

4th Edition - July, 1981

This manual is updated by: Addendum 800-1100P0-04.01

Principles
of

Operation

Copyright ©Wang Laboratories, Inc., 1977
800-11 OOP0-04

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 •TEL. (617) 459-5000, TWX 710-343-6769, Telex 94-7 421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Wang purchase, lease, or
license agreement by which this software package was acquired, nor
increases in any way Wang's liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con
sequential damages in connection with or arising from the use of the soft
ware package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

This manual has been updated by Addendum 800-11 OOP0-04.01 . For a list of
these changes see the Summary of Changes.

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 •TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7 421

PREFACE

'Ibis manual is intended as a reference tool for the VS prograomer.
Chapters 1 through 6 describe machine organization, general instruction and
data formats, interrupts, and the functioning of the Central Processor (CP).
Chapter 7 describes the format and operation of each instruction. Chapters 8
through 12 detail the interface with each type of Input/Output (I/O) device.

This document should be available at all VS sites for general
reference. Additional information on the VS assembler language may be found
in the VS Assembler Language Reference Manual (800-12QOAS) and the VS
Assembler Language Pocket Guide (800-6203AP).

iii

This manual is updated by: Addendum 800-11 OOP0-04.01

SUMMARY OF CHANGES

lST ADDENDUM TO THE 4TH EDITION OF VS PRINCIPLES OF OPERATION

Type

New Features

Documentation
Additions

Description

Document History

New Tables and Figures:

• Diagrams of VS processors
• Decimal floating-point number format
• Physical address format
• Virtual address format
• Main memory page table entry format
• SCR entry format
• Address translation diagram
• Operand M2 format for RRCB instruction
• IODA for VS25 and VSlOO
• VS25 and VSlOO Fixed memory assignments
• DA, IOP Status Tables for VS25 and VSlOO
• I/0 COlllDand Table for VS25, VSlOO
• Status Qualifier Byte for VS25, VSlOO
• SIO, CIO, and BIO Instruction Format
• Rl Format for SIO, CIO, and BIO
• I/0 COIDIDand Word (IOCW) Format

Manual now focuses on VS25, VSlOO
architecture:

Segment control.registers (SCRs) added
for address translation

Translation RAM (T-RAM) structure
of VS25, VSlOO

New clock and comparator

Decimal floating-point data
representations

Decimal floating-point instruction format

Address translation for VS25, VSlOO

Addressing exceptions for VS25, VSlOO

VSlOO machine check interruptions

v

Pages

DH-1

1-2
3-13
4-7
4-8
4-9

4-11
4-12

7-129
8-2
8-3
8-4

8-4.1
8-4.1
8-4.3
8-4.3
8-4.5

2-1

2-2

2-3

3-5

3-12.1

4-7

5-11

5-14

This manual is updated by: Addendum 800-11 OOP0-04.01

Type

Documentation
Additions

(cont'd.}

Description

I/0 Subsystem for VS25, VSlOO

VS25, VSlOO device addresses

VS25, VSlOO internal communications areas

Status Qualifier Byte (SQB)

I/0 Command Table (IOCT)

IOP, DA status tables (IOPST, DAST)

SIO Instruction

I/0 Status Word (IOSW)

Decimal floating-point instructions (new):

• AQ, AQR ADD DECIMAL (FLOATING-POINT)

• CVP

• CVQ

CONVERT DECIMAL (FLOATING-POINT)
TO PACKED DECIMAL

CONVERT PACKED DECIMAL
TO DECIMAL (FLOATING-POINT)

. DQ, DQR DIVIDE DECIMAL (FLOATING-POINT)

• LSCTL LOAD SEGMENT CONTROL REGISTER

Pages

8-1

8-2

8-3

8-4.1

8-4.l

8-4

8-4.4

8-9

7-4.1

7-40.1

7-40.2

7-52.1

7-96.1

• MQ, MQR MULTIPLY DECIMAL (FLOATING-POINT) 7-110.1

• SQ, SQR SUBTRACT DECIMAL (FLOATING-POINT} 7-162.1

• STSCTL STORE SEGMENT CONTROL REGISTER 7-159.1

Instructions modified:

• LPA LOAD PHYSICAL ADDRESS 7-93

• RRCB RESET REFERENCE AND CHANGE BITS 7-129

vi

This manual is updated by: Addendum 800-11 OOP0-04.01

CONTENTS

CHAPTER 1 INTRODUCTION TO THE WANG VS

1.0 VS Family Characteristics
1.1 VS25 Characteristics ..
1.2 VS80 Characteristics
1.3 VSlOO Characteristics

CHAPTER 2 MACHINE ORGANIZATION

2.1 Central Processor ..
General Registers
Floating-Point Registers Control Registers
Translation RAM (T-RAM)
Local Page Tables

.................................
Local Page Frame Table ••••••
Arithmetic and Logical Unit

2.2 Clock ...
Time-of-Day Clock ••••••
Clock Comparator ••••••••••••

2.3 I/0 Processors (IOPs)
2. 4 Main Memory •••••••••••••••••••••••

Information Formats
Addressing

CHAPTER 3 DATA ORGANIZATION

3.1

3.2

3.3

3.4

Instructions--Conventions of Description
Operation Code
Operands
Instruction Format

Fixed-Point Instructions
Data Format •••••••••••
Fixed-Point Arithmetic

Decimal Instructions ••••••
Decimal Arithmetic
Data Formats ••••••••••

Floating-Point Instructions
Floating-Point Arithmetic
Data Format
Normalization

1-1
1-2
1-3
1-4

2-1
2-1
2-1
2-1
2-2
2-2
2-3
2-2
2-3
2-3
2-4
2-4
2-4
2-4
2-5

3-1
3-1
~-2
3-2
3-5
3-5
3-6
3-7
3-7
3-7

3-10
3-10
3-10
3-12

Floating-Point Instruction Format ••••••••••••••.••••••
Decimal Floating-Point Instructions •••••••••••••••••••

3-12.1
3-12.1

vii

This manual is updated by: Addendum 800-11OOP0-04.01

3.5

3.6

CONTENTS (continued)

Logical Instructions •••••••••.
Fixed-Length Logical Data ••••••
Variable-Length Logical Data

Linked List Instructions
Structure of LIFO Lists
Structure of FIFO Lists

3.7 Semaphore Manipulation Instructions
3.8 Stack-Oriented Instructions •••••••••••

CHAPTER 4 INSTRUCTION EXECUTION

4.1

4.2

4.3

4.4
4.5

Program Control Word ••••••••••
Condition Codes •••••••••••

Addressing ...
Base-Displacement Address Generation ••••••••••••••••••••
Relative Address Generation •••••••••••••••••••••••••••••
Direct Address Generation

Address Translation ••••••••••••••••.••
Physical/Virtual Address Space
Overview of Address Translation
Details of Address Translation ••••••••••••••••••••••••••
T-RAM Monitor Area
Reference and Change Table •••••••••••••••••••••••••••••

Sequential Instruction Execution •••••••••••••••••••••••••••
Branching

Instruction Formats

CHAPTER 5 INTERRUPTIONS

5.1
5.2

5.3
5.4
5.5

5.6

Introduction •••••••••••••••
Point of Interruption •·····

Instruction Execution
Classes of Interruptions
Location Determina~ion ••••••

Input/Output Interruption
Clock Interruption
Program Interruption

Program Interruption Codes in the PCW
Access Exceptions •••••••••••••••••••••••••••••••••••••••

Programming Errors and Miscellaneous Exceptions ••••••••••••.
Operation Exception •••••••••••••••••••••••••••••••••••••
Privileged-Operation Exception ••••••••••••••••••••••••••
Execute Exception
Protection Exception
Addressing Exception ••••••••••••••
Specification Exception •••••••••••••

viii

3-13
3-13
3-14
3-14
3-15
3-15
3-16
3-16

4-1
4-4
4-4
4-4
4-6
4-7
4-7
4-7
4-8
4-9

4-12
4-12
4-13
4-13
4-13

5-1
5-1
5-2
5-2
5-3
5-3
5-!1-
5-4
5-5
5-5
5-6
5-6
5-6
5-6
5-6
5-7
5-7

5.7

5.8

5.9
5.10

5.11
5.12

5.13

CHAPTER 6

6.1
6.2

6.3
6.4

CHAPTER 7

7.1

This manual is updated by: Addendum 800-11OOP0-04.01

CONTENTS (continued)

Data Exception
Fixed-Point Overflow Exception
Fixed-Point Divide Exception
Decimal Overflow Exception.... • ••••••••••••••.•••.
Decimal Divide Exception ••••••••••••••••••••••••••••••
Supervisor Call Range Exception ••••••••••••••••••••••.
Load or Trap Exception •••••••••••••••••••••.•••.•.•••.

Debugging Aids •••••••••••••••
Modification Trap Feature •••••••••••••••••••••••••••••
PCW Trap Feature ••••••••••
Branch-Taken Trap Feature
Single-Step Feature
Previous Instruction Address Feature ••••••••••••••••••••

Addressing Exceptions
Address Translation Exceptions ••••••••••••••••••••••••
Page Table Address Exceptions

Stack Overflow Exception
Floating-Point Exceptions

Floating-Point Overflow
Floating-Point Underflow
Floating-Point Significance •••••••••••••••••••••••••••
Floating-Point Divide

Supervisor Call Interruption
Machine Check Interruption

VSlOO Machine Checks ••••••
Priority of Interruptions

CONTROL MODE

....................... • Introduction
Methods of Entry

Entry during Program Execution ••••••••••••••••••••••••
Entry from an Initialization Procedure ••••••••••••••••

Initialization Procedures
Control Mode Commands and Responses ••••••••.••••••••••••••••

Load Group CoDIDands Debug Group Coomands
Screen Manipulation Keys

INSTRUCTIONS

General Instruction Set
ADD (AR, A)

.....................................
ADD DECIMAL (AP)
ADD DECIMAL (FLOATING-POINT)
ADD HALFWORD (AH)

ix

(AQR, AQ)

5-7
5-7
5-7
5-8
5-8
5-8
5-8
5-8
5-8
5-9

5-10
s-10
5-11
5-11
5-11
5-12
5-12
5-12
5-12
5-13
5-13
5-13
5-13
5-13
5-14
5-15

6-1
6-1
6-1
6-2
6-2
6-2
6-3
6-4
6-5

7-1
7-2
7-3

7-4.1
7-5

This manual is updated by: Addendum 800-11OOP0-04.01

CONTENTS (continued}

ADD LOGICAL (ALR, AL) • • • • • . . • • . • • • • • • • . • . • . • • . • . • • • . • . • • 7-6
ADD NORMALIZED (FLOATING-POINT) (ADR, AER, AD, AE) •••••• 7-7
ADD UNNORMALIZED (FLOATING-POINI') (AW, AU) •••••••••••••• 7-9
AND (NR., N, NI, NC) • 7-10
BIT RESET (BRESET} • • . • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • . • • • • 7-12
BIT SET (BSET) • 7-13
BIT TEST (BTEST} • . • • • • • • • • • • . • • • • 7-14
BRANCH AND LINK (BALR, BAL) • • • • • • • • • • • • • • • • • • . • . • . • . • • • • 7-15
BRANCH AND LINK (RELATIVE) (RBAL) ••••••••••••••••••••••• 7-15
BRANCH AND LINK ON CONDITION INDIRECT (BALCI) ••••••••••• 7-16
BRANCH AND LINK STACK (BALS) •••••••.••••.••.•...•.•.•••• 7-17
BRANCH AND LINK STACK (RELATIVE) (RBALS) •••.••••••••••••• 7-18
BRANCH ON CONDITION (BCR, BC) ••••••••••••••••••••••••••• 7-19
BRANCH ON CONDITION (RELATIVE) (RBC) ••••••••••••••••••••• 7-19
BRANCH ON CONDITION INDEXED (RELATIVE) (RBCX) ••••••.•••• 7-21
BRANCH ON CONDITION STACK (BCS) ••••••••••••••••••••••••• 7-22
BRANCH ON COUNT (BCTR, BCT) ••••••••.•••••••••••••••••••• 7-23
BRANCH ON COUNT (RELATIVE) (RBCT) •••••••••••••••••••••••• 7-24
BRANCH ON INDEX HIGH (BXH) • • • • • • • • • . • • • • • . • • • • • . • . . • • • • • 7-25
BRANCH ON INDEX HIGH (RELATIVE) (RBXH) •••••••••••••••••• 7-25
BRANCH ON INDEX LOW OR EQUAL (BXLE) ••••••••••••••••••••• 7-26
BRANCH ON INDEX LOW OR EQUAL (RELATIVE} (RBXLE) ••••••••• 7-27
COMPARE (CR, C) • 7-28
COMPARE (FLOATING-POINT) (CDR, CER, CD, CE) ••••••••••••• 7-29
COMPARE DECIMAL (CP) • 7-31
COMP ARE HALFWORD (CH) • • • • • • • • • • • • • • . • • • • • • • • • • • • . • • . • • • • 7-3 2
COMPARE LOGICAL (CLR, CL, CLI, CLC) .••.••••••.•.•••••••• 7-33
COMPARE LOGICAL CHARACTERS UNDER MASK (CLM) •••.•.•.••.•. 7-35
COMPARE LOGICAL LONG (CLCL) •••••••••••••••••••••.•.••••• 7-36
COMPARE LOGICAL WI'TII PAD (CLPC} ••••••••••••••••••••••••• 7-38
COMPRESS STRING (COMP) • 7-39
CON'I'R.OL I/0 (CIO) • . • • • . • • • • • • • • • • • • • 7-40
CONVERT DECIMAL (FLOATING-POINT)

TO PACKED DECIMAL (CVP) • • • • • • • • • • • • • • • • • • . • . • • • • . • • • 7-40 .1
CONVERT PACKED DECIMAL

TO DECIMAL (FLOATING-POINT) (CVQ) ••••••••••.••.•..•. 7-40.2
CONVERT TO BINARY (CVB) • . • • • • . • • 7-41
CONVERT TO DECIMAL (CVD) • • • • • • • • . • 7-42
CONVERT FLOATING-POINT TO INTEGER (CDI) ••••••••••••••••• 7-43
CONVERT INTEGER TO FLOATING-POINT (CID) ••••••.•••.•••••• 7-44
DECREMENT AND INSPECT SEMAPHORE (DSEM) •••••••••••••••••• 7-45
DEQUEUE (DEQ) • 7 -4 6
DE STACK (DE SK) • ~ 7-4 7
DIVIDE (DR, D) •• 7-48
DIVIDE (FLOATING-POINT) (DDR, DER, DD, DE) •••.•..•..•••• 7-49
DIVIDE DECIMAL (DP) • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • . • • . • • 7-51
DIVIDE DECIMAL (FLOATING-POINT) (DQR, DQ) ••••••••••••• 7-52.1
EDIT (ED) • 7-53

x

. This manual is updated by: Addendum 800-11 OOP0-04.01

CONl'ENTS (continued)

EDIT AND MARK (EDMI<) • . • • • • • • • 7-60
ENQUEUE (ENQ) • 7-61
EN STACK (ENSK) • 7-62
EXCLUSIVE OR (XR, X, XI, XC) • • • • • . • • • • • • • • • • • . • . . • • • . • • • 7-63
EXECtJ'I'E (EX) • 7-65
EXPAND S'l'RING (XPAND) • 7-67
llALT I /0 (HIO) • 7-68
HALVE (FLOATING-POINT) (HDR, HER) • 7-69
INCREMENT AND INSPECT SEMAPHORE (ISEM) •••••••••••••••••• 7-71
INSERT CHARACTER (IC) • 7-72
INSERT CHARACTERS UNDER MASK (ICM) •••••••••••••••••••••• 7-73
JUMP TO SUBROtrrINE ON CONDITION INDIRECT (JSCI) ••••••••• 7-74
LOAD (LR , L) • 7-7 6
LOAD (FLOATING-POINT) (LDR, LER, LD, LE) •••••••••••••••• 7-77
LOAD ADDRESS (LA) • 7-78
LOAD ADDRESS (RELATIVE) (RLA) •••••••••••••••••••••••••••• 7-78
LOAD AND TEST (LTR., LT) • 7-79
LOAD AND TEST (FLOATING-POINT) (LTDR, LTER) ••••••••••••• 7-80
LOAD CHARACTER (LC) •••••••• -. • . • • • • • • • 7-81
LOAD COMPLEMENT (LCR) • 7-82
LOAD COMPLEMENT (FLOATING-POINT) (LCDR, LCER) ••••••••••• 7-83
LOAD CON'l'R.OL (LCTL) • 7-84
LOAD liALFWORD (Lil) • 7-85
LOAD MULTIPLE (LM) • 7-86
LOAD NEGATIVE (LNR) • 7-87
LOAD NEGATIVE (FLOATING-POINT) (LNDR, LNER) ••••••••••••• 7-88
LOAD OR 'l'R.AP (LOT) • 7-89
LOAD PAGE TABLE (LPTO, LPTl, LPT2) ••••••••••••••••••••• 7-90
LOAD PARTIAL PAGE TABLE {LPPT) •••••••••••.••••••••..••• 7-91
LOAD PCW (LPCW) • 7-92
LOAD PHYSICAL ADDRESS (LPA) •••••••••••••••••••••••••.•• 7-93
LOAD POSITIVE (LPR) • • • . • • • • • • • • • • . • • • • • • • • • • • • • • • • . • . • • 7-94
LOAD POSITIVE (FLOATING-POINT) {LPDR, LPER) ••.••••••.•• 7-95
LOAD ROUNDED (FLOATING-POINT) (LRER) ••••••••••••••••••• 7-96
LOAD SEGMENI CONI'ROL REGISTER (LSCTL) •••••••••••••••• 7-96.1
LOAD SHORT TO LONG (FLOATING-POINT) (LDER) ••••••••••••• 7-97
LOAD SPECIAL REGISTER (LSREG) •••••••••••••••••••••••••• 7-98
MOVE (MVI, MVC) • 7-99
MOVE CHARACTERS LONG (MVCL) •••••••••••••••••••••••••••• 7-100
MOVE NUMERICS (MVN) • . • • 7-103
MOVE WITH OFFSET (MVO) ••••••••••••••••••••••••••••••.•• 7-104
MOVE WITH PAD (MV'PC) • • • • • • • • . • • • • • • . • • • . • . • • • • • • . • . 7-10 5
MOVE ZONES (MVZ) • •. • 7-106
MULTIPLY (!o!R, M) • • • 7-107
MULTIPLY (FLOATING-POINT) (MDR, MER, MD, ME) ••••••••.•• 7-108
MULTIPLY DECIMAL (MP) • 7-110
MULTIPLY DECIMAL (FLOATING-POINI') (MQR, MQ) •••••••.•.• 7-110.1
MULTIPLY HALFWORD (MH) • 7-111

xi

This manual is updated by: Addendum 800-11OOP0-04.01

CONTENTS (continued)

OR (OR, O, OI, OC) .•.•••.•••••••••••••••••••••••••••••• 7-112
PACK (PACK) . . . • • . . . • • . . • • • 7-114
PACK AND ALIGN (PAL) • . • . • 7-115
POP (POP) • . 7-118
POP CHARACTERS (POPC) • 7-119
POP HALFWORD (POPH) • 7-120
POP MULTIPLE (POPM) • . • • • • • • • • • • • • • • 7-121
POP NO'l'llING (POPN) • 7-122
PUSH (PUSH) •••••••••.•••••••••••••.•••.••• ~ • • • • • • • • . . • • 7-123
PUSH ADDRESS (PUSHA) • 7-124
PUSH ADDRESS (RELATIVE) (RPUSHA) •••••••••••••••••.•••••. 7-125
PUSH CHARACTERS (PUSHC) •••••••••••••••••••••••••••••••• 7-126
PUSH MULTIPLE (PUSHM) • 7-127
PUSH NO'mING (PUSHN) • 7-128
RESET REFERENCE AND CHANGE BITS (RRCB) ••••••••••••••••• 7-129
RETURN AND POP ON CONDITION (RPC) •••••••••••••••••••••• 7-130
RETURN ON CONDITION (RTC) •••••••••••••••••••••••••••••• 7-131
SAVE THEN 'AND' SYSTEM MASK (STNSM) •••••••••••••••••••• 7-132
SAVE THEN 'OR' SYSTEM MASK (STOSM) ••••••••••••••.•••••• 7-133
SCAN FOR BYTE (SCAN) • 7-134
SET PROGRAM MASK (SPM) • 7-13 6
SHIFT AND ROUND DECIMAL (SRP) •••••••••••••••••••.•••••• 7-137
SHIFT LEFT DOUBLE (SLDA) • 7-139
SHIFT LEFT DOUBLE LOGICAL (SLDL) ••••••••••••••••••••••• 7-141
SHIFT LEFT SINGLE (SLA) • 7-142
SHIFT LEFT SINGLE LOGICAL (SLL) •••••••••••••••••••••••• 7-143
SHIFT RIGHT DOUBLE (SRDA) • 7-144
SHIFT RIGHT DOUBLE LOGICAL (SRDL) •••••••••••••••••••••• 7-145
SHIFT RIGHT SINGLE (SRA) • 7-146
SHIFT RIGHT SINGLE LOGICAL (SRL) ••••••••••••••••••••••• 7-147
START I/0 (SIO) • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • . • • • • • • • 7-148
STORE (ST) •................•..• ,. • • 7-150
STORE CHARACTER (STC) • . • • • • • • 7-151
STORE CHARACTERS UNDER MASK (ST~M) ••••••••••••••.•.•••• 7-152
STORE CONTROL (STCTL) • • • • • . • • • . • • • • • • • • • . • . • • • • • • 7-153
STORE CP TYPE AND MICROCODE VERSION (STCPID) ••...•.•••• 7-154
STORE DIAGNOSTIC DATA (STDD) ••••••••••••••••••.•••••••• 7-155
STORE (FLOATING-POINT) (STD, STE) • 7-157
STORE HALFWORD (STH) • • • • • • • • • . • • • • • • • • • • • • • • • • • • . • • • • • • 7-15 8
STORE MULTIPLE (S1M) • 7-159
STORE ~SEGMENT CON'IROL REGISTER (STSCTL) •••••••••••••• 7-159.1
STORE SPECIAL REGISTER (STSREG) •••••••••••••••••••••••• 7-160
SUB'I'R,A,CT (SR, S) • 7-161
SUB'I'R,A,CT _DECIMAL (SP) • . • • • • 7-162
SUBTRACT DECIMAL (FLOATING-POINT) (SQR, SQ) •••••••.•• 7-162.1
SUBTRACT- HALFWORD (SH) • .• 7-163
SUBTRACT LOGICAL (SLR, SL) .•••••••••••••••••••••••••••• 7-164
SUBTRACT NORMALIZED (FLOATING-POINT)

(SDR, SER, SD, SE) •••••••••••••••••••••••••••••••••••• 7-165

xii

7.2

CHAPTER 8

8.1
8.~

8.3

8.4

8.5

8.6

8.7

This manual is updated by: Addendum 800-11OOP0-04.01

CONTENTS (continued)

SUPERVISOR CALL (SVC)
SUPERVISOR CALL EXIT (SVCX) ••••••••••••••••••••••••••••
TEST UNDER MASK (TM)
TRANSLATE (TR)
TRANSLATE AND TEST (TRT)
UNPACK (UNPK)

...............................
UNPACK UNSIGNED (UNPU)
UNPACK TO EXTERNAL DECIMAL FORMAT (UNPAL) ••••••••••••••
ZERO AND ADD (ZAP)

Operating System Assist Instructions ••••••••••••••••••••••
MODIFY TIMER QUEUE (MTQ)
SCAN PAGE FRAME TABLE (SPFT) •••••••••••••••••••••••••••

INPUT/OUTPUT OPERATION

Introduction ••
I /0 Subsystem .. .

IOPs ...
I/0 Devices ..
VS25 and VSlOO I/O Device Address (IODA)
VS80 I/O Device Identification •••••••••••••••••••••••••

Memory Assignments for Inter-Processor Communications •••••
VS25 and VSlOO Assignments •••••••••••••••••••••••••••••
VS25 DA Status Table (DAST) ••••••••••••••••••••••••••••
VSlOO IOP Status Table (IOPST) •••••••••••••••••••••••••
VS25 and VSlOO I/0 CODllland Table (IOCT) ••••••••••••••••
VS25 and VSlOO Status Qualifier Byte (SQB) •••••••••••••
VS80 Communications Areas ••••••••••••••••••••••••••••••
Resetting of 1/0 Devices--All Systems ••••••••••••••••••

Execution of I/0 Operations
I/0 Instructions •••••••••••••••••••••••••••••••••.•••••
Transmission of SIO ••••••••••••••••••••••••••••••••••••
1/0 Command Word (IOCW) for SIO Instruction ••••••••••••

Termination of I/0 Operations •••••••••••••••••••••••••••••
Types of Termination •••••••••••••••••••••••••••••••••••
I/0 Interruptions ••••••••••••••••••••••••••••••••••••••
Priority of Interrupts
Interrupt Action •••••••••••••••••••••••••••••••••••••••

I/O Status Word (IOSW)
General Status Byte

....................................
Error Status Byte ••••••.••••••••••••••••••••••••••••••
Device-Dependent Status Bytes •••••••••••••••••••••••••
Residual Byte Count •••••••••••••••••••••••••••••••••••

General Status Byte ••••••••.•••••••••••••••••••••••••••••
IRQ--Intervention Required ••••••••••••••••••••••••••••

xiii

7-167
7-168
7-169
7-170
7-171
7-173
7-174
7-175
7-176
7-177
7-178
7-180

8-1
8-1
8-1
8-1
8-2
8-2
8-3
8-3
8-4
8-4

8-4.1
8-4.1
8-4.2
8-4.2
8-4.3
8-4.3
8-4.3
8-4.5

8-7
8-7
8-8
8-9,
8-9
8-9

8-10
8-10

8-10.1
8-11
8-11
8-11

This manual is updated by: Addendum 800-11OOP0-04.01

8.8

8.9

CHAPTER 9

9.1
9.2

9.3

9.4

9.5

CONTENTS (continued)

NC--Normal Completion
EC--Error Completion

..................................
U--Unsolicited (Attention/Device Now Ready)
PC--I OP Now Ready • . • • • .

Error Status Byte ••.
IC--Invalid Command
MPE--Memory Parity Error •••••••••••••••••••••••••••••••
MAE--Memory Address Error ••••••••••••••••••••••••.•••••
DM--Device Malfunction
DAM--Memory or Device Damage •••••••••••••••••••••••••.•
IL--Incorrect Length
PP and DP--IOP or Device Code Not Loaded •••••••••••••••

'Ihe CIO Instruction
CIO Microcode-Loading, Microcode-Reading,

and Processor Control Commands ••••••••••••••••••••.•.•
CIO Memory Diagnostic Co111Dands for I/O Processors ••.•••

WANG WORKSTATION CHARACTERISTICS

Introduction •••••••••••••••••••••••••••••
The CRT

Screen and Cursor •••••••••• -•••••••••••
Workstation Memory
Screen Formatting ••••••••••••••••••
Field Attributes
Tabs
Audio Indicators ••••••••••••••

'Ihe Keyboard •••.••••.••••.•.•••••.•••••••••••.•.••••....•••
Cursor Positioning Keys
D~ ta En try Keys ••.•..•••••••••••...•.•.•••.••.••.•.••.••
Spe(:.ial Keys
Keys Communicating with the Computer

Workstation IOCW and I/0 Co111Dands
Command and Modifier Bits •••••••••
Data Address •••••••••••••••••••••.
Data Count ••••••••••••••••••••

Data Area ••••••••••••••••••••••••
Order Area ••••••••••••••••••••
Interpretation of the Order Area on a READ ••••••••••••••
Interpretation of the Order Area on a WRITE ••.••••••••••
WCC Area ••••••••••••••••••••••
Unlock the Keyboard
Sound the Alarm ••••
Position the Cursor
Roll Down •••••••••••••••••••••
Roll Up

.

