
An Operating System
Employing Dedicated Resource Management Processors

Anita K. Jones and Melvin W. Pirtle

The BCC-500 was designed to provide interactive terminal service to customers

expecting rapid response to requests for simple computations. The envisioned

customers included banks, in which tellers consult and alter bank records using

terminals; credit bureaus which maintain a data base of credit information and

reference it with queries requiring a minimum of computation; and engineering or

accounting firms havir1g ~smaW computational needs that could be satisfied by

i"teractive use of a language like BASIC.t

Atl these applications have in common that they require interactive access>

reliable service, rapid terminal response and minimal computation. Most users were to

be transaction oriented and wo1Jld not require a general purpose computational

environment for writing, then executing their cwn programs. For examp1e, a bank

teller need only be able to query the bank's data base and to make a few types of

alterations to it. ln fact, providing the teller with a more pow9rful computational

environmcnt--the ability to create and execute arbitrary programs--might compromise

the bank management's control over what actions tellers could take. (Of course, as we

will see later a genera~ purpose computational environment is required for both the

development of customer programs and system maintenance.)

*1he system, desiE;ned by Berkeley Computer Corporation, was to service roughly
500 interactive users concurrently; hence the nam~ BCC-500. The software, firmwarn
and hardware wNe de.signed and built by Berkeley Computer Corporation between
April, l 968 and July, 19 70. BCC was unable to secure necess~ry ft!nding to finance
final devefoprnrmt and marheting of the system. The BCC-500 was sold to the ·
Univer~ity of Hay;a1i in March, 1971. A redHced configuration has been running there
for several years.

Page 1 May 2, 1976 BCC-500

To provide the desired customer services, the BCC-500 was designed to connect

many low and medium speed devices {remote and local) to a centralized computer

facility. Each terminal user is represented in the central facility by a job which is

·serviced rapidly enough to sustain consistent rapid terminal response. As usual, the

operating system is responsible for managing the computation, storage and

communication resources including: collecting and transporting streams of characters

which users input at slow and erratic rates and output in infrequent, but more rapid

bursts; scheduting and running user jobs for short intervals (10-20 milliseconds per

affocation of a CPU resource); and managing the storage media.

Customers were expected to execute what we wilf call subsystems--for example, an

inventory recording and maintenance subsystem or a banking subsystem. Thus from

one perspective, though the actual customers would sit at terminals executing these

subsystems, the 'real users' of the BCC-500 were to be the subsystems and their

impleme·ntors. Then, certainly, the BCC-500 also needed to provide an environment for

the on-line development of new customer ·subsystems, adaptation of existing

subsystems, development of general purpose utility programs and maintenance of the

operating system itself. Such development work needed to take place at the same time

that transaction orie·nted customers were using the BCC-500. Of course, development

work was not to substantially degrade the service being.provided to other customers.

Our objective is to describe the major and the most interesting attributes of the

ecc ... 500. Now that we have characterized the two kinds of users of the system:

transaction oriented customers and subsystem developers, we ask what facilities must

· be supplied to them. First, it should be pointed out that subsystems are user written

software that is in no way privileged. Code and data in the BCC-500 exists in one of

Page 2 . May 2, 1976 BCC-500

three concentric protection rings. Ring boundaries protect the code and data within

them from the effect of execution in .outer rings. The mechanisms for calling between

rings, passing parameters and returning to a suspended call site are the only means

·for execution in one ring to affect another. Only the interior ring, the Monitor Ring, in

which primitive operating system functions execute has special privileges.

Subsystems, including compilers and text editors, execute in the User Ring. {It was

expected that many of the subsystems, even some of the compilers would be written

by or for customers.)

Between the User and Jv1onitor Rings is the Utility Ring containing the software

which augments Monitor facilities and makes them more convenient to use. For

example, the Utility extends the h.r1onitor provided file and directory system by

incorporating space management for the buffering of file input and output. It

provides symbolic file names in lieu of the brief fixed size names of the Monitor, as

well as automatic file name extensions and strategies for searching the directory

structure. The Utility also provides a convenient terminal system interface including a

command language and input and output character stream buffering.

Both Utility and User Ring programs can directly invoke Monitor functions. The

~nitor is responsible for the allocation and exercise of physical resources so that

users can work in a cooperative well-behaved community. f\Aonitor facilities not only

control, but extend what outer ring programs see of the three major resources; the

terminal and communications hardware, the memory· media and the CPUs (central

processing units which e>:ecute user programs}. In the remainder of this section we

will discuss the Monitor-provided facilities.

For terminal communications, the Monitor implements the notion of a logical

Page 3 May 2, 1976 BCC-500

information channel. Each terminal is connected to both an input and an output channel

through which characters pass. A User or utility Ring program can invoke Monitor

functions to read a string of characters from a channel or write a string of characters

. to a channel. The Monitor is responsible for conveying the characters along a channel

to or from the correct terminal.

The second resource that the Monitor manages is central (core), drum and disk

memory. All memory is divided into 6K byte page frames. The Monitor controls all

transfer of pages of information between the storage media. The Monitor also

provides virtual to physical address mapping so that programs can be written with the

· convenience of a virtual address space. In addition, provides a primitive file and

directory structure maintained 011 secondary storage. Files are named with fixed size

brief (non-symbolic) names. Individual files can be created and entered into

directories to be looked up later and transferred between secondary and central

memory.

The third resource that the Monitor manages is CPU allocation. To do so, the

lv1onitor implements the notion of a process. Processes appear to execute concurrently

so that the multiplexing of CPUs among processes is not directly apparent to users.

The Monitor provides operations for synchronization, for resetting the priority of

processes, for requesting process scheduling at real time intervals and for specifying

the minimum and maximum resources (CPU, terminals and memory) to be guaranteed to

a process.

A process has several options for synchronizing its actions with the state of the

system and with the actions of other processes. A process can block, awaiting the

occurrence of a specific event. One process may wakeup another process by

?age 4 May 2, 1976 BCC-500

signalling the occurrence of that event. Alternatively, a process can define an

interrupt type and specify what action is to be taken. when an interrupt of the type

occurs. When that interrupt is signalled by the system or some other process, current

·activity is suspended and the process executes the predetermined action. Processes

can use this interrupt mechanism to establish timers based on real or billed compute

time.

To ~ssist in maintaining a well-behaved community of processes, the Monitor

provides extensive protection facilities allowing:

--one user to permit others to have controlled access ~o his files

--proprietary procedures to be created and made available to others in an
execute only form

--a user to invoke a program which has capabilities the caller does not
p0SS£!SS

--the manager of a user group to maintain control over the resources
distributed to individual users in the group~

Protection is based on a not.ion of keys and locks. With every object to be individually

protected there exists a iock list, which is a list of key names paired with an access

control description defining how the associated object can be manipulated if opened

with the key.

Each new user is given a key by the Monitor, to use for purposes like protecting

private file objects. A user process may call on different programs to execute on its

behalf. Some of these programs require data objects which are private to the

program, but which are accessed on behalf of a caller. To implement such protection, a

user process may be divided into eight sub-processes, each having a private set of

keys. One sub-process may call a second which executes with keys which the caller

Page 5 May 2, 1976 BCC-500

does not have and cannot obtain. By presenting a key to the Monitor along with the

unique name of an object to which it desires access, a sub-process can gain access to

the named object. But the Monitor grants access only if the presented key appears

on the lock list of that object. The sub-process gains accesses onty as described by

the access control descriptor associated with the key in the lock list of the named

object. Keys and lock lists are manufactured by and maintained only by the Monitor.

