
V70 MICROPROGRAMMING

USER'S MANUAL

98 A 9906 073

JUNE 1974

PREFACE

Preface (about the guide itself -- prerequisites, its organiza
tion and why).

Microprograms are aptly called firmware to place them
between the realms of software and hardware. Where those
two conventional divisions of a computer overlap is an area
which provides many of the best features of both. The use
and benefits of microprogramming depend upon the user
having an understanding of both and their complex
internction.

The reader of this guide should have some knowledge of
the hardware components of a computer system, such as
the functions and uses of registers, schemes of handling
interrupts etc. Programming techniques which make
efficient assembly-language functions like indexing and
high-speed algorithms will be useful here too. When a
microprogram is executed thousands of times more often
than any one application program, its fine tuning is also
needed that many more times. Also the microprogrammer
should know the problem-oriented languages used. To
choose which operators to microprogram, the designer
must be aware of the eventual applications. Combining
operators which are often used in the same sequence could
form a single microprogrammed operator with a greater
overlapping of actions.

All components of a computer system seem to be
increasingly complex yet easier and easier to use. Though
microprogramming adds more complexity the result is to
make a system easier to use. One goal of this guide is to
bring microprogramming into the range of a good program
mer. To that end the guide is written in simple language
(with a minimum of exotic terms and a glossary to look up
any of those) and a gradual progression from the big
picture to the details through numerous examples. The
examples are annotated and explained with the same tools
that will aid in the planning as well as understanding.

This guide is both an introduction and a reference. If
microprogramming is new to you, start at the beginning of
this guide and use it as a tutorial. Later the book can be
used for reference. The charts and examples are built up in
a logical development so that the complete examples will be
a pattern for your programming.

iii

varian data machines -

Varian Data Machines does not assume responsibility for
microprograms written and implemented according to the
recommendations outlined herein.

To improve the usefulness of this guide please return the
reader questionaire in the back after reading and using
this volume.

Related Documentation

The Writable Control Store manual (98 A 9906 08x)
provides information about the installation, theory of
operation, maintenance and test programs for the hard
ware storage of microprograms.

Information about the Varian 70 series processor is con
tained in the applicable system handbook and in
more detail in the Processor Manual (98 A 9906 02x). (The
x at the end of each document part number is the revision
number and can be any digit 0 through 9.)

The VORTEX Reference Manual (98 A 9952 lOx) describes
the use of the VORTEX operating system. The MOS (Master
Operating System) Reference Manual (98 A 9952 09x)
provides similar information necessary to use micropro
gramming software with that operating system.

The following Varian manuals provide additional aids to the
understanding of Varian Computer Systems.

Title

72 System Handbook
73 System Handbook
7 4 System Handbook
Core Memory Manual
Semiconductor Memory Manual
Option Board Manual
Power Supply Manual

Document Number

98 A 9906 20x
98 A 9906 01x
98 A 9906 21x
98 A 9906 03x
98 A 9906 04x
98 A 9906 05x
98 A 9906 06x

TABLE OF CONTENTS

PREFACE .. iii

SECTION 1
INTRODUCTION

1.1 ADVANTAGES ... 1-1

1.2 GUIDE TO THIS MANUAL ... 1-2

1.3 NOTATION IN THIS MANUAL .. 1-2

1.4 COMPONENTS .. 1-3

1.4.1 Hardware for Microprogrammed Systems ... 1-3

1.4.2 Writable Control Store.. 1-6

1.4.3 Software Modules .. 1-8

SECTION 2
CAPABILITIES

2.1 GENERAL MICROINSTRUCTIONS ... 2-1

2.2 DATA TRANSFER AND

TRANSFORMATION ... 2-2

2.2.1 ALU Input Sources .. 2-2

2.2.2 ALU Functions ... 2-8

2.2.3 ALU Output Destinations .. 2-11

2.2.4 Other Registers .. 2-12

2.3 ADDRESSING .. 2-13

2.3.1 General ... 2-13

2.3.2 Normal Addressing .. 2-13

2.3.3 Field Selection Addressing .. 2-13

2.3.4 Test Addressing ... 2-14

2.3.4.l Conditions ... 2-15

2.3.4.2 Addresses in Branches .. 2-17

2.3.5 Page Jump Addressing ... 2-17

2.3.6 Interrupt Addressing ... 2-17

2.4 MAIN MEMORY CONTROL .. 2-17

2.4.1 Unconditional Cycle Initiation .. 2-18

2.4.2 Conditional Cycle Initiation .. 2-20

2.4.3 Special Transfer ... 2-20

2.4.4 Wait for Memory Done ... 2-20

2.5 MICROPROGRAMMING EXAMPLE ... 2-20

2.6 TIMING CONSIDERATIONS ... 2-24

2.7 ADDITIONAL CAPABILITIES .. 2-25

2.7.1 Register Field Control ... 2-25

2.7.2 Memory Addressing to 64K .. 2-27

2.7.3 Memory Bus Lockout Status .. 2-27

2.7.4 Stack Use .. 2-28

2.7.5 Memory Addressing Using the

Optional Memory Map .. 2-29

2.7.6 Memory Protection .. 2-29

2.7. 7 Address Comparator Logic ... 2-29

2.8 QUESTIONS ABOUT

MICROPROGRAMMING CAPABILITIES ... 2-30

iv

varian data machines ~

SECTION 3
TECHNIQUES

3.1 INTERFACE WITH 620 EMULATION ... 3-1

3.1.1 Execution of User Microprograms .. 3-1

3.1.2 Steps in Instruction Execution ... 3-1

3.1.3 Instruction Pipeline ... 3-1

3.1.4 ROM Standard States ... 3-2

3.1.5 Summary of Branches Between WCS and

ROM Control Store .. 3-2

3.1.6 Varian 73 Register Usage 3-3

3.2 FLOW DIAGRAM ... 3-3

3.2.1 Rationale .. 3-3

3.2.2 Format .. 3-3

3.3 FLOW DIAGRAM MNEMONICS ... 3-5

3.4 FLOW DIAGRAM EXAMPLES ... 3·8

3.4.1 BCS Entry Point Initialization .. 3-8
3.4.2 Memory-to-Memory Block Move .. 3-8

3.4.3 Reentrant Subroutine Call and Return ... 3-8

3.4.4 64K-Memory ADD to any of the

General-Purpose Registers .. 3-11

3.4.5 Cyclic Redundancy Check (CRC) Generation .. 3-15

SECTION 4
MICROPROGRAM DATA ASSEMBLER, MIDAS

4.1 BASIC ELEMENTS .. 4-1

4.2 GENERAL FORM OF STATEMENTS .. 4-2

4.3 STATEMENT DEFINITIONS .. 4-2

4.3.1 Format Statement ... 4-2

4.3.2 Program Statement ... 4-3

4.3.3 Assembler Directives ... 4-5

4.3.4 Comment .. 4-6

4.4 ASSEMBLY-LANGUAGE EXAMPLES ... 4-6

4.5 MACRO CAPABILITY .. 4-7

4.6 OPERATING INSTRUCTIONS ... 4-8

4.6.1 VORTEX Environment ... 4-8

4.6.2 MOS Environment ... 4-8

4.6.3 Stand-Alone Environment ... 4-8

4.7 ASSEMBLER INPUT AND OUTPUT .. 4-9

4.8 ADDING MIDAS TO VORTEX .. 4-9

, 4.9 ASSEMBLY ERROR MESSAGES ... 4-10

v

SECTION 5
CODING FROM FLOW DIAGRAMS

5.1 GENERAL. .. 5-1

5.2 EXAMPLES OF MICROPROGRAMS IN

ASSEMBLY LANGUAGE ... 5-5

5.2.1 BCS Entry Point Initialization .. 5-6

5.2.2 Memory-to-Memory Block Move.. 5-9

5.2.3 Reentrant Subroutine Call and Return ... 5-12

5.2.4 64K Add to General-Purpose Register ... 5-15

5.2.5 Cyclic Redundancy Check Generation ... 5-16

SECTION 6
MICROPROGRAM SIMULATOR, MICSIM

6.1 BASIC ELEMENTS .. 6·1

6.2 GENERAL FORM OF STATEMENTS .. 6-1

6.3 STATEMENT DEFINITIONS .. 6 2

6.3.1 Select Input Media (M) .. 62

6.3.2 Initialize Simulator (1) ... 6-2

6.3.3 Page Select (P).... 6-3

6.3.4 Load Control Store (L) .. 6-3

6.3.5 Alter/Display Simulator Registers (A) .. 6-3

6.3.6 Change/Display Memory (C) .. 6-4

6.3.7 Change/Display CCS Word (EC) .. 6 4

6.3.8 Change/Display DCS Word (ED) .. 6-4

6.3.9 Begin Simulated Execution (B) .. 6 4

6.3.10 CCS Address Halt (H) ... 6-4

6.3.11 Single Microinstruction Step (S) .. 6-5

6.3.12 Trace (T) .. 6-5

6.3.13 Dump Contents of CCS (D) ... 6-6

6.3.14 Exit to MOS or VORTEX (R) 6- 7

6.4 OPERATING INSTRUCTIONS ... 6-7

6.4. l Program Loading ... 6-8

6.4.2 Initial Condition Selection .. 6-8

6.4.3 Loading Simulator Central Control Store

(CCS) and Decoder Control Store (DCS) 6-8

6.4.4 Other Control (As Required) 6-9

6.5 PROGRAM EXECUTION.. 6-9

6.6 AFTER SIMULATION .. 6-9

6.6.1 Control Store Dump .. 6-9

6.6.2 Initialization ... 6·9

6.6.3 Return to MOS, VORTEX.. 6-9

6.7 620 EMULATION .. 6-9

6.8 ADDING SIMULATOR TO VORTEX ... 6-9

6.9 MAIN MEMORY SIMULATION .. 6-9

6.10 SIMULATOR ERROR MESSAGES ... 6-10

6.11 EXAMPLE OF SIMULATOR OUTPUT .. 6-11

vi

varian data machines ~

SECTION 7
MICROPROGRAM UTILITY PROGRAM, MIUTIL

7.1 BASIC ELEMENTS .. 7-1

7.2 GENERAL FORM OF DIRECTIVE. .. 7·1

7.3 DIRECTIVE DEFINITIONS .. 7-1

7.3.1 Select Page (P) .. 7-1

7.3.2 Load Control Store (L) .. 7-1

7.3.3 Examine/Change Control Store (E) .. 7-1

7.3.4 Dump Control Store (D) ... 7·2

7.3.5 Return to Operating System (R) .. 7-2

7.3.6 Media Set and Reset (M) .. 7-2

7.3.7 Enable Control Store (N) .. 7-2

7.3.8 Trace Execution (T) ... 7-2

7.3.9 Set Micro Execution Address (G) ... 7-3

7.3.10 Execute Microinstruction (X) .. 7-3

7.3.11 Initialize WCS (1) ... 7-3

7.3.12 Branch to CCS (B) .. 7-3

7 .3.13 Set Halt Address (H) .. 7-4

7.4 OPERATING INSTRUCTIONS ... 7.4

7.4.1 Program Loading ... 7-4

7.4.2 Program Execution .. 7-4

7.5 DEBUGGING CONFIGURATION ... 7-4

7.6 ADDING UTILITY TO VORTEX .. 7-5

7.7 UTILITY ERROR MESSAGES .. 7-5

7.8 EXAMPLES .. 7-6

SECTION 8
DECODER CONTROL STORE, 1/0 CONTROL AND

ADDITIONAL TOPICS
8.1 DECODER CONTROL STORE ... 8-1

8.2 1/0 CONTROL STORE .. 8-3

8.2.1 Microprogram Initiation .. 8-3

8.2.2 1/0 Microprogramming ... 8-4

8.2.3 Example of 1/0 Microprogram:

Clear and Input to A .. 8-7

8.3 MULTIPLE ENVIRONMENT APPLICATIONS ... 8-8

SECTION 9
GLOSSARY

MICROPROGRAMMING GUIDE GLOSSARY /INDEX ... 9-1

vii

LIST OF ILLUSTRATIONS

Figure 1-1. Simplified Comparison of a Microprogrammed

and a Conventional Computer ... 1-4

Figure 1-2. Varian 73 Processor Block Diagram .. 1-4

Figure 1-3. Varian 73 Processor Data Paths.. 1-5

Figure 1-4. Writable Control Store Block Diagram.. 1;7

Figure 1-5. Step~ for Realizing Microprograms.. 1-8

Figure 2-1. Microinstruction Fields (1 of 3) ... 2-2

Figure 2-1. Microinstruction Fields (2 of 3) ... 2-3

Figure 2-1. Microinstruction Fields (3 of 3) ... 2-4

Figure 2-2. General-Purpose Registers, Operand Register

and ALU Input ... 2-7

Figure 2-3. Field Selection Address Contribution ... 2-14

Figure 2-4. Coding Example of an Operand-Store Sequence .. 2-19

Figure 2-5. Flowchart for LDA Instruction .. 2-23

Figure 2-6. Flow Diagram of LDA Instruction .. 2-24

Figure 2-7. Flowchart of Memory Address Control. .. 2-27

Figure 2-8. Memory Bus Lockout ... 2-28

Figure 3-1. Sample Flow Diagram Form ... 3-4

Figure 3-2. Flow Diagram for BCS Entry Point Initialization.. 3-9

Figure 3-3. Flow Diagram for Memory-to-Memory Block Move ... 3-10

Figure 3-4. Flow Diagram for Subroutine Call. ... 3-12

Figure 3-5. Flow Diagram for Subroutine Return ... 3-13

Figure 3-6. ADD from 64K-Memory to General-Purpose Register 3-14

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation

Microprogram (1 of 4) ... 3-18

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation

Microprogram (2 of 4) .. 3-19

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation

Microprogram (3 of 4) ... 3-20

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation

Microprogram (4 of 4) ... 3-21

Figure 3-8. Flow Diagram of CRC Generation (1 of 4) ... 3-22

Figure 3-8. Flow Diagram of CRC Generation (2 of 4) ... 3-23

Figure 3-8. Flow Diagram of CRC Generation (3 of 4) ... 3-24

Figure 3-8. Flow Diagram of CRC Generation (4 of 4) ... 3-25

Figure 4-1. Predefined Formats Recognized by MIDAS ... 4-3

Figure 6-1. Microsimulator Control Flow ... 6-1

Figure 6-2. Microsimulator Data Flow ... 6-7

Figure 6-3. Simulator Output Format.. .. 6-11

Figure 6-3. Simulator Output Format (continued) .. 6-12

Figure 6-3. Simulator Output Format (continued) .. 6·13

Figure 6-3. Simulator Output Format (continued) .. 6-14

Figure 6-3. Simulator Output Format (continued) .. 6-15

VIII

varian data machines ~

LIST OF ILLUSTRATIONS (continued)

Figure 6-3. Simulator Output Format (continued) .. 6-16

Figure 6-3. Simulator Output Format (continued) .. 6-17

Figure 6-3. Simulator Output Format (continued) .. 6-18

Figure 6-3. Simulator Output Format (continued) .. 6-19

Figure 6-3. Simulator Output Format (continued) .. 6-20

Figure 6-3. Simulator Output Format (continued) .. 6-21

Figure 6-3. Simulator Output Format (continued) .. 6-22

Figure 8-1. Decoder Control Store Format. ... 8-2

Figure 8-2. Decoder Address Components.. 8-3

Figure 8-3. 1/0 Microinstruction Format.. ... 8-5

Figure 8-4. I /0 Control Simplified Block Diagram... 8-6

Figure 8-5. Flowchart of 1/0 Microprogramming Example .. 8-9

Figure 8-5. Flowchart of 1/0 Microprogramming Example (continued) 8-10

LIST OF TABLES

Table 2-1. ALU Input A Bus Selections .. 2-6

Table 2-2. ALU Input B Bus Selections .. 2-8

Table 2-3. ALU Operations 2-9
Table 2-4. Carry Flag Settings 2-10

Table 2-5. ALU Output Data Destination ... 2-11

Table 2-6. Operand Register Shift Operations .. 2-12

Table 2-7. Overflow Flag Control ... 2-16

Table 2-8. Memory Operations ... 2-20

Table 2-9. Register Field Control ... 2-26

Table 2-10. Register Field Selection .. 2-26

Table 3-1. Mnemonics for Microprogramming Flow Diagrams .. 3-5

Table 3-1. Mnemonics for Microprogramming Flow Diagrams (continued) 3·6

Table 3-1. Mnemonics for Microprogramming Flow Diagrams (continued) 3-7

Table 5-1. Conversion Table ... 5-1

Table 5-1. Conversion Table (continued) .. 5-2

Table 5-1. Conversion Table (continued) .. 5-3

Table 5-1. Conversion Table (continued) .. 5-4

Table 5-2. User-Defined Opcodes .. 5-4

Table 5-2. User-Defined Opcodes (continued) .. 5-5

Table 6-1. Summary of Microprogram Simulator Directives ... 6-1

Table 6-1. Summary of Microprogram Simulator Directives (continued) 6-2

Table 7-1. Summary of Utility Directives .. 7-1

Table 8-1. 1/0 Microprogram Example Code .. 8-8

ix

SECTION 1

INTRODUCTION

Most of this book discusses how to microprogram. As an
incentive to read further, here are some general reasons
why to microprogram. The advantages of microprogram
ming are based upon a comparison with a conventional
system either completely without microprogramming or
where it is not accessible (figure 1-1). After a brief summary
of the advantages a comparison with a conventional system
gives more details and a specific picture of a micropro
grammed operation.

1.1 ADVANTAGES

A basic reason to microprogram is the one stated at first.
The initial idea was proposed for a "systematic" approach

to the " usual somewhat ad hoc procedure" used to design
the control system of a machine. The narrow view in the
design of either software or hardware without an
awareness of the other can lead to a less efficent
functioning, like a refrigerator converted into a vacuum
cleaner -- there may be some common useful parts but we
would push around a great deal that did not help the
vacuuming. Good basic operators which match the eventual
application will improve the entire efficiency.

The usual random logic can be reduced with a more
structured organization. A conventional computer system
uses a collection of counters, special flip-flops, decoding
networks and other components unique to a particular
purpose for control logic. In contrast a microprogrammed
memory replaces most of this. The microprogram storage
is formed of regular and repetitive units. There are fewer
components thus increasing the reliability of the system.

The flexibility of the instructions in the control store offers
the ability to change the system in ways so basic that they
are not at all feasible in a fixed instruction set. Field
changes can be made by merely changing the controlling
microprograms. Final systems definition can be postponed
until a later stage of the design. Performance can be
economically expanded at a lower cost.

Emulation of a number of diverse devices, not only
processors but peripheral controllers for instance, can be
carried out on a single microprogrammed system.
Simultaneous emulation of some devices can be made or
the target system can be changed depending upon needs.
This would save some reprogramming and retraining and
yet gain the speed and reliability of a more advanced
system. Also the documentation and minor logistic
problems of a new machine would be avoided.

For more reliability and the continuous performance
necessary in many uses of computers, diagnostics and
servicing aids may be implemented in the control store. To
pinpoint problems the microprocessor can both test and

varian data machines -

set states not available to the assembly-language program
mer on a conventional machine.

Execution
Time

Standard
Software
Coding

MICRO
PROGRAMS

Cost

Special
Purpose
Hardware

Instructions Tailored To Particular Environments

In general, microprogrammed instructions permit more
compact program representation. They use less main
memory than the equivalent would in conventional code.
Consequently, fewer memory fetches for anything other
than data are needed.

As an example of a possible microprogrammed operator
which reduces memory fetches, consider a common use of
arrays. Higher-level programming languages, such as
FORTRAN, BASIC, COBOL -- in fact, nearly all -- have
facilities for expressing a repetitive linear data structure, a
list or array. Arrays are an integral part of a large class of
techniques for diverse problems. Yet good operators for
arrays as such are not available as simple, single
instructions in a conventional machine.

In usual machine code the function of adding two
numerical arrays of the same size and number of elements
usually requires a series of actions as follows for each pair
of elements:

a. load memory to register

b. add memory to register

c. store register result in memory

d. update indices and close loop

The first two steps would each require a memory fetch and
the last step as many as three memory fetches.

A microprogrammed instruction would provide initializing
data descriptors and repetitively executing micro-operators

l · l

~ varian data machines

INTRODUCTION

over the described arrays of data. To start the program
segment would require several steps:

a. load the starting address, increment and extent of each
array

b. load the result's starting address, increment and
extent

c. define the end and branch condition

This initialization could be followed by one instruction to
execute the newly-defined operator equivalent to the series
of typical instructions.

An extension of this principle of reducing memory retrieval
of instructions occurs in some special cases where data
normally resident in the stream of instructions can be
removed and instead reside in special-purpose micro
routines. For example, if the array addition algorithm above
were limited to fixed-length arrays with fixed-size elements,
the increment and extent parameters could be stored as
local constants in the microprogram, eliminating the need
to transfer this information in the initial sequence.

1.2 GUIDE TO THIS MANUAL

The purpose of this section is to provide the user with a
helpful idea of the structure of the remainder of the
manual. The order of the following sections is based on the
order in which a programmer needs the information to
plan, then code, test and run microprograms.

Information in the sections

Introduction (Section 1)
Advantages of microprogramming
Guide to the remainder of the manual
Conventions (defining some words and notation) in the
manual
Components of microprogrammed systems

Capabilities (Section 2)
Micro operations available in central control store
Building blocks of microprograms providing data
transfer and transformations, conditional tests, and
memory access

Techniques (Section 3)
Explanation of interface with the 620 emulation
Procedures to use flow diagrams to write
microprograms
Examples of microprograms

Microprogram Assembler (Section 4)
Directives to code microprograms
Macros
Operating instructions

Coding from Flow Diagrams (Section 5)
Conversion steps and tables
Examples from section 3

1-2

Microprogram Simulator (Section 6)
Directives
Operating instructions

Microprogram Utility (Section 7)
Directives
Operating instructions

Decoder control store, 1/0 control and additional topics
(section 8)

Format and use of optional decoder control store
I /0 microprogramming procedures and example

Glossary (Section 9)
Terminology for microprogramming defined
Mnemonics defined

1.3 NOTATION IN THIS MANUAL

References to Microinstruction Fields

Within the microinstruction the fields are named with the
two-letter references recognized by the micro-assembler.
Some of the fields have names which are used in the text,
such as the CF field conveniently called the carry field.

References Within Fields

The bits within the fields are often discussed one at a time.
Several techniques are used to single out bits. A field may
be represented with the letter X in bit positions not
involved in the action being discussed. lX for a two-bit
field indicates that only the high-order bit is required to be
one in this action, i.e., setting the field to 10 or 11. High
order and leftmost are synonymous to select a particular
bit or group· of bits. Similarly low-order and rightmost
select the same bit or a contiguous set of bits. Finally less
often a bit is mentioned by number with the convention
that bits are numbered from right to left starting with
zero.

Syntax of Directives

In the directive formats for the microprogramming software
the syntax is given with the following conventions:

Boldface type indicates a required parameter

Italic type indicates an optional parameter

Upper-case type indicates that the item is to be
entered exactly as written

Lower-case type indicates a variable and shows
where the user enters a value for that variable.

The formation of a list of the same items is indicated by
three consecutive periods.

For example, the syntax for the MIDAS FORM statement is
as follows

label

Where:

label

each field

Numbers

FORM field(l), field(2), ... ,. tield(n)

is a symbol as defined in MIDAS
basic elements

is a field identifier which is the
field length in decimal, followed
by an optional hexadecimal constant
enclosed in parentheses

Microinstruction fields are given in binary notation unless
indicated otherwise in the context of the reference.

Definitions

To remove one barrier that often exists to the understand
ing of microprogramming this section clarifies some terms
we use.

In a computer system many different kinds of storage exist
for data, instructions or both. Microprograms reside in the
system's control store. All control store must be writable in
some manner so that the control information can be
introduced. The desire for greater speed often leads to the
design of storage that can only be loaded once and even
then only by mechanical or electromechanical means.
These are designated as read only or ROM for read-only
memory. This differentiates them from the arrays whose
contents can be changed by the user. This is called
writable control store (WCS).

The microprogram is a series of microinstructions. A
microinstruction resides in one fixed-length word in control
store. The microword is 64 bits long and selects the
operations which occur in one machine cycle (with some
exceptions). The individual operations, micro-operations or
primitives, are defined by fields within the microword.

In this manual whenever you encounter unfamilar words
look for the definition at the first use of the word or
consult the glossary in section 9.

1.4 COMPONENTS

1.4.1 Hardware for Microprogrammed Systems

Though the software for microprogramming provides an
interface for the user to program the system, to plan a

varian data machines ~
INTRODUCTION

good system one needs to be very aware of the actual
functions of the hardware. The tangible parts of the
microprogramming system are described below.

Processor

The major functional components of the Varian 70 series
processor (figure 1-2) are central control, data loop, mem
ory control, 110 data loop, and 110 control. The processor
communicates with the computer control panel via the 1/0
bus.

The processor speed is 165 nanoseconds for a
microinstruction.

Central Control

Central control provides supervision for most of the major
components in the processor. Direct control is exercised
over the data loop. Requests may be made to other
components, such as memory and 1/0 control.

The key element in central control is a 64-bit control buffer.
This buffer, which is simply a microinstruction, completely
describes a set of actions for the other processor
components. For example, the data loop might be
instructed to increment one of the general-purpose regis
ters. The memory control might be requested to begin the
fetch of a 16-bit word from main memory. Thus, the
control buffer holds the current microinstructions. It is
somewhat analogous to the instruction register in
assembly-language programming.

The 64 bits also specify the location of the new contents for
the control buffer. The control buffer is always loaded from
64-bit central control store. Thus, execution of a micropro
gram basically consists of the control buffer being
sequentially loaded with the appropriate 64-bit values.
Central control store in a Varian 70 series system is divided
into pages, each consisting of 512 64-bit words. Page zero
of central control store always contains a set of microin
structions which direct the processor components to
behave like a 620/f. This set of 512 microwords is thus
called the 620/f emulation, and resides in read-only
memory (ROM). Other central control store pages may be
added with the writable control store (WCS) option, thus
allowing the user to specify in detail the actions of the
processor components.

The microprograms for the standard instruction set are
described in the microinstruction flowcharts in the
System Maintenance Manual and in· assembly language
in an appendix to this guide.

Data Loop

The data loop provides transfer paths, data transformation
circuits, storage registers and counters (figure 1-3).

Under control of the central control buffer the arithmetic
and logic unit (ALU) performs basic arithmetic functions

1-3

((I varian data machines

I NTRODllCTION

VT//-11100

VTll-1500A

1-4

COtJ'/lt·.JTIOt J/,L cor·JTf:()L

----{=}---
!

ARITHM[TIC
A~JD LO<;JC

1

li'JPIJT AND
OUTPUT

'IMPL!FlrD Gf~JrRAL MICROPRQ(;RAMMltJG

r
B

CONTROL DECODER

ARITHMETIC
AND LOC,IC

INPUT AND
OUTPUT

Figure 1-1. Simplified Comparison of a Microprogrammed

and a Conventional Computer

MEMORY
BUS

I i'

1

,-------·
MEMORY ...

_. CONTROL ~

1/0 !.. + r--- CENTRAL
CONTROL CONTROL

_. .. 1/0 ...
DATA ----- LOOP

!'
CONTROL k::==~~·.··.~~ 1/0 BUS PANEL " ""

\)

~

...... DATA
LOOP

j ..

Figure 1-2. Varian 73 Processor Block Diagram

FLAGS
BYTE ADDRESS

~~~~RRUPT TIZBI1llfililllJ 
DIVISION SIGN 

< m 
""' ;· 
:::s 
c. 
m ... m 
3 
m 
() 
::r 
:::s 
CD 
UJ 



~ wriand~amach~es~~~~~~~~~~~~~~~~~~~~~~-
1NrRooucr10N 

such as addition, subtraction, and the common logical 
functions including AND and OR. ALU output can be 
directed to a number of places, including registers and 
counters in the data loop, registers in the 110 data loop, 
and to memory control. 

Memory Control 

The memory control section of the processor performs 
tasks initiated by the central control, 1/0 control and 
options. These tasks consist of reading a 16-bit word from 
memory or writing a word or byte into memory. 

Memory control acknowledges receipt of the signal to the 
requesting sections and signals when done with the task. 
When one request is accepted no others are acknowl· 
edged until the current one is completed, but central 
control can override its own prior request. 

1/0 Data Loop 

The 110 data loop contains a multiplexor, 110 data register, 
and drivers and receivers. Three sources of data are 
applied to the 1/0 data loop: data from the 1/0 bus, data 
from the arithmetic and logic unit, and data from the 
memory 1/0 register (MIOR). The input data is selected by 
the 1/0 multiplexor under control of the 1/0 control signals 
and transferred on to the bidirectional 1/0 bus. 

In addition to being applied to the 1/0 drivers, the output 
of the 1/0 data register is applied to the data loop and 
memory control sections. 

1/0 Control 

The 1/0 control operates under control of an independent 
read-only memory (ROM). It performs 110 operations 
initiated either by the central control or 1/0 device activity. 
This permits 1/0 operations to proceed with minimal 
impact on internal processor functions. The 1/0 performs 
programmed 1/0 initiated by the central control. Both 
normal and high-speed direct memory access (DMA) are 
handled by the 1/0 control. 1/0 interrupts are processed 
by 1/0 control. 

1.4.2 Writable Control Store 

The Writable Control Store (WCS) extends the processor's 
read-only control store to permit addition of new instruc· 
tions, development of microprogrammed diagnostics, and 
optimal tailoring of the computer system to its applications. 

Unlike the read-only control store which contains the 
Varian 70 series standard instruction set and cannot be 
altered, the WCS can be loaded from the computer's main 

1·-6 

memory under control of 1/0 instructions. This capability of 
altering the contents of the WCS gives the user complete 
access to the resources of the computer system. 

A test program for the WCS hardware is provided to assist 
in maintaining the system. Operating the test program is 
described in the maintenance manual for the WCS. 

Configurations 

The WCS is available in three configurations: 

1. One page (512 words) of control store and a subroutine 
stack (Model 7X·4001) 

2. Half page of control store and a subroutine stack 
(Model 7X-4000) 

3. One page with a subroutine stack, a writable decoder 
control store and a writable 1/0 control store (Model 
7X-4002) 

Model 7X-4002 is shown in the block diagram of figure 1·4. 
The three control stores shown in this diagram are the 
writable counterparts for read-only components of the 
processor. 

The decoder control store replaces the instruction buffer, 
decoder, and decoding logic in the processor to improve 
instruction set changes. It is formed from two 16-word by 
16-bit memory arrays with the logic that decodes main 
memory instructions into an address for the central 
control store. 

The central control store is a counterpart of the page zero 
of read-only storage. With each processor clock pulse, a 64-
bit microinstruction is read from the central control store 
to specify the actions to occur. A typical microinstruction 
may define several operations such as selecting the next 
control store microinstruction to be executed, test condi
tions for branching, initiating memory operations and 
selecting ALU functions. 

The 1/0 control store contains a 256-word memory array of 
16-bit words. 

A standard feature with all WCS models is the subroutine 
stack that increases storage efficiency by providing a call 
and return capability for subroutines of microinstructions. 
Up to 16 addresses for branches can be stored in the 
stack. Operations are provided for pushing, popping, and 
deleting an entry. 

Up to three writable control store pages (2048 words 
including the page-zero read-only store) can be installed in 
a Varian 70 series computer system. Each writable control 
store page unit is contained on a printed-circuit board that 
plugs into a Varian 70 series mainframe. 



- ------1 
I r--------il_ _______ ~A~D~D~R~ES~S::__ _______ .1 DECODER 

I DAT A CONTROL 1• 
~ DAT A _. STORE 

SUBROUTINE 
STACK 

-

~ 

ADDRESS ADDRESS 

I 

I ~ j__ ________ ~+~~D~A~T~A~------------...,...._.I CENTRAL 

g I ~-!-----~D~A?:T~A::-;;:--------1 co NTROL I 
Z I+- ADDRESS + STORE 8
0 l 

DATA_i 
z 
<{ 

<{ 

MEMORY BUS (DATA) 

PROCESSOR 

-u I 
~ L~LL--------------_.!I/~O~B~U~S------------1----~--------1--7/ ~ . r 

I • 
ADDRESS 

I 

L_ ______ ___.:A~D~D~R~E~S~S __________ _.,..., 1/0 

L_ __________ ~D~AT~A-;-----------•-...~I CONTROL 
DATA STORE 

I/O CONTROL 'r ... •~----_,...,.. 
(OPTION BOARD) 

l 
I 

DATA 

L _J 

< m ... a;· 
:l 
c. 
m ... 
m 
3 
m 
n 
::r 

z s· 
~ (1) 
0 (I) 

• 



~ varian data machines 

~UC Tl ON 

1.4.3 Software Modules 

Microprogram preparation uses a sequence of software 
provided with the WCS. First the program is written and 
assembled with a special assembler called MIDAS. Upon 
error-free assembly the code is run in a simulated 
environment which is completely independent of a WCS. 
The ability to trace and correct the execution is available 
with the microsimulator. These first two steps can occur 
without a WCS. Then only when the microprograms are 
checked completely the code can be loaded in the WCS 

with the micro-utility program. In addition to loading the 
utility provides some diagnostics. These steps are depicted 
in figure 1-5. 

All the components of the microprogramming software were 
designed to operate both under operating systems, MOS 
and VORTEX, and as stand-alone programs on the Varian 
70 or 620 series computers. Operating systems require a 
minimum configuration (see the manual for the particular 

USER-DEFINED 
MICROPROG 
SOURCE 

VTll-1799 

1-8 

RECODED 
SOURCE 

NO 

MICRO 
ASSEMBLER 
MIDAS 

MICRO 
SIMULATOR 

DIAGNOSTIC 
AIDS 

YES 

Figure 1·5. Steps for Realizing Microprograms 

ASSEMBLY 
LISTING 

UTILITY 
PROGRAM 

CONTROL 
STORE 



operating system). Table 1-1 lists the hardware require
ments for microprogramming software. 

Assembler 

An assembler is a computer program which translates 
symbolic statements into machine instructions. The sym
bols are more meaningful than the strings of bit settings 
they represent. In addition to simply translating from 
symbolic to the executable code, the assembler assigns 
storage locations to the assembled instructions and 
produces a form of the instructions for loading into the 
processor's control store. 

The microprogram data assembler (MIDAS) allows the user 
to prepare microprograms for the WCS. Through the use of 
operation mnemonics, symbolic addressing, address-field 
calculation, macro definitions, error detection and auto-

MIDAS is designed to provide the user with a tool for 
microprogram implementation. While relieving the user of 
much of the tedious housekeeping associated with 
generating microinstructions and their data fields, it also 
allows the user to describe the microinstructions at their 
most fundamental level. 

Simulator 

varian data machines ii 
INTROD 

Verifying that the microprogram does indeed solve the 
problem is the next step. A logical step in implementing a 
microprogram is to run it with the microsimulator. The 
effects of executing a tauity microprogram are iikeiy to be 
worse than those caused by poor assembly-language 
coding. 

The simulator runs the output from the assembler within 
main-memory storage. At selected times conditions and the 
contents of data locations can be changed and examined. 
Projected changes can be simulated to evaluate eventual 
changes to the microprograms. 

After determining that the code is error-free the WCS can 
be loaded with the utility program, which uses a command 
set as consistent as possible with the simulator. 

Utility 

Loading the WCS with the assembled and test microcode is 
performed by the microprogram utility, MIUTIL. In addi
tion, on-line debugging directives are available through the 
utility. 

Table 1-1. WCS Software Configuration Matrix 

High· 
TTY TTY TTY Speed 

Operating Memory (K) Keyboard/ PT PT PT 
Program System 8 12 16 20 24 32 Printer Reader Punch Reader 

Micro- VORTEX x R 0 0 x N N 0 
Assembler 
MIDAS MOS X R 0 0 0 0 x x N 0 

SA X R 0 0 0 0 x x x 0 

Micro- VORTEX x R 0 x N N x 
Simulator 
MICSIM MOS x R 0 0 x x N R 

SA x R 0 0 x x N R 

Micro- VORTEX x 0 0 0 x N N x 
Utility 
MIUTIL MOS X R 0 0 o· 0 x x N R 

SA X R 0 0 0 0 x x N R 

WCS Test X N N N N N R 0 N x 
Program 

(continued) 

1- 9 



~ varianda~mac~nes-~~~~~~~~~~~~~~~~~~~~~-
1NrRooucr10N 

Table 1-1. WCS Software Configuration Matrix 
(continued) 

High· 
Speed 

Operating PT Card Card line Mag Rotating wcs 
Program System Punch Reader Punch Printer Tape Memory Option 

Micro· VORTEX 0 R 0 R 0 x 
Assembler 
MIDAS MOS 0 R R R x 0 

SA 0 R 0 R 0 N 

Micro- VORTEX N R N R 0 x 
Simulator 
MICSIM MOS N R N R x 0 

SA N R N R 0 N 

Micro- VORTEX N R N R 0 x x 
Utility 
MIUTIL MOS N R N R x 0 x 

SA N R N R 0 N x 

WCS Test N N N N N N x 
Program 

Legend: 

x - minimum configuration 

R - recommended (recommended in place of 
its minimum counter part) 

0 - optional (can be used but program 
will function completely 
without it) 

N - not used with 

the program 



SECTION 2 
CAPABILITIES 

varian data machines 11 

This section describes micro-operations available with 
Varian 70 series systems. The operations are grouped into 
the following categories: 

a. data transfer and transformation 

b. addressing and conditional actions 

c. memory access 

d. other controls 

A basic example follows these sections. Some important 
timing considerations are presented at the conclusion of 
this section of capabilities. 

This section describes only central control store 
programming. 

I /0 and decoder control stores are treated in section 8. 

2.1 GENERAL MICROINSTRUCTIONS 

The 64 bits of the microinstruction are grouped into fields 
referenced by either an ordinal number or a two-letter 
name for the microprogram assembler. The full resources 
of the system can be exploited by the user who is familiar 
with all the defined microinstruction fields. To start most 
common operations, a limited set of fields is involved. 

Because some of the bit combinations in the microword 
have no function, the user should be cautious arid avoid 
coding those bit settings not defined. Undefined codes may 
be assigned new functions in the future. 

2-1 



s. 
w 

63 59 

TS 

AB= 01V10 

SELECTS 4 BITS FROM IR (MASKED BY MR) 
TO REPLACE AA OR BB 

SELECT DECODER AND ENABLE INTERRUPTS 

SET ENABLES 
XXXI 1/0 INTERRUPTS 
XXIX 1/0 INTERRUPTS IF MP 
XIXX MP OR PFIR INTERRUPTS (01Nn 
IXXX CONCOLE (STEP! INTERRUPT 

PAGE JUMP 

SELECTS PAGE NUMBER 

REQUEST 1/0 

BITS 2-5 OF 1/0 ADDRESS 

ADDRESSING 1/0 CONDITIONAL TESTING 
54 50 49 45 43 41 

AF MS MT FS TF SF GF 

SEE TAll.E 1 CONTROL STORE ADDRESSING 

I 0 I 0 I 0 I 0 I 

1/0 REQUEST 

110 REQUEST 
BIT 7 

FIELD SELECT (5 BITS FROM IR, 
MASKED BY MS) ADDRESS BITS 
FSEL 

TEST CONDITION IN GF 
00 NO TESTING 
01 TEST PASSES IF TRUE 
11 TEST PASSES IF FALSE 

TF = 00 I\ SF = 00 

XXXI IBR TO IR 
XXIX SAMPlE CONDITIONAL TEST 
XIXX SELECT DECODER AND 

SAMPlE INTERRUPTS 
IXXX SAMPlE OVERFLOW 

SPECIFIED USE OF IM 
ANDGF 

TF = 00 I\ SF= 01 

XOOX NO STATUS CHANGE 
XO! X SET OVERFLOW 

TF=OOllSF=IO 

XXXI UNUSED 
XXIX SAMPlE CONDITIONAL TESTING 
XIXX PAGE JUMP OPERATION 

TABLE I. CONTROL-STORE ADDRESSING 

inclusive 

(FS) .. ~J 
ard 

MS ~ 
Control Store 

Address Field 

Selection 

'"TS field is not used in bit; 1-4 of addres5 formation 

when 

a. Register field extraction (AB field equals 01 or 10) 

b. Interrupts allowed (SF, TF fields both 00 / IM field 
equals 1 llX) 

c. ; /Q request {SF field equals 00, IM field equals l 11X) 

d. Poge jump (TF field equals 00, SF field equals 10; 
GF field equals XlXX) 

e. Test addressing is specified (TF field not equal 00) 

** (FS) is the contents cl the field specified by the FSfield 

** • MT is replaced by o zero when on 1/0 request is 

present (SF field equals 00; IM field equals 111 X) 

DEFINITION OF SYMBOLS, 

TRANSFER TO 
AND 
INCLUSIVE OR 
EXCLUSIVE OR 

PLUS 
MINUS 

() INVERSION fONES COMPlEMENT 

0000 OVERFLOW 
0001 I 'O SENSE 
0010 SS3 
0011 SS2 
0100 SS! 
0101 EMUL620 1FTESTS 
0110 ALU ALL ONES 
0111 ALU SIGN 
1000 ALU CARRY 
1001 ALU All ZEROS 
1010 DSB 
1011 MIRSIGN 
1100 SHIFT COUNTER OVERFLOW 
1101 GPR 0 SIGN 
1110 NORMALIZED SHIFT 
1111 QUOTIENT SIGN 

37 

MR 

I 0 REQUEST 

I 0 ADDRESS BIT 6 

NO I ·o REQUEST 

CONTROLS AB 



1/0 134 MEMORY 1/0 ACTION 
130 

ALU INPUT 
36 28 

ii AB I IM l LB 

1 1 l 
l 

s - oA(l7o m:m~sn SF= 0 

0000 NO ACTION 00 
I AA-AA; 0001 WAIT FOR MEMORY ACK. 01 

IR BITS SELECTED BY TS 0010 WAIT FOR 1/0 ACK. 10 
TO LOW ORDER 4 BITS 0011 PAGE BRANCH NO MAIN MEM 11 
OF BB 0100 ALU -IBR AND INPUT REGISTER 

0101 UNUSED 
2 BB - BB 0110 SELECT & RESET INTERRUPT FLAG 

IR BITS SELECTED BY TS 0111 SET INTERRUPT FLAG 
TO LOW 0 RDER 4 BITS 
OFAA 

1000 LOAD 1/0 KEY REGISTER 
1001 UNUSED 
1010 RESET SUPERVISOR KEY 

3 AA -AA 1010 SET SUPERVISOR KEY 
BB - BB 1000 INHIBIT DECODER 

1101 WCS FUNCTIONS 

I 1110 REQUEST 1/0 & INHIBIT DCS 
1111 REQUEST 1/0 

1 (MR - 0) A (AB - O) A 170 ~room 

CONTROL STORE OUTPUT·- AA AND BB 
(SF= 01) v (TF = 00) A (SF =10) 

I OOXX OVERRIDE MEMORY REQUEST 
OlXX ALU-MEMORY ADDRESS (MAD)• 
lOXX PROGRAM COUNTER - MAD' 

(MR = 1) /\ (AB = 0) A 170 RE00E5T llXX MIR-MAD• 

AA--AA, 111 - BITS 1-3ofBB 
'&START MEMORY 

(ylF A BIT 15 OF ALU OUTPU"I) v I (ylF A BIT 1 OF OPR)-B LEAST 
SIGNIFICANT BIT 

SF f. 00 

I XXOO INSTRUCTION FETCH IF 
XXOl OPERAND FETCH OF 

110 REQUEST XXlO OPERAND STORE OS 

IS 1/0 ADDRESS BIT 1 
XXll BYTE STORE BS 

BIT 0 
BIT I IS NOT USED l 

(TF f. O) A (SF= 10) 

ACTION IF TEST CONDITION NOT MET 
OOXX OVERRIDE MEMORY REQUEST 

OlXX ALU - MAD \START MEM-
lOXX PROGRAM COUNTER -MAD ORY IF TEST 
11XX MIR - MAD NOT MET 

l 
SF= 11 

MEMORY ACTION AS ABOVE, 
IF TEST CONDITION IS MET. 

N 
w 

}26 
REGISTER 123 

LA l RF l 
L 

l 
ALU INPUT B 

GPR 
SPECIAL REGISTER 
IRA~) 
LITERAL (SEE NOTE) 

ALU INPUT A 

00 GPR 
01 PROGRAM 

COUNTER 
10 GPR SHIFTED LEFT 
11 GPR SHIFTED RIGHT 

LA=10A11 

BIT OF GPR -BYTA 

000 NO ACTION 
001 LOAD PROGRAM COUNTER 
010 LOAD SHIFT COUNTER 
011 LOAD OPR 
100 INCREMENT PROGRAM COUNTER 
101 COUNT SHIFT COUNTER 
110 LOAD PROCESSOR KEY REGISTER 
111 LOAD OPERAND REGISTER 

AND INCREMENT PROGRAM COU"lTER 

FUNCTION L9 ALU MODE 

FF I MF ~ 

l I 
((MF= 0) A (LB= 00 VOl)) LB= 10 10 V 11 
V((LB = lOVll) A (DMODE)) MF IS PART 

OF 16-BIT LITERAL: 
0000 A 

MODE OF ALU SET BY 
0001 AVB BIT 1 OF FF 
0010 AVB 

I 0011 -1 
0100 A-(AAB) 
0101 (AVB)+AAB) 
0110 A-B-1 LB=OOVOl 

0111 (AAB)-1 SETS ALU MODE 
1000 A+ AAB 
1001 A+B 
1010 (AVB) + (AAB) 
1100 A+A 
1101 (AV~+ A 
1110 (AVB) +A 
1111 A - 1 

I 
( (MF= 1) A (LB= 00 V 01) )V 
((LB= 10 V 11) /\ DMODE)) 

0000 A 
0001 m 
0010 AVB 
0011 ZEROS 
0100 A/\B 
0101 1r 
0110 A-VB 
0111 A/\ B 
1000 AVB 
1001 ~ 
1010 B 
1011 A/\ B 
1100 ONES 
1101 A Vlr 
1110 AVB 
1111 A 

NOTE: When SF=OO, TF=OO, IM=1001, and 
LB=l 1, the literal is used by the WCS 
as a control word (refer to descriptions 
of stock operations, 64K memory 
addressing, and memory lockout in 
section 3 of WCS monual, 98A 9906 
082). 

< m ... a;· 
:::::J 

Q. 
m ... m 
3 
m 
n 
::r 
:::::J 
CJ) 
en 



ALU REGISTERS 

I\.) 

" j;,. ::! 
18 16 15 14 13 12 10 

~ CF I WR l SC l VF WF l XF T 
I l l 

LB= 00 V 01 (LB=OOVOl) /\ (SC=O) J 

~ 
> 

ALU CARRY-IN 0 NO ACTION 
00 0 1 ALU BIT 15 -- OUOS 
01 STORED CARRY 

l 10 STORED CARRY 
11 1 

I (LB= 00 V 01) /\ (SC o 1) J 
0 SHIFT OPR LEFT 

LB=IOVll 1 SHIFT OPR RIGHT 

CF IS PART OF 16-BIT LITERAL l ALU CARRY-IN = 0 

(LB= 00 V 01 /\ .10 REQUEST/\ 

I 
(MR = 1) /\ (AB= 1) 

0 ALU BIT 15 - BIT OGRP NO. 
1 OPR BIT 1 - BIT 0 GPR NO. 

[ LB=OOV01 J 

l l 0 NO ACTION 
1 ALU OUTPUT -GPR 

J LB= 10 V 11 J 
J l 

PART OF 16- BIT LITERAL 
LB = 10 V 11 

l PART OF LITERAL 

J 
(LB - 00 V 01) /\ (SC = 1) /\ 0NF = 0) 

l 00 OPR BIT 15 SHIFTED TO BIT 0 
01 A INPUT BIT 15 SHIFTED TO BIT 0 l LB=OOVOl J 10 ALU BIT 15 SHIFTED TO OPR BIT 0 

l 0 NO ACTION J 
11 A BIT 0 SHIFTED TO OPR BIT 0 

1 SHIFT OPR 

l l 
[ 

LB= 10 V 11 J (LB= OOVOl) /\(SC= 1) /\ 0NF = 1) 

PART OF 16-BIT LITERAL J 00 OPR BIT 0 SHIFTED TO BIT 15 
01 A INPUT BIT 0 SHIFTED TO OPR BIT 15 

w 
s.. 
w 

10 OPR BIT 15 SAME 
11 DSB - OPR BIT 15 

1 l [ LB=OOVOl J 
l 0 NO ACTION 

J 
(LB= OOV 01) /\(SC= 0) 

1 BIT 15 OF GPR -- DSB 
00 NO ACTION 

l 01 RESET PROCESSOR INTERRUPT F/F 
10 ENABLE JUMP SIGNAL 
11 RESET INTERRUPT F/F and 

I LB= 10 V 11 j ENABLE JUMP SIGNAL 

PART OF 16-BIT LITERAL l 
LB= 10 V II 

PART OF 16-BIT LITERAL 

SHIFT 
7 

SH 1 BB 

T 
] 

(LA =OOl /\ (LB=OO V 01) 

000 NO ACTION 
XOl 0 - ALU INPUT A 
XIX 1 - ALU INPUT A 
IXX SPECIAL ALU FUNCTION 

l 
(LA= 10) /\(LB= 00 VOl) 

oxx A BIT 14 - - ALU BIT 15 
lXX A BIT 15 - ALU BIT 15 
XOO O -- ALU BIT 0 
XOl A BIT 15 - A LU BIT 0 
XlO OPR BIT 15 ·-ALU BIT 0 

l 
(LA= 11) /\(LB =00 VOl) 

000 MULTIPI. Y SIGN -A BIT 15 
001 A BITO ·-A BIT 15 
010 A BIT 15--BIT 15 
011 OPR BITO - BIT 15 
100 0 --BIT 15 

] 
I 

LB = 10 V 11 J 
PART OF 16-BIT LITER.Al. J 

[ LB=OO j 
[ SPECIFIES GPR J 

AS ALU INPUT B 

LB= 01 

SPECIFIES SPECIAL 
REGISTER AS ALU INPUT B 

0000 OPR 
0001 MIR 
0010 IOR 
0011 STATUS 
0100 OPR RIGHT BYTE SIGN 
0101 OPR LEFT BYTE EXTENDED 
0110 OPR RIGHT BYTE ZERO 
0111 OPR RIGHT BYTE FILL 

SHIFTED TO LEFT 

[ LB - lOVll J 
PART OF 16-BIT J LITERAL 

3 

1 AA 

l 
t 

LA # 01 

SPECIFIES GPR AS ALU 
INPUT A 

I l (LB 0 OOVOl) /\ 0NR = 1) l SPECIFIES GPR AS ALU 
DESTINATION 

J 0 

J 

J 
J 

J 

J 

!~ 
r-
=i < ;;; m 
"' ""I ii" 

:::s 
a. 
m ... m 
3 
m 
() 
::r 
:::s 
~ 
rn 