Erase Modifiable Fields to Pseudoblanks

xiv

8-11
8-11
8-11
8-12
8-12
8-12
8-12
8-12
8-12
8-12
8-13
8-13
8-13

8-14
8-15

9-1
9-1
9-1
9-3
9-3
9-4
9-5
9-5
9-5
9-5
9-7
9-8
9-9
9-9
9-9

9-10
9-10
9-10
9-11
9-11
9-12
9-12
9-13
9-13
9-13
9-13
9-14
9-14

9.6

9.7

CHAPTER 10

10.1
10.2

10.3

CHAPTER 11

11.1
11.2

11.3

11.4

CHAPTER 12

12.1
12.2

This manual is updated by: Addendum 800-11OOP0-04.01

CONTENl'S (continued)

Erase and Protect Rest of Screen •••••••••••.•••••••••••
Mapping Area ...
Works ta ti on I I 0 ColDIDands •••••••.••••••.•••••••...••.•••

Workstation I/0 Status Word
General Status Byte
Error Status Byte
Device-Dependent Bits

...............................

Example of Computer Conversation with a Workstation •••••••

WANG PRINl'ER CHARACTERISTICS

Introduction ••
Printer IOCW and I/0 Commands •••••••••••••••••••••••••.•••

Write COD1Dand
Data Count and Data Area ••
Print Control Bytes

Printer I/0 Status Word
General Status Byte
Error Status Byte
Device-Dependent and Residual

Count Bytes ..
HALT I/0 to Printer

WANG DISK FACILITY CHARACTERISTICS

Introduction
Disk IOCW and I/0 Commands

READ CoDBDand
WRITE and WRITE (VERIFY)

...........................
Coomands

Disk Control Commands ••••••••••••
SEEK
FORMAT

Disk I/O Status Word
General Status Byte
Error Status Byte ••••••
Device-Dependent Bits
Disk Unsolicited Interruptions

WANG MAGNETIC TAPE CHARACTERISTICS

Introduction
Magnetic Tape General Description ••••••••

Track Allocation •••••••••••••••••••
Tape Markers

xv

9-14
9-14
9-15
9-19
9-19
9-19
9-20
9-21

10-1
10-2
10-2
10-2
10-4
10-5
10-6
10-6

10-7
10-7

11-1
11-3
11-4
11-5
11-5
11-5
11-6
11-6
11-6
11-6
11-7

11-11

12-1
12-1
12-1
12-2

This manual is updated by: Addendum 800-11OOP0-04.01

12.3

12.4

12.5

APPENDICES

Appendix A
Appendix B

CONI'ENTS (continued)

Load Point Marker
End-of-Tape Marker •••••••••••
File Protection ••••••••••••••
Tape Blocks
Tape Mark
Checking Tape Validity ••••.••

Tape IOCW and I/0 Coounands
READ

.................................
WRITE ...

Tape Control C0111Dands
ERASE TAPE
REWIND •••••••••••••••••••••••

....................................... REWIND AND UNLOAD
WRITE TAPE MARK
FORWARD SPACE BLOCK

.................................... ,•
FORWARD SPACE FILE
BACKSPACE BLOCK
BACKSPACE FILE
SENSE.
SET DENSITY

......................................

SET P ARI'TY' ••••••••••
Effect of Tape Markers on IOSW Bits

Tape 1/0 Status Word
General Status Byte
Error Status Byte
Device-Dependent Bits

Operation Code and ASCII Character List
Glossary

I DOCUMENT HISTORY

12-2
12-2
12-2
12-2
12-3
12-3
12-3
12-4
12-4
12-5
12-5
12-5
12-5
12-6
12-6
12-6
12-6
12-6
12-6
12-6
12-6
12-7
12-7
12-7
12-8
12-9

A-1
B-1

DH-1

INDEX ... INDEX-1

xvi

Figure 1-1
Figure 1-1
Figure 1-1
Figure 2-1
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-5.1
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 5-1
Figure 7-1
Figure 7-2
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-H>
Figure 8-11
Figure 8-6
Figure 9-1
Figure 9-2
Figure 9-3
Figure 10-1
Figure 12-1
Figure 12-2
Figure 12-3

This manual is updated by: Addendum 800-11OOP0-04.01

Diagram of the VS25
Diagram-of the VS80
Diagram of the VlOO

FIGURES

..

.......................................
Sample Information Formats ••••••••••••••••••••••••••••••••
Fixed-Point Fullword Data Format ••••••••••••••••••••••••••
Packed Decimal Number Format ••••••••••••••••••••••••••••••
Zoned Decimal Number Format •••••••••••••••••••••••••••••••
External Decimal Number Format ••••••••••••••••••••••••••••
Long and Short Floating-Point Numbers •••••••••••••••••••••
Decimal Floating-Point Number Format ••.•••••••••••••••••••
Fixed-Length Logical Operand ••••••••••••••••••••••••••••••
Variable-Length Logical Operand •••••••••••••••••••••••••••
LIFO List ...
FIFO List•.........................•.........
Sem.aphore ...••......•..•..•...............•.....•.........
The PCW Format ••
Physical Address Format •••••••••••••••••••••••••••••••••••
Virtual Address Format ••••••••••••••••••••••••••••••••••••
Main Memory Page Table Entry Format •••••••••••••••••••••••
Segment Control Register (SCR) Entry Format ••••••••••••••
Virtual-to-Physical Address Translation •••••••••••••••••••
Page Fault Reporting Area •••••••••••••••••••••••••••••••••

1-2
1-3
1-4
2-5
3-6
3-8
3-9
3-9

3-11
3-13
3-14
3-14
3-15
3-15
3-16
4-2
4-7
4-8
4-9

4-11
4-12
5-12

Format of Operand M2 for Reference and Change Table •••••• 7-129
Format of Operand M2 for Monitor Area •••••••••••••••••• 7-129.1
I/O Device Address {IODA) • 8-2
DA Status Table (DAST) for the.VS25 ••••••••••••••••••••••• 8-4
IOP Status Table (IOPST) for the VSlOO •••••••••••••••••••• 8-4
I/O Coanand Table (IOC'r) • 8-4 .1
Status Qualifier Byte {SQB) ••••••••••••••••••••••••••••••• 8-4.1
SIO, CIO, and BIO Instruction Format ••••••••••••••••••••••
Rl Format for SIO, CIO, and BIO Instructions ••••••••••••••

8-4.3
8-4.3

I/0 Coomand Word (IOCW) Format •••••••••••••••••••••••••••• 8-4.5
IOSW
IOCW

Format •• • · • • •
Format for Microcode Coumands ••••••••••••••••••••••••

IOCW Format
IOSW Format

for Diagnostic Coamands •••••••••••••••••••••••
for CIO CODDands ••••••••••••••••••••••••••••••

The Keyboard • • • • • • • . • • • • • • • • • • • • • • . • • • • • • . • • • • • • • • • • • • • • • •
Workstation IOCW ••
Data Area Specified by Workstation IOCW •••••••••••••••••••
Printer IOCW Format •••••••••••••••••••••••••••••••••••••••
Tape
Tape

Bit Positions ••
Blocks .. .

Tape IOCW •••.••••••••

xvii

8-10
8·-14
8-15
8-16

9-6
9-10
9-15
10-3
12-1
12-3
12-3

This manual is updated by: Addendum 800-11OOP0-04.01

Table 3-1
Table 3-2
Table 5-1
Table 7-1
Table 7-2
Table 7-3
Table 8-1
Table 8-2
Table 9-1
Table 9-2
Table 9-3
Table 9-4
Table 9-5
Table 9-6
Table 10-1
Table 10-2
Table 11-1
Table 11-2
Table 12-1

TABLES

Data Representation and Boundary Alignment ••••••••••.•••••
Bit Codes for Digits and Signs ••••••••••••••••••••••.•.•••
Pennanent Storage Assigrunents ••••..••••••••••••••.••.•.••.
Pattern Character Coding •••••••••••••••••••••••••.••••••••
Summary of Editing Operation ••••••••••••••••••••••••.•••••
PACK AND ALIGN Scan Order •••••••••••••••••••••••••••.•••••
VS25 and VSlOO Permanent Memory Assignments •••••••••...•••
IOCWs and IOSWs (from the I/0 Error and IPL Log) ••••.•....
The Character Set •••••••••••••••••••••••••••••••••••••.•••
Field Attribute Character Values ••••••••••••••••••••••.•••
Significance of Bytes in the Workstation Order Area
Workstation Write Control Character (WCC) Codes •..•.••....
Workstation C01D1Da11ds ••••••••••••••••••••••••••••••••••••••
Attention ID (AID) Configurations •••••••••••••••••••.•.•••
Characteristics of Printer Models •••••••••••••••••••.•••••
Printer Control Codes •••••••••••••••••••••••••••••••••.•••
Characteristics of Disk Drive Models ••••••••••.•........••
Val id I I 0 Co111Da11ds •
Tape Control Modifier Bits •••••••••.••••••••••••••••.•••••

xviii

3-5
3-8
5-3

7-54
7-58

7-115
8-3

8-10
9-2
9-3

9-11
9-13
9-15
9-18
10-1
10-4
11-1
11-3
12-5

Table 9-6
Table 10-1
Table 10-2
Table 11-1
Table 11-2
Table 12-1

TABLES (continued)

Attention ID (AID) Configurations •••••••••••••••••••••••••• 9-18
Characteristics of Printer Models •••••••••••••••••••••••••• 10-1
Printer Control Codes •••••••••••••••••••••••••••••••••••••• 10-4
Characteristics of Disk Drive Models ••••••••••••••••••••••• 11-1
Valid I /0 Commands • 11-3
Tape Control Modifier Bits ••••••••••••••••••••••••••••••••• 12-5

xix

This manual is updated by: Addendum 800-11OOP0-04.01

INTRODUCTION TO VS SYSTEMS

1.0 VS FAMILY CHARACTERISTICS

The Wang VS computer family consists of medium-scale, general-purpose
computers designed to provide sophisticated hardware at a low cost. A
powerful instruction set has been microprogrammed into the machines,
consisting of logical functions, arithmetic instructions (including decimal,
floating-point, and decimal floating-point instructions), and queue and
push-down stack instructions. This variety of instructions makes for easier
programming and faster, more compact code.

Main memory is semiconductor random access memory (RAM) with automatic
error correction circuitry. 'Ihe largest main memory for a VS system is
currently 8M bytes (M = 1,048,576); the addressing scheme allows a maximum
memory size of 16M bytes. To help make full use of available memory for any
VS system there is virtual memory support in the form of address translation
hardware and several privileged instructions.

Input/output processors (IOPs) optimize central processor (CP)
function by governing I/0 operations independently of CP activity. The CP and
all peripheral processors have direct memory access through main memory
controllers. Memory requests are handled according to a priority system and
are satisfied on a cycle-stealing-basis.

Refer to the following sections for diagrams of particular VS
machines, and to Chapter 2 of this manual for a discussion of machine
organization.

1-1

This manual is updated by: Addendum 800-11OOP0-04.01

1.1 VS25 Characteristics

Basic Configuration

The VS25 is an entry-level VS system. The basic configuration of the
VS25 consists of the CP and included 1.2M-byte diskette drive, main memory, an
included fixed-disk drive, and an operator's console workstation. Additional
1/0 devices may be added as options. Other VS systems having the same
architecture, including the VS45, may substitute removable-disk drives for the
fixed-disk drive.

Figure 1-1 is a diagram of the VS25.

Main Memory

Memory Controller Diskette Drive
(1.2M bytest

bootstrap

Fixed-Disk Drive
(34M bytest

~8
I I

Serial Device
(upto32)

~1
I
[j

I Di"D'im

Control Memory

Central
Processor

Legend

16-bit data path -----

Bus ~ DA1 DA2

-P-roce-sso-r -O __ U
DMAforDAs

Figure 1-1. VS25 Architecture

1-2

Additional
DAs

Tape Drives

This manual is updated by: Addendum 800-11 OOP0-04.01

1.2 VS80 Characteristics

Basic Configuration

The VS80 is the original VS system. The basic configuration of the VS80
consists of the CP and included 308K-byte diskette drive, main memory, one or
more removable-disk drives, and an operator's console workstation. Additional
I/0 devices may be added as options.

Figure 1-2 is a diagram of the VS80.

Control Memory

Central
Processor

Legend

16-bit data path

Main
Memory

Memory
Controller

IOP

\

Tape Drives

Figure 1-2. VS80 Architecture

1-3

Workstations

(11
\

-----: ~p
\

~
Printers

This manual is updated by: Addendum 800-11OOP0-04.01

1.3 VSlOO Characteristics

Basic Configuration

The VSlOO is the largest and fastest member of the VS family. Tile basic
configuration of the VSlOO consists of the CP, main memory, one or more
removable-disk drives, and an operator's console workstation with attached
l.2M-byte diskette drive. Additional I/O devices may be added as options.
Other VS systems having the same architecture, including the VS90, may exclude
the cache memory feature.

Figure 1-3 is a diagram of the VSlOO.

Mini-Diskette I
Control Memory

Legend:

Central
Processor

16-bitpath -----

32-bit path Z Z Z Z /

64-bitpath

Main
Memory

System Bus
Controller

0-
Tape Drives

Figure 1-3. VSlOO Architecture

1-4

Bus
Adapter

#2

~[j
Disk Drives

This manual is updated by: Addendum 800-11OOP0-04.01

CHAPTER 2
MACHINE ORGANIZATION

2.1 CENTRAL PROCESSOR

The Central Processor (CP) contains facilities for addressing main
memory, for fetching and storing information, for arithmetic and logical
processing of data, for sequencing instructions in the desired order, and for
initiating conununication between memory and external devices.

2.1.1 General Registers

The processor can address information in 16 general registers. The
general registers may be used as index registers in address arithmetic and
indexing, and as accumulators in fixed-point arithmetic and logical
operations. The registers have a capacity of one word (32 bits). The general
registers are identified by numbers 0-15 and are specified by a 4-bit R field
in an instruction format. Some instructions provide for addressing multiple
general registers by having several R fields.

2.1.2 Floating-Point Registers

Four floating-point registers, specified as registers O, 2, 4, and 6,
are provided. Each such register is 64 bits in length and can contain one
floating-point number. These registers are addressed by the floating-point
and decimal floating-point instructions only.

2.1.3 Control Registers

The control registers provide a means of maintaining and manipulating
control information that resides outside the Program Control Word (PCW).

Sixteen 32-bit registers (for the VS80: eight 32-bit registers) are
provided for control purposes. These registers are not part of addressable
storage. The instruction LOAD CONTROL (LCTL) provides a means of loading
control information from main memory into control registers, while STORE
CONTROL (STCTL) permits information to be transferred from control registers
to main memory. These instructions operate in a manner similar to LOAD
MULTIPLE and STORE MULTIPLE. Also, the JUMP TO SUBROUTINE ON CONDITION
INDIRECT (JSCI), RETURN ON CONDITION (RTC), SUPERVISOR CALL (SVC), and
SUPERVISOR CALL EXIT (SVCX) instructions modify control register 1. LCTL and
SVCX are privileged instructions.

2-1

This manual is updated by: Addendum 800-11OOP0-04.01

At the time the registers are loaded, the information is not checked for
exceptions, such as addresses designating unavailable locations. lbe validity
of the information is checked, and the exceptions, if any, are indicated, at
the time the information is used. Control register allocations for the VS
systems are as follows:

VS25,
VSlOO

CRO
CRI
CR2
CR3
CR4
CRS
CR6-ll
CR12-13
CR14-15

CRO
CRI
CR2
CR3
CR4
CR5

CR6
CR7

Allocation

High Range
Save Area Back Chain
System Stack Limit Word
Low Range
Modification Trap Address
Previous-Instruction Trap Address
Reserved
Time-of-Day Clock
Clock Comparator

Only the general structure of control registers is described here; a
definition of the meaning of the register positions appears with the
description of the facility with which the registers are associated.

Control register 1 is updated by the JSCI, RTC, SVC, and SVCX
instructions to maintain a protected back chain of program calls and
supervisor service entries (supervisor calls). Control register 2 is
associated with the stack handling facility and is referred to as the system
stack limit word. Control registers 0 and 3-5 are associated with the
debugging aids, and control registers 12-15 (for the VS80: control registers
6-7) are associated with the clock.

2.1.4 Translation RAM (T-RAM) -- VS25, VSlOO

A translation RAM (T-RAM) takes the place of LPTs for the VS25 and
VSlOO, permitting the use of longer virtual and physical address spaces and
enabling a more complex system of read and write protection. The T-RAM is a
section of local CP memory (RAM) up to 8K bytes in size consisting of a
halfword entry for each of the up to 4K pages of a potential BM-byte virtual
address space. A definition of the meaning of the entries appears with the
description of address translation for the VS25 and VSlOO in Subsection 4.3.3.

2.1.5 Local Page Tables (LPTs) VS80

There are three local page tables (LPTs) of one-byte entries, each
associated with a valid memory segment. All memory references involve the
translation of virtual memory addresses through use of one of these tables.
'Ibe LPT for segment O is 128 entries long. The LPTs for segments 1 and 2 are
each 256 entries long. A definition of the meaning of the entries appears
with the description of address translation for the VS80 in Subsection 4.3.3.

2-2

This manual is updated by: Addendum 800-11OOP0-04.01

2.1.6 Local Page Frame Table

'lb.ere is one local page frame table, which contains two bits per page
frame (2048 bytes on a 2048-byte boundary) of physical memory. Whenever some
location in a page frame is referenced by a machine instruction, the reference
bit of the corresponding local page frame table entry is set to 1. When this
reference involves modification of the memory location, the change bit in the
local page frame table entry is also set to 1. 'lbese entries are tested and
reset by an Operating System Assist instruction.

2.1.7 Arithmetic and Logical Unit -- (ALU)

'!be arithmetic and logical unit (ALU) can process binary integers of
fixed length, decimal integers of variable length, and logical information of
either fixed or variable length. '!be ALU has a width of 16 bits for the VS25
and VS80, and a width of 32 bits for the VSlOO.

Arithmetic and logical operations performed by the CP fall into five
classes: fixed-point arithmetic, floating-point arithmetic, decimal
arithmetic, decimal floating-point arithmetic, and logical operations. These
classes differ in the data formats used, the registers involved, the
operations provided, and the way the field length is stated.

2.2 CLOCK

2.2.1 Time-of-Day Clock

The time-of-day clock provides a consistent measure of elapsed time
suitable for the indication of date and time. For the VS80, the cycle of the
clock is approximately 994 days at 50 Hz and 828 days at 60 Hz. For the VS25
and VSlOO, which use a pair of registers for a counter, the cycle of the clock
is meaninglessly large, in human terms.

The time-of-day clock for the VS25 and VSlOO is a 64-bit binary counter
(for the VS80: a 32-bit binary counter). Time is measured by incrementing
the value of the clock, following the rules for unsigned fixed-point
arithmetic. '!be clock is incremented by adding 1 to the low-order bit
position at line frequency (1/50 or 1/60 second) for the VS80, split line
frequency (l/100 or 1/120 second) for the VS25, or 2.SM Hz for the VSlOO.

When the incrementing of the clock causes a carry to be propagated out
of bit position O, the carry is ignored and counting continues from zero. The
program is not alerted, and no interruption condition is generated as a result
of the overflow. The clock runs while the machine is powered on, even when
the machine is in Control mode or wait state.

For the VS25 and VSlOO, the clock value resides in control registers 12
and 13 (for the VS80: in control register 6) and is set to zero during a
power-on. This value can be manipulated under program control by means of the
LOAD CONTROL and STORE CONTROL instructions.

2-3

This manual is updated by: Addendum 800-11OOP0-04.01

2.2.2 Clock Comparator

The clock comparator provides a means of causing an interruption when
the time-of-day clock has passed a value specified by the program. The clock
comparator has the same format as the time-of-day clock.

The clock comparator value is compared with the value of the time-of-day
clock, each being regarded for the VS25 and VSlOO as a 64-bit unsigned
number. Whenever the time-of-day clock value is greater than or equal to the
value of the clock comparator, a clock interruption is pending. The value of
the clock comparator resides in control registers 14 and 15 and is set to all
ls during power-on. An interruption request disappears if the value in
control registers 12 and 13 or control registers 14 and 15 is changed such
that the value in control registers 12 and 13 is less than that in control
registers 14 and 15. (For the VS80: control register 6 holds the clock
value, and control register 7 holds the comparator value.) These values can
be manipulated under program control by means of the LOAD CONTROL and STORE
CONTROL instructions.

2.3 I/0 PROCESSORS (IOPs)

Input/output processors (IOPs) connect the CP and main memory with the
input/output (I/0) devices. IOPs relieve the CP of the burden of
communicating directly with I/0 devices and permit data processing to proceed
concurrently with I/0 operations. IOPs provide the logical capabilities
necessary to operate and control I/0 devices. IOPs decode the cOB1Dands
fetched from main memory and interpret them for particular devices.

For the VS25, a single bus processor (BP) controlling several device
adapters (DAs) does the work of VS80 and VSlOO IOPs. For the VSlOO,
intelligent bus adapters (BAs) provide an interface between the CP and IOPs.

2.4 MAIN MEMORY

Main memory for all VS systems consists of semiconductor random access
memory (RAM) with automatic with error correction circuitry. Memory is
automatically refreshed by hardware at intervals of 10 msec and therefore
cannot be maintained past system power-off. Requests for memory access by the
CP and other processors are handled on a priority system (whereby the CP has
lowest priority) and are satisfied on a cycle-stealing basis. Therefore,
instructions that fetch and subsequently store data do not necessarily use
consecutive memory cycles, because one or more intervening cycles may be
devoted to I/0 operations.

2.4.1 Infonnation Formats

. VS systems transmit information between main memory and the CP in
logical units of eight bits or a multiple thereof. Each 8-bit unit of
information is called a byte, the basic building block of all formats. All
storage capacities are expressed in terms of the number of bytes provided.

2-4

This manual is updated by: Addendum 800-11 OOP0-04.01

Bytes may be handled separately or grouped together in fields. '11le
address of any field or group of bytes is the address of its leftmost byte. A
word is a field of 4 consecutive bytes whose address is a multiple of 4. A
doubleword is a field of two consecutive words whose address is a multiple of
8, and a halfword is a field of two consecutive bytes whose address is a
multiple of 2.

In any instruction format or any fixed-length operand format, the bits
or bytes making up the format are consecutively numbered from left to right
starting with o, and are indicated in the line under the format description.
Figure 2-1 is a diagram of these units of information.

Bytes O 1 2 3 4 5 6 7

halfword halfword halfword halfword

word word

doubleword

Figure 2-1. Sample Information Formats

2.4.2 Addressing

Byte locations in memory are nwnbered consecutively, starting with O;
each number is considered the address of the corresponding byte. A group of
bytes in memory is addressed by the leftmost byte of the group. nie number of
bytes in the group is either implied or explicitly defined by the operation.
The VS addressing arrangement uses a 24-bit binary address to accommodate a
maximum of 16,777,216 byte addresses.

When only a part of the maximum storage capacity is available in a given
installation, the available storage is normally a contiguous range of physical
addresses starting at address 0. An addressing exception is recognized when
any part of an operand is located beyond the maximum available capacity of an
installation. The addressing exception is recognized when the data is used
and causes a program interruption.

Refer to Sections 4.2 and 4.3 of this manual for details of addressing
and address translation.

2-5

CHAPTER 3
DATA ORGANIZATION

3.1 INSTRUCTIONS--CONVENTIONS OF DESCRIPTION

To indicate the left or right end of any field or word definition, the
following terminology and abbreviations are used throughout this manual:

Leftmost Portion Rightmost Portion

Most Significant Byte (MSB)
High Order

Least Significant Byte (LSB)
Low Order

Most Significant bit (MSb) Least Significant bit (LSb)

Each instruction consists of two major parts: an operation code, which
specifies the operation to be performed, and the designation of the operands
that participate.

3.1.1 Operation Code

In each format, the first instruction halfword consists of two parts.
The first byte contains the operation code (op code). The length and format
of an instruction are specified by the first two bits of the operation code.

Bit Positions Instruction Instruction
0 and 1 Length Format

00 Halfword RR
01 Two halfwords RX
10 Two halfwords RS, SI, S, RL, or RRL
11 Three or four halfwords SS or SSI

The second byte is used either as two 4-bit fields or as a single 8-bit
field. This byte can contain the ·following information:

4-bit operand register specification (Rl, R2, or R3)

4-bit index register specification (X2)

4-bi t mask (Ml)

3-1

4-bit operand length specification (Ll or L2)

8-bit operand length specification (L)

8-bit byte of immediate data (12)

4-bit stack vector specification (S).

In some instructions a 4-bit field or the whole second byte of the first
halfword is ignored.

'nle second, third, and fourth halfwords may vary in format.

3.1.2 Operands

'nle VS allows up to three operands, depending on the instruction
format. Operands can be grouped in three classes: operands located in
registers, immediate operands, and operands in main memory. Operands may be
either explicitly or implicitly designated.

Register operands can be located in general, floating-point,
registers, and are specified by identifying the register in a
called the R field, in the instruction. For some instructions an
located in an implicitly designated register.

or control
4-bit field,
operand is

Immediate operands are contained within the instruction, and the 8-bit
field containing the immediate operand is called the I field.

'nle length of operands in main memory may be either implied, specified
by a bit mask, or specified by a 4-bit or 8-bit length parameter, called the L
field, in the instruction. The addresses of operands in main memory are
specified by a format that uses the contents of a general or base register as
part of the address. The address in the general register is called the B
field and the additional displacement address (which may be 0) is the D
field. 'nle X field denotes an address in an index register, which is added to
the base register address. A detailed explanation of the B, D, and X fields
is given in Subsection 4.2.1.

For purposes of describing the execution of instructions, operands are
designated as first, second, and third operands. In general, two operands
participate in an instruction execution, and the result replaces the first
operand. An exception is instructions with STORE in the name, where the
result replaces the second operand. Except for storing the final result, the
contents of all registers and memory locations participating in the addressing
or execution part of an operation remain unchanged.

3.1.3 Instruction Format

An instruction is one, two, three, or four halfwords in length and must
be located in main memory on an integral halfword boundary.

3-2

Til.e nine basic instruction formats are denoted by the fonnat codes RL,
RR, RRL, RX, RS, SI, S, SS, and SSI. The format codes express, in general
tel1Ds, the operation to be performed.

RR - Register-to-register operation
RL - Register-to-register (relative) operation
RX - Register-and-indexed-storage operation
RS - Register-and-storage operation
RRL - Register-to-storage (relative) operation
SI - Storage-and-immediate-operand operation
S - Implied-operand-and-storage operation
SS - Storage-to-storage operation
SSI - Storage-and-immediate-operand operation

Til.e following diagrams illustrate the representation of the
nine instruction fonnats in VS memory.

