
BCC 500
CPU REFERENCE MANUAL

Chuck Wall

Jack Freeman

THE ALOHA SYSTEM
University of Hawaii

Document No. BCC/M-1
December 31, 1973

Contract NAS2-6700
Department of Defense

Advanced Research Projects Agency
ARPA Order No. 1956

1

ABSTRACT

This document provides a complete description of the

BCC-500 CPU from a machine language programming point of view.

It is expected that most programming will be at a level well

above machine language, since the Systems Programming Language

(SPL) is completely adequate for most of the systems deveiop

ment. This document represents an updated, edited and revised

version of two working documents originally written by Butler

Lampson and Charles Simonyi. This manual reflects the changes

made to the CPU at the University of Hawaii.

2

TABLE OF CONTENTS

Page

1. INTRODUCTION 3

2. GENERAL CHARACTERISTICS AND STATE........... 4

3. ADDRESS SPACE AND MAP • • • • • • • • • . • • • • • • • • • • • • • 7

4. ADDRESSING FROM INSTRUCTIONS •••••••••.•••••• 16

5. INDIRECT ADDRESSING 34

6. USE OF ADDRESSES BY INSTRUCTIONS •••.•••.•••• 45

7. FUNCTION CALLS . • . • . . • . • • • . • • • • • • • • • • • • • • • • . • 4 7

8 • PROGRAMMED OPERATORS • • . • • . • • • • • • • • • • • • • • . • • • 6 2

9 • SYSTEM CALLS • 6 3

10. TRAPS . • • • . 64

11. CPU INTERRUPTABILITY •••••••••••••••••••••••• 65

12. ORDINARY INSTRUCTIONS ••••••••••••••••••••••• 70

13. FLOATING POINT • • • • • • • • . . • . • • • • • • • • • • • • • • • • • • 9 2

14. APPENDIX CONTENTS • • . • • • . • • • • • • • • • . • . • • • • • • • • 102

DEFINITION OF INSTRUCTION CODES ••••••••••••• 103
DEFINITION OF OPR ADDRESSES ••••••••••••••••• 104
SUMMARY OF ADDRESSING •..••••••••••••••.••••• 105
SUMMARY OF INSTRUCTION ADDRESSING ••••••••••• 106
FIXED TRAPS • • . • . . . • • . . . • • • • . • • • . • . • • 108
RING-DEPENDENT TRAPS .•••..••••.••••••••••••• 109
RING-DEPENDENT TRAP I~: BLLERR .•••••••••••• 110
SUMMARY OF IMPORTANT CORE ADDRESS ••••••••••• 111
SPL PROGRAM TO DEFINE BLL ..•.•••••••.••••••• 113
WORD FORMATS • 118
SOME FIELDS IN OCTAL FORM •••.•.•.••••••••••• 127
CHT HASHING ALGORITHM ••••••••••••••••••••••• 128

3

1. Introduction

This is a reference manual for the BCC 5~~ central processor

unit (CPU). It is intended to be a complete and self-contained

description of the characteristics of the processor from the

point of view of a machine +anguage programmer (although it is

hoped that few programmers will ever have occasion to descend to

machine language).

Two considerations have dominated the design of the CPU. They

are stated here in the hope that they will make clearer the

rationale for some of the machine's characteristics.

1) The CPU will be implemented on a somewhat modified version

of a BCC microprocessor. This implied that peculiar instruc

tion and addressing sequencing can be used freely.

2) The CPU will be programmed almost entirely in SPL or FORTRAN.

It is therefore essential that the common constructs of these

languages have efficient hardware counterparts. Most notable

among them are array referencing, function calls and returns,

part word field accessing and string processing.

4

2. General Characteristics and State

The CPU is a 24-bit, word oriented, two's complement machine.

It has 64 instructions and a variety of addressing modes. Bits

are numbered 9 to 23 with bit 9 on the left (most significant)

end of the word. Both single (48-bit) and double (96-bit) pre

cision floating point arithmetic are implemented in hardware.

A process, which may be defined as a program in its execution

environment, is called an active process if it is running on

the CPU. All the information necessary to define a process is

contained in a single page of its virtual memory and is called

its context block. When an active process is blocked the

following objects must be saved:

•All pages in the process that have been modified;

•The context block;

•The state of the CPU.

The state of the CPU is saved in a fixed location in the con

text block and consists of 12 registers as illustrated in fig

ure 2.1

WORD

jJ

l

2

3

4

5

6

7

8

9

10

11

{6-- ::::::. 516 ----f6

f6

f6

'1

f6 Floating point

f6

f6

f6

'1~-- 4J5 -- .__
f6

f6

5

Program Counter

A - register

B - register

c - register

D - register

exponent lill2

Index register

Local environment register

Global environment register

Status register (see below)

Compute Time Clock

Interval Timer

The status register contains the following fields:

. 23

23

23

23

23

23

23

23

23

23

23

23

1- 4 5 6 89 11 12 13 14 15 16 17 18 19 20 21 22 23

x x T p c I
F 9 s u D D T
D TRMOD PRMOD cc 4 u T M F F A

0
0 N

0 R v s p 0 F I
N

L L R
v T

M L T A A y D T G G

Bit Name Contents

5 FDP Full double precision flag

6-8 TRMOD Temporary rounding mode

9-11 PRMOD Permanent rounding mode
'

12-13 cc Condition Code

14 940M 940 Mode

15 SUF Soft underflow flag

16 XUTILT Utility exit trap flag

17 XMONT Monitor exit trap flag

18 TD FLAG Temporary double-precision flag

19 PDFLAG Permanent double-precision flag

20 CARRY Carry bit

21 TOV Temporary overflow bit

22 ov Overflow bit

23 IN STD Instruction terminated bit

FIGURE 2. 1 CPU STATE

NAME
p

A

B

c

D

E

x
L

G

SR

c;rc

IT

6

Note that it is convenient in the notation used in the manual

to refer to some registers by affixing an "R" to their name.

So you will see the following names ref erring to the same re

gister.

A AR A-register

B BR B-register

c CR C-register

D DR D-register

E ER E-register

x XR X-register

7

3. Address Space and Map

The CPU considers itself at any particular time to be running a

process which is defined by its context block. Each process

has a 256K address space. The CPU uses 18-bit addresses to

specify memory locations. The address space has two signifi

cant characteristics:

1) it is divided into three rings as follows:

addresses ~-377777B

4~~~~~B-577777B

6~~~~~B-777777B

user ring (lowest}

utility ring

monitor ring (highest)

The rings are protected from each other according to certain

rules. Every memory reference is said to have a source. The

source for any references generated by an instruction up to

and including a fetch of an indirect word is, for example, the

program counter; the source for any reference generated after a

fetch of an indirect word up to and including a fetch of the

next indirect word is the address of the first indirect word.

Every reference also has a target, which is the address being

referenced. The following matrix defines those combinations of

source and targets which are legal.

Target

User Utility Monitor

User Yes No No

Sour~e Utility Yes Tus No

Monitor Yes Yes Yes

8

To surrunarize:

a) References from one ring to a higher one are forbidden.

b) If indirection leads to a lower ring, it is forbidden

to return to the same or higher ring during the same instruction.

This fact makes it easy, for example, for monitor routines to

enforce the user's protection rules when storing into a table

provided by the user: they need only do their stores indirect

through an address in the user ring, and the ring protection

hardware will do the checking automatically.

A forbidden reference causes trap MACC (~emory Access error).

The target is passed as a parameter to this trap. See figure

3.1 for the two representations of the virtual address space.

VIRTUAL ADDRESS SPACE

f:1

USER USER RING
AREA

377777B

256K
4f:1f:1f:1f:1~

UTILITY
AREA

577777B

6f:1f:1f:1f:1~

MONITOR
AREA

777777B

FIGURE 3. 1 VIRTUAL ADDRESS SPACE AND PROTECTION RINGS

9

2) The address space is organized into 2048 (2K} word

pages, and the precise collection of pages which make up the

address space is specified by the map. Pages are named in a

manner independent of their location in core, and the mapping

hardware uses this location-independent name, together with a

table called the core hash table (CHT}, to determine the physi

cal core location of a page. The page number (the top 7 bits)

of every memory reference thus requires two levels of transla

tion:

from page number to location-independent name

from location-independent name to physical page address

The various mechanisms for performing this translation will now

be described.

10

Locations 200B-277B in the context block contain the map of the

virtual address space for the process. These 128 half-word en

tries specify the contents of the corresponding 128 pages of

the address space of the process. Each half-word is interpre-

ted as follows:

Bit

1-3

4-11

? 1 - 3 4

l~C><J
11

Name

MAP RO

PMTI

PMTI

Contents

Read-only bit. This bit is merged
with the RO bit in PMT to make the
read-only bit interpreted by the
hardware

unused

a PMT index

FIGURE 3.2 MAP ENTRY

The process memory table (PMT) provides enough information about

each page accessible to the process to permit the hardware

to access the page. The PMT starts at location 300B in the

context block. Each entry is 4 words long; the address in the

context block of PMT entry i is therefore 4(i-l) + 300B.

A PMT entry has the form

Word

1

2

R
0

PREF

Bits

{J-23

{J-23

2-23

Name

UNl

UN2

DA

11

UNIQUE NAME

Disk Address

SF

Contents

First 24 bits of unique name for
the page (Location-independent
name)

Second 24 bits of unique name for
the page

Disk address of the page

3 PMTRO Read-only bit

3 1

3 12

PREF

SF

Page has been referenced

Page is scheduled for the process
(i.e., in core working set and
the process is active)

The other bits are not used by hardware. The unique name is

refered to as UN in the text.

FIGURE 3.3 PROCESS MEMORY TABLE ENTRY

12

Note that there is no provision for execute-only pages, since

this device by itself is not sufficient to protect proprietary

programs. The sub-process structure of the monitor is supposed

to be used for this purpose.

The central processor contains a physical map (PM) which has

128 registers of 11 bits each. One of the registers has the

form:

Bits

1

2

3-10

fl l 2 3

Name

EF

DB

PMRO

PA

10

PA

Contents

Empty flag

Dirty bit, set if the page has
been stored into since it was read
from the drum

Read-only bit

Physical address of page in a real
core of up to 512K.

FIGURE 3.4 PHYSICAL MAP REGISTER

When a new process starts to run on the processor, the empty flag

is set in each PM entry. Every address generated by the pro-

gram must be mapped to convert it from virtual to real so that

an access can be made to the real core. This is done by taking

~he top 7 bits of the 18-bit address and using them to select

one of the 128 PM entries. If the empty flag is off, the re-

13

mainder of the entry is returned. The PA field is prefixed to

the last 11 bits of the virtual address to make a read address.

If the access is a store and PMRO = 1, the store is aborted and

the PRO (~age Read Only) trap is caused. If the access is a

store, PMRO = ~ and DB = ~' the dirty bit in the CHT entry for

the page is set and DB is set to 1.

If the empty flag is on,. the PM entry must be loaded. Let its

index be i. First, entry i of the map (i.e. half-word 4[J[JB + i

in the context block) is fetched. If PMTI is fJ, trap PNIM (Page

Not In ~ap) occurs. It it is not ~ MAPRO [i] is saved. Then

the PMT entry specified by PMTI [i] is fetched. Call it entry n.

If SF[n] = [J, trap PNIC (Page Not In Core) occurs. PMTRO is

saved; if PREF [n] = ~' it is set to l; the UN found in PMT [n] is

then looked up in the core hash table.

The Core Hash Table contains information about the current contents

of core memory. It starts at location 4~~B in real core and is

organized as a chained hash table. The table comes in two parts:

1) The index, called CHTl which is an array _of 256 pointers

to lists of CHT entries. Each word of CHTl is either END or the

address of a CHT2 entry e with the property that HASH (UN(e)) is

the address of the CHTl word. If there are several pages in CHT

with the same value of HASH (UN), the CHTl word points to one of

them,which points to the next using the collision pointer field,

and so on until all are chained into the list. The last element

has END in its collision pointer. The hashing function HASH is

to take the exclusive or of the six 8-bit bytes of the Unique

Name (UN) and then the exclusive or of this result with 264B.

Revision 3/4/74

14

2) The body, called CHT2, is an array containing a 6 word

entry for each page of real core. Each entry has the form:

UNl

UN2

DA

CPA PL SCHED

FCLP

CLP

-------- - - -·--------·-- ------~--------~-- -

Word Bits Name Contents

~ {A-23 UNl First 24 bits of unique name

1 f]-23 UN2 Second 24 bits of unique name

2 2-23 DA Disk address of page

3 fl DIRTY Dirty bit

3 1 u Unavailable bit

3 2-4 PST Page status

3 5-12 CPA Core page address

3 13-15 PL Page lock

3 16-23 SCHED Number of occurrences of page
in loaded working sets

4 6-23 FCLP Free core list pointer

5 6-23 CLP Collision PTR

FIGURE 3.5 CORE HASH TABLE ENTRY

15

If (U OR PST) ~ ~ or the page is not in CHT, trap PNIC occurs.

If the page is found, CPA and DIRTY are copied into the PM and

PMRO is set to MAPRO OR PMTRO [n].

All the traps (PRO, PNIM, PNIC) which can be generated by the

mapping operation are given the virtual address belng mapped as

a parameter.

To make sure that a particular page is not being used by the

CPU, an external processor may request a scan of the physical

map. When such a request is received, the PA field of all non

empty registers in the physical map is matched against the con

tents of cell 2455B + CPU number *4. If any of them matches,

the MAB (Map ABort) trap occurs. The message cell is set to

4B7 upon completion of the scan, regardless of the outcome.

16

4. Addressing from Instructions

The machine has a rather complex addressing structure. The

address calculation is performed in the same way for every in-

struction, and it may yield either an operand OP or an effec-

tive address Q. The format of an instruction and of an indirect

address word (IAW) is as follows:

a) Instruction word format

~ 2 3 8 9 l~

I TAG I OPC HI w

Bit Name Contents

.ll-2 TAG Address TAG field

3-8 OPC Op code

9 POP Programmed operator bit

l.ll-23 w Address field

b) Indirect address word format

@ 1 2

I IAT I
Bit Name

jl-1 IAT

2-23 Body

FIGURE 4. 1

BODY

Contents

Tag field which defines the meaning
of the rest of the word

The meaning depends on IAT

INSTRUCTION AND INDIRECT ADDRESS
WORD FORMAT

2 3

I

17

Since the addressing is rather complex, it seems worthwhile to

explain in some detail what the various features are for, before

describing them precisely. There are a number of points which

influenced the design:

1) It is necessary to be able to conveniently address a

256K (18-bit) address space, even though an instruction has

only a 14-bit address field.

2) Programs are normally written in relatively small

units, each of which references some private storage of its

own and some global storage.

3) Array references are very conunon. Since there is on

ly one index register for holding subscripts, it would be very

nice to have a convenient way of using core locations for in

dexing. Since the languages which are expected to account for

a majority of the load on the machine require subscripts to be

checked for size before being used, it would be nice to have a

cheap and convenient way of doing this. Furthermore, we have

to deal with arrays having elements which may occupy 1 (inte

ger), 2 (real), or 4 (double) words. To have to multiply the

index by the element size is a great annoyance.

