
A GUIDE TO ASSEMBLY
LANGUAGE PROGRAMMING
FOR THE UNIVAC 1108

by

R. J. Ciecka
and

G. R. Ryan

UNIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND

A GUI DE TO ASSH1BL Y

LANGUAGE PROGRAMMING

FOR THE UNIVAC 1108

by

R. J. Ciecka
and

G. R. Ryan

SEPTEt~BER 1971

OFFICE OF USER SERVICES
COMPUTER SCIENCE CENTER
UNIVERSITY OF MARYU\ND
COLLEGE PARK, t,1ARYLfiND 20742

INTRODUCTION

This manual, originally prepared by R. J. Ciecka and G. R. Ryan
and presented through the Department of Electrical Engineering of the
University of Maryland on March 1, 1971, is herewith issued by the
Computer Science Center of the University of Maryland under the reference
number CN-2. The departmental identification assigned by Electrical
Engi neering is 100100, \I/hi ch rep1 aces that department I s manual !OO1 OC.

References used in the preparation of this guide include:
UP-4053; UP-4040; UP-4042; and the University of Maryland User Reference
70-01. .

The following is the ortgina1 introduction to the manual:

This man'ua1 provides a concise and relatively complete guide to
the UNIVAC 1108 Assembler. It is designed. primarily for the student who
is having his first contact with 1108 assembly language, but will also
serve asa handy reference for the more advanced programmer. Information
from as many sources as could be found had been combined and condensed so
that for the first time (to our knowledge) the user can find information
on assembly language subroutine linkage, input/output, and diagnostic
processors presented in a clear manner. Those users who find that they
need still more detailed information should consult the UNIVAC and U of M
references 1 isted at the beginning of this manual. . -

It is' a pleasure to· acknowledge the many and varied contributions
of the University of Maryland's Computer Science Center Systems Staff.
In particular we would like to thank Ray Cook of the Systems Staff and
Professor Marshall D. J~brams of the Oepartment of Electrical Engineering.

We hope--tf'ii~ manual meets the needs of those who use it. Good luck.

TABLE OF CONT,ENTS

1. Calling the As sembler - - - - - - ':" - - - - ." - - - - ... - - - .. - - - - - - - .. - - - -
Page

1

2. Basic Assembler Language - - - - - _ .. -
2. 1 Computer Instruction - Word Format - - - - - - - - - - - ~ - - - - - - - - -
2.2 Assembler Format - - - - - - - - - .. - - -..; - - - -- -.:. - - - - - - - - - - - -
2.3 Description of Fields -

1
1
2
3

3.

2. 3. 1 Label Field -
2. 3. 1. 1 Labels - - - - - - - - - - - - .:. -
2.3. 1.2 Location Counter Declaration - - - - - - - - - - - - - - - - - - -
2.3. 1.3 Location Counter Reference - - .. - - - - - - - - - - - - - - - - -

2.3.2 Operand Field - - - - - - - - - - - - .. - - - - ~ - - - - - - - - - - - - - - -
2.3.2.1 Function Code Designator, f -
2.3.2.2 Operand Qualifi~r or Minor Function Code Designator, j --
2.3.2.3 The Register Designator Field, a - - - - - - - - - - - - - - - - -
2.3.2.3a A-Register Designator, A(a) - - - - - - - - - - - - - -'- - - - --
2.3.2.3b X-Register Designator, X(a) -
2.3.2.3c R-Register Designator, R(a) ,-- - - - .. -, - - - - - - - - - - - --
2.3.2.4 Definitions of Registers in Assembler Programs - - - - - --
2.3.2.5 Index Register Designator, x -
2.3.2.5a Index Register Incrementation Designator, h - .:. - - - - - - -
2.3.2.6 Operand Address or Operand Designator, u - - - - - - - - - -
2.3.2.6a Indirect Addressing Designator, i _ .. - - - - - -:- - - - - - ":'--

2.4 Continuation - - - - - - - - - - - - - .. - .. - - - - - - - .. - - - - - - - - - - - - - -

3
3
3
4
4
4
5
5
5
6
6
6
6
7
7
7
8
8 2. 5 Te rmination - - - - - - - - ,- - - .. - - - .. '- - .. ,- - ~ .. - - - .. - - .. - - - - - - - -

2.6 Ejection of Paper - - .. - .. - .. - - - - - - .. - '- - - - - - - - - - - - - 8
2.7 Data Word Generation - - - _ .. - - - _ .. - - .. - - - - - - - - - - - - - - - - - -- 8

2. 7. 1 Expre s sions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9
2.7. 1. 1 Elementary Items - - - - - - - - - - - -;: - - .. - - - - - - - - - - 9
2. 7. 1.2 . Octal Values - - - - 9
2.7.1.3 Decimal Values - ~ - - -
2. 7. 1. 4 Alphabetic Items - - - - - - - - ,- - - -:. - - - - - - - - .. - - - -
2. 7. 1. 5 Floating Point and Double Precision .. - -'- - .. - - - - - - - - -

Subroutine Linkage - - - - - - - - - -,,- - - - - - - - .. - - • - - - - - - - - - - - - -
3.1 Calling Sequence - -- - - - - - - - - - - - - - - - .. - - - - - - - - - - - - - - -

3.1. 1 Abnormal Return - - - - - .. - - - - - - - - - .. - - - - - - - - - - - .. - - ..
3.1.2
3.1.3

Function Value Return - - .. - - - - - - - - .. - - - - - - .. - - - -
Normal Return - - - - - - - - .:. - - - - - - - .. - - - .: -- - - - ~ .:. - - - -

9
9

10
10
10
11
11
11

3.2 Use .of Registers by Subroutine' - - .. ,- - - - - - - - - -: .. - - -.-' - - - - -. - 12
3. 3 The Walk-Back-Packet - - - - - - - - - - .. - - - - - - - - - - - ""...; .. - - - - 12

4. Termination of Execution - - - - - - .. - - - - - - - - - - .. - - - - - - - - - - - - 12
5. Assembler Directives - - - - - - - - - - - - - - - .. - - - - - - ;;, - - - - - - - 12

5.1 The Reserve Directive, RES - - - - -rOO - - - - - .. - - .. - - - - - - ";'- - - 12
5.2 The END Directive, END - - - .:. - - .. :. - - - .. - - - - - - - - - - - - - - - - 13
5.3 The Equate Directive, EQU - - - .. - .. - - - - - - - - .. - - - - - - - - - - - 13
5.4 LIST and UNLIST Directives - _ .. - -'- - - _ .. - - - - - - - - _ .. - - - - - 13

5. 5 The FORM Directive, FORM - .. _ - - - - .. - - - - - - - - - - - - 14 , '

6. Input/Output - - - - - - - .. - .. - - '- - - - - - - - - - - - - - - - - - - - - J 4
6.1 The Format Sepcification - - - - -'-: - - - -' - -, - - -,- - - - - - - .. 14
6.2 Assembler Output - - - - - - - - 14

6.2. 1 Line Printer Output - - .. , - - - - - .. - - - -- -- - - - - - - - - - - - - - 14
6. 2. 2 Output To Othe r Device s - - 1 5

6.3 Assembler Input - - _ .. - - - - - - - - - - - - - - - - .. - - - - - - - - - - - - 15
6. 3. 1 Reade r Input .. - - - - - .. - - - - - -' - - - - ~ - .: - .. - .. - - - - - - - 15
6. 3.2 Input With END Clause - .. - - - - - 16

6.4 Performing the Input/Output- - - - - - - .. - - - - - - - .. - - - - - - - - - 16
7. Simple Assembly Procedures - - - - - -'- 16

7. 1 The Func tioning of Proc edure s - - -' - 16
7.2 C re ating a Procedure - 17
7. 3 Declaring a Procedure - - - - - - - - - - ..: - - .; - - - - - - - - - .. - - - - 18
7.4 Using a Procedure - .. - - - - - - - 18

8. The Assembler Code Listing - - - - - - :.. - - - - - - - - - - - - - - - .:. - - - - 19
9. Diagnostic Processors - .. - - - - - - - - 20

9. 1 Obtaining a Snapshot Dump Via X$DUMP - - - - - - - - - - - :.. - - - - 20
9.2 Obtaining a Snapshot Dump Via SNAP$ - - - - - - - - - - - - - - - - - 21
9 .. 3 Obtaining a Post Mortem Dump - - - - -- - - - .. -, - - - - .. - - - - - - 22
9.4 Obtaining Dumps Via PDUMP - - - - - -, - - - - - - - - - - - -- - - - - 23

10. Glos sary and Conventions - - - - - - - - - - .. - - - - - - - - - - - - - - - - - - 24
'Appendix A -C ode/Symbol Relationships - 27
Appendix B-Instruction Repertoire - 28

'I'able B-1 - - - - - .. - - - - - - - 28
Table B-2 - - - - - - - - - - .. - - .. - - - - - - - - .. - - .. - - - - - .. - .. - - - 37
Table B-3 - - - - - - - .. ,.. - - - '. - - - ~ • ... ~ - ~ - - - - - - - - - - - - - - - 38

Appendix C -Assembler 'Error Flap and Messages - - - -.: - - - - - - - - 39
Appendix D-AssemblyLiBting Decoding Reference - - - - - - - - - - - - - 42
Appendix E-Sample Program - - -"- - - - - - _ .. - - - - - - .. - _ .. - - - - - - 43

1. Calling the Assembler

Under EXEC 8 the format of the aseembly control card is:

@ASM, <option:s> <field 1>, <field 2>, <field 3>

The available options are coded as follows:

C Produce symbolic listing (no octal).
D Produce double -spaced l~,Stillg.
M Request 10K additiona.l core for symbol and procedure sample table.
N Suppress all listing.
o Produce octal listing only (no symbolic).
S Produce octal and symbolic l,isting (Normal listing option).
T Request 5K additional core for symbol and procedure sample table.
U Update and produce new cycle of source element.
I Insert new element to program file ,from control system.
W List corrections.

< field 1> is the input source file and element.
< field 2> is the relocatable file and element.
<field 3> is the updated source file and element.

If the I option is on (as when inserting from cards), specification <field 1>
names the program file to contain the source code. If a'Ssembling from tape,
<field 1> is the file name of that tape, <field 2> is the relocatable program
element name, and <field 3> specifies the name of the program file to con
tain the source code. If file name s are not specified, the temporary run file
is utilized. If assembling fr01TI tape and the tape is positioned incorrectly
(to an element other than the one specified) an error is produced.

2. Basic Assembler Language

2.1 Computer Instruction-Word Format

Every machine instruction for the 1108 adheres to the following format:

-I -

Where:

f specifies
j specifies
a specifies
x specifie s
h specifies
i specifies
u specifies

.2 •.

j

26

the function code.
the partial word designator or minor func tion code, if any.
the control register or input/output c:h.:..nnel, if any.
the index regbtel', if any.
index Illodification and if set calls for addre s s luodification"
indirect addre s sing.
the address field.

2.2 Assembler Format

In writing instructions using the 1108 Asscnlbler langu::tgc, the progralumer
is primarily concerned with three Helds: a label field, an operation field,
and an operand field. It is possible to relate the sYIllbolic coding to its
associated flowchart, if desired, by appending comments to each instruction
line or program segment.

All of the fields and subfields .following the label field in the 1108 Asselubler
are'in free forIll providing the greatest convenience pos sible for the pro
graIllmer. Consequently, the programmer is not hampered by the necessity
to consider fixed form boundaries in the design of his symbolic coding. It
is highly recommended that within the confines of a giYen program, the pro ..
gramluer keep a fixe'd set of colurnn convel1tions for th(~ bake of legibility.

The basic line of coding is divided into 3 or fewer fields, called label, opcl'a
tion, and operand fields. A field is terIllinated by one or more spaces and
Illay be divided into subfields. A subfield is an expres~ion which is terminated
by a comma followed by zero or more spaces. The last subfield h1 the field,
of course, is terminated by the space (at least one) that tc!rminates the field,

The format of a symbolic instruction differs from the computer instruction
word for convenience of programlning as follows. COnllUal:> separate subfields.

LABEL OP OPERAND

FIELD FIELD FIELD

F A, U,X, J
F, J A,U,X

In addition to instructions of the type discussed above, there are several which
do not u::e the A fiel d. The operands of such instructions comprise the U, X,
and J subfields.

