
R

PROGRAMMER
REFERENCE

UNIVAC
1 10 o SERIES

BASIC

UP-7925

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS Acknowledgment 1
PAGE REVISION PAGE

ACKNOWLEDGMENT

The authors of this manual and the UBASIC Processor would like to express their appreciation to the Systems

Programming Group of the University of Maryland who supplied the basis for this project.

UBASIC is an extension of the BASIC Processor that was developed by the University of Maryland.

This document contains the latest information available at the time of publication. However, the Univac Division

reserves the right to modify or revise its contents. To ensure that you have the most recent information, contact

your local Univac Representative.

UNIVAC is a registered trademark of the Sperry Rand Corporation.

© 1972 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGESTATUSSUMMARV

ISSU E: UP-7925 Original

PSS·1
PAGE REVISION PAGE

The following table lists the status of each page in this document and indicates the update package (if applicable).

Section Page Page Update
Number Status Package

Section Page Page Update
Number Status Package

Cover None Original

Disclaimer None Original

PSS 1 Original

Acknowledg ment 1 Original

Preface 1 Original

Contents 1 thru 4 Original

1 1 Original

2 1 thru 10 Original

3 1 thru 47 Original

4 1 thru 7 Original

Appendix A A1 thru A3 Original

Appendix 8 81 Original

Appendix C C1 thru C6 Original

Appendix D D1 thru D10 Original

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS Preface 1
PAGE REVISION PAGE

This manual describes the UNI VAC 1100 Series BASIC (UBASIC) programming language. UBASIC is an extended

version of the BASIC (Beginners All-purpose Symbolic Instruction Code) language developed at Dartmouth

College. These extensions make UBASIC an extremely powerful language for advanced users as well as a simple

language for beginners.

This manual is designed as a reference manual, not as a self-instructing guide. Therefore a fundamental knowledge of

BASIC is assumed.

Only the rudimentary knowledge of the use of the UNIVAC 1100 Series Operating System contained in

Appendix A Operating Procedures is necessary for the beginning user. More sophisticated use of UBASIC will

require increasing levels of understanding of the Operating System.

7925
UP·NUMBER

UNIVAC 1100 SERIES SYSTEMS Contents 1
PAGE REVISION PAGE

CONTENTS

ACKNOWLEDGMENT 1 to 1

PREFACE 1 to 1

CONTENTS 1 to 4

1. INTRODUCTION 1·1 to 1·1

2. PRELIMINARY DEFINITIONS 2·1 to 2-10

2.1. PROGRAM 2-1

2.2. STATEMENTS 2-1

2.3. INSTRUCTION WORDS 2-2

2.4. CONSTANTS 2-2
2.4.1. ARITHMETIC CONSTANTS 2-2
2.4.2. STRING CONSTANTS 2-3

2.5. VARIABLES 2-3

2.6. OPE RA TI ONS 2-4

2.7. FUNCTIONS 2-4

2.7.1. NUMERIC FUNCTIONS 2-5
2.7.2. STRING FUNCTIONS 2-7
2.7.3. LOGICAL FUNCTIONS 2-8
2.7.4. RELATIONAL FUNCTIONS 2-9
2.7.5. SPECIAL FUNCTIONS 2-9

2.8. EXPRESSIONS 2-10

2.9. COMMENTS 2-10

3. DESCRIPTION OF STATEMENTS 3-1 to 3-47

3.1. LET 3-1

3.2. READ AND DATA 3-2

3.3. RESTORE, RESTORE*, RESTORE$ 3-3

3.4. PRINT 3-3

7925
UP-NUMBER

UNIVAC 1100 SE RIES SYSTEMS

3.5~ GO-TO

3.6. IF

3.6.1. CONTROL TRANSFER

3.6.2. CONDITIONAL STATEMENT EXECUTION

3.6.3. IF-THEN-ELSE SEQUENCE

3.6.4. COMBINING IF STATEMENTS

3.6.5. LOGICAL OPERATORS

3.7. ON

3.8. PROGRAM LOOP CONTROL

3.8.1. FOR AND NEXT

3.8.2. FOR AND IMPLIED NEXT

3.8.3. WHILE

3.8.4. UNTI L

3.8.5. FOR COMPOUNDED WITH WHI LE OR UNTI L

3.9. STOP

3.10. DEF AND FNEND

3.11. CALL

3.12. GOSUB AND RETURN

3.13. INPUT

3.14. CHANGE

3.15. REM

3.16. RANDOMIZE

3.17. END

3.18. DIM

3.19. EXCHANGE

3.20. CHAIN

3.21. STRINGS

3.22. ARRAYS

3.23. MAT

3.23.1. MAT ARRAY=MATRIX EXPRESSION

3.23.2. MAT PRINT

3.23.3. MAT INPUT

3.23.4. MAT READ

3.24. FILE I/O

3.24.1. OPEN

3.24.2. INPUT

3.24.3. OUTPUT

PAGE REVISION

3·5

3-5

3-5

3·6

3-6

3-7
3-7

3-7

3-8

3-8

3-10

3-11

3·11

3-11

3-12

3-12

3-16

3-16

3-17

3-18

3-20

3-20

3-20

3-20

3-21

3-21

3-22

3-22

3-23

3-23

3-24

3-25

3-25

3-25

3-25

3-26

3-27

Contents 2
PAGE

7925
UP·NUMBER

4.

UNIVAC 1100 SERIES SYSTEMS Contents 3
PAGE REVISION PAGE

3.24.4. PR I NT 3·27
3.24.5. PUNCH 3-27
3.24.6. ON ENDFILE 3-27
3.24.7. LINES 3-28
3.24.8. CLOSE 3-28
3.24.9. TEMPORARY FILES 3-28
3.24.10. RAN DOM FILES 3-28
3.24.11. FORMATTED INPUT/OUTPUT 3-29
3.24.12. PRINT IN IMAGE, NUMERIC 3-30
3.24.13. PRINT IN IMAGE, STRINGS 3-32
3.24.14. FREE FORM OUTPUT 3-33
3.24.15. PRINT IN FORM 3-33
3.24.16. PRINT IN FORM, NUMERIC 3-33
3.24.17. PRINT IN FORM, STRINGS 3-38
3.24.18. INPUT IN FORM AND IMAGE 3-39
3.24.19. FORM REPLICATION 3-41

3.25. DEBUGGI NG AIDS 3-43
3.25.1. VAR=ZERO 3-43
3.25.2. PAUSE 3-44
3.25.3. BRK 3-45
3.25.4. TRACE 3-45

3.26. EXEC 3-47

SYSTEM COMMAN OS 4-1 to 4-7

4.1. NEW 4-1

4.2. SAVE 4-2

4.3. OLD 4-2

4.4. SCRATCH 4-2

4.5. REPLACE 4-3

4.6. CATALOG 4-3

4.7. LIST, LlSTNH AND LENGTH 4-3

4.8. SEQUENCE 4-4

4.9. RUN AND RUNNH 4-4

4.10. BYE AND GOODBYE 4-4

4.11. STOP 4-4

4.12. EDIT 4-5

4.12.1. EDIT DELETE 4-5

4.12.2. EDIT EXTRACT 4-5

4.12.3. EDIT RESEQUENCE 4-5

4.12.4. EDIT MERGE, EDIT WEAVE, EDIT INSERT 4-6

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS Contents 4
PAGE REVISION PAGE

4.13. UNSA VE 4·6

4.14. PUNCH 4·7

4.15. DEBUG 4·7

APPENDICES

A. OPERATING PROCEDURES A-' to A·3

B. IMPLEMENTATION RESTRICTIONS B-' to B-'

C. UBASIC SYNTAX IN BACKUS NORMAL FORM c-, to C-6

D. EXAMPLES OF THE USE OF UBASIC 0-' to 0-10

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 1·1

1. INTRODUCTION

The UNIVAC 1100 Series BASIC Processor (UBASIC) is designed primarily for conversational use. Written with

the beginning programmer in mind, the UBASIC language consists of instructions which are largely self-explanatory,

and the syntax is closely related to normal English. The UBASIC Processor can be used for batch processing, and

is powerful enough to solve a large class of problems.

This document provides information concerning the UBASIC language and system as implemented by Univac

for the 1100 series system operating under the Executive.

The UBASIC Processor reads statements (or lines) and immediately examines each one for syntactic correctness.

On remote devices in conversational (demand) mode, syntactic errors in a line cause a diagnostic message to be

printed immediately, so that such errors can be corrected before the next line is accepted. When a complete

program has been processed, then a RUN command may be given, at which time the program is translated to

machine language (compiled), and execution of the program is initiated.

There are several examples of UBASIC programs in Appendix 0, and operation procedures are described in

Appendix A. The simple examples and the operating procedures should be studied before reading this manual

(see Appendices A and 0).

7925
UP.NUMBER

UNIVAC 1100 SE RIES SYSTEMS
PAGE REVISION PAGE 2-1

2. PRELIMINARY DEFINITIONS

In order to understand the material in this reference manual, it is necessary to define certain terms which may

appear repeatedly.

2.1. PROGRAM

A program under the UBASIC system consists mainly of a series of statements in the UBASIC language which

perform algebraic and/or string manipulations. Each program is terminated by the END statement. The simplest,

but not practical, UBASIC program would be as follows:

n END

where n is any statement number less than 100000. A UBASIC program may also consist of all the system

commands as well as the individual source language (UBASIC) programs. This is especially true with non-con

versational runs, where all system commands must be included in a deck of punched cards.

2.2. STATEMENTS

A UBASIC statement is a single line of information consisting of a series of characters. The line is terminated in

various ways, depending on the device which is used for transmission of the information. The sequence of state

ments in the UBASIC language begin and proceed as follows:

(1) A statement number (unsigned and less than 100000),

(2) An instruction word,

(3) An expression(s) needed for instructions,

(4) Comments, and

(5) A statement terminator.

There are also UBASIC system control statements such as RUN which are not preceded by a number. The

word statement used alone, however, will refer only to UBASIC language statements and system commands will

refer to UBASIC control statements.

When submitted at the central computer site or from a high speed remote device, each statement consists of

all 80 columns of a punched card.

7925 UNIVAC 1100 SERIES SYSTEMS
U P-NUM BER PAGE REVISIO~j PAGE 2-2

2.3. INSTRUCTION WORDS

The instruction word in UBASIC is the heart of every statement, signifying what the statement does in a program, and

providing the basis for classifying the statement. UBASIC statements as determined by their instruction words fall

into six categories:

(1) I nput and output of data

(2) Algebraic and string manipulations

(3) Matrix operations

(4) Logical tests

(5) Control transfers

(6) UBASIC directives

The individual UBASIC statements will be discussed in detail in Section 3.

2.4. CONSTANTS

2.4.1. ARITHMETIC CONSTANTS

An arithmetic constant in UBASIC represents a numeric value and may take several forms. Any number of digits

may be used in a constant (only 8 digits of accuracy are available) as long as the magnitude of the constant is

between 10- 39 and 1038 . A constant may also be represented in exponential form which consists of a signed

integer or decimal number followed by the letter E and an integer power of ten exponent. The following are

permissible arithmetic constants in UBASIC:

12E+2 (equivalent to 12E2 or 1200)

1.32

59

-.3233333333
+5.2

12. E-2 (equivalent to .12)

10E5 (equivalent to 100000)

-OE120 (equivalent to 0)

0.OE-400 (equivalent to 0)

UBASIC also accepts the percent sign in constants and interprets it as E-2. Thus, 2% is equivalent to 2E-2 or .02.

NOTE: 2E-2% is not acceptable since the expression 2E-2E-2 is not valid.

UBASIC recognizes no difference between fixed point and floating point constants. All numbers are processed as

floating point, whether they have a decimal point or not. Thus the numbers ~ and 2.0 will be equivalent.

7925
UP.NUMBER

2.4.2. STRING CONSTANTS

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 2-3

A UBASI C string constant is a sequence of zero or more characters. I n a program a string constant is represented

by a chara,;ter string between single quotes, with two quotes in the body of the string representing one quote in

the constant. Thus, the character string AB'CD would appear as the constant 'AB"CD'. When used as data or

input items, the first and last quotes and the doubling of internal quotes may be omitted unless the omission

would create an ambiguity (i.e., a comma in the string or a quote as the first character would require it to be

enclosed in quotes).

2.5. VARIABLES

A variable represents a value which may be changed using certain UBASIC instructions. The value of a variable may

be changed at any time, and the variable will represent that value until changed again. In UBASIC, variables have

two types:

(1) simple and

(2) subscripted;

and two modes:

(1) string and

(2) arithmetic.

A simple variable is a letter, or a letter followed by a digit, and may be designated as a string variable (one which

has as its value a character string) by a dollar sign ($) following it.

Arrays, which are groups of numbers in the form of a matrix or a list (a vector), may also be referred to by a

variable. An array variable, consisting of a letter or a letter followed by a dollar sign, may either refer to a single

variable of that name or to a whole array, depending on the context of the statement in which it appears.

Subscripts are used to reference individual elements of an array. An array name followed by a subscript(s)

refers to a single value, and is referred to as a subscripted variable. An algebraic subscripted variable may have

one to four subscripts, but a string subscripted variable (with a dollar sign after the array name) may only have

one. The following are examples of valid UBASIC variables:

-(a) A

(b) Al

(c) B$

(d) A(l)

(e) B(J,2)

(f) A$(K)

(a simple algebraic variable and/or array name)

(a simple algebraic variable)

(a simple string variable and/or string array name)

(a singly subscripted algebraic variable)

(a doubly subscripted algebraic variable)

(a subscripted string variable)

NOTE: A function name (e.g., FNA) is also used as a variable within the range of a multi-line

defined function, and represents the value of the function (see 3.1 OJ

7925
UP.NUMBER

2.6. OPERATIONS

UNIVAC 1100 SE RIES SYSTEMS

There are two primary types of operators in UBASlC as follows:

(1) relational and

(2) algebraic.

A relational operator is one of the following:

= (equals)

< (is less than)

> (is greater than)

<> or >< (is not equal to)

<= or =< (is less than or equal to)

>= or => (is greater than or equal to)

PAGE REVISION PAGE 2-4

These relational operators can occur only in the I F statement between two expressions, as will be explained in the

description of that statement. Between two algebraic expressions, they have their normal meaning in the ordering

of real numbers. Between string expressions, they apply to alphabetical order « meaning "come before") or,

more precisely, alphanumeric order as shown in the list given with the CHANGE statement description (see

3.14.).

An algebraic operator is one of the following:

+ (unary plus)

t (~ onsite) or ** (exponentiation)

(unary minus)

* or / (multiplication, division)

+ or (addition, subtraction)

These operators are used in algebraic expressions and are evalated in the order in which they appear in the

preceding table. Operators with the same precedence are evaluated from left to right. Thus, -2**2+3*3

equals (-(2**2))+(3*3) equals 5. Parentheses may be used to override the above order. The order of prec

edence with unary operators and exponentiation depends on the form of the expression. If the unary opera

tor is needed to evaluate the exponent, it is used first.

For example, in the expression A ** -2, the - is evaluated first and the expression becomes A ** (-2).

2.7. FUNCTIONS

In UBASIC there are two types of functions:

(1) system defined and

(2) program defined (DEF functions).

7925
UP-NUMBER

UNIVAC 1100 SE RIES SY STEMS

The system defined functions are divided into five classes. These classes are:

(a) Numeric Functions

(b) String Functions

(c) Logical Functions

(d) Relational Functions

(e) Special Functions

2.7.1. NUMERIC FUNCTIONS

PAGE REVISION

These functions may be used in any algebraic expression and return a numeric value as a result.

PAGE 2-5

Several of these functions do not require an argument. In such cases if an argument is included, it is ignored.

ABS(E) - This function returns the absolute value of the expression E.

ATN(E) - This function returns the arctangent in radians of E.

ClK or ClK(E) - This function returns the time of day in military hours, minutes, and seconds. This function

will ignore the argument E, if it is included.

Example: If the statement "20 PRINT ClK" was executed at 2:15:15 P.M., then the value 141515 would be

returned.

CNT (String 1, String 2) - This function which matches the substrings in string 1 with string 2 returns a count

of the number of substrings in string 1 which match string 2. If no match is found, zero is returned.

Calor COLlE) - The next print position of the current line is returned by this function. When COL(E) is

used the next print position of file E is returned.

COS(E) - This function returns the cosine of E (E in radians).

COT(E) - This function returns the cotangent of E (E in radians).

CSF - The status code of the last EXEC statement executed is returned by this function. These status codes

are described in the UNI VAC 1100 Series Operating System Programmer Reference, UP-4144 (current version).

OAT or OAT(E) - This function returns the current date in month, day, and year form. This function will ignore

the argument E, if it is included.

Example: If the statement "20 PRINT OAT" was executed on March 15, 1971, then the value 31571 would be

returned.

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 2·6

DET - The value of the determinant of the most recently inverted matrix is returned by this function. The value

zero would be returned, if the last attempt to invert a matrix failed because it was singular.

DIG(E) - The digital part of E, where E is to be expressed in scientific notation, is returned by this function.

(See the XPT function.)

1 ~ I DIG(E) I < 10 or DIG(E) = 0 if E = 0

Example: 1.4372 is returned for DIG(143.72), since 143.72 in scientific notation equals 1.4372 x 102.

EXP(E) - This function returns e raised to the power E, where e is approximately 2.7182818.

FRP(E) - The fractional part of E is returned by this function.

Example: .443 is returned for FRP (852.443).