Keys cannot be forged.

A terminal user is represente·d by one or more processes in the BCC-500, and it is

to these processes that CPU and memory resources are allocated. Perhaps the most

straightforward implementation would be to have sufficient processors and sufficient

rapidly addressible memory so that each user could be allocated a processor and an

(expandable) working set sized memory when he dialed into the system. The speed of

the processor and access time of the memory would have to be sufficient to provide

what-ever was deemed 'reasonable response". Economics veto such a· solution, both at

the time the BCC-500 was designed (1968} and today. For example, if each of 500

users required a 60,000 byte working set, 30 million bytes of directly addressible

memory would be required.

As usual, the BCC .. 500 emulates suc:h a solution by allocating both the CPU

resources and rapidly (directly)' accessible central memory resources to a user process

for only" a short .time quantum before allocating the resources to the next user

process. Before a process is allocated a CPU re:source, its central memory working set

pages are loaded into central memory. A small crucial part of the information which

the system ri1aintains describing each process appears in the Process Table. This table

Is permanently resident in central memory and provides the state information needed

Page 6. May 2, 1976 BCC-500

to remember the existence of a process for scheduling purposes. A Process Table

entry includes the name of the . page containing a Process Context Block (which may

not be resident in central memory), the process' state {e.g., running, blocked, working

·set loaded into central memory), the type of event a process is waiting for if it is

blocked, and its scheduling priority.

The Process Context Block gives .a more complete picture of a process. It includes

pointers to portions of the directory structure this process can reference, the various

sub-processes and their keys, the current value of the program counter, and the

content of the general registers if the process is not running on a CPU. The Context

Block describes the process' address space which may include up to 128 6K byte

pages. The Context Block also indicates that subset of the pages known to the

process that are· in its drum working set--1.e. intended to be drum resident whenever

the process executes. A subset of the drum working set pages are in the process'

central memory working set. It is these pages which are loaded into central memory

before the process. is allocated CPU resources. (Other tables in central memory

indicate where each existing page can be found in the various levels of the memory

hierarchy: central memory, drum and disk.)

The two CPUs in the BCC-500 system contain virtual to physical address mapping

hardware based on a hardware map table. Each map entry associates a uniquely

named virtual page address to the physical location of that page in central memory.

Each CPU reference to central memory causes a lookup in the map to find the physical

address associated with the process' virtual address. This map is loaded on demand.

The unique name of a page and central memory location of any page actually resident

in central memory at a given moment is recorded in a Core Hash Table (CHT).

Page 7 May 2t 1976 BCC-500

Whenever a CPU references a virtual page for which there is no entry in the map, the

map loader {implemented in CPU microcode) will first find the unique· name of the page

in the Process Context Block and then find the central memory address of that page in

·the CHT and load the map appropriately.

Should the referenced page not be in central memory, the page is added to the

current central memory working set of the pr.ocess, the CPU stores its internal state

and the CPU is reallocated to another . process. Typically, pages of the preempted

process are unloaded. In any case, by the time the process is again allocated a CPU,

its working set, including the new page, wilt be in central memory. (A process can

request that a page be added to its wor~,ing set in anticipation of use, to attempt to

ensure that the page will actually be loaded into central memory before its first use.)

It should be ·clear that the physical resource management functions are sizeable.

Consider the time and effort required to preempt a processor and central memory

resources from one user process and allocate it to another process. CPU preemption

time is very short compared· to the time required to preempt central memory

resources from one process and subsequently prepare central memory for use by

another process. Many pages may have to be transferred between central and drum

memory and the associated tables (e.g., the CHT) updated. Thus, as one expects,

memory manageme·nt and processor scheduling have constraints which make them quite

different, complicating the resource management problem.

· To illustrate the magnitude of the memory management task, we will consider an

example system in which each terminal user~s process is assumed to have an 84K byte

(14 page) central memory working set: 48K bytes (8 pages) of fv'.onitor and Utility

pages which are not swapped, and 36K bytes (6 pages) of code and data which are

Page 8 May 2, 1976 ecc.:.soo

swapped. Each time a process receives a quantum, 71K bytes (12 pages) are

transferred (6 pages in and then out). If we assume a 25 ms quantum of CPU resource

is given to a process each time it is loaded into central memory, then 40 processes

·can be given a quantum each second. The BCC-500 has 2 CPUs to execute user

processes, so actually 80 processes execute each second. This requires that 1000

pages/second (80 processes x 12 pages/second) must flow through central memory.

In this scenario the central memory involved in swapping need not be greater than 24

pages (144K bytes). Not much central memory is required. But this example does not

take into consideration the processing needed to support the page transfers. As we

will see later the CPUs are assumed to be saturated executing user processes and

memory management is provided by a separate processor. Similar scenarios would

illustrate that scheduling of processes for CPU allocation so that guarantees of

processor resources are met and management of informaUon streams requires

processing. that is both substantial, in terms of the number of instructions executed,

yet must be and responsive.

It should be clear that the Monitor is a sophisticated and powerful system. It is

far too large to be implcme·nted as a monolithic entity. In the BCC-500 implementation

a micro-programmable processor (upp) is dedicated to the. management of each of the

three major physi?cal resources. One upp .is used· to schedule the two CPU's which

exeucte only user processes. A second upp performs · memory management. t\.iemory

is of three types: 386K bytes of central memory directly accessible by all processors

and the drum and disk controllers, drum memory and disk memory. The central

memory has a high bandwidth connection to the high transfer rate rotating memories.

The memory management processor is responsible for causing the working sets of

Page 9 May 2, 1976 BCC-500

appropriate processes to flow. into and out of central memory as illustrated in the

scenario above. This _flow must be synchronized with scheduling so that 'reasonable'

terminal response time can be maintained. A third management processor handles

terminal information streams.

It should be no surpri!ie that the resource management portion of the operating

system (the three dedicated management upps) is larger (measured in MOPs or actions ·

per .second) than the user programs executing on the two CPUs. Certainly it is larger

than the remainder of the tv4ionitor, a set of functions which user or Utility programs

· may invoke to be executed on the CPUs. For convenience in talking about them, we

name the three management micro-processors as follows:

Function Microprocessor

memory manageme·nt
Processor}*

MMP (Memory Management

processor allocation and
process $ynchronization

SCHEDULER

character input/output CHIO {CHaracter I/0)
management

system monitoring and (also in) SCHEDULER
maintenance

Where no confusion should arise, we will .use tho microprocessor name to refer to

either the microprocessor itself or the function it performs. Logically the BCC-500

components are linked as shown in Figure 1.

. *Also called AMC (Auxiliary Memory Controller) i" BCC documentation.

