13/86

qdb-l

qdb

The "qdb" command is a machine-language debugging system.

SYNTAX

DESCRIPTION

The "qdb" command is used to aid m the testing and debugging of
machine-language programs. Because all programs are ultimately
translated into machine language, any program may be debugged using
"qdb" (although a debugger for a high-level language may be simpler to
use if one is available).

The "qdb" command is used to examine or modify the image of a
machine-language program. This image can be (1) a post-mortem memory
dump of a program which has been aborted by the operating system, (2) a
program image file, or (3) a program which is currently executing under
the control of "qdb". If no image file is specified on the command
1 ine, the defaul t is the file "core" in the working directory. The
"qdb" command examines the file to determine whether it is a "core"
image or an executable image file. If it is neither, "qdb" issues the
message "Invalid image type" and terminates. The third type of image
may only be created by the specification of the name of an executable
image on the command line, followed by the execution of of the 'x'
command to create the controlled task.

The commands available with "qdb" allow the user to examine memory
locations within the program image, to modify memory locations, to set
breakpoints, to execute single instructions (to single step through the
program), to examine and change registers, and more. Some commands,
such as single step, are only applicable when "qdb" is being used to
control the execution of a task. However, most commands are available
for use with all image types.

Arguments

TSC 2/13/86

The name of the file to debug. The
default is the file "core" in the working
directory.

(continued)

C

f

qdb-2

Commands Available

The "qdb" conunand normally works in an interactive environment. The
basic command structure is designed to be simple both to use and to
remember. In general, commands are of the following form:

<char> [<expression_list>]

where <char> is a single character specifying the command. Depending on
the particular command, one or more expressions mayor must be provided
with the command. Expressions may include the operators '+' and ",
which are evaluated from left to right unless parentheses are used.
Expressions may also include any of the following terms:

$ <num>
<num>

The hexadecimal value of <num>.
The hexadecimal value of <num>. If this form is
used, the number must start with a digit. If it
starts with a character, "qdb" interprets it as a
symbol.

#<num>
<symbol>

The decimal value of <num>.
The value of the specified symbol. Symbol names
must be completely specified--that is, all
characters are significant.

<register> The contents of the specified register. The
register may be DO through D7, AO through A7, SR,
or PC. The letters used in specifying a register
may be either upper- or lowercase.

Brief descriptions of the commands follow.

+

=
?
b

~
c
d

-~ G

i
I
k
K
m
M

Execute a shell command.
Display the value of an expression in mUltiple formats.
Display the "help" menu.
Set a breakpoint.
List the breakpoints that are currently set.
Clear one or all breakpoints.
Dump a section of memory.
Continue execution of a program.
Execute the program until reaching a branch or
breakpoint.
Disassemble instructions.
Initialize symbol table.
Terminate the currently executing task.
Remove any pending signals for the controlled task.
Modify bytes in memory.
Display the current memory map.

a

TSC 2/13/86 (continued)

n Display the command line for the task.
q Terminate "qdb".
r Display the contents of all registers.
R Set the contents of a register.
s EXecute a single instruction.
S Set a temporary breakpoint at the instruction following

the current instruction.
T Trace instructions until reaching a branch or a

breakpoint.
x Create a task to be executed under the control of "qdb".

qdb-3

More detailed descriptions of the commands and explanations of their
syntax follow:

+ <shell_command>
This command allows the user to execute a single shell
command without exiting "qdb".

= <expression>
This command
symbol ically t

displays the value of the expression
in hexadecimal, and in decimal.

?
This command displays a menu of commands available from
"qdb" •

b <location> [<count>]

B

The 'b' command sets a breakpoint at the given
location. When the program is executed, the
instruction at the given location is replaced by a
special instruction which indicates to the operating
system that the user wants to break the flow of the
program. When this instruction is executed in the
program, the operating system suspends the program and
notifies "qdb", which prints the location of the
breakpoint and returns to command mode. If the user
specifies a count, the breakpoint is executed <count>
times before execution is halted and "qdb" notified.
Once the count is exceeded, execution is halted every
time the breakpoint is encountered unless it is reset
by another 'b' command or cleared.

The 'B' command lists each breakpoint which is
currently set as well as the corresponding <count> if
it is nonzero.

c [<address>]
If the user does not specify an address, the 'c'
command prompts for permission to clear all breakpoints
that are currently set. If the user does specify an

TSC 2/13/86 (continued)

qdb-4

address, it clears the breakpoint at that address.

d <address_1> [<address~2_or_count>]

g

G

The 'd' command dumps the hexadecimal contents and the
ASCII equivalents of a range of memory locations.
Memory is displayed sixteen addresses to aline. The
hexadecimal contents are displayed first, followed by
their ASCII equivalents. Nonprintable characters are
represented in ASCII by a period, ' ,

If the user specifies only one argument, the command
displays the contents of the specified address. If the
user specifies two arguments and the second one is
greater than the first, the command interprets the
second argument as an address. It displays the
contents of memory from the first specified address to
the second, inclusive. If the user specifies two
arguments and the second one is less than or equal to
the first, the command interprets the second argument
as a count. It displays the contents of memory
beginning at the first address and continuing for the
number of addresses specified by the second argument.

The dump may be aborted by typing the return key during
the dump. Control-C does not abort the command.

The 'g' command continues the execution of a controlled
task. Execution continues until the program
terminates, receives a signal or encounters a
breakpoint. The user may only use this command when
executing a controlled task.

The 'G' command executes the program
encounters any branch instruction,
instruction, or any breakpoint.

until it
any call

i [<address_l> [,<address_2_or_count>]]
If the user specifies two arguments and the second one
is greater than the first, the 'i' command interprets
the second argument as an address. If the user
specifies two arguments and the second one is less than
or equal to than the first, the command interprets the
second argument as a count.

The 'i' command displays the contents of memory from
the first specified address to the second, inclusive.
If the user specifies two arguments and the second one
is less than or equal to the first, the command
interprets the second argument as a count. The 'i'

TSC 2/13/86 (continued)

command interprets the specified location or range of
locations as machine-language instructions and advances
the location counter to the start of the last complete
instruction within the specified range. If the user
specifies no second argument or if the range specified
by the second argument is shorter than the complete
instruction, the command displays the instruction which
begins at the starting address but does not move the
location counter. A carriage return by itself is
equivalent to the command "i." except that the
location counter is advanced to the beginning of the
next instruction.

I [<f il e_name> 1

k

K

The 'I' command specifies the name of the file whose
symbol table is to be used to initialize the internal
symbol table for "qdb". The symbol table is used to
interpret symbolic addresses and values. If the user
does not specify a file, the 'I' command prompts for
the name of the file containing the symbol table to
use. The file must be a binary image file. This
command is normally for use with a core image file
because such files do not contain any symbolic
information. Once the symbol table is initialized,
however, a core image file can be interpreted
symbol ically.

The 'k' command terminates execution of the current
controlled task. If no controlled task exists, the
command is not allowed. This command need not be used
because the 'x' command implicitly kills any controlled
task before creating another.

When a task which is running under the control of "qdb"
receives a signal, the operating system notifies "qdb"
and suspends the task. The "qdb ll program then enters
command mode, allowing the user to execute any "qdb"
command. A user who wishes to ignore the signal may do
so by entering the 'K' command. A user who wishes the
signal to take effect should simply continue the
program with the 'g' (or a similar) command.

m <address>
The 'm' command modifies the contents of one or more
memory locations in the image file. In response to
this command "qdb" first displays the spec if ied address
and its contents. The user may change the contents by
entering any expression, may leave the contents as is
by entering a period, '.', or may terminate the command

qdb-S

TSC 2/13/86 (continued)

qdb-6

M

n

r

by entering just a carriage return. Unless the user
terminates the command, "qdb" modifies the contents if
appropriate, displays the next address with its
contents, and waits for input from the user.

If the image file is a core dump or an executable file,
the file itself is modified. If the image file is a
controlled task (i.e., an 'x' command has been
executed), only the memory of that task is altered.
The executable file from which "qdb" created the task
is not changed. Therefore, when patching co.de the user
should be aware that patches are applied only to the
executing image file.

The 'M' command displays a map of the logical addresses
available to the task image. If the image is either a
core dump or a controlled task, the map contains the
ranges of addresses being used by the program. These
ranges may change whenever the program executes a
"break" or a "stack" system call. If the image is an
executable file, the 'M' command displays the ranges of
the addresses of the TEXT and DATA/BSS segments.

The 'n' command displays the command line which was
used to create the task. This is merely a display of
the command arguments passed to the program when it was
created. In most cases the command line consists of
the shell command used to invoke the program. The
command line for a controlled task looks just like the
command line entered with the 'x' command that created
it except that the 'x' is replaced by the program name.

The 'r' command displays the contents of the registers
for the image file, as well as the address of the
program counter and the instruction located at that
address. For a core dump it displays the contents of
the registers at the time the program was aborted by
the system and the location of the program counter at
that time. The instruction displayed is the
instruction that was in progress when the program was
aborted. For a controlled task it displays the
contents of the registers as they will be when
execution resumes, the address at which execution will
resume, and. the instruction at that address. The
registers for an executable file are undefined. If the
user executes the 'r' command on an executable file, it
displays the contents of the registers as zeros and the
address and contents of the entry point of the program.

TSC 2/13/86 (continued)

R <register_name> <expression>

s

S

T

The 'R' command, which may only be used if the image
file is a controlled task, alters the contents of a
register. The register may be DO through D7, AO
through A7, SR, or PC. The letters used in specifying
a register may be either upper- or lowercase. The
supervisor portion (the upper byte) of the status
register may not be altered.

The's' command executes a single machine-language
instruction. When the instruction is complete, "qdb"
displays the state of the task, including the new
program counter, and the next instruction to be
executed. The's' command uses system facilities
provided by the operating system. Thus, the user may
safely single step through macro operations such as
system calls.

The'S' command sets a temporary breakpoint at the
instruction following the current instruction. This
breakpoint is removed as soon as it is encountered the
first time. If another'S' command is executed before
the breakpoint is encountered, it removes the original
breakpoint. This command may be used with any
instruction, but it is normally used with a call to a
subroutine.

The 'T' command executes the program until it
encounters any branch instruction, any call
instruction, or any breakpoint. After the execution of
every instruction "qdb" displays the address of the
next instruction and the instruction itself.

x [<arguments>] [<I/O_redirection>]
The 'x' command creates a controlled task from an image
file. In order to execute this command, the user must
first invoke "qdb" with the name of an executable image
file as the argument. The task is halted before
execution of its first instruction, so that "qdb" can
accept commands to control its execution.

I/O redirection may be accomplished using the character
'<' to redirect standard input, '>' to redirect
standard output, and '%' to redirect standard error.
No provisions are made for using either append mode
("»") or implied mapping (">%").

qdb-7

TSC 2/13/86 (continued)

qdb-8

NOTES

The more breakpoints a user sets, the more time is used to execute
the program.

ERROR MESSAGES

Breakpoint table full!
The user has already set the maximum number of breakpoints allowed
by "qdb".

Can't access core/image "<image_file_name>"
The operating system returned an error when "qdb" tried to
the specified file. Most probably, either the file does not
or the user does not have read permission in the file.

Can't open "<file_name>"
The "qdb" command was unable to open the file which the
specified as the file containing the symbol table to use.
probably, either the file does not exist or the user does not
read permission in the file.

Can't write "<image_file_name>"

access
exist

user
Most
have

The user tried to use the 'm' command to modify the contents of a
memory location in the image file, but "qdb" was unable to write to
the file. Most probably, the user does not have write permission in
the file.

Command too complicated
The user tried to use the '+' command to
from "qdb", but the command line was
interpret.

EXEC - <error_num>

execute a
too long

shell
for

command
"qdb" to

-- Error during
The operating
a controlled
followed by
system.

system returned an error when the user tried to create
subtask using the 'x' command. This message is
the UniFLEX error number returned by the operating

Error in expression
The expression used contains a syntax error.

Illegal address
The address specified is not in the user's address space.

Illegal command, <char>, - ignored
The command specified by <char> is not a valid command for "qdb".
The character is ignored, and "qdb" prompts the user for another
command.

TSC 2/13/86 (continued)

Illegal file type
The 'I' command cannot determine the
and, consequently, ignores the file.
are no longer defined.

Illegal register name

qdb-9

file type of the image file
All previously defined symbols

The register name specified by the user is not a valid register
name. The register name must be one of the following: DO through
D7, AO through A7, SR, or PC. The letters used may be upper- or
lowercase.

"<image_file_name>" is not executable
The user does not have execute permission in the specified image
file.