4) References to fields which occupy whole words or parts

of words relative to a pointer are also common, especially in

system code.

5) It is essential to have an effective mechanism for

handling strings of 8-bit characters. If other byte sizes can

also be accommodated, so much the better.

18

All of these goals are achieved in a fairly economical way by

the addressing system. In particular, arrays, strings, and

part-word fields are handled by indirect addressing, which al

lows an absolute 18-bit address to be supplied. The addressing

modes available in an instruction allow for immediate operands,

addressing relative to the instruction word for referencing the

program, and addressing relative to two base registers which

are intended to reference the local storage of the subroutine

(called the local environment, L} and the global storage of the

whole program (called the global environment, G}. They also

permit indexing to be specified from the X-register or from the

first few cells of the local or global environment.

It should be obvious by now that the addressing system is de

signed to be used by programs which are organized in a very de

finite way, i.e., into a collection of subroutines or functions

(of less than 4K words each} , each with local storage (of less

than 2K words for scalars} , and all with access to a single

global storage and communications area (of less than 16K words).

The first 128 words of the local and global environments are

special; this is because there are 8-bit fields in certain ad

dresses in which the top bit specifies L or G and the remaining

7 bits address one of the first 128 words. The first 32 words

are even more special, because there are 6-bit fields in which

the top bit specifies L or G and the remaining 5 bits address

one of the first 32 words. With this introduction, we proceed

19

to describe the addressing in detail, together with comments on

the intended use of each feature. A reader unfamiliar with

this material will find it helpful to read the text following

the description of each mode first.

The 3-bit TAG field of an instruction determines one of 8 ad-

dressing modes.

2 3 8 9 1.0 23

OPC w

TAG Name Addressing Mode

D Direct or G-relative

1 I Indirect or G-Indirect

2 I x Indexed

3 BX Base-Index

4 PD Pointer-Displacement

5 PDI Pointer-Displacement-Indirect

6 BXD Base-Index-Displacement

7 REL Relative. This one has 6 sub-cases.

FIGURE 4.2 ADDRESSING MODES SPECIFIED
BY TAG FIELD

Th(3 relative mode has 6 sub-cases, L-relative, source-relative,

immediate, indirect L-relative, indirect source-relative and

immediate indexed.

20

The relative words are formatted as follows:

2 3 8 12 13 ~ 9 l~

I ==1 I OPC ~ REL
I

W[l3,23]

I

~

REL Name Addressing Mode

~ LR L-relative

1 LRI L-relative Indirect

6 IMX Inunediate-Indexed

7 IM Inunediate

2 3 8 9 l~ 1112

TAG=7 I OPC ~sRELI W[l2,23]

SREL Name Addressing Mode

1 SR Source-relative

2 SRI Source-relative Indirect

FIGURE 4.3 RELATIVE ADDRESSING MODES SPECIFIED
BY REL AND SREL

23

23

I

Notice that we have represented the 6 sub-cases of the relative

mode by introducing two fields called REL and SREL. This is

because in the source relative modes of addressing bit 12 is

used as part of the address field. Also we have introduced some

new notation. The W[l3,23] indicates that we are referring to

bits 13 through 23 of the instruction word and that those bits

are contained within the address field W of the instruction.

21

Most of the modes depend on the existence of an indexing regis-

ter IR, and a source register R. The IR register is not to be

confused with the index register X. In fact, it is not part of

the state at all; i.e. its value does not have to be preserved

from one instruction to the next. The IR is used to hold the

18-bit value which will be used when an indexing operation is

called for by the addressing system. It is initialized from X

at the beginning of each instruction. Thereafter, it may be

loaded from a word specified by a BX or BXD mode or an array in-

direct word (see below). The source register is initialized to

the address of the word from which the instruction has been

fetched (normally P).

Some addressing modes compute Q directly from the information in
'

the central registers, the instruction and possibly one memory

word used for indexing. Others (the indirect modes) compute di-

rectly the location of an indirect address word, and the con-

tents of this word then determines how the addressing computa-

tion is to proceed. If indirect addressing is specified, only

the values of the IAW address and IR affect the subsequent ad-

dress computation. We will therefore confine ourselves to spe-

cifying those values which describe instruction addressing, and

leave the details of indirect addressing for later treatment.

22

Before we describe the various addressing modes in detail, we

define some notation that will be used in defining the various

modes.

CONTENTS(N)

IA(N)

W[i,j]

SIGNED(W[i,j])

will be used to denote the contents of the
memory location with address N. Ring check
ing is performed with R as source and N as
target.

implies that the indirect addressing sequence
is initiated by:

FUNCTION IA (N) ;
IAW + CONTENTS(N);
R + N;

*PROCEED TO PROCESS IAW

By the time it is finished, the IA function
will set the value of Q or OP.

Note that special cases of the IA(N) function
may be specified for each of the 4 indirect
addressing modes where we may want to indi
cate a particular mode. We may have any one
of the following:

NORMAL I IA (N) ;
FIELD I IA (N) ;
STRING'IA(N);
ARRAY I IA (N) ;

means bits i to j of W (the address field
of the instruction) considered as a 24-bit
number. W[i,i] is represented by W[i].

means W[i,j] interpreted as a two's cornple~ment
number of (j - i + 1) bits.

23

All instructions start with IR + XR & R + P; in the notation

used, the"$" indicates indirection and"'" (e.g. G'[w]) is used

:.:. the sense of a delimiter between symbols. We now define in

detail all the addressing modes with indirect addressing dis-

cussed in a separate section which follows.

Direct (D} or G-relative:

j3 2 3

I TAG=JI I 8 9 191 23

OPC w

Q + W + G;

OP+ CONTENTS(Q);

In the direct or G-relative mode, the effective address is given

by the 14-bit address field relative to G. This permits direct

addressing of the first 16K of the global environment. The

notation in SPL is

OPC GI [W];

24

Indirect (I) or G-relative Indirect:

$0 2 3 8 9 1$0 23

I TAG=l I OPC w

IA (W + G) ;

In the indirect mode, any of the first 16K words of the global

environment can be used as an IAW (indirect address word) that

may point anywhere in the virtual address space.

The notation is

OPC $GI [W];

Indexed (X) :

$0 2 3 8 9 1$0 23

I TAG=2 I OPC w

Q + W + IR;

OP + CONTENTS (Q) ;

Since IR is initialized by XR, the effective address is the

(18-bit) sum of the indexing register and the address field.

The notation is

OPC X' [W];

25

Pointer~Displacement (PD) :

fa 2 3 8 9 19) 15 16 2 3 I TAG=4 I OPC tx1 ~DISPLACEMENT I~ POINTER ADDRESS I
Where the pointer field is one of the following:

16

PTR + IR; I,
16 17

PTR + CONTENTS(G + W[l7,23)); H W[l7 ,23]

16 17

PTR + CONTENTS(L + W[l7,23]); I 1 I W[l7 ,23]

and the address calculation is:

PTR + IR IF W[i6,23] = ' ELSE
PTR + CONTENTS(G + W[l7,23]) IF W[16) =~ELSE
PTR + CONTENTS(L + W(17,23]);

DISP + SIGNED(W[l,,15]);

Q + PTR + DISP;

OP+ CONTENTS(Q);

2 3

~1
23

23

In this mode the address field is divided into an 8-bit pointer

address field and a 6-bit signed displacement field. Similar

arrangements are used in several other modes; they will be explain-

ed here in detail. The top bit of the 8-bit pointer address speci-

fies the environment (l=local, ~=global) and the remaining 7 bits

address one of the first 128 words in the local or global environ-

ments. If pointer address is ~' the contents of IR, rather than

of word I in G, is specified. The calculation of DISP specified

the conversion of a 6-bit number which is to be interpreted as

two's complement into a 24-bit two's complement number.

26

Finally, the effective address is the sum of the pointer (PTR)

specified by pointer address and the displacement (DISP) . The

typical use of this mode is in addressing the nth word of a ta-

ble entry given a pointer to the start of the entry. If the

pointer P is in the first 128 words of either environment, then

the word is loaded into A, say by

LDA P[D]

which is the notation for PD addressing with pointer address P

and displacement D.

The notation is

OPC P[D];

where P may be one of the following:

~ or G' [~] for PTR + IR;

G' [N] where~ < N < 127 for PTR + CONTENTS(G + N);

L' [N] where ~ < N < 127 for PTR + CONTENTS(L + N);

and -32 < D < 31

Pointer-Displacement-Indirect (PDI):

~ 23 8 9 l~ 15 16 23

I TAG=5 I OPC ~~ DISPIACEMEN.r 1~ POINTER ADDRESS]

Q + PTR + DISP as for PD mode;

IA (Q);

This is just indirect addressing in PD mode.

The notation is

OPC $P(D];

27

Base-Index:

f3 2 3 8 91,0 1516 23

I TAG=3 I OPC IX]~ IlIDEX AOORESS 1~ BASE ADDRESS

Where the index address field is one of the following:

l~

1~ INDEX + IR;

lit 11

INDEX+ CONTENTS(G + W[ll,15]); ~ W[ll,15]

l~ 11

INDEX+ CONTENTS(L + W[ll,15]); 1 W[ll,15]

and the base address field is one of the following:

16

BASE + IR; I J
16 17

BASE+ CONTENTS(G + W[17,23]); I JI
1617

BASE+ CONTENTS(L + W[l7,23]); I 1 I
and the address calculation is:

BASE + IR IF W[l6,23] = J ELSE
BASE+ G + W[l7,23] IF W[l6] = J ELSE
BASE+ L + W[17,23];

IR+ IR IF W[lJ,15] = J ELSE

W(17 ,23]

W[l7 ,23]

IR+ CONTENTS(G + W[ll,15]) IF W(lJ] = J ELSE
IR+ CONTENTS(L + W[ll,15]);

IA (BASE);

15

~1
15

15

23

J I
23

I
23

28

This is the array and part-word field mode and is written

OPC B[I]

where B is the base and I the index. The 8-bit and 6-bit index

are both treated as local or global environment addresses, ex

actly like the pointer address in PD mode. The index is put in

to IR and the base specifies an indirect word. If an array is

being accessed, B will address an IAW which has the 18-bit base

address of the array and specifies indexing. The contents of

IR, which was loaded from I, will thus be added to the base ad

dress of the array to determine the final 18-bit address, which

is just what we require for array referencing. This is not, how

ever, the whole story; the rest will be told when we come to con

sider the indirect addressing type used for arrays.

29

Base-Index-Displacement (BXD) :

.0 2 3 8 9 1.0 15 16 2 3

I TAG=6 I OPC M+ l~L V\I _ DISPLACEMENT _ INDEX ADDRESS

Where the index address field is one of the following:
16 23

INDEX + {1; 1!1---~I
16 17

INDEX+ CONTENTS(G + W[l7,23]); W[l7,23]

16 17

INDEX+ CONTENTS(L + W[l7,23]); W[l7,23]

and the base address is in the indexing register.

The address calculation is:

BASE + IR;

INDEX + ~ IF W(l6,23] = ~ ELSE
INDEX+ CONTENTS(G + W(17,23]) IF W[l6] =~ELSE
INDEX+ CONTENTS(L + W[l7,23]);

DISP + SIGNED(W[l~,15]);

IR + INDEX + DISP;

IA(BASE);

23

23

This mode is similar to BX. It assumes that the base address

is in the IR. The field thus freed is used to provide a displace-

ment (anything from -32 to +32) of the index. Thus to load

B[I + 5] we would write

EAX B

LDA ($X') [I+ 5];

where I is the index address,. 5 the displacement. See the dis-

cussion of arrays in section (5) for more details on the BX and

BXD addressing modes.

30

The notation is

OPC ($XI) [I + D] i

where X' is X-register and I the index.

Relative (REL) :

There are 6 sub-cases, depending on the first three bits of w.

We describe each relative mode separately

L-relative (LR) :

!<? 2 3 8 9 l,0 l2 l3 2 3

I TAG=? I OPC 1)(1 RTAG=,01 W[l3,23]

DISP + W[l3,23];

Q + L + DISP;

OP+ CONTENTS(Q);

The L-relative mode simply addresses a location in the 2K local

environment.

The notation is

OPC L' [D];

31

L-relative indirect (LRI):

~ 2 3 8 9 l~ 12 13 2 3 r TAG=7 I OPC W[l3,23]

DISP + W[l3,23];

Q + L + DISP;

IA (Q);

This is simply the indirect counterpart for the L-relative mode.

The notation is

OPC $LI [D] i

Source-relative (SR) :

@ 2 3 s 9 lW u 13 23

I TAG=7 I OPC ~ RTAG=2,~
causes the instruction to be interpreted as

Ja 2 3 8 9 19' 11 12 23

I TAG=? I OPC W[l2,23]

DISP + SIGNED(W[l2,23])

Q + R + DISP;

OP+ CONTENTS(Q);

This mode allows location up to 4~~~B on either side of the in-

struction to be addressed. Remember R is initialized to the

program counter at the start of the address calculation.

32

Source-relative-indirect (SRI):

,0 2 3 8 9 1,0 12 13 23

I TAG~? I OPC

causes the instruction to be interpreted as

,0 2 3 8 9 1,0 1112 23

I TAG=? I OPC W[l2,23]

DISP +- SIGNED(W[12,23]};

Q +- R + DISP;

IA (Q) ;

This is just the indirect counterpart for source relative.

The notation is

OPC $R' [D];

All the relative modes allow routines to be placed anywhere in

memory without modification and to address themselves without

difficulty, as long as they are not more than 2~48 words long.

33

Immediate (IM) :

f3 2 3 8 9 1[3 12 13 23

I TAG=7 I OPC I><l RTAG=7 I W[l3,23)

OP+ SIGNED(W[l3,23]);

The immediate mode permits signed constants in the range -2~~~B

to 1777B to be provided as operands without an additional memory

reference. Stores are not allowed and the operand must not be

larger than 11-bits.

The notation is

OPC I;

Immediate-indexed (IMX):

f? 2 3 8 9 10 12 13

I><l RTAG=6 I W[13,23] I TAG=? I OPC

OP+ IR+ SIGNED(W(l3,23]);

This adds the contents of IR to the immediate operand.

The notation is

OPC x I + I;

34

5. Indirect Addressing

To prevent infinite loops of the indirect mechanism, a trap, ILIM

(Indirect LIMit exceeded), will occur if indirection through more

than 16 levels is attempted.

There are four types of indirect addressing: normal, field,

string, and array. The type is selected by the first two bits

of the word. The intended use of each type is suggested by its

name and will now be explained in detail.

Normal: the IAW has the form

fll 1 2 4 5 6

or

fll 1 2 4 5 6 7 9 lfll

Bits Name

0-1 IAT

2-4 TAG

5 TRAP

6 RELX

1,0-23 LWR

6-23 LW

23

LW

23

LWR I
Contents

Indirect Address Type zero

interpreted exactly like an instruc
tion TAG

causes trap IATRP if set

causes indexing for relative modes

long address for the relative modes

long word address

35

If TRAP is set, the IATRP trap is caused, and R is passed as its

argument. Otherwise, TAG and W are interpreted as in an instruc

tion word, with three exceptions:

1) if TAG = D, I, or X, LW is used in place of W, and G is

not added. In other words, an 18-bit absolute address

is supplied.