GET (String, Character) - This function returns, from the string specified, the FIELDATA equivalent of the

character indicated by the character field.

INP(E) - The integer part of E is returned by this function.

Example: 456 is returned for INP (456.234).

INT(E) - The greatest integer which is less than or equal to E is returned by this function.

LEN (String) - The number of characters currently in the string specified is returned by this function.

LGT(E) - This function returns log to the base 10 of E.

LOG(E) - This function returns log to the base e of E.

MAX(E1,E2) - This function returns the greater of the values E1 and E2.

MIN(E1,E2) - This function returns the lesser of the values E1 and E2.

MOD(E1,E2) - This function returns E1 modulo E2 (remainder of E1/E2).

Example: 1 is returned for MOD(5,2).

MXL (String) - The maximum length of the string specified is returned by this function. If a string constant is

specified zero is returned.

NUM - This function returns the number of items read in on the last MAT I NPUT statement.

RND or RND(E) - This function returns a random number, 0 < RND < 1 (uniformly distributed).

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 2-7

SEP (String 1, String 2,E) - This function returns the character position within string 1 of the first character

of the substring which matches string 2. E determines which character position of string 1 is used as the starting

position. If no match is found zero is returned.

SER (String 1, String 2) - This function returns the character position within string 1 of the first character of

the substring which matches string 2. If no match is found zero is returned.

SGN(E) - This function returns 0 if E is zero, -1 if E is negative-or, +1 if I is positive.

SIN(E) - This function returns the sine of expression E (E in radians).

STD (String, Vector) - This function stores the characters of the specified string into the vector indicated

starting at vector (1). The number of words required for the storage is returned. The remainder of the last word

is blank filled if the character string is not a mUltiple of six. The data is not converted, but merely moved six

character per word from the string to the vector.

SQR(E) - This function returns the square root of E.

TAN(E) - This function returns the tangent of E (E in radians).

TIM or TIM(E) - The execution time in seconds as measured from the time of the last RUN or RUNNH com

mand is returned by this function. E is ignored if specified.

TIS or TIS(E) - The time of day in milliseconds since midnight is returned by this function. E if specified is

ignored.

XPT(E) - The exponent part of E is returned by this function, when E is represented in scientific notation. (See

the DIG function.)

Example: XPT (3471.88) would return a value of three since 3471.88 in scientific notation equal 3.47188 x 103.

VAL (String) - The numeric value of the constant in the string specified is returned.

Example: The number 4.34 is returned for VAL ('4.34').

VAS (String, E1, E2) - The numeric value of the constant in the character positions E1 through E2 is returned by

this function.

2.7.2. STRING FUNCTIONS

The following functions can occur only in LET statements and cause the assignment of string values to the string

variable on the left of the equals sign. Character positions within strings begin with one. Strings specified as

arguments in calls to these functions are left unaltered. As in the case of the normal assign statement, the keyword

LET may be omitted.

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 2-8

n LET String 1 = CAT$ (String 2, String 3) - The CA T$ function concatenates string 2 and string 3 and stores

the result in string 1.

n LET String 1 = OTS$ (Vector,E) - This function converts E words stored in the vector specified into a six

bit character string and stores this in string 1. The data is not converted, but merely moved six characters per

word from the vector to the string.

n LET String 1 = PAD$ (String 2,E) - This function adjusts string 2 to E length and stores the result, blank

padded on the right, if necessary, in string 1.

n LET String 1 = TRM$ (String 2) - This function deletes all blanks from the right of string 2 and stores the

result in string 1.

n LET String 1 = EXT$ (String 2, E 1,E2) - This function deletes from string 2 a substring of E2 characters

beginning with the character position specified by Eland stores the result in string 1.

n LET String 1 = CPV$ (String 2, E 1 ,E2) - This function stores a substring of string 2 in string 1. This substring

starts with character position Eland is E2 characters in length.

n LET String 1 = ADD$ (String 2, String 3, E1) - This function inserts string 3 into string 2 and stores the

results in string 1. String 3 is inserted into string 2 starting at character position E 1+ 1.

n LET String 1 = PUTS (String 2, E1,E2) - This function replaces character position E2 in string 2 with a

FIELDATA character. This FIELDATA character is obtained by converting the value in E2 to a FIELDATA

character. String 2 is then stored in string 1 padded to the right with blanks through position E 1-1.

n LET String 1 = STR$(E) - Following the rules of the PRINT statement this function converts E to a string

and stores the result in string 1.

2.7.3. LOGICAL FUNCTIONS

The logical functions all return one of two values, 0 for false and 1 for true. The function arguments are left

unaltered by these functions.

NOT(E) - Logical negation. This function returns if E is zero, 0 if E is non-zero.

AND(E1,E2) - Logical and. This function returns if both Eland E 2 are non-zero; 0 otherwise.

IOR(E1,E2)

otherwise.

Logical inclusive or. This function returns 1 if E1 or E2, or both E1 and E2 are non-zero; 0

XOR(El,E2) - Logical exclusive or. This function returns 1 if El or E2, but not both El and E2 are non-zero;

o otherwise.

7925
UP-NUMBER

UNIVAC 1100 SE RIES SYSTEMS
PAGE REVISION PAGE 2-9

EaV(E 1 ,E2) - Logical equivalence. This function returns 1 if both Eland E2 are zero, or if both E 1 and E2

are non-zero; 0 otherwise.

IMP(E1,E2) - Logical implication. This function returns 1 if El and E2 are both non-zero or if El is zero; 0 if

E 1 is non-zero and E2 is zero.

2.7.4. RELATIONAL FUNCT10NS

The relational functions all return one of two values, 0 for false and 1 for true. These functions may be used in

algebraic expressions where relational operators are not allowed. The function arguments are left unaltered by

these functions.

LSS (E 1 ,E2) - The less than function returns 1 if E 1 is less than E2, 0 otherwise.

LEQ (E1,E2) - The less than or equal to function returns 1 if E1 is less than or equal to E2; 0 otherwise.

GTR (E1,E2) - The greater than function returns 1 if E 1 is greater than E2; 0 otherwise.

GEQ (E1,E2) - The greater than or equal to function returns 1 if E1 is greater than or equal to E2; 0 otherwise.

EQU (E1,E2) - The equal to function returns 1 if El is equal to E2; 0 otherwise.

NEQ (E1,E2) - The not equal to function returns 1 if El is not equal to E2, 0 otherwise.

2.7.5. SPECIAL FUNCTIONS

The following functions do not fall into any of the above classes;

FLO (S,N,E) - This function selects N bits of the 36 bit algebraic expression E, starting with bit position S, and

returns these bits as a floating point number. Bits of the word E are numbered 0 through 35 from left to right.

Example: 100 A = FLD (0,9,1.0) would set A equal to 129, the result of converting the first nine bits (0201) of, the

binary representation of 1.0 (0201400000000) to floating point representation.

INS (S'N'E1,E2) - This function converts the value of E2 to a binary integer, and inserts this value, right justified

with leading binary zeros, into a field of N bits starting with bit S of E 1. This function can be used as a function or

as a CALL statement. The changed value of E 1 is returned when I NS is used as a function.

TAB(E) - This function sets the next print position in the current print line equal to the arithmetic expression E.

This function is only used in the PR INT statement. Print positions are numbered 0 through 71, from left to right.

7925
UP.NUMBER

2.8. EXPRESSIONS

UNIVAC 1100 SERIES SYSTEMS

An algebraic expression is any meaningful combination of:

• arithmetic constants,

• variables,

• functions, and

• algebraic operators.

PAGE REVISION PAGE 2-10

The syntax rules are presented in Appendix C. UBASIC Syntax In Backus Normal Form. A string expression is

either a string constant or a string variable.

The two types of variables and constants (string and algebraic) may be combined in any expression only if the

string item is an argument to a defined function which may accept such an argument. The following are all valid

expressions:

A+B/C1 * FNA(SGN(2), AND)

C(A(B(FNB(1+l0G (10),FNC,A,B), 1.5E+2* A) ,0))

F * (A-B * *-C(F)+(((A)))) -314159E-5

even though some parentheses may be redundant. The following expression mayor may not be valid, depending

on how the function FNA is defined:

FNA(A$,' ABC' ,2)

2.9. COMMENTS

In order to make programs more understandable, it is often desirable to include comments. For this reason, two

methods of commenting are available in UBASIC as follows:

(1) The R EM statement (see 3.15.).

(2) If a comment is desired, it may be inserted after the statement by using a master space character to signify

the end of the actual statement. Comments are printed, but otherwise ignored by the UBASIC processor.

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-1

3. DESCRIPTION OF STATEMENTS

In discussing the various statements in this section, several symbols will be employed to give the general form of

some statements. The meaning of the symbols are as follows:

n a statement number

v a variable

e an expression

c a numeric constant

r a relational operator

m a statement number to which control may be transferred

ae an algebraic expression

sc a string constant

v$ a string variable

i,j unsigned integers

sv a simple variable

a an array name

3.1. LET

The LET statement is used to assign a value to one or more variables. The value of the given expression is com

puted and assigned to the specified variable(s).

The general form of the LET statement is as follows:

n LET v1=v2= ... vN=e

Example:

10 LET A(12)=B*(K+C1)

15 LET N$=' ABC'

20 LET A = B = 0 * E + F

The mode of the expression must agree with the mode of the variables to which it is being assigned, i.e., if the

expression is arithmetic, the variable(s) must be arithmetic.

7925 UNIVAC 1100 SE RIES SYSTEMS
UP-NUMBER PAGE REVISION PAGE 3-2

Values are assigned from right to left. In other words,

10 LET A (N) = N = 2

will assign the value 2 to N and to A(2)' in that order.

The keyword LET may be omitted in the LET statement:

30 A = B = SQR (E)

is equivalent to:

30 LET A = B = SQR (E)

Concatenation of two or more string values may be accomplished by combining them in order with plus signs and

assigning the result to the specified string variable. Thus, if the current value of A$ is 'CAT' and the current

value of B$ is 'NATION', then

30 C$ = 'CON' + A$ + 'E' + B$

will assign a value of 'CONCATENATION' to C$.

3.2. READ AND DATA

The READ statement is used to assign values to variables. The general form of the READ statement is:
follows:

n READ vl , v2, ... , vN

Example:

10 READ A, B, Cl, V(1,5)

The values to be assigned to the specified variables must be included in a DATA statement.

The general form of the DATA statement is:

n DATA cl,c2, ... , cN,scl, ... ,scN

Example:

90 DATA 3.14, 10.E-24, 'ABCD(E', NOPQR, 47

7925
UP·NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-3

Each time a READ statement is encountered, the specified arithmetic variables are assigned the next unread

numbers in DATA statements, and the specified string variables are assigned the next unread string quantities in

DATA statements.

Program execution will be terminated if a READ is encountered for which there are no DATA items left (see

3.3. RESTORE).

String quantities mayor may not be enclosed in quotes in the DATA statement. If commas, leading quotes, or

leading or trailing blanks are to be included in the string, quotes must be used to enclose the quantity. A single

quote in a string enclosed in quotes is represented by two single quotes.

The arithmetic and string constants are independent of each other, and may appear itermixed in a DATA state

ment.

3.3. RESTORE, RESTORE*, RESTORE$

The RESTORE statement is used in conjunction with the READ and DATA statements to reuse a list of data

within a program. When the RESTORE statement (REST for short) is encountered, all data listed in DATA state

ments is restored for reuse so that the next READ statement will read the first item of data. RESTORE$ should

be used to restore string data without affecting numeric data. Similarly, if only numeric data is to be reused,

RESTORE* should be employed.

Example:

10 RESTORE

20 RESTORE*

30 RESTORE$

3.4. PRINT

(will restore all data)

(will restore only numeric data)

(will restore only string data)

The PR I NT statement is used to print out the values of algebraic or string expressions.

The general form of the PRINT statement is:

n PRINT e1, e2; sc1 e3, ... , TAB (ae), ... ,eN

Example:

PRINT 'A= 'A; SQR(B); 'THE'; A$, TAB(40), C

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
P AGE REV 1 S ION P AGE 3-4

Any algebraic expression may be used in a PR I NT statement and its value will be printed when the program is

run. Similarly, any string appearing in the PRINT statement, either as a string constant or a string variable may be

printed. Where a value is printed on a line, this line may be controlled by the use of commas, semicolons, and the

TAB function. A print line is normally composed of five print zones, the first four of these zones are 15 characters

long with the remaining 12 positions making up the fifth zone, and a comma is interpreted as "skip to the next

print zone". A semicolon, however, is interpreted as "don't skip". After an item followed by a semicolon has been

printed, printing of subsequent items will begin immediately following it. The lack of both a comma and a semi

colon after the last item in a print statement will result in the next item's being printed on the next line by a

subsequent

n PRINT

statement which prints a new line consisting of any previous items not yet printed, or a blank line if no such items

exist.

The TAB function is provided in UBASIC to allow flexibility in printing. TAB(ae), where ae is an arithmetic

expression, results in a skip (forward only) to column INT(ae) in the line being printed. (The 72 columns are

numbered from 0 through 71.) I f printing has already passed column I NT(ae), the TAB is ignored.

The following rules concerning the printing of items should be remembered:

(1) Only 72 characters can be printed on one line; any excess is printed on the next line.

(2) If printing has extended into the last print zone, the next separate item printed will be on the next line,

even if a semicolon was used.

(3) Numbers are printed, left justified, according to the following rules:

(a) If the number is an integer with magnitude less than 100,000,000, it is printed out in integer

format.

(b) A decimal format is used (up to 8 significant digits) if the number has any fractional part.

(c) A number with magnitude greater than 10+8
or less than 10-5 is printed out in exponential format -

a mantissa following rules a and b and an integer exponent prefixed by the letter E and a sign.

The following examples show printed numbers and their interpretation as follows:

629 an integer

123456 an integer

123456. a rounded number

6E7 an integer - 60 million

6.0E7 rounded off

.0625 exactly 1/16

1.0E-3 rounded off to 1/1000

7925 UNIVAC 1100 SE RI ES SY STEMS
UP-NUMBER PAGE REVISION PAG E 3-5

NOTE: An algebraic expression may directly follow a string constant in a PRINT statement:

follows:

10 PRINT 'THE ANSWER IS 'X

3.5. GO TO

Within a UBASIC program, statements are executed in order according to their statement numbers from lowest to

highest, until a transfer type statement is executed.

The GO TO statement is used to transfer control within a UBASIC program to another line. The general form of

the GO TO statement is

n GO TO m

which causes the program to transfer control to statement m rather than to the statement immediately following

statement n.

UBASIC includes another statement reference which is independent of line numbers.

Example:

14 GO TO *+4

Would transfer control to the fourth line following line 14 after sorting by line number, regardless of how the fourth

line was numbered. Similarly

25 GO TO *-3

would transfer control to the third statement preceding statement 25.

It should be noted that the GO TO statement may not transfer control from within the range of a multi-line

defined function to anywhere outside the range of that DEF, or from outside a DEF into its range. It is legal to

jump to a DEF statement itself. Program control will resume immediately after the FN END for that DEF. For

such purposes, a DEF statement may be considered part of the main program, outside the range of the function

it defines.

3.6. IF

3.6.1. CONTROL TRANSFER

I n its simplest form, the I F statement is used to test values in the program, and to transfer control if certain con

ditions are met. When so used, the I F statement has two parts:

7925
UP·NUMBER

(1) a relation and

(2) a transfer control.

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-6

The relation consists of two expressions (both arithmetic or both string) and one of the following relational

operators: =, <, <=, = <, >, >=, = >, < >, > <, which are: equal to, less than, less than or equal to,

less than or equal to, greater than or equal to, greater than or equal to, not equal to, and not equal to, respectively.

The control transfer is of the form GO TO and a statement number or a statement reference, or THEN and a

statement number or statement reference (see 3.5. GO TO).

10 IF A+B < C**D THEN 70

would transfer control to statement 70 if (A+B) is less than (C**D). Otherwise, control would pass to the

next statement.

When strings are compared in the relation, comparison is done alphabetically and according to the list shown with

the CHANGE statement (see 3.14.). The relation 'A'< '8' is true, because A comes before 8 alphabetically. Should

the strings be of different lengths, the shorter string is extended with blanks during the comparison to make the

strings of equal length. Thus 'A' <' AA' is true, because 'A' is treated as 'A' for the comparison, and the blank

is alphanumerically ahead of the A.

Example:

20 IF A$ = 'ABCSF' THEN 35

14 IF 'NRP' > S2$ GO TO 43

15 I,F A$ < S$(12) THEN *+5

3.6.2. CONDITIONAL STATEMENT EXECUTtON

tn addition to causing. conditional transfer, the IF statement may cause the conditional execution of a statement.

This statement may be an input/output statement, such as assign statement, STOP, or another IF.

Example:

10 IF A>=O THEN B=SQR(A)

20 IF A$=B THEN READ A,B,N

30 IF A=l THEN IF 8=2 THEN STOP

3.6.3. I F·THEN-ElSE SEQUENCE

Following the conditional statement or transfer of an IF statement as previously described, the word ELSE

followed by a statement may be added. This form allows the statement following the THEN to be executed if

the condition is true, but executes the ELSE statement if the condition if false. If the executed statement does

not transfer control, then the program continues to the next statement.

