

ONE FT $=2$ DISK WORDS
ONAR DISK WORD $=22$ AMBIT WIDADS $+2 P A$

POR- BNO OP Becono

DATA WORD COUNTER COUNTS DBSK WORDS
Flgare 2-2, Disk Forma Timino

FUNCTIONAL DESCRIPTION

AUXILIARY MEMORY TRANSFER UNIT (AMTU)

Figure 1-1 Auxiliary Memory Transfer Unit

SECTION I

PHYSICAL DESCRIPTION

1-1 GENERAL

The Auxiliary Memory (AMTU) is housed in a single cabinet designated Bay 3 (See Figure 1-1). The functional printed circuit boards which contain the logic for the AMTU are located within two racks of Bay 3. Each rack has 33 board locations. The two racks are mounted one above the other in Bay 3. The top rack is designated 3A1 and the bottom rack is designated 3A2. All input and output signals to each board enter from the rear through a special 136-pin Elco fingertype connector. Interconnecting wiring between the functional boards of both racks is effected by means of terminals mounted on a solid plane behind the card racks and which connect electrically to the fingers of the Elco Type connectors. Located directly below rack 3A2 is a cable connector panel assigned reference designatic 2 A 3 . On this panel are mounted seven Burndy-Type connectors, four of which interface with the Drums and Disks, one of which interfaces with a control Processor (AMCP) and one of which interfaces with the Fast Memory. A single RG58 coaxial connector is also mounted on the connector panel and carries the SYstem Clock into the AMTU. From these connectors the signals interface with the AMCP through six cable cards located in the center portion of the rack designated . 3A2. See figure 1-2 for more detail.
$1-2$ RACK ORGANIZATION
This rack
RACK 3A1 Rack 3AI is divided into three distance functional blocks. Jack locations 33 through 20 are dedicated to the functional boards which implement the logic functions associated with the Drum Transfer Subunit designated TSUØ. Jack location 19 through 14 are dedicated to the functional boards which implement the logic functions associated with the Transfer Unit Interface Multiplexor (TUIM). Jack locations 13 through 1 are dedicated to the functional boards which implement the logic functions associated with the Disk Transfer Unit designated TSU2. 1-2-2 RACK 3A2 This rack is also divided into three distinct functional blocks. Jack locations 33 through 20 are dedicated to the functional boards which implement the logic functions associated with $x \times x$ TSUl. Jack locations 19 through 14 are dedicated to the cable boards which connect the functional boards to the Burndy connectors on the connector panel 3A3.

स W XXx x $\otimes \mathrm{N}$

1-3 FUNCTIONAL BOARD TYPES
There are fifteen different functional board types serving 64 of the 66 available Jack locations on racks $3 A 1$ and $3 A 2$. Boards of the same type are interchangeable except for the external jumpering required as specified $\mathbb{N} \mathbb{X}$ in the following analysis.
4.

1-3-1 DRUM TSU The two Drum TSU's require the following seven basic whet ox board types:

Each Drum TSU requires five of these boards, one each in Jack locations J33 through J29. The five boards are completely interchangeable. This interchangeability extends to the Jack locations
 wherein this board is used.

CONTROL LOGIC TYPE \# 700687
Each Drum TSU requires one of these boards in Jack location J28. This board can be used in Jack location J7 of either Disk TSU with some external jumpering required. External jumpering is also required to adapt this functional board to the two different Drum types used in this System.

POSITION COUNTERS TYPE \# 700624
Each Drum TSU requires one of these boards in Jack location J27. This board can be used in Jack location J8 of either Disk TSU with some external jumpering required.

DATA BUFFERS TYPE \# 700687

- Each Drum TSU requires three of these boards, one each in Jack location J26 through J24. A different external jumper configuration is required for each of the three Jack locations.

FORMAT GENERATOR CARD NO. 2 TYPE \# 700725-2
EKWK Each Drum TSU requires one of these boards in Jack location J23.

FORMAT GENERATOR CARD NO. 1 TYPE \# 700725-1

Each Drum TSU requires one of these boards in Jack location J21.

1-3-2 DISK TSU Each of the two Disk TSU's require the following eight basic functional board types:
[CONTROL REGISTER TYPE \# 700606
Each Disk TSU requires five of these boards, one
each in Jack locations J6 through J2. The five
boards are completely interchangeable. This
inter Changeability extends to the Jack locations in
all four TSU's wherein this board is used.
CONTROL LOGIC TYPE \# 700687
Each Disk TSU requires one of these boards in Jack
location J7. This board can be used in Jack location ' J28 of either $[D i s k$ TSU with some external jumpering required.

POSITION COUNTERS TYPE \# 700624

Each Disk TSU requires one of these boards in Jack location $\mathbb{Z} \mathbb{Z} \times \mathbb{X X X X}$ J8. This board can be used in

Jack location $J 27$ of either Drum TSU, with some external jumpering required.

Each Disk TSU requires one of these boards in Jack location Jl.

DATA BUFFERS TYPE \# 700793

Each Disk TSU requires two of these boards, one each in Jack locations J7 and J8. A different external jumper configuration is required for each of the Jack locations.

TRACK POSITION TYPE \# 700621
Each Disk TSU requires one of these boards in Jack location Jll.

DISK CONTROI. A TYPE \# 700708

Each Disk TSU requires one of these boards in Jack location J12.

DISK CONTROL B TYPE \# 700711
Each Disk TSU requires one of these boards in Jack location J13.

1-3-3 TUIM The TUIM located in rack 3 Al requires the following three
Wasic functional board types:
MEMORY INTERFACE TYPE \# 700589-1
The TUIM requires three of these boards, one each in Jack locations Jl4 through Jl6 of rack

3A1. A different external jumper configuration
is required for each of the Jack locations.

CLOCK TYPE \# 700630-1

The TUIM requires one of these boards in Jack
location Jl7 of rack 3Al.

PRIORITY LOGIC TYPE \# 700609-1
The TUIM requires two of these boards, one each in Jack locations Jl8 and Jl9 of rack 3Al. 1-3-4 CABLE BOARDS The following two basic cable board types are required:

DRUM AND DISK INTERFACE CABLES TYPE \# 700694 Four of these cable boards are required, one each in Jack locations Jl9 through Jl6 of rack 3A2. The four boards are completely interchangeable among Jack locations Jl9 through J16 of rack 3A2. NOTE

Jack locations J22 on card racks 3Al and 3A2 are not available for future expansion. The associated space within each rack is requirdd to accomodate the
 package mounted on the XX functional board in Jack location J23.

FUNCTIONAL DESCRIPTION

2-1 INTRODUCTION

The Auxiliary Memory Transfer Unit (AMTU) is controlled by the Auxiliary Memory Control Processor ${ }_{k}$ which in turn is supervised by routines stored in Central Memory A The AMCP
issues I/O commands to the AMTU which interpets these commands deterndie tiansfex-zeneth and-direction to select a device, and a Central Memory address between which transfers are to take placeXxxXand to determine transfer length and direction. Within this section the interface between the AMCP and the AMTU will be discussed on a functional basis and then the interface between the AMTU and Centrad Memory (Fast Memory and Core Memory) will be discussed.

2-2 DISCUSSIONAL TECHNIQUE

When appropriate this handbook will cover functions according to a real time sequence of events happening within the System. As each logic implementing device is introduced in the discussion for the first time, ample reference into the logic documentation will be made within the text. However when the device is referenced again reference into the logic will not always be provided. In like manner when a function is introduced for the first time it will be discussed in detail but if the function is referenced ZXX fater it will be in whex general terms only some cases the paragraph in which the function is discussed in detail is referenced for the convenience of the reader.

$$
\text { Figure } 2-1
$$

2-2 I/O CONTROL (BASIC CONCEPT)

The following paragraphs discuss on a concept level the major actions taken between the AMCP and the AMIU, actions which can best be referred to as I/O Control.

2-2-1 ATTENTION Communication between the AMCP and the AMTU is initiated by the AMTU. When power is first applied to the AMPIU, it assumes a Reset condition which enables the generation of an Attention pulse (ATTN) by Unit \varnothing ©X within each of the four $X X$ TSU's. The four ATTN lines are OR-gated and enter the AMCP on a single line. The AMCP has an option , once communication begins, to disable any one or all of the four ATrN pulses. The ATTN pulse is generated repeatedly in synchronization with its rate of angular rotation. The pulse is actually a marker referenced to a space of one record length, a record being the space required to store 512 data words $X \not X X$ each consisting of 24 data bits. After communication begins, the XX ATTN pulse continues to be generated but not necessarily for every sector - which will generate and the unithemmern the ATTN within each TSU becomes a function of AMCP control.

2-2-2 PRESELECTION STATUS MONITORING The AMCP responds to the ATTN pulses by generating a command to one unit in one of the four TSU's, which causes the commanded unit to report its angular position emmen four times per sector and in the case of a Disk , to report its present track position

The unit is also requested to indicate when or not itixxx is engaged or is about to engage in a transfer $\mathbb{X X X X X X}$ from Central Memory . In the initial stage of communication the response will be negative. However, as communication proceeds the AMCP wryxtw bring a positive response.

2-2-3 OPERATIONAL INSTRUCTIONS The AMCP uses the preselection status information to select a Device for an operational instruction by loading various Control Registers withing one of the four TSU's of the AMTU. The operations that can be performed by the AMCP are discussed in the following subparagraph: 2-2-3-1 Position only This a Disk device only. The operation involves the mechanical positioning of the read/write elements (heads) on the Risk. The instruction is executed within one sector of angular rotation by the Disk, However, the actual mechanical positioning involves on the order of 50 milliseconds for execution. A Position Only operation is indicated only after all x all available surfaces for the operating track are exhausted or would be exhausted by a transfer under consideration. 2-2-3-2 Read Data And Class Code This operation applies to both Drum and Disk. It is used to transfer data from the Pr Device to Central Memory 4 as indicated by the Read Data portion of the operation. The Read Class Code portion of the instruction indicates that the class code (an information field used by the

AMCP to classify the data field which it precedes) is to be read and stored in a register record at which time the AMCP may interrogate the register. 2-2-3-3 Write \mathbb{R} at And Class Code This operation applies to both Drum and Disk Devices. It is used to $\mathbb{X X X}$ transfer data from Central Memory to the Device, as indicated by the Write Data portion of the operation. The Write Class Code portion of the operation, indicates that the class code which has been acc urn as part of the operation, loaded into a register
 into a space within the record the space λ where the data is ${ }^{2} X X$ to be written. 2-2-3-4 Compare Class Code and Write Data If Equal This operation applies to Disk Devices only. The Compare Class Code portion of the operation $\int_{\text {signifies }}^{\text {signs }}$ that the Class KX code which was loaded into a register X XXXXX by the $A M C P$, as part of the 'operation, is to be compared with a Class Code written into the space preceding the data field space within the record to be written. When the comparison is equal the Write Data portion of the operation causes data to be transferred from $\mathrm{XX} \times \mathrm{XXzXXXX}$ Central Memory to the selected Disk Device.

2-2-3-5 Write Headers This operation applies to the Disk Device only. The Write Header operation causes a header field to be written in to a space on the surface of a Disk, just preceding the Class field and Data field of a record. The
content of the header field is the complete Disk Address of the record in which the header is located.

2-2-3-6 Operational Instruction Modifiers The basic operationsjust described can be modified by additional instructions from the AMCP as described in the following subparagraphs:
(a) Drum or Disk Policy This modifying instruction
\longrightarrow applies to both Drums and Disks. Drum Policy indicates EXXXXXXNX that the AMCP is using the angular position report obtained from preselection monitoring, to generate XX a a starting address, which begins with the record space,
 of the selected Device immediately after the operational instructions from the AMCP are received by the AMTU. A Disk Policy signifies that the starting address is not necessarily the $E X X$ sector arriving under the selected heads after the AMTU receives the operational instructions from the AMCP. Disk Policy must always be specifed on a Position Only operation, since Drum Policy imposes conditions that can not be met by the execution of a Drum Policy operation.
(b) Continue This operationil modifier applies to both

(c) Disable Check Code Cycle This operational modifier applies to the Disk only. Disable Check Code Cycle is used to alter slightly the way xX in which a longitudinal parity check of data is performed. This modifier is generated by the AMCP following the detenction of a longitudinal parity error which is judged to be caused by a defective read/write element (head). B Disable Check Code Cycle helps to identify which of the six heads within the selected band is defective.

2-3 I/O CONTROL (IMPLEMENTATION)

Communication between the AMCP and the AMTU takes place over a 24-bit input bussand a 24-bit output buss. The information on the two busses is controlled and interpreted by means of the following Control Lines from the AMCP.

ACTC	Kctivate Command (S	lect AMTU register) (Load AMTU
WTPC	Write Parallel Command	($\times 8 \times \pm$ dxx register)
RDPC	Read Parallel Command	(Sample output buss from AMTU)
PDS	Parallel Data Strobe	(Strobe data on either buss)

The AMTU acknowledges the receipt of signals on any of the first three above Control lines with an ACK signal returned over a separate control line to the AMCP. The $X N \mathbb{N X X X}$ AMTU also communicates with the AMCP by means of the attention (ATTN) signal. This signal is generated by one unit in each of the four TSU's. The ATTN signal is referenced to a specific time within a record and is used by the AMCP to determine when to send operational instructions to the AMTU.
2-3-1 ATTENTION When power is first applied to theAMTU, tKXX a reset puise is generated. The reset pulse is generated through the circuit on 3A1 J19 (Sheet 19 Dwg 700903). With power on the TURESET signal xXXix exiting the board through pin 6 stays at ground level until the capacitors charge to a five-volt level causing the TURESET signal to go high.

NOTE
Signals within the AMTU which are common
to all four TSU's are given men mnemonics
prefixed with TU.
2-3-1-1 Enable Attention TURESET is used to reset the AMTU logic and to enable the ATTN signal. The latter function is accomplished by routing TURESET into the Control logic boards for each TSU. The following discussion is referenced to TSUØ. However, implementation is the see for all TSU's. TURESET enters the Control Logic board at location SAl J28 (Sheet 28 Dwg 700903) through pin 92. After inversion the continuity of our concern is to logic continuity symbol Alb. Following this continuity path it is seen that the RESET* pulse is used to x KXX set a latching flip flop producing the enable Attention level (ENATTN). Using the continuity symbol CIs as an aid, ENNATTN can be found gated with three other signals to produce a set pulse for a latching $\mathbf{f l i p}$ flop. The signal identified by continuity symbol A9 signifies the conditions when the ATTN pulse may be generated, beginning with initiation. The actual signals producing the conditions are first, BSY*, indicating the TSU is not engaged in an operation (This is the condition operating when power is first applied to the AMTU), and secondly, EOSWP, which (indicates that an operation has just been completed. EOSWP which literally means End-Of-Swap, is a function to be discussed in detail in later paragraphs.

The signal at the gate being discussed, identified by continuity symbol A9, represents , in'conjunction with the signal identified by continuity symbol KX A21, a specific time just following EOSWP, a time well in advance of the actual time the ATTN signal will bex x produced. The output of the gate latches a flip flop which enables a J-K flip flop. The clock input to the $J-K$ flip flop is generated as a function of angular rotation of the Drum selected within TSUØ. When power is first applied to the AMTU, Drum Unit \varnothing is automatically selected since the Unit Register controlling Drum selection is automatically reset. This clock pulse entering the Control Logic board through pin 13 is given mnemonic TøSSTRQ or Strobe-Start-Request.

NOTE
Signals pertaining to TSUØ only, are given mnemonics prefixed with $T \varnothing$.

2-3-1-2 Generate Strobe Start Request The continuing discussion ris referenced to the logic on Format Generator board No. 1, at location 3A1'J21 (Sheet 22 Dwg 700903). A prerecorded clock track on Drum \varnothing, identified by mnemonic $B C \varnothing$ and operating at a frequencE equal to one-fourth the data-bit frequency, drives an eight-stage counter. The counter is initially reset by an index pulse generated from another prerecorded clock track on Drum \varnothing. This pulse occurs once per (revolution and is identified as TACH \varnothing. The TACH \varnothing pulse is first synchronized to the BC \varnothing clock before being
used to reset the eight-stage counter. The counter is also reset at the end of each record as determined by a decode of the output of the counter. The mnemonic for this reset is End-ERP
Of-Record-Pulse (EORP). A count decode from this counter marking the end of a gap following each record is used to produce the SSTRQ pulse. In the Disk TSU the pulse is given mnemonic GATTN. In the Disk TSU the Format Generator board called Format Control operates slightly different but a discussion of these differences will be deferred until a later paragraph dedicated to Angular Position Monitoring.

2-3-1-3 Synchronization Of ATTN With The System Clock The continuing discussion refers back to the Control Logic board at location 3A1 J28 (Sheet 28 Dwg 700903). The J-K flip flop operated by the $T \varnothing S S T R Q$ pulse enables another $J-K$ flip flop operated by the downedge of the System Clock identified by the continuity symbol A32. The System Clock enters the AMTU through the Coax Connector at location $3 A 3 \mathrm{~J} 381$, and is routed to the clock board at location 3Al J17 (Sheet 18 Dwg 700903). The System Clock enters the Control Logic board of TSUØ through pin 134 under mnemonic (TØMC*-5) The Attention signal leaves the Control Logic board under mnemonic TØATTN* and enters the MemoryInterface Non 3 board of the Transfer Unit Interface Multiplexor (TUIM) at $+$
XXX location 3Al J14 (Sheet 15 Dwg 700903) through pin 123 where it is OR-gated with Attention signals coming from the otheif three TSU Control Logic boards. The output of the OR-gate
is gated with the system Clock (MC) to release the KXXXX TUATTN兵 pulse in synchronization with the $25-\frac{\operatorname{nano}}{\text { 为 }}$, second MC pulse. TUATTN* is routed through the cable board at XXXXXIocation XXX 3A2 J15 (Sheet 48 Dwg 700903) and xix through connector 3A3 J 380 , to the AMCP.

2-3-2 PRESELECTION STATUS MONITORING This function is implemented by loading certain status information regarding a Device
selected by the AMCP onto the bxxy input buss to the AMCP.
The function consists of two steps. First an activate step is generated by the AMCP
in which the register β_{6}, counter or indicator d to be monitored KXXX within the AMCP is selected for monitoring. The activate step actually gates the outputs of the register, counter ant or indicator $\$$ onto the buss. The second step ixx generated by the AMCP is implemented for the most part within the AMCP and consists of strobing the buss lines into the TMCP for sampling. This step is refereed to as RDPC. The AMCP begins by raising
 the AMTU through the cable board at location 3A2 J15 (Sheet 48 Dig 700903). The signal is distributed to all four Control Logic boards under mnemonic TUACTC. The continuing discussion will be which
referenced to TSU \varnothing, 3A1 J20 through XX 3 Al J33 as documented in Sheets 21 through .
33 of Dug 700903. Coincident with the raising of TUACTC the AMCP places data on its 24 -bit output buss. The output buss enters the AMTU through the cable board at location 3A2 J15
(Sheet 48 KX Dug 700903). From the cable board the buss lines are routed to the Priority Logic $8 \$ 8 \mathrm{NO}$ N 1 board of the TUIM in location 3A.I J19 (Sheet 20 Dwg 700903). The first two bits of the buss are ignored during the ACTC step. Bits three and four are used to decode one of the $\mathbb{E X}$ four TSU's. This decode takes place on the Priority Logic No. 1 board. The remaining 19 bits of the output buss are distributed to the Control Logic boards of the AMTU, $\mathbb{E X}$ The distribution path is through the control Register boards of each TSU. When TSUØ is decoded as the selected TU \quad XX the TØTSUØ line is raised on the Control Logic board of TSU゙ø.

2-3-2-1 Activate Control Logic TUACTC enters the Control Logic board of TSUØ at location SAl J28 (Sheet 28 Dwg 700903) through pin 40. TøTSUØ enters the same board through pin 19. Bits 5 through 23 of the output buss enter the same board through pins 20 through 38. TUACTC and TめTSUØ control a latching circuit which is one stage in x a latching Register-Select Register. The output of this latching circuit is used to enable the output of the Register. The input to the k dow dx nineteen other stages of the Register is produced.by the gating of the nineteen least significant bits of the output buss with a pulse generated by gating TUACTC with the Parallel-Data-Strobe-pulse (PDS). KX The tor TUPDS pulse enters the AMPU through the cable board at location 3A2 J15 is distributed to the four positioner counter -boards sprouted
and the Priority Logic No. 2 board at location 3 Al JIg of thexwxixx

TUIM. The TUPDS pulse is inverted wow to TUPDS ${ }^{*}$ on the Priority Logic No. 2 board. $k X$ TUPDS* enters the four Control Logic boards through pin 39 (See Sheet 28 Dwg 700903 for the Control Logic board at location 3Al J28 serving TSUØ). The nineteen ledast significant bits of the AMCP output buss operate in TSUØ under mnemonics TøCI15 thoough TøCI23). Any one or more of these nineteen bits being set causes an associated latching circuit of the Register to latch set causing its associated output gate to produce a ground level.

2-3-2-2 Angular Position Monitoring Khx
Refer to Sheet 80 of Specification A3ES33 for the format of the output buss from the AMTU to the AMCP during this functionXX and the other functions associated with Preselection Monitoring. When the AMCP desires to monitor the angular position of Unit \varnothing within TSUØ, output buss bit from the AMCP designated (TøCIIl will be set during $A C T C$, causing a ground level to appear on the Select-Position-Counter- \varnothing (SPめ) line. This) signal exits pin 56 of -
3A1 J28 and enters Position Counter Board at location 3A1 J27 through pin 84 (Sheet 27 Dwg 700903). With SP \varnothing operating the output 6 for TSUØ is placed on the output buss to the AMCP (OB15 through OB23). Once selected the output of this counter remains on the buss to be sampled by the AMCP whenever it chooses to do so. The ACTC counter is deselected by the AMCP issuing another command in which the
(a) Drum The following subparagraph are concerned with detailed aspects of the implementation of the Angular Position Monitoring function for the Drum Devices.

1. Position Counter Incrementation The following discussion is referenced to TSUØ. The Position Counter in TSUØ (Sheet 27 Dwg 700903) is incremented by pulses operating under mnemonic PCLKø. The

PCLK \varnothing pulse occurs with each end of record pulse and with each of three pulses representing a point in time within the record, as described on Sheet 54 of Specification A3ES33. XX The clock pulse which indicates the end of the gap and the beginning of the first third of a record is synchronous with the SSTRQ pulse generating ATTN as discussed in paragraph 2-3-1-2. The PCLK \varnothing is decoded from the (8-stage counter on the Format Generator No. 1 board at location SAl J21 (Sheet 22 Dwg 700903). Wok This introduced
is the counter previously of ATTN. Sere See Figure Z-2 For Timing ok

NOTE
The counters and decodes for the
PCLK's for terser tire unit 1 Position Counter p is located on Format Generator No. ${ }^{1}$ board of each Drum TSU, and the counters and
decodes for the PCLKS for Unit 2 and Unit. 3 Position Counters are located on Format Generator No. 2 bod ot each Drum TSU,

7
Aster every fourth Record abbidranal space is allowed at the int of a record refereed t_{6} as Sector Gap. The Sector Gap Canes the - End or fond (EOR)P-Cloik and the SSTEQ p-crees to be delayed by 16 Format Gitclocts

Figure 2-2 Drum P-Clock Timing

206

2. Clock Specifications For detailed information

 regarding the prerecorded clock tracks for the two types of Drums used in the System, refer to the following listed Drawings:| DRUM TYPE | DRAWING NO. |
| :--- | :--- |
| BXXXXXX | |
| 201920 | B700898 |
| 1851024 | B700852 |

3. Claok Routing The bit clocks ($B C \varnothing$ through $B C 3$) knd index clocks (TACHØ through TACH3) enter the AMTU through the cable board at location 3A2 J19 (Sheet 52 Dwg 700903) for TSUØ and identical bi亡 clocks and index clocks from the Units of TSUl enter the AMTU through the cable board at location 3A2 J18 (Sheet 51 Dwg 700903). From the cable boards the clocks are routed directly to the Format Generator No. 1 boards.
(b) Disk The following subparagraphs are concerned with
detailed aspects of the implementation of the Angular Position Monitoring function for the XX Disk Devices. 1. Position Counter Incrementation The following discussion is referenced to Disk Type TSu (TSU2). In a Disk type TSU, Angular Position Monitoring is essentially the same. However, since the rotational

the orientation of these pulses in regard to the Disk record format, refer to Sheet 56 of Specification A3ES33. The PCLK occurring KX between the gap and the first third of the record is synchronous
 pulse referred to in paragraph $2-3-1-2$. The same is used counter decode on the Format Control board $\Lambda^{\text {for both }}$ the GATTN pulse and the PCLK occurring at the end of gap. 2. Clock Specifications For detailed information regarding the prerecorded clock tracks for the Disk, refer to E_{K} Drawing No. B700769.
4. Clock Routing The bit clocks (T2B \varnothing through $T 2 B 3$) and index clocks ($\mathrm{T} 2 \mathrm{~T} \varnothing$ through T 2 T 3) enter the AMTU through the cable board at location 3A2 J17 (Sheet 50 Dwg 700903) for TSU2 and identical bit clocks and index clocks from the Units of IjJ3 enter the AMTU through kX the cable board at location 3A2 J16 (Sheet 49 Dwg 700903). From the cable boards, the - clocks are routed directly to the Format control boards.

