

TYMSHARE MANUALS

REFERENCE SERIES

SUPER BASIC

May 1971

TYMSHARE, INC.
10340 SUBS ROAD

CUPERTINO, CALI FORNIA 95014

REGIONAL OFFICES

New York _ Chicago _ Houston _ Washington, D.C. _ Los Angeles _ San Francisco

DISTRICT OFFICES

Sales offices located in major cities across the United States.

©1971, TYMSHARE, INC., Litho in U.S.A.

Price: $4.75

RM3

CONTENTS

Page

INTRODUCTION 1

SECTION 1 - A SUPER BASIC PRIMER 3

AN EXAMPLE . 3

Line Numbers. 3
Line Length • . 3
Statements . • 3
P R I NT "text" . 3
I NPUT variable list. 4
Assignment Statement 4
I F condition TH EN line number. • 4
PRINT variable list. 4
GO TO line number. 4
Running the Example Program. 5

FUNDAMENTAL CONCEPTS OF SUPER BASIC. 5

Numbers. 5
Variables . 6
Arithmetic Expressions -. 7
Mathematical Functions. 7
Relational Expressions '. 8

USING LOOPS IN A PROGRAM: THE FOR AND NEXT STATEMENTS. 8

FOR and NEXT ... 9
The STEP or BY Clause 9

SUPPLYING DATA WITHIN THE PROGRAM:
THE READ AND DATA STATEMENTS. .. 10

READ. .. 10
DATA. .. 10
RESTORE , .. 10

ENTERING AND USING A SUPER BASIC PROGRAM. 11

The ENTER Command, .. 11
Reading a Program From Paper Tape 12
Running a Program .. ,.................................... 12
Saving a Program , .. 12
Reusing a Saved Program. .. 13
Looking at a Program. , . • 13
Comments in a Program .. 13
Self·Starting Programs ,.................................... 13

SIMPLE EDITING IN SUPER BASIC. .. 14

Inserting Statements .,.................................... 14
Deleting Statements. .. 14
Changing Statements . , .. 14

REVIEW OF COMMANDS IN SECTION 1. .. 14

iii

iv

Page

SAMPLE PROGRAMS. .. 15

Product of a Set of Numbers .. 15
Double Declining Balance Depreciation. .. 16

SECTION 2 - ARITHMETIC AND LOGICAL FEATURES. 17

ARITHMETIC FUNCTIONS. .. 17

SGN(X) .. 17
INT(X) or IP(X) '............ 17
FP(X) . . • .. 17
FIX(X) ... 17
ROUN(X) ... 17
COMP(X,Y) .. 17
PDIF(X,Y) .. 17
MAX(X1,X2 , ••• ,Xn) • .. 18
MIN(X 1,X2 , ... ,Xn) ••••••••••••••••••.•••••••••••••••.••••• 18

UTILITY FUNCTIONS 18

RND(X). .. 18
POS and POS(N) .. 19
TAB(X) and TAB(X,N). .. 19
DATE. 19
TIME. 20

MATRIX ARITHMETIC. 20
Subscripted Variable Names 20
Subscripts ;..................... 20
Size of Arrays .. 20
The DIM Command • .. 20
The BASE Command • .. 21
Matrix Operations • .. 21

, COMPLEX ARITHMETIC. .. 25

Complex Variables. .. 25
Complex Functions • .. 25

DOUBLE PRECISION ARITHMETIC. .. 26

The Double Declaration Statement .. 26
Assigning Values to Double Precision Variables .. 27
Double Precision Functions. • .. 27

OCTAL CONSTANTS AND BINARY OPERATIONS ... ;. 28

Octal Constants. .. 28
Binary Operators•............. : 28
Binary Functions. •. .. 28

LOGICAL VARIABLES, EXPRESSIONS, AND OPERATORS. 29

Logical Variables and Expressions. .. 29
Declaring Logical Variables .. 30
Logical Operators•......................... 30

PRECEDENCE OF OPERATORS•......................... 31

Page

SECTION 3 - STRINGS 33

STRING VARIABLES•.......... 33

Assigning String Values 33
Declaring String Variables 34
Assigning Strings to Declared Variables 34
The Null String 35
String Concatenation 35

STRING FUNCTIONS 35

LENGTH(string) .. . 35
SPACE(numeric expression) 35
VAL(string) 36
STR (numeric expression) 36
LEFT(string, numeric expression) 36
R IGHT(string, numeric expression) 36
SUBSTR (string, numeric expression, numeric expression) or

SUBSTR(string, numeric expression) 36
INDEX(string, string) or I NDEX(string, string, numeric expression) 37
ASC(string) 37
CHAR(numeric expression) 39

FILE NAMES AS STRING EXPRESSIONS 39

COMPARING STRINGS 40

String Comparison Functions 40

SECTION 4 - ASSIGNMENT AND CONTROL STATEMENTS. 41

THE MULTIPLE ASSIGNMENT STATEMENT 41

ADDITIONAL IF STATEMENT FEATURES. .. 41

IF condition THEN statement. .. 41
The IF-THEN-ELSE Sequence. .. 41
Combining IF Statements. 41

ADDITIONAL FOR LOOP FEATURES 42

FOR value list. .. 42
Calculation in FOR Loops. .. 42
Nested Loops .. 43

COMPUTED GO TO STATEMENT. .. 44

STATEMENT MODIFIERS. .. 44

IF and UNLESS ... 44
FOR. .. 44
WHILEandUNTIL 45
Modifiers in Input/Output Statements. .. 46

SECTION 5 - USING DECLARATION STATEMENTS. 47

V

vi

Page

SECTION 6 - INPUT AND OUTPUT STATEMENTS. 49

PRINTING FEATURES. .. 49

Printing Blank Lines. .. 49
The PR I NT Zones .. 49
Concatenation of PRINT and INPUT. .. 50

FORMATTING WITH IMAGE. .. 51

PRINT IN IMAGE Statements. .. 51
INPUT IN IMAGE Statements. .. 54

FORMATTING WITH FORM. .. 56

PRINT IN FORM Statements. .. 56
INPUT IN FORM Statements. .. 58
Precise FORM Characters .. 60

SECTION 7 - FILES. .. 73

SEQUENTIAL DATA FILE INPUT AND OUTPUT. 73

Opening a File. .. 73
Input From a File .. 74
Output to a File f............................... 74
Closing a File .. 74
Deleting a File .. 75
Testing for End of File ~ 76
The Terminal as a File 76

RANDOM ACCESS DATA FILES. .. 77

Basic Concepts and Definitions. .. 77
Opening a Random File 78
Random File Input and Output 79
Setting the Current Location: The LOCATE Command 84
The POS(n) Function With Random Files 85
The Location Function: LOC(n) 85
The Size Function: SIZE(n) 86
Erasing Part of a File: The ERASE Command. .. 86
Example: A Dictionary for a Variable Record Length File. 87
Command Files '.' .. 89

SECTION 8 - SUBROUTINES, PROGRAMMER DEFINED FUNCTIONS,
FUNCTION SUBROUTINES. 91

SUBROUTINES. .. 91

GOSUB and RETURN. .. 91
Isolating Subroutines .. 92
Computed GOSUB Statement 92

PROGRAMMER DEFINED FUNCTIONS. .. 93

FUNCTION SUBROUTINES. .. 94

vii

Page

SECTION 9 - PROGRAM CONTROL AND EDITING 97

PROGRAM CONTROL FEATURES 97

Control of Running Programs 97
SUPER BASIC Error Messages 98
TEL and WAIT 99
LOAD and LINK .. . 100
Binary Program Files 100
SUPER BASIC Optimizer 101

EDITING FEATURES 103

Editing the Line Being Typed 104
Editing a Line Already Typed 105
Editing Control Characters 106
The RENUMBER Command 107

SECTION 10 - DEBUGGING AIDS 109

SUPER BASIC INDEX GENERATOR 109

THE MAP STATEMENT 111

SECTION 11 - SAMPLE SUPER BASIC PROGRAMS 113

SOLVING QUADRATIC EQUATIONS 113

LISTING STOCKS .. . 114

PERCENTAGE BAR CHART 115

DIRECTORY OF ADDRESSES 116

FUNDAMENTAL FREQUENCY 117

CUBE ROOT .. . 119

CHECKING ACCOUNT SERVICE CHARGES 120

PLOTTING 122

LEAST SQUARE LINE 124

COPYING A FILE 126

APPENDIX A - SUMMARY OF SUPER BASIC 129

VARIABLES AND ARRAYS 129

Variable Names 129
Subscripted Variable (Array) Names 129
Value Types 129
Variable Initialization 129
DIM and Declaration Statements 129
Assignment Statement 129

OPERATORS .. . 130

FUNCTIONS .. . 131

Programmer Defined Functions 133

INPUT/OUTPUT STATEMENTS 133

viii

Page

PICTURE FORMATTING 136

MATRIX STATEMENTS 138

CONTROL STATEMENTS 139

FOR and NEXT ... 140

STATEMENT MODIFIERS 141

ENTERING, LOADING, AND SAVING THE PROGRAM 142

EDITING AND UTILITY COMMANDS 143

APPENDIX B - ALPHABETIC LIST OF ALL SUPER BASIC
STATEMENTS AND CHARACTERISTICS 144

APPENDIX C - THE EXECUTIVE 145

ENTERING THE SYSTEM 145

CALLING SUPER BASIC 145

RETURNING TO SUPER BASIC. .. 145

RULES FOR NAMING FILES 145

THE COpy COMMAND. .. 146

THE DECLARE COMMAND 146

LlSTI NG FI LE NAMES .. 148

DELETING FILES ... 148

LEAVING THE SYSTEM 148

INDEX .. 149

TYMSHARE REFERENCE MANUAL
SYMBOL CONVENTIONS

The symbols used in this manual to indicate Carriage Return, Line Feed, and AL T
MODE/ESCAPE are as follows:

Carriage Return: ~

Line Feed: i-

AL T MODE/ESCAPE: E9

Action At The Terminal

To indicate clearly what is typed by the computer and what is typed by the user, the
following color code convention is used.

Computer: Black User: Red

Control Characters

Control characters are denoted in this manual by a superscript c. For example, DC
denotes Control D. The method for typing a control character depends on the type of
terminal used. Consult the literature for your particular terminal.

Note On Spacing I n Examples

Because this manual is set in type with characters of varying width, the spacing in some
of the examples may not appear exactly as on the terminal, where all characters are the
same width. If the spacing in an example appears misleading, this general rule will be
helpful:

the number of blanks or spaces printed can usually be determined by
counting the print positions (characters) in the line or lines above.

ix

INTRODUCTION

Tymshare SUPER BASIC represents for the first
time a truly conversational language incorporating
features for both business and scientific applications.

SUPER BASIC provides a powerful yet simple set
of commands and diagnostics that allow the new user
to learn the language in a few hours and yet give the
experienced programmer the most extensive list of
features ever included in a single language.

A few of the outstanding features of SUPER
BASIC are:

• String manipulation.

• Matrix arithmetic.

• Complex, logical, and double precision variables.

• Octal constants, binary operators and functions.

• Formatted input and output, including picture
formatting as well as more advanced formatting
for maximum flexibility.

• Conditional modifiers.

• Direct commands.

• Complete built-in editing.

• Random files.

• Binary program files.

• Program optimizer to allow fastest possible exe
cution speed.

This manual contains a complete description of all
the features of SUPER BASIC. Section 1 describes a
subset of commands which, once learned by the begin
ning user, will enable him to write complete SUPER
BASIC programs and run them on the Tymshare
system.

Though written in a tutorial manner, Section 1 is
well suited for reference. The rest of the commands
are included in Sections 2 through 10 which, while
written more as reference material than as a tutorial
guide, explain each feature in such a way that the user
will be able to learn easily any new and unfamiliar
material.

Section 2 contains a description of the arithmetic
and logical features of SUPER BASIC.

The ability to manipulate text with string variables
and functions is an outstanding feature of SUPE R
BASIC. Section 3 describes these string manipulation
features.

Replacement and control statements are described
in Section 4; declaration statements in Section 5. In
put and output statements are discussed in Section 6.
Files - sequential, random, and command - are de
scribed in Section 7. Subroutines and programmer
defined functions are detailed in Section 8.

Section 9 describes how SUPER BASIC programs
are entered, stored, and executed on the Tymshare
system. This section also includes the commands for
editing SUPER BASIC statements. Section 10 de
scribes tools to assist the SUPER BASIC programmer
in debugging his programs.

Section 11 contains some sample programs written
in SUPER BASIC and executed on the Tymshare
system.

The appendices provide a summary of the entire
SUPER BASIC language, an alphabetic list of all
SUPER BASIC statements and their characteristics,
and a summary of the EXECUTIVE.

We recommend that the new user of SUPER BASIC
complete the Tymshare SUPER BASIC Instant Series
Manual and appropriate workbook in fu II before pro
ceeding beyond Section 1 of this manual.

1

3

SECTION 1
A SUPER BASIC PRIMER

AN EXAMPLE

Suppose you want to write a SUPER BASIC pro
gram that will:

1. Request that you type in five numbers,

2. Add the numbers (if the result is zero, print the
message SUM IS ZERO and stop),

3. Find the average (or mean) of the numbers,

4. Print out the sum and the mean,

5. Ask for five new numbers and repeat the cycle.

The simple program that solves this problem illus-
trates several elementary features and commands of
SUPER BASIC which will be explained below. This is
the program:

10 PRINT "TYPE FIVE NUMBERS"

20 INPUT A,B,C,O,E

27 S = A+B+C+D+E

32 IF S=O THEN 70

45 M =S/5

50 PRINT S,M

60 GO TO 10

70 PRINT "SUM IS ZERO"

Before explaining this program step by step, we
should first note some general SUPER BASIC
conventions.

LINE NUMBERS

All lines in the program begin with a number.
These numbers identify the lines in the program,
which are called statements, and specify the order in
which the statements are to be executed. You can
therefore type the program in any order provided that
the statements are numbered in the order in which
they are to be executed. Before the program is run
SUPER BASIC sorts the statements into the order
specified by their line numbers. NOTE: Line numbers
must be integers from 0 to 999999.

LINE LENGTH

All statements in the sample program contain fewer
than 72 characters (the maximum number of charac
ters that may be typed across the page on most ter
minals). Pressing the Line Feed key while a statement
is being typed will continue the statement on the next
line. A statement may be continued for several lines
provided that the maximum limit of 256 characters is

not exceeded. At the end of each entire statement, a
Carriage Return must be typed. For example, the last
statement in the program could have been typed as:

> 70 PRINT "SUM IS ~

ZERO" ~

NOTE: Spaces have no significance in SUPER
BASIC except when they are included within quote
marks (as in the above statement). Thus, spaces may
be eliminated from a/l but these instances if you are
not concerned with the readability of the printed
copy.

STATEMENTS

Indirect Statements

All the statements in the program above are called
indirect statements. Any statement that begins with a
line number is indirect; that is, the instruction or com
mand in such a statement is not executed when it is
typed, but is executed when the running program
reaches the statement in normal sequence.

Direct Statements

Direct statements do not begin with line numbers
and are executed as soon as they are typed in. Direct
statements cannot be saved as part of a program as in
direct statements can.

Some commands can be executed indirectly only,
some directly only, and others may be used either
way. For example, if GO TO 10 had been typed in
our sample program without the line number 60,
SUPER BASIC would have executed the command
immediately by transferring to statement 10 and con
tinuing execution from there. All th is would have
happened before you could have typed in any more
statements. To find out if a command can be exe

cuted indirectly, directly, or both, see Appendix A.

We are now ready to explain this program step-by
step.

PRINT "text"

When SUPER BASIC encounters the first state
ment,

10 PRINT "TYPE FIVE NUMBERS"

the text included within the double quote marks is
printed on the terminal. In this case the text is an in-

4

. struction to the person who is running the program:
he is instructed to type five numbers. The text also
could have been enclosed in single quote marks.

INPUT variable list

The INPUT command in the second statement,

20 INPUT A,B,C~D,E

will, when executed, cause SUPER BASIC to print a
question mark followed by a space and wait for five
numbers to be typed in.! The letters A through E in
this statement are called variables. Their purpose is to
store values that will be used later in a computation.
The first number typed will be stored in A, the second
in B, and so on. Just as the comma is used to separate
variables in the INPUT statement, it is also used to
separate the values when they are typed in.2 This will
be shown later in an illustration of the actual run of
the sample program.

ASSIGNMENT STATEMENT

Statement 27,

27 S = A+B+C+D+E

is called an assignment statement. This statement is
similar to the others in the program which begin with
a command word, except that in this case the word
need not be typed. The optional word wh ich may be
included in an assignment statement is LET. For ex
ample, statement 27 could have been typed as

27 LET S = A+B+C+D+E

The function of the assignment statement is to
compute the value of the expression on the right of
the = and assign that value to the variable on the left.
NOTE: An expression may not be typed to the left of
the =; for example, A+B = C is not a valid statement.

Since the = means "is assigned the value of" rather
than "is equivalent to", the following is a valid assign
ment statement:

15 X = X+1

If the value of X were 5 before this statement was ex
ecuted, the statement would set X to 6.

The rules which govern naming variables and typ
ing expressions correctly are included under FUNDA
MENTAL CONCEPTS OF SUPER BASIC, page 5.

IF condition THEN line number

I n statement 32,

32 IF S = 0 THEN 70

we test to see if the value of S is zero. If it is, then
this statement will cause SUPER BASIC to go to line
70 where it prints the message SUM IS ZERO and
stops since there are no more statements to execute.

If S is not zero, SUPER BASIC will continue to the
next statement in sequence.

45 M = S/5

This assignment statement calculates the mean and
assigns the result to M. Note that since the sum of the
five numbers has been calculated previously and as
signed to the variable S, we do not need to repeat the
computation of S in this statement.

PRINT variable list

When SUPER BASIC encounters the next state
ment,

50 PRINT S,M

the values which were computed and assigned to S
and M are printed. A comma is used to separate the
variable names.

Since any number or expression also may follow
the PR I NT command, we could have omitted assign
ment statement 45 and typed the PR I NT statement
50 as:

50 PRINT S, S/5

If SUPER BASIC were to encounter this statement,
it would print S, compute S/5 and then print that
result.

GO TO line number

The I F statement in this program causes a condi
tional transfer; that is, SUPER BASIC will transfer to
another part of the program provided that a certain
condition is true. The GO TO command however,
transfers to another statement unconditionally. Thus,
when

60 GO TO 10

is executed, SUPER BASIC goes to line 10 and re
quests new values for A,B,C,D, and E.

Note the importance of certain statements in the
program.

• What would happen if we were to omit state
ment 50? SUPER BASIC would solve for Sand
M but would never print the results; the solu
tion would remain the secret of the computer.

• Suppose we omitted statement 32. Then, if S
were zero, SUPER BASIC would not print SUM
IS ZERO and stop as we had specified. Instead,
the mean would be calculated (also as zero), the
sum and mean would be printed, and five more
numbers would be requested.

• If we were to omit statement 60 (the uncondi
tional transfer), SUPER BASIC would, after
printing the values of Sand M, print the mes
sage SUM IS ZERO and stop.

1 - If you type fewer numbers than required, SUPER BASIC types another question mark and waits for the rest of the input.

2 - A Carriage Return, Control 0, or spaces may also be used to separate the values when typed.

5

RUNNING THE EXAMPLE PROGRAM

The complete procedure for entering and running the example program, then leaving
the Tymshare system is illustrated and explained below.

- SBASIC:;> After the log in procedure is completed, the system is

> 10 PRINT "TYPE FIVE NUMBERS" ~

> 20 INPUT A,B,C,D,E ~

> 27 S = A+B+C+D+E i)

> 32 IF S = 0 THEN 70 ()

>45 M = S/5 ~

> 50 PRINT S,M "j)

>60 GO TO 10~

> 70 PRINT "SUM IS ZERO" ~

ready. The dash indicates that you are in the EXE
CUTIVE and can call SUPER BASIC by typing
SBASIC~. The> indicates that SUPER BASIC is
ready and you may begin to type the program
statements.

> RUN () The direct command RUN () causes SUPER BASIC to
execute the program.

TYPE FIVE NUMBERS
? 10,20,30,40,50 ~ Five numbers are typed,. separated by commas. A

Carriage Return is typed after the last number.

150 30 The sum is 150; the mean is 30.

TYPE FIVE NUMBERS SUPER BASIC again requests five numbers.
? 13,-7,-23,19,8;>

10 2 This time the results are 10 and 2.

TYPE FIVE NUMBERS ' The sum of the next five numbers is zero. SUPE R
? 40,25,-50,15,-30 () BASI C prints the specified message and stops.
SUM IS ZERO

> QUIT ~ The QUIT command (which may be abbreviated as Q)
- LOGOUT ~ returns you to the EXECUTIVE where you can leave

the system by typing LOGOUT ~.

NOTE: We could have interrupted the execution of the program at any time by
pressing the AL T MODE/ESCAPE key in reply to the INPUT question mark.

FUNDAMENTAL CONCEPTS OF SUPER BASIC

NUMBERS

How To Type Numbers
Into SUPER BASIC

Numbers may be typed into SUPER BASIC in
three ways:

• Integer format (whole numbers without a deci
mal point).

• Decimal format (numbers containing a decimal
point).

• E format. The letter E means "times ten to the

power of". For example, -53X 1 09 can be typed
as -53E9, and the number .00000000000063
(in which twelve zeroes follow the decimal
point) can be typed as .63E-12. The E notation
cannot stand alone; thus, 1000 may be typed as
10E2 or 1 E3 but not as E3.

SUPER BASIC will accept up to eleven significant
digits; any number containing more significant digits
will be rounded to eleven. EXCEPTION: A variable
declared DOUBLE (double precision) can store up to
seventeen significant digits. This feature is discussed
in DOUBLE PRECISION ARITHMETIC, page 26.

6

The largest number that SUPER BASIC will accept
is .57896044618E77.

Note that the following are not numbers in SUPE R
BASIC: 1/2, V4, (5/6)17. They are expressions which
SUPER BASIC must compute into a number of ac
ceptable form. Such expressions may not be used as
data input to a program.

How SUPER BASIC Prints Numbers

SUPER BASIC ordinarily will print numbers as
follows: 1

• Numbers are stored internally in SUPER BASIC
with eleven significant digits (seventeen, for
double precision) but are rounded to eight
digits when printed.

• If the absolute value of the number2 is less than
.1 or greater than or equal to 100,000,000, the
number will be printed in E format. Otherwise,
it will be printed as an integer or decimal
number.

• Trailing zeroes after a decimal point are not
printed.

To illustrate these rules, we will use the PRINT
command directly, that is, without a line number so
that SUPER BASIC will execute the command
immediately.

> PRINT .076, -568905117;>

7.6E-02 -5.6890512E+08

> PRINT -.600174172, 63.810 ~
-.60017417 63.81

> PRINT 6E7, 6E8;>
60000000 6E+08

VARIABLES

The purpose of a variable is to be assigned or to
store a single value that will be used in some computa
tion or will be printed as a solution. A variable is so
called because its value may be changed.

Variable Names

A variable can be named in one of three ways:3

• Any letter from A to Z.

• Any letter followed by any digit from 0 to 9.

• Any letter followed by the dollar sign, $.

Some acceptable variable names are:

Z B2 M4 1$

and some unacceptable names are:

1C PC A27 INT

The VAR = ZERO Command

A variable ordinarily must be defined (assigned a
value either by appearing on the left side of an assign
ment statement or in an INPUT4 statement) before it
can be referred to in a SUPER BASIC statement. Re
ferring to an undefined variable will cause an error
message to be printed unless the VAR = ZERO com
mand has been executed previously. This command
automatically assigns the initial value of zero to all
variables which would otherwise be considered as un
defined. For example:

> 10 VAR = ZERO~
> 20 PRINT "TYPE A"::;J

> 30 INPUT A;>

> 40 PRINT A,B:;>

> RUN;>
TYPE A

? 6~
6 o

The user typed in the value of 6 for the variable A.
B was never defined, but because of the VAR = ZERO
command in line 10, B's initial value was set to zero.
If line 10 had been omitted, the PRINT A,B state
ment would have caused SUPER BASIC to print A
and then an error message indicating that B was never
defined.

The VAR = ZE RO command also can be executed
directly. Note that the RUN command ordinarily ig
nores any direct commands that might have been
given previously al"'d executes only those statements
preceded by line numbers. The direct VAR = ZERO
command is an exception; it will not be ignored when
the RUN command is given."For example:

> 10 X = 15;;
> 20 PRINT X,Y;>

> RUN.;>
15

ERROR IN STEP 20:
VARIABLE HAS NO VALUE

> VAR = ZERO;>

>RUN~
15 0

Only the value of X was assigned in line 10. The
direct VAR = ZERO command, since it was given be
fore the RUN, caused the value of Y to be set to O.

1 - You can control the format in which SUPER BASIC will print numbers. See FORMATTING WITH IMAGE, page 51, and
FORMATTING WITH FORM, page 56.

2 - Absolute value simply means: for positive numbers, the number itself, for negative numbers, the number without its minus sign.
3 - Subscripted variables are discussed under MA TRIX ARITHMETIC, page 20. "
4 - Or READ statement, page 10.

The VAR = UNDEF Command

This command nullifies the VAR = ZERO com
mand. It affects only those variables which would be
undefined if the VAR = ZERO command had never
been given by once again declaring those variables to
be undefined. For example:

> 10 VAR = ZERO;>

>20 C = 12~

> 30 PRINT C,D;;>

> 40 PRINT "NOW, 'VAR = UNDEF"'.;>

> 50 VAR = UNDEF ~

> 60 PRINT C,D.;>

> RUN.;>

12 0
NOW, 'VAR = UNDEF'

12

ERROR IN STEP 60:

VARIABLE HAS NO VALUE

After the V AR = UN DE F command, C is still 12
but D is undefined, as though the VAR = ZERO com
mand had never been given.

If we had assigned any value to D before giving the
VAR = UNDEF command, D would not have been
undefined by this command. Thus, if we were to in
sert 35 D = 5 into the above program, V AR = UN D": F

would have no effect and 5 would print as the value
of D. Similarly, 35 D = 0 would cause 0 to print as the
value of D (since VAR = UNDEF undefines only
those variables that are zero because of the V AR =
ZERO command).

ARITHMETIC EXPRESSIONS

Arithmetic expressions are formed by combining
numbers andlor variables with arithmetic operators as
;~ ordinary mathematical formulas.

There are eight arithmetic operators in SUPER
BASIC:

Symbol Meaning Example

t Exponentiation Xt3 (=X3)

- Unary minus -2t2 (=-(22)=-4)

MOD Modulo l 9 MOD 7 (=2)

* Multiplication 3*B (=3X B)

I Division 3/2 (=1.5)

DIV
Division (integer

3 DIV 2 (=1)
result)2

+ Addition 8+F1

- Subtraction C$-5

7

Parentheses often are required in SUPER BASIC
arithmetic expressions where they might not be
needed in ordinary mathematical notation. For ex
ample, if you type !l[!J as A+B/C in SUPER BASIC,
the expression will be interpreted as A+~. This is be
cause SUPER BASIC performs division before addi
tion, unless parentheses are used to denote otherwise.
Thus, ~ must be typed as (A+B)/C.

The order in which SUPER BASIC will perform
arithmetic operations is as follows: 3

1. Whatever is enclosed in parentheses will be
computed first according to rules 2 through 6
below. When sets of parentheses appear within
other sets of parentheses, the innermost set is
evaluated first, then the next set, and so on.

2. Exponentiation.

3. Unary minus. Thus, if the expression is -2t2,
2t2 is computed first, and the value of the ex
pression is -4.

4. Modulo operator. Thus, 15 MOD -6/2 is inter
preted as (15 MOD -6)/2 and not 15 MOD -3.

5. Multiplication and division. If *, I, and DIV ap
pear in the same expression, SUPER BASIC
calculates from left to right; that is, 3/Bt2*C

is equivalent to (3/B2)X C.

6. Addition and subtraction. If + and - appear in
the same expression, SUPER BASIC calculates
from left to right (same as *, I, and D IV above).

MATHEMATICAL FUNCTIONS

A number of standard mathematical functions are
available in SUPER BASIC. Each one has the same
form: the name of the function followed by the argu
ment (a number or an arithmetic expression) enclosed
in parentheses. Some of these functions are listed in
the chart below.4

Function Value Returned

ABS(X) Absolute value of X

SOR(X) or Positive square root of X
SORT(X)

Trigonometric (all angle arguments and results
are in radians).

SIN(A) Sine of A

COS(A) Cosine of A

TAN(A) Tangent of A

ASIN(X) Angle whose sine is X

Table continued on next page.

1 - This standard mathematical operator is defined as follows: Y MOD Z = Y-Z*FIX(Y/Z). FIX is explained on page 17.
2 - DIV is defined as Y DIV Z = INT(Y/Z). INT is explained on page 17.
3 - See page 31 for a complete table of precedence for SUPE R BASI C operators.
4 - Additional mathematical functions of SUPER BASIC are described under ARITHMETIC FUNCTIONS, page 17.

8

Function Value Returned

ACOS(X) Angle whose cosine is X

ATN(X) or Angle whose tangent is X
ATAN(X) (range -1T/2 to +1T/2)

ATN(Y,X) or Angle whose tangent is Y /X
ATAN(Y,X) (range -1T to +1T)

SINH(A) Hyperbolic sine of A

COSH(A) Hyperbolic cosine of A

TANH(A) Hyperbolic tangent of A

Logarithmic

LOG(X) Natural (base e) logarithm of
X

LGT(X) or Common (base 10) logarithm
LOG10(X) of X

LOG2(X) Base 2 logarithm of X

Exponential

EXP(X) Natural exponential of X, eX

EXP2(X) 2X

Functions with no argument.

PI 1T,3.1415926535

DPI Double precision 1
1T,

3.1415926535897932

These functions may be included in any expression;
for example, all of the following are acceptable in
SUPER BASIC:

Z$-EXP (X1+LOG(5/X1))
SOR (SIN(R)t2+COS(O)t2)

LOG(N*X-SIN(PI/N))

RELATIONAL EXPRESSIONS

A relational expression is one which compares one
value to another (where the values may be represented
by variables or expressions) using relational operators.
A complete list of these operators can be found on
page 29; the most commonly used are listed below.

Symbol Meaning

< Less than

<= Less than or equal to

= Equal to

>= Greater than or equal to

> Greater than

#or<> Not equal to

A relational expression commonly occurs in an IF
statement (where the THEN part of the statement
will be executed only if the specified relation is true).
For example,

32 IF S = 0 THEN 70

causes a transfer to statement 70 only if the value of
S is zero; that is, if the expression S = 0 is true. If
S = 0 IS false, SUPER BASIC will continue to the next
statement.

The following are acceptable relational expressions:

X>5

A#B
Z$<=VtK+EXP(Z)

ABS(C3)=1

USING LOOPS IN A PROGRAM:

THE FOR AND NEXT STATEMENTS

Perhaps the single most important programming
idea is the loop. While we can write useful programs
in which each statement is performed only once, such
programs do not make use of the full power of the
computer. Therefore, we prepare programs having
parts wh ich are performed not once but many times,
perhaps with slight changes each time.

For example, suppose we want to write a program
wh ich will print out a table of the first 100 positive

integers and their square roots. Without a loop, our
program would be 100 lines long and would read as
follows:

10 PRINT 1,SQR(1)

20 PRINT 2,SOR(2)

30 PRINT 3,SOR(3)

990 PRINT 99,SOR(99)

1000 PRINT 100,SOR(100)

1 - Double precision is discussed on page 26 under DOUBLE PRECISION ARITHMETIC.

Notice that the instruction is the same in every
statement; only the number to which the instruction
refers has changed from one line to the next.

Here is the same program written with a loop
wh ich uses the I F statement:

10 N = 0

20 N = N+1

30 PRINT N, SQR(N)

40 IF N<100 THEN 20

Each statement in th is program represents one of
the four characteristics of every loop:

• Initialization (Statement 10 above). The vari
able N is assigned the initial value of zero. If
this step were omitted, SUPER BASIC would
not be able to compute the N+1 in the next
statement, since N would be undefined.

• Modification each time through the loop (State
ment 20). The value of N is increased by 1.
Without this statement, SUPER BASIC would
execute the following instruction continually
for zero and no other value.

o Body of the loop (Statement 30). This is the ac
tual instruction which we want to be executed
repeatedly. The body of the loop may consist
of any number of statements.

• Exit from the loop (Statement 40). As long as
N is less than 100, SUPER BASIC will go to
statement 20 and once again pass through the
modification and body of the loop. The last
pass will be made when N is equal to 99; state
ment 20 will then set the value of N to 100, and
statement 30 will print 100 followed by 10 (the
square root of 100). Then the exit is made. N is
not less than 100, so SUPER BASIC stops. If
there were more statements in this program, the
next statement in sequence then would be
executed.

FOR AND NEXT

Since loops are so important and are used so often
in programming, SUPER BASIC provides the two in
direct commands FOR and NEXT to simplify loop
specification. The program above can be written as
follows with these two commands:

10 FOR N = 1 TO 100

20 PRINT N,SQR(N)

30 NEXT N

Statement 10 specifies that N is initialized to the
value 1 and that N should not be set to a vaiue greater

9

than 100. 1 The modification, an increase of 1 each
time through the loop, is implied in this statement.
The body of the loop is statement 20. The NEXT
command in statement 30 instructs SUPER BASIC to
return to the FOR statement for the next value of N.
When the body of the loop has been executed for
every specified value of N, SUPER BASIC will go to
the statement following the NEXT. NOTE: The value
of N after exit from the loop is the final value as
signed to N, 100.

In the following example, statement 10 specifies
that K should not be set to a value greater than 7.5.
The final value assigned to K is 7.

> 10 FOR I< = 5 TO 7.5 ~

> 20 PRINT 1<;>
>30 NEXT I<~

>RUN;>

>

5

6

7

THE STEP OR BY CLAUSE

N could have been increased to 100 in steps of any
size other than the implied 1. To do this, we must
specify the step size in a STEP or BY clause. For
example, suppose we want to print the square roots
of the first 50 even integers. The program would be
written as the one above with statement 10 replaced
by:

10 FOR N = 2 TO 100 STEP 2

There are three equivalent forms of this statement:

10 FOR N

10 FOR N

10 FOR N

2 TO 100 BY 2

2 STEP 2 TO 100

2 BY 2 TO 100

The specified step size may be negative. For ex
ample, if we want to print the square roots of the first
100 integers in descending order, statement 10 would
be:

10 FOR N = 100 TO 1 STEP -1

The step size need not be an integer. For example,

> 10 FOR Y = 3 TO 4.5 BY .5 ~

>20 PRINT Y ~

>30 NEXT Y ~

>RUN~

>

3

3.5

4

4.5

1 - N could have been replaced by any other acceptable variable name, but could not have been subscripted. Subscripted variables
are discussed under MATRIX ARITHMETIC, page 20.

10

SUPPLYING DATA WITHIN THE PROGRAM:

THE READ AND DATA STATEMENTS

We have already seen that assignment statements
or I NPUT statements may be used to assign values to
variables. A second method, the combined use of the
READ and DATA statements, will be shown here. A
third method, input of variable values from a file, will
be shown on page 74.

Consider the following program:

10 READ N

20 S= 0

30 FOR I = 1 TO N

40 READ X

50 S =S+X

60 NEXT I

70 M =S/N

80 PRINT M

90 DATA 5,60,-10

100 DATA 40,-2,11

READ

The READ command is always followed by a vari
able name or a list of variable names separated by
commas. When SUPER BASIC executes a READ
statement, the first variable listed in the statement is
assigned the first value in the collection of DATA
statements (the "data block"), the next variable is as
signed the next value, and so on.

Thus, when SUPE R BASIC executes statement 10
of our sample program, N is assigned the value of 5.
The next READ statement in the program is inside a
FOR loop and is executed N (that is, 5) times. This
statement causes X to be assigned the next available
value in the data block at each pass through the loop.
Therefore, when I = 1 (the first pass through the
loop), X is set to 60 and, in statement 50, added to S
(which is initially zero). During each of the five times
through the loop, a new value is assigned to X and
added to S. The result is that when the exit from the
FOR loop is made, S will be equal to the sum of the
X's.

The program finally calculates M, the mean of the
numbers, in statement 70.

DATA

The numeric values which are listed in DATA
statements must be numbers, not expressions, and
must be separated by commas.

The location of DATA statements in a program is
arbitrary, although the usual procedure is to place
them in a group at the end of the program. The only
requirement is that the statements be numbered in
the order in which the data is to be read.

The distribution of the elements of data among
DATA statements also is arbitrary. For example, we
could have typed, in place of statements 90 and 100
in our sample program, either

90 DATA 5,60,-10,40,-2,11.

or

90 DATA 5
100 DATA 60,-10

110 DATA 40,-2,11

RESTORE

Once all the data has been read from a data block,
another READ request will cause an error message
telling you that you are out of data. However, if you
wish at any time during the program to reread all or
part of the data block, you can do this with a R E
STORE command. When this command is executed,
the next READ command will start reading data from
the beginning of the data block; that is, from the first
value in the first DATA statement. RESTORE can be
executed either directly or indirectly.

For example, if now we wanted to use the formula

N
~ (X, - M)2
1 I o =

N

to calculate the standard deviation of the X's, we
could add the following statements to our sample
program:

110 RESTORE

120 READ N

130 A = 0

140 FOR I = 1 TO N

150 READ X

160 A = A+(X-M)t2

170 NEXT I

180 D = SQR(A/N)

190 PRINT D

1 - The numerator of this fraction uses the mathematical symbol ~ meaning "the sum of". We want to find (X_M)2 for every X
and sum the results.

Statement 120 is necessary even though N already
has the value of 5 at this point in the program. If this
statement were omitted, the first X read by statement
150 would be 5, which is incorrect.

11

NOTE: If a program containing DA TA statements
is run more than once, the data block will be restored
au toma tical/y.

ENTERING AND USING A SUPER BASIC PROGRAM

Before you can call SUPER BASIC and run any of
the sample programs or your own programs, you must
enter the Tymshare system. The proper procedure is
described in the Tymshare Executive Reference
Manual.

To call SUPER BASIC, type SBASIC followed by
a Carriage Return. SUPER BASIC will reply with a>
when ready to receive a command.

We will once again review the procedure shown on
Page 5. Once SUPER BASIC is ready, start typing
your program. Each statement must be terminated by
a Carriage Return. Only after the Carriage Return is
typed does SUPER BASIC analyze the statement and

print an error message if the syntax is incorrect, that
is, if the statement does not conform to the rules of
SUPER BASIC's grammar. After an error message
prints, retype the line correctly.1

Remember that an indirect statement (one with a
line number) is executed only when the running pro
gram reaches the statement in normal sequence; while
a direct statement (without a line number) is executed
immediately after you type the terminating Carriage
Return.

THE ENTER COMMAND

When the ENTER command is used, SUPER
BASIC will automatically supply line numbers for
statements typed at the terminal. ENTE R specifies
the first line number at which statements will be
entered and the amount by which the line numbers
will be incremented. The command takes,the form

ENTER line number BY increment

Follow each line with a Carriage Return as usual, and
terminate the ENTER command with a Control D.
For example,

> ENTER 10 BY 5 ~

10 INPUT A,B ~

15 X=A t B;>

20 Y=SIN(X)-A*B ~

25 PRINT X,Y;>
30Dc

>
NOTE: Ifanything is typed

before the DC, the preced

ing line will be copied.

If the starting line number is omitted, it is assumed
to be O. Thus, the command

> ENTER BY 5:;>

is equivalent to

> ENTER 0 BY 5:;>

If the increment is omitted, it is assumed to be 10
unless some other increment has already been speci
fied, in which case the last specified increment is
assumed. For example,

> ENTER 10 ~ BY 10 is assumed

> ENTER 45 BY 5 ~

> ENTER 100 ~ BY 5 is assumed

If you have already entered statements into
SUPER BASIC and you add or insert additional
statements with the ENTER command, you are
protected against deleting or interleaving statements.2

For example, if a statement numbered 10 has been
typed into SUPER BASIC and later the command

> ENTER 10 BY 5 ~

is given, the message

NEXT ENTRY WOULD CAUSE DELETION

OR INTERLEAVING OF STATEMENTS

and another> will be printed, since typing another
statement 10 will delete the old statement 10.

1 - SUPER BASIC's extensive editing features, which allow you to correct errors either before or after you type the Carriage Re
turn at the end of an incorrect statement, will be described later in this manual.

2 - See SIMPLE EDITING IN SUPER BASIC, page 14, for methods of deleting and inserting program statements.

12

READING A PROGRAM
FROM PAPER TAPE

Another way to enter a program into SUPER
BASIC is by reading the statements from paper tape
previously punched "off line", that is, when the term
inal is not connected to the computer. For details, see
see the Tymshare Paper Tape Package Manual.

RUNNING A PROGRAM

A SUPER BASIC program is executed with either
of the direct commands RUN, GO TO, or START.

• RUN begins execution at the lowest numbered
statement of the program. Any direct or in
direct statements previously executed are
ignored. l

• GO TO followed by a line number begins execu
tion at the statement specified. Any direct or in
direct statements previously executed are not
ignored; all information is retained.2

• START is equivalent to GO TO followed by the
line number of the lowest numbered statement.
The program is executed from the beginning,
but all previous information is retained. NOTE:
As RUN, the START command can be direct
only.

If the program can be executed, the results will be
given quickly. This does not necessarily mean that the
program is free from error and the answers are cor
rect. There might be a logical error that SUPE R
BASI C cannot find. Or, there might be an error (other
than a syntax error) which prevents execution. If this
is so, SUPE R BASIC will print a message indicating
why it cannot execute the program. Correct your
error and try again.

SAVING A PROGRAM

Once you have a program that is running correctly,
you may want to save it on a file (a storage area set
aside for you in the Tymshare computer). To do this,
type the direct command SAVE followed by the
name of the file and a Carriage Return. NOTE: The
file name typed after SA VE can be any of the valid
file names allowed by the Tymshare EXECUTIVE3

•

SUPER BASIC replies with NEW FILE if you do
not already have a file with that name, and OLD FI LE
if you do have a file with that name.

1 - With the exception of VAR = ZERO and VAR = UNDEF.

In reply to NEW FILE or OLD FILE, you either:

• Confirm the command by typing a Carriage Re
turn. NOTE: A Carriage Return after OLD FILE
causes the contents of the old file to be re
placed. Or,

• Abort the command by pressing the AL T
MODE/ESCAPE key.

Example

>SAVE KL22~

NEW FILE ~

>
NOTE: Only indirect statements (those with line

numbers) will be saved on the file.

To save part of your program, type SAVE followed
by the file name and a comma. Then type the line
numbers of the statements you wish to save. Separate
the numbers with commas and use the dash (-) to
indicate a range. Thus,

> SAVE INT, 1-15,30,70-100;>
OLD FILE;>

replaces the former contents of the file I NT with
statements 1 through 15, 30, and 70 through 100.
NOTE: A maximum of four line numbers and/or line
ranges may be used in a single SA VE command.

In the following example, a short program is read
from paper tape, loaded into SUPER BASIC, cor
rected, executed, and saved on a file.

- TAPE~

:RUN~

I NPUT FROM T;J

The TAPE program reads the
paper tape into the file AREA.

OUTPUT TO AREA ~

NEW FILE ~

ECHO? YES ~

TURN ON READER.

10 PRINT "TYPE THE BASE AND THE

HEIGHT"

20 IMPUT 8,H The file contains an error.

30 A=1/2*B*H

40 PRINT "THIS IS THE AREA:"

50 PRINT A

2 - When a program containing the READ command is executed more than once, the data is reread from the beginning of the data
block even if a direct GO TO was given to execute the program.

3 - See Appendix C, THE EXECUTIVE, for more information.

NUMBER OF CHARACTERS WRITTEN IS 107

:QUIT~

- SBASIC ~

> LOAD AREA~

20 IMPUT B,H

SYNTAX ERROR

The file AREA is loaded.

SBASIC identifies the error.

> 20 INPUT B,H ~ The error is corrected.

> RUN~
TYPE THE BASE AND THE HEIGHT

? 10,6 ~

THIS IS THE AREA:

30

>SAVE AREA~

OLD FILE ~

> QUIT:()

The corrected program is saved
on the file AREA.

REUSING A SAVED PROGRAM

To reenter a program saved on a file, type LOAD
followed by the file name and a Carriage Return. The
file may be in your own directory or in another user's

directory.

Examples

> LOAD TH IS :() Loads THIS from the user's
own directory.

> LOAD (BOB)@THAT ~

Loads @THA T from the direc
tory of user BOB.

> LOAD PROB1 ~ Loads PROBT from the user's
own directory.

I n these examples, LOAD is used as a direct com
mand. However, LOAD may also be used indirectly,
in which case special rules for specifying the file name
must be followed. These and other features of the
LOAD command are discussed under LOAD and
LINK, page 100.

LOOKING AT A PROGRAM

At any time you may have part or all of your pro
gram printed by typing the direct command LIST.

Typed alone, LIST causes the entire program to be
listed. When LIST is followed by a line number or

13

numbers, only the statements specified are listed. For
example, .

> LIST 4,10,20-30,65 ~

will print lines 4,10,20 through 30, and 65.

You can stop the printing at any time by pressing

the ALT MODE/ESCAPE key. NOTE: A maximum of
four line numbers and/or line ranges may be used in a
single LIST command.

COMMENTS IN A PROGRAM

Either an exclamation point (!) or the word REM
is used to insert remarks or comments as direct or in
direct statements. For example;

> REM NOW WE WILL TYPE "RUN" ~

>! FOLLOWED BY "LIST" ()

>
Since these remarks are direct statements, they will
not be saved with the program. The following remarks

> 10 ! THIS PROGRAM CALCULATES THE ~

> 20 ! AREA OF A TRIANGLE ~

>
will be saved because they are indirect statements.
They will be listed along with the rest of the program,
but will not be printed out when the program is run.
Any characters can be typed after! or REM.