7925 UNIVAC 1100 SERI ES SYSTEMS
UP·NUMBER PAGE REVISION PAGE 3·7

Example:

10 IF A=O THEN B=O ELSE B=C/ A

20 IF A=B THEN GO TO 100 ELSE C=100

30 IF N=O THEN GO TO 200 ELSE GO TO 300

3.6.4. COMBINING IF STATEMENTS

Any number of I F·THEN and/or I F-THEN-ELSE sequences may be used together. -The rule for associating the

various clauses in such a combined statement is to associate the inner-most I F-THEN-ELSE and treat the

I F-THEN as a left parentheses and the ELSE as a right parentheses in a manner similar to nested parentheses.

Thus

IF ... THEN ... IF '" THEN ... ELSE ... ELSE ...

The number of ELSE's in a combined statement must be less than or equal to the number of IF ... THEN's.

Thus, every ELSE must have a corresponding IF ... THEN, but the converse is not true. In this example:

IF ... THEN IF ... THEN IF THEN ... ELSE

only the last IF ... THEN has a corresponding ELSE. The next statement in the program becomes the "default

ELSE" for the first two IF ... THEN's (i.e., if either of the first two conditions is false, the next program statement

will be executed next.)

3.6.5. LOGICAL OPERATORS

Two or more relational conditions may be combined to form a complex relation in an I F statement by the words

AND,OR,NOT. These three words have their normal logical meaning. All AND's are sequentially grouped with

corresponding operands and then all OR's.

Example:

10 IF A>O AND B>O THEN C=SQR(A**2+B**2)ELSE,C=0

20 I F I >0 OR J=4 THEN 200

3.7. ON

The ON statement is used to transfer program control to one of several statements in a program, depending on the

value of an expression. The ON statement has two parts: an expression and a control transfer. The expression is

any valid arithmetic expression. The control transfer has a THEN or a GO TO followed by two or more state

ment numbers and/or statement references separated by commas (see 3.5. GO TO).

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

The general form of the ON statement is as follows:

n ON e GO TO ml,m2,m3, ... ,mN

or

n ON e THEN ml,m2, ... ,mN

where mi
{
~k
*-L

for = 1 to N.

PAGE REVISION PAGE 3-8

If the value of the expression is 1, control will be transferred to the first statement specified after the THEN or

GO TO; if the expression value is 2, control goes to the second statement, etc. The integer part of the expression

value is used to determine which statement will receive control.

Example:

21 ON A+8*C GO TO 10, 20, *+3, 70

If A+8*C has a value of 2.5, control will transfer to the second statement specified, statement 20. If the value of

the expression is less than 1 or greater than the number of statements given, an error message will be given.

The special form of the ON statement ON ENDFI LE is described in 3.24.6.

3.8. PROGRAM LOOP CONTROL

3.8.1. FOR AND NEXT

The FOR statement, combined with the NEXT statement, is used to allow the programmer to execute statements

a number of times without the need to write these statements more than once. Together, a FOR and a NEXT

statement form a "loop". The statements in the loop are executed a specified number of times.

The FOR statement consists of an index variable, an intial value which the index variable assumes when the loop is
entered, a step-size by which the value of the index variable is increased each time the NEXT statement is en

countered, and a final value which causes termination of execution of the statements in the loop when the index
variable exceeds this value.

The general form of the FOR and NEXT statements is as follows:

nl FOR sv=el TO e2 STEP e3

Statements to be repeatedly executed

n2 NEXT sv

7925
UP-NUMBER

Example:

UNIVAC 1100 SE RI ES SYSTEMS

10 FOR Xl=l TO 10 STEP

40 NEXT Xl

PAGE REVISION PAGE 3-9

The instruction between statements 10 and 40 would be executed 10 times with X 1 assuming the values 1, 2, 3,

4, 5, 6, 7, 8, 9, and 10 consecutively.

If the STEP clause is missing, a step-size of 1 is assumed. Negative step-sizes are permitted, as follows:

10 FOR A=B/C TO N+l STEP -1

30 NEXT A

In this case, execution of the loop would continue until A became less than N+l. Note that, if the terminating

condition is met upon entry to the loop, the statements in the loop will not be executed. The keyword BY

may be used interchangeable with STEP and are exactly equivalent. Note that a single FOR statement may not

contain both the STEP and the BY keywords.

The value of the index variable may be used in calculations in the loop. I n addition, the value of the index

variable may be changed in the loop. If the value of the index variable is changed, the new value replaces the old

value and the step-size is added to the new value to obtain the value for the next loop iteration.

Transfer-type statements may be included in a FOR loop (i.e., IF, ON, GO TO) to provide a means of exit from

the loop, other than normal completion of the loop. It is permissible to jump out of or into a loop. Caution

should be used when jumping into a FOR loop because the values of the initial value, terminal value, and step

size are calculated only if the FOR statement itself is executed; and whatever value the index value has when

execution transfers into the loop will be used to determine how many iterations, if any, will be performed.

FOR loops may be nested; that is, one FOR loop may be placed inside another FOR loop. Note that associated

FOR and NEXT statements must be completely inside, or completely outside, any other FOR loops. FOR loops

may not cross or overlap.

7925
UP-NUMBER

valid: FOR X

FOR I

NEXTI

FOR J

NEXT J

NEXT X

UNIVAC 1100 SERIES SYSTEMS

invalid: FOR X

]
FOR 01

NEXTX

]
NEXT 01

3.8.2. FOR AND IMPLIED NEXT

PAGE REVISION PAGE

If the program loop to be performed can be stated in a single statement, a simplified form of the FOR can be used

with no N EXT statement involved:

n FOR sv=e1 TO e2 STEP e3 STATEMENT

where STATEMENT may be an assignment, input/output, or another FOR statement.

Example:

10 FOR I

20 FOR J

TO 10 A(I) 0

TO K STEP 2 PRINT A(J)

No NEXT statement is necessary as program control will loop, performing the single statement until the condition

of the FOR is satisfied, then perform the next statement in the program sequence.

3-10

7925 UNIVAC 1100 SERIES SYSTEMS
U P.NUMBER PAGE REVISION PAGE 3·11

3.8.3. WHI LE

In a manner similar to the FOR with no NEXT, the assignment and input/output statements may be interpreted

as a single statement loop under control of a WHI LE condition. The difference in the WHI LE statement and the

FOR statement is that WHI LE allows a more general relation to be evaluated (similar to the I F). Its form is:

follows:

n WHILE e1 r1 e2 STEP sv BY e3 STATEMENT

Example:

10 WHILE A+B<10 STEP A BY 2 C(A/2)=A+B-5

20 WHILE A<l A=A+SQR (B)

Unlike the FOR statement, there is no assumed step size, thus this statement should be used with caution. In the

first example, the conditional statement C(AI2)=A+B-5 does not alter the value of the expression A+B. With

out the phrase "STEP A BY 2" the expression A+B would always be less than 10 which gives a true condition

always. Thus the program would go into a one line loop. I n the second example above, although there is no STEP

clause, the conditional assignment will alter the value of A (if B is non-zero). Eventually A will exceed one, at

which time control will be passed to the next sequential statement.

3.8.4. UNTI L

The UNTI L statement is identical in form to the WHI LE statement

n UNTIL e1 r1 e2 STEP sv BY e3 STATEMENT

but has the opposite effect. That is, the expressions are evaluated and compared giving a true or false condition

and the conditional statement is performed if the condition is false. The whole process is then repeated (after

the STEP, if applicable). When the condition is evaluated as true, control passes to the next sequential statement.

3.8.5. FOR COMPOUNDED WITH WHI LE OR UNTI L

In the FOR statement (with or without the NEXT) the conditional limit (expressed by TO e) may be replaced

by WHI LE or UNTI L with a relational test (e1 r1 e2) as ·in the following example:

10 FOR 1=1 WHILE A(I)<B STEP

20 A (I) = A (I - - 1) + 1

30 PRINT I,' A (, ; I ;') =' ,A (I)

40 NEXT I

7925 UNIVAC 1100 SE RI ES SYSTEMS
U P.NUMBER PAGE REVISION PAGE 3-12

As in the case of the simple FOR, if the loop is a single statement, it may appear on the line with the FOR without

a corresponding NEXT. Also, the STEP may be omitted, in which case it is assumed to be 1.

3.9. STOP

The STOP statement is used to terminate execution of a program. The general form of the STOP statement is:

nSTOP

When the STOP statement is encountered, the program terminates exactly as if the END statement at the end of

the program had been encountered. Thus,

30 GO TO 999 30 STOP

and

999 END 999 END

both cause termination of program execution. The STOP statement may be used anywhere in the program.

However, the END statement must be the last program statement.

3.10. DEF AND FNEND

The Statement DEF allows the programmer to define his own functions. There are two types of DEF-defined

functions as follows:

(1) the single-line DEF statement function, and

(2) the multi-line function which begins with a DEF and ends with an FNEND.

The general form of the DEF statement is:

n DEF FNg(f1, ...• fN) = e

or

n DEF FNg(f1 •...• fN)

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-13

In the latter case, the oEF statement is followed by a block of statements which carry out the desired function.

The last statement of the block must have the form:

n FNEND

In the above forms, g may be any single letter of the alphabet, the fi are formal parameters to the function and

must be simple non-subscripted variables, and e is any valid expression.

The single-line oEF is used to allow a compact, flexible expression for a formula which is used several times in the

program. For example, if the programmer wishes to calculate the sum of the products of two pairs of numbers,

he can define a function as follows:

10 oEF FNO(A,B,C,01)=A*B+C*o1

In order to use this function, the programmer must give (in any arithmetic expression) the function name and a

list of expressions to be used as arguments to the function. The function above must have four arguments, and

these arguments must be valid arithmetic expressions.

Example:

S+N 1 * (FNO (A 1 * B , S - S1 , A (1 ,2) ,10. 721) /2

is a valid expression. The system-defined functions may also be used in any arithmetic expression.

Note that the formal parameters (A,B,C,o 1) used in the previous DEF example must be simple, non-subscripted

variables, although they may be subscripted in the expression.

For greater flexibility, UBASIC allows the programmer to define more complex functions by the use of the multi

line oEF. A multi-line DEF may include any UBASIC command with the following restrictions:

(1) Transfer of control statements may not refer to statements outside the range of the 0 E F; that is, statements

after the FNENo, before the oEF or the oEF itself.

(2) DIM statements will be assumed to refer to main program variables, and not formal parameters of the DEF.

Formal parameters are "dimensioned" by their appearance in a context which implies dimensioning. For

instance, the occurrence of a variable with subscripts or in a MAT statement.

(3) All UBASIC functions are assumed to be "normal." This means that the function does not change the

value of any of its arguments, and the function will always return the same value when given the same argu

ments. Functions which are not normal should be used with care, since if they occur in expressions, the

point at which the function is called may not be what the programmer expects.

7925 UNIVAC 1100 SERIES SYSTEMS
UP·NUMBER PAGE REVISION PAGE 3-14

Example:

If FNA(N) changes the value of N, the statement

10 LET A=N+FNA (N)

will cause FNA to be evaluated, changing the value of N, then the new value of N will be added to the value of

FNA. However,

10 LET A=FNB(N)+FNA(N)

will cause FNB to be evaluated first, using the old value of N, then FNA will be evaluated and added to FNB.

A multi-line DEF may return a numerical value, or it may perform a series of computations based on its argu

ments. If a DEF returns a numerical value, it is used exactly as the single-line DEF statement. Note that the

mode of the parameters passed to a function must match the mode of the formal parameters. It is important that

the user ensure that the string variables are given string arguments when the function is used in an arithmetic

expression. The function name (FN followed by a letter) in a multi-line DEF is used exactly as a simple variable.

The value that this function name is given in the DEF becomes the value of the function in the arithmetic ex

pression which uses that function. (A "function value variable" is assigned the value zero on entry to the DEF.)

The DEF statement at the beginning of a multi-line DEF has the function name and formal parameter list as

follows:

20 DEF FNC{A, B1 , Q, V1$)

Note that this DEF does not contain an '=' or an expression.

Example:

10 DEF FNN(A, B ,C$)

20 LET FNN=A

30 IF C$='YES' THEN 50

40 LET FNN=B

50 FNEND

If the function FNN is used in an arithmetic expression as FNN(1, 10,'YES') the function would have the value 1.

It the third argument had not been 'YES' (or a string variable with the value 'YES') the function would have been

assigned the value of the second argum~nt, 10.

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-15

The multi-line DEF may also be used to perform calculations or manipulations, where a numerical result is not

the desired result.

Example:

10 DEF FNZ (A,B,R$)

15 IF B=O THEN 35

20 FOR S=1 TO A

25 PRINT R$, B *S

30 NEXT S

35 FNEND

If the second argument (B) is not zero, then the above function will print the third argument and a multiple of the

second argument a number of times determined by the first argument. If the second argument is zero, the function

will do nothing.

Since this function does not assign a value to FNZ, its value, if used in an arithmetic expression, will be zero.

To use this function, the following CALL statement may be used:

70 CALL FNZ{ 10, N1 * L,' MULTIPLE')

This causes ten lines of 'MULTIPLE' followed by the first 10 multiples of N1*L to be printed, if N1*L was not

equal to zero.

The DEF statement defining a function must appear in the program before that function is used.

UBASIC includes a feature known as recursion. This means that a function may call itself. The recursive feature

provides a more powerful facility for use in computations.

For instance, the factorial function may be defined in UBASIC as follows:

10 DEF FNF (A)

15 LET FNF=1

20 IF A <=1 THEN 30

25 LET FNF=A*FNF{A-l)

30 FNEND

This function is based upon the fact that O! = 1, 1! = 1, 2! = 2·1! = 2·1 = 2, and generally N! = N . (N - 1) ! .

The function will continue calling itself, until the argument is less than or equal to one, and then will return

function values until the final value is reached.

7925 UNIVAC 1100 SERIES SYSTEMS
U P.NUMBER PAGE REVISION PAGE 3-16

3.11. CALL

The CALL statement is used to call a multi-line DEF which performs calculations and manipulations rather than

returning a numeric value, as would be done by a single-line DEF function. The CALL statement includes the name

of the function being called and the list of arguments to be passed to that function.

Example:

100 CA L L F N A (N + B * C, 10 . 5 , A 1)

might be used to call the following function:

10 DEF FNA(A,B,C)

20 I F A < > B THEN 40

30 LET C=O

40 FNEND

This would be equivalent to writing

100 IF N + B * C < > 10 . 5 TH EN 102

101 LET A 1 = 0

102

In this example, the second form is more efficient, but in many cases a function is preferable.

The same general form may be used in calling system defined subroutines.

NOTE: If the CALLed function returns a value, it is ignored.

An additional form of the CALL statement may be used to call a second program for execution as a subroutine.

100 CALL Program, m

In this case, the program named would be compiled with the current program, and when the CALL statement is

encountered, a GOSUB is executed to the statement designated by m. If no m is specified, then the first state

ment of the named program is used.

3.12. GOSUB AND RETURN

The GOSUB instruction is used to call a section of a program designed as a subroutine instead of a function. The

GOSUB statement transfers control to the line referenced in the statement, and records the location being trans

ferred from, so that the subroutine can return control to the next line. This return of control is accomplished by

the use of the RETURN statement in the subroutine. When this statement is encountered, control is transferred

to the line after the GOSUB from which the routine was called. GOSUB's may be nested in almost any way, as

long as one RETURN is encountered for each GOSUB executed.

7925
UP.NUMBER

UNIVAC 1100 SE RI ES SYSTEMS

NOTE: GOSUB's, like functions, may be used recursively.

The following is an example of the recursive use of GOSUB and RETURN:

5 A=2

7 B=O

10 GOSUB 40

20 PRINT B

30 STOP

40 B=A+B

50 IF B> 6 THEN 70

60 GOSUB 40

70 RETURN

SO END

PAGE REVISION PAGE 3-17

The first GOSUB transfers to statement 40. Since B only equals 2, the GOSUB in 60 will keep calling the

routine and adding A to B until B=S. Then, control will reach the RETURN in 70, which will return to the last

GOSUB used (line 60). The second time RETURN is encountered, it will return control to the second to the last

GOSUB encountered, and so on until control transfers back to the statement after the GOSUB (line 20).

3.13. INPUT

The general form of the INPUT statement is:

n INPUT v1, ... ,v$1, ... ,vN,v$N

The INPUT statement is similar in form and function to the READ statement. However, instead of using DATA

lists, INPUT requests data at RUN time, printing out a question mark and expecting the number and mode of

information corresponding to the variable list in the statement.

Example:

10 I NPUT A, A (1), A$, S$ (N)

would print a question mark, and the user would supply two arithmetic constants and two strings, separated by

commas, followed by a line termination. The first constant would be the value of A, the second of A(1), etc. If a

data item is followed by the comma and ampersand (&), then the next data item will be,taken from the following

line. Data supplied in answer to the above INPUT statement could be on two lines.

Example:

3.14,14 'STRINGA',&

'STRING FOR S(N)'

This statement may also be used to input information from symbolic files. The file handling capabilities are

described in 3.24.

7925
UP-NUMBER

3.14. CHANGE

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-18

The CHANGE statement is used to translate strings into arithmetic arrays or vice-versa. The first form of the state

ment is:

n CHANGE v$ TO a

In this form, the CHANGE statement takes the number of characters in v$ and puts this number into a(O). Then

each character in v$ is translated into its arithmetic equivalent according to the following table, and stored into

consecutive positions of the vector a.

The second form of the statement is:

n CHANGE a TO v$

The number of elements specified in a(O) is translated into characters and stored in v$.

