
CAL REFEREI\JCE MANUAL

Butler W. Lampson

1HE ALOHA SYSTEM
University of Hawaii

Docunent No. M-4
Revised September 24, 1974

Contract NAS2-o700
Department of Defense

Advanced Research Projects Agency
ARPA Order No. 1956

1.0

2.0

3.0
4.o

5.0
6.o

Introduction

Input to CAL

2.1 Editing Input

TABLE OF CONTENTS

Numbers, Variables and Expressions

Steps.

4.1 Direct-Only Steps.

4.2 Indirect-Only Steps.

Modifiers.

Fo:nns.

6.1 Type in Form

Demand in Fonn 6.2
7.0 Functions.

8.o Input-Output

9.0 _Running the Program·

CAL SUMvfARY. •

'.

1-1

2-1

2-2

3-1
4-1
4-2

4-3
5-1
6-1
6-1

6-2
7-1
8-1
9-1

A

1-2

HEADING, PLEASE

If you do not want a heading, type a carriage return. Otherwise,

type the desired heading, which ends with a carriage return.

This heading together with a page number will be supplied at the

top of each page during the following session. A page contains

SS lines of output, together with enough separation to use

11 inches of paper.

Typing enough Kcs (usually 2 or 3) will get you from CAL

back into the executive. To re-enter CAL, do

@CONTINUE CAL

All files will be closed.

2-1

2.0 Input to CAL

CAL accepts two kinds of input: steps and numbers. Whenever

the user's program is not actually computing or typing out, CAL

is waiting for one of these kinds of input. A DEMAND step in the

program will cause CAL to type out the variable name demanded and

wait for a number to assign to it. At all other times input to

CAL should be steps.

Whenever CAL is accepting a step, ~t will recognize the

characters Ac (control A, obtained by depressing the A key and the

CONTROL key simultaneously), we and Qc as editing characters.

Ac causes CAL to type t and forget the inunediately preceding

character. Its function is similar to the backspace on a typewriter.

It may be repeated to delete several characters. we prints ,

and causes the last word typed to be deleted. More precisely, all

immediately preceding blank~ are deleted and then all characters

up to but not including the next preceding blank. Qc prints + and

causes the entire line typed to be deleted. That is, it deletes all

characters up to the nearest preceding LINE FEED, or up to the

beginning of the line. An immediately preceding line feed is also

deleted. CAL accepts a number of other control characters. Their

function is described at the end of this section.

Line feed is the continuation character. It causes CAL to

' generate a carriage return and is otherwise completely ignored,

except by the Qc operation.

A CAL program is composed of steps .. Each step in the program

begins with a step number, which has the form <part>.<step>.

Both <part> and <step> are decimal integers. All steps with a

given part number belong to that part. A linear ordering of step

numbers is defined by taking them as ordinary decimal numbers.

2-2

Thus
I I

1 < 1.1 = 1.10 < 1.101 < .1.2 < 2.0 < 10.0

The ordering of steps in the program is determined by their

step numbers and not by the order in which they are input.

If several steps with the same number are input, the last one will

be kept and the earlier ones thrown away. There is a limit

of six digits on each of the portions of a step number.

If a step is input without a step number, it will not

become part of the program, but instead will be executed

immediately. Such a step is called direct; steps with numbers

are indirect.

Each step ends with a carriage return. Blanks are ignored,

except that they may serve to delimit words and variables. Line

feed continues the step onto the next line. A step may not have

more than 300 characters. A.; followed by any string of characters

as a comment may be appended to any step.

Kc may be used at any time during input of steps to abort

the current step. It is essentially equivalent to Yc below.

2.1, Editing Input

This section may be skipped on an initial reading. It

describes some very useful features of CAL which are unfortunately

rather difficult to get the hanp of. These features are not necessary

for the use of CAL, however.

With one exception, every input of a step into CAL may be

thought of as an editing process performed on the line last

typed in. Ordinary characters typed during this editing simply

replace the corresponding characters in the old step, and carriage

return causes the remainder of the old step to be thrown away.

2-3

The user may therefore ignore the exist~nce of the editing operation
· • i i '' I

if he wishes. There are, however, a number of control characters

which direct the operation of the edit. It is helpful to know

about them when the step about to be entered is similar to the one

last typed.

cc copies the next character of the old line to the new one,

and types out that character. Cc is especially useful .in

conjunction with the repeat button.

