£
% i)"1v
b

V70 Series Processors
Microprogramming
Programmer Reference

Mini-Computer Operations

2722 Michelson Drive
P.O. Box C-19504
Irvine, California 92713
98A 9906 077

S UNIVAC®

V70 SERIES PROCESSORS
MICROPROGRAMMING
PROGRAMMER REFERENCE MANUAL

UP-8639
98A 9906 077

FEBRUARY 1978

The statements in this publication are not intended to create any warranty, express or implied.
Equipment specifications and performance characteristics stated herein may be changed atany time
without notice. Address comments regarding this document to Sperry Univac, Mini-Computer
Operations, Publications Department, 2722 Micheison Drive, P.O. Box C-19504, Irvine, California,
92713.

© 1978 SPERRY RAND CORPORATION

Sperry Univac is a division of Sperry Rand Corporation Printed in U 'S A

CHANGE RECORD

Nf,a.fﬁe, g’oﬁ: Change Description
Misc, 2-78 Figure 2-1 revised.

Table 5-2 incorporated into Table 3-1.
Minor changes inserted throughout manual.

Change Procedure:

When changes occur to this manual, updated pages are issued to replace the obsolete
pages. On each updated page, a vertical line is drawn in the mur?in to flag each

change and a letter is added to the page number. When the manual is revised and

completely reprinted, the vertical line and page-number letter are removed.

$6A0730~000A
]]

LIST OF EFFECTIVE PAGES

Page Number

Change in Effect

96A0731-0008

PREFACE

The notion of a microprogram was first presented in 1951-
-which may seem extraordinary since the vacuum tube and
the relay were then the only switching devices available.
This was only eight years after the first electronic computer
had been introduced. Microprogramming was used infre-
quently until the mid-1960s, by which time several
computing systems had appeared in the industry that
relied on microprogramming in their control unit design.
Microprogramming then became, and remains, an enor-
mously beneficial and popular methodology in the comput-
ing world. '

The reader of this guide should have some knowledge of
the hardware components of a computer system, such as
the functions and uses of registers, schemes of handling
interrupts etc. Programming techniques which make
efficient assembly-language functions like indexing and
high-speed algorithms will be useful here too. When a
microprogram is executed thousands of times more often
than any one application program, its fine tuning is also
needed that many more times. Aiso the microprogrammer
should know the problem-oriented languages used. To
choose which operators to microprogram, the designer
must be aware of the eventual applications. Combining
operators which are often used in the same sequence could
form a single microprogrammed operator with a greater
overlapping of actions.

in studying a component of a computing system it is often
true that at first glance the given component seems to
introduce much complexity even though, presumably, the
component also seems to introduce greater ease of
operation and greater efficiency. Though microprogram-
ming adds more complexity, the result is to make a system
easier to use. One goal of this guide is to bring micropro-
gramming into the range of a good programmer. To that
end the guide is written in simple language (with a glossary
to look up any unfamiliar terms) and there is a gradual
progression from the big picture to the details through
numerous examples.

This guide is both a tutorial and a reference. If micropro-
gramming is new to you, start at the beginning of this
guide and use it as a tutorial. Later the book can be used
for reference. The charts and exampies are built up in a
logical development so that the complete examples will be a
pattern for your programming.

Sperry Univac does not assume responsibility for micro-
programs written and implemented according to the
recommendations outlined herein.

Related Documentation

Document
Title Number
V77-600 System Reference Manual 98A 9906 40x

V76 System Reference Manual 98A 9906 23x
V70 Series Architecture Reference

Manual 98A 9906 00x
V70 Series Processor Manual 98A 9906 02x
V70 Series Writable Control Store
Reference Manual

V70 Series Writable Control Store 1l
Reference Manual

VORTEX | Operating System
Reference Manual

VORTEX 1l Operating System
Reference Manual

Master Operating System

Reference Manual

FORTRAN IV (Stand-alone and MOS)
Reference Manual

98A 9906 08x
98A 9906 29x
98A 9952 10x
9B8A 9952 24x
98A 9952 09x
98A 9902 03x

In each manual number, the last digit, x, represents the
revision level of the manual.

TABLE OF CONTENTS

PREFACE s sessisss s i
SECTION 1
INTRODUCTION
1.1 ADVANTAGES ..ottt cte s st ses e e e s e s aeeasesba e s e saeste e nsnannesanssaenns 1-1
1.2 GUIDE TO THIS MANUAL.....cccoiitiiiirinint ettt se st s st aseses st e tssba et ste e e svanen 1-2
1.3 NOTATION IN THIS MANUAL ..coeiiiiiiiicectee e sttt be e 1-2
1.4 COMPONENTS ..ottt r et s et b e bt e s s e v sens 13
1.4.1 Hardware for Microprogrammed Systemscccccoerrimcniniiiniiiniie e 13
1.4.2 Writable CONtrol StOr@.........cccieiiiiiiiiirieeeecee ettt ettt aae e 16

1.4.3 Software Modules

SECTION 2
CAPABILITIES

2.1 GENERAL MICROINSTRUCTIONSottt cee et e eer et smne s 2-1
2.2 DATA TRANSFER AND

TRANSFORMATION ..ottt eesi st saa e e e bbbt e bbb s b ne b ebeene e
2.2.1 ALU INPUE SOUICES ...oiiiiiiiiii ittt ettt e et e
2.2.2 ALU FUNCHONS ..eeii ettt sttt e st e
2.2.3 ALU Output Destinations......c.coooiiiiiiiriiiie ettt e et .
2.2.4 Other RegiStOIS.......oviciiiiiitce ettt e te s e s smen e e eee st nne s
2.3 ADDRESSING ..ottt ettt b et et e et e ettt e ne e e -
2.3.1 GENEIAL...eciiiiiee e e bbb seae e -
2.3.2 NOIrMal AdAreSSINg....ccocuiiiiiiiiiiie ittt ettt be et :
2.3.3 Field Selection AdAresSing........cocceiiiiiiiiirienieitieene e eee e -
2.3.8 TSt AdAreSSiNg....ccoeiieiiiiiiii ettt a sttt -
2.3.4. 1 CoNAItIONS .ottt aa et e e e e e bttt e e e st erene e nreeee -
2.3.4.2 Addresses in Branchesccovvcioieiiieieieieciieie e cve e sanssbe e e eae s et aae e -
2.3.5 Page JumpP AdAreSSiNgttt e e -
2.3.6 Interrupt Addressingc..ccccoooiiiiiiiiiiiiiitee e
2.4 MAIN MEMORY CONTROL.....oociiiiiiiiiiiicnie ettt e et et site e s an -
2.4.1 Unconditional Cycle Initiation
2.4.2 Conditional Cycle INItIationc.cooiiiiiii it
2.4.3 SPECIal TranSfer.....coicciiiiiiece ettt 2-20
2.4.4 Wait for Memory DONe.........coooiiiieiiiiiie et 2:20
2.5 MICROPROGRAMMING EXAMPLEoiiioiiiiiee st sae v et s saa e 2-20
2.6 TIMING CONSIDERATIONS ..ottt et r ettt ee e eaeeenes 2:24
2.7 ADDITIONAL CAPABILITIES ..oooieoieieti oottt seve e ser e etr s e e ebeebesve e ane e 225
2.7.1 Register Field Controlc.cocoiriiiiiie it ettt e ve e 225
2.7.2 Memory AdAressing t0 BAK........cccoiiiriiiiie ettt 2:27
2.7.3 Memory Bus Lockout Status....... S PSS PO PP 227
2.7.4 Stack Use......... P PO OSSP P T PP TP PPPOUIUPRUUUPRRPIINt 2:28
2.7.5 Memory Addressing Using the

Optional Memory Map ...ttt 2-29

2.7.6 MeMOrY ProteCioncc.ooiiiiiiiiiiicee ittt r et et 2:29
2.7.7 Address Comparator LOQICcoooiiiiiiii i e 2-29
278 MIRS TOSt. it ettt 2:30
2.8 QUESTIONS ABOUT

MICROPROGRAMMING CAPABILITIES. ..o 2-30

i

SECTION 3

TECHNIQUES
3.1 INTERFACE WITH 620 EMULATION.cccovirerrirrrrrrnresenenisesssinesessessessssessesssssseens 31
3.1.1 Execution of User Microprograms w31
3.1.2 Steps in INStruction EXeCULIONcciiveiiiiineniencfecinreeie st s csse e sssenseessessesssenes 31

3.1.3 Instruction Pipeline........
3.1.4 ROM Standard States
3.1.5 Summary of Branches Between WCS and

ROM Control STOre.........ccoiiveiiiiiciiinncecnniiieiessees e ssesssessessnsssesssessesssassnens
3.1.6 V73 Register USBREcccevciiiiiciiiriniiiiniernnie s cneestesstssnesresssesntasssessessnsniesssessasseansesss
3.2 FLOW DIAGRAM... ...ttt e s sessssasssrsessaestessanessasasssaessasssassnansases
3.2.1 RAtIONAIEociiiieiiicc e e st et a e ranes
3.2.2 Format......
3.3 FLOW DIAGRAM MNEMONICScocoiiirinriiirienseroninnesssisesssesssssnsssisssssanesesensssssense
3.4 FLOW DIAGRAM EXAMPLES......c.oocticireenrcincenenseenieeseernesnesaessnessaessessnesstsssensaserasen .
3.4.1 BCS Entry Point Initialization.........cc.o.oeueune
3.4.2 Memory-to-Memory Block Move.........c.ccooveennnnnne
3.4.3 Reentrant Subroutine Call and Return
3.4.4 64K-Memory ADD to any of the

General-Purpose REGISTEIScccveviiirvienirnireeenrre e s ee s e s e e s anessneessessnnesanes 313

3.4.5 Cyclic Redundancy Check (CRC) Generationc.cccovveerrermrerierevevncrerinresseesscneennes 317
SECTION 4

MICROPROGRAM DATA ASSEMBLER, MIDAS
4.1 BASIC ELEMENTS ..ottt e s a e bt s ve e s esra e b e saaesme e e saesbanns 4.1
4.2 GENERAL FORM OF STATEMENTSccoiiiiiniireenercnree st e ses s nessansenes 4.2
4.3 STATEMENT DEFINITIONS.....oiiiti ettt eee s e seeesraeesineesrreseressnreessesennaesanesans 4.2
4.3.1 Format Statement ..o 4.2
4.3.2 Program Statement ...t et e s e s 4.3
4.3.3 Assembler DireCtiVEScccoviiiiieiiicnr s s 4.5

B.3.4 COMMENT... .ottt eee vt ca e et rersesessenersseeesannberareesdeessbesrtasesaeiosabaataeesiassss 46

4.4 ASSEMBLY-LANGUAGE EXAMPLES........cccovvierriininiiiecnisne e sninsssniseesnesessseseesessees 4.6
4.5 MACRO CAPABILITY ...coceevvrnn . 47
4.6 OPERATING INSTRUCTIONS......ooiiieieiiierecee et neisiisnsnssie st sstssnesssssneines .. 48
4.6.1 VORTEX Environmentccoccoecoiiiiiiiiiiiiiie e ssins s sanneen .. 4.8
4.6.2 MOS ENVIFONMENT ..ottt aa e s s e s sans 4-8
4.6.3 Stand-Alone ENVIFONMENTcociiiivveriiienriree st ess st ssbe e s sns e 4.8
4.7 ASSEMBLER INPUT AND OUTPUT ..o nriceniesinisneinncninessesossissssnssnsssssasssessns 4.9
4.8 ASSEMBLY ERROR MESSAGES.......ccccoiirrieirieeniniccnrmiecnessessnessnennsessssaiessnnsereaenns 4.10

vii

SECTION 5
CODING FROM FLOW DIAGRAMS

B0 GENERAL.ooovvooooevveeeeeeeeees oo easssssssssse s sssssss s ssss e es st 51
5.2 EXAMPLES OF MICROPROGRAMS IN

ASSEMBLY LANGUAGEooiii et ssies e re e e 5-1
5.2.1 BCS Entry Point Initialization............ccoviiiiiiiiiiiniiiie e, 52
5.2.2 Memory-to-Memory Block Move..........cccccniiiiiiiniiiiic e 55
5.2.3 Reentrant Subroutine Call and Return... ... 58
5.2.4 64K Add to General-Purpose Register.........cccooiiiicriiiiinniiniinniiiniiee e 511
5.2.5 Cyclic Redundancy Check Generation e eteeeteeeeereeeaara et breeatateeataranes 512

SECTION 6
MICROPROGRAM SIMULATOR, MICSIM

6.1 BASIC ELEMENTS .ottt sn et e et e et e st e st atb s enee s 6
6.2 GENERAL FORM OF STATEMENTS |
6.3 STATEMENT DEFINITIONS. ...ttt ettt ene e ee st e s erreeens e nne bt sanees o
6.3.1 Select Input Media (M) ..o e s w2
6.3.2 Initialize SImMUIAIOr (1 OF Z)....ccoiiiiieeieeeeee e et b
6.3.3 Page SEIECE (P).eiieiiiieeie ettt bbb s 6-3
6.3.4 L0ad Control S10re (L), cceoiiiiiiiiiie e iiriire ettt sreesair e st bee st eeeeine e ebe e eiien e e 6-3
6.3.5 Alter/Display Simulator Registers (A)........c.cccooiiiniiiniiiiii e 6-3

6.3.6 Change/Display Memory (C)
6.3.7 Change/Display CCS Word (EC)
6.3.8 Change/Display DCS Word (ED)

6.3.9 Begin Simulated Execution (B)c.cccooriiiiiiiiiiiiiiiiiiie et
6.3.10 CCS Address Halt (H)......oooiiiiiii e
6.3.11 Single MICroinstruction SteP (S)....cocuoeiiriereeirirereieie et seene e 65
6.3.12 TrACE (T) ittt ettt e et ee e st e e ta e e e e bee e e e aa e sebae e et e e 6-5
6.3.13 Dump Contents of CCS (D) ..ccoociviieiiiiiienieeicie et 6-6
6.3.14 Exit to MOS or VORTEX (R) «icooir it 57
6.4 OPERATING INSTRUCTIONS ..ottt 67
6.4.1 Program LOAGINGooiieiiiiiiiiiiii it it e 5

6.4.2 Initial Condition Selection
6.4.3 Loading Simulator Central Control Store

(CCS) and Decoder Control Store (DCS) ...ccoiivvviiiiiiiiiiiie e 5-8
6.4.4 Other Control (As ReQUITEA)coieeviiieeeiiiee sttt e e ese e er e s e e anene e 69
6.5 PROGRAM EXECUTION.. ..ottt ittt et sresae st ek e e n et s s sasesbe e 69
6.6 AFTER SIMULATIONoooiiii ittt ettt st ensene e smte e e eneesteesana s 69
6.6.1 Control StOre DUMP ..oociiiiiiiiiiciii ettt e eree s s srr e ses e s tr e ssnee s 69
6.6.2 IMIHANZAIONooiiiiiiiii e e 69
6.6.3 Return to MOS, VORTEX.......... gL b 69
6.7 620 EMULATION .. oottt ee ettt et st e s abt e s e e e et e e rneesabeeaarens 69
6.8 MAIN MEMORY SIMULATION ..ottt sresaie et ae e s nee 6.9
6.9 SIMULATOR ERROR MESSAGES.....ccccci ittt rceree e 6-10
6.10 EXAMPLE OF SIMULATOR OUTPUT ..ottt st a e 611

Vil

SECTION 7
MICROPROGRAM UTILITY PROGRAM, MIUTIL

7.1 BASIC ELEMENTS ...covotevirivireeirennsesnnsransesassetssssssesenssncsssissnsassssessssnsnssssssssesesessssses 171
7.2 GENERAL FORM OF DIRECTIVEoooiiirernreniencrenisessnossessnisenssssinensssissensssassssssesssanes 71
7.3 DIRECTIVE DEFINITIONS ..ot serereirrsseereesnernesssssesssenassanssnsssasanessnsssessasssesssanes 71
7.3.1 SeleCt PABE (P)....icccriieceriiiinitiiieniencescrne s ssesssan e ssar s ssaes s ssan e st s s nessae s san s n e 7-1
7.3.2 L0ad Control StOre (L).....occcverrrineniicririnernesreireesnmsenssnasessssssnessnesssssasssessesssesesessessssses 7-1
7.3.3 Examine/Change Control Store (E).......cccccimniiimnminnininiiiiinienenennees 7-1
7.3.4 DUMP CoNtrol StOre (D) ..covcirriiceeieirierriieennecsnnisssessnissussssnessersessosssessinsessssessasersssas 7-2
7.3.5 Return to Operating System (R).....c.ccceivvrinienniiinnininiriicnnensessssncressesseesnesinssseesens 7.2
7.3.6 Media Set and ReSet (M) ..coiiiiiicceirecccvriiesinrscnisnesessessisssaestasssss s nsrnseessssassrensans 7-2
7.3.7 Enable Control STore (N).....ccccciiinieiiinnineeissneeesinnereeserasessssesessosaeessssseesssssassas 7-2
7.3.8 Trace EXeCULION (T)..iii i iiiiiiiiiiiiciieeiie ettt ist b e s sessaneesssmes s sssmersesannassans 7-2
7.3.9 Set Micro Execution AdAress (G).....c...cccoveervirenriiinniinnnnirinnseinnniemeeeienmis 7.3
7.3.10 Execute Microinstruction (X).......ccccccneiinenniiniiinnieieeannens 73
7.3.11 INitialize WES (1).ecoeiiiicierinecin e sne e s stsesaeseesessnssaesbassssrassesnessaneasasnseseres 7-3
7.3.12 Branch 10 CCS (B)...cccciiiiiieiierrteciereeneeesrercesssssete s serssnenssnsessnsesasesseresasssnsess 7-3
7.3.13 Set Halt ADAress (H)....cceeiniiniieieniccienerisesensinnssesnsssssnmenessessssasssssassssosssosaosssssees 74
7.4 OPERATING INSTRUCTIONSoootiiiireeerertrree st ssessscetssreesassstesstsoncsnnssseensessssseenes 7-4
7.4.1 Program LOBAINGcccorceerimreiiiniirnirrneecrresccersersssesesssssssssnsessssssrssasssessassssnassssssornanes 7-4
7.84.2 Program EXECULIONcccveviiiceiiieiiriveere s see e revressnesssnesesessaessbneesssnssiaessseasareesnessseose 7-4
7.5 DEBUGGING CONFIGURATIONcoiriiiririntene ccrrenertreesesersseseasarssessesressesncsneseensennans 7-4
7.6 UTILITY ERROR MESSAGES.....cciiciiiivrtiirierese et sesssassssassnennesseeseeemeesseansensenss 75
7.7 EXAMPLES ..o et seere et are e sr e sasaesa e b et s sre s s s b e e b e st et s s b e s b e e st e eneessaesresrnearesaaebants 76
SECTION 8

DECODER CONTROL STORE, 170 CONTROL AND
ADDITIONAL TOPICS

B.1 DECODER CONTROL STOREcciiiiiiiteeimn e encisnesinc et eseesiae s svssnase s 81
8.2 170 CONTROL STORE....coieiiiiriiiririeecieenrcsncsnnntsssre st e e snssssenesanessbesrasssansssnnes 83
8.2.1 Microprogram INttiationccociiiriiiiiiriiiecer e s 8.3
8.2.2 170 MiCroprogramMmingcocoovriiiminuiinirisiiieirinisiisints e sirseessiosssssssassnssssssssassssees 8-4
8.2.3 Example of 1/0 Microprogram:
Clear and INPUt 10 A. ..o eeerse e s e s sene s sesereseessnaessanese 8.7
8.3 MULTIPLE ENVIRONMENT APPLICATIONSccoiiiiiniinitineenneesiineesnecresssnessesssnisnes 88
SECTION 9
GLOSSARY
MICROPROGRAMMING GUIDE GLOSSARY/INDEX....ccciiiiiiiirinicennnteiesncnnansesiennanas 91

Figure 1-1.

Figure 1-2.
Figure 1.3.
Figure 1-4.
Figure 1-5.
Figure 2-1.
Figure 2-1.
Figure 2-1.
Figure 2-2.

Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 3-1.
Figure 3.2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.

Figure 3-7.

Figure 3-7.

Figure 3-7.

Figure 3-8.
Figure 3-8.

Figure 3-8.
Figure 3-8.
Figure 4-1.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-3.
Figure 6-3.
Figure 6-3.
Figure 6-3.

LIST OF ILLUSTRATIONS

Simplified Distinction Between a Microprogrammed

and a Conventional ComMPULercccccviivieriiiniieeiereereseeserersreessnessresssenenee 1-4
V73 Processor Block Diagram 14
V73 Processor Data Pathscc.cccoccieneenicnienrinccnenine et saeeninesas 1.5
Writable Control Store Block Diagramcocievveenienceininiinniiienneseninnenee 1.7
Steps for Realizing MIiCroprogramscccccomvrriieverneccsini it ineseinnsesinens 1-8

Microinstruction Fields (1 of 3)
Microinstruction Fields (2 of 3)
Microinstruction Fields (3 of 3)
General-Purpose Registers, Operand Register

ANd ALU INPUL oot enaes
Field Selection Address Contributionccccviiiiiiiiiinnicince e, .
Coding Example of an Operand-Store Sequence .. .
Flowchart for LDA INStrUctionccoveiviiiiciiiirciresre e scveas :
Flow Diagram of LDA InStructioncocccoviiiiiiiiiiniiie e -
Flowchart of Memory Address Control.......ccccoovvvieiveeiiiieiiccicincrccireeeeecen e, .
Memory BUs LOCKOUL.......cccciiiiiie et verres v e reeinrssre s e s s enressseerennaneeas .
Sample Flow Diagram Formccccceevciciincnnnnn.
Flow Diagram for BCS Entry Point Initialization........c.ccccevvviiiinniininennnnnee.
Flow Diagram for Memory-to-Memory Block Moveccccoveveriininncicncinenne
Flow Diagram for Subroutine Call..........ccoccooviiiiiiiriiii e,
Flow Diagram for Subroutine Return.............c.ccccovmniiniiiincinicce
ADD from 64K-Memory to General-Purpose Register
Flowchart for Cyclic Redundancy Check Generation

Microprogram (1 Of 4) ..o e 3.20
Flowchart for Cyclic Redundancy Check Generation

MICroprogram (2 Of 4) ..ot 321
Flowchart for Cyclic Redundancy Check Generation

Microprogram (3 Of 4) ..o e 322
Flowchart for Cyclic Redundancy Check Generation

Microprogram (4 of 4) ...t :
Flow Diagram of CRC Generation (1 Of 4)...c..cccoiieiviiiiniiniieerniiireceeninee e -
Flow Diagram of CRC Generation (2 of 4)....
Flow Diagram of CRC Generation (3 of 4)...cccccoeiiiiericcrieceieeeeeeeceee e :
Flow Diagram of CRC Generation (4 of 4)....c.cccccociiiiiirneiicineicornecrneesnnne e -
Predefined Formats Recognized by MIDAS..........coioiiiiiiece s
Microsimulator Control FIOWcccceviiiiiiiiiiiii e e
Microsimulator Data Flow...
Simulator Output Format.. ..o
Simulator Output Format '(continued) ...
Simulator Qutput Format (continued).........ccccooiivviieviiiiiiciciree it ereene, :
Simulator Output Format (Continued)........cceoveiiiiieeieieeeceeeeeeees e
Simulator Qutput Format (continued)

Figure 6-3.
Figure 6-3.
Figure 6-3.
Figure 6-3.
Figure 6-3.
Figure 6-3.
Figure 6-3.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-5.

LIST OF ILLUSTRATIONS (continued)

Simulator Output Format (continuec!.) .. 616
Simulator Output Format (continued).........cccccooviiiiiiiiniiiniiiiicie e, 617
Simulator Output Format (continued)..........ccccceinieveriveciinriicosieeniinniinnneinnnn 618
Simulator Output Format (continued)........cc.coocceciiveciniinciiniiiiiiinniiinaenn, 619
Simulator Output Format (continued).........ccovieeiivveniieiiiiiiiiiniiiiniiniec e, 62

Simulator Output Format (continued).... w621
Simulator Output Format (continued)........c.cccocoveirvciiiniininiiininicciinec e, 622

Decoder Control Store Format
Decoder Address Components
170 Microinstruction FOrmat........ccccoovviiiininiini e

170 Control Simplified BIOCKk DiaBram.....ccc.ccocvuerieeieenieeniencenierieessesereseneneens 8-6
Flowchart of 170 Microprogramming Exampleccoevvivniiiiinniinnnnenenn 8.9
Flowchart of 1/0 Microprogramming Example (continued)cc....ouu. 810

LIST OF TABLES

Table 2-1. ALU Input A Bus Selections........c.cceiiereenieeiieeeiireieesereeesereessseniesesensseeseesenens 2:6
Table 2:2. ALU Input B Bus SeleCtionS........c..cocveveviviieiinricereererieteissseserestesseeseerssesesateses 28
Table 2-3. ALU Operations L 29
Table 2-4. Carry Flag Settings 2-10
Table 2-5. ALU Output Data Destinationccoveeeiieciiiiii et eecesirireree s s nnnrneeeas 2-11
Table 2-6. Operand Register Shift Operations.........cccevvriieiieiiiieiiieecinerirn e ereneeesaeeans 2-12
Table 2-7. Overflow Flag Controlcccviiiiiiiininiii it 2-16
Table 2-8. Memory Operations.........cccociiiiiiiiiieiniiiiiiniiianinee e e esineeaessbesesessteeessreasasssssassnns 2-20
Table 2-9. Register Field Control.........cccoooiriiiiiiiniii it 2-26
Table 2-10. Register Field SeleCtioncccceeveivier et ce e cte e sveeent e sare e 2-26
Table 3-1. Flow Diagram Mnemonics and Microprogram Assembler Codes 36
Table 6-1. Summary of Microprogram Simulator Directivescccceveiiiiiinininn, 61
Table 6-1. Summary of Microprogram Simulator Directives (continued) 6.2
Table 7-1. Summary of Utility Dir€Ctives........cooiiiviiieiieiiiiee et eraeee e 71
Table 8-1. 1/0 Microprogram EXample COO€..........ccoeivviivrireriiireeiirrenreeanrreserenosesnescesnes 8.8

X1

SECTION 1
INTRODUCTION

The control function for a digital system can be expressed
very much as a program. Microprogramming is character-
ized as a methodology whereby such a program is stored in
memory and read out, step-by-step, in program sequence.
Each time a "step” is read, there is either a branch within
the program or a register transfer within the computer. The
control unit of a microprogrammable computer consists
chiefly of a memory rather than a large network of control
delays. The instructions stored in memory are called
microinstructions. See figure 1-1 for a simplified distinction
between the hardware configurations of a2 microprogram-
med and a conventional computer.

1.1 ADVANTAGES

The random logic of a conventional computer can be
replaced with a more structured organization. A conven-
tional computer system uses a collection of counters,
special flip-flops, decoding networks and other components
unique to a particular purpose for control logic. In contrast,
a microprogram memory replaces most of this. The
microprogram storage is formed of regular and repetitive
units. There are fewer components, thus increasing the
refiability of the system.

The flexibility of the instructions in the control store offers
the ability to change the system in ways so basic that they
are not at all feasible in a fixed instruction set. Field
changes can be made by merely changing the controlling
microprograms. Final systems definition can be postponed
until a later stage of the design. Performance can be
economically expanded at a lower cost.

Emulation of a number of diverse devices--not only
processors but peripheral controliers, for instance--can be
carried out on a single micropragrammed system. Simulta-
neous emulation of some devices can be made or the target
system can be changed depending upon needs. This can
save reprogramming and retraining resources and yet gain
the speed and reliability of a more advanced system. Also
the documentation and minor logistic problems of a new
machine can be avoided.

For more reliability and the continuous perfors:ance
necessary in many uses of computers, diagnostics and
servicing aids may be implemented in the controf store. To
pinpoint problems the microprocessor can both test and

set states not available to the assembly-language program-
mer on a conventional machine.

4
Standard
Software
Coding
Execution MICRO-
Time PROGRAMS
Special
Purpose
Hardware
Cost

Instructions Tailored To Particular Environments

in general, microprogrammed instructions permit more
compact program representation. They use less main
memory than the equivalent would in conventional code.
Consequently, fewer memory fetches for anything other
than data are needed.

As an example of a possible microprogrammed operator
which reduces memory fetches, consider a common use of
arrays. Higher-level programming languages, such as
FORTRAN, BASIC, COBOL -- in fact, nearly all-- have
facilities for expressing a repetitive linear data structure, a
list or array. Arrays are an integral part of a large class of
techniques for diverse problems. Yet good operators for
arrays as such are not available as simple, single
instructions in a conventional machine.

in usual machine code the function of adding two
numerical arrays of the same size and number of eilements
usually requires a series of actions as follows for each pair
of elements:

a. load memory to register

b. add memory to register

c. storeregister result in memory

d. update indices and close loop
The first two steps would each require a memory fetch and

the last step as many as three memory fetches.

A microprogrammed instruction would provide initializing
data descriptors and repetitively executing micro-operators

1-1

INTRODUCTION

over the described arrays of data. To start the program
segment would require several steps:

a. load the starting address, increment and extent of each
array .

b. load the resuit's starting address, increment and
extent

c. define the end and branch condition

This initialization could be followed by one instruction to
execute the newly-defined operator equivalent to the series
of typical instructions.

An extension of this principle of reducing m:niory retrieval
of instructions occurs in some spectal cases where data
normally resident in the stream of instructions can be
removed and instead reside in special-purpose micro-
routines. For example, if the array addition algorithm above
were limited to fixed-length arrays with fixed-size elements,
the increment and extent parameters could be stored as
local constants in the microprogram, eliminating the need
to transfer this information in the initial sequence.

1.2 GUIDE TO THIS MANUAL -

The purpose of this section is to provide the user with a
helpful idea of the structure of the remainder of the
manual. The order of the following sections is based on the
order in which a programmer needs the information to
plan, then code, test and run microprograms.

Information in the sections

Introduction (Section 1)
Advantages of microprogramming
Guide to the remainder of the manual
Conventions (defining some words and notation) in the
manual
Components of microprogrammed systems

Capabilities (Section 2)
Micro operations available in central control store
Building blocks of microprograms providing data
transfer and transformations, conditional tests, and
memory access

Techniques (Section 3)
Explanation of interface with the 620 emulation
Procedures to wuse flow diagrams to write
microprograms
Examples of microprograms

Microprogram Assembler (Section 4)'
Directives to code microprograms
Macros
Operating instructions

Coding from Flow Diagrams (Section 5)
Conversion steps and tables
Examples from section 3

Microprogram Simulator (Section 6)
Directives
Operating instructions

Microprogram Utility (Section 7)
Directives
Operating instructions

Decoder: control store, 1/0 control and additional topics
(section 8)

Format and use of optional decoder control store

1/0 microprogramming procedures and example

Glossary (Section 9)
Terminology for microprogramming defined
Mnemonics defined

1.3 NOTATION IN THIS MANUAL

References to Microinstruction Fields

Within the microinstruction the fields are named with the
two-letter references recognized by the micro-assembler.
Some of the fields have names which are used in the text,
such as the CF field conveniently called the carry field.

References Within Fields

The bits within the fields are often discussed one at a time.
Several techniques are used to single out bits. A field may
be represented with the letter X in bit positions not
involved in the action being discussed. 1X for a two-bit
field indicates that only the high-order bit is required to be
one in this action, i.e., setting the field to 10 or 11. High-
order and leftmost are synonymous to select a particular
bit or group of bits. Similarly low-order and rightmost
select the same bit or a contiguous set of bits. Finally less
often a bit is mentioned by number with the convention
that bits are numbered from right to left starting with
zero.

Syntax of Directives

In the directive formats for the microprogramming software
the syntax is given with the following conventions:

Boldface type indicates a required parameter
Italic type indicates an optional parameter

Upper-case type indicates that the item is to be
entered exactly as written

Lower-case type indicates a variable and shows
where the user enters a value for that variable.

The formation of a list of the same items is indicated by
three consecutive periods.

For example, the syntax for the MIDAS FORM statement is
as follows ’

label FORM field(1), field(2),..., field(n)
Where:

label is a symbol as defined in MIDAS
basic elements

each fieid is a field identifier which is the
field length in decimal, followed
by an optional hexadecimal constant
enclosed in parentheses

Numbers

Microinstruction fields are given in binary notation unless
indicated otherwise in the context of the reference.

Definitions

To remove one barrier that often exists to the understand-
ing of microprogramming this section clarifies some terms
we use.

In a computer system many different kinds of storage exist
for data, instructions or both. Microprograms reside-in the
system's contro! store. All control store must be writable in
some manner so that the control information can be
introduced. The desire for greater speed often leads to the
design of storage that can only be loaded once and even
then only by mechanical or electromechanical means.
These are designated as read only or ROM for read-only
memory. This differentiates them from the arrays whose
contents can be changed by the user. This is cailed
writable control store (WCS).

The microprogram is a series of microinstructions. A
microinstruction resides in one fixed-tength word in control
store. The microword is 64 bits long and selects the
operations which occur in one machine cycle (with some
exceptions). The individual operations, micro-operations or
primitives, are defined by fields within the microword.

In this manual whenever you encounter unfamilar words

look for the definition at the first use of the word or
consult the glossary in section 9.

1.4 COMPONENTS

1.4.1 Hardware for Microprogrammed Systems

Though the software for microprogramming provides an
interface for the user to program the system, to plan a

INTRODUCTION

good system one needs to be very aware of the actual
functions of the hardware. The tangible parts of the
microprogramming system are described below.

Processor

The major functional componentsof theSPERRY UNIVAC
V70 series processor (figure 1-2) are central control, data
loop, memory control, 1/0 data loop, and I/0 control. The
processor communicates with the computer control
panel via the 1/0 bus.

The processor speed is 165 nanoseconds for a
microinstruction.

Central Control

Central control provides supervision for most of the major
components in the processor. Direct control is exercised
over the data loop. Requests may be made to other
components, such as memory and I/0 control.

The key element in central control is a 64-bit control buffer.
This buffer, which is simply a microinstruction, completely
describes a set of actions for the other processor
components. For example, the data loop might be
instructed to increment one of the general-purpose regis-
ters. The memory control might be requested to begin the
feich of a 16-bit word from main memory. Thus, the
control buffer holds the current microinstructions. It is
somewhat analogous to the instruction register in
assembly-language programming.

The 64 bits also specify the location of the new contents
for the controf buffer. The control buffer is always loaded
from 64-bit central control store. Thus, execution of a
microprogram basically consists of the control buffer
being sequentially loaded with the appropriate 64-bit
values. Central control store in a V70 series system is
divided into pages, each consisting of 512 64-bit words.
Page zero of central control store always contains a set of
microinstructions which direct the processor com-
ponents to behave like a 620/f. This set of 512 micro-
words is thus called the 620/f emulation, and resides in
read-only memory (ROM). Other central contro!l store
pages may be added with the writable control store
(WCS) option, thus atlowing the user to specify in detail
the actions of the processor components.

The microprograms for the standard instruction set are
described in the microinstruction flowcharts in the
System Maintenance Manual and in assembly language
in an appendix to this guide.

Data Loop

The data loop provides transfer paths, data transformation
circuits, storage registers and counters (figure 1-3).

Under control of the central control buffer the arithmetic
and logic unit (ALU) performs basic arithmetic functions

1-3

INTRODUCTION

COMLNTICE AL CONTRGL

CONTROL <+
A

y c Y

ARITHMETIC INPUT AND
MEMORY AND LOGIC outeut

SIMPLIFIED GEMERAL MICROPRCGRAMMING

CONTROL
STORE

1RRAI
L1idl

h 2

——"‘[COCNTROL DECOOER F

i s y

ARITH*AETIC INPUT AND
MEMORY 1D LOGIC ouTRUT

VTI1-1800
Figure 1-1. Simplified Distinction Between

a Microprogrammed and a Conventional Computer

MEMORY
BUS

MEMORY
CONTROL

vo g (s CENTRAL DATA
CONTROL T CONTROL Loor

/0

LOOP

CONTROL
SO kT o s

VTI1-15004
Figure 1-2. SPERRY UNIVAC V70 Series Processor Block Diagram

14

g1

syjed ejeq 40Ssad0id Se|sS 0LA OVAINN AHYIdS €1 2indyy

08Z-€1IA

INTERRUPT
ADDRESS

DATA FROM
wCs

44 MTS LONG OVERALL

SYSTEM
REsEr

CONTAOL

&\\\\\\\\'\\\\\\\\\\\\\\\\}\\\\\\\

ZZ

AECAY DATA BU5

INTE

DIVISION $IGN

INSTRUCTION
FIELD

SELECTOR

FLAGS.
BYTE ADDRESS
ster e
poun Sl Z

HGISTER
~ FIELD
SELECTOR

G

BEERECEER

el = [

[—

ADDRESS FIELDS

- T

LITERAL/ MASK. ,‘

FIELDS

S —————"

insTRUCTION|
HGISTER

3

MASK
{AND}

%
GENERAL
FIGISTERS

SHIFTER

SHIET

OPtRAND
REGISTER

CounTER

xiv
rGISTERS

LYHLITITILEITHTTITLEL L HLL L LT LT 118

S
3
N
N
N

AOSSIONNNNNNNNN
S VO REG INPUT

I 20 2 Ve ¢ 2 2 L L D el A Z7 e (27070

MU W R Y
%

NOILINAGOYLNI

INTRODUCTION

such as addition, subtraction, and the common logical
functions inciuding AND and OR. ALU output can be
directed to a number of places, including registers and
counters in the data loop, registers in the 1/0 data loop,
and to memory control.

Memory Control

The memory control section of the processor performs
tasks in:itated by the central control, 1/0 control and
options. These tasks consist of reading a 16-bit word from
memory or writing a word or byte into memory.

Memory control acknowledges receipt of the signal to the
requesting sections and signals when done with the task.
When one request is accepted no others are acknowl
edged until the current one is completed, but central
control can override its own prior request.

170 Data Loop

The 1/0 data loop contains a multiplexor, 1/0 data register,
and drivers and receivers. Three sources of data are
applied to the 1/0 data loop: data from the 1/0 bus, data
from the arithmetic and logic unit, and data from the
memory |/0 register (MIOR). The input data is selected by
the 1/0 multiplexor under control of the 170 control signals
and transferred on to the bidirectional 1/0 bus.

In addition to being applied to the 170 drivers, the output
of the 1/0 data register is applied to the data loop and
memory control sections.

1/0 Control

The 1/0 control operates under control of an independent
read-only memory (ROM). It performs 1/QO operations
initiated either by the central control or 1/0 device activity.
This permits 1/0 operations to praceed with minimal
impact on internal processor functions. The I/0 performs
programmed 1/0 initiated by the central control. Both
normal and high-speed direct memory access (DMA) are
handled by the 1/0 control. 1/0 interrupts are processed
by 170 control.

1.4.2 »Writable Control Store

The Writable Control Store (WCS) extends the processor's
read-only control store to permit addition of new instruc-
tions, development of microprogrammed diagnostics, and
optimal tailoring of the computer system to its applications.

Unlike the read-only control store which contains the
V70 series standard instruction set and cannot be
altered, the WCS can be loaded from the computer's

1-6

main memory under control of i/O instructions. This
capability of altering the contents of the WCS gives the
user complete access to the resources »f the computer
system.

A test program for the WCS hardware is provided to assist
in maintaining the system. Operating the test program is
described in the maintenance manual for the WCS,

Configurations

The WCS is available in three configurations:

1. Model 7x-4002 includes a 512-word by 64-bit
control store, subroutine stack, decoder control
store, and 1/0 control store.

2. Model 7x-4003 includes a 1024 word by 64-bit
control store and a subroutine stack.

3. Model 7x-4004 includes a 2048 word by 64-bit
control store and a subroutine stack.

Model 7X-4002 is shown in the block diagram of figure 1-4.
The three control stores shown in this diagram are the
writable counterparts for read-only components of the
processor.

The decoder control store replaces the instruction buffer,
decoder, and decoding logic in the processor to improve
instruction set changes. It is formed from two 16-word by
16-bit memory arrays with the logic that decodes main
memory instructions into an address for the central
control store.

The central control store is a counterpart of the page zero
of read-only storage. With each processor clock pulse, a 64-
bit microinstruction is read from the central control store
to specify the actions to occur. A typical microinstruction
may define several operations such as selecting the next
control store microinstruction to be executed, test condi
tions for branching, initiating memory operations and
selecting ALU functions.

The 1/0 control store contains a 256-word memory array of
16-bit words.

A standard feature with all WCS models is the subroutine
stack that increases storage efficiency by providing a call
and return capability for subroutines of microinstructions.
Up to 16 addresses for branches can be stored in the
stack. Operations are provided for pushing, popping, and
deleting an entry.

The maximum amount of writable control store which
can be installed in a V70 series computer is 8 pages, or
4096 words. Thisamount of WCS is contained on 2 Model
7X-4004 circuit boards.

1

weJSeiq ¥o0|g 940}§ [043U0D B|qeIIM p-T d4n3)4

ouel-1iLA

INTERFACE AND CONTKOL

v

WRITABLE CONTROL STORE

\ 4

ADDRESS . : .
*| DECODE
EMOR ATA
-~ DATA L MEMORY BUS (DATA)
DATA .| stoRe |
SUBROUTINE ADDRESS iy ADDRESS
STACK . I
\ 2B 4
4 DATA R
*| CENTRAL
3 DATA CONTROL PROCESSOR
ADDRESS 1 stone
DATA v
A
< 1/O BUS ,
- P4
t y
ADDRESS
ADDRESS R I
> 1/0
DATA o controL 1/O CONTROL
. DATA STORE l (OPTION BOARD)
|
l DATA

NOILONAOYULNI

INTRODUCTION

1.4.3 Software Modules with the micro-utility program. In addition to loading the
utility provides some diagnostics. These steps are depicted
Microprogram preparation uses a sequence of software in figure 1-5.

provided with the WCS. First the program is written .and
assembled with a special assembler called MIDAS. Upon

error-free assembly the code is run in a simulated All the components of the microprogramming software
environment which is completely independent of a- WCS. were designed to operate both under operating systems,
The ability to trace and correct the execution is available MOS and VORTEX, and as stand-alone programs on the
with the microsimulator. These first two steps can occur SPERRY UNIVAC V70 or 620 series computers.
without a WCS. Then only when the microprograms are Operating systems require a minimum configuration
checked completely the code can be loaded in the WCS (see the manual for the particular operating system).

USER-DEFINED
MICRCPROG
SOURCE

v

MICRO \
ASSEMBLER

MIDAS

RECODED
SOURCE

ASSEMBLY

LISTING

BINARY

OBJECT [
v L
KEYBOARD | g HICRO UTILITY
DIRECTIVES SIFAULATOR — PROGRA!A
v

DIAGNOSTIC
A[DS

CONTROL
STORE

T
L

VTi-1799

Figure 1.5. Steps for Realizing Microprograms

Table 1-1 lists the hardware requirements for micropro-
gramming software.

Assembler

An assembler is a computer program which translates
symbolic statements into machine instructions. The sym-
bols are more meaningful than the strings of bit settings
they represent. In addition to simply translating from
symbolic to the executable code, the assembler assigns
storage locations to the assembled instructions and
produces a form of the instructions for loading into the
processor's control store.

