) ,
" nmygys . " (T " (L

|
T i

L

REPORT No. 997

i fu I

OCTOBER 1956

Programming And Coding For ORDVAC

TADEUSZ LESER

MICHAEL ROMANELLI

«r’“lrﬂs«ﬂa;!‘ e -.\.»mm* r»
TR £ 3 Do AR E D A,« Cr*}"

~ f WY "A :."w‘«'c"'
-a.‘ e —(x wﬁ“xfb,f“«e,a

ABERDEEN PROV N " GROUND, MARYLAND'

Destroy when no longer
needed. DO NOT RETURN

BALLISTIC RESEARCH LABORATORTIES
REPORT NO. 997

OCTOBER 1956

PROGRAMMING AND CODING FOR ORDVAC

Tadeusz leser

Micheel Romanelli

Department of the Army Project No. 5B0306002
Ordnance Research and Development Project No. TB3~-0007

ABERDEEN PROVING GROUND, MARYLAND

TABLE OF CONTENTS

.AB STRACT LI] ® * e« e 2 . L] . @ L) * e 0 . * * o (] L] e & 2 @ L]
PREF ACE ® LI) L3 s 2 8 e 8 * & © & & o s & = 0 » 5 o & e© e o L]
AC I(NOWIJEDGEWNT " e + = 0 c s o ® ¢ e e « LI] L 2] e« * o A

I.
II'

II1I.

" XTI,
XII.

BINARY AND SEXADECIMAL ARITHMETIC NECESSARY FOR ORDVAC.

INTRODUCTORY DESCRIPTION OF ORDVAC OPERATIONS. Flow
Charts. Coding. ghort List of Symbols. . . ¢ « . o .

CARD PUNCHING AND TRANSCRIBING. Conversion.

Reconversion. Putting a Problem on the Machine . . . «

SHIFT ORDERS. Scaling., Coding Scaled Problem in
Straight Sequences. S T

CONTROL UNIT. Front Panel. Operating Instructions . .

REPETITIVE SEQUENCES. Transfer Orders, Decision Box.
Counters. Formation Formula. Address Modification.
Extract Orders. Programming and Coding Loops of

Repetitive Operations. .« ¢ o o o o o o o 5 o o ¢ 2 o «
SUBROUTmEs L] L] L] L] ® . . * L) . L] L L] . L] ® . L] L] L] » L] ’

TRANSCRIBER ROUTINE AND INPUT ROUTINE + o o « « o & +
CODE CHECKING « + o o o o o o o o o o « s o a o o o o 4
"IBM IN" AND "IBM OUT" ORDERS. "IBM IN" and "“IBM OUT"
Subroutineé. e 8 & s s s e 3 8 6 s s s s s e s s s s s
FLOATING POINT ROUTINE + o o o o o o o « o o o o o o o
THE ORDVAC MAGNETIC DRUM .+ « + o v o o o o o o o o o
APPENDIX v v e o o o o o o o o o o o o s o o o o s o o

81
127
L5
161

187
205
233
237

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 997

TLeser /MRomanelli/jew
Aberdeen Proving Ground, Md.
October 1956

PROGRAMMING AND CODING FOR ORDVAC

ABSTRACT

The installation of the new magnetic core memory in ORDVAC and the
accompanying improvements in the mechine's design have caused a change
in the order types and in the address system. Furthermore, the high
rate of personnel.changes et the Computing Laboratory of the Ballistic
Research Laboratories has also indicated a definite need for a manual
or text which gives systematically the essentlals necessary to code
problems for high speed digital computers in general and for particular
machines in detail. This text attempts to present to the beginner such
basiec fundamentals needed in the case of ORDVAC. The ldeas presented'
here sre not restricted exclusively to the ORDVAC, since they may be
applied to a large famlly of digital computers which have been built
with the same underlying pattern. ‘

PREFACE

A computer is a "data processing machine". Indeed, raw numerical
date are put into the computer, are operated on in the machine in a
prescribed way, and thereupon yield the deslred processed numerical
results. Computers are of two types, "analog" and "digital". In an
analog computer, numbers are represented by measures of certain physical
guantities. For example, a slide rule is an analog computer, one in
which numbers are represented by physical distances on a ruler. Or
again, numbers in an analog computer may be represented by amounts of
voltage or current. On the other hand, a digital computer counts
discrete digits and handles number symbols themselves in an appropriate
scale of numeration. ORDVAC (Ordnance Discrete Variable Automatic

Computer) is an electronic digital computer.

A digital computer performs not only the four elementary arithmetic
operations of addition, subtraction, multiplication and division, but
also other basic operations, called "loglcal' operations. The most
important of these logical operations are (1) duplicating numbers,

(ii) moving numbers from one part of the machine to ancther, and,

(111) after testing two quantities for "equality" or for a "greater than"
condition, choosing one of two paths to follow depending on the results
of the comparison. Every problem to be computed on the machine must in

its Final analysis be expressed in terms of these basic operations.

An outstanding but nevertheless restrictive characteristic of an
electronic digital computer is the speed at which 1t can perform the
basic operations. ORDVAC can perform thousands of these operations per
second. This fact makes feaslble the solution of many problems not
previously attempted because of the enormous length of time that would
be required to do them by hand. Another notable characteristic of an
electronic digital computer ig the capacity of its storage device, called
"memory"., In & memory we can store data and information which in case
of hand computations are kept in mind or recorded in notes, tables, etc.
A simple machine guch as a desgk calculator which has a very small memory,

Oor no memory at all recelves an order to perform s single operation,
obtaine a result which the operator records by hand and stores on paper,
then it recelves the next order, and so on. Each operationsl step
requires direct human intervention. In a large. memory we can store not
merely the numerical results of all operations, but also a sequence of
orders. A computer with such a memory can be automatically sequenced
by a device called "control unit", in the sense that it can be made to
rerform a whole program of computations without any human intervention.
This sequencing in turn requires a very detailed set of instrutions on
what the computer has to do. TInstructions mist take into account agll
the acts of Judgment and memory which in hand computation a person
would perform (often automatically and perhaps without realizing their
nature) and must be expressed in a language understood by the machine,
The machine language 1s called "code", and the process of translating .
desired operations into code, is called "ecoding”.

Experience with changing personnel and varied equipment at the
Computing Laboratory of the Ballistic Research Laboratories has indicated
& definite need for a manual or text which glves systematically the
essentlals necessary to codevproblems for high speed digital computers
in general, and for one or more particular machines in detail. The aim
of this text 1s to present to the beginner such basic fundamentals
needed in case of the ORDVAC. The ideas here preéented are not
exclusively for ORDVAC, since they may be applied to a large family of
digital camputers designed with the same underlying pattern. The
variations from this pattern called for added refinements only.

ACKNOWLEDGEMENT

The authors express acknowledgement to the referee Dr. Albert A. Bennett
who had read the manuscript critically and made'invaluable suggestions,
and to Mr. George C. Francis who corrected most of the errors having used

the report as a text in his course.

CHAPTER T
BINARY AND SEXADECIMAL ARITHMETIC NECESSARY FOR ORDVAC

ORDVAC.can deal wlth numbers onlj in their binary representation
(to the base 2), or for convenlence in the essentially equivalent
sexadecimal representation (base 16). Therefore an acquaintance with
binary and sexadecimal arithmetic is essential for the ORDVAC coder.

Represgentation of Numbers. In every day life we use numbers in

decimal representation, or numerals to the base ten, and these in
connection with a position-value notation. For example the numeral .
2489 means 2xlO5 + hxlO2 + 8x10% + 9x10°. The digit 2, the most signifi-
cant diglt, 1s the fourth from the right and this position indicates

that the diglt thus placed is multiplled by 105, the digit 4 1s the

third from the right and is multiplied by 102,4and 80 on. Analogously,
the numeral 0.2489 means 2x10°t 4 hxlO'e + 8x1070 + 9x10"u. A number
expressed to the base ten is written as a sum of multiples of consecutive
powers of this base. In decimal representation we have available ten
different digits, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, the number of digits
being equal to the base, ten. Each non-negative integer less than or
equal to 9 1s represented by a single.corresponding diglit, integers
greater than 9 are represented by combinations of two or more digits.

The numeral for the integer next greater than the greatest digit, 9, is
"10", which represents the base, in decimal representation. The above
examples illustrate the general principles of positional representation.
These principles can be summarized as follows: 1) the number of distindt
digit symbols equals the base, 2) the numeral, in positional notation,
is written as a sum of diglital multiples of consecutive powers of the
base, 3) the symbol of the base is "10", 4) each non-negative integer
less then or equal to the greatest digit 1ls represented by a one-digit
numeral, Integers greater than the greatest diglt are represented by
combinations of two or more digit numerals. ‘5)‘ The 1ﬁteger'next greater
then the greatest diglit is the base. Thus a number, to the base "b",
represented say by "eoeleeejeu" is _eobLL + el'b5 + 62b2 + eﬁbl + eubo. The
exponents 0, 1, 2, 3, 4 for the sake of simplicity are kept in decimal
representation and each "eif is & dlgit less than Db.

7

From now on whenever necessary we shall indicate the base of a
glven numeral by & decimal numeral in parentheses. For exemple 15(16) .
would meen the number sixteen plus five, represented in the base sixteen,

LIRS ST

namely twenty-one, (or Ellyb‘tﬁé base ten).

Binary Representatlion. In binary representation the base 1s two.
The symbol of this base is (in binary notation) "10", and the only digits
available are O and 1. For example "1111(2)" represents 22 4 lx22
+ 12t 4 lx20, =15(10). Numerals in binary representation are called

"binary numerals", and the digits "O" and "1" are called "bits", a word
v 3

coined by contracting the words "binary" and "digits". Examples -of
binary numerels end their ordinary verbal equivalents are shown below:

Bilnary Verbal Decimal Binary Decimal
1 one 1 0.1 = 1x2™+ 0.5
10 two 2 1 D

11 three 3 0.11 =1x2 ™ + 1x2 0.75
100 four & 1 s -3

101 five 5 0.001 = Ox2 ™ + x2 ~ + 1x2 0.125
110 six 6

111 seven 7

1000 eight 8

1001 nine 9

1010 ten 10

1011 eleven 11

1100 twelve 12

1101 thirteen 13

1110 fourteen 14

1111 fifteen 15

10000 sixteen 16

The Baslc Operations on Binary Numerals. The rules of basic oper-

altions for numbers in decimal representation may be so phrased as to
remain valid for binary numerals. Addition, subtraction and multipli-
cation are explained in the following exemples. Division is omitted as

. } (RN By Ol =t fT+4+ = 1O
we ghall not’need it. P P 1=lo=0 R
Addition. 1011 augend 11(10)
' 111 addend 7(10)
10010 sum 18(10)

We add beginning from the extreme right column (the least signifi-
cant bit): 1 plus 1 is 10; we write "O" and carry 1. The second column
from the right: 1 plus 1 is 10 plus the carry bit 1 is 11; we write "1"
end carry 1. The third column: 1 plus the carry bit 1 is 10; we write

8

"0" and carry 1. The fourth column; 1 plus 1 is 10; we write "O" and
carry 1. The fifth column: 1 plus O is 1; we write "1". The sum is
10010(2) = 18(10).

The example 1ls easy. There was never a carry into more than one
column. But if a serles of more than two binary numbers is added the
"carry" problem becomes more difficult. Often three or four carries are
involved for one column. Because of the increasing difficulty of adding
© longer and longer series of binary numbers, electronic computers add
two numbers at & time and then add the ﬁhird to the first sum, etc.
Although more coperations are involved, the additicnal time consumed is
practically nil because of the extremely high speed of the machines.

An important case of addition ls adding a binary 1 to a binary
number N. If N is a number whose bilts are not all ones, the next larger
number N + 1 is obtained by changing the least significant O to 1 and
changing all the l's to the right of it to 0. For example:

10101 + 1 = 10110

10111 + 1 = 11000,

Subtraction. 1011 minuend 11(10)
111 subtrahend 7(10)
100 difference 4(10)

We bggin subtracting from the extreme right column: 1 minus 1 is
0, we write "O". The second column from the right: 1 minus 1 1s O; e
write "O". The third column: the diglt 1 in the subtrahend is greater
than the digit 0 in the minuend hence wé borrow 1 from the fourth column
(which mekes 10 in the third column) in the minuend 1 from 10 1s 1; we
write "1"., Thé fourth column; after borrowing 1 from the fourth column
there 1p nothing left in the minuendj’we do not write anything. The
difference is 100(2) = 4(10).

Multiplication. (To find the product of 1011(2) the multiplicand,
by 111(2), the multiplier.)

1011 x 111 11 x 7
1011
1011

1001101 (product)

Multiplication of binary numbers hardly needs explaining:
We always multiply by 1 or by O which makes each single step much
easier than in multiplying numbers in decimal representation.

An important case is multiplication of binary numbers by powers of
2. Remembering that 27(10) = lOn(é) ‘?the exponent n is in decimal
representation); multiplication of a binary number by 2" is performed
by shifting the-binary point through n places to the right if n is
positive, or to the left if n is heg&ti&e. For example:
11.01011(2) x 25(10) = 11010.11(2)

11.01011(2) x 2'“(10) = .001101011(2)

Conversion from Decimal to Binary Representation. The rule for

converting an integer numeral N(10) to i1ts binary equivalent is as
follows: divide N by 2, write the quotient and remainder together in
the next line below, with the quotient directly underneath and the
remainder in & special column at the right; repeat this process with
the first quotient, that is, divide this quotient by 2, write the new
qudfient, and the new remainder; continue thus until the last quotient
becomes zero. The remainders which can be only 1 or O give, when read
from bottom to tob, the binary equivalent of "N(10)", the last remainder
represents the first, the most significant bit, the first remainder‘
represents the last, the least significant bit.

Example: Find the binary equivelent of 867(10).
Quotients Remainders

867 2 ’

433 2
216
108 =
54
27
13
6
3
1
0

Thus 867(10) = 1101100011 (

ape

S |
Prad ~Hoasavd

s

.ls

ofe

BRIV R RN VI A V)

1

1

Q

0

0

1 ! + - en Y n{'"
1 5 f
0

1

1

2

).

. 10
x 18 rﬂ.A, <*Lu o 4?; +{\u V*f { Lt‘ée ngkg\ -

b (Ect%r 4”&}&‘

+b {;C

e~ tevd

The rule for converting a decimal fraction 0.N(10) to its binary
equivalent is as follows: Multiply O.N by 2, write the decimal part of
product underneath and the integral part in the same line in a special
colum at the left; multiply only the fractional part of the product by
2 and proceed as before; continue until the fractional part of the product
becomes zero, which would mean that the fraction terminates, or carry
until the desired number of bits is obtained; the integral parts of the
products glve the binary equivalent of b.N(lO); the first integral part
represents the first bit after the bilnary point.

Example 1. Find the binary equivalent of 0.671875(10).

Integral parts Fractional parts

0. 671875x2

A 1 343750%2

Read Lcom 0 687500x2

W 1 375000x2

TR 0 7500002

: 4 1 500000x2
oo W1 000000

&y Thus 0.671875(10) = 0,101011(2).

¢ aL‘ Example 2. Flnd the binary equivalent of 0.6(10).
e R 21 ji—,‘g .

Integral parts Fractional parts
v 6x2

2x2
hx2
8x2
6x2
2x2
hx2

\/

ORRHFOOKM |O

Tn this example the binary fraction equivalent to 0.6(10)

is a non-terminating recurring fractlon. Thus

0.6(10) = 0.1001L 1001 1001(2) 0.1001(2) .

11

Exercises: Convert the following numbers in decimal representation
to binary representation. In case of non-terminating
fractions find at least ten most significant bits.

1)3456 2)80012 3)10093 4)0.010203 5)345009 6)0.53125

Sexadecimal Representation. In sexadecimal representation the base
1s sixteen, the symbol of the base is "10" and the digits are 0,1,2,3,k,
5,6,7,8,9,K,8,N,J,F,L. The new digits,. K,S,N,J,F,L. whose decimsl
equlivalents are 10,11,12,13,14,15, can be remembered from the mnemonic:

"King Size Numbers Just for Laughs". For example "K8N(16)" represents
10x16° + 8xl6l + 12x16° = 2700(10). Examples of sexadecimsl numbers
and thelr decimal,equivaleﬁts are shown below:

Sexadecimal Decimal
10 16
11 17
12 18
13 19
1k 20
1F 30
28 40
32| 50
3N ' 60
he . 70
50 80
64 100
N8 200
L4 500
3F8 ' 1000

Addition and Subtraction. The rules of operations for numbers in

decimal representation may be so phrased as to be valid for sexadecimal
numbers. We shall need only addition and subtraction

Addition. 156K augend - 5482(10)
118 addend 507(10)
1765 sum 5989(10)

We begin adding from the extreme right column: S plus K is
15/ decimally 1t means 11 plus 10 1s 21 = 15(16)_/, we write "5" and
carry 1. The second column: the carry diglit 1 plus L is 10 plus 6 is
16; we write "6" and carry 1. The third column: the carry digit 1 plus

12

11is 2 plus 5 1s 7; we write "7". The fourth column: O plus 1 is 1;
we write "1". The sum is 1765(16) = 5989(10).
Subtraction. 156K Minuend 5482(10)
118 subtrahend. 507(10)
136L difference 4975(10)

We begin subtracting from the extreme right columm: the digit
8 = 11(10) in the subtrahend is greater than the digit K = 10(10) in the
minuend, hence we borrow 1 from the second digit in the minuend (which
is 10(16) in the first colwm): S from 1K is L/ decimally it means 11
from 26 is 15 = L(16);7, we write "L". The second column: after
borrowing, the second digit of the minuend is 5; the digit L 1n the
subtrehend is greater than the diglt 5 in the minuend hence we borrow
1 from the third diglt in the minuend: L from 15 is 6 l?decimally it
means 15 from 21 1s 6_/; we write "6". The third column: after
borrowing 1, the third digit in the minuend is 4; 1 from 4 is 3; we write
"z" Pourth column: O from 1 is 1; we wrlte "1". The difference is
1364(16) = L975(10).

Conversion from Binary to Sexadecimal Representation and from

Sexadecimal to Binary. Conversion from binary to sexadecimal represen-

tation is very simple. The rule for convertlng a four-blt binary numeral
abed to the equivalent sexadecimal numeral is as follows: make the
following correspondence: the first digit from the right corresponds,

in virtue of its position-value, to the multiplier 1(10), the second

to 2(10), the third to 4(10), the fourth to 8(10), thus:

s 1s the multiplier of 8 = 2°
b is the multiplier of 4 = 2P
¢ is the multiplier of 2 = 21
d 18 the multiplier of 1 = 20.

The sexadecimal equivalent of sbed 1s then 8a + 4b + 2¢ + 1d. This sunm
ig less than 16(10) because each of a, b, ¢, d is O or 1, therefore a

13

sexadecimal number equivalent to a four bit binary numeral consists of
only one sexedecimal digit. For example 1011(2) = 8x1 + 4x0 + 2x1
+ 1x1 = 11(10) = 3(16).

The rule for converting a binary numeral to a sexadecimal numeral
is as follows: divide the numeral in groups of four bits starting from
the binary point, to the left and to the right, and write the corre-
sponding sexadec1mal digit for every group. For example to convert
1 1010 OL1l 00111(2) we group as follows;

(1) (2010)(0111).(001L)(1) = 1KT7.38(16)

1 X T . 3 8)
tn erely <ode od Fhe po LA
When the number of bilts is a multiple of four then the number of

diglits in equivalent sexadecimal number 1s only a querter as great.

The rule for converting a sexadecimal numeral to its binary ‘
equivalent is as follows: Express each sexadecimal digit as a sum
8a + 4b + 2c + 1d, vhere each &, b, c, d, is O or 1, vhich will give
the bits, a, b, ¢, d corresponding to the glven sexadecimal digit.
For example to convert KSL8(16) we proceed:
8x1 + UxO + 2x1 + 1x0, giving 1010
8x1 + 4xO + 2x1 + 1x1, giving 1011

8x1 + Ux1 + 2x1 + 1x1, glving 1111
8x1 + 4xO + 2x0 + 1x0, giving 1000

ihnoun

oH MR

Thus KSI8(16) = 1010101111111000(2)."

Conversion from Decimal to Sexadecimal Representation. The rules
for converting an integer N(10) or a decimal fraction 0.N(10) to its
sexadecimal equivalent are very similar to the rules for converting to

binary equivalents and need not be repeated. The only difference is
.thet 1n case of an integer N(10) we divide by 16(10), and in the case

of & fraction 0.N(10) we multiply by 16(10). Sometimes it is more
convenlent to convert first to binary equivalents and then to sexadecimal
equlvalents.

1k

Examples. 1) Find the sexadecimal equivalent of 961(10)-

Quotients Remainders
961 1 16 o
60 2 16 . 1
3216 - © N = 12(10)
0 - o)

Thus 961(10) = 3N1(16).

Converting first to binary equivalent and then to sexadecimal equivalent:

Quotient " Remainder
961 = 2
480 - 2 1
240 - 2 0
120 = 2 0
60 % 2 0
30 ¢ 2 0
15 3 2 0
T+ 2 1
322 1
1.2 1
0 1

Thus 961(10) = ..11 1100 000L(2) = 3N1(16)
3 N 1

2) Find the sexsdecimal equivalent of 0.345(10) ,

Integral Part Fractional Part
0 ' 345 x 16
) 520 x 16
8 .320 x 16
5 120 x 16
1 .920 x 16
F 720 x 16
8 520 x 16

Thus, 0,345(10) = 0.5851FS....(16)

15

Converting to binary and then to sexadecimal equivalent:

Integral Part Fractional Part

345 x 2
090 x
.380 x
.T760 x
520 x
040 x
.080 x
160 x
.3520 x
640 x
.280 x
560 x
120 x
240 x
480 x
.960 x
.020 x
840 x

X

X

.680
360

HFHOFFOMFPFPRPHFHOOOFOHFOOOOHMHOMK QO
MNP PPPNOMNONVNOVPOOONDIONNDOIDNONDNDND DN

Thus, 0.345(10) = ,..0. 0101 1000 O0L0L 0001 1110 1011 = 0.5851FS...(16),
"8 s e 0 5‘ 8 5 l F S
where 0.5851FS denotes the recurring fraction 0.5851FS 851FS.....

Exercises: Convert to sexadecimal equivalents;
1) 2358(10) 2) 0.2538(10) 3) 0.0110011(2) 4) 1.011110100011(2)

Convert to binary equlvalents:
5) O.KKLLSS(16) 6) 0.012345(16) 7) 12K.KSNJF32(16)

Representation of Negative Numbers by Complements. In order not to

complicate the design of electronlc computers a positive complement

. I

representation as described below was f?un% f?r a nifative ?umber,'lw pases &3
“ [-1. 3 L

Fiberiends; eush thit this Foflive domplonent, Sa 16 sddea fornaily
to the minuend to obtain the desired difference. Thus, the Qperation'
M - N can be done ag M plus the complement of N. ILet us consider for

example a computer which holds in the "register" only three digits.

16

If a result of some operation has more diglts than three the register
will show the three least slgnificant digits. (A register in a computer
is a device which holds a number and records some or all of the operations
on them).' The diglts beyond the left end of the register will be lost.
For example multiplylng the decimal number 231 by 11 we should obtain
2541, but the first digit "2" will be lost and the register will show
541, ILet M and N be three-digit positive numbers. Using (105 - N) as
the complement representation for (-N) we get M plus (.103 - N) = (M~ N)
plus 105. Since .105 is 1 multiplied by 1000 the digit 1 exceeds the
capaclty of the register, belng beyond the left end of the reglster; it
will be lost and the number shown Iin the register will be M - N. For
example 1f M = 324 and N = 135, then 135 is first subtracted from 1000
and the result 1s added to 32k,

1000 32l
-135 +865
865 1189 =M - N

Since 1, the leading diglt, 1s lost the correct difference 1859 stands

in the register.

The number (10° - N) is called the "complement" of N (with respect
to 10n) where the exponent n equals the number of positions in the
register. ORDVAC is a "fixed" point machine, in fact, 1t handles oniy
numbers whose absolute values are less than 1 (save for the formal
exception to be mentloned presently). If a result of some operation is
greater than 1 the reglster in ORDVAC will normally hold only the

fractlional part and the integral part will be lost. The lost excess is

called "the overflow". Tn ORDVAC the complement of a number + N(2) is
/io(2) - N(2)./. Examples:
Numbers Complements
0.1 10 - 0.4 = L.l
0.0L 10 - 0.01 = 1,11
0.101 ’ 10 - 0.101 = 1.011

Note: Complement of a complement of N is N.

7

It 1s seen that the complement of any proper fraction has 1 in its
integral part. In such a case the digit to the left of the binary point
would be interpreted as representing a negative number. It must be
stressed that the 1 in the integral part would be correctly interpreted
by the computer only in the case of negative numbers represented.by the

complement.

An easy rule to convert a number - N(2) to the binary ORDVAC comple-
ment of N(2), or the binary complement of N(2) to -N(2) is as follows:
Replace in N, "0"'s by "1"*'s and "1"'s by "0"s, except (Counting from
the left) the last "1", and leave the "0"'s following the last "1"

wchanged, For example; 1f

N = 0.01011100
then the complement of N = 1,10100100, = representation of -N;
or, if the complement of N = 1.01010110, = representation of -N,
then N = 0,10101010.

Examples of binary subtraction performed by complement addition:
1) Subtract 0.0011 from 0.1011

By ordinary subt. 0.1011
-0,0011

e

0.1000

By complement addition 0.1011
complement of 0.0011 = +1.1101

10.1000

The minuend ﬁlus the complement of the subtrahend is 10.1000, but the
ORDVAC register will hold 0.1000 which is the correct difference 0.1011
~0.0011.

2) Subtract 0.1101 from 0.0011

By Ordinary subtraction & 0.0011
-0.1101
-0.1010
By complement addition 0,0011

+1.0011
- T1.0110

18

The gum of the minuend and the complement of the subtrahend is 1.0110
which will stand in ORDVAC registers. It is interpreted as
-(104000-1.011) = -0,101L0 which is the correct difference of

0.0011 -~ 0,1101, The result -0,1010 could be obtained directly by the
rule of replacing O's by 1l¥s and 1l's by O's in 1,0110.

Machine Representation., ORDVAC handles forty-bit fractions of the
form €y € ©pe59. The binary polnt follows after the first bit,
ey, and ey is "O" (in case of a positive fraction), or "1" (for use with

& negative fraction), where, as explalned before, & negative fraction -N

1s replaced by the complement of N, The bit ey is the first significant bit

and‘e39 is the last significent bit. If positiveAas well as negative
numbers are taken into consideration, a thirty-nine significant bit
fraction may assume Quo - 1 different values. To glve the "machine
representation” of a nuwber, N, means to express N in the above described
form. The binary polnt is self-understood and is usually omitted.

Examples:
1. Glve the machine representation of 1/2,
1/2 = 0.5(10) = 0.1(2), thus the machine representation
_ of 1/2 ’
is 0100 0000 0000 0000 0000 OQOO 0000 0000 0000 Q000

2. Gilve the machine representation of -1/2.
-1/2 = -0.5(10) = -0.1(2); the complement of 0.1 is 1.1,
thus the machine representation of -1/2 is 11000 (thirty-eight zeros).

Exercises; (ive the machine representation of; 3/4, -3/4, 0, -1,
3/163 "‘7/8: 1. .

Machine Sexadecimal Representation. To avold writing by hand all

the forty bits of machine binary numerals we use speclal sexadecimal
equivalents which represent machine binary numerals and have only ten
sexadecimal digits. The "ORDVAC machine sexadecimal representation"

of binary numerasl N(2) is the sexadecimal equivalent of N(2) divided by
2. To convert a binary numeral N(2) to its machine sexadecimal
representation, it is convenient to divide it by 2 before the conversion

19

by merely moving the binary point through one bit to the left. Thus,
we first divide the numeral N(2) into ten groups of four bits. The
first group containing ey a8 the first bit; and then we replace each
group of four bits by its sexadecimal equivalent. For example, the

proper sexadecimal equivalent of the binary numeral is, 0.1000 0100
: ~ 8 L

000L 0100 1000 0110 0000 0000 0100 000 or 0.8414860040(16), but
1 b 8 6 0 0 i 0

the machine sexadecimal representation of the binary numeral (binary

point moved one left), is, 0100 0010 0000 1010 0100 OOLL 0000
4 2 0 K 4 3 0

0000 0010 0000, or 420K430020. A number in machine sexadecimal
0 2 0

representation has ten sexadecimal digits. We shall repeat thet the
machine sexadecimal representation equals one half of the fractional
part of the proper sexadecimal representation. For example,

if the proper sexadecimal representation is 0.8414860040,

the mechine sexadecimal representation is 420K430020.

Conversion from Decimal to Machine Sexadecimsl Representaticn. To

convert a positive decimal fraction to 1ts machine sexadecimal representation we
multiply first by eight and after that we continue to mltiply by

sixteen. This process is carried only through the tenth sexadecimal

digit. The zero in front of the sexadecimsl point is omitted and it

i1s not counted as one of the diglts. Sometimes it is more convenient

to convert first to binary machine representation and then to machine

sexadecimal representation, or to convert first to the proper sexa-
decimal representation and divide by 2. For a negative fraction - N first
convert + N and then complement with respect to 16.

Exemple. Give the machine sexadecimal representation of 0.5671(10).

Integral Part Fractional Part

5671 x 8
5%68 x 16
5888 x 16
4208 x 16
7328 x 16
7248 x 16
5068 x 16
5488 x 16
7808 x 16
Lo28 x 16
8848 x 16

~NZ2 00NN oo

20

Thus the machine sexadecimal representation of 0.5671(10) is 4B896S39ONT.
Tn this non-terminating process the conversion is carried only through
the tenth sexadecimal digit, not counting the zero in front of the sexa-~
decimal point. |

Converting first to machine binary end then to machine sexadecimal
equivalent: '
Integral Part 'Fr&ctional Part

56TL x 2
1542
26864
5366
0736
172
2044
5868
1776
3552
710k
4208
8416
6832
566N
7328
4656
9312
8624
7248

HEQOFROHMFOFOOFHFOOOROOHO

taseaenen svasseseess Thie is carried through
the fortieth bit.

Thus, 0.5671(10) = 0100 1000 1001 0110 101l 1011 1001 1000 1100 011l
L 8 9 6 S g 9 8 N 7

snd is represented sexsdecimally by 48968898NT.

Conversion from Decimal to Machlne Sexadeclumal Representation On

& Desk Calculator. The conversion from decimal to machine sexadecinal

representation 1s carrled through the tenth sexadecimal diglt., A ten
dlglit sexadecimal fractlon corresponds to a twelve or thirteen digit
decimal fraction, thus in order to obtain the maximum precision twelve
or thirteen most significanﬁ decimal digits must be converted to

21

sexadecimal equivalents. The registers of a desk calculstor hold only
ten decimal digits and normelly the maximum precision could not be
obtained.

Dr. Herold K. Crowder from Case Institute of Technology, devised
an Ingenious method for converting twelve or thirteen digit decimal
fractions into ten digit machine sexadecimal equivalents on & ten bank
desk calculator. The decimal fraction to be converted 1s broken into
two parts, the most significant ten decimal digits and the remainder.
Consider the twelve digit decimal fraction .XOOX XOXX YZ. The portion
XX XXX 00 can bé converted in the usual manner shown in the pre-
ceding exaumple carried through the eleventh sexadecimsl digit. With
the remainder .00000 00000 YZ we proceed as follows: Multiply
.00000 00000 YZ by 3436, write the fractlonal part of the product
underneath end integral part in the same line in a special column at
the left. Record the integral part as a ninth digit of & machine sexa-
decimal number, the first elght digits being zeros, proceed multiplying
by 16 and recording the integral parts as in the preceding example.

When the two machine sexadecimal numbers have been constructed they
are to be added. ' The sum rounded to ten digits ylelds the complete
converted number.

It may be noted that the number 3436 referred to above consiste .
of the first four diglts of 2j5, the described process being a short cut
for multiplication by 8 once and by 16 eight times.

22

Example: Give machine sexadecimal representation of cos 1 = 0,54030 23058 68

Integral Part Fractional Part
0 54030 23058 x 8

32241 8hheh x 16

69 51lh2h x 16
53912 22784 x 16
62595 6454 x 16
01530 3270k x 16
24485 273264 x 16
91763 Te22k x 16
68219 55584 x 16
91512 8934k x 16
64206 29504 x 16
273500 72064 x 16

00068 00000 x 3436
33648 00000 x 16
28368 00000 x 16
13888 00000 x 16

REREHWOR UYL &
Y]

>

N
]
=
@]
m

elght

OVl IO

Converslon of most significant part: L4528k O3FKE K
Conversion of least significant part: .00000 00025 6
Converted number: U528k 03rgL O
- Rounded converted numbey: L528K OB3FTh

Exercises:. Glve the machine sexadecimal representation of

a) the binary machine numeral:
1) 010101000101, ..00, 2) 10101010011.0011...00.
b) +the decimal fraction:

3) 0.3425, L&) 0.81%2, 5) -0.8132 6) -0.1221.
Find the decimal equivalent of

¢) the binary machine numeral:

7) 011010010...00 8) 1101000110...00
d) the ORDVAC sexadecimal: '
9) 3K800 00000 10) J9LOO 00000.

25

CHAPTER IT

INTRODUCTORY DESCRIPTION OF ORDVAC OPERATIONS
FLOW CHARTS. CODING. SHORT LIST OF SYMBOLS.

The Components. ORDVAC congists of three main parts or "units"

namely: "the memory", "the arithmetic unit", and "the control unit".
The memory is & storage device and consists currently of LO96 storage
locations called "memory positions" which can be thought of as separate
permanent storage boxes. In each memory position can be stored at any
given time, one forty-bit number. The arithmetic unit is that part of
the mechine which performs the actual addition, subtiraction, multipli-
cation and division. This unlt consists of several numbered registers,
each capable of holding one forty-~bit number for immedilate use. The
most importent of these registers are: 1) "the accumulator register,
R1," which is for addition and subtraction, and 2) "the arithmetic
register, R2", which is mainly for multiplication and division. The
control unit is the mechanism which schedules the performence of the
operations so that they will occur in the desired sequence, A more

detalled description of the maln components of this unit will be glven
in Chapter 7{.

Any electronic digital computer operates at such speeds that no
human operator can elther supply the machine with data at an adequate
rate for processing, or write down computed numbers as fast as the
machine can supply them. This necessitates the employment of auxiliary

terminal components called "input" and "output" devices.

Tgure 1 shows the mejor units of the machine and the arrows
indicate the possible directions of flow of information through the

varlous units. Such information 1g in a numerical form.

25

MEMORY * CONTROL UNIT

(teletype RL . R2 |(teletype)
INPUT ARITHMETIC UNIT OUTPUT

Flgure 1 -

The greatly simplified diagram in Figure 1 shows that all infor~
mation, external or internal, goes to the memory by way of Rl. Infor-
mation can be extracted from the memory by way of either Rl or R2. Tt
1s possible to move information directly from R2 to R1l, but generally
not vice versa. The numericel results recorded in the teletype output
device must come from R2. (For IBM input and output see Chapter X).
While the control unlt receives informstion from the memory unit, it

never transmits information in numerical form.

The Words and Orders. An ORDVAC "word" 1s an organized unit of
information, consisting of forty-bits. Each memory position can contain

at any given time, exactly one word. Similarly, each arithmetic reglster
can contaln, but only temporarily, exactly one word. A word can
fepresent elther;

1) Ome forty-bit "datum number" which is one of the numbers
to be operated on (processed) by the machine.

2) One or two instructions that specify what the machine is
to do with the datum numbers. In both cases a word looks like a forty-
bit number. The machine is gble to distinguish datum numbers from
instructions in the followlng way: All words that enter the control
unit are interpreted as instructions, all words that enter the arithmetic
unit are interpreted as datum numbers, The important feature that a
datum word and an instruction word have ildentical fo?m, far from being
an embarrassing dlsadventage, is in fact, a great convenlence., The
same word can be interpreted in one connection as an instruction, in

26

another, as a datum number, depending upon which machine unit does the
Interpreting. We can bring an instruction word into the arithmetic
unit and treat it as a datum number. We can change an instruction word
by performing some operation on it and storing it back in a memory
position ;it can then be interpreted as a different instruction word.
In this way the machlne can modify its own instructions, and with great
flexibility.

The structure of words representing datum number was explained in
the first chapter.

An instruction word consiste of two distinct groups of twenty bits
each called an "order"., TFilgure 2 explains the structure of an order.

The Ordgz

Ingtruction: 6 bits 2 bits Address: 12 bits
(Order type)

These six bits ldentlfy These two bits These twelve bits

an operation (arithmetic are both zero. ldentify one of the
or logical). They separate L1z
o instruction from uggit;oiq memory
address. POS- -
Figure 2

The firet six bits of an order identify the kind of operation to be
performed, the last twelve bits together repﬁesent in binary notation
the address of some particular one of the 4096 memory position (as will
be dliscussed presently). We repeat that the forty separate bilts in the
two twenty-blt orders in an instruction word are strung in one row and
have together exsctly the same form as a datum number. The grouping
and subgrouping of instruction words which we just described is purely
a matter of Interpretation, recognized by the machine. A diagram of an
~lnstructlion word as a vhole, in terms of orders, is shown in Figure 3.

27

The Instructlion Word

Twenty bits Twenty bits

The first, or left order The second, or right order.

Figure 3

The first of the two orders in an instruction word is referred to
as the "left order", the second as the "right order",

The Address. The 4096 memory positions are numbered serially, like

safe deposit boxes in a bank veult. The number permanently identifying
a memory position consists of twelve bits and is called "the address"

of that memory position. Furthermore, a memory position has assoclated
with it, at any one time, one word which is referred to as "the contents"

of this memory position. Thus, each memory position has:

1) A unique permsnent identifying address (12 bits) which

can be compared to & box number or cell number.

2) The contents of this memory position (40 bits), which can

be compsred to the contents of the box or cell.

 The Raster. The "raster" 1s a televislon-like screen on the panels
of many computers where each memory posltion is represented by & green
dot. The dots form a rectangular arrsngement. By analogy, a similar
rectangular arrvangement drawn on a sheet of paper 1s also called "the
raster" or the "raster sheet". We shall use the word "raster" in the
later sense, because ORDVAC does not have a raster screen on its panels.
Figure L4 shows a raster as a rectangular arrangement of 1024 addresced
memory positions in a 32 x 32 matrix. The memory has 4096 positions
needing four raster sheets to represent them. Flgure 4 shows the left
upper sheet, Figure 5 the diagram of all four raster sheets. Fach small
rectangular unit corresponds to one memory position. The identification
of the 4096 positicns in sexadecimal notatlon ranges from 000 to LLL.

28

00
02

o
06

08
OK

ON

OF ‘|

10
12

14
16

18
1K

1N
lIl‘I
20
22
2k
26

28
2K

2N
2F

30

32
3k
36
38
2K

SN
3F

The left part

01 23 L4 56

7 89 K8 NJF LO1 23

THE LEFT UPPER RASTER SHEET

i

The right part

56 T

8 9 K

S N JF L

0 123456789 K8 NJIJFLO1L23L456T7T89K SN JIJF L

Figure 4
29

01
03

.05

o7
09
0s
0J
oL
11
13
15
17
19
18
1J
1L
21
23
25
27

29
23

2L

31
23
55
37

| 39

38
3J

3L

00 01 | 40 41

02 03 | 4o 43
Left upper sheet Right upper sheet

3F 31 TF L

80 81 | NO N1

82 83 | N2 N3
Teft lower sheet Right lower sheet

gF SL { LF LL

Figure 5

30

A vertical heavy line drawn in Figure 4 divides the raster sheet
Into two parts. The two digit sexadecimal numersls in the left margin
mark the rows of the left part, the numerals in the right margin mark
the rows of the right part. The numerals iﬁ the upper and lower margins
mark the colums separately for each part. For example the 1little
rectangle here marked with an "X" 1s in the left part of the raster
sheet in the row labeled "1N" and the column lebeled "6". It represents
the address 1N6; the first two sexadecimal digits, 1N, being the number
of the row, the last sexadecimal diglt, 6, being the number of the column.
The little rectangle marked with a "O" is in the right part of the
raster sheet in the row labeled "29" and the column labeled "7". It

represents the address 297.

The rows and the colums in the three raster sheets representing
the remalning 3072 memory positions (1024 positions in each sheet) are

numbered as follows:

The right upper sheet:

- Left part: Rows; 40, 42, 44, ..., 7F; Columns; O, 1, 2, ..., L.
Right part: Rows; 41, 43, 45, ..., 7L; Colums; 0, 1, 2, ..., L.

Thqm%gft lower sheet:

Left part: Rows; 80, 82, 84, ..., sF; Colums; 0, 1, 2, ..., L.
Right part: Rows; 81, 83, 85, ..., 8L; Colums; 0, 1, 2, ..., L.

The right lower sheet:

Left part: Rows; NO, N2, N4, ..., LF; Columms; O, 1, 2, ..., L.
Right Part: Rows; NL, N3, N5, ..., LL; Columns; 0, 1, 2, +o., L.

Programning and Coding. "The Program" is a plan for solving a

given problem. Programs may therefore range in complexity from s
tentative sketchy outline to a complete elaborate working system of
directions. Planning a method for solving a prdblem is called
"programming". This term is somewhat flexible because the programming
may vary with difficulty of the problem or with the experience of the

programmer and of course may reflect the special restrictions of the

31

\
-

prospectively avallable computer. The process of programming or planhing
a solutlon 1s distinguished from the "coding" which 1s the translation

of & program into the language of a specific machine., The "coded progrem”,
or "routine", slthough often also loosely referred to as the "program",

is & sequence of machine words (explained before) instructing the machine
to perform specified operations which will lead to a solution.

We learned in Chapter I that ORDVAC handles binary fractions and
we shall assume in this chapter that ali datum numbers and the results
of ell operatlons on them are such fractions. We shall consider now a
very simple example of programming and coding a problem: glven two
nuribers a., and 85 to program and to code the computation and the

1
printing of the sum ai + ae. The machine can start the operations when
the numbers.al and a, and the coded program are stored in the memory.

The sequence of words which constitutes a program will usually be stored
in consecutive memory positions (at consecutive addresses) in their
proper order. Storing a coded program (a routine) in the memory 1s
called "reading in" a program. Reading in a routiné directly is
cumbersome snd seldom done. In practice, before reading in a routine
we store an suxiliary coded program called the "input routine". Due

to special features the input routine can be stored very easily. When
Ence'stored in the memory the input routine has the facility of
automatically reading in a given computation program, as will be
explained later. ‘The input routine can also perform the necessary task
of storing the numerical data which will have to be processed in the
course of computation. Hence the storing of initlal datum numbers

need not be & part of the computation program. In our present program

© and in most of the problems which follow we shall assume that the input
routine with all the input datum numbers is already availlable prior 1o
‘introducing the coded computation program. In our problem then the
input routine will store the a, and &, mentioned above at some addresses,

1
say Al and A2 respectively.

Programming. The programming for our problem would consist of the
following outline;

I Compute the sum al + gz

II. Print the sum and stop.

In I are grouped the operations associated with the computations of

8y +a,, in IT are grouped the operations assoclated with printing

the result and stopping the machine. As a rule the outline is prepared
in the form of a diagram called the "flow chart", having numbered
"boxes" connected by arrows indicating the flow of information., Thus,
for our simple problem, programming is reduced to preparing a flow chart,
The flow chart of ourvproblem is shown in Figure 6.

FLOW CHART, a., + &

1 2
I II

: o, +a, A3 | Print 8, + a, and

: 1 i} Stop

T
Al %al
A2 g&a

i .

Figure 6

Notes on the Ilow Chart.
a) Groups I and IT of the outline are shown in Boxes I and

IT on the flow chart. It is customary to use Romwan numerals to designate
major sections of a program. The orders corresponding to operations in
Boxes I and II are often referred to as "Sequence” I and II. There are
no strict rules as to how to group operations in a box: experience will
eventually show the coder that it is natural to end boxes at "transfer
orders" (explained later). The orders representing individual operations
are numbered with Arablc numerals following the common Roman numeral,
thus: 1in Box I: I,l; I,2; I,3; etc; in Box IT: IT,1; IL,2; II,3; and

BO On.

b) The arrows on the lines connecting the boxes indicate
the order in which the groups of operatlons will take place, which group
will come first and which next, etc,
' 33

'¢) The box connected to the flow chart by a broken line is
not numbered because the operations grouped in it are not a part of
the program. This box is called the "Storage Box" snd the operation
in it consist of storing the numbers ay and 8, in memory:positions
Al and A?. We have assumed that these operations would be performed
by the input routine; the presence of the storage box on the flow chart
reminds the coder where the datum numbers are stored.

d) The arrow inside Box I indicates that the sum 8, t+a, is

t0 be stored in memory position A3.

Preliminary Coding.

Before the example can be coded it will be necessary to
digress upon the ORDVAC's order structure. The ORDVAC can execute
fifty different orders. A description of the complete list of orxders
is given in the AppendfxW A short list of orders sufficient for the

early simple examples is presented below.

Short IList of Orders. Two forms of representation of orders are

commonly used; the "preliminary representatlion” and the "sexadecimal
representation”. For final coding, for actual use on the machine the
machine sexadecimal representation must be used., However, in the

early stages of coding, when many changes have to be made‘and before
addresses have actually been assigned, it 1s convenient to use "a
preliminary order representation", a notatlon which is generally more
easlly understood by the coder. In this short 1list a combination of a
capital lettér and & numeral, like Al, represents ean address of a memory
position, save for two exceptions to be mentloned. Parentheses placed
about an address symbol are used to represent at any stage in the flow
chart, the contents of the glven address at that stage, thus "(Al)"
represents the contents of memory position Al. The exceptlons to this
interpretation of letter-numeral combinations are "Rl and "R2" which
gtand for asccumulatlon end arithmetic reglsters (explained before). How-
ever, the use of parentheses still holds: "(RL)" and "(R2)" represent

__>" ig

contents of Rl end R2 (a 4O-bit word in each case). An arrow, "

3k

read "goes to". For example "(RE) —> A3" is read: "the content of Rp
goes to the memory position A3", and it means that the 40-bit word in
R’ is duplicated in memory position A3. The previous contents of a

memory position or of a register are cancelled only when replaced by

-another word, save for a few exceptions which will be explained later,

A Short List of Orders

Preliminary Represen- Sexadecimal Represen- Description Verbal
tation of Orders tation of Orders of Orders Neme
No '
1 +B1 : Kk4... (BL)— R1 ’Clea.r, add.
2 (+)B1 k... (R1)+(B1)—> R1 { Hold, add
3 -Bl 2h. ., -(B1) —* Rli Clear, Subtract
4 (-)B1 Ok... (R1)-(Bl)—»R1 | Hold, Subtract
5 M Bl 10... (R1) > B1{ Store
' Exact
6 XuBl K8... (R2)x(BL) - R1L multijg?pesi'.m
7 - Bl , 78... (RL)>(BL) -~ R2{ Divid
8 R Bl ‘ sh... (BL)—> R2
9 P L4028 Print (R2) on teleprinter|Print
in sexadecimal form; eras +o
zeros, R2 to 1l1ts.
10 Z u 00000 Stop (for the machine) iatqp)
11 U Bl NO... Transfer control to the'Transfer
left order of Bl ——.
Pigure T
A"I‘ L\\g;‘i’ S:—-m‘sv) '<N - . (ﬁl\“"';) ﬁ'

35

Notes on the List of Orders:

a) The two sexadecimsl diglts in each line of the third colum of
the list are the sexadecimal equlvalents of a six-bit instruction followed
by two binary zeros (explained before). The three dots used in the repre-
sentation in the third column are to be filled later by three sexadecimel
digite representing the sexadecimal equivalent of the twelve-bit address,
B | “ta

b) The preliminary representation of Orders No. 2 and No.)y mmd
respectively with "(+)" and "(-)". The parentheses are used to distinguish
them from Orders No. 1 and No. 3, which start with ", +", and "-". The
Orders No. 9, P, and No. 10, Zu, differ in structure from other orders,
in not containing address parts. They consist of twenty-bit instructions

represented by five sexadecimal dlglts.

¢) Order No. 6, Xu, 1s the only order giving a "double precision
result". The first thirty-nine most significant bits of the product are
in the register R, the thirty-nine least signlficant blts are in R2.
The register R2 holds forty bits, but the first bit, which is always
zero, is dlsregarded. Thus the multiplication of two numbers gives a
seventy-eight-bit product. Addition, subtraction, and division give
thirty-nine-blt results.

d) Order No. 7, - , glves the gquotient in R2. The last bit

(e59, the least slgnificant bit) of the quotient is always "1" (binary

one).

For example, 0.0L= 0.1 = 0.1, but the register R2 will show,
0100 Q000 0000 0000 0000 - 0000 0000 0000 0000 000L, introducing
an error of 2797, The division is said to be "a round-off" division.
The remainder, is"shifted left oneﬁﬁ?nch.is equivalent to being multiplied
by 2,&10(2)3 snd is held in R1.

order No. 11 belongs to the category of "transfer orders".F‘A ‘
trangfer order is not autématically followed by the next order igigéaﬁéﬂge
but by the order in the memory position specified in the address part of

the trensfer order. For example, Order No. 11, U BI, directs control to

36

the left (the first) order which is stored in memory position Bl. The
Orders No. 1 through No. 10 are not transfer orders and any one of these
orders is sutomatically followed by the next order in tﬁ%:sgquence. No
order except a transfer order specifies the address of the order to

follow.

Now let us return to the example, The programming results in a flow
chart. When the flow chart is completed we can begln the preliminary
coding, patterned dlrectly upon the flow chart.

Preliminary Coding for Computing 84 + 8.

2
Sequence Code Word Order R1 R2 Memory Description
(Box on the (sexadecimal . (address of (preliminary (contents of)
flow chart) order) ° the word) symbol)
I, 1 Kh... +A1 ay
word (ALY?R1
2 Nk, .. (+)A2 a,+8, (R1)+(A2)R1
3 10... M A3 | a 48,
_ Wor&{s 172 (RL) —2 A3
IT, 1 h,.. R A3 a, +a, (A3) 9 R2
2 14028 P Print (R2)
word: '
3 00000 Zu gtop

Notes on the Preliminary Coding.

a) The above progrem can be explained in words as follows:

Order I, 1; (AL) = a, 1s duplicated in Rl, after this order 1is performed

(R1) = 8- |

Order T, 2, (RL) = 8, i?Ri%d?@atia(AE) = +a,; after this érder is performed
R R~

Order I, 3, (RLl) = & o, %ij%uﬁlicized in A3, after this order 1s performed
\3) = a)ta,.

Order II, 1, (A3) = 8, ta, is duplicated in R2, after thls order 1s performed
(R2) = a,+8,.

Order II, 2, (RR) = a,+8, is printed in the teleprinter (the output device)

in sexadecimal form.,

Qrder TII, 3, 'The machine stops aperation.

57

b) The orders are written in pairs: I, 1 and I, 2; I, 3 and
II, 1, II, 2 and II, 3. Each palr forms one instruction word to be stored
in one memory position. The whole program consists of three words.

¢) The column under the heading " Sequencé' 1lists the numerical
sequences of orders of the corresponding boxes. The Roman numerals refer
to boxes on the flow chart.

The second column under the heading " codd' contains sexa-
decimal representations of the orders. The instruction part of an order
consisting of the first two sexadecimal digits is immedlately availlable
from the list. The address part, the last three sexadecimal) digits, 1s
to be inserted in the final coding after the addresses have been assigned.

The third column under the heading "Word" has the addresses
of the instruction wofd and is also filled in the final coding after the
addresses have been assigned. The columns under the heading "R1", "R2",
"Memory" have the contents of Rl, R2 and Memory respectively, where the

results of the corresponding orders are recorded.

d) The sum a, + &, was actually obtained after the order I, 2,
but we needed three more orders to accomplish its printing, since the
design of ORDVAC permits the printing of results in the teletype output

device only from the register R2 (see ORDVAC diagram).

The Assignment of Addresses. The next step after the preliminary

coding is to assign addresses for instruction words, initial datum
numbers, and temporary positions. As each address 1s assigned 1t will '
prove convenlent to record this fact by shading the appropriate space

on the raster sheet to remind the coder that it is no longer availéble.
The space alloted to the input routine must also be shaded. In the normal

method of operation by the ORDVAC, when transfer orders do not interrupt,

the left order of an instructlon word at address Bl of the memory is

38

executed, followed by the right order of that word, then the left order
of the word st the next address B2 (next in the sequence of addresses),
ete. The ordinary procedure in assigning addresses would be to start
from some convenlent unused address and choose the following addresses
in thelr natural increasing order until 1t becomes necessary, as in
nore coﬁplicated problemsg than the present example, to skip oﬁt of this
ordering by means of & transfer. Filgure 8 shows a part of a raster
with assigned memory positions for the input routine, numerical data
and the words of the routine for computing &l+aﬁ'

Raster wlth Assigned Addresses

0 1 2 3 ... F
00
: 7
XANKK X
28 P Computation
X Bouting
N
L

Flgure 8

Notes on Figure 8.

‘ a) The memory posltions LNF through LLL are used by the input

routine., (Fifty memory positions).

b) The number a, 1s stored at the address 260(16), the number

a, at 261(16). In the preliminary coding the addresses of a, and a, were

represanted"by gymbols Al and A2 respectively.

¢) In the preliminary coding we used a storage position whose

address was represented by the symbol A3, For this positlion we assign
the address 262(16).

29

d) The three instruction words of the computation routine are
assigned the followlng addresses in sexadecimal representation: 280, 281,
282 Ll

The Final Coding. Having assigned the sexadecimal addresses we can

now go back to the preliminary coding, Figure 7, and complete the final
coding by filling the second and the third columns under the headings

"tode" and "Word".

Final Coding for Computlng a.+a

1 2
Sequence Code Word Order R1 R2 Memory Description
I, 1 K4260 + Al ay (A1) —>R1

280

2 N4261 (+)a2 a,+a, (R1) + (A2)—>R.

3 10262 M A3 & +a, (RL) —> A3
281

II, 1 sh262 R A3 a, 8,

2 14028 P Print (R2)
282

3 ~ Q0000 AP : Stop

Figure 9

a) The first instruction word of the routine consisting of the first
two orders is KA4260N4261, and 1t 1s to be stored at the address 280, The
second instruction word, 1026284262, is to be Btofed at the address 281.
The third instruction word, L402800000, is to be stored at the address 282.

Key-Words. Coded routines are inserted into ORDVAC's memory by
means of an input routine which has several optional modes of operation.
In general, e coded progrem can be subdivided in a natural way into groups
of words at consecutive addresses such that all members of the same group
reqﬁire the same treatment. The input routine has been so constructed
that a group of consecutive words can be subjected to a common input
operation by inserting a special "key word" for that operation just shead
of ites group. It should be remarked that this insertion is actually
necessary only on the tape or puached card input: 1f a key-word 1s
written on the final coding sheets, no address is to be assigned to 1it,
that is, the key-word itself 1s not to be placed in the memory.

Lo

In thig Chapter we shall require only the two following key-words.
A completP list 1e given in the Appendix,

Short List of Key Words

Symbol Explanation of the "pseudo"-instruction

1. 80000 OO@%. Store the filrst word of the computation routine

at the address Al and continue storing in consecutive
memory positions the words which follow, until the -
next key-word appears.

2. . 80001 OO?%. - Start operations beginninglapi&”the left order of

the instruction word stored at the address Bl.
Mlgure 10

The first key word from the above list precedes the first word of
“the computation routiné, the second key word follows the last word of
the computation routlne. The computation routine of our problem of

computing a.+a. together with the key words would look as follows:
1782 y

Coded Program for Computing al+a9

Key word 80000 00280 key word

1st word KU260 N4261 a

2nd word 5 10262 sh262 Computation routlne
3rd word L4028 00000

Key word 80001, 00280 Kay word.

Flgure 1.1
The coded program in Flgure 11 reads as follows;

Store the first word of the computation routine at the address
280, and continue sforing the words which follow at succeeding addresses,
281 and 282 for the second and third words respectively. When the third
instruction word is stored, then the machine 1s instructed by the key
word which follows the last word to start operations begimmingkgéah the
left order of the first Instruction word stored at the address 280,
Operations will then continue, and the machine recelves and executes
orders from consecutlve addresses. The orders wlll be executed 1n the
following sequence; left and then right from the address 280, left and
right from 281, left and fight from 282,

41

Card Punching. The coded program in Figure 11 is not yet in a form
acceptable by the machine, The last steps consist of punching the coded

program on cards or on teletype tape. In ORDVAC practice the tape is
very seldom used and we shall discuss only the card input. A stack of
cards in their proper order ready for the machine is referred to as the
"deck", The deck, arranged with the computation routine on top of the
input routine (input routine comes first) is the final form of the coded
program ready for the input device. The prepafation of & deck will be
explained.in the next chapter.

