
FORBAS CONfROL L .. 71.NGUAGE

PROGRAMMING IV11\.NUAI,

TABI,E OF CON'rEwrs

1. IN'l1 RODUC 1rION

2. LOGGING ON/OFJ?

Logging On
OLD and NEW Conunands
SYS'rEM Cornrnand

Logging Off
BYE and GOODBYE Commands
HELLO and RESTART Commands

System Monitors
STA'rus and TTY Commands

Reading Paper Tape
TAPE Command
KEY Command

3. BUILDING FILES

What Is A File?
Libraries

Naming Files
NEW Command
RENl\ME Command
SCRATCH Command
File Password

Storing/Retrieving Files
SAVE Command
UNSAVE Command
EDIT PJl.CK Com.mand
OLD Corrnnand

Compile/Execute/Stop
RUN Command
RUNNH Cormr1a.nd
RU1.TBIG Comrnand
Console Halts and STOP

SUM.MARY

4. LIS':PING AND CHANGING F'II,ES

List Corn:mands
I.IST and I,ISTNH Commands
EDIT I,IST Command
CATl\LOG Command
EDIT PJ~.GE and EDIT 'I'EX'r

l

1-1

2-1
2-1
2-2
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-4

3-1
3-1
3-2
3-2
3-3
3-3
3-4
3-5
3-5
3-7
3-7
3-8
3-9
3-9
3-10
3-10
3-11
3-12

4-1
4-1
4-2
4-4
4--4

Resequencing Files
EDIT MOVE Command
EDIT RESEQUENCE Command

Insertions
Line Insertion
EDIT DUPLICATE Command

Deletions
EDIT EXTRACT Command
EDIT DELETE Command
CTRL/X Keys
SHIFT/~ Keys

EDIT REPLACE Command

5. COMBINING FILES

EDIT WEAVE Command
EDIT MERGE Command

APPENDIX A:
GENERAL FORBAS CONSIDERATIONS

APPENDIX B:
BCC LIBRARY FILES

INDEX

ii

4-7
4-7
4-8
4-11
4-11
4-11
4-12
4-12
4-13
4-14
4-14
4-14

5-1
5-2

A-1

B-1

___ , _____ ,
l~ INTRODUCTION

The FORBAS Control Language provides a software tool

for manipulating FORTRAN and BASIC programs, comple

menting the hardware controls built into the teletype

writer (TTY) and described in the Console Us~r ~ Gu~§:..~·

The tasks performed by FORBAS include system monitoring,

file input/output, program utility functions, and line

and program editing.

FORBAS commands differ from routine programming commands

insofar as they do not require line numbers, are not

stored, are executed immediately, and can be issued at

any time. Like program commands, however, they are

terminated with a carriage return (RETURN key). For the

sake o:E smooth reading, no "CR" or "RET" is shown in

examples, but the statements do not execute v11ithout it.

Another manual convention is to underline what the user

keys into the TTY to avoid confusion with system--generated

printout.

Rather than simply list cornraands alphabetically, which is

done adequately enough by the index, this manual attempts

to teach the language in the approximate order of need.

To wit:

Chapter 2 : LOGGING ON/OFF,

Chapter 3: BUI I.DING FILES,

Chapter 4: LISrrING AND CHl'i.NGING FILES,

Chapter 5: COMBINING FILES.

1-1

You will find that the FORBAS commands become second
I

nature with a little practice. The most instructive

approach is to experiment on a small FORTRAN or BASIC

program, changing statements slightly, listing by

various methods, etc. Do not be frustrated by initial

difficulties. As the computer would say, "to err is

only human."

Appendix A lists a few technicalities to be considered

when using FORBAS. Although they will probably be a

bit incomprehensible at this juncture, you should at

least skim them before going on to the next chapter.

1-2

2. LOGGING ON/OFF

LOGGING ON

The procedure for calling the computer depends on

whether your TTY is hard-wired to it or whether you

are using a telephone link. In the first case, simply

turn the TTY ON (or to LINE or ON-LINE as your specific

model requires). In the case of the telephone link,

turn on the T'fY, set the HALF /FULL DUPLEX switch to

HALF, dial the appropriate phone number, wait for an

answering tone, and finally place the telephone receiver

in the acoustic coupler. If you are using a local line,

you may simply have to dial a single digit on a dial

bui 1 t into the T1'Y keyboard.

Having contacted the computer, you are asked to supply

your user number (four alphanumeric characters) and

user password (four characters -· no restrictions). The

latter is disguised (typed over "MJJ.rn.M:?.") to protect your

If you type in the wrong information, the TTY responds

with INVALID USER NUMBER. Should you still want to log

on, just. call the computer and try again, and again ...

OLD and NEW Commands

You are next asked to "TYPE OLD OR NEW", that is, state

whether you. want the computer to load a previously stored

program or to accept a program you are about to create.

2-1

After you reply, the computer requests the name of

the old or new program file.

SYSTEM Command

Once you have been given the "READY" indication, you

should use the SYSTEM command to tell the computer

whether your new program is to be written in FORTRAN

or BASIC. You may type SYSTEM or SYS, to which the 'l"I'Y

responds with SYSTEM NAME--and waits for FOR or BAS.

Alternatively, you may type SYS:BAS or SYS:FOR and the

TTY will skip the formalities.

Once a program has been saved (i.e., is an OLD program),

the system identification is not needed to reload it.

The computer remembers the creation language.

The entire transaction to this point looks like the

following (user type underscored) :

BCC TIME SHARING SYSTEM

ON AT - 16 : ~l POR'I': 33

USER NUMBER Al23

PASSWORD

MMMM ?

TYPE OLD OR NEW:NEW

PROBI,EM NAME:EXMPLl

READY

SYSTEM: Bl'~SIC

READY

And nm:! begin typing your program!

?-?

LOGGING.OFF

BYE and GOODBYE Commands

Logging off the system is relatively uncomplicated.

Type BYE (or GOODBYE, according to how your mother

raised vou) .

Turn off the TTY.

HELLO and RESTART Commands

If a brother (or sister) programmer is waiting to use

your TTY, do not type BYE. Instead, type HELLO or

RESTART and the TTY will cut back to the user number

request sequence.

