BCC 500 FORTRAN REFERENCE MANUAL

Martha Crosby

Manual M-6
Issued September 30, 1975

THE HAWAII 500 PROJECT
Department of Electrical Engineering
University of Hawaii

Sponsored by
Advanced Research Projects Agency
ARPA Order No. 2884
Contract No. NAS2-8600

THE HAWAII 500 PROJECT is affiliated with the Department of Electrical Engineering at the University of Hawaii.

Research has been supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by NASA, Ames Research Center under Contract No. NAS2-8600.

The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency of the United States Government.
Page Number1
11. Fortran Compiler 3
A. Syntax 3

1. Expressions 3
2. Control and Execution Statements 5
E. Library 11
C. Symbol Table Size 14
D. Commands 15
3. Fortran Operating System 16
4. Loader 16
B. Runtime Debugging 17
C. Runtime Diagnostics 18
IV. Appendix 20
A. Sample Programs
B. References
I. Introcuction

The BCC 500 Fortran is a subset of NST Fortran $1 V$, Cormally called ANSI Basic Fortran. The source program is prepared by the text editor, QED. This source file is compiled by the Fortran Compiler, FTC which prepares an object file for the Fortran Operating System, Fos. Debugging facilities in FOS, allow the user to breakpoint statements, execute single statements, and examine and change Fortran variables.

This manual outlines the basic commands for each subsystem, many of which may also he obtained by typing the llelp Command in each subsystem. Although the system allows 8% words of storage, much larger programs can be effectively run by using files which are common to all levels of the system since most large programs can be broken into a sequence of smaller programs commicating, through data files. FOS indicates how much storage remains after loading all subprograms. 411 programs reforenced must be loaded whether or not they are called. The following chart show the structure of the fortran system.

Structure of Fortran System

"xpressions and Definitions
Integer Constant- Integer without decimal point using digits $0, l, \ldots 9$ with optional preceding + or - sign.
Integer Variable-Series of alphanumeric characters
(except special characters) the first of which is $\mathrm{T}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}$, or N . The series may be any length for readability but the first six characters comprise the name.

Integer String-Integer variable name defined by nll= n characters where n is from to $?$.
Heal Constant- Any number written with a decimal point using decimal digits and optional sign. In integer exponent may follow a floating point constant, it may also have a preceeding sign. Examples are: .0097
9.7E-3
5.OF6

Feal Variable-Series of alphanumeric characters (except special characters), the first of which is alphabetic and not I, J, K, L, M, or N. The firsi six characters define the name.
Real String-Real variable name defined by $n H=n$ characters where n ranges from l to G.
Subscripted Variables- An integer or real variable followed by 1,2 , or 3 integers greater than 0 , that are separated by commas. Examples are:
Beta(5*J-2)
$\operatorname{Max}(I, K+2, L)$

Arithmetic Statements
The corm of arithmetic statements is "a"="b" where a may be
zutiscripted variable and b is an expression.
Pxprossion- Sequence of constants, subscripted or
non-subscripted variable(s) and operation symbols
which indicate a quantity or a series of calculations.
Uperation Symbols- $+,-,^{*}, /,^{* *}$ indicating addition, subtraction,
multiplication, division, and exponentation.
Rules for constructing expressions

1. The simplest expression consists of a combination of constants and variables. If the quantities are integer tbe expression is in the integer mode, real quantities are in the real mode, string quantities may be used in either mode depending on their names. 2. Exponentation of a quantity does not affect its mode, but an integer may not ho given a real exponent. 3 . Guantitics may be preceded by a + , or connected by any of the operators to form expressions provided:

No two operators appear consecutively.
Quantities connected are of the same mode.
No operators are assumed to be present.
4. Parenthesis do not affect the mode of the expression but may be used to specify order of precedence whichis normally executed left to right in the following order:
** exponentation
*/ multiplication and division
+- addition and subtraction

Control and specification statements

The following is a list of the Fortran statements, the keneral form of the statement, the purpose of the statement, and an example.

ACCEPT n, List where n is the statement number of statement, and list is a list of the quantities to be transmitted.
Purpose: read information from teletype as specified by format statement n. Numbers may be right justified to the format by adding a comma after each number as it is typed in.
Example: locopt $9,1, J, K$ which may be ontered as $3,1,5$, regardless of the contents of Format statement 9.

