
Integrated Scientific
Processor System
Processor and Storage
Reference

This Library Memo announces the release of the SPERRY Integrated Scientific Processor
System, Processor and Storage, Reference, U P-11 006.

The SPERRY Integrated Scientific Processor System consists of a scientific processor subsystem
merged with standard components of an 1100/90 system. The scientific processor attaches to the
1100/90 system through a scientific processor storage unit, which is substituted for the standard
1100/90 main storage units.

This manual describes the functional characteristics of the scientific processor subsystem
components only, and is a companion manual with the 1100/90 Systems Processor and Storage
Reference, UP-9667.

This manual is intended primarily as a reference manual for experienced systems programmers and
systems analysts. It includes the following information:

• scientific processor description
• interrupt handling information
• instruction conflict classes and conflict types
• scientific processor instructions
• scientific storage unit description
• multiple unit adapter description
• instruction summary
• scientific storage and address interleave configurations
• glossary
• index

Order additional copies of this manual through your Sperry representative.

Mailing Lists AC, BZ, CZ (less DE,
GZ, HA), MZ, MBR, MBSU, MU 1 G

Mailing Lists DE, GZ, HA, 82, MBW,
MU1H, MU1Y

(193 pages)

April 1986

This document contains the latest information available
at the time of preparation. Therefore, it may contain
descriptions of functions not implemented at manual
distribution time. To ensure that you have the latest
information regarding levels of implementation and
functional availability, please consult the appropriate
release documentation or contact your local Sperry
representative.

Sperry reserves the right to modify or revise the
content of this document. No contractual obligation
by Sperry regarding level, scope, or timing of
functional implementation is either expressed or
implied in this document. It is further understood that
in consideration of the receipt or purchase of this
document, the recipient or purchaser agrees not to
reproduce or copy it by any means whatsoever, nor to
permit such action by others, for any purpose without
prior written permission from Sperry.

FASTRAND, *,SPERRY, SPERRY, SPERRY=¢=UNIVAC,
SPERRY UNIVAC, UNISCOPE, UNISERVO, UNIVAC, and *' are registered trademarks of the Sperry
Corporation. ESCORT, PAGEWRITER, PIXIE,
SPERRYLtNK, and UNIS are additional trademarks of
the Sperry Corporation. MAPPER is a registered
trademark and service mark of the Sperry Corporation.
USERNET and CUSTOMCARE are service marks of the
Sperry Corporation.

©1986 - SPERRY CORPORATION PRINTED IN U.S.A.

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Page Status Summary

Page Status Summary

Section Pages Update Section Pages

Cover/Disclaimer

User Comment Form

PSS 1

Preface 1 - 2

Contents 1 - 7

Section 1 1 - 22

Section 2 1 - 55

Section 3 1 - 14

Section 4 1 - 39

Section 5 1 - 14

Section 6 1 - 4

Appendix A 1 - 10

Appendix B 1 - 7

Glossary 1 - 4

Index 1 - 10

PSS-1

Update

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Preface Preface-1

Preface

Intent of This Manual ___________________________ _

This SPERRY Integrated Scientific Processor System Processor and Storage Reference manual
describes the SPERRY Integrated Scientific Processor Subsystem components only. It is a
companion manual with the SPERRY 1100/90 Systems Processor and Storage Reference,
UP-9667. These manuals together fully describe a SPERRY Integrated Scientific Processor
System.

This manual is intended primarily as a reference manual for experienced systems
programmers and systems analysts.

Refer to the Glossary for a definition of terms used in this manual.

Manual Organization ____________________________ _

This manual contains the following sections.

• Section 1. Introduction

Describes the scientific processor components, features, configurations, and
characteristics.

• Section 2. Scientific Processor

Describes the scientific processor functions; including the scalar and vector processors.

• Section 3. Operations

Describes activity switching, interrupt handling, and instruction conflict operations.

• Section 4. Scientific Processor Instructions

Describes the instruction word formats and the instruction set.

UP-ll006
Integrated Scientific Processor System Processor and Storage Reference

Preface

• Section 5. Scientific Processor Storage

Describes general storage operations including characteristics and modes of operation.

• Section 6. Multiple Unit Adapter

Preface-2

Describes the relation of the multiple unit adapter with the scientific processor system.

• Appendix A. Instruction Summary

Provides an alphabetically arranged summary of the instructions.

• Appendix B. Storage Configurations and Address Interleave

Provides scientific storage and address interleave configurations.

• Glossary

Defines key terms used in this manual.

• Index

Lists key terms used in the manual with corresponding page number references.

Related SPERRY Manuals ________________________ _

Throughout this manual, when you are referred to another manual, you should use the
version that applies to the software level in use at your site. If you need more information,
the following Sperry manuals may be useful.

• Integrated Scientific Processor System, System Description, UP-11547

• 1100/90 Systems, System Description, UP-9288

• 1100/90 Systems Processor and Storage, Reference, UP-9667

• 1100/90 Systems, System Support Processor (SSP), Level 4R6, Operator Guide,
UP-I0096.2

• Series 1100 Executive System Operator Reference, UP-7928

• Series 1100 Hardware/Software Mini-Reference, UP-7824

• Series 1100 Meta-Assembler for the Scientific Processor, MASP Reference, UP-I0985

Copies of these manuals may be ordered through your Sperry representative~

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Contents Contents-1

Contents

User Comment Form

Page Status Summary

Preface

Contents

1. Introduction 1-1

1. 1. Hardware Components 1-2

1.2. Features 1-4

1.3. Scientific Processor 1-7

1.4. Scientific Processor Storage Unit 1-17

1.5. Multiple Unit Adapter 1-19

1.6. System Configurations 1-19

1.7. System Interfaces 1-20

2. Scientific Processor 2-1

2.1. Functional Organization 2-1

2.2. Control Structures 2-2
2.2.1. Mailbox 2-2
2.2.2. Hardware Status Registers 2-4
2.2.3. Scientific Processor Control Block 2-5
2.2.4. Jump History File 2-7

2.3. Scalar Module 2-7

Integrated Scientific' Processor System Processor and Storage Reference
UP-11006 Contents

2.3. 1. Instruction Flow Control
2.3.2. Address Generation
2.3.3. Scalar Processor
2.3.4. Local Storage
2.3.5. Store Buffer
2.3.6. Loop Control
2.3.7. Mask Processor
2.3.8. Control Block

2.4. Vector Module
2.4. 1. Vector Register
2.4.2. Vector Control
2.4.3. Vector Add Pipeline
2.4.4. Vector Move Pipeline
2.4.5. Vector Multiply Pipeline
2.4.6. Vector Load
2.4.7. Vector Store
2.4.8. Scalar Vector Control

3. Operations

3. 1. Activity Switching
3. 1. 1. Acceleration
3. 1.2. Deceleration
3. 1.3. Activity Switch Algorithm
3. 1.4. Special Considerations

3.2. Interrupt Handling
3.2. 1. Interrupt Responses
3.2.2. Interrupt Identification
3.2.3. External Interrupts
3.2.4. Internal Interrupts
3.2.5. Interrupt Synchrony
3.2.6. Interrupt Status
3.2.7. Internal Interrupt Handling

3.3. Instruction Conflict Clc;tssification and Types
3.3. 1. Instruction Issue Class
3.3.2. Control Word Dispatch Class
3.3.3. Instruction Execution Class
3.3.4. Register Conflicts
3.3.5. Facility Conflicts
3.3.6. Data Available Conflicts
3.3.7. Unit Wait Conflicts

4. Scientific Processor Instructions

4. 1. Introduction

4.2. Instruction Word Formats
4.2. 1. Common Fields

Contents-2

2-8
2-10
2-13
2-18
2-20
2-22
2-25
2-26

2-33
2-33
2-36
2-43
2-45
2-50
2-50
2-51
2-54

3-1

3-1
3-2
3-3
3-3
3-3

3-4
3-4
3-5
3-5
3-6
3-7
3-9

. 3-9

3-9
3-9
3-9
3-11
3-11
3-12
3-13
3-14

4-1

4-1

4-1
4-2

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Contents Contents-3

4.2.2. Register-to-Storage (RS) Format 4-4
4.2.3. Register-to-Register (RR) Format 4-4
4.2.4. Vector-to-Vector (VV) Format 4-5

4.3. Scalar Arithmetic Computational Instructions 4-5
4.3. 1. Add (A, DA, FA, DFA, AR, DAR, FAR, DFAR) 4-6
4.3.2. Add Negative (AN,' DAN, FAN, DFAN, ANR, DANR, FANR, DFANR) 4-6
4.3.3. Multiply (MSI, MI, FM, DFM, MSIR, MIR, FMR, DFMR) 4-6
4.3.4. Divide (DSI, 01, FD, DFD, DSIR, DIR, FOR, DFDR) 4-6
4.3.5. Absolute Value (EM, OEM, EMR, DEMR) 4-7
4.3.6. Count Leading Signs (ESC, DESC, ESCR, DESCR) 4-7

4.4. Scalar Logical Computational Instructions 4-8
4.4.1. Logical AND (AND, DAND, ANDR, DANDR) 4-9
4.4.2. Logical OR (OR, DOR, ORR, DORR) 4-9
4.4.3. Exclusive OR (XOR, DXOR, XORR, DXORR) 4-9

4.5. Scalar Comparison Instruction 4-9
4.5.1. Compare (C, DC, CR, OCR) 4-9

4.6. Scalar Type Conversion Instruction 4-10
4.6.1. Convert (CIDIR, CIFR, CIDFR, CDIIR, CDIFR, CDIDFR, CFIR, CFDIR,

CFDFR, CDFIR, CDFDIR, CDFFR) 4-10

4.7. Scalar Shift Instructions 4-10
4.7.1. Shift Right Logical (SSL, DSL, SSLR, DSLR) 4-11
4.7.2. Shift Right Algebraic (SSA, DSA, SSAR, DSAR) 4-11
4.7.3. Shift Left Logical (LSSL, LDSL, LSSLR, LDSLR) 4-11
4.7.4. Shift Left Circular (LSSC, LDSC, LSSCR, LDSCR) 4-12

4.8. Scalar Move Instructions 4-12
4.8.1. Storage Move Instructions 4-12
4.8.2. Move Register-to-Register Instructions 4-13

4.9. Vector Arithmetic Instructions 4-15
4.9.1. Add Vector (AV, DAV, FAV, DFAV) 4-16
4.9.2. Add Negative Vector (ANV, DANV, FANV, DFANV) 4-16
4.9.3. Multiply Vector (MSIV, MLlV, FMV, DFMV) 4-16
4.9.4. Divide Vector (DSIV, FDV, DFDV) 4-16
4.9.5. Absolute Value (EMV, DEMV) 4-17
4.9.6. Negative Vector (MNV, DMNV) 4-17
4.9.7. Vector Shifts (SSLV, DSLV, SSAV, DSAV, LSSLV, LDSLV, LSSCV,

LDSCV) 4-17

4.10. Vector Bit Evaluation Instructions 4-17
4.10.1. Count Leading Signs Vector (ESCV, DESCV) 4-18
4.10.2. Population Count Vector (EBCV) 4-18
4.10.3. Population Parity Count (ESPV) 4-18

4.11. Vector Logical Instructions 4-19
4.11.1. Logical AND Vector (ANDV, DANDV) 4-19

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Contents Contents-4

4. 11.2. Logical OR Vector (ORV, DORV) 4-19
4.11.3. Logical Exclusive OR Vector (XORV, DXORV) 4-19

4.12. Elementwise Comparison Instruction 4-19
4.12.1. Compare Vector (CLV, CLEV, CGV, CGEV, CEV, CNEV, DCLV, DCLEV,

DCGV, DCGEV, DCEV, DCNEV) 4-20

4.13. Vector Type Conversion Instructions 4-20
4. 13.1. Convert Vector (CIDIV, CIFV, CIDFV, CDIIV, CDIFV, CDIDFV, CFIV,

CFDIV, CFDFV, CDFIV, CDFDIV, CDFFV 4-21

4. 14. Vector Reduction Operation Instructions 4-21
4. 14.1. Sum Reduction (SUM, DSUM, FSUM, DFSUM) 4-21
4. 14.2. Product Reduction (FPRD, DFPRD) 4-22
4.14.3. Maximum Reduction (MAX, DMAX) 4-22
4. 14.4. Minimum Reduction (MIN, DMIN) 4-23

4.15. Vector Move Instructions 4-23
4.15.1. Load Vector (LV, DLV) 4-23
4. 15.2. Store Vector (SV, DSV) 4-24
4. 15.3. Generate Index Vector (GXV) 4-24
4.15.4. Indexed Load Vector (LVX, DLVX) 4-24
4. 15.5. Indexed Store Vector (SVX, DSVX) 4-25
4. 15.6. Move Vector (MV, DMV) 4-25
4. 1 5.7. Compress Vector (MCV, DMCV) 4-25
4.15.8. Distribute Vector (MDV, DMDV) 4-26
4. 15.9. Load Alternating Elements Vector (LAEV, DLAEV) 4-26
4. 15.1 O. Store Alternating Elements Vector (SAEV, DSAEV) 4-26

4.16. Loop Control Instructions 4-27
4.16.1. Build Vector Loop (BSVL, BLVL, BSVLR, BLVLR) 4-27
4. 16.2. Jump to Vector Loop (JVL) 4-28
4. 16.3. Build Element Loop (BEL) 4-28
4.16.4. Jump to Element Loop (JEL) 4-29
4.16.5. Adjust Loop Register Pointers (CELP, CVLP, CVELP) 4-29

4.17. Jump Instructions 4-30
4.17.1. Conditional Jump (CJ) 4-31
4.17.2. Increment and Jump Less (IJL) 4-35
4.17.3. Decrement and Jump Greater (DJG) 4-35
4. 17.4. Load Address and Jump (LAJ, LANI) 4-35
4.17.5. Jump to External Segment (JXS, JXSI) 4-36

4. 18. State Instructions 4-36
4. 18.1. Load Multiple (LGM, DLGM) 4-36
4. 18.2. Store Multiple (SGM, DSGM) 4-37
4. 18.3. Store Loop Control Registers (SLCR) 4-37
4. 18.4. Load Loop Control Registers (LLCR) 4-37
4. 18.5. Advance Local Storage Stack (ALSS) 4-37
4. 18.6. Retract Local Storage Stack (RLSS) 4-38
4.18.7. Generate Interrupt (GI, GIA,GIB) 4-38

UP-11006

5.

6.

Integrated Scientific Processor System Processor and Storage Reference
Contents

4.18.8. Test and Set (TS)
4.18.9. Test and Clear (TC)

4.19. Diagnostic Instructions
4.19.1. Diagnose Read (DGR)
4.19.2. Diagnose Write (DGW)

Scientific Processor Storage

5.1. Introduction

5.2. Storage Features

5.3. Storage Functions

5.4. Modes of Operation
5.4.1. Write Functions
5.4.2. Read Functions
5.4.3. Status Functions
5.4.4. Oayclock Functions
5.4.5. Auto Recovery Timer
5.4.6. Test and Set Functions
5.4.7. Scientific Processor Functions

5.5. Address Translation

5.6. Error Function Register

5.7. Error Reporting
5.7.1. Parity Checking
5.7.2. External Errors
5.7.3. Internal Errors

5.B. Configuration

Multiple Unit Adapter

6.1. Introduction

6.2. Request Stacking

6.3. Request Acknowledgment

6.4. Select Word Format

6.5. Function Word Format

6.6. Write Data Format

Contents-5

4-38
4-38

4-39
4-39
4-39

5-1

5-1

5-2

5-2

5-3
5-4
5-4
5-5
5-6
5-7
5-8
5-8

5-10

5-10

5-12
5-12
5-13
5-13

5-14

6-1

6-1

6-2

6-2

6-2

6-2

6-3

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Contents Contents-6

6.7. Read Data Format 6-3

6.8. Parity 6-4

6.9. External Errors 6-4

6.10. Partitioning 6-4

Appendix A. Instruction Summary A-1

A.1. Instruction Listing by Mnemonic A-l

A.2. Instruction Listing by Function Code A-5

Appendix B. Storage Configurations and Address Interleave 8-1

B.1. Storage Configuration 8-1

B.2. Address Interleave 8-2

B.3. Scientific Storage Address Range 8-2

B.4. System Notation of Storage Units and MSPs 8-2

B.S. Storage Unit Maintenance 8-3

B.6. Scientific Storage Configuration Requirements 8-4

B. 7. System Addressing Scientific Storage Interleave 8-4

B.8. Storage Related Address Ranges 8-4

B.9. Partitioning Scientific Storage Units and Main Storage Units 8-6

B. 10. Storage Partitioning Implications on System Reboot 8-6

B.11. Module Select Register (MSR) Settings for Scientific Storage
Units 8-7

Glossary

Index

Figures
Figure 1-1. Integrated Scientific Processor System
Figure 1-2. Scientific Processor System Simplified Block Diagram
Figure 1-3. Integrated Scientific Processor System Typical Configuration
Figure 1-4. Integrated Scientific Processor Interfaces
Figure 2-1. Integrated Scientific Processor Cabinet

1-1
1-3
1-21
1-22
2-1

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Contents

Figure 2-2. Storage Request-Acknowledge Interface
Figure 2-3. Integrated Scientific Processor State Switching
Figure 2-4. State Register Word Format
Figure 2-5. Typical Conflict Detector
Figure 2-6. Basic Compress Instruction Element Transfer
Figure 2-7. Basic Distribute Instruction Element Transfer
Figure 2-8. GXV Base and Stride Vector Arrangement
Figure 2-9. Type Conversion and Count Leading Signs Vector Arrangement
Figure 2-10. Move Pipeline to Vector Module Interface
Figure 2-11. Vector Store Interface
Fig ure 3-1. Instruction Conflict Classes and Conflict Types
Figure 5-1. Scientific Processor Storage Unit
Figure 6-1. Multiple Unit Adapter
Figure B-1. Four Million Word Storage Configuration
Figure B-2. Address Interleave Configurations
Figure B-3. Example 1 of Storage Unit Configuration and System Addresses
Figure B-4. Example 2 of Storage Unit Configuration and System Addresses

Tables

Contents-7

2-11
2-27
2-32
2-40
2-46
2-46
2-47
2-48
2-49
2-53
3-10
5-1
6-1
B-1
B-2
B-5
B-6

Table 4-1. Conditional Jump Instructions, c-field 4-32
Table 4-2. Conditional Jump Instructions, s-field 4-32
Table 4-3. Conditional Jump Instructions, r-field Definitions (when s-field Equals 5) 4-33
Table 4-4. Field Selection of Conditional Jump Instructions for n-field Equals 0 4-34
Table 4-5. Field Selection of Conditional Jump Instructions for n-field Equals 1 4-34
Table 5-1. Instruction Processor and Input/Output Processor Function Codes 5-3
Table 5-2. Scientific Processor Function Codes 5-8
Table B-1. System and Unit MSP Notation B-3
Table B-2. MSR Values for Scientific Storage B-7

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Introduction

1. Introduction

This manual provides detailed descriptions of the SPERRY Integrated Scientific Processor
Subsystem components and characteristics only. Similar detailed information for the
SPERRY 1100/90 system is provided in a separate reference manual. (See 1100/90 Systems
Processor and Storage Reference, UP-9667.J

The integrated scientific processor (scientific processor) system consists of standard 1100/90
system hardware components plus the scientific processor subsystem hardware components
(Figure 1-1).

Figure 1-1. Integrated Scientific Processor System

1-1

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Introduction

1. 1. Hardware Components

Figure 1-2 shows a simplified block diagram of the scientific processor system. The system
configuration includes the scientific processor subsystem components and the 1100/90 system
components.

The scientific processor system includes the following scientific processor subsystem
components and standard 1100/90 system hardware components.

Scientific Processor Subsystem Components

• Integrated Scientific Processor (ISP)

• Scientific Processor Storage Unit (SPSU)

• Multiple Unit Adapter (MUA), optional

• Instruction Processor Cooling Unit (IPCU)

1100/90 System Components

• Instruction Processor (IP)

• Input/Output Processor (lOP)

• System Support Processor (SSP)

• Instruction Processor Cooling Unit (IPCU)

• System Clock Unit (SCU)

• Console

• Motor Alternator

1-2

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Introduction

Integrated
Scientific

Processor
Storage Unit (SPSU)

Data as Data -to
0

Integrated Control 1100/90 Control 1100/90
Scientific Instruction Input/Output

Processor (ISP) Processor (IP) Processor (lOP)

Maintenance
.::t:.
c

Clock To: Interface To: ~
Q)

ISP lOP SPSU
>

IP IP ISP lOP SPSU +l
::::l

f 1 I I I I I I (,)
Q)
)(
w

System
System

Clock
Support

Unit (SCU) Processor
(SSP)

Channel
Cooling To: Cooling To: Interface To: Power To:

ISP IPs lOP IP ISP lOP SPSU

I I J
Instruction Instruction
Processor Processor Console

Motor
Cooling Cooling Alternator

Unit (IPCU) Unit (IPCU)

SCU IPCU

Power To:

Figure 1-2. Scientific Processor System Simplified Block Diagram

1-3

UP-11006
Integrated Scientific Processor System. Processor and Storage Reference

Introduction

1.2. Features

The scientific processor consists of a scalar processor module and a vector processor module
which support scalar and vector high-speed processing. The scalar module provides the
overall scientific processor instruction execution control and performs one operation per
instruction type (an example of this is Qne Add, one Multiply, etc.); the vector module
performs the multiple operations per instruction type operations (an example of this is up to
64 Adds, up to 64 Multiplies, etc.).

Other features include:

1. Source language compatibility is provided at the FORTRAN level. Data representation is
identical to that of the Series 1100 systems.

2. The scientific processor has its own unique instruction set tailored for scientific
computing.

1100/90
Instruction
Processor

Instruction

Name Function
Code

AA 14
AAIJ 74
ACK 73
LOAD A 10

Unique Instruction Set

Scientific
Processor

Instruction

Name Function
Code

ADD REG. 42
FLOATING ADD 102
MOVE SCALAR 154
STORE SCALAR 74

3. The Series 1100 Executive system, running on the instruction processor, manages all the
tasks~ The scientific processor executes user code only; No system software runs on the
scientific processor. Its entire computing power is devoted to the computations of the
user's application.

4. A scientific storage unit is directly addressable by the instruction processor, input/output
processor, and the scientific processor. File or data transfers between the instruction
processor and the scientific processor is therefore not necessary.

1-4

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Introduction

1100/90
Input/Output
Processor

~ --... -
1100/90 * Scientific Instruction

Processor Processor
~ --... Scientific

Processor
Storage

Unit

Scientific Processor Shared Storage

5. Because the scientific processor is totally integrated within a standard 1100/90 system,
movement of data between systems is eliminated. You can therefore run your
computational-intensive programs on the scientific processor, thereby freeing the
general-purpose processor to address other applications.

1100/90 System

Runs general
applications
programs.

Scientific
Processor
Storage

Runs computation
intensive programs.

1-5

UP-11006
Integrated Scientific Processor System Processo:r and Storage Reference

Introduction

6. Instructions are available for computations that involve single and double-precision
integers or floating-point numbers in both scalar and vector operations.

7. Repetitive operations are optimized using registers and control structures for efficient
handling of the nested loop processing of a vector FORTRAN program. Primary
emphasis is given to optimizing the innermost loop.

8. The vector processor has register files for both the source and destination operands,
which minimizes the storage bandwidth problem of high-speed processing.

Scientific Processor

Vector Module

Source
Operand
Register

File

Destination
Operand
Register

File

9. The scalar module uses local storage for fast access to fr~quently used scalar variables in
a program.

1;..,6

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Introduction

SCientific Processor

Scalar Module

Scientific
Processor
Storage -,...

Unit

.- Local --. Storage

1.3. Scientific Processor

The scientific processor uses parallel processing techniques to perform both scalar (singular)
and vector (multiple) operations simultaneously at very high speeds. It uses a unique
instruction set to perform floating-point, integer, and loop control instructions to control
dedicated, independent pipelines to perform its calculations.

The scientific processor unit of work is referred to as an activity. Each activity is under
control of the instruction processor and is explicitly dispatched for execution on the scientific
processor.

The scientific processor has no privileged mode or privileged instructions. System services,
such as mass storage file retrieval and storage or print output, are provided by the executive
system running on the instruction processor in response to a scientific processor interrupt.

The following paragraphs explain some general concepts and characteristics of the scientific
processor.

The scientific processor has a peak performance of 133 million single-precision floating-point
operations per second and 67 million double-precision floating-point operations per second.

Although the scientific processor is a single entity performing its calculations in a highly
overlapped fashion from a single instruction stream, it is in some cases useful to describe
specific functions in terms of its two major processor modules: the scalar module and the
vector module.

1-7

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Introduction

Instructions

The scientific processing instructions include: scalar, vector, and control instructions.

• The scalar instructions include arithmetic, logical, compare, convert, shift, and
move instructions.

• The vector instructions include arithmetic, logical, compare, convert,
reduction, and move instructions.

• The control instructions include loop control, jump, and state instructions.

(For a description of each instruction, see Section 4.)

Data and Addressing Formats

Data and addressing formats are identical to the Series 1100 data formats. Because the
scientific processor is tightly coupled to the 1100/90 system, it uses addressing methods
consistent with the instruction processor.

All user program and data addresses, on the scientific processor, are 36-bit virtual addresses.
The information to translate a virtual address to a real storage address is placed in an area
of the scientific processor control block referred to as the activity segment table (AST) by the
instruction processor prior to activating the scientific processor.

The virtual address format is the same as the instruction processor extended mode, consisting
of three fields: Level, Bank Descriptor Index, and Offset. However, the mechanism for
translating virtual addresses to real addresses is unique to the scientific processor. Segment
protection comparable to that used in the instruction processor is ensured by the translation
mechanism.

Initialization

The scientific processor must have a real storage address that points to a dispatching mailbox
to become operational. This address is loaded into the scientific processor internal hardware
by the system support processor (SSP). When the mailbox has been loaded and the scientific
processor is made operational by the SSP, it is initially dormant until it receives a universal
processor interface (UPI) interrupt. In response to the interrupt it commences the activity
switch algorithm by accessing the mailbox which in turn acquires the scientific processor
control block associated with the activity to be initiated.

Instruction Execution

The scientific processor is a single ins.truction multiple data type, meaning it possesses a
single thread of control, though each instruction may specify several operations affecting
many data elements. The thread of execution is controlled by the contents of the Program
Address Register. This register contains the 36-bit virtual address of the instruction to be
executed next and its value is incremented by one following each non-jump instruction
initiated.

1-8

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Introduction

Programmable Registers

The programmable registers consist of a Vector register set, a General register set, a Mask
register, a State register set, and a Loop control register set.

Vector Register Set

There are 16 vector registers identified as VO-V15 respectively. Each register has space for
64 36-bit words. It may be formatted as 64 single-word elements, or as 32 double-word
elements. Each register is understood to contain the elements of a single vector or array.

General Register Set

There are 16 General (G) registers of two words each. They are used as general accumulators
for single-precision or double-precision scalar data operands and for holding virtual address
and stride information for addressing operands in storage. For single-precision data
operations, only the leftmost word of the pair participates, leaving the rightmost word
unaffected. For addressing, the leftmost word contains the 36-bit virtual address, and the
rightmost word provides the stride value for those vector accesses that require variable
strides.

Mask Register

The Mask register is a 64-bit or 32-bit register (one-bit file) that has one bit position
corresponding to each element of a vector file. The mask value is generated and placed into
the Mask register by execution of a Compare Vector instruction, or it is loaded from a
G-register. The mask value is used to conditionally control the execution of individual
elements within vector operations. For example, a conditional vector addition adds only those
pairs of elements whose corresponding Mask register bit is a 1.

Loop Control Register Set

The Loop Control registers hold parameters that determine iteration and indexing of program
loops. There are eight 45-bit Vector Loop registers for controlling the iteration over strips of
a vector, and there are eight 14-bit Element Loop registers for controlling the indexing over
elements of a strip. When these registers are referenced within main storage as a part of
activity initiation, activity termination, or the Store Loop Control Register instruction, they
are packed side-by-side into eight double words.

The Loop Control register set also includes two 3-bit pointer registers, called Current Vector
Loop Pointer (CVLP) and Current Element Loop Pointer (CELP). These registers are used to
determine which of the Vector Loop registers and which of the Element Loop registers are
used.

1-9

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Introduction

State Register Set

There are sixteen 36-bit State registers· (0-15) that contain program visible states relating to
internal interrupts, condition codes, etc. The Scalar Move instruction allows program access
and control of the State registers. The word formats for the State registers are shown in
2.3.8.

Register Save Area

A real address in the scientific processor storage for the register save area is pointed to by
word 5 of the scientific processor control block. It is used to initialize or maintain the
following register contents when an activity is switched on to or out of the scientific
processor.

The register save area format is:

Words ---
0-1023

1024-1055
1056-1071
1072-1087
1088-1119

Contents

Vector registers 0-15
General registers 0-15
Vector Loop and Element Loop registers
State registers
Jump history file

NOTE: The Mask register is not stored separately in the register save area but 1S

mapped into the State registers.

The register save area must be located on a 16-word real address boundary. Thus, if bits
32-35 of control block word 5 are not O's, an RSA Boundary Error (type 21) external
interrupt is generated immediately.

Universal Processor Interface (UPI)

The scientific processor uses the UPI to communicate with instruction processors only. It
does not communicate with input/output processors or other scientific processors. The
scientific processor receives directed interrupts and transmits broadcast interrupts through
the UPI. It uses the UPI mechanism strictly as a signalling interface rather than a message
interface.

Chaining

By having distinct hardware for additions, multiplications, storage references, and scalar
operations, processor throughput is enhanced by its ability to overlap the execution of
consecutive instructions. Also, consecutive vector instructions can be chained together. Each
element produced by one vector operation can be used as a source to the following operation
(without waiting for the first operation to complete all elements) by simply coding the same
vector register as the destination of the first operation and the source of the second
operation.

1-10

UP-11006
Integrated Scientific Processor System PrQc~~~or and Storage Reference

Introduction

Instrumentation

Instrumentation includes a quantum timer, an internal interval timer, a jump history file,
and breakpoint interrupt functions.

Quantum Timer

The quantum timer limits the execution time of an activity in the scientific processor. Each
scientific processor instruction issued causes the quantum timer value to be decreased by a
specific amount. The amount of time varies depending on the instruction. When the value
crosses zero, an external interrupt is caused.

The initial activity quantum timer value is loaded and controlled by the operating system and
provided to the scientific processor through word 15 of the scientific processor control block.

The quantum timer granule is one cycle of the current scientific processor clock rate. Each
instruction has an internally stored base execution time that is deducted from the quantum
timer. Also, instructions have to account for these additional deductions:

• vector element count
• scien tific storage stride value
• time for taking a jump
• double precision operations
• slow mode operation

The quantum timer is updated when the primary instruction holding register is loaded.

The quantum timer is not charged for page misses and conflicts at the scientific processor
storage interface, also interrupt sequence time is not charged against the quantum timer.

NOTE: There are no scientific processor programmable instructions that can access the
quan tum timer.

Internal Interval Timer

The internal interval timer is located in. word 15 of the State registers. It is available for
general use and it can be read and written using standard scientific processor instructions.
The interval timer counts machine cycles, even if storage conflicts occur. When it crosses
zero, an internal interrupt is caused and the decrementing continues. By spacing these
interrupts appropriately, and simply noting the return address each time one occurs, a good
statistical evaluation is obtained of where a program spends its time.

Jump History File

The jump history file contains the virtual address of the 32 most recent jumps internally
executed by an activity. This provides useful information for debugging purposes. A new
entry is written to this jump history file each time a jump is taken. Entries are placed into
succeeding higher locations, wrapping around from location 31 to location O. Entries are
stored only for jumps, not for interrupts. No disable of this feature is provided.

1-11

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

I ntrod uction

The file pointer is contained in word 11 of the scientific processor control block. It points to
the next available location for storing an entry. Pointer wrap-around and the consequential
overwriting of previous entries occurs without notice, the effect being simply to preserve the
most recent 32 values. When an activity is switched off in the scientific processor, its jump
history file is stored in the register save area.

Breakpoint Functions

Word 14 of the State register set contains a breakpoint virtual address, There are three
types of breakpoint interrupts: Instruction Breakpoint Compare, Read Data Breakpoint
Compare, and Write Data Breakpoint Compare. They are identified by internal interrupt
indicator bits 1, 11, and 12 respectively, and independently enabled by appropriate bits in the
Internal Interrupt Control Mask register (State register 11). Refer to 3.2.4. All types share
the same comparison address in State register 14.

The instruction breakpoint condition occurs when the breakpoint virtual address exactly
matches the program address value for an instruction being executed. A data breakpoint
condition occurs when there is a match with the virtual address on an operand being read
from or written to main storage or local storage. The operand may be a scalar or a vector
element. In case of double precision, the match may be with either word of the pair.

In all breakpoint cases the interrupt condition does not prevent completion of the instruction
execution. Rather the condition is held pending until instruction completion before taking
effect.

NOTE: This is different from the recognition of other interrupt types.

When a data breakpoint interrupt is caused by a vector storage instruction, the element
index of the comparing element is stored as status in word 8, bits 30-35 of the State register.
Because the breakpoint condition (instruction or data) is held pending until instruction
completion, it is possible for another interrupt or even another breakpoint condition to arise
before the instruction completes. In such cases the original breakpoint condition may be lost
or the element index overwritten.

Program Faults

Program faults includ-e: instruction decode faults, arithmetic faults, and vector register length
overflow faults.

Instruction Decode Faults

When each instruction to be executed is decoded, the leftmost 10 bits are examined for any
combination of bits not defined or marked reserved. If any of these combinations exist, an
Undefined Instruction interrupt occurs. Undefined combinations of the remaining 26 bits in
an otherwise valid instructionwill-not-cause this internal interrupt, but instead produces
unpredictable execution results. A synchronous Undefined Instruction interrupt is always
clean, meaning that the undefined instruction does not alter any registers or storage. Thus
the interrupt handler can essentially define the instruction by .means of a software routine
and expect consistent operation.

1-12

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Introduction

Arithmetic Faults

Arithmetic faults result from computational instructions, including reductions, and from type
conversions. In general they indicate that the correct algebraic result value cannot be
expressed in the specified data format. Possible responses to these fault conditions are
described in 3.2.5. For a fault that is to be ignored, a substitute value is stored in the
specified register. These values are given here. When a fault causes an asynchronous
interrupt, the result is undefined. When a fault causes a synchronous interrupt, the
destination is unaltered.

The possible arithmetic faults are described here. They do not distinguish between whether
the fault condition arose from a scalar or a vector instruction.

Divide Fault - produced by a divide instruction when the divisor value is all O's. If a
divide fault condition exists all other arithmetic faults are blocked. If the divide fault is
ignored (no interrupt taken) O's are stored as the arithmetic result.

Integer Overflow Fault - produced by integer arithmetic operations and conversions to
integer when the magnitude of the correct algebraic result exceeds 235_1
(single-precision) or 271_1 (double-precision). When the interrupt is ignored, the result
stored is the rightmost 36 or 72 bits of the correct algebraic result, unless the specific
instruction specification provided otherwise.

Characteristic Overflow Fault - produced by floating-point operations, including type
conversions to floating point, when the magnitude of the correct result would require a
characteristic value that is too large for the selected data type format. When the fault
is ignored, the result stored is all O's.

Characteristic Underflow Fault - produced by floating-point operations and conversions
to floating point when the result is not exactly 0, but is too small to be represented in
properly normalized form. When the interrupt is ignored, the stored result is all O's.

Vector Register Length Overflow Fault

The vector registers each have 64 words and can therefore contain no more than 64
single-word or 32 double-word elements. Nevertheless there exists a variety of ways that a
vector instruction can specify strips, element indices, or mask lengths in excess of these
limits. Any attempt to do so, either as a source or a destination, causes this fault condition.
When the interrupt is taken synchronously, processing is aborted prior to storing any
destination values or detecting any arithmetic faults. In this case the Element index status
bits (State register word 8, bits 30 through 35) are not defined. When the interrupt is
ignored, operation is not defined.

1-13

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Introduction

Performance Monitoring

The scientific processor contains an interval timer and instruction breakpoint interrupt
capability. The timer is available for performance monitoring since it can be read and
written using scientific processor instructions. In conjunction with the instruction breakpoint
capability, its use for performance monitoring is very flexible.

In addition, certain timing, control, status, and data signals are available for use by an
external monitoring system capable of performing a necessary amount of logic at normal
operating rates without affecting the electrical characteristics of the observed logic signals.

Scalar Module

The scalar module has the overall control function including: instruction fetch, decode, and
issue. It also serves as an interface to the scientific storage unit.

Local
Storage

t
Address ~

~

Translation

Scalar Module

General
Registers

f
1

~r~ Processor

" t " .. L ...
Interconnect I

~.

I
Instruction

Vector

~ Store
Buffer Buffer

t ~, +
l Control J I Storage

Interface
Buffers

I • + +
Scientific

Processor
Storage

.. ... Vector
Module

1-14

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Introduction

The scalar module includes the following functional components:

• instruction buffer
• instruction flow control
• local storage
• general and state register sets
• address translation and generation logic
• vector store buffers
• storage interface buffers
• scalar computational logic
• loop and interrupt control logic
• arithmetic logic unit
• floating-point exponent computational section
• multiplication section
• shifter and associated registers
• data paths and controls

When instructions are decoded, they are issued to the scalar or the vector modules or both
for execution. Scalar instructions are placed into execution as rapidly as one every cycle,
providing the execution facilities are available and no data conflicts exist.

Scalar processing proceeds in a highly overlapped manner with many instructions in process
simultaneously. Arithmetic and control operations are initiated in sequential program order
but may complete out of order because of the use of different paths through the
computational logic.

Most data path and computational entities are two words wide such that the majority of
single-precision or double-precision scalar operations are performed in the same amount of
time.

The vector store buffer serves to buffer performance differences between the vector module
vector files and the scientific storage unit. It also provides non-consecutive scientific storage
addressing. The vector store buffer is considered as a vector module facility.