2-3-2-3 Track Position Reporting This function applies to Disk type TSU's only. When the Position $X X \mathbb{B C o u n t e r}$ for a Unit within output of a Position Register dedicated to a Disk TSU is selected the ferment Track Address $e^{f-t h a t ~ u n i t ~ i s ~ a l s o ~}$ loaded ont the output buss to the AMCP. Refer to Sheet 80 of Specification A3ES33 for the format of the output buss from the

Position Register is a latching register, loaded from the output of the Track Address portion of the Disk Address Control Register. In the performance of an operational commandfnot to be confused with preselection Selection Status Monitoringl the Control Register output is compared with the Track Address already contained in the Position Register. If the two Track Addresses are different, the command Track Address is loaded into a Track Control Register within the $\mathrm{R} / \mathrm{W} / \mathrm{S}$ of the Disk File.
2-3-2-4 ${ }^{\text {Pren }}$ The discussion which follows concerns itself with the initial application of power to the AMTU and Disk File. When power is first applied the Disk File may be at a different position than is $1 \times x$ indicated by the Position Register in the AMTU. Therefore if the output of the Position Register were sent to the AMCP immediately after power was applied, as part of the Preselection Status Monitoring function, the Track Position reported would not reflect the true position of the Disk File. To elimintate the possibility of this erroneous report, the AMCP must generate a Track Position command, which causes the Disk File to assume ? latched a position which will also be into the Position Register, and $\mathrm{KK}_{\mathrm{K}} \mathrm{XX}$ this command must precede Preselection Status Monitoring for any and all Disk Units. It reemphasized that the comnand Track Address from the AMCP is not . loaded into the Disk File if it is the same Track Address already latched
Kox* the pinnecessary strobing of the Track Control Register in the

R/W/S when the Disk File is already at the commanded track.
speed of a Disk is slower than that of a Drum and since a record on a Disk in six-bit parallel format as opposed to 24-bit parallel XX format on the Drum a different method of producing an incrementation pulse is used in the Disk TSU than that discussed for the Drum TSU. In the Disk prerecorded clock track pulses are also used to produce a pulse train. These pulses are given mnemonic $B \emptyset$ through $B 3$ to identify Units \varnothing through 3 within \varnothing a TSU. The TSU
 is identified by adding the prefix $\mathbb{K} \mathbb{X N} \mathrm{T} 2$ for TSU2 or T3 for TSU3. The T2B \varnothing clock pulses enter the Disk
 gated with the Unit 2 Ready signal (T2RDY \varnothing) entering the board through pin 132. The T2B \varnothing clock operates a four-stage counter. A decode of decimal 15 from the output of this counter XX signifies the - end of a format 6 word for Unit \varnothing (E \varnothing FWD \varnothing). A format word is defined as two 50-bit data words. Since the number of 50 -bit data words in a record is 286 , there are 143 format words in a record. Format words are counted in an eight-stage counter on the Format Control board. A tap from the 8-stage counter signifying 32 format words, produces a PCLK \varnothing pulse four times for each record. For information concerning

However, when Power is first applied to the System, the Position Register does not reflect the Disk XX File's actual Track position, and if a command Track Address from the AMCP contained in the output of the Track Address portion of the Disk Address Control Register happens to agree with the Track Address"latched in the Position Register, the command Track Address is not strobed into the Track Rontrol Register in the $R / W / S$ of the Disk File. To prevent this sitwation from occurxing the AMCP must generate eact to a different Track Addres: at least two Positioning commands 1 for each Disk Unit to assure that the Disk File is brought into the command loop with the AMCP. loop can only be bxake broken by removing power from the Disk File or the AMTU or both.

2-3-2-5 The Track Address portion of the Disk Address Control
Register is located at 3 Al J2 through J4 (Shcets 3,4 , and5 of
Dwg 700903 for TSU2 and at 3A2 J2 through J4 (Sheets 35,36, $5^{\text {The Track Positie. Regirter; are located at } 3 \mathrm{Al} 511}$ (and 37 Dwg 700903) for TSU3. A detailed discussion-of the for TSU2 and $3 A 2$ JIl for TSUB. A fetailed discursion of the logic implementing the concepts described $\mathbb{E X X}$ in thisXXX
paragraph, is contained in paragraph $2-4-1$, which is dedicated to the Position only operation. It shall suffice to say here, that the output of one of the Position Registers is gated onto fthe output buss to the AMCP with the Select Position Counter bit (T2SPØ through T2SP3 for $\mathbb{W} 8 \times 8 \mathrm{X}$ TSU2) (Sheet 12 Dwg 700903) or (T3SPø through T3SP3 for TSU3) (Sheet 44 Dwg 700903) which was $\dot{\text { selected by }}$ the AMCP as described in paragraphs 2-3-2-1

2-3-2-6 Position Not Valid This function applies to both Disks and Drums. Each time the PCLK operates to increment the position counter dedicated to the unit selected for Preselection Monitoring, the AMCP is informed by the setting of a dedicated bit on the output buss. This bit
 the output buss in bit position OB12. The logic involved is illustrated for TSUØ on Sheet 27 Dwg 700903. The Position-Not-Valid-Clock (PNVCLK) used in the logic is generated by halving w ix through a flip flop whexivik a high frequency else (3.4MHZ for the 1851024 XX Drum and 4.4 MHZ for the 201920 Drum) produced by an oscillator on the Format Generator Board at Jack location 3A1 J23 (Sheet 23 Dwg 700903). In the Disk TSU the PNVCLK is generated by an oscillator on the (sheets 2 an $\left(34 D_{w_{g}} 700903\right)$, Format control board at location $3 A 1$ Jul or $3 A 2 \$ \varnothing 1 \hat{\rho}$ The oscillator on the Format Control board is slaved to zika a prerecorded clock track and produces an output sixteen times the frequency of the prerecorded clock input. The output of the the oscillator is halved on the Format control board to produce a (cc) with approximately its associated

 position of the Device being monitored is until the bit is reset, since the Position Counter the process of changing state in one or more of its stages.

2-3-2-7 Busy/Write This function applies to both Disks and Drums. status
If the unit selected for preselection $A \overline{=}$ mitoring has already been selected for a functional operation by a process to be discussed in detail in later paragraphs, then, two other bits of information are returned to the AMCP over the
 indicating that the unit being monitored has acceptud on operational instruction, and Write, indicating that the $\mathbb{E x X}$ the operation trxindwaxdxx is to perform a transfer from Central Memory to XX a Device. The generation of an operational instruction and specifically for this discussion , the generation of a write instruction, will be discussed in later paragraphs. However for now, it should be noted that the inversion of $\overparen{a n}$ instructional READ
 in the logic (Sheet 27 Dwg 700903 for TSUØ). It should also be noted that READ is produced from a decode of two bits from the output of XX an Instruction Register. The two stages of the Instruction Register and the decode of READ are found on the Control Register board at location 3Al J30 (Sheet 30 Dwg 700903) for TSUØ. The signal BSY, it shall suffice to say here, is produced when the last register in a register loading sequence associated with any operational instruction is loaded. This Register is always what is referred to as the Holding Unit Register. When it is loaded from the AMCP its outptt - identifies the Unit which has been selected for the
commanded operation. The logic for producing BSY is on the Logic Control board location 3Al J28 (Sheet 28 KX Dwg 700903) for TSUØ. BSY and write (WR) go onto/the output buss in bit positions OBl3 and OBl4, respectively (Sheet 27 Dwg 700903). 22 2-3-2-8 RDPC Control Logic ExKw (zax The data associated with the preselection status of the unit being monitored remains on the output buss to the AMCP until the AMCP Beselects the unit being monitored by resetting bit 11 on the output buss from the AMCP while raising the ACTC signal. The data is signal is raised by the AMCP. The strobing of data takes place in the AMCP. However the RDPC does enter the AMTU through the cable board at location 3A2 Jl5 (Sheet 48 Dwg 700903). From the cable board the RDPC signal enters the Priority Logic board at location 3Al Jl9 where the signal is OR-gated with the ACTC and WTPC signal. When any of these three signals are generated by the AMCP the logic on the Priority Logic board returns an acknowledge signal (TUACK) to the AMCP. Other than the XXX
 signal has no significance to the AMTU during the Preselection Status Monitoring function.

2-3-3 OPERATIONAL COMMAND LOGIC The discussion which follows is concerned with the generation of operational commands by the AMCP and the logic required within the AMTU which translates the commands into the detailed functions required for their execution.
 be performed by the AMTU is initiated by the loading of at least three and usually more Control ENX Registers within the AMTU. The formats of these registers are shown on BWX Sheet 79 of Specification

A3ES33. The Control Registers are physically located on the five Control Register Boards XX comprising part of each TSU. Of the thirteen registers shown on Sheet 79 of Specification A3ES33, the following listed registers, only, are Control Registers:

CLASS \varnothing
CLASS 1
DEVICE ADDRESS
CENTRAL MEMORY ADDRESS
INSTRUCTION
MAP
UNIT NUMBER
WORD COUNT
-
NOTE
The remaining registers and counters shown on
Sheet 79 of Specification A3ES33 are located on the Position Counter board of each TSU, with the exception of the Register Select latching register, which is located on the Control Logic board of each TSU.
(a) Control Register Board Bit Assignment Each Control

Register board handles up to five bits of each Control Register according to the following assignment:

BIT NUMBER
CONTROL REGISTER BOARD

(2

23-19 \#1
18-14 \#2
13-9 \#3
8-4 \#4
3- \varnothing \#5

NOTE
Control Register Boards are physically identical. The functional differences are implemented through back plane output input wiring. When a Control Register board does not require certain bits from the AMCP output buss for a given Control Register, the Control Register stages assigned to those bits are simply non-functional.
(b) Control Register Load Sequence To perform an operation with the AMTU, the Control Registers used must be loaded in a specific sequence. Every operation requires the generation of an Instruction command and the Instruction Control Register in which the command is stored must always be the first Control Register to be loaded. The unit within the selected TSU which is to perform the operation is determined by a unit selection command. The Unit in which this command is store must always be loaded last in the 30
load sequence. The order in which the other Control Registers are loaded is of no concern to the AMTU.

2-3-3-2 Activate (ACTC) Control Logic The AMCP selects one TSU for the execution of an operational command. It begins by raising ACTC to select one of the four TSU's as described in paragraph 2-3-2. The TUACTC signal combines with the signal identifying the selected TSU to select one of the eight Control Registers by setting one of the latching flip flops comprising the Register-Select Register (Refer to paragraph 2-3-2-1). Since an operational command depends on data from the AMCP, which will be loaded into the selected register the register selected must be cleared during the activate step, to prepare it for loading with the data to follow on the subsequent load step (WTPC). This is effected from the AMCP by setting bit 7 on the output buss from the AMCP, during the ACTC step. This bit being set Lalso latches a flip flop in the Register-Select latching register, which stores it for additional gating during the WTPC step. Since the Instruction Register must be bit 23 on the output buss from the AMCP must be set during the first ACTC and as stated before bit 7 on the output buss must also be set to generate a clear. Using the selection of TSUØ as an example, refer to Sheet 28 Dwg 700903, kexX for the continuing discussion. For ease in identifying the logic functions discussed, the mnemonics associated with the logic continuity x dx symbols for the gating involved is provided in the following list:

(a) Clear Instruction Register With the enable load bit and the Instruction Register select bit set and the activate (TUACTC signal raised, the data strobe pulse generates a clear pulse for the Instruction Register, (CLRI). Two other signals involved in the generation ofXX CLRI as shown in the logic gating on Sheet 28 Dwg 700903, are Swap (SWP) and End-Of-Swap (EOSWP) which signify specific times withing a functionkXx not yet discussed. The signals are gated inhibitively here and prevent the generation of CLRI when the Swap function is taking place or XX immediately after.

4 (b) Set Load Sequence Flip Flop The same gating of signals except for the Swap inhibiting signals
that produced CLRI is used to set a flip flop which shall be

 symbol X12 becomes a reset enable for the load sequence flip fiflop and also enables the generation of the other seven control Register clear pulses. The generation of the clear signal for any other Control Register also depends on the gating of another ACTC and PDS, represented by the signal identified by continuity 32
symbol C3 and the enable load bit being set during ACTC time. The activate signal would have to be one occurring subsequent to the activate which set the load sequence flip flop, and of course it would have to occur prior to the reset of the load sequence flip flop. The Control Register to be cleared would be determined by the Register KXX Select bit set on the AMCP output buss airing the activate step.

2-3-3-3 Load (WTPC) Control Logic The activate step is followed by a load step. The load signal from the AMCP (WTPPC) enters the AMTU through the cable board at location 3A2 J15 (Sheet 48 Dug 700903). KXX The signal is distributed to all four control Logic boards under mnemonic TUWTPC. When the load signal operates the data strobe pulse (PDS) strobes the data on the AMCP output buss into the Control Register cleared during the preceding activate step. Its selection for loading is remembered by w he a latching flip flop in the Register-Select register. This register remembers the selection until the next activate signal resets the selection bit of the just loaded register and sets the selection bit of the register next to be loaded.
(a) Generate Load Pulse (POT) The Control Register load
pulse (POT) is produced by PDS strobing WTPC at a gate which also contains the TSU select bit (
(Sheet 28 Dwg 700903). Also at the gate are the load sequence flip flop set output, and the output of the enable load latching flip "flop of the Register select register. The two inhibit signals
associated with the Swap function are also present at the gate.
(b) Data Routing Fos-dre enneneen the reaterne
 The 24-bit output buss enters the AMTU through the cable board at location 3A2 J15 (Sheet 48 Dug 700903). XX From the cable board the buss lines are routed to the Priority Logic board of the TUIM in location SAl Jl9 (Sheet 20 Dwg 700903). From the Priority Kw x Logic board the data lines are routed to the Control Register boards according to the bit assignmnet waned specified in paragraph $2-3-3-1$ (a). The data lines enter the Control Register boards under mnemonic (TUCI $\varnothing \varnothing$ through TUCI23).
(c) Typical Control Register Clear Load Gating The continuing discussion is based on the logic on Sheet 29 Dwg 700903 and uses the Unit Control Register as an example. XXXX The Unit Register clear pulse from the Control Logic board (CLRI) enters the Control Register board for the least bits of the AMCP output buss, through pin 100 at location 3 Al J 29. The pulse operates on the Control Register board under mnemonic TØCLRUN for TSUØ. This pulse resets the two-stage Unit Control Register. This occurys during the activate step. When the WTPC signal is raised the POT KXXX pulse operates. POT enters the same board through pin 49 and is gated with the data at every Control Register jam-set XX operating is the signal representing register selection. This signal is the outputXXXX of $\mathbb{X X}$ a flip flop set in the latching Register select register on the Control Logic board. When the 34

Unit Register has been selected during the activate step the TØSHUN signal is raised and the jam-set control gates to which TOSHUN is presented are enabled and the POT pulse strobes data into the register stages controlled by TØSHUN. In the case of the Unit Register, KX the data bits involved are TUCI23 and TUCI22 entering the Control Register board through pins 118 and 112, respectively. When a data bit is high, the Control Register stage with which it is associated, sets, and when a data bit is low, the Control Register stage with which its is associated, remains reset. The other Control Registers operate in an twexd identical manner. The only things which differ are the clear pulse, the register select bit, KXX and the assignment of data bits.
(d) Reset Load Sequence Flip Flop To reset the load sequence flip flop , which was set with the Instruction EXXX Register selection, (Refer to paragraph 2-3-3-2(b)) a Unit Register selection must be made. The gating of WTPC with the enable load signal and the Unit Register Select (SHUN) signal generates a K-enable for the load sequence flip flop (Sheet 28 Dwg 700903) for TSUØ. The down-edge of the PDS strobe pulse occurring in the WTPC following the latching of these two signals into the Register Select register, causes the load sequence flip flop to set, signifying the completion of the load sequence. s.
(e) Set Busy and Registers Full Flip Flops T'he POT pulse
which strobes data into the Unit Register is gated with the Unit Select bit stored in the Register Select Register (SHUN) to produce a jam-set for a Registers Full (RFUL) flip flop and a clock-set for a Busy (BSY) flip flop. It is significant to note that $\} \times x<$ both of these flip flops are set at the end of the load sequence. The resetting of these flip flops is produced by the Swap function, which is discussed in later paragraphs. The logic for these flip flops which is identical for all four TSU's is shown for TSU \varnothing on Sheet 28 Dug 700903.

2-4 IMPLEMENTATION OF OPERATIONAL COMMANDS

The discussion which follows is concerned with the implementation of each of the possible operational instructions given by the AMCP to the AMTU. Since the interface with the AMCP is of prime concern for this part of the discussion, data flow from Central Memory and data requests to Central Memory will be covered in $\begin{aligned} & \text { EKXX } \\ & \text { its most }\end{aligned}$ the detailed discussion will be dedicated to the control and the seled.dunit, aspects of each operation which interface with the AMCP \cap Beginning with paragraph 2-5, the data request logic andatallogien is discussed in detail.

2-4-1 POSITION ONLY FUNCTION This function applies to Disks only. The discussion which follows will concern itself with TSU2 only . Implementation of Position Only for TSU3 is accomplished in an identical manner. Refer to Sheet 80 of Specification A3ES33 for the instruction format. Bits 15 through 21 on the output buss of the AMCP are used in generating any instruction. $\operatorname{Bit} 21$ is set for a Position Only function. The Drum Policy bit and the Continue bit must be reset. Bit 17 an 18 have no significanee during a Position only function and the control functions with which they are identified will be inhibited by the Position only bit being set.

2-4-1-1 Position only Load Sequence The Instruction Register is loaded first as always with bit 21 being set and bits 16 and 20 being reset. The state of the data loaded into the other stages of the Instruction Register is of no significance to the AMTU. The logic for loading the Instruction Register for TSU2 is shown on Sheets 7 and 6 of Dwg 700903. When the Instruction Register has been loaded the AMCP generates another ACTC signal during which the Instruction Register Select bit in the latching Register XWh
Select Register is reset and the Device mand Address Select flip flop in the This is bit 21 on the AMCP output buss and produces the output (SDA) out of the latching flip flop as it clears the Device Address Register under mnemonic $28 X$ T2CLRDA (Sheets 6 and 7 Dwg 700903). The WTPC following ACTC loads the Device Address Control Register with the data on the AMCP output buss. When a Position Only command is operating, only the Track Address
 Track Address portion of the Device Address is E shown on Sheets 3,4, and 5 Dwg 700903. The AMCP follows with another ACTC signal during which the Device Address Register kX Select bit is reset and the Unit Register Select bit is set and a clear pulse is generated for the Unit Register on the Control Register board at s. location 3Al Jø6 (Sheet 6 Dwg 700903). The clear pulse enters this board under mnemonic T2CLRHUN. When the AMCP follows the ACTC with the WTPC, the data on the AMCP $\mathbb{Z X X}$ output buss loads the Unit

Register. Register Select register enters the Unit Register board at Iocation 3Al Jø6 under mnemonic T2SHUN. 2-4-1-2 Swap Function (General) The Control Registers are implemented in pairs. The Control Register of eachX pair, which is loaded from the AMCP is referred to as the Holding Register. At the end of the load sequence and $x \not x k x$ at other times (to be discussed as appropriate) the contents of the Holding Register is loaded into the second Register of each pair referred to as the Functional Register, and the contents of the Functional Register is loaded into the Holding Register. This cross-loading between Control Register pairs, is referred to as swapping. The great advantage of a duplicate set of Registers for each function is that the AMCP can load the Holding Registers required for an operation anticipated, while the Functional RegisterskXXX hold双 the information required for the current operation. The Functional Registers are also swapped back into the Holding Registers at the end of an operation. This enables the AMCP to interrogate these registers by selecting them with an ACTC and ward it enables the reading of the contents of the registers by following with an RDPC.
(a) Generate Swap In the Position Only operation the 2, swapping function begins at the end of the register loading sequence. The gating of the reset state of Busy (BSY*) and a signal produced by the WTPC during which the Unit Holding Register is loaded with the SHUN signal, produces a signal when BSY* goes
low. This signal sets a flip flop which $\mathrm{X} \otimes \otimes \mathrm{X}$ shall be referred to as the Swap Required (SWPRQ) flip flop. For the logic just discussed,refer to Sheet 8 Dwg 700903. The gate controlling the flip flop is on the Xix left hand side of Sheet 8. The BSY* signal is identified by the continuity symbol Al2 and the load Unit Register WTPC is identified with the continurity symbol Al3. The SWPRQ signal is gated with a pulse signifying the end of a record on the Disk (EORP).
(b) Generate End of Record Pulse For the following discussion refer to the Format Control board at location XX 3Al Jøl (Sheet 2 Dwg 700903). The format word counter discussed in paragraph 2-3-2-2(b) 1 , generates a pulse which latches a flip flop to the set state at the end of 141 format words. This marks the end of the space dedicated to the data field for each record. Six format word times later by the two format words filling out the sector space to 143 in one bector format format wordsiand the decode of four from the format word counter in a new count cycle for a new sector format) the end of record pulse (EOR) is generated (See figure 2-3 for the Format Control Timing).
(c) Swap Counter The EOR signal enters the Control Logic board through pin 87 (Sheet 8 Dwg $x \not x X$ 700903) and sets a flip flop. The output of this flip flop enables another flip flop the
 was discussed in paragraph 2-3-2-6. When the second flip flop sets the EORP signal is produced. EORP enables a EKXX third flip

flop , which sets on the following $X \times X$ CC pulse. The output of this third flip flop enables the CC pulses from the Format Control board to operate the Swap Counter. This counter is a Johnston counter which produces nine significant periods during a complete cycle before resetting.
(d) Swap Flip Flop The SWPRQ and EORP signals are gated to produce an enable for another flip flop, which shall be referred to as the Swap Flip Flop. This flip flop sets with the first CC pulse after the EORP signal. When set, this flip flop $\mathrm{EXXX} \times \mathrm{x}$

NOTE
The Swap counter operates at the end of each
record without regard to the Ex dX Swap (SWP)
signal. However most of the decodes of the Johnston counter are gated with SWP to produce the pulses associated with the Swap function. -2-4-1-3 KX Swap Function During Position Only Operation The continuing discussion shall consider the nine decodes of the Swap Counter as far as they relate to the Position Only function.
(a) Swap Count 1 The decode of 1 out of the Swap Counter is gated with SWP, the reset state of a Continue flip flop f(CONF*) and the CC clockXXX to produce the Swap Device Address (SWDA) pulse. The Continue flip flop was twax inhibited from setting by the Continue bit (bit 16 in the Instruction Register) being reset, as required in a Position only command). 41

SWDA is a clock pulse which loads the Functional Device Address Register with the contents of the Holding Device Address Register and loads the Holding Device Address Register with the contents of the Functional Device Address Register. Only the Track Address portion of the Device Address Register is of concern during a Position Only operation (Sheets 3,4, and 5 Dwg 700903).
(b) Swap Count 2 This decode of the Swap Counter is not used in the Position Only operation.
(c) Swap Count 3 The decode of 3 out of the Swap Counter is gated with SWP, CONF*, and CC to produce the Swap Unit Register and Swap Instruction Register (SWUNI) pulse. The SWUNI pulse is used to swap the contents of the Unit and Instruction Holding Registers with the Unit and Instruction Functional Registers (Sheet 7 Dwg 700903). The output of the Functional Unit Register is used to decode a Unit selection. The decode is located on the Control Register board at location 3Al J6 (Sheet 7 Dwg 700903). The decoded outputs (T2UØ-T2U3) are dedicated each to a separate Disk File Unit.
(d) Swap Count 4 This decode of the Swap Counter is not used in the Position Only operation.
(e) Swap Count 5 This decode from the Swap Counter is gated with the Registers Full (RFUL) flip flop set output, P. signifying that the load sequence has ended but that the Swap sequence is in progress. (The RFUL flip flop is reset at the end of the Initial Instruction Swap Counter Cycle by the CC clock.).

An additional signal gated is the new unit (T2NEWU) signal produced by a comparison of the outputs of the Holding Unit Register and the Functional Unit Register. The logic for the generation of $T 2 N E W U$ is on the Control Register board at location 3Al Jø6(Sheet 7 Dwg 700903). When a new unit has been selected $T 2 N E W U$ is raised, and this gate kproduces the SETNUN* pulse. The SETNUN* pulse sets a latching flip flop (NUN) causing its reset output to go low. The NUN* reset output of this latching flip flop is presented to a gate controlled by Swap Count 9. The function of NUN* at that gate will be the discussed in paragraph dedicatedto Swap count 9. 2-4-1-4
(f) Swap Count 6 This decode of the Swap Counter is not used in the Position Only Operation.
(g) Swap Count 7 This decode from the Swap Counter is gated with bit 20 from the Instruction Register, which is reset on a Position Only operation. The bit 20 output operates under the mnemonic Drum-Polict-Not (DPOL*). The output of this gate , kepresenting count 7 during a Disk Policy Instruction, is gated with the SWAP and RFUL signals. The RFUL signal indicates that the Swap Cycle in effect resulted from a new instruction. The output of this gate produces a Transfer-Track-Address (XTA) pulse.