Preparing a Problem for Machine Computation., Summary. Suppose that

& problem has been formulasted mathematically and that & numerical method
has been selected to solve 1t. Then the preparation of the problem for
the machine congists of the followlng steps:

1. Programming. The course of the computations is planned and the

coding procedures to be used arve selected., The final result of the
programming is a flow chart. In principle the general outlines of
programming will not be limited to any one particular mechine. In practice,
the special features of a given machine may influence the details of the
planning. ‘

2. Coding. In coding, or in translating the flow chart into the
language of the particular machine, a sequence of machine words is
formulated to represent a sequence of operatlons. Coding can be subdivided
into three distinct steps: '

a)- Preliminary coding, using preliminary representation of
orders and symbolic addresses.

b) Assigning memory addresses.

¢) . Final coding, using sexadecimal repregentation of orders

and actual addresses.

5. Card Punching and Transcribing, These will be explained in the next
chapter. Except for the card punching and tranécribing, every step
listed above was described for the problem of computing the sum of alfae.
We shall illustrate the preparation of a problem for machine computation
through another example, that of finding thebvalue of : z = xy-b.

42

1. Programming., Aséume that the datum numbers, x, y, b, xy and =z
are already proper fractlons; hence their reduction to fractional form
does not require special attention. The input routine will store x, y,
and b, The probiem is very simple and programming involves only the
preparation of a flow Ehart. ' '

Flow Chart for Computing, xy-b.

I | T

- z = xy-b —» Bl »| Print z and
é : stop
Bl
B2
B3 b
Mlgure 12
2., (Coding. ‘
a) Preliminary coding for computing, xy-b
‘Sequence (Code Wbrd Order RIL R2 Memory Description
LI,y ' R Bl x (B1) —> =Rr2
2 ' Xu B2 xy ‘ - (R2)x(B2) — R1
3 (-) B3 xy-b ?ng-(w) —7 R1
L M Bk xy-b Rl) —»> Bk
II, 1 R B4 xy-b (Bk) —> R2
2 P : Print (R2)
3 Zu Stop

43

b) Assigning Addresses

Raster

)]
=
oy
=

0.....9 K
00 '

-«

3 R

% RGPyt 108 Fubingd
38
i ' ‘ X
LRI Tnput L rOut DKM KKK
Figure 13

¢) Final Coding for Computing xy-b.

dequence Code Word. QOrder Rl R2 Memory Description
NI B

R

o e

Notes on the finsl coding.

1. - For the sske of exposition we used separate forms (coding sheets)

for preliminary end final coding. In practice the same fonnis!used for
both.

2. The last order, II, %, is a left order not followed by
the right order. In thils case we make the right order 00000, or
snything else we like.

Lk

The computation routine, with the key words, would appear as
follows:
80000 00369
sh349 KB34K
O434ks = 1O3LN
Sk34kN Tho28
00000 00000
80001 00369

The above sequence can of course be read directly from the coded
program form and does not need to be re-written in the maxmer shown

sbove, We presented 1t here for clarity.

3, Card Punching and Transcribing. Preparation of the deck will
be explained in the next chapter. ”

Exerclses: Prepare the machine computation for each of the followlng
problems: (the results should be printed).

1. a +b -~ ¢ (each of the numbers, a, b, and cand all partial sums in abs.
value are less than 1)

2. Xyz (each of the numbers, x, y, and z in abs. value is
less than 1)

3 x +y - xy(each of the numbers x and y in abs. value is less
than 1/2) ,

L5

CHAPTER IIT

CARD PUNCHING AND TRANSCRIBING. CONVERSION. RECONVERSION.
TABULATION. PUTTING A PROBLEM ON THE MACHINE

Preparing & Routine for Card Punching.. In the example of computing

8, +8,, which we used in the second chapter, the computation routine with
the key words was as follows:

Left order Rilght order

"1lst word 80000 00280 Key word

2nd word K4260 Nu261}

3rd word 10262 sh262 Instruction words
hth word L4028 00000

5th word 80001 00280 Key word

To prepare the routine for card punching we insert, in every word,
a "O" after the second and the seventh digit. In case of an instruction
word we insert a "O" after the second digit of each order. Thus, every
order will have six digits Instead of five, and every word will have twelve
digits instead of ten. The reason for doing this will be explained in
Chapter VII. The twelve-digit word routine is shown below:

1st word 800000 000280 Key word

2nd word = K40260 WL0261 . _

3rd word 100262 gho262 Instruction words

bth word IA0028 000000

5th word 800001 000280 Key word

Sexadecimal Cards. An IBM card, shown in Figure 1, has twelve

horizontal rows labeled Y,X,0,1,2,3,4,5,6,7,8,9, and eighty vertical
columns labeled at the bottom of the card by numerals 1 through 80

respectively. For sexadecimal punching, the eighty columns are considered

as divided into six groups of twelve columns and one group of eight
colums. The last eight column group is not'used. As is shown by the
labels inserted on the upper mergin of the card in Figure 2, the first
twelyve column group corresponds to the first twélvé digit word, the
second group to the second word and so on. An IBM card with the above
grouplng end correspondence is called "a sexadecimal card". The twelve

W7

Yyvyy YYY YNy Y YV Y Y Y Y VY Y Y Y Y Y Y Y Y Y Y Y Y Y Y[y y YY)y yyy

XXXX
0000

8123

1t

XXxx
20[00
a 8fion
11011
22

33

XXXxX
0000
12 13 14 15
1111
2222
3333
4444
B
5555
6666
1711
8888

989

13 14 15
o]

XXX
0000
24 25 26 27
1111
2222
3333
4444
c

5855
6666

XXxx
0000
16 17 18 19
1111
2222
3333
4444
5585

6666

XX XX
0000

20 21 22 23

11t

XXXX
ooj0o
26 29030 31

1111
22

XXXX
0000
3233 34 35
1111
2222

3333

XXXy
0000

36 37 38 3
1111

XX XX
gooe

0123

1111

XXxx
0000

4567

1111

11

22122 2222 22 2222022222222
3333
4444
5855
6666
1111

§888

33
44

3333 33

44

3333(333313333

44 4444 4444

D
5955

444414444
5555
6666
1111
88886

9999

4 24344

4444
E
555

6666

5555
6666
1111
8888
399

9
2122232

5555
66666666
1111
8888

99

9
16117 18
RDVA

1111
8888
9999

45 46 47 48

1111
8888

1111
8888

-0
~N o

919889

31 32133 34 35

999%

9
19 6137 38 39 40
c

Eaco
P

Fig. 1

4th
Yy Y

3rd word
CYYYY YY) YT Y

- 2nd word
YYYYYYYyYyywyyy

XXX
o000

0123

Vi

XXX XX XXX KX XX

0000

16 1/ 18 19

T

XXX
0do0o

20 21 22 23

11l

XXX
0000
4 25 26 27
1111
222

XX XX
oojo

28 29130 31

T

XXXxx
00

{1}

11

0000

2131415

1111

oooojpoonoD
12 33 34 3506 37 33 39

[RERINEE

2222 2222 22
31333
4444
55585

6666

2222 2222 22212 2212212222

3333 3333 3333j333333(3313333)3333 33

§444p 444 4444 44
C

555515553
66666666

4414444
D

5555
6566

4444
5555

4alaafrasa 44
B

3555 55[55 3595 35

6.666 66|6666 66 6666 66

1111 17

3888{3888

1111 1111

§888

IRRRIIREN IRRRHE

g8

§66800888[88868 88

YYyy
XXxx
nDojoo

101

YYvY
XX XY
0ao00
111
2222
3333
4444

F
5555
66646

XX XX
0000
1213 14 45
1111
2222
3333
4444
F
5555
6666
1111
8888

9

2

59989]9999

21 22 23 245 26 17 28

©
(=3

99

383

~ e
«

ERS
2 =l

9999
171819 20

Yo

9
4

8

29 30l 32033 34 35 3 sels

9989

l53 54 56 56

12131415

d
YYYy

YYYy
YXXx
0000
1111
2222
3333
4444
5555
6666
1711
8888
9999

16 17 18 19

YYYY[YYYY
XX XX
0000
20 21 22 23]
1111
2222
31333
4444
5555
6666

XXKX
0000
24255 % 71
1111
2222
3333
4444
6

56659

6666

57 58 59 601

XX XX
0noo
1617 18 19
11t
2222
3333
4444

5553

6666]66066

1111
88868
9919

57 58 59

9
0

VY vy

6th word
YYYY
XXX
0000

20 21 22 23|

1111

XXX
go000
24 26 26 27
1t
2222
3333
4444
G

5555
6666
1111
8888

9999

65 66 67 68

2222
3333
4444
5555

YYvy
XEXX
o000
28 2530 31
11
22
13
44
55
66
11
88
99 9

69 70

Yvyy
XX XX
00
20 29
11
22
33
44

55

<O
[7]

11

11
88

YYYY[YYYY
XXXX
0000
32 33 34 35)
111
2222
3333
4444
H
5555

6666

XXxx
0000
3373838
1111

2222
3333
1444
5555

6666

1111

8888

99

1111
8888
39899

112

0o
30 31
11
22

33

69 70

Y Yy
K XXX
6000

32 33 34 3|

9
73 74°75 76177 78 73 80

not used
YY Yy

X XXX
0000

363738 39
BERIRER
2222
3333
4444
H
5555
6666

2222
3333
4444
5555
6666
1171
8888

1778 79 80

colums of a group correspond respectively to the twelve diglts of a
word. In counting columns and diglts from the left, the first columa
corresponds to the first digit, the second column to the second digit,
snd 80 on. If the digit is 0,1,2,3,4,5,6,7,8, or 9,we puach 0,1,2,3,k,
546,7,8, or 9 in the corresponding column. For example,if the first
digit of a word is O, we punch "O" in the first column, or again 1f the
twelfth digit 18 5, we punch "5" in the twelfth column. However,if a
digit is & X, S, N, J, F, or L, we punch two characters in the corre-
sponding column, using the following key:

K(=10) is represented by punches of X and 2
5(=11) " " mooow "0 and 2
N(=12) " " " " "X and 5
J(=13) " " W "X and 1
P(=14) " " noow " Y and 6
L{=15) " " " " "X and 3

Figure 3 shows the representations of the digits K through L, and
also the digits 3 and 7. '

Yy Yy Y@l y v v
¥ ox X E x X x x
0o oo o0 o0 o0
11 111111
[2][2] 2 2 2 2 2 >
533 3 33 3
T T
5 506555 5 5
6 6 6 6[6]6 6 6
TT T T 17 i
8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9
K 8 N JF L 37
Figure 3

k9

st word | 2nd word 3rd word | 4th| word 5th word

YYYY
8000
KX

L
3 5
n

Yy

Figure 4 shows the sexadecimal card of the coded progran for
computing al+a2. For the sake of 1llustration the sexadecimal words

are typed at the top of each twelve column group.

gexadecimal Card for Computing a]+a2

VYYYYYYYYYYYYYHYYY(YY(YYYYYYYYfYYYYYYYYYYYYYYYWYYYYYYYYYYYYYYYYVYY«YYY
K40260N4026|l00262840262LAOOZSOOpOOOSOOdOKX) 280
i

ﬂxxxxx!xxxxxxxxxxxxxxxxxfxxxxxxxﬂxxxx xxpxxxaxxxxxxxxxxxxxxxxxxx
' 1

i ¥ |
'HUENOUHOBHUUIGGOUIIMUOHUHUDU Olﬂ 'IM:BEM ﬂﬂﬂﬂIEHOUﬂUUODODUUGﬂBOUOOﬂ
138 ¢ 56 7
[N N

)
s oo fin 1di2 13 1415016 17 19 19)20 20 22 23pa 25 26 27128 29[30 31132 33 34 35 6 37 9 IO 1 2 3 B a0 1112 13 1a 0515 17 18 160 21 22 2024 25 26 1) 20fa0 3112 35 3 35
(] t

IRERRRIRREHERE | IRRIRIEIIRERE RN 11IH?IMIiIII!IIIIllll]IiIl

_c
= e

rozfr2fizrBr2220 B2 2 22 2 azz|2Irzzzuzzzzzzzzﬁzzazz21|221222222222222222
3J‘533333333333333333333333333533333333333333ﬂ333ﬂ33333333333333333333

GaqajaaplaaaaapaaaafianalasiaBaddaajsRadiadaaiadaadai 444”44444444444444444444
B C D E F o ' G H
555555555555“5555555555555555555555555555555555555&5555555555555555555

666656&666'66666I6F665|6BGBBIBFBG6666GBEGBMBBG%SGSFSGGHBBBBEBGBBSGGGSB

-

: !
R R AR AR R R R R R AR AR R R RN R R R RN R

8883'88888BBSBBSBBP&8888888888&8833I888888ﬂ8888888

1111

asnsfseaaaasﬁasssaaa
galagls 999
9 4

ol f2fes b

9199999999199999999999
16

118192010 22 23
RDVAC

99 9
738

3 .
45 25 27 28123 30131 32133 34 35 36 P7 38 39

99999999QQQQSQBQHQQQQQQQS
45

b a4
11 42 43 4445 46 47 o fg solar 52'53 54 55 45157 50 59 601 62 63 84°65 £ LT L'

~

9
15
0

FMegure 4

The sexadecimal cards are punched by an operator using an I1BM

machine called "the manual punch".

Trenscribing. One of the input devices is an IBM machine called

the "card reader". The reader "reads" the cards by translating the
punched holes into pulses of electric current which enter the computer.
Ohe of the output devices is the teleprinter, referred to previously.
Another output device i's an "autometic card punch". The output results

can be printed on the teleprinter or punched on IBM cards.

The reader could "read" the sexadecimal cards, but the input routine
does not interpret sexadecimal cards because it is designed 1o Interpret
the information in binary form. Thus, the sexadecimal cards have to be
replaced by "binary cards" with binary word representation. For this

50

reason the routlne on‘séxadecimal cards is translated into bilnary form
and punched éutomatically on binary cards by " transcribing . The punching
of binary cards 1s automatic in the sense that 1t 1s carried out by the
computer itself. A speclal routine called "the transcriber routine" 1is
stored in the memory and directs the computer to interpfet the pulses
from sexadecimal cards in such a way that the automatic punch in the
output device will punch the computation routine on binary cards. The
transcriber routine will be explained in Chapter VII. The method of
 transcribing can be summarized in the following instructions:

1. Stack the following in the reader: (a) the deck of the transcriber
routine, (b) the deck of the sexadecimal computation routine and (c) a
blank card. (All cards are stacked face down,}f edge in).

2, Read in both decks. (See Operating instructions, next chapter).

3, Collect the deck of punched binary cards from the automatic
punch output device.
| The deck of binary cards represents the final form of the coded
program, the form acceptable by the lnput routine.

Binary Cards. For binary punching, the eighty vertical columns of

an IBM card are regarded as divided into two groups of forty columns
(See Figure 5). in each group, each row of forty characters corresponds
to a forty-bit word. In Figure 5 on the extreme left and right margins
of the card, the rows in each group are labeled K, M, W1, W2, and s0
on, showing the ordering of the words. The first word, Wl, corresponds
to the "X'B row in the first group, the second word, W2, corresponds to
the "X'5 row in the second group, and so on. In the "Y"s row the word
labeled X 1s & "key word", the word labeled M 1s the "modifying
word". These two words will be explained later. An IBM card with the
above grouping and correspondence is called a "binary card". On a

binary card we can represent twenty-four 4O-bit words (X, M, Wl-W22).

51

Binary Card

Ist group : o 2nd group .
KYYYYYYYYYYYYYYYYYYYYYVYY'(YYYYYYYYYYYYYYZYYVYYYYVYYYYYYVYYYYYYY!YYYYYVYY\‘YYYYVYYYYYYM

Wi XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX’XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'XXXXXXWZ
W3000l]00Dﬂ0000000000000000000000000000000000W4‘

9638

W5111111|11111{11111111i1111711111111117?]1ii11f1il1|i|i1?|‘1113111771111111a1111lwei

W7222.2222222222222‘22W8

W93.3"33333333333333333333333333'3333333333333331}333333333333333333333333333333333333W10

wu444mm2
WB5555§555555555?555555555355555555535555555555555&m55555555555553555555555355555wm

Wl‘éﬁ(ﬂiﬁ6!3666[HiBt‘)G(i66666666(”3666666l")ﬁﬁ[iﬁ66‘66666!36(1'Bﬁfiﬁﬁfi(iﬁﬁ(iG(i(iﬁﬁ‘iﬁﬁ66G(S(HSGSEIHSSGGBEWIG1

Wl777"l771777777777"’777117W|§J

1

W|988888888888888888888888888883888888888388BW20.

W2|999999‘99 9500/9999/39999999/99/99/99909(395 39 9999999999”999999999999999999999999999\'{22
123 4l5 6188

9 g ¢ L
11 121038 1415 16117 18 olz1 22 23 24125 26 27 28129 30131 22133 34 33 36137 32°39 40M1 42 43 4445 46 47 28143 36151 52153 54 55 56,57 58 59 60l61 62 63 64iG5 60 &7 68169 TN 12173 74 75 76171 78 79 AU
M B31356 ORDVA

S w
)
w

~
o

9 9
1 19
[C

Figure 5

A punch of a character in a given row represents a binary "1", no
perforation represents a binary "0". For example, if the "k"s row in

the 1st group 1s punched in the following way:

Ml Tl BN DR R My dou WAL bl Wil then it represents
the binary word, Wil

010G 1000 0100 1100 1000 0000 0000 0010 0000 0100.

Figure 6 shows the bilnary card of the coded program for computing

al+9,2 .

T
N

=

wm B33

9
7
'

Wl
W2
W3
Wh

wal
W22 1000 0000

356

yyvypevyyyw v Bvyvy

xx Wi WA s ox x il x
oojoojooBoBooojoaoo
10 1112 13 14 15(16 1/ 18 19]20.21 22 23
(RIERRIIRE | (RER
220222222002222
3333333303333
IRIRRRiY] | (XYY
5555?555!]5555
66666666 HM6666
(RIIAREIR] | RERI
EICEERIERD | EREE:

99/9399/99BHoagy

Te. 02103 44 15 16117 18 19 20021 22 23 24

ORDVAC

Notes on Figure 6.

Binary Card for Computing al+a2.

YYYY

x R xx
0000
32 33 24 35
1111
2222
3333
4444
D
5555
6666
1117

[

8888j8

)
=]

23 34 35 36137 3¢ 39

Y YY Y[YYypyvey

(3~}
w
w
(2=
(-

IRIRINRRIEE |
2212212222221k
331333333330
aalaajsa44a4l
5555552555]

0
]
43, 50051 ‘37!53 §4 15 56:57 58 59 60|

i1 §2 63 §4.65.66 67 8"6‘5 m7E 72173 3475 7

YYYYYYYYYYYYIYYVYYYV‘VYYYY‘YYY.YYYY\'M'

g RExpox Il Bl x B g o Bxgx BEx(xox Bxw2
0060/0000{cooocoo0|o00o0|oo]ooo000]0000Ws
8 G0 11]12 13 14 15[16 17 18 18120 21 22 2324 25 26 27{28 29]30 31|32 33 34 35{36 37 38 39

(RRRIRRRY R RURRRIRRRI
2222222202202212222[2222w8
3333(3333]33[333333(3333wWI0

sanaleaaaleasaeasalsssame

H

5555?555555555555555wm
66{66,6666/568H56666666|56/66/66666666W6
IRILRIIRRRIEE | IRRRNRRRNRIRIERRIRRRI]T:
sopsjsassselloscesassssssslessssssswaa
9aaaalsesasgsgb9I9I9995999w22

a) The binary words on the card read as follows:

. 1000 0000

0000 0000
1010 0100
0001 0000
1111 0100
1000 0000

Binary'

0000 0000 0101 0000 0100
0000 0000 0000 0000 0000
0010 0110 0000 1100 0100
0010 0110 0010 1011 100
4 008 0000 0000
0000 0000 0011l 0000 0000

same as Wh

same as Wh

same as Wi
0000 0000 0001 0000 Q000

53

Sexadecimal Equivalent

0000 0000
0000 0000
0110 0001
0110 0010
0000 0000
0000 0000

1000. 0000

80005 04000
00000 00000
K4260 NL4261
10262 ska62
14028 00000
80003 00000

80001 00280

b) In Figure T both the sexadecimal and binary cards for computing
a, + a, are displayed together to compare them, to verify where there is a

correspondence between them, and to discover where the correspondence may
be lacking.

Ist word 2nd Word 3rd word 4t word 5th word (SEXADECIMAL CARD)
YYYYYYYYjyyyypvyy Y YYYIYYYYRYY Y P Yyyyyyyy YYYYVYYYYYYYYYYYYYY1YYYVY YYvyy
800000000280 K40260N4026I 1002/62540262[L400128000000 BOOQOIOOOZSO
xxxxxxxxxxxxrxxxxxlxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxgxxxxxxxxxxxxxxxxxxx;xxx
ORARREABAOEpoMojogo oo ool BAc0 Oj§O.BO OO BE lalﬂlﬂﬂ||Iuo|n|uoﬂooononnoonooouooonoo
0t 2314506 7i8 9fmnp2a3visacioeioann /4 25 26 27128 29130 31(32 33 M 356 3738 3440 1 2 3{4 5 6 1[8 9 N2 13 1 1516 17 18 19420 2 22 23124 25 26 27128 29830 31132 33 34 35135 37 38 39
il|1111|11|||l|11111111[“1|llt|1111111111111111111111|11|111111|11|1y1111111111|

22222222znzzhzzlzzzzzlzzzzzuznuzznzlz222!2222222222222222|22222222222222;2222222
333333333333333333333333333L3333333333333333333&3333333333333333333@333
1444 apBasasafaaasfaaanaafaBosdalaBedjaaadlasaafantaanaaaaaaafoaaalaasaaalaassaaisasg
555555555?555!55555?555555555?555555555?555555555?555555555?555555555?55555
6666/66666666/6666/8666/66F6{56666[6{66/6606/5666/6666/6666]66{566666/66666666/566666/56/6666666 06
AR R R R IR AR R R R R R IR RRR IR R R R RN (RRRTRRRLR R RRRIRRE!

l888888888.8888888888888q88888888888838888l888888888!888818Bﬂ8888888&8888888'888888
.

99999995/95(99193999999/8979 9|9 999999999999999‘9999999 9998999999]999999/99a°¢
b? 3I:M5863“assamn PO IS 161 18 19 2002122 73 205 26 21 20128 30131 92129 9435 3611 38 39 4ol 2 42 4245 46 a7 o solst 52,53 54 5 Sl 0 o0 6ofir 62 63 64165 66 6 ot s ubit 12073 74 75 3671 73 70

o : (BINARY CARD)
gy By Byceegyncgy e oo e ey oo e o ey o vy y v

W|lXIxxlxxxxIxxIIxxxxxhlxxx!xxxxlxxﬂlxxxxlhxxIxxxxxxﬂxxllx}xﬁx@xﬂﬂxlxxxxﬂxxllxxxlxwz
wsl!ﬂﬂnﬂpooaououlqﬂnnopsouogoqouuouonuunnuhnouqnuuuouonounoolﬂpuounnonoououuuouqunW4‘
W5i;;11;1llll;;;liIllﬂl??TI}T;3Tll{ll;;?T}Mi;;I;;;;;rTry;llllﬂllllIII1T?T?;TTTTYT¥W6
W7I2222222zzzzzzzzzzﬂnzzizzzzzzzzzzzz22224ﬂ2222zzzzzzzzzzzzz!ﬂﬁ2222222222222222222we
w9Iasssa333333333333ﬂ!3333333333333§333333&33333333333333333Hm53333333333333333333wm
wnI44444444444444444IN44444444444444444444544444444444444444Hﬂ44444444444444444444wm
wmlass5555555555?555!!55555555555555555555h555§5555555555555!%5555?555555555355 55 5WI4
Mmlsﬁsssaﬁs56666sﬁﬁGHEBﬁssassGﬁsassssssesdﬂesesssasaﬁsﬁﬁseaolﬂsasssssﬁesssseeﬂﬁeﬁwwq
wn177777117717777777!!71711777777717777777h71777777777717717llb7717777777177777777wm:

MI9I88888888888888B88|ﬂ88888888888888888888ll88888888886B88888'!!388888888888;8888;88!]EWZd

: I
w2ilsgsjaganlsaasloasoloosBBlaooslogaaoaasassjes 99(9999q|999993I9999999999I9 w22
173 479 § 1 89 10t I?‘Hllﬂmlllu 192021 22 23 24325 26 ¢ '128'991f)ﬂ3213]~13518 7‘.! 33 i1 42 43 44145 40 47 28143 S0d51 125354 55 56157 58 39 GUEGH bIGleGab&(uG&‘%m?l7211 71,7’116 KX

wm GHNAED ORD

Figure 7

5k

There 1s a correspondence between the following words:

" Bexadecimal Card . Binary Card
2nd word K40260 N40261 corresponds 1o Wi K4260 N4261
3rd word 100262 sLho262 corresponds to we 10262 sh262
hth word 140028 000000 corresponds to W3 14028 00000
5th(key)word 800001 000280 corresponds to w22 80001 00280

There 1s no correspondence:

On sexadecimal card: 1lst (key) word is 800000 000280 and does
not correspond to any word on our binary card. The key word 80000 00280

instructs the machine to store the routine words at consecutive addresses
beglnning from the address 280, therefore it must have somewhere a binary
correspondent. Tt would be found in W22 row (the last row) on a binary

card which would immedlately precede our card.

On binary card: K (key word) is 80005 04000, and does not

correspond to any word on the sexadecimal card. When a computatlon

routine has more cards than one, then every transcribed binary card

would have K of the seme "5" type, that is, 80005 (See Chapter VIII).

M (modifier word) is 00000 00000, and does
not correspond to any word on the sexadecimal card. In our case the

nodifier word hasg no meaning.

Wh through W21 (dummy key words) are 80003
00000 each and do not correspond to any words on the sexadecimal card.
They mean "reject, read the next word", and they £1ll the gap (if there
is any) between the last instructlon word,W3, and the key word at the

end, which always occuples the last, W22,row on the last binary card.

Remarks on Card Punching and Transcribing. A student learning the

complicated procedure of card punching and transcribing may ask W£y we
do not punch words directly on binary cards, instead of punching them
on sexadecimsl cards and then transcribing them. The reason is, that

manuel punching of a forty-bit word routine would be inconvenient, would

take too much time, and would lead easily to mistakes. Another question
1s also pertinent: If the transcriber routine can interpret a sexa-
decimal computation routine in such a way that the output device punches
the computation routine on binary cards, why not design another interpfé-
tative routine which would interpret the sexadecimal combutation routine
as a computation routine and cause the computer to perform the desired
operations? Such an Interpretative routine, a kind of a special input
routine (1t would precede the computation routine), would eliminate the
need for traﬁscribing, and can be easily designed. The objection agalnst
such an input routine is that it must necessarily be long (would have
many words) and would take a considerable number of memory positions.

In many problems the storage space (number of available memory positions)
is critical, and the routines of such problems still would have to be
transcribed. Besides, & sexadecimal card contains only 6 words, a binary
card 24 words; hence a sexadecimel deck has nearly four times as many
cards as & binary deck (nearly four times, and not exactly four times,
because & binary card always has the key and the modifier words) and the
reading in of a sexadecimal deck would take much more time.

Exercises: Punch and transcribe the routines of the problems 1, 2,
and 3 from the second chapter.

'Punchiné Datum Numbers. The punching of datum numbers, to be stored

separately from the cbmputation rbutine, differs from the punching of
the computation routine. A decimal datum punch card, shown in Figure 8,
looks like a ‘sexadecimal IBM card. It uses six groups of twelve columng
and leaves unused one group of eight columns. Each group of twelve
columns corresponds to one datum number. The first group in the first

card is reserved for a specilal key word.

56

55555955/5555555655655(5555/55(55/5555[5555/5555

The First Decimal Datum Card

U A P e T g

d Num
Yiyyyy

| 2n ber | 3rd Number | 4th Number | 5th N
YYY Y Y Y Y Y Y YR Y Y Y (Y Y Y YPY Y Y YWY YYIVYY

-

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.XXXVXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX‘XXXXX
0000000U00000000030006000OUOGUOUNOO000000UUO000000000000Oﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂmﬂﬂﬂ

45 6 718 8110 11112 13 14 15[16 17 18 19020 21 22 23[24 25 26 2720 29430 3t]32 33 34 35

1111
222222222222222222222222222222222522{22222222222222222222222222222222222

213 1415016 17 18 19120 21 22 2304 25 26 2726 20130 31{32 33 34 356 37 38 3910 § 2 3

trriprrreraerefiap g rr et erprfrprreeotfproaprotnfes

33
44

B’ G D E F
5

R R R Rl R R R R R R R RR IR RERIIRENIEL IR (REE]
8B8888888888883888888885888888888888388888888088888888888388888888888888

0919919998/9999/9999
910 1718 19

2121 22 23 245

99918919999

2% 4

9919999

8129 30131 32133 34 35 36837 39 39 40!

999(9989{99
a

42 43 44145 da 47 4819 OIS

=]

9:99099999919999/99
52

193 54 55 56197 56 63 G0N 62 63 64165 65 67 68169 70471 72f11 14 79

3
e
=

P

Megure &

AN RERTARR Rk

G H
5501555555555556515556(5555/55}55/5555
666 6/6 6666556 6/6666|66665666]66(66/6666/5686/66066 6666}66/666666(6666/6666(866666(66/5666

WYYy
X KX X
0000
363738 33
1111
2222
3333

4444

6666
1117
8888

2718 79 80

The numbers to be punched on a card are expressed as decimal fractions

represented by 12 characters, the zero to the left of the decimal point
1s replaced by:
K, 1f
8, 1f

the number is positive, or by -
the number is negative.

For example, the number, 5/13 = 0.384615384615, is represented by,
K38461 538461; the number, -5/13 = -0.384615384615, 1s represented by,
838461 538461,
a decilmal digit except the first column. For esch digit, 0, 1, 2, 3, L

In a glven group on a card, every column corresponds to

2

5, 6, T, 8, 9, the same numeral in the corresponding column is punched
out. For K as before, we punch in the sane corresponding column, X and

2, for 8, 0 and 2.

9399 .

=~

W
(o]
=
[0)Y
=

Ui
W
[00]
=
N

For exdmple: 1 , is punched

Y Y Y Y Y YYYYYYYXY
x] x X X ¥ X X X X X X X
0O 00 0OO0 00 0 0 00O
1111211211212
El2 2222222222
5Bl3 3333333 3 3
T T R A A
55555 5[5 55 5 5
6 6 6 6[6]6 6 6 6 616]6

777 T7TT7TTTTTTT

g6l s 8 88 8lgs 8 8

99999999999

Transcribing Datum Cards. The words on decimal datum cards are

transcribed on binery cards, where all the numbers are converted to the
binary machine equivalents (negative numbers are represented by
complements). The same transcriber routine transcribes words from sexa-
decimal cards and from decimel datum cards. The transcriber routine
distinguishes sexadecimal words from decimel datum words through the
key-words. On the first datum card, the first group of twelve columns
is reserved for the following sexadecimal key-word:’800003 OOO?%, where
¢l is the three digit sexadecimal address indlcating where the number
which immediately follows the key word ﬁill be stored. We ghall call
this key word "the %0-type! Words which follow the 30-type key word are
identified by the transcriber routine as decimal datum nunibers as long
as no new key-word is encountered. In the problem of computing a1+a2,
let a, = 5/1% = 0.38461538461, represented for punching by K38461
538461, and &, = -2/13 = -0.1538461538461, represented for punching

by S15384 615385. The addresses assigned for the datum numbers a8 and
a, were respectively 260 and 261. (See chapter II). The decimal
datum card for aq and 2, is shown in Figure 9.

58

Decimal Datum Card for Storage of,al and 8,

Key word 9= 5/13 ay= -2/1% ‘
R (N RN AN SRR AR AR AR AR AR AR AR AR iR ARl RALIRAL,
8000/030002 60|k 3846 | 53846 | |S| 53846 | [5385 - :
XXX XXX

XXX XXX XXX XXXE XXX XXX XXRK XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX’XXXXXXXXXXXXXX_X)(XXXXX'

Ead X —<

DEBERRER0 oﬂnuon000000003000nuaonouomonhaunooaooudonuouuonnuohoooonunnuonuuooooo
0123145686 78 8fion 2131“5161713192021222324252627282930313233343535373839U 1231456 78 904t l!lald!ﬁlsl7|819202|222324252521282930311233343536373839
trrrer e et Bor ot BB Bor i o

IR R R R ERRIRI RIRERHRES
222222222‘22322?22222»222322,22222222%2

[}
@
X
X
L
[
>
)

3333%33333@3333333@33333@33
444444444444444&4444454444444544
5555?555555555?555&55555?5!55555&5?@55555555?555555555?555555555?555555555?55555
66666 666/66/76l6666[3666(6686/6666]56[16/6666/5666/6666/5666/66(66/6666]6666/5666]6666(56/56666 65666
Trrnnrn g rInrr gt g gl il g

88888888’88888&88888@8888888?}88888@888-8888888888888888888Bﬁ888888888888888888888

9999/999999/99[2599/9999(9999993 3|99}y 99'999999 99999999999199999 99(9089999999(9999999999
DY AR T s o] s ie 0 i6 19 20l 22 20 s 26 21 8120 ok aalsa 3 35 5 o7 38 30 a2 43 ale a6 4 4l sl 5215 54 5 50157 0.9 o 62 9 6415 66 1 s by 7217 14 75 3671 10 79 80

Figure 10 shows the binary datum card for storage of a; and a,
transcribed from the sexadecimal datum card. In transcription, the datum
card was immediately followed by the sexadecimal card for computing ay

and a2 ' -

KﬁvvavavvavaYvﬁv@rvvrvvvvyvivvﬁﬁvavvvyvvrvvvvvvrrvwrvvvvwvrvvrvvvvvvyvvvvvvvm
w|xxﬁ?xxxﬁxxﬂﬂﬂxﬁ!xxxixxﬁ@ﬂxﬂﬂxxxExxﬂﬁﬁxxiiﬂﬂxﬂﬁxxxﬂxxﬂ@ﬂxﬁxxxxﬂxxﬂ&ﬂxﬁﬂxxxﬂxxﬂﬁxﬁwa

wsﬂuouuoonnoonoonnon@ﬁoaonnuunuoouoouoooun}onuuonuoudouoonooEEnnoooooouooouunuonoQW4
01 23{456 788 |0|l1213141516I‘I13'1920212223242526212829303!32333435363733390 123{456 7|8 9fi0n 121314!516I?IB1!3202I72732425262728293Ml32313435363733311
.wsﬁlllll|11111111111@@11111111111111111111111::11111111111uIE&111111111111111|1|Ilws

w7&222222222222222225&222222222222222222225222222222222222225&22222222222222222222wa
ws&a3333333333333333@533333333333333333333333333333333333333&&3333333333333333333nm0
WilBaaa0aaaaaaaiaaaa44BUleaaiaaaaaafaaiaaaaaaaflasaiasanaloaassaasBilaasaeaaaoalealdssaassame
VWBHS55?555555555?555H§5555g555555555?55555ﬂ555§555555555?555@@5555?555555555?55555WM
lwmﬁassﬁasssessessﬁesﬁﬁssssasseessssssssassﬂasssaasssssessseaﬂﬁassbsasassssassssasswm
wwﬁ77777777177777777@%77771777777177717777&77777717717177717@&77771777777777177717wm1

wwﬁs&saaaeaaasaasasaﬁ&essaaseasassasaasasaﬂasssbsaaassasassa@ﬁsassaaasaaasasssssswm6

w218 099/9998/09[99g 999 99lo9fBlaagaaggalagluslaggngogy '99999999999999999999999999999@9&999999ww2
[31:Mb663:5ﬂ‘::95w 11202 14 IORDV?\? 20121 22 23 24125 26 17 28129 3013t 32123 34 35 J6137 38 39 40141 42 43 44145 46 a7 48M43 k51 5 Jl'.ﬁ 4 65 56157 58 59 60081 62 63 6465 &6 67 68169 iy 72(13 14 75 76:27 18 79 to

Flgure 10

59

The binary card reads:

Sexadecimal Equivalent

K 1000 0000 0000 0000 0101 0000 QOO0 0010 0110 0000 80005 00260
M 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000 00000
Wl 0011 0001 0OL1l 1011 OOOL 0011 1011 0001l 0011 1001 31381 3S139
W2 1110 1100 0100 1110 1000 0100 1110 1100 0100 1101 FN4F8 LFNLJ
W3 1000 0000 0000 0000 001l Q000 0000 0000 0000 0000 80003 00000

same as W)

same as W3
. same as W3
W21, game as W3
We2 1000 0000 0000 0000 0000 0000 0000 0010 1000 0000 80000 00280

Comparing the decimal and the binary cards we £ind the following
correspondences:
Decimal Card Binary Card
1st (Key) word 800003 000260 corresponds to X 80005 00260
k3861 538461 corresponds to Wl 31331 338139
5rd word, a, 815384 615385 corresponds to w2 TNLES YFNLJ

There is no correspondence;

2nd word, ay

M (modifier word) is 00000 00000, and does not correspond to

any word on the decimal card.

W3 through W2l (dummy key words) are each 80003 00000 and do
not correspond to any words on the decimal card, The meaning of dummy
key words was explalned before. W22 (key word) is 80000 00280 and does

not correspond to any word on the decimal datum card. - It corresponds

though, to the first (key) word on the sexadecimal card for computing

By tRy which in transcription immediately followed the decimal card.

Conversion. In ORDVAC procedures "conversion" means only conversion
from decimal to binary representation, and "reconversion" means conversion
from binary to decinmal representaﬁion. In thils sense the transcrilber
routine 1s a conversion routine with respect to decimal numbers on
decimal cards, but it is not a conversion routine with respect to sexa-
decimsel cards although it transcribes the sexadecimal words to binary

60

words.‘ In addition to the conventional input routine we have also s
gpeclal conversion input subroutine called "IBM card input subroutine",
which converts the decimsal datum numbers to equivalent binary words

and stores them in the memory. When we use the IBM card input subroutine
we do not transcribe the decimel datum cards. The IBM card input sub-

routine cannot he used for sexadecimal or binary cards. (See Chapter Z).

Reconversion. The teleprinter, as an output device, prints the

results in sexadecimal representation wﬁich 1s very inconvenient. The
auwtomstic card punch, as an output device, punches the binary resulis

on cards, which 1s also inconvenient. To obtaln results in a convenlent
declmal form we have a reconversion subroutine called "IBM output sub-
routine". The IBM output subroutine (stored in memory) directs the reéon~
verslon, and the results are punched on cards In decimal form.

Tabulatlon. Readlng IBM cards, even the decimal cards, ls very
cumbersame, For this resson the results are copled from the decimal
cards onto paper in neat printed form. The copylng of results from the
decimal cards, performed automatically, is called "tabulation" and is
done by an IBM machine celled a "tabulator". Figure 1l shows a sample of
tabulated resulis.

Putting & Problem on the Machine, "Putting a problem on a machine"

means waking the mechine perform the computations whlch leadvto the
desired solutlon of the problem. We shall gilve all the steps of putting
a problem on the machine, together with the steps which precede and
whilch follow.

Preceding Steps:

1. Programming, coding the computation routine, agsigning
addragses.

2. Checking compﬁtation routine and correcting errors
which were found,

%, Punching sexadecimal cards for the computation
routine and the decimal cards for the datum numbers.

61

20800000
7200000
388500000
385900000
373000000
360700000
348900000
357500000
326400000
315600000
304900000
294300000
283800000
271700000
259100000
246800000
234700000
223000000
1211600000
200500000

420500000
389600000

31900000

62400000

91900000
120500000
148200000
174900000
200600000
225400000
249100000
271800000
291.500000
309300000
326000000
341400000
355700000
368800000
380700000

Tabulated Results

2252200170

2252200170
2252300170
2252300170
2252300170
2252300170
2252300170
2252300170
2252300170
2252300170
2252300170
2252300170
2252300170
2252300170
2252300170
2252300170
2252300170
2252300170
2252300170
2252300170

Figure 11

62

15545580
23480244

1794
16478
4111
82647

131594
190831
260422
340552
431486
533548
649002 .
782821
934456
1103234
1288713
1490452
1708410

k., Transcribing the routine and the deciwal datum cards
(1f the use of the IBM input subroutine is not planned).

5. Having ready all the auxiliary subroutines, that is,
the decks of the conventional input routine, IBM card input subroutine,
IBM output subroutine. '

Putting & Problem on the Machine:

If the decimel datum cards have been transcribed to binary cards,
then the following cards, in the given order, are stacked in the reader,
face down, top edge of the card first:

1. +the binery deck corresponding to the conventional input routine;
2, the binary deck corresponding to the transeribed datum numbers; 2
5. the binary deck corresponding to the TBM output subroutine;

k., +the binary deck corresponding to the computation routine; j)
5. & blank card on top.

If the declmal datum cards have not been transcribed to binary cards,
and the use of the IBM input subroutine is planned, the following cards
In the given order are stacked in the reader, face down, top edge of the
card first: '

1. the binary deck éorresponding to the conventional input routine;
2, the binary deck corresponding to the IBM input subroutine;

5. ‘the binary deck corresponding to the IBM output subroutine;

., the binery deck corresponding to the computation routine;

5. the declmal deck corresponding to the decimal data;

6. a blank card on top.

Following Steps:

1. Remove the deck of punched results from the automatic punch
output device,
2, Tebulate the results.

6%

Exerciges: Prepare to put on the machine with all the preceding
and following steps the problems 1, 2, and 3 from the Exercises at the
end of the second Chapter. Assume that the datum numbers in decimal
representation are:

0.1234567
0.3247687
0.7869401
0.9999812
0.0000074
0.9191916

il

i

N < X 0o U b
I

6l

CHAPTER IV

: SHIFT ORDERS

SCALING, CODING SCALED PROBLEMS IN STRAIGHT SEQUENCES.

gcaling, ORDVAC, a fixed point machine, handles only proper
fractions (with the formal exception of complements in case of negative
numbers). Thus, & programmer has to make a careful analysis of the
problem to be computed and ,1f necessary,to Introduce such modifications
that all the datum numbers and the resuits of operations on them are
fractions. The above procedure is called "écaling" and the numbers
modified in the procedure are saild to be "scaled", or "scaled down".
The scaling wilill be explained in an example.

Example. Scale f(x,y,z) = ax® + by‘2 + czz, if

a=1.1, b =051, ¢c =2.5, and the values of x, y,
and z vary within the following limits: 0.1%< x££ 1, 0.2% y £ 0.9,
0.3% =z 4 0.8. :

We start from a preliminary examination of the datum numbers and
notice that a and ¢ are greater than one, and x may equal one; then we
write for each of these datum numbers the greatest factor called the
Mscaling factor",‘of the form, 2°% = 0.00...01(2), (with n successive
digits, 0), which would make each of these datum numbers less than one.:
Thus : '

Datum Number Initial scalling factor
a =1,1 2+
-2
c =2.3 o 2
x =1 ot

The next step 1ls to examine the possible results of operations on
the detum numbers. In our problem every term of the polynomial, £, and
the sum of terms must be less than one. We write for the greatest value
of each term, and for the sum of the terms, the necessary scaling factors.
For the time being we do not teke into account the initlal scaling of a,
c, and X, Thus: |

65

Term Maximum value of a term Secondary sceling factor

ax" (1.1)(1) = 1.1 o1
by~ (0.51)(0.81) = 0.413 none
cz” (2.3)(0.64) = 1.472 o1
sum 2.985 272

In the final step we must reconcile the initial requirement that
e, ¢, and x have to be scaled. and the second requirement that every
term must be multiplied by at most 2“2 in order to make the sum less
than one. (Every term as a whole must have the same eventual scaling
factor, otherwise the formal sum would be meaningless). We shall
examine now every term, taking each requirement into account simul-

taneously. Thus:

Unscaled term Needed Scaling
ax- (27ta) (2" tx) (27 %) = 2 %ax"
by2 = byz
ezt (2-20)(2) (z) - 2" Pe?

This lest analysis shows that each term has to be multiplied by
5"2 1m0 achleve this several alternatives are open, For example, in the second
+ , -3 ‘_ -1 ,
term we can multiply b by 2 7 or we can multiply b and y by 2 =, The general ru)l
is to keep the scaled numbers as cloge to one as possible, If we choose

the scaled datum numbers to be: a; = E'la, b, = 2"lb, ¢

-1 1 1 1 1
= 2 "X, Yy = 2"y, z, = z, then the problem reduces to:

=277,
gl 1

-3 - 2 2
277t(x,y,2) = ayx] + oyyy + CqZy.
b and y. are to be left unscaled, the problem would then be:

If we decide that the datum nuwbers

E'jf(x,y,z) = alxi v 272 by2 + Clzi'

There sre valld reasons to write the scaled numbers, 815 bl’ Cys

iy Yy 2y in terms of the original nuwbers, a, b, ¢, x, y, z. Thus,

instead of a, we write Q'la, instead of b, we write 2'lb, instead of ¢,

1
we write 2"50, and so on, and the problem is written, 2"3f(x,y,z) =

2 9a® 4 2“5by2 + 27055,

66

The rule to keep the scaled numbers as close to one as possible
stems, of course, from the necessity to keep as many significant bits
as possible. For example if due to scaling, the machine number

= 0100 1100 1100 1100 1100 1100 1100 1100 1100 1101 = 0.6(10) has to
be multiplied by 2'6 = 0.000001(2), then the scaled number k, = 2'6k
would be 0000 0001 0011 Q011 OOLL OOll OO1l 001l 001l OOll and the six
least significant bits would be lost. Such a loss may become s0
critical that the results obtalned are very inaccurate, or even com-

pletely misleading.

Because of the alternatives presented, scaling a problem in the
most efficient manner is often difficult, but the procedure is essentially
the same as that which was demonstrated in the trivial example gilven
sbove. Skill In scaling can only be écqpired in practice, although of
course & systematlc procedure could be developed to handle problems all
of the same structure.

Shift Orders. Scaling involves multiplication by scaling factors

which are of the type 2 °%5.0 ...°77. 01(2), where n =1, 2, 3,

Multiplying a binary number by'e'n or by o™ shifts the binary point
through n places to the left. or to the right, respectively, therefore
such s multiplication is called "shifting". For example, 0.875x2"5 =
6.111() x 0.0000L(2) = 0.00000111(2); the binary point was shifted five
places to the left. In ORDVAC the shifting takes place 1ln the reglsters
Rl and R2. let a word, e e ...e‘9, stand in the register Rl,CI% is
nnderstood that the biuary polnt is always after the first bit, e).
After multiplying this word by 2% the register R1 will show
eoeo'°'696162"'85§»n 39-n
shlifted n places to the right and the n least signtficant bits were

‘Bxqs WS "ghifted right n",
1f 1t was multiplied by 27" , Or "shifted left n" if 1t was multiplied

by 2%, The orders for shifting machine numbers are called "shift orders".

; the most signifilcant bits e 185 € were

losgt from Rl. We say thﬂt a number, €.81°

The most important shift orders a?e listed and explained below.

67

IList of Shift Orders

Let the initisl contents of R1 be eoel...e
n = l, 2’ 3c q.-63a

590 OF B2 be 4 4135, 459

No. Pfeliminary Sexadecimal The contents after the shift
representa- representa- of of
tion of order tion of order Rl R2
o e e —~—17 -
l —_> n 08011 eo -oe el 2...839_11 do)-LO—I'),' .2 dld. 'nod-59-n
n ' Bl
2 €«——— n 18.%. eoen+l...e590..0 d a +l.d39ele2..e
3 —3> n 28,2, 00 ho. .0 400, 08, d,y. . 4

539-n

Notes:; The shift orders will be 1llustrated in two exgmples of
important special cases when the initial contents of R2
is zero.

Let the initial contents of Rl and R2 be:
Exemple &) (RL) = 0100 1100 1100 1100 1100 1100 1100 1100 1100 1100,
equivalent to 0.6(10)

]

(R2) = 0000 0000 0000 0000 0000 0000 0000 0000 Q00O 0000,
that is zero.
n=28

- Example b) (R1) = 1011 0011 0011 0011 0011 0011 0011l 001l 001l 0100,

the binary complement representing -0.6(10).

(R2) = 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000,
that 1s zero.
n =8,

Order No. 1, —> n, shifts right n the contents of Rl; the n least
significant bits are lost from R1. The original bits ey e2,;,.,en

are replaced by the first bit ey Shifts right n the contents of R2,
the n least significant bits are lost from R2. The initial bits d.l
da,.,.,dn,.are repleced by the bits~euo_n, ehl—n"’e39’ which are the
leagt slgnificant bits lost from Rl., The order ——4>8 will change the

contents of R1 and R2 as follows:

68

8
a) (RLl) ='0000 0000 0100 1100 1100 1100 1100 1100 1100 1100 = 0.6x2~0
"last 8 bits from R1

(R2)= 0110 0110 0000 0000 0000 0000 0000 G000 0000 0000
8 ‘ .
b) (RL) = 1711 1111 1011 0011l 001l OOLl 00ll 0011 001l 0011, the binary
complement representing (-0.6) (2'8).

last 8 bits from R1 '

(R2) = 0B01 1010 G000 0000 0000 0000 0000 0000 0000 0000

Order No. 2.€— n, shifts left n the contents of Rl, the n most significant

bits, €118, 08, Bre lost from RL." The original bits e39_n, €U0’ P

e59, are replaced by zeros. Shifts left n the contents of R2; the first
original bit, do’is also replaced; the n-1 most significant'bits are
lost from R2., The orlginal bits d59—n’ dhomn""’ d59 are replaced
by the blts. €15 €p30505€) which are the most significant bits lost

from Rl. The order e—-8wlll change the original contents of Rl and R2 as follows
8
a) (RL) = 0100 1100 1100 1100 1100 1100 1100 11000000 000Q' + The binary
fractional part of, (0.6)(28)
8,
(R2) = 0000 0000 0000 0000 0000 0000 Q000 0000 1001 1001

b) (R1) = 1011 0OLL OO11l 00LL 0011 OO1l 001l 01000000 0000 = the binary
fractional part representing the complement of (_0,6)(28).

O
(R2) = 0000 0000 Q000 0000 0000 0000 0000 0000 VL10 0LLY'

one in the (n+l)st place after the binary poilnt, that is, 1t generates
the number 2—(n+l) in Rl. 8hifts right n the contents of R2, the n least

slgnificant blts are lost from R2. The original blts dl’ dn.....dn,

are replaced by zeros.. The order —*2 8 will result in:

a) (RL) = 0000 0000 0100 0000 0000 0000 0000 0000 0000 0000 = 2~
(R2) = 0000 0000 0000 0000 Q000 0000 0000 0000 0000 0000

b) (R1) = 0000 0000 0100 Q000 0000 0000 0000 0000 0000 0000 = o9
(R2) = 0000 000Q 0000 COCO 0000 0000 000N 0000 0000 0000

y

69

General Remarks on Shift Orders. Shift orders contain ho address-parts.
In the place usually filled by the address we put the sexadecimal

equivalent of n. Examples:

Preliminary representation . sexadecimal representation

of order : of order

n

———P 1 08...
———s g 9(10) = 9(16) 08009
—> 10 10(10) = K(16) 0800K
—_—3 16 16(10) = 10(16) 08010
—> 63 63(10) = 3L(16) 0803L

Exercises: Gilven initial contents in sexadecimal representation of:
(R1) = L5202 KO3L1, (R2) = L2000 00000, (Al) = L4121 %0211
Find (R1) and (R2) after the completion of the following orders, or

gsequences of orders: a)%— 2
b)—— 1
¢)&— 1, —1, M AL

Coding Scaled Problems.

o
Example 1. Prepare for machine computation, f(x,y,z) = ax + by2 + oz”,

USRS,

fora : 1.1, b =051, ¢c=23,x=1, y=0.9,z=0.8.

l. Programming.

a) Scaling. This problem was scaled 1n the previoqg article with the
following results: datum numbers are: E'la, b, 2" ¢, 2'lx, ¥, Z,

the formula i1s: 2‘5f(x,y,z) = 2 %" 4 2"5by2 + 27005,

b) Flow chart.

1 I m Ay
2 x> qu:*'2'5by2_e>mz'“'2‘5f=2"5ax2+2'5by2+2‘3cz2"Pgigt and

n le27la - =
A2 b
A3 272,
Al §2~1x
A5 { y
A6 Z

70

2., Prelimindry and final coding.

Sequence (ode Word Order R1 R2 Memory Description
T, 1 siiho . RAL o 27 (A1) —=R2
2 K843 Xu Ab 2" %ax o (rR2)(A4) —~R1L
3 104Lk6 wgy MTL o 2 %ax (R1) —T1
4 ghhhe R TL 3 2 2 %x (T1) — R2
5 KoUL3 ugp X b 2™ ax 5 2 (R2)(Ak) —3RL
6 10446 M T 2" ax (R1) —T1
IT, 1 Shihl w3 R A2 b (A2) > R2
2 K844k Xu A5 by (R2)(A5) — R1
3 10447 16N M T2 by (R1) — T2
4 shhk7 . R T2 o by T2) —3 R2
5 KO4hh nes Ku A5 Rl (R2§ A5% — RL
6 - 08003 —=3 27 by 3 2 (rR1)(2-2) — R1
T 10447 we M T2) 2" by (R1) —> T2
IIT, 1 Shhh2 R A3 5 27 ¢ (A3) —> R2
2 k8445 wr X A6 2%z (R2)(A6; —> R1
3 10448 M T3 o 2 %z : (R1) — 13
5 K8445 Xu A6 2 3 C : (322)(1\62 — R1
6 08001 16 —*»1 2 “cz 5 (r1)(2-1) —>R1
T Nubb6 2 (+) TL 273cz2+2-Dax (RL)+(TL) —»R1
8 mukk7) o (+) T2 2-38(x,y,2) 3, (R1)+(T2) — RL
IV, 1 121;;32 M T3 _3 (2)f(x,y,z) gm;—» T3
2 shhk . R T3 2 “f(x,y,z T35) —> R2
5 Iho2B M8 Print (R2)
L 00000 .0 Zu Stop
- 00000

5. Asslgning addresses.

0125456789KS‘N_JF

e B R R e R i]

56 ANCompa SmNNNNNreatlne SN

e S

e S S bk //////////

71

3. Punching and Transcribing. This 1s left to the student, as an exercise.

Example 2, Prepare for machine computation, £(x,y) = (x2 + Xy + yz) - (x-y),
if the datum numbers x and y vary as follows: 0.5& x%& 1.1, 0« vy £2.1,
and, l":lx-y| 4 1.6, '

l. Programming.

a) Scaling:

Datum numbers, terms, Greatest Sealed datum numbers
dividend and divisor Scaling Factor and Scaled Formula

maximun x = 1.1 o™t 27y

meximm y = 2.1 572 2"2y, hence, 2'2(x—y)
meximum £ = 1.21 o™t

maximum xy = 2.31 pm?

maximum y2 = 4.4 27

using the scaled datum

(E'Ey)(E'ey) = 2"hy2 “h

2
maximum dividend, x2+xy+y2=7.93 2”3 2—4(x24x34y2), although the
maximum divisor lx-ylz 1.6 ot greatest scaling factor 1s 27
minimum divisor [x—yl: 1 2‘1 ‘gince the y2 term alone nust be
max f(x,y)=(max divid) = maltiplied by 2% and thus the
(min divis) = 7.93 2"'3 whzle dividend is multiplied by
2 .

The above analysis shows that £(x,y) must have the scaling factor 2”5,

the divisor must have the scaling factor 2'2, hence the scallng factor of
the dividend.cannot be greater than 2"5. The sceled problem is as follows:
Datum numbers are: E“lx,.e-gy,

the formule is: 2'3f(x,y) = (2_5x2+2'5xy + 2'5y2) ; (2—2x-2'2y).

b) Filow chart.

I IT 11T
v 2—2x-2‘2yw>Tl (2'5x2+2'5xy+2-by%) Print and
: -2 -2 ‘ Stop
AL o1, (27 x-2"%y)
A2 2-2y

Note: As & rule it 1s convenlent to form and store the divisor flrst,
which we declded to show 1n a separate Box I. The codlng procedure
willl explain why. |

T2

2. Preliminary Coding.

Sequence o Order ‘ R1 R2 Menmory Description
I, 1 v Al 2:3?‘}{ (A1);>R1

2 — 1 2% (RL)(277) —R1
3 (-)a2 27Bx27%y 5 (R1)-(A2) —> R1
4 M T1 27%(x~y) (R1)—m

II, 1 RAL ., 27« (A1) — R2 -
2 Xu Al 2 7x (Re)(Al_}-—a R1
3 —>+3 27%°% 5o (R)(27)—>RL
b M T2 2""’x (R1) —» 2
5 RaL 27 (A1) —> R2
6 Xu A2 277xy - (R2)(A2 — Rl
7 — 2 27y 5 (E)EF)—R
8 M T% 2 xy (RL) —» T3
9 RA2) o 22y . (A2) —> Re
10 Xu A2 2 (R2)(A2) —> R1
11 —_— 1 2‘5g2 5 (rL)(2™Y) — m1
12 (+) T2 2-Dy=42" ’xy (R1)+(T2) — R1
13 (+) T3 2“5(x2+xy+y2)_5 - (RL)+(T3) —> RL
14 + Tl 277f(x,y) (R1)+(T1) = R2

1T, 1 : P Print (R2)=2'3f(x,y)
2 o Zu . Stop

5 and 4 The asslgnment of addresses and the final coding, card punching

and trenscribing., This is left to the student as an exercise.

ixerclses. Prepare for machine computation the following problems:

7 ien et

; 3 2 2
1. f(x,y,z)u'(2x§+0.8y’)~0.9xyz)é(_ix -y?)