The microprogram data assembler (MIDAS) allows the user
to prepare microprograms for the WCS. Through the use of
operation mnemonics, symbolic addressing, address-field
calculation, macro definitions, error detection and auto-

MIDAS is designed to provide the user with a tool for
microprogram implementation. While relieving the user of
much of the tedious housekeeping associated with
generating microinstructions and their data fields, it also
allows the user to describe the microinstructions at their
most fundamental level.

INTRODUCTION

Simulator

Verifying that the microprogram does indeed solve the
problem is the next step. A logical step in implementing a
microprogram is to run it with the microsimulator. The
effects of executing a faulty microprogram are iikeiy to be
worse than those caused by poor assembly-language
coding.

The simulator runs the output from the assembler within
main-memory storage. At selected times conditions and the
contents of data locations can be changed and examined.
Projected changes can be simulated to evaluate eventual
changes to the microprograms.

After determining that the code is error-free the WCS can
be loaded with the utility program, which uses a command
set as consistent as possible with the simulator.

Utility

Loading the WCS with the assembled and test microcode is
performed by the microprogram utility, MIUTIL. In addi-
tion, on-line debugging directives are available through the
utility.

Table 1.1. WCS Software Configuration Matrix

Operating Memory (K)
Program System 8 12 16 20 24 32
Micro- VORTEX X R 0O
Assembler
MIDAS MOS XR O 0 O O
SA XR 0 00O
Micro- VORTEX X R O
Simulator
MICSIM MOS X R OO
SA X R O
Micro- VORTEX X 00
Utility
MIUTIL MOS XR O 0O
SA XR O O O
WCS Test XN N N N
Program

z O o o o

High-

TTY TTY TTY Speed
Keyboard/ PT PT PT
Printer Reader Punch Reader

X N N o}

X X N (o]

X X X (o]

X N N X

X X N R

X X N R

X N N X

X X N R

X X N R

R 0 N X

(continued)

1.9

INTRODUCTION

Program

Micro-
Assembler
MIDAS

Micro-
Simulator
MICSIM

Micro-
Utility
MIUTIL

WCS Test
Program

Legend:

X =

Table 1-1. WCS Software Configuration Matrix

High-

Speed
Operating PT
System Punch
VORTEX (0]
MOS 0
SA o
VORTEX N
MOs N
SA N
VORTEX N
MOS N
SA N

N

minimum configuration

Card
Reader

R

(continued)

Card
Punch

0

R

recommended (recommendad in place of
its minimum counter part)

optional (can be used but program
will function completely

without it)

not used with
the program

Line
Printer

Mag
Tape

0

X

o O o

>

Rotating
Memory

X

0
N

x

WCS
Option

SECTION 2
CAPABILITIES

.

This section describes micro-operations available with
SPERRY UNIVAC V70 series systems. The operations
are grouped into the following categories:

a. data transfer and transformation
b. éddressing and conditional actions
C. memory access

d. other controls

A basic example follows these sections. Some important
timing considerations are presented at the conclusion of
this section of capabilities.

This section describes only central control store
programming.

170 and decoder control stores are treated in section 8.

2.1 GENERAL MICROINSTRUCTIONS

The 64 bits of the microinstruction are grouped into fields
referenced by either an ordinal number or a two-letter
name for the microprogram assembler. The full resources
of the system can be exploited by the user who is familiar
with all the defined microinstruction fields. To start most
common operations, a limited set of fields is involved.

Because some of the bit combinations in the microword
have no function, the user should be cautious and avoid
coding those bit settings not defined. Undefined codes may
be assigned new functions in the future.

21

¢

(¥ 40 1) SPI9I4 UONINASUILIONY 'T-2 24nS1y

JE8Z-EtlA

. 1 2 3 5 6 7 8
b1 59 51 44 45 43 37
3 of e ofo o3 . of1 ol ofo
15 AF MS T FS TF SF GF
— L
CONTROL ST0RF ADDRLSSING FIELDS B
CONTROL STORI ADDRESSING, CONTHOI STOHE ADDRESSING JONTAUL 510RE AUDH SSING W ContEnTy FUNCTUN 1600 ASF . 00 REGISTER FIELD SELECTION
1S 15 UeD 1O GENERARE COR-) G TN EUNCTION INO L O REQUEST)
1800 SIORE AGDRESS BiTS 1 AF FIELD UMED FO GENEHATL Trit M5 HELD IS Ut TO GEN W AU CONDITIONAL TESTING OF CONSENTS UNCTIO!
THEOUGA 4 DURING COTS- MOST SIGNIFIEANT BTy (4 THEIY L it 10 TLSTFORSET CONINTION Tass SAMPLE OVERELOW MASK Q1T FOR GENERATION
OITIONS NOT MET irth B UF (CONTHOL STURL AG URESS BITS 10 31 QURING NUHMAL " 1ESUFOR RESET CONDITION SELFCT INSTAUCTION DE CODER AND OF J0R €8'T HiELD DURING
SELECTION AUDRISSING ANO DRESS i NORMAL ADIHESS e P oS SAMPLE INTERRUPT REG FIELD SELECTION
NORMAL 15 FIELD ADURLSSING s FICLL SELECT D A MASK f UNC THION DURING N walr SAMPLE CONDITIONAL TESTING
SELECHON FIELO SELECTION ADDRESSING sai1 TRANSHER CONTENTS OF INSTRUCTION
DRESSING LONDITUN NOT - BUFFER TO INSTRUCTION REGISTER
MET ADDHE SSING AND INTER TE O INOCONDITIONAL TESTING) SE 0 DOES NOT aMLY.
l AUPT ADDRESSING
REGISTER £(ELD SELECTION
t ‘(,L‘ Bt SE LORTENTS FUNCTION] YT
1 O REGUEST 00 I8 1S SPECIAL LONTROL
TSSELECTS A4 B0 FiLD % PACe Wb OPEARIION Ty 00 A ISF- O M4 1 OADDBITE
FROM THE INSTHUC TION M1 L ADDBIT Y (WITH CONCURRENT MEMORY
HEGISTER WHICH 15 VSED T4 w GF CONTENTS FUNCTION
TG REPLACE IHE AOR B Lyeits o uneTs
R Yo " 1M 15 MEMOHY CONTHOL 00 NO CHANGE TO OVERFLOW
AOINSTRUCTION MR IS (CYCLE WNITIATED UH =01n SET OVERFLOW
O oy e ABORIED DEPENDING ON 10x AESET OVERFLOW
Freri i emohe i TEST RESULTS) xile SAMPLE OVERF LOW
A 3B FIELD IS DESIREL CONTHOL L TORE ADURESYING
teg OCIAL VS HEX APPLY
CATIUNE
G it TH 40 CONDITIONAL TESTING)
S CONTENTS FUNCTION (LALEL A
00 115 SPECIAL CUNTHUL GF CONTENTS FUNCTION
SELLCT INSTRUCTION BECODER & o1 1M 15 MEMORY CONTROL [T
SAMPLE INTEHHLPTS w ':‘,:f)::"“"’x:u;‘k‘;"l atan PAGE JUMP OPERL TION
e . : N AL WITH MEMORY (UNTAOLI
1Gé 1 ATF O AN O CONTRUL STUHE ADDRESSING ALSPONSE 15 F ALSE SAMPLE CONDITIONAL TESTING
15 CONTENTS FuNCTioN n oo ot ENABLE FMA
#35E1ECTS A CONTHOUUUY b BT 1F CONDITIORAL TES
aal ENARLE 1 O INTERRUPTS §1L0 $ROM THE INSTRUCTION RESPONSE 15 TRUE
Pl ENABLE 1 O INTEHHLPTS HEGILTER T BE USED 1N GEN
16 MEMOHY PROTECTION INSTALLED EHATION OF Trt NEXT MICAD
N ENABLE UPTION INTERRUPT MEM INS LML TION ADDHESS (F1EL 1
PROTELCTION OR PF H QUIING SELLLTION ADDRESSINGY FIvE - -
PUWER UPI 8115 £ HOM NSTAULTION REGIS \TEeO v ITF- O A SE N
nan ENABLE CONSOLL STEP SwilCH TE ARE USED O GENERATE 5
INTERRUPT LEAST SILNIFICAND 8115 OF w FOLLOWING TEST CONDITIONS ARE
ADDRESS AND MAY BE MASKED CIFIED BY THE GF FIELO
By M ARG MY FIELDS GF CONTENTS TEST CONDITION
FSWILL B 1UUAL 10 ZF RO fond foriad
PAGE JUNE OPERATION DURING NUKMAL ADDAL SSING et P
k . o FIELD SELECTION ADDHES
Of sl AW OAN T SING NOT SPECIF 1IN S =2
TS CONTENTS FUNCTION o101 Tove.
0000 SELECT PAGE 0 tPROCESSOR) oot P P MRK, AND €XEC
0004 SELECT WCS PAGE | o110 ALU ALL ONES
oot SELECT WCS PAGE 2 o ALUSIGN
a100 SELECT WCS PAGE 3 1000 ALU CARRY
1000 NOT USED) ALU 15 ZEROD
s FILE-A SIGN
wh INPUT - LATCH SIGN
e SHIFT_COUNTER OVERFLOW
. Lo GISTER 0 SIGN
mo RMALIZED SMIFT
REQUEST 1 O 000 Fvh
M0 v IIIE A SE 0 " TIENT
TS FIELD MAKES UP PART
OF ADDRESS TG 10 ROM
TS CONTENTS FUNCTION DEFINITION OF SYMBOLS:
1O ADDRESS BIT &
110 ADORESS BIT & TRANSFERTO
1 0 ADORESS 817 3 AND
{0 ADORESS 811 2 INCLUSIVE OR
EXCLUSIVE OR

l'»(<>l

PLUS

MINUS
) INVERSION (ONES COMPLEMENT)

S3lLnavdv)

544

8Z-ELIA

(¥ 4O 2) SPI914 UONINNSUICIONN 'T-Z 3nB14

PROGRAM COUNTER - MEMOR Y
ADORESS LATCH Preriii]
WEMORY INPUT LATCH ~MEMORY
ADDRESS LATCH

NOT MET

|

CONDITIONAL CYCUE 1F TRUE
TEAMAISE T

M CONTENTS
00ex

o
10w

FUNCTION
OVERRIDE MEMORY REQUESTS
ALU- MERORY ADDRESS LATCH | | yecy
PROGRAM COUNTER - MEMORY | royciy oy
ADDRESS LATCH et

MORY INPUT LATCH ~MEMORY
ADDRESS LATCH

1
x 10 " 2 » 13 » 14 » is " 16
1 o] o+ 2 o] ofc
AB M L8 LA RF FF MF
REGISTER FIELD SELECTION SPECIAL fUNC TINNS AR CONTENTS FUNCTION ARITHMETIC LB - 00 OR OF
SF <0 A NO 1:0 REQUEST $-0 (BCONTENTS FUNCTION 00 NO ACTION [IMF <00 A SLB = 0ni] VIIF1* G0 A (LB - 1e)]
o FILEB- LATCHE TR £ A
AB CONTENTS FUNCTION W CONTENTS FUNCTION . o BMUX=LAICH B 001 LOAD PROGRAM u:u:ve- FE CONTENTS ALy QUTPUT CONTROLS MODE OF ALY
INHIBITS ANY CHANGE 10 INSTRUCTION REG AND 010 LOAD SHIS T COUNTE 00 a
o1 0000 NO'ACTHON N TTED. ot LOAD OPE RAND REGISTER
10 I A BIRD 15 o O Mat FIELD- LATCH B 0001 Ave
SELECTS & 4-M T FIELD oot T EOR MFMORY NONE " 16 BIT LITERAL (MASK FIETD) 100 MCREMENT PROGRAM COUNTER 0810 avi .
FROM THF INSTRUCTION oo1g WAITFOR | O DONE ~LATCHE 100 INCREMENT SHIFT COUNTER ot \
SEGHSTER MASKID B o1 PAGE RRANCH DURING INSTRICT IN DECODE " LOAD KEY REGISTER oo NS
THE s FIRLD) TO 8€ NOMEMORY REQUE ST " LOAD OPERAND REGISTER AND 0101 P (8- WGOR 11
USED TO REMACE ™™ olo0 REQUEST ALL - INSTAUCTION BUFE¢R INCREMENT PROGRAM COUNTER oo b
8 FIELD OF THE NEXT AND INPUT LATCH
MICRO- INSTRUC THO! 0101 s o111 MEISPART OF 15 BIT LITERAL
10 A3 ABOVE €XCEPU 0110 SELECT AND RESET INTERRUPT €LAG 1000 AND MODE OF ALY IS
4HT FED REMA o SET INTERRUPT FLAG WCS FUNCTIONS 1001 CONTROLLED BY DFUNY
THE & FIELD. 1 Nl BITS 1000 ENABLE AUTOMATIC AOOTSTAAP PROM ISF O A TTF S OF A (IMF ~ 1)01) 1010
ARTY CHANGE TO Dt 0 1001 UNUSED 1011
1010 RESET SUPERVISOR KE ¥ LBCONTENTS FUNCTION 100
h Fios eamanto " o SET suPeAVISOR KEY ' 1617 LITERAL USED B nen
T 1100 INKIBIT INSTAUCTION DECODER ' :\‘:Im:mnr SUBAOUTNE 1o
101 WCS FUCTIONS 2 3
1o REQUEST 1 O INWIRIT INSTRUCTION DI R STACK OPERATIONS TO N
REG FIELD SELECTION NOT SPECIIED e REQUEST I O o OECODE PROVIDF RETURN ADDRESS NOTE A=A INPUT OF ALU. 8-8 INPUT OF ALU
MR- 0t A (A8 * 0% A NO1 O REQUEST ISEE WS MANUAL) B
CONTROL STORE CUTPUT— A AND B FIELDS
= S TONDIT! Al ORY CYCLE OGICAL
- {1 CONDITIONAL WEHORY CYCL (IME = 1L A (LB O VIIF V= 1) A 1B = Tal}
5.1 vhtE oiaseE) Paerny——
NG FECONTENTS ALUOUTAUT
IMCONTENTS FUNCTION LA+ 100R 11 ity :
B - 00 OVERRIDE MEMORY REQUESTS
MR - 11 A (AB - OF A O 1/0 REQUEST foeid A MO ADDAEba o FILE A tAIT 0) - BYTE FLAG IDBAD | o m
POV 10un PROGRAM COUNTER - WF1AOR Y stant o011 2em0
1-83.82. 8¢ ADDRESS LATCH MEMORY o o
M A DAL 15) V tw A DOR 01)+ 80 Phae :gm;':‘;‘;ﬁ“’c"'““m" porss [}
o110 Ave
o134 aArF t .
LA CONTENTS FUNCTION 1000 Xvs
1001 vy
o0 FILE A - LATCH A 100 .
170 REQUEST o1 PAOGRAM COUNTER- LATCH A 011 aAn
MEMORY ADDRESS SOURCE 0 FILE AILEFT 18IT)= LATCHA 1100 owe
AB1- 10 ADOBIT) (55 e 0) n FILE A (RIGHT 1 BITI- LATCH A vt AvE
IMCONTENTS FUNCTION Ty il
=00 READ DATA INTO INSTRUCT'ON -
furin Akl jhubad NOTE A<A ST OF ALY,
01 READ OATA INTO INPUT LATCH
o WRITE WORD INTO MEMORY
it WRAITE 8V TE INTO MEMORY
CONDITIONAL €¥C LE 1F EALSE
TEem ALSE 2
IMCONTENTS FUNCTION
. OVENRIDE MEWMORY REQUESTS
Otux ALU-MFMOAY ADDRESS LATCR | (¢ peer
10ux

S3LLITIAVdYD

[&4

D68Z-EIIA

(¥ JO €) SPIdI4 UOHINLSUIOIDNN “1-Z @nSiy

17 18 19 20 21 23
18 16 1% 14 14 12
1 olo ofo ofo olo ops <]
CF WR sC VF WF SH <
LB - 000R 01 L8 VOCROT AISC O LA : 00 OF 01" A LB = 00 OR ON

o0
o1
0
"

CF CONTENTS FUNCTION

ALUCARRY IN- O
ALU CARRY In - STORED CARRY
ALUCARRY iN: STORED CARRY
ALUCARRY (N- 1

18 WORMN

CEISPART OF 16 BIV LITERAL
‘ALY CARRY IN Z2ERO

——

L8 000K O

WR CUNTENYS FUNCTION

u NO ACTION
1 WHITE INTO REGISTER FILES
L8 W00R N

WR IS PART OF 16811 LITERAL

—

L8 : 00OROY
SCCONTENTS FUNCTIO
o NO ACTION

SHIFT OPERAND REGISTER

- 100R 1

SCISPART OF 16 81T LITERAL

——

L8 VDDA DI

VFCONTENT3 FUNCTION

L] NO ACTION
1 BIT 150F FILE A= DSB
LB 100R N

VF IS PART OF 16 BIT LITERAL

WECONTENTS FUNCTION
o NO ACTION
1 ALUBIT 15-08

|

8 00QROI.AISC: 1

WE CONTEXRTS FUNCTION
o SrIFT OPERAND REGISTER LEFY
' SHIF1 OPERAND REGISTER RIGHT

B OUOR 0L A HDREQT A MR 1o A 148 00

WFLONTENTS FUNCTION
o ALL BIT 15+ DFBAD
1 OPERAND REGISTER BIT 1 - DFBAQ

LB D OR N

WF S PART OF 16 B1T LITERAL

000
0
‘i
LIS

SHCONTENTS FUNCTION

NO ACTION

0= A INPUT OF ALY

1o 4 INPUT OF ALU
SPECIAL ALU FUNCTION

LB 00 ORO1! A (LA 10}

SH CONTENTS FUNCTION

O FILE ABIT 14-ALUBIT 19

h FILE ABIT 15 ALUBIT 15

~00 O-ALUBITO

A0} FILEABIT 15 ALUBIT O

Y0 OPERAND REGISTERBIT 15. ALUBIT O

N3 SPARE

1B D0OROH A LA th

SHCONTENTS FUNCTION
000 MULTIPLICATION SIGN~ LATCH A BIT 18
001 FILE ABIT O« LATCH ABIT IS
o FILE ABIT 154 LATCH A BIT 15
o OPERAND REGISTER 817 0- LATCH A BIT 15
100 0- LATCH A BIT 1S
war O-LAICH A BIT 1S
1" Q- LATCH A BT IS

O -LATCHARIT 1S

MB-O VU ASE b AW-D

Xt CONTENTS FUNCTLION
[Y OPERAND REGISTEA BIT 15 SHIFTED TOBIT O

01 FILE ABIT 15SHIETED TOBIT D

10 ALUBIT I5SHRIFTED TO OPERAND REGISTER
BITO

1 A ZERO SHIFTED TO OPE RAND REGISTER AIT O

(LB+0OUROI A (SC- 1I AW - 1)

XF CONTENTS FUNCTION

w OPERAND REGISTER BIT OSHIFTED TU 81T 15

0 FiLE A BIT OSHIFTED TU OPERAND REGISTER
81715

10 OPERAND REGISTER 81T 15 REMAINS THE SAME

" 0S8« OPERAND REGISTER BIT 15

|

18+ GORDI ALSC - O

XF CONTENTS FUNCTION

00 NO ACTION

o RESET CINTF

0 ENABILE JUMP SIGNAL

" RESET CINTF AND ENABLE JUMP SIGNAL
LB 100R 1

XFiSPART OF 16BIT LITERAL

L8 100R 11

SHISPART OF 16 1T LITERAL

S3LLNIAVAYD

(¢ }0 p) SPIdI4 UONINISLICION "[-Z d4nBiy

8982-CLIA

SPECIFIES DATA SOURCE FOR ALU B INPUT FROM GENERAL.

PURPOSE REGISTERS AS FOLLOWS:

BB CONTENTS REGISTER

o7 24 © 25
3 3
BB AA
LB =00 LA£01

SPECIFIES DATA SOURCE FOR ALU A INPUT FROM GENERAL
PURPOSE REGISTERS AS FOLLOWS:

AA CONTENTS REGISTER

0000 A 0000 A

0001 B 0001 8

0010 X 0010 x

oo ALL-ZEROS REGISTER 001 ALL-ZEROS REGISTER

0100 INSTRUCTION REGISTER 0100 INSTRUCTION REGISTER

0101 ALL-ONES REGISTER 0101 ALL ONES REGISTER

0110 NOT USED ono NOT USED

o1t NOT USED om NOT USED

1000 NOT USED 1000 NQOT USED

1001 NOT USED 1001 NOT USED

1010 NOT USED 1010 NOT USED

o1t NOT USED 1011t NOT USED

1100 NOT USED 1100 NOT USED

1101 NOT USED 1101 NOT USED

1110 FOR MULTIPLICATION AND DIVISION mo FOR MULTIPLICATION AND DIVISION
1mn EOR MULTIPLICATION AND DIVISION m FOR MULTIPLICATION AND DIVISION

B=1

SPECIFIES DATA SOURCE FOR ALU B INPUT FROM SPECIAL
REGISTERS AS FOLLOWS

BB CONTENTS REGISTER

{LtB=000R01] A(WR=1)

SPECIFIES DESTINATION FOR ALU OQUTPUT TO GENERAL
PURPOSE REGISTERS AS FOLLOWS:

AA CONTENTS REGISTER

0000 OPERAND REGISTER
0001 MEMORY INPUT LATCH 0000 A
0010 1/0 REGISTER 0001 8
0011 STATUS 0010 X
0100 OPERAND RIGHT BYTE, SIGN EXTENDED 0011 ALL ZEROS REGISTER
0101 OPERAND LEFT BYTE, SIGN EXTENDED 0100 INSTRUCTION REGISTER
oo OPERAND RIGHT BYTE 0101 ALL ONES REGISTER
ot OPERAND RIGHT BYTE, SHIFTED LEFT ot10 NOT USED
o NOT USED
1000 NOT USED
1001 NOT USED
1010 NOT USED
1011 NOT USED
1100 NOT USED
LB = 100K 11 1ot NOT USED
1110 FOR MULTIPLICATION AND DIVISION
1 FOR MULTIPLICATION AND DIVISION

BB ISPART OF 16 BIT LITERAL

°N4

DEDICATED FUNCTIONS DURING 620/F - EMULATION
AND HALT LOOP OPERATIONS. GENERAL PURPOSE
DURING WCS OPERATIONS.

S3LLINI8VdYD

CAPABILITIES

2.2 DATA TRANSFER AND
TRANSFORMATION

2.2.1 ALU Input Sources

Input to the arithmetic and logic unit (ALU) is selected by a
combination of fields. The ALU receives two inputs, A and
B. Two buses can move information to the ALU but the
same sources are not available for both buses. Some inputs
to the ALU can be sent on either bus and some on both.
The general-purpose registers can be selected as input
upon either bus and a specific register selected for each
bus. :

Any of the general-purpose registers can be shifted on its
way on the A bus to the ALU. Shifting can be one bit
position to the left or right.

Input to the ALU can be from one or two of the general-
purpose registers. The use of one of these registers is
indicated by setting field LA to zero for input on the A bus,
and LB for input on the B bus. The specific register is
specified in AA and/or BB.

For example to use registers R2 and R4 as the input to the
ALU

field LB LA BB AA
value 0 0 2 4
(hex.)

Mnemonic B$GPR A$GPR R2 R4

LA can also specify that the register indicated by AA.is
shifted or rotated. Shift left and shift right are indicated in
the LA field and the shift field, SH.

Special Registers as ALU Input

By setting the LB field to one, SREG for special register the
value in the BB field takes on a different meaning:

Table 2-1. ALU Input A Bus Selections

ALU input A Bus Source Fields
LA SH LB
Program counter 01 XXX XX
General-purpose 00 Neither ox
register (any one X01 nor
of 16) specified X1X
in AA
General purpose 00 XXX 1X
register (any one
of 16) specified in
AA
All zeros input 00 Xx01 ox
Ail ones input 00 X1X 0X
General register (in 10 See ox
AA) shifted left below
Bit 15 = register OXX
bit 14
Bit 15 = register IXX
bit 15
Bit 00 = zero X00
Bit 00 = register X01
bit 15
Bit 00 = operand X10
register bit 15
General register (in 11 See 0X
AA) shifted right belew
Bit 15 = multiply 000
sign flag
Bit 15 = register 001
bit 00
Bit 15 = register 010
bit 15
Bit 15 = operand 011
register bit 00
Bit 15 = zero 100

26

left byte

o] OPR Operand register

1 MIR Memory input register

2 10R t/Q register

3 STAT Processor status word

4 ORSE Operand right byte sign extended
5 OLSE Operand left byte sign extended
6 ORZF Operand right byte zero till

7 OLZF Operand right byte in the

position zero fill

X indicates the bit in that position is of no consequence
to this action.

GPR

16 GENERAL-
PURPOSE
REGISTERS

RO, R1,...,RF

—

SHIFT/ROTATE

OPR

CAPABILITIES

> OPERAND

REGISTER

-

N J\ /[J‘\L
5 ALU INPUT A é
| IT
_S- ALU INPUT B 2

VTii-1802

Figure ?-2. General-Purpose Registers, Operand Register and ALU Input

27

CAPABILITIES

Table 2-2. ALU Input B Bus Selections

ALU Input B Bus Source Fields
LB BB

General-purpose 00 Specifies
register (any one register
of 16)

Operand register 01 G000

full word
Operand register 01 0100

right byte with
sign extended
Operand register 01 0101
left byte with
sign extended
Operand register 01 Q110
right byte with

zeros in left byte
Operand register 01 0111
right byte in left

byte position; zeros

in right

Memory input register 01 0001
(MIR)

170 register (IOR) 01 0010
Processor status word 01 0011
(STAT)

Instruction register 10 Part of
masked by 16-bit mask

literal constant
consisting of fields

MF, CF, WR, SC, VF, WF,
XF, SH and BB. A one
in the mask fields

forces the corre-
sponding ALU input

bit to a zero.

16-bit literal 11 Part of
constant consisting constant
of the ones com-
plement of fields
MF, CF, WR, SC, VF,
WF, XF, SH and BB

NOTE: When the 16-bit literal or mask is used, the ALU
mode is forced to the arithmetic mode if the FF field bit 1
is a zero and to the logical mode if the FF field bit 1 is a
one. A carry of zero is forced. The ALU output may not be
written into any general register in this case. The WR field,
which would specify such an operation is disabled for use
as part of the 16-bit literal or mask.

28

Processor Status Word

The processor status word may be applied to the ALU input
B bus when the LB field equals 01 and the BB field equals
0011. Processor status bits are assigned as follows:

Bit Function Name

00 Not used (logic 1)

01 Supervisor mode flag SUPR

02 ALU zero flag ALUZ

03 Shitt counter bit 00

04 Shift counter bit Ol

05 Shift counter bit 02

06 Shift counter it 03

07 Shift counter it 04

08 Qverflow flag QVFL
09 ALU all ones flag ALUO
10 ALU sign flag ALUS
11 ALU carry tiag ALUC

12 Processor key register
bit O

13 Processor key register
bit 1

14 Processor key register
bit 2

15 Processor key register
bit 3

2.2.2 ALU Functions

Two sources for data, an action to be performed by the
arithmetic and logic unit and a destination for the resulit
are all specified in a single mucroinstruction.

The ALU function is determined by three fields in
microinstruction. These fields. function, mode and carry,
are grouped together to give meaningful names to some
common operations, like ADD for addition. This entire
group of fields can be set to execute combinations which
do not have convenient names in the assembler.

One basic ALU action or an operator is chosen. There are
three categories of operations. Arithmetic operations
available at this level include addition, subtraction,
increment etc. Logical operators which have convenient

single-word names are AND, OR, exclusive OR, NOT
implication and equivalence. Also the ALU can perform
more complicated logical functions explained later in this
section.

Table 2-3 lists some of the more common arithmetic and
logical operations and the corresponding fields.

Table 2-3. ALU Operations

Assembier AlLU

Mnemonic Action FF MF CF
ZERO alt zeros 0011 1 00
ONES FFFF 1100 1 00
TRNA A 1N 1 00
TRNB B 1010 1 00
INCA A+l 0000 0 11
DECA A—1 1111 0 00
ADD A+ B 1001 O 00
sus* A-B 0110) "
SHFA A+ A 1100] 00
AND AAB 1011 1 00
OR AVB 0001] 00
EOR AwB 0110 1 00
NOTA A 0000 1 00
NOTB* 8 0101 1 00

*cannot be used when input B is mask or literal

CAPABILITIES

ALU Mode

There are two modes available for the ALU, arithmetic and
logical. In the arithmetic mode the user selects a type of
carry input to the ALU to be used with the arithmetic
action. In logical functions the value of the carry field (CF)
is ignored. The mode is directly set as either arithmetic or
logical by the MF, field. indirectly the mode can be set
when the actual mode field is part of a literal or literal
mask. If the LB field is 10 or 11 in binary, the MF and CF
fields are part of a 16-bit constant. In this case the ALU
mode is taken from the bit 1 setting of the FF field
(consequently this limits the functions available with a
literal or mask).

Carry Fiag

The CF field specifies carry input to the ALU in the
arithmetic mode as follows:

CF Value of Carry In

00 Zero

01 Stored carry

10 Stored carry complement
11 One

The carry flag ALUC, bit 11 of STAT, is altered only if SF is
set to zero or two, TF to zero and the GF field to XX1X.

Under these conditions carry is set or reset to the carry
produced by the ALU. The only meaningful conditions for
carry are the arithmetic functions such as add, increment,
decrement and subtract. For these conditions the carry

flag is set as follows. MF is zero for all of the following.

29

CAPABILITIES

Table 2-4. Carry Flag Settings

FF Function if Carry In =0 It Carry In = 1
0000 A Reset _ Setifresult = 0
0601 AvaB Reset Set if result = 0
0010 AvB Reset Set if result = 0
0011 -1 Reset Set unconditionally .
0100 A+ (AAB) X X
0101 (AVB)+(AAB X X
0110 A-B-1 Setif [(A,, = B,)A (A2 B)ly Setit [(A,, = B,)) A{A>B)lvy
) (A, =B)AMA<O) [(As = B.) A (AL O))
0111 (A A B)—1 Set if result is & —1 Set unconditionally
1000 A+ (AAB) X X
1001 A+ B Setif [(A<O)A (B« Q)]v Setif (A< O)AB<O)V

[(As = BL)A [(A,=8,) A (A, = O)A

(A, = 0)A (A2 B)V

(1A1 2 1Bl v

(A, = B.)A (A, #B.) A(B, = O)A

B, =0)A (B 2 A)] v [Result = 0]

IBI > 1A1)] N o
1010 (AVvB)+(AAB) X x _
1011 (A AB)—1 Set if result & —1 Set unconditionally _
1100 A+ A Setif A, = 1 A, =1 o
1101 . (AVB)+A X x L
1110 (AV B) + A X X
111 A—1 Set if result # —1 Set unconditionally

Arithmetic Operations

The FF field determines an darithmetic operation as
indicated below when the MF field is 0. Carry input is set
independently. When bit 1 of FF is zero the arithmetic
mode is selected when the actual mode field is part of a
mask or literal. The expressions in parentheses are
evaluated first from left to r.ght. Any further evaluation is
performed from left to right.

Logical Operations

When MF is one, the logical operations occur as indicated
below by FF field settings. The carry field is ignored.
Symbol indicates exclusive OR operation.

2-10

Arithmetic Functions

FF Value

MMOODMPOONOOOS™EWLON O

ALU Action

A .
AVB

AV S8

All ones

A+ (AAB)

(AV B) + (AAB)
A—B —1

(A A B)—1

A+ (AAB)
A+8B

(AVB) + (AAB)
(AAB)—1.
A+ A

(AV B) + A
(AVB) + A
A—1

SYMBOLS

V' Inclusive OR
¥ Exclusive OR
+ Addition

— Subtraction

A\ Logical AND
¢ Complement

Logical Functions

FF Value

MMOODP>POONDODONDWN=2O

ALU Action -

>

> >i>
N 2><
®ow
o
(7]

W > >i> > >
Lg< >4 >
oo o

AAB
All ones
AV B
AV B
A

CAPABILITIES

2.2.3 ALU Output Destinations

The ALU output will be determined by the function
performed. This data can be directed by the microinstruc-
tion to the general-purpose registers, some of the special
registers, counters, and indirectly to memory and 1/0.

A multiple destination can be one of the general-purpose
registers and a special register.

The direct assignments of the ALU result is specified by a
combination of fields, WR, LB, AA and RF. The first three
are used to specify any one of the 16 general-purpose
registers while RF selects sending data to the program
counter, operand register, shift counter or key register.

Table 2-5. ALU Output Data Destination

Destination

Control Fields

DIRECT CONTROL

General register (any 1 of
16) (Specified in AA)

Program counter

Operand register

Shift counter

Processor key register
INDIRECT MEMORY CONTROL
NOTE: Transfer occurs only

if cycle is successfully
initiated)

Memory data bus

Memory address register

Memory input register and
instruction buffer

INDIRECT 1/0 CONTROL
170 register

NOTE: Transfer is under
direct control of 170
control. Operation is
specified by TS, AB, MR
fields and contents of
170 control store.

RF

001
011 or
111
010

110

WR | SF M LB
1 0X
Not 00 XX1X
Not 00 O1XX
00 0100
00 111X

CAPABILITIES

2.2.4 Other Registers

Shift Counter

The shift counter is an 8-bit counter which may be
incremented and tested independent of the ALU. It is thus
useful in keeping track of iteration in a rnicroprogram. The
counter may be tested for overflow using test addressing.
The overflow condition occurs when the shift counter is
minus one. The shift counter is cleared by the decoding
selection. When the shift counter bit 2 is true, the MIRS
test detects a zero for MIRS- independent of MIR
contents.

An instruction which both increments and tests the shift
counter tests the old value. If the counter is loaded with
negative number and incremented to O, the one instruction
delay is no problem. This is because checking the old value
for — 1 produces the same result as checking the new value
for zero.

Program Counter

The program counter is a 16-bit register which can be
incremented and/or used as a memory address, indepen-
dent of the ALU. The following are considerations when
incrementing the program counter:

a. if the same microinstruction uses the P register for a
memory address, the new value of P wilt be used.

b. if the microinstruction both increments P and uses P as
an ALU input, unpredicatable results are obtained. In
general, using P as an ALU input and incrementing P
should not be done 1n the same instruction.

Processor Key Register (KEY)

A 4-bit processor key register supplies signals for memory
operations initiated by the processor. These four bits in
conjunction with the high-order bits of the normal memory
address are used by the memory map option determine
physical addresses. It should be noted that this key register
is different from the map register used under VORTEX II.
The latter is loaded over 1/0 and cannot be conveniently
accessed from the micro level.

1/0 Key Register

A similar key register for 170 is a 4-bit register which
supplies signals to the memory map option during memory
operations initiated by the 1/0 control.

Operand Register

The operand register is a 16-bit register which has special
shifting abilities. As previously noted, the ALU input A bus
may have any of the 16 general-purpose applied shifted left
or right one-bit positions. in addition, the operand register
may be shifted left or right independently or in conjunction
with shifting of any general register. This can occur any
time the 16-bit literal or mask is not in use. The operand
register shift occurs at the end of the microinstruction.

212

When the LB field is equal to 0X (no literal/mask) the SC
WF and XF fields define operand register shifting.

When the SC field equals 0 no shifting takes place. When
the SC field equals 1, the operand register is shifted left it
the WF field equals O and right if the WF field equals 1.

For left shitts the next contents of the operand register bit
00 is specified by the XF field. If XF equals 00 operand
register bit 15 is copied to bit 00 to permit independent
circular shifting. If XF equals 01 bit 15 of the general
register specified by the AA fieid is copied to bit 00.

This permits double-length circular shifting. If XF = 10 the
complement of the ALU output bit 15 is copied to bit 00. If
XF = 11 the operand register bit Q0 is set to zero.

For right shifts the next contents of the operand register bit
15 is specified by the XF field. If XF equals 00 operand

register bit 00 is copied to bit 15 to permit independent
circular shifting. If XF equals Ol bit 00 of the general

Table 2-6. Operand Register Shift Operations

Control Field

LB SC WF | XF

No shifting 0
No shifting IX
Shifting of operand register | Ox 1

Left shifting 0

Bit 00 = operand 00
register bit 15

Bit 00 = general 01
register bit 15
(specified in AA)

Bit 00 = ALU bit 15 10
complement
Bit 00 = zero . 11
Right shifting 1
Bit 15 = operand 00

register bit 00

Bit 15 = general 01
register bit 00
(specified in AA)

Bit 15 = operand . 10
register bit 15

Bit 15 = SHFT (shift -1 11
flag)

register specified by the AA field is copied to bit 15 to
permit double-length circular_shifting. If XF equais 10 the
operand register bit 15 is maintained at its current state
to permit independent arithmetic shifting. If XF equals 11
the shift flag (SHFT) is copied to bit 15.

2.3 ADDRESSING

2.3.1 General

Executing instructions in an order other than strictly
sequential gives programs flexibility and compactness. The
ways in which the order of microinstructions can be varied
are similar to those used in assembly-language programs.
For the microassembler the usual order of execution takes
the next instruction -- the contents of word five after word
four and so on -- unless a jump or branch specifies the
change in order. In reality each and every microinstruction
specifies the next one to be executed, but usually the
assembler constructs sequential-execution addressing
automatically.

A jump in a microprogram can be a conditional acticn
based on the true or false state of flags or signais in the
system. In microinstructions the jump is not a separate
instruction but the sampling and/or testing and the
branch itself are specitied in fields of a microword. In
addition to conditional and unconditional branches, the
branch may be from one page to another. The page jump
is described following a few simpler cases and conditions.

Three basic types of addressing create the address of the
next microinstruction to be executed. Normal addressing is
the simplest case. The next address is specified by the
current microinstruction. Field-selection addressing uses
an instruction register field to specify the address for the
next microinstruction. In decoding addressing (using the
decoder control store) the instruction buffer specifies the
next address (section 8 in this manual describes the use of
this feature).

Three other types of addressing are similar to the basic
types. Conditional addressing uses testing of various
conditions to choose one of two addresses. The page jump
can specify both the page and word number within the
page for the next microinstruction. Interrupt addressing
uses both the microinstruction and the system's interrupt

logic to determine the next microinstruction.

2.3.2 Normal Addressing

Normal addressing is used to arbitrarily specify the next
microinstruction address. No conditional testing is
involved, no interrupts are active or. they are disabled and
decoder addressing is not specified. The FS and TS fields
are set equal to 0000 and the MT field equals O so the low
order address contribution (bits 0-3) is governed entirely
by the MS field. The high order bits (4-8) are supplied by
the AF field. ‘

CAPABILITIES

8|7]e|s]a 3l2{1]o

AF

Control Store Address --
Normal Addressing

No reset

No interrupts
No decoding
FS = 0000
MT = 0

TS = 0000 or
TF = 0

Normal Addressing with TS Field

The TS field may be used to form bits 1 through 4 of the
control store address when none of the following
condttions is true:

a. Register field extraction (AB field equals 01 or 10)

b. Interrupts allowed (SF and TF field both 00; GF field
equals X1XX)

c. 1/0request (SF field equals 00; IM field equais 111X)

d. Page jump (TF field equals 00; SF field equals 10; GF
field equals X1XX)

The address is formed by the inclusive OR of the TS field
into bits 1 through 4 of the address obtained with normal
addressing (FS field equals to 0000; no decoding: nc
interrupts, MT field equals 0).

8!7]6!5'4 3|2'1|o
AF MS | I
inclusive or

1

010 }0 {0 TS 0

Control Store Address
Normal Addressing with
TS Field

2.3.3 Field Selection Addressing

The contents of the instruction register and a number of
processor flags may be used to form a control store
address. Any 1- to 5-bit contiguous field from the
instruction register may also be used in forming the low-
order five bits of control store address. Thus, up to a 32-
way branch may be performed based on instruction
register contents. This permits detailed instruction decod-

2-13

CAPABILITIES

ing. In addition, the interrupt flag, byte address flag, shift
flag and console step mode may be selected to alter the
control store address.

Field selection addressing is used any time the FS field is
not equal to 0000. The field selection address contribution
tor all values of the FS field is shown in the tables below.
Any bit of the field selection contribution may be forced to
a zero by use of the MS and MT fields. The field masks bits
0-3 of the field select contribution. The MS field masks bit
4. A zero in any bit of the MS and MT fields forces the
contribution of the corresponding field selection bit to zero.
When an 1/0 request is issued (SF field equal to 00 and IM
field equal to 111X) the MT field is used as part of the 1/0
operation specificaticn. in: this case, the MT field is ignored
and bit 4 of the field selection address contribution is
masked to zero.

The field selection address contribution is shown below for
all values of the FS field.

High-order address bits 4 through 8 are provided ty the AF
field.

The TS field is logically ORed into the control store address
bits 1 through 4 under the same conditions as normal
addressing into TS field. Thus, the composite field selection
address is formed as follows:

Control Store Address Bit

4 3 2 1 0 FS Field
One One One One One 0
One One One One INT 1
One 01 One SHFT BYTA 2
One One One One STEP 3
04 03 02 01 00 4
05 04 03 02 01 5
06 05 04 03 02 6
07 06 05 04 03 7
08 07 06 05 04 8
09 08 07 06 05 9
10 09 08 07 06 A
11 10 09 08 07 B
12 11 10 09 08 (o}
13 12 11 10 09 D
14 13 12 11 10 E
15 14 13 12 11 F

Numbers 00 through 15 refer to instruction register bits
INT is the interrupt flag (complement)

BYTA is the byte address flag

SHFT is the shift flag

STEP is true when the console is in the STEP mode

Figure 2.3. Field Selection Address Contribution

2-14

0000—I

inclusive
or
0jojo{o TS™ IO
inclusive
or
ojojolo (FS)=* ——I
and

OOOOMTA MS —j

Control Store
Address Field
Selection

* TS field is not used in bits 1-4 of address formation
when:

a. Register field extraction (AB field equals 01 or 10)

b. Interrupts allowed (SF, TF fields both 00, IM field
equals 111X)

c. 1/0request (SF field equals 00; IM field equals 11.1X)

d. Page jump (TF field equals 00; SF field equals 10; GF
field equals X1XX)

e. Testaddressing s specified (TF field not equal 00)
“* (FS) is the contents of the field specified by the FS field

**% MT s replaced by a zero when an |/0 request is
present (SF field equals 00; IM field equals 111X)

Normal addressing and normal addressing with TS field
are a subset of the field selection addressing set, i.e., the
FS field equals 0000 and the MT field equals 0.

2.3.4 Test Addressing

Two addresses must be specified when test operations are
performed -- one for use if the test passes and one for use
if it fails. Testing is specified whenever the TF field is not
equal to 00. If the test is to pass when the condition tested
is true, the TF field must be equal to 10. If the test is to
pass when the condition tested is false, the TF field must
be equal to 11. The condition to be tested is specified by
the GF field.

The address used if the test passes is identical to that
formed by field selection addressing. The address used if

test fails is made up of the AF and TS fields as shown
below.

8J7J6JSJ4 3l2]1]o
AF ololo o"“‘]

inclusive

l

0}j0jo0}o T8 0

Control Store Addresé -
Test Fails

2.3.4.1 Conditions

Whether or not a test is to be done and the way the test
passes are indicated in the test field (TF). Testing is
specified whenever the TF is not zero. If the test is to pass
when the condition is true, the TF is equal to 10. If the test
is to pass when the condition is false, the value of the TF
should be 11.