2) if TAG = REL, IR is added to the addresses computed by

Land R-relative modes if RELX is set. I.e., indexing

is possible with these modes. Also, the 3-bit $ubtag

is found in bits 7-9, thus allowing the LR, LRI, SR,

and SRI offsets to be 3 bits longer.

3) if TAG= PD or PDI, the mode is read-only direct (ROD)

or read-only X-relative (ROX) respectively. These

behave exactly like D and X modes except that an attempt

to store will cause the ROIA trap with R as parameter.

Normal type permits any word in the address space to be address

ed directly. It is generally used for pointers and for the ad

dresses of arrays. Note that although the capabilities are al

most identical to those.provided by an instruction address, the

format is quite different. It is not possible to use an instruc

tion as an indirect word. It also permits indexing of a L-rela

tive or source-relative address, so that arrays in the program

of the local environment can be addressed conveniently.

36

Fieldi the IAW has the form

, 1 2 3

Bits -
0-1

3-7

8-12

2

13-23

Name

IAT

SIZE

FB

SE

DISP

FIELD: Q + IR + DISP;
U + CONTENTS (Q) ;

FB DISP

Contents

1

size of field in bits

address of first bit of the field

causes sign extension of the field
if set

2's complement signed displacement

OP+ U (FB, FB +SIZE - l];
OP+ OP - 2**(24-FB) IF SE= l AND OP (FB,FB) = 11

The field which is SIZE bits in length and which starts at bit

FB in word DISP + IR is referenced. Both FB and FB + SIZE - l

i

must be ~ 23. If they are not a TI trap will occur. If SE is

set, the leftmost bit of the field (bit FB at DISP + IR) will be

extended into bits g through 23-SIZE of the resulting operand.

DISP is taken as a 2's complement number, in the range -1024 to

1023.

Revision 3/4/74

37

The idea here is that lR contains a pointer to a table entry,

and that the field descriptor (the IAW) specifies a. group of

bits at some definite location in the entry. Typically, 'the

pointer might be in PTR within 32 words of L and the field

descriptor in F within 128 words of G. Suppose the co:p.tents

of F is

or in octal

then we might write

FIELD

DATA

3: 6, 12

216.40003B

LDA F [PTR]

using base-index addressing. Since PTR appears in the index

field, its contents is put into IR. Then F is taken as an

IAW. Since it is of type field, it accesses the word at IR + 3,

which is CONTENTS (PTR+3); i.e., the fourth word of the object

pointed to by PTR. Bits 6 - 12 of this object will be loaded

into A. If the word addressed was 01234567B, then A will contain

47B. The field can be used as an operand in any instruction

which accesses a single-word operand, this includ~s both load

and store types. Note that fields cannot cross word boundaries.

38

String: the !AW has the form

@ 12 34 56 23

I !AT= 21 CSIZEI CPOS I WA

Bits Name Contents

~-1 IAT 2

2-3 CSIZE character size: ~ = 6 bits, 1 = 8'
2 = 12, 3 = 24

4-5 CPOS character position in word

6-23 WA word address

The character at the indicated position in the word addressed by

WA is referenced. The following table defines what bits are re-

f erenced by the 16 possible combinations of CSIZE and CPOS.

CSIZE/CPOS ~ 1 2 3

~ $0-5 6-11 12-17 18-23

1 ~-7 8-15 16-23 x

2 ~-11 12-23 x x

3 $0-23 x x x

Combinations marked X in the table will cause a TI trap.

The bits referenced are treated exactly like the bits selected

by a field IAW.

This type of indirection allows one byte in a string to be re-

ferenced. The instruction !SD increments the descriptor to point

to the next byte, which may then be referenced. It has the

39

additional feature of setting the condition code depending on

I
whether the descriptor is equal to the next word or not. The

string type and this instruction are intended to be used with

four-word string descriptors. The first word points just

before the first byte allocated for the string. The second word

(read pointer, RP) points to the first character of the string,

the third word (write pointer, WP) to the last character. The

fourth word points to the last byte allocated for the string.

To read the first character, increment RP with ISD, then indirect

through it. The case of no characters left can be detected by

the abnormal CC setting. To write a character, increment WP

with ISD and then store indirect through it. Overflow of

available storage can be detected by the CC setting.

40

Array: an array descriptor is two words long. Its form is:

LEB = f1

23

UB

PTR

or

LEB = 1

1 2 3 5 1 11 23

MOLT UB

PTR

Word:Bit Name Contents

!1:!1-1 IAT 3

~:2 LB lower bound for IR (~ or 1)

!1: 3 ATRAP array trap bit

/a: 4 LEB large element bit

[1:5-6 MULT IF
LEB = fl multiplier for IR

/1:5-10 MULT IF
LEB = 1

[1:7-23 UB IF
LEB = /a upper bound for IR

Ja:ll-23 UB IF
LEB = 1

1:6-23 PTR P pointer to array

41

A multiplier of one is coded in the descriptor as zero, two

as one, etc. If IR<LB or IR>UB, trap ABE occurs, with R as

parameter. If ATRAP = 1 in IAW and the instruction is not LAX,

or ATRAP = 9 and the instruction is LAX, trap IATRP occurs with

R as parameter.

otherwise, IR + (IR - LB)

NORMAL'IA(T);

* (MULT + l); T + R + l;

Where NORMAL'IA indicates IA(T) of type normal. This is the

most complicated of the IAW types. It is intended to accomplish

the following functions connected with array accessing:

1) Allow ~ or 1 as lower bound

2) Perform a bounds check on the subscript

3) Multiply the subscript by the size of the array

element, allowing for sizes up to 64

4) Check that the number of subscripts supplied is

the number expected (see below)

5) Provide an 18-bit absolute base address for the

array.

42

Arrays are intended to be stored with marginal indexing. Thus

the 2 x 3 one-origined integer array A would appear as follows:

A=

LB=l, MULT=,0, UB=3 l/ A (1'1)

A (1, 2)

LB=l, MULT=,0, UB=3 A (1, 3) A (2'1)

A (2 , 2)

A (2' 3)

(The three 2-word descriptors are array indirect words.)

The LAX instruction works just like EAX, except that it merges

an X tag in XR[2,4] (leaving a normal IAW which specifies

indirection) and treats the TRAP bit in an array descriptor

as though it were complemented.

Then to do B + A[K,L] we would write

LAX A[K] (BX addressing)

which leaves the address of the descriptor for the Kth row in

X followed by

LDA ($X')[L] (BXD addressing)

STA B

,
43

The second subscript can have a constant displacement without

complicating things:

B + Af K,L-4] becomes

LAX AfK]

LDA ($XI >I L-4]

STA B

If the first subscript has a displacement, there is a complica-

tion, since there is not enough room for three operands in one

instruction.

B + Af K+l,L] becomes

EAX A

LAX ($XI)[K+l]

LDA ($XI)[L]

STA B

44

A single subscripted array can be accessed without any extra

instructions at all provided the subscript is a variable which

can be accessed with an index field of the BX mode. If M is

a 10-element integer array, it is allocated thus:

M =

M (1)

M (2)

M (3)

M (4)

M (5)

M (6)

M (7)

M (8)

M (9)

M (10)

and N + Mf J] becomes

LOA M[J]

STA N

If the array is integer (1 word items) and bounds checking

is not required, the descriptors can be changed to normal

indirect words which specify indexing, and no change is

required in the instructions of the program.

The purpose of the peculiar behavior of LAX in the case of

traps is to check that the proper number of subscripts is

provided to an array. The trap bit should be set in the

array descriptors except at the last level (the descriptors

which point directly to the data) and clear there.

45

6. Use of Addresses by Instructions

All the instructions compute an effective address Q and/or an

operand OP as described above. The use of these quantities once

they have been computed, and in particular the error conditions

which may arise, depend on the address type of the instruction.

There are four address types:

1) Fetch type (F)

These instructions will accept any kind of address. They make

use of the 24-bit OP value and possibly Q.

2) Effective-address type (E)

These instructions make use only of the effective address Q, ig

noring OP. Immediate addressing causes a TI trap if used with

these instructions. Q is ring-checked with R as a source before

use; if the check fails a trap MACC will occur.

3) Store type {S)

These instructions make use of the effective address Q and the

operand OP. If the address calculation terminated with indirec

tion through a field or string descriptor, the FB and SIZE (for

a field) or CPOS and CSIZE {for a string) define a group of bits,

say bits i to j. An S type instruction puts bits 23-j+i to 23

of the word to be stored into bits i to j of the word addressed

by Q, leaving the rest of this word untouched. Immediate ad

dressing causes a TI trap and indirection through a read-only

direct or read-only indexed word causes a RO trap.

4) Double-store type (D)

These instructions make use only of the effective address Q.

They trap under the same conditions as S-type instructions.

46

Note that they are not affected by field or string indirection.

Legal combinations of instructions and addresses are sumarized

in the following table:

Immediate

Indirection through ROD or ROX

Anything else

F

ok

ok

ok

E

TI

ok

ok

s

TI

RO

ok

D

TI

RO

ok

Instructions of types S or D will give a PRO trap if Q (or Q+i'

for instructions which reference double (i=l) or quadruple

(i=l,2,3) words) addresses a read-only page.

47

7. Function Calls

A rather elaborate mechanism for calling functions and returning

from them is provided in the hardware of the machine. The pur

pose is to include all the capabilities required by the FORTRAN

and SPL languages directly in the hardware, so as to make soft

ware interpretation unnecessary. This is considered extremely

important, since programs are expected to be written in small

modules, and function calls and returns are consequently expect

ed to be very frequent.

The basic features of the call instruction, BLL, are as follow~:

1) The old P-counter and local environment are saved and

new ones are picked up.

2) The new local environment may occupy a fixed area, or

it may be allocated space at the end of a stack defined by two

locations in the global environemnt. There is a check for stack

overflow.

3) The caller provides a list of parameter addresses.

The called function specifies for each parameter whether it

wants the address or the value copied into its local environ

ment. If he requests copying the value, he specifies whether

it is 1, 2, or 4 words.

4) He also specifies whether or not a parameter is an ar

ray. The calling program tells whether it is passing a scalar

variable, a scalar value (stores are not legal), an array or an

array element (subscripted array). These distinctions permit

qll the checking for proper matches of arrays with scalars re-

48

quired by FORTRAN to be done automatically. The case of an ac

tual parameter which is an array element corresponding to a for

mal parameter which is an array requires software handling and

is trapped so that this may be accomplished.

5) Provision is made for an argument to be passed in the

central registers.

A number of these points are somewhat subtle and cannot be pro

perly understood unless explained in complete detail, which we

now proceed to do.

49

The BLL instruction addresses a branch descriptor, which is a

two-word object with the following form:

Word

1

1

1

1

1

1

1

1

Bit

~-23

4

5

9-23

6-23

1

2

3

3

4

5

6-23

Name

NEWPW

SREL

TRAP

SRW

LW

CLL

STK

CPA

CPR IF
CLL = 1

UWSTK IF
CLL = ~

REL

FTN

E

Meaning

This word looks like an IAW.
Its effective address is computed.

c.f. REL+ SR'in Normal IAW

Causes IATRP if set

Signed displacement if SREL is set

Long word addresses

Call bit. The old P and L are
saved if the bit is set.

The local environment is allocated
from the stack if this bit is set.

Arguments are copied if this- bit
is set

The CPA bit in the return des
criptor is turned on if this bit
is set.

Unwind stack on return.

Source relative label is supplied

1 FORTRAN type function

This number determines the new L;
precisely how it does so depends
on STK and REL.

50

When BLL is executed, the first step is to compute the effective

address of NEWPW (which is LW if SREL is ~, otherwise the sign

extended SRW +the address of the NEWPW). This 18-bit number is

saved in a temporary register called NEWP; after undergoing fur

ther processing it will become the new P-counter. The following

steps remain to be performed:

1) Obtain new local environment.

2) Copy arguments.

3) Compute return descriptor {for CALL) and save it in

first two words of new local environment.

4) Transfer control.

We treat them in the order written, which is also the order in

which they are performed. In describing what happens, we shall

make use of a number of temporary registers or variables {such

as NEWP, which was introduced above).

1) If STK=~, the E field of the descriptor is taken as

the new value of L, which we call NEWL. In this case, the func

tion being called is said to have a fixed local environment.

Such a function cannot be recursive, and space must be allocated

for its local environment at all times. On the other hand, the

contents. of such a fixed environment is normally preserved be

tween function calls. A FORTRAN function has a fixed environ

ment, for example. Since a call (CLL=l) saves the current L in

the E field of the return descriptor, the return (CLL=~) handles

E exactly as the call of a fixed function does.

51

If STK=l, space for the environment is allocated on a stack.

Two words are required to describe the stack, which grows toward

increasing memory addresses:

SP, the address of the first unused word, kept in G' [2],

the third word of the global environment

SL, the address of the last word allocated for the stack,

kept in G'[3].

If the environment is stacked, different actions are required

for calls and returns.

On a call (CLL=l); we compute SP+E. If it is~ SL, the STKOV

trap occurs. Otherwise, NEWL+SP and SP+SP+E. In other words,

E locations are taken from the top of the stack. The situation

before and after is shown in figure 1.

On a return (CLL=~) what ordinarily happens if STK is set is

SP+L; NEWL+E;

in other words, the old L at the time of the call (which was

saved in the E field of the return descriptor, as we will see)

becomes the new L, and SP is reset to the value it had before

the call, which is the current L. The before and after pictures

of figure 1, looked at in the opposite order, should help to

clarify this. With these rules, calls can be made freely from

fixed environment functions to stacked environment ones and

visa-versa. The industrious reader may check the four cases.

SL SL
11
.......
G) unused stack unused stack c:
:::0 space space
m
-....J

SP
~

)>
E locations

r for new
r environment 0
()
)>
-I
.......

U> z return OLDL
-I G) SP descriptor OLDP NEWL)>
())>
:;ic:;: U1 r current
t::J 0

N

c: () environment
:::0)>
....... r z L space used
G) m

z for previous
)> < environments space used () :::0
)> 0 for previous
r :z
r 3: environments

m
z
-I

0
z
-I start of stack start of stack
:r:
m

BEFORE AFTER

non-local label
passed by Fl:

STK, UWSTK L2
P in Fl

return descriptor
from call of F2

L (n-1)
P (n-1)

•
•
•
•

STK Ll
L2

BEFORE

53

SL
------------- SL

s
L
e
f

L

p -------
ocal
nvironment
or Fn

n -------
• • • •
-------·

e
f

Local
nvironment
or F2

L2 LOca1 ____ -
environment
for Fl

SP

Ll Ll ------ _..._ _____
Start of
stack

AFTER

FIGURE 7.2 RETURN TO NON-LOCAL LABEL IN Fl

PASSED AS A PARAMETER

54

Unfortunately, if the return is to a function which is not the

one which called the current one, SP is not reset correctly.

This is expected to happen only as the result of a branch to a

label which has been passed as a parameter (i.e. an error return).