1 Track Address Latched This pulse loads the output of the Track Address portion of the Device Address Functional Control Register into one of four latching Track Position Registers on the Track Position board at location 3Al Jll (Sheet 12 Dwg 700903) for TSU2. The Position Register loaded KX is dependent upon the Unit selected. These four latching Position Registers serve to hold the Track Address of each of the four devices assigned to a given Disk TSU, allowing the AMCP to monitor Track Address with angular position as part
of Preselection Status Monitaring.
$\underline{2}$ Track Address Compare A second function served
by the Position Registers is a comparison of present Track Address with the Command Track Address to determine BX if a strobe pulse must be generated to load the command Track Address in the Device Address Control Register into a Track Control Register selecto unit.
in the $R / W / S$ of the D isk Files This compare function is implemented
by gating the Track Address (T2TAø through T2TA7) with the Track Address from the Position Register of the Unit selected (Sheet 12 Dwg 700903). The output of this gating is Address-Not-Equal (T2ANE). If the addresses are not equal, this signal is high. Actually, the comparison is taking $\mathbb{E x}$ place constantly , but the comparison is strobed by T2XTA of the selected Unit (signified by the $C l$ continuity symbol in the logic. The strobe takes place while T2XTA is high and a Positioner-Strobe-Pulse (T2POSP) is produced if the addresses are not equal. It should be noted wkxk that the down-edge of T2XTA loads the command Track Address into the Position Register dedicated to the selected Unit and therefore the comparison gate will produce an equal compare indication until a different Track Address is loaded into the Track Address portion of the Device Address Control Register.

3 Track Address Routing to $\mathrm{R} / \mathrm{W} / \mathrm{S}$ The Track Address out of the Device Address Control Register (T2TAØ through T2TA7) Pi,
is routed through the Disk Cable card at location 3A2 J17 (Sheet 50 Dwg 700903) out of the AMTU into the Track control

Register in the $R / W / S$ of the $\Lambda^{D i s k ~ F i l e ~}{ }^{J N}$ The T2POSP pulse is routed through the same cable board out of the AMTU into the $R / W / S$ of theppdisk File Unit and loads the Track Address into the its Track Control Register as it operates.
(h) Swap Count 8 This decode from the Swap Counter is gated with SWP to generate the Reset-Swap (RSWP) signal. The RSWP signal is used as a J-enable for an End-Of-Swap (EOSWP) flip flop which sets on the next CC clock. and a K- enable for the Swap (SWAP) flip flop which resets on the next CC clock.
(i) Swap Count 9 When the CC clock operates to produce this decode the RFUL signal is still raised and the RSWP signal is high from Swap Count 8. A gating of RFUL and RSWP produces a J-enable for a flip flop which sets with the CC, producing Swap Count 9. The output of this flip flop remembers the condition where RFUL was raised, signifying a new instruction, and the KN generation of RSWP, until the information is no longer required. This flip flop shall be referred to in text as the Swap-Complete-New-Instruction (XX SCNI) flip flop. The set output of the SCNI flip flop is required for the generation of the Equal-Strobe-Pulse (EQSTRB) to be discussed. The RSWP signal is gated with the reset state of a Continue Switch (CONTSW*) signal which is always reset except when operating the AMTU in a maintenance mode. This gating produces a reset for the RFUL flip flop. It should be noted that The same clock which resets the RFUL flip flop also sets the SCNI flip flop, This same CC clock sets the EOSWP flip flop enabled by RSWP during Swap Count 8, thereby producing the End-Of-wX SwapPulse XX (EOSWP) and

2-4-1-4 Generate Equal-Strobe (EQSTRB) Swap Count 9 is gated with the set output of the Swap-Complete-New-Instruction(SCNI) flip flop and the NUN* signal. If the Unit number in the Functional Unit Register agrees with the Unit number in the Holding Unit Register, the EQSTRB puflse is generated at this time. If the Unit-number loaded into the Holding Unit Register does not agree with the Unit number in the Functional Register the NUN* signal will be low inhibiting the generation of EQSTRB. The continuing discussion is based on the case where the Unit numbers do not agree. The significance of the Unit numbers not agreeing is in that the EOR pulse which initiated the Swap Counter Cycle under discussion is associated with the Unit number selected by the Functional Unit Register prior to Swap Count 3 and has no reference to the End-Of-Record time for the Unit selected by the output of the Functional Unit Register after Swap Count 3. Therefore the EOR of the new Unit selected by the Functional Register is KX used to reset the NUN latching fegister and to
 initiate another sworg Counter cycle. \wedge When Count 9 is for this
No swap reached again in this cycle the EQSTRB pulse is produced since the NUN* signal is high. If the EOR pulse generated by the New Unit Know foccurs during the Swap Count Cycle which generated the Unit Register Swap (Swap Count 3 of a new instruction from AMCP) it is ignored. The AMTU, then, has to wait for the next EOR of the New Unin to reset NUN and to produce the EQSTRB pulse. The logic
for ignoring the New Unit EOR during a Swap Count cycle, involves the setting of a flip flop with the EOR occurring before the Swap Count Cycle and using the reset output of this flip flop to inhibit the generation of EORP, which is required to reset the Swap Counter and to enable its incrementation by the CC clock. The Swap Count decode of 9 is used as a K-enable for this same flip flop and the CC clock following Swap Count 9 resets the flip flop permitting the next EOR (New Unit EOR
 position
2-4-1-5 Generate End OfA Operation Swap Required when the EQSTRB pulse is generated, it strobes a gate at which the Position Only (POSIT) signal is present, thereby producing a jam set for the Swap Required flip flop. This EOR generates EORP as previously discussed. K\&X EORP is gated with SWPRQ to produce a K-enable for the SCNI flip flop and the following CC clock resets the flip flop. The SWPRQ signal waits for the next EOR pulse which Generates EORP and consequently another BKXX SWP signal.

2-4-1-6 End Of Operation Swap Count Cycle The continuing discussion
is based on the assumption that no new instruction from the XXX AMCP was received while the qushtirntons wnw was being executed.
(a) Swap Count 1 The SWDA pulse is produced again causing the Functional Device Address Control Register to swap its contents with the Holding Device Address Control Register. Since the output of the Holding Registers are gated onto the
input buss to the AMCP, the Device KXX Address of the just completed operation is available to the AMCP, and can be monitored -by the generation of an ACTC selecting the Device Address

Register followed by a RDPC which permits sampling the buss by Load-status-Erro. (LD T)
the AMCP. Swap Count 1 also provinces the Load-status-Erroc (L DST)

(b) Swap Count 2 This decode is tot used in the Position to produce the clear Ar or- indicator (CLERR) pulse which resets all status error indicators. (status is discussed in
(c) Swap Count 3 The SWUNI pulse is generated again causing a swap of the Unit $k \mathbb{R}$ Registers. The Unit operating during the just completed operation thus becomes available to the $A M C P$ upon request.
(d) Swap Count 4 This decode of the Swap Counter is not used in the Position Only operation.
(e) Swap Count 5 Since the Registers Full (RFUL) flip flop is reset the SETNUN* pulse is not produced.
(f) Swap Count 6 This decode is not used in the Position only operation.
(g) Swap Count 7 Since the $\mathbb{K} X X X$ Registers Full (RFUL) flip flop is reset, the Transfer Track Address (XTA) pulse is not produced.
(h) Swap Count 8 This decode from the XX Swap Counter is : * gated with SWP again to produce a J-enable for the EOSWP flip flop. rand also generates the RBSY pulse which resets the Busy (BSY) ficiflop.
(i) Swap Count 9 The EOSWP flip flop sets with the CC The
clock producing Swap Count 9. EQSTRB pulse, however, is
inhibited by the SCNI flip flop being reset. Therefore no SWPRQ signal is produced until a new operational instruction is received from the AMCP.

WRITE
2-4-2 2 DATA AND CLASS CODE This operation applies to both
Drums and Disks. The discussion which follows will reference TSUØ for
the logic implementing this operation as pertains to DrumsXXX and will reference TSU2 for the logic implementing this operation as pertains to Disks. V Refer to Sheet 80 of Specification A3ES33 for the instruction format. KX Bit 21 on the NXX AMCP output buss must be reset for both Drums and Disks since Position Only is a completely independent operation as discussed in paragraph 2-4-1. Bit 20 on the output bussXX WE may be set to signify Drum Policy or reset to signify Disk Policy. shoull be reset
Bit 19 should be reset. Bit $17 \AA_{\text {and }} 18$ should be set to produce the Write instruction. Bits 15 and 16 should also be reset.
-
2-4-2-1 Write KX Data And Class Code Load Sequence For this operation the following Holding Control Registers are loaded:

```
                                    INSTRUCTION
                                    ClASS \varnothing
                                    CLASS 1
                                    DEVICE ADDRESS
                                    CENTRAL MEMORY ADDRESS
                                    MAP (OPTIONAL)
                                    WORD COUNT
```

One Control Register is loaded 12 XX from the AMCP output buss, with each pair of ACTC and WTPC commands as discussed in paragraphs

2-3-3-2 and 2-3-3-3. The Instruction Register is loaded first and the Unit Register last,as discussed in detail in paragraphs 2-3-3-2 (b) and 2-3-3-3(d).
(a) Generate Swap Required And Start Swap Counter For this operation a Swap Required (SVPRQ) signal is generated at the end of the Register Loading Sequence, as discussed in paragraph 2-4-1-2 (a) and the End-Of-Record pulse (EOR for Disk and ERPø for Drum) entering pin 87 of the pertinent Control Logic board (Disk or Drum, as the case may be) under mnemonic EOR, initiates a Swap KX Counter Cycle, as discussed in paragraphs 2-4-1-2 (b,c.and d) 2-4-2-2 Swap Function $\mathbb{N X E G X X}$ During KXXWXXX Write Data And Class Cox the continuing discussion shall consider the nine decodes of the Swap Counter as far as they relate to a New Instruction of Write Data and class code. Con D. D ligic is the same for Dium and Disk Tsu'. bat the Drum Cintid logic (a) Swap Count 1 The decode of 1 from the Swap Counter is gated with Swap (SWP) the reset state of the Continue flip flop (CONF*) and CC to produce the Swap Device Address (SWDA) pulse. The Continue flip flop was inhibited $k X$ from setting by the continue bit (bit 16 in the Instruction Register) being KKEX reset. SWDA is a clock pulse which loads the Functional Device Address Register with the content of the Holding Device Register loaded from the AMCP.

1 Drum Device Address Device Address for a Drum
consists of a Band Address and a Record Address.
Band Address The Drum Band Address is carried by bits 10 through 16 of the AMCP output buss, and is loaded into the

Drum Band Address Register on Control Register boards No. 2 and No. 3 (Sheets 30 and 31 Dwg 700903). The output of the Drum Functional Band Address Control Register ($T \varnothing$ BA $\varnothing-T \varnothing$ BA $)$ is routed through the cable card at \$8x\% location 3A2 J19 (Sheet 52 Dwg 700903) into the $R / W / S$ of the selected Drum Unit. The Band Address bits XX are used by the Drum $\mathrm{R} / \mathrm{W} / \mathrm{S}$ to select a group of 24 parallel read/write elements (heads) for writing on the Drum surface.

即 Record Address The Drum Record Address is carried by bits 17 through 23 of the AMCP output buss, and is loaded into the Record Address Register on Control Register boards No. 1 and No. 2 (Sheets 29 and 30 Dwg 700903).

The carry bit between stages 2 and 3 and between stages 4 and 5 are brought out of the Control Register board. Continuity to $\mathbb{X X}$ the next stage is implemented by back plane wiring when required. The $\$ x \in \mathbb{X}$ carry bit is implemented this way to accomodate those address register stages where a carry bit is not desired. In the case at XX hand,a break isxxx required between the Record Address stages MSB of Record Address and the LSB of the Band Address Register. $8 \times x \times x \times k \times X$ The break is required since incrementation of XX Drum Band Address is not a function of the MSB of Dram Recond AdJress. 52

The output of the Drum Record Address Functional Control Register (TØRAめ-TøRA6) is routed to the Position Counters board at location 3Al J27 (Sheet 27 Dwg 700903) to be compared with the Position Counter decode of the selected Drum unit. Since only outputs from stage 2 and above of the position counter are looked at in the comparison, the decode is equivalent to a sector count. When the Drum sector count decoded from the Position Counter is equal to the Drum Record Address from the Drum Record Address Functional Register (TØRA $\varnothing-T \emptyset R A 6)$ Record-Compare-Equal (RCE) is produced. It is to be noted that the output to the comparator from the Position Counter is gated by kntwx a Unit selection bit (UN \varnothing) in this case, as decoded from the Functional Unit Control Register whereas the output to the AMCP from the Position Counters is selected by a Register Select bit latched during an ACTC when Preselection Status Monitoring is being performed The output signal being ($S P \varnothing$) in that case.

NOTE
On a Drum Policy Instruction the Record Address in the Record Address Functional

Control Register must agree with the Position
Counter output of the selected Unit before
Swap Count 9 is $\mathrm{x} x$ reached in the Swap Count Cycle generated by the EOR of the unit which is selected at Swap Count 3 of the Instruction Cycle. If the Unit selected is not a New Unit,
(RCE) must be produced in the Instruction Cycle. Since the EOR beginning the Instruction Swap Cycle also increments the Position Counter, there are eight CC clock periods before Swap count 9 is reached when the selected in is not a New Unit.

2 Disk Device Address The Device Address for a Disk File consists of a Track, Band, and Record Address. Track Address The Track Address is carred by bits 2 through 9 of the AMCP output buss, and is loaded into the Track Address Register on Control Register boards No. 3, XX No. 4, and No. 5(Sheets 3,4, and 5 Dwg 700903). The Track AddressXXXX Functional Register output is not looked at until Swap Count 7 \% of the Instruction Cycle.

Band Address The Disk File Band Address is $x \times x \times \mathbb{m} \times X X X$ carried by bits 10 through 16 of the AMCP output buss, and is loaded into the Disk File Band $x \neq \mathbb{A K X X}$ Address Register on Control Register boards No. 2 and No. 3 (Sheets 5 and 6 Dwg 700903). The output of the Disk File Band Address Register (T2BAl-T2BA6) is routed through the cable card at location 3A2 J17 (Sheet 50 Dwg 700903), into the $\mathrm{R} / \mathrm{W} / \mathrm{S}$ of the selected Disk File Unit.

做至 NOTE

One MSB stage on the Control Register board is not required for Disk File Band Address.

Abstract

wod word is carried by bits \varnothing through 23 and is loaded into the class \varnothing Register located on Register boards No.l through No. 5. XKxXX §

W Class ${ }^{\text {d }}$ (Drum) The output of the Drum Functional
Class \varnothing Register is gated out with the Enable-Class- \varnothing (ENCLØ) signal produced on the Drum Format Generator board (Sheet 22 Dwg 700903). A discussion of the generation of deferred to a later paragraph. The (TøCL $\varnothing \varnothing$ through TøCL ${ }^{2} 3$) output from the Drum Functional Class Register is presented to gates on the Data BKX B B ffer boards at locations 3A1 J24, J25, and J26 (Sheets 24,25, and 26 Dwg 700903). The Class bits are gated with a level signifying the window or space allocated
 data field of each record. This Class window is given mnemonic Class Time (CLTM). The CLTM signal is also produced on the Format Generator board No. 1 (Sheet 22 Dwg 70090 ${ }^{3}$). , Detailed discussion of the generation of CLTM will be deferred to a later paragraph. The third and last signal gated with the Class bits is the Write Enable signal (WEN) produced on the Format Generator No. 1 board (Sheet 22 Dwg 700903). This signal switches on the Write amplifiers of the selected address In the Drum Unit selected and enables the class \varnothing word to be written onto the Drum.

Class ØDisk File The output of the Disk File Functional Class \varnothing Register (Sheets 2 through 6 Dwg 700903) is gated onto the C-Buss to be loaded into the C-Register on the Data Buffer boards at locations 3Al J9 and J10 (Sheets 10 and 11 Dwg 700903). The mnemonic is (T2CBUS $\varnothing \varnothing$-T2CBUS23). The signal gating the Class \varnothing Functional Register output onto the C-Buss is EX given mnemonic $T 2 C L \emptyset B U S$ and is produced by logic on the Disk Centrol A and Disk Control B boards at locations 3Al Jl2 and 3Al J13 (Sheets 13 and 14 Dwg 700903). The generation of T2CLØBUS will be discussed in detail in later paragraphs. The class \varnothing word in the C-Register is shifted into the 1 角t 25 -bit positions (inclus parity) within sections ot (inclusing parity) pif the "\$hift Registef and from each

 sectrons
 shown on Sheets 10 and 11 Dwg 700903. The timing Xwxdx pulses required for this scheme is implemented on the Format Control board at 3Al J01 (Sheet 2 Dwg 700903 and the Disk Control KX A and Disk Control B boards at locations 3Al J12 and J13, respectively (Sheets 13 and 14 Dwg 700903). The
 2-4-2-15.
f. (h) Swap Count 8 This decode of the Swap Counter is gated with CONF* to generate a Swap Class Register 1 XX (SWPCLI) pulse. This pulse swaps the Functional and Hiding Class 1 control Register. The class 1 word is carried by bits \varnothing through 23 XX
on the AMCP output buss and is loaded into the Class 1 Register located on Control Register boards No. 1 through No. 5. Swap Count 8 also ${ }^{X}$ produces a Reset-Swap K-Enable signal (RSWP). 1 Class 1 Drum The output of the Class 1 Functional Register is gated with ENCLI produced on the Drum Format
 Class word is handled in an identical manner to the C ass \varnothing word except it is processed immediately following Class \varnothing 羍X in time.

2 Class 1 Disk The output of the Disk File Functional Class 1 Register is gated onto the C-Buss with the T2CLlBUS signal shift-
and subsequently is loaded into théfrst 25 bit positions (including the parity bit) of thésjx Divinft-Registers. From these sectrons of the D.Ressister
 dedicated read/write element (head) to be written ingixibit pafallelveashion on the Disk surface. Class \varnothing and Class 1 Words form what is termed herein a Disk Word, which is 50 bits in length including the two parity bits.

KX(i) Swap Count 9 This counter decode operates as described in paragraph 2-4-1-3 (i).

2-4-2-3 Generate-Equal-Strobe (EQSTRB). The EQSTRB pulse is fgenerated as discussed in paragraph 2-4-1-4.

2-4-2-4 EQUAL (Drum) In the Write Data and Class Code operation on a Drum Unit, EQSTRB is gated with several signals which indicate, when they are in the correct state, that the Drum has reached
the command starting address loaded into the Device Address Control Registers by the AMCP and swapped into the Flinctional Device Address Register with the CC clock during the Swap Count 1 decode. The signals gated with EQSTRB (Sheet 28 Dwg 700903) are Ready for Unit Selected (RDYø through RDY3), NO-Register-Loading-Vilolation (RLV*) (Continuity symbol Al5), KHEXXXEX No-Position-Command (POSIT*), and Record-Compare-Equal (RCE) (Refer to paragraph 2-4-2-2(a) 1 Record Address for a discussion of RCE). Failure to obtain EQ K $X X$ inhibits the
 the operation of the Central-Memory-Request logic. Loss of EQ after once obtaining it, does not switch off the Write amplifier but does inhibit the Central-Memory Request
 record following the loss of $E Q$ will be filled with logic zero bits.

2-4-2-5 Equal (Disk File) In a Write Data and Class Code operation .on a Disk File Unit, EQ is produced by a gating of essentially the same signals as for a Drum Unit (Sheet 8 Dwg 700903) and two other signals dealing with the EX Track Positioning portion of the Disk File Address. One of these signals T2ANE*, should be low indicating that the Track Address contained in the output of the Track Address Functional Control Register is equal to the Track Address contained in the Unit Selected Iatching Position Register (Sheet 12 Dwg 700903). The other

Disk
by a time-out equivalent to six revolutions from the moment T2XTA was instruction Swap-Cycle (See Sheet 12 Dwg 700903 for implementation). TV is normally generated by this time-out after a Position Only command. A second means of achieving xreixi Track Verivication (TV) is by counting 24 consecutive header fields from about the time the read amplifier is switched on within the record following the End-Of-Record pulse produced by the Unit Selected in the Write Data Class Code instruction. The logic implementation for this means of achieving TV is also on Sheet 12 Dwg 700903. The header field and header count is discussed in paragraph 2-4-2-13. It shall suffice for now to state that the header-field precedes the data field of each record and its content is the pddress of the sector in which each of the six selected Read/Write heads is located. The
 switching on of the Write amplifier and inhibits the operation of the eentral-Memory-Request logic. Loss of EQ after once obtaining it, does not switch off the Write but does inhibit the Central-Memory Request logic and that portion of the record following the loss of EQ will be filled withlogic zero bits.

NOTE

The continuing discussion, beginning with paragraph 2-4-2-6, will concern itself first, exclusively with the record format logic for a Drum XXKX TSU and beginning with paragraph 2-4-2-11 the discussion will dwell on the record format logic for a Disk File TSU.

2-4-2-6 Enable Drum Bit Counter The End-Of-Record (EORP \varnothing-EORP3) pulses produced by the four P-CLK decoders (Sheets 22 and 23 Dwg 700903) are gated with the selected Unit to produce a Selected-End-Of-Record-Pulse (SERP). This pulse is trapped in a flip flop (Sheet 21 Dwg 700903) to produce EOR in synchronization with the Control clock (CC). EOR resets two flip flops, which trap the SSTRQXX (P-CLK) pulse, and synchronize it with the exod following CC clock. The outputs of these flip flops, representing $S S T R Q$, synchronized with $C C$, enable a four-stage counter to operate from the Drum-Bit-Clock (DBC). It should be noted that the DBC clock is in synchronization with the CC clock.

2-4-2-7 Drum Bit Counter Decodes The output of this four-stage
 Sheet 22 Dwg 700903, is decoded to produce data request initiation pulses and levels, and other significant sector format signals discussed in the immediately following paragraphs. See figure $2-4$
and Sheet 22 Dorg 708903 for the continuing discussiox.
(a) Request Initiation Signals asee Figure-2-4-and Sheet
 Priority Prefetch Generator initiation pulse (SSTL) for the starting odd ar even $\overline{\text { or }}$ Central Memory Address (CMA) double word,respectively. The decodes of 10 produces the Warning Prefetch initiation pulse (SSTW) for the starting odd or even half of the Central Memory Address (CMA) double word, respectively. NOTE

Prefetches by the Low Priority Request Generator and the Warning Request Generator are made only she to even within Central Memory. Therefore if the command starting address loaded into the CMA from the AMCP is the odd half of a double word, the preceding even half of the double-word is actually requested by the Low Briority and Warning Prefetch Request Generators. When the starting Central Memory Address is the odd half of a double word, the low Briority
> and Warning Prefetch Generators are initiated one DBC clock earlier than if the waxiondx CMA $\mathcal{X} 8$ begins with and even half word. (See Figure 2-4).

A decode of 12 by the four-stage DBC counter produces an initiation pulse SSTH for the High Priority Request Generator. The High Priority Request Generator fetches both odd and even address double words. The mnemonic OHW gated with the counter output signifies that the starting Central Memory Address is the odd half word and 区XXIXXXX OHW* signifies that the starifing Central Memory Address is the even half word. The OHW and OHW* signals are set and reset outputs, $\otimes X$ respectively, of a latching flip flop which is reset by the End-Of-Record (EOR) pulse of the selected Drum Unit and is set when the LSB of the Central Memory Address (CMA18) stored in the CMA EXXXX Functional Control Register is a logic "l" indicating odd half of double word. When CMA18 is at a logic "O" for starting Central Memory Address, the latching flip flop remaims reset, indicating even half word. The up-edge of the SSTI and SSTW pulses and the downdedicated
edge of the $X X$ SSTH pulse set Λ flip flops producing the STLRQ STWRQ, and STHRQ levels, respectively. These levels remain until the last word of a Disk Write-Transfer has been fetched as Fisignified by the mnemonic WDCT \varnothing in the controlling the reset of these
(b) Sector Format Signals Decodes from the four-stage a DBC counter are also used to generate k k for a preamble and signal for initiating and enabling a class and Data Field counter.