0
2. f('xj'y',z):(xy+’2,yz—,§xz-£2)(x:g-i-y"-ﬁ), in both cases, L& x£ 2, -14 y ¢ 1.5,

0% z < 0.9,

3

CHAPTER V

CONTROL UNIT _ FRONT PANEL OPERATING INSTRUCTIONS.

"To put a coded problem on the machine", or "to read-in & routine",
means to meke the machine perform operations prescribed by a routine,
(see Chapter III). The operating procedures of reading-in a routine
requlre reference to the control unit. The control unit, which 1s the
mechanism causing the operations to octur Iin the desired sequence,
consists of three components: |
1. the control counter,

2. the order register, Ry (read, R lower three),
3. the control panel. :

The neon display of R§ and the control panel are on the ORDVAC front
panel. Figure 1 shows a diagram of the ORDVAC front panel.. The front

panel has also neon displays of Rl, R2, and R3

, as well as the panels of:
"Address 'A' Halt", "Memory Display", and "Neon Gating", which will be
explained later. Figure 2 shows the control panel with all the switches,
neoné, and in particular the switches S5 and neon displays N5 of the

control counter.

Control counter. "The control counter" ig actually at the back of
the machine but we shall deal only with the switches S5 and neon displays
N5 of the control counter, and these are on the control panel. In

referring to the control counter we shall actually mean the switches and
neon displays of the control panel. The twelve neon displays N5 of the
control counter automatically record at any instant, the address of the
instruction word which the machine is set to perform next. A "neon on" means a
binary "1", a "neon off" means & binary "0". For example the following
combination of lights: oo e o e o000 0O o o, represents the binary
number 001010000000, which sexadecimally

“1s 280, indicates that the next order palr is stored at the address 280.
When the machine is not running the control counter can be set manually
by the switches 85, A "switch up" lights the associated neon, thus
setting & binery "1", a "switch down" extinguishes the assoclated neon,
thus setting a binary "O". The twelve neons can be cleared (extinguidhed)

[P

ORDVAC FRONT PANEL

0000 0000 0000 0000 0000 0000 0000 0000 Q000 0000

R1 -[Address "pt Hal?)
Q000 0000 0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 00Q0 0000 000C 0000 0000 0000 0000
R2 | Memory Display AJ

0000 0000 0000 Q0000 0000 0000 0000 QOO0 0000 0000

3

0000 0000 0000 Q00O OO0 0000 0000 OOOOIOOOO o000 R Control Panel

0000 0000 0000 G000 0000 0000 0000 0000 0000 0000 R,

3

[Neon Gatingkj

Flgure 1

CONTROL PANEL

6_.9 N1l N2 N3
@) o O . @} O
-89 ontrol start order palr
Tape IBM
on on operate run ‘ rest
rest rest
stop disable
on on run ” 5
S S
ST 58 S1

L ERI
lear to "1 N
memory T rest @)

clear to "Q"

sk
Neon dilsplay of the control counter N

O O 0O 00 00O 0 0O O

SRR RN T

Twelve switches of the control counter , 6 Clear

Gate

Figure 2

76

simultaneously by moving the switch S6 down. Moving the swltch S6 up
to the “"gate" position transfers (gates) the setting of the switches S5

and neons N5 to the control coﬁnter at the back of the machine.

The order reglster R5. The order register R5 is actually inside

the machine but we shall deal only with the forty neon display of R3 on
the front panel (see Figure 1). In referring to the register Ry we shall
meen the forty neon display. The forty neon display at any instant,
records autoﬁatically the instruction word (sn order pair) which the
machine 1s to perform. It must be clearly understood that while the
control. counter records the address of thé instructlon word, the register
R5 records the contents of this address. For example, the combination -
of lights of the R5 neon display;

9000 0B00O 0080 0880 0000 SE00 0BQ0 QOSQ OBHO 00O
represents the machlne number

1010 0100 0010 0110 0000 1100 0100 0010 0110 000l whose
gexadecimal equivalent is K260 N426L. If the control counter display
at the same time shows the binary nunber 0010 1000 0CCO whose sexadecimal
equivalent is 280, it means that the memory posiltion, addressed 280,
conteins the order palr K4P60 N426l. The neon N1 on the control panel
(s&a Flgure 2) indicates which oyder; left or right, is to be performed.
The "neon off" means the left-order, the "neon on" means the right-order.
When the machine 1s not running any desired order palr cen be set

manually in R3 by the switches on the "Neon Gating" panel (see Figure 1).

The control. panel. In the diagrem of the control panel, (Fligure 2.)

the swltcheg and neons are labelled for the purpose of reference. They are
not labelled on the actual control panel.. A neon assoclated with a gilven
gwlteh is labelled in this dlagram by the same numeral; for example,the

neon Nt is associated with the switch Sk. The switches with the assoclated

‘neons perform the following functions:

T

Switch S1 and neon Nl1. Switch S1 in the position "run" starts computing

operations making the machine execute sequences of orders, one after
another. If the programmer wahts the machine to stop he sets the switch
to the position "operate". When the machine stops and the programmer wants
it to execute the next order and stop, he switches S1 to the "control"
position and then back to the "operate" position. The neon N1 on (1it)
indicates that the right-order is to be executed,'the neon off indicates
that the left-order is to be executed.

Switch S2 and neon N2. The switch 82 is & "conditional stop" switch. 1In

the position "run" it will stop the machine when the control encounters a
conditional stop order (see Appendix). Moving the switch to the "start"
position makes the machine run again and stop at the next conditional
stop order. In the position "étop disable" conditional stop orders in
the computed routine will be disregarded and the machihe will not stop.
The neon N2 lightsrwhen the machine has stopped after encountéring a

conditional stop order.

Switch 83 end neon N3. The switch S3 in the position "rest" meakes the

machine execute orders in a sequence, one after another. The switch in
the position "order pair" makes the machine execute only the order pair
which is at the time in the order register R3' The neon N5 on indicates
that the switch is in the position "order pair".

Switch Si and neon Ni. The switch Si is the "memory clear" switch. The
switch in the middle position "rest" disconnects the memory from the

control panel. The "rest" position is the normal position and the switch
automatically returns to it from other positions. The "up" position
clears the memory to "1"s (that is stores in every memory position a
word consisting of forty "1"s), the "down" position clears the memory to
"0's. While the memory is being cleared the neon Nk is 1it. When the
process of clearing is finished (approximately 1.5 seconds) the neon

is off.

Switches 85 and neons N5. The switches S5 and the neons N5 belong to the

control counter and were described befofe.

Switch S6. Switch 86 also belongs to the control counter.
78

Switeh S87. The switch 87, whether in the "up" or"down" position, inserts
the "tape read order" (See Appendix) in order register R,, in the case

)
when the input 1s on tape instead of on IBM cards.

Switch 88. The switch 88, whether in the. "up" or "down" position, inserts

the "IBM" card read order" (see Appendix) in the order register R5.

Switch 89, For 6-bit instruction code this shauld always point to "6".
Beside the control panel there are three more auxiliary panels which

are shown in Figure 1. These panels will be shortly described.

Address "A" Halt panel. The Address "A" Halt panel has twelve switches

in a row assoclated with a twelve neon display. The switchés set a
memory address and the neons display it in the same wsy as in the control
counter. The "halt-ignore" switch in the position "halt" will stop the
machine before the execution of the pair of orders which are stored at
the address set by the twelve switches; in the position "ignore" the

‘machine will not stop.

Memory Display panel. This panel has a forty neon display in two rows,

twenty neons in each row, capable of displaying one forty bit word, and
has also twelve address switches with assoclated twelve neons, which set
one memory address. -The Forty neons display the contents of the memory
address which is se£ by the address switches.

Neon Gating panel. This panel has forty switches with forty associated

neons. The switches set a forty bit word which is displayed by the neons.
A word set by ‘the forty switches can be gated (inserted) to the register
RL or R3 by two switches, the "R1~R§" selecting switch and the gating
switch., This gating can only be done when the machine is not running.
Indeed, this fact 1s so critical that the operatlion engineer keeps
emphasizing to the novice who 1s using the ﬁachine, the following warning:

- DO NOT TOUCH THE FORTY SWITCHES WHEN THE GATING SWITCH IN ON "GATE"

Neon displays of the accumulation register Rl, of the arithmetic register
R2 and of the reglsters R5

and R,. The two topmost rows of neons,‘forty

3

neons in each row on the front panel (see Figure 1) are the reglster RL

display neons. The Important row is the lower row, which shows the contents

of RlL. The upper row displays the results of certain minor operations end

will not be described.

79

The two middle rows of neons are the register R2 display neons, the
lower row shows the contents of R2. The display of the upper row will not
be described, ‘

The upper of the bottom two rows of neon displays the contents of
the R3 (R upper three) register which plays a minor role only in coding and will
not be described. The lower row displays the contents of the order reglster

R

, which was described before.

Reading-in a routine. Operating Instructions. In the following

operating instructions the letter-numeral lsbels wlll refer to the
switches on the control panel shown in Figure 2. We shall agsume that
the power 1is on and the machine is warmed and ready for operations. The

instructions for reading-in a routine consist of the followlng:
1. Move S1 up to the position "control" extinguishing the neon NLl.
2. Move 83 to the position "rest", which is the normal position.

%, Move S2 to a) the position "run" when the routine has conditional stop
orders to be obeyed by the machine, or
b) the position "stop disable" when the routine has no
-conditional stop orders, or when the conditional.stop

orders are to be lgnored.

4. Move Sk down to the "clear memory to zero" positiocn, which would clear

the memory to "O"s and insert the IBM card read order in R5 as well.

5. When using the tape input, move 57 to the position "on" which inserts
the tape read order in R5. For IBM cards input this step must be

lgnored.

. 15 weew N % “‘\’\ e cq'&/ steps | +o oo
6. Stack the deck in the reader. i

7. Press the second button from the left on the reader, causing this

reader to "read down" the first card.

8. Move S1 down to the "run" position, which mskes the machine start

the com?ut&tions.

80

CHAPTER VI

REPETITIVE SEQUENCES. TRANSFER ORDERS. DECISION BOX. COUNTERS
FORMATION FORMULA. ADDRESS MODIFICATION. EXTRACT ORDERS.
PROGRAMMING AND CODING LOOPS OF REPETITIVE OPERATIONS.

Repetitive Sequences. ILet us éonsider the following problem: To

program and code f(x) = x6, where ‘xlc: 1.

1. Programing.

Flow Chart
I. IT
| K.X.X. XXX, = 0 Print and stop
Al X
2., Preliminery Coding
Seq. Order . R1 R2 Memory Description
I,1 R Al 5 x (Al) —> R2
2 1lat Group XuAl X X=X 5 (R2)(A1) —> R1L
3 - M A2 X (R1) — A2
L R A2 3 = (A2) —» R2
5 2nd Group XuAl X .x=x 3 (R2)(Al) —> RL
6 M A2 X (R1) — A2
7 RA2 5 X (42) —x R2
8 3rd Group XuAl X7 .xX=X i (RL)(AL) —> R1
9 M A2 x (R1) ——> A2
10 R A2 i 5 xl+ (A2) — R2
11 A4th Group XuAl X X=X 5 (R2)(A1) —> R1
12 S MA2 x (R1) — A2
13 R A2 5 6 x° (A2) —> R2
14 5th Group XuAl — x7.X=X 6 (rR2)(Al) —> R1
15 M A2 x (R1) ——> A2
11,1 R A2 x6 (A2) —> R2
2 P Print (R2)

3 Zu 4 Stop

%, L., Assignment of Addresses snd final coding. This is left to the

student as an exercise.

81

The sequence (Box) I of this routine has fifteen orders. These
fifteen orders are in five groups , of which four are identical, the
first group differs only in the address part in the first order., In
general, a routine for computing x . (n = 1,2,....) would have in the
operation Box I (sequence I), n - 1 similar groups of three orders.
Routines of many problems wlth repeating operatlions have very often
"repetitive sequences". Approximation methods which employ lterative
formuwlas, also lead to repetitive sequences. The routine for x~ was
coded in a "straight sequence', that is, every repetitive group of
orders was written down one after another. Instead of coding repeating
operations in a straight sequence, we can program and code such opera-
tions using "loops", that is, instructing the machine to repeat a certain
cycle of operations autometically. The coding (explalned presently) of &
repetitive operation in the form of a loop has many advantages. The
routine 1s much shorter, thus saving memory positions (as we already know,
every order-pair mekes an instruction word which is stored in one memo}y
position)ﬂ;the machine can be instructed to repeat a cycle of operations
elther a specified number of times or as many times as is necessary to
give the result which will satisfy a desired condition.

The programming and coding of loops require techniques which we will
now explein. These are: using transfer orders, setting "counters",

"modlfying the addresses", and setting "formation formulas".

Transfer orders. The transfer order. "U Al" was introduced in

Chapter II. We shall repeat that a transfer order is an order which
instructs the machine to break the initial sequence of orders and to
start a new sequence which begins from the order specified in the
address-part, say Al, of the transfer order. We say that "the control
was trensferred to Al", and "transfer of control" is the technical name
for breaking the initial sequence of orders and starting a new one which
begins from a specified order. Other names for transferring of control
are; "directing the control", and "jumping". A transfer order specifies
the address, Al, (preliminary symbols do not specify addresses , see
Notes.) , where an instruction word contaeining two orders, the left and
the right, is stored. The new sequence begins from one of those two orders
and & transfer order also specifies which one.

82

Most Importent Transfer Orders

Preliminary Sexadecimal

No Symbol Symbol Description‘“ _,‘
1 U x No. %, Transfer control to x. Start from the
' , left order.

2 Ut x %, Transfer control to x. Start from the
right order.

3 oU x KO.¥. Clesr Rl to zeros. Transfer control to
X, Start from the left order

N oU! x 24, Clear R1 to zeros. Transfer control to
Xx. Start from the right order

5 ¢ x 20.%; Transfer control to x (left order) if

(R1) 2 O, do not transfer (continue
in sequence) 1f (R1l) <£. 0.

6 ct x 2%0.%, Transfer control to x (right order) if
(RL) & 0, do not transfer (continue
in sequence) if (R1l) 4£- O.

7 A+ x KN. %, (R2)—> R1l. Transfer control to x. .
‘ Start from the left order. (S5ee
notes) .
8 - OA(+) x NN.Y. (RL)+#(R2)—>RL. Transfer control to

%x. Start from the left order.
(See notes)

Notes: -
8. Trangfer orders have the following pecullarity:

In the address-part of the preliminary representation we
ﬂfiﬁé the symbol of the order itself (its sequence number) instead of
writing its address. For example, 1f we want to transfer control to the
order II,2, stored at some sddress, say Al, we write U II,2, instead of
wrilting U AlL. The rule that an order refers to an address and not to the
contents must be broken in this case, because in preliminary coding we do
not know the addresses of the instruction words. In the final coding, the
- sexadecimal symbols must have, of cpurse, the proper address-part. For
example, if a left order II,2 is stored at the address 284(16) the preliminary
symbol of en order directing control to II,2 is U II,2 and the sexadecimal
symbol 1s NO28Y4%, In the above llgt a two diglt sexadecimal instruction
(third column) is followed by "x" which represents a three diglt sexadecimal
address. '

83

b. The orders No., 1 through No. 4 belong to the category
of "unconditional transfer orders" and are fully explained in the list.

c. The orders No. 5 and No. 6 are "conditional transfer

orders”, called "compare orders" or "branch orders".

d. The orders No. 7 and No. 8 are called "secondary transfer
orders". Thelr primary purpose is to move the contents of R2 to Rl. They
transfer control under the following éonditions: a) always, when A+ X
or A(+) x 1s the right-order, b) when A+ x or A(+) x 1is the left-order
and the followlng right-order is not another traﬁsfer order. In these
cases control is transferred after the folloWing right-order is completed.
When A+ x or A(+) x 1g the left-order and the following right-order 1s
another transfer order, then A+ x or A(+) x does not transfer control.

[}RE)-—Q Rl or (R2) + (R1) — Rl whether control is transferred or noﬁ} .

Decision Box. In the example f(x) = x6, the operations represented

by a three order group asre performed five times. If we want to code a
loop for such a computation we have to devise an arrangement which allows
for exactly five repetitions. This arrangement consists of a "decision
box" and a "counter". A decision box (called also comperison, alternative
or discrimination boX) is a sequence of a few orders shown on a flow chart
-in a separate box. Bofh the box on & flow chart and the sequence of orders
which 1t represents are referred to as "the decision box". The decision
box will be explainsd in the following example: A group of copcrations
represented by Box II have to be performed five times and after the [ifth
performance the result should be printed in Box IV. Between the Boxes IT
and IV is inserted the Decision Box III, which together with the counter
will direct such a course. We shall not discuss the counter now. we shall
assume that it is there and performs the assigned function. The diagrem is
as follows: ,

II IIT v

Operations represented - ‘ g
by orders: TT,1;11,2;. DECISION BOX | No Operations represented

5th time |by orders, IV,l; IV,2..
PRINT AND STOP

Yes

) times

Figure 1.

8k

When the cycle of operations in Box II 1s performed for the first
time the Decision Box IIT does not direct conirol through the "No" branch
to Box IV, but directs control to Box II, to perform the cycle of operations
in Box II for the second time. This is indicated by "the loop", that 1s,
by the branch "Yes". After the cycle of operations in Box II 1s performed
for the second time, the Decision Box IIT doesg the same as before, and
likewlge after the third and the fourth time. After the fifth time, the
Declsion Box IIT directs control through the "No" branch to Box IV. A
declslon box on & flow chart can be recognized by the three branches, the
incoming branch and the two exit branches laebeled "Yes", and "No". Ve
shall describe now the operations represented by the sequence of orders
in the decision Box III. ILet-1i =1, 2, 3, L4, 5, represent the number of
timesg that the operations in Box IT were performed. When k-1 equals 3 it

‘means that the cycle of operations in Box II was performed once (i = 1),
when 4-1 = 2, the c¥tle was pefformed twice, L4-1 = 1, the cycle was per-
formed three timeB; li-i = 0, the cycle was performed four times, 4-1 = -1,
the cycle was péff&rmed five timeg. This can be summarized as follows:
when L4-1 77 0; the cycle has been performed four times or less, when
-1 &£ 0, (natiely, 4-1 = -1) the cycle has been performed five times. ILet
the number 4 (scaled by 2'5) be stored at an address D1, and the number 1
(scaled also by 2"5) be stored at an address D2. Before the first run of
the cycle of operations in Box II, i would equal 1 ; before the second run
the counter would substitute 2 for 1 ; before the third run, 3 for i ; before
the fourth run 4 for 1 ; before the fifth run,5 for 1. The orders grouped
in thevDecision Box ITI would be as follows:

Sequence Order Rl Description
II1,1 + DL 2™ (DL) —> RL
2 (<) D2 279(h1) (RL)-(D2) —=4 Ki
3 ¢ Vv,L Transfer control to V,1 when

z
(R1) = 277(4-1) 2 0. Do not transfer
(continue in sequence) which means that
the following order would be IV,1) whed
(R1) = 2=5(4-1) £-O.

85

The Decision Box IIT on the flow chart would symbolically represent

this sequence of orders as follows:

I S oIIT ‘ v

-3 >
2 7 (h-1) 0 o
Vv Yes
Counter -t
Figure 2

Counter. The sequence of orders which instructs the machine to
increase 1 by 1 every time after the completion of the cycle of operations
in Box II 1s called a "counter". On the flow chart the box which groups
the operations of the counter is calleéi"substitution box". The substitu-~
tion box is inserted in the "Yes" branch between the Operation Box II and
the Decision Box III, shown in Figure %, Inside the substitution box we
write £he symbol i+l —» 1 —»D2 which reads: 1+L replaces 1 at the
address D2.

I IT ITI
12721 —>p2 > 1= ™11, 1;11,2;..['"2'5(u-1)2 o[W™
' Yes

Substitution Box
\'

i +1 — 1~—>D2 o

Figure 3

The storage of the initial value of 1 (i=l) at D2 is an operation whiéh
precedes the operations in Box II and is shown in Box I (Figure 3). The
little box (not labeled) immediately following Box I is called an "assertion

box". This assetion box states the initial value of i, which in our case

is8 1. The orders in the substitution Box V instruct the machine to add A
1 to i and to store i+l at the same address where 1 was stored previously,

86

that 1s at D2, and then transfer control to the order IT, 1. The tetality
of operations in Boxes IT, III, and V form a "loop". The orders in the
gubstitution Box V would be as follows:

Sequence Qrder R1 - Memory Description
Vv, 1 k2 1z 273 —> m1
2 (+) D2 279(141) | (RL)+(D2) —p &L
3 M D2 2'3(i+1‘) (RL) ~——em D2
L U II,1l Transfer control to the ordew TL,1.

Exerclisge: Sketch and code the decision box and the substitutlon bhex
for a loop to perform & cycle fifteen times (for a fifteen-cycle loop).

Formetion Formula. When programming a loop we must set a "formation

formula" which would allow identical operations in each cycle. A formation

formula is of the form x = F(Xi)’ where 1 = 1,2,3,...,n, and x, i8 an

i+1 1

initially given value. F(x) is a functlon which has the following
properties: a sequence Xx,, Xgyeeees X9 CED be formed (term by term)
by repeated application [ﬁ timeé] of the function F, and the last value,
Y is the final result. The values X5) XE, eeey X, aTE called the
"partial results" or the "intermediate results". The indices "1" are not
hecessarily subsceripts: They may be exponents, factors, or terms.

Operations represented by x = F(xi) are identical in each cycle, but

the indices are different 1i+éifferent cycles. In the first cycle L =1,
and the operstions gilve the first partial result, x, = F(xl); in the second
cycle 1 = 2, the operations giving the second partial result, x5 =F (x_z) s
and s0 on; in the last, the nth cycle, 1 = n, and the operations glve the

final, the n-th result, X 1 = F(xn).

Programming and Coding the Loop for the Problem f£(x) = x6.

Programming. We shall set a formatlion formula whose final result is
x6. Observing the stralght sequence routine of our problem (at the
beginning of this chapter) we notice that:

87

in the first group of orders, I,l; I,2; I,3; the cperations lead to xl.x=x2

in the secoﬁd group of orders, I,4; I,5; I,6;" " weoon x2.x= 5
in the third group of orders, I,7; I,8; 1,9; " " v x3}x= b
in the fourth group of orders, I,10; I,11; I,12; " roon xu.x= 2
in the fifth group of orders, I, 13; I,1l4; 1,15; " wew x5.x=x6.
This suggests a formation formule of the form, xi+l = xi.x, where 1 = 1,2,3,

4,5. The multipliéation of xi by x is performed five times; after each
The partial result (product)
Other features of programmng,

multiplication the exponent i 1s increased by 1.
becomes the final result (product) when i = 5.

like the counter, storage, etc.,are explained on the flow chart.

Flow Chart
I e I 111 v
T .
- - 14 =3 -+ o Print x
2"‘51 ~A5 i=1 X 2 ()'*""i)'éo and Stop
a; Yes

Al x } .".,'. vV \
AZ X)+ . 2: 3 -...._.“' i—(‘lﬂ_ —_ i —_ A5'
A 1.2 . -

Notes:

a. We remembered to store in A3 the number MXE'B, which we
need in the Decision Box III, as 1s shown in the Storage Box.

b. Box I is immediately followed by the non-labeled
Inside the Assertion Box 1s written the initial value of
the index (exponent) i, which in our case is 1.

Agsertion de.

¢, Box I 1s an operation box vhere we store the initial
value 2‘3 1= lx2"5, which we need in the Declsion Box III and in the

Substitution Box V. 1

In Box I we also store the initlal value of xi =X .
(The storage of these two numbers is an essentlal part of the computation
routine and cannot be performed advantageously‘with the input routine since
this latter is avallable only once.) In Bbx II, vhen the partial product 4
xi+l is formed, it is stored back at the address A2, where the previous xi
was stored. In Box V, i+l is stored back at the address AS vhere 1 was

88

previously stored. Replacling at the same address an old valué by a new

velue with an index increased by 1, is an important feature and is indicated
on the flow chart by dotted lines.

2., Preliminary and Final Coding. .
Seq. Code Word Order R1 Memory Description
1,1 28002 . 0~ 2 2 3x1 2w
2 10124 M A5 122 1x0™? (RL) —p 23
3 K4l120 141 + Al x , (A1) —>R1
| 11
4 10121 M A2 X =X (R1) —> A2
II,1 shl2l @ R A2 : (A2) —> R2
2 k8120 xu Al xt (R2)(ALl) — R
5 10121 5 M A2 | xt (RL) — A2
IIT,1 KMi22 + 83 lxo™d (A3) —3 RL
2 om2h), (-)a5 272(4-1) (R1)-(A5)—>RL
3. holke C,1 : Transfer control to V,1
right order, when (4-1)= ¢
IV,1 ShI2L \) R A2 (A2)—> R
2 Lho28 P Print (R2)
3 00000 7u Stop
v,1 Khi2k + A5 ixe™) (A5) —» R1
2 W23 g, | (+) Ak 2"3(141) (R1)+(A%)—> RL
3 1012k M A5 273(141) (R1) —> A5
L NOlk2 118 U II,1 Transfer control to II,l;
00000 left order.
Notes:

- a) Instruction words in the sequences I, II, III, and IV must
be stored at consecutive addresses in the above order; the two instruction
words in the counter sequence, V, can be stored in e different part of
the memory at two consecutlve addresses. . To avold errors, it is advisable
to label boxeé and write instructions in thelr proper order so that they are

89

assigned to consecutive addresses. In this connection every box wlth
three branches must be carefully exemined and the rule should be follewed
that boxes connected by a "no" branch must be labeled by consecutive

numerals.

b) When we explained and showed how to set the transfer
orders of the decision and substitution boxes, treating them apart, we
never specified left- or right-order, because we were unable to tell., This
we lesrn only from the context of the computetion routine as a whole, when
the order palrs are grouped together. The importance of carefully writing
order palrs must be stressed. An error In grouplng order palrs may result
in directing control to the right-order instead of to the left-order, or

vice-versa.

¢) The address part in the sexadecimal representation of the
transfer orders, IT, 3 and V, 4, was put in the final coding after the
assigned addresses of instruction words were written. The "long'arroﬁs"
indicate where the addresses in the transfer orders come from. The address
part in the preliminary representatlons i1s f1lled by the sequence number
which is & symbol of the order itself instead of its address, which we
explained before.

d) The counter in Box V has the following alternative form:

Sequence _ Order R1

v,1 > 2 27
2 (+) 85 2'5(1+1)
3 the pame as before
L the same as before

The slternative has a small advantage over the previous arrangement.
The storage of :l.xa"5 at the address Ak (see storage box) is not necessary

and one memory position is saved.

90

3. Asslgnment of addresses.

0 1 2 3 L 5 6 T 8 . . F

00

o e

12 MLNATN ANSONAT (NATY
I Gompatetlon /85wt Inie//]

L

IN ‘
LENNM B PUINROUE T @\‘B\V\\\\\\\\\\\\\\\SSS:E
L. Card Punching and Transcribing. This is left to the student as an
exerclse. '

Programming with a Decision Box for Desired Accuracy.

Successive approximation formulas (iteration formulas) are of the
 form %Xy ,1 = F(xg), where 1 =1, 2, 3, b,.....; x, 1s an initial estimate
of the true value, x, and F is called the "improvement function", or the
"improvement operator". A sequence, X5y +e+y X, OF improved estimates
(second, third,, nth approximations) can be formed by repeated
application of the improvement function F. The magnitude of the error of
an nth approximation, X is the absolute value of the difference hetween
the true value, x, and X, that is, the error e, = Ix-xnl, The smaller
the error the greater the accuracy. Unfortunately, we do not know the true
value (otherwise we would not use the lteration formila). However under
some conditions, as a satisfactory measure of accuracy one may use the
ebsolute value of the difference between two successive approximations,
that is, ixn+l“xn,' For example, Newton's iteration formula for

| 1
x =N, (N> 0), is %Xy, = 5(x; +¥/x;). When x = V2, and the initial

estimate of x 1s x, = 1.5 (142 £ 2), then

1
Xy = %(1.5 +2/1.5) = 0.75 + 0.67 = 1.42; ‘XQ - 1, = 0.08
x5 = 5(1.42 + 2/1.42) = 0.71 + 0.704 = 1.h1k | %5 - %p| = 0.006

If we assume that V2 = 1.41421 (accurate to the fifth decimal place) is,

X, the true value of ng, then the errors of each successive approximation

9l

compared with the differences between two successive approximations are

as follows:

e; = |1.hk21-1.5] = 0.08579

ep = |1amer1e] = o0.00579 - x| = 0.08

e5 = Il.hlh2l-l.hlh’ = 0.00021 ,x3 - x2| = 0.006.,

When the error, e decreases, so does X1 - xn| . When we say that we

want an accurate result we mean at least that we requlre that ‘xn+l - xn|
be small. An iteration formula is very convenient for loop programming
and coding because it has the form of a fofmation formula., Let us program
& loop for x; , = F(xi), with an accuracy such that |x1+l - Xi|“< E, E
being an assigned, usually small , number. Assume that scaling is already
done., The flow chart would be ag follows:

I I ITT IV
Print x
—» Bl =1 b'e =F(x) —B1 X - X |—E =20 No i+
i g s i i+l 1 and Stop
Al k&
A2 | . v Yes
. R 141 = 1
AN i E ’ ’
X'i+l —u-Xi »Al

The first run of operations in Box IT give and store X5 at the address Bl.
1 - E),is tested in the Decision Box III. If

(|x2 - xl' -E) 7 0, that is,if |x2 - xllz; E, then the control is directed
to the Box V, which is not & counter. The indices 41 in the formation

formula are replaced automatically by 1+l without any special arrangement.

The difference, ('x2 - X

We write inside Box V, i+l-——1, but the absence of storage indicates that
1t is not coded; it is only a reminder that after each run of operations

in Box II the indices were replaced. The operations in Box V store xe at

the address Al. This would erase X915 which was previously stored at Al

(see storage box), but we do not need x, after the first run of operations

1
in Box II. Thus, X, 1s stored at two addresses, Bl and Al; the second
storage 18 necessary because we shall need Xn later on for the decision

Box III and the X, at Bl wlll be erased by the storage

92

of x3 (after the second run in Box II). The last operation in Box V directs
control to Box II, where the next approximation, xj, is obtalned and stored
at Bl. The difference (Ix5 - 2‘ - E) 1s tested in the decision Box III,
and the operations will cycle in Boxes II, ITI, and V, until, let us say,
after the nth cycle the difference (lxn+l - xn‘ - E) ¢ 0 for the first
time. The decision Box ITII, then, will not transfer control to Box V,

but to Box IV, where the desired approximation, X 1s printed. The
machine performs as many cycles as are necesgsary to obtain the desired

accuracy.

Exercises.

1) Program and code the loop for computing x = ¥3, with the

accuracy measured by the condition that 'Xi+l - xﬂ 4.2'50.

2) DNewton's iteration formuls for a root of an equation,
f(x) = 0, is:
= - v
X0 5% f(xi)/f (Xi)'
Program and code the loop for computing both roots of the equation:
f(x) = X . 2x-2=0

Orders lngtructing operationsg on absolute values are in the list in

the Appendix.

Programming and Coding a Loop for the Sum of Hundred Terms.

Let us program and code a loop for computing SlOO = 8 + 8, + v
100
+ 8100 = E By To make 1t simpler we shall assume that scaling is
k=1

not necessary.

Programming., We shell begin from the formation formula. If the sum

-

i
of the first 1 terms is Si = E 8y » then the sum of the first 1+l
k=1

and this 1s the formation formula, The successive

terms 1is Si+ = Si + 8

1
partial sums,

14+

Si+l‘= Si +a, . 8re as follows:

93

1 1
82 = Sl + a2
= + 8
85 S2 3
S =95 + &

100 99 100°

The first partial sum Sl = 8 is given, hence the machine must perform 99
cycles computing successively Sg, 85, ceey SlOO' After the 99th cycle

the final result, SlOO:iS obtained. The Declsion Box will test the differ-
ence 2‘7(98-1) ; if 2-1(98-1) 77 0, then the control will be directed to the
counter, and from there to the operation box, where Si+l = Si + aiﬁl is
computed., When 2'7(98-1) 4~ 0 (namely, when 98-i = ~1) then the control
will go to "print and stop" Box, where SlOO will be printed. The flow
chart of the loop for this computation 1s very similar to the previous
flow charts.

Flow Chart

I) IT IIT v
-1 ols _ ~T(oa. No |Fr
T.2_ 7‘1 3 i=1 Si*l_ ;%8 B2 277(98-1)A0 5200
S, Ves and stop

AL ey v ‘

2 e, , i+l -1 —» B3

AL lay a1 —-a 141

A1Q0 _a%OO

B 2 '.98

Notes.

a. In previous examples the storage of datum numbers at
consecutive addressee was not necegsary. Here it 1s essentlal. Storage
Box shows that ay i1s stored at Al, D at A2, etc. The reasons will be
obvious presently.

b. After each run of operations in Box IT the indices 1
have to be lncreased by 1. We shall examine carefuily where the change
of indices must take place 1n the followlng table:

oL

Box II - Box II Box III

1 Byl Sypa =8y vy (98'i).
1 a, 8, =8 + 8, 98-1
2 8z 35 = 82,+ az 98-2
98 . 899 399 = 898 + 899 08-98
99 8 8100 = Bg9 * 8100 98-99

The table shows that the indices, 1, have to be increased by 1 in
three places:

1. 1In Box II ; after completing the operations in Box II, the partial

sum, Si’ must be replaced by S This does not require special arrange-

i+1°
ments, begause ﬁhe operation Si + 841 glves automatically lsi+l'

2, 1In Box III, after the control is directed to Box V, i has to be
increased by 1 in the difference 98-i. This is done by the counter in

Box V and we already know how to arrange for that.

3. In Box II, after completing the operations in Box IT, the number
_gi+l_has to be replaced by the‘nHMber 8,55 O that the order, which
initially instructed the machine to add 8 1 to Si would instruct the
machine next time to add 8.0 to 8 How to arrange for that 1s

explained in the following article.

i1’

Modification of Addresses. We remind the reader that a machine order
does not refer to a number ltself but to the address where the number 1s stored.
is stored at A(i+l), and the number a is stored at

1+l i+2
A(142). The order (preliminary symbol) to add a is (+) A(1+1), and the

140 18 (+) A(1+2). The "add ordei:'rlis in Box II and we shall
call 1t by its sequence number, that is II,2 (See flow chart). To instruct
the machine to add ai+2 instead of<ai+l we must change the address-part of
the "add order", II, 2, in such a way that instead of (+) A(i+l) we shall

have (+) A(i+2). Changing address parts in machine orders is called -

The number s

order to add s

"modification of addresses" or "address modifications". The operations

95

which perform address modificatlons are grouped in the substitution Box V
(we remenmber that the operations replacing 1 by 1+l are also in Box V).

For the purpose of an illustration let us assume that

the address A(1+l) is 281(16) = 00LO 1000 O00L(2)

and the address A(142) 1s 282(16) = 0010 1000 0010(2).

Now we want to change the order II,1, initially (+) A(i+l) into an order,
(+) A(i+2), which in sexadecimsl representation means to change K428l into
K4282, and in binary representatlon means to change 1010 0100 0010 1000 0Q0OL
into 1010 0100 0010 1000 0010, or in general to change an address into an
address which is next in the sequence of addresses (change address n into

an address n+l). We shall speak now of the bilnary representation because
this will render more simple the explanation. Observe the blnary repre-
gentations of the orders (+) A(i+l) and (+) A(i+2) and notice that to change
an address-part n into an address part n+l we must add a binary 1 to the
last, the twentleth bit of the order. Thus,

The last four bits of (+) Al+l are OOOL

+1
The last four bits of (+) Al+2 are 001O0.
The "add order" II,2 may be the left- or the right-order of instruction

word stored at some address, say B3. We shall discuss each case separately.

Case 1. The order II,2 is the left-order and its companion, the
right-order, 1s II,3. At the moment we are not interested 1n II,3 whose
digits (or bits) we shall indicate by x's. The whole ilnstruction word
consisting of the order-pair II,2 and II,> and stored at B3, before the
modification, in sexadecimal representation ig K428l xxxxx, and in
binary representation is 1010 0100 0010 1000 0001l xXxXxXX XXXX XXXX XKKXX XXXX
if we add to it 2“19 = 0000 0000 0000 0000 000L 0000 0000 0000 0000 0000
we obtaln 1010 0100 0010 1000 0010 xXxXXX XXXX XXXX XXXX XXXX
which i1s the modified instruction word with the address of II,2 modified
to an address which is next in the sequence (of addresses). The above

exsmple illustrates the following rule: +to modlfy the address-part of a
left-order to an address-part which is next in the sequence (of addresses),
add 2”2 to the instruction word.

96

Case 2, The order II,2 is the right-order and 1ts companion, the
left-order is II,l. The Instruction word consisting of the order-pair II,l
and II,2, before the modification, in sexadecimal représentation is,

xxxxx K4281 and in binary representation is

XXEX XXXX XXX XxxX xxxx 1010 0100 0010 1000 000L;
if we add to it 2“39 = 0000 Q000 0000 0000 0000 0000 0000 0000 G000 0001
we obtain ' XXXX XXXK XXXX XXXX Xxxx 1010 0100 0010 1000 0010,
which is the modified instruction word with the address-part of II,2 modifled

to an address-part which is next in the sequence (of addresses). The above

example illustrates the following rule: +to modify an address-part of a
right-order into an address-part which is next in the sequence of addresses)
add 2=99 to the instruction word.

Coding the Operations Which Modify Addresses. We sald that the order
II,2 18 stored with its right- or left-companion at some address B3. In

preliminary‘coding we do not know yet the addresses of the instruction

words, heﬁce we do not know what B3 1s. The situation is simllar to the

one which we encountered in transfer orders. We cannot refer to the address,
of TI,2 because we do not know it, therefore we put IT,2 in the address-part
of the preliminary gymbol. In the final coding the sexadeclimal symbols

must have, of course, thelr proper address-part. The modifilcation of II,2

is coded as follows:

Seq. ' Order RL Memory : Description
1st case; 11,2 1s the left order
v, 1 ' —3> 18 o1
2 (+) 11,2 (}I,§%2"19 2717 15 added to the instruction

word containing the order-palr
IT,2 and II,3

3 M II,2 The modified instructlon word, that
is the order-pair II,2 and II,3,is
stored at the game address where

: it was before.
2nd case; II,2 is the right order

v,1 —3> 38 2™
2 | (+) 15,2 (11, 2+ 27?
3 MII, 2 . II,l and IT,2 at the same address.

97

100

2. Preliminery and Final Coding of the Loop for 84, = k};lak.
Seq. Code Word Order R1 R2 Memory Description
I,1 KLOOQ + AL S, =8 8, =a

X0 11 i 1
2 10065 M B2 5, B2
3 28006 —3> 6 1.277
Kl -7 -7
IT,1 K4065 + B2 8,
2 NLOOL . ; (+) [Ag] Sy+8y
3 10065 M B2 s
141
KI5 7 81 > w2
III,1 KLo6h + Bl 271,98
2 0hot6 (-)B5 277(98-1)
, Kk
3 LOKN6 cy,l Transfer to V,1 if
N 98-1 2 0
Iv,l sho65 R B2 8100
14028
2 P Print 8,9
3 00000 Zu, Stop

v,1 28026 3 338 1.277

2 NhKIN2 (IT,2 II,242707
K7 ,
3 1OKN2 M II,2 Modified word, II,l and II,2, back

at its address.

4 28006 —=> 6 1.2’7
K8 7
5 NLo66 (+) B3 27 1 (1+1)
6 10066 M B3 27 T(141)—> B3
KIN9 / '
7 NOKN2 U II,1 ' Transfer to II,l
Notes.

a) The orders V,1; V,2; V,3 instruct the machine to modify
the address-part of II,2, which is the right-order. The modification is
accomplished'by adding 2—3? to the order pair II,l and II,2. The ﬁreliminary

98

symbol. of the address-part of II,2 is [Q&ﬂ. Taking A2 in square brackets
remindg the coder that A2 will be modified into A3, Ak, ..., Al+l after
every consecutive run of operations 1n the loop.

b) The sexadecimal address-pert of the shift order V,1 1s
026, because 38(10) = 26(16). (See paragraph on shift orders in preceding
chapter). | ‘

¢) The long arrows show where the sexadeclmal addresses
of the orders IIT,3; V,2; V,3; and V,{ come from.

d) In the "Description" column we marked only the expla-
nations which we may need later on. The detailed descriptions in previous

examples were merely for the purpose of Instruction.

L, Assigning Addresses.
2 Yy 5 6 7 8 K S N J F L g 0O 1 3 4 5 6 7

oo
02
oL
06

(LI
ﬁéi/// / '

(297098 AlOQ/Bl B2 534

o2l

H
H

KN

\85;1‘5&3%5?3&\1%5‘5:‘;\\\\\\\\\\

KF

s

i
i

LF

i Bbb*ﬁpgﬁiRoukinf§>§Q<>Q§>§§§SEQ§N$§E§\\QQﬂﬁngS§SQ§.;\<F§§S§§§S§§§E§§§§§§§§S

Card Punching. Review Let us review shortly the topilc of Chapter

TIT: how to prepare a computation routine for card punching. In that
Chepter we inserted in each sexadecimal instruction word (of ten sexa~-
decimal dlgits) a "O" after the second and the seventh digit, thus
obtaining a twelve sexadecimal digit word. For example, 1n our hand-
written routine the word containing the order-pair I,1 and 1,2 is:
I,1 I,2

KLO0O 10065
‘which would be changed so that in punched form it would appear:

K4+ 0 000 10 O 065.

99

The spacings in each of these two representations of words are only to
show the two orders and to indicate where the "0"!'s were inserted. ILet

us review again the structure of an order. In the sexadecimal represen-
tation in the left-order and the right-order respectively the first two
digits represent the instruction-part, the last three digits the address-
part. For example in the order I,1, the digits K&t are the instruction-
part, and the diglts 000 are the address-part. The procedure of inserting
"O"tg for card punching can be restated as follows: The "0"!'s are inserted
immediately after the instruction-part (or before the address-part) in
each order. There are exceptions in this procedure (of insertiﬁg "o'rg)

which are explained in Chapter VII.

All sexadecimal words in the routine are transcribed on binary cards.
Figure 4 shows a binary card to remind the student of the grouping and

correspondences on the card.

K VYVYY?YYYYYYYYY‘(YYYYYYYYYYYYYYYYYYYYYYYYYYYY_YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYM

WlXXIXXXXjXXXXXXX)(XXXXXXXXXXXXXXXXXXXXXXXXXXXXWZ
W30000000000000000ﬂﬂ.(l00000000000l]00l]U00000'00005000000000000000000000000000000000000\”4
WSIIHHIIIIH]IIIIIHIIHHIIHAHrTIHIIHIIIIIHIIHIIIHHIHIIIIIII“IIII']IIIIIWG

W722220222202222]2222{2222{222202222\2212202222(2222§022212222(22}22{22722222222222222|122{222222]2222W 8
WO93333(333333]33(3333/3333]/3333/333333133(33333333}333313333]33|33{3333/333313333333333[3333333333WIO

WIHA44414444/44144/4444/4444{4444/8444/44/48[4084/4404J442441444484[44044441404418444/4444/44/441444414444W12

WI35555/5555/55/55/5555(5555/5555/5555/55/55(5555(5555{5555[5555(55{55/5555(5555/5555555555/5555%5/5555Wi4

WI56 6 6 6{6 66 6/66[66/6666/6666{6666666666/66/6666|G6656|6666/6666/66/666666|6666{6666/66606|66/660666066666WI6

_WI7777777777777|717777777777:717777777777@77WB

W19888888888888688888888888§888888888888BBG88W2d

W2{99958/9999/99/99/99999999/9999 9/99999999}9999/9999(99/99/99998/95898/999919999/99|9919999(9999IW22
IEERERRRIL wwamugg\;glcszozn 22 23 24125 26 2 28123 30l31 32053 30 35 36457 38 39 s 42 43 445 45 47 dslen sobs selsa 54 55 sels7 58 59 coler 2 63 6alos 66 67 gslev 70k 7217y 74 75 7677 78 18 0
mez 4

100

The word labeled K represented by the first forty characters ("Y"s),
in the first row, is for a "key-word", and the word labeled M, represented
by the other forty characters ("Y"s), in the seme row is for the "modifier
word". The key word and the modifier word are explalned in detall in
Chapter VII.

We can now leave the punching and the transcribing of the routine for

S to the student.

100
Polynomialg. The functions called polynomials play important roles
in machine computatlions. A polynomial of nth degree has the form:

2 n
ﬂx)=ao+a X + 8, X +.“..+anx,‘WMmElml,2,3,.““.;mm

1 2
employlng the summation notetion, f(x) =a_ + ST oA xk. The coding of

o) ﬁETf k
loops for polynomials involves modification of addresses. We can use two
different formulas.

a) the first formation formula is, S =8, +a xi+l,

i+l 1 1+l

1 K
where.Si = ao + 2 : ak X .
k=1
Thus, S, =& + & xl
M1 7 o 1
By =8, + 8, x2
P2 T Py 2
) n
Sn = Sn-l + an b

The derivetion of the above formetlion formula is omitted, because 1t 1s
almogt self-evident.

b) The second formation formula requires a little change in the
notation., Iet the n~th degree polynomlial be - Sn+l = f(x)= aoxn+a xn_l+ . e

1

+ an_lx + a - The subscript n+l does not refer to the degree, n, of the

polynomial, but to the number of terms. The formation formula is as follows:

101

=
g
w
u

I

Si+l = xSi + ai, where Si = xSi_l + ai-l' 1 o

mn
i
»
n
+
o

Sn = xSn;l + an-l
Sn+l = xSn +a .
The sbove formula is referred to as the "nesting procedure". The
derivation of the nesting procedure 1s explained on the example of a
L-th degree polynomial, 85 = aox4 + alx3 + a2x2 + aﬁx +a. Factor out and
. . 3 2 | '
group as follows: 85 = (aox *aX +aX +~a3)x + 8y,
= ((a X rax+a)X +a,)x +a
o T 2 ig .’
= (((aox + al)x + ag)x + aa)x + 8y,
= ((((ao)x + al)x + ae)x + a5)x + 8.
If we call, 8 =a; 8y = xa, +a,; 85 = x(xao + al) + 853

§), = x(x(xaO + al) +'ag) t By

then S~ = X8, + a

2 1t ey B

3 = xsz + as; Sh = xS§ +_a3;

8. = XS4 + 8y, and in every case Si+1 = X3

5

is the formation formula for the nesting procedure.

1t 8y which

Exercises. Program and code loops for the following computations,

assuming that no scaling 1s necessary:
12
1. 8., = xk'
© P1p By 3
k=
18

85
:E : - '2{ E 2k~
2. Q,= L a,kxzk 2/ = bkx.k .

102

Tegting an integer for evenness or oddness. We shall remind the
L ERREE e39 the first bit, e, is
the sign bit. When eo 1s zero the machine interprets the number as a

student that in a méchine number eoe

positive number, when e, is one, the machine Interprets this machine
number as a negative number (See Chapter 1, Complements). Another thing
which the student must bear in mind is that an even integer in binary
representation has the last bit (the least significant bit) zero, and an
odd 1lnteger in binary representation has the last bit one, For example,
5(10) = 101(2), and 6(10) = 110(2).

The machine representation of 5.2’5 18 A = OLOL 0000 ..s.ues..0(36 zoros)
3 16 B = 0110 00000(37 zeros)
If we could shift A left 3 (multiply by 25) so that e5
then, after the shift, the first bit would be 1. This machine number the
machine would interpret as a ﬁegative number, If we shift B in a similar
way the first bit would be O and the machine would interpret this as a

positive‘number, The:above example illustrates a general rule for testing

I

The machine representation of 6.2°

I

would replace e,

an integer by the machine for evenness or oddness, which is as follows:

To test an integer M scaled by a factor 2™% for evenness or oddness shift
the machine number M.2 ™ left n (that 1s multiply it by 2") and test the
shifted number aé to whether it is positive or negative. If the shifted.
number, namely the original e (now in the e, position) is zero (in-
terpreted by the machine as indicating a positive number),then M 1s even;
if the ghifted number is one (interpreted as indicating a negative number),
then M 1s odd. However ,none of the shift orders already mentioned, can
instruct the machine to replace e, s that i1s, they shift only through e
leaving e, unchanged (see Chapter IV, Shift Orders). In order to accomplish
the left shift by n places of the scaled number M.2™" mentioned above,

we shall introduce now & shift order that Would instruct the machine to
ghift through e, as well. Let the initial‘contents of R1 be e e

ol
of R2 be dodl’.‘.'d59'

vees

39’

103

Preliminary Symbol Sexadecimal Symbol (RL) after the shift

{——S——-(n ny‘} 7)‘}.._. elee....e39d1

-.T\“(ﬁ&lr‘r&: !09 v ‘nqrcé '
The order €S- shiffts left 1 the contents of Rl through e, as well,

Thus, e, is replaced by e, € by €5) and so on. The last bit, 859, is
replaced by d; (from R2). Thus the shifting of a machine number, 2™y,

left n has to be done in two stages : shift left (n~1) by the conventional
order &— (n-1), which replaces e, by the last bit of the integer M (e); then
shift left 1 by the order 4&f— , which replaces e, by e - The test for

evenness or oddness is represented on a flow chart in a separate box shown

in Flgure 5.
X XI
3| is 27® M even? No
Yes .
XTI
L i
Figure 5

The operations in Box X, which tests 2™% M (stored at D1) for

evenness or oddness are coded as follows:

Sequence Tape Word Order R1 Description
: - -
X,1 . +DL 2% M (RL)=27Mee euuesg
2 (n-1) (27%w).2%? (RL)=e e, - - -€5400.0(n-1 zeros)
3 - (27™).2" (RL)=e, ..+ +ve50...0
L ¢ XII,1 If M is even, that is, if (R1) 220
' direct control to XII,L. If M
X1,1 m———— is odd, that is, if (Rl) £ O,

direct control to XI,l.

Alternating Sums. A sum of the form Sn = Uy - U, + u5 W m eeeees,
n =2, 9, b,...., vhere the signs of the consecutive terms alternate from
plus to minus end from minus to plus is called an "alternating sun", Intro-

ducing the sign changer, (-1)k+l, k=1, 2, 3,.., we can write an alternating

n .
sum in & shorthand notation, S = E (-l)k+luk. Several methods of
k=1

104

programiing machine computation for altérnating sums are explained in the

%(-1)k.+lak,

assuming that no scaling is necessary and all the terms 8y, ae,..J, &5

following example.

Example: To program and to code a loop for 310 =

dare positive numbers.

1. Programming.,
Method I. The terms al,‘ae,...alo are stored as positive
nurbers. We shall use two formation formulas:
a): By = 8y + 8. for i even, and 1
‘ k+1
b) 8y,1 = 5y = 84410 for 1 odd, where: = E (-1) 8y s
k=1

Sl =8, !

82 = Sl N

33 == 82 + a5

B1p = 89 = B0

We shall test i for evenness or oddness; when 1 1s even we shall

apply formula b), when i is odd we shall apply formula a).

Flow Char b

T
A T4
bi B2
» 1=
E-%r* B3
Al 8y
2]
A2 ag
Ai &i
AlQ a
10 L
Bl a.n"

¥

5 SR 111 v v
%l s - B2 Print 8
i"il Si+ai+l Bz ,-)")—F(S i)é-_O NO;)JO
Is 1 even? - and stop
»l =G - I .
vos™ BBy e PR
VL
Yes
. VIT
i+l =1 —» B3
Al+2 —FAL+L

105

Method II. The terms By 8oy e 210 are stored as positlve
, 1
numbers. We shall use the formamipn formula 8§, ., =8 +(-1) a,,q Where:

51 =%

s, = 8, +(-1)"a

2% "1 2
2

85 = 8, +(-1) 85

o n-1
B, = 8y + (-1) ey

In every partlial sum, 8, ., the terma, , is multiplied by (-l)i.
The factor (-1) would be scaled by 27 ; therefore we would multiply a,
by the factor (-2‘1)1, and afterwards divide the term a, , by o1 (or
multiply by 21, that 1s, shift left 1, see note d). Thus, the operations
in the formation formula (by the Method II) would be

8y, =5y * (-2 ey a2

Flow Chart.
I
8, -Z' ‘B2 I __III Prii: 5
o 1.27 B3 _ o=yl -1 “bio snglio,. 10
ey 1=1bprfs, =8, +(-27) ey /2782 72T (B-1 PO g spop
(-277)™ Bh
Y
A a Vv es
1 i+l —» 1 —» B3
A2 8y
)] A42 T AL
Al a‘i (_2-1)14';’(_2-1)1_’ B)-l' - |
. . -1,\i+1 -1\, -1
mol a [(-2mht = (2T 2T
p1 | 8.2t
p5 | -2t

106

We ghall show the preliminary coding of the Boxes IT and V.

Seq. Tape Order Symbol Rl R2 Memory
11,1 | + | BY J(-2~h =t .
o M TL ' 27>
3 R B4 (-2~hHt
I ~1\i
4 xu [A2] (-2) ey
) ~1\1 = 1
5 + T , (-277) ai+l/2 =(-1)"ay 4
1
6 A+ 11,8 (-1) 8y 1
; , 1 i
7 (+)B2 8+ (-1)7ay 1784 4
5] a RO
A ..U S>> B2
v,1 -3 3 1.2“”
-4
2 (+) B3 27 (1+1)
3 M B3 '2‘“(i+1)—9}33
4 23 38 1.277
_7
5 (+) II,b (I1,4)+1.27 27
6 M II,h The order-pair
IT,3; and I,k
at ite previous
-1 address
7 R B5 -2
8 xu Bl (-2~)L™y
9 M Bl (-2~hyi sy
10 U IT,l Transfer control to IT,l.

Notes: a) The orders IT,1; II,2 form and store at Tl the absoclute value
of (-271)!, that 1s l(*a“l)i' -7t
for a

, which we need later on as a divisor

1+1°
b) The preliminery storage of o™t (see Storage Box) is convenient,
because replacing (-2""‘):L by (—2"]’):“:L in Box V involves multiplication by

"2-1 L]
¢) The address-part of the order IT,k 18 [?2]; square brackets
mark the modification. The orders V,4; V,5; and V,6 instruct the modifi-

cetlon of the address-part of the order II,4 which we assumed to be the

right order.
107

d) The alternative coding of Boxes II and V involves "modification
of the amount of shift". The sexadecimal representation of the order
<— n, which shifts left n the contents of Rl (multiplies (R1) vy 27) ,
is 18. 2. (see Chapter 4, Shift Orders). The three dots are filled
not by an address but by the three digit sexadecimal equivalent of n.
For example, the sexadecimal representation of €—5 is 18005; the
sexadecimal representation of €—38 1is 18026. The analysis carried
out in explanationffor address-modification can be carried out identically
for modlfication pf thé amount of shift. To increase the amount of shift
from n to n+l we add to the instruction word 2'19 when a shift order is
the left order or 2_39 when & shift order is the right order.

Using the order <—n which instructs to multiply (R1) by 2n, we

can write the operations in Box II as follows:

IT
T I
840 = 8y + (-277) 78y 5 (27)

and the operations In the substitution Box V:
v
i+l —>» 1 —»B3

Al+2 —> A1+l

~1a141 w11
))

(-2 —> (-2
Sl gl

The preliminary coding for this alternative is:

108

Seq. Tape Order Symbol Rl R2 Memory

1,1 R Bl (-2~Ht
2 xuf a2] (2 Y,
3 <1 (-2, (eh=(-2)e,
b (VB s+ (L)ay, =8,
5 M B2 5.4 B2
Ty ~+> 3 1.2-4
2 (+) B3 2'1*(1+J_)
3 M B3 2“”(1+1) —> B3
I 338 1.279
5 (+) II,2 (1L, Y+L.2727 changed pair
6 M II,2. | (II,1 and IT,?)
at its previous
address
7 R B5 ot
8 Xu Bl (-2~Hta h
9 M BY (-2~Hyi oy
10 ~+-> 18 1.27%9
11 - (+) 11,3 (1L13+1~2-19 changed pair
12 M II,3 | (IT,5 and IT,4)
' ' at its previous
address
13 U IT,1 Transfer control to IX,1

Notes: a) The orders V,4; V,5; V,6 modify the address of IT,2; the

orders V,10; V,11§ V,12 modify the amount of ghift in II,3. The amount of
ghift in the order II,3, [1] , 1s in square brackets to mark the subsequent
modifications which will meke it 2, 3, ...1.

The alternative coding of Boxes II and V results in eighteen orders,
and in this respect it has no adﬁantage over the first version, which also
hag eighteen orders. The advantage of the alternative. version over the
initial one conslsts Iin not having eny division orders. When possible,
division sﬁould be avolded for two reasons: 1) it introduces round-off
error (see Chapter 2, Short List of Orders), and 2) it slows down the
computation (indeed it takes more time than other arithmetic operatilons).