RR Format--One Halfword

I I R I R I
I Op code I 1 I 2 I
I I I I
0 7 8 11 12 15

RL Format--Two Halfwords

I I R I L I
I Op code I 1 I 2 I
I I I I
0 7 8 11 12 31

RX Format--Two Halfwords

R x B D
Op code 1 2 2 2

0 7 8 11 12 15 16 19 20 31

(Programming Note: If D and B are omitted in RX format, R is used for
2 2 1

RS Format--Two Halfwords

R R B D
Op code 1 3 2 2

0 7 8 11 12 15 16 19 20 31

3-3

D .)
2

RRL Format--Two Halfwords

I R M I R x L
Op code I 1 or 1 I 3 or 2 2

I I
0 7 8 11 12 15 16 31

SI Format--Two Halfwords

I I B D
Op code 2 I 1 1

I
0 7 8 15 16 19 20 31

s Format--Two Halfwords

I I I B D I
I Op code I ----------- I 1 1 I
I I I I I
0 7 8 15 16 19 20 31

SS Format--Three Halfwords

Op code

0

I
I L or Ll/L2
I

7 8

B I ID I B I I I D
1 - - 11 2 I- - 2

I I I_I _I __ I/ ___ / __
15 16 19 20 31 32 35 36 47

SSI Format--Four Halfwords

I L I L I /BT/ /Df/ /B I I !Df
Op code I 1 I I 2 - - 11 - - 11 - - 2 I - - 2 I

_____ l __ .;..__ _ _;...l __ "--1 I _I _I I _I _I_/ /_I I _I _I
0 7 8 15 16 23 24 31 32 35 36 47 48 51 52 63

Table 3-1 shows how the data formats for the following instructions are
represented in VS memory. The relative addresses for a series of numbers are
given in order to illustrate boundary alignments of fixed-point and
floating-point data.

3-4

This manual is updated by: Addendum 800-11 OOP0-04.01

Table 3-1. Data Representation and Boundary Aligmnent

Data Decimal Hexadecimal Relative
Type Value Representation Address

Floating-Point +4.3 4144CCCCCCCCCCCD 000000
II -4.3 C144CCCCCCCCCCCD 000008 .. 4.56E+5 456F540000000000 000010 .. 4.56E-5 3C4C810D05CCF38E 000018

Decimal Floating-Point +4.3 4143000000000000 000020 -4.3 C143000000000000 000028
II II 4.56E+5 4645600000000000 000030
II II 4.56E-5 3C45600000000000 000038

Fixed-Point
Binary fullword +123 0000007B 000040 .. -123 FFFFFF85 000044
Binary halfword 123 007B 000048

Decimal
Packed +123 123F 00004A .. -123 123D 00004C
Zoned +123 3132F3 00004E .. -123 3132D3 000051
External 123 313233 000054 .. +123 2B313233 000057 .. -123 2D313233 00005B .. 123+ 3132332B OOOOSF .. 123- 3132332D 000063

Logical 'DATA' 44415441 000067

3.2 FIXED-POINT INSTRUCTIONS

The binary fixed-point instructions perform binary arithmetic on
operands serving as addresses, index quantities, and counts, as well as on
fixed-point data. In general, both operands are to be considered unsigned and
24 bits long for address computations, or signed and 31 or 15 bits long for
arithmetic computations. One operand is always in one of the 16 general
registers; the other operand may be in main memory or in a general register.

The binary fixed-point instructions provide for loading, adding,
subtracting, comparing, multiplying, dividing, and storing, as well as for the
radix conversion and shifting of fixed-point operands.

The condition code is set as a result of all ADD, SUBTRACT, COMPARE, and
SHIFT operations.

3.2.1 Data Format

Binary
32-bit word.

fixed-point data in main memory occupies a 16-bit halfword or a
This data must be located on integral boundaries for these units

3-5

This manual is updated by: Addendum 800-11OOP0-04.01

of information; that is, halfword or fullword operands must be addressed with
one or two low-order address bits set to O, respectively.

Fixed-point numbers occupy a fixed-length format consisting of an
integer field. This fonnat is shown in Figure 3-1. When held in one of the
general registers, a fixed-point quantity occupies all 32 bits of the
register. In register-to-register operations the same register may be
specified for both operand locations.

MSb LSb

I
I integer
I

bits 0 31

Figure 3-1. Fixed-Point Fullword Data Format

3.2.2 Fixed-Point Arithmetic

The basic arithmetic operands are the 32-bit fixed-point binary word and
the 16-bit fixed-point binary halfword.

Fixed-point arithmetic can be used both for integer operand arithmetic
and for address arithmetic. This combined usage provides economy and permits
the entire fixed-point instruction set and several logical operations to be
used in address computation. Thus, multiplication, shifting, calculation, and
logical manipulation of address components are possible.

Additions, subtractions, multiplications, and comparisons are performed
upon one operand in a register and another operand either in a register or in
memory. A word in a register may be shifted left or right. A pair of
conversion instructions--CONVERT TO BINARY (CVB) and CONVERT TO DECIMAL
(CVD)--provide for translation between decimal and binary number bases without
the use of tables. Multiple-register load and store instructions facilitate
subroutine switching.

In an unsigned fixed-point number, all bits may be considered to express
the absolute value of the number. Only the AL, SL, and CL instructions take
signed binary operands; all three require fullword operands.

A fixed-point number may also be considered a signed quantity, where the
leftmost bit represents the sign, followed by the 31-bit or 15-bit integer
field. Positive numbers are then represented in true binary notation with the
sign bit set to 0, and negative numbers in 2's-complement notation with a 1 in
the sign-bit position.

The 2's-complement representation of a negative number may be considered
the sum of the integer part of the field, taken as a positive number, and the
maximum negative number. The 2's complement of a number is obtained by
inverting each bit of the number and adding a 1 in the low-order bit
position. 2's-complement notation does not include a negative zero, so the
set of negative numbers is 1 larger than the set of positive numbers.

3-6

3.3 DECIMAL INSTRUCTIONS

Decimal instructions provide
operations on decimal data.

arithmetic, shifting, and editing

3.3.1 Decimal Arithmetic

Decimal arithmetic lends itself to procedures that require few
computational steps between the source input and the output. This type of
processing is frequently found in commercial applications, particularly those
using problem-oriented languages. Because of the limited number of aritJ:unetic
operations performed on each item of data, radix conversion from decimal to
binary and back to decimal is not justified, and the use of registers for
intermediate results yields no advantage over storage-to-storage processing.
Hence, decimal arithmetic is provided, and both operands and results are
located in memory. Decimal arithmetic includes addition, subtraction,
multiplication, division, and comparison.

Decimal arithmetic operates on data in the packed format. In this
format, two decimal digits are placed in each 8-bit byte. Each digit is
interpreted as an integer and is right-aligned in its 4-bit field. A decimal
number is kept in true notation with a sign in the least significant 4-bit
field of the string of bytes composing the number.

Processing takes place from right to left between main-memory
locations. All decimal arithmetic instructions use a two-address format.
Each address specifies the leftmost byte of an operand. Associated with this
address is a length field, indicating the number of additional bytes that the
operand extends beyond the first byte.

The decimal arithmetic instructions provide for adding, subtracting,
comparing, multiplying, and dividing, as well as for format conversion of
variable-length operands.

The condition code is set as a result of all decimal instructions except
MP and DP.

The sign of the result is determined by the rules of algebra. When an
operation (other than PACK AND ALIGN (PAL)) is completed without an overflow,
a zero sum result has a positive sign, but when high-order digits are lost
because of an overflow, a zero result may be either positive or negative, as
determined by what the sign of the correct result would have been. A decimal
instruction will set the condition code even if a decimal overflow exception
occurs.

3.3.2 Data Formats

Decimal operands reside in main memory only. They occupy fields that
may start at any byte address and are composed of from one to sixteen 8-bit
bytes.

Lengths of the two operands specified in an instruction
same. If necessary they are considered to be extended with
the most significant digits. Results never exceed the limits
and length specification. Lost carries or lost digits
operations are signaled as decimal overflow exceptions.

3-7

need not be the
Os to the left of
set by address
from arithmetic

Packed Decimal Number

In the packed format, numbers are represented as right-aligned true
integers, with a plus or minus sign in the rightmost four bit positions.

Til.e decimal digits 0-9 are represented in the 4-bit binary-coded-decimal
form by 0000-1001. The codes 1010-1111 represent signs rather than digits, as
shown in Table 3-2. The preferred sign codes are generated by all decimal
arithmetic instructions.

Table 3-2. Bit Codes for Digits and Signs

Digit Code Preferred Sign Code Allowed Sign Code

0 0000 - 1101 - 1011
1 0001 + 1111 + all other codes
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

All decimal arithmetic is performed on data in the packed format. In
the packed format, two decimal digits are adjacent in a byte, except for the
rightmost byte of the field. In the rightmost byte a sign is placed to the
right of the decimal digit. Both digits and a sign are encoded and occupy
four bits each.

Decimal operands and results are represented by 4-bit
binary-coded-decimal digits packed two to a byte. 'Ibey appear in fields of
variable length and are accompanied by a sign in the rightmost four bits of
the least significant byte, as shown in Figure 3-2. Operand fields may be
located on any byte boundary, and may have a length of up to 31 digits and a
sign. Operands participating in an operation may have different lengths.
Packing of digits within a byte and of variable-length fields within memory
results in efficient use of memory, increased arithmetic performance, and an
improved rate of data transmission between memory and files.

l-----MSB-----1 l-----LSB-----1 --- ----------
' I I ' I I I I I
!digit !digit ldigit ldigit ldigit ldigit ldigit I sign I
I I I I I I I I I ---

Figure 3-2. Packed Decimal Number Format

3-8

Zoned Decimal Number

A zoned decimal number is a right-aligned integer with one digit code
per byte and the sign code in the four high-order bits of the low-order byte,
as shown in Figure 3-3. Zoned decimal numbers are converted to packed format
by the PACK instruction. The four high-order bits (zone bits) of bytes other
than the low-order byte do not affect the resulting packed decimal number.