Vector Module

The vector module receives instructions from the scalar processor and places them into
executiorr as soon as facilities and operands are available. The main facilities are:

• vector register control and interconnect,
• the add pipeline,
• the mUltiply pipeline,
• the move pipeline,
• vector registers, and
• vector load buffer.

1-15

UP-11006
Integrated Scientific Processor System Processor· and Storage Reference

Introduction

Scalar

Add
Pipeline

Module 4----11-----1

Vector Module

Multiply
Pipeline

Move
Pipeline

Vector
Load
Buffer

Vector
Registers

The add pipeline is used for add, subtract, logical, convert, reduction, compare, and shift
operations.

The multiply pipeline is used for multiply, product reduction divide, and population count
operations.

The move pipeline is used:

• for vector moves between vector registers,

• during single-precision to double-precision and double-precision
to single-precision data type conversions,

• to compress vectors,

• to distribute vectors, and

• for calculating population parity.

1-16

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Introduction

The vector load buffer serves to buffer performance differences between scientific storage
references and vector file accesses during vector file loads from storage. It also provides
non-consecutive scientific storage addressing for vector data.

The vector module usually places instructions into execution in program sequential order. As
vector instructions are received from the scalar module decoder, they are sent to the
appropriate processing facility as soon as the processing facility and operands are available.
If the facility is currently busy, the instruction must wait.

Normally the references to the Vector registers involve two words, either a double-precision
element or two single-precision elements. The Vector registers are organized so that they
can support up to eight such references each clock cycle. Also, the conflict detection logic
permits use of an element written into a register at any time after it is written, thereby
permitting multiple references to the same Vector register.

Unit Control Module

The unit control module has two functional subdivisions: a unit support controller and a
power and cooling controller. These subdivisions provide power, cooling, and support
interfaces for operator control and maintenance facilities.

1.4. Scientific Processor Storage Unit

The scientific processor storage unit has eight storage banks. Each bank contains 524,288
(524K) words. Each word has 44 bits (36 data, 6 check, 1 check parity, and 1 data parity).
One storage unit contains a maximum of 4,194,304 (4194K) words. Up to four scientific
storage units can be used on a system.

When communicating with the scientific storage unit, the instruction processor can use one,
two, or eight-word block transfers, the input/output processor uses one or two word block
transfers, and the scientific processor always uses four-word block transfers.

Each scientific storage unit used replaces a possible main storage unit. The two types of
storage units can be intermixed, but the scientific processor can only interface with the
scientific storage. If two or more scientific storage units are to be accessed by a scientific
processor, a multiple unit adapter is required.

The scientific storage unit IP and lOP ports provide identical functions for the instruction
processor and input/output processor as the main storage unit does for the instruction
processor. The functions include: block read or write operations (eight words per block, IP
only); double-word read operations; and partial-, single-, or double-word write operations.
The partial-word write capability is bit addressable for variable-length fields. The scientific
processor ports provide four-word read operations and one-, two-, three-, and four-word write
operations.

1-17

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

I ntrod uction

Scientific Processor Storage Unit

Dayclock Bank 0 -- ~-------- Bank 7
8 Banks

of Storage

t ~ ~~ ~. t ~~ .h n

I -+1 Scan Set I
Exerciser p 4-1

Scientific Scientific Multiplexer
Processor Processor Maintenance

.... ..
0 1 ~ Control (4 Words) (4 Words) Interface Instruction

Processor

~.

i
A. A~ ~~ . ~ .4

~ i
Requester Ports

The scientific storage unit can have up to ten requester ports that consists of:

• four instruction processor ports
• four input/output processor ports
• two scientific processor/multiple unit adapter ports

Interfaces

The scientific storage unit has these interfaces:

• instruction processor (up to four)
• input/output processor (up to four)
• scientific processor/multiple unit adapter (up to two)
• system support processor (two)
• system panel
• system clock
• other scientific processor storage or main storage units in the system

1-18

4-1
Multiplexer

Input/Output
,Processor

i '" ~ A.

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Introduction

1.5. Multiple Unit Adapter

The multiple unit adapter is the interface between the scientific processor and one to four
scientific processor storage units. Scientific processor systems with two or more scientific
storage units require a multiple unit adapter for each scientific processor. A multiple unit
adapter may also be used in a system with one scientific processor storage unit.

1.6. System Configurations

The scientific processor subsystem with the standard 1100/90 central complex equipment
forms an integrated scientific processor system. A typical hardware configuration is shown in
Figure 1-3.

A minimum system requires the following complement of system components:

• one instruction processor
• one input/output processor
• two instruction processor cooling units
• one scientific processor
• one scientific processor storage unit
• one system support processor
• one console with system panel
• one system clock
• two motor alternators

The basic system can be expanded by adding one, two, or three instruction processors; one,
two, or three input/output processors; one scientific processor; one, two, or three scientific
storage or main storage units for a total of 16 million words; and one or two multiple unit
adapters. Additional cooling units and motor alternators may be required.

One scientific storage unit is required per system. When two scientific storage units are
used, a multiple unit adapter is required. If a second scientific processor is used in a system
using scientific storage units, a second multiple unit adapter is required.

Scientific storage units and main storage units can be mixed within a system. The scientific
processor addresses only the scientific storage unit. The instruction processor and
input/output processor address both types of storage units.

1-19

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Introduction

1.7. System Interfaces

The scientific processor system interfaces (Figure 1-4) provide functional paths to other units
of the system. These interfaces are:

• scientific processor to scientific storage or to multiple unit adapter if two or
more scientific storage units are to be accessed

• system clock unit interface

• universal processor interface (UPI) to each instruction processor

The UPI is the communications link with the instruction processor. The scientific processor
uses the UPI as a signaling interface rather than as a message interface.

• maintenance and control interface to one or two system support processors

• instruction processor cooling unit interface to one or two IPCUs

• system panel interface to the system support processor through the
maintenance and control interface

1-20

1100/90

INSTRUCTION

PROCESSOR

S I

T N 0

0 T

R E r--
A R 1
G F~
E A 2

C r--
E 3

U

P

I

SCIENTIFIC PROCESSOR STORAGE

SCIENTIFIC
IP lOP

PROCESSOR

0111213 0111213 0 I 1

4 4
1 1
1 1

~.J _-------
- - _1- ________

... ... t 1 ,. ., ." "

SCIENTIFIC PROCESSOR STORAGE

IP

011 1213
~

_____ ...J

lOP

0111213

I
I

I
I

I

SCIENTIFIC

PROCESSOR

0 1 1

I

~- - 1 ---------- -------1 I ----------~ -~--

S I

T N

INTEGRATED 0 T

U SCIENTIFIC R E

P PROCESSOR A R

I G F

E A

C

E

,
0

C)- -1

1
1
1
1

1

I

I 1

I
I

I

,
1 I

STORAGE

INTERFACE

I

2

MULTIPLE UNIT

ADAPTER

SCIENTIFIC PROCESSOR

INTERFACE

I
~ ________________ J

I

.---c-
1

I

3

NOTE· Dashed lines indicate configuration for multiple scientific processor storages.

Figure 1-3. Integrated Scientific Processor System Typical Configuration

c
7' --o
o
0)

::l
CD
(Q .,
C»

i
a.
(J)
n
a)"
::l
::;;
0"
-0 .,
o
n
CD
(I)
(I)
o .,

5"cn
~<
&.~
c CD
n 3
0" -0
::l (3

-I
N

n
CD
(I)
(I)
o .,
C»
::l
a.
cn
o .,
C»
(Q
CD

::XJ
CD
~
CD .,
CD
::l
n
CD

System Panel

SSP 0

SSP 1

IPCU 0

IPCU 1

System Clock Unit

UPI

UNIT CONTROL MODULE

Unit Support Controller

Scan/Set

Maint Control

Interface f---

Power & Cooling Controller

f---
Sensors

~--------------------

Power Supplies

I-

SCALAR CABINET

SCALAR MODULE

Address Generation

Scan/ Local Store

Set Store Buffer

Scan/Set

Instruction Flow

Mask

Store Buffer

Local Store

Scalar Processor

Loop Control

Clock

External
Clock

Monitor

Universal

Processor

Interface
External

Monitor

Power

Supplies

Scientific Storage Unit

or Multiple Unit Adapter

AC Entrance

Cabinet

Probe

Panel

Feature

AC

Power

Control

Figure 1-4. Integrated Scientific Processor Interfaces

VECTOR CABINET

VECTOR MODULE

Scan/Set

Vector Control

Add Pipe

C Multiply Pipe

Move Pipe

Vector Store

Vector Load

ScalarNector Control

Vector Control

Clock

Monitor Points

~

t
Power

Supplies

.

c
l'
-o
o
m

:::::J
(1)

CO
a; ,...
(1)
Q.

en
(')

;"
:::::J
~
c;"
"l:I a
(')
(1)
U)
en o ..,

5" en
~<
&.~ c (1)

(') 3
0" "l:I
:::::J a

-I
N
N

(')
(1)
U)
U)

o ..,
C»
:::::J
Q.

en
o ..,
C»
co
(1)

::0

~ ..,
(1)
:::::J
(')
(1)

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

2. Scientific Processor

This section describes the integrated scientific processor functional sections.

2. 1. Functional Organization

The integrated scientific processor (scientific processor) is a free-standing unit that includes a
scalar module, a vector module, a unit control module, and an AC entrance unit. The
scientific processor cabinet is a three-section cabinet as shown in Figure 2-1.

Figure 2-1. Integrated Scientific Processor Cabinet

2-1

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Proc.essor

The scientific processor's major functional sections are:

• a scalar module that performs scalar operations and has the overall scientific processor
control function, including instruction fetch, decode, and issue

• a vector module to perform vector computations, the vector computations are performed
on vector operands loaded in vector registers. Having been fetched from storage, a
vector (or portion of) may participate in more than one computation without requeuing
more storage references.

• a unit control module that provides power monitoring, cooling and support interfaces for
operator control and maintenance facilities for both the scalar and vector modules. The
unit control module also has several external interfaces that provide functional paths to
other units of the system; and

• an AC entrance unit that contains the power circuit breaker assembly and probe panel
for external performance monitoring.

In addition to the hardware components, the scientific processor uses various control
structures to define the operation of the hardware and software within the scientific
processor.

2.2. Control Structures

The unit of work that is scheduled for a scientific processor is called an activity. The
scientific processor has neither a software control program nor a privileged mode of
execution. Therefore scheduling of scientific processor activities is done by the instruction
processor and each activity. is explicitly dispatched. The instruction processor software
control program and the scientific processor hardware therefore must be aware o(the formats
of activity control structures, in particular the mailbox, hardware status registers, and the
scientific processor control block. .

2.2. 1. Mailbox

The mailbox control structure transfers limited initial and termination information between
the instruction processor and the scientific processor. It points to the scientific processor
control block for an activity at activity initiation. When the activity is terminated, the
mailbox is loaded with the contents of the hardware status registers to report the activity
termination status.

The real address used by the scientific processor to locate the mailbox is provided by the
system support processor at initialization time. The real address of the mailbox must be on a
I6-word boundary. The mailbox control structure has the following format:

2-2

UP-11006

Words

0,1

2

3

4-7

where:

Integrated Scientific Processor System Processor and Storage Reference
Scientific Processor

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

CC Reserved

CF Reserved

Word 2

Bits 0,1

Word 3

Bits 0,1

Reserved for Software

Link - contains real address of either control block or new mailbox.

Current Address - contains real address used or being used by the scientific processor

for the current function.

Hardware Status Registers

CC - Control Code

The control code is entered into the mailbox by the instruction
processor to indicate the desired operation to be performed by
the scalar processor.

o - Undefined
1 - Change mailbox address
2 - Report current status
3 - Start or accelerate activity

CF - Current Function

The control function is entered into the mailbox by the scientific
processor to indicate its current or most recent condition relative
to control code requests. .

o - Mailbox access problem. Error status stored in
mailbox words 4-7.

1 - Mailbox changed.
2 - Activity decelerated or status stored.
3 - Activity executing.

NOTE: Word 3 cannot be altered by software while the scientific processor is
executing. The processor needs the control block address to decelerate the
activity, and it may retain it internally or obtain it from word 3 when
needed.

2-3

UP-11006
Integrated Scientific Processor System Processor, and Storage Reference

Scientific Processor

2.2.2. Hardware Status Registers

The hardware status registers are four 36-bit registers that exist in total or in part within
the scientific processor hardware, within mailbox words 4-7 and the scientific processor
control block words 8-11. They are used to hold status applicable to the hardware and the
present (or most recent) activity. At activity initiation (barring a status indication that
prevents activity initiation) the hardware copy of the status registers are loaded from the
scientific processor control block for that activity. At activity termination the contents of the
hardware copy of the status registers is written both into the control block and into mailbox
words 4 through 7.

Hardware Status Register 0

Register 0 contains the external interrupt type indicators in bits 0-34, and bit 35 is the flag
that indicates a pending internal interrupt. The occurrence of each external interrupt
condition is reflected by setting the corresponding bit in this register.

Bit External Interrupt Cause Indicated

o Mailbox Valid bit not set or control block address boundary violation
1 Critical environmental fault (power loss, coolant loss, etc.)
2 Scientific processor hardware check
3 Reserved
4 Reserved
5 IPL reboot interrupt received
6 Error on information from storage
7 Error on information to storage
8 Multiple uncorrectable errors in storage
9 Real address not available

10 Storage internal check
11 Interface sequence error
12 Reserved
13 Storage interface timeout error
14 Reserved
15 Reserved
16 An internal interrupt is taken as external
17 Generate Interrupt (GI) instruction
18 UPI interrupt received
19 Quantum timer runout
20 Program segment alignment or length error
21 Register save area not on correct storage boundary
22 Local storage base address not on correct boundary
23 Local storage length granularity incorrect
24 Program address register fault (activity segment table" entry not found)
25 Data address fault (activity segment table entry not found)
26 Address limits error
27 Storage protection check - Execute
28 Storage protection check - Read
29 Storage protection check - W ri te
30 Data Alignment error
31 Attempted Test and Set/Clear on local storage segment

2-4

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Bit External Interrupt Cause Indicated

32 Program address register bits 18,19 not zero
33 Reserved
34 Reserved
35 Pending Internal Interrupt Flag

Hardware Status Register 1

Register 1 holds the instruction that caused the specific external interrupt.

Hardware Status Register 2

Register 2 holds status pertaining to the external interrupt. The first six bits contain the
interrupt type code, which is the bit number of the indicator in register O. The remaining
bits contain interrupt type-dependent information. Once the type code field is set,
subsequent interrupts do not alter register 2 or register 3 bits 0-28, but are indicated only by
setting the indicator bit of register O. Thus the status from only the first interrupt is stored
and retained. External interrupt types, bits 0 and 16-19 of word 0 are excluded from this in
that they never alter register 2 or register 3, but merely set their register 0 bits and in some
cases register 1.

Hardware Status Register 3

Bits 0-28 are an extension of register 2. Bit 29 is the Diagnostic Instruction Executed
indicator. Bit 30 is the Non-Local Jump (NLJ) indicator and bits 31-35 are the Jump
History File po in ter.

2.2.3. Scientific Processor Control Block

The scientific processor control block is created by the instruction processor associated with
each activity. The control block contains all the information or pointers to the information
needed by the scientific processor to process the activity. It resides in the scientific storage.
The control block structure has the following format:

2-5

UP-11006

Words

0-3

4

5

6

7

8

9

10

1 1

12

13

14

15

16-

143

Integrated Scientific Processor System Processor and Storage Reference
Scientific Processor

o 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 1 4 1 5 1 6 1 7 1 8 1 9 20 2 1 22 23 24 2526·27 28 29 30 3 1 32 33 34 35

Unassigned

S

C

SC - speed control bit

R - reserved

Unassigned (reserved for software)

Reserved for Hardware

Real Address of Register Save Area

Unassigned

Virtual Address of Internal Interrupt Handler

Hardware Status Register 0 Data

Hardware Status Register 1 Data

Hardware Status Register 2 Data

Hardware Status Register 3 Data

Program Address of Next Instruction

AST Referenced Indicators

Reserved for Hardware

Quantum Timer

Activity Segment Table

A/D - acceleration/deceleration status

AST

Length

R A/D

NOTE: Words 0-3 must remain available to the instruction processor. Words 4-7 may be accelerated, but

need not be decelerated because the scientific processor will never alter them.

2-6

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

2.2.4. Jump History File

The scientific processor contains a 32-entry circular list of virtual addresses indicating the
history of jumps taken by the activity's execution. A new entry is written to this list each
time a jump is taken. Entries are placed into succeeding higher locations, wrapping around
from location 31 to location O. The value placed into each entry is the virtual address of the
instruction to which the jump was made. Entries are stored only for jumps, not for
interrupts. No disable of this feature is provided.

The file pointer is contained in scientific processor control block word 11 (see 2.2.3). It points
to the next available location for storing an entry. Pointer wrap-around and the
consequential overwriting of previous entries occurs without notice, the effect being simply to
preserve the most recent 32 values. When an activity is switched off the scientific processor,
its jump history file is stored in the register save area.

2.3. Scalar Module

The scalar module uses the General registers for single-precision and double-precision scalar
data operands, and for holding virtual address information. Frequently used scalar variables
in a program are stored in a local storage to provide fast access to this data. Local storage is
not shared with other scientific or instruction processors.

Scalar operations include those portions of code that are not independent and must execute
serially. The scalar module also serves as the control for both the scalar and vector modules
and as the interface to the scientific processor storage.

As instructions are decoded, they are issued to either the scalar or the vector module for
execution. Scalar instructions are issued and placed into execution as rapidly as one every
cycle providing there is no data dependency conflict and the execution facilities are available.

Arithmetic and control operations are initiated in sequential program order but may complete
out of that order because different paths are used through the computational logic.

Most data paths and computational entities are two words wide such that most scalar
operations are performed in the same amount of time regardless of being single- or
double-precision.

The scalar module contains the following functional sections:

• a scalar processor that includes:

an arithmetic logic unit,
a floating-point exponent arithmetic unit,
a multiplication unit,
a shifter, and
data paths.

• General registers that hold scalar integer or floating-point data, virtual addresses, and
stride values;

• a high-speed local storage that holds frequently-used scalar variables, and subroutine
parameters and constants. Its location in the scalar module ensures that the scalar
processor is not slowed down waiting for data from main storage;

2-7

UP-11006
Integrated Scientific Prbcessor System Processor and Storage Reference

Scientific Processor

• an address generation section receives information to generate a real address, load either
data or instructions from main storage, or store data to main storage;

• an instruction buffer that holds a working set of instructions;

• an instruction flow control that reads, decodes, and dispatches instructions;

• an interconnect that routes data and instructions throughout the scientific processor; and

• storage interface buffers that hold data going to and from registers and scientific
processor storage.

2.3.1. Instruction Flow Control

The instruction flow control section acquires and decodes all instructions based upon the
Program Address register or jump/branch evaluation results. It is divided into instruction
addressing, instruction buffer, and instruction control subsections.

The instruction addressing subsection contains the program address generation register and
its control. The Program Address register holds the 36-bit virtual address. The instruction
buffer holds 16 pages of 256 instructions per page (all instructions initially reside in the
scientific storage) to accelerate instruction availability in increments of 256 words. The
control logic contains the instruction decode and sequence initiation logic, and it creates

. control words such as: vector control words, mask control words, and address generation
control words that are sent to various sections of the scientific processor.

The operations performed by the instruction flow control section are:

• maintains program addresses;
• initiates and sustains page fetches until the page is resident in the instruction buffer;
• issues instructions to the scalar and vector modules;
• resolves instruction issue conflicts;
• sequences the scalar instruction pipeline;
• selects one of four scalar instruction operand sources:

vector file elements
scientific processor storage operands
local store operands
data in buffer for overlapped requests, Load G-Multiple and Load Loop Control

• decodes instructions;
• executes jump instructions;
• initiates the interrupt process; and
• controls starting and stopping of instructions.

AddreSSing and Control

The program starting address for an activity comes from the scientific processor control block
(see 2.2.3). This address is compared with the contents of the content addressable memory to
determine if the page containing the instruction is resident. If a comparison is made, a valid
instruction is fetched by the instruction buffer and a new program address (starting address
+ 1) is generated by the instruction flow address subsection.

2-8

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

The control logic generates the valid control words for the instruction and issues the
instruction to the sections participating in its execution. However, anytime a program
address does not compare to the contents of the content addressable memory, a miss is
generated and a page of instructions (256 words) is loaded into the instruction buffer. Then,
instruction execution resumes at the program address that generated the miss.

Program Addressing

Program addressing is normally required with the execution of jump instructions. Jump
instructions are of two types: those that specify the jump address as simply an immediate
offset within the current 65K instruction segment, and those that specify a complete 36-bit
virtual address as the jump target. In any case, program addressing is done entirely in terms
of virtual addresses, and these are translated by the activity table just as are data addresses.

To enable convenient hardware acceleration of program code, the scientific processor does not
support writing into the code segment by any means. Also, code segments are restricted to
be mapped starting on 64-word boundaries of main storage and to be allocated with length
granularities in integral multiples of 256 words and must not exceed 65K total length (16-bit
address range).

Instruction Buffer

The instruction buffer is a 4096-word cache storage containing up to 16 blocks of 256
consecutive instructions each. These blocks are loaded from the scientific processor storage
during normal activity progression. All instruction requests are checked against a record of
all blocks currently resident in the instruction buffer.

The instruction buffer is divided into four, lK-word (40-bit word) buffers. Each instruction
buffer has a separate input data register. Four, 40-bit (36 data plus 4 parity bits) instruction
data words come from the scientific processor storage. The words are stored in the four
instruction buffers simultaneously. This operation is done every time an Acknowledge comes
from the scientific processor storage. A total of 64 Acknowledges is required to write the
whole page (256 instructions) into the instruction buffers.

All address requests from the Program Address register in the scientific processor for an
instruction are made to an internal instruction buffer with an access time of one clock cycle.

An instruction address request that is resident in the last block referenced from the
instruction buffer makes that instruction requests, and all consecutive requests to that block,
available in one clock cycle. A request for an address resident in an instruction buffer block
that was not used for the last instruction request is delayed for one clock cycle. All
consecutive requests to that block are then available at the single clock cycle rate.

An instruction request not resident in one of the blocks currently stored in the instruction
buffer generates a miss. This requires a scientific processor storage request for that block
through the address generation section of the scalar module. The single address request that
generated the miss causes the block in the scientific processor storage containing that address
to be loaded into the instruction buffer on a modified first-in first-out basis (block aging
algorithm) if current block residency has exceeded 16. (Blocks are loaded consecutively from
0-15. The last used block is never overwritten if it is the current block selected for aging.)

2-9

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

If a parity fault occurs in the instruction buffer, one attempt is made to reload the page
where the error happened and the faulty instruction is executed again.

Instruction Generation

The internal page address is generated from the comparison of Program Address register bits
0-27, four parity bits and the validity bit to the contents of the content addressable memory.
If a comparison is made, one of the 16 lines becomes active and is encoded into the 4-bit
page address. The page address changes when Program Address register bits 20-27 do not
compare to the Last Page register and the content addressable memory indicates a "hit".
Every time a page compare is made, a page compare Hit designator is set indicating that the
corresponding page in the instruction buffer containing the instruction is resident.

2.3.2. Address Generation

The address generation section generates absolute storage addresses for storing and retrieving
all program instructions and data in the scientific processor storage.

This section receives virtual addresses that must be converted to absolute (real) addresses
before referencing the main storage unit. The sequence required to complete this operation is
determined by an address generation control word from the instruction flow control section.

During the address translation operation, the most significant 18 bits of the virtual address
(equivalent to a 256K block of addresses within the total address range) is matched with one
of up to 32 active blocks of real addresses contained in the activity segment table.

The information that defines the scientific storage addressing environment for a specific
activity is stored in the activity segment table. This information includes:

• the real address location in scientific storage,
• read/write/execute permission bits,
• block length, and
• virtual block number.

Operations in the address generation section are controlled by the control word received from
the instruction flow control section. When the address generation section receives a valid
control word it starts executing operations.

Storage Referencing

The scientific processor, through the address generation section, provides a pipelined interface
to the scientific processor storage unit. The data interface is four words wide and is capable
of transmitting a new storage request every 30 nanoseconds. (Figure 2-2 shows the
request-acknowledge interface.) Successive requests, within limits, do not depend upon the
acknowledgement of previous requests. Up to eight (or sixteen) requests may be issued before
an Acknowledge is received for the first request. As acknowledgements are received,
additional requests may be issued in order to keep the pipeline operating at its maximum
rate.

2-10

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Request
Integrated

Acknowledge 1
Scientific

Scientific Processor
Processor Acknowledge 2 Storage

and Data

(without Multiple Unit Adapter)

Request Multiple Unit Request
- -I Adapter

Acknowledge 0 1
Scientific -r - - --I Acknowledge 1

Acknowledge 1 1 ------
Processor -

Acknowledge 2 ----------- Acknowledge 2
and Data and Data

(with Multiple Unit Adapter)

Figure 2-2. Storage Request-Acknowledge Interface

2-11

Scientific
Processor
Storage

If access to more than one scientific processor storage is desired from the scientific processor,
a multiple unit adapter is required. The adapter provides an interface between a scientific
processor and up to four scientific processor storage units. The adapter contains an eight
deep request buffer and decodes address bits 0 and 1 to determine which scientific processor ~
storage to forward the request to. The adapter continues requesting a scientific processor
storage until its request buffer is empty, there are eight unacknowledged storage requests
outstanding, or a request for a different scientific processor storage unit is requested. When
a different scientific processor storage is selected, the adapter waits until all requests from
the first scientific storage are acknowledged before making the first request to the new
selected scientific storage.

In a configuration with a multiple unit adapter, a scientific processor may have a maximum
of 16 outstanding storage requests (eight requests in the scientific storage unit and eight
requests in the multiple unit adapter).

When the multiple unit adapter sends a request to a scientific storage unit, it also sends an
acknowledgement to the scientific processor. The scientific processor treats an
acknowledgement without a multiple unit adapter the same as an acknowledgement with a
multiple unit adapter. When the scientific processor receives either acknowledgement, it
transmits another request because the request buffer has an empty position.

Segment Mapping

The local storage segment is defined to be local to the activity, meaning that data in it is not
shared among activities. The data is accelerated into local storage at the beginning of the
activity. If the length of the segment is less than or equal to 4096K words, then the entire
segment is loaded there, and all references to the segment are directed to the local storage.
If the segment length exceeds 4096K words, then the local storage is filled beginning at the
start of the segment. References to the first part of the segment are handled internally, but
references beyond this length are directed to the appropriate place in main storage.

UP-11006
Integrated Scientific Processor System Processor ~nd Storage Reference

Scientific Processor

The first entry of the activity segment table defines the addressing space of the local storage
segment, which has the following restrictions:

• The length must be a multiple of 32 words, for example, the least significant five bits of
the Length field must be all l's.

• The Base real address must be on a 16-word boundary, for example, the least significant
four bits must be all O's.

• The Permission bits are ignored, and implied values of 011 are used (read and write, but
not execute).

Activity Segment Table

The activity segment table provides the information for translating virtual addresses into
absolute (real) addresses.

Each activity has an activity segment table that resides in the scientific processor control
block, and defines the addressing environment available to the activity. Each table entry is
four words in length. The number of entries in a particular table is restricted to a maximum
of 32, and is specified by word 6 of the scientific processor control block.

Activity Segment Table Entry Word Format

Word

o 12345678910 11121314151617181920212223242526272829303132333435

o

2

3

Lower Segment Name

E R W

P P P

Unassigned

Word 1

Bit 0

Bit 1

Bit 2

Bits 3-5

EP - Execute permission

RP - Read permission

WP - Write permission

Unassigned

Upper Segment Name

Base Real Address

Length of Segment in Words -1

Reserved

The activity segment table provides the information for translating virtual addresses for
purposes of referencing main storage. Given a 36-bit virtual address, the left 18 bits of it
are defined as the segment name. To translate the virtual address, the table is searched

2-12

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

until a segment entry is found between the lower and upper segment name boundaries
contained in word O. If no entry in the table satisfies this condition, then an addressing fault
interrupt is caused. The table cannot contain more than one entry satisfying this condition.

Once the table entry is found, a 36-bit quantity called the virtual segment offset is calculated
by subtracting the lower segment name value from the leftmost bits of the virtual address.
The real address for the reference is then given by the base address plus the virtual segment
offset. However, before the reference itself can be made, the permission bits must be
inspected and the virtual segment offset must be less than or equal to the value in the length
field. Failure to pass these checks causes an error interrupt.

One exception exists: if a read reference is attempted and the table entry used is the same
table entry used to translate the current program address (for example, address of the
instruction), then checking of the read permission bit is not performed, though the other
checks still are required. The purpose of this special case is to permit access to constants in
proprietary (execute-only) code.

Each table entry defines the translation for a contiguous extent of the virtual address space.
Such an extent may cover more than one 256K segment, as the term segment is used in the
context of the instruction processor translation process. However, since the entire extent
must be handled as a single entity, the term segment is used to refer to the entire extent,
whatever its size.

Word 13 of the scientific processor control block contains 31 indicator bits; each bit
corresponding to one of the 31 possible table entries, ignoring the first entry that always
defines local storage (see 2.3.5). Whenever a particular table entry is successfully used to
perform a translation, the corresponding indicator bit is set to 1 and the other bits remain
unaltered.

NOTE: For efficiency of implementation, actual limits checking is done on a block
basis rather than word basis. Here a block means a contiguous 4-word group
of words on a 4-word boundary in real storage. Access to any word of a block
implies access to any other word of that block.

Address Limits Error Interrupt

Length checking is applied to all references to the local storage segment, whether the
reference is directed to local storage or the scientific processor storage, and regardless of the
method of specification. If the Base and Length fields do not meet the specified parameters,
then an Address Limits Error interrupt is caused.

2.3.3. Scalar Processor

The scalar processor section performs all functions that relate to scalar arithmetic and logical
operations. These operations may be either single-precision (36 bits) or double-precision (72
bits) integer or floating-point.

This section contains a control logic unit, an integer arithmetic logic unit (integer ALU),
floating-point unit, and a multiply unit. The integer ALU contains a G-register file
consisting of sixteen 72-bit registers. These registers are used as addressing base registers,
scalar arithmetic accumulators, or as a source of operands for vector instructions.

2-13

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

The following types of instructions are executed in the scalar processor:

• Register to storage (RS) and register to register (RR) format scalar computational
instructions: Add, Subtract, Multiply, Divide, Convert, Shift, Compare, Logical, Absolute
Value, Count Leading Signs.

• Scalar Move instructions (Load, Store, and Move) and conditional jumps using
G-registers.

• Increment and Jump Less (IJL) and Decrement and Jump Greater (DJG)

• Generate Index Vector (GXV) index value generation

• Read G-register when G-register data is required by other instructions, for example,
vector-vector (VV) format instructions requiring one or more G-operands instead of
Vector operands.

Integer ALU

The integer ALU performs part of or all of the required operations when the following types
of scalar instructions are executed:

Load
Store
Move
Integer Add
Integer Subtract
Integer Divide (with floating-point unit)
Floating Point Divide (with floating-point unit)
Absolute Value
Logical
Compare

The G-register file consists of sixteen 72-bit (two words) registers with a 30 nanosecond read
and write cycle time. Separate inputs from the instruction flow control section for read
addresses and for write addresses enable a read operation and a write operation to be
performed in the same 30 nanosecond time slot. The read address and write address cannot
be the same. A read operation reads 72 bits. A write operation can write the upper word
(bits 0-35), lower word (bits 36-71), or both words (bits 0-71).

These registers are used as general accumulator registers for double-precision and
single-precision operands and as holding registers for virtual address and stride information
required in the address generation section.

In addition to its arithmetic capabilities, the scalar ALU section also contains a Branch and
Scalar Condition Code circuit which performs a compare function on data read from the
Augend register. Results of the compare are transferred to the instruction flow section where
it is determined if a jump is to be made. A two-bit Scalar Condition code is generated
during the compare and is transferred to the control block section. This code contains results
of the compare between operand 1 (OP1) and operand 2 (OP2) as follows:

Code

o
1
2
3

Compare Results

OPl = OP2
OP1 > OP2
OP1 < OP2
Reserved

2-14

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Floating-Point Unit

The floating-point unit performs floating-point add, floating-point subtract, floating-point
data conversion, count leading signs, and shift operations. Also, part of the multiply and
divide operations are performed in the floating-point unit.

During a divide instruction, the floating-point unit is controlled by the scalar processor
control. Divide instructions must be completed before the floating-point unit will accept
another instruction. Two cycles are required to complete execution of an integer instruction
in the floating-point unit. Four cycles are required for a floating-point instruction.

Data paths to and from the floating-point unit are two words wide. Single-precision
operations are performed in the upper 36-bit portion of data paths and registers. Parity is
checked on all data paths. Adders and shift matrices incorporate parity predict circuitry.
Output data from normalization counters and count registers is duplicated and compared as a
check against errors because they do not contain parity.

Number Representation and Data Types

Integers are single-precision or double-precision numbers in which the binary point is to the
right of the lowest order bit, for example, whole numbers.

Floating-point numbers are represented in single-precision format as a 27-bit fractional
quantity (mantissa) multiplied by a power of 2, and in double-precision format as a 60-bit
fractional quantity multiplied by a power of 2.

Single-Precision Floating Point

Is I Characteristic Mantissa

o 1 8 9 35

Double-Precision Floating Point

Characteristic Mantissa

o 1 11 12 35

Mantissa

36 71

where:

S (Sign) The S-bit is the sign of the numerical quantity represented by the
floating-point number. If S is 0, the quantity is positive and if S is
1, the quantity is negative.

2-15

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Characteristic

Mantissa

The characteristic represents both the numerical value and sign of
the characteristic.

The 8-bit characteristic of a single-precision floating-point number is
a value in the range of + 127 through -128. The characteristic is
made positive by adding 2008 to the characteristic.

The II-bit characteristic of a double-precision floating-point number
is a value in the range of +1023 through -1024. The characteristic
is made positive by adding 20008 to the characteristic. If the S-bit is
a 1, the characteristic is complemented.

The mantissa is the fractional portion of a floating-point number and
is normalized so that the absolute value is greater than or equal to
one-half but less than one. A normalized number is one in which
the most-significant bit of the mantissa does not equal the sign bit.
The exception to this is a normalized zero. A normalized zero is
always a word of all zeros, or all ones. Negative mantissas are
expressed in ones-complement form.

Four types of integer and floating-point data is operated on in the scalar processor. The type
of data is defined by the value in the instruction word t-field. They are as follows:

t-field

o
1
2
3

Sign Manipulation

Data Type

Single-precision integer
Double-precision integer
Single-precision floating point
Double-precision floating point

When a floating-point instruction begins executing in the floating-point unit, the first action
is to separate the exponents from the mantissas and to save the signs of the operands. These
signs are saved and used to compute the sign of the result, which is applied to the. result at
the end of the instruction.

Four input factors partially determine the sign of the result, they are:

Is it an Add instruction?
Is it a Subtract instruction?
Is the sign of the Augend positive or negative?
Is the sign of the Addend positive or negative?

From these four input factors, four interim results are determined. These interim results
are:

Mantissa adder operation (add or subtract)
Sign for Add or Convert instruction
Sign for Divide instruction
Sign for multiply instruction (transferred to multiply unit)

2-16

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

The interim results along with other information and timing data continue the sign
determination process. Because Divide instructions are not pipelined, timing is necessary to
control instruction execution. The timing also controls the sign logic. In integer division, the
number of iterations necessary to complete the division process is determined by the number
of significant bits. In floating-point division, the number of iterations is either 27 or 28
(single-precision) or 60 or 61 (double-precision). When an instruction completes execution
and the results are transferred to the integer ALU, the output of the sign logic determines if
the result should be complemented. If complementing the result is necessary, it is
complemented in the integer ALU.

Rules for number representation and floating-point instructions are:

1. Integers are represented in ones complement format.

2. Floating-point operands are converted to sign-magnitude notation, for example, all
numbers made positive, signs retained, and applied to result at the end of the
instruction.

3. Signs of floating-point operands and the result of arithmetic calculations are used to
calculate the sign of the result.

4. if necessary, result is complemented in the integer ALD.

5. If a floating-point instruction produces a result with a positive or negative zero
mantissa, the integer ALU is cleared to all zeros to produce a correctly normalized zero.

6. Results of floating-point instructions are always normalized.

7. A normalized zero is added to an unnormalized number and the result is correctly
normalized. Results are undefined if unnormalized operands are used in other
floating-point instructions.

8. Results are undefined if invalid shift counts are used for shifts.

Faults that may occur during floating-point operations are:

Divide Fault - Occurs during integer and floating-point divide operations when the
divisor is positive or negative zero.

Characteristic Overflow - Occurs during floating-point divide, addition, subtraction, and
double-precision floating-point to single-precision floating-point conversion when the
characteristic of the result exceeds 1778 for single-precision and 17778 for
double-precision.

Single-Precision Characteristic Underflow - Occurs during floating-point divide, addition,
subtraction, and double-precision floating-point to single-precision floating-point
conversion when the exponent of the result is less then -2008 and the mantissa of the
result is not zero.

Double-Precision Characteristic Underflow - Occurs during floating-point divide,
addition, and subtraction when the exponent of the result is less then -20008 and the
mantissa of the result is not zero.

2-17

UP-11006
I'ntegrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Integer Overflow - Occurs during integer divide with the t-field equal to 1, convert
floating-point to integer, and convert double-precision integer to single-precision integer
when the result has more than 35 significant bits.

Multiply Unit

The multiply unit processes either integers or floating-point mantissas. Sign determination
and addition of the two characteristics is performed in the floating-point unit. The sign of
the result is transferred to the multiply unit and is merely staged through the unit and
combined with the product before being transferred to the integer ALU. The sum of the
characteristics is also transferred to the multiply unit where the extra bias is subtracted in
the Bias Subtract register. Then the chara.cteristic is also staged through the unit and
combined with the product in the CHAR Select register.