~~~~~~~~~~~~~~~~~~~~~~~ variand~amac~nes ~ 
CAPABILITIES

THIS PAGE
INTENTIONALLY LEFT

BLANK

25

~ variand~amach~es-~~~~~~~~~~~~~~~~~~~~~
CAPAe1u11Es

2.2 DATA TRANSFER AND
TRANSFORMATION

2.2.1 ALU Input Sources

Input to the arithmetic and logic unit (ALU) is selected by a
combination of fields. The ALU receives two inputs, A and
B. Two buses can move information to the ALU but the
same sources are not available for both buses. Some inputs
to the ALU can be sent on either bus and some on both.
The general-purpose registers can be selected as input
upon either bus and a specific register selected for each
bus.

Any of the general-purpose registers can be shifted on its
way on the A bus to the ALU. Shifting can be one bit
position to the left or right.

Input to the ALU can be from one or two of the general
purpose registers. The use of one of these registers is
indicated by setting field LA to zero for input on the A bus,
and LB for input on the B bus. The specific register is
specified in AA and/or BB.

For example to use registers R2 and R4 as the input to the
ALU

field LB LA BB AA

value 0 0 2 4
(hex.)

Mnemonic B$GPR A$GPR R2 R4

LA can also specify that the register indicated by AA is
shifted or rotated. Shift left and shift right are indicated in
the LA field and the shift field, SH.

Special Registers as ALU Input

By setting the LB field to one, SREG for special register the
value in the BB field takes on a different meaning:

2-6

0
1
2
3
4
5
6
7

OPR
MIR
IOR
STAT
ORSE
OLSE
ORZF
OLZF

Operand register
Memory input register
1/0 register
Processor status word
Operand right byte sign extended
Operand left byte sign extended
Operand right byte zero fill
Operand right byte in the
left byte position zero fill

Table 2-1. ALU Input A Bus Selections

ALU Input A Bus Source Fields

LA SH LB

Program counter 01 xxx xx

General-purpose 00 Neither ox
register (any one XOl nor
of 16) specified XlX
in AA

General-purpose 00 xxx lX
register (any one
of 16) specified in
AA

All zeros input 00 XOl ox
All ones input 00 XlX ox
General register (in 10 See ox
AA) shifted left below