Invalid image file "<file_name>"
The file specified to the "qdb" command must be either an executable
file or a core dump.

-- No command line
The file being debugged
it with the 'x' command.
file.

Not executing a task!

is not a core file, nor did the user invoke
Therefore, no command line exists for the

The command specified can only execute if the user has previously
executed the 'x' command.

Sorry, can't execute a "core" file
The 'x' command cannot be executed on a core file.

** Syntax error
The 'x' command cannot parse the specified command line.

Undefined symbol
An expression contains a term which appears to be a symbol (starts
with a letter or an underscore character, '_') but is not in the
symbol table. Hexadecimal values used in expressions must begin
with a digit (a leading 0 is accepted) or a dollar sign, '$'.

TSC 2/13/86

ramdisk-1

ramdisk

Format a RAM disk (a pseudodisk device).

SYNTAX

/etc/ramdisk <dev_name> [<size>] [+f]

DESCRIPTION

The "ramdisk" command formats a section of random-access memory (RAM)
for use as a pseudodisk, known as a RAM disk. The memory need not be
contiguous. A system may support a maximum of four RAM disks (numbered
o through 3).

In order for the "ramdisk" command to succeed, two devices associated
with the RAM disk--one a block device and the other a character
device--must exist. If these devices do not exist, the system manager
must create them with the "makdev" command. The command also requires
the presence of a mount table, the file "/etc/mtab". If this file is
nonexistent, the system manager should create it with the "create"
command.

The "ramdisk" command cannot format a mounted RAM disk; however a RAM
disk must be mounted before a user can read from or write to it. Data
remain on the RAM disk when it is unmounted. To return memory allocated
to a RAM disk to the operating system, a user must reformat the RAM disk
specifying a size of O.

Reading from or wrl.t~ng to a RAM disk is considerably faster than the
comparable operation on a disk device. However, RAM disks should" be
used judiciously because they consume system memory. A lack of memory
may lead to a great deal of paging and to a general degradation of
system performance.

Only the system manager may execute the "ramdisk" command.

Arguments

<size>

TSC 1/12/87

The name of the RAM disk to format. If a system
supports RAM disks, they are created by the
"crdisk" command with the names "/dev/ramO",
"/dev/ram1", "/dev/ram2", and "/dev/ram3". If
the user specifies a name that does not begin
with a slash character, ' /', "ramdisk" pref ixes
the name with the string "/dev/".
The size of the RAM disk in 512-byte blocks. The
size must be a whole number between 0 and 8192
inclusive. The default is 512. If the number

(continued)

ramdisk-2

Options Available

f=<blocks>

EXAMPLES

specified is not a mUltiple of 8, "ramdisk"
rounds it up to the next mUltiple of 8. The
number specified determines the maximum amount of
memory that the RAM disk can use. The operating
system does not remove this memory from system
memory immediately, but as the RAM disk needs it.

The upper limit of 8192 is a theoretical limit.
The practical limit for a given system may be
lower because the operating system limits the
total amount of memory that it will allocate to
all RAM disks combined to 75% of the amount of
user-accessible memory available at the time the
system is booted.

Specifies the number of blocks to reserve for use
as file descriptor nodes (fdns). The minimum LS
o. The maximum depends on the size of the RAM
disk. An argument to the 'f' option must be less
than the size of the RAM disk (after any
rounding) minus 3. If the user specifies 0,
"ramdisk" uses the default, which is 3% of the
space on the RAM disk.

1. /etc/ramdisk /dev/ramO 1000
2. /etc/ramdisk ramI 0

The first example formats "/dev/ramO" with a maximum capacity of 1000
blocks.

The second example releases the memory in "/dev/ram1" to the operating
system.

NOTES

• Not all versions of the UniFLEX Operating System support RAM disks •

• A RAM disk must be formatted before a user can access it. If a user
tries to access an unformatted RAM disk, the operating system
returns an I/O error.

TSC 1/12/87 (continued)

ramdisk-3

ERROR MESSAGES

Argument to the 'f' option is too large.
The argument to the 'f' option must be less than the size of the RAM
disk (after any rounding) minus 3.

"<dev_name>" is mounted.
The "ramdisk" command cannot format a mounted device.

"<dev_name>" is not a block device.
The device specified must be a block device.

"<dev_name>" is not a character device.
The IIramdisk" command tried to access the device associated with the
specified block device and found that it was not a character device.

"<dev_name>" is not a RAM disk.
The device specified must be a RAM disk.

Error opening "<dev_name>": <reason>
The operating system returned an error when "ramdisk" tried to open
the specified device. This message is followed by an interpretation
of the error message returned by the operating system. .

opening the mount table, "/etc/mtab": <reason> Error
The
the
the

operating system returned an error when "ramdisk" tried to open
mount table. This message is followed by an interpretation of

error message returned by the operating system.

Error reading fdn for "<dev_name>": <reason>
The operating system returned an error when "ramdisk" tried to read
the fdn associated with the specified device. This message is
followed by an interpretation of the error message returned by the
operating system.

reading the mount table, "/etc/mtab": <reason> Error
The
the
the

operating system returned an error when "ramdisk ll tried to read
mount table. This message is followed by an interpretation of
error message returned by the operating system.

Error setting size for "<dev_name>": <reason>
The operating system returned an error when "ramdisk"
the size of the specified device. This message is
interpretation of the error message returned by
system.

Insufficient memory for RAM disk.

tried to set
followed by an
the operating

The operating system will only allocate no more than 75% of the
user-accessible memory available at the time the system is booted to
all formatted RAM disks combined.

TSC 1/12/87 (continued)

ramdisk-4

Invalid argument to the 'f' option: <arg>.
The argument to the 'f' option must be a whole number. The
specified argument contains an invalid character.

Invalid option: '<char>'.
The only valid option to the "ramdisk" command is 'f'.

Invalid size specification.
The argument specifying the size must be a whole number between 0
and 8192 inclusive. The argument specified contains an invalid
character.

Specified' size exceeds maximum of 8192 blocks.
The argument specifying the size of the RAM disk cannot be greater
than 8192.

Syntax: /etc/ramdisk <dev_name> [<size>] [+f]
The "ramdisk" command expects at least one and no more than two
arguments, the second of which is a whole number between 0 and 8192
inclusive. This message indicates that the argument count is wrong.

You must be system manager to run "ramdisk".
Only the system manager may execute the "ramdisk" command.

SEE ALSO

create
makdev
mount
unmount

TSC 1/12/87

rel info-l

re1 info

Display information about an executable or relocatable file.

SYNTAX

re1info <fi1e_name_list> [+ehrs]

DESCRIPTION

The "relinfo" command displays information about the binary header, the
symbol table, and both the relocation and external records in either an
object file or all modules of a library. Normally, "re1info". displays
all the information. The available options restrict the display to the
specified information (see Options Available).

Arguments

<file_name list> A list of the names of files to report on.

Options Available

e Display only information about external records.
h Display only information about the binary header.
r Display only information about relocation records.
s Display only information about the global symbol table.

EXAMPLES

1. relinfo tester
2. relinfo /lib/mathlib +h
3. relinfo reporter +se

The first example displays information about the binary header, the
symbol table, and both the relocation and external records in the object
file "tester" in the working directory.

The second example displays the information about the binary headers
from all the modules in the library" /lib/mathlib".

The third example displays the information about both the relocation and
external records in the file "reporter" in the working directory.

TSC 2/13/86 (continued)

relinfo-2

ERROR MESSAGES

Error opening "<file_name>" : <reason>
The operating system returned an error when "rei info" tried to open
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

Error reading "<f il e_name>" : <reason>
The operating system returned an error when "rei info" tried to read
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

Error seeking to <location> in "<file_name>" : <reason>
The operating system returned an error when "relinfo" tried to seek
to the specified location (in hexadecimal) in the specified file.
This message is followed by an interpretation of the error returned
by the operating system.

"<file_name>" is not a binary file!
The specified file does not have a valid binary header.

Inval id option: '<char>'.
The option specified by '<char>' is not a valid option to the
"rei info" command.

SEE ALSO

lib-gen68k
libinfo
load68k
re168k

TSC 2/13/86

re120-1

re120

The "re120" command is the 68020 relocating assembler.

SYNTAX

re120 <file_name_list> [<param_Iist>] [+abefFiIJlLnosSu]

DESCRIPTION

The "rel20" command accepts one or more source files from the command
line and, depending on the options specified, a single relocatable
object-code module (also called a relocatable module), a listing of the
assembled source code, or both. The assembler accepts most of the
standard Motorola 68020 mnemonics and fully supports the 68020
instruction set. . Differences between the Motorola standard instructions
and the ones accepted by the assembler are described in detail in the
manual, 68xxx UniFLEX Relocating Assembler and Linking-Loader.

Arguments

<file_name list> A list of the names of files to assemble.
<param_list> A list of up to three parameters to pass to

the assembler for use in the source code.
The syntax for passing a parameter is

TSC 8/4/86

+<char>=[<str>]

where valid values for <char> are 'a', 'b',
and 'c'. Normally, the shell program
interprets a space character as a character
separating two elements on the command
line. A user may, however, include a space
character in a command-line parameter by
enclosing either the string or the entire
parameter in a pair of delimiter characters
(either single or double quotation marks).
The user may specify the null string by
leaving the string out altogether. If the
user specifies one or more command-line
parameters, the assembler searches the
source code for substitutable
parameters--code consisting of the
following sequence:

&<char>

(continued)

rel20-2

Options Available

a

b
e
f

F

1

I

J

1
L

n
o=<f i1 e_name>

s
S
u

EXAMPLES

where valid values of <char> are once again
'a', 'b') and 'c'. The assembler replaces
each substitutable parameter with the
corresponding command-line parameter. For
more details on command-line parameters see
the 68xxx UniFLEX Relocating Assembler and
Linking-Loader.

Produce an abbreviated listing of. the
assembled source code. Such a listing
contains only one line of output for each
instruction. The output consists of an
indicator character, the program counter, the
first two bytes of the code generated by the
instruction, the label, the instruction, the
operands, and as much of any comment as
possible.
Suppress binary output.
Suppress summary information.
Disable formatting of the listing of the
assembled source code.
Enable "fix" mode. In fix mode, comments
which begin with a semicolon, ';', are
assembled.
Ignore the suffix ":w", which forces an
address to the size of a word.
Ignore the suffix ":w", which forces an
address to the size of a word, unless it is
part of a "jmp" or a "jsr" instruction.
Ignore the suffix ":w", which forces an
address to the size of a word, when it is part
of a "jmp" or "jsr" instruction.
Produce a listing of the assembled source.
Produce a listing of the input file or files
during the first pass.
Produce line numbers with the listing.
Specifies the name of the file containing the
relocatable module produced by the assembler.
Produce a listing of the symbol table.
Limit symbols internally to 8 characters.
Classify all unresolved symbols as external.

1. re120 asmfile
2. re120 test.a +euo=test.r +a=DO
3. re120 test.a test2.a test3.a +b1ns

TSC 8/4/86 (continued)

re120-3

The first example assembles the source file "asmfile" and produces the
re10catab1e binary file "asmfi1e.r". The assembler sends summary
information to standard output but produces no source listing. Any
errors detected are sent to standard output. The assembler does not
search the source for substitutable parameters because the user did not
specify any command-line parameters.

The second example assembles the file "test.a" and produces the
re10catab1e file "test. r". No summary information is produced, and all
unresolved references are classified as external. If the assembler
detects no errors during the assembly, the user sees no output from this
command. The assembler searches the source code for all substitutable
parameters and replaces the sequence "&a" with the string "DO". It
replaces any occuwrences of "&b" and "&c" with the null string.

The third example assembles the three files specified but produces no
binary output. A listing with a symbol table is sent to standard
output. The listing includes line numbers. The assembler does not
search the source for substitutable parameters because the user did not
specify any command-line parameters.

SEE ALSO

68xxx UniFLEX Relocating Assembler and Linking-Loader

TSC 8/4/86

•

re168k-l

re168k

The "rel68k" connnand is the 68000/68010 relocating assembler.

SYNTAX

rel68k <file_name_list> [<param_list>] [+befFiIJ1LnosStu]

DESCRIPTION

The "re168k" connnand accepts one or more source files from the command
line and, depending on the options specified, a single relocatable
object-code module (also called a relocatable module), a listing of the
assembled source code, or both. The assembler accepts most of the
standard Motorola 68000/68010 mnemonics and fully supports the
68000/68010 instruction set. Differences between the Motorola standard
instructions and the ones accepted by the assembler are described 1n
detail in the manual, 68xxx UniFLEX Relocating Assembler and
Linking-Loader.