2.3.4. Local Storage

The scientific processor has an internal 4096-word local storage area. This storage is
intended for frequently used scalar variables and constants by providing fast access to this
data. The local storage is loaded from the first activity defined segment of the scientific
processor storage unit during acceleration and stored back into scientific processor storage
during deceleration.

The local storage contents is accelerated (moved on activity initial start-up from scientific
processor storage) and provides high speed access with no main store delays for high use
constants or scratch pad. The local storage content is decelerated (returned to scientific
processor storage) on activity completion or exit from the scientific processor.

The local storage logic is controlled externally by the address generation, control block, and
instruction flow control sections; it has no internal control logic.

When an activity switches into the scientific processor, the segment (bank) defined by activity
segment table entry 0 is loaded into local storage (up to 4K of that segment). This data is
used internally and is not shared or sharable among activities.

Addressing Local Storage

Local storage is specified either directly, using an absolute local storage address from the
instruction, or indirectly, by specifying a full virtual address that maps into the local storage
segment.

Length checking is applied to all references to the local storage segment, whether the
reference is directed to the physical local storage or the main storage, and regardless of the
method of specification. Failure to pass this check results in an address limits error
interrupt.

2-18

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Automatic Storage Stack

A scientific processor activity may set aside an area in the lower 4K of the local storage
segment for temporary values (automatic storage) to be managed as a stack. Scalar
instructions that directly reference local storage have an option in which the specified
location is treated as an offset relative to the current position pointer associated with the
stack. This pointer is maintained through the scientific processor instructions that acquire
and release stack frames.

The local storage stack definition word, shown below, defines the area. Instructions in the
RS format (see 4.2.2) have an option (b= 15) that allows them to access locations in this
defined area. Specifically, the local storage address, is formed by concatenating the five
rightmost bits of the instruction u-field on the right of the II-bit pointer value taken from
state register 7 (S7). This forms the 16-bit direct offset in the local storage segment. The
pointer, along with the upper and lower limits for it, are maintained in State register 7.

Local Storage Stack Definition Word Format (57)

Upper Bound H Lower Bound Pointer

o 1 111213 24 25 26 35

*indicates bits not used.

Instructions are provided to increment and decrement the pointer, checking it against the
appropriate limit, see the Advance Local Storage Stack (4.18.5) and Retract Local Storage
Stack instructions (4.18.6).

NOTE: The stack effect occurs on a frame basis, not on a word basis. For each value
of the pointer, a block of 32 words is available with this mechanism. Changing
a pointer makes available a different 32-word block.

The Stack Definition word is not protected, and its contents can be changed freely by the
activity. Also the local storage area described by the Stack Definition word is not protected
and can be accessed by the other local storage addressing mechanisms.

Obtaining Data from Local Storage

Data stored in local storage can be accessed by scalar or vector instructions. Local storage
can be addressed directly or indirectly. Direct addressing bypasses the virtual to real address
translation in address generation by supplying the real address at time of instruction decode.
Indirect addressing requires translation of the virtual address in the instruction or pointed to
by the rl-field.

A RS formatted scalar instruction with _ab:-:fieI4 of _ 0 or 15 can directly access local storage
for operand 2 of the instruction. Operand 1 is stored in the G-register specified by the
rl-field of the same instruction. The b-field of 0 requires the u-field of that instruction to
be equal to or less than 4096. The b-field of 15 requires that the Local Storage Stack
Definition word contain a value in its II-bit pointer (bits 25-35 of S7) that when the 5 least
significant bits of the u-field (bits 31-35) are catenated onto the right of the pointer the

2-19

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

resultant real address is a value equal to or less than 4096. These two direct access methods
bypass the normal address generation translation and allow an access time to local storage of
30 nanoseconds.

A RS formatted scalar instruction with a b-field of 1 through 14 indirectly accesses local
storage through address generation. Both operands 1 and 2 have to use the address
generation section for virtual to real address translation. The virtual address associated with
a b-field of 1 through 14 must map into the local storage segment (activity segment table 0)
with virtual segment offset plus the contents of the u-field resulting in a value equal to or
less than 4096.

Vector instructions cannot directly access local storage. Indirect addressing requires an
address generation translation of the virtual vector instruction address into the local storage
segment with the result of virtual segment offset plus or minus its stride being equal to or
less than 4096. The same 5 cycle access time attributed to all indirect accesses to local
storage applies to all vector instructions.

Local Storage Acceleration

When an activity is switched into the scientific processor, the values in the first activity
segment table entry, which defines the local storage segment, are checked. If the local
storage segment exceeds 4K, portions above 4K remain in the scientific processor storage.

When the activity is switched off, the same amount of storage that was accelerated is copied
back (decelerated) to the scientific processor storage. No attempt is made to update the
resident portion of local storage in the main storage area while the activity is executing.

2.3.5. Store Buffer

The store buffer section provides a buffer between the high burst transfer rate of the vector
file section and the slower potentially start stop rate of the scientific storage interface. This
buffering allows the vector section to proceed with the next vector instruction if required
resources are available after unloading the referenced vector file to the store buffer area.

The store buffer section contains two separate 16 address by 4-word store buffers (store buffer
o and store buffer 1). The store buffers can perform simultaneous read/write operations.
Data from the vector files is temporarily written into the store buffer for a store vector
instruction, and then sent to the scientific storage. The 4-word output of the store buffers
can be realigned; take the condensed vector file data and expand it to the desired storage
address stride desired.

Vector Store controls the writing of the data from the vector files and the address generation
section reads the data out of the store buffers. During the buffer load sequence each write
address is for two words; two addresses for each buffer for a total of four write-address
registers. Each word can be read individually; therefore, there are eight read address
registers. Words are normally read from a buffer at 1 to 4 per cycle. The Store Vector
Indexed instruction however, reads only one word per cycle.

2-20

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

The store buffer section:

1. provides a buffer between the vector files and the scientific processor storage,

2. provides a data path between the G-registers and the scientific processor storage,

3. provides a data path between the control block section and the instruction buffer, and

4. matches a vector of index values (address offset) with the corresponding data during
indexed store vector operations.

Write Data Registers

Data received in the Write Data register is the four words from a vector file or the two
words from a G-register in the scientific processor requested by a Store Multiple instruction.
The data words are unscrambled in the Write Data registers depending on the requirements
of the operation. Two words are transferred to Index Buffer 0 or 1 from the Write Data
register during a Store Indexed Vector Instruction.

Write Data registers for the store vector instructions accept words 0 and 1 from the primary
vector files without delay but, words 0 and 1 from the secondary vector files are delayed one
cycle to allow for correction to the word to address arrangement in the store buffers. The
Write Data registers have a two-input selector with each selector fed by a four way selector
to re-arrange the data for proper alignment in the store buffers and index buffers for the
Store Vector and Store Vector Indexed instructions.

For the Store Alternating Elements Vector and Store Vector Indexed instructions both
primary and secondary vector file words are fed straight in with no delays. For the Store
Alternating Elements Vector instruction the data is fed in and out without any modification
to the data.

Data Out Registers

The data output registers select the address boundaries that the words are to be stored on.
This register routes data to the scientific processor storage, local storage, or instruction
buffer. All data written into the store buffers is controlled from the vector store section; all
data read out of the buffers is under the control of the address generation section. Feedback
between the read and write controls prevents buffer from overrun.

These registers consist of:

• instruction buffer data out registers,
• scientific processor storage data out registers, and
• local storage data out registers.

An eight-way selector is used to transfer the store buffer output to the instruction flow
control or scientific processor storage via one of the two input selectors of the data out
register. Local store input is fed to the other input of the data out register for transfer to
scientific processor storage or instruction flow control. Local store data, which is passed
straight through word 0, stays as 0, and 1 stays as 1. Local store data is always selected
during any scalar instruction. The read toggle function selects which of the two buffers the
words are coming from. The 2-bit address generation selector controls the data transfer and
selects the word from the store buffer. The output from the data out registers is even parity
for local storage and instruction buffer and odd parity for scientific processor storage.

2-21

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

2.3.6. Loop Control

The loop control section manages the vector operations. This involves processing vector strips
and elements within strips. The loop control provides a vector length and an element pointer
to sections needing them. The loop control also processes a set of conditional jumps that help
efficient processing of vector strips and elements in each strip. Since the loop control deals
mainly with vector properties, for the most part it affects the vector section. Some
instructions, however, will affect the scalar section.

The loop control section contains the eight loop control registers and the control logic that
operates with the Build Vector Loop (BVL), Build Element Loop (BEL), Jump Vector Loop
(JVL), and Jump Element Loop (JEL) instructions. The loop stack can be loaded and stored
via the Multiple Load/Store instructions and is a part of the scientific processor
acceleration/deceleration sequences. The loop control broadcasts the current loop
count/element count data to the various vector sections so that current loop and element
positions or ending can be determined.

Loop Control Register Formats

There are two sets of loop control registers: eight 45-bit Vector Loop registers and eight
14-bit Element Loop registers. There are two 3-bit loop control register pointers: the
Current Vector Loop Pointer (CVLP) and the Current Element Loop Pointer (CELP). The
CVLP selects one of the eight Vector Loop registers that provides the current vector loop
parameters and the CELP selects one of the eight Element Loop registers for controlling
element loops.

To the user the Vector Loop and Element Loop double-word fields as seen in storage are
usable for a particular register set identified by CVLP and CELP. The values of CVLP and
CELP are not directly readable by the user, save through the use of the Store Loop Control
Registers (SLCR) instruction. The values can however, be changed to any value within the
range ° to 7 by the user either with the adjust instructions (for example, CVLP, CELP, or
CVELP) or through use of BVL (Bx VLx) and BEL instructions. In addition, JEL and JVL
may change the register address depending on value of the loop control parameters.

Vector Loop Registers

Each of the eight Vector Loop registers can be used to hold parameters defining the iteration
of a loop over strips of a vector. Each register consists of the following fields:

Field

Maximum Size

Remaining Length

Descri ption

The value of this field is declared upon entry into the loop.
When the field is 0, up to 64 elements are processed. When the
field is a 1, either single-word or double-word operands are
processed, however, the element count and the next element
count are limited to 32 elements.

This field specifies the number of elements remaInIng to be
processed by this loop. The field is set to the starting vector
length and is decremented under control of the maximum size
field on each pass through the loop. The number of elements

2-22

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Field

First Alternate
Element Count

Second Alternate
Element Count

Element Loop Registers

Descri ption

processed on each pass is called element count and is determined
by the maximum size and remaining length fields. The number
of elements processed on the next pass is called next element
count and is determined by the maximum size, remaining length,
and the element count.

Can be used instead of the element count or next element count
by certain vector instructions. A program may calculate a value
and place it into this field. The value is not affected by the
Maximum Size field and its validity is evaluated only when used
by execution of an instruction.

Similar to the First Alternate Element Count field.

Each of the eight Element Loop registers can be used to hold parameters defining the
iteration over elements of a strip. Each register consists of the following fields:

Field

Maximum Element
Count

Element Pointer

CVLP and CELP

Description

This field determines the number of element loops. This field is
initialized upon entry into the loop and is set to values between
o and 64, however, values higher than 64 do not cause fault
conditions.

This field specifies the number of passes made through an
element loop. After each pass through the loop, it's count is
increased by one and compared to the maximum element count.

Although each Vector Loop and Element Loop register set is composed of 8 elements only a
single element can be accessed at one time. Two pointers exist to indicate the current
element of each register set: CVLP and CELP. While these parameters cannot be affected or
read in isolation, such as a move or load, these parameters are affected by several
instructions.

Loop Control Register Mapping

The contents of the Vector Loop and Element Loop registers are manipulated only by certain
loop control instructions. Therefore it is unnecessary to define internal formats for these
registers, other than to indicate the number of bits of information per field. However when
this information is placed into scientific storage, its format must be defined. These registers
can be stored by means of a Store Loop Control Register instruction and also upon activity
deceleration when they are stored in the register save area. The format used is the same in
both cases.

2-23

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

NOTE: The CVLP and CELP values are always stored and loaded along with the
Vector Loop and Element Loop register contents.

When placed into storage, Vector Loop register zero and Element Loop register zero share the
first double word; Vector Loop register one and Element Loop register one share the next
double word, and so on. The format of each double word is:

Word Bits Description

Even 0-2 Not used (except first two double words)

Even 3 Not used

Even 4 Maximum size from Vector Loop (0-64, 1-32)

Even 5 Not used

Even 6-35 Remaining length from Vector Loop

Odd 0-1 Not used

Odd 2-8 First alternate from Vector Loop

Odd 9-10 Not used

Odd 11-17 Second alternate from Vector Loop

Odd 18-19 Not used

Odd 20-26 Maximum element count from Element Loop

Odd 27-28 Not used

Odd 29-35 Element pointer from Element Loop

Bits not used are written to zeros on stores and ignored on loads, with the following
exceptions: bits 0-2 of the first even word are used for CVLP, and bits 0-2 of the second
even word are used for CELP.

Loop Control Instructions

The Build Vector Loop and Build Element Loop instructions establish vector loop and element
loop parameters, respectively. The Jump Vector Loop and the Jump Element Loop
instructions establish the termination conditions for the vector· and element loops,
respectively.

The Adjust Loop Register Pointer instruction changes the contents of the CVLP or the CELP
or both pointers. The Store Loop Control Register instruction saves the values of the loop
control registers and the Load Loop Control Register instruction restores the values.

2-24

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Loop Control Register Operation

The Vector Loop and Element Loop registers are used for vector loop and element loop
parameters, respectively. Though functionally independent, corresponding Vector Loop and
Element Loop registers are mapped together and generally used together. The CVLP always
identifies one of the eight Vector Loop registers as the current vector loop definition. This
definition supplies four values (element count, next element count, first alternate, and second
alternate) which are available to all vector instructions for use as strip lengths. The 2-bit I
field of the instruction selects one of these four.

Execution of a Build Vector Loop (BVL) instruction sets CVLP to a new value specified in the
instruction and establishes the loop parameters in the selected Vector Loop register. The
corresponding Jump to Vector Loop (JVL) instruction modifies these parameters for each new
pass until the full length is completed. It then exits from the loop, and in so doing sets
CVLP to the new value specified in the JVL. For correct nested operation, this new value
should be the value that CVLP had prior to the corresponding BVL. Compiling this correct
value is trivial in all cases except the last one just prior to a subroutine return. That case is
resolved by the reasonable convention that saves and restores the entire L-register contents
at all subroutine boundaries. This is conveniently handled by the SLCR and LLCR
instructions.

The CELP and the Element Loop registers operate similar. The CELP selects an Element
Loop register, the Element Pointer field value of which is used by scalar instructions to pick
one of the elements of a vector register.

NOTE: The loop control registers and instructions have been defined such that zero is
a valid loop count value. A zero value for either a vector loop or an element
loop causes the enclosed operations to be executed zero times. (This is not
strictly true, since reductions and scalar operations in a vector loop are still
executed.)

2.3.7. Mask Processor

Many instructions in the scientific processor repertoire, primarily the vector instructions, use
individual element execution control by using a mask. The scientific processor uses a single
64-bit Mask register that is used in several different instructions concurrently. The mask
processor section allows the single' source mask to provide multiple references at several
different bit positions, one for each active destination, under one mask controller. Also,
several mask status condition instructions aid in logical branching within vector loops.

The mask processor section operates in conjunction with the add pipeline section, multiply
pipeline section, and move pipeline section in the vector module to control writing of data
into the Vector File on an element-by-element basis. The mask processor consists primarily
of a 64-bit register located in Special Registers S4 and S5. There is one parity bit for eight
mask bits for a total of eight parity bits. As instructions are executed in each pipeline; the
mask processor provides applicable mask bits, as determined by the instruction word t-field
and c-field, to each pipe at the appropriate time.

During single-precision instructions, two mask bits are transferred to the applicable pipeline
each cycle. During double-precision instructions, only one mask bit is transferred each cycle.
Only mask bits used in an individual pipe is transferred to that pipe allowing concurrent
control of multiple instructions from a single mask register.

2-25

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

The mask processor may also be used to determine jump conditions during Conditional Jump
instructions; it may also be the source or destination during Scalar Move instructions.

2.3.S. Control Block

The control block section provides the interface and control within the scientific processor to
accelerate an activity (task) on the scientific processor from an interrupt received through the
universal processor interface (UP!).

The control block controls the acquisition of all the scientific processor activities initial state
and local storage data. On fault or normal activity termination it controls the state save and
interrupt operation (deceleration) of the scientific processor.

State Operations

The scientific processor states are maintained in an internal hardware State register located
in the control block section. This register is not accessible by any instruction processor.
Figure 2-3 provides a general overall diagram of state switching.

2-26

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

RESET CLEAR

INOPERATIVE

STATE

EXTERNAL

INTERRUPT

EXECUTION

STATE

FATAL

ERROR

UPI

DORMANT

STATE

EXTERNAL

INTERRUPT

STATE

EI

DECELERATION

COMPLETE

DECELERATION

STATE

HARDWARE FAULT

IN

STARTUP

EXTERNAL

OR

INTERNAL

INTERRUPT

ACCELERATION

PENDING INTERNAL INTERRUPT

BIT 35 OF CONTROL BLOCK 8 = 1

Figure 2-3. Integrated Scientific Processor State Switching

INTERNAL

INTERRUPT

2-27

UP-11006

Dormant

Integrated ·Scientific··Processor System Processor and Storage Reference
Scientific Processor

The dormant state occurs when the scientific processor is powered up. In the dormant state
no activity occurs except for monitoring and logging of interrupts and issuing Reset clears.
An initial program load causes a mailbox address change and a universal processor interface
clear causes a Reset Clear signal to be issued to the scientific processor. Any other external
interrupts (except a UPI) is logged in hardware status register o. This monitoring, logging,
and clear issuance continues until a UPI interrupt is received from the instruction processor.

Acceleration

The acceleration state does the actual loading of a scientific processor activity. The only
path available for entering this state is from the dormant state through the acceleration
startup check of the external state.

Acceleration first reads control block words 8-15 to get hardware status register 0, word 8 in
place to log any external interrupts that may occur while in the acceleration state. If an
external interrupt was in word 8 when it was loaded, the acceleration process is immediately
halted and a switch to the external state occurs. If no external interrupts are present,
acceleration continues loading data from the scientific processor storage.

After all the data is loaded and no external interrupts are present, a single bit (bit 35) in
hardware status register 0 is checked to see if any internal interrupts are pending (interrupts
that have occurred before the activity was decelerated). If an internal interrup-r is not
pending the execution state is entered.

Acceleration is always done with real address references (no virtual addresses) and no updates
of the R registers for address translation takes place.

If at any time an error is found in the addresses needed for acceleration (Register Save Area,
Local Storage Segment Address), a switch to the external state occurs.

If an internal or external interrupt occurs during acceleration, which is not loaded from the
scientific processor storage, an immediate switch to the external state is made. These types
of interrupts are caused by the acceleration process itself or by an external source such as a
power loss or the scientific processor storage interface error.

Deceleration

Deceleration is the process of storing pertinent scientific processor activity and state data to'
the scientific processor storage for use by the instruction processor. No address checking is
done in this state because the addresses were verified during acceleration.

Before any actual storage takes place, the scientific processor checks for a hardware fault
because of an undetected parity error ina previous state. If this parity error had occurred
during acceleration, control block 13, bit 33 is set indicating that the previous acceleration
has not completed and no instructions have been executed. If the parity error had not
occurred during acceleration, bit 34 of control block 13 is set indicating that a full
deceleration (all scientific processor data) had not completed.

2-28

UP-ll006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

In either case, bit 33 or 34 set, the unit support controller is notified of the error and
proceeds to logout the scientific processor via the system support processor scan set; provided
its system support processor option for logout is set. When the logout is complete, the
scientific processor receives an Interrupt Clear to clear out the parity error and then starts
again. From this point, the short deceleration is done and sends only control block 8-15 to
the scientific processor storage.

If the hardware check finds no parity errors, and no subsequent errors occur, deceleration
stores the following registers or files in the scientific processor storage:

Vector files

Local store

G-registers

Loop Control registers

Scientific Processor Control Block registers

State registers

Jump History Stack

Deceleration is always done with real address references (no virtual addresses) and no updates
of the R-registers for address translation takes place.

Several types of errors can occur during deceleration that will interrupt the normal process
flow:

1. Scientific Processor Parity Error and the Scientific Processor Storage Error - The first
occurrence after deceleration causes the logout and a short deceleration sequence occurs.

2. Scientific Processor Parity Error - The second occurrence causes a switch to the
inoperative state. No further deceleration is done.

3. Scientific Processor Storage Error (Second occurrence) - These types of errors are
considered nonfatal because the scientific processor storage does not lock up. System
support processor intervention to clear the error is not required. The action taken here
is to retry a short deceleration. (One additional retry of short deceleration is provided
for the scientific processor storage errors.)

4. Scientific Processor Storage Error (Third occurrence) - A switch to the inoperative state
is made.

2-29

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Execution

When a scientific processor activity has been loaded (accelerate state) it is executed in this
state. Either an internal or external interrupt causes the instruction execution to cease and
a state switch to Internal or External is made depending on the type of interrupt. External
interrupts have the highest priority should both types of interrupts occur simultaneously.

Internal Interrupt

This state is entered when an internal interrupt is present without an external interrupt.
The previous state may hav.e been accelerate, for the pending internal interrupt, or Execute,
for the actual occurrence of an internal interrupt. The action taken here is to store the
interrupting instruction and Address and save a return address. Then a jump to an internal
interrupt handler is done and the State register is switched to the Execute state. The saved
return address is used when the interrupt handler is complete.

Inoperative

This state indicates that the scientific processor is nonfunctioning and cannot be used until a
Power-:-up clear is performed. The state is entered whenever a fatal error of any type is
received. These fatal errors include:

Page miss during acceleration or deceleration.

Parity errors from instruction translate RAM.

Parity errors from the instruction buffer during acceleration or deceleration.

Parity errors on data to instruction buffer during acceleration or deceleration.

External Interrupt

The external interrupt state is the center for most state switch decisions. That is, when a
state is exited, the external state is entered to make a decision as to what the next state
should be. Abort deceleration and accelerate startup check are part of the external Interrupt
state.

The different sequences that occur in the external Interrupt state are most conveniently
examined by looking at the previous state.

If dormant was the previous state and there is an outstanding power loss or hardware fault
interrupt, the hardware status registers are stored in the mailbox and the dormant state is
reentered. If no hardware or Power Loss interrupts are outstanding, then the hardware
status registers are cleared and the instruction processor is given the information that a new
activity is being loaded by writing mailbox word 2 to mailbox word 3. This places the next
scientific processor control block activity address into the present scientific processor control
block activity address.

2-30

UP-11006
I ntegrated Scientific Processor System Processor and Storage Reference

Scientific Processor

The entry to the acceleration state is contingent on the next scientific processor control block
activity address (mailbox word 2) being on the correct boundary and has a valid address
(valid bit set). If either of these checks fail, the same action for hardware fault or power loss
interrupt is taken.

If execute was the prior state then at this point the interrupting instruction and return
address, for the interrupt that caused the state switch, have been stored to scientific
processor control block registers. Also, if an Internal interrupt is present, the pending
internal interrupt bit in hardware status register 0 is set. From here, if the interrupt was
not an initial program load, the deceleration state is entered. The state register switches to
Suspend if an initial program load is present.

If decelerate was the previous state, the first parity error that had occurred would cause a
short deceleration. The second parity error changes the state to inoperative. The first and
second occurrence of a the scientific processor storage/multiple unit adapter error results in a
short deceleration while the third error causes a switch to the inoperative state.

If accelerate was the previous state the internal or external interrupt that had occurred
would require that a short deceleration be entered.

Special Considerations

An activity is decelerated only in response to an external interrupt (host serviceable
interrupt) of some kind, which causes hardware status register 0 to become non-zero.
Deceleration normally stores the contents of hardware status register 0-3 into both the
control block (words 8-11) and the mailbox words 4-7. Software can examine and compare
both status areas following deceleration, and thereby deduce the existence of possible
scientific processor control errors.

External interrupt types bits 1 and 2 of status register 0 may occur even while the scientific
processor is dormant, and these are recorded in hardware status registers 0-3. Any
subsequent universal interface interrupt causes this status to be reported in mailbox words
4-7, and prevents an activity from starting.

State Register Set

The state register set word format is shown in Figure 2-4.

2-31

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Words

0-2

3

4

5

6

7

8

9

10

11

12

13

14

15

o 123456789 10 11 12 13 14 15 16 17 18 192021222324252627 28 29 30 3132333435

Reserved

Reserved for Internal Interrupt Handling

(Temporary G-register save)

Mask Register Bits 0-31 Undefined

Mask Register Bits 32-63 Undefined

S

C Unassigned

C

Local Storage Stack Definition Word

Internal Interrupt Type Indicators

Status (Interrupted Instruction)

T Reserved for Software Reserved for Hardware

Internal Interrupt Control Mask

Internal Interrupt Return Virtual Address

Timer Return Virtual Address

Breakpoint Virtual Address

Internal Interval Timer

NOTE' Bits 32-35 of words 4 and 5 will have O's in these bits whenever these registers are used as

source operands. For consistent operation. software should never write data other than O's into

these bits.

Figure 2-4. State Register Word Format

2-32

UP-ll006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

2.4. Vector Module

The vector module has sixteen sets of 64-word vector registers used for holding vector
operands. Each register has space for 64, 36-bit data words. Vector computations are
defined as register-to-register, using vector register contents as source operands, and
depositing the vector result into a vector register. Special loop control instructions control
breaking long vectors into strips small enough to fit in a vector register.

The vector module contains the following functional sections:

• an add pipeline that:

adds,
subtracts,
converts,
shifts, and
executes logicals;

• a multiply pipeline that:

multiplies,
divides, and
calculates population counts;

• a move pipeline that:

moves vectors between registers,
moves and compresses data,
moves and distributes data,
calculates population parity, and
assists the add pipeline when a convert operation involves a precision change;

• vector registers that hold vector data. Each register can hold up to 64 single-precision
or 32 double-precision vector elements; and

• an interconnect that routes data and instructions throughout the scientific processor.

2.4. 1. Vector Register

The vector register section contains register file storage space for 128 vector files. These are
divided into two copies of 64 primary and 64 secondary vector files.

Each vector file is structured as follows:

• Each file contains sixty-four 36-bit words. The file can contain up to 64 single-precision
elements or 32 double-precision elements.

• Addressing for the primary and secondary vector files is independent of each other.

• Each vector file has an eight-way interleave, that is, eight read or write operations can
occur simultaneously each clock cycle.

2-33

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

• Only the first 16 of the primary and secondary vector files are accessible to the
programmer, the remaining 48 files of both primary and secondary files are reserved for
hardware scratch area.

Primary and Secondary Vector Files

The primary vector file is used for operand data for the augend in the add pipeline, for the
multiplicand in the multiply pipeline, scalar data in the scalar vector control. It is also used
for primary storage where data for vector store instructions are routed to the store buffer.

The secondary vector file is used for the operand data for the addend for the add pipeline,
and is available at the same time the augend is available from a primary vector file. The
secondary vector file also supplies the multiplier for the multiply pipeline, the single operand
for the move pipeline, and a second word pair for the store buffer.

The vector file has a data register set of eight separate registers that provide input to the
primary and secondary vector files. Both copies of the vector files are written with identical
data at the same time in each copy.

Data for the vector files originates from one of the following inputs:

• Vector File Scalar Input register (this data is from the scalar processor and could be the
result of a RR format instruction).

• Two inputs from the load buffer during vector load instructions (this data is passed to
the vector files at four words per clock cycle).

• Resultant operands from the multiply pipeline, the move pipeline, or the add pipeline.

Vector Register Memories

The vector register section has four independent memories (primary) with a duplicate copy of
each memory (secondary). The primary and secondary memories contain storage space for a
complete copy of all 16 vector files.

Of the four memories, memory 0 is the programmer visible (real) vector file set and memories
1 through 3 are exclusively hardware visible (shadow) vector file sets. Memories 1 through 3
provide instruction overlap capabilities, performance, and implementation enhancement
techniques for the instructions that require vector file access.

Duplicate copies (primary and secondary) of each memory can reference data concurrently
from two vector files, one from the primary copies and one from the secondary copies. These
references may be in the same memory or in different memories.

During a write operation, both the primary and secondary vector file select is forced by the
control logic to the same vector file within the same memory. This insures that the duplicate
copy approach is maintained in the primary and secondary copies within the selected
memory.

The vector file logic includes multiple vector file read data and write data registers to
support concurrent operation of the vector load, vector store, vector arithmetic, and scalar

2-34

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

vector control sections. Also, the physical to logical arrangement of a 64-word vector file is
divided into four rows of 16 words with the 16 words divided into eight blocks of two words
each.

Each of the two-word blocks is treated as an independently controlled, vertical slice
read/write and address through memories 0 through 3, primary or secondary.

Each individual reference to any vector file can read or write 72 bits (one double-precision
data word or two single-precision data words) in a vector file reference cycle. U sing a
primary copy of one vector file and a secondary copy of a second vector file concurrently
allows dual vector file operand referencing in a single vector file reference cycle.

Vector File Addressing

Addressing for the read and write operations of the vector files is done by a 12 bit address
from vector control. This address selects a single vector file element and is broken into five
fields as shown.

FilE P BlK E
MS

NO. N NO. /
0

012 5 6 7 8 10 11

where:

Bits 0,1

Bits 2-5

Bits 6,7

Bits 8-10

Bit 11

MS - Memory Select.
Selects memories ° through 3.

File Number
Selects 1 of 16 files in selected memory. This field is supplied by one
of the four vector operand address fields of the vector control word.

PN - Pass Number
Selects one of four passes in the selected file.

BLK NO. - Block Number
Selects one of eight blocks in the selected pass.

E/O - Even/Odd
Since a word pair is read or written every cycle no odd or even
selection is- required unless an odd number of single precision
elements is written back into a vector file.

NOTE: Bits 6-11 select one of the 64 elements in the vector file chosen by bits 2-5
that resides in the vector file memory selected by bits 0 and 1.

Because of the eight block arrangements common to all four memories only a single vector
file address is required for each of the four passes in one vector file. The 8-bit vector file

2-35

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

address (bits 0-7) remains the same for blocks 0-7 and only the pass number is incremented
by one after each pass then reverted to 0 after the fourth pass is completed. (If bits 0-7 of
the vector file address were all zeroes, then the first word pair 0,1 (pass 0) of vector file 0
memory 0 is selected.) Thirty-two cycles are required to read all elements of one vector file.
Four addresses in each vector file use 64 vector file addresses for the 16 vector files. Read
Data selection of the corresponding block is made by the Read Multiplexer Address counter in
vector control.

2.4.2. Vector Control

The vector control section contains the vector control interface, the vector file control, and
conflict detection logic.

The vector control interface performs the following operations:

• receives and accepts instructions, element pointer, element count, and abort information
from the instruction flow control and loop control sections,

• acknowledges instructions when they are placed into execution, and

• forms the second instruction for multiple-pipe instructions where two pipelines
participate in execution of instructions such as single to double conversions and indexed
load vector instructions.

The vector file control and conflict detection logic:

• reserves vector file timeslots as required for instructions (the pipelines release the
timeslot when the instruction is completed),

• selects vector file addresses, and

• detects data usage conflicts (chaining and anti-chaining conflicts).

Vector control accepts a 50-bit vector control word from the instruction flow control section.
This control word is derived from the 36-bit scientific processor instruction word coded into a
format interpreted by vector control. Instructions that require two pipelines for resolution,
delay the acknowledge to the instruction flow control until both instructions have started in
their respective pipelines. (The vector control receives only one control word for the dual
pipeline request and forms the second instruction itself.)

Receive and Acknowledge Control

The instruction receive and acknowledge control function receives the following information
from the instruction flow control and the loop control sections:

• vector control word,
• element count,
• element pointer,
• element count=O, and
• element count or element pointer out of range abort.

2-36

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Vector control stores and interprets this instruction and parameter information for use in
addressing and controlling the vector files and pipelines within the vector module to perform
the requested vector related instructions. The element count information is forwarded to all
pipes except scalar control, which requires element pointer information.

The acknowledge control accepts signals signifying start of execution from the individual
pipelines and generates an acknowledge to the scalar processor module to allow the initiation
of the next vector related instruction via a subsequent control word.

In the case where one instruction necessitates use of two pipelines to complete the operation,
the acknowledge to the scalar module requires receipt of pipeline acknowledges from both
pipelines. The first selected pipeline acknowledge starts execution of its portion of the single
control word request and this initiates formation of a second control word within vector
control and selection of the appropriate second pipeline. Not until the acknowledge from the
second pipeline is received does vector control issue the acknowledge to the scalar module.

Receipt of an instruction request provides the following parameters from the vector control
word:

• vector file timeslot pattern
• pipe selection
• source and destination vector file addresses
• operation modifier

Vector Control Interface

The vector control interface is used by the scalar module to issue vector control words to the
vector module. These control words are derived from instruction decode in the instruction
flow control section. Depending on the instruction mix, the instruction flow section can issue
a vector control word every 30-nanoseconds to the vector module. However, the vector
module can only interpret and dispatch these control words at a 60-nanosecond rate. An
interface control protocol allows the instruction flow logic to fill the pipeline at a
30-nanosecond rate and keep it full at a 60-nanosecond rate, once the pipeline has been
filled. The vector control interface also includes the loop parameter data provided from the
loop control section. .

Vector File Addressing

The vector control generates the vector file select from the vector operand fields in the vector
control word.

The vector file address selection function receives the vector file address from the vector
operand field in the control word and accesses the requested vector file address, selects the
control word requested pipeline, and selects the pass number and possible shadow memory
request from the selected pipeline.

File Number registers hold all the read/write operand file numbers for each pipeline (OP!,
OP2 for source or read file numbers and OP3, OP4 for destination or write file numbers).
These registers are loaded at start of instruction execution and held until the pipeline
completes the instruction. .

2-37

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

The primary and secondary
control timeslot 0 register.
File Number registers from
from each affected pipeline.

Vector File Address Select registers are enabled by the vector
Inputs to this register for vector file address selection are the
each pipeline and the pass number and shadow memory select

The five pipeline Read Multiplexer counters that enable the block read for the Read Out
register are selected by the decode of the pipeline select field of the timeslot management
word. Each pipeline has a Read Multiplexer counter that is synchronized with the start of
an instruction so the mux address is applied to the Read Out register at the output Vector
File RAM at the proper time. The counters are incremented each clock cycle and continue
until a new instruction is started on that pipeline.

The pipeline Write Multiplexer counters (Add, Multiply, Move, Vector Load A-B, and
scalar-vector control) select the appropriate Vector File Write Data register to channel the
correct data into the vector file from an active pipeline. The counters are initialized to zero
prior to the first available Vector File write data word and incremented each clock cycle.
When an active pipe completes execution it clears the counters in a way similar to releasing
vector file timeslots.

Vector File Logical and Facilities Usage Conflicts

The vector control section detects file access write/read, read/write, write/write conflicts on
each file cycle. The instruction that encounters the conflict stops for one or more eight-cycle
increment(s) and proceeds when the conflict has been resolved.

The vector control detects logical usage conflicts caused by asynchronous system operations
and overlapped subsystem instruction execution. The major source of asynchronous operation
is the system multiprocessor environment that creates request contention at the scientific
processor storage. Within the scientific processor, asynchronous conflicts occur because of the
varying instruction execution times of the scalar processor section and of the multiple
pipelines in the vector module. The vector module, for example, does not execute a divide
instruction in the same span of time as an addition or multiplication. The asynchronous
interface for the scalar processor module and vector module causes conflict problems and in
turn generates conflicts between those vector module sections (vector load, vector store, and
scalar-vector control) that interface with the scalar processor module.

Facilities usage conflicts are a general category of conflicts that occur within the normal
design constraints. An example would be an instruction held up in vector control with access
to its available pipeline prevented because all of the vector file access times lots are presently
assigned.

Vector File Conflict Detection

The vector control conflict detection logic monitors all active instructions for conflicts that
could occur if the instructions request the same vector file. Conflicts that can occur include:
write/read, read/write, and write/write. Parallel reads (read/read) of different elements of
the same vector file are allowed because they will hot alter the data.

Monitoring for conflicts starts at the time an instruction becomes active in a pipeline and
checks all subsequent instructions that become active in other pipes for similar Vector File
usage. If two active instructions are allowed to share a common vector file element, the

2-38

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

validated instruction would prematurely alter the data or prematurely read data from that
element. This element sharing would destroy the validity of both instructions. (The add
pipeline or multiply pipeline can generate a conflict within themselves; generally, the conflict
is between different pipelines.)

Conflict resolution logic shuts down the operand sequencing of the pipeline associated with
the latter instruction in eight clock cycle increments until the conflict is gone or cleared;
then, the instruction is allowed to progress.

Conflict detection is shown in the following block diagram in Figure 2-5. Each block of the
diagram is numbered. The numbers correspond to the explanation following the block
diagram.

2-39

I
ADD PIPE RESULT VECTOR

FILE NUMBER REG.

• 4 BIT FILE NO.

• 1 FILE IN USE

VALID BIT

I
FILE NUMBER COMPARATOR

• COMPARES THAT FILE

NO'S ARE EOUAL

• VALID BITS ARE SET

I

(1)

1
ML TPY PIPE OP 1 SOURCE

VECTOR FILE NO. REG.

(OP2 NOT SHOWN)

• 4 BIT FILE NO.

• 1 FILE IN USE

VALID BIT

DETECTED CONFL1CT
TO MULTIPLY PIPE

t
CONFLICT DETECT "ADD"

• FILE NO'S EQUAL

• ELEMENT NO.

COMPARISON

• OTHER PIPE (ADD)

ACTIVE

f

ELEMENT NUMBER

COMPARATOR

• COMPARES D EQUAL TO

OR LESS THAN C

C D

®

f

1

I
MULTIPLY PIPE ACTIVITY

SNAPSHOT REGISTER

• UPON START CAPTURES ACTIVITY

STATE OF OTHER PIPES

• AS PIPES FINISH CURRENT

INSTRUCTION CLEARS THEIR ACTIVE

t
ACTIVE INPUTS

FROM OTHER PIPES

(i)

I
ADD PIPE RESULT VECTOR

ELEMENT PAIR COUNT REG.