When such a parameter is passed (see below) from function Fl

with L=Ll to F2 with L=L2, and the descriptor for the call has

STK set, the parameter appears in F2 as a BLL descriptor with

STK set, UWSTK set and L2 in E (see figure 2). The return (BLL)

sees CLL=~, STK=l, UWSTK=l and does.

SP + E; NEWL = the E field of the descriptor addressed

by E. This trick allows both SP and L to be set correctly while

carrying only one number in the descriptor.

It works regardless of whether Fl and Fn have fixed or stacked

environments, but requires F2 to have a stacked environment.

When a label is passed to a routine which has a fixed environ

ment, therefore, E is set to Ll and STK, REL turned off. If

additional space is allocated on the stack after the call, it

will not be freed when a branch is made to this label. It is

believed that this deficiency is not very serious.

2) If CPA=l, arguments are copied whenever a BLL is exe

cuted. If a function has multiple results, it will have CPR on

in its descriptor. This will cause CPA to be turned on in the

return descriptor, and the multiple results will be returned by

the arguments - copying process when the return is executed.

If CPA=~, the BLLERR (2) trap occurs. A summary of all BLLERR

traps and their parameters is given in the appendix. The BLLN

55

instruction should be used if no arguments are being passed; in

this case the trap will occur if CPA=l.

The address of (actual) arguments to be copied are specified in

the calling program in a list of actual argument words (AAWs)

following the BLL instruction. These have a one-to-one corres-

pondence with a list of formal argument words (FAWs) which starts

at NEWP.

An argument word is formatted like an instruction. The address-

ing is interpreted exactly like the addressing for an instruction,

but the 7-bit opcode field is treated differently, as follows.

Bits Name

3-4 STR

3 CAD DR

4 FSTR

5-8

9 ENDF

Contents

(actual argument only) structure
1 = variable
3 = computed scalar
2 = array element
fJ = array

(formal argument only) copy value
1 = copy address of actual argu

ment
fJ = copy value of actual argument

(formal argument only)
1 = scalar
fJ = array

type ~ = jump (actual
1 = integer
2 = long
3 = real
4 = double
5 = complex
6 = long long
7 = string
8 = label
9 = pointer

14 = unknown

end flag

argument only)
(1 word)
(2 words)
(2 words)
(4 words)
(4 words)
(4 words)
(4 words)
(2 words)
(1 word)

fl = not last argument word
1 = last argument word

56

Argument copying proceeds as follows: two pointers are initial

ized:

next formal argument word (NFW) initialized to NEWP

next actual argument word (NAW) initialized to P+l

Then FAW + CONTENTS (NFW) , and FAW is treated as an instruction

word for the purpose of computing its effective address, which

is put into FQ. Only D or LR addressing is permitted; anything

else will cause the BLLERR trap with class 4.

If ENDF (FAW) = ~' NFW + NFW + 1 and copying continues. Other

wise, copying stops. If the instruction is BLL, the BLLERR(2)

occurs. If it is BLLN go to step (3).

We treat NAW as we treated NFW: AAW + CONTENTS (NAW) I R+NAW and

its effective address is computed. The address ~ is F if

Type = 1 (integer) otherwise E. BLLERR (5) will occur if the

address type is not computable.

If type (AAW) = ~' the AAW is a jump and its address specifies

the next actual argument. Repeat from AAW +CONTENTS (NAW+-Q),

etc.

If the AAW specifies G-relative addressing with an address of ~

it is taken to refer to the central registers. If CVAL =} ~ then

BLLERR(S) or if TYPE > 6 or STR = ~ then BLLERR(4) will occur.

57

Next the types are checked. If TYPE(FAW) ~ TYPE(AAW), the

BLLERR(3) trap occurs, unless one and .only one of them is un-

known. FSTR and STR are checked according to the following

table:

~
Array Computed

F Array Variable Element Scalar

~ 0 1 2 3

!Array ¢ OK BLLERR(3) FTNAT BLLERR (3)

Scalar 1 FTNAT OK OK OK

FTNAT means that if FTN = ¢, BLLERR(3) occurs, otherwise the

FTNAT bit is set, which will inhibit the skipping of one word in

step (4).

The idea here is that if A[I] appears as an actual argument in

FORTRAN and the corresponding formal B is dimensioned, an array

descriptor for B must be computed, or if A appears as an actual

argument and the formal is a scalar, the first element of the

array must be found. A software routine is supposed to do this.

It needs access to the descriptor for A; the extra incrementing

of NAW is to leave room for the address of the descriptor.

Now copying takes place. If CADDR(FAW) = 1, Q is stored at FQ

as an absolute IAW, except in the following two cases.

If the AAW supplied and immediate operand it is stored into

FQ as an IM type Normal IAW,

If Q is the result of ROD or ROX addressing or STR(AAW) = 3,

Q is stored as a read-only absolute (ROD) IAW.

58

Otherwise, (CADDR(FAW) = ~) the value must be copied. The

details of this depend on the type:

If TYPE = 1 and STR(AAW) ~ ~' OP or the A register (in the

special case) is copied to FQ.

For TYPE < 6 and STR(AAW) -::/- ~' the number of words specified

above is copied from Q to FQ, or from the central registers (A,

B, C, and D) to FQ if appropriate.

If TYPE = 3 or TYPE = 4, the floating point number address

ed is examined. If it is undefined (see Floating Point) the

trap UFN will occur. In case the central registers are used,

storing is performed as in the floating point store {STF) in

struction. (Refer to Floating Point)

For TYPE = 7 and STR(AAW) t- ~' the four-word string descrip

tor is copied. If the BLL being executed is a system call (as

described later), four ring checks are done, with Pas source

and each of the four word addresses as target. Furtherm9re, the

word addresses must be non-decreasing from one word to the next,

and the CPOS and CSIZE fields of the first word are copied into

the others. Finally, 2 is forced into the top two bits of each

word to ensure that it is a string descriptor.

For TYPE = 8 and STR(AAW) t- ~ a label is copied as follows:

The first word is made absolute, i.e. Q added to the

sign-extended SRW becomes the new LW if SREL is set, then SREL

is cleared.

In the second word, if bits 6-23 are ~' the word is

replaced by L if STK = ~' else

59

NEWL + the STK and UWSTK bits, if STK = 1.

The basic idea is to supply the proper context, so that the cur

rent local environment will be restored if the label is branched

to. Refer to the discussion of how to unwind the stack to see

why NEWL is used when STK = 1.

If the label is passed by a system call, the absolute ad

dress in the first word is ring-checked. Before copying the se

cond word CLL, STK and SREL are cleared and bits 6-23 are check

ed. If they are not ~, BLLERR(6) occurs.

For STR(AAW) = ~ the type is ignored. An array descriptor is

also copied like a two-word scalar, except that the second word

W2 is replaced by an X or ROX IAW with address equal to the ef

fective address which results from treating W2 as an IAW. This

permits an array descriptor which uses relative addressing to be

passed as a parameter, since the relative address is automatic

ally converted to absolute. If BLL is a system call, in addi

tion two ring checks are done with P as source and both the first

and last words of the array as targets. This means that if an

array descriptor is passed to a higher ring, the higher ring can

use it without fear of accessing storage which the calling pro

gram could not have accessed.

When the address or value has been copied, ENDF(AAW) is compared

with ENDF{NAW). If they differ, BLLERR(2) occurs. If both are

~' copying continues with

NAW + NAW + l; NFW + NFW + l;

60

otherwise it stops. In the latter case NEWP + NFW + 1

3) If the CLL bit is on, a return descriptor is computed

and stored at NEWL. It consists of 2 words: NAW + 1

·Note that this is the return address

(2B7 * STK) + (1B7 * CPR) + L

i.e., the old local environment, with STK bit on if it is

on in the descriptor, and CPA bit on if CPR bit is on in the

call descriptor. Note that if STK = 1, then 2B7 * STK sets

the STK bit (bit 1) of the return descriptor on.

4) Set L to NEWL, P to NEWP, and continue execution. If

the FTN bit is set, skip one word unless the FTNAT flag is on.

The instruction skipped presumably will contain a subroutine

call to take care of the special cases in FORTRAN mentioned

earlier.

In order to state precisely and concisely how this instruction

works and to describe the details of ring-checking, an SPL pro

gram is presented in the Appendix which duplicates its function-

ing. This program uses some special functions. (Those not men-

tioned here ref er to fields or functions defined elsewhere in

this document.)

1) The construction $X+ implies a ring check with R as

source and X as target. As the access is a store, the trap PRO

may also occur.

2) RINGCHECK(X) performs a ring check with R as source and

X as target. If the check fails, trap MACC will occur.

61

3) RING(X) produces a number depending on the ring which

contains x, say

1 if x is in the user ring

2 if x is in the utility ring

3 if x is in the monitor ring

4) MENTER(), MEXIT() and INTERRUPT () designate the places

where the actions described under "CPU Interruptability" are ta

ken.

5) EA(X) initiates the effective address calculation simi

lar to IA(X), but the format of CO~TENTS(X) is like an instruc

tion (or an AAW) rather than an IAW.

62

8. Programmed Operators

If the POP bit of an instruction is 1, it is interpreted as a

rather peculiar kind of subroutine call rather than an ordinary

machine instruction. Execution proceeds as follows:

the OPC field of the instruction is put into the indexing

register (IR) and the instruction:

BLL $G'[~];

is executed

Presumably word % of G will contain the address of a transfer

vector. If desired, it may contain an array descriptor which

limits the number of programmed operators and supplies a multi

plier of 2.

There is one additional feature: BLL will initialize NAW to P,

rather than to P + 1, so it will use the instruction word as the

first AAW. STR, TYPE and ENDF will be taken from the correspond

ing bit positions of the first FAW.

63

9. System Calls

Two versions of the OPR instruction provide protected entry

points into the system. The MCALL instruction works as follows:

8 bits provided by the OPR are put into IR

a BLL $BA is executed, with BA= 604000B.

When the BLL is completed,

G + NEWG, where NEWG = 600000B.

The intention is that 604000B should contain an array descriptor

with

LB = ~

UB = total number of defined system calls

MULT = 2

which points to an array of BLL descriptors for the various pro

tected entry points. Note on any calls to the system from a lo~

wer ring, G is saved in NEWG[l4]. G is restored from G' [14] by

any BLL (BLLN, POP, etc.) which crosses the ring boundary into

a lower ring.

For calls into the utility the UCALL version of OPR works the

same way, except that BA = 400016B and NEWG = 400000B. Note

that this is the beginning of the utility ring. Variants of

these OPRs exist which execute a BLLN instead of a BLL.

UCALN)

(MCAL~,

The PDFLAG, TDFLAG bits in the status register are cleared by

both MCALLs and UCALLs.

MCALLs also set the locked bit of the CPU as described under

"CPU interruptability".

64

10. Traps

A machine trap is a forced transfer of control which may occur

as a result of a variety of untoward events which may arise du

ring the execution of a program. It does not involve a switch

to a new process.

A trap may be fixed or ring-dependent. All fixed traps save the

first l~ words of the state in the l~ words starting at 6~2752B.

They then set G to 6~~~~~B and do X + n; BRU 6~4~~2B, where n is

the trap number. They all have a one word parameter which is

put into the A register after the state is stored. The value of

the parameter depends on the trap. Like MCALL-s, fixed traps

also clear PDFLAG, TDFLAG, 94~M and set the LOCKED bit.

A table of all fixed traps is given in the Appendix. Each one

is described more fully in its proper place in the manual.

The ring-dependent traps differ in that they send control to a

location determined by the ring that P is in. They store P and

the parameter at G' [4] and G' [5] respectively and then clear the

94~M bit in the status register and do IR+ n; BRU $G'[6].

In 940 mode, if the· S bit (bit ~) of an instruction and the P

bit (bit 2) are set, the instruction is called a SYSPOP. The

first 10 words of the state are stored starting at L[3], then A

is set to the effective address of the instruction, clear 94~M

and do x + OPC, BRU L'[2].

65

11. CPU Interruptability

The CPU described in this manual is expected to run as part of

a system which includes, among other things,

1) Two physical CPUs, which are identical except for a

number called the CPU number attached to each CPU. The CPUs are

numbered from ~ bo 1.

2) a separate processor called the µscheduler which is re

sponsible for allocating CPUs to processes. The µscheduler also

has facilities for causing the CPU to operate in a single-step

mode, in which it stores the state, waits and then reloads it

after each instruction execution, and for telling the CPU to

stop execution at once (crash).

3) A protect mechanism which allows the various processors

in the system to be interlocked or synchronized. There are

eight protect lines, any of which may be seized by any processor.

A line may be seized by only one processor at a time; anyone

else attempting to seize the line is refused until the current

owner lets it go.

This section describes the behavior of the CPU with respect to

1) A STROBE signal, which the µscheduler sends when the

CPU is to switch processes

2) The single-step and crash signals

3) Protect 4, which is used to interlock the CPUs, keep

ing more than one from being in a locked state.

4) The timer trap, which occurs when the interval timer

in the state becomes negative

66

5) The XMON and XUTIL traps

6) Initialization

The relevant information is:

a) Some information in the state

1) The ring in which the P-counter is contained

2) The XMON trap bit in SR

3) The XUTIL trap bit in SR

4) The sign bit of the interval timer, which we call TO

b) Some flip-flops in the microprocessor which are not part of

the CPU state

1) STROBE, which may be set by another microprocessor,

normally the µscheduler

2) STEP, which may be set by some external device to make

the CPU operate in a single-step mode

3) LOCKED, which is not accessible to external devices

4) ALARM, which is set when a system crash is impending

c) The state of Protect 4, which will be called CPUPRO

d) A location in absolute core called CPUWAIT which is used tq

keep the CPU idle after the system has crashed or between

STEPs.

67

A. Idle State

When it is initialized (by setting the 0 register in the micro

processor to ~) the CPU goes into idle state.

IDLE: Clear map scan request;

GOTO IDLE IF NOT STROBE;

Clear STROBE.

PWAIT: T + contents of absolute call (6 + CPU number)

(T is the process' PRT index)

Goto PWAIT if T = ~;
Clear absolute cell (6 +CPU number);

Clear LOCKED; Clear the map;

Find the page with the name in (T) and (T+l)

Take it as a context block and load the state

from location 2764B-2777B in it (called the SAVE

area).

If the page is not found in CHT, send a STROBE2 to

the µscheduler with a message 4B7 in absolute cell 2454B + CPU

number *4 then do like ABORT.

Start executing instructions at the location given

by the P-counter;

The CPU returns to the idle state whenever it dumps the state of

a process.

B. Interruption of Program Execution

At the start of every instruction, the truth of any of the fol

lowing conditions will stop execution and cause the indicated

68

action to be taken. The conditions are treated in the order in

which they are listed.

1) NOT LOCKED AND TO: cause timer overflow trap.

2) NOT LOCKED AND STROBE: dump the state into the SAVE area,

send a RETURN message to the µscheduler and go into idle

state.

3) STEP OR ALARM: dump. the state into the SAVE area, clear

STEP. Clear the wait location (23B + CPU number) and

wait until it becomes 123432l~B, then reload the state

from the SAVE area and proceed.