SYSTEM MONITORS

STATUS and TTY Commands

You can monitor the system at any time by typing· STATUS

or TTY. STATUS will cause the teletypewriter to type

out the current state of the system (e.g., idle, run,

list, save, etc.)

Typing TTY will give you the number of the current user,

the name and system identification of the current pro

gram, and the amount of computer time used in the

current run.

Example:

S'I'A'I'US

IDLE

TTY

USER:Al23 PROB:EXMPLl SYS:BAS RUNNING TIME:_0'0.7 SEC

2-3

READING PAPER TAPE

The procedures for punching and reading paper tape

are described in the Console User's Guide. Because

reading a tape also requires two FORBAS commands,

this procedure is repeated here. See the Console

User's Guide for details about keys mentioned, etc.

When reading paper tape be sure the tape surface

is facing upward (small tape feed holes to the left).

If applicable press TD ON and set the tape read unit

to either T, KT, or TTS mode.

TAPE Conunand

Type the command TAPE and set the tape read switch to

START.

The tape read stops automatically when the last char

acter (or CTRL/X OFF) is read. Reading can be halted

at any time by hitting the read unit's STOP switch.

KEY Command

When finished., press TD OFF' and type the command KEY

to reset the computer to normal (keyboard input) mode.

2-4

3. BUILDING FILES

----------------·

WHAT IS A FII,E?

The term "file" is applied to several types of related

information (user program, system utility program} in-

put data, etc.). It may be only temporary, such as a

program to perform a one-shot calculation, or it may be

saved permanently on a disk storage unit.

Each user is assigned a file storage area. You are also

assigned a user catalog that lists all your files by

file name together with the location of the file in your

specific user area. Your files may be accessed only

throug·h your own ca ta log. Each time you save or delete

a file, your catalog is updated automatically.

Libraries

Two different types of library can be accessed under BCC

file operation: the BCC system library and user libraries.

The first contains utility packages developed at the BCC

main installation. Although any customer may use these

files, changes may be instituted only by BCC systems

programmers.

Your group of program.mers might also wish to establish a

private library of frequently called routines or data.

The group identification and the establishment of your·

library is handled at your own installation. User

library names are limited to three alphanumeric characters.

Maintenance and changes to the library are the respons-

3-1

NAMING FILES

ibility of a designated librarian.

CoITLmands described in this section:

NEW RENAME

SCRATCH RENAME:file

File names may contain up to six alphanumeric characters.

Most symbols and non-printing elements are verboten,

but you may use control (CTRL)A-Z. (Hold down the

C'I'RL key while typing the desired letter key.)

Acceptable:

Rejectable:

MAXMIN

123$# ($# only legal symbols)

BCCCCC123

BCC 12 (space illegal)

SEXINA.ME (too many characters)

Al2@ (@ illegal)

NEW Command

The name of your file is established during the log-in

procedure using the NEW conunand.

TYPE OLD OR NEW:NEW

PROBJ_JEM NAME: EXMPLl

Had you t:y-ped NEW:EXI'1PL1, the PROB:CEM NAME line would

have been omitted.

You may change the n;:nue of your file v.d.thout changing

its content using one of the RENAME commands, or conversely,

you may delete its content while retaining the name

using the SCRA'l'CH command.

3-2

RENAME Comm.and

Suppose you had stored the file named EXMPLl initiated

above. You might wish to play with a copy of this file

without disturbing the stored version.

TYPE OI,D OR NEW: OLD

PROBLEM NAME:EXMPLl

READY

REN.A.ME

PROBLEM. NAME : EXMPL 2

EXMPLl is still intact in storage, and EXMPL2 is a new

temporary file with the same content. The same oper-

ation could have been accomplished more directly with

the command format

RENAME:EXMPL2

In this instance the current file is renamed without the

'I'TY asking again for PROBLEM NAME. The renamed file can

also be saved if you wish.

SCRA.TCH Command

If you want to delete all the data in the current file

without deleting the name, simply type SCRP,TCH.

REbJB.ME: EXMPL2

READY

SCRATCH

If you then ask for a file listing (with heading) you

will receive a message like the following:

EXMPI,2 13:22 BCC ,0'8/14/7.0' FRI.

3-3

NO PROGRAM

REA.DY

The SCRATCH command doesn't affect stored versions of

a program.

File Password --·---··

As an added file protection feature, you can add a

password to your file identification. (This password

is not to be confused with the four-character user

password requested by the TTY as part of the log-on

procedure.) A file thus secured can be loaded only if

both the file name and password are supplied.

You should keep a personal list of your passwords and

associated file names because only the file names are
I

shown in a catalog listing.

The assignment of passwords is described in the next

section as part of the SAVE command. In general, though,

a password is limited to six characters, which may be

alphabetic, numeric, control characters (CTRL) A-·Z,

plus internal codes 100-137 octal (lower case letters

and other funnies).

Legal: MYCODE

Illegal: SEXINAME (still too long)

@ $1.25 (illegal symbols)

3-4

STORING/RETRIEVING FII,ES -- -------

Commands described in this section:

SAVE OLD

UNSAVE EDIT PACK

SAVE Command

Storing a file is an easy matter using the "straight"

SAVE command. For the sake of example, let's define

a short BASIC program to calculate the hypotenuse of a

right triangle, remembering the formula,

(hypotenuse)

A

+ c2

+ c2

This program is to be called BASEXl, a mnemonic for

"BASIC example one." The BASIC statements themselves

are ignored in this discussion as they are the subject

TYPE OLD OR NEW:NEW

PROBLEM NAME:BASEXl

READY
SYS:BAS

READY
BYE

And like that you have a stored program! If a file

named BASEXl already exists in your catalog, it is

3-5

deleted and the catalog entry changed to show the

location of the new BASEXl (let the namer beware!).

Note that the straight SAVE cormnand includes no allow-

ance for a password or for access privileges for

program.":lers with a different user· name. These options

are included in the SAVE variations.

SAVE:password

SAVE:new pwd,
old pwd

This saves the current file with

a password. This format is also

used when replacing a copy of an

OLD file protected by the spe-

cified password.

SAVE:POCUS

Use this format to change the

password of the current file.