Sc skips the next character of the old line and types out %.

ZcC copies the old line up to the next occurrence of the

character C. The character f is not typed until this

occurence is reached, so that the operation is exactly

equivalent to a number of cc•s. If C does not appear in

the line, CAL rings the bell and takes no other action.

xcc is the same as zc except that it deletes the characters

passed over and types %. C is never typed.

Re (retype). CAL types line feed, then the rest of the

original line, then on the next line the edited line so

far. Editing can be resumed. This character is intended

to permit recovery in cases where the user has become

confused about the state of the edit.

Tc is the same as Rc except that the new line is correctly

aligned with the remainder of the old one. It takes

longer.

Yc copies the remainder of the old line to the new one

without typing it. The new line then becomes the old

line for a continuation of the edit.

Dc causes the remainder of the original line to be typed

out and copied to the edited line> which then replaces

the original line.

Fe is the same as De except that the rest of the line is not

typed. Among other things, it is useful for executing

the same direct statement more than on~c~

2-4

EC types < a~d switches c.AL so tha~, text typed in is inserted
, I

in the new line without replacing any characters of the old line.

Another use of Ec causes > to be typed and restores replace mode.

The EDIT operation causes a specified step to be typed.

This step then becomes the old line for the edit operation.

The step is not deleted or altered. If the step resulting from

the edit has the same number as the original step, of course,

the latter will be replaced. The following variations are

possible:

> EDIT STEP n.n

> EDIT FORM expression

> EDIT variable

(STEP may be omitted)

(functions only)

The MODIFY operation is identical to EDIT except that the

step being edited is not typed out. It may be abbreviated MOD.

3-1

3.0 Numbers, Variables and Expressipns
. I ' ' I

All numbers in CAL may be thought of as being expressed in

scientific notation. There are eight significant digits, and the

exponent may be in the range -77 to +77. However, integers

or decimals may be input and numbers will be output as integers

if they have no fractional part and are smaller than 223 .

There are 11*26=286 distinct named variables in CAL.

A variable is named by a single letter or by a letter followed

by a digit. A variable may be subscripted. Examples of variables

and subscripts:

A4 A(l) 5(23,65,-147.3) M3(A(l ,3), B(CO(D8))*13)

A subscript may be any arbitrary expression. It is truncated

to the nearest smaller integer before use, and this integer is

taken modulo 223 . A variable may have any nt.lmber of subscripts,

and is not required to have the same number each time it is

referenced. A refers to a different number than A(O) or A(l).

Expressions are formed by combining operands with operators.

The available operators are by increasing precedence:

+ (replacement)

AND OR (same as * and + except for precedence)

NOT (changes 0 to 1, any non-zero operand to

= # < <= > >= (relations)

+ -

* I MOD

t (exponentiation)

The precedence is as indicated. Thus

A AND B=C+D*EtF = A AND (B=(C+(D*(EtF))))

The replacement operator takes the largest expression it can find

on the right and sets the value of the variable on the left

accordingly. The relations yield the numbers 1 or 0 depending

O)

on whether the indicated relation holds between the operands or not.

3-2

The expression A MOD B is equivalent to FP(A/B)*B
I ! I ! ! '

. . I

Operands may be

(a) numbers, with or without decimal points. An exponent

may be indicated by E followed by +, - or blank and the

appropriate power of 10.

(b) variables, possibly subscripted

(c) the special functions:

ABS

SIN

cos
TAN

ATAN (X,Y)

ATAN (Z)

EXP

LOG

LOGlO

SQRT

the trigonometric functions

take their arguments

in radians or return

the result in radians

equivalent to ATAN (l,Z)

IP (integer part, the largest integer <X. I.e. IP(-1.5)=2)

FP (fractional part, always positive. IP(X)+FP(X)=X)

The argument of a function should follow it and should be

enclosed in parentheses unless it is an expression with no

operators of precedence lower than*. Thus SIN(X+l), but

SIN 2*X+Z is legal and means SIN(2*X)+Z.