LABEL

2. 3 Description ofF ie Ids

2. 3. 1 Label Field

OP

F
F, J

OPERAND

U,X, J
U,X

The label field, where used, must "tart in column one and te rminate ·with a
blank. It may contain a .declaration of a s:pecific location counter or a label
or both, as explained below.

2. 3. 1. 1 Labels

A label is a means of identifying a value or a line of symbolic coding. It con
sists of an alphabetic character which may be followed by as many as eleven
alphanumeric characters (A throu'~h Z and 0 through 9). When a label is used,
it must begin in column one and terminates with a blank.

In addition to the alphanumeric characters, the. $ may be used in a label
beginning with the second character. However, the use of the $ is limited
because references to the Executive System are made via system's labels
which utilize the $ in various cl1aracter positions (see "1108 Executive System,
ProgrCl.mmer's Reference Manual", UP-4144).

An external label is a label the value of which is known outside the program.
Such labels are suffixed with an asterisk (e. g. GOT>:<). Th~ asterisk does not
count as a character of the label. Any label which is assigned a single pre
cision value including locations of double precision constants may be made
external. They arc as signed the relative addres s of the fir st word of the
value generated.

2.3.1.2 Location Counter Declaration

There are 32 location counters in the 1108 Asr:cmbler, anyone of which may
be used or referenced in any sequcnce. These counters provide information
required by the collector to regroup lines of coding in any specified manner.
This regrouping capability enable s isolation of constants or instructions, or
components of each which in turn gives great flexibility to segmentation. A
specific location counter is declared by writing $(e) as the first entry in the
label field, e being the location countc r numher (0 through 31). Any change
to an unnamed location counter affects the counter currcllily in control. A

-4-

specified location counter remains in u~e until a new location couriter is
declared. If no location counter is explicitly :=;pecified, the program is con
tro1led by location counter zero, Any 1hne a lncation 'cml11ter is specified.
all ,subsequent codingfaUs under its control. To include a label on the same
line as a change -of -location-counter item. one must place a comma between
the closing paren and the label. with no imbedded blanks (c. g .• $(2). LABEL).

Each -new location counter entry hegi.ns the coding relative to zero. Coding
rc surned under a connte r that has been ul'ied previously continues at the last
address specified for that countcr.

2.3.1. 3 Location Counter Referencc

Reflexive addressing may be achie'V('d by referencing the current location
counter, or a specific location counter. '\vithin a symbolic line. The symbol
for a current location counter refc-'C'nce j!'; $. When the asscrrlbler encounters
$ it inserts the value of the contro:lling location counter. A referenc~ to a
specific location counter is made by $(e). where e denotes the specified loca
tion counter. In this case the assembler substitutes the value of location
counter e for the symbolic reference. Whf'n $+b is coded care should be
taken so that the source-cod"d int(~rval b does not extend Over a procedure
call. This is particularly a problem if the procedure called may generate a
variable number of lines of code.

!tis standard programming practice to assemble the instructions under odd
location counters and the data under e'Ven location counters.

2. 3.2 Operand Field

The operand field starts with th(' fir 5t non-blank character following the label
field. The components of the operand field arc .called subfields and repre sent
the information necessary to complete the type of line determined by the opera
tion field. Subfields are separated by commas. A comma may be followed by
one or more blanks •

. Most operands may contain feVicr than the maximum lll1mber of subfields implied
by the operation field. If a subfield other than the normal fir st or last is to be
ornitted. two continguous COlumas should be ul'!ed to denote that subfield (e. g ••
,,). 1£ the last~subfield or subfieldR are to be omitted, no comma may appear
immediately following the last coded subfidd. A period l'ipace coded just after
this subfield stops scanning c111d :::pceds np aRsembly time (e. g., .15).

~. 3.2.1 Function Code DCRignator, f

The machine language function code, or f designator, contained in the leftmost
six bit positions, specifies the parHcular operation that is to be performed. In
instructions where f> 708' the j designator becom.cs part of the function code.

5 . - -

2.3.2.2 Operand pualifier or Minor Function Code D<.:,.signator, j..;,..

When f< 708' the j designator determines whether an, entire ~perand, or only
a part of it is to be transferred to or from. the arithlnetic section. As previously
rrlentioned, in instructions where £> 70. j serves as a minor function code rather
than as an operand qualifier. When £=70, the j-designator combines with f to
form the function code, and may not be coded.

As an operand qualifie r in the case of partial word transfers to the arithmetic
section, j specifics which half.-word, third-word. or sixth-word is to be
utilized. The transfer is always to the low order positions of the arithmetic
section. In transfer s from the arithrnetic section~ j spedfie s into which
half-word, third-word or sixth-word the low order positions of the word in
the arithmetic section will be transferred.

In half-word transfers to the arithmetic section, j can specify whether sign
extension is to take place. If it is specified by coding j as 3 or 4, the rnost
significant bit of the half-word fills positions 35 thru 18 of the control register.
If sign extension is not specified, i. e .• j is coded as 1 or 2, positions 35
through 18 are zero filled.

Sign extension always occurs for third-words a.nd never occurs for sixth·.words.
No sign extension occurs for tranfifers from the control registers.

The mnemonic letter codes used in asselnbly language corresponding to. the
numerical j designators are given be'low.

When j equals 16 or 17, the u-field of the inst'ruction becomes the effective
operand rather than the address of the operand. When j is coded as 17, sign
extension is effective.

J-designators are totally ignored when "U" is a control register, except for
016 &: 017, which behave normally.

2.3.2.3 The Register Design~tor Field, a

The entry in the A subfield represents the absolute control store address of
an arithmetic, index, or R register as required by the instruction.

I ,/'

2.3.2.3a A-Register Designator, A(a)

The a-designator normally specifies a c.ontrol register location. For arith~.
metic operations and some other operations which do not specifically reference
other registers, the a-designator specifies one of the 16 A-Registers.

-6-

2.3.2.3b X-Register Designator, X(a)

The a-designator is also used to reference anyone of 15 index rcgisterf; in
control memory. An X-Register is iD1plied by the function code in certain
instructions. Control register 000000 cannot be normally referencf'd by an
a -designator.

2.3.2.3c R-Register Designator, R(a)

The a-designator is used to reference anyone of 16 R-registers. An
H.-register is implied by the function code in certain instructions.

Note: Any time a repeat count instruction is executed (such as BT. and all
search instructions) the repeat count must be in Rl. Univac docurnentation
doe s not mention this!

2.3.2.4 Definition of Registers In Assembler Programs

A procedure in the library is available which wtL:n called by

AXR$

will define symbols for the useable user registe)' set as follows:

Ai. i=0.1 ,15
Xi, i=l, 2, •.. ,11
Ri, i=l. 2, ... ,15

are defined for accumulators.
are defined for index registers.
are defined for R -registers.

The accumulators AO through A3 Inay also be us-ed as index registers,
corresponding to X12, X13, XI4, XIS respectively. Also the j subfield of an
instruction is defined by the AXR $; procedure as follows:

HI and H2 refers to HI

XHI and XH2 refers to HI HZ , sign extension

TI, T2, T3 refers to Tl T2 T3

Ql,Q2,Q3,Q4 refers to Ql 02 Q3 Q4
(Note: quarter-word references may only be used in special circumstances)

81,82,83,84.55,56

u
xu
w

refers to 151 I 52 I 53 I 84 I 55 I 561

refers to immediate operand

refers to irnmedjate operand, sign extension

refers to whole word operand

2.3.2.5 Index Register Designator, x

The format of the indexing infornlCition stored at the control register address
specified by the x-designator is s110wn oelow-. Bits 17-00 (X) contain the
address Inodi£j.l~r which is added to the u address; bits 35-1¥ (XI) contain an

-7-

increment which may, if desired, be used to change the value of X M . This
increment may be positive or negative.

18 17

2.3.2. Sa Index Register Incrementation Designator, ~

When the h-desi.gnator is coded as 1, the value of X M in index register X is
increased by the value of XI' This incrementation takes place during the
instruction; after the addition of u and the index register. in fonning the
effective address. When h is 0, no incrcmentation !a.kes place.

The entry in the X subfield repre sents the specific index register to be used.
Index register incrementation is indicated in assernbly language by means of

an asterisk preceding the X subfield (e. g. ~:'X). The 1108 is a one I s comple-
ment machine and doe s pre -indexing. This means it increments fir st and then
performs the re st of the instruction.

2.3.2.6 Opera~d Address or Operand DesiGnato~, u

For all instructions the u field specifie s an operand for the particular
instruction involved. For every instruction cycle the "effective u" must
fi "st be calculated. If no addres s modification, then the coded u field is the

. effective u. If address modification is specified (~y an entry in the X field)
then the right half of the specified index register is added to the coded "u" and
the result becomes the effective u. For the case of indirection, see the
section below.

2.3.2.6a Indirect Addressing Designator, i

The i-designator specifies either direct or i:pdirect addressing of the operand.
If i is code~ as 0, direct addressing is specified, and u is the effective add
ress of the operand. If i is coded as 1, indirect addressing is specified. Bits
21-00 of the u-addressed operand replace bits 21-00 in,the current instruction.
Since the 22 bits include the x, h, i, and u-designators, all indexing, index
register incrementation, and indirect addressing operations can be cascaded
until the i-de;ignator in one of the temporarily forrned instructions is O. If
j< 16, normal partial-word operations on the contents of the addre s s specified
by u are pe riorm.ed at the end of cascading. If j= 16 or 17, cascading is
halted when either the i-de signator or the x-de signator, or both, become
zero; the value in u 17 -00 become s the actual operand. Thus, for j=16 or 17.
indirect addressing is not only conditioned by the i-designator, but is also con
ditioned upon the x-designator being a non-zero value.

The entry in the U subfield represents the operand base address. Indirect
addressing is indicated by means of an asterisk preceding the U subfield
(e. g. ~:'U).

-8- .

2.4 Continuation

If a semicolon (j) is encountered outside of an alphabetic item, the current line
is continued with the first non-blank character on the following line. Any char
acters on the line after the ; are not considered pertinent to the prograrn
assen1bly, and are transferred to the output listing ~f, comments. A semicolon
should not be used within a comment unless it is des .. red to continue that com-
ment on the nf'xt line.
immediably follow the
blankR.

2. 5 Termination

If a line is broken within a sub-field, the semicolon must
last character of the previous line, with no intervening

A period followed by a blank (.) terminates a lir>e of coding except when it
occurs inside an alphabetic item. Any additional subfields implied by the oper
ation field are t2ken to be zero. The space fo'1Ji'vitng the period avoids con
fusion with the notation for floating point num!;.€rs which use the period without
a space. A continuation or termination Inark ::nay occur anywhere on a line
except as noted above. Following the iniorrnation portion of a line, any char
acters may be entered as comments except the apostrophe (I).

2.6 Ejection of Paper

A slash (/) appearing in column one advances paper in the printer to the top of
the next page. This same line may also contain a line of coding with the label
field starting in column two. If it is desired to use the remainder of the line as
a comment, a period must follow the slash.

2.7 Data Word Generation

A + or - in the operation field, followed by one to six subfields generates a
constant word. The + or sign may be separated from the subficlds by any
number of blanks. If the + sign is omitted, a positive value is assumed.
Subfields are separated by commas, which may be followed by one or more
blanks.

If the operand field contains one subfield, the value of the subfield is right
justified in a signed 36 -bit word unle ss the value is double precision in which
case it is right-justified in tv..o 36-bit words. If the operand field contains
two subfields,. a data word containing two I8-bit subfields is created; the value
of each subfield is right-justified in its respective field. Similarly three sub
fields generate three 12-bit fields and six subfields generate six 6-bit fields.
Each subfield in the operand field may be signed independently (i. e., comple
mented if the subfield is preceded by a -).

If the operand field contains one subfield immediately followed by a D or a
value greater than 36 bits in length, the 1108 assembler generates a seventy
two bit value contained in two consecutive thirty-six bit computer words. The
seventy-two bit value is signed and right-justified.

-9-

2.7.1 f~):..2re5sions

An expression is an elen1entary iten1. or a Eedes of elerne:,tary items connected
by operators. Blanks are not p(~rmitted wiUlin dn eXjn-,:cbslon.· The combination
of single and double precision values generillly .re8U~, :,n if double precision
value.

2.7.1.1 Elen'cnta TV Items

An elen-u:ntary item is the sITlaHest elenlCnt of ;:..'.B1kr!.,j)ler cude that can stand
alone; an elenlCntary itcm doe s not contain an ()P'~ let :i"' ..