In addition, ! can be used to insert comments at
the end of direct or indirect statements. For example,

> 45 M = S/5

> GO TO 20

!CALCULATES THE MEAN ~

!OBSERVE THE RESULTS ~

SELF-STARTING PROGRAMS

A program which has been saved on a file may be
gin to execute automatically as soon as it is loaded.
To accomplish this, you may store a RUN, START,
or direct GO TO command on the file immediately
following the program. You cannot do this in SUPER
BASIC because direct commands execute as soon as
they are typed and cannot be saved with the program
when the SAVE command is given. However, the
Tymshare editing language, EDITOR, allows you to
read in the SUPER BASIC program from a file, ap
pend the desired direct command and then write the
program back on the file. l When the program is

loaded into SUPER BASIC, it will begin to execute
immediately. NOTE: Programs loaded with the LINK
command begin execution immediately also. See
LOAD and LI N K, page 100.

1 - For more information, see the Tvmshare EDITOR Manual, Reference Series.

14

SIMPLE EDITING IN SUPER BASIC

This section describes only the simplest editing
features of SUPER BASIC. The advanced editing fea
tures - those which SUPER BASIC shares with
EDITOR - are explained under EDITING FEA
TURES, page 103.

INSERTING STATEMENTS

To insert one or more lines between two existing
statements in your program, simply type the new
statements with line numbers that lie between the
numbers of the existing statements. For example, if
you have left out a statement between statements 40
and 50, type the additional statement with any num·
ber from 41 to 49. SUPER BASIC will list and exe·
cute your program in numerical sequence. NOTE:
Statements can also be inserted with the ENTER com
mand, discussed on page 11.

DELETING STATEMENTS

To delete a statement from your program, either
type the line number of the statement followed by a

Carriage Return or use the direct command DELETE
(may be shortened to DEL). DELETE followed by a
line number or numbers will delete the specified state

ments. For example, either DELETE 10 ~ or 10 ~
will delete statement 10. The command

> DEL 5,10-35,70 ~
will delete lines 5, 10 through 35, and 70. NOTE: A
maximum of four line numbers and/or line ranges
may be used in a single DELETE command.

To delete the entire program, type DE LETE
ALL ~. This command also deletes the values of all
variables. Remember to give this command whenever

you are finished with one program and wish to load
another; SAVE will not remove a program from
SUPER BASIC.

In addition to deleting existing lines in your pro
gram, you may delete an incorrect statement (direct

or indirect) at any time before typing the terminating
Carriage Return. To do this, type a Control Q (QC).
An t will print on the terminal and the line will be de
leted. Then retype the entire statement.

In the example below, the user deletes 40 FOR 1=1
TO with a QC and retypes the statement correctly:

> 40 FOR I = 1 TO QC t
40 FOR J = 1 TO 3 ()

>

CHANGING STATEMENTS

To change any statement in your program, simply
retype it with the same line number. Whenever you
enter a new statement with the same number as a line
already in the program, the old statement is replaced
by the new one.

If you make an error while typing a statement, you
may delete the incorrect character immediately. To
do this, type a AC after the incorrect character (a +
will print on the terminal). Use AC repeatedly to de
lete as many characters as necessary.

Example

> 10 PRIMAC+-NT "TYPE X":;>

> 20 X=Ac+-AC+-1 NPUT X:;>

> LIST;>
10 PR I NT "TYPE X"

20 INPUT X

>

REVIEW OF COMMANDS IN SECTION 1

The following commands have been discussed thus far in this manual:

Command Example Purpose

Assignment 45 M = S/5 Assigns values to variables
Statement

DATA 90 DATA 5,60,-10 ·Stores data in a program

DELETE or DE L 5,10-35,70 Deletes all or part of a program

DEL

15

Commands Review (Continued)

Command Example Purpose

ENTER ENTER 10 BY 5 Supplies line numbers auto-
matically

FOR and NEXT 10 FOR N = 1 TO 100 Repeats execution of a line or
20 PRINT N, SQR(N) lines for specified values
30 NEXT N

GOTO ... 60 GO TO 10 Unconditional transfer
GO TO 10

IF ... THEN ... 32 IF S=O THEN 70 Conditional transfer

INPUT 20 INPUT A,B,C,D,E Accepts data input from the

LIST LIST 4,10,20-30

LOAD LOAD KL22

PRINT 70 PR I NT "SUM IS
ZERO"

PRINT X,Y

QUIT or Q QUIT

READ 10 READ N

REM and I REM PRINT A
55 A=A+1 !ADD 1

RESTORE 110 RESTORE

RUN RUN

SAVE SAVE KL22.

START START

VAR=UNDEF 70 VAR=UNDEF

VAR=ZERO 10 VAR=ZERO

Many useful SUPER BASIC programs can be writ
ten and used with these few commands. We conclude
Section 1 with two more examples. Try these on the

keyboard

Lists all or part of a program

Enters program statements
from a file

Prints text and values of
variables

Returns to the EXECUTIVE

Accepts input from DATA
statements
For comments or remarks

Allows rereading of DATA
statements from the beginning

Starts execution at the lowest
numbered statement

Saves all or part of a program

Same as GO TO followed by
line number of lowest num- .
bered statement

Nullifies the effect of VAR =
ZERO

I nitializes variables to zero

term inal, together with some programs of your own.
The fastest and easiest way to learn the Tymshare sys
tem is to use'it!

SAMPLE PROGRAMS

PRODUCT OF A SET OF NUMBERS

This program will read up to 1000 numbers from
DATA statements and print the product of the num-

bers. The last number typed in the data block is to be
5E55. This makes it unnecessary for the user to count
how many data items he types, as will be explained
below.

16

10 P = 1

20 FOR I = 1 TO 1000

30 READ X

40 IF X = 5E55 THEN 80

50 P = P*X

60 IF P = 0 TH EN 80

70 NEXT I

80 PRINT P

90 DATA 15,-9,1.5,33,6,-4,22,9,5E55

Each number that is read is compared to what we
know is the last data item, 5E55. If the number read
is not equal to 5E55 (that is, we have not yet reached
the end of the data block), the number will be ac
cepted as one which should be multiplied. The prod
uct is stored in the variable P. P is initialized to 1 in
line 10 so that the first time through the FOR loop,
the first data item (l*X) will be stored in P. Each sub
sequent time through the loop, the product calculated
thus far will be multiplied by the number just read.
When 5E55 is read, SUPER BASIC will go immediate
ly to line 80 and print the product, P.

Line 60 states another condition under which
SUPER BASIC should print the product calculated
thus far, that is, if this product is O. In this case there
is no reason to continue multiplying, since the result
will be 0 regardless of what numbers follow. NOTE:
This statement is optional; it merely saves calculation
time if one of the data items is O.

Try this sample program with any set of numbers.
If you use the data provided in the above example,
the answer should be 31755240. You can substitute
any number in place of 5E55 in this program, as long
as the number you choose appears only at the end of
the data block.

DOUBLE DECLINING
BALANCE DEPRECIATION

This program calculates and lists the depreciation
and book value of an asset at the end of every year of
its useful life.

The original cost (C) and the estimated useful life
(L) of the asset are used to calculate the depreciation
(D). At the end of the first year,

2·C
D =--

L

The book value at the end of the first year is C-D
(original cost less depreciation). For each subsequent

year, the depreciation and book value are calculated
by the same formulas as above, substituting for C the
book value at the end of the previous year.

The user is asked to type in the original cost and
the estimated useful life. Following the listing of the
program is a sample run for an asset which costs
$7,000 and is depreciated over 15 years.

> LIST ~
o ! DOUBLE DECLINING BALANCE DEP.

10 PRINT "TYPE COST OF ASSET AND"

20 PRINT "ESTIMATED USEFUL LIFE"

30 INPUT C,l

40 PRINT "YEAR","DEP.","BOOK VALUE"

50 FOR X = 1 TO L

60 0 = 2*C/l

70 C = C-D

80 PRINT X,D,C

90 NEXT X

> RUN~
TYPE COST OF ASSET AND

ESTIMATED USEFUL LI FE

? 7000,15;;>

YEAR DEP.

1 933.33333

2 808.88889

3 701.03704

4 607.56543

5 526.55671

6 456.34915

7 395.50259

8 342.76891

9 297.06639

10 257.45754

11 223.12987

12 193.37922

13 167.59532

14 145.24928

15 125.88271

>

BOOK VALUE

6066.6667

5257.7778

4556.7407

3949.1753

3422.6186

2966.2695

2570.7669

2227.9979

1930.9316

1673.474

1450.3441

1256.9649

1089.3696

944.12032

818.23761

The commas in statement 40 caused spaces to be
printed between the column headings. All of the
PR I NT statement forms and rules are discussed in
detail under PRINTING FEATURES, page 49.

17

SECTI.ON 2

ARITHMETIC AND LOGICAL FEATURES

ARITHMETIC FUNCTIONS

Some of the standard mathematical functions avail
able in SUPER BASIC were described in Section 1.
Described below are the additional built-in mathe
matical functions.

r------.-------~------------------~

Function Returns

SGN(X) 1ifX>0
o if X = 0

-1 if X < 0

INT(X) or IP(X) Greatest integer less than
or equal to X

FP(X) X-I NT(X)

FIX(X) X truncated

ROUN(X) X rounded

COMP(X,Y) 1 if X> Y
o if X = Y

-1 if X < Y

PDIF(X,Y) X-V if X-Y is positive;
otherwise, 0

MAX(X 1 ,X2 , ••• ,Xn) Value of largest argument

MIN(X 1 ,X2 , ••• ,Xn) Value of smallest argument

NOTE: Three of the above functions, COMP, MAX,
and MIN, can be used not only with numeric argu
ments but also with string arguments, as explained on
page 40.

SGN(X)

The sign function SGN(X) yields 1 if the value of
the argument X is positive, 0 if X is equal to 0, and -1
if X is negative. Thus,

SGN(31) = 1

SGN(O) = 0

SGN(-.2387) =-1

INT(X) OR IP(X)

The integer function is INT(X) or IP(X) where, as
with other functions, X can be any expression. This
function yields the greatest integer less than or equal
to X. Thus,

INT(7.8) = 7

INT(-2.4) = -3

FP(X)

The fractional part of X is defined as follows:

FP(X) = X-INT(X)

Thus,

FP(8) = 0

FP(123.456) = .456
FP(-1.8) =.2 [-1.8-(-2)]

FIX(X)

This function is defined as SGN(X)*INT(ABS(X)).
It truncates the value of the expression X as follows:

FIX(7.8) = 7

FIX(-2.4) = -2

Whatever follows the decimal point is dropped.
Note that FIX(X) is equivalent to INT(X) for positive
numbers, but not for negative numbers; for example,
FIX(-2.4) = -2, but INT(-2.4) = -3.

ROUN(X)

The function ROUN(X) rounds the value of the
expression X to the nearest integer. ROUN(X) is
equal to INT(X+.5).

Example

ROUN(7.2)=7 ROUN(7.5)=8

ROUN(-:t.3)=-1 ROUN(-1.8)=-2

COMP(X,Y)

The function COMP(X,Y) compares the values of
X and Y and returns -1 if X is less than Y, 0 if X and
Yare equal, and 1 if X is greater than Y.

Example

COMP(15,3)=1

COMP(3,15)=-1

COMP(-4.5,-4.5)=O

PDIF(X,Y)

PDIF(X,Y) returns the positive difference of X and
Y, that is, X-V, if X-V is positive; otherwise, it re
turns O.

Example

POI F(15,3)=12

POI F(-7.9,-8)=.1

POIF(3,15)=O

POI F(-8,-7.9)=O

18

MAX(X 1,X2 , ... ,Xn)

The MAX function takes two or more arguments
and returns the value of the largest argument.

Example

MAX(16,0,-5,11)=16
MAX(-.17,0)=0

MAX(3.2,3.5,3.31)=3.5

MIN(X 1,X2 , ... ,Xn)

The MIN function takes two or more arguments
and returns the value of the smallest argument.

Example

MIN(16,0,-5, 11)=-5
MIN(-.17,0)=-.17
MI N (3.2,3.5,3.31)=3.2

UTILITY FUNCTIONS

The utility functions are summarized in the table
below and then described in the following paragraphs.

Function Returns

RND(X) Random number

POS Terminal print position

POS(N) File print position

TAB(X) Spaces to print position X on ter-
minal.

TAB(X,N) Spaces to print position X on file N.

DATE Date and time of day

TIME Reads internal clock-

RND(X)

The RND function is a pseudo random number
generator. It may have either one argument or no
argument. If an argument is given, it mus~ be an
integer and may be zero, positive, or negative. RND
without an argument is equivalent to RND(O). The
random number will be between 0 and 1 exclusive.

If RND(O) is used alone, the first use of the func
tion in a program will always produce the same num
ber. When RND(O) is used again in the same program,
the next random number in sequence is given.

RND(O) can be used repeatedly to generate a se
quence of random numbers once that sequence has
been initiated by RND with a non-zero argument.

RND with a positive argument returns a random
number generated from the argument. Thus, RND(16)
will always produce the same number, which will be

different from the number RND(30). A sequence of
random numbers can be initiated by RND with a
positive argument and then RND(O) (or RND) can be
used repeatedly to generate the next random num
bers in the sequence.

RND with a negative argument returns a random
number generated from a reading of the internal clock
of the computer. The value of the negative argument
has no bearing on the random number it generates;
for example, RND(-l) used twice in a program will
yield different random numbers which depend only
on reading the internal clock. Thus, using RND with
a negative argument to initiate a sequence of random
numbers will produce a different sequence of num
bers each time the program is run.

Example

10 PRINT RND(-1);
20 FOR I = 1 TO 9
30 PR INT RND;
40 NEXT I

If this program is run twice, two different sequen
ces of random numbers will be printed. However, if
the argument of the RND function in line 10 were
changed to 0 (or no argument) or to a positive num
ber, running the program twice would yield the same
sequence of random numbers.

CAUTION: If RND with a negative argument is
used repeatedly to generate a sequence of random
numbers rather than simply to initiate the sequence,
the result may not be satisfactory. Because the inter
nal clock is incremented only 60 times per second,
the numbers generated will not be truly random. See
TIME, page 20, for a description of the internal clock.

POS AND POS(N)

The function pas can have either no argument or
one argument. When no argument is given, the func
tion specifies the position on the terminal at which
the print head is located.

Example

> 10 FOR I = 1 TO 10:;>

> 20 READ X:;>

> 30 PRINT X: !CONCATENATED ZONES:;>

> 40 IF POS>15 THEN PRINT;>

> 50 NEXT I;>

> 60 DATA 10,20,30,40,50,60,70,80,90,100:;>

>RUN~
10 20 30 40 50

60 70 80 90 100

>
As specified in line 40, a Carriage Return is printed

after the print head passes position 15.

The pas function is used with an argument only
when writing on files. l The argument is the file num
ber of the output file. When writing on a sequential
symbolic file, the value of the function is one greater
than the number of characters written since the last
Carriage Return.

Example

. > 10 OPEN "XX", OUTPUT, 2.;>
>20 FOR 1=1 TO 10,;>

> 30 READ X.;>

> 40 PRINT ON 2: X:~

>50 IF POS(2»15 THEN PRINT ON.2:~

>60 NEXT I~

>70DATA1~2~3~4~5~6~7~8~9~100~

>RUN~

>QUIT~

- COpy XX TO TEL.;>

10 20 30 40 50

60 70 80 90 100

NOTE: When POS(N) is used with random files, its
meaning is different than described here. See TH E
POS(n) FUNCTION WITH RANDOM FILES,page85.

TAB(X) AND TAB(X,N)

The TAB function can have either one or two argu
ments. TAB(X) is used in the PRINT statement to
move the print head to the Xth print position on the

19

terminal. The function is used with a colon if the
number or text which follows it is to be printed at the
specified position. For example,

> PRINT TAB(20):B.;>
-456

t
20th position

> PRINT A:TAB(12):B~

18 -456

t
12th position

>
If a semicolon is used after the TAB function, the

print head will move beyond the specified print posi
tion; a comma causes it to move to the next PRINT
zone of 15 spaces.

If the semicolon or comma which precedes the
TAB function causes the print head to move beyond
the position specified by the TAB, the TAB will be
ignored. For example,

> PRINT A,TAB(12):B;>
18 -456

t
16th position

>
The comma caused the print head to move past the
first field of 15, so TAB(12) was ignored.

TAB with two arguments is used when writing on
fi les. The form is

TAB(X,N)

where X specifies the print position to which SUPER
BASIC should tab, and N specifies the file number.
For example, the statement

> PRINT ON 2: A: TAB(12,2):B;>

prints the value of A, tabs to position 12 and prints
the value of B on the file that has been opened for
output as file 2.

DATE

DATE is a function with no argument that returns
a string of twelve characters indicating the date and
the time of day. For example,

> PRINT "DATE AND TIME: ": DATE~
DATE AND TIME: 01/27 10:36

>

1 - When POS(N) is used in writing on a sequential binary file, the value is one greater than the number of words written on the
file. (A word is considered to be three characters.)

20

TIME

TI M E is a function with no argument. It reads the
internal clock of the computer and returns an integer
value that is increased by 1 every 1/60 of a second.
For example, if the statement

OA=TIME

were at the beginning of a program, and

950 Z=TIME

were at the end of the program, the total elapsed sec
onds could be calculated and printed as follows:

960 T=(Z-A)/60

970 PRINT T:" TOTAL ELAPSED SECONDS"

MATRIX ARITHMETIC

Variables were described in Section 1 as being able
to store one value. There are times, however, when
the user will want to store a set of values in a list or
table which he can refer to by a single name. This is
done by using subscripted variables to designate ele
ments of such lists or tables, which are called arrays.
A variable may have any number of subscripts; in
other words, SUPER BASIC allows arrays of any di
mension (each subscript representing a dimension).

Subscripts are typed in parentheses after the vari
:tble name. For example, A(7) refers to the seventh
item in a list (a one-dimensional array, or vector)
named A, and B(3,7) denotes the element in the third
row and seventh column of a table (a two-dimensional
array, or matrix) named B.

SUBSCRIPTED VARIABLE NAMES

The name of a subscripted variable must be a single
letter or a single letter followed by a $ (dollar sign).
The variable name used for a subscripted variable also
may be used to denote a simple variable in the same
program. For example, A and A(1) are considered to
be separate variables. However, the same name cannot
be given to arrays of different dimensions in the same
program; for example, A(1) and A(3,7) may not be
used simultaneously in a program.

Example

A(6,3)

~
/ L- Second Subscript

First Subscript
Variable named A

SUBSCRIPTS

Subscripts may be variables (including other sub
scripted variables) or expressions of any complexity,
The following subscripted variables are acceptable:

A(5) C(1+K) F(5,30) R(B(3,J),C-D) X(A*B,20)

Subscripts may have any value, including negative
and non-integer. If the value of a subscript is non
integer, SUPER BASIC will truncate the value.

SIZE OF ARRAYS

SUPER BASIC automatically supplies space for
subscripts 1 to 10 for arrays of one or two dimen
sions. Therefore, a vector named A containing 10 ele
ments could be entered simply with the statements

10 FOR I = 1 TO 10

20 READ AU)

30 NEXT I

40 DATA 2,3,-5,7,2.2,4,-9,123,4,-4

THE DIM COMMAND

If an array is to have a subscript greater than 10 or
have more than two dimensions, the size of the array
must be specified by the DIM command which can be
executed directly or indirectly. This command in
structs SUPER BASIC to reserve a specified amount
of space for array elements. For example,

10 DIM A(15)

will reserve 15 locations for elements A(1) to A(15).
The DIM statement does not define any array ele
ments; it simply allows a certain number of values to
be accepted as input to the array.

Any number of arrays can be dimensioned in a
single DIM statement as follows:

60 DIM K(20),L(3,3,1),M(A*B),N(X,3,3,2)

The user may save storage space by dimensioning
arrays with subscri pts less than 10, even though such
dimensioning is not required. Thus, DIM E(3,5) will
reserve space for exactly 15 elements, whereas with
out the DIM statement, 100 (10X10) spaces would be
reserved for the array E. NOTE: Whatever the maxi
mum subscript value, arrays of three or more dimen
sions require a DIM statement.

Subscripts start from 1 unless otherwise specified.
One way to specify a different subscript base is with
the following form of the DIM command: 1

10 DIM A(O: 15)

This statement will reserve space for elements A(O) to
A(15). The user may specify that a subscript start
from any number. For example,

DIM B(5:10) Reserves space for B(5) to B(10).

DIM B(-6: 10,-2:4) Starts subscripts at negative val
ues; the Oth elemen ts are in
cluded.

The user may redimension an array at any time by
using another D 1M statement. Note however, that re
dimensioning (or executing the same DIM statement a
second time) causes any existing elements in an array
to be cleared (that is, be undefined). For example,

> 10 DIM X(20) ~ The array X is dim en-
sioned.

>20 X(1) = 3,X(2) = 7~ Two elements are defined.

>30 DIM X(0:20);;:> X is redimensioned to in
clude the Oth element.

>RUN~ The above statemen ts are
executed.

>PRINT)«(1),X(2),;>
VARIABLE HAS NO VALUE

>

X(1) and X(2) have been

undefined.

THE BASE COMMAND

Another method of specifying that subscripts start
with some number other than 1 is by using the BASE
command which can be executed directly or indirect
ly. The form of this command is

BASE n

where n can be any numeric expression. BASE applies
only to arrays which have not yet been dimensioned,
and will cause the subscripts of those arrays to begin
from n unless:

• The lower limit of a subscript is specified in a
DIM statement, such as DIM A(-2:5), or

• Another BASE command is given wh ich speci
fies a different base.

Example 1

5 BASE 0
10 DIM A(15),B(-2:2,10)

will cause the A subscript and the second B subscript
to start at O. Suppose that the following statements
were added to the above:

15 BASE 1
20 DIM C(3)

21

The dimensions of arrays A and B would not be af
fected; the subscript of array C would begin at 1 and
not O.

Example 2

10 BASE -10

20 FOR I = -10 TO 10
30 PO) = It3

40 NEXT I

The array P was never dimensioned, so space was
automatically supplied for the array up to a subscript
value of 10. If the subscript value were to exceed 10,
P would need to be dimensioned explicitly in a DIM
statement.

NOTE: RUN nullifies the effect of any previous
BASE command.

MATRIX OPERATIONS

Although the user may write h is own routines for
matrix operations, SUPER BASIC contains a set of
commands which make calculations involving matrices
or vectors considerably easier. All of these commands
begin with the word MAT, and many of them are sim
ilar in form to the ordinary SUPER BASIC instruc
tions. NOTE: The MAT commands apply only to ar
rays of one or two dimensions. Any attempt to use
them with multi-dimensional arrays will cause an
error message to be printed.

Input Of Matrix Data

The following input commands do not require that
the specified matrices or vectors be dimensioned be
fore the commands are given. A matrix or vector that
has not been dimensioned previously, however, must
be dimensioned in the MAT command itself (see de
tails below). NOTE: This rule applies in all cases, even
if the subscript value will not exceed 10. SUPER
BASIC must know when to stop accepting data for
input.

MAT READ

MAT READ A,B,C

will read values into the previously dimensioned ma
trices (or vectors) A, B, and C from the data block de
fined in the DATA statements of a program. Any
number of matrices can be read with a single MAT
READ instruction.

1 - A second method of specifying a base other than 1 uses the BASE command.

22

It is possible to use the MAT READ statement it
self to dimension a matrix or vector wh ich has not
been dimensioned previously (or to redimension one
which already has). In this case, simply type the di
mensions of the arrays just as they would be typed in
a DIM statement. For example,

65 MAT READ K(15),L(-1: 1,3),M

will read values into a 15 element vector K, a 3 by 3
matrix L (with the first subscript ranging from -1 to
1), and a previously dimensioned matrix M.I This
statement is exactly equivalent to

65 DIM K(15),L(-1: 1,3)

70 MAT READ K,L,M

Matrices are read in row order; that is, the second
subscript varies more rapidly. For example,

10 MAT READ A(4,3)

is equivalent to

10 FOR I = 1 TO 4

20 FOR J = 1 TO 3

30 READ A(I,J)

40 NEXT J,I

In both cases, values will be read from the DATA
statements in the following order: A(1,1),A(1,2),
A(1,3),A(2,1), ... ,A(4,2),A(4,3).

NOTE: A matrix statement should not be used to
dimension a matrix unless DIM dimensioning is de
sired. For example,

10 COMPLEX A(20,20)

70 MAT INPUT A(20,20)

is equivalent to

10 COMPLEX A(20,20)

70 DIM A(20,20)
71 MAT INPUT A

The DIM statement supersedes the COMPLEX dec
laration. Therefore, the elements of the matrix are
real numbers, not complex numbers.

MAT INPUT

The MAT I NPUT command performs the same
function for matrices and vectors as the I NPUT com
mand does for variables; SUPER BASIC prints a ques
tion mark and waits for the data to be typed from the

keyboard. Matrix values should be typed in the same
order that they would be read by a MAT R EAO state
ment; that is, in row order (with the second subscript
varying more rapidly).

The form of the MAT I NPUT command is similar
to MAT READ in that the matrices or vectors may be
dimensioned either previously or in the MAT state
ment itself.

Also included in SUPER BASIC is a MAT INPUT
FROM command corresponding to the INPUT FROM
command for reading data from a file.

Example 1

MAT INPUT A(2,3)

will cause SUPER BASIC to wait for six values to be
typed, in the order: A(1,1),A(1,2),A(1,3),A(2,1),
A (2,2),A (2,3).

Example 2

10 OPEN "MATDATA",INPUT,1

20 MAT INPUT FROM 1: A(2,3,4)

accepts 24 values from MATDATA as input to the
matrix A.

Example 3

10 DIM F(5),G(4,4)

95 MAT INPUT F,G(4,X),H(7,7)

Vector F and matrix G are dimensioned in line 10.
Statement 95 redimensions matrix G, dimensions a
new matrix H, and requests data for F, G, and H.

Output Of Matrix Data

A command of the form

MAT PRINT A,B,C

can be executed directly or indirectly to print the ma
trices (or vectors) A, B, and C. Every element of A! B,
and C must have a value.

Matrices are printed row by row. The elements of
each row are printed in normal (15 space) print zones
unless the matrix name is followed by a sem icolon or
a colon in the PR INT statement. A semicolon after a
matrix name will cause the elements of each row to be
printed in packed zones; a colon will cause concate
nated print zones. Each row is separated from the
next by a blank line.

1 - I t is assumed here, and in the remaining examples in this section, that no BASE command has been given previously, so that
subscripts start from 1 unless otherwise specified.

Example 1

> 10 MAT INPUT F(2,3) ~

> 20 PRINT.;>

>30 MAT PRINT F;~

> RUN;>

? 1 ,2,3,4,5,6 ~

1 2 3

4 5 6

Example 2

MAT PRINT R;S,T;

will print Rand T in packed zones and S in normal
zones. NOTE: If the semicolon after T were omitted,
a comma would be understood and T would be
printed in normal zones also.

SUPER BASIC one-dimensional arrays are row
vectors and therefore will be printed horizontally. A
column vector, consisting of one column instead of
one row, can be dimensioned as, for example, V(N,1),
which would set up a 1 column, N row array and
therefore print the elements vertically.

The MAT PRINT ON (or MAT WRITE ON) com
mand corresponds to the PRINT ON (or WRITE ON)
command for writing data on a file.

Mathematical Operations With Matrices

All of the following operations require that the so
lution matrix or vector be dimensioned properly be
fore the operation is performed. For example, the
statement MAT C = A+B will add the matrices A and
B and store the result in matrix C; C must be dimen
sioned properly before this statement is executed
(even if neither subscript exceeds 10).

Only one mathematical operation with matrices
may be performed per statement. Thus, MAT X =
R+S+ T is not allowed, but can be ach ieved by two
MAT instructions.

Each of the following statements can be executed
directly or indirectly.

Matrix Addition

MATC=A+B

A statement of this form adds the matrices (or
vectors) A and B and stores the result in C. A, B, and
C all must be of the same dimensions for this state
ment to be executed.

23

Matrix Subtraction

MATC=A-B

This statement subtracts the matrix (or vector) B
from the matrix (or vector) A and stores the result in
C. A, B, and C must have the same dimensions.

Matrix Multiplication

In order for this statement to be executable, A and
B must be "conformable"; that is, they must be of
such dimensions that their product is defined. In addi
tion, C must be dimensioned properly to contain the
result. This instruction applies to matrices only. Mul
tiplying vectors is not permitted in SUPER BASIC.
However, vectors effectively can be multiplied if they
are dimensioned as matrices. For example, the vector
A(N) could be dimensioned as A(N,1).

Scalar Multiplication

This statement performs scalar multiplication; that
is, each element of the matrix (or vector) A is multi
plied by the number (or numeric expression) n (which
must be enclosed in parentheses) and stores the result
in C. C must be the same dimension as A. NOTE: The
instruction MA T C = (1) *A may be typed simply as
MATC=A.

Matrix Transposition

MAT C = TRN(A)

This statement transposes the rows and columns of
A and places the result in C; it is equivalent to letting
C(I,J) = A(J,I) for all values of I and J. C and A need
not be square; an M by N matrix will be transposed
into an N by M matrix. NOTE: This instruction ap-
plies to matrices only. Vector transposition is not
permitted in SUPER BASIC. However, vectors effec
tively can be transposed if they are dimensioned as
matrices. For example, the column vector A (N, 1) will
be transposed into the row vector C(1,N).

Matrix Inversion

MAT C = INV(A)

This statement inverts the square matrix A (using
the Gauss-Jordan method with complete matrix pivot
ing) and stores the result in C. The matrix will not be
inverted if it is singular or nearly so (that is, "ill
conditioned", so that it is difficult to invert accu
rately). SUPER BASIC will print an error message if
it encounters a pivot element less than EPS, a special

24

variable that is preset internally to 10-10 EPS can be
used as any other variable, and therefore can be set
to any value by the user. Changing its value from
10-10 would thus modify the definition of a matrix
ill-conditioned for inversion.

SUPER BASIC also includes DET, a function with
no argument, which returns the determinant of the
last matrix Inverted.

NOTE: The same matrix may appear on both sides
of a MAT statement for addition, subtraction, scalar
multiplication, or inversion, but not in any of the
other instructions. Thus,

MAT A =A+B

MAT A = (2.5)*A

MAT A =A-B

MA T A = INV(A)

are all legal, while use of

MAT A =B*A

MA T A = TRN(A)

will result in nonsense.

Matrix Initialization

Setting All Elements To Zero

MAT C = ZER

This instruction sets all elements of the previously
dimensioned matrix (or vector) C to zero. It can be
used also to dimension (or redimension) a matrix or
vector and initialize all elements to zero. Thus, the
statement

MAT C= ZER(M,N)

sets up an M by N matrix C, where C need not be di
mensioned previously, and fills the matrix with zeroes.
An instruction of the form

MAT C = ZER(M)

performs a similar function for an M element vector.

Setting All Elements To One

MATC=CON

This instruction is sim ilar in form and function to
MAT C = ZER, except that the matrix (or vector) is
filled with ones instead of zeroes. It can be used also
to dimension (or redimension) a matrix or vector, in
the form

MAT C = CON(M,N) or

MAT C = CON(M)

Setting An Identity Matrix

MATC=IDN

This statement sets the previously dimensioned
square matrix C equal to an identity matrix, that is, a
matrix with ones on the main diagonal and all other
elements equal to zero. It can be used also to dimen
sion (or redimension) a matrix, in the form

MAT C = IDN(M,M)

Example Of Matrix Operations

This program reads the dimensions and values of
matrices A and B from DATA statements. A, B, and
A*B are printed, then A*B with one element changed.

> LIST ~
10 READ M,N
20 MAT READ A(M,N),B(N,N)

30 MAT PRINT A:B; !NOTE THE FORMATS

40 DIM C(M,N)

50 MAT C=A*B

60 MAT PRINT C;

70 C(1,3) = 99 lONE ELEMENT CHANGED

80 MAT PRINT C

90 DATA 2,3

100 DATA 1,2,3,4,5,6
110 DATA 1,0,1,-2,1,-1,0,2,3

> RUN i;)
123

456

1 o 1

-2 1 -1

o 2 3

-3 8 8

-6 17 17

-3 8 99

-6 17 17

25

COMPLEX ARITHMETIC

COMPLEX VARIABLES

Complex arithmetic can be performed easily in
SUPER BASIC by using complex variables. A variable
that is to be assigned a complex value must first be
declared complex. To do this, type the variable name
(or names, separated by commas) in a COMPLEX
statement which can be executed directly or indirectly.

In the following example A and B are declared
complex, assigned values by means of the I NPUT com
mand, and printed on the terminal.

> 10 COMP LEX A,B;>

>20 INPUT A,B.;!

> 30 PRINT "A =":A,"B =":B;>

>RUN~
? 5.6,-1.78,-300, 15 ~

A = 5.6,-1.78 B = -300, 15

>
Two numbers are required as input for each com

plex variable, namely, the real part and the imaginary

part of the variable. When the value of a complex var
iable is printed, the real and imaginary parts are sepa
rated by a comma. The above example set A to 5.6-
1.78i and B to -300+15i.

The COMPLEX statement can also be used to de
clare that an array will store complex values. For ex
ample,

10 COMPLEX R(0:20),S(M,N)

reserves space for a 21 element complex array Rand
an M by N complex array S. Each element of a com
plex array consists of two numbers, the real and the
imaginary parts of the complex number.

The form of a complex number in a DATA state
ment is A,B where A and B are the real and imaginary
parts of the complex number respectively. Both parts
of the number must be typed; zero values may not be
omitted from the DATA statement. For example,

> 10 COMPLEX X(3) ~

> 20 READ X(I) FOR I = 1 TO 3;:>

> 30 PRINT "X(1) = ":X(1);"X(2) =":X(2); y
"X(3) =":X(3) ~

>40 DATA 5,4,5,0,-4,1.7~

>RUN;>
X(1) = 5,4 X(2) = 5,0 X(3) = -4, 1.7

>

When relational operators are used with complex
values, only the real parts of the values are compared.
Thus, if X(l) to X(3) have the values that were as
signed in the above example, the following expres

sions are true:

X(1»X(3)} Since 5>-4.
X(2»X(3)

X(1) = X(2) Since 5 = 5.

COMPLEX FUNCTIONS

CMPLX(X,V)

CMPLX(X,V) creates a complex value whose real
part is equal to X and whose imaginary part is equal
to V, where X and V can be any real or integer nu
merical expression. This function must be used to in
clude a complex number in an assignment statement.
For example,

> 10 COMPLEX R,S;>

>20 R = CMPLX(1,5);>

>30 N = 4;>
>40 S = R+CMPLX(N+1,2) ~

>50 PRINT "R =":R,"S =":S.;>

>RUN;>
R = 1, 5 S = 6, 7

>
If Rand S had not been declared in the above ex

ample, only the real parts of their values would have
been stored; the result would have been R = 1 and
S = 6. NOTE: CMPLX may not be used with a com
plex argument.

REAL(C)

This function returns the real part of a complex
variable or expression.

> 10 COMPLEX X,V ~

> 20 X = CMPLX(6,-1.1);>

> 30 V = CMPLX(2.3,5) ~

>40 PRINT REAL(X),REAL(X+V) ~

> RUN.;:>
6 8.3

>

IMAG(C)

This function returns the imaginary part of a com
plex variable or expression.

26

> 10 COMPLEX X,V;J

>20 X = CMPLX(6,-1.1)+>

>30 M = IMAG(X).;>

>40 PRINT "M=":M~

>RUN~
M = -1.1

>
ABS(C)

The ABS function, when used with a real argu
ment, returns the absolute value of the argument.
However, this function can also be used with a com
plex argument to return its magnitude,

la + bi! = Va2 + b2

> PRINT ABS(CMPLX(3,4));>
5

CONJ(C)

This function returns the conjugate of its complex
argument; that is, if C=a+bi, the conjugate of C is a-bi.

> 5 COMPLEX Z ~

>10 Z=CMPLX(1,2.5)~

> 15 PRINT "CONJUGATE OF Z IS": CONJ(Z) ~

> RUN;>
CONJUGATE OF Z IS 1,-2.5

>
PHASE(C)

This function returns the phase of its complex ar
gument, that is, the angle (in radians) that the vector
Jefined by the argument makes with the positive x
axis. For example, consider the vector

y

2+2i

x

>10 COMPLEX V;;>

> 20 V=CMPLX(2,2);>

> 30 P=PHASE(V),A=P*180/PI;;>

>40 PRINT "THE PHASE OF ":V:" IS":P:"
" RADIANS" ,~

>50 PRINT "OR":A:" DEGREES."~

>RUN~

THE PHASE OF 2, 2 IS .78539816 RADIANS,

OR 45 DEGREES.

>

POLAR(X,V)

The POLAR function takes real arguments and re
turns the vector (complex number) with magnitude
equal to the first argument and phase equal to the
second argument in radians. Thus,

if C=POLAR(X,Y)

then X=ABS(C)

and Y=PHASE(C)

The complex result will be returned in the usual
internal form, that is, the real and imaginary parts of
the number. For example, if we know that vector Q

has magnitude 3 and phase .314 radians, and vector R
has magnitude 2 and phase .63 radians, we can calcu
late and print the product of Q and R as follows:

> 10 COMPLEX O,R,S;;>

> 20 O=POLAR(3,.314),R=POLAR(2,.63):;>

>30 S=O*R~

>40 PRINT "PRODUCT IS":REAL(S):" +":"1

IMAG(S):" I,";)

> 50 PRINT "OR POLAR (":ABS(S):"''':"1
PHASE(S):")".;>

>RUN~
PRODUCT IS 3.5193185 + 4.8594647 I,

OR POLAR (6, .944)

>

DOUBLE PRECISION ARITHMETIC

THE DOUBLE DECLARATION
STATEMENT

SUPER BASIC will normally store a maximum of
eleven significant digits in a variable or array element.
A variable that is declared DOUBLE, however, can

store a double precision value; that is, up to seventeen
significant digits will be retained. For example,

30 DOUBLE A,X(N,20)

declares that A is a double precision variable and X is
an N by 20 double precision array. Three words of

storage are reserved for each double precision variable
or array element. This is one more word per variable
or array element than reserved by a REAL declaration
statement. 1

ASSIGNING VALUES TO
DOUBLE PRECISION VARIABLES

In the following example, values with more than
eleven significant digits are assigned with I NPUT and
READ to both single precision and double precision
variables. To show how many digits are retained in
each case, the values are printed using PRINT IN
FORM, a feature discussed under FORMA TTiNG
WITH FORM, page 56. This feature lets the user
specify the exact format of the values to be printed.

> 10 DOUBLE A,C ~

> 20 INPUT A,B:;>

> 30 READ C,D ~

>40 PRINT~

> 50 PRINT "DOUBLE PRECISION:":TAB(24): V

liS I NG LE PR ECISION:".;>
> 60 PRINT IN FORM "%.17% 4B %.17%/":A,B ~

> 70 PRINT IN FORM "20# 3B 20#":C,D;>

> 80 DATA 1234.5678901234E10,"l-

1234.5678901234E10 ~

> RUN:;>

? 1.23456789012345678, 1.23456789012345678

DOUBLE PRECISION: SINGLE PRECISION:

1.23456789012345670 1.23456789010000000

.12345678901234E+14 .12345678901000E+14

The results will be the same if we replace lines 20
and 30 above by:

20 INPUT A
30 READ C
35 B=A, D=C

as long as Band D are single precision variables.

To assign a value to a double precision variable in
an assignment statement, type the number in D for
mat. This format is the same as E format except that
the letter D is used instead of E. The D indicates that
the number is double precision. For example,

Number E Format D Format

-53 X 109 -53E9 -53D9
.00000000000063 .63E-12 .63D-12

7 7EO 7DO

1 - See USING DECLARA TlON STA TEMENTS, page 47.

27

D format must be used when the value to be assigned
to a double precision variable is non-integer or an in
teger of more than eleven digits. Integers of eleven or
fewer digits need not be typed in D format. For
example,

10 DOUBLE W,X,Y,Z,A

20 W=5.362D-6

30 X=.123456789012345D13

40 Y=123456789012D1

50 Z=50 lOR 50DO

60 A=W*X+Y*Z

DOUBLE PRECISION
FUNCTIONS

DBL(X)

The DBl function returns the double precision
value of its argument. For example,

> 5 R = 1.456346 :;>

> 6 E1=5.002307E12~

> 10 X=8746867586.5 ~

> 20 Y=6589564509.6:;>

> 30 Z=6723219087.6:;>

> 40 R2=Xt2+Yt2+Zt2+R*E1;:>

> 50 R1=R2t.5~

> 60 PRINT IN FORM "11%/":R1 ~

> 70 R1=(DBL(R2))t.5 ~

> 80 PRINT IN FORM "11%/":R1;>

>RUN ~
12850359339 Using single precision.

12850359341 Using the DBL function.

>

In this example, the user requires eleven places of
accuracy for R 1. The eleventh digit of R 1 is inaccu
rate unless the value of R2 is computed to double
precision accuracy when it is raised to the .5 power.

DPI

DPI is a function with no argument. It is equal to
double precision 1T, 3.1415926535897932.

28

OCTAL CONSTANTS AND BINARY OPERATIONS

OCTAL CONSTANTS

Octal constants are denoted by a leading O. For
example, to specify octal 41, type 041. Single digit
octal constants must be specified by 000 through
007 so that they can be distinguished from the vari
ables 00 through 07. For example,

> PRINT 041;005;>

33 5

>
Since SUPER BASIC automatically prints numbers

to the base 10, octal 41 is printed in the above ex
ample as its decimal equivalent, 33.

Octal constants can be used anywhere decimal con
stants are used (such as in assignment statements or
as function arguments), but "viii not be recognized in
DATA statements or in file or terminal input.

If more than eight digits are specified after 0, the
last eight will be accepted. Thus, 0312345671 is
equivalent to 012345671.

BINARY OPERATORS

The operators BAN, BOR, and BEX (Binary AND,
Binary OR, and Binary exclusive OR) operate on and
return integer values. Any attempt to use these opera
tors with non-integer operands will generate meaning
less results.

BAN, BOR, and BEX perform logical operations on
the digits of the binary equivalents of their operands
as shown in the following table:

Binary Digits

~ 1 1 0 0
Operation 1 0 1 0

AND 1 0 O' 0

OR 1 1 1 0
EXCLUSIVE OR 0 1 1 0

For example, consider

A BOR B where A=28, B=6 (or, expressed as
octal constants, A=034, B=006)

The binary equivalents of A, B, and the result of A
BaR Bare

A 011100

B 000110

A BaR B 011110

The result, binary 11110, is equal to octal 36, or
decimal 30. Thus,

> PRINT 28 BOR 6 +>
30

> PRINT "01(" IF 034 BOR 006=036;>

OK

>
BAN, BaR, and BEX all have the same priority as

MOD, that is, just below unary minus but above *, I,
and DIV.

BINARY FUNCTIONS

The LSH function performs a logical left shift of
the digits of the binary equivalent of a number; the
RSH function performs a logical right shift. These
functions take the form

LSH(v,n) and RSH(v,n)

where v is an integer variable or expression, and n is
the shift count. If the first argument is non-integer,
the result will be meaningless. If the second argument
is non-integer, it will be truncated.

For example, consider

LSH(X,Y) where X=53 (octal constant 065) and
Y=1 to 3.

X and the results of the left shifts are listed below in
binary, octal, and decimal representation.

Binary Octal Decimal

X 000110101 65 53

LSH(X,1) 001101010 152 106

LSH(X,2) 011010100 324 212

LSH(X,3) 110101000 650 424

NOTE: The functions LSH and RSH are shifts rather
than cycles of the registers.

Thus,

> 10 X=53 !OR X=065;>

> 20 PRINT LSH(X,Y) FOR Y=O TO 3;>

> 30 !NOTE THAT LSH(X,O)=X~

> RUN~

>

53

106
212

424

29

The shift count may be positive or negative.

LSH(v,-n)=RSH(v,n)

RSH (v,-n)=LSH (v,n)

A shift count greater than 24 is equal to a shift
count of 24.

> PRINT "VERIFIED" IF RSH(063,24)=RSH"1

(063,26) ;;>
VERIFIED

>

LOGICAL VARIABLES, EXPRESSIONS, AND OPERATORS

LOGICAL VARIABLES
AND EXPRESSIONS

Every numeric variable or expression in SUPER
BASIC is considered to have, in addition to a numeric
value, a logical value which is.either TRUE or FALSE.
The logical value of a variable or expression is defined
as TRUE if the numeric value is not zero, and FALSE
if the numeric value is zero.l For example,

Expression Numeric Value Logical Value

A 0 FALSE
B 18 TRUE

C+2 -7 TRUE
R*S-4 0 FALSE

Thus, a numeric variable or expression can be used
as the condition in an I F statement as follows:

10 IF X THEN 200

This statement specifies that if X is TRUE (not zero)
the program will transfer to line 200. If X is FALSE
(zero), the program will continue with the next state
ment in order.

More commonly used in the IF ... TH EN ... state
ment to specify a condition, is an expression contain
ing one of the relational operators. Note that a rela
tional expression must have one of the logical values
TRUE or FALSE and can, therefore, be considered
as a logical expression. For example,

30 IF S = 0 TH EN 70

causes a transfer to line 70 if the expression S = 0 is
TRUE, and no transfer if S = 0 is FALSE.

The relational operators included in SUPER BASIC
are:

Symbol Meaning

< less than
I

<= less than or equal to
= equal to

>= greater than or equal to

> greater than
#or<> not equal to
« very much less than
» very much greater than

=# approximately equal to

The last three operators listed require some
explanation.

The logical value of an expression using« or»
depends on the internal sum of the values of the
operands; that is,

A«B is true if, internally, A+B=B

A»B is true if, internally, A+B=A

The =# operator uses in its definition the special
variable EPS, which SUPER BASIC presets to 10-10

A=#B is true if ABS(A/B-1)<EPS

EPS can be used in SUPER BASIC as any other
variable and therefore can be set to any value by the
user. Changing its value from the initial 10-10 would
thus modify the definition of =#.