SAVE:HOCUS, POCUS

SAVE: ,old pwd This command allows you to delete

the password from the current

file with no rep.lacement.

SAVE: POCUS

You may want to let programmers with differing user

numbers access your files. This is done using the SAVE

cormnand with the three "privilege codesn described

below. All three codes may be specified in the same

SAVE. You may also drop the file's password as in the

last example shown above.

Code R allows others only to read and list your file.

3-6

Code w allows them to write over your file or add

information.

Code E permits others to execute the file, but in

no way to modify it.

Examples:

SAVE: , POCUS, R, E

SAVE: , ,W

SAVE: , , R, W, E

UNSAVE Command

The command to delete a saved file is, logically enough,

UNSAVE, and comes in roughly the same flexibile varieties.

UNSAVE Deletes the current file and

updates your catalog and

storage area accordingly.
I

UNSAVE: /password Does the same for a current

file protected by a password.

UNSAVE: file name Deletes the named file rather

than the current one.

UNSAVE: file name/pwd I think you have the hang of

it by now.

Cleaning up files that are no longer in use is a good

practice--economical from the viewpoint of access time

saved, Atorage space saved, and dollars saved (which is

frequently what it's all about).

EDIT PACK command

Before leaving the subject of economics and file storage,

3-7

one more handy tool should be introduced. The EDIT
I

PACK instruction removes all fill characters and

extraneous blanks from the current file, allowing about

a ten percent saving in storage requirements. Before

using this command you would be wise to specify your

SYSTEM. Otherwise weird and not very wonderful things

may happen.

Applying EDIT PACK to the BASEXl file saved earlier

would give you the foll.owing:

BASEXl

SREMHYPOTENUSE
2,0'READB,C
25LETA=SQR(Bt2+Ct2)
3,0'PRINTA
4,0'GOT02,0'
5,0'DATA4,3,6.23,7.l,2.1E6,31,0',0'
6,0'END

Note that there must be a space between EDIT and PACK.

EDITPACK will cause a "NO SUCH FUNCTION" error message.

OLD Command

Retrieving and loading a saved file is usually just a

matter of typing OLD and the file name in answer to the

TTYts queries (or the short form OLD:file name). But

as usual there are exceptions if your file has a pass-

word, or if you're accessing someone else's file or a

library file.

For password-protected files use the form

If another programmer has saved a file with read

3-8

privileges, you may access it by giving the file name

and his (or her) user number.

PROBLEM NAME :. BA SEXl , B2 3 2

Three (3) asterisks (*) following the file name indi-

cate that you're accessing a BCC installation library

file.

PROBLEM NAM.E:VECTOR***

Finally, if you are loading a file from your private

library, list the file name and your library name

separated by an asterisk.

PROBLEM NAME: I,OG10*LIB

Commands described in this section:

RUN RUNBIG

RUN.NH STOP

RUN Connnand

The FORTRAN and BASIC compilers convert your program

and data (source data) into a form understandable to

the machine (object code). It can then be executed by

the computer. In the BCC 500 system both the compilation

and execution of the current program are initiated by

one command -- RUN.

While the program is actually executing, certain other

commands are still recognized. These include S'11ATUS,

T'.rY, TAPE: KEY (see chapter 2}, and the halt corn.rnands

3-9

described later in this section. If you repeat the RUN

command during execution, the 'I"rY responds that the job

is in "run'' status and informs you of the elapsed

running time since the job began.

Running the BASEXl problem yields a console log sheet

like the following:

TYPE OLD OR NEW:OLD

PROBLEM NAME:BASEXl

READY
RUN

BASEXl

5
9.44579
2.1E+6

17:38 BCC

ourr OF DATA LINE # 2 ~

~8/14/70

RUNNING TI.ME: 00. 7 SECS.

READY
BYE

FRI.

As you recall, we fed the problem three sets of numbers

in our DATA line (5~) of the program. · The RUN state-

ment causes the three answers to be calculated and

printed as specified by the BASEXl instructions.

RUNNH Command

If you wish to suppress printing of the heading,

BASEXl 17:38 etc.

use the comraand form RUNNH (!~ .. 'Q..~ -~o Heading) .

RUNBIG Cornrnand

If your program uses between lOK and 20K words of

3-10

core, type RUNBIG instead of RUN. This forewarns the
i

computer and keeps it from blowing its memory. For

programs in the borderline area, bear in mind that

RUNBIG jobs receive lower priority than RUN jobs. The

BCC syst-.E'm actually handles programs up to 128K, but

those larger than 20K should be negotiated with the

company.

Suppose now that. you are performing a vector analysis

using a current program called VECTOR and have just. run

out of data. Another program in storage, named POINTS,

will supply additional input. This program can be

executed irmnediately (bypassing the OJJD routing) using

one of these formats:

RUN:program na...'Ue

RUNNH:prog-ram name

RUNBIG:program name

'l'he "prog·ram naJTte" can actually be ex·~ended to inc 1 ude

the program name, (other} user number, library name, or

password.

RUNl\Tf-I:POINTS, A123/HOCUS

After the POINTS program is executed, there is no

current program. At this juncture you would probably

type RUNl\11-I~vF;CTOR and feed in y0ur new data.

Console Halts and STOP

The RUN command causes a program to execute until the

3-11

SUMMARY

job is completed. Execution can be stopped at any

point, however, using any of several convenient

escapes.

As noted in the Console User's Guide, you may hit

either the CTRL/SHIFT;@ key combination or the BEFAK

and BRK-·RLS key combination at any time, depending

on your particular TTY console. Print output can be

stopped by hitting the "S" key (although this key is

interpreted as normal input at other times). When no

I/O operation is in progress, use the FORBAS termin-

ator STOP (whic11 is also considered input if typed

in answer to an input request).

The following console log illustrates many of the

com:rnands discussed in this chapter. It also introduces

the LIS'r co1rm1and) which is discussed in greater detail

in the next chapter.

USER t.'UMBER Al23

PASSWORD
MM.MM ?

RffilDY
RENAME: Bl\.SEX2

READY
LIS'l1

BASEX2 22 :08

5 REIVI HYPOTENUSI-:::
20 READ B,C

BCC yf8/14/70

25 LET A = SQR (Bt2 + Ct2)

3-12

FRI.