2.7.1.2 Octal Vahlcs

An acta] value n1ay be an elenleutary iteln. SUt:;Jl itern is a grmJP of octal
integers preceded by a zero. The assemb]t.~l' (;0-;:,,\ lCS a birvny (.·quivalent of
the itel1.1 f s val'ue riglJt-justified in a sig11ecl u,~ f.f·tlle: sigrl IS ~~)Jxlitted,~ fh.e
value is assun1ed to be positive.

For example,

+ 017
-074
-021

PRODUCES OC 'fA L WORD 000000000017
PRODUCES OCTAL wc~rlD 7717777T1703
PRODUCES CC TAL WORD 777777777756

A double precision octal val'.le is produced by writing a constant lar ger than
36 bits or by placing a letter D immediately after the last octal digit.

2.7.1.3 Decimal Values

A decimal value may appear as an elementary item. within an expression •. A
decimal item is a group of decimal integcrs!l9! preceded by a zero. Such a
decimal valuc, is represented by a right-justified and Edgned binary equivalent
within the object field. If the sign is omitted, the valu(! is assum.ed to be
positi ve.

For example,

+ 12
+2048
,-04162

PRODUCES OCTAL WOH.D OO"()Q00000014
PRODUr::ES OC TAL WORD 000000004000
PRODUCES OCTAL WORD 777777767675

A double prccision decimal value is produced b)' writing a value larger than
36 bits or by placing the letter D immediately following the last decimal digit.

2. 7. 1.4 A lphabetic Items

Alphabetic characters may be represented in 6-bit Fieldata code as an elemen
tary item. The characters must be enclosed in apostrophes. It is not per
missablc to code an apostrophe within an alphabetic Hern. An alphabetic item

-10-

appears left-justified within its field. 1£ there are less than six characters,
the alphabetic item is followed by Fi.eldata blanks (05 for each blank).

If an alphabetic item is preceded by a plus or minus sign, it may contain a
maximum of 12 characters. A positive signed value ;: r:-~)ears right-justified
within its field with the remaining field filled in with ze:!"os. A minus sign
preceding the value produces the complement of the value and appears left
justified in the field. If the nUluber of characters is less than seven, only
one computer word is used. An alphabetic item used as a literal is assumed
to be preceded by a plus sign. A D immediately follo·wing the right apostrophe
forces double precision.

'HEAD'
+ 'HEAD'

, HEAD7890'
+ 1 HEAD7890 1

+'HEAD'D

PRODUCES OCTAL LEFT-JUSTIFIED 151206110505
PRODUCES OCTAL RIGHT-JUSTIFIED 000015120611
PRODUCES 151206116770 716005050505
PRODUC ES 000000001512 061167707160
PRODUCES 000000000000 000015120611

2.7. 1. 5 Floating Point and Double Pred sion

A floating-pointdecimal or octal value may be r~presented as an elementary
item by including a decimal point within the desired value. The decimal point
must be preceded and followed by at least one digit. The lette r D rrlUst imme
diately follow the last digit with no intervening spaces. If the sign is omitted,
the value is as sumed to be positi ve.

+16384.0
:f:16384.0D

19.0D

3. Subroutine Linkage

PRODUCES FLOATING-POINT WORD 217400000000
PRODUCES 201740000000 000000000000
PRODUCES 200546000000 000000000000

The following information pertains to the F¢R TRAN defined standard subroutine
linkage. By following the F¢R TRAN conventions, an assembly language pro
gram may. link to, and be linked to, a program unit written in another language.
It should be noted that XII must be used for all subroutine and function linkage s
with system defined subroutines ·and functions. Thus, it may be necessary to .
save the contents of XII.

3. 1 .. Calling Sequence

A subroutine, SUB, with i arguments would be called from F¢RTRAN by the
statement

CALL SUB(<ARG1>, <ARG2>, ... , <ARGi»

or, if SUB was a function-type subprogram, by

<variable> = SUB(<ARG1 >, <ARG2>, .•• , <ARGi»

The corresponding assembly language code, expressed in Bacus Normal Form,
is

LMJ

+
+

XII,SUB
<ARGI>
<ARG2>

<ARGi>

-11- .

+
+ <line identification>, <walk-back packet>

The names used in the call have the meanings described below.

<ARGi> is the symbolic label assigned to the ith argument
<line identification> is the number assigned to the subroutine

call for identification purposes. The ass~mbly language
programmer may use any (small) integer.

<walk-back-packet> is the symbolic lab~l assigned to a two word
sequence, described below, which EXEC 8 uses in case
of an error.

The assembly language program must contain a <walk-back-word>, as the
last word in the subroutine linkage is called. Upon return from the subroutine,
execution will begin with the word immediately after the walk-back word. Note
that for a subroutine with i arguments there are i+ 1 words after the LMJ.
If the subroutine called wanted to load <ARG2> i~1to AD the form of the
as sembly code would be

, LA AD,~n,Xll

3. 1. 1 Abnormal Return

If an argument is to be specified as an abnormal return (in F¢R TRAN, $ < state
ment label» then the corresponding word in the assembly language subroutine
linkage would be

J <label>

where <label> is the symbolic label to which control is to pass if an abnormal
return is' made.

3. 1. 2 Function Value Return

'1£ the subprogram is function-type the calling program expects to find a result
in AD. (If the subprogram is double precision, the result is in AD and AI.) The
subprogram must leave the calculated result in AD before returning. It is the
job of the calling program to retrieve the result left in AD.

3.1.3 Normal Return

If an argument is to be specified as a normal return, then the corresponding
word in the assembly language subroutine linkage would be

J H2, XlI

where i is the number of arguments.

-12- -

3.2 Unc of Registers by Subroutines

A subprogram Inay use accumulators AO through AS and R-registers Rl through
R3 'withoutsaving them. All other registers used in th,e subprogram must be
saved upon entry and be restored before return.

3.3 The Walk-Back-Packet

The '\valk-back-packet is a two word pair of locations which are referenced by
every subroutine call. These words contain inform.ation and are not executable.

The first word is the Fieldata name of the program unit. The second word is
zero if the program unit is a main program. If the program unit is a subpro
gram .• the second word should contain the contents of XII upon entry to the
subprogram.

For example. in a subroutine R TN;E the following assembly language sequence
might be used

WBCK$

RTNE>~

4. Termination of Execution

'RTNE'
+ 0
SX Xll, WBCK$+ 1

It is bad form to terminate execution by II running off the end of the program. II

Two ways to return control to EXEC 8 are:

ER EXIT$

ER ERR$

- If no errors, a normal exit occurs.

- The A, X. and R registers will always
be dumped upon exit.

In case you are wondering, ER stands for II Executive Reque st. II

5. Assembler Directives

The symbolic assembler directives within the 1108 Assembler control or direct
the assembly processor just as operation codes control or direct the central
computer processor. These directives are represented by mnemonics which
are written in the operation field of a symbolic line of code. The general for
mat for directives is,

<label> DIRECTIVE <value>

though all directives do not necessarily include all three fields. Of the fifteen
directives available, only a few are discussed here.

5.1 The Reserve Directive, RES

The RES directive increments or decrements the control counter. The oper
and field of the directive contains a signed <value> that specifies the desired
increment if positive, or decrement if negative. This value may be repre
sented by any expre s sion. The format is:

-13-'

Symbols appearing in the expression <value> must be defined prior to the RES
line in which they appear.

The RES directive may be used to create a work area.for data, which is not
cleared to zeroe s. If a label is placed on the coding line which contains a RES
directive, the label is equated to the present value of the control counter which
is, in effect, the address of the first reserved word.

5.2 The END Directive, END

The processing of an END directive indicates to the 1108 Assembler that it has
reached the end of a logical sequence of coding. The format is:

END < starting Label>

An END line must not include a label.

The interpretation of the operand'of an END directive depends on its associated
directive. When an END directive terminates a n~ain program assembly, the
operand field specifies the starting address in the object code produced at
execution time.

5. 3 The Equate Directive, EQU

The EQU di.rective equates a label appearing in its label field to the value of the
expression in the operand field. :t is possible 'to generate a double precision
equate statement by having the 0p'3rand contain one numeric subfield immediately
"Clllowed by the letter D. The EQU must include all three fields.

LABEL EQU VALUE'

A value so defined may be referenced in any succeeding line by the use of the
label equated to it. If a label is to be assigned a value by the programmer, it
must appear in an EQU line before it is used or referenced in subsequent lines
of symbolic coding. Otherwise the label is considered undefined.

If a particular expression is used frequently throughout a program or procedure,
it is highly expeditious to use the EQU directive to substitute a simple label for
the entire expre s s ion.

5.4 LIST and UNLIST Directives

The LIST and UNLIST directives allow the programmer to control the listing
of the assembler. The LIST directive allows the programmer to override the
effect of; no options on the ASM control card, the N option on the ASM control
card, or a previous UNLIST directive that suppressed the listing. Likewise the
UNLIST directive allows the programmer to override the effect of the S option
on the ASM control card or a previous LIST directive. It should be noted that:

1. LIST and UNLIST directives .. may be used in the program
as often as desired, but must be removed in order to
obtain a complete program listing.

2. The UNLIST directive image is not printed.
3. No label or operand is used.

The format is:

LIST
UN LIST

5. 5 The FORM Direc,tive, FORM

The FORM directive is used to set up a special wo:rd fcnmat which may include
fields of variablto length. The fonnat ib;

LABEL F'ORM <F1 >. <1"2>'"" $ ':,Fi~>' <F n>

The operands <F.> specify the nurnber of hits desired ineach field. The
sum of the n valJes of F. must equal 36 or 72 depending on whether a single
or a double preci sion for6 word is de sired,

By writing the label of the F'OHM directive, thE: fOL'"lJCl defined in thc,t line of
coding may be referenced fronl anothel' part of the program.. The label of
the FORM line is,,written in the opel':'ation field is followed by a series of
expressions in the operand field. The expl'esBi.:ms in the operand field specify
the value to be inserted.in each field of the ge:nerated word or words" When
referencing the FORM directive an E flag win be set if either n F. I S

are not supplied or if the number assigned to a particular F. is lar~cr than
the number of bits specified in the FORM statement. 1

6. InEut/Output

Tnput/output is most easily accurn,p1ished via the F¢RTRAN formatted input/output
package. The following discussion will assume that you are familiar with input/
output from F¢RTRAN or lMADo .

6.1 The Format Specification,.

Unlike F¢RTRAN. wh,e_re there exisb, a special statet:i:lent to create a fornlat
specification, as sembly language c reate~ a fOl'lnat specification by~ enclosing
it in primes. The format includes the opening and clo::sing parenthesis. The
format is referenced by the sytnbol~c nanle located in the label field on the line
of code. The form is

<label> I «:format specification» i

For example:

r'_.f r FRMT I (7HOSAMPL.E:, EI004. 319) I

6.2 Assembler Output

6.2.1 Line Printer Output

When output is to occur on the printer, the following three words are used to
call the appropriate output subroutine

LMJ
+
+

XII, NPRT$
1, < format label>
<walk-back word>

The executive request PIUNT,1$ rllaji d rJ brt:: used Ji'J:(h11<-o tdint.(:j:< output. An
exaluplc of the coding for PRIN'I'$ (h:;i,l;g il [<tv!. f'c:dj'VF 1;.>:

p F'ORM
IMAGE I HO BUl;ll
LA A 0, (P S,!, I (vi A G 1';; , ,~,
ER ""'q rt-J"f$ 1:-',[" "

If you want to be tl'icky you ("L" 1'",

'HO nn:M'
A (') (, ~' "1 r'" ' ',' "J U='U i!'/l,~l,';

IMA,G,E
LA
ER PRINT$

This will do the BanllE;

When output is to go to a legilJ '.lat ud.'cl thanUl~ h::'I; l,d lIter the ,Hi i:le~nbly
language code sequen,-~e is:

LMJ

+
+
+

6.3.1 Reader)nE~lt,

For input from'the ca:r'd :n2;dd,,) '"

"\

\ '"

LMJ
+
+

XII ~ N\i\l DU$
1 " «unit>)
O~ <iOY'ITH,t
<-v;ICi..U,<"back word>

]." <:forrnat l.abel>
<walk··back wo:td;>,

An alternate way of reading is by the eJrecutive
assembly language code would

LA AO, «transfer label> t <'. startirlg bl\j,J,l'€ 8 IS label»
ER READ$
< starting addre 58 Jabel>

where: <transfer> label iswheI:'e tu go wheu dil end""f·"fHe)s :read
< starting address label> iE, the base addn~ss of the storage area
<value> is the size of the st()rage~ illea

At the completion of the executive request HZ
of words read.