The condition to be tested is specified in the GF field.

Summary of Conditions Mnemonics

Value of Mnemonic
GF for Assembler

OVFL
IOSR
SSW3
SSW2
SSwi
TFIR
ALUO
ALUS
ALUC
ALUZ
SHFT
MIRS
SFTC
GPRS
NORM
QUOS

MTMTMOoOOWPOONOOTIADWN —~O

Meanings and Use of Conditions

OVFL Overflow may be set and reset unconditionaily. It
may sample data-loop conditions. Automatically reset
by system reset or microinstruction in which the GF
value is TFIR and the instruction register bit O is set
and the test met.

CAPABILITIES

IOSR 170 Sense Response (discussed in t/0 section)

SSW3, Sense switches are set and reset
SsSw2 only by manual manipulation on the
and control panel.

SSw1

TFIR Test from instruction register which determines a
set of conditions tested simultaneously. Nine bits of
the instruction register cause the following tests:

Overflow

Positive/NOT bit

Negative/NOT bit

RO of General-purpose registers

R1 of General-purpose registers

R2 of General-purpose registers

Sense switch 1

Sense switch 2

Sense switch 3

VN HWN=O

ALUO ALU allones

ALUS ALUsign flag
ALUC ALU carryflag
ALUZ ALU all zeroes

SHFT Shift flag copies bit 15 of the general register
specified in the AA field whenever the literal or mask is
not being used and the VF value is 1. This flag may
be shifted into the operand register bit 15. It may be
tested by a microinstruction to cause a branch to
either of two microinstructions.)

MIRS Memory input register sign. This test is invalid
when the shift counter bit 2 is ture (i.e., equals 1).
SFTC Overflow of the shift counter

GPRS General-purpose register O bit 15 (sign)

NORM Normalize flag is set after any microinstruction
which the ALU output bus bit 15 is not equal to bit 14. It
will be reset after any microinstruction during which
the ALU output bus bits 14 and 15 are the same.

QUOS Quotient ftag copies bit 15 of the ALU output after
a microinstruction in which the literal or mask is not
being used and the WF value is 1 and SC field is zero.

MULS Multiply sign sets any microinstruction during
which any of the following three conditions existed:
1. ALU output bit 15 and ALU input A bit 15 were
both equaltol
2. ALU output bit 15 and ALU input B bit 15 were
both equalto 1l
3. ALU input A bit 15 and input B bit 15 were both
equaltol.
This flag may be applied to the ALU s~ :¢ A bus during
right shift operations

2-15

CAPABILITIES

BYTA Byte address flag copies bit 00 of the general
register specified by the AA field whenever a general-
purpose register is specified as shifted input to the
ALU input A bus. This flag may be used to determine
the address of the next microinstruction and for
memory byte store operations (SF not equal to zero
and iM field equal XX11) determines which byte of
the addressed memory location is to be altered. If
BYTA equals zero, the left byte is selected. BYTA
equal to one selects the right byte. BYTA is set or
reset during the microinstruction rather than at the
end.

A wide variety of flags are available for use in micropro-
gramming. In general, trey may be tested no sooner than
the microinstruction after which they were set. In other
words, a microinstruction which both changes a flag and
tests will be testing the old value of the flag.

The conditions that cause a flag to be set depend on the
particular flag. In addition some flags require that the
microinstruction specify sampling before they will be set.
For example, the ALU ali zeros (ALUZ) flag will not be set

unless the ALU is all zeros and sampling is requested.

The following table lists some of the major flags. ALUZ,
ALUC, ALUS, and ALUQ are sampled together by any
microinstruction in which SF equals X0, TF equals zero,
and GF equals XX1X.

Summary of flags requiring sampling for microprogrammed
conditions.

Flag Sampling
NORM no
MULS no
SHFT yes VF
QUOS yes WF
BYTA no GPR shift right or left
OVFL yes sample overflow
ALU

z yes sample conditional test
ALUC yes

(GF = xxlx, TF=00,

ALUO yes SF = 00 10
ALUS yes = 000r 10)

Table 2-7. Overflow Flag Control
OVERFLOW FLAG CONTROL

Conditions
Operations Fields Bit 15
ALU Input | ALU Output
TF SF GF FF AA | BB
Set overflow 00 01 X01X
Reset overflow 00 01 X10X
Sample overflow 00 ol X11X
(ADD) 1 XXX
SET 0 0 1
1 1 0
DON'T SET* 1 0 X
0 1 X
(SUBTRACT) OXXX
SET 1 0 0
Q 1 1
DON'T SET*™ 0 0 X
1 1 X

Also, reset by system reset or a microinstruction specifying

test of the

620/f test condition with the instruction

register bit 00 on in which the test passes.

Overflow may be sampled to be set if SF = 00 and GF =
IXXX. It will not be reset even if no overflow exists.

“ |f set previously, overflow will remain set regardless of

sampling conditions.

2-16

2.3.4.2 Addresses in Branches

The destination address when the test fails must be an
even word address. The destination addresses of both the
pass and fail conditions must be within 32 words of each
other. This means that the upper 4 bits of the addresses must

be the same.
Procedure for Address Assignment
Following completion of a flowchart assignment of control

store, address assignment may be performed. A useful
procedure is:

1. Assign the microprogram entry addresses consistent
with the desired format of the BCS instructions.

™~

Assign addresses to microinstructions 1o be executed
upon receipt of an interrupt. These addresses must be
X XXXX 0111.

3. Assign addresses to all microinstructions to be
executed following those using TEST ADDRESSING
where the "test fails” condition prevails.

4. Assign addresses to all microinstructions to be
executed by field selection addressing. If field selection
specifies test of the interrupt, byte address, shift, or
console step flags assign addresses to the microin-
structions to be executed in accordance with the
following restrictions:

Flag On Flag Off
Interrupt X XXXXXXXXO0 XXXXXXXX1
Byte Address X XXXXXXXX1 XXXKKKXXD
Shift X OEAXKKAXIX AXXXKKXOK

Console Step X XXXXXXXX b 3.9.9.9.4.9 $.0¢]

5. Recheck all field select and test addressing
microinstructions for addressing consistency. Prepare
a list of assigned addresses and corresponding
microinstruction numbers labels (keyed to the flow-
chart) to avoid duplicate assignments.

6. Other microinstructions may have their addresses
arbitrarily assigned by the programmer or the
assembler.

CAPABILITIES

2.3.5 Page Jump Addressing

The microinstruction specifies a branch to a location in
another 512-word page by executing a page jump. In this
case, a 13-bit address is generated which sets a new active
page number and specifies an address within that page.
The page number is specified by the TS field. The word
address is specified by field select addressing.

12|11l10‘9 817L6‘5|4|3|2

TS Address modified field
select addressing

IIO

Control store address
page jump

A Page Jump with memory is specified by the TF field equal
to 00; the SF field equal to 10; and the GF field equal to
X1XX,

A page jump without initiating a memory cycle is specified
by setting the TF and SF fields to zero, and the IM field =
0011.

2.3.6 Interrupt Addressing

When interrupts are allowed and an interrupt is active in a
class which is enabled by the TS field, the low-order four
bits of the control store address are supplied by the
interrupt logic and the high order bits from the AF field.

8|7|6|5l4 3|2Il|0
AF Il

A

1A is supplied by interrupt logic.
IHA is 7 for interrupts and 1 for second tests of interrupts
after initiation of the 1/0 interrupt sequence. Note: The
second test and (/0 start must occur together in the same
microinstruction.

The TS field enables interrupts whenever bits arc set as
follows:

Bit Set Enables

170 interrupts

1 170 interrupts only if memory
protection is installed

2 Memory protection interrupt

3 STEP, console step mode interrupt

2.4 MAIN MEMORY CONTROL

Memory access may be initiated in a microinstruction
which indicates the type of operation and the address

217

CAPABILITIES

source. Main memory access includes the fetching and
storing of data to and from the memory through the
memory buses. Memory can either be the core or
semiconductor variety (as distinct from the disc or drum
storage often called rotating memory, which is accessed as
a peripheral device through 1/0 facilities).

When a microinstruction initiates an access, the memory
control section handles the complete operation. This
permits the microprogram to initiate access to/from
memory and perform other functions (ALU etc.) while the
access actually occurs the microprogram can detect the
completion of the memory access by specifying a wait for
memory done.

Two different types of fetches can be requested. The
instruction fetch (IF) moves the contents of a 16-bit word
from main memory to the memory input register (MIR)
and the instruction buffer (IBR). The operand fetch (OF)
moves a 16-bit word to the memory input register and does
not change the instruction buffer. Instruction fetches are
usually used for fetching 16-bit macroinstructions for
decoding from the IBR. The operand fetch is used for
general data and address fetches. The microword which
requests a fetch provides the address in main memory.
After the request is made it is handled completely by
memory control and requires no further actions in the
following microinstructions.

Example of fetch sequence

n n+1 n+2
request wait for (data is
instruction memory ready for
fetch done use in MIR)

Memory requests to store data are of two types. The first is
the operand store (OS), which stores a 16-bit word in main
memory. The second is the byte store (BS), which stores
only an 8-bit byte. As with the fetch operations, the
microinstruction which requests the store must furnish the
main-memory address for the operation. Microinstructions
following the request for a store must provide the data to
be stored on the ALU until the memory operation is
complete.

Example of store sequence

n n+1 n+2

request store RO — ALU| (operation

using P as wait for complete)
address memory
done

During operand stores, the memory data are derived from
the ALU output. If the ALU input is from any of the 16
general-purpose registers and an arithmetic operation is

218

specified for the ALU, incorrect parity data may be stored
in memory. This situation can be avoided by using only
logical ALU functions during operand stores; or by
addressing the general-purpose register to the proper ALU
input during the microinstruction that initiates the memory
store cycle. Figure 2-4 is a coding example of an operand-
store sequence using an arithmetic operation with a
general-purpose register as the data source.

Completion of a memory operation is detected either with
the wait-for-memory-done function or by requesting another
memory operation. Wait-for-memory-done suspends mi-
croinstruction execution until the memory operation is
complete. Requesting another memory operation has the
same effect because microword cannot complete until its
memory request is acknowledged by memory control and
requests are not acknowledged until any previous request
is complete.

Override

An active memory access may have the type of operation
changed by the next microinstruction. By making an
immediate change the immediately prior action is overrid-
den. This can be conditional upon the result of the same
test available for addressing (GF field).

Example:

Microinstruction Microinstruction Microinstruction

Cycle n Cycle n+1 Cycle n+2
Initiate memory memory
memory store .store
store starts continues
override too late
possibie to override

Memory cycles may be initiated by microinstructions either
unconditionally or depending on the results of a test.

2.4.1 Unconditional Cycle Initiation

A memory cycle is unconditionally initiated or overridden
when the SF field equals 01 or if the SF field equals 10 and
the TF field equals 00.

The IM field specifies the type of operation and the address
source. Permitted operations are:

IM Value . Action

XX00 Read data from memory into the instruction
buffer and memory input register (instruction fetch).

XX01 Read data from memory into the memory input
register (operand or address fetch).

al-C

aouanbag ai0}g-puesad(ue jo ajdwexy Buwpo) ‘p-z 3.n3ig

$80C-111A

DAS CODING FORM

LABEL “loeeRatiON 1T " VARIABLE AND COMMENT FIELD T T T T T T T T T T T T T T iDENTIFICATION
MICRGI| IGEN _ 1o(#sAL jc |2CA$GPR) 2¢I~CR7)—#I'P(_R'N§)115(— $6) ;. 1. T
- ,_,_-_._._.__VQHtB$GPR Rie) 56 CHEMC) N [
¥THIS MICRZ INLITTIATES A STPRE| MEMPRY CYCLE USING AN ADDRESS r:wm RG
,*IT ALls|p PRE ADDRESSES R7 WHIICH WILL BE USED IN THE NEXT MICR¢#]
qug{z GEN | [/#.6(SPECY i OQWATTHDY ,T#CADD) , 11 (sqssmc)*,*zsgma), ’ 1
T i 2(a$ePRr)’ 24-CR : ,
®THIS MICRY PRAVIDES THE DATA Tgs BE ST¢R.E‘D_ BY ADDING THE C¢NTENTS | J
¥PF R7 [T@ MIR e S RS
. . o ! ' ol L L
e e e e | [] i : ; (I e !
: i T I o \ ! i l T ! C ! .
T T . . S U S U S i I i L .
_____________ -
e ——— - - - P 1 . | L 1
e Ve — [B S i [Lo . .

S3LINEYdYI

CAPABILITIES

IM Value Action

XX10 Write the full word output of the ALU into memory.

XX11 Write the byte from the ALU specified by the byte
address flag (BYTA) into the corresponding memory
byte. The other memory byte at the designated word
address is unaffected. If BYTA is false, the left byte is
written. If BYTA is true, the right byte is written.

BYTA, the byte address flag, copies bit 0 of the general
register specified by the AA field whenever a general-
purpose register is specified as shifted input to the
ALU input A bus.

The operation may be changed by the following microin-
struction by specifying the new operation with the tM field
equal to 00XX. This permits, for example, conversion of a
store cycle into a fetch or an instruction fetch into an
operand fetch.

The data to be written to memory must be maintained at
the ALU output by the microinstruction(s) following
initiation until the cycle is complete.

The source to be used for loading the memory address
register is specified as follows:

IM = 01XX ALU output
IM = 10XX Program counter
IM = 11XX Memory input register

2.4.2 Conditional Cycle Initiation

A memory cycle may be initiated (or overridden) or not
depending on the results of a test specified by the GF field.
Conditions tested were described previously in the section
of test addressing.

If the TF field is not equal to 00 and the SF field equals 10,
the cycle will be initiated (or overridden) if the tested
condition is false.

If the SF field is equal to 11, the cycle will be initiated (or
overridden) if the tested condition is true.

In either case, the IM field specifies the operation to be
performed and the address source to be used as described
in the previous section.

2.4.3 Special Transfer

ALU output data may be transferred to the instruction
buffer and memory input register by using the memory
data bus. This does not involve activation of any memory
module. To initiate this transfer the SF field must be equal
to 00 and the IM field equal to 0100. The ALU output data
must be set up by the initiating microinstruction and
maintained for one more microinstruction.

2:20

2.4.4 Wait for Memory Done

The wait-for-memory-done function suspends microinstruc-
tion execution until memory control signals completion of
central control's prior request. This function is SF = 0 and
IM = 0001. if no central control has no prior request
active, the wait-for-memory-done has no effect.

Table 2-8. Memory Operations

Control Field
Function SF TF IM
UNCONDITIONAL INITIATION 01
or
L1000
CONDITIONAL INITIATION)
Condition True 11
Condition False 10 INot 00
(Condition Specified in GF)
EITHER
Operation XX00
Read memory data into
instruction buffer and
memory input register
Read memory data into XX01
memory input register
Write ALU word output XX10
Write ALU byte output XX11
Address Source or Override
Override operation 00XX
ALU output 01XX
Program counter 10XX
Memory input register 11XX
SPECIAL TRANSFER
(ALU output to instruction 00 0100
buffer and memory input
register)

2.5 MICROPROGRAMMING EXAMPLE

General

As an example of instruction implementation using
microprogramming, the steps of a single-word address-
ing load accumulator LDA in the direct address mode will
be traced.

SS1M

Initially the instruction pipeline is assumed to be empty so
a new instruction must be fetched from main memory. The

tirst microinstruction studied will be that obtained from
control store location 13E (all addresses are given in
hexadecimal). This location has the label SS1M, which is
one of the microprogram's standard states.

The microinstruction fields at 13E are:

TS AF MS MT FS TF SF GF
0000 01001 0010 0 0000 00 0%t 0000

MR AB IM LB LA RF FF MF
0 00 1000 00 00 00O 0000 O

CF WR SC VF WF XF SH BB AA
00 0O p O O 00 000 0000 0OOO

The function of this microinstruction is to initiate an
instruction fetch from the memory address specified by
the program counter. Note that the SF field equal to 01
specifies unconditional initiation of the memory cycle. The
IM field specifies use of the program counter for an
address source and the instruction buffer and memory
input register as destinations for data received from
memory. The FS, MT, TS and TF fields contain all zeros so
normal mode addressing is specified. The next control store
address will be 092. No other fields of the microinstruction
are pertinent.

SSs2M

Location 092 is another microprogram standard state
labeled SS2M. It continues the process of filing the
pipeline by initiating another instruction fetch using the
incremented contents of the program counter.

The microinstruction fields at 092 are:

TS AF MS MT FS TF SF GF
0000 00010 1101 0 0000 00 01 0000

MR AB IM LB LA RF FF MF
0 00 1000 00 00 100 0000 O

CF WR SC VF WF XF SH BB AR
00 0 0 O O 00 000 0000 0000

Again the SF field is equal to 01 and the IM field is equal to
1000 specifying another instruction fetch using the
program counter. In this case, however, the RF field equals
100 specifying that the program counter will be incre-
mented before it is used an address. This microinstruction
will not be immediately executed as the previous microin-
struction initiated memory activity and the memory

interface will remain busy until the first instruction from
memory is loaded into the instruction buffer and the
memory input register. At the time, the current microin-
struction completes and the next microinstruction from

location 02D becomes active. Normal addressing occurs
again due to FS, TS, MT and TF fields being zero. No other
fields of the microinstruction are pertinent.

CAPABILITIES

SS3M

Location 02D is another microprogram standard state
labeled "SS3M". It causes decoding of the instruction
fetched from memory while checking for interrupts. it also
copies the instruction buffer into the instruction register to
make room for the next instruction from memory.

The microinstruction fields at 02D are:

TS AF MS MT FS TF SF GF
1110 01101 0110 0 0000 00 00 0101

MR AB IM LB LA RF FF MF
0 00 0110 00 00 000 0000 O

CF WR SC VF WF XF SH BB AA
00 0 0 0 O 00 000 0000 0000

This microinstruction manipulates no data paths nor does
it initiate any memory cycles. Its sole purpose is to check
for interrupts and, if there are none, cause a branch to the
required microsequence. The TF field is equal to 0 and the
GF field bit 0 is a one causing data transfer from the
instruction buffer to the instruction register. With the SF
field equal to 00 and the GF field bit 2 equal to one,
interrupts and decoder addressing are enabled. The TS
field defines the interrupts which are enabled - all except
170 interrupts unless the memory protect option is
installed. The IM field specifies selection of the interrupt
flag. tf this flag were set, interrupts would be suppressed.
The flag is reset by this microinstruction. If an interrupt
were active and the interrupt flag had not been set, the
next control store address would be ODX where X
designates the four bits supplied by the interrupt logic. This
would produce a branch to the interrupt microprogram
sequence.

Assuming no interrupts are present, the new control store
address will be determined by the decoder logic. The
instruction fetched from memory is assumed to be 10F9
(hexadecimal) or 010371 (octal). This is a V73 "LDA"
instruction with direct addressing of location O0OF9 (hex-
adecimal). The most significant four bits of the instruction
buffer address the first decoder control store at location
one. The next four bits address the second decoder control
store at location 00. The decoder control store contents
are:

1st decoder

Control store Bl12 = 1
location 1 B8-BO = 110000010
2nd decoder

Control store A8-A0 = 010000000

location O
Since Bl2 equals 1, the B8:BO and AB-AO address

components are logically ORed to produce an address of
182.

2-21

CAPABILITIES

SWA10

Location 182 contains the first microinstruction of the
single word addressing sequence (SWA10) for the
instruction fetched from memory. It forms the effective
address by masking bits 00 through 10 from the
instruction register. It also initiates the operand fetch.

The microinstruction fields at 182 are:

TS AF MS MT FS TF SF GF
0000 10010 1111 0 0000 00 01 0000

MR AB IM LB LA RF FF
0 00 0101 10 00 011 1010

MF CF WR SC VF WF XF SH BB AA
1 11 1 1 0 0 00 000 0000 0000
t 0

= == === -~ 16-bit mask literal~==------

The LB field equais 10 so the ALU B input bus will have the
contents of the instruction register masked by the 16 bits
of the MF, CF, WR, SC, VF, WF, XF, SH and BB fields (a
zero in the mask enables the corresponding instruction
register bit). The mask equals FB0O so the low order 11 bits
of the instruction are used.

The ALU mode is determined by the FF field (1010) in
conjunction with the LB field (forces logical mode)
resulting in an ALU function of the ALU = B.

The RF field equals 011 so the ALU output is copied into
the operand register.

The SF field equals 01 so unconditional memory control is
specified by the IM field (0101) to be fetch an operand
into the memory input register using the ALU output for
an address source. This microinstruction will complete
when the memory cycle initiated by the microinstruction at
092 completes.

The FS, TS, TF and MT fields all contain zeros so normal
addressing is used and the AF and MS fields specify the
next control store address of 12F.

SWA20

Location 12F contains the second microinstruction of the
single word addressing sequence (SWA20). It decodes bits
13-15 of the instruction register contents to determine the
class of the single word addressing instruction.

The microinstruction fields at 12F are:

TS AF MS MT FS TF SF GF
0000 11110 1100 1 1111 00 00 0000

MR AB IM LB LA RF FF MF
0 00 0000 00 00 000 0000 O

2-22

CF WR SC VF WF XF SH BB AA
00 0 0 O O 00 000 0000 000O

No data manipulation or memory control operations are
performed by this microinstruction. It serves only to
branch to the specific microsequence for the class of
single-word addressing instruction contained in the
instruction register. Field select addressing is used to
perform this decoding (FS field is not equal to 0000). The
FS field is equal to 1111 so the seiected field is bits 11
through 15 of the instruction register. The composite:
address formation is illustrated:
876543210
AF field contribution: 111100000
or=111100000

TS field contribution: 000000000
Field selected from
instruction register:
(I = 10F9)

000000O0Q10
and = 000000000

Mask consisting of MT 000011100

and MS fields

Final eftective address
produced by inclusive or

i11100000

The address of the next microinstruction is then 1EO.

LDA1

Location 1EO is the first microinstruction specific to the
LDA instruction (LDA1).

This microinstruction increments the program counter and
initiates another instruction fetch from main memory.

TS AF Ms MT FS TF SF GF
0000 01011 0101 0O 0000 00 01 0OOO

MR AB IM LB LA RF FF MF
0 00 1000 00 00 100 0000 O

CF WR SC VF WF XF SH BB AA
00 0 0 O O 00 000 0000 0000

The RF field equals 100 specifying that the program
counter will be incremented during this microinstruction.

The SF field equals 01 so unconditional memory control is
specified by the IM field (1000) to fetch an instruction into
the instruction buffer and memory input register using the
program counter for an address source. (Note that the

program counter is incremented during the microinstruc-
tion so the new value will be used for the memory cycle).

Normal addressing is used to specify the next microinstruc-
tion address (TF, TS, FS, MT fields are all zero). The AF
and MS fields define the address to be 0B5.

LDA2

Location 0B5 is the second microinstruction specific to the
LDA instruction (LDAZ2). This microinstruction transfers
the contents of the memory input register to the
accumulator, RO; transfers the instruction butfer contain-
ing the next instruction to the instruction register to make
room for the instruction whose fetch was initiated by the
microinstruction 1EQ; decodes the instruction buffer to
determine the starting address of the next microsequence
and checks for interrupts.

The microinstruction fields at OB5 are:

TS AF MS MT FS _ TF SF GF
1111 01101 0110 0 0000 00 00 0101

MR AB IM LB LA RF FF MF
0O 00 0110 01 00 000 1010 1

CF WR SC VF WF XF SH BB AA
00 1 0 O O 00 000 0001 0000

The ALU B input is specified by the LB field (equal to 01) to
be one of the special registers. The BB field (equal to
0001) defines the memory input register as the source.

The ALU operation is specified to be in the logical mode
(MF = 1) with the ALU output equal to the ALU B input
(FF = 1010).

The WR bit equals a one so the ALU output data will be
written into the register specified by the AA field (AA =
0000) which is the accumulator (A register). This is the
execution phase of the LDA instruction.

The SF and TF fields are both equal to 00 and the GF field
bit O is a one so the instruction buffer contents are copied
into the instruction register. The GF field bit 2 is a one so
the instruction decoder is enabled and interrupts are
checked.

The IM field equal to 0110 with the SF field equal to 00
selects and resets the interrupt flag. If the flag is set, the
decoded address and interrupts are suppressed and the
next microinstruction is fetched from location 0DO. All
interrupt classes are enabled as the TS field contains all
ones. If an interrupt is active and the interrupt flag is off,
only the decoded address is suppressed and the next
microinstruction is fetched from the address specified by
the AF field and the interrupt logic. This address is O0DX
where X is the address supplied by the interrupt logic
(X#£0).

If no active enabled interrupts exist, the next microinstruc-
tion will be fetched from the address specified by the

CAPABILITIES

SSTM (13E)

INITIATE INSTRUCTION

FETCH USING P

$52M v 092)
INCREMENT P

INITIATE INSTRUCTION
FETCH USING P

553Mm v (02D)

DECODE INSTRUCTION
BUFFER

TRANSFER BUFFER TO
INSTRUCTION REGISTER

ENABLE INTERRUPTS

SELECT AND RESET
INTERRUPT FLAG

SWA10 v (182)
INSTRUCTION REGISTER
BITS 00 THRU 10 ALU
LOAD OPERAND REGISTER

START MEMORY OPERAND
FETCH USING ALU

SWA20 v (12F)

FIELD SELECT INSTRUCTION
REGISTER BITS 13 - 15

I = 000
13-15

LDAI ! (1E0)
INCREMENT P

INITIATE INSTRUCTION
FETCH USING P

LDA2 v (0B5)

COPY MEMORY INPUT
REGISTER INTO RO

TRANSFER BUFFER TO
INSTRUCTION REGISTER

DECODE INSTRUCTION
BUFFER

SELECT RESET INTERRUPT
FLAG

VTii-1938

Figure 2-5. Flowchart for LDA Instruction

DECODED SINGLE WORD
ADDRESSING INSTRUCTION

223

CAPABILITIES

I0ENT SSIM $52M SSIM SWAI0 SWA20 LDA1 LDA2
(HEX. ADDR.) (139 (92) 20 (182) (12F) (1€0) (085)
FUN N FETCH FETCH FETCH FETCH FETCH FETCH
UNCTIO LDA NEXT INST. NEXT INST, OPERAND OPERAND THIRD INST.
%
Q |reQuest i IF OF IF
b
=
ADORESS P 3 ALU P
INPUT A
INPUT 8 1 A O7FF MIR
2
QUTPUT TRNB TRNB
DESTINATION RO
2 | SAMPLE
2
h
v lrest
FIELD
MODE DECODE SELECTION DECODE
o 13115
z
[l
a
g oa
LDA1+X
a FROM _ FROM
< | ADDRESS SS2M SSIM DECOOER SwWA20 ;VF:E:E X 2-8 LDA2 DECODER
- ENABLE 1BR— |
& | sPECIAL INCP INTERRUPTS INCP ENABLE
5 [ACTIONS 1BR—> 1 INTERRUPTS
NOTE:

Timing diagram shows the start-up and execution of a sequence of single-word addressing instructions (330 nanosecond

memory cycle time is assumed). -

VTIH-2084

decoder control store logic. If the instruction buffer
contains another single-word addressing instruction, the
next address will be 182 (SWA10) and the sequence will be
repeated.

Figures 2.5 and 2-6 show a flowchart and flow diagram of
the microinstruction sequence described. Note that the
pipeline effect of buffering instructions permits efficient use
of the memory. (A 330-nanosecond semiconductor memory
was assumed).

2.6 TIMING CONSIDERATIONS

Most microinstruction operations take place at the conclu-
sion of the cycle. Certain exceptions do exist. ALU inputs
are sampled at the midpoint in time of the cycle. Control-
store address information, memory addresses, and most
register and flag changes occur at the end of the
microinstruction execution. The areas below should be
considered while planning microprograms.

Program counter incrementation (RF = 100 or 111)
Incrementation takes place at the midpoint of the

224

Figure 2-6. Flow Diagram of LDA Instruction

microinstruction. Thus the program counter value
applied to the ALU input will not be the incremented
value. The new value will be used as a memory
address, if the program counter is specified as an
address source.

Byte address flag
The byte address flag is set or reset at the temporal
midpoint of the microinstruction. Thus, it can be al-
tered in the same instruction which requests a byte
store and its new value will determine which byte of
the memory location is to be altered.

Memory write operations

ALU inputs, function, mode and carry must be
maintained constant throughout any memory write
cycle. This is accomplished by specifying another
memory cycle immediately following the current cycle
thus interlocking execution of the next microinstruc-
tion with completion of the memory cycle in progress
or by using the wait for memory done function (SF =
00, IM = 0001).

Memory Input register .
The memory input register (M{R) should not be used
as an ALU input if it can receive a new value from

memory during that instruction. Thus, the MIR should
not be used as an ALU input by an instruction which
causes a wait for memory done to complete a memory
fetch. It the microinstruction which immediately fol-
lows a fetch request does not result in a wait for
memory done, it can apply the MIR to the ALU and
obtain the old value. Subsequent instructions can not
obtain the old value and the new value can not be
applied to the ALU until the instruction following
memory completion.

Note that the above discussion only applies to the
MIR as an ALU input. The MIR can be used as a
memory address source during the same instruction
in which it is changing. In this case, the new value
just received from memory will be used as the memory
address.

Special transfers
The transfer of ALU data to the instruction buffer and
memory input register requires ALU data to be
maintained for two microinstructions.

170 operations
If the |70 section is not idle when a new |/0 operation is
specified, microinstruction execution will not occur
until the 170 becomes idle. A wait for 1/0 done
function (SF = 00, and IM = 0010) will cause a
similar wait condition until the 170 DN bit becomes
true.

Use of the 1/0 register
If direct memory access or similar 170 operations are
possible the 170 register may be altered. Care in use of
this register is indicated. Control of the 170 register is
described in the 170 section of this guide.

2.7 ADDITIONAL CAPABILITIES

2.7.1 Register Field Control

Many types of instruction words contain fields which
specify registers which contain operand data. If all
combinations of operations on all possible registers had to
be specified by individua! microinstructions, the control
store size would be quite large.

A V70 series system permits three- or four-bit fields to be
selected from the instruction register and stored and
maintained in the control-buffer-register specification
fields. This permits a single microinstruction to handle ail
combinations of registers for any operation.

CAPABILITIES

This register field extraction is performed independently of
the field select addressing function and both may be used
simultaneously.

The AA and BB fields of the microinstruction contained in
control store are copied into their corresponding positions
in the control buffer any time the AB field equals 00 and
the MR field equals 0. This is the normal mode of
operation,

When the SF field equals zero and no I/0O request is
active, and the AB field equals 01 or 10: the TS field
specifies a 4-bit field of the instruction register (in the
same manner as field select) to be loaded into the controi
buffer's AA or BB field. The control buffer field not being
loaded will be maintained at its last value. A code of AB =
01 loads the selected field into the BB field. A code of AB
= 10 loads the selected field into the AA field.

The MR bit is used to mask the most significant bit of the
(TS) selected field. If MR = 0, the most significant bit of
the selected field will be treated as zero. If MR = 1, the
most significant bit of the selected field will be loaded
into the designated control buffer.

The AA and BB fields can be maintained in their current
state by specifying an AB field equal to 11 while the SF
field equals 00 and no 170 request is present.

I1f no 170 request is present, the AB field equals 00 and the
MR field equals 1, the control buffer AA field will be
maintained at its current value and the BB field will be
forced to either of two addresses depending on data loop
conditions and the WF field.

WF field equal to 1

Operand register bit 01 1, BB = 1111

0. BB = 1110

Operand register bit 01
WF field equal to O
ALU bit 15 = 1, BB = 1111

ALU bit 15 = 0; BB = 1110

This function is used by the V70 series standard
instructions microprograms for muitiply and divide.

Register field control operations are summarized in the
tables following.

2-25

CAPABILITIES

Table 2-9. Register Field Control

Function

SF

AB

Control Fields
MR

TS

WF

Load A and B fields from
control store

Inhibit loading of A field
and place selected 4 bit
field (masked) from in-
struction register into

B field

Inhibit loading of B field
and place selected 4 bit
field (masked) from in.
struction register into

A field

Inhibit loading of A and
B fields

Inhibit loading of A field
and force B field to 1110

if ALU output bit 15 = 0 or
to 1111 if ALU bit 15 = 1

Inhibit loading of A field

and force B field to 1110

if operand register bit

01 = 0 or to 1111 if operand
register bit 01 = 1

All functions are inhibited
if an /0 request is issued.

00

00

00

00

00 0

10 Mask most

00

Selects
field

Mask most
significant
bit of BB field

Selects
significant field

bit of AA field

Table 2-10. Register Field Selection

Bits Selected From
Instruction Register

TS Fieid for register file
000 03 02 01 00
001 04 03 02 01
610 05 04 03 02
011 06 05 04 03
100 07 06 05 04
101 08 07 06 05
110 09 08 07 06
111 10 09 08 07

Other Controls

Transfer instruction buffer to instruction register
The contents of the instruction buffer will be transferred to

the instruction register when TF and SF both equal zero,
and GF has a low-order bit set to 1.

226

Enable Jump Signal

A signal is sent to the memory-protection option designat-
ing a jump instruction by setting the LB high-order bit to
zero and the SC field to zero and the XF field equal to 11 or
10. If the XF field equals 11, the interrupt flag will be reset.

Reset Interrupt Flag

The interrupt flag will be reset if the LB field equals 00 or
01 and the XF field equals 11 or 0l. When set, the
interrupt flag prevents interrupts.

Enable Special ALU Mode

(This feature is useful for the standard instruction set, but
not generally suggested)

The ALU mode, carry input and overflow sampling may be
forced according to the contents of the instruction register
by setting the LA and LB fields equals to either 00 or 01

(high-order bit equals zero) and the SH high-order bit
equal to 1. In this case, the ALU function will be as follows:

Bit

3 As specified by FF field

2 most significant 2 bits
1 instruction register bit 7
0 Instruction register bit 7

complemented .

2.7.2 Memory Addressing to 64K

The standard instruction set has addressing capability to
32K- words with 15-bit addresses. The use of bit 15 to
select indirect addressing mode removes it from use as an
address bit. The memory modules can recognize a 16-bit
address which increases the range of addresses to 64K
words.

The most significant bit of the memory address bus is
normally grounded to prevent any address generated by
the standard instruction set from attempting to access
above 32K words. This is necessary since the high-order bit
can be set by indirect memory reference in the host
instruction set.

The WCS permits use of the full 16-bit addressing
capabilities of a Varian 70 series system. This enabling is
automatically inhibited while executing from page zero so
standard 620 problems will execute correctly in the lower
32K words of memory.

User-written microprograms in the WCS can generate 16-
bit addresses to cause access to the full 64K words. This
mode is enabled or disabled with a group of control fields
“in the microinstruction. Once enabled this mode s
retained until explicitly disabled as described below or a
system reset occurs. The enabled mode is not effective
when page zero is active.

64K Mode of Memory Addressing

Enable Disable

SF=0 SF=0

TF=0 TF=0
IM=1101 IM=1101
LB=11 IB=11
MF=1 CF=11 or 10

Changing the memory mode requires all the
conditions set as indicated. Figure 2-7 illus-
trates memory bus control.

2.7.3 Memory Bus Lockout Status

Systems in which multiple processors share the use of
common memory modules often require the capability of

CAPABILITIES

SYSTEM RESET

64K
ADDRESSING
DISABLED

ENABLE

64K
ENABLED
IF PAGE 0O

MICROPROG
DISABLE

() ENABLE= IM= 1101A(T=0) A
(S=0)A (LB = 11) A(MF = 1)

(@D DISABLE= (M= 1101)A (T = 0)A
(S=0)A(LB=11)A(C = 10VIT)

VTii-1806

Figure 2.7. Flowchart of Memory Address Control

testing the contents of some memory locations and
modifying those contents (if the results of the test indicate)
without the possibility of another processor gaining access
to that location between the test and the change.

WCS Implementation

The WCS permits use of a function allowing the processor it
controls to temporarily lockout all memory modules
connected to its memory bus. While the memory system is

2:27

CAPABILITIES

locked out on one port, no accesses are permitted on the
other port. To prevent simultaneous lockout from both
processors the lockout mode for any memory bus only
becomes enabled when the requesting bus actually gains
access to the memory (so the other bus cannot establish
the lockout mode). The memory lockout mode is set or
reset with the following microinstruction fields:

Set Reset
Field LOCKOUT LOCKOUT
SF 0 0
TF 0 0
IM 1101 1101
LB 11 11
CF X1 X0
AA XXX0 XXX1

X indicates a bit position not involved in this operation.

If priority memory access (PMA) is present in the system,
caution must be exercised to prevent the PMA from
establishing its own lockout mode while either processor is
in lockout mode. Simultaneous lockout would prevent ali
further accesses to memory and "lock-up” the system.
Figure 2-8 illustrates memory bus lockout.

Lockout is removed by system reset.

2.7.4 Stack Use

Three stack operations, branch/push, branch/pop and
branch/delete are used on the microprogram-return stack.
All are global and effect a page selection. On the branch/
push and branch/delete, the TS field gives the new page
number. On the branch/pop, the word at the top of the
stack gives the new page number. The return address
which is pushed is an independent 13-bit specification

PROCESSOR

A MEMORY

PROCESSOR
B

t)

PORT A

)

PORT 8

MEMORY BUS LOCKOUT STATUS

MEMORY CYCLES
PERMITTED

PROCESSOR A
ACCESSES
FOR TEST

PROCESSOR A
MODIFIES

VTIii-1808

MEMORY CYCLES
FORBIDDEN

PROCESSOR A
ACCESSES
FOR TEST

PROCESSOR B
ACCESSES
FOR TEST

l

PROCESSCR A
MODIFIES

Figure 2-8. Memory Bus Lockout

228

provided by mask tield of microinstruction from the
destination of the branch. The 13-bit specification is made
up from the following fields of the microinstruction:

PAGE Word

1211111049 8 7 654 3210

WR| SC | VF [WF XF SH BB

All stack operations have a value of zero for the SF and TF
fields, IM set to 1101 and LB set to 3. Push requires bit 1
of the AA field set to 1. Pop is designated by bit 2 of the AA
field set to 1 and bit O of the BB field set to 0. Branch/
delete is the same as branch/pop except bit 0 of the BB
field is set to 1.

TF SF M LB AA BB

Branch/push 0 0 D 3 bitl
=1
Branch/pop 0 0 D 3 bit2 bit0
=1 = 0
Branch/delete 0 0 D 3 bit2 bit0
= 1 =1

In initializing the stack an error branch can be pushed into
the first location. If a microinstruction tries to "pop" this
return, an underflow condition will occur and the error
branch will be taken. An attempt to ""push’' one more level
than the sixteen allowed causes a branch to the address at
stack location zero.

In addition to pop and push operations on the stack, a
stack entry delete operation is provided. This causes a
page branch to the address specified by the processor and
deletes one entry from the top of the stack.

All stack return addresses including the error return are

restricted to the WCS. This avoids conflicts with processor-
generated addresses during the pop operation.

Questions and Answers About Microprogramming Stack

Q: The WCS stack push and pop operations do not appear
to be mutually - lusive. If both are specified, would the
stack first pop the new address then push the return
address?

A: Such an operation is undefined and should be avoided.
Q: Do micro stack operations proceed at full speed?

A: The stack operates at the same speed as other writable
control store operations -- 190 nanoseconds.

2.7.5 Memory Addressing Using the
Optional Memory Map

The memory-map key register (used by VORTEX Il) cannot
be easily modified from the WCS. As an option, the memory

CAPABILITIES

map can be wired to operate with the processor key
register. This mode is not supported by standard Varian
software. The following paragraphs describe this special
mode of operations.

The processor key register is four bits which may be applied
to the ALU input bus B as part of the status word. It is
loaded from ALU output bus bits 12-15 and applied to the
memory address bus as a four-bit extension to the 15-bit
memory address register. The key register provides bits 15-
18.

18 17 16 15|14 0

key register Memory Address Register
memory map input
19 bits

when 64K mode is enabled, bit 15 of the memory address
register is also ORed into the effective map input bit 15.

During memory cycles initiated by 1/0 (DMA), the 170 key
register is applied instead.

Care must be taken in using the processor key register as
an input to the ALU input bus B. No 1/0 initiated memory
bus activity must take place during application of the
status word or the vaiue of the 1/0 key register may be
used instead of the processor key register.

2.7.6 Memory Protection

If the memory protection is enabled, write operations are
automatically inhibited. A memory-protection internal
interrupt is generated as well as an |/0 interrupt request.
The memory-protection option may be disabled only by
appropriate 1/0 instructions, not by microinstructions. Care
must be taken in using the memory protection if more
than 32K words of memory are to be addressed (bit 15 of
memory address is enabled). Such use is very specialized
and should only be undertaken after consultation with
Varian Data Machines.

2.7.7 Address Comparator Logic

Address comparator logic is ;.tovided in V70 series
processors to prevent erroneous operation in theeventa
store instruction stores data into the next memory loca-
tion in the program (macro). Erroneous operation would
occur because the processor fetches the contents of the
next memory location (n + 1) before the execution of the
current instruction (at location n) is compieted. The
comparator logic compares the address from the
program counter with the address from the memory
address lines. |f the addresses are equal, the comparator
logic generates an equal-address flag (MPLE) which
enables the memory contents already fetched into the
processor's instruction buffer to be updated.to the new
contents stored by the store instruction.

2-29

CAPABILITIES

A store instruction can thus cause a dynamic alteration
to the original program flow. An example where this dynamic
alteration would be useful is in forming a BCS macroin-
struction in which the address is located in the A registar
and the operation code is located in a memory location.
The A register is combined with the memory location to
produce the BCS macroinstruction. By using the STA in-
struction with direct addressing into location n+1, the
A-register contents are stored in location n+1 and are
processed as the next instruction in the program.

The following items should be considered when micropro-
grams involving a store instruction are written:

a. The instruction buffer is modified if the address in the
program counter equals the address on the memory
address lines and a non-memory accessing microin-
struction is executed during the store operation (no
back-to-back memory operations).

b. The instruction buffer is modified if the address in the
program counter equals the address on the memory
address lines and either a memory accessing microin-
struction or a wait-for-memory done condition follows
the store operation (back-to-back memory operations).
This type of operation is shown in the diagram below:

Microinstruction
being executed

Previous micro- | Start memory | Memory-accessing

instruction for store microinstruction
operation
Memory operation |
being performed |
|
Unknown Store operation

|
] |
Program counter is equal to memory
address here |
E :
MPLE flag is generated due to equal
addresses

|

Program counter may no
longer equal the memory
address, but MPLE flag 1s
still active and the in-
struction buffer is modi-
fied anyway.

c. If microprograms are written for a user-defined mac-
roinstruction set and dynamic program alteration
occurs, all store operations should be followed by a
non-memory accessing microinstruction so that the
MPLE flag can test for equal addresses. Any modifi-
cation to the program counter during execution of the

2-30

store operation should be avoided. This type of opera-
tion is shown in the diagram below:

Microinstruction
being executed

Start memor Non-memory
for store op-y accessing Next

> micro- microinstruction
eration instruction

e

Memory operation
being performed

Unknown Store operation

MPLE fiag tests for equal
addresses.