3yi PRINT A
40 GO'rO 20
50 DATA 4,3, 6.23, 7.1, 2.1E6, 3100
60 END

READY
RUNNH

5
9.44579
2.1E+6
OUT OF DATA LINE # 20

RUNNING TIME: 0~.6 SECS.

READY
SCRATCH

READY
LIST

BASEX2 22:~9

NO PROGRAM

READY
BYE

BCC 08/14/70

3-13

FRI.

LIST COMMANDS

4. LISTING AND CHANGING FILES

The functions described in chapters 2 and 3. are

used to process entire files. Those discussed here are

primarily line functions, although some categories run

the spectrum from single-character to entire-catalog

manipulation.

Commands described in this section:

LIST

LISTNH

EDIT LIST

CATALOG

EDIT PAGE

EDIT TEXT

LIST and LISTNH Commands

List commands are a good illustration of the range of

flexibility just mentioned. LIST is used primarily to

produce an immediate printout of the current file, as

was done in the summary example of chapter 3. Like

RUN, it also has a heading suppressing option, LISTNH.

Should you want to see only a specific portion of a

file, however, you can use one of the following formats:

LIST:line number

LISTNH:line number

Executing this instruction, the printout begins at the

indicab'~d line number and contin11es to the end of the

file or until one of the print halt options (see chapter

3) is-exercised.

4-1

EDIT LIST Command

The EDIT LIST corr~and allows even more leeway in listing

specific lines. Telling the computer to

EDIT LIST 1)0, 3)0, 5)0, 8)0 - 13)0

prints out the three individual lines referenced, plus

the block of lines 8)0 through 130 inclusive. Again

note that there must always be a space between each word

of a two-word command and between the last word and

first aL,g:ument. The only limitation on the number of

arguments permitted is the length of the input line.

The arguments shown above are listed in ascending order,

but this is not necessary. In fact, 130-80 would

have printed the block in reverse order. An EDIT LIST

conunand with no arguments causes the entire file to be

printed in reverse order.

To get a feel for the various listing possibilities,

study the factorial example below. First the entire

program is listed, then the subroutine only, next the

entire program in reverse, the numbers being factored

plus the subroutine, and finally a couple of stray lines

plus the subroutine in reverse order.

READY
LIST

BASEX2 16:48 BCC)08/14/7)0

5 REM PRIN'"r. FAC'l'ORIAL N
1)0 LET N = 1)0
2)0 GOSUB 8)0
3)0 LET N = 15
4)0 GOSUB 8)0
5)0 LET N = 20'

4-2

FRI.

60 GO SUB 8,0
70 S'l'OP

8yf LET F' -- 1
9.0' F'OR G - 1
1}1,0 LET F' -· F
11.0' NEXT G
120 PRIN'I' N;F
13~' RErl'URN
14f7 END

RE.t"\DY
I,ISTNH:~

80 LET F - 1

TO N STEP 1
* G

90 FOR G = l TO N STEP 1
10_0' LErl' F = F * G
110 NEXT G
120' PRINT N;F
130' RETURN
140' END

READY
EDIT LIST

140 END
13,0 RETURN
120' PRINT N;F
11}1 NEXT G
lJ;fyf LE'I' F = F' * G
9,0 FOR G = 1 TO N STEP 1
8 y3' LE'l' F =--' 1
70' S'I'OP
6)0 GOSUB 8}5
50 LE'l' N ::-.:: 2,0
4 JO GO SUB 8 ,0 .
3,0 LE'11 N = 15
20' GOSU:G 80
10' LE'T N = 1,0
5 REM PRINT Fl).CTORil'l.L N

RE.t"\DY
. ,BD I 'J;'__L I §T __ lff_, ___ }Q' _?ji,, ___ ~Q_::Jl.Q'.

10' LE'I' N -- 10
3,0 .LE'I' N -- 15
5,0 LET N - 2,0
80' LE'I' F = 1
9,0 FOR G -· 1 '1'0 N S'J'EP l
1~50' LET F -·· F * G
110' NEXT G
120' PRINT N; I'
13,0 RF.'J'URN

4--3

READY
EDJ~1_.J:1I S!_~L~.l ~Jf-8 fj..1_!_4 0

5 REM PRIN·r F'AC'I'ORIAL N
13¢ RE'I'UH.N
12¢ PRIN.r N;F
11¢ NEXT G
1¢¢ LE'l' F = F * G
9~ FOR G -- I '1'0 N STE:P l
8¢ LE'l' F = 1
14¢ END

CATALOG Conunand

The content of your catalog may be listed also. If you.

only want to see the names of the files in your catalog,

type CATALOG. Passwords attached to a file name will

not be shown.

To list library file names, use one of these:

CATALOG*'**
CAT***

CATALOG:user library name
CAT:user library name

EDIT PAGE and EDIT TEXT

BCC System
Library

Specified User
Library

To see the content of your cataloged files or BCC

system files, as well as their names, type in either

the EDIT PAGE or EDIT TEXT command. Both use the same

format, but EDIT TEXT suppresses program line numbers

in the printout.

EDIT PAGE progl-page, prog2, ... prog9

EDIT TEXT progl-page, prog2, .•. prog9

As the form implies, as many as nine programs can be

printed out with one command. The "page" indication

4-4

tells the computer what to number the first page of
I

the list. If you prefer not to specify this option,

the default (assumed) value is one.

The format of the printed'output is as follows:

8-1/2 x 11 pages, divided by dashed lines;

Page numbers centered at top;

Up to 50 lines per page;

Ten blank lines between programs (but if there

are less than 20 lines left on a page, the

new program begins on the following page.

The following example shows how the outputs from EDIT

PAGE and EDI'I' TEXT differ. Because only user files are

listed, there is no need to distinguish between BASIC

and FORTRAN programs.