(d) The iterative functions:

SUM

PROD

MAX

MIN

These are used as indicated in the example:
n

SUM(I=l BY 1 TO N: It2) :: L: i 2
i=l

The part of the argument before the parentheses is called the

for clause. It is described in detail in connection with FOR modifiers

(Section 5). The value of the controlled variable

3-3

(I .in the example) is no~ ~ltered by the iterative functjon;
, I

whatever value it had when the function was entered will be

restored when the function is complete. Within the function,
'

of course, its value is determined by the FOR clause.

{e) A CAL function call, of the form f[a, b+c,d(l)].

These functions are discussed in detail in Section 7.

(f) $, which has the value of the current line on the page.

(g) PI, which has the value one might expect.

Conditional expressions are also possible, and take the

general form

IF e l THEN e . ELSE IF e THEN e 2 • • • ELSE e
p VJ. p2 V vn

When a conditional expression is evaluated, epl is evaluated.

If it is non-zero, evl is evaluated, and its value becomes the

value of the expression.

ep2 is evaluated. If the

indicated, then the value

If epl is zero, evl is ignored and

expression ends with ELSE e , as
vn

of e will be the value of the
vn

expression if all the e . are O. pi The expression may, however,

end with

IF e THEN e pn vn
In this case the value of the expression is 0 if all the e .

pl.
are o.

Note that the only expressions actually evaluated are

those whose values are required in determining the value of

the expression. For example, the expression

IF X MOD 2=0 THEN -1 ELSE IF X> 10 THEN 0 ELSE 1

has the value -1 if X is an even integer, 0 if X is an even

integer and is greater than 10, and 1 otherwise.

A WHERE modifier can be appended to any expression. The

f orrn is

expression WHERE variable = expression & variable = expression

The modifier is evaluated before the expression, and.its effect

is to set the value of each vnriablc tu the value of the corrc::>-

pondinG expression. Thus th(' C'Xprcssion

SIN(Z)/cos(z) WHERE Z=ATAN(X, Y)
I

has the value X/Y. The expression

l+SUM (I=l BY 1 WHn.E 'J>lOE-8: T WHERE

T=XtI/F WHERE F=I*F) WHERE T=l & F=l
x -8 computes e with accuracy better than 10 •

3-4

4-1

4.o Steps

The following steps may be direct or indirect. Each one

begins with a unique word. The variable mentioned may be

subscripted.

SET variable = expression

sets the value of the variable to that of the expression

The SET may be omitted.

TYPE expression, expression

causes the expressions to be typed out, followed by

their values. Each expression is typed on a separate

line. Subscripts will be replaced by their actual

values. If a single unsubscripted variable name

appears, any subscripted elements it may have will

also be printed.

TYPE m FORM. EXPRESSION: expression, expression

is discussed in Section 6.
TYPE STEP step no, step no,
TYPE PART expression
TYPE FORM expression
TYPE "string"
TYPE ALL STEPS
TYPE ALL FORMS
TYPE ALL VALUES
TYPE ALL FUNCTIONS
TYPE ALL

do the obvious things. The "string" may contain
line feeds.

TO STEP step number (STEP may be omitted)
TO PART expression

Execution of steps continues with the one specified.

The first step in the program with step number ~

the expression is used.

DO STEP step number
DO PART expression

(STEP may be omitted)

The specified step or part is executed, and control then

goes to the step foD.ow:incr, the DO. It is not legnl 'to DO a

TO step. A -pnrt beinr; DOne may have TO steps, however. The

DO is conpleted when thE' last step of any part is executed or

4-2

when a DONE step is executed. It is not completed by a transfer

out of the part being DOne. The DO PART operation starts at

the first step with number > the value of the expression.

DEMAND var lable, variable, .•.

Each variable is typed out, and CAL nwaits input of n

number, which will be used to set the value of the variable.

Any non-numeric characters typed before the number will

be ignored. During the typine; of a number, the character
c Q deletes all characters typed so far and allows the

number to be retyped. The character following the number

must be carriage return, space, comma or semi-colon. If

it is anything else, the number is ignored and may be

tetyped.

DEMAND JN FORM expression: variable, variable ••.

.. is discussed in Section 6.

PAGE

LINE

spaces to the top of the next page. This works even if

there is no heading and CAL is not separating pages.

spaces one line

OPEN, CLOSE, INPUT, OUTPUT, READ, WRITE, and CALL are discussed

in Section 8 on input/output.