MLTPY PIPE VECTOR READ

ELEMENT PAIR COUNT REG.

ill

• 5 BIT ELEMENT PAIR NO.

• INCREMENTED BY ONE AS

RESULTS ARE WRITTEN

_®

• 5 BIT ELEMENT PAIR NO.

• INCREMENTED BY ONE

AS RESULTS ARE READ
. (4)

Figure 2-5. Typical Conflict Detector

c
7'
o o
0)

:::J
i

CO
OJ
r+
CD
Q.

en
n iO
:::J
r+
::;;
(i0

-0 ...
o
n
CD

en (I)

n ~ iO ...
acn
3i~
n i
-03 a -0 n
CD (;
(I) n
(I) CD o (I)
... (I)

N
I

.1=10
o

o ...
C»
:::J
Q.

cn
r+ o ...
C»
co
CD

:0
CD
CO' ...
CD
:::J
n
CD

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

CD Add Pipe Result Vector File Number Register

This 5-bit register contains the 4-bit file number assigned to the Add instruction and a
single valid bit that indicates this vector file is in use by this instruction.

® Multiply Pipe OPl Source Vector File Number Register

This 5-bit register contains a 4-bit vector file number and a single valid bit indicator.

The output of this register and the register in block 1 are fed to block 5, the File
Number Comparator.

® Add Pipe Result Vector Element Pair Count Register

This register is the 5-bit add pipe vector element (word pair) count register for the OP3
result. The counter starts at zero and is increased by one when results are written in
the selected vector file for the add pipe.

o Multiply Pipe Vector Read Element Pair Count Register

This register is the 5-bit multiply pipe vector element (word pair) counter register. The
register count is increased by one as results are read.

The output of this register and the register in block 3 are fed to block 6, the Element
Number Comparator.

® File Number Comparator

The OP3 and OPl file numbers from the registers in blocks land 2, respectively, are
compared if both instructions are valid.

® Element Number Comparator

The output of the registers in blocks 3 and 4 are fed to this comparator. The element
counts from these two registers are compared to see if the multiply pipe has reached the
point that the elements have been written into by the add pipe or have exceeded the add
pipe element count.

o Multiply Pipe Activity Snapshot Register

This register monitors the activity states of the other five pipes.

® Conflict Detector

Inputs to this detector come from the registers in blocks 5, 6, and 7.

Vector Instruction Bypass

The vector instruction bypass function allows instructions to be placed into execution out of
the normal program order in a certain case. This case requires that the following conditions
be present.

2-41

UP-11006
Integrated· Scientific Processor System Processor and Storage Reference

Scientific Processor

1. Vector load busy.

2. Another instruction for vector load is queued into vector control and is in the
Instruction Receive register.

3. An instruction for vector store is queued into the instruction flow control Function 0
register.

4. Vector store is inactive.

5. No conflict is possible (file numbers must not be equal) between the Vector Store
instruction in instruction flow control Function 0 register and the Vector Load
instruction queued in vector control.

If the previous five conditions are met then the following steps are taken:

1. Move the Vector Load instruction from the Vector Control Instruction Receive register
into the Vector Load Instruction Hold register.

2. Transfer the Vector Store instruction from instruction flow control into the vector
control· Instruction Receive register.

3. Place the Vector Store instruction into execution in the normal manner and send the
acknowledge to instruction flow control.

4. Move the Vector Load instruction back from the vector control Instruction Hold register
into the vector control Instruction Receive register.

5. Continue in the normal manner.

Vector Control Word

All instructions that require the use of the vector module facilities cause the creation of a
vector control word that is issued to the vector module by the scalar module. The vector
control word contains 50 bits of control information and 7 parity bits. Also accompanying the
vector control word is a vector parameter data word.

Selection of parameters from loop control is done concurrent with vector control word
generation so the associate parameter information can be sent with the vector control word.
While instruction flow control in the scalar module can issue control words at a
30-nanosecond rate maximum the vector module can only decode and dispatch them at a
60-nanosecond rate. Instructions that decode into vector control words exclusively are issued
by instruction flow control without considering the state of the scalar module. However,
some instructions require both the scalar module and vector module for execution. Thus,
control words to both modules must be issued simultaneously and requires that instruction
flow control checks the state of both modules.

Vector Parameter Word

The vector parameter contains 13 bits of data and 2 parity bits. While a control word is
being created for the vector module, parameter information is selected from loop control.
This information is available when the vector control word is issued.

2-42

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

2.4.3. Vector Add Pipeline

The add pipeline performs all arithmetic and logical operations on vector data, except
multiplies, divides and product reductions. Data may be in single-precision (36 bits) or
double-precision (72 bits) integer or floating-point format. The add pipeline contains control
logic and two similar hardware units: a single-precision add pipeline with a 36-bit Augend
and Addend interface and a double-precision add pipeline with a 72-bit Augend and Addend
interface. All data manipulation is completed in one pass through a pipeline. Each cycle,
the add pipeline operates on two single-precision operand or one double-precision operand.

Internal control of the add pipeline is provided by two internal random-access memories:
operand control and data control.

Operand Control

The operand control memory controls sequencing of events necessary to complete an
instruction.

When the add pipeline executes an instruction, the operand control logic controls sequence of
events and data flow through the add pipeline after receiving a request and appropriate
control information from the vector control section. When the add pipeline is not executing
an instruction, it is in an idle state and will not become active until it receives a request
from vector control. Before the add pipeline or other pipeline in the vector module starts
executing an instruction, vector control receives the vector control word from the scalar
module instruction flow control section. This control word completely defines the operation
to be performed. When vector control receives a control word, it decodes it and determines
what hardware resources are required to execute that instruction.

The instruction to be executed and the existing operating conditions determine what control
information is transferred to the add pipeline. Some information is transferred each time the
add pipeline is selected, for example, pipeline select; while other information is transferred
only when specific conditions exist, for example, G-operand wait. The following information
may be transferred from vector control to the add pipeline when it is selected to perform an
instruction:

• Pipe select
• Operand sequencing microcode entry address
• Element count
• Single- or double-precision
• Timeslot reservation
• G-operand wait
• Element count out of range
• Extended sequence

Data Control

Data control logic operates in parallel with the operand control logic to control sequencing of
data through the add pipeline. Flow of data through the pipeline is controlled by the data
control memory. The address transferred from the vector control Entry Address register to
the add pipeline is distributed to both the operand control and data control memories, but not
at the same time. This address defines a location which contains the first step in a sequence
of actions required to manipulate the data.

2-43

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Conflict Detection

Vector module conflict resolution is controlled by vector control using conflict detection and
status information provided by subsections within the vector module. For example, counters
and registers that detect and store status information for the add pipeline are physically
located in vector control but are controlled by the add pipeline. Detection of a conflict causes
the following events to occur in the add pipeline:

• Halts activities in increments of eight cycles. Each inactive period is eight cycles long
so that the add pipeline stays in synchronization with its reserved vector file access
timeslot.

• Saves current operand control address.

• Loads zeros into Operand Sequencing Data register. This clears all counters in the add
pipeline.

• Stops reading data from the vector file.

• Stops writing data to the vector file when all data currently in the add pipeline is
through the pipeline.

Four Conflict File Number registers and four Conflict Element counters store status
information pertinent to the instruction that is currently executing. The File Number
registers are: OPI, OP2, OP3, and OP5. Status information in these registers identify the
vector file elements currently being read from or written to. The Conflict Element counters
are: RD OP, RD WR, OP3v and OP5L . Status information in these counters identify the
vector file word pairs currently being read from or written to.

Status ---

RD OP

RD WR

Descri ption

Contains number of element currently being read. This number
defines the upper boundary and element number in RD WR counter
defines the lower boundary of a range of elements currently reserved
for use by the add pipeline.

Contains element number defining lower boundary of range of
elements currently reserved for use by the add pipeline.

Identifies word pair currently being written. When an instruction
completes a read from the vector file, but the write has not completed
the value in OP3L counter transfers to OP5L counter. Both of these
counters are disabled during extended sequence (multi-pass)
instructions.

During single-pass instructions, values in the RD OP and RD WR counters are equal. During
multi-pass instructions, the RD OP counter counts up to the maximum number of word pairs
during the first pass, but the RD WR counter does not start counting until beginning of the
last pass.

2-44

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Number Representation and Data Types

This operation is the same as described in the scalar processor section (see 2.3.3).

2.4.4. Vector Move Pipeline

The vector move pipeline executes move, compress, and distribute instructions. It also
participates in generate index and conversion instructions. The add pipeline does the active
conversion of the single-precision to double-precision and double-precision to single-precision
conversion instructions. The move pipeline stores the results of the conversions in the vector
files. The move pipeline move buffer size is 32 addresses by two words wide.

The move pipeline executes the following instructions:

• Move Vector (MV)
• Double Move Vector (DMV)
• Move Negative Vector (MNV)
• Double Move Negative Vector (DMNV)
• Move and Compress Vector (MCV)
• Double Move and Compress Vector (DMCV)
• Move and Distribute Vector (MDV)
• Double Move and Distribute Vector (DMDV)
• Generate Index Vector (GXV)
• Population Parity (EBPV)

The move and add pipelines jointly share in the execution of the following instructions:

• Convert Floating to Double Floating, Vector (CFDFV)
• Convert Double Floating to Floating, Vector (CDFFV)
• Double Extract Sign Count, Vector (DESCV)

The add pipeline performs the arithmetic manipulation for these three instructions and places
the result into a shadow memory of the vector files where it is accessed by the move pipeline,
restructured and written back into a vector file in real memory (memory 0).

The move pipeline moves source elements from one vector file into a destination vector file.
The element quantities for the moves are specified by vector control and range from 1 to 64.
The element moves can be broadcast G-operands that uses a single G-register as the source
vector and replicate that data into every specified element in the destination vector file.
Conditional transfers of the elements use the Mask register for individual selection of those
elements that transfer to the destination vector.

The compress instructions use the Mask register to select individual elements from a source
vector file and transfer those to a destination vector file. Figure 2-6 shows the first seven
elements of a source vector file and the seven corresponding bits of the Mask register. The
source .elements that have a corresponding one bit in the Mask register are transferred into
the destination vector file starting at element 0. In this example elements 0, 3 and 6 are
transferred to the destination. Alternately, zero is selectable as the element transfer select
bit, which would transfer elements 1, 2, 4, and 5.

2-45

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Mask Source Destination

1 0 .. o

0 1 3

0 2 6

1 3

0 4

0 5

1 6

Figure 2-6. Basic Compress Instruction Element Transfer

The source element arrangement at the destination vector file for the distribute instructions
is shown in Figure 2-7. Mask register bits of one move the corresponding source element
into the same corresponding element of the destination vector file.

Mask Source Destination

1 0 0

0 1

0 2 -
1 3 I.....-.-. 1

0 4

0 5

1 6 2

Figure 2-7. Basic Distribute Instruction Element Transfer

2-46

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

The Generate Index Vector instruction (GXV) generates a vector of indexes that are defined
by a base (virtual address) and a stride. The base is contained in a G register specified by g3
of the instruction. The stride is from the right half of that same G register if j =0 or a
constant value of one if j = 1. The vector of indexes is generated such that the first element
of the vector is simply the base. The second element of the vector is the base plus the stride
and the third element is the base plus twice the stride and so forth up to base plus 63 times
the stride. This process generates a vector of uniform distanced indexes. (See Figure 2-8.)

B

B=base

B+25
5=stride

B+635

Figure 2-8. GXV Base and Stride Vector Arrangement

The type conversion instructions for vector data type and the count leading signs vector
instructions, which move pipeline and add pipeline jointly execute, are handled similarly by
move pipeline. Figure 2-9 represents the source and destination vector for these instructions.
There are two type conversion instructions: Convert Floating to Double Floating, Vector
(CFDFV) and Convert Double Floating, Vector (CDFFV).

For a single-precision to double-precision type conversion the source vector has 32 elements
of 36 bit words and the result of the conversion is 32 double-precision elements filling one
vector file. Figure 2-9 shows elements 0, 1, 2, through 31 in the source vector and 32
double-precision words resident in the destination vector after the conversion. For a
double-precision to single-precision type conversion the opposite transfer is performed.

The move pipeline also assists in the execution of the count leading sign instruction for
double-precision. The Count Leading Sign instruction is the Double Extract Sign Count,
Vector (DESCV). The move pipeline's part in the exe"cution of this instruction is very similar
to the double-precision to single-precision type conversion. The DESCV instruction makes up
to 32 double-precision elements available to the add pipe for examination of each count
leading signs vector. This counf"-is""theril.lrnber ofco-nsecutive bits, starting at bit number
one, that are equal to bit zero. The add pipeline moves the elements for examination into a
temporary location and move pipeline writes them back into a destination vector.

2-47

UP-11006
IntegratedSciel1tific Processor System processor and Storage Reference

Scientific Processor

Source Destination

o 0

0

2 1

1

2

31 ---------
2

31

31

Figure 2-9. Type Conversion and Count Leading Signs Vector Arrangement

2-48

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Figure 2-10 is a block diagram of the move pipeline and associated scientific processor
sections that require information to initiate and execute an instruction requiring assistance
from the move pipeline. The move pipeline consists of a move control and a move buffer.
The move buffer is a temporary location for data transfers in and out of the vector files. The
scalar vector control section controls movement of data between the move pipeline and the
scalar processor for the GXV instruction. The scalar processor section reads the base and
stride from an instruction specified G-register and generates the indexes for the GXV and
transfers them to a vector file. (The indexes are actually transferred to the move buffer and
then written into the vector file.) This transfer of data from the scalar processor to the
vector file via the move buffer is controlled by the scalar vector control.

Vector
Module

VECTOR

CONTROL

ADD
PIPELINE

r--------------------------
1
1
1
1
1

1
1
1
1
1
1
1

MOVE
CONTROL

-

MOVE PIPELINE
1 ______ -

SCALAR

VECTOR

CONTROL

MOVE
BUFFER

Scalar INST.

Module FLOW

CONTROL
SCALAR

PROCESSOR

Figure 2-10. Move Pipeline to Vector Module Interface

VECTOR

FILE

2-49

UP-11006
Integrated Scientific Processor System Processor" and Storage Reference

Scientific Processor

2.4.5. Vector Multiply Pipeline

The vector multiply pipeline section executes multiply, divide, product reduction, population
count, single~precision floating-point, double-precision floating-point, and single-precision
integer instructions. It is basically a one-pass multiplier that provides a burst rate of two
products per clock cycle for single-precision calculations and one product per clock cycle for
double-precision calculations. Multiple passes are required to perform divide and product
reduction instructions.

The following data types are provided for the arithmetic instruction types:

• single-precision integer
• single-precision floating-point
• double-precision floating-point

The multiply pipeline consists of sequence control, pipeline control, and pipeline data path
subsections.

The sequence control subsection:

• receives and acknowledges instructions from vector control
• controls vector file addressing
• responds to vector file conflict notification
• sends control information to the pipeline control subsection.

The pipeline control subsection receives a control word from the sequence control subsection
and stages it in parallel with the data passing through the pipeline data path subsection.

The pipeline data path subsection:

• receives a data stream from the vector file section, processes it as directed by the
pipeline control, and presents the resulting stream to the vector file section

• sends write control pulses to the vector file section

• receives mask bits from the mask processor section

• receives and holds arithmetic fault interrupt mask bits from the control block section

• sends arithmetic fault indicator bits and the failing element pointer to the control block.

2.4.6. Vector Load

The vector load section executes the following instructions:

• Load V ector (LV, DL V)
• Indexed Load Vector (L VX, DL VX)
• Load Alternating Elements Vector (LAEV, DLAEV)

The vector load section receives load data from local storage or the scientific processor
storage by way of local storage and transfers this data into the vector files. The data
transfer between local storage and vector load is four words per cycle at a transfer rate of
133 megawords per cycle.

2-50

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

The vector load section supports single-precision and double-precision data types, and it has
a Vector Load buffer that allows simultaneous read and write operations.

2.4.7. Vector Store

The vector store section moves data from the vector files to the store buffer section.

The vector store section executes the following instructions:

• Store Vector (SV)
• Store Vector, Indexed (SVX)
• Store Alternating Elements Vector (SAEV)
• Load Vector, Indexed (L VX)

Vector store controls the vector file primary and secondary store read registers that allow a
four-word transfer per clock cycle to the store buffer section. The store buffer section then
transfers the data to the scientific storage or to the local storage section.

Store Vector Instruction

The Store Vector (SV) instruction moves vector elements from the primary and secondary of a
single vector file or from a G-register broadcast to replicate a vector element to storage
locations in the scientific processor storage or local storage in the scalar processor module.
The virtual storage addresses are contained in a G-register that is translated in the address
generation section to a real address prior to execution. The instruction I-field selects the
number of elements to be transferred. It can be from 1 to 64 per instruction.

The Store Vector instruction when performing a broadcast G takes one element from the
specified G-register and replicates it across sequential addresses in storage for a length
determined by the specified element count. An instruction requesting a broadcast G is
handled exclusively by the scalar processor module as are Mask transfers that allow
conditional transfers of certain elements. The SV instruction transfers either four
single-precision (two double-precision) elements or two single-precision (one double-precision)
elements per cycle to the store buffer.

Store Vector, Indexed Instruction

The Store Vector, Indexed (SVX) instruction transfers data from a vector file or a broadcast
G register to a location in scientific processor storage or local storage exactly like the Store
Vector instruction. The difference is that the SVX instruction uses an index quantity in
addition to the virtual address in the SVX specified G-register. This index quantity is stored
in the primary and secondary copies of the second Vector File requested by the SVX
instruction. The base virtual address in the specified G-register is modified by adding the
index value in the second vector file that corresponds to the same element in the first vector
file that contains the index data. The SVX instruction transfers two single-precision
elements or one double-precision element and two indexes per cycle (64 single-precision or 32
double-precision elements per instruction).

The SVX instruction uses 2 separate vector files; one for the index data and the other for the
index. For each index data (operand) there is a corresponding index. This instruction is

2-51

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

essentially reading operand 1 out of a primary vector file and the index value for offsetting
the address of operand 1 in storage is located in the secondary vector file. If the requested
SVX instruction has an element count of 64 the Index Buffer secondary path is toggled to the
alternate Index Buffer to accommodate the remaining 32 elements.

Load Vector, Indexed Instruction

The Load Vector, Indexed (LVX) instruction is the opposite of the SV instruction; the
elements of a vector file are loaded from locations in storage (scientific processor storage or
local storage). LVX specifies the vector file for the storage of the index data and the vector
file that contains the index value. The index value in the LVX instruction vector file is
transferred to the index buffer in the store buffer section for addition to the base address
value to determine the real address of the index data location in storage. The vector store
section transfers this index value to the address generation section for addressing. The
vector load section loads the vector element.

Store Alternating Elements Vector Instruction

The Store Alternating Elements Vector (SAEV) instruction stores pairs of elements that are
formed from corresponding elements of two vector files. These pairs of elements are stored in
adjacent memory locations. In this case the element count specifies the number of element
pairs that are transferred.

The SAEV instruction requires reading two separate vector files whose length is determined
by element count. Element count specifies the number of element pairs that are to be
transferred. For an element count of 64, 128 elements are transferred to the store buffers.
Alternating pairs of elements are formed at the output of the store buffers in the store buffer
section so that corresponding elements of the two vector files are stored in adjacent memory
locations in storage.

Vector Store Interface

Figure 2-11 shows the relationship of the vector store section to the other sections that it
interfaces with. Vector control receives the vector control word and vector parameter· word
from instruction' flow control and loop control and initiates the request for the vector store
pipeline to participate in the handling of data for the requested Vector instruction. Vector
control also monitors for potential conflicts between vector store and the other pipelines and
supplies the vector file addresses. Vector control informs vector store that it has an
instruction that requires its participation and if a potential Vector File conflict exists
between vector store and one of the other pipelines Vector control will suspend one of the
pipelines temporarily. The vector store acknowledges the instruction requests from vector
control and keeps track of where it is currently reading in the vector files and controls its
own addressing of the vector files. The vector store feeds back to vector control any store
buffer and index buffer conflict detection. The vector store also handles conflict counters and
file registers control used in conflict detection. (The path between vector file and the store
buffer section is the data path for the storage of 144 bits of data plus 24 bits of parity.)

2-52

UP-ll006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Vector File Conflicts

When two of the active pipelines attempt to use the same vector file a potential vector file
conflict is recognized and vector control suspends the operand sequencing of the pipeline
whose current instruction was started most recently. This suspension is maintained in eight
cycle increments to allow the affected pipeline to resume at the point of interruption when
the conflict is resolved.

I
LOOP VECTOR

CONTROL FILE

I I
INSTRUCTION

FLOW
VECTOR

CONTROL
CONTROL

I I
STORE

BUFFER VECTOR

f t STORE

I
ADDRESS VECTOR MODULE

GENERATION

f
LOCAL

SCIENTIFIC PROCESSOR STORAGE

STORE

t

SCALAR MODULE

Figure 2-11. Vector Store Interface

2-53

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

2.4.8. Scalar Vector Control

The scalar vector control section provides the interface control for RR scalar format
instructions and VV format instructions that move G-operand and vector operand data
between the scalar and ve.ctor modules. It controls date transfers to the Move buffer in move
pipeline for Generate Index Vector instructions and controls transfer of the results of
reduction operations from multiply pipeline and the add pipeline to the scalar processor.

The scalar control contains the logic for controlling the data flow for instructions requiring
data exchanges between the scalar and vector modules. Scalar control controls the flow of
data to or from the scalar module and to the respective vector module pipeline (add pipeline,
multiply pipeline, move pipeline) for instructions requiring G operands. This section also
controls the flow of data to or from the scalar module and vector file for scalar instructions
that require a vector operand.

G-Operand

The G-operand is used in the VV format vector instructions to create vector or scalar data
for use in elementwise arithmetic functions. There are three general types of G-operands.

G-operands 1 and 2 are referred to as broadcast Gs and are used to create a vector for use
by the add pipeline, multiply pipeline, or move pipeline. In a single G-operand operation, a
value in a G-register becomes the source for one of the operands in a VV formatted vector
instruction. This G-register value is used as a constant for one operand source and a vector
file element is the other operand source. In a dual G-operand operation both operands are
from individual G-registers in the scalar processor module. The G-operands transfer directly
to the affected pipeline and are not stored in the vector file prior to the operation.

G-operand 3 is a reduction instruction that reduces a vector to one scalar value and sends it
over the interface to the scalar processor module. The reduction instructions add or multiply
the elements of a single operand and produce a single scalar result. This result transfers to
the scalar processor module interface.

Scalar control acts as controller for data transferred over the scalar processor module/vector
module interface for the GXV (Generate Index Vector) instruction and for the reduction
instructions.

A GVX instruction is a variation of a G-operand where the G-register value is incremented
by a fixed amount (stride) in the scalar processor module and scalar control is used to control
the passing of these values to the move pipeline in the vector module. The values are
transferred to elements in the vector file; with no intervening manipulation.

Scalar control acts as one of the six pipelines in vector module for instructions requiring V
operands.

2-54

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor

Vector Operand

The vector operand operation of scalar control is used with scalar instructions for controlling
two types of RR format instructions: RR format scalar arithmetic instructions and RR format
scalar moves.

The RR format scalar arithmetic instructions perform arithmetic operations in the scalar
processor module using operands that originate as an element in the vector file or the
operands element pointer are sourced from G-registers and the result is stored in the vector
file. The element pointer is specified by the vector parameter word.

The RR format scalar move instructions transfer one vector file scalar element to another or
between G-registers and a vector file scalar element. At least one operand is always in a
vector file. Source and destination locations are specified in the vector control word. The
data in these operations is unchanged only the location is changed.

The vector operand control is used exclusively for RR format instructions (vector operands)
and the Interface Register control handles the scalar data exchange between scalar control
and the scalar processor module as it does in the G-operand instructions.

Instruction Issue and Receive in vector control receives the vector control word from the
instruction flow control section, decodes its fields, and disseminates the appropriate
information to the affected pipelines and scalar control. Conflict Detect monitors for vector
file conflicts and manages vector file access timeslot reservations. Vector File addressing
generates the addresses to vector file memory o.

2-55

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Operations

3. Operations

This section describes activity switching, interrupt handling, and instruction conflict
operations.

3. 1. Activity Switching

There are seven mutually exclusive states defined for the scientific processor. If more than
one state is active at the same time, the scientific processor is considered inoperative.

State

Dormant

External

Accelerate

Decelerate

Execute

Inoperative

Function

Non-executing mode where monitoring for a universal processor
interface is done to begin an activity.

State transition decisions are made

Loads activity information from the scientific processor storage
to the scalar module.

Store activity information back into the scientific processor
storage.

Activity is executed

Entered when fatal errors are detected and can only be exited
by a power-up clear signal.

The scientific processor uses activity switching to go from one internal machine state to
another (dormant to execution or vice versa). Activity acceleration, used during activity
start-up, is the process of:

• loading the scientific processor with information from the control block;
• loading the internal programmable registers from the register save area; and
• loading information into local storage.

3-1

UP-11006
Integrated Scientific. Processor ,System Processor and Storage Reference

Operations

Activity deceleration at activity termination is the reverse of this process.

Initially a scientific processor is in a dormant (idle) state, in which it executes no instructions
and makes no storage references. To place an activity onto a dormant scientific processor,
the instruction processor sets up the appropriate activity data structures, places the control
block real address into mailbox word 2 with a control code of 3, and signals the scientific
processor on the UPI.

Upon receipt of the universal interface interrupt the scientific processor reads the mailbox
and proceeds to switch in and execute the activity. It continues executing until the
occurrence of an external interrupt. (In the context of scientific processor interrupts external
and internal refer not to the interrupt source, but to the type of response required.) At that
point the scientific processor commences to switch out that activity, notifies the instruction
processor through the UPI, and returns to the dormant state.

The scientific processor can receive initial program load and reset clear signals any time
regardless of its state. Response to them takes precedence over normal state switching. The
scientific processor responds by immediately ceasing all storage references, clearing itself
internally including the hardware status registers, and becoming dormant.

3. 1. 1. Acceleration

When no activity is being executed, the scientific processor remains In a dormant state until
a universal processor interface interrupt is received from the instruction processor. Upon
receipt of the interrupt, the scientific processor begins loading a new activity that is
scheduled by the instruction processor.

Communications between the scientific processor and the instruction processor is accomplished
through the mailbox (2.2.1). The most significant bit in word two of the mailbox indicates
whether a valid activity is available.. If this bit is set, the scientific processor takes the new
activity address from word two of the mailbox and begins loading data. If the control code
was not valid the Dormant state is reentered.

The following items are loaded for a new activity:

1. Register Save Area

a. General registers
b. State registers
c. Loop Control registers
d. Vector registers
e. Jump History File

2. Scientific Processor Control Block

a. Words 8-15
b. Activity Segment Table

3. Local.Storage

After completing these loads the scientific processor begins executing. If hardware errors
occur during acceleration, the acceleration is immediately aborted.

3-2

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Operations

3. 1.2. Deceleration

The scientific processor continues to execute an activity until an External interrupt is
received. This interrupt forces the scientific processor to decelerate, which stores all
pertinent data back to the scientific processor storage.

There are five possible sources of interrupts:

1. Generate Interrupt instruction executed by activity instruction stream when an activity
. is completed.

2. Universal processor interface from the instruction processor to abort an activity.

3. External interrupt caused by a fault.

4. Internal interrupt that was masked to be handled as an External interrupt.

5. Internal interrupt handler that issues a Generate Interrupt instruction.

The data registers and files that are stored in the scientific processor storage during
deceleration are the same as those loaded during acceleration (except the activity segment
table is not decelerated).

When deceleration is completed, the scientific processor enters the Dormant state.

Hardware errors (Parity and the scientific processor storage Interface errors) that are
detected during deceleration causes deceleration to be aborted and only the scientific
processor control block (words 8-15) registers are stored in the original scientific processor
control block and mailbox area in the scientific processor storage.

3.1.3. Activity Switch Algorithm

Activity switching is interrupt driven and is governed by the state of the scientific processor
and type of interrupt encountered.

3. 1.4. Special Considerations

When accelerating an activity, control block words 8-15 must be accelerated first, and when
decelerating an activity, control block words 8-15 must be decelerated last, so that the
Interrupt Indicators include all interrupts received up to that point.

If an error occurs or an interrupt is received while accelerating an activity, the scientific
processor aborts the acceleration. Bit 33 of control block word 13 is set to indicate that no
instructions have been executed. Control block words 8-15 are decelerated.

If any scientific processor hardware check (hardware status register 0, bit 2) or any storage
check (hardware status register 0, bits 6-12) occur while decelerating an activity, further
deceleration of that activity is abandoned. Bit 34 of control block word 13 is set to indicate
that deceleration was aborted, and the algorithm goes immediately to store the control block.

3-3

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Operations

If part of the scientific processor internal state is destroyed while performing a rapid
deceleration, the scientific processor sets control block word 13, bit 35. The internal state is
destroyed when it is overlaid with the state information. Bit 35 set indicates that
reconstruction of state is required and it can be done from a combination of information from
scientific storage and its internal registers.

If the scientific processor encounters errors while in the dormant state, it sets its indicators
in hardware status registers 0-3. If these errors cause it not to start, the errors are reported
in mailbox words 4-7 when the next universal processor interface interrupt is received.
Words 8-15 of the scientific processor control block reports status of an activity, and words
4-7 of the mailbox use this same format to report status of the hardware. (Words 4-7 of the
mailbox are pertinent only if the scientific processor is dormant and the instruction processor
only reads them as part of universal processor interface processing.)

If mailbox word 4 is not identical to control block word 8 following deceleration, an error has
occurred while writing control block words 8-15 or mailbox words 4-7.

3.2. Interrupt Handling

Interrupts that occur on the scientific processor are classified into two types: external
(hardware serviceable interrupt) and internal. External interrupts include certain
contingencies such as non-recoverable program faults and hardware errors that must be
handled by the instruction processor. Internal interrupts include others such as arithmetic
overflows and divide faults that may optionally be handled on the scientific processor.

3.2. 1. Interrupt Responses

The response to an external interrupt consists of switching out the activity. The process of
decelerating state stores a status word indicating the cause of the interrupt into hardware
status register 0, and additional status is placed in hardware status register 2-4. The return
address program address register value is stored into scientific processor control block word
12. When an activity is switched onto a scientific processor it always begins executing at the
address in control block word 12.

The response to an internal interrupt is determined by the Internal Interrupt Control Mask
located in State register 11. Bits 0-17 of State register 8 are the indicators for the 18
possible internal interrupt causes (see 3.2.5). Each of the possible 18 internal interrupt
causes is represented by a corresponding 2-bit field in the mask.

State register 11 contains the Internal Interrupt Control Mask. For each of the interrupts
listed in 3.2.5 there are two bits in the mask word, which together control how the interrupt
is to be handled. Mask i bits and i+ 18 control the indicator .bits as follows:

i-field

o
o
1
1

o
1
o
1

Interrupt Response

Ignore entirely (do not change State register 8)
Cause asynchronous external interrupt
Cause synchronous internal interrupt
Cause synchronous external interrupt

3-4

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Operations

Basically, they allow each interrupt to be: a) ignored, b) taken as if it were external, that is,
by causing an activity switch, or c) taken internally. If the synchronous internal interrupt is
selected, the response is essentially a forced branch to the virtual address in control block
word 7, with the return address saved in State registers 12 or 13.

If mask bits 4 (Undefined Instruction) and 22 (reserved) are 0, hardware reaction is the same
as it is when bit 4 is 0 and bit 22 is 1.

3.2.2. Interrupt Identification

Interrupts are identified by interrupt indicator bits. Hardware status register 0 contains the
External Interrupt indicators, and State register 8 contains the Internal Interrupt indicators.

When an interrupt occurs that cannot be ignored, further issuing of instructions is suspended,
however, other operations in process are allowed to finish. When a quiescent state is
reached, the interrupt indicators are examined. If there is only one interrupt present, then
the appropriate status is stored and the interrupt is taken as previously described.

It is conceivable that more than one interrupt could be indicated. That would result if a
second interrupt arose while trying to complete the other operations, or if an interrupt from
an outside source (for example, a universal processor interface) happened to coincide with one
generated locally. If the interrupts are only internal interrupts, a jump is made to the
virtual address in word 7 of the scientific processor control block, and the return address is
saved in State register 12, except on a timer interrupt the return address is saved in State
register 13. The interrupt handling software tests the indicators to determine the number
and identity of the interrupts. If all interrupts are external, operation is analogous except
that, of course, an activity switch occurs.

Should both internal and external interrupts be present, both internal and external status
and indicators are set. Also, bit 35 of hardware status register 0 (Pending Internal Interrupt
flag) is set and the external s",itch is taken. Upon being switched back in at a later time the
flag is checked by the scientific processor before executing any instructions; if set, the
internal interrupts are then taken and the flag is cleared by the hardware.

NOTE: In all cases the interrupt indicators must be cleared by software handlers.

When an activity is switched onto a scientific processor, word 8 of the control block is tested.
If any bit 0-34 is set, the external interrupt is immediately taken, causing the activity to be
switched back out without executing any instructions. If bits 0-34 are clear but bit 35 is set,
the internal interrupt is taken as previously described. The Internal Interrupt indicators
(State register word 8) are not tested by the scientific processor hardware. They themselves
do not cause interrupts but are merely status bits set by hardware for use by software.

3.2.3. External Interrupts

Hardware status register 0 contains the External Interrupt indicators in bits 0-34, and bit 35
is the flag that indicates a pending internal interrupt. The occurrence of each external
interrupt condition is reflected by setting the corresponding bit in hardware status register O.

3-5

UP-11006
Jntegrated Scientific Processor System Processor and Storage Reference

Operations

Bit

o
1
2
3,4
5
6
7
8
9
10
11
12
13
14,15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33,34
35

External Interrupt Cause Indicated

Mailbox Valid bit not set or control block boundary violation
Critical environmental fault (power loss, coolant loss, etc.)
Scientific processor hardware check
Reserved
IPL Reboot Interrupt received
Error on information from storage
Error on information to storage
Multiple uncorrectable errors in storage
Real address not available
Storage internal check
Interface sequence error
Reserved
Storage interface timeout error
Reserved
An internal interrupt is taken as external
Generate Interrupt (GI) instruction
UPI interrupt received
Quantum timer runout
Program segment alignment or length error
Register save area not on correct storage boundary
Local storage base address not on correct boundary
Local storage length granularity incorrect
Program address register fault (activity segment table entry not found)
Data address fault (activity segment table entry not found)
Address limits error
Storage protection check - Execute
Storage protection check - Read
Storage protection check - Write
Data Alignment error
Attempted Test and Set/Clear or local storage segment
Program address register bits 18,19 not zero
Reserved
Pending Internal Interrupt flag

3.2.4. Internal Interrupts

Following are the definitions of the Internal Interrupt indicators, which occupy State register
word 8. Bits 0-17 are Internal Interrupt indicators and bits 30-35 store an element count if
an internal interrupt occurs during a vector instruction.

Bit Internal Interrupt Cause Indicated

o Interval Timer Runout
1 Instruction Breakpoint Compare
2 Local Storage Stack Overflow
3 Local Storage Stack Underflow
4 Undefined Instruction

3-6

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Operations

Bit

5
6
7
8
9

10
11
12
13

14-17
18-29
30-35

Internal Interrupt Cause Indicated

Vector Register Length Overflow
Divide Fault
Integer Overflow
Floating Characteristic Overflow
Single-Precision Characteristic Underflow
Double-Precision Characteristic Underflow
Data Breakpoint Compare - Read
Data Breakpoint Compare - Write
Remaining Length Overflow (Build Vector Loop)
Reserved for additional internal interrupts
Reserved
Element index status

Stack overflows simply continue counting and wrap around eventually. These cases are not
particularly useful. The terms synchronous and asynchronous have special meanings in this
context, and are defined 3.2.5.

For an Interval Timer Runout interrupt, the return address is placed into State register 13.
For all other internal interrupts, the return address is placed into State register 12. If both
kinds of interrupts occur simultaneously, both words are written. A Timer interrupt never
alters the status (interrupted instruction) in State register 9.

3.2.5. Interrupt Synchrony

Vector operations generally take longer to perform than scalar operations and usually use
different hardware. Because of this, the scientific processor permits scalar instructions
following a vector instruction to be executed as soon as the vector operation is initiated,
rather than waiting for it to be completed. Registers ensure that the functional effect of this
is no different than if instructions had been executed singly and completely.

This asynchronous initiation of scalar instructions following a vector instruction can cause
the interrupt return address captured to point to anyone of many instructions (including
jumps) beyond this vector instruction if a fault occurs during execution of the original vector
instruction.

The scientific processor provides two operational modes for program execution a fast mode
and slow mode. It is constrained to run in slow mode any time one or more of the following
bits is set; bits 5-13 of the Internal Interrupt Mask, or bit 0 of control block word 6 (called
the speed control bit). If none of these is set, then the scientific processor is permitted to
run in fast mode.

NOTE: The interrupt causes indicated by bits 5-13 can be recognized without forcing
slow mode by setting the corresponding asynchronous control bits (bits 23-31).

The scientific processor must have overlap disabled to capture arithmetic faults
synchronously. Most other faults that need to be captured synchronously are captured during
overlapped execution. For those external faults that are not captured synchronously, the
general speed control is provided.

3-7

UP-11006
Integrated Scientific Processor Systerr Processor and Storage Reference

Operations

NOTE: Synchronous and slow mode are not synonymous. Synchronous refers to the
wayan interrupt is handled, and slow is a processor mode that mayor may
not be required.

The following paragraphs define synchronous and asynchronous interrupt handling.

When a synchronous internal interrupt occurs, the return address points to the instruction
that logically follows the instruction that caused the interrupt. The instruction pointed to,
and those after it, have not been executed. Therefore a jump to the return address following
the interrupt servicing causes correct program resumption. In this situation, State register 9
holds a copy of the instruction that caused the. interrupt. If it is an Elementwise Vector
instruction, bits 30-35 of State register 8 hold the index of the element whose computation
caused the interrupt. Elements preceding that point will have been correctly performed, and
operands for the element whose computation caused the interrupt and those past that point
will not have been altered.

