The printer we are getting will print 132 colum on 14-7/8" paper. Data is input as 7 bit ANSCII codes, with a byte transferred every 850 rs while filling the line buffer, or 1.7μ sec per word, ignoring the extra delay caused by using a longer cable. Since the buffer can use almost every other Hp memory cycle when filling a new line the controller is designed to be served by Dit whenever one of the two DM A chamels is free.

The complete sequence for printing a line is as follows. A line of data is received, character-by-character from the Hp, and stored in the line memory. Then the line transfer is complete, the Hp transfers a paperfeed instruction and printing commences. As comparisons are found between the characters stored in memory and characters being presented at corresponding column positions by the point belt, the hammers are released and printing occurs. When printing of the current line is complete, the paperfeed system executes the paperfeed instruction previously transferred from the Hp, and the next line of data can be transmitted. The typofont belts are operator changeable. The multi-font buffer automatically detects which font is being used font) currently. This information is fed back to the Hp as a coded three bit data field ${ }^{d}$. in the status word. The line buffers should be set up as follows: the first

Table 1. Printing Speed (LPM)/Number of Columns

Table 2. Paper Peed Instructions

Table 4. Character Code Assignments

16 Character Font Set And Codes
FONT CODE: $\phi \varnothing \varnothing$

48 Character Font Set And Codes FONT CODE: $1 \varnothing \phi$

64 Chameter Font Set And Codes
FONT CODE: $\phi 1 \phi$

VF, CR
byte should be left justified. That is, unless the only byte to be output is just a paperfeed command, the buffer must be packed, two characters to a word, as

Where the A is printed and then the B field.
or

note that the code is a 7 bit ANSII code, bits 7 and 15 are therefore available for other uses. In particular if 7 or 15 is set the controller can interpret it to mean that it is the last byte of the line; and that it is a 4 bit paperfeed command word instead of a printing byte. Thus

T	E					
X	T	T				
	0001	-	\quad	T	E	
:---	:---	:---				
X	1	T				
		0000				

what if fed with
print out the lines:
something here too'

TEXT Crlf
TEXTS (C)

It is not clear from the printer documentation on hand, how the printer handles codes which are outside the character set on the current font. Note that the controller requirement that text characters be left justified implies that when setting up a text buffer to output several lines under D.A
that the Buffer may need holes put in it as: $\frac{\mathrm{AN}}{\mathrm{OX}}$

The 3 locations marked with the *'s cannot be printed out by the controller. Actually there are several 'unprintable" combinations. With p standing for paperfeed command, c for printing-character and ϕ for random garbage not to be printed we have:

Handled correctly

pc
second byte not sent to printer

printing attempted for the ϕ
Who cares?

Packing two bytes to the word has "left only two control bits, bits 7 and 15. If either is set to a one

Need inllechar to the associated byte is taken to be a paperfeed command. de movie to This allows very efficient packing (from the hardware point of view anyway) of the four cases which hopefully are the only useful ones needed. If it is necessary to be able to handle the other cases there are two alter-
natives: 1) take the paperfeed commands out of the text buffer altogether and sent them out over a different $1 / 0$ path bympassing the IMA channel. or 2) noting that the paperfeed commands could not be printing characters with any of the character sets, the controller could call a paperfeed comnand anything with the high order bits equal to zero. This is nice; but now any garbage bytes might be taken as commands or type characters.

Pushing on, the hardware interface is simple enough that we can get controllers for two printers on one lip interface card. If it is intended to program for DMA operation, the printer should have higher priority than the link to the 500 . So the reshuffled $1 / 0$ addresses could be:

10	Daconics Data channel
11	Daconics Comnand channel
12	Printer one channel
13	Printer two channe1
14	link ZMinterrupt address anothen
15	link conmand address
16	$T T Y$

This is the best scheme if the Hp operating programs can be recompiled- else the printer could be stuck into an unused slot, ugh.

To make two devices on one card accessable to DRA control, an extra SRQ , service request line must be
wire-wrapped in for the higher address device. It is proposed that we use pin 62 which is presently unused to provide the SRQ line from the next card to the left, that is the next higher SRQ address.

The printer status bits that can be read with a Load into A or B are: Printer available, 3 bit font code, and parity error on the last byte received by the printer. These bits can be wired anywhere on the bus, the following layout is suggested:

When the interface is ready for a new word to be unpacked and sent to the printer it will set the Interrupt Request Flag. This may be tested with Skip on Flag Set/Clear instructions; give an interrupt ic enable etc. or grab a DMA cycle if the DMA is set up.

1) commode to rent punt cr

UNIVERSITY OF HAWAII

THE ALOHA SYSTEM

MIMORANDUM

TO: Roger Bissomette
FROM: Wrenwick Lee
SUBTECT: HP Printer Interface (Notes)
DATE: April 17, 1973

Old New
10 Daconics Data 10 Daconics Data (9TRK)
11 Daconics Command
12 Iink 2 m
13 link command
14 TTY
15
16

11 Daconics Command (9TRK)
12 save for 7TRK
13 save for 7TRK
14 printer one
15 printer two
16 link ZM
17 link command
20 TTY

The above juplies changing of variables that specify link ZM and link command and TTY.
Also initialization code nust now be adjusted. Watch out for possible missing case where channel assignment was direct.
2. KDF must now output. ASCII without parity.

KWW must put a I in the high order bit for skew* characters.
WDF must have a new mapping of skew characters to change from IBM to Digitronics.
See Table 1.
Data will be sent across the link as with a write. Thus the nomal sequence of SHIPIT, etc. will be done.
A. Print Routine should be put into dispatcher.
5. Use the tape buffer for now so that one can employ the use of PDT
6. Restarting the $H P$ should also involve some form of insuring that the printer is restarted, too.
7. DMA Channel 7 should be used for the printer.
line by line should be sent.
Keep the comnand sending logic, etc., separate from tapes so that can interleave the both later.
*skew: printer carriage control

Bissonnette
4/17/73
pg. 2
8. Odd byte problem. A special mull character 177 B is sent to indicate null. This is necessary so that when the text starts in the middle of an HP word, a null is sent in the first half of the word. The odd byte problem at the end of text does not occur because the last character is a skew character. If the skew character occurs in the first half of the word, the second half is ignored.
9. Don't forget to send back PFIN when finished.
10. A little fancy footwork is needed to keep track of where one is in the text and when one is finished. Also, where a line begins and whether it begins in an odd byte must be provided for.
11. Text is in the format show in Table II.
12. The skew is done after the line is printed when it is sent with the line.
13. Try to keep code below 1300B.
14. Don't forget to check print status.

Possible problem areas:

1. printing stopping in a bad state requiring manual intervention
2. implementation of null character (hardware)
3. mappings not $1-1$ from IBM to DIGITRONICS
4. Characters that printer doesn't recognize

Bissonnette

4/17/73
pg. 3

Mapping should be done in KDF.
What to do about non-mappings should also be wirried about.