1 Preamble Time (PRETM) A decode of Kx seven (7) from the four-stage Drum-Bit counter, given mnemonic Beginning-Of-Record (BOR) enables a flip flop which sets on the downedge of the Drum-Bit-Clock (DBC) stepping the counter to a decode of eight (8). This causes a 2XX Preamble Time (PRETM) to be raised. A counter decode of fifteen (15) enables reset of the same flip flop and the downedge of the DBC stepping the counter to count sixteen (16) lowers PRETM. PRETM is a level raised for eight DBC periods during which a preamble is written onto the Drum surface. The with the raising of the PRETM level alsoxx generates a clock for a flip flop, which sets to produce a Write Enable (WEN) level, which enables the write amplifiers serving the selected write heads of the selected Drum Unit to switch on at the beginning O_{f} PRETM. The only qualification for raising WEN with the BOR clock is that a Write Mode (WMOD) be in effect. WMOD is produced by gating the Equal (EQ) signal with the Write (WR) command (Sheet Ps.
22 Dwg 700903). A decode signifying the last(eighth) bit during PRETM, RKWWEXXXXXXX produces the (PREDATA) pulse. PRETM and EXX PREDATA combine with WEN at a gate controlling the data buss to
the Drum Unit (Sheets 24, 25, and 26 Dwg 700903). With WEN and PRETM raised and PREDATA lowered, seven DBC clock periods of logic zero NRZ data is released over the 24 Drum Data Buss (TUDD $\varnothing \varnothing-T U D D 23)$ lines. These 24 data lines of the Drum Buss serve all four Drum Units of each Drum TSU. However, the data is gated into the selected Drum Unit only. This is accomplished by gating the WEN signal with a dedicated Unit select line produced from the Unit Select Decode of the output of the Unit Functional Control Register. The Unit Select (US) and WEN gating takes place in the R/W/S electronics of each Drum Unit. The eight 24-bit words during PRETM are written preceding the Class and Data fields of each Drum Sector to produce Known a know $/ \mathrm{h}$ data configuration for synchronizing read strobe circuits within the Drum Read/Write/Select ($\mathrm{R} / \mathrm{W} / \mathrm{S}$), when data is to be played back. The eight PRETM data words are not returned to the Drum TSU. However, the logic "l" word represented by the PREDATA decode, enables the words following PRETM to be returned to the TSU during a playback or read operation. \because
$\underline{2}$ Class Time (CLTM) The DBC producing the last bit of the preamble referred to as (PREDATA), also enables a flip flop. The down-edge of the next $D B C$ marking the end of preamble sets the flip flop producing a Class and Data Field fis (CADF) level.
(c) Class and Data Field Counter The Class and Data Field Counter (CADF) is pulsed first by the raising of $C A D F$ and then by the DBC clock when WMOD is operating(Sheet 22 Dwg 700903).

The output of this counter is decoded to produce windows for the Class and Data Fields and for $\frac{a}{b}$ Check Field and Postamble Field following the Data Field.

1 Class Field The raising of the CADF level, gated with WMOD is used as the first clock for the CADF counter (Sheet 22 Dwg 700903). This clock sets the first stage of the counter, raising the Enable-Class- \varnothing (ENCL \varnothing signal, used to gate data out of the Class \varnothing Functional Control Register. It also raises the Class-Time (CLTM) window. The DBC clock continues to operate the CADF counter with WMOD raised and the DBC clock following the CADF clock pulse lowers ENCLØ and raises the ENCLI signal used to gate data out of the Class 1 Functional Control Register. CLTM and ENCLI lower with the next DBC clock. This is caused by the setting of the third stage of the CADF counter. During CLTM the two Class words are gated thrnugh the data buffer gates on Sheets 24,25, and 26 as previously discussed in paragraphs 3-4-2-2 (g) 3 (Class \varnothing Drum) and 2-4-2-2 (h) 1 (Class 1 Drum). During CLTM, two DBC periods of $\begin{gathered}\text { GRXXX } \\ \text { NRZ data } \\ \text { i's released }\end{gathered}$ onto the Drum Data Buss to be written as the Class FieldX⿺廴 on the surface of the selected Drum Unit. XXXX
$\underline{2}$ Data Field The setting of the third stage of
the CADF counter also raises the Data-Field-Time .(DTM) signal F.
and releases a reset on the succeeding ten stagesafof the CADF dcdicated to couatins out the Data Field. counter \wedge since the LSB stage of these ten stages cannot increment
with the same DBC releasing the reset condition, $x *$ the ten stages remain reset for one $D B C$ period. This period represents the first word time in a 512 word data field. At the KX end Cotta Field portion if the CADF counter of 512 DBC clock $X X$ periods, stage ten of the sets and the DTM level is lowered.

3 Check Field Time (CHKTM) and Postamble Time (POSTAM) Data Field portion of the
The setting of stage ten in thencADF counter also the CHKTM level and enables the setting of a flip flop, which can set on the next $D B C$. When $D B C$ sets this flip flop, CHKTM is lowered and a RWX XXX Postamble (POSTAM) level is raised. The POSTAM level remains raised until the selected-End-Of-Record-Pulse (SERP) arrivesXX and resets this flip flop
-and the entire CADF counter as well, under mnemonic (EOR). For a

 data buffering. Eight bits of each of th six buffers $\mathbf{V 8 x}$ are located on one of the three Data Buffer boards at locations
-3A1 J24,J25, and J26. During a Write Class and Data Field operation, the Low Priority and Warning Request Generators operate to bring data words out of Core Memory into the Fast Memory, enabling the High Priority Fetch Generator to acquire the word it seeks with less chance of failure. The Fetch

* requests wand keep the six data buffers filled. Six flip flops (FLOP $\varnothing-$ FLOP5) two located on each of the three data buffer boards, are dedicated to indicating the or full status Ex of the six data buffers. Refer to figure 2-5 during the continuing discussion,
(a) Load Buffers When a word requested from Central

Memory is placed on the Input Data Buss to the AMTU (INBUS $\varnothing \varnothing$ INBUS23) a signal indicating thet the request has been honored, is raised on a separate control line to the AMTU.This signal is given mnemonic HAK. HAK is gated with WMOD and the Master-Clock -20 (MC20) to produce CLKl for pulsing a data buffer-load-pointer. The data buffer-load-pointer is a three-stage counter duplicated in its entirety on all three data buffer boards. The three counters produce a six-count cycle in synchronization. Two different count decodes for the cycle are implemented on each of the SE three data buffer boards. The first two count decodes INR \varnothing and INRI are load pulses for the first two data buffers and are located on data buffer board No. 1 (Sheet 24 Dwg 700903) $2 x X X X$. The next two counter decodes INR2 and INR3 are on data buffer board No. 2 (Skeet 25 Dwg 700903). The last two decodes INR4 and INR5 are located on data buffer board No. 3 '(Sheet 25 Dwg 700903). In addition to loading the data on the In-Buss from Central Memory into the six buffers in a sequence, the INR \varnothing through INR5 decodes set in succession the six data buffer status flip flops (FLOPØ-FLOP5). The six data buffers are designated as buffers A through F. IN \varnothing loads buffer A, fTNRI loads buffer B, etc.) etc.
(b) Empty Buffers 区xaj During a Write operation, each Drum-Bit-Clock (DBC) empties a word in one of the six data buffers (OUTBUS \varnothing-OUTBUS23) into the Drum Buss gates. Implementation
is by means of an empty XX data buffer-pointer, which is a three stage counter identical to the load buffer pointer. The clock operating this pointer is CLK2 produced by gating WMOD, DTM and DBC. The six empty buffer pointer decodes (OUTR \varnothing OUTR5) gate the output of the six data buffers into the Drum puss gates. The RES \varnothing through RES5 decodes from the empty buffer pointer, reset the data buffer status flip flops in a sequence. In summary, each word placed on the Buss into the AMTU from Central Memory, loads a data buffer and sets its associated data buffer status flip flop, the data field gates out the data in each buffer, sequentially, and resets the corresponding data buffer status flip flop. $\Rightarrow(c)$
(G) Data Buffer Status The outputs of the data buffer status flip flops are gated in various combinations to determine, if one buffer is empty (ONE E), two are empty (TWO E), or if none are empty (EXØE). The EXØE determination lowers the FETCH level, thereby disabling the Fetch Generator. The ONE E determination enables the Fetch Generator and produces a Low Port Priority modifier (LPP), which
indxd is part of the Central Memory request. LPP is used to establish
dex
Memory Module addressed in the Memory Request. The TWO E determination raises the Drum access priority to the port of the Memory Module being wx accessed to High port Priority (HPP). The logic for Deam data buffer status during a Write operation is located on the extreme lef

ELK 3 shown in the logic is produced by a gating of WEN and DTM, which is actually a logic level rather than a clock. The clock mnemonic applies to the generation of CLK 3 in a Read operation.

2-A-2-9 Data paritydentral Memory advises the AMTU of the parity of each word it sends to the AMTU. The Drum TSU checks the parity of each word received and compares its findings with parity as advised by Central Memory. This parity crosscheck is a monitoring of transmission between Central Memory and the AMTU. Words written on the drum do not have an associated parity bit written with them (See Figure 2-6 for the continuing discussions.
(a) Data Word Parity Bit Each 24 -bit data word is
 which enters $\mathrm{K}_{\mathrm{K}}^{\mathrm{K}}$ data buffer board No. 2 kXX under mnemonic TUP1 (Sheet 25 Dwg 700903). When the parity bit is set it produces LPAR and when even, ito a latching flip flop. This latching flip flop is reset with each Master Clock Delayed pulse (MCDL). However LPAR is only looked at after MC 20 (approximately 20 nano-seconds after MCDL) .
(b) Parity Determination Within the AMTU. Each data word loaded into the data buffer is also presented to a parity tree (Sheets 24, 25, and 26 Dwg 700903). The output of the parity tree is gated with the Central Memory Parity bit (LPAR) which causes PIND to be raised if the parity from man Central Memory does not agree with the output of the parity tree. PIND is gated with CMP which is a timing window extending from MC 20 till the next MCDL pulse (Sheet 26 Dwg 700903). When

MC 70 (70 nano-seconds after MCDL) arrives a Memory Parity
Error' (MPE) status flip flop is set if PIND has been raised (Sheet The TeMPE output of this in bicator flip flop
is a status condition mode available to the AMCP
at the end of the record in which it is.
detected as discussed in paragraph

2-4-2-10 Check Field Write Each 24-bit word exits the outbuss gates shown on the extreme right of Sheets 24,25 , and 26 Dug 770903, under mnemonic (TaD $\varnothing \varnothing-T \varnothing D 23$). From the buffer boards, data is routed to the cable board at location 3A2J19 (Sheet 52 Dug 700903). On $\mathbb{N A X}^{2}$ the cable board each bit of the data word is amplified in an emitter-follower and is gated into the $\mathrm{R} / \mathrm{W} / \mathrm{S}$ of the selected Drum Unit, under mnemonic ($T \varnothing D I \varnothing \varnothing-T \varnothing D I 23$). Data (TøDIめø-TøDI23) out of the emitter followers on the cable-
 3A2 J19 (Sheet 52 Dwg 700903), is also returned to the databuffer boards (Sheets 24,25, and 26 Dwg 700903), where each bit conditions one stage of a 24-bit Check Field Register to set or reset with the Drum-Bit-Clock (DBC). The output of each stage of the Check Field Register is summed in an Exclusive Or Gate with a data bit from the next word. The half-adder summation resulting from this gating is handled two different ways, depending upon bit 19 in the Functional Instruction Control Register: This bit is normally reset producing the Rotation (ROT) level (Sheet 29 Dwg 700903). When this bit, referred to as the Disable-Check-Code-Cycle bit is set, ROT is reset.
(a) Check Code Cycle When ROT is raised the output of the Exclusive OR-gate is used to condition setting or resetting of the next LSB stage of the Check Field Register except for the exclusive OR-gate following stage 23, which conditions stage

half-adder summation into the next stage of the Check-Field Register, and the output of this stage is exclusively or-gated with a different bit of the next data word. This causes the half-adder summation of each successive word to be ratated one bit for each word. At the end of the data field the Check Field Register $\mathbb{K} \$ \% \mathrm{X}$ contains a 2 XXX 24-bit word representative of the preceding data field. The Check $\mathbb{F i X X}$ Field Time (CHKTM) window operates during the DBC period following the data field as previously discussed in paragraph 2-4-2-7 (c) 3. CHKTM gated with WEN causes the output of the Check Field Register (C $\varnothing \varnothing /-C 23$) to be gated from the data buffer cards through the cable-card at dxCXXX 3Al J19, into the RWS to be written in the word space immediately following the data field on the Drum surface.
 reset (ROT*) the output of each stage is gated with a data bit of the next word. When the output and the new bit are of the same logic statedXX , the stage enables itself to reset on the next DBC. If the output and the new bit are of different logic states the stage enables itself to set on the next DBC.

Insert B

(Place before 2-4-2-12)

NOTE
The following discussion beyinning with paragraph 2-4-2-12 and continuing through and including paragraph $2-4-2-20$ is based on figure 2-7.

This concludes the discussion of Drum
during a Write Data and Class operation. record formatting Λ The continuing discussion
is concerned with record formatting for
a Disk File during a Write Data and Class operation, 2-4-2-1 Disk Format Times Decode The Disk Format times decdesuxx designated in octal on the logic of Dug 700903, are produced by decodes from a Format control counter which counts the prerecorded bit clock pulses of the selected Disk Unite (See Disk Control board at location BAl J01) A sheet 2 Dwi 700903 ,)
A format time period is equivalent to two Disk words A Disk Write Dada and Class Sub Junction Brat downy yid

Data and Class instruction for a Disk involves the execution operation of the following subfunctions.
(a) Reading back a prerecorded header field from the Disk actual
and comparing it with the $X X A X X$ Disk File starting address effected from the instruction.
contained in the command instructions.
 χ (e) Writing a Data Field,
(F (A) Writing a Check Field.
2-4-2-1 Format Time (Frø5) At FTø5 a Subfield counter is reset producing a subfield decode of $S F \varnothing$ and a Data Word Counter is res reset producing a decode of DW 0 . In addition, an indicator producing E signifies 50 -hit capacity, an indicator has been connected flip flop is set which the E serial Register for a serial $=$ no E-Regiter Fill (EFVL) inflate flop flop is set ransferfand an AWD/BWD flip flop is reset producing AWD. (See
-sheet 13 Dwg 7 CO 003) and a C Register Empty/Full Stavlus
mdicator (CFUL) flip Clop is reset (Sheut 14 Dug 700103), 2-4-2-13 Format Time (FT 6) At FT 1 (XX the starting Disk address
 Position Register and the Position Counter for the selected unit , \% loaded pulses HACBUS and kX HBCBUS. A load pulse (IDC) then strobes in paralle! 24 -bit (See Sheets 10 and 11 pwy 700203 foi C-Reqister). the C BUS ${ }^{\text {linto }}$ the ${ }_{i} \mathrm{C}$ Register A HACBUS is produced by gating FTD6, WHD*, and AWD (See Sheet 14 Dwg 700903) WHD* is a level out of the Instruction Register indicating that as part of the Write Data and Class instruction for a Disk, the prerecorded header is to be read for comparison with the starting address rather than being written on the disk surface, as would be the case in a specific Write Header instruction. The AWD signal is sunifyng the first 25 bits of the 50 -bit standimg ardres wedd is produced by the reset state of the AWD/BWD flip flop produced by FTD5 as previously mentioned. The LDC pulse is produced by a gating of ENLDC, DFID*, and CFUL*(See sheet 14 Dwg 700903)

KXX ENLDC is essentially XXX the FTD6 time period. DFID* indicates
that the data field of the sector has not been reached and CFUL*
is the reset state of a flip flop indicator which EW .
Z
loaded by the LDC pulse. The first LDC pulse loads the
$\frac{A W D}{A W D}$
HAC'BUS, into the C-Register. As soon as the C-Register is CFUL
loaded the indicator flip flop is set producing CFUL (See Sheet Gating of
14 Dwgin 700903.) CFUL ande he Smblat the subfield counter puluces
produces a transfer condition (T2XFR) which enables the contents
of the C－Register to be shifted serially into an E－Register． Mhe complete gating for the production of T2XPR is CFUL， （See Sheet 13 Dwg 700903）．
$5-2-13$ ，E－Register Format The E－Register consists of six sections．Each section holds a fraction of a 50－bit Disk word a 2 shex associated with one of the six data read／write elements（heads） operating simultaneously on the Disk surface．It should be recalled，that on the Disk，data is recorded in six bit parallel． \＆
Since $\stackrel{5}{7}$ distances $X X X f$ m the center of the disk，the circumference of the tracks to which each is dedicated also varies vary accordingly． It is immediately apparent that those heads located close to the center of the Disk can sevice fewer bits of a 50－bit word than those located on the outer perimeter of the Disk．Therefore， The bit allocation for each of the $K \mathbb{N}$ six heads issasfellows Béginning with the outer perimeter head is $⿴ 囗 十$ ． 5，and 3．The E－Register is designed to hold this ratios of bits pach
for ${ }^{\prime}$ 50－bit word．A different clock rate is also required to operate each section of the E－Register．The six clocks are produced by six different decodes from a counter SXXXCRXXXXXXXXCQXXXXXX（T2WC \varnothing－T2WC5 or T2CLK \varnothing－T2CLK5）（See Sheet

2 Dwg 700903 Dwg 700903）．When writing on the disk the clocks are
operating is $T 2 W C \varnothing$－T2CLK5，produced by the output of an oscillator $?$
detwhokx slaved to Disk rotational speed since it is driven by
prerecorded clock pulses from the selected unit. The output of the oscillator is the input frequency multiplied by sixteen. When recovering data from the Disk surface, the clocksoperating XXX from transitions of the recovered Rata previously written (T2RC \varnothing XX T2RC5). A D-Register formatted. identically to the E-Register also RXAXXXXAX is required for Disk File operation. C-Register Format The C-Register is a 24-bit Register loaded in parallel by the LDC pulse for write operation. Its contents are shifted out into the E-Register (or D-Register) during a write operation. The C-Register is divided into a left kxoxxxx half and a right half. When data is shifted out of the C-Register it is shifted out of the MSB of each 12-bit half of the C-Register. For the right half the EXX twelve bits exit stage Cl 12 and for the left half tweleve bits exit stage $C \varnothing \varnothing$.
(b) Transfer Process. When T2XFR is raised the 24-bith word in the C-Register is gated into the E-Register in the following manner: (Refer to figure 2-5)
Data from the right half of the C-Register (Cl2) enters a l2-bit section of the XX E-Register designated SR5XX and data from the left half of the C-Register $(C \varnothing \varnothing)$ enters a 12 -bit section of the E-Register designated SR4. SR5 is shown on Sheet 10 Dwg 700903 and SR4 is shown on Sheet 11 Dwg 700903. Data is shifted ${ }_{n}$ at the Control Clock (CC) frequency which is faster than the frequency at which data is shifted out of the E-Register to be written on the disk surface. The trans fer of the Ant
portion of the
的的
Λ starting address, word into the E-Register requires gating for the 24 bits and special gating for including parity as determined by logic within the Disk TSU. En this discussion first
we willdconcern ourseles with the right half of the starting
 the left half of the AWD. Data under mnemonic Cleo is gated with (CHFID*) and a level representing the 12 clock times required to shift the 24 -bit AWD into the right and left halves of the E-Register. Cl 12 is identified by continuity symbol Bl, CHFLD* by continuity symbol All, and the 12-bit time period by continuity symbol H6xxxwkxx xx in
at the extreme left hand lower half of Sheet 10 Dwg 700903. This $0=$
gating produces 12 data bits of the logic state of Cl2 for the EXTXEXX 12 CC pulses during T2XFR time. The output of this gating forms one leg of an OR -gate which connects data sR 5. 6
to the E-Register under mnemonic T2SRIR. The left half of the
${ }^{\circ} \mathrm{C}$-Register output (C $\varnothing \varnothing \gamma$ is presented to a similar gate producing for
data tox
 Disk
to determine the final state of a parity generation flip
flop. When corresponding bits of each half of the AWD differ Disk
in logic state the Parity Generation (DPG) flip flop
complements. Since the DPG flip flop is reset before T2XFR an dod number of ãifferences between corresponding bits

सKKXK\&YXX each half of the AWD would $\mathbb{Z N}$ the DPG flip flop to be set at the end of the 12 CC clock pulses. This would cause the DPG signal to be low and the parity bit associated with the AWD would be at logic " \varnothing ". The thirteenth CC Sheet 13 Dwg 700903 a counter driven by CC produces a pulse representing parity time (T2P) with the thirteenth CC pulse operating in Format Time FTØ6. This is the same counter that indicates $A W D$ and $B W D$ as a function of $C C$ pulse count. This $T 2 P$ pulse is gated with the data parity bit DPG at another gate feeding the OR-gate producing T2SRIL and T2SRIR. The state

 Winder placed in the E-Register in the bit position following data bit 12 from the left half of the C-Register. At the end of the AWD the parity bit would be located in bitpposition 11 of SR4 (See figure 2-5).
(d) Transfer Enable Window When T2XFR is raised it also raises an enable window which permits data under mnemonics $T 2 S R I R$ and Y Y window varies
 parity bit in the E-Register for the X fix dX AWD and the BWD.
 identified by continuity symbol Alb on both sheets 10 and 11 of Dug 700903 , is raised for for 13 -bits for the
each capable of addressing Central Memory independently. Two of the three generators are Prefetch Generators, which operate to bring a double word out of the core portion of central Memory into Registers within the Fast Memory portion of Central Memory. Once the word is in Fast Memory, the third Drum Request Generator referred to as the Fetch Generator follows up with a Fetch Request, which puts the prefetched word residing in Fast Memory, onto the data buss into the KXxwwX AMTU. Should the Brefetch Generators fail to bring a double word into the Fast Memory the Fetch Generator is capable of bringing the double word into Fast Memory and placing it on the output buss independently. 8*X Since these three generators are addressing a different location in Central Memory at any given moment, each Generator must be capable of addressing Central Memory independently of the other two. Two, implement the independent addressing a second Central Memory Address Register is used. The output of the Functional CMA Register is dedicated to low priority Prefetch基别 Requests and the second Address Register referred to as the B-Register is dedicated to High Priority Fetch Requests. The B-Register is initially loaded with the output of the functional CMA Register and its LSB stages are incremented independently.
 Eddress incrementation of the B-Register extends beyond the LSB
 Functional CMA Register have heen ipreviously incremented) is loaded into the MSB stages of the

B-Register and the independent LSB stages of the B-Register are reset. The Warning Prefetch Generator has only and independent set of the LSB stages of the Central Memory Address. These stages are initially loaded with the output of the LSB stages of the Functional CMA Register and initially the MSB stages for区XX CMA addressing is provided by the output of the MSB stages of the B--Register. When address incrementation of the Warning Prefetch Generator extends beyond the LSB stages, the MSB stages from the Functional CMA Register are used. When the High Priority XX Fetch Generator increments beyond EK KX its LSB stages as previously discussed the Warning Prefetch Generator switches back to the MSB stages of the B-Register, , again. Drum $2-5-1$, Request logic is to be discussed in detail in paragraph The preceding discussion only serves to indicate the reason for a second address register and the duplication of the LSB stages of the CMA Registers. Thexnsmx FX '
LSB stages are initially loaded with the output of the Functional CMA Control Register by a pulse developed from Swap Count 7 of the Instruction Swap Cycle.
(f) Swap Count 6 This decoded output of the Swap Counter is not used in Write Data and class code operatioņinitial Swap Cycle. Wrox $x \mathrm{x}$
(g) Swap Count 7 Tkis decode of the Swap Counter produces a pulse for loading the output of the Central Memory Address KK Register. Its mnemonic is LDRQAD and it specific function varies between Disk and Drum TSU's. Swap Count 7 IXX is also gated with SWP and with RFUL which signifies the Swap Cycle is an instruction cycle and with the Disk Policy modifier bit (DMPOL*) to produce the transfer Track Address pulse XTA for Disk File TSU's only. Swap Count 7 is also gated with CONF* to generate a Swap Class Register \varnothing (SWPCLØ) pulse.

1 LDRQAD (Drum) This pulse strobes the output of the four LSB stages of the CMA Register into the B-Register and the duplicate LSB stages of the Warning Prefetch Generator. The LSB stages of the B-Register used with the high priority (Fetch) Generator $\mathbb{H} X$ are loaded by LDRAQ (Sheet 23 Dwg 700903). The MSB portion of the B-Register is loaded initiallyXxX by $L D R Q A D$ under mnemonic $L D B$ which is produced by an Or-gating of $I D R Q A D$ and an incrementation pulse representing the setting of the LSB stages of $\mathbb{X E}$ the B-Register. Y Fiwg 700903). The LSB stages of the Warning Prefetch Generator are also loaded initially by the LDRQAD pulse (Sheet 21 Dwg 700903).