109

If we store them initially as negative numbers, that is if we store -8,

Method ITI. The terms By 8 8g) Bgs 8y 8TE subtrahends.

at A2, -8), at Al, and so on, then we can compute S:LO as & non-alternating

10
sum, that is, Slo = E By e
: k=1

add separately the minuends,

Method IV.

a. + a

173 5

+a. + a

+ 8

T 9

All terms are stored as positive numbers.

5
z 8.1 Mg, and
)

If we

5
gseparately the subtrahends, 8, + 8), + 8¢ + ag + 810 = E 85y N., then,
k=
Si0 = M5 - N5. The formation formula for M5 s M, ., = M, + 85000 Ml = 89,
and for l\T5 is N:L+l = Ni + 854 ns Nl = 85
Flow Chart.
il T1 IIT v
8y 02 =N, + o2 3 No
o R g e Ny 1170y *8py 5™ Co 1277 (3-1)=20 oy =¢, | =@
jr.2mm=e3
X ‘Yes
Al | 8 ivl =1 = C3
A2t ey Bi+2 —= Bi+l.
Ai a5
Al ¢ 8
L v — VI VII VIII IX
A a =, _ = . -%a_; No B Print
51 8 | @21l O7 Lfielhdty g My vepg i OB 277312 OBt NseSy g 1 g
BL | a, 02 (3 10
Yes and
'3'5""1;1(; 141 -+ 1 »C3
i 5 Al+2 - A+l
cL | 3.2
Figure 6

110

Notes: &) The operations in Boxes I, II, III, IV, and X compute N5
and store it at C4t. The operations in Boxes V, VI, VII, VIII, IX, and XI
compute M5’ compute Slo and. print SlO' As a rule, the computation of

subtrahend (and divisor) precedes the computation of minuend (dividend).

b) The little circle enclosing "o", which immediately follows
Box IV and another one like thet which precedes Box V indicate a "remole
connection". We cut the branch connecting Boxes IV and V, ending each
part of the broken branch with a circle marked by "o which indicates that
Boxes IV and V are connected. Remote connections are useful when a
connected flow chart would be too big for one sheet of paper. The remote
connections used in our flow chart __.(§9'<:}*4- are of the "fixed type".
There are also cases necessltating several possible continuations.

These are called "variable remote connections".

and for M yinvolve modification of

c) Both loops, for N5 5

addresges.

2., 3., & 4, Coding, Assigning Addresses, Card Punching, and
Transcribing for the Computation of S

107

These, for each method, are left to the student as an exercise.

Choosing the method which is most appropriate for a given alternating sum.

For the sum 8 = E (-1)F+ a, Method III of storing subtrahends
=) |

as8 negative numbers is the simplest and the most appropriate. But for
other sums that is not the case always. Take for example the sum

n .
_ k+1 Ve X,
8, = Z (~x)""/(k-1)F = 1 Ty
k=1

no

3

- g +... The formation formula

e

e

!

111

for this sum is §; 4 =8, +w 5, where, u; ; = ui(-x/i),
i
i-1 k-1
w o= (=x)77/(1-1)1, 8, = (-x)""/(k-1)1
- k=1
Thus, Sl =u = 1
S, = 8) +uy (-x/1) = 8y + Uy
S3 =5, + W, (-x/2) = Sp + ug

03]
fl

o =S, * un_l(-x/(p-l)) =8 5 Y.

If we compute for a desired accuracy, that is for ,|Si+l, - ISiJIA;E,
vhe methods of adding separately minuends and subtrahends or of storing
subtrahends as negative numbers are not practical because we do not know
in advance how many terms will be needed. Indeed the storage of terms 1s
- completely unnecessary because each term U
the preceding term vy by (-x/i). A method similar to Method ITI would be

the most appropriate in this case. Programming and coding of thls problem

can be formed by multiplylng

is left as an exercise to the student.

Different problems call for different methods, and 1t would not be
practical to give & general rule as to which method should be used. The
best guide in this matter is a little experience.

Exercises. n
1. Program and code the loop for S = ;§Z::(-l)k'lxzk'g/(2k-2)! with
k=1
aécuracy given by the condition that “Si+1] - ISiJIAEL Use Method II.
(For the purpose of scaling assume that n £ 20; | x| <1).
2. Program and code the loop for Sy, = ;Eiiv (—l)k‘l/k, using all

four methods.

112

Selecting the greatest number from a set of n numbers.

To sort a set of n distinct numbers, 8yy 8oy ooy an, means to ar-
rangs. them or to store them at consecutive ad@resses in decreasing or
increasing magnitude. Assume that-resulting from some machine computations

10
at the addresses Al, A2, ..., A100, and we want to instruct the machine to
sort these numbers, printing them or storing them athl, B2, ..., BlOO in
decreasing magnitude. An outline of instructions for the machine could be:

select the greatest number from the set of one hundred numbers and print it,

we have one hundred distinct numbers, al, By o0y & .O’ stored respectively

or store it at Bl; then select the greatest number from the set of the
remaining ninety-nine numbers and print it, or store it at B2; etc,
Thus instructed, the machlne could perform repeatedly operations of
selectling and storing, or printing the greatest number. For this reason
we shall begin from the program of operations of selecting the greatest
vnumber, which 1s a principal operation of sorting.

Exemple.

To select and print the greatest number from the set of one hundred

distinet positive numbers 8y Bos +ers Bygng stored respéctively at the
addresses Al, A2, ..., A100.

Programming. An outline of a program to select the greatest nuuber
would be as follows: compare 8y and. B, select the.greaﬁer of the two,
rename it amfand store it at some gpecial address, say Bl; then compare &,
with aB, select the greater of these two,and store it again at Bl; then
compare a from the preceding operation with 8y, select the gregter of the
two, and so on until all one hundred numbers are tested. The operation
of comparing a, wilth 8, i=2, 3,4, ..., 100, has to be repeated 99 times,
suggesting a loop. The machine will be instiucted to test the difference
8, = 8yj if a, = 8y = 0, then &, would remaln the greatest of all the tested
numbers and will be‘left at Bl; if, e, - HE.ALCL ‘then ai(being the greater of
the- two) would be promoted to a, and stored at Bl,replacing the former a .

The number stored at any glven time at Bl would be the greatest nuwber of
all the numbers tested up to that time, the a .

113

After the 99th test, &, will be the greatest of all the numbers; am
renamed as By to distinguish it as the greatest of all, will then be
printed. The numbers 81y 8py ceey Bygg are initially stored in the memory,
which implies that each of them in absolute value is less than one.

Flow Chart
T IIT .
o | — II @(ai +8 Bl N\ v . v
E - 12 | 2 ai,.-\.O Yes 2 (99-1)_;0 » Print &y
; i.2 = B2 and Stop
Yes
Al &l XIV

Aj00] 2100

By | 99.2° |

Figure 7

2., 3., and L, Coding, Assigning Addresses, Punching, and Transcribing.

This 1s left to the student as an exercise.

‘Sorting.

Example: To sort and print one hundred posltive, distinct

numbers, 8y aé, ey By stored respectively at the addresses
AL, A2, ..., AL00.

1. Programming. We shall repeat the outline of a program for the
operations of sorting 81y Bpy ceey Bygg! gelect the greatest number from
the set of one hundred and print it; then select the greatest number from
the set of the remaining ninety-nine numbers and print it; etc. We know
how in the first run the machine selected the greatest number from the
initial set of one hundred. We shall consider ﬁow'the second run of

selecting the greatest number from the set of the remainihg ninety-nine.

114

We must bear in mind that after the selection of By all the numbers,
ingluding 8y,8Te still stored in the memory at their initlal addresses,
Al, A2, ..., ALOO, because none of them was replaced by something else.
- In ordqr_ﬁo be able to select the greatest number of the remaining ninety-
niné:;;hﬁ;;; we must first erase B (that 1s,#4e replace 1t by 0) from its
lnitial memory position (aM 18 also stored at Bl which is not the initial
meﬁory position). The trouble is that we do not know where a, wes initially
stored. Thus, we must instruct the machine to find the initial storage of
By to erase it, and after the erasure to direct the second run of operations
which would select and print the greatest number of the remaining ninety-
nine numbers, The course of operations is now obvious; selecting and
printing the greatest number, erasing it from its initisl memory position,
- gelecting and printing'the‘next greatest number, erasing it from its

initial memory position, and so on

To find the initial address of a,, we would instruct the machine thus:

‘ M
compare &, with By if a, - fy 4.0, then 8y 1s not the a, therefore continue
comparing 8, with By a3 with By and so on, until at a certain step some

8y equals By The address of this a, is Ai, which would also be the address
of Byp because a8, is the By Erase e at AL (ordering: oM Ai; see List
of Orders) and direct control to Box I (see Figure 7)‘for the next run of

“operations selecting,aMa

The flow chart for sorting Bys 8oy eesy Bygg will contaln the flow
chart for selecting By from By Bpy wevy &100 with a little change,
nemely, in Box V the operation "Stop" will be erased. For the sake of
compactness the'whole flow chart for selecting ay will be represented by
a single box labeled M.

115

General Flow Chart for Sorting 81s 8o5 seey Binne

VITI
M Stop
A e
VI Select and print Yo 1y X . X
Start —-{1.27 . B3] 1= M 27T 09-1 30 -8, > 0 [—at> A1
TIII III IV V XTIV
i
Bl ey Yes
XIIx 1 ; T
1 \
Reset [A2]
— 1 1o a2 - 141 =1 — B3 [0 - Al

Flowqchart of Box M Selecting and Printing By is in Figure T.

Notes:
a) The operations in the comparison Box IX compare a8y with

By It 8y - 8y £.0 control goes to the substitution Box X,where the

operations replace &8 by a (by modifying the address), and control goes

i+l

back'to Box IX,where a is compared with e The operations in Boxes IX

“i+l _
and X will cycle as long as 8y - 8y is less than zero. When for some ay
the difference 8; = By = O, then control goes to the erasure Box XI,

where the operations erase 8y from the address Al (storing O at Al) and

transfer control to the counter in Box XIT.

b) The operations which modify addresses and the operations
of the counter are usuvally grouped in the same box, but in thls problem
we must have them apart, in Boxes X and XII, because address modlficatlons

, Whereas 1 1n Box

are needed only as long as a,'s remain smaller than a

i M
VI can be replaced by i+l only after the machine found the a; which equals

aM and erased it from Al.

c) The storage Box reminds the coder that the operations
in Box M stored aM at Bl.

116

d) The preliminary coding of Boxes IX, X, XI. (Coding of
Boxes IX, X and XI requires an application of "extract orders", which are
explained below. ‘

e) Before the second, third, fourth, and so on, run of
operations in M)all-the addresses that were modified have to be reget to
their initial values, which is performed in Box XIII. This demands that
A2 be sgtored at say B6'which 18 most conveniently done in the storage Box
of M.

-Extract Orders. In order to code the operations in the erasure Box
XI we shall get acqualnted with the "extract orders", which instruct the
machine to change the address-part of instruction words while they are

gstored in the memory. The opérations of address modification change an
address by moving the instruction word to the arithmetic unit and performing
" on it arithmetic operations. FExtract orders change in a certain way the
address-parts of instruction words without moving them from the memory and
Withoutvperforming arithmetic operations on them.

Iigt of Extract Orders

Orders in this list refer to two instruction words. The first one

. consisting say of the left-order II,vlyand the right-order II,2 is stored
‘at the address Al. The second one consisting say of the left-order X,3

and. fhe right-order X,4 is held in the register Rl., Thus, using sexa-
dec}mal repregentation, the initial contents pf Al is alaéa3aua5a6a7a8a9alo,
and the initial contents of 31 is rlr2r5rur5r6r7r8r9rlo.

Prelim Sexadec. The Contents after the executlon of the order of

No. Symbol Symbol R1(X,3 and X,k4) AL(II,1 and II,2)
1 E A1 90... rlr2r5rhr5r6r7r8r9rlo ala2r5r4r5a6a758a9alo
(unchanged) The address-part of

the left order 1s
replaced by the address
part of the left order -
from (RL1).

117

Prelim Sexadec. The Contents after the execution of the order of

No, Symbol Symbol R1(X,3 and X,k4) A1(T1,1 and II,2)
?
2 EY A1 50... rlr2r5rhr5r6r7r8r9rl0 ala2a5a4a5a6a7r8r9rlo
(unchanged) The address-part of the

right order is replaced
by the address-part of
the right order from
(r1).

3 oR Al 60,,.. 00000 00000 alago 00 a6a7a8a9alo

(Contents of RL erased) The address-part of
the left order is
replaced by 000.

1] S
L oE' A1 7O... 00000 Q0000 alagaﬁahaﬁaéaVO 00

The address-~part of
the right order is
replaced by 000.
Notes:
a) In the case of Order No. 1 we say that the address from X,3
was "extracted" to. II,1. In the case of Order No., 2 we say that the address
from X,4 was extracted to II,2.

b) The extract orders like the transfer orders generally refer
to instruction worde (see this Chapter, Transfer Orders). As we do not
know the addresses of instruction words in preliminary coding we must
refer to the sequence number, which is a symbol for the contents of a
given address. (See this Chapter, Transfer Orders.)

Examples:
1. Given two instruction words, (X,3 and X,4) and (II,1 and IT,2
stored respectively at Al and A2. In preliminary coding the addresses, Al
and A2 are not yet known. To extract the address from X,3 to II,1l.

118

The preliminary coding of the operations which perform this
extractlon is as follows: |

Seq. Tape Order Symbol R1 Memory
1 + X,3 X,3 and X,4
2 E, 11,1 The address part of II,1 1s

replaced by the address-part of X,3.

2., Glven a sequence of orders:

Seq. Symbol R1 Menmory

11,1 + Al (A1)
2 M A2 (A1) —=A2
3 oMB1 0 | | Contents of Bl erased
L U X,1 Transfer control to X,1

To insert orders between II,2 and II,3 that would extract the address
part from II,1 (that is Al) to II,3 (that is to replace the address-part
of IT,3, Bl, by the address part of II,l which is Al). '

Seq. Symbol R1 Memory
II,1 + Al (A1)
& M A2 , (AL) —=12
5 4+ II,1 (1,1 and II,2)={+AL and ﬁ4A2}
L. E II,5 The address-part of

II,5 (that is Bl) is
replaced by the
gddress-part of II,L
(that is by Al).

5 oM [ﬁl}‘// 0 The address-psrt of
11,5 1s no longer BL,
but Al,; therefore the
contents of Al are
erased after the

6 U X,l '~ Transfer control to X,1. execution of II,5.

Notes:
a) We assume here that the orders II,1 and ITI,2 make an order
pair. If we know that the instruction word (II,l and IT,2) 18 stored say
at T5, then the order II,3 would be + T5. Thig we know of course lu the

final coding and then we have to refer to the address.

119

b) To be able to extract the address from II,1 we have to move
the instruction word (II,1 and II,2) to the register R1l, which is performed
by the order II,3.

¢) II,4 replaces the address-part 1n the prder which follows,
that is, in the order II,5. The orders II,4 and IT,5 are stored at
consecutive addresses and will be executed one after another. The order
TI,4 will change the address-part of the order IT,5 before the order II,5
will be executed. The whole routine is stored in the memory before the
machine begins the computations. The orders which precede II,4 and the
orders which follow II,4 are in the memory at the same time.

d) Now, the address-part of II,5 (which initially was Bl) can
be asnything, because the preceding order, II,4, replaces whatever was
there. The address BL, as in the case of address modification, is in
square brackets to mark that it will be subsequently replaced.

e) Normally, the orders IT,4 and II,5 cannot meke an order
pair, meaning that they cannot be in the same instruction word. The order
II,4 replaces the address-part of II,5 in the memory. The order II,4 before
belng executed, wbuld be moved from the memory to the order register R5’
and go would its companion, II,5. Hence the order II,5 cannot be &
companion to the order II;A if it is to be executed immediately after the
order II,4. If the palring of the orders would make II,4 and II,5 an
order palr, we must introduce somewhere a "dummy order" to break the pair.

A dummy order may be any order that does not change the routine. A transfer
order is usﬁally the most convenient for the purpose. For example, ingert-
ing an order U II, 3 (transfer control to II,3) between the order II,1
which is + Al and the order II,3 which is M A2 will not affect the
operation (Al)—»A2,

f) The order II,3 moves to RL the instruction word which we

. represented by either the sequence numbers of its left and right orders,
that is, (IT,1 and II,2), or . the preliminary'symbols of the two
orders, that is, + Al and M A2, In the case of address extraction.
the second alternative is preferable. In this example both representations
are shown in the column for (R1).

120

Preliminary Coding of the Erasure Box XI. We are now able to code
the erasure box XI for the problem of sorting 817 8oy erey Bppne Box IX
ig 8lso included because it 1s needed for reference.

Seq. Tape Order Symbol R1 Memory
IX,1 + [A1] (+A1) 8y =a '

2 | (~) Bl, a, - &y,

3 C XI,1 Transfer control to XI,1 if &, - a, 20
XI,1 + IX,1 (IX,1 and IX,2)={+A1 and (-) B1}

2 E XI,3 The address-part of

XI,3 (which is Al) is
replaced by the
address-part of IX,1l
(that is Al 1s replaced
by Al).

3 oM [Al] Contents of Al are

' erased, because the
order XI,2 replaced Al
by Ai.

Lo ' U XII,1 Transfer control to XITI,L

Note:

The address-part of the order IX,1, "Al", is in brackets to
indicate subsequent modifications, meaning that in the first run it will
Ee~Al, in the second it will be A2; then A3, Ak, ..., Al. The greatest
number By which we want to erase,ls ptored at a certaln Ai, which is
found in Box IX vhen a, - &, &0. This address Al has to be extracted
from IX,1 to XI,3, because the order XI,? erases the contents of the address
specified in its address-part.

2., 3., 4. Coding, Assigning Addregses, Punching and Transcribing.
Thig is left to the student as an exercise.

Alternative Progrsm for Sorting 815 By seey Bynge

In the alternatlve program for sorting &1’ 52, sy &100 the loop
of operations selecting the greatest number By has additional operations
which {track the inltial address of By as well, The alternative program
1s explained in the flow chart.

121

Flow Chart.

ITT
ai—>am Bl
Al =™ T1
3
T No
VI 8 —» Bl IT IV ¥ v
m = Yes -7 . No
SR X F Al > Tl 7 b8y 8y 20 27 1(99-) 20— Print &,
o b o oo
AL ey +l-»1» B2
A Af+1 AL (oo
. . 1
Reset [AZ) .
o oo e B L b s L 0 - mu |+—"T(99_5)20
B5 A2 to A2 l’\“ﬁrﬁ‘g‘!,
virr
Stop
Notes:

a) In the storage Box T wevstore not only the first am,which
is initially al.but also its address, or rather the word which contalns

the address of al.

Box III,which stores the greatest number at that

tine, 8 s stores also 1ts address at Tl, After ninety-nine runs which
cycle either in Boxes II, III, IV, and XI or in Boxes II, IV, and XTI,
the memory position Tl would contain the address of aM, which we shall

call AM.

this alternative has only two loops.
of Boxes II, IIT, IV and IX, and the large loop erases &
the small loop and the Boxes V, VI, VII, IX, X, and I.

b) Compeared With the flrst alternative which had three loops
The smsall loop selects By and consisgts

M)

cycles in the small loop follows one run in the large loop.

122

and contains

After ninety-nine

Preliminary Coding of Boxes I, ITI, and IX.

The preliminary coding of Boxes T,ITI, and IX will explain the
storing of the address of s that is of Al, and the erasure of sa. ..

M
"Seq. Tape Order Symbol R1 , Memory
Il %1% a =8,
2 : M Bl . 8 — Bl
3 : + 1,1 I,1 and I,2; (+Al and M Bl)
L MTL : (I,1 and I,2)-~» T1
5 435 27l(1) =27(2)
_____ 6 oM 2w
IIT,1 -+Q&ﬂA¢) 8y
2 M Bl a, —> Bl
3 4+ ITI,1 (III,1 and IIY,2) = + Ai and M Bl
o I MTL .. (IIL,1 and IIT,2)}—> T1
IX,1 + TL (II1,1 and III,2) = +AM and M Bl

" The addregs-part of
IIT,1 replaced the
addregs-part of IX,3,
that is, AM replaced
Alb

3 ' oM [A1] / ay 1s erased from AM,

‘ the prededing order

IX,2 replaced the

address-part, AL, by AM.

L UX, 1 Transfer control to X,1.

Notes: -
a) The order I,3 moves the instruction word (I,1 and I,2) to
Rl1. The left order, I,1, whose preliminary symbol is +§§§§)contains
the address Al. The order I,4 stores this whole instruction word at Tl.
This instruction word remeins also at its previous address because,as we
know;ﬁha& moving a word from a memory posltion does not erase 1ts contents.
b) The orders III,3 and III,4 perform similar operations on the
instruction word (III,l and III,2), which contains the address Al.

c) The erasure Box IX was explained sufficiently before.
The question, which alternative is more advantageous, should be
angwered by the student in Exercise 3 at the end of this Chapter.
2., 3., y, Coding, Assigning Addresses, Punching and Transcribing.

These are left to the student as an exercise..

Summary. A basic part of nearly every flow chart is an "induction
loop" in which a recursive routine is followed. A general set-up of a

loop can be shown in & diagram as in Figure 8.

I IT
necessary steps desired
™ to begin. \ > operations
(initiation) '

IV IIT ¢
necessary steps e 1s a repetition
to be able to | _ J needed?
repeat -

Figure 8.

l No
Exercisésg:
1. The numbers O, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, are

gtored at the followlng addresses:
0.3 at 010
0.8 at 011
0.0 at 012
0.6 at 013
0.9 at Olh4
0.1 at 015
0.5 at 016
0.2 at 017
0.4 at 018
0.7 at 019

Note: The student will store these numbers himself.
Prepare for machine computation the sorting of the above numbers
and put the problem on the machine (print them out).

124

2, Assume that ORDVAC completes one operation of addition,
subtraction 8toring, moving from the memory, transferring control, or
comparing iIn 0.1 millisecond = 0.0001 of & second.

‘Multiplication or division in 1 millisecond = 0,001 of a second.
Printing one word (teletype) in 2 seconds. ’
Reading one binary IBM card in 1 second.

Find the time it will take ORDVAC to sort the numbers in Exercise l.
3, Find the time it will take ORDVAC t0 SOTt &y 845 «-+) 810,
uslng each alternative. Deduce which alternative is more advantageous.
L. Assume that one hour of computations on ORDVAC costs

$100.00. Find the cost of sorting one hundred numbers by the machine

using each alternative.

. CHAPTER VII
SUBROUTINES

A "routine" is a sequence of words, in machine langusge, designed to
achieve some objective. A "subroutine" can be considered as a routine
which is subordinate to a larger routine, subordinate in the sense that
the obJective of the subroutine is an integral part of the broad objective
of the routine. Objectives of subroutines are usually of a general nature
in that the objective is applicable to a wide class of problems. In most
cases, the objective of a gilven subroutine is the computatlion of a gilven
mathematical function such as VX, sin x, etc. We wish to emphasize that
the following discussion on routines and subroutines is concerned with
sequences of words which are designed for specific purposes, and which
are "frequently used" or "often repeated"'. The distinctlon between
routines and éubroutines is made purely for descriptive purposes. The
paramount purpose of routines and subroutines is to have avallable
sequences of words which have been tested and can be applied in many

situations with a minimum of effort.

Consgider a routine whose objective is:
a. ‘to compute f(x) = x +yT + sin x, O£x%c, A x = ¢/100, and

b, to print x and £(x) in "decimal" form for each argument, x, 1n
the specified range.

In order to obtain a routine that can accomplish this broad objective, it
18 necessary to design sub-sequences of words (in machine language) with
the following particular objectives:

_Sub-sequence 1, whose objective 1s to generate succegsive arguments, x;

" " 2, " " v " compute u =VX ;

" "3 " " " " compute v = sin x ;

" ooy, " " M " form the sum y =X +u + V ;

" " 5, " " "W sonvert x and y to decimal form;
" " 6, " " " " print x and y in decimal form;

" " 7, " " . " " Jetermine when the objective is

attained and to direct control
according to existing plans.

127

We consider the combined sub-sequences as & routine, Sub-sequenceg "2",
"3" and "5" are regarded as subroutines since their objectives are integral
parts of the broad objective and general enough to be applicable to many
other problems. Sub-sequences "2" and "3" are examples of computation
subroutines whereas sub-sequence "5" is an example.of a service subroutine.
We classify sub-sequences "1", "4, "6", and "T" as special sequences
because thelr respective objectives are either unique to this prdblem

or can be constructed with a few words.

Subroutines, such as those for computing the values sin Xx, Vx, etc,
whose obJectives are the computation of a function of a single variable,

are coded assuming the followlng standard conditions:

I. When control is directed to the first order of the gubroutines,

a) the specified argument is stored in El;

b) the "return address" (abbreviated "R.A.") is stored as the right*
address in R2; (the initial orders of the subroutine will move 1t from R2).

II. When control is directed to the "R.A." (return address) the result,
(objective), is stored in RIL.
The "return address" designates to what position control is to be directed
after the subroutine has achieved 1its objective. When the objective
requires more than one argument or produces multiple results, deviations
from the standard conditions must be specified. For example, if the
objective of a glven subroutine produces two results,_(such as sin x and
cos x), then condition "II" above shows the deviation by indicating that

the two results are stored in two specified positions.

To illustrate the design and characteristics of subroutines, we shall

code an example of a subroutlne whose objective 1s to compute, for a given,

n.n

n", the sum of "n" nwbers, a For purposes of simplicity we shall

i.
assume that the following conditions have been satisfied when control is

directed to the first order of the subroutine;

% .
In view of anticipated changes in control cilrcuitry, this condition will

be replaced by a condition which fixes the return address as the next in
sequence with respect to the address of the order which directed control
to the subroutine. ‘

128

1. -the numbers, a,, are respectively stored in consecutive memory
positions, Ai, l.e.,

8y is stored in Al,
8, 1ls stored in A2,
' t
' !
t ?
&n is gtored in An;
2. each a, and each partial.sunn,si =8, + a8, + &

i
«es, n) 18 less than one in absolute value;

5 T ool (1=1,2,3,

- R
3, "n", the nuwber of numbers to be summed, is recorded in Rl, i.e. 2)9(n)

is in R1; .
4. Al, the address of the first number, and R. A. (the return address) are

speclfied In R2 ag follows:

279 m 4 2799 g,

The above word is not only determined by the address of the first

numbef, AL, and the return address, R.A., but in turn identifies

Al and R.A. separately. The scaling of these quantities as shown is

merely to indicate their respective‘positions within the word.
The reader should observe that this subroutine can be considered as a
function of two "variables", nemely Al and "n". In view of this fact we
must deviate from standard conditlons and require that these two "variables"
be specified in some manner. Conditions 3. and 4. above is one means of
specifying these "variables". Note that we have adhered to the standard
condition that the R.A. be specified in the right address of R2.

The flow chart for this subroutine is shown in Figure 1.

129

I :
@ P

S =8 + a,—» Tl

Al — II,2 L T P11 T3
gy = A R.A. — V,2
i = 1,2,3, L) n. 2"39(1) = 2'59(1) _»I{l
2‘59(n) — R1 §,=0 — Tl
019 a1 4 2739 A = R2 v _—
T+ I=if*{L=-n7]
yes
V y .
Sn-—e— Rl

Y

FIGURE 1

Notes on ﬁhe flow chart:

The Box without a number states the standard conditions.

I. Box I is characterized as & set-up box. The orders corresponding to
this box set (insert) addresses, parameters, and initial values which
are necessary for the proper execution of the orders corresponding to
the succeeding boxes. Control is then directed to the first order of
Box II to begln the repetitive sequence. The parameter "n" is stored
in IV,7 because,as the coding will show, this is a convenient place to
store its

II. The orders corresponding to Box II compute the 1th partial sum, 8

by adding the 1th number 8,
then directed to the first order of Box III.

1’
to the previous sum, si-l‘ Control is

III. The orders corresponding to Box III are: first, to determine if the
exlsting sum represents the desired final sum; next, control is
directed accordingly. That is, if the existing sum represents the
desired sum, (1 = n), then control is directed to the first order of
Box V. TIf the existing sum does not represent the desired sum, (i<&n),
then control is dilrected to the first order of Box IV.

150

TV. The orders corregponding to Box IV (substitution box) are: first,
to generate the address of the "next"number to be added to the
existing sum, (i.e., when the orders of Box II are
being repeated); next, to record the number of terms,

(i}, that will have been summed when the comparison
in Box IIIl is made. Control is then directed to the first
order of Box II to repeat the sequence,
V. The orders corresponding to Bex V are first to store the desired sum
in R1l, and then to direct control to the specified return address.

The complete code for this example, shown in Figure 2 has arbitrarily
been agsigned memory positions 100 through 10F., This subroutine can be
tested, recorded* on cards, and made available to anyone who desires to
use it. All that lg required of the user is that the Tour specified
conditions be satisfied, and (5.), that the subroutine be stored in
memory positions 100 through 10F. Condition (5.) does not appear too
festrictive, egpeclally since the user has already gained two advantages:

‘a., the amount of coding necessary to achieve his obJjective 1s

decreased gince it only requires a few words to satisfy the
requirements of this subroutine,

b. since the amount of coding has been decreased, and since the

subroutine has been tested, there is less chance for mlstakes.

If a routlne requires the use of two or more subroutines which have
been coded for a common area of the memory, then it becomes necessary to
move all except one of the subroutines from the common area to new sreas
of the memory. Clearly, no two subroutines can occupy the same memory
positions at any given time. TIf the moving of subroutines to new areas
ig to be done manually by recodlng each subroutine for each new area,
then most of the advantages gained will have been sacrificed. Even though
recoding a subroutine for a new area ls Just a matter of reassignment of’
addresses, manual recoding for new areas is impractical since there are

too many possible areas. Hence, condition (5) is too restrictive. To

* WOrﬂs can be recorded on meny media such as coding sheets, paper
tape, magnetic tape, paper cards, magnetlc drums, etc.

131

m;l::l ARMT . . SENDERN MROVING SROUND. aD FIGURE 2- ORDVAC Problem
» .) . i Sheet
Seq. [(Code { Word Order ' Ry Rg Mem. Contents Ord. Contents Description
2% |27 |27 PRr.a.
L1 | 5010K |00 |E'IV,7 _ T w7 |uml 273%) || setsn
2flxmo | lasns 12781 (273 4 ‘
"3 50105‘ 101 E'V,2 . i V.2 + Tl 18] rR.A] sets R. A,
4 [08014" — 20 2% (271 % 4 273% ' .
5 1’50104 >mz E'I,2 : I, 2 + Tl (+)ﬂﬂ sets Al
6 | K410 + K2 2739
7 || 5010N | |05 E'Kl kK1 pi1 273%) sets i = 1
8 |l 3010F oM T1 T1 0 SetsS_ =0
I, 1 | K410F | |0, +T1 Sy
2 || N460O () Lad - llss
3 | 1010F 105 M TL . . Tl 5,
< IO, 1 |[K410W | 4K 1 um o 273%)
] o -39 . :
- 2 |l 0410K | 105 (-)Iv,7 2 (i -in)
AN o . : .] .
o 3 20105) CcVv,1 i=n?
v, 1 ||K410 |4 +K2 273%
"2 ling104 | - (¥ 1,2 +T1 A+ Al
3 |lior04 - M o2 S I, 2 1 (ofa)
104 1 108 , Loiry]
4 |lKal0J + K2 2737 i+ 1—>i
5 ||Naton |00 |(nx1 g 27394
6 |/1010N M K1 ' ' k1 o1 273%
7 |IN61o | op UI;.!
- lioooo0 [273%m)
V.1 {[Kal0F | o 4T1 S, Sp,—> Rl
2 |Inoooo ulr.a] -
x o |iNotos | UII3.91 _
—_— . 1100000 - [2 (i)]
K2 00000 107 Constant
|| 00001 2739
T1 |[00000 },4r {Temporary
00000

eliminate this restriction, we code subroutines using "relative addresses"
s0 that recoding any subroutine for any glven area of the memory can be
automatically effected by an Input Routine. An Input Routine will be
discussed in the next chapter.

A "relative address" is an address in or of an order, whose sexa-
decimal representation is a function of (related to) the area of the
memory in which the ordex is stored. Addresses of instruction words are
invariably relative.

In the example of the subroutine we coded for memory positions 100
through 10F, the sexadecimel representation of K1 was 1ON. If the sub-
routine were coded for memory positions 200 through 20F, the sexadecimal
representation of X1 would be 20N. Similarly, the address of orders II,1
and II,2 was 104, but if the subroutine were coded for memory positions
beginning at 300, the address of orders II,Ll and IT,2 would be 30k, Thus,
the address assigned to XK1 and the address asslgned to the order palr,
IT,1 and II,2 are examples of relative addresses since the addresses
assigned are dependent upon the area of the memory in which the sub-
routine is stored. Flgure % shows the final code for the subroutine‘as
coded for two different areas of the memory, one beginning at 100, the
other beginning at 200,

153

Beginning at 100, SEQ. Beginning at 200,

100 501.0K

H
-
I—-l

5020K.

KN101 2 KN201 200

101 S601h : 2002k 201
102 2h1og 2 ahoos 202
103 30108 : 3 000F 203
10k ¥i00 g Hi000 204
105 I%igigg 11, i 1%3285 205
- B : L
w B z e
109 Toron : Loson 209
10 00000 ! 50006 20K
108 No000 " Noo00 208
108 30000 “ 50000 20m
103 50000 “ 00001 203
107 00000 L 200 20r

FIGURE 3

Observe. that not all of the addresses are dependent upon the area of

the memory in which the subroutine 1s stored.

To reduce the number of storage positions that are required when two
or more subroutines are belng used by a glven routine, a specific area
of the memory has been reserved for "temporary" positions and "frequently"
used congtants. These temporary positions and constants are used by all

gsubroutines or routines as required.

If a subroutine has t0 be repeated its instruction words must be
saved and remain stored in the same ares of the memory after each execution

of a subroutine. Memory positions which do not contain instruction words

134

and are used by a subroutine may have to be saved or may not. Temporary
memory posltions are those positlons which are used only when the orders
of a subroutine are executed and are not needed afterwards. In the
example, T1 1ig such‘a position since ite contents are of no need after the
subroutine is executed. The proper execution of the subroutine is inde-
pendent of the contents of T1 when control 1s directed to the first order
of the subroutine. The position Tl can be used temporarily by any other
subroutine. The address Tl (not the contents) is fixed because 1t is
assigned in the reserved ares of the memory and the address remains fixed
- regardless of the area of the»membry in which a subroutine using T1 is
atored.

Hence, we call Tl a "fixed" address, as distinguished from & "relative"
address. The area reserved for temporary positions is 000 through 009 and

010 through O3L. i

Some frequently used constants are: 0;

o1, o-19

3 3 etc, The following
is a list of constants with the corresponding "fixed" memory addresses

vwherein they are stored.

ZEero,, 0000000000, in OOK
dummy key word, 8000000000, in 008
217 2“39, 0000100001, in OON
2'59, _ 0000000001, in O0F
oL 4000000000, in OOF
1- 2“59, 7LLIIIILLL, in OOL.

The Input Routlne stores these constants 1n the deslgnated positions.
They are available for use by all subroutines and routines. The addresses
of these constents are included in the class of fixed addresges.

In shift orders, instead of an address we write the amount of shift
(see shift orders, Chapter IV). The amount of shift in shift orders is
independent of the area in the‘memory in which the order ls stored,
Consequently, the amount of shift in shift orders must be regarded as a
fixed address. | | M

135

To summarize, the addresses in and of the orders of subroutines can
be divided into two classes:

a, relstive addresses

b. fixed addresses.
This concept of relative and fixed addresses 1s not restricted to sub-

routines alone, it can be applied to routines as well.

To facilitate the use of subroutines, each of which can be auto-
matically read in and recoded (by the Input Routine) for any area of the
memory, the following procedure is employed:

I. All subroutines are coded for the area of the memory beginning at 000
and extending in sequence through as many positlons as are necessary.
Temporary positions are assigned fixed addresses in the regserved area,
and the constants which are stored in the "fixed" positions are used
when applicable.

II. Instead of representing each order by five sexadecimal characters, each
order is represented by six sexadecimal characters as follows:

X X XX) XK

X1X2 are the two sexadecimal characters representing the order type;

X5XMX5X6 represent a four sexgdecimalvcharacter address called "a
pseudo address"; _

XMX5X6 represents the sexadecimal address corresponding to the area of
the memory begilnning at 000;

%z indicates whether XAX5X6 is relative or fixed;

X5 = 0 implies that X4X5X6 is fixed;

X5 =l implies that XRX5X6 is relative.

Hence, the range of relative addresses is L4000 through 4IIL.

Thus, what was a ten sexadecimal character word is now represented by

a twelve sexadecimal character word. For example, instead of writing
the two orders I,3 and I,h as 50005 0801k, we write these orders

as 504008 08001k, where the "LU" in the left order indicates that address
008" is relative and the "O" following the "8" in the right order
indicates that "014" is fixed. (The subroutine example has been recoded
to conform to the above procedure. The complete coding is shown in

Figure 4.) 136

ORDVAC Problem

st FIGURE 4. _
- i Sheet
Seq. 1Code | Word Order "Ry : Ry Meni. Contents ord. Contents Description
1273% | 2% 27 ¥%Ra
i . I T
L 1 |[50400K |450q ELIV.T 7 Ul (n) || setsn
= -19 -
2 HKN4CO1 : A+ 1,3 ii2 t'ari2 9.4)
3 504008 l4gy, E V.2 ' v,z kTi jufR.a]l sets R.A.
- - -39)
4 logcora —»20 27191 | 274, 270
5 |b0400s lao0, EUIL 2 . m2 [+ 71 #fal] |i sets a1
6 |K40007 + K2 , 2739
7 [BO40ON {400, EK Kl g1 2739] sets i=1
3 1360000 oM T1 .] Tl . sets Sg = 0
I, 1 [K40000 J40q4 + T1 Si-1
2 [aoocoo | 4y [24] S5
31100000 |g00s MTI i j T1 S
! -30 . :
11, 1 |K4400N + Kl vm1 2%
. . -39 . 1
- 2 1D4400K | 50¢) IV, 7 273% 4 n)
;*—;‘ - 3 1204008 C V.1 . i=n?
== S v, 1 |K40003 404, + K2 273% i
2 |N44004 ($ 1,2 + T {(#)Ag) f
3 11104004 MI,2 : : L2 |+T1 Koy
4008 i+l
-39 -
4 lka000J + K2 273¢ i i+ 1— i
5 |IN440ON lg 00 [4) KI voi 1273%) ; P
6 |10400N MKl K1 vy 273 H
7 |N04004 g0 PILI
- lioooooo | - (-39}
V, 1 [K40000 |400¢ + Tl Sy : Sp=3 Rl
2 |inooooo vir.a] ' ! ' i
1
g [NO2004 Yoo |UILY ‘
—_— 000000 f2-393] ! ;
Tl &)00 TtAuPu:nry Gl : - . —
Constant ; ;
Kz o - v GOJ ‘:39' o = o H é
2727(1) ‘ : ! ;

Y!YYYVYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYVYYYYYYYYYYYYYYYYYY*YYYYYYYYYVYYYYYYYYYYYYYY

xxxxxﬂaﬁxx{xxxxxxxxxxxxxxxxxxx!xxxx@xxxxxﬁxxxxxxExxxxxExxxxxxxxxxxﬁxxxx%xxxxxxXx

ogopgoooioRAooBoRTERORB00B0gE 00 0BEB0 0RO 00 TIBE 0 03B 00 BAEE 0 BELTB0 0o [Z0j00 000000
01230456 7]8 81011]1213 14 15[16 17 18 19[20 26 22 2324 25 26 27128 29030 31]32.3 11 35(36 37 36 300 1 2 3[4 5 6 7|8 8fi0 1112 13 14 1516 17 18 1af20 20 22 2324 25 26 2728 28|30 31|32 33 34 353 37 38 29
IRRRHRREHENY IR RRRREY R RRI R RIERE RN RRRHRRRIR R RERIRRE IRRIRRRIRIIRNERRIREE

22222@52222222222!222222222222§22222222222222222522222222222222222@2222222222222
33E3333333333333333333333333333333333333
448440 44ajadaaBa|asaalaaafieaBaaDaaaaaaafafaaaasasaallaaasaadaalasaaaaBiajaaaaaaaa44d
HSSSQSEQSSSSES?SS55555555555555555?5@5555ﬂ55?5555555555555555555?555555@55?55555
68666666686656666666666666666366666B6BB66B66866566666666666666566666666668666866

TT110 111 I I i1 I ap a1 ap i g1 a1t i g 11l

8888888888888888888ﬁ88888888888888888888888888838888888888888888888888888888888§
§
20

9998/9999/99199895991999 999999Bﬁﬂ99
VZ3 4T 61 10 ioh il s el e is 21 22 23 24125 26 27 26129 3031 32031 34 35 36137 38 39 aala1 42 43 44iss 46 47 aslao solsy 52153 54 55 s6lst 58 59 coler 62 63 cales o6 67 66ls ol v2ra 4 75 76117 18 79 W0

vvvvvvvvvvvvgv1¥1YYVYVYY1yrvvvvvvvrvvvvvvavavvvvvvyvvvvvvavavvvvvvvvivivvvvv

Bx o xx xBooodx BE xpocxoxpoxoox o oo BB x o xeBoxpoox BZxoxoxpxoooox x x@xoooc B pooxoooex xoxx x

00BE 0o ojoRh oo op o 0FEL 000000 o0 BEOERCo o ANER0 B0 Bo0 000000

12 13 14 15{16 17 18 19J20 21 22 23|24 25 26 27|28 29130 313233 34 35130 37 38 39} 0 1 2 3 10 14{12 13 14 15{16 17 18 19020 21 22 23]24 25 26 27|28 20'30 31]32 33 34 35{36 37 38 39

%0@&*
7|8 9
1 IRRRIE:RRINEEL:ERRIE RIERE IR R IRIIRRRIRRRIBARIERRIEI RHEERIIRER

T

— o A
- = k3
-_—a D
- N
— =3
—— D
par——
o e

:azzzzaﬁzzzzzzzzzzzzzzz22322222222222222222222222222222@2222222222222&2222

33
4palsa4aBaladaRaaaaanaanieanaapiabledaaanDaleassassjaaTaaBasaaaa4Baaaa4844/04444804044
5555?555555555?555&55555?555555555?535555355?55@@55555?555555555?5@5555555?55555
6666|666 6(66]56]6666/6666]6666(6666]56/66]6666]6666/6666/6666|66/666666/6666/6666/666656(56]56666666
AR LR R R R AR R AR R AR AR R N R R R R AR R R R R R AR AR AR R AR RN IR RRRIINRN]

.3888B8888888888888888888888888B8888838888888888888888883888888888888888888888888

99(99/3999/9999/9999{9999199{99/9099/9999/9999/999999(98,999919899/9999999990193/999950893
9 1

1olie 2013 1415 16117 18 18 20121 22 23 24125 26 27 28129 3031 32133 34 35 36137 38 39 d0d41 42 43 44145 46 47 4849 551 52153 54 65 56157 58 59 GOIGH 62 63 64.65 66 67 HBICY 70171 72173 74 75 76L77 78 79 AU
: ORDVAC .

VYYYVYYYYYYYYYYf

EXXffX'

OROEAONDARME000000000000/0000/00000000/0000[00000000/00j00[00000000jc000000000j0000000000
0123456 108 91010121314 150161718 1920 21 22 23024 25 26 27(28 29f30 1j3z 33 34 3536 37 38 39f0 1 2 3|4 5 6 7[8 910 11|12 13 14 1516 17 18 13§20 21 22 2324 25 26 2728 28f30 3132 33 34 3536 37 38 3
IR R RN R R RN R R R R R AR R AR R R AR R AR R R R R R ERIRI BB R

22220222222)12212222(2222{222202222022)2212222(2222{22222222(122422(2222(2222{2222(2222|22(2212222(2222
33{}3333333333333333333'
44@44544444444}444
5555?555555555?555555555?555555555?555555555%555555555?555555555?555555555255555
66666666/66|66/6666/6666/6666/666666/66/6666/6666|6666/6666/66{66/66666666(566666566656/6666666666
1A T I I I I I I g I I rr g n g i i 11111111
888888888888888888888838838&8888888868

99
9

: 516117 18 19 20121 22 23 24125 26 27 28129 20131 32133 34 35 36137 30 39 40l41 42 43 44145 46 47 48lag 50
1358 ORDVAC

[T
Seo

999919999(9999/9999/99199999999489
19 80

53 54 55 56157 58 59 6085t 62 63 64165 66 67 68169 20171 72173 T4 75 76177 18

~
o

=

Figure 5
138

IIT. The set of words corresponding to this subroutine are recorded on

cards using the pseudo address representation. The cards, shown in
Figure 5, will be discussed in the next chapter.

The sbove procedure permlts the Input Routine to recode any given

gubroutine for any "nevw" area of the memory by simply adding to each

relative address the "new" address (specified by a key-word) of the

first order of the subroutine.

For reference purposes, the followlng items are recorded and filed

for each subroutine:

(1)
(2)
(3)
(k)

(5)
(6)
(7)

(8)
(9)

A stetement of the objective of the subroutine.

A list of the equations or method employed;

The lisgt of condltlons to be satisfied;

8. +the number of storage positions that the subroutine requires;
b. the amount of machine time requlred to achieve the objectlve;

¢. the degree of accuracy to which the objective is attained,

when applicable;

A clear statement of special and/or unusual conditions;

A flow chart;

The detalled coding including a 1list of:

a. numerical constants used and corresponding addresses of these
constants ;

b. the addresses of temporary posltions that are used.

A test to insure actual machine operation.

Two decks of cards, one is pseudo address form, (figure 5)

the other in binary form. The binary form will be discussed

in the next chapter.

Tllustrations of items (1.), (2), (3), and (6) were given in the

example.

With regard to 1tem (L), o

a. thirteen memory posiltions are required; this number does
not include the number of temporary positions or constants
from the fixed area that are used;

b. +the approximate machine time requlred to achleve the obJjective
is computed by dividing the approximate number of orders to

139

be executed by the rate at which orders are exeéuted. To
determine the number of orders to be executed, an inspection
of the flow chart indicates that:

the orders corresponding to Box I will be executed once;

. the orders corresponding to Boxes II and III will be executed n times;
. the orders corresponding to Box IV will be executed n-1 times;

F= OO R

. the orders corresponding to Box V will be executed once.
The number of orders corresponding to each box is:
Box I. 8 orders,
Box ITI. 3 orders,
Box IITI. 3 orders,
Box IV. T orders,
Box V. eee. 2 orders,
Therefore, the total number of orders that are necessary to achieve the
objective 1is : _
1(8) + n(3) + n(3) + (n-1)(7) + 1(2) = 13n + 3 orders. Since the rate at
which orders are executed is approximately 10,000 per second, the approxi-
mate machine time required is
1>n + 3
10,000
Not all orders are executed at the 10,000 per sec. rate; orders such as

seconds, which is approximately 1.%n milleseconds.

multiplication and division are executed at approximately one tenth of
this rate. Consequently, in computing the number of orders corresponding‘
to any given box, order such as multiplicatioﬁ and division are weighted
accordingly. A table of time estimates for various classes or orders is

- glven in the Appendix (see page 246).

c. The degree of accuracy to which an objective (function) is
obtained depends upon:
1. the numerical method that is used,
2. the error inherent in an argument (or arguments),‘
5. the amount of "round off" error generated in the procgss.l

1. BRL Report 816, "On the Study of Computational Errors." S. Gorn

140

Generally, the numerical methods used are approximating methods. For
example, one can approximate the gin x by the well known infinite series
expansion. Since only a finite number of the infinite number of terms are
used, the method ylelds an approximation to this funection. In order to
compute the general term of such a series, multiplication and/or division
are necessgary. The machine operatlons of multiplication and division are
not exact operations since a finite number of bits are used to represent
& product or quotlent. The machine operations "round-off" the products
and quotients such that each product can be in error by as much as s half
unit in the least significant bit, and each quotient can be in error by
as much as a whole unit in the least signifilicant bit. Hence, the "round-
off error" is a function of the number of the multiplications and divisions
that the numerical method necessitates. In many cases the computation of
the maximum value of the total error (the comblned 1., 2., and 3. above)
is more complex than the numerical method. itself. In such cases, experi-~
- mental, probabilistic or statistical bounds for the errors are given..
Egtimates of the errors are beyond the scope of this text; it suffices to
say that they do exist and error studies are being pursued extensively
since the advent of high-speed digital computers. In specilal cases,
gpeclal routines can be desilgned to compute approximate errorsg, In our
example an exact method was used involving exact operations; hence, if

all al are exact, the sum is exact.

The ldeal subroutine would be that one which necessitates a minimum
number of steorage positions, a minimum amount of machine time, and
maximlzes the accuracy. Unfortunately, these 1deal characteristics are
Incompatible in that one can lncrease accﬁracy by increasing time and
the number of storage positions; similarly, one can decrease time by
appropriate sacrifices 1n storage and accuracy. In some cases, 1t 1s
practical to code a glven subroutine to idealize one of the characteristics.
For example, Figure 6 shows an alternative flow chart and code of a
subroutine for obtaining the sum of n numbers. This code uses only nine

words as compared to thirteen in the previous ekample (see page 137),

2. BRL Report 893, "Automatic Error Control", S. Gorn, R. Moore.

141

With regard to item (5.), it should be stated that for our example,
the subroutine does not include a check to verify that the assumptions
have been fulfilled. For example, if the sbsolute value of any partial
sum exceeds unity, the subroutine does not detect this fact and hence

will yield an erroneous result.

With regard to item (7.),
a. . one constant was used, namely, 2"39(1) which 1s stored in 00J.

b. one temporary position was used, namely T1 = 000.

Illustrations of items (8.) and (9.) will be given in the next chapter.
Exerclse. Code a subroutine whose objective is to compute the sum,
Sn = P19y + Pody + p3q3 +oaees + P A
Assume that:
a. each p,q, and partial sum is less than one in absolute value;
b. p's and q's are stored respectively in binary form in
consecutive positions, Pi and Qi, i.e.
Py is in Pi, q is in Ql;

p, is in P2, 9% is in Q2;

tes e s e] CR RO B

H 1 L 1]

s ve e) s

Py is in Pn, a4, is in Qn.

142

-
Enter Al —> TII,2

]
I |]
[#5]
P
1
=
+
o
Laned
=
l_l

R.A.—> V,2
(A1) = a, An+l —— Bl
Y
g =0-—-3>T1
i = 1’23004110 uO i + l_‘*i
(L) =277 a1 1
(R2) = 2™ pni1427%7 R.a, 8y = 5: \
j=1
i - (n+l)> 07
yes
\ y
Sn —> R1L
Bxit to
R.A.
Order Prelin.
geq. Code Address Order Description
I, 1 4000 B II,2 Al — II,2
5 A+1,5 29 ani + 277 R, A.—>RL
% 4007 Y V,2 R.E. —3 V,2
h T Bl An+l —» Bl
5 4002 oM T1 S, = 0 — Tl
TI,1 + TL1 Si'_l—-—e. Rl
2 4007 (+) [A1] S, —> RI
3 M Tl 5,—s T1
I11,1 400k + B2 2“19(1) + 2"39(1) —>R1l
2. (+) 11,2 Al+l—> RL i+ 1—1
3 005 T IL,2 M+ — 11,2
v, 1 (-) BL (1) - (n+l) —>» R1
2 4006 cv, 1 (L) - (ntl) =0 2
3 Uy IT,1 transfer back to II,Ll
v, 1 4007 + T1 8p—> R1
2 U’[h;A] transfer to R.A.
BL 4000 (+) An+l this word 1s used for
M TL comparison only v
B2 000N 2"19(1)'+ 2'59(1) ‘This is a constent in the
regerved area
TL 0000 8y this 1s & temporary position in the
regerved aresa.
FIGURE 6

Alternate ¥low Chart and Code of & subroutine to obtain the sum of "n" numbers.
143

aYYV

Wi KX

W30g0g

01213
WSR]!
W72222
Wo33if

W44

‘WIBE 555

}wusgg 666
WITE 717

3333(33333333333(F3 0333333333333/
44444440444 04044/484404440400a002020
A

5555 5(55/5555(5855/5555/55555 55555553

CHAPTER VIII
Transcriber Routine and Input Routine ‘

The nature of the Ordvac card input operation 1s such that words
represented on card in a form convenlent for a coder are not of the
form convenient for the card input coperation. Words represented in a
form convenient for the card input operation are said to be in "binary
form". 1In this form of representation twenty-four words can be represented
on & standard IBM card. The arrangement. on the card of the twenty-four
words in binary form is shown in Figure 1. We shall repeat the explanation
of the word forms and thelr arrangement on IBM dards, which were giveﬁ in

Chapter ITI.

! ! o

. \ N M
YOV VY OOY Y B Y B By Yy Y Y VY v v vpvxﬁ;] 1Mv;;ijrrvavvrvvvvvwvvvvvvﬂ
xxxxxxxxxxxxﬁxmxﬁx%xggxxxxxxxxxxxxxgxux“xxxxxxxxmxxx@xﬁwaxxhxxxxxxxxxxﬁxﬁxxwz
i .
0000000,00‘0000@00@0500@0000ﬁUUﬂﬂO“‘"O“ﬂﬁgﬂ{j’UU(lﬂﬂﬂ0'00000 1E0 61008 ZOUDUOBOO;DMOOUHOW‘&
4 5 6 708 9a1a|r2 3 1415016 17 18 19120 21 27 23124 75 26 2728 29§30 31)32 33 34 3536 37 W IR0 1 2 1\4 §5 6 7(8 9010 1112 43 14 15116 17 18 19820 21 22 23]24 25 26 22128 28]30 31132 33 34 35[36 37 38 30
AR R AR AR AR R R R R N R AR AR RIR R RERIRRRARANE ARRRT NIRRT AN
zgzzzzzzzzzz@zgzzzazzﬁzz22222222E2§&§2ﬁzzgzz22222222ﬁ37g;3222ﬁ222222p2222@22we

-
e

e

a | i
444%4m44ﬁ44444ﬁ |
5 c 0 ! G j H
l
|
|

F .
955 5[5 5555555555555&15’?555 55555555i55555555WI4

o
e
2]

. i ‘ |
556656555GﬁEGﬁﬁ@ﬁﬁsﬁGﬁH56ﬁ5ﬁBﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁbbbhuﬁlﬁﬁﬁBEBGGGBGGiSﬁGGﬁGhGWI6]

I - ;
77777777777777@777777777777777777773777777777777777|I7’”777!5777777/15/777777IWI8

|
; : i v : : 1 ;
W|9[‘188888ER'BH88888888“‘]"‘“88888888?8888888888BHjﬁESfﬁBKH:Bubﬂﬂabf"ﬁ-,ﬁ-fb_ﬂﬁﬂﬂﬁﬁﬁﬂiﬁﬂﬁ88888.8088W2C

W.;.I32’)‘J“‘Uﬂ‘l‘)‘!qJI‘IQ&IQV?‘!’“'B‘I‘AQJ9‘J99‘19959999"]9§l94’1999&193‘H)‘J‘}J‘J”“‘l

soaoals 6 g duaza |5 - u n 8 0lor 20 23 2007s 6 2v 7aios mabar 1re 3e 45 360r 0 T 40 4T A4 as 1T dslan sok

LoShead ab LW OIS 62 o ity B G b 7040 7278 DY 15T TN e D

Wy B 3GE HC

Binary Card Form
FIGURE 1

This card has twelve horizontal rows each labeled respectively
across the entire row as "Y', "X", "o", "1", "2",, "9", and elghty
vertical columns each labeled respectively at the bottom of the card as
g, ety "zt ..., "80". Since there are eighty columns asgociated
with any glven row, elghty bits can be recorded in any glven row. The
small rectangular area defined by the intersection of a given row and

column is called a "punching position". Punching positions 1 through 40

145

m3alsmaaaali 333 amEIa3aayaa333a3nsaashhsawio
padalaaaalliTaaleaaalaanaaadaas w2

99999999990090l09906% 40w

of any given row represent respectively the forty bits assoclated with one
word, punching positions 41 through 80 represent correspondingly the forty
bits assoclated with another word. A perforation (punch) in a punching
position represents a binary "1", a non-punch represents a binary "0".
Hence, in any given row we represent two words. Since the card input
operation "reads" one complete row at a time, the ordering of the words
alternates from the left (columns 1 through 40) to the right (columns 4l
through 80) words of the card. For descriptive purposes we have labeled
(in the extreme left and right margins) the words of the card in Figure 1.
as W1, W2, W3,, W22. For Example, the word labeled Wi represents the
forty bit word
0101000000 0000001100 0011000000 0000000000,
In sexadecimal form this word can be writtem as
5000N30000.
The manual preparation of words expressed in binary form is cumbersome;
similarly, manually operated equipment is not adapted for recording woids
expressed in binary form. Hence the necessity for the two forms of
representation:
1. Binary form for machine convenience
2. BSexadecimal (or decimal) form for coders' convenience.
Decimal form is here grouped with the sexadecimal form; the distinction

beﬁween these two forms will be discussed 1in the next section.