Bit 15 = register oxx
bit 14

Bit 15 = register lXX
bit 15

Bit 00 = zero xoo
Bit 00 = register XOl

bit 15
Bit 00 = operand XlO

register bit 15

General register (in 11 See ox
AA) shifted right below

Bit 15 = multiply 000
sign flag

Bit 15 = register 001
bit 00

Bit 15 = register 010
bit 15

Bit 15 = operand 011
register bit 00

Bit 15 = zero 100

X indicates the bit in that position is of no consequence
to this action.


~~~~~~~~~~~~~~~~~~~~~~~ varianda~machines ~ 
CAPABILITIES 

VTil-1802 

GPR 

16 GENERAL
PURPOSE 

REGISTERS 
RO I Rl I ••• I RF 

SHIFT/ROT ATE 

ALU INPUT A 

ALU INPUT B 

Figure 2-2. General-Purpose Registers, Operand Register and ALU Input 

OPR 

OPERAND 
REGISTER 

2-7 



~ varianda~machines ~~~~~~~~~~~~~~~~~~~~~~~ 
CAPABILITIES 

Table 2-2. ALU Input B Bus Selections 

ALU Input B Bus Source Fields 

LB BB 

General-purpose 00 Specifies 
register (any one register 
of 16) 

Operand register 01 0000 
full word 

Operand register 01 0100 
right byte with 
sign extended 

Operand register 01 0101 
left byte with 
sign extended 

Operand register 01 0110 
right byte with 
zeros in left byte 

Operand register 01 0111 
right byte in left 
byte position; zeros 
in right 

Memory input register 01 0001 
(MIR) 

110 register (IOR) 01 0010 

Processor status word 01 0011 
(STAT) 

Instruction register 10 Part of 
masked by 16-bit mask 

literal constant 
consisting of fields 
MF, CF, WR, SC, VF, WF, 
XF, SH and BB. A one 
in the mask fields 
forces the corre-
spending ALU input 
bit to a zero. 

16-bit literal 11 Part of 
constant consisting constant 
of the ones com-
plement of fields 
MF, CF, WR, SC, VF, 
WF, XF, SH and BB 

NOTE: When the 16-bit literal or mask is used, the ALU 
mode is forced to the arithmetic mode if the FF field bit 1 
is a zero and to the logical mode if the FF field bit 1 is a 
one. A carry of zero is forced. The ALU output may not be 
written into any general register in this case. The WR field, 
which would specify such an operation is disabled for use 
as part of the 16-bit literal or mask. 

2-8 

Processor Status '/lord 

The processor status word may be applied to the ALU input 
B bus when the LB field equals 01 and the BB field equals 
0011. Processor status bits are assigned as follows: 

Bit Function 

00 Not used (logic 1) 

01 Supervisor mode flag 

02 ALU zero flag 

03 Shift counter bit 00 

04 Shift counter bit 01 

05 Shift counter bit 02 

06 Shift counter bit 03 

07 Shift counter bit 04 

08 Overflow flag 

09 ALU all ones flag 

10 ALU sign flag 

11 ALU carry flag 

12 Processor key register 
bit 0 

13 Processor key register 
bit 1 

14 Processor key register 
bit 2 

15 Processor key register 
bit 3 

2.2.2 ALU Functions 

Name 

SUPR 

ALUZ 

OVFL 

ALUO 

ALUS 

ALUC 

Two sources for data, an action to be performed by the 
arithmetic and logic unit and a destination for the result 
are all specified in a single microinstruction. 

The ALU function is determined by three fields in 
microinstruction. These fields, function, mode and carry, 
are grouped together to give meaningful names to some 
common operations, like ADD for addition. This entire 
group of fields can be set to execute combinations which 
do not have convenient names in the assembler. 

One basic ALU action or an operator is chosen. There are 
three categories of operations. Arithmetic operations 
available at this level include addition, subtraction, 
increment etc. Logical operators which have convenient 



single-word names are AND, OR, exclusive OR, NOT 
implication and equivalence. Also the ALU can perform 
more complicated logical functions explained later in this 
section. 

Table 2-3 lists some of the more common arithmetic and 
logical operations and the corresponding fields. 

Table 2-3. ALU Operations 

Assembler ALU 
Mnemonic Action FF MF CF 

ZERO all zeros 0011 00 

<Z>NES FFFF 1100 00 
TRNA A 1111 00 

TRNB B 1010 1 00 

INCA A + 1 0000 0 11 

DECA A-1 1111 0 00 

ADD A + B 1001 0 00 

SUB A-8 0110 0 11 

SHFA A + A 1100 0 00 

AND A/\ B 1 011 00 

OR AVB 0001 0 00 

EOR A¥B 0110 00 

NOTA A 0000 00 

NOTS B 0101 00 

*cannot be used when input B is mask or literal 

ALU Mode 

varian data machines ~ 
CAPABILITIES 

There are two modes available for the ALU. arithmetic and 
logical. In the arithmetic mode the user selects a type of 
carry input to the ALU to .be used with the arithmetic 
action. In logical functions the value of the carry field (CF) 
is ignored. The mode is directly set as either arithmetic or 
logical by the MF field. Indirectly the mode can be set 
when the actual mode field is part of a literal or literal 
mask. If the LB field is 10 or 11 in binary, the MF and CF 
fields are part of a 16-bit constant. In this case the ALU 
mode is taken from the bit 1 setting of the FF field 
(consequently this limits the functions available with a 
literal or mask). 

Carry Flag 

The CF field specifies carry input to the ALU as follows: 

CF Value of Carry In 

00 Zero 
01 Stored carry 
10 Stored carry complement 
11 One 

The carry flag ALUC, bit 11 of STAT, is altered only if SF is 
set to zero or two, TF to zero and the GF field to XXlX. 

Under these conditions carry is set or reset to the carry 
produced by the ALU. The only meaningful conditions for 
carry are the arithmetic functions such as add, increment, 
decrement and subtract. For these conditions the carry 
flag is set as follows. MF is zero for all of the following. 

2-9 



~ variand~amach~es~~~~~~~~~~~~~~~~~~~~~~
CAPAe1uT1Es 

Table 2-4. Carry Flag Settings 

FF Function If Carry In = 0 If Carry In = 1 

0000 A Reset Set if result = 0 

0001 AVB Reset Set if result = 0 

0010 AVB Reset Set if result = 0 

0011 -1 Reset Set unconditionally 

0100 A + (A /\ B) x x 
0101 (A v B) + (A v B) x x 
0110 A-8-1 Set if [(A.,, = 8.,.) :\ (A 2:. 8)) v Set if [(A.5 = 8.,;) /\ (A > 8)] v 

[(A 1_,, __ ~- 8 15) /\ (A_< O)] 

0111 (A/\ B) -1 Set if result is -/= -1 

1000 A + (A/\ 8) x 
1001 A+ 8 Set if [(A <.. 0) /\ (8 <.. O)] .; 

[(A1,, F- 8 1,) /\ 

(A" = 0) I 
(IAI ~ 181)] V 

[(A,5 F- 8." ) /\ 

(81,1 = 0) /\ 

181 > IAI)] 

1010 (A v B) + (A /\ 8) x 
1011 (A /\ 8) -1 Set if resu It F- -1 

1100 A+A Set if A 15 = 

1101 (AV 8) +A x 
1110 (Av B) +A x 
1111 A-1 Set if result F- -1 

Arithmetic Operations 

The FF field determines an arithmetic operation as 
indicated below when the MF field is 0. Carry input is set 
independently. When bit 1 of FF is zero the arithmetic 
mode is selected when the actual mode field is part of a 
mask or literal. The expressions in parentheses are 
evaluated first from left to right. Any further evaluation is 
performed from left to right. 

Logical Operations 

When MF is one, the logical operations occur as indicated 
below by FF field settings. The carry field is ignored. 
Symbol indicates exclusive OR operation. 

2-10 

[(A.s -/= 8.5) /\ (A .< O)] 

Set unconditionally 

x 
Set if [(A < 0) /\ (8 < O)] V 

[(A.5-/= 8,5) /\ (A15 = 0)/\ 

(A~ 8)] V 

[(A 15 -/= 8 15) /\ (8 15 = 0) /\ 

(8 ?:_ A)] V [Result = OJ 

x 
Set unconditionally 

If A,5 = 1 

x 
x 
Set unconditionally 

Arithmetic Functions 
FF Value ALU Action 

0 A 
1 AV 8 
2 AVB 
3 All ones 
4 A + (A/\ B) 
5 (A v 8) + (A /\ B) 
6 A-8 -1 
7 A/\ B -1 
8 A + (A/\ 8) 
9 A+ 8 
A (A v B) + (A /\ 8) 
8 (A/\ 8) -1 
C A+A 
D (AV B) + A 
E (AV B) +A 
F A-1 

SYMBOLS 
V Inclusive OR 
~ Exclusive OR 
+ Addition 

Subtraction 
logical AND 

c complement 



Logical Functions 
FF Value ALU Action 

0 A 
1 AV B 
2 A/\ B 
3 All zeros 
4 A/\ B 
5 8 
6 A>Q(B 
7 AA B 
8 AVB 
9 A)v(B 
A B 
B A/\ B 
c All ones 
D AVB 
E AV B 
F A 

varian data machines m 
CAPA 

2.2.3 ALU Output Destinations 

The ALU output will be determined by the function 
performed. This data can be directed by the microinstruc
tion to the general-purpose registers, some of the special 
registers, counters, and indirectly to memory and 1/0. 

A multiple destination can be one of the general-purpose 
registers and a special register. 

The direct assignments of the ALU result is specified by a 
combination of fields, WR, LB, AA and RF. The first three 
are used to specify any one of the 16 general-purpose 
registers while RF selects sending data to the program 
counter, operand register, shift counter or key register. 

Table 2-5. ALU Output Data Destination 

Destination Control Fields 

RF WR SF IM LB 

DIRECT CONTROL 

General register (any 1 of 1 ox 
16) (Specified in AA) 

Program counter 001 

Operand register 011 or 
111 

Shift counter 010 

Processor key register 110 

INDIRECT MEMORY CONTROL 

NOTE: Transfer occurs only 
if cycle is successfully 
initiated) 

Memory data bus Not 00 XXlX 

Memory address register Not 00 OlXX 

Memory input register and 00 0100 
instruction buffer 

INDIRECT 110 CONTROL 

I 10 register 00 lllX 

NOTE: Transfer is under 
direct control of 1/0 
control. Operation is 
specified by TS, AB, MR 
fields and contents of 
I /0 control store. 

2-11 



~ varianda~mac~nes~~~~~~~~~~~~~~~~~~~~~~
cAPAe1u11Es 

2.2.4 Other Registers 

Shift Counter 

The shift counter is an 8-bit counter which may be 
incremented and tested independent of the ALU. It is thus 
useful in keeping track of iteration in a microprogram. The 
counter may be tested for overflow using test addressing. 
The overflow condition occurs when the shift counter is 
minus one. 

An instruction which both increments and tests the shift 
counter will be testing the old value. If the counter is 
loaded with negative number and incremented to 0, the 
one instruction delay is no problem. This is because 
checking the old value for - 1 produces the same result as 
checking the new value for zero. 

Program Counter 

The program counter is a 16-bit register which can be 
incremented and/or used as a memory address, indepen
dent of the ALU. The following are considerations when 
incrementing the program counter: 

a. if the same microinstruction uses the P register for a 
memory address, the new value of P will be used. 

b. if the microinstruction both increments P and uses Pas 
an ALU input, unpredicatable results are obtained. In 
general, using Pas an ALU input and incrementing P 
should not be done in the same instruction. 

Processor Key Register (KEY) 

A 4-bit processor key register supplies signals for memory 
operations initiated by the processor. These four bits in 
conjunction with the high-order bits of the normal memory 
address are used by the memory map option determine 
physical addresses. It should be noted that this key register 
is different from the map register used under VORTEX II. 
The latter is loaded over 110 and cannot be conveniently 
accessed from the micro level. 

1/0 Key Register 

A similar key register for 1/0 is a 4-bit register which 
supplies signals to the memory map option during memory 
operations initiated by the 110 control. 

Operand Register 

The operand register is a 16-bit register which has special 
shifting abilities. As previously noted, the ALU input A bus 
may have any of the 16 general-purpose applied shifted 
left or right one-bit position. In addition, the operand 
register may be shifted left or right independently or in 
conjunction with shifting of any general register. This can 
occur any time the 16-bit literal or mask is not in use. 

2-12 

When the LB field is equal to OX (no literal/mask) the SC, 
WF and XF fields define operand register shifting. 

When the SC field equals 0 no shifting takes place. When 
the SC field equals 1, the operand register is shifted left if 
the WF field equals O and right if the WF field equals 1. 

For left shifts the next contents of the operand register bit 
00 is specified by the XF field. If XF equals 00 operand 
register bit 15 is copied to bit 00 to permit independent 
circular shifting. If XF equals 01 bit 15 of the general 
register specified by the AA field is copied to bit 00. 

This permits double-length circular shifting. If XF = 10 the 
complement of the ALU output bit 15 is copied to bit 00. If 
XF = 11 the operand register bit 00 is set to zero. 

For right shifts the next contents of the operand register bit 
15 is specified by the XF field. If XF equals 00 operand 
register bit 00 is copied to bit 15 to permit independent 
circular shifting. If XF equals 01 bit 00 of the general 

Table 2-6. Operand Register Shift Operations 

Control Field 

LB SC WF XF 

No shifting 0 

No shifting lX 

Shifting of operand register Ox 1 

Left shifting 0 

Bit 00 = operand 00 
register bit 15 

Bit 00 = general 01 
register bit 15 
(specified in AA) 

Bit 00 = ALU bit 15 10 
complement 

Bit 00 = zero 11 

Right shifting 1 

Bit 15 = operand 00 
register bit 00 

Bit 15 = general 01 
register bit 00 
(specified in AA) 

Bit 15 = operand 10 
register bit 15 

Bit 15 = SHFT (shift 11 
flag) 



register specified by the AA field is copied to bit 15 to 
permit double-length circular shifting. If XF equals 10 the 
operand register bit 15 is maintained at its current state 
to permit independent arithmetic shifting. If XF equals 11 
the shift flag (SHFT) is copied to bit 15. 

2.3 ADDRESSING 

2.3.1 General 

Executing instructions in an order other than strictly 
sequential gives programs flexibility and compactness. The 
ways in which the order of microinstructions can be varied 
are similar to those used in assembly-language programs. 
For the microassembler the usual order of execution takes 
the next instruction -- the contents of word five after word 
four and so on -- unless a jump or branch specifies the 
change in order. In reality each and every microinstruction 
specifies the next one to be executed, but usually the 
assembler constructs sequential-execution addressing 
automatically. 

A jump in a microprogram can be a conditional action 
based on the true or false state of flags or signals in the 
system. In microinstructions the jump is not a separate 
instruction but the sampling and/or testing and the 
branch itself are specified in fields of a microword. In 
addition to conditional and unconditional branches, the 
branch may be from one page to another. The page jump 
is described following a few simpler cases and conditions. 

Three basic types of addressing create the address of the 
next microinstruction to be executed. Normal addressing is 
the simplest case. The next address is specified by the 

. current microinstruction. Field-selection addressing uses 
an instruction register field to specify the address for the 
next microinstruction. In decoding addressing (using the 
decoder control store) the instruction buffer specifies the 
next address (section 8 in this manual describes the use of 
this feature). 

Three other types of addressing are similar to the basic 
types. Conditional addressing uses testing of various 
conditions to choose one of two addresses. The page jump 
can specify both the page and word number within the 
page for the next microinstruction. Interrupt addressing 
uses both the microinstruction and the system's interrupt 

logic to determine the next microinstruction. 

2.3.2 Normal Addressing 

Normal addressing is used to arbitrarily specify the next 
microinstruction address. No conditional testing is 
involved, no interrupts are active or they are disabled and 
decoder addressing is not specified. The FS and TS fields 
are set equal to 0000 and the MT field equals 0 so the low 
order address contribution (bits 0-3) is governed entirely 
by the MS field. The high order bits (4-8) are supplied by 
the AF field. 

varian data machines m 
CAPABILITIES 

18 J 1 I :F 15 1413 j 2 I~! 0 I 

Control Store Address -
Normal Addressing 

No reset 
No interrupts 
No decoding 
FS = 0000 
MT = 0 
TS 0000 or 
TF = 0 

Normal Addressing with TS Field 

The TS field may be used to form bits 1 through 4 of the 
control store address when none of the following 
conditions is true: 

a. Register field extraction (AB field equals 01 or 10) 

b. Interrupts allowed (SF and TF field both 00; GF field 
equals XlXX) 

c. I /0 request (SF field equals 00; IM field equals 111 X) 

d. Page jump (TF field equals 00; SF field equals 10; GF 
field equals XlXX) 

The address is formed by the inclusive OR of the TS field 
into bits 1 through 4 of the address obtained with normal 
addressing (FS field equals to 0000; no decoding; no 
interrupts, MT field equals 0) . 

18171:F1+1+1~10 ~ 
inclusive or 

l.__o_._I o__..l_o l~o ..__I _T_s -~ 
Control Store Address 
Normal Addressing with 
TS Field 

2.3.3 Field Selection Addressing 

The contents of the instruction register and a number of 
processor flags may be used to form a control store 
address. Any 1- to 5-bit contiguous field from the 
instruction register may also be used in forming the low
order five bits of control store address. Thus, up to a 32-
way branch may be performed based on instruction 
register contents. This permits detailed instruction decod-

2-13 



~~ vanandatamachines ~~~~~~~~~~~~~~~~~~~~~~~ 
CAPABILITIES 

ing. In addition, the interrupt flag, byte address flag, shift 
flag and console step mode may be selected to alter the 
control store address. 

Field selection addressing is used any time the FS field is 
not equal to 0000. The field selection address contribution 
for all values of the FS field is shown in the tables below. 
Any bit of the field selection contribution may be forced to 
a zero by use of the MS and MT fields. The field masks bits 
0-3 of the field select contribution. The MT field masks bit 
4. A zero in any bit of the MS and MT fields forces the 
contribution of the corresponding field selection bit to zero. 
When an 1/0 request is issued (SF field equal to 00 and IM 
field equal to 111 X) the MT field is used as part of the I /0 
operation specification. In this case, the MT field is ignored 
and bit 4 of the field selection address contribution is 
masked to zero. 

The field selection address contribution is shown below for 
all values of the FS field. 

High-order address bits 4 through 8 are provided by the AF 
field. 

The TS field is logically ORed into the control store address 
bits 1 through 4 under the same conditions as normal 
addressing into TS field. Thus, the composite field selection 
address is formed as follows: 

Control Store Address Bit 

4 3 2 1 0 FS Field 

One One One One One 0 
One One One One INT 1 
One 01 One SHFT BYTA 2 
One One One One STEP 3 

04 03 02 01 00 4 
05 04 03 02 01 5 
06 05 04 03 02 6 
07 06 05 04 03 7 

08 07 06 05 04 8 
09 08 07 06 05 9 
10 09 08 07 06 A 
11 10 09 08 07 B 

12 11 10 09 08 c 
13 12 11 10 09 D 
14 13 12 11 10 E 
15 14 13 12 11 F 

Numbers 00 through 15 refer to instruction register bits 

INT is the interrupt flag (complement) 

BYTA is the byte address flag 

SHFT is the shift flag 

STEP is true when the console is in the STEP mode 

Figure 2-3. Field Selection Address Contribution 

2-14 

817161514 3 2 1 

AF 0 0 0 

I o I 0 Io Io I TS* 

I o I 0 I 0 I 0 I (FS)"'"' 

I 0 I 0 I 0 I 0 1~~.1 MS 

0 

0 11 

Io 

~usive1 

inclusive 
or 

~J 
and 

~ 
Control Store 
Address Field 
Selection 

* TS field is not used in bits 1-4 of address formation 
when: 

a. Register field extraction (AB field equals 01or10) 

b. Interrupts allowed (SF, TF fields both 00, IM field 
equals 11 lX) 

c. 1/0 request (SF field equals 00; IM field equals 11 lX) 

d. Page jump (TF field equals 00; SF field equals 10; GF 
field equals XlXX) 

e. Test addressing is specified (TF field not equal 00) 

* * (FS) is the contents of the field specified by the FS field 

*** MT is replaced by a zero when an 1/0 request is 
present (SF field equals 00; IM field equals 1 llX) 

Normal addressing and normal addressing with TS field 
are a subset of the field selection addressing set, i.e., the 
FS field equals 0000 and the MT field equals 0. 

2.3.4 Test Addressing 

Two addresses must be specified when test operations are 
performed ·· one for use if the test passes and one for use 
if it fails. Testing is specified whenever the TF field is not 
equal to 00. If the test is to pass when the condition tested 
is true, the TF field must be equal to 10. If the test is to 
pass when the condition tested is false, the TF field must 
be equal to 11. The condition to be tested is specified by 
the GF field. 

The addre~s used if the test passes is identical tb that 
formed by field selection addressing. The address used if 



test fails is made up of the AF and TS fields as shown 
below. 

817161514 3 2 1 0 

AF 0 0 0 0 11 
inclusive 
or 

Io Io Io Io I TS Io r----1 
Control Store Address --
Test Fails 

2.3.4.1 Conditions 

Whether or not a test is to be done and the way the test 
passes are indicated in the test field (TF). Testing is 
specified whenever the TF is not zero. If the test is to pass 
when the condition is true, the TF is equal to 10. If the test 
is to pass when the condition is false, the value of the TF 
should be 11. 

The condition to be tested is specified in the GF field. 

Summary of Conditions Mnemonics 

Value of Mnemonic 
GF for Assembler 

0 OVFL 
1 IOSR 
2 SSW3 
3 SSW2 
4 SSWl 
5 TFIR 
6 ALUO 
7 ALUS 
8 ALUC 
9 ALUZ 
A SHFT 
B MIRS 
c SFTC 
D GPRS 
E NORM 
F QUOS 

Meanings and Use of Conditions 

OVFL Overflow may be set and reset unconditionally: It 
may sample data-loop conditions. Automatically reset 
by system reset or microinstruction in which the GF 
value is TFIR and the instruction register bit 0 is set 
and the test met. 

varian data machines ~~ 
CAPABILITIES 

IOSR 1/0 Sense Response (discussed in 1/0 section) 

SSW3, 
SSW2 
and 
SSWl 

Sense switches are set and reset 
only by manual manipulation on the 
control panel. 

TFIR Test from instruction register which determines a 
set of conditions tested simultaneously. Nine bits of 
the instruction register cause the following tests: 
0 Overflow 
1 Positive/NOT bit 
2 Negative/NOT bit 
3 RO of General-purpose registers 
4 Rl of General-purpose registers 
5 R2 of General-purpose registers 
6 Sense switch 1 
7 Sense switch 2 
8 Sense switch 3 

ALUO ALU all ones 

ALUS ALU sign flag 

ALUC ALU carry flag 

ALUZ ALU all zeroes 

SHFT Shift flag copies bit 15 of the general register 
specified in the AA field whenever the literal or mask is 
not being used and the VF value is 1. This flag may 
be shifted into the operand register bit 15. It may be 
tested by a microinstruction to cause a branch to 
either of two microinstructions. 

MIRS Memory input register sign 

SFTC Overflow of the shift counter 

GPRS General-purpose register 0 bit 15 (sign) 

NORM Normalize flag is set after any microinstruction 
which the ALU output bus bit 15 is not equal to bit 14. It 
will be reset after any microinstruction during which 
the ALU output bus bits 14 and 15 are the same. 

QUOS Quotient flag copies bit 15 of the ALU output after 
a microinstruction in which the literal or mask is not 
being used and the WF value is right or 1 and SC 
field is zero. 

MULS Multiply sign sets any microinstruction during 
which any of the following three conditions existed: 
1. ALU output bit 15 and ALU input A bit 15 were 
both equal to 1 

2. ALU output bit 15 and ALU input B bit 15 were 
both equal to 1 
3. ALU input A bit 15 and input B bit 15 were both 
equal to 1. 
This flag may be applied to the ALU input A bus during 
right shift operations 

2-15 



~ variandatamachines ~~~~~~~~~~~~~~~~~~~~~~~ 
CAPABILITIES 

SYTA Byte address flag copies bit 00 of the general 
register specified by the AA field whenever a general
purpose register is specified as shifted input to the 
ALU input A bus. This flag may be used to determine 
the address of the next microinstruction and for 
memory byte store operations (SF not equal to zero 
and IM field equal XXll) determines which byte of 
the addressed memory location is to be altered. If 
SYTA equals zero, the left byte is selected. SYTA 
equal to one selects the right byte. SYTA is set or 
reset during the microinstruction rather than at the 
end. 

A wide variety of flags are available for use in micropro
gramming. In general, they may be tested no sooner than 
the microinstruction after which they were set. In other 
words, a microinstruction which both changes a flag and 
tests will be testing the old value of the flag. 

The conditions that cause a flag to be set depend on the 
particular flag. In addition some flags require that the 
microinstruction specify sampling before they will be set. 
For example, the ALU all zeros (ALUZ) flag will not be set 

unless the ALU is all zeros and sampling is requested. 

The following table lists some of the major flags. ALUZ, 
ALUC, ALUS, and ALUO are sampled together by any 
microinstruction in which SF equals XO, TF equals zero, 
and GF equals XXlX. 

Summary of flags requiring sampling for microprogrammed 
conditions. 

Flag Sampling 

NORM no 
MULS no 
SHFT yes 
QUOS yes 
BYTA no 
OVFL yes 
ALUZ yes 
ALUC yes 
ALUO yes 
ALUS yes 

Table 2-7. Overflow Flag Control 

OVERFLOW FLAG CONTROL 

2-16 

Conditions 
O_Q_erations Fields Bit 15 

ALU l~ut ALU Ou!l!_ut 
TF SF GF FF AA BB 

Set overflow 00 01 XOlX 

Reset overflow 00 01 XlOX 

Sample overflow 00 01 Xl lX 

(ADD) lXXX 

SET 0 0 
1 1 

DON'T SEP 1 0 
0 1 

(SUBTRACT) ox xx 

SET 1 0 
0 1 

DON'T SET* 0 0 
1 1 

Also, reset by system reset or a microinstruction specifying 
test of the 620/f test condition with the instruction 
register bit 00 on in which the test passes. 

Overflow may be sampled to be set if SF = 00 and GF = 
lXXX. It will not be reset even if no overflow exists. 

'°' If set previously, overflow will remain set regardless of 
sampling conditions. 

1 
0 
x 
x 

0 
1 
x 
x 



2.3.4.2 Addresses in Branches 

The destination address when the test fails must be an 
even word address. The destination addresses of both the 
pass and fail conditions must be within 32 words of each 
other. 

Procedure for Address Assignment 

Following completion of a flowchart assignment of control 
store, address assignment may be performed. A useful 
procedure is: 

1. Assign the microprogram entry addresses consistent 
with the desired format of the BCS instructions. 

2. Assign addresses to microinstructions to be executed 
upon receipt of an interrupt. These addresses must be 
x xxxx 0111. 

3. Assign addresses to all microinstructions to be 
executed following those using TEST ADDRESS! NG 
where the "test fails" condition prevails. 

4. Assign addresses to all microinstructions to be 
executed by field selection addressing. If field selection 
specifies test of the interrupt, byte address, shift, or 
console step flags assign addresses to the microin
structions to be executed in accordance with the 
following restrictions: 

Flag On Flag Off 

Interrupt x xxxxxxxxo XXXXXXXXl 
Byte Address X XXXXXXXXl xxxxxxxxo 
Shift X XXXXXXXlX xxxxxxxox 
Console Step X XXXXXXXXl xxxxxxxxo 

5. Recheck all field select and test addressing 
microinstructions for addressing consistency. Prepare 
a list of assigned addresses and corresponding 
microinstruction numbers labels (keyed to the flow
chart) to avoid duplicate assignments. 

6. Other microinstructions may have their addresses 
arbitrarily assigned by the programmer or the 
assembler. 

varlan data machines ~ 
CAPABILITIES 

2.3.5 Page Jump Addressing 

The microinstruction specifies a branch to a location in 
another 512-word page by executing a page jump. In this 
case, a 13-bit address is generated which sets a new active 
page number and specifies an address within that page. 
The page number is specified by the TS field. The word 
address is specified by field select addressing. 

12 11 10 9 8 7 6 5 4 3 2 

TS Address modified field 
select addressing 

Control store address 
page jump 

0 

A Page Jump with memory is specified by the TF field equal 
to 00; the SF field equal to 10; and the GF field equal to 
XlXX. 

A page jump without initiating a memory cycle is specified 
by setting the TF and SF fields to zero, and the IM field 
0011. 

2.3.6 Interrupt Addressing 

When interrupts are allowed and an interrupt is active in a 
class which is enabled by the TS field, the low-order four 
bits of the control store address are supplied by the 
interrupt logic and the high order bits from the AF field. 

8 7 6 5 4 3 2 0 

AF llA 

I IA is supplied by interrupt logic. 

llA is 7 for 1/0 interrupts and 1 for second tests of 110 
interrupts after initiation of the 1/0 interrupt sequence. 

The TS field enables interrupts whenever bits are set as 
follows: 

Bit Set Enables 

0 I /0 interrupts 
1/0 interrupts only if memory 
protection is installed 

2 Memory protection interrupt 
3 STEP, console step mode interrupt 

2.4 MAIN MEMORY CONTROL 

Memory access may be initiated in a microinstruction 
which indicates the type of operation and the address 

2-17 



~ varianda~mac~nes~~~~~~~~~~~~~~~~~~~~~~
cAPAe1u11Es 

source. Main memory access includes the fetching and 
storing of data to and from the memory through the 
memory buses. Memory can either be the core or 
semiconductor variety (as distinct from the disc or drum 
storage often called rotating memory, which is accessed as 
a peripheral device through 110 facilities). 

When a microinstruction initiates an access, the memory 
control section handles the complete operation. This 
permits the microprogram to initiate access to/from 
memory and perform other functions (ALU etc.) while the 
access actually occurs the microprogram can detect the 
completion of the memory access by specifying a wait for 
memory done. 

Two different types of fetches can be requested. The 
instruction fetch (IF) moves the contents of a 16-bit word 
from main memory to the memory input register (MIR) 
and the instruction buffer (IBR). The operand fetch (OF) 
moves a 16-bit word to the memory input register and does 
not change the instruction buffer. Instruction fetches are 
usually used for fetching 16-bit macroinstructions for 
decoding from the IBR. The operand fetch is used for 
general data and address fetches. The microword which 
requests a fetch provides the address in main memory. 
After the request is made it is handled completely by 
memory control and requires no further actions in the 
following microinstructions. 

Example of fetch sequence 

n n+l n+2 

request wait for (data is 
instruction memory ready for 
fetch done use in MIR) 

Memory requests to store data are of two types. The first is 
the operand store (OS), which stores a 16-bit word in main 
memory. The second is the byte store (BS), which stores 
only an 8-bit byte. As with the fetch operations, the 
microinstruction which requests the store must furnish the 
main-memory address for the operation. Microinstructions 
following the request for a store must provide the data to 
be stored on the ALU until the memory operation is 
complete. 

Example of store sequence 

n n+l n+2 

request store RO -+ALU (operation 
using P as wait for complete) 
address memory 

done 

During operand stores, the memory data are derived from 
the ALU output. If the ALU input is from any of the 16 
general-purpose registers and an arithmetic operation is 

2-18 

specified for the ALU, incorrect parity data may be stored 
in memory. This situation can be avoided by using only 
logical ALU functions during operand stores; or by 
addressing the general-purpose register to the proper ALU 
input during the microinstruction that initiates the memory 
store cycle. Figure 2-4 is a coding example of an operand
store sequence using an arithmetic operation with a 
general-purpose register as the data source. 

Completion of a memory operation is detected either with 
the wait-for-memory-done function or by requesting another 
memory operation. Wait-for-memory-done suspends mi
croinstruction execution until the memory operation is 
complete. Requesting another memory operation has the 
same effect because microword cannot complete until its 
memory request is acknowledged by memory control and 
requests are not acknowledged until any previous request 
is complete. 

Override 

An active memory access may have the type of operation 
changed by the next microinstruction. By making an 
immediate change the immediately prior action is overrid
den. This can be conditional upon the result of the same 
test available for addressing (GF field). 

Example: 

Microinstruction 
Cycle n 

Initiate 
memory 
store 

Microinstruction 
Cycle n + 1 

memory 
store 
starts 

override 
possible 

Microinstruction 
Cycle n+2 

memory 
store 
continues 

too late 
to override 

Memory cycles may be initiated by microinstructions either 
unconditionally or depending on the results of a test. 

2.4.1 Unconditional Cycle Initiation 

A memory cycle is unconditionally initiated or overridden 
when the SF field equals 01 or if the SF field equals 10 and 
the TF field equals 00. 

The IM field specifies the type of operation and the address 

source. Permitted operations are: 

IM Value Action 

XXOO Read data from memory into the instruction 
buffer and memory input register (instruction fetch). 

XXOl Read data from memory into the memory input 
register (operand or address fetch). 



.,, 
ciQ" 
~ 
C1I 

N 

~ 
(") 
0 
CL :;· 

OQ 

l""I 
)( 

I» 
3 
"C 
Ci" 

2. 
I» 
::I 

0 
"C 
~ 
I» 
::I 
CL 
IA 
~ 
C1I 

en 
C1I .a c 
C1I 
::I n 
C1I 

PAGE 

DAS CODING FORM __ OF __ 
~varian data machines \!!:la varian subsidiary 

< m ... 
ii" 
~ 

Q. 
m ... 
m 
3 
m 
n 
::::r 

(") ~ 
> (I) .,, en 

;~ 



~wriMd~am~~n~----------------------
cAPAe1u11Es 

IM Value Action 

XXlO Write the full word output of the ALU into memory. 

XXll Write the byte from the ALU specified by the byte 
address flag (BYTA) into the corresponding memory 
byte. The other memory byte at the designated word 
address is unaffected. If BYTA is false, the left byte is 
written. If BYTA is true, the right byte is written. 

BYTA, the byte address flag, copies bit 0 of the general 
register specified by the AA field whenever a general
purpose register is specified as shifted input to the 
ALU input A bus. 

The operation may be changed by the following microin
struction by specifying the new operation with the IM field 
equal to OOXX. This permits, for example, conversion of a 
store cycle into a fetch or an instruction fetch into an 
operand fetch. 

The data to be written to memory must be maintained at 
the ALU output by the microinstruction(s) following 
initiation until the cycle is complete. 

The source to be used for loading the memory address 
register is specified as follows: 

IM 
IM 
IM 

OlXX 
lOXX 
llXX 

ALU output 
Program counter 
Memory input register 

2.4.2 Conditional Cycle Initiation 

A memory cycle may be initiated (or overridden) or not 
depending on the results of a test specified by the GF field. 
Conditions tested were described previously in the section 
of test addressing. 

If the TF field is not equal to 00 and the SF field equals 10, 
the cycle will be initiated (or overridden) if the tested 
condition is false. 

If the SF field is equal to 11, the cycle will be initiated (or 
overridden) if the tested condition is true. 

In either case, the IM field specifies the operation to be 
performed and the address source to be used as described 
in the previous section. 

2.4.3 Special Transfer 

ALU output data may be transferred to the instruction 
buffer and memory input register by using the memory 
data bus. This does not involve activation of any memory 
module. To initiate this transfer the SF field must be equal 
to 00 and the IM field equal to 0100. The ALU output data 
must be set up by the initiating microinstruction and 
maintained for one more microinstruction. 

2-20 

2.4.4 Wait for Memory Done 

The wait-for-memory-done function suspends microinstruc
tion execution until memory control signals completion of 
central control's prior request. This function is SF = O and 
IM = 0001. If no central control has no prior request 
active, the wait-for-memory-done has no effect. 

Table 2-8. Memory Operations 

Control Field 

Function SF TF IM 

UNCONDITIONAL INITIATION er;: 01 

L 10 00 

CONDITIONAL INITIATION 
Condition True 11 

Condition False 10 Not 00 
(Condition Specified in GF) 

EITHER 

Operation xxoo 
Read memory data into 
instruction buffer and 
memory input register 

Read memory data into XXOl 
memory input register 

Write ALU word output XXlO 

Write ALU byte output XXll 

Address Source or Override 
Override operation ooxx 

ALU output OIXX 

Program counter lOXX 

Memory input register llXX 

SPECIAL TRANSFER 
(ALU output to instruction 00 0100 
buffer and memory input 
register) 

2.5 MICROPROGRAMMING EXAMPLE 

General 

As an example of instruction implementation using Varian 
microprogramming, the steps of a single-word addressing 
load accumulator LOA in the direct address mode will be 
traced. 

SSlM 

Initially the instruction pipeline is assumed to be empty so 
a new instruction must be fetched from main memory. The 



first microinstruction studied will be that obtained from 
control store location 13E (all addresses are given in 
hexadecimal). This location has the label SSlM, which is 
one of the microprogram's standard states. 

The microinstruction fields at 13E are: 

TS AF MS MT FS TF SF GF 
0000 01001 0010 0 0000 00 0 1 0000 

MR AB IM LB LA RF FF MF 
0 00 1000 00 00 000 0000 00 

CF WR SC VF WF XF SH BB AA 
0 0 0 0 0 00 000 0000 0000 

The function of this microinstruction is to initiate an 
instruction fetch from the memory address specified by 
the program counter. Note that the SF field equal to 01 
specifies unconditional initiation of the memory cycle. The 
IM field specifies use of the program counter for an 
address source and the instruction buffer and memory 
input register as destinations for data received from 
memory. The FS, MT, TS and TF fields contain all zeros so 
normal mode addressing is specified. The next control store 
address will be 092. No other fields of the microinstruction 
are pertinent. 

SS2M 

Location 092 is another microprogram standard state 
labeled SS2M. It continues the process of filling the 
pipeline by initiating another instruction fetch using the 
incremented contents of the program counter. 

The microinstruction fields at 092 are: 

TS AF MS MT FS TF SF GF 
0000 00010 1 1 0 1 0 0000 00 0 1 0000 

MR AB IM LB LA RF FF MF 
0 00 1000 00 00 100 0000 0 

CF WR SC VF WF XF SH BB AA 
00 0 0 0 0 00 000 0000 0000 

Again the SF field is equal to 01 and the IM field is equal to 
1000 specifying another instruction fetch using the 
program counter. In this case, however, the RF field equals 
100 specifying that the program counter will be incre
mented before it is used an address. This microinstruction 
will not be immediately executed as the previous microin
struction initiated memory activity and the memory 
interface will remain busy until the first instruction from 
memory is loaded into the instruction buffer and the 
memory input register. At the time, the current microin
struction completes and the next microinstruction from 
location 020 becomes active. Normal addressing occurs 
again due to FS, TS, MT and TF fields being zero. No other 
fields of the microinstruction are pertinent. 

varian data machines ~ 
CAPABILITIES 

SS3M 

Location 020 is another microprogram standard state 
labeled "SS3M". It causes decoding of the instruction 
fetched from memory while checking for interrupts. It also 
copies the instruction buffer into the instruction register to 
make room for the next instruction from memory. 

The microinstruction fields at 020 are: 

TS AF MS MT FS TF SF GF 
111 0 0 110 1 0 110 0 0000 00 00 0101 

MR AB IM LB LA RF FF MF 
0 00 0 110 00 00 000 0000 0 

CF WR SC VF WF XF SH BB AA 
00 0 0 0 0 00 000 0000 0000 

This microinstruction manipulates no data paths nor does 
it initiate any memory cycles. Its sole purpose is to check 
for interrupts and, if there are none, cause a branch to the 
required microsequence. The TF and SF fields are both 
equal to 00 and the GF field bit 0 is a one causing transfer 
of the instruction buffer to the instruction register. The GF 
field bit 2 is a one, thus enabling interrupts and decoder 
addressing. The TS field defines the interrupts which are 
enabled -- all except 1/0 interrupts unless the memory 
protect option is installed. The IM field specifies selection 
of the interrupt flag. If this flag were set, interrupts would 
be suppressed. The flag is reset by this microinstruction. If 
an interrupt were active and the interrupt flag had not 
been set, the next control store address would be ODX 
where X designates the four bits supplied by the interrupt 
logic. This would produce a branch to the interrupt 
microprogram sequence. 

Assuming no interrupts are present, the new control store 
address will be determined by the decoder logic. The 
instruction fetched from memory is assumed to be 1 QF9 
(hexadecimal) or 010371 (octal). This is a V73 "LOA" 
instruction with direct addressing of location OOF9 (hex
adecimal). The most significant four bits of the instruction 
buffer address the first decoder control store at location 
one. The next four bits address the second decoder control 
store at location 00. The decoder control store contents 
are: 

1st decoder 

Control store 
location 1 

2nd decoder 

Control store 
location 0 

812 = 1 
88-80 = 110000010 

A8-AO 010000000 

Since 812 equals 1, the 88-80 and A8-AO address 
components are logically ORed to produce an address of 
182. 

2-21 



~ variandatamachines~~~~~~~~~~~~~~~~~~~~~~~ 
CAPABILITIES 

SWAlO 

Location 182 contains the first microinstruction of the 
single word addressing sequence (SWAlO) for the 
instruction fetched from memory. It forms the effective 
address by masking bits 00 through 10 from the 
instruction register. It also initiates the operand fetch. 

The microinstruction fields at 182 are: 

TS AF MS MT FS TF SF GF 
0000 10010 1111 0 0000 00 01 0000 

MR AB IM LB LA RF FF 
0 00 0101 10 00 0 11 1010 

MF CF WR SC VF WF XF SH BB AA 
1 1 1 1 1 0 0 00 000 0000 0000 

I I 

'-------- 16-bit mask literal - - - - - - - - -' 

The LB field equals 10 so the ALU B input bus will have the 
contents of the instruction register masked by the 16 bits 
of the MF, CF, WR, SC, VF, WF, XF, SH and BB fields (a 
zero in the mask enables the corresponding instruction 
register bit). The mask equals F800 so the low order 11 bits 
of the instruction are used. 

The ALU mode is determined by the FF field (1010) in 
conjunction with the LB field (forces logical mode) 
resulting in an ALU function of the ALU = B. 

The RF field equals 011 so the ALU output is copied into 
the operand register. 

The SF field equals 01 so unconditional memory control is 
specified by the IM field (0101) to be fetch an operand 
into the memory input register using the ALU output for 
an address source. This microinstruction will complete 
when the memory cycle initiated by the microinstruction at 
092 completes. 

The FS, TS, TF and MT fields all contain zeros so normal 
addressing is used and the AF and MS fields specify the 
next control store address of 12F. 

SWA20 

Location 12F contains the second microinstruction of the 
single word addressing sequence (SWA20). It decodes bits 
13-15 of the instruction register contents to determine the 
class of the single word addressing instruction. 

The microinstruction fields at 12F are: 

TS AF MS MT FS TF SF GF 
0000 11110 1100 1 1111 00 00 0000 

MR AB IM LB LA RF FF MF 
0 00 0000 00 00 000 0000 0 

2-22 

CT WR SC VF WF XF SH BB AA 
00• 0 0 0 0 00 000 0000 0000 

No data manipulation or memory control operations are 
performed by this microinstruction. It serves only to 
branch to the specific microsequence for the class of 
single-word addressing instruction contained in the 
instruction register. Field select addressing is used to 
perform this decoding (FS field is not equal to 0000). The 
FS field is equal to 1111 so the selected field is bits 11 
through 15 of the instruction register. The composite 
address formation is illustrated: 

AF field contribution: 

TS field contribution: 

Field selected from 
instruction register: 
(I = 10F9) 

Mask consisting of MT 
and MS fields 

or 

and 

8 7 6 5 4 3 2 1 0 
1 1 1 1 0 0 0 0 0 

1 1 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 0 0 

Final effective address 
produced by inclusive or 

1 1 1 1 0 0 0 0 0 

The address of the next microinstruction is then 1 EO. 

LO Al 

Location 1 EO is the first microinstruction specific to the 
LOA instruction (LDAl). 

This microinstruction increments the program counter and 
initiates another instruction fetch from main memory. 

TS AF MS MT FS TF SF GF 
0000 01011 0101 0 0000 00 01 0000 

MR AB IM LB LA RF FF MF 
0 00 1000 00 00 100 0000 0 

CF WR SC VF WF XF SH BB AA 
00 0 0 0 0 00 000 0000 0000 

The RF field equals 100 specifying that the program 
counter will be incremented during this microinstruction. 

The SF field equals 01 so unconditional memory control is 
specified by the IM field (1000) to fetch an instruction into 
the instruction buffer and memory input register using the 
program counter for an address source. (Note that the 



program counter is incremented during the microinstruc
tion so the new value will be used for the memory cycle). 

Normal addressing is used to specify the next microinstruc
tion address (TF, TS, FS, MT fields are all zero). The AF 
and MS fields define the address to be OB5. 

LOA2 

Location OB5 is the second microinstruction specific to the 
LOA instruction (LDA2). This microinstruction transfers 
the contents of the memory input register to the 
accumulator, RO; transfers the instruction buffer contain
ing the next instruction to the instruction register to make 
room for the instruction whose fetch was initiated by the 
microinstruction 1 EO; decodes the instruction buffer to 
determine the starting address of the next microsequence 
and checks for interrupts. 

The microinstruction fields at OB5 are: 

TS AF MS MT FS TF SF GF 
1 1 1 1 01101 0 110 0 0000 00 00 0101 

MR AB IM LB LA RF FF MF 
0 00 0 11 0 01 00 000 1010 1 

CF WR SC VF WF XF SH BB AA 
00 1 0 0 0 00 000 0001 0000 

The ALU B input is specified by the LB field (equal to 01) to 
be one of the special registers. The BB field (equal to 
0001) defines the memory input register as the source. 

The ALU operation is specified to be in the logical mode 
(MF = 1) with the ALU output equal to the ALU B input 
(FF = 1010). 

The WR bit equals a one so the ALU output data will be 
written into the register specified by the AA field (AA == 
0000) which is the accumulator (A register). This is the 
execution phase of the LDA instruction. 

The SF and TF fields are both equal to 00 and the GF field 
bit 0 is a one so the instruction buffer contents are copied 
into the instruction register. The GF field bit 2 is a one so 
the instruction decoder is enabled and interrupts are 
checked. 

The IM field equal to 0110 with the SF field equal to 00 
selects and resets the interrupt flag. If the flag is set, the 
decoded address and interrupts are suppressed and the 
next microinstruction is fetched from location ODO. All 
interrupt classes are enabled as the TS field contains all 
ones. If an interrupt is active and the interrupt flag is off, 
only the decoded address is suppressed and the next 
microinstruction is fetched from the address specified by 
the AF field and the interrupt logic. This address is ODX 
where X is the address supplied by the interrupt logic 
(X "'O). 

If no active enabled interrupts exist, the next microinstruc
tion will be fetched from the address specified by the 

VTll-1938 

varian data machines ~ 
CAPABILITIES 

SSlM (13E) 

INITIATE INSTRUCTION 
FETCH USING P 

SS2M ,i, (092) 

INCREMENT P 

INITIATE INSTRUCTION 
FETCH USING P 

SS3M ,i, (02D) 

DECODE INSTRUCTION 
BUFFER 

TRANSFER BUFFER TO 
INSTRUCTION REGISTER 

ENABLE INTERRUPTS 

SELECT AND RESET 
INTERRUPT FLAG 

_.. ,.. 
SWAlO + (182) 

INSTRUCTION REGISTER 
BITS 00 THRU 10 ALU 

LOAD OPERAND REGISTER 

START MEMORY OPERAND 
FETCH USING ALU 

SWA20 ,i, (12F) 

FIELD SELECT INSTRUCTION 
REGISTER BITS 13 - 15 

1
13 - 15 

= 000 

LDAl • (l EO) 

INCREMENT P 
INITIATE INSTRUCTION 
FETCH USING P 

LDA2 ,~ (OB5) 

COPY MEMORY INPUT 
REGISTER INTO RO 

TRANSFER BUFFER TO 
INSTRUCTION REGISTER 

DECODE INSTRUCTION 
BUFFER 

SELECT RESET INTERRUPT 
FLAG 

DECODED SING 
ADDRESSING IN 

LE WORD 
STRUCTION 

Figure 2-5. Flowchart for LOA Instruction 

2-23 



~ variand~amac~nes-~~~~~~~~~~~~~~~~~~~~~~ 
CAPABILITIES 

IDENT SSlM SS2M SS3M SWA10 SWA20 LDAl LDA2 
(HEX. ADDR.) (13E) (92) (20) (182) (12F) (lEO) (085) 

FUNCTION FETCH FETCH FETCH FETCH FETCH FETCH 
LDA NEXT INST. NEXT INST. OPERAND OPERAND THIRD INST. 

~ ·-
~ REQUEST IF IF OF IF 

~ 
ADDRESS p p ALU p 

INPUT A 

INPUT B I I\ 07FF MIR 
3 --< 

OUTPUT TRNB TRNB 

--
DESTINATION RO 

--+-· 
VI SAMPLE 
2 -·-
~ TEST 

FIELD 
MODE DECODE SELECTION DECODE 

0 113-115 z 

~ -- ~·---·-··-----
0 LDA l+X FROM 0 FROM < ADDRESS SS2M SS3M DECODER 

SWA20 WHERE X = LDA2 DECODER 
0,4,8, •.• 28 

"' SPECIAL 
ENABLE IBR-+ I 

w 
INCP INTERRUPTS INCP ENABLE ::c: .... ACTIONS IBR-tl INTERRUPTS 0 

NOTE: 
Timing diagram shows the start-up and execution of a sequence of single-word addressing instructions (330 nanosecond 
memory cycle time is assumed). 

VTIJ-2084 Figure 2-6. Flow Diagram of LOA Instruction 

decoder control store logic. If the instruction buffer 
contains another single-word addressing instruction, the 
next address will be 182 (SWAlO) and the sequence will be 
repeated. 

Figures 2-5 and 2-6 show a flowchart and flow diagram of 
the microinstruction sequence described. Note that the 
pipeline effect of buffering instructions permits efficient use 
of the memory. (A 330-nanosecond semiconductor memory 
was assumed). 

2.6 TIMING CONSIDERATIONS 

Most microinstruction operations take place at the conclu
sion of the cycle. Certain exceptions do exist. ALU inputs 
are sampled at the midpoint in time of the cycle. Control
store address information, memory addresses, and most 
register and flag changes occur at the end of the 
microinstruction execution. The areas below should be 
considered while planning microprograms. 

Program counter incrementation (RF = 100 or 111) 
Incrementation takes place at the midpoint of the 

2·24 

microinstruction. Thus the program counter value 
applied to the ALU input will not be the incremented 
value. The new value will be used as a memory 
address, if the program counter is specified as an 
address source. 

Byte address flag 
The byte address flag is set or reset at the temporal 
midpoint of the microinstruction. Thus its new value 
may be used to determine which byte of the memory 
location is to be altered. 

Memory write operations 
ALU inputs, function, mode and carry must be 
maintained constant throughout any memory write 
cycle. This is accomplished by specifying another 
memory cycle immediately following the current cycle 
thus interlocking execution of the next microinstruc
tion with completion of the memory cycle in progress 
or by using the wait for memory done function (SF 
00, IM = 0001). 

Special transfers 
The transfer of ALU data to the instruction buffer and 



memory input register requires ALU data to be 
maintained for two microinstructions. 

I /0 operations . 
If the 1/0 section is not idle when a new 1/0 operation is 
specified, microinstruction execution will not occur 

until the 1/0 becomes idle. A wait for 1/0 done 
function (SF = 00, and IM = 0010) will cause a 
similar wait condition until the l/O DN bit becomes 
true. 

Use of the 1/0 register 
If direct memory access or similar 1/0 operations are 
possible the 1/0 register may be altered. Care in use of 
this register is indicated. Control of the 1/0 register is 
described in the 1/0 section of this guide. 

2.7 ADDITIONAL CAPABILITIES 

2.7.1 Register Field Control 

Many types of instruction words contain fields which 
specify registers which contain operand data. If all 
combinations of operations on all possible registers had to 
be specified by individual microinstructions, the control 
store size would be quite large. 

A Varian 70 series system permits three- or four-bit fields 
to be selected from the instruction register and stored and 
maintained in the control-buffer-register specification 
fields. This permits a single microinstruction to handle all 
combinations of registers for any operation. 

This register field extraction is performed independently of 
the field select addressing function and both may be used 
simultaneously. 

The AA and BB fields of the microinstruction contained in 
control store are copied into their corresponding positions 
in the control buffer any time the AB field equals 00 and 
the MR field equals 0. This is the normal mode of 
operation. 

varian data machines ~ 
CAPAB 

When the SF field equals 00 and no I /0 request is active, 
the AB field equals 01 or 10; the TS field specifies a four 
bit field of the instruction register to be loaded into the 
control buffer's AA or BB field. The field not being loaded 
will be loaded into the control buffer's AA or BB field. The 
field not being loaded will be maintained at its last value. 
A code of AB equals 01 and loads the field selected into 
the BB field. A code of AB equals 10 and loads the field 
selected into the AA field. 

The MR bit is used to mask the most significant bit of the 
selected field. If MR equals zero, the most significant bit of 
the selected field will be treated as a zero. If MR equals 
one, the most significant bit of the selected field will be 
loaded into the designated field. 

The AA and BB fields can be maintained in their current 
state by specifying and AB field equal to 11 while the SF 
field equals 00 and no I /0 request is present. 

If no I /0 request is present, the AB field equals 00 and the 
MR field equals 1, the control buffer AA field will be 
maintained at its current value and the BB field will be 
forced to either of two addresses depending on data loop 
conditions and the WF field. 

WF field equal to 1 

Operand register bit 01 1; BB 1111 

Operand register bit 01 O; BB 1110 

WF field equal to O 

ALU bit 15 1; BB 1111 

ALU bit 15 O; BB 1110 

This function is used by the Varian 73 standard instruc· 
tions microprograms for multiply and divide. 

Register field control operations are summarized in the 
tables following. 

2-25 



• varian data machines 

CAPABILITIES 

Table 2-9. Register Field Control 

Function 

Load A and B fields from 
control store 

Inhibit loading of A field 
and place selected 4 bit 
field (masked) from in-
struction register into 
B field 

Inhibit loading of B field 
and place selected 4 bit 
field (masked) from in-
struction register into 
A field 

Inhibit loading of A and 
B fields 

Inhibit loading of A field 
and force B field to 1110 
if ALU output bit 15 = 0 or 
to 1111 if ALU bit 15 = 1 

Inhibit loading of A field 
and force B field to 1110 
if operand register bit 
01 = 0 or to 1111 if operand 
register bit 01 = 1 

All functions are inhibited 
if an 1/0 request is issued. 

Table 2-10. Register Field Selection 

Bits Selected From 
Instruction Register 

TS Field for register file 

000 03 02 01 00 
001 04 03 02 01 
010 05 04 03 02 
011 06 05 04 03 
100 07 06 05 04 
101 08 07 06 05 
110 09 08 07 06 
111 10 09 08 07 

Other Controls 

Transfer instruction buffer to instruction register 

The contents of the instruction buffer will be transferred to 
the instruction register when TF and SF both equal zero, 
and GF has a low-order bit set to 1. 

2-26 

SF 

00 

00 

00 

00 

Control Fields 
AB MR TS WF 

00 

01 

10 

11 

00 

00 

0 

Mask most Selects 
significant field 
bit of BB field 

Mask most Selects 
significant field 
bit of AA field 

1 0 

1 

Enable Jump Signal 

A signal is sent to the memory-protection option designat
ing a jump instruction by setting the LB high-order bit to 
zero and the SC field to zero and the XF field equal to 11 or 
10. If the XF field equals 11, the interrupt flag will be reset. 

Reset Interrupt Flag 

The interrupt flag will be reset if the LB field equals 00 or 
01 and the XF field equals 11 or 01. 

Enable Special ALU Mode 

(This feature is useful for the standard instruction set, but 
not generally suggested) 

The ALU mode, carry input and overflow sampling may be 
forced according to the contents of the instruction register 
by setting the LA and LB fields equals to either 00 or 01 



(high-order bit equals zero) and the SH high-order bit 
equal to 1. In this case, the ALU function will be as follows: 

Bit 

3 As specified by FF field 
2 most significant 2 bits 

Instruction register bit 7 

O Instruction register bit 7 
complemented 

2.7.2 Memory Addressing to 64K 

The standard instruction set has addressing capability to 
32K words with 15-bit addresses. The use of bit 15 to 
select indirect addressing mode removes it from use as an 
address bit. The memory modules can recognize a 16-bit 
address which increases the range of addresses to 64K 
words. 

The most significant bit of the memory address bus is 
normally grounded to prevent any address generated by 
the standard instruction set from attempting to access 
above 32K words. This is necessary since the high-order bit 
can be set by indirect memory reference in the host 
instruction set. 

The WCS permits use of the full 16-bit addressing 
capabilities of a Varian 70 series system. This enabling is 
automatically inhibited while executing from page zero so 
standard 620 problems will execute correctly in the lower 
32K words of memory. 

User-written microprograms in the WCS can generate 16-
bit addresses to cause access to the full 64K words. This 
mode is enabled or disabled with a group of control fields 
in the microinstruction. Once enabled this mode is 
retained until explicitly disabled as described below or a 
system reset occurs. The enabled mode is not effective 
when page zero is active. 

64K Mode of Memory Addressing 

Enable Disable 

SF=O SF=O 
TF=O TF=O 
IM= 1101 IM= 1101 
LB= 11 LB= 11 
MF=l CF= 11 or 10 

Changing the memory mode requires all the 
conditions set as indicated. Figure 2-7 illus
trates memory bus control. 

2. 7 .3 Memory Bus Lockout Status 

Systems in which multiple processors share the use of 
common memory modules often require the capability of 

VTll-1806 

varian data machines ~ 
CAPABILITIES 

SYSTEM RESET 

64K 
ADDRESSING 

DISABLED 

64K 
ENABLED 

IF PAGE 0 

ENABLE= IM= 1101 /\ (T = 0) /\ 
(S=O)/\(LB= 11)/\(MF= 1) 

DISABLE= (IM= 1101)/\ (T = O)/\ 
(S =0)/\(LB= 11)/\(C= lOVll) 

Figure 2-7. Flowchart of Memory Address Control 

testing the contents of some memory locations and 
modifying those contents (if the results of the test indicate) 
without the possibility of another processor gaining access 
to that location between the test and the change. 

WCS Implementation 

The WCS permits use of a function allowing the processor it 
controls to temporarily lockout all memory modules 
connected to its memory bus. While the memory system is 

2-27 



~~ var1an data machines 

CAPABILITIES 

locked out on one port, no accesses are permitted on the 
other port. To prevent simultaneous lockout from both 
processors the lockout mode for any memory bus only 
becomes enabled when the requesting bus actually gains 
access to the memory (so the other bus cannot establish 
the lockout mode). The memory lockout mode is set or 
reset with the following microinstruction fields: 

Set Reset 
Field LOCKOUT LOCKOUT 

SF 0 0 
TF 0 0 
IM 1101 1101 
LB 11 11 
CF Xl XO 
AA xxxo XXXl 

X indicates a bit position not involved in this operation. 

PROCESSOR 
A 

PORT A 

MEMORY 

j 

If priority memory access (PMA) is present in the system, 
caution must be exercised to prevent the PMA from 
establishing its own lockout mode while either processor is 
in lockout mode. Simultaneous lockout would prevent all 
further accesses to memory and "lock-up" the system. 
Figure 2-8 illustrates memory bus lockout. 

Lockout is removed by system reset. 

2.7.4 Stack Use 

Three stack operations, branch/push, branch/pop and 
branch/delete are used on the microprogram-return stack. 
All are global and effect a page selection. On the branch/ 
push and branch/delete, the TS field gives the new page 
number. On the branch/pop, the word at the top of the 
stack gives the new page number. The return address 
which is pushed is an independent 13-bit specification 

PORT B 

PROCESSOR 
B 

J 
MEMORY BUS LOCKOUT STATUS 

YTll-ll06 

2-28 

MEMORY CYCLES 

PERMlTED 

L 

PROCESSOR A 
ACCESSES 
FOR TEST 

1~ 

PROCES,SOR A 
MODIFIES 

• 

MEMORY CYCLES 
FORBIDDEN 

i 
PROCESSOR A 

ACCESSES 
FOR TEST 

1r 

PROCESSOR B 
ACCESSES 
FOR TEST 

,~ 

PROCESSOR A 
MODIFIES 

Figure 2-8. Memory Bus Lockout 



provided by mask field of microinstruction from the 
destination of the branch. The 13-bit specification is made 
up from the following fields of the microinstruction: 

PAGE Word 

12 11 10 9 8 7 6 5 4 3 2 1 0 

WR SC VF WF xx I SH 1 BB 

All stack operations have a value of zero for the SF and TF 
fields, IM set to 1110 and LB set to 3. Push requires bit 1 
of the AA field set to 1. Pop is designated by bit 2 of the AA 
field set to 1 and bit O of the BB field set to 0. Branch/ 
delete is the same as branch/pop except bit 0 of the BB 
field is set to 1. 

TF SF IM LB AA BB 
Branch/push 0 0 D 3 bit 1 

= 1 
Branch/pop 0 0 D 3 bit 2 bit 0 

= 1 = 0 
Branch/delete 0 0 D 3 bit 2 bit 0 

= 1 = 1 

In initializing the stack an error branch can be pushed into 
the first location. If a microinstruction tries to "pop" this 
return, an underflow condition will occur and the error 
branch will be taken. An attempt to "push" one more level 
than the sixteen allowed causes a branch to the address at 
stack location zero. 

In addition to pop and push operations on the stack, a 
stack entry delete operation is provided. This causes a 
page branch to the address specified by the processor and 
deletes one entry from the top of the stack. 

All stack return addresses including the error return are 
restricted to the WCS. This avoids conflicts with processor
generated addresses during the pop operation. 

Questions and Answers About Microprogramming Stack 

Q: The WCS stack push and pop operations do not appear 
to be mutually exclusive. If both are specified, would the 
stack first pop the new address then push the return 
address? 

A: Such j:)n operation is undefined and should be avoided. 

Q: Do micro stack operations proceed at full speed? 

A: The stack operates at the same speed as other writable 
control store operations -- 190 nanoseconds. 

2.7.5 Memory Addressing Using the 
Optional Memory Map 

The memory-map key register (used by VORTEX 11) cannot 
be easily modified from the WCS. As an option, the memory 

varian data machines ~ 
CAPABILITIES 

map can be wired to operate with the processor key 
register. This mode is not supported by standard Varian 
software. The following paragraphs describe this special 
mode of operations. 

The processor key register is four bits which may be applied 
to the ALU input bus B as part of the status word. It is 
loaded from ALU output bus bits 12-15 and applied to the 
memory address bus as a four-bit extension to the 15-bit 
memory address register. The key register provides bits 15-
18. 

I 1a 17 16 15 I 14 

key register Memory Address Register 

memory map input 
19 bits 

o) 

when 64K mode is enabled, bit 15 of the memory address 
register is also ORed into the effective map input bit 15. 

During memory cycles initiated by 1/0 (OMA), the 110 key 
register is applied instead. 

Care must be taken in using the processor key register as 
an input to the ALU input bus B. No 1/0 initiated memory 
bus activity must take place during application of the 
status word or the value of the I /0 key register may be 
used instead of the processor key register. 

2.7.6 Memory Protection 

If the memory protection is enabled, write operations are 
automatically inhibited. A memory-protection internal 
interrupt is generated as well as an I /0 interrupt request. 
The memory-protection option may be disabled only by 
appropriate I /0 instructions, not by microinstructions. Care 
must be taken in using the memory protection if more 
than 32K words of memory are to be addressed (bit 15 of 
memory address is enabled). Such use is very specialized 
and should only be undertaken after consultation with 
Varian Data Machines. 

2.7.7 Address Comparator Logic 

Address comparator logic is provided in Varian 70 series 
processor to prevent erroneous operation in the event a 
store instruction stores data into the next memory location 
in the program (macro). Erroneous operation would occur 
because the processor fetches the contents of the next 
memory location (n + 1) before the execution of the current 
instruction (at location n) is completed. The comparator 
logic compares the address from the program counter with 
the address from the memory address lines. If the addresses 
are equal, the comparator logic generates an equal-address 
flag (MPLE) which enables the memory contents already 
fetched into the processor's instruction buffer to be updated 
to the new contents stored by the store instruction. 

2-29 



~ varian data machines 

CAPABILITIES 

A store instruction can thus cause a dynamic alteration 
to the original program flow. An example where this dynamic 
alteration would be useful is in forming a BCS macroin
struction in which the address is located in the A register 
and the operation code is located in a memory location. 
The A register is combined with the memory location to 
produce the BCS macroinstruction. By using the STA in
struction with direct addressing into location n + 1, the 
A-register contents are stored in location n + 1 and are 
processed as the next instruction in the program. 

The following items should be considered when micropro
grams involving a store instruction are written: 

a. The instruction buffer is modified if the address in the 
program counter equals the address on the memory 
address lines and a non-memory accessing microin
struction is executed during the store operation (no 
back-to-back memory operations). 

b. The instruction buffer is modified if the address in the 
program counter equals the address on the memory 
address lines and either a memory accessing microin
struction or a wait-for-memory done condition follows 
the store operation (back-to-back memory operations). 
This type of operation is shown in the diagram below: 

Microinstruction 
being executed 

Previous micro- Start memory Memory-accessing 
instruction for store microinstruction 

operation 

A 
Memory operation 
being performed 

I 
I 
I 

Unknown Store operation 

I 
I 
I 

Program counter is equal to memory 
address here I 
I I 
: I 
MPLE flag is generated due to equal 

addresses I 
I 

I 
Program counter may no 
longer equal the memory 
address, but MPLE flag is 
still active and the in
struction butter is modi
fied anyway. 

c. If microprograms are written for a user-defined mac
roinstruction set and dynamic program alteration 
occurs, all store operations should be followed by a 
non-memory accessing microinstruction so that the 
MPLE flag can test for equal addresses. Any modifi
cation to the program counter during execution of the 

2-30 

store operation should be avoided. This type of opera
tion is shown in the diagram below: 

Microinstruction 
being executed 

Start memory 
for store op
eration 

Memory operation 
being performed i Unknown 

Non-memory 
accessing 
micro
instruction 

Next 

microinstruction 

Store operation 

I 
MPLE flag tests for equal 
addresses. 

2.8 QUESTIONS ABOUT 
MICROPROGRAMMING CAPABILITIES 

Q: If a current memory cycle is to alter the memory input 
register, and the memory input register is specified as 
the memory address source by the current microin
struction (awaiting memory cycle completion), are the 
old or new contents of the memory input register 
used for the next cycle's address? Does the 
situation change if the memory input register is an 
ALU input and the ALU is selected as an address 
source? Does the WCS clock rate affect this? 

A: The new value of the memory input register is used 
when the memory input register is used as an address 
source. The memory input register should not be used 
through the ALU to determine the address of the next 
memory cycle when it can be altered by the current 
memory cycle. The WCS clock rate does not affect 
this. 

Q: What is the standard entry point to branch to when an 
interrupt is detected ? 

A: Interrupts, when enabled, cause a branch to the 
address specified by the AF field and interrupt address 
supplied by the 1/0 control. Standard 110 interrupts 
supply an address component of 0111 to the least 
significant four bits. The most significant five bits are 
specified by the user (AF field) and may be anywhere 
in the currently active control store page. At that 
address, the microprogram should perform the func
tions of the V73 IWAIT microinstruction (location OD7 
on page zero) and then branch to INTl (ODl page 
zero) or perform in the current page the functions of 
INTl, INT2, INT3 and INT4. 



Q: Is data in the memory input register protected against 
OMA and PMA operations ? 

A: Yes, DMA and PMA operations do not alter the memory 
input register. 

Q: When reading data from memory is the data available 
in the memory input register at a fixed number of 
microinstructions following memory initiation, or 
must a wait for memory done be placed before using 
the data or starting another memory cycle ? 

varian data machines ~ 
CAPABILITIES 

A: Data arrives in the memory input register no sooner 
than the second microinstruction after its initiation. It 
may arrive after that. The access time depends upon 
DMA or PMA or other memory bus cycles, semicon
ductor memory refresh cycles or core memory rewrite 
cycles in progress at the time. If a new memory cycle 
is to be initiated immediately following completion of 
the current cycle, interlocking is automatic as the 
execution of microinstructions will cease until the new 
cycle initiation is accepted by memory control. 
Otherwise a wait-for-memory-done function must be 
specified. 

2-31 



~ varian data machines 



SECTION3 

TECHNIQUES 

This section describes the use of flow diagrams in writing 
user microprograms and the interface with the 620 
emulation microprogram. Several detailed examples of flow 
diagrams for sample microprograms are included here. 
These examples will be ·continued in later sections, where 
the flow diagrams will be translated into assembly 
language. 

3.1 INTERFACE WITH 620 EMULATION 

3.1.1 Execution of User Microprograms 

Branch to Control Store Implementation 

The BCS instruction causes a branch to the WCS and 
always goes to page 1. The control store word in page 1 is 
specified in bits 0 - 4, allowing a branch to one of the first 
32 words, which contain vectors to microprogrammed 
routines. The BCS instruction is a special coding of an 1/0 
instruction and, as such, is not a generic mnemonic within 
the DAS assembler language. This instruction for use in 
symbolic DAS coding must be defined by the user. 

The BCS macro is decoded directly on the WCS page during 
primary decoding time as defined by the processor logic. A 
BCS is performed only if decoder control store page 0 is 
currently selected. Any other control store selected causes 
the macro to be taken as part of a different instruction set. 
The BCS page branch does not change the decoder control 
store selection. A local page-branch micro-operation can 
change the selection of a decoder control store to page 1. 

3.1.2 Steps in Instruction Execution 

The following are the general stages in the execution of a 
16-bit macro instruction: 

1. A microinstruction initiates an instruction fetch. 

2. The instruction is transferred from memory to the 
instruction buffer. 

3. The instruction is copied into the instruction register 
and a request is made for a decoding of the instruction 
buffer contents. This decoding simply identifies the 
instruction to be a member of a certain class of 

varian data machines ~ 

instructions and effectively causes a branch to a 
microroutine which does any work common to that 
class; for example, single-word memory-addressing 
instructions may use the same microroutine for 
computing the effective memory address. 

4. Secondary decoding of the instruction determines its 
exact identity. This is done by such features as field
selection addressing, which allows using bits from the 
instruction register to determine a microprogram 
branch address. Using such methods, the microin
structions which complete the actual execution of the 
instruction are reached. 

5. Microinstructions which form the instruction are 
executed. 

3.1.3 Instruction Pipeline 

In our system, the term instruction pipelining refers to the 
technique of fetching the next instruction from memory 
before the current one has finished executing. This is 
possible due to the availablility of two 16-bit registers for 
holding instructions. The first is the instruction buffer 
(IBR), which receives the instruction being fetched from 
memory. In IBR the next instruction is held while the 
current instruction being executed is in the instruction 
register (I). When ready, the instruction buffer is transfer
red to the instruction register and the next instruction may 
be fetched from memory. 

The chief advantage of this method lies in the fact that the 
microinstructions are much faster than the fetches from 
memory. 

Thus, without the pipeline, a one or two microinstruction 
delay would be added to the execution of each instruction 
while the processor waited for the instruction from memory. 

Interfacing with the Pipeline 

The instruction pipeline is crucial to the execution of the 
standard instruction set. Thus, any new instructions being 
added through microprogramming must consider and be 
cautious of the effects and requirements of the pipeline. 
Because of the pipeline, user's microroutines in WCS can 
rely on certain things being true when they receive control 
from page zero. Likewise they must make sure certain 
techniques are used when they exit to read-only memory. 

3·1 



~ varian data machines 

TECHNIQUES 

Upon entry to WCS by a BCS instruction, the following 
conditions exists: 

a. The program counter (P) is pointing to the word 
following the BCS. 

b. The BCS command will be in the instruction register. 

c. The word following the BCS will be on its way from 
memory to the instruction buffer and memory input 
buffer. 

On exit from WCS the microprogram must set conditions 
for the next command, and maintain the pipeline. In 
particular the following are required: 

a. The next instruction to be executed is in the instruction 
buffer. This will often be the word after the BCS, which 
was already on its way there on entry. If the BCS has 
a parameter, or if the instruction buffer was 
modified, then the instruction may have to be 
fetched. 

b. The program counter should be incremented to one 
beyond the location of the next instruction and an 
instruction fetch initiated. This will not only preserve 
the pipeline but will also make sure any memory 
activity necessary to complete setup, of condition 
(a). 

c. The instruction buffer should be copied into the 
instruction register in preparation for its execution. 

d. A request for decoding of the instruction buffer 
contents should be made along with a page branch 
back to page zero, i.e., ROM. The decoding results in 
the correct microroutine getting control for execution 
of the next instruction. 

In most cases, the preceding steps can be summarized by 
the rule: 

The second to last microinstruction should 
increment P and do an instruction fetch. 

The last microinstruction should transfer IBR to 
I and request decoding addressing. 

3.1.4 ROM Standard States 

Much of the interfacing with the pipeline can be done by 
using standard microinstructions (standard states) in 
page zero. These were developed explicitly for this purpose 
for use by the 620/f emulation. The most common ones 
make up the three microword sequence listed below. They 

3-2 

may be used simply by doing a page jump directly to 
whichever microword is appropriate. 

Address Label 

13E SSlM 

92 SS2M 

20 SS3M 

Function 

Restarts the pipeline at P with 
an instruction fetch by P. It 
then branches to SS2M. 

Maintains the pipeline by incre
menting P and requesting an 
instruction fetch. It branches 
to SS3M. 

This instruction decodes the 
IBR contents to determine the 
next microinstruction to execute. 
It also copies the IBR into I. 

3.1.5 Summary of Branches Between WCS and 
ROM Control Store 

From ROM to WCS 

BCS Macro (from Decoder Page Zero Only) 

This macro ensures the start of a processor fetch during 
the primary decode of the BCS according to the V73 
pipeline rule. The clock change and page selection occur 
during the primary decoding of the microinstruction. 

1/0 Branch 

Control is transferred to the selected page of central 
control store during the data phase of the 110 command. 
I /0 branch can go to any central control store page and 
does not select a decoder. 

This mechanism assures that no OMA 1/0 memory 
transfers and no processor memory transfers are in 
process during the clock change. 

From WCS to ROM 

The 1/0 branch is not a viable mechanism from WCS to 
ROM. 

A micro level page branch is the standard method for going 
from WCS to ROM. This operation is the converse of the 
BCS disscussed above. 

Standard state sequences in the ROM provide pipeline 
start up and various other housekeeping functions for the 
standard instruction set. These may be of interest for 
particular microprogramming entrances. 



3.1.6 Varian 73 Register Usage 

The 620 emulation on Varian 70 series systems uses some 
general-purpose registers. Using the standard. instructions 
with his own microprograms a user is responsible for 
preserving the settings and restoring those necessary to 
their original conditions. The use and requirements for 
particular registers are described below. All others are only 
used by user's microprograms. 

Registers 0, 1, and 2 are used for the emulation of the A, 8, 
and X registers respectively. These need not be restored 
by user's microprograms. 

Register 3 is forced to all zeros by the halt microprogram 
and used as a source of zeros by the standard instruction 
set. Its restoration is required. 

Register 4 is also used by the halt program and saves the 
contents of the instruction register. While the standard 
microprograms are running it is not used and therefore 
does not require resetting. 

Register 5 is a source of ones for the standard micropro
grams and must be reestablished as such by a user's 
microprogram. 

Registers E and F ( 15 and 16) are used as temporary 
storage for some standard instructions yet their use does 
not extend beyond the particular single instruction so 
these two do not need to return to a set value. 

Register Usage 

Number Standard Use Restore 

0 A register no 
1 8 register no 
2 x register no 
3 All zeros yes 
4 Saves I no 
5 All ones yes 
6-D None no 
E Temporary no 
F Temporary no 

3.2 FLOW DIAGRAM 

3.2.1 Rationale 

As the reader should now be aware, the 64-bit microword is 
both extremely powerful and extremely complex. This may 
result in several problems. A beginning microprogrammer 
can be completely baffled how to start. Intermediate 
microprogrammers tend to be confused about how much 
or how little can be done in single microinstruction. 

The microprogram flow diagram is designed to minimize 
these problems. Making a flow diagram for a micropro-

varian data machines ~ 
TECHNIQUES 

gram is roughly comparable to the low-level flowcharting 
of an assembly language program. The flow diagram, 
however, is designed to provide special assistance to the 
microprogrammer. It gives the basic capabilities of the 
standard microword, thus providing reminders of both 
what can be done and what should be done in each 
microword. 

3.2.2 Format 

A sample blank microprogram flow diagram form can be 
seen in figure 3-1. The vertical columns each represent a 
single microinstruction. 

The horizontal rows are divided into the type of operations 
that can be performed. A microinstruction is created by 
going down a column and filling in the appropriate boxes 
with the specific operations desired in each general 
category. Many of these operations can be specified using 
the mnemonics introduced in the previous section. Table 
3-1 provides an ordered list of mnemonics: 

Specifically, the first row of the flow diagram is used for 
identifying the particular microword. Labeled IDENT, this 
row is usually left blank unless the microword is 
referenced elsewhere in the microprogram. Such reference 
occurs most often when the microword is the target of a 
jump from another microword. When not empty the box 
usually contains the label which will be carried through to 
the actual assembly language version. Depending upon the 
programmers preference absolute or relative addresses 
could also be assigned here. 

The group of three rows under MEMORY specifies both the 
current state of memory and the requests for memory 
operations being made in the current microword. The 
FUNCTION row specifies the former. It is useful for 
charting out memory activity and optimizing the memory 
usage. In microprograms where memory activity is not 
critical, this row could be left blank. 

The REQUEST row indicates the type of memory request 
being made in the microword. The ADDRESS row specifies 
the source of the memory address for the requested 
operation. If no request is made, then both these rows can 
be blank. 

The ALU section of the flow diagram consists of four rows. 
These rows specify the two inputs for the ALU, the 
operation to be performed on them, and the destination of 
the result. 

Two rows are included in the STATUS section. The first, 
SAMPLE, specifies which flags and status bits are to be 
sampled during that microinstruction. Sampling is usually 
necessary before the flag or status indicators can be 
tested. The TEST row specifies which flag or status bit, if 
any, is being tested in the current microword. This testing 

3.3 



< m .. s;· 
:l 
a. 
m 
S' 
3 
m 
() 
:::r s· 
CD 
fl) 



may be used both for conditional memory requests and 
conditional addressing. 

The two rows of the ADDRESS! NG section specify the 
addressing method or mode being used and the resulting 
effective address or addresses. These boxes are often left 
blank to signify normal addressing with the next column 
on the right to be executed next. The label contained in the 
I DENT row can also be used here. 

The SPECIAL ACTIONS·section is provided for the micro
operations which do not fit conveniently into the other 
sections. Most common among these are the operations on 
the special registers and counters. These include the 

varian data machines ~ 
TECHNIQUES 

operand register, program counter, and shift counter. Such 
things as register field control or even general comments 
could also be included here. 

3.3 FLOW DIAGRAM MNEMONICS 

The following table 3-1 lists the sections of the flow 
diagram and some applicable· mnemonics. These 
mnemonics represent the most common values and should 
be sufficient for many microprograms. Other functions 
without mnemonics can be described in whatever way the 
user finds clearest. The ways could range from actually 
writing the field values to putting in verbal commentary. 

Table 3-1. Mnemonics for Microprogramming Flow 
Diagrams 

Row 

IDENT 

MEMORY 
FUNCTION 

MEMORY 
REQUEST 

MEMORY 
ADDRESS 

ALU 
INPUT A 

ALU 
INPUT B 

Mnemonic 

None 

None 

IF 
OF 
OS 
BS 
TESTF,-

TESTT,-

WAIT, MEMDN 

ALU 
p 

MIR 
OVR 

Rn (n = 
Rn, SL 

Rn, SR 

p 
ZERO 
ONES 

Rn (n 
MIR 

0,1,2, ... ,F) 

0,1,2, ... ,F) 

Comments 

User-supplied labels and addresses 

User-supplied commentary on memory 
operations 

Instruction fetch 
Operand fetch 
Operand store 
Byte store 
Conditional request (on test condition 
false) 

Conditional request (on test condition 
true) 

Wait for memory done (before going 
to next microword) 

ALU output 
Program counter 
Memory input register 
Override memory operation of the previous 
microword using its memory address 

General register 'n' 
General register 'n' shifted left on 
bit position. 
General register 'n' shifted right on 
bit position 
Program counter 
All zeros (0) 
All ones (FFFF) 

NOTE: When using a shifted general 
register, user must specify 
condition of high and low bits. 

General register 'n' 
Memory input register 

(continued) 

3-5 



~ variand~amach~es~~~~~~~~~~~~~~~~~~~~~~~ 
TECHNIQUES 

3·6 

Row 

ALU 
OUTPUT 

ALU 
DESTINATION 

STATUS, 
SAMPLE 

STATUS, 
TEST 

Table 3-1. Mnemonics for Microprogramming Flow 
Diagrams (continued) 

Mnemonic 

IOR 
STAT 
LIT 
MSK 
OPR 
ORSE 

OLSE 
ORZF 

OLZF 

ZERO 
ONES 
TRNA 
TRNB 
INCA 
1Ncs~· 

DECA 
DECB 

ADD 
sus·~ 

SHFA 
AND 
OR 
EOR 
NOTA 
Norn·:· 
res·:· 

I /0 register 
Status word 

Comments 

The 16-bit value from 0 to FFFF 
Instruction register masked by 'xxxx 
Operand register 
Operand register right byte, sign 
extended 
Operand register left byte, sign extended 
Operand register right byte, zeros in 
left byte. 
Operand register right byte in left 
byte position, zeros in right byte 

NOTE: When using MSK or LIT, caution 
should be used to avoid field con-
flicts with other mnemonics. 

All zeros (0) 
All ones (FFFF) 
A (transfer input A) 
B (transfer input B) 
A + 1 
AV B + 1 (B + 1 when A = 0) 
A - 1 
A + B (B - 1 when A = FFFF) 

A + B 
A - B 
A + A (shift A left one) 
A/\ B 
AVB 
A¥B (exclusive OR) 
A 
8 
AV B + 1 (two's complement B 
when A = 0) 

·~cannot be used when input B is MSK or LIT. 

Rn (n = 0,1,2, ... ,F) 
Special registers 

SHFT 

OVFL 
ALU 

OVFL 
IOSR 

General register 'n' 
Refer to special actions row 

NOTES: 
1) general register cannot be used 
here if input B was LIT or MSK. 
2) general registers used for both 
input A and destination must be the 
same general register. 

Set shift flag 

Set overflow flag 
Set ALU related flags (i.e., ALUO, 
ALUS, ALUC, and ALUZ) 

Overflow flag 
1/0 sense response 

(continued) 



Row 

ADDRESSING, 
MODE 

ADDRESSING, 
ADDRESS 

SPECIAL 
ACTIONS 

varian data machines ~ 
TECHNIQUES 

Table 3-1. Mnemonics for Microprogramming Flow 
Diagrams (continued) 

Mnemonic 

SSW3 
SSW2 
SSWl 
TFIR 
ALUO 
ALUS 
ALUC 
ALUZ 
SHFT 
MIRS 
SFTC 

GPRS 
NORM 
QUOS 

PJMP to n 
FSEL 

INT 
DECODE 
TESTT 

TESTF 

POPJMP 

P
F -

POUT 
SCOUT 
OPROUT 
INCP 
INCSC 
INCP, OPROUT 

SHFTOP, LFT 

SHFTOP, RGHT 

IBR to I 

PUSH,X 

PO PD EL 

Comments 

Sense switch three 
Sense switch two 
Sense switch one 
Test from instruction register 
ALU ones flag 
ALU sign flag 
ALU carry flag 
ALU zeros flag 
Shift flag 
Memory input register sign 
Shift counter all ones flag (i.e., 
overflow) 
General register 0 sign 
Normalize flag 
Quotient flag 

Page jump to page 'n' 
Field select addressing 

Interrupt addressing 
Addressing by decoder control store 
test addressing; pass if test con
dition true 
Test addressing: pass if condition 
false 
Branch/pop to an address specified 
by stack 

NOTE: these are only a basic set of 
abbreviations, to be used alone or 

in combination. 

Test pass address 
Test fail address 

Load program counter with ALU output 
Load shift counter with ALU output 
Load operand register with ALU output 
Increment the program counter 
Increment the shift counter 
Does both. 

Shift operand register left one bit 
position 
Shift operand register right one 
bit position 

NOTE: high/low bits must also be 
specified by user on these two 
operations 

Transfer instruction buffer to 
instruction register. 
Push value x on the stack (requires 
PJMP addressing mode) 
Delete entry at top of stack 
(requires PJMP addressing mode) 

3-7 



~ varian data machines 

TECHNIQUES 

3.4 FLOW DIAGRAM EXAMPLES 

The following examples are included: 

L BCS Entry Point Initialization 

2. Memory-to-Memory Block Move 

3. Reentrant Subroutine Call 

4. Fixed-point ADD to any of 16 general registers with 
direct addressing to 64K. 

5. Cyclic Redundancy Check (CRC) Generation. 

Each of the examples includes a description of the problem, 
a description of how it was handled, and a flow diagram. 
Later in this manual, the examples will be continued in the 
form of assembler listings of the code produced from each 
of the flow diagrams in section 5. 

3.4.1 BCS Entry Point Initialization 

This is essentially an example of making a micro subrou
tine which is simply a NOP. From the standpoint of being 
an example, it details how to reach WCS and then return 
to the macro level. From a functional standard point, it 
provides meaningful initialization for the 20 (hex) BCS 
entry points in WCS. By loading this program before all 
others, any unused BCS entry points will have meaningful 
contents (as opposed to possibly fatal random contents). 

Referring to the flow diagram, (figure 3-2) the thirty-two 
entry points are all initialized to the same microinstruc
tion. It is simply a page branch to a standard microword, 
SS2M, on page zero. This will result in a return to the 
macro level by maintaining the pipeline and returning 
control to the ROM central control store. 

3.4.2 Memory-to-Memory Block Move 

This microprogram is designed to move a block of n words 
from one area in memory to another. 

For purposes of this example, the microprogram is called by 
executing a BCS to word zero of WCS page one. It takes its 
arguments in the following format: 

A register (RO): 
B register (Rl): 
X register (R2): 

to address 
from address 
block length 

When called, words are sequentially copied from their old 
location (from address) to their new position (to address). 
The number of words moved is equal to the block length. 

The following commentary describes how the microprogram 
operates. Refer to the flow diagram figure 3-3. 

3-8 

Word zero in page one is the entry point for the BCS 
instruction. It contains a branch to a microword labeled 
MBM, which may be on any WCS page. This is the actual 
beginning of block move and no further decoding of the 
BCS is done. 

The microprogram starts by setting up its parameters. The 
current program counter value is saved in R7. Next, the 
from address minus one is put in its place. Having it in the 
program counter will allow easier use of it as an address 
source for memory requests. The to address is also 
decremented. These addresses are decremented because 
they are incremented in the instructions which request 
the memory operations. 

After this initialization, a three microinstruction loop is 
entered which does the actual block move. The first 
microword, (MBMA), increments the from address in the 
program counter. It then requests that the word at that 
address be fetched from memory. It also puts the memory 
input register (MIR) onto the ALU output. Once the looping 
is begun, the MIR will contain the word just fetched from 
memory. Placing it on the ALU will cause it to be stored at 
the to address, since the previous micro in the loop 
requested a write of ALU output into memory. 

The second mircoword in the loop decrements the block 
length in R2. The ALU output (i.e., the new value) is 
sampled for testing in the next microword. 

The next microword, the third and last in the loop, 
increments the to address in RO and tests the ALU sign 
flag. If it is off, then the block length has not yet become 
negative and the necessary number of words has not yet 
been moved. In this case, an operand store is requested 
using the to address as the destination. The next 
microword will have to specify the the value to be stored, 
so a loop is made back to MBMA which will do this. This 
loop also causes the next word to be fetched and the 
process continues until the block length goes negative. In 
that case the loop is exited and the extra memory fetch 
requested is simply forgotten. 

Microword MBMB restores the program counter to the 
address in R7 and starts a memory cycle to restore the 
pipeline. A branch is executed to standard state SS2M 
which increments the program counter and starts a second 
memory fetch to fill the instruction pipeline. Upon entering 
standard state SS3M, the macroinstruction is decoded and 
control is returned to the processor's central control store. 

3.4.3 Reentrant Subroutine Call and Return 

This example provides call and return microprograms for 
reentrant subroutines. The subroutine call stores its return 
address in the X register (R2) and saves the original 
contents of X on a stack pointed to by the B register (Rl). 

The subroutine return simply pops the stack back into the 
X register and branches back to the return address. 



-

1 l 
-

l I l l I (0 thru IF) IDENT 

=-

I 
I 

-

1-

_j_ 

FUNCTION 

i 
I 
I 

l 

I 

! 

i 

-

i 
I 

> 

J 
I 

I 

~ 
REQUEST 

l 
0 

I 

:E 

i I 

w 
:E 

l 
ADDRESS 

I 
J. 

I 

I 

I 
i 

I INPUT A 

r 
I 

: l ' I 
I 

! I 

I 

I 
I 

INPUT B 
I 

I 
I 

:> 
I 

-+ -

..J 

I 
l 

c:i:: 

I 

OUTPUT 

~ 

i 
------j 

I 
i 

I 
I 

: 

l 

DESTINATION 

I l -
I I 

r-

I 

tn SAMPLE 

l 
:> 
!« ,-... 

TEST tn 

-
I 

I 

I 

I 

! 

I 

l 

l 
I 

I 

I 
PJMP 

l -I 

I 

I 

MODE to O 

I 

I 

CJ 

l 1 
I 

z 

I 

I 

u; 

I 

I 

f3 r--- : I 

I 

I 
I I 

i 

I 

J I 

~ 
I Q ! SS2M 
I 

i ; 
-----; 

~ jADDRESS I 
(92) 

--

I I I 

I 

I 
I 

: 

I 

I 

I 
! 

i I 

I 
I 

I 

I 

I 

I j I I 

J 

~ SPECIAL 

i 

w 
ACTIONS 

I 
l 

:c 

l 

... 

l -

0 

l 1 l 



:!: 
0 
< 
(I) 

I 

> a: 
0 
:IE w 
:IE 

:::> .... 
< 

en 
:::> ... 
< ... en 

CJ z 
u; 
en w 
a: 
Q 
Q 
< 

a: w 
::c ... 
0 

1 word 0 
IDENT page 1 

I 

I 

FUNCTION I 

I 

REQUEST l 
r 

ADDRESS l 
I 

INPUT A 

INPUT B 

OUTPUT 

DESTINATION I 

SAMPLE 
t 
I 
l 

TEST 
i 

MODE PJMP 

I MBM ADDRESS 

SPECIAL 
ACTIONS 

MBM 

-·-
I 

I I I 
1 1 

I 

l 
I 
! 

p 
I RO ! R1 

I 
: 

I 
I 

+ 
J_ I 

l TRANA 
! 

DECA DECA 
I l 

R7 RO i see below 

I 

I i 
I I 

I 
i 

I 

I P0UT I 

MBMA 

I storing fetching fetching 

data l data data 

1 TESTF 0F 0S 
l 
I p 

l 
ALU 

- R2 l RO 

MIR ! I 
I i 

TRANS DECA INCA 
i 

- R2 
I 

RO 

ALU 

ALUS 
I 

TES TT 

P-MBMB 
F-MBMA 

I 
I 
I 

INCP 
I 

MBMB l 
1 

I 

I 

i 
IF 

l 
ALU i 

\ 

I R7 

t ~ 
! 

J 
! 

TRANA 

see below 
: - ! 

I 
I 
I 
I 

PJMP 
to 0 

SS2M 
(092) 

P0UT 

< m ., 
a;· 
:::J 
Q. 
m .. m 
3 
m 
() 
:::r 
:::J 
(1) 
(/) 



For purposes of this example, the subroutine call is 
executed by doing a BCS to word 1 of WCS page 1. The 
word following the BCS is taken as the effective address of 
the subroutine being called. The subroutine return is 
made by executing a BCS to word 2 of WCS page 1. 

The stack operations are performed in the following way. A 
push causes the B register to be decremented and the X 
register stored at the resulting address. A pop causes the 
X register to be loaded from the memory location pointed 
to by the B register followed by the B register being 
incremented. 

The following is a detailed description of the subroutine 
call. Refer to the flow diagram in figure 3-4. 

The first microinstruction of the routine is at the BCS entry 
point. On the memory-to-memory block move, this first 
microword of the program did nothing but branch to the 
actual microroutine. The only reason for not combining it 
with the next microinstruction was to clarify the relation
ship of the entry point and the rest of the program. In an 
actual application where execution time is critical, the 
microwords would have been combined. This is done on 
the subroutine call example. The first microword decre
ments the stack pointer (Rl) and begins saving the 
contents of R2 at the resulting address. It then does a 
page branch to the rest of the microroutine which could be 
on any WCS page. 

The second microword places R2 on the ALU so that it will 
be stored by the memory request in the first microword. 
R2 must be on the ALU for the entire duration of the write 
into memory. Since this could take a variable amount of 
time, (depending on the type of memory in the system), a 
request is made to wait for the memory-done signal. This 
means the next microword will not be executed until the 
write operation is complete and thus, R2 will stay on the 
ALU for the necessary time. 

The third microword saves the return address in R2. The 
program counter is currently pointing to the word after th 
BCS instruction. That word contains the effective address 
of the subroutine to be called. Thus, the return address is 
obtained simply by incrementing the program counter and 
then storing it in R2. This microword also begins the 
actual transfer to the subroutine to be called. This is done 
by restarting the pipeline at the address of the subroutine. 
That address is already in the MIR due to the fact it was 
the word after the BCS. 

The fourth microword sets the program counter to the 
second word in the subroutine call and requests it be 
fetched. This completes the restarting of the instruction 
pipeline and a return can be made to ROM control. This is 
done with a page jump to SS3M on page 0. Note that the 
fourth microword has performed all the functions of·SS2M. 

The following is a detailed description of the subroutine 
return. Refer to the flow diagram in figure 3-5. 

varian data machines ~ 
TECH S 

The first microword begins restarting the instruction 
pipeline at the return address. Also, the program counter is 
restored. 

The second microinstruction begins the fetch of the original 
contents of R2 off the stack. 

The third microword increments the stack pointer to finish 
the pop of the stack. It also finishes the restart of the 
instruction pipeline by requesting another instruction 
fetch by the incremented program counter. 

The last microword restores the old contents of R2, which 
by now have been transferred from memory to the memory 
input register (MIR). Since the pipeline has now been 
restored, the microword can return to ROM using a page 
jump and with request for decoding addressing. The 
decode will generate the next address in page zero based 
on the next 'macro' instruction to be executed. 

Note that the second to last microword performs the 
functions of SS2M and the last microword performs the 
functions of SS3M. 

3.4.4 64K-Memory ADD to any of the 
General-Purpose Registers 

This example adds the contents of any location in 64K 
words of memory to the contents of any of the 16 general
purpose registers, RO, Rl, ... ,RF. The sum replaces the 
previous contents of the specified register. If overflow 
occurs, the overflow status bit will be set. The addressing 
mode for this example will be indexing by general register 
Rl. 

In execution the contents of LOC bit 8 - 15 specify a branch 
to control store (BCS) instruction. Bits 0 - 3 define the 
operation to the performed and the addressing mode to be 
used. Bits 4 - 7 specify the general register affected. 

With indexing the contents of all LOC + 1 are added to the 
contents of the register (Rl), and the 16-bit sum is used 
as the effective address of the operand. The operand is 
fetched from memory and is added to the contents of the 
register specified by the LOC 4 · 7. 

A flow diagram follows as figure 3-6. 

The strategy used for the operation described above has 
the following steps: 

1. (ADl or ADlA) enter from decoding of BCS in page 
zero. Address fetch cycle has been initiated. Initiate 
next instruction fetch and increment P. 

2. Transfer contents of MIR (address value) to OPR to 
preserve against alteration by previously initiated 
instruction fetch. 

3. Perform indexing by adding contents of Rl to contents 
of OPR. Initiate operand fetch using ALU output as 
effective address. (continued) 

3 11 



IDENT l word 1 
page 1 LAB1 

I : 1 FUNCTION I store of 
R2 on stock I > 1 a: WAIT 0 REQUEST 

:E <Z>S MEMDN w 
:E 

ADDRESS ALU 

I R1 I R2 INPUT A I 

I I 
! 

1 
I 

INPUT B ! 

::::> i 

I 

...; 1 1 c 

l OUTPUT DECA I TRNA 
I 
I 
I 

I DESTINATION 1 R1 

T en SAMPLE l ::::> 
I-c T 

! I-
TEST I en 

I 

0 ... 

J 
1 

CJ MODE PJMP 
z 
iii en w 
a: 

I 
c c LAB1 c ADDRESS 

a: SPECIAL w 
::c ACTIONS 
I-
0 

fetch of 
first 

subr. inst. 

I 

IF IF 

MIR ALU 

p ZERO 

MIR 
I 

INCA l INCB 

i see 
R2 

below l 

I 
! 
i 
T 

PJMP 

to O 

I SS3M 
(020) 

I P<Z>UT 

I 

I l 
1 l 

I 

1 l 
l 
i 
I 
I 

I 
I 
I 

J l 

l 
I 

J 
T 
I 
1 
I 
I 

I 

I 
I 

I 
I 

i 

~ 

1 

I 

I 
~ 

! 

I 
I 

I~ 
.0 
c < 
~ m ... a;· 

:l 
Q. 
m ... 
m 
3 
m 
() 
::r s· 
CD en 



word 2 
IDENT page 1 LAB2 

! FUNCTION fetch of 

I 
nxt. instr. 

> l a: 
0 REQUEST I 

IF Q)F f 

:& 
: w 

:& l 
ADDRESS ALU ALU l 
INPUT A R2 R1 

i 

! 

I 

INPUT B I 
! :::> 

...J 

I cC 
OUTPUT TRNA TRNA 

DESTINATION see below I 

"' SAMPLE :::> 
..... 
cC ..... 

TEST "' 

CJ MODE PJMP 
z 
u; 

"' w 
a: I 
Q I Q 
cC ADDRESS I 

LAB2 

I 

I I 

a: SPECIAL I w PQ)UT 
I %: ACTIONS I ..... I 

0 

I I 

fetching 
fetch of second 
orig. R2 instruction 

I 

i IF I 

p i 
l 

R1 I 

MIR 
! 

INCA I TRNB 
_]_ 

I R1 
I 

R2 

I 

! 
I 
! 

PJMP 
to 0; 

I DEC0DE 
I 

j 

1 from IBR 
by decode 

IBR 
INCP to 

I 

j 
i 

1 
j 

I 
1 ·-

! 
--

I 
I 

I 

! 

~ 
! 
I 
I 

I 

I 

I 

I 
I 
I 

! 

i 
I 

I 

I 

< 
C» ... a;· 
::::s 
c. 
C» ... 
C» 

3 
C» 
n 
::r 

-4 ::::s 

~ a 
!~ 



-... 0 
3 

~ 
::,;: 

3: 
(I) 

3 
0 

-< 
0 

ADliADIA': AD2 jiF~U~N:c~T~1:o:N~f)A\[D~D~R~E~s~s~=f======~=~A~D:3~=-ll _ ~ I AD5 j F~H IF--~---~~--0F--~'----~J1=====t====~===== IF I I 
> a: 
~ REQUEST 
w 
:E: 

ADDRESS 

INPUT A 

INPUT B 

~ IOUTPUT 

DESTINATION 

p 

~ SAMPLE 
t-~ l~~~~~_J__ 

en TEST 

CJ MODE 
z 
Ci) 
(/) 
w 
a: 
Q 
Q 
4: ADDRESS AD2 

INC p 
a: SPECIAL w ':'located at 
::c ACTIONS 
t-

page 1 word 

0 00 and 10 

0F 

ALU 

R1 

MIR 0PR 

TRNB ADD 

AD3 AD4 

0PR0UT 

IF 

p 

MIR 

AD5 

INCP 
register 

Bits 14-7 
field select 

0VFL, ALU 

PJMP to O 
DEC0DE 

W0RD O 
PAGE O 

IBR to I 
':'from previous 

micro 
register 

field select 

< m ... 
ii" 
:J 
a. m ... m 
3 
m 
() 
:J" s· 
CD en 



4. Wait for completion of operand fetch by specifying next 
instruction fetch with incremented program counter 
and field select register specifications from instruc
tion bits 4 - 7 into AA field. Set BB field to select MIR. 

5. Add contents of MIR to contents of previously selected 
register and store sum in selected register. Sample 
overflow condition. Page jump to V73 page zero with 
decoding of instruction fetched by step 1. 

Execution Time Estimate 

Execution time depends upon the memory speed involved. 
With 330 nanoseconds semiconductor memory the pipeline 
is kept full. The number of microinstruction times from 
decoding to decoding is six. All of these are from writable 
control store. The execution time is therefore six times 190 
or 1140 nanoseconds. Since three memory cycles are 
involved, the effective three cycle time is 1140 divided by 3, 
or 380 nanoseconds. 

3.4.5 Cyclic Redundancy Check (CRC) Generation 

INSTRUCTION FORMAT 

15 9 8 7 4 3 0 

1 0 5 I I CRC Vector 1 LOC 

Data Array Word Address LOC + 

Byte Count LOC + 2 

DATA FORMAT: Packed 2 bytes in each word as follows: 

Byte 1 Byte 2 

Byte 3 Byte 4 
'---------'--·----·-·-·----

Byte N-1 
may be last 
byte 

Byte N 

The packed byte array at the specified address is scanned 
and the 16-bit cyclic redundancy check is performed. The 
16-bit CRC is left in the accumulator (A register or RO). If 
the accumulator is not cleared before entry, the accumula
tor's contents will be included in the CRC. 

I 6 

The CRC polynomial word is X + x 1 5 
+ x 2 

+ 1 , 
which is commonly used in binary synchronous 

communication. 

Since array size can be quite large, the instruction can be 
interrupted after service of every two bytes. When 
interrupt service is completed, the process of CRC 
generation is resumed and runs to completion (except as 
interrupted). The overflow flag is used to signal an 
interrupted instruction. If it is set, contents of the B and X 

varian data machines ~ 
TECHNIQUES 

registers are taken as data address and byte count 
respectively. 

RO, Rl and R2 (A, B and X) registers are used by this 
instruction. RO is the current CRC value. Rl is the current 
data array address. R2 is the current byte count value. RF 
contains the CRC polynomial (octal 100005). The overflow 
flag is used to designate an incomplete instruction. 

The calling sequence normally used would be: 

TZA 
ROF 
BCS 
Address 
Byte count 

(clear accumulator) 
(reset overflow flag) 
CRC 
(data array address) 
(number of bytes in array) 

Detailed Description of Procedure 

1. Enter from decoding of BCS in page 1. Address fetch 
cycle has been initiated. The overflow flag is used to 
designate an incomplete instruction, i.e., one which 
was interrupted before the entire byte array was 
scanned for CRC generation. If such an interrupt had 
occurred the current data array address and byte 
count in registers Rl and R2 should be used rather 
than the corresponding values used when the instruc
tion was initiated. A memory cycle to fetch the byte 
count is initiated conditionally. The overflow flag is 
tested for an "off" condition. The 16-bit word 
representing the CRC polynomial is placed in OPR. If 
the overflow flag is off, the next step is step 2. If it is 
on, step lA is executed. 

2. The data array address is copied from MIR into R 1. 

3. The contents of Rl is used as an address (through the 
ALU) and the first pair of bytes is fetched. The overflow 
flag is set to indicate that the instruction is 
incomplete. 

4. The byte count is copied from MIR into R2. ALU status 
is sampled so that the byte count can be tested for zero 
in step 5. 

5. The shift counter is loaded with - 8 (the number of bits 
per data byte). The ALU zero status flag is tested to see 
if the byte count was zero. Execution is suspended 
(by a "wait for memory done") until the two data 
bytes are fetched. If the ALU zero flag is off, the next 
step is 5A; otherwise, step 18 is next. 

5A. The CRC polynomial placed in OPR in step 1 is now 
placed in RF. 

6. The data bytes in MIR are copied into OPR. 
(continued) 

315 



- varian data machines 

TECHNIQUES 

7. Steps 7, 8, 9, 10, lOA, and 11 constitute the iterative 
loop which accumulates the CRC for the left data byte. 
In step 7, RO (the CRC) is shifted one bit left and 
applied to the ALU input A while the shift counter is 
incremented. Bit 15 of RO is copied into the shift flag 
(DSB). Bit 15 of OPR is applied to ALU input A bit 
00. OPR is also shifted one bit left. The CRC 
polynomial in RF is applied to ALU input B. The 
exclusive OR is performed by the ALU and the result 
is placed into RO. The shift counter is tested to see if 
the eighth bit of the left byte has been processed. If it 
has, step 10 is executed next; if not, step 8 is next. 

8. The DSB flag is tested to see if a correction cycle is 
needed. (If bit 15 of the old CRC was a zero, the 
exclusive OR operation of step 7 must be cancelled.) 
If a correction cycle is necessary, step 9 is executed 
next; otherwise, the next bit of the data byte is 
processed by returning to step 7. 

9. This correction cycle exclusively ORs the CRC in RO with 
the polynomial in RF. The result is placed in RO. When 
this is done the resulting CRC is that which would 
have been obtained if step 7 had not performed an 
exclusive OR. The next bit of the data byte is next 
processed by returning to step 7. 

10. This step is entered from step 7 after the last bit of the 
left data byte is processed. The DSB flag is tested to 
determine the need for a correction cycle. The byte 
count in R2 is decremented. The ALU status is 
sampled so that it can be tested for zero in step 11. If 
a correction cycle is necessary, step 1 OA is executed; 
otherwise, step 11 is next. 

lOA. This is a correction cycle identical to step 9. 

11. The shift counter is reinitialized to - 8 for processing 
the right data byte. The ALU zero status flag is tested to 
determine if the right byte should be processed. If 
ALUZ is not equal to one, the next step is 12; if ALUZ 
equals one, the next step is 18. 

12. This step is identical to step 7. The right data byte 
which has been shifted left in OPR is now processed. 

13. This step is identical to step 8. 

14. This step is identical to step 9. 

15. The operations of step 10 are performed. The DSB flag 
is tested as in step 10. If it is set, step 158 is next; 
otherwise, the correction cycle of step l 5A is next. 

15A. This step is identical to step lOA. 

15B. This step tests for interrupts. If an interrupt is 
present, step 20 is next; otherwise, step 16. 

16. The data array address pointer in Rl is incremented 
and used as an address for a fetch of the next operand 
byte pair, if the ALU zero flag is off (indicating the 
decremented byte count at step 25 was not zero). If 

3·16 

the byte count was not zero, step 17 is next; 
otherwise, step 18 is executed. 

17. The shift counter is initialized to- 8 and execution is 
suspended until the next pair of data bytes is fetched 
from memory. Step 6 is next. 

IA. If step 1 determines the overflow flag to be set 
indicating an incomplete instruction, step lA initiates 
the fetch of a data word from memory using the 
contents of R 1 as an address. Step 17 is executed 
next. 

18. If step 16, 11, or 5 determines the byte count to be 
zero, step 18 resets the overflow flag to indicate 
completion of the instruction. The program counter is 
incremented and the net instruction fetch is 
initiated. 

19. A page jump to ROM (page zero) V73 standard state 
/SS2M, is executed. /SS2M will initiate another 
instruction fetch to fill the pipeline. 

20. If an interrupt was detected at step 158, the interrupt 
status must again be tested by step 20. This is because 
interrupts can be overriden by OMA traps and must 
be checked twice to ensure that a trap has not 
occurred which would abort the interrupt. The 1/0 
control is requested to perform an 1/0 interrupt 
sequence. Decoding is inhibited since only the 
interrupt status is to be tested. If an interrupt is 
found, step 21 is next; otherwise, step 16 is next. 

208. The cycle is performed as in step lOA. 

21. If an interrupt was found at step 20, the data array 
address in Rl is incremented and the ALU zero flag is 
tested to determine if the byte count at step 15 was 
zero. If it was not zero, step 22 is next; otherwise, 
step 24 is executed. 

22. The program counter is reduced by 3 to point to the 
BCS instruction. After completion of the interrupt 
routine this instruction will be refetched and the 
overflow flag will be tested in step 1 to determine the 
need to initialize Rl and R2 from the instruction 
second and third words. 

23. Execution is suspended until the I /0 control signals 
completion of the interrupt sequence, then a page jump 
to ROM standard interrupt state/INT2 is performed. 

24. If the byte count was zero, the overflow flag is reset 
and an instruction fetch is initiated with the 
incremented program counter value. 



CRC Generation Timing 

Execution time depends on memory speed and data array 
size. If no interrupts occur the timing consists of (a) 
initialization -- fetch of BCS, address and byte count and 
first byte pair. This involves one ROM decode cycle and 
WCS microinstructions 1, 2, 3, 4, 5, 5A, 11, and 6 all at 
190 nanoseconds (assuming a 330 nanoseconds main 
memory cycle). Initialization thus amounts to 1520 

varian data machines ~ 
TECHNIQUES 

nanoseconds. (b) CRC processing -- each byte takes 16 to 
24 steps with the average 20 plus steps 1 O, 11, 15, 158 
and 16 all at 190 nanoseconds. Processing takes an 
average of 8550 nanoseconds for each byte pair. (c) 
cleanup involves steps 18 and 19 from WCS at 190 
nanoseconds, and the memory cycle of SS2M at 330 
nanoseconds. Clean up takes a maximum of 710 nanonec
onds. Altogether the timing for an array of N bytes 
averages (2230 + 1 /2(N - 2)) times 8550 nanoseconds. 

3-17 



~ varlandatamachines ~~~~~~~~~~~~~~~~~~~~~~~ 
TECHNIQUES 

l 
Al 

ENTER 
FROM DECODE 
OF BCS 
(ADDRESS FETCH IS UNDERWAY) 

000 l 

START BYTE COUNT FETCH IF INCOMP 
FLAG IS OFF (OVERFLOW) 

INCREMENT P 
POLYNOMIAL TO OPR 
TEST INCOMPLETE FLAG (OVERFLOW) 

INITIAL SETUP 

CALLING 
SEQUENCE 

TZA (OPTIONAL - SEE TEXT) 

ROF (OPTIONAL- SEE TEXT) 

BCS CRC 

DAT A ARRAY ADDRESS 

BYTE COUNT 

021 

DATA ARRAY I BYTE l BYTE 2 
FORMAT_ r~-B-Y_T_E_3~-;~~B-Y-TE~4~--1 

2 ~~~~~~-'--~~~~~~ 

FETCH DATA 
WORD 

ADDRESS STEP# 

21 

J'T/2-402 

3-18 

SAVE ADDRESS IN Rl 

033 3 

FETCH DAT A WORD 
SET INCOMPLETE FLAG (OVERFLOW) 

023 4 

SAVE BYTE COUNT IN R2 
SAMPLE ALU STATUS 

024 5 

INITIALIZE SHIFT COUNTER 
TEST ALU= 0 FLAG FOR ZERO BYTE CT 
WAIT MEMORY DONE 

BYTE N-1 
(MAY BE LAST BYTE) 

BYTE N 

DURING EXECUTION 

RO (A REGISTER CONTAINS CRC 
Rl (B REGISTER) CONTAINS THE CURRENT 

ADDRESS OF DATA 
R2 (X REGISTER) CONTAINS THE CURRENT 

BYTE COUNT 

l 
F5 

022 17 

INITIALIZE SHIFT COUNTER 
WAIT MEMORY DONE 

026 5A 

TRANSFER OPR 
TO RF 

027 6 

TRANSFER DATA TO OPR 

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation 

Microprogram (1 of 4) 



VT/2-400 

2 
Al 

02A 7 

SHIFT RO LEFT TO ALU A INPUT 
SHIFT OPR LEFT 
RO{l5) --DSB 
OPR (15)---ALU INPUT A BIT 00 
POLYNOMIAL (RF) TO ALU B INPUT 
EXCLUSIVE OR ALU INPUTS 
LOAD RO 
INCREMENT SHIFT COUNTER 
TEST SHIFT COUNT OVERFLOW 

02E 8 

TEST DSB FLAG 

PROCESS FIRST 
BYTE 

varian data machines ~ 
TECHNIQUES 

029 10 

DECREMENT BYTE COUNT (R2) 
SAMPLE ALU STATUS 
TEST DSB FLAG 

0-----------. 
032 11 

028 

RO TO ALU A INPUT 
RF TO ALU B INPUT 
EXCLUSIVE OR ALU INPUTS 
LOAD RO 
(CORRECTION CYCLE) 

9 

030 0 

RO TO ALU A INPUT 
RF TO ALU B INPUT 
EXCLUSIVE OR ALU INPUTS 
LOAD RO 
(CORRECTION CYCLE) 

INITIALIZE SHIFT COUNTER 
TEST ALU = 0 FLAG FOR 

ZERO BYTE COUNT 

3 
Al 

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation 

Microprogram (2 of 4) 

319 



~ varlan data machines 

TECHNIQUES 

VT/2-401 

SAME AS 0 

SAME AS 0 

ES 

INCREMENT ADDRESS (Rl) 
FETCH DATA WORD IF ALU =O 

FLAG IS OFF 

03E 16 

TEST ALU -- 0 FLAG (BYTE COUNT 0) 

-----QJ 

RESET OVERFLOW 
INCREMENT P 

025 18 

FETCH NEXT INSTRUCTION 

PAGE JUMP TO ROM 

SS2M 
(060) 

02B 19 

PROCESS 
SECOND 
BYTE 

SAME AS 0 
038 14 

035 15 

DECREMENT BYTE COUNT 
SAMPLE ALU STATUS 
DSB FLAG TEST 
ENABLE INTERRUPTS 

03C 15~ 

SAME AS 8 

15B 

TEST INTERRUPTS 

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation 
Microprogram (3 of 4) 

3-20 