1-----MSB---I
~~~~~~-

I I I I 
lzone ldigitl zone !digit 
I I I I 
~~ ~~ ~~~~~~-

l----LSB-----1 
I I I I 

lzone ldigit lsign ldigit I 
I I I I I 

Figure 3-3. Zoned Decimal Number Format 

External Decimal Number 

Decimal numbers may also appear in an external format as a subset of the 
8-bit alphameric character set. External decimal format is diagrammed in 
Figure 3-4. This representation is required for character-set-sensitive I/0 
devices. An external format number carries its sign as an 8-bit ASCII 
character that precedes or follows the ASCII number. The external format is 
not used in decimal arithmetic operations. The PAL and PACK instructions are 
provided to transform external data into packed data, and the ED, EDMK, 
UNPACK, UNPAL, and UNPU instructions may be used to change data from packed to 
external format. 

l----MSB-----1 l----LSB-----1 
I I I I 
I ASCII I ASCII ASCII I ASCII I 

I digit I digit ------- digit I digit I 

I I I I 

Figure 3-4. External Decimal Number Format 

The sign character may appear as the first or the last character in the 
external fonnat character string. The external format string for any field 
that is to be converted to a packed format field cannot exceed 16 ASCII 
characters. 

The fields specified in decimal instructions either should not overlap 
at all or should have coincident rightmost bytes. In ZERO AND ADD, the 
destination field may also overlap to the right of the source field. Because 
the code configurations for digits and sign are verified during arithmetic, 
improperly overlapping fields are recognized as data exceptions. 

The rules for overlapped fields are established for the case where 
operands are fetched right to left from memory, eight bits at a time, just 
before they are processed. Similarly, the results are placed in memory eight 
bits at a time, as soon as they are generated. 

3-9 



3.4 FLOATING-POINI' INSTRUCTIONS 

The floating-point instruction set 
operands with a wide range of magnitudes. 
results scaled to preserve precision. 

3.4.1 Floating-Point Arithmetic 

is used to perform calculations on 
Floating-point operations yield 

A floating-point number consists of a signed exponent and a signed 
fraction. The quantity expressed by this number is the product of the 
fraction and the number 16 raised to the power of the exponent. The exponent 
is expressed in excess-64 binary notation; the fraction is expressed as a 
hexadecimal number having a radix point to the left of the high-order digit. 

To avoid unnecessary storing and loading operations for results and 
operands, four floating-point registers are provided. The floating-point 
instruction set provides for loading, adding, subtracting, comparing, 
multiplying, dividing, storing, and sign control, of both long and short 
operands. Operations may be either register-to-register or storage-to
register. 

Maximum prec1s1on is preserved in addition, subtraction, multiplication, 
and division by producing normalized results. For addition, instructions are 
also provided that generate unnormalized results. Normalized and unnormalized 
operands may be used in any floating-point operation. Normalization is 
discussed in Subsection 3.4.3. 

The condition code is set as a result of all floating-point sign 
control, add, subtract, and compare operations. Multiplication, division, 
loading, and storing leave the code unchanged. The condition code can be used 
for decision-making by subsequent branch-on-condition instructions. The 
condition code can be set to reflect two types of results for floating-point 
aritlunetic. For most operations, the codes O, 1, and 2 indicate, 
respectively, that the result is 0, less than O, or greater than 0. A zero 
result is indicated whenever the result fraction is O, including a forced O. 
Code 3 is never set by floating-point operations. 

In comparisons, the states O, 1, and 2 indicate, respectively, that the 
first operand is equal, low, or high. 

3.4.2 Data Format 

Floating-point data appears in a fixed-length format that may be either 
8-byte (long) or 4-byte (short), as pictured in Figure 3-5. Operands in 
either format may be specified either in main storage or in floating-point 
registers. The floating-point registers are numbered O, 2, 4, and 6. 

3-10 



I I 
I S Characteristic I 

I I 
14-digit Fraction 

~'~-----~~~~~'--~~~~~~~~~/ ~/~~~-
0 8 63 

I I 
s Characteristic 6-digit Fraction 

I I 
0 8 31 

Figure 3-5. Long and Short Floating-Point Numbers 

The first bit is the sign bit (S). '!be subsequent seven bit positions 
are occupied by the characteristic. '!be fraction field has either 14 or 6 
hexadecimal digits, for long or short floating-point numbers, respectively. 

Short floating-point numbers occupy only the leftmost 32 bit positions 
of a floating-point register. When a floating-point register is used as the 
source of a short floating-point number, the rightmost 32 bit positions of the 
register are ignored. When a floating-point register is used as the 
destination of a short floating-point number, the rightmost 32 bit positions 
of the register remain unchanged. 

The entire set of floating-point functions is available for both short 
and long operands. These instructions generate a result that has the same 
format as the sources, except that in the case of MULTIPLY, a long product is 
produced from a short multiplier and short multiplicand. The LOAD ROUNDED 
instruction provides for rounding from long to short format, while the LOAD 
SHORT TO LONG instruction provides for expansion from short to long fonnat. 

Although final results have either 14 or 6 fraction digits, intermediate 
results in ADD NORMALIZED, SUBTRACT, ADD UNNORMALIZED, COMPARE, HALVE, and 
MULTIPLY may have one additional low-order digit. 'Ibis low-order digit, the 
guard digit, increases the precision of the final result. 

'!be fraction of a floating-point number is expressed in hexadecimal 
digits. The radix point of the fraction is assumed to be immediately to the 
left of the high-order fraction digit. To provide the proper magnitude for 
the floating-point number, the fraction is considered to be multiplied by a 
power of 16. The characteristic, bits 1-7 of both long and short 
floating-point formats, indicates this power. The bi ts within the 
characteristic field can represent numbers from 0 through 127. To acconunodate 
large and small magnitudes, the characteristic is formed by adding 64 to the 
actual exponent. The range of the exponent is thus -64 through +63. This 
technique produces a characteristic in excess-64 notation. 

Both positive and negative quantities have 
difference in sign being indicated by the sign bit. 
negative accordingly as the sign bit is 0 or 1. 

3-11 

a true fraction, the 
The number is positive or 



Tile allowed range of Magnitude (M) is 16*"k-65 < M < (1-16~rk-14) * 16~rk63 
for a long floating-point number, and 16*"k-65 < M < (1-16~rk-6) * 16jrk63 for a 
short floating-point number; or approximately 5.4 * lQjrlc-79 < M < 7.2 * lQjrlc75 
in both formats. 

A number with a characteristic of O, a fraction of O, and a plus sign is 
called a true 0. A true 0 may result from an arittunetic operation because of 
the particular magnitude of the operands. A result is forced to be true 0 
when (1) an exponent underflow occurs and the exponent-underflow mask (PSW bit 
38) is O, (2) a result fraction of an addition or subtraction operation is 0 
and the significance mask (PSW bit 39) is O, or (3) the operand of HALVE, one 
or both operands of MULTIPLY, or the dividend in DIVIDE has a fraction of 0. 
When a program interruption due to exponent underflow occurs, a true 0 
fraction is not forced; instead, the fraction and sign remain correct and the 
characteristic is too large by 128. When a program interruption due to lost 
significance occurs, the fraction remains 0 and the sign and characteristic 
remain correct. Whenever a result has a fraction of O, the exponent overflow 
and underflow exceptions do not cause a program interruption. When a divisor 
has a fraction of 0, division is suppressed, a floating-point divide exception 
exists, and a program interruption occurs. In addition and subtraction, an 
operand with a fraction or characteristic of 0 participates as a normal nwnber. 

Tile sign of a sum, difference, product, or quotient with a fraction of 0 
is positive. 

3.4.3 Normalization 

A quantity can be represented with the greatest precision by a 
floating-point number when that number is normalized, that is, when the 
nonzero fraction digits are shifted left as far as possible so that the 
exponent is of the minimum possible magnitude. A normalized floating-point 
number has a nonzero high-order hexadecimal fraction digit. If one or more 
high-order fraction digits are 0, the number is said to be unnormalized. The 
process of nonnalization consists of shifting the fraction left until the 
high-order hexadecimal digit is non-0 and reducing the characteristic by the 
number of hexadecimal digits shifted. A fraction of 0 cannot be normalized 
and its associated characteristic therefore remains unchanged when 
normalization is called for. 

Normalization usually takes place 
result is changed to the final 
postnormalization. For multiplication 
normalized prior to the aritlunetic 
prenormalization. 

when the intermediate arithmetic 
result. 'lllis 

and division, 
process. This 

function is called 
the operands are 
function is called 

Most floating-point operations are performed only with 
few are performed only without normalization. Addition 
either way. 

normalization; a 
may be specified 

When an operation is performed without normalization, 
the result fraction are not eliminated. The result 
normalized, depending upon the original operands. 

3-12 

high-order Os in 
may or may not be 



This manual is updated by: Addendum 800-11 OOP0-04.01 

In both normalized and unnormalized operations, the initial operands 
need not be in normalized form. Also, intermediate fraction results are 
shifted right when an overflow occurs, and the intermediate fraction result is 
truncated to the final result length after the shifting, if any. 

Programming Note: Since normalization applies to hexadecimal digits, up to 
three high-order bits of a normalized fraction may be Os. 

3.4.4 Floating-Point Instruction Formats 

Floating-point instructions use the RR and RX formats, as described in 
Subsection 3.1.3. In these formats, Rl designates a floating-point register. 
'!he contents of this register are called the first operand. '!he second 
operand location is defined differently for the two formats. 

In the RR format, the R2 field specifies a floating-point register 
containing the second operand. The same register may be specified for the 
first and second operands. The register specified by the Rl and R2 fields 
should be O, 2, 4, or 6. Otherwise, a specification exception is recognized, 
and a program interruption occurs. 

In the RX format, the contents of the general register specified by X2 
and B2 are added to the contents of the D2 field to form an address 
designating the location of the second operand. A value of zero in an X2 or 
B2 field indicates the absence of the corresponding address component. 

The storage address of the second operand 
boundary. Otherwise a specification exception 
program interruption. 

should be on 
is recognized, 

a fullword 
causing a 

Results replace the first operand, except for storing operations, where 
they replace the second operand. 'lbe contents of all other floating-point or 
general registers and storage locations participating in the addressing or 
execution part of an operation remain unchanged. 

The floating-point instructions are the only instructions that use the 
floating-point registers. 

3.4.5 Decimal Floating-Point Instructions 

Decimal floating-point instructions perform calculations on decimal data 
with a wide range of magnitudes. 

Decimal Floating-Point Arithmetic 

Decimal floating-point arithmetic combines certain features of packed 
decimal arithmetic and true (hexadecimal) floating-point arithmetic. Like 
packed decimal numbers, decimal floating-point numbers appear in BCD format 
rather than the hexadecimal format of true floating-point numbers. Like 
hexadecimal floating-point numbers, decimal floating-point numbers are 
represented by sign, characteristic, and mantissa values, and undergo 
arithmetic manipulations analogous to those for hexadecimal floating-point 

3-12.1 



numbers. Therefore, 
with a wide range 
precision, without 
representations. 

This manual is updated by: Addendum 800-11OOP0-04.01 

decimal floating-poi_nt arithmetic can operate on numbers 
of magnitudes and yield results scaled to preserve 
requiring conversion between decimal and hexadecimal 

'!he format of decimal floating-point numbers is as follows: 

I I I I 
ISi Characteristic 14-digit decimal Fraction 
~1~1 ____________ .:_.. ______________ ~---' ~'------

bits 0 1 8 63 

Figure 3-5.1. Decimal Floating-Point Number Format 

A decimal floating-point number consists of a sign bit (S), a binary 
exponent (characteristic), and a decimal mantissa (fraction). The fraction 
consists of decimal digits (0-9) packed two to a byte, with the radix point of 
the fraction assumed to fall immediately to the left of the high-order 
fraction digit. 'lb.e quantity expressed by this number is the signed product 
of the fraction and the number 10 raised to the power of the characteristic. 
The characteristic is expressed in excess-64 binary notation and ranges from 
-64 to +63. 

Decimal floating-point arthmetic may use the four 8-byte floating-point 
registers for data manipulations. Decimal floating-point instructions provide 
both normalized BR and normalized RX formats for arithmetic operations--i.e., 
for addition (AQR and AQ), subtraction (SQR and SQ), multiplication (MQR and 
MQ), and division (DQR and DQ). Instructions in RX format for conversion 
between packed decimal and decimal floating-point numbers are CVP and CVQ. 
Load, store, and compare operations for decimal floating-point numbers employ 
the same instructions used for hexadecimal floating-point numbers. 

Invalid digits cause data exceptions in all arithmetic and conversion 
instructions; data exceptions cause the instruction to be suppressed and leave 
the result unchanged. Invalid digits are not detected in load, store, and 
compare instructions. 

3.5 LOGICAL INSTRUCTIONS 

Logical information is handled as fixed- or variable-length data. It is 
subject to such operations as comparison, translation, editing, bit testing, 
and bit setting. 

3.5.1 Fixed-Length Logical Data 

When used as a fixed-length operand, logical information can consist of 
from one to four bytes and is processed in the general registers. Figure 3-6 
shows the structure of fixed-length logical operands. 

3-13 



This manual is updated by: Addendum 800-1 1OOP0-04.01 

I I I I I 
I logical I logical logical I 
~'~~~~'~~~~-' ~'~--'---~~---' 

bits 0 8 31 

Figure 3-6. Fixed-Length Logical Operand (one to four bytes) 

3.5.2 Variable-Length Logical Data 

A large portion of logical information consists of alphabetic or numeric 
character codes, called alphanumeric data, and is used for communication with 
character-set-sensitive I/0 devices. This information is in variable-field
length format and can be up to 256 bytes long. It is processed on a storage
to-storage basis, left to right, one byte at a time. Figure 3-7 shows the 
structure of variable-length logical operands. 

I I I I I 
lcharacterlcharacterl I character! 
I I I I I I I 

--~~---~~~--

Bytes 0 1 256 

Figure 3-7. Variable-Length Logical Operand (up to 256 bytes) 

The system can handle any 8-bit character set, although certain 
restrictions are assumed in decimal arithmetic and editing operations. 
However, all character-set-sensitive I/0 equipment will assume the USA 
Standard Code for Information Interchange (USASCII) extended to eight bits, 
with the parity bit always set to 0 internally. In this manual the character 
set is referred to as USASCII-8 or simply ASCII. The numbering convention for 
bit positions within a character or byte is as follows: 

Bit positions 
USASCII-8 

0 1 2 3 4 5 6 7 
8 7 6 5 4 3 2 1 

Graphics are not defined for all 256 8-bit codes. When it is desirable 
to represent all possible bit patterns, a hexadecimal representation may be 
used instead of the 8-bit code. Hexadecimal representation uses one graphic 
for a 4-bit code, and therefore, two graphics for an 8-bit byte. The graphics 
0-9 are used for codes 0000-1001; the graphics A-F are used for codes 
1010-1111. 

3.6 LINKED LIST INSTRUCTIONS 

The instructions ENQ, ENSK, DEQ, and DESK are provided to handle lists 
of blocks connected by pointers. Two kinds of linked lists are supported: 
first-in first-out (FIFO) lists, and last-in first-out (LIFO) lists. The 
instructions provide the means to add to and delete from the lists, and to 
determine whether the lists are empty or not. 

3-14 



3.6.1 Structure of LIFO Lists 

The LIFO header consists of an aligned word containing either a null 
pointer (Os) or the address of the first block in the list. Ibis address, or 
pointer, is in the low-order three bytes of the word. Each block in the list 
also contains either a null pointer or the address of the start of the next 
block in the list. Figure 3-8 is a diagram of such a list. The pointers in 
the blocks are all at a displacement into the block determined by the ENSK or 
DESK instruction's displacement field. 

First Block Second Block 

IHeadl----1 ---1 
IPtr I I I I 

J I I I I I I 
!Next Ptrl--- INext Ptrl---
1 I I I 
I I I I 

Figure 3-8. LIFO List 

3.6.2 Structure of FIFO Lists 

Last Block 

I ---1 
I/ I 
I .._I ___ __ 
I ..... I __ o ____ 
I I 
I ..._I __ ___ 

The FIFO list, pictured in Figure 3-9, consists of head and tail 
pointers in consecutive words, doubleword aligned, and the chain of blocks 
addressed by the head and tail pointers. If the list is empty, the head and 
tail pointers are null (0). If the list is not empty, the head pointer 
addresses the start of the first block in the list, and the tail pointer 
addresses the start of the last block. If there is only one block, the head 
and tail pointers are the same. In the blocks the pointers will be exactly 
the same as for the LIFO list. 

First Block Second Block 
I 

IHeadl----1 ---1 I 
IPtr I I I I I 
I Tail I I I I I I II 
I Ptr 1-- I Next Ptr 1--- I Next Ptr 1--- I 

I I I I I I 
I I I I I I 
I 
I 

Figure 3-9. FIFO List 

3-15 

Last Block 
I 
I ---1 
II I 
I I 
I I 
I I 
I I 

I 
I 

0 



3.7 SEMAPHORE MANIPULATION INS'IRUCTIONS 

The Decrement and Inspect Semaphore (DSEM) and Increment and Inspect 
Semaphore (ISEM) instructions operate on a unique doubleword data type, the 
semaphore, consisting of linked list head and tail pointers and a 1-byte count 
field. The semaphore data type is illustrated in Figure 3-10. The semaphore 
must be aligned on a doubleword boundary. Tilese pointers contain addresses of 
a FIFO list, and are manipulated exactly as for the FIFO list instructions. 

These instructions may be used to control sharing of a system resource 
(e.g., processor, memory, or I/0 devices). The DSEM instruction is issued 
when a unit of the resource is to be requested, and the ISEM instruction is 
issued when a unit of the resource is to be released. The conditional 
branching effected contingent on the contents of the count field allows the 
program to prevent the allocation of more uni ts of the resource than are 
specified by the initial positive value of this field. For details of 
instruction execution, refer to the particular instruction descriptions. 

I I I I I I 
Semaphore I I 
count I Head pointer unused Tail pointer I 

I /~/~~-"--~~----~-/I I 
0 8 32 40 63 

Figure 3-10. Semaphore 

3.8 STACK-ORIENTED INSTRUCTIONS 

The stack-oriented feature consists of the BALS, BCS, SVC, SVCX, JSCI, 
RTC, PUSH, PUSHM, PUSHC, PUSHN, POP, POPH, POPM, POPC, and POPN instructions, 
which operate on a pushdown list in descending memory locations. This list is 
addressed through two address words (stack pointer and stack limit word, in 
that order) that may be either in general register 15 and control register 2 
(which constitute the system stack vector) or in two consecutive general 
registers (the user stack vector). If the Sl (or S2 for BCS) field of one of 
these instructions is 0, the system stack vector is used. Otherwise the Sl 
(or 52 for BCS) field addresses the general register containing the stack 
limit. The previous register will be the stack pointer. 

The stack limit word addresses the lowest byte location into which the 
stack may extend as it grows into successively lower addressed locations. 'Tile 
stack pointer addresses the current stack top, i.e., the lowest byte location 
that contains stacked information. Note that the stack pointer of the system 
stack vector is in general register 15. The value in the stack pointer 
decreases as items are placed on a stack. 

Items, including character strings, are placed on stacks in word-aligned 
locations. The stack pointer must address a fullword boundary (i.e., have two 
low-order zero bits) before any stack-oriented instruction is processed, or a 
specification error will result and the instruction will be suppressed. Thus, 
registers may dependably be loaded from stacks by L, LH, and LM instructions. 
They may also be loaded by POP, POPM, and ICM instructions. 

3-16 



When bytes are placed on a stack by the PUSHN or PUSHC instructions, 
sufficient bytes are skipped (unmodified) before pushing any bytes so that the 
stack pointer addresses a fullword boundary when the instruction is 
completed. Thus zero, one, two, or three bytes may be skipped. When bytes 
are removed from the stack by the POPN or POPC instructions, sufficient 
additional bytes are popped and discarded (as for POPN) so that the stack 
pointer addresses a fullword boundary when the instruction is completed. 

The previous contents of the high-order byte of words in the stack 
vector are irrelevant to all stack-oriented instructions. The high-order byte 
of the stack pointer will be set to 0 whenever this word is modified by one of 
these instructions. The stack limit word is unchanged by these instructions. 

3-17 



This manual is updated by: Addendum 800-11OOP0-04.01 

CHAPTER 4 
INSTRUCTION EXECUTION 

4.1 PROGRAM CONTROL WORD 

'!be Program Control Word (PCW), eight bytes long, contains the 
information required for proper program execution. It includes status and 
control information, interruption codes, and the instruction address. Uses of 
the PCW are detailed in Chapter 5. In general, the PCW is used to control 
instruction sequencing and to indicate the status of the system in relation to 
the program currently being executed. 

To execute a sequence of instructions, the CP takes the address of an 
instruction from the PCW. It executes that instruction and increments the 
PCW's instruction address by the length of the instruction. It then takes the 
new instruction address from the PCW. The process continues until an 
interruption or a HALT I/0 conunand is received. 

The active or controlling PCW is called the current PCW. Through 
storage of the current PCW, the status of the CP can be preserved for 
subsequent inspection. Through loading of a new PCW or part of a PCW, the 
state of the CP can be changed. '!be PCW is made up of a 1-byte interruption 
code (discussed in Chapter 5), a 3-byte instruction address, a 2-byte status 
field, and a 1-byte program mask field, with one byte reserved for later 
options. The PCW for a program can be inspected through Debug mode or by 
doing a program dump. Figure- 4-1 shows the PCW format. 

4-1 



This manual is updated by: Addendum 800-11OOP0-04.01 

I I 
I Interruption I 
I code I 
0 8 

Current instruction address 

31 

I I 1//1//1 I I I I I I I I I//// 
W IC IP 1//1//II IT IM IB ID IE IS IEMIBTI//// 

I I 1//1//1 I I I I I I I I I//// 
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

Status Field 

IF I I I 1/////1////////////////////////I 
CC IP IDOIEUISGl/////1////////////////////////1 

IO I I I 1/////1////////////////////////1 
48 49 50 51 52 53 54 55 56 63 

Program Mask Field 

Figure 4-1. PCW Format 

Following is a more detailed explanation of the function of each bit in 
the PCW. 

PCW Bits 

0-7 

8-31 

Status Field 
(system mask) 

32 

33 

34 

Mnemonic 

w 

c 

p 

Function 

Interruption code 

Current instruction address 

Wait state 
0 = Operating state 
1 = Wait state 

Control mode 
0 = Normal operating mode 
1 = Control mode 

Memory protection violation and 
privileged instruction trap 

0 = Do not trap on memory protection 
violation or privileged 
instruction 

1 = Trap on memory protection violation 
or privileged ~nstruction 

4-2 



PCW Bits Mnemonic 

37 I 

38 T 

39 M 

Status Field 

40 B 

41 D 

42 E 

43 s 

44 EM 

45 BT 

46-47 

48-49 cc 

Function 

I/0 interruption mask 
0 = I/0 interruptions disabled 
1 = I/0 interruptions enabled 

Clock interruption mask 
0 = Clock interruptions disabled 
1 = Clock interruptions enabled 

Machine check interruption mask 
0 = Machine check interruptions 

disabled 
1 = Machine check interruptions 

enabled 

PCW single address compare trap 
0 = No PCW single address compare 

trap in effect 
1 = Trap on PCW single address 

compare equal 

Single byte modification trap 
0 = No single byte modification 

trap in effect 
1 = Trap on unequal compare with byte 

at specified byte 

PCW range trap 
0 = No PCW range trap in effect 
1 = Trap on unequal compare with 

byte at specified PCW range 

Single step trap 
0 = No step exception 
1 = Trap after execution of next 

instruction 

Extended modification trap 

Branch-Taken trap 

Reserved 

Condition code 

4-3 



PCW Bits Mnemonic Function 

Program Mask Field 

50 FPO Fixed-Point overflow mask 
0 = Do not interrupt on overflow 
1 = Overflow will cause 

interruption 

51 DO Decimal overflow mask 
0 = Do not interrupt on overflow 
1 = Overflow will cause 

interruption 

52 EU Exponent underflow mask 
(floating-point instructions) 

0 = Do not interrupt on underflow 
1 = Underflow will cause 

interruption 

53 SG Significance mask (floating-
point instructions) 

O= Do not interrupt on overflow 
1= Overflow will cause 

interruption 

54-55 Reserved 

Reserved Byte 

56-63 Reserved 

4.1.1 Condition Codes 

The condition code is a 2-bit field in the PCW that can be tested by 
many of the instructions. Once the code is set, it is changed only by certain 
instructions, such as ADD, COMPARE, SET PROGRAM MASK, and LOAD PCW. The 
meanings of the condition codes for each instruction are listed under that 
instruction in Chapter 7. 

4.2 ADDRESSING 

4.2.1 Base-Displacement Address Generation 

Base-displacement, relative, and direct address generation are all 
available, as described below. 

For addressing purposes, operands can be grouped in three classes: 
explicitly addressed operands in main memory, immediate operands placed as 
part of the instruction stream in main memory, and operands located in 
registers. 

4-4 



This manual is updated by: Addendum 800-11OOP0-04.01 

To permit the ready relocation of program segments and to provide for 
the flexible specification of input, output, and working areas, all 
instructions referring to main memory can employ a full address. 

The address used to ref er to main memory is generated from the 
following three binary numbers: 

Base Address (B) is a 24-bit number contained in a general 
register specified by the program in the B field of the 
instruction. The B field is included in every address 
specification. The base address can be used as a means of static 
relocation of programs and data. In array calculations it can 
specify the location of an array, and in record processing it can 
identify the record. The base address provides for addressing 
all of main memory. The base address may also be used for 
indexing purposes. 

Index (X) is a 24-bit number contained in a general register 
specified by the program in the X field of the instruction. It 
is included only in the address specified in the RX instruction 
format. The RX format instructions permit double indexing, i.e., 
the index can be used to provide the address of an element within 
an array. 

Displacement (D) or offset is a 12-bit number contained in the 
instruction format. It is included in every address computation. 
The displacement provides for relative addressing of up to 4095 
bytes beyond the element or base address. In array calculations 
the displacement can be used to specify one of many items 
associated with an element. In processing records, the 
displacement can be used to identify items within a record. 

In forming the address, the base address and index are treated as 
unsigned 24-bit binary integers. The displacement is similarly treated as 
an unsigned 12-bit binary integer. .The three are added as 24-bit binary 
numbers, ignoring overflow. Since every address includes a base, the sum 
is always 24 bits long. 

The program may show a value of zero in the base address, index, or 
displacement field. A zero indicates the absence of the corresponding 
address component. A base or index of zero implies that a value of zero is 
to be used in forming the address, and does not refer to the contents of 
general register O. Thus, the use of register 0 as a base register 
necessarily makes a program unrelocatable. A displacement of zero has no 
special significance. Initialization, modification, and testing of base 
addresses and indexes can be carried out by fixed-point instructions, or by 
BRANCH AND LINK, BRANCH ON COUNI', BRANCH ON INDEX HIGH, and BRANCH ON INDEX 
LOW OR EQUAL instructions. 

4-5 



This manual is updated by: Addendum 800-11OOP0-04.01 

As an aid in describing the logic of the instruction format, examples of 
two instructions and their related instruction formats follow. 

RR Format: LR 7,9 

I I I I 
I LOAD (18) 
I 

I 7 
I 

I 9 I 
I I 

0 8 12 15 

Execution of the LOAD instruction copies the contents of general register 9 to 
general register 7. 

RX Format: ST 3, TOTAL 

I 
I STORE (50) 3 10 14 300 
I 
0 8 12 16 20 31 

Execution of the STORE instruction stores the contents of general register 3 
at a main memory location addressed by the sum of 300 and the contents of 
general registers 14 and 10, with the data name TOTAL. 

4.2.2 Relative Address Generation 

For relative addressing instruction formats (RL and RRL), a base 
register is unnecessary. The current instruction address is an implied base 
address, and a relative offset is added to it to form the effective address. 
Use of this format is limited to five branch instructions, RLA, and RPUSHA. 

The address used to refer to main memory is generated from the following 
three binary numbers: 

Current instruction address is the implied base address. So if, for 
example, both X and L values (see below) are zero, then the 
instruction branches to itself. 

Index (X) , if specified in the instruction, is a 24-bit number 
contained in a general register specified by the program in the X 
field of the instruction. 

Relative Offset (L) is extended from the number of bits in the 
instruction to a 24-bit number. 

In forming the address, these three numbers are added as unsigned 24-bit 
binary integers, ignoring overflow. 

Otherwise, the rules for relative address generation are the same as the 
rules for base-displacement address generation. 

4-6 



This manual is updated by: Addendum 800-11OOP0-04.01 

4.2.3 Direct Address Generation 

Addresses 0-4095 can be generated without a base address or index. This 
property is important when the PCW and general register contents must be 
preserved and restored during program switching. 'lbese addresses further 
include all reserved addresses used by the system for fixed purposes, such as 
old PCWs, new PCWs, and IOSW and IOCA locations. 

4.3 ADDRESS TRANSLATION 

Address translation is the process of converting virtual addresses, 
referring to a user's virtual address space, into physical addresses, 
referring to main memory locations. This conversion is accomplished without 
the user's knowledge, by a combination of hardware and operating system action. 

4.3.1 Physical/Virtual Address Space 

Main memory for all VS machines consists of byte-addressable random 
access memory (RAM). It is spanned by a 24-bit address, allowing for up to 
16M bytes of addressable storage (i.e., 2**24 = 16M). Main memory addresses 
consist of a 13-bit page frame number and an 11-bit byte index to locations 
within the page, as illustrated in Figure 4-2, below. The range of main 
memory addresses depends upon the amount of physical memory configured into 
the installation, and currently varies from 256K bytes to SM bytes with 
different processors of the VS family. (Some VS80 configurations use 1281< 
bytes of memory.) For the VS25 and VS80, byte-aligned write operations of 1 
or 2 bytes and halfword-aligned read operations of 2 bytes are supported. For 
the VSlOO, byte-aligned write operations of 1, 2, 4, or 8 bytes are supported, 
along with doubleword-aligned read operations of 8 bytes only. 

Main memory, located on semiconductor chips in the CP cabinet, is 
divided logically into page frames of 2K bytes, each aligned on a 2K-byte 
boundary and containing exactly one page of information. 

Page frame number Byte index 

bits 0 13 23 

Figure 4-2. Physical Address Format 

4-7 



This manual is updated by: Addendum 800-11OOP0-04.01 

Virtual memory, located in disk storage, is divided logically into pages 
and segments. Virtual memory addresses consist of a 13-bit virtual page index 
and an 11-bit byte index to locations within the page, as illustrated in 
Figure 4-3, below. Virtual pages also are 2K bytes in size, beginning on a 