2.7.8 MIRS Test

If the shift counter bit 2 is true, then the MIRS test always
sees a zero for MIR sign even when it is a one. This is
implemented in the hardware to limit indirection to 4 levels
in the 620 emulator ROM. '

2.8 QUESTIONS ABOUT
MICROPROGRAMMING CAPABILITIES

Q: If a current memory cycle is to alter the memory input
register, and the memory input register is specified as
the memory address source by the current microin-
struction (awaiting memory cycle completion), are the
old or new contents of the memory input register
used for the next cycle's address? Does the
situation change if the memory input register is an
ALU input and the ALU is selected as an address
source? Does the WCS clock rate affect this?

A: The new value of the memory input register is used
when the memory input register is used as an address
source. The memory input register should not be used
through the ALU to determine the address of the next
memory cycle when it can be altered by the current
memory cycle. The WCS clock rate does not affect
this.

Q: What is the standard entry point to branch to when an
interrupt is detected ?)

A: Interrupts, when enabled, cause a branch to the
address specified by the AF field and interrupt address
supplied by the 1/0 control. Standard 1/0 interrupts
supply an address component of 0111 to the least

significant four bits. The most significant five bits are
specified by the user (AF field) and may be anywhere
in the currently active ‘control store page. At that
address, the microprogram should perform the func-
tions of the V73 IWAIT microinstruction (location OD7
on page zero) and then branch to INT1 (OD1 page
zero) or perform in the current page the functions of
INT1, INT2, INT3 and INT4.

Q: Is data in the memory input register protected against
DMA and PMA operations ?

A: Yes, DMA and PMA operations do not alter the memory
input register. '

Q: When reading data from memory is the data available
in the memory input register at a fixed number of

CAPABILITIES

microinstructions following memory initiation, or
must a wait for memory done be placed before using
the data or starting another memory cycle ?

: Data arrives in the memory input register no sooner

than the second microinstruction after its initiation. it
may arrive after that. The access time depends upon
DMA or PMA or other memory bus cycles, semicon-
ductor memory refresh cycles or core memory rewrite
cycles in progress at the time. If a new memory cycle
is to be initiated immediately following completion of
the current cycle, interlocking is automatic as the
execution of microinstructions will cease until the new
cycle initiation is accepted by memory control.
Otherwise a wait-for-memory-done function must be
specified.

2-31

SECTION 3
TECHNIQUES

This section describes the use of flow diagrams in writing
user microprograms and the interface with the 620
emulation microprogram. Several detailed examples of flow
diagrams for sample microprograms are included here.
These examples will be continued in iater sections, where
the flow diagrams will be translated into assembly
language. ’

3.1 INTERFACE WITH 620 EMULATION

3.1.1 Execution of User Microprograms

Branch to Control Store implementation

The BCS instruction causes a branch to the WCS and
always goes to page 1. The control store word in page 1 is
specified in bits O - 4, allowing a branch to one of the first
32 words, which contain vectors to microprogrammed
routines. The BCS instruction is a special coding of an 1/0
instruction and, as such, is not a generic mnemonic within
the DAS assembler language. This instruction for use in
symbolic DAS coding must be defined by the user.

The BCS word format is:

15 14 13 12 11 1

0 9
t 0 0 ¢ 1 01

8 7 6 543 2 10
O pppPxX X X X %X
where bits 0 through 4 specify the address in the CCS ot
WCS module 1: bits 5 through 7 (ppp) are available for

programmers.

The BCS macro is decoded directly on the WCS page during
primary decoding time as defined by the processor logic. A
BCS is performed only if decoder control store page O is
currently selected. Any other control store selected causes
the macro to be taken as part of a different instruction set.
The BCS page branch does not change the decoder control
store selection. A local page-branch micro-operation can
change the selection of a decoder control store to page 1.

The BCS instruction format is
BCS: 00010001010aaabbbbb
where aaa is the microprogram parameter (a 3-bit field)

and bbbbb is the address on WCS page 1 manipulated
upon entry to the contro! store.

3.1.2 Steps in Instruction Execution

The following are the general stages in the execution of a
16-bit macro instruction:

1. A microinstruction initiates an instruction fetch.

2. The instruction is transferred from memory to the
instruction buffer.

3. The instruction is copied into the instruction register
and a request is made for a decoding of the instruction
buffer contents. This decoding simply identifies the
instruction to be a member of a certain class of
instructions and eftectively causes a branch to a
microroutine which does any work common to that
class; for example, single-word memory-addressing
instructions may use the same microroutine for
computing the effective memory address.

4. Secondary decoding of the instruction determines its
exact identity. This is done by such features as field-
selection addressing, which allows using bits from the
instruction register to determine a microprogram
branch address. Using such methods. the mucroin-
structions which complete the actual execution of the
instruction are reached.

5. Microinstructions which form the instruction are
executed.

3.1.3 Instruction Pipeline

in V70 series computers, the term instruction pipelining
refers to the technique of fetching the next instruction
from memory before the current one has finished execut-
ing. This is possible due to the availability of two 16-bit
registers for holding instructions. The first is the instruc-
tion buffer (IBR), which receives the instruction being
fetched from memory. In IBR the next instruction is held
while the current instruction being executed is in the in-
struction register (). When ready, the instruction buffer
is transferred to the instruction register and the next in-
struction may be fetched from memory.

The chief advantage of this method lies in the fact that the
microinstructions are much faster than the fetches from
memory.

Thus, without the pipeline, a one or two microinstruction

delay would be added to the execution of each instruction
while the processor waited for the instruction from memory.

31

TECHNIQUES

Interfacing with the Pipeline

The instruction pipeline is crucial to the execution of the
standard instruction set. Thus, any new instructions being
added through microprogramming must consider and be
cautious of the effects and requirements of the pipeline.
Because of the pipeline, user's microroutines in WCS can
rely on certain things being true when they receive control
from page zero. Likewise they must make sure certain
techniques are used when they exit to read-only memory.

Upon entry to WCS by a BCS instruction, the following
conditions exists:

a. The program counter (P) is pointing to the word
following the BCS.

b. The BCS command will be in the instruction register.

c. The word following the BCS wili be on its way from
memory to the instruction buffer and memory input
buffer.

d. Inthe V70 through V74 series computers, registers 3
and 5 are set to all zeros and all ones respectively. In
the V75, V76 and V77-400 computers, registers B
and C have these values. (See section 3.1.6.)

On exit from WCS the microprogram must set conditions
for the next command, and maintain the pipeline. in
particular the following are required:

a. The next instruction to be executed is in the instruction
buffer. This will often be the word after the BCS, which
was already on its way there on entry. If the BCS has
a parameter, or if the instruction buffer was
modified, then the instruction may have to be
fetched.

b. The program counter should be incremented to one
beyond the location of the next instruction and an
instruction fetch initiated. This will not only preserve
the pipeline but will also make sure any memory
activity necessary to complete setup of condition (a).

c. The instruction buffer should be copied into the
instruction register in preparation for its execution.

d. A request for decoding of the instruction buffer
contents should be made along with a page branch
back to page zero, i.e., ROM. The decoding results in
the correct microroutine getting control for execution
of the next instruction.

In most cases, the preceding steps can be summarized by
the rule:

The second to last microinstruction should
increment P and do an instruction fetch.

The last microinstruction should transfer IBR to
| and request decoding addressing.

32

3.1.4 ROM Standard States

Much of the interfacing with the pipeline can be done by
using standard microinstructions (standard states) in
page zero. These were developed explicitly for this purpose
for use by the 620/f emulation. The most common ones
make up the three microword sequence listed below. They
may be used simply by doing a page jump directly to
whichever microword is appropriate.

Address Label Function

13E SS1M Restarts the pipeline at P with
an instruction fetch by P. it

then branches to SS2M.

92 SS2M Maintains the pipeline by incre-
menting P and requesting an
instruction fetch. It branches
to SS3M.

2D SS3M This instruction decodes the

IBR contents to determine the
next microinstruction to execute.
It also copies the IBR into I.

3.1.5 Summary of Branches Between WCS and
ROM Control Store

From ROM to WCS
BCS Macro (from Decoder Page Zero Only)

This macro ensures the start of a processor fetch during
the primary decode of the BCS according to the V73
pipeline rule. The clock change and page selection occur
during the primary decoding of the microinstruction.

1/0 Branch

Control is transferred to the selected page of central
control store during the data phase of the 170 command.
1/0 branch can go to any central control store page and
does not select a decoder.

This mechanism assures that no DMA 1/0 memory
transfers and no processor memory transfers are in
process during the clock change.

From WCS to ROM

The 170 branch is not a viable mechanism from WCS to
ROM.

A micro level page branch is the standard method for going
from WCS to ROM. This operation is the converse of the
BCS disscussed above.

Standard state sequences in the ROM provide pipeline
start up and various other housekeeping functions for the
standard instruction set. These may be of interest for
particular microprogramming entrances.

3.1.6 V70 Series Register Usage

The 620 emulation on V70 series systems uses some
general purpose registers. Using the standard instruc-
tions with his own microprograms a user is responsible
for preserving the settings and restoring those necessary
to their original conditions. The use and requirements for
particular registers are described below. All others are
only used by user’'s microprograms.

Registers 0, 1, and 2 are used for the emulation of the A, B,
and X registers respectively. These need not be restored
by user’'s microprograms.

Register 3 is forced to all zeros by the halt microprogram
and used as a source of zeros by the standard instruction
set. |ts restoration is required.

Register 4 is also used by the halt program and saves the
contents of the instruction register. While the standard
microprograms are running it is not used and therefore
does not require resetting.

Register 5 is a source of ones for the standard micropro-
grams and must be reestablished as such by a user's
microprogram.

Registers E and F (15 and 16) are used as temporary
storage for some standard instructions yet their use does
not extend beyond the particular single instruction so
these two do not need to return to a set value.

Register Usage
Standard Use

Number V70-V74

Standard Use
V75, V76, V77-600

0 A register A register
1 B register B register
2 X register X register
3 All zeros* R3

4 Saves | R4

5 All ones™ R5

6 None R6

7 None R7

8-A None None

B None All zeros**
(o] None . Allones**
D-F None None

*These registers must be restored before leaving.
“*These registers are automaticatly restored by hardware.

3.2 FLOW DIAGRAM
3.2.1 Rationale

As the reader should now be aware, the 64-bit microword is
both extremely powerful and extremely complex. This may
result in several problems. A beginning microprogrammer
can be completely baffled how to start. Intermediate
microprogrammers tend to be confused about how much
or how little can be done in single microinstruction.

The microprogram flow diagram is designed to minimize
these problems. Making a flow diagram for a micropro-

TECHNIQUES

gram is roughly comparable to the low-level flowcharting
ot an assembly language program. The flow diagram,
however, is designed to provide special assistance to the
microprogrammer. It gives the basic capabilities of the
standard microword, thus providing reminders of both
what can be done and what should be done in each
*microword.

3.2.2 Format

A sample blank microprogram flow diagram form can be
seen in figure 3-1. The vertical columns each represent a
single microinstruction.

The horizontal rows are divided into the type of operations
that can be performed. A microinstruction is created by
going down a column and filling in the appropriate boxes
with the specific .operations desired in each general
category. Many of these operations can be specified using
the mnemonics introduced in the previous section. Table
3-1 provides an ordered list of mnemonics.

Specifically, the first row of the flow diagram is used for
identifying the particular microword. Labeled IDENT, this
row is usually left blank unless the microword s
referenced elsewhere in the microprogram. Such reference
occurs most often when the microword is the target of a
jump from another microword. When not empty the box
usually contains the labe! which will be carried through to
the actual assembly language version. Depending upon the
programmers preference absolute or relative addresses
could also be assigned here.

The group of three rows under MEMORY specifies both the
current state of memory and the requests for memory
operations being made in the current microword. The
FUNCTION row specifies the former. It s useful for
charting out memory activity and optimizing the memory
usage. in microprograms where memory activity is not
critical, this row could be left blank.

The REQUEST row indicates the type of memory request
being made in the microword. The ADDRESS row specifies
the source of the memory address for the reques’ed
operation. If no request is made, then both these rows can
be blank.

The ALU section of the flow diagram consists of four rows.
These rows specify the two inputs for the ALU, the
operation to be performed on them, and the destination of
the resuit.

Two rows are included in the STATUS section. The first,
SAMPLE, specifies which flags and status bits are to be
sampled during that microinstruction. Sampling is usually
necessary before the flag or status indicators can be

tested. The TEST row specifies which flag or status bit, if
any, is being tested in the current microword. This testing

3-3

TECHNIQUES

VTI-2027

34

_ a...
| | ! i
o H L
I T
T
e e e o
{] _ i
B . | |
w _
_ ! !
i | m
_ !
i
i .
z | 8.
z -
SlE |8 |8|zcl2|5|2|Y 8 e
< | & 3 el |2|El8 |« w w 33 _
Q| 2 g e | 2|lale|l@a| 3 | a Q a wh
o w a w < w Q aQ
32 - 2/ 2|2 /3|8 |8 | ¥ 3 -] b _
AHOW3IW nv p SNLVLS ONISSIYAAY H3HLO ;

Figure 3-1. Sample Flow Diagram Form

.nay be used both for conditional memory requests and
conditional addressing.

The two rows of the ADDRESSING section specify the
addressing method or mode being used and the resulting
effective address or addresses. These boxes are often left
blank to signify normal addressing with the next column

on the right to be executed next. The labe!l contained in the.

IDENT row can also be used here.

The SPECIAL ACTIONS section is provided for the micro-
operations which do not fit conveniently into the other
sections. Most common among these are the operations on
the special registers and counters. These include the
operand register, program counter, and shift counter. Such
things as register field control or even general comments
could also be included here.

TECHNIQUES

The table also lists the corresponding assembler codes
generated. Two formats are given: the first uses only the
predefined assembler opcodes for the GEN or GMSK
statements; the second is based on user-defined
opcodes. (See Section 5.)

3.3 FLOW DIAGRAM MNEMONICS

Table 3-1 lists the sections of the flow diagram and some
applicable mnemonics. These mnemonics represent the
most common values and should be sufficient for many
microprograms. Other functions without mnemonics
can be described in whatever way the user finds clearest.
The ways could range from actually writing the field
values to putting in verbal commentary.

35

9-€

Flow Diagram
Row
LOCATION

MEMORY
FUNCTION

MEMORY:
REQUEST,
ADDRESS

ALU
INPUT A

Mnemonic
None

None

IF,OVR

IF,ALU
IF,P
IF.MIR
OF,0VR

OF,ALU
OF.P

OF MIR
OS,0VR

0S,ALU
os,p
OS,MIR *
BS,OVR

BS,ALU
BS,P
BS,MIR

Unconditional

TESTT
TESTF
WAIT ,MEMDN

. Rn

Rn,SL
Rn,SR
P

ZERO
ONES

Table 3-1. Flow Diagram Mnemonics and Microprogram Assembler Codes

Format |

MO

M4
M8
iMC
M

IM5
IMS
IMD
M2

IM6
IMA
IME
M3

M7
iMB
IMF

SF1 (or SF2,TFO)

SF3 (and not TFO}
SF2 (and not TFO)
SFO0,IM1

LAO,AAn
LA2,AAn
LA3,AAN
LA1

LAQ,SH1
LAO,SH2

Format Il

10(1F$OVRI

10(1FSALU)
10(1F$P)
10(IF$MIR)
10(0OF$OVR)

10{OF$ALU)
10(0F$P)

10(OF$MIR)
10{0S$OVRI

10(0S$ALU)
1010S$P)

10(0OS$MIR)
10(BS$OVR)

10(BS$SALU)
10(BS$P)
10(BS$MIR)

6(MEMC) or
6(MEMCS$),5(0)

6(TESTT)
6(TESTF)
6(SPEC),10(WAITMD)

12(A$GPR),24(Rn)
12(A$GPRL),24(Rn)
12(A$GPRR),24(Rn)
12{A$P)
12(A$SPEC),22(AZERO)
12(A$SPEC),22(AONES)

Comments

' User-supplied labels and addresses

User-supplied commentary on memory operations

Instruction fetch. Override memory operation of the previous microword using its
memory address

ALU output = memory address

Program counter = memory address

Memory input register = memory address

Override memory operation of the previous microword using its
memory address

ALU output = memory address

Program counter = memory address

Memory input register = memory address

Override memory operation of the previous microword using its
memory address

ALU output = memory address

Program counter = memory address

Memory input register = memory address

Override memory operation of the previous microword using its
memory address

ALU output = memory address

Program counter = memory address

Memory input register = memory address

Operand store.

Byte store.

Conditional request {on test condition true)
Conditional request {on test condition false)
Wait for memory done {before going to next microword}

General register 'n’

General register ‘n’ shifted left on bit position
General register ‘n’ shifted right on bit position
Program counter

All zeros (0)

All ones (FFFF)

1) when using shifted general register user must specify high-low bits through SH
field.

2) when using the GMSK format, use 16{Rn} instead of 24(Rn) {or AKn instead
of AAn).

SINDINHO3L

L€

Flow Diagram
Row

ALU
INPUT B

ALU
OUTPUT

Mnemonic

Rn
MIR
IOR
STAT
LIT,x
MSK ,x

OPR

ORSE
OLSE
ORZF
ORLZ

ZERO
ONES
TRNA
TRNB
INCA
INCB*
DECA
DECB
ADD
suB*
SHFA
AND
OR
EOR
NOTA
NOTB*
TCB*

Table 3-1. Flow Diagram Mnemonics and Microprogram Assembler Codes (continued)

Format |

L.B0,BBn
LB1,BB1
LB1,BB2
LB1,BB3
LB3 MKy
LB2,MKy

LB1,BB0
1 B1,BB4
LB1,BB5S
LB1,BB6
LB1,BB7

FF3,MF1
FF3
FFF,MF1
FFAMF1
CF3
FF1,CF3
FFF
FF9
FF9
FF6,CF3
FFC
FFB,MF1
FF1
FF6.MF1
FFO,MF1
FFS,MF1
FF2,CF3

Format 11

11(B$GPR},23(Rn)
11(B$SPEC),23(MIR)
11(B$SPEC),23(I0R)
11{B$SPEC),23(STAT)
11(LIT),15(y)
11(MSK},15(y)

11(B$SPEC),23(0OPR)

11{B$SPEC),23(ORSE)
11(B$SPEC),23(OLSE)
11(B$SPEC),23(ORZF)
11(B$SPEC),23(0RL2Z)

14{ZERO),15(LOG)
14({ONES)
14(TRNA),15{LOG)
14(TRNB),150(LOG)
14(NCA),16{CRY 1)
14(NCB),16(CRY1)
14({DECA)
14(DECB)

14(ADD)
14(SUB),16(CRY1)
14{SHFA)
14(AND),15(LOG)
14(0OR)
14(EOR),15(LOG)
14(NOTA),15(LOG)
14(NOTB),15(LOG)
14(TCB),16(CRY1)

Comments

General register 'n’
Memory input register
1/O register
Status word
A 16-bit value from O to FFFF
Instruction register contents masked by y.
{y is the one’s complement of the desired value.)

NOTE: When using MSK or LIT, caution should be used to avoid field conflicts with

other mnemonics.

Operand register

Operand register right byte, sign extended

Operand register left byte, sign extended

Operand register right byte, zeros in left byte.

Operand register right byte in left byte position, zeros in right byte.

All zeros (0)

All ones (FFFF)

A (transfer input A)

B (transfer input B)

A+1

AVB +1 (B + 1when A=0)
A-1

A+ B (B-1when A = FFFF)
A+8B

A-B

A + A (shift A left one)

AAB

AVB

AMB (exclusive OR)

A

B

AVB + 1 (two's complement B when A = 0)

The mnemonics INCB and TCB require input A to be ZERO. Mnemonic DECB
requires input A to be ONES.

*cannot be used when input B is MSK or LIT.

sINdINKHO3L

8€

Flow Diagram
Row
ALU

DESTINA-
TION

STATUS,
SAMPLE

STATUS,
TEST

Rn (n=0.1.2,.._F)
Special registers

POUT
SCouT
OPROUT
IBR and MIR

SHFT
OVFL
ALU

OVFL
1OSR
SSW3
SsSw2
SSwi
TFIR
ALUO
ALUS
ALUC
ALUZ
SHFT
MIRS
SFTC
GPRS
NORM
Quos

Table 3-1. Flow Diegram Mnemonics and Microprogram Assembler Codes (continued)

Format | Format I}
WR1,AAn 17(GPROUT),24(Rn)
RF1 13(POUT)
RF2 13(scouT)
RF3 " 13(OPROUTI
SFO0,IM4

VF1 19(S$SHFT)
Refer to Table 2-7

TFO0,SF0,GF2 TFO,5F0,7(S$ALU)
GFO 7(0VFL)
GF1 7(10SR)

GF2 7(SSW3)
GF3 7(S5W2)
GF4 7{SSW1)
GF5 7{TFIR)

GF6 7(ALUO)
GF7 7{ALUS)
GF8 7(ALUC)
GF9 T{ALUZ)
GFA 7(SHFT)
GFB 7(MIRS)
GFC 7(SFTC)
GFD 7(GPRS)
GFE 7{NORM)
GFF 7(QUOS)

Comments

General register ‘n’
1) general register cannot be used here if input B was LIT or MSK.
2) general registers used for both input A and destination must be the same
general register.
Load program counter with ALU output.
Load shift counter with ALU output.
Load operand register with ALU output.
ALU output must be maintained for one more microinstruction cycle.

Set shift flag.

- Set overflow flag.

Set ALU related flags (i.e., ALUO, ALUS, ALUC, and ALUZ).
NOTE: TF field must also be set in test addressing.

Overflow flag

1/0O sense response

Sense switch three

Sense switch two

Sense switch one

Test from instruction register
ALU ones flag

ALU sign flag

ALU carry flag

ALU zeros flag

Shift flag

Memory input register sign
Shift counter all ones flag (i.e., overflow)
General register 0 sign
Normalize flag

Quotient flag

NOTE: These are only a basic set of abbreviations, to be used alone ar in combination,

sINOINHOIL

6t

Flow Diagram
Row
ADDRESSING:

MODE,
ADDRESS

SPECIAL
ACTIONS

Mnemonic

blank

FSEL
INT
PJMP to n:

1) using stack

2) without memory

request
3} with memory
request

POPJMP

DECODE
1} with IBR to |

2) without IBR to |

TESTT
TESTF

INCP

INCSC
INCP,OPROUT
SHFTOP,LFT
SHFTOP,RGHT

iBR to |
with decode
without decode

PUSH x

POPDEL

ROVFL
SOVFL

Table 3-1. Flow Diagram Mnemonics and Microprogram Assembler Codes (continued)

Format |

/* or
/N {adr}
/F{base),FSx

/N{base),TSn

/N{word),TSn
/N{word),TSn,
SFO,TFO,1M3
/N{word),GF4,
SF2,TF0,TSn

TFO,SFO0,IMD,
LB3,AA4,BB0

TFO0,SFO,GF5
TFO,SFO,GF4

{T{pass,fail), TF2
/T{pass,fail), TF3

RF4
RF5
RF7
SC1,WFO
SC1,WF1

TFO0,SF0,GF5
TFO0,SFO0,GF1

TFO0,SFQ,IMD,
LB3,AK2,MKx

TFO,SFO,IMD,
BB1,AA4,LB3

TFO,SF1,GF4*
TFO,SF1,GF2*

Format 1l

/* or
/N (adr)
{F{base,FSx

/N(base), TSn

/P{word + page)

/Plword + page),
10(PJMP),SFO,TFO
/P{word + page),
7(PJMP$),6(MEMCS), TFO

10(STACK),24(POPJMP),
LB3,TF0,SF0,BBO

5(0),6(0),7(DECODS)
5(0),6(0),7(DECODE)

[T{pass,fai!),5(TT)
[T{pass,fail),5(FT)

13{INCP}

13(INCSC)
13{0OPROUT + INCP)
18(SHFTOP),20(LFT)
1B(SHFTOP),20(RGHT)

TFO0,SF0,7(DECODS$)
TFO,SFO0,7(1BR$I)

10{STACK),16(PUSH),
15(x),LB3,TFO,SFO

10(STACK),23(POPDEL),
LB3,TF0,SF0,AA4

7(ROVFL)
7(SOVFL)

Comments

Next microinstruction is at next sequential address.
Next microinstruction is at {(adr)
Field select addressing

Interrupt addressing: TS selects interrupts sampled.

Page jump to page 'n’

Branch, pop stack to an address specified by the stack (subroutine return).

Addressing by decoder control store

Test addressing; pass if test condition true

Test addressing; pass if condition false

NOTE: the fail address must be even and must be greater than the pass address.

High-order 4 bits must be same for both pass and fail addresses.

Increment the program counter

Increment the shift counter

Does both.

Shift operand register left one bit position
Shift operand register right one bit position

NOTE: high/low bits must also be specified by user on these two operations.
Transfer ingtruction buffer to instruction register.

Push value x on the stack (requires PJMP addressing mode)

Delete entry at top of stack (requires PJMP addressing mode)

Reset overflow*

Set overflow*

*Must be used with unconditional memory request.

SINOINHOIL

TECHNIQUES

3.4 FLOW. DIAGRAM EXAMPLES
The following examples are included:

1. BCS Entry Point Initialization

2. Memory-to-Memory Block Move

3. Reentrant Subroutine Call

4. Fixed-point ADD to any of 16 general registers with
direct addressing to 64K.

5. Cyclic Redundancy Check (CRC) Generation.

Each of the examples includes a description of the problem,
a description of how it was handled, and a flow diagram.
Later in this manual, the examples will be continued in the
form of assembler listings of the code produced from each
of the flow diagrams in section 5.

3.4.1 BCS Entry Point Initialization

This is essentially an example of making a micro subrou-
tine which is simply a NOP. From the standpoint of being
an example, it details how to reach WCS and then return
to the macro level. From a functional standard point, it
provides meaningful initialization for the 20 (hex) BCS
entry. points in WCS. By loading this program before all
others, any unused BCS entry points will have meaningful
contents (as opposed to possibly fatal random contents).

Referring to the flow diagram, (figure 3-2) the thirty-two
entry points are all initialized to the same microinstruc-
tion. It is simply a page branch to a standard microword,
$S2M, on page zero. This will result in a return to the
macro level by maintaining the pipeline and returning
control to the ROM central control store.

3.4.2 Memory-to-Memory Block Move

This microprogram is designed to move a block of n words
from one area in memory to another.

For purposes of this example, the microprogram is called by
executing a BCS to word zero of WCS page one. It takes its
arguments in the following format:

A register (RO): to address
B register (R1): from address
X register (R2): block length

When called, words are sequentially copied from their old
location (from address) to their new position (to address).
The number of words moved is equal to the block length.

The following commentary describes how the microprogram
operates. Refer to the flow diagram figure 3-3.

3-10

Word zero in page one is the entry point for the BCS
instruction. it contains a branch to a microword labeled
MBM, which may be on any WCS page. This is the actual
beginning of block move and no further decoding of the
BCS is done.

The microprogram starts by setting up its parameters. The
current program counter value is saved in R7. Next, the
from address minus one is put in its place. Having it in the
program counter will allow easier use of it as an address
source for memory requests. The to address is also
decremented. These addresses are decremented :t«cause
they are incremented in the instructions which request
the memory operations.

After this initialization, a three microinstruction loop is
entered which does the actual block move. The first
microword, (MBMA), increments the from address in the
program counter. It then requests that the word at that
address be fetched from memory. It also puts the memory
input register (MIR) onto the ALU output. Once the looping
is begun, the MIR will contain the word just fetched from
memory. Placing it on the ALU will cause it to be stored at
the to address, since the previous micro in the loop
requested a write of ALU output into memory.

The second mircoword in the loop decrements the block
length in R2. The ALU output (i.e., the new value) is
sampled for testing in the next microword.

The next microword, the third and last in the loop,
increments the to address in RO and tests the ALU sign
flag. If it is off, then the block Iength has not yet become
negative and the necessary number of words has not yet
been moved. In this case, an operand store is requested
using the to address as the destination. The next
microword will have to specify the the value to be stored,
so a loop is made back to MBMA which will do this. This
loop also causes the next word to be fetched and the
process continues until the block length goes negative. In
that case the loop is exited and the extra memory fetch
requested is simply forgotten.

Microword MBMB restores the program counter to the
address in R7 and starts a memory cycle to restore the
pipeline. A branch is executed to standard state SS2M
which increments the program counter and starts a second
memory fetch to fill the instruction pipeline. Upon entering
standard state SS3M, the macroinstruction is decoded and
control is returned to the processor’'s central control store.

3.4.3 Reentrant Subroutine Call and Return

This example provides call and return microprograms for
reentrant subroutines. The subroutine call stores its return
address in the X register (R2) and saves the original
contents of X on a stack pointed to by the B register (R1).

The subroutine return simply pops the stack back into the
X register and branches back to the return address.

TECHNIQUES

| PTTTTTTITT T T e
. o !
i i ! !
o U
b i : 1
1 i 1
w ,,4 ' ' : |
e P e e - . . 1 e R
o : ! ' . .
_, ! : : :
! i [X]
P i “ _) I “ ; i !
| gl i ! _ . i
S _ U T T
B e e A ma S
i | i _ . i w _ _
m i : I |) | : :
H o i B . _
| ! _ IR R
_ ! |
* ! ! |
, | L
.
o
n _
|
}
_
i _ _ L N |||-...‘
| L
I h ! I
o BRI
i t
; : i ; !
_ e e l_r[- tlp_ ~—t s f
i
| S |
! i { _
| _
.
w !
E | . .
= o N
£ i ze | g8
1=
z &
z =
el e o 2 <] 492
EllEe (& |8/ 2|25 |2|3 & =z
<) 4 [[a - & - w [o=
S|2 g |8|8|28/E g(2|8 8 g 45
pur] 2 & 2|z 2|3 |8 |&|F H < h<
AHOW3IW nv SNLVLS DNISS3Yaavy H3HLO
VTi1-2028

Figure 3-2. Flow Diagram for BCS Entry Point tnitialization

A8

620C-1ILA

Ao Xooig Kiowsp-0y-Aiowely Jop weiSeiq mojd *€-¢ 8anBiy

word 0
LOCATION page 1 MBM MBMA MBMB
FUNCTION storing fetching fetching
data data data
z
TESTF
g REQUEST OF P IF
w
=
ADDRESS P ALU ALU
INPUT A P RO R1 - R2 RO R7
INPUT B MIR
=]
<
OUTPUT TRANA DECA DECA TRANB DECA INCA TRANA
DESTINATION R7 RO see below — R2 RO see below !
— 4
& | SAMPLE ALU
h .
ht
» |TEST ALUS
PJMP
< |MODE PJmp TESTT)
2 o0
]
(7]
w
8
Q. MBM P-MBMB SS2M
< ‘| ADDRESS F-MBMA (092)
 |SPECIAL
T |ACTIONS POUT INCP POUT
-
o

sIndINMIIL

For purposes of this example, the subroutine call is
executed by doing a BCS to word 1 of WCS page 1. The
word following the BCS is taken as the effective address of
the subroutine being called. The subroutine return s
made by executing a BCS to word 2 of WCS page 1.

The stack operations are performed in the foliowing way. A
push causes the B register to be decremented and the X
register stored at the resulting address. A pop causes the
X register to be loaded from the memory location pointed
to by the B register followed by the B register being
incremented.

The following is a detailed description of the subroutine
call. Refer to the flow diagram in figure 3-4.

The first microinstruction of the routine is at the BCS entry
point. On the memory-to-memory block move, this first
microword of the program did nothing but branch to the
actual microroutine. The only reason for not combining it
with the next microinstruction was to clarify the relation-
ship of the entry point and the rest of the program. In an
actual application where execution time is critical, the
microwords would have been combined. This is done on
the subroutine call example. The first microword decre-
ments the stack pointer (R1) and begins saving the
contents of R2 at the resulting address. It then does a
page branch to the rest of the microroutine which could be
on any WCS page.

The second microword places R2 on the ALU so that it will
be stored by the memory request in the first microword.
R2 must be on the ALU for the entire duration of the write
into memory. Since this could take a variable amount of
time, (depending on the type of memory in the system), a
request is made to wait for the memory-done signal. This
means the next microword will not be executed until the
write operation is complete and thus, R2 will stay on the
ALU for the necessary time.

The third microword saves the return address in R2. The
program counter is currently pointing to the word after th
BCS instruction. That word contains the effective address
of the subroutine to be called. Thus, the return address is
obtained simply by incrementing the program counter and
then storing it in R2. This microword also begins the
actual transfer to the subroutine to be called. This 1s done
by restarting the pipeline at the address of the subroutine.
That address is already in the MIR due to the fact it was
the word after the BCS.

The fourth microword sets the program counter to the
second word in the subroutine call and requests it be
fetched. This completes the restarting of the instrugtion
pipeline and a return can be made to ROM control. This is
done with a page jump to SS3M on page 0. Note that the
fourth microword has performed all the functions of SS2M.

The following is a detailed description of the subroutine
return. Refer to the flow diagram in figure 3.5.

TECHNIQUES

The first microword begins restarting the instruction
pipeline at the return address. Also, the program counter is
restored.

The second microinstruction begins the fetch of the original

. contents of R2 off the stack.

The third microword increments the stack pointer to finish
the pop of the stack. It also finishes the restart of the
instruction pipeline by requesting another instruction
fetch by the incremented program counter.

The last microword restores the old contents of R2, which
by now have been transferred from memory to the memory
input register (MIR). Since the pipeline has now been
restored, the microword can return to ROM using a page
jump and with request for decoding addressing. The
decode will generate the next address in page zero based
on the next 'macro’ instruction to be executed.

Note that the second to last microword performs the
functions of SS2M and the last microword performs the
functions of SS3M.

3.4.4 64K-Memory ADD to any of the
General-Purpose Registers

This example adds the contents of any location in 64K
words of memory to the contents of any of the 16 general-
purpose registers, RO, R1...,RF. The sum replaces the
previous contents of the specified register. If overflow

occurs, the overflow status bit will be set. The addressing
mode for this example will be indexing by general register
R1.

In execution the contents of LOC bit 8 - 15 specify a branch
to control store (BCS) instruction. Bits 0 - 3 define the
operation to the performed and the addressing mode 1o be
used. Bits 4 - 7 specify the general register affected.

With indexing the contents of all LOC + 1 are added to the
contents of the register (R1). and the 16-bit sum 1s used
as the effective address of the operand. The onerand Is
fetched from memory and is added to the contents of the
register specified by the LOC 4 - 7.

A flow diagram follows as figure 3-6.

The strategy used for the operation described above has
the following steps:

1. (AD1 or AD1A) enter from decoding of BCS in page
zero. Address fetch cycle has been initiated. Initiate
next instruction fetch and increment P.

2. Transfer contents of MIR (address value) to OPR to
preserve against alteration by previously initiated
instruction fetch.

3. Perform indexing by adding contents of R1 to contents
of OPR. initiate operand fetch using ALU output as

effective address. (continued)

313

2 4%

ey suinoigng Joj weadeiq Moj4 ‘p-g 94n3i4

0£0C-111A

word 1

LOCATION page 1 LAB1
tetch of
FUNCTION store of first
R2 on stock)
subr. inst.
x
O |REQUEST WAIT
z os MEMDN IF IF
i _
ADDRESS ALU MIR ALU
INPUT A A1 R2 P ZERO i
- = - -
INPUT B MIR
2 .
3 o
OUTPUT DECA TRNA INCA INCB
see .
DESTINATION R1 R2 below !
@ | SAMPLE
- —
ht
@ |TEST
PJMP
< |MODE PJMP
z to 0
0N
[7:]
w
a
o SS3M
< |ADDRESS LAB1 (02D)
T |speciaL POUT
I |ACTIONS
)

SINDINMI3L

uinjay aupnoigng 4oy weideiq Mojd "G-€ 2andy4
15021114

ST-€

word 2
IDENT page 1 LAB2
= fetching
LOCATION fetch of tetch ot second
nxt. instr. orig. R2 instruction
2 REQUEST - OF i i |
w
s —t e e —
ADDRESS ALU ALU p
INPUT A R2 R1 R1 ! i
ey
INPUT B MIR |
5 .
3 - -
OUTPUT TRNA TRNA INCA TRNB | '
_ b
i :
DESTINATION| see below R1 R2 ! ~
.
@ | SAMPLE P i
: PSS __!___ — I
& |TesT :
] —_ 4]
| |
PJMP H !
< |MODE PJMP to 0 |
z DECODE
(723
(7]
w
[-4
8 from IBR
< |ADDRESS LAB2 by decode
« IBR
[l i POUT INCP to
- |
')

SINOINHOIL

91€

1015130y esoding-jeseusy) 0} AJOWIW-HYY WOJ QY '9-€ eindiy

LR -1ILA

LOCATION ADI/ADIA* AD2 AD3 AD4 ADS
ADDRESS
FUNCTION AF IF QF — IF
FETCH
5
S
g REQUEST IF oF IF
-)
=
ADDRESS P ALU P
INPUT A R1 Rx*
INPUT B MIR OPR MIR MIR*
3
OUTPUT TRNB ADD ADD
DESTINATION Rx
g SAMPLE OVFL, ALU
[=4
=
o |TEST
PJMP to 0
g |MODE DECQDE
»
73
w
&
o WORD G
<« |ADDRESS AD2 AD3 AD4 AD5 PAGE 0
INC P IBR to |
INCP .
«© *located at : . from previous
w |SPECIAL ;
E ACTIONS page 1 word OPROUT Br-egls::_r7 field select micro
5 00 and 10 its register

field select

SINOINHOIL

4. Wait for completion of operand fetch by specifying next
instruction fetch with incremented program counter
and field select register specifications from instruc-
tion bits 4 - 7 into AA field. Set BB field to select MIR.

5. Add contents of MIR to contents of previously selected
register and store sum in selected register. Sample
overflow condition. Page jump to V73 page zero with
decoding of instruction fetched by step 1.

Execution Time Estimate

Execution time depends upon the memory speed involved.
With 330 nanoseconds semiconductor memory the pipeline
is kept fuil. The number of microinstruction times from
decoding to decoding is six. All of these are from writable
control store. The execution time is therefore six times 190
or 1140 nanoseconds. Since three memory cycles are
invoived, the effective three cycle time is 1140 divided by 3,
or 380 nanoseconds.

3.4.5 Cyclic Redundancy Check (CRC) Generation

INSTRUCTION FORMAT

15 987 43 0
1 (] 5 CRC Vector LoC
Data Array Word Address LOC + 1
Byte Count LoC + 2

DATA FORMAT: Packed 2 bytes in each word as follows:

Byte 1 Byte 2
Byte 3 Byte 4
Byte N-1 Byte N
may be last

byte

The packed byte array at the specified address is scanned
and the 16-bit cyclic redundancy check is performed. The
16-bit CRC is left in the accumulator (A register or RO). {f
the accumulator is not cleared before entry, the accumula-
tor's contents will be included in the CRC.

The CRC polynomial word is x' ° + X' e x4+ 1,
which is commonly wused in binary synchronous
communication.

Since array size can be quite large, the instruction can be
interrupted after service of every two bytes. When
interrupt service is completed, the process of CRC
generation is resumed and runs to completion (except as
interrupted). The overflow flag is used to signal an
interrupted instruction. If it is set, contents of the B and X

TECHNIQUES

registers are taken as data address and byte count
respectively.

RO, R1 and R2 (A, B and X) registers are used by this
instruction. RO is the current CRC value. R1 is the current
data array address. R2 is the current byte count value. RF
contains the CRC polynomial (octal 100005). The overflow
flag is used to designate an incomplete instruction.

The calling sequence normally used would be:

TZA (clear accumulator)

ROF (reset overflow flag)

BCS CRC

Address (data array address)

Byte count (number of bytes in array)

.

Detailed Description of Procedure

1. Enter from decoding of BCSin page 1. Address fetch
cycle has been initiated. The overflow flag is used to
designate an incomplete instruction, i.e., one which
was interrupted before the entire byte array was
scanned for CRC generation. If such an interrupt had
occurred the current data array address and byte
count in registers R1 and R2 should be used rather
than the corresponding values used when the instruc-
tion was initiated. A memory cycle to fetch the byte
count is initiated conditionally. The overflow flag is
tested for an ''off'" condition. The 16-bit word
representing the CRC polynomial is placed in OPR. If
the overflow flag is off, the next step is step 2. If it is
on, step 1A is executed.

2. Thedata array address is copied from MIR into R1.

3. The contents of R1 is useu as an address (through the
ALU) and the first pair of bytes is fetched. The overflow
flag is set to indicate that the instruction is
incomplete.

4. The byte count is copied from MIR into R2. ALU status
is sampled so that the byte count can be tested for zero
in step 5.

5. The shift counter is loaded with - 8 (the number of bits
per data byte). The ALU zero status flag is tested to see
if the byte count was zero. Execu.ion is suspended
(by a "wait for memory done") until the two data
bytes are fetched. If the ALU zero flag is off, the next
step is 5A; otherwise, step 18 is next.

5A. The CRC polynomial placed in OPR in step 1 is now
placed in RF.

6. The data bytes in MIR are copied into OPR.
(continued)

317

TECHNIQUES

10.

10A.

11.

12.

13.

14,

15A.

158B.

16.

318

Steps 7, 8, 9, 10, 10A, and 11 constitute the iterative
loop which accumulates the CRC for the left data byte.
In step 7, RO (the CRC) is shifted one bit left and
applied to the ALU input A while the shift counter is
incremented. Bit 15 of RO is copied into the shift flag
(DSB). Bit 15 of OPR is applied to ALU input A bit
00. OPR is also shifted one bit left. The CRC
polynomial in RF is applied to ALU input B. The
exclusive OR is performed by the ALU and the result
is placed into RO. The shift counter is tested to see if
the eighth bit of the left byte has been processed. If it
has, step 10 is executed next; if not, step 8 is next.

The DSB flag is tested to see if a correction cycle is
needed. (If bit 15 of the old CRC was a zero, the
exclusive OR operation of step 7 must be cancelied.)
If a correction cycle is necessary, step 9 is executed
next; otherwise, the next bit of the data byte is
processed by returning to step 7.

This correction cycle exclusively ORs the CRC in RO with
the polynomial in RF. The result is placed in RO. When
this is done the resulting CRC is that which would
have been obtained if step 7 had not performed an
exclusive OR. The next bit of the data byte is next
processed by returning to step 7.

This step is entered from step 7 after the last bit of the
left data byte is processed. The DSB flag is tested to
determine the need for a correction cycle. The byte
count in R2 is decremented. The ALU status is
sampled so that it can be tested for zero in step 11. If
a correction cycle is necessary, step 10A is executed;
otherwise, step 11 is next.

This is a correction cycle identical to step 9.

The shift counter is reinitialized to - 8 for processing
the right data byte. The ALU zero status flag is tested to
determine if the right byte should be processed. If
ALUZ is not equal to one, the next step is 12; if ALUZ
equals one, the next step is 18.

This step is identical to step 7. The right data byte
which has been shifted left in OPR is now processed.

This step is identical to step 8.

This step is identical to step 9.

The operations of step 10 are performed. The DSB flag
is tested as in step 10. If it is set, step 15B is next;
otherwise, the correction cycle of step 15A is next.