~~~~~~~~~~~~~~~~~~~~~~-variand~amach~es~ 
TECHNIQUES

VTll-1803

4 INTERRUPT
Al

037 20

ENABLE
INTERRUPTS DISABLE DECODE
START 1/0 INT SEQUENCE

031 21

INCLEMENT ADDRESS (Rl)
TEST ALU= 0 FLAG (BYTE COUNT= 0)

02D 24

RESET OVERFLOW
INCREMENT P
INSTRUCTION FETCH START

036

02C 22

P-3-P
(RESET PROGRAM COUNTER TO

CAUSE REFETCH OF BCS)

WAIT FOR 1/0 DONE

PAGE JUMP TO ROM

/INT 2
(OFF)

02F 23

036

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation

Microprogram (4 of 4)

3-21

w
N
f\.)

IDENT
,--~RC1 CRC2 1 CRC3

l I

: ARRAY

I
BYTE COUNT FUNCTION I ADDRESS

l FETCH I
~

FETCH I

> l I

a:

l 0F

I
!

0 REQUEST Q>F
:::E TESTF

! w
:::E I I

ADDRESS p

l
I ALU

t i

T
I

I
I

INPUT A
!

I
i

INPUT B
T

I MIR ! R1
:::> I I i
..J
C(I i

OUTPUT i MSK, 8005 i TRNB TRNB
l I

DESTINATION! TRNB 1 R1

l
i

I
!

I
Cf) SAMPLE I
:::> l ! ...

I C(

I i ...
I Cf) TEST Q)VFL

!
!

CJ MODE TESTF NQ)RM NQ)RM

z c;;
Cf)
w
a:

I
! Q
! Q

ADDRESS
T-CRCIA CRC3 CRC4 C(I
F-CRC2 I I

I

I

a: SPECIAL INCP, SET w
%: ACTIONS Q>PRQ)UT l Q)VFL ...

l
0

CRC4 CRCS -T:RCSA
I DATA __..

FETCH
j

!
WAIT

I

1 I MEMDN
l

T I
I i

MIR
I

MSK, FFF8 I Q>PR

I TRNB TRNB TRNB
I

R2 I RF

t t
ALU

I

I ALUZ

TES TT

T-CRCl8
F-CRCSA

SCQ>UT

CRC6 J
I
l
T
I

'1

I

I

l

MIR
\

!
TRNB I

NQ>RM

CRC?
I

Q>PRQ)UT

CRC1A

·- -

Q)F

ALU

I

R1 :

~

TRNB
i

J

I

I
i

i
I

NQ)RM
I

I
I

j

l
i

CRC17

< m ... c;·
:::s
Q.
m ... m
3
m
()
:::s--· :::s
m

w
N
w

> a:
0
:E
w
:E

::::>
..I
ct

U)
::::>
~
ct
~
U)

0 z
c;;
U)
w a:
c c
ct

a:
w
::c
~
0

IDENT 1
FUNCTION

!

1 REQUEST

ADDRESS

INPUT A

INPUT B

i OUTPUT I

DESTINATION

SAMPLE

TEST

MODE

ADDRESS

SPECIAL
ACTIONS

CRC7

I

RO.SL I
l
: RF
I
i

E0R

RO
I
i

SHFT

SFTC

TES TT

T-CRC10
I F-CRC8

I

t
I

SHFTOP,LFT I
0 +OPROO

0PR 1 5 +ALUA 00

INCSC l

CRC8 CRC9

I

I

J l
1
j

RO I
I

! :
i RF i
J l

I
I

E0R J
I I

RO l
1

!

i

FSEL
N0RM

MS= 2

I
i

CRC9 CRC7

l

CRC10 CRC10A CRC11

I

R2 RO

R3 RF MSK, FFF8

FF6 E0R TRNB

R2 I RO

ALU

ALUZ

FSEL
N0RM TES TT

MS= 2

X'032
I

CRC11 T-CRC18
F-CRC12

SC0UT

I
I
I

l
I

I

I

l
!

I

i

-t

~
i
I
I

!

l l
I

I
I
I

!
I

l
! I

I

!

I

CRC25

J
I
I

I
I

I

i
I

j
I
I

I

PJMP I
I

I

INT2 I
(page 0, X'FF) !

I

J

< m ...
ii"
:J
c.
m ... m
3 m
()
::r -· :J

""' CD ~ en

i~

IDENT CRC12 CRC13 CRC14 CRC15 CRC15A CRC15B CRC16 CRC17

··-- --

FUNCTION I - - T- f
~ 1-~~~~l~~~~--+~~-~-+-f~~-~-+-+-~~--t-~~~~-t-~--~-+-~~~~-+-~-~-----i
~ REQUEST i i I I TE0;TF WAIT
w i l
~1~~-+-~~~~~-+--~~~l1~~--+-~~-+-11~~-+--i~~-+--.~~

ADDRESS ALU MEMDN

I R2 RO 1 !

RO.SL RO INPUT A !

1
R1

T
INPUT B RF RF MSK. FFF8 1 I ! : l R3 RF j

~ rO_U_T_P_U_T--~t--E-0-R---+---------E-0_R _____ F-F6---+---E-0_R_--+--: -----~:~-FF_O_,_C_F_3-~1--------;

t T
DESTINATION;

I UJ I SAMPLE
I~

li ~ v• TEST

<.:> MODE
z
u;
U)
w
a:
Q

~ ADDRESS

ffi SPECIAL
~ ACTIONS
0

RO

SHFT

SFTC

TES TT

T-CRC15
F-CRC13

SHFT0P,LFT
0-+0PROO

0PR15+ALUAOO
INCSC

FSEL
MS= 2

CRC14

r

l

RO

i

l

N0RM

CRC12

R2

ALU

FSEL
MS= 2

CRC15B

I

+
RO

N0RM

CRC15B

.

N0RM

CRC16

ENABLE
INTERRUPTS
SUPPRESS

DEC0DE

l R1 I

T

!

ALUZ

TES TT

T-CRC18
F-CRC17

J

N0RM

CRC6

SC0UT

J

< r» ...
sr
:::s
a.
r» ... r»
3
r»
n
::r
:::s
~ en

.
IDENT CRC18 CRC19 CRC20 CRC21 CRC24 CRC23 CRC22

NEXT
FUNCTION INSTR. l

NEXT

FETCH l INSTR. FETCH

>
T I a:

0 REQUEST IF I IF :IE I
I I w i i :IE I

I ADDRESS p
'

p

_l _L ----

INPUT A R1
I

p

_l
-----~--

I I I
INPUT B I I I MSK,FFFC

l
I ! :::>

...J
ct FFO ,MFO, OUTPUT : i ADD

_L
CFO + '

DESTINATION I i ! R1 I i

l I I I
J _l

! ! ! !
UJ SAMPLE I

I
i I I I :::> I i i r

ct

I I 1 ! r
TEST ALUZ UJ

I

+ l i

T l
I

i
CJ MODE N<Z>RM PJMP NCZ>RM TES TT NCZ>RM !

z I I
iii l

+ l I
UJ
w I

I
I a:

Q I I I I
Q

ADDRESS CRC19 I SS2M I l CRC16 T-CRC24 I CRC25
I

ct
i (PAGE 0, X'92) I i i F-CRC22

i i I I

I ENABLE I

a: RESET
I INTERRUPTS RESET

I SPECIAL : SUPPRESS WAIT ICZ> PCZ>UT w
CZ>VFL I

l
OVFL ::c ACTIONS I

DECODE DONE I r INCP

I i

INCP
0 START ICZ> j INT. CYCLE l

SECTION 4

MICROPROGRAM DATA ASSEMBLER,

MIDAS

For execution the microprograms must be expressed in the
internal machine language, yet during their development it
is advantageous to express the program in a symbolic
language which has more meaning to the person writing
the program. This symbolic language is then translated into
the executable machine language by the assembler.

In addition MIDAS assembler provides

symbolic addressing

macro-definition capability

user-defined microword formats

user-defined opcodes

address field calculations

error detection

concordance listing with MOS or VORTEX using the
concordance program CONC

4.1 BASIC ELEMENTS

The source language input to the assembler consists of a
sequence of records. Each record contains 80 character
positions. These characters are represented internally in
standard 8-bit ASCII codes. The following paragraphs
describe the content and format of the input to MIDAS.

Characters

The characters forming the symbolic source statements are
described below. Characters not in this set can appear
only in the comment field.

Alphabetic:
Numeric:

Special
Characters:

A through Z
0 through 9

I slash
•:• asterisk
+ plus sign

- minus sign
space (blank)

' apostrophe
(left parenthesis
) right parenthesis

MIDAS statements are formed from the character set
above. The comment field can contain valid 70/620 ASCII
characters in addition to any from the MIDAS character
set. Literals may be formed from any ASCII characters.

varian data machines ~

Symbols

The programmer may create symbols to be used for
statement labels or to define numeric values. A symbol
may contain one to six characters from the alphabetic or
numeric subset. The first character of a symbol must be
alphabetic.

Examples of correctly formed symbols

ABC4 INPUT 1 SAVE4X P23456

Symbols may also use the pound sign (#) or dollar sign ($)
character in any character position.

Example

A$B#C1 $RUN A$TOP #FIVE

Constants

A constant is a self-defining term. Four types of constants
are available: decimal integer, hexadecimal, octal and
binary.

A decimal constant is an unsigned sequence of decimal
digits. The value of a decimal constant may not exceed
32767.

A hexadecimal constant is an unsigned sequence of
hexadecimal digits, base 16, preceded by the letter X and
an apostrophe. The maximum hexadecimal number
processed by the assembler is X'7FFF.

An octal constant is an unsigned sequence of octal digits, O
through 7, preceded by the letter 0 and an apostrophe. An
octal constant can not exceed 0'77777.