2 LDRQAD Disk The Disk File TSU does not use independently operating Request Generators. It issues either Prefetch requests or Fetch requests at different $\overline{N X X X}$ priority levels, but is not capable of generating requests at different levels, simultaneoutify, as is possible in the Drum TSU. The LDRQAD pulse, generated by Swap Count 7, is used in the Disk File TSU, to load the output of the Functional CMA Control Register into a tempraxy erfoling Register. Λ At the end of-the Or- gated with the incrementation pulse (RF4), to be discussed later, to produce the load pube, At the end ofthrecord following a transfer, the output of the temporary Holeing Register is loaded into the CMA Holding Register with the Swap CMA (SWCMA) pulse. There is no direct load from the Functional. CMA Register into the CMA Holding Register.
$\underline{2}$ XTA This pulse is generated in Disk File TSU's but only when a Disk Policy irfer fuction (DMPOL*) is in effect. A detailed discussion of the function performed by the XTA pulse is contained in paragraphs 2-4-1-3(g) 1, 2, and 3. A Drum Policy modifier would require that the Disk File effect Starting Address in the Sector following the Swap Cycle. This would not be possible if a Track Positioning operation were required. Therefore the XTA pulse is only generated with Disk Policy (DMPOL*) operation. Disk Policy waits for positioning to take faddressing is complete.

3 SWPCL \varnothing Swap Count 7 is gated with the reset output of the Continue flip flop (CONF*), to produce the Swap class \varnothing (SWCLø) pulse. This pulse swaps the Functional and Holding 63
(d) Check Field Generation by Λ Data Field

All data shifted out of of the C Register into the D or
E Registers to a half-adder circuit to be half-added with the output of a Check Field Register. The logic for this function is on the extreme w ix upper left of Sheets 10 and 11 Dug 700903. A signal, T2ENCH identified by continuity symbol enables the operation of the Check Field Register during the Data Field and for thereafter additional Disk Words, referred to as the Check Field. T2C $\varnothing \varnothing$
identified by continuity symbol Bl on Sheet 10 Dug 700903 which is data out of the left k half of the C Register, is gated with F READ to become one input to the ffalf adder. CHOL the output of the
 symbol A5 on Sheet 10 Dwg 700903, is the other input to the halfadder. The T2XFR level raised for transfer between the C Register and the D or E Registers, except for parity time, identified by continuity symbol H 6 , is gated with CC, identified by continuity symbol A9. This gating produces shift pulses for the left half Disk word Check Field Register which clocks in the half-adder results for each left half Disk word of the Data Field. Sheet 11 Dwg 700903 contains similar logic for the right half of each XX Disk Word transferred from the C Register.

Mnemonics T2Cl2 and CHOR operate for the right half Disk Word. bit 6
Each Disk Word bit summations on exiting from the Check Field Register.
 has been shifted from the C Register, dato the half-adder Λ the

EOWD pulse operates. EOWD is gated with the Rotation (ROT) signal, which is high when bit 19 (Disable Check code Cycle) in the Instruction Control Register is reset and with CC identified by continuity symbol A9. This gating provides a pulse for shiftin g the Check Field Register one more position before the next Disk ford. At time of rotation, the output of the right half word Check Field Register is connected to the input of the left half-word Check*Field Register and the output of the left half. word Check-Field Register is connectedrex to the input of the right half-word Check-Field Register. Rotation, therefore, shifts the entire 50-bit Check Field Register one Aposition for each Disk ford processed through the half-adder.
2-4-2-19 Check Field Each time the BWD of each Disk Word is transferred from the C Register into the D or E Register the EOWD signal is generated. Using the three siages of the Sub Field connected by vaising DFLO, Data Word Counter and an additional five counter stages Λ a count of 256 is decoded, which marks the end of Data Field and the beginning of Check Field. The pulse is given mnemonic CCHFLD*(Sheet 13, right sidej Dwg 700903). CCHFLD* latches a flip flop to the set position, producing DWOVF, which is gated with WEN and the reset output of one stage of the Data Word Counter. As the founter resets $\mathbb{E N X X X}$ from the all stages set gecderyt of DW255 to DW $\varnothing \varnothing$, the reset output from the counter stage pulses a gate, which jam sets a flip flop producing T2CHFLD (Sheet 13 ,upper right Dwg 700903). When T2CHFLD is raised, the LDC pulse is generated
by a gating of CFUL*, T2WEN, and T2CHFID. LDC forces CFUL high, T2XER

T2XFR except for parity bit time, as identified by continuity symbol H6 on sheets 10 and KX 11,left side Dwg 700903, is gated with the output of the Check Field Register (CHOR and CHOL) identified by continuity symbol A5 during the Check Field (T2CHFID) identified by continuity symbol Al2. This gating produces a serial input representing the half adder summation rotated for the Data Field, operating under mnemonics T2SRIR and T2SRIL, identified by continuity symbol Al5 on sheets 10 and 11 Dwg 700903. The single Disk Word is processed through the Parity Generation Circuit and is shift loaded into the D Serial Register to be written immediately following the Data Field. 2-4-2- $-Q_{\text {postamble }}$ with T2CHFLD still raised, the LDC pulse is generated twice more after the Check Field has been loaded D Register as an AWD and BWD. These pulses cause CFUL to raise producing $T 2 X F R$ for first an AWD to the E Register then again for a BWD to the E Register. This 50-bit Disk Word loaded into the E Register, is the output of the Check Field Register, which still contains the Check Field advanced one bit position. The EOWD occurring as the E Register is loaded is gated with DWI, representing the Postamble Data Word time, with CHFLD and WEN
 to produce R3WEN* which enables the WEN flip flop to reset with the CC pulse. This also produces a Sub Field incrementation pulsẹ (INCRSF) which causes the Sub Field counter to go from SF3 to SFO. Even though WEN has lowered, WENDL is still latched
in the set position and enables ${ }^{\text {dxX }}$ the writing of the Postamble onto the Disk Surface. When the last bit of the Postamble is shifted out of the E Register, the EFUL indicator flip flop resets (Sheet 13 Dwg 700903). DFUL and EFUL are now reset, and SF3 and WEN are also down. A gating of these conditions produces a reset for the WENDL latching flip flop and WENDL lowers, disabling the write amplifiets from further writing (Sheet 13 Dwg 700903) .

NOTE
Paragraphs 2-4-2-21 and 2-4-2-22, following, discuss Drums and Disks together, rather than independently, since the function discussed in these paragraphs is essentially the same for Drums and Disks. Generate 2-4-2-21 End of Write Data and Class Operation Swap Count Cycle When no new instruction is received during a record, the Swap-区X Cyclea which comes at the end of the record will be the last Swap-Cycle of the operation. This is true because the Swap-Complete-New-Instruction (SCNI) flip flop set output identified by continuity symbol X16 (Sheet 28 , Drum, Sheet 8, Disk, Dwg (7.00903) is inhibited from rising by the fact that RFUL, identified by continuity symbol A18 remains low because of no new instruction having been received and no EQ-Strobe (\$8EXKBXX (EQSTRB) pulse i is produced. The final Swap-Cycle during a Write Data and Class
described. The SWPRQ flip flop is set in this case by the gating of DMPOL* and RCE in the case of a Disk policy type of operation on a Drum Unit and the same gating plus the Track Verification (TV) signal for a Disk Policy type operation on a Disk Unit. In the case of a Drum-Policy type operation, the DMPOL signal is all that is required to produce SWPRQ (Sheet 28,Drum, Sheet 8, Disk, Dwg 700903). 2-4-2-22 End of Operation(Write Class and Data) Swap-Count-Cycle The continuing discussion is based on the assumption that no new instruction from the AMCP was received while the Write Data and Class operation was being executed. Logic discussed is to be found on Sheets 8, Disk, and 28, Drum, Dwg 700903.
(a) Swap Count 1 XX The SWDA pulse is produced again causing the Functional Device Address Control Register to swap its Control Register. Since the output of the Holding Registers rare gated onto the input buss to the AMCP, the $\times \mathbb{N}$ Device Address of the just completed operation is available to the AMCP, and can be monitored by the AMCP's generation of an ACTC selecting the Device Address Register followed by the AMCP's generation of anRDPC, which enables it to $\mathrm{K} K \mathrm{~h}$ sample the coutput of the Device Address Register now on the input buss to \rightarrow
the AMCP. The Swap-Count 1 decode also produces the Load-Status--Register (IDST) pulse, which strobes the output of all status error indicators into a Status Register. (Status is discussed
(b) Swap Count 2 This decode is used to produce the Clear-Error-Indicator (CLERR) pulse, which resets all status error indicators. (Status is discussed in detail in paragraph 2 .)
(c) Swap Count 3 This count produces the Swap Map (SWMAP) and Swap-Unit (SWUNI) KXX pulses, which load the Functional Map and Unit Register contents into the Map and Unit Holding Registers. The output of the Map and Unit Holding Registers can then be sampled by the AMCP.
(d) Swap Count 4 This count produces the Swap-Word-Counter (SWWC) pulse, which swaps the word Counter/Register count into the Holding Register, making the word count of the operation füst completed available to the AMCP.
(e) Swap Count 5 This count produces the Swap-CentralMemory (SWCMA) pulse through which, the swap function makes the Central Memory Address sequential to the last address of the just completed transfer operation available to the AMCP upon 'request.
(f) -Swap Count 7 This count produces the Swap-Class- \varnothing (SWCL \varnothing) pulse, EX which through the Swap function, makes the Class \varnothing word of the Class-Subfield available to the AMCP upon request. '
f. (g) Swap Count 8 This count produces the Swap-Class-1 (SWCLI) pulse which, through the Swap-function, makes the Class 1 word of the class-Subfield available to the $\overline{A M C} \frac{\dot{\mathrm{P}}}{}$ upon request. This count also produces the Reset-Busy
(RBSY) pulse, which resets the Busy indicator flip flop. The significance of the resetting of Busy, is in that it enables the generation of the Attention interrupt (ATTN) to the AMCP and also provides Preselection Status information required for the AMCP as discussed in paragraph 2-3-2-7. Swap-Count 8 also produces the Clear-Check (CLRCH) pulse, which clears the CheckField Register in the Drum TSU and resets the Last-RecordAddress and Last-Band-Address XXXXXX (LSTRA and LSTBA) traps for both Drum and Disk TSU's (Sheet 28,Disk, Sheet 8, Drum, Dwg 700903). Finally, Swap-Count 8 produces the Reset-Swap (RSWP) pulse, which enables generation of the End-Of-Swap (EOSWP) pulse and the resetting of the Swap flip flop as CC operates(Sheet
 700903).
(h) Swap Count 9 This decode generates the Reset-Counter (RTC) signal, which enables reset of the Swap Counter. NOTE

As stated at the beginning of $\begin{gathered}\text { KXe } \\ \text { this }\end{gathered}$ major paragraph, the lack of a new instruction inhibits the generation of EQSTRB, by inhibiting the setting of the Swap-Complete New-Instruction (SCNI) flip flop identified by continuity symbol X16, (\% Sheets 8 and 28 ,left side, Dwg 700903).

2-4-3 Read Data and Class The discussion which follows will rely heavily on references to the preceding discussion of Write Data and Class operation. Control sequences are much the same for Read as for Write. However, since data flow is in the opposite direction for Read, different control gates operate to route the data. Since Read amplifiers are required rather than Write amplifiers, Read amplifier swithding control differs also. As previously stated, Drum Request logic is discussed in detail, beginning with paragraph 2-5.

2-4-3-1 Read Data and Class Load Sequence For thispoperation, the following Holding Control Registers are loaded: INSTRUCTION

DEVICE ADDRESS

CENTRAL MEMORY ADDRESS
MAP (OPTIONAI)

WORD COUNT
CLASS (
UNIT
One Control $X X$ Register is loaded from the AMCP output buss with each pair of ACTC and WTPC commands, as disçsssed in paragraphs 2-3-3-2 and 2-3-3-3. The Instruction Register is loaded first and the Unit Register last, as discussed indetail in
paragraphs 2-3-3-2(b) and $2 \times 8 \times 8 \times 8 \times 8 \times X$ 2-3-3-3(d).
(a) Generate Swap Required and Start Swap Counter For this operation, a Swap-Required at the end of the Register Loading sequence, as discussed in maragraph 2-4-1-2(a) and the End-OI-Record pulse (EOR for Disk and ERP \varnothing for Drum) initiate a Swap-Counter-cycle, as discussed in paragraphs 2-4-1-2 (b, c, and d). 2-4-3-2 Swap Function During Read Data and Class The Swap Counter decodes are the same for this operation as for the Write Data and Class operation, discussed in paragraph 2-4-2-2 (a orcepichat the swop pulses for swo
 ReprData and class operation. It shoula be wawaros recalled that foclass information has been loaded into the runctional Classegntrol Registers, and a swap of Functional and Holding 2-4-3-3 E EUAI EQ Write Data and Class operation, as discussed in paragraphs 2-4-2-3, 2-4-2-4, and 2-4-2-5.

NOTE
The continuing discussion
is based on the effecting
of EQ Read Data and
Class for Drum is discussed
independently, beginning
With paragraph $2,4,3,4$, Hollowtng.

2-4-3-4 Enable Drum Bit Counter The End-Of-Record pulses (EORP \varnothing EORP3) produced by the four P-CLK decoders (Sheets 22 and 23 Dwg 700903) are gated with the Unit_Select signal to producethe SERP pulse, which is used to trap the $\mathrm{K} \underset{\mathrm{S}}{\mathrm{S}} \mathrm{STRQQ}$ (P-CLK) as discussed in paragraph 2-4-2-6. SSTRQ synchronized with CC enables the first four stages of the Drum-Bit-Clock Counter to operate.
 counter identified by continuity symbols (1 through 8) on Sheet 22 Dwg 700903, is decoded to produce the following significant sector format signals.
(a) Read Enable REN A decode of seven (7) from the four-stage Drum-Bit counter (DBC), given mnemonic Beginning-of-Record (BOR) is gated with the DBC pulse to produce a clock which sets the Read Enable (REN) flip flop raising the REN level. The J-enable for this flip flop is the Read Mode (RMOD) level produced by a gating of READ and EQ (Sheet 22 Dwg 700903).
 Xotrex When REN is raised, the Preamble written on a previous Write operation is read back and the End-Of-Preamble (EOP) bit WXex opens a gate releasing previously written data and a clock何derived from the data. The clock(RC), is gated with REN, to produce a clock for incrementing the XX Class and Data Field portion of the Drum-Bit-Counter(DBC). The down-edge of the first $R C$ in this gate sets the first stage of this portion of the DBC and the up-edge of the following DBC produces the up-edge of the Load
(e) Check-Field (Read) Data being read back from the Drum enters the Drum $T S U$ from the $R / W / S$ under mnemonic ($D D I \varnothing \varnothing-D D I 23$), to be presented to the same Check-Field half-adder circuit as described in paragraph 2-4-2-10. At the end of the DataField, the Check-Field-Register should contain the same Check-Field word, which was produced during the waxed Write operation. When each bit of the Check-Field word is read into ${ }^{\prime}{ }^{\prime}$ the halfadder circuit with its associated output bit stored in the Check-Field Register, the result should be a logic zero for every stage of the Check-Field Register (Sheets 24,25,and26, Dwg 700903). The output of this Register after this half-adder operation is strobe into $\mathrm{K} \times \mathrm{X} 8 \mathrm{BXa}$ Check -Field Holding Register
 This same pulse strobes a gate $X X$ at which a signal referred

CHNZ is the result of a collector OR-gating of the output of (Sheet 27 Dig 200203).

* the Check-Field Register Λ At the time the () pulse operates the CHNZ signal should be low. If any one or more bits of the Check-Field Register output is high, CHNZ goes high and sets the CHNZ status indicator flip flop (Sheet 28 Dwg 700903).
 output of this indicator flip flop is a status coned ion remade available to the Ancp at the end of the record in which it is defected, as discussed in paragraph 2-6-5.

2-4-3-5 Drum Data Buffers In a Read Data and Class operation the Store requests to Central Memory attempt to keep the six data buffers empty. Refer to figure 2-8 for the continuing discussion,
(a) Load Buffers when a word is read from the Drum, the associated Read Clock (RC) gated with REN, produces a CLK 1 pulse (Sheet 25 left side Dug 700903). The CLK 1 pulse increments a three-stage counter $X X$ duplicated on each of the three data referved t_{2} as thevpointer. buffer boards (Sheets 24-26 Dwg 700903) \not. The three counters produce a six-count cycle, Two different count decodes of the cycle are implemented on each of the three data buffer' boards. The decodes, given mnemonics (INR \varnothing INR5) are load signals for strobing data into the six data buffer boards. In addition to loading the data into the buffers in a sequence, the decodes (INR \varnothing - INR5) also operate six databuffersxx Empty/Full status flip flops (FLOP six data-buffers are designated A through F. INRØ loads A, INRI loads buffer B, etc. etc.
(6) Empty Buffers During a Read operation (RMOD) a Store request produces a High-Request to Central Memory (HCM) pulse, which is gated with RMOD to produce a CLK 3 pulse, according to a sequence controlled by an output Porter dicks-:which strobes data out of the data buffers Λ The request is acknowledged by the return of a signal from Central Memory 4
with mnemonic HAK. The HAK signal is gated with RMOD to produce increments an output Pouter which
区
Empty/Full Status indicator flip flops (FLOP \varnothing-FLO PS) $\sqrt{(\text { Sheets }}$
(c) Data Field The setting of the third stage of the Class and Data Field (CADF) portion of the Drum-Bit-Counter raises the Data-Field-Time (DTM) level and releases a reset on the succeeding ten stages of the CADF portion of the Drum-Bit-Counter. At the end of 512 DBC clock periods, stage ten of the Data Field portion of this counter sets and DTM is lowered.
(d) Check Field Time (CHKTM) and Postamble Time (POSTAM) The setting of stage ten in the AATA Field portion of the $\mathbb{X X X X X X X}$ Drum-Bit-Counter, raises the CHKTM level and enables the setting of a flip flop. When the next $D B C$ pulse operates, this flip flop sets, lowereng CHKTM and raising a Postamble Time (POSTAM) level. The POSTAM level remains raised until the Selected-End-Of-Record-Pulse (SERP) arrives and resets this flip flop and the entire CADF portion of the Drum-Bit-counter as well. NOTE

The Data Field, Checkfield, and Postamble Times are produced in a Read Data and Class operation the same way as in a Write Data and Class operation, except the DBC clock is produced by the Read Clock(RC) derived from previously written data when reading, and by a prerecorded clock x^{2} wox writing (Sheet 22 Dwg 700903).

Class \varnothing (IDCLØ) pulse. The down-edge of this same clock then increments the $D B C$ lowering $L D C L \varnothing$ and raising the second stage of the DBC. The up-edge of the next RC then produces the up-edge of the Load Class 1 (LDCLI) pulse. The down-edge of this same clock then increments the DBC lowering LDCl. An Or-gating of these two XXXX pulses produces a Class-Time (CLTM) signal representing a window for the two class words being read back from the Drum at this time. Class word \varnothing enters the Drum $R / W / S$, is read, and placed on the input buss to the Drum TSU to be presented to the Class \varnothing Functional Control $\overline{X N}$ Register under mnemonic (DD $\varnothing \varnothing-D D 23$). At this time the $L D C L \varnothing$ pulse strobes word \varnothing into the Class Register. Immediately following, class Word 1 is strobed into Class Word Register 1 by the LDCLI pulse (Sheets 29 through 33 Dwg 700903).

NOTE
The Class Words thus loaded
into the Functional Control
Registers are swapped back
into the Class Holding
Register at the end of the
record. This allows for if sampling by the AMCP desired.
（c）Data Buffer status The outputs of the data buffer
Status flip flops are gated in various combinations to determine if one buffer is full（ONE F），two are full（TWO F）or if none are full（E Xt F）．The EX XX EX \varnothing F determination lowers the Store level，thereby disabling the Store request $x \times x / k$ generator． The ONE F determination enables the Store request generator and produces a Low Port Priority（LPP）modifier for the request． The TWO F SXW （HPP）modifier for the Store request．The HPP and LPP modifierstive establish the access priority of the $\mathbb{X X}$ Drum Unit to the Central

Memory Address word being requested．The logic for Drum data buffer status during a Read operation（RMOD）is located on Sheet 25 left side Dwg 700903 ．

2－4－3－6 Data Parity Each data word read back from the Drum for che oking parity during the is checked for parity in the same parity tree usedforparity Write mode．
generation：Data is presented to the tree under mnemonic
－（INDUS \varnothing－INBUS23）．The buffer load pulses（INR \varnothing－INR5）

strobe parity determination $\Lambda^{\text {into }}$ error word half and corrospondion to the
corresponding to the $/$ 酗XX buffer into which the word being
checked，is loaded．When CLK 3 operates to load data ww －
Wk into Central Memory，it also strobes the parity stored in each of these 罗据 Parity flip flops，through a gate enabled by the RMOD level．The parity bit for each word（TUDO24 彩 or TUOO2 is gated in the TuM（sheet 19 Dog 20093 ）to produce a suede Pantybit

Tkis concludes the 2
of Drum record formatting during a
Read Data and Class operation. The
continuing discussion is concerned with

Disk File, during a Read Data and Class
operation.
Disk TSU
2-4-3-7 Read Data and Class Subfunctions A Read Data and Class operation for a Disk involves the execution of the following subfunctions:
(a) Reading back a prerecorded header field from the DiskXXX and comparing it with the Disk File actual address effected from the Read Data and Class instruction.
(b) Achieving Track Verification (TV) if the instruction
was qualified as Disk Policy.
(c) Finding the Starting Address contained in the instruction. Srom the DisK
(d) Reading a Class Field and comparing it with the

Class Field 1 縕 the Functional Class Register,
Read Data and Class instruction.
(e) Reading a Data Field and transferring each word to an address in Central Memory.
(\$) Generating a Checkield with the Data Field being read and comparing it with the Check Field generated during the Write operation during which the was writea on the Disk. 114

NOTE
The following paragraphs make references
to the discussions of Write Data and Class．
Refer to figure 2－10 for the continuing discussion．

2－4－3－8 Format Time FTめ5 At FT め5，the Sub Field Counter is reset，producing a decode of $S F \varnothing$ ，a Data Word Counter is D / E
 is set A the $A W D / B W D$ indicator flip flop is reset raising the AWD level（See Sheet 13 Dwg 700903）and a C Register Empty／Full status indicator flip flop is reset producing CFUL＊（Sheet 14 Dwt 700903）。

2－4－3－9 Format Time FT め6 FT ø6 produces HACBUS which loads the区B C buss with the Disk address as described in detail in paragraph 2－4－2－12． Since the CFUL flip flop is reset，CFUL＊is high and is gated with T2ENLDC，signifying FTD6，and DFLD＊，signifying － Sub Field Time．This gating produces a C Register load pulse （IDC）which loads the Disk Address on the C buss into the C Register．With CFUL raised，T2XFR is raised and a serial transfer takes place between the C Register and the E Register．The left and right half of this AWD are transferred simultaneously in $12-\mathrm{bit}$ serial fashion into the E Register．The transfer clock is CC．The Parity of this word as all words transferred the between the C Register and D or E Register is determined
by comparing corresponding bits of the left and right half of the word. The thirteenth CC pulse then resets the T2XFR level $\mathbb{U l l}$ and the CFUL level and strobes the Parity bit for the AWD into the E Register, and switches the AWD/BWD indicator flip flop to BWD. The BWD is loaded from the C buss to the C Register, and from the C Register to the E Register in a manner simichar jeacribed to that for the AWD. The thirteenth CC strobes the Parity of the BWD into the E Register, resets $T 2 X F R$, resets the AWD/BWD indicator flip flop to AWD and generatesXXXX EOWD which advances the Sub Field Counter from SFø to SFl.
(a) Generate T2CLØCBUS A gating of AWD, KX Write Not (WR*) and SFI produces the T2CLØBUS level (Sheet 14 Dwg 700903) which loads the output of the Class \varnothing Functional Control Register onto the C buss (Sheets 3-7 Dwg 700903).