A synchronous (overlapped) internal interrupt may be handled either internally or externally.
In either case the status and return addresses are stored in State registers 8, 9 and 12 or 13.
For external handling, the return address is also placed into control block word 12 and bit 16
of hardware status register 0 is set to one.

For asynchronous handling of an int~rnal interrupt (internal interrupt taken as external) the
contents of State registers 9, 12, 13, and bits 30 to 35 of state register 8 are not defined. The
address in control block word 12 points to the next logical instruction to be processed.

Of the external interrupt types, the GI (bit 17) and the Address Faults (bits 24,25) are
required to appear synchronous regardless of machine mode. For the GI and Data Address
Fault, the instruction causing the interrupt is copied into hardware status register 1, and the
return address points to the next logical instruction. For a Program Address Fault, the
register contains the faulting address, and hardware status register 1 is not defined.

In fast mode all other external interrupts appear asynchronous. For them hardware status
register 1 is not defined, but the Program Address register contains the valid return address
(next logical instruction).

In slow mode all external interrupts that are caused by scientific processor instructions
become synchronous. For them hardware status register 1 contains the instruction causing
the interrupt and the Program Address register points to the next logical instruction.

If an interrupt is caused by the attempt to read an instruction, the return address in the
Program Address register points to the address where the read attempt failed. However, if
an interrupt is caused by the attempt to execute an instruction that was successfully read
and the interrupt is to be taken synchronously, the return address is one plus the address of
the interrupting instruction.

No attempt is made to completely synchronize the Internal Interval Timer when bit 0 of the
Internal Interrupt Control Mask is set. Instead, fast mode is still permitted, and the
interrupt appears asynchronous. It appears that fast mode is more desirable than perfect
synchrony when taking this interrupt internally. However, if the processor is constrained to
slow mode due to some other cause, then this interrupt will also appear synchronized.

3-8

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Operations

3.2.6. Interrupt Status

In either fast or slow mode, additional status may be placed into hardware status registers 2
and 3 by the scientific storage unit and scientific processor parity and hardware checks.

3.2.7. Internal Interrupt Handling

Because the scientific storage is not directly addressed, internal interrupt handlers need a
free G-register on which to base their data areas. State register 3 is specifically reserved as
the save area for the G-register that is used for internal interrupt handler addressing. Only
the left half of the G-register may be stored in State register 3.

3.3. Instruction Conflict Classification and Types

Instruction conflict classification is based on the different phases of instruction execution. As
each phase of execution is entered, a specific type of conflict may suspend instruction
execution. Suspension, within an instruction, may occur at any time within a phase of
execution. The resolution of the conflict may allow the instruction to enter the next phase of
execution or to resume execution within the current phase of execution. Instruction conflicts
are grouped into the following classes:

• Instruction Issue Class
• Control Word Dispatch Class
• Execution Class

Figure 3-1 shows the instruction conflict classes and conflict types.

3.3.1. Instruction Issue Class

The Instruction issue class of conflicts are detected and resolved by the instruction flow
control section in the scalar processor. Each instruction is analyzed to determine if any
conflicts exist that must be resolved before the instruction is executed in the vector processor
or the scalar processor. The existence of no conflicts allows the instruction to be executed so
any conflicts associated with the execution are detected in the next phase of execution. The
instruction issue class of conflicts are caused by the following types of conflicts:

• Destination/source register conflict
• Source/destination register conflict
• Vector control word queue (facility conflict)

3.3.2. Control Word Dispatch Class

Once an instruction has been placed into execution (issued), the control word dispatch class of
instruction conflicts are detected by the vector control, instruction flow, or scalar processor
sections. During this phase of execution the availability of facilities and operands is
examined. When the control word is dispatched the instruction is moved into its final phase
of execution.

3-9

INSTRUCTION

ISSUE

CLASS I I
REGISTER FACILITY

CONFLICTS CONFLICTS

Destination/Source Vector Control Word

Source/Destination Queue

CONTROL WORD

DISPATCH

CLASS I 1 1
REGISTER FACILITY DATA AVAILABLE

CONFLICTS CONFLICTS CONFLICTS

Sou rce/Desti n ati 0 n Multiply Busy Storage Interface

Destination/Destination Vector Register Time Slot Vector Operand Wait

Ownership Instruction Out of Order Local Storage Operand

Wait

Shadow G Update Store Buffer Available

Load Buffer Data

INSTRUCTION

EXECUTION

CLASS I I
REGISTER FACILITY

CONFLICTS CONFLICTS

Vector Register Usage Store Buffer Available

Conflict Not Possible

Figure 3-1. Instruction Conflict Classes and Conflict Types

I
UNIT WAIT

CONFLICT

Mode Change

c
7'
o o
en

ocn
'0'<
CD en
~ i
=.3
o "'tJ
::J """ en 0

W
I -o

n
CD
en
en
o
"""

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Operations

The control word dispatch class of conflicts are caused by the following types of conflicts.

• Register conflict

• Facility conflict

• Data available conflict

• Unit wait conflict

3.3.3. Instruction Execution Class

The instruction execution class of conflicts are detected and resolved during Vector
instruction execution. Detection does not start until the vector control section has dispatched
the instruction to one of the following pipelines for execution:

• Add Pipe

• Multiply Pipe

• Move Pipe

• Vector Load

• Vector Store

• Scalar Control

The instruction execution class of conflicts are caused by register conflicts and facility
conflicts. Register conflicts are detected by the vector control section at any point during
instruction execution. Facility conflicts are detected by the pipeline at specific points of
execution. All are resolved by the pipeline executing the instruction.

3.3.4. Register Conflicts

Instruction execution is suspended when one of the following register conflicts occurs:

Destination/Source

A register destination/source conflict occurs when a previously issued instruction is using the
information stored in the same register that an instruction to be issued or waiting to
continue execution is referencing.

Source/Destination

A register source/destination conflict occurs when an instruction to be issued or waiting to
continue execution is transferring information from the same register that is being referenced
by a previously issued instruction.

3-11

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Operations

Desti nation/Desti nation

The register destination/destination conflict occurs when an instruction to be issued or
waiting to continue execution is referencing the same register that is being referenced by a
previously issued instruction. This conflict detection ensures that a register ends up with the
corrected results when instructions complete out of the order they were issued.

Ownership

A register ownership conflict occurs when an instruction requires a working register for
execution that is in use by a previously issued instruction. When this conflict occurs the
order of register ownership priority is the order in which the instructions were issued.

Vector Register Usage

An instruction attempts to use or alter a Vector register element before some prior
instruction is finished with it.

3.3.5. Facility Conflicts

Facility conflicts occur when an instruction is delayed because a previously issued instruction
is in the logic section. The following are the specific types of facility conflicts:

Vector Control Word Queue

The vector control section holds an instruction, because the pipeline that executes it is busy
with a prior instruction (or because of some other facilities conflicts). The instruction flow
con trol section may issue another instruction to the vector processor, however this one is held
by the instruction flow control section until the vector control is ready to accept it. Both
instruction flow control and vector control need to detect this situation and hold an
instruction.

Multiply Busy

The multiply busy facility conflict occurs in the scalar processor when the multiply logic is
executing a scalar multiply instruction, and a second instruction is waiting to use the
multiply logic.

Vector Register Time Slot

The vector register time slot reservation mechanism in the vector control section is used as
each instruction is executed. If the required time slots are not available, then the instruction
is held in vector control.

3-12

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Operations

Instruction Out of Order

Instructions for the vector processor are issued by the instruction flow control section in the
scalar processor in program order. Sometimes, the vector control section initiates those
instructions into execution out of program order. When this occurs, there cannot be a
conflict in the bypassed instruction.

Store Buffer Available

The store buffer available facility conflict is used by all instructions that the vector store
section executes. The vector store section detects that the Store/Index buffer in the scalar
processor module does not have address space available to transfer data from the vector
register.

In the scalar processor, multiple store operations are allowed to complete when the Store
Buffer is available.

Conflict Not Possible

The conflict not possible facility conflict determines that an instruction cannot have a vector
register logical data usage conflict with some prior instruction. The five pipelines use this to
determine when the vector register time slot reservations can be released. The early release
of the vector register timeslots is necessary to allow proper overlay operation of subsequent
instructions.

3.3.6. Data Available Conflicts

Instruction execution may be suspended because the operand requested at instruction issue
has not arrived. Operand wait conflicts may occur because of one of the following:

Storage Interface Operand Wait

This conflict is the result of the scalar processor waiting on an operand from the scientific
storage unit.

Vector Operand Wait

This conflict in the scalar processor occurs because a RR format instruction requiring an
element from a vector register as an operand or a Reduction instruction results to a
G-register.

Local Storage Operand Wait

This conflict occurs in the scalar processor when the results of a Store instruction to local
storage is required as an operand by the instruction following the store.

3-13

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Operations

Load Buffer Data

Certain required data for an instruction is not yet available. This is not a conflict between
instructions, rather it is because two (or more) asynchronous (to each other) sections of logic
participating in the execution of an instruction. This mechanism is used by all instructions
that the vector load pipeline executes. The vector load section detects that data is not
available in the load buffer to be transferred into the Vector registers. An example of how
the conflict can occur is an interruption in the data from the scientific processor storage due
to system contention.

3.3.7. Unit Wait Conflicts

The unit wait conflict occurs in the scalar processor when issued instruction may change the
mode of the scientific processor. Under this condition the processor must reach a quiescent
state before the instruction can continue execution.

3-14

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4. Scientific Processor Instructions

This section describes the instruction word formats and the instruction set.

4. 1. Introduction

The scientific processor instruction set consists of scalar, vector and control instructions. The
scalar instructions compute or move one or more scalar data operands. A two-operand
instruction format specifies operations for the scalar instructions. The vector instructions
compute and move one or more vector operands located in vector registers. The vector
instruction operands are specified by a three-operand instruction format. The scientific
processor control instructions include: loop control, jump, and state instructions.

In vector computations the first element of one source vector is operated on together with the
first element of the other source vector to produce the first element of the result vector.
Then the second element of the sources are operated on to form the second element of the
result vector, and so on. Necessarily both source vectors must be of the same length, and the
operation produces a result vector of that length.

The vector instructions specify a length parameter to allow faster operation in those cases
where fewer than the maximum number of elements in a file are to be processed. The
two-bit I-field uses (see VV format in 4.2) values 0-3 respectively to select ELCNT, NELCNT,
ALT1 and ALT2 from the Vector Loop register identified by the current value of CVLP. The
selected parameter specifies the number of elements to process. Processing begins with the
first elements and proceeds for the designated number of elements.

NOTE: Zero is a valid length parameter value, and indicates no elements.

4.2. Instruction Word Formats

All scientific processor instructions are 36 bits in length and have three basic formats:
register-to-storage (RS), register-to-register (RR), and vector-to-vector (VV). The common
fields of all formats is described followed by a description of each format. Detailed variations
are included with each instruction definition in Section 4.3 through 4.19.

4-1

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions·

Bit positions in the instruction diagrams not used by the instruction on non-vector
instructions require that zeros be put in these positions. Correct operation is not guaranteed
should a non-zero appear in any position. For vector instructions, in which the three-bit s1
or s2 fields are not used, a value of 001 should be encoded into each 3-bit s-field as shown in
4.2.1.

The three formats and their respective fields are:

RS Format

r 1

(OP1)
b

u

(OP2)

o 67 9 10 13 14 17 18 19 20 35

RR Format

r * r * r * r 4
f t 1 2 05 3 5 * 5 * 5 *

(OP1) (OP2) (OP3) (OP4) 1 2 3

o 6 7 9 10 13 14 17 18 19 20 23 24 2728 3031 33 34 35

W Format

v * v * v3
f t 1 2 I 05 S * 5 * c

(OP1) (OP2) (OP3) 1 2

o 6 7 9 10 13 14 17 18 19 20 23 24 27 28 30 31 33 34 35

* The S-, r- or v-fields with corresponding subscripts operate together.

4.2. 1. Common Fields

The common instruction fields are defined as follows:

f-field

The f-field (function code) specifies the operation to be performed, and also provides
additional definition for the other instruction fields.

t-field

The t-field specifies the data type. In general, even values indicate single-precision data and
odd values double-precision data. All operands are assumed to be of the specified type, with
logical and arithmetic operatIons perf{)tmed according-to.that type. Numerical formats are
standard Series 1100 ones-complement.

4-2

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

t-field

o
1
2
3

4-7

Definition

Single-precision integer
Double-precision integer
Single-precision floating-point real
Double-precision floating-point real
Reserved

Some instructions use a one- or two-bit t-field rather than a three-bit t-field. Some other
instructions need additional data and assign special meanings to those bits of the t-field not
required to specify size or data type.

With the exception of a floating-point add, all floating-point input operands must be in
correctly normalized form. When normalized inputs are used, results are in correct
normalized form. The normalized form of zero is all zeroes for the sign, characteristic, and
mantissa. An unnormalized input operand produces undefined results. An exception occurs
during floating-point adds. When a normalized 0 is added to an unnormalized operand, the
result will be normalized.

s-field

The s-field value selects the associated operand as being a part of a particular register set
(G-register, S-register, or the vector register set). In many instructions only a subset of the
eight possible s-field values is allowed. In those cases the s-field is shown with less than
three bits.

r-field

The r-field value selects the appropriate register number within the register set implied by
the instruction or the s-field select.

v-field

The v-field value selects the appropriate vector file number within the vector file set implied
by the instruction or the s-field select.

I-field

The I-field value seI,ects the source for the maximum number of elements to be processed
according to the vector instruction. Values 0 through 3 select the element count, next
element count, first alternate element count, and second alternate element count respectively.
These values are based on the contents of the Vector Loop register pointed to by the current
value of the Current Vector Loop Pointer (CVLP).

c-field

The c-field value specifies how the 64 single-precision or 32 double-precision Mask register
bits are used.

4-3

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

If the c-field value equals 0 or 2, write operations to all vector file elements used by an
instruction are controlled by that instruction, that is, mask data has no effect.

If the c-field value equals 1, a WRITE ENABLE signal is active only for those elements that
have 0 in their associated bit positions in the Mask register.

If the c-field value equals 3, a WRITE ENABLE signal is active only for those elements that
have a 1 in their associated bit positions in the Mask register.

Operations disabled by the Mask control do not produce results, do not generate interrupts
(for example, zero divide, address faults, etc), and do not alter the corresponding destination
vector file location.

4.2.2. Register-to-Storage (RS) Format

The RS format is used for most scalar operations. The b- and u-fields together specify a
storage location for operand 2 (OP2) in either local storage or scientific storage. The rl-field
selects a register from the G-register set to be used as operand 1 (OPl). Arithmetic and
logical operations generally consist of combining the storage operand (OP2) and the rl-field
selected operand (OPl) and storing the result in the rl-OPI location. The u-field is used as
the offset in the storage space selected under control of the b-field interpretation to locate
OP2.

The b-field value selects either local storage or the scientific storage as the address space for
the OP2 location. If the b-field is 0, then the u-field forms the 16-bit offset into the local
storage segment. If the b-field is 15, then the II-bit Pointer field of State register 7 has the
five rightmost bits of the instruction u-field catenated on its right to form the local storage
segment address.

When the resultant offset for b=O or 15 is less than 4K, the local storage is referenced;
otherwise the scientific storage is accessed using the activity segment table 0 base plus offset.

If the b-field value is 1 through 14, the u-field value is treated as a non-negative offset and
to it is added the 36-bit virtual address from the G-register specified by the b-field to form
the target virtual address. In order for the reference to be valid, both the target virtual
address and the original virtual address in the G-register must be translated to a real
address by the activity segment table entries and also meet the access permission conditions.

4.2.3. Register-to-Register (RR) Format

The RR format is used for scalar instructions that do not specify a storage location local
storage or scientific storage as any of the three operands. The source operands and the
destination are always registers or Vector files. This format permits three distinct locations
for the three operands of a dyadic operation. Each of the three operand locations is specified
by a corresponding s-field and r-field. The s-field value selects the set of registers or files
and the related accessing information, and the r-field specifies the register number within
the s-field selected set. The fourth r-field provides additional specification in certain special
instances.

The s-field definitions vary somewhat from one class of RR format instructions to another,
and usually only a subset of all possible values is defined for a particular instruction.

4-4

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4.2.4. Vector-to-Vector (VV) Format

The VV format is used to specify vector operations. Operand 2, specified by s2 and v 2' is
combined with operand 1 (sl' v1)' and the result of each individual element within the vector
is placed into the operand 3 location.

The sl- and s2-fields each specify one of two possible ways for obtaining the corresponding
source vector. For an s-field value of 1, the elements of the vector are taken from successive
locations of the vector file specified by the corresponding v Jield. For an s-field value of 0,
the scalar value from the G-register specified by the v-field is broadcast, that is it is
replicated internally to create an artificial vector of identical values. For vector
computations the result is always a vector (even if sl =s2=0). It is placed in the vector file
specified by v 3 (an s3-field is not required for this result).

4.3. Scalar Arithmetic Computational Instructions

The scalar arithmetic computational instructions provide instructions to perform addition,
subtraction, multiplication, division, and absolute value arithmetic operations. These
instructions use the following register-to-storage (RS) and register-to-register (RR) formats:

RS Format

r 1
b

u

(OP1) (OP2)

o 6 7 9 10 13 14 17 18 19 20 35

RR Format

f t
r 1 r 2

05
r 3

05 51 52 53
(OP1) (OP2) (OP3)

o 6 7 9 10 13 14 17 18 19 20 23 24 27 28 30 31 33 34 35

1. Common fields (f-, t , r-, S-, and v-) are defined in 4.2.1.

2. OP1=operand 1, OP2=operand 2, and OP3=operand 3.

In the RS format, OP1 is the G-register specified by the r1-field, and OP2 is the storage
location specified by the b-and u-fields. In the RR format, OP1, OP2, and OP3 are each
specified by a 4-bit r-field and I-bit of the s-field numbered accordingly. A value of 0 in the
s-bit specifies the G-register selected by the r-field. A 1 bit in the identified s-field specifies
a vector file element whose file number is given by the r-field and whose element number is
given by element pointer of the loop control stack entry pointed to by the current element
loop pointer. An element pointer value of 64 or greater for single-precision operands, or 32
or greater for double-precision operands causes a vector register length overflow.

In both formats OP1 and OP2 are sources. In the RS format, OP1 is also the destination for
the result. In the RR format, the destination is OP3. Single-precision G-register operands
are always assumed to be in the left half of the register.

4-5

UP-ll006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

The t-field for this instruction type has the following definition:

t-field

o
1
2
3

4-7

Definition

Single-precision integer
Double-precision integer
Single-precision floating-point real
Double-precision floating-point real
Reserved (causes undefined instruction interrupts)

The t-field applies equally to all source and destination operands unless otherwise specified.

4.3. 1. Add (A, DA, FA, DFA, AR, DAR, FAR, DFAR)

Adds OP1 and OP2 source operands together and places the result in the destination location
(either OP1 or OP3). This operation is defined for all values of the t-field.

The result is of the same precision as the sources; there is no residue word. In floating-point
operations, a result of all Os (sign, characteristic, and mantissa) is forced if the mantissa
value is computed as +0 or -0. For integer operations, ones complement, subtractive addition
is used so that a -0 result can be produced only when both source operands are -0. On an
overflow, if the interrupt is not enabled, the truncated value is the result.

4.3.2. Add Negative (AN, DAN, FAN, DFAN, ANR, DANR, FANR, DFANR)

Subtracts the OP2 source operand from OPl. This is done by subtractive addition of the ones
complement of OP2 to OPl. In all other respects the operation is similar to Add.

4.3.3. Multiply (MSI, MI, FM, DFM, MSIR, MIR, FMR, OFMR)

Forms the product of the source operands and places it in the destination. This operation is
similar to scalar add, except that a standard double-precision integer is not supported.
Instead, a t-field value of 1 specifies a form that the source operands are accepted as
single-precision integers and the product is a double-precision integer. This operation is not
defined if both s3 and either s1 or s2 are 1 in the RR format.

NOTE: Single-precision integer type (t=O) produces a single-precision product; a value
that exceeds single-word capacity causes an overflow.

4.3.4. Divide (DSI, 01, FO, DFO, OSIR, DIR, FDR, OFDR)

Divides the OP1 source operand by OP2 with no remaindeLP!,o_cluced. All operands are of the
same type and precision except when the t-field equals 1. A stan.dard double-precision
integer is not supported.

4-6

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

In the t-field equals 1, case the dividend is accepted as a double-precision integer, but the
divisor and quotient are single-precision integers. If the divisor is not zero but smaller in
magnitude than the dividend by a factor of 235 or more, then an integer overflow fault
occurs. If the fault is ignored, the result stored is not defined. Double-precision integer
operations (t= 1) are undefined if s1 and either s2 or s3 equal 1 in the RR format.

4.3.5. Absolute Value (EM, OEM, EMR, OEMR)

The OP2 source is examined for its algebraic sign. If it is non-negative, the source value is
copied to the destination. If the sign is negative (including -0), the complemented source
value is copied to the destination. Destination is OP1 in RS format, OP3 in RR format. In
the RR format, OP1 is not used, and the r- and s-fields should contain Os. These
instructions use the following RS and RR formats:

RS Format

o

RR Format

f

o

6 7

6 7

t

OOx

t

OOx

r,
b

(OP1)

9 10 13 14

r, r 2

(Os) (OP2)

9 10 13 14

NOTE: x indicates bits not used in the field.

17 18 19 20

Os r 3

(OP3)

17 18 19 20

4.3.6. Count Leading Signs (ESC, OESC, ESCR, OESeR)

u

(OP2)

35

5, 52 53 Os
000 OxO xO

23 24 2728 3031 33 34 35

The OP2 source is examined and a count is made of the number of consecutive bits beginning
with bit number one that have the same value as bit zero. The count value is in the range
0-35 for a single-precision source and 0-71 for a double-precision source. Only t-field values
of 0 and 1 are permitted. The count value is placed into the destination (OP1 in RS format,
OP3 in RR format). In the RR format, OP1 is not used, and the r1- and s1-fields must
contain Os. The destination is defined to be single-precision regardless of the source
(single-precision or double-precision). Double-precision operations (t= 1) are undefined if both
s2 and s3 are 1 in the RR format. These instructions use the following RS and RR formats.

RS Format

o 6 7

t

OOx
r,

(OP1)

9 10

u
Os

(OP2)

13 14 17 18 19 20 35

4-7

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

RR Format

t r 1 r 2 Os r3 Os 51
f

OOx (Os) (OP2) (OP3) 000
52 s3

OxO xO

o 6 7 9 10 13 14 17 18 19 20 23 24 27 28 30 31 33 34 35

NOTE x indicates bits not used in the field.

4.4. Scalar Logical Computational Instructions

The scalar logical computational instructions provide instructions to perform basic Boolean
functions bit-for-bit on the two source operands to form the result operands. These
instructions use the following RS and RR formats:

RS Format

xxx

o 67

RR Format

f
t

xxx

o 6 7

9 10

9 10

r 1

(OP1)

r 1
(OP1)

b

13 14

r 2
(OP2)

13 14

NOTE' x indicates bits not used in the field.

u

(OP2)

17 18 19 20 35

r 3 S1 s2 s3 Os Os
(OP3) OxO OxO xO

17 18 19 20 23 24 2728 3031 33 34 35

The s1-' s2-' and s3-fields determine the location of operands OPI, OP2, and OP3 as either a
G-register or a vector file element.

The t-field also acts as a partial OP code modifier in that it specifies the particular logical
function, thereby allowing all logical instructions to share a common f-field value. The
t-field encoding is:

t-field ---

o
1
2
3
4

·5
6-7

Definition

Single-precision logical AND
Double-precision logical AND
Single-precision logical OR
Double-precision logical OR
Single-precision logical XOR
Double-precision logical XOR
Not used (causes undefined operation)

4-8

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4.4.1. Logical AND (AND, DAND, ANDR, DANDR)

Forms the logical product (AND) of the two sources and places it in the destination.
Operation is bit-for-bit combining each of the 36 or 72 bits of one source with the
corresponding bit from the second source to produce the 36- or 72-bit result.

4.4.2. Logical OR (OR, DOR, ORR, DORR)

Forms the logical sum (OR) of the two sources and places it in the destination.

4.4.3. Exclusive OR (XOR, DXOR, XORR, DXORR)

Forms the logical difference (XOR) of the two sources and places it in the destination.

4.5. Scalar Comparison Instruction

The scalar comparison instruction compares the values of the OP1 and OP2 sources. The
result of the comparison is used to set a 2-bit value in the scalar condition code (SCC) field
in State register 6.

SCC InterEretation

0 OPt = OP2
1 OPt > OP2
2 OPt < OP2
3 Reserved

For scalar comparisons +0 and -0 are considered equal to each other.

4.5. 1. Compare (C, DC, CR, DCR)

Compares the value of OP1 to OP2 sources by subtracting OP2 from OP1, and indicates the
result via the SCC. The t-field specifies either single-precision (t=O) or double-precision
(t= 1). In biased-exponent one's complement, two floating-point values can be correctly
compared using integer comparison circuitry. The compare instruction uses the following RS
and RR formats:

RS Format

o

RR Format

f

o

67

6 7

t

OOx

t

OOx

9 10

9 10

r,
(OP1)

r,
(OP1)

b

13 14

r 2

(OP2)

13 14

NOTE' x indicates bits not used in the field.

u

(OP2)

17 18 19 20 35

5, 52 53
05

OxO OxO 00

17 18 27 28 30 31 33 34 35

4-9

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions·

4.6. Scalar Type Conversion Instruction

The scalar type conversion instruction allows an operand of one type to be directly converted
to an equivalent value in another type.

4.6.1. Convert (CIDIR, CIFR, CIDFR, CDIIR, CDIFR, CDIDFR, CFIR, CFDIR, CFDFR, CDFIR,
CDFDIR, CDFFR)

Converts the OP2 source operand from type t2 to t3' The result is placed into the OP3
location. The results are undefined when t2 is equal to t3' The s-field and r-field definitions
are as for the RR format. Definitions of both t-fields (t2 and t 3) are any of the values shown:

t-field Definition

o Single-precision integer
1 Double-precision integer
2 Single-precision floating-point real
3 Double-precision floating-point real

4-7 Reserved (causes undefined operation)

Floating-point inputs must be in correct normalized form.
floating-point outputs are always in correct normalized form.

Given correct inputs,

Conversions from double-precision to single-precision, and from floating-point to integer, may
cause overflow conditions. Loss of precision does not constitute an overflow situation.
Conversions involving a reduction in precision are performed by truncating rather than by
rounding. The convert instruction uses the following RR format:

RR Format

t Os r 2 r 3 t S1 52 53 f Os
OOx (OP1) (OP2) (OP3) xx 000 OxO xO

o 6 7 9 10 13 14 17 18 19 20 25262728 3031 33 34 35

4.7. Scalar Shift Instructions

The scalar shift instructions allow data to be displaced, that is, scaled left or right with
respect to an implied reference point, while optionally moving the data from one container to
another. Both three-operand and two-operand formats are provided. The source operand to
be shifted is OPI. The shift count is given by the rightmost seven bits of the OP2 source
operand, which are interpreted as an unsigned binary· quantity ranging in value from 0
through 127. However, correct operation is guaranteed only for shift count values in the
range 0 through 72. These instructions use the following RS and RR formats:

4-10

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

RS Format

I oio I: I r 1

I I

u
b Os

(OP1) (OP2)

0 6 7 8 9 10 13 14 17 18 19 20

RR Format

j t r 1 r 2 r 3 5,
f Os Os

00 x (OP1) (OP2) (OP3) OxO

35

s2 S3

OxO xO

o 6 7 8 9 10 13 14 17 18 19 20 23 24 27 28 30 31 33 34 35

NOTE x indicates bits not used in the field.

In the RS format, OP1 is also the destination for the shifted data. In the RR format, the
result is placed into OP3, and the OP1 contents are unaltered.

Since shift operands are essentially typeless data, the t-field specifies only single-word (t=O)
and double-word (t= 1). However, the t-field applies to OP1 and OP3 only. Double-precision
operations (t= 1) are undefined if s2 and either s1 or s3 are 1 in the RR format. OP2 is
considered single-word regardless of the t-field value. The j-field specifies the nature of the
shift as:

o
1
2
3

Kind of Shift

Shift right logical (zero fill)
Shift right algebraic (sign fill)
Shift left logical (zero fill)
Shift left circular

4.7.1. Shift Right Logical (SSL, DSL, SSLR, DSLR)

Shifts the OP1 source value to the right the number of bit positions specified by the OP2
operand and places the result into the destination location. Bits shifted off the right are
discarded, and Os are used for fill on the left.

4.7.2. Shift Right Algebraic (SSA, DSA, SSAR, DSAR)

Shifts the OP1 source value to the right the number of bit positions specified by OP2, and
places the result in the destination location. Bits shifted off the right are discarded, and bits
supplied to the left are replicated sign bits.

4.7.3. Shift Left Logical (LSSL, LDSL, LSSLR, LDSLR)

Shifts the OP1 source value to the left the number of bit positions specified by OP2, and
places the result in the destination location. Bits shifted off the left are discarded (there is
no overflow) and bits supplied to the right are always Os.

4-11

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4.7.4. Shift Left Circular (LSSC, LOSC, LSSCR, LOSCR)

Operates the same as the Shift Left Logical instruction, except that bits supplied to the right
are exactly those shifted to the left.

4.8. Scalar Move Instructions

The scalar move instructions move data from one location to another. In general they can
access more locations than the computational instructions. The scalar move instructions are
divided into two types of instructions: storage move instructions and move register-to-register
instructions.

4.8.1. Storage Move Instructions

The storage move instructions use the following RS format:

RS Format

r 1
b

u

(OP1) (OP2)

o 6 7 8 9 10 13 14 17 18 19 20 35

The operand is either one word (t-field equals 0) or two words (t-field equals 1) long. The
sl-field locates the OP1 operand as follows:

sl-field

o

1

2,3

OP1 Location

G-register <r1>; location is either left half (t=O) or entire double
word (t=l).

G-register right half < r1 >; t-field must be 0 (an undefined
instruction interrupt occurs if t-field is not 0).

Reserved.

Load Register (L, DL, LS)

The storage operand (OP2) specified by the b- and u-fields is obtained and placed into the
OP1 location specified by the t-, sl-' and r1-fields.

Store Register (S, OS, SS)

The operation of this instruction is the inverse of the Load instruction. This instruction
moves the operand OP1 from the register location to the storage location OP2.

4-12

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4.8.2. Move Register-to-Register Instructions

The source operand, specified by s2-' r2-' and q2-fields is obtained and copied into the
destination location specified by the sl-' r1-' and q1-fields. This instruction uses the
following RR format:

RR Format

o 6 7 8 9 10

r 1

(OP1)

13 14

r 2

(OP2) I , I 51

17 18 19 20 23 24 2728 3031 33 34 35

The t-field specifies either single-precision (t=O) or double-precision (t= 1). The I-field
selects one of four sources from which to acquire additional pointer or length information by
specified combinations of the s- and r-fields. The sl- and s2-fields are defined as follows:

s-field

o

1

2

3

4

5

6

7

Operand Location

G-register, same as for scalar Load instruction (based on the
t-field).

S registers 0-15, selected by r-field values of 0-15 respectively.
Valid only for t=o.

The vector file element where the r-field specifies the file
number, and element pointer of the Element Loop register pointed
at by the current element loop pointer specifies the element
number.

Reserved.

Right half of G-register specified by the r-field; the t-field value
must be o.

The t-field value must be 0.*

Elemen t 0 of file r.

The element of the r-field specified vector file that is specified by
bits 31-35 (t= 1) or bits 30-35 (t=O) of the G-register specified by
q.

* An s-fieJd value of 5 makes available certain parameter values selected by the following values

of the rrfield specified source operands or the r1 specified destination operand and l-fields:

4-13

UP-11006

r-field

0,1

2

3

4

5

6

7

8

9

10

11

12

13

14,15

Integrated Scientific Processor System Processor and Storage Reference
Scientific Processor Instructions

Operand Location or
Parameter Value

Reserved.

Number of Is in the mask

N umber of Os in the mask

Index of the first 1 in the mask

Index of the first 0 in the mask

Index of the last 1 in the mask

Index of the last 0 in the mask

Length parameter value (RL)

Stri p size (MZ)

Maximum element count value

Element pointer value

Alternate element pointer 1 field

Alternate element pointer 2 field

Reserved

s=5 Parameter
Selection

None

Specified by r2

Specified by r2

Specified by r2

Specified by r2

Specified by r2

Specified by r2

Specified by r2

Specified by r2

Specified by r2

Source specified by r2

Destination specified by rl

Destination specified by rl

None

The r-field values are computed as follows:

In computing the values for r=2-7, the mask is treated as a bit string whose length is
determined by the I-field of the instruction. Values of 0-3 in the I-field select ELCNT,
NELCNT, ALTl, and ALT2 respectively, and the selected parameter specifies the number of
mask bits to inspect. Mask bits beyond this length are entirely ignored. Index refers to the
bit's position within the mask. Bits are numbered from the left starting with zero. If, when
r=4-7, the desired bit does not exist (e.g., the mask is all zeroes and r=4), then the operand
value defaults to the value of the length parameter defined by the I-field.

The values produced by r=8,9 are based upon the contents of the Vector Loop register
currently pointed at by CVLP (r=8 also makes use of .the instruction I-field as previously
defined). The strip size value is 64 if MZ=O and 32 if MZ= 1. The values produced by
r= 10,11 are copied from the Element Loop register pointed at by the current value of the
current element loop pointer. The fields specified by r=12,13 are those in the Vector Loop
register currently pointed at by CVLP.

Only r-field values of 2-11 are permitted as source operands, and only r-field values of 12-13
are permitted as destinations. If other values are used the results are not defined. When
writing into the ALT fields, only the rightmost seven bits of the source operand are
transferred, other bits being discarded and ignored.

4-14

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

Move Scalar (MS, DMS)

Interprets move instructions to move the source operand to the destination operand.

Move Negative Scalar (MNS, DMNS)

This instruction is similar to the Move Negative Scalar instruction, except that the one's
complement of the source operand is moved to the destination.

4.9. Vector Arithmetic Instructions

The vector arithmetic instructions provide instructions to perform the basic arithmetic
operations on vector operands. The term operand refers to an entire strip of a vector; the
individual data values in the vector are called elements. These instructions use the following
VV format:

VV Format

t v 1 v2 V3 51 52 C
f I Os

Oxx (OP1) (OP2) (OP3) OOx OOx xx

o 6 7 9 10 13 14 17 18 19 20 23 24 27 28 29 30 31 33 34 35

The two source operands, OPI and OP2, are each specified by the v-field and the s-field. If
the s-field is 1, then the v-field specifies the vector file whose contents are the source vector.
If the s-field is 0, then the v-field selects a G-register whose value is replicated to form a
vector of identical values. If both s-field bits are 0, the result vector is unpredictable.

The I-field specifies the length limitation parameter as explained in the preceding section.
The c-field allows a further selection of elements within this length. Encoding of this field is
as follows:

c-field

° 1
2
3

Elements upon which Processing Occurs

All (mask is ignored).
Elements whose positions correspond to Os in the mask
All (mask is ignored).
Elements whose positions correspond to Is in the mask

The destination location is a vector file, and is specified by the v3 field (OP3). Element
locations in the destination file for which the operation is not completed, because the
locations are beyond the current strip length limit, or being masked out by the conditional
mask, are left undisturbed by the instruction execution. The computations for masked
elements are logically performed, but they cannot cause fault conditions (such as overflow or
zero divide).

The t-field specifies the data type and operation type for the vector arithmetic instructions as
follows:

4-15

UP-11006

t-field

o
1
2
3

4-7

Integrated Scientific Processor System Processor and Storage Reference
Scientific Processor Instructions

Definition

Single-precision integer
Double-precision integer
Single-precision floating-point real
Double-precision floating-point real
Reserved

Except as noted within the instructions, the t-field applies to both sources and also to the
result produced.

4.9.1. Add Vector (AV, DAV, FAV, DFAV)

Adds the OPI and OP2 source vectors together and places the resultant vector into the
destination file. In floating-point, an all-zero (sign, characteristic, and mantissa) element is
forced if the computed mantissa value is +0 or -0. Integers use subtractive addition as for
scalar adds.

4.9.2. Add Negative Vector (ANV, DANV, FANV, DFANV)

Subtracts the OP2 source vector from the OPI source vector. In other respects operation is
similar to the Add Vector instruction.

4.9.3. Multiply Vector (MSIV, MLlV, FMV, DFMV)

Multiplies the OPI and OP2 source vectors together to form the resultant product vector. In
other respects operation is similar to the Add Vector instruction, except that double-precision
integer type is not directly supported. Instead, t= 1 defines an operation in which the source
operands are accepted single-precision integers, and a single-word result is produced. Its
value is the full algebraic product shifted 36 places right, sign extended (t=O produces the
right half and t= 1 produces the left half of the full double-word product.)

NOT-E: The integer overflow interrupt must be masked off when using t=O to produce
the right half of the double-word product.

4.9-4. Divide Vector (DSIV, FDV, DFDV)

Divides the OPI source vector by the OP2 source vector. No remainder is produced. A
quotient vector is produced that is placed into the destination file. Division by zero causes a
divide fault condition. In other respects, operation is similar to the Add Vector instruction,
except that the double-precision integer type is not supported. The t= 1 value is reserved.

4-16

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4.9.5. Absolute Value (EMV, DEMV)

Computes the absolute value of source operand OP2 and places the result into the destination
file. Source operand OP1 is not used so the vI-field should be 0 and the si-field should be 1.

4.9.6. Negative Vector (MNV, DMNV)

Places the ones complement of the OP2 source vector into the destination file. Source
operand OP1 is not used so the vI-field should be 0 and the si-field should be 1.