A binary constant is an unsigned sequence of ones and
zeros preceded by the letter B and an apostrophe. Binary
constants may be as large as 16 bits.

Expressions

An expression is a single term or a series of terms
connected by the following operators. All are integer
operators.

+ Addition
- Subtraction
•:• Multiplication
I Division

A term is a symbol, constant, or a special symbol, •:•, which
denotes the program location counter. A term is associ
ated with a value inherent to the term in the case of a
constant, or assigned by the assembler.

4 l

~ variand~amac~nes-~~~~~~~~~~~~~~~~~~~~~~
MICROPROGRAM DA TA ASSEMBLER, MIDAS

Multi-term expressions are evaluated from left to right. No
parentheses are allowed. Expressions are reduced to a
single value by the procedure below.

1. Each term is given a value

2. Multiplication and division are performed from left to
right

3. Addition and subtraction are performed left to right

4. If an expression has a leading minus sign, the value is
computed as though a zero term preceded the minus
sign. A leading plus sign is ignored.

5. The value resulting is right-justified in its generated
resultant field. Unspecified leading bit positions
contain zeros.

Program Location Counter

The assembler maintains a program location counter which
is automatically initialized to zero at the start of each
assembly.' As program statements are processed the
assembler assigns consecutive memory (WCS) addresses to

the microinstructions generated, unless the program
location counter is explicitly modified. The counter may be
modified by the ORG and ALOC directives. The asterisk C')
character as a label denotes the current value of the
program location counter.

4.2 GENERAL FORM OF STATEMENTS

Input to the assembler is in the form of statements in
punched-card images. The statement is contained in a
fixed format in character positions 1 through 72. 73
through 80 are reserved for sequencing information and
have no effect on the generated microprogram.

A statement is divided into a label, operation, continuation,
operand, and comment field. These are discussed in order
below.

Label

A source statement can be associated with a symbolic
label, which allows the statement to be referenced from
other statements in the program. The label, if present,
must begin in character position 1 and is terminated by a
space. A label may be a one to six character symbol.

Operation

The operation field may consist of the format-defining
operator FORM, the label of a predefined or user-defined
format statement, a macro name or an assembler

42

directive. The operation field begins in position 8 and is
terminated by a space.

Continuation

Continuation lines may be used when additional lines of
coding are required to complete a statement originating on
one line. There can be up to three continuations per
statement. This is designated by the character C in
position 15. The actual statement continues in positions 16
through 72. Continuation lines are only valid for the
format and program statements.

Operand

The operand field begins in position 16 and is terminated
by a space. The operand field may contain subfields
separated by commas.

Comment

The comment field is optional for documenting programs.
The content of this field is output on the assembly listings
but in no way has an effect upon the assembly process.
The comment field begins with the first non-blank
character following the operand field.

4.3 STATEMENT DEFINITIONS

MIDAS processes four types of statements: format, pro
gram, assembler-directive and comment.

4.3.1 Format Statement

The format statement labels and describes a structure for
the microinstruction generated by the program statement.
Each program statement specifies a format in which the
user has grouped and broken up fields within the
microword to set values. Two predefined formats are GEN
and GMSK, "standard" formats shown in figure 4-1. The
user may define additional formats through the use of the
format statement.

The general form of the format statement begins with a
required label followed by the word FORM followed by the
field identifiers separated by commas. A field identifier
consists of a field length in decimal, which may be followed
by a hexadecimal constant enclosed in parentheses.

label FORM field(l) , field(2), ... , field(n)

Where:

label is a symbol formed according to
the basic elements

each field is a field identifier which is the
field length in decimal, followed
by an optional hexadecimal constant
enclosed in parentheses

length(constant)

ordinal field
field size
number name in bits

TS 4
2 AF/MS 9
3 MT 1
4 FS 4
5 TF 2
6 SF 2
7 GF 4
8 MR 1
9 AB 2

10 IM 4
11 LB 2 GEN
12 LA 2
13 RF 3
14 FF 4
15 MF 1
16 CF 2
17 WR 1
18 SC 1
19 VF 1
20 WF 1
21 XF 2
22 SH 3
23 BB 4
24 AA 4

ordinal field
field size
number name in bits

TS 4
2 AF/MS 9
3 MT 1
4 FS 4
5 TF 2
6 SF 2
7 GF 4
8 MR 1 GMSK

9 AB 2
10 IM 4
11 LB 2
12 LA 2
13 RF 3
14 FF 4
15 MK 16
16 AK 4

Figure 4-1. Predefined Formats Recognized by MIDAS

Field length can not exceed 16 bits. Fields are specified
from left to right. Each field identifier has an implicit
ordinal field number associated with it for reference. All
64 bits of the microinstruction word must be allocated.
Fields to which constant values have not been assigned are
initialized to zero.

Possible errors in the format statement include allocating
more than or less than 64 bits and using a constant value

varian data machines ~
MICROPROGRAM DAT A ASSEMBLER, MIDAS

exceeding the size of the field. If an attempt is made to
redefine a format, an error is indicated and the format is
ignored.

Continuation lines can be used on the format statement
but a field identifier may not be carried across lines. A
comma must complete the field identifier before continuing
the statement on the next line. If the last non-blank
character of the operation field is a comma, it implies the
next record will be a continuation.

Example:

LIST FORM 14,4,2(X'3),2,4,1,2,
C4, 2, 2, 7, 16 (X' 1 FFF) , 4

4.3.2 Program Statement

The program statement represents the encoding of the
microinstructions in symbolic notation. Each program
statement references a format statement to be used in
building the microinstruction. The format of the program
statement is an optional label followed by a format label
followed by a program field.

label format program-field

Where:

the program-field consists of one or more of the following
separated by commas.

One address expression
Predefined opcode
User-defined opcode
Field constant

The single address expression specifies the mode of
addressing to be used in fetching the next microsinstruc
tion. The address expression, if present, must be the first
item in the program field. The format of an address
expression is:

/mode (expression, fail address)

Where mode is a key denoting the following possible
address modes:

N
T
F
s
p

Normal addressing
Test
Field Select
Test and field select
Page jump
Implicit

The value of the first expression in parentheses is the an
address of the next instruction under non·test conditions,
or if the test passes. The value of the second expression is
the address of the next instruction if the test fails.

4-3

~ varlanda~mach~es~~~~~~~~~~~~~~~~~~~~~~~
MICROPROGRAM DATA ASSEMBLER, MIDAS

Modes N, F and P require only the first expression. T and S
must use both expressions. None is given for the implicit
mode.

Address evaluation is performed with the following
considerations:

When the address mode uses field selection (modes F and
S), the value of the expression must refer to the
lower address selected in that field. This address
must be an even numbered address.

The contents of the mask field (MS) and the mask exten
sion field (MT), which provide the mask for the
field address, must be defined by the user.

In the test or the test-and-field-select modes of addressing,
the fail address must be an even numbered word ;:ind
must be greater than pass address taken modulo 16.

For example, if the pass address is X'l6, the range of the fail
address must be from X' 10 to X' 1 E and an even word.
If the pass address is X'26, the fail address may
range (on even words only) from X'20 to X'3E.

The value is 13 bits with the high-order four bits specifing
a page number and the low-order 9 a word within
the page.
The implicit mode generates normal addressing to the
program location counter plus one.
In a page jump the expression specified must produce a
value which contains both the page and word
addressing information. This destination can be
defined through use of the EQU directive.
If the test field (TS) is being used to select interrupts or
to specify AA or BB field definition, its value must be
defined by the user.

Predefined Opcodes

When a predefined opcode is used in the program field, it
specifies that a particular value be placed in a field of the
microinstruction as defined by the format statement.

Predefined opcodes are symbols consisting of three to six
characters. The first two characters identify a field of the
defined formats and the following characters specify the
value in hexadecimal notation to be placed in the field.
These field names must not be used as labels in user
defined opcodes. The two-character names for fields and
the permissible range for each is given below.

Predefined opcodes may be used with user-defined formats
since each of these opcodes has an ordinal field number
associated with it. There is no predefined opcode for the
combined address field AF/MS.

4-4

Fields of the Microinstruction

Ordinal
Name Number Range

TS 1 0 - F
MT 3 0 - 1
FS 4 0 - F
TF 5 0 - 3
SF 6 0-3
GF 7 O - F
MR 8 0 - 1
AB 9 0-3
IM 10 0 - F
LB 11 0-3
LA 12 0-3
RF 13 0-7
FF 14 0 - F
MF 15 0 - 1
MK 15 0 - FFFF
CF 16 0-3
AK 16 0 - F
WR 17 0 - 1
SC 18 0- 1
VF 19 0 - 1
WF 20 0 - 1
XF 21 0-3
SH 22 0-7
BB 23 0 - F
AA 24 0 - F

User-Defined Opcodes

Users can assign values to symbols through the EQU
directive. The opcode is placed in parentheses and
preceded by the decimal ordinal field number designating
the format field for the value.

Statement labels and user-defined opcodes must avoid
naming conflicts.

Field Constant

A field constant denotes a value to be placed in a
microinstruction field. Either decimal, hexadecimal, octal
or binary constant is placed in parentheses and preceded
by a decimal ordinal field number.

Error Conditions

The effect of error conditions upon the continuing assembly
depends upon the type of error. The errors listed below are
indicated on the listing. The action shown in parentheses
is taken in the program statement.

a. Reference to a non-existent format (program statement
is ignored)

b. Value exceeds the size of field (value truncated)
(continued)

c. Both operand in the program field and a format
constant are specified for the same field (inclusive OR
of the values inserted)

d. Multiple values generated for a field (first used)

e. Inconsistency between the address mode specified and
the values of the address control fields e.g., normal
addressing and test field (TF) non-zero. (Mode is
used to generate address)

Additional Considerations

The assembler evaluates each operand in the program
field, and then uses the format indicated to form a
microinstruction. Operand values and format field
constants are placed in the appropriate fields.

Values computed for a field are inserted in the field right
justified. Fields whose values are not explicitly defined in
either the format or program statement are set to zero.

A program statement may have continuation lines, but an
operand may not be carried across lines. A comma must
complete the operand before continuing the statement on
the next line. If the last non-blank character of the
operation field is a comma, it implies the next record will
be a continuation line.

Example:

EXC1 GMSK /N(EXC2),LB3,RF3,FFA,
CMKF7FF

4.3.3 Assembler Directives

Instructions to the assembler are known as directives.
These statements have label, operation, operand and
comment fields. The operation field contains the name of
the directive, such as EQU, ORG, ALOC, SPAC, EJEC, MAC
and EMAC.

The directives for macro definition MAC and EMAC are
described in a later section. Other assembler directives are
discussed in order below.

EQU -- Equate

The EQU directive is used to assign symbols to a given
value or the value of another symbol. The symbol in the
label field is required in this directive. It is defined to have
the value of the expression in the operand field.

The format of the EQU directive requires both a symbol in
the label field and expression in the operand field. If the
expression in the operand field contains a symbol, it must
have been previously defined.

varian data machines ~
MICROPROGRAM DATA ASSEMBLER, MIDAS

If the symbol in the label field has been previously defined
or if there is no label, an error is indicated and the
statement is ignored.

Examples:

THREE EQU
SCZ EQU
V EQU

ORG -- Origin

3
X'FE
THREE+2

The ORG directive sets the program location counter to the
value of the expression in the operand field.

A symbol in the label field is optional in the ORG directive.
The expression to which the program location counter is
set must be in the operand field.

If an expression in the operand field contains a symbol, it
must have been previously defined. A value of zero or a
negative value in the operand field causes an error to be
indicated and the statement is ignored. If the expression
exceeds the page size, it is an error and causes the
assembly to be terminated.

At the beginning of each assembly pass the assembler
initializes the program location counter to zero.

Examples:

ORG
ORG

ALOC -- Allocate

X' 1EO
BEGIN

The ALOC directive informs the assembler that it is to skip
over previously allocated locations as it is assigning
sequential addresses to the generated microinstructions.

From the beginning of an assembly pass until the
occurrence of the ALOC directive the assembler will keep a
list of all assigned locations. After the ALOC directive is
processed the assembler will test each new program
location counter setting against the list of allocated
locations. If a new value is in allocated space, the
assembler will increment the counter and again make the
test. The sequence will continue until unallocated space is
found.

The format of the ALOC directive requires an expression in
the operand field, but the symbol in the label field is
optional.

An error is indicated and the statement ignored, if the
operand field contains a negative value, zero or exceeds
the page size.

45

~ variandatamachines ~~~~~~~~~~~~~~~~~~~~~~~
MICROPROGRAM DAT A ASSEMBLER, MIDAS

In the implicit addressing mode the address of the next
instruction is the next allocatable location.

Examples:

ALOC
ALOC

SP AC -- Space

FIELD*4
ZER0'20

The SPAC directive provides a blank line on an assembly
listing to improve readability.

Both the label and operand fields of the SPAC directive are
ignored. A symbolic source listing shows a blank line in
place of SPAC directives.

Examples:

SPAC
SPAC

EJEC -- Eject

ADD HERE LATER

The EJEC directive causes the assembly listing device to
advance to the first print location of the next output page.

Both the label and operand fields are ignored. EJEC is
listed.

END -- End

The END directive causes an assembly to be terminated.
An END directive is required as the terminal source
statement for each assembly.

A symbol in the label field is optional and assigned the
value of the program location counter. The operand field
is ignored.

4.3.4 Comment

A statement with an asterisk in the first character position
is entirely commentary. Its contents have no effect upon
the assembly process, however the statement is output to
the listing.

4.4 ASSEMBLY-LANGUAGE EXAMPLES

These examples of microinstruction implementation use
MIDAS. The following examples show how representative

4-6

microinstructions in the WCS could be coded as source
statements for MI DAS.

Example 1:

EXC1 GMSK /N(EXC2),LB3,RF3,FFA,HKF7FF

This example uses the normal mode of addressing.

Example 2:

LASL1 GEN /T(LASL2,LASL1),TF2,GFC,LA2,
CRF5,WR1,SC1,XF3,SH6

This example shows the use of the test mode of addressing,
and the use of a cntinuation record.

Example 3:

BT10 GEN /F(BT20),2(X'Fl,FS4,RF4,XF1

This example shows the use of the field select mode of
addressing. The field address mask is provided by the
hexadecimal field constant.

Example 4:

SWA22 GEN /S(LDA2,SWA26),2(X'Cl,MT1,FSF,
CTF3,GFB,LB1,RF3,FFA,MF1,BB1

This example shows the use of the test and field select
mode of addressing. The field address mask is provided by
the hexadecimal field constant and the predefined opcode
MT.

Example 5:

SEN2 GEN /•,1(B'1),IMF,LB1,FFA,MF1,WR1,
CXF1 ,AAE

This example shows the use of the implicit mode of
addressing. The instruction initiates 1/0 activity and the
binary field constant provides part of the I /0 control store
starting address.

Example 6:

p EQU X'200 PAGE ADDRESS (PAGE 1)

GHSK /P(DIV+P),IMD,LB3,
C15(•+1+P) ,AK2

This example shows the use of the branch/push operation.
The operation effects a page selection and the destination
and return addresses are global. The destination address
is generated by the address expression. Note the page
address contribution of P. The expression for field 15
generates the global address which is pushed on the
microprogram return stack. P contributes to this again.

Control returns to the instruction immediately following
the branch/push instruction in this example.

Example 7:

GEN IMD,LB3,AA4

This example shows the use of the branch/pop operation.
The global return address used is the last item pushed on
the stack.

Example 8:

SS1M EQU X' 13E

GEN P(SS1M),SF2,GF

This example shows the use of the page jump mode of
addressing. In page selection the value in the address
expression must contain both the page and word
contribution to the global address. In this example the page
jump is to a standard state in the central control store
(page 0) from some other page.

Example 9:

SS3M GMSK /N(SS2MI),1(X'E),GF5,IM6

This example uses the normal mode of addressing but
selects the decode-ROM and samples interrupts (GF field
bit 2 is true). The hexadecimal constant defines the
interrupts which are enabled.

The following examples show the use of page branch,
branch/push, and branch/pop operations.

Example 10:

SS2M EQU X'092

MW1 GEN /P(SS2M),IM3,SFO,TFO

This example of a microword, labeled MWl, does a page
jump to one of the standard states in read-only memory.

Example 11:

PAGE EQU X' 200 PAGE ONE SPECIFICATION

MW2 GMSK /P(SUBR+PAGE),TFO,SFO,
CIMD,LB3,AK2, 15(MW2+1+PAGE)

SUBR GEN

EXIT GEN TFO,SFO,IKD,LB3,AA4,BBO

varian data machines ~
MICROPROGRAM DATA ASSEMBLER, MIDAS

This example calls a micro subroutine and uses the stack
to save the return address. The subroutine call is labeled
MW2. It forms the return address by adding the word and
page numbers, and then pushes the address on the stack.
Likewise, the address of the subroutine is formed by adding
page and word numbers. The subroutine returns by a
microinstruction labeled EXIT which does a pop jump.

4.5 MACRO CAPABILITY

A macro provides a convenient way to generate a sequence
of assembler source statements many times in one or more
programs. The macro definition is written only once, and a
single statement, the macro reference, is written each time
the user wishes to generate the desired sequence of
statements. These statements are then processed like any
other assembler statements. Macro definition uses the
MAC and EMAC directives.

MAC -- Macro

The MACRO directive introduces a macro definition. This
definition is terminated by the EMAC DIRECTIVE. The
name of the macro is the symbol which appears in the
label field of the MAC directive. Operand field parameters
may be passed from the macro-reference source statement
to the macro through use of the special parameter symbols
P(l) through P(n).

A macro is invoked by the appearance of the macro name
in the operation field of a statement.

The label field must contain a symbol.

In the macro-reference statement the operand field may
contain a list of parameters. At the time the macro
reference is encountered, each parameter is evaluated and
stored into a table within the assembler. The parameters
may be labels, constants, or user-defined opcodes. Prede
fined opcodes are not permitted. The macro definition is
then processed with the values in the table being
substituted for the special symbols P(l) through P(n). For
example, if the operand field of a macro-reference state
ment appears as:

2,ABC,X'EO

then within the generated macro the value of P(l) is 2, P(2)
is the value of the symbol ABC, and the value P(3) is 224.

All arguments in the macro-reference parameter list are
evaluated prior to invoking the macro.

An error is indicated and the MAC direction ignored, if the
label field does not contain a symbol. Also an error is
indicated and the reference is ignored if the macro has not
been defined prior to its being referenced.

If a symbol is present in the label field of a macro-reference
statement, it is assigned the value of t.he program location
counter at the time the macro is invoked.

4.7

~ varlanda~mac~nes~~~~~~~~~~~~~~~~~~~~~~
MICROPROGRAM DATA ASSEMBLER, MIDAS

A macro definition may contain a reference to another
macro definition, nesting definitions. However, a macro
may not be called recursively.

EMAC -- End Macro

The EMAC directive terminates a macro definition. The
contents of both the label and operand fields are ignored.

Example:

The following example shows the use of macro definition
and reference.

ONE
TWO
THREE
FOUR

EQU
EQU
EQU
EQU

1
2
3
4

SHFT MAC

ASLB

LRLB

ASRB

GEN /T(*,SS3M1),TF3,SF3,

EMAC

SHFT

SHFT

SHFT

CGFC, IMS , 1 2 (P (1)) , RF 5 ,
CWR1,22(P{2)),AA1

TWO,FOUR

TWO,ONE

THREE,TWO

4.6 OPERATING INSTRUCTIONS

This section describes the operating procedure for MIDAS
in each of its three environments: VORTEX, MOS and as a
standalone program.

MIDAS runs under VORTEX as a level 0 background task
and may be cataloged into the background library using
the procedures described in the VORTEX Reference
Manual (Varian document 98 A 9952 !Ox).

MIDAS under MOS must be added to the system file using
the system preparation Program as described in the
Varian Master Operating System Reference Manual
(Varian document 98 A 9952 09x).

MIDAS in the standalone environment makes use of the
Standalone FORTRAN IV loader, runtime 1/0 and runtime
utility. Use of the components are describe in the Varian
620 FORTRAN IV Reference Manual (Varian document 98
A 9902 03x).

48

4.6.1 VORTEX Environment

MIDAS is scheduled from the background library at level 0
by the /LOAD.MIDAS directive. MIDAS terminates when
the END statement is encountered, and exits to the
executive. Only one source program can be assembled for
each load of MI DAS.

Ml DAS inputs symbolic source statements from the
processor Input device (Pl) and outputs these statements
on the processor output device (PO). When the END
statement is encountered, MI DAS rewinds the PO file and
commences pass two. During pass two, it inputs source
statements from the system scratch device (SS) and
produces an assembly listing on the list output device
(LO), and object records on the Binary Output device (BO).

PO and SS devices not only must be the same physical
device, but the same magnetic tape, drum or disc unit. If
Pl is assigned to a Rotating Memory Device (RMD)
partition, MIDAS assumes the source records are blocked
three 40-word records per RMD 120-word physical record.
However, if Pl is the same logical unit as the System Input
Device (SI), and it is assigned to a RMD partition, MIDAS
assumes the source records are not blocked but consist of
one source record per RMD 120-word physical record. If BO
is assigned to a RMD partition, the output is blocked two
60-word object records per RMD 120-word physical reocrd.
The assembler's table space may be expanded and
consequently larger source programs assembled by use of
the VORTEX /MEM directive.

4.6.2 MOS Environment

MI DAS is loaded from the system file by the system loader
by means of the /ULOAD,MIDAS directive.

It reads the source records from Pl and outputs them to
PO. Pass two source input is from SS. When the END
statement is encountered on pass one, the SS file is
repositioned and reread. During pass two, the output can
be directed to BO for the object module and to LO for the
assembly listing. When an END statement is encountered
on pass two, control is returned to MOS. Therefore, it is
necessary to reload MIDAS with another /ULOAD directive
if multiple assemblies are desired.

4.6.3 Stand-Alone Environment

MIDAS is loaded by the 620 stand-alone FORTRAN IV
loader, along with the runtime 1/0 and runtime utility. The
description of this loading procedure and subsequent
execution is described in the Varian 620 FORTRAN IV
Reference Manual, where MIDAS is substituted for the DAS
MR Assembler. Upon execution, MIDAS will input source
records from logical unit 3 (Pl), output source records for
pass two to logical unit 9 (PO), input pass two source
records from logical unit 8 (SS), output binary object
records to logical unit 2 (BO), and output assembly listing
to logical unit 4 (LO). When the first assembly is

completed, subsequent assemblies may be performed by
restarting MIDAS at location 0541.

4.7 ASSEMBLER INPUT AND OUTPUT

The following section contains a description of the source
records required for assembler input and the object
records and listing produced by the assembler.

Source Records

The assembler input consists of a sequence of logical
records containing 80 character positions. If a logical
record contains more than 80 positions, only the first 80
are input and the remainder are ignored. If a record
contains less than 80 positions, blank characters are
supplied by the assembler to fill 80 character positions.

Only the first 72 are considered in the assembly process.
Character positions 73 through 80 may be used as
desired.

Listing Format

An assembly-listing page consists of 44 lines per page with
each line containing no more than 120 characters. The
lines per page count may be changed when running under
an operating system. Each page contains the following:

Page number and title line followed by a blank line
Program listing containing two less than the current
lines/page count

At the end of an assembly a symbol table will be printed
followed by a line containing the message "mmmm
ERRORS ASSEMBLY COMPLETE" where mmmm is the
accumulated error count expressed as a decimal number.

The line format for the title line is a function of the
environment in which MIDAS runs. The following descrip
tion pertains to the standalone and MOS versions, with the
comments in parentheses referring to VORTEX. Beginning
with the first character position the format is illustrated
below.

Object Code Records

MIDAS produces object code which is input for the
microsimulator and the microutility programs. Logical
records of the object code are a fixed length of 60 words.
Word 1 is the record control word. Word 2 contains an
exclusive OR checksum of word 1 and the remaining words
of the record. Word 3 through 11 optionally contain a
program identification block. Words 12 through the end of
the record (or 3 through end of record if there is no
program identification block) contain data fields.

varian data machines IE
MICROPROGRAM DATA ASSEMBLER, MIDAS

Record Control Word Format

The format of the record control word is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
a 1 b c 1 0 O d d d d d d d d

where a is 1 if the checksum is suppressed, b is 1 if not
starting record, c is 1 when it is not the last record, and d
is binary record number modulo 256.

Program Identification Block

This block appears in words 3 through 11 of the starting
record of each program. Word 3 contains the highest value
of the program counter during the assembly, words 4
through 7 contain an eight-character ASCII program
identification, and words 8 through 11 contain an eight
character ASCII program creation date.

Data Field Format

Data fields contain either one- or four-word entries. One
word entries are loader control words, and four-word
entries consist of data words.

The format of the loader control word is code in bits 13-15
and an address/count in the low-order 13 bits. A code of
zero instructs the loader to ignore this entry. One is the
code for setting the loading location counter to the value
contained in bits 0 through 12. A value of two indicates
the following microinstructions should be loaded. The
number of microinstructions minus one is specified in bits
1 through 12.

Data Words

Data words contain microinstructions. Each microinstruc
tion is comprised of four 16-bit words. Word 1 contains bits
63 through 48 of the microinstruction while word 4
contains bits 15 through 0 of the microinstruction. A
microinstruction will not be carried across a logical record
boundary. If insufficient space remains on a logical record
for the four-word microinstruction, the remaining space
will be ignored and the microinstruction started on the
next logical record.

4.8 ADDING MIDAS TO VORTEX

The micro assembler resides on the background library
under VORTEX. After system generation, the user must

4-9

~ varian data machines

MICROPROGRAM DATA ASSEMBLER, MIDAS

catalog it in the background library. The following
procedure is used to do this.

1. Position the Bl device to the microassembler object
material.

2. Issue the following directives:

/LMGEN
TIDB,MIDAS,ONE,ZERO
LD,BI
LIB
END,BL,E

Detailed descriptions of these directives are in the VORTEX
Reference Manual.

4~9 ASSEMBLY ERROR MESSAGES

During assembly the symbolic statements are checked for
syntactic errors. In addition, a condition may occur where
the assembler is unable to determine the correct meaning
of the symbolic source statements.

Either case is indicated as an error and up to eight error
codes will be output beneath the source statement
incorrectly constructed.

NR, LC and 10 errors terminate the assembly.

Each error code with the exception of 10 is followed by a
space and two decimal digits indicating the character
position the assembler was scanning when the error was
detected.

The error codes and their meanings are listed below.

Error
Code Meaning

AD Address expression or associated fields in error
(see below)

CC Continuation not expected

CE Numeric conversion error

DD Illegal redefinition of a symbol

ER Syntax error

4-10

EX An expression contained an illegal construction

FN Field number inconsistent with format

10 110 error

LC Program location counter setting exceeds the
maximum WCS page size (512 words)

MF Duplicate field reference

NR No memory available for addition of an entry to
assembler's tables

NS No symbol in the label field where required

OP Operation field undefined

SE Symbol in label field has a value during pass 2 that
is different from the value determined in pass 1

SY Undefined symbol. A value of zero is assumed

sz A value too large for the size of a field, or the fields
defined in a format statement do not equal 64 bits

The AD error may occur under these circumstances:

a. With the character pointer in, or at the end of, an
address expression:

1. A test fail address is not on an even num
bered word.

2. A field select origin address is not on an
even boundary.

3. The displacement between the test pass and
the test fa i I addresses is too great.

b. With the character pointer at the end of the
operand field:

1. Normal addressing mode and the FS or MT
or TF field is not equal to zero.

2. Test addressing mode is used and the TF
field is equal to zero.

3. Field select ion addressing is the mode and
the FS field is equa I to zero.

4. Test and field select ion addressing mode
and either the FS or TF field equals to zero.

5. Page-jump addressing mode and either the
FS or TF field is not equal to zero.

SECTION 5

CODING FROM FLOW DIAGRAMS

5.1 GENERAL

This section details the. conversion of flow diagrams, (as
developed in section 3), into code which MIDAS accepts.
As examples actual assembler listings of the sample
microprograms discussed in section 3 are included.

Flow diagram conversion is basically a matter of table
lookup. Tables are included in this section which list the
standard mnemonics and the corresponding assembler
code.

Assembler code produced is given in two different formats.
The first format produces code using only the predefined
assembler opcodes for the GEN or GMSK statements. The
second format is based around user-defined opcodes
which follow the mnemonics developed thus far as closely
as possible. As these are not predefined, some burden is
placed on the user to include the necessary EQU directives
(these EQUs are available from Varian as a software part).
However, the resulting code is considerably more readable
than that produced in the first format.

varian data machines ~

Each column in the flow diagram will produce a single
assembler program statement. This transformation can
be performed as follows:

1. Fill in the label field if necessary, this will often be from
the IDENT section.

2. Choose either GEN or GMSK as format label. The latter,
GMSK, is used only when the 16-bit literal/mask is
needed.

3. Derive the appropriate address expression

4. For each of the standard mnemonics in the column,
add the statements shown in the conversion tables.

5. Replace any nonstandard mnemonics with appropriate
field value assignments.

In addition to this translation, other assembler directives
must be included to set the location of the program in
WCS. In doing this, addressing considerations must be
taken into account. For example, in test addressing the
failure branch must always be to an even location.

The following table (5-1) lists the standard mnemonics and
the assembler code they produce. Following the table, the
EQU statements which define the format 11 opcodes are
listed in table 5-2.

Table 5-1. Conversion Table

Row Mnemonic Format I Format II

IDENT None

MEMORY None
FUNCTION

MEMORY: IF,OVR IMO 10(1F$0VR)

REQUEST, IF,ALU IM4 10(1F$ALU)
ADDRESS IF,P IM8 10(1F$P)

IF,MIR IMC 10(1F$MIR)
OF,OVR I Ml 10(0F$0VR)
OF,ALU IM5 10(0F$ALU)
OF,P IM9 10(0F$P)
OF,MIR IMD 10(0F$MIR)
OS,OVR IM2 10(0S$0VR)
OS,ALU IM6 10(0S$ALU)
OS,P IMA 10(0S$P)
OS,MIR IME 10(0S$MIR)
BS,OVR IM3 10(BS$0VR)
BS,ALU IM7 10(BS$ALU)
BS,P IMB 10(BS$P)
BS,MIR IMF 10(BS$MIR)

Unconditional SFl (or SF2,TFO) 6(MEMC)[or
6(MEMC$),5(0)]

(continued)

5-1

~ varianda~mach~es~~~~~~~~~~~~~~~~~~~~~~
coo1NG FROM FLOW DIAGRAMS

Table 5-1. Conversion Table (continued)

Row Mnemonic Format I Format II

TES TT SF3 6(TESTT)

TESTF SF2 (and not TFO) 6(TESTF)

WAIT,MEMDN SFO,IMl 6(SPEC),10(WAITMD)

ALU Rn LAO,AAn 12(A$GPR),24(Rn)

INPUT A Rn.SL LA2,AAn 12(A$GPRL),24(Rn)

Rn,SR LA3,AAn 12(A$GPRR),24(Rn)
p LAI 12(A$P)

ZERO LAO, SHI 12(A$SPEC),22(AZERO)

ONES LAO,SH2 12(A$SPEC),22(AON ES)

Note: 1) when using
shifted general register
user must specify high-
low bits through SH field.

2) when using the GMSK
format, use 16(Rn) in-
stead of 24(Rn) and
AKn instead of AAn.

ALU Rn LBO,BBn l 1(8$GPR),23(Rn)

INPUT B MIR LBl,881 l 1(8$SPEC),23(MIR)

IOR LBl,882 l l(B$SPEC),23(10R)

STAT LBl,883 11 (B$SPEC),23(STA T)

LIT,x LB3,MKy ll(LIT),15(y)

MSK,x LB2,MKy 11 (MSK), l 5(y)

Note: y is the one's
complement of x

QPR LBl,880 l 1(8$SPEC),23(0PR)

ORSE LBl,884 l 1(8$SPEC),23(0RSE)

OLSE LBl,885 l l(B$SPEC),23(0LSE)

ORZF LBl,886 l 1(8$SPEC),23(0RZF)

OLZF LBl,887 l l(B$SPEC),23(0LZF)

ALU ZERO FF3,MF1 14(ZER0),15(LOG)
OUTPUT ONES FF3 14(0NES).

TRNA FFF,MFl 14(TRNA), 15(LOG)
TRNB FFA,MFl 14(TRN 8), l 5(LOG)
INCA CF3 14(1NCA),16(CRY1)
INCB FF1,CF3 14(1NCB),16(CRY1)
DECA FFF 14(DECA)
DECB FF9 14(DECB)
ADD FF9 14(ADD)
SUB FF6,CF3 14(SUB),16(CRY1)
SHFA FFC 14(SHFA)
AND FFB,MFl 14(AND),15(LOG)
OR FFl 14(0R)
EOR FF6,MF1 14(EOR), l 5(LOG)
NOTA FFO,MFl 14(NOTA), 15(LOG)
NOTB FF5,MF1 14(NOTB),15(LOG)
TCB FF2,CF3 l 4(TCB), l 6(CRY 1)

Note: The mnemonics
INCB and TCB require
input A to be ZERO.
Mnemonic DECB require
input A to be ON ES.

(continued)

5-2

Table 5-1. Conversion Table (continued)

Row Mnemonic Format I

ALU Rn WRl,AAn
DESTINATION

STATUS SHFT VFl
SAMPLE OVFL Refer to Table 2-7

ALU TFO,SFO,GF2

STATUS OVFL GFO
TEST IOSR GFl

SSW3 GF2
SSW2 GF3
SSWl GF4
TFIR GF5
ALUO GF6
ALU5 GF7
ALUC GF8
ALUZ GF9
SHFT GFA
MIRS GFB
SFTC GFC
GPRS GFD
NORM GFE
QUOS GFF

ADDRESSING: blank ;•:<

MODE,
ADDRESS FSEL /F(base),FSx

INT user supplied

PJMP to n:

1) using stack /N(word),TSn
2) without memory /N(word),TSn,

SFO,TFO,IM3
3) with memory /N(word),GF4,

SF2,TFO

POPJMP TFO,SFO,IMD,
LB3,AA4,880

DECODE
1) with IBR to I TFO,SFO,GF5
2) without I BR to I TFO,SFO,GF4

TES TT /T(pass,fail),
TF2

TESTF /T(pass, fail),
TF3

SPECIAL POUT RFl
ACTIONS SCOUT RF2

OPROUT RF3
INCP RF4
INCSC RF5
INCP,OPROUT RF?

varian data machines ~
CODING FROM FLOW DIAGRAMS

Format II

17(GPROUT),24(Rn)

19(S$SHFT)

TFO,SFO, 7(S$ALU)

7(0VFL)
7(10SR)
7(SSW3)
7(SSW2)
7(SSW1)
7(TFIR)
7(ALUO)
7(ALUS)
7(ALUC)
7(ALUZ)
7(SHFT)
7(MIRS)
7(SFTC)
7(GPRS)
?(NORM)
7(QUOS)

Note: TF field must
also be .set in test
addressing.

I•:•

/F(base),FSx

user supplied

/P(word +page)
/P(word +page),
lO(PJMP),SFO,TFO
/P(word +page),
7(PJMP$),6(MEMC$),TFO

1 O(STACK),24(POP J MP),
LB3, TFO,SF0,880

5(0),6(0), 7(DECOD$)
5(0),6(0), 7(DECODE)

/T(pass,fail),5(TT)

/T(pass, fail),5(FT)

13(POUT)
13(SCOUT)
13(0PROUT)
13(1NCP)
13(1NCSC)
RF?

(continued)

5-3

IE varian data machines

CODING FROM FLOW DIAGRAMS

Row

ADD EQU
ALUC EQU
ALUO EQU
ALUS EQU
ALUZ EQU
AND EQU
AONES EQU
AZ ERO EQU
A$GPR EQU
A$GPRL EQU
A$GPRR EQU
A$P EQU
A$SPEC EQU

BS$ALU EQU
BS$MIR EQU
BS$0VR EQU
BS$P EQU
B$GPR EQU
B$SPEC EQU

CRY1 EQU

DECA EQU
DECB EQU
DECODE EQU
DECOD$ EQU

EOR EQU

F'r EQU

5-4

Table 5-1. Conversion Table (continued)

Mnemonic

SHFTOP,LFT
SHFTOP,RGHT

IBR to I
with decode
without decode

PUSH,x

PO PD EL

Format I

SCl,WFO
SCl,WFl

TFO,SFO,GF5
TFO,SFO,GFl

TFO,SFO,IMD,
LB3,AK2,MKx

TFO,SFO,IMD,
BB1,AA4,LB3

Format II

l 8(SH FTOP),20(LFT)
18(SHFTOP),2 l(RGHT)

Note: on shifting OPR
XF and AA fields used
to determine high/low
bits.

TFO,SFO, 7(DECOD$)
TFO,SFO, 7(I BR$ I)

10(STACK),16(PUSH),
15(x), LB3, TFO,SFO

1 O(STACK),23(POPDEL),
LB3,TFO,SFO,AA4

Table 5-2 is the assembler directives needed for the user
defined opcodes of format II. These are available on
request as released software parts.

Table 5-2. User-Defined Opcodes

9 GP ROUT EQU
8 GPRS EQU X'D
6
7 IBR$I EQU 1
9 IF$ALU EQU 4
X'B IF$MIR EQU X'C
2 IF$0VR EQU 0

IF$P EQU 8
0 INCA EQU 0
2 INCB EQU 1
3 INCP EQU 4

INC SC EQU 5
0 IOR EQU 2

IOSR EQU
7
X'F LFT EQU 0
3 LIT EQU 3
X'B LOG EQU 1
0

MEMC$ EQU 2
MEMC EQU

3 MIR EQU
MIRS EQU X'B

X'F MSK EQU 2
9
4 NORM EQU X'E
5 NOTA EQU 0

NOTB EQU 5
6

OF$ALU EQU 5
3 OF$MIR EQU X'D

(continued)

Table 5-2. User-Defined Opcodes (continued)

OF$0VR EQU
OF$P EQU 9
OLZF EQU 7
OLSE EQU 5
ONES EQU 3
QPR EQU 0
OP ROUT EQU 3
OR EQU
ORSE EQU 4
ORZF EQU 6
OS$ALU EQU 6
OS$MIR EQU X'E
OS$0VR EQU 2
OS$P EQU X'A
OVFL EQU 0

PJMPS EQU 4
PJMP EQU 3
POPDEL EQU 1
POPJMP EQU 4
POUT EQU 1
PUSH EQU 2

QUOS EQU X'F

RO EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
RS EQU 5
R6 EQU 6
R7 EQU 7
RS EQU 8
R9 EQU 9
RA EQU X'A
RB EQU X'B
RC EQU X'C
RD EQU X'D
RE EQU X'E

(continued)

varian data machines ~
·CODING FROM FLOW DIAGRAMS

RF EQU X'F
RGHT EQU

SCOUT EQU 2
SFTC EQU X'C
SHFA EQU X'C
SHFT EQU X'A
SHFTOP EQU 1
SPEC EQU 0
SSW1 EQU 4
SSW2 EQU 3
SSW3 EQU 2
STACK EQU X'D
STAT EQU 3
SUB EQU 6
S$ALU EQU 2
S$SHFT EQU

TCB EQU 2
TES TT EQU 3
TESTF EQU 2
TFIR EQU 5
TRNA EQU X'F
TRNB EQU X'A
TT EQU 2

WAITMD EQU

ZERO EQU 3

5.2 EXAMPLES OF MICROPROGRAMS IN
ASSEMBLY LANGUAGE

The five examples of section 3 were coded using the
techniques outlined in this section. Comments on the
encoding and actual assembler listings follow.

The first three examples use the equates in table 5-2.

5-5

~ varian data machines

CODING FROM FLOW DIAGRAMS

5.2.1 BCS Entry Point Initialization

Since physical addresses were assigned at the flow diagram
level, the transformation was quite straightforward. Note
that a standard deck of all the EQU statements was used
though not all were needed.