4.1 Direct-Only Steps

The following steps may be used directly only:

DELETE STEP step no, step no ... (STEP may be omitted)
DELETE PART expression
DELE'l"E FORM express ion ·
DELETE variable DELETE ALL STEPS
DELETE ALL VALUES DELETE ALL FORMS
DELETE ALI, DELETE ALL FUNCTIONS

The specified object is deleted. If it is a variable,

all sub:>criptcd occurrences of the variables are deleted.

DELE1"E ALL starts CAL over at the very beginn inr.;. It is

caui.valcnt to lenvinc Cl\L and re-cntcrinG it from the C'Xecutive

with a new @CAL corrnmmd.

4-3

CANCEL

GO

DUMP

Kills off the information about the current state of the

running program. See Section 10.

Continues execution after an interrupt or execution error.

See Sect ion 10.

TO file.

LOAD

causes all steps and forms to be written on the specified

file. The format is such that the file can be listed or

read in by LOAD.

FROM file.

reads in the contents of the specified file, treating it

as though it were being tyPed in from the teletype.

DEFJNE variable [argument list] = expression
statement

This step defines a CAL function. It is discussed in

Sect:i.on 7.

DRUM variable

STEP

causes the values of the indicated variable to be stored

on the file which has been opened as DRt.M. See Section 8.

The variable may thereafter be referenced only with exactly

~ subscript. It may be deleted, which cancels the

effect. Access to the variable may be slowed down.

causes the next step ol' the program to be executed.

Control then returns to CAL as though a PAUSE had been

executed.

4.2 Indirect-Only Steps

PAUSE

The following steps can be used indirectly only:

causes a mcssar;e to be tY1)Cd out and execution to stop.

The pror,rnm 'can be rc:;t:irtcd at the next step with GO.

DONE

4-4

If a DO PART is in force, it is terminated. Otherwise

the step is ignored.

RETURN expression

The expression is returned as the value of the function

most recently called. If any DO or FOR started inside

the function is not complete, the step is an error.

5-1

) .O Modifiers

Any step which can be used indirectly may be followed by

any number of modifiers which will govern its execution. A

modifier may be preceded by a comma. The available modifiers

are

IF expression

which allows the preceding step to be executed if

the expression is non-zero.

UNLESS expression

which allows the preceding step to be executed if

the expression is zero.

WHILE expression

which causes the preceding step to be executed

repeatedly as long as the expression is non-zero.

UNTIL expression

which causes the preceding step to be executed

repeatedly as long as the expression is zero.

FOR for clause

which causes the preceding step to be executed

repeatedly under control of the for clause; iterative

functions also contain for clauses. The form is

variable = for clause section, for clause section,

for clause section. The value of the variable is

set by each for clause section and the step executed.

If the variable is subscripted, the subscript is

evaluated each time. For clause sect;ons can have

the form:

(a) a single ex~ression

(b) expression1 BY e:xpression2 TO cxpression3
which sets the varjable to the value of the

first expression and then adds the second

expression on each repetition until it

pa.sscs the th j rd express ion; if the second

expression is positive, repetit:ion C':mtinues

until t.hc vRrinble becomes lnq~cr, if it

(c)

5-2

is negative~ until the yariable become.s smaller.

If the BY clause is omitted, it is taken to

be l. Examples

l BY 1 TO lO; 1 TO 10; lOO BY -3 TO '.;O

expression1 BY expression2 {WHILE1· expression
UNTIL 3

is exactly like (b) except that repetition

continues under control of the WHILE or UNTIL,

which work exactly like the modifiers described

above.

The following are equivalent:

FOR X=l TO 5

FOR X=l,2, 3,4,5

FOR X=l BY 1 WHILE x2 <30

A useful device for initializing a vector to an arbitrary

collection of values is illustrated by the following program:

1.1 SET I=I + 1 FOR X(I)=23,46,-l6.5,3.l4159, WHERE I=l

This also 1llustrates the WHERE modifier for steps; its works

exactly like the modifier for expressions, described in Section 4.
It is for this reason that the above step contains the comma

before the WHERE; otherwise it would attach itself to the last

expression of the for clause and would not be evaluated until

that expression was reached. It would then not serve its

intended purpose of settin& I to 1 initially.

Note: WHILE~ UNTIL and FOR modifiers may not be used on

a TO step, for more or less obv.ious reasons.