The arrangement of words on a card in sexadecimal form is shown
in Figure 2. . 8ince a pseudo address is used to distinguish between
relative and fixed addresses, words in sexadecimal form are represented
by twelve sexadecimal characters as was explalned in the preceding chapter.
we use twelve successive columns to represent the twelve sexadecimal
characters of a giveﬁ word. The maximum number of words per card.in this
form is six. Columns 73 through 80 are unused. Sexadecimal characters
less than "K" are represented by single punches in the corresponding rowvs,
i.e. a sexadecimal "1" is represented by a punch in row "1" of a glven
column, a sexadecimal "2" is represented by a punch in thé "2" row of a -
given column, etc. Sexadecimal characters greater than "9" are represented
by double punches in the same column, that is, "K" 1s represented by punches

146

—_ R
—_ -
_—~
—~ o« BT

YYYypyyy

NEEE SN

== =
_-
=

=

220220222
33)33}3333];

(5]
Ll
[223
«
o

YYYYRYY

44144144

[
<
(=2
o
o m

(23

§

Yyyy
XX XX
00

01 g2 13 1415
nrit
2222

3333

559

1111
18888

2022 23 24

Yyyypyyy YY Yy
KX XX K XX

BEl 035
9
!

XXX

0l o

20 2122 2%

T

io 1141213 1415
gt
g 202 202012 22|2 22212
33333 3333

i 44

Galdaafad
B
15 515 585 5 5 5;5

e

555

[
oot

6GEGIHGEE6

(=2}

G666

IR IR 1111

Balgalsess 88688

5919919999
g 1ot 12f13 1495 1817 181
ORDVAC

99899

20121 22 23 24):5 26 21 28

N

YvYyy

FXAXP X AKX X X XX

000
URT) ERERVRT

89
tippip it

0000

o 21227
RN
22122p22220222202222
3333}3333 3333
444444444
555555555
665 6[5666 666G
(RITR IRRRIYRRRIRRE:

R L] 888

3919919998
9

91601 12413 141516

i 21 22 23 24)2
ORDVAC

00 0

202122 23

444 144

5666{6666

9919999

75 26 21 28

G

4
C
5 5

= €

262

Y Yyy

XXX

4 25 26 27

RIIREE!

28 2913

2222
3333

11171
8888

Y YYY
XXX
0fj 0
24 25 26 27

EARE!
22212

7010
28 290
(RI1
221
3333

14514

3313
47514
56§ 5{5 5{5
G666
1111

6888

06060
b 25 26 1
ARE
2222222
3333333
444
5 5|5 5|5
6666666
1111

8068888

9 9|9
72129 30

=2

29 22131 3

We

Y VY Y
xR X
ofiEfo
231

11

b

31

YYYy
XX XX
0630

28 29

i

4 414

§8

30 41

31 32

XXX X

RIEER!

D

5555569

nirii

5499991999

2133 34 35 36§37 38 39

3

1 i

6 6|6 666

32133 34 35 3v)37 38 3

D

yYYy

32 3334 35

HUgtrr gy

22212

3333

6666{6666

8888

919 9

19 50051 52

YYvYy YYYY

B oxy
of]

[UA]

¥ K K B

— o Eh
— - o
— @ =
— =&

34 JJ

—_a o
— o BT

20222 2f;
31339 3;
Hlaaas

D
515588

——
=5

[
=31

nri1
gigage

YyYyy YYYY

XX XX
gogoopooa

32333405

[HEEE!

XX XX
00
['R}}
2022220
313333
44444
55555
6/6666J6660
M1

8186888 88

33 34 35 36 50451 52

W5

Txxhex T x

441444

F

5555 6

Wi

50191 52153 54 §5 56

F

9919999

53 54 65 56

YYvy

“ooln
niius
111t
2222

3333

6666
1111
8888

9999

53 54 55 55157

yyYyvy

XXX

RofE
12131415

1111

lﬁakmﬂﬂﬁ

2222
3333
444
) F

55/55%5
6666

&=
23

@

YYYY|Y
XK XX
00000
1213 141§
111
222202
3333
44444
5555
6666
1711
8888

o0

425 26 211

1111

@
<
=
=
@
2
&
o
8
o
o
a

2222
3333
1414
5505
6666
1717
8888
R i
Yvyvyy
XXX K
0000
o 2525 21
ERR
22222
31333
4444
5555
6666
1717
8588
99091

65 66 67 66169 70

K TN L)

4414 4

7% T2f3 14

YYVYYPYYY[YYYY

Teoxx X xxx

“ojooooppooo
avh 33 34 35(3 3 38 0
Tiprige

222222122212
33333333383

44444414444

1 H
55555558

666666666
TH1111111

§888 81508886888
qggg WSSBSQQSB
71 72403 14 7 Ib‘ll 76 79 A0
wi2 ‘
Yryyporryey vy
o @axox o xpoxkxlenxx
MuofEmrioooo0000
23(24 25 26 27|28 19 31§32 43 34 35[36 37 30 39
1111 HIBERRHERR

2222202220
131333303333

444444414

H
55[5665/5359
GEG666ELEG
Tmprrgand
§0/68888888

{
GU77 78 79 A

4

;r.e

YYYYRNYYYPYYYY
XX XXX XXX XXX
pupooooood
30 31 b2 13 34 35(36 37 38 39
1Rl RRRIIERE
22122222222

33333333

44444

en T &~

in the "X" and "2" rows of a column, "S" is represented by punches in
the "0" and "2" rows of a column, "N" is represented by punches in the
"X" and "5" rows of a column, "J" is represented by punches in the "X"
and "1" rows of a column, "F" is represented by punches in the "Y" and
"6" rows of a column, "L" is represented by punches in the "X" and "3"
rows of a colum. (In the process of manually preparing cards, each
double punch can be produced by pressing a single key of an alphabetical
keyboard.) Again for descriptive purposes we have labeled (in the upper
margin) the words of the cards of Figure 2 as W1, W2, W3, etec. For
example, the word labeled W4, (columns 37 through L8), represents the
twelve sexadecimal character word '
504C0N 300000.
The cards shown in Figure 2 represents the words of the subroutine

example dlscussed in the preceding chaptler.

Although the Transcriber Routine and Input Routine are two distinet
routines; they are related and will be discussed as to their particular
objectives and their relation to each other. Hereafter we will refer Lo
the Transcriber Routine as the "Transcriber". The purpose of these routines
is to "read into" the machine other routines or data represented on cards
in a form convenient for coders and to store the given routine or data in
any designated area of the memory in a form ready for execution or

processing.
The obJective of the Transcriber ls to accept (read) words represented

same words represented in binary form. The binary cards are produced one
af‘ter another during the action of the transcriber. After all of the
binary cards have been produced and are being fed into the machine (in a
manner that ls described later) they are accepted by the Input Routine.
Thus, the Transcriber is literally a "translator" in that it translates
words represented in sexadecimsl and decimal form to words represented in

binary form.

148

To facilitate the use of subroutines, a pseudo address method was
devised whereby the Transcriber could distinguish between relative and
fixed addresses. Now in the same sense, 1t 1s desirable to devise some
scheme whereby the Transcriber cen distinguish between words represented
in sexadecimal form.and words represented 1n decimal form. This 1is
desirable since 1t is convenient to represent datum nunbers in decimal
form. It is not only desirable to have the Transcriber recognized decimal
datum nunbers, but it is also convenient to have the Transcriber. convert
the decimal datum numbers to their binary equivalents. Other desirable
facilities are: '

a. the facilitybto store a word (or words) in a prescribed memory
position (positions).
b. the facility to direct control to the first order of any given routine.

In order to indicate to the Transcriber which of many facilities is
" desired, special words, called "key words", (distinguishable from words
10 be storeq in the memory), have been designed. Indeed & key word has
been designed for each desired facility. One key word expresses one
facillity, another key word expresses another facility, etc. Key words
are expressed in standard sexadecimal form, twelve characters per key
‘word. An identifying characteristic of all key words 1s. that the first
character of each key word is always an "8" and the next three characters
are always zero. The sixth and seventh characters of a key word ldentify
a facility. When applicable, the last four'characters of a key word |
represent a pseudo address assoclated with a fdcility.

Exemple 1. 80000L Q002KO is called a "10" type key word.
The facility assoclated with this key word is:
Direct control to the left order of memory position EKO.
Example 2. 800000 0002KO is called a "0OO" type key word.
The facllity associated with this key word is:
Store the words following this key word in consecutive memory
positions beginning at'memory position 2KO, and modilfy each
relative address of these words by amount 2KO,

149

In discussing the various key words and their corresponding
facilities, we wish to emphasize that, in general, the facllities are

not carried out by the Transcriber. Actually, the sexadecimal key words

and the words associated with them are converted to their binary equiva-
lents by the Transcriber. Then, at some later time when the deck of binexry
cards 1s being fed into the machine, the blnary key words and the words
associated with them are accepted by the Input Routine and the facility
originally associated with the sexadecimal key word 1s carried out by

the Input Routine. In thls sense we merely wish to emphasize thot even
though we associlate a facllity with a Transcriber key word, we think in
terms of a facility which will eventually be effected by the Input Routlne.

In essence, the facilities are carried out by the Input Routine.

Table of Transcriber Key Words and Associated Facillitles

Trangeriber key word Facillity

(Written in Sexadecimal form) (to be carried out by the Iﬁput
Routine)

Type .

00 800000 oo-ﬁ-—, Svore the following words in consecutive

memory positions beginning at position "A",
and modify each relative address of the
words being stored by amount "A".

55 800003 20-f--, Store the following words in consecutive
memory positions beginning at position "F"
but continue to modily relative addresses
by awnount "A" of the previous "00" type

B key word
10 800001 00-==-~, Direct control to the left order of
memory position "B".
20 800002 000000, Store the next word in the next consecutlve

memory position, and modify the relatlive
addresses in the address portlons of the
word even though the word has the
characteristics of a key word.

30 800003 00-S--, Convert the following decimal datum numbers
to their binary equivalents end store the
binary equivalents in consecutive memory
positions beginning at position "C".

150

This is the one exception where all of the facility is not carried out by
the Input Routine. The conversion is carried out by the Trenscriber and

the storing is carried out by the Input Routine,

As explained in Chapter III, decimal datum numbers are represented by
& sign character and eleven decimgl diglits, The characters for the ten
decimal dlglts are identical to the first ten sexadecimal characters,

0,1,2, «.e, 9. A sexadecimal "K" represents a positive sign, a sexadecimal
"g" represents a negative sign. '

Example. +.3279548002% 18 represented as K32795480023,

-.32795480023 is represented as S32795480023.
This representation of decimal datum nunbers is called standard declmal
form.

When a coder plang the insertion of information into the machine, he
decides in advance what facilities must be used., In listing the words of
a routine to be inserted, the coder introduces key words, then the words
to which the key word applies, then another key word, then the words to
which that key word applies, etc.

‘The facility corresponding to the "10" type key word is effective
immediately. The facility corresponding to the "00", "32", "30" types
remaing in effect until another'key word ls encountered. When a type
nagH key word ls recognized, 1ts facllity is effectlve only for the
word immediately following the type "20" key word. Then, the facllity
prévioualy in effect, (i.e. the facility in effect prior to the type
"20" key word), agailn becomes effective untll a new key word is encountered.
Other available key words and their corresponding facilities will be
given in chapters on the magnetic drum and floating point routines.

The objective of the Input Routine is:

a. to accept words represented on cards in binary form,

b, to store these words in designated memory positions, (or on the
magnetic drum),

¢. to modify relative addresses by prescribed amounts,
d. +to direct control to a deslgnated first order.

151

Hence, to store a given routine represented on cards in;sexadecimal form,
the Transcriber is used as an intermediate step to obtain the words in
binary form convenient for the Input Routine. It was stated previously
that the Transcriber could distinguish between relative and fixed addfesses
since the Transcriber had access to the pseudo addresses. However, the
Input Routine modifies relative addresses, hence, the Input Routine must
be able to distinguish between relastive and fixed addresses. To indicate
to the Input Routine whether addresses are relative or fixed; the Tran-
criber records a "modifier word" and a "modifier character" on each of

the binary cards that it produces.

To illustrate the use of the "modifier word" and the "modifier
character", the reader 1s referred to Figure 1, which shows a card
produced by the Transeriber. The card shown in Figure 1 represents the
subroutine example of the preceding chapter. The first word of the card
(the left word of the "Y" row) is a binary key word. Expressed in sexa-
decimal form, this key word 1s

8ooos T --H.,

Normally, this "5" type key word is always the first word of every card
produced by the Transcriber. The address, "H', of this word indicates‘to
the Input Routine where the first word, W1, of this card is to be stored.,
The address "H" may be relative or fixed. The sexadecimal "i", the
modifier character, indilcates to the Input Routine whether the addresses
in the words of the "X" row are relative or fixed. Since any row contains
st most two words (at most four addresses), four bits (one sexadecimal
character) are sufficient to indicate whether the four addresses of a row
are relstive or fixed. A binary "1" indicates that a corresponding
address is relative, a binary "O" indicates that a corresponding address
is fixed. The one to one correspondence between the four bits of "i"

and the four addresses in the "X" row is:

reading from left to right,

the first bit of "i" is associated with the left address of Wl

" Second " " 1 n n n " I‘igh‘t " u Wl
" third " 1 1" 1 n 1" | lef..b n " w2
1 four.bh 1" " " " " n 1" I‘igh‘t 1 1 W2 R

In Figure 1, "i" is 1110, which indicates that the only fixed address 1n
the "X" row is the right address of W2. The three other addresses in

the words in the "X" row are relative as 1ndicatéd.by the corresponding
bits of "1", The "modifier word", (lsbeled "M" in the upper right margin),
1s always recorded in the right half of the "Y" row. The forty bits of
this word reflect whether the.forty addresses in the twenty words, W5
through W22, are relative or fixed. The one to one correspondence between
the forty bits of the modifier word and the forty addresses in words W3
through W22 is as follows:

reading the bits of the modifier word from left to right,

the first bit.is asgociated with the left address of W3,

" Second. n " " n ll’ righ’t n 1 W})
" .third 1" " 1" " ", lef.t " Li W)‘l',
1" fou.rth " ‘ " " " " I'igh‘t 1" 1" wl“,
f
1
the fortieth " " " " right " " wea,

The‘following is a list of key words assoclated with the Input
Routine, with the.corresponding facilities. In expressing these binary
‘key words in sexadecimal form, (ten sexadecimal characters), the fifth
ééxadecimal character 1is used to identify the corresponding facility.
These are the binary key words produced by the Transcriber. There is
a similarity between the sexadecimal key words and the binary key words;
however, there is no unigue one to one correspondence between the two

types.

Binary key‘wordé Facility

(expressed in 10 sexadecimal

character form)

Type
0 8000000-13‘-, | Same as the sexedecimal key word "00",
gtore and modify.
1 8000100-E-, Same as the sexadecimal key word "10",

direct control to "B".

155

2 8000200000, Same as the sexadecimal key word "20",
store the next word in sequence
even though it appears like a key
word '

3 8000300-5-, Store the following words in

‘ consecutive memory positions
beginning at position "C", but
continue to0 modify relative
addresses by amount "A" of the
previous type "O" key word. Note
that this facility differs from
the faclility assoclated with the
"30" type key word.

5 80005i-g--, - Store the following words in comsecutive
positions beginnling at memory
position "H" and modify the
addresses by amount "A" of the
previous "O" type key word in
accordance with the modifier word
and the modifier character "i".

A type "O" or "1" key word always appears as the last word on a binary
card * That is, each time the Transcriber recognizes a "00" or "10" +type
key word, 1t produces a binary card with a "0" or "1" type key word as
the last binary word of the card. If at the time of the recognition,

the existing binary card being developed is not complete (full) the
Transcriber will generate "dummy" key words to complete the card, except
for the usual words in the "Y" row and the last word of the card. (Dummy
key words have no effect; they are recognized by the Input Routine and
immediately ignored.) This arrangement is made to allow a coder to make
appropriate changes conveniently and to allow the storing of subroutines
in sequence. One example in conjunction with the arrangement is:

Suppose for some reason that one decldes to change the location of a
glven subroutine after he has obtained the bilnary cards assoclated with
the given subroutine., This implies the presence of a binary key word

on & card preceding the subroutine, which indicated where, accordlng to
the former plan, the subroutine was to be stored. In accordance with the

above arrangement, this particular key word will appear as the last word

of a bilnary card. To effect a desired change, without changlng any of
the existlng binary cards, one need only obtain another binary card

reflecting the desired change. This card, contalining the binery key

*However, the word W22 is not necessarily of either type; W22 usually
is an order pair or a datum number just like other W's,

154

word reflecting the desired change, can be placed immediately behind

the card containing the "old" key word. Since there will be no
intervening words between the "o0ld" and "new" key words, the facility
assoclated with the "new" key word will supersede the facllity assoclated
with the "old™ key word. Thus, the desired change will be effected.
Other reasons for thls arrangement of "O" or "1" type key words as the

last words of & binary card, will become more apparent with experience.

The detailed description of the binary cards assoclated with the
Tnput Routine is by no means. simple; however, 1t should be borne in
mind that the productibn of these cards isg automatlcally carried out
by the Transcriber. Futhermore, the detalled description of the binary
cards, asg to what they contaln, and the arrangement of their contents,
is given in the evént one desires to analyze or check them for any reason
whatsoever. Experience has shown that on many occaslons coders refer

to the binary cards for many reasons.

To illustrate the use of the Transcriber, the Input Routine, and
the subroutine example of the preceding chapter, conslder the followlng
problem,

Example ;

Tt is desired to compute and print the sum of f£ifty numbers. Each
number and each partial sum is less than one in absolute value. The

fifty numbers are recorded on IBM cards in standard decimal form.

Since a subroutine i1s available that can form this sum, we can
1mmediately express a plan to achleve this objective in the form of
a "rough" flow chart as follows

I II
Fulfill the Subroutine : Print the desired
requlrements > will form the > gum and stop
of the subroutine | deslred sunm operations
Figure 3

155

First, we will employ the facilities of the Transcriber and Input Routine
to convert and store standard decimal numbers. In this respect (when
control is directed to the first order of Box 1) we assume that the
fifty numbers are stored respectively in memory positions Al through A50.
That is, we assume that the fifty numbers have been converted to their
binary equivalents before they are stored in the designated memory
positions. Next, directing our attention to Box I, a review of the
requirements of the subroutine shows that before we direct control to
the first order of the subroutine, we must provide instructions which
insert a particular word in Rl, and another particular word in R2. Here
again, we assume that two particular words are stored respectively in
nmemory positions Bl, and B2. These words are:

p-39

n,

(B1)

(32) =2"%m1 + 27,4,
We can now append a box to the flow chart to indicate the conditions
that will be assumed when control is directed to the first order of Box I

T ‘ II
Fulfill the Subroutine Print the desired
——p——| requirements > will form the —»jsum and stop
of the subroutine) desired sum operations.

(BL) and (B2)

as shown above.
The fifty numbers
are stored in

Al through A50

Figure k4

We can now write, in preliminary form, the orders of Box 1 to fulfill the

requirements of the subroutine., These orders are as follows:

I, 1 + Bl, (BL) —» R1
, 2 R B2, (B2) —> R2
s 3 U Sub,, Control i1s directed to the flrst order of the sub-

routine. For this example, the "R.A." will be II,l. Since we know that
the desired sum will be available in Rl when control is directed to the
"R.A.", we can now write, in preliminary form, the orders of Box II to

print the desired sum and stop operations. These orders are as follows:

156

I1,1 M T1, the sum —>TL
,2 R T1, the sum—>»R2
s3 P, Print the sum on the teleprinter
,4 Zx I,1, Stop operations; upon re-initiation control is
directed to I,l to repeat the process.
We now meke the following sexadecimal storage assignments:
Let AL be 100, then A50 is 131. Let Tl be 000. (The "100", "131", and

"0Q0" are sexadecimal addresses.)

Sequences T and IT are consolidated with the following storage assignment

Seq. Code Word QOrders Description
I,1 K40136 +B1 (B1)—>R1
2 840137 132 R B2 (B2) —3R2
3 W00138 U Sub. Control 1s directed to the
133 first order of the subroutine.
- 000000 .
11,1 100000 M T the sum—>TL
134 '
2 840000 R TL the sum—» R2
3 140000 P The gum is printed on the
155 teleprinter
ly 00132 7x I,1 Machine stops vperations,
_ repeats process 1f desired.
Bl Q00000 memm—e-
136
000032 —
B2 000100 AL
137 _
000L3lk Rebe

Note that we have made all of ‘the peseudo addresses reflect fixed addresses.

We now wrilte the following key words:

800003000100, a card contalnlng thils key word will be followed by the
cards contalning the fifty numbers expressed in standard
decimal form; | K ov & awd elove, deolual a{,jf}%)'

800000000132, a card contalning this key word should be followed by the
card contailning words 132 through 137.

157

800000000138, a card containing this key word should be followed by.
the three cards corresponding to the subroutine. (This
is not the standard procedure since all subroutines
exlst on cards in binary form. We will diverge from the
standard procedure in this case to maintain simplicity.)

800001000132, a card containing this key word should follow the last

card of the subroutine.

The next step would be the insertion of "20" type key words if needed.
These cards, in the above glven order, should be placed immediately behind
the deck of cards corresponding to the Transcriber. This combined deck is
then placed in the card reader. After the appropriate switches on the
control panel are activated, the cards will automatically be read into

the machine and corresponding binary cards will be produced. After the
binary cards are produced, the machine stops operations. The binary cards
‘are then placed immediately behind the deck of cards corresponding to the
Input Routine, thls combined deck 1s then placed in the card reader. ‘Again;
after activating the appropriate switches on the control panel, the cards
will be automatically read into the machine. As soon as the Input Routlne
recognizes the "1" type key word, control will automatically be directed
to the first order of the routine.l ‘The routine will then be executed

and the desired result will be printed on the teleprinter. The result
will be printed in sexadecimal form since we made no provisions to have 1t
reconverted tq 1ts decimal equivalent. We could have employed another sub-

routine for_this purpose; but again for simplicity this was omitted.

If one desires to form the sum of fi1fty other numbers which satisfy
the number size conditions, one need only "transcribe" the fifty decimal
datum numbers. That 1s, one need only use the type "30" key word with
the cards contalning the fifty numbers to be summed, and the Transcriber.
The bilnary cards thus produced can then replace the corresponding binary
cards for the first set of 50 numbers that were originally included in
the deck of binary cards that was used with the Input Routine. Thus, the
orliginal routine in binary card form can be used as ofteﬁ as désired,

with appropriate changes 1f desired.

1. This assumes switch, S2, is in the stop disable (down) position.

158

Exercisq_l. Construct the necessary key words which will permit one
to obtaln the sum of 500 numbers which satisfy the number size conditions.
Assume that we wish to use the orlginal binary card deck of the previous
-example. The appropriate changes are to be made through the use of key
words aqd.words agssoclated with the key words.

Exercise 2, Assume that the number size conditions were not
satlsfled. That 1s, suppose that each number was merely known to be
less then three in sbsolute value. Construct the necessary words and key
words to modlfy the routine so that we could handle the case.

159

CHAPTER IX
CODE CHECKING

In previous chapfers ve discussed the various detaills that are
necessary to prepare routines for machine execution. Since the details
are so0 numerous, it is not surprising to find that users (or coders) make
many mistakes. Some of the common mistekes are: +o neglect to insert a
needed instruction or datum number; to write an incorrect instruction or
datum\number; to direct control to an 1ncorrect‘address; to forget to
store a particuler quantity; to assign conflicting storage positions; to
use an incorrect key word; to fail to meet the requirements of a given
subroutine; etc. As will become apparent with experience, there i1s no
substitute for care and forethought. The process of detecting such
mistakes in a given correctly formulated routine is called "code
checking"l.

Methods for detecting mistakes will vary with: experience, the
complexity of a glven routine, machine facilities for Inspection and
handling of mistakes, and existing foutines designed specifically as
checking aids., In vwhat follows, we will be particularly concerned
with the checking of a given routine. 'we asgume that the formulation
of the objective is correct, and hence, we will be coﬁcerned with the
checking of the sequence of words which is supposed to represent the
glven formulation. Furthermore, we will assume that the machine, as
apart from the code, is functioning properly. If one has reason to
suspect that the machine is malfunctioning, it is customary to run the
given routine two or three times, (time permitting), to determine if
the machine results are consistent. If the machine produces inconsistent
results under the same initial conditions, then the machine is obviously
malfunctioning. Sometimes, machine malfunctions are determined by

inspecting the contents of the arithmetic and control registers.

1. BSome installations use the terms "debugging" or "tracing", we prefer
the term "code checking" since it is indicative of the meaning.

161

Before & given routine is initially submitted to the machine for
execution, one should be prepared with estimates sufficient to indicate
approximate results to be expected from satisfactory operation of the
given routine. In meny cases we prepare "hand computations" so that
results obtalned from the machine can be compared with the results
obtained by "hand computations”. In some cases, anticipated results
are obtained by other means. In any event, one must be able to determine
if the results obtained from the machine are satisfactory or unsatis-
factory, Hand computations which are performed in the same manner as
the machine procedure enables one to check quantities of particular

interest at various stages of the machine computation.

Having submitted a given routine to the machine for execution, we
are immediately confronted with one of the following situations:
I. DNo results are produced;
IT. Results that are produced are unsatisfactory;
IITI. Results that are produced are satisfactory.

I. If no results were produced, one should first determine 1f the In-
put Routine stored the given routine in the designated memory positions.
This can be determined by employing the "Memory Print Out Routine". The ob-
jective of this routine is to print, (on cards in sexadecimal form), the
contents of a designated range of consecutlve memory positions. This routine
can be stored in the same manner as any other routine or subroutine. Control
should be directed to the first order of this routine at the time that control
would ordinarily be directed to the first order of the routine belng checked.
The range of memory positions under consideration is the range of memory
positions occupied by the routine being checked. The results printed by
the Memory Print Out Routine will represent the existing "internal" routine
as stored by the Input Routine. These printed results can be visually
compared with the "external" routine, (handwritten copy), in this manner,
discrepanciles between the internal and external routines can be noted and
appropriate corrections can be made. Of course it may happen that one is
unable to obtein the results of the Memory Print Out Routine. 1In such a

162

case one should carefully examine the cards and key words associated with

the routine that one is attempting to store.

Having verified that the glven routine was stored correctly,'one can
now begin to analyze why no results were produced. Rither
8. The machine stopped operation, or
b. The machine continued operation indefinitely, (cycled).

If the machine stopped operatiori, the control counter reflects the address

of the order following the particular order that caused the machine to stop. The

control regilster, R}’ exhibits the actual order that cauded the machine to

stop operation. An iunspection of the control counter and control reglster

might suffice to determine the mistake. For example, some. of the reasons

why the machine will stop operation are:

al. a "print" order with no cards or tape in the corresponding output
device; 1

a2, a "read" order with no cards or tape in the corresponding input
device;

a3, a legltimate stop order, l.e., an Instruction which tells the machine
to stop operation;

al. an undefined order.

If one cannot account for the particular order that cauged the machine to

aﬁcp‘opération, then 1t 1s advisable to employ ﬁhe Code Checking Routine.

The Code Checking Routine, hereafter called "code checker", will be dis-

cugsed in an example. If al or a2 exilsts, this can easily be remedied by

inserting the proper cards or tape in the appropriate device.

If case "b" exists, i.e., if the machine continued operation indefi-
nitely and had to be stopped manually, one should attempt to determine
which order or whilch sequence of orders the machine was repeating indefi-
nitely. If, for example, the address displayed in the control counter
remalng constant, the machine is repeating an order or order paif in the
memory position whose address appears in the control counter. An example
of such an order pair is: v

» (P) = 171U P.

163

In such a case, the address in the control counter remains fixed at P.
The obvious mistake is that one did not intend to transfer control to P.
Sometimes the process of manually starting and stopping the machine is
sufficient to determine the addresses of some of the orders that are
being repeated. In this process, the addresses in the control counter
are observed each time the machine is halted. For example, this process
might yield a series of addresses such as 2N3, 287, 2K1, 2KK, etc. This
serles of addresses is assoclated with some sequence and an inspection of
the handwrltten orders of this region might be sufficient to determine
the difficulty. If the partlcular addresses are assoclated with a
"legitimate" repetitive sequence, one should check the transfer orders,
(conditional or unconditionsl), and the elements associated with the
corresponding transfer orders. Again, if one is umnable to determine

the cause of the "cycle", 1t 1s advisable to employ the code checker.

IT. If unpatisfactory results are produced, and if marual checks
of initidl data, subroutine requirements, logleal flow comnections, ete.
faill to yleld a reason for the unsatisfactory results, one again reverts

to the code checker.

The objective of the code checker is to produce a detailed description
of a given sequence of Instructions that the machine is currently executing.
Thls 1s to say that the code checker can produce a precise "blow by blow"
description of all of the operations involved in a given sequence of
Ingtructions. The description thus produced is recorded on a deck of cards.
The cards contain sexadecimal and decimal representations of the quantities
used and obtained in the corresponding order. The cards are tabulated,
thus giving a detailed description of each order that was checked. (A
tabulator is an auxiliary device which prints on paper the characters
corresponding to the perforations of a card.) This detalled description
can be visually compared with the corresponding handwritten sequence of
orders, (and the corresponding anticipated results). Apparent discrepan-

cles can be noted and appropriate corrections can be made.

ITI. Even though a routine produces satisfactory results for a given
cage, this is not sufficient to assuwe that the routine will produce
satisfactory results for all cases. This is particularly true if the case

164

being tested does not employ all of the options assoclated with a given
routine. Sometimes, two, three, or even more tests are required to test

the various options or extreme conditions assoclated with a given routine.

To illustrate the use of the Memory Print Out Routine and the code
checker, we will "check" the subroutine example of Chapter VIII. The
complete code is reproduced and shown in Figure 1, save for one exception.
We have intentionally made one mistake in the coding of the subroutine
10 be checked., Assume that we are checking the subroutine for the first
time and that we are uneware of the misteke. Before beginning the dis-
cussion of the test to check the subroutine, we wish to wérn the reader
in advance that the following discussion is;lengthy'and detalled. The
discussion includes:

a. details of a test to check the subroutine;

b, details on the use of the Memory Print Out Routine;

é. details on the use of the code checker,

d. details on the analysis of the description produced by the code checker.

To test the subroutine, we will employ it to form the sum of 100
special numbers. Iet the speclal numbers be: .0001, .0002, .0003, ...,
.0098, .0099, .0100, We choose these speclal numbers for testing pﬁrposes

because we know the exact sum of these numbers; hence, we know what result
fo eXpect if the subroutine is designed properly. We begin by assuming
that the 100 numbers are recorded on cards 1ln standard decimal form. Also,
we can assume that we will construct the necessary key word to have the
Trenscriber and Input Routine respectivelylconvert the decimal'numbers to
thelr binary equivelents and store them in designated memory positions,

Al through A100. The flow chart is as follows:

165

gnf.:‘ziu FIGURE 1. ORDVAC Problem
- Sheet
- ! m
Seq. 1 Codel Word | Order Ry Ry | Mem. Contents Ord. Contents Description
: !
|
- R ~1 -39
23 | 27%0 | 273k Al
L 1 |50S00K | 400, E' IV, 7 w7 w1 [273%) || setsa
- -30
2 {KN4001 A+ 1,3 271%11273%. 2
3 504005 |450) ELV.2 v,z { Tl q[R.A} sets R.A.
4 1080014 —»20 271901 | 2794l 273
5 11504004 4002 EILL2 i } I, 2 + T1 (+)rAl‘[sets Al
6 {K4000] + K2 2739
] . . -39 .
: T ! =
7 |50400N |40, EIKI Kl Ul 2777(1) | setsi=1
8 300000 oM T1 Tl 0 i sets S, = 0
. , S;_ E
L 1 [K40000 400, + T1 -1
2 1K40000 ! + [a]) s 1
! ! .
3 1100000 4505 M TI g _ T1 S;
IO, 1 |K4400N | + K1 UILl (277 70)
_ 2 [04400K 4004 [IV.7 2739 (G4 n) !
X [
= 3 |20400S Cv.l ? iz=n?
= . o 1,-39
2 IV, 1 {K4000] |4q07 |+ K2 2%
2 |N44004 (+) I, 2 +T1 (H)ast]
3 (104004 14505 [MILZ | m,2 |[+T1 (+i§i+1]
4 |K40003 + K2 2% i+ 1—>i
5 |IN440ON 000 [+) K1 vl 273%4)
6 |10400N M K} f K1 v | 273 %4
i
7 [N04004 |y 0, UL ILI
- !loooooo [2’39(nﬁ i
V, 1 |K40000 g 0c +T1 S, ‘g S,=> R1
2 |Inooooo ulr.a]
g1 [NO%004 g0 |UILL :
000000 [2-39(1)] ;
i
T1 ooo Femporary j
K2 0oos Constant
2-39(1)

I

Fulfill the requirements
of the subroutine that
will form the sum of

"n" numbers.

- the sum of the "n"

Subroutine to reconvert
(the binary sum to its
decimal equivalent) and

I

Y

- Subroutine to form

numbers .,

IT i

Fulfill the requirements
of the subroutine that

willl reconvert and print
the sum in decimal form.

i print the sum.

III

A

b STOP.

Figure 2

Notice, in Box II, that we are making provigions to have the sum
reconverted and printed in decimal form. We have g standard éubroutine
avallable to do this.
and the standard requirements are:

When contfol is directed to the first order of the subroutine,

&. the number to be reconverted must be located in R1;

b. the "R.A." must be located in the right address of R2.

The result is printed on the teleprinter before control is directed to the

"R.A.". Thus, our plan indicates that we are golng to employ two sub-

This subroutine requlres eleven memory positions

routines:
1. the subroutine to be checked, i.e. the subroutine for computing the

sum of "n"

numbers ; . ,
2, a subroutine for reconverting a binary number to its decimal equivalent

before printing the decimal equivalent.

To fulfill the requirements of the summation subroutine, we write

I,1 + BL \
These orders fulfill the requlrements of the
2 R B2 summation subroutine.
»5 U Sub, z
:h """
BL 2%

167

(B1) and (B2) are the two words necessary to fulfill the requirements of
the subroutine for forming the sum of "n" numbers, (sub}Ej. To fulfill
the requirements of the reconversion and print subroutine we write:
II, 1R B>

, 2 U Sub. Rv, & Print

B3 2727 R.A. _
Notice that we do not have to write an order to fulfill condition "a" of
the reconversion and print subroutine. This condition is fulfilled by
the summation subroutine in that the sum to be réconverted and printed
is located in RL when control is directed to the first order of the
reconvert and print subroutine. The R.A. assoclated with the summation
gubroutine will be the address of II,l; the R.A. associated with the
reconversion and print subroutine will be the address of III,l. These
return addresses should be evident from an inspection of the flow chart.
Referring to Box III we write:

ITI,1 Zu
»2 U 1,1 _

Notice the order, "U I,1", following the stop order, "Zu". This order was
inserted to provide for a repetition of the entire test, if desired, This
is shown on the flow chart by the "broken line" extending from Box III to
Box I. ‘

Next, we consolidate the words of sequences, I, II, and ITII, and

agslegn the following sexadecimal addresses to the vords of these sequences:

T,1 + BL
100
,2 R B2
) U Sub. 2
101
;l'l' """
Bl
102
2—39n
B2 o719
103
2739 17,1

168

11,1 R B3

104 ,
52 U Sub.Rv. & Print
B3

105

2'59 IIT,L
IIT,1 zua

106

2 UI,l

Before we can wrilte the final code for all of these words, we must
declde on where we are going to store the two subroutines. The subroutine
for computing the sum requires 13 memory positlons; we willl assign this
subroutine to positlons 107 through 115. The subroutine for reconverting
and printing requires 1l positions, we will assign this subroutine to
positions 11k through 11F. For the 100 numbers to be summed we will
agsign posifionb 200 through 263. The final code for sequences I, II, and

III, using pseudo (four sexadecimal) addresses is:

T,1 Kho102 + BL
| 100
,2 840103 R B2
3 NOOLOT U Sub.
2
101 2.
b 000000 amee-
BL 000000
| 102
00006k 2729 4
B2 000200 2™ m
103
00010k 2739 11,1
IT,1 840105 R B3
104
,2 NOOL1lh U Sub.Rv.& Print
B3 000000
15 -39
000106 2729 117,1
III,1 000000 _ Zu
106
2 NOOL00 U I,1

The raster showlng the memory posltions used for this example is shown
in Figure 3. Notice that all pseudo addresses reflect fixed addresses. The
following words, in the given order, will be punched on cards in standard

form for use wlth the Transcriber.
169

00
02
Ok
06
08
0K
o
OF

10

1k
16
18

.

20

3F

012 3 k4Ls 678 9KsS NJFILO1L123L456 789 K S NJTFL

e-1—{BI[B2| It B3 SUMMAT|ION SUBROUTINE RV, 8| PRINT SUBROUTINE1—»
AlIA2IA3 3A2
: A
Ai £
A
96

100

012 3 %5 678 9 K8 NJFILO?11235L45©6 789 K8 NJ F L

ORDBG- 1457
28 Mar 52

Figure 3
170

0l
03
05
or
09

oJ
OL

11

1L
21
23
25
27
29

28 |
23
2L
31
33
35
37
39
38
3J

3L

800000
800000
800000
k40102
NOOLOT
000000
000200
8ho105
000000
000000
800003
KOOO10
K00020

K00030
1

t

?
KO00990
K01000
800001

800001

000107
000114
000100
s40103
000000
000064
00010k
NOO11k
000106
NOOL0O
000200
000000
000000
000000

Cob

.8

000000

000000 _J
00OLL1

000100

Key word to store summation subroutine
Key word to store Rv. & Print subroutine
Key word to store sequences I, II, and III

Sedquences I, II, and IIT

Key word to convert and store the 100 numbers

These are the 100 numbers to be summed, expressed
in standard decimal form.,

© Key word to complete.a card and insure that the next

key word (a "10" type) will appear alone on the

next binary card. LLL 1s the address of the first order
of the Input Routine. l

Key word to direct control to the first order of the |
test routine. | |

These cards will be transcribed, and corresponding binary cards will be

produced.

The first two blnary cards produced will contain the key words

for storing the ﬁwo.subroutines. This 1s in accordance with the arrange-

ment discussed in the chapter on the Transcriber and Input Routinea., The

binary cards contalning the two subroutines will be placed behind the cards

contalning the corresponding key words which designate where they are to

be stored.

These cards followed by the remalning binary cards willl be

plaéed behind the Input Routine. We are now ready to submit the routine

to the machine for execution,

171

The cards are placed in the card reader, and after the activating of the
appropriate switches on the control panel, the cards will be read and the
machine will begin the operations. In less than one second after the
cards are read, the teleprinter will begin to print the computed result.
The result printed on the teleprinter is KO010000000! The correct result
is K505000000! Since we did not obtein the desired result, we can toggle
52 since we have made provisions to have the entire routine fepeated.
Before toggling S2 one should check thelcontents of‘R5 to verify that the
order that caused the machine to stop is the "Zu" order which we had
stored in position 106. Further, the address in the control counter
should be 107. Having verified the particular stop order, S2 can be
toggled and again in less than one second the teleprinter should begin
to print the computed result. Again the exhibited result is K010000000}
This method of duplication is not sufficient to conclude that the machine
1s functioning properly. Notice that the routine was read into the machine
only once. Indeed, the computation was performed twice, but the routine
1tself and the data were read only once. It 1s possible that the reader
did not function properly. In this respect, the entire routine can be
read into the machine and tried again. Again the exhibited result is
KO010000000! Under such circumstances, it 1s advisable to relinquish
the use of the machine to the next candidate in line.

Obviously, there 1s a mistake somewhere. The problem now is to find
the mistake. First, since the computed result looks familiar, it might be
recognized as being the "last" of the 100 speéial numbers to be summed,
This "clue" might be sufficient to determine the mistake in that such a
result would be obtalned if the sum were not being accumulated. This
suggests a visual check of the (handwritten) sequence of words that were

designed to accumulate the sum. If however, the incorrect result 1s not
recognized, or if one is unable to detect the migtake, then it is
advisable to determine if the internal routine corresponds to the external
routine. To obtaln the internal representation of the routine, ﬁe can
employ the Memory Print Out Routine. Since the Memory Print Out Routine
exlsts on cards in binary form, we need only transcribe a key word which

wlll designate where we wish to store this routine. An inspection of the

172

raster will show that we can store this routine beginning at position
300. Further, since we will want to direct control to the first order
of this routine,'we must prepare another key word to do this. The
following key words will enable us to accomplish these desired facillitles:
1. 800000 000300 K.W. to store the routine at 300;
2., 800001 000300 K.W. to direct control to the first order of
the Memory Print Out Boutine.

Having obtained the two binary cards corresponding to these two key
words, we insert the deck of binary cards corresponding to the Memory
Print Out Routine between them. Next, we remove the last of the binary
cards from the binary deck that we were using to test the glven routine.
(This is the card containing the key word that directs control to the
first order of the test routine.) This card is replaced by the binary
cards corresponding to the Memory Print Out Routine and the key words
associated with it. To summarize, we have added the Memory Print Out
Routine to the routine to be checked and control will be directed to the
first order of the Memory Print Out Routine rather than to the first order
of the test routine.

As yet, we have not indicated to the Memory Print Out Routine the
gpecific range ofimemory positions whose contents are to be printed.
That 1s, we have not fulfilled the requirements of the Memory Print Out
Routine. The Memory Print Out Routine assumes that the "range" of memory
positions, (whose contents are to be printed), is recorded on tape in the
following form: o '
00 A 00 B .

This 1s a ten sexadecimal character word, where

"A" represents the address of the first memory position of the range;

"B" represents the address of the last memory position of the range.

It is assumed that the range is consecutive, i.e. A, A+l, A+2, ... B-1, B.
It is also assumed that the tape has been lnserted in the tape input

device when control is directed to the first order of the Memory Print

Out Routine. For our example, we are interested in checking the "summation"

gubroutine and the sequence of words which fulfill the requirements of the

173

summatlion subroutine. The particular range of interest is included in
the range 100 through 113. (Actually, this range includes sequences II
and III, which we have added to the routine to obtain the result in decimal’
form). Hence we record on a paper tape the word
00100 00113,

and insert the tape in the tape input device. The binary cards are placed
in the card reader, and after the activating of the appropriate switches on the
control panel, the cards wlll be read. When control is directed to the
first order of the Memory Print Out Routine, the tape will be read and
the contents of the desired memory positions will be punched on cards.
The contents of four consecutive memory positions will be recorded in sexa-
decimal form on each card. The contents of memory positions 100 through
103 will be recorded on the first card, the contents of memory positions
104 through 107 will be recorded on the second card, etc. nThe cards
produced by the Memory Print Out Routine are tabulated, thus giving a
typewritten copy of the internal routine as it appeared in the‘machiné at -
the time that control would be directed to the first order of the routine.
The typewritten copy thus obtained 1s shown in Figure L.

k4102 84103 NO1OT 00000 00000 00064 00200 00104

S4105 NO11k 00000 00106 +veee.

«ees NOLOS 00000

Figure b .
Tabulated (Typewritten) copy of the "internal routine".

The first word, K4102 84013, represents the contents of position 100,
the second word, NO1O7 00000, represents the contents of position 101, etc.
A visual comparison of these words with the corresponding handwritten words
(Figure 1) will show that the internal words correspond to the external
words. The only difference is in the pseudo address character which does
not appear in the machine, and hence does not appear in the internal words.
In making a comparison between the internal and external words of the sub-~
routine, one must account for the fact that the external words of the sub-
routine have addresses corresponding to‘the area of the memory beginning at

000, the internal words of the subroutine have addresses corresponding to

174

the ares of the memory beginning at position 107. Hence, in making the
comparison, one must expect a difference of 107 in each relative address.
For exemple, the contents of 001 of the external routine is 50400K 08001k,
Tf 107 is added to the relative address, OOK, we obtain 111; thus, we should
expect to find phe contents of the corresponding internal word, (108), equal
to 50111 08014. Notice that since "OLL" of the right order is fixed, it

wae not modified and hence appears as "Ol4"., Having verified that the
internal routine represents the external routine, and 1f further visual
checks fall to reveal any mistakes, it is advisable to employ the code

checker.

The code checker is employed in a manner similar to any other routine
or subroutine. That is, we first provide for storing the code checker in
designated positions of the memory. Next, we must fulfill the necessary
requirements of the code checker. The code checker has two general options,
namely:

Option I. This option, called the "n" interval option, allows the user to
specify "n" distinct (non-overlapping) intervals that are to be checked.
That is, one can ‘specify "n" intervals for which detalled information is
desired. An Interval is defined by two addresses, A and B, where A 1s the
address of the first order of the interval to be checked and B 1s the
address of the last order of the interval to be checked. In addition to
speclfying the addresses of the first and last orders of the interval, one
muet include whether the end of the interval is defined as the left or right
order of B; checking will always begin at the léft order of A. Thus, the
genersl form of a word which specilfies the addresses of the ith interval to
be checked is as follows:

Ky 5 AL C, 0 Bi

where :

Al is the address of the first order of the ith interval;

Bi is the address of the last order of the 1th interval;

« 7, indicates the nuwber - of times that detailed information is desired
for the 1tk interval; if Kj = 0, detailed information, relative to the
Lh interval., lg printed e%erytime the order at A is encountered.

0 indicates that the left order of Bi is the last order of the lnterval;

8 indicates that the right order of Bi is the last order of the interval;

i

#

it

175

=0 for 1 # n;j

8 for i = nj 1, e;to indicate the last of the "n" intervals, Cq = 8.

Ai and Bl must be addresses of orders which undergo no modification during

W
1

the course of computation. That is, the start and stop orders of an interval
should not contain variable addresses. The code checker assumes that the
words defining the "n" intervals are recorded on paper tape in the form
shown above, and that the tape 1s in the input device when control is
directed to the first order of the routine to be checked. Thus, the words

recorded on a tape for "n" intervals are:

K, 0 AL G,
Kp 0 82 Gy

0 Bl
0 B2
Ky O AL C, O B

Ky, 8 An C, 0 Bn

Option IT. This is called the "one" interval option. This option differs
from Option I in two respects: '

1) only "one" interval is specified;

2) this option allows one the facility to specify the number of times
the given interval 18 to be traversed before checking begins, and the number
of times that checking 1s desired.

The latter facility, 2) is desirable for intervals which are included
in a repetitive sequence, since checking (i.e. printing of detailed infor-
mation) is time consuming especially for long repetitive sequences, For
Option II, the code checker requires that two words be recorded on paper
tape and that the tape is in the input device when control is directed to

‘the first order of the routine to be checked. The two words required by
this option have the following form:

O 4 n 0 0 m

Cl C3 A 02 0 B

where:

176

n = the number of times the interval is to be tranversed before checking

begins;
m = the nunber of times checking is desired, |(3 digits)}
n and n are expressed in sexadecimal form; ¥ o

The "4" in the first word of the palr is to allow the code checker to
distingulsh this option from Option I. _Cl = 0 indicates that the left order
of A is the first order of the interval; C, = 8 indicates that the right
order of A is the flrst order of the interval; 02 hag the same meaning as

| glven 1n Option I. 05 = O indicates that addltional checking 1s desired
after the checking of the current interval is complete.

05 = 8 indicates that no further checking is desired. . _

It 1s possible to change from Optlon IT to Optlon I, however, the reverse

is not possible. Under both optlons, the détailed information that will

be printed is of the following form:

Order Address of (R1) (rR2) Contents of the (RL) (R2) (Mem) Wi~ %
the order Sexadecimal Sexadecimal Memory Position Dec. Dec. Dec.
‘ : Involved
00 —— ; Sexadecimal
5 char. 5 char. 10 char. 10 char. 10 char. 10 10 10]
char. char. char, =»ls

The above information is printed after the order 1s executed. Some minor
variations such as printing information on teletype, checking transfer of
control orders only, ete, are available. The requirements for these

variations are given in the local literature.

Now, to get back to the example under discussion, recall that we are
interested in determining why the summation subroutine produced an unsatis-
factory result. Assumlng that we have been unable to determine any mlstakes,
we now resort to the facilities of the code checker. Our first concern is
to select one of the two general options of the code checker. We shall employ
Option II, i.e. the one Interval option. Since the unsatisfactory result
indicated that the summation was ilncorrect, we will want to define an
interval which includes the "critical" orders of the summation subroutine.
(See flow chart, Figure 1.) The critical orders of the summation subroutine
are contained in sequences II, III and IV. The relative addresses spanning
this critical interval are 00k and OOK. " Bince we are employing this sub-
routine beginning at position 107,‘the critical Interval is defined as

177

004 + 107 = 108 and OOK + 107 = 111. Since we will be interested in
detalled information the first time the orders 1n this interval are
executed, we will set n = O, implying that we want the interval "skipped"
"zero" times before detalled information is produced. Further, since two
times through the repetitive sequence should furnish enough informatien,
we will set m = 2 implying that detailed information is desired only for
the first and second passes through the critical interval. Notice that
the critical interval will be traversed 100 times In order to obtain the
desired result; however, i1t 1s not necessary to obtain detalled infor-
mation for each repetition of the sequence since it is a repetition.
Notice alsc that 1t isgnot necessary to obtain detailed information for
the orders preceding this eritical interval since any mistake in the
preceding orders will be reflected when detailed information of the
critical interval is obtained. Thus we construct the following two
words to be recorded on tape:

1) 0 &4 000,0 0O E&E;

n m

2) 0 8 1080 0 111
Cl 05 A 02‘ B
We can store the code checker beginning at memory position 300, (the same
place where we had stored the Memory Print Out Routine.) This isg
advantageous since we need not prepare a new key word. We simply replace
(in the "previous deck" we used when we employed the Memory Print Out
Routine) the binary cards representing the Memory Print Out Routine by
the bilnary cards representing the code checker. Further, we can replace
the "last" binary card, of the "previous deck" which transferred control
to the first order of the Memory Print Out Routine, by the "original" card
which transfers control to the first order of our test routine. Under this
arrangement, the code checker is read in "last". This arrangement is
important since the routine to be checked must always be read in "before"
the code checker., This 1s due to the fact that the code checker must
"modify" orders of the routine to be checked in order to obtain control to
begln the checking. We are now ready to employ the code checker.

178

The tape containingrthe words vwhich define the interval to be checked
is inserted in the tape input device. The binary cards are placed in the
card reader and, after activating the proper swltches on the control panel
the routine is read in and the machine beginsg operations. The cards
produced by the code checker are tabulated and the significant results are'
shown in Figure 5. / O+heve =<e ales "g?".iw;m\;)

N

,V‘KL’A Sexadecimal Decimal
'-ﬂdhﬂw ' (Memory) (Memory)

Line Order Address (R1) (R2) Position (R1) (R2) Position
1 K4000 108 00104 00200 KOOOO 00000 KOOOO 00000
2 Kh200 108 KOOO1 00000 KOOO1 00000
3 10000 10N ; KOOO1 00000 KOOOL .. 00000
L K4113 10N NOLOS 000OL NO10S 00001
5 Ohlll 10J ILILL LLL9J NOL1OS 00064
6 24112 10J
7 X4OOJ 10F 00000 00001 00000 00001
8 w4108 10F X4000 00201 K4000 00200
9 10108 105 K4000 00201

10 KXh4oog 10L 00000 00001 00000 00001

11 N4113 110 NO10S 00002 NOLOS 00001

12 10113 110 NO10S 00002 .

13 NOLOS 111 '

1L KLOOO 105 KOOOL 00000 KOOO1 00000
15 Kh201 108 KO002 00000 KO002 00000
16 10000 10N , ‘ K0002 00000 K0002 . 00000
17 K411z 10N NOLOS 00002 NO1038 00002

18 .ohk111 10J ILLLLL LLIOF NO10S 00064

19 24112 10J _

20 K4OoJ 10F 00000 00001 00000 00001

21 N41os 10F K4O00 K4202 K4000 KL201

22 10108 101 K4LO00 KLh202

23 KLOOJ 10I, 00000 O00OL 00000 00001

24 Ny113 110 NO10S 00003 NO10S 00002

25 10113 110 NOLOS 00003

26 NO108 111

Detailed Description Produced by the Code Checker‘
Figure 5

The detailed degcription shown in Figure 5 consists of eight columns
of numbers., The entries in the order éolumn represent the actual orders
that weré checked by the code checker. The entries in the address column
represent'the respective addresseg of the orders in the order column. The

entries in columns three, four and five represent respectively the contents

179

of Rl, the contents of R2, and the contents of the memory position involved
in the order. The entries, expressed in sexasdecimal form, represent the
contents of R1, R2 and the memory position involved after the order was |
executed. The entries in columns six, seven and eight are the decimal
equivalents written as K or S and 9 digits of the respective entries in
columns three, four and five. The reason for the two representations, that
i8 the sexadecimal and decimsl, is that for some orders it is convenient to
analyze the results in decimal form and for other orders it is convenlent
to analyze the results in sexadecimal form. The reasoning will become

apparent when we analyze the detailed description shown in Figure 5.

To analyze the detailed description, one should have the handwritten
copy of the routine being checked and a knowledge of the anticipated results
of the orders of the routine being checked. In comparing the detailed
description with the handwritten copy, one must account for the fact that
the handwritten copy represents the subroutine as coded for memory positions
beginning at 000 (or 4000). The detailed description represents the subroutinr:
as coded for the area of the memory in which the subroutine was empioyed,
namely the area of the memory beginning at 107. Thus, in making & comparison
between the handwritten copy and the detailed description as produced by
the code checker, we add 107 to each relative address of the handwritten
copy. For example, when we defined the interval to be checked, we selected
the repetitive sequences II, III and IV. The relative interval (interval
agsoclated with the handwritten copy) 1s 4004 through 400K. Since we stored
this subroutine beginning at 107, the original orders associated with the
relative interval, 4004 through 400K, will be stored and executed from
positions 004 + 107 = 108 through 00K + 107 = 111. Thus, the detailed
deScription is given in terms of the interval 10S through 111.

The entries in the address column represent the addresses of the
gequence of orders that were checked. The sequence shown in the detalled
description should correspond to the interval submitted to the code checker.
An examination of this column shows that the sequence of orders checked was
108, 108, 10N, 10N, 111, and this same sequence was repeated. Thus,
the entries in the address column show that the correct "sequence" of orders
was checked the desired number of times. (Recall that we indicated that we

180

wanted this interval checked, twice when we set m = 2.)

Consider the entries on the first line of the detailed description,
KA000 108 00000 00000 00104 00200 00000 00000 KOO0O 00000 KOOOO 00000.
This represents the detailed information associated with the first order
that was checked. The particular order was K4000, (column 2 of Figure 5).
An examination of the handwritten copy shows that this order was designed to
move the previous accumulated sum from temporary memory position Tl to Rl.
Tnitially, the previous accumulated sum should be zero. This was to be
imposed by an order in a previous sequence. Therefore, as & result of this
order, the contents of Rl should be exhibited as zero and the contents of
the memory position involved, namely Tl, ghould be zero. Hence, the results
of this order are verified by examining the entries in columns three and
five or columns six and elght. Columns three and five represent the sexa-
decimal equivalent of zero, columns six and eight represent the decimal
equivalent of zero. Thus we conclude that this order is correct. 1In
general, it 1s not necessary to check both the sexadecimal and decimal
equivalents. For future checks of this particular order we will refer to
the decimal entries in columns six and eight. Notice that the contents of
R2 shown in colum 4, i.e., (R2) in sexadecimal form, is 00104 00200. This
represents the contents of R2 after the order K4000 was performed. Since
the order executed, K4000, did not affect (R2), the entry shown there
represents‘the result of the last order that affected (R2). An analysis
of the last order that affected (R2) shows that the entry exhibited represents
2i19 R.A. + 2"39.Al, the result of the order I,4. 1In general, when analyzing
the detailed description, only the entries of immediate interest are examined.
The discussion of the contents of R2 was given to emphasize that the entries
do represent the current contents of the reglsters and the memory position
even if they were not affected by the current order.

Consider the entries on the second line of the detalled description:
. (R1) Memory
K4200 lOS ------------------- K000l 00000 K0001 00000

Thig represents the detailed information sssociated with the second order
that was checked. The particular order was K4200, (column 1 above). This order .
was the right order stored in memory position 108, (column 2). An exami-

181

nation of the handwritten copy shows that this order was designed to add
the jth number to the previous accumulated sum to obtain the Jth partial
sum. Notice that the address, 200, 1n thils order, is the address of Al,
the address of the first number to be added to the sum. Since the initial
partial sum was zero, the new partial sum should be equal to the number
stored 1n Al, 1.e. 8. A check of the test numbers shows that the first
number, &y, is .0001000000; hence, as & result of this order, the entries
in columns gix and eight should be .00010000000. An examination of these
entries shows that these entries are correct. The next order was designed
to store thls new partial sum in T1l, 000. An examination of the entry in
column elight shows that this order was executed properly. Thus, the

results of these first three orders correspond to the anticipated results,

For the remaining orders in this sequence, we will be interested in
the results as represented in sexadecimal form; hence, we will examine the
entries in columns three and five. Consider the entries on the fourth.
line of the detailed description:

K113 10N NOLOS OOOOL - - - - NOLOS OOO0L = = = = = = = = = = = =

An examination of the handwritten copy shows that this order corresponds
to the first order of sequence III, i.e. III, 1, + Kl. This order was
designed to move the counter, j, from K1 to Rl. Since this 1s the first
pass tarough the sequence, j = 1. Further, since j is scaled by 2_39, the
last sexadecimal character of the entries in columns three and five should

" be 1. An examination of these entries shows that the result is correct.