At every step of indirection, every start of an instruction

which is the target of EXU, every parameter of a BLL and in all

other places where the CPU might be held up for more than a few

microseconds, (MVB, MVS, CPS), conditions 1 and 2 are tested and

their indicated actions taken.

C. Setting the Bits

XMONT and XUTILT are part of SR and may be set or cleared with

SRS, LOADS or XSA.

LOCKED is set by MCALL or fixed trap. It can also be set by

SLOK. It is cleared by any BLL or LOADS which leaves the moni

tor ring (BLL, here, includes all variants: UCALL, MCALL, POP),

and can also be cleared by RLOK.

TO can be changed by loading a state from the SAVE area or by

the OPR to set the interval timer.

69

D. The X Traps

At every BLL or LOADS a check is made for transition into a lo

wer ring. If there is a transition from monitor to utility or

user rings, the XMON trap is caused if the XMONT bit is set.

Then if there is a transition from utility to user ring, the

XUTIL trap is caused if the XUTILT bit is set.

E. The CPUPRO Signal

This protect is seized automatically at each point where LOCKED

is set and cleared at each point where LOCKED is cleared. The

programmer can set it himself with the PRO operate, but this is

probably unwise.

70

12. Ordinary Instructions

This section contains a complete description of the behavior of

the machine when interpreting an instruction word, with the fol

lowing exceptions:

instructions with POP = 1 are described under "Programmed

Operators"

the BLL instruction is described under "Function Calls"

the floating point instructions are treated in a separate

section

effective address computation for all instructions is des

cribed under "Addressing"

Each instruction is specified in terms of its operands, its ef

fect on the state of memory of the running process, and any un

usual traps it may cause. Traps which are caused by the address

ing system are the same for all instructions and are not consi

dered. Traps caused by the map are the same except for the

read-only trap. Its occurrence depends on whether the instruc

tion attempts to modify memory; this should be obvious from the

instruction description and will not be further mentioned. The

address type is S or D for instructions which modify memory.

Part of the state is a 2-bit condition-code. This code is set

by the RESULT of most instructions as follows:

fJ if RESULT < fJ

1 if RESULT = fJ

2 if RESULT > fJ

71

The RESULT is indicated in the description of each instruction.

Unless some other change in P is indicated, all instructions end

with

p + p + 1

The INSTD bit in the status register is set to ~ at the end of

every instruction, except for LOADS.

The address type of the instruction is indicated for every in

struction, e.g.,

LDA (F)

In the description some ..special notation is used: STORE(X,Y)

stores X in the memory location addressed by Y. The storing in

cludes some special logic for (S) type instructions if a field

or character is specified as operand (refer to Use of Addresses

by Instructions); ABS(T) is the absolute value of T.

ABS(4B7) = 4B7.

72

Summary of Abbreviations

AR A register

BR B register

c register } CR (used only for double-precision floating-

D register DR point and quadruple loads and stores)

XR X register

P Program counter

L Local environment register

G Global environment register

CC Condition Code, equivalent to RESULT:

cc = fl
cc = 1

cc = 2

RESULT < fl

RESULT = fl

RESULT > fl

SR Status register

OV = SR[22]

TOV = SR[21]

CARRY = SR[20]

PDFLAG = SR(19]

TDFLAG = SR[l8]

Overflow bit

Temporary Overflow bit

Carry bit

Permanent double-precision flag. Used

to set TDFLAG after STF, STD or FCP

Temporary double-precision flag. Makes

all floating-point instructions double~

precision.

A.

73

Data Transfer Instructions (12)

LOA (F) Load A register

AR + OP;

RESULT +AR;

LOB (F) Load B-register

BR + OP;

RESULT + BR;

LOX (F) Load X-register

XR + OP;

CC is unchanged

LDD (F) Load double

AR + CONTENTS (Q) ; BR + CQNTENTS{Q+l);

CR+ CONTENTS(Q+2) & DR+ CONTENTS(Q+3) IF TDFLAG=l;

RESULT + AR;

EAX (E) Effective address to X

XR + Q;

CC is unchanged

LAX (F) Load array index

XR + Q OR 4B6; (sets TAG to 2 for indirection)

CC is unchanged

Treats bit ATRAP in an array descriptor opposite to
all other instructions

74

LNX (F) Load negative to X

XR + -OP; two's complement negation

CC is unchanged

STA (S) Store A register

STORE(AR,Q);

CC is unchanged

STB (S) Store B register

STORE(BR,Q);

CC is unchanged

STX (S) Store X register

STORE(XR,Q);

CC is unchanged

STD {D) Store double

STORE(AR,Q); STORE(BR,Q+l);

STORE(CR,Q+2) & STORE(DR,Q+3) & TDFLAG + PDFLAG

IF TDFLAG = 1;

CC is unchanged

XMA (S) Exchange memory and A

TEMP+ AR; AR+ OP; STORE(TEMP,Q);

RESULT + AR;

75

B. Integer Arithmetic Instructions (10)

ADD (F) Add memory to A

AR+ AR+ OP; (two's complement)

CARRY+ carry from bit 9 of adder, i.e., set if the

sum of AR and OP taken as unsigned 24-bit inte-

gers, . > 224
J.S - I and cleared otherwise;

TOV + 1 if the add causes overflow, i.e., if AR and OP

have the same sign but the sum has a different

sign, else 9;

OV + OV or TOV;

RESULT + AR;

SUB (F) Subtract memory from A

Proceed exactly like ADD except that (-OP) replaces OP.

This is a two's complement negate, i.e., {NOT OP+ 1)

ADC (F) Add memory and CARRY to A

ov + 9

AR + AR + OP + CARRY;

Then proceed exactly like ADD

sue {F) Subtract memory from A + CARRY

ov + fl;

AR+ AR+ CARRY+ {NOT OP);

Then proceed exactly like ADD

76

MIN (S) Memory increment

RESULT + AR + OP + l;

STORE (RESULT IQ) ;

MDC (S) Memory decrement

RESULT + AR + OP - l;

STORE(RESULT,Q);

ADM (S) Add to memory

RESULT + AR + OP + AR;

STORE(RESULT,Q);

ADX (F) Add to X

XR + XR + OP;

CC is unchanged

MUL (F) Multiply memory and A

TOV + fJ;

TOV + OV + 1 IF OP = AR = 4fJfJ~fJ~fJ~B;

PROD + AR * OP; as two's complement numbers, yield
ing a 47-bit two's comp.lement result

AR[JJ I 23] + PROD[JJ I 23] ;

BR[fJ,22] + PROD(24,46];

BR[23] + ~;

RESULT+ (AR OR (BR RSH l));

The product, consisting of a sign bit and 46 magnitude bits, is

left-justified in the AB registers. If integers are being mul

tiplied, an ASHD -1 is required to obtain the integer product in

B.

77

DIV (F) Divide memory into AB

TEMP + OP; TOV + ~;

DIVIDEND+ ABf¢,46];

QUOTIENT + DIVIDEND/TEMP; a 47 bit two's complement
integer treating both o
perands as fractions in
the range -1 < f < 1, and
obtaining a quotient with
23 fraction bits

TOV + OV + 1 and proceed to next instruction
unless -1 < QUOTIENT < 1

AR + QUOTIENT;

TEMP + QUOTIENT * TEMP;

BR + (DIVIDEND - TEMP) ;

RESULT + AR;

yielding a 47-bit product
as for multiply
this is the remainder

The quotient of the 47-bit dividend and the 24-bit divisor, both

taken as signed two's complement fractions, is put into A and

the remainder into B. Overflow occurs if the dividend is larger

than the divisor, since the quotient cannot be represented as a

fraction; in this case, the central registers are unaltered.

To divide an integer in A by one in memory, do ASHD -23 first.

78

c. Test Instructions (5)

ICP (F) Integer compare

RESULT + AR - OP;

CPZ (F) Compare with zero

RESULT + OP;

CMZ (F) Compare A and memory with zero

RESULT + AR AND OP;

The following two instructions operate on string descriptors,

which are pairs of indirect address words of type string. The

intended interpretation is that the first points to the first

character of the string, the second to the last character.

ISD (S) Increment string descriptor

TEMP+ CONTENTS(Q);

CSIZE + TEMP[2,3]; CPOS + TEMP[4,S);

RESULT+ TEMP - CONTENTS(Q + 1);

Proceed to next instruction if RESULT = ~;

IF CPOS + CSIZE < 3 DO;

CPOS + CPOS+l;

ELSE DO;

CPOS + 0; TEMP + TEMP + l;

ENDIF:

TEMP[2,3] + CSIZE; TEMP[4,5] + CPOS;

STORE(TEMP,Q);

79

If the string is empty (the two IAWs are equal) the instruction

sets CC to 1 and exits. Otherwise it sets CC to~ or 2, and in

crements the first IAW by one character position in the string.

DSD (S) Decrement string descriptor

TEMP+ CONTENTS(Q+l);

CSIZE + TEMP{ 2 1 3] ; CPOS + TEMP{ 4, 5]

RESULT+ TEMP - CONTENTS(Q);

Proceed to next instruction if RESULT = ~;

IF CPOS > ~ DO;

CPOS + CPOS -1;

ELSE DO;

CPOS + 3-CSIZE; TEMP + TEMP -1;

ENDIF;

TEMP{2,3] + CSIZE; TEMPf 4,5] + CPOS;

STORE(TEMP,Q+l);

The idea is the same for ISD, but the second IAW is decremented

by one character position.

D. Logical Instructions (3)

ETR (F) And A and memory

AR + AR AND OP;

RESULT + AR;

IOR (F) Or A and memory

AR + AR OR OP;

RESULT + AR;

80

EOR (F) Exclusive or A and memory

AR + AR EOR OP;

RESULT + AR;

E. Shift Instructions (6)

All shift instructions interpret the absolute value of OP MOD 64

as the number of shifts to be done. The sign of OP specifies

the direction: positive for left shifts, negative for right.

SHIFTC + ABS(OP MOD 64);

right shift as specified IF OP < J ELSE

left shift as specified;

RESULT + AR;

ASHD (F) Arithmetic shift double (A and B registers)

A and B taken as a single 48-bit register are shifted. On a

right shift, the original sign bit i? copied into vacated bit
I

positions. On a left shift, OV + 1 if any of the bits shifted

out differ from the final sign of A. TOV is set to 1 when OV

is set, otherwise it is set to ~.

ASHA (F) Arithmetic shift A

Identical to ASHD except that only AR is shifted

LSHD (F) Logical shift double

A and B taken as a single 48-bit register are shifted. Vacated

bit positions are filled with zeros.

LSHA (F) Logical shift A

Identical to LSHD except that only AR is shifted

81

CYD (F) Cycle double

A and B taken as a single 48-bit register are cycled. i.e.,

they are shifted, but bits which are shifted out one end fill

the vacated positions at the other end.

CYA (F) Cycle A

Identical to CYD except that only AR is cycled.

F. Branch Instructions

BRU (E) Branch unconditionally

p + Q;

CC is unchanged

Six instructions test the condition code

BLT (E) Branch on less than

P + Q IF CC = ~; (RESULT < ~)

cc is unchanged

BLE (E) Branch on less than or equal

P + Q IF CC = ~ OR CC = l; (RESULT < ~)

cc is unchanged

BEQ (E) Branch on equal

P + Q IF CC = l; (RESULT = ~)

CC is unchanged

BNE (E) Branch on not equal

P + Q IF CC ~ 1; (RESULT ~ ~)

cc is unchanged

82

BGE (E) Branch on greater than or equal

p + Q IF cc = 1 or cc = 2; (RESULT > ~)

CC is unchanged

BGT (E) Branch on greater than

P + Q IF CC = 2; (RESULT > ~)

CC is unchanged

Two branch instructions affect the X register

BRX (E) Branch on index

XR + XR + l;

P + Q IF XR < ~;

CC is unchanged

BSX (E) Branch and set X

XR + P + l;

p + Q;

CC is unchanged

BLL (S) Branch and load L

is described elsewhere

G. Miscellaneous Instructions (5)

HLT (F) Halt

Always causes the TI trap

EXU (F) Execute

Initializes IR+ XR & R + Q, then interprets CONTENTS(Q) as an

instruction and executes it.

83

EAC (E) Effective address computation

This instruction computes the effective address of CONTENTS(Q)

interpreted as an instruction word. Similar to EXU, IR and R

are initialized to XR and Q respectively. The results of the

computation are given in registers as follows:

XR[~ 1 5] + RESULT+ 1 & AR+ OP

if the address is Immediate

XR(~,5] + RESULT + 2 & XR[6,23] + Q

if the address is ROD or ROX read only

XRf~,5] + RESULT + 3 & XRf 6,23] + Q & AR+ MASK & BR+ SHIFT

if the address refers to a field or character

MASK has bits (24-SIZE), 23 on, the rest off.

SHIFT equals to 24-(FB +SIZE)

XR{~,5] + RESULT + ~ & XR[6,23] + Q

in all other cases

Note that Q - whenever given - is ring checked against R in the

final phase of the address calculation. (Refer to "Addressing

from Instructions")

SRS {F) set or reset status bits

The operand is used to set or reset the status register in the

state in the following way:

SR + (SR OR OP IF (OP AND 1) = 1 ELSE

SR AND NOT OP);

84

TSB (F) Test status bits

RESULT + SR AND OP;

i.e., 1 bits in the operand select bits of SR. The condition

code is set depending on whether all the selected bits are ~ or

not.

H. OPR (F) Operate (1)

If the operand is negative, the instruction is a system call.

Bits 14-15 in the absolute value of the operand select one of

four alternatives:

~ UCALL

1 UCALN

2 MCALL

3 MCALN

Bits 16-23 in the absolute value is the address for the system

call. (as described in a separate section)

85

If the operand is positive, it is decoded to determine what is

to be done:

CAB

XAB

CBA

CBX

XXB

CXB

CAX

XXA

CXA

CNA

CNX

ZOA

ZAB

ZOB

CGA

XGA

CLA

XLA

CSA

XSA

CTA

CCA

Copy A to B

Exchange A and B

Copy B to A

Copy B to X

Exchange B and X

Copy x to B

Copy A to X

Exchange X and A

Copy X to A

Negate A

Negate X

Clear A

Clear AB

Clear B

Copy G to A

Exchange G and A

Copy L to A

Exchange L and A

Copy SR to A

Exchange SR and A

Copy interval timer
to A

Copy compute time
clock to A

NOP No operation

BR + AR;

T + AR; AR + RESULT + BR; BR + T;

AR + RESULT + BR;

XR + BR;

T + BR; BR + XR; XR + T;

BR + XR;

XR + AR;

T + AR; AR + RESULT + XR; XR + T;

RESULT + AR + XR;

AR + RESULT + -AR;

XR + -XR;

AR + RESULT + f1;

AR + BR + ER + fl;

BR + fl;

AR +- RESULT + G;

T + AR; AR+ RESULT + G; G +- T;

AR +- RE~ULT ~ L;

T + AR; AR + RESULT + L; L +- T;

AR + RESULT +- SR;

T + AR; AR + RESULT +- SR; SR +- T;

A + RESULT + IT;

A+ RESULT +- CTC;

86

MVB Move block

The block of AR words starting at XR is moved to the AR words

starting at BR. The words are moved one at a time, and the re

gisters are updated after each word is moved to reflect the num

ber of words remaining to be moved. This instruction is inter

ruptable. The move is done in such a way that no word is over

written until it has been moved.