1 - If the variable or expression is complex, its logical value is set to the logical value of its real part. Complex arithmetic is dis
cussed on page 25.

30

SUPER BASIC stores the logical value of an ex
pression as either 1 or O. A TRUE expression is set to
1 and a FALSE expression is set to O. For example,

Expression Logical Value

A = B 1 (for TRUE) if A = B,
o (for FALSE) if A # B

C<Dt2 1 if C<Dt2,
o if C>=Dt2

Thus

PRINT A = B Prints 1 if A = B,
prints 0 if A # B.

Z = C<Ot2 Sets Z = 1 if C<Dt2,
sets Z = 0 if C>= Dt2.

X=Y=S ~~X=1ifY=~

sets X = 0 if Y # 5.

The Kronecker delta may be written with logical
expressions. The Kronecker delta is defined

0" = {1 if i=j
IJ 0 otherwise

The Kronecker delta may be written in SUPER BASIC
as

D=(I=J)

DECLARING LOGICAL VARIABLES

If a variable is declared to be a logical variable, it
will be set 'to its logical value (1 for TRUE or 0 for
FALSE) when a numeric value is assigned to it. To
perform such a declaration, type the variable name (or
names, separated by commas) in a LOGICAL state
ment, wh ich can be executed either directly or indi
rectly. For example,

> 10 LOGICAL A,B.;>

> 20 A = 18,B,C = 6.;>
> 30 PRINT "A =":A:" AND B =":B~

> 40 PRINT "BUT C =":C ~

>RUN~

A = 1 AND B = 1

BUT C = 6

>

Since A and B were declared logical, their logical
values were printed. Because 18 and 6 are non-zero
(that is, TRUE), the logical value of both A and B was
printed as 1.

The LOGICAL statement also can be used to de
clare that an array will store logical values. As it is de
clared, the array is dimensioned exactly as it would be

in a DIM statement. No previous dimensioning is
necessary. For example,

10 LOGICAL X(10),Y(4,N)

reserves space for a 10 element logical array X, and a
4 by N logical array Y.

The LOGICAL statement differs from DIM and
other declaration statements in that the elements of
an array declared LOGICAL are initialized to zero.l
Thus, when statement 10 (the previous example) is
executed, the elements of arrays X and Yare set to
zero. This is true even if X and Y already have some
elements defined when the LOGICAL statement is
executed.

LOGICAL OPERATORS

In SUPER BASIC there are six logical operators
which operate on logical variables and expressions.
The result of a logical operation is a logical expression
which is either TRUE (1) or FALSE (0).

The results of using logical operators where A and
B are logical variables or expressions are shown in the
following table:

T = True F = False

Operator
A T T F F
B T F T F

AND AAND B T F F F

OR AOR B T T T F

EXCLUSIVE OR AXOR B F T T F

EQUIVALENCE A EQV B T F F T

IMPLICA TlON AIMPB T F T T

NOT NOTA: If A is True, then
NOT A is False.

If A is False, then
NOT A is True.

Some examples of logical expressions containing
logical operators are:

A AND NOT B

X = 3 OR X = S

E*S> A-B XOR E< = 100

A#2*EXP(S) AND I=J

Relational and logical operations should be used
with caution. The following examples illustrate the
use of these operators.

1 - The INTEGER declaration statement also initializes array elements to zero.

> PRINT 5 AND 6 ~
1

>
> PRINT 5;6 ~

5 6

>

The logical expression 5
AND 6 is evaluated. The
value, 1, is printed.

I

The numbers 5 and 6 are
printed.

IF A=X OR Y THEN 50

Control transfers to state
ment 50 if A=X or if Y is
unequal to zero.

IF A=X OR A=Y THEN 80

> 10 A=5, B=7 ~
> 20 PRINT A=B~
>RUN~

o

>

Control transfers to state
ment 80 if A=X or if A=Y.

The logical expression A=8
is evaluated and printed.

95 PRINT SUBSTR(S,(A>B)-(A<B)+2,1)
The values, zero or one, of
the logical expressions
A >8 and A <B are used to
compute the second argu
ment of the SU8STR func
tion.

31

PRINT L(N,(X>A)+(X>B)+(X>C))

50 A=B=5

50 A,B=5

The three logical expres
sions are evaluated, then
added. For example, if
X>A is false, and the other
expressions are true, the
statement is equivalent to
PRINT L(N,2).

This is a logical statement.
The expression 8=5 is eval
uated first. If the expres
sion is true, A is set to 1.
If the expression is false,
A is set to O.

This statement sets the vari
. abIes A and 8 equal to 5.

Note that a logical operator works only with the
logical value of what is on either side of it. Thus, X = 3
OR X = 5 may not be typed as X = 3 OR 5. The 5 will
be considered to be true, since it is a non-zero value.
Therefore, whatever the value of X, the expression

X = 3 OR 5 always will be true. The correct form of
the expression will operate as follows:

75 I F X = 3 OR X = 5 THEN NEXT X

If the value of X is 3 or 5, the expression is true
and the THEN statement will be executed. If the val
ue of X is neither 3 nor 5, the expression is false and
the program will go on to the next line.

PRECEDENCE OF OPERATORS

The order of priority among the. different types of
operators in SUPER BASIC is as follows, in descend
ing order:

Expressions in parentheses

Evaluation of functions

Exponentiation (t)

Unary minus (-)

MOD, BAN, BOR, BEX

Multiplication and division (*, / and DIV)

Addition and subtraction (+ and -)

Relational operators «, <=, =, >, >=, < > or #,
«,»,=#)

NOT

AND

OR, XOR

IMP

EQV

For example, the following logical expressions are
evaluated in the indicated order.

Example 1

A>B AND NOT R OR S
'-..,-' ~

1 2

~
3

~-------,,--------~ 4

1. Relational operator>
2. Logical operator NOT
3. Logical operator AND
4. Logical operator OR

Example 2

A AND C<Ot3 = B -.,....-
1
~

~
'./

4

3

1. Exponentiation t
2. First relational operator <
3: Second relational operator =
4. Logical operator AND

33

SECTION 3
STRINGS

STRING VARIABLES

Instead of assigning a numeric value to a variable,
the SUPER BASIC user may set a variable equal to a
string of characters. String variables make it possible
to accept names, addresses, mixed alphabetic and nu
meric identification, and similar data as input from
files or from the terminal. SUPER BASIC accepts
strings of any length up to the limits of core at the
time the string statement is executed.

A variable that is to be assigned a string value can
be named in the same three ways as numeric vari
ables: a single letter, a letter followed by a single
digit, or a letter followed by $. Variable names for
string arrays and arrays storing both strings and num
bers can be, as for numeric arrays, a single letter or a
letter followed by a $.

All forms of the PR I NT command can be used to
print strings. The effect of the comma, semicolon,
and colon are the same for printing string variables as
for printing any text enclosed in quote marks (ex
plained in PRINTING FEA TURES, page 49).

ASSIGNING STRING VALUES

A string value, like a numeric value, can be assigned
to a variable with either an assignment statement, an
I NPUT statement or a READ statement (including
INPUT FROM a file, and matrix input instructions).

When a variable is assigned a string value in an
assignment statement, the string must be enclosed in
single or double quote marks. For example,

> 10 S="ABC XYZ";)

> 15 T='STRING2';)

> 20 PRINT S,T~

> RUN.;>
ABC XYZ STRING2

>
Every character inside the quote marks is accepted

as part of the string. Remember that a Line Feed is
used only for continuation in SUPER BASIC and
therefore cannot be included in a string. Thus,

> T="STRING "1-
SIt

;)

> PRINT T ~
STRINGS

>

Only the characters STRINGS are accepted as the
value of T.

When a variable is assigned a string value with
INPUT, INPUT FROM, or READ, and the variable
has not been declared a string variable (explained be
low), the string must be enclosed in quote marks only
when

• the first character of the string is numeric, that
is, any of the digits 0-9, a decimal point, or a
plus or minus sign;

• the string contains a comma, since a comma
usually indicates the end of the value typed;

• the string contains leading spaces, since leading
spaces are usually ignored on input.

Example 1: INPUT

> 10 INPUT A,B,C,D ~

> 20 PRINT;)

> 30 PRINT A;B;C;D ~

>RUN~
? STRING3 "123450" XXX "LA 999" . , ", ~

STRING3 123450 XXX LA,999

>

The string values assigned to A and C did not have to
be enclosed in quote marks. However, the leading
digit of the string 12345Q and the comma included in
LA,999 required quotes around those strings.

34

Example 2: READ

> 10 READ A,B,C,D ~

> 20 PRINT A;B;C;D ~

> 30 DATA' SP',ZZ,'162',".DD" ~

> RUN;:>
SP ZZ 162 .DD

>
The string value assigned to A had to be enclosed in
quotes because of the leading space. The strings 162
and .DD required quotes because of the leading nu
meric character. Note that although the string as
signed to C looks like a number, SUPER BASIC will
not consider it as such. C will be treated as a group of
characters having no numeric value.

DECLARING STRING VARIABLES

The user may declare that variables or arrays will
be assigned string values. This declaration is accom
plished by means of a STR ING or TEXT statement,
which may be executed either directly or indirectly.
Although declaring string variables and arrays is not
necessary, doing so will provide more efficient mem
ory utilization and facilitate input of string values (as
will be shown below).

Both arrays and non-subscripted variables can be
declared in a STR I NG statement. As they are de
Cla'red, the arrays are dimensioned exactly as they
would be in a DIM statement. No previous dimen
sioning is necessary. For example,

10 STRING X,Y,A(5)

reserves space for array elements A(1) to A(5) and de
clares that the values assigned to X, Y and the array A
will be strings.

A TEXT statement is used to declare arrays only.
For each array declared in a TEXT statement, the
maximum number of characters of an element is spec
ified for all elements. This maximum number may be
a variable or an expression. For example,

20 TEXT A(12):10,B(3,5):M*N

reserves space for a 12 element string array A, each
element of which can contain up to 10 characters, and
a 15 element array B with maximum string length
equal to the val ue of M * N.

Since dimensioning arrays declared in the STR ING
or TEXT statement is the same as dimensioning in a
DIM statement, the following is permitted:

• Dimensions may be variables or expressions

50 TEXT J(Z): 15,K(N+1,M+1):10

• The subscript base may be specified

70 STRING C(-1: 1),D(0:5,20)

An array can contain both numbers and strings. In
this case the array would be dimensioned in a DIM
and not in a STR I NG or a TEXT statement since the
latter declare that all data will be string values.

ASSIGNING STRINGS TO
DECLARED VARIABLES

I NPUT And READ Statements

When string variables or arrays are declared, data
assigned to them by means of an INPUT, INPUT
FROM, or READ statement need not be surrounded
by quote marks, with only two exceptions; the fol
lowing strings always must be surrounded by quote
marks, even if the variable has been declared: 1

• A string containing a comma, such as "HART,S."

• A string containing leading spaces, such as
" YES".

Example 1

> 10 STR!NG O,R,S,T;:>
> 20 READ a,R,S,T ;>
> 30 PRINT a:R:S:T~

> 40 DATA STRING,A23," SPACES "~

> 50 DATA "MAY 3,1972";>

> RUN;>
STRINGA23 SPACES MAY 3,1972

>
Quotes were typed around the string" SPACES "

so that its leading space would be accepted. Without
the quote marks, the space would have been ignored.
liMA Y 3,1972" was enclosed in quotes so that the
embedded comma would be accepted as part of the
string. Without the quote marks, SUPER BASIC
would have stopped reading the value of T when it
reached the comma; T would thus have been assigned
the value MAY 3.

NOTE: Only commas and Carriage Returns (and
not spaces) may be used to separate string values that
are not surrounded by quote marks.

Example 2

> 10 TEXT A(3): 15 ~

> 20 INPUT AU) FOR I = 1 TO 3;>

> 30 PRINT;;>

> 40 PRINT AU) FOR I = 1 TO 3 ~

> RUN;>

? SMYTHE,ACCT. NO. 63794,"$1,630.75" ~

1 - If the R format is used, quote marks may be omitted, even in the following cases. See The Single R, page 59.

SMYTHE

ACCT. NO. 63794

$1,630.75

>

In the above example, array A is declared in a
TEXT statement. The data need not be enclosed in
quote marks. Quote marks were typed around the
string "$1,630.75" to accept the embedded comma.

An array may be used to store both numeric and
string data. In the following:

> INPUT S(I) FOR I = 1 TO 5;>

? 250,A STRING,3.75,XXX,"13.69";>

>

S(1) and S(3) are numeric variables; S(2), S(4), and
S(5) are string variables.

Assignment Statement

Strings in an assignment statement must be sur
rounded by quote marks whether or not the string
variables have been declared. For example,

> 10 STRING A,B~

> 20 A = "ONE" ~

> 30 B = "TWO" ;>

> 40 C = "THREE";>

> 50 D= A-;;

>60 PRINT A;B;C;D~

>RUN~

ONE TWO THREE

>

ONE

THE NULL STRING

35

While manipulating strings, a null string can be
formed. This is the string "", which contains no
characters. '

If the VAR = ZERO command has been executed,
the null string will be supplied for any undefined
string variable. See The VAR = ZERO Command,
page 6.

STRING CONCATENATION

Strings can be concatenated (joined together to
form a new string) with a + sign, as illustrated below.

> 10 X = "XXX" ~

> 20 V = "YYVV";>

> 30 A = X+Y ~

> 40 B = X+"DE F"+Y ~

> 50 PRINT A;B ~

>RUN~

XXXYYVY XXXDEFYYYY

>
Strings cannot be concatenated with numeric ex

pressions; an error message will result.

STRING FUNCTIONS

To aid the user in manipulating strings, SUPER
BASIC contains a number of standard functions that
operate on or return string values. Three of these
functions, COMP, MAX, and MIN, are used for string
comparison and are explained on page 40. The func
tions described below are LENGTH, SPACE, VAL,
STR, LEFT, RIGHT, SUBSTR, INDEX, ASC, and
CHAR.

LENGTH (string)

This ~unction returns a number equal to the num
ber of characters in the specified string. For example,

> A = "JONES"~
> PRINT LEN~TH(A)~

5

>

SPACE(numeric expression)

This function returns a string consisting of as many
spaces as specified by the argument. For example,

> 10 X = "XX", Y = "YYY" .;>
> 20 A = X+SPACE(3)+Y ~

>30PRINT A~

> 40 M = 2,N = 4 .;>
> 50 B = SPACE(M*N)+X ~
> 60 PRINT B;>

>RUN~
XX YYY

XX

>

36

VAL(string)
This function takes a string of numeric informa

tion and returns a numeric value. For example,

> J = "1234";>

> K = VAL(J);;:>

would set K to the numeric value 1234. The string
used as an argument of th is function can contain nu
meric information only. X = VAL ("6E2") sets X to
the value of 600, but X = VAL ("A 123") would cause
an error message to be printed. In addition, spaces
within the argument string are ignored; thus, Y = VAL
("1.0 4") would set Y to the value of 1.04.

NOTE: If the argument of VAL is already a number,
the same number is returned.

STR(numeric expression)
This function takes a numeric value and returns a

string of numeric characters. For example, T = STR
(99.6) sets T equal to a string variable with a string
value of " 99.6". This string contains a leading space
because of the omission of the + sign.

NOTE: If the argument of STR is already a string, the
same string is returned.

LE FT(string, numeric expression)

This function takes the number of characters spec
ified by the numeric expression, starting from the left
side of the given string, to form another string. For
example,

>T = "ABCDE"~

>N = LEFT(T,2)~

would give N the value of AB.

RIGHT(string, numeric expression)

This function takes the number of characters spec
ified by the second argument starting from the right
side of the given string to form another string. For
example,

> PRINT RIGHT ("ABCDE",3);>
CDE

>

When using LEFT and RIGHT, if the value of the
numeric expression is less than or equal to zero, the
result is the null string. If the value of the numeric ex
pression is greater than the length of the string, the re
sult is the string itself. For example,

> LIST ~
10 S="ABCDE"

20 R=RIGHT(S,O)

30 L=LEFT(S,-4)

40 G=LEFT(S,8)

50 PRINT LENGTH(R)

60 PRINT LENGTH(L)

70 PRINT G

>RUN~

o
o

ABCDE

>

SUBSTR(string, numeric expression, numeric
expression) Or SUBSTR(string,

numeric expression)

This function extracts a substring from the string
given as the first argument. The function can have
either two or three arguments. The number given as
the second argument specifies which character of the
string is the first character to be extracted. The num
ber given as the third argument specifies how many
characters of the string are to be extracted. If the
third argument is omitted, the substring starts with
the character specified by the second argument and
continues to the end of the string. For example,

10 X = "ABCDE"

20 Y = SUBSTR(X,2,3)

30 Z = SUBSTR(X,2)

will assign BCD to Yand BCDE to Z.

In the two argument form, if the second argument
is less than or equal to zero, the result is the string. If
the second argument is greater than the length of the
string, the result is the null string. For example,

> S = "ABC";)

> X = SUBSTR(S,9) ~

> Y = SUBSTR(S,-1)~

sets X equal to the null string and Y equal to S.

In the three argument form, if the third argument
is less than or equal to zero, the result is the null
string. If the third argument is greater than the num
ber of characters possible to be extracted, this argu
ment is ignored, and the function is equivalent to the
two argument form. For example,

>S = "ABCDE"~

> X = SUBSTR(S,3,O),;;:>

> V = SUBSTR(S,3,6)~

sets X to the null string and Y to the string CDE.

INDEX(string, string) Or
INDEX(string, string, numeric expression)

INDEX(string,string) searches the first argument
for the string given as the second argument. If the
second argument is a substring of the first, IN DEX re
turns the character position of the second argument
within the first; otherwise, it returns O. When the op
tional third argument is not given, the search will start
at the beginning of the first argument. Thus,

> 10 X="ABCDE" ~
> 20 Y=INDEX(X,IIBCD")~

> 30 Z=INDEX(X,"E")~

> 40 W=INDEX(X,"F")~

> 50 PRINT Y;Z;W.;>

> RUN;>

250

>

Note that if X were changed to "ABCDEEEE" in
the above example, Z would still be set to 5, since
I NDEX returns the position of the first occurrence of
the second argument. But the search need not start at
the beginning of the first argument. The third argu
ment may be used to specify any desired position in
the first argument where the search is to begin.

The third argument must be greater than zero. If
the third argument is greater than the length of the
string being searched, the result is zero.

Example 1

INDEX("AXXA","A") is 1

but INDEX("AXXA","A",2) is 4

since the search beginning at position 2 does not find
the A in position 1.

Example 2

> 10 S="POSI TIONS OF THE SPACES",X=O ~

> 20 X=INDEX(S," ",X+1) ~

> 30 IF X#O THEN PRINT X: ELSE STOP ~

>40 GO TO 20;>

> RUN;)

5 11 14 18

>

37

This program searches the string S for spaces and
prints the character position of each space. The first
time line 20 is executed, S is searched from the begin
ning. Each subsequent time line 20 is executed, S is
searched from one position after the last space found.
When the INDEX is 0, there are no more spaces in the
string and the program stops.

ASC(string)

This function returns the ASCII code of the first
three characters of its argument. If the argument has
fewer than three characters, the function returns the
ASCII code of all the characters.

A table of these codes for all printing characters is
given on the following page. The codes are listed in
decimal as well as their usual octal representation.

Note in the examples below that the codes are re
turned in decimal rather than their usual octal repre
sentation, since SUPER BASIC automatically assumes
the base 10.

Example 1

The ASCII code for % is 5; the code for A is 33
decimal (41 octal). Thus,

> PRI NT ASC("%") ;ASC("A") ;ASC("ALPH");>
5 33 2174000

>

Example 2

> 10 S=O,;>

> 20 STRING D$ ~

> 30 INPUT D$ ~
>40 FOR 1=1 TO LENGTH(D$);>

> 50 C=ASC(SUBSTR(D$,1,1));>

> 60 IF C>32 AND C<59 THEN S=S+1;>

>70 NEXT I~
> 80 PRINT "NUMBER OF ALPHA CHARS.=":S,;>

This program accepts a string as input and con
siders the ASCII code of each character of the string.
Any character whose code lies within the range 33-58
(41-72 octal, or A-Z) is alphabetic. The total number
of such characters is computed and printed.

38

Octal ASCII Decimal
Character

Code Equivalent

0 0 SPACE
1 1 !
2 2 "
3 3 #
4 4 $
5 5 %
6 6 &
7 7 ,

10 8 (

11 9)

12 10 *
13 11 +
14 12 ,

15 13 -
16 14
17 15 I
20 16 0
21 17 1
22 18 2
23 19 3
24 20 4
25 21 5
26 22 6
27 23 7
30 24 8
31 25 9
32 26 :
33 27 ,
34 28 <
35 29 =

36 30 >
37 31 ?
40 32 @

41 33 A
42 34 B
43 35 C
44 36 D
45 37 E
46 38 F
47 39 G
50 40 H
51 41 I
52 42 J
53 43 K

54 44 L
55 45 M
56 46 N
57 47 0
60 48 P
61 49 Q

62 50 R

Octal ASCII Decimal Character
Code Equivalent

63 51 S
64 52 T
65 53 ·U

66 54 V
67 55 W
70 56 X
71 57 y

72 58 Z
73 59 [

74 60 \
75 61]
76 62 t or.A
77 63 +-or ~

100 64 \
101-132 65-90 lower easel

134 92 I
136 94 '"

137 95 rubout
(end of file
character)

140 96 null
(Control @)

141-172 97-122 control
letters2,3

173 123 ALT MODEl
ESCAPE

.174 124 Control \
175 125 Control]
176 126 Control t
177 127 Control +-

(abort)

NOTE 1) The internal code for lower case can be
obtained by adding· the decimal number 32 or the
octal number 40 to the code of the corresponding
upper case character. For example, lower case A is
represented by decimal 65 or octal 101.

2) The internal codes for control characters
can be obtained by adding the decimal number 64
or the octal number 100 to the appropriate repre
sentation for the specific alphabetic character. For
'example, since the code for A is decimal 33 or octal
41, the code for Control A is decimal 97 or octal 141.

3) A Line Feed followed by a Carriage Re
turn may be generated by a Control J. A Carriage
Return followed by a Line Feed may be generated
by a Control M.

CHAR(numeric expression)

This function takes a numeric argument and re
turns the string character whose ASCII code is equal
to the argument. The argument can be given as a dec
imal number or as an octal constant. 1 For example,

> PRINT CHAR(5),CHAR(33) !DECIMAL NOS. ~

% A

> PRINT CHAR(005),CHAR(041) !OCTAL"1-

CONSTS . .;>

% A

>

The ASCII codes below can be used with CHAR to

39

Octal Decimal

102 66 Line Feed without a Carriage
Return

105 69 Carriage Return without a Line
Feed

Note the order in which the output of the fol
lowing statements is printed.

> PRINT IFIRST":CHAR(66):"SECOND": ~

CHAR(69):"THI RD";)

FIRST

TH I RDSECOND

> PRINT I:CHAR(0102): FOR 1=1 TO 5~

1
2

3

4
5

provide interesting printed results on some terminals: >

FILE NAMES AS STRING EXPRESSIONS

The name of the file specified in the OPEN state
ment and in the indirect LOAD and LI N K statements2

may be typed as a string variable or expression. In
this way the file name can be assigned at the time the
statement is executed. For example, if the beginning
statements of a program are

10 STRING A

20 PRINT "TYPE THE INPUT FILE NAME"

30 INPUT A

40 OPEN A,INPUT,1

the following will occur:

1 - Octal constants are explained on page 28.

2 - Explained in LOAD and LINK, page 100.

TYPE THE INPUT FILE NAME

? XDATA~

and the file XDATA will be opened for input as file 1
according to line 40.

Other Examples

55 LINK "FILE" + C$ Where C$
FILEX.

20 LOAD '(A2H)/@JOB'+STR(I)+ 'I'

"X", links

Where I = 3, loads
(A2H)/@JOB 3/.

60 OPEN B, OUTPUT, 3 Where B = u'SOR''', opens
'SOR' for output as file 3.

40

COMPARING STRINGS

Any of the relational operators <, < =, =, > =, >,
< >, or # can be used to compare strings. A character
by character, left to right comparison is done. The
characters are compared according to the sequence
listed above in the description of the ASC function.

Example

> A = "JUNE",B = "JUL V" ~

> IF A>B THEN PRINT A:" > ":B,;>

JUNE> JULY

>
The first two characters of the string values of A

and B match, but since the letter N has a greater nu
meric code than the letter L, the string "JUN E" is
greater than "JUL Y".

If the strings are of different lengths, the shorter
string and the same number of characters from the
longer string will be compared. If they match, the
shorter string is taken to be the lesser of the two.

Example

> 10 A = "SUN" ..;>
> 20 PRINT "VERIFIED" IF A<"SUNDAY".;:>

>RUN~

VERIFIED

>

Some other examples of statements using string com
parison are:

15 IF A#,'PAIO" THEN NEXT I

70 IF Z> = "SMITH" THEN PRINT TAB(15):Z

130 PRINT "XXX" IF A+B<"MR. JONES"

GO TO 95 UNLESS RIGHT(X,2) = liNG"

Comparing a string to a numeric value is permitted
with the relational operators = and #. For example, if

A=33

the statement

IF A="END" THEN 160 ELSE 100

will cause a transfer to Ii ne 100.

STRING COMPARISON FUNCTIONS

The functions COMP, MAX, and MIN can take
numeric arguments (as explained on page 17) or string
arguments, as explained below.

COMP(S) ,S2)

The function COMP(S) ,S2)' where S) and S2 are

string expressions, compares SI and S2 and returns:

-1 if SI<S2

o if SI=S2

1 if S»S2

Example

> 10 X="OOG",Z="CAR" ~

> 20 A=COMP(X,Z) ~

> 30 B=COMP(Z,X) ;>
> 40 C=COMP(Z+"E","CARE") ;>

> 50 PRINT A;B;C ~

>RUN~

1 -1 0

>

MAX(SI,S2"",Sn)

The MAX function can be used with two or more
string arguments. The strings are compared and the
value of the greatest argument is returned.

Example

> 10 Q="STRING",R="STRING1";>

> 20 0(1)="OOBBS",0(2)="VOU" .()

> 30 PRINT MAX(Q,R).,;)

>40 PRINT MAX(0(1),D(2),Q,R)~

>RUN~
STRING1

YOU

>

MI N(SI,S2"",Sn)

The MIN function can be used with two or more
string arguments. The strings ar'e compared, and the
value of the least argument is returned.

Example

> 10 Q="STRING",R="STRING1".;>
> 20 D(1)=1I00BBS",0(2)="YOU".;>
>30 PRINT MIN(Q,R)~

> 40 PRINT MIN(0(1),0(2),Q,R):;>

>RUN~
STRING

DOBBS

>

41

SECTION 4

ASSIGNMENT AND CONTROL STATEMENTS l

THE MULTIPLE ASSIGNMENT STATEMENTS

More than one variable can be assigned the same
value in one statement. The variables to be assigned
must be separated by commas. For example,

10 X,Y = 5
70 LET A,B,C(2),D(1,1) = 0

X(1),Y,Z = 15*S/R

More than one assignment can be made in a single
statement, as follows:

15 LET Q = 4, S = 16

30 A = 3,M,N = 5,W = COS(15)

100 J = SQR(X), K = J+3,H,G(1) = 0

The assignments are made from left to right; thus,
in statement 100 above, the value of K is set to
SQR(X)+3.

As shown above, use of the word LET is optional.

Be carefu I to note that each of the exam pies above
is a single statement. Two separate statements cannot
be typed on one line and separated by commas. For
example, PRINT A, PRINT B is not acceptable, nor is
B = C*EXP(C), PRINT A+B.

ADDITIONAL IF STATEMENT FEATURES

I F condition THEN statement

In addition to line numbers, SUPER BASIC state
ments may be typed after the word THEN in an I F
THEN statement. If the I F condition is false, the
THEN statement will not be executed, and the pro
gram will go to the next statement in sequence.

Examples

70 IF X>4 TH EN A = B
If X is greater than 4, A
will be set to the value of B.

70 IF A = a THEN PRINT "A EQUALS a"
The message A EQUALS B
will be printed only if A
and B are equal.

THE IF-THEN-ELSE SEQUENCE

The word ELSE followed by a statement can be
added to the IF-THEN sequence. This form allows the
THEN statement to be executed if the condition is
true, but executes the ELSE statement if the condi
tion is false. The program continues to the next state
ment in order unless the THEN or ELSE clause it
executes is one which transfers to another line.

Examples

70 I F X = .5 THEN 200 ELSE 300
If X is .5, the program will go to line 200;
otherwise, it will go to line 300.

70 IF N = 0 THEN 50 ELSE C = T,D = T/N

If N is 0, the program will go to line 50;
otherwise, the assignment statement in
the. ELSE clause will be executed, setting
C to T and D to TIN.

70 IF A = a THEN PRINT "A EQUALS B"

ELSE PRINT "A AND a NOT EQUAL"

If A and B are equal A EQUALS B will
print; if not, A AND B NOT EQUAL will
print.

Any indirect statement (except DATA, R EM, or I)
can be included in a THEN or an ELSE clause.

COMBINING. IF STATEMENTS

Any number of I F-THEN and/or I F-THEN-ELSE
sequences may be used together, such as:

IF X = 4 THEN IF P = L THEN R = 80 ELSE 300

ELSE X = X*Y

In this example, if X is not 4 (a false condition),
the ELSE clause will set X to X*Y and the program

1 - The standard form of the assignment statement is discussed on page 4. The fundamental control statements are I F-THEN and
GO TO, discussed on page 4, and FOR loops on page 8. This section contains extensions of these fundamental statements.

42

will continue with the next statement in order. If X is
4 (a true condition), the THEN clause will be exe
cuted to check to see if P is equal to L. If so, the val
ue of R will be set to 80 and the program will contin
ue; otherwise, the program will transfer to line 300.

The rule for matching THEN and ELSE clauses is
similar to the rule for evaluating expressions with
more than one set of parentheses. For example, the

THEN and ELSE clauses in the previous example were
matched from the inside out. Since a THEN clause
does not require a matching ELSE, constructions such
as the following are possible:

IF ... THEN IF ... THEN ... ELSE ... = ===- -- --
Here the ELSE and the second TH EN are matched
with the inner IF. The outer I F has no ELSE clause.

IF ... THEN IF ... THEN IF ... THEN .•. ELSE ... ELSE ... :::: ==== = == - -- -- =
IF .•. THEN IF ... THEN ... ELSE IF ... THEN ... ELSE ... == ===== == ==- -- --

In each of these examples the first I F in the statement has no ELSE clause, but if the
ELSE were to be included, it would be added at the end of the statement.

ADDITIONAL FOR LOOP FEATURES

FOR value list

The FOR command can also be follovved by a list
of values for which the body of the loop is to be exe
cuted. For example, the following program prints the
square roots of 2, 3,8,10,12, 14, and 50:

10 FOR N = 2, 3, 8 TO 14 STEP 2,50

20 PRINT N,SQR(N)

30 NEXT N

CALCULATION IN FOR LOOPS

If the FOR statement specifies an impossible range,
that is, if the initial value is greater than the final
value (less than the final value, for negative steps),
the body of the loop will not be executed. SUPE R
BASIC will go to the statement following the corre·
sponding NEXT. The loop variable retains the previ
ous value, if any, assigned to it. For example,

> LIST ~
100 FOR '1=1 TO' 10

110 NEXT I

120 PRINT I

130 FOR 1=7 TO 2

140 NEXT I

150 PRINT I

> RUN;>

>

10

10

This FOR loop contains an
invalid range.

I retains its previous value,
10, and is not initialized
to 7.

Once a loop is entered, if the NEXT statement has
been omitted, SUPER BASIC will execute the body
of the loop once (for the initial value) and then exe
cute the rest of the program which follows the loop.

More complicated FOR statements are allowed.
The initial value, the final value, and the step size may
be expressions of any complexity. For example, if N
and Z have been assigned values earlier in the program,
we could write:

55 FOR X = N+7*Z TO (Z-N)/3 STEP N

Note however, that a change in the values of Nand
Z within the loop will change neither the final value
of X nor the step size. Variables and expressions in a
FOR statement are evaluated only once; namely, the
first time the statement is encountered. The final
value and step size will not change once the loop has
been entered.

If the value of X in line 55 above were changed
within the loop, this change would be accepted. For
example, the following statements could be typed
after line 55 to change the value of X to the value of
N if X equals zero.

60 I F X = 0 THEN 70

65 GO TO 75

70 X= N

75 Body of loop

WH I LE and UNTI L are often used in a FO R
statement in place of the TO clause as a means of
specifying the final value. For example,

50 FOR X = 1 WHILE X< = Y

which is equivalent to

50 FOR X = 1 UNTIL X>Y

The FOR loop will be executed from the initial
value of X in steps of 1 as long as X is less than or
equal to Y. Note that X always will be compared to
the current value of Y, even if the value of Y should
change within the loop; this is not true when the
more common form of the FOR statement is used.
For example, when

50 FOR X=1 TO Y

is encountered for the first time, the final value of X
is set permanently to the value of Y at that time. Any
changes of Y within the loop will not change this final
value.

When a WHI LE or UNTI L modifier is used with a
FOR statement, the loop variable is first set to the
initial value. The final value of the loop variable is
that value which first causes the WHI LE or UNTI L
modifier to be false. For example,

> LIST ~
10 FOR 1=3 WHI LE 1<9

20 NEXT I

30 PRINT I

40 FOR 1=6 WHILE 1<0

50 NEXT I

60 PRINT I

> RUN;>

>

9

6

In the first FOR loop, the value 9 is the first value
which causes the WHILE condition to be false. In the
second loop, I is set to 6 before the WH I LE modifier
is evaluated. Thus, the value 6 is the first value which
causes the WHI LE condition to be false.

43

NESTED LOOPS

It is often useful to have loops within loops. The
order in which SUPER· BASIC must execute these
nested loops is illustrated in the following skeleton
examples:

Allowed

~
FOR X

FOR Y
[NEXT Y

NEXTX

Not Allowed

~
FOR X

FOR Y

NEXTX

NEXTY

Allowed

FOR X

FOR Y

[
FOR Z

NEXTZ

[
FORW

NEXTW

NEXTY

NEXTX

Nested FOR loops of any complexity are allowed,
but crossed FOR loops are not allowed.

Note that the following construction is permitted:

110 FOR K ...

140 ...

170 NEXT K

200 FOR K ...

220 GO TO 140

SUPER BASIC will execute the loop statements in
the order

[
FOR K

NEXT K

[
FOR K
NEXT K

Thus, the way the statements appear in the program
does not matter; only the order in which they are exe
cuted is important.

If the inclusion of nested FOR loops in a program
results in two or more sequential N EXT statements,
the NEXT statements may be combined and typed on
one line as follows:

NEXT X}
NEXT Y NEXT X,Y

44

COMPUTED GO TO STATEMENT

A computed GO TO statement, which may be exe
cuted directly or indirectly, causes transfer to one of
several different parts of a program, depending on the
value of a specified expression.

The form of the computed GO TO statement is

ON expression GO TO linet.line2,'"

where linel,line2,'" is a sequence of line numbers to
which the program will transfer depending on the val
ue of the expression. If the value of the expression is
1, the program will transfer to linel; if the value of

the expression is 2, the program will transfer to line2,
and so on. For example,

ON I *J GO TO 60,70,85

will transfer to lines 60, 70 or 85 depending on
whether the value of the expression I *J is 1, 2, or 3,
respectively.

If the value of the expression is less than one or
greater than the number of line numbers, an error
message will be printed. If the value of the expression
is not an integer, the value will be truncated.

STATEMENT MODIFIERS

The number of statements in a program can be re
duced greatly by using statement modifiers. One or
more modifiers may be appended to most direct state
ments and to all indirect statements except DATA.

The statement modifiers are IF, UNLESS, FOR,
WH I LE, and UNTI L. For a complete list of those
statements which can be modified, see Appendix A.

IF AND UNLESS

The I F modifier followed by a logical expression
causes the command to which the I F clause is ap
pended to be executed if the logical expression is true.
The command is not executed if the logical expres
sion is false. For example,

PRINT X IF X>O

GO TO 100 IF B

The value of X will be printed
only if X is positive.
If B is not equal to zero (that
is, true) the program will trans
fer to line 100. If B is zero
(that is, false) no transfer will
be made.

Other examples using the I F. modifier are:

30 INPUT N IF M<= SOR(7)
55 BASE I IF 1#1
100 NEXT X IF G2 = 0
R = S IF 0>100

The UNLESS modifier followed by a logical ex
pression causes the command to which the UNLESS
clause is appended to be executed if the logical ex
pression is false. The command is not executed if the
logical expression is true. For example,

PRINT X UNLESS X>O The value of X will be
printed only if X is not
positive.

Other examples using the UN LESS modifier are:

15 GOSUB 100 UNLESS X = 0

130 A = Bt2 UNLESS A = C

200 PRINT ON 2:Z UNLESS I<J

GO TO 55 UNLESS V*W = 1

FOR

FOR causes the command to which it is appended
to execute repeatedly over a range of values. The
FOR clause takes the same form as the FOR state
ment used in defining loops. For example,

> INPUT A(I) FOR I = 1 TO 4:;> The command IN
? 6,-4,3,2:;> PUT A (I) is exe

cuted repeatedly
from the initial
value of I to the
final value of I (in
steps of 1, since
there is no STEP
or BY clause).

> PRINT X-2 FOR X = 5,15,-9;>

3 The command PRINT X-2
13 is executed for each value

-11 of X listed.

> PRINT X FOR X = 1 TO 6 STEP 2 ~

1 The command PRINT X is
3 executed repeatedly from the
5 initial value of X to the final

> value of X, in steps of 2.

Note that when FOR modifies an input or output
statement, it modifies only the variable list and not
the entire statement. Thus,

PRINT ON I: 16,FOR 1=1 TO 3

is not the same as

FOR 1=1 TO 3
PRINT ON I: 16,
NEXT I

Instead, it is the same as

PRINT ON I: 16,16,16,

The variable I must be defined previously for the
statement to execute.

This rule should be kept in mind when using for
matted input and output (which is discussed on page
51). For example, N must be previously defined if

PRINT IN IMAGE A(N): X FOR N=1 TO 4

is to execute.

WHILE AND UNTIL

WH I LE followed by a logical expression causes the
command to which the WHILE clause is appended to
be executed repeatedly as long as the logical expres
sion is true. For example,

X is reset to the value of
2*X repeatedly as long
as X is less than Y. For
example, if X were 1
initially and Y were 17,
X would be reset to 32,
since the last value of X
to be multiplied by 2
would be 16.

UNTI L followed by a logical expression causes the
command to which the UNTI L clause is appended to
be executed repeatedly as long as the logical expres
sion is false. For example,

X = 2*X UNTIL X>= Y

45

X is reset to the value of
2 * X repeatedly un til X
is greater than or equal
to Y. This statement is
equ ivalen t to the first
example of WHILE
above.

UNTI L may be used with FOR in a similar manner
as WHI LE. For example,

> PRINT At2 FOR A = 1 STEP 2 UNTIL A>5~

1 The command PRINT
9
25

At 2 is execu ted repeat
edly from the initial val
ue of A (in steps of 2)
as long as the UNTIL
condition (A>5) is false.

The WH I LE or UNTI L modifier must follow the
complete FOR statement. For example,

50 PRINT At2+A FOR A=1 STEP 2 UNTIL A>7

is valid, but

50 PRINT At2+A FOR A=1 UNTIL A>7 STEP 2

is an unacceptable statement.

A modified indirect statement can be included in a
THEN or an ELSE clause as any other indirect state
ment. For example,

IF Z THEN AO) = BO) FOR 1=1 TO 10 ELSE

J = Jt3 WHILE J<N

For modifies only the statement A(I) = 8(1) in
the THEN clause;WHI LE modifies only the statement
J = Jt3 in the ELSE clause, not the entire statement.
An entire IF ... THEN or IF ... THEN ... ELSE
statement cannot be modified; neither can the I F part
of these statements.

More than one modifier can be used to modify a
single statement. The last modifier will be considered
first, the next to the last modifier will be considered
next, and so on.

Example 1

85 GO TO 105 IF A = B UNLESS N = 0

When th is statement is executed, the condition
N = 0 is checked first. If N is zero, the command GO
TO 105 will not be executed. If N is not zero, the
condition A = 8 is considered. If A and 8 are equal,
the program will transfer to line 105.

46

Example 2

PRINT V(I) FOR I = 1 TO 10 IF e(l) = P

PRINT V(I) IF e(l) = P FOR I = 1 TO 10

These two statements are not equivalent. The first
statement first checks to see if C(I) = P with I previ
ously defined. 'If this is true, the values of Y(1) to
Y(10) will be printed. The second statement checks
for each value of I whether C(I) is equal to P. Those
values of Y(I) for which C(I) = P will be printed.

Example 3

50 READ A(I,J) FOR I = 1 TO 3 FOR J = 1 TO 5

This statement is equivalent to

50 FOR J = 1 TO 5

60 FOR I = 1 TO 3

70 READ A(I,J)

80 NEXT I,J

First, J is set to 1 and values are read for A(1, 1),
A(2,1), and A(3,1), that is, for the first column of the
array. Then J is set to 2 and so on, until finally, the
last column is read in when J = 5. If the vah,Jes were
to be read in row order instead of column order, the
statement would be typed as

50 READ A(I,J) FOR J = 1 TO 5 FOR I = 1 TO 3

MODIFIERS IN INPUT/OUTPUT
STATEMENTS

Modifiers used in input/output statements control
only the variable list - not the form, image, location,
file number, or text. The form, image, location, file
number, and text are evaluated before the modifier
is executed. For example,

> LIST ~
10 B(1) '''B(1) '#/"
20 B(2) = "'B(2) , #/"
30 B(3) = "'B(3) '#/"
40 J=56.4

50 PRINT IN FORM B(I):J FOR 1=1 TO 3

> RUN~

ERROR IN STEP 50:

VARIABLE HAS NO VALUE

>

When step 50 is executed, the variable I has no value
because the FO R modifier has not been executed at
the time the form is evaluated. The program is cor
rected and executed below.

> LIST ~
10 B(1) '''B(1) '#/"
20 B(2) = "'B(2) , #/"
30 B(3) = "'B(3) , #/"

50 FOR 1= 1 TO 3

60 PRINT IN FORM B(I):J

70 NEXT I

> RUN~
B(1) 56.4

B(2) 56.4

B(3) 56.4

>

SECTION 5

USING DECLARATION STATEMENTS

Variables and arrays can be declared complex, double precision, real, integer, logical,
or string. Declaration statements are sometimes necessary (for example, when complex or
double precision variables are to be used) but can also be included in programs to save
storage space and speed execution time.

The following chart lists DIM and the seven type declaration statements in SUPER
BASIC.

Words Of Storage

Statement Declares
Per Variable Or

Remarks
Per Element Of An

Array

COMPLEX A,B,C(12) Complex variables or 4 Each complex variable or array
arrays element has a real and an imagi-

nary part.

DOUBLE W(30),Z,D Double precision var- 3 Variables or arrays declared
iables or arrays DOUBLE can store up to 17

significant digits rather than only
11.

DIM Z(5),A(2,3) Real, integer, string 2 It is always faster to declare the
variables or arrays variable or array to be of a spe-

cific type where possible.

REAL X,Y(10),Z(N) Real variables or 2 Storage is the same as DIM for
arrays real variables or arrays, but REAL

is faster. -

INTEGER A,B(0:100) Integer variables or 1 The maximum number of words
arrays (elements) for an integer array

is about 8000 in a program.
Integer arrays are initialized to O.

LOGICAL D,G,F(50) Logical variables or 1/24 Logical arrays are initialized to O.
arrays

STRING M,N,A(2,3) String variables or 1/3 per character If the number of characters of a
arrays with a minimum of STRING or TEXT element is not

2 words evenly divisible by 3, the re-
maining characters of the string

TEXT A(20):15, String arrays; speci- 1/3 per character occupy one full word. Use TEXT
B(3,2):12 fies maximum ele- where possible; TEXT is always

ment length faster than STR ING.

The way in which a variable is declared determines the type of value that the variable
can store. The following example includes variables declared real, integer, and logical.
Notice that the same value is assigned to each variable (lines 40 and 70), but a different
value is stored in each, depending on the variable type.

47

48

> 10 REAL R ~

> 20 INTEGER I ~

> 30 LOGICAL L ~

>40 R,I,L = PI~
> 50 PRINT R,I,L ~

> 60 A=5, B=2 ~

> 70 R,I,L = AlB ~

> 80 PRINT R,I,L ~

>RUN ~
3.1415927 3

2

r
integer

Each variable is assigned

independently of the other

variables.

1

1

r
logical

The result of AlB would be the same if A and B
were declared INTEGER.

NOTE: When using binary data files, both single vari
ables and arrays must be declared before they are read
or written, using the appropriate type declaration
(INTEGER, REAL, DOUBLE, COMPLEX, LOGI
CAL, STRING, or TEXT). When reading values from
a binary file, the variables and arrays should be de
clared to be of the same type as they were when
written. Since the amount of storage used for a value
stored on a binary file depends on its value type,
SUPER BASIC cannot know how many words to read
unless this is specified in a declaration statement.

49

SECTION 6
INPUT AND OUTPUT STATEMENTS 1

PRINTING FEATURES

PRINTING BLANK LINES

The P R I NT command typed alone causes a Car
riage Return to be printed. This form of the command
is useful in making terminal output more readable by
inserting blank lines. For example,

30 PRINT "LINE 1"

40 FOR I = 1 TO 4

50 PRINT

60 NEXT I

70 PRINT "LINE 2"

will cause four blank lines to be printed between
LINE 1 and LINE 2.

THE PRINT ZONES

Separate PR I NT commands cause the specified
printout to be on separate lines. Thus,

100 PRINT "BOOK VAL"

110 PRINT X

prints BOOK VAL at the beginning of one line and
the value of X at the beginning of the next line. The
following program:

15 FOR I = 1 TO 12

20 PRINT I

25 NEXT I

will print the first twelve integers, each at the begin
ning of a line.