2-4-3-10 Format Time (FT $\varnothing 7$) At FT $\varnothing 7$ REN is raised as described in detail in paragraph 2-4-2-13, and the D / E indicator flip flop is jammed to E after having complemented to D at the EOWD of
 the E Register. With REN raised, the $\mathrm{R} / \mathrm{W} / \mathrm{S}$ circuits in the Disk File synchronize on the Header Field Preamble, and when the End-Of-Breamble (EOP) bit is read, data is released to the Disk Firsu, synchronized with the Read clocks (fy) generated from the Read Data bit-transitions. The RC from each of the six data tracks, shiftsout the contents of the six E Registers into a comparator circuit to be compared with the prerecorded theader Fipld
being read from the Disk File.
2-4-3-11 Header Count and Header Word Not Equal For a detailed discussion of these functions, refer to sub paragraphs of paragraph 2-4-2-13. These functions are the same for Read Data and Class as for Write Data and Class.

 of the CC producing the EOWD of the Header-wford C to E transfer aiso lowers the EFUL indicator flip flop and lowers the CFUL indicator flip flop, which enables the next CC 漖符 pulse to produce LDC, which loads the C buss, containing the class \varnothing word into the C Register. No transfer takes place to the E Fegister until the EFUL indicator is raised again. This takes place only after the last bit of the Header-word is read back from the six Disk fracks, producing the $T 2 L \not \subset B$ through $T 2 I 5 B$ pulses. These pulses complement D-type flip flops enabled by REN(Sheet 13 left side Dwg 700903). When these flip flops set, they produce the E \varnothing FUL through E5FUL levels, which are gated with REN to produce a Lawereg T 2 XFR is raised and the AWD of the Class word is serially transferred into the E Register. The thirteenth CC pulse lowers CFUL and strobes AWD Parity into the E Register. The AWD/BWD indicator flip flop switches to BWD, the ${ }_{A}^{T 2} C L I B U S$ pulse is generated, which loads the output of the Class 1 Functional Control Register onto the C buss. LDC operates

With the EFUL and CFUL indicator flip flops now set, T2XFR is

raisedAand the BWD class is transferred into the E Register. TheEOWD following the $B W D$ produces a clear pulse (CLRFCL) which resets the Functional Class Registers (Sheet 14 exteeme right Dwg 700903h This EOWD is also gated with REN and RREN, signifying SFI, in this case, to produce $\Lambda^{\text {an }}$ increment
 second,
and $_{A}$ to produce upon the arrival of the next $C C$ pulse the reset of REN and the D / E indicator flip flop. When REN resets the
 End-Of-Preamble (EOP) bits in the $R / W / S$. Another Preamble must be read and REN must be raised again, before Read Data and the Read Clocks (4) enters the TSU again. The thirteenth CC in the Class BWD transfer from the C To E Register loads the BWD Parity bit into the E Register and generates an LDC pulse, which loads the C buss into the C Register. Since no data is \cdot on the C buss, logic zeroes are loaded into the C Register. 2-4-3-13 Format Time FT12 REN was reset before FTll and is set again for reading the Class Field back from the Disk File at FTI2. The gating is FTll, EOFWD, EQ, and WHD* producing S2REN, which sets the REN flip flop through its clock input. When synchronization has taken place on the recorded data and the are End-Of-Preamble (EOP) levels generated in the $R / W / S$, the Read Data and Read clocks (\%) enter the TSU in synchronization. The output of the E Register is shifted into the same comparator used
Read Clocks.
for Header Word comparison by the fac. The Read Data from the Disk is the other input to the comparator. The same Read Iata is also shifted into the front end of tho E Register. The results of this comparison is of no significance on a Read instruction and the Class-Not-Equal (CNE) level is inhibited from raising. However, at the end of the Class Word the EFUL indicator flip flop is set by the detection of the last bit of the Class $K X$ Field ($L \varnothing B-L 5 B$) $A^{\text {by }}$ the setting of the six D-type flip flops on the extreme left side of zW Sheet 13 Dug 700903. With EFUL set and CFUL set during SF2, XX the T2XFR level is raised and CC pulses shift the C Register output of logic zeroes into the front of the E Register while the Class Field $\mathrm{A}^{\text {into the }}$ from the Disk E Registerfis shifted into the front of the C Register. The data entering the C Register is identified by continuity symbol Ald and the shift pulse serially loading the C Register is identified by continuity symbol Alg (Sheets 10 and 11 left side Dwg 700903).

- At Parity bit time (T2P), a load pulse T2XCCLø is generated by a gating of $T 2 P$, WR*, SF2, AWD, and the up-edge of $C C$. UaXXXXX EXKXXX This pulse is used to load the output of the C Register into the class \varnothing Functional Class Register. The logic for generating that id is on Sheet 14 Dwg 700903 and the Class $\mathrm{P}_{\rightarrow 2}$ Registers are on Sheets 2 through 6 Dwg 700903 . The down-edge CC of the same CC lowers CFUL and the nextfdown-edge generates IDC again, clearing the C Register by loading in the empty c buss. The TI2XFR level ruses again as CFUL rises and the BWD of the

Class Field is transferred into the C Register. A ($T 2 \times c C \angle 1$)

with the up-edge of the CC during Parity time. This pulse loads the output of the C Register into the Class 1 Functional Register. NOTE

At the end of record the Class Field is
swapped into the Holding Class Register making it available for sampling by the AMCP.

2-4-3-14 Sub Field 3 A gating of REN,RRENgsignifying SF2 EX in this case, and EOWD increments the Sub Field Counter to SF3 and resets REN on the down-edge of the next CC pulse
 to SF3, the CFUL indicator is reset on the down-edge of the CC pulse occurring during (T2P) which corresponds to EOWD in time. When SF3 operates, the T2ENLDC level, which enables the generation of LDC during the Sub Field period, is inhibited and no LDC pulse is generated and CFUL remains reset.

2-4-3-15 Format Time FT15 REN is set again for reading of the Data Field at FT15. The gating is FT14, T2READ, WDCT \varnothing * the word counter was loaded to some word count during the instruction from the $A M C P$, and $E Q$, and EOFWD. This gating
f.r produces S3REN, which sets the REN flip flop through the clock input and jam sets the Data Field flip flop raising the DFLD level. S3REN also resets the first three stages of the Data word Counter. DFLD inhibits the Sub Field decodes of these three stages of the
connects
Data Word Counter and an additional five stages to these three original stages to give the Data Word Counter a capability of counting out the Data Field.
(a) Read Preamble and First Disk Word The Preamble is read and the read circuits in the $R / W / S$ synchronize The Endlevel $\quad(T 2 R D \dot{Q}-72 R D 5)$ Of-Preamble (EOP) 1 is generated and Read Data Λ and Read clocks (T2RCd-T2RC5)
(f) enter the TSU from the Disk through connector 340 and through the cable board at location 3A2 Jl7. The EOWD associated with the transfer of the Class Field enabled the D / E indicator flip flop to complement from E to D, and the data being read is assembled in the six serial sections of the D Register. The mnemonics operating are: What 4 TD \varnothing-TD 5 signifying the D Register D
 the D Register, and T2CLK \varnothing-T2CLK5 signifying the Read Clocks for the six sections of the D Register used to shift the data into the D Register. These clocks are derived from data transitions c by the Read Strobe circuits of the $R / W / S$.
(b) Transfer AWD From the D Register into the C Register When the last bit of the first word is shtryx shifted into the D Register, the D type flip flops shown on the extreme left kx side of sheet 14 Dwg 700903, produce the DØFUL through D5FUL levels, which are gated with REN and CC to set the DFUL flip flop through the clock input. With the DFUL level raised during DFLD, the 13
T2XFR level is raised (Sheet Dig 700903) and the AWD portion
(d) Disk Parity Error Each 24-bit word shifted out of the D or E Register under mnemonic T2SROL and $T 2$ SROR is checked for parity in the same way parity was generated. T2SROL and T2SROR are gated to enable a Disk-Parity-Check flip flop to complement whenever corresponding bits of each half of a 24-bit word differ in logic state. The Disk-Parity-Check flip flop is held off except during T2XFR.XXXYXXXX At the end of a 24-bit word, the output of this Disk-Parity-Check flip flop (T2DPCH) indicates the parity of that word. The logic just discussed is on Sheet 11 Dug 700903 XW . AWD is written, the Parity-bit is located in bit thirteen of the left half-word. When a BWD is written its Parity-bit is located in bit thirteen of the right half-word. AWD is gated with SROL and the output of this gate is gated with DPCH at bit thirteen time to see if Parity as written for the AWD agrees with Parity as checked on play-back . The logic wax being discussed -is on Sheet 10 Dwg 700903. A similar gating of BWD and SROR is found in this logic to check for Parity in the BWD. ZRRX Parity time (T2P) or bit thirteen is represented in the
 during a READ for all words in the Data-Field and 区XXXX CheckField, as signified by the mnemonic ENCH in the logic. If Parity as written differs from Parity determined on play-back, the Disk-Parity-Errot (T2DPE) latching flip flop is set. The

KX T2DPE output of this indicator flip flop is a status condition made available to the AMCP at the end of the record in which 2－6－2，
先0 Status Reporting
of the word in the D Register is shifted into the C Register. Data exits the D Register serially as a left and right half word. Themnemonics operating are $S R O L$ and $S R O R$ which produce data for the C Register which can be identified by continuity symbol Al (Sheets 10 and 11 Dwg 700903). The shift pulse operating can be identified by continuity symbol Alg on sheets 10 and Il Dug 700903. The shift pulse is derived by gating T2XFR with CC and inhibiting the gate with T2P signifying Parity time. Half-Wonl Parity Half-wo.l
 the left and right half data-bit trains (SROL and SROR) to inhibited except during
identical flip flops, which are posotorare T2XFR. Each logic "I" data-bit enables the flip flop to complement with the CC pulse, and each logic " \varnothing " data-bit inhibits the flip flop from complementing. outpat of the
At the end of T2 $F F R$, the
 latching flip flops by the CC pulse during $T 2 P$ at the end of the AWD. This load pulse is identified by continuity symbol Hl on Sheets 10 , and $208 x X 11$ Dug 700903). The output of the parity are flip flopsldesignated LP and RP.

Load A Register When T2P is raised during the Data Field K KXXX of a Read operation the CFUL indicator flip flop is raised (Sheet 14 Dug 700903). A gating of CFUL, DFLD, READ,AWD, and AFUL* 4 produces a load pulse (IDA) for the A Register. The AFUL indicator FT
 of the C Register ($C \varnothing \varnothing-C 23$) into the A Register and loads the

Left Parity (LP) and Right Parity (RP) bits, determined by the process discussed in the preceding paragraph, from XXXX
 of flip flops.

Transfer BWD from D Register to C Register The $\mathbb{C X X X X}$ T2P pulse following transfer of the AWD, sets the AWD/BWD indicator flip flop to BWD and gated W w T2XFR raises and the BWD portion of the first 2 data Disk word is transferred from the D Register into the C Register in the same way as described for the AWD. Parity for the BWD is generated in the same way as for the AWD.
(g) Load B Register At T2P following the BWD, the LDB pulse is generated. LDB is produced by a gating of CFUL, READ, DFID and BWD. The $L D B$ pulse loads the B Register with the BWD from the output of the C Register, and $X X X$ loads $\mathrm{F} E \mathrm{X}$ the BWD Parity -bits into Parity flip flops:

2-4-3-16 Enable Store Request The DFID level latches a flip flop which supplies one condition for enabling Store requests to a gate. Other conditions for producing the Enable Request (ENRQ) level count has been specified in the instruction from the AMCP, and EQ signifying the correct Starting Address has been effected. In addition, the A and B Register must be full or either A or B must be full when the Store Request
is to and odd Central Memory Address as signified by CMAl8 in the logic (Sheet 14 ,extreme lower left,Dwg 700903). The two mnemonics RF3* and $\mathbb{X X X}$ RF4* are inhibiting signals when low,
 been transferred. These signals inhibit the generation of ENRQ for a period of time during which the data buffers, through which each word is processed, are in a transitory state and consequently not able to accept another word.

NOTE

A detailed discussion of Disk
Request Generation Circuits is
deferred until paragraph 2-6.
With the A and B Registers filled, the Store Request is generated by the raising of ENRQ. Both the A and B Registers are filled. However, there outputs are inhibited until either T2ACBUS or T2BCBUS is raised. These levels are produced by gating the , output of the A / B indicator flip flop with READ and DFLD. Since the A indicator flip flop is initially reset and since no acknowledgement to the Store request has as yet been received, the A level is raised now, and the output of the A Register Dix KNAKXAX and its associated AWD Parity flip flops are enabled. (See Sheet KX 14 Dwg 700903 for generation of T2ACBUS and T2CBUS) Pi. The request is looked at by the TUIM, which assigns priorities for the use of the Central Memory thx the? four TSU's. When a buss is assigned to this request and
the request is not refijected, subsequently, by the Central Memory, within a specified time period,a signal with mnemonic RFI is raised. (The logic generating RFI will be discussed in detail in paragraph 2-6 dealing with Disk Request Generation.) RFl,gated with READ, produces a signal (CBM) which gates the output of the A Register into Central Memory (Sheet 14 Dwg 700903). Data leaves the output gate on the data buffer boards under mnemonic $\mathbb{K} X \mathbb{X} X$ UDO $\varnothing \varnothing-T U D 023$. The Parity bits leave the data buffer boards under mnemonics TUDO24 and TUDO25. The two Parity bits TUDO24 and TUDO25 are gated in the TUIM to produce a single Parity bit (TUDO24) (Sheet 19 Dug 700903). This bit and the data bits are latched by Master Clock (MC) and leave the TUIM under mnemonic $\$ X X X$ TUDOめøL*-TUDO23L* and TUD24* (Sheets 19 and 20 Dwg 700903). From the TUIM, the Data and Parity bits are jumpered through and leave the AMTU through connectors 382 and 383. The EOWD produced at the end of the BWD $\begin{aligned} & \text { 䟲transfer from the } D \text { Register } t 0\end{aligned}$ the C Register, enables W the D / E indicator flip flop to complement to E on the CC pulse. This connects the C Register to the E Register, into which the next Disk word will be shifted from the Disk File. It should be noted that the Disk word is broken up into two 24-bit words and Parity, and each of these words require a Store request for its transfer back to Central Memory.
(a) Check Field Generation by Reading of Data Field All data shifted out of the D and E Registers into the C Register during the Data Field , is also X presented to a half-adder circuit to be added with the output of a Check-Field Register. The logic for this function is located on the extreme upper left side of Sheets $\ddagger 0$ and 11 Dwg 700903. A signal, T2ENCH, identified by continuity symbol H 4 , enables the operation of the Check-KXX Field Register during the Data Field and for the Check Field which follows. T2SROL and T2SROR representing serial data forming left and right half words from the D or E Register and identified by continuity symbol A4 $\begin{aligned} & \text { are } \\ & \text { is } \\ & \text { gated with READ to produce one input }\end{aligned}$ each-hat-woro
to hen half adder circuit. CHOL and CHOR represents the other input to the left and right half-word half-adder circuits. T2XFR inhibited by the Parity bit time (T2P) and identified by continuity symbol H6 in the logic, is gated with CC to produce shift pulses for the Check Field Register. Each Disk word bit of the Data Field is $\overline{k \not X}$ half-added with the results of previous half-adder bit summations exiting from the output of the Check Field Register and the results of this half-adder summation ine shifted into the Check-Field Register. When an entire Disk word has been shifted wixw the half-adder into the Check Field Register, the EOWD pulse operates. EOWD VXIXXXX is gated with the Rotation (ROT) signal, which is high when bit 19 (Disable Check Code Cycle) in the Instruction Control Register is reset, and with CC identified by continuity symbol A9 (Sheets 10 and 11 Dwg 700903). This 126
gating provides a pulse for shifting the Check-Field Register one additional witx word. At time of ratation, the output of the right half-word Check-Field Register is connected to the input of the left half-word Check-Field Register, and the output of the left WxXXX half-word Check-Field Register is connected to the input of the right half-word Check Field Register. Rotation, therefore, shifts the entire 50-bit Check-Field Register one bit position for each Disk word processed through the half-adder. 2-4-3-17 Check Field Each time the BWD of each Disk word is transferred from the D or E Register, the EOWD signal is generated. Using the three stages of the Sub-Field Data Word Counter and the additional five stages connected to these stages by raising DFLD, a count of 256 is decoded, which marks the end of Data Field and the beginning of Check Field. The pulse is given mnemonic CCHFLD* (Sheet 13, right side, Dwg (700903). CCHFLD* latches a flip flop to the set position, producing DWOVF, which enables a D-type flip flop to set. When the $L D B$ pulse operates to transfer the $B W D$ of the last
 BXX D-type flip flop sets producing the T2CHFLD level (Sheet 13, upper right Dwg 700903). When T2CHFLD is raised, the previously written Check-Field is read into the D Register. When the D Register is full the T2XFR level is raised (Sheet 13 Dैwg 700903). The D Register output (T2SROL and T2SROR) identified
shifted into another half-adder circuit with the output of the Check-Field Register (T2CHOL and T2CHOR) identified by continuity symbol A5. The Check-Field Register output at Check-Field time, which is the half-adder summation of each bit of each word of the entire Data-Field, should agree bit-forbit with the Check-Field word being transferred from the D Register, since this word was formed by the half-adder summation of the same WXXXX Disk.
(a) Transfer Check-Field Comparison Results to C Register (AND) EXXX The AND output of $x \mathrm{EX}$ this half-adder circuit identified by continuity symbol Al8 (Sheets 10 and 11 Dwg 2009) is shifted w into the C Register by the cc operating while T2XFR $\mathbf{X X}$ is raised. The shift pulse is identified by continuity symbol A19 (Sheets 10 and 11 Dwg 700903).
(b) Load Check-Field Status Register With AWD of Check-Field when the $\mathbb{K N X X} T 2 \mathrm{P}$ pulse XX following the AWD operates at the thirteenth bit-time, the CFUL indicator flip flop is set by the down-edge of CC. The gating of CFUL, AWD, T2CHFLD, READ and CC (T2LDCHD)
 side, Dwg 700903). The T2SDCH \varnothing pulse strobes, the output of the C Register ($C \varnothing \varnothing-C 23$) into a holding Check Field \varnothing Register (Sheet 9 Dwg 700903). The output of this Register is routed
 connector 380 to the AMCP, which can sample the data if it desires.
(e) BWD Wken CFUL lowers again after $T 2 P$ time, the $T 2 X F R$ window raises again, and the BWD portion of the Check-Field word from the Disk is compared $\mathbb{X X}$ with the BWD portion of the Check-Field EX word from the Check-Field Register. The results are transferred kX into the C Register. The CFUL indicator flip flop sets and produces, when gated with T2CHFID, READ and CC, the LDCHl pulse, which strobes the BWD portion of the Check Field word now in the C Register into a $k \times \mathbb{X X}$ holding Check-Field (1) Register (Sheet 9 Dwg 700903). The output of this Register is routed through a cable card (Sheet 49 Dwg 700903), out connector 380 to the AMCP, which can sample the data if it desires.
(d) Set Check Not Zero ZWid Indicator The LDCHl pulse is not conditioned by AWD or BWD and $\mathrm{W} x \mathrm{kX}$ therefore actually operates each time CFUL is raised during the Check-Field. Each time the IDCHl pulse operates, the C Register is full with, first, the AWD of the Check-Field and next with the BWD of the CheckField. Each time the IDCHI operates every bit in the -

C Register should be at logic zero. The individual bits of the C Register are collector OR-gated after one inversion. The results of the OR-gating is called Check-Zero (CHZ), and should be at logic "l" as long as all bits of the C Register are low at LDCH1 time (Sheet 9 Dwg 700903). After one $\boldsymbol{F}_{\text {in }}$ inversion to CHZ*, this signal is gated with the LDCHl pulse (Sheet 8, middle bottom, Dwg 700903), to set a latch if one bit in either the AWD or BWD Check-Field from the Disk and Check-Field Kegister fail to match, thereby raising the CHZ* line.
The input of this

flip flop (TZCNNZ) is a status condition made available
 qED. to the AMCE at the end of the record in whichit was detected as discussed in paragraph 2-6.5:

Paragraphs 2-4-3-18 and 2-4-3-19
following, discuss Drums and Disks
together rather than independently,
since the function discussed in these
paragraphs is essentially the same
for Drums and Disks.

2-4-3-18.End of -Read- Data and Class operate ion Swap count Cycle

 When no new instruction has been received from the AMCP during a record. the swap-cyclewich comes at ind the era of the record -will be the last swap-cycle of the operation. For further discussion reefer paragraph 2E4=2=212X 2-4-3-18 End of Operation (Read Data and Class) Swap-Count-Cycle
When no new instruction is received from the AMCP while the
Read Data and Class operation is in progress, a Swap-Count-Cycle will be generated which swaps the Functional Registers into the Holding Registers in order to make information available to the AMCP upon request. For a detailed discussion of the End-Of Operation Swap-Count-Cycle, refer to paragraph 2-4-2-22, which s. discusses the End -Of-Operation (Wrist (Write) Swap-Cycle. The Read End-Of-Operation Swap-Cycle operates in an identical manner.

2-4-4 Write If Class Is Equal This operation applies to Disks 8xayz
only. Essentially, this operation is the same as a Write Data and Class operation except at Class time the Class Word previously written on the Disk, is compared with the Class loaded into the Class Registers during the Instruction sequence. If there is agreement, the TSU logic proceeds with a normal write Data Field operation. If there is not agreement no data transfer takes place.

2-4-4-1 Write-If-Class-Equal Load Sequence For this operation, the following Holding Control Registers are loaded:

INSTRUCTION

DEVICE ADDRESS
CENTRAL MEMORY ADDRESS
MAP (OPTRIONAL)
WORD COUNT
CLASS
UNIT
One Control Register is loaded from the AMCP output buss with 'each pair of ACTC and WTPC commands as discussed in paragraphs 2-3-3-2 and 2-3-3-3. The Instruction Register is loaded first, and BX the Unit Register is loaded last, as discussed in paragraphs 2-3-3-2 (b) and 2-3-3-3 (d).
(a) Generate Swap Required And Start Swap Counter For this Toperation, a Swap-Required (SWPRQ) signal is generated at the end of the Register loading sequence, as discussed in paragraph 2-4-1-2 (a) and the End-Of-Record pulse (EOR)
initiates a Swap-Counter-cycle, as discussed in paragraphs 2-4-1-2 (b, c. and d).

2-4-4-2 Swap ExKxXX Function During Write If Class is Equal The Swap Counter decodes are the same for this operation as for the Write Data and Class operation, discussed in paragraph REAKAXX XXXXAXXAX 2-4-2-2 (a through i).

2-4-4-3 Equal $E Q$ is effected in this operation just as in a Write Data and Class operation, X X X as discussed in paragraphs 2-4-2-3, 2-4-2-4, and $2-4-2-5$.

2-4-4-4 Format Time FTめ5 At FTØ5, the Sub-Field Counter is
reset, producing a decode of $\mathrm{SF} \varnothing$, a Data Word Counter $\mathrm{N} x \mathrm{XXXXX}$ W及Xcesw
is reset, producing DWø. The D/E Register indicator flip flop
is set to E, the $A W D / B W D$ indicator $f l i p$ flop is reset raising and the EFUR indicator flip flop is jam set and
the AWD level Λ (Sheet 13 Dwg 700903) (${ }_{\text {and }}$ C Register Empty/Full

((sheet 14 Dugg 200903).
2-4-4-5 Format Time FT \quad FT 66 produces HACBUS, which loads
the C buss with the AWD portion of the actual Disk Address as described in detail in paragraph 2-4-2-12. T2ENLDC enables the IDC pulse to be generated and the Disk Address is loaded from the C buss into the C Register. CFUL raises with the LDC fpulse and EXXfXX T2XFR level goes up enabling a serial transfer between the C Register and the E Register. The left and right half of this AWD are transferred simultaneously in 12-bit serial fashion into the E Register. Parity is determined by
serial comparison of corresponding bits of the left and right half-words. The thirteenth CC resets T2XFR and strobes the Parity-bit into the E Register. The BWD is loaded from the C buss into the C Register, and from the C Register into the E Register in a manner similar to that described for the AWD. The thirteenth CC strobes the Parity of the BWD into the E Register, resets $T 2 X F R$, resets the $A W D / B W D$ indicator flip flop to AWD and generates EOWD, which advances the Sub-Field Counter from $\operatorname{SF} \varnothing$ to KXXX SFI.
(a) Generate T2CLØBUS A gating of AWD,WR* and SFI generates the T2CLØBUS level (Sheet 14 Dwg 700903(which loads the output of the Class \varnothing Functional Control Register onto the C buss (Sheets 3 through 7 Dwg 7008X 7009).

2-4-4-6 Format Time FTめ7 At FTめ7, REN is raised by the SIREN pulse as described in detail in paragraph 2-4-2-13, and the D / E indicator flip flop is jammed to E after having complemented to D at the EOWD of the header BWD transfer from the C Register to the XX E Register. The SIREN pulse also jams the EO through E5 latching flip flops (Sheet 13, upper left side, Dwg 700903) enabling the E Register for transfer. Finally, SlREN pulse jams the Data Word Counter to DW7. With REN raised, the $\mathrm{R} / \mathrm{W} / \mathrm{S} /$ $f_{\text {circuits }}$ in the Disk File synchronize on the Header-Field Preamble, and when the End-Of-Preamble (EOP) bit is read, data is released to the Disk TSU, synchronized with the Read Clocks generated from the Read Data bit-transitions. The RC
from each of the six data tracks shifts out the contents of each of the six E Registers into a comparator circuit to be compared with the prerecorded Header Field bits being read from the Disk File.
*2-4-4-7 Header Count and Header Word Not Equal For a detailed discussion of these functions, refer to sub paragraphs of paragraph 2-4-2-13. These functions are the same for Read Data and Class as for Write Data and Class.