1 * 2 * 3 * THIS IS INITIALIZATION FOR BCS ENTRY POINTS
4
5

7 * 8 * THE FOLLOWING ARE SUPPLEMENTAL OPCODES
9 * FOR USE WITH THE MICRO ASSEMBLER

10 * 11 * 0009 12 ADD EQU 9
0008 13 ALUC EQU 8
0006 14 ALUO EQU 6
0007 15 ALUS EQU 7
0009 16 ALUZ EQU 9
OOOB 17 AND EQU X'B
0002 18 AONE EQU 2
0001 19 A ZERO EQU 1
0000 20 A$GPR EQU 0
0002 21 A$GPRL EQU 2
0003 22 A$GPRR EQU 3
0001 23 A$P EQU 1
0000 24 A$SPEC EQU 0
0007 25 BS$ALU EQU 7
OOOF 26 BS$MIR EQU X'F
0003 27 BS$OVR EQU 3
OOOB 28 BS$P EQU X'B
0000 29 B$GPR EQU 0
0001 30 B$SPEC EQU 1
0003 3 1 CRY1 EQU 3
OOOF 32 DECA EQU X'F
0009 33 DECB EQU 9
0004 34 DECODE EQU 4
0005 35 DECOD$ EQU 5
0006 36 EOR EQU 6
0003 37 FT EQU 3
0001 38 GP ROUT EQU 1
OOOD 39 GPRS EQU X'D
0001 40 IBR$I EQU 1
0004 41 IF$ALU EQU 4
oooc 42 IF$MIR EQU X'C
0000 43 IF$0VR EQU 0
0008 44 IF$P EQU 8
0000 45 INCA EQU 0
0001 46 INCB EQU 1
0004 47 INCP EQU 4

0005 48 INC SC EQU 5
0002 49 IOR EQU 2
0001 50 IOSR EQU 1
0006 51 KOUT EQU 6
0000 52 LFT EQU 0
0003 53 LIT EQU 3
0001 54 LOG EQU 1
0001 55 MEMC EQU 1
0002 56 MEMC$ EQU 2
0001 57 MIR EQU 1
OOOB 58 MIRS EQU X'B
0002 59 MSK EQU 2
OOOE 60 NORM EQU X'E
0000 61 NOTA EQU 0
0005 62 NOTB EQU 5
0005 63 OF$ALU EQU 5
OOOD 64 OF$MIR EQU X'D
0001 65 OF$0VR EQU 1
0009 66 OF$P EQU 9
0007 67 OLZF EQU 7
0005 68 OLSE EQU 5
0003 69 ONES EQU 3
0000 70 QPR EQU 0
0003 7 1 OP ROUT EQU 3
0001 72 OR EQU 1
0004 73 ORSE EQU 4
0006 74 ORZF EQU 6
0006 75 OS$ALU EQU 6
OOOE 76 OS$MIR EQU X'E
0002 77 OS$0VR EQU 2

(continued)

56

OOOA 78 OS$P
0000 79 OVFL
0003 80 PJMP
0004 81 PJMP$
0001 82 POUT
OOOF 83 QUOS
0000 84 RO
0001 85 R1
0002 86 R2
0003 87 R3
0004 88 R4
0005 89 RS

0006 90 R6
0007 91 R7
0008 92 RB
0009 93 R9
OOOA 94 RA
OOOB 95 RB
oooc 96 RC
OOOD 97 RD
OOOE 98 RE
OOOF 99 RF
0001 100 RGHT
0002 101 SCOUT
oooc 102 SFTC
oooc 103 SHFA
OOOA 104 SHFT
0001 105 SHFTOP
0000 106 SPEC
0004 107 SSW1
0003 108 SSW2
0002 109 SSW3
0003 110 STAT
0006 111 SUB
0002 112 S$ALU
0006 113 S$OVFL
0001 114 S$SHFT
0002 115 TCB
0003 116 TES TT
0002 117 TESTF
0005 118 TFIR
OOOF 119 TRNA
OOOA 120 TRNB
0002 121 TT
0001 122 WAITMD
0003 123 ZERO

125 * 126 * 127 * 013E 128 SS1M
0092 129 SS2M
002D 130 SS3M

0000 132

0000 0490000180000000 134
0001 0490000180000000 135
0002 0490000180000000 136
0003 0490000180000000 137
0004 0490000180000000 138
0005 0490000180000000 139
0006 0490000180000000 140
0007 0490000180000000 141
0008 0490000180000000 142
0009 0490000180000000 143
OOOA 0490000180000000 144
OOOB 0490000180000000 145
oooc 0490000180000000 146
OOOD 0490000180000000 147
OOOE 0490000180000000 148
OOOF 0490000180000000 149
0010 0490000180000000 150
0011 0490000180000000 151
0012 0490000180000000 152
0013 0490000180000000 153
0014 0490000180000000 154
0015 0490000180000000 155
0016 0490000180000000 156
0017 0490000180000000 157
0018 0490000180000000 158
0019 0490000180000000 159
001A 0490000180000000 160
001B 0490000180000000 161
001C 0490000180000000 162
001D 0490000180000000 163

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

X'A
0
3
4
1
X'F
0
1
2
3
4
5

6
7
8
9
X'A
X'B
X'C
X'D
X'E
X'F
1
2
X'C
X'C
X'A
1
0
4
3
2
3
6
2
6
1
2
3
2
5
X'F
X'A
2
1
3

varian data machines ~
CODING FROM FLOW DIAGRAMS

FOLLOWING ARE ROM STANDARD STATE ADDRESSES

EQU X' 13E RESTART PIPELINE ~ P
EQU X'092 MAINTAIN PIPELINE
EQU x I 02D DECODE NEXT INSTRUCTION (IN IBR)

ORG

GEN /N(SS2Ml,10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2M),10(PJMP) ,1(0) RETURN TO ROM
GEN /N(SS2M) ,10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2Ml,10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2M), 10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2Ml,10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2Ml,10(PJMP) ,1(0) RETURN TO ROM
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2M),10(PJMP) ,1(0) RETURN TO ROM
GEN /N(SS2Ml ,10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2Ml,10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2Ml, 10(PJMP), 1(0) RETURN TO ROM
GEN /N(SS2Ml,10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2Ml ,10(PJMP) ,1(0) RETURN TO ROM
GEN /N(SS2Ml,10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2Ml,10(PJMP) ,1(0) RETURN TO ROM
GEN /N(SS2M) ,10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2Ml,10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2M) ,10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2Ml,10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2M), 10(PJMP), 1(0) RETURN TO ROM
GEN /N(SS2M),10(PJMP) ,1(0) RETURN TO ROM
GEN /N(SS2M), 10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM
GEN /N(SS2M),10(PJMP) ,1(0) RETURN TO ROM

(continued)

5.7

- varian data machines

CODING FROM FLOW DIAGRAMS

001E 0490000180000000 164
001F 0490000180000000 165

167
SYMBOLS
0000 A$GPR 0002 A$GPRL 0003
0009 ADD 0008 ALUC 0006
OOOB AND 0002 AONE 0001
0007 BS$ALU OOOF BS$MIR 0003
OOOF DECA 0009 DECB 0005
0003 FT 0001 GP ROUT OOOD
OOOC IF$MIR 0000 IF$0VR 0008
0004 INCP 0005 INC SC 0002
0000 LFT 0003 LIT 0001
0001 MIR OOOB MIRS 0002
0005 NOTB 0005 OF$ALU OOOD
0005 OLSE 0007 OLZF 0003
0001 OR 0004 ORSE 0006
0002 OS$0VR OOOA OS$P 0000
0001 POUT OOOF QUOS 0000
0003 R3 0004 R4 0005
0008 RS 0009 R9 OOOA
OOOD RD OOOE RE OOOF
0006 S$0VFL 0001 S$SHFT 0002
OOOA SHFT 0001 SHFTOP 0000
002D SS3M 0004 SSW1 0003
0006 SUB 0002 TCB 0002
OOOF TRNA OOOA TRNB 0002

0 ERRORS ASSEMBLY COMPLETE

5-8

GEN /N(SS2M),10(PJMP), 1(0) RETURN TO ROM
GEN /N(SS2M),10(PJMP),1(0) RETURN TO ROM

END

A$GPRR 0001 A$P 0000 A$SPEC
ALUO 0007 ALUS 0009 ALUZ
A ZERO 0000 B$GPR 0001 B$SPEC
BS$0VR OOOB BS$P 0003 CRY1
DECOD$ 0004 DECODE 0006 EOR
GPRS 0001 IBR$I 0004 IF$ALU
IF$P 0000 INCA 0001 INCB
IOR 0001 IOSR 0006 KOUT
:LOG 0001 MEMC 0002 MEMC$
MSK OOOE NORM 0000 NOTA
OF$MIR 0001 OF$0VR 0009 OF$P
ONES 0000 OPR 0003 OP ROUT
ORZF 0006 OS$ALU OOOE OS$MIR
OVFL 0003 PJMP 0004 PJMP$
RO 0001 R1 0002 R2
RS 0006 R6 0007 R7
RA OOOB RB oooc RC
RF 0001 RGHT 0002 S$ALU
SCOUT oooc SFTC oooc SHFA
SPEC 013E SS1M 0092 SS2M
SSW2 0002 SSW3 0003 STAT
TESTF 0003 TES TT 0005 TFIR
TT 0001 WAITMD 0003 ZERO

0001

0009
0008
0006
0007
0009
OOOB
0002
0001
0000
0002
0003
0001
0000
0007
OOOF
0003
OOOB
0000
0001
0003
OOOF
0009
0004
0005
0006
0003
0001
OOOD
0001
0004
oooc
0000
0008
0000
0001

0004
0005
0002
0001
0006
0000
0003
0001
0001
0002
0001
OOOB
0002
OOOE
0000
0005
0005
OOOD
0001
0009
0007

varian data machines ~
CODING FROM FLOW DIAGRAMS

5.2.2 Memory-to-Memory Block Move

The subroutine was assigned physical location 101, page 1
as its first .address. This places word MBMA on an even
word, as it must be. Since the microroutine is on page 1,
the need for the page jump from the BCS entry point no
longer exists. It was included never the less.

1 *
2 *
3 *
4 *
5 *
6 *
7 *
8 *
9 *

MEMORY-TO-MEMORY BLOCK MOVE

CALL: BCS TO WORD 0

PARAMETERS: A REG - 'TO' ADDRESS

10 *
11 *

R1

*
EQU

B REG - 'FROM' ADDRESS
X REG - BLOCK LENGTH

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

*
*

THE FOLLOWING ARE SUPPLEMENTAL OPCODES
FOR USE WITH THE MICRO ASSEMBLER

*
* ADD
ALUC
ALUO
ALUS
ALUZ
AND
AONE
AZ ERO
A$GPR
A$GPRL
A$GPRR
A$P
A$SPEC
BS$ALU
BS$MIR
BS$0VR
BS$P
B$GPR
B$SPEC
CRY1
DECA
DECB
DECODE
DECOD$
EOR
FT
GPROUT
GPRS
IBR$I
IF$ALU
IF$MIR
IF$0VR
IF$P
INCA
INCB

EQU . 9
EQU 8
EQU 6
EQU 7
EQU 9
EQU X'B
EQU 2
EQU 1
EQU 0
EQU 2
EQU 3
EQU 1
EQU 0
EQU 7
EQU X'F
EQU 3
EQU X'B
EQU 0
EQU 1
EQU 3
EQU X'F
EQU 9
EQU 4
EQU 5
EQU 6
EQU 3
EQU 1
EQU X'D
EQU 1
EQU 4
EQU X'C
EQU 0
EQU 8
EQU 0
EQU 1

54 INCP EQU
55 INCSC EQU
56 IOR EQU
57 IOSR EQU
58 KOUT EQU

4
5
2
1
6

59 LFT EQU
60 LIT EQU
61 LOG EQU
62 MEMC EQU
63 MEMC$ EQU
64 MIR EQU
65 MIRS EQU
66 MSK EQU
67 NORM EQU
68 NOTA EQU
69 NOTB EQU
70 OF$ALU EQU
71 OF$MIR EQU
72 OF$0VR EQU
73 OF$P EQU
74 OLZF EQU

0
3
1
1
2
1
X'B
2
X'E
0
5
5
X'D
1
9
7

(continued)

5.9

~ varian data machines

CODING FROM FLOW DIAGRAMS

5-10

0000

0005 75
0003 76
0000 77
0003 78
0001 79
0004 80
0006 81
0006 82
OOOE 83
0002 84
OOOA 85
0000 86
0003 87
0004 88
0001 89
OOOF 90
0000 91
0002 92
0003 93
0004 94
0005 95
0006 96
0007 97
0008 98
0009 99
OOOA 100
OOOB 101
oooc 102
OOOD 103
OOOE 104
OOOF 105
0001 106
0002 107
oooc 108
oooc 109
OOOA 110
0001 111
0000 112
0004 113
0003 114
0002 115
0003 116
0006 117
0002 118
0006 119
0001 120
0002 121
0003 122
0002 123
0005 124
OOOF 125
OOOA 126
0002 127
0001 128
0003 129

OLSE EQU
ONES EQU
QPR EQU
OPROUT EQU
OR EQU
ORSE EQU
ORZF EQU
OSSALU EQU
OS$MIR EQU
OS$0VR EQU
OSSP EQU
OVFL EQU
PJMP EQU
PJMPS EQU
POUT EQU
QUOS EQU
RO EQU
R2 EQU
R3 EQU
R4 EQU
RS EQU
R6 EQU
R7 EQU
RB EQU
R9 EQU
RA EQU
RB EQU
RC EQU
RD EQU
RE EQU
RF EQU
RGHT EQU
SCOUT EQU
SFTC EQU
SHFA EQU
SHFT EQU
SHFTOP EQU
SPEC EQU
SSW1 EQU
SSW2 EQU
SSW3 EQU
STAT EQU
SUB EQU
SSALU EQU
S$0VFL EQU
S$SHFT EQU
TCB EQU
TESTT EQU
TESTF EQU
TFIR EQU
TRNA EQU
TRNB EQU
TT EQU
WAITMD EQU
ZERO EQU

*

5
3
0
3
1
4
6
6
X'E
2
X'A
0
3
4
1
X'F
0
2
3
4
5
6
7
8
9
X'A
X'B
X'C
X'D
X'E
X'F
1
2
X'C
X'C
X'A
1
0
4
3
2
3
6
2
6
1
2
3
2
5
X'F
X'A
2
1
3

131
132
133 * FOLLOWING ARE ROM STANDARD STATE ADDRESSES

013E 134
0092 135
002D 136

138

* SS1M
SS2M
SS3M

140 *
141 *

EQU
EQU
EQU

ORG

X' 13E
X'092
X'02D

0

RESTART PIPELINE @ P
MAINTAIN PIPELINE
DECODE NEXT INSTRUCTION (IN IBR)

FOLLOWING IS BCS ENTRY POINT

0000 1808000180000000 143 GEN /N(MBM) ,10(PJMP) ,1(1) BRANCH TO BLOCK MOVE ROUTINE

0101

145 *
146 *
147 *
149

151 *
152 *

0101 0810000008F90007 154 MBM

156 *
157 *

0102 0818000000F10000 159

161 *
162 *

FOLLOWING IS ACTUAL BLOCK MOVE ROUTINE

ORG X' 101

SAVE P IN R7

GEN I•, 12(A$P) '14(TRNA) I 15(LOG) I 17(GPROUT) ,24(R7)

DECR 'TO' ADDR

GEN /•,12(A$GPR),24(R0),14(DECA),17(GPROUT)

DECR 'FROM' ADDR ; PUT IT IN P

(continued)

0103 0820000001F00001 164

166 *
167 *

GEN

varian data machines -

CODING FROM FLOW DIAGRAMS

/•,12(A$GPR) ,24(R1),14(DECA),13(POUT)

FIRST LOOP MICROWORD; STORE AT 'TO'; REQUEST FETCH OF INCR 'FROM'

169 MBMA
0104 08280404A4AB0010 170

GEN I•, 1 0 (OF$P l , 6 (MEMC l , 11 (B$SPEC l , 2 3 (MIR l , 14 (TRNB l , 15 (LOG l ,
C13(INCP)

172 *
173 * SECOND LOOP MICROWORD; DECR BLOCK LENGTH; SAMPLE RESULT FOR TEST

0105 0830008000F10002 175

177 *
178 *

179 *

181
0106 283829C300070000 182

184 *
185 *

GEN /•,12(A$GPR) ,24(R2) ,14(DECA),17(GPROUT) ,7(S$ALU)

FINAL LOOP MICROWORD; EXIT OR CONTINUE THE LOOP WITH REQUEST

FOR A STORE AT INCREMENTED 'TO' ADDR

GEN /T(MBMB,MBMA),5(TT),10(0S$ALU),6(TESTF),
C12(A$GPR),24(RO) ,14(INCA),16(CRY1),17(GPROUT),7(ALUS)

EXIT MICROWORD ; RESTORE P AND THE PIPELINE

187 MBMB
0107 0168090201FB0007 188

GEN /N(SS2M),7(PJMP$),1(0) ,10(IF$ALU),6(MEMC$),5(0),
C 12 (A$GPR), 24 (R7), 14 (TRANA), 16 (CRY1), 13 (POUT)

SYMBOLS
0000 A$GPR
0009 ADD
OOOB AND
0007 BS$ALU
OOOF DECA
0003 FT
OOOC IF$MIR
0004 INCP
0000 LFT
0107 MBMB
0002 MSK
OOOD OF$MIR
0003 ONES
0006 ORZF
0000 OVFL
0000 RO
0005 RS
OOOA RA
OOOF RF
0002 SCOUT
0000 SPEC
0003 SSW2
0002 TESTF
0002 TT

190

0002 A$GPRL 0003
0008 ALUC 0006
0002 AONE 0001
OOOF BS$MIR 0003
0009 DECB 0005
0001 GPROUT OOOD
0000 IF$0VR 0008
0005 INCSC 0002
0003 LIT 0001
0001 MEMC 0002
OOOE NORM 0000
0001 OF$0VR 0009
0000 OPR 0003
0006 OS$ALU OOOE
0003 PJMP 0004
0001 R1 0002
0006 R6 0007
OOOB RB OOOC
0001 RGHT 0002
OOOC SFTC OOOC
013E SS1M 0092
0002 SSW3 0003
0003 TESTT 0005
0001 WAITMD 0003

0 ERRORS ASSEMBLY COMPLETE

END

A$GPRR
ALUO
AZ ERO
BS$OVR
DECOD$
GPRS
IF$P
IOR
LOG
MEMC$
NOTA
OF$P
OP ROUT
OS$MIR
PJMP$
R2
R7
RC
S$ALU
SHFA
SS2M
STAT
TFIR
ZERO

0001
0007
0000
OOOB
0004
0001
0000
0001
0101
0001
0005
0005
0001
0002
0001
0003
0008
OOOD
0006
OOOA
002D
0006
OOOF

A$P
ALUS
B$GPR
BS$P
DECODE
IBR$I
INCA
IOSR
MBM
MIR
NOTB
OLSE
OR
OS$0VR
POUT
R3
RB
RD
S$0VFL
SHFT
SS3M
SUB
TRNA

0000
0009
0001
0003
0006
0004
0001
0006
0104
OOOB
0005
0007
0004
OOOA
OOOF
0004
0009
OOOE
0001
0001
0004
0002
OOOA

A$SPEC
ALUZ
B$SPEC
CRY1
EOR
IF$ALU
INCB
KOUT
MBMA
MIRS
OF$ALU
OLZF
ORSE
OS$P
QUOS
R4
R9
RE
S$SHFT
SHFTOP
SSW1
TCB
TRNB

5-11

~ varian data machines

CODING FROM FLOW DIAGRAMS

5-12

0009
0008
0006
0007
0009
OOOB
0002
0001
0000
0002
0003
0001
0000
0007
OOOF
0003
OOOB
0000
0001
0003
OOOF
0009
0004
0005
0006
0003
0001
OOOD
0001
0004
oooc
0000
0008
0000
0001
0004

0005
0002
0001
0006
0000
0003
0001
0001
0002
0001
OOOB
0002
OOOE
0000
0005
0005
OOOD
0001
0009
0007
0005
0003

5.2.3 Reentrant Subroutine Call and Return

These routines were assigned locations beginning at word
110, page 1. As with the previous example, the page jumps
are no longer necessary since the routines are on the same
page as their BCS entry points. In this case they were
simply coded using normal addressing.

1 *
2 *
3 *
4 *
5 *
6 *
7 *
8 *
9 *

REENTRANT SUBROUTINE CALL AND RETURN

CALL: FOR SUBROUTINE CALL : BCS TO WORD 1
FOR SUBROUTINE RETURN: BCS TO WORD 2

PARAMETERS: B REGISTER - STACK POINTER

10 *

* 12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

*
*

THE FOLLOWING ARE SUPPLEMENTAL OPCODES
FOR USE WITH THE MICRO ASSEMBLER

*
* ADD
ALUC
ALUO
ALUS
ALUZ
AND
AONE
AZ ERO
A$GPR
A$GPRL
A$GPRR
ASP
A$SPEC
BS$ALU
BS$MIR
BS$OVR
BS$P
B$GPR
B$SPEC
CRY1
DECA
DECB
DECODE
DECOD$
EOR
FT
GPROUT
GPRS
IBR$I
IF$ALU
IF$MIR
IFSOVR
IFSP
INCA
INCB
INCP

EQU 9
EQU 8
EQU 6
EQU 7
EQU 9
EQU X'B
EQU 2
EQU 1
EQU 0
EQU 2
EQU 3
EQU 1
EQU 0
EQU 7
EQU X'F
EQU 3
EQU X'B
EQU 0
EQU 1
EQU 3
EQU X'F
EQU 9
EQU 4
EQU 5
EQU 6
EQU 3
EQU 1
EQU X'D
EQU 1
EQU 4
EQU X'C
EQU 0
EQU 8
EQU 0
EQU 1
EQU 4

53 INCSC EQU
54 IOR EQU
55 IOSR EQU
56 KOUT EQU

5
2
1
6

57 LFT EQU
58 LIT EQU
59 LOG EQU
60 MEMC EQU
61 MEMC$ EQU
62 MIR EQU
63 MIRS EQU
64 MSK EQU
65 NORM EQU
66 NOTA EQU
67 NOTB EQU
68 OF$ALU EQU
69 OF$MIR EQU
70 OF$0VR EQU
71 OF$P EQU
72 OLZF EQU
73 OLSE EQU
74 ONES EQU

0
3
1
1
2
1
X'B
2
X'E
0
5
5
X'D
1
9
7
5
3

(continued)

0000 75 QPR
0003 76 OPROUT
0001 77 OR
0004 78 ORSE
0006 79 ORZF
0006 80 OS$ALU
OOOE 81 OS$MIR
0002 82 OS$OVR
OOOA 83 OS$P
0000 84 OVFL
0003 85 PJMP
0004 86 PJMP$
0001 87 POUT
OOOF 88 QUOS
0000 89 RO
0001 90 R1
0002 91 R2
0003 92 R3
0004 93 R4
0005 94 RS

0006 95 R6
0007 96 R7
0008 97 RB
0009 98 R9
OOOA 99 RA
OOOB 100 RB
oooc 101 RC
OOOD 102 RD
OOOE 103 RE
OOOF 104 RF
0001 105 RGHT
0002 106 SCOUT
oooc 107 SFTC
oooc 108 SHFA
OOOA 109 SHFT
0001 110 SHFTOP
0000 111 SPEC
0004 112 SSW1
0003 113 SSW2
0002 114 SSW3
0003 115 STAT
0006 116 SUB
0002 117 S$ALU
0006 118 S$0VFL
0001 119 S$SHFT
0002 120 TCB
0003 121 TES TT
0002 122 TESTF
0005 123 TFIR
OOOF 124 TRNA
OOOA 125 TRNB
0002 126 TT
0001 127 WAITMD
0003 128 ZERO

130 * 131 * 132 * 013E 133 SS1M
0092 134 SS2M
002D 135 SS3M

137 * 138 * 139 *
0001 141

143 * 144 *
146

0001 0880040300F10001 147

149 * 150 * 151 *
0110 153

155 * 156 *
0110 0888000080F80002 158 LAB1

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

0
3
1
4
6
6
X'E
2
X'A
0
3
4
1
X'F
0
1
2
3
4
5

6
7
8
9
X'A
X'B
X'C
X'D
X'E
X'F
1
2
X'C
X'C
X'A
1
0
4
3
2
3
6
2
6
1
2
3
2
5
X'F
X'A
2
1
3

varian data machines ~
CODING FROM FLOW DIAGRAMS

FOLLOWING ARE ROM STANDARD STATE ADDRESSES

EQU X' 13E RESTART PIPELINE @ P
EQU X'092 MAINTAIN PIPELINE
EQU X' 02D DECODE NEXT INSTRUCTION (IN IBR)

FOLLOWING IS CODE FOR SUBROUTINE CALL

ORG

BCS ENTRY POINT PUSHES OLD R2 ON STACK

GEN /N(LAB1) ,10(0S$ALU),6(MEMC),12(A$GPR),24(R1),14(DECA),
C17(GPROUT)

REST OF ROUTINE

ORG X' 110

WAIT ON STORE OF R2

GEN /•,6(SPEC),10(WAITMD),12(A$GPR),24(R2),14(TRNA),15(LOG)

(continued)

5-13

~ varian data machines

CODING FROM FLOW DIAGRAMS

160 *
161 * FETCH FIRST INSTRUCTION OF SUBR ; STORE INCR P IN R2

163
0111 0890040608070002 164

GEN I• I 10 (IF$MIR) I 6 (MEMC) I 12 (A$P) I 14 (INCA) I 16 (CRY 1) I

C17(GPROUT),24(R2l

166 *
167 * FETCH SECOND INST OF SUBR; SET NEW P; BACK TO ROM

169
170

0112 0168090221160110 171

GEN /N (SS3M) I 7 (PJMP$) • 1 (0) I 10 (IF$ALU) • 6 (MEMC$) I 5 (0) •
C12(A$SPEC),22(AZERO),
c 11 (B$SPEC) I 23 (MIR) • 14 (INCB) • 16 (CRY 1) I 13 (POUT)

17 3 * 174 * FOLLOWING IS CODE FOR SUBROUTINE RETURN
175 *

0002 177 ORG 2

179 * 180 * BCS ENTRY POINT - BEGINS FETCH OF INST AT RETURN ADDRESS

182 GEN /N(LAB2),10(IF$ALU),6(MEMC),12(A$GPR),24(R2),
0002 08A8040201F80002 183 C14(TRNA),15(LOG) ,13(POUT)

185 * 186 * REST OF THE ROUTINE
187 *

0115 189 ORG X' 115

191 *
192 * FETCH OLD R2 VALUE FROM STACK

0115 08B0040280F80001 194 LAB2 GEN /•,10(0F$ALU),6(MEMC),12(A$GPRl,24(R1),14(TRNAl,15(LOG)

196 *
197 * FETCH SECOND INSTRUCTION AT RETURN ADDRESS ; INCR STK PTR

199
0116 08B8040404070001 200

GEN /•, 10(IF$P). 6(MEMC), 12(A$GPR) ,24(R1) I 14(INCA). 16(CRY1) I

C17(GPROUT),13(INCP)

202 *
203 * RESTORE R2 ; BACK TO ROM

205
0117 00000141AOA90012 206

GEN 10(PJMP) I 1 (0) I 7(DECOD$) I 11 (B$SPEC) ,23(MIR).
C14(TRNB),15(LOG),17(GPROUT),24(R2)

208 END
SYMBOLS
0000 ASGPR 0002 ASGPRL 0003 A$GPRR
0009 ADD 0008 ALUC 0006 ALUO
OOOB AND 0002 AONE 0001 AZERO
0007 BSSALU OOOF BS$MIR 0003 BS$0VR
OOOF DECA 0009 DECB 0005 DECOD$
0003 FT 0001 GPROUT OOOD GPRS
OOOC IFSMIR 0000 IF$0VR 0008 IF$P
0004 INCP 0005 INCSC 0002 IOR
0110 LAB1 0115 LAB2 0000 LFT
0001 MEMC 0002 MEMC$ 0001 MIR
OOOE NORM 0000 NOTA 0005 NOTB
0001 OFSOVR 0009 OF$P 0005 OLSE

5·14

0000 QPR 0003 OPROUT 0001 OR
0006 OSSALU OOOE OSSMIR 0002 OSSOVR
0003 PJMP 0004 PJMPS 0001 POUT
0001 R1 0002 R2 0003 R3
0006 R6 0007 R7 0008 RS
OOOB RB OOOC RC OOOD RD
0001 RGHT 0002 S$ALU 0006 S$OVFL
OOOC SFTC OOOC SHFA OOOA SHFT
013E SS1M 0092 SS2M 002D SS3M
0002 SSW3 0003 STAT 0006 SUB
0003 TESTT 0005 TFIR OOOF TRNA
0001 WAITMD 0003 ZERO

0 ERRORS ASSEMBLY COMPLETE

0001 ASP
0007 ALUS
0000 BSGPR
OOOB BSSP
0004 DECODE
0001 IBRSI
0000 INCA
0001 IOSR
0003 LIT
OOOB MIRS
0005 OFSALU
0007 OLZF
0004 ORSE
OOOA OSSP
OOOF QUOS
0004 R4
0009 R9
OOOE RE
0001 SSSHFT
0001 SHFTOP
0004 SSW1
0002 TCB
OOOA TRNB

0000 A$SPEC
0009 ALUZ
0001 B$SPEC
0003 CRY1
0006 EOR
0004 IF$ALU
000 1 INCB
0006 KOUT
0001 LOG
0002 MSK
OOOD OFSMIR
0003 ONES
0006 ORZF
0000 OVFL
0000 RO
0005 RS
OOOA RA
OOOF RF
0002 SCOUT
0000 SPEC
0003 SSW2
0002 TESTF
0002 TT

0000

0000 0100040404000000

0010

0010 0100040404000000

0020

0020 0108000023A80010

0021 01100402A0900001

0022 4118043404000010

0023 000003C1A0910000

SYMBOLS

1
2
3
4
s
6
7
8
9

10
11
12
13
14
1 S
16
17
18
19
20
21
22
23
24
2S
26
27
28
29
30
31
32
33
34
3S
36
37
38
39
40
41
42

43

varian data machines ~
CODING FROM FLOW DIAGRAMS

5.2.4 64K Add to General-Purpose Register

*ADD TO ANY REGISTER FROM 64K MEMORY INDEX BY R1

*
* AD1

*

ORG 0

GEN /N(AD2),SF1,IM8,RF4

*THIS ENTRY USED FOR EVEN REGISTER ADDRESSES.
*INITIATE ANOTHER INSTRUCTION FETCH USING INCREMENTED PROGRAM COUNTER.

*
* AD1A

*

ORG X'010

GEN /N(AD2),SF1,IM8,RF4

*THIS ENTRY USED FOR ODD REGISTER ADDRESSES.
*INITIATE ANOTHER INSTRUCTION FETCH USING INCREMENTED PROGRAM COUNTER.

*
* AD2

*

ORG X'020

GEN /•,LB1,RF3,FFA,MF1,BB1

*TRANSFER MEMORY INPUT REGISTER TO OPERAND REGISTER TO PREVENT LOSS
*DUE TO PREVIOUSLY INITIATED FETCH. THIS IS THE BASE ADDRESS.

* AD3

*
GEN /•,SF1,IMS,LB1,LA0,FF9,AA1

*PERFORM INDEXING BY ADDING R1 TO OPERAND REGISTER. INITIATE OPERAND
*FETCH USING ALU OUTPUT.

* AD4

*
GEN /•,TS4,MR1,AB2,BB1,SF1,IM8,RF4

*FIELD SELECT REGISTER SPECIFICATION FROM INSTRUCTION BITS 4-7 TO
*A FIELD OF MICROINSTRUCTION. SET B FIELD TO SELECT MEMORY INPUT
*REGISTER. INITIATE ANOTHER INSTRUCTION FETCH USING INCREMENTED
*PROGRAM COUNTER.

* ADS

*
GEN /P(X'OOOO),LB1,LA0,FF9,GFF,WR1,IM3

*ADD CONTENTS OF MEMORY INPUT REGISTER TO THAT OF PREVIOUSLY SELECTED
*REGISTER AND STORE BACK THE SUM. PAGE BRANCH TO ZERO AND DECODE
*INSTRUCTION PREVIOUSLY FETCHED. OVERFLOW AND CONDITION CODES ARE
*SAMPLED. TRANSFER INSTRUCTION BUFFER TO INSTRUCTION REGISTER.

*
END

0000 AD1 0010 AD1A 0020 AD2 0021 AD3 0022 AD4
0023 ADS

0 ERRORS ASSEMBLY.COMPLETE

5-15

~ varian data machines

CODING FROM FLOW DIAGRAMS

0000
0000 01083804E7A7FFAF

0020
0020 0110040280A80010

0021 0198000020A90011

0022 01380000E2A00070

0023 0120008020A90012

0024 31282240E2A00070

0025 0158050404000000

0026 0138000020A9000F

0027 0150000023A80010

0028 01500000006900FO

5-16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
81
82
83

5.2.5 Cyclic Redundancy Check Generation

•THIS MICROPROGRAM COMPUTES THE CYCLIC REDUNDANCY CHECK WORD ON A
*PACKED BYTE ARRAY USING THE POLYNOMIAL:
* X••16+X**15+X••2+1
*ENTRY IS VIA A BCS TO LOCATION 0 OF PAGE 1
*THE WORD FOLLOWING THE BCS IS THE DATA ARRAY ADDRESS
•THE WORD FOLLOWING THE DATA ARRAY ADDRESS IS THE BYTE COUNT
•
•THE 16 BIT CRC IS LEFT IN RO
•RO,R1,AND R2 ARE ALL USED BY THIS INSTRUCTION (A,B,X). RF IS ALSO USED.
•RO IS THE CURRENT CRC
*R1 IS THE CURRENT WORD ADDRESS OF THE DATA
*R2 IS THE CURRENT BYTE COUNT
•RF CONTAINS THE CRC POLYNOMIAL B' 1000000000000101
*THE MICROPROGRAM MAY BE INTERRUPTED AFTER EVERY TWO BYTES ARE PROCESSED
*IF THE OVERFLOW FLAG IS SET UPON ENTRY THE CURRENT VALUES OF R1 AND
•R2 ARE USED INSTEAD OF THOSE SPECIFIED BY MEMORY CONTENTS.
*THE ACCUMULATOR (RO) SHOULD BE CLEARED PRIOR TO ENTRY UNLESS CRC IS TO
•BE ACCUMULATED WITH A PRIOR CRC VALUE.
• •
*TYPICAL ENTRY
• •
• •
*
•
*

TZA
ROF
DATA
DATA
DATA

*CRC GENERATION

*
CRC1
•

ORG
GMSK

SEQUENCE IS:

0105000
ADDR
COUNT

x' 0
/T(CRC2,CRC1A),TF3,SF2,IM9,LB3,RF7,FFA,MK7FFA,AKF

•ENTRY IS FROM DECODE OF THE BCS. THE ADDRESS FETCH HAS BEEN INITIATED.
*OVERFLOW FLAG IS TESTED TO DETERMINE IF INSTRUCTION WAS INTERRUPTED
*FETCH OF BYTE COUNT IS INITIATED USING INCREMENTED PROGRAM COUNTER
*THE POLYNOMIAL IS PLACED IN OPR
*IF OVERFLOW IS ON GO TO CRC1A OTHERWISE CRC2

ORG
CRC1A GEN

*

x' 020
/N(CRC17),SF1,IM5,FFA,BB1,MF1

*COME HERE IF OVERFLOW FLAG WAS ON WHEN INSTRUCTION WAS FETCHED
*FETCH DATA BYTE PAIR
•
CRC2 GEN /N(CRC3),LB1,FFA,WR1,BB1,AA1,MF1

* *SAVE DATA ARRAY ADDRESS IN R1 (FROM MIR)

* CRC17 GMSK /N(CRC6),IM1,LB3,RF2,FFA,MK0007

* *SET SHIFT COUNTER TO -8
*WAIT FOR MEMORY DONE FROM DATA FETCH

* CRC4 GEN /•,GF2,LB1,FFA,BB1,MF1,AA2,WR1

*SAVE BYTE COUNT IN R2
*SAMPLE ALU STATUS TO CHECK FOR ZERO BYTE COUNT

* CRC5 GMSK /T(CRC18,CRC5A),TF2,GF9,IM1,LB3,RF2,FFA,MK0007

* *PUT -8 IN SHIFT COUNTER (8 BITS PER BYTE)
*TEST ALU ZERO STATUS FLAG TO SEE IF BYTE COUNT WAS ZERO
*WAIT FOR MEMORY DONE FROM DATA FETCH
•IF BYTE COUNT WAS ZERO GO TO CRC18 OTHERWISE CRC5A
•
CRC18 GEN /N(CRC19) ,SF1,GF4,IM8,RF4
•
*WHEN BYTE COUNT WENT TO ZERO RESET OVERFLOW TO INDICATE COMPLETION
*START NEXT INSTRUCTION FETCH USING INCREMENTED PROGRAM COUNTER
•
CRC5A GEN /•,FFA,MF1,AAF,WR1,LB1

* *MOVE POLYNOMIAL (IN OPR) TO RF

* CRC6
•

GEN /N(CRC7) ,LB1,RF3,FFA,BB1,MF1

*TRANSFER DATA BYTES FROM MIR TO OPR

* CRC9 GEN /N(CRC7),FF6,MF1,WR1,BBF
•
*THIS IS A CORRECTION CYCLE
*RO TO ALU INPUT A

(continued)

varian data machines IE
CODING FROM FLOW DIAGRAMS

84 *RF TO ALU INPUT B

85
86

0029 0190808000610032 87
88
89
90
91
92
93
94

002A 714823001569DAFO 95
96
97
98
99

100
101
102
103
104
105

002B 0490090000000000 106
107
108
109

002C 0178000069900030 110
111
112
113
114

002D 0178050404000000 115
002E 4110800000000000 116

117
118
119
120
121

002F 01B0000100000000 122
123
124
125

0030 01900000006900FO 126

127
128
129

0031 6168224000070001 130
131
132
133
134
135

0032 D128224062A00070 136
137
138
139
140
141

0033 0118048280A80010 142
143
144
145
146

0034 4190800000000000 147
148
149
150

0035 41F0808000610032 151
152
153
154
155

0036 156
0036 07F8000180000000 157

158
159

0037 160
0037 71FC012700000000 161

162
163
164
165
166
167

0038 01D00000006900FO 168

*EXCLUSIVE OR ALU INPUTS TO RO

* CRC10 GEN 2(X'032) ,MTO,FS2,GF2,FF6,MFO,AA2,BB3,WR1

* *AFTER LAST BIT IS PROCESSED TEST DSB FLAG FOR A CORRECTION CYCLE
*DECREMENT BYTE COUNT
*SAMPLE ALU STATUS TO ALLOW CHECK FOR BYTE COUNT ZERO
*IF CORRECTION CYCLE NECESSARY GO TO CRC10A OTHERWISE CRC11

* CRC7

*

GEN /T(CRC10,CRC8) ,TF2,GFC,LA2,RF5,FF6,MF1,WR1,SC1,VF1,
CXF3,SH2,BBF

*SHIFT RO LEFT TO ALU INPUT A
*SHIFT QPR LEFT
*R0(15) TO SHIFT FLAG (DSB)
*OPR(15) TO ALU INPUT A BIT 00
*POLYNOMIAL (RF) TO ALU INPUT B
*EXCLUSIVE OR ALU INPUTS TO RO
*INCREMENT SHIFT COUNTER
*TEST FOR SHIFT COUNTER OVERFLOW, IF OVERFLOW GO TO CRC8 OTHERWISE CRC10

* CRC19 GEN /P(X'0092),SF2,GF4

* *PAGE JUMP TO PAGE 0 LOC 060 (SS2M)

* CRC22 GMSK /N(CRC23),LB3,LA1,RF1,FF9,MK0003

* *SUBTRACT 4 FROM PROGRAM COUNTER TO CAUSE REFETCH OF THE BCS INSTRUCTION
*AFTER INTERRUPT PROCESSING

* CRC24 GEN
CRC8 GEN

*

/N(CRC23),SF1,GF4,IM8,RF4
/F(CRC9),FS2,2(X'022),TS4

*TEST SHIFT (DSB) FLAG TO SEE IF CORRECTION CYCLE IS NEEDED. IF BIT 15
*OF THE OLD CRC WAS A ZERO THE EXCLUSIVE OR PERFORMED AT CRC7 MUST
*BE CANCELLED. IF DSB WAS 1 GO TO CRC7 OTHERWISE CRC10

* CRC23 GEN /N(CRC25) ,IM2

* *WAIT FOR IO DONE

* CRC 1 OA GEN /N(CRC11),FF6,MF1,WR1,BBF

* *THIS IS CORRECTION CYCLE SIMILAR TO CRC8

* CRC21 GEN /T(CRC24,CRC22),TF2,GF9,FFO,MFO,CF3,WR1,AA1

* *INCREMENT DATA ARRAY ADDRESS (R1)
*TEST ALU ZERO FLAG FOR ZERO BYTE COUNT IF ALU ZERO IS ON GO TO CRC24
*OTHERWISE CRC22

* CRC11 GMSK /T(CRC18,CRC12l,TF2,GF9,LB3,RF2,FFA,MK0007

* *PUT -8 INTO SHIFT COUNTER
*TEST ALU ZERO STATUS FLAG TO SEE IF RIGHT BYTE SHOULD BE PROCESSED
*IF SO GO TO CRC12 OTHERWISE CRC18

* CRC3

*
GEN /N(CRC4),SF1,GF2,IM5,FFA,BB1,MF1

*USING R1 AS ADDRESS INITIATE FETCH OF TWO BYTES.
*SET OVERFLOW FLAG TO INDICATE INCOMPLETE INSTRUCTION

* CRC13 GEN /F(CRC14) ,FS2,2(X'032),TS4

* *IDENTICAL TO CRC8

* CRC15 GEN 1(X'4),2(X'03El,MT0,FS2,GF2,FF6,MF0,AA2,BB3,WR1

* *PERFORM OPERATIONS OF CRC10. IF DSB IS SET GO TO CRC15B OTHERWISE
*CRC15A

* ORG X'036
CRC25 GEN /P(X'OOFF),IM3
*PAGE JUMP TO PAGE 0 LOC OFF (INT2)

* ORG
CRC20 GEN

*

x' 037
2(CRC16), 1(X'7l,MT1,GF4,MR1,IME

*WHEN CRC15 DETECTS AN INTERRUPT CHECK IT AGAIN TO SEE IF IT WAS
*OVERRIDEN BY A DMA TRAP.
*START IO INTERRUPT SEQUENCE
*IF INTERRUPT GO TO CRC21 OTHERWISE CRC16

* CRC14 GEN /N(CRC12) ,FF6,MF1,WR1,BBF

169 *
(continued)

5-17

~ variand~amac~nes-~~~~~~~~~~~~~~~~~~~~~

coo1NG FROM FLOW DIAGRAMS

170
171

*IDENTICAL TO CRC9

* 003E 172 ORG X'03E
17 3 * CRC15B GEN 1(X'7) ,2(X'03F) ,GF4,IMC

*
003E 71F8010600000000 174

175
176
17 7
178

*LOOK FOR INTERRUPT

5-18

*
* CRC16 GEN /T(CRC18,CRC17),TF2,SF2,GF9,IM5,FFO,CF3,AA1,WR1

*
003F 11282A4280070001 179

180
181
182
183
184

*INCREMENT ARRAY ADDRESS (R1)
*FETCH NEXT BYTE PAIR IF ALU ZERO FLAG IS OFF (BYTE COUNT NOT ZERO)
*IF BYTE COUNT WAS ZERO GO TO CRC18 OTHERWISE CRC17

003A 185
186

* ORG
CRC12 GEN

*

X' 03A
/T(CRC15,CRC13) ,TF2,GFC,LA2,RF5,FF6,MF1,WR1,SC1,XF3,

CSH2,BBF,VF1 003A 21A823001569DAF0 187
188
189
190
191

*IDENTICAL TO CRC7. THIS PROCESSES THE RIGHT BYTE OF DATA WHICH HAS
*BEEN SHIFTED LEFT IN QPR

003C 192
003C 01F00000006900FO 193

* ORG
CRC 15A GEN

194 *

X' 03C
/N(CRC15Bl,FF6,MF1,WR1,BBF

195 *IDENTICAL TO CRC10A
196 *
197 *
198 END

SYMBOLS
0000 CRC1 0029 CRC10 0030 CRC10A 0032 CRC11 003A CRC12
0034 CRC13 0038 CRC14 0035 CRC15 003C CRC 15A 003E CRC15B
003F CRC16 0022 CRC17 0025 CRC18 002B CRC19 0020 CRC1A
0021 CRC2 0037 CRC20 0031 CRC21 002C CRC22 002F CRC23
002D CRC24 0036 CRC25 0033 CRC3 0023 CRC4 0024 CRC5
0026 CRC5A 0027 CRC6 002A CRC7 002E CRC8 0028 CRC9

0 ERRORS ASSEMBLY COMPLETE

SECTION 6
MICROPROGRAM SIMULATOR, MICSIM

The Microprogram Simulator (MICSIM) helps the user find
and correct microprogram bugs. Any program develop
ment includes some time to verify that the program solves
the problem. Testing may find that it does not. Running
the microprogram simulator aids in both the discovery and
correction of microprogram errors.

When the microprogram is free of errors, the simulator can
be used to determine the performance before the design is
final, measure the efficiency of the technique and evaluate
changes and extensions.

MICSIM runs on all V70 series systems. Microprograms can
also be simulated on 620 systems without WCS. The
hardware requirements depend upon the operating system
used.

6.1 BASIC ELEMENTS

In general this simulator provides the basic facilities for
inputting, modifying and outputting the contents of the
simulated control store, tracing, and address halt of the
microinstructions.

The fundamental program blocks of the simulator are:

a. Simulation control, inputs the simulator commands
and directs their execution.

b. Simulator command execution represents the actual
execution of the simulator commands.

c. Microinstruction execution, executes a micro-
instruction by' simulating its effect.

d. Simulation information accumulator and list output.

The relationships of the basic program blocks are illus
trated in figure 6-1.

Note: The l/O functions of the computer are not simulated.

6.2 GENERAL FORM OF STATEMENTS

The simulator processes three types of directives. All
directives begin with a single letter indicating the type.
The following types of actions are handled by the
simulator:

a. initialize simulator and storage

b. change and examine storage

c. trace, dump and control execution

Table 6-1 summarizes the directives for quick reference;
section 6. 7 provides detailed description and examples.

varian data machines ~

MICRO
SIMULATION

CONTROL

~~

~~

SIMULATOR
CONTROL
EXECUTIVE

!
INTERFACE
PROGRAM

J~

~,

OPERATING
SYSTEM

!
PERIPHERAL

1/0

VTll-1810

A.

Figure 6-1. Microsimulator Control Flow

Table 6-1. Summary of Microprogram Simulator
Directives

Initialize Simulator and Storage

Initialize simulator

Pn Select page n (o through 4)

LC Load central control store (CCS)

LDA Load decoder control store (DCS) A

6-1

~ varian data machines

MICROPROGRAM SIMULATOR, MICSIM

LOB Load decoder control store (DCS) B

MS Select Pl as input device

MR Select SI as input device

B. Change and Examine Storage

c.

Ar Alter/Display register r, where r is

A ALU output
C Shift counter
I Instruction register
K Key register in data loop
M Memory input register
0 Operand register
P Program counter
S Status register

ARn Alter/Display general register n
(0 through F hexadecimal)

AJn Alter/Display stack position n
(0 through F hexadecimal)

Cm Change/Display main memory word m

ECn Change/ Display CCS word n

EDdn Change/Display DCS d (A or B) word n

Trace, Dump and Control Execution

D Dump complete CCS

Dm Dump contents of CCS starting at CCS
word m

Dm,n Dump contents of CCS from word m to n

D,n Dump from word zero to n

TS Trace set

TR Trace reset

TSn,m Trace from CCS word n to word m

Bn Begin simulated execution at CCS word n

Hn,n Halt at CCS address(es) n

SS Single step set

SR Single step reset

R Return to MOS or VORTEX; Halt in
standalone

Two methods of correcting typographical errors are availa
ble to the operator. An entire line can be deleted by
typing the backslash character (shift/L). The backslash is
output as a visual aid. A line feed and a carriage return

6-2

are output to indicate that the line has been deleted. A
character just entered can be deleted by typing the
backarrow character. The backarrow character is printed
on the Teletype page printer as a visual indicator of the
deletion. As many backarrows as necessary can be entered;
each deletes one character (but not beyond the beginning
of the line).