SUPER BASIC does, however, provide ways to
print more than one number and/or string of text on
one line. The characters to be printed fall into
"zones", the length of which depends on whether the
comma, semicolon, or colon is used in the PR INT
statement.

Normal PRINT Zones

The width of the terminal paper is normally di
vided into five zones of fifteen spaces each. A comma
is used in the PR I NT statement to instruct SUPE R
BASIC to go to the beginning of the next zone. Thus,

PRINT A,B,C,D,E will print the values of those five
variables across the page. Each number will be left

justified in a field of fifteen spaces. Any positive num
ber will be preceded by a space due to the omission of
the plus sign.

If there are more commas in a PRINT statement
after the fifth zone is printed, printing will continue
from the first zone on the next line. Thus,

10 FOR I = 1 TO 12

20 PRINT I,

30 NEXT I

will print the first five integers on one line, the second
five on the next line, and 11 and 12 on a third line.

If another PRINT statement were added to this ex
ample, the first value or text listed in the additional
statement would be printed in the zone immediately
following the 12 (the third zone on the line). Thus,

> 10 FOR I = 1 TO 12 ~

> 20 PRINT I,~

>30 NEXT I ~

> 40 PR I NT "XXX" ~

>RUN ~
1 2 3

6 7 8

11

>
12 XXX

4
9

5
10

Inserting the statement 35PRINT in the above ex
ample would have caused the XXX to print at the be
ginning of the next (fourth) line.

If text to be printed contains more than fifteen
characters, it will extend into the next zone, and the
next value or text to be printed will occupy the fol
lowing zone. For example,

> PRINT "CURB WEIGHT (LBS) = ",A;)

CURB WEIGHT (LB1S) = I 111
\. , ---

1'''''''"
Zone 1

__ ~J~"",,--_

t""""
Zone 2

of'
Zone 3

The first string of text contains 19 characters. The
value of A is printed in the third zone.

If the length of the text exceeds the length of the
remaining zones, the text will be printed at the begin
ning of the next line.

1 - All input and output statements may be modified using the WHI LE, FOR, and UNTI L modifiers described on page 44.

50

Packed PRINT Zones

A packed form of terminal output is available by
using the semicolon in the PR I NT statement. The
semicolon instructs SUPER BASIC to skip from two
to five spaces before printing the next number or text.
The exact number of spaces depends on the last posi
tion in which SUPER BASIC printed before it en
countered the semicolon. l For example,

> PRINT "CURB WEIGHT (LBS) = ";A;;
CURB WEIGHT (LBS) = 111
> PRINT "THIS IS";1;"EXAMPLE";>
THIS IS 1 EXAMPLE

>

Concatenated PRINT Zones

To print numbers and/or text with no separating
spaces, use the colon in the PR INT statement. Re
member that positive numbers will be preceded by
one space because of the missing plus sign. Thus,

> PRINT "CURB WEIGHT (LBS) =":A ;>
CURB WEIGHT (LBS) = 111

> PRINT "B IS NEGATIVE":B:A ~

B IS NEGATIVE-76.3 111

> PRINT "CONCAT":"ENAT":"ED";>

CONCATENATED

>
The following is not permitted in SUPER BASIC:

> PRINT "CURB WEIGHT (LBS) ="A ~

A comma, semicolon or colon must be inserted after
the text.

Modified PRINT Zones

The LOL command allows the user to set the
length of line desired and thus to modify the number
of zones into which the display medium is divided.
This command allows him to take advantage of wide
carriage terminals and to produce output specially
tailored to his needs.

The LOL command may be used as a direct com
mand only. Its form is

LOL n

where n is an integer which specifies the length of the
line in characters. The Carriage Return is included in
the number of characters. LOL affects all output,
whether to a file or to the terminal. Within each line,
LOL does not affect the normal operation of the

colon, semicolon, or comma in an output statement.

LOL remains in effect until another LOL com
mand is executed.

Example

>10 PRINT I: FOR I = 1 TO 14~

>RUN~

1 2 3 4 5 6 7 8 9 10 11 12 13 14

>LOL 10~

>RUN~

1 234

5 6 7 8
9 10 11

12 13 14

> 10 PRINT

>RUN~

I; FOR 1= 1 TO 14~

>

1 2

3 4

5 6
7 8
9

11

10

12
...... "'.II
I,) I

LOL 10 remains in effect.

CONCATENATION OF
PRINT AND INPUT

When text is printed immediately before an INPUT
command, the I NPUT question mark need not appear
on a separate line. A comma, semicolon, or colon at
the end of the preceding PR I NT statement will move
the question mark to the end of that line. SUPE R
BASIC will wait there for the input. For example,

> 10 PRINT "WHAT IS X": ~

> 20 INPUT X;)

>30 PRINT "X SQUARED= ":Xt2 ~

>RUN~

WHAT IS X? 15 ~

X SQUARED = 225

>

SUPER BASIC provides another control to concat
enate input with printed text. I nstead of a Carriage
Return, a DC may be typed after the last item .of data
typed in reply to an INPUT command. The input will
be accepted as usual, but the carriage will not be re
turned. Thus, any more text to be printed will appear
on that same line rather than on the next line.

1 - The paper is divided into zones of three spaces each. SUPER BASIC first skips two spaces and then, if not positioned at the be
ginning of a zone, will move to the beginning of the next zone.

Example 1

> 10 PRINT "B = ":.;>
> 20 INPUT B~

> 30 PRINT" (THIS IS THE BASE)";>

> RUN ;>
B = 1 13Dc (THIS IS THE BASE)

>
In this example, the user typed a DC instead of a

Carriage Return after the requested input. SUPER
BASIC then printed the text (THIS IS THE BASE) on
the same line.

Example 2

> 10 PRINT "WHAT IS R":()

> 20 INPUT R .;>
> 30 PRINT" S":;>

> 40 INPUT S ;>

> 50 PRINT" T":.;>

> 60 INPUT T;>

> RUN.;>
WHAT IS R1 -6Dc S14Dc T1 3 ()

>

51

FORMATTING WITH IMAGE

In addition to the conventional ways that SUPER
BASIC accepts input and prints output, the user can
specify his own format for input and output by using
"picture formatting". Format specifications can easily
be made in PRINT IN IMAGE and INPUT IN IMAGE
statements, as explained below. A more flexible, ad
vanced method of formatting which uses FORM rather
than IMAGE is explained under FORMATTING WITH
FORM on page 56.

PRINT IN IMAGE STATEMENTS

The user may specify the exact format of his out
put by typing special characters in a string and using a
PRINT IN IMAGE statement, as illustrated in the fol
lowing example.

> 10 INPUT A,B;>

> 20 S ="E FORMAT #######, INTEGER %";>

> 30 PRINT IN IMAGE S:A,B ~

> RUN :;>
? 200,5.67~

E FORMAT .2E+03, INTEGER 6

>
In this example, S is a string variable which speci

fies the picture format to be used. The # signs in the
string caused A to be printed in E format; the % signs
caused the value of B to be rounded and printed as an
integer. All other characters in the string (including
spaces) were printed as specified. The format symbols
and %, which are explained below, cannot be
printed as part of the picture format because of their
special significance.

A picture format also may be used to write on a
data file. For example,

PRINT ON 3 IN IMAGE S:X*Y,Z,W or
WRITE ON 3 IN IMAGE S:X*Y,Z,W

will print the values of X * Y,Z and W on file 3 in the
format specified by S.

The format in the above example is specified by a
string variable, S. A string expression or the format
string itself may also be typed after I N IMAGE. For
example, all of the following are acceptable:

PRINT IN IMAGE "%%%%%":A

PRINT IN IMAGE LEFT(S,3):B

PRINT IN IMAGE S+T:C where S = U%%%%%"
and T = "%%. %"

The picture format string can include any of the
specifications listed below. The numeric fields will
allow up to eleven significant digits of a number to be
printed (or seventeen digits, if the number is double
precision), depending on the number of symbols used
in the format strin~. If the specified format cannot be
used for the number to be printed (for example, if an
insufficient number of places is specified), an error
message will be printed.

Integer Field

One or more % signs denote an integer field. One %
sign must be typed for each digit of the number to be
printed. Negative numbers require an additional %
sign because of the preceding minus sign. A non
integer value will be rounded if an integer field is
specified for it. For example,

52

> A = 24, B = 174. 78 ~

> PRINT IN IMAGE "%% %%% %%%":A,-A,B;)

24 -24 175

>

Integer fields are right justified; that is, if more %
signs are specified than are necessary, leading spaces
will be printed before the number. For example, the
format "%%%" would cause 24 to be printed with one
space before it, and 4 to be printed with two spaces
before it.

Decimal Field

One or more % signs with an embedded decimal
point denote a decimal field. The num ber to be
printed will be rounded to the specified number of
decimal places. If the number is an integer or has
fewer decimal places than the format specifies, trailing
zeroes will be printed. Negative numbers require an
additional % sign because of the preceding minus sign.

Example 1

> 10 X= 175.65,Y= 11~

> 20 D = "%%%.%% %%%%.%% %%.%" ~

> 30 PRINT IN IMAGE D:X,-X,Y ~

> RUN:>
175.65 -175.65 11.0

Example 2

> 10 COMPLEX B ~

> 20 B = CMPLX ('216,-.43) ~

> 30 PRINT IN IMAGE ".%%% %.%%":8 ~
"'> R 111\1 -.. , .. _ .. ~
. 216 -.43

Since 8 is a complex number, two fields are re
quired for output.

Decimal fields are right justified; that is, if more %
signs before the decimal point are specified than are
necessary, leading spaces will be printed before the
number.

NOTE: Whatever type of numeric field is specified
in SUPER BASIC picture formatting, no more than
eleven significant digits of a single precision value can
be printed (no more than seventeen digits for double
precision). If a single precision number containing
more than eleven significant digits is printed with a
field of more than eleven symbols, the following will
occur:

• Integer places past the eleventh significant digit
will be filled with zeroes. For example, fourteen
%'s will print the number 12345678901234 as
12345678901000.

• Decimal places past the eleventh significant digit
will be replaced by blanks; for example, the
field "%%%%%%%%.%%%%%" (in which eight
%'s precede the decimal point and five follow
it) will print the number 12345678.90123 as
12345678.901 followed by two blanks.

The results are similar for printing a double preci
sion value using a format of more than 17 symbols.

E Format Field

There are two forms for an E format field:

1. A series of seven or more # signs.

2. One or more # signs, followed by a decimal
point and a series of five or more # signs.

If the first form is used, the number printed begins
with a decimal point. The second form allows the user
to specify the number of digits before the decimal
point. This is shown as follows:

> 10 C = 500 ~

> 20 PRINT IN IMAGE "#######":C ~

> 30 PRINT IN IMAGE "##.#####":C """"\
~

> 40 PRINT IN IMAGE "##.#####,':-C ~

> RUN;>
.5E+03
50.E+01

-50.E+01

>
In the first form of the E format field, tl minimum

of seven # signs is needed .

a) The first # is for the leading space or minus sign of
the mantissa (the number to the left of E).

b) The second # is for the decimal point of the
mantissa.

c) The third # is for the minimum of one digit for
the mantissa.

d) The fourth # is for the character E.

e) The fifth # is for the plus or minus sign of the
exponent.

f) The sixth and seventh #'s are for the two digit in-.
teger exponent.

I n the second form of the E format field, the #
signs are used as follows:

a) A minimum of one # before the decimal point is
for the mantissa.

b) Four #'s after the decimal point are for the expo
nential part.

c) The last # is for the leading space or minus sign of
the mantissa.

Notice that in the case of a positive number in E
format, the leading space must be accounted for and
always will be printed, while the integer and decimal
fields allow this space to be suppressed.

String Field

One or more % signs or seven or more # signs
may be used to denote a string field. The number of
symbols specified in the format determines how many
characters of the string will be printed. For example,
if A = "STRING", the format "%%%%%%" may be

used to print A. The format "######" cannot be
used, however, since it contains only six # signs.
In the following example

> 10 T = "CODE XV";)

> 20 PRINT IN IMAGE "%%%%%%%":T;)

> 30 PRINT IN IMAGE "%%%%":T,;)

> RUN ;>
CODE XV

CODE

the entire string is printed first, then only four char
acters of the string are printed.

A string field is left justified; that is, if more % or
signs are specified than the number of characters in
the string, trailing spaces will be printed.

Text In A Format

Any literal text may be included in the picture for
mat string. Every character is printed exactly as it ap
pears in the format, except for %, #, and a decimal
point that is

• immediately following or preceding a % or a #,
since then it is considered to be part of a field,
or

• part of a $ or * field. These fields and a restric
tion on printing $ and * symbols as literal text
are explained below ..

For example, the results of a program calculating
the perimeter P and the area A of a triangle may be
printed as follows:

110 S = "PERIMETER IS %%.%, AREA IS %%%.%"

120 PRINT IN IMAGE S:P,A

Floating $ Field

This field is used to specify that a $ is to be printed
immediately preceding an integer or decimal value (or
a string). For example,

53

> R = "$$$.$$ $$$.$$ $$$$":;>

> PRINT IN IMAGE R:2.045,.7,300 ~

$2.05 $.70 $300

>
These formats printed the specified values as the %

formats would have, except that the last of the pre
ceding spaces is replaced by a $. The $ always floats
to the position before the first digit. I f the $ field is
specified so that there are no preceding spaces (that
is, no room for the $), SUPER BASIC prints an error
message. For example, 23.06 cannot be printed with
the format "$$.$$".

The $ field must consist of four or more $ signs.
For example, "$$$" is not a legal field, nor is "$$.$",
since each of these contains only three $ signs. If
these illegal fields were included in a format string,
the characters would be taken as literal text and not
as field designators. For example,

> PRINT IN IMAGE "$%.%%":2.334 ~

$2.33 t~Field designators
> Text to be printed

The * Field

The * field is used to specify that * symbols are to
appear before the number (or string) in place of the
usual preceding spaces. For example,

> S = "**** **.** ***.**";>
> PRINT IN IMAGE S:23,8.625,3.2;>
**23 *8.63 **3.20

>
These formats printed the specified values as the %

formats would have, except that each preceding space
is replaced by a *. If the * field is specified so that
there are no preceding spaces (no room for a *),
SUPE R BASI C prints an error message. For example,
19.72 cannot be printed with the format "**.**".

The * field has the same restriction as the $ field.
A minimum of four symbols is necessary. In the fol
lowing example, "***" is interpreted as literal text
rather than a field specification and is printed as
specified:

> PRINT IN IMAGE "***%%":"NOTE" ~

***NO

>
The * field is useful for check protection; that is,

preceding *'s instead of spaces will prevent anyone
from adding to the beginning of the dollar amount on
a check.

54

Image Repetition

Since the "picture" specified in an I MAGE format
is the image of a line, a Carriage Return is supplied
when the format is exhausted. Thus, if more values
are to be printed than the number of fields specified,
more than one line of the same image will result.

Example 1

> PRINT IN IMAGE "%%": 16.3, 19 ~
16

19

>
Example 2

> 10 W ="% % %.%%".:;>

> 20 PRINT IN IMAGE W:I FOR 1=1 TO 8 ~

> RUN ;>
1 2 3.00

4
7

>

5
8

6.00

The Single # Field

A single # may be used to specify what is known
as "free form" output. Any number or string may be
printed with this field. Up to eleven significant digits
of single precision numbers (and up to fifteen of
double precision) will be printed. If the single # field
is used to print a string, the entire string will be
printed. For example,

> 10 A="STRI NG",B=68.9,C=666 ~

> 20 PRINT IN IMAGE "#":A,B,C,PI,DPI ~

> RUN :;>

STRING

68.9

666

3.14159265

3.14159265358979

> PRINT IN IMAGE "#":123456789012345 ~

.123456789E+15

>

NOTE: The single # field may not be used for out
put to a fixed record length random file. See Fixed
Record Length File Input. and Output Formats on
page 81.

INPUT IN IMAGE STATEMENTS

SUPER BASIC includes INPUT IN IMAGE state
ments as well as PRINT IN IMAGE statements. The
field symbols used for formatted input are the same
as those used for output.

Free Form Input Field

A single # may be used with INPUT IN IMAGE to
specify what is known as a "free form" input field.
This field will accept any string or numeric input.

All characters in the format string are printed
except those which may be interpreted as IMAGE
fields. For example, the # causes input to be accepted
just as it would be from an unformatted INPUT state
ment, except that the I NPUT question mark is sup
pressed. For example,

> 10 S="TYPE A: #".:;>

> 20 INPUT IN IMAGE S:A;>

> RUN;>
TYPE A: 5 ~

>

The text TYPE A: and a blank are printed. Notice
that just as in unformatted input, leading blanks,
commas, Line Feeds, or Carriage Returns typed be
fore the 5 would have been ignored, and AC, WC, or
QC could have been used to edit the input.

Three terminating characters are effective during
free form input of string and numeric data. They are
the comma, Carriage Return, and Control D. A fourth
terminating character, a space, is valid for numeric
input.

When more than one # field is included in a for
mat, intervening text between fields prints as soon
as a comma, Carriage Return, space, or DC is typed.
I nput to a # field appearing at the end of an
IMAGE must be terminated by a Carriage Return.
For example,

> 10 INPUT IN IMAGE "A=# B=# C=#":A,B,C~

> !FIRST WE USE A COMMA TO TERMINATE~

> RUN;>
A=7.3, B=6, C=19 ~

>! NOW, REMOVE SPACES FROM THE ;;>
>! FORMAT AND TERMINATE WITH A;>

> ! CARRIAGE RETURN;>
> 10 INPUT IN IMAGE "A=#B=#C=#":A,B,C;>

>RUN~

A=7.3 ~

B=6~

C=19.:()

>

If the spaces had not been removed when the Car
riage Return was used to terminate each field, a space
would have been printed before both B= and C=.

As with unformatted terminal input, Control 0 can
be used to terminate both string and numeric data.
For example,

> 10 S="TYPE X:# Y:# Z:#" ~

> 20 INPUT IN IMAGE S:X,Y,Z~

> RUN;>

TYPE X:15Dc Y:A STRINGDc Z:2 ~

End Of Image

Just as the Carriage Return is printed whenever an
output I MAGE is exhausted, the end of an input
I MAGE causes SUPE R BASIC to seek a Carriage Re
turn in the input; that is, all characters up to the next
Carriage Return are ignored, or skipped. 1

I t is for th is reason that a format such as

"A=# B=# C=#"

requires that the input to the last field be terminated
by a Carriage Return. If any other terminator is used,
the input will be accepted correctly, but since the end
of the IMAGE is then encountered, SUPER BASIC
looks for a Carriage Return and will not continue un
til one is typed. Using the Carriage Return to termi
nate the last field serves an additional purpose besides
termination; that is, it satisfies the end of IMAGE
scan.

I mage Rescan

If an input format contains fewer fields than the
number of variables listed in the I NPUT statement,

the format will be rescanned until all the variables
have been given values. This means that each time the
end of the IMAGE is encountered, SUPER BASIC
will seek a Carriage Return as usual, and then rescan
the input format from the beginning.

Example 1

> INPUT IN IMAGE "MONTH #DAY #":A,B,C,D~

MONTH 6,DA Y 17 ~

MONTH 12,DA Y 5 ~

>

55

Example 2

This example uses the % input field, explained
under Fixed Length Input Fields. If the data

12 16 43 ~

36 99 20 ~

is read from a file with the statement

30 INPUT FROM 2 IN IMAGE "%%":A,B

the value of A will be read as 12, all characters up to
the next Carriage Return will be skipped, B will be
read as 36, and another Carriage Return will be
sought. The format will be satisfied once the second
Carriage Return is seen, and SUPER BASIC will then
proceed with the next statement in the program.

Fixed Length Input Fields

The free form field, a single #, can be used for out
put or input of any number or string. The other
IMAGE fields, which use the symbols %, #(E format),
$, or *, are more restrictive; they will print or accept
only a specified number of characters. When these
fields are used, the width of each field is of prime im
portance. No more (and no fewer) than the exact
number of characters specified in each field will be
printed or accepted as input.

Example

- COpy TEST TO T ~

12,34

THIS IS A TEST

-SBASIC ~

> 10 STRING S,T ~

> 20 OPEN "TEST",INPUT,2 ~

> 30 INPUT FROM 2 IN IMAGE "%%%":S,T;>

> 40 PRINT S,T ~

> RUN;>
12, THI

>

Since the field %%% is used to read Sand T, exact
ly 3 characters are read from each line in the file.
First, the characters 12, are read and assigned to S;
then the end of the IMAGE causes SUPER BASIC to
seek a Carriage Return. The IMAGE is then rescanned
and the characters TH I are read and assigned to T.

1 - During either input from or output to a fixed record length random file, the end of an I MAGE format corresponds to the end
of a record rather than to a Carriage Return. See Fixed Record Length File Input and Output Formats, page 81.

56

Each of the fixed length fields can accept as input
any characters that it is able to print as output. Since
the numeric output fields print leading spaces if the
value printed is shorter than the field, the numeric
input fields will accept leading spaces. Any embedded
or trailing spaces read will be converted to O. Thus,
the field %%% reads 12 preceded by a space as 12,
and 12 followed by a space as 120. Also note that
when the % field is used, non-numeric input is con
sidered an error unless the variable has been declared
string. Any character is accepted as input to a string
variable when the % field is used.

When the fixed length fields are used to accept in
put from a data file, each non-field character in the
format causes whatever occupies the next position in

the file to be skipped during input. Only those charac
ter positions that are indicated as part of a field will
be examined. For example, if A=123 is read from a
data file with the format A=%%%, the value accepted
will be 123. The leading non-field characters in the
format cause the first two character positions of the
input (the A and the =) to be disregarded. The pur
pose of this feature is to enable data written on a file
with a particular I MAGE to be read with that same
IMAGE.

NOTE: The free form (single #) field is recom
mended for IMAGE input from the terminal. Termi
nal input with fixed length IMAGE fields should be
avoided.

FORMATTING WITH FORM

In addition to the line image type of picture for
mat produced by IN IMAGE, SUPER BASIC provides

a second type of format that uses IN FORM. The
structure of the statements is similar, that is,

PRINT IN FORM S:A,B

PRINT ON 3 IN FORM S:X*Y,Z

WRITE ON 3 IN FORM S:SQRT(A),B+C

INPUT IN FORM S:M,N

INPUT FROM 6 IN FORM S:D,Z

However, the format is field-oriented rather than line
oriented. The picture format string will not be an
image of the printed line, but will specify fields for
whatever will be printed, whether numbers, strings,
descriptive text, or blanks.

PRINT IN FORM STATEMENTS

Numeric Fields, String Fields,
And Blanks

The symbols used to specify numeric and string
fields are identical for IN FORM and IN IMAGE
statem~nts. However, the IN FORM decimal field
requires at least one % before the decimal point. Thus,
%.%% and %%. are valid fields, but .%%% is not.

Another major difference between the two types
of format statements is that when IN FORM is used,
blanks typed between fields in the format string serve
to separate the fields but will not be printed. For

example, if M = 12 and N = 56.88, the statement

PRINT IN FORM "%% %%.%%":M,N

will print the values of M and N with no spaces be
tween them. The blank in the above format serves
only to separate the field for M from the field for N.
To print blanks between numbers, use one or more
B's to denote blanks. Thus,

PRINT IN FORM "%% BBB %%.%%":M,N

,,'vill print the values of ~v1 and I'J ,,.,,ith at least thiee
spaces between them.

$ And * Fields

These fields used with PRINT IN FORM yield the
same results as when used with PRINT IN IMAGE ex
cept that the sign of negative numbers is not printed.
For example,

Field Prints IN IMAGE IN FORM

$$$$ -16 $-16 $16
***** ** -4.029 ***-4.03 ****4.03

Character And Field Replication

When I N Fa RM is used, the picture format can be
written in a "shorthand" notation; that is, replication
of characters and fields is permitted by using a multi
plier. The following chart gives several examples of IN
FORM character replication:

The Format May Be Typed As

"%%%" "3%"
"%%%%.%%%" "4%.3%"
"#######" "7#"
"##.#####" "2#.5#"
"%% BBBB %%.%" "2% 4B 2%.%"
"********** **" "10*.2*"

The user also may specify the number of times a
field is to be used. The form of this field replication is

N(format field)

where N is the number of times the field is to be
used.

Example 1

The format

"2(3%.2% B)"

is equivalent to

"%%%.%% B %%%.%% B"

Example 2

> 10 A = 543.66,B = 78.743,C = 345.788 ~

> 20 G = "2(3%.3% 4B) %%%";)

> 30 PRINT IN FORM G:A,B,C;)

> RUN;)
543.660 78.743 346

In this example, the field 3%.3% 4B is used twice
(to print A and B); then the field %%% is used to
print C.

Example 3

> PRINT IN FORM "3(3%)": 16,5,-1 ~
16 5 -1

This statement specifies three integer fields of
three symbols each, with no blanks between the fields,
and therefore is equivalent to

> PRINT IN FORM "3% 3% 3%":16,5,-1~

Example 4

The format

"20(4%.2% B 4(3% B)/)"

illustrating two levels of field replication, may be used
to print twenty lines, each with a decimal number and
four integer numbers. A / generates a Carriage Return
(see below). NOTE: Up to four levels of field replica
tion are allowed in a format.

Descriptive Text

When IN FORM is used, any literal text that is to
be printed must be enclosed in single quote marks to

denote a text field. l For example,

> 10 D = " 'X EQUALS' B %.6%"~

>20 X = PI/180~

>30 PRINT IN FORM D:X~

>RUN~
X EQUALS .017453

>

Carriage Return In A Format

57

Unlike a format used in an IN IMAGE statement,
no Carriage Return is given when the I N FORM for
mat is exhausted. Thus if fewer fields are specified
than the number of values to be printed, the format
will be repeated on the same line as shown below.

> 10 T ="% 2B %.% 2B":>

> 20 PRINT IN FORM T:I FOR 1=1 TO 5~

>RUN ~

1 2.0 3 4.0 5

>
A slash (/) can be used in a format to generate a

Carriage Return. Consecutive slashes may be used to
generate blank lines. Note the results when the for
mat above is modified to end with a / instead of 2B:

> 10 T = "% 2B %.%/" ~

> 20 PRINT IN FORM T:I FOR 1=1 TO 5;)

>RUN~

1 2.0

3 4.0

5

>
When printing a matrix IN FORM, use the / to gen

erate a Carriage Return at the end of each row. For
example,

> MAT INPUT A(3,3);)

? 1,3,-6,8,11,9,4,2,1 ;>

> MAT PRINT IN FORM "3(%% 2B)/":A ~

1 3-6

8 11 9

4 2 1

>
The Single #

A single # may be used with PRINT IN FORM to
specify what is known as "free form" format. Any
number or string may be printed with this field. Up to
eleven significant digits of a number will be printed.
If the free form format is used to print a string, the
entire string will be printed. For example,

1 - If the format string is enclosed in single rather than double quote marks, the literal text to be printed is enclosed in double
quotes.

58

> 10 A = "STRING"~

> 20 8 = 68.9 ;>
> 30 C = 666 ~

> 40 PRINT IN FORM "#":A,8,C,PI:;>

> RUN;>

STR I NG 68.9 666. 3.14159265

> PRINT IN FORM "#":123456789012345 ~

1.23456789E+14

>

The Single R

On output, the single R field prints the string value
in its entirety, followed by a Carriage Return. For
example,

> 10 A="GGG", 8="2XY", C="TESTC" ~

> 20 S="R R R" !SAME AS 3(R);>

> 30 PRINT IN FORM S:A,8,C ~

> RUN :;>
GGG

2XY

TESTC

>
Note that the format S cannot be typed as "3R",

since this is interpreted as "R R R", which is illegal.
S can be typed as "3 (R)" since this means 3 separate
fields of one R each. I n fact, in this example S in
statement 30 can be replaced by "R", since this for·
mat will be used repeatedly until all variable values
have been printed; that is, three times.

NOTE: During output to a fixed record length ran
dom file, the single R field writes one record on the
specified file; it does not follow the record with a
Carriage Return. Similar/y, during input from a fixed
record length random file, the single R field reads ex
actly one record. See Fixed Record Length File Input
and Output Formats, page 81.

INPUT IN FORM STATEMENTS

SUPER BASIC includes INPUT IN FORM state
ments as well as PR I NT I N FORM statements. The
field symbols used for formatted input are the same
as those for output.

Literal Text In The Format

No matter which input field is used, text in a
FORM input format is not printed on the terminal;
instead, each text character (or B, denoting a blank)
causes the next input character to be skipped. In other
words, only those character positions that are indi-

cated as fields will be examined. I ntervening text will
be ignored. For example, if the format

'''A=' 3%"

is used to read the input A=123, the value accepted
will be 123.

Output printed with a particular FORM can be
read with that same FORM. Keep this in mind while
learning formatted input: any input format will as
sume it is reading data created by an identical output
format. Thus,

IIIA=' 3%" ,

ignores two characters initially because it assumes that
the two characters that appear first (A and =, or any
other two characters) are not part of the actual input
value. The next three characters (no more, no fewer)
are assumed to constitute the input value, since exact
ly three characters would be printed using that same
field for output.

End Of Form

Unlike the end of an IMAGE input format, the end
of a FORM input format does not cause SUPER
BASIC to seek a Carriage Return. This is analogous to
the difference between an output I MAGE and an out
put FORM: the end of IMAGE always causes a Car
riage Return to be printed, while the end of FORM

does not.

To illustrate this, an example using the FORM
single # field (explained below) will be given.

""n DDII\IT 110-".
/' lUI 11 1 1 \I 1 u-. :;>
> 20 INPUT IN FORM "#":8~

> 30 PRINT II THIS IS THE 8ASE"~

>RUN~
8=17, THIS IS THE 8ASE

>
A comma is used to terminate the input to the #

field (17, the value of B). The end of the FORM is
then encountered, but a Carriage Return is not sought.
SUPER BASIC proceeds with the next statement in
the program.

Form Rescan

If an input format contains fewer fields than the
number of variables listed in the I NPUT statement',
the format will be rescanned from the beginning un
til all the variables have been given values. For exam
ple, the statement

INPUT FROM 2 IN FORM "4% 3%":A,8,C

accepts the value of A using the field 4% and Busing
the field 3%, encounters the end of the FORM, and
then rescans the format from the beginning, using 4%
to accept the value of C.

Carriage Return I n A Format

When a / symbol is used to designate a Carriage
Return in an input FORM, SUPER BASIC will seek
a Carriage Return when the / is encountered. All in
put characters up to the next Carriage Return will be
ignored. l This is done automatically at the end of
every input I MAGE. Examples using the / will be
shown below in the description of the various fields.

Free Form I nput Field

The single # may be used with INPUT IN FORM
to specify a free form input field. This field will ac
cept any string or numeric input. Input is accepted
just as it would be from an unformatted I NPUT state
ment except that the question mark is suppressed.
The same terminating characters are effective.

Example 1

> 10 PRINT "VALUE OF X=": ~
> 20 INPUT IN FORM "#":X ~
> 30 PRINT" Y=": ~
> 40 INPUT IN FORM "#":Y ~

>RUN~

VALUE OF X=32, Y=-7.51 ~

The colon after the text in each PR I NT statement
suppresses the Carriage Return that would otherwise
be printed there. A comma is used to terminate the
value of X; a Carriage Return terminates the value of
Y. After either value, any of the following characters
would be effective: comma, Carriage Return, space,
or DC.

Example 2

> 10 PRINT "R,S= It: ~

> 20 INPUT IN FORM "#":R,S ~

>RUN~

R,S= 6,STR3;>

The input FORM contains only one field, but two
variables are listed, so the format is used twice. The
result would be the same if this FORM were replaced
by "# #". Remember that blanks between FORM
fields serve only to separate fields.

Example 3

In this example, the FORM is rescanned because
only one field is specified but two variables are listed.

> 5 PRINT "INPUT:";>
> 10 F=tI#"~
> 20 INPUT IN FORM F:M,N;>
>30 PRINT~
> 40 PRINT "USING It: F ~
> 50 PRINT" M: ":M ~
> 60 PRINT" N: ":N;>

> RUN.;>
INPUT:
6 YEARS ~

USING #
M: 6

N: YEARS

Suppose line 10 is changed to

> 10 F="#/";>

Now the program is run for the new FORM F.

>RUN~

INPUT:
6 YEARS;>
11 MONTHS ~

USING #f
M: 6

N: 11

>

59

After 6 is read as the value of M, terminated by a
space, the / is encountered, causing all characters up
to the next Carriage Return to be skipped. When the
format is rescanned to read a value for N, the value
is read, starting from the beginning of the second line
of input, as 11.

NOTE: Either the free form (single #) field or the
single R field (a string input field discussed below) is
recommended for input in FORM from the terminal.
Terminal input with fixed length FORM fields should
be avoided.

The Single R

On input, the single R field reads all characters
(including spaces, commas, quotes, and Line Feeds)
up to the next Carriage Return. The Carriage Return
is read but is not included in the string. Control
characters are accepted as legal input except for AC,
wc, and OC, which will perform their usual editing
functions.

1 - During input from or output to a fixed record length random file, a / in a FORM format corresponds to the end of the record
rather than to a Carriage Return. See Fixed Record Length File Input and Output Formats, page 81.

60

For example, if the data input file numbered 1
contains the entries

FIRST LINE;>

2ND LINE OF INPUT;>

LAST,LlNE :;>

the statement

40 INPUT FROM 1 IN FORM "R":A(I) FOR

1=1 TO 3

will set A(J) equal to the Ith line in the data file.

To illustrate and compare Rand #, consider the
input

THIS IS;)

A TE,ST ~

X Y Z;>

The statement: Assigns:

INPUT IN FORM "R":A,B,C A="THIS IS"

B=" A TE,ST"

C="X Y Z"

INPUT IN FORM "#":A,B,C

or INPUT A,B,C

A="THIS IS"

B="A TE"

C="ST"

INPUT IN FORM "#/":A,B,C A="THIS IS"

or ,C B="A TE"

INPUT IN IMAGE "#":A,B,C C="X Y Z"

Character Specifies

D Digit; 0 (leading or em-
bedded) printed

y Digit; 0 replaced by

blank

Z Leading digit; leading 0
replaced by blank

0 Left adjusted number;
unneeded character po-
sitions suppressed

* Filling check protect

$ Floating $

S Floating sign

+ Sign if positive; floats

- Sign if negative; floats

PRECISE FORM CHARACTERS

The characters explained here provide the greatest
flexibility possible in formatting. The user can have
more precise control over input or output than the %
and # fields allow. A single field can use several dif
"ferent kinds of characters. I n addition to simple desig
nations such as integer, decimal, and exponential, the
precise FORM characters make possible such specifi
cations as integer with sign following, or exponential
with E suppressed and text embedded. Readability of
output can be enhanced, and data file storage
minimized.

Some of the characters described here have been
mentioned previously in connection with the simple
FORM characters, % and #, but the rules for using %
and # have not been modified. The new characters
explained here cannot be used in the same field as %
and #, but a FORM can be constructed which con
tains both simple fields and precise fields.

A summary of the two types of characters, field
and utility, is given below with an example of the use
of each field character. More detailed information fol
lows the summary.

Summary Of Field Characters

Each of the following numeric field characters can
be used to comprise a field by itself, such as 6S or
13D, but can also be concatenated with other charac
ters in the list to form a field, such as SDDD. NOTE:
Q can be used for output only.

Example

Field
Prints 1004 As

(or Reads 1004 From)

6D 001004

6Y 1 4

6Z 1004

60 1004
Output only

6* **1004

6$ $1004

6S +1004

6+ +1004

6- 1004

The following characters can be used only in conjunction with other field characters.
V and K can help save storage space in data files. NOTE: There can be only one decimal
point or V and one E or K per field.

Example
Character Effect Prints 1004 As

Field
(or Reads 1004 From)

Directs decimal seal ing; 40.00 1004.00
decimal point printed

V Same as above, but dec- 4DVDD 100400
imal point suppressed

E Directs exponential in- 3D.DESDD 100.4E+01
terpretation of rest of
field; E printed

K Same as above, but E 3D.DKSDD 100.4+01
suppressed

None of the following can be concatenated with any other field character. In order
for the decimal equivalent of a number to be read from hexadecimal, octal, or binary
input using these fields, the variable must be declared integer.

Example

Character Specifies
Field

Prints 1004 As
(or Reads 1004 From)

H Hexadecimal conversion 6H 0003EC

0 Octal conversion 80 00001754

W Binary conversion 24W 000000000000001111101100

String

The string field characters are listed in the table below.

Character Prints or Reads
Example

Field Prints As

X Any string character 6X "A2B4" A2B4
followed by two blanks

A A-Z and blanks only 6A "ABCD" ABCD
followed by two blanks

0 String characters 0-9; 60 "1004" 100400
blank replaced by 0

Y String characters 0-9; 6Y "1004" 1 4
o replaced by blank followed by two blanks

61

62

Summary Of Utility Characters

The characters listed in the following table do not print or accept values as do the field
characters. These utility characters affect the format rather than the actual transmission
and conversion of data. They can be used with any of the field characters summarized
above.

Character(s) Use
Field

Terminator?

space No use other than field termination Yes

B Prints blank on output; skips character on input No

'text' or Prints enclosed text on output; on input, skips No
"text" as many characters as are enclosed

/ Prints Carriage Return on output; seeks Carriage Yes
Return on input

\ Prints Line Feed on output; skips character on No
input

() Allow field replication by integer preceding the Yes
(. For example, 2(XA) is two fields, XA XA.
Four levels of nesting allowed.

[] Allow character replication by integer preceding No
the [. For example, 2[XA] is one field, XAXA.
No nesting allowed.

, Conditionally prints comma on output;l skips No
character on input

Further explanation of the precise FORM charac
ters will concentrate on their use in output formats.
The action of these characters when used to accept
input can be implied from this explanation, since any
input format will assume it is reading output created
by an identical output format.

Embedded Text And Blanks

Since neither quotes enclosing text nor B's denot
ing blanks cause field termination, text characters and
B's can be embedded in fields.

Field Termination

A space, /, (,), or the end of the FORM must fol
low each field to separate it from the next field, that
is, to terminate each field. This is extremely impor
tant since concatenation of field characters is per
mitted. For example,

> 10 PRINT IN FORM "40.00/": 16,25 ~

> 15 PRINT;:J

> 20 PRINT IN FORM "40. 00/": 16,25 ~

>RUN~

16.00

25.00
40.DD field used twice.

16.25 40. used to print 16; DD used to print 25.

>

1 - See Conditional Field Characters, page 65, Rule 4.

Example 1

> 10 PRINT IN

> 15 PRINT ~

> 20 PRINT IN

>RUN~

15 30

2 64

15 03

>

FORM "llV4BOO/": 15.3,2.64 ~

FORM "llV 4B ~Ol'': 15.3,2.64~

ZZV4BDD field used twice.

ZZV used to print 15.3; DD used to

print 2.64 (rounded to 3).

The first FORM used in this example contains
one numeric field with embedded B's. The FORM
in line 20 contains two numeric fields: ZZV, termin
ated by a space, and ~O. The 4B causes four blanks

to be printed between the output of these two fields.

Example 2

> 10 F="OO.OOJ(' x10t'saa/";>

> 20 !ONE FIELO WITH EMBEOOEO TEXT ~

> 30 PRINT IN FORM F:1.56 ~

>RUN~

15.60 X10t-1

>

Rounding Of Output

Consider the following example:

> PRINT IN FORM "00/00.0": 12.65,12.65;>

13

12.7

>

The value to be printed by each field is 12.65. The
DD field specifies no decimal places, so 12.65 is
rounded to the integer 13 when printed. The DD.D
field specifies one decimal place, so 12.65 is rounded
to 12.7 when printed.

All SUPER BASIC fields will round values on
output. If the integer part of a number has more
digits than specified in the field used to print it,
an error message will be given. Thus, DD cannot
print 123. But if there are more digits to the right
of the decimal point than there are field characters
to print the decimal part, the number will be rounded.
Thus, in the above example, DD specifies no decimal
part, so 12.65 is printed as 13. Similarly, DD.O
specifies only one decimal digit, so 12.65 is printed
as 12.7.

Subfields

In explaining the interaction of the numeric field
characters, the term "subfield" will be used. A sub
field is

a. that part of a field wh ich is used to print or
accept a number without its exponent, or

b. that part of a field which is used to print or
accept the exponent of a number.

Thus, in the FORM

"60 30.0ESOO 5$"

• 6D, 30.D and 5$ are subfields of type a. 6D
and 5$ also constitute fields in themselves;'30.D
does not.

• SOD is a subfield of type b. It is not a field
in this example; 3D.OESOO is a field.

63

It can be seen from this explanation that a field
will contain more than one subfield only when there
is an E or a K in the field. The first subfield will be
for the mantissa; the second will be the exponent
subfield.

D And Y In Numeric Fields

Output

The numeric field characters 0 and Y can be used
to print digits. 0 will print leading, embedded, and
trailing zeroes, while Y will replace each leading,
embedded, or trailing zero with a blank. For example,

Field Prints As

40 2307 2307
4Y 23 7

3D.3D 15 015.000
YDO.DOY 15.00

D.OESOO 600 6.0E+02
Y.YESYO 6. E+ 2

Since neither D nor Y will print the sign of a
number, the values in the middle column above can
be multiplied by -1 and the output (column 3) will
be the same as shown. NOTE: S, +, and - are the
only precise FORM characters that will print the sign
ofa number.

Input

o and Yare equivalent when used in input fields.
Both will accept only digits or blanks; blanks are
converted to zeroes. Any attempt to accept characters
other than digits and blanks will cause an error mes
sage to be printed. For example, either 3D or 3Y will
read the value 307 from either 307 or 3 7. Notice
that 0 and Y will accept neither a decimal point nor
the sign of a number.

As another example, consider the input

20660217

or

2 66 217

If A, B, C, and 0 are read from either of these input
lines with the FORM

"4(00)/" or "4(YY)/"

the values will be read as follows: A=20, B=66, C=2,
and 0=17.

64

Floating Versus Static: *, $, S, +, -

The occurrence of more than one successive *, $,
S, +, or - indicates that a character will "float" to
the position immediately to the left of the number
printed. The character that will float and an example
for each are listed here.

More
Than Floats Example

One Field Prints As

* * (fills any preceding 3* 6 **6
positions with *'s)

$ $ (like S, +, and -, 3$ 6 $6
leaves spaces in pre-
ceding positions)

S sign 3S 6 +6
-6 -6

+ + if positive number; 3+ 6 +6
space if negative -6 6

- - if negative number; 3- -6 -6
space if positive 6 6

On the other hand, a single occurrence of any of
the above field characters will not cause a character
to float to a certain position. I nstead, whatever would
otherwise float is simply printed in the position speci
fied. That position can precede or follow the number
printed.

Thus, more than one successive *, $, S, +, or -
implies that these are floating field characters, while
a single occurrence of these characters is "static" and
not floating.

Static Prints
Example

Field Prints As

* * *00 6 *06

$ $ $00 6 ~6
S sign ZZS -6 6-

+ + if positive num- +000 -102 102
ber; space if nega-
tive

- - if negative num- -yyy -102 -1 2
ber; space if posi-
tive

More than one static occurrence of *, $, S, +, or -
in a single subfield is permitted. For example,

> PRINT IN FORM "*$0000S*":-15 ~

* $15-*

> PRINT IN FORM "SDD.D3B+B-/": 16,13.2,-23;>

+ 16.0 +

+ 13.2 +

- 23.0

>

Note the following additional information on *, $,
S, +, and-:

• Floating * and $. When these characters are
used, at least one * or $ must be printed. If the
number of characters used is too few for an *
or $ to print, an error message will be given,
indicating that the fieid is too short. For ex
ample,

**** cannot print 1234, but can print -123
(sign is not printed)

$$.$$ cannot print 16.32

• The sign characters. S, +, and - are the only
precise FORM characters that will print the sign
of a number. The sign of an exponent subfield
can be printed only in front of the exponent.
After the exponent, a static occurrence of S,
+, or - will print the sign of the mantissa. For
example,

> PRINT IN FORM "SDDESDD3B+B-/":"l.

1600,-1600 ;;>
+ 16E+02 +

- 16E+02

> & /. refer to mantIssa

Conditional Field Characters

The conditional field characters are 0, Z, and the
floating characters (more than one successive *, $, S,
+, or -). Certain rules must be followed when con
catenating these with other characters. The rules are:

Rule 1.
Two different conditional field characters cannot
appear in the same subfield. For example,

$$$ZZZZ}-
****$$$$ not permitted

+++++.00

The field

QQQQESSS

is permitted because the O's constitute one sub

field and the S's constitute another.

A single *, $, S, +, or - can appear in the same

subfield as a conditional field character. Rule 1

does not prohibit this, since the conditional char

acters include only the floating and not the static

use of these symbols. Thus, the following fields

are permitted:

Field
FI ELD CHARACTERS USED
Static Conditional

*000 * 0

$- - -- $ floating -

5$.2$88+8- + and- floating $

SZZZE-OO mantissa:S mantissa:Z

exponent:- exponent:O

Rule 2.

The conditional field characters can be used before
but not after 0 or Y in a subfield. For example,

$$$DD~D
+++++YD permitted
SSS.DD

but

DDDD$j-$
YD+++++ not permitted
DD.SSS

A conditional field character (floating -) appears
after D in the field

DD.DK---

but since the D's are in one subfield and the -'s are
in another, this field is permitted.

Rule 2 does not prohibit such fields as

DDDS

6Y-

since here the Sand - are static, not floating, and
therefore are not conditional field characters.

Rule 3.
If conditional field characters are used to print
the decimal part of a number, the result will be
the same as if D's had been used instead. For ex
ample, the following pairs of fields are equivalent:

65

Field Same As

$$$$.$$ $$$$.00

SSSVSSS SSSVOOO

$- - -.-- $- - -.OD

ZZ.ZESOO ZZ.OESOO

Rule 4.
When the comma is used with conditional field
characters, a comma will print only if a digit of
the number being printed appears to the left of the
comma. When the comma is used with 0 or Y, a
comma prints unconditionally. For example,

Field Prints As

,.00 1203.6 ** 1,203.60
32.61 *****32.61

$$,$$$- 2341.7 $2,342
-28 $28-

SO,30,30.30 24369.6 +24,369.600
-315.01 -315.010

Z,ZZZ 1200 1,200
39 39

but ...