AI) eOl1tain. the nurnber

-16-·

6.3.,2 Input With END Clause

Corresponding to the F¢R TRAN input

READ «unit>, <fonnat label>, END=<transfer label» ..•

the assembly language code sequence is

LMJ

+
+
+
+

Xll,NRDU$
2, «unit»
0, <format label>
<walk-back word>
2, <transfer label>

6.4 Performirlg the Input/Output

Once the format has been transmitted, the variable location for each variable
is transmitted by the pair

LA,U
SLJ

-AO, <variable refe,rence>
NI¢l$

When all the variables have transmitted, the following line executes the output

SLJ NI¢2$

7. Simple Assembly Procedures

7. 1 The Functioning of Procedure s

There are times while programming in assembly language when it becomes
necessary to repeat blocks of code which are virtually identical except for
several common subfields of the instruction, e. g. :

I) TLE', U
TG,U
J

AO, r 9 r + 1

AO, ' 0'
N¢TNUM

II) TLE.,U
TG,U
J

AI,'9'+1
AI, ' 0'
ALPHA2

, In both cases, the net effect is to test a given register to see if it has a field
data number in it, and if not, transfer to some location. Now, if the program
required many repetitions of this code in many different place s, then just the
task of writing it would be burdensome, and moreover, if others were to look
at such a program, then its sheer bulk might very well be detrimental to their
understanding the program flow. Thus it would be very helpful indeed if there
were some way we could specify the skeleton of a block of code (a template,
so to speak), and then reference that code by a short statement.

-17-

7.2 Creating a Proe edure

The 11 08 As sembler has the caprt hi lity of be ing given a block of skeleton state
ments which may be referenced, and thereby be inserted into the object code,
by a single staten"lent. This is cf[~ct('d by the use of the assembler directive
PR¢C (short for Procedure, tb' Univac equivalent of what the rest: of the world
calls a macro). We first give <ill example of a siluple PH.¢C, and then the £onn
and use of PR¢C s in general.

If, using the above example, we placed at the beginning of the program the
following skeleton:

P':< PR¢C
TLE,U PO, I), , 9' +1
TG,U P(l, I), '0'
J P(l, 2)
END

then the single statem.ent

-P 1,0, NQi'TNUM

would generate a block of code cqu;valent to I) above, and

P .AI, A LPHA2

would produce bloc k II).

The general form of a reference to a PH.¢C skeleton is:

_ <PR¢C-NAME> -<ARGLIST>

where

<ARGLIST> has the form

< fieidi > <field2> <fieldk>

and where the ith field has the form

_ < subfieldI> , < subfield2> , ... , < subfieldM>

where

<PR¢C-NAME>

. is a name as sociated with a given skeleton and the fields and subfields are
r arguments r with which the assemhler will fill out the skeleton. It is im
portant to note that fields are separated by blanks and subfields of a given
field by commas.

In the above example, the PRq)C llZlTI1C is P, and there is only one field which
has two subfields. Another exarnph! would be:

JUMP A5 LAOIOO,Lli.0200, LA0300, LA0400 ERR350

In this case, JUl'vlP will be a nanie {or ~. PRq)C skeleton, and there are three
fields, the first of which has onlr OJ-I'-' 81lbficld, the second four, and the third
one.

-18 -

7.3 pec)i.1ring a.Procedure

Now that the syntax of a skeleton has been established, it would be beneficial
to know how to tell the assembler that something is indeed a PR¢C skeleton.
This is done by evoking the as scmbler diredive PRyJC. The fornl of declaring
a PR¢C skeleton is

< PR¢C -NAME> ':' PRPC

where <PR¢C -NAME> is the name to be attached to the skeleton and starts
in column one. As soon as the assembler encounters a PR¢C card, all cards
thereafter are conl,idered part of the skeleton until the PR¢C I S associated
END card is encountered. This END carel is included in addition to the pro
gram END card and is needed for every pnpc to signify the end of a logical
block skeleton. .

7.4 Using a Procedure

All we need now is the m.echanism. for picking up the argum.ents to be inserted
into the skeleton. This is done by using \vhat Ullivac calls paraform.s (which
is indeed quite surpri sing, as that is the correct term.). A paraform has
(forgive m.e) the form

<PR¢C -NAME> (i, j)

'where" i a·lid j are integers greater than zero. This paraform references
the jth subfield of the ith field on the line which referenced the PR¢C.
Using our first PR¢C example:

and the call

P':' PR¢C
TLE,U
TG,U
J
END

P(I, I), ' 9' + I
P(I,I),'O'
P(1,2)

P AO,N¢TNUM

we have that: the paraform P(l , 1) references the first subfield of the first
field of the call, i. c., AO, and the paraform P(l, 2) is equated to the value
of the second subfield of the first (and only!) field of the call, namely,
N¢TNUM. In our second sam.ple call, the various argum.ents would be refer-
encedby:

AS = JUMP(l, 1)
LAOIOO = JUMP(2, 1)
LA0200 = JUMP(2, 2)
LA0300 = JUMP(2,3)
LA0400 = JUMP(2,4)
ERR350 = JUMP(3,1)

-19-

8. The Assembler Code Listing

Accompanying the symbolic listing of your assembly language program is an
octal listing of the code generated by the assembler in instruction format. The
reason for this special format is that it is easier to see what has been outputcd
if each field is separated instead of compresse'd into the ,twelve octal bits as in
a dump. This forrnat comes out exactly as it appears in an instruction word -
i.e., f,j,a,x,h,i,u.

For example:

Assuming LOC is program relative 043, we have

where

27 00 13 00 0 0 000043 LX XII., LOC

27 is the function code for LX (as can be found in Appendix B).
13 is the register to be loaded (XII - Remember, it is o·ctal).

and 43 is LOC.

Remarks:

. 1) As the A field of an instrudion word is only four bits, those
instructions requiring A and R registers cannot have the actual
address loaded in so their designations are used instead - e. g ••
3 for A3 instead of 017. What actually happens is that·the
assembler subtracts from the actual address 014 for A re'gisters
and 0100 for the R' s.

Thus

10 00 05 00 0 000043 LA AS, LaC

since AS is at location 021 which would not fit in four bits.

2) The h, i field digit will assume only one of the, values 0,1,2,3
as it represents a two bit field.
So,

o = > neither h nor i bits set
1 = > only i bit is set
2 = > only h bit is set

3 = > both h and i bits are set

e. g. ,

01 00 03 02 0 000043 SA A3, LaC, X2
01 00 03 02 1 000043 SA A3, ':'LOC, X2
01 00 03 02 2 000043 SA A3, LOC, '::X2
01 00 03 02 3 000043 SA A3, *LOC, *X2

3) In the case where immediate addressing is specified, 1. e., the
J-designator=OI6 or 017, the h,i field digit is no longer given,

-20-

but the six u-field digits represent the entire right half of the
word instead of the usual right most 16 bits, thus:

1 0 1 6 01 00 777776 LA, U Al,-1

instead of

10 16 01 00 3 177776 LA,U A1,-1

as older versions of the assembler produc::ed.

For further discussion of this topic sec subsection 2.3.2.1
to 2. 3. 2. 6 a .

9. Diagnostic Processors

There are on the 1108 two prime vehicles for obtaining dumps of one I s pro
gram area, the post-mortem-dump (PMD), and the dynamic (snapshot) dump.
By far, the most commonly used of tIle two is the PMD, but the PMD allows
one to see one's program area only after execution, and if, as is often the
case, the dump is being used for diagnostic purposes, the state of the PMD
will only show the program area after the da.mage has been done and will often
not reflect at all the initial course of the problem. Because of this, one may
make use of the dynamic dump capabilities. Dynamic dumps allow the
assembly language programn1.er to, at will, selectively dump registers, pro
grams, and/or data areas during execution.

9.1 Obtaining a Snapshot Dump Via X$ DUMP

The code for generating the snapshots is inserted into the object code by refer
encing the system procedure X$ DUMP in the source program. The format of
the procedure reference is:

where:

e. g. ,

X$PUMP <ADDR>, <LENGTH>. '<FORMAT>' , '<REG. LIST>'

<ADDR> is the first address of the area to be dumped.
< LENGTH> is the number of words to be dumped.
<FORMA T> specifies the format of the dump (registers howeve"r

are always dumped in octal).
<REG. LIST> is any combinations of the letters A, X, or R,

specifying A registers, X registers, and R registers
respectively.

X$DUMP GARK, 10, 'S' , 'XR'

will dump 10 (decimal) words in instruction format starting at GARK and will
be preceeded by an octal dump of all X and R registers.

Only the first two subfields need be coded, in which case, no register will be
given and the snapshot will be given in octal (the default format option).

-21-

These are seven system defined formats available for use:

'S'
,¢,

'A'
, I '

'F'
'E'
I D'

(4S30) - instruction format
(8¢14) - octal
(16A6) - alphanumeric
(8I14) - integer
(8FI4.8) - fixed decimal
(8E14.8) - floating decimal
(4D28. 18) - double floating decimal

Hints for using snapshot dumps:

1) Care should be taken when using instructions such as J $+ 5, JGD A8, $ -15
around X$DUMP procedure calls, as the assemQler generates four words

2)

3)

4)

of object for each X$DUMP reference.

Usually, the most helpful (and most often, the only helpful) use of snapshots
is to dump sets of registers at selected points in the program," in which
case one would use a reference such as:

X$DUMP B URF, I, ' q) I , I A r

The first two subfields are necessary, since no dump would be taken if
the count were zero or not coded. One also usually code s a. 1 for register
dumps as seeing the program itself is seldom helpful.

Care should be exercised if using the 'F' format option in that if a ~ord
is out of range for this format, the field is printed as all ~:~, s" just as in
Fortran.

Since the size of the dynamic portion of DIAG$ (the file into which all
dumps are written) is fixed at 1, 000 sectors, only approximately 2, 500
total words may be dumped per execution.

9.2 Obtaining a Snapshot Dump Via SNAP$

To call SNA"P$ the following instructions are n"ecessary:

SAO, PKT ADDR+ 2
L, U AO, PKT ADDR
ER SNAP$

Where PKT is a three word packet as follows:

32 17 WORD35
a snapshot identifier (6 characters field data)

1 XAR I WORD-LENGTH I START-ADDR

2 former AO contents

o

-22-

The XAR field contains an octal number which specifies which sets of control
regi sters to dump:

0 none 4 only X
1 only R 5 X and R
2 only A 6 X and A
3 R and A 7 all" register s

As an exarrlple, suppose some\vh~re in your program you had:

P
LABEL

P

+
Then the instruc hons

S
L,U
ER

FORM 3, 15, 18
'FARBLE'

7,0,0
o

AO, LABEL+2
AO, LABEL

SNAP$

would dump all the registers only.

The following system proc call generates, in sequence, the necessary three
instructions, a J $+4 instruction, and the necessary three word packet,
which is everything needed to accomplish a SNAP$ re.quest:

L$SNAP I snapshot-identifier' , XAR, word-length; start-addr
,

Therefore, the following single line replaces the 3 lines used in the above
example:

L$SNAP I FARBLE' ,7,0,0

9.3 9btaining a Post Mortem Dump

Only the most important aspects of the @PMD process,?r will be shown here.
For further information consult U of M User Reference 70.01 or the Univac PRM.

The format of the @PMD statement is:

@PMD, options

The options are:

E - dump only if run termates in error.
e - dump o~lyrwords that were changed during execution.
I - dump just the I bank portion of the program.
D - dump just the D bank portion of the program.

NOTE: If both the I and D options are used, the effect is the same as if
neither was used (i. e., @PMD produces the same results as0 @PMD, ID).

-23.;

9.4 Obtaini~umps Via PDUMP

PDUMP is a Fortran subroutine that has been converted from the 701)4 to the
1108. To call PDUMP from an assembly language program follow the sub
routine linkage instructions given in section 3 of this manual.

A call to the PDUMP subprogram. by the statement

CALL PDUMP(A1.B1.F1 •.•.• A .• B .• F .•••. ,A,B,F)
1 1 1 n n n

causes the indicated limits of core storage to be dumped and execution to be
continued. An explanation of the arguments used with PDUMP are as follows:

1. A and B are variable data names that indicate the limits of core
storage to be dumped; either A or B may; represent upper or lower
limits.