This step is identical to step 10A.

This step tests for interrupts. If an interrupt is
present, step 20 is next; otherwise, step 16.

The data array address pointer in R1 is incremented
and used as an address for a fetch of the next operand
byte pair, if the ALU zero flag is off (indicating the
decremented byte count at step 25 was not zero). If

17.

1A,

18.

19.

20.

the byte count was not zero, step 17 is next;
otherwise, step 18 is executed.

The shift counter is initialized to - 8 and execution is
suspended until the next pair of data bytes is fetched
from memory. Step 6 is next.

If step 1 determines the overflow flag to be set
indicating an incomplete instruction, step 1A initiates
the fetch of a data word from memory using the
contents of R1 as an address. Step 17 is executed
next.

If step 16, 11, or 5 determines the byte count to be
zero, step 18 resets the overflow flag to indicate
completion of the instruction. The program counter is
incremented and the net instruction fetch is
initiated.

A page jump to ROM (page zero) V73 standard state
/SS2M, is executed. /SS2M will initiate another
instruction fetch to fill the pipeline.

If an interrupt was detected at step 15B, the interrupt
status must again be tested by step 20. This is because
interrupts can be overriden by DMA traps and must
be checked twice to ensure that a trap has not

occurred which would abort the interrupt. The 1/0
control is requested to
sequence.

perform an 1/0 interrupt
Decoding is inhibited since only the
interrupt status is to be tested. if an interrupt is

found, step 21 is next; otherwise, step 16 is next.

208. The cycle is performed as in step 10A.

21

22.

23.

24,

If an interrupt was found at step 20, the data array
address in R1 is incremented and the ALU zero flag is
tested to determine if the byte count at step 15 was
zero. If it was not zero, step 22 is next; otherwise,
step 24 is executed.

The program counter is reduced by 3 to point ta the
BCS instruction. After completion of the interrupt
routine this instruction will be refetched and the
overfiow flag will be tested in step 1 to determine the
need to initialize R1 and R2 from the instruction
second and third words.

Execution is suspended until the 1/0 control signals
completion of the interrupt sequence, then a page jump
to ROM standard interrupt state/INT2 is performed.

It the byte count was zero, the overflow flag is reset
and an instruction fetch is initiated with the
incremented program counter value.

CRC Generation Timing

Execution time depends on memory speed and data array
size. If no interrupts occur the timing consists of (a)
initiahzation -- fetch of BCS, address and byte count and
first byte pair. This involves one ROM decode cycle and
WCS microinstructions 1, 2, 3, 4, 5, 5A, 11, and 6 all at
190 nanoseconds (assuming a 330 nanoseconds main
memory cycle). Initialization thus amounts to 1520

TECHNIQUES

nanoseconds. (b) CRC processing -- each byte takes 16 to
24 steps with the average 20 plus steps 10, 11, 15, 158
and 16 all at 190 nanoseconds. Processing takes an
average of 8550 nanoseconds for each byte pair. (c)
cleanup involves steps 18 and 19 from WCS at 190

. nanoseconds, and the memory cycle of SS2M at 330

nanoseconds. Clean up takes a maximum of 710 nanonec-
onds. Altogether the timing for an array of N bytes
averages (2230 + 1/2(N- 2)) times 8550 nanoseconds.

319

TECHNIQUES

ENTER
FROM DECODE
OF BCS

&)
o0 [T

(ADDRESS FETCH IS UNDERWAY)

START BYTE COUNT FETCH IF INCOMP
FLAG 1S OFF (OVERFLOW)

INCREMENT P

POLYNOMIAL TO OPR

TEST INCOMPLETE FLAG (OVERFLOW)

INITIAL SETUP

021 [2]

CALLING
SEQUENCE

DATA ARRAY
FORMAT

SAVE ADDRESS IN R1

020[1A]

033[3]

FETCH DATA WORD

TZA (OPTIONAL - SEE TEXT)
ROF (OPTIONAL- SEE TEXT)
BCS | CRC
DATA ARRAY ADDRESS
BYTE COUNT

BYTE
BYTE 3

BYTE 2
BYTE 4

BYTE N-1

(FRAAY B LAST BYTE) BYTE N

DURING EXECUTION

RO (A REGISTER CONTAINS CRC

R1 (B REGISTER) CONTAINS THE CURRENT
ADDRESS OF DATA

R2 (X REGISTER) CONTAINS THE CURRENT
BYTE COUNT

FETCH DATA
WORD

SET INCOMPLETE FLAG (OVERFLOW)

ADDRESS STEP #

VTI2-402

320

023[]

SAVE BYTE COUNT IN R2
SAMPLE ALU STATUS

024 I_S—
INITIALIZE SHIFT COUNTER
TEST ALU = 0 FLAG FOR ZERO BYTE CT
WAIT MEMORY DONE

022117

INITIALIZE SHIFT COUNTER
WAIT MEMORY DONE

026 |5A

TRANSFER OPR

A 4

TO RF

027 F

TRANSFER DATA TO OFPR

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation

Microprogram (1 of 4)

TECHNIQUES

024 [7]

SHIFT RO LEFT TO ALU A INPUT
SHIFT OPR LEFT

RO(15) =DSB

OPR (15) —=ALU INPUT A BIT 00
POLYNOMIAL (RF) TO ALU B INPUT
EXCLUSIVE OR ALU INPUTS

LOAD RO

INCREMENT SHIFT COUNTER

TEST SHIFT COUNT OVERFLOW

PROCESS FIRST
BYTE

029 [o0]

e DECREMENT BYTE COUNT (R2)
OVERFLOW SAMPLE ALU STATUS
TEST DSB FLAG

c :
oze e] @ | 032 [11]

INITIALIZE SHIFT COUNTER
TEST ALU - O FLAG FOR
ZERO BYTE COUNT

\

TEST DSB FLAG

028 [9]
RO TO ALU A INPUT

RF TO ALU B INPUT

EXCLUSIVE OR ALU INPUTS

LOAD RO

(CORRECTION CYCLE)

w

SIE

030 fioA
RO TO ALU A INPUT

RF TO ALU B INPUT

EXCLUSIVE OR ALU INPUTS
LOAD RO ,
(CORRECTION CYCLE)

o

vTi2-400 Figure 3-7. Flowchart for Cyclic Redundancy Check Generation
Microprogram (2 of 4)

321

TECHNIQUES

VTI2-401

3.22

PROCES:
SECOND
BYTE

035115

038[14]

DECREMENT BYTE COUNT
SAMPLE ALU STATUS

DSB FLAG TEST

FNABLE INTERRUPTS

SAME AS E]

03A |12
e
SC
OVERFLOW
- 0
osa 75
SAME AS
®
: : 0JE] 16

INCREMENT ADDRESS (R1)

FETCH DATA WORD IF ALU =0
FLAG IS OFF

TEST ALU = 0 FLAG (BYTE COUNT -

ALU- 0

025]18

RESET OVERFLOW
INCREMENT P
FETCH NEXT INSTRUCTION

028 [15]

PAGE JUMP TO ROM

$528
(060)

Dsg

03¢ [154
SAME AS

TEST INTERRUPTS

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation

Microprogram (3 of 4)

TECHNIQUES

” INTERRUPT

037120

ENABLE
INTERRUPTS DISABLE DECODE
START 1,0 INT SEQUENCE

3
INTERRUPT 0 61' 533 |

031[21]

INCREMENT ADDRESS (R1)
TEST ALU = 0 FLAG (BYTE COUNT = 0)

ALU=0
02D |24 02C I 22
RESET OVERFLOW P-3—P
INCREMENT P (RESET PROGRAM COUNTER TO
INSTRUCTION FETCH START CAUSE REFETCH OF BCS)

| . 025 [73]

WAIT FOR I/O DONE

036 [25]

PAGE JUMP TO ROM

/INT 2
(OFF)

Figure 3-7. Flowchart for Cyclic Redundancy Check Generation
Microprogram (4 of 4)

VTIi-1803

323

veE

(v 40 1) uonessusn JY¥J Jo weiSeiq mojy 8- 9313

EEOL-11LA

LOCATION CRC1 CRC2 CRC3 CRC4 CRC5 CRCSA CRC6 CRC1A
ARRAY
nerion | 5L, | orie cow o ~
FETCH H
>
S | REQUEST oF oF WAIT
z TESTF OF
s
ADDRESS P ALU MEMDN ALU
INPUT A
INPUT B MSK, 8005 MIR A1 MIR MSK, FFF8 OPR MIR R1
3
OUTPUT TRANB TRNB TRNB TRNB TRANB TRNB TRNB TRNB
DESTINATION R1 R2 RF
@ | SAMPLE ALU
-
g
& |TEST OVFL ALUZ
o |MoDE TESTF NGRM NORM TESTT NORM NORM
4
7
[7:]
w
8
a T-CRCIA T-CRCI8
CRC3 CRC4 CRC7 CRC17
< |ADDRESS F-CRC2 F-CRCSA
T IspeciaL INCP, SET SCoUT OPROUT
I |ACTIONS OPROUT QVFL
)

s3ndINHO3L

GZ€

(v J0 Z) uonRIAUY YD J0 weileiq MO)] "g-E aun3iy

PEOL-11LA

LOCATION CRC7 CRC8 CRC9 CRC10 CRC10A CRC11 CRC25
FUNCTION
>
[4
O |REQUEST
=
w
=
ADDRESS
INPUT A RO.SL RO R2 RO
INPUT B RF RF R3 RF MSK. FFF8
g .
ouTPUT EOR EOR FF6 EOR TRNB
DESTINATION RO RO R2 RO
@ |SAMPLE SHFT ALU
| 4 — -
=
b |Test SFTC ALUZ
FSEL FSEL
© |MODE TESTT i NORM i NORM TESTT PIMP
g MS = 2 MS = 2
[
(2]
w
&
_CRC1 :
2 |apDRESS TeRC) CRCo CRC7 X032 CRC11 T-CRC18 INT2
F-CRC8 F-CRC12 (page 0, X'FF)
« SHFTOP.LFT
& |SPECIAL 0 »0PR0D scouT
T |ACTIONS »
E OPR15+ALUA 00
INCSC

SINDINHOIL

9zt

(¢ 40 £) uonessusy HJ J0 weiBeiq Mojy 'g-E 9nBiy

SE0T-111LA

LOCATION CRC12 CRC13 CRC14 CRC15 CRC15A CRC158 CRC16 CRC17
FUNCTION
z
oF
O | REQUEST
E TESTF WAIT
-
ADDRESS ALU MEMDN
INPUT A RO.SL RO R2 RO R1
INPUT B RF RF R3 RF MSK. FFF8
2
OUTPUT EOR EOR FF6 EOR FFO.CF3
DESTINATION RO RO R2 RO R1
@ | SAMPLE SHFT ALU
-
X
® |TEST SFTC ALUZ
FSEL FSEL
MODE TESTT NORM NORM NORM TESTT NORM
g MS = 2 MS = 2
®»
(7]
(7]
a
a T-CRC15 T-CRC18
< |ADDRESS F-CRC13 CRC14 CRC12 CRC15B CRC158 CRC16 F-ORO17 CRC6
SHFTOP LFT ENABLE
& |SPECIAL 0-+OPRO0 INTERRUPTS
Z |ACTIONS 0pR15+ALUACO SUPPRESS scout
o INCSC DECODE

SINOINHI3L

L2€

(¥ 40 p) uopesauan JyJ jo weideiq mold ‘8- 2un3yy

9E0T-11LA

LOCATION CRC18 CRC19 CRC20 CRC21 CRC24 CRC23 CRC22
NEXT =
FUNCTION INSTR. NEXT
FETCH INSTR. FETCH
3 B R R
S |REQUEST F I ; !
w
£ - - —d
ADDRESS P P ' i
- | SRS PR SN S |
INPUT A R1 P ;
|
- : [S e i
INPUT B MSK FFFC |
g —— R —— [— - —bm oo - —— - !._. — - l
FFO MFO, ; i
PUT ; ADD
OouTPU) CFO - _"_"—’”'""‘f“ o A___J
DESTINATION "1 | 7
- - — e - i
o |SAMPLE i ;
e S S
P | i
& |TEST ALUZ ;
]
|
© |MODE NORM PIMP NORM TESTT NORM
4
7]
(2]
w
4
2 !
2 |ADDRESS CRC19 SS2M CRC16 - T-CRC24 CRC25 |
(PAGE 0, X'82) F-CRC22
ENABLE
INTERRUPTS
= SPECIAL RESET SUPPRESS RESET WAIT 10 POUT
T [AcTiONS OVFL OVFL e
s INCP DECODE INCP
° START 10
INT. CYCLE

SINOINHIIL

SECTION 4

MICROPROGRAM DATA ASSEMBLER,
MIDAS

For execution the microprograms must be expressed in the
internal machine language, yet during their development it
15 advantageous to express the program in a symbolic
language which has more meaning {o the person writing
the program. This symbolic language is then translated into
the executable machine language by the assembler.
in addition MIDAS assembler provides

« symbolic addressing

« macro-definition capability

+ user-defined microword formats

« user-defined opcodes

« address field calculations

« error detection

+ concordance listing with MOS or VORTEX using the
concordance program CONC

4.1 BASIC ELEMENTS

The source language input to the assembler consists of a
sequence of records. Each record contains 80 character
positions. These characters are represented internally in
standard 8-bit ASCll codes. The following paragraphs
describe the content and format of the input to MIDAS.

Characters

The characters forming the symbolic source statements are
described below. Characters not in this set can appear
only in the comment field.

Alphabetic: A through <
Numeric: 0 through 9
Special / slash
Characters: * asterisk

+ plus sign

- minus sign

space (blank)
' apostrophe

(left parenthesis
) right parenthesis

MIDAS statements are formed from the character set
above. The comment field can contain valid 70/620 ASCI
characters in addition to any from the MIDAS character
set. Literals may be formed from any ASCII characters.

Symbols

The programmer may create symbols to be used for
statement labels or to define numeric values. A symbel
may contain one to six characters from the alphabetic or
numeric subset. The first character of a symbol must be
alphabetic.

Examples of correctly formed symbols
ABCY4 INPUT1 SAVE4X P23456

Symbols may also use the pound sign (=) or dollar sign ($)
character in any character position.

Example

ASB#C1 $SRUN ASTOP #FIVE
Constants

A constant is a self-defining term. Four types of constants
are available: decimal integer, hexadecimal, octal and
binary.

A decimal constant is an unsigned sequence of decimal
digits. The value of a decimal constant may not exceed
32767.

A hexadecimal constant is an unsigned sequence of
hexadecimal digits. base 16, preceded by the letter X and
an apostrophe. The maximum hexadecimal number
processed by the assembler is X'7FFF.

An octal constant is an unsigned sequence of octal digits, 0
through 7 -preceded by the letter O and an apostrophe. An
octal constant can not exceed 0'77777.

A binary constant is an unsigned sequence of ones and
zeros preceded by the letter B and an apostrophe. Binary
constants may be as large as 16 bits.

Expressions

An expression is a single term or a series of terms
connected by the following operators. All are integer
operators.

+ Addition

- Subtraction

* Multiplication

/ Division
A term is a symbol, constant, or a special symbol, *, which
denotes the program location counter. A term is associ-
ated with a value inherent to the term in the case of a
constant, or assigned by the assembler.

MICROPROGRAM DATA ASSEMBLER, MIDAS

Multi-term expressions are evaluated from left to right. No
parentheses are allowed. Expressions are reduced to a
single value by the procedure below.

1. Each term is given a value

2. Multiplication and division are performed from left to
right

3. Addition and subtraction are performed left to right

4. If an expression has a leading minus sign, the value is
computed as though a zero term preceded the minus
sign. A leading plus sign is ignored.

5. The value resulting is right-justified in its generated
resultant field. Unspecified leading bit positions
coritain zeros.

Program Location ‘Counter

The assembler maintains a program location counter which
is automatically initialized to zero at the start of each
assembly. As program statements are processed the
assembler assigns consecutive memory (WCS) addresses to

the microinstructions generated, unless the program
location counter is explicitly modified. The counter may be
modified by the ORG and ALOC directives. The asterisk (*)
character as a label denotes the current value of the
program location counter.

4.2 GENERAL FORM OF STATEMENTS

Input to the assembler is in the form of statements in
punched-card images. The statement is contained in a
fixed format in character positions 1 through 72. 73
through 80 are reserved for sequencing information and
have no effect on the generated microprogram.

A statement is divided into a label, operation, continuation,
operand, and comment field. These are discussed in order
below.

Label

A source statement can be associated with a symbolic
label, which allows the statement to be referenced from
other statements in the program. The label, if present,
must begin in character position 1 and is terminated by a
space. A label may be a one to six character symbol.

Operation

The operation field may consist of the format-defining
operator FORM, the label of a predefined or user-defined
format statement, a macro name or an assembler

directive. The operation field begins in position 8 and is
terminated by a space.

Continuation

Continuation lines may be used when additional lines of
coding are required to complete a statement originating on
one line. There can be up to three continuations per
statement. This is designated by the character C in
position 15. The actual statement continues in positions 16
through 72. Continuation lines are only valid for the
tormat and program statements.

Operand

The operand field begins in position 16 and is terminated
by a space. The operand field may contain subfields
separated by commas. A leading comma in the operand
field is ignored.

Comment

The comment field is optional for documenting programs.
The content of this field is output on the assembly listings
but in no way has an effect upon the assembly process.
The comment field begins with the first non-blank
character following the operand field.

4.3 STATEMENT DEFINITIONS

MIDAS processes four types of statements: format. pro-
gram, assembler-directive and comment.

4.3.1 Format Statement

The format statement labels and describes a structure for
the microinstruction generated by the program statement.
Each program statement specifies a format in which the
user has grouped and broken up fields within the
microword to set values. Two predefined formats are GEN
and GMSK, "standard" formats shown in figure 4-1. The
user may define additional formats through the use of the
format statement.

The general form of the format statement begins with a
required label followed by the word FORM followed by the
field identifiers separated by commas. A field identifier
consists of a field length in decimal, which may be followed
by a hexadecimal constant enclosed in parentheses.

label FORM field(1) , field(2), . . ., field(n)
Where:
label is a symbol formed according to
the basic elements
each field is a field identifier which is the

field length in decimal. followed

by an optional hexadecimal constant

enclosed in parentheses
length(constant)

ordinal field
field size -
number name in bits
1 TS a4]
2 AF/MS 9
3 MT 1
4 FS 4
5 TF 2
6 SF 2
7 GF 4
8 MR 1
9 AB 2
10 M 4
11 LB 2 GEN
12 LA 2
13 RF 3
14 FF 4
15 MF 17]
16 CF 2
17 WR 1
18 sSC 1 (a)
19 VF 1
20 WF 1
21 XF 2
22 SH 3
23 BB 4_|
24 AA 47] (b)
(a) MK field in GMSK format
(b) AK field in GMSK format
ordinal field
field size
number name in bits
1 TS 4
2 AF/MS 9
3 MT 1
4 FS 4
5 TF 2
6 SF 2
7 GF 4
8 MR 1 GMSK
9 AB 2
10 M 4
11 LB 2
12 LA 2
13 RF 3
14 FF 4
15 MK 16
16 AK 4 _]

Figure 4-1. Predefined Formats Recognized by MIDAS

Field length can not exceed 16 bits. Fields are specified
from left to right. Each field identifier has an implicit
ordinal field number associated with it for reference. All
64 bits of the microinstruction word must be allocated.
Fields to which constant values have not been assigned are
initialized to zero.

Possible errors in the format statement include allocating
more than or less than 64 bits and using a constant value

MICROPROGRAM DATA ASSEMBLER, MIDAS

exceeding the size of the field. If an attempt is made to
redefine a format, an error is indicated and the format is
ignored.

Continuation lines can be used on the format statement

* but a field identifier may not be carried across lines. A

comma must complete the field identifier before continuing
the statement on the next line. If the last non-blank
character of the operation field is a comma, it implies the
next record will be a continuation.

Example:
LIST FORM

14,4,2(X'3),2,4,1,2,
C4,2,2,7,16(X"'1FFF) , 4

4.3.2 Program Statement

The program statement represents the encoding of the
microinstructions in symbolic notation. Each program
statement references a format statement to be used in
building the microinstruction. The format of the program
statement is an optional label followed by a format label
followed by a program field.

label format program-field
Where:

the program-field consists of one or more of the following
separated by commas.

One address expression
Predefined opcode
User-defined opcode
Field constant

The single address expression specifies the mode of
addressing to be used in fetching the next microsinstruc-
tion. The address expression, if present, must be the first
item in the program field. The format of an address
expression is:

/mode (expression, fail address)

Where mode is a key denoting the following possible
address modes:

Normal addressing
Test

Field Select

Test and field select
Page jump

Implicit

QT H2Z

The value of the first expression in parentheses is the
address of the next instruction under non-test conditions,
or if the test passes. The value of the second expression is
the address of the next instruction if the test fails.

4.3

MICROPROGRAM DATA ASSEMBLER, MIDAS

Modes N, F and P require only the first expression. T and §
must use both expressions. None is given for the implicit
mode.

Address evaluation is performed with the following
considerations:

When the address mode uses field selection (modes F and
S), the value of the expression must refer to the
lower address selected in that field. This address
must be an even numbered address.

The contents of the mask field (MS) and the mask exten-
sion field (MT), which provide the mask for the
field address, must be defined by the user.

In the test or the test-and-field-select modes of addressing,
the fail address must be an even numbered word and
must be greater than pass address taken modulo 16.

For example, if the pass address is X'16, the range of the fail
address must be from X'10 to X'1E and an even word.
If the pass address is X'26, the fail address may
range (on even words only) from X'20 to X'3E.

The value is 13 bits with the high-order four bits specifing
a page number and the low-order 9 a word within
the page.

The implicit mode generates normal addressing to the
program location counter plus one.

In a page jump the expression specified must produce a
value which contains both the page and word
addressing information. This destination can be
defined through use of the EQU directive.

If the test field (TS) is being used to select interrupts or
to specify AA or BB field definition, its value must be
defined by the user.

Predefined Opcodes

When a predefined opcode is used in the program field, it
specifies that a particular value be placed in a field of the
microinstruction as defined by the format statement.

Predefined opcodes are symbols consisting of three to six
characters. The first two characters identify a field of the
defined formats and the following characters specify the
value in hexadecimal notation to be placed in the field.

These field names must not be used as labels in user-

defined opcodes. The two-character names for fields and
the permissible range for each is given below.

Predefined opcodes may be used with user-defined formats
since each of these opcodes has an ordinal field number
associated with it. There is no predefined opcode for the
combined address field AF/MS.

4-4

Fields of the Microinstruction

Ordinal
Name Number Range
TS 1 0-F
MT 3 0-1
FS 4 0-F
TF 5 0-3
SF 6 0-3
GF 7 0-F
MR 8 0-1
AB 9 0-3
M 10 0-F
LB 11 0-3
LA 12 0-3
RF 13 0-7
FF 14 0-F
MF 15 0-1
MK 15 0 - FFFF
CF 16 0-3
AK 16 0-F
WR 17 0-1
SC 18 0-1
VF 19 0-1
WF 20 0-1
XF 21 0-3
SH 22 0-7
BB 23 0-F
AA 24 0-F

User-Defined Opcodes

Users can assign values to symbols through the EQU
directive. The opcode is placed in parentheses and
preceded by the decimal ordinal field number designating
the format field for the value.

Statement labels and user-defined opcodes must avoid
naming conflicts.

Field Constant

A field constant denotss a value to be placed in a
microinstruction field. Either decimal, hexadecimal, octal
or binary constant is placed in parentheses and preceded
by a decimal ordinal field number.

Error Conditions

The effect of error conditions upon the continuing assembly
depends upon the type of error. The errors listed below are
indicated on the listing. The action shown in parentheses
is taken in the program statement.

a. Reference to a non-existent format (program statement
is ignored) .

b. Value exceeds the size of field (value truncated)
(continued)

c. Both operand in the program field and a format
constant are specified for the same field (inclusive OR
of the values inserted)

d. Multiple values generated for a field (first used)

e. Inconsistency between the address mode specified and
the values of the address control fields e.g., normal
addressing and test field (TF) non-zero. (Mode is
used to generate address)

Additional Considerations

The assembler evaluates each operand in the program
field, and then uses the format indicated to form a
microinstruction. Operand values and format field
constants are placed in the appropriate fields.

Values computed for a field are inserted in the field right-
justitied. Fields whose values are not explicitly defined in
either the format or program statement are set to zero.

A program statement may have continuation lines, but an
operand may not be carried across lines. A comma must
complete the operand before continuing the statement on
the next line. If the last non-blank character of the
operation field is a comma, it implies the next record will
be a continuation line.

Example:
EXC1 GMSK

/N(EXC2),LB3,RF3,FFA,
CMKF7FF

4.3.3 Assembler Directives

Instructions to the assembler are known as directives.
These statements have label, operation, operand and
comment fields. The operation field contains the name of
the directive, such as EQU, ORG, ALOC, SPAC, EJEC, MAC
and EMAC.

The directives for macro definition MAC and EMAC are
described in a later section. Other assembler directives are
discussed in order below.

EQU -- Equate

The EQU directive is used to assign symbols to a given
value or the value of another symbol. The symbol in the
label field is required in this directive. It is defined to have
the value of the expression in the operand field.

The format of the EQU directive requires both a symbol in
the label field and expression in the operand field. If the
expression in the operand field contains a symbol, it must
have been previously defined.

MICROPROGRAM DATA ASSEMBLER, MIDAS

If the symbol in the label field has been previously defined
or if there is no label, an error is indicated and the
statement is ignored.

Examples:

THREE EQU 3

SC2 EQU X'FE

\ EQU THREE+2
ORG -- Origin

The ORG directive sets the program location counter to the
value of the expression in the operand field.

A symbol in the labe! field is optional in the ORG directive.
The expression to which the program location counter is
set must be in the operand field.

If an expression in the operand field contains a symbol, it
must have been previously defined. A negative value in
the operand field causes an error to be indicated and the
statement is ignored. A value of zero is acceptabie. If the
expression exceeds the page size, it is an error and
causes the assembly to be terminated.

At the beginning of each assembly pass the assembler
initializes the program location counter to zero.

Examples:
ORG X'1EO
ORG BEGIN

ALOC -- Allocate

The ALOC directive informs the assembler that it is to skip
over previously allocated locations as it is assigning
sequential addresses to the generated microinstructions.

From the beginning of an assembly pass until the
occurrence of the ALOC directive the assembler will keep a
list of all assigned locations. After the ALOC directive is
processed the assembler will test each new program

locaticrs counter setting against the list of allocated
locations. If a new value is in allocated space, the
assembler will increment the counter and again make the
test. The sequence will continue until unallocated space is
found.

itis recommended that during initial program checkout an
ALU directive with a value of zero be used at the start of all
programs to get an output with NR, LC, and 170 errors.

The format of the ALOC directive requires an expression in
the operand field, but the symbol in the label field is
optional.

4.5

MICROPROGRAM DATA ASSEMBLER, MIDAS

An error is indicated and the statement ignored, if the
operand field contains a negative value or exceeds the page
size.

In the implicit addressing mode the address of the next
instruction is the next allocatable location.

Examples:
ALOC FIELD*4
ALOC 0'20
SPAC -- Space

The SPAC directive provides a blank line on an assembly
listing to improve readability.

Both the label and operand fields of the SPAC directive are
ignored. A symbolic source listing shows a blank line in
place of SPAC directives.

Examples:

SPAC

SPAC ADD HERE LATER
EJEC -- Eject

The EJEC directive causes the assembly listing device to
advance to the first print location of the next output page.

Both the label and operand fields are ignored. EJEC is
listed.

END -- End

The END directive causes an assembly to be terminated.
An END directive is required as the terminal source
statement for each assembly.

A symbol! in the label field is optional and assigned the

value of the program location counter. The operand field
is ignored.

4.3.4 Comment

A statement with an asterisk in the first character position

is entirely commentary. its contents have no effect upon
the assembly process, however the statement is output to
the listing.

4.4 ASSEMBLY-LANGUAGE EXAMPLES

The following examples show how representative microin-
structions in the WCS could be coded as source statements

4-6

for MIDAS.

Example 1:
EXC1 GMSK /N(EXC2) ,LB3,RP3,FPA, HKPTPP

This example uses the normal mode of addressing.

Example 2:

/T(LASL2,LASL1),TP2,GPC,LA2,
CRFS,WR1,5C1,XP3,SH6

LASL1 GEN

This example shows the use of the test mode of
addressing, and the use of a continuation record.

Example 3:

BT10 GEN /F(BT20),2(X'F) ,FS4,RP4 XF1

This example shows the use of the field select mode of
addressing. The field address mask is provided by the
hexadecimal field constant.

Example 4:

SWA22 GEN /S(LDA2,SWA26),2(X"'C) ,MT1,FSP,

CTF3,GFB,LB!,RF3 FFA MF1,BB1

This example shows the use of the test and field select
mode of addressing. The field address mask is provided by
the hexadecimal field constant and the predefined opcode
MT.

Example 5:

/#%,1(B'1),IMF,LB1,FFA MF1,WRY,
CXF1,AAE

SEN2 GEN

This example shows the use of the implicit mode of
addressing. The instruction initiates 170 activity and the
binary field constant provides part of the |/0 control store
starting address.

Example 6:

4 EQU X'200 PAGE ADDRESS (PAGE 1)

GMSK /P(DIV+P),IMD,LB3,
C15(*+14P) ,AK2

This example shows the use of the branch/push operation.
The operation effects a page selection and the destination
and return addresses are global. The destination address
is generated by the address expression. Note the page
address contribution of P. The expression for field 15
generates the global address which is pushed on the
microprogram return stack. P contributes to this again.

Control returns to the instruction immediately following
the branch/push instruction in this example.

Example 7:

GEN IMD,LB3, AAY

This example shows the use of the branch/pop operation.
The global return address used is the last item pushed on
the stack.

Example 8:

S51M EQU X'13E

GEN /P(SS1M), SFO,TFO, IM3

This example shows the use of the page jump mode of
addressing. In page selection the value in the address
expression must contain both the page and word
contribution to the global address. in this example the page
jump is to a standard state in the central control store
(page 0) from some other page.

Example 9:

SS3IM GMSK /N(SS2MI) ,1(X'E),GFS5,IM6

This example uses the normal mode of addressing but
selects the decode-ROM and samples interrupts (GF field
bit 2 is true). The hexadecimal constant defines the
interrupts which are enabled.

The following examples show the use of page branch,
branch/push, and branch/pop operations.

Example 10:
SS2M EQU X'092
MW1 GEN /P(SS2M),IM3,SFO,TFO

This exampie of a microword, labeled MWI, does a page
jump to one of the standard states in read-only memory.

Example 11:
PAGE EQU X'200 PAGE ONE SPECIFICATION
MW2 GMSK /P (SUBR+PAGE) ,TF0,SFO0,

CIMD,LB3,AK2, 15(MW2+1+PAGE)

SUBR GEN e

EXIT GEN TFO0,S8F0, IMD,LB3,AA4, BBO

MICROPROGRAM DATA ASSEMBLER, MIDAS

This example calls a micro subroutine and uses the stack
to save the return address. The subroutine call is labeled
MW2. It forms the return address by adding the word and
page numbers, and then pushes the address on the stack.
Likewise, the address of the subroutine is formed by adding
page and word numbers. The subroutine returns by a
microinstruction labeled EXIT which does a pop jump.

4.5 MACRO CAPABILITY

A macro provides a convenient way to generate a sequence
of assembler source statements many times in one or more
programs. The macro definition is written only once, and a
single statement, the macro reference, is written each time
the user wishes to generate the desired sequence of
statements. These statements are then processed like any
other assembler statements. Macro definition uses the
MAC and EMAC directives.

MAC -- Macro

The MACRO directive introduces a macro definition. This
definition is terminated by the EMAC DIRECTIVE. The
name of the macro is the symbol which appears in the
label field of the MAC directive. Operand field parameters
may be passed from the macro-reference source statement
to the macro through use of the special parameter symbols
P(1) through P(n).

A macro is invoked by the appearance of the macro name
in the operation field of a statement.

The label field must contain a symbol.

In the macro-reference statement the operand field may
contain a list of parameters. At the time the macro-
reference 15 encountered. each parameter is evaluated and
stored into a table within the assembler. The parameters
may be labels, constants, or user-defined opcodes. Prede-
fined opcodes are not permitted. The macro definition s
then processed with the values in the table being
substituted for the special symbols P(1) through P(n). For
example, if the operand field of a macro-reference state-
ment appears as:

2,ABC,X'E0D

then within the generated macro the value of P(1) is 2, P(2)
is the value of the symbol ABC, and the value P(3) is 224.

All arguments 1n the macro-reference parameter list are
evaluated prior to invoking the macro.

An error is indicated and the MAC direction ignored, if the
label field does not contain a symbol. Also an error is
indicated and the reference is ignored if the macro has not
been defined prior to its being referenced.

If a symbol is present in the label field of a macro-reference

statement, it is assigned the value of the program location
counter at the time the macro is invoked.

4.7

MICROPROGRAM DATA ASSEMBLER, MIDAS

A macro definition may contain a reference to another
macro definition, nesting definitions. However, a macro
may not be called recursively.

EMAC .- End Macro

The EMAC directive terminates a macro definition. The
contents of both the label and operand fields are ignored.

Example:

The following example shows the use of macro definition
and reference.

ONE EQU 1
TWO EQU 2
THREE. EQU 3
FOUR EQU 4
SHFT MAC
GEN /T(*,s83M1),TF3,SF3,
CGFC,IM8,12(P(1)),RF5,
CWR1,22(P(2)),aA1
EMAC

ASLB SHFT

TWO, FOUR
LRLB SHFT TWO, ONE
ASRB SHFT THREE , TWO.

4.6 OPERATING INSTRUCTIONS

This section describes the operating procedure for MIDAS
in each of its three environments: VORTEX, MOS and as a
standalone program.

MIDAS runs under VORTEX as a level 0 background task
and may be cataloged into the background library using
the procedures described in the VORTEX Reference
Manuals.

MIDAS under MOS must be added to the system file using
the system preparation Program as described in the
Varian Master Operating System Reference Manual.

MIDAS in the standalone environment makes use of the
Standalone FORTRAN 1V loader runtime /0 and runtime
utility. Use of the components is described in the
FORTRAN !V Reference Manual.

48

4.6.1 VORTEX Environment

MIDAS is scheduled from the background library at level O
by the /LOAD,MIDAS directive. MIDAS terminates when
the END statement is encountered, and exits to the
executive. Only one source program can be assembled for
each load of MIDAS.

MIDAS inputs symbolic source statements from the
processor Input device (Pl) and outputs these statements
on the processor output device (PO). When the END
statement is encountered, MIDAS rewinds the PO file and
commences pass two. During pass two, it inputs source
statements from the system scratch device (SS) and
produces an assembly listing on the list output device
(LO). and object records on the Binary Output device (BO).

PO and SS devices not only must be the same physical
device, but the same magnetic tape, drum or disc unit. It
Pl is assigned to a Rotating Memory ' Device (RMD)
partition, MIDAS assumes the source records are blocked
three 40-word records per RMD 120-word physical record.
However, if Pl is the same logical unit as the System Input
Device (Sl), and it is assigned to a RMD partition, MIDAS
assumes the source records are not blocked but consist of
one source record per RMD 120-word physical record. If BO
is assigned to a RMD partition, the output is blocked two
60-word object records per RMD 120-word physical reocrd.
The assembler's table space may be expanded and
consequently larger source programs assembled by use of
the VORTEX /MEM directive.

4.6.2 MOS Environment

MIDAS is loaded from the system file by the system loader
by means of the /ULOAD,MIDAS directive. :

It reads the source records from Pl and outputs them to
PO. Pass two source input is from SS. When the END
statement is encountered on pass one, the SS file is
repositioned and reread. During pass two, the output can
be directed to BC for the object module and to LO for the
assembly listing. When an END statement is encountered
on pass two, control is returned to MOS. Therefore, it is
necessary to reload MIDAS with another /ULOAD directive
if multiple assemblies are desired.

4.6.3 Stand-Alone Environment

MIDAS is loaded by the 620 stand-along FORTRAN IV
loader, along with the runtime /O and runtime utility. The
description of this loading procedure and subsequent
execution is described in the 620 FORTRAN 1V Reference
Manual, where MIDAS is substituted for the DAS MR
Assembler. Upon execution, MIDAS will input source
records from logical unit 3 (Pl), output source records for
pass two to logical unit 9 (PO), input pass two source
records from logical unit 8 (SS), output binarv object
records to logical unit 2 (BO), and output assembly listing
to logical unit 4 (LO). When the first assembly is

completed, subsequent assemblies may be performed by
restarting MIDAS at location 0541.

4.7 ASSEMBLER INPUT AND OUTPUT

The following section contains a description of the source
records required for assembler input and the object
records and listing produced by the assembler.

Source Records

The assembler input consists of a sequence of logical
records containing 80 character positions. If a logical
record contains more than 80 positions, only the first 80
are input and the remainder are ignored. If a record
contains less than 80 positions, blank characters are
supplied by the assembler to fill 80 character positions.

Only the first 72 are considered in the assembly process.
Character positions 73 through 80 may be used as
desired.

Listing Format

An assembly-listing page consists of 44 lines per page with
each line containing no more than 120 characters. The
lines per page count may be changed when running under
an operating system. Each page contains the following:

Page number and title line followed by a blank line
Program listing containing two less than the current
lines/page count

At the end of an assembly a symbol table will be printed
followed by a line containing the message "mmmm
ERRORS ASSEMBLY COMPLETE™ where mmmm is the
accumulated error count expressed as a decimal number.

The line format for the title line is a function of the
environment in which MIDAS runs. The following descrip-
tion pertains to the standalone and MOS versions, with the
comments in parentheses referring to VORTEX. Beginning
with the first character position the format is illustrated

below.

Object Code Records

MIDAS produces object code which is input for the
microsimufator and the microutility programs. Logical
records of the object code are a fixed length of 60 words.
Word 1 is the record control word. Word 2 contains an
exclusive OR checksum of word 1 and the remaining words

MICROPROGRAM DATA ASSEMBLER, MIDAS

of the record. Word 3 through 11 optionally contain a
program identification block. Words 12 through the end of
the record (or 3 through end of record if there is no
program identification block) contain data fields.

Record Control Word Format

The format of the record control word is as follows:

1514 13 12 11 109 8
100

76543210
al 1l b c 00dddddddd

where a is 1 if the checksum is suppressed, b is 1 if not
starting record, cis 1 when it is not the last record, and d
is binary record number modulo 256.

Program Identification Block

This block appears in words 3 through 11 of the starting
record of each program. Word 3 contains the highest value
of the program counter during the assembly, words 4
through 7 contain an eight-character ASCIl program
identification, and words 8 through 11 contain an eight-
character ASCIl program creation date.

Data Field Format

Data fields contain either one- or four-word entries. One-
word entries are loader control words, and four-word
entries consist of data words.

The format of the loader control word is code in bits 13-15
and an address/count in the low-order 13 bits. A code of
zero instructs the loader to ignore this entry. One is the
code for setting the loading location counter to the value
contained in bits O through 12. A value of two indicates
the following microinstructions should be loaded. The
number of microinstructions minus one is specified in bits
1 through 12.

Data Words

Data words contain microinstructions. Each microinstruc-
tion is comprised of four 16-bit words. Word 1 contains bits
63 through 48 of the microinstruction while word 4
contains bits 15 through 0 of the microinstruction. A
microinstruction will not be carried across a logical record
boundary. If insufficient space remains on a logical record
for the four-word microinstruction, the remaining space
will be ignored and the microinstruction started on the
next fogical record.

4.9

MICROPROGRAM DATA ASSEMBLER, MIDAS

4.8 ASSEMBLY ERROR MESSAGES

During assembly the symbolic statements are checked for
syntactic errors. in addition, a condition may occur where
the assembler is unable to determine the correct meaning
of the symbolic source statements.

Either case is indicated as an error and up to eight error
codes will be output beneath the source statement
incorrectly constructed.

NR, LC and |O errors terminate the assembly.

Each error code with the exception of 10 is followed by a
space and two decimal digits indicating the character

position the .assembler was scanning when the error was
detected.

The error codes and their meanings are listed below.

Error
Code Meaning

AD Address expression or associated fields in error
(see below)

CC Continuation not expected

CE Numeric conversion error

DD Illegal redefinition of a symbol

ER Syntax error

EX An expression contained an illegal construction
FN Field number inconsistent with format

10 170 error

LC Program location counter setting exceeds the
maximum WCS page size (512 words)

MF Duplicate field reference

4-10

NR No memory available for addition of an entry to
assembler's tables

NS Nosymbol in the label field where required
OP Operation field undefined

SE Symbol in label field has a value during pass 2 that
is different from the value determined in pass 1

SY Undefined symbol. A value of zero is assumed

Sz A value too large for the size of a field, or the fields
defined in a format statement do not equal 64 bits

The AD error may occur under these circumstances:

a. With the character pointer in, or at the end of, an
address expression:

1. A test fail address is not on an even num-
bered word.

2. A field select origin address is not on an
even boundary.

3. The displacement between the test pass and
the test fail addresses is too great.

b. With the character pointer at the end of the
operand field:

1. Normal addressing mode and the FS or MT
or TF field is not equal to zero.

2. Test addressing mode is used and the TF
field is equal to zero.

3. Field selection addressing is the mode and
the FS field is equal to zero.

4. Test and field selection addressing mode
and either the FS or TF field equals to zero.

5. Page-jump addressing mode and either the
FS or TF field is not equal to zero.

SECTION 5
CODING FROM FLOW DIAGRAMS

5.1 GENERAL

This section details the conversion of flow- diagrams, (as
developed in section 3), into code which MIDAS accepts.
As examples actual assembler listings of the sample
microprograms discussed in section 3 are included.

Flow diagram conversion is basically a matter of table-
lookup. Tables are included in this section which list the
standard mnemonics and the corresponding assembler
code.

Assembler code produced is given in two different
formats. The first format produces code using only the
predefined assembler opcodes for the GEN or GMSK
statements. The second format is based around user-
defined opcodes which follow the mnemonics developed
thus far as closely as possible. As these are not prede-
fined, some burden is placed on the user to include the
necessary EQU directives (these EQUs are available
from Sperry Univac as a software part). However, the
resulting code is considerably more readable than that
produced in the first format.

Each column in the flow diagram will produce a single
assembler program statement. This transformation can
be performed as follows:

1. Fillin the label field if necessary, this will often be from
the LOCATION section.

2. Choose either GEN or GMSK as format label. The latter,
GMSK, is used only when the 16-bit literal/mask is
needed.

3. Derive the appropriate address expression

4. For each of the standard mnemonics in the column,
add the statements shown in the conversion tables.

5. Replace any nonstandard mnemonics with appropriate
field value assignments.

In addition to this translation, other assembler directives
must be included to set the location of the program in
WCS. In doing this, addressing considerations must be
taken into account. For example, in test addressing the
failure branch must always be to an even location.

The standard mnemonics, together with the assembler
code which they generate, are listed in table 3-1.

5.2 EXAMPLES OF MICROPROGRAMS IN
ASSEMBLY LANGUAGE

The five examples flow diagrammed in Section 3 are
encoded in this section.