-DD,DDD.OD -1337.4 -01 ,337.40
16.25 00,016.25

Y,YYY 3297 3,297
8 8

H, 0, and W

H, 0, and W fields can be used to specify hexadec
imal, octal, and binary conversion, respectively. For
example,

> 10 C="6H 3B 80/ 24W" ~

> 20 N=7293891 ~

> 30 PRINT IN FORM C:N,N,N;)

>RUN~
6F4BC3 33645703

011011110100101111000011

>

Although H, 0, and W cannot be concatenated
with any field characters, they can be used with the
utility characters of FORM. In the following example,
blanks are embedded in a field of W's:

> PRINT IN FORM "8[3WB) ":652190 ~
000 010 011 111 001 110 011 110

>

66

Hexadecimal, octal, or binary input can be con
verted to decimal using H, 0, or W respectively, but
only if the input value is read into a variable that
has been declared integer. If the variable is undeclared
or declared string, the input value will be read as a
string. No other type of declaration is permitted.
For example, if the file HEX contains the data

0003EC

0003EC

then ...

> 10 INTEGER A ~

> 20 OPEN "HEX",INPUT,3~

> 30 INPUT FROM 3 IN FORM "6H/":A,B iJ
> 40 PRINT A:" (READ INTO A)" ~

> 50 PRINT B:" (READ INTO B)" ;>

>RUN~
1004 (READ INTO A)

0003EC (R EAD INTO B)

>

Since A is declared integer in this example, the
value read into A is the number 1004, which is the
decimal equivalent of hexadecimal 0003EC. Since B
is undeclared, the value read into B is a string com
prised of the input characters 0003EC.

String Fie!d Characters

The string field characters are X, A, 0, and Y. X
and A operate on strings only. X will print or accept
any string character, while A will print or accept only
the letters A through Z and blanks. 0 and Y act
similarly in string fields as they do in numeric fields.
Both operate on the characters 0 through, 9 and blanks
only. On output, 0 will print the string character 0 in
place of a biank, and Y will print a blank in place of
the string character O. On input, 0 and Yare equiva
lent; blanks are converted to zeroes. NOTE: Concaten
ation of X and A with any numeric field characters
other than D and Y is not permitted.

If 0 or Y is concatenated with any numeric field
characters, the field is numeric. Similarly, 0 or Y con
catenated with A or X results in a string field. If 0,
Y, or both are the only characters in a field, the
field type will be taken from the variable type. This
means that such a field can print a numeric or a
string value, but can accept a string value only if the
variable is declared string. For example,

- COPY DATA1 TO T ~

6 3
86 1

- SBASIC;>

> 10 STRING A,B~

>20 OPEN "DATA1",INPUT,1,;)

> 30 INPUT FROM 1 IN FORM "4D/4Y/":A,B~

> 40 PRINT:;>

>50 PRINT A,B~

>RUN~

6003 8601

>
Since A and B are declared string, 0 and Yare

interpreted as string field characters (line 30). Notice
that the blanks typed as input to A and B are con
verted to zeroes.

A string field will print or accept no more (and no
fewer) than the exact number of characters specified
in the field. On output, if the field width is longer
than the string to be printed, trailing spaces will be
appended to the string (trailing O's if 0 is used). If the
field width is shorter than the string to be printed,
only the specified number of characters will print.
For example,

> 10 T="8X 6X 3X", A="SUNDAY"~

> 20 PRINT IN FORM T:A,A,A ~

>RUN~
,SUNDAY

7
printed
by8X

I \
printed printed
by6X by3X

To illustrate string input fields, suppose that 0, R,

and S are read from

SUNDAY SUNDAYSUN

with the FORM "8X 6X 3X". The result would be
Q="SUNOAY ", R="SUNOAY" and S="SUN".

In the following example, only one character of
the input is read.

- COpy DATA2 TO T ~

YES

NNO

D1652840

- SBASIC;,)

> 10 OPEN "DATA2",INPUT,6 ~

> 20 ON ENDFILE(6) GO TO 70 ~

> 30 INPUT FROM 6 IN FORM "X/":A ~
> 40 PRINT "VALUE READ: ":A;,)

>50 PRINT ~

> 60 GO TO 30;)

> 70 CLOSE 6 ~

> RUN ;:>
VALUE READ: Y

VALUE READ: N

VALUE READ: D

>

The X in the format reads one character; the 1
causes all characters up to the next Carriage Return to
be skipped.

The most valuable use of A and D is to check the
composition of string input that must be of a certain
type (alphabetic, numeric, or a particular alphabetic
numeric combination). For example, if the input is
supposed to contain nothing but the characters A
through Z and blanks, and the field character A is
used, then any illegal input will cause an error message
to print.

The following example illustrates the use of X and
Y in printing the string returned by the DATE func
tion. DATE usually prints a string that looks like

p1/12, ,09:36,

I I 7
date two time

blanks

Consider the effect of printing this string with
the field Y2XY3XY 4X, which is equivalent to
YXXYXXXYXXXX. The Y's are situated so that
a leading 0 in either part of the date or in the hour
designation of the time will be replaced by a blank
when this field is used. For example,

> 10 PRINT DATE;>

> 20 PRINT IN FORM "/Y2XY3XY4X/":DATE;)

> 30 PRINT IN FORM "/Y2XY3X4BY4X/":DATE~

> 40 S=IIIDATE: 'Y2XYX\'TIME:'2XY4X/";>

> 50 PRINT IN FORM S:DATE;>

> RUN;>
03/20 09:24 Usual printout.

67

3/20 9: 24 No leading D's.

3/20 9: 24 Four extra blanks embedded.

DATE: 3/20 Text and Line Feed embedded.
TIME: 9:24

>

The X format is useful in entering strings which
contain quotes and commas. These characters nor
mally terminate the input, but are accepted as text
with the X format. For example,

> 10 STRING T;)

> 20 INPUT IN FORM "33X/":T;>

> 30 PRINT IN FORM "33X/":T ~

> RUN;,)

THIS IS A GOOD EXAMPLE, ISN'T IT?;>

THIS IS A GOOD EXAMPLE, ISN'T IT?

>

Carriage Return And Line Feed:
/ and \

The 1 symbol generates a Carriage Return on out
put. On input, 1 causes all characters up to the next
Carriage Return to be skipped. The 1 is a field termin
ator. Thus, the FORM "3X/3X/" contains two fields,
as illustrated below.

> 10 A="FIRST", B="SECOND";)

> 20 S="3X/3X/" lOR "2(3X/)";>

> 30 PRINT IN FORM S:A,B;>

>RUN~
FIR

SEC

>

The first field, 3X, prints three characters of the
string A. A 1 separates the field for A from the field
for B and causes a Carriage Return to be printed.
The second field, also 3X, prints three characters of
B and the subsequent 1 prints another Carriage Return.

The \ symbol (shift L on some terminals) generates
a Line Feed on output. On input, \ causes the next in
put character to be skipped. The \ is not a field termi
nator. Thus, the FORM "3X\3X\" contains only one
field.

68

Example

> 10 A="FI RST", B="SECONO"~

> 20 S="3X\3X\" lOR "2 [3X\] " ~

> 30 PRINT IN FORMS:A,B ~

>RUN ~
FIR

ST

SEC

ONO

>
Here the field 3X\3X\ is used twice: first to print

the value of A and then to print B. This field specifies
that after every 3 characters of each value, a Line
Feed will be printed. Since A is only 5 characters
long and 6 field characters are specified in the output
field, a trailing blank would normally be printed after
the value of A. However, since only a Line Feed
follows, there is no need to print the trailing blank,
so SUPE R BASIC does not do so. NOTE: The sup
pression of blanks before a Line Feed or a Carriage
Return applies to terminal output only.

Field And Character Replication:
() and []

Parentheses may be used to specify multiple use
of a field or fields. For example,

Equivalent:
3(00) and 00 00 00

3(3Z B) and 3Z B 3Z B 3Z B

2(AX 4X) and AX 4X AX 4X

The number preceding the (may be any integer.
If negative or zero, this number will cause whatever
is enclosed in the parentheses to be ignored. For
example,

> 05 PRINT~

> 10 PRINT "REPLICATION FACTOR IS -1" ~

> 20 PRINT IN FORM "0 2B 0 -1(2B 0)/": +
N FOR N=1 TO 4 ~
> 30 PRINT "REPLICATION FACTOR IS 0" ~

> 40 PRINT IN FORM "0 2B 0 0(2B 0)/": +
N FOR N=1 TO 4 ~

> 50 PRINT "REPLICATION FACTOR IS 1";)

> 60 PRINT IN FORM "0 2B 0 1(2B 0)/": +
N FOR N=1 TO 4:)

> RUN;)

REPLICATION FACTOR IS -1

1 2
3 4

REPLICATION FACTOR IS 0

1 2

3 4

The effective FORM when the factor is -1 or 0 is:

"D 28 DI".

REPLICATION FACTOR IS 1

1 2 3
4

>
The effective FORM when the factor is 1 is:
"D 28 D 28 DI':

Four levels of nesting are allowed. An example of
two levels of nesting is the format

"20(-4Z.00 B 4(-3Z B)/)"

which can be used to print twenty lines, each consist
ing of a decimal n,umber and four integers.

Character replication is denoted either by an inte
ger before the character or, if more than one charac
ter is to be replicated, by an integer before the first
square bracket enclosing the characters. NOTE: E, K,
., and V cannot be replicated. For example,

Equivalent:

4Z and ZZZZ

Y30 and YOOO

6[HB] and HBHBHBHBHBHB

$Z2[,3Z] and $Z,ZZZ,ZZZ

Nesting the brackets (such as 2[2[YD]B]) is not per
mitted.

If the number preceding either the character to be
replicated or the [is zero, the characters which other
wise would be replicated are ignored. For example,

"O[OB] 30/" is the same as "30/"

"1[OB] 30/" is the same as "OB 30/"

"2[OB] 30/" is the same as "0BOB 30/"

A minus sign followed by a number, if placed be
fore a character or a [, is interpreted as follows:

• The minus sign is interpreted as a static -. A -
will print if the output value is negative, and
a space will print if the value is positive.

• The number following the - is assumed to be
the number of times that the particular charac
ter or characters are to be replicated.

If 1=-2, STR (I)+"[OB] 3D!"

is equivalent to

"-2 [DB] 30/".

If 1=0, STR(I)+"[OB] 30/" is equivalent to "30/".

69

For example,

"-2[DB] 30/" is interpreted as "-DBDB 30/" .

The STR function may be used to create a variable
replication factor. For example, STR(I) may be con·
catenated to "[OB] 3D!".

Notice that [] differ from () in that using brack
ets results in a single field while parentheses act as
field terminators and thus result in more than one
field. Compare 2(XA) with 2[XA]. The former is
two fields, XA XA, while the latter is one field,
XAXA.

Examples Using Precise Form Characters

Example 1

This simple example lists the numbers 0 through 7 and their binary equivalents.
A space is printed before each binary digit. Notice that the FORM in line 10 prints
Carriage Returns, text, and blanks, but no variable values. There are only utility char
acters (not field characters) in the FORM.

>LIST;>
10 PRINT IN FORM "/' DECIMAL' 4B 'BINARY'I"
20 S="38 D 7B 3[BW]/"
30 PRINT IN FORM StJ#J FOR J=O TO 7
>RUN :>

>

DECIMAL
o
1
2
3
4
5
6
7

Example 2

BINARY
000
001
010
o 1 1
1 0 0'
101
1 1 0
111

In this example, numbers are accepted from the terminal, added, and printed (together
with the sum) in four different ways. The variable F, which is part of the formats used
(lines 80 and 90), is changed three times.

>Ll 5T:)
10 VAR = ZERO
20 DIM ACO: 100>
30 PRINT "ENTER THE AMOUNTS, TERMINATE WITH 'END'"
40 INPUT A(I) FOR 1=1 UNTIL STR(A(I-l» = "END"
50 F = "$8Z.ZZ-/"
60 5 = S+AeJ> FOR J=l TO 1-2
70 PRINT
80 PRINT IN FORM "7B"+F: A(J) FOR J=l TO 1-2
90 PRINT IN FORM "21'-'/'TOTAL: '''+F:S

70

>RUN :>
ENTER THE AMOUNTS, TERMINATE WITH 'END'
? 1 204 • 6 1 , - 36209 • 33-" 1 2 0 9 64 2 • 1 1 , 43 260 • 4 0" - 5 1 6 3 ~
? 307689.29"END::>

$ 1204.61
$ 36209.33-
$ 1209642.11
$ 43260.40
$ 5163.00-
$ 307689.29

TOTAL: $ 1520424.08

>!CHANGE TO FLOATING $ ~
>F="9$. $ $ -I" ~

>GO TO 70:>

$1204.61
$36209.33-

$1209642.11
$43260.40

$5163.00-
$307669.29

TOTAL: $1520424.08

>!CHANGE TO INCLUDE COMMAS~
>F="2C3$"]3$.$$-I'~~

>GO TO 70;)

$1,,204.61
$36,,209.33-

$1,,209,,642.11
$43,,260.40

$5,,163.00-
$307,,669.29

TOTAL: $1,,520,,424.06

>!CHANGE TO INCLUDE SPACES AND ALL SIGNS::>
>F="21:3$" 33$0$$BBS/" ;)

>GO TO 70;)

>

$1" 204.61 +
$36,209.33

$1,,209,,642.11 +
$43,,260.40 +

$5,,163.00
$307,689.29 +

Example 3

In this example, data is read from a file and printed on the terminal using a field of
D's. The first two characters of each line of input are skipped, as specified by BB. Then

50 reads five characters (which must be numeric), and a / causes all characters up to the
next Carriage Return to be skipped. The input is then printed using the same FORM; BB

prints two blanks, 50 prints five digits, and / prints a Carriage Return.

-COpy ADZ TO T ~

CA95112SAN JOSE
NY11423HOLLIS
NJ07047NOBERGEN
CA94040MTNVIEw
NJ07110NUTLEY
NM87544LOSALAMOS
CA90241 DOWNEY
CA94025MENLOPARK
NM87100A.LBUQUERQUE

00000

-SEA.SI C ;>

>LOAD SAMPLE ~
>LI ST ~
lOOP EN "ADZ II ~ I NP UT ~ 3
20 S = "BB5D/"
30 FOR I = 1 TO 1000
40 INPUT FROM 3 IN FORM SIN
50 IF N = 0 THEN GO TO 80
60 PRINT IN FORM S:N
70 NEXT 1
80 CLOSE 3

>

>RUN ;;>
95112
11423
07047
94040
07110
87544
90241
94025
87100

71

72

Example 4

This program will accept any string and print the string 10 characters per line. A Line

Feed is printed after every 10 characters, and a Carriage Return is printed at the end of

the string. The number to precede [10X\], which prints 10 characters and a Line Feed,
varies according to the length of the string and is computed in the FORM definition
(line 40). Notice from the i- and;) designations below that trailing blanks (those fol

lowed by only a Line Feed or a Carriage Return) are not printed. This is a feature of all

SUPER BASIC terminal output.

>LOAD DEMO;)
>LI 5T ~
10 STRING S
20 PRINT "TYPE A STRING OF ANY LENGTH:"
30 INPUT S
40 A = STR<INT(CLENGTHCS)-I)/I0»+"CIOX\]10X/"
50 PRINT IN FORM A:S
60 PRINT "ANOTHER:"
70 GO TO 30

>RUN ;)
TYPE A STRING OF ANY LENGTH:
? STRING ~
STRING
ANOTHER:
? THIS IS A STRING~
THIS IS A
STRING
ANOTHERt
? THIS IS THE THIRD STRING TtPED!!~
THIS IS TH

RING TYPED
! !
ANOTHER:
? ABCDEFGHI JKLMNOPQRSTUV\I)XYZ 4>
ABCDEFGHIJ
KLMNOPQRST
UVVJXYZ
ANOTHER:
? EB

INTERRUPTED IN 30
>

SECTION 7

FILES

Files are a convenient method of supplying a program with large amounts of data,

saving the results of the execution of a program, or giving commands directly to SUPER
BASIC. As many as four files can be used concurrently for input to or output from a

program. The data stored on these files can be in either symbolic or binary form, ex
plained below. In addition, both sequential and random access files are available. This

section describes the commands for using both sequential and random access files.

SUPER BASIC may be directed to take commands from a command file rather than
from the terminal. Command files are discussed in this section on page 89.

No matter what kind of file is being used, it must be opened before use with an OPEN
statement and closed after use with a CLOSE statement.

SEQUENTIAL DATA FILE INPUT AND OUTPUT

A sequential file is a file in which reading and writing must take place in the same

sequence that data is stored on that file. In other words, once the file is opened, the first
data item in the file must be read or written, then the second, and so on. Sequential file

input/output will thus prove much slower than random file input/output in many cases.
However, sequential files have the advantage of requiring less program overhead than ran

dom files.

OPENING A FILE

Before a data file can be read or written, it must be opened (and at the same time

given a number) with the command:

(

SYMBOLIC) (INPUT)
OPEN file name FOR or or AS FI LE n

BINARY OUTPUT

or the short form:

(

SYMBOLIC) (INPUT)
OPEN file name, or or, n

. BINARY OUTPUT

73

The file name must be.a string of characters l
. If a

literal file name is specified in the OPEN statement,
it must be enclosed in single or double quote marks.
If the file name is a string variable or expression, it
must not be enclosed in quote marks. See page 39
for a discussion of string expressions in the OPEN
statement.

truncated. The OPEN statement must also specify

whether the file is to be used as an input file or an

output file.

The file number n, which can be zero or any posi
tive numeric expression, is necessary in every OPEN
statement ·to specify which file the user is working

with, since he may have up to four files open at one

time. A file number that is not an integer will be

1 - See Appendix C for file naming rules.

Input or output files may be symbolic or binary.
Since data written on a binary file is not in the usual
character representation, but in internal machine code,
the file cannot be printed on the terminal (and be
meaningful). Binary form, however, is especially useful
if a program creates a large number of resu Its that are
to be used as input to another program. Using binary
data files can significantly reduce both the disk stor
age required for data and input/output computing

74

time. Matrix input and output from binary data files

using MAT commands is especially fast and should be
used in preference to other methods where practical).

NOTE: If the MAT PRINT or MAT WRITE command
is used to write on a binary file, the MA T INPUT
command must be used to read the same data.

Single variables and arrays must be declared before
reading their values from or writing their values on a
binary file, using any of the declaration statements

INTEGER, REAL, DOUBLE, COMPLEX, LOGICAL,
STR I NG, or TEXT. When reading values from a binary
file, the variables and arrays should be declared to be
of the same type as they were when written. Since the
amount of storage used for a value stored on a binary

file depends on its value type, SUPER BASIC cannot

know how many words to read unless this is specified
in a declaration statement2

•

When writing on a file, variables should be used
instead of expressions. For example,

70 REAL X

80 X=I+L*Bt2-SQRT(B)

90 PRINT ON 3:X

is better than

70 PRINT ON 3:I+L*Bt2-saRT(B)

NOTE: Formatted input and output (discussed
under FORMATTING WITH IMAGE, page 51, and
FORMATTING WITH FORM, page 56) can be used
with symbolic files only; it can never be used with
binary files.

When a file is opened for input, it need not be
specified in the OPEN statement as symbolic or

binary. If the word SYMBOLIC or BINARY is omit

ted, SUPER BASIC will check to see what type of file
it is and will read it as such. If the file type is specified
but does not match the file, an error message will be
printed.

When a file is opened for output, the user must
specify if the file is to be binary; otherwise, a sym
bolic output file will be written. Thus,

OPEN "BDATA",BINARY OUTPUT,M*N

will open for binary output the file BDATA, the file

number of which equals the value of M*N. The
following

OPEN "SDATA",OUTPUT,4

will open for symbolic output the file SDATA.

A file need not already exist to be opened for
output; the OPEN command will automatically create
a file of the specified name and type in the user's
directory.

NOTE: Opening a file initializes input or output at
the beginning of the file. Thus, with sequential files,
data must be read or written beginning with the first
location in the file. To read or write data beginning at
other than the first data item in a file, use the random
file commands discussed in RANDOM ACC ESS DATA

FI LES, page 77.

INPUT FROM A FILE

The command used to read data from a file takes

the form:

INPUT FROM n:variable list

where n is the input file number. For example,

10 OPEN 'AFILE',INPUT,2

20 INPUT FROM 2:X,Y,Z

reads three values from AFI LE and assigns them to

the variables X, Y, and Z, respectively.

The entries in a data file may be separated by com

mas or spaces, with a Carriage Return at the end of
each line of data. The entries can be numbers but not
expressions.

OUTPUT TO A FILE

To write on a file, use either of the equivalent

forms:

WRITE ON n: or PRINT ON n:

followed by a list of numbers, variables, or expres
sions whose values are to be written on the file, where

n is the output file number. For example,

80 OPEN "DATA 1",OUTPUT,3
85 OPEN "DATA2",BINARY OUTPUT,N
90 WRITE ON 3:p,a,R,W
95 WRITE ON N:A,B,C

Line 90 writes the values of the variables P, 0, R,
and W on the symbolic file DATA 1 (file 3). Line 95
writes the values of the variables A, B, and C on the
binary file DATA2 (file number equal to the value

of N).

CLOSING A FILE

After the last input or output operation is per

formed on a data file, the CLOSE command should

be used to close the file. NOTE: An. input or output
file is closed automatically after a RUN, a DELETE
ALL, ora return to the EXECUTIVE.

1 - MAT commands are discussed under MA TRIX ARITHMETIC, page 20.

2 - For the amount of storage reserved by each declaration statement, see Section 5, USING DECLARA TlON STATEMENTS.

Files to be closed are specified by their file num
bers in the CLOSE command. For example,

120 CLOSE 4,B-2
200 CLOSE 3

Closes files 4 and 8-2.
Closes file 3.

Once a sequential file has been read or written, it
can be read or rewritten only by closing the file and
opening it again. This restriction is avoided with ran
dom files, discussed on page 77.

If four files are open concurrently, any of them
may be closed with a CLOSE command so that other
files can be opened. Once a file has been closed the
number of that file may be used later to designate
another file.

NOTE: Files created during execution of a pro
gram remain after the program has terminated.

Example: Data File Commands

Twelve numbers are read from a file named
XDATA. The positive numbers are written on POSX,
the negative are written on NEGX, and zeroes are
ignored.

- COpy XDATA TO T ~

1,16,-4,6,-11,-2,30,-4,6,8,0,-7

- SBASIC ~

> 10 OPEN "XDATA",INPUT,4 ~

> 20 OPEN "POSX",OUTPUT,2 ~

> 30 OPEN "NEGX",OUTPUT,3 ~

> 40 FOR I = 1 TO 12 ~

> 50 INPUT FROM 4:X ~

> 60 IF X>O THEN WRITE ON 2:X;""1

ELSE IF X<O THEN WRITE ON 3:X; ~

>70 NEXT I ~

> 80 CLOSE 4,2,3 ~

>RUN~

> QUIT ~

- COpy POSX TO T ~

1 16 6 30

- COpy NEGX TO T:()

-4 -11 -2 -4

6

-7

DELETING A FILE

8

Files may be deleted within a SUPER BASIC pro
gram by using a form of the CLOSE command as
follows:

75

CLOSE "filename"

where filename is the name of the file to be deleted.

Both sequential and random files may be deleted
in this manner.

Before a file can be deleted, it must be closed with
the

CLOSE number

command, where number is the number given to the
file when it was opened.

Deletion of the file does not need to follow im
mediately after the CLOSE number command. In
fact, a file may be deleted in a program without ever
having been opened in that program.

Example

The file INMEAN is opened for symbolic input as
a sequential file. Calculations are performed using the
data, the file is closed, then deleted.

- COpy INMEAN TO T.;>

6.7,5.9,8.76

50.8,24.7,33

422.1,516.49,731.07

29.07,31.41,42.10

- SBA;;

> LOAD AVG~

> LIST;>
10 OPEN "INMEAN",INPUT,3

20 FOR 1=1 TO 4

30 INPUT FROM 3:A,B,C

40 PRINT (A+B+C)/3

50 NEXT I

60 CLOSE 3

70 CLOSE "INMEAN"

> RUN;>
7.12

36.166667

556.55333

34.193333

>RUN~

ERROR IN STEP 10:

FILE NAME NOT IN FILE DIRECTORY

> QUIT.;>

76

Note that the program cannot be executed a second
time because the file INMEAN has been deleted from
the user's directory.

Lines 60 and 70 above could have been combined
as

60 CLOSE 3,"INMEAN"

TESTING FOR END OF FILE

At any time after a file is opened, a command can
be given that will cause SUPER BASIC to transfer to a
specified statement when the end of the input file is
encountered. The form of the command is

ON ENDFILE(n) GO TO line number

where n is the input file number. The ON ENDF I LE
statement must be executed after the input file is
opened and before the INPUT statement on which
the test is to be made. For example, the program
shown above that reads twelve numbers from XDATA
can be generalized so that the exact number of data
values on the input file need not be known.

10 OPEN "XDATA",INPUT,4

20 OPEN "POSX",OUTPUT,2

30 OPEN "NEGX",OUTPUT,3

35 ON ENDFI LE(4) GO TO 80

40 FOR I = 1 TO 5000

50 INPUT FROM 4:X

60 IF X>O THEN WRITE ON 2:X;

ELSE IF X<O THEN WRITE ON 3:X;

70 NEXT I

80 CLOSE 4,2,3

When line 50 encounters the end of the input file
XDATA, a transfer to line 80 will be made, as speci
fied in the ON EN DF I LE statement. This program is
designed so that:

• If XDATA contains 5000 or fewer data values,
all values will be read.

• If XDATAcontains more than 5000data values,
only the first 5000 values will be read.

Note that the value of I upon exit from the FOR
loop is one greater than the number of data values
read from XDATA. Consider, as another example, the
following data file and program:

-COPY D TO T ~
123 4

-SBASIC ~

> 10 OPEN "D",INPUT,6 ~

> 20 ON ENDFI LE(6) GO TO 60 ~

> 30 FOR I = 1 TO 100 ~

>40 INPUT FROM 6:Y~

>50 NEXT I ~

> 60 PRINT "1=":1 <!
>70 PRINT "BUT":1-1:" Y VALUES WERE~

READ" ~

>80 CLOSE 6~

>RUN~
1= 5

BUT 4 Y VALUES WERE READ

>
The ON ENDFI LE statement is no longer effective

once the file being checked is closed. Thus, if
another file is opened for input as file 6 after the
above statements are executed, encountering the end
of that file will cause an error message unless an ON
ENDFILE statement is executed for the new file 6.

If more than one ON ENDFI LE statement is
executed for the same data file, the last transfer
specified will be made when the end of that file is
encountered.

NOTE: The ON ENDFILE statement can be used
with random as well as sequential file input.

THE TERMINAL AS A FILE

The terminal behaves exactly like a sequential file.
The rules for file input and output are applicable to

the INPUT, PR I NT, and WR ITE statements used for
terminal input and output.

In addition, the OPEN, CLOSE, INPUT, and
WR ITE statements may be used to refer to the ter
minal as a numbered file. For example,

OPEN "TEL", INPUT,3

INPUT FROM 3 IN IMAGE "#":A,B,C

CLOSE 3

If TEL is used in the OPEN statement, the terminal
is treated as an open file and is counted as one of the
four files which may be open concurrently. If the
terminal is used for input and output without being
opened in an OPEN statement, it is not considered
one of the four files which may be open concurrently.

The input question mark is not suppressed upon
execution of the command

INPUT FROM n:variable list

where TEL has been opened for input as file n. To
suppress the terminal input question mark and still
retain the advantages of free form input, use the single
#field in either IMAGE or FORM.

77

RANDOM ACCESS DATA FILES

SUPER BASIC allows random access disk files of
either symbolic or binary type in addition to the usual
sequential files. The user may read information be
ginning at any location in a file, write information on
any part of a file without destroying the rest of the
file, and erase selected parts of a file. He may specify
variable record length for a random file, or a fixed
record length of any desired length. These direct ac
cess features allow implementation of many applica

tions that are either impossible or take too long to
execute with sequential files. In particular, applica

tions requiring information retrieval and updating of a

small part of the total data file should use signifi
cantly less processing time when implemented with

random files.

BASIC CONCEPTS AND DEFINITIONS

Elements
The elements of a random file are simply the

"units" stored in the file:

• If a file is symbolic, an element is a character

in the file.
• If a file is binary, an element is a word (24 bits).

Records

Random files are considered to consist of records.
A record is a group of related elements that can be
retrieved as a single unit. For example, each record
in a payroll data file might consist of an employee
name, his hourly pay rate, and weekly deductions.

SUPE R BASIC random files may either have records
of a fixed length specified by the user, or have

records of arbitrary, variable length.

Record Length

The record length of a random file is the number
of elements (characters or words) in a record. Any

record length may be specified by the user when he
opens a random file.! If he does not specify a record

length in the OPEN command, his file is a variable

record length file; that is, it may contain records of
different lengths. If a record length is specified in the
OPEN command, the file is a fixed record length file

and may contain only records of the specified length.

1 - See Opening A Random File, page 78.

2 - See the Tymshare EDITOR Reference Manual for details.

Location

Each element in a variable record length file, and

each record in a fixed record length file, is assigned a
positive integer called the location of the element or
record. I f a random file has a fixed record length, the

first record is at location 1, the second at location 2,
and so on. In other words, a location is simply a record
number. If a random file has variable record length,
a location is an element number.

Example

Suppose we have the following records stored on
a symbolic variable record length file, and we are
considering a record to be any sequence of characters
terminated by a Carriage Return. Then

This record Begins at Location

THIS IS A STRING;) 1

456789 ~ 18

1 ~ 25
END ~ 27

Note that Carriage Returns and spaces are counted as
elements.

There are several ways to specify the location for
the next input or output operation to be performed

on a random file. These will be discussed later in this

section.

Multiple Blanks In
Sequential And Random Files

SUPER BASIC writes sequential files with multiple
blanks compressed, using a special multiple blank

character to abbreviate any sequence of multiple

blanks. Random files, on the other hand, are written

with multiple blanks not compressed. Do not attempt
to use a sequential file as a random file; doing so will
cause locations to be defined unpredictably due to the
multiple blank compression. If you have a symbolic

sequential file that you wish to use as a random file,
you may rewrite it in EDITOR with multiple blanks
not compressed by using the WR ITE"l- command 2

•

The file may then be used as a random file in SUPER

BASIC.

78

OPENING A RANDOM FILE

Like sequential files, random files must be opened (and assigned a number) before they
can be read or written. As many as four files may be opened simultaneously. Random files
must be opened in one of three different modes:

1. For input only, indicated by the word INPUT.

2. For output only, indicated by the word OUTPUT.

3. For both input and output, indicated by 10.

Opening a previously created random file for output does not erase the contents of the
file as does opening a previously created sequential file for output; neither does opening
a random file for input and output.

To open a random file, use the following form of the OPEN command, which may be
direct or indirect:

INPUT

{

YMBOLlC} or
OPEN "file name" FOR or RANDOM (r) OUTPUT AS FI LE n

BINARY or

10

Or use the equivalent short form:

INPUT

-r
YMBOLlC} or

OPEN "file name", or RANDOM (r) OUTPUT , n
BINARY or

10

NOTE: The file name must be enclosed in double or single quote marks unless it is a
string variable or expression. See page 39 for a discussion of string expressions in the
OPEN statement.

Here, n is the file number and r is the record length,
which must be enclosed in parentheses. Both nand r
may be constants, variables, or numeric expressions;
n must be zero or positive and r must be positive. If
either value is not an integer, it will be truncated.

opens the binary file named BR for random input as
file 3, and specifies a fixed record length of 50 words.

If the word RANDOM is omitted from the OPEN
command, the file is opened as a sequential file (no
record length may be specified). NOTE: A sequential
file may not be opened for 10. If the record length r is omitted, the file is a

variable record length file.

Example 1

> OPEN "RDATA" FOR SYMBOLIC RANDOM-.

10 AS FILE M*N ~

opens the symbolic file named RDATA for random
10 as a variable record length file, and assigns it file
number M*N.

Example 2

The command

10 OPEN 'BR',BINARY RANDOM (50) INPUT,3

When a file is opened for random input, it need not
be specified as symbolic or binary in the OPEN state
ment. If the word SYMBOLIC or BINARY is omitted,

SUPER BASIC checks to see what type the file is and
will read it as such.

When a file is opened for random output or for 10,
it will be opened as a symbolic file unless the user
specifies that the file is to be binary; attempting to
open a binary file for output or 10 without specify
ing the file type yields an error message. Thus, assum
ing there is no binary file in the user's directory
called SFI LE,

30 OPEN "SFILE",RANDOM (\+1) OUTPUT,5

opens the file named SFI LE for symbolic random out
put as file number 5. A fixed record length of 1+1
characters is specified.

If an old file is opened for random output or 10,
SUPER BASIC will check the file type against the type
specified in the OPEN statement. If they do not agree,
an error message will be given.

RANDOM FILE INPUT AND OUTPUT

Special forms of the INPUT FROM and PRINT
ON or WR ITE ON commands are available for random
file input and output. The commands to use are the
same for both variable and fixed record length files;
however, the rules for formatting input and output
differ for each type of file. In this section we first
present general information about the input and out
put commands, and then discuss separately the differ
ent rules for symbolic variable record length and
fixed record length input and output formats.

NOTE: Binary file input and output can never be
formatted, neither for variable or fixed record length
random files, nor for sequential files.

Input From A Random File

Data may be read from a random file that has been
opened for I NPUT or 10 with the following form of
the INPUT FROM command, which may be direct or
indirect:

INPUT FROM n AT I or s:variablelist
{

IN FORM}

IN IMAGE

Here, n is the file number specified in the OPEN
command, I is the location at which input is to
begin, and s is a string constant, variable, or expres
sion specifying the input format. Both n and I may be

numeric constants, variables, or expressions. The
location I must be positive; if its value is not an integer,
it will be truncated.

Example

Suppose the file FILE 1 contains the strings

STRING 1
STRING 2
STR,ING 3

79

then

10 OPEN "FILE1",RANDOM INPUT,4
20 INPUT FROM 4 AT 10 IN FORM 'R':S,T

reads the strings STR I NG 2 and STR,I NG 3 from
FI LE1 and assigns them to the variables Sand T,
respectively.

The location I need not always be specified in the
INPUT FROM command. SUPER BASIC keeps track
of the location at which input or output is taking
place and defines the next location to be affected by
an input or output operation, called the current
location, as follows:

The current location is always the location follow
ing the location most recently read or written, unless

• It is otherwise specified in an input or output
command or with the LOCATE command (dis
cussed on page 84);

• The file has been opened but nothing has yet
been read or written. I n this case, the current
location is location 1.

If the location has been omitted from an INPUT
FROM command, input begins at the current location.
Thus, the statements

> OPEN 'THIS',RANDOM 10,3.:;)

> INPUT FROM 3 IN FORM 'D':N ~

read the first digit in the file named TH IS, since
the current location is location 1 just after a file has
been opened. If we then execute the statement

> INPUT FROM 3 IN FORM 'D':M~

M is assigned a value equal to the second digit in the
file, since the current location is location 2 when this
statement is encountered.

Matrix data may be read from a random file using
MAT INPUT FROM in the same form as INPUT
F ROM given above.

Example

10 TEXT A(100):15
20 OPEN "MATDATA",RANDOM (15) 10,3

30 MAT INPUT FROM 3 AT 5 IN FORM
"15D/":A

This program dimensions the one dimensional
string array A and opens the file MATDATA for
RANDOM 10, specifying a fixed record length of
15 elements. Then it reads the 100 array elements

80

of A beginning at location 5 in the file. Since the
format 15D/ is used, and the specified record length
is 15, one record is assigned to each array element:
Record 5 is assigned to A(1), record 6 to A(2), etc.
The / is needed to indicate the end of each record,
see Fixed Record Length File Input and Output
Formats, page 81.

Output To A Random File

To write data on a random file opened for OUT
PUT or 10, use the following form of the WR ITE ON
or PRINT ON command, which may be direct or
indirect:

or n AT I or s:variable list rRITE
OJ {N FORM}

PRINT ON IN IMAGE

In the above form, n is the file number, I is the
location at which output is to begin, and s is a string
constant, variable, or expression specifying the output
format. As with INPUT FROM, n and I may be
numeric constants, variables, or expressions. This
command may also be preceded by the word MAT to
write matrix data on a random file.

Example

- COpy PAY TO TEL.;>

JONES, 2.50

BROWNE, 3.00

SWAN, 1.50

JOHANSEN, 4.75

THOMAS, 3.50

- SBASIC,;>

Location of beginning
of line l

•

1

13

26
37
52

> OPEN 'PAY',RANOOM 10,3:;>

> PRINT ON 3 AT 32 IN FORM '0.001':2 ~

> PRINT ON 3 AT 65 IN FORM "1-
'8X BO.00/':'STEVENS,',2.25 ~

> QUIT ~

- COpy PAY TO TEL ~

JONES, 2.50

BROWNE, 3.00

SWAN, 2.00 This line was updated.

JOHANSEN, 4.75

THOMAS, 3.50

STEVENS, 2.25 This line was added to
the file.

Notice that writing data at a location replaces
whatever was previously at that location, element for
element. Thus, 2.00 replaced 1.50 beginning at
location 32. This fact should be kept in mind
especially when writing on variable record length
files, since writing a record longer than an existing
record will replace elements in the following record.
For example, if we now execute

> PRINT ON 3 AT 32 IN FORM '000.001':2 ~

the resulting file will look like

JONES, 2.50

BROWNE, 3.00

SWAN, 002.00

HANSEN, 4.75

THOMAS, 3.50

STEVENS, 2.25

.... The first two characters in
this line (JO) were lost.
They were replaced by the
last two characters added to
the preceding line (0 and a
Carriage Return).

The location I need not be specified in the PR I NT
ON or WRITE ON command. If I is omitted, output
begins at the current location. Thus, using the file
PAY from the previous example the following may
occur:

> liST ~
10 OPEN 'PA Y',RANOOM 10,3

20 INPUT FROM 3 AT 26:S

30 IF S='SWAN' THEN PRINT ON 3 IN

FORM 'BO.OO': 2.5

> RUN ~

> QUIT ~

- COpy PAY TO TEL;>

JONES, 2.50

BROWNE, 3.00

SWAN, 2.50

JOHANSEN, 4.75

THOMAS, 3.50

STEVENS, 2.25

In line 20 the string SWAN was read from the file,
using unformatted input so that the terminating

1 - The Carriage Return at the end of the line is counted as one character in determining this location.

comma was read but not assigned to the variable S.
Thus, when the PRINT ON command in line 30 is
encountered, the current location is 31 (the location
following the comma). A blank and the number 2.50
are printed after the comma.

Variable Record Length File
Input And Output Formats

Both unformatted and formatted input and output
are allowed with symbolic variable record length ran
dom files; they work exactly as in the sequential case.
Thus, the following rules apply:

1. On input, the usual terminators (comma, space,
Carriage Return) may serve to separate the entries
on the data file.

2. When a data item is read using unformatted input,
all characters up to and including the next termina
ting character are read, even though the terminator
is not included in the value assigned to the variable
being read. Thus, the current location after an un
formatted input statement will be the location
following the last terminating character encoun
tered. For example, if the data

13.5,19.21

is stored beginning at location 38 on file 4, the

statement

> INPUT FROM 4 AT 38:A;>

assigns A the numeric value 13.5 and sets the cur
rent location to 43 (the location following the

comma).

3. On output, the comma, semicolon, colon, and
Carriage Return in the output statement have their
usual meanings.

Examples

> PRINT ON 4:A;> Prints the value of A
followed by a Carriage
Return on file 4.

> PRINT ON 3:13.2,25 ~

Prints 13.2 followed by
11 spaces followed by
25 and a Carriage Re
turn on file 3.

> PRINT ON 2 AT 38:A, ~

Prints the value of A
followed by as many
spaces as are needed to
fill a 15 space print
zone, at location 38 on
file 2.

81

4. All IMAGE and FORM formats allowed in sym
bolic sequential file input and output may be used
with symbolic variable record length random files
as well. These include free form and fixed length
formats in IMAGE and FORM, and the single R
field in FORM. All formats work just as they do
for sequential files.

Example

- COPY VRLDATA TO TEL~

JONES, 55 S. STREET

DAVIS, 3490 OCEAN DRIVE

THOMPSON, 90125 WASHINGTON BLVD.

ADAMS, 49 WEST WAY

- SBASIC;>

> 5 STRING Sl,S2 ~
> 10 OPEN "VRLDATA",RANDOM 10,5;>

> 20 INPUT FROM 5 IN FORM 'R':Sl,S2 ~

> 30 PRINT Sl ~

> 40 PRINT S2;>

> !FIRST WE USE THE SINGLE R IN "1
FORM (LINE 20);>

> RUN;;:>

JONES, 55 S. STREET

DAVIS, 3490 OCEAN DRIVE

> !NOW, CHANGE TO A FIXED LENGTH"l.

IMAGE ;>

> 20 1="%%%%%" ~
> 25 INPUT FROM 5 AT 1 IN IMAGE I:S1,S2~

> GO TO 20;;>

JONES

DAVIS

> !NOW, A FIXED LENGTH FORM;>

> 20 F="5X/" ~
> 25 INPUT FROM 5 IN FORM F:S1,S2;;>

> GO TO 20 ~

THOMP

ADAMS

>

Fixed Record Length File
Input And Output Formats

The structure of fixed record length files is quite
different from that of variable record length files.

82

Fixed record length files are designed to store and
retrieve records of a fixed, specified length with no
special terminating characters either within or at the
end of each record. Thus, all characters on a symbolic
fixed record length file are treated identically by
SUPER BASIC; commas, spaces, and Carriage Returns
are handled just like any other characters and should
be included on a symbolic fixed record length file
only if they are part of the data to be processed.
Most fixed record length files will consist of alpha
numeric data to be looked up and updated from
time to time as in an inventory control system. They
probably will not be listable in a readable form from
the EXECUTIVE, since if Carriage Returns are absent,
characters will overprint at the end of a physical line
on the terminal.

To make efficient handling of symbolic fixed length
records easy, SUPER BASIC provides special rules for
formatting input and output on fixed record length
files. These include:

1. Rules to insure that reading and writing data units
occur only within record boundaries, discussed in
Record Protection Features below.

2. Special rules for IMAGE and FORM formats to be
used to access all or part of any desired record,
including a format which can read or write
exactly one record. These are discussed in Special
Formatting Rules, below.

Record Protection Features

Since there are no terminators on fixed record
length files to delimit input, and since data written
on a record cannot be longer than the record length,
fixed length formats must be used to read or write
data on a fixed record length symbolic file. Thus,

• no unformatted input or output, and

• no free form (the single #) input or output

are allowed on fixed record length symbolic files.
Attempts to use unformatted or free form input or
output result in an error message.

If a fixed length format specifies a field length
longer than the space available in the current record,
SUPER BASIC will print an error message. Input or
output will not be allowed to continue into the next
record.

Example 1

The statements

10 OPEN "DATA6",RANDOM (10) 10,6
20 INPUT FROM 6 IN FORM '15D':X

yield an error message when executed, since the
FORM '150' specifies that more characters be read
(15) than there are in a record on the file (10).

Example 2

10 OPEN "DATA6",RANDOM (10) 10,4
20 INPUT FROM 4 IN FORM '50':X
30 INPUT FROM 4 IN FORM '6D':Y

These statements also yield an error message when
line 30 is executed. Since five digits have already been
read from the first record in the file, SUPER BASIC
is positioned at the sixth character in record 1 when
line 30 is encountered; thus, there are only five charac
ters left in the record to be read. The form '60' tells
SUPER BASIC to read six digits, so an error message
is printed; SUPER BASIC will not cross the record
boundary to read the sixth digit.

On output, when the format specifies a length
longer than the space left in the record, characters
will be written up to the end of the current record
even though an error message is printed. Thus, the
statements

10 OPEN "DATA6",RANDOM (10) 10,3
20 PRINT ON 3 AT 3 IN FORM

'15D':'012345678901234'

yield an error message when executed, but will print
0123456789 on record 3. Output is stopped at the
end of the current record, so that nothing is printed
on record 4.

Special Formatting Rules

Of the formats that may be used for fixed record
length file input and output, the FORM characters
R and I have special functions; I MAGE formats also
differ when used with fixed record length files. All
other FORM characters have the same functions as
they do with sequential and variable record length
files and will not be discussed here.

The Single R Field

The single R in FORM has a special meaning with
symbolic fixed record length files: It tells SUPER
BASIC to read or write a string up to the end of the
current record. If the user is positioned at the begin
ning of a record, the R field specifies that an entire

record be read or written. If, on the other hand, part
of the current record has already been read, the R
field specifies that the rest of the record be read or
written.

On input, the single R field in FORM simply reads
the rest of the current record as a string. Carriage
Returns are treated as any other character. Thus, if
the file FR L TEST contains the data

STRING 1STRING ~

2,123456 ~

the R field reads records of length 8 as follows:

> 5 STRING S(3) ~

> 10 OPEN "FRLTEST",RANDOM(8) '/NPUT,3 ~

> 20 INPUT FROM 3 IN FORM 'R':S(J) t
FOR 1=1 TO 3~

> 30 PRINT "THIS IS RECORD":I:":";S(J)"1

FOR 1=1 TO 3~

>RUN~
THIS IS RECORD 1: STRING 1

THIS IS RECORD 2: STRING
i

A Carriage Return is the last character in record 2.
2

THIS IS RECORD 3: ,123456
I

A Carriage Return is the last character in record 3.

>

On output, the R field writes the specified string
as the rest of the current record. If the string to be
written is longer than the space available in the cur
rent record, characters are omitted from the right of
the string. If the string to be written does not fill the
current record, trailing blanks are printed to fill the
record.