ASSIGN i to n whore i is a statement number an n is a real or fixed variable which appears in an assigned GO TO statement or as a format number.

Purpose: causes a subsequent Go To n, ($n_{1}, n_{2}, \ldots n_{m}$) to transfer control to statement i where i is included in the series above, or to transmit data with different formats during execution.
Example:
$A(2)=\ldots$.
$1(3)=\ldots$ 15 SIGN 3 TO A(1)
3 FricmıT(2F10.5)
TVAR $4(1), A(2), A(3)$ where $1(1)$ acts as a label
CALL name ($a_{1}, a_{2}, \ldots a_{n}$) where name is the name of a subroutine
subprogram, and each a_{i} is an argument.
Purpose: ased to call subroutine subprograms; the call transfers control to the subprogram and presents it with the parenthesized arguments.
Example: CALL QDRTIC(P*9.739, Q/4.536, R-S**2., X1, X2)
CLOSE (i) where i is file number given in OPEN command for reading or writing symbolic (QED) files.

OPEN (i, INPUT, SYMBOLIC, "name:9SVM") where i is file number OUTPUT

COMNON $a_{1}, a_{2}, \ldots a_{n}$ where e.ich a_{i} is the name of a variable or non subiscripted array name.
Lurpose: Causes each a_{i} to be assigned a location in common storage allocated by position.
Example COMMON X, NNGLF, MATA, MATB
SURROUTINE SPMORE
COMMON A, B, C, D

CONTINUE

Purpose: used as last statement in range of a DO when the $D O$ would otherwise end with a transfer of control. Also used as a no operation for program readability.

DIBMSION $v_{1}, v_{2}, \ldots v_{n}$ where each v_{i} is the name of an array subscripted with 1,2 or 3 unsigned integser constants. Each subscript indicates the size of one dimension of the array.
Vurpose: provides information necessary to allocate storage for arrays. Storage is assigned columnwise.
Example: DIMENSION $\backslash(10), \mathrm{H}(5,5,5), \mathrm{J}(12,3)$
DO $n \quad i=m_{1}, m_{2}, m_{3}$ where n is a statement number, is a non subscripted integer variable, and m_{1}, m_{2}, m_{3} are either integer constants or non subscripted variables. If m_{3} is not stated it's value is assumed to be 1. Purpose: command to execute repeatedly the statements which follow up to and including the statement with statement number n. The first time the statements are executed with $i=m_{1}$. For each succeeding execution i is increased by m_{3}. Control passes to the statement following n when i exceeds m_{2}.
Hxample: $D O 25 \quad I=1,15$

$$
\text { DO } 20 \quad J=1, I
$$

END
Purpose: indicates end of source program or subprogram

EQUIVALENCE $(a, b, c),(d, e, f) \ldots .$. where $a . . f$ are variables which may have a single subscript.
lurpose: causes all variables specified by each parenthetical expression to be assigned the same location in storage. Example: EQUIVALENCE (TOP,SIDE(3)), (BOT(14),H)

FORMAT $\left(s_{1}, s_{2}, \ldots s_{n}\right)$ where s_{i} is a format specification. Purpose:describe type of conversion and format of data to be used in the transmission of an input/output list. Connections may be established during execution as described in the ISSIGN statement. Formats are data interpreted by FOS, therefore it is possible to input (i) ampromiate string of characters into an array from any rile such as the teletype at runtime. This feature allows programs to be tested with minimal formats and expanded to any desired level, also part of the output may be deleted with FO.O, IO, or EO.O specified. The format string is referred to by the name of the array which stores it in memory. na3 should be used for an integer array and nAGs for a real array. In both cases, the number of words n must be greater or equal that required to hold the string but may not exceed the size specified by dimension statements. Termination of output does not produce a carriage return, enabling many different statements to produce one physical line of output. Literal values are delimited by $\$-\ldots-{ }^{\$}$. Example: TYPE 1

1 FORMAT(${ }^{(S S U M S}$ OF SQUARES $=\$$)
TYPE 2,SUMSQ
2 Format (I.3/)
This produces the integer conversion of SUMSQ, one line of output and the explicit carriage return / to line feed.