7925
UP-NUMBER

UNIVAC 1100 SE RIES SYSTEMS
PAGE REVISION PAGE 3-19

The following table shows the characters and their numeric equivalents:

@ 0

(capital K from teletypewriter)

] 2 (capital M from teletypewriter)

3

~ 4 (on-site, t is teletypewriter equivalent)

5 (blank)

A 6 T 25 ? 44

B 7 U 26 45

C 8 V 27 46

0 9 W 28 " 47

E 10 X 29 0 48

F 11 Y 30 49

G 12 Z 31 2 50

H 13 32 3 51

14 33 4 52

J 15 + 34 5 53

K 16 < 35 6 54

L 17 36 7 55

M 18 > 37 8 56

N 19 & 38 9 57

0 20 $ 39 58

p 21 * 40 59

Q 22 41 I 60

R 23 % 42 61

S 24 43

~ 62 (on-site only) :f 63 (on-site only)

7925
UP·NUMBER

3.15. REM

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-20

The R EM statement in UBASIC provides a method for inserting comments or remarks into a program. Since the

R EM statement is non-executable (specifies no action to be performed by the computer), it may be placed any

where before the END statement in a program. The form of the statement is:

n REM ANY COMMENTS

or

n REMARK COMMENTS

or

n REMINDER --COMMENTS

Any character may follow REM.

3.16. RANDOMIZE

The function RND generates pseudo-random numbers. Although these numbers have almost all the properties of

true random numbers, any RUN will produce the same sequence of numbers. In order to start this sequence

(which is very long) at a "random" point, the statement

n RANDOMIZE

should be used. This command initializes the starting point of the RND function using the time of day ill milli

seconds, thus providing a relatively random starting point.

3.17. END

The END statement is the last in every UBASIC program. It signifies the end of the program. If the END statement

is executed, it terminates a run and prints out the elapsed running time. A program should have only one END and

it should have the largest statement number in the program.

3.18. DIM

The DI M statement is used to reserve space for arrays and to record their maximum dimensions. Using the DI M

statement, arrays can be dimensioned singly if string, and up to four subscripts if algebraic. The dimensions speci

fied become the largest subscripts which can be used with the array variable. The statement consists of the keyword

DIM and a list of arrays with unsigned integer subscripts. The general form of the DIM statement is:

n DIM a (i ,j) ,a$ (i) ,a (i) , ...

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-21

a(i) reserves space for the algebraic elements a(O), a(1) , ... ,a(i). a(i ,j) reserves space for the algebraic elements

a(0,0),a(1,1),a(1,2), ... ,a(1,j), ... ,a(i,1),a(i,2), ... ,a(i,j). The string dimension a$(i) reserves space for i+l sixty

character strings referred to by a$(0),a$(1) , ... ,a$(i). Note that storage of matrices is by row.

NOTE: (1) A zero dimension is legal, but impractical for matrix manipulation, since row and

column zero are ignored. (See MAT, Section 3.23.)

(2) Function parameters used as arguments cannot be referenced in a DIM statement

within the function. The DIM statement is for use only with main program

variables (variables other than function parameters).

(3) If not referred to in DIM statements, vectors are assumed to be dimensioned 10, and

arrays are assumed to be dimensioned 10X10, 10X10X1, or 10X10X1X1 depending

on the number of subscripts. It is often advisable to use a DIM statement to

exactly fix their length.

Dynamic dimensioning can be done using several matrix functions, which redimension an array as long as its

size does not exceed the specifications of the DI M statement for that array.

The following are valid DIM statements:

10 DIM A (20) , B (20 , 2 0) , C (3, 1 0) , A$ (5)

20 DIM B$ (30) , D (0 ,20) , E (5 ,0) , F (5 , 1)

3.19. EXCHANGE

The EXCHANGE statement, which has two forms, reverses the values of two variables. The forms of the

EXCHANGE statement are as follows:

n EXCHANGE vl, v2

or

n v1==v2

3.20. CHAIN

The execution of the current program is terminated and the start of execution of the specified saved program is

initiated by this statement. The form of the CHAIN statement is as follows:

n CHAIN Program-name,n

7925
UP-NUMBER

UNIVAC 1100 SE RI ES SYSTEMS
PAGE REVISION PAGE 3-22

In the above form, program name specifies the name of a saved program and n specifies the statement number of

the named program where execution is to begin. If n is not specified, then the first executable statement of the

named program is used.

There are two modifiers which may be attached to the CHAIN statement, the colon (:) and the asterisk (*). When

the colon (:) is used all values of single arithmetic variables in the current program are saved, and may be used by

the chained program. The asterisk (*) suppresses the printing of the execution time for individual chained pro

grams, but does not affect the printing of the total execution time. The general forms of these modified statements

are:

n CHAIN* Program name, n

n CHA IN: Program name, n

n CHAIN*: Program name, n

Note that in the last form the order of the asterisk and the colon are unimportant. Also, there is no limitation on

the number of programs which may be chained. Thus, a program which is chained may contain a CHAI N state

ment.

3.21. STRINGS

This statement specifies the maximum number of characters which are allowed in any string variables. The general

form is as follows:

n STRINGS j

where j is an integer constant with a maximum range of 511. If no STRINGS statement appears in the current

program, then the maximum number of characters per string is 60.

3.22. ARRAYS

This statement is used to specify the default dimensions of any arrays which are referenced in the current program,

but not previously dimensioned in a DIM statement.

The general form of this statement is:

n ARRAYS O(i,j) S$(i), S(i), O(i,j,k), O(i,j,k,1)

D(i,j)

S$(i)

specifies that all algebraic matrices, not included in a DIM statement be given the maximum

dimensions (i,j).

specifies that all string arrays, not included in a 01 M statement, be given the maximum

dimensions (i).

7925
UP.NUMBER

S(i)

O(i,j,k)

O(i,j,k,1)

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-23

specifies that all algebraic arrays, not included in a DIM statement, be given the maximum

dimension (i).

specifies that all three dimensioned matrices, not included in a 01 M statement be given the

maximum dimensions (i,j,k).

. specifies that all four dimensioned matrices, not included in a 01 M statement be given the

maximum dimensions (i,j,k,I).

A default value of 10 wi II be given for i and j and 1 for k and I in the event that an AR RAYS statement is not in

cluded. There is no definite order in which O(i,j),S$(i),S(i),O(j,j,k) and O(i,j,k,1) must appear in the ARRAYS state

ment, and any of these may be omitted.

3.23. MAT

UBASIC incorporates matrix manipulation as an integral part of the language. The MAT instruction signifies that

matrices are to be operated on, and the remainder of the statement specifies exactly what is to be done. The

various types of MAT statements are explained following. They are applicable only to vectors and two

dimensioned arrays.

3.23.1. MAT ARRAY=MATRIX EXPRESSION

This MAT statement corresponds to the LET statement. It performs the operation indicated on the right of the

equals sign and puts the elements into the array on the left. The matrix expression has several forms:

(1) I t may be another matrix as

10 MAT A=B

which puts an exact copy of the matrix B into A.

(2) It may be a scalar multiple of a matrix (the scalar expression must be in parentheses) as

20 MAT A = (Z + 2) * B

which makes A a scalar multiple of B.

(3) I t may be the sum or difference of two similarly dimensioned matrices as

30 MAT A=B+A

which increases every element in A by the corresponding element in B.

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-24

(4) It may be the product of two compatibly dimensioned matrices as

40 MAT A=B*C

NOTE: The matrix on the left of the equals sign cannot be one of the matricies in the product on

the right.

(5) It may be one of the matrix functions:

(a) I NV(a) finds the inverse and the determinant of the square matrix a. The system function DET is used

to obtain the determinant of the last matrix inverted.

(b) TRN(a) finds the transpose of the matrix a.

(c) lER zeros the matrix on the left of the equals sign. lER (ael ,ae2) or lER (ael) dimensions and

zeros the array on the left of the equals sign according to the values of the algebraic expressions ael

and ae2.

(d) CON fills the matrix with ones. CON(El,E2) or CON(E) dimensions and fills the matrix with ones.

(e) I DN makes the square matrix the identity matrix. I DN(ae 1 ,ae2) dimensions the array and makes it the

identity matrix(ael=ae2).

(f) DIM(ael,ae2) or DIM(ae) redimensions an array without changing the elements.

NOTE: For matrices other than vectors, elements are not destroyed, but are almost impossible to

reference due to the relative shift of most rows and columns. Vectors, however, do not

have this disadvantage and are left still usable.

The following are valid MAT statements:

10 MAT A=C

20 MAT A=INV(C)

30 MAT A=TRN (A)

40 MAT A=ZER (A9,5)

50 MAT C=I DN

60 MAT A$=C$

3.23.2. MAT PRINT

The MAT PRINT instruction is used to print out a matrix in its array form. The instruction is followed by a list

of array names, separated by commas or semicolons. A comma after an array name spaces the elements into

zones, while a semicolon close-spaces the matrix. The following are valid MAT PRINT statements:

7925
UP·NUMBER

UNIVAC 1100 SER1ES SYSTEMS

10 MAT PRINT A, B;C

20 MAT PRINT C

30 MAT PRINT A$;

40 MAT PRINT A ,B$

3.23.3. MAT I N PUT

PAGE REVISION PAGE 3-25

The MAT INPUT statement is similar to the regular INPUT statement, in that it prints out a question mark and

reads in the response. The MAT I NPUT statement, however, reads in a whole vector and records the number of

items of input for reference by the function NUM. The instruction itself has only one form:

n MAT INPUT a

3.23.4. MAT READ

The MAT READ statement, like the READ statement, takes data from the lists of DATA items. More than one

array may be listed in the statement and the list will be processed from left to right. The arrays are filled, by rows,

according to their dimensions or according to dimensions specified in the statement (any appropriate expressions).

The following are valid MAT READ statements:

10 MAT READ A

20 MAT READ A, A$, C(5*X,10)

30 MAT READ D$ (10)

3.24. FI LE I/O

3.24.1. OPEN

This statement which is used to open data files has the following forms:

1
SYMBOLlCl

n OPEN filename FOR BIN~RY

NULL

{

RA~DOM}

NULL

INPUT

OUTPUT

PRINT

PUNCH

or

10

AS FILE f

7925
UP.NUMBER

or

n OPEN filename,

UNIVAC 1100 SERIES SYSTEMS

\

SYMBOLIC!
BINARY

or

NULL 1
RA~rDOM 1

NULL

PAGE REVISION

INPUT

OUTPUT

PRINT

PUNCH

or

10

, f

PAGE

where filename is an EXEC 8 filename - up to twelve letters, digits, dashes, slashes, or dollar signs and file number f

is any positive numeric expression within the range ione to nine.

NOTE: If the letters FOR are used in the filename in that particular sequence, the second

of the above forms must be employed. Also, filename in the OPEN statement is optional.

(See 3.24.9.)

Data files must be opened before they can be read or written. When the OPEN statement is executed the UBASIC

file mechanism checks to see if a file with the same name has previously been catalogued, in which case the OPEN

statement will apply to the catalogued file. If the file had not been previously catalogued, the system will assign a

catalogued file with the designated filename. When the filename is omitted in the OPEN statement, the UBASIC

file mechanism will assign an internally named temporary file.

Although there is no difference in file structure, BINARY or SYMBOLIC may be specified or both words may be

omitted. If RANDOM is not specified, sequential structure is assumed.

10 means the file may be read or written without reopening, and thus has meaning only for RANDOM. Conversely

PRINT or PUNCH files cannot be random.

3.24.2. INPUT

The INPUT FROM f: statement is used to read information from a specific file. The form of this statement is:

n INPUT FROM f: variable list

The INPUT FROM f: statement works identically to the general INPUT statement with the exception that line

images are read from the file f.

NOTE: If the value of the file designator f is 0, input will be from the teletypewriter or an

on-site card reader.

3-26

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

3.24.3. OUTPUT

To write on a file either of the following equivalent forms may be used:

WR ITE ON f: expression list

PRINT ON f: expression list

PAGE REVISION PAGE 3-27

where f, the file designator is any valid arithmetic expression and the expression list appears identically to the

general PRINT statement (see 3.4.).

The PRINT ON/WRITE ON statements work the same as the PRINT statement except for printing on a specified

file, and writing a comma between specific items on the print file. File f will consist of records which correspond

to line images produced by the PR I NT statement. A null record will be written to the specified file, if the ex

pression list is blank. Note that the TAB, COL functions and the end punctuations may be used the same as with

the general PR I NT statement. (See Section 3.4.)

NOTE: If the value of the file designation f is 0, output will be to the teletypewriter or the on-site

printer, if the run is batch.

3.24.4. PR I NT

The print option of the OPEN statement allows the user to direct output to an on-site high speed printer.

The full 132 characters of the printer are usable. All of the normal print rules apply to the use of a print file. If

the OPEN statement contains a file name, the print file will remain cataloged after being printed. If a file name is

not used in the OPEN statement, the file will be decatalogued after printing. A print file may not be used for

input.

3.24.5. PUNCH

The characteristics of the punch file are the same as the print file (see 3.24.4.) with the exception that the record

length is 80 characters and the output is directed to an on-site punch.

3.24.6. ON ENDFI LE

The ON ENDFILE statement has the form:

n ON ENDFI LE f GO TO statement number.

The ON ENDFILE is used to specify the next statement which is to be executed after an end of file is encountered

on an input file. The file f may have multiple ON ENDFILE statements. For a file f the last ON ENDFILE statement

encountered during execution determines the control path.

7925
UP·NUMBER

3.24.7. LINES

UNIVAC 1100 SE RI ES SYSTEMS

The LINES statement has the following format:

n LINES X,Y

Where X = File No.

Y = Record length in characters.

PAGE REVISION PAGE 3-28

The LINES statement allows the user to set the record length of a file. The maximum record length is 512

characters. File 0 may be set to 72 or 132 characters. The default values for record length are 72 characters for

file 0 and 132 characters for files 1 through 9.

3.24.8. CLOSE

The CLOSE statement is used to write an end of file on the specified file(s), when it is in write mode. The file f

will be closed if it is in read mode when a CLOSE statement is encountered for the file specified.

The form of the CLOSE statement is:

n CLOSE F1, F2, ... FN

3.24.9. TEMPORARY FILES

If the file name has been omitted on an OPEN statement, the file will exist only for the duration of the execution

of the UBASIC program. This extension allows the user the use of scratch files during the operation of a program.

The file number associated with a temporary file should not be used for any cataloged file within the same program.

The first operation on a temporary file must be an output operation.

The above information on temporary files does not apply to files opened for print or punch.

3.24.10. RANDOM FILES

Files may be established for random input and/or output operations by the OPEN statement (see 3.24.1.).

Such a file must be OPENed in a run prior to any input or output operation, even though it was established and

written in a prior run. Data must, of course, be written into the file before meaningful data can be read from the

file. A CLOSE statement should be used after operations on the file are completed.

Reading and writing a random file is accomplished by CALLing the appropriate function below. F represents an

algebraic expression which will designate a file number 1 through 9 corresponding to the OPENed RANDOM file

(see 3.24.1.). a and n are algebraic expressions designating character counts.

7925
UP·NUMBER

RRD(f,a,n,V)

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-29

This function does a random read of information from a FASTRAND or simulated FASTRAND file.

For random reads, n FIELDATA characters (6 bits each) are read from file f, starting at character a, and stored in

vector V starting at V(1). V must be singly dimensioned. Characters in file f are addressed starting at one.

Example:

RRD(1,101,100,A) causes the second hundred characters on file 1 to be read into A(1),A(2), ... through the first four

characters of A(17).

The R RD function returns a function value which describes the result of the read request. This value is usually

called the status code, and a full description may be found in the UNIVAC 1100 Series Operating System

Programmer Reference UP-4144 (current version). The most common status code is: 0, if the read request was

completed normally.

RWR(f,a,n,V)

This function does a random write to a FASTRAND or simulated FASTRAND file.

For random Iwrites, n FI ELDATA characters (6 bits each) are written on file f, starting at character a. The n

characters are taken from vector V, starting with V(1). V must be singly dimensioned.

Characters in file f are addressed starting at one.

Example:

RWR(1,101,100,V) causes the 100 characters stored in V(1),V(2), ... ,through the first four characters of V(17) to

be written on file 1 as the 101st through the 200th characters on the file.

The RWR function returns a function value which describes the result of the write request. This value is usually

called the status code, and a full description may be found in the UNIVAC 1100 Series Operating System

Programmer Reference UP-4144 (current version). The most common status code is: 0, if the write request was

completed normally.

3.24.11. FORMATTED INPUT/OUTPUT

The user may specify his own format for input or output by using FORM or IMAGE statements, which will describe

in picture form (a mask of alphanumeric characters) how the user expects to input his data or how he expects the

output to look (for example, a report with imbedded text). The general form of this statement is

7925
UP·NUMBER

n PRINT

UNIVAC 1100 SE RI ES SYSTEMS

IN

I
FORM I
IMAGE

PAGE REVISION PAGE 3-30

S:V1

where e is an expression specifying a file number (see 3.24.1.). S is a string constant or a string variable

and V1 is a list of variables. If 'ON e' is omitted, file zero or the demand terminal is assumed. If the desired

function is input rather than output, the word INPUT replaces PRINT and FROM replaces ON if applicable. The

word WRITE may be used interchangeable with PRINT.

The string constant or string variable specifies the format of the input or output. Thus, characters within the

specified string have special meanings which will be explained following.