4.9.7. Vector Shifts (SSLV, DSLV, SSAV, DSAV, LSSLV, LDSLV, LSSCV, LDSCV)

The vector shift instructions allow a vector of elements (OP1) to be shifted by a vector of
shift counts (OP2). The resultant vector is placed into OP3, and OP1 is not altered. The
instruction format is:

W Format

I I

o

o 6 7 8 9 10 13 14 17 18 19 20 23 24 27 28 30 31 33 34 35

The t-field specifies whether the shift data (OP1,OP3) is single-word (t=O) or double-word
(t= 1). In either case OP2 is always treated as single-word, and the shift count is extracted
from the rightmost seven bits and interpreted as an unsigned binary quantity in the range
0-127. Operation is not defined if OP2 and OP3 specify the same vector register and t=1, or
if the shift count exceeds 72.

The j-field specifies the kind of shift:

o
1
2
3

Kind of shift

Shift Right Logical (zero fill)
Shift Right Algebraic (sign fill)
Shift Left Logical (zero fill)
Shift Left Circular

Shift definitions are the same as the scalar shift instructions, see 4.7.

4.10. Vector Bit Evaluation Instructions

The vector bit evaluation instructions provide instructions to perform count leading signs
vector, population count vector, and population parity count operation.

4-17

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4.10.1. Count Leading Signs Vector (ESCV, DESCV)

The elements of the source vector (OP2) are examined, and for each a count is made of the
number of consecutive bits, beginning with bit 1, that have the same value as bit O. The
vector of counts is placed into the destination (OP3). The source is either single- or
double-word, but the result is always a single word. The instruction format is:

VV Format

t

I I
s, s2

I I
Os v2 v3 Os C

OOx 0t0tx OOx

0 6 7 8 9 10 13 14 17 18 19 20 23 24 27 28 3031 33 34 35

4.10.2. Population Count Vector (EBCV)

This instruction uses the following VV format:

VV Format

OOx
Os I I Os

o 6 7 8 9 10 13 14 17 18 19 20 23 24 2728 3031 33 34 35

This instruction examines the elements of the source vector OP2, and a count is made for
each of the number of bits set to 1. The vector containing the counts is placed into the
destination operand OP3. This instruction is only supported with the t-field equal to zero.
Both the source and the result must be single-precision.

4.10.3. Population Parity Count (EBPV)

This instruction uses the following VV format:

VV Format

o

t

OOx

6 7 8 9 10

Os

13 14

I I Os

17 18 19 20 23 24

s,
001

27 28 30 31 33 34 35

This instruction examines the elements of th_e source vector, OP2, to determine the number of
bits set to 1 in each element. If this number is odd, the result Is set to the integer value
plus one. If this number is even, the result is set to the integer value plus zero. The results
are placed into the destination operand OP3. This instruction is only supported with the
t-field equal to zero. Both the source and the destination must be single-precision.

4-18

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4.11. Vector Logical Instructions

The vector logical instructions provide instructions to perform Boolean functions bitwise per
element pair and elementwise through the vectors. They are specified by the VV format as
defined for the vector arithmetic instructions. These instructions operate similar to the
vector instructions, except that the t-field is defined as follows:

t-field

o
1
2
3
4
5

6,7

Definition

Single-precision logical AND
Double-precision logical AND
Single-precision logical OR
Double-precision logical OR
Single-precision logical XOR
Double-precision logical XOR
Not used

4.11.1. Logical AND Vector (ANDV, DANDV)

Forms the logical product (AND) of the source vectors and places the result into the
destination file.

4.11.2. Logical OR Vector (ORV, DORV)

Forms the logical sum (OR) of the source vectors and places the result into the destination
file.

4.11.3. Logical Exclusive OR Vector (XORV, DXORV)

Forms the logical difference (XOR) of the source vectors and places. the result into the
destination file.

4.12. Elementwise Comparison Instruction

The elementwise comparison instruction uses a modified form of the VV format as shown
here.

VV Format

o 6 7

t

OOx

9 10

v, I I
13 14 17 18 19 20

O's
5,

OOx

25 26 27 28 30 31 33 34 35

The s-, v-, 1-, and c-fields function as defined for the vector arithmetic instructions. The
instruction compares OPl to OP2 to produce a condition vector according to the specified
relation (j-field), and places it into the mask register.

4-19

UP-ll006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

The selection of relation is done by the j-field encoded as:

o
1
2
3

Relation of Elements Causing
1 Value in Condition Bit

OPl < OP2
OP1::; OP2
OPl = OP2
OPl =1= OP2

For purposes of this testing, a negative zero source element is considered to be equal to
rather than less than a positive zero. The t-field specifies single-precision (t=O) or
double-precision (t= 1).

The comparison operation differs slightly from the subtraction operation in that conditions
that would cause an overflow from the subtraction are handled correctly without overflow
indication by the comparison.

4.12.1. Compare Vector (ClV, ClEV, CGV, CGEV, CEV, CNEV, DClV, DClEV, DCGV,
DCGEV, DCEV, DCNEV)

Compares the OPl and OP2 source vectors by means of a vector subtraction of OP2 from
OPl. The difference vector is not stored but is examined to produce a condition vector. The
condition· vector is a bit string in which each bit represents the outcome of the j-field
specified comparison of the corresponding source elements. Because only one bit is produced
per element comparison, the relation being tested must be specified in the compare
instruction by the j-field. .

Use of the conditional function provided by the c-field yields some useful, though not
immediately obvious benefits. If the compare is executed only for elements opposite ones in
the mask (c=3), then zeroes in the mask are unchanged by the comparison, whereas ones are
replaced by the new bit values from the new comparison. The net result is to form the
logical AND of the new mask with the previous one. Similarly c=l results in the logical OR
of the masks.

4.13. Vector Type Conversion Instructions

The vector type conversion instructions convert a vector of one data type to a vector of
another data type. These instructions use the following VV instruction format.

W Format

Os I I
001 001

o 6 7 8 9 10 13 14 17 18 19 20 23 24 25 26 27 28 30 31 33 34 35

4-20

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4. 13. 1. Convert Vector (CIDIV, CIFV, CIDFV, CDIIV, CDIFV, CDIDFV, CFIV, CFDIV, CFDFV,
CDFIV, CDFDIV, CDFFV)

Converts the elements of the OP2 source vector element-by-element from type t2 to type t3
and places the result into the file specified by v3' The results are undefined when t2 is equal
to t3' The encoding of the t 2- and t3-fields can be any of the following values:

t-field

o
1
2
3

Definition

Single-precision integer
Double-precision integer
Single-precision floating-point real
Double-precision floating-point real

The floating-point inputs must be in correct normalized form. With the correct inputs,
floating-point outputs are always in correct normalized form.

Conversions from double-precision format to single-precision format and from floating-point
to integer may cause an overflow condition. A loss of precision does not cause an overflow
condition. Conversions involving a reduction in precision are performed by truncating rather
than by rounding.

The I-field specifies the number of elements both for the source vector and the result vector
independent of number of words per element.

If conversion from single-precision to double-precision is specified, v2 and v3 must not specify
the same vector file since storing of the result would at some point destroy source elements
before they could be used.

4.14. Vector Reduction Operation Instructions

Reduction operations are distinguished from elementwise operations in that they operate on a
single source vector to produce a scalar (rather than vector) result. They are not conditional,
having no c-field. These instructions use the following VV format.

W Format

I I Os

o 6 7 9 10 13 14 17 18 19 20 23 24 27 28 30 31 33 34 35

4.14.1. Sum Reduction (SUM, DSUM, FSUM, DFSUM)

The vector source operand, OP2, is taken from the vector file specified by v2' and its
elements are added together. That sum is then written into the G-register specified by g3
(OP3). Both OP2 and OP3 are defined to be of type t where t is defined as the Convert
instruction. The file specified by vl is allocated as a temporary scratch pad area for use by
the hardware. Its entire contents may be altered by the instruction. If vl and v2 specify the
same file, then the file contents may be destroyed by the instruction but the numeric result
is still correct.

4-21

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

The order of performing sum reduction is as follows: adjacent elements are combined
pairwise; then adjacent partial sums are combined pairwise until only a single result emerges.
If, at any stage, the number of elements or partial sums is odd, the first N/2 sums are
produced, and the remaining element is carried forward to the next stage.

If the I-field indicates a length of zero, the contents of OP3 is left undisturbed.

4. 14.2. Product Reduction (FPRD, DFPRD)

The operation of, the Product Reduction instructions is similar to the Sum Reduction
instructions, except that the elements of OP2 are multiplied rather than added together, and
only floating-point operations (types 2 and 3 defined in 4.2.1) are supported. If the vector
length as taken from the source selected by the I-field is zero, the contents of OP3 are left
undisturbed.

4.14.3. Maximum Reduction (MAX, DMAX)

The elements of the vector file specified by v2 within the length specified by the I-field
(length source) value are compared. The index, that is, element number beginning with zero
of the maximum value is placed into the G-register specified by g3-field. The t-field is
defined as in 4.2.1, but applies only to the source vector; t=O for single-precision and t= 1 for
double-precision. (Values must be all integer or all real for valid comparisons.) The
resultant index value is always a single-precision integer, and it lies in the range 0-63.
When more than one element has the maximum value, the index stored is the lowest of the
possible index values. Negative zero is considered as equal to, not less than, or positive zero.
Overflow and underflow conditions do not occur from this instruction. If the vector length
specified is zero, the contents of G(g3) are left undisturbed.

Programming Notes:

1. Once the index of the maximum is known, the maximum value itself can be easily
obtained with a single scalar move instruction.

2. Extension to operation over multiple strips can be done as follows:

a. Process the vector stripwise, comparing corresponding elements of consecutive strips
with a Compare Vector instruction and select the maximum with a conditional
move, then perform the maximum Reduction instruction after combining all strips
into one.

b. Process vectorwise, selecting the maximum of each strip with the maximum
Reduction instruction and place its value into the element of a result file so that it
corresponds to the strip number just processed. When the file is full or the end of
the vector is reached, another maximum Reduction instruction can be performed on
the result file, and so on if necessary.

4-22

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4. 14.4. Minimum Reduction (MIN, DMIN)

The operation of this instruction is similar to the maximum Reduction instruction, except
that the index of the minimum element is returned.

4. 15. Vector Move Instructions

The vector move instructions move strips of vector data between the vector files or to and
from storage locations, and the vector files. These instructions manipulate file elements
without interpreting their values. The t-field only distinguishes single word (t=O) and double
word (t=l).

4.15.1. Load Vector (LV, DLV)

The Load Vector instructions use the following VV format:

W Format

t v 1 j S1 S2 C
f Os I 93 Os

OOx (OP1) x 001 001 xx

o 6 7 9 10 13 14 17 18 19 20 2324 262728 3031 33 34 35

A strip of vector elements is obtained from the storage locations specified by the virtual
address contained in the G-register selected by g3 and placed into the vector file specified
by vI.

The I-field selects the source of the length parameter indicating the upper limit on the
number of elements to be transferred. The c-field allows certain of those transfers to be
conditionally suppressed as defined in 4.9.

The j-field specifies how the stride value is obtained. For j =0 the stride value is taken from
the right half of the G-register specified by g3. The stride value is interpreted as an integer
that may be positive, negative or zero. (Actually a zero stride value would normally, not be
used since the single source element being referenced can be entered once in a G-register and
then broadcast during subsequent vector instructions as if it were in a vector file.) For j = 1 a
constant value of +1 is used for single-precision and +2 is used for double-precision. In
both cases, the original virtual address initially points to the first vector element, and
subsequent elements are addressed by stepping through storage by the stride value. Note
that the stride is defined in terms of words, rather than elements. Also the stride value
affects only the spacing of items in storage, not in the file. If the initial address plus
accumulated stride values fall outside the segment limits, an Address Limits Error occurs.

Vector file elements beyond the limit determined by the I-field determined length source and
those not loaded because of the c-field setting, are left unaltered by this instruction. Also,
the contents of G(g3) are not altered by this instruction.

4-23

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4.15.2. Store Vector (SV, DSV)

The Store Vector instructions use the following VV format:

W Format

t v 1
j S1

f Os I 93 Os
OOx (OP1) x OOx

s2 s3
001 xx

o 6 7 9 10 13 14 17 18 19 20 23 24 26 27 28 30 31 33 34 35

This instruction operates in reverse order of the Load Vector instruction, moving vector
elements from a vector register (s1 = 1) or a broadcast G-register (s1 =0) to locations in
storage.

4. 15.3. Generate Index Vector (GXV)

This instruction operates similar to the Load Vector instruction except that the values loaded
into the file locations are the virtual addresses generated rather than the storage contents of
those virtual addresses. Also address translation and checking are not done at all, so that
any single-precision integer values can be used as starting address and stride. This
instruction is defined only for single-precision (t=O). Overflow conditions are ignored, the
truncated results are stored. This instruction may be used to generate any vector element of
equally spaced integers. This instruction uses the same format as the Store Index
instruction.

4.15.4. Indexed Load Vector (LVX, DLVX)

The Indexed Load Vector instruction uses the following VV format:

W Format

f
t v1 v2 S1 s2 C

I 93 Os
OOx (OP1) (Index) 001 001 xx

o 6 7 9 10 13 14 17 18 19 20 23 24 2728 3031 333435

This instruction loads a strip of elements into the file specified by v1' The I-field determines
the number of elements as already defined. The virtual address of each element is obtained
by taking the base virtual address from the G-register specified by g3 and adding to it the
offset from the corresponding element of the file specified by v2' Addition of offsets is not
cumulative, but each is added to the base virtual address independently. Offsets may be
positive or negative or zero but must not produce a virtual address outside the limits of the
segment determined by the base virtual address of elements that are loaded or an address
limits error interrupt will occur. OP2 is always assumed to be a single-precision integer
regardless of the t-field value. The G-register is not altered by this instruction. File
elements beyond the limit determined by the I-field and those not loaded due to the c-field
setting are left unaltered by this instruction. The addresses of elements not loaded do not
cause address limits error interrupts or data alignment error interrupts.

4-24

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

Specifying vI =v2 when t= 1 produces unpredictable results.

4. 15.5. Indexed Store Vector (SVX, DSVX)

Operation is the inverse of Indexed Load Vector moving data from consecutive OP1 file
locations to indexed storage locations. Operation is defined to proceed in the direction of
increasing file addresses. Hence, if identical offset values exist in OP2, thus causing multiple
OP1 elements to be written to the same storage location, then the OP1 element from the
highest file address overwrites other elements stored there. This instruction uses the same
format as the Indexed Load Vector instruction.

4. 15.6. Move Vector (MV, DMV)

The Move Vector instruction uses the following VV format:

W Format

t v 2 v3 s, S2 C
f Os I Os

OOx (OP2) (OP3) 001 OOx x

o 6 7 9 10 13 14 17 18 19 20 23 24 27 28 30 31 33 34 35

The OP2 source vector is copied to the file specified by v3' OP2 may be either a broadcast
G-register . (s2 = 0) or a vector file (s2 = 1). The I and c-fields define the length and condition
of the transfer.

4. 15.7. Compress Vector (MCV, DMCV)

The Compress Vector instruction uses the following VV format:

W Format

t v 2 v3 S, s2 m
f Os I Os 1

OOx (OP2) (OP3) 001 001 x

o 6 7 9 10 13 14 17 18 19 20 23 24 27 28 30 31 33 34 35

Elements of OP2, for which the corresponding mask register bit is a one (m= 1) or zero
(m=O), are selected and written into adjacent locations of the OP3 file beginning with
location zero. Only OP2 elements within the length defined by the I-field are used. The
number of OP3 locations written is given by the number of ones (m=l) or zeroes (m=O) in
the mask within this defined length. Other OP3 locations are not altered. Bit 35 of the
instruction must be one for operation.

4-25

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4.15.8. Distribute Vector (MDV, DMDV)

Distribute is essentially the inverse of Compress and has the same format. The elements of
OP2 are taken sequentially and written into those locations of OP3 that correspond to ones
(m=1) or zeroes (m=O) in the mask register. The length parameter determined by the
instruction I-field applies to the mask and hence to OP3. The number of OP2 elements used
is the number of ones (m= 1) or zeroes (m=O) in the mask within the defined length.
Locations of OP3 not explicitly written by this instruction are left unaltered. Operation
when v2=v3 is not defined.

4.15.9. Load Alternating Elements Vector (LAEV, DLAEV)

The Load Alternating Elements Vector instructions uses the following VV format:

W Format

t v1 v2 j S1 s2 C
f I 93 Os

OOx (OP1) (OP2) x 001 001 x

o 6 7 9 10 13 14 17 18 19 20 23 24 26 27 28 30 31 33 34 35

Pairs of elements are obtained from storage beginning at the virtual address from G (g3)'
The first element of each pair is placed into V (VI)' the second into V (v2)' Pairs are always
from adjacent elements in storage. The stride value, which is determined by the j-field as in
Load Vector (4.14.1), specifies the amount to add to the address of the second element of a
pair to obtain the address of the first element of the next pair.

The length parameter (I-field selected) specifies the number of elements to be placed in each
of the vector registers. Thus the total number of elements moved is twice that value. The
c-field allows the transfer of certain pairs of elements to be conditionally suppressed as
defined in 4.9. Suppressed transfers are included in the I-field count.

Addresses are constrained to pair boundaries. Thus when t=O (single-word), the starting
address must be even, and when t= 1 (double-word elements) the starting address must be a
four-word boundary. Otherwise a Type 30 external interrupt is caused. Also the stride must
be an odd multiple of the element size. Operation is not defined for vI =v2'

4. 15. 10. Store Alternating Elements Vector (SAEV, DSAEV)

This is the inverse of the Load Alternating Elements V~G-tor, forming pairs of elements from
corresponding locations in the two vector files, and writing them to storage. This instruction
uses the same format as the Load Alternating Elements Vector instruction.

4-26

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4.16. Loop Control Instructions

The principles of processing vectors in limited-length strips are discussed in 2.3.6. In.
particular it is describing how a single FORTRAN DO-loop is broken down into a vector loop
and an element loop within it, the former processing one strip per pass, and the latter
processing one element position per 'pass. The following four instructions are used to build
and end vector and element loops, as their names imply.

NOTE: The Jump to Vector Loop, Build Element Loop, and Jump to Element Loop
instructions all share the same OP code value. They are distinguished by the
bits immediately following the OP code.

4.16.1. Build Vector Loop (BSVL, BLVL, BSVLR, BLVLR)

This instruction sets up the control parameters for a loop over vector strips, with each pass
through the loop processing one strip of the vectors. The total number of elements to be
processed per vector is the non-negative integer value taken from bits 6-35 of the OP2
operand. If bits 0-5 of the OP2 operand are other than Os, a Remaining Length Overflow
interrupt (3.2.4 - Type 13) is caused. Instruction formats for this instruction are:

RS Format

1

0
1

e b

1

Os
1

u

(OP2)

0 6 7 9 10 11 13 14 17 18 19 20 35

RR Format

1
0

1

e 92
(OP2)

Os

0 67 9 10 11 13 14 17 18 35

In the first format, OP2 is from the storage location specified by the band u-fields as for RS
format instructions; in the second case it is from the G-register specified by g2'

Essentially this instruction builds a new VL-register entry in the Vector Loop register
specified by the e-field and sets the CVLP to point to it. The field values for the new entry
are defined to be:

c-field

MZ
RL

ALTI
ALT2

Description

Derived from the t-field of this instruction
Value of OP2
The ELCNT value from the previous Vector Loop entry
The ALTI value from the previous Vector Loop entry

4-27

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

The phrase previous Vector Loop entry means the contents of the VL register pointed to by
the CVLP before execution of this instruction.

This instruction is defined for t-field values of 5 and 6 that produce MZ bit values of 0 and 1
respectively. The t-field values 0-4 and 7 are reserved for future expansion.

4.16.2. Jump to Vector Loop (JVL)

This instruction is used to close the vector loop started by a Build Vector Loop instruction.
For straightforward applications the jump address points to the instruction following the
Build Vector Loop. Operation consists of subtracting the current ELCNT value from the RL
value and placing the result back into RL. If the new RL value is greater than zero, then
the jump is taken to the location pointed to by u. (See 4.17 for definition of jump address
formation.) Otherwise the e-field value is put into the CVLP, and execution continues with
the next sequential instruction.

RS Format

001 H e Os u
xxx

0 6 7 9 10 11 13 14 19 20 35

4. 16.3. Build Element Loop (BEL)

This instruction establishes the parameters for performing an element loop. An element loop
is a loop over elements within a strip of a vector. It is used typically within the context of a
vector loop, i.e., the BEL occurs logically between a Build Vector Loop and its JVL. Each
element loop is associated with a particular vector loop in the sense that they are both
derived from the same source language DO-loop. Due to the interchanging of nested loops
for the sake of program execution efficiency, the vector loop for a particular element loop
mayor may not be the innermost vector loop existing at the time the BEL is executed. The
I-field of the BEL specifies a strip length in the same way as for vector instructions, i.e., it is
derived from the contents of the Vector Loop register pointed to by CVLP.

The BEL sets the current element loop pointer to point to the Element Loop register specified
by the e-field value and then initializes the fields of that register as follows:

Status

Element Pointer
(ELPT)

Maximum
Element Count
(MEC)

Description

Set to zero.

Set to the length parameter value from the source
specified by the I-field.

4-28

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

The value placed into the MEC field is then tested. If the field contains zero, then a jump is
made to the code offset specified by the u-field; if non-zero, then execution continues with
the next sequential instruction. The branch address should be that of the JEL corresponding
to the BEL. The net result is that element loops with a count of zero are executed zero
times, as desired. A MEC value greater than 64 does not cause a fault condition.

RS Format

010

o 6 7

H e
xxx

9 10 11 13 14

4. 16.4. Jump to Element Loop (JEL)

Os u

17 18 19 20 35

This instruction is used to close the element loop started by a BEL instruction. For
straightforward applications the jump address points to the instruction following the BEL.
Operation consists of adding one to the ELPT field of the Element Loop register entry pointed
to by the current element loop pointer. If the sum is less than the MEC value of that same
Element Loop register, then the sum is stored in the ELPT field and the jump is taken;
otherwise the current element loop pointer is set to the value from the e-field of the JEL and
execution proceeds with the next sequential instruction.

RS Format

o 1 1 H e Os u
xxx

0 6 7 9 10 11 13 14 19 20 35

4. 16.5. Adjust Loop Register Pointers (CELP, CVLP, CVELP)

This instruction is used to alter the cont~nts of the Current Vector Loop Pointer (CVLP) and
the Current Element Loop Pointer (CELP), which define locations in the VL and EL registers,
respectively. The p-field selects the pointer to be altered:

p-field

o
1
2
3

Description

Not used
CELP only
CVLP only
Both

The selected pointer is set to the value from the instruction e field. The contents of the EL
and VL registers are unaffected by this instruction.

4-29

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

RS Format

e Os
xxx

o 6 7 8 9 10 13 14

4.17. Jump Instructions

35

The jump instructions are used where it is desirable to alter the otherwise sequential nature
of executing instructions. Instructions are defined to reside logically in main storage, and
thus to be addressed with standard 36-bit virtual addresses. Three restrictions are placed on
instruction code however:

1. Attempts to write into the code while the activity is executing yields unpredictable
results;

2. Code mapped into the Local Storage segment causes a Storage Protection Check-Execute
when an attempt is made to execute it;

3. The virtual address of each instruction (the value of Program Address register value
used to fetch the instruction) must have Os in bits 18 and 19.

The third restriction results from the fact that the branch instruction u-field is 16 bits.
Therefore, code beyond 64K cannot be reached by segment-local branches and is of limited
use. As a debug aid, any attempt to fetch an instruction with PAR bits 18,19 non-zero
causes an external interrupt. In practice these bits can only become non-zero by PAR
incrementation, the LAJ and JXS instructions or bad initial PAR value.

Most jump instructions allow target addresses that are constrained to be within the current
segment. Specifically the 16-bit u-field specifies a word offset into the current segment. In
this case the target virtual address is constructed of:

Bit

0-17
18-19
20-35

Descri ption

Program Address Register (PAR) bits 0-17
Zeroes
Jump instruction u-field

The ability to jump between segments is provided by .the LAJ and the JXS instructions,
which allow full virtual addresses to be specified. These instructions form the target virtual
address from the 16-bit instruction u-field and a 36-bit address from a G-register.

Bit

0-17
18
19

20-35

Description

Bits 0-17 from the G-register
OR of bits 18 and 19 from the G-register
Carry out from the following unsigned addition
Sum of the u-field and G-register bits 20-35

4-30

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

The JVL, BEL, and JEL instructions, though technically jump instructions, were defined
under the section on loop control since they are used specifically in that context. In terms of
address formation they follow the definitions in this section.

Each time a jump instruction is executed and the jump is taken, an entry is created and
added to the Jump History File loc~ted in the scientific processor control block.

When execution of any jump instruction causes an interrupt that is to be taken
synchronously, then the jump is not taken. Consequently the return address will be one
beyond the interrupting jump. Faults on the jump target address are not considered part of
the jump execution, but instead are associated with the fetch of the next instruction.

4. 17.1. Conditional Jump (CJ)

The conditional jump instruction provides an assortment of pertinent program conditions to
be tested as the basis for possible branching. The jump when taken is always segment-local
as described in 4.17.

This instruction obtains an operand, which may be either a data element or a piece of
machine state such as the scalar condition code, and tests it for a particular numeric
condition. If the desired condition is obtained, the jump is taken; otherwise execution
continues with the instruction immediately following the Conditional Jump instruction. The
operand tested is never altered by the instruction.

RS Format

s

I I
u

o 6 7 9 10 11 13 14 17 18 19 20 35

The operand for testing is specified by the s-field and the r-field values, and in a few cases
the I-field value. The condition tested for is specified primarily by the c-field. The n-field
selects a branch on true when it is 0 or inverts the use of the test result when it is 1.

The definitions of the c-field sele'ctions are shown in Table 4-1.

4-31

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

Table 4-1. Conditional Jump Instructions, c-field

c-field
Value

o Always TRUE.

-0, operand is all 1 s.

2 +0, operand is all Os.

Condition of Operand Causing True

3 + and -0, operand is all 1 s or all Os.

4 <-0, operand left bit is 1 but not all bits are 1 s.

5 < +0, operand left bit is 1.

6 ~ +0, operand left bit is 1 or operand is all Os.

7 Operand right bit is 1.

The definitions of the s-field values are shown in Table 4-2.

s-field
Value

o

2-4

5

6-7

Table 4-2. Conditional Jump Instructions, s-field

Operand for Testing

G-register bits 0-35 specified by the
r-field.

G-register bits 0-7 1 specified by the
r-field.

Reserved for future expansion.

Special (see Table 4-3).

Reserved for future expansion.

Test Condition

Specified by the c-field.

Specified by the c-field.

None.

Specified by the r- and c-fields.

None.

NOTE: When the s-field value is 5, the r-field selects the operand for testing and
specifies the test condition or selects the c-field that specifies the test
condition. The s-field value of 5 does not alter the definition of the c-field or
the n bit. The r-field definition for s=5 is given in Table 4-3.

The definitions of the r-field values when the s-field value equals 5 is given in Table 4-3.

4-32

UP-11006

r-field
Value

o

2

3

4

Integrated Scientific Processor System Processor and Storage Reference
Scientific Processor Instructions

Table 4-3. Conditional Jump Instructions, r-field Definitions (when s-field Equals 5)

Operand for Testing (s-field = 5) Test Condition

Bits 0 through NL-1 of the mask register, Specified by the c-field
where NL is the length parameter specified
by the instruction I-field. If NL=O, then the
operand test result is true for all values of
the c-field. If NL is greater than 64, then a
Vector Register Length Overflow condition
exists and the Jump is not taken.

The single bit value that is the mask bit
corresponding to the element pointer value
in the EL register pointed to by the current
element loop pointer. If the element pointer
is greater than 63, then a Vector Register
Length Overflow condition exists and the
Jump is not taken.

The single bit has a value of 1 if and only if
the current element count value is less than
the full strip size.

The single bit has a value of 1 if and only if
the current value of the length parameter
specified by the instruction I-field is zero.

The 2-bit Scalar Condition Code (SCC).

A single bit value of
produces a test result of true
independent of the c-field.

A single bit value of
produces a test result of true
independent of the c-field.

A single bit value of
produces a test result of true
independent of the c-field.

Specified by the c-field.

NOTE: The values s=5, r=4 tests the value of the SCC itself, not the values of the
operands that were compared to generate the SCC values. However the SCC
has been defined such that if OP2 has value + 0 in the Compare instruction;
then the SCC will not only encode but will in fact duplicate the state of OPl of
the Compare. For example, an OPl value that is positive non-zero will result
in an sec encoding of 01, which is itself positive non-zero, etc. The only
exception is -0 which is encoded as if it were + o.

The s-field and r-field operand source selection, the c-field test condition, and the n-field
true or false branch selection combine to select a single condition jump instruction. Tables
4-4 and 4-5 give all of the conditional jump instructions and the specific field values that
select each instruction for n-field values of 0 (true) and 1 (false), respectively.

4-33

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

Table 4-4. Field Selection of Conditional Jump Instructions for n-field Equals 0

s-field/ c-field value

r-field values 0 1 2 3 4 5 6

s=O J JAB JNB JZ JLZ JHB JLEZ

s=1 DJAB DJNB DLZ DJLZ DJLEZ

s=5, r=O JMAB JMNB JMXB

s=5, r= 1 JMCE

5=5, r=2 JNFS

s=5, r=3 JLRZ

s=5, r=4 JCE, JCL
JTCC

NOTE: Instruction mnemonics are defined in Appendix A.

Table 4-5. Field Selection of Conditional Jump Instructions for n-field Equals 1

5-field/ c-field value

r-field values 0 1 2 3 4 5 6

5=0 NOP JNAB JNNB JNZ JGEZ JNHB JGZ

5=1 DJNAB DJNNB DJNZ DJGEZ DJGZ

5=5, r=O JMNAB JMNNB JMNXB

s=5, r= 1 JMNCE

s=5, r=2 JZS

s=5, r=3 JLNRZ

s=5, r=4 JCNE, JCGE JCG
JTCS

NOTE: Instruction mnemonics are defined in Appendix A.

4-34

7

JLB

DJLB

7

JNLB

DJNLB

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4. 17.2. Increment and Jump Less (IJL)

The value in bits 36-71 of the G-register specified by rl is added to bits 0-35 of that register.
The new value in bits 0-35 is then compared to the value in bits 0-35 of the G-register
specified in r2' If OPl is less thaI}. OP2, then the jump is taken; otherwise execution proceeds
with the next instruction. All values are single-precision integers. The jump is segment
local. Negative zero is considered equal to positive zero in the comparison. If the
incrementation of OPl produces an overflow condition, an interrupt is not caused, the
truncated result is stored, and execution proceeds to the next sequential instruction
regardless of the OP2 value.

RS Format

Os r 1 Os u

o 6 7 9 10 13 14 17 18 1920 35

4.17.3. Decrement and Jump Greater (DJG)

The integer value in bits 0-35 of the G-register specified by rl is decreased by one. If the
new value is greater than zero, the jump is taken; otherwise execution proceeds to the next
sequential instruction. If the decrementation of OPl produces an overflow condition, no
interrupt is caused, the truncated result is stored, and execution proceeds to the next
instruction. The jump is segment local.

RS Format

o r 1 o u

o 6 7 9 10 13 14 1920 35

4.17.4. Load Address and Jump (LAJ, LANI)

For b-field values other than zero, the target instruction virtual address is formed by
combining the u-field value and the virtual address from bits 0-35 of the G-register specified
by the b-field. The virtual address of the location immediately following the LAJ. is placed
into bits 0-35 of the G-register specified by rl' and the target virtual address is placed into
the Program Address Register.

The LAJ itself does not do any limits checking or address translation; it merely computes a
virtual address and places it into PAR. Address translation and access privilege faults, if
any, occur in attempting to fetch the instruction to which the jump was made. However, to
aid software in handling address faults, the NLJ (non-local jump) indicator bit is provided in
word 11 (hardware status register 3) of the SPCB. This bit is set by execution of an LAJ
instruction that loads PAR or any JXS. The bit is cleared by any other instruction
execution.

4-35

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

When the b-field contains zero, the u-field is not used, PAR is not loaded (i.e., the jump is
not done), but the next instruction address is placed into G(rl)' This special case is useful for
a subroutine establishing initial addressability of a group of constants without requiring any
of them to be located in local storage.

RS Format

o b u

o 6 7 9 10 13 14 17 18 1920 35

4. 17.5. Jump to External Segment (JXS, JXSI)

This instruction is similar to the Load Address and Jump instruction but does not store the
return address. Hence the rl field is not used. When the b-field is 0, the u-field is not
used. Instead, the jump address is taken from State register 12. This provides a means for
returning from internal interrupts after restoring all G-registers. The NLJ indicator is set
by execution of this instruction as described for the Load Address and Jump instruction.

4.18. State Instructions

The state instructions are used for saving, restoring, or altering the general program state of
an activity.

4.18.1. Load Multiple (LGM, DLGM)

This instruction loads a block of one or more G-registers from consecutive words of storage.

RR Format

o 6 7

t

OOx

9 10

o

13 14 17 18 19 20 23 24 35

Registers G(gl) through G(g2) are loaded from consecutive locations in storage beginning at
the virtual address contained in G(g3) at the beginning of execution. Operation is not
affected should G(g3) happen to be in the range of registers loaded by the instruction. G(g3)
is not altered by being used as an address, but only if it happens to be in the range of
registers loaded.

Register numbering is considered to be circular, wrapping around from 15 to O. If gl =g2
then one register is loaded.

4-36

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

If t=O, consecutive single words are loaded into the left 36 bits of each of the G-registers in
the specified range. If t= 1, consecutive double words are loaded into the full 72 bits of the
selected G-registers. In the latter case, the storage address must be an even address.

4.18.2. Store Multiple (SGM, DSGM)

The Store Multiple instructions are the inverse of the Load Multiple instructions. The Store
Multiple instructions write registers G(gl) through G(g2) to consecutive storage locations
beginning at the virtual address in G(g3)'

4.18.3. Store Loop Control Registers (SLCR)

The eight Vector Loop and eight Element Loop registers provide space for parameters
describing eight DO-loops in various stages of execution, which is sufficient for most
subroutines individually. However, when calling another subroutine it is generally desirable
to preserve certain parameters and to make available space for the called subroutine to use.

RS Format

t 0 b

I
0

I
u

001

0 6 7 9 10 13 14 17 18 19 20 35

This instruction stores eight double words beginning at the storage location specified by the
b- and u-fields. This block contains the Vector Loop registers, Element Loop registers,
CVLP, and the current element loop pointer in the format. The storage address must be an
even address.

4.18.4. Load Loop Control Registers (LLCR)

This instruction is the inverse of SLR. It loads the Vector Loop and Element Loop registers,
CVLP, and the current element loop pointer from the block of eight double words addressed
by the b- and u-fields. The instruction format is identical. The storage address must be
even.

4.18.5. Advance Local Storage Stack (ALSS)

This instruction advances the local storage stack to the next frame by adding one to the
value in the Pointer field of the local storage stack definition word in register 87. Following
the addition, the Pointer value is compared to the Upper Bound (UB) value. If Pointer is
greater than UB or if the addition overflowed the Pointer field, then an internal interrupt is
caused. Instruction format consists of a 7-bit OP code followed by 29, Os.

4-37

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4. 18.6. Retract Local Storage Stack (RLSS)

The Retract is the inverse of the Advance. It subtracts one from the Pointer field and then
compares Pointer to the Lower Bound (LB) value. If Pointer is less than LB or if the
subtraction underflowed the Pointer field, then an internal interrupt is caused. Instruction
format consists of the same OP code as ALSS followed by a 1 and 28, Os.

4.18.7. Generate Interrupt (GI, GIA, GIB)

An external interrupt is caused by this instruction to switch out this activity. The
instruction format consists of a 7-bit OP code followed by three Os. Use is roughly analogous
to the ER instruction of the Series 1100. Bits 10-35 of the instruction need not be zeroes and
may contain information for the operating system.

4. 18.8. Test and Set (TS)

Bit 5 of the storage operand specified by the b- and u-fields is tested and its state is
reflected in the resultant setting of the scalar condition code (SeC). sec is set to 01 if the
bit was one and to 00 if the bit was o. The binary value 000001 is written into' bits 0-5 of
the storage operand regardless of the test results. Moreover the testing and setting are
logically indivisible, meaning that no other processor or I/O unit can access the storage
location between the testing and the setting. Bits 6-35 are not examined and are never
altered by this instruction. This instruction is intended to be used for the synchronization of
multiple real processors sharing data, so it is meaningful only for accesses to shared (main)
storage. Therefore, any reference to the local storage segment by any means results in an
interrupt (3.2.3).

RS Format

b u
1 x x

o 6 7 9 10 13 14 17 18 19 20 35

4. 18.9. Test and Clear (TC)

This instruction differs from Test and Set only in that the value written into bits 0-5 of the
storage operand is all zeroes. All other statements apply.,

RS Format

o b u
Oxx

o 6 7 9 10 13 14 17 18 19 20 35

4-38

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Instructions

4.19. Diagnostic Instructions

The scientific processor system has two diagnostic instructions; Diagnose Read and Diagnose
Write. Both instructions are used for the scientific processor-to-scientific storage interface.
These instructions do not require any special mode of execution.

4.19.1. Diagnose Read (DGR)

The Diagnose Read instruction is used to test the storage read interface.
following RS instruction format.

RS Format

xxxx xxx
xxx

o 6 7 9 10 13 14 17 18 19 20 23 24 27 28 30 31

It uses the

33 34 35

A read request is issued to the storage location specified by the virtual address in the
G-register specified by the g3-field of the instruction with a function code to the scientific
storage indicating a Diagnose Read. If the scientific storage is properly prepared, it performs
the request but will deliberately place bad parity on some or all of the read data. Upon
receipt of bad parity, the scientific processor will immediately cause an external interrupt.
However, if bad parity is not detected, the corrupted read data is placed into the G-register
specified by the gl-field of the instruction and execution proceeds to the next instruction.

Execution of this instruction causes the Diagnose Instruction Executed indicator (Bit 29 of
hardware status register 3) to be set.