Example

The statements

10 OPEN "RTEST",RANDOM(10) 10,4
20 S='01234567899999',T='STRING'
30 PRINT ON 4 AT 13 IN FORM 'R':S,T

print 0123456789 as record number 13, and STR ING
followed by four blanks as record number 14.

The / I n A Form Format

On both input and output, the I in a FORM corre
sponds to the end of the record with fixed record
length files.

To illustrate the rules for using the I, we assume
that the symbolic file MAT has been opened for ran
dom 10 with the statement

OPEN "MAT" FOR RANDOM(30) 10 AS FILE 2

83

We suppose that this file contains a 100 by 3 matrix
A consisting of 300 strings of length 10 each with
three strings per record (record length equals 30).

On input from a fixed record length file, the I in a
FORM format causes SUPER BASIC to seek the end
of the record. Thus, for the file assumed above, the
FORM '10B10XI' may be used to read the middle
string of any record;the matrix element A(67,3) could
be read with the command

INPUT FROM 2 AT 67 IN FORM

'10B10X/':A(67,3)

assuming the records are stored beginning at location
1 in the file. The 10B causes the first ten characters
in the record to be skipped, the 10X causes the next
ten characters to be read and assigned to A(67,3) and
the I causes SUPER BASIC to seek the end of the
record, thus skipping the last ten characters. The
current location is set to 68 after execution of the
statement.

On output to a fixed record length file, the I
causes an entire record to be read or written and the
current location to be set to the next record number.
If the record is not filled when the I is encountered,
trailing blanks will be printed to fill the record. For
example, the statements

S='P648910500',T='P769185439'

PRINT ON 2 AT 5 IN FORM '10X 10X/':S,T

print Sand T followed by ten blanks as record num
ber 5. If the data to be printed is longer than the
record length, it will be cut off on the right. Thus,

S='ABCDEFGHIJKLMNOPQRSTUVWXYZ123456

PRINT ON 2 IN FORM '30X/':S

prints ABCDEFGHIJKLMNOPQRSTUVWXYZ1234
at the current location on file 2.

Thelmustbeused in FORM to read or write across
a record boundary in a fixed record length file; failure
to use it results in an error message. Thus, the state
ment

40 MAT PRINT ON 2 IN FORM '3(10X)/':A

is legal, but using '3(10X)' is not, since, in writing
the entire matrix A, this statement then attempts to

write more than one record without indicating the
end of the record. Similarly,

30 FOR 1=1 TO 100

55 INPUT FROM 2 IN FORM '3(10X)/':A(J,J)

FOR J=1 TO 3

84

80 NEXT I

is legal, but using the FORM '3(10X)' in statement 55
would result in an error message.

This rule does not apply if the current location
is specified for each input or output statement, since
specifying the location tells SUPER BASIC to begin
a new record. (The location may be specified either
in each input or output statement or with the LOCATE
command discussed below.) Thus, the loop

30 FOR 1=1 TO 100

55 INPUT FROM 2 AT I IN FORM

'3(10X)':A{I,J) FOR J=1 TO 3

80 NEXT I

is legal.

Image Formats

When used for fixed record length file input and
output, an IMAGE format acts as a record image
rather than a line image. Thus, SUPER BAS!C will
automatically seek the end of the record being read
when an input I MAGE is exhausted, just as it auto
matically seeks a Carriage Return with input from
sequential and variable record length files. Any
characters remaining in the record are skipped.

Example

Suppose the file ITEST contains the data

RECORD ONERECORD TWO

then,

> 10 OPEN 'ITEST',RANDOM (10) 10,2 ~

> 20 STRING X,V ~

> 30 INPUT FROM 2 IN IMAGE"l-

'%%%%%%':X,V lOR FORM '6%/';>
> 40 PRINT X,V;>

>RUN~
RECORD RECORD

>
The last four characters in each record are skipped.

On output, SUPER BASIC always assumes that the
end of the IMAGE specifies the end of the record and

will set the current location to the next record num
ber when the IMAGE is exhausted. If the number
of characters specified by the I MAG E format does not
fill the record, trailing spaces are printed. Thus,

> PRINT ON 2 AT 3 IN IMAGE v
'%%%%%%':'RECORD' ~

where file 2 is the same as in the previous example,
prints RECORD followed by four blanks as record
number 3.

If the IMAGE specifies a length longer than the
number of positions remaining in the current record,
an error message is printed; the data written is cut
off at the end of the record.

SETTING THE CURRENT LOCATION:
THE LOCATE COMMAND

Instead of specifying the current location in the
input or output command, the user may specify the
current location by using the LOCATE command.
This command, which may be direct or indirect, has
the following form:

LOCATE / ON n

It tells SUPER BASIC to perform the next input or
output done on file number n at location number I.
The location number / is, as usual, an element num
ber for a variable record length file and a record
number for a fixed record length file; its value must

be a positive integer. Both nand / may be numeric
constants, variables, or expressions; non-integer values
will be truncated.

Examples

> LOCATE 6 ON 3;>

sets the current location to location 6 on file number
3.

45 LOCATE (J+K)/2 ON M*N

sets the current location to the (truncated) value of
(J+K)/2 on file M*N.

NOTE: The LOCATE command a/ways sets the
position function POS(n) to 1.

THE POS(n) FUNCTION
WITH RANDOM FILES

In the case of random files, POS(n) specifies the
position within the current record at which the next
input or output operation on file n will be performed,
instead of the number of print positions from the
beginning of the line.

Example

For a fixed record length file with record length
3 opened as file 2:

10 LOCATE 12 ON 2 Sets the current location
to record 12 and POS(2)
to 1.

20 INPUT FROM 2 IN FORM 'X':S
Reads one element from
record 12 and sets POS(2)
=2, assuming this statement
is executed just after state
ment 10 above.

Because of the flexible record structure allowed
with variable record length files, SUPER BASIC must
make certain assumptions in setting the position func
tion with these files. These are as follows:

• Whenever a Carriage Return is encountered in
reading or writing on file n, POS(n) is reset to 1.

• The command

LOCATE I ON n

assumes location I contains the first character of
some record and sets POS(n) to 1.

Example

- COPY VRLDATA TO TEL ~

JONES, 55 S. STREET

DAVIS, 3490 OCEAN DRIVE

THOMPSON, 90125 WASHINGTON BLVD.

ADAMS, 49 WEST WAY

-SBASIC ~

> OPEN "VRLDATA",RANDOM 10,3;>

> LOCATE 21 ON 3 i>

> PRINT 'POSITION IS':POS(3).;:>
POSITION IS 1

> INPUT FROM 3 IN FORM '5X':S;)

> PRINT 'AFTER READING ':S:' POS"l

IS': POS(3) ~
AFTER READING DAVIS POS IS 6

>! CURRENT LOCATION IS NOW 26~

> LOCATE 26 ON 3;>

> PRINT 'CURR LOC. STILL 26, NOW POS"l

IS': POS(3) ~
CURR LOC. STILL 26, NOW POS IS 1

> INPUT FROM 3 IN FORM 'R':S ~

85

> PRINT' CARRIAGE RETURN IS SEEN, SO "1-
POS IS': POS(3) ~

CARRIAGE RETURN IS SEEN, SO POS IS 1

>

THE LOCATION FUNCTION: LOC(n)

The user may determine the current location of an
opened random file by executing the LOC function, of
the form

LOC (n)

The single argument n is the file number of the file
whose location is desired. The value returned by the
LOC function is the current location on file n; that is,
the next location to be affected by an input or output
operation on file n.

Example

> 10 OPEN "FRL", RANDOM(50) 10,5 ~

>20 LOCATE 7 ON 5~

> 30 PRINT "CURRENT LOCATION IS": LOC(5);>

> 40 INPUT FROM 5 IN FORM 'R':X ~

> 50 PRINT "NOW, CURRENT LOCATION"l-

IS": LOC(5) ~

>RUN~
CURRENT LOCATION IS 7

NOW, CURRENT LOCATION IS 8

>

86

In this example, the file is a fixed record length
file; thus, location numbers are record numbers. After
record 7 is read in line 40, the current location increases
by 1.

NOTE: When reading from or writing on a fixed
record length file, the current location does not
change until the entire record is read or written.
Thus, if a LOC function is executed while the pro
gram is in mid-record, the value returned is the location
of the record being processed. For example,

> 10 OPEN "FRL", RANDOM (10) INPUT,3 ~

> 20 INPUT FROM 3 IN FORM '5D': N ~

> 30 PRINT "NOW WE ARE READING"l-

RECORD 1":;>

> 40 PRINT "SO THE CURRENT LOCATION"l-

IS": LOC(3) ~

> 50 INPUT FROM 3 IN FORM '5D': M :;>
>60 PRINT~

> 70 PRINT "WE HAVE FINISHED READING"l

RECORD 1";>

> 80 PRINT "SO THE CURRENT LOCATION-.

IS": LOC(3) ;>
> RUN;>
NOW WE ARE READING RECORD 1

SO THE CURRENT LOCATION IS 1

WE HAVE FINISHED READING RECORD 1

SO THE CURRENT LOCATION IS 2

>

THE SIZE FUNCTION: SIZE{n)

The size of an opened random file may be obtained
by using the function

SIZE(n)

where the argument n is the number of the file whose
size is to be computed. The function returns the size
of file n, defined as follows:

• If the file is of variable record length, the size is
the location of the last character (or word if the
file is binary) written on the file.

• If the file is a fixed record length file, the size is
the location, or record number, of the last
record written on the file.

Example

Suppose the file RDATA contains the following
data:

012479

653721

598743

Then the SIZE function yields the following:

> 10 OPEN "RDATA",RANDOM(7) INPUT,2 ~

> 20 Y=SIZE(2) ;)

> 30 PRINT "FIXED RECORD LENGTH: "1-
SIZE =":Y ~

> 40 CLOSE 2:;>

> 50 OPEN "RDATA", RANDOM INPUT,3;>
> 60 Y=SIZE(3) ~

> 70 PRINT "VARIABLE RECORD LENGTH: ~

SIZE =": V:;;

> RUN:;>
FIXED RECORD LENGTH: SIZE = 3

VARIABLE RECORD LENGTH: SIZE = 21

ERASING PART OF A FILE:
THE ERASE COMMAND

To erase an area of a random file, use the ERASE
command, directly or indirectly. It has the general
form

ERASE n FROM 11 TO 12

where n is the file number, 11 is the first location to be
erased, and 12 is the last location to be erased. The
command erases all data from 11 to 12 , inclusive.

NOTE: Data may be erased from random files
opened for OUTPUT or 10, but not from random
files opened for INPUT.

Example

30 ERASE 3 FROM 1000 TO 1560

erases the contents of file 3 from location 1000 to
location 1560, inclusive.

The ERASE command writes blanks in all locations
erased. Thus, erasing a portion of the file does not
change the file size, with the following exception.
If locations are erased from the end of the file, the
size is changed to the last location not erased. For
example, if SIZE(2)=3469 and the command

ERASE 2 FROM 3000 TO 3469

is executed, SIZE(2) will then become 2999.

87

EXAMPLE: A DICTIONARY FOR A VARIABLE RECORD LENGTH FILE

The user of random files will often want a diction
ary for a particular file, containing pointers to the
records in the file. In the case of variable record
length files, it is almost necessary to have a dictionary
containing at least the location of each record in the
file, so that the user will know where to begin acces
sing a record. The first program presented here illus
trates creating such a dictionary. Using as input a file
containing only the data records (names and addresses
in this case), it creates a new file containing a diction
ary in the first 200 locations of the file and the data
records in the rest of the file. Note that much more
space is used for the dictionary than is actually

needed, to permit adding to the data records and
dictionary without requiring total restructuring of the
file. SUPER BASIC prints blanks between the last
location in the dictionary and the first data record at
location 201. If the dictionary eventually becomes
full, the data must be moved to allow more space for
the dictionary and the entries in the dictionary must
be recomputed.

-COpy DIR TO T ~

Note the use of the functions LOC and SIZE, and
the command LOCATE, as well as of the commands
for random file input and output.

After creating the dictionary, we illustrate using
the dictionary to access records.

MR. JOHN B. CAREY~285 COTTLE AVENUE, CAMPBELL
MRS. LESLIE FISHER,1964 HAMPTON DRIVE,DANVILLE
MR. CARL LARSON,985 SOUTH 9TH STREET, SAN JOSE
MR. DALE MOSS~1650 SARATOGA AVENUE, SARATOGA
MR. ~OHN REY~106 FORMA~ STREET,CAMPBELL
MR. DANIEL TORRES,24 SCHARF AVENUE, LOS GATOS
MISS DONNA WILKES,315 SOUTH 3RD STREET, SAN ~OSE
MR. MICHAEL YOUNG,60 WILSON ROAD, CHESTER
MR. HENRY C. ZIMMEF.,15 JACKSON STREET,PALO ALTO

-SBAS! C ~

>LOAD DCT ~
>LI ST;>
10 OPEN "DIR",RANDOM 10,2 ! INPUT FILE
20 OPEN "RDIRtI,RANDOM IO~3 ! OUTPUT FILE WITH DICTIO~ARY
30 INTEGER A(200)
40 STRING S
50 LOCATE 201 ON 3
60 FOR 1=1 UNTIL LOC(2)=SIZE(2)+1 ! LOOP TERMINATES ON END OF FILE
70 INPUT FROM 2 IN FORM 'R'tS
80 A(I)=LOC(3) ! ARRAY A CONTAINS DICTIONARY ENTRIES
90 PRINT ON 3 IN FORM 'R':S
100 NEXT I
110 LOCATE 1 ON 3
120 PRINT ON 3 IN FORM 'DDDD/'IA(J> FOP. J= 1 TO 1-1
130 CLOSE 2 .. 3
>RUN~

>QUIT ~

88

-COpy RDIR TO T ~

0201
0246
0293
0339
0383
0423
0468
0516
0557

,.-----------) .
MRS. LESLIE FISHER~1964 HAMPTON DRIVE~DANVILLE
MR. CARL LARSON~985 SOUTH 9TH STREET~SAN JOSE
MR. DALE MOSS~1650 SARATOGA AVENUE~SARATOGA
MR. JOHN REY~106 FORMAN STREET~CAMPBELL
MR. DANIEL TORRES~24 SCHARF AVENUE~LOS GATOS
MISS DONNA WILKES~315 SOUTH 3ED STREET~SAN JOSE
MR. MICHAEL YOUNG~60 WILSON ROAD~CHESTER

This is location 201. The first data
item in the file overprints since
SUPER BASIC prints 155 blanks
between the last en try in the diction
ary and the record at location 201.

MR. HENRY C. ZIMMER~15 JACKSON STREET~PALO ALTO

>LI ST ~

Now that the dictionary has been created, it may be used to determine the location of
any record in the file. For example, if RDI R has been opened for INPUT or 10 as file 2,
the statements

30 INPUT FROM 2 AT 5*N-4 IN FORM 'DDDD/':L

40 INPUT FROM 2 AT L IN FORM 'R':S

will read the Nth record in the file, for any integer N. This is illustrated in the following:

10 OPEN "RDIR"~RANDOM 10 .. 2
20 FOR N=I UNTIL LOC(2) = SIZE(2)+1
30 INPUT FROM 2 AT 5*N-4 IN FORM 'DDDD/':L
40 INPUT FROM 2 AT L IN FORM 'R':S
50 PRINT 'RECORD':N:' AT':L:' IS: ':5
60 NEXT N
>RUN~
RECORD 1 AT 201 15: MR- JOHN B. CAREY~285 COTTLE AVENUE~CAMPBELL
RECORD 2 AT 246 IS: MRS. LESLIE FISHER~1964 HAMPTON DRIVE~DANVILLE
RECORD 3 AT 293 IS: MR. CARL LARSON,985 SOUTH 9TH STREET~SAN JOSE
RECORD 4 AT 339 IS: MR. DALE MOSS~1650 SARATOGA AVENUE~SARATOGA
RECORD 5 AT 383 lSI MR. JOHN REY~106 FORMAN STREET~CAMPBELL
RECORD 6 AT 423 IS: MR. DANIEL TORRES~24 SCHARF AVENUE~LOS GATOS
RECORD 7 AT 468 151 MISS DONNA WILKES~315 SOUTH 3RD STREET~SAN JOSE
RECORD 8 AT 516 15: MR. MICHAEL YOUNG~60 WILSON ROAD~CHESTER
RECORD 9 AT 557 15: MR. HENRY C. ZIMMER~15 JACKSON STREET#PALO ALTO

>

COMMAND FILES

It is possible to instruct SUPER BASIC to take its
commands from a file rather than from the terminal.
Simply create a file containing all the commands
(direct or indirect) which are to be executed. Type
the commands into the file exactly as they would
normally be given from the terminal.

Using Command Files

In SUPER BASIC, specify that a file is a command
file by using the OPEN statement with the * symbol
in place of a file number. For example,

OPEN "file name" FOR INPUT AS FILE *

or the short form,

OPEN "file name",INPUT,*

This statement can be executed directly or indirectly.
When executed directly, it causes commands to be
taken from the file immediately. However, when exe
cuted indirectly, this statement does not interrupt
program execution. Instead, it specifies that at the
next program pause or stop, commands will be taken
from the command file.

The file name must be enclosed in double or single
quote marks unless it is a string variable or expression.
See page 39 for a discussion of string expressions in
the OPEN statement.

As an example of using this statement directly,
consider the file C2 which contains the commands

LIST

RUN

PRINT "NOW, QUIT AND LOGOUT"

QUIT

LOGOUT

and is used as follows:

-SBASIC ;>
> LOAD COMPLEX.;>

> OPEN "C2",INPUT, * ;>
Command taken from C2:

10 COMPLE?< X,V,Z,P

20 READ X,V,Z

30 P=(X+V)*Z

40 PRINT "PRODUCT IS":P

50 DATA 5,1,4,3,2,-6

LIST

PRODUCT IS 42, -46 RUN

NOW, QUIT AND LOGOUT PRINT "NOW,

QUIT AND

LOGOUT"

CPU TIME: 1 SECS

TERMINAL TIME: 0:2:57

PLEASE LOG IN:

QUIT

LOGOUT

89

Notice that the command file in the above example
includes an EXECUTIVE command (LOGOUT) as
well as SUPER BASIC commands. Any commands
that can be typed at the terminal can be included in a
command file that is opened in SUPER BASIC.

The system will take its commands from the
command file until

• The end of the command file is reached, which
causes the system to return to taking commands
from the terminal, or

• Another OPEN file name, INPUT, * statement
is executed to specify a new command file
(the old command file is closed automatically).
If the file name specified is "TE LETVPE" (or
"T" or "TEL"), the system will return to taking
commands from the terminal. The statement
CLOSE *, which closes the old command file,
assumes that the terminal is the new command
file, and is therefore equivalent to OPEN
"TEL", INPUT, *. NOTE: When the terminal
is opened as the command file, it is not
considered as one of the four files that can be
open simultaneously in SUPER BASIC.

When a command file is opened indirectly, the
next program pause or stop causes commands to be
taken from the file. If it is a PAUSE statement that
causes this transfer of control, a subsequent GO in
the command file will result in a return to the
statement following the PAUSE. For example, sup
pose the file TEST contains the commands

PRINT "WE ARE IN TEST"

PRINT "NOW, THE GO COMMAND"

GO

PRINT "BACK IN TEST!"

PRINT "NOW, CLOSE *"

CLOSE *

This command file is opened with an indirect
statement:

- SBASIC;>
> 10 OPEN "TEST",INPUT,* ~

> 20 PRINT "MAIN PROGRAM";>

> 30 PRINT "NOW, A PAUSE" ~

90

> 40 PAUSE ~

> 50 PRINT "BACK IN MAIN PROGRAM!";>

> 60 PRINT "NOW, THE PROGRAM END".;>

>RUN~
MAIN PROGRAM

NOW, A PAUSE

PAUSE AT 40

WE ARE IN TEST

NOW, THE GO COMMAND

BACK IN MAIN PROGRAM!

NOW, THE PROGRAM END

BACK IN TEST!

NOW, CLOSE *

>

First, a PAUSE in the main program causes com
mands to be taken from TEST. A GO in the command
file results in a transfer to line 50 (the statement fol
lowing PAUSE). Then the program end is encountered
and commands are again taken from TEST. The
CLOSE * statement returns control to the terminal
(as would an OPEN "TEL", INPUT, * statement) and
SUPER BASIC prints a >.

To prevent the PAUSE AT 40 message from
printing in this example, line 40 can be replaced by

40 STOP (or 40 END)

and the GO in the command file replaced by GO TO
50. The transfer of control will be the same but no

messages will print except those that are specified in
PRINT statements.

Input data will be read from the command file if
the I NPUT statement is of the form

INPUT FROM *: variable list

The statement

INPUT variable list

always accepts input from the terminal only. For
example, consider the command file

LOAD D

LIST

RUN

7

CLOSE *

This command file, named COM, is used as follows:

- SBASIC.;>

> OPEN "COM",INPUT, * ~

5 PRINT

10 PRINT "A=":

20 INPUT A

30 PRINT

40 INPUT FROM *:B

50 PRINT "THIS IS B:":B

A=? 15;>

THIS IS B: 7

>

Command taken

from COM:

LOAD D

LIST

This is the pro

gram stored in

D.

RUN

Here, input is

taken from the

terminal.

The value of B

was read from

COM.

CLOSE *

The file name is enclosed in quotes in the OPEN
statement. Input is taken from the command file only
when the INPUT FROM * statement is executed.

The TCP Function

The TCP function is used to indicate whether a
command file is open. It returns zero if no command
file is open and a non-zero integer if a command file
is open. The TCP function requires no ~rgumcnt.

Example

> LIST ;?
100 PRINT "NO COMMAND FILE OPEN."

110 PRINT "TCP =":TCP

120 OPEN "XYZ",INPUT,*

130 PRINT "COMMAND FILE IS OPEN."

140 PRINT "TCP =":TCP

150 CLOSE *
160 PRINT "COMMAND FILE CLOSED."

170 PRINT "TCP =":TCP

>RUN~
NO COMMAND FI LE OPEN.

TCP = 0

COMMAND FILE IS OPEN.

TCP = 3

COMMAND FI LE CLOSED.

TCP = 0

>

91

SECTION 8

SUBROUTINES, PROGRAMMER DEFINED FUNCTIONS,

FUNCTION SUBROUTINES

SUBROUTINES

When a part of a program is repeated several times
in different places, it can be programmed more effi
ciently as a subroutine. Subroutine statements are
written only once but can be used many times from
any place in the main program.

GOSUB AND RETURN

The command used to transfer to a subroutine may
be executed directly or indirectly. Its form is GOSUB
followed by the line number of the first statement of
the subroutine. The GOSUB command is similar to
GO TO followed by a line number in that it transfers
unconditionally to another part of the program. GO
SUB differs in that it will not go beyond the end of
the subroutine, which must be indicated by a RE
TURN command. If the GOSUB command was exe
cuted indirectly, the return will be to the statement
following the one in which the GOSUB command was
given. If GOSUB was executed directly, SUPER
BASIC will simply stop when it reaches the end of
the subroutine.

The following example of a small subroutine shows
two sections of the main program in which the GO
SUB command is used.

10 S = 3

20 GOSUB 400

30 PRINT H,P,X

100 S = 7

110 GOSUB 400

120 Z = 3*H+P/X

400 H = S*SOR(2),P = 2*S+H

410 IF P< = 10TH EN X = 1 ELSE X = 2

420 RETURN

When this program is run, line 20 instructs SUPER
BASIC to transfer to the subroutine beginning at line
400. When the RETURN command at the end of the
subroutine is reached, a return is made to line 30 (the

line following the GOSUB command). Similarly, when
the subroutine is called later from line 110, the return
will be to line 120.

As an example of the GOSUB command used di
rectly, suppose that the above program has been
loaded into SUPER BASIC. A direct GOSUB can be
used to execute only the subroutine for a particular
value of S as shown below.

>S=4~

> GOSUB 400 ~

A subroutine can contain a GOSUB statement
which calls either another subroutine or itself. NOTE:
A GO TO statement should not be used within a sub
routine to transfer out of the subroutine before the
RETURN command is reached.

Example 1

40 X = SIN(Y+Z)

50 GOSUB 200

60 PRINT X

200 0 = X+R/S

210 IF 0<.5 THEN RETURN

220 PRINT "0 =";0

230 GOSUB 500

240 RETURN

92

500 V = Q+R/S

510 PRINT "V =";V

520 RETURN

The subroutine beginning at line 200 contains a
GOSUB command which calls another subroutine.
The program continues in order until it reaches the
GOSUB 500 command. A transfer is then made to the
subroutine beginning at line 500. Note the effect of
the RETURN commands in this program: Line 520
causes a return to line 240, which in turn causes a
return to line 60 (the statement following the GOSUB
200 command).

Example 2

10 INPUT A

20 IF A#O THEN GOSUB 1000

30 B = 1/COS(A)

1000 A = 1/SIN(A/3)

1010 IF A>O THEN RETURN

1020 GOSUB 1000

1030 RETURN

Line 20 instiUcts SUPER BASIC to execute the
subroutine beginning at line 1000 if A is not zero. The
specified subroutine assigns a new value to A (on line
1000), and a return is made to line 30 if A is positive.
If A is not positive, the GOSUB 1000 command in
line 1020 is executed. The subroutine will continue to
call itself in this way until A is positive. Then a return
will be made to line 1030, which in turn causes a re
turn to line 30.

Note that a subroutine which calls itself must con
tain at least one condition on wh ich a transfer out of
the subroutine can be made (such as line 1010 above);
otherwise, an infinite loop will result.

ISOLATING SUBROUTINES

Subroutines must be isolated from the main pro
gram; this is not done automatically by SUPER
BASIC. The sequence of steps in the program should
be designed so that the statements of the subroutine
are executed only after a GOSUB command.

Either of the indirect commands STOP or END
may be used to isolate subroutines. These commands
cause execution of the program to terminate. All sub
routines can be placed at the end of the main program
and separated from the main program by a STOP or
END statement as illustrated below:

10! MAIN PROGRAM BEGINS

100 GOSUB 700

690 STOP! MAIN PROGRAM ENDS

700 ! SUBROUTINE BEGINS

790 RETURN! SUBROUTINE ENDS

NOTE: A STOP or END statement may be used
anywhere in a program to terminate execution. Re
member that no such command is required at the end
of an entire program, since SUPER BASIC stops auto
matically as soon as there are no more statements to
be executed.

COMPUTED GOSUB
STATEMENT

A computed GOSUB statement, which may be exe·
cuted directly or indirectly, causes transfer to one of
several different parts of a program depending on the
value of a specified expression.

The form of the computed GOSUB statement is

ON expression GOSUB line!, line2, ...

where line!, line2, ... is a sequence of line numbers to
which the program will transfer depending on the
value of the expression. If the value of the expression
is 1, the program will transfer to the subroutine start
ing on line!; if the value is 2, the transfer will be to
the subroutine starting on line2, and so on. After the
subroutine is executed, the program returns to the
next statement in order after the computed GOSUB
statement.

Example

> 10 FOR A = 1,2,3~

> 20 ON A GOSUB 100,200,300 ~

> 30 PRINT "NEXT" ~

>40 NEXT A~

> 50 STOP ~

> 100 PRINT "SUBROUTINE AT 100,A =":A ~

> 110 RETURN ~

> 200 PRINT "SUBROUTINE AT 200,A =":A ~

> 210 RETURN ~

> 300 PRINT "SUBROUTINE AT 300, A =":A ~

> 310 RETURN ~

>RUN~

SUBROUTINE AT 100, A = 1

NEXT

SUBROUTINE AT 200, A = 2

NEXT

SUBROUTINE AT 300, A = 3

NEXT

>

93

PROGRAMMER DEFINED FUNCTIONS

The defined function as explained in this section
can consist of only a single line. Multiple line func
tions (function subroutines) are described below
under FUNCTION SUBROUTINES.

In addition to the standard SUPER BASIC func
tions, the user may define any other function which
he expects to use a number of times in a program.
The indirect command DEF is used for this purpose.
The names of programmer defined functions must
contain three letters, the first two of which must be
FN. The form of the DEF statement is shown below;
the programmer defines a function which will calcu
late the sine of an angle in degrees.

10 DEF FNS(X) = SIN(X*PI/180)

NOTE: If more than one DEF statement is used
with the same function name, the current definition
is the last one executed.

An argument used in defining a function (X in the
above example) is called a parameter. A programmer
defined function can have either no parameters or any
number of parameters (separated by commas and en
closed in parentheses). Parameters are "dummy" argu

ments; that is, when a defined function is used, cer
tain specified values will temporarily replace the
parameters where they appear in the function defini
tion. For example,

> 10 DEF FND(A,B) = 4*A*B+At2.;>

> 20 Y = FND(2,1);>

> 30 PRINT Y;>

> RUN;>

12

>

When the defined function was used in line 20, 2
and 1 replaced A and B respectively in the function
definition in line 10. Thus, Y was set to (4X2X 1)+22

,

or 12.

A parameter can have any variable name, including
the name of a variable used in the same program,
without affecting the value of the program variable
having the same name. I n other words, the parameters
are local to the function definition. Continu ing from
the above example, if the lines

5 A = 6,B = 4

35 PRINT A,B

are written into the program, the A and B parameters
will still be replaced by 2 and 1 (as specified in line
20). Once the function has been evaluated however, A
and B are restored to their former values as assigned
in line 5. Therefore, line 35 will print 6 and 4 as the
values of A and B.

Any variables in a function definition which are
not parameters of that function simply take the val
ues assigned to them in some previous part of the pro

gram; that is, these variables are global. For example,
consider the following defined function:

35 DEF FN K = 6.21083*Rt2+W

When the function FN K is used, the variables Rand W
must have been assigned values previously; these val
ues will be used in evaluating FNK.

When a defined function with parameters is used in
a program, any argument (number, variable, or expres
sion) can replace the parameters in the definition. For
example, the following is permitted:

60 DEF FNP (X,Y,Z) = X/2-4*Y*Z+Zt2

65 B = FNP(3,a,Rt3)

94

When line 65 is executed, the parameters X, Y, and Z
are set temporarily to the values of 3, 0, and R3.

NOTE: When any statement of a program is deleted
or modified in any way, aI/ programmer-defined func

tions become undefined.

The defining expression in a DE F statement may
include other programmer defined functions as well as
parameters, program variables, and standard functions.
For example,

40 DEF FNR(A) = TAN(B)+At2/W

50 DEF FNF(X,Y,Z,K) = 2*Y*Z+LOG(X)-FNR(K)

60 G = FNF(M,N,P,Q)

In this example, the DE F statement on line 50 calls
for another function previously defined by the pro
grammer, namely, FNR on line 40. When line 60 is
executed, the current values of M,N,P, and 0 will be
transferred directly to the defining expression of line
50. The value of G will be set to

2*N *P+LOG (M)-TAN (B)-Qt2/W

Note that when a DEF statement uses one or more
previously defined functions, it is possible that param
eters will be listed which do not appear directly in the
defining expression. For example,

100 DEF FNY(Q) = A+6*EXP(Q)

105 DEF FNZ(A) = FNY(2)tB

110 M = FNZ(5)

The parameter A of the function FNZ does not ap
pear in the defining expression, but it specifies that
when FNY(2) is evaluated as a part of that function,
A will be replaced temporarily by the argument of
FNZ (5 in line 110). Thus A is local to FNZ even
though it is global (assigned the value of the program
variable A) in the function FNY.

NOTE: Functions may not be recursive; that is,
a function may not be defined using itself. For ex
ample, the fol/owing is an illegal, recursive function.

DEF FNA(X) = FNA(X-l)*X

FUNCTION SUBROUTINES

The use of DEF is not limited to those cases in
which the value of the function can be computed
within a single statement. SUPER BASIC allows more
complicated programmer defined functions, consisting
of several lines (as a subroutine) and returning a single
value (as a function). The combined use of DEF and
GOSUB makes this possible, as illustrated in the fol
lowing example.

10 DEF FNT(X,Y): GOSUB 400

55 PRINT FNT(5,.6)

75 Gl=FNT(1,.73)

100 STOP !END OF MAIN PROGRAM

400 IF X<4 THEN 420

410 X=ABS(X)+Y

420 A=X-Yt3+2

430 RETURN A

The function FNT with parameters X and Y is
defined as the subroutine beginning at line 400. The
subroutine ends with the statement RETURN A,
which indicates that the value of A as calculated in
the subroutine will be returned when FNT is used.

The usual rules regarding programmer defined
functions apply here:

• The function name must contain three letters,
the first two of which must be FN.

• The function may have either no parameters or
any number of parameters.

• Parameters are dummy arguments; when the
function is used, certain specified values replace
the parameters where they appear in the func-

tion definition. But since the parameters are
local to the function, program variables may
have the same names as parameters and will not
be affected when the function is used.

• Variables in the function definition which are
not parameters simply take the values previous
ly assigned to them in the program.

The last two statements of the function subroutine
in our example program are

420 A=X-Vt3+2

430 RETURN A

The RETURN at the end of any function subprogram
can be followed by a variable or expression. Thus
statements 420 and 430 above can be combined as
follows:

420 RETURN X-Vt3+2

The only difference between the two methods is that
the first creates an additional program variable, A.

Remember that only the parameters listed in the
DEF statement are local to the function. Any other
variables appearing in the function subroutine are
global; that is, they are equivalent to variables with
the same names that appear outside the subroutine.
For example, if the parameters X and Y were referred
to in line 76 of the example program, the error
message VARIABLE HAS NO VALUE would be
printed unless X and Y previously had been given
values in the main program. But if A were referred to
in line 76, the value of A would be that value assigned
it in the function subroutine when FNT was used in
line 75. In other words, A would equal 1-.733+2.

RETURN may also be used alone at the end of a
function subroutine; it need not be followed by a
variable or expression. This is done when a function
is needed simply to execute a group of statements
without returning a value, although in fact, a value of
o is returned. For example,

30 DEF FNC(C1,C2,S,T):GOSUB 700

50 Z=FNC(2,3,1,X)

75 Z=FNC(3,4,2,Y)

690 STOP

700 FOR 1=1 TO 20

710 IF A(C1,I»A(C2,1) THEN 730
720 D(S)=A(C2,I),E=T+1

730 NEXT I

740 RETURN

95

When the function FNC is used in line 50 above,
the subroutine starting at line 700 is executed. This
subroutine assigns values to an element of the array
D and to the variable E. (Note that the value of the
program variable X replaces the parameter T in the
subroutine.) The value returned, and therefore stored

in Z in line 50, is 0 because RETURN was not
followed by a variable or expression. Z is a "dummy"
variable in the sense that it is used in the program
only as a means of executing the subroutine defining
FNC. The fact that 0 is returned becomes significant
if the user does not want to use a "dummy" variable
of this kind. For example,

50 Z=FNC(2,3,1,X)

55 O=SOR(D(S))

can be replaced by

50 O=FNC(2,3,1,X)+SOR(D(S))

When the function name is encountered, the defining
subroutine is executed. Since 0 is returned, the value
of SaR(D(S)) alone is assigned to a.

The number of parameters in the function defi
nition and the number of arguments in the function
call should be equal. An error message is printed
if more arguments are included than required. For
example,

> 10 DEF FNC(A,B)=A+B ~

> 20 PRINT FNC(2,5,1) ~

>RUN~

ERROR IN STEP 20:

WRONG NUMBER OF ARGUMENTS IN

FUNCTION CALL

>

However, if fewer arguments are included in the
call, the unlisted arguments cause an error message
unless they have been assigned a previous value in the
program. For example,

> 10 DEF FNA(A,B)=A*B ~

> 20 PRINT FNA(4) ~

>RUN~

96

ERROR IN STEP 20:

VARIABLE HAS NO VALUE

>
If B has been assigned a value in the main program,

that value will be used to compute the function value.

> LIST ~
10 B=6

20 DEF FNA(A,B)=A*B
30 PRINT FNA(4)

>RUN~
24

>

Variables whose values are strings of more than
eleven characters must not be used as function
parameters.

All functions become undefined if the program is
modified in any way. Thus, if a modification is made
in a program containing a single or mUltiple line func
tion, the program should be reexecuted with the RUN
command. For example,

> 10 DEF FNC(A,B)=A+B ~

> 20 PRINT FNC(4):()

>RUN~

ERROR IN STEP 20:

VARIABLE HAS NO VALUE

>20 PRINT FNC(4,5) ~

>RUN~
9

>
Arrays may not be used as function arguments, but

subscripted variables may be used.

SECTION 9

PROGRAM CONTROL AND EDITING

PROGRAM CONTROL FEATURES

This section describes the SUPER BASIC features allowing control of running pro
grams, the interactive functions TEL and WAIT, program loading and linking, binary pro
gram files, and the SUPER BASIC Optimizer.

CONTROL OF RUNNING PROGRAMS

SUPER BASIC gives the user complete control of his running program. An indirect
PAUSE, STOP, or END statement causes program execution to be interrupted, as does
pressing the AL T MODE/ESCAPE key. The user then can enter direct statements which
will, for example, assign or change variable values, print values, or list parts of the pro
gram. He then may resume execution at the point of interruption or anywhere else in
his program.

PROGRAM CONTROLS

Command

100 PAUSE

Effect

I nterrupts the program at
statement 100. The message
PAUSE IN 100 is printed.
Direct statements can be
entered.

1 - Except the command file, explained on page 89.

To Continue

a) Type GO to continue exe
cution at the point of inter
ruption. All information in
the program before interrup
tion is retained.

NOTE: After interruption, if
the user types an indirect
statement or deletes a state
ment, GO will not continue
execution. Any information
about FOR loops or GOSUB
commands is lost.

b) Type GO TO line number
to continue execution from
anywhere in the program, or
START (same as GO TO the
first statement). All informa
tion in the program is retained.

c) Type RUN to reinitialize
execution from the beginning
of the program. No informa
tion is retained; that is, all
values are reinitialized and all
fi les are closed. 1

97

98

Command

ALT MODEl
ESCAPE

ALT MODEl
ESCAPE (Twice)

Normal end of
program

35 STOP or
35 END

Program execu
tion error

>OUITor>O
or 100 OUIT

PROGRAM CONTROLS (Continued)

Effect To Continue

Finishes execution of the Same as PAUSE.
statement that was being exe-
cuted when AL T MODE was
pressed and prints the mes-
sage INTERRUPTED BE-
FOR E followed by the line
number of the next statement.
(Note exception below.)

To interrupt execution of an
I NPUT statement or a state
ment with an infinite loop
(such as PRINT A WHILE
A>1), press AL T MODE
twice. The message printed is
INTERRUPTED IN followed
by the line numoer of the
statement interrupted.

Terminates program execu
tion.

Term i nates program execu
tion at statement 35.

Term i nates program execu
tion and prints the message
ERROR IN followed by the
line number and an error
diagnostic.

Returns to the EXECUTIVE.
Closes all files. l

Same as PAUSE except that
GO will not resume execution
reliably.

a) Type START (same as GO
TO the first statement), or
GO TO line number to con
tinue execution anywhere in
the program except inside a
FOR loop or a subroutine.
All information in the pro
gram is retained.

b) Type RUN to reinitialize
execution from the beginning
of the program. No informa
tion is retained; that is, all
values are reinitialized and all
files are closed.

a) Type REENTER to return
to SUPER BASIC and con
tinue.

b) Type SBASIC to reinitial
ize SUPER BASIC.

NOTE: Although RUN normally retains no information, a VAR=ZERO or VAR=UNDEF
command will be retained when the RUN command is given.

SUPER BASIC
ERROR MESSAGES

Division by zero is indicated by an error message.

For example,

When an error occurs during execution of a SUPER
BASIC program, an error message is printed, and exe
cution is terminated.

> 10 A=5,B=0:;>

> 20 PRINT AlB ~

>RUN~

1 - Except the command file, explained on page 89.

ERROR IN STEP 20:

ATTEMPT TO DIVIDE BY ZERO

>
Certain other arithmetic operations cause errors if

a number is too large to be converted to the type of
variable in which it is being stored.

TEL AND WAIT

TEL

TEL is a logical function with no argument. It re
turns 1 (true) if terminal input is waiting to be proc
essed, and 0 (false) if no terminal input is waiting.

For example, suppose a program contains a FOR ...
UNTI L loop that the user knows may take a long
time to terminate. If this should happen, he wants to
be able to check the value of the indexing variable at
any time during the execution of the loop to see how
far it has progressed. If the program is set up in part as

10 STRING A

90 PRINT "NOW WE CALCULATE X"

95 FOR 1=1 UNTIL ABS(X-Y)<1E-8

115 IF TEL THEN INPUT A ELSE 125

120 PRINT "1=": I

125 NEXT I

130 PRINT "x IS":X

then any string typed during the execution of the
loop will cause the current value of I to be printed.
Although the first character of the string is enough
to cause TE L in line 115 to be true, the I N PUT state
ment waits, as usual, for the terminating Carriage Re
turn. Note that the string typed is stored in A, not
because it is going to be used, but to clear the input
so that TEL will again be false until another string is
typed.

The use of this program and the resulting printout
for lines 90 to 130 are shown below. Notice that
the question mark usually supplied by INPUT is
suppressed.

NOW WE CALCULATE X

S~
1= 57

NOW~

1= 102

X IS 3.1349

Adding the statement

121 PAUSE

99

would enable the user to continue in the loop by typ
ing GO after the value of I is printed, or to change or
print the values of some variables and then type GO.

WAIT

A statement of the form

WAIT(n)

causes SUPER BASIC to wait n seconds before pro
ceeding with the program. The number of seconds, n,
may be any numeric variable or expression. For
example,

> 10 STRING A2~

> 20 PRINT "IN WHAT YEAR DID BALBOA 1-
DISCOVER THE PACI FIC?";>

> 30 WAIT(10);>

> 40 I F TEL THEN 80 ELSE PRI NT "D0""l

YOU GIVE UP ":;>

> 50 INPUT A2;J

> 60 IF A2="YES" THEN PRINT "1513""1-

ELSE 100 ~

>70 STOP~

>80 INPUT A1;>

> 90 GO TO 120 I F A 1=1513;>

> 100 PRINT "TRY AGAIN ... " ~

> 110 GO TO 30~

> 120 PRINT "VERY GOOD!!!" ~

> RUN;>

IN WHAT YEAR DID BALBOA

DISCOVER THE PACI FIC?
ten seconds pass
DO YOU GIVE UP ? NO 4)

TRY AGAIN ...

1532 ~
TRY AGAIN ...

1513 :;>
VERY GOOD!!!

>
Notice that when TE L was true the question mark
usually supplied by INPUT (line 80) was suppressed,
but when TEL was false, the question mark was
printed (line 50).

100

LOAD AND LINK

The LOAD command can be used to enter
statements from a file into SUPER BASIC. Any
variable values stored before a LOAD are retained
when the LOAD command is given. All declarations
are preserved, and files remain open. New statements
loaded are merged with statements entered before
the LOAD. Each previously entered statement is
retained unless a statement with the same line
number is loaded, in which case the old statement
with that line number will be replaced.

The LI N K command also enters statements from a
file into SUPER BASIC, preserves variable values and
declarations, and leaves files open. However, LINK
differs from LOAD in two ways:

1. All statements entered before a LI NK are
deleted when the LINK command is given.

2. LINK causes immediate execution of the pro
gram entered.

NOTE: When any statement of a program is de
leted or modified in any way, all programmer-defined
functions become undefined.

When executed directly, the LOAD and LINK
commands take the form

LOAD file name

LINK file name

For example,

> LOAD FI LE2 ~

> LINK THISFILE;>

> LINK (HRC)@COPY;>

However, when LOAD and LINK are executed in
directly, certain rules for specifying file names must
be followed so that SUPER BASIC can provide maxi
mum flexibility. The rules which also apply to file
names used in the OPEN command are:

• If the file name is a literal name, enclose the
name in single or double quote marks.

30 LOAD "DA T A2"

85 LINK 'MATR'

157 LINK "(SCM)PROG'

but. ..

75 LOAD "'MPY'"

110 LINK "'ASDF'"

Loads'MPY'

Links 'ASDF'

Note that in the last two examples above, the file
names begin and end with a single quote, therefore
double quotes must be used to enclose each name.

• The file name can be any string variable or
expression.

10 LOAD A Where A has the string value
PROB, loads PROB from the
user's own directory.

95 LINK '(JOE)'+F

Where F has the string value
@FILE, Iinks@FILE from the
directory JOE.

30 LOAD "/"+STR(J)+"/"

Where 1=2 loads / 2/ from
the user's own directory.

After a direct or indirect LOAD, control returns to
the terminal or to the command file from which com
mands are being taken.

Direct statements may be placed on a program file
in EDITOR. If the program file is used as a LOAD or
LI N K file, the direct statements are executed when
encountered on the file.

BINARY PROGRAM FILES

This feature allows the user to save a compiled
SUPER BASIC program on a binary program (or GO)
file, thus allowing extremeiy rapid ioading and execu
tion of production programs. To create a binary pro
gram file, first enter the program into SUPER BASIC
and then use the direct command of the form

SAVE BI NARY file name

Example

> LOAD ROOT~

>SAVE BINARY BRODT:;>

NEW FILE :;>

>

NOTE: No line ranges may be specified with the
SAVE BINARY command; only the entire program
may be saved on.a binary program file.

A binary program file may be executed either:

• In SUPER BASIC with an indirect LINK
command.

• In the EXECUTIVE with the command

GO file name

When an indirect LINK is used to execute a binary
program file, all current program statements are
deleted, the binary program file is loaded into
SUPER BASIC, and execution of the program is
started automatically. As usual, LINK preserves
values of variables and declarations and leaves files
open. After execution of the program, the user is
automatically returned to the EXECUTIVE.

NOTE: Binary program files should be used for
debugged, production programs only since no de
bugging is allowed during execution of a binary

program file. All program interruptions (error mes
sages; the commands STOP, END, and PAUSE; and
AL T MODE/ESCAPE)cause a return to the EXECU
TIVE.