One should not be disturbed by the fact that the entries contain more than
the counter Jj, i.e., the entry NO10OS OOO01l corresponds to the contents of
Ki, 115; The left characters, NOLOS, correspond to the order U II, 1, which
1s in accordance with the designed use of Kl. An anslysis of the entries

on lines five thru thirteen of the detalled description, (that is, the
remaining orders of the intervel that was checked), will show that the
entries correspond to the anticipated entries. Thus, the exhibited resultis
of the first pass through the sequence indicate that these orders of the
subrcoutine are doing the job they were designed to do.

Evidently, these results indicate that the interval that we selected
to be checked 1s not responsible for the unsatisfactory result that was

182

obtalned. Iogically, then, one might conclude that the unsatisfactory result
must be due to a mistake in one or more of the orders that follow the orders
that have been checked. An examination of the handwritten copy will show.
that the orders that follow the interval that have not been checked correspond
to the orders of Box V. These are the orders that store the final sum in

Rl and transfer control to the R.A. These orders are followed by the
reconversion and print orders. Since the reconversion and print subroutine
has previously been checked, the probabllity of a mistake therein is small.
One should check to see that the requirements of this subroutine have been
fulfilled. A check of the orders of Box V will reveal that they are correct.
Similarly, a check to see that the requirements of the reconversion and
print subroutine have been fulfilled will aleo indicate that they are correct.
A check of the initial data and key words will show that they are correct.
Thus, we kndw that there is a mistake éomewhere, as indicated by the un-
gatisfactory result, and yet, our efforts to determine the mistake have

been in vain. . . . Perhaps by this time, the reader has observed the'false
reasoning in our analysis of the detalled description. The reader is
referred to an earlier statement in the discussion which reads, "Thus, the
exhibited results of the first pass through the sequence indicate that

these orders of the subroutine are doing the job they were designed to do."
Is it possible that the exhibited results are deceiving? In particular,

can an incorrect order produce a correct result? The answer to both

questions is yes! The followlng discussion will reveal the false reasoning

we employed in the anslysls of the detailed deécription.

Consider the entries on the fourteenth line of the detailed description;
K4OOO 108 = = = = = = = = = = = = - - - KOOOL 00000 - - - KOOOL 00000
The entries on this line correspond to the detailed description of order II,l
when it waavexécuted‘the second time. As such, thé deslgn of the order is
unchanged, i.e. this order was designed to move the previous accumulated sum
from temporary memory position TL +to Rl. We know the existing partial sum
at this time is .00010 00000, consequently, the entries in columns six and
elght of line fourteen should be .000L0 00000, An examination of these
entries shows that they are correct. Consider the entries on line fifteen:
K420l 108 = = = = = = =@ m = - m e e e = 0002 00000 - - - KO00Z2 00000

The entries on this line correspond to the detailed description of order
11,1 vhen it was executé& the second time. This order was designed to add
the Jth nunber, (at this time j = 2), to the previous accumulated sum to
obtain the Jth partial sum. We know the address of the second mawber to
be added to the sum; i.e. the address of an is 201. This is verified by
examining the address portion of the order, K420l. Further, we know that
ay = .00020 00000, consequently the entry in column eight should be
.00020 00000. An examination of this entry will show that it is correct.
Now, if 8, = .00010 00000, and 8, = .00020 00000, then 8, * 8, = .00030 00000,
This 18 the entry one should expect to find in column six. An examination
of the entry in column six shows K0002 00000!! This 1s not the correct
result. We expected KOOO3 00000 and the exhibited result is KO002 00000.
Why the error? This particular order produced the correct result when it
was executed the first time! At that time, the expected result was
00000 00000 + 00010 00000, i.e. SO +ag, and the entry exhibited was as
expected., The fact i1s, however, that the actual order performed was not
an addition!! The order performed was simply an order to move the number
from Aj to Rl. Our false reasoning was due to the fact that

SO * e = 8y, if and only if SO is zero,
and in the first execution‘of the order, SO was zero. That is, the order
" +AJ ", 18 equivalent to the order "(+) Aj" 1if (Rl) is zero at the
time these orders are executed. Thus, our efforts have not been fruitless,
the correct order corresponding to II,2 should be initially "N4O00", not
"KLOO00" .

This correction should be made and the original test rerun. When the
necessary test (or tests) produce the desired results the subroutine is
considered checked. Generally, the entire checking procédure is repeated
as often as 1s necessary. If there are mistakes in other intervals of the
routine being checked, repested applications éf the code checker may be
necessary. As can be readily seen from the previous discussion, the process
of detecting mistakes can be tedious, time consuming and exasperating. Surely,
the previous discussion accentuates the old proverb, "an ounce of preventlon

is worth a pound of cure".

184

Exercilses:
1) Prepare the necessary (tape) words for use with the memory print out
routine to obtain the sexadecimal print outs for ranges:

a. 218 thru 6Kk

b. KNO thru JL3

¢, - 000 thru LILL.
2) Prepare the necessary tape words for use with the code checker to obtain
8 detailed descriﬁtion of the orders in the following intervals:

a. 10L thru 1J2, each time this interval is traversed

b. 3N3% thru 20K, the third, fourth and fifth time this interval is
traversed

c. 688 thru 70L, the first three times this interval is traversed.

Assume ‘that the above intervals begin with "left" orders and terminate with
"pright" orders.

185

CHAPTER X
"IBM IN" AND "IBM OUT" ORDERS;
"IBM IN" AND "IBM OUT" SUBROUTINES

Most problems to he solved by hilgh-speed computefs require & meaps
of getting data into the machine, and similarly most problems require

- some means of getting data out of the machine. In view of this fact,
certain logical orders are built in the machine to enable the coder to

transfer data from (to) some external medium, (such as carde, tapes, etc.),
to (from) some internal unit, (such as the arithmetic registers, the high-
speed memory, etc.). Since these orders (for Ordvac) are primarily designed

to transfer data which 1s represented in binary form, subroutines have
been desilgned to facilitate the transfer of data which 1s represented
in decimal form.

The purpose of thils chapter is: ,

1. +to describe the logical orders which are designed to transfer bilnary
data from IBM cards to the arithmetic registefs of the Ordvac, or ffom
the arithmetic registers to IBM cards;

2. to describe and illustrate the use of two subroutines which are
designed to transfer decimal data from IBM cards to the core memory,
or from the core memory to IBM cards. We shall refer to these sub-
routines respectively as the "IBM IN" subroutine and the "IBM oUT"

 subroutine.
"IBM IN"- ORDER.
The "IBM IN" ORDER transfers all 80 bits from one designated row

of an IBM card, sending 40 bits to register Rl and 4O bite to register RB.

The description of the rows, columns, and punching positions of an IBM

card was given in Chapter IIT. The first hOybitg of a row, i.e., the bits

recorded in punching positions 1 through 40, are transferred to Rl. The
last 40 bits of the row, i.e., the bits recorded in punching positions k1
through 80, are transferred to RB. A perforation, (punch), in a punching
position is interpreted as a binary "one"; a non-punch is interpreted as
a binary "zero". :
Example:

Assume that the card shown in Figure 1 is in the card reader.

187

fXx¥¥vvYYVHYYYYYVYYYYYVYVYYYYJavvvvvvvvvirrvvyvvvvvvvvvvvyvvﬂyxxryvxxxﬂyvxxrvvvr
rxxxxxixxxxXxXxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxikxxxfixxxxx\}xxxxixxiikxxxx

sooooooojoooajooadBoooloosalonpoojooosjooofFooooo ooueoonoouﬂﬂﬂﬂﬂuuddnﬂdoaoodnooou
G 12 31456 7{8 90011293 1415]16 17 18 19120 21 22 23124 25 26 27|26.29430 21(32 33 M 35[36 3738390 1 2 3[4 § 116 9F10 11112 12 34 15{16 17 18 19f20° 21 22 23124 25 26 27128 2530 31|32 33 34 35{36 37 38 39

IRERHRLEISREIRY AN ARNERRIRI RUERRHEE SUE IRNERRNEIIBNARERHEE SN IRURRRUHRIRHRRRIEY 1
2282222222022 2222B2202 2820222222222 2220 Ba2l2 28222222 2)2 2022228222 28202 222222 2l2 2222 B2
333@333333333333!333333B333333333333&333333#33333333333sﬁa33333E333333333335H;33
4444%4444444444544444444!4444444444&4444444454444444444344444444ﬂ4444444444ﬂ4444
55s5?%55ssssssﬁsss%sésssgﬂss 555555555555555?555555555%555555555?!55555555%55555
6666567 666/666B666666/666666B66666/0Bc6/66665666/66R6:66/666H666666/6666668656/660F666666
“_777E77177777777777&7777&71777777777777&7777%17177777771777ﬂ7177517117771
aaﬁsassssassaéaseseﬁssﬂaaasessaaasaeasaﬂsaﬂmaaaasssaassaassﬂsaﬁdaasﬁssé
ﬁﬂéaaseaeesaﬂseaasesﬁﬁs 99999999999999399%@999959999

£33 419 [10011 12113 1415 16117 18 19 20121 22 23 24125 26 27 28129 30431 32133 34 35 36137 38 39 40141 42 43 44145 46 47 48119 50§51 52193 54 55 56157 58 50 50361 62 63 64165 66 67 641R9 /0N1 72072 14 13 I6(77 101G RO -
By 831358 OROVAC

o

[
(7=
w
w
co
)
=]
(-3
<
¢]

s
[

Figure 1

As a result of the first "IBM IN" ORDER, the contents of Rl and 33 would
be ag follows:

(R1) = 0000000000 1000000000 0000000000 1000000000

(RB) 1000000000 0000000000 1000000000 1000000000 .
That is, the contents of the first row, (the "Y" row), would be transferred

to Rl and R5.

i

it

Since each "IBM IN" ORDER reads in one row of a card, twelve such
orders are necessary to read in the twelve rows of a glven card. Further,
the first "IBM IN" ORDER, (the first of twelve with respect to a given
card), will cause the twelve successive rows of the card to "pass by" a
row reading mechanism at equsl intervals of time. That is, the first
‘prow will be in position to be read at time "one"; the second row will be
in position to be read at time "two"; etc; the twelfth row will be in
position to be read at time "twelve". Therefore, it is important that
twelve successive "IBM IN" ORDERS, with respect to a given card, be
executed within definite time intervals. Since it takes a mechanical

device a definite amount of time to move the "next" row of a card into

188

position to be read, a definite amount of time is available for computing
petween successive row reads. This is to say that during the time that

a row 1s being moved into position to be read, the computer, (as apart

from the card reader), may be used to execute orders different from the

"TBM IN" Order. Indeed, a definite amount of time is necessary, (between
successive row reads), to move the words that have been read into R1 and

R3 to designated positions in the core memory. In particular, the maximum
amount of time that can be used to execute orders between successive "iBM IN"
Orders is 7 milliseconds. This T millisecond maximum is 5ased on a card
reading rate of 84 cards per minute. If the 7 millisecond maximum is
exceeded{then access to the next or succeeding rows of the card 1s lost,
gince the next or succeeding rows wiil have passed by the row reading
mechanism. The number of rows that will have passed by the row reading
mechanism is proportional to the amount of time exceeded. The fact that

a row passes by the row reading mechanism does not imply that the row has
been read, the row will be read if and only if an "IBM IN" Order is
encountered just before or at the time the row is in position to be read.

If & row is not in position to be read when an "1BM IN" Order is encountered,
the computer waits until a'row is in position before carrylng out the

"IBM IN' Order. ' ’

Gimilar to the 7 millisecond maximum time interval available between
successive row reads, a minimum of 300 milliseconds is available between
successive card reads i.e. between the last "IBM IN" Order associated
with one card and the first "IBM IN" Order associated with the next card.
This 1s to say that it takes 300 milliseconds to move the next card into
position to be read.

Summery; The "IBM IN" Order reads one row of an IBM card into
reglsters RL and R3. A fow is interpreted as representing 80 bits. Twelve
guch orders are required to read the twelve rows of a card. A‘maximum
of 7 milliseconds is avallable for executing orders hetween guccessive row
readsf A minimum of 300 milliseconds is avallable for executing orders

between successive card reads.

189

—_—n
-—
- = o

"TBM OUT" ORDER:

The "IBM OUT" Order is similar to the "IBM IN" Order. The "IBM OUT"
Order recofds (punches) the contents of Rl and R2 in binary form on one row
of an IBM card. The contents of Rl is recorded in the first 40 punching
positions of the row. The contents of R2 is recorded in the last 4O
punching positions of the row. Twelve such orders are necessary to record
data in the twelve rows of a given card. A maximum of 6 milleseconds 1s
aveilsble for executing orders between successive "IBM OUT" Orders. This
maximum of 6 milliseconds is based on a card punching rate of 100 cards
per minute. A minimum of 300 milliseconds is available between successive
card recordings, (prints or punches).

EXAMPLE: Assume that the contents of Rl and R2 are as follows:
(R1) = 1010101010101010. « + & « « «
(R2) = 10001000100010001 . + . + .
In this case, as a result of an "IBM OUT" Order, the card shown in
Figure 2 would be produced:

EvﬁYEVEVFVEYEYEvﬁvﬂYﬁv@rEvaEYEvaﬂvﬁvvv&vvvﬁvaEvvv%vvvﬁvvvﬁvvvﬁvvvﬁvvvﬁvvv

XXXXXXXXXXXXXXXXXX.XX

ﬁ000000000000000DUUDU00000000Uﬂﬂﬂ090000000UOU000000000000000000000000000000
s 6 700 9o 1|1z e islio 1718 100 21 22 234 25 26 27fe 2sfo i 3w aa aslae 7 380 v 2 3|4 5 6 7|8 sfio |12 13 14 15)16 17 18 ofoo 21 22 2324 25 26 21|28 25§30 3132 59 34 6136 3 36 38
11111111111111111111111111l11]111111]]11111111lllll]llI\llflll1lllllll1llll

22

33

44

A B C D E F G H
55

6566866666BBG6866865636666666BG6666BBBB6BBGBG6686666666668666656666666666686

777777777777777777777177
88888888888838888888888888888888BB8888888888BH888888888888808888888888888888

=)

99

kL)

9
5

183

9/99/99/9899(99999999959989[99
819 1000 12013 1415 15117 18 19 20021 22 23 24125 26 27 28las 3olys 32l
358 ORDVAC

85w

999/999999(995899
2434

43

99909/3999(9999/39(99/9969/9098
a1

37 36 39 40 45 46 47 48149 5015! 57153 54 55 56157 58 59 60851 62 63 64165 66 G7 68lc9 70171 72173 74 75 76:77 78

a3
E

9
7
|

Figure 2
The "IBM IN" and"IBM OUT" orders are not described in the Appendix.
CARD "PORMAT" AND "FIELD" WORDS

Tn order to accommodate a wide class of problems, the IBM subroutines,
(to be discussed presently), are deslgned to accept a "variable" number of
190

quantities (datum numbers) per card. Further, each quantity (datum number)
may be represéntéd by & "variable" number of decimal digits. The arrange-
ment of quantities (datum numbers) on a card, as pertains to the order of

the quantities and the corresponding number of columns that are used to
represent each quantity, is called a card "rormat". A standard name that

1s used to refer to a group of successive columns of an IBM card is a
"pield". To indicate, to the subroutines, the specific card format that

is being employed, "field" words are constructed‘which define the card format.
Thet is, "field" words indicate the number of quantities represented on a
card (cards) and the number of colums that are used to represent respective

guantities.

A field word is composed of ten sexadecimal characters as follows:

Sl 82 83 Sh 85 S6 87 88 89 le’

or more generally, Si’ i=21,2,3%, ..., 10. Being sexadecimgl, each

of these has (by definition) any one of 16 distinct values, O, 1, 2, ceny
9, K, 8, N, J, F, L. Each of these is to be interpreted as follows:

Si =1, 2, 3, «v., 9, K, 8, defines the number of columns of the card
that are used to represent the corresponding deciwal quantities.

,Si =N, J, F, and L have special meanings. A signal to onmlt a certain-
number of columns (from one to fifteen) requires two sexadecimals, "axM".
Omit 3 columns is "J3"; omit 13 columns is "7J". Note the distinction of
the two "J's" in the last example., Omit 26 columns way be expressed 1n
geveral ways such as: "JJJI"; or "JNJF"; or "J9J9J8"; etc. When not
preceded by "J" as above, the symbol 8, = "N" indicates the end of the
card format. At present, the symbols S, = "p*, or "IL" have no meaning to
the "IBM IN" subroutine except when preceded by "J", the omit signal.

The symbol 8, = nmEt o911 be assigned a speclal meaning for use with the
"IBM OUT" subroutine. 8§, = "d" 4instructs the subroutines to continue
interpreting the format with the next fleld word.

The following examples illustrate the cohstruction_and interpretation
of field words. A

191

9999
123

4
IRM

—_ s =

2222020222222 222022220222202222222202222)22222 2222202222222 222f2 222722220222 20222 22222
133303
444408

A B ¢
S5[5555555555555 55H155/55555555/5555/5555{5555(55/55/55555555/5555/5555/55{35/5555(5555

S 6 7.819 10H1 12113 1415 16117 18 19 20123 22 23 24125 26 27 28129 30131 32133 34 35 36 13

Example 1. 78SNO 00000,

This field word defines the following card format:

the first quantity on the card is represented in columns 1 through T;
1" Second 11§ i " " 1" 1" " 11 8 " 15;

" third n n n " 1" n 1" " 16 " 265

Figure 3 shows a typical card corresponding to the format defined by the
field word of Example 1.

YYY‘YYYYYYY'YYYYYYYYYYYYYYYYYYYYYYYYYYVYYYYYYYYYYYYYYYYYVYYVYYYYYYYYYYYYYYYY

XXX XPXOX K XXX XXX X KO0 XX X KX X XX KKK XXX XX K K KX K XK XXX XK K XXX XXX XXX

coojo0ojoo/00R0000R0000C|000000J00(0000/0000{0000;0006/00j00[0000(0000J0000{000000}00/0600[0000
56 7(8 910111213 1415)16 17 18 19}20 21 22 23)24 25 26 27(28 29}30 31132 33 34 3526 37 38 39| 0 1 2 3|4 5 & 7[8 9]t0 1[v2 13 14 1516 17 18 19fo0 21 22 2324 25 26 2228 2sf0 31[32 33 34 3536 3T @ 9
Tt rr et gy rpapiprriier e e rrgrre e e et

{1133(3333/3333|3333/3333/33}33]3333[3333(3333)3333{33[33|33333333{33331333333|3313333/3333
4

D E F G H

666686BEBGEB6BBG6866666666566666EGBGBBGBBEB665666666BBBSBGBBBBBBSGMGGBBGGEGG
7577777773777777@7777177777777777777777?777777777777777777777777777777777777
Boo8s6/68888o888/88888888/88/38368808888/36866666888/688888/38088(888888088/88/388888/8888

999999/1993999/99999f199/1999999]999999/9999999919999/9819999999999|9999/9999(99/99(9999999

38 39 404} 42 43 44.49 46 47 48149 50151 52(53 94 55 56157 58 59 60161 62 63 B4IKG 66 67 66.G9 70071 72173 74 75 76177 76 79 A

831358 ORDVAC

Figure 3

The second and third quantities on this card, "Yl" and "Zl", represent
negative quantities. Negative quantities, such as these, are indlcated
by the presence of the "Y" punch in the first column of the field. The
absence of the "Y" punch over the first column of a field indicates a

positive quantity. Thus, the quantities on the card shown 1n Figure 5 are:

X, = + 1253875
Y, = - 32356970
Z, = -..82540794155.

192

44444444!444@444

Other options are avallable wheréby one may represent negative gquantities
by the presence of an "X" punch instead of the "Y" punch, or one may use a
separate colum to define the slign of the quantity.

Exeample 2. 78sJ4 6N000.

This field word defines the following card format:

the first quantity on the card 1s represented in columns 1 through T;
" SeCOIld n " 11 L 1" " 1 1 8 1" 15 ;

" .third 1" " H it 1 n " n 16 1 265

"J4" 1s & signal to ignore columns 27 through 30;
the fourth quantity on the card is represented In columns 31
through 36; the "N" indicates the end of the format.

Example 3. JIK85 JLJLS
5NOOO 00000,
This palr of field words defines the followlng card format:
columns 1 through 15 are to be ignored as indicated by "JL";
the first quantity on the card is represented in columns 16 through 25;
L1 Second. " 1" " 11 1 . LLIN] " 1" 26 ". 53;

1" 'tvh-ird 1" n 1 n 1" 1 1" n 3)4. n 58;

~ the thirty columﬁs, %9 through 68, are to be ignored as indlcated by "JLJL"
the fourth quantity on the card is represented in columns 69 through T3;

i fifth 1 . _|" b} 1" 1" i t 1] '{)-l' 1 78 .
As can be seen from thls example, more than oﬁe field word may be necessary

to define a card format.

N

Exemple 4. 88888 66688
| KH3NO 00000,

This palr of field words defines a format for thirteen gquantities which

are represented on two successive cards:

ten quantities, of eight diglts each, are represented on the first card;

three quantities, of ten, five, and eleven digits respectively, are

represented on the gecond card. '

Ag caun be’seen from this example, a group of fleld words may define a

format corresponding to more than one card.

193

Note that no examples were cited which illustrated the use of "S1 = Q"
i.e. the signal to the subroutines to continue interpreting the format
with the "next" field word. This character is used primarily to cancel a
field word which had been established for checking purposes. For example,
the first field word of Example 4 mey have been employed for printing
subsidiary quantities for checking purposes. The second field word may
have been employed to define the format for the quantities to be printed
" during the "regular" run of operations. Having determined that the
subsidiary quantities are no longer desired, one can "cancel" the first
field word by replacing it with "00000 00000", or "08888 88888", etc.
EXERCISES:

Construct the field words corresponding to the following card formats:

8. For five quantities on one card, where:
x 18 td be represented by nine decimal digits in colummns 1 through 9;
y " 1 n " L] eigh‘t n 1 n n lO n) l7j
pa " 1" 1" 1" " eleven n 1 " 1" 18 ‘" ' 28;
u 1" 1" 1 n n 1") 1" " 1 ” 29 1n 593
v 1 7" 1n 1 " ten 1" n n 111 L"O n l‘.9 .

b. For the same set except that "v" is to be represented by seven decimal
digits in columns 51 through 57, instead of in columns 40 through 49.

c. For twenty quantities represented on two cards, where each quantity is
to be represented by five decimal digite: 16 quantities on the first card
in columns 1 through 80; and L4 quantities on the second card in columns 1
through 20.

d. For the twenty quantities given in "e", except that the four quantities
on the second card are to be represented in columns 31 through 50, instead
of columns 1 through 20.

Let us now consider the meaning assigned to S, = "F' in the "IBM OUT"

i
subroutine.

In many problems it is desirable to have the output cards serially
identified. That 1s, 1t is convenient to have recorded on each output
card a number which can be taken to mean "this 1s the first card that was

194

produced, this is the second card that vas produced, this is the "Jth"

card that was produced", etc. In addition to the serial numbering of

the output cards, it is often desirable to have a "code number", (or case
number), recorded on each card so that each card can be identified or
associlated with a particular problem or a particular case of a general
problem. For example, if one is running 100 cases of g given problem,

where each case requlres 500 output cards, it is convenient to be able

to assoclate each output card with a particular case (one of the 100 cases)
and the particular sérial number (one of the SOOL .Since this identification
facility 1s desirable, it is included in the "IBM OUT" subroutine and is

recognized by the "IBM OUT" subroutine when 8; = "F' in a field word.

To effect this facility, the "IBM OUT" subroutine assumes that the
code number, (or case number), is stored in the second word, W2, of the
gubroutine, Likewise, the subroutine assumes that the "unit" serial
number, (or serial "incremeni"), is stored in the third word, W3, of the
subroutine. As each, card is being prepared for punching, the subroutine
forms the sum (W2) + (W3) and stores this sum in W2. As each card is
produced, the contents of W2 is recorded in the columns of the card
defined by "Fq". That is, "F" is the signal to the subroutine that
ldentification is.desired, and "q" indicates the number of columns of
the card that are to be used to represent the combined code and serial
mmbers, (W2). (15 g€ 8). In the example cited‘above,-where there
were 100 cases, each of which necessitated 500 output cards, three
colums would be sufficlent to identify the case number and three columns
would be sufficient to identify the serial number. That is, one could
identify the cases by the integers 1, 2, 5, ..., 100; simllarly, one
could identify the serial numbers by the integers 1, 2, 5, «sey 500,
Initially, one would be required to store the quantity 10° (l) in W2,
and the quantity 10 (1) in W3. The quantity 10° (1) represents the
initiasl case nuwber, and the quantity 10 (l) represents the serial
increment. The scaling of "j" by ZLO“5 and "i" by 10_6 actually "positions"
the "3j" and "1" in the combined sum, "10"5(3) + 10"6(1)". That is, the
first three digits of (W2) represents "J" and the next three digits

represent "i".

195

Example: If one stored:
10'3(1) in W2;

10'6(1) in W3,
"F6" in the field word defining the format;
then, the cards that are produced would have the following
identification recorded in the columns defined by "F6":
the first card produced would contain "OOLOOL" in the designated columns

the sec Ond n " " " 7" 001002" " 4 n t1
the third 1 " 1 n n 001003" n 1 " 1"
ete.
1 th" 1" n n 1 1" \ 1t 1" " 1"
the "500 001500

If one desired to have "j" and "1" separated by one blank column, the
combined identificatlion would require seven columns and the scaling of

the serial increment would have to be 10_7. To obtain identification for
the second case, i.e. "J = 2" the coder would hfa? to "reset" (W2) to.
1072(2). Thie would have the effect of settin%f'g = 2", and "i" = O,
The corresponding output cards would be identified as "j = 2" and "i" =1,
2, 3, ..., 500.

In general, the identification recorded in the "q" columne of a card
represents the first "q" digits of (W2), where

S (W2) = (WR) + (W3).
Let us now take up the discussion of the two subroutines.

"TBM IN" Subroutine (105 words with 2 FW's).
The objective of the "IBM IN" subroutine is:

1. +to read decimal quantities from "IBM" cards;

. to convert the decimal quantitlies to corresponding binary equivalents;
5. to store the binary equivalents in designated memory positions.

The requirements for using the "IBM IN" subroutines are:
a. store the return address in the right-address position of R2;

b. store, in Rl, a special two-part word of the form,

00X X, X 00X, X. X
17273 L 6
N \W~N£1m_/
1" nptt , where

196

"M", represented by the three sexadecimal characters X1X2X§, specifies
the number of decimal quantities that are to be read, converted and
stored; '

"P" represented by the three sexadecimal characters XXX, specifies

the address where the first converted quantity 1s to be szored;
the converted quantities are stored in consecutive memory positions,
i.e. in P, P+ 1, P + 2, etec.

c. specify the card format, 1.e., store the field word (words) immediately

following the last word of the subroutine.proper.

"IBM OUT" Subroutine (128 words witﬁ§2 FW's).
The obJjective of the "TBRM QUT" subroutine is:
1. to reconvert binary quantities to their corresponding decimal equivalents;

2. o record (punch) the decimal equivalents on "IBM" cards.
The requirements for using the "IBM OUT" subroutine are:
a. store the return address in the right-address position of R2;
b. store in Rl a special two-part word of the form,
oo"M" 00"P" ., where

o s v -

"M" represents the number of quantities that are to be reconverted
and recorded;
"p" represents the address of the first quantity to be reconverted.
¢, specify the card format, i.e. store the field word (words) immediately
following the last word of the subroutine proper.
, , Note the similarity in the requirements for +he "IBM IN" and
the "IBM OUT" subroutines. The only significant difference in the two
subroutines is that the "IBM OUT" subroutine includes the "identification
faqility.

To illustrate the use of the "IBM IN" and the "IBM OUT" subroutines
conglder the following problem:

197

I1llustrative problem:
1. 30 sets of data, where each set is composed of sub-sets, P, = (xi,yi,zi,)
1=1,2,3, ..., 50;
2., each sub-gset is recorded on an IBM card as follows:
x 1s represented by 7 decimal diglits in columns 11 through 17}
y 1 1" n 9 n 1 n " 20 " 28;
z " " " moow "Rt g
3. definitions of: F(Pi)’ G(Pi)’ and H(Pi), hereafter referred to as

Fi’ Gi’ and Hi’
Wanted.:
4, PFor each sub-set, P,
a. compute: Fi’ Gi’ Hi;
b. 7print (punch) in decimal form Fis Gy, Hyp,
referred to as "J") and "serial" number, (hereafter referred to
as "1"):

F. 1s to be recorded in columns 1 through 7;

"set" number, hereafter

G " noou " u " 10 " 16;
i

H " W n " no 19 " 253
i

g oo n n i %5 " %63

g " noon i 1 " 39 u 40.

5. For each set
8. computeZ\Fi,Z‘Gi,: Hi;
b. print (punch) in decimal form .Z:Fi, ZGi, ZHi, "3, and "i" = 51
ZFi is to be recorded in columnsg 1 through 10; '

Z G'i " 1 " n 1 4] 12 1" 21;
2 H 1 1 1" 1" 1" n 23 1 52;
Ji " 1 " n " " 55 u 36;
i=5l n " 1" " it n 59 . 1 Ll_o .

To specify the card format for each input card, (the cards containing
the Pi) , & fleld word is constructed according to the information glven in
2" The field word specifying this format is:

JK(J2 9J38N.

198

To specify the card format for each output card corresponding to each
sub-gset, Pi’ field words are constructed according to the information
given in "4b". The fleld words specifying this format are:

TI327J 27390

F6NOO 00000.
Notice the "¥6" indicates that six columns are to be used for the conmbined
‘ldentification of "j" and "i", namely columns 35 through 40. Since "Lb"
requires that "j" be recorded in columns 35 and 36, "J" must be scaled by
10'2. Similarly, since "i" is to be recorded in columns 39 snd 40, "i"
mist be scaled by 10”6. Hence, to meet the ldentification requirements
of the "IBM OUT" subroutine we will need the constants 10”2(1) and 10'6(1)
to define the initial "J" and the serial increment "y,

’

To speclfy the format for each output card corresponding to each ggy.
field words are constructed according to the information given in "5b".
The field words sgpecifying this format are:

KJIKJ 1KJ20
F6NOO 00000,
For future references, we willl assume that the fileld words and constants
are gtored as follows:
JK7J2 9J38N in BL
TJ27T 27J90 in B2
F6NOO 00000 in B3, B5
KJ1KJ 1KJ20 in Bh
1072(1) 1in B6
10“6(1) in B7.
A flow chart for this example 1s shown in Figure L.

As 1s indicated on the flow chart, the "IBM IN" subroutine will be
employed in Box IV the "IBM OUT" subroutine will be employed in Boxes VI
and VIfI.‘We shall restrict our discussion to the orders corresponding to
Boxes I, II, IV, VI, VIII, and X, as these are the boxes associated with the use
of the "IBM IN" and "TIBM OUT" subroutines.

199

IT

I Fulfill identification
requirements:
— e e e Mi=1—
| 107°(1) -~ B8 1079(3) — W2 =]
| 107°(1) — w5 ZFg = 0Pl
|
| 1-1
G, = 0— P2
Bl T YK
B2 i-1
words v
B4 '
Employ the IBM IN subroutine
B5, to read, convert, and store:
-2
B6 10-6(1) x, —= Pl
BT 10 (1) ~
z, —* P6
X 1 +1-1
[]] v
J + 13388 Compute and store:
i
A Fi - PT; EiFK —» Pl;
G, —=F; ZGK —» P2;
Hi — P93 fHK —» P3;
{\ v VI
Employ the IBM OUT
IX XT
1o subroutine to:
J =307 STOP form and store i>WZ2; (automatic)
S
yes print in decimal form,
Fo 3 G, 5 Ho o3 g5 1
. VITT 1 1 1
Employ the IBM OUT
subroutine to:
form and store i + 1 in W2; (automatic) No YVit
print in decimal form, =501
g:QFi; ioGi; §)H13 Js 1. < Yes

Figure 4 .
200

Assume that:

1. the field words and constants are stored in Bl through BT as indicated.
on the flow chart;

2, +the "IBM IN" subroutine is stored in positions K1 through K103,

3. the "IBM OUT" subroutine is stored in positions W1 through W126;

We shall construct the "special” instruction words and "return-sddresses"

for the respectlve subroutines as their needs arise.

Preliminary Order. ' . Degcription
I,1 + B . | 10‘2(1) —m= R1 ‘ .
,2 MBS J =1, i.e. 10‘2(,1) = 10‘2(1) ~» B8

This pair of orders: sets the initial "j" equal
to one. Notice that "J" is stored in B8. The
orders of Box II will refer to B8 to fulfill the
identification requirement, i.e. to store the

"get" number, "J" in W2.

II,1 + B8 ' 1072(3) ——>R1
2 MW2 10“2(3)——»w2
,3 + BT 10'6(1) = 10"6(A1)---R;L
4 MW3 10'6(1) = 10'6(A1)~>wzs

These orders fulfill the requirements of the
"IBM OUT" subroutine to record the identification
on esch output card. Notlce the order IT,2,
which stores "J" in W2, actually sets "i" = O,

since the contents of W2 represents the combined

identification.
v,1 + Bl Fl, (field word No. 1), - RL
,2 M K104 F1 — K104
»3 R IV,6 return-address V,] - R2
>4+ B9 \ special word —RL
,5 U IBM IN, i.e. to Kl transfer to "IBM IN" subroutine
36 == V,1 (this is a convenient place to store the return-
address)
00003 (this is the special word which rn@icates that
B9 Pl -three quantitles are to be read, converted,
00.%. and stored, beginning at Ph.)

201

OrdersIV, 1, 2, 3 and 4 fulfill the requirements of the "IBM IN" subroutine

""""" VI, 1 + B2 F2, (field word No. 2), —> Rl
, 2 M Wiet F2 —> w127
sy 3+ B3 F3, (field word No. 3) — Rl
, 4 M w128 F3 — w128
, 5 R VL8 return-address VII,1— R2
, 6 + B1O special word—y R1
,.7 U IBM OUT, 1.e. to W1 +transfer to "IBM OUT" subroutine
, 8 --VII,1 (this is a convenient place to store the
return-address)
00003 (this is the special word which indicates
B OO.?. that three quantities are to be reconverted

and recorded, beginning from the guantity
stored at P7.)

Orders VI, 1,2,3,4,5, and 6 fulfill the requlrements of the "TBM OUT"

subroutine.
T VIII,L + BY Fl, (field word No. i), —yR1
,2 M W127 Fliy—> W127
,5 + BS F5, (field word No. 5);7—> Rl
»4 M w128 F5 —3W128
,5 R VIII,8 return-address IX,1 —> R2
,6 + Bll special word —» R1
»7J IBM OUT, i.e. to Wl +transfer to "IBM OUT" subroutine
;8 ~- IX,i (this is a convenilent place to store the
return-address)
00003 (this is the special word which indicates
Bll Pl
00..7 that three quantities are to be reconverted

and recorded, beginning from the quantity
stored at Pl.

Orders VIIT,1,2,3,4,5 and 6 fulfill the requirements of the "IBM OUT"

subroutine.
X, 1+ B6 ' 10'2(1) — RL
, 2 (+) B8 10”2(3 + 1) —>R1

202

, 3 MBS 10'2(3 + 1)——)10’2(3)-938
, WU I transfer to II,1l

The orders of Box X increase "J" by one and then control is directed to
Box II to repeat the operations for the "set" corresponding to "J".

Before one can wrlte the final code for the orders corresponding to
the boxes which were coded, one must decide where the subroutines are
to be stored., Once the subroutines have been assigned to specific positioné
of the memory, the addresses Wl, W2, W3, W127, w128, Kl and K104, are
defined explicitly. The essentlal statlstics concerning the subroutines
are listed at the end of this chapter. |
Exercises: (refer to the illustrative problem))
1. Assume that one had 300 sets of data, (instead of 30), and that
each set was composed of 80 sub-sets, Pi’ (instead of 5014»
a. How many columms of a card would be necegsary to represent the
conbined ldentification? | .
b. How should one scale "j", the number of the set and "i", the
serial increment?
c. How should "j" and "1" be scaled if "J" 1is to be recorded in
columns 38 through 40 and "i" is to be recorded in columns
35 through 367

2, Suppose that x was represented on emch input card in columns L4

i
through 50, (instead of columns 11 through 17). What changes would
be required to adapt thils format to the problem?

3, Consider the individual requirements of the subroutines. Which, if

any, should be fulfilled "outside" of the loops?

203

Lengths of IBM IN and TIBM OUT Subroutines: Sol ales 2R,
IBM IN 105 words (4000 - 4068) yorT
IBM OUT 128 words (4000 - LOTL)

Temporary Storage:
IBM IN 010 - 027 and O34 - O3L
IBM OUT 010 - 0353 and O3F - O3L

Location of field words:
IBM IN words 104 and 105 (4067 - L068)
IBM OUT words 127 and 128 (LOTF - LOTL)

Location of code and‘serial identification numbers:
address of W2 is word 2 (k001)

IBM OUT only
address of W5 is word 3 (4002)

Accuracy:
IBMIN Maximum error is 2 °2(1), last bit is always a 1
except that zero is exact. |
IBM OUT Maximum error is .5 x 1070 + 2'3§ where K is the
number of decimal diglts printed.

Initially, the field words are set at KKKKK KKKNO which corresponds
to eight fields of ten decimal digits'each.

(w2) is initially O,

(W3) is initially 10'10(1).

204

CHAPTER XI

Floating-Point Routine

As we know from Chapter I, machines such as ORDVAC where the radix
point is "fixed" within (or at either end of) the number representation, are
called "fixed-polnt" machines. In ORDVAC the binary-point is fixed between
the first and second bits of the 40 bit number representation.

X o XXLKXXKK KXXXEXKXKK KEAXXXXKKK XEXKXLKXKKK
Fixed binary-point.
Figure 1

Since the first bit in the number representation indicates the sign of

the number, the statement that the binary-point is fixed (as shown in
Figure 1) is equivalent to the assertion that numbers be less than one
in absolute value. Gince most computations involve nunbers which do not
satisfy this number size condition, the concept of scaling was introduced
and discussed in Chapter IV. A number size analysis of each quantity that
is to be used in computations, and the ensuing coding detalls that are
necessary to maintain the number slze condition can be and often are
lsborious. For some problems the number size analysis may be practically
impossible. '

The purpose of this chapter is to introduce the concept of - "floating-
point". The term "floating-point" 1s indicative of the fact that the
radix point in the number representation may vary (or float) rather than
remain fixed. In particular, we shall discuss a "Floating-Blnary Routine",
which is designed to eliminate the labor that is necessary to maintain the
number size condition. Hereafter. we shall refer to the "Floating-Binary
Routine" as the "OFB" (one-address.f}oatingfg}nary).

Tn coding for a fixed-point machine, a coder, being required to
meintain the number size condition, keeps a record of the scale factor

assoclated with a corresponding variable. If for example, the variable X

¥
Unless stated otherwlse, scale factor will always lmply the quantity, Bin,
n =1,2,3..., as explained in Chapter IV.

205

1s scaled by 2-8, each reference to the scaled variable 1s recorded (or
listed) as 2-8(x). In general, in coding for fixed-point machines, the
record of scale factors is an external, fixed record. The record of
scale factors 1s external in that it is not stored in the machine; the
record 1s fixed 1n that the gcale factors generally remain fixed as
determined by a number size analysis. In contrast, in coding or floating-
point machines (or routines)the record of scale factors is an internal,
variable record. The record of scale factors is internal in that the
record of scale factors is actually stored in the machine; the record is
vardable in that the scale factor assoclated with a corresponding quantity
need not remain fixed but is allowed to vary (or float) as the quantity
varies. The OFB maintains the number size condition by adjusting the record
of scale factors as requlred.

Ordvac Floating-Binary Routine

Machine representation of a floating-binary number:

A machine floating-binary number is represented by 40 bite as shown in
Figure 2 below.

[X. XXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX | XXXX XXXK |
Coefficient, C ' Exponent, E
Figure 2

The first 32 bits represent what 1s called the "coefficient"; the last
8 bits represent what is called the "exponent". Thus, the machine
representation of a floating binary number is éomposed of two parts, namely:
1. coefficient, C
2. exponent, E.
The representation shown in Flgure 2 represents the number N,
where ¥ = C.2°, and E =E - 128 =E - 2/; T =E +128 =} + 2/.

The coefficient, C, is a signed fixed-blnary number, the binary
point being fixed as shown in Figure 2. The first bit of the coefficient
represehts the sign of'the fleoating binary number. Negative coefflicients
are represented as complements with respect to "2", '

206

The exponent, B, defines the scale factor assoclated with N, i.e.
2™ N=C. The use of ¥, rather than E, in the floating binary representation
18 a convenient means of "affixing" an algebraic sign to E. Since E = E - 128,
E is negative if E < 128; '
E is positive if E > 128;
E is zero if E = 128.

-E

Further, since 8 bits are used to represent E,

0% T 255, or - 1284 E 4 127.
E can be‘interpreted as defining the direction and magnitude that the fixed
point should be éhifted in order to obtaln the locatlion of the binary point

in the unscaled representatlion of the number.

In order to define the number N uniquely 1In the floating blnary
form O‘2E, the condltion that lC]Zl/E, N '-'FO, is imposed. -This unique

form of representation is often referred to as the "normalized":form.

Examples:
Decimal Machine Représentation of Floating Binary Numbers
Number -
Coefficient, C Exponent, B
0 0.000 0000 0000 0000 0000 0000 0000 0000 0000 0000
3.5 0.111 0000 0000 0000 0000 0000 0000 0000 1000 0010
-3.5 1.001 0000 0000 0000 0000 0000 0000 0000 1000 0010
375 0.110 0000 0000 Q000 0000 0000 0000 0000 0111 1111
- 375 .1.,010 0000 0000 0000 0000 0000 0000 0000 0111 111l
610, 1 0.100 1100 0100 0011 0011 0011 0011 001l 1000 1010
-610. - 1.011 0011 1100 0000 0000 0000 0000 0000 1000 1010
Exercisas:

1) Write the floating-binary number representations for the following

' decimal numbers: 0.0625; -0.0625; 17.3; 1025.5.

2) What decilmal numbers are represented by the following floating-binary
numbers?
a) 0100 0000 1000 0000 0000 0000 0000 0000 1000 Ol1l
b) 1011 1111 1000 0000 0000 0000 0000 0000 1000 0111

207

c) OLl1ll 0000 0000 0000 0000 0000 0000 0000 1000 0000

d) 1101 0000 0000 0000 0000 0000 0000 0000 0111 1100

e) 0100 0000 000L 1000 0000 0000 0000 0000 1000 101l
Representation of floating-declimal numbers.

Since 1t is convenient for a coder to represent numbers in decimal
form, a "floating-decimel" form is defined similsr to the floating-binary
form. The floating-decimal form is composed of two parts, a signed
coefficient, C, and a signed exponent, E. The coefficlent is represented
by a slgn and a number of decimal digits; the exponent is represented by a
sign and generally two decimal digits. The general form of a floating-

decimal number, N = C-10°, is
* dl d2 d3 voe dh. te &
Coefficient, C Exponent, E

There are two essentlal differences between the floating-binary and floating-

decimal forms:

1. The number of digits In the floating-decimal coefficient is not fixed as
ig the number of bits in the floating binary coefficlent;

2. The floating-binary form uses E to represent the silgned exponent, whereas
the floating-declmal exponent 1s represented by a sign and two digits,

e €
In general, a coder need not represent numbers in floating-binary form.
Special subrqutines for use with the OFB have been designed to enable the
coder to transfer floating-decimal data from (to) IBM cards to (from) the
core memory. The requirements for using these subroutines are similar to
the requirements for using the fixed-point "IBM IN" snd "IBM OUT" sub-

routines. (See Chapter X.) The use of the OFB “IBM IN" and "IBM QUT"
subroutines will be illustrated in an example at the end of this chapter.

Floating-Binary Routine, OFB.

The OFB is employed in a manner somewhat similar to general subroutines.
That is, having met the requirements of the OFB, control is then directed
to the OFB. However, the speciflc requirements for using the OFB differ

from the conventional requirements for using subroutines. Floating-binary

208

operations are not interpreted directly by the control unit of_thé machine.
The defined floating-binary operations are interpreted by the ﬁCOntrol '
sequence" of the OFB. This control sequence 1s often referred to ﬁs a
"monitor". The control sequence of the OFB is simply a sequence of
instructions designed to interpret pseudo instructions. Having interpreted
a pseudo instruction, the control sequence of the OFB then directs control

to an appropriate OEB sequence which is designed specifically to carry

out the operation associated with the corresponding pseudo lnstruction.

After the sppropriate OFB gequence carries Qum the defined operation, control
1g directed to the control sequence of the OFB and the next pseudo instruction
is interpreted and cerried out. The OFB continues operations in this manner
untll it encounters a psendo Instruction which indicates that control is to
be directed to the machine control unit. The machine control unit then
carries out the normsl machine operations until an instruction 1s encountered
~ which directs control to the OFB. Thus, the coder sctually has at his
command the equivalent of two "machines": one, a fixed-point, the othei, a
floating-point, (OFB). When a coder desires to have operations carried

out in fixed point, he writes an instruction which ig carried out.by ‘the
machine control unit; when the coder desires to have operations carried

out in floating point, he wribeﬂ a pscudo ingtructlon whilch is carried out
by the control unit of the OFB. Actually, the OFB le deslgned to carry

out both fixed and floating-polnt operations. The OFB is designed so

as to minimize the number of ftransfers from and to the OFB.

OFB Arithmetic Operatlons.

The OFﬁ‘arithmetic operations are designed to be similar to the fixed point
operations. The OFB has a central accumulator, (slmllar to the arithmetic
register, R1), which we shall refer to as "A". BSince floating-binary
numbers are composged of two parts, the OFB central sccumulator, A, is
composed of two reglsters, Ac and Ae, which are used to hold respectively
the coefficlent and the exponent of the floating-binary number. To obtain
the sum, difference, product, or ratlo of two floatingnbinéry nunmbers,

Nl and NE’ the OFB first isolates the coefficient and exponent of each of
the two numbers. Thet is, the component: parts of Nl, Cl and Ll, are

isolated; ‘Simllarly, the component parts of N and Ee, are imolated.

Nys Cp

209

The QOFB then forms the sum, difference, product or ratio of the floating-

binary numbers, N, and N,,, by performing "fixed-point" operations on the

1 2

components, C,, El’ Cp) EQ. For example, the product of Ny and N, is

obtained by performing the fixed-point operations to carry out the following

steps:
1. 1isolate C; , ﬁl » Cy s

o
2, form C,-C, = C5 , (retain the 32 most significant bits of this
product) ; '

3., form E5 = El + E2

4, combine Cs £ 32 bits) a.nd.ﬁ3 , (8 bits) ; call this N,.

3
N3 is the desired floating binary product.

- 128 , (8 bits);

Exemple:
Form the floating-binary product, Nl . N2 = I\T5 » Where
N, = 7.5
N2 = - 11.125.
Expressed in floating-binary form,

N, = 0111 1000 0000 0000 0000 0000 0000 0000 1000 001l ;

N; = 1010 0111 0000 0000 0000 0000 0000 0000 1000 0100 .
1. €y = OL11 1000 0000 0000 0000 0000 0000 0000 , E, = 1000 0011 ;
C, = 1010 OLLL 0000 0000 0000 0000 0000 0000 , E, = 1000 0100 ;
2. €y * Gy =Cg = 1010 1100 1001 0000 0000 0000 0000 0000 ;
5. Eg = E; +E, - 128 = 1000 0111 ; |
4. Nz = 1010 1100 1001 0000 0000 0000 0000 00O 1000 OLLL.

The decimal eéuivalent of N3 is - 83.4375, the desired product.

The OFB actually performs more operations than are implied in steps "1"
thropgh "4". For example, before the product, N?, is stored in a designated
menory position, the OFB normalizes the produqt. During the process in
which the product 1s being normalized, the OFB determines if the resulting
exponent 1s in the tolerable range. If E‘tio, the product is defined as
zero. If E > 255, an address and an order pair are printed on the tele-
printer, then the OFB directs control to a stop order to indicate that the
tolerable bound of the exponent has been exceeded. The address that is
printed on the teleprinter 1s the address of the order pair that is printed.

210

This informstion tells the coder that one of the two orders that were
printed caused the exponent bound to be exceeded.

The operations for forming the sum, difference, or ratio of two
floating-binary numbers sre similar to the operations outlined for forming
& product. The reader should observe that it requires meny fixed-point ‘
operations to interpret and perform the floating-point operations. Conse-
quently, the time required to perform the floating-point operations is
approximately twelve to fifteen times as long as it takes to perform the
corresponding fixed-point operations. The OFB performs approximately 650
floating-binary arithmetic operations per second. The above figures are
egtimates, the time required %o perform a particular floating-binary
operation varles, depending on the particular operatlon and the quantities
that are used in the particular operation.

To illustrete the coding for OFB operations, conslder first the orders
that are required to form the sum of two fixed-point numbers, Nl and:Nz;
which are stored respectively at Pl and P2, Assume that the sum, N1+N2 wN3,
ig to be stored in P3.

For fixed-point coding, one writes:

Seq. - Order Descriptlion
a,l + PL Ny— RL

(a) a,2 (+) p2 N, Ny = Ny—>RI1
a,3 M P3 Ny—> P3

The coding to form end store the sum of two floating-binary numbers, Nl and
NE’ which are stored respectively in Pl and P2 ig ag follows:

Sedq. Order Description
b,1 f +PL I me-‘}

(b) Db,2 £(+) P2 Ny T,y = gD A
b,3 £ M P3 Ny 3 P3

The essential differences in "a", the fixed-point sequence, and "b", the

floating binary sequence, are:

1. sequence "a" is interpreted and carriled out by the machine control unlt;

sequence "b" is interpreted and carried out by the OFB.

nn

2. 1in sequence "a', the numbers N, and N2 are fixed-point numbers;

1
in sequence "Db", the numbers Ny and N, ere floating-binary numbers.

211

The "f +", "f (+)", and "f M" are the floating-binary orders which instruct
the OFB to form and store the sum. Note that under the description in
sequence "b", the result of each operation is recorded in the description
column gimilar to the description recorded in sequence "a". The order
"o+ Pl" duplicates N; in the OFB accumulator, A. The order " (+) p2"
forms the sum, Ni + N2 = N5, and stores this sum in the OFB accumulator, A.
The order "f M P3" stores the sum, Nj, in P3. In connection with the

"fM" order, the contents of the accumulator is normslized before it is
stored in P3.

In order to have the OFB interpret and carry out the instructions of
sequence "b", two requirements must be fulfilled:
(1) the address of the first instruction, "b,1", to be interpreted and
carried out by the OFB must be specified;
(2) control must be directed to the OFB.
Since it is cénvenient, (end advantsgeous), to precede the first floating
binary instruction by the orders which fulfill requirements (1) and (2), the
following method is used: '
Assume that orders "b,1" and "b,2" are stored in memory position K2. The
orders which satisfy requirements (1) and (2) are: '

Address Seq. Order
r,1l 4+ KL
K1
r,2 U OFB

where K1 is the address of the order palr, "r,1" and "r,2", and X2 = K1 + 1.
The first instruction to be Ilnterpreted by the OFB is defined to be the

left order stored at K1 + 1 = K2. The advantage of this method i1s that 1t
does not require memory space to store the address, K2. Thus, assuming
"machine" control, the orders to fulfill the OFB requirements and the orders

to form the sum in sequence "b" are as Follows:

Address Seq., Order Description
r,l + K1 '
K1l : fulfill requirements (1) and (2)
e ———— T2 o U_ OB |
b,1 f + Pl :
X2 b,2 £ +) P2 form and store the sum in P3.

C R L L LY LY L L P E Ry s

The OFB 1s designed to interpret and perform 46 orders, (pseudo-
instructions). The following table describes each of these orders., For
reference purposes the orders are numbered from 1 through 46. The
description of each order includes;

a. a verbal name of the order;

b. the preliminary (symbolic) form of the order;

c. the final (sexadecimal) form of the order}

d. a descriptibn of what the order. is designed to do.

Unless otherwise stated, "P" in the preliminary form of the order represents
the core memory address of the quantity to be used in the operation. The
three dots "...", in the final form uf the order represent the three sexa-
decimal characters which define "P" explicitly. Further, unless otherwise
stated, 1t 1s assumed that the contents of "P" is a floating-binary number.
In the description, "A" represents the OFB accumulator; "Ac" and "Ae"
 represent respectively the coefficient and exponent registers of the OFB
accumulator, "A",

Table of OFB Orders

Arithmetlc orders 1 through 10.

1. Floating clear add: £ + P; 00...
The contents of P i1s recorded in A; the coefficlent 1s recorded in Ac,

the exponent is recorded in Ae.

2. Floating clear subtract: £ - P; 24...
The negative of the contents of P 18 recorded in A; the negative

coefficient is recorded in Acs the exponent'is recorded in Ae.

3., Floating add hold: f (+) P ; Nh...
The contents of P is added to the contents of A, the sum ls recorded

in A; the coeffilcient of the sum 1s recorded in Ac, the exponent of

the sum is recorded in Ae.

4, TFloating subtract hold: f (-); Ok...
The contents off P 1s subtracted from the contents of A, the difference
is recorded in A; the coefficient of the difference is recorded in Ac,
the exponent is recoxrded in Ae. ;

213

10,

11.

l‘?'

13.

Floating multiply: £ x P ; 68...
The contents of A is multiplied by the contents of P, the product 1s
recorded in A; the coefficient 18 in Ac, the ‘exponent is 1n Ae.

Floating divide: f s P ; T8...
The contents of A is divided by the contents of P, the quotient 1s

recorded in A; the coefficlent is recorded in Ac, the exponent 1s in Ae.

Floating absolute value: f |+] P; Fh...

The absolute value of the contents of P is recorded in A, the coefficient

is recorded in Ac) the exponent is in Ae.

Floating negative absolute value: f |-| P ; 6h...
The negative of the ahsolute value of the contents of P is recorded

in A, the coefficient is recorded in Ac; the exponent is in Ae.

Floating divide by 2%: f-—n; 08.%,
The contents of A is divided by 2n; i.es the exponent in Ae is
diminished by "n". The coefficlent in Ac 1s unchanged.
Floating multiply by 25: fe— n; 18.5.
The contents of A i1s multiplied by En; i.e, the exponent in Ae 1s
augmented by "n". The coefficient in Ac remsins unchanged.
Floating store: © M P; 10...

The contents of A is normalized and stored in P. The normalized

coefficient is retained in Ac, the adjusted exponent is retained in Ae.

Orders 12, 13, 14, 15, and the negative "branches" of orders 18 and 19
are transfer of control orders which direct the OFB to continue

interpreting OFB orders.

Orders 16, 17, and the positive "branches" of orders 18 and 19 are
transfer of control orders which instruct the OFB to direct control
to the "machine" controlj i1.e. OFB control is relinquished.

Transfer to a left order: £ U P; NN...

Control is directed to the left order of P. The contents of A is unchanged.

Transfer to a right order: £ U' P; 1N.,.
Control is dirvected to the right order of P. The contents of A is
unchanged.

214

14. Compare, transfer to the left order of P if (Ac)» 0: £ C P; 2N...
If the contents of Ac is negative, control ié directed to the next
order in sequence. If the contents of Ac 2 0, control is directed
to the EEEE order of P. The contents of A remains unchanged.

15, Compare, trandfer to the right order of P if (Ac) > 0: £ C?' P; L N...
If the contents of Ac 1s negative, control is directed to the next
order in sequence. If the contents of Ac 2 0, control is directed
to the right order of'P. The contents of A remalns unchanged.

16. Transfer to a left order: U P; NO...
Control is directed out of OFB to the left order of P.. The contents
of A is unchanged. ‘

17. Transfer to a right order: U'P; 1h...
Control is directed out of OFB to the right order of P. The contents
of A is unchanged.

18. Compare, transfer to the left order of P if (Ac) & 0: CP; 20...
If the contents of Au 1ls negative, control 1s directed to the next
order in sequence., If the contents of Ac 2 0, control is directed
out of OFB to the left order of P. The contents of A is unchanged.

19. Compare, transfer to the right order of P if (Ac) = 0: C'P; 4O...
‘ | If the contents of Ac is negatlve, control ls dlrected to the next
order in sedquence. If the contents of Ac > 0, control is directed
out of OFB to the right order of P. The contents of A is unchanged.

20. BSBtop order: Stop; IN ...
The OFB directs the machine to stop operations.

21, Dummy order: DN; F8...
This order is used for delay purposes when desired. It does not
affect the contents of any of the reglsters or memory positions.
Gonveréion and Reconversion orders, 22 through 25.
22, Convert: (& number which is scaled by a power of ten to a number
which is scaled by a power of two): C+P ; JB...
This order sgssumes that the number to be converted is stored in
memory positions P and P + 1., It assumes that the number in P is

215

scaled by a power of ten. It is further assumed that the exponent of the
power of ten (by which the number in P is scaled) is stored in P + 1, scaled
by 10'2. The OFB records the equivalent floating-binary number in A.