2-4-4-8 Load Class AWD Into C Register The down-edge of the CC producing the EOWD of the Header-Word C Register to E Register transfer, also lowers the EFUL indicator flip flop and lowers the CFUL indicator flip flop, which enables the next CC pulse to produce LDC, which loads the C buss, containing the class \varnothing word into the C Register. No transfer takes place to the E Register until the EFUL indicator is raised again. This takes place only after the last bit of the Header-Word is read back from the six Disk tracks, producing the $T 2 L \not \subset B$ through $T 2 L 5 B$ pulses. These pulses complement D-type flip flops enabled by $-$ REN (Sheet 13, left, side, Dwg 700903). When these flip flops set, they produce the EØFUL through E5FUL levels, which are gated with REN to produce a set for the EFUL indicator flip flop. With EFUL raised, T2XFR is raised and the AWD of the s. Class-Word is serially transferred into the E Register. The thirteenth CC pulse lowers $\mathbb{X X X} C F U L$ and strobes AWD Parity int the Register. The AWD/BWD indicator flip flop switches to

of the Class 1 Functional Control Register onto the C buss. The EOWD associated with the BWD of the Class-Word just transferred to the E Register increments the Data Word Counter to DWø and increments the Sub-Field XX Counter to SKRQX SF 2 and resets REN. When REN resets, the Read Data and Read Clocks are gated off by reset of the EOP bit in the $\mathrm{R} / \mathrm{W} / \mathrm{S}$. Another must be read and REN must be raised again, before Read Data and the Read Clocks enter the TSU again. The thirteenth CC in the Class BWD transfer from the C Register to E Register loads the BWD Parity bit into the E Register and generates an IDC pulse, which loads the C buss into the C Register. Since no data is on the C buss, logic zeroes are loaded into the C Register. $\stackrel{1}{2}$ 2-4-4-9 Format Time FT12 REN was reset before FTll and is set again for reading the Class -Field back from the Disk File at FTl2. The gating is FTll, EOFWD, EQ, and WHD*, producing S2REN, which sets the REN KXX flip flop through its clock r input.
(a) Class Not Equal When synchronization has taken place on the recorded data and the End-Of-Preamble (EOP) levels are generated in the $R / W / S$, the Read Data and Read Clocks enter the TSU in synchronization. The output of the E Register is shifted into the same comparator used for Header Word comparison; by the Read Clocks. The Read Data from the Disk is the other input to the comparator. The same Read Data is also shifted into the Esixx front end of the E Register. The results of this comparison;
signified by the mnemonics CMPEA and CMPEB are gated with the output of a latch set by the S2REN pulse（Sheet 14 Dwg 700903）． REN is the only other level at the gate．If either CMPEA or CMPEB rise，the gate produces an output，setting a latch and thereby producing the Class－Not－Equal（CNE）level．The CMPEA and CMPEB levels are los compare window defined by setting of a latch by S2REN，previously mentioned，and the resetting of this latch by the RRHD pulse， which is generated by the last bits of the class－Word being read from the Disk and thereby setting the E \varnothing FUL－E5FUL flip flops shown on the left side of Sheet 13 Dwg 700903．The CNE Hat ah output as．a status condition made available to the AMCP
 at the end of a yecond as discussed in paragraph $z-6-3$ ． Qerfagraple 2
（b）Write Enable Write Enable（WEN）is inhibited or enabled とここと。
to set by the results of the Class－Field comparison．A clock
input（S3WEN）to the WEN flip flop is produced by gating WRCLC， WEN＊，WDCTØ＊and FT13．When FT13 arrives the up－edge of the －
clock is produced．During FT13 the Class comparison takes place．$\dot{C} N E$ is presented to the J enable and the jam－reset inputs of the WEN flip flop．If Class－Not－Equal（CNE）is set， the WEN flip flop is inhibited and when the Format Counter sw steps from FTl3 to FTl4，the S3WEN clock down－edge operates but the WEN flip flop，being inhibited，remains low and no write transfer takes place．If CNE is reset the WEN flip flop is enabled and when the Format Counter steps from FTl3 to FTl4 the S3WEN clock down－edge sets WEN which in turn latches WENDI．

WENDL is used to enable the write amplifiers in the $R / W / S$ of the Disk File.
(c) Load E Register With second Word of Data Preamble Since
the detection of the last bit of the Class-Word raised EFUL and since CFUL is raised, T2XFR also risesXX and kXyw enables the shifting out of the logic zeroes in the C Register XX loaded during FTlø by the LDC produced after the Class-BWD transfer into the E Register. This T2XFR is occurring while the Sub-Field Counter is at SF2. SE2 is gated with the Write-If Class-Compare instruction (WRCIC) produced when bits 17 and 18 of the Instruction Register are at logic "I". This gating produces a level (T2EVP) which forces logic zeroes for every bit being transferred from the C Register. At bit thirteen time, the Parity bit is also forced to a logic zero, as the AWD/BWD indicator flip flop switches to BWD. The BWD is transferred into the E Register while T2EVP continues to operate. T2EVP causes this entire

- Disk Word to be transferred into the E Register as logic zeroes , second Disk thus forming the finct word of the Data Field Preamble. (d) Load Class Functional Register As the C Registerfzero output is shifted into the front of the E Register, the E Register has the Class-Field which was read in from the Disk during Class comparison, shifted out into the C Register. The data entering the C Register is identified by continuity symbol Al8 and the shift pulse serially loading the C Register is identified by غontinuity symbol Al9 (Sheet 10 and 11, left side Dwg 700903).

At T2P time a load pulse (T2XCCL \varnothing) $\$ \mathrm{X}$ is generated by a gating of T2P, WR*, SF2, AWD, and CC. This pulse is used to load the output of the C REXXX Register into the Class \varnothing Functional Class Register. The logic for generating T2XCCLØ is on Sheet 14 Dwg 700903 and the Class Registers are on Sheets 2 through 6 Dwg 700903. The down-edge of the same CC lowers CFUL and the next down-edge generates LDC again, clearing the C Register by loading in the empty C buss. The $T 2 X F R$ level rises again as CFUL rises and the BWD of the Class-Field is transferred from the E Register into the C Register. A second load pulse for the BWD is generated with the up-edge of the CC during Parity time. KX This pulse loads the output of the C Register into the Class 1 Functional Register.

X

स

At the end of the record the Class-Field is swapped into the Holding Class Register, making the Class information available for sampling by the AMCP.

EX 2-4-4-10 Write Data Preamble XXOX With WENDL raised, the write amplifiers for the $E X$ selected heads are switched on and the content (All logic zeroes) of the D Register, which was reset frat FT申5, is written on the Disk as the first word in the DataField Preamble. The output of the D Register is selected rather than the output of the E Register, since the D or E Write Mode (DWRMOD/EWRMOD) flip flop is initially
before WEN is raised (Sheet 13, extreme upper left, Dwg 700903). Write Data exits the D Register through gates enabled by WENDIXXXX and the T2D \varnothing through T2D5 levels (Sheets $\$ X 10$ and 11 Dwg 700903). It should be noted that S3WEN jam sets the DFUL and EFUL indicator flip flops (Sheet 13 Dwg 700903). When the last bit of the first word of the Preamble is shifted out of the D Register as signified by the mnemonics $I \not \subset B$ and $D \varnothing$ being raised, the $D F U L$ flip flop is reset and the DWRMOD/EWRMOD flip flop sets, producing EWRMOD (Sheet 13, left side, Dwg 700903). Now, the second word of the Data Preamble is written from the E Register, which is loaded with an all logic zero Disk Word. With the DFUL indicator flip flop reset, $T 2 X F R$ goes up and enables $\mathrm{Ak} \times \mathrm{X}$ an $A W D$-transfer of logic zeroes from the C Register into the D Register. XXThe thirteenth CC produces LDC, which loads the empty C-buss into the C Register again. T2XFR raises and enables the transfer of the logic zero output of the C Register into the D Register. The D Register is now loaded with the third Preamble word, and the EOWD occurring cat the end of the KXXX BWD, switches the D / E indicator flip flop to E. When the E Register writes the final bit of the second Preamble -Word, the $\mathbb{W W X X X X X X}$ DWRMOD/EWRMOD flip flop switches back to DWRMOD and the EFU indicator flip flop resets. The D Register shiftx the third Preamble-Word onto the Disk. The fourth word of the Data-Preamble is produced by gating SF3, DW7, and READ* with AWD and BWD at two separate gates producing T2PACBU̇S and T2PBCBUS levels which force End-Of-Preamble (EOP) logic one bits onto the c buss. These bits eventually
produce the EOP-bit for four of the sections of the E Register and the Parity generation logic supplies a logic one for the EOP bit of the remaining two sections of theE Register. 2-4-4-11 Data Field, Check-Field, and Postamble The Data-Field, Check-Field, and Postamble of the Write-If-Class-Compare operation, are handled exactly as in a Write Class and Data operation (Refer to paragraphs 2-4-2-17 through 2-4-2-19.) 2-4-4-12 End of Write-If-Class -Compare Operation Swap-Count- Eyete When no new instruction is received from the AMCP while the Write-If-Class-Compare operation is in XxXXX progress, a Swap-Count-Cycle will be generated which swaps the Functional Registers into the Holding Registers in order to make information available to the AMCP upom request. For a detailed discussion of the End-Of-Operation Swap-Count-Cycle, refer to paragraph 2-4-22, which discusses the End-Of-Operation Swap-Cycle in a Write Data and Class operation. The Write-If-Class-Compare operation is identical.

2-4-5 Write Headers This operation, which applies to Disk Files only, causes the complete Disk Address of a given record to be written into that record. The Header FieldxxX consists of four Preamble Disk words, a Header Disk-word and
 the Disk-File is placed in the Computer System for transfer operation 2-4-5 Write Headers Load Sequence For this operation, the following Holding Control Registers are loaded:

INSTRUCTION

DEVICE ADDRESS

UNIT

One Control Register is loaded from the AMCP output buss with each pair of ACTC and WTPC commands as discussed in paragraphs 2-3-3-2 and 2-3-3-3. Ths Instruction Register with bit 17 set and bit $\mathbb{K X} 18$ reset and thereby producing the Write-Header (WHD) command, is loaded first and the Unit Register is loaded last, as discussed ind paragraphs 2-3-3-2 (b) and 2-3-3-3 (d).
(a) Generate Swap Required And Start Swap Counter For this operation, a Swap Required (SWPRQ) signal is generated at the end of the Register loading sequence, as discussed in paragraph 2-4-1-2 (a) and the End-Of-Record pulse (EOR) initiates a Swap-Counter-Cycle as discussed in paragraphs 2-4-1-2 (b, c, and d). 2-4-5-2 Swap Function During Write-Header The Write-Header operation requires the Swap Device Address (SWDA) décode to load the Device Address into the Functional Device Address Control Registers, and requires the Swap Unit and Instruction (SWUNI) decode to swap the Unit Selection and Instruction into the Functional Control Registers. However, the other Swap decodes discussed in paragraph 2-4-2-2 (a through i) are of no significance for this operation.

2-4-5-3 Equal $E Q$ is effected in this operation just as in a Write Data and Class operation, as discussed in paragraphs $2-4-2-3,2-4-2-4$ and $2-4-2-5$.

2-4-5-4 Format Time FTD5 At FT $\varnothing 5$, the Data Word Counter is reset, producing $D W \varnothing$, the D / E indicator flip flop is jammed to D KHXXNXXXXX WHD and FTØ5. Also at FTø5 the DFUL and EFUL Empty/Full status indicator flip flops are jammed set. The SlDFUL pulse r_{n} is used to set the DFUL flip flop while the EFUL flip flop is set by FTø5 (Sheet 13 Dwg 700903). 2-4-5-5 Format Time FTめ6 At FTD6, the WEN flip flop is set
through the clock input. Th s signally used as a clock is produced by a gating of FTø5, WHD, EOFWD, and WEN* (Sheet 13 Dwg 700903) . When WEN rises the WEND L latch is also set therelpy enabling the write w her in the $R / W / S$ of the Disk File. WENDL gated with DWRMOD, which is the reset output of the DWRMOD/EWRMOD flip flop, produces a
(sheet 3_{1} upper left, Du, 200903), jam-set for six latches producing $D \varnothing-D 5$ levels A The D Register, which is filled with logic zeroes by reason of being reset by FT ø5, begins to shift the first Disk-Word of the HeaderPreamble into the $R / W / S$ with Clocks (T2CLK $\varnothing-T 2 C L K 5$) which the output of the six latches are enabled at a gate by $\left.\lambda^{(22 D} \phi-T 2 D 5\right)$ (Sheets 10 and 11 Dwg 700903).
(a) Load Third Preamble Word into C Register The T2ENLDC level produced KXX^{2} FTp (Sheet 13 Dig 700903) enables the Load C Register (IDC) flip flop to set on the CC clock producing the IDC pulse. IDC raises the CFUL indicate flip flop (Sheet 14 Dwg 700903) and loads the empty C buss into the C Register c causing it to be filled with logic zero bits.
(b) Transfer ThirdXX Preamble-Word into D Register When the last bit of the XXXXX first Preamble-Word is shifted out of the D Register, the LB decode (Sheet 14, upper left, Dwi 700903), is produced. $L \not \subset B, D \varnothing$, and $W E N D L$ are gated to reset the DFUL indicator flip flop (Sheet 13, lower left, Dug 700903). When DFUL lowers, T2XFR rises and the AWD of what will be the third Preamble-Word is shifted into the D Register. When T2P operates,

LDC loads logic zeroes from the C buss into the C Register again, and T2XFR is lowered. CFUL and T2XFR are set again, and the BWD of what will be the third Preamole-Word is shifted cshet i3, ertremeraght, Dwg into the D Register. T2EVP produced by gating WHD and DW ϕ A forie 10000° a logic zero for all 50-bits of this DisK-Word (Sheets 10 and "Dug 200903).
(b) Load AWD of Fourth Preamble-Word into C Register The

EOWD is decoded, the D / E indicator flip flop switches to E, the AWD/BWD indicator flip flop complements to AWD, the Data Word Counter W steps to DWI, the DFUL indicator flip flop is set and T2XFR lowers(Sheet 13 Dwg 700903). The CFUL indicator flip flop resets and the LDC pulse loads the $\mathbb{E X X}$ C buss into the C Register. At this time the C buss contains the End-OfPreamble (EOP) bits associated with the AWD. The EOP bit configuratio has been loaded onto the C buss by the PACBUS signal, produced WXC by a gating of WHD,DWI and AWD (Sheet 13 ,extreme rjght, Dwg 700903). PACBUS forces a logic one into bit positions $\not \subset 2$ and 16 of the C buss (Sheet 12 Dwg 700903).

- (c) Write Second Word Of Header Preamble When the last bit of the first Preamble-Word is detected the DWRMOD/EWRMOD flip X $E \phi-E 5$
flop complements to EWRMOD latching (Sheet 13, upper left, Dwg 700903). This causes the E Register, which was also reset at FTØ5, to shift the second Preamble-Word consisting of logic

> CEroes, into the R/W/S by the T2CLK-T2CLK5 clocks, enabled by the siv T2D $\varnothing *-T 2 D 5 *$ (Sheets 10 and 11 Dwg 700903).
(d) KxiX Transfer Fourth Preamble-Word into E Register When the last bit of the second word of the Header Preamble is shifted
out of the E Register, the EFUL indicator flip flop lowers, raising T2XFR. The AWD $\mathbb{N X}$ of the स Preamble-Word is shifted into the E Register. Thexd T 2 P decode lowers T2XFR, generates another IDC and complements the AWD/ BWD indicator flip flop to BWD. A gating of WHD,DWI, and BWD produces PBCBUS (Sheet 13 ,extreme right, Dwg 700903). PBCBUS forces a logic one on bits 11 and 12 of the C buss. These bits will eventually become the EOP bits for two sections of the E
FXXXX E Register. LDC loads the BWD into the C Register. CFUU rises and forces T2XFR up again and the BWD of the fourth PreambleWord is shifted into the E Register.
(e) Write Third Word of Header-Preamble when the last bit
of the second Preamble-Word is detected, the DWRMOD/EWRMOD
producing the $D \phi-D 5$ latched levels
flip flop complements to DWRMOD, EXX T2CLK 0 - T2CLK 5 clock pulse under mnemomi T20 T-T205, with this clock, the

zeroest is shifted into the $R / W / S$ (Sheets 10 and II Dwy 200903).

- (f) Load Header AWD into C Register The EOWD is decoded
after the transfer of the fuarth Preamble BWD,
enabling the D / E indicator flip flop to complement to D. The
AWD/BWD indicator flip flop complements to AWD,
Word sets, and T2XFR lowers (Sheet 13 Dwg 700903). The CFUL indicator
fiflip flop resets and the IDC pulse loads the AWD of the Header-
Word from the C buss into the C Register. The AWD of the
Header-Word has been strobed onto the C buss by HACBUS. This signal

right, Dwg 700903). The Header-AWD woxxX consists of the output of the Track Position Register, the Band Address Functional Control Register, and the Position Counter decode output(Sheet 12 Dwg 700903).
(g) Write Fourth Preamble-Word When the last bit of the third Preamble-Word is shifted out of the D Register, the DWRMOD/EWRMOD flip flop complements to EWRMOD and the E \varnothing-E5 outputs are latched (Sheet 13,upperleft,Dwg 700903). The T2CLK \varnothing T2CLK5 pulses enabled by the fourth Preamble-Word, which contains the EOP bits,into the Disk File. The EOP bits for Shift Register sections SR3 and SR5 are produced by the generation of Parity for $A W D$ and $B W D$, XREX
(h) Transfer Header-Word into D Register When the last bit of the third Preamble-Word is shifted out of the D Register, the DFUL indicator flip flop lowers, raising T2XFR. The AWD of the Header-Word is shifted into the D Register. The T2P decode generates the Parity bit, complements the AWD/BWD indicator flip flop to $B W D$ and produces another IDC pulse, which loads the C buss into the C Register. The BWD of the Header-Word has been strobed onto the C buss by HBCBUS, produced by a gating of WHD, DW2, and BWD (Sheet 14 ,extreme right, Dwg 700903). The ,
BWD of the Header-Word consists of the output of the Track Position Register and the Band Address Functional Control Register (Sheet

12. Dwg 700903). CFUL raises T2XFR again XXX, and the BWD of the Header-Word is transferred into the D Register.
(i) Load AWD of Postamble into C Register The EOWD $1 \times 8 \mathrm{X}$ is decoded and causes the D / E indicator flip flop to complement to E. The AWD/BWD indicator flip flop complements to AWD, The Data Word Counter steps to DW3, and the DFUL indicator flip flop is set while the T2XFR level lowers (Sheet 13 Dwg 700903). The CFUL indicator resets and the IDC pulse loads the C buss (All logic zeroes) into the C Register.
(j) Write Header Word When the last bit of the fourth Preamble-Word is shifted out of the E Register, the DWRMOD/EWRMOD flip flop complements to DWRMOD, and the D \varnothing-D5 outputs are latched (Sheet 13, upper left,Dwg 700903). The T2CLK 1 -T2CLK5 pulses enabled by T2D $\varnothing-T 2 D 5$, shift the Header-Word into the Disk File.
(k) Transfer Postamble Word into the E Register when the last bit of the fourth Preamble-Word is shifted out of the $E M E$ Register, the EFUL indicator flip flop lowers and raises T2XFR. The AWD of the Postamble-Word (All logic zeroes is shifted into the E Register. The T2P decode generates a Parity-bit, complements the AWD/BWD indicator flip flop to BWD and produces another LDC pulse, which loads the C buss (All logic zeroes) into the C Register. CFUL raises, forcing T2XFR up and the BWD of the Postamble-Word is shifted into the E Register.
(1) Write Postamble-Word When the last bit of the HeaderWord is shifted out of the D Register, the DWRMOD/EWRMOD flip flop complements to EWRMOD and the E \varnothing-E5 outputs are latched (Sheet 13, upper left, Dig 700903). The T2CLK \varnothing-T2CLK5 pulses enabled by T2D $\boldsymbol{D}^{*}-\mathrm{T} 2 \mathrm{D} 5$ * shift the Postamble-Word into the Disk File. 2-4-5-6 Reset Write Enable The EOWD produced during DW3 of Sub-Field SF produces RIVEN, which resets $\mathbb{K X}$ the WEN flip flop (Sheet 13 Dwg 700903). When WEN lowers the D Register is in the process of shifting out the Header-Word to be written on the Disk File. The last bit of the Header-Word, signified by $L \not \subset B$ and $D \varnothing$ resets DFUL. The LDC pulse is produced and loads the C Register and sets CFUL, but T2XFR is inhibited from rising by wEN being reset (Sheets 13 and 14 Dwg 700903). The DFUL indicator flip flop must remain reset now since WEN and EOWD must now remain low for the remainder of this operation. Although WEN is lowered, WENDL is still latched and the PastambleWord out of the E Register follows the Header-Word out of the D Register into the $\mathrm{R} / \mathrm{W} / \mathrm{S}$ of the Disk File. When the last bit of the Postamble-Word is detected, a gating of $L \not \subset B$ and $E \varnothing$ resets the EFUL indicator flip flop (Sheet 13 Dwg 700903). With WEN, DFUL and EFUL all reset and with the Sub-Field Counter at SFl a reset is produced for the WENDI latch (Sheet 13 Dug 700903). With WENDL lowered, the Write-Header operation is completed.

2-4-5-7 End Of Operation (Writ e-Header Swap-Count-Cycle The continuing discussion is based on the sssumption that no new instruction from the AMCP was received while the Write-Header operation was being executed. Logic discussed is to be found on Sheets 8, Disk, and 28 Drum, Dwg 700903.
(a) Swap Count 1 The Swap Device Address (SWDA) is produced making the Device Address available to the AMCP upon request. Swap-Count-1 also produces the Load-Status-Register (LDST) pulse, which strobes the output of all status error indicators into a Status Register. (Status is discussed in detail in paragraph 2- .)
(b) Swap Count 2 This decode is used to produce the Clear-Error-Indicator (CLERR) pulse, which resets all status error indicators. (Status is discussed in detail in paragraph 2 .) NOTE

The other Swap-Count decodes are of no pafticular significance during a Write-Header operation.

2-4-6 Continue This operational instruction is not set in an another instruction for continuing an already functioning operation beyond the record in which it is functioning. 2-4-6-1 Continue Register Load Sequence Continue requires different register loading for transfer operations than for a Write-Header operation as explained in the following text.
(a) Continue Transfer Operation During a Continue transfer operation the following Holding Registers are loaded from the AMD P

> INSTRUCTION (bit 16 only is set)
> CLASS (Except for Write Data and Class)
> MAP (OPtional)

UNIT
(b) Continue Write-Header Operation During a Continue Write-Header operation, only the Instruction and Unit Register are loaded by the AMCP. ?

NOTE
To perform a Continue operation the Unit Holding Register must always be loaded with the same Unit selection as that loaded on the initial instruction. This restriction is no prevent the loss of a complete Disk or Drum revolution on Disk Policy type operations or to prevent Drum Policy Violation

[^0]Disregard of this restriction could result
in the generation of the
level (T2NEWU), as described in paragraphs 2-4-1-3(e) and 2-4-1-4. It should be noted that the T2NEWU signal is produced even though the Unit Holding Register is not swapped with the Functional Unit Register.

2-4-6-2 Generate Swap Required and Start XXSwap Counter for Continue The Swap Required (SWPRQ) flip flop is set for enabling the Continue Swap Count Cycle by the effecting of the command starting For Drum units, gating is RCE, and DMPOL* for Disk instructions, x and DMPOL only, for Drum Policy instructions \langle Sheet 28 Dwg 700903). For Disk units, the gating is identical except for Disk Policy instructions, the Track Verification (TV) level is also required (Sheet 8 Dwg 700903). SWPRQ is gated with the EORP pulse arriving at the end of the record during which the initial instruction operation initiates a Swap-Counter-Cycle as discussed in paragraphs 2-4-1-2 (b, c anda).

2-4-6-3 Set Continue Flip Flop The Continue bit (bit 16) in the Holding Instruction Register is gated with EORP and SWPRQ to produce a J-enable for a Continue flip flop (Sheet 8 for TSUØ and Sheet 28 for TSU2XXXXXXX Dwg 700903). When the Continue flip flop sets itXpX produces the CONF level.

2-4-6-4 Swap Function \mathbb{W} During Continue of Transfer The set condition of the Continue flip flop (CONF) during a transfer
 qualifies some of the Swap Count decodes as discussed in the following subparagraphs.
(a) Swap Count 1 During a Continue-Swap-Cycle, Count 1 enables address incrementation decode gates. both Drunscandedebs the gates enabled produce the following incrementation pulses:

Drum on DisK
INCRA (IncrementARecord Address until in last Record) CLRRA - (Clear Record Address) (This returns the Record address to Record \varnothing when the last Record on the Drum or Disk has been exhausted)

INCBA- (Increment Band) (When list Red Record has on Drum or Disk
been exhausted if not within last Band)

CLRBA (Clear Band Address) (This returns the Band
 last Band on the Drum or Disk has been exhausted)

INCTA- (Increment Track Address) (This increments Disk
the Λ Track Address, whenever Band Address
is cleared) --- Disk Only

The decode for Last Record Address (LSTRA) is decoded within the Drum -TSU (Sheet 27

Dwg 700903) and Disk-TSU (Sheet 9 Dwg 700903). However, the last Bind Address (LSTBA) is decoded in the $\mathrm{R} / \mathrm{W} / \mathrm{S}$. respective Device.