FUNCTION name ($a_{1}, a_{2}, \ldots . a_{n}$) where name is the function name subject to mode convention and a_{i} are arguments. Purpose: the statement is used at the beginning of a function type subprogram to define its name and arguments.
Example: FUNCTION ROOT (B,A,C)
GO TO n where n is a statement number
Purpose: transfers control to statement n
 variable appearing in a previously executed 15 sla statement and n_{i} is also a statement wumber that may have been assigned to n by a previously executed ASSIGN statement.
Purpose: transfers control to the statement with statement number equal to that value of n which was last given by an ASSIGN statement.
Example: CO TO $k,(100,200,300)$ where k is 100,200 or 300 .
GO TO $\left(n_{1}, n_{2}, \ldots . n_{m}\right)$, i where $n_{1}, n_{2}, \ldots n_{m}$ are statement numbers and is a non subscripted integer variable. Purpose: transfers control to the ith value on the list. Example: GO TO $(10,20,30,40), J$ where d is $1,2,3$, or 1.

1F(a) n_{1}, n_{2}, n_{3} where a is an expression and n_{1}, n_{2}, and n_{3} statement numbers .

Purpose: causes transfer of control to statemnt n_{1}, n_{2}, n_{5} depending on whether a is less than, equal to, or greater than zero. Basic fortran does not support logical IF's.
Example: $\operatorname{IF}((X+Y)-10) 5,15,$.

1F (SENGE 1,1 CHT i) n_{1}, n_{2} where n_{1} and n_{2} are statement numbers. Purpose: causes transfer of control to statement n_{1} or n_{2} if the sense light is on or off respectively. There are 24 sense lights that may be tested.

Example: IF (SENSE LIGHT 3) 30,40
IF (SENSE SHITCH i) n_{1}, n_{0} where i is the number of a sense switch (1 through 4) and n_{1} and n_{2} are statement numbers. Purpose: transfers control to statement n_{1} or n_{2} if sense switch i is up or down. Sense switches are set in FOS with the $i ; S$ for SET and $i ; R$ for RESET commands. Example: IF(SENSE SWITCH 2) 10,20

HUSE n where n is a number typed if non zero.
Purpose: Stops execution of program temporarily and types "PluSE n " on the teletype. The user may type ; to continue the program or debug at that time. Example: PAUSE 1

READ n, list where n is the statement number of a format and list is the quantities to be transmitted.
Purpose: Allows any QED file to be accessed. Specific symbolic files may be assigned and reassigned during a run. If a file is not assigned default is to the teletype.
Example: READ 1, DATA

RETURN

Purpose: returns control to main program which called it.

SENSE LIGHT i where i, a number between 1 and 21 , is turned on. If i is zero, sense lights are turned off. purpose: permits sense lights to be turned on or off so that they may later be tested to cause a program to branch. Example: SENSE LIGHT 5

STOP
Purpose: causes object program to halt and allow for debugging or return to system supervisor.

SUBROUTINE name ($a_{1}, a_{2} \ldots a_{n}$) where name is the symbolic name of each subprogram, and each a_{i} is an argument. Purpose: first statement of SUBROUTINE-type subprogram and defines $j t$ to be such, as well as defining its name and arguments.
Example: SUBIROUTINE QDRTIC(B, A, C, ROOTl, ROOT2)
TYPE n, list where n is the statement number of a format and list is a list of quantities to be transmitted. Purpose: causes quantities to be typed on the teletype in accordance with FORMAT n. Many type statements can produce the same physical line of output if a "/" is not encountered in the FORMAT statement.
Example: TYPE 10, A,B,C
Procedures
Fortran procedures consist of Functions and Subroutines.
In order to use them they must be defined and called.
Functions may be defined in the following four ways:
Arithmetic Statement Functions: These functions are defined by a single arithmetic statement in the source program.
Built in Functions: pre-defined and exist in the program similar to macro's at the assembly level, that is they are incorporated into the object program each time it is refered to by the source program.
Lihrary functions: pre-defined and exist in program library.
Function subprograms: usually user subprograms that may consist of more than one statement and tire common to all subprograms.

Each type of function must observe the following conventions:
May use other functions in its definition.
May have as many variable as desired passed as arguments.
Must have names formed in accordance with rules for
naming functions.
Calling functions must follow these rules:
Name indicates the mode of the single value that is result. Arguments must correspond in number, order, and mode with arguments which appear in the program definition.