The example of 5.2.3 contains the assembler directives
needed for the user-defined opcodes of Format Ii. This
example is available as Part No. 92H1709-001A, which
includes initialization of all BCS entry points.

51

CODING FROM FLOW DIAGRAMS

5-2

5.2.1 BCS Entry Point Initialization

Since physical addresses were assigned at the flow diagram
level, the transformation was quite straightforward. Note
that a standard deck of all the EQU statements was used
though not all were needed.

THIS IS INITIALIZATION FOR BCS ENTRY POINTS

NEWN =
#* & & % #

7 *

8 =» THE FOLLOWING ARE SUPPLEMENTAL OPCODES

9 = FOR USE WITH THE MICRO. ASSEMBLER

10 =

11 =
0009 12 ADD EQU 9
0008 13 ALUC EQU 8
0006 14 ALUO EQU 6
0007 15 ALUS EQU 7
0009 16 ALUZ EQU 9
000B 17 AND EQU X'B
0002 18 AONE EQU 2
0001 19 AZERO EQU 1
0000 20 ASGPR EQU 0
0002 21 ASGPRL EQU 2
0003 22 ASGPRR EQU 3
0001 23 AsP EQU 1
0000 24 ASSPEC EQU 0
0007 25 BSSALU EQU 7
000F 26 BSSMIR EQU X'r
0003 27 BSS$SOVR EQU 3
0008 28 BSSP EQU X'B
0000 29 BS$SGPR EQU 0
0001 30 BSSPEC EQU 1
0003 31 CRY! EQU 3
000F 32 DECA EQU X'F
0009 33 DECB EQU 9
0004 34 DECODE EQU 4
0005 35 DECODS EQU 5
0006 36 EOR EQU 6
0003 37 FT EQU 3
0001 38 GPROUT EQU 1
000D 39 GPRS EQU X'D
0001 40 1IBRS$SI EQU 1
0004 41 IFSALU EQU L]
000C 42 IFSMIR EQU x'c
0000 43 IF$OVR EQU 0
0008 44 IFSP EQU 8
0000 45 TINCA EQU 0
0001 46 INCB EQU 1
0004 47 INCP EQU 4
0005 48 INCSC EQU 5
0002 49 IOR EQU 2
000t 50 IOSR EQU 1
0006 S5t KouUT EQU 6
0000 52 LFT EQU 0
0003 53 LIT EQU 3
0001 54 LOG EQU 1
0001 55 MEMC EQU 1
0002 56 MEMCS$ EQU 2
0001 57 MIR EQU 1
000B 58 MIRS EQU X'
0002 59 MsK EQU 2
O00E 60 NORM EQU X'E
0000 61 NOTA EQU 0
0005 62 NOTB EQU S
0005 63 OFS$ALU EQU S
000D 64 OFSMIR EQU X'D
0001 65 OFS$OVR EQU -1
0009 66 OFSP EQU -9
0007 67 OLZP EQU 7
0005 68 OLSE EQU S
0003 69 ONES EQU 3
0000 70 OPR EQU 0
0003 71 OPROUT EQU 3
0001 72 OR EQU 1
0004, 73 ORSE EQU 4
0006 74 ORZF EQU 6
0006 75 OSSALU EQU]
000E 76 OSSMIR EQU X'B
0002 77 OSSOVR EQU 2

(continued)

0000

o000
0001
0002
0003
0004
0005
0006
0007
ooos
0009
000A
000B
000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D

000A
0000
0003
0004
0001
000F
0000
0001
0002
0003
0004
0005

0006
0007
0008
0009
000A
ODOB

o0oo0C
000D
000E
000F
0001
0002
oooC
000C
000A
0001
0000
0004
0003
0002
0003
0006
0002
0006
0001

0002
0003
0002
0005
000F
000A
0002
0001

0003

013E
0092
002D

0u90000180000000
0490000180000000
0490000180000000
0490000180000000
0499000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0480000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000
0490000180000000

78
79
80
81
82
83
2]
85
86
87
88
89

90
91
92
93
94
95
96

98

99
100
101
102
103
104
105
106

-
OO0
ocowm~

PO
RPN N
ONOWV T WN -

-
NN -
o w

122
123

125
126
127
128
129
130

132

134
135
13¢
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

[o1:3 334
OVFL
PJIMP
PIMPS
POUT
Quos
RO
R1
R2
R3
RY
RS

R6

R7

R8

R9

RA

RB

RC

RD

RE

RF
RGHT
SCOUT
SFTC
SHFA
SHFT
SHFTOP
SPEC
SswWi
SSW2
SSW3
STAT
SUB
SS$ALU
S$SOVFL
S$SHFT
TCB
TESTT
TESTF
TFIR
TRNA
TRNB
T
WAITMD
2ERO

SS1M
SS2M
SS3M

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

FOLLOWING ARE ROM STANDARD STATE ADDRESSES

EQU
EQU
EQU

ORG

GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN

‘GEN

GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN

>

MEWNSOX s woX
o]

Wau XX UINWNSONOWNWEO XXX aXXXX XXOoan
e |

X'13E
X'092
X'02D

0

RESTART PIPELINE 2 P

CODING FROM FLOW DIAGRAMS

MAINTAIN PIPELINE
DECODE NEXT INSTRUCTION (IN IBR)

/N(SS2M), 10 (PJIMP)
/N(5S2M), 10 (PIMP)
/N{SS2M), 10 (PJIMP)
/N(SS2M), 10 (PIMP)
/N(SS2M), 10(PIMP)
/N(SS2M),10(PIMP)
/N(SS2M),10(PIMP)
/N(SsS2M),10{PIMP)
/N(SS2M) , 10(PIMP)
/N(SS2M), 10(PIMP)
/N(SS2M), 10 PIMP)
/N(SS2M), 10(PIMP)
/N(SS2M), 10(PIMP)

/N(ss2M),
/N(SS2M),
/N(sSs2M),
/N(SS2M),
/N(SS2M),
/N(SS2M),
/N(8S2M),
/N(ss2M),
/N(SS2M),
/N(SS2M),
/N(SS2M),
/N(SS2M),
/N(SS2M),
/N(SS2M),
/N(SS2M),
/N(SS2M),
/N(SS2M),

1
o
1
o1
o1
A
1
1
W
o1
o1
1
1
10(PIMP) , 1
10(PJMP) , 1
10{PJIMP), 1
10{PJIMP) , 1
10(PIMP) , 1
10(PIMP) , 1
10(PJIMP) , 1
10(PIMP) , 1
10(PIMP) , 1
10(PJIMP) , 1
10(PIMP) , 1
10(PIMP) , 1
10(PIMP) , 1
10(PIMP) , 1
10(PIMP) , 1
10(PIMP) , 1

A

(
{
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
10(PIMP) (

0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)

RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN
RETURN

ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM
ROM

(continued)

5-3

CODING FROM FLOW DIAGRAMS

001E 0490000180000000 164 GEN /N{SS2M), 10(PJIMP), 1(0) RETURN TO ROM
001F 0490000180000000 165 GEN /N{SS2M), 10(PIMP), 1{0) RETURN TO ROM

167 END
SYMBOLS
0000 ASGPR 0002 ASGPRL 0003 ASGPRR 0001 ASP 0000 ASSPEC
0009 ADD 0008 ALUC 0006 ALUO 0007 ALUS 0009 ALUZ
000B AND 0002 AONE 0001 AZERO 0000 BSGPR 0001 BSSPEC
0007 BSS$SALU 000F BSS$SMIR 0003 BSSOVR Q00B BSS$P 0003 CRY1
000F DECA 0009 DECB 0005 DECODS 0004 DECODE 0006 EOR
0003 PFT 0001 GPROUT 000D GPRS 0001 IBRSI 0004 IFSALU
000C IFSMIR 0000 IFSOVR 0008 IFSP 0000 INCA 0001 INCB
0004 INCP 0005 INCSC 0002 IQR 0001 IOSR 0006 KOUT
0000 LFT 0003 LIT 000t LOG 0001 MEMC 0002 MEMCS
0001 MIR 000B MIRS 0002 MSK 000E NORM 0000 NOTA
0005 NOTB 0005 OFS$SALU 000D QFSMIR 0001 OFSOVR 0009 OFSP
0005 OLSE 0007 OL2P 0003 ONES 0000 OPR 0003 OPROUT

0001 OR 0004 ORSE 0006 ORZF 0006 OS$SALU QOOE QOS$MIR
0002 OS$SOVR O0OA OSSP 0000 OVFL 0003 PJIMP 0004 PIMPS
0001 POUT 000F QUOS 0000 RO 0001 R1 0002 R2
0003 R3 0004 RY 0005 RS 0006 R6 0007 R7
0008 RS 0009 R9 000A RA Q00B RB 000C RC
000D RD 000E RE 000F RF 0001 RGHT 0002 SS$SALU

0006 S$SOVFL 0001 S$SHFT 0002 SCOUT 000C SFTC 000C SHFA

Q00A SHFT 0001 SHFTOP 0000 SPEC 013E SS1M 0092 Ss2M

002D SSIM 0004 sSW1 0003 sswW2 0002 sSSW3 0003 STAT

0006 suB 0002 TCB 0002 TESTPF 0003 TESTT 0005 TFIR

000F TRNA 000A TRNB 0002 TT 0001 WAITMD 0003 ZERO
0 ERRORS ASSEMBLY COMPLETE

5.4

CODING FROM FLOW DIAGRAMS

5.2.2 Memory-to-Memory Block Move

The subroutine was assigned physical location 101, page 1
as its first address. This places word MBMA on an even
word, as it must be. Since the microroutine is on page 1,
the need for the page jump from the BCS entry point no
longer exists. It was included never the less.

0001

0009
0008
0006
0007
0009
000B
0002
0001
0000
0002
0003
0001
0000
0007
Q00F
0003
000B
0000
0001
0003
000F
0009
o004
0005
0006
0003
0001
000D
0001
0004
000C
0000
0008
0000
0001

ooou
0005
0002
0001
0006
0000
0003
0001
0001
0002
0001
000B
0002
000E
0000
0005
0005
000D
0001
0009
0007

S OWENOWVMEWN -

-

LR BE K BE R BE 3R R B B

%* % % %0

*

ADD
ALUC
ALUO
ALUS
ALUZ
AND
AONE
AZERO
ASGPR
ASGPRL
ASGPRR
ASP
ASSPEC
BS$ALU
BSS$SMIR
BSSOVR
BSS$P
B$GPR
B$SPEC
CRY1
DECA
DECB
DECODE
DECODS
EOR

FT
GPROUT
GPRS
IBRSI
IFSALU
IFSMIR
IFSOVR
IFS$P
INCA
INCH

INCP
INCSC
IOR
IOSR
KouT
LFT
LIT
LOG
MEMC
MEMCS$
MIR
MIRS
MSK
NORM
NOTA
NOTB
OFSALU
OF$MIR
OF$OVR
OFS$P
OLZF

MEMORY-TO-MEMORY BLOCK MOVE
CALL: BCS TO WORD 0

PARAMETERS: A REG - 'TO' ADDRESS
B REG - 'FROM' ADDRESS
X REG - BLOCK LENGTH

EQU 1

THE FOLLOWING ARE SUPPLEMENTAL OPCODES
FOR USE WITH THE MICRO ASSEMBLER

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

SO ODOXEAX 2 WAULELXWA2ONRWX VO 2WNONXODINhDY
(o] w

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

NOWaAaXUVUVOXNX 2N wwoRhaNU B
o w

(continued)

55

CODING FROM FLOW DIAGRAMS

5-6

0005
0003
0000
0003
0001
0004
0006
0006
000E
0002
000A
0000
0003
0004
0001
000F
0000
0002
0003
0004
0005
0006
0007
0008
009
000A
000B
000C
000D
000E
000F
0001
0002
000C
000C
COOA
0001
0000
0004
0003
0002
0003
0006
0002
0006
0001
0002
0003
0002
0005
ooor
000A
0002
0001
0003

013E
0092
002D

0000

0000 1808000180000000

0101

0101 0810000008F90007

0102 0818000000P10000

131
132
133
134
135
136

138

140
141

143
145
146
147
149

151
152

154

156
157

159

161
162

OLSE
ONES
OPR
OPROUT

ORSE
ORZF
OSSALU
OS$MIR
OS$SOVR
oss$P
OVFL
PIMP
PIMPS
POUT
Quos

R2
R3
R4
RS
R6
R7
R8

RA

RB

RC

RD

RE

RP
RGHT
scour
SFTC
SHFA
SHFT
SHFTOP
SPEC
SSW1
SSW2
SSWJ
STAT
sSUB
SSALU
S$OVPL
S$SHFT
TCB
TESTT
TESTP
TFIR
TRNA
TRNB

WAITMD
ZERO

SS1M
SS2M
SS3M

*

* %

MBM

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

'r
‘A

WaRNXAXUNWN=OANRWUNWED XXX N XYM AUX X ORI NEWUNOXSFTWOXNXOATsWwO W
[g]

FOLLOWING ARE ROM STANDARD STATE ADDRESSES

EQU X'13e RESTART PIPELINE @ P

EQU X'092 MAINTAIN PIPELINE

EQU X'02p DECODE NEXT INSTRUCTION (IN IBR)
ORG Q

FOLLOWING IS BCS ENTRY POINT

GEN /N(MBM), 10(PJIMP), 1(1) BRANCH TO BLOCK MOVE ROUTINE

FOLLOWING IS ACTUAL BLOCK MOVE ROUTINE
ORG X'101

SAVE P IN R7

GEN /% ,12(ASP), 14 (TRNA), 15({LOG) , 17 (GPROUT) , 28 (R7)

DECR 'TO' ADDR

GEN /*,12(ASGPR),24(R0O), 14(DECA}, 17(GPROUT)

DECR 'PROM' ADDR ; PUT IT IN P
(continued)

0103 0B20000001F00001 164

166

0104 0B2BO4OULUALABOO10 170

*
167 =
169 MBMA
172 =
173

0105 0830008000F10002 175

*

177
178

E 4

179 =

1817

0106 283829C300070000 182

SYMBOLS
0000 ASGPR
0009 ADD
000B AND
0007 BSSALU
000F DECA
0003 FT
000C IFSMIR
0004 INCP
0000 LFT
0107 MBMB
0002 MSK
000D OFS$MIR
0003 ONES
0006 ORZF
0000 OVFL
0000 RO
0005 RS
000A RA
000F RF
0002 sCOUT
0000 SPEC
0003 sswW2
0002 TESTF
0002 TT

0002
0008
0002
000F
0009
0001
0000
0005
0003
0001
000E
0001
0000
0006
0003
0001
0006
000B
0001
000C
013E
0002
0003
0001

*

184
185 =

187 MBMB
0107 O490090201F8B0007 188

190

ASGPRL 0003
ALUC 0006
AONE 0001
BS$SMIR 0003
DECB 0005
GPROUT 000D
IFSOVR 0008
INCSC 0002
LIT 0001
MEMC 0002
NORM 0000
OF$OVR 0009
OPR 0003
OS$SALU O000E
PJIMP ooou4

R1 0002
R6 0007
RB 000C

RGHT 0002
SFTC 0o0o0C
SS1M 0092
SSW3 0003
TESTT 0005
WAITMD 0003

0 ERRORS ASSEMBLY COMPLETE

CODING FROM FLOW DIAGRAMS

GEN /% ,12(A$GPR),24(R1), 14 (DECA), 13(POUT)

FIRST LOOP MICROWORD; STORE AT 'TO':; REQUEST FETCH OF INCR 'FROM'

GEN /%,10(OF$P),6(MEMC), 11(B$SSPEC),23(MIR), 14 (TRNB),15(LOG),
C13(INCP)

SECOND LOOP MICROWORD; DECR BLOCK LENGTH; SAMPLE RESULT FOR TEST

GEN /%,12(ASGPR),24(R2), 14(DECA), 17 (GPROUT), 7 (S$ALU)

FINAL LOOP MICROWORD; EXIT OR CONTINUE THE LOOP WITH REQUEST
FOR A STORE AT INCREMENTED 'TO' ADDR
GEN /T(MBMB,MBMA) ,5(TT), 10(0OS$SALU) ,6(TESTF),
C12(ASGPR) ,24(R0), 14 (INCA),16(CRY1),17(GPROUT), 7 (ALUS)
EXIT MICROWORD ; RESTORE P AND THE PIPELINE
GEN /N(SS2M), 7 (PIMPS) ,1(0),10(IFSALU) ,6{MEMCS) ,5(0),
C12(ASGPR),24(R7), 14(TRANA), 15(LOG) , 13(POUT)

END

ASGPRR 0001 ASP 0000 ASSPEC

ALUO

0007 ALUS 0009 ALVUZ

AZERO 0000 BSGPR 0001 BSSPEC
BS$OVR 000B BSS$P 0003 CRY!?
DECODS$ 0004 DECODE 0006 EOR

GPRS 0001 IBRSI 0004 IFSALU
IFSP 0000 INCA 0001 INCB
IOR 0001 IOSR 0006 KOUT
LOG 0101 MBM 0104 MBMA
MEMCS 0001 MIR 000B MIRS
NOTA 0005 NOTB 0005 OF$ALU
OFs$P 0005 OLSE 0007 OLZF
OPROUT 0001 OR 0004 ORSE

OSSMIR 0002 OS$OVR 000A OSSP
PJIMPS 0001 POUT 000F QUOS

R2
R7
RC

0003 R3 0004 R4
0008 R8 0009 R9
000D RD 000E RE

SSALU 0006 SSOVFL 0001 SSSHFT

SHFA
SS2M
STAT
TFIR
2ERO

000A SHFT 0001 SHFTOP
002D SS3M 0004 ssSW?
0006 SuB 0002 TCB
000F TRNA 000A TRNB

57

CODING FROM FLOW DIAGRAMS

5-8

0009
0008
0006
0007
0009
000B
0002
0001
0000
0002
0003
0001
0000
0007
000F
0003
0008
0000
0001
0003
000F
0009
0004
0005
0006
0003
0001
000D
0001
0004
0go0C
0000
0008
0000
0001
0004

0005
0002
0001
0006
0000
0003
0001
0001
0002
0001
0008
0002
000E
0000
0005
0005
000D
0001
0009
0007
0005
0003

5.2.3 Reentrant Subroutine Call and Return

These routines were assigned locations beginning at word
110, page 1. As with the previous example, the page jumps
are no longer necessary since the routines are on the same
page as their BCS entry points. In this case they were
simply coded using normal addressing.

1 »

2 *

3 s REENTRANT SUBROUTINE CALL AND RETURN
4 o= ,
5 = CALL: FOR SUBROUTINE CALL : BCS TO WORD 1
6 = FOR SUBROUTINE RETURN: BCS TO WORD 2
7 -

g PARAMETERS: B REGISTER - STACK POINTER
9 »

10 =

12 = :
13 = THE FOLLOWING ARE SUPPLEMENTAL OPCODES
1 o= FOR USE WITH THE MICRO ASSEMBLER
15 %

16 =

17 ADD EQU 9
18 ALUC EQU 8
19 ALUO EQU 6
20 ALUS EQU 7
21 ALUZ EQU 9
22 AND EQU X's
23 AONE EQU 2
24 AZERO EQU 1
25 AS$GPR EQU 0
26 ASGPRL EQU 2
27 ASGPRR EQU 3
28 ASP EQU 1
29 ASSPEC EQU 0
30 BSS$ALU EQU 7
31 BSSMIR EQU X'P
32 BSSOVR EQU 3
33 BS$P EQU X'B
34 BSGPR EQU 0
35 BSSPEC EQU 1
36 CRY' EQU 3
37 DECA EQU X'F
38 DECB EQU 9
39 DECODE EQU 4
40 DECOD$ EQU 5
41 EOR EQU 6
42 FT EQU 3
43 GPROUT EQU 1
44 GPRS EQU X'D
45 IBRSI EQU 1
46 IFSALU EQU 4
47 IFSMIR EQU x'c
48 IFSOVR EQU 0
49 IFSP EQU 8
S0 INCA EQU 0
51 INCB EQU 1
52 INCP EQU 4
53 INCSC EQU 5
54 IOR EQU 2
55 IOSR EQU 1
56 KOUT EQU 6
57 LPT EQU 0
58 LIT EQU 3
59 L0G EQU 1
60 MEMC EQU 1
61 MEMCS EQU 2
62 MIR EQU 1
63 MIRS EQU X'B
64 MSK EQU 2
65 NORM EQU X'E
66 NOTA EQU 0
67 NOTB EQU s
68 OFSALU EQU 5
69 OFSMIR EQU X'D
70 OFSOVR EQU 1
71 OFSP EQU 9
72 OLZF EQU 7
73 OLSE EQU 5
74 ONES EQU 3

(continued)

0000

0003 -

0001
0004
0006
0006
000E
0002
000A
0000
0003
0004
0001
000F
0000
0001
0002
0003
0004
0005

0006
0007
ooo8
0009
000A
000B
ooo0C
000D
000E
000F
0001
0002
0oo0C
ooocC
000A
0001
0000
ooou
0003
0002
0003
0006
0002
0006
0001
0002
0003
0002
0005
000F
000A
0002
0001
0003

013E
0092
002D

0001

0001 0880040300F10001

0110

0110 0888000080F80002

130
131
132
133
134
135

137
138
139
141

143
144

146
147

149
150
151
153

155
156

158

OPR
OPROUT
OR
ORSE
ORZF
OSSALU
OS$SMIR
OSSOVR
OSSP
OVFL
PJMP
PJIMPS
POUT
Quos
RO

R1

R2

R3

R4

RS

Ré

R7

R8

R9

RA

RB

RC

RD

RE

RF
RGHT
SCOUT
SFTC
SHFA
SHFT
SHFTOP
SPEC
SSW1
SSW2
SSW3
STAT
SUB
S$ALU
S$SOVFL
S$SHFT
TCB
TESTT
TESTF
TFIR
TRNA
TRNB
TT
WAITMD
ZERO

SS1M
SS2M
SS§3M

*

*

LAB1

CODING FROM FLOW DIAGRAMS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

™

>

VEWNCSOX S WwWoOoOXNXOhEaWwo
e]

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

MEHOnNo»

»an

o]

WaNXXUNWNAONOAWNWEOAXXXN2XXXXXX 0o o
>

FOLLOWING ARE ROUM STANUARD STATE ADDRESSES

EQU X'13E RESTART PIPELINE 3 P
EQU X'092 MAINTAIN PIPELINE
EQU X'02D DECODE NEXT INSTRUCTION (IN IBR)

FOLLOWING IS CODE FOR SUBROUTINE CALL

ORG 1

BCS ENTRY POINT PUSHES OLD R2 ON STACK

GEN /N(LAB1), 10 (OS$ALU),6(MEMC), 12(ASGPR),24(R1), 14(DECA),
C17(GPROUT)

REST OF ROUTINE

ORG X'110

WAIT ON STORE OF R2

GEN /% ,6(SPEC), 10(WAITMD), 12(ASGPR) ,24(R2),14(TRNA) ,15(LOG)

(continued)

59

CODING FROM FLOW DIAGRAMS

5-10

160
161

* %

163

0111 0890040608070002 164

0112

0002

0002

0115

0115

0116

166 =*
167 =

169
170

0168090221160110 171

173 »
174
175

* *

177

179
180 =

182

08AB040201FP80002 183

*

185
186 =
187

*

189

191 =
192 =

08B0040280F80001 194 LAB2

08B8B0O40404070001 200

196 =
197 »
199
202 =
203 =
205

0117 00000141A0A90012 206

SYMBOLS

0000
0009
000B
0007
000F
0003
0o00C
ooou
0110
0001
Q00E
0001
0000
0006
0003
0001
0006
000B
0001
oo0o0C
013E
0002
0003
0001

ASGPR
ADD
AND
B5S$ALU
DECA
FT
IPSMIR
INCP
LAR1
MEMC
NORM
OF $OVR
OPR
OSS$SALU
PJIMP
R1

R6

RB
RGHT
SFTC
SS1M
SSW3
TESTT
WAITMD

0002
0008
0002
Q00F
0009
0001
0000
0005
0115
0002
0000
0009
0003
000E
0004
0002
0007
ooacC
0002
000C
0092
0003
0005
0003

208

A$SGPRL 0003
ALUC 0006
AONE 0001
BS$SMIR 0003
DECB 0005
GPROUT 000D
IF$SQVR 0008
INCSC 0002
LAB2 0000
MEMCS$ 0001
NOTA 0005
OFS$P 0005
OPROUT 0001

OSSMIR 0002
PIMPS 0001
R2 0003
R7 0008
RC 000D

SSALU 0006
SHFA 000A
SS2M 002D
STAT 0006
TPIR ooor
ZERO

0 ERRORS ASSEMBLY COMPLETE

ASGPR
ALUC
AZERO
BS$OV
DECCD
GPRS
IFSP
IOR
LFT
MIR
NOTB
OLSE
OR
0ss$0V
POUT
R3

R8

RD
S$OQVF
SHFT
SS3M
sus
TRNA

PETCH FIRST INSTRUCTION OF SUBR ; STORE INCR P IN R2

GEN /*,10(IPSMIR),6(MEMC), 12(ASP), 14 (INCA), 16 (CRY1),
C17(GPROUT), 24 (R2)

FETCH SECOND INST OF SUBR; SET NEW P; BHACK TO ROM

GEN /N(ss3M),7(PJMPS),1(0),10(IFSALU),6(MEMCS),5(0),
C12(ASSPEC),22(AZERO),
C11(BSSPEC),23(MIR),14(INCB),16(CRY1),13(POUT)

FOLLOWING IS CODE FOR SUBROUTINE RETURN

ORG 2

BCS ENTRY POINT - BEGINS FETCH OF INST AT RETURN ADDRESS

GEN /N(LAB2),10(IFSALU),6(MEMC), 12(ASGPR), 24(R2),
C14{TRNA), 15(LOG), 13(POUT)

REST OF THE ROUTINE

ORG X'115

FETCH OLD R2 VALUE FROM STACK

GEN /#,10(OFSALU),6(MEMC), 12(ASGPR),24(R1), 14(TRNA), 15(LOG)

FETCH SECOND INSTRUCTION AT RETURN ADDRESS ; INCR STK PTR

GEN /%,10({IF$P),6 (MEMC), 12(ASGPR) ,28(R1), 18 (INCA), 16 (CRY),
C17(GPROUT), 13(INCP)

RESTORE R2 ; BACK TO ROM

GEN 10(PJMP), 1(0),7{DECODS), 11 (BSSPEC), 23(MIR),
C14(TRNB), 15(LOG), 17(GPROUT), 24(R2)

END

R 0001 Asp 0000 ASSPEC
0007 ALUS 0009 ALUZ
0000 BSGPR 000t BSSPEC

R 000B BsS$P 0003 CRY!?

$ 0004 DECODE 0006 EOR
0001 IBRSI 0004 IFSALU
0000 INCA 0001 INCB
0001 IOSR 0006 KOUT
0003 LIT 0001 LOG
000B MIRS 0002 MSK
0005 OFSALU 000D OFS$MIR
0007 OL2ZF 0003 ONES
0004 ORSE 0006 ORZF

R 000A OSSP 0000 OVPL
000F QUOS 0000 RO
0004 RY 0005 RS
0009 R9 000A RA
000E RE 000F RF

L 0001 S$SHPT 0002 scCouT
0001 SHFTOP 0000 SPEC
0004 SSW1 0003 SswW2
0002 TCB 0002 TESTF
00QA TRNB 0002 TT

CODING FROM FLOW DIAGRAMS

5.2.4 64K Add to General-Purpose Register

1 *ADD TO ANY REGISTER FROM 64K MEMORY INDEX BY R1
2 *
0000 3 ORG 0 .
4 x .
0000 0100040404000000 5 AD? GEN /N(AD2),SF1,IMR,RFY
6 *
7 *THIS ENTRY USED FOR EVEN REGISTER ADDRESSES.
8 *INITIATE ANOTHER INSTRUCTION FETCH USING INCREMENTED PROGRAM COUNTER.
9 »
0010 10 ORG X'010
11 =
0010 0100040404000000 12 ADI1A GEN /N(AD2) ,8F1,IM8,RF4
13 =
14 *THIS ENTRY USED FOR ODD REGISTER ADDRESSES.
15 #*INITIATE ANOTHER INSTRUCTION FETCH USING INCREMENTED PROGRAM COUNTER.
16 »
0020 17 ORG X'020
18 »
0020 0108000023A80010 19 AD2 GEN /*,LB1,RF3,FFA ,MF1,BB1
20 = .
21 #TRANSFER MEMORY INPUT REGISTER TO OPERAND REGISTER TO PREVENT LOSS
22 =*DUE TO PREVIOUSLY INITIATED FETCH. THIS 1S THE BASE ADDRESS.
23 =
0021 01100402A09800001 24 AD3 GEN /*,SF1,IM5,LB1,LAO,FF9,AA1
25 »
26 *PERFORM INDEXING BY ADDING R1 TO OPERAND REGISTER. INITIATE OPERAND
27 *FETCH USING ALU OUTPUT.
28 »
0022 4118043404000010 29 AD4 GEN /%,TS4,MR1,AB2,BB1,SF1,IM8,RFUY
30 »
31 *FIELD SELECT REGISTER SPECIFICATION FROM INSTRUCTION BITS 4-7 TO
32 =*A FIELD OF MICROINSTRUCTION. SET B FIELD TO SELECT MEMORY INPUT
33 »REGISTER. INITIATE ANOTHER INSTRUCTION FETCH USING INCREMENTED
34 *PROGRAM COUNTER.
35 »
0023 000003C1A0910000 36 ADS GEN /P(X'0000),LB1,LAO,FF9,GFF,WR1,IM3
37 =
38 *ADD CONTENTS OF MEMORY INPUT REGISTER TO THAT OF PREVIOUSLY SELECTED
39 *REGISTER AND STORE BACK THE SUM. PAGE BRANCH TO 2ERO AND DECODE
40 #*INSTRUCTION PREVIOUSLY FETCHED. OVERFLOW AND CONDITION CODES ARE
41 »SAMPLED. TRANSFER INSTRUCTION BUFFER TO INSTRUCTION REGISTER.
42 *
43 END
SYMBOLS
0000 AD1 0010 ADI1A 0020 AD2 0021 AD3 0022 ADM4
0023 ADS

0 ERRORS ASSEMBLY COMPLETE

CODING FROM FLOW DIAGRAMS

0000
0000

0020
0020

0021

0022

0023

0024

0025

0026

0027

0028

512

01083804E7A7FFAF

0110040280A80010

0198000020A30011

01380000E2A00070

0120008020A90012

312822U0E2A00070

0158050404000000

0138000020A9000F

0150000023A80010

01500000006900F0

N OOUONAWVEWN =

-

w

5.2.5 Cyclic Redundancy Check Generation

#THIS MICROPROGRAM COMPUTES THE CYCLIC REDUNDANCY CHECK WORD ON A
*PACKED BYTE ARRAY USING THE POLYNOMIAL:

* Xex164+X*x154+X#%24+1

*ENTRY IS VIA A BCS TO LOCATION 0 OF PAGE 1

*THE WORD FOLLOWING THE BCS IS THE DATA ARRAY ADDRESS

*THE WORD FOLLOWING THE DATA ARRAY ADDRESS IS THE BYTE COUNT

-
*THE 16 BIT CRC IS LEFT IN RO

#R0O,R1,AND R2 ARE ALL USED BY THIS INSTRUCTION (A,B,X). RF IS ALSO USED.
*R0 IS THE CURRENT CRC

*R1 IS THE CURRENT WORD ADDRESS OF THE DATA

*R2 IS THE CURRENT BYTE COUNT

*RF CONTAINS THE CRC POLYNOMIAL B'1000000000000101

*THE MICROPROGRAM MAY BE INTERRUPTED AFTER EVERY TWO BYTES ARE PROCESSED
*IF THE OVERFLOW FLAG IS SET UPQN ENTRY THE CURRENT VALUES OF R1 AND

#R2 ARE USED INSTEAD OF THOSE SPECIFIED BY MEMORY CONTENTS.

*THE ACCUMULATOR (RO) SHOULD BE CLEARED PRIOR TO ENTRY UNLESS CRC IS TO

*BE ACCUMULATED WITH A PRIOR CRC VALUE.

*

*
*TYPICAL ENTRY SEQUENCE 1IS:

* TZA
* ROF
* DATA 0105000
. DATA ADDR
» DATA COUNT
L J
*
*CRC GENERATION
*
ORG X'0
CRC1 GMSK /T(CRC2,CRC1A) ,TF3,SF2,IM9,LB3,RF7,FFA,MKTFFA, AKP

-
*ENTRY IS FROM DECODE OF THE BCS. THE ADDRESS FETCH HAS BEEN INITIATED.
*QVERFLOW FLAG IS TESTED TO DETERMINE IF INSTRUCTION WAS INTERRUPTED
*FETCH OF BYTE COUNT IS INITIATED USING INCREMENTED PROGRAM COUNTER

*THE POLYNOMIAL IS PLACED IN OPR

*IF OVERFLOW IS ON GO TO CRC1A OTHERWISE CRC2

-

ORG X'020
CRC1A GEN /N(CRC17),SF1,IMS5,FFA,BB1,MF1
.

*COME HERE IF OVERFLOW FLAG WAS ON WHEN INSTRUCTION WAS FETCHED
*FETCH DATA BYTE PAIR
»

CRC2 GEN /N(CRC3),LB1,FFA,WR1,BB1,AAT MF1
L]

*SAVE DATA ARRAY ADDRESS IN R?! (FROM MIR)

»

CRC17 GMSK /N(CRC6),IM1,LB3,RF2,FFA,MK0007
*

*SET SHIFT COUNTER TO -8

*WAIT FOR MEMORY DONE FROM DATA FETCH

=

CRCY4 GEN /%,GF2,LB1,FFA,BB1 ,MF1,AA2,WR!

-

*SAVE BYTE COUNT IN R2

*SAMPLE ALU STATUS TO CHECK FOR ZERO BYTE COUNT

»

CRCS GMSK /T(CRC18,CRC5A) ,TF2,GF9,IM1,LB3,RF2,FFA,MK0007

-

*PUT -8 IN SHIFT COUNTER (8 BITS PER BYTE)

*TEST ALU ZERO STATUS FLAG TG SEE IF BYTE COUNT WAS ZERO

*WAIT FOR MEMORY DONE FROM DATA FETCH

#IF BYTE COUNT WAS ZERO GO TO CRC18 OTHERWISE CRCS5A

»

CRC18 GEN /N(CRC19),SF1,GF4, IM8,RFY

*

*WHEN BYTE COUNT WENT TO ZERO RESET OVERFLOW TO INDICATE COMPLETION
*START NEXT INSTRUCTION FETCH USING INCREMENTED PROGRAM COUNTER
-

CRCS5A GEN /% ,FFA ,MF1,AAF,WR1,LB1

:HOVE POLYNOMIAL (IN OPR} TO RF

;RCS GEN /N(CRC7),LB1,RF3,FFA,BB1,MF1
:TRANSFER DATA BYTES FROM MIR TO OPR

;RCB GEN /N(CRC7) ,FF6 ,MF1,WR1,BBF
:THIS IS A CORRECTION CYCLE

*R0 TO ALU INPUT A (tinued)
continu

0029

0190808000610032

002A 714823001569DAFO

002B

oo2c

002D
002E

002F

0030

0031

0032

00233

0034

0035

0036

0036

0037
0037

o038

0490090000000000

0178000069900030

0178050404000000
4110800000000000

01B0000100000000

01900000006900F0

6168224000070001

D128224062A00070

0118048280AB0010

4190800000000000

41F0B808000610032

07F8000180000000

71FC012700000000

01D00000006S00F 0

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169

CODING FROM FLOW DIAGRAMS

*RF TO ALU INPUT B
*EXCLUSIVE OR ALU INPUTS TO RO
*

CRC10 GEN 2(X'032) ,MT0,FS2,GF2,FF6,MF0,AA2 ,BB3 ,WR1

*

*AFTER LAST BIT IS PROCESSED TEST DSB FLAG FOR A CORRECTION CYCLE
*DECREMENT BYTE COUNT .

*SAMPLE ALU STATUS TO ALLOW CHECK FOR BYTE COUNT ZERO

*IF CORRECTION CYCLE NECESSARY GO TO CRC10A OTHERWISE CRC11

*

CRC7 GEN /T(CRC10,CRC8),TF2,GFC,LA2,RF5 ,FF6,MF1,WR1,8C1,VF1,
CXF3,SH2,BBF

*

*SHIFT RO LEFT TO ALU INPUT A

*SHIFT OPR LEFT

*R0O(15) TO SHIFT FLAG (DSB)

*OPR(15) TO ALU INPUT A BIT 00

*POLYNOMIAL (RF) TO ALU INPUT B

*EXCLUSIVE OR ALU INPUTS TO RO

*INCREMENT SHIFT COUNTER

*TEST FOR SHIFT COUNTER OVERFLOW, IF OVERFLOW GO TO CRC8 OTHERWISE CRC10

»

CRC19 GEN /P(X'0092),SF2,GF4

*

*PAGE JUMP TO PAGE 0 LOC 060 (sSs2M)

*

CRC22 GMSK /N{CRC23),LB3,LA1,RF1,FF9,MK0003

'

*SUBTRACT 4 FROM PROGRAM COUNTER TO CAUSE REFETCH OF THE BCS INSTRUCTION
*AFTER INTERRUPT PROCESSING

-

CRC24 GEN /N(CRC23),SF1,GF4,IM8, RF4

CRC8' GEN /F(CRC9),FS52,2(X'022),TS4

*

*TEST SHIFT (DSB) FLAG TO SEE IF CORRECTION CYCLE IS NEEDED. IF BIT 15
*OF THE OLD CRC WAS A 2ZERO THE EXCLUSIVE OR PERFORMED AT CRC7 MUST

*BE CANCELLED. 1IF DSB WAS 1 GO TO CRC7 OTHERWISE CRC10

»

CRC23 GEN /N(CRC25),IM2
-

*WAIT FOR 10 DONE
*
CRC10A GEN /N(CRC11) ,FF6,MF1,WR1,BBF

-
*THIS IS CORRECTION CYCLE SIMILAR TO CRCS8
*

CRC21 GEN /T(CRC24,CRC22),TF2,GF9,FF0,MF0,CF3 ,WR1,AAY

*

*INCREMENT DATA ARRAY ADDRESS (R1)

*TEST ALU 2ERO FLAG FOR ZERO BYTE COUNT IF ALU ZERO IS ON GO TO CRC24
*OTHERWISE CRC22

*

CRC11 GMSK /T(CRC18,CRC12),TF2,GF9,LB3,RF2,FFA,MK0007

®

*PUT -8 INTC SHIFT COUNTER

*TEST ALU ZERO STATUS FLAG TO SEE IF RIGHT BYTE SHOULD BE PROCESSED
*IF SO GO TO CRC12 OTHERWISE CRC18

*

CRC3 GEN /N(CRC4),SF1,GF2,IM5,FFA,BB1,MF1
»

*USING RV AS ADDRESS INITIATE FETCH CF TWO BYTES.
*SET OVERFLOW FLAG TO INDICATE INCOMPLETE INSTRUCTION

*

CRC13 GEN /F(CRC14) ,F82,2(X'032),TSH
*

*IDENTICAL TO CRCS8

-

CRC15 GEN 1(X'4),2(X'03E) ,MTO0,FS2,GF2,FF6,MF0,AA2,BB3 ,WR1

»

*PERFORM OPERATIONS OF CRC10. IF DSB IS SET GO TO CRC15B OTHERWISE
*CRC15A

»

ORG X'036
CRC25 GEN /P(X'00FF),IM3
*PAGE JUMP TO PAGE 0 LOC OFF (INT2)
*
ORG X'037
CRC20 GEN 2(CRC16),1(X"'7),MT1,GF4 ,MR1, IME

*

*WHEN CRC15 DETECTS AN INTERRUPT CHECK IT AGAIN TO SEE IF IT WAS
*OVERRIDEN BY A DMA TRAP.

*START IO INTERRUPT SEQUENCE

*IF INTERRUPT GO TO CRC21 OTHERWISE CRC16

»

CRC14 GEN /N(CRC12) ,FF6,MF1,WR1,BBF

*

(continued)

513

CODING FROM FLOW DIAGRAMS

5.14

003E

003E 71F8010600000000

QO03F 11282A4280070001%

003A
003A 21A823001569DAFO

003C.
003C 01F00000006900F0

SYMBOLS

0000 CRC1H 0029 CRC10
0034 CRC13 0038 CRC14
003F CRC16 0022 CRC17
0021 CRC2 0037 CRC20
002D CRC24 0036 CRC25
0026 CRC5A 0027 CRC6

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

*IDENTICAL TO CRCH
»
ORG X'03E
-
CRC15B GEN 1(X'7),2(X"03F),GF4,IMC
-

*LOOK FOR INTERRUPT
L]

-
CﬂCiG GEN /T(CRC18,CRC17),TPF2,5F2,GP9,IMS, FFO,CP3, AAT, HR!

‘INCREHENT ARRAY ADDRESS (R1)

*FPETCH NEXT BYTE PAIR IF ALU ZERO FLAG IS OFPF (BYTE COUNT NOT ZERO)
*IF BYTE COUNT WAS 2ERO GO TO CRC18 OTHERWISE CRC17

L]

ORG X'03A
CRC12 GEN /T(CRC15,CRC13),TPF2,GPC,LA2,RF5,PF6 MF1 WR1,SC1,XF3,
CSH2,BBF,VF1
®
*IDENTICAL TO CRC7. THIS PROCESSES THE RIGHT BYTE OF DATA WHICH HAS
*BEEN SHIFTED LEFT IN OPR
»
ORG X'03C
CRC15A GEN /N(CRC15B) ,PF6 ,MF1,WR1,BBPF
»
SIDENTICAL TO CRC10A
-

»
END

0030 CRC10A 0032 CRC!'1 003A CRC12
0035 CRC1S 003C CRC15A 003E CRC15B
0025 CRC18 002B CRC19 0020 CRC1A
0031 CRC21 002C CRC22 002F CRC23
9033 CRC3 0023 CRCH 0024 CRCS
002A CRC? 002E CRCS8 0028 CRC9

0 ERRORS ASSEMBLY COMPLETE

SECTION 6
MICROPROGRAM SIMULATOR, MICSIM

The Microprogram Simulator (MICSIM) helps the user find
and correct microprogram bugs. Any program develop-
ment includes some time to verify that the program solves
the problem. Testing may find that it does not. Running
the microprogram simulator aids in both the discovery and
correction of microprogram errors.

When the microprogram is free of errors, the simulator can
be used to determine the performance before the design is
final, measure the efficiency of the technique and evaluate
changes and extensions.

MICSIM runs on all V70 series systems. Microprograms can
also be simulated on 620 systems without WCS. The

hardware requirements depend upon the operating system
used.

6.1 BASIC ELEMENTS

in general this simulator provides the basic facilities for
inputting, moditying and. outputting the contents of the
simulated control store, tracing, and address halt of the
microinstructions.

The fundamenta! program blocks of the simulator are:

a. Simulation control, which inputs the simulator com-
mands and directs their execution.

b. Simulator command execution, which represents
the actual execution of the simulator commands.

c. Microinstruction execution, which executes a
microinstruction by simulating its effect.

d. Simulation information accumulator and list output.