6.o Forms

6.1 Type in Form

Formatted output can be done with the TYPE JN FORM

statement--the form specifies the format. The method is

illustrated by the example

FORM l:

6-1

SCIENTIFIC NOTATION lflflflf/flf!Hf DEC:n.1AL NOTATION 333.3333
TYPE JN FORM 1: 3.1414, -10.lE-l

SCIENTIFIC NOTATION 3. lli 00 DECIMAL NO'l'ATION -1. 0100

The characters in the form are typed literally except for

fields containing #'s, which cause numbers to be printed in

scientific notation, and fields containing %'s and zero or one

dots, which cause numbers to be printed as decimals. The

character & is not typed. If either field is too small, an

error will be indicated. Note that in a# field six characters

are needed for the decimal point, the exponent, the sign and

at least one digit of the number. In a % field one character

is needed before the decimal point for the sign. If the number

is known to be positive, the position for the sign ls not needed.

After the last number in the TYPE JN FORM statement has

been printed characters continue to be printed from the form

until another numeric field or the end of the form is reached.

If there are more numbers in the TYPE statement than fields

in the form, the form is reused as often as necessary. If the

last character of a form is processed according to the above

rule, a carriage return is .generated, otherwise not. Several

different TYPE IN FORM steps can therefore put information on

the same line. If the last character of the form is &, the

usual carriage return is suppressed. A carriage return is

p:enerated bef'orE' CAL types its "> if this h:=is not ~lready been

done.

Example:

FORM 1:

%%%%%% %%%%%% %%%%%% %%%%%%
TYPE JN FORM 1: It2 FOR I = 1 TO 14

1 4 9 16 2<j

49 64 81 100 121

169 196

will result in

36

144

Note: The colon of a FORM must be followed by a line feed.

6.2 Demand in Form

The step

DEMAND IN FORM expression: variable, variable, •..

can be used instead of a simple demand. The characters of the

form will be typed literally with the exception of # or %
characters. Any contiguous group of these will cause a number

to be read and assigned to one of the variables in the list.

The length of the group has nothing to do with the length of the

number input. This process proceeds, just like a TYPE IN FORM,

until the list of variables is exhausted.

The program:

1.1 DEMAND IN FORM 1: Nl, N2

1.2 TYPE IN FORM 2: Nl+N2, Nl*N2

FORM 1:

NO. 1 = #; NO. 2 = If
FOP.M 2:

SUM = °/o°fo%.%%; PRODUCT = IHI#####=##
might produce a page like this:

>DO PART 1

NO. 1=12.6; NO. 2=40

SUM=5 2. 60; PRODUCT = 5 . o40 02

'(-l

7.0 Functions

A CAL function may be defined by the statement

DEFINE F[X,Y,Z,W] = (XtW+YtW+ZtW)t(l/W)

This statement ma.y be direct only. It deletes any old value

which F may have and assigns the function definitions as the

value of F. X,Y,Z and Ware local variables of the function.

This means that when the function is called, the values of

these variables are saved and new values obtained from the

arguments provided with the call. Thus F[3,4,5,2] will result in

X=3 Yd+ Z=j W=2

when execution of the function is started. When the function

returns, the values of the local variables are thrown away

and the old values which were saved by the function call are

restored.

The above DEFINE will cause the expression after the =
to be evaluated and returned as the value of the function call.

An alternate form permits more complicated functions to be written:

DEFINE F(X,Y,Z,W]: any statement

If the statement is not a TO, it is executed and a zero value

is returned. If it js a TO, control is transferred to the

specified point. The function can return by executing

RETURN expression

which causes the expression to be taken as the value of the

function.

A function must not have a local variable which is the same

as the name of the function ttself. It is not necessary to

supply values for all the local variables when the functi.on is

called. The arguments supplied will be assigned. to the first

few local variables, and the :)thers will be left undefined. This

permits tem1)orary storar,e locations to be created for the function.

Cn::re must be taken that any DO or FOR started wH.l1in the function

is finjshed bct'o::rc th£> RETURN. It is an error to terminate n

DO stnrt.cd fie fore ti1c function call with in the functi.on.

7-2

If an actual function argument is a name, its value can'

be changed by the function. Thus .