Example

> 10 LINK "BRODT" ~

>RUN~

TYPE THE NUMBER? 7777 ~

CUBE ROOT: 19.812413

TYPE THE NUMBER? -45.9:;>

CUBE ROOT:-3.5804496

TYPE THE NUMBER? DONE:;>

The EXECUTIVE command GO causes execution
of the program directly from the EXECUTIVE. Thus,

- GO BRODT ~

TYPE THE NUMBER? 7777;;>

CUBE ROOT: 19.812413

TYPE TH E NUMBE R ? -45.9;;>

CUBE ROOT:-3.5804496

TYPE THE NUMBER? DONE ~

LINK may be used to link two or more binary
program files. For example, suppose the program set
up in part as

10 !SORT ROUTINE

101

200 IF K>1 THEN LINK "BMERGE" ELSE STOP

is stored on the binary program file BSORT. When it
is run using LINK or GO, execution of line 200 causes
execution of the binary program file BMERGE if K is
greater than 1; the values of K and all other variables
are retained for use in executing BMERGE. If K is not
greater than 1 at line 200, BSORT is stopped and the
user is returned to the EXECUTIVE.

NOTE: After a LINK statement has been used to
execute a binary program file, linking to a symbolic
program is not permitted.

Program files created with the SAVE BINARY
command can never be listed in SUPER BASIC since
any interruptions of the running program cause an im·

mediate return to the EXECUTIVE, and since loading
the program causes immediate execution. Thus, the
user can insure complete protection for a program he
wishes to share by storing it on a binary program
file. If the program is then declared PUBLIC PRO
PRIETARY with no WRITE ACCESS using the
EXECUTIVE command DECLARE, other users may
run the program but may never copy it, write on it,
or list it. This may be done as follows:

- DECLARE:;>

FILE(S): BROOT""1

PRIVATE:

WRITE ACCESS? Y t
READ ACCESS? Y 1-
PUBLIC? Y~

PUBLIC:

PROPRIETARY? Y t
WRITE ACCESS? N ~

NOTE: Copying a binary program file always
causes the copied file to be nonexecutable.

The execution speed of a binary program file can
be increased using the SUPER BASIC Optimizer dis
cussed below.

SUPER BASIC OPTIMIZER

The SUPER BASIC Optimizer is a Tymshare fea
ture which enables SUPER BASIC programs to be run
at the fastest possible speeds. To use the Optimizer
feature, the SUPER BASIC program should be com

pletely debugged and contain no reference to linked
files.

102

Procedure

To use the Optimizer, load the program to be run
into SUPER BASIC. Then type the SUPER BASIC
command

SAVE BINARY file name

followed by a Carriage Return. The computer will re
spond with the OLD FI LE/NEW FI LE message. Type
a Carriage Return and the file will be saved in binary
code. l

When the SUPER BASIC mark appears, type
QUIT ~ to return to the EXECUTIVE. When the
EXECUTIVE dash appears, type FSB~ to call the
Optimizer. The Optimizer responds with the version
number and the message

INPUT FILE:

Type the name of the binary program file on which
the program currently exists. The Optimizer writes

OUTPUT FILE:

Reply with a file name to indicate the file on which
the optimized program is to be written.

When the system responds with the OLD FILE/
NEW FILE message, type the appropriate response.
Next, the program indicates the change in size ac
complished by the optimization.

For example:

ORIGINAL PROGRAM SIZE=3023 WORDS

FINAL PROGRAM SIZE=2090 WORDS

When the EXECUTIVE dash appears, type GO file
name~. The file name must be the same output file
assigned in answer to OUTPUT FI LE: above. The pro
gram then runs. A typical run is shown below.

The program is loaded into SUPER BASIC.

>SAVE BINARY SLOWFILE;>

NEW FILE ~

>aUIT~

- FSB~

FSB A2.03 This number is the latest update of FSB.

INPUT FILE: SLOWFILE;>

OUTPUT FI LE: FASTFI LE ~

NEW FILE ~
ORIGINAL PROGRAM SIZE=3224 WORDS

FINAL PROGRAM SIZE=3015 WORDS

- GO FASTFI LE ~

The program runs.

1 - Binary program files are discussed on page 100.

Notes

1. Any file names may be used for the input and
output files in FSB, as long as the two file names are
different.

2. It is unnecessary to return to the EXECUTIVE
and run FSB immediately after saving the SUPER
BASIC program as a binary file. FSB may be called
at any time from the EXECUTIVE.

3. Similarly, the optimized program need not be
run immediately after FSB has completed the opti
mization. The instruction GO FASTFI LE can be exe
cuted at any time. I n fact, once FSB has optimized
a SUPER BASIC program, it may be run at any time
by invoking the EXECUTIVE GO command.

4. The optimized program is accessible only from
the EXECUTIVE.

Suggestions

To obtain the best optimized program, three
areas should be given special attention.

1. Declarations

Real and integer variables should be declared
as such. This applies to simple variables as well as
to arrays, and should be made for all real and integer
variables which retain their original mode throughout
the program. Thus, the single most important rule for
maximum performance is:

DECLARE EVERYTHING

The variable declarations must be executed before
the variable is used. For example, the following se
quence of statements will cause errors because the
declaration statement is not encountered until after
the variable has been used.

1 GO TO 500
2 INTEGER N,I,J

500 INPUT N
501 REAL X(N)
502 GO TO 2

2. Mixed Mode Expressions

A mixed mode expression (one which contains

both real and integer variables) generates slightly more
binary code than one which is either all real or all in
teger. On the other hand, if there are several integer
variables which can be reduced to one computed
value before being converted to floating point, a
mixed mode expression of this type will run slightly

faster than an all real expression of the same size. The
method of handling mixed mode expressions is left to
the judgment of the programmer.

The sequence of operations is not changed by the
Optimizer. Thus, if I and J are declared integer and X
is declared real,

I+J+X or X+(I+J) is faster than I+X+J or X+I+J.

3. IF ... THEN ... ELSE ... Statements

The use of IF ... THEN ... ELSE statements
is encouraged, even when they become very long.
Using several statements to perform the same com
putation is less efficient. For example:

100 IF A(I) < B(J) THEN B(J)=A(I) ELSE
B(J)=B(J)-A(I)

will generate less code and run faster than

100 IF A(I) < B(J) THEN 130

110 B(J)=B(J)-A(I)

120 GO TO 140

130 B(J)=A{I)

140 ...

Optimized Operations

The Optimizer is effective in optimizing certain
operations on real and integer variables. CPU time of
programs which contain a large amount of arithmetic

computation will be reduced significantly in propor
tion to the number of arithmetic operations involved.

The following operations are optimized:

1. Simple Variable Expressions

Expressions involving simple variables of a single
type-real or integer-are optimized if the variables
have been declared and retain their original mode
throughout the program.

103

2. Array Access

Access to arrays of one and two dimensions is
optimized. Not only is the address computation for
an array element optimized, but also the address is
remembered and used again where possible.

3. Arithmetic Operations

The arithmetic operations of subtraction, nega
tion (unary minus), and multiplication are optimized.
Exponentiation to a constant integer power is per
formed as the appropriate sequence of multiplications.
The division operator, I, is optimized for real num
bers and variables. For integers, the MOD and DIV
operators are optimized. References to the standard

mathematical functions (SQRT, SIN, etc.) invoke the
same routines as before, but do not prevent the op
timization of the rest of the expression.

4. Relational Operators

All relational operators «, =, >=, etc.) are op
timized.

5. Logical Operators

The three logical operators AND, OR, and
NOT are optimized.

6. Binary Operators

The binary operators BAN, BEX, and BOR are
optimized.

Restrictions

There are two restrictions to remember when us
ing optimized SUPER BASIC programs.

1. Optimized GO files may not be linked.

2. Optimized variables will be set to zero when de
clared. Thus, a declared variable is never undefined.

EDITING FEATURES

The editing commands and characters described
beginning on page 14 are only a small part of the ex
tensive editing features available in SUPER BASIC.
Instead of retyping an entire line that needs changing,
the user may let certain control characters do the
editing for him. These control characters, which are
the same as those available in the Tymshare EDITOR
language, are summarized in the table on page 106.

The first set of characters listed in the table can be
used at any time - while typing direct and indirect
statements, file names, and even data input from the
keyboard. The second set of characters is used to edit
lines already typed, even if a syntax error was made in
the line. The EDIT and MODIFY commands allow
editing of any existing line in a program. Further ex
planation and examples of these editing features are
given below.

104

EDITING THE LINE BEING TYPED

In the following example, Control Q (QC) is used

to delete the line being typed. While retyping the line,
two incorrect characters are deleted with AC's.

> 40 FOR I = 1 TO QCt

40 PRINT It3 FOR 1=1 TO 25Ac+-A~50 ~

> LIST 40 ~
40 PRINT It3 FOR I = 1 TO 50

>

The TABS Command

The tab stops which determine to which character
position IC will type are initialized at 7, 15, and at
every fifth position from 15 on. The direct command
TABS allows the user to set any other tabs that he
wishes. For example,

> TABS 10,20,30 ~

sets the tab stops at the specified positions. A Control
I subsequently typed at the beginning of a line will
space to position 10. NOTE: A maximum of ten tabs
may be set with the TABS command.

File Name Editing

File names typed in SUPER BASIC commands can
be edited also. For example,

> SAVE XYAc+-Z:()

will save the program on a file named xz.

To include a control character in a file name, pre
cede the character by VC so that no editing will occur.
For example,

> LOAD /PVcWcR/ ~

must be typed to load from a file named /PWcR/.

Data Input Editing

The control characters AC, WC, and QC have special

properties when used to edit data typed in response
to the INPUT command.

Control A will delete the preceding character un
less that character is a comma (or space) used to
separate data items. Once such a character is typed,
the preceding value is stored in a variable and is not
available for editing.

If a string data item is being entered enclosed in
quote marks, Control A wi II delete any character ex
cept the initial and terminal quote marks. If the first
character in the string is deleted, a question mark is
printed and the data item must be reentered, including
the quote marks. For example,

> 10 INPUT A,B,C ~

> 20 PRINT A;B;C ~

> RUN:()
? 123,56Ac+-5,"ERAc+-Ac+-? "STRING" ~

123 55 STRING

>
Once the comma was typed after 123, no editing

could be done to that value. The first Control A de
leted 6. The second and third AC's deleted ER; the
question mark was printed and the user retyped the
value of the variable C.

Control W, which deletes the preceding data item,
also has no effect on the characters which AC cannot
delete. For example,

> INPUT X,Y,Z ~
? "SMYTWc \? "SMITH",64,92Wc \? 93.8:()

> PRINT X:Y:Z:()

SMITH 64 93.8

>
The first WC deleted SMYT and the leading quote

marks. The second WC deleted 92; another Control W
typed there would have done nothing, since 64 was
already stored in the variable Y.

Control Q restarts the entire statement containing
the INPUT command, causing SUPER BASIC to print
another question mark. Since direct statements are
not saved and therefore cannot be restarted, QC ap
plies only when the I NPUT command was executed
indirectly. For example,

> 10 INPUT A(I) FOR 1=1 TO 8 ~

>RUN~

? 11.17,33.9,46.1,39,21.8,5.62 ~

? 13_7Qc t? 11_17,85,33.9,46.1,39,21.86 ~

? 13.7,10.8:()

>
Note that the values for A(1) to A(6) were actually

stored before the QC was typed. The user then entered
new input values. Thus, if the I NPUT command were'
in a statement such as

> 55 IF A=O THEN INPUT A,B"1-

the following might occur

? 5,7.5QCtNO

ELSE PRINT "NO" ~

(execution continues from the statement after 55)

Statement 55 was restarted, but since A was actu
ally assigned the value of 5 before QC was typed, A
was no longer equal to zero and INPUT A,B was not
executed.

EDITING A LINE ALREADY TYPED

EDIT And MODI FY

The direct commands EDIT and MODIFY allow
the user to edit any statement in his program by using
an extensive set of control characters. EDIT followed
by a line number causes SUPER BASIC to print the
specified line and wait for the user to edit. MODI FY
(or MOD) is the same as EDIT except that the speci
fied line is not printed.

Example 1

> EDIT 20;>
20 A = SOR (PI *Mt2) This is line 20.
ZC*20 A = SOR(PI*NDct2)

> LIST 20 ()
20 A = SOR(PI*Nt2)

Example 2

ZC * copies up to and in
cluding the *. The user
typed N to replace the in
correct M, and DC to copy
the rest of the line.

This is the new line 20.

> 10 INPUT AU) FOR 1=1 TO 10 ~

> 20 GOSUB 100 ;>
>MODIFY 10 ~

30cA10 INPUT BFc

> LIST ~

Line 10 does not print.

3 replaces 1 so that the
edited line will be line 30.
OC A copies up to but not
including A. The user types
B to replace the A, and FC
which copies but does not
print the rest of the line,

10 INPUT AU) FOR I = 1 TO 10

20 GOSUB 100

30 INPUT B(I) FOR I = 1 TO 10

>

Editing The Previous Line

After the user types any indirect statement, that
statement is immediately available for edit as though
the EDIT or MODI FY command had been given. For
example,

105

> 45 IF Y = 20 THEN NE)(T I ~

> ZC245 IF Y = 25Dc THEN NEXT I

> LIST 45 ~

ZC and DC are used to edit
the line just typed. The 20
is changed to 25.

45 IF Y = 25 THEN NEXT I

>
This can be done even if a syntax error is made in

the statement just typed.

Direct statements can be edited after they are
typed only if a syntax error is made. Once the state
ment begins to execute, it is no longer available for
edit. For example,

> PRINT "AREA IS:A ~
MISSING" This is a syntax error.
> ZCSPRINT "AREA ISEC<"Ec>Dc:A

AREA IS 35

The statement is edited.
DC copies the rest of the
line and causes the state
men t to be executed.

> PRINT "VOLUME IS":)(~

VOLUME IS

This statement contained
no syn tax errors, so SU
PER BASIC began to exe
cute it.

VARIABLE HAS NO VALUE The variable X was
not defined (a pro
gram error).

> Control characters will
have no effect here.

Correcting Syntax Errors

If a syntax error is made while typing a direct or
indirect statement, Control B can be used to copy the
statement up to the syntax error. The user then cor
rects the error and completes the statement, using
other control characters if he wishes. For example,

> 10 C23=Bt3+Y ~
SYNTAX ERROR

> BC10 CEc«Ec>23Ec<) EC>Dc=Bt3+Y

The user forgot to put parentheses around the sub
script of C. He typed Control B which copied up to
the syntax error. He used Control E to insert the
parentheses and Control D to copy the rest of the
statement and to end the edit.

106

Examples

> 194 OPEN "DATA",INPUT 3 ~

SYNTAX ERROR

> BC194 OPEN "DATA",INPUT,3 ~

> A=LEFT(V,INDEX(V," ") ~

MISSING)

> BCA=LEFT(V,INDEX(V," ")) ~

EDITING CONTROL CHARACTERS

The following control characters may be used at

any time while typing direct and indirect statements,
file names and data input from the terminal.

Control Symbol
Function

Character Printed

AC or~ ~ Deletes the preceding charac-
ter typed.

WC \ Deletes the preceding word

typed.

QC t Deletes the entire line being
typed.

VC and a Indicates that the control
character character that follows is to be

accepted as any other charac-
ter (it will not perform its

editing function).

The following control characters can be used only

during EDIT, MODIFY, and edit of a previous line
for deleting, copyin~, and inserting.

Control Symbol
Function

Character Printed

For Deleting

SC % Deletes the next character in

the line being edited (the "old
line") .

KC Deletes the next character in
the old line; prints the charac-

ter it deletes.

pc and a % Deletes up to but not in-
character cluding the character typed

after it.

XC and a % Deletes up to and including
character the character typed after it.

Carriage Deletes the rest of the old line
Return and ends the edit.

Control Symbol
Function

Character Printed

For Copying

BC Copies up to syntax error.
Used only to correct a line
containing a syntax error.

CC Copies the next character in

the old line.

OC and a Copies up to but not including
character the character typed after it.

zC and a Copies up to and in'cluding the
character character typed after it.

Dc l
Copies and prints the rest of

the old line and ends the edit.

Fc l
Copies but does not print the

rest of the old line and ends
the edit.

HC Copies and prints the rest of

the old line and continues the
edit at the end of the line.

Yc Copies but does not print the

rest of the old line and con-
tinues the edit at the begin-

ning of the new line (same as
FC followed by MODI FY of

the line as edited),

RC Copies and prints the rest of

the old line plus the new line;

continues the edit fiom vvheie
RC was typed.

TC Same as RC except that it a-

ligns the rest of the old line
and the new line.

UC Copies from the old line up to

the next tab stop in the new

line.

For Inserting

EC text EC < Inserts text into the old line;

> first EC prints <, second EC

prints >.
Other

NC Backspaces in the old and in

the new line.

IC Types spaces up to the next

tab stop.

1 - If the user has typed past the end of the old line, he should use a Carriage Return to end the line. not DC or FC ,

THE RENUMBER COMMAND

Renumbering To The End
Of The Program

All or some of the statements in a program may be
renumbered with a direct command which takes the
form:

RENUMBER N1,N2,N3 or

REN N 1,N2,N3

where N 1 will be the first new line number, N2 is the
number of the line in the program where renumbering
will begin, and N3 is the increment to be used in as
signing the new line numbers.

Example

> 1 !THIS IS A TEST PROGRAM,;>

> 10 INPUT P,I,N~

> 11 M = P*(I+1)tN ~

> 15 PRINT M~

>20 GO TO 10~

> RENUMBER 20,10,2 ~

> LIST ~
1 !THIS IS A TEST PROGRAM

20 INPUT P,I,N

22 M = P*(I+1)tN

24 PRINT M

26 GO TO 20

>
In this example, the program is renumbered from

line 10 to the end of the program, in steps of 2, with
20 as the first new line number. Line 1 remains un
changed. Notice that the line number referred to in
the GO TO statement also has been changed correctly.

NOTE: If this program had been run before the
renumbering, the variable values would have been lost
as a result of the RENUMBER command.

Certain words may be included in the RENUMBER
command to help the user remember the order and
meaning of the three arguments. For example,

RENUMBER 20,10,2

can be typed as

RENUMBER AS 20 FROM 10 BY 2 or

RENUMBER AS 20 FROM 10 INC 2

Any of these prompting words may be used or not
as desired. AS is optional, and either F ROM, BY, or
I NC may be replaced by a comma.

Renumbering A Range Of Lines

A range of lines may be specified for renumbering.
For example,

107

RENUMBER 200,90-205,10

will renumber lines 90 to 205 as 200, 210,220 and so
on.

An additional prompting word may be included in
this form of the RENUMBER command; namely, the
dash used in indicating the line range may be replaced
by the word TO.

When the RENUMBER command is given, SUPER
BASIC first checks to see that after the requested re
numbering is done, the renumbered line range will still
have line numbers that are different from the rest of
the program. If this is not the case, an error message
will be printed, since it is impossible for two program
lines to begin with the same number.

Omitting Parts Of
The RENUMBER Command

One or more parts of the RENUMBER command
may be omitted, with the following results:

Omitted Result

N1 First new line number
is assu med to be 100.

N2 Program is renumbered
from the beginning (the
lowest numbered state-
ment).

N3 I ncrement is assumed to
be 10.

Examples

RENUMBER All three parts are omit-
ted. RENUMBER 100,
0,10 is assumed. (The 0
will cause renumbering
to begin from the low-
est numbered state-
ment.)

RENUMBER, , 5 First two parts are omit-
or RENUMBER BY 5 ted. RENUMBER 100,
or RENUMBER INC 5 0,5 is assumed.

RENUMBER 10 Last two parts are omit-
or RENUMBER AS 10 ted. RENUMBER 10,0,

10 is assumed.

RENUMBER 10,,5 Second part is omitted.
or RENUMBER AS 10 RENUMBER 10,0,5 is

BY 5 assumed.

RENUMBER 150, Third part is omitted.
115-210 RENUMBER 105,115-

or RENUMBER AS 150 210, 10 is assumed.
FROM 115 TO 210

108

RENUMBER With ADD

There is another form of the R EN UM BE R com
mand in which the numbers of the specified lines are
increased by a certain amount. For example,

RENUMBER 150 ADD 10 or

RENUMBER FROM 150 ADD 10

will renumber from line 150 to the end of the pro
gram by adding 10 to every line number.

A range of lines may be specified, such as

RENUMBER 210-340 ADD 20 or

RENUMBER FROM 210 TO 340 ADD 20

which will add 20 to the line numbers 210-340
inclusive.

A negative number may be typed after ADD to de
crease the specified lines by a certain amount. For ex
ample,

RENUMBER 500-545 ADD -100

will subtract 100 from the line numbers 500-545
inclusive.

109

SECTION 10

DEBUGGING AIDS

The Tymshare system provides two useful aids to assist the SUPER BASIC program
mer in debugging his program. The SUPER BASIC index generator is a Tymshare Library
program which lists all variables, arrays, programmer-defined functions, subroutines, and
statement transfers in a specified program. The SUPER BASIC MAP statement prints a
table of storage allocation for a program.

SUPER BASIC INDEX GENERATOR

The SUPER BASIC index generator is designed to
aid the SUPER BASIC programmer in developing, de
bugging, modifying, and documenting his programs.
The index generator accepts as input a symbolic
SUPER BASIC program and lists all references to var
iables, arrays, programmer-defined functions, and line
numbers, including transfers to subroutines.

The information supplied by the index generator is
extremely useful if modifications are to be made to
an unfamiliar program. The index generator is also
useful in program development since it provides a list
of all variables used and the statements in which they
appear. This provides assistance in assigning new vari
ables and in making corrections to program logic.

The SUPER BASIC index generator is called by
typing SBIG and a Carriage Return in the EXECU
TIVE. The program replies with

TYPE FI LE NAME OF SBASIC PROGRAM:

Enter the name of the symbolic file containing the
program to be indexed. Follow the file name with a
Carriage Return. SBIG then types

OUTPUT REPORT TO:

Enter the name of the file on which the reference in
formation is to be written. Follow the file name with
a Carriage Return. If the report is to be listed on the
terminal and not written on a file, enter T followed
by a Carriage Return.

After the reference information has been gener
ated, SBI G asks

DO YOU HAVE ANOTHER PROGRAM TO
PROCESS?

Type NO () to terminate SBIG. Typing YES ~ causes
SBIG to request another file name.

NOTE: Each GOSUB reference listed is preceded
by an S.

Example

- COpy TESTPROG TO T ~

5 DIM A(3)

10 INPUT X,Y,Z

12 MAT INPUT A

15 DEF FNF(I,J,K)=SQRT(lt2+Jt2+Kt2)

20 GOSUB 500

25 PRINT X;Y;Z,FNF(X,Y,Z)

30 GOSUB 500

35 GO TO 900

500 PRINT

501 PRINT "THIS IS A TEST"

502 PRINT

503 RETURN

900 MAT PRINT A

910 IF A(3)<Z THEN 10 ELSE PRINT "END"

110

-SBl G~
TYPE FILE NAME OF SBASIC PROGRAM:TESTPROG~
OUTPUT REPORT TOtINDXTESTPROG~

DO YOU HAVE ANOTHER SBASIC PROGRAM TO PROCESS? NO~

-COpy INDXTESTPROG TO T~

PROGRAM NAME IS: TESTPROG

DICTIONARY OF VARIABLES WITH LINE REFERENCES

VAR.--REFERENCE LINE #
NAME
I 15
J 15
K 15
X 10 25
Y 10 25
Z 10 25 910

DICTIONARY OF ARRAYS WITH LINE REFERENCES

ARRAY--REFERENCE LINE #
A 5 12 900 910

DICTIONARY OF PROGRAM DEFINED FUNCTIONS

NAME--REFERENCE LINE ,
FNF 15 25

CROSS REFERENCE OF LINE NUMBERS

LINE (f

10
500
900

REFERENCE LINE #
910
S 2 0 S 3 0 The S's indicate that 500 is referenced by GOSUB in
35 these lines.

THE MAP STATEMENT

The computer has a specified amount of memory
available for each SUPER BASIC program. The total
number of statements that can be used can be greatly
increased by linking programs together, that is, run
ning one program, loading another program and run
ning it, and so forth.

Approximately 8000 words of memory are avail
able for each program. The actual program size and
storage use may be determined by using the MAP
statement.

The MAP statement may be used as a direct or in
direct statement. This statement prints a three-column
table. The first column contains the name of the item
described in each row. The second column contains
the core location, in octal notation, of the last space
used by that item; the third column contains the
number of words, in decimal notation, used by that
item.

The abbreviations used in the first column and the
blocks to which they refer are:

REF Lines referenced by GO TO or GOSUB
statements

PRG Program storage

STR Strings of more than six characters

EXP

UNU

FOR

Expression calculations

Unused storage

FOR loops

GSB GOSUB statements

ARY Arrays

111

If a program exceeds the maximum size allowed, it
must be reduced in size before it will run. The pro
gram size can be reduced by deleting statements from
the program, reducing the size of dimensioned vari
ables, or modifying program logic.

Example

>MAP~

LOC SIZE WORDS

OCT DEC

REF 3521 79

PRG 14617 4495

STR 14616 0

EXP 14620 2

UNU 20043 1683

FOR 20043 0

GSB 20043 0

ARY 24000 2013

>

113

SECTION 11

SAMPLE SUPER BASIC PROGRAMS

This section contains programs written in SUPER BASIC and executed on the Tymshare system. These pro
grams demonstrate many of the features of the SUPER BASIC language.

SOLVING QUADRATIC EQUATIONS

The program below computes roots for quadratic equations of the form

AX2 + BX + C = 0

The roots are given by the formulas

_ -B + v'B2 - 4AC
R1 - 2A

_ -B - v'B2 - 4AC
R2 - 2A

If B2_4AC is less than zero, there are no real roots. In this case the program prints the message NO REAL
SOLUTION. Each time roots are calculated, the next values for A, B, and C are requested automatically. A zero
value for A terminates the program.

-SBASIC~

>LOAD QUADRATIC:;>
>LIST~
100 PRINT , THIS COMMAND CAUSES A BLANK LINE TO BE PRINTED.
110 PRINT "WHAT ARE AIBI AND C":
120 INPUT AlBIC
130 IF A=O THEN STOP
140 D=Bt2-4*A*C
150 IF D<O THEN GO TO 200
160 Xl=C-B+SQRTCD»/(2*A)
170 X2=C-B-SQRTCD»/C2*A)
180 PRINT "ROOT 1 IS ";Xll"HOOT 2 IS n'X2
190 GO TO 100
200 PRINT "NO REAL SOLUTION"
210 GO TO 100
>RUN~

WHAT ARE A,BI AND C? 3.4,5.61.08~

ROOT 1 IS -1.4411818E-02 ROOT 2 IS

WHAT ARE AIBI AND C? 201,lo1,5o3~
NO REAL SOLUTION

>

-1.632647

114

LISTING STOCKS

This program reads up to 100 items of string and numeric data. Note the use of the ON ENDFILE statement
to determine the end of data. The data is printed on the terminal with a picture format, followed by the sum of
the numeric information. The left justification of strings and the right justification of numbers is an extremely
useful feature of picture formatting.

-COpy ESTOCKS TO T ~

ACME LABS.IOO.AMERICAN INSTRUMENT .. IOO .. CONTINENTAL BAKING .. 100
DIVERSIFIED CONTROL.I00.EASTERN METALS .. 125.GOODSON & CO.140
"HOWARD. J.H.",lOO.INT'L INDUSTRIES .. 12,LINCOLN PUBLISHING,50
NATIONAL PHARMACEUTICALS .. 64.ROYAL CHEMICAL,66,UNITED FURNITURE. 135

-SBAS IC;>

> LOAD S TOC KS ;>
>LIST ~
100 5=0
110 STRING eCIOQ>
120 INTEGER NCIOO)
130 OPEN "BSTOCKS" " INPUT. 2
140 ON ENDFILE(2) GO TO 190
150 FOR 1=1 TO 100
160 INPUT FROM 2:CCI).NCI)
170 S=S+NCI)
180 NEXT I
190 PRINT
200 PRINT IN FORM "27% 3%1":CCJ).NCJ> FOR J=l TO 1-1
210 PRINT
220 PRINT "TOTAL NUMBER OF SHARES IS"tS
230 CLOSE 2

~ "QTThT ~ - ... ""' .. ~
ACME LABS 100
AM·ERICAN INSTRUMENT 100
CONTINENTAL BAKING 100
DIVERSIFIED CONTROL 100
EASTERN METALS 125
GOODSON & CO 140
HOWARD. J.H. 100
INT'L INDUSTRIES 12
LINCOLN PUBLISHING 50
NATIONAL PHARMACEUTICALS 64
ROYAL CHEMICAL 66
UNITED ~URNITURE 135

TOTAL NUMBER OF SHARES IS lQ92

>

115

PERCENTAGE BAR CHART

The DATA statement in the following program lists the frequency counts for 10 class intervals, denoted by the
numbers 1 through 10. The program calculates the percentage frequency of each class interval expressed as a per
cent of total. Each percentage frequency is rounded to the nearest integer and plotted on a bar chart.

This program demonstrates the usefulness of the FOR statement modifier, the TAB and ROUN functions,
and the MOD operator.

>LIST~
100 READ YCI) FOR 1=1 TO 10
110 N = Y(l)
120 N = N+Y(I) FOR 1=2 TO 10
130 N = lOO/NI K = 0
140 SCI) = ROUNCN*VCI»I K = MAXCKISCI» FOR 1=1 TO 10
150 PRINT
160 PRINT TAB(11):"PERCENTAGE BAR CHART"
170 PRINT
180 FOR Y=K TO 1 STEP -1
190 PRINT Y:IF Y MOD 5 =0
200 PRINT TABC3*I+3):"XX":IF SCI»=Y FOR 1= 1 TO 10
210 PRINT
220 NEXT Y
230 PRINT
240 PRINT IN FORM "3B 9(3%) 4%/":1 FOR 1=1 TO 10
250 DATA 1151161191301401251211712

>RUN ;>

PERCENTAGE BAR CHART

xx
xx
XX
XX

20 XX
XX

xx xx
XX XX
xx XX

15 XX XX xx
XX xx xx
xx xx xx xx
xx xx xx XX

xx xx XX XX XX
10 XX XX xx xx XX XX

xx XX XX xx XX XX
XX xx xx xx xx xx
XX XX xx XX XX xx
XX XX XX XX XX XX

5 XX XX XX XX XX XX
XX XX XX XX XX XX XX

XX XX XX XX XX XX XX XX
XX XX XX XX XX XX xx XX

XX XX xx XX xx XX XX XX XX XX

1 2 3 4 5 6 7 8 9 10

>

116

DIRECTORY OF ADDRESSES

The file 01 R is a variable length random file containing the names and addresses of a number of California resi
dents. The program asks the user whose address he wants. The user may enter any part of the person's name, for
example, DALE, MOSS, or DALE MOSS, and that person's full name and address is printed. If the name is not
found, an appropriate message is printed and the LOCATE statement is used to reposition the file pointer at the
beginning.

Note the value of using the string function INDEX in this example. Since INDEX searches each name in the di
rectory for whatever is typed by the user, any part of a name is acceptable for input. I NDEX returns 0 if it does
not find the string for which it has searched.

-COpy DIH TO T~

MR. JOHN B. CAHEY,285 COTTLE AVENUE,CAMPBELL
MRS. LESLIE FISHER, 1964 HAMPTON DRIVE,DANVILLE
MR. CARL LARSON,985 SOUTH 9TH STREET,SAN JOSE
MR. DALE MOSS, 1650 SARATOGA AVENUE,SARATOGA
MR. JOHN REY,106 FORMAN STREET,CAMPBELL
MR. DANIEL TORRES,24 SCHARF AVENUE, LOS GATOS
MISS DONNA WILKES,315 SOUTH 3RD STREET,SAN JOSE
MR. MICHAEL YOUNG,60 WILSON ROAD,CHESTER
MR. HENRY C. ZIMMER,15 JACKSON STREET,PALO ALTO

-SBASIC~

>LOAD ADDRESS:;>
>LI ST;>
100 STRING Nl,N,A,C
110 OPEN "DIH", RANDOM INPUT,2
190 ON ENDFILE(2) GO TO 230
130 PRINT
thn DOT"'''' "h.T"Ino1:'C:C: n~" • v "..... •,.,..,,..".." ". •

150 INPUT N1
160 IF Nl="NONE" THEN 260
170 PRINT
180 INPUT FROM 2:N,A,C
190 IF INDEX(N,Nl)=O THEN 180 ELSE PRINT N
200 PRINT A
210 PRINT CI", CALIFORNIA"
220 GO TO 240
230 PRINT "THE ADDRESS IS NOT LISTED HERE."
240 LOCATE 1 ON 2
250 GO TO 130
260 CLOSE 2
>RUN~

ADDRESS OF? JOHN REY ~

MR. JOHN REY
106 FORMAN STREET
CAMPBELLI CALIFORNIA

ADDRESS OF? ZIMMER ~

MR. HENRY C. ZIMMER
15 JACKSON STREET
PALO ALTOI CALIFORNIA

ADDRESS OF? MORRI S ~

THE ADDRESS IS NOT LISTED HERE.

ADDRESS OF? DONNA~

MISS DONNA WILKES
315 SOUTH 3RD STREET
SAN JOSE~ CALIFORNIA

ADDRESS OF? NONE ~

>

This program uses the formula

FUNDAMENTAL FREQUENCY

117

to find F, the fundamental frequency of a circular clamped plate. D, Y, and P (the density, Young's modulus, and
Poisson's ratio) are read from a DATA statement, and the value of T (the thickness) is requested. Using this data,
the program calculates F for a range of radii (R) from .1 to 1 in steps of .1, from 1 to 10 in steps of 1, and from
10 to 100 in steps of 10. Picture formatting is used to print the results on a file.

Line 180 in this example illustrates the use of many instructions in one statement. A number and the value of
a programmer-defined function are printed with picture formatting on a file for three distinct ranges of values.

118

-SBASIC ;>

>LOAD FREQ ~
>LIST ~
100 READ D"P"Y
110 PRINT "WHAT IS THE THICKNESS OF THE DRUM MATERIAL":
120 INPUT T
130 DEF FNFCX)=C.467*T/Xt2>*SQR(Y/CD*CI-Pf2»)
140 OPEN "X""OUTPUT,,2
150 PRINT ON 2:"RADIUS",,"FUND. FREQ."
160 PRINT ON 2
170 A="%%%.% %%%%%%%%.%%%"
180 PRINT ON 2 IN IMAGE AtR"FNF(R)

FOR R=.I TO .9 BY .1" 1 TO 9 BY 1" 10 TO 100 BY 10
190 CLOSE 2
200 DATA 7.8".3,,20El1
>RUN~
WHAT IS THE THICKNESS OF THE DRUM MATERIAL? o672~

>QUIT ~

-COPY' X TO T;>

RADIUS FUND. FREQ.

• 1 16658394.930
.2 4164598.733
.3 1850932.770
.4 1041149.683
.5 666335.797
.6 462733.193
.7 339967.243
.6 260287.42i
.9 205659.197

1. a 166583.949
2.0 41645.987
3.0 18509.328
4.0 10411.497
5.0 6663.358
6.0 4627.332
7.0 3399.672
8.0 2602.874
9.0 2056.592

10.0 1665.839
20.0 416.460
30.0 185.093
40.0 104.115
50.0 66.634
60.0 46.273
70.0 33.997
80.0 26.029
90.0 20.566

100.0 16.658

119

CUBE ROOT

This program uses the approximation method'to compute the cube root of any number typed by the user.
The first approximation is A=N/3, which is compared to the next approximation, A1=(2A3+N)/3A2

• Each time
through the loop, the last value of A 1 is stored in A, and a new approximation is calculated. As soon as A 1 is
equal to A when rounded to ten decimal places, that is ABS(A 1-A)<EPS, the program prints the cube root, A 1,
and the number of passes through the iteration loop, 1-1. The program terminates if the number 0 is entered.

Two important characteristics of FOR when used with UNTIL or WHILE are illustrated here:

1. A and A 1 must be initialized because the terminating condition is checked before the loop is entered. Thus,
if A had not been initialized, SUPER BASIC would not have been able to define ABS(A 1-A) upon first en

countering the loop.

2. The value of I upon exit from the loop is that value which caused the exit to occur, that is, 1 more than the
value of I the last time through the loop. For this reason, the number of iterations is 1-1, not I.

Note that a binary file is created in SUPER BASIC and executed in the EXECUTIVE with the GO command.
When the program terminates, the user is returned to the EXECUTIVE.

-SBASIC ~

>LOAD ROOT ~
>LIST~
10 PRINT "ENTER THE NUMBER: tI:
20 INPUT IN FORM "''':N
30 IF N=O THEN STOP
40 A=0"Al=N/3
50 A=Al"Al=C2*At3+N)/C3*At2) FOR 1=1 UNTIL ABSCAI-A)<EPS
60 PRINT "CUBE ROOT:":Al
70 PRINT "NUMBER OF ITERATIONS:":I-l
80 PRINT
90 GO TO 10
>SAVE BINARY CUBE ~

NEW FILE~

>QUIT ~

-GO CUBE~
ENTER THE NUMBER: 7777~
CUBE ROOT: 19.812413
NUMBER OF ITERATIONS, 18

ENTER THE NUMBER: -4509~
CUBE ROOTt-3.S804496
NUMBER OF ITERATIONS: 9

ENTER THE NUMBER: 8~
CUBE ROOTI 2
NUMBER OF ITERATIONS: 6

ENTER THE NUMBERI O;?

120

CHECKING ACCOUNT SERVICE CHARGES

In this problem, we wish to compute the monthly service charge for a regular checking account. The amount
of the service charge is based on the average monthly balance and the number of checks written. The charge may
be computed from the following table:

AVERAGE MONTHLY BALANCE

NUMBER $200 $300 $400 $500 $600 $700 $800 $900 $1000 $1100 $1200 $1300 $1400 $1500
OF UNDER to to to to to to to to to to to to to to

CHECKS $200 $299 $399 $499 $599 $699 $799 $899 $999 $1099 $1199 $1299 $1399 $1499 $1599

0 $.75 $.47 $.33 $ $ $ $ $ $ $ $ $ $ $ $
1 .82 .54 .40
2 .89 .61 .47 .33
3 .96 .68 .54 .40
4 1.03 .75 .61 .47
5 1.10 .82 .68 .54

6 1.17 .89 .75 .61
7 1.24 .96 .82 .68 .54
8 1.31 1.03 .89 .75 .61
9 1.38 1.10 .96 .82 .68 .54

10 1.45 1.17 1.03 .89 .75 .61

11 1.52 1.24 1.10 .96 , .82 .68 .54
12 1.59 1.31 1.17 1.03 .89 .75 .61
13 1.66 1.38 1.24 1.10 .96 .82 .68 .54
14 1.73 1.45 1.31 1.17 1.03 .89 .75 .61
15 1.80 1.52 1.38 1.24 1.10 .96 .82 .68 .54

16 1.87 1.59 1.45 1.31 1.17 1.03 .89 .75 .61
17 1.94 1.66 1.52 1.38 1.24 1.10 .96 .82 .68 .54
18 2.01 1.73 1.59 1.45 1.31 1.17 1.03 .89 .75 .61
19 2.08 1.80 1.66 1.52 1.38 1.24 1.10 .96 .82 .68 .54
20 2.15 1.87 1.73 1.59 1.45 1.31 1.17 1.03 .89 .75 .61
21 2.22 1.94 1.80 1.66 1.52 1.38 1.24 1.10 .96 .82 .68 .54
22 2.29 2.01 1.87 1.73 1.59 1.45 1.31 1.17 1.03 .89 .75 .61
23 2.36 2.08 1.94 1.80 1.66 1.52 1.38 1.24 1.10 .96 .82 .68 .54
24 2.43 2.15 2.01 1.87 1.73 1.59 1.45 1.31 1.17 1.03 .89 .75 .61
25 2.50 2.22 2.08 1.94 1.80 1.66 1.52 1.38 1.24 1.10 .96 .82 .68 .54 .00

The program accepts as input C, the current balance; A, the average monthly balance; and N, the number of
checks written. It then computes and prints the monthly service charge and new balance.

The program illustrates the use of logical operators and the DIV operator.

121

>LI ST ~
100 I CHECKING ACCOUNT PROGRAM
110 PRINT "THIS IS A PROGRAM TO COMPUTE THE MONTHLY SERVICE CHARGE"
120 PRINT "FOR A REGULAR CHECKING ACCOUNT AT A COMMERCIAL BANK."
130 PRINT FOR Ia 1 TO 2
140 REAL MC15~0:26)
150 M(I~26)=2.50
160 M(15#26)=O
170 M(I~26)=2.50-CI*.14) FOR 1= 2 TO 14
180 FOR 1= 1 TO 15
190 FOR JeO TO 25
200 M(I#J)=M(I~26)-«25-J)*.07)
210 NEXT J# I
220 PRINT "CURRENT BALANCE ":
230 INPUT C
240 PRINT "AVERAGE BALANCE n:
250 INPUT A
260 IF (C=O) AND (A=O) THEN STOP
270 X = A DIV 100
280 IF X<l THEN X=l ELSE IF X>15 THEN X=15
290 PRINT ttNUMBE"R OF CHECKS THIS MONTH ",
300 INPUT Y
310 IF M(X~Y».54 THEN 360
320 M(X~Y)=O
330 IF eXm2 AND Y=O) OR (X=3 AND Y=2) OR (X=4 AND Y=4) THEN M(X~Y)=.47
340 IF (X=3 AND Y=l) OR CX=4 AND Y=3) THEN MCX#Y)=.40
350 IF (X=3 AND Y-O> OR (X=4 AND Y=2) THEN MCX6Y)=.33
360 PRINT
370 PRINT "THIS MONTH'S SERVICE CHARGE ="IM(X~Y)
380 C=C-M(X~Y)
390 PRINT "THE NEW CURRENT BALANCE =tttC
400 PRINT
410 GO TO 220
>RUN.;>
THIS IS A PROGRAM TO COMPUTE THE MONTHLY SERVICE CHARGE
FOR A REGULAR CHECKING ACCOUNT AT A COMMERCIAL BANK.

CURRENT BALANCE ? 667.86~
AVERAGE BALANCE ? 844.11~
NUMBER OF CHECKS THIS MONTH ? 17~

THIS MONTH'S SERVICE CHARGE = .82
TIlE NEW CURRENT BALANCE = 667.04

CURRENT BALANCE ? 0;>
AVERAGE BALANCE ? o~

>

122

PLOTTING

SUPER BASIC can be used to create plots of mathematical functions. The TAB function spaces to the appro
priate position, and the plot symbol is placed there.

The program below plots the sine and cosine functions on the interval [0,21TJ. If the values of the two func
tions are within .03 of each other, only the sine is plotted.

Note the use of the GOSUB statement in the IF ... THEN ... ELSE statement. In addition, each subroutine con
tains a GOSUB statement. These nested subroutines allow both function values to be plotted on the same line
with the smaller value plotted first.

-COpy PLOT TO T ~

100 PRINT
110 PRINT TAB(23):"SIN: *":TAB(S3)t"COS: +"
120 PRINT
130 PRINT IN FORM "8B 11(%%.% 2B)/":I FOR 1=-1 TO -.2 BY .2,0 TO 1 BY .2
140 PRINT "RADIANS It:
150 PRINT ".-----": FOR 1= 1 TO 9
160 PRINT ".----."
170 K,L=O
180 FOR 1=0 TO 2*PI BY PI/24
190 PRINT IN FORM "%.%%%%":1
200 A=ABSCSIN(I)-COSCI»
210 IF A>.03 THEN GO TO 240
220 PRINT TABC41+30*SINCI»:"*"
230 GO TO 260
240 IF SINCI)<COSCI) THEN GOSUB 320 ELSE GOSUB 380
250 PRINT
260 NEXT I
270 PRINT TAB(11):
280 PRINT tI. _____ .. : FOR 1= 1 TO 9

290 PRINT ".----."
300 PRINT IN FORM "8B l1C%%.% 2B)/":1 FOR 1=-1 TO -.2 BY .2,0 TO 1 BY .2
310 stop
320 PRINT TABC41+30*SINCI»:"*",
330 IF L=l THEN 360
340 K=1
350 GOSUB 380
360 L=O
370 RETUR.1\1
380 PRINT TABC41+30*COSCI»:"+",
390 IF K=I THEN 420
400 Lei
410 GOSUB 320
420 K=O
430 RETURN

-SBASIC ~ 123

>LOAD PLOT~
>RUN~

SIN: * COS: +

-1.0 -.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0
RADIANS .~----.-----.-----.~~--~.-----.-----.-----.----~.~~--- .---- .

• 0000 * +
.1309 * +
.2618 * +
.3927 * +
.5236 * +
.6545 * +
.7854 * .9163 + * 1.0472 + * 1.1781 + * 1.3090 + * 1.4399 + * 1.5708 + * 1.7017 + * 1.8326 + * 1.9635 + * 2.0944 + * 2.2253 + * 2.3562 + * 2.4871 + * 2.6180 + * 2.7489 + * 2.8798 + * 3.0107 + * 3.1416 + * 3.2725 + * 3.4034 + * 3.5343 + * 3.6652 + * 3.7961 + * 3.9270 * 4.0579 * +

4.1888 * +
4.3197 * +
4.4506 * +
4.5815 * +
4.7124 * +
4.8433 * +
4.9742 * +
5.1051 * +
5.2360 * +
5.3669 * +
5.4978 * +
5.6287 * +
5.7596 * +
5.8905 * +
6.0214 * +
6.1523 * +
6.2832 * +

.-~---.-----.----~.--~.-.-----.-----.-----.~--~~.---~-.-~--.
-1.0 -.8 -.6 -.4 -.2 .0 .2 .4 .6 .8 1.0

>

124

LEAST SQUARE LINE

This program fits a least square line of the form X=A+BX to a set of data where X is the independent and Y
the dependent variable. The program accepts the number of data points, the matrix X of independent variable
values, and the matrix Y of dependent variable values .