2.· F. is an integer indicating the clump format desired:
1 F = 0 dump in octal

1 dump as real
2 dump as integer
3 dump in octal with mnemonics

3. If no arguments are given. all of core ,1orage is dumped in octal.
4. If the last argument F is omitted. it is assumed to be equal to

n o and the dump will be octal.

-24-

10. Glossary and Conventions

1. INSTRUCTION
FIELDS:

2. a-FIELD
DESIGNATOR
REFERENCES:

3. AXR
CONTROL
REGISTER
SETS:

4. X-REGISTER
SUBSCRIPT

5. ADDRESSES:

-6. REGISTERS:

f - field contains function code designator (f)
j - field contains operand qualifier or minor

function code (j) .
a - field contains AXR-registcr designator, channel

de signator, or console keys de signator (a)
x - field contains index register designator (x)
h - field contains index register modification

de signator (h)
i-field I;ontains indirect addressing designator (i)
u - field contains address or operand designator (u)

-Ka = vCj.lue of "a" designates console key
C a = value of "a" designates channel number
Aa = value of "a" designates an A-register within

set of A-registers
Xa = valuE' of "a" designate s an X-register within

set of X-registers
R = valuE: of "a" de signates an R -register within

a set of R -registers' .

A = A-registers = Accumulators
X = X-registers = Index Registers
R = R-registers = Special Purpose Registers

Subscript M = lower half of X -register (Modifier)
Subscript I = upper half of X-register (Increment)

U = Program effective address (Relative Address)
S = Main Storage address (Absolute Address)

51 = Main Storage addre ss in f-Storage. Area
5 D = Main Storage address in D-Storage Area

P = Program Address Register
CR = Control Registers
AR = Address Registers

.25--

7. SPECIAL SYMBOLS:
(= contents of specified register or storage address,

subscripts indicate bit positions being considered,
a prime (') superscript indicates the ones
complement.

I () I = Absolute value or magnitude .
... = direction of data flow or II goes to II
o = logical AND function
(±) = logical OR function

(£> = logical EXCLUSIVE OR

UNIVAC 1108 Processor Word Formats Numbers above segments indicate the
number of bits in the segment.

6 4

ff I j I
I

1

[S

1
A or U

S

At 1 --or Ut 1

1

A or U [si

Atl or Ut 1

1

A I S

Atl [

4 4 1

a I x I h I
18

X.
J.

36

1

S

36

35

35

1 16

i I u

18
XM

35

35

34

1

S

Instruction Word

Index-Register Word

Single -PreCision
Fixed-Point Word

Double -Precision
Fixed-Point Word

Fixed-Point Integer
Multiply Re suit

Fixed-Point Fractional
Multiply Result (Right
circular shift At 1 by
one to align least
significant operand)

-2.6.

1 35
Fixed-Point Multiply I S Single-Integer Resuli

35 18 17 0

S I S I 0
Add-Halves Word
Format

carry carry

35 24 23 12 11 0

S S I ,.
S

Add-Thirds Word
Format c c c

1 8 27
Single -Precision [J s C M Floating -Point
Operand

1 8 27 Single -Pre c ision
S Cu MU Floating -Point Re suIt;

A
C =C -27 . . L U

or
1 8 27 Word 2 contains un-

I. CL ML normalized "least A+ 1
significant result.

1 11 ~4
S C M

U
Double-Precision

36
Floating-Point

ML
Operand or Result

APPENDIX A. CODE/SYMBOL RELATIONSHIPS

The following table shows the relation'ships between the octal computer
codes, the 80 column card codes, and the characters or symbols repre
sented by these codes.

COMPUTER CARD CODE CHARACTER COMPUTER CARD CODE CHARACTER CODE (OCTAL) CO DE (OCTAL)

00 1-8 @ 40 12.4-8)
01 12.5-8 [41 11 -
02 f 11-5-8] 42 12 +
03 12-1-8 , .43 12.6.8 < ;

A 44 3.8 0 .. 11.1·8 =
05 (Blank) (Space) 45 6-8 >
06 12.1 A 4' 2-8 &
07 12.2 B 47 11.3-8 $

10 12.3 C 50 11-".8 *
11 12.4 0 5t 0.4-8 (-
12 12.5 E 52 0-5-8 - " 13 12-6 F 53 5-8 :

t .. 12.1 G 54' '. 12.0 ?
15 12·8 H 5.5 11.0 I
16 12-9 I 56 0.3-8 , (comma) -
17 11-1 - J 57 .. 0.6.8 \

,--
---..--.........

20 . '/11-2 K 60 0 0
21 11-3 ,L 6t 1 1
22 1 t.4 M 62 . 2 2 ,

23 11.5 H 63 3 3
24 11.6 '0 64 ... 4 ..
25 11.7 P 65 5 5
26 11.8 Q. 66 6 6
27 11.9 R 67 7 7

30 0.2 S 70 8 8
31 0.3 . T 71 9 9 .
32 0." U 72 .c., .- . • (apo • ...,.)

33 0-5 V 73 11.6.8 ;

3 .. 0.6 W 7. 0-1 /
35 0.7 X 75 12-3.8 .
36 0.8 Y " 0, 76 0.7·8 0
31 0·9 Z 77 • 0-2.8 =+= (or stop)

, .

'.

APPENDIX B. INSTRUCTION REPERTOIRE

Table B·l lists the 1106/1108 instruction repertoire in function code order. Table B·2 cross·references the mnemonic and
function code.

Function 1108 1106
Code (Octal)

Mnemonic Instruction Description @ Execution Execution
Time Time

f J in {lsecs.CD in IIsecs.@

00 - - Illegal Code C~uses Illegal instruction interrupt - -
to address 2<U.

01 0-15 S, SA Store A (M'U .75 1.5

02 0-15 SN, SNA store Negative A -(A)~U .75 1.5

03 a-Is SM, Sr~A store Maenl tude A i(A)i"u .75 1.5

04 0-15 S, SR Store R (Ra)·U .75 1.5

05 0-15 SZ store Zero ZEROS-'U .75 1.5
-

06 0'15 S, SX Store X (Xa}->U .75 1.5

07 - - Illegal Code Causes illegal instruclion interrupt - -
i

to adqress 241.

10 0·17 L, LA Load A (U)·A .75 1.5

11 0-17 LN', LNA Load Negative A -(U}'A .75 1.5

12 0-17 LM, LMA Load Magnitude A I(U)l~A .75 1.5

13 0-17 LNMA Load Negative -1(U)i" A • .75 1.5
Magnitude A

14 0-17 A, AA Add To A (A)j (U}-A .75 1.5

15 0-17 AN, ANA Add Negative To A (A)-(U}->A .75 1.5

16 0-17 AM, AMA Add Magnitude To A (A)+I (U):-A .75 1.5

17 0-17 ANM, ANMA Add Negative Magnitude (A)-I(U):~A .75 1.5
to A

20 0-17 AU Add Upper (A)+(U}->A+l .75 1.5

21 0-17 ANU Add Negative Upper (A)-(U}->A+l .75 1.5

22 0·15 BT Block Transfer (Xx+u}->Xa+u; repeat K times 2.25+1.5K 3.5 + 3.0K
always always

23 0-17 L, LR Load R (U}->R a .75 1.5

24 0·17 A, AX Add To X (Xa)j(U}->Xa .75 1.5

25 0-17 AN, ANX Add Negative To X (XaHU}->Xa .75 1.5 .
26 0-17 LXM Load X Modifier (U}->X a ;Xa .

17·0 35·'8
unchanged .875 1.666

r

27 0-17 L, LX Load X (U}->X a .75 1.5

30 0-17 MI Multiply Integer (A).(U)~A,A+l 2.375 3.666

31 0·17 MSI Multiply Single Integer (A).(U}->A 2.375 3.666

32 0·17 MF Multiply Fractional (A).(U}->A,A+l 2.375 3.666

33 - - Illegal Code Causes illegal instrucl"ion interrupt - -
to address 241.

34 0-17 01 Divide Integer (A,A+ 1)+(U}->A; REMAINDER-'A+1 10.125 13.950

35 0·17 DSF Divide Single Fractional (A)+(U}->A+l 10.125 13.950

Tobie 8-1. Insrruction Repertoire (Port 1 of 8)

.. Z9-

Function 1108 1106
Cod" (():Iul)

Mnemonic: Instruc:tion Description ® Execution Execution
Time Time

f j in Ilsec:s. (i) in I,secs. ®
36 0·17 OF Divide Fractional (A. AI-!)" fU I.·A; R EMAI NO E R-·A; 1 10.125 13.950

37 - - IIlcgal Code Causes i IIcg~1 instruction in!errupt - -
to address 141 c

40 0-17 OR Logical OR (A) m.1 {U)-A+l .75 1.5

41 0-17 XOR Logical Exclusive OR (AI r.G"J IU)-<At-! .75 l.~

42 0-11 AND Logical AN 0 (A) r:J:!1l (U)'A+I .75 1.5

43 0·17 MLU Masked Load Upper r (V) ~]l (R2)]
(R2I'I·A· 1

[!13 [(A) mm .75 1.5

44 0-17 TEP Test Even parity Skip N I If (V) fJID'.l (A) have even 2_00 skip 3_00 skip
parity I. 25 N I 2.166 NI

45 0-17 TOP Test Odd Parity Skip NI if (ll) c:I!1 (A) have odd 2_00 skip 3.00 skip
parity 1.25 NI 2.166 NI

46 0-17 LXI Load X Increment (ul-'X a ; Xa unch<lng!)d 1.00 1.833
3~" 8 17-0

47 0-17 TLEM Test Less Than or Skip NI if fU)S!Xa) 1.75 skip 3.333 Skip
Equal To Modifier 17·0 1.00 NI 1.833 N I

TNGM Test Not Greater alw~ys (Xa) +(Xa) 'Xa
Than Modifier , 7-0 35-'8 17'0

50 0-17 TZ Test Zero Skip NI if (U)~~O 1.625 skip 3.166 skip
.875 NI 1.666 NI

51 0-17 TNZ Test Nonzero Skip NI if (1l)''.0· 1.625 skip 3.166 skip
.875 NI 1.666 NI

52 0-17 TE Test Equal S~ip NI if (UHA) 1.625 skip 3.166 skip
.875 NI 1.666 NI

53 0,17 TNE Test Not Equal Skip NI if (U)/(A) 1.625 ship 3.166 skip
.875 NI 1.666 N I

54 0-17 TLE Test Less Than or [qual Skip NI If (U);'::(A) 1.625 skip 3.166 skip
TNG Test Not Greater .875 NI 1.66 NI

55 0·17 TG Test Greater Skip NI if (U» (A) 1.625 skip 3.166 skip
.875 NI 1.66 NI

56 0·17 TW Test Within Range Skip NI il (Al<fUI5(A+l) 1.75 Skip 3.33 skip
1.00 N I 1.66 NI

57 0·17 TNW Test Not Within Range S~ip NI if (II';JA) or (U»(A+l) 1.75 skip 3.33 skip
1.00 NI 1.66 N I

60 0·17 TP Test POSitive Skip NI if (U),,=O 1.50 skip 3.0 skip
.75 NI 1.5 NI

61 0·17 TN Test Negative Skip NI if (U)35'~1 1.50 skip 3.0 skip .
.75 NI 1.5 NI

62 0·17 SE Search Equal Skip Nllf (U)--(A), else repeat ~ 2.25 + .75K 3.5 + 1.5K
always always

63 0-17 SNE Search Not Equal Skip N I if (U l-'I A), el se repeat 2.25 + .75K 3.5 + 1.5K
always always

64 0'17 SLE Search Less Than or Equal Skip NI if (U).$(A). else repeat 2.25 + .75K 3.5 + 1.5K
SNG Search Not Greater always always

65 0·17 SG Search Greater Skip NI if (U»(A). else repeat 2.25 + .75K 3.5 + 1.5K
always always

Table B-7, Instruction Repertoire (Part 2 of 8)

Function 1108 1106
Code (OelOl)

Instruction Description 0 Execution Execution
Mnemonic

Time Time
f j in I(secs. CD in Ilsees.®

66 0·17 SW Se~rch Yllthin Range Skip NI if (A)«VI:::!AII). else repeat 2.25 t .75K 3.5 + 1.5K
always always

67 0·17 SNW Search Not \Vithln Ranp,c Skip NI if (VI;.:;tAl or (U»(Arl), 2.25 + .75K 3.5 + 1.5K
el se repe~t always always