MVC Move constant

XR is stored into the AR words starting at BR. This instruction

is interruptable.

MVS Move string - (Not presently implemented)

The string of AR bytes starting at the byte specified by BR ta

ken as a string IAW is moved to the AR bytes starting at the

byte specified by XR taken as a string IAW. The bytes are moved

one at a time, and the registers are updated after each byte is

moved to reflect the number of bytes remaining to be moved. If

the source and target strings overlap, the move is done in such

a way that no character is overwritten until it has been moved.

If the strings do not overlap, after execution BR and XR will

always point to the first characters after the source and tar

get strings respectively. This instruction is interruptable.

CPS Compare string - (Not presently implemented)

The string of AR bytes starting at the byte specified by BR ta

ken as a string IAW is compared with the AR bytes starting at

87

the byte specified by XR. RESULT is set to indicate whe.ther

the first string is smaller, equal to, or greater than the se

cond. The registers are updated every time a byte is compared.

This instruction is interruptable.

CLS Compute length of string

AR and BR are taken as string IAWs. The number of bytes in the

string starting at the byte specified by AR and ending at the

byte specified by BR, -1 is put into AR. The CSIZE field of BR

is used to determine the byte size.

RESULT + AR;

ASP Add to string pointer

AR is taken as a string IAW. Into XR is put a string IAW which

points to the XRth byte beyond the one pointed to by AR.

LLT Locate leading transition

The bit number (counting from ~ on the left) of the left-most

bit in AB which differs from the sign bit of A is put into XR.

If no bits differ, ~ is put into XR.

RESULT+ XR;

COB Count one bits

The number of one bits in the A and B registers is put into XR.

RESULT+ XR;

88

LOADS Load state

Loads the first 10 words of the state (not including the compute

time clock or the interval timer) from the 10 words addressed

by XR. An MACC trap will occur if the new P is in a higher ring

than the current P. This instruction does not clear the INSTD

bit. An XMON or XUTIL trap may occur if the new P is in a lower

ring than the current P and the XMONT or XUTILT bits are set in

the current SR as described under "CPU Interruptability".

STORS Store state

Stores the first 10 words of the state into the 10 words address

ed by XR, but does not store P and XR; the corresponding loca

tions are left unchanged.

LSC Load string constant

The word addressed by XR is fetched and used to form a 4-word

string constant in A, B, C, and D as follows:

TEMP+ CONTENTS(XR);

CSIZE + TEMP[2,3]; CPOS + TEMP[4,5);

AR + BR + 4B7 + CSIZE * 4B6 +

(3 - CSIZE) * 1B6 + XR;

CR + DR + 4B7 + CSIZE * 4B6 +

CPOS * 1B6 + XR + TEMP[6,23);

This means that the XR points to a word used to generate a string

descriptor and that this word is immediately followed by the

string constant specified.

89

The following OPRs are privileged. If P < 6flflflflfl, the TI trap

will occur.

SLOK

RLOK

ALO

Set CPU lock

Reset CPU lock

Absolute load A

Loads AR with the contents of the core location whose absolute

address (i.e., unmapped address) is contained in XR.

AST Absolute store A

Stores AR into the core location whose absolute address is con

tained in XR.

AAX Absolute address to X

Loads XR with the absolute address corresponding to the virtual

address in XR. Bit fl is set if the physical map entry was emp

ty. Bit 3 is set if PMRO was on in the physical map entry, bit

2 is set if bit 3 is set or the dirty bit was clear.

PRO Protect

Attempts to set PROi if AR[24-i] is on. If all the selected

PROs are set successfully CC + fl; else CC + 1.

UNPRO Un protect

Clears PROi if AR[24-i] is set.

ATTN Attention

Sends a STROBE signal to microprocessor i,if AR[24-i] is set.

90

USCL µscheduler call

This OPR initiates a switch-processes sequence. The state of

the machine is dumped at the SAVE area (6~2764B). The interval

timer, shifted 7 to the right so that the least significant bit

counts milliseconds, is stored into the MCT field (8:~ 1 7) of

the process' PRT entry.

The µscheduler is called with AR[~,5] as an opcode, the CPU is

put into the IDLE state.

CMAP Clear map

Sets all EF empty flags in the map to 1.

CMAPS Clear maps

Clears the maps of both CPUs in the system.

CAT Copy A to timer

Copy A to interval timer IT +AR;

CAC Copy A to clock

Copy A to compute time clock CTC + AR;

RUN Read unique name

A unique name is read from the unique name generator and put

into AB.

BR + low order bits of unique name;

AR + high order bits of unique name;

91

LDMP Load physical map

An entry is loaded into the physical map by placing a 7-bit page

number into bits 6-12 of the XR and the entry in bits 13-23 as

follows:

TEMP+ CONTENTS(XR);

MAP'REG + TEMP[6,12];

MAP'REG[~,~] + EF + TEMP[l3,13];

MAP'REG[l,l] +DB+ TEMP[l4,14];

MAP'REG[2,2] + PMRO + TEMP[lS,15];

MAP'REG[3,l~] + PHYSICAL'PAGE'NO + TEMP[l6,23];

92

13. Floating Point

A. Number Representation

A 48-bit single precision floating point datum represents a ra-

tional number in the following way:

1) Positive numbers

M is the biased exponent E:

E + M - 2flflf1B;

positive number X = N * 2<E- 3S)

where 235 < N < 2 36 -1 and -2111 < E < 2 1~ -1

represented as
1112

2 1~ 36
Largest number is 2 * (1 - 2-) :

Ill 1 1112

1~111 11 l. ll

Smallest positive number is (except for

numbers, below)
-21~

see 2

~ 1 1112

~I~ JI 11.JIJI

47

131

47

ii
un-normalized

47

~1

93

2) Negative numbers

The sign bit (bit ~) indicates that the number is negative. N

is given in two's complement form:

negative number X = (N - 236) * 2<E- 3S), 1 < N < 235

1112

-1.~:

Lowest negative number is -2 21~ * (1 - 2-36)

l~I~
1112

-21~
Maximum negative number is -2

3) Zero

9J 1 1112

4) Un-normalized numbers

The only un-normalized nwnbers allowed are these:

9J 1 11 12

X: 1~1~~ ~1 N

and their negatives, i.e. , !xi
-21~

Note that < 2 -
both normalized and un-normalized.

47

I
+ -

47

~1

47

47

~1

47

,1 .:::_ N .:::_ 235

-21.0'
2 are

94

5) Infinity

f3 l 1112 47

-oo: f_1l_11 ___ 1~l~·_.0 ______________ ~.01
The symbol - 00 is treated as the single point at infinity in the

one-point (projective) closure of the reals. Operations on - 00

are summarized in the Appendix.

6) Undefined floating point numbers

Data of the form

f3 l 11 12 47

0: H M N

with .0 < M & ~ < N < 235 - 1,

and their negatives are not floating point numbers. If such a

number appears as an operand for any floating point operation,

the trap UFN will occur.

B. Algebraic Closure Properties of Normalized Numbers

Numbers of the form A.l, A.2 and A.3 are normalized numbers.

{n.n's)

1)

2)

If X is an n.n, so is -X.
-21J

If X is an n.n not zero nor +2 , so is l.J/X.

The smallest possible n.n whose reciprocal is an n.n is
1,0

2-2 (1 + 2-35).

95

c. Double Precision

The 96-bit double precision data have an additional 48 fraction

bits. For example a DP positive number:

~ 1 11 12 47

1~1 M I N I
48 95

I N' I
represents X = (N + N' * 2-48) * 2<E-35) I ~ < N' < 248 -1.

D. Floating Point Instructions (8) and OPRs

All floating point operations have single (SP) and double (DP)

precision variants, bit TDFLAG in SR selecting the one to be

used. Bit PDFLAG is used to set TDFLAG after a compare (FCP)

or store (STF) •

Floating operations set CC to indicate if the result is less or

greater than or equal to~- (STF and FIX leave CC unchanged.)

FLO (E) Floating load

An SP or DP floating point number starting at Q is copied into

the floating point accumulator. (The A, B, c, D, and E central

register)

STF (D) Floating store

SP: The floating point accumulator is rounded at bit 35 of

the fraction and copied to (Q) and (Q+l).

96

DP: Four words are copied from FA to the locations starting

at Q. A double floating store causes no rounding if the FDP bit

in SR is set. Otherwise it rounds at bit 71 of the fraction and

zeros the last 12 bits. The FDP bit thus determines whether DP

numbers are stored with 72 or 84 bits of fraction. Overflow may

occur because of the rounding. In all cases TDFLAG + PDFLAG af-

ter the store.

FAD (E) Floating add

SP: The operand is extended with 48 zeros on the right. A

DP is then done.

DP: Let the operands be a* 2b, * 2d c . The two exponents

are compared. Suppose b > d. Then c is shifted right by b - d.

An 87 bit register is provided to hold c, which is loaded

(sign + 84-bit fraction) into the 85 most significant bits. The

two least significant bits are cleared. The 86 most significant

bits participate in the right shift in the usual way. The least

significant bit is 'sticky': if a 1 is ever shifted into it, it

remains 1 from then on.

After c has been shifted, it is added to a in an 85-bit adder,

yielding a result r of 87 bits. Bits 85:86 of c do not partici-

pate in addition.

Now, if an overflow has occured (a[~] = c[~] ~ r[~]), r is shift-

ed right by 1. r[86] is treated as a sticky bit in this shift

just as it was in the shift of c. b is incremented by 1 if this

shift occurs and r[~] +NOT r[~];

97.

The result is normalized by left shifting until either:

1) the sign bit differs from the next bit or

2) the fraction is 1199 9

The exponent b is decremented by 1 for each left shift.

Lastly the result, rounded at bit 83 of the fraction (i.e.,

r[84], since when we say 'bit 83 of the fraction' we don't count

the sign bit) in accordance with the rounding mode in force, is

assigned to the. floating point accumulator. See the discussion

of rounding below for details. Both overflow and underflow may

.occur.

FSB (E) Floating subtract

Identical to addition except that the negative of the second

operand is taken first. This cannot cause any abnormal condi

tions.

FMP (E) Floating multiply

SP: The accumulator is rounded to single precision, then the

two 36-bit fractions are multiplied to yield a 72-bit result.

The exponent which goes with the result is the sum of the expo

nents of the operands plus one, to correct for the placement of

the binary point in the product. The 72-bit fraction is shifted

left if required for normalization. No rounding is required

since the accumulator can hold this entire product. Overflow or

underflow may occur.

DP: The two 84-bit fractions and the two signs are multiplied

to yield an 86-bit result (sign plus 85 magnitude bits) and an

98

87th bit which is the union of the 82 least significant bits of

the full 168-bit product. The resulting 87-bit number and the

exponent obtained by the procedure described for single precision

are normalized and rounded like the result of an add.

FDV (E) Floating Divide

SP: The 36-bit divisor fraction is divided into 38 bits of

the accumulator fraction to produce a 37-bit quotient. To this

is appended a 38th bit which is set if the division is not exact

or if the other 46 bits of the accumulator fraction are non-zero.

The resulting 38-bit number is put into the accumulator and fill

ed out with 46 zeros on the right. The exponent of the result

is computed by subtracting the divisor exponent from the dividend

exponent.

DP: The 84-bit divisor fraction is divided into the 84-bit

accumulator fraction to produce an 85-bit quotient. The exponent

is computed as for SP and the result is rounded in the usual way.

Overflow or underflow may occur. Division by ~ produces its own

trap. (DIZ)

If the divisor is an un-normalized number it is normalized prior

to division. It may or may not cause overflow as explained above.

FCP (E) Floating compare

Identical to floating subtract, but the result is not assigned

to the floating accumulator. CC will be set as usual to indicate

the sign of the result. TDFLAG + PDFLAG

99

FLX (E) Fix and load X

XR is assigned a 24-bit integer which is the floor of the float

ing operand. If the floor is > 2 23 -1 in magnitude, the trap

FLXO occurs. The result does not depend on SP or DP mode.

FNA (OPR) Floating negative

The number in the floating point accumulator is replaced by its

negative.

FIX (OPR)

Similar to FLX, but the operand is taken from the floating point

accumulator and the result is put into RESULT and AR.

FLOAT (OPR)

A FLOAT operation produces a (normalized) floating point number

in the floating point accumulator which when FIXed will restore

the integer operand in AR.

wrong with FLOAT.

E. Rounding

(unless it is 4B7) Nothing can go

There is a three-bit field (TRMOD) in SR which specifies how

rounding is to be done (the field PRMOD is used to set TRMOD

after every FAD, FSB, FMP, FDV, STF or FCP). The descriptions

of instructions above state explicitly each point where rounding

is done. The phrase 'round at bit n of the fraction' means that

bit n of the fraction (numbering the magnitude bits from ~ and

not counting the sign) is the least significant bit retained.

100

The rounding modes are:

TRMOD Name Rounding

~ N nearest number

2 F floor (toward ~)

3 c ceiling (away from ~)

4 p away from - 00

5 M toward - 00

Rounding involves three bits. The first is the least significant

bit to be retained and is called Q. The one following Q is call

ed R. The third is the union of all the bits following R (some

times only 1, none for double divide) and is called T.

The rounding rules are as follows (call the sign S) :

N: +l (add 1 to least significant retained bit)

if R = 1 unless Q = fl and T = ~

F: +l if s = 1 and R or T = 1

C: +l if s = ~ and R or T = 1

P: + 1 if R or T = 1

M: no action

F. Overflow and Underflow

Overflow and underflow occurs if at the end of a floating point

instruction, the exponent is outside the permitted range.

Overflow always causes a trap (FLO) • It leaves a correct result

except for the exponent, which must be read as a 12-bit two's

101

complement number with sign bit the complement of the high-order

bit preserved.

Underflow action depends on the SUF bit in SR. If it is set, no

trap occurs and a suitable un-normalized number of zero results.

Otherwise, trap FLU occurs and the result is correct (and normal

ized) with the same rule for the exponent as was stated for over

flow.

102

APPENDIX CONTENTS

DEFINITION OF INSTRUCTION CODES •

DEFINITION OF QPR ADDRESSES •

SUMMARY OF ADDRESSING • • • • . . .
SUMMARY OF INSTRUCTION ADDRESSING •

FIXED TRAPS • • • • • •

RING-DEPENDENT TRAPS

RING-DEPENDENT TRAP I~: BLLERR •

SUMMARY OF IMPORTANT CORE ADDRESS •

SPL PROGRAM TO DEFINE BLL • •

WORD FORMATS • • . .