Arguments

<f He_name list>
<param_list>

TSC 8/4/86

A list of the names of files to assemble.
A list of up to three parameters to pass to
the assembler for use in the source code.
The syntax for passing a parameter is

+<char>=[<str>]

where valid values for <char> are 'a', 'b',
and 'c'. Normally, the shell program
interprets a space character as a character
separating two elements on the command
line. A user may, however, include a space
character in a command-line parameter by
enclosing either the string or the entire
parameter in a pair of delimiter characters
(either single or double quotation marks).
The user may specify the null string by
leaving the string out altogether. If the
user specifies one or more command-line
parameters, the assembler searches the
source code for substitutable
parameters--code consisting of the
following sequence:

&<char>

(continued)

rel68k-2

Options Available

b
e
f

F

i

I

J

1
L

s
S
t

u

EXAMPLES

where valid values of <char> are once again
'a', 'b', and 'c'. The assembler replaces
each substitutable parameter with the
corresponding command-line parameter. For
more details on command-line parameters see
the 68xxx UniFLEX Relocating Assembler and
Linking-Loader.

Suppress binary output.
Suppress summary information.
Disable formatting of the listing of the
assembled source code.

- Enable "fix" mode. In fix mode, comments
which begin with a semicolon, ';', are
assembled.
Ignore the suffix ":w", which forces an
address to the size of a word.
Ignore the suffix ":w", which forces an
address to the size of a word, unless it is
part of a "jmp" or a "jsr" instruction.
Ignore the suffix ":w", which forces an
address to the size of a word, when it is part
of a "jmp" or "jsr" instruction.
Produce a listing of the assembled source.
Produce a listing of the input file or files
during the first pass.
Produce line numbers with the listing.
Specifies the name of the file containing the
relocatable module produced by the assembler.
Produce a listing of the symbol table.
Limit symbols internally to 8 characters.
Assemble for 68000 rather than 68010. This
option only affects the code generation of the
"move from CCR/SR" instruction.
Classify all unresolved symbols as external.

1. rel68k asmfile
2. rel68k test. a +euo=test. r +a=DO
3. rel68k test.a test2.a test3.a +blns

TSC 8/4/86 (continued)

re168k-3

The first example assembles the source file "asmfile" and produces the
relocatable binary file "asmfile. r". The assembler sends summary
information to standard output but produces no source listing. Any
errors detected are sent to standard output. The assembler does not
search the source for substitutable parameters because the user did not
specify any command-line parameters.

The second example assembles the file " test • a" and produces the
relocatable file "test. r". No summary information is produced, and all
unresolved references are classified as external. If the assembler
detects no errors during the assembly, the user sees no output from this
command. The assembler searches the source code for all substitutable
parameters and replaces the sequence "&a II with the string "DO". It
replaces any occurrences of "&b" and "&c II with the null string.

The third example assembles the three files specified but produces no
binary output. A listing with a symbol table is sent to standard
output. The listing includes line numbers. The assembler does not
search the source for substitutable parameters because the user did not
specify any command-line parameters.

SEE ALSO

68xxx UniFLEX Relocating Assembler and Linking-Loader

TSC 8/4/86

remove-l

remove

Remove the specified file name from the file system.

SYNTAX

remove <file_name_list> [+dklpqw]

DESCRIPTION

The "remove" command removes the specified file, which may be any type
of file, from the file system. A user who is not the system manager
must have write permission in the parent directory of the file being
removed and, by default, must also have write permission in the file
itself. The system manager may remove any file on the system.
Restrictions on the deletion of a directory are discussed with the
options.

Arguments

Options Available

A list of the names
the file system.
regular files,
directories.

of files to remove from
The list may include
special files, and

d If the specified file 1S a directory and it is empty,
delete it. By defaul t, the "remove" command does not
delete directories.

k If the specified file is a directory, delete it and all
the files it contains.

I List the name of each file as it is removed.
p Prompt for permission to remove each file. The file is

removed if the user responds to the prompt with a 'y' •
q Do not print an error message if the specified file does

not exist.
w Prompt for permission to remove files for which the owner

does not have write permission. By default, the "remove"
command does not delete such files unless the user is the
system manager. The file is removed if the user responds
to the prompt with a 'y'.

EXAMPLES

1. remove first_file dir_file second_file +w
2. remove first_file dir_file second_file +dp
3. remove first_file dir_file +kl

TSC 8/4/86 (continued)

remove-2

The first example removes the files "first_file" and "second_file",
prompting for permission to do so if the owner does not have write
permissions in the file. The file "dir_file" is not removed because it
is a directory.

The second example prompts for permission to remove "first file" and
"second_file" (assuming the user has the proper permissions). It also
prompts for permission to remove "dir_file" if it is empty.

The third example removes "first file" and "dir_file" from the file
system. In addition, it descends the directory structure of "dir_file",
deleting the directory itself as well as every file and the contents of
every file in the directory. The command lists the name of each file as
it is deleted.

NOTES

The "remove" command, especially when executed with the 'k' option,
is an extremely powerful and potentially destructive command. It
should be used with caution.

ERROR MESSAGES

Cannot delete the root directory: "/"
The user tried to delete the root directory.

Directory "<dir_name>" is not empty.
The "remove" command cannot delete a nonempty directory unless the
user specifies the 'k' option.

Error deleting "<f il e_name>": <reason>
The operating system returned an error when "remove" tried to delete
<file_name>. This message is followed by an interpretation of the
error returned by the operating system.

Error deleting "." in "<dir_name>": <reason>
The operating system returned an error when "remove" tried to delete
the "" entry in <dir_name>. This message is followed by an
interpretation of the error returned by the operating system.

Error deleting " •• II in "<dir_name>": <reason>
The operating system returned an error when "remove" tried to delete
the " •• " entry. in <dir_name>. This message is followed by an
interpretation of the error returned by the operating system.

TSC 8/4/86 (continued)

remove-3

Error getting status for "<file_name>": <reason>
The operating system returned an error when "remove" tried to read
the fdn for <file_name>. This message is followed by an
interpretation of the error returned by the operating system.

Error opening "<file_name>": <reason>
The operating system returned an error when "remove" tried to open
<file_name>. This message is followed by an interpretation of the
error returned by the operating system.

Error removing "<file_name>": <reason>
The operating system returned an error when "remove" tried to remove
<file_name>. This message is followed by an interpretation of the
error returned by the operating system.

Invalid option: '<char>'
The option specified by <char> is not a val id option to the "remove"
command.

Syntax: remove <file_name_list> [+dklpqw]
The "remove" command expects at least one argument.
indicates that the argument is wrong.

This message

You may not delete ".".
A user who wishes to delete the working
name the directory rather than using the

You may not delete " •• ".

directory must
symbol for it.

explicitly

A user who wishes to delete the parent of the working directory must
explicitly name the directory rather than using the symbol for it.

SEE ALSO

delusr
kill

TSC 8/4/86

rename-1

rename

Change the name of the specified file.

SYNTAX

DESCRIPTION

The "rename" command tries to change the name of the specified file from
<file_name_1> to <file_name_2>. In the process it makes a distinction
between directories and all other types of file (text and special). If
<file_name_2> specifies an existing directory, the "rename" command
fails. If <file_name_1> specifies a directory, the name chosen for
<file_name_2> must be a nonexistent directory with the same parent. If
neither file specified is a directory, "rename" changes the name of
<fi1e_name_1> to <file_name_2> , deleting any existing file with the same
name. In all cases the specified files must be on the same device.

Arguments

<file_name 1>
<f ile_name_2>

EXAMPLES

The name of an existing file or
The new name for <file_name_1>.
specify an existing directory.

1. rename test oldtest
2. rename test /usr/elaine/oldtest
3. rename /usr/dir_1 /usr/dir_2

directory.
It may not

The first example changes the name of the file "test" in the working
directory to "oldtest". If a file named "oldtest" already exists, it is
deleted without warning.

The second example changes the name of the file "test" in the working
directory to "/usr/elaine/oldtest".

The third example changes the name of the directory "/usr/dir_1" to
"/usr/dir_2" as long as "/usr/dir_2" does not already exist.

ERROR MESSAGES

Both directories must have the same parent!
The "rename" command cannot change the name of a directory unless
the new name represents a directory with the same parent.

TSC 2/13/86 (continued)

rename-2

Cannot rename across devices.
Both <file_name_l> and <file_name 2> must be on the same device.

Cannot rename root of a mounted device.
The "rename" command cannot rename the -node at which a device is
mounted.

Cannot rename "." or " •• II!
The files"." and " •• " in each directory are essential to the
integrity of the structure of the disk. They may not be renamed.

Error locating parent of "<file_name>": <reason>
The operating system returned an error when "rename" tried to locate
the parent of the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error renaming "<file_name_l>": <reason>
The operating system returned an error when "rename" tried change
the name of <file_name_I>. This message is followed by an
interpretation of the error returned by the operating system.

Error renaming to "<f il e_name_2>": <reason>
The operating system returned an error when "rename" tried to assign
the new file name. This message is followed by an interpretation of
the error returned by the operating system.

Error unlinking "<file name_I>": <reason>
The operating system returned an error when "rename" tried to
<file_name_l> from the new file. This message is followed
interpretation of the error returned by the operating system.

File "<file_name_I>" does not exist!

unl ink
by an

The first name on the command line must be the name of an existing
file.

File "<file_name_2>" is a directory!
The "rename" command cannot assign the name of an existing directory
to a file or directory.

Illegal file name specified: "<file_name>"
The name specified ends in a slash character, '/', and is therefore
illegal.

Source and destination are same file!
Both <file_name_I> and <file_name_2> refer to the same file. (If
their names are not the same, they are links to the same file.)

Syntax: rename <file_name_l> <file_name_2>
The "rename" command expects exactly two arguments.
indicates that the argument count is wrong.

TSC 2/13/86

This message

(continued)

rename-3

SEE ALSO

move

TSC 2/13/86

rerun-l

rerun

End the current print job, return the file to the print queue, and idle
the specified printer program.

SYNTAX

rerun <splr_name>

DESCRIPTION

The "rerun" command ends the current print job, returns the file to the
print queue, and idles the printer program. When the printer program is
restarted with the "next" command, it starts printing the first job in
the print queue, which mayor may not be the job that was interrupted by
the "rerun" command. This command is useful if, for instance, the paper
on the printer gets out of alignment while a file is being printed.

Arguments

The name of the spooler printing the job to
rerun.

EXAMPLES

1. rerun ppr

This example tells the printer program associated with "ppr"
printing the current job, to replace the file it is printing
queue, and to idle the printer.

NOTES

to stop
in the

• The "rerun" command is one of five commands that are linked to the
file" /etcJprcon", which controls the printing of files.

ERROR MESSAGES

Cannot find spooler directory
The directory "/usr/gen"
specified spooler.

TSC 2/13/86

for "<splr_name>".
does not contain a directory for the

(continued)

rerun-2

Error creating ". idl*splr?": <reason>
The operating system returned an error when "rerun" tried to
the file ". idl*splr?". This message is followed
interpretation of the error returned by the operating system.

Error opening n<f ile_name>": <reason>

create
by an

The operating system returned an error when "rerun" tried to open
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

Error reading "<f ile_name>": <reason>
The operating system returned an error when "rerun" tried to read
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

"<splr_name>" is already idle.
The "rerun" command is effective only on an active spooler.

Syntax: rerun <splr_name>
The "rerun" command expects exactly one argument.
indicates that the argument count is wrong.

You must be system manager to run "rerun".

This message

Only the system manager may execute the "rerun" command.

SEE ALSO

end
idle
insp
next
print
pstop
purge

TSC 2/13/86

resume-1

resume

Resume execution of a suspended task.

SYNTAX

resume <task_ID>

DESCRIPTION

The "resume" command resumes the execution of a task suspended by the
"suspend" command. Only the system manager may execute th is command.

Arguments

The task ID of the task to resume.

EXAMPLES

1. resume 125

This example resumes execution of task 125.

MESSAGES

Task <task_ID> resumed.
The "resume" command prints this message if it successfully resumes
execution of the specified task.

ERROR MESSAGES

Cannot resume task: <reason>
The operating system returned an
tried to resume the specified task.
interpretation of the error returned

Syntax: resume <task_ID>

error when the "resume" command
This message is followed by an
by the operating system.

The "resume" command expects exactly one argument.
indicates that the argument count is wrong.

This message

SEE ALSO

suspend

TSC 2/13/86

setpath-l

setpath

Display or redefine the names of the directories that the shell program
searches when looking for an executable file.

SYNTAX

DESCRIPTION

The "setpath" command t which lS part of the shell program t is used
either to display or to redefine the list of names of the directories
that the shell program searches when looking for an executable file.
This list is known as the search path. The shell program searches the
directories in the order in which the user specifies them on the command
line.