The Swap-Device Address (SWDA) pulse is not produced during a Continue operation. The Functional Device Address Register is incrementedxwaxdyx only, during a Continue operation by the incrementation pulses produced in Swap Count 1. The reset output of the Continue flip flop (CONF*) is used to inhibit the generation of SWDA.
(b) Swap Count 2 This decode produces a Clear-Word-CountRegister/Counter (SCLRWC) pulse, which resets the Word-Count Holding Register/Counter, when CONF is raised.
(c) Swap Count 3 This decode produces the Swap Map ? (SWMAP) pulse just as in an initial instruction cycle, and in addition produces as a function of Continue, a Set-Word-Count (SETWC) pulse, which jam-sets every stage of the Word-Count Register/Counter, thereby loading in a Word Count of 512. During a Cycle , the Swap-Unit-and Instruction Registers (SWUNI) pulse is inhibited by the reset output of the Continue flip flop (CONF*). This

UKX initial instruction operation, since the initial instruction swapped into the Functional Instruction Register continues to be decoded. \mathbb{K} The inhibition of SWUNI also causes the unit selected by the initial instruction to continue to be selected.
(d) Swap Count 4 This decode produces the Swap-Word-Count (SWWC) pulse just as in an Initial-Instruction-Swap-Cycle. However, in the case of Continue, the Word-Count Counter/Register has been loaded to a Word-Count of 512 by the TSU, itself. This 512 count is then swapped by the SWWC pulse into the Functional Word-Count Counter/Register.
(e) Swap Count 5 During a Continue-Swap-Cycle, the Swap-Central-Memory (SWCMA) pulse is produced just as in the case of initial instruction cycles. XX However, in the case of Continue, SWCMA is meaningless except when considered in conjunction with another pulse generated at Swap Count 6, referred to as Double-Swap-of-区XX*XX Central -Memory
The discussion of SWCMA during Continue is deferred th, therefore, until
that il the subparagraph dedicated to Swap-Count 6. XX \&xwkx Also during Swap Count 5, the Set-New-Unit Number (SET NUN) pulse is generated if the Unit selected differs from the Unit selection still in the Functional Register from the Initial-InstructionCycle.

As previously mentioned this pulse should not be produced during Continue，镱离 since $T 2$ NEWU should never be raised．
（f）Swap Count 6 During a Continue－Swap－Cycle this decode produces the Double Swap of Central Memory Address（DSWCMA） pulse．The SWCMA pulse produced by Swap Count 5 during Continue， swaps the Central Memory Address stored in the address portion of the KXXX Store／Fetch Request Generators of the Drum and Disk TSU＇s into the Holding CMA Register．This address will be updated from the Starting central Memory Address，which was s swapped into the Functional CMA Register on the Initial－ Instruction－Eycle，as a result of each successful Fetch or Store request made during the preceding Record．The Continue instruction requiresk＊X that the next Fetch or Store －in the fecord enabled by the Continue instruction be sequential to the last Address stored or fetched in the Record preceding the Continue $X X$ Record．This being the case，the DSWCMA pulse swaps the last Central Memory Address fetched or stored now in the Holding Register，as a consequence of SWCMA，back into wixk $F_{\text {，}}$ the Functional CMA Register．

I Disk Double Swap In a Disk TSU，the ExWX SWCMA loads the Functional CMA Register from the Holding CMA Register （shèts 3－7 Dwg 700903）．However，SWCMA does not swap the contents
of the Functional CMA back into the Holding CMA d To understand what does take place, refer to Sheet 2 , extreme right, Dwg 700903. The Buffer Register shown there copies the output of the Functional CMA Register: To begin with, when the Functional CMA is loaded from the Holding CMA Register by the SWCMA pulse during an instruction cycle, the Functional CMA Register output, in turn is loaded into the Buffer Register by the $I D R Q A D$ pulse which is produced at Swap Count 7 of any Swap-Counter-Cycle. Then, when the Functional CMA Register increments with each request acknowledgement from Central Memory (HAK), the Buffer Register copies the incremented output of the CMA about 120 nano-seconds later. The incrementing pulse for the CMA Register (INCCMA) is produced by logic on Sheet 8, extreme left, Dwg 700903. The incrementing pulse for the Buffer Register is T2RF4, operating under mnemonic $L D B H$ (Sheet 2 Dwg 700903). The logic for generation of T 2 RF 4 is on Sheet 14 , upper middle, Dwg 700903. Now, when SWCMA operates, during the Continue-Swap-Counter-Cycle,
the output of the Buffer Register (T2BH $\varnothing \varnothing-\mathrm{T} 2 \mathrm{BH} 18$) (Sheet 2, extreme right, Dwg 700903) is the same as that of the Functional CMA and it is the T2BH $\varnothing \varnothing$-T2BH18 output which is loaded into the Holding CMA Register with the SWCMA pulse (Sheets 3-7,Dwg 700903). The DSWCMA pulse in the case of the Disk TSU simply repeats the CMA -
 contained in the Functional CMA Register and the Buffer Register is restored to the Functional CMA Register by the DSWCMA pulse and the $I D R Q A D$ pulse produced at Swap Count 7 copies the output
of the CMA Functional Register $W X$ back into the Buffer Register.
$\underline{2}$ Drum Double Swap In a Drum TSU the SWCMA pulse occurring during a Continue-Swap-Counter-Cycle loads the output of the Memory Address portion of the Drum Fetch/Store Generator into the CMA Holding Register (Sheets 29-32 Dwg 700903). For a revịew of the Drum Request Generation scheme, read subparagraph 2-4-2-2 $78 x X$ (e) $\underline{2}$ Drum. The Drum Fetch/Store Generator consists of the B-Register discussed in the just referenced subparagraph and the three LSB independent stages identified by mnemonics (HRQAD15-HRQAD17) (Sheet 29 Dwg 700903). The Central Memory Address in the Fetch/Store Generator represents the next sequential Central Memory Address for fetching or storing in the record which follows the continue instruction. This address, of course must be loaded back into the Memory Address portion of the Prefetch Request Generator, the Warning Request Generator and the Fetch/Store Request Generator. The DSWCMA pulse loads this
' next sequential Central Memory Address now stored in the Holding Register; back into the Functional CMA Register. This is of particular significance since the Functional CMA Register is also the Memory Address portion of the Prefetch Request Generator. At the beginning of the Continue-Swap-Counter-Cycle, the T_{A} Prefetch Request Generator is addressing as much as six doubleword addresses ahead of the Fetch/Store generator, but after the SWCMA and DSWCMA pulses have operated the CMA portion of the Prefetch Generator (CMA Functional Register) is at the next
sequential Central Memory address after that address from or to which a word was actually fetched or stored at the end of the record preceding the Continue instruction. The next Swap-Counter-Cycle produces the LDRQAD pulse, which copies the Central Memory adress in the Functional CMA into the B Register and the independent LSB stages of the warning and Fetch/Store Generators.
(g) Swap Count 7 This decode produces the LDRQAD pulse discussed in the preceding subparagraph, and the Swap-Class\varnothing (SWCL \varnothing) pulse, which swaps the contents of the Functional and KXXX Holding Class \varnothing Control Register, except when the Continue instruction is for the continuation of a Write Data and Class (WR) operation, in which case the $S W C L \varnothing$ pulse is inhibited, and the Class \varnothing Word loaded on the initial ir truction Swap-Cycle, remains in the Functional class \varnothing Register to be written at Class time, into the Record following the Continue instruction. Swap-Count $7 \times X$ also produces the XTA pulse if the Continue operation is a Disk Policy instruction (DMPOL*) $X X X X X X$ on a Disk Unit. For details refer to paragraph 2-4-1-3 (g) 1, ㄹ. (h) Swap Count 8 This decode produces the Swap Class 1 (SWCLI) pulse, which swaps the contents of the Functional and Holding Class 1 Control Register, except when the Continue instructions is for the continuation of a Write Data and Class

 instruction Swap-Cycle remains in the Functional Class 1 Register to be written during Class time, into the Record following the Continue instruction. Swap Count 8 also produces a Reset-Swap (RSWP) signal, which is used as a K-enable for the Swap flip flop and a J-enable for the End-of-Swap indicator flip flop (Sheet 28 Dwg 700903). RSWP also enabler reset of the Continue Slip flop.
(i) Swap Count 9 This Swap-Counter decode operates for transfer Continue operations just as described in $\overline{10} \mathrm{X}$ paragraph 2-4-2-2 (i).

2-4-6-5 Performance of Continue Instruction After the Continue-Swap-Cycle is completed the Drum or Disk TSU operates exactly as if the instruction being continued were an initial instruction. Sublichexdex Sub-Fields and Data-Field are handled the same way as in an initial instruction.

2-4-6-6 End-Of- $ष x$ Continue-Operation Swap-Cycle when no new instruction has been received during the execution of a Continue instruction, an End-Of-Operation Swap-Cycle is且 produced which generates the swapping pulses required for the particular function being continued. Continue is not a qualifier in the End-Of-Operation Swap-Cycle, since the Continue flip flop $X X$ was reset at the end of the Swap-Cycle in which the Continue instruction was received.

2-6 STATUS REPORTING

The AMTU monitors itself for its performance of the Device It also provides two special AMCR/Mccommunication status monitoring Address function and the data transfer function. A The Drum
 to Disk-type TSU's, only. The generation of HWNE is discussed in detail浚䊽 in paragraph 2-4-2-14 (d). HWNE signifies that the command Device Address loaded into the Device Address Holding Register during the load sequence and swapped into the Device Address Functional Register during $5 \times x=10 \times 1$ instruction Swap-Cycle, does not compare with the actual headboom position as read from the prerecorded Disk header fields. The SHWNE pulse which latches the HWNE indicator flip flop (Sheet 12, right side, Dug 700903) also sets the SWPRQ flip flop (Sheet 8 Dwg 700903). It should be noted that HWNE is not latched until after Track Verification (TV) is effected. The first EORP after HWNE rises generates a swap-cycle in which the HWNE status condition will be loaded into the Status Register in bit position 13 (Sheet 9 Dug 700903). The Actual load pulse generated by the swap-cycle is IDST. The next count in the swap-cycle clears the HWNE indicator flip flop This clear pulse is given mnemonic CLERR. Once in the Status

Register this status condition is available
 the AMCP. The AMCP must generate an ACTC in which the Status Register is selected and then follow with an RDPC W0X which causes the input buss to the AMCP to be read by the AMCP.

2-6-2 Device Parity Error (DPE) This status function pertains to Disk-type TSU's, only. The generation of T2DPE is dix discussed in detail in paragraph 2-4-3-15 (d). T2DPE signifies that the parity of a given data word or Check Field word, as written, does not agree with the parity on playback. At the end of the record in which T2DPE is detected, a swap-cycle begins, not as a function of thhis error, but as a result of a SWPRQ signal generated at EQSTRB time as a result of effecting starting address in a Disk-Policy instruction as signified by the gating of RCE,TV, and DMPOL*, or by DMPOL only, in a Drum Policy instruction (Sheet 8 Dwg 700903). The IDST pulse generated at Swap-Count-1 loads the T2DPE output of the indicator flip flop into bit-position 14 of the status XXXX Register (Sheet 9 Dwg 700903). Swap-Count 2 in the Swap-Eycle, clears the T2DPE indicator flip flop, under mnemonic CLERR. Once in the XX Status Register, KJ the AMCP can select the Status Register with an ACTC and can read the output withoxxxx $^{\text {wit }}$ an ${ }^{\text {RDPC. }}$

2-6-3 Class Not Equal (CNE) This status function pertains to Disk-type TSU's, only. The generation of T2CNE is discussed in detail in paragraph 2-4-4-9(a). T2CNE signifies that the Class-Word received as part of an instruction does not match the Class Word written in the record addressed by the instruction. EKKX T2CNE is only generated if the transfer to follow is a Write KXX -If Class-Compare operation. When T2CNE is produced it holds off the Write amplifiers in the $\mathrm{BXXXX} \mathrm{R} / \mathrm{W} / \mathrm{S}$ of the Disk File and thereby prevents overwriting of a class-protected sector. T2CNE also lowers $E Q$, thereby inhibitiny the $\mathbb{Z X}$ Disk 2PMonstxandix Central-Memory Request logic. At the end of
 Cycle begins as a function of effecting starting address in a Disk-Policy instruction as signified by the gating of RCE, TV, and DMPOL*, or by DMPOL,only, in a Drum Policy instruction (Sheet 8 Dwg 700903). The LDST pulse loads the output of the T2CNE flip flop into bit-position 15 of the Status Register (Sheet 9 Dwg the AMCP.

2-6-4 Excessive Time Consumed (ETC) This status function pertains for
to Disk Policy instructions (XD Disk and Drum Units, alike.
(a) Drum ETC When a Disk-Policy instruction load sequence Bhds, the $\mathbb{B X X}$ Busy (BSY) flip flop sets (Sheet 28 , lower right, Dwg ${ }^{7} 700903$). This releases the ETC counter for the counting of ETCCLK pulses (Sheet 28, extremexx right, Dwg 700903). BSY
.- is identifed in the logic by continuity symbol B8. The ETCCCLK is jxX produce by a Position 区ox Counter decode (Sheet 27

Dwg-700903). If the ETC counter operates until the last stage and first stage are set, the coumter locks up and produces the Excessive-Time-Consumed (ETC) status condition. ETC represents -approximately three Drum wexsextioncfx revolutions. wiss Normally, the Drum will have found the starting address loaded into the Device Address Register during the load instruction, long before the ETC signal is produced. Finding the starting address produces $X X X E Q$, which resets the ETC counter and holds alt off. At the Eresetting holds the ETC counter off.
(b) Disk (ETC) When an instruction sequence ends the GKX BSY flip flop counter (Sheet 8 Dwg 700903). . BSY is identified by continuity symbol B8 in the logic. However, if the instruction involved positioning to a new track position TV will be reset and the ETC counter will be held off until TV is set again. TV is identified by 10 midx logic on sheet 8 Dwg 700903才X. Once TV is produced, the Disk ETC counter counts Nine Disk revolutions to produce KXXX ETC if $E Q$ is not generated first.
(c) Drum and Disk ETC ETC is only produced when EQ is not achieved within a Xerax specified time. Failure to
produce EQ on a Disk Policy instruction is strictly a failure to produce RCE. If RCE is not produced the SWPRQ signal is not produced and no Swap-Cycle is initiated. When ETC is produced the SWPRQ flip flop is set. Gating is ETC and DMPOL* (Sheet 8 XXXXXXKNEXX,Disk, and Sheet 27 ,Drum, left side, Dwg 700903).
NOTE
If the instruction is Drum Policy, failure to
achieve RCE in the following sector produces
the Drum-Policy-Violation (DPV) status signal
is
ond the ETC counter by the resetting of BSY.

Swap-count 1 in the Swap-Cycle produced by ETC generates the 16 of the Status Register (Sheet 9 Disk, Sheet 28 Drum,Dwg 7009032. ...Swap-Count 2 produces CLERR which resets the ETC counter. Once ETC is in the Status Register it becomes available for sampling by the AMCP. 2-6-5 Check-Not-Zero (CHNZ) This status function applies to both Drums and Disks. Getare
(a) Drum CHNZ The generation of TøCHNZ is discussed in detail in paragraph 2-4-3-4 (e). TøCHNZ signifies that a longitudinal parity error has been detected, indicating that data has altered between recording and playback.
(b) Disk CHNZ The generation of T2CHNA is discussed in detail in paragraph 2-4-3-17. T2CHNZ indicates that data has altered between recording and play-back.
(c) Drum and Disk CHNZ If a CHNZ error is detected while bit 19 in the Instruction Register is reset, the normal a write instruction followed by a Reod Instrution, the sume record, procedure is to issue $\hat{\text { wnother- HX Read Ingtruetion in whieh }}$ bit 19 is set, thereby disabling the cycling of Check-Code. This procedure will facilitate isolation of the cause of CHNZ to one of the six Read/Write heads serving the Disk File. At the end of the record in which CHNZ is detected, a Swap-Cycle begins, not as a function of CHNZ itself, but rather, as a $x \mathbb{X N L X}$ result of a SWPRQ signal generated at EQSTRB time as a result of effecting starting address, as signified by the gating of RCE, and DMPOL* and in the case of Disk Units,TV also, or as a result Cycle
of a DMPOL instruction modifier. When the Swap-区NXXt is produced
at the HxX end of the record, Swap-Count 1 produces IDST, which
is used to load CHNZ into bit-position 17 of the Status Register (Sheet 9,Disk,Sheet 21 , Drum,Dwg 700903). Swap-Count 2 in Swap-Cycle clears the CHNZ indicator flip flop under mnemonic CLERR. Once in the Status Register, the Chnz error can be read by the AMCP if desired.

2-6-6 Memory Parity Error (MPE) Tkis status function applies to both Drum and Disk Units.
(a) Drum MPE The generation of TØMPE is discussed in detail in paragraph 2-4-2-9 (b). TØMPE signifies that parity $\mathbb{X X}$ of a word from Central Memory as checked in Central Memory before transmission, does not agree with the parity determination made within the Drum wixxx TSU after the word has been received from Central Memory.
(b) Disk MPE The generation of T2MPE is discussed in detail in paragraph 2-4-2-18 (c) . T2MPE signifies that parity of a word from Central Memory as checked in eentrat Memory before transmission, does not agree with the parity determination made within the Disk TSU after the word has been received from Central Memory.
(c) Drum and Disk MPE At the end of the record in which MPE is detected, a Swap-Cycle begins as a result of a SWPRQ signal generated at EQSTRB time as a result of effecting starting address. In Disk-Policy operations the gating is RCE, DMPOL* and TV for Disk Units (Sheet 8 Dwg 700903) and RCE and DMPOL* for Drum Units (Sheet 28 Dwg 700903). In DXXXX DrumPolicy operations the DMPOL signal is all that is required for both Disks and Drums. When the Swap-Cycle is produced at the end of the record, Swap-Count 1 produces LDST, which loads解 E into bit position 18 of the Status Register (Sheet 9, Disk, Sheet 27, Drum, Dwg 700903). Swap-Count 2 produces CLERR, whichresets the MPE indicator flip flop. Once the MPE status error has been loaded into the Status Register it is available
to the AMCP.
2-6-7 Data Late (DTL)

2-6-8 Drum-Policy Violation (DPV) This status function pertains \checkmark to Drums and Disks. When bit 20 in the Instruction Register is set the Drum-Policy (DMPOL) Instruction-Modifier operates. DMPOL generates a SWPRQ signal, which produces a Swap-Cycle at the for
end of the EX record W which the DMPOL instruction is XX intended. At the end of the Instruction Swap-Cycle, which begins at the end of the load sequence in which the DMPOL modifier is sent, the EQSTRB pulse is produced. EQSTRB and DMPOL are gated with a third signal RCE, (Sheet 8,Disk, Sheet 29,Drum, Dwg 700903). RCE indicates that the record,under the Drum or Disk heads, matches the command starting address. Refer to paragraph 2-4-2-2 (a) 1 for a discussion of the generation of RCE. If RCE is not produced by the time EQSTRB of the Instruction Swap-Cycle is produced, the Drum-Policy-Violation (DPV) status indicator flip flop sets. The DMPOL instruction modifier generates a SWPRQ signal and at the end of the smaxix record following the Instruction Swap-Cycle in which DMPOL was loaded into the Functional Instruction Register, another (LDST)
Swap-Cycle begins. Swap-Count \boldsymbol{j}^{1} loads DPV into bit-position 20 of the Status Register making $K \mathbb{K N S}$ this status information available to the AMCP. Swap-Count 2 (CLERR) resets the DPV status indicator flip flop.

2-6-9 Device Not Available (DNA) This status function pertains to Drums and Disks. Any Device addressed by the AMCP during a load sequence should be ready to perform an operation. This ready status indicates that the Drum or Disk is operating at the proper speed. The ready status for each device is its
communicated to EKX TSU by a dedicated Ready X
line (Sheet 28, Drum, Sheet 7, Disk, Dwg 700903). Each Unit selection line produced from a decode of the output of the Unit Functional Control Register (UØ-U3) is gated with its corresponding Ready line. If the Unit selected during a load sequence is not ready the Device Not Available (DNA) indicator flip flop sets producing DNA. The detection of DNA also sets the SWPRQ flip flop and the next end-of-record pulse generates a Swap-Cycle. Swap-Count-1 (LDST) loads DNA into bit-position 21 of the Status Register, making this status information available to the AMCP. Swap-Count 2 (CLERR) resets the DPV status indicator flip flop:

2-6-10 Register Loading Violation (RLV) The RLV status function pertains to Disks and Drums. The RLV status indicator is set for either of two fault conditions associated with the Register hoading sequence (refer to paragraphs 2-3-3-1 through 2-3-3-3). The, firstix condition involves loading out of sequence. If any Control Register is loaded beeore the Instruction Register, the

RLV indicator is jam set. The second condition sets the RLV status
 The second condition occurrs if there is an attempt to load the Holding Registers during a Swap-Cycle, or XX if a Register loading sequence is not completed before a Swap-Cycle begins. The logic for the RLV function is located on the upper right side of Sheet 28,Drum, and Sheet 7,Disk, Dwg 700903. The gating of signals identified by continuity symbols X10, X11, X21, X22, and C13 signify the conditions for producing RLV, when other than the Instruction Register is loaded first. The signals identified by these continuity symbols are as follows:

X10-(TSU Selection)
Xll-(Enable Load Bit) This signal indicates a Register is selected for loading rather than for sampling.

X21-(Reset state of Load Sequence flip flop) The significance of the reset state of this flip flop in this gating is in thatkx it indicates that the Instruction Register has not been loaded.

X22-(Instruction Register Select Bit) The reset state of this bit in this max gate indicates thats the Instruction Register is not being selected although the other signals in the gate indicate that the Instruction Register should be being selected now.

C3- (Register Selection) This signal is produced by gating ACTC the Register Selection Control level and PDS, which strobes the data lines during a Register selection.

The flip flop identified as PRECLK, located in the logic just to the left of the RLV flip flop identified as CLK is jam-set if during a Swap-Cycle (SWP) identified by continuity symbol B6, the load Sequence flip flop is set indicating the Instruction Register was loaded but a Swap-Cycle began before the Unit Register was loaded; that is to say before the end of the Load• Sequence. It should be recalled that loading the Unit Register resets the Hoad-Sequence flip flop. Also, if the Instruction Register is selected during SWP, the PRECLK flip flop is set. Selection of the Instruction XXX Register is signified by the gating of signals identified by continuity symbols X10, X11, X1, and X9. The signals identified by the continuity symbols are as follows:

```
XlO-(TSU Selection)
Xll-(Enable Load Bit)
Xl- (ACTC level)
    This is the Activate level
    which selects Registers for loading.
```

 X9- (Instruction Register Selection Bit)
 ZXXNX The continuing discussion relates to the different Fionxx

 to load the RLV signal generates a SWPRQ level and the End-Of-Record pulse which occurs at the end of the record during which RLV is detected generates a Swap-Cycle, and the RLV condition is reported before the record which would have been written into
been produced. If the KX RLV condition is a result of thexdex Hoad sequence taking place during a Swap-Cycle, it is evident the End-Of-Record pulse preceding the record which would have been written into or read from had no error occurred, is the End-Of RecordxX pulse which began the Swap-Cycle, producing the RUV. Therefore an RLV of this type cannot be reported until the occurrence of a second End-Of-Record pulse which will occur at the end of the record which would have been written into or from had the Load-Sequence been successful. When the Swap-Cycle Hengrosxx generated by RLV begins, FinkXSwap-Count-1 (IDST) loads bit position 22 the output of the RLV flip flop into Λ the Status Register for sampling by the AMCP if desired. KX Swap-Count-2 (CLERR) clears the RLV status indicator flip flop.

2-6-11 Present Status Read (PSR) This status function pertains to Disks and Drums. PSR is used to inform the AMCP that the Status Register of a given TSU has already been sampled by the AMCP. The logic for the PSR function is on the bottom left of Sheet 27, Drum, Sheet 9, Disk, Dwg 700903. When the IDST pulse produced at Swap Count-1 of a Swap-Cycle, operates to load the Status Register, it also resets the PSR flip flop. If the Status Register is selected by an ACTC ds signified by SST

Lutarangen if the AMCP follows with an RDPC, the down-edge of RDFC

Teen sampled previously

again.
 WALLED LAKE, MICHIGAN division of ex-cell-o corporation

CLASS \varnothing
23
CLASS 1023
CHEC\% ø \varnothing 23
CHECK 1 0 23
DEVICE ADDRESS $\square .12$ TRACK $9 \mid 1 \varnothing$ BAND 16/17 RECORD 23
CENTRAL MEYORY ADDRESS 5 23
INSTRUCTION * -
MAP
5 14
UNIT NUMBER.$22 \quad 23$
MORD COUNT
14 23
POSITION COUNTER*
(\emptyset or 1 or 2 or 3)STATUS *
13231
REGISTER SELECT * (ACT COMMIAND)

ALL UNUSED BITS WILL BE SENT TO THE AMCP AS "ONES".

* SEE AMPLIFICATION ON SHEET 2

AMCP - AMTU BIT ASSIGNMENTS

[^0]: on Drum Policy operations. These indersireable