3.24.12. PRINT IN IMAGE, NUMERIC

Four types of IMAGE fields are recognized for PRINT IN IMAGE, numeric;

(1) the % (percent sign) field,

(2) the # (number sign) field,

(3) the $ (floating dollar sign) field, and

(4) the * (floating asterisk sign) field.

A" other characters (except the decimal point in conjunction with the fields) are treated as text and printed. The

latter two ($ and *) must consist of at least four characters to be considered as fields, otherwise they are treated as

text.

The decimal point may be included with all the fields with the exception that it may start (be the first character

of) only the % field.

The % field is an integer-decimal field and results in integer-decimal output corresponding exactly to the dimensions

of the field. The field must be large enough to accept the number and if the number to be output is negative, must

account for the sign to be printed. Thus, the field %% can accept for output a positive number of two digits (left

of the decimal) or a negative number of one digit. A" numbers to be output will be rounded to the requested

number of places, right of the decimal. Places provided but not needed will result in blanks (for places left of the

decimal) and D's (right of the decimal). The following are all legal fields for numeric output: %%, %.%, %.%%,

%%%%. %%%. The number 1.45 would output, using the four fields, as 6 1, 1.5, 1.45,666 1.450, (6 represents a

blank output). Notice in the first case the number is rounded to 1 and the character position not needed re

sulted in a blank output, in the second case the number is rounded to one decimal place; in the third case, the

number is printed as is; in the last case, the positions not needed resulted in leading blanks and trailing zeroes.

Notice also, that the number -1.45 could not be accepted for the second and third cases, as not enough positions

left of the decimal point are provided to accommodate both the negative sign (which must be printed) and the

number 1.

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-31

The # (number sign) field is an exponential format output of either of two types:

(1) The first is without a decimal point and must consist of at least 7 consecutive # 's. The output generated will

be in exponential format, with the mantissa portion beginning with a decimal point and having a number of

places to the right of the decimal, equal to the number of #'s in the image minus 6. The six is accounting

for the six character positions needed for exponential output, namely, one for the decimal point, one for

the sign (which is a blank for positive numbers), one for the E of the output, one for the sign of the exponent,

and two for the magnitude of the exponent. Seven #s are required to provide at least one digit to the right of

the decimal point, more than seven results in more than one digit right of the decimal point on output.

Again, the number will be rounded to the required number of placed provided.

Example:

The preceding type of exponential, the image '########', eight #'s would result in the number 120

output as b.. .12E+03; nine #'s would result in b.. .120E+03 and seven #'s would result in b...1 E+03.

(2) The second type of exponential output is utilized when it is desired that the mantisssa have one or more

(maximum 6) digits to the left of the decimal point and consists of the following, one to six #'s followed by

a decimal point followed by at least 5. The output will be in exponential form with the number of places left

of the decimal equivalent to that in the image field, and the number of places right of the decimal equivalent

to the number right of the decimal in the field minus 5. The five are accounting for the sign of the mantissa

(blank output if number is positive), the E, the sign of the exponent, and the two digits of the exponent.

(The decimal point of the image accounts for the decimal point of the output.)

Example:

The field #. ###### would output 120 as b..1.2E+02 and -126 as -1.3E+02.

The floating $ and floating * fields are similar to the % field except that for the floating $ will print a $ instead

of a blank to the left of the first number printed, and the floating * will print *'s in place of all blanks to the left

of the first significant digit of the output.

Example:

$$$$ will cause 12 to be output as b..$12 and **** will cause 12 to be output as **12. The fields must contain

at least one space for the character $ (or *) in addition to an extra position if the number output is negative, since

at least one of the field characters must be output. Thus, $$$$.$$ can accept 123 for output but not -123 since

the one $ that must be printed and the sign which must be printed result in 5 positions needed left of the decimal.

The dollar sign and asterisks are never printed right of the decimal point (if one exists). These characters right of the

decimal are the same as % signs in handling.

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-32

Termination of fields for image output is the detection of a character which is not part of the current field. This

would include a decimal point if one has already been detected in the field.

Example:

The image '%%$$$' contains two fields, the first (the % signs) is terminated by the first $ detected. The image

'%%.%.%' also contains two fields, the first is %%.% and the second is .%, the second. acts both as terminator of

the first field and first character of the second field.

All characters except the %, #, ., $ and * are considered as text as are the $ and * fields where there are less than 4

in the field, and will be printed as text.

Example:

The image 1%%6 IS6 A,6 %% 61S6 B' will print the values 12 and 23 as 12.6.IS.6.A,.6.23 .6.IS.6. B (where.6. signifies

a blank).

The decimal point will be considered as text unless it follows one of the field characters or immediately precedes a % .

. Another field is possible for image numeric output, the single # or "free form" field. This is discussed in

3.24.14.

3.24.13. PRINT IN IMAGE, STRINGS

Only two types of fields are recognized as string fields for PRINT IN IMAGE (excluding the single #, "free

form" field discussed later); they are the % and # fields. These are without a decimal point only. The string to be

output will be truncated from the right if the field is not large enough and space filled on the right if the field is

too large. Neither of these conditions are considered error conditions.

Example:

The field %%% will output the string ABCD as ABC and the string AB as AB.6. (.6. signifies blank).

Any attempt to output a string in a non-string field is an error condition and terminates the program. For the

purpose of output of strings, there is no minimum number required of the # field with the knowledge that one #
is the "free form" field rather than a one character output. Decimal points are considered as field terminators

when string output is in operation.

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

3.24.14. FREE FORM OUTPUT

PAGE REVISION PAGE 3-33

A single # (number sign) not followed by a decimal point is considered a free form field and results in both

numerics and strings output in standard form, as they would under a simple PRINT V (where V is a numeric or

string variable). A space will be printed leading all positive numbers. Strings are printed exactly as they exist.

3.24.15. PRINT IN FORM

An image is to be considered an image of a line. As such, when an image is exhausted of fields, a line of output is

generated. The image is then searched from the beginning if more fields are needed.

A form is considered to be a set of fields and as such does not generate a carriage return upon exhausting the

form, but merely starts searching from the start of the form for more fields if needed. A carriage return may be

generated in form by use of the characters / and". The former is a field terminator and the latter is not.

(See discussion of field termination, form, below). Some examples to illustrate the differences are:

Example:

(1) Print in form '%%%': A,B would put the variables A and B on the same line (with no intervening spaces if

the variables filled the field).

(2) Print in image '%%%':A,B would print A on one line, B on the next line since the exhaustion of the image

results in line output.

(3) Print in form '%%%/, or '%%%" would result in the same output as print in image '%%%' since the characters

/ and '\.cause line output.

3.24.16. PRINT IN FORM, NUMERIC

The discussion of PRINT IN IMAGE, numeric applies to PRINT IN FORM with some exceptions:

(1) A form field is terminated only by a terminator character (discussed below) and not by a simple change of

type of field.

(2) For the floating $ and * fields, two consecutive characters constitute the floating field, and not a minimum

of four as in image.

Additionally, the floating $ and * fields will not print the sign of a negative number. All characters of the form are

considered not to be text, unless they are enclosed by two quote marks on each side of the character(s). This will

mark them as text characters to be printed. Fields are terminated only by the appearance of a space, / (carriage

return) or the end of the form. To generate a space on output, the utility character B is used. To generate a

carriage return without terminating a field, the utility character\ (line field) is used.

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-34

PRINT IN FORM has available a set of field characters much more expressive and versatile than the PRINT IN

IMAGE statements. At the same time, this increased versatility requires a more thorough understanding of the

many rules that must follow and much more care is required to avoid error.

As mentioned, those fields that function in PRINT IN IMAGE are present for PRINT IN FORM. It is most impor

tant to understand the major differences between PRINT IN FORM and PRINT IN IMAGE. For PRINT IN FORM:

(1) Fields are terminated only by 'field terminators.'

(2) The end of the form does not generate a line of output (carriage return).

(3) Text must be specifically delineated as such by enclosing it in two single quote marks on each side of the

desired text.

First, we should grasp the significance of 'field terminators.' These are, specifically, the blank, the carriage return

symbol (/), and the end of the form itself.

Example:

The form A$ = '%%~ %%' has two distinct fields, each two digits, or, two characters.

Using this form to output the variables A and B where A is 12 and B is 34 would result in the I ine of output: 1234.

Notice that the numbers are not separated by a space since the space in the form serves merely as a field termina

tor; it does not generate an output space. I t must also be understood that the line of output was generated by the

end of the variable list and not the end of the form. In fact, the form '%%' would have resulted in an identical

output of A and B (here the end of the form serves as the field terminator). I n exhaustion of the form, the field

termination occurs, and if more fields are needed, the form is searched from beginning for needed fields. This may

occur as many times as necessary to output the required number of variables.

After looking at two of the field terminators, we will turn to the third, the carriage return (/) symbol. This

symbol will cause a line of output to be generated, at the same time serving as a terminator of a field.

Example:

Print in form '%%1%%': A, B would output the above used values (12 and 34) on two lines since the I symbol

terminates the first field (two % signs) and generates line output.

It is possible to have two or more consecutive field terminators (except for the end of the form); however, it

serves a useful purpose only for the last mentioned (/). More than one space is superfluous since one is sufficient

to terminate a field and does not itself create any output; however, spaces are accepted and the user may use them

to make his form more readable to himself or others. Two or more consecutive I's, however, do serve a useful

purpose in that they will generate the desired number of blank lines of output.

7925 UNIVAC 1100 SERIES SYSTEMS
U P.NUMBER PAGE REVISION PAGE

Example:

PRINT IN FORM '%%11%%': A, 8 again using 12 and 34 for A and 8, would result in the numbers 12 and 34 being

printed with one blank line between. The first field (two % signs) would receive the variable A, the first 1 would

terminate the field and generate the line of output, the second / encountered would generate a blank line of

output (the variable A has already been output). The second field would receive the variable 8 and the line of

output generated by the end of the variable list, 8 being the final variable output.

Text output is possible in form, only when the text is delineated by two quote marks blanking the text. The

exception to this is the special character 8 which denotes an output blank and may appear anywhere in the form.

Text appearance does not terminate fields, neither do the 8's denoting blanks to be printed, thus text and 8's may

be embedded in fields. The exception is the floating fields (discussed later) in which fext and 8's may not be

embedded. Examples of this will be shown later, after discussion of special form characters.

PRI NT I N FORM has, besides the fields present in image, certain characters designated as "special form" or

"precise form" characters. For the following, we shall be concerned with numeric output only. String output

wi" be discussed in 3.24.17.

For numeric output there are four special form characters to be noted. They are 0, V, Z and Q. The significance

of each is as follows. D is a digit indicator and wi" result in a digit output. Those field characters not needed for

output of the number will be zero filled.

Example:

The field 'DDD' would output the number 12 as 012 and the number 1 as 001, i.e., each character of the field

outputs a digit. The character V is also a digit indicator except that all positions not needed result in a blank output

and a" zeros in the number result in a corresponding blank output.

For example, the field 'VVV' would output the number 12 as 12 (preceded by a blank) and the number 103 as 1 3

(with a blank between the 1 and the 3). The character Z is similar to D except that leading zeros would be replaced

by blanks; for example, the field 'ZZZ' would output 12 as 12 (preceded by a blank) and 103 as 103 (only leading

zeros result in blanks). The character Q is a very special character; it performs essentially like the Z except that

leading zeros are not printed, and do not print a corresponding blank. Instead, the number to be output in the Q

field is left justified, and leading zeros are ignored. As such, the Q field is an 'indeterminate length' field because only

as many of the Q's as are needed to output the variable are actually used. It should be mentioned now that, for

this reason, the Q field is for output only and cannot be used for an input operation. An example of the Q field,

the form 'QQQ' would output 12 as 12 with no leading space, and the number 1 as 1 (again with no leading spaces).

It should be mentioned that none of these four special form characters wi" output the sign of a number. To output

the sign of a number requires the use of one of the. three sign fields, S, + and -. These three characters wi"

output the sign of the number when used singly (as in the form 'SDD') or when used in the 'floating sign' field

(as in the form 'SSS' or '+++'). The single character is referred to as a 'static' sign field, the multiple characters

are 'floating.' The floating fields act identically to the floating * and $ fields discussed earlier. The differences in

the three fields are: the S outputs the sign of the number (- if negative, + if positive), the - outputs a - sign

3·35

7925
UP·NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-36

if the number is negative and a blank if the number is positive. The + will print a + if the number is positive and a

blank if the number is negative. For the floating fields, these characters will float to the immediate left of the

first character printed.

Example:

The number 12 would be output using the three forms,'SSSS', '++++' , and '----, , as +12 (preceded by one

blank), +12 (preceded by two blanks) and 12 (preceded by three blanks).

These special form characters may be combined to form fields; for example, 'DYYDD' is an acceptable form.

Certain rules are established, and they are as follows:

(1) The floating fields may not be broken by any other characters (except comma and decimal point discussed

later).

(2) The floating fields may appear before, but not after D's, V's, in a field; additionally they cannot be part of

the Z or a fields.

(3) The appearance of any of the floating field characters to the right of a decimal point (if present) results in

the same handling as if they were D's.

Example:

The form '+++.++' is identical to '+++.00' .

(4) a's and Z's may appear before but not after D's or V's.

(5) No more than one floating field character may appear in one field (exceptions noted under exponential

output discussion).

(6) No field characters (other than the 'static' sign characters) may appear before the a fields.

(7) Of the characters 0, Z, and the 'floating' signs, only one type may appear in a field.

The decimal point is available in a similar manner as in the normal fields, for example, the form '00.00' calls

for a numeric output with two digits left of the decimal and two to the right. The handling of the number is similar

to the normal, but follows the individual characters of the special forms. The previous form '00.00' would output

12.3 as 12.30, 12.345 as 12.35 and .3 as 00.30. Notice that rounding is still in effect and the D's require an

actual digit output (leading zeros are required). A special form character, V exists for decimal output. The V is

the same as the . (decimal point) in a form except that is suppresses the print of the decimal point. "DDVDD'

would output 12.34 as 1234, the decimal point implied between the 2 and 3.

Exponential format may be requested by using the special form characters E and K in conjunction with the other

field characters. The E requests exponential output with the E printed. Use of K instead of E merely suppresses

the print of the E.

7925
UP.NuMBER

Example:

UNIVAC 1100 SERIES SYSTEMS

'DD.DE+DD' would output 127 as 12.7E+01.

PAGE REVISION PAGE 3-37

The exponential portion of the number, the part to the right of the E, may be considered a field by itself when

observing the rules of precise form characters mentioned above.

For example, the form 'D.DESS' is valid, Rule (2) above is not violated, since the exponential portion of the form is

considered (for the rule definitions only) as another field.

There are, however, two particular rules concerning exponential output to be considered.

(1) The sign of the exponent may only be printed between the E (or K) and the digits of the exponent.

(2) Floating sign fields for the exponent part of a number must be at least three characters in length. The signifi·

cance of rule (1) is that the appearance of a sign character (S,+,-) after the digit characters of the exponent is

assumed to apply to the mantissa.

Example:

The form 'SD.DESDDBBS' would output -45.6 as -4.6E+01-.

An example of the use of K is the form 'DD.KSDD' would would output 1217 as 12.+02. The decimal characters

(. and V) may not be used following the K or E on exponential output. Also, it should be obvious that no more

than one K or E and no more than one. or V may be present in the same field.

Two special characters remain to be discussed. The comma and the line feed (") symbol. The comma is used in

conjunction with the other special form characters to cause the printing of commas on output. It is conditional in

the sense that it will not print the comma (instead printing a blank) until the digits have begun to print.

Example:

The form 'ZZ,ZZZ' would print 12345 as 12,345 but print 345 as 345 (preceded by 3 blanks).

This conditional status holds for all the other field (digit) characters except D's, which will cause the commas to

print (since the D field outputs digits for every place). Another way to put this is that no comma present in a

field will cause a comma to print before the first digit of output. When commas are part of the Q field, they too

will be discarded completely from the left to adjust to the size of the number to be output.

Example:

'QQ,QQQ,QQQ' would output 1234 as 1,234 (with no preceding spaces).

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-38

The line feed character (\) acts identically to the carria~e return symbol (/) with one notable exception. It

is not a field terminator, and thus may be used to generate split-line output.

Example:

The form 'DDD. \ D' will print the number 123.4 as 123. on one line and 4 on the next line. Multiple \ symbols

may be used to generate blank line output similarly to the usage of I.

For print in form, the rules of field capacities found in PR I NT I N I MAG E apply; that is, if a number is too large

for the field provided, an error message will result, and the field will be replaced with ****, instead of a numeric

output. The floating fields require that at least one space be provided for output of the floating character (or

blank).

For numeric output, the special form characters may not be concatenated with the normal form characters (in the

same field).

Example:

'DD%.DD' is an invalid form field as is 'D.D#####'.However, a multi-field form may have fields of each type in it.

3.24.17. PRINT IN FORM, STRINGS

For PRINT IN FORM, strings, the % field of image output is still valid. However, the # field is accepted only in

its single (or free form) connotation.

In addition to the % and single # , there are four special form characters available, the characters D, V, A, X. These

may be concatenated (with the % sign if desired). The differences of each are as follows: D will accept only a digit

or blank for output, changing all blanks to zeros. V will accept only digits or blanks for output, changing all

zeros to blanks. A will accept only the 26 characters of the alphabet and blank for output. X (and %) will accept

any character for output.

Text and the character B (to generate a blank on output) may be embedded in string fields without termination

as may the line feed character (\).

Any violation of the previous rules on A, D and V will result in an error message and the corresponding character

replaced with an asterisk.