Arguments

EXAMPLES

A list of the names of directories to use as
the search path. The default list consists
of the following directories: the user's
working directorYt "<home_dir>/bin" t "/bin"t
"/usr/bin"t and t if the user is the system
manager t "/etc". (The home directory is the
user's login directorYt as specified in the
password file.)

1. setpath. bin /bin/usr/games

This example sets the search path so that it consists of the user's
working directory t the directory "bin" in the user's working directory,
and the directories "/bin" and "/usr/games".

NOTES

• The "setpath" command is only effective while the shell program
under which it is invoked is running. The list of directories
searched by the login shell can be permanently altered by placing
the appropriate command in the file ".startup" in the user's home
directory. This file is automatically executed each time the user
logs in.

SEE ALSO

addpath
shell

TSC 2/13/86

Interactively specify the capabilities of each terminal on the system.

SYNTAX

letc/set_termcap <ttycap_file> <ttyassoc_file> <termcap_file>
letc/set_termcap +d

DESCRIPTION

The "set_termcap" command allows the user to interactively specify the
following about each terminal on the system: whether or not the terminal
port may be used as a "login" terminal; what the default baud rate is;
and what type of terminal it is. On completion the "set_termcap"
command updates <ttyassoc_file> to reflect any changes and creates
<termcap_file>.

For most applications, <ttyassoc_file> is the file "/etc/ttylist", which
is used by the system to determine which terminals may be used for
"login" purposes, and <termcap_file> is the file "/etc/termcap", which
is used by screen-oriented programs to determine how to perform certain
terminal-specific functions, such as cursor manipulation.

Arguments

<ttyassoc_file>

Options Available

Input file describing the functional
capabilities of each type of terminal that
may be used on the system.
Input file associating each active port with
a particular kind of terminal and indicating
whether or not the system may use the
terminal as a "login" device.
Output file combining information from the
two input files.

d Use the file "/etc/ttycap" for <ttycap_file>,

EXAMPLES

"/etc/ttylist" for <ttyassoc_file>, and "/etc/termcap" for
<termcap_file>.

1. /etc/set_termcap /etc/ttycap letc/ttylist /etc/termcap
2. /etc/set_termcap +d

TSC 8/4/86 (continued)

In the first example, "set_termcap" displays a description of the first
terminal in the file "/etc/ttylist" and~ asks the user whether or not the
entry is to be changed. If the user chooses not to change the entry, it
is left as is, and "set_termcap'" displays a description of the next
entry from "/etc/ttylist". If the user elects to change the entry,
"set_termcap" first asks whether or not the terminal port should be
enabled for "login" purposes. It then asks for the default baud rate.
Next, "set_termcap" displays the first type of terminal listed in
"/etc/ttycap" and asks the user whether or not it is the type of
terminal desired. If the user neither opts to leave the type as is nor
selects the type shown, "set_termcap" displays the next type of
terminal. Finally, the user has the option of changing any of the
optional information associated with the port.

Unless the user terminates the program, "set_termcap" continues with the
next entry from "/etc/ttylist". When all entries from "/etc/ttylist"
have been updated, "set_termcap" rewrites the file and. uses the
information in "/e tc/ttycap" and "/etc/ttyassoc" to create
" /etc/termcap".

The prompts used in this interaction are discussed in MESSAGES.

The second example is equivalent to the first~

MESSAGES

This section discusses the messages displayed by "set_termcap" during
its interaction with the user. Any response other than one of the
documented ones is ignored by "set_termcap", which considers that
response equivalent to a carriage return.

Enter 'c' to change an entry, 'q' to terminate, 'n' for next entry.
The "set_termcap" command issues this message just before displaying
an entry from <ttyassoc_file> and asking whether or not the user
wishes to change the entry. If the user enters a 'c', "set_termcap"
begins to prompt for changes to the entry; if the user enters a 'q',
"set_termcap" terminates after making the changes requested in the
current session; if the user enters an 'n' (or a carriage return),
"set_termcap" displays the next entry from the file.

<sign><baud_code><nn>:<terminal_type>:[<optional_info>1: -- (c,n,q)?
This prompt describes the current configuration of a terminal. The
value of <sign> may be a plus sign, '+', which indicates that the
terminal· is enabled for "login",· or a minus sign, " , which
indicates that it is not. The baud rate is specified by an entry
from the following table:

TSC 8/4/86 (continued)

Code Speed Code Speed

space Hardware default 8 1200
1 75 9 1800
2 110 a 2400
3 134.5 b 3600
4 150 c 4800
5 200 d 7200
6 300 e 9600
7 600 f 19200

The string <nn> is a two-digit number representing the terminal, and
<terminal_type> is the name for the type of terminal attached to the
port. The <optional_info> is normally the name of the person most
commonly using the terminal. However, it has no functional meaning
and need not be present. The user may select to change ('c') the
entry or leave it as is ('n' or carriage return).

-- Enable (+, -)?
This is the first prompt given when the user elects to change an
entry. A response of '+' indicates that "set_termcap" should enable
the port for "login"; of '-', that it should not. If the user
responds with a carriage return, "set_termcap" leaves the status of
the port as is.

-- Speed ?
The user should enter the desired baud rate for the terminal port in
response to this prompt. If the hardware default is desired, the
user should enter a period, '.'. Responding with a carriage return
leaves the baud rate unchanged.

-- <terminal_type> (y,n,q)?
The "set_termcap" command issues a prompt for each type of terminal
described in <ttyassoc_file> until the user selects a new type
('y'), the user elects to leave the entry unchanged ('q'), or the
list of available selections is exhausted (in which case the type of
terminal remains unchanged).

-- Description ?
After displaying any current optional information, "set_termcap"
issues this prompt. A user who wishes to replace the optional
information with new information may type as many as 127 printable
characters. Tying a period, '.', removes the old entry without
replacing it. Typing a carriage return leaves the field unchanged.

TSC 8/4/86 (continued)

ERROR MESSAGES

*** Can't access ttyassoc file "<f ile_name>"
The utility did not have read permissions in the file specified as
the "ttyassoc" file. .

*** Can't access ttycap file "<file_name>"
The utility did not have read permissions in the file specified as
the "ttycap" file.

Can't find description of the terminal "<term name>".
A terminal name specified in the "ttyassoc" file was not one of the
terminal names contained in the "ttycap" file. The "termcap" file
will not be created.

*** ERROR : <system_error_message> while <action>
This general class of error messages describes
encountered while pe~forming such functions
opening, or closing files.

any system errors
as reading, writing,

Syntax: /etc/set_termcap <ttycap_file> <tty as soc_file> <termcap_file>
/etc/set_termcap +d

Unless the user specifies
exactly three arguments.
message indicates that the

the 'd' option, "set_termcap" expects
Otherwise, it expects no arguments. This
argument count is wrong.

*** Unrecognized option "<char_I>", Terminal = <terminal_name>,
Last valid option "<char_2>".

The option shown is not one of the legal options allowed in the
"ttycap" file. The file "termcap" will not be built.

SEE ALSO

TSC 8/4/86

shell-l

shell

DESCRIPTION

The shell program is a command interpreter which is the primary
interface between the user and the operating system. It is the program
which runs by default when a user logs into the system and which sends
the system prompt to the screen. The shell program collects and
interprets the user's commands. It executes some commands, known as
built-in commands (including "addpath", "chd" , "dperm", "jobs", "log",
"login", "nice", "prompt", "setpath", "time", and "wait") itself. It
passes others to the UniFLEX core which, in turn, performs the
operations requested.

Generally, the shell program is used interactively. In this form the
command line consists of a command name, which may be followed by
arguments and options, as appropriate. All elements of the command line
must be separated by spaces. The command may be one of the commands
supplied with the operating system, the name of a binary file produced
by either the assembler or a compiler, the name of a BASIC compiled
file, or the name of a text file (with execute permission turned on)
which contains a series of commands to execute. In all cases the shell
program spawns a subshell which executes the specified command. If the
command name is the name of a BASIC compiled file, the shell program
spawns a subshell which loads and executes BASIC, which, in turn,
executes the specified compiled file.

Search Path

Because most commands reside on disk, the shell program must locate the
command before executing it. By default, the shell program sequentially
searches the following directories: the user's working directory,
"<home_dir>/bin", "/bin", and "/usr/bin". If the user is the system
manager, the system also searches the directory "/etc" immediately after
searching "<home_dir>/bin". (The home directory is the user's login
directory, as specified in the password file.)

The list of directories searched by the shell program is known as the
search path. The user may add to this 1 ist with the "addpath" command
or redefine it with the "setpath" command.

Multiple Commands Q£ ~ Line

The user may specify more than one command on a command line by
separating them with any of several special symbOlS. Parentheses may be
used to group commands on a command line containing more than one

TSC 8/4/86 (continued)

shell-2

command. The shell program spawns a subshell to run each set of
commands in parentheses.

The shell program sequentially executes commands that are separated by a
semicolon, 'j'. If a task terminates abnormally, the shell program
stops executing the command line.

If the user follows a command with an ampersand, '&', the shell program,
as usual, spawns a subshell which executes the command. However, in
this case the shell does not wait for the task to complete before
returning a prompt. Thus, the user may start another command while the
first one is executing. A single shell program can support a maximum of
five of these "background tasks". Each time the user sends a task to
the background, the shell program reports the task ID assigned to that
task, preceding it with a 'T', which is not part of the task ID. The
user may need the task ID to execute the "wait" or "int" command. The
task ID may also be obtained by executing the "jobs" command, which
returns the task ID and starting time of all background tasks originated
by the user at the current terminal from the shell program. The
ampersand may be used following a single command or separating one task
from another on the command line.

Two additional command separators, the conjunction operator ("&&") and
the disjunction operator (" II"), are available. These separators make
execution of the command following the operator dependent on the outcome
of the execution of the command preceding it. A command is "true" if it
terminates with a termination status of zero, indicating successful
completion, and "false" if it terminates with a nonzero termination
status, indicating failure. When two commands are separated by the
conjunction operator, the shell program executes the second one only if
it completes the first one successfully (it is "true"). When two
commands are separated by the disjunction operator, the shell program
executes the second one only if the first one fails (it is "false").
Normally, the command line is evaluated from left to right; however,
parentheses may be used to group commands. Commands in parentheses are
treated as a single command. Commands separated by a pipe (see
Redirected I/O) are also treated as one command.

The processing of the command separators may be summarized as follows:

&& If the command preceding the conjunction operator
succeeds, the shell program tries to execute the next
command. If the command preceding the conjunction
operator fails, the shell program looks for a disjunction
operator. If it finds one, it tries to execute the
command which follows it. If it does not find one,
processing of the command line ceases.

I I If the command preceding the disjunction operator
succeeds, the shell program looks for a semicolon, 'j'.

If it finds one, it tries to execute the command which
follows it. If it does not find one, processing of the

TSC 8/4/86 (continued)

shell-3

command line ceases. If the command preceding the
disjunction operator fails t the shell program tries to
execute the next command.
If the command preceding a semicolon succeeds t the shell
program tries to execute the next command. If the
command preceding a semicolon fails t processing of the
command line ceases.

& Whether the command preceding a single ampersand succeeds
or fails t the shell program processes the next command on
the command line.

Consider the following example:

The shell program first tries to execute <task_I>. If the task is
unsuccessful t the shell skips <task_2> and proceeds to <task 3>. If
<task_3> fails, the shell program skips <task_4>; if <task_3> succeeds,
it tries to execute <task_4>. If, however t <task_I> succeeds t the shell
program tries to execute <task_2>. If <task_2> also succeeds, the shell
program skips the rest of the command line. 1f t after the successful
execution of <task_l>t <task_2> failS, the shell tries to execute
<task_3>. If and only if <task_3> succeeds, it goes on to <task_4>.

The use of parentheses can change the interpretation of the same set of
commands separated by the same operators:

In this case, the shell once again begins by trying to execute <task_I>.
If it fails, the shell program skips the remaining tasks. If, on the
other hand, <task_I> is successful, the shell program spawns a subshell
(because of the presence of the parentheses). This subshell tries to
execute <task_2> and, if and only if it fails, it tries to execute
<task_3>. If <task_2> succeeds, it returns a termination status of
"true" to its parent shell. If <task_2> fails but <task_3> succeeds t it
also returns a termination status of "true". If, however, both <task_2>
and <task_3> failt the termination status returned is "false". If the
termination status returned by the subshell is "true", the parent shell
tries to execute <task_4>.