Each simulator directive is checked for syntax errors as the
input is interpreted. When an error is detected by the
simulator an error message is output to the Teletype page
printer. The simulator then is ready to receive the corrected
directive.

The simulator will operate under VDM MOS or VORTEX. For
the MOS or stand-alone versions the hardware is described
in VDM document number 98 A 9952 09x, VDM 620
Master Operating System. For the VORTEX version the
hardware is described in VDM document number 98 A
9952 lOx, VORTEX Reference Manual. In addition, the
computer must have the arithmetic option, at least 16K
(20K for VORTEX) of memory and for two control store
pages another 4K of memory is needed. The input/output
interface for the MOS and stand-alone versions is de
scribed in the document 98 A 9952 09x and VDM
document number 89A0023, VDM 620 MOS Input/Output
Control System.

The input/output interface for the VORTEX version is
described in the above document number 98 A 9952 lOR
and VDM document number 89A0202, system external
Specification for the VORTEX Operating System.

6.3 STATEMENT DEFINITIONS

In the following discussion of simulator dialog, simulator
input will be in bold type. This will not appear during
actual runs.

All numeric values denoted in the following discussion of
the simulator directives are hexadecimal (0-F). Numeric
values which are entered on SI are right justified with
unspecified leading bit positions containing zeros.

6.3.1 Select Input Media (M)

The select input media directive is used to select the device
from which simulator directives will be entered. Normal
operation uses the SI device assigned at load time. Using
this directive, the Pl device assigned at load time can be
used as an alternate input device.

The two formats of the directive are:

MS Select Pl as input device
MR Select SI as input device

6.3.2 Initialize Simulator (I)

The initialize directive is used to initialize to zero the
contents of the simulator registers, the test condition

flags, CCS control buffer and the CCS word execution
count table. Also, the single step option is reset, the trace
option is set and the CCS address halt is set to 200 hex.
This directive is normally used at the beginning of each
simulation run. The simulator CCS's are not initialized.

6.3.3 Page Select (P)

This directive is used to select the control store page upon
which the simulator directive will be executed. Initializa
tion selects page 0. Once a page is selected, all directives
will refer to that page until it is change by a new P
command or until the system is reinitialized. The format
for this command is:

Pn where n = 0, 1, 2, or 3.

6.3.4 Load Control Store (L)

This command is used to read the micro assembler output,
assemble the data into usable 64-bit (CCS) words or 16-bit
(DCS) words and store the words into the simulator control
store.

The format for this command is:

LC -- Load Central Control Store (CCS)
LOA -· Load Decoder A Control Store (DCS)
LOB -- Load Decoder B Control Store (DCS)

The statement LOAD COMPLETE will be output to the
Teletype following successful loading of the control store.

6.3.5 Alter/Display Simulator Registers (A)

This directive is used to display and change, or display
only, the contents of general registers, stack positions and
any of the following simulator registers:

Program Counter (P)

Instruction Register (I)

Status Register (S)

Operand Register (0)

Shift Counter (C)

Memory Latch (M)

Processor Key Register (K)

ALU Output (A)

a. The format for display or change of the registers above
in this directive is:

Ar

{

nnnn(clr)

Where c = ~nnn,

(cir)

mm mm
c

varian data machines ~
MICROPROGRAM SIMULATOR, MICSIM

Where r is one of the register letters above and c is a
comma, carriage return, a value followed by a comma or a
value. mmmm is the contents of that register (output by
the simulator) and nnnn is the desired contents. If the
command is terminated with a comma (,), the simulator
will output the letter A (signifying you are still in this
routine) and wait for another register designator. If the
directive is terminated with a carriage return (cir), the
simulator returns to the executive. If no change value is
input, the contents remain the same.

For the file registers and jump stack, the specific file
register or stack position must also be designated upon
initial entry.

b. For general-purpose registers

ARi
mmmm

c

Where i is a hexadecimal number 0 through F designating
the specific register and c is a comma, carriage return, a
value or a value followed by a comma.

c. For stack positions

A Jn
mmmm

c

Where n is a stack position and c is a comma, carriage
return, a value or a value followed by a comma.

The rest of the format is identical to that for the other
registers except that the comma terminator causes the
display of the number and contents of the next sequential
file register or stack position. A comma terminator to
register or stack position F effects a return to the simulator
executive.

Example 1:

AP Display Program Counter
0776

No change, stay in command

A M Display Memory Latch
14FC
(cir) No change, return

Example 2:

AS Display Status Word
0000
FFFF Change Status to All Ones

Example 3:

ARA
FFFF
0000,

Display General register 10

Change to all zeros
(continued)

6-3

~ variand~amac~nes~~~~~~~~~~~~~~~~~~~~~~

MICROPROGRAM SIMULATOR, MICSIM

B
1234
(cir)

Display general register 11

No change, return

6.3.6 Change/Display Memory (C)

This directive is used to display or display and change a
memory location. Both the location and its contents are in
hexadecimal notation.

The format of the command is:

Cmmmm
hhhh

c

Where c is as defined above and mmmm is the hexadecimal
address of the memory location, hhhh is the contents of
that word output by the simulator. If the simulator
directive is terminated with a comma, the simulator will
display the contents of the next memory location. If the
simulator directive is terminated with a carriage return,
the change/display memory directive is terminated. If no
change value is input, the contents remain the same.

6.3.7 Change/Display CCS Word (EC)

The change/display CCS word simulator directive is used to
display and/or change the contents of a CCS word.

The format for the change/display CCS word simulator
directive is:

ECmmmm
hhhhhhhhhhhhhhhh

b l
nnnnnnnnnnnnnnnn

Where b = ~nnnnnnnnnnnnnnn,

(cir)

Where mmmm is the (hexadecimal) address of a CCS word,
hhhhhhhhhhhhhllhh is the contents of that CCS word
(output by the simulator) and nnnnnnnnnnnnnnnn is the
desired contents of that CCS word. If the simulator
directive is terminated with a comma, the simulator will
display the contents of the next CCS word. If the simulator
directive is terminated with a carriage return (cir), the
change/display CCS word simulator directive is terminated.
If no change value is input, the contents remain the same.

If less than 16 digits are input for a change, the digits are
right justified and zeros will appear in the most significant
bits not specified.

Example 1

EC8A

0123456789ABCDEF
FE DCBA9876543210

6-4

Example 2:

ECDC
FFFFFFFFFFFFFFFF

0

DD
AAAAAAAAAAAAAAAA

6.3.8 Change/Display DCS Word (ED)

This directive is used to display and change, or display
only, the contents of a DCS A or DCS B word.

The format for the directive is:

EDdi
mm mm Where c

c I
nnnn
nnnn,

(cir)

Where d is the letter A or B designating DCS A or B, i is the
DCS address (0-F), mmmm is the contents of the location
and nnnn is the desired contents. A comma terminator
causes the display of the next sequential address and its
contents. A comma terminator to address F effects a return

to the simulator executive as does the carriage return
terminator. If no change value is input the contents
remain the same.

6.3.9 Begin Simulated Execution (B)

The begin-simulated-execution simulator directive is used
to start the simulated execution of the CCS
microinstructions.

The format for the begin-simulated-execution directive is:

Bmmm

Where mmm is the control store memory address for the
start of the simulated execution. If no CCS address is
given, then the starting address is the CCS address
generated as the next CCS address from the last
microsimulation. However, if the simulator is initialized in
the meantime, the address will be word zero.

Examples:

B 0 Begin at word 0 of current page
B7F
B Begin from last calculated address

6.3.10 CCS Address Halt (H)

The CCS address halt simulator directive is used to set an
address into the simulator such that whenever that CCS
address is accessed by the simulator, the simulation
process will stop. Since control store addresses are between

0 and 1 FF (hexadecimal), specifying an address outside
this range effectively "turns off" the address halt. Up to
five halt addresses may be set per page. The default value
is 200 (CCS word 512).

The format for the CCS address halt simulator directive is:

Hnnn ,nnn, ...

Where nnn is the (hexadecimal) halt address.

NOTE: To set multiple halts all addresses must be entered
under the same H command.

The halt addresses are set in the page currently selected.
To set halt addresses in another page that page must be
selected with the "P" command.

Example:

H3A9
H100,10A,IFF,O

When the halt address is reached, the location and control
buffer fields are listed on the line printer if the trace
option is ON. Also, the message "CCS HALT" is output to
the TTY and line printer. Then the simulator returns to the
executive.

6.3.11 Single Microinstruction Step (S)

The single microinstruction step simulator directive is used
to set or reset the single step option in the simulator. When
the single step option is on, instruction simulation is
ceased after the execution of each microinstruction.

The formats for the single microinstruction simulator
directive are:

SS
SR

Single step ON
Single step OFF

The first control store word to be executed must be
specified via the begin (B) command. To continue with the
next microword enter the B command without an address.

A special form of the SR directive (set single step OFF) can
be used to set a limit on the number of microinstructions
to be executed before returning to the simulator executive.

The format of this directive is:

SRnnnn

Where nnnn is 1-4 hex digits specifying the execution limit.
When this limit is reached, control is returned to simulator
executive. Omission of nnnn results in an unlimited run
count.

6.3.12 Trace (T)

The trace directive controls output to the line printer. The
trace option is normally ON and pertinent data and

varian data machines •

MICROPROGRAM SIMULATOR, MICSIM

execution results are listed on the line printer after the
simulated execution of each control store instruction.

The format for the directive is:

TS Set trace ON
Set trace OFF TR

TSnnn,mmm Set trace ON from word nnn
to word mmm

If nnn is missing, its value is defaulted to zero. If mmm is
missing, its value is defaulted to 200 hex (word 512). If TS
is specified with bounds, the current and next CCS
addresses are output to LO regardless of whether or not
the address is within the bounds; however, the remainder
of the trace is suppressed.

The following information is listed on the line printer (LO)
for each control store word executed:

1. CCS word address

2. List of CCS word fields and their values
NOTE: Fields AA, BB, and FF are dynamically altered
and need not be equal to the value of the CCS word.

3. Next CCS word

4. Current top of stack

5. Number of items on stack

6. ALU A input

7. ALU B input

8. ALU output

9. Carry in status (CF)

10. Carry out status (ALUC)

11. Contents of the 16 general-purpose registers (RO-RF).
(4 per line by4 lines)

12. Contents of the following registers and flip-flops:

p

SC
OPR
KREG
IOKR
IBR
I
STAT
IOR
SHFT
QUOS

Program counter
Shift counter
Operand register
Key register processor
1/0 key register
Instruction buffer
Instruction register
Status register
1/0 data register
Sign store of register A bit 15
Storage of sign bit (DAL 15) of
ALU output

13. Memory Operations Data
The values listed are the values at the end of the
memory operations for that CCS word. The memory

6-5

~ varian data machines

MICROPROGRAM SIMULATOR, MICSIM

operations performed are a function of conditions/
codes upon entry (values from the last CCS word
executed).
When MCCO = 2 the following memory operations
data will appear twice per microword trace. The first set
is an intermediate value while the second set
represents the values at the end of the memory
operation.

Memory Condition Code

MCCO
MCCO
MCCO

0
1
2

Idle
Active but not done
Active and done

Memory Operation Code

MOPC 0 Transfer ALU output to MIL
and IBR

MOPC Read from main memory to
MIL and IBR

MOPC 2 Read from main memory to
MOPC 3 Write 16-bit ALU output to

main memory
MOPC 4 Write a byte of ALU output

to main memory (byte is
specified by MBYC)

Main Memory Address Source

MADS 0 Address is ALU output
MADS 1 Address is program counter
MADS 2 Address is memory input

register (MIR)
MADS x Invalid address source

Byte Designator for Write Operations

MBYC Right byte

MBYC 0 Left byte

MIL

NOTE: The byte (of the memory word) not designated is not
altered.

Memory Interface Registers

The contents of registers MIL and IBR are listed.

66

Main Memory Address (MMAD)

The main memory address (as specified by MADS) is listed.
It is listed for every CCS word executed regardless of the

actual memory operation as specified by MCCO and
MOPC.

Status of test conditions (test inputs). Each status bit
stored in a separate word of memory and the 16-bit word
is listed (XXXX). The 16 test conditions are listed on 2
lines, 8 per line. Each test bit is listed as 0000 = false
condition; or 0001 = true condition.

Test Bits

0
1
2
3
4
5

6
7
8
9
10
11
12
13

14
15

ALU overflow
1/0 sense
SSW3
SSW2
SSWl
620/f test (for JMP, JMPM,

XEC groups of instructions)
ALU equals
ALU sign
ALU carry
ALU zero
Shift flag
MIL 15 (sign bit of memory input register)
Shift count = - 1
A15 - sign of A register for multiply

operations
DAL 15/DAL 14 (ALU output bits 15 and 14)
QS bit

6.3.13 Dump Contents of CCS (D)

The dump CCS directive is used to list on the line printer
selected contents of the simulator control CCS and the
count of the number of times each word was executed.

The formats for the directive are:

Dmmm,nnn
Dmmm
D,nnn
D

Where mmm and nnn are the beginning and ending
hexadecimal CCS address to dump. If mmm is omitted,
dump begins at CCS word O. If nnn is omitted, the
complete contents of the simulated CCS table is dumped
starting at mmm. If both m and n are omitted, the
complete simulated CCS table, starting at location zero is
dumped.

The line printer list format is:

ADDR HEXADECIMAL BINARY

varian data machines ~
MICROPROGRAM SIMULATOR, MICSIM

EXECUTED

aaaa hhhhhhhh hhhhhhhh bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb xxxx
bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb

aaaa hhhhhhhh hhhhhhhh bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb

Where (aaaa) is the address of the CCS word in hexadeci
mal, (hhhhhhhh hhhhhhhh) is the contents of the CCS
word in hexadecimal, (bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb) is the conte'nts of the CCS word in
binary and xxxx is the execution count in hexadecimal.

The field identifier words and the contents and count of up
to 14 locations are listed on each page.

6.3.14 Exit to MOS or VORTEX (R)

The exit to MOS or VORTEX simulator directive is
used to effect a transfer of control from the simulator to
MOS or VORTEX. NOTE: The use of this directive with the
stand-alone version produces a halt.

6.4 OPERATING INSTRUCTIONS

The simulator program operates under either MOS,
VORTEX, or stand-alone environments. The simulator

VTll-1809

executive communicates with the software environment in
which it is running by means of the appropriate interface
program, INTR, provided with the simulator. The user
communicates to the program via the system Teletype. The
BLD II loader is required when loading of MIDAS object
programs for execution under the simulator (MOS or
stand-alone only).

When operating under VORTEX, the five background global
control blocks (FCB's) are used when the logical unit is an
RMD thus permitting the stacking of jobs. The following
restraints are made on the use of RMD logical units:

1. SI, Pl, and LO are to be in unblocked format.

2. Bl must be blocked.

The simulator data flow is shown in figure 6-2.

Figure 6-2. Microsimulator Data Flow

6-7

~ varian data machines

MICROPROGRAM SIMULATOR, MICSIM

6.4.1 Program Loading

Under VORTEX, MICSIM can be scheduled from the
background library at level zero by the /LOAD,MICSIM
directive. Before scheduling, the number of WCS pages in
addition to page zero which will be needed should be
determined and a /MEM,X directive given. In the /MEM
directive, X should be the number of additional WCS pages
(beyond page zero) times 4.

Under MOS, each time the simulator is to be executed its
relocatable binary object deck should be positioned on the
Bl device and the /LOAD directive given.

In the stand-alone environment, MICSIM is loaded by the
620 stand-alone FORTRAN IV loader, along with the
runtime 1/0 and runtime utility. (Refer to VDM document
numbr 89A0226, Overview and External Specification for
information on the Varian 620 stand-alone FORTRAN IV
loader.) The simulator uses logical unit numbers 2, 3, 4, 5,
and 6 for SI, SO, Pl, LO, and Bl. The stand-alone loader
should be instructed to assign these units to meaningful
devices.

Examples:

Sample Loading Procedures

1. VORTEX
/JOB,SIM
/LMGEN
TIDB,SIM,1,0
LD,6

Test Program (optional)
Simulator
EOF (2-7-8-9 multi-punch)
LIB

END,BL,E
/MEM,x
/LOAD,SIM

x value = 0, only 1 WCS page; = 4, 2 WCS
pages; = 8, 3 WCS pages; = 12, 4 WCS pages.

2. MOS

3.

6-8

/JOB,SIM
/LOAD

Test Program (optional)
Simulator
EOF (2-7-8-9 multi-punch)

STAND-ALONE
Load stand-alone loader
With AID II, change absolute location 7 ($PED)

to the desired start load address
Return to the loader
Enter the following:
200300402504602 (c/r)

(to set SI = TY, SO = TY, Pl
= - 77, BI = PT)

Mount simulator tape in reader
Enter the following:

PT, LO

PM
Load Runtime 1/0
Load Runtime Utility

6.4.2 Initial Condition Selection

After loading, the simulator program is automatically
entered and outputs the following to SO:

VARIAN 73 MICROSIMULATOR
INPUT HIGHEST NUMBER WCS PAGE DESIRED

The user then inputs on SI one of the following:

0 (for ROM page only)
1 (for ROM and WCS page 1)
2 (for ROM and WCf, pages 1 and 2)
3 (for ROM and WCS pages 1, 2, and 3)

Any other input is an error and the request will be
repeated. Following a correct input, the following is output
to SO:

SI**

An SI** indicates that the program is in the simulator
executive awaiting a user command. Control is returned to
the executive following execution of each command.

All simulator dialog is entered through the SI device and
echoed on the SO and LO devices. Dialog may be either
conversational or batch depending on the SI device
assignment. All of the simulator directives must be
terminated with a carriage return; the simulator will output
a line feed.

6.4.3 Loading Simulator Central Control Store
(CCS) and Decoder Control Store (DCS)

Use the P directive to select the WCS page in which
simulation is to take place.

Use the L directive to load the micro assembler output into
the specified simulator control store (central or decoder).

Use the M directive to select the input device; either SI or
Pl.

Use I directive to initialize to zero all the simulator
registers, test conditions, control store buffer, status
registers and execution count table.

Use the A directive to initialize the program counter, file
registers, and instruction register as required.

Position the 620170 sense switches as required. The
simulator program monitors the 620170 sense switches
similar to the Varian computer sensing of its control-panel
sense switches.

6.4.4 Other Control (As Required)

Use the E directives to make any patch corrections to the
CCS or DCS.

Use H directives to set simulation halts when the specified
control store address is reached. The initialized address is
200 hex. and will remain such until specified otherwise.

Use S directives to specify single step operation as
required. The initialized condition is run (not step).

Use T directives to specify operation with or without trace
listing as required. The initialized condition is with trace.

6.5 PROGRAM EXECUTION

After all initialization and start-up conditions are specified,
use the B directive to begin execution at the specified
control store address.

6.6 AFTER SIMULATION

6.6.1 Control Store Dump

Use the D directive to dump the control store words and
the execution counts for each control store.

6.6.2 Initialization

Use I directive to initialize registers, tables, etc. prior to
making another run.

6.6.3 Return to MOS, VORTEX

Use the R directive to return to MOS or VORTEX as
required. (NOTE: In the stand-alone version this command
effects a halt).

6.7 620 EMULATION

To run programs using the 620/f emulation ROM, the
following sequence of events must be done:

1. Load CCS page 0 and DCS page 0 with the 620/f
emulation microinstructions.

2. Set CCS halt to 080 (hex) via H command.

3. Set R5 to FFFF (- 1) via AR5 command.

4. Set other registers and sense switches as needed.

5. Set pseudo P register to location (hex) of first macro to
be executed via AP command.

6. Set trace and step/run mode as needed.

7. Begin at 13E via B command.

varian data machines ~
MICROPROGRAM SIMULATOR, MICSIM

The sequence of events 1 through 6 may be in any order
but must be done before event 7. Event 7 begins
simulation at standard state 1.

6.8 ADDING SIMULATOR TO VORTEX

The microsimulator resides on the background library
under VORTEX. After system generation, however, the user
is responsible for cataloging it into the background library.
The following procedure may be used to do this. First,
position the Bl device to the simulator object material.
Then, issue the following directives:

ILMGEN
TIDB,MICSIM,1,0
LD,BI
LIB
END,BL,E

(For detailed descriptions of these directives, refer to the
VORTEX Reference Manual.)

6.9 MAIN MEMORY SIMULATION

Simulation of main memory operations is restricted so that
a simulation run does not destroy the simulator or related
programs. This is accomplished by not simulating writes
to memory addresses below 1000 octal or above the start
of the simulator. Any attempt to do this will be flagged as
an error and the write not be performed; simulation will
continue however. A read may be made anywhere in
available memory. Memory addressing above 32K will
effect wraparound if available on the computer.

Creation of a Main Memory Block

VORTEX:

Since VORTEX does not allow a start load address (it is
always 1000 octal) for background tasks, the user must
create a load module with an empty block at the beginning
of the module. A possible way to do this is to set up an
object stream as below:

Macro Test Program
BSS Block
DATA 0
Simulator
EOF

Using the BSS block effectively moves the simulator higher
in core and thus leaves the memory between 1000 (octal)
and the start of the simulator available for main memory.
The size of the BSS block depends on the amount of
memory available for background and the needs of the
user. Too large of a BSS block will cause the load module
to abort loading.

MOS:

The same method can be used for MOS as was used for
VORTEX or at load time. The start load address may be set

6-9

~ variandata~achines ~~~~~~~~~~~~~~~~~~~~~~~
M~CROPROGRAM SIMULATOR, MICSIM

to some value larger than the default value (500 octal). For
example, to get a main memory block of 1024 words, the
load directive might be /L,PR = 2500.

6.10 SIMULATOR ERROR MESSAGES

MESSAGE REASON

General

MS01 Input could not be interpreted as a valid
command.

MS02 A non-hex character was encountered when
hex expected.

Initialization

MS03 Insufficient common area to contain specified
number of pages.

MS04 The selected page number was not valid.

CS Addressing

MS05 An attempt was made to jump to an unavail
able WCS page.

MS06 A BCS instruction was encountered when WCS
page 1 is unavailable.

6-10

CS Loading

MS07 Read error on Bl device.

MS08 EOF encountered before load complete.

MS09 EOD/BEOD encountered before load complete.

MS10 Sequence error on Bl.

MS11 Invalid loader code.

MS12 Checksum error.

Memory

MS13 Undefined macro opcode.

MS14 Attempted to write to memory outside defined
main memory.


~~~~~~~~~~~~~~~~~~~~~~~ variandatamachines ~ 
MICROPROGRAM SIMULATOR, MICSIM 

6.11 EXAMPLE OF SIMULATOR OUTPUT 

Figure 6-3 shows the simulation listing of the LDA example 
developed in section 2. 

PAGE 0000 OQ/01173 

VARIAN 73 MICRO SIMULATOR 

VO~TEX 

lNPUT HIGHEST NUMBER WCS PAGE DESIRED 
0 
MS•• 
PO SEt..ECT PAGE ZERO 

MlCSIM 

MS•• 
t,.,C ~OAO CENTRAL CONTRO~ STORE, 620 EMULATION 
LOAD COMPLETE 
MS•• 
LOA 
l.OAD COMPLETE 
MS tu 
"'08 
~OAO COMPLETE 
MS•• 

LOAD OECOOfR A, e2o EMULATION 

~OAO OECOOER B, e2o fMU~ATlON 

CAOO 
0000 
10F9 

PUT AN 'LOA' INSTRUCTION IN MEMORV FOR SIMULATIO 

~DA FROM MEM ~oc tpgt 
MS•• 
c;pg 
0036 

MS•• 
AP 
0000 
400 
MS•* 
5R7 
MS•• 
tst3E 

CHECK WHATS TO BE LOADED 

SET PROGRAM COUNTER TO THE 'LO~' 

EXECUTE SEVEN MlCROtS 

START EXECUTION AT STANDARD STAT! ONE, SS1M 

Figure 6-3. Simulator Output Format 

6-11 



~ variandatamachines ~~~~~~~~~~~~~~~~~~~~~~~ 

MICROPROGRAM SIMULATOR, MICSIM 

f'AGE 0001 091()7113 VORTEX MICSIM 

l,;CS LOC 01JE PAGE 0 

rs AF MS Mi f S TF Sf GF MR AH IM lR LA 
00 {)9 O? 00 on Qf) <)1 00 00 00 08 00. 00 

~F Ff Mf CF WR SC 'IF WF X F SH BB AA 
QO 00 00 00 00 00 00 00 00 00 00 00 

NEXT ccs ADORE SS 0092 PAGE 0 

t.; lH~ Rf f\ T TOP r.1 F' STACI< 0000 
NUM~F.k nF ! TEMS ON STACK 0 

ALU INPUT A 0000 
At U JNPUT B ooon 

AllJ OUTPUT 0000 

CI t\J 0 
COUT 0 

RO (J000 Rt 0000 R2 OOJO R3 0000 
R4 Qi')Q() R5 ooon R6 0000 R7 0000 
R8 0000 R9 O()<)O ~A QOt)O Rf.\ onoo 
1-lC 0000 Rn 0000 RE 0000 ~F 0000 

.., SC OPR i<REG lfll(R IBR I STAT IOR SHFT QUOS 
0400 0000 0000 0000 0000 O(')On 0000 0000 0000 0000 0000 

MCCO 1 
MOPC 1 
MAOS 1 
MBYC 0 
MIR ()000 
lBR 0000 
MMAD 04lJO 

TEST CONOITlON STATES 
UVFL SENS SSW3 55W2 s s ri 1 EMUL ALUO A~US 
0000 0000 0000 0000 0000 0000 0000 0000 

AL.UC •L.UZ SHf T MIRS SF TC ROAO NOkM QUOS 
0000 ooon 0000 0000 0000 0000 0000 0000 

Figure 6-3. Simulator Output Format (continued) 

6-12 



~~~~~~~~~~~~~~~~~~~~~ varlandatamachines ~ 
MICROPROGRAM SIMULATOR, MICSIM

PAGE 0002 09/01113 VORTEX MICSIM

CCS LDC 0092 PAGE 0

TS AF MS MT FS TF SF GF MR AB IM LB LA
00 02 OD on 00 00 01 00 00 00 08 00 00

RF FF MF CF WR SC VF WF XI' SH 88 AA
04 00 00 00 00 00 00 00 00 00 00 00

NEXT ccs ADDRESS 0020 PAGE 0

CURRENT TOP OF STACK 0000
NUMBER OP ITEMS ON STACK 0

ALU INPUT A 0000
ALU INPUT B 0000

ALU OUTPUT 0000

C!N 0
CO\JT 0

RO 0000 R1 0000 R2 0000 R3 0000
R• 0000 R5 0000 R& 0000 R1 0000
R8 0000 RQ 0000 AA 0000 RB 0000
RC 0000 RD 0000 RE 0000 RF 0000

p SC OPR KREG lOKR ?BR x STAT lOR SHFT QUOS
0401 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

MCCO 2
MQPC 1
MAOS 1
M8YC 0
MIR 0000
l8R 0000
MMAD o•oo

Figure 6-3. Simulator Output Format (continued)

6-13

~ ~rianda~mach~es~~~~~~~~~~~~~~~~~~~~~~
M1cROPROGRAM SIMULATOR, MICSIM

PAGE 0003 09107113 VORTEX MICSIM

MCCO 1
MOPC t
MADS 1
MBYC (')

MIR 10f'9
lBR 10F9
MMAD 0401

TEST CONDITION STATES
UVFL. SENS SSW~ SSW2 S~hH EMUL ALUO ALUS
0000 0000 0000 0000 0000 0000 0000 0000

ALUC AL.UZ SMFT MIRS SF'fC ROAO NORM QUOS
0000 0000 0000 0000 0000 ooon 0000 OC>OO

Figure 6-3. Simulator Output Format (continued)

6-14


~~~~~~~~~~~~~~~~~~~~~~ varlandatamachines ~ 
MICROPROGRAM SIMULATOR, MICSIM 

PAGE 0004 09107113 VORTEX Mt CS JM 

r;cs LOC 0020 PAGE 0 

TS AF MS MT FS TF SF GF MR AB IM L.8 L.A 
Of 00 06 on. 00 00 00 05 00 00 oe 00 00 

RF FF MF CF wR SC VF WF Xf' SH BB AA 
00 00 00 00 00 00 00 00 00 00 00 00 

NEXT ccs A OD RESS 0182 PAGE 0 

t;URRENT TOP OF STACK 0000 
NUMBER OF ITEMS ON STACK 0 

Al.. IJ INPUT A 0000 
A~U INPUT 8 0000 

AL, lJ OUTPUT 0000 

CIN 0 
COUT 0 

RO 0000 Rt 0000 R2 0000 R3 0000 
RA 0000 R!5 0000 R6 0000 R7 0000 
RB OOCJO R9 0000 RA 0000 Ra 0000 
RC 0000 RO 0000 RE onoo RF 0000 

Ji SC OPR KREG lOKR IBR I STAT !OR SHFT QUOS 
0401 0000 0000 0000 0000 10FQ 10Fg 0000 0000 0000 0000 

MCCO 2 
MQPC 1 
MAOS 1 
MBYC 0 
MIR 10F9 
lBR 10F9 
MMAO 0401 

Figure 6-3. Simulator Output Format (continued) 

6-15 



~ varian data machines 

MICROPROGRAM SIMULATOR, MICSIM 

PAGE 0005 09101113 

MCCO 0 
MOPC t 
MAOS 1 
MBYC 0 
MIR 0000 
lBR 0000 
MMAO 0401 

VORTEX 

TEST CONDITION STATES 
UVFL Sf NS SSW3 SSW2 SSWl EMUL ALUO 
0000 0000 0000 0000 0000 0000 0000 

•L.UC AL.UZ SHFT MIRS S'TC ROAO NORM 
0000 0000 0000 0000 0000 0000 0000 

M?CSIM 

AL.US 
0000 

QUOS 
0000 

Figure 6-3. Simulator Output Format (continued) 

6-16 



~~~~~~~~~~~~~~~~~~~~~~varianda~mach~es~ 
MICROPROGRAM SIMULATOR, MICSIM

P•GE 0006 09101113 VORTEX MI CS IM

ccs LOC 0182 PAGE 0

TS AF MS MT FS TF SF GF MR AB IM L.B L,A
00 12 OF 00 00 00 01 00 00 00 05 02 00

RF FF Mf-' CF WR SC yf WF' XF SH BB AA
03 OA () 1 03 01 01 00 00 00 00 00 00

NE:XT ccs AOl)RESS 012f P4GE 0

~URRENT TOP OF STACK 0000
NUMBER OF ITEMS ON STACK 0

ALU INPUT A 0000
Al.U INPUl a OOFO

ALU OUTPUT OOF9

CIN 0
COIJT 0

RO 0000 Rt 0000 R2 0000 M3 0000
R4 0000 R5 0000 R6 0~00 R7 onoo
R. 8 0000 R9 0000 RA 0000 RR 0000
RC 0000 RO 0000 RE 0000 Rf 0000

~ SC OPR KREG IOKR IBR I STAT IOR SHf T QUOS
0401 0000 OOf 9 0000 0000 000() 10F9 0000 0000 0000 0000

MCCO 1
MOPC 2
MAOS 0
MBYC 0
MIR 0000
IBR 0000
MMAD OOF,g

TEST CONDITION STATES
UVFI. SENS SSW3 SSW2 ssw1 f MUL ALUO ALUS
uooo 0000 0000 0000 0000 0000 0000 0000

AL.UC ALUZ SHFT MIRS SFTC ROAO NORM QUOS
0000 0000 0000 0000 0000 0000 0000 0000

Figure 6-3. Simulator Output Format (continued)

6-17

~ varianda~macWnes~~~~~~~~~~~~~~~~~~~~~~
MICROPROGRAM SIMULATOR, MICSIM

PAGE 0001 09107113 VORTEX MICSIM

ccs LOC 012F PAGE 0

TS AF MS MT FS TF SF GF MR AS IM L.B L.A
00 1E oc 01 OF 00 00 00 on 00 00 00 00

RF FF MF Cf wR SC VF WF XF SM 88 AA
00 00 00 00 00 00 oo oo 00 00 00 00

NEXT ccs AOORESS OlEO P•GE 0

CURRENT TOP OF STACI< 0000
NUMBER OF ITEMS ON STACK 0

ALU INPUT A 0000
ALU INPUT a 0000

ALU OUTPUT 0000

CIN 0
COtJT 0

RO 0000 Rl 0000 R2 0000 RJ 0000
R4 0000 R5 ooon R6 ooon R7 0000
R8 0000 R9 0000 RA 0000 RA 0000
RC 0000 RD 0000 RE 0000 RF 0000

p sc OPR KREG IOKR IBR I STAT IOR SHFT QUOS
U401 0000 OOF9 0000 0000 0000 10FQ 0000 0000 0000 0000

MCCO 2
MOPC 2
MADS 0
MBYC 0
MIR 0000
lBR 0000
MMAO OOFQ

Figure 6-3. Simulator Output format (continued)

6-18


~~~~~~~~~~~~~~~~~~~~~~~ varianda~mach~es ~ 
MICROPROGRAM SIMULATOR, MICSIM 

P•GE oooe 09101113 VORTEX MICSIM 

MCCO 0 
MOPC 2 
MAOS 0 
MBYC 0 
MIR 0036 
lBR OllOO 
MMAO OOF9 

TEST CONOlTION STATES 
UVFL. SENS SSW3 SSW2 SS Wt EMUl ALUD ALUS 
0000 0000 0000 0000 0000 0000 0000 0000 

AL,UC ALUZ SHFT MIRS SFTC ROAO NORM QUOS 
0000 0000 0000 000() 0000 0000 0000 ooon 

Figure 6-3. Simulator Output Format (continued) 

6-19 



~ variandatamachines ~~~~~~~~~~~~~~~~~~~~~~~ 
MICROPROGRAM SIMULATOR, MICSIM 

'"'AGE 0009 09101113 VORTEX MJCSIM 

t;CS t.OC 01EO PAGE 0 

TS AF MS MT F's TF Sf GF MR AB IM LB l.A 
00 oa 05 00 00 oo 01 00 00 oo oa 00 00 

RF FF MF CF WR SC VF' WF XF 51-t BB AA 
04 00 00 00 00 on 00 00 00 00 on 00 

. NEXT ccs ADDRESS ooa~ PAGE 0 

CURRENT TOP OF STACK 0000 
NUMBER OF ITEMS ON STACK 0 

ALU INPUT A 0000 
ALU INPUT 8 0000 

4l.U OUTPUT 0000 

CIN 0 
cnuT 0 

RO 0000 Rt 0000 R2 0000 R3 0000 
R4 0000 R5 000('1 Rh ooon R1 0000 
R8 0000 R9 0000 RA 0000 RA 0000 
RC 0000 RO 0000 ~E 0000 RF 0000 

"" 
sc QPR KREG IOl<R I fJ R I STAT lOR SHFT QUOS 

0402 0000 OOf 9 0000 0000 0000 10F9 0000 0000 0000 0000 

MCCO 1 
MQPC 1 
MAOS 1 
MBYC: 0 
MIR 0036 
lBR 0000 
MMAD 0402 

TEST CONOITION STATES 
UVFL. SENS SSw3 SSW2 SSW1 EMUL AL.,UO ALUS 
uooo 0000 0000 0000 0000 0000 0000 0()00 

AL.UC ALUZ SHFT MIRS Sf TC ROAD NORM QUOS 
0000 0000 0000 0000 0000 000() 0000 0000 

Figure 6-3. Simulator Output Format (continued) 

6-20 



~~~~~~~~~~~~~~~~~~~~~-variand~amac~nes ~ 
MICROPROGRAM SIMULATOR, MICSIM

PAGE 0010 09107113 VORTEX MICSIM

ccs L..OC 0085 PAGE 0

TS AF MS MT FS Tf SF GF MR AB IM L,8 LA
OF 00 06 00 00 00 00 05 00 00 oe 01 00

RF FF MF Cf' wR SC VF WF XF SM BB AA.
00 OA 01 00 01 00 00 00 00 00 01 00

NEXT ccs ADDRESS 0080 PAGE 0

CURRENT TOP OF STACK 0000
NUMBER OF ITE~S ON STACK 0

ALU INPUT A 0000
AL.U INPUT B 00~6

AL.U OUTPUT 0036

CIN 0
COUT Q

RO 0036 R1 0000 R2 0000 R3 0000
R4 0000 R~ 0000 Re 0000 R7 0000
RB 0000 RQ 0000 RA 0000 RB 0000
RC 0000 RO 0000 RE 0000 RF 0000

p SC QPR KREG IOKR IBR I STAT IOR SHPT QUOS
0402 0000 OOf 9 0000 0000 0000 0000 0000 0000 0000 0000

MCCO 2
MOPC 1
MAOS t
MBYC 0
"1tR 0036
lBR 0000
MMAO 0402

Figure 6·3. Simulator Output Format (continued)

6-21

~ varianda~mac~nes~~~~~~~~~~~~~~~~~~~~~~
M1cRoPROGRAM SIMULATOR, MICSIM

PAGE 0011 09107113 VORTEX MICSIM

MCCO 0
MOPC 1
MAOS 1
MBYC 0
MIR 0000
lBR 0000
MMAO 0402

TEST CONDITION STATES
OVFL. SENS SSWJ SSW2 SS wt EMUL. ALUO ALUS
0000 0000 0000 0000 0000 0000 0000 0000

AL.UC Al.UZ SMFT MIRS SFTC ROAO NORM QUOS
0000 0000 0000 ooon 0000 0000 0000 0000
tXECUTION L.IMXT SATISFIEO
MS**
H

Figure 6-3. Simulator Output Format (continued)

6·22

SECTION 7

MICROPROGRAM UTILITY PROGRAM,

MIUTIL

The microprogram utility (MIUTIL) loads information into
WCS and provides an interface with hardware features of
the WCS.

Two sets of directives are provided. The basic set will allow
the user to load the WCS with microassembler output,
examine single WCS words and list WCS contents. The
second group of directives gives the user access to the
debugging features of the control store. With these
directives single microstep execution can be done.

The utility operates in three environments, under the
VORTEX operating system, MOS operating system and as a
stand-alone program. A standard interface program pro
vides compatibility.

7.1 BASIC ELEMENTS

The microprogram utility accepts directives as similar as
possible to those of the microprogram simulator.

7.2 GENERAL FORM OF DIRECTIVE

In general a utility directives consists of a unique first
character, followed by a string of parameters, terminated
by a carriage return. The following sections describe the
meaning of each of these first characters and permissible
parameters. Table 7-1 summarizes the utility directives.

The following are the utility directives available to the user:

Table 7-1. Summary of Utility Directives

A. Basic Command Set

Pn
LC
LDA
LDB
MS
MR
Exm
Dxm,n
R

Page select
Load central control store (CCS)
Load decoder control store (DCS) A
Load decoder control store (DCS) B
Media set, selects Pl for input
Media reset, selects SI for input
Examine/change control store x word m
Dump control store x word m through n
Return the operating system or exit from

utility in stand-alone environment

B. Debugging Directives

Nx
TS
TR
Gn

Enables control store x
Trace set
Trace reset
Set microprogram execution address to
CCS word n

(continued)

varian data machines •

Xn
I
Bn

Execute n microinstructions
Initialize WCS
Branch to CCS word n

Hn Halt execution at word n

7.3 DIRECTIVE DEFINITIONS

In the following discussion of utility directives, the
characters the user inputs are in bold-face type and
explanation of the action in regular type.

All numeric values are hexadecimal.

7.3.1 Select Page (P)

This directive selects a particular WCS page for the
commands which follow. The directives for loading, and
dumping do not accept a page number and thus rely on the
previous P command for page selection.

Before the first P command is given by the user, a default
page value of 1 is assumed.

The letter P is followed by a hexadecimal digit for the page
number. For example P3 would select page 3.

7.3.2 Load Control Store (L)

This directive loads microassembler output into the
writable control store. The user specifies which page is to
be loaded by the prior P command. The user specifies
which control store should be loaded by the one parameter
following the letter L. C indicates central control store, DA
or DB for decode control store A or B, and I for I /0 control
store.

For example, after P2 a directive LC would load page two of
the central writable control store.

7.3.3 Examine/Change Control Store (E)

Through this directive a single word of WCS may be either
examined or changed. The user specifies which control
store and the word number. The page is obtained through
the previous P directive.

The form of the E directive is Exmmm where x is either
C, DA, DB or I for central, decoder, and 1/0 control stores
respectively, and mmm is the address of the control store
word in hexadecimal notation.

7-1

~ varian data machines

MICROPROGRAM UTILITY PROGRAM, MIUTIL

The utility will type out the contents of the location followed
by a carriage return. The user must then do one of the
following:

1. Change the contents of the location by typing a new
hexadecimal value followed by a carriage return

2. Change the contents of the location and then examine
the next location by typing a new hexadecimal value,
followed by a comma, followed by a carriage return

3. Examine the next location by typing a comma followed
by a carriage return

4. Type a carriage return

For example

MU':•,:•

Pl
MU'~':'

El29
12A3
0,
002A
1233
0
MU"'':'
ECF

Action Caused

Selects page 1

Examine 1/0 control store location 29
Computer types contents
User changes contents to zero

Computer types location 2A
User changes its contents to zero

Utility accepts another directive

7.3.4 Dump Control Store (0)

The dump directive provides a listing of the control store
contents. The page is determined by the prior P directive.
The user specifies the locations and control store type in
the parameters.

The general format for the dump command is:

Dxmmm,nnn

where x is C, DA, DB or I for the specific control store (as
above), mmm is the hexadecimal location where the dump
is to start, and nnn is last location to be dumped. If ~e
final location is missing, the last location of the page is
assumed. If the first address is omitted, it is assumed to be
zero.

Dump directive example:

MU""~

P2
MU*''
DC

MU':•,:•

Dl30,5A

MU''"'
Dl,5A
MU""'

7·2

Provides listing of central control
store page 2

Provides listing of the 110 control
store, locations 30 through 5A

List from location zero through 5A

Section 7.8 shows a sample printout of the microprogram
utility directive D.

7.3.5 Return to Operating System (R)

This directive causes exit from the utility. If running under
MOS or VORTEX, control is returned to the operating
system. If the utility is running in a stand-alone environ
ment, the R directive causes a halt. There are no
parameters, merely the letter R.

7.3.6 Media Set and Reset (M)

This directive allows the selection of an alternate device for
input of utility directives. 'MS' selects the 'Pl' unit for
input. 'MR' returns the utility to the SI unit for input.

Note that receiving an illegal command will cause the
media to be automatically reset to SI.

The following directives are designed to operate in the
special hardware configuration described in section 7.5.

7.3.7 Enable Control Store (N)

This directive allows the user to enable the specified control
stores. The page number used in the one specified by the
last P directive.

The general form of the N directive is:

Nx

where xis Dor I, which specifies enabling of the decoder or
110 control store, respectively.

For example:

MU':••:•
Pl
MU':,,:,

ND Enables decoder control store, WCS page 1
MU''':'

7.3.8 Trace Execution (T)

The purpose of this directive is to provide the user with a
means of following micro execution while it is in progress.
To accomplish this, the address of each microinstruction is
typed before it is executed.

The general form of the T directive is:

Ta

where a is one of the following: S for setting or enabling
trace mode, or R for resetting or disabling trace mode.

Before the first T directive is given, the trace mode is reset,
i.e., turned off.

The general form of the trace output is:

p-nnn

where p is the page number and nnn is the word number of
the next instruction to be executed.

7.3.9 Set Micro Execution Address (G)

This directive allows the user to choose a location for
starting microprogram execution.

This routine will do the following:

1. Step the WCS to stop any execution that might be in
progress.

2. Load the micro address register with the specified
address.

3. Step the WCS to load the first microword into the
control buffer.

4. If trace mode, the next control store address to be
executed will be read from the WCS and output to the
user.

This directive does not begin execution. It serves only as
the setup for an X directive.

The format of the G directive is as follows:

Gn

where n is from one to three hex digits specifying a word
number in central control store.

The page is obtained from the last P directive.

7.3.10 Execute Microinstruction (X)

This directive is used after the G directive to begin actual
micro execution. It can be used to specify free-running
execution or execution of a fixed number of micra's
followed by a halt. By requesting execution of a single
micro, followed by a halt, it can be used to stop free
running execution.