For example, an attempt to print the string 'ABC' using the form 'ADA' would result in an error message and an

output of A *C.

In addition to the free form field denoted by the single # , there is another field, the single R for free form output.

This character is valid only for strings. It is similar to the single # except that it generates a carriage return after

output of the string. (Acting the same as the field '# I' would.) Both the single # and the single R output strings

exactly as they exist, character for character.

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3·39

Strings are left justified in all string fields. Character positions provided, but not needed are assumed to have blanks

for output.

Example:

The form 'AAADD' would output the string 'ABCD' as 'ABCDO'. The line output character R is accepted as a

single R; using two or more consecutive R's without field terminators between will still result in each R being

treated as a separate field.

3.24.18. INPUT IN FORM AND IMAGE

To understand input using the picture formatting image and form statements, it is best to keep in mind the rules

of output. A thorough understanding of output reduces the confusion of input and clarifies the rules to be followed.

Generally all input should be assumed to have been previously output, using the same form or image as the input

form or image. What a particular form or image produces on outputting a certain number (or string) determines

what that same form or image expects on input.

There are some exceptions to this general rule, of course, but they are few and minor.

I n the I NPUT I N I MAG E statement the fields are identical to those on output. The differences in the handling of

the fields are to the users advantage.

For example, the field $$$$ may be used on output for a number no larger than 999 (-99 if negative); however, the

$ sign which must be output need not be input, thus the field will input a number up to 9999 (or -999) even

though it could not output these numbers. This is true for the floating asterisk fields also; that is, no asterisks need

be input. They are ignored if present. The only restriction is that any character other than digits, decimal points,

signs, or field characters, are invalid and will result in error.

The main restriction on input lies with the multi·field forms and images. I n these, it becomes very important that

proper spacing be maintained, remembering always the corresponding output that was generated.

Example:

If the image '%% %%' is used to input A and B and the input line is 1234, the value of A would be 12 and B would

be 4 and not 34.

The reason is that the space in the image caused the 3 input to be treated as text (as the corresponding character

would be on output). Thus, text (and the B's in the forms) must have corresponding characters on input to keep

the input "Iined up." The text in the forms and images result in the corresponding characters input being

"blanked."; that is, changed to blanks. The form "OOBB ~O', used to input the values for A and B (for the

7925 UNIVAC 1100 SERIES SYSTEMS
U P.NUMBER

PAGE REVISION PAGE 3·40

example assume A = 12 and B = 34) would require the input 12??34) where? is any character). Notice that there

are not three characters between the numbers, the space in the form would not generate a character on output;

it does not account for one on input.

The restrictiveness of the special form characters is less on input than on output, but still must be taken into

account. The special form ci1aracters D and Y, although different on output, are identical on input, each will

accept blanks or digits only, changing all blanks to zeros. This is true for strings as well as numeric input. The

+ (static or floating) would output a blank for a negative sign.

Example:

The form field +DD would print the number -12 as ~ 12 (~ is a blank) and would print 12 as +12, thus on input

a number preceded only by blanks would be assumed to be negative. The field +DD would input ~ 12 as -12.

The movement of carriage returns and line feeds on input must be identical to that which would be done on

output.

For example, the image '%%%' would output the numbers 123 and 456 on separate lines since the end of the

image after printing the first variable (123) would result in a line output and carriage return. Thus, to input the

numbers 123 and 456 using this image, the input must be on separate lines. You would type 123, hit return, and

type 456 to effect the correct input. The input routine in this particular case, would completely ignore any charac

ters typed after the 123 since the image indicates precisely three characters followed by a carriage return.

The fact that all fields of a form or image must be filled with some input to keep the input aligned with the

correct field, is not applicable to the last variable input or the last field prior to a carriage return.

For example, the image '%%%' would cause the input stream of 12 followed by a carriage-return character as 12

since the carriage return results in acceptance of as much input as was given (to a maximum of 3 characters). The

form 'DD BDD' could be used to input A as 12 and B as 3 by merely typing 12~3 (~is a blank). Since the 3 is the

last variable being input, (8) the second character of the second field need not be accounted for. Trailing blanks on

input are disregarded. However, notice that 1~ 23 would result in A being assigned the value 1 and 8 the value 3.

(The blank input was changed to zero by the D in the form and the 2 input was blanked by the 8 in the form.)

Violation of field restrictive characters will result in an error message and a return to request the input be sent

again.

For example, an attempt to input 123 into a form 'DDA' as A$ (string input) would result in an error message and

a retry on the input. The same would be true if -12 were to be input to the form field 'YYY'. Since Y could

not output a sign, it will not input a sign.

An exception to this is the floating $ and * fields in form. They will not output a sign, but will accept one on input.

7925
UP·NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-41

INPUT IN IMAGE with a single # (number sign) field acts as a combination output and free form input statement.

If there is a single # in the image, any characters (even those normally treated as control characters) prior to the #
are treated as imbedded text for output. These characters are sent to the terminal as output and the terminal

"sits" at the next column position. The user then responds with free-form input (string or numeric) which must

match the remainder of the image (the single # and any other control or text characters). Everything prior to the

first single # is treated as output and the remainder of the image is treated normally.

Example:

100 INPUT IN IMAGE 'TYPE YOUR NAME #': A$

TYPE YOUR NAME

would be printed at the terminal. The user would respond on the same line with a string of characters which would

become the value of A$.

3.24.19. FORM REPLICATION

I n using Form (print or input), the form string itself may utilize "repeater" characters or "shortened form"

characters. These characters allow the user to generate complicated forms with rather simple strings. There are

three different methods.

(1) The "numeric repeater", example: '3D/4Y'. Use of a number in front of a character calls for repetition of

the character N times (where N is the numeric repeater). The number only applies to one character, which

may be any character. The above example then is equivalent to 'DDD/YYYY', the 0 repe~ted 3 times, the

/ only once since no numeric repeater appears in front of it, and the Y repeated 4 times.

(2) The "multiple character repeater", brackets; example '2[DX] 3[DY] '. The numeric in front of the brackets

call for repetition of what is inside the brackets. The above example is equivalent to 'DXDXDYDYDY'.

The usage of brackets then is the same as the simple numeric repeater except that it will allow repetition of

character sets rather than single characters only.

(3) The "multiple field repeater", parentheses: example '3(DY)2(X)'. The parentheses are equivalent to

brackets in that the contents of the parentheses are repeated N times (N is the numeric multiplier). Where

the brackets and parentheses differ is in the concept of "field" as opposed to " character(s)". The contents

of the parentheses are considered to denote one (or more) field(s). Since a space serves as a field terminator

only and has no other effect on input or output, a blank will be placed following each repetition of the

parentheses contents.

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3-42

It should be understood now that all forms are expanded prior to their inspection for input or output usage.

The numeric repeaters, brackets, and parentheses will be removed and the form expanded to its equivalent con

taining none of these characters. On this "break out", spaces are generated at the completion of parentheses

content repetition (each repetition).

Thus, the above example is equivalent to 'DY DY DY X X', Notice that spaces are generated between the DY/s and

the X's, to separate the fields. The form '3(D)' is equivalent to 'D D D', again, three separate fields. Parentheses

may be nested (up to 4 levels) remembering that each parentheses content is at least one field. Thus, the form

'3(DY3(D))' is equivalent to the form 'DY D D D DY D D D'. It should be pointed out that no nesting of brackets

(type 2 above) is permitted.

Brackets may be present inside parentheses, however;

Example:

'2(D2[XA] V)'

is equivalent to 'DXAXAY DXAXAY'. No space is generated between the XA pairs or between the A and Y;

brackets do not delineate fields, only character sets. The space between the Y and D is generated as the contents

of the parentheses completes the first cycle of generation. The space then separates the two fields intended by the

original form. Fields may be generated by use of brackets instead of parentheses if field terminators are inserted in

the desired locations.

Example:

'2[XA] 2[D]' is equivalent to '2(XA)2(D)', is equivalent to 'XA XA D D'. The blanks inside the brackets cause the

contents of the brackets to generate fields.

In summary the following rules apply to repetition format:

(a) Numeric repeaters are of the form 2D3Y and merely call for the repetition of a single character a certain

number of times. 2D3Y=DDYYY.

(b) Character set repeaters (or multiple character repeaters) are of the form 2 [XA] 2 [DA] , similar to numeric

repeaters except that a character set instead of a single character is multiply-generated.

Example:

2[XA] 2[DA] =XAXADADA.

(c) Field repeaters are of the form 2(XA)2(DA) and generate fields equal to the contents of the parentheses.

Blanks are inserted as the form is expanded to its non-repeater form. The inserted blanks will separate the

fields in the final form.

Example:

2(XA)2(DA)=XA XA DA DA.

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 3·43

(d) Negative numbers used as repeaters are not accepted; the minus sign is treated as a part of the form and

reproduced as a minus sign.

Example:

'-2A'='-AA'.

(e) Repetition format may be utilized only on forms. Use of these methods for image input or output is valid.

(f) Parentheses may be nested up to 4 levels.

(g) Brackets may not be nested within brackets, but pairs of brackets may be nested inside parentheses. Paren

theses may be nested within brackets but will follow the rules for field generation (c above), rather than

bracket rules.

3.25. DEBUGGING AIDS

Several statements are provided in UBASIC which will help the user find problems in his program logic.

3.25.1. VAR=ZERO

UBASIC will initialize all algebraic variables to zero and all string variables to blanks (current length of zero). If

the statement VAR=ZERO does not appear in a program, all simple variables will be checked to assure that they

are assigned a value somewhere in the program by a LET, EXCHANGE, INPUT or FOR statement. If a variable

is referenced but not assigned a value, an appropriate diagnostic will appear as follows:

STRING VARIABLE [variable list] UNASSIGNED, or

ALGEBRAIC VARIABLE [variable list] UNASSIGNED

Example:

Thus,

100 A= B

200 END

would produce the diagnostic

ALGEBRAIC VARIABLE [B] UNASSIGNED

7925
UP.NUMBER

while

50 VAR=ZERO

100 A=B

200 END

UNIVAC 1100 SERIES SYSTEMS

would produce no diagnostic.

3.25.2. PAUSE

PAGE REVISION

The user may halt execution of his program at any point to examine variables with the statement

n PAUSE

at the specified point.

When the PAUSE takes place the following is printed:

PAUSE AT LINE NO: XXX

COMMAND? >

The user must then type in one of the following commands:

- print the values of the listed variables

set the variable v to a new value as calculated from the expression e

PAGE 3-44

PRINT vl

SET v=e

VAR=ZERO set all algebraic variables to zero and all string variables to blanks (set current length to

zero)

DEBUG ON

DEBUG OFF

RESUME

STOP

DUMP

turn the debug mode on

turn the debug mode off

resume execution

terminate the executing program

terminate the executing program with a post-mortem dump

If the user responds with one of the first five of the above commands, UBASIC will solicit additional commands

until the user responds with RESUME, STOP, or DUMP.

At any time a UBASIC program is running in one of two modes, DEBUG ON or DEBUG OFF. In DEBUG OFF

mode the PAUSE statement will have no effect (i.e., the information previously described will not be typed out).

Thus, once a program is debugged, it can be run unhindered by the PAUSE statements, even though they still

exist in the program.

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

DEBUG ON mode may be set by:

(1) calling UBASIC with a B option.

(2) by system command (DEBUG ON).

(3) in response to a command solicitation previously described.

DEBUG OFF mode may be set by:

(1) calling UBASIC without a B option.

(2) by system command (DEBUG OFF).

(3) in response to a command solicitation previously described.

3.25.3. BRK

PAGE REVISION PAGE 3·45

The user can effect an orderly break in his program execution at any time (even if DEBUG is OFF - see

3.25.2.) by depressing the interrupt (BREAK) key. This will cause the message

INTRPT LAST LINE

to be typed out, at which time the user depresses the carriage return key. UBASIC will then halt execution and

(after printing any buffered lines of output) solicit action by typing

YES?

The user may indicate (see 4.11.) that he wishes to interrupt execution of his program by responding BR K.

This causes action similar to a PAUSE statement with the printout as follows:

BREAK AT LINE NO:XXX

COMMAND? >

The user may then respond with any of the commands in an identical manner as to PAUSE (see 3.25.2.).

3.25.4. TRACE

The logic flow of a UBASIC program may be determined by a trace of program execution. To accomplish this,

two statements should bracket the block of statements to be traced as follows:

n1 TRACE ON

statements to be traced

n2 TRACE OFF

7925
UP·NUMBER

UNIVAC 1100 SERIES SYSTEMS
P AGE REV I 5 ION P AGE 3-46

When any of the statements to be traced is first executed, UBASIC will solicit information from the user

as to the trace information to be provided for subsequent statement traces. This is done with the messages as

follows:

TRACE XXX

LI NE NUMBER ONLY? YES OR NO >

Where XXX is the line number of the statement to be executed.

A YES answer will cause execution to resume. A NO answer will cause the message:

ALL VARIABLES? YES OR NO >

to be typed. A NO answer will be followed by the question:

WHICH VARIABLES? >

This should be answered by the names of the variables separated by commas. Having determined that these are legal

names or if the ALL VARIABLES question were answered by YES, UBASIC will ask:

ONLY WHEN CHANGED? YES OR NO >

After a YES or NO answer UBASIC will continue execution.

Prior to the execution of each statement in the specified block, UBASIC will print:

TRACE XXX

Where XXX is the line number. Then all variables, specified variables or no variables will be printed according to

the user's specifications.

During DEBUG OFF mode (see 3.25.2.), TRACE statements will have no effect. If, for any reason, the

user wishes to change the trace data specifications (add a variable to the list or change from line numbers only to

all variables) he may do so by turning DEBUG OFF (after an interrupt or PAUSE) and then turn DEBUG ON as

follows:

YES? BRK

BREAK AT LINE NO: XXX

COMMAND? >DEBUG OFF

COMMAND? >DEBUG ON

COMMAND? >RESUME

This would cause the next traced line to go through the 'first time through' trace solicitation procedure, at which

time different answers may be given. The answer SAME to the question 'WHICH VARIABLES?> ' will result

in the same list as was previously submitted in the current run.

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE: RE:VISION PAGE:

As many blocks as are desired to be traced may be bracketed with TRACE ON, TRACE OFF pairs. If the final

TRACE OFF is omitted, then tracing will be effective through the end of the program.

3.26. EXEC

UBASIC allows execution of a statement which will submit control cards to the Executive without leaving UBASIC.

It has the form:

n EXEC e$

3-47

where e$ is a string expression containing the control card image to be submitted to the Executive. The following

control card images may be submitted by the EXEC statement:

@ADD

@ASG

@BRKPT

@CAT

@FREE

@LOG

@OUAL

@START

@SYM

@USE

Execution will be stopped if the string expression e$ is not properly formatted. If the Executive rejects the con

trol card, a status word will be returned in CSF and may be checked by that function (see 2.7.1.). These facility

status bits are fully explained in UNIVAC 1100 Series EXEC B Hardware/Software Reference UP-7B24 (current

version).

Example:

30 IF FLD(O,1,CSF)=1 THEN STOP

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 4-1

4. SYSTEM COMMANDS

The following commands are system commands and thus are not preceded by line numbers. These system

commands are the control language for UBASIC and provide the capabilities for making this a powerful system.

The program file selection mechanism for UBASIC is:

(1) A file selection may be made any time a program name is supplied to the program. The following commands

supply a program name to UBASIC:

(a) NEW

(b) OLD

(c) RENAME

(d) UNSAVE

(2) When both a named program file and TPF$ are attached to UBASIC, TPF$ is selected by appending an (*)

to the name supplied to UBASIC by the preceding commands.

Example:

(a) OLD:NAMEA

This command brings the program NAMEA into main storage from the program file named on the

processor call statement (see Appendix A).

(b) UNSAVE:NAMEB*

This command deletes the program NAMEB from TPF$.

(3) When a named program file is not attached to UBASIC, the file handler mechanism ignores the asterisk (*).

4.1. NEW

NEW: The NEW statement in the UBASIC system is used to begin a new program at any time. NEW erases all

previous unsaved programs and asks for a new program name. This new program name may also be specified in the

NEW command by following NEW with a colon and the new name as follows:

NEW:TEST

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE

The program name may be up to twelve characters long. If a line termination is supplied in place of the new

program name, the name NAME$ will be assumed. Similarly, if a UBASIC run does not begin with a NEW

command, one will be assumed and the name NAME$ will again be assumed. The form of this command is as

follows:

NEW:NAME

or

NEW:NAME*

4.2. SAVE

The SAVE command is used to save UBASIC programs on the Mass Storage devices. The current program at the

time of the SAVE is stored.

4.3. OLD

The OLD command specifies that a previously saved program is to be used. The system, following an OLD

instruction, erases the current program, requests the name of the saved program, and reads in this program for use.

OLD, like NEW, may be followed by the name desired, as follows:

OLD:NIM

or

OLD:NIM*

4.4. SCRATCH

In UBASIC the SCRATCH System command is used to erase the current program, leaving only the name. This

has the same effect as NEW except that the same program name is retained.

RENAME has the complementing effect. It erases only the program name and asks for a new one. RENAME may

also specify the new name with a colon as follows:

RENAME:NAME2

4-2

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 4-3

This is especially useful before saving programs since saving a program named NAME$ is prohibited. The form of

this command is:

RENAME:NAME

or

RENAME:NAME*

4.5. REPLACE

The REPLACE command is used to save a program under the same name as a previously saved program. REPLACE

is exactly equivalent to an UNSAVE followed by a save command. The effect is to replace a saved program with

the current program.