Termination Status

Normally, the shell program does not report the termination status of a
command it executes unless the task terminates abnormally (because of a
program interrupt). A list of the possible program interrupts appears
in the documentation of the "int" command. The shell program does,
however, always report the termination status of a background taskt even

TSC 2/13/86 (continued)

shell-4

if it termina tes normally.

Redirected I/Q •

The shell program associates three files with every command it executes:
standard input,standard output, and standard error. Standard input is
the file from which a command takes its input. Standard output is the
file to which a command sends its output. Standard error is the file to
which many error messages are directed. By default, the system uses the
user's keyboard as standard input and the user's display as both
standard output and standard error. However, the user can direct the
shell program to use another file for any of these standard files. This
process is known as I/O redirection.

The symbol ' <' tells the shell program to redirect standard input to the
file whose name follows the symbol. Similarly, the symbols '>' and '%'
are used to redirect standard output and standard error. The file to.
which standard input is redirected must already exist. However, if the
file to which standard output or standard error is redirected does not
exist, the system creates it. In fact, if the file does already exist,
the system deletes the contents of the file before executing the
command. To avoid this effect, the user may instead direct the shell
program to append data to the file specified as standard error or
standard output by duplicating the symbol used for redirection. For
example, to execute the "time" command on "Is" redirecting standard
output to the file "time_out" and standard error to the file "time_err",
the user types

time ls »time_out %%time_err

If either of the specified files already exists, its contents remain
intact and the relevant output from the command is added to the end of
the file.

It is also possible to redirect standard output, standard error, or both
to another task. This form of redirection is accomplished by using a
"pipe". A pipe is a function that connects programs so that the output
from one program becomes the input for another. Standard output is
piped from one task to another by using one of the symbols '1' or 'A,
For instance, the user can get a listing of all the files in the working
directory, format the listing with the "page" command, and print the
listing on the printer "spr" with the following. command:

ls • I page I s pr

Similarly, the user can redirect standard error with either of the
symbo 1 s "% I" or "%AII.

TSC 2/13/86 (continued)

shell-5

Although the user can place many pipes on the command line, a single
task can only support one pipe. Thus, the user cannot pipe standard
error and standard output to separate tasks. It is possible, however,
to duplicate standard error onto standard output and to redirect them
both to the same task •. The user has a choice of symbols for duplicating
standard error onto standard output: ">%" or "%>". Neither of these
symbols takes an argument. After duplicating standard error onto
standard output, the user redirects standard output to a file or a task
in the usual way. For instance, the user can get a listing of all the
files in the working directory, redirect both standard error and
standard output to the "page" command, and print the results on the
printer "spr" with the following command:

Is • >% I page I spr

Whenever standard error and standard output are routed to the same
destination, their contents may be intermingled.

Finally, the following constructions redirect I/O from or to the null
device, "/dev/null": "<-" for standard input, ">_" for standard output,
and "%-" for standard error. If either standard output or standard
error is redirected to the null device, its contents are lost. If the
null device is used as standard input, an end-of-file character is read.

Continuation of the Command Line

Command lines may be continued across more than one physical line by
terminating each line, except the last, with a backslash character,
'\', immediately followed by a carriage return. By default, the shell
program uses the prompt "+>" to indicate that the line being entered is
a continuation of the previous line (the user may change the prompt with
the "prompt" command). When the shell program processes the line, it
replaces the backs lash and the carriage return with a space. Typing a
line-delete character (control-X) only affects the physical line being
typed. The user may delete previous lines of a continued command line
by typing a keyboard interrupt (control-C), which deletes the entire
command line.

Matching Characters

The operating system recognizes several characters, known as matching
characters, which allow the user to specify files with similar names
without typing each name individually. The special characters are the
asterisk, '*'; the question mark, '1'; and a pair of square brackets,
"[J". The shell program matches these special characters to characters
in the names of the entries in the specified directory according to the
rules described in this section. If the matching character appears in
the last component of the file name, the shell tries to match it to the

TSC 2/13/86 (continued)

shell-6

names of all files in the specified directory (by default, the working
directory). If the matching character appears in any other position in
the file name, the shell tries to match it to the names of directories
only.

When the shell program encounters an asterisk in the command line, it
matches it to any character or characters, including the null string but
not including a leading period. Thus, the command

list *. bak ,. spr

lists all files in the working directory whose names end in ". bak" and
do not begin with a period. The output is printed on the device "spr".

The question mark matches any single character except the null character
or a leading period. For example, the command

lists all files whose names begin with the string "chapter_" and end
with a single character other than the null character. It is possible
to use more than one matching character at a time. For instance, in
response to the command

list *.?

the shell program lists all files in the working directory whose names
end with a period followed by a single character (except, of course,
those whose names begin with a period).

The use of square brackets allows the user to specify a set of
characters to use in the matching process. The set of characters is
defined by listing individual characters or by specifying two characters
separated by a hyphen. In the former case, the shell program looks for
all file names which use anyone of the enclosed characters in the
appropriate place. In the latter, the two characters specify a class of
characters containing the two characters themselves and any characters
which lexically fall between them in the ASCII character set. For
example, if the user's working directory contains nine files named
"chapterl", "chapter2", "chapter3", and so forth, the following command
may be used to list the first three chapters, the fifth chapter, and the
last three chapters:

list chapter[1-357-9]

TSC 2/13/86 (continued)

shell-7

If the shell program cannot find a match for any of the arguments
containing matching characters, it aborts the command. If it finds a
match for at least one argument conta~n~ng matching characters, it
ignores any other arguments containing matching characters for which it
cannot find a match.

If the name of a file does actually contain one of the matching
characters or a space character, the user must enclose the name in
single or double quotation marks. In such a case the shell program
passes the arguments to the command without performing any character
matching.

Shell Scripts

A shell script is a file that contains a list of commands for the shell
program. Such a file might consist of a list of commands that are
frequently executed in sequence or of a single, lengthy command that is
often used. If the user sets execute permissions on such a file, the
name of the file can be used as a command.

The user may add to the versatility of a shell script by using arguments
within the script. The arguments are specified within the script as
"$1", "$2", "$3", and so forth. The argument "SO" specifies the name of
the calling program. These arguments may appear anywhere in a command
argument. For example, the following one-line script may be used to
format a floppy disk:

/etc/formatfd +qnd=/dev/fd$l +m=FD-$2

If this script is stored in an executable file named "f", the command

f a DD

formats the disk in drive 0 as double-sided, double-density.

If an argument being passed to a command actually contains an ampersand,
it must be enclosed in single quotation marks so that the shell program
does not try to perform any substitution. Note that single quotation
marks prevent both substitution of arguments and the expansion of
matching characters whereas double quotation marks prevent the expansion
of matching characters but allow the substitution of arguments.

The shell program supports several commands that are used exclusively
with shell scripts. These commands--"verbose", "exit", "proceed", and
"sabort"--are discussed in this section.

TSC 8/4/86 (continued)

I

shell-8

When the shell program. executes a script file, it does not normally echo
the commands being executed. The "verbose" command causes the shell
program to_echo commands from a script file as they are executed. Each
line that is echoed is preceded by two hyphens and a space character.

The "verbose" command may be called without arguments or with one
argument, which must be one of the strings "on" or "off". If called
without an argument, the default is "on". The command may be executed
by the login shell or may be part of a shell script. The verbose
attribute is always passed from a parent shell program to a child shell,
but never from a child to a parent.

The shell program. permits the user a limited amount of control over the
processing of script files. Normally, it sequentially processes
commands in a script file until either one of the commands fails or it
reaches the end of the file. If one of the commands fails, the shell
program. begins to search the remainder of the script file for a line
that contains one of the commands "exit" or "proceed". If it encounters
one of these commands, the shell program resumes processing the script
after that command. The only difference between the commands "exit" and
"proceed" is that during successful execution of a script file the shell
program stops processing the file if it encounters an "exit" command,
whereas it ignores a "proceed" command. The search for both these
commands takes place before both the substitution of any arguments and
the expansion of any matching characters. Thus, the shell program does
not see an "exit" or "proceed" command that is created as the result of
either of these processes.

An example of the use of the "proceed" command follows:

/etc/mount /dev/fdO /usr2
/usr2 runjob
echo "Successful execution."
proceed
/etc/unmount /dev/fdO

In this example, the shell program mounts a disk and tries to execute
the command "/usr2/runjob" on that disk. If the command succeeds, the
shell program echoes the message, "Successful execution." and proceeds
to unmount the disk. If, on the other hand, the command fails, the
shell program. skips all commands between the one that failed and the
"proceed" command. It resumes execution with the "unmount" command.
Thus, if "/usr2/runjob" fails, the user's disk is unmounted, but no
message is sent to standard output.

This example can be modified to notify the user of either successful or
unsuccessful execution by using the "exit" command:

TSC 8/4/86 (continued)

/etc/mount /dev/fdO /usr2
/usr2/runjob
/etc/unmount /dev/fdO
echo "Successful execution."
exit
/etc/unmount /dev/fdO
echo ''Unsuccessful execution."

shell-9

In this example, if "/usr2/runjob" succeeds, the shell program continues
execution with the "unmount" command and echoes the string "Successful
execution." to standard output. The "exit" command then causes the
shell program to stop processing the script because it encounters the
"exit" command during normal execution. If "/usr2/runjob" failS, the
shell program skips all commands until it encounters the "exit" command.
It then resumes execution with the "unmount" command and echoes the
string ''Unsuccessful execution." to standard output.

The user may at times wish to force the execution of every command in a
shell script regardless of the failure of previous commands. The
"sabort" command can be used to turn off the search for either an "exit"
or "proceed" command, thus forcing execution of every command in the
script.

The "sabort" command may be called without arguments or with one
argument, which must be one of the strings "on" or "off". When "sabort"
is "on", the shell program looks for an "exit" or "proceed" command
whenever a command in the script fails. When "sabort" is off, the shell
program processes every command in the script. If the user executes the
"sabort" command without an argument, it both rescinds the effect of any
previous "sabort on" and fails. Thus, if it is executing a shell
script, the shell program immediately begins looking for an "exit" or
"proceed" command.

The "aabort" command may be executed by the login shell or may be part
of a shell script. The attribute is always passed from a parent shell
program to a child shell, but never from a child to a parent.

System Script Files

Whenever the system goes from single- to multi-user mode, it
automatically executes the file "/etc/startup" if it exists. This file
may, therefore, be used to execute commands which the system manager
would otherwise have to execute manually each time the system is booted.
Such commands might include the killing of any stray temporary files and
the activation of all printer spoolers on the system.

In addition to this system script file, the system
files for individual users. Whenever a user logs
looks for a file named ".startup" in the user's
defined in the password file). If the file exists

TSC 2/13/86

also supports startup
in, the shell program
home directory (as

and the user has read

(continued)

shell-lO

permissions in it, the shell executes the file before issuing the system
prompt.

The shell program caq also be used as a command in its own right. This
form is used primarily to execute· a shell script for which execute
permissions are not set, to call the shell program from another program,
or in the password file. The documentation for its use 1n this way
follows.

SYNTAX

shell [+abclnvx] [<argument_list>]

DESCRIPTION OF THE "SHELL" COMMAND

If the "shell" command is executed without any options or arguments, the
operating system simply spawns another shell for the user. This shell
program functions as a normal shell, but because it is the child of the
shell program from which the command was executed, it does not know what
the user's home directory is. The "log" command returns control to the
parent shell.

The "shell" command can also be executed with options only. This form
of the command also spawns a shell program that interacts with the user.
If used in the password file, the command should be executed with the
'1' option (see Options Available).

Finally, the "shell" command can be executed with arguments or with both
options and arguments. This form may be used, for example, to execute a
shell script for which the user does not have execute permissions.
Ei ther of the following commands executes the file "scr ipt":

The shell program first
argument is actually
shell does not execute
Options Available).

Arguments

<argument_list>

TSC 2/13/86

shell script
shell <scr ipt

checks to see that the file specified as an
a file conta1n1ng commands. If it is not, the

it unless the user specifies the 'c' option (see

A list of arguments to pass to the shell
command. Each element in the argument list
consists of a command name followed by the
appropriate arguments and options. The
elements in the list must be separated by a
valid command separator (';', '&', "&&" , or

(continued)

shell-II

Options Available

"//11). If
used, the
enclosed
marks.

any separator characters are
entire argument list must be

Ln single or double quotation

Options specified to the shell program must appear immediately after the
name "sheli ll on the command line, so that they are not confused with
options that pertain to the arguments passed to the shell.