70 ® JGD Jump Greater and Jump to Vlf (Control Register)ja>O; 1.50 jump 3.0 jump
Decrement go to NI If (Control Reglstenja :> 0; .75 NI 1.5 NI

always (Control Register)ja-I ...
Control Regl stcrja

71 00 MSE Mask Search Equal Skip NI il (V) tm (R2)~(A) flm) 2.25 + .75K 3.5 + 1.5K
(R2), else repeat always always

71 01 MSNE Mask Search Not Equal Skip NI if iU) rnrn (R2);i(A) a::m 2.25 + .75K 3.5 + 1.5K
(R2). el se rl'pe~t always always

71 02 MSLE Mask Search less Th~n Skip NI if (V) t1'm] (R2)DA) Em 2.25 + .75K 3.5 + 1.5K
or Equal (R2). else repeat .

always always
MSNG Mask Search Not Greater

71 03 MSG Mask Search Greater Skip NI if IV) mm IR2)"'(A) Em!! 2,25 + . 75K 3.5 + 1.5K
(R2), else repeat always always

71 04 MSW
,

Masked Search Wi thin Skip NI if iA) rJmJ (R2)«V) l'I:m 2.25 + .75K 3.5 + 1.5K
Range (R2)~(AI-I) r.:m!l IR2). else repeat always always

71 05 MSNW Masked Search Not Skip NI if (U) F..1ml (R2)«A) mm 2.25 + .75K 3.5 + 1.5K
Within Range (R2) or IU) !'J.r.!l (R 2, .-: A' I) 'a:I!l always always

(R2), els~ rcpc,'t ,
71 06 MASL Masked Alphanumeric Skip NI if IU) I'l:Ii] (R2)':;:IA) me 2.25 + .75K 3.5 + 1.5K

S~arch l.ess Than or
Equal

(R21. else repeat always always

71 07 MASG Masked Alphanumeric Skip NI if IU) tmiJ (R2»(A) rJ:m 2.25 + .75K 3.5 + 1.5K
Search Greater (R2). else repeat always always

11 10 DA Double Precision Fixed· (A,A+l}+(V,VI-I J-+A.A+I 1.625 3.167
Point Add

71 11 DAN Double Precision Fixed· (A.At I \-(U ,V+ I)-.A.A+ I 1.625 3.167
Point Add Negative

71 12 OS Double Store A (A.A+l)~V.V+I 1.50 3.0

71 13 DL Double Load A (U,V+l)·A./l..+1 1.50 3.0

71 14 DLN Double Load Negative A -IV,V+l}·A.Arl 1.50 3.0
'.

71 15 DlM Double load Magnitude A ,(V,Vil): .A.A!-I 1.50 3.0

71 16 DJZ Double precision Jump to V If (A,A~ I)-~:O; go 10 NI if 1.625 jump 3.167 jump . Jump Zero (A,A+ITI.'O .875 NI 1.667 NI

71 17 DTE Double Precision Test Skip NI if (V,U+1HA,A+1) 2.375 skip 4.667 skip
Equ~1 1.625 N I 3.167 HI

72 00 - Illegal Code Causes illegal instruction interrup(- -
to address 241.

72 01 SLJ Store location and Jump (P)-BAS[ADDRESS MODIFIER 2.125 always 3.83
[BI or BDJ·U \7.0; Jump to v+1

Table 8·1. Instruction Rc-pertoire (Part 3 of B)

-31-

.-
Funrtion l1"R 1106

Code (l'dal)
Mnemonic Instruction Description 0 Execution Execution

Time Time -----
in Ilsees. 0 in Ilsecs.® f j

72 02 JPS Jump Positive ~nd Stllft Jump to U if (~'}3'--0: go to NI If 1.50 jump 3.0 JlImp
(t.I,.,"!; alwiiYs ~hift lA' left .75 NI 1.5 ;~I

circ~l~rly Olle bit position. always alwt}'s

72 03 JNS Jump Negative and Shift Jump to U if (Alo,.,·I: ~o to NI If 1.50 jump 3.0 jump
(A),,~O: always shift (AI left .75 NI 1.5 NI
circularly olle brt position always ~Iways

72 04 Ali Add Halves (A)35".+(U)" , "~A," .•• ;(A), .,.0+ .75 al ways 1.5 always
(UI".o··A 17 _o

72 05 ANH Add Negative Halves (AI 2"-'. -(U 1,<"_,. 'A,"- •• ;(A)".c .75 always 1.5 always
-(U},7_o'A ,7_0

72 06 AT Add Thirds (M,,-,.' (U»'~4~A3! .. ,.:(A)",.,? .75 always 1.5 always
+(U) 2 3· , 2 • A 0 3· , 2; (AI, , . 0'; (U I, , . 0

~'A, '-0

72 07 ANT Add Nc~ative Thirds (A), O'2'-!U) 3" 2 i-A 35 . .:.; I A) 2;" ,- .75 always 1.5 always
(U)",., 2"A 2 3,' o;(A), •. o-(U), ,.0
.... A',_0

72 10 EX Execute Execute the instruction at U .75 always I: 5 always

72 II ER Execute Return Causes executive return interrupt 1.375 always 2.33 always
to address 242.

72 12 - Illegal Code Causes illegal instruction interrupt - -
PAIJ G)

to address 241.

72 13 prevent All I/O Interrupts Prevent all I/O interrupts and jump .75 always 1.5 always
and Jump to U

72 14 SCN store Channel Number II a~O: CHANNEL NUMBER ,U •. o; .75 1.5
II ~1: CHANNEL NUMBER·.U,.o and

LPS@

CPU NUMBER·U< .•

72 15 Load Processor state (Ur.processor state Register .75 1.5
Register

72 16 LSL® Load Storage Limits (U)-'SLR .75 1.5
Regi ster

72 17 - Illegal Code Causes illegal instruction interrupt - .,-

to address 241.

73 00 SSC Single Shift Circular Shift (A) right circularly U places .75 always 1.5 always

73 01 DSC Double Shift Circular Shift (A,AI1) right circularly U places .875 always 1.5 alwan

73 02 SSL Single Shift Logical Shift (A) right U places; zerolill .75 always 1.5 always

73 03 'DSL Double Shift Logical Shift (A.Ali) right U places; zerolill .875 always 1.5 always

73 04 SSA Single Shift Algebraic Shift (AI rightu places; signlill .75 always 1.5 always

73 05 DSA Double Shift Algebraic Shift (A.Mll rightlJ places; signlill r .875 always 1.666
always

73 06 LSC Load Shift and C~unt (U}·A. shift (A) left Circularly until 1.125 2.0
(A).o/(A) •• ; NUMBER OF SHIFTS
~A+I

Tobie 8-1. Instruetior'! Repertoire (Port 4 of 8)

-32-'

-------r-- ,
Function 1108 1106

CadI:' (Oclal)
Mnrmonic Instruction Description ® Execution E)(ecution

Time Time
f j in I' sees. 0) in Iisees. ®

73 07 OLSC Double Load Shift \U.U~ I,",A.Ail. shift IA.A+ll left 2.125 3.830
and Count Circularly untl! IA.A. II, ,IIA.Atl)70'

NUMBER OF SHIFTS·AI 2
73 10 LSSC Left Single Shift Circular Shift (AI left cl1Cularly U places .75 always 1.5 al\'/i'Ys

73 11 LDSC Left Double Shift Circular Shift (A.Atll left ci!cularly U places .875·always 1.666
always

73 12 LSSL Left Singlp. Shift Logical Shift (A) left U places; zerofill .75 always 1.5 always

73 13 LDSL Left Double Shift Logical Shift IA.A+!) left U places; zerofill .875 always 1.666
always

73 14 III@ Initiate Interprocessor Initiate interprocessor interrupt .75 always -
la' 0 or II Interrupt, 1108 System

only)

ALRJ]J Alarm Turn on alarm .75 always 1.5 always
(a·'10 8 , .
EOC(§) Enable Day Clock Enable day clock .75 always 1.5 always
la .11 8)

DDC@ Disable Day Clock Disable day clock .75 always 1.5· al ways
(<t-e 12.)

73 15 SIL~ Select Interrupt Locations (a~·MSR .75 always 1.5 always

73 16 LCR@ Load Channel Select iU 1,.o··CSR .875 1.666
(a~O) Register

LLA~ Load Last Address IU),.o·LAR .875 1.666
(a-I) Register

73 17 TS Test and Set If IU),0= 1. interrupt to address 2448 ; Alternate 3.166
if IUI30~0. go to NI; always 01 8 " i>ank: 1.625
U ... 30 ; (U)29_ounchanged Intci rupt

.875 NI

Same bank: 1.666
2.0 interrupt
2.0 NI

74 00 JZ Jump zero Jump 'to U if (A)~±O; go to NI if 1.50 Jump 3.0 jump
(A~/±O .75 NI 1.5 NI

always always

74 01 JNZ Jump Nonzero Jump to U if (A)"/'O; go to NI if 1.50 jump 3.0 jump
(A)~~O .75 NI 1.5 NI

al ways always

74 02 JP Jump Positive Jump to U if (A)35~0; go to NI If 1.50 jump 3.0 jump
(A)3s=1 .75 NI 1.5 NI' . always always

74 03 IN Jump Negative Jump to U if (A)3~~I; go to NI if 1.50 jump 3.0 jump
(A) •• =O .75 NI 1.5 NI

" always always

74 04 JK Jump Keys Jump to U if 3=0 or if 3=1 it select .75 always 1.5 always
J Jump jump indicator; go to NI if neither

is true

74 05 HKJ Half Keys and Jump Stop if 3~0 or if I a rem lit select .75 always 1.5 always
HJ Half Jump stop indicators I/o: on restart or

continuation. Jump to U

Tobie 8-1. Instruction Repertoire (Port 5 of 8)

-33-

--.-~.-----,----------..--------.--,;.---.----.-_._-,
F~ncliCin

CoJ" (Oclal)
1108 1106

E)(ecution E)(ecution

Time Time
Mnemonic Instruction Description 0

f J' in 11sees. (1) in 11sees. Ii)
~--~--+-----+-------------+------------------+~----~--~.---

74

74

74

74

74

74

74

74

74

75

75

75

75

75

75

75

06

07

10

11

i 2

13

14

16

17

00

01

02

03

04

05

06

IN B

JB

JMGI

LMJ

JO

JNO

JC

JNC

@
LOCM

No OperatIOn

Alle.'l AI i \.'0 Interrupts

Jump No Low Bit

proceed to next 1I1struction

Allow all I/O Int("",pts ;md jump
to U

Jump to U If IAI,-O: &0 to NI if
\ 1\ 10 .1

Jump La';' Bit Jump to U If IAI , .• 1. go to NI If

(All' 0

Jum~ Modi/,e, Greater and Jump to U If (X a) ,0: go to NI if
Increment l' ~t

Load Modi ficr and Jump

Jump Overflow

Jump No Overflow

Jump Carry

Jump No Carry

Load Input Channel

Load Input Channel
and Monitor

Jump On Input Channel
BuSy

Disconnec t Input Channel

Load Output Channel

Load Output Channel
and Monitor

Jump On Qutput

Cll"nnel Busy

(X a) :...0. always (X a) +
'i 7·0 1"'·0

IXa l ~Xa
:3 5·'8 17-0

(PI-BASE ADDRESS MODIFIER
I BI or BDI·x. : JUIilP to U

" 17 - 0

J U m p to U If 0 1 of P S Ro L go to N I
if 01-0

Jump to U if Olaf PSR·O; go to NI
If D 1" 1

Jump to U if DO of PSR~l: go to NI
if DO~O

Jump to U if DO of PSRO; go to NI
if Drrl

For channel I a (!.t) CSR1:(U~IACR;
set Input active: clear Input monitor

For channel [a rill! CSRI:rU)~IACR;
set Input active; set input monitor

Jump to U I f Input active is set for

channel r a till) CSRl; go to NI il
input active IS Clear

For channel I a ~ CSRI: clear
mput active. clear Input monitor

For channel [a ~ CSRI:!u)~OACR;
set output active; clear output
monitor; clear e~ternal monitor
(151 only)

For channel [a rill! CSR1:(U~OAC'R:
set output "ctrve: set output
monitor; clear external function
(lSI only)

Jump to U II output active is set for

channella (iJ;1.CSRl; go to NI if
output active is clear

TobIe B-1. Instruction Repertoire (Port 6 of 8)