READY
]?_D +_T___J AQ~ __ :§_li_§.~~}:-L_ BA S~!_X2 1 _ FOg_:§Xl

BASEXl

5 REM HYPOTENUSE
20 REA.D B, C
25 LE'r A = SQR (Bt2 + Ct2)
30 PRINT A
40 GO'l'O 20

- 1 -

50 DATA 4,3, 6.23, 7.1, 2.1E6, 31}00'
60 END

4-5

BASEX2

5 REM PRINT FACTORIAL N
10 LET N = 10
20 GOSUB 80
30 LET N = 15
40 GOSUB 8)J'
50 LET N = 20
60 GOSUB 80'
70 STOP
80 LET F = 1
90 FOR G = 1 TO N STEP 1

100 LET F = F * G
110 NEX'f G
120 PRINT N;F
130 RETURN
140 END

FOREXl

10C FIND THE LARGEST OF THREE NUMBERS
20' READ 12, L, M, N
30 12 FORMAT (3!7)
40' IF (L.GT.M) GOTO 3
50' IT = M
60 2 IF (IT.LT.N) IT= N
70 PRIN~ 10',IT
80' CALL EXIT

- 2 -

FOREXl CONTINUED

90 3 IT = L
100 GO TO 2
110 1$0 F'ORlli.AT ("THE LARGES'r NUMBER IS", I7)
120' END

(HI'l' 11 8 11 KEY AT THIS POINT TO STOP
LINESKIPPINcfL

READY
EDIT TEX'l' BASEX2--3 _,__.fOREXl

4-6

- 3 -

BASEX2

REM PRINT FAC'rORIAL N
LET N = 1,0
GOSUB 8,0
LET N = 15
GOSUB 8,0
LET N = 2,0
GOSUB 8,0
STOP
LET F = 1
FOR G = 1 TO N STEP 1
LE'l' F = F * G
NEXT G
PRIN'J1 N; F
RETURN
END

FOREXl

c

12

FIND 'I'HE IARGES'r OF THREE NUMBERS
READ 12, L, M, N
FORM.l\T (3 I 7)
IF (L.GT.M) GOTO 3
rr = M

2 IF (rr. LT. N) I'I' = N
PRIN'J~ 10, IT
CALL EXIT

3 IT = L
GO TO 2

10 FORMAT ('"l'HE 1.ARGESI' NUMBER IS", I7)
END

Two commands are available for rearranging and renumber-

ing your files: EDIT MOVE and EDIT RESEQUENCE.

EDIT MOVE Command

EDIT MOVE lets you move a single line or block of lines

4-·7

to a new position in your program.
i

Examples:

.fil?I~~- MQ.YE . _ _7[- ~ 10, 150

EDI'1-'_.~0VE ___]JJ~5Jl

In the first case the block of lines 70 through llYJ'

are moved and inserted following line 150. The secon

moves only line 70 to the position following line 150.

This ·conunand will not execute if the new location (150

in this case) falls within the specified block being

moved. EDIT MOVE 70-·110, 100 will hang you up. Trying

to visualize such a move will hang you up too.

Following the EDI'I' MOVE, lines 70-110' in the first

example would be renumbered in increments of one,

151, 152, 153, etc. If the nurnber of lines in the block

overlaps the instruction(s) originally following line

150', the latter is bumped up and resequenced and the

message BI,OCK TOO LARGE is issued (for your information

only) .

EDIT RESEQUENCE provides you with a neat answer to

messes created by many inr:crtions or moves. It looks

tricky at first because it requires all of three argu-·~

ments (aaargh!), but these can be mastered with a bit

of concentration and a few applications.

EDIT RESEQUENCE argl, arg2, arg3

argl - This number will be the first line of the

4-·8

resequenced file (or file portion);

arg2 - May be a single line number or block of

lines (e.g., 7f)-llf)); represents the pre-

sent first line (or entire block) where

resequencing is to start; "f)" alone will

resequence the entire file:

arg3 ·. This number is the increment between the

resequenced line numbers.

Easy
Out

- You may sim1Hy specify EDIT RESEQUENCE and

default values lf)f), f), lf) are assumed. But

easy outs add no flair to your life style!

When using EDIT RESEQUENCE, you should specify which

system you're working in. Line number references within

BASIC programs or FORTRAN statement numbers may be in-

correctly adjusted otherwise.

In the following examples, OLD friend BASEX2 has been

loaded and a remark added at line 75.

READY
SYSTEM:BASIC

READY
75 REM CALCULATE FACTORIAL N -----------·-------...... ·-·-
J..ISTNH
5 REM PRIN'l' FACTORIAL N
lf) LET N = lf)
2f) GOSUB Bf)
3() LET N = 15
4f) GOSUB 89]
59] LET N = 29]
69] GOSUB Sf)
7f) STOP
75 RFJvl CALCULATE FACTORIAL N
89] LE'l' F = 1
9f?J FOR G ~ 1 TO N STEP 1
lf?Jf?J LET F = F * G
119] NEX:'l1 G

4-9

12yf PRINT N;F
13YJ' RETURN
14~ END

Being ail-wise, we decide the added remark would be

more appropriate at the head of the program.

READY
EDIT MOVE 75,0
·~~------- ·~---..-

READY
~l~,!,~1tL
1 REM CALCULATE FACTORIAL N
5 REM PRINT FACTORIAL N
10 LET N = 10
20 GOSUB 80
30 Lf.T N ~ 15
40 GOSUB 80
50 LET N :.: 20
60 GOSUB 80
70 STOP
80 LET f = 1
90 FOR G - l TO N STEP l
100 LET f - F t. G
110 NEXT G-
120 PRINT N;F
130 RETURN
140 END

But now, being fastidious by nature, we're displeased

with the irregular line numbering system.

READY
~-!_8_ES_~QU_ENCE 10, 1, 10

- . ---~~ ~·--~~------.,.....,,._~

R~ADY
LISTNH
10 -
20
30
40
50
60
70
80
90
100
110
120
130
lli0
150
150

--
REM CALCULATE FAC1'0RIAL N

REM PRINT FACTORIAL N
LET N = l 0
GOSUB i00
LET N = 15
GO SUB i 00
LET N = 20
GOSUB i00
STOP

LET F :;; 1
FOR G c 1 TO N STEP 1

LET F :::: . f t G
NEXT G.
PRINT NJF'
R£TUF~N
END

4-10

INSERTIONS

In the resequ.enced version lines 40, 60, and
i

8fJ read GOSUB l!J!J to allow for the changed location

of the subroutine.