If free-running execution without trace is requested, the
fine clock will simply be enabled to run free. There are two
ways of interrupting this. An X directive specifying
execution of one microinstruction will step the WCS. It can
then be restarted by another X directive. The G directive
will also stop free-running execution. It sets a starting
address, however, and thus it should not be used if the
interrupted execution is to be restarted where it left off.

varian data machines ~
MICROPROGRAM UTILITY PROGRAM, MIUTIL

If free-running execution is requested in trace mode, then
the WCS is simply single stepped an indefinite number of
times. This allows reading of the WCS address b~fore each
single step.

If execution of a fixed number of microinstructions is
requested, the WCS will simply be stepped the appropriate
number of times. If trace mode, then the address will be
accessed from the WCS and returned to the user before
each micro is executed.

The following is the format of the X directive:

Xn

Where n is zero for free-running execution or non-zero to
request execution of n microinstructions.

The default value for n is 1.

For example:

Mu·:··~

X7
Mu•:··~

XO
Mu•:··~

x

Execute seven microinstructions

Enable free-running execution

Execute one microinstruction (note: this
would halt the previous free run)

7.3.11 Initialize WCS (I)

The purpose of this directive is to execute an EXC 07X
command. This will deselect all WCS control stores,
terminate any OMA operations in progress and enable free
run of the fine clock. The result is that control will return to
the ROM with all WCS activity suspended.

This command should only be used when a meaningful
ROM location will receive control. Thus, it should not be
used for such things as halting a free-running
microprogram.

7.3.12 Branch to CCS (B)

This directive simply executes an 1/0 branch to the
specified address in central control store. Such a branch
causes free run execution to begin at that location. The B
command thus produces a similar effect to a Gn, XO
directive sequence. The B directive never steps the WCS
though, and thus cannot respond to the trace flag.

The general form of the B directive is:

Bn

Where n is from one to three hex digits specifying a word
number in central control store.

The page number is obtained from the last P directive.

7-3

~ varian data machines

MICROPROGRAM UTILITY PROGRAM, MIUTIL

7.3.13 Set Halt Address (H)

This directive may be used with the X directive to single
step microprogram execution to a certain address in WCS.

The format of the H directive is:

Hn

where n is from one to three hexadecimal digits specifying
a word in control store. The page number is specified in the
last P directive.

Single stepping as a result of an X directive will be
terminated when the specified location is the next one to
be executed. A message in the trace format will be output
to signal this.

The halt can be removed by entering HO. Only one halt
address may be set at a time.

7.4 OPERATING INSTRUCTIONS

7.4.1 Program Loading

Under VORTEX, load VORTEX as described in the VORTEX
Reference Manual, 98 A 9952 lOx. The utility should be in
the foreground library. It can be put there at system
generation time or added later using the load module
generator.

To load the utility and begin execution, an OPCOM
schedule directive is necessary. For example:

:SCHED,MIUTIL,3,FL,F

schedules the utility at priority three.

Under MOS, load MOS as described in the MOS Heference
Manual, 98 A 9952 09x. Then, the MOS loader may be used
to load the utility program. Execution will begin on
successful completion of the load.

For example:

/JOB, UTIL
/LOAD
Utility program binary object
EOF (2-7-8-9 multi-punch)

In a stand-alone environment, load the Varian 620 stand
alone FORTRAN IV system loader as described in VDM
document number 89A0226. Instruct the loader to change
its logical unit numbers by entering appropriate values.
Next, load the utility binary object, followed by the
FORTRAN IV stand-alone system runtime 110 tape,
followed by the runtime utility tape. On completion of
loading, the machine will go into step. Press RUN to start
execution.

74

7.4.2 Program Execution

After successful loading, the utility program is entered
automatically. The program will first type VARIAN 7 3
MICRO UTILITY to identify itself. Next, the configura
tion will be determined by the following request:

DEBUG CONFIG? (Y or N)

The user should then type Y followed by a carriage return,
if his system is in the special two-processor debugging
configuration described in section 7.5. Otherwise, if his
system is simply the standard configuration, the user
should type N, followed by a carriage return.

The micro utility will then type

EVEN WCS DEV ADDR?

The user should then type either 70, 72, or 74, depending
on the hardware configuration, followed by a carriage
return.

The utility will then type:

MU**

to indicate that it is ready to accept a directive. Whenever
an illegal directive is given, an error message is typed.
Description of the various messages can be found in
section 7.7. Note that a directive may be in error either due
to bad syntax or due to context. An example of the latter
case is giving a debugging directive in a non-debugging
configuration.

During execution of the D and X directives, SENSE switch 3
may be set to terminate their execution prematurely.

SENSE switch 1 may be set during tracing to suppress
listing of page zero addresses.

7.5 DEBUGGING CONFIGURATION

The additional debugging directives of the utility cannot
operate on the WCS of the processor on which the utility
itself is running. For this reason, a special hardware
configuration is needed to use these directives.

The special configuration must have two computer systems:
one with a WCS and the other actually operating the utility.

The system which runs the utility program must have the
hardware appropriate for the type of operating system or
for stand-alone operations. The processor need not have
any WCS and the processor itself can be either a 70-series,
620/f, or 620/L. Operating system requirements prevail,
since VORTEX does not run on a 620/L.

The Writable Control Store Reference Manual (Varian
document number 98 A 9906 08x) describes the physical
properties of this two-processor system for debugging.

7.6 ADDING UTILITY TO VORTEX

The microutility resides on the foreground library under
VORTEX. After system generation, however, the user is
responsible for cataloging it there. The following procedure
may be used to do this. First, position the Bl device to the
microutility object material. Then, issue the following
directives:

/LMGEN
TIDB,MIUTIL,2,0
LD,BI
LIB
END,FL,F

(For detailed descriptions of these directives, refer to the
VORTEX Reference Manual.)

7.7 UTILITY ERROR MESSAGES

Message Reason

General

MUOl Input could not be interpreted as a valid
command.

MU02 A non-hex character was encountered when hex
expected.

varian data machines ~
MICROPROGRAM UTILITY PROGRAM, MIUTIL

Message Reason

MU03 EOF detected on SI. Return mode to operating
system.

MU04 The selected page number was not valid.

WCS Access

MU05 Unable to access WCS: WCS is busy.

MU06 Unable to access WCS: BIC load in progress.

CS Loading

MU07 Read error on Bl device.

MU08 EOF encountered before load complete.

MU09 EOD/BOD encountered before load complete.

MUlO Sequence error on Bl.

MUll Invalid loader code.

MU 12 Checksum error.

7-5

~ variand~amac~nes-~~~~~~~~~~~~~~~~~~~~~
M1cROPROGRAM UTILITY PROGRAM, MIUTIL

7.8 EXAMPLES

The following is a sample of microutility output:

PAGE 0000 09/07/73

VARIAN 73 MICRO UTILITY

UEBUG CONFIG ? (Y OR N)
N

tVEN wCS OEV AODR T
12
MU**
tC2~
vooooooooooooooo ,
0026
0000000000000000 ,
0027
uooooooooooooooo
cu,
0028
0 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0

MU**
U0A8,B

fi'AGE 0001 09/07/7~

UCS A , PAGE 01

0008 0000 0000 0000 0000
MU**
UOB

fi'AGE 0002 OQ/01113

UCS 8 , PAGE 01

0000 0000 0000 0000 0000
0008 0000 0000 0000 0000
MU**
UC5,1

7-6

VOh'TEX Mt UT IL

VORTEX MIUTIL

VORTEX MI UT IL

0000 0000 0000 0000
0000 0000 0000 0000


~~~~~~~~~~~~~~~~~~~~~~ vartanda~mach~es ~ 
MICROPROGRAM UTILITY PROGRAM, MIUTIL 

1-'AGE 0003 OY/07113 VORTEX Ml UT IL 

ccs LOC 000~ PAGE 01 

TS AF MS MT f. s TF SF GF MR AB IM L.B L.A 
00 00 00 00 00 00 00 00 00 00 00 00 00 

RF f F MF CF WR SC VF" WF XF SH aa AA 
00 00 ()0 00 00 00 0(> ()0 00 00 00 00 

c.;cs t,.OC 0006 PAGE 01 

TS AF MS MT PS TF SF GF MR AB IM L.B l.,A 
O() 00 00 00 00 00 00 00 oo 00 00 00 00 

RF' FF MF' CF WR SC VF WF XF SH aa At.. 
00 00 00 00 00 00 00 00 00 00 00 00 

t.:CS L,OC 0007 PAGE 01 

TS AF MS MT FS TF SF GF MR AB IM L.B L.A 
00 00 00 00 00 00 00 00 00 00 00 00 00 

Rf fF. MF CF WR SC VF WF XF SH aa AA 
00 00 00 00 00 00 00 00 00 00 00 00 

MU** 
l..C 
L.llAO COMPLE'fE 
MU•• 
t..1 
LOAD COMPLETE 
MU•• 
~ 

7.7 





SECTION 8 

DECODER CONTROL STORE, 1/0 
CONTROL AND ADDITIONAL TOPICS 

These topics are not of interest to all microprogrammers. 
Both decoder and 1/0 control stores are options and also 
less trivial to program. Not all applications require an 
understanding of the item treated as additional topic 
which is multiple environment applications. 

8.1 DECODER CONTROL STORE 

Preliminary decoding of instructions in the instruction 
buffer is performed by the instruction decoder control store 
and the instruction decoding logic. These elements trans
late the I6-bit instruction into a 9-bit control-store address 
according to the contents of the instruction decoder control 
store. 

The instruction decoder control store consists of two I6-
word by I6-bit memory arrays. The processor implements 
this with programmable read-only memory (PROMS). An 
option of the WCS permits selection of read/write arrays to 
permit alternate decoding strategies. 

The decoder B control store array uses instruction buffer 
bits I2 through I5 as an address. The decoder A control 
store array uses instruction bits 08 through I I as an 
address. The formats for these two control store arrays are 
in figure 8-1. 

The decoders are identified as A and 8. Bits within them 
numbered right to left starting with zero, so that bit IO of 
decoder B is identifed as BIO. A and B designations are 
accepted by microprogram simulator and utility programs. 

The decoder address is enabled by the TF and SF fields 
both equal to 00 and the GF field equal to XIXX. If an 
interrupt is present, decoding is inhibited and interrupt 
addressing is used. 

Decoder addressing will be inhibited if the IM field equals 
I IXO. If decoder addressing is so inhibited and no 
interrupts are present, field-selection addressing is used. 

The possible components of a decoded address are shown 
in figure 8-I and 8-2. The nine low-order bits obtained from 
the decoder 8 are always used in decoder addressing. 

The five most significant bits (4-8) in decoder A are 
included in the control store address bits 4 through 8 by an 

varian data machines IE 

inclusive OR, if either of the following bit combinations 
exist in the first decoder output: 

8I2 equals zero 

or 

BI5 equals zero 

The four least significant bits of decoder A are included in 
the control store address bits 0 through 3 by an inclusive 
OR if either of the following bit combinations exist in the 
first decoder output. 

BI2 equals zero and BIO equals one 

or 

8I5 equals zero and BIO equals one 

The contents of instruction buffer bits 04 through 07 are 
included in the control store address bits 0 through 3 by 
an inclusive OR, if either of the following bit combinations 
exist: 

8I4 equals zero 

or 

BI5 equals zero and AI3 equals one 

The contents of instruction buffer bits 00 through 03 are 
included in the control store address bits 0 through 3 by 
an inclusive OR, if either of the following bit combinations 
exist: 

8I3 equals zero 

or 

B15 equals zero and A13 equals one 

One exception to this is the contribution of instruction 
buffer bits 04 through 07. The contribution to control store 
address bit 2 will be the contents of instruction buffer bit 
03 instead of bit 06, if the decoder 8 bit 00 equals one 
and the decoder A9 equals one. 

Decoder addressing is used to perform a preliminary 
instruction decoding function. It permits instruction classes 
to be discriminated with the detailed decoding performed 
later by field-selection addressing after the instruction 
buffer is transferred to the instruction register. 

The meaning of other bits in the two decoder control store 
words is shown in figures 8-I and 8-2. These signals are 
available at a processor connector and are used by Varian 
70 series options to detect certain instruction classes. 

8 1 



CXJ 
N 

0 
tD 
n 
0 
c.. 
~ 
(') 
0 
;?. 

£ 

DECODER 
B 

DECODER 
A 

Bl5 Bl4 Bl3 Bl2 Bll BlO B9 BB - BO 

(S32) (S3 l) (S30) (T32) (04) (00) (IO) (CIDA3X) 
DECODED FROM 
INSTRUCTION BUFFER 
BITS 12- 15 

ADDRESS CONTRIBUTION 
1--- EXTERNAL SIGNAL FROM 1/0 

ENABLES LEAST SIGNIFICANT 4 BITS OF DECODER A 
WHEN B15 OR Bl2 ARE ENABLED 

........__ _____ EXTERNAL SIGNAL 

~-------ENABLES DECODER A LEAST SIGNIFICANT 9 BITS 
----------ENABLES INSTRUCTION BUFFER BITS 00-03 TO 

CONTRIBUTE TO ADDRESS BITS 0-3 
'"-------------ENABLES INSTRUCTION BUFFER BITS 04-07 TO 

CONTRIBUTE TO ADDRESS BITS 0-3 
......___ _____________ ENABLES DECODER A, CONTROL STORE BITS A14 

A15 A14 Al3 Al2 All AlO 

(NOT (S2 l) (S20) (XX3) (XXO) (XX2) 
USED_}_ 

AND A13 

A9 AB - AO 

(XX5) (CIDA2X) 

[EXTERNAL SIGNAL; FORCE BIT 2 

DECODED FROM 
INSTRUCTION BUFFER 
BITS OB-11 

OF DECODED ADDRESS 
ON IF FIRST DECODER 00 BIT IS 

EXTERNAL SIGNAL 
EXTERNAL SIGNAL 
EXTERNAL SIGNAL 
WHEN ENABLED BY Bl5 FALSE, E NABLES INSTRUCTION BUFFER 

TO ADDRESS BITS 0-3 BITS 00-0B TO CONTRIBUTE 
WHEN ENGAGED BY B 15 FALSE, ENABLES INSTRUCTION BUFFER 

BITS 04-07 TO CONTRIBUTE TO ADDRESS BITS 0-3 

~~ 
l"'I 
::::c 
(') 
0 
z 
-I 
::::c 
0 
r-
CJ) 

-I 
0 
::::c 
!"' 

' 0 
(') 
0 z 
-I 
::::c 
0 ..... 
> z 
0 

> 
0 
!2 
-I 
0 
z 
> 
r-

-1 
0 
"ti 
0 
CJ) 

< m ... a;· 
:J 
Q, 
m ... m 
3 
m 
n 
::r 
:J 
CD 
tn 



varian data machines ~~ 
DECODER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS 

CONTROL STORE 
ADDRESS BIT sj 7 J 615 J 4 l 3 J 21 l 0 

(FROM DECODER B) 
B8-BO (DECODED FROM BITS 12-15 

A8-A4 

(FROM DECODER A) 

Bl5=0 OR Bl2=0 

ENABLED COMPONENTS ARE LOGICALLY OR 'ed. 

ALL DECODER COMPONENTS ARE INHIBITED UNLESS 
THE SF FIELD EQUALS 00 AND THE GF FIELD EQUALS 
X lXX AND NO ENABLED INTERRUPT REQUESTS ARE 
ACTIVE. 

OF INSTRUCTION BUFFER) 

A3-AO 

B12 = 0 AND BlO = l, OR 
B15 = 0 AND BlO = l 

INSTRUCTION BUFFER 
BITS 00-03 

Bl3 = 0 OR (Bl5 = 0 AND Al3 = l) 

INSTRUCTION BUFFER 
BITS 04-07 

IN ADDITION, DECODING MAY BE INHIBITED BY THE 
IM FIELD EQUAL TO l lXO. 

T * T 
Bl4 = 0 OR (Bl5 = 0 AND Al4 = 1) 

* THIS BIT IS FORCED TO STATE OF INSTRUCTION BUFFER BIT 03 
IF DECODER B BIT 10 IS ON AND DECODER A BIT 9 IS ON. 

VTll-1937 A 

Figure 8-2. Decoder Address Components 

8.2 1/0 CONTROL STORE 

8.2.1 Microprogram Initiation 

The microinstruction can initiate I /0 activity by signaling 
an 1/0 request while forming a starting address for the 
independent I /0 control store. An I /0 request is made by 
setting the SF field equal to 00 and the IM field equal to 
lllX. (If the IM field equals 1110, decode addressing is 
inhibited). 

The I /0 control-store starting address is specfied by the 
MT, MR and TS fields. 

1/0 request 
SF 00 
IM = lllX 

4 

TS 

1/0 Control 
Store Starting 
Address 

':'ABl is most significant bit of the AB field 

The microinstruction can wait for completion of I /0 activity 
by specifying a wait for 1/0 done. This is coded by setting 

the SF field equal to 00 and the IM field eqµal to 0010. 
Execution of this and subsequent microinstruction will be 
inhibited until the 1/0 sequence is completed. If the 1/0 is 
busy performing a sequence and an 1/0 request is issued 
execution of the microinstruction specifying new 1/0 
activity will be inhibited until the 1/0 completes its current 
sequence. 

Standard 1/0 page zero starting addresses for processor
initiated 1/0 are: 

Hexadecimal 
Address 

04 
oc 
lC 

Action 

Sense, EXC or EXCA 1/0 sequences 
Data Input 
Data Output 

1/0 operations can be initiated by external events such as 
DMA traps. Standard 1/0 page zero addresses are: 

Hexadecimal 
Address 

40 
50 
70 
80 
DC 

Action 

DMA trap out 
DMA trap in 
High-speed DMA trap out 
High-speed DMA trap in 
Interrupt 

8-3 



~ varlan data machines 

DECODER CONTROL STORE, IJO CONTROL AND ADDITIONAL TOPICS 

8.2.2 1/0 Microprogramming 

The IJO control section performs IJO sequences initiated 
from either the Varian processor microprograms or external 
DMA trap requests or interrupts. 

I JO microprogramming must be undertaken only with a full 
knowledge of the hardware function of the processor's IJO 
control section and the WCS's IJO control store. This is 
described in the Varian 73 Processor and WCS mainte
nance manuals (document numbers 98 A 9906 02x and 98 
A 9906 08x). 

No simulator program exists to aid in debugging I JO 
microprograms. 

All special IJO microprogramming must be considered an 
engineering design more than a programming task. 

I 10 control performs the following functions in accordance 
with the sequence 110 microinstructions stored in the I 10 
control store: 

Control the source of data applied to the 110 register 
input bus. 

I 10 register input bus. 

Control loading on byte shifting of the I /0 register. 

Initiate memory cycle requests to the Varian 73 
memory control section. 

Initiate IJO bus control signals. 

Wait for completion of external events such as memory 
cycles, new processor microprogrammed requests, 
external control signals, etc. 

Signal completion of 110 activity to the processor's 
central control section. 

I 10 control store formats are shown in figure 8-3. 

The I 10 address counter is automatically incremented at 
completion of each microinstruction unless a "WAIT" or 
"IDLE" state is entered. This counter is cleared to zero by 
system reset. 

I 10 microinstructions are executed from sequential ad
dresses until the end of the sequence whereupon the I 10 
becomes idle and ready to accept new requests. 

As the address counter is loaded with its starting address, 
the I 10 control buffer is loaded with the contents of I 10 
control store location corresponding to the last contents 
of the address register. Following a system reset this will be 
the contents of I !O control store address zero. At all other 
times it will be the ending address of the previous 110 
sequence. In either case, the standard data will cause bits 
IDLE and DN to become true. 

8-4 

IDLE true indicates the I JO control is not idle and further 
requests are to be ignored as long as IDLE is true, the 110 
address counter and 110 control buffer are enabled. 

At each succeeding microinstruction time the address 
counter is incremented and the 1/0 control buffer is 
loaded with the contents of the address designated by the 
address counter. The 16 bits of the 110 control buffer 
control all IJO functions. Their use is described below: 

CDO Control the processor's 
CDl 110 data loop multiplexor (IOMXX +) 

CD 
1 0 110 Register Input 

0 0 ALU 
0 1 Memory I 10 register 

0 I 10 bus byte swapped 
110 bus 

CD2 Control the processor's 
CD3 I 10 register 

CD 
3 2 

O 0 No action 
0 1 Shift right (left byte to right byte) 
1 0 Shift left (right byte to left byte) 
1 1 Load from ALU 

These bits do not directly control the 1/0 register. The 110 
register may also be controlled by IDLE (when the 1/0 is 
idle, the register is continously loaded from the ALU). 

CD4 

FRY 

Spare 

DRY 

IDLE 

Enables the processor's I JO register onto 
the E-bus. 

Initiates an 110 function ready (FRYX-1) 
signal. RYX-1 is terminated 247.5 nano
seconds later by signal lllT-. 

Not used. 

Initiates an IJO bus data ready (ORYX-I) 
signal. DRYX-1 is terminated 247,5 nano
seconds later by signal IEDRYN + derived 
from lllT-. 

Determines idle/busy status of 110 control. 
While busy the 110 can accept no new re
quests. 



15 l 141 13 J 12 11 10 09 08 07 06 05 04 03 02 l 01 l 00 

cox FRY SPARE DRY IDLE WAIT ROM CRY DN EFY 

0 l 1 l 2 3 4 y 0 l 2 

lo.. ..)\. -' lo.. ..) 

1 1 
.__ IF "'0 SIGNALS I 0 COMPLETION TO 

CENTRAL CONTROL 

l.i'O REGISTER INPUT 
RESERVED FOR FUTURE OPTION 

..,, REQUEST MEMO RY CYCLE 0 0 ALU OUTPUT 
ati. 
c l 0 MEMORY I ,10 REGISTER 
~ 0 1 1/0 BUS BYTE SWAPPED PUT I 0 IN "WAIT" STATE 
00 

~ 
1 1 I 0 BUS 

SET l'O BUSY c 
IT1 

] (") 

0 

INITIATE i/O CONTROL SIGNAL ORYX-I IF NO HIGH SPEED 
c 
fTI 
:::c 

l 
OMA AND INTERRUPT SEQUENCE FLIP-FLOP NOT SET \llNTFl (") 

0 
z 

1/0 REGISTER OPERATION INITIATE 1/0 CONTROL SIGNAL DRYF-1 IF HIGH SPEED OMA -I 
:::c 
0 
r-

0 0 NO ACTION INITIATE 1/0 CONTROL SIGNAL IUJX-1 IF NO HIGH SPEED 
l 0 LEFT BYTE TO RIGHT BYTE OMA AND INTERRUPT SEQUENCE FLIP-FLOP SET lllNTFI 
0 1 RIGHT BYTE TO LEFT BYTE 

CJ) 

-I 
0 
:::c 

JT1 
l l LOAD FROM SELECTED SOURCE l 

0 1 2 FUNCTION 

:::: < 0 
(') 

C» ... 
0 a;· z 

0 0 0 SELECT WAIT ON EXTERNAL -I :l :::c 
1 -0 0 LOAD NEW SEQlf NCE ADDRESS '//HEN NE'.'/ l ENABLES 1/0 REGISTER TO 1/0 BU5 PROCESSOR RESULT RECEIVED 
0 1 0 ADVANCE CLOCK COUNTERS RESET INTERRUPT 

ACKNOWLEDGE 
l 1 0 WAIT FOR MEMORY CYCLE ACKNOWLEDGE 

IF HIGH SPEED OMA INITIATE 1/0 CONTROL SIGNAL 
0 0 1 WAIT FOR PROCESSOR REQUEST 
l 0 1 STEER DRY TO 1. 'O BUS 

FRYF-1 0 l l ACKNOWLEDGE PROCESSOR REQUEST \'/HEN 
NOT HIGH SPEED OMA INITIATE llO CONTROL 

MEMORY ACKNOWLEDGE RECEIVED 
SIGNAL FRYX-1 l 1 1 SPARE 

0 Q. 
r- C» 
)> ... 
z C» 
c 3 )> 
c C» 
c (') 
=i ;r 
0 :;· 
z (1) )> 
r- (I) 

~~ 



~ varianda~mac~nes~~~~~~~~~~~~~~~~~~~~~~~ 
DECODER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS 

TRAP AND 
INTERRUPT 
REQUESTS 

i 

,, 
ADDRESS 
GENERATOR 

ADDRESS FROM CONTROL 
MICROINSTRUCTION 

1/0 ADDRESS COUNTER 

1/0 CONTROL STORE 

1/0 CONTROL BUFFER 

1 '-------1•• MEMORY REQUESTS 

•--------i•• CONTROL SIGNALS TO 
1/0 REGISTER 
1/0 BUS DRIVERS 

'-----------1•• 1/0 DONE 1/0 REGISTER INPUT BUS 

'--------------:-• I/O IDLE 

1/0 BUS CONTROL INTERFACE 

• 
1/0 BUS CONTROL SIGNALS 

J.'T//-1914 

Figure 8-4. 1/0 Control Simplified Block Diagram 

8-6 



varian data machines ~ 
DECODER CONTROL STORE, 1/0 CONTROL ANO ADDITIONAL TOPICS 

WAIT Places the 1/0 control in a "wait" 
state by inhibiting address counter and 
ROM buffer clocks until receipt of a 
designated signal. The 1/0 may wait for 
any of the following: 

new processor request 

processor interrupt flag reset 

data memory cycle complete 

external wait signal 

Selection of the specific condition is 
determined by the function bits EF2, 
EFl and EFO of the 1/0 control buffer. 

RQM Requests a DMA memory cycle from the 
processor's memory control. 

CRY Channel request. Reserved for 
future option. 

DN 

F2 

EF 
2 0 

0 0 0 
0 0 1 

0 0 
0 1 

0 0 
0 1 
1 0 

Results in an 1/0 done signal (IDNC
low) to signal the processor of completion 
of the 1/0 sequence. 

Function bits which control: 

selection of "wait" condition 

advance of interrupt clock counters 

steering of DRY 

acknowledge interrupt requests 

loading of new sequence addresses 

Select wait on external signal IEXW + 
Load new sequence address from CPU if 
CRQIO+ 
Advance IUCX and IUCF clock counters 
Select wait for memory cycle complete 
Select wait on CPU request 
Steer DRY to DRYX-1 
Acknowledge interrupt sequence request 
from CPU 
Not used 

Any 1/0 sequence continues through successive ROM 
addresses until address counter and ROM buffer clocks 
are inhibited by either of two conditions: 

IDLE becomes false signifying end of sequence or 
WAIT becomes true signaling that the current sequence 
must stop to wait for some external event such as: 

memory cycle 

new processor request 

new processor request 

interrupt flag set 

external wait line active 

For programmed 1/0 sequences signal DN will become 
active and at the next microinstruction time IDLE will 
become active also. IDLE causes I /0 sequencing to stop. 

The 1/0 sequence is thus completed leaving the address 
counter loaded with an address whose contents IDLE and 
DN. This will be the first data loaded into the ROM buffer 
when clocks are reenabled. 

8.2.3 Example of 1/0 Microprogram: 
Clear and Input to A 

The flowchart and code sheet following describe the 
standard programmed 1/0 sequence for V73 input data 
transfers. The corresponding flowchart for the processor 
microprogram to initiate the 1/0 transfer may be found in 
the second volume of the System Maintenance Manual. 

Referring to the processor microprogram flowchart for the 
sequence required to start the 1/0 operation, the first 
central control address is lAO. This was obtained with 
decode addressing. The entire sequence will now be 
traced. 

IABMl (lAO) 

This microinstruction causes the operand register to be 
loaded with a mask word containing only bit 13 true. 
Normal addressing specifies the next address. 

IABM2 (1C3) 

This microinstruction specifies an I /0 request with an I /0 
starting address of OC. If the I /0 was idle (the I /0 control 
store buffer IDLE bit was a zero) the 1/0 control accepts 
the starting address and simultaneously loads its control 
buffer with a standard code of 0088. This places the l/O in 
its "busy" state and signals the processor that the I 10 
operation was accepted. 

8-7 



IE varian data machines 

DECODER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS 

During this microinstruction the processor transfers the 
operand register to register E (this register has been 
designated Sl). 

IABM3 (1 F3) 

This microinstruction logically OR's the contents of register 
E with the masked (bits 0-8) contents of the instruction 
register. This places the device address, function code and 
bit 13 (specifying an input transfer) at the ALU output. 

In the 1/0 control the 1/0 microprogram is executing the 
microinstruction at location QC which loads the 1/0 
register with ALU output data. 

The processor microprogram specifies a "Wait for 110 
Done" which causes further processor operations to be 
suspended until the 1/0 control signals completion. The 
remainder of the 1/0 sequence will now be traced. 
Addresses are sequential. 

110 address OC is "NOP". It performs no function. 

Table 8-1. 1/0 Microprogram Example Code 

110 address of continues to enable the 1/0 register to the 
I JO bus and generates the I FRYX-1 control signal to signal 
110 devices that a new address and function code may be 
sampled. 

I JO address 10 performs the same function as OF. This 
allows for 110 bus settling time. 

1/0 address 11 selects the 110 bus as an input to the 1/0 
register. The selected 110 device may place its data on the 
110 bus. 

I 10 address 12 continues to select the I JO bus as an input 
to the 110 register and generates control signal IDRYX-1. 

110 address 13 continues to select the 1/0 bus as an input 
to the 1/0 register, continues to generate IDRYX-1 and 
causes the 1/0 register to be loaded with the data placed 
on the 1/0 bus. 110 control buffer bit "ON" becomes false 
permitting microinstruction execution to proceed. 

I 10 address 14 returns the 110 control to an idle condition. 
Simultaneously the next central control microinstruction is 
executed. 

CIA (090) 

This microinstruction transfers the 1/0 register contents to 
register 0 (the A register). The program counter is 
incremented and a new instruction fetch is initiated. The 
microprogram branches to SS3M (020) where the instruc
tion buffer is decoded to branch to the start of the next 
instruction. 

8-8 

Note that 1/0 address 15 will be executed when the next 
I /0 operation is started. This microinstruction contains 
the standard code of 0088 which will place the 110 in its 
"busy" state. 

8.3 MULTIPLE ENVIRONMENT APPLICATIONS 

This section describes using the Varian 70 series WCS for 
extended instruction execution and dual/multi environ
ment applications. 

This section discusses the application of WCS to extend the 
standard V70 series emulation of a Varian 620/f to perform 
additional instructions and functions. It also discussed a 
dual environment implementation, which can be extended 
to multi-environment machine. 

Application of the WCS to Extend Execution 

Capabilities 

Using the macro BCS, it is possible to define entry points in 
extended micro store for a large number of special 
functions. These extended functions can be defined to use 
V70 series hardware not explicit in the 620/f emulation 
such as 16 general purpose accumulator registers and 
more explicit status testing. Examples of application of this 
capability would be implementation of floating point 
arithmetic, stack organizations and so on. Characteristic of 
extended operations is that no primary decodes would 
occur during the operation (exceptions are possible of 
course). It is possible to enable interrupts while disabling 
primary decode so it would be possible to allow interrupts 
during very long microsequences. However, the point of 
interruptability and its ramifications would have to be 
carefully considered. 

Application of the WCS to Dual/Multi 

Environment Operation 

Emulation of instruction architectures other than that of 
the host machine is achieved by performing primary control 
store address decoding in the WCS extended control store. 
It is possible to have unique architecture in each 512 word 
block of control store. Some possible examples of this 
would be: 

1. Hardware emulation of a VXX machine under control of 
WCS in the V70 series systems. 

2. Implementation of a higher level language processor 
operating under control in the V70 series systems. 



~~~~~~~~~~~~~~~~~~~~~~~ variandatamachines ~ 
DECODER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

VTIJ-1811

CRQIOA

DALxx -IORxx

OD

NOP

IORxx - EBxx

OF

IFRY
IORxx -EBxx

MM
T R TS AB
0 0

0 0

7

0011 00 - PROGRAM ENTER
1---

0011 10 - HALT LOOP ENTER

0

10

IFRY
IORxx -EBxx

11

EBxx - IORxx

12

IDRY
EBxx - IORxx

13

IDRY
CLKIOR

EBxx -IORxx

Figure 8-5. Flowchart of 1/0 Microprogramming Example

8-9

~ variand~amac~nes~~~~~~~~~~~~~~~~~~~~~~
DEcoDER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

FROM
PREVIOUS

INSTRUCTION

IABMl _t lAO IM El
Ia 16 17

MASK -DOR ~I

IABM2 I 103 INA

l/O START ~ DOR-Sl

IABM3 I IF3 !NB

FIELD SELECT 6-8

~I WAIT FOR IDN
Sl OR MASK I -IOR

INABl

011__.. ...

CIA

~I

CIB

~

CIAB

~

VT//-1815

MEM START
!OR-DOR

RESET CINTF

MEM START
!NCR p

A OR !OR-A

MEM START
!NCR P

B OR IOR-B

B OR !OR -DOR

MEM START
INCR P
!OR-A

MEM START
!NCR P
IOR-B

MEM START
!NCR P

IOR-A, DOR

098

099

~

09A

098

r-t---

09D

~I

09E

r--.1

09F

IME2

INAB2

MEM START
!NCR P

DOR-MEM

MEM START

• (SS3M)

09C

r----(SS2M)

082

L-tio- !NCR P
A OR DOR -A, DOR

IAB 083

ENABLE D-ROM & INTRPT; NEXT
M1I-C21; DOR-B; ~INSTRUCTION
TEST & RESET CINTF

Figure 8-5. Flowchart of 1/0 Microprogramming Example (continued)

8-10

varian data machines -

DECODER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

An Example of a Second Environment

Architecture and Call Sequence

For our example, we will define a second environment E2
(as distinguished from the V70 series system environment
El) which can use general registers of the V70 series
systems as stack pointers, general purpose accumulators
and so forth. The question arises as to interruptability of
this second environment and what registers are available
to E2.

A macro sequence to call E2 from the V70 series systems
could be:

p BCS (105000) page jump to E2 entrance
micro

(P) + 1 xxxxx LOC of first instruction of E2 in
main memory

(P) + 2 BCS (105001) page jump to E2 interrupt
return entrance

E2 Entrance and Interrupt Micro Code

The normal entrance micro code saves (P) + 2 at register
E for reference in case of an interrupt. Also, it can be used
to return jump to the next V70 series system instruction
when environment 2 is completed.

Upon receiving an El interrupt while in E2, the microse
quence (simplified) is as follows:

2
3
4

5
6

E2
IWAIT STATE
REQ. 1/0

SAVE REG.
3 TO A
4 TO B
5 TO C

RESTORE
REG. 3,5
l's to 5
O's to 3

STORE
RETURN 7

P AT D

8
PAGE JMP
to V70 series
interrupt micro
processor

in V70 series and
620/f environment,
register 5 is all ones
and register 3 is all
zeros. Registers 4, E,
and F are temporary
storage

8

(continued)

The content of E is the return instruction location as
required by control word 001. Only registers 3,4,5, E and F
may be subsequently modified by 620 code and it is only
necessary to save 3,4,5 as the return path will supply
restoration of E.

The interrupt return is implemented via the BCS at the V70
series interrupt return reference. The interrupt return entry
code restores registers 3, 4, 5 from A, B, and C respectively
and stores the location of the interrupt return BCS in E.
The code then restarts the instruction pipeline at the
reference stored in D. Note that the 70 series interrupt
routine is responsible for maintaining A, B, and X registers
(0,1,2).

E2 Register File Usage

We can now see that the second environment has 10
registers (0-9) available for general purpose use, while E is
allocated for the interrupt return page jump instruction
address. Registers A, B, C, D and F are also available for
intermediate usage between interruptable states.

Considerations of Saving and Storing Status

The above example does not define how status is to be
saved and restored. This should be considered when
defining the interruptability of the second environment. In
any event, register and overflow status will be maintained
by the V70 series environment interrupt routines but the
equal, less than and greater than status is more difficult.
This may involve saving the status in the interrupt return
micro code.

Further Discussion of Multi-Environment Systems

The above example of interrupt handling in multi-environ
ment machine is presented as an exploration of a
mechanism which solves the problem given a particular set
of system restraints (interrupt service routines are in the
host V70 series environment and do not use other than
normal 620/f instructions, i.e., instructions only use
registers 0, 1, 2, 3, 4, 5, E, F).

Each different set of environments may require different
mechanisms of interrupt handling. Some will require
saving registers in main memory, possibly at locations
relative to the location of the interrupt return page jump.
An alternate environment might utilize its own 110 drivers,

811

~ varianda~mac~nes-·~~~~~~~~~~~~~~~~~~~~~~
DECODER CONTROL STORE, 110 CONTROL AND ADDITIONAL TOPICS

which would involve locking out interrupts and swapping
out interrupt entrance code and possibly also the interrupt
processing routines. In this situation the second environ
ment might offer system executive control as well as its
optimized functions. When environment, register save/
restore will probably have to be comprehensive and in main
memory.

Other Multi-Environment Considerations for

the V70 Series System Reset

The system reset function will normally be wired to return
control to the host module (normally zero).

Power Fail/Restart

The system executive is expected to contain the necessary
job restart information in case of a power fail. Therefore,
the host environment is not required to save facilities of an
alternate environment (some of which are unknown to the
host machine). The E2 environment could be saved if
desired by using a special instruction such as a 620/f
extension macro which saves and restores the file.

8-12

Step Mode

If it is desirable to single step computer operation in
alternate environments, it is necessary to micro code a
halt loop in that environment. The alternate environment
has the option of enabling or disabling the step function in
its micro code.

Conclusion

This section described two basic applications for the Varian
70 series WCS. Its use for extending the instruction set of
the standard 620 emulator is quite straight forward. Its
application to produce a dual or multi environment
machine was also seen to be practical and feasible with the

system problem of interrupt handling examined in some
detail. In fact, a second environment which offered 10
general purpose registers and 5 scratch registers for
implementing stack/queue pointers, floating point registers
or whatever, was demonstrated.

Because of the ability to add new instructions to the 620
emulation in the V70 series and the flexibility of micro
coding, the example is really only one of many possibil
ities. The mechanism generally will be designed to meet
requirements of the system definition.

SECTION 9

GLOSSARY

Entries are brief descriptions of terms appearing in the
text. These definitions reflect the usage preferred for
consistency and a minimum of terms. Whenever two words
have been used previously for the same item a choice was
made in favor of the most meaningful and unambiguous.

AA

AB

addressing

AF

ALU

ALUC

ALUO

ALUS

ALUZ

application
software

ASCII

assembler

BB

microinstruction field of bits 0 - 3
to select an ALU source on bus A
and/or destination

microinstruction bit 35, which is
used in field-selection addressing
and I /0 requests

determination of next instruction
to be executed

microinstruction field which contri
butes to address generation

Arithmetic and Logical Unit, the
logical and storage providing data
transfer and basic arithmetic and
logical operations in the processor

flag for ALU carry, bit 11 of proc
essor status word

flag for ALU output all ones, bit 9
of processor status word

flag for ALU sign, bit 10 of proc
essor status word

flag for ALU output all zeros, bit
2 of processor status word

program oriented to solving problems
rather than managing systems
resources

American Standard Code for Infor
mation Interchange codes for char
acter representation

computer program which translates
symbolic statements into machine
executable instructions, see MIDAS

microinstruction field of bits 4
through 7, which specify the ALU

(continued)

BCS

BIC

binary

SYTA

byte

CF

control
buffer

control
store

cycle

cycle,
memory

cyclic
redundancy
check

data path

DCS

varian data machines IE

source on the B bus or a part of
mask literal

mnemonic for Branch to Control
Store, a 16-bit MACRO
instruction which initiates
execution of microprograms
in WCS

Buffer Interlace Controller

numbering system in which only two
states are represented, one and zero

flag which indicates left or right
byte of word

8-bit unit

microinstruction field which varies
the type of carry action on ALU
actions

contains current microinstruction
being executed; separate for
central control logic (64 bits)
and 1/0 control logic (16-bits)

memory in which microinstructions
are stored

time required to execute one micro
instruction

time required to access and restore
storage in main memory

technique for validating storage or
transmission reliability

transfer media for data within
processor

Decoder Control Store, optional
programmable control store for
instruction decoding

9-1

~ varian data machines

GLOSSARY OF MICROPROGRAMMING

OMA

direct
addressing

emulation,
620

FF

field select

GF

GPR

GPRS

hexadecimal
or hex

IF

llA

IM

instruction
buffer

instruction
register

IOCS

IOR

key register

92

Direct Memory Access

instructions con ta in actual effective
memory address to be used, in con
trast with relative or indirect ad
dressing

standard microprogram that
resides in control store
page O, and directs execution
of Varian 620 instructions

microinstruction field which specifies
ALU action

technique of addressing which uses
the bits of the instruction re-
gister to determine a microprogram
branch address

microinstruction field, which specifies
condition to be tested

general-purpose register, one of 16
16-bit registers

general-purpose register 0
bit 15 (sign)

numbering system using base 16, re
presenting numbers with digits and
letters A through F

Instruction Fetch

interrupt address supplied by option
board to indicate type of interrupt

microinstruction field designating
type of memory control

storage for instruction immediately
after fetched from memory

storage for instruction for an
instruction to be executed

1/0 Control Store, optional
unit of programmable storage for
varying 1/0 rates and disciplines

1/0 Register

four-bit register which supplies
signals for memory operations used
by memory-map option

LA

LB

MAD

mask

memory map

m icroinstruc
tion

microprogram

MIR

MIRS

MK

MR

MS

MT

MULS

NORM

OF

OP

OPR

overflow

p

page

microinstruction field which in
conjunction with AA specifies the
ALU input on bus A

microinstruction field which in
conjunction with BB specifies the
ALU input on bus B

Memory Address Register

literal constant ANDed with instruc
tion register

hardware option to allow addressing
memory to 256K

64-bit word from WCS specifying the
actions to occur during one cycle

vehicle for implementing control
function of a computer

Memory Input Register

flag for memory input register sign

16-bit mask field (assembler
mnemonic)

microinstruction bit 37 used to
specify 110 address bit 6 or to
control AB field use

microinstruction addressing field

bit 50 of microinstruction which
specifies bit 7 of an 110 address

Multiply Sign flag

Normalize flag

Operand fetch

microinstruction fields combined to
specify ALU action (bits 23 - 17)

operand register

ALU action indicated by OVFL flag;
condition caused by attempt to
push too many addresses into micro
program stack

program counter

unit of writable control store of
512 words, 64 bits each

page jump

pop

processor

program
counter

push

pipelining

QUOS

RF

ROM

SC

SF

SH

SHFT

SHTC

a branch with a microprogram beyond
the extent of the page currently being
executed

to remove an address from top
of microprogram stack

unit that performs and controls
execution of instruction

register for memory address;
usually used for keeping track
of MACRO level execution

to add an address to top
of stack

technique which allows next instruc
tion to be fetched during an other
wise unused memory cycle

flag for quotient

microinstruction field of bits 24
through 26 used to specify transfer
and increment of some special
registers

Read Only Memory: such as page 0
of V70 series control stores;
contains the microinstructions
to emulate Varian 620 system

bit 15 of microinstruction; specifies
shift of operand register or is part
of mask literal

bits 42 and 43 of microinstruction;
specify interpretation of the IM
field

microinstruction field which
specifies some specia I ALU
actions or shift operations

flag for shift

flag for overflow of the shift
counter

stack,
microprogram

STAT

STEP

SSW

SUPR

TF

TS

underflow

VF

wcs

WR

WF

varian data machines ~
GLOSSARY OF MICROPROGRAMMING

linked storage locations (16) used
in microprogram subroutine call and
return

processor status word

mode of computer execution one
instruction at a time

SENSE switch 1 - 3 on control panel

supervisor mode flag, bit 1 of
processor status word

microinstruction field of bits 45
and 46 which specify whether
testing occurs and whether it is
for true or false condition

microinstruction field of bits 60
through 63, which selects a field
from the instruction register,
specifies a page number for a
page jump, contributes a portion
of an 1/0 address, or enables
selected interrupts

condition upon attempting to remove
or pop more addresses than are in
a microprogram stack

microinstruction bit 14, which
specifies moving bit 15 of RO to
divide-sign bit (DSB), or a part
of mask

Writable Control Store; which is read
and loaded over the 1/0 bus

microinstruction field of bit
16 that specifies whether or
not the general-purpose registers
are being loaded

single bit (13) in microinstruction
to designate transfer of the ALU

9-3

	000
	001
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	9-01
	9-02
	9-03
	9-04
	xBack