4.19.2. Diagnose Write (DGW)

This instruction is identical in format and similar in intent to the Diagnose Read instruction.
It attempts to store a word of data from G (gl) into the storage location whose virtual address
is in G(g3)' The scientific processor deliberately places bad parity on all parity bits of the
address lines, function code, and write data lines going to the scientific storage. Upon
detection of bad parity, the scientific storage causes an external interrupt in the processor.

The bad parity is not actually written into the scientific storage. If the referenced storage
location happens to be local storage, bad parity is not caused. Since the error indication
from the scientific storage may be delayed for an unspecified period of time, a test program
using a Diagnose Read or Write instruction must not use a GI instruction until sufficient
time has elapsed to ensure that the error indication and status have been received.

Execution of this instruction causes the Diagnose Instruction Executed indicator (Bit 29 of
hardware status register 3) to be set.

4-39

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Storage

5. Scientific Processor Storage

This section describes general scientific storage operations.

5.1. Introduction

The scientific processor storage unit is a free~standing unit with eight storage banks. Each
bank contains 524,288 (524K) words with each bank reference capable of accessing four words
per reference cycle. Each word has 44 bits (36 data, 6 check, 1 check parity, and 1 data
parity). One scientific storage unit contains a maximum of 4,194,304 (4194K) words of
random access storage. Up to four scientific storage units can be used on a system for a total
of 16,777,216 words of storage. Figure 5-1 shows the scientific processor storage unit cabinet.

Figure 5-1. Scientific Processor Storage Unit

5-1

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Storage

5.2. Storage Features

The scientific storage unit replaces or complements the main storage units. The scientific
storage units can be treated identically for the purpose of executing Series 1100 code. The
scientific storage unit is directly addressable by the scientific processor, instruction processor,
and input/output processor. Both the scientific storage and the main storage units may be
used in an scientific processor system. However, the scientific processor only interfaces with
the scientific storage unit.

The data and addressing formats used with the scientific storage interfaces to the instruction
processor and input/output processor are identical to those of the main storage unit.
However, the internal addressing format differs due to the wider bank data interface (4
words) and different functional capability.

The scientific storage provides the higher bandpass required to support the speed of the
scientific processors. Thus, the scientific processors can only access code or data loaded into
the scientific storage units. This allocation is transparent to the applications programmer.
The 'scientific storage provides the interfaces for up to two scientific processors, and up to
four instruction processors and four input/output processors.

A multiple unit adapter (Section 6) is required when two or more scientific storage units are
to be accessed by a scientific processor.

The scientific storage unit can have up to ten requester ports, consisting of:

• two scientific processor ports
• four instruction processor ports
• four input/output processor ports

The scientific storage unit has the following interfaces:

• instruction processor (up to four)
• input/output processor (up to four)
• scien tific processor (up to two)
• system support processor (two)
• system panel
• system clock
• other main storage units in the system

5.3. Storage Functions

The scientific storage units appear to the instruction processor and input/output processors as
if they are main storage units providing identical functions and preserving essential timing.
The functions provided for instruction processor and input/output processor ports include:
double-word read operations; partial-, single-, or double-word write operations, and block
read or write operations (eight words per block) for instruction processors only. The
partial-word write capability is bit addressable for variable length fields. The scientific
processor ports provide four-word read operations; andone-, two-, three-, and four-word
write operations.

5-2

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Storage

5.4. Modes of Operation

Scientific storage unit operations are defined by a function code received in conjunction with
a storage request. When a requester is granted priority, the scientific storage decodes the
function code and initiates the requested operation.

Function codes for the instruction processor and input/output processor are given in Table
5-1.

Table 5-1. Instruction Processor and Input/Output Processor Function Codes

Function Code (Octal) Type

02 Read Two Words

03 Read Block*

04 Read System Status Register*

05 Read Oayclock*

06 Test and Set

07 Test and Clear

10 Write One Word Partial

11 Write One Word

12 Write Two Words

13 Write Block*

14 Load Oayclock*

15 Load Oayclock Comparator*

16 Load Error Function Register*

17 Read Bank Status Register*

20 Selected Load Path 0*

21 Selected Load Path 1 *

22 Initiate Auto Recovery*

23 Reset Auto Recovery Timer*

24 Set Oayclock Mode Normal*

25 Set Oayclock Mode Fast*

26 Set Oayclock Mode Slow*

31 Maintenance Write One Word

32 Maintenance Two-Word Read

33 Maintenance Read Block*

34 Read Oayclock Comparator*

*indicates IP function only.

5-3

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Storage

5.4. 1. Write Functions

Write functions consist of partial-word, full-word, double-word, and block write operations.

Write One Word Partial (1 Os)

An even or odd word partial write operation is performed within a word boundary as
determined by address bit 23. The Start and End fields determine the bits within the word
that are altered.

If address bit 23 is 0, the even word is altered and the Start and End field values of 0
through 35 represent data bit positions 0 through 35. If address bit 23 is 1, the odd word is
altered and the Start and End field values of 0 through 35 represent data bit positions 36
through 71.

Write One Word (11S)

A full-word write is performed. If address bit 23 is 0, the even word (bits 0 through 35) is
altered. When address bit 23 is 1, the odd word (bits 36 through 71) is altered.

Write Two Words (12S)

A double-word write operation is performed. Address bit 23 is ignored, and an even and an
odd word is stored.

Write Block (13S)

A write operation which alters eight consecutive locations which do not cross eight-word
block boundaries. Address bits 21, 22, and 23 are ignored. The first two words of data are
sent with the request. When the ACKNOWLEDGE 1 signal is received, the remaining three
double words of write data is sent to the scientific storage in intervals.

5.4.2. Read Functions

Read functions consist of double-word read and eight-word read block operations.

Read Two Words (02s)

A double word read operation is performed. Address bit 23 is ignored. The data is placed on
the read· data interface lines.

Read Block (03s)

An eight-word read block operation is performed on block boundaries. Address bits 21, 22,
and 23 are ignored by the scientific storage.

5-4

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Storage

5.4.3. Status Functions

Status functions consist of reading the system status register and the bank status register.

Read System Status Register (04 8)

The scientific storage reads the System Status register and places the register contents on the
read data lines. The system status register uses the following format:

A A A A L L C D U
P P P P S S L F F P S Reserved for Software

0 1 2 3 0 1 P 0 1 C C

o 1 2 3 4 5 6 7 8 9 1011 35

MSR RES MOD
Reserved for Software Load Path 0

I
Load Path 1

01
1 A II

(0-5) (0-5) R L

36 5556 61 62 67686970 71

where:

Bits 0-10 Application bits

o - Application 0
1 - Application 1
2 - Application 2
3 - Application 3

4,5 - 00 - Load source is SSP IPL
01 - Load source is system panel
10 - Load source is auto recovery timer
11 - Load source is requester IAR

6 - Current load path is 1, load path 0 cleared.
7,8 - 01 - Failed on first attempt, loaded on second attempt.

10 - Failed on first and second attempts, loaded
on third attempt.

11 - Failed on first, second, and third attempts, loaded
on fourth attempt.

9 - Dynamic partitioning change after status register was loaded
10 - Unit support controller fault.

Bits 11-55 Reserved for software.

Bits 56-67 MSR - Load path 0 and 1

Bits 68,69 RES - Load path resident in storage

Bits 70,71 MOD - AR '- Auto recovery enabled
IL - 8 - Bank interleave enabled

5-5

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Storage

Read Bank Status Register (178)

The scientific storage places the contents of the selected Bank Status register on the
requesters read interface lines. Each bank of scientific storage contains four status registers
(one per data word). The request is directed to the register pair selected by address bit 22.
Address bits 2, 20, and 21 (four bank interleave) or 19, 20, and 21 (eight bank interleave)
select the bank.

The Bank Status register uses the following format for single bit errors:

Bank R
Address 0 Syndrome 0 Word 0 0

B
Select

o 16 17 18 25 26 27 30313233 35

where:

Bits 0-16

Bits 18-25

Bits 27-30

Bit 32

Address bits

0,1,2 - Row selected
3-16 - 16K address

Syndrome Code bits that point at the bit in error. These
bits are Os for no failure.

Bank/Word Select

27,28,29 - Bank selected
30 - Word pair selected

RB - Resident Bit

The resident bit is set when data is loaded and cleared
when the requester reads out the data.

5.4.4. Dayclock Functions

The dayclock provides accurate elapsed time measurements and initiates system activities at a
preselected time. The dayclock consists of a counter and a comparator.

Read Oayclock (058)

The scientific storage reads the current value of the dayclock and places the value on the
read interface lines.

5-6

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Storage

Load Oayclock (14a)

The requester places the dayclock value to be loaded on the write data lines. The scientific
storage stores the value in the dayclock and updates the dayclock from that value.

Load Dayclock Comparator (15a)

The requester places the dayclock comparator value on the write data lines. The scientific
storage stores the value in the comparator, and then broadcasts an interrupt whenever the
dayclock value is equal to or greater than the value in the comparator.

Read Oayclock Comparator (34a)

The scientific storage places the comparator value on the read data lines in the same bit
locations as received.

Select Dayclock Rates

The dayclock rate can be selected to correct for clock variations by the following functions:

• Set Dayclock Mode Normal (248)

• Set Dayclock Mode Fast (258)

• Set Dayclock Mode Slow (268)

5.4.5. Auto Recovery Timer

The auto recovery timer monitors the system. If no Reset Auto Recovery Timer signal is
received within a certain interval the timer initiates an auto recovery sequence.

Select Load Path 0 (20a)

Select load path 0 forces the scientific storage to select auto recovery path 0 as the active
load path.

Select Load Path 1 (21a)

Select load path 1 forces the scientific storage to select auto recovery path 1 as the active
load path.

Initiate Auto Recovery (22a)

Simulates an immediate expiration of the auto recovery timer which forces an auto recovery
initial confidence load program load attempt on the designated load path.

5-7

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Storage

Reset Auto Recovery Timer (238)

The scientific storage clears the auto recovery timer and restarts the countdown. This
function must be performed periodically to prevent the recovery sequence from starting.

5.4.6. Test and Set Functions

Test and set functions consists of Test and Set and Test and Clear. These two functions are
the same, except upon completion, bit 5 (even words) and bit 41 (odd words) contain a 1 bit
for the test and set function and a 0 bit for the test and clear function.

Test and Set (068)

The scientific processor performs a read operation followed by a partial write operation
within one word boundary. The scientific processor provides the data to be written.

Test and Clear (07 8)

The test and clear operation is the same as for test and set, except that during the write
operation O's are written into data bits 0 through 5 (even words) and 36 through 41 (odd
words).

5.4.7. Scientific Processor Functions

Function codes received on the scientific processor ports direct the scientific storage to
perform operations for the processor. Table 5-2 shows the scientific processor function codes.

Table 5-2. Scientific Processor Function Codes

Function Code Type

(Binary)

000000 Read four words

000001 Write Word specified by Master Bit*

00 1111

01 0001 Test and Set specified by Master Bit**

01 1000

5-8

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Storage

Table 5-2. Scientific Processor Function Codes (continued)

Function Code Type

(Binary)

10 0000 Maintenance read

11 0001 Test and Clear specified by Master Bit**

11 1000

*indicates any combination is legal.

** only one may be selected.

The scientific processor data word consists of four 36-bit words with four parity bits in each
word. Word 1 is the most significant word and word 4 is the least significant word. An
example of one word follows:

Data

I p I

Data Data Data

0 8 9 17 18 26 27 35
P = Parity

Read Four Words (00-00002)

The scientific storage reads the four words specified by address bits 2 through 21. The data
is placed on the read data interface.

Write 1-4 Words (00-XXXX2)

The scientific storage writes one word for each bit set (master bits). Any combination of the
four words may be written. The function code (XXXX2) can be any combination of 0000 to
1111.

Test and Set (01-XXXX2)

The scientific processor performs a read operation followed by a partial write operation for
the word specified by the master bit (only one bit is set at a time).

5-9

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Storage

Test and Clear (11-XXXX2)

This operation is the same as the test and set operation, except that during the write, O's are
written in data bits ° through 5.

5.5. Address Translation

Address translation is the process of converting the relative· operand address provided by an
instruction to the absolute storage address of the operand, including verifying that the
operand address is within the address space available to the instruction.

Address translation uses the following formats for scientific storage:

. Four-Bank Interleave

Iss I~I
o 1 2 3

where:

Bits 0,1
Bit 2
Bits 3-19
Bits 20,21
Bits 22,23

Eight-Bank Interleave

012

where:

Bits 0,1
Bits 2-18
Bits 19-21
Bits 22-23

Block In Bank

19 20 21 22 23

SS -Scientific Storage Select
BQS - Bank Quad Select
Block in Bank
BIQ - Bank in Quad
WIB - Word In Bank

Block In Bank

18 19 20 21 22 23

SS - Scientific Storage Select
Block in Bank
BS - Bank Select
WIB - Word In Bank

5.6. Error Function Register

A load Error Function Register function (16s) loads the Error Function register in the
addressed bank pair to control the functions within the bank. The maintenance functions
become sensitive only if the associated function register bits are enabled. The Error Function
register uses the following format:

5-10

UP-11006

o

Integrated Scientific Processor System Processor and Storage Reference
Scientific Processor Storage

I I I S SBE
I I E

I L Parity

Spare Bits C C I * B * SEL
C M N

N C Error
1 2 C E EN J B Selector

13 14 15 16 17 18 19 20 22 23 24 25 26 27 28

*indicates a spare bit

Spare
Bits

32 33 35

where:

Bit 14

Bit 15

Bit 16

Bit 18

Bits 20-22

Bit 23

Bit 24

Bit 25

Bit 26

ICI - Partial Store Internal Check 1

Tests read data parity for a partial store when a maintenance read is
requested.

IC2 - Partial Store Internal Check 2

Tests the partial store dual parity compare when a maintenance
write one word is requested.

IIC - Inhibit Interface Check

Inhibits the interface parity check and allows the parity error to be
undetected until it is propagated to the internal parity check.

SBE Lock

Inhibits all single-bit error reporting.

SBE Selective Enable

This field is enabled when bit 25 is set. Single-bit error reporting is
selectively enabled on the word within the block for the bank-pair
selected.

IC - Inhibit Correction

Inhibits correction on any word in error.

1M - Inhibit MUE

Inhibits sending multiple unit errors to the requester. This bit is set
or cleared by the system support processor.

EN - Enable SBE

Enables bits 20,.,.22.

INJ - Inject Parity

Enables bits 28-32 to inject a parity error in read data to the
requester.

5-11

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Storage

Bit 27

Bits 28-32

5.7. Error Reporting

LCB - Lock Check Bits

The scientific storage does not write the check bits for a maintenance
write one word.

Parity Error Selector

These bits select the byte in which a parity error occurs to the
requester.

Error reporting consists of checking parity on interface lines, and reporting external and
internal errors.

5.7. 1. Parity Checking

Parity is checked on lines from the scientific storage unit to the instruction processor,
input/output processor, and the scientific processor.

Instruction Processor-Input/Output Processor to Scientific Storage

The write data word contains four 9-bit data bytes with one parity bit for each byte. The
address word has four fields with one parity bit for each field. The control word has a parity
bit for each group of control bits within the word as follows:

function code
start bit
end bit

These parity bits determine if an error has occurred in a control word, address word, or the
write data word during data transfer operations.

Scientific Processor to Scientific Storage

The data word contains four 9-bit bytes with one parity bit for each byte. The address word
has three fields with one parity bit for each field, and the function word has one parity bit.

Scientific Storage Unit to Requester

One parity bit is generated for each 9-bits of the read data word, which allows the requester
to check parity on errors that occurred during data transfer operations.

5-12

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Storage

5.7.2. External Errors

External errors consist of interface parity errors, bank-not-available errors, and unsigned
function errors.

Interface Parity Errors

Odd parity is maintained on all interfaces for all functions. Parity is checked on write data,
function code, address, start field, and end field interface information. If an error is
detected, the following events occur:

the cycle is aborted
an interface check is issued by the scientific storage unit, with the
ACKNOWLEDGE 1 signal
the interface error message is transmitted across the read data interface

A bank not available check is issued by the scientific storage unit if an error occurs on the
address lines. This check preempts an address parity error.

Bank Not Available

Bank not available check is generated when an address is not in the requester's application,
from partitioning, program error, or a hardware failure. Bank not available check is also
generated if the scientific storage unit is partitioned to an eight-bank interleave and banks 0
through 3 or banks 4 through 7 are partitioned to maintenance.

Unassigned Functions

If the requester sends a function that is an unassigned octal code, the scientific storage unit
performs a read operation. A function code parity error is indicated.

5.7.3. Internal Errors

Internal errors consist of single-bit errors, multiple bit errors, and partial-write errors
detected in stored data.

Single-Bit Error

Each 36-bit data word is single-bit error corrected. When a single-bit error is detected and
corrected within a bank, a STATUS CHECK signal is transmitted to the instruction processor
within the application. The selected instruction processor responds to the scientific storage
unit with a STATUS CHECK ACKNOWLEDGE signal.

Multiple Errors

Double-bit and mUltiple-bit read data errors that are decoded as undefined errors are defined
as multiple uncorrectable errors. R~ad data is modified by error correction and cannot be
used for error detection by the requester.

5-13

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Scientific Processor Storage

Partial-Write Errors

The partial write single-bit error read word is corrected and merged with the selected write
data. Any single-bit error causes a status check to be broadcast to ports 4 through 7 in the
application. Multiple bit errors in stored data causes the write cycle to abort.

5.S. Configuration

Each scientific storage unit used replaces an existing main storage unit. The two types of
storage units can be intermixed, but the scientific processor can only interface with the
scientific storage. If two scientific storage units are used, a multiple unit adapter is required.
A second multiple unit adapter is required if a second scientific processor and two to four
scientific storage units are used. Storage configurations and address interleave are given in
Appendix B.

5-14

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Multiple Unit Adapter

6. Multiple Unit Adapter

This section describes the relation of the multiple unit adapter with the scientific processor
system.

6.1. Introduction

The multiple unit provides the interface between a scientific processor and one to four
scientific processor storage adapter units. Scientific processor systems with two or more
scientific storage units require the multiple unit adapter for each scientific processor. The
adapter may also be used in a system with one scientific storage unit. Figure 6-1 shows the
multiple unit adapter cabinet.

Figure 6-1. Multiple Unit Adapter

6-1

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Multiple Unit Adapter

6.2. Request Stacking

The adapter provides an eight deep stack for scientific processor requests, and the associated
address, write data, and function. The requests are taken off the stack in sequential order,
that is first in first out.

6.3. Request Acknowledgment

When the adapter sends a scientific processor request to the scientific storage, an
acknowledgment is sent to the scientific processor. The acknowledgment informs the
scientific processor that it can issue another request to the adapter.

6.4. Select Word Format

The adapter decodes the scientific processor most significant address bits (bits 0 and 1 of the
scientific processor address format) to determine which one of the four scientific storage units
to request.

The select word format is:

Address

o 21

Bits 0 and 1 are the select bits.

The adapter continues requesting a scientific storage unit until the request stack is empty,
eight storage requests remain outstanding (eight requests is the maximum that a scientific
storage can stack), or a different scientific storage is decoded. When a different scientific
storage unit is decoded, the adapter waits until an acknowledgement for the last storage
request is received before requesting a different storage. This insures that the scientific
storage references are not allowed to be s'erviced out of order.

6.5. Function Word Format

The function word format is:

o 5

6 ... 2

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Multiple Unit Adapter

6.6. Write Data Format

The write data format is:

Word 1

Data Data Data Data

o 8 9 17 18 26 27

Word 2

Data Data Data Data

36 44 45 53 54 62 63

Word 3

Data Data Data Data

72 80 81 89 90 98 99

Word 4

Data Data Data Data

108 116 117 125 12~ 134 135

6.7. Read Data Format

The read data format is the same as the four words of the write data format in 5.7.

6-3

35

71

107

143

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Multiple Unit Adapter

6.8. Parity

Parity is checked on these fields:

• Scien tific processor address

• Scientific processor write data

• Scien tific processor function

• Scientific processor storage read data

6.9. External Errors

Parity bits are checked from both the scientific processor and the scientific storage.

Scientific Processor to Multiple Unit Adapter

The adapter checks the parity bits of the address, write data, and function fields from the
scientific processor and generates an interface check to the scientific processor when an error
is detected.

The adapter passes the parity incorrect field to the scientific storage that generates an
interface check. The parity error information is returned on the read data lines.

Scientific Processor Storage to Multiple Unit Adapter

The adapter checks the parity bits on read data from the scientific storage. If an error is
detected, an interface check is generated and sent to the scientific processor.

6.10. Partitioning

The adapter can be partitioned into the scientific processor's application or partitioned into
maintenance mode. The scientific storage units are partitioned into the adapter's application.

6-4

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Instruction Summary

Appendix A. Instruction Summary

This appendix lists the scientific processor instructions by mnemonic (A.l) and by function
codes (A.2). Detailed descriptions of the instructions are given in Section 4.

The instruction Opcode is shown in a three-character octal decode of the most significant
seven binary bits of the 36-bit instruction word followed by the one-character octal decode of
the next three binary bits generally known as the t-field. For decodes showing more than
two fields, refer to Section 4. For more detailed information, refer to the Meta-Assembler for
the Scientific Processor, MASP Reference, UP-I0985.

A.1. Instruction Listing by Mnemonic

Mnemonic Format Opcode Mnemonic Format Opcode

A RS 102 0 CDFIV VV 05030
ALSS RS 160 0 CDIDFR RR 150 1 3
AN RS 103 0 CDIDFV VV 050 1 3
AND RS 106 0 CDIFR RR 150 1 2
ANDR RR 146 0 CDIFV VV 050 1 2
ANDV VV 046 0 CDIIR RR 150 1 0
ANR RR 143 0 CDIIV VV 050 1 0
ANV VV 043 0 CELP RS 163 1
AR RR 142 0 CEV VV 041 0
AV VV 042 0 CFDFR RR 15023

CFDFV VV 05023
BEL RS 123 2 CFDIR RR 150 2 1
BLVL RS 131 5 CFDIV VV 050 2 1
BSVL RS 131 6 CFIR RR 15020
BVLR RS 161 5 CFIV VV 05020

CIDFR RR 15003
C RS 101 0 CIDFV VV 05003
CDFDIR RR 150 3 1 CIDIR RR 150 0 1
CDFDIV VV 050 3 1 CIDIV VV 05001
CDFFR RR 15032 CIFR RR 15002
CDFFV VV 05032 CIFV VV 05002
CDFIR RR 15030 CLEV VV 041 0

CLV VV 041 0

A-1

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Instruction Summary

Mnemonic Format Opcode Mnemonic Format Opcode

CNEV VV 041 0 DJLZ RS 122 1 0 4
CR RR 141 0 DJNAB RS 122 1 1 1
CVELP RS 163 3 DJNB RS 122 1 0 2

DJNLB RS 122 1 1 7
DA RS 102 1 DJNNB RS 122 1 1 2
DAN RS 103 1 DJNZ RS 122 1 1 3
DAND RS 106 1 DJZ RS 122 1 0 3
DANDR RR 146 1 DL RS 130 1
DANDV VV 046 1 DLAEV VV 072 1
DANR RR 143 1 DLGM RR 172 1
DANV VV 043 1 DLV VV 070 1
DAR RR 142 1 DLVX VV 073 1
DAV VV 042 1 DMAX VV 006 1
DBVLR RR 161 6 DMCV VV 022 1
DC RS 101 1 DMDV VV 023 1
DCEV VV 041 1 DMIN VV 007 1
DCLEV VV 041 1 DMNS RR 155 1
DCLV VV 041 1 DMNV VV 055 1
DCNEV VV 041 1 OMS RR 154 1
OCR RR 141 1 DMV VV 054 1
OEM RS 1 11 1 DOR RS 106 3
DEMR RR 151 DORR RR 146 3
DEMV VV 051 1 DORV VV 046 3
DESC RS 112 1 OS RS 134 1
DESCR RR 152 1 DSA RS 107 3
DESCV VV 052 1 DSAEV VV 076 1
DFA RS 102 3 DSAR RR 147 3
DFAN RS 103 3 DSAV VV 047 3
DFANR RR 143 3 DSGM RR 176 1
DFANV VV 043 3 DSI RS 105 0
DFAR RR 142 3 DSIR RR 145 0
DFAV VV 042 3 DSIV VV 045 0
DFD RS 105 3 DSL RS 107 1
DFDR RR 145 3 DSLR RR 147 1
DFDV VV 045 3 DSLV VV 047 1
DFM RS 104 3 DSUM VV 002 1
DFMR RR 144 3 DSV VV 074 1
DFMV VV 044 3 DSVX VV 077 1
DFPRD VV 004 3 DXOR RS 1065
DFSUM VV 002 3 DXORR RR 146 5
DGR RS 173 0 DXORV VV 046 5
DGW RS 177 0 EBCV VV 0560
01 RS 105 1 EBPV VV 057 0
DIR RR 145 1 EM RS 111 0
DJAB RS 122 1 0 1 EMR RR 151 0
DJG RS 121 0 EMV VV 051 0
DJGEZ RS 122 1 1 4 ESC RS 112 0
DJGZ RS 122 1 1 6 ESCR RR 152 0
DJLB RS 122 1 0 7 ESCV VV 0520
DJLEZ RS 122 1 0 6

A-2

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Instruction Summary

Mnemonic Format Opcode Mnemonic Format Opcode

FA RS 102 2 JNLB RS 122 0 1 7
FAN RS 103 2 JNNB RS 122 0 1 2
FANR RR 143 2 JNZ RS 122 0 1 3
FANV VV 043 2 JVL RS 123 1
FAR RR 142 2 JXS RS 124 0
FAV VV 042 2 JXSI RS 124 0
FD RS 105 2 JZ RS 12200 3
FOR RR 145 2
FOV VV 045 2 L RS 130 0
FM RS 104 2 LAEV VV 0720
FMR RR 144 2 LAJ RS 125 0
FMV VV 044 2 LANI RS 125 0
FPRD VV 004 2 LOSC RS 107 7
FSUM VV 002 2 LOSCR RR 147 7

LOSCV VV 047 7
GI RS 167 0 LOSL RS 107 5
GXV VV 0600 LOSLR RR 147 5

LOSLV VV 047 5
IJL RS 120 0 LGM RR 172 0

LLCR RS 132 1
J RS 122 000 0 LS RS 130 2
JAB RS 122 0 0 1 LSSC RS 107 6
JCE RS 122 5 0 2 4 LSSCR RR 147 6
JCG RS 122 5 1 6 4 LSSCV VV 047 6
JCGE RS 122 5 1 5 4 LSSL RS 107 4
JCL RS 122 5 0 5 4 LSSLR RR 147 4
JCLE RS 122 5 0 6 4 LSSLV VV 047 4
JCNE RS 122 5 1 2 4 LV VV 0700
JEL RS 123 3 LVX VV 073 0
JFS RS 122 5 1 5 2
JGEZ RS 122 0 1 4 MAX VV 0060
JGZ RS 122 0 1 6 MCV VV 0220
JHB RS 122 0 0 5 MOV VV 023 0
JLB RS 122 0 0 7 MI RS 104 1
JLEZ RS 122 0 0 6 MIN VV 0070
JLRNZ RS 122 5 1 5 3 MIR RR 144 1
JLRZ RS 122 5 0 5 3 MLiV VV 044 1
JLZ RS 122 0 0 4 MNS RR 155 0
JMAB RS 122 5 0 1 0 MNV VV 055 0
JMCE RS 122 5 0 5 1 MS RR 154 0
JMNAB RS 122 5 1 1 0 MSI RS 104 0
JMNB RS 122 5 0 2 0 MSIR RR 144 0
JMNCE RS 122 5 1 5 1 MSIV VV 044 0
JMNNB RS 122 5 1 2 0 MV VV 054 0
JMNXB RS 122 5 0 3 0
JMXB RS 122 5 1 3 0 NOP RS 122 0 1 0 0
JNAB RS 122 0 1 1
JNB RS 122 0 0 2 OR RS 106 2
JNFS RS 122 5 0 5 2 ORR RR 146 2
JNHB RS 122 0 1 5 ORV VV 046 2

A-3

UP-ll006
Integrated Scientific Processor System Processor and Storage Reference

Instruction Summary

Mnemonic Format Opcode Mnemonic Format Opcode

PRO VV 0040 SSLR RR 147 0
SSLV VV 047 0

RLSS RS 160 4 SUM VV 0020
SV VV 074 0

5 RS 134 0 SVX VV 077 0
SAEV VV 0760
SGM RR 176 0 TC RS 137 0
SLCR RS 136 1 TS RS 137 4
55 RS 134 2
SSA RS 107 2 XOR RS 106 4
SSAR RR 147 2 XORR RR 146 4
SSAV VV 047 2 XORV VV 046 4
SSL RS 107 0

A-4

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Instruction Summary

A.2. Instruction Listing by Function Code

Function Code Mnemonic Format Instruction

002 0 SUM VV Sum Reduction
002 1 DSUM VV Double Sum Reduction
002 2 FSUM VV Floating-point Sum Reduction
002 3 DFSUM VV Double Floating Sum Reduction
0040 PDR VV Product Reduction
004 2 FPDR VV Floating-point Prod uct Reduction
004 3 DFPDR VV Double Floating Product Reduction
0060 MAX VV Max Reduction
006 1 DMAX VV Double Max Reduction
007 0 MIN VV Min Reduction
007 1 DMIN VV Double Min Reduction
022 0 MCV VV Move and Compress Vector
022 1 DMCV VV Double Move and Compress Vector
023 0 MDV VV Move and Distribute Vector
023 1 DMDV VV Double Move and Distribute Vector
041 0 CEV VV Compare Equal Vector
041 0 CLEV VV Compare Less Than or Equal Vector
041 0 CLV VV Compare Less Than Vector
041 0 CNEV VV Compare Not Equal Vector
041 DCEV VV Double Compare Equal Vector
041 DCLEV VV Double Compare Less Than or Equal Vector
041 DCLV VV Double Compare Less Than Vector
041 1 DCNEV VV Double Compare Not Equal Vector
042 0 AV VV Add Vector
042 1 DAV VV Double Add Vector
042 2 FAV VV Floating Add Vector
042 3 DFAV VV Double Floating Add Vector
0430 ANV VV Add Negative Vector
043 1 DANV VV Double Add Negative Vector
043 2 FANV VV Floating Add Negative Vector
043 3 DFANV VV Double Floating Add Negative Vector
044 0 MSIV VV Multiply Single Integer Vector
044 1 MLiV VV Multiply Left Half Integer Vector
044 2 FMV VV Floating Multiply Vector
044 3 DFMV VV Double Floating Multiply Vector
045 0 DSIV VV Divide Single Integer Vector
045 2 FDV VV Floating Divide Vector
045 3 DFDV VV Double Floating Divide Vector
046 0 ANDV VV AND Vector
046 1 DANDV VV Double And Vector
046 2 ORV VV OR Vector
046 3 DORV VV Double OR Vector
046 4 XORV VV Exclusive OR Vector
046 5 DXORV VV Double Exclusive OR Vector
047 0 SSLV VV Single Shift Logical Vector
047 1 DSLV VV Double Shift Logical Vector
047 2 SSAV VV Single Shift Algebraic Vector

A-5

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Instruction Summary

Function Code Mnemonic Format Instruction

047 3 DSAV VV Double Shift Algebraic Vector
047 4 LSSLV VV Left Single Shift Logical Vector
047 5 LDSLV VV Left Double Shift Logical Vector
047 6 LSSCV VV Left Single Shift Circular Vector
047 7 LDSCV VV Left Double Shift Circular Vector
050 0 1 CIDIV VV Convert Integer To Double Integer Vector
05002 CIFV VV Convert Integer To Floating Vector
05003 CIDFV VV Convert Integer To Double Floating Vector
050 1 0 CDIIV VV Convert Double Integer To Integer Vector
050 1 2 CDIFV VV Convert Double Integer To Floating Vector
050 1 3 CDIDFV VV Convert Double Integer To Double Floating Vector
05020 CFIV VV Convert Floating To Integer Vector
050 2 1 CFDIV VV Convert Floating To Double Integer Vector
05023 CFDFV VV Convert Floating To Double Floating Vector
05030 CDFIV VV Convert Double Floating To Integer Vector
050 3 1 CDFDIV VV Convert Double Floating To Double Integer Vector
05032 CDFFV VV Convert Double Floating To Floating Vector
051 0 EMV VV Magnitude Vector
051 1 DEMV VV Double Magnitude Vector
052 0 ESCV VV Sign Count Vector
052 1 DESCV VV Double Sign Count Vector
054 0 MV VV Move Vector
054 1 DMV VV Double Move Vector
055 0 MNV VV Move Negative Vector (Negate)
055 1 DMNV VV Double Move Negative Vector (Negate)
056 0 EBCV VV Extract Bit Count Vector
057 0 EBPV VV Extract Bit Parity Vector
0600 GXV -, VV Generate Index Vector
0700 LV VV Load Vector
070 1 DLV VV Double Load Vector
072 0 LAEV VV Load Alternate Elements Vector
072 1 DLAEV VV Double Load Alternate Elements Vector
073 0 LVX VV Load Vector Indexed
073 1 DLVX VV Double Load Vector Indexed
074 0 SV VV Store Vector (S 1 =0)
074 1 DSV VV Double Store Vector (S 1 =0)
076 0 SAEV VV Store Alternate Elements Vector
076 1 DSAEV VV Double Store Alternate Elements Vector
077 0 SVX VV Store Vector Indexed
077 1 DSVX VV Double Store Vector Indexed
101 0 C RS Compare
101 1 DC RS Double Compare
102 0 A RS Add
102 1 DA RS Double Add
102 2 FA RS Floating Add
102 3 DFA RS Double Floating Add
103 0 AN RS Add Negative
103 1 DAN RS Double Add Negative
103 2 FAN RS Floating Add Negative
103 3 DFAN RS Double Floating Add Negative

A-6

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Instruction Summary

Function Code Mnemonic Format Instruction

104 0 MSI RS Multiply Single Integer
104 1 MI RS Multiply Integer
104 2 FM RS Floating Multiply
104 3 DFM RS Double Floating Multiply
105 0 DSI RS Divide Single Integer
105 1 01 RS Divide Integer
105 2 FD RS Floating Divide
105 3 DFD RS Double Floating Divide
106 0 AND RS AND
106 1 DAND RS Double AND
106 2 OR RS OR
106 3 DOR RS Double OR
106 4 XOR RS Exclusive OR
106 5 DXOR RS Double Exclusive OR
107 0 SSL RS Single Shift Logical
107 1 DSL RS Double Shift Logical
107 2 SSA RS Single Shift Algebraic
107 3 DSA RS Double Shift Algebraic
107 4 LSSL RS Left Single Shift Logical
107 5 LDSL RS Left Double Shift Logical
107 6 LSSC RS Left Single Shift Circular
107 7 LDSC RS Left Double Shift Circular
111 0 EM RS Magnitude
11 1 1 OEM RS Double Magnitude
112 0 ESC RS Sign Count
112 1 DESC RS Double Sign Count
120 0 IJL RS Increment and Jump Less
121 0 DJG RS Decrement and Jump Greater
122 0 0 0 J RS Jump
122 0 0 1 JAB RS Jump All Bits - G
12200 2 JNB RS Jump No Bits - G
122 0 0 3 JZ RS Jump Zero - G
12200 4 JLZ RS Jump Less Than Zero - G
12200 5 JHB RS Jump High Bit - G
12200 6 JLEZ RS Jump Less Than or Equal To Zero - G
12200 7 JLB RS Jump Low Bit - G
122 0 1 0 NOP RS No Operation
122 0 1 1 JNAB RS Jump Not All Bits - G
122 0 1 2 JNNB RS Jump Not No Bits - G
122 0 1 3 JNZ RS Jump Non Zero - G
122 0 1 4 DGEZ RS Jump Greater Than or Equal To Zero - G
122 0 1 5 JNHB RS Jump Not High Bits -G
122 0 1 6 JGZ RS Jump Greater Than Zero - G
122 0 1 7 JNLB RS Jump Not Low Bit - G
122 1 0 1 DJAB RS Double Jump All Bits - G
122 1 0 2 DJNB RS Double Jump No Bits - G
122 1 0 3 DJZ RS Double Jump Zero - G
122 1 0 4 DJLZ RS Double Jump Less Than Zero - G
122 1 0 6 DJLEZ RS Double Jump Less Than or Equal To Zero - G
122 1 0 7 DJLB RS Double Jump Low Bit - G

A-7

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Instruction Summary

Function Code Mnemonic Format Instruction

122 1 1 1 DJNAB RS Double Jump Not A" Bits - G
122 1 1 2 DJNNB RS Dou ble Jump Not No Bits - G
122 1 1 3 DJNZ RS Double Jump Non Zero - G
122 1 1 4 DGEZ RS Double Jump Greater Than or Equal To Zero - G
122 1 1 6 DJGZ RS Double Jump Greater Than Zero - G
122 1 1 7 DJNLB RS Double Jump Not Low Bit - G
122 5 0 1 0 JMAB RS Jump Mask A" Bits
122 5 0 2 0 JMNB RS Jump Mask No Bits
122 5 0 2 4 JCE RS Jump On Condition Equal
122 5 0 3 0 JMNXB RS Jump Mask Not Mixed Bits
122 5 0 5 1 JMCE RS Jump Mask Current Element
122 5 0 5 2 JNFS RS Jump Not Full Strip
122 5 0 5 3 JLRZ RS Jump Length Register Zero
122 5 0 5 4 JCL RS Jump Condition Less Than
122 5 0 6 4 JCLE RS Jump Condition Less Than or Equal
122 5 1 1 0 JMNAB RS Jump Mask Not A" Bits
122 5 1 2 0 JMNNB RS Jump Mask Not No Bits
122 5 1 2 4 JCNE RS Jump Condition Not Equal
122 5 1 3 0 JMXB RS Jump Mask Mixed Bits
122 5 1 5 1 JMNCE RS Jump Mask Not Current Element
122 5 1 5 2 JFS RS Jump Fu" Strip
122 5 1 5 3 JLRNZ RS Jump Length Register Non Zero
122 5 1 5 4 JCGE RS Jump Condition Greater Than or Equal
122 5 1 6 4 JCG RS Jump Condition Greater Than
123 1 JVL RS Jump To Vector Loop
123 2 BEL RS Begi n Element Loop
123 3 JEL RS Jump To Element Loop
124 0 JXS RS Jump To External Segment
124 0 JXSI RS Jump To External Segment, Indirect
125 0 LAJ RS Load Address and Jump
125 0 LANI RS Load Address of Next Instruction
130 0 L RS Load
130 1 DL RS Double Load
130 2 LS RS Load Stride
131 5 BLVL RS Build Long Vector Loop
131 6 BSVL RS Build Short Vector Loop
132 1 LLCR RS Load Loop Control Registers
134 0 S RS Store
134 1 DS RS Double Store
134 2 SS RS Store Stride
136 1 SLCR RS Store Loop Control Registers
137 0 TC RS Test and Clear
137 4 TS RS Test and Set
141 0 CR RR Compare
141 1 DCR RR Double Compare Register
142 0 AR RR Add Register
142 1 DAR RR Double Add Register
142 2 FAR RR Floating Add Register
142 3 DFAR RR Double Floating Add Register
143 0 ANR RR Add Negative Register

A-a

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Instruction Summary

Fu nction Code Mnemonic Format Instruction

143 1 DANR RR Double Add Negative Register
143 2 FANR RR Floating Add Negative Register
143 3 DFANR RR Double Floating Add Negative Register
144 0 MSIR RR Multiply Single Integer Register
144 1 MIR RR Multiply Integer Register
144 2 FMR RR Floating Multiply Register
144 3 DFMR RR Double Floating Multiply Register
145 0 DSIR RR Divide Single Integer Register
145 1 DIR RR Divide Integer Register
145 2 FOR RR Floating Divide Register
145 3 DFDR RR Double Floating Divide Register
146 0 ANDR RR And Register
146 1 DANDR RR Double And Register
146 2 ORR RR Or Register
146 3 DORR RR Double Or Register
146 4 XORR RR Exclusive Or Register
146 5 DXORR RR Double Exclusive Or Register
147 0 SSLR RR Single Shift Logical Register
147 1 DSLR RR Double Shift Logical Register
147 2 SSAR RR Single Shift Algebraic Register
147 3 DSAR RR Double Shift Algebraic Register
147 4 LSSLR RR Left Single Shift Logical Register
147 5 LDSLR RR Left Double Shift Logical Register
147 6 LSSCR RR Left Single Shift Circular Register
147 7 LDSCR RR Left Double Shift Circular Register
150 0 1 CIDIR RR Convert Integer To Double Integer
15002 CIFR RR Convert Integer To Floating
15003 CIDFR RR Convert Integer To Double Floating
150 1 0 CDIIR RR Convert Double Integer To Integer
150 1 2 CDIFR RR Convert Double Integer To Floating
150 1 3 CDIDFR RR Convert Double Integer To Double Floating
15020 CFIR RR Convert Floating To Integer
150 2 1 CFDIR RR Convert Floating To Double Integer
15023 CFDFR RR Convert Floating To Double Floating
15030 CDFIR RR Convert Double Floating To Integer
150 3 1 CDFDIR RR Convert Double Floating To Double Integer
15032 CDFFR RR Convert Double Floating To Floating
151 0 EMR RR Magnitude Register
151 1 DEMR RR Double Magnitude Register
152 0 ESCR RR Sign Count Register
152 1 DESCR RR Double Sign Count Register
154 0 MS RR Move Scalar
154 1 OMS RR Double Move Scalar
155 0 MNS RR Move Negative Scalar
155 1 DMNS RR Double Move Negative Scalar
160 0 ALLS RS Advance Local Storage Stack
160 4 RLLS RS Retract Local Storage Stack
161 5 BVLR RR Build Long Vector Loop Register
161 6 DBVLR RR Build Short Vector Loop Register
163 1 CELP RS Set Current Element Loop

A-9

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Instruction Summary

Function Code Mnemonic Format Instruction

163 3
167 0
172 0
172 1
173 0
176 0
176 1
177 0

CVELP
GI
LGM
DLGM
DGR
SGM
DSGM
DGW

RS Set Current Vector and Element Loop Pointers
RS Generate Interrupt
RR Load G Multiple
RR Double Load G Multiple
RS Diagnose Read
RR Store G Multiple
RR Double Store G Multiple
RS Diagnose Write

A-10

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Storage Configurations and Address Interleave

Appendix B. Storage Configurations and
Address Interleave

This appendix describes storage and address interleave configurations for the scientific
storage unit.