Page 10 May 2, 1976 BCC-500

Page 11 May 2, 1976 BCC-500

The BCC"SOO Hardware

Before discussing the BCC-500 resource management in detail, it is worthwhile to

take a closer look at the hardware configuration managed. The heart of the system is

·the central memory (core) which has four ports through which requests to the memory

can be made. Each CPU is assigned one port. The three management upps are

connected to a third port through a multiplexor. · The fourth port is used (via another

multiplexor) by the two drum and two disk controllers providing a high bandwidth path

between central and secondary memory. Each port can accept a request every 100

nanoseeonds and can potentially sustain a 30M byte/second transfer rate. The

architecture of the central memory is described in Appendix I.

These three managen1ent processors and the two CPUs are variations of the same

powerful (15 million operations per second) upp. The CPUs execute about· a million of

their instructions per second. Each upp has a 2048 ninety-six bit wide control store

with a 100 nanosecond cycle time. The CPUs differ from the management processors

in having additional hardware to provide an. extended arithmetic capability, instruction

prefetch and decoding, and a 128 register map used in the translation of virtual to

physical addresses. Each management processor has a private memory in which its

local data structures and code are stored. Consequently, a management processor

references central memory (to access shared data) relatively infrequently. The

multiplexed port into central memory permits these references to be rapid so that

performance of the resource managers is not degraded.

A diagram of the major components of the BCC-500 appears in Figure 2. Note

that though each of the 4 ports into central memory is capable of sustaining a transfer

rate of 30M bytes/second, higher traffic is expected across some ports rather than

Page 12 May 2, 1976 BCC-500

others as indicated by the comparative width of the data paths.*

At this . point, it might be of interest to consider the implications of the central

memory size and drum transfer rate for the swapping of process working sets

·between central memory and drum. Recall that central memory is only 386K bytes, far

smaller than that in many contemporary systems which provide interactive terminal

service for one tenth of the number of users that the BCC-500 was designed to serve.

The drum and disk controllers transfer a 6K. byte page at a time. Two drums (6M

bytes/second each) and two. disks (300K bytes/second each) can transfer

simultaneously through the port into central memory.

Returning to our memory management example of the 80 processes which are each

to receive 25 ms of CPU time, we find that theoretically either one of the two drums··

is sufficient to transfer the 1000 pages/second to support memory allocation for the

80 processes. (1t should be pointed out that though each drum has a 6M byte/second

transfer capacity~ the MMP cannot exploit the full transfer rate. This is due to the

fact that the MMP is transferring pages from selected working sets and may incur

rotational delay attempting to transfer just the required pages.)

The Physical Resource Managers

In the remainder of this paper we will focus on the three physical resource

manages (the SCHEDULER, MMP and CHIO) which provide support for the Monitor. The

BCC-500. resource managers have several aspects of their design in common. Each

manager is implemented as a collection of chores together with a scheduling mechanism

which we will call a chore scheduler or choremaster. The choremaster is a short simple

•A comparison of the planned configuration and the actual configuration running at
the University of Hawaii is given in Appendi>< II.

Page 13 May 2, 1976 BCC-500

cyclic: program which selects that chore to be executed next. Chores have the

attribute that once invoked, they run to completion. Each chore can be viewed as a

small finite state machine which, when triggered, causes the state of the resource

·manager to change. Because chores within the same manager execute indivisably with

respect to one another (i.e., chores are not interruptible), they do not need to

synchronize their use of data structures private to a manager.

Each resource manager is relatively autonomous, yet, the managers cooperate.

This requires that they communicate. Because it is this communication interface which

makes the managers interdependent, the interface is kept as simple as possible.

Managers user a message sending protocol. Each manager is associated with a set of

input message queues which it services. If one manager recognizes the need for a

particular manager to act, it sends a message to the appropriate input queue. The

manager servicing that queue attends to the message at its own discretion. It is the

choremaster which selects a message to be processed and then invokes a suitable

chore to process it.

Note that if a message arrives at an input message queue, it will never be

considered by the choremaster of the manager which services that queue, until the

currently executing chorn completes. For the resource managers to be responsive,

each chore must be short enough in duration not to degrade upp response to· high

priority requests which may arrive during its execution. To illustrate this constraint on

chore execution time, consider the MMP which must service the disk and drum

controllers at least twice for each page transferred between two memory hierarchy

level!;. A page transfer between drum and central memory takes one millisecond.

Consequently, the MMP chores never execute for longer than 1/4 millisecond.

Page 14 May 2, 1976 BCC-500

The chores which make up a resource manager also have need to communicate

with one another. They use the same message protocol. Thus managers have input

queues which are private in that all messages piaced in a private input queue originate

·;n the manager itself. The modular structure of the ·managers that this

intercommunication scheme induces should emerge as we discuss the individual

resource managers.

The SCHEDULER

The SCHEDULER's objective is to allocate CPU resources to user processes so as

to maintain consistent rapid terminal response and to honor CPU resource guarantees.

To meet these objectives the SCHEDULER performs two kinds of functions:

synchronization of proceses (which determines whether a process requires CPU

resources at all) and multiplexing of the two CPUs among competing processes.

Central memory and CPU allocations must be complementary if system resources are to

be efficiently utilized. To coordinate the two allocations, the SCHEDULER selects

(roughly) the order in which processes are to be given a CPU resource. It then

informs the MMP so that central memory working sets of the selected processes can

be pr.eloaded into central memory. Later the SCHEDULER actually allocates CPU

resources to the (highest priority) loaded processes.

Whether a process require·s a CPU resource is recorded in that component of its

process state which summarizes the results of scheduling and synchronization actions

involving the process. The scheduling component of a process state can have the

following possible values:

RUNhJJNG--if the process is currently allocated a CPU and is executing

BLOCKEO--if the process has no need of a CPU

CPU-REAOY--if the process needs a CPU, but is not currently allocated one.

Page 15 May 2, 1976 BCC-500

(We will ignore other components of the process state for they are irrelevant for this

discussion.)

Conceptually the SCHEDULER performs at least the four operations described in

Figure 3. Each operation results in a changed process state value.

To multiplex the CPUs, the SCHEDULER provides the operations:

a11ocate a CPU to a process for some time quantum not to exceed a
· SCHEDULER determined maximum

deafloute the ·cpu from the executing process. (DeaUpcation occurs .:·wbe,n
.either· the RUNNING process blocks ·or· its CPl.f allocation quantum has
.expired.) . · · ·

. The SCHEDULER synchronization operations are:

block which deallocates the CPU· from the process to be BLOCKED, and
changes that process stat~ from RUNNING to BLOCKED

wakeup records the reason for the wakeup signal in the Process Table entry
for the process to be awakened, and changes its state from BLOCKED to .
CPU-READY

The SCHEDULER is composed of a collection of chores as suggested by the four

operations above, and a choremaster. Each chore is triggered by the presence of a

message. The choremaster is a cyclic program which has a priority ordering of all the

queue.s wh~ch the SCHEDULER services. Based on the content of these queues, the

choremaster selects the ne><t chore to execute.* Communication with the SCHEDULER is

via messages placed in the Scheduler Input Buffer. Messages to block a process come

•The choremaster also permits SYSOOT to run as Jhe SCHEDULER function and
SVSDDT share the sarne upp.