DEFINE F[A,B]: SET A+-Bt2

when called with

SET Y = F[I,4]

sets I to 16 (and Y to 0).

DEFINE F[X,Y,N,I]: SET X(I) = Y(I) FOR I= 1 TON

when called w.ith

Z = F[A,B,14]

sets A(l)=B(l), A(2)=B(2), ... , A(l4)=B(l4).

A function may do anything, including calling itself.
I

Compare two definitions of the factorial function

DEFINE Fl[X) = IF X<:El THEN 1 ELSE X*Fl[X-1)

DEFJNE F2(X, Xl] = PROD (Xl=l TO X:Xl)

Or a more complex example, which computes the exponential to

one part in 10-·r

DEFINE E[X,I,J,S,T) = l+SUM (I=l BY l WHILE T/S > lE-'I

WHERE S=S+T : T WHERE T=XtI/PROD(J=l TO I : J))

WHERE S=O & T=l

A somewhat more efficient form is

DEFINE E(X,S,T,I] = l+SUM {I=l BY l WHILE T/S> lE-7

WHERE S=S+T: T ~ T*X/I)

WHERE S=O & T=l

8-1

8.0 Innut-Output

CAL has facilities for allowing the user to read from and

write on standard syctem files. F.or a discussion of file

naming, consult the BCC 500 executive command language.

To open a file and assign it a number, the step

OPEN "name" FOR {~~}As FILE expressi.on

The value of the expression should be used to reference the file

after it -Ls open.

When the file is no longer being read or written, the step

CLOSE expression

will close it. The information is not affected; the file simply

becomes unavailable for input/output until it is reopened.

The step

WRITE ON expression:

is exactly like TYPE, and anything which is lee;al after TYPE

may follow the colon, with one exception: The format

WRITE ON expressfon IN FORM express i.on:

should be used if a form is desired.

To read from a symbolic file, the step

READ FROM expression:

may be used. It is exactly litre DEMAND. The convention that

prccedin[!: non-numeric characters a.re ignored is convenient.

READ IN FORM makes little sense·and is not available.

B.inary floating point numbers may be written on a f:i.lc,

two words per minbcr, with the step

OtrrPUT ON expression: expression, expression

Sueb n :'ilc rn:iy be read wLth

WPUT FHOM cxvrcf.r.jon: vnrio.blc, vn,ri11! 1lc ...

A file can also be open1d with

OPEN "name" AS DRUM

H-2

Thereafter i.t is available for storage of singly-subscripted

varjables. See Section 4.

Ir an input operation encounters an end of file, it normally

aborts. To prevent this from happening, the step

CALL fund ion ON END OF :nu:
exists.

If an end of' file occurs on input, the spccifjed f'1mctjon

will be called with a sinc;lc are;ument whose value is the number

of the file responsible. The value of the function will be taken

to be the number which the program was tryine; to read from the

file. Example: If numbers are to be read first from f:ile V and

then from file W, the following program will do the job:

1.1 OPEN "V" FOR INPUT AS FILE 1
1.2 CALLEO ON END OF FILE
1.3 READ FROM 1: X(I) FOR I=l TO 1000
DEFINE EO[A,B): 10 STEP 2.1
~.l \.!LOSE A
2. 2 OPEN "W" FOR lNPUT AS FILE A
2. 3 TYPE "FILE W OPENED" IF TO
2.4 READ FROM A:B
2.5 RETURN B

It will also type a message when it switches files if TOfO.

9-1

9.0 Running the Program

A program can be started by typing a direct TO or DO step.

Execution will continue until

1) T'ne DO is complete or, in the case of a TO, the last

step of the program has been executed.

2) A PAUSE step is executed, CAL types out

PAUSE JN STEP n. n:

and awaits instructions. Steps can be added to the

program and any steps except DO and TO may be used

directly. The program can then be restarted with a

GO step. If a TO or DO has been executed the state

of the program at the time of the PAUSE is lost.

This also happens if any directly executed step

causes an error, or if any step, function or form

being executed is deleted or changed. If a complex

DO or function call structure exists, there may be

many such steps.

3) The rubout key on the teletype is pushed. CAL completes

execution of the current step, or of the current loop

of a FOR, and then types

:rnTERRUPTED IN STEP n.n:

The situation is then identical to that produced by

a PAUSE.