B.1. Storage Configuration

The scientific storage unit is available in increments of 4,194,304 (4 million) words only. It is
divided into eight banks of 524,288 (524K) words each. The banks are divided into two main
storage partitions (MSP 0 and MSP 1) with four banks in each MSP. There are two
interleave options; a four-bank interleave or an eight-bank interleave. MSP 0 consists of a
system status register, initial program load (IPL) circuitry, auto-recovery control, dayclock,
and four storage banks (0,1,2, and 3). MSP 1 consists of control circuitry and four storage
banks (4,5,6 and 7). Figure B-1 shows a 4-million word storage configuration.

1 Scientific I
9 Storage Port I

Processor I
Interfaces I

optional port I _______________ .J

1 Multiple Memory Adapter 2 SSP

1 Unit Support Controller Interfaces

1 Exerciser

MSP 0
:

MSP 1

:
:
:
:

Bank Bank Bank Bank Bank Bank Bank Bank

0 1 2 3 4 5 6 7

524K 524K 524K 524K 524K 524K 524K 524K

Figure 8-1. Four Million Word Storage Configuration

8-1

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Storage Configurations and Address Interleave

B.2. Address Interleave

Interleave of addresses is done by MSP banks, such as banks 0 through 3, or banks 4 through
7. There is no address interleave between scientific storage units. The two methods
available for address interleave are four-bank interleave (minimum interleave) or the
eight-bank interleave (maximum interleave). Maximum interleave is recommended for
scientific processor operations because it provides maximum performance by separating the
bank request sequence to once every 32 words when using sequential addressing. The
available interleave options are shown in Figure B-2.

Four-bank Interleave

MSP 0 MSP 1

Bank Bank Bank Bank Bank Bank Bank Bank
0 1 2 ~ 4 n 6 7

..... 0 ••••
Words Words Words Words Words Words Words Words

0-3 4-7 10-13 14,-17 0-3 4-7 10-13 14-17

Address Address

0-2 Million Words 2-4 Million Words

NOTES: 1.

2.

Minimum interleave is 4 banks.

Maximum interleave is 8 banks.

Bank
0

Words

0-3

Eight-bank Interleave

MSP 0 MSP 1

Bank Bank Bank Bank Bank Bank
1 2 ~ 4 n 6

...
Words Words Words Words Words Words

4-7 10-13 14-17 20-23 24-27 30-33

Address 0-4 Million Words

Figure 8-2. Address Interleave Configurations

B.3. Scientific Storage Address Range

Bank
7

Words

4-37

The scientific storage unit is always configured with a full complement of storage array cards
(that is 4 million words) and the address range is always contiguous. This is true whether
the scientific storage is in minimum or maximum interleave (four-bank or eight-bank
interleave). This address range includes 4 million words unless one of the MSPs is down
because of internal hardware problems. In this case the remaining MSP must be in
minimum interleave (four-bank interleave). With one MSP down (MSP 0 or 1) the scientific
storage will have only 2 million words available for the system. If MSP 0 is down the
2-million to 4-million word range is available and if MSP 1 is down it is the 0- to 2-million
word range. These are unit address ranges, the system address ranges depend on the
scientific storage unit number (scientific storage 0, 1, 2, or 3).

B.4. System Notation of Storage Units and MSPs

The MSP designation on a system basis depends on which scientific storage the MSP is in.
The individual unit MSP 0 identification is always an even system MSP number and the unit
MSP 1 identification is always an odd system MSP number. It is possible to configure a
system with both scientific storage units and MSUs, however, the system MSP numbers are

B-2

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Storage Configurations and Address Interleave

still determined by what the storage unit system number is. (Refer to Table B-1 for specific
information.)

B.S. Storage Unit Maintenance

An individual scientific storage unit can only be configured to one system application at a
time. It is not possible to assign (partition) just a part of a scientific storage to a system
application. It is possible however, to assign an MSP (i.e. four banks) within a scientific
storage unit to a unit maintenance mode. This is done by downing a specific MSP. The MSP
when downed is not accessible by any requesters in the application; it is in an
online-diagnose state. The storage exerciser may be run in this MSP, and it is possible to
perform other maintenance activities such as replacing cards. The remaining MSP (that is
not in the online-diagnose state) can be accessed by requesters in the system application.

All systems applications, however require to have accessible an individual unit MSP 0 (that
is, storage banks 0, 1, 2, and 3 in a scientific storage or banks 0 and 1 in an MSU). This
MSP 0 may be accessible in any storage unit in the application and in either a scientific
storage or an MSU. Without an accessible MSP ° (System MSP number 0, 1, 2, or 3) a
system application cannot run. The reason for this is that IPL, dayclock, and auto-recovery
circuitry are resident in an individual MSP 0 and a system application cannot run if none
are configured in the application.

Table 8-1. System and Unit MSP Notation

MSU/

Scientific Storage Unit MSP System MSP

Number Number Number

MSU 0 MSP 0 MSP 0

or

Scientific Storage 0 MSP 1 MSP1

MSU 1 MSP 0 MSP 2

or

Scientific Storage 1 MSP 1 MSP 3

MSU 2 MSP 0 MSP 4

or

Scientific Storage 2 MSP 1 MSP 5

MSU 3 MSP 0 MSP 6

or

Scientific Storage 3 MSP 1 MSP 7

8-3

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Storage Configurations and Address Interleave

B.6. Scientific Storage Configuration Requirements

One to four scientific storages may be configured in an 1100/90 system. When only one
scientific storage is configured it can be located anywhere in the configuration. For
configurations with more than one scientific storage, they must be configured such that their
address ranges are contiguous. They can be positioned in the center or at the upper or lower
end of the system address range.

The 1100 Dynamic Allocator cannot hall:dle address ranges of the two types of storage if the
storage type address ranges are intermixed. The allocator makes a decision on each job as to
which storage (such as system addresses) it is to be assigned. All jobs for the scientific
processor must be assigned to scientific storage address ranges. Other jobs can be assigned to
either scientific storage or MSU address ranges.

B. 7. System Addressing Scientific Storage Interleave

Storage interleave on the 1100/90 exists only within the scientific storage units and MSUs.
There is not storage interleave between storage units. Two types of storage interleave exist
on the 1100/90 system; first is minimum interleave which is within MSPs and the second is
maximum interleave which is across MSPs within a given storage unit. Each storage unit
stands alone with its 4-million word address range. Whether scientific storages or MSUs,
each storage has a 4-million word address range.

The 1100/90 with scientific processors can be configured with all scientific storage units or a
combination of scientific storage units and MSUs. The interleave selection for each of the
storage units is independent of the interleave selection for the other storage units. This is
true regardless of whether the other units are scientific storages or MSUs. This means that
some units may be in maximum interleave and some in minimum interleave. Maximum
interleave is recommended for maximum performance particularly for multiprocessor systems.

B.8. Storage Related Address Ranges

Each storage unit relates to a specific address range (i.e. storage unit 0, addresses 0 through
4 million; storage unit 1, addresses 4 million through 8 million). Only when the storage units
are configured with the maximum 4 million words per unit is the system address range
contiguous from 0 through 16 million words. With scientific processors configured, some of
these units will be scientific processor storage units (SPSUs) and some may be main storage
units (MSUs). Figures B-3 and B-4 illustrate configurations with both SPSUs and MSUs.

8-4

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Storage Configurations and Address Interleave

MSU 0 MSU 1 SPSU 2 SPSU 3

~[]IIII
2 Million 2 Million 4 Million 4 Million

.- MSU 0..... I +- MSU 1 -+ I SPSU 2..... I +- SPSU 3 ~
Usable
Addresses n 111111111111 11111111111111 I11

o 4M 8M 12M 16M

System Address Range ---------••

NOTE: SPSUs at upper range of addresses

Figure 8-3. Example 1 of Storage Unit Configuration and System Addresses

NOTE· Scientific storages at upper range of addresses

8-5

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Storage Configurations and Address Interleave

SPSU 0 SPSU 1 MSU 2 MSU 3

1I11~1IJ
4 Million 4 Million 2 Million 2 Million

+-SPSUO I"-SPSU1-+ I +-MSU2~ I +-MSU3--+
Usable
Addresses 111 II 111111111111

o 4M 8M 12M 16M

........ t---------- System Address Range

NOTE: SPSUs at lower end of addresses

Figure 8-4. Example 2 of Storage Unit Configuration and System Addresses

NOTE· Scientific storages at lower end of addresses

B.9. Partitioning Scientific Storage Units and Main Storage Units

Storage units are partitioned to system applications on a cabinet basis. An entire cabinet or
number of cabinets are assigned to an application. There is no restriction as to which
storage unit(s) (scientific storage or MSU) is assigned to a particular application with IPs and
lOPs however applications with scientific processors must have scientific storages included or
they cannot operate.

B. 1 O. Storage Partitioning Implications on System Reboot

Storage partitioning can result in a system reboot, but only in one situation. That situation
is for the downing of a storage unit which has EXEC code resident in its memory. If a
storage unit is downed and EXEC code is not resident in its memory, then no reboot is
required. Reboots are never required when storage units are brought into an application
which is already running. This is because the additional storage unit has absolutely no effect
on the address range on any storage unit already in the application.

8-6

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Storage Configurations and Address Interleave

B.11. Module Select Register (MSR) Settings for Scientific Storage Units

The setting of the MSR value follows strict rules which are shown in Table B-2. The MSR
value allowable depends on which scientific storage unit is being used. The scientific storage
unit is only available with 4 million words, therefore, the only possible change in MSR
settings is when MSP 1 is downed for maintenance.

These MSR values are selected during the SSP /OPER program execution. For more specific
information on how and when to select MSR values, refer to 1100/90 System, System Support
Processor Operator Reference, UP-9123.6.

Table 8-2. MSR Values for Scientific Storage

Total Valid Range of Values in Octal

SPSU* Storage Storage Storage for MSR Number

Number in in MSP 0 in MSP 1 UNIT MSP 0 UNIT MSP 1

SPSU*

0 4M 2M ** 00-07 System - System

0 4M 2M 2M 00-07 MSP 0 10-17 MSP 1

1 4M 2M ** 20-27 System - System

1 4M 2M 2M 20-27 MSP 2 30-37 MSP 3

2 4M 2M ** 40-47 System - System

2 4M 2M 2M 40-47 MSP 4 50-57 MSP 5

3 4M 2M ** 60-67 System - System

3 4M 2M 2M 60-67 MSP 6 70-77 MSP 7

*SPSU means scientific processor storage unit.

**This condition only occurs when MSP-l is downed for maintenance.

B-7

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Glossary Glossary-1

Glossary

The glossary defines the key terms used in this manual.

A

accelerate
Switching activities into the scientific
processor.

activity
The unit of work that is scheduled for
the scientific processor. An activity
consists of scalar and vector operations
that execute in their respective
processors.

activity switching
The process of going from one scien tific
processor state to another.

add pipeline
A section in the vector module that
executes all single-precision and
double-precision floating-point and
integer instructions except multiply,
divide, product reduction, vector move,
and vector load instructions.

address generation
A section in the scalar module that
generates instructions to load either
data or instructions from main storage.

B

buffer

c

A storage area used to hold data
temporarily as it is transmitted from
one device to another. Buffers
compensate for differences in the rate
that data flows from one device to
another.

chaining
Over la pping the· execu tion of
consecutive instructions.

con trol block

D

The control block has registers that
contain the state of the scientific
processor at certain stages of activity
execution.

decelerate
Switching activities out of the scientific
processor.

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Glossary Glossary-2

E

Executive

G

A Sperry supplied program that
controls the 1100/90 system's operating
environment. It is part of the
operating system.

G-registers

H

Registers in the scalar module used as
accumulators for single-precision and
double-precision scalar data operands.

hardware status register
Four registers in the scalar module
that are part of the control block.
These registers hold hardware status
information and external interrupt
indicators.

instruction buffer
An in ternal storage in the scalar
module containing instructions loaded
from the scientific processor storage.

instruction control
The logic of the instruction flow
control section that reads, decodes, and
dispatches instructions.

instruction flow control
A section in the scalar module that
contains instruction buffer and control
mechanisms.

instruction processor
The main processing unit of the
1100/90 system.

J

jump history file

L

A file in the scientific processor that
contains the virtual address of the 32
most recent jumps internally executed
by an activity.

local storage
A storage area in the scien tific
processor that is used for frequently
used scalar variables and constants.

loop control
The loop control section in the scalar
module broadcasts the current loop
count and element count data to the
various vector sections so that current
loop and element positions or ending
can be determined.

loop control registers

M

Registers located in the scalar module
that are used to hold parameters that
determine iteration and indexing of
program loops.

mailbox
An eight-word register in the scientific
processor storage that contains
pointers to the information necessary to
execute an activity located in the
scientific processor control block.

mask processor
A section in the scalar module allows
a single source mask to provide
multiple references at several different
bit positions, one for each active
destination, under one mask controller.

move pipeline
A section in the vector module that
executes the move, compress, and
distribute instructions. It also
participates in single to double and
double to single-precision conversions.

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Glossary Glossary-3

multiply pipeline

p

A section in the vector module that
executes the multiply, divide, and
product reduction instructions.

pipeline

Q

A functional unit that contains
separate hardware stages to perform
subfunctions. The stages operate
independently so that the pipeline can
process data in parallel.

quantum timer

R

A timer that limits the execution time
of an activity on the scientific
processor.

RR format
The register-to-register format used for
scalar instructions that do not specify a
storage location.

RS format

s

The register-to-storage format used for
most scalar operations that specify a
storage location in either local storage
or scientific processor storage.

scalar module
The processor module that performs
scalar operations and has the overall
control function in the scientific
processor.

scalar processor
A section in the scalar module that
executes most scalar instructions,
performs floating-point characteristic
manipulation, and performs integer and
floating-point multiply operations.

scalar vector control
A section in the vector module that
provides interface control for RR
format and VV format instructions
that move G-register operand and
vector operand data between the scalar
module and the vector module.

scientific processor
A processor that attaches to the system
for performing scientific problems.

scientific processor system
A group of components characterized by
a very large storage, high-speed
arithmetic operations, and a large
variety of floating-point arithmetic
instructions.

scien tific processor storage
A free-standing unit that provides
main storage for both the 1100/90
instruction processor and the scien tific
processor in a scien tific processor
system.

state registers
Registers in the scien tific processor
that contain program visible states
relating to internal interrupts and
condition codes.

store buffer
A section in the scalar module that
provides a buffer for data coming from
the vector module and going to the
scientific processor storage.

stride

u

A constant skip or increment through
storage.

universal processor interface (UPI)
The communications interface between
the scientific processor and the
instruction processor.

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Glossary Glossary-4

v
VV format

The vector-to-vector format used to
specify vector operations.

vector control
A section in the vector module that
receives the vector control word,
manages vector file time slots, and
forms and selects vector file addresses.

vector files
Sixteen files in the vector module that
hold the elements of a single vector
array. Each file has space for 64,
36-bit words.

vector load
A section in the vector module that
transfers data from local storage or the
scientific processor storage into the
vector files.

vector module
See vector processor.

vector processor
The processor that executes the vector
portions of scientific applications.
Vector scientific applications are those
large portions of code that can execute
in the vector processor's pipelines.

vector store
A section in the vector module that
controls moving data from the vector
files to the store buffer in the scalar
module.

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Index Index-1

A

Absolute value
(EM, DEM EMR, DEMR) 4-7
(EMV, DEMV) 4-17

AC entrance unit function 2-2

Acceleration 3-2
function 3-1
state 2-28

Activity defined 1-7

Activity acceleration defined 3-1

Activity deceleration defined 3-1

Activity segment table 2-12

Activity switching 3-1
acceleration 3-2
algorithm 3-3
deceleration 3-3
special considerations 3-3

Add (A, DA, FA, DFA,AR, DAR, FAR, DFAR) 4-6

Add negative (AN, DAN, FAN, DFAN, ANR, DANR,
FANR, DFANR) 4-6

Add negative vector (ANV, DANV, FANV, DFANV)
4-16

Add pipeline 1-16, 2-33
vector module 2-43

Index

Add vector (AV, DAV, FAV, DFAV) 4-16

Address generation 2-8
activity segment table 2-12
limits error interrupt 2-13
segment mapping 2-11
storage referencing 2-10

Address interleave 8-1

Address limits error interrupt 2-13

Address translation 5-10

Addressing formats 1-8

Adjust loop register pointers (CELP, CVLP, CVELP)
4-29

Advance local storage stack (ALSS) 4-37

Arithmetic faults 1-13

Asynchronous interrupt handling 3-8

Auto recovery timer 5-7

Automatic storage stack 2-1 9

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Index Index-2

B

Bandwidth problem 1-6

Bank not available check 5-13

Bank status register 5-6

Basic compress instruction element transfer 2-46

Basic distribute instruction element transfer 2-46

Branch and scalar condition code circuit 2-14

Breakpoint functions 1-12

Build element loop (BEL) 2-22, 4-28

Build vector loop (BSVL, BVL, BSVLR, BLVLR)
2-22, 2-24, 4-27

c
c-field 4-3

conditional jump instructions 4-31
processing element 4-15

Chaining 1-10

Characteristic overflow 2-17
fault 1-13

Characteristic underflow fault 1-13

Compare (C, DC, CR, DCR) 4-9

Compare vector instruction 1-9, 4-20

Compress vector (MCV, DMCV) 4-25

Computational-intensive programs 1-5

Conditional jump instruction (CJ) 4-31
c-field 4-31 .

n-field 4-33
r-field 4-32
s-field 4-32

Configuration 5-1 4

Conflict

Facility conflict 3-13
control word dispatch 3-9
data available 3-13
detection 2-38, 2-40, 2-44
facility 2-38, 3-12
instruction conflict classification and types

3-9,3-10
instruction execution class 3-11
issue class 3-9
register 3-11
unit wait 3-14
vector file 2-53

Conflict element counters 2-44

Conflict file number registers 2-44

Control block 2-26
activity switching 3-1
structure 2-5, 2-6

Control instructions 1-8

Control structures 2-2

Control word dispatch class 3-9

Convert (CIDIR, CIFR, CIDFR, CDIIR, CDIFR, CDIDFR,
CFIR, CFDIR, CFDFR, CDFIR, CDFDIR, CDFFR)
4-10

Convert double floating vector (CDFFV) 2-47

Convert floating to double floating vector (CFDFV)
instructions 2-47

Convert vector 4-21

Count leading signs (ESC, DESC, ESCR, DESCR)
4-7
instruction 2-47
vector (ESCV, DESCV) 4-18

Current element loop pointer (CELP) 1-9, 2-22,
2-25

Current vector loop point (CVLP) 1-9
register formats 2-22, 2-25

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Index

o
Data available conflicts 3-13

Data control 2-43

Data formats 1-8

Data out registers 2-21

Data types 2-1 5
vector module 2-45

Dayclock functions 5-6

Deceleration
activity switching 3-3
function 3-1
state 2-28

Decrement and jump greater (DJG) 2-14, 4-35

Destation/destination register conflict 3-12

Destination/source register conflict 3-11

Diagnose read (DG R) 4-39

Diagnose write (OGW) 4-39

Diagnostic instructions 4-39

Distribute vector (MDV, DMDV) 4-26

Divide (DSI, DI, FD, DFD, DSIR, DIR, FDR, DFDR)
4-6

Divide fault 1-13, 2-17

Divide vector (DSIV, FDV, OFDV) 4-16

Dormant state 2-28
function 3-1

Double extract sign count vector (DESCV) 2-47

Double-precision characteristic underflow 2-17

E

Element loop registers 1-9, 2-23

Elementwise comparison instruction 4-19

Error function register 5-10

Error reporting 5-1 2

Exclusive OR (XOR, DXOR, XORR, DXORR) 4-9

Execute function 3-1

External errors 5-13
multiple unit adapter 6-4

External interrupt 3-5
activity switching 3-3
cause indicated 3-6
condition 2-4
state switching 2-29, 2-30

External state function 3-1

f-field 4-2

Facility conflicts 3-12
usage conflicts 2-38

F

File conflict detection 2-38

Floating-point operations
faults 2-17
instructions 2-1 7
numbers 1-6
unit 2-15

Function codes 5-8

Function word format, mUltiple unit adapter 6-2

G

G-operand 2-54

Index-3

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Index

General register set (G registers) 1-9
instructions 2-14
integer ALU 2-14
scalar module 2-7

Generate index vector (GXV), instruction 2-14,
2-47, 4-24
Base and stride vector arrangement 2-47

Generate interrupt (GI, GIA, GIB) 4-38

H

Hardware status registers 2-4
register 0 2-4
register 1 2-5
register 2 2-5
register 3 2-5

Increment and jump less (IJL) 4-35
instructions 2-14

Indexed load vector (LVX, DLVX) 4-24

Indexed store vector (SVX, DSVX) 4-25

Initialization 1-8

Inoperative function 3-1

Instruction breakpoint compare 1-12

Instruction buffer 2-8, 2-9

Instruction bypass 2-41

Instruction conflict classification 3-9
control word dispatch class 3-9
issue class 3-9

Instruction decode faults 1-12

Instruction execution class 3-11

Instruction flow control 2-8

Instruction generation 2-10

Instruction set
contents 4-1
in scientific processor 1-4

Instruction summary A-1

Instruction word formats 4-1
common fields 4-2
register-to-register (RR) 4-4
register-to-storage (RS) 4-4
vector-to-vector (VV) 4-5

Instructions
function code listing A-5
mnemonic listing A-1
out of program order 3-13
See also specific kinds of instructions

Instrumentation 1-11

Integer ALU (arithmetic logic unit) 2~ 14

Integer overflow 2-18
fault 1-13

Integers, single and double-precision 1-6

Integrated scientific processor system
diagram 1-1
typical configuration 1-21

Interconnect 2-8
vector module 2-33

Interfaces 1-8, 1-20, 1-22

Internal errors 5-13

Internal interrupts 3-6

Internal interval timer 1-11

Interrupt handling 3-4
external interrupts 3-5
internal.interrupts 3-6,3 9
synchronous and asynchronous 3-8

Interrupt identification 3-5

Interrupt responses 3-4

Interrupt status 3-9

Index-4

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Index

Interrupt synchrony 3-7 Logical AND (AND, DAND, ANDR, DANDR) 4-9

Logical AND vector (ANDV, DANDV) 4-19
J

Index-5

Logical exclusive OR vector (XORV, DXORV) 4-19
Jump element loop (JEL) 2-22

Jump history file 1-11,2-7

Jump instructions 4-30
conditional jump 4-31
decrement and jump greater (DJG) 4-35
increment and jump less (IJL) 4-35
jump to external segment (JXS, JXSI) 4-36
load address and jump (LAJ, LANI) 4-35

Jump to element loop (JEL) 4-29

Jump to external segment (JXS, JXSI) 4-36

Jump vector loop (JVL) 2-22, 4-28

L

I-field 4-3

Load alternating elements vector (LAEV, DLAEV)
4-26

Load buffer data 3-14

Load loop control registers (LLCR) 4-37

Load multiple (LGM, DLGM) 4-36

Load register
storage move instructions 4-12

Load vector (LV, DLV) 4-23
indexed (LVX) instruction 2-52

Local storage 2-18
acceleration 2-20
activity switching 3-2
addressing 2-18
automatic storage stack 2-18
data from 2-19
operand wait 3-13
scalar module 2-7
stack definition word format 2-19

Logical OR (OR, DOR, ORR, DORR) 4-9

Logical OR vector (ORV, DORV) 4-19

Loop control 2-22
instructions 2-24, 4-27
register formats 2-22
register mapping 2-23
register operation 2-24
register set 1-9

M

Mailbox
activity switching 3-2
control structure format 2-2

Mask processor 2-25

Mask register
mapped into state register 1-10
set 1-9

Maximum reduction 4-22

MASP Reference A-1

Minimum reduction 4-23

Mnemonic listing A-1

Module select register (MSR) settings 8-7

Move negative scalar (MNS, DMNS) 4-15

Move pipeline 1-16, 2-33
vector module 2-45
vector module interface 2-49

Move register-to-register instructions 4-13

Move scalar (MS, OMS) 4-15

Move vector (MV, DMV) 4-25

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Index

Multiple load-store instructions 2-22

Multiple unit adapter 1-19, 6-1

Multiply (MSI, MI, FM, DFM, MSIR, MIR, FMR,
DFMR) 4-6

Multiply busy facility 3-12

Multiply pipeline 1-16, 2-33
vector module 2-50

Multiply unit 2-18

Multiply vector (MSIV, MSLlV, FMV, DFMV) 4-16

N

Negative vector (MNV, DMNV) 4-17

Nested loop processing 1-6

n-field, conditional jump instructions 4-34

Number representation 2-15, 2-17
vector module 2-45

o
Operand control 2-43

Operand wait conflicts 3-13

Ownership register conflicts 3-12

Parity
checking 5-12
error 2-29

p

multiple unit adapter 6-4

Partitioning
implications on system reboot 8-6
multiple unit adapter 6-4
scientific storage units and main storage units

8-6

Performance monitoring 1-14

Population count vector (E8CV) 4-18

Population parity count (E8PV) 4-18

Previous vector loop entry 4-27, 4-28

Product reduction 4-22

Program address register 1-8
instruction flow control 2-8

Program addressing 2-9

Program faults 1-12

Programmable registers 1-9

Programming notes, maximum reduction 4-22

Q

Quantum timer 1-11

R

Read data breakpoint compare 1-12

Read data format, multiple unit adapter 6-3

Read functions 5-4

Read multiplexer 2-38

Read reference, activity segment table 2-13

Register conflicts 3-11

Register formats, loop control 2-22

Register mapping, loop control 2-23

Reg ister save a rea 1-10
activity switching 3-2

Register-to-register (RR) format 4-4
scalar instruction 2-14

Index-6

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Index Index-7

Register-to-storage (RS)
data from local storage 2-19
format 4-4
instruction 2-14

Remaining length overflow interrupt 4-27

Request acknowledgment, multiple unit adapter
6-2

Request stacking, multiple unit adapter 6-2

Reserved bits 1-12

Retract local storage stack (RLSS) 4-38

r-field 4-3
conditional jump instructions 4-33
operand location 4-14

5

Scalar arithmetic computation instructions 4-5
absolute value 4-7
add 4-6
add negative 4-6
count leading signs 4-7
divide 4-6
mUltiply 4-6

Scalar comparison instruction 4-9

Scalar instructions 1-8

Scalar logical computational instructions 4-8

Scalar module 1-4
function 1-14, 2-2
local storage 1-6

Scalar move instructions 2-14, 4-12

Scalar processor
features 2-13
scalar module 2-7

Scalar shift instructions 4-10

Scalar type conversion instruction 4-10

Scalar vector control 2-54

Scientific processor
arithmetic faults 1-13
chaining 1-10
control block 2-5, 2-25
control structure 2-2
data and addressing formats 1-8
diagnostic instructions 4-39
elementwise comparison instruction 4-19
features 1-4
function codes 5-8
functional organization 2-1, 2-2
functions 1-7
hardware components 1-2
instruction execution 1-8
instruction word formats 4-1
instructions 1-8
instrumentation 1-11
initialization 1-8
jump history file 2-7
jump instructions 4-30
local storage 2-18
loop control 2-22
loop control instructions 4-27
mask processor 2-25
multiple unit adapter 1-19, 6-4
performance monitoring 1-14
program faults 1-12
programmable registers 1-9
scalar arithmetic computational instructions 4-5
scalar comparison instruction 4-9
scalar computational instructions 4-8
scalar module 1-14, 2-7
scalar'move instructions 4-12
scalar shift instructions 4-10
scalar type conversion instruction 4-10
simplified block diagram 1-3
state instructions 4-36
state operations 2-26
store buffer 2-20
subsystem components 1-2
system configurations 1-19
system interfaces 1-20
unit control module 1-17
universal processor interface (UPI) 1-10
vector arithmetic instructions 4-15
vector bit evaluation instructions 4-17
vector logical instructions 4-19
vector module 1-15, 2-33
vector move instructions 4-23
vector reduction operation instructions 4-21
vector type conversion instructions 4-20

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Index

Scientific processor storage 1-17
address range B-2
address translation 5-10
auto recovery timer 5-7
configuration 5-14
configuration requirements B-4
dayclock functions 5:.....6
error function register 5-10
error reporting 5-12
external errors 5-1 3
features 5-2
functions 5-2
interfaces 1-18
internal errors 5-13
multiple unit adapter 6-4
operation modes 5:-3
parity checking 5-12

. read functions 5-4
requester ports 1-18
status functions 5-5
test and set functions 5-8
write functions 5-4

Segment mapping 2-11

Select word format, multiple unit adapter 6-2

s-field 4-3
conditional jump instructions 4-32
operand location 4-13

Shift left circular (LSSC, LOSC, LSSCR, LOSCR)
4-12

Shift left logical (LSSL, LOSL, LSSLR, LOSLR) 4-11

Shift right algebraic (SSA, DSA, SSAR, OSAR)
4-11

Shift right logical (SSL, DSL, SSLR, DSLR) 4-11

Sign manipulation 2-16

Single-precision characteristic underflow 2-17

Source language compatibility 1-4

Source/destination register conflicts 3-11

Stack definition word format 2-19

State register set 1-10

word formats 2-32

State switching 2-26, 2-27
acceleration 2-28
deceleration 2-28
dormant 2-28
execution 2-30
external interrupt 2-30
inoperative 2-30
internal interrupt 2-29
register set 2-31,2-32
special considerations 2-31

Status functions 5-4

Storage
configurations B-1
error 2-29
features 5-2
functions 5-2
interface buffers 2-8
interface operand wait 3-13
move instructions 4-12
operation modes 5-3
referencing 2-10
request-acknowledge interface 2-11
unit maintenance 8-3
See also Scientific processor storage

Store alternating elements vector (SAEV, DSAEV)
4-26
instruction 2-52

Store buffer 2-20
availability 3-13
data out registers 2-21
write data registers 2-21

Store loop control registers (SLCR) 4-37
instruction 1-9

Store multiple (SGM, DSGM) 4-37

Store register, storage move instructions 4-1 2

Store vector (SV, DSV) 4-24
instruction 2-51
indexed (SVI) instruction 2-51

Sum reduction 4-21

Synchronous interrupt handling 3-7, 3-8

Index-8

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Index

System components, 1100/90 1-2

System configurations 1-19, 1-21

System notation of storage units and MSPs 8-2

T

Test and Clear (TC) 4-38

Test and Set (TS) 4-38

t-field 4-2
definition 4-16

Type conversion and count leading signs vector
arrangement 2-48

u
Unassigned functions 5-13

Undefined instruction interrupt 1-12

Unit control module 1-17
function 2-2

Unit wait conflicts 3-14

Universal processor interface (UPI) 1-10
control block 2-26
functions 1-20

User codes in scientific processor 1-4

v
Vector add pipeline 2-43

data control 2-43
operand control 2-43

Vector arithmetic instructions 4-15

Vector bit evaluation instructions 4-17

Vector control 2-36
file addressing 2-37
file conflict detection 2-38
file logical and facilities usage conflicts 2-38

instruction bypass 2-41
interface 2-37
receive and acknowledge 2-36
word 2-42
word queue 3-12

Vector file addressing 2-35, 2-37
address select registers 2-38

Vector file conflicts 2-53

Vector instructions 1-8

Vector load 2-50
buffer 1-16

Vector logical instructions 4-19

Vector loop registers 1-9, 2-22

Vector module 1-15, 2-33
conflict detection 2-44
control section 2-36
function 2-2
register 2-33
scalar vector control 2-54

Vector move instructions 4-23

Vector move pipeline 2-45

Vector multiply pipeline 2-50·

Vector operand 2-54, 2-55
wait conflicts 3-13

Vector parameter word 2-42

Vector processor module 1-4

Vector reduction operation instructions 4-21

Vector register
file addressing 2-35
length overflow fault 1-13
memories 2-34
primary and secondary files 2-34
set 1-9
time slot 3-12
usage conflicts 3-12
vector module 2-33

Index-9

UP-11006
Integrated Scientific Processor System Processor and Storage Reference

Index

Vector shifts (SSLV, DSLV, SSAV, DSAV, LSSLV,
LDSLV, LSSCV, LDSCV) 4-17

Vector store 2-51
buffer 1-15
indexed instruction 2-51
instruction 2-51
interface 2-52, 2-53

Vector-to-vector (VV) format 4-5

Vector type conversion instructions 4-20

v-field 4-3

virtual segment offset 2-13

w
Write Data format

Breakpoint compare 1-12
multiple unit adapter 6-3
registers 2-21

WRITE ENABLE signal, instruction word formats
4-4

Write functions 5-4

Write multiplexer 2-38

Index-10

...JLSPE~Y -,r

USER COMMENTS

We will use your comments to improve subsequent editions.

NOTE: Please do not use this form as an order blank.

(Document Title)

(Document No.) (Revision No.) (Update Level)

Comments:

From:

(Name of User)

(Business Address)

Fold on dotted lines, and mail. (No postage is necessary if mailed in the U.S.A.)
Thank you for your cooperation

FOLD

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 21 BLUE BELL, P A.

POSTAGE WILL BE PAID BY ADDRESSEE

SPERRY CORPORATION

ATTN: Documentation Quality Control Group
C/O SYSTEM PUBLICATIONS

P.O. BOX 500
BLUE BELL, PENNSYLVANIA 19422-9990

1 ••• 111.111.1 •• 1111.1 •• 1.11.1 •• 1.1 •• 1.1 •• 11 •••• 1.1.1

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

_I

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	6-01
	6-02
	6-03
	6-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	G-01
	G-02
	G-03
	G-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	replyA
	replyB