2K-byte boundary; physically, each page occupies one sector of a disk 
platter. Segments are blocks of pages beginning on a IM-byte boundary. 
Segment 0 is 256K bytes in size for the VSSO, and lM bytes for VS25 and VSlOO 
systems; segments 1 and 2 are each up to 512K bytes for the VS80, and up to lM 
bytes for the VS25 and VSlOO. Pages of virtual memory are copied as needed 
into available page frames of main memory, as discussed in Subsection 4.3.2. 

I 
I Virtual page number 
I 

bits O 13 

Byte index 

Figure 4-3. Virtual Address Format 

23 

Bits 0-3 of Figure 4-3 are the segment index of the virtual address. 

4.3.2 Overview of Address Translation 

All VS systems provide many users simultaneously with a virtual address 
space for instructions and data that is larger than the amount of memory 
physically available to the system; in fact, the initials "VS" stand for 
"Virtual Storage." Most of this virtual address space is located on disk. 

Because instructions and data must be present in main memory (i.e., 
physical memory) while being processed, they are copied from disk into main 
memory as needed. The process of copying information from virtual memory into 
main memory is called paging. Paging is accomplished in units of 2K bytes, or 
one page, by a dedicated operating system task called the pager. 

Before a program instruction can be executed, a conversion must be 
performed on the virtual addresses specified within it. The process of 
converting virtual addresses into physical main memory addresses is called 
address translation. A combination of hardware and operating system action 
translates each virtual address as it is encountered during program execution. 

Because the programs of many users exist in physical memory 
simultaneously although only one of these can be processed at a time, a means 
of working for short "time slices" successively on different programs is 
implemented in the operating system. Time slices give the effect of 
simultaneous action on a number of programs. 

4-8 



This manual is updated by: Addendum 800-11OOP0-04.01 

'nle process of preparing conditions for the CP to work first on one 
program, then another, is called context switching. Context switching also is 
accomplished by a combination of hardware and operating system action. As a 
part of context switching, the translation of one user's virtual address space 
is discontinued and that of another user's is begun. 

4.3.3 Details of Address Translation 

Main Memory Page Tables 

An essential part of the address translation mechanism is a task's page 
table, a section of main memory that defines the mapping of each task's 
virtual address space to main memory page frames. The format of page table 
entries is illustrated in Figure 4-4, below. 

bits 

I I I I 
IFIRIWI 
I IPIPt 
0 1 2 3 

I 
Page frame number I 

I 
15 

Figure 4-4. Main Memory Page Table Entry Format 

Each halfword entry of the page table corresponds to a virtual page 
address. If the page exists in main memory, the fault bit (F) is equal to 0 
and bits 3-15 are its page frame number. If not, F=l and the rest of the 
entry is not examined. 

Bits 1 and 2 (RP and WP) indicate whether read and write protection, 
respectively, are in effect for the page. Together, these two bits define 
four protection classes and two protection states, as follows: 

RP WP Meaning 

0 0 Unprotected 

0 1 No write allowed in user state 

1 0 No read, write, or execute allowed in user 
state 

1 1 No write allowed in system state or user 
state 

Although this scheme allows protection to vary from one page to another, 
pages are currently given the same protection for an entire segment. 

4-9 



This manual is updated by: Addendum 800-11OOP0-04.01 

The first step of address translation is to find out whether the main 
memory page table contains a page frame number for the virtual address. If 
so, the CP concatenates this 13-bit number with the 11-bit virtual byte index 
(offset) to form a 24-bit physical address, as illustrated in Figure 4-6, 
below; it then uses this physical address to access the data in memory. ~f 
not, the CP signals the operating system (i.e., the pager) that a page fault 
has occurred: the pager copies the virtual page from disk into an available 
page frame and records the number of the selected page frame in the task's 
page table. The task can then be dispatched again. 

Local Page Table (T-RAM) 

To speed up address translation, a subset of the currently executing 
task's main memory page table is held in local CP memory and is checked first 
during translations. Most instances of address translation are accomplished 
by this translation RAM (T-RAM) , a CP local page table of 4K entries 
representing 4K*2K or 8M bytes of virtual address space. 

At the start of each user's time slice, the fault bit of each T-RAM 
entry is set to 1, indicating that they do not hold page frame numbers. Then, 
as pages are referenced by the task, page frame numbers found in the main 
memory page table are also recorded in the T-RAM, and subsequent references to 
these pages during the same time slice are satisfied from the T-RAM in 720 
nanoseconds rather than the 20 microseconds (times estimated for the VS25) 
required for a main memory page table access. (For the VS80, a local page 
table for each segment of a user's address space contains a one-byte page 
frame number for each page currently residing in main memory. VS80 local page 
tables are loaded at the start of each user's time slice by privileged 
assembler instructions LPTO, LPTl, and LPT2.) 

Sel?Jllent Control Registers (SCRs) 

The address of a task's main memory page table for a segment is loaded 
into the privileged segment control register (SCR) for the segment at the 
beginning of the task's time slice. SCR format is illustrated in Figure 4-5, 
below. Address translation requires a prior look-up of the page table address 
held in the SCR indicated by the segment portion of the faulting virtual 
address, i.e., by bits 0-3 of Figure 4-3, above. 

SCRs 0-7 each control a segment having a maximum size of lM 
bytes of virtual address space (i.e., having 512 entries in 
its page table). Therefore, the 8 SCRs support a maximum 
contiguous address space of 8M bytes. 

4-10 



This ma·nual is updated by: Addendum 800-11 OOP0-04.01 

'lbe appropriate SCRs for each task contain 
information, arranged in the following format: 

several pieces of 

M Length-1 Page table address/8 v 
p 

bits 0 1 10 30 31 

Figure 4-5. Segment Control Register (SCR) Entry Format 

Bit O, the M bit, indicates whether monitoring is in effect 
segment. When it is in effect (i.e., when M=l), each page table entry 
into the T-RAM from the main memory page table pointed to by the SCR 
listed in the monitor area to facilitate the eventual clearing of the 
Refer to Subsection 4.3.4, below, for a discussion of the monitor area. 

for the 
loaded 

is also 
T-RAM. 

Bits 1-9 represent the length, minus 1, of the page table. Therefore, a 
full page table of 512 halfword entries, corresponding to a fully utilized 
segment or region of 512 2K-byte pages, would have bits 1-9 all set to 1 in 
its SCR. 

Bits 10-30 of Figure 4-5 represent the page table address divided by 8, 
i.e., lacking three low-order Os (because each page table begins on at least a 
doubleword boundary). Restoring these Os gives a full 24-bit address, which 
may be either a virtual or a physical address accordingly as bit 31, the VP 
bit, is 0 or 1. If it is 1, the address of the appropriate page table entry 
is just the page table address reported in bits 10-30, plus twice the virtual 
page index (reported in bits 4-12 of Figure 4-3, above). That is, the page 
table contains a halfword entry for each page represented. 

If the VP bit of the SCR is O, then the page table address reported in 
bits 10-30 of the SCR is itself a virtual address and must be translated using 
a second SCR. This second SCR must contain a physical address for the page 
table. (If it does not, an SCR recursion exception is noted; refer to 
Subsection 5.8.2, below, for details.) Whether the physical address 9f the 
page table is obtained using one or two SCRs, the result is the same: the 
address of the appropriate page table entry is calculated, and the entry is 
forwarded to the CP so it can continue executing the user program. The entry 
is also written into the T-RAM, so that subsequent references to the page can 
be satisfied more quickly. 

SCRs are loaded and stored using the privileged LSCTL and STSCTL 
instructions. Refer also to the descriptions of these instructions in Chapter 
7 of this manual. 

Figure 4-6, below, is an illustration of the address translation process. 

4-11 



This manual is updated by: Addendum 800-11 OOP0-04.01 

Segment 
number 

I 
I 
I 
v 

Page table 
physical 
address 

I 

SCR 

Virtual Address 
I 

Page index I 
I 

Page table 
length 

I + (page index)*2 
I 
V Page Table Entry 

Page frame number 

Byte index 

V Physical Address V 
I 

Page frame number I Byte index 
I 

Figure 4-6. Virtual-to-Physical Address Translation 

4.3.4 T-RAM Monitor Area 

The monitor area makes possible the efficient clearing of T-RAM 
entries. The monitor is an area of local CP memory recording the virtual page 
numbers of pages loaded into main memory during the current time slice; only 
the corresponding T-RAM entries need be cleared for the start of a new time 
slice. For further discussion of the T-RAM monitor area and its use during 
address translation, refer to the description of the RRCB instruction in 
Chapter 7 of this manual. 

4.3.5 Reference and Change Table 

The reference and change table (RCT) makes possible the efficient 
replacement of old memory pages with new pages read in from disk. 'lbe RCT is 
an area of local CP memory containing 8K entries of 2 bits each. These are a 
reference bit and a change bit for each of the up to 8K addressable pages of 
main memory. When some location in a page frame is referenced by a user 
program, the reference bit for the page frame is set to 1; when the location 
is also modified, the change bit is also set to 1. The system paging task 
uses the reference and change bits along with an aging count in deciding which 
virtual pages to overwrite with new ones during paging operations. For 
details of RCT use, refer to the description of the RRCB instruction in 
Chapter 7 of this manual. 

4-12 



This manual is updated by: Addendum 800-1100P0-04.01 

4.4 SEQUENTIAL INSTRUCTION EXECUTION 

Normally, the operation of the CP is controlled by instructions taken in 
sequence. An instruction is fetched from a location specified by the 
instruction address in the current PCW. The instruction address is then 
increased by the number of bytes in the fetched instruction to address the 
next instruction in sequence. The instruction is then executed and the same 
steps are repeated using the new value of the instruction address. A change 
from sequential operation may be caus·ed by branching, status switching, 
interruptions, or manual intervention. 

4.5 BRANCHING 

The normal sequential execution of instructions is changed when 
reference is made to a subroutine, when a 2-way choice is encountered, or when 
a section of coding, such as a loop, is to be repeated. All these tasks can 
be accomplished with branching instructions. Provision is made for subroutine 
linkage, permitting not only the introduction of a new instruction address but 
also the preservation of the return address. 

Decision-making is generally and symmetrically provided by the BRANCH ON 
CONDITION instruction. This instruction inspects a 2-bit condition code that 
reflects the result of a majority of the arithmetic, logical, and I/0 
operations. Each of these operations can set the code to any one of four 
states, and the conditional branch can specify any selection of these four 
states as the criterion for branching. For example, the condition code 
reflects such conditions as nonzero; first operand high, equal, or low; 
overflow; I/0 device busy; zero; etc. Once set, the condition code remains 
unchanged until modified by an instruction that sets it differently. 

Loop control can be performed by the conditional branch when it tests 
the outcome of address arithmetic and counting operations. For some especially 
frequent combinations of arithmetic and tests, the instructions BRANCH ON 
COUNT, BRANCH ON INDEX HIGH, and BRANCH ON INDEX LOW OR EQUAL are provided. 
These branches are specialized to increase performance for these tasks. 

4.5.1 Instruction Formats 

Branching instructions use the RR, RX, RS, RL, and RRL formats. In 
these formats Rl specifies the address of a general register. In BRANCH ON 
CONDITION a mask field (Ml) identifies the bit values of the condition code. 
The branch address is defined differently for the three formats. 

In the RR format, the R2 field specifies the address of a general 
register containing the branch address, except when R2 is O, which indicates 
no branching. The same register may be specified by Rl and R2. 

In the RX format, the contents of the general registers specified by the 
X2 and B2 fields are added to the D2 field to form the branch address. 

4-13 



This manual is updated by: Addendum 800-11OOP0-04.01 

In the RS format, the contents of the general register specified by the 
B2 field are added to the contents of the D2 field to form the branch 
address. The R3 field in this format specifies the location of the second 
operand and implies the location of the third operand. The first operand is 
specified by the Rl field. 

Programming Note: The third operand location is always odd. Thus, in 
instructions such as BXLE and BXH, if the R3 field specifies an even register, 
the third operand is obtained from the next higher addressed register. If the 
R3 field specifies an odd register, the third operand location coincides with 
the second operand location. 

In the RL format, the current instruction address is added to the L2 
field to form the br~ch address. 

In the RRL format, the current instruction address is added to the X2 
and L2 fields to form the branch address. 

A zero in a B2 or X2 field indicates the absence of the corresponding 
address component. 

A branching instruction can specify the same general register for both 
address modification and operand location. The order in which the contents of 
the general registers are used for the different parts of an operation is as 
follows: 

1. Address computation 
2. Arithmetic or link information storage. 

Results are placed in the general register specified by Rl. Except for 
the storing of the final results, the contents of all general registers and 
memory locations participating in the addressing or execution part of an 
operation remain unchanged. 

Programming Note: In several instructions the branch address may be specified 
in two ways: In the RX format, the branch address is the address specified by 
Xl, B2, and D2; in the RR format, the branch address is in the register 
specified by R2. Note that the relation of the two formats in branch-address 
specification is not the same as in operand-address specification. For 
operands, the address specified by Xl, B2, and D2 is the operand address, but 
the register specified by R2 contains the operand itself. 

4-14 



CHAPTER 5 
INTERRUPTIONS 

5.1 INTRODUCTION 

The interruption system permits the CP to change state as a result of 
conditions external to the system, in input/output (I/0) devices, or in the CP 
itself. Five classes of interruption conditions are possible: I/O, clock, 
program, supervisor call, and machine check. 

Each class of interruption except supervisor call has two related PCWs 
called "old" and "new" in permanently assigned main memory locations. An 
interruption involves storing information, identifying the cause of the 
interruption, storing the current PCW in its old position, and making the PCW 
at the new position the current PCW. The supervisor call class of 
interruption has only a new PCW in a permanently assigned main memory 
location. The supervisor call old PCW is stored on the top of the system 
stack, as addressed by general register 15. (See stack-oriented instruction 
descriptions in Chapter 7.) 

The old PCW holds necessary CP status information at the time of 
interruption. If, at the conclusion of the program invoked by the 
interruption, an instruction is executed making the old PCW the current PCW, 
the CP is restored to the state prior to the interruption, and the interrupted 
program continues. 

5.2 POINT OF INTERRUPTION 

An interruption is permitted between units of instructions, that is, 
after the perfonnance of one instruction and before the start of a subsequent 
instruction. This is true for all instructions except interruptible 
instructions (MVCL, CLCL) . Interruptible instructions can be interrupted 
during instruction performance. They resume from the point of instruction 
interruption after the higher priority interruption has been serviced. 

S-1 



5.2.1 Instruction Execution 

An interruption occurs between instructions, except for interruptible 
instructions, as explained in the preceding paragraph. The manner in which 
the preceding instruction is finished may be influenced by the cause of the 
interruption. Tile instruction is said to have been completed, terminated, 
aborted, suppressed, or resumed. 

In the case of instruction completion, results are stored and the 
condition code is set as for normal instruction operation, although the result 
may be influenced by the exception that has occurred. 

In the case of instruction termination, all, part, or none of the result 
may be stored. Therefore, the result data is u~predictable. The setting of 
the condition code, if called for, may also be unpredictable. In general, the 
results should not be used for further computation. The PCW is not updated on 
tennination. 

When an instruction is aborted, all results including the condition code 
and the PCW are unpredictable. An instruction can be aborted only by a 
machine check interruption. 

In the case of instruction suppression, results are not stored, the 
condition code is not changed, and the PCW is not updated. 

In the case of instruction resumption, the instruction resumes after a 
higher priority interruption has been serviced. 

5.2.2 Classes of Interruptions 

The five classes of interruptions are distinguished by the memory 
locations in which the old PCW is stored and from which the new PCW is 
fetched. The detailed causes are further identified by the interruption code 
of the old PCW and in some cases by additional information placed in main 
memory during the interruption. The bits of the interruption code are 
numbered 0-7, according to their position in the PCW. 

For I/0 interruptions, additional information is provided by the 
contents of the I/O Status Word stored as part of the I/O interruption. (The 
I/0 Status Word is discussed in Section 8.6.) For program interruptions, 
additional information may be provided in the form of a segment index and a 
page index stored in the page fault reporting area on an address translation 
exception. For machine check interruptions, additional information may be 
stored in the machine check reporting area. 

Table S-1 lists the permanently allocated main memory locations. 

S-2 



Table 5-1. Permanent Storage Assignments 

Address Length 
(decimal) (decimal) Function 

0 8 Input/Output Status Word (IOSW) 
8 24 reserved for control mode 

32 8 Old PCW for machine check 
40 8 New PCW for machine check 
48 8 Old PCW for program check 
56 8 New PCW for program check 
64 8 Old PCW for clock interrupt 
72 8 New PCW for clock interrupt 
80 8 Old PCW for I/0 interrupt 
88 8 New PCW for I/O interrupt 
96 8 New PCW for SVC 

104 10 Unused--available for software use 
114 2 Page fault reporting area 
116 12 Machine check reporting area 
128 Variable I/0 Conunand Address area (IOCAs) 

The SVC Old PCW is placed on the system stack as part of 
the SVC interruption. It is reloaded (made current) from 
there by means of the SVCX instruction. 

5.2.3 Location Determination 

In general, the instruction causing the interruption is given by the 
address in the PCW. When an instruction is completed before the interruption 
occurs, the instruction address in the old PCW designates the next instruction 
to be executed. 

5.3 INPtIT/OtITPlIT INTERRUPTION 

Tile I/0 interruption provides a means by which the processor responds to 
signals from I/0 devices. 

A request for an I/O interruption may occur at any time, and more than 
one request may occur at the same time. The requests are preserved in the I/0 
device until accepted by the processor. While I/0 interruptions are masked by 
setting the I/0 interruption mask bit (bit 37 of the Current PCW) to O, more 
than one event which establishes a pending interruption may occur at a 
device. Each such event is recorded at the device, and when the I/0 
interruption mask bit is then set to 1, the I/0 interruption for the device is 
taken. The stored I/0 Status Word (IOSW) may reflect the occurrence of all 
such events by the ORing of status bits in the IOSW. Priority is established 
among devices so that only one interruption request is processed at a time. 

5-3 



An I/0 interruption can occur only after the current unit of operation 
is finished and while the processor is interruptible. Interruptions not 
serviced remain pending. 

The I/0 interruption causes the old PCW to be stored in the I/O Old 
PCW. The IOSW associated with the interruption will have been stored in the 
IOSW slot at the time of the interruption. Subsequently, a new PCW is loaded 
from the I/O New PCW. 

5.4 CLOCK INTERRUPTION 

The clock interruption provides a means by which the CP responds to 
timing conditions set within the system. Clock interruptions are maskable by 
zeroing the clock interruption mask bit (bit 38 of the current PCW) . Any 
clock interruption that becomes pending while the clock interruption mask bit 
is 0 remains pending. A pending clock interruption is taken immediately upon 
completion of any instruction turning off the clock interruption mask bit in 
the PCW. 1he clock interruption causes the old PCW to be stored in the Clock 
Old PCW and a new PCW to be loaded from the Clock New PCW. The interruption 
code in the old PCW is set to all Os on a clock interruption. 

A clock interruption becomes pending whenever the time-of-day clock 
value is greater than or equal to the clock comparator value, both comparands 
being considered unsigned 32-bit binary quantities. 

The loading of a clock comparator value that is already less 
equal to the time-of-day clock value causes an immediate interruption; 
control register 7 with a value greater than that in control register 6 
any pending clock interrupt. 

5.5 PROGRAM INTERRUPTION 

than or 
loading 
resets 

Exceptions resulting from improper use of instructions and data cause a 
program interruption. Only one program interruption occurs for a given 
instruction and is identified in the Old Program-Check PCW. The occurrence of 
a program interruption does not preclude the simultaneous occurrence of other 
causes of program interruption. The program interruption causes the current 
PCW to be stored at the Old Program-Check PCW location and a New Program-Check 
PCW to be fetched. The cause of the interruption is identified by the 
interruption code in PCW bits 0-7. The operation is completed, suppressed, or 
terminated by a program interruption, but this is determined on an individual 
interruption basis. 

If the new PCW for a program interruption has an unacceptable 
instruction address, another program interruption occurs. Since this second 
program interruption introduces the same unacceptable instruction address, a 
string of program interruptions is established that may be broken only by an 
I/0 interruption. If these interruptions also have an unacceptable new PCW, 
new supervisor information must be introduced by initial program loading or by 
manual intervention. 

S-4 



A description of the individual program exceptions follows. Some of the 
exceptions listed may also occur in operations resulting from I/0 
instructions. In such cases, the exception is indicated in the IOSW stored 
with the I/0 interruption (as explained in Subsection 8.6.2). 

5.5.1 Program Interruption Codes in the PCW 

Programming Errors and Miscellaneous Exceptions 

General 
Operation 
Privileged operation 
Execute 
Protection 
Addressing 
Specification 
Data 
Fixed-Point overflow 
Fixed-Point divide 
Decimal overflow 
Decimal divide 
Supervisor call range 
Load-or-trap 

Debugging Aids 
PCW trap 
Virtual destination trap 
Branch-Taken trap 
Single-Step trap 

Hex Code 

01 
02 
03 
04 
05 
06 
07 
08 
09 
QA 
OB 
oc 
OD 

10 
11 
12 
13 

Address Translation Exception 20 

Paging File I/0 Error (software-defined error code) 28 

Unresolved External Reference (software-defined error code) 29 

Stack Facility 
Stack overflow 30 

Floating-Point Exceptions 
Floating-Point overflow 40 
Floating-Point underflow 41 
Significance 42 
Floating-Point divide 43 

5.5.2 Access Exceptions 

The protection, addressing, PCW trap, virtual destination trap, segment 
fault, page translation, and page fault exceptions are collectively referred 
to as access exceptions. An access exception may be indicated when a 
reference to a partially inaccessible operand is recognized even if the 
correct result could be arrived at without the use of the inaccessible part of 
the operand. The access exception is indicated as part of the execution of 
the instruction making the reference. 

S-5 



Whenever an access to an operand location can cause an access exception 
to be recognized, the word "access" is included in the list of program 
exceptions in the description of the instruction. This entry also indicates 
which operand can cause the exception to be recognized and whether the 
exception is recognized on a fetch or store access to that operand location. 
Additionally, each instruction can cause an access exception to be recognized 
due to instruction fetch. 

Programming Note: An access exception is indicated only if the instruction 
with which the exception is associated is executed. In particular, the 
exception is not recognized when the CP has not attempted a fetch from the 
inaccessible location or otherwise detected the access exception before a 
branch instruction or an interruption changes the instruction sequence such 
that the inaccessible data is not required. 

5.6 PROGRAMMING ERRORS AND MISCELLANEOUS EXCEPTIONS 

5.6.1 Operation Exception 

When an operation code is not assigned, an operation exception is 
recognized. For the purpose of recognizing an operation exception, the first 
eight bits of an instruction form the operation code. 

5.6.2 Privileged-Operation Exception 

A privileged instruction or operation is defined to be one that 
generates an exception if the user mode bit (bit 34) of the PCW is on. Some 
VS privileged instructions are CIO, HIO, LCTL, LPTO, LPTl, LPT2, LPCW, RRCB, 
STNSM, STOSM, SIO, STDD, and SVCX. When a privileged instruction is 
encountered while this bit (also known as the memory protection violation bit, 
or the privileged-instruction trap bit) is on in the PCW, a privileged
operation exception is recognized, and the instruction is suppressed. 

5.6.3 Execute Exception 

The execute exception is recognized when the subject instruction of 
EXECUTE is another EXEClITE, and the instruction is suppressed. 

5.6.4 Protection Exception 

When the address of a receiver operand in memory is in a protected 
segment of memory (segment 0 or 1), a protection exception is recognized if 
the memory protection violation and privileged instruction trap bit is on in 
the PCW. 

5-6 



5.6.5 Addressing Exception 

When an address specifies any part of a datum, an instruction, or a 
control word outside the available memory for the particular installation, an 
addressing exception is recognized. On a branch instruction or any 
instruction that introduces a new PCW, the address to which control is to be 
passed is not checked for validity; thus, the addressing exception will occur 
on the instruction that was branched to and not on the branch instruction 
itself. An addressing exception always causes instruction termination. 

5.6.6 Specification Exception 

true: 
A specification exception is recognized when any of the following holds 

1. An operand address does not designate a location on a doubleword, 
word, or halfword boundary, depending on the instruction type. 

2. The first operand field is shorter than or equal to the second 
operand field in decimal division. 

3. An invalid head/tail queue 
enqueue/dequeue operations. 

4. Other special cases exist. 

word has been specified in 

5.6.7 Data Exception 

A data exception is recognized when either of the following occurs: 

1. The digit codes of operands in decimal arithmetic or editing 
operations or in CONVERT TO BINARY are incorrect 

2. Fields in decimal arithmetic overlap incorrectly. 

5.6.8 Fixed-Point Overflow Exception 

When a high-order carry occurs or high-order significant bits are lost 
in fixed-point add, subtract, arithmetic shift, or sign-control operations, a 
fixed-point overflow . is recognized. When an overflow occurs and the 
corresponding mask bit is set to 1, the exception is recognized. 

5.6.9 Fixed-Point Divide Exception 

A fixed-point divide exception is recognized when either of the 
following situations occur: 

1. The quotient exceeds the register size in fixed-point division, 
including division by O 

2. The result of CONVERT TO BINARY exceeds 31 bits. 

5-7 



5.6.10 Decimal Overflow Exception 

When the receiving field is too small in a decimal arithmetic operation, 
a decimal overflow is recognized. When an overflow occurs and the 
corresponding mask bit is set to 1, the exception is recognized. 

5.6.11 Decimal Divide Exception 

A decimal divide exception is recognized when the quotient in decimal 
division exceeds the specified data size. 

5.6.12 Supervisor Call Range Exception 

Issuance of a SUPERVISOR CALL (SVC) instruction with a value in the I 
operand field greater than the value in the first byte of the Supervisor Call 
New PCW results in a supervisor call range exception, and the instruction is 
suppressed. 

5.6.13 Load or Trap Exception 

A load or trap exception is recognized when the LOAD OR TRAP (LOT) 
instruction has loaded a fullword field from memory into a general register 
and the high-order bit of the loaded word is equal to 1. 

5.7 DEBUGGING AIDS 

5.7.1 Modification Trap Feature 

The modification trap, when enabled, causes a' target, i.e. , a general or 
floating-point register or a field of up to 64 bytes in memory, to be compared 
with a comparand at the beginning of every machine instruction; if they are 
not equal, a program interruption (code X'll') occurs and the instruction is 
suppressed. For interruptible instructions, the comparison occurs before each 
execution unit of the instruction. 

There are two forms of this trap, both of which use the modification 
trap control register (control register 4). Tilese forms, therefore, should 
not be enabled at the same time. 

Single-Byte Modification Trap 

This trap is enabled by setting PCW bit 41. The target is always a 
1-byte field in memory. The target and comparand are specified by loading the 
trap control register with the comparand (high-order byte) and the address of 
the target (low-order three bytes). 

Extended Modification Trap 

This trap is enabled by set ting PCW bit 44. The target and comparand 
are specified by loading the trap control register with the virtual address of 
a Trap Descriptor Area, which must be fullword aligned. 

S-8 



The Trap Descriptor Area has the following format: 

Byte 0 Flag and length 

Bits 0-1 Target select: 

00 Memory 
01 (Invalid) 
10 General register 
11 Floating-Point register 

Bits 2-7 Comparand and length minus 1 
(ignored if the target is a register) 

Bytes 1-3 If the target is a register: 

Bytes 4-nn 

register number (low bits of byte 3) 

If the target is in memory: 
virtual address of the target 

Comparand value 
(The comparand is the same 
length as the target) 

Tile trap control register can be altered and the trap enabled or 
disabled only by privileged instructions. 

If the target is a memory operand, an access (fetch) interruption will 
be taken on any part of the operand that is invalid when the trap is checked. 
For the extended modification trap, an access interruption will also be taken 
on any part of the Trap Descriptor Area that is invalid. If the address of 
the Trap Descriptor Area is not fullword aligned, or an invalid target type is 
specified, or (for the floating-point register trap) an invalid floating-point 
register number is specified, a specification interrupt is taken. 

If both modification traps are enabled, the single-byte trap will be 
checked before the extended trap. 

5.7.2 PCW Trap Feature 

When the PCW trap is enabled, before each instruction is executed a 
check is made to determine if the address of the instruction's first byte is 
in the specified range. If it is, the instruction is suppressed, the PCW 
address is not updated, and a program interruption (code X'lO') is taken. 

There are two forms of this trap; since they both use the low-range 
control register (control register 3) they should not both be enabled at the 
same time. 

5-9 



Single-Address PCW Trap 

This trap is enabled by setting PCW bit 40. The range for which to 
check is always a single address contained in the low-range control register. 

PCW Range Trap 

This trap is enabled by setting PCW bit 42. If the high-order byte of 
the high-range control register (control register 0) is O~ the range is from 