Insertions and deletions are to some extent interwoven.

An inserted line, for example, could be a replacement

for another line with the same number. EDIT REPLACE

performs the same function with characters.

Line Insertion

The simplest method of line insertion involves no

command at all. In the example ending the last section,

the line 75 REM statement was simply typed and the

computer automatically placed it between lines 7!J and

8fJ. As noted, we could also use this form to change

a line. For example,

3fJ LET N = 5

could be typed to replace the current

30 LET N == lj!

EDIT DUPLICATE Command

If a line is repeated in a program, the EDIT DUPLICATE

command may be used to save retyping the statement each

time it appears. All duplicated lines are preserved in

their original positions as well as appearing in the

specified new location(s).

In the present version of BASEX2, we could have typed

4-11

DELETIONS

instead of typing GOSUB 10'0' three times. Here ·we are

telling the computer to duplicate line 40' following

lines 50 and 70. Insert line numbers may appear in any

order and as many may be specified as fit in the input

line. The only requirement is that the line being

duplicated be listed first.

To duplicate a block of lines, use the same format.

After the EDIT DUPLICATE is executed, your program is

resequenced using the EDIT RESEQUENCE default options

(l~~' 6, 16). Again, indicate the system you are using

to preserve consistency in your internal references.

Deletions fall into several groups, i.e., deletions of

entire files, of lines or blocks of lines, or of indiv-

idua 1 characters. For the first categ·ory see chapter

3, where the SCRATCH and UNSAVE commands are dis~

cussed.

Lines and/or blocks of lines can be deleted using the

EDI'I' EX'l'RAC'l' or EDI'l' DELETE comrnands. EDIT' EXT'RAC'I'

specifies the numbers of lines to be saved in a program

and the rest of the file is deleted. Simply desig·nate

as many lines or blocks of lines as you wish, in any

order, up to the limit of the input line length.

EDI'I' 10--30 70

4-12

EDIT DELETE Command

EDIT DELETE is essentially a cameo of EDIT EXTRACT.

Instead of specifying lines to be saved and "cutting

away" the rest of the program, EDIT DELETE indicates

which lines are to be removed and the remainder of the

program stays intact. The same formatting rules apply

as for EDI'l' EXTRACT.

EDIT DELETE 10'-40', 80', 10'0'-120', 70'

In the following example, file BASEX2 is copied as

BASEX3 and chopped up using the EDIT EXTRAC'I' and

EDIT DELETE commands. Compare the printout to the last

version of the program listed in the EDIT RESEQUENCE

example.

RENA.ME:BASEX3

READY
EDI'r DX'l,Rl1.C'r 1,0 6,0 8.0-·16,0' 4.0
-·-----·--·--·---~-'-------------··-----

READY
I,ISTNH
1W--REM CALCUIATE FAC'rORIAL N
4,0 GOSU11 10,0
6,0 GOSUB 1,0,0
8,0 GOSUB 1,0,0
9,0 S'I'OP
10'.0 LE'r F = 1
110' FOR G = 1 TO N STEP 1
12,0 LET F = F * G
13,0 NEXT G
14,0 PRIN'r N; F
15,0 RETURN
16,0 END

REA.DY
EJ?.L~ ___ }J_:§I:!~T F:.__§_Q..:-J_9 __ ,,,__, __ 4 Q.

REP. .. DY
LIS'I'NH
-gr-'"REM CALCULA'l1 E FAC'I'ORIAL N
10',0 LE'I' F =: 1

4--13

11.0 FOR G = 1 TO N STEP 1
12.0 I.E~(' F = F * q
13.0 NEXT G
14.0 PRINT N;F
15¢ RETURN
16.0 END

CTRI,/X Ke_y s

To delete the line currently being typed, hold down

the CTRL key and type X (or use a corresponding console

control, depending on your teletypewriter model---see

function table in Consol~ User's Guide, chapter 2).

SHIF'I'/<- K~

To delete the last character typed, hold down the SHIF'l'

key and type~ (over letter O). Refer to the Console

User's Guide function table for variations. To delete

several consecutive characters, hit the SHIFT/~ for each

one to be erased.

EDI'l' REPLACE CO!".il"1AND

EDIT REPI.ACE stands somewhat apart from the other EDIT

commands, both in function and format. Hence, its

separate treatment here at the end of the chapter. It

could be classified as an "advanced'' instruction, like

the EDIT MERGE and EDIT WEAVE commands introduced in

the next chapter.

EDIT REPLACE: lets you specify the cha:(acter(s) in a line,

including blanks, that: you wish to supplant and what the

replacement is to be. You may enter several such in-

structions in a.single command line, or you may use

EDIT REPLACE to execute a file made up of many replace-

4--14

ment corn.mands.

In its simplest form this conunand might be used to

correct a few characters in a line.

10 REM CALCALATE FACTORIAL N
EDIT REPI.ACE #LCAI~tr.cur~n0
Ll~iTN1_I: lil..------·-------------------
10 REM CALCULA'l1 E FACTORIAL N

Line scans begin with the first character following

the line number. Be sure you idenhify the replaced

characters uniquely. Should you type only #CAI;/f as

the character string to be replaced with CUL in this

example, the first CAL of "CALCALl\.TE" would be changed

also.

The general format rule for EDIT REPLACE is as follows:

EDIT REPLl\.CE argl:/:j=rep lacetfreplacement:i:f:arg2, arg3

where

argl represents the maximum number of replacements

in each line (default value is "unlimited");

acts as a separator (you may also use character:s

$, I
• J ti' %, r' or &) ;

II lace" identifies the current character string

to be removed;

a:r;_g_~ is the linEi number where the replacement

search begins (default value is zero) ;

.£1,Lg} is the number of the final 1 to be scanned

(default value is 999999).

If both "arg-2" and "arg3" are omitted, the entire file

4-~15

is scanned •. If only "arg2" is given, as in the example

above (10), then only that line is scanned and the

default for "arg3" is ignored.

This format can be repeated in the same line to provide

multiple replacements, with each repetition divided by

a colon.