The relationships of the basic program blocks are illus-
trated in figure 6-1.

Note: The 1/0 functions of the computer are not simulated.

6.2 GENERAL FORM OF STATEMENTS

The simulator processes three types of directives. All
directives begin with a single letter indicating the type.
The following types of actions are handled by the
simulator:

a. initialize simulator and storage

b. change and examine storage

c. trace, dump and control execution

Table 6-1 summarizes the directives for quick reference;
section 6.7 provides detailed description and examples.

MICRO
SIMULATION
CONTROL

SIMULATOR
CONTROL
EXECUTIVE

INTERFACE
PROGRAM

OPERATING
SYSTEM

PERIPHERAL
I/0

" VTII1-1810

Figure 6-1. Microsimulator Control Fiow

Table 6-1. Summary ¢f Microprogram Simulator
Directives

A. Initialize Simulator and Storage

| Initialize simulator

z Clear tables and registers

Pn Select page n (o through 4)

LC Load central control store (CCS)

LDA Load decoder control store (DCS) A

6-1

MICROPROGRAM SIMULATOR, MICSIM

62

LDB Load decoder control store (DCS) B
MS Select Pl as input device

MR Select SI as input device

Change and Examine Storage

Ar Alter/Display register r, where r is

ALU output

Shift counter

Instruction register

Key register in data loop
Memory input register
Operand register
Program counter

Status register

vwvozx—0O>»

ARn Alter/Display general register n
(0 through F hexadecimal)

AJn Alter/Display stack position n
(0 through F hexadecimal)

Cm Change/Display main memory word m
ECn Change/Display CCS word n

EDdn Change/Display DCS d (A or B) word n

Trace, Dump and Control Execution

D Dump complete CCS

Dm Dump contents of CCS starting at CCS
word m

Dm,n Dump contents of CCS from word m to n
D,n Dump from word zero to n

TS Trace set

TR Trace reset

TSn,m Trace from CCS word n to word m

Bn Begin simulated execution at CCS word n

Hn,n Halt at CCS address(es) n
SS Single step set
SR Single step reset

R Return to MOS or VORTEX; Halt in
standalone

Two methods of correcting typographical errors are availa-
ble to the operator. An entire line can be deleted by
typing the backslash character (shift/L). The backslash is
output as a visual aid. A line feed and a carriage return
are output to indicate that the line has been deleted. A
character just entered can be deleted by typing the
backarrow character. The backarrow character is printed
on the Teletype page printer as a visual indicator of the
deletion. As many backarrows as necessary can be entered;
each deletes one character (but not beyond the beginning
of the line).

Each simulator directive is checked for syntax errors as the
input is interpreted. When an error is detected by the
simulator an error message is output to the Teletype page
printer. The simulator then is ready to receive the corrected
directive.

6.3 STATEMENT DEFINITIONS

In the following discussion of simulator dialog, simulator
input will be in bold type. This will not appear during
actual runs.

All numeric values denoted in the following discussion of
the simulator ~directives are hexadecimal (0-F). Numeric
values which are entered on S| are right justified with
unspecified leading bit positions containing zeros.

6.3.1 Select Input Media (M)

The select input media directive is used to select the device
from which simulator directives will be entered. Normal
operation uses the S| device assigned at load time. Using
this directive, the Pl device assigned at load time can be
used as an alternate input device.

The two formats of the directive are:

MS Select Pl as input device
MR Select S| as input device

6.3.2 Initialize Simulator (1 or Z)

The initialize directive is used to initialize to zero the
contents of the simulator registers, the test condition
flags, CCS control buffer and the CCS word execution
count table. Also, the single step option is reset, the trace
option is set and the CCS address halt.is set to 200 hex.
This directive is normally used at the beginning of each
simulation run. The simulator CCS's are not initialized.

The Z directive performs a subset of the | directive
functions. With this directive the following are cleared:

a. Allregisters
b. All stack entry

c. Allsimulation flags and condition codes
Unlike the | command, the following are not cleared:

a. CCS halt values
b. Trace flag and limits
¢. Single step flag
d. Execution limit

e. Pagevalue and limit

The Z directive is normally used when a simulation run is
continued after an incorrect branch.

6.3.3 Page Select (P)

This directive is used to select the control store page upon
which the simulator directive will be executed. Initializa-
tion selects page 0. Once a page is selected, all directives
will refer to that page until it is change by a new P
command or until the system is reinitialized. The format
for this command is:

Pn wheren = 0, 1, 2, or 3.

6.3.4 Load Control Store (L)

This command is used to read the micro assembler output.
assemble the data into usable 64-bit (CCS) words or 16-bit
(DCS) words and store the words into the simulator control
store.

The format for this command is:

LC .- Load Central Control Store (CCS)
LDA .- Load Decoder A Control Store (DCS)
LDB -- Load Decoder B Control Store (DCS)
LM -- Load Main Memory

The statemeni LOAD COMPLETE will be output to the
Teletype following successful loading of the control store.

6.3.5 Alter/Display Simulator Registers (A)

This directive is used to display and change. or display
only, the contents of general registers, stack positions and

MICROPROGRAM SIMULATOR, MICSIM

any of the following simulator registers:

Program Counter P)
Instruction Buffer Register ()
Status Register (S)
Operand Register)
Shift Counter ©©
Memory Latch (M)
Processor Key Register (K)
ALU Output (A)

a. The format for display or change of the registers above
in this directive is:

nnnn(c/r
Ar nnnn(‘
mmmm Where ¢ = '
c .
(c/r)

Where r is one of the register letters above and ¢ is a
comma, carriage return, a value followed by a comma or a
value. mmmm is the contents of that register (output by
the simutator) and nnnn is the desired contents. if the
command is terminated with a comma (,), the simulator
will output the letter A (signifying you are still in this
routine) and wait for another register designator. If the
directive is terminated with a carriage return (c/r). the
simulator returns to the executive. iIf no change value is
input, the contents remain the same.

For the file registers and jump stack, the specific file
register or stack position must also be designated upon
inttial entry.

b. For general-purpose registers

ARi
mmmm

Where i is a hexadecimal number O through F designating
the specific register and ¢ is a comma, carriage return, a
value or a value followed by a comma.

c. Forstack positions

Aln
mmmm
c

Where n is a stack position and ¢ is a comma, carriage
return, a value or a value followed by a comma.

The rest ot the format is identical to that for the other

registers except that the comma terminator causes the
display of the number and contents of the next sequential

6-3

MICROPROGRAM SIMULATOR, MICSIM

file register or stack position. A comma terminator to
register or stack position F effects a return to the simulator
executive.

Example 1:
AP Display Program Counter
0776

No change, stay in command
AM Display Memory Latch
14FC
(c/r) No change, return
Example 2:
AS Display Status Word
0000
FFFF Change Status to All Ones
Example 3:
ARA Display General register 10
FFFF
0000, Change to all zeros
B Display general register 11
1234
(c/r) No change, return

6.3.6 Change/Display Memory (C)

This directive is used to display or display and change a
memory location. Both the location and its contents are in
hexadecimal notation.

The format of the command is:

Cmmmm
hhhh
c

Where ¢ is as defined gbove and mmmm is the hexadecimal
address of the memory location, hhhh is the contents of
that word output by the simulator. If the simulator
directive is terminated with a comma, the simulator will
display the contents of the next memory location. If the
simulator directive is terminated with a carriage return,
the change/display memory directive is terminated. If no
change value is input, the contents remain the same.

6.3.7 Change/Display CCS Word (EC)

The change/display CCS word simulator directive is used to
display and/or change the contents of a CCS word.

The format for the change/display CCS word simulator
directive is:

6-4

nnnanpRnnnNNnnnn
nnnnnnannnnnnnnn,
ECmmmm -
hhhhhhhhhhhhhhhh Where b= {+}f(1)V(l):---.f(“)V("){c/r}
b

(c/1)

Where mmmm is the (hexadecimal) address of a CCS wui

hhhhhhhhhhhhhhhh is the contents of that CCS wora
(output by the simulator) and nnnnnnnnnnnnnnnn is the
desired contents of that CCS word. If the simulator
directive is terminated with a comma, the simulator will
display the contents of the next CCS word. If the simulator
directive is terminated with a carriage return (c/r), the
change/display CCS word simulator directive is terminated.
I1f no change value is input, the contents remain the same.

If the first character is a + or =, the remainder of the
record is treated as a field change only. The + is used to
change only the fields specified. The = is used to clear the
microword before changing the fields specified. f(n) is a
2-character field name and v(n) is the change value.

If less than 16 digits are input for a change, the digits are
right justified and zeros will appear in the most significant
bits not specified.

Example 1

ECBA
0123456789ABCDEF
FEDCBA9876543210

Example 2:

ECDC
FFFFFFFFFFFFFFFF

DD
AAAAAAAAAAAAAAAA
0

Example 3:

In word F, change only the TS and AA fields; in word 10,
change fields TS, MS, and LB and clear all the others.

ECF
0123456789ABCDEF
+ TS4,AAF,
1111111111111111
= TS3,MS7,LB1

6.3.8 Change/Display DCS Word (ED)

This directive is used to display and change, or display
only, the contents of a DCS A ar DCS B word.

The format for the directive is:

EDdi nnpnn
mmmm Where ¢ = nnnn,
c ,
(c/r)

Where d is the letter A or B designating DCS A or B, i is the
DCS address (0-F), mmmm is the contents of the location
and nnnn is the desired contents. A comma terminator
causes the display of the next sequential address and its
contents. A comma terminator to address F effects a return
to the simulator executive as does the carriage return
terminator. If no change value is input the contents
remain the same.

6.3.9 Begin Simulated Execution (B)

The begin-simulated-execution simulator directive is used
to start the simulated execution of the CCS
microinstructions.

The format for the begin-simulated-execution directive is:
Bmmm

Where mmm is the control store memory address for the
start of the simulated execution. |f no CCS address is
given, then the starting address is the CCS address
generated as the next CCS address from the last
microsimulation. However, if the simulator is initialized in
the meantime, the address will be word zero.

Examples:
BO Begin at word O of current page
B7F
B Begin from last calculated address

NOTE: A simulation run can be terminated prior to a
planned termination by setting SENSE switch 3. The
simulation run will then terminate upon completion of the
current micro operation. This feature is usetul in terminat-
ing "'run away'’ simulation runs.

6.3.10 CCS Address Halt (H)

The CCS address halt simulator directive is used to set an
address into the simulator such that whenever that CCS
address is accessed by the simulator, the simulation
process will stop. Since control store addresses are between
0 and 1FF (hexadecimal), specifying an address outside
this range effectively ''turns off” the address halt. Up to
five halt addresses may be set per page. The default value
is 200 (CCS word 512).

The format for the CCS address halt simulator directive is:

Hnnn ,nnn,...

MICROPROGRAM SIMULATOR, MICSIM

Where nnn is the (hexadecimal) halt address.

NOTE: To set multiple halts all addresses must be entered
under the same H command.

The halt addresses are set in the page currently selected.

<"To set halt addresses in another page that page must be

selected with the "P"' command.

Example:

H3A9
H100, 10A,IFF,0

When the halt address is reached, the location and control
buffer fields are listed on the line printer if the trace
option is ON. Also, the message ""CCS HALT" is output to
the TTY and line printer. Then the simulator returns to the
executive.

6.3.11 Single Microinstruction Step (S)

The single microinstruction step simulator directive is used
to set or reset the single step option in the simulator. When
the single step option is on, instruction simulation is
ceased after the execution of each microinstruction.

The formats for the single microinstruction simulator
directive are:

SS Single step ON
SR Single step OFF

The first control store word to be executed must be
specified via the begin (B) directive. To continue with the
next microword enter the B directive withaut an address.

A special form of the SR directive (set single step OFF) can
be used to set a limit on the number of microinstructions
to be executed before returning to the simulator executive.

The format of this directive is:
SRnnnn

Where nnnn is 1-4 hex digits specifying the execution limit.
When this limit is reached. control is returned to simulator
executive. Omission of nnnn results in an unlimited run
count.

6.3.12 Trace (T)

The trace directive controls output to the line printer. The
trace option is normally ON and pertinent data and
execution results are listed on the line printer after the
simulated execution of each control store instruction.

The format for the directive is:

TS Set trace ON

TR Set trace OFF

TSnnn,mmm Set trace ON from word nnn
to word mmm

6-5

MICROPROGRAM SIMULATOR, MICSIM

It nnn is missing, its value is defaulted to zero. If mmm is
missing, its value is defaulted to 200 hex (word 512). If TS
is specified with bounds, the current CCS address is output
to LO regardless of whether or not the address is within the
bounds; however, the remainder of the trace is suppressed.

The following information is listed on the line printer (LO)
for each control store word executed:

1. CCSword address

2. List of CCS word fields and their values
NOTE: Fields AA, BB, and FF are dynamically altered
and need not be equal to the value of the CCS word.

3. NextCCSword

4. Current top of stack

5. Number of items on stack
6. ALUAinput

7. ALU B input

8. ALU output

9. Carryin status (CF)
10.Carry out status (ALUC)

11.Contents of the 16 general-purpose registers (RO-RF).
(4 per line by 4lines)

12.Contents of the following régisters and flip-flops:

P Program counter

SC Shift counter

OPR Operand register

KREG Key register processor

IOKR 170 key register

IBR Instruction buffer

! Instruction register

STAT Status register

IOR 170 data register

SHFT Sign store of register A bit 15

QuoSs Storage of sign bit (DAL 15) of
ALU output

13.Memory Operations Data
The values listed are the values at the end of the

memary operations for that CCS word. The memory
operations performed are a function of conditions/ "

codes upon entry (values from the last CCS word

executed).
When MCCO is less than n and memory wait is required,
the following memory operations data will appear twice per
microword trace (n is the memory type specification 3, 4,
or 5, see section 6.4.2). The first set is an intermediate
value while the second set represents the values at the
end of the memory operation.

6-6

Memory Condition Code

MCCO = 0 Idle
MCCO = 1 through (n-1) Active but not done
MCCO = n Active and done

where n = memory type specification 3, 4, or 5 (see section
6.4.2).

Memory Operation Code

MOPC = 0 Transfer ALU output to MIL
and IBR

MOPC = 1 Read from main memory to
MIL and IBR

MOPC = 2 Read from main memory to MIL

MOPC = 3 Write 16-bit ALU output to
main memory

MOPC = 4 Write a byte of ALU output

to main memory (byte is
specified by MBYC)

Main Memory Address Source

MADS = 0 Address is ALU output

MADS =1 Address is program counter

MADS = 2 Address is memory input
register (MIR)

MADS = X Invalid address source

Byte Designator for Write Operations and
Field Selection Address

BYTA =1 Right byte
BYTA = 0 Left byte

NOTE: The byte (of the memory word) not designated is not
altered.

Memory Interface Registers

The contents of registers MIL and IBR are listed.

Main Memory Address (MMAD)

The main memory address (as specified by MADS) is listed.
It is listed for every CCS word executed regardless of the
actual memory operation as specified by MCCO and
MOPC.

Status of test conditions (test inputs). Each status bit
stored in a separate word of memory and the 16-bit word
is listed (XXXX). The 16 test conditions are listed on 2
lines, 8 per line. Each test bit is listed as 0000 = false
condition; or 0001 = true condition.

Test Bits

0 ALU overflow

1 170 sense (continued)

2 SSW3

3 SSw2

4 SSwi

5 620/f test (for JMP, JMPM,
XEC groups of instructions)

6 ALU equals '

7 ALU sign

8 ALU carry

9 ALU zero

10 Shift flag

11 MIL 15 (sign bit of memory input register)

12 Shift count = -1

13 Al5 - sign of A register for multiply
operations

14 DAL 15/DAL 14 (ALU output bits 15 and 14)

15 QS bit

6.3.13 Dump Contents of CCS (D)

The dump CCS directive is used to list on the line printer
selected contents of the simulator control CCS and the
count of the number of times each word was executed.

The formats for the directive are:

Dmmm,nnn
Dmmm
D.,nnn

D

Where mmm and nnn are the beginning and ending
hexadecimal CCS address to dump. If mmm is omitted.
dump begins at CCS word 0. It nnn is omitied, the
complete contents of the simulated CCS table is dumped
starting at mmm. If both m and n are omitted. the
complete simulated CCS table, starting at location zero is
dumped.

The line printer list format is:

ADDR HEXADECIMAL BINARY

aaaa hhhhhhhh hhhhhhhh bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb
aaaa hhhhhhhh hhhhhhhh bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb

Where (aaaa) is the address of the CCS word in hexadeci-
mal, (hhhhhhhh hhhhhhhh) is the contents ot the CCS
word in hexadecimal, (bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb) is the contents of the CCS word in
binary and xxxx is the execution count in hexadecimal.

MICROPROGRAM SIMULATOR, MICSIM

The field identifier words and the contents and count of up
to 14 locations are listed on each page.

6.3.14 Exit to MOS or VORTEX (R)

' The exit to MOS or VORTEX simulator directive is

used to effect a transfer of control from the simulator to
MOS or VORTEX. NOTE: The use of this directive with the
stand-alone version produces a halt.

6.4 OPERATING INSTRUCTIONS

The simulator program operates under either MOS,
VORTEX, or stand-alone environments. The simulator
executive communicates with the software environment in
which it is running by means of the appropriate interface
program, INTR, provided with the simulator. The user
communicates to the program via the system Teletype. The
BLD i loader is required when loading of MIDAS object
programs for execution under the simulator (MOS or
stand-alone only).

When operating under VORTEX, the five background global
contro! blocks (FCB's) are used when the logical unit is an
RMD thus permitting the stacking of jobs. The following
restraints are made on the use of RMD logical units:

1. SI, Pi, and LO are to be in unblocked format.

2. Blmust be blocked.

The simulator data flow 1s shown in figure 6-2.

OPERATING
SYSTEM
4
P1
v DEVICE
S! | SIMULATOR)
DEVICE B
Bl
DEVICE
v v
Lo SO
DEVICE DEVICE
V711809

Figure 6-2. Microsimulator Data Flow

67

MICROPROGRAM SIMULATOR, MICSIM

6.4.1 Program Loading

Under VORTEX, MICSIM can be scheduled from the
background library at level zero by the /LOAD,MICSIM
directive. Before scheduling, the number of WCS pages in
addition to page zero which will be needed should be
determined and a /MEM,X directive given. In the /MEM
directive, X should be the number of additional WCS pages
(beyond page zero) times 4.

Under MOS, each time the simulator is to be executed its
relocatable binary object deck should be positioned on the
Bl device and the /LOAD directive given.

In the stand-alone environment, MICSIM is loaded by the
620 stand-alone FORTRAN IV loader. along with the
runtime |70 and runtime utility. (Refer to VDM document
numbr 89A0226, Overview and External Specification for
information on the 620 stand alone FORTRAN iV
toader.) The simulator uses logical unit numbers 2, 3, 4, 5,
and 6 for SI, SO, PI, LO, and Bl. The stand-alone loader
should be instructed to assign these units to meaningful
devices.

Examples:
Sample Loading Procedures

1. VORTEX
/JOB,SIM
/MEM, x
/LOAD, MICSIM

x value = 0, only 1 WCS page; = 4, 2 WCS
pages; = 8, 3 WCS pages; = 12, 4 WCS pages.

2. MOS
/J0B,SINM
/LOAD
Test Program (optional)
Simulator
EOF (2-7-8-9 multi-punch)

3. STAND-ALONE

Load stand-alone loader

With AID 11, change absolute location 7 ($PED)
to the desired start load address

Return to the loader

Enter the following:

200300402504602 (c/r)

(to set 81 = TY, SO = TY, PI = PT, LO
= =77, Bl = PT)

Mount simulator tape in reader

Enter the following:

PM
Load Runtime 1/0
Load Runtime Utility

6.4.2 Initial Condition Selection

After loading, the simulator program is automaticalily
entered and outputs the following to SO:

6-8

VARIAN 73 MICROSIMULATOR
PAGE LIMIT?

The user then inputs on S| one of the following:

0 (for ROM page only)

1 (for ROM and WCS page 1)

2 (for ROM and WCS pages 1 and 2)

3 (for ROM and WCS pages 1, 2, and 3)

Any other input is an error and the request will be
repeated.

MICSIM then outputs to SO:
MEMORY TYPE

The user then inputs on Si one of the following:

3 (for semi-conductor)
4 (for core)
5 (for slow core)

Any other input is an error and the request will be
repeated.

Following a correct input, the following is output to SO.
SI**

An Si** indicates that the program is in the simulator
executive awaiting a user command. Control is returned to
the executive following execution of each command.

All simulator dialog is entered through the Si device and
echoed on the SO and LO devices. Dialog may be either
conversational or batch depending on the SI device
assignment. All of the simulator directives must be
terminated with a carriage return; the simulator will output
a line feed.

6.4.3 Loading Simulator Central Control Store
(CCS) and Decoder Control Store (DCS)

Use the P directive to select the WCS page in which
simulation is to take place.

Use the L directive to load the micro assembler output into
the specified simulator control store (centrai or decoder).

Use the M directive to select the input device; either St or
P1.

Use | directive to initialize to zero all the simulator
registers, test conditions, control store buffer, status
registers and execution count table.

Use the A directive to initialize the program counter, file
registers, and instruction register as required.

Position the 620/70 sense switches as required. The
simulator program monitors the 620/70 sense switches
similar to the computer sensing of its control-panel
sense switches.

6.4.4 Other Control (As Required)

Use the E directives to make any patch corrections to the
CCS or DCS.

Use H directives to set simulation halts when the specified
control store address is reached. The initialized address is
200 hex. and will remain such until specified otherwise.

Use S directives to specify single step operation as
required. The initialized condition is run (not step).

Use T directives to specify operation with or without trace
listing as required. The initialized condition is with trace.

6.5 PROGRAM EXECUTION
After all initialization and start-up conditions are specified,

use the B directive to begin execution at the specified
control store address.

6.6 AFTER SIMULATION

6.6.1 Control Store Dump

Use the D directive to dump the control store words and
the execution counts for each control store.

6.6.2 Initialization

Use | directive to initialize registers, tables, etc. prior to
making another run.

6.6.3 Return to MOS, VORTEX
Use the R directive to return to MOS or VORTEX as

required. (NOTE: In the stand-alone version this command
effects a halt).

6.7 620 EMULATION

To run programs using the 620/f emulation ROM, the
following sequence of events must be done:

Note that CCS page 0 and DSC initially contain 620
emulation values.

1. Set CCS halt to 080 (hex) via H command.
2. SetR5 to FFFF (- 1) via AR5 command.
3. Set other registers and sense switches as needed.

4. Set pseudo P register to location (hex) of first macro to
be executed via AP command.

5. Set trace and step/run mode as needed.

6. Begin at 13E via Bcommand.

MICROPROGRAM SIMULATOR, MICSIM

The sequence of events 1 through 5 may be in any order
but must be done before event 6. Event 6 begins
simulation at standard state 1.

.'6.8 MAIN MEMORY SIMULATION

Simulation of main memory operations is restricted so that
a simulation run does not destroy the simulator or related
programs. This is accomplished by not simulating writes to
memory addresses outside defined main memory. Any
attempt to do this will be flagged as an error and the write
will not be performed; simulation will continue however. A
read may be made anywhere in available memory. Memory
addressing above 32K will effect wraparound if available on
the computer.

Loading Main Memory

A 200 (octal) word block of memory has been created at
the beginning of the simulator. The name MMEM points to
the start of that block and the name EMEM points to the
end of the block. A DASMR program with an ORG within
this block can be loaded by MICSIM from the Bl device
using the LM directive. The object program to be loaded
must not contain any of the following:

a. Literals

b. Indirects

c. Entrynames

d. Externals

If any of these are encountered, the load is aborted and a
MS11 diagnostic results.

The location of MMEM can be found in the load map. (it is
always the first loaded location of MICSIM).

6.9 SIMULATOR ERROR MESSAGES

MESSAGE REASON

General

MSO01 Input could not be interpreted as a valid
command.

MS02 A non-hex character was encountered when
hex expected.

Initialization

MSO03 Insufficient common area to contain specified
number of pages.

MS04 The selected page number was not valid.

69

MICROPROGRAM SIMULATOR, MICSIM

CS Addressing

MS05 An attempt was made to jump to an

unavailable WCS page.

MS06 A BCS instruction was encountered when

WCS page 1 is unavailable.

CS Loading
MS07 Read error on Bl device.
MS08 EOF encountered before load complete.
MS09 EOD/BEOD encountered before load complete.
MS10 Sequence error on Bl.

6-10

MS11
MS12
Memory
MS13

MS14

MS15

Invalid loader code.

Checksum error.

Undefined macro opcode.

Attempted to write to memory outside defined
main memory.

Attempted to load outside defined main
memory.

Field Selection

MS16

Ms17

Invalid field name.

Invalid field value.

6.10 EXAMPLE OF SIMULATOR OUTPUT

Figure 6-3 shows the simulation listing of the LDA example
developed in section 2.

PAGE 0000 : VARTE X

VARTAN 73 MICRO STHMHLATAOR

PAGE LIMIT?

0

“EMENRY TYPE®

a4

MSaw

FO SELFCT PAGE ZFRNO
X &

MICROPROGRAM SIMULATOR, MICSIM

MICSIM

caon PUT AN T NAY INST TN MEMNRY FNR SIMULATIOM

neno
10FQ LNA FRAM MEMNRY (NNC 'FQ?
MSax

CF9 CHFMK WHATS T0 RE LNADEN
neaé A

MG AW

&P SET PRNGRAM CNUNTER TN THE 1.DAY

noon
200
MS k%

SR? SET FXFCUTINN | YMIT TO SFVEN MICRNS

FSww

HY3E REGIN FXFECUTTION AT STAMNDARD STAYE ONE, SSIM

Figure 6-3. Simulator Output Format

MICROPROGRAM SIMULATOR, MICSIM

PAGE
cecs L

T8
0o

RF
nn

NEXT

noot

oc

AF
09

FF
00

01

M8
ne

14
00

3E

MY
no

CF
a0

CCS ADNRESS

PAGE

FS
00

WR
oo

nos2

CURRENT TNP QOF STACK
NUMBER NF ITEMS ON STACK

ALY
ALU

ALU

CIN
cou

RO
R4
R8
RC

p
n2no

MECO
MOPC
MADS
“BYC
MIR

18R

MMAD

oOvFL
0000

ALUC
0000

6-12

INPUT A 0000
INPUT B GOO0OQ

NUTPUTY

0
To

nono
0000
o000
0000

sSC
0000

[3 N 2R - 3

00006
0000
0200

SENS
0000

ALU2
0000

R1
RS
RS
RD

oP
no

(+]9]

R
no

10F9

TESY

8S
00
SH
00

w3
00

FY
00

0o

0nNono
FFFF
00no
0000

KREG
o000

S8w2
0000

MIRS
0000

0
TF
00

sC
00

0o

R2
R6
RA
RE

SF
01

VF
00

PAGE

00
0

oono
onoo
0000
0000

TOKR
00600

GF
00

WF
00

IR
on

VORTEX

R3
R7
RB
RF

R
0o

CONDITION STATES

8Swi EMUL
0000 0000
SFTC ROAO
0000 0000

MR
00

XF
00

AB
0o

SH
00

0000
0000
0000
0000

onan

ALUO
nooo

NORM
n0oo

MICS

IM
o8

BB
00

STAT
0n0o

ALUS
ooon

Quos
0000

Figure 6-3. Simulator Output Format (continued)

M

L8
00

AA
00

LA
00

I10R
0000

SHFY
0000

[UNS
0000

PAGE 0002

ccs Lnc
TS AF
00 02
RF FF
04 00

0092

MS MY
0D 00
MF CF
a0 00

NEXT CCS ADNRESS

PAGE

FS
0o

WR
0o

oo2n

CURRENTY TOP OF STACK
NUMBER NF ITEMS ON STACK

ALY
AL

ALU

CIN
cnu

RO
K4
R8
RC

p
0201

MCCN
MOPC
MADS
MBYC
MIR

IBR

MMAD

INPUT A 0Q00C
INPUT B 0ANND

NnuYP

0
ToO

onno
nono
0000
0000

sC
0000

[o ol ol N

onno
0000
0200

urT o0

R
R5
)
RN

OPR
0060

10F9

6n

0000
FFFF
0000
0000

KRER
onoo

0
TF SF
00 09
SC VF
00 00
PAGE
0000
0
R2 0000
R& 0000
RA 0000
RE 0000
TDKR
0000

GF
00

wF
on

0

18

o000

VORTEX

AR

b'"R .
00

oo

XF
o]y}

SH
00

RY
R7
RB8
RF

oneo
oonn
naoo
0000

R 1
nono

MICROPROGRAM SIMULATOR, MICSIM

MICSTM
IM LB LA

08 00 00

BB AA

00 00

STAT INR SHFT QUNS
0000 0000 0000 0000

Figure 6-3. Simulator Output Format (continued)

6-13

MICROPROGRAM SIMULATOR, MICSIM

PAGE

MECen
MAOPC
MADS
MAYCE
MTIR

IRR

MmA)

('VFL
onno

ALLC
oo0n

3.4..‘5.‘

nooy

10FQ
10FQ
f201

SEMS
none

AlLLu?
noeo

VIIRTEYX

onno

TEST CNuNNTITINN STATES
SSW3 §SK2 SSw1 EMUL
onoe. 00N 0006 oonn

SHFT MIRS SFTC ROAN
noo0 N000 000N 00NO

ALNOD
ooono

NORM
noono

Figure 6-3. Simulator Output Format (continued)

MICST™

ALUS
nooo

auns
ANDD

PAGE o00na
ccs LOC
1S AF
0E oD
RF FF
oo no

0o2n PAGE O

mS
06

MF
0o

MT
no

CF
00

NEXT CCS ADDRESS

F$
no

WR
00

0182

CURRENY TOP NF STACK
NIIMBER OF JTEMS ON STa

INPUT A D000
INPUY B 00OQCO0O

ALLY

AlLLU

ALL DLYIPUY

Clwn 0

cnetT 0

RN 0noon

R4 0000

RR 0ono

RC o00hO
(] SC
n2o0t ao0pe
MCcco 2
MOPC
MADS
MBYC O
MIR 10F9Q
IRR 1OF9
MMAD 0201
OVFL SEnS
0000 0000
ALUC ALUZ
0000 0000

R1
RS
RG
RD

ne
00

oo

TEST

$S
oc

SH
00

on

R
oo

on
w3
00

FY
0o

0o

0000
FFFF
0000
0000

KRER
nnono

SSw2
0000

MIRS
00060

TF
00

SC
00

00
CK

R2
R6
RA
RE

SF
00

VF
0no

PAGE

00
0

nnno
6000
00006
nooo

INKR
0000

SSwi
0000

SFTC
0000

GF
05

WF
on

18
i0

EM
00

RO
o]y

VORTEX

MR

R3
R7
RAB
RF

R
Fo

CONDITION STATES

uL
no

AD
00

on

XF
00

AB
0o

SH
on

onno
oone
0000
0000

10FQ

ALUD
0000

NORM
0000

MICROPROGRAM SIMULATOR, MICSIM

MICS

™
06

1)
on

STAY
onnon

ALUS
0000

Quos
noono

Figure 6-3. Simulator Output Format (continued)

IM

L8
00

AA
0n

LA
oo

10R
0000

SHFT
aoon

auns
nooo

615

MICROPROGRAM SIMULATOR, MICSIM

PAGE r0ONS
CCS LOC 0182 PAGE
TS AF ~S MT FS§S
0o 12 OF ne oe
RF FF MF CF wR
03 0A Q1 N3 O}
NEXT 0CS ADDRESS (1 2F
CURRFNMT TOP JF STACK
NUMARER QOF ITEMS ONM STA
ALU INPUT A ncon
ALY TMRPUHT & OGF9
ALo DyyTPUIY ~fOF Y
CIN 0
coutT o
RN 0nOGO R1 000N
RA o6nn RS FFFF
.) onno RO aoAn
RC 0000 RO 0000
P st PR KRFG
n201 00NN QAOFS Q00O
MCCEN 4
MOPC 1
MADS 1
Myt 0
MIK LOFQ
IBR 10F9
MMAD 0201 0000

616

0
TF SF
00 01
SC VF
01 00
PAGE
noao
K 0
R2 0000
RE 0000
RA 000C
RE 0000
10KR
0000

GF
00

wF
on

0

IR
10

VARTEX

Ry
R7
RA
RF

R
F9

MR
no

XF
no

nooo
0000
noo0
6000

mICS

IM
ns

Be
0o

STAT
onon

Figure 6-3. Simulator Output Format (continued)

™

LA
n2

AA
00

LA
no

INR
noon

SHFT
0000

auns
nooo

PAGE

MCCO
MOPC
MADS
MBYC
MIR
I1BR

MMAD.

NVFL
nooo

ALUC
00o0n

0006

O ON»

0000
0000
00FS

SENS
0000

ALUZ
ooo0n

0036

TEST
SSW3
0000

SHFY
0000

MICROPROGRAM SIMULATOR, MICSIM

VORTEX

CONDITION STATES

SSw2
0000

MIRS
0000

88wy
0000

SFTC
0000

EMUL
0000

ROAD
0000

ALUD
0000

NORM
0000

Figure 6-3. Simulator Output Format (continued)

MIC8IM

ALUS
0000

Quos
0000

MICROPROGRAM SIMULATOR, MICSIM

PAGE 0007
¢cs Loc
7S AF
00 1E
RF FF
00 00

01

MS
oC

MF
00

2F

MT
01

CF
no

NEXT CCS ADDRESS

PAGE

FS
0F

wR
00

0VEO

CURRENT TOP NF STACK
NUMBER OF ITEMS ON STACK

ALU INPUT A 0000
INPUT B 0000

Bl

ALy OUTPUITY

CIn O
rouT 9
RO nonon
R4 000N
R onod
RC oo0cn
P SC
0201 6600
MCcn 2
MOPC 2
MANDS O
MBYC O
MIR 0000
I8R 0000
MMAD OOFS
OVFL SENS
0000 0000
ALUC ALUZ
0000 0000

618

RY
RS
R9
RD

ne

co

R

nofFYy

00

TEST

$S
0o

36

W3
oc

SHFT
nooo

on

nono
FFEFF
ADNO
0060

KREG
0noo

SSw2
0000

MIRS
onoo

0

TF
00

sC
00

0o

R2
R6
RA
RE

14
00

VF
00

PAGE

00
0

0npo0o
nooe
0000
nooo

J0KR
00no

§8a1
0000

SF1C
0000

GF
00

WF
00

0

TR
o0

EM
00

RO

.00

VNRTEX

Py
R7
e8
RF

r
no

CONDITION STATES

Ut
no

AD
00

MR
no

XF
00

AB
00

SH
00

nono
0006
ooan
anno

10FQ

ALUO
onono

NORM

gono

MICS

I™
0o

RA
no

STAT
nnon

ALUS
0ono

Quos
0000

Figure 6-3. Simulator Output Format (continued)

™

LB
00

AA
00

LA
00

10R
annn

SHFT
anno

aunsg
000D

PAGE 0008

VORTEX
CCS LOC 01E0 PAGE ©
TS AF MS NMT FS TF SF GF MR 4B
00 OR 05 00 60 00 01 00 00 00
RF FF MF CF wR S8C VF wF XF SH
04 00 00O 00 00 N0 00 00 06 00
NEXT CCS ANDCRFSS 00RAS PAGE O
CURRENT TOF NF $TACK 0000
NUMBER NF ITEMS ON STACK O
ALII INPUTY A 0OOD
ALU INPUT R OOOO
ALLi BUTPUT pOOC
cIv 0
cout o
RO 00NO RY 006D R2 0000 RI 0000
R4 0000 RS FFEF R6 0000 R7 0000
RB 0OOO RY 000N RA 0000 RB 0000
RC 0000 RD 06000 RE 0000 RF 0000
P st OPR KREG IOKR IBR 1
0202 0000 OOF9 000N 0000 0NOO 10F9
MCCO 4
MDPC 2
MADS 0
MBYC ©
MIR 0000
IBR 0000
MMAD 00F9 0036

MICROPROGRAM SIMULATOR, MICSIM

MICSIM

I LB LA

08 00 00

BB AA

00 00

STAT 1IOR SHFT QUNS
0nnnoe o006 0000 0000

Figure 6-3. Simulator Output Format (continued)

MICROPROGRAM SIMULATOR, MICSIM

620

PAGF

Mcco
MaPC
MADS
mgyC
MIR

IBR

MMAD

DVFL
0000

ALUC
0000

0nong9

O"*‘-‘

0036
o000
n202

SENS
0ono

ALUZ
nann

VORTEX

nnoon

TEST COMDITION STATFES
SS43 SSw?2 SsSwi EMUL
noon 0000 0000 0000

SHEY MIRS SFTC ROAD
naon o0on 0000 0NO0N

Figure 6-3. Simulator Qutput Format (continued)

AL O
nooon

NORM
noon

MICSIM

ALUS
0000

Quns
noaonon

PAGE 0010

ccs Loc 0085
TS AF NS MT
OF oD 06 00
RF FF MF CF
00 O0A 01 00

NEXT £CS APNDRESS

0080 PAGE 0

CURRENT TNP nF STACK 0000
NUMBER OF ITEMS ON STACK 0

ALU INPUT A 0000
AL INPUT B 0036

ALu DNTPUT
CIn O
cout o6
RO 0036
R4 0000
R8 6000
RC 0000
P sC
0202 n0O0OO
mecen 2
MOPC
MADS
MRYE 0
MIR 0036
IRAR noono
MMAD 0202
OVFL SENS
onpo 0000
ALUC aALUZ
00006 0000

ne3e

R1 0000 R2 0n0OOO RJ
RS FFFF R6 0000 R?7
RG 0000 RA 0000 RSB
RD 0AODO RE 0000 RF

OPR
00FQ

6000

TESY
SSWJ3
0noo

SHFT
0000

KRFEG IDOKR IBR
nooo 00n0 0000

CONDITION SYATES
SSwW2 SSwi EMUL
nooo 0000 0000

MIRS SFTC ROAD
0000 0000 0000

EXECUTION LIMIT SATISFIED

VORTEX
PAGE O
F8 TF SF GF MR AR
00 00 00 05 00 00
WwR SC VF WF XF SH
01 00 00 00 00 00

0000
0000
0006
0000

0000

ALUD
0000

NORM
0000

MICROPROGRAM SIMULATOR, MICSIM

MICS

M
06

8B
01

STAT
0000

ALUS
0000

auos
0000

Figure 6-3. Simulator Output Format (continued)

IM

LB
01

AA
00

LA
00

I10R
0000

SHFT
0000

Auns
0000

6-21

SECTION 7

MICROPROGRAM UTILITY PROGRAM,
MIUTIL

The microprogram utility (MIUTIL) loads information into
WCS and provides an interface with hardware features of
the WCS.

Two sets of directives are provided. The basic set will allow
the user to load the WCS with microassembier output,
examine single WCS words and list WCS contents. The
second group of directives gives the user access to the
debugging features of the control store. With these
directives single microstep execution can be done.

The utility operates in three environments, under the
VORTEX operating system, MOS operating system and as a
stand-alone program. A standard interface program pro-
vides compatibility.

7.1 BASIC ELEMENTS

The microprogram utility accepts directives as similar as
possible to those of the microprogram simulator.

7.2 GENERAL FORM OF DIRECTIVE

In general a utility directives consists of a unique first
character, followed by a string of parameters, terminated
by a carriage return. The following sections describe the
meaning of each of these first characters and permissible
parameters. Table 7-1 summarizes the utility directives.

The following are the utility directives available to the user:

Table 7-1. Summary of Utility Directives

A. Basic Command Set

Pn Page select

LC Load central control store (CCS)

LDA Load decoder control store (DCS) A

LDB Load decoder control store (DCS) B

MS Media set, selects Pl for input

MR Media reset, selects Si for input

Exm Examine/change control store x word m
Dxm,n Dump control store x word m through n

R Return the operating system or exit from

utility in stand-alone environment

B. Debugging Directives

Nx Enables control store x

TS Trace set

TR Trace reset

Gn Set microprogram execution address to
CCS word n

(continued)

Xn Execute n microinstructions
I Initialize WCS

Bn Branch to CCS word n

Hn Halt execution at word n

7.3 DIRECTIVE DEFINITIONS

In the following discussion of utility directives, the
characters the user inputs are in bold-face type and
explanation of the action in regular type.

All numeric values are hexadecimal.

7.3.1 Select Page (P)

This directive selects a particular WCS page for the
commands which follow. The directives for loading, and
dumping do not accept a page number and thus rely on the
previous P command for page selection.

Before the first P command is given by the user, a defauit
page value of 1 is assumed.

The letter P is followed by a hexadecimal digit for the page
number. For example P3 would select page 3.

7.3.2 Load Control Store (L)

This directive loads microassembler output into the
writable control store. The user specifies which page is to
be loaded by the prior P command. The user specifies
which control store should be loaded by the one parameter
following the letter L. C indicates central control store, DA
or DB for decode control store A or B, and | for 170 control
store.

For example, after P2 a directive LC would load page two of
the central writabie control store.

7.3.3 Examine/Change Control Store (E)

Through this directive a single word of WCS may be either
examined or changed. The user specifies which control
store and the word number. The page is obtained through
the previous P directive.

The form of the E directive is Exmmm where x is either
C, DA, DB or | for central, decoder, and I/0 control stores
respectively, and mmm is the address of the control store
word in hexadecimal notation.

71

MICROPROGRAM UTILITY PROGRAM, MIUTIL

The utility will type out the contents of the location
followed by a carriage return. The change value format is
the same as the microsimulator format. Refer to section
6.3.7 for details.

For example
Action Caused
MU‘.
P1 Selects page 1
MU"
EI29 Examine 1/0 control store location 29
12A3 Computer types contents
0, User changes contents to zero
002A
1233 Computer types location 2A
0 User changes its contents to zero
Mutt
ECF Utility accepts another directive

7.3.4 Dump Control Store (D)

The dump directive provides a listing of the control store
contents. The page is determined by the prior P directive.
The user specifies the locations and control store type in
the parameters.

The general format for the dump directive is:
Dxmmm,nnn

where x is C, DA, DB or | for the specific control store (as
above), mmm is the hexadecimal location where the dump
is to start, and nnn is last location to be dumped. If the
final location is missing, the last location of the page is
assumed. If the first address is omitted, it is assumed to be
zero.

Dump directive example:

MU#‘

P2

MU“

DC Provides listing of central control
store page 2

Mutll

DI30,5A Provides listing of the 1/0 control
store, locations 30 through 5A

MU#‘

DI,5A List from location zero through 5A

MU#:

Section 7.8 shows a sample printout ot the microprogram
utility directive D.

72

7.3.5 Return to Operating System (R)

This directive causes exit from the utility. If running under
MOS or VORTEX, control is returned to the operating
system. If the utility is running in a stand-alone environ-
ment, the R directive causes a halt. There are no
parameters, merely the letter R, Under VORTEX, any WCS
changes via LC or EX commands are copied to WCS and
the disc image file WCSIMG.

7.3.6 Media Set and Reset (M)

This directive allows the selection of an alternate device for
input of utility directives. 'MS' selects the 'PI' unit for
input. 'MR' returns the utility to the S! unit for input.