Page 16 May 2, 1976 BCC-500

from that process (executing Monitor code to build the message). Messages to wakeup

a process may be sent by running user processes (via execution in the J.Jionitor), the ·

CHIO or the MMP. Note that the SCHEOULER•s block and wakeup operations are

unconditional. It is the Monitor which provides higher level event synchronization.

The SCHEDULER maintains several private message queues. The WAKEUPQ contains

an entry for each CPU-READY process for which the SCHEDULER has not yet sent a

request to the MMP to load. A set of priority queues record the identity of processes

which are loaded. · It is from these priority queues that the SCHEDULER selects the

next process to be allocated a CPU. We .expect to find 5-6 CPU-READY processes in

. these .queues during normal operations. fviore or less would indicate under-utilization

of one form or another. Less woutd indicate that working sets were not being loaded

rapidly enough and that CPUs may soon be· unproductively idle. More would indicate

that loaded processes are occupying memory for a substantial time interval before

being allocated a CPU. The memory might be better used by processes which will run

before the loaded waiting processes.

Communication between the SCHEDULER and a CPU is via a 'message' placed in a

special location. To allocate a processor to a process, the index of the process in the

Process Table is placed in this location. CPU firmware loads the state of the process

into the processor registers, filling in the hardware map table incrementally as pages

are initially referenced. A CPU sends a message to the SCHEDULER indicating that it

has stored the state of the process it previously was running into central memory and

is idlt~, by setting an appropriate flag.

The MMP

The "'1emory Management Processor is responsible for the allocation of space in

Page 17 May 2, 1976 BCC-500

each of the three storage media (disk, drum and central memory), and for the flow of

information between the media. Each of the memories is logically divided into 6K

page..:.sized blocks called fr~mes. The MMP maintains a hash table for each _memory

·recording what pages of information currently reside in the page frames. As

mentioned earlier, each page of information has a name which is unique to that page

over the life of the system.

The MMP responds to re·quests from two sources. One source is the SCHEDULER

which advises the MMP which processes are to be loaded and unloaded. To load a

SCHEDULER selected process, the MMP first loads the Process Context Block page

(named in the central memory resident Process Table}. Then using the Context Block,

the MMP loads all central memory working set pages of the processs that are not

already in central me·mory. Processes are unloaded to free up central memory page

frames.

The . second source of requests to the MMP is the Monitor which, on behalf of a

user, may send a message requesting that a page be created or destroyed, that a

specific page be moved from disk to drum (for anticipated use) or that a specific page

be added to the working set of the currently running process so that it wilt be loaded

before the process first attempts to access it. (By choosing to alter its central

memory or drum working set, a process can advise the MMP of where pages should

reside for that process to execute most efficiently.)

Another responsibility of the MMP is to service the disk and drum controllers. The

MMP places commands to transfer pages directly into controller registers. For

example, just before the next drum sector comes beneath the read/write heads, the

MMP will place a command to transfer a page to or from a specific page frame in

Page 18 May 2, 1976 BCC-500

central memory. Eventually the drum operation is complete. Then the MMP checks its

results for error, possibly arranging to retry the operation when the sector next is

available for transfer. The MMP must update its hash tables with the results of

·transfer operations.

Like the SCHEDULER, the MMP is composed of a collection of chores, a collection of

message queues and a choremaster. The MMP has two shared queues for r~quests

Qriginating in the rest of the system,· and has a number of private message queues as

well. on·e of these, for example, is the Cleanup Queue. A Cleanup Queue exists for

each device and contains a message indicating what command the controller is

currently processing for that device so that it s results can be checked for errors

when the command is comp_le·ted .

. The overall flow of control in the MMP is dictated by messages and by device

characteristics. As noted earlier the MMP performance is particularly sensitive to the

duration of chore executions. The MMP must be available· to service the drum

controllers within hardware determined time limits. Once a page transfer command is

placed in the drum controller registers, the MMP must be available less than a

millisecond later to process the outcome (successful or unsuccessful transfer) of the

command. For this reason, MMP chores do not e><ecute longer than a quarter of a

millisecond. Thus certain activities involve e><ecution of a sequence of chores.

Consequently, the MMP uses private message queues so that some chores can

terminate by placing a me·ssage in a private message queue to signal that a successor

chore is to be executed, when the choremaster deems appropriate.

Adventures of a User Process

It seems appropriate to illustrate the interaction of the SCHEDULER and MMP. We

Page 19 May 2, 1976 BCC-500

will describe the events which occur as user process P is loaded and allocated a CPU.

We begin by assuming that process P is blocked with its Context Block and central

mem~ry working set pages drum resident.

In response to a (message) request to wakeup P, the SCHEDULER sets the state of

P to CPU-READY. At some later time the SCHEDULER informs the MMP that P's working

set should be loaded when appropriate. The MMP first transfers the Context Block

page for P into central memory and then transfers in the central memory working set

pages as described in this Context Block.

The MMP then informs the SCHEDULER (by a message, of course) that process P is

loaded into central memory. Eventually the SCHEDULER allocates a CPU to P and P

. executes until the CPU sends a message requesting that process P be ~locked or that

its time quantum ran out. Note that the SCHEDULER does not stop/interrupt a CPU

under normal operations.

The SCHEDULER then informs the MMP that process P can be unloaded. At its own

discretion the MMP transfers to the drum any pages (not shared with any other loaded

processes) that have bl-~odified since they were loaded and possibly reallocates the

central memory page frames.

We will now recount this same sequence of events in sufficient detail to illustrate

the relative autonomy of the two resource managers and their reliance on message

communication. We wish to illustrate not only communication between the SCHEDULER

and. the MMP, but also message communication between chores entirely within the

MMP. This example should also clarify the use and dependency of the upps on shared

data structures resident in central memory.

For convenient reference we first list the SCHEDULER and MMP message queues

, that will be involved. Queues private to one resource manager are preceded by "*"·

Page 20 May 2, 1976 BCC-500

Scheduler Input Buffer--all messages directed to the SCHEDULER by other
autonomous functions in the system (the Monitor, MMP, etc.) pass through
this queue.

•WAKEUPQ--contaitis entries for processes which are CPU-READY (competing for
CPU resources), but for which the SCHEDULER has not requested the
allocation of central memory resource·s.

*Priority Queues--each queue contains entries for CPU-READY processes which
are loaded. All entries in a specific queue are for processes with the same
priority. ·

SWAPRQ (SWAP Request Queue)--contains SCHEDULER generated requests to load
specific processes.

General Request Queue--contains SCHEDULER generated messages stating that
·specific processes can be unloaded.

*Drum Sector Queues--one per drum sector containing requests to read pages
from the associated sector of the drum.

•Cleanup Queues--one per device containing requests to check completion of the
command most recently given to the device.

•Context Block Queue--contains requests to transfer to central memory a process
whose context block is resident in central memory.

*WRITEQ--contains an entry for each dirty working set page which is to be
swapped from central memory to drum.

The following shared data structures reside in central memory:

CHT (Core Hash Table)--contains one entry for each page sized block of central
. memory. An entry contains the unique name and the state of the page of
information currently in the associated page frame in central memory. (The
CHT is shared by the CPU address rnapping mechanism and the MMP.)