In essence, this order transforms a binary number which 1s scaled by

a power of ten to a binary number which is scaled by a power of two,

a floating-binary number.

Reconvert: (a number which is scaled by a power of two, to a number
which is scaled by a power of ten): RM P; JN. . .

This order does the reverse of Order 22. That 1s, it 1s assumed that
the floating-binary number to be reconverted is in A. The OFB trans;
forms this numBer to & number which is scaled by a power of ten. The
coefficient is stored in P, the assoclated exponent of the power of ten
(scaled by 10~2) ig stored in P + 1. In essence this order transforms
a floating-binary number to an’equivalent number which is scaled by a

power of ten, a floating-decimal number.

Convert: (a fixed-binary number to a floating-binary number): C' + P; 98. . .
The OFB assumes that a fixed-binary number, which 1s less than one
in absolute value, is stored in P. The OFB transforms the fixed-
binary number to a floating-binary number; the floating-binary
number is recorded in A, If the number in P does not represent a
number which is less than one in absolute value, one can adjust the
floating-binary which is produced by applying a floating multiply
or divide by 2-.
Example: Assume that the fixed binary number, x, scaled by 272, is

in Pj i.e., 272 (x) is in P.

to obtain x in floating-binary, one writes:

, L ¢' o+ P 275 (x) —A ’

,2 fe—5 25.2"5(x) = x-—A

Reconvert: (a floating-binary number to a fixed-binary number):
R™M P; ON. . .

The OFB assumes that a floating-binary number, which 18 less than

one in absolute value, is in A. The OFB stores the equivalent

fixed point number in P. If the floating-binary number which is in

216

—

A is not less than one in absolute value, one can first apply an
appropriate scale factor which will make the quaentity less than
one in absolute value.
Example: Assume that the floating-binary number x is in A.
Assume that\ X\ < 1000, and that the floating-binary
number 1000 is in P.
To obtain the fixed polnt number 10-3¢x) one writes:
,21 £ = P 10"2(x) in floating-binary form —»A;
,2 Rv' P 10-2(x) in fixed point form—>P.
26. 'Transfer to a subroutine: U¥ P ; ©SN. . .
The OFB subroutines assume that the normalized floating-binery argument
ig in A when control is directed to the first order of the subroutine.

P represents‘the address of the first order of the subroutine. The
regult of the subroutine is recorded in A. After the subroutine is
executed, the OFB executes the left order following the U*P order in
sequence. For example, if the 5¥;—6rder is in memory position X, then
the order that the OFB commences with after the subroutine is executed
is the left order in memory position X+l. (Hence, space wise, it is
advantageous if the U¥ order is a right order).
Moaz}ic;%ion dgeaddresses, orders 27, 28 and 29.
27. Modify & left address: 2719(+) P ; 84. . .
The address of the left order of P is advanced by one; 1.e., (1)
18 added to the contents of P. The result 1s recorded in P and in Ac.
28, Modify a right address: 2739 (+) P ; 88, . .
The address of the right order of P 1s asdvanced by one; i.e., 2-39(1)
is added to the contents of P. The result is recorded in P and in Ac.
29. Modify both mddresses: @ 4 27% () P yoen. ..
The sddresses of both orders in P are cach advanced by onej i.e.,
27191y + 27°9(1) 1s added to the contents of P. The result is

»=19

recorded in P and in Ac.

30. Polynomial evaluation: Polyn ; N8 . W .

Thig order instructs the OFB to evaluate the polynomial,

= 1 2 sl
Y=ol b B X 8RS e B X

W represents the address of a word which specifies:

217

31.

2.

—

1. "n", the degree of the polynomial;
2. A0, the address of the coefficient a; (W) = 2’5(n) 40 00067
3. a speclal address for OFB control, 067.

The OFB assumes the following standard conditions:

a. the argument, x, |xJ< 1, is in memory position 016;

b. the coefficients are stored 1in consecutive positions, AO’Al""An

c. the result, y, and each partial sum is less than one in absolute
value;

The floating-binary result, y, is recorded in A and control is directed

to the next OFB order 1ln sequence.

In egsence, this order instructs the OFB to evaluate a polynomial in

fixed point; then, assuming the result, y, is less than one in

absolute value, the floating binary y is recorded in A.

Store a floating-binery zero: oM P ; 30...

Zero is recorded in A and in P.

Store the contents of the accumulator: sM P ; 70...

33.
3h.
35.
36.
37.
38.

The contents of Ac and Ae are combined to form a 40 bit word, then

this 40 bit word 1s recorded in P. This order differs from order 11,
fM P, in that the contents of A is not normalized before it is recorded
in P.

BUTRIS—

Orders 55’through W6 are similar to the ordinary machine orders. The
description given in the Appendix apply to these orders except that
the OFB refers to and records results in Ac rather than Rl or R2.
These orders are included in the OFB group of defined operations to

minimize the number of transfers of control from snd to the OFB.

+P 3 K8... ; (P) — Ac.
- P ; 88...
(+) P ; 3N...
(=) P; 5N... 3 (Ac) - (P) —» Ac.
X P ; 6N... ; (Ac) * (P)—»Ac.

“ P TN...

- (P)— Ac.
(Ac) + (P) —» Ac.

-

-e

(Ac) 5 (P)—>Ac.

e

218

39. MP ; 60... ; (Ac)— P.

40. E P'; 90... ; ‘the 12 bits eg through e
corresponding bits of P.

19 of Ac replace the 12

41. E'P ; 50... ; the 12 bits e,g through e
corresponding bits of P.

39 of Ac replace the 12

42, IMP 380 ... ; 273(1)—> Ac and 271(1) —y P.

43. &—n ; 58.%.; 2n(Ac)—9Ac.

Wy, — n; 48.%. ; 27%(Ac) = Ac.

45. -+ n; 28.%, ; p-(n + l)(l)-—>..__Ac.

b6, 8- 7&... ;3 (Ac) is shifted one place to the left through the sign

Mq“posaigion; i.e. el...aeo, e2—>el, e5——) e2, N e59-—-} 638’ 0 - e59.
HNeote“that the floating point sexadecimal order types are the same as the
sexadecimal order types defined for machine interpretation. é§é~$§§;“”h‘"
exception is the order type for the "f + P" order, No. 1. The reason for
the exception 1s +to have the machine stop operations in the event the
machine attempts to interpret the order "f + P" when it was desired to have
the OFB interpret this order i.e. the order type for the "f + P" order is
defined as "00" when it is to be interpreted by the gFe. If & coder
mistekenly directs control such that the machine control attempts to
interpret the "OO" order, the machine stops operations as this is & machine
order which causes the machine to stop operations.

Example ;

Given two floating-bilnary numbers, Nl and NE’ which are stored
respectively in Pl and P2, assume machine control and write the orders to
form and store:

the sum, Ny + N, = Ng, in P35 ;
the difference, Ny - N, = Ny, in Py ;
the product, N, ° N2 = N5; in P5 ;

1
the quotient, Nl/NE =Neg » in P6.

219

Seq. Order Description

1,1 + I,1
fulfill OFB requirements

,2 U OFB
%) £4+P1 Nl_> A
R £(+) P2 N, + N, = Na-—)A
2D M P3 N5-——>P?>
,6 £ + PL N, —A
e £(-) P2 N, - N, =N, —4A
,8 M Ph Ny, —> P4
)9 £+PL Nl —_ A
,10 fx P2 N, - N, = N5 —>4A
,11 M P5 N5—> P5
,12 £+P1 Nl —3 A
,13 £ 2 P2 Nl/l\l2 =Ny —3 A
,1h M P6 Ne —> P6

The above example is glven merely to illustrate the basic floating-binary
arithmetic operations; a more general example is given at the end of this

chapter.

The OFB 1s éomposed of a group of major sequences . . , the CONTROL
SEQUENCE, an ARTTHMETIC SEQUENCE, a FIXED POINT SEQUENCE, etc. Each
sequence is dependent on the CONTROL SEQUENCE but most are independent of each
other. Since each sequence 1ls dependent on the CONTROL SEQUENCE, the
CONTROL SEQUENCE 18 coded for the fixed area O4O through OSL. The OFB
sequences, other than the CONTROL SEQUENCE, may be stored anywhere 1n the
memory similar to general subroutines. The OFB is so designed that one

need only store those sequences which one intends to employ. The number of

220

words in each sequence and the defined orders which are carried out in the

respective sequences are gilven in Table 1 below.

OFB.Sequence ‘v Number of words The defined orders in the sequence..
CONTROL 128 The CONTROL SEQUENCE
interprets all 46 OFB orders
and carries out the following
orders: fU, fU'; fc, #Cct, U,
ut, Cc, C*, Stop, DN, sM, +,

) (+)) ("); M.

FLOATING ' | £+, £-, £(+), £(-), X, £1,
ARTTHMETIC 66 i, fH, M, f—>

‘ e , oM.
CONVERT AND ‘ .
RECONVERT 62 Cv. and Rv.

© CONVERT! AND |

RECONVERT? 11 Cv?! and Rv?
SUBROUTINE 13 Ut
POLYNOMIAL 11 POLYN.
Fixed Pt. Orders 1k E, BEY, x, =, rh‘~§ y &—,

&, o 20,
272, (279 1 2799y (.

TABLE 1

The QOFB subroutines may be stored anywhere in the memory simlilar to
the fixed ﬁbint subroutines. In general, the (OFB subroutines employ various
OFB sequences and the temporary positlowss 010 through O3L. The number

221

of words in each OFB subroutine, and the OFB sequence or sequences which
the respective subroutines employ are given in Table 2 below,

OFB SUBROUTINE NUMBER OF WORDS OFB SEQUENCES EMPLOYED
Vx 31 None
----‘3}.{ _________________________ 20 Polyn, C', R!, FLOATING
ARITHMETIC
sin x and cos x 51 " " " n

sin x is recorded in A and 016} cos x is recorded in 017,

In x b1 C! R'" FLOATING ARITHMETIC

F_IBM IN 139% cv.
F IBM OUT | SeeT) 211% ' Rv.
Matrix Inversion and
solution of systems of 62 ' FLOATING ARITHMETIC

linear algebraic equations

(Statistics on other OFB subroutines are given in the local literature.)

TABLE 2
* This number includes two positions reserved for two field‘words.
The requirements for using the F IBM IN Subroutine are:
a, speclfy the card format; i.e, store fileld words immediately
following the last word of the subroutine. (See Chapter X.)

A floating decimal datum number can be considered as two distinct numbers,
namely coefficient and exponent. The coefficlent may be represented by'as
many a8 eleven decimal digits, the exponent by two decimal digits. For
example, the field word for F IBM IN subroutine, 526282K282 specifies the
following format:

lst datum number in columms 1 - 7 (5 +2 =7)

2nd datum number in columms 8 - 15 (6 +2 = 8)
3rd datum number in columns 16 - 25 (8 + 2 = 10)
4th datum number in columns 27 - 38 (K + 2 = 12)
5th datum number in columns 39 - 41 (S + 2 = 13)

222

b. store a special instruction word in A, (the OFB accumulator);
this special instruction word has the following form:

n M 10 P , wWhere

"n" expressed in sexadecimal form indicates the number of floating

decimal quantities represented on each card;

"M" expressed in sexadecimal form indicates the total number of’
floating decimal quantities that are to be read, converted to floating
binary, and stored;

n"p! indicates the address where the first guantity is to be stored.
(Successive quentities are stored in successive memory positions.)

*
c. Transfer to the F IBM IN Subroutine using U order.

The requlrements for using the sine, cosine, square root,

logarithm, and exponential subroutines are:

a. gtore the normalized floating-binary argument, x, in the

floating-binary accumulator, A.

*
b. Transfer to the desired subroutine using the U order.

When control is directed to the return address, the result of the subroutine
is available in the OFB accumulator, A. The sine and cosine subroutine is
one exception since this subroutine produces two results; the sin x 1s
avallable in A and in memory position 016; the cos x 1ls available in memory
position 017. |

The statistics and requirements for using various floating-binary

subroutines are given in the Appendix,

223

Example employing the OFB_and OFB_subroutines.

Given: F(x) = B 8in x - %E cos x + D~ - E Vﬁ},

where B, C, D, and E are constants, and
0 < x £ 2A.

Wanted: 1. Compute F(xi), i=0,1, 2, ..., 200,

XO = 0,
Ax = /10,
X, =X + X = idx,

i 1-1

2. Print (punch) x; and F(Xi) on IBM cards, recording three
succegsgive xi's and the three corresponding F(xi) on each
IBM card as follows:

record x in columns 1 through 10;

i-2
record F(xi_g) in columns 11 through 20;

record x in eolumns 21 through 30;

i-1
record F(xi—l) in columns 31 through 40;

record Xy in columns 41 through 50;

record F(xi) in columns 51 through 60.

A detailed flow chart is shown in Figure 3; the corresponding preliminary
code 1s given in Flgure k4.

224

I

T

IIT

L

Fulfill format Read, convert, and Reconvert a.nd'punch:
requirements of store:
F IBM IN and » B—> P1 | o B G D By xp . A
F IBM OUT c —y P2
D—> P35
E—> Ph
X —— P5
Bl. 8282828282 max
A qe— -7 IV A
B2. 82NO000000
2 — 55
B3. 0600610 Pl B
B4. 0600610 K1
\')
0=x, =x,—» BY
xv (SToD 10
XIV yes VI
no
xmax‘(xiﬂ ? > 1 +1—1 J=1—>388
A
VII Y
~ B sin x, +_1(;_D_ cos x; —> B9
XIIT
. Reconvert and
punch: : . VITT ‘
X, 50 Flx, 04) X
1-2 1-87 B sin x;, - 5~ cosxi+Dei——7"B9
Xg q 0 Flxg)
Xy) F(Xi)
I 14— 1 L. S |
\ xi-—-a K23-1
XTIT F(Xi) '—?KQJ
yes 41— 3 —> B8
3
XT X ‘
j=3 2 |20 Xpql =%y THEOBT
FIGURE 3

205

SEQUENCE ORDER DESCRIPTION
I, 1 + Bl FW1 —> R1
2 M G138 FWlL —> G138 fulfill F IBM IN
5 M W210 Wl —> W210 F IBM OUT
L + B2 W2 —> R format
5 M G139 FW2 —p GL39 F IBM IN
6 MW211 W2 —> W21l requirements n rpy oyp
TI, 1 ¥ 11,1
2 U OFB Transfer to OFB
5 T + B3 06 006 00 PL —> A
L U* F IBM IN Trensfer to F IBM IN Sub.
ITL, 1 f + B3 06 006 00 P1 — &
2 U¥ F IBM QU Transfer to F IBM OUT Sub.
v, 1 T + P2 C — A
2 f x P3 CD— A
5 f+ Pl CD/B — A
4 fM_ B5 CD/B —> B5
5 urv, L Exit OFBControl
v, 1 oM BY x; =0 —> Bf
VI, 1 =+ 1 ,j=i, i.e. 2‘2(1)-—-; R1
o M B8 3=1, i.e.-272(1) —> B8
) + BL 06 006 00 K, —> RL
I ~— 20 00 K1 00000 —>R1
5 E IX, 2 KJ=K1__9]:X,2
6 U VII, 1 Transfer to VII,1
VII, L + VIL,1
2 U OFB Transfer to OFB
o) f + BY X, —> A
Y U* 5in Cos Sub. sin x, —3 A ; cos Xy ——> 017
5 fx Pl B sin X, —> A
6 fM B9 B sin x, — B9
! £+ 017 cos x; —> A
8 fx B5 (¢D/B cos X, —>A
9 f (-) B9 (-B sin X, + (CD/B) cos xi)_._; A
10 fM B9 (-B sin X, + (cD/B) cos xi)——9 B9
VIIT, 1 T+ B7 X, —> A .t
Ut & sub. Transfer to OFB e —3> A
X
3 fx P3 De i—-%A x4
L £(-) B9 (B sin x, - (CD/B) cos x; +De 7)—> A
X
5 fM B9 (B sin x; - (CD/B) cos x, + De i) — B9
IX, 1 T + BT x,—> A
2 M [K23-1) x; — K23-1
3 fx P1 B xi,.-; A
FIGURE 4

226

. DESCRIPTION

SEQUENCE ORDER
X, 4 fM B0 Normalized Bx, —> BIO
5 u¢/” sub Transfer to |/Sub; ¥/Bx;— A
6 fx P4 E \/Bxi-_g» A
7 M P2 E t/Bxi—-) P2
8 219 (+) IX,2 H2j - D+ 1 =K2j —A
9 E IX,12 CK2j —> IX,12
A
10 f + B9 B sin x, - (CD/B) cos x; + De 1 5
11 £ (-) P2 F (xi) —> A '
13 ™ 2]] F (x,)— KA1
X, 1 £ + BT xi — A
2 £f(+) P6 X_:‘L + X = Xi+l'"% A
3 fM BT X -,s BT
N Ut XI, 1 Exit OFB Control
XL, 1 + B8 J ~>R1
) ¢ XIiL,1 J =37 1e. 15 § < 0%
5 U XIIT,Ll Transfer to XITI,l
X111, 1 + XI11,L
2 U OFB Transfer to OFB
) T+ Bk 06 006 00 KI — A
4 U¥ F IBM OUT Transfer to F IBM OUT Sub.
XIv, 1 £+ Pb X max —» A
2 £ (-) BY X mex -%; g - A
: E ¢ VL1 *nax < X141
XV, 1 TLNOOO STOP 00000 would not work 53 ye
XIT, L €5 VISR 77
2 M B8 j+1-—>3 —>58
3 + IX,2 K2) —3»R1L
L (+) 00N K23 + 1 = K(2j+1l) —> R1
5 E IX,2 K2 j+l 3 IX,2
6 U VII,l Transfer to VIT,Ll

FIGURE 4

27

A
J

Notes on the flow chart and preliminary code.

The words, (Bl, B2, B3, B4), shown in the storage box, will be used
to fulfill the requirements of the F IBM IN and F IBM OUT subroutines.
The words shown in Bl and B2 are the field words, (See Chapter X), which
define the format for the six floating-decimal quantities. The, signed
coefficient of each quantity will be represented in the first eight columns
of a field; the signed exponent of each quantity will be represented in the
corresponding last two columns of the fieldj6 Observe that the field words,
(Bl and B2), will suffice for both the input and the output formats, since:
('B will be recorded in columns 1 through 10;
C will be recorded in columns 11 through 20;
D will be recorded in columns 21 through 30;
INPU’I'§

E will be recorded in columns 31 through 40;

X ax will be recorded in columns 41 through 50;
\Ax will be recorded in columns 51 through 60.

(Xy _p Will be recorded in columns 1 through 10;

F(xi_g) will be recorded in columns 11 through 20;
*1-1 will be recorded in columns 21 through 30;

OUTPUT <

F(xi_l) will be recorded in columns 31 through L4O;

X, will be recorded in columns 41 through 503

_F(xi) will be recorded in columns 51 through 60.

I. As indicated in Box I of the flow chart, the orders ecorresponding
to Box I fulfill the format reQuirements of the F IBM IN and
F IBM OUT subroutines. Note that these orders will be executed

under machine control.

II. The orders corresponding to Box II, first direct,control to the
OFB , then a standard requlrement of the F IBM IN subroutine is:
fulfilled. After the subroutine has read, converted, and stored
the input quantities, OFB control is directed to the first order
of Box III.

*
This assumes that one is using the "double punch" option; i.e., where the
gign 1s recorded over the first column of each fleld.

228

ITI.

Iv.

VI -

VII .

VIIT.

The orders corresponding to Box IIT first fulfill a standard
requirement of the F IBM OUT subroutine, then control is directed
to the subroutine. This "print out" of the input data which was
just read is included to provide a means of checking the actual
input data thet was submitted. It suffices to say that this check
costs little, (timewlse and spacewise), yet provides an immediate N
visual check to verify that the input that was submitted was the
desired input. After the subroutine has reconverted and punched
the desired quantities, control is directed to the first order of
Box IV. ‘ |

The first four orders corresponding to Box IV form and store 9% in

B5. The order, IV,5 instructs the OFB to relinquish control to the
mechine control. Note that since order V,1 is a right order, the
U! order is used to direct control to V,1.

The single order corresponding to Box V stores a zero in BY, thus
defining the initial x, X0 to be zero.

Corresponding to Box VI, the initial value of J 1s defined as "
and stored in B8. Since it is desired to record three seis of
values on each output card, j will be used as a counter to determine
whether three sets of values have been computed. Note that gince
Box IX indicates that the output quantities will be stored in K2j-1
and K23, 1t is necessary to extract K1, (corresponding to J = 1),
into the address portlon of order IX,2. In Box IX, K2j will be
computed as K2j-1 + 1. The last order of Box VI directs control
to the first order of Box VII. Ordinarily, this last order is not
necessary, but in view of the fact that the first orders of Box VII
direct control to the OFB, it is necessary that the first order of
ﬁox VITI be a left order. Note that the orders of Boxes V and
VI are executed under machine control.
In Box VII, the sine and cosine subroutine is employed to compute
sin Xy and cos X, Then two terms of F(xi) are formed and stored
in BO.
Tn Box VIII the exponential subroutine 1s employed to compute exi.
Then the third term of F(xi) 18 formed and added to the first two
terms. Again the partlal result is stored in B9.

229

IX. In Box IX, Xy is stored in K2j-1. Next, K2J 1s computed and stored
in the address portion of IX,2 and IX,12. Then the square root sub-
routine 1s employed to compute theJE;;. Finally, the last term of
F(Xi) is computed and added to the previous terms. F(xi) is stored

in KQJ-

X. In Box X the next xi, 141’
l1st order of Box X relinguishes (QFBcontrol and machine control commences
with the first order of Box XI.

il.e. x is computed and restored in Bf. The

XI. The orders corresponding to Box XI determine whether three gets of
values have been computed since the last three sets were recorded,
i.e. whether j=3 or is less than 3. If three sets have been computed
and stored, control is directed to the first order of Box XII. Observe
that since the compare order is executed under machine control, it is
necessary that the flrst order of both Boxes XIT and XIIT be executed

under machine control.

XIT. In BoxXII the counter, Jj, is advanced by one and the corresponding
K2j-1 is computed and stored in the address portion of order IX,2.
Control is then directed to the first order of Box VII to begin the
computation of the next F(xi).

XIIT. In Box XIIT control is directed to the OFB, then the F IBM OUT sub-

routine 1s employed to reconvert and punch the desired quantities.

XIV. The orders of Box XIV determine if the computations are complete, il.e.
whether X ax 18 less than Xl If Xﬁax
computations are complete and control is directed to the stop order in
Box XV. If X ox 1s not less than Xl

couplete and control is directed to the first order in Box VI. Observe

is less than X{ mil? the
the computations are not

that i1f the computations are complete, the OFB retains control and the
stop order in Box XV 1s executed under OFB control. However, 1f the
computations are not complete, the OFB relinquishes control and the

firat order of Box VI 1s executed under machine control as is desired.

Other options for using the OFB are available in the local literature.

For example, an option where each OFB order 1s stored in a single memory

230

position, (rather than two OFB orders in a single memory position), is
available. This optipn is so designed to increase the rate at which the
OFBorders are performed. Also, a OFB Code Checker for ﬁse with the OFB
is avallable. The requirements for using the OFB Code Checker are similar
to the requirements for using the fixed-polnt Code Checker.

Exercises: (Refer to the illustrated example.)

1) Write the final code for the example.
2) Which sequences of the OFB are needed to perform the computations for
this example?
3) Code the necessary changes to:
a. Compute and store the entire table, Xy and F(xi), before brint%ng.
i.e. compute and store the 400 values before printing.
b. Produce a set of tables, corresponding to sets of B, C, D and E.

: 7 i
¢. Change the Ilncrement x from 106 to 550 °
7 e
d. Change the increment x from.iaa to 50
e; Change x from 2% to n
max 2"

To provide a facility for storing floating-point cgnstants, the

Transcriber Routine includes the following key wofd. '
800003 10 -3:-. | |

This key word tells the Transcriber Routine to convert the floating
decimal numbers, which immediately follow it, to their respective
floating-binary equivalents. As a result of this key-word, the
Transcriber produces the floating binary equivalents, preceded by the
key word,"ﬁsgé;o TEE— , which tells the Input»Routine to store the
floating-binary equivalents in consecutive position®s beginning at
position H. When using this facillity, the floating deéimal numbers

must be represented by twenty-four characters, (24 columns of a card),

231

as shown below.
Coefficient, g and eleven decimal digits,

5} 2 digits and 9 zeros

Exponent, g

Exemple; To sbore the floating-decimal contant, -13.0, in memory
position 3N5 one writes

800003 1003N3
513000 000000
K02000 000000

252

CHAPTER XII
The Ordvac Magnetic Drum

The Ordvac Magnetic Drum is an auxillary storage device. The
capacity of the drum is ten thousand thirty-two, (10032) words. We
consider the drum to be an auxlliary storage device because the words
stored on the drum are not directly accessible for arithmetic operatioﬁs
or moet of the logical operations. In particular, we cannot perform any
operation on the words stored on the drum other than the two logical
operations of£
1. Transferring words from the drum to the high-speed (core) memory;

2. Transferring words to the drum from the high-speed (core) memory.
The drum is composed of two hundred nine, (209) "tracks" or "channels".
Forty-elght (48) words can be recorded (stored) on each track. Words
transferred to or from the drum are transferred in groups of forty-elght

(48), i.e. the contents of an entire track.

Each track is identified by a corresponding "track number". Since
there are 209 tracks, eight bits suffice to ldentify each track, 1l.e.,

the eight bits, 0000 0000, identify track number "zero";

" " " 0000 0001, " " " "one" ;
oo " 0000 0010, " " " "two" ;
' ' ' ' v ' ' ' '
I 1 ' t ' ' ' !
" " " 1101 0000 " " " "two hundred and eight".

Further, insﬁead of identifying each track by the corresponding sight bits,
each track is ldentified by two sexadecimal characters, the equivalent of
the eight bits. Hence, the range of sexadecimal track numbers is " 00 "
through " JO ".

253

The identification of the two hundred and nine tracks, with their

corresponding sexadecimal track numbers, is shown in Figure 1.

00 01 02 ' - NF NL JO

\ \\‘ \\« \\

|

Figure 1

A drum order requires an entire word, (40 bits), and has the followlng form:

KXXX XX0O0 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
; A\ - N N s
——
T D : Track no. E
core memory core memory

address address

where, reading from left to right,

the first six bits, T, indicates whether the transfer of words is to be
made from or to the track of the drum, the next two blts are unused;

T = 1101 Ol indicates that the transfer of words 1s to be made from the
core memory to a drum track;

T = 1101 OO indicates that the transfer of words is to be made from a
drum track to the core memory;

The next twelve bits identify D, a core memory address, which identifies
the first of forty-eight conseéutive positions from or to which werds are
to be ﬁransferred; _ '

The next eight blts identify the particular track from or to which forty-
eight words will be transferred; -

The last twelve bits ldentify E, a core memory address, which represents
the address of the ordef to be performed after the drum order has been
executed. Cdntrol is always directed to the left-order of E.

234

Transfer of words to the drum is effected by way of R2. Transfer of
words from the drum is effected by way of Rl., Each drum order will erase
the previous contents of both Rl and R2.

To represent a drum order by ten sexadecimal characters, the two unused
bits are combined with the six bits of T, giving two sexadecimal characters;
D 1s represented by three sexadecimal characters; the track number 1s
represented by two sexadecimal characters; and, E is represented by three

gexadecimal charscters.

Example 1. Jo2Kg OO03LF

This order will transfer the forty-eight words of track "00", (the first
track on the drum), to memory positions 2KS through 2JK. Control will
then be directed to the left-order‘of memory position 3LF. The words on
track "00" remain intact, the previous contents of positions 2KS through
2JK are replaced by the forty-eight words of track "O00".

Example 2. J4820 N2LKO

This order will transfer the forty-eight words from memory position 820
through 84 to track "N2", (track number 194). Control will then be
directed to the left-order of memory position IKO. The contents of memory
posgitions 820 through 841, remain intact, the previous contents of track
"N2' are replaced by the contents of memory positions 820 through 84L.

A gpeclal key word, accep%able by the Transcriber, is designed to
allow one to transfer words easlly from cards to the drum, (or to transfer
words from the drum to cards). We call this key word the "LO" type key
word. The "L4O" type key word, when used, must be followed by another word

ag shown below:

"L4O" type key word 800004 00--2-
a, drﬁm order Jﬁ-—Pu e __E_,

This palr or words will always appear as the "last" pair on a binary card.
The facilitles assoclated with sﬁch pairs of words are:

For drum order type "JO",

Transfer the 48n words from "n" consecutive tracks of the drum,

beginning from track "g", to memory positions beginning at D and extending
through D + 48n - 1. Then, direct control to the left-order of memory

position E.
235

For drum order type "J4",

Transfer the 48n consecutive words, from memory positions beginning at D
and extending through D + 48n - 1, to the "n" consecutive tracks of the
drum beginning at track "q" and extending through track "q + n - 1",
Then direct control to the left-order of memory position E.

Caorrespondingly, the binary key word produced by the Transcriber and
accepted by the Input Routine is called the "4" type key word.
Written in sexadecimsal form the drum binary key word is:
80004 00 -2-,

O D g E
Jh - -~ - m—

followed by

The time required to transfer the forty-eight words of or to a track
is approximately eighty (80) millesceconds. Since this transfer time is
long as compared to the time required to transfer words within the core
memory, 1t is advisable to arrange words on the drum so as to minimize

the number of drum transfer orders in any given routine.

Exercises:

1. Construct an order that will transfer the forty-eight words of track
one hundred and ninety-nine to memdry posltions beginning at position

‘ BKJ., What is the address of the lagt memory position affected?

2. Construct an ordgr that willl transfer forty-elght words, beginning
from memory positlion 903, to track seventy-seven. What is the address
of the last word to be transferred?

3. Construct the necessary key words thet will enable one to store 4800
binary numbers on tracks 100 through 199. Assume that the 4800 numbers
are recorded on IBM cards In standard decimal form.

’?;;%%xb“x 45€9¢Ubf’

TADEUSZ LESER

?%@aaéuuﬁynéﬁ}n<a4uuﬁi

MICHAEL ROMANELLT

236

1)

2)

3)

4)

5)

6)

7)

8)

9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)
30)

31)
32)

APPENDIX

ORDVAC List of Orders.
Detailed Description of ORDVAC Orders
Decimal Representation of Powers .
ORDVAC Code Checker

ORDVAC One Address Floating Binary Routine (OFB)
ORDVAC Floating Point (One Address) Code

(OFB).
(OFB).
(OFB).
(oFB).
(oFB).
(oFB).
(OFB).
(OFB).
(OFB).
(OFB) .
(OFB) .
(Fixed Point).
(Fixed Point).
(Fixed Point).
(Fixed Point).
(Fixed Point).
(Fixed Point).
(Fixed Point).
(Fixed Point).
New ORDVAC IBM Card Routine
Double Speed IBM Output Routine . .
Order Pair Routine (OP). . « & « . .
Printing Address Search
ORDVAC Drum and Memory IBM Print Oug)

Floating Point Sin-Cos. .

Floating Point Arcsinx. .
Floating Point Arctangent .
Floating Point Arcsin-Cos. .

Floating Point Arccos . . .

Square Root. ..

Fagter Square Root .
Fagtest Square Root
Sin and Cos 2 x . .
Arcsin-cos ,
Natural Logarithm .
Arctangent

Sexadecimal Print. . ¢« ¢ &« + ¢« « .« ..

Floating Decimal to Fixed Decimal Routine ,

237

.

.

e

Floating Point Square Root . . .

Floating Point Exponential . . .
Floating Point Natural Logarithm

.

°

.

Checker

.

.

.~ e

°

L4

.

.

To Solve Normal Equations (SNE) and Matrix
Floating Point IBM Input (IBMC).

.

Runge-Kutta-Gill System of Differential Equations

L

Page

239
240
ahT
248
25l
261
265
266
267
268
269
270
271
272
273
27h
275
276
277
278
279
280
281
282

Runge-Kutta-Gill System of Differential Equations 284

285
289
290
291
292
294
. 295

1.)

Symbol

A(+)

Sexadecimsal Form
Kk
24
N4
Ok
Fh
64
8h
Ly
KN
2N
NN
ON
FN
6N
sh

78
68
K8
N8
18
38
08
28
Th
60
5k
90
50

APPENDIX

ORDVAC

LIST OF ORDERS

Symbol

IBM In

oE
oE?
M
oM
M

(R)
C
oLl
8]
L
oU
oU?
7%
Zu

T
P

IBM oUT

From Drum to core

16 December 1955

Sexadecimal Form
L0
70
10
30
S0
88
8

- 20
40
NO
1L
KO
3k

To Drum from core Ji

229

"All

+

2.) DETATLED DESCRIPTION OF ORDVAC ORDERS

In the preliminary form of representation of orders, "P" represents
the preliminary address of any one of the 4096 core memory positions. In
the sexadecimal form of representation of ordbrs, the three "dots", "...",
represent the three sexadecimal characters of address "P". The description,
of what the corresponding orders accomplish, includes only those positions
and/or those registers involved or affected. That is, 1f the contents of a
position or register (other than RB) remains unchanged, this fact is omitted
in the description. Further, the descriptions are valid only for those

regults which are less than one in absolute value.

Order Prelim, Sexadec. Description of what the corresponding orders
No. Form Form accomplish
1. + P Kh... The contents of P is duplicated in R1.
(P) — R1.
2. (+) P Nk... The contents of P is added to the contents of

R1l. The sum goes to Rl.
(R1) + (P) —>» RL.

B | |+ IP Fh.. The absolute value of the contents of P goes
to R1.
k., [f] P . 8k... The absolute value of the contents of P is added

to the contents of Rl1. The sum goes to Rl.
_ (81) + |(P)| — RL.
5. - P 2h4... The negative of the contents of P goes to R1.

- (p) — R1.
6. (-) P Ok... The contents of P 1s subtracted from the

contents of RL, The difference goes to Rl.
(R1) - (P) —> RI.

7. |-| P 6h... The negative of the absolute value of the
contents of P goes to Rl. :
|(P)] —> RI.
8. [-]1» L. .. The absolute velue of the contents of P is

subtracted from the contents of Rl. The
dlfference goes to R1.

(R1) - |(P)] — &L.

240

Order
No.

Prelim.
Form

Sexadec.
Form

Description of what the corresponding orders
accomplish

9.

10.

11.

12,

13.

1k,

15.

16.

Xu,

(xX) p

oM

P

P

P

78...

K8...

68'.0

N3...

The contents of Rl is divided by the contents
of P. The resulting quotient, (a sign and 39
bits), goes to R2. The least significant bit
of the quotient is always a "1". The remainder,
ghifted left one place, (i.e., twice the
remainder), goes to Rl. The sign of the re-
mainder is the sign of the dividend, 1l.e. the
gign of (Rl). This order is referred to as
"rounded division".

(1) = (P)—> R2.

2 x the remainder -—» RL.

~ The contents of R2 is multiplied by the contents
of P. This order yields a 78 bit product. The
gign and 39 most significant bits of the product
go to Rl; a "zero" (positive) sign and the 39
least significant blts go to R2. This order
ig referred to as "exact multiplication'.
(R2) . (P)=-—> R1l, R2.

This order ylelds the same results as the "Xu"
order except that 240 is added to the 78 bit
product. This order is referred to as
"roundednmltiplication“.10

" (re) . (p) + 27" —> RIL, R2.

This order yields the_ same result as the "Xu"
order except that 27 9 times the previous
contents of RL is added to the 78 bit product.
This order is convenient for multiple
preclsion operatlons.

e (R2) . (p) +27°7 (RL) —> RL, R2.
Tn addition to the descriptions given for
orders 1 through 12 "

(P) —> Rj.

S'u'uoc

10...
30-10

S0

The contents of P 1s duplicated in R2.
(P) —3 R2.
The contents of RL is duplicated in P. This

order is referred to as the "atore order”.
(R1) —> P.

The contents of RL is deleted end the contents
of P is deleted.

The contents of RL is replaced by oL, The

contents of P 1s replaced by 271,
ol 3 Rr1; 2-t—p.

241

Order Prelim. Sexadec. Description of what the corresponding orders
No. Form Form , accomplish

17. EV P 50 The 12 bits representing the address in the
' right order in P are replaced by the 12
corresponding bits 1n R1. This order is
referred to as the "right extract" order.

right address of (Rl1)—> right address (P).

18 E P 90... The 12 bits representing the address in the
' left order in P are replaced by the 12
corresponding bits in Rl. This order is
referred to as the "left extract" order.

left address of (Rl) —left address of (P).

19. OE! P T0... ' First, the contents of Rl is deleted, then
the equivalent of the Et order is effected.

0 —> Rl, 0 —> right address of (P).

20.' oE P LO... First, the contents of Rl is deleted, then
the equivalent of the E order is effected.

0 —>Rl, 0 —> left address of (P).

21, c P 20... If the contents of Rl 7 0, then control is
directed to the left order of P; if the
contents of Rl « 0, then control is directed
to0 the next order in sequence, This order is
referred to as a "compare order".

22, ctP ho... If the contents of Rl 2,0, then control is
directed to the right order of P; if the
contents of R1L £ 0, then control is directed
to the next order in sequence.

23, U P NO... This order directs control to the left order
of P. This order is referred to as a "trans-
fer" (of control) order.

2k, oU P KO... First, the contents of Rl is deleted, then
control is directed to the left order of P.

0 —R1, and control is directed to the
left order of P.

25, gt p 14,.. This order directs control to the right order
of P.
26. out P 3., First, the contents of Rl is deleted, then

control is directed to the right order of P.

0 — R1l, and control is directed to the
right order of P.

27. A --~ 00 ... Thls order causes the machine to stop
' LN __ operations. When started again, the machine

begins with the next order in sequence. Notice
that no address is required in this order.

242

Order Prelim. Sexadec. Description of what the corresponding orders
No. Form Form accompllsh

28, zZ P FOuuo If switch S, on the control panel is not in

the "down" position, the machine stops oper-
ations and when started again, a "secondary
transfer" of control operation is effected.
If switch 8, 1s in the "down" position, the

machine does not stop operations, but con-
tinues with the "secondary transfer" of control
operation.

A "secondary transfer" of control operation is associated with orders number
28 through 35 and order number 42. The order with which a "secondary trans-
fer" i1s assoclated can be a left or a right order. If the order is a right
order, the machine executes the right order and then control is directed to
the left order of P. If the order is a left order, the machine executes this
left order and the corresponding right order before control is directed to

~ the left order of P. Further, if the corresponding right order is a transfer
of control order, then the transfer of control to the left order of P is not
effected. '

29 A+ P ~KN... The contents of R2 1s duplicated in Rl. Then
a secondary transfer is effected.
(R2) — R1. .
- 30. A(+) P NN.... The contents of R2 is added to the contents of

Rl. The sum goes to Rl. Then a gecondary
transfer 18 effected.
‘ (R1) + (R2) —> RIL.

31, Al+|P FN. The absolute value of the contents of R2 goes
: to RL. Then s secondary transfer is effected.
|(R2)] —> RI.
32 . A ~-P 2N. .. The negetive of the contents of R2 goes to RL.
Then & secondary transfer is effected.
33. A(-)P ON.o. The contents of R2 is subtracted from the con-

tents of Rl. The difference goes to Rl. Then
a secondary transfer is effected.

(R1) - (R2) —>R1.

3. A |_‘ P 6N The negative of the absolute value of the contents
of R2 goes to Rl. Then a secondary transfer i1s
effected

- |(R2)|-——? R1.

I Tn addition to the descriptions given for orders
29 through 34, 3
(R2) — R”.

243

Order Prelim. Sexadec. Description of what the corresponding orders

No. Form Form accomplish
35. "A" + P 8N The contents of R5 is duplicated in R1. Then
a secondary transfer ig effected.
(R5) —> RI1,

Orders number 36 through 42 are referred to as "shift" orders. The
three "dots", "...", in the sexadecimal representaetion of the corresponding
orders, represent the sexadecimal equivalent of "n", the amount of the ghift.
If n = 0, the machine stops operations; "n" must be less than or equal to
63; 1if n 7, 64, the amount of shift is n - 64, For most cases, n £ 39 is
sufficient. Since the shift orders affect the "bit by bit" contents of RL
and R2, the respective descriptions are given by exhibiting the 4O bits of
Rl and the 40 bits of R2. In the table, the contents of Rl and R2 are
shown on the line under the preliminary and sexadecimal forms of the order.
The results thus shown assume that the original‘contents of R1 and R2,

(1.e. the (R1) and (R2) before the order is executed are respectively:

Contents of R1 Contents of R2
eo el ee,l.‘.....o'!l.l.'.'.. 639 dodldE ® 8 Q& re 2o 0Ot RO REE OB d59
560 '.'—_> n 08.-.
(R1) (r2)-
n+\ :
e
e. e. €. ,,, €

‘ o %o ©o Oel sessvesrne e39_n do)+O_n e 339d1d2 e d59_n
[37, €&—— n 18...

(R1) (R2)

,———-—h./_—\

€5 € 1 S o 39 00 vevesssl0 a, Goiq e

(38, —3) =n 28...

ces € 59 el 62 o.o»»----oen

(R1) (R2)
n+l n
R s Y i e
-OOOCUI 0100'0.'.....".00..0 dooolltilib Odld-E ew eI e d59~n

24,

39.

- €6—n 38...

(R1) (R2) n
00000 0 a4 a d,,000 o
- . 'Q,!,,Q:locoooccu'unnoo.oo 7 n+l en e 39 ‘ nqcoonloof
. ’-"0. 71‘.‘ . ¢ i?i 1 o €6 H A %} ‘;‘i’ 0 f‘j
(R1) ' (r2)
‘ ?
b’EJ‘ ea 'li..'.'.'.’l...l"..l.ea9 dl dod2d-3 .l..’...?..l.’.'...ll.d39-,1
)41. ("—'*i"..——'—ﬂ'— 60 “eo }{\lj‘ P 7 \;. ; %"'":f%;] .
(R1) (R2)
7
. ¥
hlool.l."."'..'...'.l".ﬁl. Odl dod2d5 i.'.‘.l.“l.ll.l..l..l%9/-
"
2, &Ss—E-P 5k,
(R1) (R2)
. 7
Leleg .ll'.Ul..l..’...'.ﬁ.l“0639 dl dod(ad-3 .I.'l.l.ﬂ'.'ﬂ..'...'..ld'59‘v‘
Then a secondary transfer i1s effected (to P)
Order Prelim. Sexadec, Description of what the corresponding orders
No. Form Form accomplish
43, T 94028 This order "reads" one word from teletype tape
and stores this word in Rl. It 1s assumed
that the word recorded on the tape is expressed
in sexadecimal form, i.e, ten sexadecimal
characters. The hinary equivalent,*40 bits,
of the sexadecimal. word is stored in Rl.
- (R2) erased in the process,
' “ One word from tape -~ Rl
W, P Tho28 This order prints the contests of R2 on the
teleprinter. The word i1z printed in sexea-
decimal form, ten sexadecimal characters, the
equivalent of the 4O bits of R2.
(R1) and (R2) erased in the process.
(R2) is printed on the teleprinter,
L5, IBM IN 58000 See explanation in Chapter X,
L6 . - IBM Out 48000 See explanation in Chapt:r X.
~'\r,ﬁ~‘4‘»‘;
Notice that orders 43 through 46 -de—weed~require addresses.
47 From Drum dJ0O See explanation in Chapter XII.
48, To Drum J4 See explanation in Chapter XII,

2h5

Order Prelim., Sexadec. Description of what the corresponding orders

No. Form Form accomplish
49, (R) P F8 This order is referred to as the "logical tand!
: . order". The contents of R2 and the contents

of P are compared "bit by bit". If corre-
sponding bits are "1%s", the corresponding
bit of the result is a one; otherwise, the
corresponding bit of the result is "O".

This is the equivalent of bit by bit multi-
plication without '"carries'. The result goes
to R2,

Example: (R2) 1101 0011 0010 0101 0010 1111 001l 0101 1100 1010
() 1011 0101 1011 1100 1010 011l 0110 100l 0110 0111

1001 0001 0010 0100 0010 0111 0010 0001l 0100 0010 —— R2.

50. (:) P 88... This order is referred to as the "exclusive
for! order". The contents of Rl and the
contents of P are compared "bit by bit". If
corresponding bits differ, then the corre-
sponding bit of the result is a n1", This is
the equivalent of bit by bit addition without
Scarries?. The result goes to Rl.

Example: (R1) 1101 0011 00LC 0101 0010 1111 0011 0101 1100 1010
: 10110101 1011 1100 1010 0111 0110 1001 0110 0111

0110 0110 1001 1001 lOOO.lOOO_OlOl<llOOilOlO 1101 —— R1.

Time Estimates for the Various Orders

Print one 10 digit word (teletype) Cerereeens tesessensese.. 2 seconds
Read one 10 digit word (teletype) ..vveeeveceess Cieevesssesnsess D seconds
Read one TBM CAIA . s vsesurernrnenensnerennenenoneens cecsseeseses 1.2 seconds
Print one IBM card .u.ee.es... e ereietiieeeietariesnesaanaeass. 1.0 seconds
Multiplication or divisione0auee e eeeie et .00l second
‘Transfer 48 words to or from Magnetic Drum R .08 seconds
All other operatlons .veeeeervenerosnns T T .0001 secondé

246

3.) Clarence R. White

Decimal Representation of lOEXP, QEX?}‘MEXP, BEXP, 16™F for Integral Exponent

1oEXP - BXP) EXP gEXP 1 GEXP
1048576, f ' 20 10 5
6 1000000,
524288, 19
26210 16 6
131072, 17
5 100000, : , -
65536 16 8 N
32768, 15 5
16364, 14 i
I 10000.
8192, 13
5096, 12 6 Iy 5
2048, 11 ’
o2l 10 5
3 1000.
512, 9 p)
256 . 8 n 2
128. T
2 100.
6L, 6 3 2
32, p)
16, i 2
I 10.
g. : 3 1
k. - 2 1
2. I
0 1. 0 0 &) 0
5 -1
55 -2 -1
L1275 -5 |
-1 L1
. 0625 -k -2 - 1
03125 -5
LO0I5625 -6 -3 -2
- ~0L
J0078125 - -7
. 003590625 ‘ -8 -1 - 2
: .001953125 <9 - H
B J001 ,
. 0009765625 - 10 -5
. O00LBBEBIAS - IT
. 0002 LU 10625 - 12° - 6 - L R
J0001220705125 o S *
S . 0001. : _
. 000061.03515625 - 14 -7 ,
0000305175 78125 - 15 -5
- 0000152587890625 - 16 - 8 -k
Y . 00001
d . 0000076293945%125 - 17 :
. 00000381L69T7265625 - 187 -9 - 6
, 000001907 3486528125 - 19
- 6 . 000001, T N
. 00000095367 431640625 - 20 - 10 -5
“BO0000N 63T IHEE03 15 - PL R =7
0000002284 185791015625 -~ 22 <1t '

- 00000011920628955078125 ~ 25 %

i

-7 . 0000001 27

4,) ORDVAC CODE CHECKER

L. W. Campbell and B, T. Wade

Title: ORDVAC Code Checker
Purpose: To print information about ORDVAC orders as they are performed.

Number of words: Permanent part : 12 words. (card Pl)
Monitor part : 135 (cerds ML to ML)
Write part . 288 for 29 to 52 intervals

Temporary Storage: None in memory; Tracks K6-SK on the drum.
Initial Requirements: Tape specifying intervals to be printed.
Result: Informatlon about an order printed on a card (or teletypewriter).

Remarks: Halte (Zu 001) if attempt to go from n interval to 1 interval.
Halts (Zu Ol4) if did U' to an n interval start address. (With-

out monitoring the U' order).

Restrictions: 1) Drum orders must always be considered as left orders.

2) Contents of (RQ) is replaced by the drum order when
a drum order is printed.

3) Monitor part (135 words) must not be stored at an address
ending with 22, 62, X2 or F2.

4) Can't print within a subroutine for which printing has
been automatically skipped and maintain control at the
end of the subroutine.

5) The "start" orders of the program to be checked must be
in the memory at the time the interval tape is read by

the code checker.

Additional restrictions for n interval:
1) Can only start on a left order.
2) Whole word at the start address may not be referred to
elsewhere in the program (except by transfer orders).
3) R5 must not be important at the start address.
4) No. of intervals < 52.

248

Additional restrictions for 1 interval:

1)

2)

3)

Can't start on the right of a word that does a geccondary
transfer on the left unless the secondary transfer transfers
to the next word (A+l) or the right order is a transfer order.

The half word at the start address mey not be referred to else-
where in the program (except by transfer orders).

Cannot start on the right of the same word that the previous
interval stopped on. (This will cause the start to be by-
passed n + 1 times instead of the usual n times).

2k9

December 1956
ORDVAC CODE CHECKER
5.) L. W. Campbell and B. T. Wade

This routine will print information about an ORDVAC order immediately
after it has been performed. It is capable of printing at the rate of 100
orders per minute on IBM cards and uses only 12 memory positions for per-

manent storage.

A tape (or switch settings) controls the amount of printing. Printing
may start or stop on almost any ORDVAC order and the number of times that
the orders in & loop are printed is easily restricted. There are two some-
what different methods of controlling the printing: (1) the n interval
method where all intervals that are to be printed are specified at the
time the code checker is read into the machine or (2) the 1 interval
method where one interval 1s printed before the next interval is read into

the machine.

The n interval tape has the folldwing form:

k% _a_ ‘20 _B_
k8 _A_ "2 0 _B_
where: A = Address of order at which printing is to start.
B = Address of order at which printing is to stop.
(Printing will start at any A and stop when control reaches
any B.)
02 = 0 gpecifies the left order at B.
C, = 8 specifies the right order at B.

1 =X =7 specifies that printing is to start or continue at
A K times only.
If K = O, printing will start every time the order at A is

performed.
C5 = 0 speclfies that more tape words and intervals follow.
C3 = 8 specifies that this is the last word on the tape.

250

The 1 interval tape has two words for each Interval in the following
manner

e T T)

1 8_4A_20_B_
where: Cl = 0 gpecifies the left order at A.
c, = 8 specifies the right order at A.

02, 05, A, and B have the same meaning as for the n interval tape.

n = no. of times to pass A before printing starts at A.
Printing starts on (n + 1)st time.

nm = no. of times to stop printing at B before reading in the
next interval. (The code treats m = O the same as m = 1),
0 = n, mpy=s LLL

(n and m must be specified in sexadecimal)

The two methods may be combined 1f the 1 in%erval method is used
first and C5 = 0 until <the last of the n intervals is read from the tape.

The routine has three parts, each of which may be stored at any
address = 00K except for the second section which cannot be stored at any
address ending with 22, 62, K2, or F2, The routine must be read in with
the standerd modifying input routine. A key word may be Ilnserted in
front of any or all of the three parts. If no key words are Ilnserted,
each part will immediately follow the preceding part. The first or
permanent (P) part is 12 words long and it must be in the memory
egsentially all the time (whenever elther a start or stop address is
reached)., This part 1s contained on one card.

The second part performs the monitoring and it normally i1s on the drum.

It is called into the memory whenever a start address (A) 1s reached and

251

must remain there until a stop address (B) is reached. This second part
is contained on cards labeled ML to ML4. The third part performs the
printing and it is also normally on the drum. It is called into the
memory whenever a start address (A) is reached and 1t remains there until
either a stop address (B) is reached or a U* order (transfer to a sub-
routine) is performed. At the return from a subroutine, it 1s again
called into the memory so that printing may resume. Thls third part is
contained on cards labeled W1 to W20.

Whenever the second or third parts of the code checker are called
into the memory from the drum, the contents of that memory space is first
recorded on the drum. Whenever a stop (B) address is reached, the memory
is reset to what it was at the start (A) address. In the case of the
third part, this also happens at a U¥ order and at the return from ﬁhe
subroutine. Hence these two parts of the code checker may be stored in
the same spaée a8 subroutines or anything that need not be in the memory
whlle the code checker is actually being used., However, the second pﬁrt
may not be stored in the same space as any subroutine in wh&ch printing
is sutomatically skipped. (The second part must remain in the memory to
monitor end find the E! order.) The drum storage (tracks K6 - SK) must
not be erased if the code checker isvto do any printing afterwards.

" Printing within subroutines masy be automatically skipped by using a
U* order (SN order or 34 for9 bit code) to transfer to the subroutine,
provided that the first E' order after the first secondary transfer with-
in the subroutine sets the return address. The intervals should not
include any start or stop addresses of orders that are done between the U¥
order and the order at the return address. (Starts and stop within such
a subroutine will work, but control will be lost at the exit order.)

The routine changes the program code at all start (A) addresses but
does not change 1t at any stop (B) addresses. For each n interval start,
the whble word is replaced with: '
(-) self
U code checker (4000)
hence, printing must start on the left of the word at A (unless the U! order
to any start address is printed due to a previous start) and any start address

252

must not contain anything that is changed or referred to by the program

(i.e. variable address, dummy addfess, constant, etc.) For the 1 interval
case, only a half word in the program is changed to a transfer to the code
checker, hence printing may start on either side of the start word and only
that half word must not contain anything that is needed there by the program.
The contents of these start addresses are replaced whenever printing is
completed for that start. (At (K+l)st time A is reached for n interval or
when B is reached m times for 1 interval). It 1s allowable to have two

(or more) successive starts wlthout stopping between them. It is allowable
also to start and stop on the.same order.

3

The contents of Rl’ Rg, and R” are saved at all gtarts and are reset

at all stops. (However R3 1s used for the n interval start).

Printing is normally done on IBM cards, one card for each order. Print-
ing may be on teletypewriter if the card so labeled (W1T7) is removed. The

information printed on a card 1s:

Field A. B C D E F G H
order 00 Add. (Rl) (R2) or drum ord. (Memory)(Rl)dec. (Re)dec. (Memory)Blank
dec. :

where fields A-D are sexadecimal and E-G are decimal with a K (or $) for

+ (or ~). The decimal numbers are rounded (when possible) by .00000 00005.

There 1g an option that allows only orders that perform a transfer to

be printed. This option may be used if card so labeled (W16) is removed.

All monitored halt orders (Zu and Zx) will be performed twice (as are

all other orders except teletype and drum orders).

253

September 18, 1956
5.) ORDVAC One Address Floating Binary Routine (OFB)
L,, Campbell and S. Lehman

General Description:

This is an interpretive routine phat will Interpret pseudo one
address orders and perform floating binary arithmetic. It uses two
memory positions as an accumulator that acts similarly to the machine's
By
posgition, which we shall call AC, holds the coefficient of the floating
binary number and the other memory position, which we shall call Ae,

but is capable of contalning a floating binary number. One memory

holds the binary exponent. Together, these two positions shall be
called the accumulator or A. Ac is 010 and Ae is 011,

Numbers:

This routine normally uses the sign and the next 31 bits for the
coefficient and the last eight bits for the exponent. These lengths
éan easlly be changed by changing five constants in the control
section of the routine. All exponents are held as the true exponent
plus a blas of 2n-l where n is the length of the exponent. The normal

range of the exponent e is

-128 = e < 127

except for the exponent in AP which has the range

~2h6 < eA'< 232

and the bias is 128 or 80 in sexadecimal. All coefficients are kept
normalized except the one in the accumulator. A normalized coefficient
C is of the form

1/2 € |¢] < 1

except zero which is a word of all zero bits.
Orders:

The pseudo orders use a slx bilit order type and an address that
has the same length as the machinetl's address. There usually are two
orders per word, but there is an optional method of coding only one

order per word which accomplishes a gain of 12-20 per cent in speed.

254

Entrance:

Programs that may need to use the code checker and subroutines

that need no code checking enter the routine at different places. Also,
if the next group of orders that are to be performed ig coded one order
per word, then the entry point is different from that of two orders per
word. 1In any case, the address of the word preceding the first pseudo
order that is to be done must be in Rl at the point of entrance. This

is most easily accomplished by the following coding:

Programs Subroutines
2 orders/wd 1 order/wd 2 orders/wd 1 order/wd
+ self + self + self A + 056 + self A + 052
U oko U okl U050 °F 4 self U051 °F + self

where self + 1 contains the first pseudo order that is to be done.
Description of the orders:

The memory contents as referred to in any order is here called N

and Nc is the coefficient of N and Ne the exponent.

Fl. Pt. Arithmetic orders:

Final Prelim

A A

Code Code Description c e Memory
00 T+ N—A + N 00 00000 000 N_ No change
2h f- - N—A - N, 00 00000 000 N_ No change
Tl £+ _ |N|-—=A |Nc{ 00 00000 000 Ne No change
6l -1 -|N|—~A -| N | 00 00000 000 N No change
N £(+) A+ N—A 27la) (Larger of A No change
[¢] c C
&N) + 1
ob £(-) A - N—A e‘l(Ac—Nc) " .o No change
68 X A N—A A, "N ’Ae +N_ - Blas No change
CEES A/N—A 2™ (a /W) A, - N_ + Biastl No change
10 M AN A Normalized & 00000 000 A A +A
e . e (] [S]

0 rounded. 00 .
18 fe—n 2A——wA No change A, + n No change
08 f—wn oA ——+A No change Ae - n No change
30 oM 0 A, N 00000 00000 00000 00000 00000 00000
T0 sM AC + Aé—'N No change No change AC + A

255

20
Lo

NO
1h
2N

Ly

NN
N
SN

Transfer QOrders:

C

cl

U
U'
f£C

fc!