the address in the low-range control register to the address in the high-range 
control register. If the high-order byte of the high-range control register 
is nonzero, the range is from address 0 to 1 less than the address in the 
low-range control register, and from 1 more than the address in the high-range 
control register to the highest possible address. The address in the 
low-range control register should not be greater than the address in the 
high-range control register. 

The trap control registers can be altered, and the trap can be enabled 
or disabled, only by privileged instructions. 

If both PCW traps are enabled, the single-address trap is checked 
before the range trap. 

The PCW trap is checked after the modification trap. 

5.7.3 Branch-Taken Trap Feature 

When the branch-taken trap feature is enabled (by setting PCW bit 45), a 
program interruption (code X' 12 1

) will occur after the execution of any 
instruction that has successfully loaded the PCW address field. The current 
PCW address is the branch address set by the instruction; the 
previous-instruction-address control register (control register 5) will 
contain the address of the branch instruction. The branch-taken trap is not 
taken on instructions which modify the entire PCW (LPCW, SVC, or SVCX). 

This trap may be enabled or disabled only by privileged instructions. 

The branch-taken trap is checked before the single-step trap and the 
timer and 1/0 interrupt condition. 

5.7.4 Single-Step Feature 

A single-step trap can be enabled by turning on the trap bit in the PCW 
(PCW bit 43). Th.is guarantees an interruption (code X'13') after execution of 
the next instruction has been completed. (For an interruptible instruction, 
this interrupt will occur only following the final execution unit of the 
instruction.) If any other program interrupt condition occurs during the 
execution of the instruction, it will take precedence over the single-step 
trap condition (since this trap can be inferred from presentation of any 
program interrupt). If this trap is taken, the PCW address field will contain 
the address of the next instruction. 

5-10 



This manual is updated by: Addendum 800-11 OOP0-04.01 

For instructions that modify the system status or debug status bytes of 
the PCW (LPCW, STOSM, STNSM, SVC, or SVCX), the trap will be taken if the trap 
bit is set in the PCW before the instruction is executed. It will also be 
taken by SVCX if the trap bit is set in the new PCW loaded by that instruction. 

The single-step trap is checked after the branch-taken trap, and before 
the timer and I/0 interrupt conditions. It also takes precedence over a wait 
state PCW, which would have been introduced by the stepped instruction. 

5.7.5 Previous Instruction Address Feature 

If any of the PCW debug trap bits (bits 40-45) are set at the start of 
an instruction, the current instruction address is stored in the 
previous-instruction-address control register (control register 5) after all 
of the debugging traps are checked. If any of the debugging traps are taken 
after execution of this instruction and before execution of the next 
instruction, the previous-instruction-address control register will hold the 
address of the last instruction executed; the PCW address is the address of 
the instruction about to be executed. 

Programming Notes 

After a branch-taken trap, control register 5 holds the address of the 
branch instruction. 

After a modification trap, control register 5 holds the address of the 
instruction that modified memory or registers. If that was an interruptible 
instruction and was not the last unit of execution, the PCW address and the 
address in control register 5 both point to the start of the interruptible 
instruction. 

5.8 ADDRESSING EXCEPTIONS 

5.8.1 Address Translation Exceptions 

Three address translation exceptions, all having an interruption code of 
X'20', can occur in the course of address translation. All three cause the 
segment and page index of the virtual address to be written to the page fault 
reporting area, i.e., to location X'72' of m&in memory. A segment fault 
exception is the first, and occurs when the segment index of a virtual address 
is not valid. Currently, only segment indexes of O, 1, and 2 are valid. 

A page translation exception is the second, and occurs when twice the 
page index of a virtual address is greater than or equal to the page table 
length indicated in the SCR for the segment. In this case there is no page 
table entry corresponding to the virtual page. 

A page fault exception is the third, and occurs when the page table 
entry corresponding to the virtual address is faulted, i.e., when its high 
order bit (fault bit) is 1. This is an ordinary page fault, and causes the 
virtual page to be read in from disk storage. 

5-11 



This manual is updated by: Addendum 800-11OOP0-04.01 

5.8.2 Page Table Address Exceptions 

Two additional classes of exception exist in association with 
address translation mechanism. The page table address fault exception, 
an interruption code of X'21', is the first of these, and occurs when the 
table address reported in the appropriate SCR is virtual and is faulted. 

the 
with 
page 

The SCR recursion exception, with an interruption code of X'22', is the 
second, and occurs when the page table address reported in the appropriate SCR 
is virtual and points to a second SCR, but the second SCR also contains a 
virtual address rather than a physical address. In this case the second 
virtual address is not translated and an exception is noted immediately. 

5.9 STACK OVERFLOW EXCEPTION 

This exception is unique to the stack-oriented instructions and may 
occur during any of these instructions. A stack overflow interruption occurs 
under either of the following conditions: 

1. The address value in the stack top word is less than the address 
value in the stack limit word before the instruction is executed, or 

2. The address value in the 
address value in the stack 
executed. 

stack top 
limit word 

word would be less than the 
after the instruction was 

The instruction is suppressed on all stack overflow program interrupts. 
This implies that the values in the stack vector are unchanged. 

5.10 FLOATING-POINT EXCEPTIO~S 

Four kinds of floating-point exceptions are recognized; they are 
described in the following paragraphs. 

5.10.1 Floating-Point Overflow 

When the final exponent of a floating-point number becomes greater than 
127 as a result of an ADD, SUBTRACT, MULTIPLY, or DIVIDE operation, the 
instruction is completed and a floating-point overflow exception is 
recognized. '!he fraction is correct and normalized if normalization was 
specified by the instruction, the sign is correct, and the characteristic is 
smaller by 128 than the correct characteristic. 

5-12 



This manual is updated by: Addendum 800-11OOP0-04.01 

5.10.2 Floating-Point Underflow 

When the final exponent of a floating-point number becomes less than 
zero as a result of an ADD, SUBTRACT, MULTIPLY, DIVIDE, or HALVE operation, 
and the exponent underflow program mask bit is 1, the instruction is completed 
and a floating-point underflow exception is recognized. The fraction is 
correct and normalized, the sign is correct, and the characteristic is larger 
by 128 than the correct characteristic. 

5.10.3 Floating-Point Significance 

When the intermediate sum of a floating-point ADD or SUBTRACT operation 
is zero, and the significance program mask bit is 1, a significance exception 
is recognized. No normalization occurs; the intermediate sum characteristic 
remains unchanged. When the intermediate sum is zero and the significance 
program mask bit is O, the significance exception does not occur; rather, the 
characteristic is made zero, yielding a true zero result. 

5.10.4 Floating-Point Divide 

A floating-point divide exception is recognized when floating-point 
division by a divisor with a fraction of zero is attempted. The instruction 
is suppressed and the dividend remains unchanged. 

5.11 SUPERVISOR CALL INTERRUPTION 

Refer to the SVC instruction description in Section 7.1 for the detailed 
effects of a supervisor call interruption. The supervisor call interruption 
occurs as a result of the execution of the SUPERVISOR CALL instruction. It 
causes the current PCW and other information to be stored on the system stack 
and a new SVC PCW to be constructed. The contents of bit positions 8-15 of 
the SUPERVISOR CALL instruction become the interruption code of the old PCW on 
the system stack. 

Programming Note: The name "supervisor call" indicates that one of the major 
purposes of the interruption is the switching from problem to supervisor 
state. This major purpose does not preclude the use of this interruption for 
other types of status switching. The interruption code may be used to convey 
a message. 

5.12 MACHINE CHECK INTERRUPTION 

The machine check interruption provides a means for reporting to the 
program the occurrence of machine malfunctions. Information is provided to 
assist the program in determining the location of the fault. 

A machine check interruption causes the old PCW to be stored in the 
Machine Check Old PCW and .a new PCW to be fetched from the Machine Check New 
PCW. The cause of the malfunction is identified by the interruption code. An 
interruption code of 1 indicates a main memory parity error. An interruption 
code of 2 indicates one of two conditions: either an IOP requested permission 

5-13 



This manual is updated by: Addendum 800- 11 OOP0-04.01 

from the CP to present an I/0 interruption, permission was granted, and then 
the IOP responded with a request to do something other than present an 
interruption; or an IOP requested permission to present an I/0 interruption, 
permission was granted, and then the IOP did not respond within a reasonable 
period of time (time-out failure). 

A machine check interruption may be masked off 
machine check interruption mask bit in the PCW. A machine 
that is masked off causes entry into Control mode. 

by turning off the 
check interruption 

'!he machine check reporting area is filled in as follows, depending on 
the interruption code: 

Code = 1 Bytes 0-3 contain the approximate physical address where the 
parity error occurred. Bytes 4-5 contain the data as read 
from memory .. 

Code = 2 Byte 0 contains the device address passed back during an 
invalid response to the granting of permission to present an 
interruption, or contains X'FF' if the IOP did not respond 
within a reasonable period of time. 

Any program or supervisor call interruptions that would have occurred as 
a result of the current operation are eliminated. Any instruction in progress 
when a machine check occurs is aborted. 

5.12.1 VSlOO Machine Checks 

Machine checks on the VSlOO cause workstation 0 to display the message, 
"MACHINE CHECK xxx", where "xxx" is one of the following: 

001 ECC error on main memory read by CP. 'Ihe Old Machine Check PCW 
points to the instruction after the one causing the error. For 
instructions of RX type only, location X'74' of main memory 
contains the erroneous data and location X'78' contains its main 
memory address. 

003 Error on main memory write by CP.. The Old Machine Check PCW 
points to the instruction after the one causing the error. 

017 Bus transaction log overflow 
Machine Check PCW points to 
causing the error. 

(more 
the 

than 128 entries). Old 
instruction after the one 

018 Destination IOP has rejected CP or BA communication. Old 
Machine Check PCW points to the instruction whose execution 
followed the error. (Note that the previous instruction may not 
have caused the error.) 

019 Both errors 017 and 018 have occurred. 

5-14 



This manual is updated by: Addendum 800-11OOP0-04.01 

020 Destination processor has rejected CP communication. Machine 
Check Old PCW points to the instruction whose execution followed 
the error. (Note that the previous instruction may not have 
caused the error.) 

021 Both errors 017 and 020 have occurred. 

022 Both errors 018 and 020 have occurred. 

023 Errors 017, 018, and 020 have occurred. 

5.13 PRIORITY OF INTERRUPTIONS 

During execution of an instruction, several interruption-causing events 
may occur simultaneously. The instruction may give rise to a program 
interruption or a clock interrupt, a machine check may occur, and an I/O 
interruption request may be made, all at the same time. Instead of the 
program interruption, a supervisor call interruption might occur; however, 
both cannot occur since these two interruptions are mutually exclusive. 
Simultaneous interruption requests are honored in a predetermined order. 

Requests for interruption existing concurrently at the end of an 
instruction are honored in descending order of priority, as follows: 

Machine check 
Supervisor call 
Program 
Clock 
Input/Output. 

The action consists of storing the current PCW in the old PCW and 
fetching the new PCW belonging to the interruption first taken. This new PCW 
is subsequently stored without any instruction execution, and the next 
interruption PCW is fetched. This storing and fetching continues until no 
more interruptions are to be serviced. Further interrupts are honored if and 
only if the new PCW has them enabled. The I/0 or clock interruptions are 
taken only if the immediately preceding PCW indicates that the system is 
interruptible for I/0 or clock interruptions. The interruption code of a new 
PCW is not loaded since it provides no useful information. 

Instruction execution is resumed using the last-fetched PCW. The order 
of executing interruption subroutines is therefore the reverse of the order in 
which the PCWs are fetched. 

Programming Note: The order in which simultaneous interruption requests are 
honored can be changed to some extent by masking. The priority rule applies 
to simultaneous interruption requests; an interruption request made after some 
interruptions have already been taken is honored according to the priority 
prevailing at the moment of the request. 

5-15 



CHAPTER 6 
CONI'ROL MODE 

6.1 INTRODUCTION 

Control mode is a CP state in which normal program execution is halted 
and certain other facilities are made available. These facilities are divided 
into two groups of commands. 

1. Load group--Contains commands for initializing the operating system, 
loading a stand-alone program, loading a diagnostic program, or 
restarting a program (from an initialized state). 

2. Debug group--Contains commands for displaying and/or modifying main 
memory, general registers, control registers, and the PCW. Also 
included in this group are commands for single-step program 
execution, hard copy dump of memory and registers, and virtual 
address translation. 

Control mode uses the lowest-addressed workstation on the first I/O 
processor (workstation 0) for communication with the machine operator. If 
this workstation is not powered on, the computer will wait until it is turned 
on. Control mode uses only the top line (line 1) of the CRT display. The 
previous contents of the line are saved on entry into Control mode and are 
restored on exit; therefore, Control mode is transparent to the program that 
is using this workstation. 

6.2 METHODS OF ENTRY 

6.2.1 Entry during Program Execution 

In this case, the following message is displayed at row 1: 

CONTROL MODE w xxxxxxxx xxxxxxxx 

The PCW displayed (Xs above) is the current PCW and can be examined to 
determine why Control mode was entered. 

If PCW bit 33 (Control mode bit) equals 1, then the program has entered 
Control mode by loading this PCW (with instruction LPCW, STNSM, STOSM, etc.). 

If PCW bit 33 is set to O, then Control mode 
operator's pressing the Control mode button on the CPU. 
CONI'ROL MODE are blinking, a machine check has occurred. 
machine check, the interruption code (first byte) of 
which type of machine check has occurred. 

6-1 

was entered by the 
However, if the words 

In the case of a 
the PCW will indicate 



When Control mode is entered during program execution, the Debug group 
of Control mode commands is available. 

6.2.2 Entry from an Initialization Procedure 

In this case, the following message is displayed at row 1: 

CONTROL MODE F 04 ' 

When Control mode is entered in this manner, both the Load group and the 
Debug group of Control mode commands are available. Pressing the ENTER key 
causes a Load command to be issued to the fixed or only volume of an assumed 
disk device at address 04. If this is not desired, the NEW LINE key will 
clear the command to allow other commands to be entered. 

6.3 INITIALIZATION PROCEDURES 

The actions taken when the LOAD button is pressed are a subset of those 
taken when the processor is powered on. The actions which each of them 
initiates are as follows: 

1. All IOPs are initialized and leave no I/0 outstanding. 

2. The instruction address field of the current PCW is set to 256 and 
the other PCW bits are set to O. 

3. Main memory locations 32-41 are set to X'40 000100 0800 000000 00' 
(default IOCW for Load group commands). 

4. Local page table 0 is set for virtual address equal to physical 
address. Tile local page frame table is reset (i~e., all PFT entries 
are set for no reference, no change). Local page tables 1 and 2 are 
reset (page fault state). 

5. Control mode is entered. 

Additional results of power-on are that memory is zeroed, the clock is 
set to O, and the comparator is set to all ls. 

6.4 CONTROL MODE COMMANDS AND RESPONSES 

The ENTER key must be pressed after 
Subsections 6.4.1 and 6.4.2 has been supplied. 
represents one hexadecimal digit. 

6-2 

the bracketed information in 
In the following discussion, n 



6.4.1 Load Group Conunands 

[F nn] and [R nn] are Load group commands. These commands al low the 
Control mode user to perform a complete I/0 operation using device nn. They 
are accepted only when all I/0 devices are inactive (through use of the LOAD 
or INITIALIZE button). 'nle I/0 operation to be performed is indicated by the 
IOCW. The IOCW is located through the IOCA. F and R denote fixed and 
removable disk volumes, respectively. (This distinction is ignored if a 
device has only a fixed or only a removable volume.) 

Default IOCA, Default IOCW - When a Load conunand is entered, main memory 
location 32 and the IOCA for the device are modified as follows: 

Location 32 = X'40' or X'41' (READ command in IOCW) 

IOCA for device = X'0020' (Load IOCA) 

The IOCW set during initialization causes a 2048-byte READ to memory 
location 256 for a fixed-volume disk drive. For a removable-volume device, 
the first byte of the IOCW is set to X'41' by the [R nn] command. 

A Load group command causes the the CP to do the following: 

1. Write the device number (nn) at location 80 (IO old PCW). 
the IOCA and IOCW command byte. 

Create 

2. Clear all I/0 interrupts and issue an SIO instruction to device nn. 
If the condition code returned is 0, proceed; otherwise, terminate 
the Load command with a message. 

3. Accept all outstanding interruptions and ignore them until an 
interruption from device nn is received. (In general, there will 
not be any other interruptions outstanding; however, if present, 
interruptions from devices other than device nn are ignored and 
lost.) 

4. Inspect the IOSW returned by device nn and return the appropriate 
message. 

The CP then makes one of the following responses to the Load group 
command: 

1. If the Load SIO is completed successfully, Control mode will exit 
immediately and instruction execution proceeds under control of the 
current PCW. 

2. A message, INV DEV, is returned by a Load co1mnand for rejected SIO 
operations (condition code other than 0). 'lb.e message indicates 
that the address (nn) referenced a nonexistent IOP (nonexistent 
device, condition code 3). 

3. The following two messages may be returned after I/0 completion 
(i.e. , storing of an IOSW by device nn) . Bi ts 0-1 of the IOSW are 
examined. 

6-3 



a. INT REQ--Bit 0 = !--Intervention required indicated. 

b. I/0 ERR--Bit 1 = 0--Abnonnal I/0 completion (hard error) . 

6.4.2 Debug Group Commands 

The following commands are useful in debugging a program. 

[G n] 

[C n] 

[P nnnnnn] 

[V nnnnnn] 

[W] 

Displays general registers n and n+l, with n ranging 
from 0 to E. (A value of n=F results in display of 
general register F followed by general register 0.) 

Displays control registers n and n+l, with n ranging 
from 0 to 6. 

For n = 8, floating-point register 0 is displayed. 
For n = A, floating-point register 2 is displayed. 
For n = C, floating-point register 4 is displayed. 
For n = E, floating-point register 6 is displayed. 

Odd values of n (such as 9, B, D) cause the low half 
(i.e., low-order 32 bits) of one register and the high 
half of the next register to be displayed. (A value of 
n = 7 results in display of control register 7 followed 
by the high half of floating-point register 0. A value 
of n = F results in display of the low half of 
floating-point register 6 followed by control register 
0.) 

Displays eight bytes of 
physical address given. 
invalid address. 

physical memory from the 
Non-display indicates an 

Displays the condition code (high-order byte of Rl) and 
remaining contents of Rl resulting from an LPA 
instruction. If the translation is successful, eight 
bytes of memory are also displayed from the given 
virtual address. 

Displays the PCW. 

[M nnnnnnnn nnnnrumn] Modifies eight bytes displayed as a result of one of the 
five preceding commands. 

TAB (key) 

[X] 

Causes execution 
the updated PCW. 
nonnally. 

of a single program step and displays 
All I/O operations will proceed 

Causes Control mode exit; instruction execution proceeds 
under control of the current PCW. 

6-4 



[D nnnnnn] [nnnnnn] Causes a dump of the PCW, the registers, and main memory 
to a printer (device 03) • The first physical address 
entered is rounded down to the nearest 32-byte 
boundary. Each line has a 3-byte address followed by 32 
bytes of memory. Memory contents are printed, beginning 
at the rounded first address, until the line containing 
the byte location below the second address is reached, 
the end of memory is reached, or the operator terminates 
the dtuDp by striking any workstation key. If the 
printer is off line, the Dump command remains pending. 
(The printer may be turned on and the Dump command will 
continue in this case.) Any pending printer interruption 
for device 03 is lost when a dump to that printer is 
requested. If device 03 is not a printer, this command 
is ineffective. 

When main memory is modified, the change bit is set in the 
local page frame table (CP local memory) . 

In control mode no device other than workstation 0 will be 
serviced by the Control mode I /0 processor (i.e. , 
keystrokes for other workstations on the !OP are ignored). 

For the P and V commands, a failure to display data may 
indicate that a page break (2048-byte boundary) has been 
found; otherwise, non-display (or a partial display) 
indicates that a main memory parity error was detected by 
the IOP at the particular memory location. 

The Dump conunand will be executed even if an I/0 command or 
I/0 interruption was active for the printer (device 03) • 
In this case, the previous printer status is discarded. 

6.4.3 Screen Manipulation Keys 

data. 
The following workstation keys are useful for entering and modifying 

NEW LINE - Tilis key cancels (and clears) the partially-entered line. 

SPACE BAR - During a Modify command, this key retains the previous 
data at the current cursor position. 

ENTER - 'file key must be pressed after the command letter and 
numbers (if any). After a Modify command, this key may be 
pressed before all data has been entered, allowing 
unmodified data to remain unchanged. 

6-5 



This manual is updated by: Addendum 800-11OOP0-04.01 

CHAPTER 7 
INSTRUCTIONS 

7.1 GENERAL INSTRUCTION SET 

The following instructions represent the basic instruction 
VS. In addition to these universal machine instructions, 
mnemonic codes, such as JSI, are discussed in the chapter 
instructions in the VS Assembler Language Reference Manual. 
operation codes and formats for the basic instruction set is 
Appendix A of this manual. 

p 

set for the 
some extended 

on machine 
A list of 

provided in 

The superscript "p" (e.g., (CIO) ) in the first line of an instruction 
description means that the instruction is privileged. 'nle short 
floating-point instructions (available as an option to VS80 systems running at 
least Version 3.04 microcode, and as a standard item to all VS25 and VSlOO 
systems) are denoted by the word "(optional)" next to their format diagrams. 

Note that instructions are ordered alphabetically by name in this 
chapter, and alphabetically by mnemonic in the index. 

7-1 



This manual is updated by: Addendum 800-11OOP0-04.01 

ADD (AR, A) 

AR Rl,R2 (RR) 

I I R I R 
I lA I 1 I 2 
I I I 
0 8 12 15 

A Rl ,D2 (X2 ,B2) (RX) 

I I R I x I B I D I 
I SA I 1 I 2 I 2 I 2 I 
I I I I I .1 
0 8 12 16 20 31 

The second operand is added to the first operand, and the sum is placed 
in the first operand location. 

Addition is performed by adding all 32 bits of both operands. If the 
carry from the sign-bit position and the carry from the high-order numeric bit 
position agree, the sum is satisfactory; if they disagree, an overflow 
occurs. The sign bit is not changed after the overflow. A positive overflow 
yields a negative final sum, and a negative overflow results in a positive 
sum. The overflow causes a program interruption when the fixed-point overflow 
mask bit in the PCW is 1. 

Operand 2 of the A instruction must be fullword aligned. 

Resulting Condition Code 

O Sum is O 
1 Sum is less than 0 
2 Sum is greater than 0 
3 Overflow 

Program Exceptions 

Access (fetch, operand 2 of A only) 
Fixed-point overflow 
Specification (A only) 

Programming Note 

In 2's-complement notation a zero result is always positive. 

7-2 



ADD DECIMAL (AP) 

AP Dl(Ll,Bl) ,D2(L2,B2) (SS) 

I I L L B I I /D I 
I FA I 1 2 1 I 11 
~l~~~~~'~~---~---~-1~/ I I 

0 8 12 16 20 32 

B 
2 

II I D 
I- - 2 
I/ I -----
36 47 

The second operand is added to the first operand, and the sum is placed 
in the first operand location. 

Ll and 12 are the field lengths in bytes, minus 1. 

Addition is algebraic, taking into account sign and all digits of both 
operands. All digits are checked for validity. If necessary, Os are supplied 
for either operand on the most significant end. When the first operand field 
is too short to contain all significant digits of the sum, an overflow 
condition is recognized. 

Overflow has two possible causes. The first is the loss of a carry from 
the most significant digit position of the result field. The second cause is 
an oversized result, which occurs when the second operand field is larger than 
the first operand field and significant result digits are lost. The field 
sizes alone are not an indication of overflow. An overflow causes a program 
interruption when the decimal overflow mask bit is 1. 

The first and second 
significant bytes coincide; 
itself. 

operand fields 
therefore, it 

may overlap 
is possible 

when their least 
to add a number to 

The sign of the result is determined by the rules of algebra. When the 
operation is completed without an overflow, a zero sum result has a positive 
sign, but when high-order digits are lost because of an overflow, a zero 
result may be either positive or negative, as determined by what the sign of 
the correct result would have been. This instruction will set the condition 
code even if the decimal overflow exception is taken. 

7-3 



Resulting Condition Code 

0 Sum is 0 
1 Sum is less than 0 
2 Sum is greater than O 
3 Overflow 

Program Exceptions 

Access (fetch, operand 2; fetch and store, operand 1) 
Data 
Decimal overflow 

7-4 



This manual is updated by: Addendum 800-11OOP0-04.01 

ADD DECIMAL (FLOATING-POINT) (AQR, AQ) 

AQR Rl,R2 (RR) 

I R R 
3A I 1 2 

I 
0 8 12 15 

AQ Rl ,D2 (X2 ,B2) (RX) 

I I R I x I B I D I 
I 7A I 1 I 2 I 2 I 2 I 
I I I I I I 
0 8 12 16 20 31 

The second operand is added to the first operand, and the normalized sum 
is placed in the first operand location. Fullword alignment is required. 

Addition of two decimal floating-point numbers consists of a 
characteristic comparison and a fraction addition. The characteristics of the 
two operands are compared, and the fraction with the smaller characteristic is 
right-shifted; its characteristic is increased by one for each decimal digit 
of shift until the two characteristics agree. The fractions are then added 
algebraically to form an intermediate sum. If an overflow carry occurs, the 
intermediate sum is right-shifted one digit and the characteristic is 
increased by one. If the increase causes a characteristic overflow, a program 
interruption occurs. The fraction and the sign are correct, but the 
characteristic is 128 smaller than the correct characteristic. 

The intermediate sum consists of 15 decimal digits and a possible 
carry. The low-order digit is a guard digit obtained from the fraction that 
is shifted right. The guard digit is 0 if no shift occurs. 

After the addition, the intermediate sum is normalized as necessary by 
shifting left the fraction; vacated low-order digit positions are filled with 
Os; the characteristic is reduced by the amount of shift. 

If normalization causes the characteristic to underflow and if the 
corresponding mask bit is 1, a program interruption occurs. The fraction is 
correct, but the characteristic is 128 larger than the correct one. If the 
corresponding mask bit is O, the result is made a true zero. 

When the intermediate sum is zero and the significance mask bit is 1, a 
significance exception exists and a program interruption takes place. No 
normalization occurs; the intermediate sum characteristic remains unchanged. 
When the intermediate sum is zero and the significance mask bit is O, the 
program interruption for significance exception does not occur; rather, the 
result is forced to be true zero. Exponent underflow cannot occur for a zero 
fraction. 

7-4.1 



This manual is updated by: Addendum 800-1 1OOP0-04.01 

The sign of the sum is derived by the rules of algebra. 
fraction is regarded as positive. 

Resulting Condition Code 

0 Result fraction is 0 
1 Result fraction is less than 0 
2 Result fraction is greater than 0 
3 

Program Exceptions 

Specification 
Data 
Significance 
Exponent overflow 
Exponent underflow 
Access (AQ only) 

7-4.2 

A zero sum 



ADD HALFWORD (AH) 

AH Rl,D2(X2,B2) (RX) 

I R X B 
4A I 1 2 2 

I 
0 8 12 16 20 

D 
2 

31 

Tile second operand is added to the first operand, and the sum is placed 
in the first operand location. The second operand is two bytes in length, 
must be halfword aligned, and is considered to be a 16-bit signed integer. 

The second operand is expanded to 32 bits before the addition by 
propagating the sign-bit value through the 16 high-order bit positions. The 
contents of the second operand in main memory remain unchanged. Addition is 
performed by adding all 32 bi ts of both operands. If the carry from the 
sign-bit position and the carry from the high-order numeric bit position 
agree, the sum is satisfactory; if they disagree, an overflow occurs. The 
sign bit is not changed after the overflow. A positive overflow yields a 
negative final sum, and a negative overflow results in a positive sum. The 
overflow causes a program interruption when the fixed-point overflow mask bit 
in the PCW is 1. 

Resulting Condition Code 

0 Sum is 0 
1 Sum is less than 0 
2 Sum is greater than 0 
3 Overflow 

Program Exceptions 

Access (fetch, operand 2) 
Fixed-point overflow 
Specification 

7-5 



ADD LOGICAL (ALR, AL) 

ALR Rl,R2 (RR.) 

R R 
lE 1 2 

0 8 12 15 

AL Rl,D2(X2,B2) (RX:) 

R x B D 
SE 1 2 2 2 

0 8 12 16 20 31 

'Ille second operand is added to the first operand, and the swn is placed 
in the first operand location. The occurrence of a carry from the sign 
position is recorded in the condition code. 

'!he second operand of the AL instruction must be fullword aligned. 

Logical addition is performed by adding all 32 bits of both operands. 
If a carry from the leftmost position occurs, the leftmost bit of the 
condition code is made 1. In the absence of a carry, the leftmost bit is made 
O. When the sum is O, the rightmost bit of the condition code is made O. A 
nonzero sum is indicated by a 1 in the rightmost bit. 

Resulting Condition Code 

0 Swo is 0 (no carry) 
1 Sum is not 0 (no carry) 
2 Swo is 0 (carry) 
3 Swo is not 0 (carry) 

Program Exceptions 

Access (fetch, operand 2 of AL only) 
Specification (AL only) 

7-6 



ADD NORMALIZED (FLOATING-POINI') (ADR, AER, AD, AE) 

ADR Rl,R2 (RR, Long) 

I I R R 
2A IOI 1 2 

I I 
0 8,9 12 15 

AER Rl,R2 (RR, Short) 

I I I R R 
I 2A 111 1 2 (optional) 
I I I 
0 8,9 12 15 

AD Rl ,D2 (X2 ,B2) (RX, Long) 

I I R x B D 
6A IOI 1 2 2 2 

I I 
0 8,9 12 16 20 31 

AE Rl ,D2, (X2 ,B2) (RX, Short) 

I I I R I x I B I D I 
I 6A Ill 1 I 2 I 2 I 2 I (optional) 
I I I I I I I 
0 8,9 12 16 20 31 

The second operand is added to the first operand, and the normalized sum 
is placed in the first operand location. 

Operand 2 of the AD instruction must be fullword aligned. 

Addition of two floating-point numbers consists of comparing 
characteristics and adding fractions. The characteristics of the two operands 
are compared, and the fraction with the smaller characteristic is 
right-shifted; its characteristic is increased by 1 for each hexadecimal digit 
of shift until the two characteristics agree. The fractions are then added 
algebraically to form an intermediate sum. If an overflow carry occurs, the 
intermediate sum is right-shifted one digit and the characteristic is 