Page 21 May 2, 1976 BCC-500

Process Context Blocl\s and Process Table entries--record the state of a process,
including a definition of the process' working sets. (The SCHEDULER, MMP
and CPU share these tables, though were the tables subdivided, some of the
sharing could be eliminated.)

the chronology of events in the user process' adventure is: 1..A message to wakeup

process P is sent to the Scheduler's Input Buffer.

2. The SCHEDULER records data in the Process Table entry for P to notify P of the

event which took place. The SCHEDULER changes P"s p~ocess state from BLOCKED to

CPU .. REAOY and places P in its private WAKEUPQ.

3. At some later time the SCHEDULER selects P to be loaded into central memory,

removes P from_ the WAKEUPQ and sends a message naming P to the SWAPRQ.

4. The MMP removes the SWAPRQ message and locates the context block {sa}', page C)

for · P using the Process Table entry for P. A request to transfer C from drum to

central memory is placed on the appropriate Drum Sector Queue.

5. Orum Sector Queues are serviced as follows:

5.1 When drum sector D is about to rotate beneath the drum read/write heads,

the MMP checks to ensure that the transfer should still be made, then places in

the drum controller's register a command to transfer a a page from sector D to a

newty selected page frame in central me-mory. The request is removed from the

Drum sector Queue D and placed on trye Drum Cleanup Queue.

5.2 At termination of the transfer (1 miflisecond later) the MMP services the

Cleanup Queue request by checking for successful completion. If no errors

occurred, the CHT entry is mar~,ed to indicate that the associated page from

holds the loaded page of information.

6. After C is in central memory, a request to load P is placed in the Context Block

. Page 22 May 2, 1976. BCC-500

Queue. At some later time the Mt.AP selects this request and scans the core working

set description in the context block page C. For each working set page already in

central memory, a reference count is incremented. For each page not in central

·memory, but on the drum, a transfer request is placed on the appropriate Orum Sector

Queue. The number of queued transfer requests is remembered to determine when

the process is completely loaded. Transfers take place as described in 5 above.

7. After all working set pages for P are in central memory, the MMP records (in the.

Process Table entr~1) that P is loaded and sends a me·ssage to the SCHEDULER (via the

Sc:hedu·ler Input Buffer) to indicate that P has been loaded.

·s. Later the SCHEDULER places an entry for P on the appropriate Priority queue.

9. P will be allocated a processor when it becomes one of the highest priority loaded

processes.

10. Eventually P will request (via the Monitor) to be blocked or P's CPU allocation

quantum .. will pass. The SCHEDULER changes P's state appropriately and will

(probably) send a message to the MMP (via the General Request Queue) which informs

the MMP that, if desirable, P can be unloaded~

11. Eventually the MMP receives this message:. If i.t decides to unload P (to free up
. .

page frames in central memory), the MMP considers all pages which reside in central

memory because they are in P's central memory working set, but in the central

memory working set of no other process ·which is loaded ·or currently being loaded. (A

reference count in the CHT entry for the page indicates the number of loaded ·or

partially loaded processes whose central memory working set includes that page.) If

such a page has not been altered, a copy of it already exists on the drum and the page

need not be transferred. If the page has been written into (that is, the CHT entry for

Page 23 May 2, 1976 BCC-500

the page records its state as DIRTY), then an entry for the page will be placed on the

WRITEQ.

12. Later when a sector D of the drum is about to pass beneath the read/write heads

·and the associated Drum Sector Queue 0 is empty (of read requests) so that no read

operation can be performed, an entry is removed from the WRITEQ and a command to

transfer to drum the DlRTY page is gi,1en to the drum controller. When the page is

successfull-y written to drum, the space taken by the old drum copy is released. The

CHT' entry ·for the page frame occupied· by the just copied page is marked no longer

DIRTY. Since the reference count fo1· the page is zero, it is a prime candidate when a

page frame is to be chosen for reading in a page. However, the CHT entry still

indicates that the page frame is occupied by the just copied page. If that page is in

the working set of some process soon to be loaded, then it will be found to already

exist in central memory.

We have not narrated the above sequence of events so as to clearly delineate

chore boundaries, but many of the chores should be clear. We have not explicitly

mentioned the choremaster which selects the next chore to run, based on non empty

queues serviced by that choremaster. However, it should also be clear that the policy

for queue servicing, embedded in the choremaster, determines the order in which

chores are performed and thus the rapidity with which a manager responds to a

certain type of request.

The CHaracter Input/Output Processor

The CHIO supports full duplex communication between local and remote user

terminals and user processes. Each terminal may have independent buffered uni

diruct,ional input and output channels related in that input characters may be echoed

by being placed in the correspotiding output channel.

Page 24 May 2, 1976 BCC-500

Each channel has some state which user processes .can read and set. The state

includes the name of the process to wakeup when the channel needs service.

Subsystem code, or Utility code, can read ~r write channels by making requests via

·the fv1onitor. Requests are packaged as messages and then sent to the CHIO. Common

CHIO requests include the following:

Readstring(channel, limit) requests the CHIO to read (and remove from the CHIO
'channel' buffers) the next phrase (all characters up to and including the
next break character) but no more than 'limit' characters.

Peekstring(channe-1, limit} requests the CHIO to perform the same action as
Readstring without removing characters from the CHIO buffers.

Writestring(channel, string) writes 'string' into a CHIO buffer for the output
'channel'.

As mentioned before, subsystem control over the terminals allocated to the

subsystem should not be usurped ·by the Monitor and/or its supporting CHIO, but

enhanced. Echoing is one terminal service whicb affects the ways in which a program

can interact with a user at his terminal. When the user types a character the user's

program may wish to echo or surpress echoing of that character, or even to echo

another character or sequence of characters in response.

To permit subsystem control of this terminal attribute, part of the state of a

channel which the user can set is the break character set. The break set characters

are. used to delimit at phrase consisting of all characters up to the break character. A

phrase is buffered in the CHIO. If a process is to be notified of the arrival of the

phrase, a waJt,eup request (to the SCHEDULER) is generated.

Break character sets may be
--no characters
--all characters
--all non alphanumeric characters
--all control characters, including carriage return

Page 25 May 2, 1976 BCC-500

For a terminal with a break set consisting of all non alphanumerics, the characters will

be echoed until a non alphanumeric is typed. Though the user may continue to type,

no further echoing will be performed, though input cha_racters are buffered. When the

·user program responds to the break character typed, it may direct that echoing be

resumed. Thus console output is a faithful chronological log showing what the program

received and sent to the terminal, rather than merely a record of what a user typed.

· Initially the CHIO was designed to communicate with concentrators called Data

Communication Proc:essors (DCCs).* Each accepts input and provide output to up to

200 low speed (30 characters per second) and a few higher speed terminals.** Besides

providing the user interface sketched above, the CHIO together with programs in the

concentrator were designed to attempt to maintain an error tree communication link

over the 4800 baud telephone connection between them. The logical channels are

multiplexed over telephone links. A detailed description of the terminal system is

given in a paper by Heckel and Lampson.

System Monitoring

The BCC-500 system i.s controlled by" an operator who communicates with a

terminal connected directly to the SCHEDULER upp which is executing a system

debugging program, SYSDDTl (in addition to the normal scheduling chores). Commands

to initialize the BCC-500 are entered on this terminal and procesed by SYSDDT. After

. *DCCs are 16 bit microprocessors similar to the other . BCC microprocessors, but
with a slower cycle time.