4.6. CATALOG

The CATALOG command will produce a list of active programs in the program file. An * will select TPF$ if a

named program file is attached.

4.7. LIST, LISTNH AND LENGTH

The LIST command is used to list the current program or selected portions of it. Before listing, the program is

sorted, and the blank or replaced lines are deleted.

The general form of the LIST command is:

LIST line 1, line 2, line 3, line 4,

If no line numbers are specified, the whole program is listed. Otherwise, only those lines numbered between Iine1,

and line2, between line3, and line4, are listed. If an odd number of line numbers (including 1) is specified,

listing continues from the last line number specified to the end of the program. If the command were LlSTNH

instead of LIST, the program would be listed without the usual heading.

Before listing, it is sometimes advisable to verify the length of the program. This is accomplished with the command

LENGTH, which responds with the number of lines in a program. LENGTH is also useful in determining the size

of a program for diagnostic purposes, since it is possible to write a program which exceeds the memory capacity

supplied in UBASIC. (See Appendix B. for size restrictions.)

7925
UP-NUMBER

4.8. SEQUENCE

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 4-4

The SEQUENCE command is used to eliminate the necessity of typing line numbers before every statement in a

UBASIC program. The command supplies a starting number and an increment.

Example:

SEQUENCE 100,10

will start numbering at 100 and increment by 10. The SEQUENCE produced line numbers are printed out at the

beginning of each line, following which the user types his statement, followed by a line termination (carriage

return on teletypewriters). Sequencing continues in this manner until an END statement is read.

4.9. RUN AND RUNNH

The system command RUN is used to start the execution of a UBASIC program, whether this program has been

introduced by an OLD command, by typing in the program, or by reading it from some other medium. RUN

specifies that the program is complete and that the execution of its contents should be attempted. The UBASIC

compiler then translates the UBASIC program into instructions, which can be executed by the UNIVAC 1100 Series

Processor. If no fatal errors have been detected, these instructions are executed. When execution has been com

pleted, the elapsed computer time is printed, and the system is ready for the next statement.

The RUNNH command performs the same function except that it inhibits the printing of the time and date heading.

4.10. BYE AND GOODBYE

Either the BYE or the GOODBYE command signifies that the user is finished with UBASIC. Upon receipt of

either command, UBASIC will erase the current program and sign off (but without disconnecting the teletypewriter).
Control is then returned to the Executive.

4.11. STOP

In UBASIC, the STOP system command is used to stop program execution at any time. If input (see INPUT) is

requested, the word STOP without quotes halts the run and prints the elapsed time. Thus, it can be used to stop

a loop containing an INPUT instruction. To use the STOP command during pure execution (with no INPUT or

PR I NT statements involved) requires a more complex procedure.

On a demand terminal, the user must first press the interrupt key (BREAK)' then the Executive will respond with:

INTRPT LAST LINE. The user must then type in: carriage return and then STOP carriage return. The carriage

return, returns control to UBASIC and makes STOP valid. If RUN were typed after carriage return, control would

be returned to the program exactly where it left off. If debugging is desired, BRK may be typed (see 3.25.3.).

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 4-5

Note carefully that if a PR I NT statement is contained within an execution loop, hundreds of lines of print will

have been generated before break is typed, and these lines must be printed before STOP can be effective. Thus,

if such a print-loop occurs, there is no choice but to type an X instead of carriage return and STOP. The X will have

the effect of a BYE, except that no sign-off message occurs.

4.12. EDIT

In UBASIC, there are six editing commands.

4.12.1. EDIT DELETE

The EDIT DELETE command is used to delete (erase) selected portions of a program without having to type each

line number individually. The EDIT DELETE command is followed by pairs of line numbers. All the lines

numbered greater than or equal to the first of the pair and less than or equal to the second will be deleted. If

there is an odd number of statement numbers listed, all the line numbers greater than or equal to the last

number will be deleted.

Example:

EDIT DELETE 10,30,50,120,900

will delete lines 10 - 30,50 - 120,900 - (END) inclusive.

4.12.2. EDIT EXTRACT

The EDIT EXTRACT command is the complement of the EDIT DELETE command. With EDIT EXTRACT the

sections of the program specified are retained and all other lines are deleted.

Thus after the command:

EDIT EXTRACT 10, 90, 200

the current program will consist only of the lines numbered between 10 and 90, inclusive, or 200 and greater.

4.12.3. EDIT RESEQUENCE

The EDIT RESEQUENCE command is used to renumber the statements in a program, beginning at any line

number and continuing by a specified increment. The format of the EDIT RESEQUENCE command is as follows:

EDIT RESEQUENCE 100, 51, 10

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 4-6

This particular example will replace the old line number 51 with 100, the next with 11 U and so on until the last

statement. If the old line number is not specified or is zero, resequencing begins at the first line of the program. If

a new line number is not specified, numbering begins at 100, and if an increment is not specified, lOis used.

Thus the command is as follows:

EDIT RESEQUENCE is equivalent to

EDIT RESEQUENCE 100, 0, 10

4.12.4. EDIT MERGE, EDIT WEAVE, EDIT INSERT

EDIT MERGE, WEAVE, and INSERT are used to combine from two to nine saved programs into one current

program. The general format for these instructions is as follows:

EDIT type NAME1, NAME2, line2, NAME3, line3, ... where type is MERGE, WEAVE, or INSERT, and NAMEl is

the name of the saved program to be used as the main program. NAME2, NAME3, ... are the other saved programs,

which are to be inserted into NAM E 1 after line2, line3, ... respectively. The resulting program is used as the current

program.

(a) If the command is EDIT MERGE, the resulting program will be resequenced (as EDIT RESEQUENCE 100,

0, 10) without deleting similarly numbered lines, if they come from different sources. The sense of statement

number references is preserved by renumbering these also.

(b) If the command is EDIT WEAVE, the resulting program will not be resequenced, but will be sorted. If a

line number is duplicated, only the line from the added program with that number is retained.

(c) If the command is EDIT INSERT, the reSUlting program is neither sorted nor resequenced, until the next

LIST or RUN is performed.

4.13. UNSAVE

The UNSAVE command is used to release saved programs in the users program file, and removes the users program

name from the catalogue. The current program can be released by the second form following. The format of this

command is as follows:

UNSAVE:NAME

or

UNSAVE

7925
UP.NUMBER

4.14. PUNCH

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE 4·7

The current program or selected portions of it may be punched onto cards by this command. The general form of

this command is the same as for the LIST command.

4.15. DEBUG

Two commands are available to alter the debug mode of operation. They are as follows:

(1) DEBUG ON, and

(2) DEBUG OFF.

They will turn the debug mode on and off, respectively. With the debug mode on, all TRACE and PAUSE state

ments are activated, while they are ignored when debug mode is off (see 3.25.2.).

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE

APPENDIX A. OPERATING PROCEDURES

In order to use UBASIC, it is first necessary to understand the procedure necessary for running on a UNIVAC 1100

series system. The fundamental procedure from a teletypewriter remote station is as follows:

(1) Push the OR I G button and wait for a dial tone, then dial one of the numbers used for accessing the 1100

series system.

(2) When the connection is made, a high pitched tone will be heard. Following this tone, press the HERE IS key

or in some way supply a legal site 10.

(3) If the 1100 series system is accepting teletypewriter communications, the system will respond with:

UNIVAC 1100 TIME/SHARING EXEC

(4) If the message in Step 3 above is printed, the 1100 series system is ready to accept the UNIVAC 1100 series

Executive RUN control statement which must be the first line submitted by the user. The RUN control

statement contains such information as user's run identification, account number, name or project, time

estimate, and possibly other items which are not normally required. (See UNIVAC 1100 Series Operating

System Programmer Reference, UP-4144 (current version).) The following is the general form.

Example:

@RUN IIIIII,XXXXXX,NAME,TIME

where:

@RUN

111111

XXX XXX

appears in column position 1,2,3, and 4.

must be preceded by at least one space (blank), and consists of up to six alphanumeric

characters. It is used for reference by operators and dispatchers.

is the user project number assigned by the Computer Center.

A·1

7925
UP.NUMBER

NAME

TIME

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE A-2

is up to a twelve character consistent spelling of an identification of the project.

is the maximum time in minutes the run is expected to take for completion. This time

is only with respect to central processor time, and is independent of the actual time of

day start and completion times.

The time estimate (TI ME), is optional, and if not specified by the user, then a standard value is automatically

assigned.

An example of the @RUN statement is as follows:

@RUN 123456,OOOOOO,USE R,2

which specified a run with a time estimate of two minutes. When the RUN statement is accepted, the system

will respond with the date and time as follows:

DATE: 021871 TIME: 120000

(5) The next line required is one of the various system control statements recognized by the Executive. Since it is

desired to use UBASIC, the next line is as follows:

@BASIC FILENAME.

which gives control to the UBASIC system. UBASIC will respond with its version number, the date, and

time. The new program name NAME$ is assumed, and UBASIC is ready for the first system command or

the first line of a program.

FI LENAME. is the name in the Executive filename notation [[Q] *] [F] [([FC])] [! [RK] [I [WK]]] [.]

of a program file which is either catalogued or already assigned to the run. A user TPF$ is also automatically

attached to the processor. Since TPF$ is always assigned, the FI LENAME. field on the BASIC processor line

is optional. Note that normally an up to 12 character alphanumeric field followed by the period will be
sufficient.

Example:

@BASIC

@BASIC FILE123.

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE A·3

After the user has terminated a line (system command or statement) the UBASIC processor will process the

line appropriately. If an error is detected in a statement or some particular response is necessary to a system

command, UBASIC will send a specific message to the user. He may then respond with either a new system

command or statement. If no such error or particular response is necessary, UBASIC will respond with the

greater than sign (», which the user should be careful to wait upon prior to typing in his next statements.

The > merely indicates that the last line has been accepted, was correct, the function carried out and

another line is acceptable. If SEQUENCE has been specified to provide automatic line numbers, then the

line number substitutes for the> .

(6) After the user finishes with UBASIC and wishes to sign off, he types the command BYE or GOODBYE.

UBASIC wi" then sign off with the closing data and time. Then to disconnect from the 1100 series system,

the user types an Executive control statement as follows:

@FIN carriage return

This closes the run, prints the elapsed computing time, sign on time, sign off time, console messages (if any)

and finally the line:

* * * *UNE INACTIVE* * * *

Then the control shift is used to type an EOT (end of transmission). This disconnects the teletypewriter.

NOTE: If at any time during a run, the teletypewriter ceases line feeding, remote communications

are discontinued and the teletypewriter should be disconnected.

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE B·l

APPENDIX B. IMPLEMENTATION RESTRICTIONS

In UBASIC the following restrictions apply:

(1) FO R 's may only be nested 32 deep.

(2) DEF functions may have no more than 34 arguments.

(3) Recursion of functions may occur to a level of 50 to 100 deep, depending on the type and number of

arguments.

The installation may alter restrictions on the following (standard values are in parentheses):

(1) Depth of GOSUB nesting (50).

(2) Largest matrix which may be inverted (50 x 50).

(3) Maximum number of lines in a single program (500).

(4) Size of the data array (200).

(5) Size of storage reserved for string constants (500).

(6) Size of storage reserved for arithmetic constants (200).

Approximately 4000 words of storage are reserved for the total program, the size of which may be estimated as

follows:

P/6+ 11*A1+10*S+A2+W

where:

P is the number of characters in the symbolic program.

A 1 is the number of elements in string arrays.

S is the number of simple strings references.

A2 is the number of elements in algebraic arrays.

W is the number of machine instructions generated by the UBASIC - approximately five times the number of

UBASIC statements in the program.

If the program size is exceeded, UBASIC will automatically request assignment of additional core blocks of 512

words (via MCORE$) informing the user. This process will be repeated as necessary up to an installation set

maximum (standard of 2).

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION PAGE C-l

APPENDIX C. UBASIC SYNTAX IN BACKUS

NORMAL FORM
<null> ::=

<character> ::= any FIELDATA characters

< letter> :: = AI B I C 1 DIE I FIG I Hili J I K I LIM I N I 0 1 PI 01 R I SiT I u I V I wi X I y 1 z

<digit> ::= 0111213141516171819

<inte-ger> ::= <digit> I <digit><integer>

<statement number> ::= <integer>'

<statement reference> ::= <statement number> I *+<integer> 1 *-<integer>'

<sign> ::= <null> I + I -

<number> ::= <integer> I . <integer> I <integer>. I <integer>. <integer> I
<sign><number>

<exponent part> ::= <null> 1 E <sign> <integer> 1 %2

<arithmetic constant> ::= <number> <exponent part>

<character string> ::= <null> I <character> 1 <character string> <character>

<string constant> ::= '<character string>'3

<function name> ::= FN <letter>

<arithmetic array variable> ::= <letter>

< string array variable> : : = < letter> $

'value of integer ~99999

2% is equivalent to E-2

3a":' within a string constant must be represented by ~ (two single quotes).

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

<array variable> ::= <arithmetic array variable> I <string array variable>

<simple arithmetic variable> ::= <letter> I <letter> <digit> I <function name>4

<simple string variable> ::= < letter> $ I <letter> <digit>$

<simple variable> ::= <simple arithmetic variable> I <simple string variable>

<subscripted arithmetic variable> ::= <arithmetic array variable> (<expression» I

PAGE REVISION PAGE C-2

<arithmetic array variable> «expression> ,<expression»

<subscripted string variable> ::= <string array variable> «expression»

<arithmetic variable> ::= <simple arithmetic variable> I
<subscripted arithmetic variable>

<string variable> ::= <simple string variable> I <subscripted string variable>

<variable> ::= <arithmetic variable> I <string variable>

<system function name> ::= ABS IATN Icos ICOT I DET I EXP IINP liNT I LGT I LOG I MOD I NUM I RND I

SGN I SIN I SOR I TAN ICLK I CNT I COL I COS I COT I CSF I DAT I DET I DIG I

EXP I FRP I LEN I MAX I MIN I MXL I SEP I SER I STD I TIM I TIS ITYP / TWT /

XPT IVALlvASICAT$IDTS$1 PAD$ITRM$IEXT$ICPY$I ADD$/ PUT$I

STR$ I NOT I AND I lOR I XOR I EOV liMP I LSS I LEO I GTR I GEO I EOU I NEOI

FLO IINS ITAB I

< formal parameter list>::= <simple variable> 5 I

<simple variable> 5, < formal parameter list>

<parameter list> ::= <expression> I <expression>, <parameter list> I

<string expression> I <string expression> ,<parametn.r list>

< function> ::= <system function name> I <function name>

<function value> ::=: <function> «parameter list» I <function>6

4a function name is a simple variable only within the body of its definition.

5function names may not appear in parameter lists.

6 the type and number of expressions in the parameter list are determined by the function.

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

<arithmetic operators> ::= ** I * I II +1- 7

< term> ::= <arithmetic variable> I <function value> 1 <arithmetic constant>

PAGE REVISION PAGE C-3

<expression> ::= <sign> < term> I <expression> <arithmetic operator> <expression> I
<sign> <expression> I <sign>«expression»

<string expression> ::= <string variable> I <string constant>

<let head> ::= <arithmetic variable> I <arithmetic variable>=<let head>

<string let head> ::= <string variable> I <string variable>=<string let head>

<explicit let> ::= LET <let head>=<expression> I
LET <string let head>=<string expression>

<implied let> ::= <let head>=<expression> I <string let head>=<string expression>

<let> ::= <explicit let> I <implied let>

< variable list> ::= < variable> I < variable> ,< variable list>

<read> ::= READ <variable list>

<input> ::= INPUT<variable list>

<print item> ::= <null> I <string expression> I <expression> I
<string constant> <expression> I TAB«expression»

<print item list> ::= <print item> I <print item> ,<print item list> I
<print item> ;<print item list>

<print> ::= PRINT <print item list>

<data item> ::= <arithmetic constant> I <string constant> I <character string>8

<data list> ::= <data item> I <data item> ,<data list>

7 operators are listed in order of precedence; operators with equal precedence in an expression are evaluated from

left to right in the absence of parentheses.

8this character string may not contain commas.

7925 UNIVAC 1100 SERIES SYSTEMS
UP.NUMBER PAGE REVISION PAGE C-4

<data> ::= DATA<data list>

<relational operator> ::= < > I > < I = I < I > : <= I = <I >= 1=>

<relation> ::= <expression> <J-elational operator> <expression> I
<string expression> <relational operator> <string expression>

<go to> ::= GO TO <statement reference>

< transfer> ::= GO TO<statement reference> I THEN <statement reference>

<if> ::= IF<relation> <transfer>

<statement reference list> ::= <statement reference> I
<statement reference> ,<statement reference list>

<on> ::= ON<expression> < transfer> ,<statement reference list>

<step specification> ::= BV<expression> I STEP<expression>

< for specification> ::= TO<expression> I TO<expression> <step specification> I
< step speci ficati on> TO< expression>

<for> ::= FOR<simple arithmetic variable>=<expression> <for specification>

<next> ::= NEXT<simple arithmetic variable>

<dimension item> ::= <arithmetic array variable> «integer» I
<string array variable> «integer» I
<arithmetic array variable> «integer>,< integer»

<dimension list> ::= <dimension item> I <dimension item> ,<dimension list>

<dim>.. DIM<dimension list>

<def> ::= DEF< function name> « formal parameter list>)=<expression> I
DEF< function name> « formal parameter Iist»9 I
DEF< function name>=<expression>1 DEF< function name>9

<fnend>.. FNEND

9this is used to start a multi-lined defined function which ends with an FNEND; the body of the DEF is between

the DEF and the FNEND statements.