EDIT REPLACE ~#BIT#BYTE#l0, 100 :jtHEADfl=READlf30'

Multiple commands are executed sequentially. Be careful

that you do not unintentionally wipe out a replacement

performed earlier in the same command sequence. A re

finement of the EDI'I' REPLACE fonnat also lets you

perform "non-specific" character replacement, using "?"

to indicate unknown characters.

EDIT REPLACE #?OCUS#~9cusi=/:_

HOCUS replaces ~EY five--character string ending in OCUS.

EDIT REPL~C!-*PR~~T???#WRITE (OUT, ???)_j!_

Here we replace all PRINT statements with WRITE(OUT;

while retaining any data following the statements. The

point to remember here is that the number of question

marks in the "replace" and "replacement" sections must

be the sarne.

Earlier we said EDIT REPL~CE could be used to execute

entire files of replacements as well as performing

single line assignments. This ability comes in very

handy for extensive conversion work. In this case we

use the form

4-16

EDIT REPLZ~CE BASOU'r
i

where BASOU'I' is a routine for converting BASIC format

programs to FORTRAN format.

#IF#IF
#'l'HENfl:)
#LET:ft#
etc.

(#
GOI'O.':/=

Note that. statement. 3$0 completely deletes, rather than

replaces, every occurance of LET.

4-17

5. COMBINING FILES

Program and subroutine files can be combined using

either the ED:t'I' WFJ\.VE or EDIT .MERGE command. EDI'l'

WEAVE combines files in the sequence of existing line

numbers. EDIT MERGE allows you to combine subprograms

with a main prog-ram in any order you wish, and then

resequences the resultant file.

EDIT WEAVE COMMAND

EDI'I' WK'\ VE lets you combine as many as nine saved programs.

Programs are woven together and existing line numbers

retained. If two lines have the same number, one will

be lost (the last mentioned is retained) . Take

care that you do not end up with more than one END

statement or an END statement stuck in the heart of

your new program. Not only does this create a painful

image; it also frustrates the compiler.

Suppose we wanted to combine our BP1 hypotenuse cal-

culation function and BASEX2 factorial problem. Re-

membering that ljne 60 contained the END statement in

BASEXl, we could load BASEX2, resequence it to overlay

perform the weave.

READY
OI.D:BASEX2

READY
EDJ:~~J3._~~EQ_!!.~~~~~--§J1-2 f!L}:i.~

REf:'.DY
RENZ\ MF:: BZ\SEX4
-w·-~"-••- ---""",.-..--·---·---'"·~ ~--·~·-·-

5-1

REP.DY
SAVE

READY
EDI 'l'_iJEt_ V~_!)A S E~JS._1-iJ?l\ S ~-1

READY
LIS'l1 N.H

5 REM HYPOTENUSE
2J{f REI~D B, C
25 LET A = SQR (Bt2 + Ct2)
30 PRINT A
4j{f GO'l'O 2 0'
5 j{5 DA 'I'A 4, 3 , 6 • 2 3 , 7 • 1, 2 • l E6 , 3 1j{50'
60' REM CALCULATE PAC'I'ORil\I. N
7J{f REM PRINT FACTORIAL N
80 LET N = 10
90 GOSUB 150
100' LE'I' N = 15
110 GOSUB 150
120 LE'11 N = 2}0
130 GOSUB 15.0
140 STOP
150 LET F = 1
160 FOR G - 1 TO N STEP 1
170 LET F - F * G
18 .0 NEX'I' G
19)0 PRINT N;F
200' RETURN
210 END

EDI'11 MERGE also allows you to combine as many as nine

saved files. With this crnmnand, however, you may

specify whcn:e tho subprograms being merged should be

inserted into the main program. After the merger, the

new program is resequenced (100,0',l.0), and as usual

this means you should tell the computer what system

you're in.

The command forrna t is

EDIT' MERGE main, subl--n, sub2--n ...

where

5-2

"main" represents the main program name;
I

"subl, sub2" are the subprograms being merged

into the main program;

"n" represents the line nw.llber in "main" that

this particular subprogram is to follow; if

no line numbers are specified, the subprograms

are appended sequentially after the last

statement in "main."

Again, be certain there is no more than one END state-

ment and that it is properly placed in your program.

In the following example two data files are created and

savc:.9. to supply more input for our original BASEX1

program.

DATA 1

1_0' REM DJl .. 'I'A S'J:.A'I'EMEN'I'Ei FOLLOW
20' DA'I'.i\ 1, 2, 5, 6
3y:f DA.TA ly:f, 11, 12, 13, 14, 15

DNrA 2

ly:f REM MORE DATA
20' DATA 20', 21, 22, 23
3 y:f DA 'J1A 3 0', 3 1, 3 2 , 3 3

Note that neither file contains an END statement, and

that we're not conerned with lines having the same

number.

Now we can EDI'I' .MERGE the;; files, first with no insert-·

ion line specification, then in a more logical

construction.

l Dl\'I'l\2

5.,3

RF.ADY
LISTNH
1.0.0 REM HYPOTENUSE
11,0 READ B,C
12,0 LET A = SQR (Bt2 + Ct2)
13,0 PRINT A
14,0 GOTO 2,0
15,0 DATA 4,3, 6.23, 7.1, 2.1E6, 31,0,0
16,0 END
170 REM DATA STATEMENTS FOLLOW
18,0 DATA 1,2,5,6
19,0 DATA l,0,ll,12,13,14,15
2,0,0 REM MORE DATA
21,0 DA'I'A 2,0, 21, 22, 23
22,0 DATA 3,0,31,32,33

This new file will not compile because the END statement

is not the highest nunu)ered line.

~DIT M~RGE BASEX1,DATA1-4,0,D~TA2-5~

READY
LISTNH

1,0,0 REM HYPOTENUSE
11,0 READ B,C
12,0 LET A = SQR (Bt2 + Ct2)
13,0 PRINT A
14,0 GOTO 2,0
15,0 REM D..'1\TA STATEMENTS FOLLOW
16 9f DA 'I'A 1, 2 , 5, 6
17,0 DATA l,0,ll,12,13,l4,15
18,0 DA'I'A 4,3, 6.23, 7.1, 2.1E6, 31,0,0
19,0 REM MORE DATA
2,0,0 DATA 2,0,21,22,23
21,0 DATA 3,0,31,32,33
22,0 END

Neither EDIT WR71.VE nor EDIT MERGE affects the saved

versions of the combined files. If you want to keep

both the new and old programs, rename the new onE~ before

saving it.