**In the University of Hawaii configuration, the CHIO is directly connected to
terminals and to the ARPA network through a front-end PDP-11 mini-processor.

~
fAn adaption of the $05930 debugger.

Page 26 May 2, 1976 BCC-500

initialization SYSDDT goes into system monitoring mode watching for events such as

power nuctuation or parity errors in any of the upps.

SYSDDT is capable of signalling system shutdown and system restart using control

iines running from the SCHEDULER to all other upps. Microcode in the recipient

processors responds to such signals at appropriate points in their instruction

execution cycles. Upon receiving the shutdown signal, a processor wilt halt with data

structures in a well defined state. A restart signal will cause the processor to reset

internal state and central memory interfaces, then to commence execution from location

zero in the microstore.

SYSDDT, whose code is stored in the SCHEDULER•s private memory, contains a full

CPU emulation facility. Either CPU can be single-stepped under SYS DDT control and

simultaneously emulated so that actual and emulated results can be compared. SYSDDT

was used for system checkout and is still used when system debuggint and

maintenance are required.

Management Processor Intercommunication

Resour~e managers share data structures such as ·message queues, the Core Hash

Table and the Process Table. The integrjty of these structures must be maintained.

The BCC-500 includes hardware to support the required synchronization. Shared

structures are partitioned into eight groups. A processor requests permission before

~efercncing data in one or more groups; the hardware grants permission to access

each group only to a single _processor at a time. A processor which has been granted

permission to reference a group is expected to give up that permission rapidly. For

example,. message insertion or removal ta•\es onty a few microseconds, so exclusive

access to the group including the message queue involved is required only for that

short interval.

Page 27 May 2, 1976 BCC-500

The actual implementation of this PROTECT mechanism is to associate with each

processor an 8 bit register, one bit being associated with each group of shared

structures. A processor can successfully 'set a PROTECT' bit in its register only if no

·other processor has the corresponding PROTECT bit set in its register. The setting of

a PROTECT by a processor marks the beginning of a period during which it has

exclusive access to the associated group of shared structures. Resetting the PROTECT

marks the termination of that period. Enforcement of this interpretation of PROTECT

bit usage and of deadlock avoidance is the responsibility of the processors (i.e. of the

pr~grams executed on the pro<essors).

In addition to the PROTECT feature for synchronization, the BCC-500 also provides

a hardware implemented feature to speed up determination of whether unserviced

messages are pending. Communication queues are expected to be empty much of the

· time-, so a choremaster should not have to poll each of the multiple message queues it

services to determine their state. The BCC-500 associates a REQUEST latch with each

processor. Whenever a message is inserted in a shared queue, the REQUEST latch of

the processor which services that queue is strobed. A set REQUEST latch is

interpreted to indicate the existence of an unserviced message. It should be

emphasized that strobing a REQUEST latch does not cause an interrupt in the

associated processor. Each processor chooses when to test and to reset its own

REQUEST latch.

Benefits of Dedicated· Procossors

Using dedicated microprocessors for resource management functions accrues a

number of benefits. Probably the most important is the modularity it encourages, even

enforces, during system design and development. The BCC design places an (almost)

Page 28 May 2, 1976 BCC-500

autonomous resource manager in its own dedicated processor with communication via a

message. protocol. Thus the software module boundaries are the 'same' as the

hardware boundaries. Usually designers define module interface conventions for

·parameter passing and communication, but they are often breached .. The message

protocol is simple and, we believe, easier to enforce because the hardware boundaries

discourage its breach. This reduces the difficulty of managing software development

just a little. Initial system checkout, maintenance and performance measurement of the

resource managers are all simplified since each resides within a .separate processor.

For example, a software error (or a hardware error) can be easily traced to a

single processor. Because the code for each manager was designed to be autonomous,

tes·t cases can be devised for that function alone, with minimal involvement of the

other processors. To checkout a chore or set of chores, one need only initialize data

structures appropriately, including sending a me·ssage requesting execution of the

c:hore(s) to be tested, then check the data structures for correct results. It was in

this way that the MMP was checked out befor.e the CPUs were even wired.

·Of course, one processor can be used to monitor another. As noted earlier

SYSODT can be used to emulate the CPUs. In addition, performance measurement of

software can be instrume·nted by one processor monitoring a second. In alternative

designs. where resource management is performed as an extension of a user prot:ess, it

is difficult, if not impossible, to determine the intervals over which the resource

management code of interest is being executed so that measurements can be taken.

The second major advantage of dedicated microprocessors is their raw speed (up

to 20 MoPs in the BCC upps). The BCC-500 operating system design depends on this

raw speed, for in several instances, processing power is· used to 'replace' another

Page 29 May 2, 1976 · BCC-500

resource, usually memory. As discussed earlier, one could not hope to run 500_

interactive users out of 386K bytes of central memory unless the memory were

usefully occupied by programs and data a very high percentage of the time.

·Dedicating an entire processor to memory management is the tradeoff made.

The structure of the resource managing software, in particular the chore structure

and the message communication protocol, depends upon adequate processor cycles

being available. Both message handling and chore dispatching incur additional cost in

processing time over some alternative control and communication structures. It is the

processor speed that made feasible running chores uninterruptibly to completion

without making chores ludicrously small and without sacrificing rapid response of a

resource manager to requests. (Making chores interruptible would, we believe,

destroy the simplicity of design of the resource managers.)

Processor speed influences the choice of timing dependent algorithms that can be

encoded as chores. For example, the MMP dynamically allocates a page frame on a

particular drum sector S while the preceding sector S-1 is beneath the read/write

heads. By the time sector S is about to come beneath the read/write heads, the write

command associated with the allocation is prepared and the.n given to the drum

controller. First, waiting until the previous sector is beneath the read/write heads to

select a target frame is made possible by upp speed. Second, the sophistication of

the frame allocation algorithm is limited by the number of instructions that can be

executed by the MMP while one page is transferred.

Processor speed permits extending the BCC-500 to add new or augmented

facilities. To illustrate we consider the service guarantees made by the BCC system to

its users. A user can be guaranteed to receive a number of drum page allocations, a

Page 30 May 2, 1976 BCC-500

number of disk transfers and a CPU share ranging between a specified minimum and

maximum during a period of time. In addition a user can be guaranteed to receive up

to.· a fixed number of terminal lines, a fixed number of processes and a limited amount

·of uninterrupted CPU time. Few other systems make such guarantees--often because

the operating system design and implementation preclude being able to fulfill such

promises.

To consider one example, guaranteed CPU service, the SCHEDULER has to

cont.inually compare the resources a process receives to what is promised to it and

schedule according!>'· The processor cycles are available to make such checks partly

because the SCHEDULER is not 'stealing., user CPU cycles whenever it runs. Its

algorithms do not have to be as streamlined as possible. In addition, the CPU time

measurements are accurate to a finer grain than in conventional systems where time

accounting is complicated by the fact that the resource being accounted is required to

do the accounting. Most conventional system designs preclude accurately accounting

for the servicing of low level interrupts.