Subroutines differ from the more specialized functions in two ways:

They may not be referenced by their appearance in an arithmetic expression but must be used with a Cill. They may return more than one value which may be passed either with arguments or through COMmON.
D. Library

A number of functions are available from the library file, \#2:FLIBE, when called by a loaded program. A compiled subprogram may have the same name as a library function. When two or more subprograms of the same name are read by FOS, the first one is loaded and the rest are ignored.

The library presently contains the following functions:
ALOG computes the natural logarithm of a real argument.
Memory: 138 words
Accuracy: relative error less than $6 * 10^{-11}$
ExP compütes exponential base ef real argument.
hemory: 144 words
Accuracy: relative error less than $6 * 10^{-11} * 2^{\max \left(0,\left(\log _{2} x+1\right)\right)}$
SQRT computes square root of real argument.
Memory: 83 words
Accuracy: relative error less than 10^{-11}

ITIN given two arguments, y and x, the routine computes the arctangent of y / x giving the result in radians iu the proper quadrant. If one argument is given x is assumed to be 1.
Memory: 256 words
Accuracy: relative error less than 10^{-11}
ABS, IABS real or integer absolute value, argumont may he of either morle.
Memory: 13 words
FlfyT converts integer argument to real
Memory: 4 words
IFIX, INT, IINT integer or floating value of real argument truncated to integer. Positive and negative arguments are both truncated toward zero.

Memory: 8 vords
ISIGN,SIGN intecer or real result of the algebraic sign of the second argument, assigned to the value of the first argument.

Memory: 90-21 words
AMOD requires two real arguments, returns the remainder when the first is divided by the second. That is thet $(, B)=A-F \operatorname{LOT}(F \perp X(1 / B)) * B$
Memory: 13 words
MOD requires two integor arguments. Returnt the remainder when the first is divided by the second. For intefers $\operatorname{MOL}(I, J)=I-(I / J) * J$
Memory: 9 words
MAX, AMAX finds intéger or real maximum of any number of arguments of either mode.
MIN, AMIN fints integer or real minimum of any number of arguments of oither mode.
Momory: Go words, includes all four entries.

DIM requires two real arguments, returns the difference if the rirst one is greater than the second, otherwise returns zero.
$U \operatorname{Hin}^{(1, B)}=101 \times(1-\mathrm{B}, 0.0)$

The DIN fraction is much shorter if the result is medel.
Nemory: 10 words
IDIA requires two integer arguments. Returns the dirference ir the first is greater than the second, otherwise retarbe zero.

IMIM(I,J) $=M X(I-J, O)$
Nemory: 10 words
LOCF returns the absolute address of an argument of either mode.
Memory: 1 words
IP Eiven two real arguments, P and Q, this function returns zero if lhoy are equal within the four low order mantissa bits, othorwise it returns an integer with the sign of $P-Q$. Given one real argument P, the function returns 2ese ir its magnitude is less than 10^{-10} otherwise it returns an integer with the sign of f. This function is useful in conjunction with the if statement to provide a means of testing equality of decimal numbers in binary. Memory: 25 words.

EXIT same effect as STOP statement, except that *EXIT* is typed. FOS returns to the command mode. Memory: 10 words.
POWER, FORM,TTME,BKS, EOF, ISI/EE, and IPOSIT also exist in the library file and are for the most part built in functions.
C. Symbol Tahla Size

Symbol Lable storage is dynamically allocated by the compiler. None of the tables have fixed length; each may be longthoned, shortened, or relocated as items are added or removed. No table can be exceeded until all memory is used. Included in the symbol table storage is the working storage for statement translation. This area is expanded during the analysis of each statement and contracted as the program is written out. Since it's size fluctuates rapidly in proportion to statement complexity, it is difficult to predict the available symbol table storage, but may be approximated at 150 words. Table storage is bound in the following way:
$\mathrm{N}+2 \mathrm{~S}+6 \mathrm{~A}+2 \mathrm{~F}+1+2 \mathrm{C}+4 \mathrm{~L}+2 \mathrm{C}+3 \mathrm{D}+3 \mathrm{D}+\mathrm{M}+\mathrm{W}$ less than TABIESI/E
where:
$A=$ number of array variables
$C=$ common identifiers
$D=$ do loops
$B=$ equivalence identifiers
$F=$ real constants
G=global subprograms
$I=$ intrger constants
$I=$ local subprograms (Arithmetic Statement runctions)
$\Delta=$ format statements
$S=$ number of scalar variables
$W=$ working storage