NOTES

a
b
c
1

n

v
x

Start execution with the IIsabortll attribute off.
Ignore control-C and control-\.
Process the argument list as a command.
Run as a login shell. A login shell tries to find the
name of the user's home directory by looking in the file
II. home?". It also automatically executes the file
lI.startup" in the working directory.
Run all background tasks with lowered priority {as does
the "nice" command).
Start execution with the
Execute the next command
This option is only used
another program.

verbose attribute on.
without forking unless necessary.
when calling a shell program from

• It LS impossible to specify a
command because the shell program
command 1 ine.

null string as an argument to a
removes null strings from the

ERROR MESSAGES

pipes. Buil t-in
Input
routed

commands may not use
to or output from
through a pipe.

the shell built-in commands may not be

Cannot execute "<cmd_name>lI.
The operating system was unable to execute the specified command.
Either the command does not exist or the user does not have execute
permission.

Cannot initialize tables.
This error, which should not occur,
hardware failure. If it does occur,

TSC 8/4/86

is usually indicative
contact the vendor.

of a

(continued)

I

hell-l 2

Cannot open I/O redirection file.
The operating system returned an error when the shell program tried
to open the file specified for I/O redirection. Most probably, the
path specified cannot be followed (one of the directories does not
exist) or the user does not have the permissions necessary for
opening the file. This message is preceded by an interpretation of
the error produced by the operating system.

Cannot open pipe.
The operating system returned an error when the shell program tried
to open the specified pipe. This message is preceded by an
interpretation of the error produced by the operating system.

Error opening a file.
The operating system returned an error when the shell program
to open the specified file. This message is preceded
interpretation of the error produced by the operating system.

tried
by an

Error reading a file.
The operating system returned an error when the shell program tried
to read the specified file. This message is preceded by an
interpretation of the error produced by the operating system.

Error writing a file.
The operating system returned an error when the shell program tried
to write to the specified file. This message is preceded by an
interpretation of the error produced by the operating system.

I/O redirection conflict.
The user tried to redirect standard input, standard output, or
standard error to more than one place.

I/O redirection error.
The operating system returned an error when the shell program tried
to perform the specified I/O redirection. This message is preceded
by an interpretation of the error produced by the operating system.

Memory overflow.
There is not enough memory available to perform the specified
command. Most probably, the expansion of the matching characters
used on the command line, for which many matches were possible,
caused the error.

Missing "]" or invalid character range.
Either the right-hand square bracket
specification of a range of matching
specified is invalid.

TSC 8/4/86

is missing
characters,

from the
or the range

(continued)

,

shell-I3

No matching file names found.
Matching characters appear on the command line, but no file names
match the specified pattern.

Parenthesis usage error.
The parentheses used on the command line are unbalanced.

Too many tasks.
The shell program tried to execute a fork, but too many tasks were
running at the time. The limit to the number of tasks allowed
either to the individual user or to the operating system as a whole
was reached.

Unknown error.
This error should not occur. If it does. contact the vendor.

Unrecognized argument to builtin command.
The argument specified is not a valid argument to the built-in
command in question.

Unterminated string.
The quotation marks used on the command line are unbalanced.

SEE ALSO

addpath
chd
dperm
env
hangup
jobs
log
login
nice
prompt
setpath
time
wait

TSC 8/5/86

I

shutup-!

shut up

Take the system from multi-user mode to single-user mode.

SYNTAX

/etc/shutup [(-l<minutes>l

DESCRIPTION

The "shutup" command takes the system from multi-user mode to
single-user mode. In doing so) it sends a message at various time
intervals to all terminals that are logged in to warn users of the
impending switch to single-user mode. By default) the "shutup" command
waits fifteen minutes) issues a hang-up interrupt to each task) waits
fifteen seconds) and puts the system into single-user mode. This
procedure gives any tasks that are executing when "shutup" is executed
the opportunity to terminate cleanly without the loss of data.

Only the system manager may execute this command. When "shutup" is
invoked) the system reports its task ID) so that the system manager can
interrupt the command if necessary.

Arguments

<minutes>

EXAMPLES

The hyphen) or minus
command to omit the
IS-second delay.

sign) tells the "shutup"
hang-up interrupts and the

The number of minutes to wait before switching
modes. The minimum value which may be used is 0)
which causes the system to switch modes
immediately; the maximum is 60. The default is
15.

1. /etc/shutup 30
2. /etc/shutup 0
3. /etc/shutup-O

The first example causes the system to enter single-user mode thirty
minutes after it is issued. When the thirty minutes have passed) the
"shutup" command issues a hang-up interrupt to each task, waits fifteen
seconds, and puts the system into single-user mode.

The second example ~ssues a hang-up interrupt to each task) waits
fifteen seconds) and puts the system into single-user mode.

TSC 2/13/86 (continued)

I

shutup-2

The third example causes the system to enter single-user mode
immediately, without issuing any interrupts and without delaying.

ERROR MESSAGES

You must be system manager to run "shutup".
Only the system manager may execute the "shutup" command.

SEE ALSO

int
stop

TSC 2/13/86

status-1

status

Write to standard output a report on the status of all tasks belonging
to the user.

SYNTAX

status [+alswx]

DESCRIPTION

The "status" command reports the status of tasks running on the system
to standard output. By default, this report does not include shell or
login programs and is restricted to tasks belonging to the user who
executes the command. The command is not always completely accurate due
to the dynamic nature of the operating system. By default, the "status"
command reports on the following parameters:

Task-id

Mode

tty

Prio

TSC 2/13/86

The number assigned to the task by the
operating system.
Indicates whether the task is in memory ('c')
or has been swapped to the disk ('s').
The number of the terminal from which the task
originated. An "xx" in the field indicates
that no terminal is associated with the task.
If the entry in this field is a number, it
indicates the priority of the task. A higher
number indicates a higher priority. Other
priorities are described in the Table 1.

Table 1. Possible Priorities for a Task.

Priority

buf
disk
file
halt
~n

out

pipe

upd
sIp
swap
sys
wait

Meaning

Waiting for a system buffer.
Waiting for some disk activity.
Waiting for some file activity.
Halted by another task.
Waiting for input from the terminal.
Waiting for output to the terminal
to end.
Waiting for pipe data (usually
input) •
Updating an fdn.
Sleeping (not executing).
Being swapped to or from the disk.
Highest possible priority.
Waiting for another task to end.

(continued)

I

status-2

Time

Command

If the command is "System", this parameter is
the amount of unused CPU time since the system
was booted. Otherwise, it is the total CPU
time that a particular task has used.
The command which originated the task. By
default, the "status" command shows the first
thirty-five characters of the command line; the
rest are truncated. The command "System" is
the operating system. The command "/etc/init"
executes the login program. If the "status"
command cannot determine what was on the
command line, this field contains the entry
"???".

Options Available

a

1

s

w[=<num>]

x

List all tasks on the system, not just
belonging to the user.
Produce a more detailed description of the
of each task.
Produce a statistical summary of the use
operating system.
Wait <num> seconds after reporting the
then produce another report. The command
100 times. The default is thirty seconds.
List all tasks (a normal listing does not
shell programs, the "System" command,
command "/etc/init").

those

status

of the

sta tus ;
repeats

include
or the

If the user specifies the '1' option, the following additional items are
included in the report:

Status

User

Parent

Size
Res

TSC 2/13/86

The status of the task. Possible values include run
(task is running), sleep (task is waiting for
something to happen), and term (the task has
terminated).
The user name of the person who owns the task. If
two or more user names share the same user ID,
"status" uses the name that first appears in the
password file.
The task ID of the parent task. If the parent task
in no longer active, the ID shown in this field is 1.
The amount of memory that the task is us ing.
A rough measure of the amount of time a task has been
in memory or swapped out to the disk. Each unit
represents four seconds. The largest number that is
ever displayed is 255. This number is set to 0
whenever a task is swapped into or out of memory.

(continued)

status-3

If the user specifies the's' option, those of the following statistics
which apply to the particular system are included in the report. They
represent activity on the system since the time the system was booted.

Total block I/O transfer attempts.
The number of times the system has tried to access a disk block ~n
the cache.

Total disk I/O operations.
The number of times the system has had to access the disk. This
statistic does not include swap operations.

Total blocks freed.
The number of blocks that have been released from a file to the free
list. If the same block has been released more than once, each
release is counted.

Total system calls.
The number of times the system has executed a system call.

Total PAGE IN operations.
The number of times the system has read a page from the swap device.
This statistic applies only to virtual-memory systems.

Total swap operations.
The number of times the system has swapped
disk. This statistic applies only to
memory.

a task to or from the
systems without virtual

Total PAGE OUT operations.
The number of times the system has written a page to the swap
device. This statistic applies only to virtual-memory systems.

Total memory copy operations.
The number of times the operating system succeeded in enlarging a
task by copying it directly to a larger space in memory without
having to swap the task. This statistic applies only to systems
without virtual memory.

Total pages stolen.
The number of times the system had to take memory from one user to
give to another. This statistic applies only to virtual-memory
system.

Total pages copied.
The number of 4K pages the operating system
process of making memory-to-memory copies.
only to systems without virtual memory.

TSC 2/13/86

had to move in the
This statistic applies

(continued)

status-4

EXAMPLES

1. status +s
2. status +a1xw=15

The first example writes to standard output the default information
about the status of all tasks except shell programs that belong to the
user. A summary of the use of the operating system is included in the
output.

The second example writes to standard
the status of all tasks on the system.
issues another report. The command
interrupts it by typing a control-C.

ERROR MESSAGES

Invalid option: '<char>'.

output detailed information about
It waits fifteen seconds, then

repeats 100 times unless the user

The option specified by '<char>' is not a valid option to the
"status" command.

TSC 2/ 13/86

stop-l

stop

Bring the system to a halt.

SYNTAX

/etc/stop [[-l<minutes>l

DESCRIPTION

The "stop" command halts the system. In doing so, it sends a message at
various time intervals to all terminals that are logged in to warn users
of the impending system shutdown. By default, "stop" issues a hang-up
interrupt to each task and waits for fifteen seconds before shutting
down the system. This procedure gives any tasks that are executing when
"stop" is executed the opportunity to terminate cleanly without the loss
of data. Using the "stop" command is the only safe way to shut down the
system.

Only the _system manager may execute this command. When "stop" is
invoked, the system reports its task ID, so that the system manager can
interrupt the command if necessary.

Arguments

The hyphen, or m1nus
command to omit the
IS-second delay.

sign, tells the "stop"
hang-up interrupts and the

<minutes> The number of minutes to wait before shutting
the system. The minimum value which may be
is 0; the maximum, 60. The default is O.

down
used

EXAMPLES

1. / etc/stop 30
2. / etc/stop 0
3. /etc/stop-O

The first example causes the system to shut down thirty
is issued. When thirty minutes have passed, the "stop"
hang-up interrupt to each task, waits fifteen seconds,
the system.

minutes after it
command issues a
and shuts down

The second example issues a hang-up interrupt to each task, waits
fifteen seconds, and shuts down the system.

TSC 2/13/86 (continued)

stop-2

The third example causes the system to shut down immediately, without
issuing any interrupts and without delaying.

ERROR MESSAGES

You must be system manager to run "stop".
Only the system manager may execute the "stop" command.

SEE ALSO

int
shutup

TSC 2/13/86

strip-l

strip

Remove the symbol table from an executable binary file.

SYNTAX

DESCRIPTION

The "strip" command removes the symbol table from an executable binary
file.

Arguments

<file_name list> A list of files to process.

EXAMPLES

1. strip testprog

This example removes the symbol table from the executable binary file
"testprog" •

ERROR MESSAGES

Error creating "<f ile_name>": <reason>
The operating system returned an error when "strip"
the specified file. This message is followed by an
of the error returned by the operating system.

Error opening "<f il e_name>": <reason>

tried to create
interpretation

The operating system returned an error when "strip" tried to open
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

Error unlinking "<file_name>": <reason>
The operating system returned an error when "strip" tried to unlink
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

File "<file_name>" cannot be located.
The specified file does not exist.

File "<file_name>" is a device or a directory.
The specified file is not a regular file.

TSC 2/13/86 (continued)

strip-2

. SEE ALSO

load68k
rei info
re120
re168k

TSC 2/13/86

su-l

su

Temporarily log in as a new user without changing the working directory.

SYNTAX

su [<user_name>]

DESCRIPTION

The "su" command allows the user to log in as another user without
logging out and without changing the working directory. If a name is
specified on the command line, that name becomes the new login name. If
no name is specified, "system" is used. If a password exists for the
login name specified, "su" prompts for the password.

Although the "su" command does prompt for a password, it essentially
ignores the rest of the new user's entry in the password file
("/etc/log/password"). Rather than making the new user's home directory
the working directory, "su" does not change the working directory.
Therefore, it does not execute any startup file (". startup") that .is
normally executed when the new user logs it. In addition, "su" ignores
any designation of a login program in the password file; instead, it
always executes a shell program.