SOME FIELDS IN OCTAL FORM •

CHT HASHING ALGORITHM • • •

• •

Page

. 103

. 104

• • . 105

. • . 106

. • 108

• 109

. 110

. . . 111

. . 113

. • . 118

• 127

• 128

103

DEFINITION OF INSTRUCTION CODES

code mnemonic a.type code mnemonic a.type

JJ HLT F 4~ ASHD F*
1 LDA F* 41 ASHA F*
2 LDB F* 42 LSHD F*
3 LDX F 43 LSHA F*
4 LDD F* 44 CYD F*
5 EAX E 45 CYA F*
6 LNX F 46 TSB F*
7 XMA S* 47 LAX F

l~ ETR F* 5~ BRU E
11 IOR F* 51 BLT E
12 EOR F* 52 BEQ E
13 STD D 53 BLE E
14 STF D 54 BGT E
15 STA s 55 BNE E
16 STB s 56 BGE E
17 STX s 57 BLL s

2/J ADD F* 6~ BLLN s
21 SUB F* 61 BRX E
22 ADC F* 62 BSX E
23 sue F* 63 SRS F
24 ADM S* 64 EAC E*
25 ADX F 65
26 MIN S* 66
27 MDC S* 67

3~ MUL F* 7/J FLX F
31 DIV F* 71 FLD F*
32 ICP F* 72 FCP F*
33 CPZ F* 73 FAD F*
34 CMZ F* 74 FSB F*
35 ISD S* 75 FMP F*
36 DSD S* 76 FDV F*
37 EXU F? 77 OPR F?

* indicates th.at CC is set by the instruction

104

DEFINITION OF OPR ADDRESSES

OPR address mnemonic OPR address mnemonic

JJ CAB 4/J
1 XAB * 41 LOADS *
2 CBA * 42 STORS
3 CBX 43 LSC
4 XXB 44 FIX *
5 CXB 45 FLOAT *
6 CAX 46 FNA *
7 XXA * 47

l/J CXA * 5JJ
11 CNA * 51
12 CNX 52
13 ZOA * 53
14 ZAB 54
15 ZOB 55 SLOK
16 CGA * 56 RLOK
17 XGA * 57 ALD *
2/J CLA * 6JJ AS+
21 XLA * 61 AAX
22 CSA * 62 PRO *
23 XSA * 63
24 CTA * 64 UN PRO
25 CCA * 65 ATTN
26 NOP 66 USCL
27 MVB 67 CMAP

3JJ MVC 7~ CMAPS
31 MVS 71 CAT
32 CPS * 72 CAC
33 CLS * 73 RUN *
34 ASP 74
35 LLT * 75 LDMAP
36 COB * 76
37 77

* indiaates that CC is set by the OPR

105

SUMMARY OF ADDRESSING

Notation used in defining addressing modes.

W[i,j]

CONTENTS(N)

IA(N)

means bits i to j of W (the address field of
the instruction) considered as a 24-bit number.
W[i,i] is represented by W[i].

means the contents of the memory location with
address N. Ring checking is performed with
R as source and N as target.

means that the indirect addressing sequence
is initiated by:

FUNCTION IA(N);
IAW + CONTENTS(N);
R + N;

*PROCEED TO PROCESS IAW

By the time it is finished, the IA function
will set the value of the address (Q) or the
operand (OP).

All instructions start with IR + XR & R + P;

~
(1)

<
tll
0
::i

Abbr

D

I

x

PD

PDI

BX

BXD

Name

DIRECT

INDIRECT

INDEXED

Pointer-Displacement

Pointer-Displacement Indirect

Base-Index

Base-Index-Displacement

SUMMARY OF INSTRUCTION ADDRESSING

Notation

OPC G' (W];

OPC $G' (W];

OPC X' (W];

OPC P[D);

OPC $P[D];

OPC B{I];

OPC ($X')[I+D];

Address Computation

Q + W + G.;
OP+ CON'l'ENTS(Q);

IA(W + G);

Q + W + IR;
OP+ CON'l'ENTS(Q);

PTR + IR IF W[l6,23) ~ fl ELSE
PTR + CONTENTS(G + W[l7,23]) IF W[l6) •fl ELSE
PTR + CONTENTS(L + W[l7,23]);
DISP + SIGNED(W[l/6,15]);
Q + PTR + DISP;
OP + CONTENTS (Q) ;

Q + PTR + DISP; * AS FOR PD MODE
IA(Q);

BASE + IR IF W[l6,23) = fl ELSE
BAS~+ G + W[l7,23] IF W[l6) =.fl ELSE
BASE+ L + W[l7,23J;
IR + IR IF W(lfl ,15] = fl ELSE. .
IR~ CONTENTS(G + W[ll,15]) IF W(lflJ ="fl ELSE
IR+ CONTENTS(L + W[li,15]);
IA (BASE);

BASE + IR;
INDEX + /6 IF W[l6,23) = JI ELSE
INDEX+ CONTENTS(G + W[l7,23]) IF W[l6]
INDEX+ CONTENTS(L + W[l7,23J);
DISP + SIGNED(W[lfl,15]);
IR + INDEX + DISP;
IA(BASE);

SUMMARY OF INSTRUCTION ADDRESSING (continued)

Abbr Name

LR L-Relative

LRI L-Relative-Indirect

Field

String

Array

Notation

OPC L' (DJ;

OPC $L' (D);

SE(2), SIZE(3,7),
FB(S,12), DISP(l3,23)

CSIZE(2,3), CPOS(4,5),
WA(6,23)

LB(2), ATRAP(3), LEB(4),
MULTS(S,6), MULTL(S,lJl),
UBS(7,23), UBL(ll,23)

Address Computation

DISP + W[l3,23];
Q + L + DISP;
OP+ CONTENTS(Q);

DISP + W[l3,23);
Q + L + DISP;
IA(Q);

Q + IR + DISP;
U + CONTENTS (Q);
OP+ U[FB,FB+SIZE-1];
OP + OP - 2** (24-FB) IF SE = 1 AND OP [FB,FB]

Select byte CPOS of CSIZE from word WA of
string.

TRAP'ABE(R) IF IR< LB;
IATRP(R) IF (ATRAP=l) AND (INSTR~LAX);
IATRP(R) IF (ATRAP=Jl) AND (INSTR=LAX);
IF LEB = Jl DO;

TRAP'ABE(R) IF IR > UBS;
IR+ (IR-LB) * (MULTS+l);

ELSE DO;
TRAP'ABE(R) IF IR > UBL;
IR+ (IR-LB) * (MULTL+l);

ENDIF;
T + R + l;
NORMAL' IA(T);

1; I-'
0
-....)

Number Name

1 MACC

2 PRO

3 PNIM

4 PNIC

5 TO

6 PI

7 TI

8 XMON

9 XUTIL

11 ILIM

12 MAB

108

FIXED TRAPS

Caused by

Memory access error - attempted
access to monitor from below M
or utility from below U

attempted write of RO page

attempted reference to page not
in map

attempted reference to page not
in core

timer overflow - not in monitor
mode

privileged instruction

trapped instruction

on exit from monitor via any
BLL or LOADS if XMONT is set in
the state

on exit from utility via any
BLL or LOADS if XUTILT is set
in the state

indirect limit exceeded

map abort

Parameter

Q+(RING(R)-1)*1B6

Q

Q

Q

address of IAW

Number

1

2

3

4

5

6

7

8

9

10

Name

ABE

FLO

FLU

RO

IATRP

UFN

FLXO

DIZ

STKOV

BLLERR

109

RING-DEPENDENT TRAPS

Caused by

array bound exceeded

floating overflow

floating underflow

read only trap

indirect address trap bit

undefined floating number

overflow on FIX or FLX
instruction

floating divide by zero

stack overflow

function call error
described in separate table
on the next page

Parameter

address of IAW

address of ROD
or ROX IAW

address of IAW

NAW+CLASS*lB6

110

RING-DEPENDENT TRAP IJJ: BLLERR

Class Parameter

1 address type error in A 1B6

2 wrong number of arguments 2B6 + NAW

3 argument type mismatch 3B6 + NAW

4 inadmissible argument 4B6 + NAW

5 address type error SB6 + NAW

6 array, label or string 6B6 + NAW
descriptor format error

G' [.0']

GI [l]

GI [2]

GI [3]

GI [4]

GI [5]

GI [6]

GI [7]

GI [31]

G' [127]

GI I 37777B]

LI [.0']

LI [1]

LI [2]

LI [31]

LI [127]

L' [2,047]

111

SUMMARY OF IMPORTANT CORE ADDRESS

Start at the user ring

POP entry IAW

2nd word of POP entry IAW

SP - Stack Pointer

SL - Stack Limit

Ring dependent trap - P is stored here

Ring dependent trap - parameter is stored here

Ring dependent trap service entry IAW

(may be used as 2nd word of IAW}

Last word which can be used as an index in BX

Last word which can be used as a pointer in PD
or IPD or as a base in BX

Last word which can be accessed by D, I addressing

1st word of the return descriptor - P

2nd word of the return descriptor - L, STK, CPA

SYSPOP transfer address

Similar to G' [31]

Similar to G' [127]

Last word which can be addressed by L, LI addressing

112

SUMMARY OF IMPORTANT CORE ADDRESS (continued)

4/6 JIJI JI [lB Start of utility ring, G for utility

4J1JIJ114B G may be stored here

4JIJ1/116B UCALL entry IAW

6f6Jlf6flf6B Start of monitor ring, G for monitor, context block

6f6/6fll4B G may be stored here

6/62752B State is stored here if a fixed trap occurs

6/62764B Start of the SAVE area

6f64Jlf6J1B MCALL entry IAW

6fl4f6fl2B Fixed trap entry

777777B Maximum virtual address

113

SPL PROGRAM TO DEFINE BLL

* SPL PROGRAM TO DEFINE BLL

BLL: N+9; SPEC+9; MCAL+9; NEWG+G; GOTO BLLl;
BLLN: N+l; SPEC+9; MCAL+9; NEWG+G; GOTO BLLl;

* QPR WITH NEGATIVE OPERAND:
OPR: OP+ -OP;

*

N+OP $ BITlS; SPEC+9;
MCAL+OP $ BIT14+1;
(NEWG+4~~999B & R+499914B) IF MCAL=l ELSE
(NEWG+699999B & R+694999B);
IR+OP $ BIT16THRU23; IA(R); GOTO BLLl;

POP: POPW+CONTENTS(P); IR+POPW $ FOPC; N+9
SPEC+l; MCAL+9; NEWG+G;
IA(G); TI() IF IMMEDIATE=l; GOTO BLLl;

* BLLl: NEWPW+CONTENTS(Q);

*

BLLERR(l) IF NEWPW $ BITS;
NEWP+(NEWPW $ FLW IF NEWPW $ BIT4=9

ELSE Q+NEWPW $ FSRW);
BRD+CONTENTS(Q+l) FTNATF+9;
CLL+BRD $ BIT9; STK+BRD $ BITl;
CPA+BRD $ BIT2;
CPR+BRD $ BIT3 IF CLL=l ELSE UWSTK+BRD $ BIT3;
REL+BRD $ BIT4; FTN+BRD $ BITS;
NEWL+E+BRD $ FE;
IF RING(NEWP)<RING(P) DO;

NEWG+G[14]; RET+l;
ENDIF;

* OBTAIN NEW LOCAL ENVIRONMENT

*

*

IF STK=l DO;
IF CLL=9 DO;

IF UWSTK=9; SP+L;
ELSE DO; SP+E; NEWL+E·FE;
ENDIF;

ELSE DO;
SP+NEWG[2]+E; STKOV() IF SP>=NEWG[3];
NEWL+NEWG[2];

ENDIF;
ELSE DO;

NEWL+L IF NEWL=9;
ENDIF;

RINGCHECK(NEWP);

114

* * COPY ARGUMENTS

* BLLERR(2) IF N=CPA;
NAW+P+l;
IF CPA#fl DO;

FOR NFW+NEWP BY 1 DO;
R+NEWP; FP+CONTENTS(NFW);
FTYPE+FP $ TYPE;
IF SPEC=l DO;

SPEC+fl; AP+POPW; NAW+NAW-1;
ATYPE+FTYPE; ASTR+FP $ FSTR; AENDF+FP $ ENDF;

ELSE DO;
Lfl: R+P; AP+CONTENTS(NAW);

ATYPE+AP $ TYPE; ASTR+AP $ STR;
AENDF+AP $ ENDF;

ENDIF;
IF ATYPE=fl DO;

* JUMP IN ACTUAL ARGUMENT LIST
R+P; IR+XR; EA(NAW);
BLLERR(S) IF IMMEDIATE;
NAW+Q;
GOTO L9;

ELSE DO;
BLLERR(2) IF AENDF#FP $ ENDF;
IF ATYPE#FTYPE DO;

* TYPES DISAGREE. ERROR UNLESS ONE IS JOKER, JOKER IS CHECKED
* FOR BELOW UNLESS CADDR=l OR FSTR=ARRAY, IN WHICH CASE IT IS
* NOT CHECKED.

IF ATYPE#l4 DO;
BLLERR(3) IF FTYPE#l4;
FTYPE+ATYPE;

ENDIF;
ENDIF;
NAWP+NAW;
IF ASTR=fl OR ASTR=2 DO;

NAW+NAW+l IF ASTR=2;
IF FP $ FSTR=fl AND ASTR=2 OR FP $ FSTR=l

AND ASTR=fl DO;
BLLERR(3} IF FTN=fl; FTNATF+l;
TEMP+NAW+lB6;
GOTO Ll;

ENDIF;
ELSE DO;

BLLERR(3) IF FP $ FSTR=fl;
ENDIF;

* CHECK FOR ACTUAL ARG IN ACCUMULATOR
IF (AP AND 7f1f137777B)#f1 DO;

R+P; IR+XR; EA(NAWP); ARGADR+Q;
IF FP $ CADDR=l DO;

IF IMMEDIATE=! DO;
* CONSTRUCT IMMEDIATE IAW

TEMP+OP AND 3777B OR 1634B4;
ELSE DO;

RINGCHECK(ARGADR); TEMP+ARGADR;

115

* MAKE THE IAW READ-ONLY IF NECESSARY
TEMP+TEMP+lB7 IF READONLY=l OR ASTR=3;

ENDIF;
* FIX UP SO THE COPY VALUE CODE WILL COPY THE ADDRESS IN TEMP
Ll: FTYPE+l; FP $ FSTR+l;

ELSE DO;
IF IMMEDIATE=l DO;

BLLERR(5) IF FTYPE#l OR FP $ FSTR=9;
ENDIF;
TEMP+(OP IF FTYPE=l ELSE CONTENTS(ARGADR));

ENDIF;
OLDR+R;
CPYADR+((FP AND 3777B)+NEWL IF FP<9 ELSE

(FP AND 37777B)+NEWG);
GOTO ARRAY IF FP $ FSTR=9;
COUNT+(l IF FTYPE=l OR FTYPE=9 ELSE

2 IF FTYPE=2 OR FTYPE=3 ELSE
4 IF FTYPE=4 OR FTYPE=S OR FTYPE=6

ELSE GOTO STRING IF FTYPE=7
ELSE GOTO LABEL IF FTYPE=8
ELSE BLLERR (4)) ;

UFN'TRAP() IF(FTYPE=3 OR FTYPE=4)
AND UNDEFINED(TEMP);