!. Commands

To invoke the Fortran Compiler give the executive command WFTC which responds with it's name, version and + + H. lists all the commands available in the subsystem. The commands which must be confirmed by a "." are: + Input from (FILE-NAME) - Source fiJe should be 95 MM +Output from (FILE-NAME) - Compiled object program y +List to (FILE-NAME) - 9SYM If listing is wantei :n terminal "*T" should be specified as rile nome. + Dolug. must be invoked prior to compile if runtime debugeer is going to be used.
+Map. Kives map of program variables sohap. listing normally produces map of program variable storage. This is omitted by invoking Nomap after iist. + Nolist. + Nobebug. + Compile + Einished. *- lgnore this line.

Syntax check with nocode generation is provided by not invoking the output command.

New files are created by enclosing the file name in double quotes.

Tybing control-K at any time returns to the "+" command processor.

```
111. Fortral Operating System
    1. Ioader
                            % includes such operations as floating point
arithmetic, format scanning, and program debugging.
Fortran proorams compiled by f?C are loaded and
executed with FoS by giving the following command:
*FOS carriage return The system responds with
LOUD MOJN PROGRAR
FHOM FILE (FILE-NAME)-
If subprogtuss are called they must be read following
the routine which calls it, if this order is violated,
the names of the missing routines will be typed and
the file should be read again. If library routines
are not included in the user files, they should be
loaded when the system responds
    LOAD SUBHROGRAMS
    FROM FILE for any subprograms type FILE-NMME.
for the library type #2:FLIBE.
    When all the programs and subprograms the system
will respond with
            LOADING COMPIFTE, the time, and the unused storage.
            Transfers to the executive are permitted during the
    loading process provided FOS isn't waiting for the
    user to open another file. The following situations
    may arise while loading:
    FILE NOT BINARY Files not 9RIN or not
    ILIFGN FTLE generated by FTC
    HROGiMM TOO BIG Exceeds 8K currently available
for programs and subprograms
```

It this point the program may be executed, if the proeram was compiled without the debugging option, only the following commands may be used:

B. Kuntime Debugging

If the program was compiled with the DERUS option, the debugger commands may be used. These include:

+ (address) Go to addressed statement
L 1 proceed afer error pauce or breatzint
$+($ address $)!(n)$ Set breakpoint at addressed line,$<n<4$
$+!(n) \quad$ Clear breakpoint n
$+10 \quad$ Clear all breakpoints
+ (andress) ; Replace address with continue statement
+ $=\quad$ Print address of current line
$+($ address $) \equiv$ Print closest relative adress
+ (name) $1 \quad$ Frint variable name in intrinsic mode
+ (name) $[$ Print variable name in octal
+ (name)" Frint variable name in ASCII
$+($ name $) \leqslant 1 \quad$ Intrinsic mode input
+ (name) $[\quad$ Octal mode input
+ (name) \quad ISCII mode input

Addresses for the debugger may have one or two parts. The two part address specifies a program unit followed by a relative label address. Once a two part address has been given the dehugger remembers the program unit. Thereafter a one bart address specifying only the relative label will operale within the most recently specified program unit. Initially tho main program is assumed spocified. Examples: UGO:, los Subprogram USER, labe: 100 - U-R , lon S Subprogram USER, S statements priot to label 100

Main program, label 40

$$
+100+11:!
$$

main program, breakpoint 1 at 10 statements beyond label 100
U. Runtime Diagnostics

1GTO In assigned GOTO statement has been encountered but no variable has been assigned.

ARGM In argument of the wrong mode has been transmitted to a subprogram. The incorrect mode is used.

BGGN The wrong number of arguments has been transmitted to a subprogram. If too many were transmitted, the extra ones are ignored. If too few were transmitted the extra positions are filled with garbage.

Coro The value of a computed GOTO lies outside the range specified. Control transfers to the first statement of the eiven list.

EFIA Fos is unable to output one or more variables as the FORMTT statement lacks a needed E, F, J, or 4. The variable is not transmitted.

EXP The argument of an expontial function is greater than 176 octal. The answer is set to the maximum real value.

FCHR FOS has detected an illegal format character. The character is ignored and a scan for the next specification is begun. Character has same cffcet as a comma.