One advantage of this command 1S that when finished as this new user,
the user does not need to log in again but simply logs out and returns
to the state that existed prior to the execution of the "su" command.

Arguments

The name of the user as whom to temporarily
log in. The default name is "system".

EXAMPLES

1. su mary

This example temporarily
knows the password if
change.

TSC 8/4/86

logs in the user as "mary" (assuming the user
one exists). The working directory does not

(continued)

I

su-2

NOTES

• The "su" command creates an environment for the shell program just
as the "login" command does, with the exception that the value of
the parameter TERM is taken from the parent task. If TERM is not
defined in the parent task's environment, "su" determines its value
from the file "/etc/ttylist".

SEE ALSO

log
login
newuser

TSC 8/4/86

suspend-l

suspend

Suspend the execution of a task.

SYNTAX

suspend <task_ID>

DESCRIPTION

The "suspend II command temporar ily hal ts the execution of the specified
task. A task remains suspended until it is resumed or interrupted.
Only the system manager may execute this command.

Arguments

The task ID of the task to suspend.

EXAMPLES

1. suspend 125

This example suspends task 125.

MESSAGES

Task <task_ID> suspended.
The "suspend" command prints this mes sage if it succeeds ~n
suspending the task.

ERROR MESSAGES

Cannot suspend task: <reason>
The operating system returned an error when the "suspend" command
tried to suspend the specified task. This message is followed by an
interpretation of the error returned by the operating system.

Syntax: suspend <task_ID>
The "suspend" command expects exactly one argument. This message
indicates that the argument count is wrong.

SEE ALSO

resume
int

TSC 2/13/86

I

tail-1

tail

Write the end of the specified file.

SYNTAX

tail <f i1 e_name> [<coun t >]

DESCRIPTION

By default, the "tail" command writes to standard output the last 250
characters in the specified file. If the first character written comes
from the middle of a line, the "tail" command begins that I ine with an
ellipsis, " ", to indicate the omission. It prints all other lines
exactly as they appear in the file.

Arguments

<count>

EXAMPLES

The number of characters to print. The number
specified must be a positive integer. If it is
greater than the number of characters in the
file, the "tail" command prints the entire file.
The default is 250.
The name of the file from which to print the
last <count> characters.

1. tail module_l
2. tail module_1 600

The first example writes the last 250 characters of the file "module_I"
to standard output.

The second example writes the last 600 characters of the file "module_I"
to standard output.

ERROR MESSAGES

Error opening "<f He_name>": <reason>
The operating system returned an error when "tail" tried to open the
specified file. This message is followed by an interpretation of
the error returned by the operating system.

TSC 2/13/86 (continued)

tail-2

Error reading "<file_name>": <reason>
The operating system returned an error when "tail" tried to read the
specified file. This message is followed by an interpretation of
the error returned by the operating system.

Error seeking in "<f il e_name>": <reason>
The operating system returned an error when "tail" tried to seek in
the specified file. This message is followed by an interpretation
of the error returned by the operating system.

Error writing to standard output.
The operating system returned an error when "tail" tried to write to
standard output. This message is followed by an interpretation of
the error returned by the operating system.

Invalid count specified: <count>
The argument <count> must be a positive integer.

Syntax: tail <file_name> [<count>]
The "tail" command expects as arguments the name of exactly one file
and, optionally, a positive integer. This message indicates that
the user specified no arguments.

TSC 2/13/86

time-l

time

Execute the specified command and report to standard error the amount of
time required.

SYNTAX

time <command_name>

DESCRIPTION

The "time" command, which is part of the shell program, executes the
specified command and reports to standard error the amount of real time
elapsed during execution of the specified task, the amount of CPU time
used by the system, and the amount of CPU time used by the user.

Arguments

The name of the command to execute and time.

EXAMPLES

1. time pascal test.p >test_time

This example compiles the Pascal program "test. p" and sends to standard
error a report of the amount of time used.

ERROR MESSAGES

No command or a built-in command was specified.
The "time" command expects exactly one argument, and that argument
may not be one of the commands~ such as "jobs" or "wait", which is a
part of the shell program.

TSC 2/13/86

touch-l

touch

Set the time of the last modification of a file to the current date and
time.

SYNTAX

DESCRIPTION

The "touch" command sets the time of last modification for the specified
file to the current date and time. The user must have read and write
permission in a file in order to "touch" it. This command is often used
in conjunction with the "update_all" command. It is also useful for
correcting the last modification time of a file which was created or
modified when the system time was incorrect.

Arguments

A list of the names of the files to modify.

EXAMPLES

1. touch letter memo

This example changes the modification time of the files "letter" and
"memo" to the current date and time.

ERROR MESSAGES

Error seeking to beginning of file n<f il e_name>": <reason>
The operating system returned an error when "touch" tried to seek to
the beginning of <file_name>. This message is followed by an
interpretation of the error returned by the operating system.

Error
The
the
by

touching "<f il e_name>": <reason>
operating system returned an error when "touch" tried to change

last modification time of <file_name>. This message is followed
an interpretation of the error returned by the operating system.

. File "<f He_name>" does not exist!
The "touch" command could not find <file_name> in the file system.

SEE ALSO

date
update_all

TSC 2/13/86

t tyset-!

ttyset

Examine or adjust the parameters associated with the user's terminal.

SYNTAX

ttyset [<param_list>] [+]

DESCRIPTION

The "ttyset" command displays or changes the configuration
system parameters relating to the user's terminal.
configuration for all terminals is as follows:

of
The

various
default

Arguments

-raw +echo +tabs -case
+alf +becho -schar -cntrl ,I' --..::.:.-~-... -.-'" .
+esc -xon -any
8 Data 1 Stop none B9600
crt bs=08 dl=18

The list of parameters to adjust. If the user
specifies no parameters t the command writes the
current configuration of the user's terminal to
standard output.

+

Format for Arguments

+raw

+echo
+tabs

+case

+alf

+becho

+schar

TSC 8/4/86

Set raw I/O mode. This mode is normally used
only by special programs.
Enable character echo.
Expand tabs on output. This parameter should
be set for terminals which do not perform tab
expansion, so that the system expands tabs to
every eighth column.
Convert upper- to lowercase on input and lower
to uppercase on output.
Output a line-feed character after each
carriage return.
Enable echo of backspace character. When
enabled, this parameter outputs an extra
backspace and space character to erase
on-screen characters for those terminals which
do not automatically do so.
Accept input one character at a time. This
mode is normally used only by special programs.

(continued)

(():/ /
",,"

I 14.

ttyset-2

+cntrl

+esc

+xon

+any

bs=<num>

d1=<num>

Ignore meaningless control characters (all
control characters except carriage return,
horizontal tab, control-C, control-D,
control-backslash, backspace, and the
line-delete character). When enabled, this
parameter keeps strange, unwanted characters
out of the user's files.
Enable the escape character (hexadecimal lB)
for starting and stopping output.
Enable the XON/XOFF mechanism for starting and
stopping output. Contro1-S stops output;
control-Q starts it. When output is stopped,
XOFF characters are ignored; when output is not
stopped, XON characters are ignored.
Accept any character to start output after it
has been stopped by either an escape character
or a contro1-S.
Set the backspace character to hexadecimal
<num>. Default is hexadecimal 08 (control-H).
Set the line-delete character to hexadecimal
<num>. Default is hexadecimal 18 (control-X).

All parameters beginning with a plus sign, '+', may instead begin with a
minus sign, '-', to set the opposite condition. In addition, the user
may set the following parameters:

DB=<7_or_8>
SB=<1_or_2>
even
odd
none

. B<num>

Set the number of data bits.
Set the number of stop bits.
Even parity mode.
Odd parity mode.
No parity.
Set the baud rate to <num>. Legal values of
<num> are 75, 110, 134.5, 150, 200, 300, 600,
1200,1800,2400,3600,4800,7200, 9600, and
19200.

Only certain combinations of values for data bits, stop bits, and parity
are legal. The legal configurations are shown in Table 1.

TSC 8/4/86 (continued)

Table 1. Legal Configurations for Data
Bits, Stop Bits, and Parity

Data Bits Stop Bits- Parity

7 2 Even
7 2 Odd
7 1 Even
7 1 Odd
8 2 None
8 1 None -,;
8 1 Even
8 1 Odd

ttyset-3

The following delays can be set for mechanical terminals which require
time for long carriage movements, such as carriage returns.
Experimenting with the various delays determines the correct setting for
a particular terminal.

crt Set delays for crt (no delays).
hcs Set slow hard-copy delays.
hem Set medium hard-copy delays.
hcf Set fast hard-copy delays.

Options Available

+ Display the current values for all "ttyset" parameters
after making the changes.

EXAMPLES

1. ttyset
2. ttyset +a1f -becho
3. ttyset +tabs hem +

The first example displays the current values of the "ttyset" parameters
for the user's terminal.

The second example enables the automatic output of a line-feed character
after a carriage return and disables the echo of the backspace
character.

The third example enables the expansion of tab characters on output and
sets a medium speed, hard-copy delay. The command displays the current
"ttyset" parameters after making the changes.

TSC 8/5/86 (continued)

I

ttyset-4

NOTES

• The "ttyset" command is generally used to set the configuration of
the terminal from which it is called. Assuming permissions are
granted, it is possible to execute the "ttyset" command on another
terminal or even a serial printer device by redirecting input from
the desired device. For example, the following command enables
XON/XOFF processing on the serial printer "spr":

ttyset +xon </dev/spr

Although the "ttyset" command can be performed on a serial printer
device, the' only argument which can be set or which has any effect
is the "xon" argument •

• The "ttyset" parameters "raw", "schar", and "tabs" are reset by the
shell program each time it issues a prompt for a command. Thus, if
the user types the command "ttyset +raw" in response to a prompt
from the shell program, raw I/O mode is enabled, but when the
command is complete, the shell program turns raw I/O mode off before
issuing the next prompt. To the casual observer it appears that the
"ttyset" command failed. If, however, the same command is performed
by an "exec" statement in a BASIC program, raw I/O mode remains in
effect for the duration of the BASIC program (unless specifically
turned off by another "ttyset" operation) because the shell program
is not reentered •

• Not all hardware supports all legal baud rates, and not all hardware
allows the dynamic changing of baud rates •

• The baud rate can be set either by using the "ttyset ll command or by
editing the file "/etc/ttylist". Each entry for an active terminal
consists of a plus sign, '+', followed by a space, followed by the
two-digit number that represents that particular terminal.
Replacing the space with a single hexadecimal digit changes the baud
rate. The digits correspond to the legal baud rates with a '1'
representing a baud rate of 75 and an 'f' representing a baud rate
of 19200.

TSC 8/4/86 (continued)

ttyset-S

ERROR MESSAGES

Error getting terminal status: <reason>
The operating system returned an error when "ttyset" tried to get
information on the current configuration of the terminal. This
message is followed by an interpretation of the error returned by
the operating system.

Error
The
new
the

setting terminal characteristics: <reason>
operating system returned an error when "ttyset" tried set the
parameters. This message is followed by an interpretation of

error returned by the operating system.

Illegal baud rate specified: <num>
Command abortedl

Legal values for the baud rate are 75, 110, 134.5, 200, 300, 600,
1200, 1800, 2400, 3600,4800, 7200, 9600, and 19200.

Illegal configuration: '# Data bits, # Stop bits, <set> Parity'.
The combination of values used to set data bits, stop bits, and
parity is illegal. See Table 1 for a list of the legal
combinations.

lnval id parameter, "<par am>", found.
Command aborted I

The parameter specified by <param> is not a valid parameter for the
lit tyset" command.

TSC 2/13/86

tune-l

tune

Change the specified parameters 1n a file containing a copy of the
UniFLEX Operating System.

SYNTAX

/etc/tune <file_name> [<param_list>]
/etc/tune <file_name> [+r]

DESCRIPTION

The "tune" command is used to alter certain parameters which govern the
behavior and performance of the UniFLEX Operating System. The command
operates in three modes: read-only, interactive, and automatic. In
read-only mode "tune" displays the current value, in the specified f He,
of each the of parameters it can alter. If the user does not have write
permission 1n the specified file, "tune" automatically executes in
read-only mode. A user who does have write permission in the file can
execute "tune" in read-only mode by specifying the 'r' option.

If the user has write permission in the specified file and specifies
neither a parameter list nor the r option, "tune" executes in
interactive mode. In this mode it displays current values one by one.
To change the value of a parameter the user enters the new value and a
carriage return following the display. To leave the value as is the
user types just a carriage return. The "tune" command imposes certain
restrictions on the values of the parameters it alters. If the user
enters a value 1n interactive mode which violates one of these
restrictions, "tune" does not alter that value. Rather, it responds
with an error message and waits for the user to enter a new value.