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

<gosub> ::= GOSUB<statement reference>

<return> ::= RETURN

<call> ::= CALL<function name> «parameter list» ICALL<function name>10

<mat operator> ::= + 1- 1 *

<mat function> ::=TRN«arithmetic array variable» 1 ZEA- I CON liON I

PAGE REVISION PAGE C-5

INV«arithmetic array variable» I ZER«expression» I
ZER«expression> ,<expression» 1 CON«expression» I

CON«expression> ,<expression» I ION«expression> , <expression>

<inat let> .. <arithmetic array variable>=<arithmetic array variable> I
<arithmetic array variable>=<mat function> I
<arithmetic array variable>=<arithmetic array variable>

< mat operator> < arithmetic array variable> I
<string array variable>= <string array variable>

<mat assign>.. MAT<mat let>

<mat print list> ::= <array variable> l<array variable> ,<mat print list> 1
<array variable> ;<mat print list>

<mat print> .. PRINT<mat print list> I PRINT<mat print list>, I
PRINT<mat print list>;

<mat input> ::= INPUT<array variable> IINPUT<array variable> «expression» I
INPUT<arithmetic array variable> «expression> ,<expression»

<mat read>.. REAO<array variable> 1 REAO<array variable> «expression>)I

R EAO<arithmetic array variable> «expression> ,<expression»

<mat input-output> ::= MAT<mat print> I MAT<mat input> I MAT<mat read>

<change> ::= CHANGE<array variable>TO<string variable> I

CHANGE<string variable>TO<array variable>

<comment> ::= <character string>

<rem> ::= REM<comment> I <statement>#<comment >

<restore> ::= REST IREST* I REST$I RESTORE I RESTORE*I RESTORE$

lOthe type and number of expressions in the parameter list are determined by the function.

7925
UP.NUMBER

<end> ::= END

UNIVAC 1100 SERIES SYSTEMS

<assign statement> :: = < let> , < mat assign> I <change>

PAGE REVISION PAGE C-6

<program control statement> ::= <go to> I <if>1 <on> 1 <for>! <next> I <stop> I

<call> I <gosub> I <return>

<input-output statement> ::= <read> I <print> I <input>! <data>! <restore> I
< mat input-output>

<directive statement> ::= <dim> I <end> I <def> 1< fnend> I <rem>

<statement> ::= <assign statement> I <program control statement>!

<input-output statement> I <directive statement>

<BASIC statement> ::= <statement number> <statement> I
<statement number> <statement>#<comment>

UNIVAC 1100 SE RI ES SYSTEMS 7925
UP.NUMBER PAGE REVISION PAGE D-'

APPENDIX D. EXAMPLES OF THE
USE OF UBASIC

EXAMPLE 1. BALLISTICS:

This example, BALLISTICS, demonstrates some of the algebraic capabilities of UBASIC. The problem is to find

the correct elevation for a gun, given its muzzle velocity and the range to the target. The notes below are keyed

to the listing as follows:

NOTES:

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Line 8

Line 9

Line 10

Line 11

The Basic processor is called.

The problem name "BALLISTICS" is specified.

This line defines a function the roots of which yield the desired answer.

The answer in radians is returned by the function FNS.

This line begins the definition of FNS which finds a root of the function FNA,

given an interval in which there is a change of sign in FNA.

Execution of the program is attempted.

The first set of data yields the expected answer of about 30 degrees.

The second set of data returns an answer of about 45 degrees, the maximum.

The third set of data poses an impossible situation, resulting in the message

designed for such a contingency.

Satisfied that the program works, the programmer signs off.

The @FIN card terminates this particular run. The program listing and run

output appear below.

@BASIC (Line 1)

BASIC VX.X 15:44:27 IS FEB 71

NEW:BALLISTICS

READY

5 DEF FNA(A)=-9.S*X/(V*COS(A»+2*SIN(A)*V

20 PRINT '~lliAT IS THE DISTANCE(M) AND MUZZLE VELOCITY(M/S)';
30 INPUT X,V

75 T=FNS(0,3.14159265/4.0)
@GET THE STARTING INFO

@DEFINE THE INTERVAL 0-45D

(Line 2)

(Line 3)

(Line 4)

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

160 PRINT 'THE ELEVATION IS'T~:~180/3.1419265~ 'DEGREES.'

170 PRINT X/(COS(T)~:~V); 'SECONDS ARE REQUIRED IN TRAVEL'

180 GO TO 20 @START A NEW PROBLEM

185 PRINT 'NO SOLUTION IS POSSIBLE'

190 GO TO 20

1000 DEF FNS(El,E2) @FUNCTION TO FIND ROOTS OF FNA

1005 FOR 1=1 TO 20 @GO THROUGH 20 ITERATIONS

1010 FNS=(El+E2)/2 @USING A HALF-INTERVAL METHOD

1020 IF FNA(FNS)~:~FNA(EI)<=0 THEN 1060

1030 IF FNA(FNS)~:~FNA(E2) 0 THEN 1200 @NO SOLUTION POSSIBLE

1040 El=FNS

1050 GO TO 1070

1060 E2=FNS

1070 NEXT I

1080 GO TO 1300

@SET A NEW INTERVAL

1200 PRINT 'NO SOLUTION IS POSSIBLE'

1250 FNS=O

1300 FNEND

9999 END

RUN

BALLISTICS 15:44:27 18 FEB 71

WHAT IS THE DISTANCE(M) AND MUZZLE VELOCITY(M/S)?

88167,1000

THE ELEVATION IS 29.8829 DEGREES.

101.687 SECONDS ARE REQUIRED IN TRAVEL

WHAT IS THE DISTANCE(M) AND MUZZLE VELOCITY(M/S)?

102040,1000

THE ELEVATION IS 44.0552 DEGREES.

141.984 SECONDS ARE REQUIRED IN TRAVEL

PAGE REVISION PAGE D·2

(Line 5)

(Line 6)

(Line 7)

(Line 8)

7925
UP.NUMBER

UNIVAC 1100 SE RI ES SYSTEMS

WHAT IS THE DISTANCE(M) AND MUZZLE VELOCITY(M!S)?

100,1

NO SOLUTION IS POSSIBLE

THE ELEVATION IS 0 DEGREES.

100 SECONDS ARE REQUIRED IN TRAVEL

WHAT IS THE DISTANCE(M) AND MUZZLE VELOCITY(M!S)?

PAGE REVISION PAGE D·3

(Line 9)

BYE (Line 10)

BASIC OFF AT 15:44:27 18 FEB 71

@FIN (Line 11)

EXAMPLE 2. ACKERMANNS:

This example illustrates the recursive definition of Ackermanns Function A(M,N). The function is defined as

follows:

A(O,N) = N+l

A(M,O) = A(M-l,l)

A(M,N) = A(M-l,A(M,N-l))

The program is coded to compute and print I,J, and A(I,J) for I = 11,11+13, 11+2*13, ... ,12; and J = J1,J1+J3,

J1+2*J3, ... ,J2. The values taken for 11,12,13,J1,J2, and J3 appear on the DATA statement (Line 80). It is likely

that available core space will be exhausted before all specified values are used.

The listing of the program appears immediately as follows:

@RUN 123456,~~0~00,ACKERMANN

@BASIC

NEW: ACKERMANNS

1 DEF FNA(M,N)

2 IF M=O THEN 6

3 IF N=O THEN 8

4 FNA=FNA(M-1,FNA(M,N-1))

5 GO TO 9

6 FNA=N+1
7 GO TO ~:~+2

8 FNA=FNA(M-1,1)

9 FNEND

10 READ I1,I2,I3,J1,J2,J3

20 FOR 1=11 TO 12 STEP 13

7925 UNIVAC 1100 SERIES SYSTEMS
U P·NUMBER PAGE REVISION PAGE D·4

30 FOR J=J1 TO J2 STEP J3

40 PRINT I,J,FNA(I,J)

50 NEXT J

60 NEXT I

70 STOP

80 DATA 0,4,1,0,6,1

90 END

@FIN

EXAMPLE 3. SORT:

This example reads numbers via the MAT INPUT statement, sorts the numbers and prints them via the MAT PRINT

statement. Also illustrated is the NUM function which is automatically assigned a value equal to the number of

data items read by the MAT I NPUT statement. Note that, §:.. is used on the first sample data line to continue the

data to the next line. The program and sample run are listed as follows:

10 DIM A(100)

20 MAT INPUT A

30 PRINT 'THERE WERE 'NOM;' ITEMS READ.'

40 PRINT 'SORTED ARRAY: '

45 F=1

50 FOR 1=1 TO NUM-l

60 IF A(I)(=A(I+l) THEN 90

70 T=A(I)

75 A(I)=A(I+l)

80 A(I+l)=T

85 F=O

90 NEXT I

100 IF F=O THEN 45

120 MAT PRINT A

130 GO TO 20 ~REPEAT FOR ANY NUMBER OF ARRAYS

999 END

RUNNH

? -I,.2345,0,IE22,5E-9,-4.23E-3,&

? 21.3,45,999,.25,.5

THERE WERE 11 ITEMS READ.

7925
UP.NUMBER

SORTED ARRAY:

-1

-4.23 E-3

o
5.0 E-9

.2345

.25

05

21.3

45

999

1.0 E+22

? STOP

UNIVAC 1100 SERIES SYSTEMS

EXAMPLE 4. ARITHMETIC:

PAGE REVISION PAGE 0·5

This example consists of a simple computer aided instruction program for teaching young students the four basic

arithmetic operations. The program allows the student to rate himself as good, fair, or poor, and generates

problems of difficulty as specified by the student. The program may be easily changed to make problems more (or

less) difficult, by modifying the constant in line 250.

As may be noted from the listing, this program is quite short relative to what it accomplishes. This leads one to

speculate that the UBASIC language may be good for programming simple CAl courses. The most notable feature

is that of printing strings and numbers in natural fashion, without regard to formatting.

A listing of the program and part of the run are listed as follows:

LIST

ARITHMETIC 20:57:44 18 FEB 71

100 DIM S$(4),T$(6),Q$(3),A(3)

110 MAT READ S$,T$,Q$

115 RANDOMIZE

120 PRINT

130 PRINT

140 PRINT 'NEXT STUDENT, PLEASE.'

150 PRINT 'WHAT IS YOUR NAME: '

160 INPUT N$

170 PRINT 'HI, ';N$;', ';

7925
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

180 PRINT 'HOW IS YOUR ARITHMETIC: GOOD, FAIR OR POOR';

190 INPUT R$

200 FOR Q=1 TO 3

210 IF R$=Q$(Q) GO TO 250

220 NEXT Q

230 PRINT 'I SAID: 'i

240 GO TO 180

250 LET Z = 7~:~Q

260 LET S=INT((2~~INT(Q/2)+2P:~RND+1)

270 LET W=O

280 LET A(1)=INT(Z*RND/(INT(S/3)+1»)+1

290 LET A(2)=INT(Z~:~RND/(INT(S/3)+1»)

300 LET A (3) =A (1) +A (2) - (A (1) -A (1) * A (2) +A (2)) ~:~ I NT (S 13)

310 PRINT A(2~:~INT(S/2)-S+3) ;S$(S) ;A(l);' = ';

320 INPUT C

330 IF C < > A(2+S-2*INT(S/2))GO TO 360

340 LET Z=1.05~~Z

350 GO TO 260

360 LET W=W+1

370 PRINT T$(2*W-1);N$;T$(2*W)

380 ON W GO TO 310,310,120

500 DATA '+' '-' 'X' 'I' 'NO' , , TRY AGAIN' , , , , '" .
510 DATA 'THATS TWICE NOW, ',',TRY ONCE MORE.',' ,

520 DATA " YOU HAD BETTER BRUSH UP ON YOUR ARITHMETIC:'

530 DATA 'POOR', 'FAIR', 'GOOD'

540 END

RUN

ARITHMETIC 21:00:37 18 FEB 71

NEXT STUDENT, PLEASE.

WHAT IS YOUR NAME? MARSIEDOTES

PAGE REVISION PAGE 0·6

HI, MARSIEDOTES, HOW IS YOUR ARITHMETIC: GOOD, FAIR OR POOR? FAIR

17 - 13 = ? 4

13 - 12 = ? 1

7925
UP.NUMBER

RUN

3 / 3 - ? 1

1 x 7 = ? 7

o x 4 = ? STOP

PROGRAM STOPPED.

TIME: .055

UNIVAC 1100 SERIES SYSTEMS

ARITHMETIC 22:47:48 18 FEB 71

NEXT STUDENT, PLEASE.

WHAT IS YOUR NAME? HERB

HI, HERB, HOW IS YOUR ARITHMETIC: GOOD, FAIR OR POOR? GOOD

23 - 13 = ? 10

o x 10 = ? 0

8 x 8 = ? 64

19 + 12 = ? 31

o + 12 = ? 12

Ox8=?0

10 + 24 = ? 34

156/13 - ? 11

NO, HERB, TRY AGAIN.

156 / 13 = ? 13

THAT'S TWICE NOW, HERB, TRY ONCE MORE.

156 / 13 = ? 22

HERB, YOU HAD BETTER BRUSH UP ON YOUR ARITHMETIC!

NEXT STUDENT, PLEASE.

PAGE REVISION PAGE 0-7

7925
UP·NUMBER

UNIVAC 1100 SERIES SYSTEMS

EXAMPLE 5. MAGIC SQUARE:

PAGE REVISION PAGE 0·8

This example program computes and prints magic squares of odd order. The squares are called magic because no

two numbers in the array are equal and the sum of any row, column, or diagonal is constant for any particular

square.

The function to compute the square is defined by statements 80 through 998. As written, the program requires

the size of the matrix to be less than 12 so that the square can be printed correctly on teletypewriters.

A good example of the TAB function appears in statement 1400; because, for readability, the numbers of the

array should be right justified and evenly spaced over the row.

The row/column/diagonal sum is computed by statement 900.

The program and a sample run are listed as follows:

@RUN ONE,000000,MAGIC

DATE: 021871 TIME: 133715

@BASIC

BASIC VX.X 13:37:42

NEWiSQUARE

READY

18 FEB 71

10 REM MAGIC SQUARE COMPUTATION.

20 DIM L(13,13)

30 GOSUB 1000

40 GO TO 30
80 DEF FNM(N,KO,L) @**~~*~:o:cSTART OF FUNCTION DEFINITION~:c~:c~:c~:c~~*

82 REM GIVEN N ODD AND>2----KO AS START INTEGER---COMPUTE

84 REM MAGIC SQUARE IN L(I,J)---USES N KO L S J KIM

86 REM VALUE OF FUNCTION IS ROW/COLUMN/DIAGONAL SUM

88 LET K=KO

90 LET J=INT«N+l)/2)

92 LET I=J+l

100 M=l

7925
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

200 L(I,J)=K

210 LET K=K+1

220 LET M=M+1

230 I F K=N~:~N+KO THEN 900

240 IF M<=N THEN 300

250 LET 1=1+2

260 IF 1<= N THEN 100

270 I=I-N

280 GO TO 100

300 1=1+1

310 LET J=J+1

312 IF 1<= N THEN 300

314 LET I=I-N

320 IF J<= N THEN 200

330 LET J=J-N

340 GO TO 200

900 FNM=((N~:~N+2~:~KO-1 P:~N) /2

988 FNEND @~:~*~:o:~**END OF FUNCTION DEFINITI ON~:~~:~~:~~:~~:~~:~

1000 PRINT

1010 PRINT 'TYPE ODD NUMBER<12 AND START NUMBER<800'

PAGE REVISION PAGE 0-9

1020 PRINT 'AN EXAMPLE WOULD BE 3,1 TO GET 3x3 MAGIC SQUARE'

1100 INPUT N,KO

1110 IF N<12 THEN 1300

1200 PRINT 'TRY AGAIN'

1210 GO TO 1100

1300 IF KO)=800 THEN 1200

1310 LET S=FNM(N,KO,L)

1340 PRINT 'N=', N, '---SDM=',S

1350 PRINT

1360 FOR 1=1 TO N

1370 PRINT

1380 PRINT

1390 FOR J=l TO N

1400 PRINT TAB (5~:~J -2. 001-LGT(L(I, J))); L(I, J);

1410 NEXT J

7925
UP-NUMBER

1415

1420
1430

1440

1450

RUN

SQUARE

UNIVAC 1100 SE RIES SYSTEMS

PRINT

NEXT I
PRINT

RETURN

END

13:43:52 18 FEB 71

TYPE ODD NUMBER<12 AND START NUMBER(800

AN EXAMPLE WOULD BE 3,1 TO GET 3x3 MAGIC SQUARE

? 5,1

N= 5 ---SUM= 65

11 24 7 20 3

4 12 25 8 16

17 5 13 21 9

10 18 1 14 22

23 6 19 2 15

TYPE ODD NUMBER<12 AND START NUMBER<800

AN EXAMPLE WOULD BE 3.1 TO GET 3x3 MAGIC SQUARE

? STOP

PROGRAM STOPPED.

TIME: .070

@FIN

PAGE REVISION PAGE D-10

	00001
	00001
	00002
	00003
	0001
	001
	002
	003
	004
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	A-01
	A-02
	A-03
	B-01
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10