5---1

APPENDIX A: GENERAL FORBAS CONSIDERA'l'IONS

--· -----"~-~-----__,_-~·-·-·-----···--··-----·~----~-..- .. ~ . ·-----------··· ·---------...

1. Numbers appearing in cornmc:inds may be preceded or followed by any

number of blanks. Command names, however, must be separated from

each other and from their arguments by at least one blank (except

for commands followed by a colon (:) --- OLD, NEW, RENAME, etc.).

2. 'I'he only restriction on the number of intervals, arguments, etc.,

is the leng·th of the input line.

3. Every comm.and changes your program, but only SAVE and UNSAVE affect

the permanent copy.

4. SYS'I'E.M should be specified whenever a resequencing· comm.and J_s in

voked (RESEQUENCE, DUPLICATE, PACK, MOVE 1 MERGE) .

5. vJ'hile files with·out line nurn.bers can be created by prograrns, they

cannot be modified with the editing commands. They can be printed

out using LIS'l', LISTNTI, EDIT TEX'I', or EDIT LIST (without arguments).

EDIT MERGE also accepts unnumbered filcos and reads them correctly.

After res ing t11ey do, of course, have ntnnbers .

6. Unless the end letters of a command are vital. (e.g., LJSrt:'NH, RUl'\JNH),

the command ca.n be invoked by typing only the first three letters

and the carriage return (e.g., EDI LIS for EDI'r I.IS'I1 , GOO for

GOODBYE).

7. Files must be saved before they can be used as p~rameters by EDIT

.MERGE a EDIT WEl\VE .

8. Syntax Specifications:

Use.r nu1nbe:rs:

These crnnrnand.s ignore the current program.

Four characters,

Yf-·">9 A-"7Z

A-·l

User pass·words:

User libraries:

File names:

File passwords:

Four characters,

no restrictions

Three characters,

fJ->9 A-7-Z

Six characters,

Six characters,

c c
fJ-:;i.9 A-+Z A -~Z ,
plus internal codes lfJ.0B--137B

9. All statements in this manual are true forever, except for those

to be modified at some future date.

PEACE

A-·2

APPENDIX B: BCC LIBRARY FILES

Not available

yet

B-1

INDEX

----·--------·-----------...,.___
Back-Arrow (Shift/~)

Break

Break Release

BRK-RLS

BYE Command

Carriage Return

Catalog

CATAI,OG Command
User Catalog

Character

Character Deletion (Shift/<-)
Character Replacement

Console Halts

CTRL/SHIF''I'/@ Keys

C'I'RL/X Keys

Delete

EDIT DELETE Conunana

Duplicate

EDIT DUPJ..1ICA'l1 E Conunand

Edit Commands

EDIT DEJ.JE'l1 E
EDIT DUPLICATE
EDIT EX'11RACT
EDIT LIS'I'
EDIT MERGE
EDIT MOVE
EDIT PACK
EDIT PAGE
EDIT REPLACE
EDIT RESEQUENCE
EDIT TEX'I'
EDI'I' WRA.VE

Extract

EDI'I' EX'I'RACT Command

4-14

3-12

3-12

2-3

1-1, 2-1

4-4
3-1

4-14
4-14

3-11

3-12

4-14

4-13

4-11, A-1.

4-13
4-11, A-·l
4-12
4-2, A-1
5-2, A-1
4-7' A-1
3-7' A-1
4-4
4-14
4-8, A-·l
4-4, A-1
5-1, A-1

4-12

File

File Combination
File Deletion
File Editing
File Execution
File General Description
File Listing
File Name
File Password
File Retrieval
File Storage

FORBA.S Control Language

GOODBYE Command

HELLO Cornrnand

KEY Command

Library

BCC Installation Library
Library Listing
User Library

Line

Line Deletion (crrRL/X)
Line Insertion
Line Numbers

Listing

Catalog Listing
EDIT LIS~r Conrm.and
File Listing
LIS'r Corn.mand
LI S1'NH Com:mand

Logging On

Merge

EDI'l' MERGE Co:nrnand

Move

EDI'I' MOVE Command

NEW Comm.and

OLD Corrnnand

5-1 ff.
3-3, 3-7
4-7 ff.
3-9
3-1
4-1 ff.
3-2, A-2
3-4, 3-6 ff., A-2
3-8
3-5

1-1

2-3

2-3

2-4, 3-9

3-1, 3-9, B-1
4-4
3-1, 3-9 1 A--2

4-14
4-11
A-1

4-4
4-2
4-4
4-1, A-1
4-1, A-1

2-1

2-3

5--2

4-7, A-1

2-·L 3-2 ,

2-1, 3--8

Pack

EDI'l' PACK Command

Page

EDIT PAGE Command

Paper Tape Read

Password

User Password
File Password

Privilege Codes

Problem Name

RENAME Command

Replace

EDI'r REPLACE Command

Resequence

EDIT RESEQUENCE Command

REsrrART Command

Return

Carriage Reb,i.rn

RUBOUT Key

Run

RUN Command
RUNBIG Command
RUNNH Command

S Key

SAVE Command

SCRATCH Command

STA'l1US Command

STOP Command

Storage

File Storage

3-7, A-1

4-4

2-4

2-1, A-2
3-4 ff., A-2

3".'"6

3-2 ff.

3-3

4-14

4-8, A-1

2-3

1-1, 2-1

2-4

3-9
3-10
3-10

3-12

3-5, A-1

3-3

2-3, 3-9

3-11

3-5

Syntax Specifications A-1

SYSTEJ.vl Conunand 2-2, A-1

System Monitor Conunands 2-3, 3-10

TAPE Command 2".'"'4, 3-9

Tape Read Procedure 2-4

Text

EDI'l' TEXT Command 4-4, A-1

Truth A-2

TTY Conunand 2-3, 3-9

UNSAVE Command 3-7' A-1

User Number 2-1, A-1

User Password 2-1, A-2

Weave

EDI'l' WEAVE Command 5-1, A·-1