Note that receiving an illegal command will cause the
media to be automatically reset to Si.

The following directives are designed to operate in the
special hardware configuration described in section 7.5.

7.3.7 Enable Control Store (N)

This directive allows the user to enable the specified control
stores. The page number used in the one specified by the
last P directive.

The general form of the N directive is:
Nx

where x is D or |, which specifies enabling of the decoder or
170 control store, respectively.

For example:

MU#!B

P1

MU#:

ND Enables decoder control store, WCS page 1
MU#‘

7.3.8 Trace Execution (T)

The purpose of this directive is to provide the user with a
means of following micro execution while it is in progress.
To accomplish this, the address of each microinstruction is
typed before it is executed.

The general form of the T directive is:

Ta

where a is one of the following: S for setting or enabling
trace mode, or R for resetting or disabling trace mode.

Before the first T directive is given, the trace mode is reset,
i.e., turned off.

The general form of the trace output is:
p-nnn

where p is the page number and nnn is the word number of
the next instruction to be executed.

7.3.9 Set Micro Execution Address (G)

This directive allows the user to choose a location for
starting microprogram execution.

This routine will do the following:

1. Step the WCS to stop any execution that might be in
progress.

2. Load the micro address register with the specified
address.

3. Step the WCS to load the first microword into the
control buffer.

4. If trace mode, the next control store address to be
executed will be read from the WCS and output to the
user.

This directive does not begin execution. It serves only as
the setup for an X directive.

The format of the G directive is as follows:
Gn

where n is from one to three hex digits specifying a word
number in central control store.

The page is obtained from the last P directive.

7.3.10 Execute Microinstruction (X)

This directive is used after the G directive to begin actual
micro execution. It can be used to specify free-running
execution or execution of a fixed number of micro's
followed by a halt. By requesting execution of a single
micro, followed by a halt, it can be used to stop free-
running execution.

If free-running execution without trace is requested, the
fine clock will simply be enabled to run free. There are two
ways of interrupting this. An X directive specifying
execution of one microinstruction will step the WCS. It can
then be restarted by another X directive. The G directive
will also ""stop free-running execution. It sets a starting
address, however, and thus it should not be used if the
interrupted execution is to be restarted where it left off.

MICROPROGRAM UTILITY PROGRAM, MIUTIL

If free-running execution is requested in trace mode, then
the WCS is simply single stepped an indefinite number of
times. This allows reading of the WCS address before each
single step.

It execution of a fixed number of microinstructions is
requested, the WCS will simply be stepped the appropriate
number of times. If trace mode, then the address will be
accessed from the WCS and returned to the user before
each micro is executed.

The following is the format of the X directive:
Xn

Where n is zero for free-running execution or non-zero to
request execution of n microinstructions.

The default value for nis 1.
For example:

Muxznk

X7 Execute seven microinstructions

MU’:‘&

X0 Enable free-running execution

MU##

X Execute one microinstruction (note: this
would halt the previous free run)

MU*‘

7.3.11 Initialize WCS (1)

The purpose of this directive is to execute an EXC 07X
command. This will deselect all WCS control stores,
terminate any DMA operations in progress and enable free
run of the fine clock. The resuit is that control will return to
the ROM with all WCS activity suspended.

This command should only be used when a meaningful
ROM location will receive control. Thus, it should not be
used for such things as halting a free-running
microprogram.

7.3.12 Branch to CCS (B)

This directive simply executes an 1/0 branch to the
specified address in central control store. Such a branch
causes free run execution to begin at that location. The B
command thus produces a similar effect to a Gn, XO
directive sequence. The B directive never steps the WCS
though, and thus cannot respond to the trace flag.

The general form of the B directive is:

Bn

Where n is from one to three hex digits specifying a word
number in central control store.

The page number is obtained from the last P directive.

7-3

MICROPROGRAM UTILITY PROGRAM, MIUTIL

7.3.13 Set Halt Address (H)

This directive may be used with the X directive to single-
step microprogram execution to a certain address in WCS.

The format of the H directive is:
Hn

where n is from one to three hexadecimal digits specifying
a word in control store. The page number is specified in the
last P directive.

Single stepping as a result of an X directive will be
terminated when the specified location is the next one to
be executed. A message in the trace format will be output
to signal this.

The halt can be removed by entering HO. Only one halt
address may be set at a time.

7.4 OPERATING INSTRUCTIONS

7.4.1 Program Loading

Under VORTEX, load VORTEX as described in the VOR-
TEX Reference Manual. The utility should be in the
foreground library. It can be put there at system genera-
tion time or added later using the load module generator.

To load the utility and begin execution, an OPCOM
schedule directive is necessary. For example:

; SCHED,MIUTIL,3,FL,F
schedules the utility at priority three.

Under MOS, load MOS as described in the MOS Reference
Manual, 98 A 9952 09x. Then, the MOS loader may be used
to load the utility program. Execution will begin on
successful completion of the load.

For exampie:

/JOB, UTIL

/LOAD

Utility program binary object
EOF (2-7-8-9 multi-punch)

In a stand-alone environment, load the 620 stand-alone
FORTRAN IV system loader. Instruct the loader to
change its logical unit numbers by entering appropriate
values. Next, load the utility binary object, followed by
the FORTRAN 1V stand-alone system runtime /O tape,
followed by the runtime utility tape. On completion of
loading, the machine will go into step. Press RUN to start
execution.

7.4

7.4.2 Program Execution

After successful loading, the utility program is entered
automatically. The program will first type MICRO
UTILITY to identify itself. Next, the configuration will be
determined by the following request:

DEBUG CONFIG? (Y or N)

The user should then type Y followed by a carriage return,
if his system is in the special two-processor debugging
configuration described in section 7.5. Otherwise, if his
system is simply the standard configuration, the user
should type N, followed by a carriage return.

Under the stand-alone and MOS environments, the micro
utility will then type

EVEN WCS DEV ADDR ?

The user should then type either 70, 72, or 74, depending

on the hardware configuration, followed by a carriage
return. This request is not made under VORTEX because
the device address is specified at SYSGEN time.

The utility will then type:

MU**

to indicate that it is ready to accept a directive. Whenever
an illegal directive is given, an error message is typed.
Description of the various messages can be found in
section 7.7. Note that a directive may be in error either due
to bad syntax or due to context. An example of the latter
case is giving a debugging directive in a non-debugging
configuration.

During execution of the D and X directives, SENSE switch 3
may be set to terminate their execution prematurely.

SENSE switch 1 may be set during tracing to suppress
listing of page zero addresses.

7.5 DEBUGGING CONFIGURATION

The additional debugging directives of the utility .annot
operate on the WCS of the processor on which the utility
itself is running. For this reason, a special hardware
configuration is needed to use these directives.

The special configuration must have two computer systems:
one with a WCS and the other actually operating the utility.

The system which runs the utility program must have the
hardware appropriate for the type of operating system or
for stand-alone operations. The processor need not have
any WCS and the processor itself can be either a 70-series,
620/, or 620/L. Operating system requirements prevail,
since VORTEX does not run on a 620/L.

The Writable Control Store Reference Manuals describe
the physical properties of this two processor system for
debugging.

7.6 UTILITY ERROR MESSAGES

Message

General

MU0l

MuUo02

Muo3

MuUo4

MUO05S

MUO06

" Reason

Input could not be interpreted as a valid
command.

A non-hex character was encountered when hex
expected.

EOF detected on Si. Return mode to operating
system.

The selected page number was not valid.
WCS Access
Unable to access WCS: WCS is busy.

Unable to access WCS: BIC load in progress.

Message

MICROPROGRAM UTILITY PROGRAM, MIUTIL

Reason

CS Loading

MuU07

MU08

MUO09

MU10

MU11

MU12

Read error on Bl device.

EOF encountered before load complete.
EOD/BOD encountered before load complete.
Sequence error on Bl.

Invalid loader code.

Checksum error.

Field Selection

MUl6

MU17

invalid field name.

Invalid field value.

75

MICROPROGRAM UTILITY PROGRAM, MIUTIL

7.7 EXAMPLES

The following is a sample of microutility output:

PAGE 0000 09/07/73 VORTEX MIUTIL
VARIAN 73 MICRO UTILITY

VEBUG CONFIG ? (Y OR N)

N

Miww

tC23

Q0000000000000000

4

voes

0000n000000000000

’

0Q27

Q00nnNO00N00N0000

BA,

Qo028

0000000000000000

Mijww

UDAB,B

PAGE 0001 09/07/73 VORTEX MIUTIL
UCS A , PAGE 01

0008 0000 00600 0000 0000

MUew

voa

PAGE 0002 09/07/7) VORTEX MIUTIL
VCS 8 , PAGE 01

0000 0000 0000 0000 0QO0Q0 0000 0000 0000 0000
0008 0000 0000 0000 Q000 0000 0000 0000 0000

MUsw
ves,?

7-6

PAGE 0003 09/07/73

LCS LDC 0005 PAGE 0%
TS AF M8 MT FS TF
00 00 00 00 00 QO
RF FF MF CF WR SC
00 00 00 00 00 00

LCS 0C 0006 PAGE 0%
TS AF MS§ MT FS TF
00 00 00 00 00 00
RF FF MF CF wR SC
00 00 00 00 00 00

CCS LUC V007 PAGE 01
TS AF MS MT FS TF
00 00 00 00 00 OO0
RF FF MF CF WR S§C
00 00 00 00 00 00

Miew

Lc

LOAD COMPLETE

MUnw

L1

LOAD COMPLETE

MUnw

W

SF
00

VF
00

SF
00

VF
0o

SF
00

VF
0o

GF
00

wF
00

GF
00

WF
00

GF
0n

wF
00

MICROPROGRAM UTILITY PROGRAM, MIUTIL

VORTEX
MR AB
00 00
XF SH
00 00
MR AB
00 00
XF SH
00 00
MR AB
00 00
XF SH
00 00

MIUTIL
IM L8
00 00
88 AA
00 00
IM LB
00 00
BB AA
on 00
IM LB
00 00
88 AA
00 00

LA
00

LA
00

LA

00

77

SECTION 8

DECODER CONTROL STORE, 1/0
CONTROL AND ADDITIONAL TOPICS

These topics are not of interest to all microprogrammers.
Both decoder and |/0 control stores are options and also
less trivial to program. Not all applications require an
understanding of the item treated as additional topic
which is multiple environment applications.

8.1 DECODER CONTROL STORE

Preliminary decoding of instructions in the instruction
buffer can be performed by the instruction decoder
control store and the instruction decoding logic. These
elements translate the 16-bit instruction into a 9-bit
control-store address according to the contents of the
instruction decoder contro! store.

Decoder addressing is used to perform a preliminary
instruction decoding function. It permits instruction classes
to be discriminated with the detailed decoding performed
later by field-selection addressing after the instruction
buffer is transferred to the instruction register.

The instruction decoder control store consists of two 16-
word by 16-bit memory arrays. The processor implements
this with programmable read-only memory (PROMS). An
option of the WCS permits selection of read/write arrays to
permit alternate decoding strategies.

The decoders are identified as A and B. Bits within them
numbered right to left starting with zero, so that bit 10 of
decoder B is identifed as B10. A and B designations are
accepted by microprogram simulator and utility programs.

The formats for these two control store arrays are shown
in figure 8.1.

A specific Decoder B control store word is accessed by
using instruction buffer bits 12-15 as an address. Access
to Decoder A words is via bits 8-11 of the instruction
buffer. The selected A and B words are used to generatea
9-bit WCS address as shown in table 8.2.

The decoder address is enabled by the TF and SF fields
both equal to 00 and the GF field equal to X1XX. It an
interrupt is present, decoding is inhibited and interrupt
addressing is used.

Decoder addressing will be inhibited if the IM field equals
11X0. If decoder addressing is so inhibited and no
interrupts are present, field-selection addressing is used.

The possible components of a decoded address are shown
in figure 8-1 and 8-2. The nine low-order bits obtained from
the decoder B are always used in decoder addressing.

The five most significant bits (4-8) in decoder A are
included in the contro! store address bits 4 through 8 by an
inclusive OR, it either of the foliowing bit combinations
exist in the first decoder output:

B12 equals zero

or

B15 equals zero

The four least significant bits of decoder A are included in
the control store address bits 0 through 3 by an inclusive
OR if either of the following bit combinations exist in the
first decoder output.

B12 equals zero and B10 equals one
or
B15 equals zero and B10 equals one

The contents of instruction buffer bits 04 through 07 are

.included in the control store address bits 0 through 3 by

an inclusive OR, if either of the following bit combinations
exist:
B14 equals zero

or
B15 equals zero and Al3 equals one

The contents of instruction buffer bits 00 through 03 are
included in the control store address bits 0 through 3 by
an inclusive OR, if either of the following bit combinations
exist:

B13 equals zero
or
B15 equals zero and Al3 equals one

One exception to this is the contribution of instruction
buffer bits 04 through 07. The contribution to control store
addres. bit 2 will be the contents of instruction buffer bit
03 instead of bit 06, if the decoder B bit 00 equals one
and the decoder A9 equals one.

The meaning of other bits in the two decoder control store
words is shown in figures 8-1 and 8-2. These signals are
available at a processor connector and are used by Varian
70 series options to detect certain instruction classes.

81

28

9f61-1114

JBWIO 340}§ [04}U07 Jap0d8Q ‘[-8 24ndig

B15 |B14 |B13 |B12 |BI1 | B10 | BY B8 - BO
N DECODED FROM
DECODER | (S32) |(531)|(530)(T32){(04) | (00) |(10) (CIDA3X) INSTRUCTION BUFFER
B ! BITS 12-15
ADDRESS CONTRIBUTION
EXTERNAL SIGNAL FROM 1,0
ENABLES LEAST SIGNIFICANT 4 BITS OF DECODER A
WHEN B15 OR B12 ARE ENABLED
EXTERNAL SIGNAL
ENABLES DECODER A LEAST SIGNIFICANT 9 BITS
ENABLES INSTRUCTION BUFFER BITS 00-G3 TO
CONTRIBUTE TO ADDRESS BITS 0-3
ENABLES INSTRUCTIOM BUFFEK RITS 04-07 TO
CONTRIBUTE TO ADDRESS BITS 0-3
------- FIYABLES DECODER A, CONTROL STORE BITS Al4
AMD A3
Al | Aal4| A13] A12] A11 |AI0 [AY A8 - AQ
. DECODED FROM
DECSDE" S;'E%T)(szn (520) [XX 33 | iX X0 [ixx2) | (X X5) (CIDA2X) INSTRUCTION BUFFER

L BITS 08-11
EXTEREIAL SIGNAL; FORCE GIT 2 OF DECODED ADDRESS
IF FIRST DECODLER 00 BIT 1S OMN
———— EXTERNAL SIGINAL
—————— EXTERNAL SICMNAL
- EXTEKNAL SIGNAL

WHEN ENABLED BY B1S5 FALSE, ENABLES INSTRUCTION BUFFER
BITS 00-08 TO CONTRIBUTE TO ADDRESS BITS 0-3

WHEN ENGAGED BY BI5 FALSE, ENABLES INSTRUCTION BUFFER
BITS 04-07 TO CONTRIBUTE TO ADDRESS BITS 0-3

$O1dOL TVYNOILIGAY OGNV TOMINOD 0/1 ‘JYOLS TOYLNOD ¥3G023a

DECODER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

aooressar | e | 7 | e | s | 4] 3] 21| o
(FROM DECODER B)
88-80 (DECODED FROM BITS 12-15

OF INSTRUCTION BUFFER)

AB-A4
(FROM DECODER A)

A3-A0

- B15=0 OR B12=0 B12=0 AND BI0O =1, OR
B15=0 AND B10 = 1

INSTRUCTION BUFFER
BITS 00-03

ENABLED COMPONENTS ARE LOGICALLY OR'ed, B13 0 OF (315 0 AND A13= 1)

ALL DECODER COMPONENTS ARE INHIBITED UNLESS
THE SF FIELD EQUALS 00 AND THE GF FIELD EQUALS

X1XX AND NO ENABLED INTERRUPT REQUESTS ARE INSTRUCTION BUFFER
ACTIVE, BITS 04-07

IN ADDITION, DECODING MAY BE INHIBITED BY THE IR

IM FIELD EQUAL TO 11X0. B14 =0 OR (BI5=0 AND Al4 = 1)

% THIS BIT IS FORCED TO STATE OF INSTRUCTION BUFFER BIT 03
IF DECODER B BIT 10 IS ON AND DECODER A BIT 9 1S ON,

VTI-1937 A
Figure 8-2. Decoder Address Components

8.2 1/0 CONTROL STOR® the SF field equal to 00 and the IM field equal to 0010.
Execution of this and subsequent microinstruction will be
inhibited until the 170 sequence is completed. If the 170 is
busy performing a sequence and an |/0 request is issued
execution of the microinstruction specifying new 170
activity will be inhibited until the 170 completes its current
sequence.

8.2.1 Microprogram Initiation

The microinstruction can initiate 1/0 activity by signaling
an 1/0 request while forming a starting address for the
independent |/0 control store. An |/0 request is made by
setting the SF field equal to 00 and the IM field equal to

111X. (If the IM field equals 1110, decode addressing is Standard 1/0 page zero starting addresses for processor-

initiated 170 are:

inhibited).
The 170 control-store starting address is specfied by the He;::::::al Action
MT, MR and TS fields.
7 6 5 4 3 2 1 0 04 Sense, EXC or EXCA 1/0 sequences
oC Data Input
MT MR TS AB1* 0 1C Data Output
170 operations can be initiated by external events such as
170 request 170 Control .
SF = 00 Store Starting DMA traps. Standard 1/0 page zero addresses are:
IM = 111X Address .
Hexadecimal
*AB1 is most significant bit of the AB field Address Action
40 DMA trap out
50 DMA trap in
70 High-speed DMA trap out
The microinstruction can wait for completion of 1/0 activity 80 High-speed DMA trap in
by specifying a wait for |/0 done. This is coded by setting DC Interrupt

8-3

DECODER CONTROL STORE, 170 CONTROL AND ADDITIONAL TOPICS

8.2.2 1/0 Microprogramming

The I/0 control section performs 1/0 sequences initiated
from either the V70 series processor microprograms or
external DMA trap requests or interrupts.

1/0 microprogramming must be undertaken only with a
full knowledge of the hardware function of the pro-
cessor's 1/0 control section and the WCS's 1/O control
store. This is described in the V70 Series Processor and
WCS Reference Manuals.

No simulator program exists to aid in debugging 170
microprograms.

All special 1/0 micraprogramming must be considered an
engineering design more than a programming task.

170 control performs the following functions in accordance
with the sequence 1/0 microinstructions stored in the 170
control store:

* Control the source of data applied to the 1/0 register
input bus.

* |/Oregister input bus.
* Control loading on byte shifting of the |/0 register.

* Initiate memory cycle requests to the Varian 73
memory control section.

* Initiate |70 bus control signals.

* Wait for completion of external events such as memory
cycles, new processor microprogrammed requests,
external control signals, etc.

* Signal completion of /0 activity to the processor's
central control section.

1/0 control store formats are shown in figure 8-3.

The 170 address counter is automatically incremented at
completion of each microinstruction uniess a "WAIT" or
"IDLE" state is entered. This counter is cleared to zero by
system reset.

i/0 microinstructions are executed from sequential ad-
dresses until the end of the sequence whereupon the 1/0
becomes idle and ready to accept new requests.

As the address counter is loaded with its starting address,
the 170 control buffer is loaded with the contents of 1/0
control store location corresponding to the last contents
of the address register. Following a system reset this will be
the contents of /0 control store address zero. At all other
times it will be the ending address of the previous 1/0
sequence. In either case, the standard data will cause bits
{DLE and DN to become true.

8-4

IDLE true indicates the 1/0 control is not idle and further
requests are to be ignored as long as IDLE is true, the 170
address counter and 1/0 control buffer are enabled.

At each succeeding microinstruction time the address
counter is incremented and the 1/0 control buffer is
loaded with the contents of the address designated by the
address counter. The 16 bits of the /0 control buffer
control all 1/0 functions. Their use is described below:

CDO Control the processor's
CD1 170 data loop muitiplexor (IOMXX +)

cD

1 0 170 Register Input
00 ALY

01 Memory I/0 register
1 0 /0 bus byte swapped
11 170 bus

CD2 Control the processor's
CD3 170 register

cD

32

0 0 No action

0 1 Shift right (left byte to right byte)
1 0 Shift left (right byte to left byte)
11 Load from ALU

These bits do not directly control the 1/0 register. The 1/0
register may also be controlled by IDLE (when the 1/0 is
idle, the register is continously loaded from the ALU).

CDa Enables the processor's 1/0 register onto
the E-bus.’
FRY Initiates an 1/0 function ready (FRYX:])

signal. RYX:| is terminated 247.5 nano-
seconds later by signal HIT-.

Spare Not used.

DRY Initiates an 170 bus data ready (DRYX:1)
signal. DRYX:| is terminated 247,5 nano-
seconds later by signal IEDRYN + derived
from HIT~.

IDLE Determines idle/busy status of 170 control.
While busy the 1/0 can accept no new re-
quests.

g8

1ewWIo4 UONONIISUIOIONN O/ 'E-8 3anSiy

HI-IILA

15 14 13 12 11 10 09 08 07 06 05 04 03 02 l 01 l oc
COX FRY |sPARE| DRY |IDLE | wAIT| RQM [CRY | DN EFY
0 1 2 3 4 Y 0 ! 2
\ v A /| N ~ J
l |
L IF O SIGNALS T O COMPLETION TC
CENTRAL CONTROL
RESERVED +OF FUTURL OPTION
IO REGISTER INPUT
0 0 ALU OUTPUT REQUEST MEMORY CYCi &
1 0 MEMORY | O REGISTER ' o
0 I 1°O BUSBYTF S APPED PUTH G It AT STATE
| 1 | O BUS .
SeT 1 O BUSY
1
INITIATE | O CONTROL SIGNAL DRY X -1 IF NO HIGH SPEED
DMA AND INTERRUPT SEQUENCE FLIP-FLOP NOT 5T "HNTF:
I.O REC TFR OPERATION INITIATE | O CONTROL SIGNAL DRYF-1 IF HIGH SPEED DrAA
0 0 NO ACTION INITIATE I O CONTROL SIGNAL 1UX-1 IF NO HIGH SPEED
1 0 LEFT BYTE TO RIGHT BYTE DMA AND INTERRUPT SEQUENCE FLIP-FLOP SET fHNTH
0 I RIGHT BYTE TO LEFT BYTE
1 1 LOAD FROM SELECTED SOURCE
0 1 2 FUNCTION
0 0 0 SELECT WAIT ON EXTERNAL
1 0 0 LOAD NEW SEQUE NCE ADDRESS W/HEN Nt ./
ENABLES | O REGISTERTO I O BUS PROCESSOR RESULT RECEIVED
0 1 0 ADVANCE CLOCK COUNTERS RESET INTERRUPT
ACKNOWLEDGE
] 1 0 WAIT FOR MEMORY CYCLE ACKNO'Y/LEDGE
- 0 0 1 WAIT FOR PROCESSOR REQUEST
IF HIGH SPEED DMA INITIATE | O CONTROL SIGNAL 1 0 | STEER DRY TO 1O BUS
FRYF-1 .
0 1 | ACKNOWLEDGE PROCESSOR REQUEST VWHEN
NOT HIGH SPEED DMA INITIATE | O CONTROL MEMORY ACKNOWLEDGE RECEIVED

S21dOL TYNOILIQaV ANV T0¥LNOD 0/1 ‘J¥0LS TOHLNOD ¥3Q023a

DECODER CONTROL STORE, 1/0 CONTROL AND ADDITIONAL TOPICS

TRAP AND
INTERRUPT
REQUESTS

ADDRESS
GENERATOR

ADDRESS FROM CONTROL
MICROINSTRUCTION

/O ADDRESS COUNTER

1/O CONTROL STORE

1/O CONTROL BUFFER

— |, O DONE

y

» 1O IDLE

1/0O BUS CONTROL INTERFACE

I O BUS CONTROL SIGNALS

VTil-1934

8-6

Figure 8-4. 1/0 Control Simplified Block Diagram

L———P MEMORY REQUESTS

— CONTROL SIGNALS TO

1/O REGISTER
I, O BUS DRIVERS
/O REGISTER INPUT BUS

DECODER CONTROL STORE, 170 CONTROL AND ADDITIONAL TOPICS

WAIT Places the 1/0 control in a "wait"

RQM

CRY

DN

F2

[e N e

— = -0 O

O O == o o

—

- O

o+~ OO

state by inhibiting address counter and
ROM buffer clocks until receipt of a
designated signal. The [/0 may wait for
any of the following:

. new processor request

. processor interrupt flag reset
. data memory cycle complete
. external wait signal

Selection of the specific condition is
determined by the function bits EF2,
EF1 and EFO of the 1/0 control buffer.

Requests a DMA memory cycle from the
processor's memory control.

Channel request. Reserved for
future option.

Results in an 1/0 done signal (IDNC-
low) to signal the processor of completion
of the {/0 sequence.

Function bits which control:

. selection of "wait condition

. advance of interrupt clock counters
. steering of DRY

. acknowledge interrupt requests

. loading of new sequence addresses

Select wait on external signal IEXW +
Load new sequence address from CPU if
CRQIO +

Advance IUCX and IUCF clock counters
Select wait for memory cycle complete
Select wait on CPU request

Steer DRY to DRYX-

Acknowledge interrupt sequence request
from CPU

Not used

Any |/0 sequence continues through successive ROM
addresses until address counter and ROM buffer clocks
are inhibited by either of two conditions:

IDLE becomes false signifying end of sequence or

WAIT becomes true signaling that the current sequence

must stop to wait for some external event such as:

* memorycycle

* new processor request
¢ new processor request
« interrupt flag set

« external wait line active

For programmed 1/0 sequences signal DN will become
active and at the next microinstruction time IDLE will
become active also. IDLE causes |/0 sequencing to stop.

The 1/0 sequence is thus completed leaving the address
counter loaded with an address whose contents IDLE and
DN. This will be the first data loaded into the ROM butter
when clocks are reenabled.

8.2.3 Example of 1/0 Microprogram:
Clear and Input to A

The flowchart and code sheet following describe the
standard programmed 1/0 sequence for V73 input data
transfers. The corresponding flowchart for the processor
microprogram to initiate the 170 transfer may be found in
the second volume of the System Maintenance Manual.

Referring to the processor microprogram flowchart for the
sequence required to start the i/0 operation, the first
central control address is 1A0. This was obtained with
decode addressing. The entire sequence will now be
traced.

" 1ABM1 (1A0)

This microinstruction causes the operand register to be
loaded with a mask word containing only bit 13 true.
Normal addressing specifies the next address.

IABM2 (1C3)

This microinstruction specifies an 1/0 request with an /0
starting address of OC. If the 1/0 was idle (the 170 control
store buffer IDLE bit was a zero) the I/0 control accepts
the starting address and simultaneously loads its control
buffer with a standard code of 0088. This places the 170 in
its ""busy' state and signals the processor that the 1/0
operation was accepted.

8.7

DECODER CONTROL STORE, I/0 CONTROL AND ADDITIONAL TOPICS

During this microinstruction the processor transfers the
operand register to register E (this register has been
designated S1).

IABM3 (1F3)

This microinstruction logically OR's the contents of register
E with the masked (bits 0-8) contents of the instruction
register. This places the device address, function code and
bit 13 (specifying an input transfer) at the ALU output.

In the 170 control the |/0O microprogram is executing the
microinstruction at location OC which loads the 1/0
register with ALU output data.

The processor microprogram specifies a "Wait for /0
Done" which causes further processor operations to be
suspended until the {70 control signals completion. The
remainder of the /0 sequence wiil now be traced.
Addresses are sequential.

170 address OC is "NOP"". It performs no function.

Table 8-1. 1/0 Microprogram Example Code

1/0 address of OF continues to enable the 1/0 register to
the 170 bus and generates the IFRYX-I control signal to
signal I/0 devices that a new address and function code
may be sampled.

170 address 10 performs the same function as OF. This
allows for 170 bus settling time.

170 address 11 selects the |70 bus as an input to the 1/0
register. The selected |/O device may place its data on the
170 bus.

170 address 12 continues to select the [/0 bus as an input
to the 1/0 register and generates control signal IDRYX-I.

170 address 13 continues to select the 170 bus as an input
to the 170 register, continues to generate IDRYX-l and
causes the 170 register to be loaded with the data placed
on the 1/0 bus. 170 control buffer bit "DN"" becomes false
permitting microinstruction execution to proceed.

170 address 14 returns the 170 control to an idi2 condition.
Simultaneously the next central control microinstruction is
executed.

CIA (09D)

This microinstruction transfers the |/0 register contents to
register 0 (the A register). The program counter is
incremented and a new instruction fetch is initiated. The
microprogram branches to SS3M (02D) where the instruc-
tion buffer is decoded to branch to the start of the next
instruction.

8-8

Note that 170 address 15 will be executed when the next
170 operation is started. This microinstruction contains
the standard code of 0088 which will place the 1/0 in its
"'busy' state.

8.3 MULTIPLE ENVIRONMENT APPLICATIONS

This section describes using the V70 series WCS for
extended instruction execution and dual/multi environ-
ment applications.

This section discusses the application of WCS to extend
the standard V70 series emulation of a 620/f to perform
additional instructions and functions. It also discussed a
dual environment implementation, which can be
extended to multi-environment machine.

Application of the WCS to Extend Execution
Capabilities

Using the macro BCS, it is possible to define entry points in
extended micro store for a large number of special
functions. These extended functions can be defined to use
V70 series hardware not explicit in the 620/f emulation
such as 16 general purpose accumulator registers and
more explicit status testing. Examples of application of this
capability would be implementation of floating point
arithmetic, stack organizations and so on. Characteristic of
extended operations is that no primary decodes would
occur during the operation (exceptions are possible of
course). It is possible to enable interrupts while disabling
primary decode so it would be possible to allow interrupts
during very long microsequences. However, the point of
interruptability and its ramifications would have to be
carefully considered.

Application of the WCS to Dual/Multi

Environment Operation

Emulation of instruction architectures other than that of
the host machine is achieved by performing primary control
store address decoding in the WCS extended contro! store.
It is possible to have unique architecture in each 512 word
block of control store. Some possible examples of this
would be:

1. Hardware emulation of a VXX machine under control of
WCS in the V70 series systems,

2. Implementation of a higher level language processor
operating under control in the V70 series systems.

DECODER CONTROL STORE, 10 CONTROL AND ADDITIONAL TOPICS

CRQIOA

15
® @

- 0C

DALxx —=IORxx

ODl

NOP

!

OF

JORxx —= EBxx

OFl

IFRY
JORxx —=EBxx

TS AB

S ol*z

0011 {00
0011 [10

N|jo o] Z

0

VTii-1812

Figure 8-5. Flowchart of 1/0 Microprogramming Example

b

- PROGRAM ENTER
- HALT LOOP ENTER

IFRY
[ORxx — EBxx

'

EBxx — IORxx

v

IDRY
EBxx — IORxx

i}

IDRY
CLK IOR
EBxx —+=1ORxx

8.9

DECODER CONTROL STORE, 170 CONTROL AND ADDITIONAL TOPICS

[IABM1

FROM
PREVIOUS
INSTRUCTION

1A0

MASK — DOR

[ABM2

v

1C3

1/0O START
DOR —=$1

1ABM3

v

IF3

FIELD SELECT 6-8
WAIT FOR IDN
S1 OR MASK | —]OR

VTiI-1815

8-10

I L L AME] 098
8 8007 MEM START
—> IOR =DOP
RESET CIMTF
INA 099
MEM START
001
» INCR P —9»,
A OR IOR—A i
{
i
INB 09A
MEM START
010, INCR P
B OR IOR ~8
INABI 098
oy, 8 OR IOR —DOR
Cla 090
101 MEM START
> INCR P >
IOR—A
CIB 09
10 MEM START
> INCR P -
IOR—8
CIAB 09F
ni MEM START
> INCR P
IOR—A, DOR
1hL2 v 09C
PMEIA START
INCF P
DOR — MEA
INABZ 082
MEPA START
> IMCR P
A CR DOR—A, DOR

g

TAB y 083

EFABLE D-RC:A & [NTRPT;
MI—=C21; DOR =8;
TEST & ~ESET CINTF

Figure 8.5. Flowchart of 1/0 Microprogramming Example (continued)

‘;{ SS3M)

NEXT
INSTRUCTION

DECODER CONTROL STORE, !/0 CONTROL AND ADDITIONAL TOPICS

An Example of a Second Environment

Architecture and Call Sequence

For our example, we will define a second environment E2
(as distinguished from the V70 series system environment
El) which can use general registers of the V70 series
systems as stack pointers, general purpose accumulators
and so forth. The question arises as to interruptability of
this second environment and what registers are available
to E2.

A macro sequence to call E2 from the V70 series systems
could be:

P BCS (105000) page jump to E2 entrance
micro

Py + 1 xxxxx LOC of first instruction of E2 in
main memory

P) + 2 BCS (105001) page jump to E2 interrupt
return entrance

E2 Entrance and Interrupt Micro Code

The normal entrance micro code saves (P) + 2 at register
E for reference in case of an interrupt. Also, it can be used
to return jump to the next V70 series system instruction
when environment 2 is completed.

Upon receiving an El interrupt while in E2, the microse-

guence (simplified) is as follows:

3

E2 STORE
JWAIT STATE RETURN 7
REQ.1/0 P AT E

105 ACK 8

PAGE JMP
to V70 series
interrupt micro

2 SAVE REG. processor
3 3TOA
4 470 8B
5T0C
v in V70-V74 and
RESTORE 620/f environment,
REG. 3,5 register 5 is all ones
I's to 5 _— and register 3 is all
0's to 3 zeros. Registers 4, E,
and F are temporary
storage
(continued)

The content of E is the return instruction location as
required by control word OD1. Only registers 3,4,5, Eand F
may be subsequently modified by 620 code and it is only
necessary to save 3,45 as the return path wiil supply
restoration of E.

The interrupt return is implemented via the BCS at the V70
series interrupt return reference. The interrupt return entry
code restores registers 3, 4, 5 from A, B, and C respectively
and stores the location of the interrupt return BCS in E.
The code then restarts the instruction pipeline at the
reference stored in E. Note that the 70 series interrupt
routine is responsible for maintaining A, B, and X registers
(0,1,2).

E2 Register File Usage

We can now see that the second environment has 10
registers (0-9) available for general purpose use, while E is
allocated for the interrupt return page jump instruction
address. Registers A, B, C, D and F are also available for
intermediate usage between interruptable states.

Considerations of Saving and Storing Status

The above example does not define how status is to be
saved and restored. This should be considered when
defining the interruptability of the second environment. In
any event, register and overflow status will be maintained
by the V70 series environment interrupt routines but the
equal, less than and greater than status is more difficult.
This may involve saving the status in the interrupt return
micro code.

Further Discussion of Multi-Environment Systems

The above example of interrupt handling in multi-environ-
ment machine is presented as an exploration of a
mechanism which solves the problem given a particular set
of system restraints (interrupt service routines are in the
host V70 series environment and do not use other than
normal 620/f instructions, i.e., instructions only use
registers 0, 1, 2, 3, 4, 5, E, F).

Each different set of environments may require different
mechanisms of interrupt handling. Some will require
saving registers in main memory, possibly at locations
relative to the location of the interrupt return page jump.
An alternate environment might utilize its own 1/0 drivers,

8-11

DECODER CONTROL STORE, {/0 CONTROL AND ADDITIONAL TOPICS

which would involve locking out interrupts and swapping
out interrupt entrance code and possibly aiso the interrupt
processing routines. in this situation the second environ-
ment might offer system executive control as well as its
optimized functions. When environment, register save/
restore will probably have to be comprehensive and in main
memory.

Other Multi-Environment Considerations for
the V70 Series System Reset

The system reset function will normally be wired to return
control to the host module (normally zero).

Power Fail/Restart

The system executive is expected to contain the necessary
job restart information in case of a power fail. Therefore,
the host environment is not required to save facilities of an
alternate environment (some of which are unknown to the
host machine). The E2 environment could be saved if
desired by using a special instruction such as a 620/f
extension macro which saves and restores the file.

812

Step Mode

If it is desirable to single step computer operation in
alternate environments, it is necessary to micro code a
halt loop in that environment. The alternate environment
has the option of enabling or disabling the step function in
its micro code.

Conclusion

This section described two basic applications for the V70
series WCS. Its use for extending the instruction set of
the standard 620 emulator is quii# straight forward. Its
application to produce a dual ar multi environment
machine was also seen to be practical and feasible with
the system problem of interrupt handling examined in
some detail. In fact, a second environment which offered
10 general purpose registers and 5 scratch registers for
implementing stack/queue pointers, floating point reg-
isters or whatever, was demonstrated.

Because of the ability to add new instructions to the 620
emulation in the V70 and the flexibility of micro coding, the
example is really only one of many possibilities. The
mechanism generally will be designed to meet require-
ments of the system definition.

SECTION 9
GLOSSARY

Entries are brief descriptions of terms .appearing in the
text. These definitions reflect the usage preferred for
consistency and a minimum of terms. Whenever two words
have been used previously for the same item a choice was
made in favor of the most meaningful and unambiguous.

AA

AB

addressing

AF

ALU

ALUC

ALUO

ALUS

ALUZ

application
software

AsSCH

assembler

BB

microinstruction field of bits 0 - 3
to select an ALU source on bus A
and/or destination

microinstruction bit 35, which is
used in field-selection addressing
and 1/0 requests

determination of nexti instruction
to be executed

microinstruction field which contri-
butes to address generation

Arithmetic and Logical Unit, the

logical and storage providing data
transfer and basic arithmetic and
logical operations in the processor

flag for ALU carry, bit 11 of proc-
essor status word

flag for ALU output all ones, bit 9
of processor status word

flag for ALU sign, bit 10 of proc-
essor status word

fiag for ALU output all zeros, bit
2 of processor status word

program oriented to solving problems

rather than managing systems
resources

American Standard Code for Infor-
mation Interchange codes for char-
acter representation

computer program which transiates
symbolic statements into machine
executable instructions, see MIDAS

microinstruction field of bits 4
through 7, which specity the ALU
(continued)

BCS

BIC

binary

BYTA

byte

CF

control
buffer

control
store

cycle

cycle,
memory

cyclic
redundancy
check

data path

DCS

source on the B bus or a part of
mask literal

mnemonic for Branch to Control
Store, a 16-bit MACRO
instruction which initiates
execution of microprograms

in WCS

Buffer Interlace Controlier

numbering system in which only two
states are represented, one and zero

flag which indicates left or right
byte of word

8-bit unit

microinstruction field which varies
the type of carry action on ALU
actions

contains current microinstruction
being executed; separate for
central control logic (64 bits)
and 1/0 control logic (16-bits)

memory in which microinstructions
are stored

time required to execute one micro-
instruction

time required to access and restore
storage in main memory

technique for validating storage or
transmission reliability

transfer media for data within
processor

Decoder Control Store, optional
programmable control store for
instruction decoding

91

GLOSSARY OF MICROPROGRAMMING

DMA Direct Memory Access

direct instructions contain actual effective

addressing memory address to be used, in con-
trast with relative or indirect ad-
dressing

DSB shift flag; SHFT

emulation, standard microprogram that

620 resides in control store

page 0. and directs execution
of 620 instructions

FF microinstruction field which specifies
ALU action
freld select technique of addressing which uses

the bits of the instruction re-
gister to determine a microprogram
branch address

GF microinstruction field, which specifies
condition to be tested

GPR general-purpose register. one of 16
16-bit registers

GPRS general-purpose register 0

bit 15 (sign)
hexadecimal numbering system using base 16. re-
or hex presenting numbers with digits and

letters A through F

IF Instruction Fetch

ITA interrupt address supplied by option
board to indicate type cf interrupt

IM microinstruction field designating
type of memory control

instruction storage for instruction immediately
buffer after fetched from memory
instruction storage for instruction for an
register instruction to be executed

10CS 1/0 Control Store, optional

unit of programmable storage for
varying 170 rates and disciplines

IOR 1/Q Register

key register four-bit register which supplies
signals for memory operations used
by memory-map option

9.2

LA

LB

MAD

mask

memory map

microinstruc-

fron

microprogram

MIR
MIRS

MK

MR

MS

MT

MULS

NORM

QOF

oP

OPR

overflow

page

microinstruction field which in
conjunction with AA specifies the
ALU input on bus A
microinstruction field which in

conjunction with BB specifies the
ALU input on bus B

Memory Address Register

literal constant ANDed with instruc-
tion register

hardware option to allow addressing
memory to 256K

64-bit word from WCS specifying the
actions to occur during one cycle

vehicle for implementing control
function of a computer

Memory Input Register
flag for memory input register sign

16-bit mask field (assembler
mnemonic)

microinstruction bit 37 used to
specify 1/0 address bit 6 or to
control AB field use

microinstruction addressing field

bit 50 of microinstruction which
specifies bit 7 of an 170 address

Muitiply Sign flag
Normalize flag

Operand fetch

microinstruction fields combined to
specify ALU action (bits 23 - 17)

operand register
ALU action indicated by OVFL flag;
condition caused by attempt to

push too many addresses into micro-
program stack

program counter

unit of writable control store of
512 words, 64 bits each

page jump

pop

processor

program
counter

push

pipelining

QuUOsS

RF

ROM

SF

SH

SHFT

SHTC

a branch with a microprogram beyond
the extent of the page currently being
executed

to remove an address from top
of microprogram stack

unit that performs and controls
execution of instruction

register for memory address;
usually used for keeping track
of MACRO level execution

to add an address to top
of stack

technique which allows next instruc-
tion to be fetched during an other-
wise unused memory cycle

fiag for q‘uotient

microinstruction field of bits 24
through 26 used to specity transfer
and increment of some special
registers

Read Only Memory: such as page
of V70 series control stores;
contains the microinstructions

to emulate Varian 620 system

bit 15 of microinstruction; specifies
shift of operand register or is part
of mask literal

bits 42 and 43 of microinstruction;
specify interpretation of the IM
field

microinstruction field which
specifies some special ALU

actions or shift operations

flag for shift

flag for overflow of the shift

- counter

stack,
microprogram

STAT

"STEP

SSw

SUPR

TF

TS

underflow

VF

WCS

WR

WF

GLOSSARY OF MICROPROGRAMMING

linked storage locations (16) used
in microprogram subroutine call and
return

processor status word

mode of computer execution one
instruction at a time

SENSE switch 1 - 3 on control panel

supervisor mode flag, bit 1 of
processor status word

microinstruction field of bits 45
and 46 which specify whether
testing occurs and whether it is
for true or false condition

microinstruction field of bits 60
through 63, which selects a field
from the instruction register,
specifies a page number for a
page jump, contributes a portion
of an 1/0 address, or enables
selected interrupts

condition upon attempting to remove
or pop more addresses than are in
a microprogram stack

microinstruction bit 14, which
specifies moving bit 15 of RO to
divide-sign bit (DSB), or a part
of mask

Writabie Control Store; which is read
and loaded over the 1/0 bus

microinstruction field of bit

16 that specifies whether or

not the general-purpose registers
are being loaded

single bit (13) in microinstruction
to designate transfer of the ALU

93

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	9-01
	9-02
	9-03