. The regression coefficients A and B are calculated from the equations.

A = (~Y){~X2) - (~X){~XY)

N~X2 - (~X)2

B = N~XY - (~X) (~Y)

N~X2 _ (~X)2

Note the use of the MAT INPUT statements to read the X and Y values.

-SBASIC,~

>LOAD LSQ;>
>LIST~
100 t THIS PROGRAM FITS A LEAST SQUARE LINE OF THE FORM: Y=A+BX
110 , TO A SET OF DATA (X,y) WHERE X IS THE INDEPENDENT VARIABLE.
120 Tl,T2,T3,T4=0
130 PRINT
140 PRINT "NUMBER OF DATA POINTS = "I
150 INPUT IN FORM "''':N
160 DIM XCN),YCN),PCN),SCN)
170 PRINT "THE X VALUES ARE "I
180 MAT INPUT X
190 PRINT "THE Y VALUES ARE ":
200 MAT INPUT Y
210 ! LOOP TO CALCULATE TOTALS
220 FOR 1=1 TO N
230 Tl:;;Tl+XCI)
240 T2=T2+YC I)
250 T3=T3+XCI>*YCI)
260 T4=T4+XCI)f2
270 NEXT I
280 t CALCULATION OF COEFFICIENTS A,B
290 D=N*T4-Tl*Tl
300 A=(T2*T4-Tl*T3)/D
310 B=CN*T3-Tl*T2)/D
320 PRINT
330 F="'THE LEAST SQUARE LINE IS: Y=' %%.%%% ' +' %%.%%% 'X""
3~0 PRINT IN FORM F:A,B
350 PRINT
360 PRINT "ANOTHER SET OF DATA It:
370 INPUT R
380 IF LEFTCR,l)="Y" THEN GO TO 120
>RUN~

NUMBER OF DATA POINTS = 8~
THE X VALUES ARE ? 1~3~4,6~8,9,11,14~

THE Y VALUES ARE ? 1,2,4,4,5,7,8,9~

THE LEAST SQUARE LINE IS: Y= .545 + .636X

ANOTHER SET OF DATA ? YES~

NUMBER OF DATA POINTS = 5~
THE X VALUES ARE ? 1,2,O,7,-4~

THE Y VALUES ARE ? -1,1,-3,11,-11~

THE LEAST SQUARE LINE 1St Y=-3.000 + 2.00aX

ANOTHER SET OF DATA ? NO~

>

125

126

COPYING A FILE

This program copies a file and substitutes a Carriage Return for each semicolon in the file. This technique can
be used within a program, thus eliminating the need for a command file.

Note the use of the string functions LEFT, LENGTH, INDEX, and SUBSTR. Line 210 sets C equal to the left
n characters of TE LETVPE, where n is the length of the name of the output file. This step allows the program to
determine if the output file is the terminal, in which case certain steps are eliminated.

Lines 230-240 determine whether a file by the specified name is already in the user's directory by opening
the file as a random file and calculating the size. If the size is greater than zero, the program prints OLD FILE and
waits ten seconds. If the user types a character, the program requests a new output file name.

-COpy FILECOPY TO T~

100 INTEGER K~I~JIN
110 STRING L~F2~F3~C~G
120 K=O
130 C'J=20
140 TEXT S CN): 80
150 PRINT "COpy FROM FILE. n:
160 INPUT IN FORM 'R'sF2
170 PRINT "TO FILEt n:
180 OPEN F2~INPUT~2
190 ON ENDFILE(2) GO TO 510
200 INPUT IN FORM 'R"F3
210 C=LEFTC'TELETYPE'ILENGTHCF3»
220 IF C=F3 THEN 330
230 OPEN F3~RANDOM OUTPUT~3
240 IF SIZE(3)=0 THEN 340
250 PRINT "OLD FILE"r
260 WAITCI0>
270 IF NOT TEL THEN 320
280 INPUT G
290 CLOSE 3
300 PRINT liTO FILE: ",
310 GO TO 200
320 CLOSE 3
330 OPEN F3~ OUTPUT~3
340 PRINT
350 PRINT DATE
360 INPUT FROM 2 IN FORM 'R':SCI) FOR 1= 1 TO N
370 FOR 1=1 TO N
380 J=INDEX(S(I)~';')I L=LEFT(S(I>~J-l)~ SCI)=SUBSTR(S(I)~J+l)
390 IF J THEN PRINT ON 3:L ELSE 410
400 GO TO 380
410 PRINT ON 3:S(I>
420 NEXT I
430 PRINT "*": UNLESS C=F3
440 PRINT
450 GO TO 360 UNLESS K
460 CLOSE 2,3
470 PRINT "FILE COPIED"
480 PRINT "ANOTHER FILE n:
490 INPUT G
500 IF LEFTCG,I)="Y" THEN GO TO 130 ELSE STOP
510 K=l~N=I-l
520 GO TO 370

-COpy SE~IFILE TO T~

FIRST; SECONDJTHIRDl FOURTH
FIFTHJSIXTH
SEVENTH
EIGHTHlNINTHlTENTH

-SBASIC;>

>LOAD FILECOPY ~
>RUN~
COpy FROM FILE: SEMIFILE~
TO FILE: REWRITE~
OLD F I LEN;;>
TO FILE: SE~n DEL;>

03/01 11 :20

* FILE COPIED
ANOTHER FILE ? YES;>
COpy FROM FILE: SEMIFILE~
TO FILEt TE~

03/01 11: 21
FIRST
SECOND
THIRD
FOURTH
FIFTH
SIXTH
SEVENTH
EIGHTH
NINTH
TENTH

FILE COPIED
ANOTHER FILE ? NO~

>

127

130

Type

Arithmetic t

MOD

*
I
DIV
+

OPERATORS

Operators

exponentiation
unary minus
modulo
multiplication
division
division (integer result)
addition
subtraction

Operate On

Numeric variables and
expressions. NO TE: The
exponentiation operator
can be used to calculate
fractional roots. For ex
ample, the fifth root of
29.3 is 29. 3t (1/5).

Relational <
<=

less than String or numeric vari
less than or equal to abies and expressions.

Logical

String

Binary

>=
>
#or<>
«
»
=#

NOT
AND
OR
XOR

equal to
greater than or equal to
greater than
not equal to
very much less than
very much greater than
approximately equal to

exclusive OR
IMP implication
EOV equivalence

+

BAN
BOR

concatenation

binary AND
binary OR

BEX binary exclusive OR

Relational expressions
and logical values of
numeric variables and
expressions.

String variables and
expressions.

I nteger variables or
expressions.

PRECEDENCE OF OPERATORS

Operator Precedence

Expressions in parentheses 1
Evaluation of functions 2
Exponentiation (t) 3
Unary minus (-) 4

MOD, BAN, BOR, BEX 5
Multiplication and division (*, I, and DIV) 6
Addition and subtraction (+ and -) 7
Relational operators 8
NOT 9
AND 10
OR, XOR 11
IMP 12
EOV 13

131

FUNCTIONS

STANDARD FUNCTIONS STANDARD FUNCTIONS (Continued)

Function Brief Description Function Brief Description

Mathematical Functionsl
RND(X) Random number gener-

ABS(X) Absolute value of X. ator. NOTE: RND(O)

ACOS(X) Angle in radians whose may be typed as RND.

cosine is X. ROUN(X) Value of X rounded to

ASIN(X) Angle in radians whose
sine is X.

nearest integer: equal to
IP(X+.5).

ATN(X) or ATAN(X) Arctangent (in radians, SGN(X) Sign function (1 for

over the range -rr/2 to
+rr/2) of X.

positive X, 0 for X = 0
and -1 for negative X).

ATN(V,X) or Arctangent (in radians, SIN (X) Sine of X (X in radians).

ATAN(V,X) over the range -rr to +rr) SINH(X) Hyperbol ic sine of X.
of V/X. SOR(X) or SORT(X) Positive square root of

COMP(X,V) Compares values of X X.
and V. (-1 if X<V, 0 if
X=V, 1 if X>V)

TAN(X) Tangent of X (X in
radians).

COS(X) Cosine of X (X in radi-
ans).

TANH(X) Hyperbolic tangent of
X.

COSH(X) Hyperbolic cosine of X.

DET Determinant of last ma-
String Functions

trix inverted. S denotes string argument; N denotes numeric

EXP(X) Natural exponential of
X,eX.

argument.

ASC(S) Returns ASCII code of

EXP2(X) 2X
as many as first 3 char-
acters of S; for example,

FIX(X) X truncated: equal to ASC("A") = 33.
SGN(X) * INT(ABS(X)) CHAR(N) Returns string charac-

FP(X) Fractional part of X: ter wh ose ASC II code
equal to X-IP(X). is equal to N; for exam-

INT(X) or IP(X) Greatest integer less ple, CHAR(33) = A.

than or equal to X. COMP(SI ,S2) Compares SI and S2'

LOG(X) Natural logarithm of X.

LOG2(X) Base 2 logarithm of X.

-1 if SI < S2
o if SI = S2
1 if SI > S2

LOG10(X) or Base 10 logarithm of X.
LGT(X)

INDEX(SI ,S2) Position of first occur-
rence of S2 within SI;

MAX(XI ,X2 , ... ,Xn) Returns value of largest for example, INDEX
argument. ("ABC", "B") = 2.

MIN(X I ,X2 , ... ,Xn) Returns value of small- INDEX(SI ,S2 ,N) Position of S2 within
est argument. SI; search begins at po-

PDIF(X,V) Positive difference of X sition N in SI .

and V, if X-V>O; other- LEFT(S,N) Substring of S; N char-
wise O. acters, starting from the

PI Mathematical constant left.

rr. LENGTH(S) Length of string S.

1 - Unless otherwise specified, functions return values of the same type as their argument, e.g., I P(3/2) is real because the quotient
3/2 is real. Some functions, however, convert a logical or integer argument to real before computing the function value.

DATA FILE STATEMENTSl

Statement Model

OPEN "file name" FOR rsYM:~LI~ r'N;UTl AS FILE n

LBINARY J /.QUTPU~

~YMBOLlJ tNPUT-
OPEN "file name" FOR or RANDOM {(r)} or AS FI LE n

BINARY OUTPUT
or
10 -

Short Forms

OPEN "file name", rsYM:~lI~ I'N:rUTl, n

/ lslNARY J ~UTPU~

~YMBOLlJ tNPUTJ OPEN "file name", or RANDOM{(r)} or , n
BINARY OUTPUT

or
10

INPUT FROM n fiN Fo~RM] s :variable list

UN IMAGE

INPUT FROM nlAT I} fiN Fo~RM] s :variable list

UN IMAGE

1 - Optional items are enclosed in braces, { } .

2 - Including "TELETYPE" (or "TEL" or "T") to denote the terminal.

Type Of File

SEQUENTIAL

RANDOM

SEQUENTIAL

RANDOM

SEQUENTIAL

RANDOM

Remarks

Four files may be open concur
rently2. File number n may be zero
or any positive numeric expression.
The file name may be a string vari
able or expression. If the file name
is a literal file name, it must be sur
rounded by double or single quote
marks. For fixed length random
files, the record length r must be en
closed in parentheses and must be a
positive numeric expression. If the
record length r is omitted, the file
is a variable record length file.

n is file number of data input file,
I is the location at which input is
to begin, and s is string constant,
variable, or expression specifying
the input format.

DATA FILE STATEMENTS (Continued)

rp~~Tl ON n

LWRITEJ

Statement Model

[

IN FORMJ
or s : list of variables or expressions

IN IMAGE

rpR~~T] ON n {AT I}

LWRITE
[

IN FORM]
or s :Iist of variables or expressions

IN IMAGE

LOCATE I ON n

ERASE n FROM 11 TO 12

CLOSE n

CLOSE "file name"

ON ENDFILE(n) GO TO line number

Type Of File

SEQUENTIAL

RANDOM

RANDOM

RANDOM

SEQUENTIAL
and

RANDOM

SEQUENTIAL
and

RANDOM

SEQUENTIAL
and

RANDOM

Remarks

n is file number of data output file,
I is location at which output is to
begin, and s specifies output format.
If output format is not given, the
usual PR I NT functions and zones
apply.

Indicates that next file operation on
file n is to be at location I.

n is file number, 11 is first location
to be erased, and 12 is last location
to be erased. Data may not be
erased from random files opened
for INPUT.

Closes data file n. (Automatic after
RUN, DELETE ALL, and return
to EXECUTIVE.) May be given as

CLOSE nl, n2,

Deletes the specified file from the
user's file directory.

n is input file number. Causes
transfer to specified line number
when the end of the input file is
encountered.

138

MATRIX STATEMENTSl

Name Example Remarks
Input

MAT READ MAT READ A,B,C, Matrices are read in row
MAT READ K(15),L(-1:1,3) order (i.e., second subscript

varies more rapidly).
MAT INPUT MAT INPUT A,B,C

MAT INPUT R(2,3),S(O:M)
MAT INPUT FROM 1:A(N+1)

Output

MAT PRINT MAT PRINT A,B;C May be formatted. Ma-
MAT PRINT ON 2:R;S; trices are printed in row

MAT WRITE ON 2: R;S; order.

Mathematical Operations

Addition MAT C=A+B

Subtraction MATC=A-B

Multiplication MAT C=A*B MAT A = A *B is illegal.

Scalar MAT C = (X-5)*A
Multiplication MAT C=A

Transpose MAT C=TRN(A) MAT A=TRN(A) is illegal.

Inverse MAT C = INV(A) Square matrices on Iy. Uses
Gauss-Jordan method.

Determinant p', = DET No argument. Returns de-
terminant of last matrix
inverted.

Matrix Initialization

ZER MAT C=ZER Sets all elements to zero.
MAT C=ZER(M)
MAT C=ZER(15,N)

CON MAT C=CON Sets all elements to one.
MAT C=CON(M)
MAT C=CON(15,N)

IDN MATC=IDN Square matrices only. Sets
MAT C= IDN(M,M) identity matrix.

1 - Except for multiplication, TRN, INV, and ION, all statements apply to both matrices and vectors.

139

CONTROL STATEMENTS

FOR and NEXT described in separate table.

Statement Model Remarks

END Not needed at end of program.

GO Direct only.

GO TO line number When used directly, retains all
previous information. 1

GOSUB line number Be sure to isolate subroutine
from main program.

I F logical expression TH EN statement The statement after the TH E N
or ELSE clause can be any in-

I F logical expression THEN statement direct statement except
ELSE statement DATA, REM, or !.

ON numeric expression GO TO line}, Value of numeric expression
line2, ... will be truncated if not an

integer.
ON numeric expression GOSUB line},

Iine2,· ..

PAUSE Indirect only.

QUIT (or Q;> when used directly) Also can be used indirectly.

RETURN

RETURN expression

START Equivalent to GO TO first
statement in program.

STOP Equivalent to END.

1 - Except that it would reinitialize the reading of any DATA statements.

142

ENTERING, LOADING, AND SAVING THE PROGRAM

Command Example Purpose

ENTER > ENTER 100 BY 5 To enter the program state-
If BY increment is not given, ments from the terminal with
assumed to be 10. line numbers prompted. Di-

rect only.

LINK > LINK FILE2 To load program statements
525 LINK "NEXTFI LE" saved on a file. Deletes pre-

vious statements and begins
execution. Direct or indirect.
If used as indirect statement,
literal file name must be en-
closed in double or single
quote marks.

LOAD > LOAD A To load program statements
1550 LOAD "THISFI LE" saved on a file. Direct or indi-

rect. If used as indirect state-
ment, literal file name must
be enclosed in double or single
quote marks.

SAVE >SAVE PROGFILE1 To save all or part of program.
> SAVE XY, 1-15,30,70-100 Direct only.

SAVE BINARY > SAVE BINARY ROOT To save compiled program on
a GO file. Direct only.

143

EDITING AND UTILITY COMMANDS

All of these commands are direct only except MAP, REM, and !.

Command Example Remarks
DELETE or >DELETE 10 DE LETE A LL has the

DEL >DEL 8-10,70 same effect as returning
>DELETE ALL to EXEC and recalling

SBASIC.

EDIT >EDIT 25 The line to be edited
>25 EDIT will be printed out.

LIST >LlST 25 LIST alone lists the en-
>LlST 10,65-90 tire program.
>LlST

LOL >LOL 120 Sets length of line on
output to determine
when new line is to be-
gin. Length of line as-
sumed to be 72 if LOL
is not used.

MAP >MAP Prints table of storage
>512 MAP allocation for SUPER

BASIC program.

MODIFY or >MOD10 The line to be edited
MOD >10 MOD will not be printed out.

REM and! >10 REM PRINT A Only! can append com-
>10!SUBROUTINE ments to statements (see
>55 A = A+1 !ADD 1 the last example).

RENUMBER >RENUMBER 20,10,5 When omitted, first new
or REN >REN AS 20 FROM 10 BY 5 line number is assumed

>R EN 20,10-95,5 to be 100, first old to
>REN AS 20 FROM 10 be 0 (program is renum-

TO 951NC 5 bered from the begin-
>RENUMBER BY 5 ning), and increment to
>REN be 10.
>REN 30 ADD 10
>REN FROM 30 TO 65 ADD 10
>RENUMBER 200-310 ADD -100

TABS >TABS 5,10,15,20 Tabs are initialized at 7,
15, and in steps of 5
from 15 on. I c spaces to
next tab stop.

1 - A list of editing control characters appears on page 106.

144

Statement

BASE

CLOSE

COMPLEX

DATA

DEF

DELETE

DIM

DOUBLE

EDIT

END or STOP

ERASE

FOR

GO

GOSUB

GOTO

IF

INPUT

INTEGER

LET (Assignment)

LINK

LIST

LOAD

LOL

LOCATE

LOGICAL

MAP

1 - But not by FOR.

APPENDIX B

ALPHABETIC LIST OF ALL

SUPER BASIC STATEMENTS
AND CHARACTERISTICS

The following is an alphabetic list of all SUPER BASIC statements.

0- A direct statement

I- An indirect statement

B- Either a direct or an indirect statement

Y- Statement may be modified by statement modifiers

N- Statement may not be modified by statement modifiers

Statement Modification Statement
Type Possible Statement Type

B Y MAT B

B Y MODIFY D
B Y NEXT

N ON B
Y ON ENDFILE B

D N OPEN B
B Y PAUSE
B Y nn IIU. 0 r nil'll I u

D N QUIT B

B Y READ B

B Y REAL B

I yl REM or! B

D N RENUMBER D

B Y RESTORE B

B Y RETURN B

B N2
RUN D

B Y SAVE D

B Y SAVE BINARY D

B Y START D

B Y STRING B

D N TABS D

D N TAPE D

D N TEXT B

B Y VAR=UNDEF B

B Y VAR=ZERO B

B Y WRITE B

Mod ification
Possible

Y

N

Y

Y

Y

Y

Y
v

I

Y

Y

Y

N

N

Y

Y

N

N

N

N

Y

N

N

Y

Y

Y

Y

2 - I F statement cannot be modified, but THEN or ELSE clause can be modified if the statement comprising the clause is
modifiable.

145

APPENDIX C

THE EXECUTIVE

ENTERING THE SYSTEM

To gain access to the Tymshare system, the user
must log in.

As soon as the computer has answered, place the
telephone handset into the MAR K V data modem,
press the ORIGINATE button on the MARK V, and
turn on your terminal. If your terminal is a Teletype
Model 33 or 35, the system will ask that the identify
ing character 0 be typed. NOTE: For the identifica
tion character for other terminals, consult your local
Tymshare representative. Now, log into the Tymshare
system. See the Tymshare EXECUTI VE Reference
Manual for details.

After the user logs in, the system will respond with
a message and a dash. The dash indicates that the user
is in the EXECUTIVE and may give an EXECUTIVE
command. Calling a language is an EXECUTIVE
function.

CALLING SUPER BASIC

To call SUPER BASIC, type the EXECUTIVE
command

- SBASIC ~

SUPER BASIC will reply with a> when it is ready to
accept a command.

RETURNING TO SUPER BASIC

If for some reason you return to and work in the
EXECUTIVE and then wish to continue from where
you left off in SUPER BASIC, you can use the RE
ENTER command. The program and data that you
worked with in SUPER BASIC were not destroyed by
the return to the EXECUTIVE. However, any files
which were open when you left SUPER BASIC are
closed when you return to the EXECUTIVE and re
main closed if you use REENTER to return to SUPER
BASIC.

Example

- SBASIC;>
>

> QUIT ~

- REENTER ~
SBASIC

>

The user types part of a
SUPER BASIC program.

He does some work in the
EXECUTIVE.

He continues to type the
program.

If the user had typed SBASIC;> or called any
other language instead of giving the REENTER com
mand, all of his previous work would have been
destroyed.

RULES FOR NAMING FILES

Files are designated by the name assigned by the
user when he creates them. A file name can contain
any combination of digits, letters, and @. In addition,
a file name can contain a series of characters including
any characters except Line Feed or Carriage Return if
the series is enclosed in single quote marks or slashes.
A series of characters which obeys the following rules
is an acceptable file name.

Rule 1 A file name may contain any combination of
the characters

o through 9
A through Z
@

Rule 2 A file name can contain protected strings,
that is, a series of characters in slashes or
single quotes. Protected strings can contain
any characters except Line Feed (Jc), Car
riage Return (Mc), and the delimiting charac
ter itself (/ or '). NOTE: To include a Con
trol A in a file name in the EXECUTIVE, the
AC must be preceded by V C

•

146

Rule 3 Certain reserved file names cannot be used:

TELETYPE NOTHING
TELETYP NOTHIN
TELETY NOTHI
TELET NOTH
TELE NOT
TEL NO
TE N
T
These names always These names always
designate a terminal. designate a null file.

Rule 4 A file name may contain a maximum of 45
characters.

THE COpy COMMAND

In the EXECUTIVE system, the COpy command
is used to

• Create files.

• Print files on the terminal.

• Copy the contents of one file to another.

The general form of this command is

COpy source file TO destination file

The letter T may be used in place of a file name in
the COpy command to indicate that the source or
destination file is the user's terminal.

Examples

- COpy TRI TO T;:>

- COpy A 1 TO B ;:>

- COpy T TO SBPROG ~

THE DECLARE COMMAND

The DECLARE command is used to set file secu
rity controls. These controls determine who can ac
cess the files, who can read them, and who can write
on them. These controls provide a maximum of
security.

DECLAR E asks two sets of questions: PR IV ATE
and PUB LlC. These questions and the effect of the
user's response are listed in the table below. The pri
vate controls refer to what the user himself can or
cannot do to his file. The other file access controls
refer to sharing files with other users in the same
account.

A file with @ or a control character in its name is
always public. It can be accessed by any user on the
system if he knows the full name of the file. There
fore, to share a file without risking its exposure to
everyone in the account, a user may include some
nonprinting control characters in the file name and
inform only those other users who are allowed to ac
cess the file. Since the control characters do not print,
there will never be any written record of the com
plete file name to jeopardize its security.

The general form of the DECLARE command is

DECLARE file names

The user specifies the file or group of files which he
wishes to declare. After the last file name, he types a
Line Feed or Carriage Return. The EXECUTIVE then
asks questions which can be answered Y or N fol
lowed by a Line Feed. (The WR ITE ACCESS ques
tion can also be answered with an A.)

If the Y or N is followed by a Carriage Return
rather than a Line Feed, DECLARE will skip the re
maining questions and make no further changes in
the condition of the file or files.

Example

SOU is a GO file belonging to user Jones (user
name JONES). He declares this file to be proprietary
as follows:

- DECLARE ~

FI LE(S): SOU"l

PRIVATE:

WRITE ACCESS? Y"1-

READ ACCESS? Y-:t

PUBLIC? Y~

PUBLIC:

PROPRIETARY? Y ~

WRITE ACCESS? N""1

The file may still be read, written on, or deleted by
Jones. In addition, all the other users in the account
may use it by typing

- GO (JON ES)SOU :;>

No user can copy the file to his own directory.

Question

PRIVATE:
WR ITE ACCESS?

READ ACCESS?

PUBLIC?

PUBLIC?
PROPRIETARY?

WR ITE ACCESS?

147

EFFECT OF RESPONSES

Y (for YES) N (for NO) A (for APPEND)

The user may write on the The file can only be read The user may add to the
file or delete it. or opened for input; the file, but he cannot write

user may neither write on
it nor delete it. The next
question is bypassed.

The user may read the file. The user may not read the
file. The file may not be
opened for input or loaded
into a language.

Other users in the same ac

count may access the file
subject to the public con-
trois.

Other users may not copy
or use the file unless the
file name contains a con
trol character or @. All
subsequent questions are
bypassed.

The file can be executed No further limitation is
by other users but cannot placed on copying or using.
be listed or copied. It can
be accessed only by the
GO command if it is a GO
file, or the RUN command
if it is a dump file. Mem-
ory is cleared whenever a
return to the EXECUTIVE
is made.

In addition to being able to Other users in the account
copy and use the file, other can copy or load this file,
users in the same account
may write on it.

but may not write on it or
delete it.

over existing information.
Append-only files can be
deleted.

148

LISTING FILE NAMES

When the EXECUTIVE command

- FILES;>

is given, a complete listing of all your files will be
printed, and the type of file will be indicated (SYM
for symbolic, BIN for binary, DUM for dump, and
GO for GO file).

Example

- FILES;>

SYM MORTGAGE
SYM JUNK
SYM DATA
BIN BDATA
SYM VEN
SYM ABC

DELETING FILES

If there is no further use for a particular file, delete
it by typing:

DELETE file name

Example

- DELETE ABC;>

A single DELETE command may be used to delete
more than one file. The file names must be separated
by commas as follows:

- DELETE PGM,JUNK,VEN ~

LEAVING THE SYSTEM

To exit from the Tymshare system, you first must
be in the EXECUTIVE. To return to the EXECUTIVE
from SUPER BASIC, type:

>QUIT~

or

After the EXECUTIVE dash appears, type:

- LOGOUT ~

The system will then type

CPU TIME: n SECS.

Number of computing seconds used.

TERMINAL TIME: 0:00:00

Number of minutes connected.

When the computer types

PLEASE LOG IN:

you may disconnect the line or let another user log in.

INDEX

NOTE: Page numbers which appear in bold face type refer to those pages where the listed
item receives the most detailed discussion.

ABS, 7, 26

Absolute value of complex number, 26

ACOS,8

ADD, 108

Addition, 7
matrix, 23

Address directory, 116

Addressing, line, 3

Allocation of memory by variable type, 47

AL T MODE/ESCAPE, 98

AND, binary, 28
logical, 30

Approximately equal to operator, 29

Arc cos, 7

Arc sin, 8

Arc tan, 8

Argument, function, 7,93
subroutine, 94

Arithmetic, complex, 25
double precision, 26
expressions, 7
functions, 17
integer, 5
logical, 29
mixed mode, 102
operations, order, 7
operators, 7

Array, 20
complex, 25
definition, 20
dimensioning, 20
naming, 20
redimensioning, 21
size, 20
storage arrangement, 20,47
string, 34
subscripts, 20
text, 34

ASC,37

ASCII code
function, 37
string conversion, 39
table, 38

ASIN,7

Assignment, complex, 25
double precision, 27
multiple, 41
order of execution, 41
statement, 4, 41, 129
string, 33, 35

ATAN,8

ATN,8

BAN, 28

Bar chart, 115

BASE, 21

BEX,28

Binary
AND,28
conversion, 61
exclusive OR, 28
file, 73
file, declaration of variables when using, 74
file input/output, 73
functions, 28, 132
operators, 28
OR,28
program file, 100
shift, 28

Blank strings, 35

Blanks, multiple in file, 77

BOR,28

BY, 9,140

Calculating elapsed program time, 20

Calculation in FOR loops, 42

Call, subroutine, see GOSUB

149

150

Calling SUPER BASIC, 11, 145

Carriage Return in FORM, 59

Carriage Return in IMAGE, 54

Changing statements, 14

CHAR, 39

Character set, 38

Characteristics, statement, 144

Check filling protection, 53, 56

CLOSE,75

CMPLX,25

Code, ASCII, 38

Colon in PRINT, 50

Column vectors, 23

Combining I F statements, 41

Comma in PRINT, 49

Command files, 89

Comments, 13

CaMP, 17,40

Comparison, numeric, 17
string, 40

COMPLEX, 25, 47, 132

Complex
absolute value, 26
arithmetic, 25
array, 25
assignment, 25
comparison, 25
conjugate, 26
constants, 25
data statement, 25
declaration, 25, 47
functions, 25, 132
input, 25
number polar form, 26
phase, 26
variables, 25
variables comparison, 25
variables logical value of, 29

COMPLX,25

Computed GO TO statement, 44

Computed GOSUB statement, 92

CON,24

Concatenated PR I NT zones, 50

Concatenation of PRINT and INPUT, 50

Concatenation, string, 35

Conformable matrices, 23

CONJ,26

Constant
data statements, 10
double precision, 27
integer, 47
logical,29
numeric, 5
octal, 28
predefined, see EPS, PI, and DPI

real,47
string, 33

Control characters, ASCII code, 38
editing, 106

Control of running programs, 97

Control statement, 41, 139

Conversion, ASCII code to string, 39
binary, 65
hexadecimal, 65
numeric to string, 36
octal,65
string to numeric, 36

COPY, 146

Copying files, 126

COS, 7

COSH,8

Cross reference, line numbers and variables, 109

Cube root by approximation, 119

D format, 27

DATA, 10,25,33

Data, complex, 25
editing, 104
file binary, 73
file statements, 134
file symbolic, 73
statement, 10
termination, 50
types, see Declaration

DATE,19

DBL,27

Debugging program, 109

Decimal field, 52

Decimal format, 5

Declaration, binary file variables, 48
COMPLEX, 25

DIM,20
DOUBLE,26
INTEGER, 47
LOGICAL, 30
REAL, 47
statement, 47, 129
STRING, 34
storage allocation, 47
summary, 47
TEXT, 34, 47
type, 47
when optimizing, 102

DECLARE, 146

DEF,93

Deleting, file, 75, 148
statements, 14

Delimiters, input, 4

Delta, Kronecker, 30

DET,24

Dictionary file, 87

DIM, 20, 47

Dimensioning, see Declaration

Direct statements, 3

Directory of addresses, 116

DIV,7

Division, 7

DOUBLE, 26, 47
declaration, 26
dimensioning, 26

Double precision
arithmetic, 26
array, 26
constants, 27
declaration, 47
functions, 27, 132
PI, 8, 27
variables, 27

DPI, 8, 27

Dummy arguments, 93

E field, 52

E format, 5

EDIT, 105

Editing, 14
commands, 105, 143
control characters, 106

data, 104
file names, 104
program, 103

Elapsed program time, 20

Elements, random file, 77

ELSE, 4, 41, 103

END, 92, 98

End of file, 76

End of record, 81

ENTER, 11

Entering program, 11, 142

Entering system, 145

EPS,23,29

Equal to, 8

Equality operator, 29

Equivalence, logical, 30

EQV,30

Erase, 86

Error messages, 98
function, 95

Errors, syntax, 105

ESCAPE/AL T MODE, 98

Exclamation point, 13

Exclusive OR, binary, 28
logical, 30

Executing a program, 12

Execution, FOR loops, 42
modifiers, 45

EXECUTIVE, 5, 145

EXP,8

EXP2,8

Exponential functions, 8

Exponentiation, 7

Expression, 29
arithmetic, 7
logical, 29
mixed, 7
order of operation, 31
relational, 8
string, 35, 39

File, access controls, 146
binary, 73, 100

151

152

command, 89
copying, 126, 146
creation of, 74
data, 73
definition, 12
deletion, 75
dictionary, 87
end of, 76
input, 74, 79
name, 145
name as string expression, 39
name editing, 104
name listing, 148
name maximum length, 146
names reserved, 146

number, 73, 78
output, 74, 80
print position function, 19
program, 12
random, see Random file
security controls, 146
sequential, 73
symbolic, 73
TAB function, 19
terminal as, 76

FILES, 148

Fitting least square line, 124

FIX,17

Fixed length random file, 77,81

FOR and NEXT, 140

FOR loop, 9
calculation, 42
execution, 42
modifiers, 43
nested, 43
with multiple NEXT, 43

FOR modifier, 44

FOR statement, 9, 42

FOR value list, 42

FORM, 56
blanks in, 62
Carriage Return in format, 57, 59
Carriage Return in output, 67
character replication, 56, 68

Form characters, 60
conditional field, 64
conversion, 65
o and Y in numeric fields, 63
floating, 64
H, 0, and W, 65
numeric, 60

precise, 60
static, 64
string, 66
summary, 60
utility, 61
with random file, 82

Form, conditional field characters, 64
embedded text, 62
end of, 58
field replication, 56, 68
field termination, 62
floating $ field, 56
floating * field, 56
floating vs. static characters, 64
formats, 82
free form input field, 59
free format, 57
input with Carriage Return, 59
Line Feed in output, 67
precise characters, 60
R format, 58
replication, 68
rescan,58
rounding in, 63
single R format, 58
static characters, 64
string field characters, 66
subfields in, 63
text embedded, 62
text in format, 57
text in input format, 58
utility characters, 62

Formatted INPUT IN FORM, 58

Formatted INPUT IN IMAGE, 54

Formatted output, PRINT IN FORM, 56
PRINT IN IMAGE, 51

Formatting, picture, 51, 136
with form, 56
with image, 51

FP, 17

Fractional part function, 17

FSB, 101

Function, 131, see also individual function name
arguments, 7, 93
arithmetic, 7, 17, 131
ASCII, 37
binary, 132
complex, 132
definition, 93
double precision, 27, 132
error messages, 95

exponential, 8
hyperbolic, 8
location, 85
logarithmic, 8
mathematical, 7, 17, 131
multiple line, 94
parameters, 93
print, 132
programmer defined, 91,93, 133
random file, 85, 132
random number generator, 18
recursive, 94
string, 35, 131
string comparison, 40
string maximum, 40

string minimum, 40
subroutines, 91,94
trigonometric, 7
utility, 18, 132

Gauss-Jordan inversion, 23

Global variables, function, 93
function subroutines, 95

GO, 101

GO TO, 4,12
computed, 44

GOSUB,91
computed, 92

Greater than operator, 8, 29

Greater than or equal operator, 8, 29

Greatest integer less than function, 17

Hexadecimal conversion, 61

Identification character for terminals, 145

Identity matrix, 24

IDN,24

I F modifier, 44

I F statement, 41

IF ... THEN ... ELSE, 4, 41, 103

III-conditioned matrix, 23

IMAG,25

IMAGE, decimal field, 52
E format field, 52
end of on input, 55
field #, 55

field $,53
field *,53
field decimal, 52
field integer, 51
field string, 53
fixed length input fields, 55
floating $ field, 53
floating * field, 53
formats, 84
formatting, 51
free form input field, 54
input fixed length, 55
input free form, 54
integer field, 51
repetition, 54
rescan,55
single # field, 55
string field, 53
text in format, 53

Imaginary part of complex number, 25

IMP,30

Implication, 30

Inclusive OR, 30

INDEX,37

Index generator, SUPER BASIC, 109

Indexed GO TO, 44

Indexed GOSUB, 92

Indexing program, 109

I ndirect statements, 3

Initialization, matrix, 24
variable, 47, 129

Input, 4
complex numbers, 25
data from data statements, 10
data from file, 74
data from terminal, 4
data matrix, 22
data string, 34, 66
file, 74
fixed length, 55
formatted using form, 58
formatted using image, 54
free form, 54, 57

INPUT FROM, 74, 79

INPUT FROM *,90

Input from command file, 90

INPUT IN FORM, see FORM

INPUT IN IMAGE, see IMAGE

153

154

Input list, 4, 74
literal text in, 53

Input, matrix, 21
program from file, 13
program from paper tape, 12
program from terminal, 11
question mark suppression, 54, 59
random file, 79
string, 34, 66

Input/output statements, 49,133

I nserti ng statements, 14

INT,17

INTEGER,47

Integer
arithmetic, 5
constants, 5
field, 51
format, 5
variables, 47

Internal code table, 38

Interrupts, 98

INV,23

Inverse logarithmic function, 8

Inverse trigonometric function, 7

Inversion, matrix, 23

10,78

IP,17

Isolating suhroLJtines, ~2

Kronecker delta, 30

LEFT, 36

Left shift binary, 28

LENGTH function, 35

Length of output line, setting, 50

Less than operator, 8, 29

Less than or equal operator, 8, 29

LET,41

LGT,8

Line addressing, 3

Line continuation, 3

Line Feed
in form, 67
in statements, 3

in strings, 33

Line length, 3
setting, 50

Line numbers, 3
prompted, 11

Linear regression example, 124

LINK, 100

LIST, 13

Listing, file names, 148

Listing program, 13

LOAD, 13, 100

Loading program, 142

LOC,85

Local variables, function, 93
function subroutines, 95

LOCATE, 84

Location function, 85

Location random file, 77

LOG, LOG2, LOG10 functions, 8

Log in procedure, 145

Logarithmic functions, 8

Logging in, 145

Logging out, 148

LOGICAL, 29, 47

Logical
A!,JD,30
array, 30
constants, 29
declaration, 30
equivalence, 30
exclusive OR, 30
expressions, 29
implication, 30
NOT, 30
operators, 30
OR,30
values, 30
variables, 29

LOGOUT, 148

LOL,50

Loop, see FOR loop

LSH,28

MAP,lll

MARK V modem, 145

MAT commands, restrictions, 21

MAT INPUT FROM, 22, 79

MAT operations, 21

MAT PRINT ON, 23, 80

MAT READ, 21
dimensioning, 22
order of processing, 22

MAT WRITE ON, 23,80

Matching THEN and ELSE clauses, 42

Mathematical functions, 7, 17, 131

Mathematical operations on matrices, 23

Matrix
addition, 23
arithmetic, 20
conformable, 23
identity, 24
ill-conditioned, 23
initialization, 24, 47

input, 21
inversion, 23
mathematics, 23
multiplication, 23
operations, 21
output, 22
PR I NT zones, 22
statements, 138
subtraction, 23
transposition, 23
unity, 24
zero, 24

MAX, 18,40

Maximum program size, 111

Memory allocation by variable type, 47

Memory map, 111

Messages, error, during execution, 98
syntax, 105

MIN, 18,40

Mixed mode expression, 102

MOD,7

Mode, mixed, 102

Modifiable statements, 144

Modified print zones, 50

Modifier, multiple, 45
order of execution, 45
statement, 44, 141
used in input/output statement, 45

MODIFY, 105

Multiple assignment statement, 41

Multiple blanks in file, 77

Multiple line functions, 94

Multiple NEXT statements, 43

Multiplication, 7

Multiplication matrix, 23

Multiplication scalar, 23

Multiplication vector, 23

Names, variable, 129

Nested GOSUB statements, 122

Nested loops, 43

NEW FILE, 12

NEXT, 8, 43

NOT, 30

Not equal to operator, 8, 29

Null string, 35

Numbers, 5
complex, 25
formatted output, 51, 56
typing, 5
unformatted output, 49

Numeric
comparison, 17
constants, 5
maximum function, 18
minimum function, 18
rounding, 63
to string conversion, 36

Octal constants, 28

Octal conversion, 61

OLD FILE, 12

ON ENDFILE, 76

ON expression GO TO line list, 44

ON expression GOSUB line list, 92

OPEN, 73, 78

Opening, random file, 78
sequential file, 73

Operations matrix, 21

Operator, 31,130
arithmetic, 7
binary, 28
logical, 30

155

156

precedence, 31, 130
relational, 29

Optimizer, 101

OR, binary, 30
logical, 28

Order of arithmetic operations, 7

Output
data formatted form, 56
data formatted image, 51
data numbers unformatted, 49
file, 74
list, 4, 74
matrix, 22
program to file, 12
program to paper tape, 12
program to terminal, 13
random file, 80

Packed PRINT zones, 50

Paper tape, 12

PAUSE, 97

PDIF,17

Percentage bar chart, 115

PHASE, 26

PI,8
double precision, 8, 27

Picture formatting, 51, 136

Plotting terminal, 122

POLAR, 26

Polar form of complex number, 26

POS, 19,85

POS(N) random file, 85

Positive difference function, 17

Precedence of operators, 31, 130

Precise form character examples, 69

Predefined constants, see EPS, PI, and DPI

PRINT, 3, 49

Print functions, 132

PRINT IN FORM, 56

PRINT IN IMAGE, 51

Print matrix, 20

PRINT ON, 74, 80

Print position function, 19

Print zones, 49

matrix, 22
string, 33

Program, control of, 97
debugging, 109
entry, 142
execution, 12
file binary, 100
indexing, 109
loading, 142
maximum size, 111
sample, 113
saving a, 12
self-starting, 13
size map, 110
time elapsed, 20

Programmer defined function, 91, 133
names, 94

Prompted line numbers, 11

Pseudo random number generator, 18

Quadratic equation solution, 113

Question mark suppression, 54, 59

QUIT, 5, 98, 148

Quote marks with strings, 33

R format, 58, 82

Random access data file, see Random file

Random file, / in FORM format, 83
current position, 79
dictionary example, 87
elements, 77
ERASE command, 86
fixed record length, 77, 81
functions, 132
I MAG E format, 84
input, 79
LaC function, 85
LOCATE command, 84
location current, 79
multiple blanks, 80
opening, 78
output, 80
position function, 85
PRINT ON, 80
record length, 77
record protection, 82
single R field, 82
size, 86
special formatting rules, 82
variable length records, 77

variable record length format, 81
WRITE ON, 80

Random number generator, 18

READ, 10

REAL declaration, 47

REAL function, 25

Real
constants, 5
declaration, 47
part of complex number, 25
variables, 47

Record, end of, 81
length, 77
length specifying, 78
protection features, 82
random file, 77

Recursive function, 94

Redimensioning arrays, 21

REENTER, 145

Relational expressions, 8

Relational operators, 29

Relational with complex numbers, 25

REM,13

RENUMBER, 107
with ADD, 108

Replacement statement, see Assignment statement

Replication character, 56, 68

Replication field, 56, 68

Rescan of format, 55, 58

Reserved file names, 146

RESTORE, 10

RETURN, 91,95

RETURN expression, 95

Returning to SUPER BASIC, 145

RIGHT,36

Right shift binary, 28

RND,18

ROUN,17

Rounding function, 17

Rounding of output, 63

Row vectors, 23

RSH,28

RUN,12

Running a program, 12

Sample programs, 113

SAVE, 12, 142

Saving a program, 12, 142

SBIG,109

Scalar multiplication, 23

Security, file, 146

Self-starting program, 13

Semicolon in PRINT, 50

Sequential file, 73
closing, 74
opening, 73

SGN,17

Shift binary, 28

Sign function, 17

SIN,7

Single line function, 93

Single R field in form, 59,82

SINH,8

Size, arrays, 20
files, 86
program, 111

Solving quadratic equations, 113

SPACE, 35

Space program, see Memory

SOR,7

SORT, 7

Square root, 7

START, 12

Statement, alphabetic list of, 144
arithmetic, 4
assignment, 4, 41, 129
characteristics, 144
continuation, 3
control, 41, 139
comment, 13
DATA, 10
data file, 134
declaration, 47, 129
deletion, 14
direct, 3
entering, 11
execution, 12
indirect, 3

157

158

input/output, 133
insertion, 14
length, 3
list, 144
logical assignment, 29
matrix, 138
modifiable, 144
modification, 14
modifiers, 44, 141
numbers, 3
output, 133
replacement, see Assignment statement
string assignment, 33
summary, 129
type, 144

STEP, 9,140

STOP, 92, 98

Storage allocation, 20, 47, 111

Storing program on disk file, 12

STR,36

STRING, 34, 47

String
arrays, 34
assignment, 33, 35
comparison, 40
concatenation, 35

constants, 33
DAT A statements, 34
declaration, 34
delimiters, 34
dimensioning, 34, tl7
expressions, 35
expressions as file names, 39
field characters in form, 66
functions, 35, 131
index, 37
input, 34, 66
length, 33, 35
maximum function, 40
minimum function, 40
null, 35
numeric conversion, 36
output, 3, 33,49,53, 56,66
print zones, 33
quote marks with, 33
values, 33
variables, 33

Subroutine, 91
function, 91
isolation, 92

Subscript, 20

specifying lower limit, 21

Subscripted variables, 20

SUBSTR,36

Substring function, 36

Subtraction, 7
matrix, 23

SUPER BASIC index generator, 109

SUPER BASIC optimizer, 101

Symbolic file, 73

Syntax errors, 105

TAB, 19
use in plotting, 115, 122

TABS, 104

TAN,7

TANH,8

TAPE, 12

Tape, paper, 12

TCP,90

TEL,99

Terminal
as file, 76
identification character, 145
input/output, 4, 76
plotting, 122
print position function, 19
TAB function, 19

Terminating execution of program, 92

TEXT, 34, 47

Text arra"ys, 34

THEN ... ELSE clauses, 4, 41,103

TIME function, 20

Transposition matrix, 23

Transposition vector, 23

Trigonometric functions, 7

TRN,23

Truncation, 17

TYPE, see PRINT

Type declaration, 47

Unary minus, 7

Unity matrix, 24

UNLESS modifier, 44

UNTI L in FOR loop, 43

UNTI L modifier, 44

Update (input/output) files, 78

Utility commands, 143

Utility functions, 18, 132

VAL, 36

Value types, 129

VAR=UNDEF,7

VAR=ZERO,6
with strings, 35

Variable, 6, 25
complex, 25
declaration, 47
double precision, 27
global, 93
initialization, 129
integer, 5
length random file, 77
local, 93
logical, 29
names, 6,129
real, 5
record length file, 81
record length file input, 81
record length file output, 81

string, 33
subscripted, 20
types, 47

Vector, 20
column, 23
multiplication, 23
row, 23
transposition, 23

Very much greater than operator, 29

Very much less than operator, 29

WAIT, 99

WHILE in FOR loop, 43

WHILE modifier, 44

Words of storage, 47

WRITE IN FORM, 56

WRITE ON, 74, 80

XOR,30

ZER,24

Zero matrix, 24

Zones, print, 22, 49
strings, 33

159

	000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160