.75 always

.75 always

1.50 jump
.75 NI
always

1.50 jump
.75 N I
always

1.50 jump
.75 NI
always

.875 always

1. 50 jump
.75 N I
always

1. 50 jump
.75 NI
always

1.50 Jump
.75 NI
always

1.50 jump
.75 NI
always

.75

.75

.75 always

.75 always

.75

.75

.75 always

1.5 always

].5 al'Nays

3.0 Jl"'P
1.5 N I
always

3.0 JU'"P
1.5 N!
al \'IJYS

3.166 Jump
1. 5 N I
always

1.666
always

3:0 jump
1.5 NI
always

3.0 jump

1.5 NI
always

3.0 Jump
1.5 N I
always

3.0 jump
1.5 N I
always

1.5

1.5

1.5 always

1. 5 always

1.5 always

1.5

1.5 always

-34- -

Function 1108 1106
Code (Oct~1

Mnemonic Instruction Description0
Execution Execution

-- Time Time
f i In /lsecs. (fl in /,sees. ®

75 07 DOC0J DI",-onnect Output For ch"nnel I ~ .m CSRI: clear .75 always 1.5 always
Channel out[)lJt active", clear output rno:lltor;

clear extcrnal function

75 10 LFC@ Load Function in For channel r a toni .cSR1: (U)· .75 1.5
Channel OI'.CR. ~et OUti.ut .. clive (lSI only),

external funr:t!Gn, and force externCiI
function: c[~:" output monitor (lSI

LFCM~
only)

75 11 LOil~ Fllnctlon In For ch,nnel [e [oJ;] CSRI: (Ur' .75 1.5
Channel and Monilor OI'.CR: set Qut:lut active (lSI only).

externi11 function. force external
func tlon. and output monitor (lSI
only I

75 12 JFC0 Jump On Function Jump to U If force external function .75 always 1.5 always
in Channel IS sct for chann.,1 I a (!IiJ CSRi;

go to NI If force external function
is c I ear

75 13 - Illegal Code If guard mode is set. Causes guard .75 always 1. 5 al ways
mode InterrL;~t to address 243 8, If

AAC(!V

guard modc IS not set, same as NOP

75 14 Al1ol'1 All Channel Allow all external interrupts .75 always 1.5 always

PACICP
External Interrupts

75 15 Prevent All Cl1annel prevent all external 'interrupts .75 always 1.5 always
External Interrupts

75 16 - Illegal Code I "'" ,," m.", " " .. "" '" "'''" mode interrupt to :1ddress 243 H • If .75 always 1.5 always
75 17 -- Illegal Code guard mode IS not set, same as

NOP

76 00 FA floating Add (A), IU~A; RES1DUE--Atl 1.875 3.0

76 01 FAN Floating Add Negative (AI-(U) "'A; RESIDUE ... A+l 1.875 3.0

76 02 FM Floating Multiply (AHU)->A,A+1 2.625 4.0

76 03 FD Floating Divide (A)""IUr-.A; REMAINDER-.A+l 8.250 11.5

76 04 LUF Load and Unpack I(U)'34-27"'A7'0' zerofill; 1U)2 •. 0'" .75 always 1.5 always
Floating A+12 •. 0 ' slgnflli

76 05 LCF Lo ad and Convert To (U),,"'A+l,,; INORMALIZED 1U)1".0 1.125 2.0
Floating -'Ad,._o; If IU)3'o.O, (A).,.o!

NORMALIZING COUNT-Arl H . 27 ;
if !U)3C,~1. ones complement of •
I (A)7_0! NORf,iAL.lZING COUN T] ...

A'I 34 ' 27

76 06 MCDU Magnitude of Characterrstlc " (AI: "'27-:(U1: "'27(->A+l •• 0; ~ .75 always 1.5 always
" Difference To Upper ZEROS ... Ad 3o · o

I CDU Characteristic Difference (A). ,.. C7 -; (U)! 3 "27->A+ 18 _0 ; SIGN .75 always 1.5 always
To Upper BITS·'A.1 3O ••

76 10 DFA Double precision (A.A+ 1 l+(U ,U+ 1 \-A,A+I 2.625 4.5
Floating I'.dd

TobIe 8-7. Illstruction Repertoire (Port 7 of 8)

-35-

Function 1108 1106
Code (Octal)

Mnemonic Instruction Description ® Execution Execution
Time Time

f j in Ilsec5. CD in Ilsecs. @

76 11 DFAN Double precision (A.Atl)-(U ,U d)-'A.At 1 2.625 4.5
Floating Add Negative

76 12 DFM Double precision (A,A+l)-(U ,llll) ·A.A+l 4.25 6.667
Floating Multiply

76 13 DFD Double precision (A.Atl)+(U ,1I1-1}'A.A+ 1 17.25@ 24.0®
Floating Divide

76 14 DFU Double Load and IW)!'4_24->A,o.o' zerofi"; (U)".o-' 1.50 3.0
Unpack Floating Atl".o' signfi"; (U+Ir'A+2

76 15 DFP Double Load and (U),5,.Al-l,"; [NORMALIZED
COllvert To Floating (U.U1-1) 1';9_0···A-t 12"0 and A+2;

if (U)35-~0,(A),o_o±tlORMALIZING
COUNT ·Ai 134 - 24 ; if (U),.'"-I,
ones complel"ent of [(A), o-o!
NORMALIZING COUNT].A+l u ' 24

76 16 FEL Floating Expand ' If (U),"~O. (U),5'27+1600.-.A.5'24; 1.00 1.833
and Load if (U),.-"I. (U)"'27-1600.~A"'2';

(U),._,.A 2 ,.0; (U),.o~A+I, •• 33;

(U),,-'A+13~'0

76 17 FCL Floating Compress If (U)35'~O, (U),5.24-1600 A35.27; 1.625 3.167
and Load if (U)'5d, (U)"'2.+16OOA·'

A •• _'7; (U)2,.0"'A, •• ,; (Ufl)'._33
..... A2aO

77 0-17 - Illegal Code Causes illegal instruction interrupt - -
to addless 241.

Tobie B-1.lnstrvction R!,pertoire (Part 8 of B)

-36-

NOTES:

CD The execution times Riven are for alternate bank memory access; for same bank memory access, execution time is
,75 microseconds greater. Exceptions to thiS either show the execution limes for both types of memory access or
Inciude the word "all'lays" to inuicate that the execution time is the same legordless 01 the type of memory access.

For function codes 01 through 06 and 22, add .375 microseconds to the execution times for 6-blt and 12-bit writes.

The execution time fOI a Block Transfer or any of the seilrch instructions depends on the number of repetitions (K)
required: that is, the number of words in the block being transferred or tile number of words searched before a find

IS made.

Q) NI stands for Next Instruction.

@ The a and j fields together serve to specify any of t;1e 128 control registers.

o If 28 rather than 27 subtractions are performed, add .25 microseconds to the execution time.

® If 61 rather than 60 subtractions are performed. a'dCi .25 microseconds to the execution time,

® Execution times given are calculated uSing a main storage cycle time of 1.5 microseconds and a CPU clOCk cycle
time of 166 nanoseconds.

For all comparison II1structions, the first number represents the skip or jump condition, the second number is fer ~ no
skip or no jump condl tlon.

For function codes 01 through 67. add .333 micrO':econds to execution times for 6-bit, 9-bit, and 12-bit writes.

Execution time for the Block Transfer and the seJrch instructions depends on the number of repetitions of the instruc
tion required. The variance is 3_0K microsecond:; for Block Transfer and 1.5K microseconds for searches where K
equals the number of repetitions; that IS, K equa s the number of words in the block beillg transferred or the number
of words searched before a match is found.

(j) If 28 instead of 27 subtractions are performed, add .333·microseconds.

® If 61 instead of 60 subtractions are performed. add .333 microseconds ..

~ Instructions so marked are illegal in guard mode.

,----[1106/1108 110611103
. Function . Function

Mncmolllc C 1 '0 !~ MnemonIc CodeCOctai) or..e \ eto ---{--J f ;
-

A 14 0-17 DF 36 0-17

A 24 0-17 'DFA 76 10

AA 14 0-17 DFAN 76 11

AACI 75 14 DFO 76 13

AAIJ 74 07 IJFM 76 12
AH 72 04 OFP 76 15

(3)
73 14 OFU 76 14 ALRr,;

a-,l()j
01 34 0-17

AM 16 0-17 DIC 75 03
AMA 16 0-17 DJZ 71 16
AN 15 0-17 OL 71 13

AN 25 0-17 OLM 71 15
ANA 15 0-17 DLN 71 14

AND 42 0-17 DLSC 73 07

ANH 72 05 DOC 75 07
ANtv'! 17 0-17 OS 71 12
ANMA 17 0-17 OSA 73 05
ANT 72 07 DSC 73 01
ANU 21 0-17 DSF 35 0-17
ANX 25 0-17 DSL 75 03
AT 72 06 DTE 71 17
AU 20 0-17 EDC 73 14
AX 24 0-17 3=118

BT n 0-15 ER 72 11

CDU 76 07 EX 72 10
DA 71 10 FA 76 00
DAN 71 11 FAN 76 ,01
DOC 73 14 FCL • 76 17

a=128 FD 76 03

MASG 71 07 S 01 0-17
MASL 71 .06 S 04 0-17
MeDU 76 06 S 06 0-17
MF 32 0-17 SA 01 0-15

MI 30 0-17 SCN 72 14

MLU 43 0-17 SE 62 0-17
MSE 71 00 SG 65 0-17
MSG 71 03 SIL 73 15
MSI 31 0-17 SLE 64 0-15
MSLE 71 02 SLJ 72 01
MSNl 71 01 SM 03 0-15
MSNG 71 02 SMA 03 0-15
MSN'N 71 05 SN 02 0-15
MSW 71 04 SNA 02 0-15
NOP 74 06 SNE 63 0-17
OR 40 0-17 SNG 64 0-17
PACI 75 15 SNW 67 0-17
PAIJ 72 13 SR 04 0-17

i The i ond a fields together serve to specify any
of th(' 128 control reg; sters.

-37-

1106/1108

Menomie Function Menomic
Code (OetalL
f;

FEL 76 16 LCF
FM 76 02 LCR
HJ 74 05

HKJ 74 05 LDSC
III 73 14 LDSL

3ceO or 1 LCF
J 74 04 LFCM
JB 74 11 LIC
JC 74 16 LICM
JFC 75 12 LLA
JGD 70 t -
JIC 75 02 LM
JK 74 04 LMA
JMGI 74 12 LMJ
IN 74 03 LN
JNB 74 10 LNA
JNC 74 17 LNMA
JNO 74 15 LOC
JNS 72 .03 LOCM
JNZ 74 01 LPS
JO 74 '14 LR·
JOC 75 06 LSC
JP 74 02 LSL
JPS 72 02 LSSC
JZ 74 00· LSSL
L 10 0-17 LUF
L 23 0-17 LX
L 27 0-17 LXI
LA 10 0-17 LXM
SSA 73 04 TOP
SSC 73 00 TP
SSL 73 02 TS
sw· 66 0-17 TW
SX 06 0-15 TZ
SZ 05 0-15 XOR
TE 52 0-17 .. -
TEP 44 0-17 -
TG 55 0-17 -
TLE 54 0-17 -
TLEM 47 0-17 -
TN 61 0-17 -
TNE 53 0-17 -
TNG 54 0-17 -
TNGM 47 0-17 -
TNW 57 0-17 -
TNZ 51 0-17 -

Table B·2. Mnemonic/Function Code Cross-Reference

1106/110B 1
Function

Code (Oct,'!.!i
t .i

76 05
73 16

a=O

73 11
73 13

75 10

75 11

-75 00

75 01
73 16

a=1

12 0-17
12 0-17
74 13.