Analogous to the SCHEDULER, the MMP checks a user's page allocation credit when

a user's process asks for a new page to be placed !n its core or drum working sets. A

user may not exceed his credit. Similarly the CHIO manages user terminal response so

that the user sees a consistent stable system, not one in which response varies

significantly with system loading. Providing this consistency also costs yet a few more

processor cycles. Thus each resource manager provides more than a resource

allocation service, for it correlates allocations to multiple users and to their guarantees

so that all guarantees are honored.

Another benefit of dedicating speedy processors to resource management

Page 31 May 2, 1976 BCC-500

functions is that algorithms can be extended to perform redundant encoding and

additional state checking to enhance system reliability. For example, message queues

are implemented as doubly linked lists so that at no time are both links to a message

·broken, unless the message is being inserted or deleted. As another example, each

page in the BCC-500 has a unique name recorded with the page on disk storage. The

MMP checks that the recorded unique name is the expected one whenever the page on

disk is read or written. This check enabled quick isolation of several errors during

system checkout. Since normal operations began, it has also been the first sign of

certain types of hardware faifure. In addition, unique names allow reconstruction of

the· disk hash table (which describes the disk contents) if it is lost.

Besides expanding an algorithm to perform its function in a way that enhances .

reliability, entirely new functions can be added when the processor cycles are

available: for example, system load monitoring and audit trail recording for accounting

and maintenance.

Security is a third advantage of the system organization that dedicates processors

to relatively autonomous functions. Resource management code and private data are

isolated in a processor inaccessible to any other processor. Microcoded resource

management chores lessen the possibility that code can be destroyed, as does isolating

management code in memory which user processes cap never access. Hardware

interfaces together with the 'thin line' communication channels in the form of message

queues provide a natural boundary against penetration. It seems much more unlikely

that a would-be penetrator could use the message mechanism to induce the resource

manager (on a different processor} to inspect or change critical information in an

unwarranted way, than if management code were executed as an 'extension' of the

user process executing on the same processor(s).

Page 32 May 2, 1976 BCC-500

Many potential security flaws are eliminated by only loosely coupling resource

management code execution with the execution of user code. For example, a fairly

standard system penetration technique is to change data which a management routine

·expeds to remain constant during the execution of that routine. In conventional

systems resource management is usually performed as an extension of the user

process-..;i.e., the user directly invokes a management service causing suspension of

execution at the user's call site. The designer or implementor of the called

management routine may make (erroneous) assumptions about data at the calf site not

changing (e.g., it may change as a result of a concurrent i/o operation). When

communication is via messages between programs known to execute in parallel,

programmers are not tempted to make such assumptions and to encode subtle, even

timing dependent~ errors.

Cave-at

We have written this overview of the BCC-500 from. a vantage point of five years

of perspective which includes experience with the BCC-500 implementation. We have

taken some liberties with our desc_ription, but have essentially been faithful to both the

design and the implementation.

The terms 'chore' and 'choremaster' do not appear in any previous BCC-500

literature and were not in the parlance of the designers. The chore-based design is

very clear in the MMP, but is not so cleanly visible in the SCHEDULER and the CHIO.

The message protocol is used by all resource managers to communicate directly

with one another. And the message protocol is used by the CPU-executed Monitor

c:ode to communicate with the resource managers. Queues, however, are not

implP.me·nted homogeneously. For example, queues in which messages are essentially

Page 33 May 2, 1976 BCC-500

the name·s of processes are sometimes implemented as a list, linked through a field in

the process table entry for the process. (Jack--Correct?)

There are several data structures, in particular those which are currently shared

by the SCHEDULER and the MMP (e.g., the Process Table), in which most sharing could

be eliminated. Reducing sharing to a minimum would substantially increase the

autonomy of the resource managers.

Summary

This paper presents a system design based on a number of ideas and its seems

worthwhile to restate succinctly the motivation behind the major system design

decisions.

The development of computer systems is always influenced by economics. When

the cost of computer system development and maintenance is dominated by hardware

costs, system designs reflect the designer's goal of optimizing hardware usage.

Tec:hnological advances have caused the decrease of hardware cost so that software

development and maintenance costs dominate. System designers should now attempt

to minimize the software development and maintenance cost by designing systems that

are as simple as possible to understand, imple·ment and maintain.

We illustrated that to provide the kind of service BCC desired, the Monitor was

responsible for providing a vast set of facilities. Given the premise that processing

power is cheaply available in comparison to other resources•, it is reasonable to

employ ~ystem organizations in which as many components as possible are in a form

easily understo.od by people, yet which perform economically. We have argued that

one such orgainzation is to isolate large functions such as the resource managers and

•With the evolution in technolog}1 , this is generally, though not always, true.

Page 34 May 2, 1976 BCC-500

to implement them as autonomous entities which depend on, i.e., communicate with, the

remainder of the system using a very simple, but well-defined protocol.

In the BCC-500 each resource manager· is autonomous. Ideally it has a single

·source of input, the message queues. Its influence on the other system components is

mostly in terms of the messages sent. Each manager can be considered independently

for the purpose of understanding how it works, implementing and maintaining it.

Dedicating a pro~essor to each resource management function enhances both the

apparent separation (in the eyes of someone trying to understand the workings of one

manager) and the actual isolation (in terms of the physical location of private data) of

the manager .. Because processors are dedicated to specific system functions, there is

sufficient processing power to employ algorithms which would be unacceptably

expe·nsive in other system designs. Such algorithms can be used to guarantee

resource allocations to the users, to enhance reliability of the system and to optimize

deployment of more expensive resources such as memory.

Acknowledgements

We would like to thank Jack Freeman, Wayne Lichtenberger, Lee Cooprider and

Larry Flon for their criticisms and suggestions on early dra~ts_ of this paper.

Many people contributed to the design of the BCC-500 operating system design

and supporting hardware. It seems appropriate to name them. A major single

contributor was Butler Lampson. Other designers and implementors who made

significant contributions include Larry Barnes, L. Peter Deutsch, Rick Dove, Jack

Freeman, Paul Heckel, Wayne Lichtenberger, tJiel Pirtle, Rainer Schultz, Charles Simonyi,

Roger Sturgeon, Chuck Thacker, Steve Tulloh and Bob Van Tuyf.

Page 35 May 2, 1976

Fast Momory
Appendix I

ecc~soo

The SCC-500 central memory consists of a fast memory backed up with a core

_memory. The processors and drum and disk controllers directly reference only the

fast memory, which is physically small and located near the processors and controllers,

but which has very limited. capacity. The fast memory will accept up to four requests

(one on each of the four ports of central memory} each 100 nanoseconds, and wilf

process each request in 200 nsec. Therefore, the central memory can process up to 4

x 1o·ts requests per second. However, because of its limited capacity, a (hopefully)

small number of requests will not be satisfied. In this event, the processor or

controller is obliged to resubmit the request.

The central memory is implemented as eight double-word, interleaved modules.