L2: R+NEWP; $CPYADR+TEMP; COUNT+COUNT-1;
IF COUNT#9 DO;

R+OLDR; Q+Q+l;
CPYADR+CPYADR+l;
TEMP+CONTENTS(Q); GOTO L2;

ENDIF;
ELSE DO;

BLLERR(5) IF FP $ CADDR=l OR FP $ FSTR=9;
CPYADR+((FP AND 3777B)+NEWL IF FP<~ ELSE

(FP AND 37777B)+NEWG);
IF TYPE=3 OR TYPE=4 DO;

STF (CPYADR);
ELSE DO;

COUNT+(l IF FTYPE=l OR FTYPE=9 ELSE
2 IF FTYPE=2 ELSE
4 IF FTYPE=5 OR FTYPE=6 ELSE
BLLERR(4));

R+NEWP;
STORE(CPYADR, A);
IF COUNT#l DO;

STORE(CPYADR+l, B);
IF COUNT#2 DO;

STORE(CPYADR+2, C);
STORE(CPYADR+3, D);

ENDIF;
ENDIF;

ENDIF;
ENDIF;
NAW+NAW+l;

116

L3: ENDIF;
INTERRUPT'CHECK();
GOTO L4 IF FP $ ENDF=l;

ENDFOR;
L4: NEWP+NFW+l;

ENDIF;

*
* COMPUTE RETURN DESCRIPTOR

IF CLL=l DO;
R+NEWP;
NEWL[.'J]+NAW;
NEWL[l]+L+2B7*STK+lB7*CPR;
NEWG[l4B]+G IF MCAL>~ AND RING(NEWP)>RING(P);

ENDIF;
IF STK=l DO;

IF CLL=l DO
R+NEWP; NEWG[2]+SP;

ELSE DO;
R+P; G[2]+SP;

ENDIF;
ENDIF;
IF MCAL=2 DO;

MENTER: PROTECT(4);
SET I LOCK () ;

ENDIF;
SR $ TDFLAG+SR $ PDFLAG+~ IF MCAL>~;
L+NEWL; G+NEWG; OLDP+P; P+NEWP;
IF RET=l DO;

IF OLDP>=6B5 DO;
MEXIT: UNPROTECT(4);

*

RESET'LOCK();
XMON'TRAP() IF SR$ XMONT;

ELSE DO
XUTIL'TRAP() IF SR $ XUTILT;

ENDIF;
ENDIF;
P+P+l IF FTN=l AND FTNATF=~;

* EXIT FROM BLL
GOTO NEXT' INSTRUCTION;

* STRING: COUNT+4; GOTO L2 IF MCAL=~
FORM+TEMP AND 14B6 OR 4B7; OLDT+~;
FOR I+~ BY 1 DO;

R+P; RINGCHECK(TEMP);
BLLERR(6) IF OLDT $ WA>TEMP $ WA OR

OLDT $ WA=TEMP $ WA AND
OLDT $ CPOS>TEMP $ CPOS;

R+NEWP; $(CPYADR+I)+TEMP AND NOT 74B6 OR FORM;
GOTO L3 IF I=3; R+OLDR; OLDT+TEMP;
TEMP+CONTENTS(ARGADR+I+l);

ENDFOR;

117

* LABEL: Q+(TEMP $ FLW IF TEMP $ BIT4=~

*

ELSE ARGADR+TEMP $ FSRW);
RINGCHECK(Q) IF MCAL>~;
R+NEWP;
STORE(CPYADR, Q AND NOT 75B6 OR TEMP AND 75B6);
R+OLDR; BRD+CONTENTS(ARGADR+l);
IF BRD $ FE=~ AND BRD $ FSTK=~ DO;

BRD+BRD AND NOT 4B7 IF MCAL>~;
BRD+BRD OR (L IF STK=~ ELSE NEWL+2B7+4B6);

ELSE DO;
BLLERR{6) IF MCAL>~;

ENDIF;
R+NEWP;
STORE(COPYADR+l,BRD); GOTO L2;

ARRAY: R+NEWP; $CPYADR+TEMP;
BLLERR(6) IF TEMP $ IAT#3;
IF MCAL>~ DO;

IF+(TEMP $ UBl IF TEMP$ LEB=~ E~SE TEMP$ UB2);
IA(ARGADR+l); RINGCHECK(Q);

ENDIF;
IR+~; R+ARGADR; IA{ARGADR+l);
BLLERR{6) IF IMMEDIATE=l;
RINGCHECK(Q} IF MCAL>~;
R+NEWP;
$(CPYADR+l)+(Q+(4B6 IF READONLY=~ ELSE 12B6)};
GOTO L3;

118

WORD FORMATS

A. Instruction Word

~ 2 3 8 9 .1,0 23

OPC I ~I w

Bit Name Normal Mode

~-2 TAG Addressing mode for TAG field

3-8 OPC Opcode

9 POP Pop bit

l~-23 w Address field

TAG Name Addressing Mode

~ D Direct

1 I Indirect

2 x Indexed

3 BX Base-index

4 PD Pointer-displacement

5 PDI Indirect-pointer-displacement

6 BXD Base-index-displacement

7 REL Relative. This one has 6 sub-cases

119

B. Relative Addressing

.0 2 3 8 9 1.0 12 13 23

I TAG=7 OPC r><l RTAG W[l3,23]

RTAG Name Addressing Mode

!if LR L-relative

1 LRI L-relative indirect

2 SR Source relative*

4 SRI Source relative indirect*

6 IMX Immediate indexed

7 IM Immediate

* these modes use bit 12 in the address field (e.g. W[l2,23])

C. PD, PDI Addressing

2 3 8 9 10 15 16 23

TAG=4,5 OPC R +DISPLACEMENT G POINTER ADDRESS
- L

16 23

POINTER = IR I ~ ~1
16 23

POINTER = CONTENTS(G + X) I ~I x I
16 23

POINTER = CONTENTS(L + X) I 1 I x I

120

D. BX Addressing

2 3 15 16 23

TAG=3 OPC INDEX ADDRF.SS ~ BASE ADDRESS

Where the index address field is one of the following:

lf;! 15

INDEX + IR; I fl fl I
l~ 11 15

INDEX+ CONTENTS(G + W); I~ I x I
lf;! 11 15

INDEX+ CONTENTS(L + W); I 1 I x I
and the base address field is one of the following:

16 23

BASE + IR; I~ fl I
16 17 23

BASE+ CONTENTS(G + W); I fl I x

16 17 23

BASE+ CONTENTS(L + W); I 1 I x I

121

E. BXD Addressing (Base in XR)

~ 2 3 8 9 1J2l 15 16 23

TAG=6 OPC ~ + DISPLACEMENT G INDEX ADDRESS - L

Where the index address field is one of the following:

16 23

INDEX + JI; I fl
INDEX+ CONTENTS(G + W); '~l-;~'-17 ________ x ______

2_3~1
16 17 2 3

INDEX+ coNTENTS(L + W);I ~-1~l _________ x ______ __,I

and the base address is in the indexing register.

F. Normal Indirect Address Word (IAW)

I! 12 4 5 6 23

LW

f6 1 2 4 5 6 7 9 1J2l 23

I ~1 TAG=? Ii*~' RTAG I LWR

Bits Name Contents

~-1 IAT ~

2-4 TAG interpreted exactly like an instruction
TAG

5 TRAP causes trap IATRP if set

6 RELX causes indexing for the relative modes

7-23 LWR long address for the relative modes

6-23 LW long word address

1$1-23 w word address

122

~. Field IAW

13. 1 2 3 7 8 12 13 23

IIAT=~sEI SIZE FB I+ DISP

Bits Name Contents

fl-1 IAT 1

3-7 SIZE size of field in bits

8-12 FB address of first bit of the field

2 SE causes sign extension of the field
set

13-23 DISP 2's complement signed displacement

H. String IAW

@ 12 3 4 5 6 23

WA

Bits Name Contents

.0-1 IAT 2

2-3 CSIZE character sign: fl = 6 bits, 1 = 8,
2 = 12: 3 = 24

4-5 CPOS character position in word

6-23. WA word address

Bits assigned by CSIZE and CPOS:

CSIZE/CPOS

1

2

3

fl-5

.0-7

fl-11

.0-23

1

6-11

8-15

12-23

x

2

12-17

16-23

x

x

3

18-23

x

x

x

if

123

I. Array IAW

23

UB

pJ 12 345 1,0 11

IIM=JHIH MULT I
23

UB

Bits Name Contents

~:~-1 IAT 3

~:2 LB lower bound for IR (~ or 1)

~:3 AT RAP array trap bit

~:4 LEB large element bit

~:5-6 MULT IF LEB = ~ multiplier for IR

~: 5-lj.1' MULT IF LEB = 1

~:7-23 UB IF LEB = ~ upper found for IR

j.1':11-23 UB IF LEB = 1

J. String Words

[5 6 11 12 17 18 23

POS~ I POSl I POS2 I POS3 I
ft' 7 8 15 16 23

I POS~ I POSl I POS2

;1 11 12 23

I POS~ I POSl I
.0 23

I POS~

K. BLL Branch Descriptor

3 4 5 6 8 9

9112 345 6

Word

1

1

1

1

1

1

1

1

Bit

4

5

9-23

6-23

1

2

3

3

4

5

6-23

Name

SREL

TRAP

SRW

LW

CLL

STK

CPA

CPR IF CLL=l

UWSTK IF CLL=fl

REL

FTN

E

124

23

SRW

23

E

Meaning

c.f. REL + SR in Normal IAW

Causes TRP if set

Signed displacement if SREL is
set

Long word addresses

Call bit. The old P and L are
saved if the bit is set.

The local environment is
allocated from the stack if
this bit is set.

Arguments are copied if this
bit is set

The CPA bit in the return des
criptor is turned on if this
bit is set.

Unwind stack on return

Source-relative label supplied

1 FORTRAN type function

This number determines the new
L; precisely how it does so
depends on STK

125

L. Actual Argument Word (AAW)

0 2 3 4 5 8 9 10 23

I TAG STR I TYPE 1~~1 w

M. Formal Argument Word (FAW)

~ 2 3 4 5 8 9 10 23

I~ 1 1~;~1 1~~1 I or TYPE w

Bits Name Contents

3-4 STR (actual argument only) structure
1 = variable
3 = computed scalar
2 = array element
~ = array

3 CAD DR (formal argument only) copy value
1 = copy address of actual argument
!if = copy value of actual argument

4 FSTR (formal argument only)
1 = scalar
!if = array

5-8 TYPE type
!if = jump
1 = integer (1 word)
2 = long (2 words)
3 = real (2 words)
4 = double (4 words)
5 = complex (4 words)
6 = long long (4 words)
7 = string (4 words)
8 = label (2 words)
9 = pointer (1 word)

14 = unknown

9 ENDF end flag
!if = not last argument word
1 = last argument word

126

N. State and Status Register

4 5 6 8 9 11 12 13 14 15 16 17 18 19 20 21 22 2 3

FD TRMOD PRMOD cc 94 SU pm XM rr'D PD ~A !To pv IN
p ~M F trr ON F F !RY v ~D

cc = ,0 A < ,0
1 A = f1
2 A > f1

Trap State Save Relative
addresses addresses addresses Name

6/J2752B 6,02764B ,0B p
6,02753B 6,02765B lB A
6/J27'54B 6,02766B 2B B
6/J2755B 6,02767B 3B c
6/J2756B 6,0277fOB 4B D
6f02757B 6f02771B SB E
6fH276fHB 6,02772B 6B x
6fl2761B 6,02773B 7B L
6JH2762B 6f02774B l,0B G
6fl2763B 6f02775B llB SR

6f02776B 12B CTC
6,02777B 13B IT

o. Absolute Value of Negative OPR Operand

~ 14 15 16 23

I I TYPEI SYSCALL #

~ Meaning

fl UCALL

1 UCALN

2 MCALL

3 MCALN

3fiJfiJfiJfiJfiJ.0fiJB
7 fi1 fiJ fiJ fiJ fi1 fiJ fiJB
7fiJfiJlfiJfiJ.0.0B
7fiJ_02fiJfiJfiJ.0B
7fiJ_034fiJfiJ.0B

fi12fi1fiJfi1fiJfiJfiJB
fiJ4fiJfiJfiJfiJ.0fiJB
16lfiJfiJ.0fiJfiJB
166fiJfiJflfiJfiJB
164fiJfiJflfiJfiJB
fiJ 1 fiJ fiJ fiJ fiJ fiJ fiJB

2 fiJ fiJ fiJ fiJ fiJ fiJ fiJ B
1 fl JI fiJ JI JI fiJ fiJB
fiJ 7 6 fiJ fiJ fJ fiJ fiJB
fiJfiJ174fiJ_0_0B

4 fiJ fiJ fiJ fiJ fiJ fiJ jiJB
14fiJ.0JiJ.0JiJ.0B
JiJ 3 fiJ JiJ JI .0 JiJ fiJ B

6fiJ.0ff fiJJIJiJJiJB
1 fiJ .0 fiJ fiJ fiJ JiJ fiJ B
jiJ4fi1JiJ.0JiJfiJJiJB
fiJ 14 !i1 !i1 JiJ fiJ !i1 B
fiJ 2 !i1 .0 JI JiJ !i1 fiJ B
fiJ176fiJfiJfiJ.0B

4 fiJ fiJ fiJ fl fiJ fiJ JiJB
2 fiJ fiJ fiJ fiJ .0 .0 fiJ B
1 fiJ .0 fiJ JiJ fJ fiJ JiJ B
fiJ4JiJfi1.0fiJfiJ.0B

ff 2 fiJ fiJ fiJ fiJ fiJ jiJB
fiJ 6 fiJ fiJ .0 fiJ JiJ fiJ B
fiJ 4 fiJ fiJ fiJ JiJ fiJ fiJ B

fiJ 4 fiJ fiJ fiJ JiJ ff fiJ B
fiJ 2 fJ JiJ JiJ fiJ JiJ .0 B
fiJ6fiJ.0fiJJiJ.0JiJB
.0JiJfiJ4fiJfiJfJ.0B

127

SOME FIELDS IN OCTAL FORM

x
LR
SR
SRI
IM

I in IAW
x
SR
SRI + RELX
LR + RELX
TRAP

FIELD IAW
SE
SIZE
FB

STRING IAW
CSIZE
CPOS

ARRAY IAW
LB
AT RAP
MULT if LEB = fiJ
LEB
MULT if LEB = 1

CLL bit in BRD
STK
CPA
CPR / UWSTK

variable AAW
scalar
array element

copy address, array FAW
copy value, scalar
copy address, scalar
ENDF

128

CHT HASHING ALGORITHM

In this hashing algorithm consider a byte to be 8-bits. Also

consider the unique name as being composed of six 8-bit bytes

(BYTEl - BYTE6) •

The algorithm is:

HASH'UNl + BYTEl E' BYTE2 E' BYTE3;
HASH'UN2 + BYTE4 E' BYTES E' BYTES;
HASH'UN + HASH'UNl E' HASH'UN2;
HASH'UN + HASH'UN E' 264B;
HASH'UN + HASH'UN A' 377B;_