U
U*

Transfer to the left machine order at N if A =z 0, If Ac < 0,
go on to next pseudo order. ‘

Transfer to the right machine order at N if A =0, If Ac < Q,
go on to next pseudo order.

Transfer to left machine order at N.

Transfer to right machine order et N.

Transfer to left pseudo order at N if A z 0. If Ac < 0, go
on to next pseudo order.

Transfer to right pseudo order at N if A z 0. If Ac < 0, go
on to next pseudo order.

Transfer to left pseudo order at N.

Transfer to right pseudo order at N.

Trensfer to a subroutine at N and return to the next left pseudo
order. It puts A, + A, in R, as the argument for the subroutine
and at the return from the subroutine, it puts the contents of

Ry in A, and A, before going on to the next left order. If the
argument of a subroutine is a floating binary number, it must be
normalized in A before giving thils U¥ order.

(Subroutines assume the argument in Rl’ normalized if a fl. pt. no.

begin and end in machine orders 3

use the right address of R2 orr R” for the return
address

may use sny pseudo order except U¥),

The C, C', U, and U' orders provide the method of leaving the inter-

pretive routine and transferring to machihe orders. Ac 1s left in Rl at

the point of transfer. Note that the negative branch of all compsre orders

goes on to a-pseudo order.

Fixed Point Orders:

All of these orders perform exactly as the machine does them with AC

being used as Rl or R2 and.Ae is not changed.

K8
S8

N—A, S0 1M 1/2-—-A , N

N—=A gn 2P 29y N—A_, N

256

3N
éN
60
90
50

98

ON

J8

F8

(+) N+ A—A 88 279(+)n PR AN

(-) A, -N—=A ey 2719 4 2'59(+)M o719 | 2" Py A N
x A"N—&A : 58 =— n 2% A —=A
c ¢ c c
: A /N—=A 48 —=n 270 A —-A
[c e ¢
M A =N Th=f—n ot p —ea
c c c
E Left Add. of A;~Left Add. of N 28 —3>n -+l —A
E' Rig}lt " 1® " __‘Righ..t " L] 1
Fixed Pt. conv. and Reconversiont

c' o+ Convert fixed pt. N (-1 = N < 1) to a floating binary number in
A. The number in A is normalized and rounded.

R'" M Reconvert the fl. pt. no. in A to fixed pt. and store it at N
and also leave it in A . (-1 < N <1) It does not check for
spill and will store some residue 1f A > 1 initially. N = O if
|A] = 239 initially.

F1l. Decimal Conversion and Reconversion:

c + Convert the floating decimal coeff. in N and the floating
decimal exponent in N+l to a fl. binary number in A, The
number in N and N+1 must be in binary form with the exponent
in N+1 scaled at 10"2. (This scaling may easlly be changed) .
The floating binary number in A 18 normalized and rounded.

RM Reconvert the fl. binary number in A to a floating decimal
number and store the coeff. at N and the exponent at N + 1
scaled at 10™2. The numbers at N and N+l ave in binary form.
The number in A is destroyed in this reconversion process.

Miscellaneous Orders:
DN Does nothing. No change in A, goes on to the next pseudo order.
H Unconditional Halt. Goes on to next pseudo order 1f toggled past.

Fixed pt. polyonomial evaluation. Evaluates

n
8 + 8 X+ .0 +t8 X =y ,
(o) n

1
x is put in 016 before this order is given and N contains
2_52_’9:0__ X X _Qéz ey v 1{“: l*rAg

The result y 1s left in A in floating binary but is not
normalized. This section may also be used as a subroutine
by having x in 016, the word at N in R, with 067 changed

to any return address desired and transferring to 052, After comple-
tion of the subroutine y, in fixed point,«in Ry, Ry and A, = 010.

(x{, |y}, |2i| and |partia1 sums| must be less than 1.

Storage Requirements:

The routine 1s coded in sections that, except for the control section,

may be stored anywhere in the memory. If a certalin section of orders are

not used anywhere in a problem, that section need not be stored for that

problem. All sections use 010-015 for temporary storage.

Control:

Fixed location: O4O-0SL. This section must always be used to do any
pseudo orders and it includes the following orders: all transfers
except U¥, Halt, DN, oM, sM, M, +, -, (+), (-). This sectlion must

be read into the machine before any of the other sections.

Floating Point Arithmetic:

66 words. TITncludes all of the floating arithmetic orders and is also

used by any other orders that normalize numbers.
U*:
13 words includes only U* order.

C' + and R'M:

11 wofds.
C+ and RM:

62 words, includes both orders.

258

Fixed Point Orders:
14 words includes E, E', x, %, M,*—, —, ¢~ ,— 1>, 2'19(+)M,

2" ()M, 2779(+)m.

Polyonomial:
11 words.
Code Checking Features:

The routine will print two words on the teletypewriter and halt when
it encounters certain difficulties. When it prints, the right address
of the first word is the address of the order at which the routine en-
countered difficulty and the second word is the contents of that address.
The second word contains the order that caused the trouble. The trouble
will be one of the following: ,

1) Attempted a division by zero when A, # 0. (Note: 0/0 = 0)
2) Exponent exceeded capacity when normalizing. '

3) Attempted to use one order in a section that wasn't read
into the machine after the control routine (see Storage
Requirements above).

L) Attempted to use an unused pseudo order type.
After the printout, the machine will halt, and 1f toggled
on the routine will insert the blggest possible exponent in Ae

before going on to the next order.

Not all of the unused pseudo order types cause a printout,
-some of them halt without printing. A printout at this time,
or anytime, may be obtained by transferring to the right side of
O7K. If the counter says ONO at a halt, it may be a programmed
halt with an IN order type.

The counter containing the address of the pseudo order being
performed i1s the right address of 05K, or 068 for one order per

word system.
One Order Per Word Coding:

Each order (half word) is assigned an address. 'The address
N in the order is used as a right address but the fU or fC order

259

Speed.:

should be used to transfer to any one order per word. (fU' or

fe! will work except when using the code checker).

The transcriber takes each half word as it is coded and
places it on the right side of a word. It also "decodes" the
order type and places a corresponding address in the left
address of the word and adds in a 4 order type on the left.
A 33 key word (see transcriber description) will start the
transcriber to expanding half words to full words. Two half
words are punched in each 12 col. field on a card in prepa-
ration forrtranscribing, but if the number of half words is
uneven, an extra half word of 800000 must be added before &
key word (52 or some other one) is given to change back to
transcribing word for word. '

The average time to do a floating point arithmetic order is 2.

ms. The routine does about 400 fl. pt. orders per second or

about 500 per second if the one order per word method of coding

is used.

260

September 1956
&z) ORDVAC Floating Point (One Address) Code Checker
L. Campbell

This routine will print out information about the monitored one address
floating point (OFB) orders as they are belng performed. It has no effect
on machine orders and will print only when floating point orders sre being
- performed. The use of this code checker is almost identical with the use of
the code checker that code checks the machine orders.

A tape (or switch settings) controls the amount of printing. Printing
mey start or stop on any floating point order and the number of times that
the orders Iin a given loop are printed is easily restricted. There are
two different methods of controliing the printing: (1) the n interval
method vhere all intervals that are to be printed are specified at the time
the code checker 1s read into the machine (2) the 1 interval method where

one interval is printed before the next interval is read into the machine.

The n interval tape has the following form:

Gt S A 2

G S oA %R0 B.
where: A = Address of fl. pt. order at which printing is to start.
B = Address of fl. pt. order at which printing is to stop.

cy (or 02) = 0 specifies the left order at A (or B)
N (or cp) = 8 specifies the right order at A (or B).
All one order per word orders must be specified as right orders.

1l % k = 7 specifies that printing is to start or continue at
A k times only. ‘

If k = 0, printing will start every time the order at A is

performed. .
03 = 0 gpecifies that more tape words and intervals follow.
05 = 8 specifies that all the tape has been read. (C3 =8

for the last word on the tape and O for all other words.)

261

The 1 interval tape has two words for each interval in the following

manner:;
ok _m_ 09 _m_
Cl C5 A 02 8 B
oL _n_ 00 _m_
c,8 A .0 B
where: Cl, 02, and C5 have the same meaning as above.

n = no. of times to pass A before printing starts at A. Printing
starts on (n+l)st time.

m = no. of times to stop printing at B before read in the next
interval. (The code treats m = O the same as m = 1),
Oz=sn,m<«<LLL

(m and n must be specified in sexadecimal)

The two methods may be combined if the 1 interval method is used first
and 03 = 0 until the last of the n intervals is read on the tape.

The m interval case adds n positions to the Control Section and the

1 interval case adds 3.

The routine has two parts, each of which may be stored anywheré. The
first part shall be referred to as the Control Section and the second part
as the Print Sectlon. The routine must be read in with the standard
modifying input routine. A key word at the beginning of the deck controls
the storing of the Control Section and another key word card inserted between
the sixth and seventh cards controls the storing of the Print Section. If
no key word 1s inserted the Print Section will be stored at 4070. The Print
Section is only used during an interval while printing is actually being done.
This section may be stored in the same section of memory as subroutines or
anything that 1s not needed in the memory while the code checker is printing.
Thls section is normally on the drum, but when printing starts at an A address,
the contents of the memory space 1s stored on the drum and the print section is
called into the memory. The memory is reset every time that‘printing stops;

262

i.e., when entering a subroutine, when a B address is reached or when a
transfer from floating point to machine orders is effected. The drum
storage (tracks 88-N1) must not be erased by the program if the code checker

is to print afterwards.

The routiné does not change the program code in any manner but it does
change the Control Section of the OFB and the U* section if it is being used.
Hence the code checker must be read into the machine after the floating point
(OFB) routine. Tt also uses the RM order section to reconvert numbers to fl.
decimal, hence that section must be in the machine whenever printing is taking
place. ‘

Printing is normally done on IBM cards, one card for easch order. Printing
may be on teletypewriter if the Jrd, kth and 5th cards from the end are removed.
The informetion printed on a card is:

Field A B c D E-F G.-H
Order OO Add. AcOeff. Aexp. Memory A in F1, Mem. in Fl.
Dec. Dec.

where fields A - D are sexadecimal and E - H are decimal with a K (or 8) for
+ (or -). The numbers are rounded (when possible) by approximately
00000 00005, The printing on the teletypewrilter is two words per order:

Order 00 Add. A in Fl. Dec,

where A has K or 8§ and six digit coefficient and K or S and two dlgit
exponent,

If a decimal exponent of all 9's is printed, (in F or H) the decimal
coefficient is the fixed point reconverted contents of the memory (or A).
This occurs when numbers do not have the floating point form and are
probably fiked nos. or orders. A zero in the memory will also be printed
with all 9's for the exponent.

Orders in subroubtines will never be printed if they are properly coded
to use 050, 051, 052 or 056 as the entrance address to the OFB. In addition
to this, printing always stops at an U¥ order and upon the return to the

263

next order after the U¥ order, the code checker resumes the same status
as 1t had at the time of the U¥ order. This holds regardless of whether

printing during the subroutine occurred or not.

The Control Section of the code checker must not be destroyed as long
as the OFB is used. It may be erased if the Control Section (and U¥ section)

is re-read into the machine.

Length of Routine:
Temporaxry storage: None

Control Section:

78 words (L4000-4OLJ) + n for n intervals
or, 78 words + 3 for 1 interval

Print Section:
14l words (4000-408L)
Drum Storage:

Tracks SS-N1 (must remain intact until all printing is completed).

264

November 16, 1956
7.) ORDVAC FLOATING POINT (OFB) CODE
Lloyd W. Campbell

Title: Floating Point Square Root
Purpose; Computes x = + VN

Type: Standard closed

Number of words: 31

Temporary storage: 010-OLk .
Accuracy: At least nine significant decimal diglts
Time: Averesge 6.8ms Max. 8.3 ms Min..64 ms (for N = 0)

Initial Requirements: Enter at first word
Initial Data: N in Rl

Return Address: Right Address of R, (or later R3)
Result: x = VN in Rl. x is normalized if N is normalized

Remarks: Halts if N < O
Restrictions: Uses Control Section (constants) of OFB and (1-2—39) at OOL

Description: Obtains initial approximetion x = L1k 4+ .593T5N and
' ' uses Newbton-Rephson method of

X
N 71
X = = T3

until

X,
L

N
e | L€
& -2

€ at 4O1F is set at 2_16 which gives approximately the

accuracy of 62 = 2'52. € may be changed if more or less

accuracy is desired.

1

Xy ig the coeff. of VN 1if N has an even exponent or X" 5

is the coeff. of ¥y N if N has an odd exponent. The exponent
of x = VN 1is computed as ‘

1/2 (Exp. of N + 1)

265

November 16, 1956
8.) ORDVAC FLOATING POINT (OFB) CODE
Lloyd W. Campbell

Title: Floating Point sin-cos
Purpose: Computes sin x and cos x for given x.
Type: Standard closed
Number of words: 51
Temporary storage: 010-01K
Accuracy: Error < 5-10-10 (error increases if x 2x)
Time: Average 43.7 ms Max. 28 ms Min. 21 ms.
Initial Requirements: Enter at first word.
Initial Data: x in Rl
Return Address: Right Address of R, (or later RB)
Result: sin x in R, and 016

cos x in R2 and OLT

Remarks: If x >_2Ml’ sin x and cos x have no significance but result
will probably be sin x = 0, cos x = 1.

If x < 2"57, sin x = 0, cos x = 1,

Restrictions: Uses the Control Section, Floating Arith. Section and C'+ and
' R'M Section of the OFB floating point routine.

Uses (1-2“59) at OOL.

Description: Conmputes %E and discards the integer of the result.
Using the fractional part of %E , 1t computes X such that
-1/ = x s 1/h _
and then sin x = gin 2x x. The cos x is computed using the
s8in 2x y series and identity relations between the sin and cos.

The sin 2% X 1s computed by using a chebyshev polynomial

5
sin 2n x = x }TM\hgi+l c, x ot
=5
where
c, = 1.5707 9632677
c, = -.64506 4095587
¢, = .07969 2603718
c5 = -.00468 1657795
C), = .00016 0254690
C5 = .00000 3431829

266

December 1956
9.) ORDVAC FLOATING POINT (OFB) CODE
L. W. Campbell and R. H. Brunelle

Title: Floating Point Exponential

Purpose: Compuﬁes & for given x

Type: Standard closed

Number of words: 50

Temporary storage: 010-019

Accuracy: At least nine significahﬁ decimal digits.
Time: Average 13 ms. Max. 16 ms. Min. 1.1 ms.

Tnitial Requirements: Enter at first word
Initial Data: X in Rl

Return Address: Right Address of R2

Result: ex in Rl

Remarks: Halts at 402K if x = 128 (If toggled past this halt,.ex = 2
Halts in OFB at 083 (after an erroneous error print)

if 88.8 < x < 128, (e88‘7 ~ 1077 exceeds OFB range)
0

126
)

e = 1 exactly
e =0 if x < -88.8
Description: Compute I and f where T is the integral part of X 5 and
: loge
and f 1s the fractional part of xé -
log
e
If 1/2 = f < 1, replace f with £ - 1 and then if x > o replace

I with T + 1.

Oor if -1 = f < -1/2, replace f with £ + 1 and then if x = o,
replace I with I + 1. :
If -1/2 <f <1/2 and x =< o, replace I with I + 1.

then v
e = 1+ 2 f2 p ‘ 2I
a-*f+ £ (b+ 5 '
» a+f
tthere a = 2 5 c = 49/20 a
loge
b=.a d.=21/2a2

Restrictions: Uses Control and Floating Arithmetic sections of the OFB
and the permanent constants at O0OK-OOL.

267

November 29, 1956
10.) ORDVAC FLOATING POINT (OFB) CODE
Lloyd W. Campbell

Title: Floating Point Natural Logarithm.

Purpose: Computes loge x for given x.

Type: BStandard closed.

Number of words: Ul

Temporary storage: 010 - 019

Accuracy: At least nine significant decimal digits.
Time: Averagel4.7 ms; maximum 20 ms; minimun 14 ms,

Initial Requirements: Enter at first word.

Initial Data: x in Ry

Return Address: Right Address of R?
Result: log, x in R, and 016.
Remarks: Halts (at 4001) if x < 0.

This routine must be changed if the length of the exponent is
changed to something other than the standard eight bits.

Restrictions: Uses the Control and Floatlng Arithmetic sgections of the OFB
floating point routine.

Description: Let X, = coefficient of x and X, = exponent of x

3/e Xo - 1

Compute x =375 x_ T

and log_ 5/2):0 =X E Ciyet

where Ci are the coefficients of a Chebyshev polynomial

C, = 2.00000 00000
C, = .66666 66169
c, = 40000 98961
c5 = .28502 = 79895

C), = 2h1ke 79584

then compute,
log, x = log_ 3/2 X log, 2/3 + x, log 2

268

December 1956
11.) ORDVAC FLOATING POINT (OFB) CODE
L. W. Campbell

Title: Floating Point Aresin

Purpose: Computes © = arcsin x

Type: Standard closed.

Number of words: 64 + VX (31 words) = 25 words.
Temporery storage: 010-01K

Accuracy: Error < ,1071°
Time: Average 24 ms. Max. 37 ms. Min. 5,5 ms.
Initial Requirements: Enter at first word

Initial Data: - x 1n R

1
Return Address: Right Address of R2
Result: © in R, end 016. - /2 £ 6 s ¢/2; © 18 in radians.
Remarks: If 1 < /x/ < 2, routine assumes that /x/ = 1.

If 2</x/, results will be arcsin [x(mod 2)] .

Restrictions: Uses Control, Floating Arithmetic and C' + &R'M sections of
OFB. Floating Point X routine is used (1f /x/>42/2) and
must be stored in the memory immediately following this
routine. ‘

Description: Computes X in the following manner:

If 0 & /x/< J2/2, then X = - /x/ and arcsin /x/ = /arcsin X/

wJ2/2 = /x/ £ 1, then X = -(1 - 2 1/2

and arcsin /x/ = /n/2 + arcsin x/
arcsin x = X :E% C (3?)21
) =

where Ci are the following Chebyshev coefficients:

C'0 = .99999 99997 15 05 = .03717 68708 L8

C, = 16666 67753 37 Cg = --OMk39 60736 91

Cy = -0Th99 30572 86 Cr = 16748 53422 27

Cy = .OhUB1L 36827 32 Cg = -.20271 07850 L5

C) = .02826 84Th5 97 Cy = .14636 21900 95
And finally, if x < O, then arcsin x = - arcsin /x/.

December 1956
12) ‘ ORDVAC FLOATING POINT (OFB) CODE
L. W. Campbell

Title: Floating Point Arctangent

Purpose: Computes © = Arctan x

Type: Standard Closed

Number of words: 59

Temporary storage: 010-019

Accuracy: Error 5.1071° ,

Time: Average 14.5 ms. Max. 18 ms Min., 2.5 ms.

Initial Requirements: Enter at first word
Initial Data: x in R1

Return Address: Right Address of R2

Result: © in R; and O16. -1/2 £ © < x/2; © 18 in radians.
Restrictions: Uses the Control and Floating Arithmetic sections of the OFB.
Description: Computes X in the following manner :

If 0 </x/<+2 - 1thenX = /x/ and arctan /x/ = arcten X

IfJ2 -1 < /x/=J2 + 1 then X

and arctan /x/ = nt/4 + arctan X

e

[
la
+
[

Ify2 + 1</x/ then X = - 7}-];7 and arctan /x/ = n/2 + arctan X

5
arctan X = X c ('}?)2i
| 1: = % 1

where C ; are the following Chebyshev coefficients:

Co = 99999 99993 92

C, = -.33333 30749 37

Cy = .19998 21081 81

Cy = -.14239 98333 T5

C) = 10572 81795 18

Cy = -.06033 25166 L8
And finally, if x < O, then arctan x = - arctan /x/.

270

December 1956
13) ORDVAC FLOATING POINT (OFB) CODE
L. W. Campbell

Title: Floating Point arcsin-cos

. Purpose: Computes © = arcsin-cos for given sin © and cos ©.
Type: Standard closed '

Number of words: 61

Temporary storage: 010-01K

Accuracy: Error < 5.10"lO
Time: Average 19.7ms, Max. 25 ms, Min. 16,8 ms.

Initial Requirements: Enter at first word.

Initial Data: Left Address in Rl is the address of
gin © and the Right Address 1s the
address of cos ©

Return Address: Right Address of R

Result: © in Ry and 016. -x < © < x; © is in radians
Remarks: Cycles if 2 > sin © and cos 0> V2/2 + o2

May cycle or get some sort of results (mod 2) if either or

2

both sin and cos > 2.
Restrictions: Uses Control, Floating Arithmetic and C' + & R'M sectlons of
OFB. '

Description: Computes X in the following manner:
If 0 < /sin /2 /2/2, X = -/sin 6/ and €, = /arcsin X/
or if /sin 6/ >+/2/2 and 0 < /cos ©/< ¥2/2, X = -/cos &/ and ©,=/x/2 +
| ' arcsin X/

- 2 —21
arceln X =x > Ci(x)
1 =0

where'Ci are the following Chebyshev coefflclents:
<99999 99997 15 C .03717 68708 448
= ,16666 67753 37 Cg -.0kk39 60736 91

1
i

' c:‘= .0TL99 30572 86 Coy = 16748 53k22 27

03 = ,04481 36827 32 Cg = -.20271 07850 .45

C) =7.02826 8hTh5 97 Cy = 14636 21900 95

Then 1f cos © = O, 8, = 6, or if cos © =0, 6, =x - O
and if siln © 2 0, © = 62 or if siln © =0, © = - 62.

271

January 1957
14.) ORDVAC FLOATING POINT (OFB) CODE
L. W. Campbell

Title: Solve Normal Equations (SNE) and Matrix Inversion.

Purpose: To solve a system of n equations in n unknowns and produce the
inverse of the glven coefficient matrix.

Number of words: 62

Temporary storage: 010-01S8 + n (n = size of matrix and n =< 36).

dec
Accuracy: Depends on the "condition" of the system.

54 12n° ms (for n x n + 1 matrix).
Initial Requirements: Enter at first word.

Initial Data: X X Ali XX n in R

Time: Approx. Average 9n

1
where A is the address of the first

elementlif the matrix and n 1s the size
of the square matrix A. The matrix is
stored in consecutive memory positions
in the order of first row, then bl,
second row, then 'b2 etc. where the
equations have the form Ax = b.
Return Address: Right Address of R2
Result: The coefficient matrix A is replaced with its inverse and the

K
Remarks: Will halt on a floating point division by zero if the varlables

colum of b, is replaced with the solution XK.

need to be renumbered or if the matrix is singular.
Restrictions: Uses the Control and Floating Arithmetic sections of QFB.
The size of the matrix is restricted to 36 unless provision
is made for n temporary storage positions at some place other
than the Standard O01N-O03L. v
Descriptioh: Uses Gauss elimlnation to solve the system of equations and
performs the same row operations on the rows of the identity
matrix to obtain the inverse. The identity matrix is not
actually stored as such, the inverse matrix gradually replaces
the original matrix.

272

December 1956
15.) ORDVAC FLOATING POINT (OFB) CODE
L. W. Campbell

Title: Floating Pt. IBM Input (IBMC)
Purpose: To read floating decimal numbers from cards and stofe the
equivalent floating binary numbers in the memory.
Number of words: 3% words + IBMI (105 words) = 139 words.
Temporary storage: 010-03L
Initial Requirements: Enter at first word.
Initial Data: N _M_ IX o _inR
where N = no. of fl. pt. nos. on each card.
N <12
M = total no. of fl. pt. nos. to be read
(N and M are sexadecimal nos.)

AO = Initial store address for the M nos.
I = Increment for A, (I =0 is same as
I=1
Return Address: Right Address of R

2
Result: M floating binary'numbers stored at Ao, AI, A2I""'AM - 1)I

Remarks: The format of the numbers on the card is controlled by the
field words of the IBMI. These fileld words may be changed to
any desired format except that each floating decimal number
must be in two consecutive flelds, i.e. coefficient is in one
field and the exponent times 10"2 is in the next fileld.

Restrictions: Uses the Control, Fl. Arlthmetic, and C+ and RM sections

of the OFB.

IBMI must immediately follow this routine in the memory.
No. of fl. pt. nos. on each card (N) must be less than
thirteen and the left half of the card must not have more
than six of them. '

Cannot print 000 unless I>1.

273

16.) ORDVAC Floating Point (OFB) Code

L. W. Campbell June 1957

Title: TFloating Point Arccos

Purpose: Computes © = arccos x

Number of words: 66 + ﬁ (31 words) = 97 words
Temporary storage: 010 - 01K

Accuracy: Error < 5.10"10

Time: Average 24 ms. Max 37 ms. Min. 5.5 ms.

Initial Requirements: Enter at first word.
Initial Data: x in Rl‘

Return Address: Right Address of RZ'
Result: € in Rl and 016. 0 L£O0< ; 06 is in radians.
Remarks: If 1< [|x| < 2, routine assumes that |x| = 1.

If 2 < Kk} , results will be arccos Ec(mod 2)] .
Restrictions: Uses Control, Floating Arithmetic and C' + and R'm sections
' of OFB. OFB JX routine is used (if |x] 7J2/2) and must be

stored in the memory immediately following this routine.

Déscription: Computes X in the following manner:

If OQIXLQJZ/Z » then ¥ = - lx’ and arccos 'x, = I1[‘/2 + arcsin 'Xl
IfJ-f/Zfz‘x\él, then ® = - (1 - xz) and arccos ‘xl = \arcsin 5‘:’\
arcsin x = X E : Ci(}_{)z'i
i=0

where Ci are the following coefficients

CO = ,99999 99997 15 05 = L03717 68708 48
€y = .16666 67753 37 Cg = -.04439 60736 91
C, = .07499 30572 86 C7 = ,16748 53422 27
03 = ,04481 36827 32 08 = -,20271 07850 45

14636 21900 95

]

C4 = .02826 84745 97

And finally, if x £ 0, arccos x ='Tl‘- arccos lx,

274

April 1957

17.) - ORDVAC OFB Routine (6 and 9 Bit Code)

Title: OFB RKG :
Runge-Kutta-Gill Solution of Systems of First Order
Differential Equations. '

Purpose: Compute y, (t_ + At)

Number. of Words: 47 4000-402F

Temporary Storage: 016-01K These positions can be used by coder in DO sequence.

Accuracy: O(At)5

Time: | Varies

Results: yi(to +‘At)-%rYi(ll= 0,1,2,3, . » . 1)

Remarks: ONE ADDRESS FLOATINGYPQINT (OFB)

Restrictions: o Assumes OFB in 040 and Arithmetic Orders.
bescription: See @eneral Description of RKG, but ignore references

to scaling.

Requirements:
1. Store initial conditions yi(to) in Yi(i=0,1,2,3,. » . 1)

2. Code the derivative sequence:

> X "@

i= O,l,...n

3. Enter at 4000 with the contents of the following reglsters as specified:
RL: 27 (m+l)_ B _ _ _{at}

Exit
R | _ D _ _Mdress
B : Y K Q

e 20— O O —
4. Exits and entrances are not under floating point control.
5. For successive steps enter at 4003 with contents of Rl and R2 immaterial.
6o Qi mst be set to zero initially. :

NOTE: This program may be used for more than one system of equations by enter-
ing at 4000 with initial conditions whenever a change from one set of
equations to another is made. Q; must be reset to zero.

Programmer: John Wortman 9 bit code checked November 1956.
' 6 bit code checked April 1957.

275

April 1957

18.) ORDVAC Subroutine (6 Bit and 9 Bit Codes)

Code Number:
Title:
Purpose:
Number of Words:
Temporary Storage:
Accuracy:

Time:

Initial Requlrements:

Result:

Remarks:
Restrictions:

Method.:

1 001 1

Square Root

Computes JX for a given x

9

1010, 011

‘(yz - x)\ﬁ 1.278

19.7 msec average (for 10 ifterations)

Enter at first word.

22n x in Rl

Return Address in Right Address of R

2% J¥ in Ry

-Halts 1f x<0 -

None

Newton-Raphson

= =X & 71
Vil T 7y, 7 2
% = 1 L ™39
Yo ik 1 -2

276

2

19.)

Code Number:
Title:

Purpose:

Wumber of Words:
Temporary Storage:
Accuracy:

Time:

Initial Requirements:

Result:
Remsrks:
Regtrictions:

Method:

ORDVAC Subroutine (6 Bit Code)

1 001 2
Faster Square Root
Computes Jx for a given x
26 words

010-012

|y - /ol 27

12.8 msec average

Enter at first word.

April 1957

2% in R,
Return Address in Right Address of R2
2n Jx in Rl
Halts if x <0
None
Newton-Raphson
Y.
- x! i . _ 22k 2 ' %
Visl 2y, + o xt =27x, 27 &x' 41
Y, T % (x' - %%l + 1% for x'< %%
Vo = 1% otherwise
‘ -39
1¥ =1 - 2
-k
270 = o= X

Adapted by V. Woodward from 9 bit code by J. Wortman.

2717

20.)

April 1957

ORDVAC Code (6 Bit)
L.W. Camgpbell

Code: 1 001 3

Title: Fastest Square Root

Purpose: Computes x = + ;/ﬁ- for given N, (0S N <1)

Number of Words: 41

Temporary Storage: 010-012

Accuracy: Error < 2~

38

Time: Average 9. ms. Max. 13.2 ms. Min. 3.8 ms(.8 ms if N = 0).

Initial Requirements: Enter at first word.

Result: x =

Initial Data: N in Rl
Return Address: Right Address of RZ

+ J-ﬁian

Remarks: Halts (at 4000) if N £O0.
If N = 2°n M, result is 2 JH.

e 2—39 -1 - 2-39
Restrictions: Uses permanent constants at OON-OOL.
Description: If N = set ,}'IT= 0 and exit.

0,
If N # 0, determine N = 2%°N such that 1/4 £ £1.
s =0,1,2... or 19 ‘
If 1/4 < & <1/2 compute initial approximation
Xy = 292 + .8B4375N
or if l/ 2 £ N £1 compute initial approximation
X = .414 + .593758

but if x >1, use x_ =1 - 2729

Use Newton-Rapshon method

N X
1 T T2
until
N o_x <2-19+2 =39
Xy i

- _ ‘ .
Finaly use 27 Xy, = rN'u.nleas Xy ¥ 1 Ifx o Tl use

JTf: 1 - 2—39.

278

21.) ORDVAC Subroutine (6 Bit Code)
L. W. Campbell April 1957

Title: ein and cos 2Ax .
‘Purpose: To compute sin 2’][x and. 2'§[x for given s8.(.1 £ x < 1)

Number of Words: 77

Temporary storage: 010-014

Accuracy: Error £ 1,107

Time: Average 13.5 ms. Max. 15.6 ms. Min, 9.5 ms.

Tnitial Requirements: Enter at first word.
Initial Data: x in Rl(x is obtained from an angle in

radians by dividing by 2(or by divid-
ing an angle in degrees by 360 and
removing the scaling).

Return Address: Right Address of R2

Result: 271 gin 2% x in Ry
27L cos 24(x in R,
Restrictions: Uses permanent constants, zero at 00K and -1 at 00S.

Description: If x & 0, replace x with x + 1.

Compute % = (x -T(/4) such that -1/8 & X & 1/8 where n = 0,1,2,3
or 4,

Compute sin 9(/2(4X) and cos 9(/2(4%X) by using series approximat-
ions that were obtained by using Chebyshev polynomials:

- - -\21 - -y 2i
sin T/2(4%) = 4% Zci(axx)h and cos T/2(4%) = ZDi(‘IX) '
1= (6] ’ . 1= 1

If 0 £ 4x < .07

CO = 1.57079 632678 Dl = .999999 999999
¢y = -.645964 034300 D2 = -1.23370 055011
Cy = .079658 222095 D3 = .253669 480321

D4 = -.020854 473715

If .07 £ 4% £1/2
Co = 1.57079 632679 D; = 1.00000 000000

it

¢, = -.645964 096155 D, = ~-1.23370 055013
Cy = .079692 582744 D:,) = .253669 507157
Czg = -.004681 266367 D, = -.020863 468006
04 = .000158 206524 | D5 = .000919 161752

Dg = -.000024 850988

Then if 3/8 < x £7/8, replace cos 9 /2(4%) with -cos T/2(4%) and if
1/8 < x £.3/8 or 1f 5/8 < x %7/8, use sin 2x = cos T /2(4%) and cos 2T(x
= sinT(/2(4%).

279

22. :
) ORDVAC Subroutine (6 Bit Code)

L. W. Campbell April 1957

Title: Arcsin-cos

Purpose: To compute 6 = arcsin-cos for given 2.:L sin © and 2-1 cos @
Number of words: 68

Temporary storage: 010-015

Accuracy: Error < 1.1071

Time: Average 15.7 ms. Max. 17.6 ms. Min. 7.5 ms.

Tnitial Requirements: Enter at first Word.

Initial Datat
Add. of Add. of
XX 27Msino xx 277

cos 0 inR
Return Address: Right Address of R2

1
Result: 272 0 in Ry and 010. (- €0 £ T; 6 is in radians.)

Remarks: If it is desired that sin and cos not be scaled 2'1, words at
4008 and 4032 may easily be changed so that no scaling is assumed
on sin and cos. J2/2 < sin @ or {2/2«cos 0 is necessary to obtain
a valid result.

Restrictions: None
Description: Determine x and O in the following manners:

It 04fin o| L2/2, % = - /sir; QI and 0 = farcein X/
or if J2/2 clsin Ol X = - [cos Q/ and © =/fn’/2 + arcsin J-{I

aresin x = % Z Ci(ii)21
i=0

where Ci are the following coefficients which were obtained by
using Chebyshev polynomials:

If 'i .14
Coy = -999999 999966 C, = .074985 007367
C, = .166666 725638 C, = .045858 458705
or if .l4£-.| it _ .
Co = -999999 999988 Cg = .001021 611887
C; = .166666 670196 C, = .0B60BL 512284
C, = .074999 672367 Cg = =.195690 652747
Cy = 044654 712853 Cg = .387032 BI5891
C, = 030161 652364 Cig= =+393001 749282
Cg = .024768 742062 Cy1= +205529 674087

Then if cos @ £ 0 replace 0 with Mo and then 1f gin &0 replace 6 with -0,
280

23.) ORDVAC Subroutines (6 Bit Code)
April 1957
L. W. Campbell

KTitle: Loge X
) Purpose: Compute natural logarithm for given x.
Number of Words: 50
Temporary Storage: 010-014
Accuracy: At least ten gsignificant digits. (if result is properly scaled)
Time: Average 14. ms. Max 20. ms. Min 12. ms.
Tnitisl Requirements: Enter at first word.
Initial Data: 27°1 x in R, and F,.2
word. (4001) Fi = 0 unless it is changed.
(Note: 1if x is scaled 272, F, = + 2, if
x is scaled by 24, F, = -4.) |
Fo'2“39 must be set in the third word
(4002) so that result will be scaled
27Fo log, x. F_ =0 unless changed and
FOEZ 0 only.
Return Address: Right Address of R2
Result: 27 0 log, x in Ry (Fo'2'39;2(3 is at 4002)

Remarks: Halts (at 4005) if x £0.
Halts (at 4016) if FO<.O.

-39 in the second

Restrictions: Uses permanent constante at OOK-OOL.
Description: Normalize Z-Fi x to obtain 271 % where 1/2 £ x <1.

3/2 x - 1 _
Compute —%m =Y

Then compute

) 4 21
Log, 3/2 X = ¥ ij[:O C, ¥

Where Ci are coefficients obtained by using Chebyshev polynomials

Co = 2.00000 000004
Cy = .666666 616911
02 = .400009 896127
03 = .285027 989462
04 = .,241467 958353

=] oy - -
2-Fo = 2-Fo
log, x = 2 (Log, 3/2 % + Log, 2/3 + F, log, 2)
281

24.) ORDVAC Subroutine (6 Bit Code)
L. W. Campbell May 1957

Title: Arctan x _ o
Purpose: Computes 6 = arctan x for given x (-239 £ x (239)
Number. of words: 73

Temporary storage: 010-015

Accuracy: Error <1.10 1t

Time: Average 13.5 ms. Max. 15.8 ms. Min. 7.1 ms.
Initial Requirements: Enter at first word.

Initial Data: .2 °x in Rl'

6277 get in the second word (4001).

392 82> 0 only and 8 = O unless it is
changed.

(If have 2_3x, 8 = 3).
Return Address: Right Address of Rz. _
Result: 27" 6 in R, and 010. (-f(/2< 6 £ 7(/2; & 1s in radians)
Remarke.: Halt (at 4004) if s £0.
Restrictions: Uses permanent constant -1 at 00S.

Degcription: Compute X in the following manner:

If O .élx € J2 -1 thenx-= Ix‘ and arctan ,x’ = arctan x
IfJ2 - 12 ’xl_{: J2 + 1 then % —l:I _"_ i and arctan /J-C/: ’Jf/4 + arctan X
If{2+1e Ix' then x = -T;L?r and arctan/xl = /2 + arctan %

arctan x = x E : Ci(i)zi
i=0

where Ci are coefficients obtained by using Chebyshev polynomials.

282

If]S’ck .12

I .12 £élil

and finally, 1f x £0

Arctan x

= .999999 999964 C, = .199971
= -.333333 252414 Cy = -.139709
= ,999999 999999 Cq = 111035
= ..333333 332784 Cy = -.089933
= ,199999 931985 = .069774
= =.142853 916672 C, = -.037710

replace 0(6 = arctan lxl) with - 9.

283

825718
382531

431503
027844
480166
838763

25.)

Title:

Purpose:
Number of Words:
Temporary Storage:

Accuracy:
Time:
Results:
Remarks:
Restrictions:
Description:

Requirements:

1. Store initial conditions b

2. Store scaling indicators + 2-39(51) in Si (non-compliments for 8y £0)

April 1957
ORDVAC Routine (6 Bit Code)

Fixed Point RKG
Runge-Kutta-Gill Solution of Systems of First Order
Differential Equations

Compute yi(to + At)
99 (incl. preset box) 4000-4062

After initial entry, positions 4042+n thru 4062 are
unused. 010 usged in preset only.

o(at)’

Varies, function of n and derivative sequence.
yi(to + At)‘%Yi .

FIXED POINT

[sii should be minimized.

See General Description of RKG.

x
i
vy in Yi

3. Code the derivative sequence:

b 611‘1—-—*,-3:1j

I |
b yiLYi

i-= 0,1,2,...1'1

4. Enter at 4000 with the contents of the following registers as specified:

Mi: z'f_f Y K D

R 752 ad B s

= o = W

R2: 2_ n_ Ml— _ _.éggygps
Set £ =2 if By varies
f =1 1if s; = constent # O}
fF>201f 8. = 0 for a1l 1

i

5. For succegsive steps transfer to 4000 with contents of Rl and R2 im- -

material.

Programmer:

Viola Woodward
9 bilt code covered by other writeup containing General Description of RKG

284

April 11, 1956
26.) ORDVAC IBM CARD ROUTINES
L. W. Campbell

These routines have been programmed according to the specificationé
that were stated at meetings of programmers on 20 January and 2 February

1956.

There are two separate routines, an Input routine and an Output
routine and each may be stored as subroutines anywhere in the memory.
They are used in essentially the same manner. They have arbltrary fields
with the limitation of eleven'decimal digits per number. Numbers are
automatically converted (or reconverted) and the output routine auto-
matically rounds each number by adding .5 x J.O-p where p 1s the number of
decimal digits in the number to be printed. There is provision made for
skipping arbiltrary columns. The output routine will automatically print

an identification number and/or a counter on each card if 1t is desired.

Entrance is made with a word in R, and the return address on the

1
right of R, (or later in R5.)

Ry , | R,

N M XX Ao XXXXX XX RA

— — —_—— — vy - —- e oo

where M = the total number of numbers thet are to be read (or printed) on
the cards. Routine reads (or prints) enough cards to convert (or reconvert)
M numbers. Ao = the initial address at which M numbers are to be stored
(or printéd from.) Numbers are stored in (or printed from) consecutive
memory positions unless the address advance constant is changed before
entering the routine. N = the number of numbers after which the next
number starts a new card and starts using the field words from the be-~
ginning. If N = 0, 1t is ignored.

RA = Return Address.

M and N are both sexadecimal numbers.

The field words tell the routine how many columns are in each field.
They also indicate how many columms to skip, when and where to print the
identification and/or counter, and when to start a new card and start

285

using the field words from the beginning sgain. Each sexadecimal in a
field word has a meaning as listed below. There may be as many field
words as are desired but the storage space listed for the routine in-
cludes space for only two field words and these are the last two words.
Adding more field words will lengthen the routine.

Meaning of sexadecimals in field words:

0 - Go to the next field word. (The routine also does this auto-
matically after decoding all ten sexadecimals of any one field
word.).

1 thru S - Convert (or Recon#ert) this many decimal digits and
store (or print) as a number. A number uses the same number
of columne as decimal digits for double punched glgns, but
uses one additional column for single punched signs.

N - On output punch card as stands; on input ignore rest of card.
Go back to first field word for next card.

Jq - Skip q columns where q is the next sexadecimal. 1 <q = L
Fq - Not used by the Input Routine. Routine will Hslt unless
using no double punch option. The Output Routine will print
the sum of Cl and 02 in q columns vwhere q is the next sexa-
decimal. 1 < q=< S The sum of Cl and 02 1s restored in Cl
go that if C2 contains 1 x lO'q, the routine will automatically
print a card counter on the cards. Cl and 02 are the second

and third words of the cutput routine,
L - Not-used by elther routine. Both will Halt.

When the output routine has reconverted N numbers or M numbers, it
will search the remainder of the card (if there is any left) for an F in
the field words. If it finds an F, it will print the sum of c, and C,
in the same columns as 1t did on the preceding cards.

Flelds may go across the middle of & card and they may go from the
end of one card onto the next card. The routines do not start the field
words over at the beginning of each card unless told to. do 80 by using

N elther in a field word or in the entrance word.

286

Slgns: The input routine uses either an X or a Y punch as a minus
sign. The output routine normally prints Y punches for minus
gigns but may be made to print X punches instead by using an
option card. Notﬁing‘is printed for plus signs. The routines
normally read and print.doﬁble punched eigns with the sign over
the first decimalﬁq;git.

Options:
Both Routines:

No double punch:- Signs are in separate columns.

Count cards: M specifies tﬁe total number of cards to
be read or (printed) instead of total
number of numbers.

Output Routine only:

X minus signs: prints X's-instead of ¥Y's for minus signs.

None of these options-add to the length of the routine.

Algo avalleble are cards that allow the field words and

counter to be changed easily.

The input routine may easily be changed to give Integer conversion.

The output routine will not reconvert - 1 correctly, 1t will give
-66666 66666 6.

Both routines use the permaﬁent constants stored at OOK - OOL.

Lengths of Routines: A
Input: 105 words 4000—#068;
Output: 128 words (4000-LOTL

Temporary Storage:
Input: 010-027 and 034-03L
OQutput; 010-033 and O03F-O03L

Location of field words;:
Tnput: words 104 and 105 (LO6T-4068)
Ooutput: words 127 and 128 (LOTF-LOTL)

Location of Counter in output routine:
¢, 1s word 2 (L4OOL1)
C; is word 3 (4002)

Location of Address advance constent (in right address only):
Input: word 89 (4058)
Output: word 98 (4061

287

Accuracy: -39 _
Input: Maximum error is 2 (1ast bit is always a 1 except that

zero is exact.)
Output: Maximm error 1s .5 x 107K + 275° yhere K 18 the number of
decimal digits printed.

The fleld words are set at KKKKK KKKNO which is 8 fields of 10
decimal digits each. The counter in the output routine is set at

-10
Cl = 0, 02 =1x 10 . |
The output routine described here is not a double speed routine.

This routine 1s avallable for both 6 bit and 9 bit order codes.

288

September 5, 1956
27.) DOUBLE SPEED IBM OUTPUT ROUTINE
L. W. Campbell

This routlne is used the same as the IBM output routine described
in write-up dated 11 April 1956 and it is intended that this routine
should replace that routine. The advantage of thls routine i1s that it
will print cards at the maximum rate of the printer (100 cards/minute)
where as the other routine will print about 50 cards/minute. The speed
is gained only if programmers code so that more than one card is punched
with one entrance to the routine. The speed 18 gained by doing the
reconversion for the next card in between the rows of the card it is
printing. It always prints all the carde each time 1t is entered, i.e.
there is not one card left to print at the end of the problem.

The following three things are different then what was described

for the slower routine;

Length;
144 words (4000-408L)

Temporary Storage:
010-03L and 4080-4083

Location of field words:
words 143 and 144 (LOBF-LO8L)

The timing is such that the routine will work properly unle#s a
lot of ngz'short fields are used. The number of flelds included in
any 8 consecutive columns should not be more than 3 to insure correct
punching. '

289

April 1957

28.) ORDVAC Code (6 Bit)
K. B, Betz and L. W. Campbell

Title: Order Pair Routine (OF)

Purpose: To perform any specified ORDVAC pair of orders d'specified number
of times and using a variable advance of the two addresses.

Number of Words: 9
Temporary storage: 010-01l1
Time: .6+n(.5 + order pair time) ms.

Tnitial Requirements: Enter at first word.
Initial Data: Order pair to be done in R

1
Left Right
Add. Add.,
Adv. _n_ Myv. RA iInR

where n = number of times order pair
18 to be performed.
RA = Return address.

This routine is useful to clear a block of the memory or to move &
block of data or code from one section of the memory to another section.

290

21 March 1957

29.) PRINTING ADDRESS SEARCH

No. of Words: 21
Temporary Storage: 0010

Tnitial Requirements: Enter at first word.
: Tape in tape reader with each word containing the

address being searched for in both LEFT AND RIGHT
address positions: OO0xxx 00xxx

Regult: Two words printed on teletype:
yyy00 00000 Address of word contalning address being
searched for.

— o ———— Contents of yyy

Remarks: If the Stop Diseble switch is up, the machine will stop after
the whole memory has been searched once. '
If the switch is flipped to Start, the next word will be read
from the tape and the memory searched for that address.

Note: There will be at least 2 pairs of prints for addresses within the
routine iltself. : . ,

USE,B-Key Binary Input.

This routine is a modification of the routine coded by Home' Reltwlesner.

291

ORDVAC DMO (DRUM AND MEMORY IEM PRINT OUT)
Lloyd Campbell

1 30.)
28 September 1955

This routine will print out the contents of specified tracks of the drum
and specified portions of the memory on binary punched cards with necessary
key words go that the deck of cards can be read back into the machine with a non-
modifying input routine.

The routine reads a variasble number of words from'tape. The first group
of words contains information about what tracks of the drum are to be printed.
Each word consists of two half words of the form:

Tk.
n yp._

*
where n = number of consecutive tracks to be printed (n < N6)

Tk. No. = The initial track number of the n tracks. Each half word must
be positive except the last one which muet be negative. If there is nothing
to be printed from the drum, a tape word of 8000000000 will cause the drum
print to be omitted.

The second group of words contaln the addresges of the sections of the
memory that are to be printed. Each word is of the form:

* X A X X B

where A < B <LLLL. The contents of the memory from A to B will be printed.
Each guch word must be positive except the last one which must be negative.
If there is noting to be printed from the memory, a tape word of 80000 00000

will cause the memory printing to be omitted.

The last tape word is of the form:

XX RA_ XX ~C .
where R A = Rebturn Address
C = The address that is to be printed in a transfer of control key word.

A card with a transfer of control key work on it is printed after the other
printing 1s completed.

The routine assumes that it is to be executed at the time it is read into
the machine. Tt must be read in with a modifying input routine.

The routine occupies no apparent memory space except 004 (or any one easlly
changed position) and, of course, a regular input routine. It uses tracks N6-JO
on the drum as temporary storage for the contents of the memory from 000 to 20L
and this routine then uses that space to store itself and accomplish the printing.
When finished printing, it restores the memory to what it held before this
routine was read in (except for 004 and the input routine storage).

292

When printing the contents of the drum or of the memory, only the first
of a group of consecutive positions that contain LLLLL ILLLLL will be printed,
i.e., "cleared" positions will not usually be printed.

Each card printed will have a store key word as its initial word. Unused
portions of prirted cards will be filled with 80000 00000 words. _

When information that has been printed from the drum is to be read back
into the drum, an input routine that includes recognition of the 80004 00 n_
key word must be used. The input routine must not use 020-19L of the memory
a8 this is used to temporarily store the drum informetinn,

It should be noted that if "cleared" tracks, or tracks that are partly
"cleared", have been printed, they will not necessarily be "cleared" upon
reading the information back into the machine. To be certain that cleared
tracks will remsin "cleared", it is necessary to insert a card that clears
020-191L, of the memory after éach 4 type key word. This will usually not be
necéary.¥

Example 1: Tape:

00212 OOK7F
801K0 00000
00040 00160
80200 002L.1®
00120 00200

This tape directs the printing of two tracks beginning st track 12,
ten tracks beginning at 7F, and track no. KO. Then it directs the printing
.of the memory contents from 040 to 160 and from 200 to 2LL. Finally, it
directs the printing of control card to 200 and then transfers control to
address 120,

Example 2: Tape:
80000 00000
80100 003JF
00100 003L1

This tépe directs the printing of hothing from the drum, the memory
contents from 100 to 3JF, and a transfer of control card transferring to
3L1. After the printing ls completed, control will be transferred to 100.

*oleared" means containing LLLLL LLLLL on the drum or in the memory.

293

31.) ORDVAC Sexadecimal Print (6 Bit Code)

L. W. Campbell August 1957

Title: Sexadecimal Print

Purpose: To print out the contents of specified memory positions on IBM cards
in a form that can be tabulated on the 407 or 402 tabulators.

Number of Words: 90

Initial Requirements: Enter at first word.
Tape in tape reader with intervals to be printed
specified:

00 A1 00 Bl
00 A2 00 BZ
~ete.
B x xxx x x R.A¥

To use as SUBROUTINE: Remove last card (card 6) from
deck and transfer to first word with the following
contents of Rl and RZ:

xx A xx B in R1

X X Xxxx X X R.A.¥ in R?

Result: The first card printed will have the interval:
00 A 00 B in first 10 columns, rest of card blank.
The remaining cards will have contents of that interval in
sexidecimal form, 8 ten digit fields per card.

If the 5th card is removed from the deck the sexadecimal cards will
be printed with only 4 sexade€imal words per card - suitable to be
printed on the 402 tabulator.

Remarks: Since punching a lot of 0's or L's;(blank memory positions) in

card tends to Jam the printer, such fields will be printed with
alternating columns blank:

LBLBLBLBLB or OBOBOBOBOB

where B = blank column

¥ R,A. = Return Address

294

32.) FLOATING DECIMAL TO FIXED DECIMAL ROUTINE

(WITH DECIMAL POINTS PUNCHED ON CARDS)

J.V. Lanahan _
T. It was asspumed, when this program was written, that it would be applied to

standard floating decimal output. It may be adapted easily to any other

card format.
IT. Card-punched decimal points are optional.

IIT. The program works as follows:
Glven sets‘of n cards, each card punched with 6 or less floating decimal
numbers the user will: '

1. Punch & set of n cards (numbered 1 to n in columns T4 and 75) which
will be placed on the front of the deck of cards to be converted. The
first card will have punched in columns 2 and 3 the maximum "10" ex-
ponent which is associated with the first floating decimal number of the
first card of the n cards to be converted. The maximum "10" exponents
of the succeeding numbers on the card are to be punched'in columng 11
and 12, 14 end 15, 23 and 24, 26 and 27, 35 and 36. The succeeding
cards of the n cards will be punched similarly.

On the first card, in addition to what was listed ebove, n will be
punched in columns 47 and 48; and if there be an item on the first card
of a set whiéh the user would wish punched on each card (Time, for in-
stance) the number (1 to 6) of the item ghould be punched in column

39.

2. To specify the location of decimal points to be punched on the output
cards the user must place a binary punched card in the program. This
card will have punched in 1t)

(1) in column 1 = y, x, O: In column 41 * y, x, O. In column T4 & O.

(11) "1" punches to indicate the columns of the 1lst of the n cards in
which decimal points are to be punched; "2" punches to indicate
the columns of the 2nd of the n cards in which decimal points are
to be punched; etec. 7 decimal points -per card must be indlcated
unless a change is made in the output-card format. |

295

IV.

V.

vI.

The output 1s as follows:

Fach number (including sign and decimal point if desired) uses ten columns
of the card. The numbers will be punched in the same order as they appear on
the input card. The identificatlion item (see IIT) will be punched in columns
61 - 70. Each card will have punched in columns 71 and T2 its number

(1 to n) in the set. The first digits of the numbers with the largest "10"
exponent will be punched in the first column of the 10 column field (unless
this column is occupled by a decimal point 1n which case the first digit
appears in the second column) and numbers with smaller “10" exponents

willl be shifted right as necessary.

If no decimal points are to be punched one card (so indicated) must be

;emoved from the program.

If the user would change card formats he will need the following information:

1. This is a fixed point code.

2. The field words for the IBMI are in 271&280.

3. The field words for the IBMO are in 312&313.

k. The card format for the n instruction cards and the data cards is the same
and is the format of the data cards + one field (containing the instruction
card No.) The field containing the instruction card No. must be blank on
the data cards.

296

DISTRIBUTION LIST

No. of No. of
Copies Organization . Copies Organization
3 Chief of Ordnance 1 Commander
‘ Department of the Army U.S. Naval Air Missile Test
Washington 25, D. C. Center ‘
Attn: ORDIB - Bal Sec(2 cys) Point Mugu, California
ORDTX-AR (1 cy) '
’ -10 Director
Armed Services Technical
Information Agency
Documents Service Center
10 Britlsh Joint Services Knott Buillding
' Mission Dayton 2, Ohio
1800 K Street, N. W. Attn: DSC - 8D
Washington 6, D. C.
Attn: Mr. John Izzard, A National Bureau of Standards
Reports Officer National Applied Mathematics
Laboratory
L Canadian Army Staff Computation Laboratory
2450 Mass. Ave., N. W. Washington 25, D. C.
Washington 8, D. C. Attn: Franz L. Alt
3 Chief, Bureau of Ordnance 1 Director :
Department of the Navy National Security Agency
Washington 25, D. C. Washington 25, D. C.
Attn: ReO Attn: R/D 36, Chief, Engineering
. Research Division
1 Commander ,
Naval Proving Ground 1 Commanding Officer
Dahlgren, Virginia Flight Determination Laboratory
White Sands Proving Ground
1 Commander Las Cruces, New Mexico
Naval Ordnance Laboratory Attn: John Titus
White Oak ‘
Silver Spring 19, Maryland 1 Engineering Research Associates
Pivision of Remington Rand, Inc.
1 Commander 1902 W. Minnehahs Avenue
Naval Ordnance Test Station 8t. Paul, Minnesota
China Lake, California
Attn: Technical Library 1 Harvard University
Computation Laboratory
1 Director Cambridge 38, Massachusetts
Naval Research Laboratory Attn: Prof. H. Aiken
Anacostia Station
Washington 20, D. C. 1 International Business Machines Coxp.
' Engineering Laboratory
1 Chief, Bureau of Aeronsutics Poughkeepsie, New York

Department of the Navy
Washington 25, D. C.

297

Attn: E. R. Lancaster, Advanced

Engineering Education Dept.

DISTRIBUTION LIST

No. of No. of
Copies Organizatlon Copies Organization
1 Moore School of Electrical 1 Professor J. P. Nash
Engineering University of Illinois
University of Pennsylvania Electronic Digital Computer
Philadelphia, Pennsylvania Project
Urbana, Illinois
1 Oregon State College
Department of Mathematics 1 Professor A. A. Bennett
Corvallis, Oregon Department of Mathematics
Attn: W. E. Milne Browvn University
Providence 12, Rhode Island
1 Princeton University
Mathematics Department 1 Professor H. H. Goldstine
Princeton 1, New Jersey Department of Mathematlcs
Instituve for Advanced Study
1 Raytheon Manufacturing Co. Princeton, New Jersey
P. 0. Box 398
Bedford, Massachusetts 1 Dr. L. H. Thomas
Watson Scilentific Computing Lab.
1 Remington Rand Univac 612 W. 116th Street
Div. Sperry Rand Corp. New York 27, New York
1900 W. Allegheny Ave.
St. Paul, Minnesota 1 Chief Signal Officer
Attn: Mr. Sam Howry, Department of the Army
Systems Analysils Washington 25, D. C.
_ Attn: Mr. G. H. McClurg
1 Stanford University SIGRD-6

Department of Mathematics
Stanford, California
Attn: Gabor Szego

1 University of California
942 Hilldale Avenue
Berkeley, California
Attn: D. H. Lehmer

1 R. F. Jackson
University of Delaware
Newark, Delaware

1 University of Illinois
Department of Mathematics
Urbana, Illinois
Attn: A. H. Taub

298
Army~--Aberdeen Proving Ground, Md--D

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298