Each module consists of a 1 microsecond core module and a six (double-word) register

fast me.rrcory mod.ule*. Each double-word in core memory is permanently bound to a

unique address; The assignment of fast registers to memory addresses dynamically

changes in response to requests. Since assignment of a fast memory register to a

metnory address must precede a successful fetch or store to memory, proceessors and

controllers can issue prefetch and prestore requests to apprise the central memory

that a fetch or store to a specific address is imminent. These requests (prefekh or

pres tore) are satisfied if the fast memory succeeds in assigning a register to the

double-word address named in the request in preparation for the coming fetch or

store.

One objedive of central memory is to maintain a value for each address. Ideally,

•There are only two fast registers per module in the University of Hawaii
configuration.

Page 36 May 2, 1976 BCC-500

whenever both a double-word in core memory and a fast register are bound to the

same address, both should contain the same correct value. Thus part of the fast

memory logic maintains consistency between core memory and fast memory. For

·example, if as the result of a request to store value V at address A, the value V were

stored in a fast register assigned to A, then to maintain consistency fast memory logic

will copy the value V to the core word addressed as A. Such an. update takes 1

microsecond, the core cycle time.

To help maintairt consistency efficiently, a state is associated with each fast

register. Besides including the address to which the register is currently assigned, the

state specifies whether core or the fast register, or both, have the correct value for

the assigned address. In addition, the state records whether the current assignment

was made as the result of a fetch (or pref etch), a store or a prestore. The fast

memory logic responds differently to the three cases. For example, in case of a

prestore, the contents of the core word associated with the assigned address does not

need to be brough from core, as it does for a fetch or prefetch.

Although central memory data paths are a double-word wide, processors and

controllers request only a si1"tgle word at a time. The state also includes a 'hold'

attribute. 'Hold' can be specified in any request. It indicates that the requestor will

imminently make anothe·r request involving the same double-word. Thus the fast

register assignment to that double-word should not be revoked until the imminent

request is successfully completed. (Processors and controllers are responsible for

indicating when the hold should be reJeased.)

The hold is particularly. useful for drum and disk controllers who access memory

sequentially. For example, consider the requests which a controller for a swapping

Page 37 May 2, 1976 BCC-500

. device makes to memory. When swapping out a page, the controller reads words

sequentially. It knows far ahead of time which words are to be fetched and can issue

pr~fekh requests ahead of time the time it needs to fetch the actual data values. The

·controller also specifies a hold in the first fetch request so that the data it needs will

remain in fast memory until the contents of both words have been fetched. The

second request does not specify hold so that the register assignment can be broken.

A similar scheme is used for stores: if a processor or controller is going to store a

double-word, a hold is specified in the first store request so that the consistency logic

does not attempt to copy the value to core until the second half of the double-word is

also stored.

The state of a register also includes priority information. The fast memory logic

will attempt to satisfy high priority requests, even at the expense of low priority

requests, so long as no data values are irretrievably lost. This is particularly useful

when data is being transferred to or from an io device for which a high penalty must

be paid (e.g., an extra disk revolution) if the data is not fetched from or stored into

memory by a certain time. Both the register assignment and the consistency logic take

priority into account.

As in other parts of the BCC design, central memory processing power (the fast

memory logic) is used to optimize a scarce resource (the fast registers) so that the

effective access time of central memory is greater than that of core memory which

comprh;es the bulk of central me·mory.

Hardware Description*
Appendix II

Component Planned Configuration Hawaii Configuration

Central Memory up to 256K 24 bit words 128K words (8 modules) (8
modules) 4 ports: peak transfer rate of 30M bytes/sec/port

(average transfer rate of 16M bytes/sec/port) 96 fast registers with
effective 32 fast registers 100 nanosecond access tirne

Microprocessors 100 nsec cycle time (2 CPUs, CHIO,
SCHEDULER, MMP} 128 word scratchpad memory

2048 96 bit microwords
20 MOPs in bursts

Drum and Disk Permits 2 drum and 2 disk 1 drum and 1 disk can Controllers
transfers simultaneously transfer simultaneously

Drum maximum of 8 drums 2 drums 6M byte capacity each 6M
bytes/sec maximum 5M bytes/sec maximum transfer rate transfer
rate 33.3 msec rotation

Disk 393M byte capacity 1 disk with dual positions,
transmission e.g., 2 logical disks, 50 ms rotation
300K bytes/sec maximum transfer rate

6 heads/24 bit
each half size

Data up to 200 terminals each none, however Communication less than 300
baud (1) HP2100 interfaces to Processor 4800 baud link to CHIO tape
unit and LPT ~-11 interlaces to ARPAnet IMP

,. ~

¥\{~·

'O~

*As specified by Professor Wayne Lichtenberger, University of Hawaii.

Refer enc as

[Boehm] Boehm, Barry W., "The High Cost of Software," Proceedings of a Symposium on
the High Cost of Software, September 1973.

[Freeman, Davidson] Freeman, Jack and John Davidson, BCC500 Protection
Mechanisms, ALOHA System Task II Technical Report R-3, University of
Hawaii, May 1974.

[Habermann] Habermann, A. N., Operating System Principles, Science Research
Associates, 1976.

[Heart et al.] Heart, F. E., S. M. Ornstein, W. R. Crowther and W. 8. Barker, "A New
Minicomputer /Multiprocessor for the ARPA Network," AFIPS Proceedings, Vol.
42, 1973.

[Hecke!] Hec:kel, Paul C. and Butler W. Lampson, The BCC Terminal System, to be
published.

[Hoskyns] John Hoskyns and Co., ltd., Implications of Using Modular Programming, Guide
No. 1, Hoskyns Systems Research, Inc., 600 Third Ave., New York, New York,
1973.

[IBM] IBM Virtual Machine Facility /370: Command Language Guide for General Users,
File no. 5370-36, Order no. GC20-1804.

[Jensen]. Jensen, E. Douglas, "A Distributed Computer for Realtime Control, Second
Annual Symposium on Computer Architecture Conference, Fainesville, Florida,
December 1974 ..

[Jones, Wulf] Jones, Anita K. and William A. Wulf, ''Towards the Design of Secure
Systems," Software Practice and Experience.

[Lampson] Lampson, B. W., "Dynamic Protection Structures," Af'IPS Fall Joint Computer
Conference 1969, 27-38.

[Lee] Lee, Wrenwick K., The fv1emory Management Function in a Multiprocessor
Computer System - A Description of the BCC500, ALOHA System Task II
Technical Report R-2, University of Hawaii, September, 1974.

[Lichtenberger] Private Communication.

[Organick] Organick, E. I., Tha Multics System: An Examination of its Structure, M.L T.
Press, Cambridge, Ma!is., 1972.

[Wall] Wall, Charles F., Design Features of the BCC500 CPU, Technical Report R-1,
ALOHA System Task II, University of Hawaii, January 1974.

[Watl, Freeman] Wall, Charles F. and Jack Freeman, BCC500 CPU. Reference Manual,

Document BCC/M-1, ALOHA System Task II, University of Hawaii, December
1973.

[Wulf et al.] Wutf, W. A., E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson and F.
Pollack, "The Kernel of a Multiproce~sor Operating System," CACM 17, 6,

. June 197 4.

[Wulfj Wulf, W. A. (editor), "The Hydra Operating System," to be presented at Fifth
Symposium on Qpgrating System Principles, Austin, Texas, November 1975.