increased by 1. If this increase causes a characteristic overflow, an 
exponent-overflow exception is signaled and a program interruption occurs. 
The fraction is normalized and correct, the sign is correct, and the 
characteristic is smaller by 128 than the correct characteristic. 

The intermediate sum consists of 15 hexadecimal digits (for AER and AE, 
7 hexadecimal digits) and a possible carry. The low-order digit is a guard 
digit obtained from the fraction that is shifted right. Only one guard digit 
position participates in the fraction addition. The guard digit is 0 if no 
shift occurs. 

7-7 



After the addition, the intermediate sum is left-shifted as necessary to 
form a normalized fraction, vacated low-order digit positions are filled with 
Os, and the characteristic is reduced by the amount of shift. 

If nol.'Tllalization causes the characteristic to underflow and if the 
corresponding mask bit is 1, a program interruption occurs. The fraction is 
correct and normalized, the sign is correct, and the characteristic is larger 
by 128 than the correct one. If the corresponding mask bit is O, the result 
is made a true 0. If no left shift takes place, the intermediate sum is 
truncated to the proper fraction length. 

When the intermediate sum is 0 and the significance mask bit is 1, a 
significance exception exists, and a program interruption takes place. In 
this case, no normalization occurs; the intermediate sum characteristic 
remains unchanged. When the intermediate sum is 0 and the significance mask 
bit is O, the program interruption for the significance exception does not 
occur; rather, the characteristic is made O, yielding a true zero result. 
Exponent underflow does not occur for a fraction of O. 

TI'le sign of the sum is derived according to the rules of algebra; a 
result of 0 is regarded as positive. 

Resulting Condition Code 

0 Result fraction is 0 
1 Result is less than 0 
2 Result is greater than 0 
3 

Program Exceptions 

Specification 
Significance 
Exponent overflow 
Exponent underflow 
Access 

Programming Note 

Interchanging the two operands in a floating-point addition does not 
affect the value of the sum. 

7-8 



ADD UNNORMALIZED (FLOATING-POINT) (AW, AU) 

AW Rl ,D2 (X2 ,B2) (RX, Long) 

I I R x I B I D 
6E IOI 1 2 I 2 I 2 

I I I I 
0 8,9 12 16 20 31 

AU Rl ,D2 (X2 ,B2) (RX, Short) 

I I I R x B D 
I 6E 111 1 2 2 2 (optional) 
I I I 
0 8,9 12 16 20 31 

The second operand is added to the first operand, and the unnormalized 
sum is placed in the first operand location. Operand 2 requires fullword 
alignment. 

After the addition the intermediate sum is truncated to the proper 
fraction length. 

When the resulting fraction is 0 and the significance mask bit in the 
PCW is 1, a significance exception exists and a program interruption takes 
place. When the resulting fraction is 0 and the significance mask bit is 0, 
the program interruption for the significance exception does not occur; 
rather, the characteristic is made O, yielding a true zero result. (See ADD 
NORMAL I ZED.) 

Leading Os in the result are not eliminated by normalization, and an 
exponent underflow cannot occur. 

The sign of the sum is derived by the rules of algebra. '11le sign of a 
sum with a result fraction of 0 is always positive. 

Resulting Condition Code 

0 Result fraction is 0 
1 Result is less than 0 
2 Result is greater than 0 
3 

Program Exceptions 

Specification 
Significance 
Exponent overflow 
Access 

7-9 



AND (NR, N, NI , NC) 

NR Rl,R2 (RR) 

I R R 
I 14 1 2 
I 
0 8 12 15 

N Rl ,D2 (X2 ,B2) (RX) 

I R x I B D 
54 I 1 2 I 2 2 

I I 
0 8 12 15 31 

NI Dl (Bl) ,12 (SI) 

I I B I D 
I 94 2 1 I 1 
I I 
0 8 16 20 31 

NC Dl (L ,Bl) ,D2 (B2) (SS) 

B I /D I B II I D 
D4 L 1 11 2 I- - 2 

I I I II I 
0 8 16 20 32 36 47 

The logical product (AND) of the bits of the first and second operand is 
placed in the first operand location. Operands are treated as unstructured 
logical quantities, and the connective AND is applied bit by bit. A bit 
position in the result is set to 1 if the corresponding bit positions in both 
operands contain a 1; otherwise, the result bit is set to 0. All operands and 
results are valid. 

Operand 2 of the N instruction must be fullword aligned. For the NC 
instruction, L is the length of each operand minus 1. 

Resulting Condition Code 

0 Result is 0 
1 Result not 0 
2 
3 

7-10 



Program Exceptions 

Access (fetch, operand 2, N and NC; fetch and store, operand 1, NI, NC) 
Specification (N only) 

Programming Note 

lbe AND instruction may be used to set a bit to O. For this purpose, 
the second operand should have Os in all positions corresponding to the 
first-operand bits to be set to O. 

7-11 



BIT RESET (BRESET) 

BRESET Dl(Bl) ,M2 (SI) 

M B D 
9D 2 1 1 

0 8 16 20 31 

lbe bit at bit displacement M2 from the high-order bit (bit 0) of the 
first operand is set to O. Bit numbering begins with the high-order bit of 
each byte and proceeds through ascending byte locations. '11le condition code 
reflects the value of the specified bit before modification. 

Resulting Condition Code 

0 Bit was 0 before operation 
1 Bit was 1 before operation 
2 
3 

Program Exceptions 

Access (store, operand 1) 

7-12 



BIT SET (BSET) 

BSET Dl(Bl) ,M2 (SI) 

I I M B I D I 
I 9C I 2 1 I 1 I 
I I I I 
0 8 16 20 31 

The bit at bit displacement M2 from the high-order bit (bit 0) of the 
first operand is set to 1. Bit numbering begins with the high-order bit of 
each byte and proceeds through ascending byte locations. The condition code 
reflects the value of the specified bit before modification. 

Resulting Condition Code 

0 Bit was 0 before operation 
1 Bit was 1 before operation 
2 
3 

Program Exceptions 

Access (store, operand 1) 

7-13 



BIT TEST (BTEST) 

BTEST Dl(Bl),M2 

9E 

0 8 

M 
2 

(SI) 

16 

B 
1 

20 

D 
1 

31 

The bit at bit displacement M2 from the high-order bit (bit 0) of the 
first operand is tested, and the result is reflected in the condition code. 
Bit numbering begins with the high-order bit of each byte and proceeds through 
ascending byte locations. 

Resulting Condition Code 

0 Bit is 0 
1 Bit is 1 

Program Exceptions 

Access (fetch, operand 1) 

7-14 



This manual is updated by: Addendum 800-11OOP0-04.01 

BRANCH AND LINK (BALR, BAL) 

BALR Rl,R2 (RR) 

I I R I R I 
I 05 I 1 I 2 I 
I I I I 
0 8 12 15 

BAL Rl ,D2 (X2 ,B2) (RX) 

R x B D 
45 1 2 2 2 

0 8 12 16 20 31 

BRANCH AND LINK (RELATIVE) (RBAL) 

RBAL Rl,L2 (RL) 

I I R I L I 
I 75 I 1 I 2 I 
I I I I 
0 8 12 31 

The program mask byte of the PCW and the updated instruction address are 
stored as link information in the general register specified by Rl. 
Subsequently, the instruction address is replaced by the branch address. For 
BALR, the branch address is the contents of R2; for BAL, it is X2+B2+D2. For 
RBAL, the branch address is the sum of the current instruction address and the 
L2 field. 

The branch address is determined before the link information is stored. 
The link information contains the updated instruction address. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

None 

Programming Note 

The link information is stored without branching in the RR format when 
the R2 field contains zero. 

7-15 



This manual is updated by: Addendum 800-11OOP0-04.01 

BRANCH AND LINK ON CONDITION INDIRECT (BALCI) 

BALCI 

0 

Ml ,R3 ,D2 (B2) 

99 
I M 
I 1 
I 
8 

(RS) 

R B I 
3 2 I 

I 
12 16 20 

D 
2 

31 

The updated instruction address is replaced by the branch address if the 
state of the condition code is as specified by Ml; otherwise, normal 
instruction sequencing proceeds with the updated instruction address. If the 
branch is taken, the program mask byte of the PCW and the updated instruction 
address are stored as link infonnation in the general register specified by R3. 

The branch address is determined before the link information is stored. 
The three low-order bytes of the word at the location designated by the second 
operand address are used as the branch address. 

The Ml field is used as a 4-bit mask. The four bits of the mask 
correspond, left to right, with the four condition codes are as follows: 

Instruction Mask Position Condition 
Bit Value Code 

8 8 0 
9 4 1 

10 2 2 
11 1 3 

The branch is successful whenever the condition code has a corresponding 
mask bit of 1. 

Operand 2 requires fullword alignment. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (fetch, operand 2 if the branch is taken) 
Specification 

Programming Note 

This instruction combines a conditional branch and link with an 
indirectly specified branch address. 

7-16 



This manual is updated by: Addendum 800-11OOP0-04.01 

BRANCH AND LINK STACK (BALS) 

BALS Sl ,D2 (X2 ,B2) (RX) 

I S X B D 
81 I 1 2 2 2 

I 
0 8 12 16 20 31 

'!he relevant stack vector is determined from tl}.e Sl field of the 
instruction. A branch address is calculated from the second operand field 
according to the rules for base-displacement or relative address formation. 
'lbe stack pointer is decremented by 4, and the same information BAL would put 
in a register, including the updated instruction address, is placed in the 
four byte locations starting with the location addressed by the updated stack 
pointer. A branch is made to the previously calculated branch address. 

Resulting Condition Code 

'lbe condition code remains unchanged. 

Program Exceptions 

Stack overflow 
Access (store, bytes pushed onto stack) 
Specification 

7-17 



This manual is updated by: Addendum 800-11OOP0-04.01 

BRANCH AND LINK STACK (RELATIVE) (RBALS) 

RBALS Rl,L2 

73 

0 

I R 
I 1 
I 
8 12 

(RL) 

L 
2 

31 

The relevant stack vector is determined from the Rl field of the 
instruction. A branch address is calculated as the sum of the current 
instruction address and the L2 field. The stack pointer is decremented by 4, 
and the same information BAL would put in a register, including the updated 
instruction address, is placed in the four byte locations starting with the 
location addressed by the updated stack pointer. A branch is made to the 
previously calculated branch address. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Stack overflow 
Access (store, bytes pushed onto stack) 

7-18 



This manual is updated by: Addendum 800-11 OOP0-04.01 

BRANCH ON CONDITION (BCR, BC) 

BCR Ml,R2 (RR) 

I I M R I 
I 07 I 1 2 I 
I I I 
0 8 12 15 

BC Ml ,D2 (X2 ,B2) (RX) 

I I M I x I B I D I 
I 47 I 1 I 2 I 2 I 2 I 
I I I I I I 
0 8 12 16 20 31 

BRANCH ON CONDITION (RELATIVE) (RBC) 

RBC Ml,L2 (RL) 

I I M I L I 
I 77 I 1 I 2 I 
I I I I 
0 8 12 31 

The updated instruction address is replaced by the branch address if the 
state of the condition code is as specified by Ml; otherwise, normal 
instruction sequencing proceeds with the updated instruction address. For 
BCR, the branch address is contained in R2; for BC, it is X2+B2+D2. For RBC, 
it is the sum of the current instruction address and the 12 field. 

The Ml field is used as a 4-bit mask. 'nle four bits of the mask 
correspond, left to right, with the four condition codes as follows: 

Instruction Mask Position Condition 
Bit Value Code 

8 8 0 
9 4 1 

10 2 2 
11 1 3 

lbe branch is successful whenever the condition code has a corresponding mask 
bit of 1. 

Resulting Condition Code 

The condition code remains unchanged. 

7-19 



This manual is updated by: Addendum 800-11OOP0-04.01 

Program Exceptions 

None 

Programming Notes 

When a branch is to be made on more than one condition code, the 
pertinent condition codes are specified in the mask as the sum of their mask 
position values. A mask of 12, for example, specifies that a branch is to be 
made on condition codes 0 or 1. 

When all four mask bits are ls, that is, when the mask position value is 
15, the branch is unconditional. When all four mask bits are Os or when the 
R2 field in the RR format contains 0, the branch instruction is equivalent to 
a no-operation. For a no-operation BCR the branch address (R2) is ignored. 

7-20 



This manual is updated by: Addendum 800-11OOP0-04.01 

BRANCH ON CONDITION INDEXED (RELATIVE) (RBCX) 

RBCX Ml,L2(X2) (RRL) 

I I M x I 
I 65 I 1 2 I 
I I I 
0 8 12 16 

The updated instruction address 
state Of the condition code is 
instruction sequencing proceeds with 

L 
2 

31 

is replaced by the branch address if the 
as specified by Ml; otherwise, normal 
the updated instruction address. 

The branch address is formed by adding the halfword L2 field, the 
contents of the general register designated by the X2 field, and the current 
instruction address. 

The Ml field is used as a 4-bit mask as in the BRANCH ON CONDITION (BC) 
instruction. 

When the instruction is executed, the current instruction address used 
in the effective-address calculation is the address of the EXECurE instruction. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

None 

7-21 



This manual is updated by: Addendum 800-11OOP0-04.01 

BRANCH ON CONDITION STACK (BCS) 

BCS Ml,82 (RS) 

I M S 
01 I 1 2 

I 
0 8 12 15 

The updated instruction address is replaced by the branch address if the 
state of the condition code is as specified by Ml; otherwise, normal 
instruction sequencing proceeds with the updated instruction address. 

The Ml field is used as a 4-bit mask. The four bits of the mask 
correspond, left to right, with the four condition codes as follows: 

Instruction Mask Position Condition 
Bit Value Code 

8 8 0 
9 4 1 

10 2 2 
11 1 3 

'lhe branch is successful whenever the condition code has a corresponding 
mask bit of 1. 

If the branch is to be taken, the stack is referenced and the branch 
address is obtained from the stack. If the branch is not taken, the stack is 
not referenced and no stack violations are detected. 

The relevant stack vector is determined from the 52 field of the 
instruction. The 24-bit address in the low-order three bytes of the 
word-aligned 4-byte memory area addressed by the contents of the stack pointer 
is placed in the current instruction address field in the PCW (i.e., a branch 
is made to that location). The stack pointer is then incremented by 4. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (fetch, bytes popped from stack) 
Specification 

Programming Note 

This instruction is a BCR that uses the stack. 

7-22 



BRANCH ON COUNT (BCTR, BCT) 

BCTR Rl,R2 (RR) 

I I R R I 
I 06 I 1 2 I 
I I I 
0 8 12 15 

BCT Rl ,D2 (X2 ,B2) (RX) 

I I R x I B I D I 
I 46 I 1 2 I 2 I 2 I 
I I I I I 
0 8 12 16 20 31 

The contents of the general register specified by Rl are algebraically 
reduced by 1. When the result is 0, normal instruction sequencing proceeds 
with the updated instruction address. When the result is not 0, the 
instruction address is replaced by the branch address. The branch address for 
BCTR is R2; for BCT it is X2 + B2 + D2. 

The branch address is determined prior to the counting operation. 
Counting does not change the condition code. The subtraction proceeds as in 
fixed-point aritlunetic, and all 32 bits of the general register participate in 
the operation. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

None 

Programming Notes 

An initial count of 1 results in 0, and no branching takes place. An 
initial count of 0 results in all ls and causes branching to be executed. 

Counting is performed without branching when the R2 field in the RR 
format contains O. 

7-23 



BRANCH ON COUNT (RELATIVE) (RBCT) 

RBCT Rl,R2 

76 

0 8 

R 
1 

12 

(RL) 

L 
2 

31 

nie sign of the L2 field is extended 12 bi ts to the left, to fonn a 
32-bit signed 2's-complement displacement. nie displacement is added to the 
current instruction address to form the branch address. 

Instruction execution is then identical to the corresponding RX 
instruction. 

When the instruction is executed, the current instruction address used 
in the effective-address calculation is the address of the EXECUTE instruction. 

Resulting Condition Code 

nie condition code remains unchanged. 

Program Exceptions 

None 

7-24 



This manual is updated by: Addendum 800-11 OOP0-04.01 

BRANCH ON INDEX HIGH (BXH) 

BXH Rl ,R3 ,D2 (B2) (RS) 

R R B D I 
86 1 3 2 2 I 

I 
0 8 12 16 20 31 

BRANCH ON INDEX HIGH (RELATIVE) (RBXH) 

RBXH Rl,R3,L2 (RRL) 

I I R I R I L I 
I 66 I 1 I 3 I 2 I 
I I I I I 
0 8 12 16 31 

An increment is added to the first operand, and the sum is compared 
algebraically with a comparand. Subsequently, the sum is placed in the first 
operand location, regardless of whether the branch is taken. When the sum is 
high, the instruction address is replaced by the branch address. When the sum 
is low or equal, instruction sequencing proceeds with the updated instruction 
address. For BXH, the branch address is B2+D2. For RBXH, it is the sum of 
the current instruction address (bits 8-31 of the PCW) and the 12 field. 

The first operand and the increment are in the registers specified by Rl 
and R3. The comparand register address is odd and is either greater by 1 than 
R3 or equal to R3. The branch address is determined prior to the addition and 
comparison. 

Overflow caused by the addition is ignored and does not affect the 
comparison. Otherwise, the addition and comparison proceed as in fixed-point 
arithmetic. All 32 bits of the general registers participate in the 
operations, and negative quantities are expressed in 2's-complement notation. 
When the first operand and comparand locations coincide, the original register 
contents are used as the comparand. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

None 

Programming Note 

The name ''branch on index high" indicates that one of the major purposes 
of this instruction is the incrementing and testing of an index value. The 
increment is algebraic and may be of any magnitude. 

7-25 



This manual is updated by: Addendum 800-1 1 OOP0-04.01 

BRANCH ON INDEX LOW OR EQUAL (BXLE) 

BXLE Rl ,R3 ,D2 (B2) (RS) 

I I R I R I B I D I 
I 87 I 1 I 3 I 2 I 2 I 
I I I I I I 
0 8 12 16 20 31 

An increment is added to the first operand, and the sum is compared 
algebraically with a comparand. Subsequently, the sum is placed in the first 
operand location, regardless of whether the branch is taken. When the sum is 
low or equal, the instruction address is replaced by the branch address. When 
the sum is high, normal instruction sequencing proceeds with the updated 
instruction address. The branch address is B2+D2. 

The first operand and the increment are in the registers specified by Rl 
and R3. The comparand register address is odd and is either greater by 1 than 
R3 or equal to R3. The branch address is determined prior to the addition and 
comparison. 

This instruction is similar to BRANCH ON INDEX HIGH, except that the 
branch is taken when the sum is low or equal compared to the comparand. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

None 

7-26 



BRANCH ON INDEX LOW OR EQUAL (RELATIVE) (RBXLE) 

RBXLE Rl,R3,L2 (RRL) 

I R R L 
67 I 1 3 2 

I 
0 8 12 16 31 

The branch address is formed by adding the signed halfword 12 field and 
the current instruction address. Instruction execution is then identical to 
the corresponding RS instruction. 

When the instruction is executed, the current instruction address used 
in the effective-address calculation is the address of the EXECurE instruction. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

None 

7-27 



COMPARE (CR, C) 

CR Rl,R2 (RR) 

I R R 
I 19 1 2 
I 
0 8 12 15 

c Rl ,D2 (X2 ,B2) (RX) 

R x B I D 
59 1 2 2 I 2 

I 
0 8 12 16 20 31 

The first operand is compared with the second operand, and the result 
determines the set ting of the condition code. The second operand of the C 
instruction must be fullword aligned. 

Comparison is algebraic, treating both comparands as 32-bit signed 
integers. Operands in registers or storage are not changed. 

Resulting Condition Code 

0 Operands are equal 
1 First operand is low 
2 First operand is high 
3 

Program Exceptions 

Access (fetch, Operand 2 of C only) 
Specification (C only) 

7-28 



COMPARE (FLOATING-POINT) (CDR, CER, CD, CE) 

CDR Rl,R2 (RR, Long) 

I I I R R 
I 29 IOI 1 2 
I I I 
0 8,9 12 15 

CER Rl,R2 (RR, Short) 

I I R R 
29 Ill 1 2 (optional) 

I I 
0 8.,9 12 15 

CD Rl ,D2 (X2 ,82) (RX, Long) 

I I I R x I 8 I D I 
I 69 IOI 1 2 I 2 I 2 I 
I I I I I I 
0 8,9 12 16 20 31 

CE Rl ,D2 (X2 ,B2) (RX, Short) 

I I I R x I B D 
I 69 Ill 1 2 I 2 2 (optional) 
I I I I 
0 8,9 12 16 20 31 

lbe first operand is compared with the second operand, and the condition 
code indicates the result. 

Comparison is algebraic, taking into account the sign, fraction, and 
exponent of each number. An exponent inequality is not dee isi ve for magnitude 
determination, since the fractions may have different numbers of leading Os. 
An equality is established by following the rules for normalized 
floating-point subtraction. When the intermediate swn, including the guard 
digit, is O, the operands are equal. Neither operand is changed as a result 
of the operation. 

An exponent-overflow, exponent-underflow, or lost significance exception 
cannot occur. 

Operand 2 of the CD instruction must be fullword aligned. 

Resulting Condition Code 

0 Operands are equal 
1 First operand is low 
2 First operand is high 
3 

7-29 



Program Exceptions 

Specification 
Access 

Prograoming Note 

Condition code 0 (equal comparison) is set when numbers with zero 
fractions are compared, even when they differ in sign or characteristic. 

7-30 



This manual is updated by: Addendum 800-11 OOP0-04.01 

COMPARE DECIMAL (CP) 

CP Dl (Ll ,Bl) ,D2 (L2 ,B2) (SS) 

I I L L I B I I /D I B I I !DI 
I F9 I 1 2 I 1 I 11 2 I 2 I 
I I I I I I I I I _!_I 
0 8 12 16 20 32 36 47 

The first operand is compared with the second, and the condition code 
indicates the comparison result. 

Comparison proceeds right to left, taking into account the sign and all 
digits of both operands. All digits are checked for validity. If the fields 
are unequal in length, the shorter is extended with Os on the most significant 
end. A field with a zero value and positive sign is considered equal to a 
field with a zero value but negative sign. Neither operand is changed as a 
result of the operation. Overflow cannot occur in this operation. 

The first 
bytes coincide. 

and second fields may overlap when their least significant 
It is possible, therefore, to compare a number to itself. 

Ll and 12 are the field lengths in bytes, minus 1. 

Resulting Condition Code 

O Operands equal 
1 First operand is low 
2 First operand is high 
3 

Program Exceptions 

Access (fetch, operands 1 and 2) 
Data 

Prograoming Note 

The COMPARE DECIMAL instruction is the only COMPARE instruction that 
processes from right to left, taking signs, Os, and invalid characters into 
account, and extending variable-length fields when they are unequal in length. 

7-31 



This manual is updated by: Addendum 800-11 OOP0-04.01 

COMPARE HALFWORD (CH) 

CH Rl,D2(X2,B2) 

49 

0 8 

R 
1 

12 

x 
2 

(RX) 

16 

B 
2 

20 

D 
2 

31 

'!be first operand is compared with the second operand, and the result 
determines the setting of the condition code. The second operand is two bytes 
in length, must be halfword aligned, and is considered to be a 16-bit signed 
integer. 

The second operand is expanded to 32 bits before the comparison by 
propagating the sign-bit value through the 16 high-order bit positions. 

Comparison is algebraic, treating both comparands as 32-bit signed 
integers. Operands in registers or storage are not changed. 

Resulting Condition Code 

0 Operands are equal 
1 First operand is low 
2 First operand is high 
3 

Program Exceptions 

Access (fetch, operand 2) 
Specification 

7-32 



COMPARE LOGICAL (CLR, CL, CLI, CLC) 

CLR Rl,R2 (RR) 

I I R I R I 
I 15 I 1 I 2 I 
I I I I 
0 8 12 15 

CL Rl ,D2 (X2 ,82) (RX) 

I I R x I B D 
I 55 I 1 2 I 2 2 
I I I 
0 8 12 16 20 31 

CLI Dl(Bl) ,12 (SI) 

B D 
95 I 1 1 

0 8 16 20 31 

CLC Dl (L ,Bl) ,D2 (B2) (SS) 

B I I ID I B I/ I D 
D5 L 1 I 11 2 I- - 2 

I I I I I/ I 
0 8 16 20 32 36 47 

The first operand is compared with the second operand, and the result is 
indicated in the condition code. For the CL instruction, the second operand 
requires fullword alignment. 

The instructions allow comparisons that are register-to-register, 
storage-to-register, instruction-to-storage, and storage-to-storage. 'Ihe 
length of the CLC instruction is stored as the actual length minus 1 in the Ll 
field. 

Comparison is unsigned binary, and all codes are valid. 'Ihe operation 
proceeds left to right and ends as soon as an inequality is found or the end 
of the fields is reached. However, when part of an operand in the CLC 
instruction is specified in an unavailable location, the operation may be 
tenninated by an addressing exception. 

Resulting Condition Code 

0 Operands are equal 
1 First operand is low 
2 First operand is high 
3 

7-33 



Program Exceptions 

Specification (CL only) 
Access (fetch, operand 2, CL and CLC; fetch, operand 1, CLI, CLC) 

Programming Note 

lhe COMPARE LOGICAL instructions treat all bits alike as part of an 
unsigned binary quantity. In variable-length operation, comparison is left to 
right and may extend to the full specified field length. The operation may be 
used to compare unsigned packed decimal fields or alphanumeric information in 
any code that has a collating sequence based on ascending or descending binary 
values. For example, ASCII has a collating sequence based on ascending binary 
values. 

7-34 



COMPARE LOGICAL CHARACTERS UNDER MASK (CLM) 

CLM Rl,M3,D2(B2) (RS) 

I I R I M I B I D 
I BD I 1 I 3 I 2 I 2 
I I I I I 
0 8 12 16 20 31 

The second operand is compared with the first operand under control of a 
mask, and the result is indicated in the condition code. 

The contents of the M3 field (bit positions 12-15) are used as a mask. 
The four bits of the mask, left to right, correspond with the four bytes, left 
to right, of the general register designated by the Rl field. The byte 
positions corresponding to ls in the mask are considered a contiguous field 
and are compared with the second operand. The second operand is a contiguous 
field in memory, starting at the second operand address and equal in length to 
the number of ls in the mask. The bytes in the general register corresponding 
to Os in the mask do not participate in the operation. The comparison is 
performed with the operands regarded as binary unsigned quantities, with all 
codes valid. The operation proceeds left to right. 

When the mask is not O, exceptions associated with storage-operand 
access are recognized only for the nwnber of bytes specified by the mask. 
However, when part of the designated storage operand is in an inaccessible 
location but the operation can be completed by using the accessible operand 
parts, whether or not the exception for the inaccessible part is indicated is 
unpredictable. When the mask is 0, access exceptions are recognized for one 
byte. 

Resulting Condition Code 

0 Selected bytes are equal, or mask is 0 
1 Selected field of first operand is low 
2 Selected field of first operand is high 
3 

Program Exceptions 

Access (fetch, operand 2) 

7-35 



COMPARE LOGICAL LONG (CLCL) 

CLCL Rl,R2 

OF 

0 

I R 
I 1 
I 
8 

(RR) 

I R I 
I 2 I 
I I 
12 15 

The first operand is compared with the second operand, and the result is 
indicated in the condition code. 

The Rl and R2 fields each designate an even-odd pair of general 
registers and must each specify an even-numbered register; otherwise, a 
specification exception is recognized. 

The addresses of the leftmost bytes of the first and second operands, 
respectively, are specified by bits 8-31 of general registers Rl and R2. 
Numbers of bytes in the first and second operands, respectively, are given by 
bits 8-31 of general registers Rl+l and R2+1. Bits 0-7 of register R2+1 
contain the padding character. Bits 0-7 of registers Rl, Rl+l, and R2 are 
ignored. 

The comparison is performed with the operands regarded as binary 
unsigned quantities, with all codes valid. The comparison starts at the 
high-order end of both fields and proceeds to the right. The operation ends 
as soon as an inequality is detected or the end of the longer operand is 
reached. If the operands are not of the same length, the shorter operand is 
extended with the padding character for purposes of comparison. 

If both operands are of zero length, the operands are considered equal. 

The execution of the instruction is interruptible. When an interruption 
occurs after a unit of operation other than the last one, the contents of 
registers Rl+l and R2+1 are decremented by the number of bytes compared, and 
the contents of registers Rl and R2 are incremented by the same number, so 
that the instruction, when re-e~ecuted, resumes at the point of interruption. 
'Ibe high-order bytes of registers Rl and R2 are set to O; the contents of the 
high-order byte of registers Rl+l and R2+1 remain unchanged. If the operation 
is interrupted after the shorter operand has been exhausted, the count field 
pertaining to the shorter operand is 0 and its address is updated accordingly. 

7-36 



lbe instruction may be refetched from main storage even in the absence 
of an interruption during execution. 

If the operation ends because of a mismatch, the count and address 
fields at completion identify the byte of mismatch. The contents of bit 
positions 8-31 of registers Rl+l and R2+1 are decremented by the number of 
bytes that matched, unless the mismatch occurred with the padding character, 
in which case the count field for the shorter operand is set to O. The 
contents of bit positions 8-31 of registers Rl and R2 are incremented by the 
amounts by which the corresponding count fields were reduced. If the count 
fields of both operands are made 0 at completion and the addresses are 
incremented by the corresponding count values, the contents of bit positions 
0-7 of registers Rl and R2 are set to 0, even in the case when one or both of 
the original count values are O. The contents of bit positions 0-7 of 
registers Rl+l and R2+1 remain unchanged. 

When part of an operand is designated in an inaccessible location but 
the operation can be completed by using the available operand parts, it is 
unpredictable whether an access exception for the inaccessible part is 
recognized. 

When the count field for an operand has the value 0, no access 
exceptions are recognized for that operand. 

Resulting Condition Code: 

0 Operands are equal, or both fields have zero length 
1 First operand is low 
2 First operand is high 
3 

Program Exceptions 

Access (fetch, operands 1 and 2) 
Specification 

Programming Notes 

When the contents of the Rl and R2 fields are the same, the condition 
code is set to O, but protection and addressing exceptions do not necessarily 
occur as called for by the operand designation. 

Special precautions should be taken when COMPARE LOGICAL LONG is made 
the subject of EXECurE. See the programming notes under EXECUTE. 

See also the programming notes under MOVE LONG. 

7-37 



COMPARE LOGICAL WI111 PAD (CLPC) 

CLPC Dl(Ll,Bl),D2(L2,B2) ,13 (SSI) 

I I L I I L I B I/ /D I B I /D I 

I ES I 1 3 I 2 I 1 I 1 I 2 2 I 

I I I I I/ I I I I I 
0 8 16 24 32 36 48 52 63 

The first operand is compared with the second operand, and the result is 
indicated in the condition code. Comparison is binary, and all codes are 
valid. All bits are treated alike as part of an unsigned binary quantity. 
'lbe operation proceeds left to right and ends as soon as an inequality is 
found. Ll and L2 are the operand lengths, minus 1. If operand lengths Ll and 
L2 are unequal, the shorter operand is extended on the right for purposes of 
comparison by replication of the character specified in the 13 field of the 
instruction. 

The bytes compared are not modified. 

Resulting Condition Code 

0 Operands are equal 
1 First operand is low 
2 First operand is high 
3 

Program Exceptions 

Access (fetch, operands 1 and 2) 

7-38 



COMPRESS STRING (COMP) 

COMP Dl(Rl,Bl) ,D2(R2,B2) (SS) 

R R B I I D B I I D 
F6 1 2 1 1 2 2 

I I I I 
0 8 12 16 20 32 36 47 

The second operand is placed in the first operand location in a 
compressed format. 

The lengths of operands 1 and 2 are taken from registers Rl and R2, 
respectively. If the value in either register is 0 or greater than 2048, the 
instruction terminates immediately with condition code 2, and operand 1 is not 
changed. 

The resulting string in the first operand location contains one or more 
substrings, each consisting of a length byte followed by one or more data 
bytes. The length byte format is as follows: 

Bit 0 = 0 
= 1 

Bits 1-7 

Uncompressed substring follows 
Compressed substring follows 

Length of original substring minus 1 

A compressed substring is always two bytes in length, and consists of 
the length byte followed by a byte to be replicated when recreating the 
original string. All bytes repeated three or more times are compressed; pairs 
of identical bytes are not compressed. 

Resulting Condition Code 

0 String successfully compressed; length of compressed string placed 
in register Rl. 

1 Compressed string too long for operand 1; register Rl unchanged; 
data in operand 1 unreliable. 

2 

3 

Length in Rl or R2 is 0 or greater than 2048; 
suppressed; register Rl unchanged. 

Program Exceptions 

Access (fetch, operand 2; store, operand 1) 

Programming Note 

instruction 

Pairs are not compressed. Thus hexadecimal 'AABBCCCCDD' becomes 
'04AABBCCCCDD' rather than '01AABB81CCOODD'. 

7-39 



p 
CONTROL 1/0 00100 

CIO Rl (~) 

I I R 1//////1 
I OC I 1 1//////1 
I I 1//////1 
0 8 12 15 

CONI'ROL 1/0 causes the addressed device or I/0 processor to perform 
device-dependent or processor-dependent actions. Not all devices and I/0 