4) An error occurs in the running program. A suitable

message will be typed out, and the situation is then

identical to that produced by a PAUSE.

A

CAL SUMMARY

Indirect (with step number) or .
direct (execute immediately):

SET v = e (SET may be omitted)

TYPE el, e2, e3 ...
TYPE IN FORM e: el, e2
TYPE(STEP)n.n, n.n, ...
TYPE PART e
TYPE FORM e
TYPE "string"
TYPE ALL STEPS
TYPE ALL FORMS
TYPE ALL VALUES
TYPE ALL FUNCTIONS
TYPE ALL

DEMAND vl, v2 ...
DEMAND IN FORM e : v 1, v2

INPUT
OPEN 11name" FOR OUPTUT AS FILE e
OPEN "name" AS DRUM
CLOSE e
WRITE ON e: <as fo!i TYPE>
READ FROM e: vl, v2 ••.
OUTPUT ON e: el, e2 ...
INPUT FROM e: vl, v2 •••

PAGE
LINE

TO(STEP)n. n
TO PART e

Direct only:

DELETE v
DELETE(same as for TYPE).

DUMP
LOAD

GO
STEP
CANCEL
DEFINE v[v,v,v ...) =e

:statement

EDIT(or MODIFY or MOD) (STEP) n.n
EDIT FORM e
EDIT v (function only)

Indirect only:

DRUM v

RETURN e

PAU.3E {cqu.ivalent to rubout)

DONE (st8ps a DO PART)

FSHM n; 'J<liuc fq_;ci""ot '·'Cffvtal o1a1ct
N 1: ~:f· .. !I tf·li :f' NO <-: f-1~d·/0N/V/~1 • /0-/0/u

Modifiers may be attached
to any step. Several modifiers
may appear on one step.

IF e

UNLESS e

FOR v = e BY -~ILE?e (BY may
1~Tr~) he omitted)

WHILE e
UNTIL e

e
any string of these
separated by commas

WHERE v1 == e1 & v2 = e2

Ex ressions {represented by "e"
elsewhere are made up of operands
and the operators.

+- {replacement)

AND OR {same as *, + except for
precedence)

NOT (changes 0 to 1, anything
not 0 to 0)

= # > >= < <= (yielding 0 o~ 1)
+ -

*I
t (exponentiation)

with the precedence levels indicated
by the order. Parentheses may be
used freely.
THEN evl ELSE IF ep2 THEN ev2 ... ELSE evn

WHERE may be appended to expressions.

Operands may be

variables
numbers
$, with the value of the current ljne
PI
Special functions
Iterative functions
CAL functions

B

CAL Functions Variables (represented by v elsewhere}
are single letters followed by 0 or 1
digits, possibly with any number of
subscripts. Thus

A CAL function is named by a
variable, which cannot then have
numeric values. It is called thus:

XlS(l) X(Y(Z5),W9t2)
No restrictions on subscripts, which are
taken to the nearest integer mod 223.
Numbers may be written with decimal
digits, a decimal point, and an exponent
field indicated by E. Thus

10 = lEl = .001E4 = lOOOOE-03

Special Functions are

SJN, COS, 'fAN 1with arg in rads

ATAN (X,Y) with result in rads

LOG, LOGlO, EXP, SQRT, ABS

IP {integer part); FP (franctional part)

The argument need not be enclosed in
parentheses unless it has an operator of
lower precedence than *·
Iterative Functions are

SUM, PROD, MAX and MIN.

Example:

SUM (I=O BY 1 WHILE I<lO:

XtI/PROD(J=l TO I:J))

10

\ i/.' L x i.

i = 0

F [A, 16. J*W (3)] .

Input: You are editing the statement last typed in. Characters typed replace
old ones. Control characters are

Ac print t and delete preceding character
Wc print \ and delete preceding word
Qc print ._and delete preceding line
er throw away the rest of the old line. Done.
Cc copy a character .
Sc skip a character and print %·
ZcC copy up to character C, inclusive
XcC skip up to character -_c, inclusive
c-

R c retype
T pretty retype
Y~ coo:r rest of old line without typine; and start over
De copy and ty-pe out rest of old line. Done.
Fe copy rest of old line. Done. c
E type < and switch to insertinr:; character typed. Second E means

type > and switch back to rerilacing.