FokM, PoRp The $1 / 0$ statement variable references something othe than a format statement.

Pokl	The $1 / 0$ statement which references a FORNiT has never been assigned.
Ifrti	Fos has received an illopal input character.
	The charactor is isnorea mon a scan is bopun
	for the next input rield.
IFSL	The value of an IF SBNSE LICHT statement is not between 1 and 24 . The sense light is assumed off.
IFSS	The value of an IF SENSE SWITCH is other than between 1 and 4. The sense switch is assumed off.
NUM	An input number to $F O S$ is outside of range. The value is set to zero.
1. 131	Promram specifies a transfer to an undefined label The promram cannot be continued, but the debugger may be used.
16	The argument of a logarithm runction is negative or foro, the result of the function is set to yero.
V^{*+1}	The program has tried to raise a nedative number to a mon-integral real power. The form $/ \mathrm{N} / * * \mathrm{~F}$ is commuted instead.
CEXI	Output exponent exceeds range. The number is transmitted with 0 exponent.
Stem	The size of storage has been exceeded, continuing program will destroy common storage required by subroutine calls.
SNLT	The value of the SENSE LISHT is not in the range of 1 to 24. The statement is ignored.
Solet	A negative argument was passed to the square root subroutine. The absolute value is used.
$0 * * N$	The prooram tried to raise 0 to a non positive power.
	If it was to the 0 power a 1 or 1. is returned. 11
	it was to negative power, the maximum possitle real
	or integer value is returned.

```
    DIMENSION LETTER(5)
    LETTER(1)=1K+
    LETTER(2)=1H-
    LETTER(3)=1H%
    LETTER(4)=1H/
    LETTER(5)=1HS
    ACCEPT 1,IOPERATE,IARG1,IARG2
    FORMAT(A1,2I8)
    DO 10 I=1,5
    IF(LETTER(I)-IOPERATE) 10,20,10
    CONTINUE
    TYPE 6
    GO TO 9
    FORMAT($WHAT$/)
    GO TO(30,40,50,60,70),I
    IANS=IARG1+IARG2
    GO TO 65
    IANS=IARG1-IARG2
    GO TO 65
50 IANS=IARG1:IARG2
    GO TO 65
    IANS=IARGI/IARG2
    GO TO 65
65 TYPE 80,IARG1, IOPERATE,IARG2,IANS
GO TO 9
    FORMAT(I8,A1,I8,$=$,I8/)
    PAUSE
    END
```

This oxample shows assignment and comparison of non-numeric data, the arithmetic if statoment, and input-output to teletype using TYPE and ACCEPR commande.

```
© FTC
UERSION 12-03-70 ("H." FOR HELP) TODAY IS 04/21/75 1250:39
+INPUT FROM MC-FORT.
+OUTPIJT TO "OBJECT".
+COMPILE.
COUPILING MAIN PROGRAM
COMPILE TIME }\varnothing:0:
+FINISIED. TOTAL COMPUTE TIME 0:0:7
C FOS
VERSION 12-Ø3-70 (";H" FOR HELP) TODAY IS Ø4/21/75 1252:05
LOAD MAIN PROGRAM
FROM FILE OBJECT.
LOADING TIME \emptyset:\emptyset:1
8063 vORDS OF STORAGE UNIISED
+;G
+1234,5678, 1234+ 5678= 6912
-9876.8765, 9876- 8765= 1111
*2458,1111, 2463* 1111=2741948
19999,9999, 9999/ 9999= 1
S
PAUSE
+;F
TOTAL COMPUTE TIME 0:0:3
```

```
    DIMENSION IGRADE(50),KEY(50),SSN(2,50)
1 FORMAT ( 2AG,I3/)
10 I =1
    SDEV=O.
    XMEAN=0.
    TYPE 2
    FORMAT($ TYPE ID AND GRADES$/)
    ACCEPT 1, (SSN(K,I),K=1,2),IGRADE(I)
    IF(IGRADE(I)-100) 30,30,40
    GRADE=IGRADE(I)
    XMEAN=XMEAN+GRADE
    SDEV=SDEV +GRADE**2
    KEY(I)=I
    I=I+1
    GO TO 20
40 I=I-1
    CALL SORTI(IGRADE,KEY,I)
    DO 45 M=1,I
    L=KEY(M)
    TYPE1,(SSN(K,L),K=1,2),IGFADE(M)
    LHIGH=IGRADE(I)
    LOW=IGRADE(1)
    FN=I
    M=(FN+1.)/2.
    MEDIAN=IGRADE(M)
    SDEV=SQRT((SDEV-XMEAN:%%2/FN)/(FN-1.))
    XMEAN = XMEAN/FN
    TYPE 3,I,XMEAN
    TYPE 6,SDEV,NEDIAN
    TYPE 7,LHIGH,LOW
    FORMAT($ EORG,I3,D DATA POINTS, THE MEAN IS $,I3/)
    FORMAT($ THE STANDARD DEVIATION IS$,F5.2,$ THE MEDIAN IS$,I3/)
    EORMAT($ RANGE IS FROM$,I3,$ TO$,I3/)
    PAUSE 1
    GO TO 10
    END
    SUBROUTINE SORTI (L,KEY,NO)
    DIMENSION L(1),KEY(1)
    MO=NO
    IF(MO-16) 80,20,20
    MO=2%(MO/8)+1
    KO=NO-MO
    J 0=1
    I=J O
    IPMO=I+MO
    IF(L(IPMO)-L(I)) 60,60,70
    LEMP=L(I)
    L(I)=L(IPMO)
    L(IPMO)=LEMP
    KEMP=KEY(I)
    KEY(I)=KEY(IPMO)
    KEY(IPMO)=KEN?
    IPMO=I
    I=I-MO
```