11 0-17
11 0-17
13 0-17
75 04

75 05
72 15
23 0-17
73 06
72 16
73 10
73 12

76 04
27 0-17
46 0-17
26 0-17

45 0-17
60 0-17

73 17

56 0-17

50 0-17

41 0-17

00
07
33

37
72 00

72 12

72 17
75 13
75 16

75 17 •

77

-38-

Table B-3

j - Determined Partial-Word Operations . '

S = Sign extension, where the sign is the leftmost b.it of partial
word defi ned by j. .

j PSR B ITS FROM (U)-+8 IT IH1S FROf·1 ARITHt<lETI C
BIT 17 MNEMONICS POSITIONS IN ARITHMETIC SECTION -+

SECTION BIT POSITION OF U

00 - W or None 35-0 -+ 35-0 35-0 -+ 35-0

01 H2 17-0
. - -+ 17-0 17-0 -+ 17-0

02 - Hl 35-18 -+ 17-0 17-0 -+ 35-18

03 - XH2 .17-0 -+ S 17-0 17-0 -+ 17-0

04 0 XH1 35-18 -+ S 17-0 17-0 -+ 35-18
1 Q2 26';18 -+ 8-0 8 ... 0 -+ 26-18

05 0 T3 11-0 -+ S 11-0 11-0 -+ 11-0
1 Q4 8-0 -+ 8-0 8-0 -+ 8-0

06 0 T2 23-12 -+ S 11-0 11-0 -+ 23-12
1 Q3 . 17-9 -+ 8-0 8-0 -+ 17-9

07 0 T1 35-24 -+ 5 11-0 11-0 -+ 35-24
1 Q1 35-27 .-+ 8-0 8-0 -+ 35-27

]0 - 56 5-0 -+ 5-0 5-0 -+ 5-0

11 - 55 11-6 -+ 5-0 . 5-:0' -+ 11-6
,

12 - i S4 17-12 -+ 5-0 5-C -+ 17-12

13 - 53 23-18 -+ r 5~O 5-0 -+ 23-18

14 - 52 29-24 -+' 5-0 5-0 -+ 29-24

15 - 51 35-30 -+ 5-0 5-0 -+ 35-30

16 - U 18 bi ts* -+ 17-0 NO TRANSFER

17 - XU 18 b1ts* -+ 5 17-0 NO TRANSFER

* If x = 0: [h,i,u] is transferred (Exception: a111-bits yield + O)
If x ~ 0: u + (Xx)1s transferred

17-0

-39~
. '.

APPENDIX C. ASSEMBLER, ERROR
FLAGS AN'D
MESSAGES

C.1. ERROR FLAGS

C.l.I. R-Relocation

An R flag indicates that a relocatable item (usually a label) has been so used in an
expression as to cause loss of its relocation properties.

C.l.2. E-Expression

Expression error flags may be produced in a variety of ways, such as the inclusion
of a decimal digit in an octal number (for example, 080), and binary or decimal
exponentiation with a real exponent (for example, 3.14*/1.2).

C.1.3. T-Truncation

The T flag indicates that a valu£: is too large for its destined field. Consider the
following example:

F FORM 18,18

A EQU +(F 0,-3) (1)

G FORM 32,4

G O,A (2)

The form referenee in line (1) is legitimate, but (2) would produce a T flag, since
the valu~,o1' A in this case is 0000007777748 (a value with 18 significant bits), and
the second field of form "G" is defined as four bits in length.

the T flag will also appear on a line containing a location counter reference greater
than 31 (37 , or 5'bits).

8

C.1.4. L-Level

This flag indicates that some capacity of the assembler, such as a table count, has
been exceeded, or the END directive is missing or incorrect. The limits
listed below are generous; but if one is exceeded, simplification of
coding is required. '
(a) Nested procedure or function references may not be more than 62' deep.

(b) Parentheses nests; including nested literals, may not be more than 8 deep; this
includes parenth~ses used for grouping ~f terms.

(c) Nested DO's may not be more than 8 deep.

-40-',

C. 1. 5. D-Duplicate

Labels, disregarding possible subscripts, must be unique in a given
assembly or subassembly. Redefinition of a label produces a D flag
on each line in which the label appears, unless the label is subscripted.
The obvious mistake

A EQU 1

A EQU 2

is easily discovered. Much more insidious is the redefinition in
assembly pass 2 of a label previously assigned a different value in pass
1. This usually results from an illegal manipulation of a location
counter.

C. l. 6. I-Instruction

If the first subfield in the operation field of a symbolic line contains
neither the name of a directive, nor an available procedure, nor a
FORM reference, nor a mnemonic, an I flag is produced. A pro
cedure is considered available only if it is in the procedure library

• (that is, the system relocatable library or a user's file), or if it has"
previously been encountered in the source program. With the current
level of the assembler (OOllA), whenever an I £1a"g is produced by the
assembler, the corresponding bad line of code is generated as a N¢P
instead of 0' s as in previous versions.

C. l. 7. U - Undefined

If an operand symbol is not defined in the source program, each iine
containing the symbol is marked - with a U flag - as containing an
undefined symbol. In some case s, this may denote a reference to a
value externally defined in some other independently processed code.
But there is the chance that a U flag,might simply denote an error by

, the programmer.

C.2. ERROR MESSAGES

1108 ASM Internal Error Abort

The assembler has lost control of what it is doing. This may result
from nearly any cause including an anomaly in the assembler or exec
utive system, or an undetected data transmission error. Index regi
ster XII contains the location at which the error was detected. The
asselnbly is terminated in error.

Abort Cannot Read PROC from Drum

An I/O error resulted when the assembler attempted to read a procedure
from a drum or FASTRAND file. The assembly is terminated in error.

-41-

AsseITlbler Image

An end of file was detected on the source file. An END card with the
above comment is supplied. Processing terminates normally, but the
element is marked as being in error. .

ASM Abort no Scratch File AO XXXXX

The assembler is unable to dynamically assign a scratch file. The AO value indicated
is the status word returned by the executive system. For meaning of the status word,
see UNIVAC 1108 Multi-Processor System Executive Programmers Referenc(,
Manual, U P-4144 (current version). The assembly is terminated in error.

Bad Procedure Read

An I/O error was detected in attempting to read a procedure sample from mass
storage. Processing continues by searching next mass storage procedure file.

Item Table Overflow

Insufficient space exists for the assembler to define a symbol or literal. The
assembly is termin'ated in error.

Line Number Sequence Errors

The symbolic corrections inserted as input to this assembly are out of sequence.
The assembly continues. Source lines following the out-of-sequence correction card
will be inserted at the point at which the error is detected.

PARTBL Not Initialized

The preprocessor routine is unable to initialize the assembler parameter table.
Probable causes are incorrect file assignments; incorrect processor control card, or
I/O error. The assembly is terminated in error. The preprocessor also prints a mes-
sage indicating the nature of the error. .

Procedure Sample Storage Overflow

Insufficient space exists for the assembler to process a line of procedure definitions.
The 'assembly is terminated in error.

ROR Internal Error Abort

c

The relocatable output routine is unable to write a record of relocatable binary out-
put probably because of an I/O error or improper file assignment. The assembly is
terminated in error.

TBLWR$ Internal Error Abort

The relocatable output routine is unable to write the preamble to the relocatable
output file (probably because of an I/O error). The assembly is terminated in error.

27 00

f j

function code and j
des; gnator from a
Appendix B Table B-2
and B-3 page 37-38 0

1
2
3
4
5
6
7
10
11
12
13
14
15
16
17

QUICK REFERENCE FOR DECODING ASSEMBLY LISTINGS

13 00 '. o
a x h i

A,X,or R hi -meaning action
register x I X register
number 0 nei ther bi t set no indirection

or incrementation
0 0 XO
1 1 Xl

-
1 i bi t set indlr~ct addressing

2 2 X2 2 h bi t set index incrementation
3 3 X3
4 4 X4 3" h & i bits set do both
5 5 X5
6 6 X6
7 7 X7
8 10 X8
9 11 X9
10 12 X10 .
11 13 X11
12 14 AO=X12
13 15 A1=X13
14 16 A2=X14
15 17 A3=X15

000043

u

address of LOC

LX X1;l,1
')

>
"
" I

~

I'T1 ' ~
2: N
o L -><
o

-43·,

APPENDIX E

!\ 11 t! ;; L ;i ,d f>j

1/,: i<)1 n 'J,' :'i''';Y!~.';ID l;f:Cn:C,;r4 T i\LGO~ITW1 LAi·lGUAG£ P:·lOCES:.iO~. V~:~51oi4
r:L.< OD C~';1"IL. • .::)q DQ:1Z::U \H T.jtJilSDI\Y, SI~rn~tiBt:R l. 1971-
'J 1 1 in I:: G r f(II. d • C Ql:11 · ·
J.!

il j
.~ .
I

':': I
"'~J a
l!J ~
lliJ

11 1

Jill!
';103: B~?

:..)1 J't' 'j CALL SU~(~.~.t,lY9'
<.IIUS: i' f{ I iJ T 1 'J • r.
J 1 U ':, ;
,'J' OJ, .:JI ;

I' '"
F0~MAT(' STANDARD RETUR~ C a '.r2)
A = t 1

U 1 1 J: (.10 T',:') .3
j 1 · of 'I · r i1 1 I J r 2·J I r. 1 1
:it 1 .., • I. ., , . .", F fJ R ,-\ II T (' ;', ~ ~J () I~ ~1 ,,\ L HE r URN C.' t t ;2 I

:J 1·1] : •

ASSEMBLY CODE PRODUCED BY RALPH FOR THE SUBROUTINE CALL

•
•
•

l~;}:'::) 11 7 (.j 1 J t 3 ~liJ a 'J1QJOO ,*oCJOi:J3
U;:;':"Dl;~ L~_J.-';~::~,:J'.i::"jl
i.J ~j (. G l 1 r.. ~J ~~ ! . .i :J.J ;.~ i) . .; :'.: '.J l
(JJ:Dl'~ UJJ'jJt.i:J:J':"::::).l

t.MJ
+
+
+

X11.S IJij

A
R
C
AOOOC;Y

• , ,"0" e.

u J ~ 8 l !:l I·~ ~ t ,'; J ,j Q G,; ~) c ~ 3 iJ
~:~Ole J~J1J~ OJ~J~C

J
+ 13001 u'1. ,,8CIIo.5

•
•
•
•
•
•

~'\SH, IS SUfi
ASMIID 09/02~09:12~IOO'

! •
2-
).
't •

S.
6,
7.
8.
9.

1 C·
1 I • 00 000000 10 CQ 00 13 1 OOOCOO

12 • OuOOO! 55 16 00 00 CJ::::I(;~
000002 7~ o~ 00 00 0 OUOuO~
001.) .. 03 7~ O~ ac 00 0 OOo~07

1:3' OOC'~:J" 3\ 16 !Jo 00 00\)u02
1 O~wJas 01 .:J;J t10 13 1 0<100:2
IS- OI.L-:!C-~b 7'4 C'+ 00 13 0 00';003
16 • OllOc,e7 10 OJ 01 13 I QU]OCil
17. OUCJICJ 1~ au 00 00 0 au~alS
Ie. aunll 01 OJ 00 11 I UOQ[;C2
19· OJ':.lC12 7'4 O'i 00 13 0 uunoOS
20'

END AS~1o 719 MSEC.

~XQT
MAP 22C-0910Z-09:12
STAR1·007~~3, PROG SlZECI/D).339 1/2291

E~O ~~P 1108 MSEC.

~T~~OARD RETUR~ C. S
Aahn~MAL HlT~~N C • 22

• THIS SUBROUTINE WILL ADD A , 8 IF A<-S AND WILL MULTIPLY A aY 2 IF A>S
• T~t PRoC <P> oETERMINES WHAT ACTION 15 To DE TAKEN e Y THE SUBROUTINE'
• RtTUHN OF CO~TROL To THE CALLING PROGRAM IS HACE NOHMALL' IF Ac.~
• AND ABNOR~ALLY ITo A STATEMLNT L~BEL IN THE MAIN PROGRAM I IF A>S

AXRS • SET UP THE REGISTERS
p. PHO' • OEFINE THE pHoe

TG,U PI1,ll,~ • IS S GREAT[H THAN PII.II ?
J PII.ZI • S IS LESS THAN A. MULTIPLY A 8Y 2
J Pe2,1) • S IS GREATER THAN A. A~D A ~ 8
ErlO • EIW Uf THE PRoe

sus. LA AO,-O,XII • LOA~ AU ~lTH A
P An.NoTNUM ALPHA. ~kOC CALL

NOTNUH "SItU Ao,2 .', MULTIPLY A BY 2
SA An,-2,XII • SToriE R£SUL T INTo C
J J. X II • A8NO"MAL RETUIiN

ALPHA LA A1 I 'I.XII • LoAO AI (ltTH b
AI. 1.0,1.1 • ADU A ANO B
SA Aa,'Z,XII • STORE RESULT INTO t
J Slxll • NOI(14AL RE TURN
END • EI4D Of 'TIiE SUBROUTINE

NORNAL EXIT, EXECUTrON TIME: Z MILLISECONDS.

::; .. 1 r.
Ill"

'.

"

• ': I