Instead of going through the entire list of parameters interactively,
the user can directly specify on the command line which values "tune" is
to change. The value of a parameter not mentioned on the command line
does not change. After it makes the changes, "tune" displays a list of
all parameters and the values specified by the user. If any of the
values violates the restrictions mentioned previously, "tune" displays a
message to that effect and sends a bell (control-G) to the terminal.
Although the display shows the values specified by the user, "tune" does
not make changes in the file if the changes violate the restrictions.

Arguments

TSC 8/4/86

The name of a file that contains a copy of the
operating system.
A list of the parameters to change and the
values to assign to them.

(continued)

tune-2

Format for Arguments

<param_list> <param_name>=<decimal_number>
<param_name>=<maj_dev_num>/<min_dev_num>

Table 1 lists the parameters that "tune" can change.

Table 1. Parameter names and descriptions

Description

buffers
iolists
DST

files
locked_recs

mounts
page_space

pipe_dev
root_dev
seek_rate
page_dev
tasks

time_limit
time_zone

Number of system buffers.
Maximum number of lists of I/O characters.
Flag for the observation of Daylight Savings Time
(0 indicates it is not observed locally; 1, that
it is).
Maximum number of files that can be open at one time.
Maximum number of entries allowed in the table of '
locked files.
Maximum number of devices that can be mounted.
Maximum number of pages to be used by paging device
(up to the limit set by the "format" command).
One page equalS 8 blocks of disk.
Major and minor device numbers of the pipe device.
Major and minor device numbers of the root device.
Seek rate of the floppy disk drive.
Major and minor device numbers of the paging device.
Maximum number of tasks the system can
simultaneously execute.
Maximum number of unique shared-text programs that
the operating system can simultaneously execute.
Maximum number of seconds a task can run.
Time difference in minutes between local time and
Universal Time. A positive value of "time_zone"
indicates the number of minutes west of Greenwich;
a negative value, the number of minutes east.
Maximum number of tasks allowed to each user.

The values for all these parameters are originally set when one of the
"/uniflex" files is copied from the master disk to a system disk. These
default values, as well as the limits imposed on each parameter, are
shown in Table 2.

TSC 8/4/86 (continued)

tune-3

Table 2. Default Values and Limits for "tune" Parameters

<par am_name > Default Minimum Maximum
--
buffers sd 8 192
iolists sd 8 255
DST 0 0 1
files sd 16 255
locked_recs 32 0 Value of "files"
mounts 5 2 32
pipe_dev sd 0/0 Last block device number
root_dev sd 0/0 last block device number
seek_rate 0 0 sd
page_dev sd 0/0 Last block device number
page_space sd 256 16 Megabytes
tasks sd 8 128
text _segs 20 2 20
time_ limit 0 0 32767 (0 = no limit)
time_zone 300 -1440 1440
user_ tasks 10 5 Number of tasks

Notes: sd = system-dependent

Options Available

r Execute the command in read-only mode--that is, display
the current value for each parameter, but do not make
any changes.

EXAMPLES

1. /etc/tune /uniflex +r
2. /etc/tune /usr2/uniflex-WIN tasks=32 page_dev=00/01

The first example displays a list of the items that "tune" can adjust.
The current value of each item in the file "uniflex" in the root
directory appears in parentheses.

The second example changes the specified parameters in the file
"un if lex-WIN" (the mini-Winchester version of the operating system) in
the directory "/usr2". Presumably, a system-build disk is mounted on
-" /usr2". This command sets the maximum m.unber of tasks allowed on the
system to 32 and defines the device whose major device number is 0 and
whose minor device number is 1 as the paging device. In order for_ this
particular version of the operating system to be able to perform paging,
a disk formatted with page space must be in the specified device.

Tse 8/4/86 (continued)

tune-4

NOTES

• The "tune" command changes the values of the parameters in the file
specified on the disk only, not in memory. Therefore, the changes
have no effect until the user boots the operating system from the
modified version.

ERROR MESSAGES

'r' option incompatible with command-line parameters.
The 'r' option, which tells "tune" to operate in read-only mode,
conflicts with the specification of parameters on the command line.
The command is aborted.

***Value out of range [num_l, num_21
The value specified for a parameter is
acceptable values. The limits of the range
square brackets.

***Value must be a multiple of <num>.

not within the range of
are shown inside the

The value for the number of buffers in the system must be a mUltiple
of 8. The value for the time zone must be a multiple of 60.

TSC 8/4/86

unmount-l

unmount

Unmount a previously mounted device from the file system.

SYNTAX

/etc/unmount <dev_name>

DESCRIPTION

The "unmount" command unmounts the specified device from the file
system. Once the device is unmounted, the files in the directory on
which it was mounted become accessible. Only the system manager may
execute this command.

Arguments

The name of the device to unmount.

EXAMPLES

1. /etc/unmount /dev/fdO

This example unmounts the device in floppy drive O.

ERROR MESSAGES

Error processing "<dev_name>": <reason>
The operating system returned an error when "unmount" tr ied to
process "<dev_name>". This message is followed by an interpretation
of the error returned by the operating system.

Error unmounting "<dev_name>": <reason>
The operating system returned an error when "unmount" tried to
unmount the specified device. This message is followed by an
interpretation of the error returned by the operating system.

Syntax: /etc/unmount <dev_name>
The "unmoun t" command expe c t s exac t ly one argument.
indicates that the argument count is wrong.

SEE ALSO

mount

TSC 2/13/86

This message

Process a set of files, performing the specified operation on each file
if it is newer than the file it is compared to.

SYNTAX

update_all [<make_file_name>] [+q]
update_all <make_file_name> [<ar&-list>] [+q]

DESCRIPTION

The "update_all" command reads the specified "makefile", which must
conform to a special format, and conditionally performs the command or
commands in that file. By default, "update_all" sends informative
messages to standard output telling the user what it is doing. The
command is most often used to recompile programs whose sources have been
updated.

Arguments

~ake_file_name> The name of the file to read for
instructions. This file must be in a
special format (see Format of the
"makefile"). If no other arguments are
present, the defaul t is the file "makefile"
in the working directory. If other
arguments are present, the user must
specify the name of the "makef ile".

<ar&-list> A list of strings to substitute for any
string designators that appear in the
''makefile'' (see Format of the "makefile).
If this argument is used, the use~ must
specify the name of the "makef ile".

Format of the "makefile"

The "makefile" is composed of modules, each of which is terminated with
a percent sign, '%', in column 1. A module itself is composed of up to
two parts. The first part specifies the process that "update_all" is to
perform. The format for this first part is as follows:

[<item-one>:: [$]<item_two>;]<command_sequence>

where <item one> and <item two> are the names of files; "::" is the "is
newer than" operator; th; dollar sign, '$', changes the interpretation
of the "is newer than" operator if <item_one> exists but <item_two> does
not; and the semicolon, ';', separates the names of the files from the

TSC 2/13/86 (continued)

command sequence.

The command sequence is composed of one or more UniFLEX commands. The
"update_all" command replaces any sequence of more than one space
character with a single space. Multiple commands are separated by
additional semicolons. If the commands do not fit on one line, the user
must begin and end the sequence with an exclamation point, '1', which
serves to delimit the entire command sequence. If the first portion of
the module uses more than one line, the second exclamation point marks
the boundary between the first and second portions of the module. The
command sequence is executed if <item_one> is newer than <item_two>.

The user may substitute an ampersand, '&', for any character or sequence
of characters in <item_one>, <item_two>, or the command sequence. In
such a case the "upda te_all" command substi tutes for all ampersands the
strings specified in the second portion of the module. If the second
portion of the file is absent, no command sequence is performed. This
portion consists of one or more lines, each of which contains a single
string to substitute for the ampersands. The "update_all" command
replaces each occurrence of an ampersand with the string on the first
line of the second portion of the module and performs the command
sequence if <item_one> is newer than <item_two>. It then replaces all
ampersands with the string from the second line, continuing in this
fashion tmtil it reaches the end of the second portion of the module
(marked by a percent sign in column 1).

The user may substitute a string designator (a pound sign, '#', followed
by a digit from '1' through '9' inclusive) for any character or sequence
of characters in <item_one>, <item_two>, or the command sequence. In
such a case, the "update_all" command substitutes for each pound sign
and its digit the corresponding element of <ar~list>. If the number
represented by a digit is greater than the number of elements 1n
<arK-list>, the sequence of the pound sign and digit remains intact.

If the file represented by <item_one> exists but the file represented by
<item_two> does not, and if the "is newer than" operator is not followed
by a dollar sign, "update_all" considers <item_one> newer than
<item_two>. Under the same circumstances, if the "is newer than"
operator is followed by a dollar sign, "update_all" does not consider
<item_one> newer than <item_two>. In any case, if the file represented
by <item_one> does not exist, or if neither the file represented by
<item_one> nor <item_two> exists, <item_one> is not considered newer
than <item_two>.

For instance, consider the following command:

update_all makefile sly

and the accompanying "makef ile":

TSC 2/13/86 (continued)

&::&.b;asmb & +#1#2#3
file_l
file_2

This "update_all" command makes the following translation of the
"makef il e" :

If "file_I" is newer than "file_lob", execute the command
"asmb f ile_l +sly".

If "file_2" is newer than "file_2.b", execute the command
"asmb file_2 +sly".

It continues in this fashion until "file_n" 1.S processed. The
percent sign 1.n column 1 marks the end of the module, and
because it is the only module in the file, the "update_all"
command terminates.

More than one set of commands can be processed with a single "makefile"
if the user includes more than one module in the file.

Note that the use of the pound signs allows the same makefile to be used
for another version of the "asmb" command. However. if the user does
not specify three arguments on the command line, "update_all" cannot
perform all the substitutions and the operating system cannot recognize
the resulting form of the "asmb" command because it contains one or more
string designators.

Options Available

q Do not send informative messages to standard output.

NOTES

• The "chd" command has no effect in a "makefile" •

• In order to remove the special meaning from either of the characters
'#' or '&', the user must precede it with a backslash character,
'\'. Similarly, to remove this special connotation from a
backslash, the user must use two backslashes in a row.

TSC 2/13/86 (continued)

ERROR MESSAGES

*** Can't access Makefile "<file_name>" - aborted!
The operating system returned an error when "update_all" tried to
open <file_name> for reading. Most probably, the file specification
is incorrect, the file does not exist, or the user does not have
read permission for the file.

*** ~rror: Command too complicated.
<command_sequence>

After substitution for the ampersands has taken place, the command
sequence is too long (the limit is 1,024 characters).

*** Error: Pattern too complicated.
<command_sequence>

The pattern for the command sequence (before substitution for
ampersands takes place) is too long (the limit is 1,024 characters).

Invalid option: '<char>'.
The option specified by '<char>' is not a valid option to the
"update_all" command.

Makefile syntax error - aborted
The "update_all" command was unable to interpret the "makefile".

Syntax: update_all [<make file name>] [+q]
update_all <make_file_name> [<ar~list>] [+q]

The "update_all" command requires exactly one argument. This
message indicates that the argument count is wrong.

SEE ALSO

touch

TSC 2/13/86

wait-l

wait

Wait for a background task to complete before accepting any more input.

SYNTAX

wait [<task_ID>]
wait any

DESCRIPTION

The "wait" command, which is part of the shell program, tells the shell
program not to accept any more commands until the specified background
task is complete. The termination status of the task is reported when
it is complete. If the user does not specify a task ID, the shell
program waits for all active background tasks that are children of the
shell program that issued the "wait" command to finish before accepting
any new commands. The user may interrupt the "wait" command with a
control-C.

Arguments

The ID of the task to wait for. The shell program
reports the ID when it sends a task to the
bac kgr ound. The ID may also be obtained by
executing either the "jobs" or the "status"
command.

any If the user specifies the argument "any" , the
shell program waits for any one background task
that is one of its children to finish before
accepting a new command.

EXAMPLES

1. wait 495
2. wait
3. wait any

The first example tells the shell program to accept no further commands
until task 495 is complete.

The second example tells the shell program to accept no further commands
from the user until all background tasks belonging to that shell program
are complete.

The third example tells the shell program to accept no further commands
from the user until one background task belonging to that shell is
complete.

TSC 2/13/86 (continued)

wait-2

ERROR MESSAGES

No tasks running in the background.
The shell program has no tasks running in the background.

Specified task not running in the background.
The task specified either is not a child of the current shell
program or does not exist.

SEE ALSO

jobs
shell
status

TSC 2/13/86