IF(I-1) $70,50,50$
$\mathrm{JO}=\mathrm{JO} \mathrm{O}+1$
IF(JO-KO) 40,40,10
IF (MO-1) 100,100,90
$\mathrm{MO}=2:(\mathrm{MO} / 4)+1$
GO 2TO 30
RETURN
END

This example shows calling a subroutine with variable dimensions, using non-numeric data in an array, and conversion from real to fixed point output in the format statement.

The data could de read from symbolic file by inserting the follewing changes; file "DATA" is written in QED.

OPEN(3, INPUT ,SYMBOLIC , "DATA : 9SYM")
-••••
$\operatorname{READ}(3,1)(\operatorname{SSN}(K, I), K=1,2), \operatorname{IGRADE}(1)$
.....
CLOSE(3)

```
TERSION 12-03-70 ("H." FOR HELP) TODAY IS 04/22/75 1329:55
+INPUT FROM TEST.
+OUTPETT TO "TOBJ".
+DEBUG.
+COMPILE.
```

COMPILING MAIN PROGRAM

COMPIIING SUBROUTINE SORTI

COMPILE TIME $\varnothing: \varnothing: 9$

+FINISHED. TOTAL COMPUTE TIME $\varnothing: \theta: 10$
(3) FOS

VERSI ON 12-63-70 (";H" FOR HELP) TODAY IS D4/22/75 1331:1D
LOAD MAIN PROGRAM
FROM FILE TOBJ.
MISSING
SORT
$2405 Y 5$
LOAD SUBPROGRAMS
FROM FILE \#2:FLIBE.
LOADING TIME $\varnothing: \varnothing: 4$
6920 WORDS OF STORAGE UNUSED
$+; G$
TYPE ID AND GRADES
523-48-8131 90
312-44-103070
026-36-5475 82
576-46-4387 78
575-38-2978 92
999
312-44-1030 70
576-46-4387 78
025-36-5475 82
523-48-813190
575-38-2978 92
FOR 5 DATA POINTS, THE MEAN IS 82
THE STANDARD DEVIATION IS 8.99 THE MEDIAN IS 82
ZANGE IS FROM 92 TO $7 \varnothing$
PAUSE 1
$+\operatorname{KEY}(1) / 2$
$+K E Y(2) / 4$
$+\operatorname{key}(3) / 3$
$+\operatorname{KEY}(4) / 1$
+KEY(5)/5
$+3 F$
TOTAL COMPUTE TIME $\emptyset: \varnothing: 8$
D. KTPHPENCES

1. FokTRiN 11 Reference Manual, Document 30.50 .50 Feb. $8,-1966, C . S t e p h e n ~ C a r r, ~ U n i v e r s i t y ~ o f ~ C a l i f o r n i a, ~$ Berkeley.
2. Betch PORTRAN Reference Series, Tymshare, Revision 4, October 1968.