processors accept CIO as a valid request. When issued for a device for which 
it is not supported, CIO will return condition code O, and program execution 
will continue. 

Bits 24 to 31 of Rl identify the device. Bits 0 to 23 are ignored. 

The CIO instruction is discussed in greater detail in Chapter 8. 

Resulting Condition Code 

0 I/O operation accepted or device for which CIO not supported, 
execution proceeding 

1 Device busy with previous ~peration, or interruption other than IOP 
NOW READY is pending 

2 IOP busy 

3 IOP not operational 

Program Exceptions 

Privileged operation 

Programming Note 

Telecommunications (TC) IOPs use the SIO instruction instead of CIO for 
memory diagnostic operations. 

7-40 



This manual is updated by: Addendum 800-11OOP0-04.01 

CONVERT DECIMAL (FLOATING-POINT) TO PACKED DECIMAL (CVP) 

CVP Rl,D2{X2,B2) (RX) 

R X B D 
7F 1 2 2 2 

0 8 12 16 20 31 

'!be decimal floating-point number in the floating-point register 
designated by Rl is converted to packed decimal format, and the result is 
stored in the location specified by the second operand. If the second operand 
address is not word aligned, a specification exception will occur. 

Absolute values greater than 9 99 99 99 99 99 99 99 result in a decimal 
overflow, and cause a program interruption if the decimal overflow mask bit is 
1. In the event of an overflow, the low-order 15 digits plus the sign digit 
are stored in the second operand. 

Resulting Condition Code 

0 Result is 0 
1 Result is less than 0 
2 Result is greater than O 
3 Overflow 

Program Exceptions 

Specification 
Data 
Decimal overflow 
Access 

7-40.1 



This manual is updated by: Addendum 800-11OOP0-04.01 

CONVERT PACKED DECIMAL TO DECIMAL (FLOATING-POINT) (CVQ) 

CVQ Rl ,D2 (X2 ,B2) (RX) 

I R x B I D 
7E I 1 2 2 I 2 

I I 
0 8 12 16 20 31 

'nle 8-byte packed decimal value in the second operand is converted to a 
normalized decimal floating-point number and placed in the floating-point 
register designated by Rl. 

The second operand address must be word aligned, or else a specification 
exception occurs. 

Exponent overflow and exponent underflow cannot occur. 

No significance exception will be taken for a zero fraction. 

Resulting Condition Code 

0 Result is 0 
1 Result is less than 0 
2 Result is greater than 0 
3 

Program Exceptions 

Specification 
Data 
Access 

7-40.2 



This manual is updated by: Addendum 800-11OOP0-04.01 

CONVERT TO BINARY (CVB) 

CVB Rl ,D2 (X2 ,B2) (RX) 

I I R I x B I D I 
I 4F I 1 I 2 2 I 2 I 
I I I I I 
0 8 12 16 20 31 

The radix of the second operand is changed from decimal to binary. The 
number is treated as a right-aligned signed integer both before and after 
conversion. The second operand has the packed decimal data format and is 
checked for valid digit codes. Improper codes cause a program interruption 
with interruption code 07 (data exception). The decimal operand occupies 
eight bytes in memory and must be fullword aligned. If the decimal operand is 
not properly aligned, the instruction will be suppressed and will cause a 
specification exception. '111e low-order four bits of the field represent the 
sign. The remaining 60 bits contain 15 binary-coded-decimal digits in true 
notation. The result of the conversion is placed in the general register 
specified by Rl. The maximum number that can be converted and still be 
contained in a 32-bit register is 2,147,483,647; the minimum number is 
-2,147,483,648. For any decimal number outside this range, the operation is 
completed by placing the 32 low-order binary bits in the register; a 
fixed-point divide exception exists, and a program interruption follows. In 
the case of a negative second operand, the low-order part is in 2's-complement 
notation. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (fetch, operand 2) 
Data 
Fixed-point divide 
Specification 

7-41 



This manual is updated by: Addendum 800-11OOP0-04.01 

CONVERT TO DECIMAL (CVD) 

CVD 

0 

Rl ,D2 (X2 ,B2) 

4E 
I R 
I 1 
I 
8 

(RX) 

X B 
2 2 

12 16 20 

D 
2 

31 

The radix of the first operand is changed from binary to decimal, and 
the result is stored in the second operand location. The number is treated as 
a right-aligned signed integer both before and after conversion. 

The result is placed in the memory location designated by the second 
operand and has the packed decimal format. 'Ill.e second operand must occupy 
eight bytes and must be fullword aligned. If the second operand is not 
properly aligned, the instruction will be suppressed and will cause a 
specification exception. A positive sign is encoded as 1111; a negative sign 
is encoded as 1101. The remaining 60 bits contain 15 binary coded decimal 
digits in true notation. 

Since 15 decimal digits are available for the decimal equivalent of 31 
bits, an overflow cannot occur. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (store, operand 2) 
Specification 

7-42 



CONVERT FLOATING-POINT TO INTEGER (CDI) 

CDI Rl, R2 

2F 

0 8 

R 
1 

R 
2 

12 15 

(~) 

The integer portion of the floating-point number in the floating-point 
register designated by the second operand is converted to a binary integer in 
2's-complement form, and placed in the general register designated by the 
first operand. Any binary fraction digits are discarded (right-truncated) in 
the fixed-point integer result. Values greater than (2,n~31)-l or less than 
-(21rk31) result in overflow, and cause a program interruption when the 
fixed-point overflow mask bit is 1. In the event of overflow, the low-order 
32 bits of the correct result are placed in the result register. 

Resulting Condition Code 

0 Result is 0 
1 Result is less than O 
2 Result is greater than 0 
3 Overflow 

Program Exceptions 

Fixed-point overflow 
Specification 

Programming Note 

To save the fraction before conversion, multiply the floating-point 
number by that power of 10 corresponding to the degree of precision desired. 

7-43 



CONVERT INTEGER TO FLOATING-POINT (CID) 

CID Rl, R2 (RR) 

I I R I R I 
I 2E I 1 I 2 I 
I I I I 
0 8 12 15 

The binary integer in the general register designated by the second 
operand is converted to a normalized floating-point nwnber and placed in the 
floating-point register designated by the first operand. Exponent overflow 
and exponent underflow cannot occur. Binary 0 is converted to true 
floating-point 0. 

Resulting Condition Code 

0 Result is 0 
1 Result is less than 0 
2 Result is greater than 0 
3 

Program Exceptions 

Specification 

Programming Note 

A significance interrupt will never occur. 

7-44 



DECREMENT AND INSPECT SEMAPHORE (DSEM) 

DSEM Rl ,D2 (X3 ,B3) (RX) 

I I R I x I B I D I 
I 51 I 1 I 3 I 3 I 2 I 
I I I I I I 
0 8 12 16 20 31 

'nle byte addressed by contents of register Rl is treated as a 
2's-complement. binary number, and 1 is subtracted from it. If the result is 0 
or greater, the next instruction is taken. If the result is less than O, a 
binary 1 is added to the high-order byte of the word addressed by the combined 
second and third operands (D2(X3,B3)), without regard for possible overflow. 
An enqueuing operation occurs exactly as if the instruction were an ENQ 
instruction with the same Rl, B3, X3, and D2 fields. 

If a result of -129 
overflow is indicated. 
will be taken. 

is developed by the subtraction, a fixed-point 
When the fixed-point overflow flag is 1, the exception 

If there is a fixed-point overflow, the count is updated and the rest of 
the effects of the instruction are suppressed. 

Data fields referenced by this instruction must be aligned as is 
required for the ENQ instruction. 

Resulting Condition Code 

0 Result of subtraction is 0 
1 Result of subtraction is less than 0 
2 Result of subtraction is greater than 0 
3 Overflow 

Program Exceptions 

Specification 

Fixed-point overflow 

Access (fetch and store, operand l; fetch and store, combined operands 2 
and 3 as for ENQ instruction) 

7-45 



DEQUEUE (DEQ) 

DEQ Rl,D2(B3) (RS) 

I I R 1//////1 B I D I 
I AO I 1 1//////1 3 I 2 I 
I I 1//////1 I I 
0 8 12 16 20 31 

'!be first operand addresses a doubleword First-In First-Out (FIFO) queue 
which consists of a head word and a tail word. When the queue is empty, both 
the head and the tail words are null (the last 24 bits of each of these words 
are binary Os). The dequeuing operation checks for an empty queue first, and 
if the queue is empty, the third operand is made null and a condition code of 
0 is set. If the queue is not empty, the address of the storage block 
indicated by the head word is placed in the third operand and the chain word 
at displacement (D2) in the storage block being dequeued is placed in the head 
word and zeroed in the storage block. If the new head word is null, the queue 
is empty, and the tail word is also made null. A condition code of 1 is set 
to indicate that a storage block has been dequeued. The DEQ instruction does 
not modify or test the first byte of the head or tail pointers or of the chain _ 
word. 

An addressing exception is recognized and the operation is terminated if 
the first operand (queue) address is invalid. Both the queue addresses and 
the chain word location in the dequeued storage block are checked for 
protection exceptions: the instruction is suppressed if a violation is 
recognized. A specification exception is recognized and the operation is 
terminated if one but not both of the head/tail words is null, or if both 
head/tail words point to the same block but the chain word in the block is not 
null. 

A specification exception is recognized if the head/tail area is not 
doubleword aligned or if any chain word referenced is not fullword aligned. 

Resulting Condition Code 

0 No storage blocks queued 
1 Storage block dequeued and queue updated 
2 
3 

Program Exceptions 

Access (fetch and store, operand 1 and combined operands 2 and 3) 
Specification 

7-46 



DESTACK (DESK) 

DESK Rl ,D2 {83) 

Al 

0 

(RS) 

R 1//////1 B 
1 1//////1 3 

1//////1 
8 12 16 20 

D 
2 

31 

The first operand addresses a LIFO stack pointer to the most recently 
entered storage block in the stack. When the stack is empty, the stack 
pointer word is null (the last 24 bits of this word are binary Os). '!he third 
operand defines a register which is to receive the pointer to the destacked 
storage block, and the second operand defines the displacement of the chain 
word in the storage blocks in the stack. 

The unstacking operation checks for a null stack first, and if the stack 
is empty, the third operand is made 0 and a condition code of 0 is set. If 
the stack is not empty, the address of the storage block indicated by the 
stack pointer word is placed in the third operand, the high-order byte of the 
third operand is zeroed, the value found in the low-order three bytes of the 
chain word of the destacked storage block is placed in the low-order three 
bytes of the stack pointer word, and the chain word is made null. The 
condition code is set to 1 to indicate that a storage block has been 
destacked. The DESK instruction does not modify or test the first byte of the 
stack pointer or chain word. 

If the first operand (stack) address is invalid, an addressing exception 
is recognized, and the operation is terminated. The stack address and the 
chain word address in the destacked storage block are checked for protection 
exceptions: the instruction is suppressed if a violation is recognized. 

If the stack address is not in a fullword-aligned location, or if any 
chain word that the instruction references is not fullword aligned, a 
specification exception is recognized. 

Resulting Condition Code 

0 No storage blocks stacked 
1 Storage block destacked and stack updated 
2 
3 

Program Exceptions 

Access {fetch and store, operand 1 and combined operands 2 and 3) 
Specification 

7-47 



DIVIDE (DR, D) 

DR Rl,R2 

I I R 
I lD I 
I I 
0 8 

D Rl ,D2 (X2 ,B2) 

I I R 
I SD I 
I I 
0 8 

R 
1 2 

12 15 

x 
1 2 

12 

(RR) 

(RX) 

I B 

I 
I 
16 

2 

20 

D 
2 

31 

The dividend (first operand) is divided by the divisor (second operand) 
and replaced by the quotient and remainder. 

The dividend is a 64-bi t signed integer and occupies the pair of 
registers beginning with the register specified by the Rl field of the 
instruction. A 32-bit signed remainder and a 32-bi t signed quotient replace 
the dividend in register Rl and the register following Rl, respectively. The 
divisor is a 32-bit signed integer. 

The Rl field of the instruction specifies an even/odd pair of registers 
and must contain an even register address. A specification exception occurs 
when Rl is odd. Operand 2 of the D instruction requires fullword alignment. 

The sign of the quotient is determined by the rules of algebra. The 
remainder has the same sign as the dividend, except that a zero quotient or a 
zero remainder is always positive. All operands and results are treated as 
signed integers. When the relative magnitudes of dividend and divisor are 
such that the quotient cannot be expressed as a 32-bit signed integer, a 
fixed-point divide exception is recognized (a program interruption occurs, no 
di vision takes place, and the dividend remains unchanged in the general 
registers) • 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (fetch, operand 2 of D only) 
Fixed-point divide 
Specification 

7-48 



DIVIDE (FLOATING-POINT) (DDR, DER, DD, DE) 

DDR Rl,R2 (RR, Long) 

I I I R R I 
I 2D IOI 1 2 I 
I I I I 
0 8,9 12 15 

DER Rl,R2 (RR, Short) 

I I R R 
2D Ill 1 2 (optional) 

I I 
0 8,9 12 15 

DD Rl,D2(X2,B2) (RX, Long) 

I I I R x B D 
I 6D IOI 1 2 2 2 
I I I 
0 8,9 12 16 20 31 

DE Rl ,D2 (X2 ,B2) (RX, Short) 

I I I R x B D I 
I 6D 111 1 2 2 2 I (optional) 
I I I I 
0 8,9 12 16 20 31 

The dividend (the first operand) is divided by the divisor (the second 
operand) and replaced by the quotient. No remainder is preserved. Operand 2 
of the DD and DE instructions must be fullword aligned. 

A floating-point division consists of a characteristic subtraction and a 
fraction division. The difference between the dividend and divisor 
characteristics plus 64 is used as an intermediate quotient characteristic. 
'llle sign of the quotient is determined by the rules of algebra. 

The quotient fraction is normalized by prenormalizing the operands. 
Postnormalizing the intennediate quotient is never necessary, but a right
shift may be called for. Tile intermediate-quotient characteristic is adjusted 
for the shifts. All dividend fraction digits participate in forming the 
quotient, even if the nonnalized dividend fraction is larger than the 
normalized divisor fraction. The quotient fraction is truncated to the 
desired number of digits. 

A program interruption for exponent overflow occurs when the 
final-quotient characteristic exceeds 127. The operation is completed, the 
fraction is correct and normalized, the sign is correct, and the 
characteristic is smaller by 128 than the correct characteristic. 

7-49 



If the final quotient characteristic is less than 0 and the 
underflow mask bit in the PCW is 1, a program interruption for 
underflow occurs. The fraction is correct and normalized, the 
correct, and the characteristic is larger by 128 than the 
characteristic. If the corresponding mask bit is not 1, the result is 
true O. Underflow is not signaled for the intermediate quotient or 
operand characteristics during prenormalization. 

exponent 
exponent 
sign is 
correct 
made a 
for the 

When division by a divisor with zero fraction is attempted, the 
operation is suppressed. The dividend remains unchanged, and a program 
interruption for floating-point divide occurs. When the dividend fraction is 
O, the quotient fraction will be 0. The quotient sign and characteristic are 
made 0, yielding a true zero result without taking the program interruption 
for exponent underflow and exponent overflow. The program interruption for 
significance is never taken for division. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Specification 
Exponent overflow 
Exponent underflow 
Floating-point divide 
Access 

7-50 



DIVIDE DECIMAL (DP) 

DP Dl(Ll,Bl) ,D2(L2,B2) (SS) 

I I L I L I B I I ID I B I/ I D I 
I FD I 1 I 2 I 1 I 11 2 I- - 2 I 
I I I I I I I I I/ I I 
0 8 12 16 20 32 36 47 

The dividend (the first operand) is divided by the divisor (the second 
operand) and replaced by the quotient and remainder. 

The quotient field is placed leftmost in the first operand field. The 
remainder field is placed rightmost in the first operand field and has a size 
equal to the divisor size. Together, the quotient and remainder occupy the 
entire dividend field; therefore, the address of the quotient field is the 
address of the first operand. Ll and L2 are the field lengths in bytes, minus 
1. The size of the quotient field in bytes is Ll L2. When the divisor 
length code (12) is larger than 7 (15 digits and sign) or is greater than or 
equal to the dividend length code (Ll), a specification exception is 
recognized. The operation is suppressed, and a program interruption occurs. 

If division by 0 is attempted, a decimal divide exception is recognized 
and the operation is terminated. 

The dividend, divisor, quotient, and remainder are all signed integers, 
right-aligned in their fields. The sign of the quotient is determined by the 
rules of algebra from dividend and divisor signs. The sign of the remainder 
has the same value as the dividend sign. 

Division is algebraic, taking into account the sign and all digits of 
both operands. All digits are checked for validity. If necessary, Os are 
supplied for either operand on the most significant end. When the first 
operand field (Ll) is too short to contain all significant digits of the 
quotient, the operation is terminated and the overflow condition is set. 

A quotient larger 
decimal divide exception. 

than the nwnber of digits allowed is recognized as a 
'!be operation is tenninated. 

The divisor and dividend fields may overlap if their least significant 
bytes coincide. 

7-51 



Resulting Condition Code 

'!he condition code remains unchanged. 

Program Exceptions 

Access (store operand 1, fetch operand 2) 
Data 
Decimal divide 
Specification 

Programming Notes 

'!he maximum dividend size is 31 digits plus sign. Since the smallest 
remainder size is 1 digit and sign, the maximum quotient size is 29 digits and 
sign. 

lhe condition for an overflow exception can be detennined by a trial 
subtraction. The leftmost digit of the divisor field is aligned with the 
second-to-leftmost digit of the dividend field. When the divisor, so aligned, 
is less than or equal to the dividend, an overflow exception is indicated. 

7-52 



This manual is updated by: Addendum 800-11OOP0-04.01 

DIVIDE DECIMAL (FLOATING-POINT) (DQR, DQ) 

DQR Rl,R2 (RR) 

R R 
3D 1 2 

0 8 12 15 

DQ Rl ,D2 (X2 ,B2) (RX) 

I I R I x I B I D I 
I 7D I 1 I 2 I 2 I 2 I 
I I I I I I 
0 8 12 16 20 31 

The dividend (the first operand) is divided by the divisor (the second 
operand), and the quotient replaces the first operand. Any remainder is 
discarded. Fullword alignment is required. 

A decimal floating-point division consists of a characteristic 
subtraction and a fraction division. The difference between the dividend and 
divisor characteristics plus 64 is used as an intermediate quotient 
characteristic. The sign of the quotient is determined by the rules of 
algebra. 

The quotient fraction is normalized by prenormalizing the operands. 
Postnormalizing the intermediate quotient is never necessary, but a 
right-shift may be called for. nie intermediate-quotient characteristic is 
adjusted for the shifts. The quotient fraction is truncated to 14 digits. 

A program interruption for exponent overflow occurs when the 
final-quotient characteristic exceeds 127. 1be operation is completed, the 
fraction is correct and normalized, the sign is correct, and the 
characteristic is 128 smaller than the correct characteristic. 

If the final quotient characteristic is less than zero and the exponent 
underflow mask bit is 1, a program interruption for exponent underflow 
occurs. The fraction is correct and normalized, the sign is correct, and the 
characteristic is 128 larger than the correct characteristic. If the 
corresponding mask bit is O, the result is made a true zero. Underflow cannot 
occur during prenormalization. 

When division by a divisor with zero fraction is attempted, the 
operation is suppressed. The dividend remains unchanged, and a program 
interruption for floating-point divide occurs. When the dividend fraction is 
zero, the quotient result is made a true zero without taking a program 
interruption (for exponent underflow or overflow). 'lb.e program interruption 
for significance is never taken for division. 

7-52.1 



This manual is updated by: Addendum 800-11OOP0-04.01 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Specification 
Data 
Exponent overflow 
Exponent underflow 
Access (DQ only) 
Floating-point divide 

7-52.2 



EDIT (ED) 

ED D1 (L ,Bl) ,D2 (B2) (SS) 

I I B I I ID I B I/ I D I 
I DE I L 1 I 11 2 I- - 2 I 
I I I I I I I/ I I 
0 8 16 20 32 36 47 

The format of the source (the second operand) is changed from packed to 
zoned, and is modified under control of the pattern (the first operand) • The 
edited result replaces the pattern. 

Editing includes sign and punctuation control, and the suppressing and 
protecting of leading Os. It also facilitates programmed blanking of all-zero 
fields. Numeric information in the source may be interspersed with text from 
the pattern. 

The length field applies to the pattern (the first operand). Lis equal 
to the pattern length minus 1. The pattern has the zoned format and may 
contain any character. The source (the second operand) has the packed 
format. The leftmost four bits of a source byte must specify a decimal digit 
code (0000-1001) ; a code of 1010-1111 is recognized as a data exception and 
causes a program interruption. The rightmost four bits may specify either a 
sign or a decimal digit. Overlapping pattern and source fields give 
unpredictable results. 

During the editing process, each character of the patteITl is affected in 
one of three ways: 

1. It is left unchanged. 

2. It is replaced by a source digit expanded to zoned format. 

3. It is replaced by the first character in the pattern, called the 
fill character. 

Which of the three actions takes place is determined by one or more of 
the following: the state of the significance indicator, the type of the 
pattern character, and whether the source digit examined is O. 

7-53 



Significance Indicator 

Dle significance indicator is a bit that by its state (on or off) 
indicates the significance or nonsignificance, respectively, of subsequent 
source digits or message characters. Significant source digits replace their 
corresponding digit selectors or significance starters in the result. 
Significant message characters remain unchanged in the result. 

Dle significance indicator indicates also the negative (on) or positive 
(off) value of the source, and is used as one factor in the setting of the 
condition code. 

Dle indicator is set to the off state if it is not already so set, 
either at the start of the editing operation or when a source digit in the 
high-order part of a byte exhausts the digit selectors and significance 
starters of the pattern and the low-order part of the same byte does not 
contain 1101. 

The indicator is set to the on state, if it is not already so set, when 
a significance starter or immediate significance starter is encountered whose 
source digit is a valid decimal digit, or when a digit selector is encountered 
whose source digit is a nonzero decimal digit, provided in either instance 
that the source byte does not have a plus code in the four low-order bit 
positions. 

In all other situations, the indicator is not changed. 
code has no effect on the significance indicator. 

A minus sign 

Pattern Characters 

There are five types of pattern characters: fill characters, digit 
selectors, significance starters, immediate significance starters, and message 
characters. Their coding is presented in Table 7-1. 

Table 7-1. Pattern Character Coding 

Binary Hexadecimal 
Pattern Character Code Code 

Fill character Any Any 
Digit selector 0001 0000 10 
Significance starter 0001 0001 11 
Immediate significance starter 0001 0010 12 
Message character Any other Any other 

7-54 



The fill character is the first character of the pattern. It may have 
any code and may concurrently specify a control function. If this character 
is a digit selector, significance starter, or immediate significance starter, 
the indicated editing action is taken after the code has been assigned to the 
fill character. 

The digit selector makes source digits appear as in the source field, 
unless the significance indicator is off. 

The significance starter functions as a digit selector, except that it 
turns on the significance indicator after processing its corresponding source 
digit. 

An iouoediate 
except that it turns 
source digit. 

significance starter functions as a significance starter, 
on the significance indicator before processing its 

Message characters in the pattern are replaced by the fill character, or 
they remain unchanged in the result, depending on the state of the 
significance indicator. 'Ibey may thus be used for padding, punctuation, or 
text in the significant portion of a field or for the insertion of 
sign-dependent symbols. 

'llle Edit Operation 

The detection of a digit selector, significance starter, or immediate 
significance starter in the pattern causes an examination to be made of the 
significance indicator and of a source digit. As a result, either the 
expanded source digit or the fill character, as appropriate, is selected to 
replace the pattern character. Additionally, encountering a digit selector, 
significance starter, or immediate significance starter may cause the 
significance indicator to be changed. 

Each time a digit selector, significance starter, or immediate 
significance starter is encountered in the pattern, a new source digit is 
examined for placement in the pattern field. The source digit either is zoned 
and replaces the pattern character or is disregarded. When a code not between 
0000 and 1001 is detected in the four high-order bit positions, the operation 
is terminated with a data exception. 

7-55 



The source digits are selected one byte at a time, and a source byte is 
fetched for inspection only once during an editing operation. Each source 
digit is examined once and only once for a zero value. The leftmost four bits 
of each byte are examined first, and the rightmost four bi ts, when they 
represent a decimal-digit code, remain available for the next pattern 
character that calls for a digit examination. Source digits are examined 
until the digit selectors, significance starters, and immediate significance 
starters of the pattern are exhausted. If more than 32 digits must be 
examined, or if a source digit with codes 1010 through 1111 is examined in 
response to a digit selector, significance starter, or immediate significance 
starter, the operation is terminated with a data exception. 

When the source digit is stored in the result, its code is expanded from 
the packed to the zoned format by attaching the zone code 0011. 

The field resulting from an editing operation replaces and is equal in 
length to the pattern. It is composed of pattern characters, fill characters, 
and zoned source digits. 

If the pattern character is a message character and the significance 
indicator is on, the message character remains unchanged in the result. If 
the significance indicator is off when a message character is encountered in 
the pattern, the fill character replaces the pattern character in the result. 

If a digit selector or significance starter is encountered in the 
pattern when the significance indicator is off and the source digit is O, the 
source digit is considered nonsignificant, and the fill character replaces the 
pattern character. If an immediate significance starter is encountered in the 
pattern with the significance indicator off and the source digit O, the source 
digit is considered significant, is zoned, and replaces the pattern character 
in the result. If a digit selector, significance starter, or immediate 
significance starter is encountered either with the significance indicator on 
or with a nonzero decimal source digit, the source digit is considered 
significant, is zoned, and replaces the pattern character in the result. 

Result Conditions. Al 1 digits examined are tested for the code 0000. The 
sign of the field edited and whether all source digits in the field contain Os 
are recorded in the condition code at the completion of the editing operation. 

The condition code is made 0 when the field is 0, that is, when all 
source digits examined are Os. When the pattern has no digit selectors or 
significance starters, the source is not examined, and the condition code is 
made 0. 

When the field edited is nonzero and the significance indicator is on, 
the condition code is made 1 to indicate a result field less than 0. 

7-56 



When the field edited is nonzero and the significance indicator is off, 
the condition code is made 2 to indicate a result field is greater than O. 

SUlllDary. Table 7-2 sUD1Darizes the functions of the editing operation. The 
leftmost four columns list all the significant combinations of the four 
conditions that can be encountered in the execution of an editing operation. 
The two rightmost columns list the action taken for each case--the type of 
character placed in the result field and the new setting of the significance 
indicator. 

7-57 



..... 
I 

VI 
co 

Table 7-2. Summary of Editing Operation 

Conditions Results 

Previous State Low-Order State of Significance 
Pattern of Significance Source Source Digit Result Indicator at End of 
Character Indicator Digit Is a Plus Sign Character Digit Examination 

Digit Off 0 * Fill character Off 
selector 1-9 No Source digit On 

1-9 Yes Source digit Off 
On 0-9 No Source digit On 

0-9 Yes Source digit Off 

Significance Off 0 No Fill character On 
starter 0 Yes Fill character Off 

1-9 No Source digit On 
1-9 Yes Source digit Off 

On 0-9 No Source digit On 
0-9 Yes Source digit Off 

Immediate Off 0-9 No 
significance 0-9 Yes 
starter On 0-9 No 

0-9 Yes 

Message Off -Jrlc 1'rJ< Fill character Off 
character On ** *'k Message character On 

-Jc No effect on result character. 
-Jrk Not applicable because source digit not examined. 



Resulting Condition Code 

0 Field is 0 
1 Field is less than 0 
2 Field is greater than O 
3 

Program Exceptions 

Access (fetch, operand 2; fetch and store, operand 1) 
Data 

Programming Notes 

As a rule, the source is shorter than the pattern because for each 
source digit a zone and numeric are inserted in the result. 

The total number of digit selectors, significance starters, and 
immediate significance starters in the pattern must equal the number of source 
digits to be edited. 

If the fill character is a blank, if no significance starter or 
immediate significance starter appears in the pattern, and if the source is 
all Os, the editing operation blanks the result field. 

The resultant condition code indicates whether or not the field is all 
Os, and, if the code is not O, reflects the state of the significance 
indicator. !he significance indicator reflects the sign of the source field 
only if the last source digit examined is in a high-order digit position. 

Address translation demands that operands be located in main memory 
before instruction execution may begin, so the length of operand 2 must be 
deteI1Dined before execution. '!his is accomplished by scanning operand 1 for 
significance starters and digit selectors; the total number divided by 2 (and 
rounded up if total number was odd) yields the number of bytes in operand 2. 
However, an I/0 operation could overlay operand 1 during instruction execution 
and invalidate the results of the "scanning operation" just described. If the 
I/0 operation increases the length of operand 2 (by adding digit selectors or 
significance starters) and causes operand 2 to span a page where previously it 
did not, then the next higher physical page frame will be accessed. This will 
cause incorrect (random) data to be used and could also cause an addressing 
exception if the next higher physical page frame is beyond the limit of main 
memory. 

7-59 



EDIT AND MARK (EDMK) 

ED~ Dl (L ,Bl) ,D2 (82) (SS) 

DF L 
B 

1 

~~~~~~~~~~~~~~~~~-

0 8 16 20

I ID I B
11 2

I I I
32

I/ I D
I- 2

I/ --'----36 47

The format of the source (the second operand) is changed from packed to
zoned and is modified under control of the pattern (the first operand) •

The address of the first significant result character is recorded in
general register 1. The edited result replaces the pattern.

The instruction EDIT AND MARK is identical to EDIT, but it has the
additional function of inserting the address of the result character in bits
8-31 of general register 1 whenever the result character is a zoned source
digit and the significance indicator was off before the examination. '!he use
of general register 1 is implied. The contents of bits 0-7 of the register
are not changed.

Resulting Condition Code

0 Last field is 0
1 Last field is less than 0
2 Last field is greater than 0
3

Program Exceptions

Access (fetch, operand 2; fetch and store, operand 1)
Data

Programming Notes

The instruction EDIT AND MARK facilitates the prograouning of floating
currency-symbol insertion. The character address inserted in general register
1 is 1 more than the address where a floating currency sign would be
inserted. The instruction BRANCH ON COUNT (BCTR), with 0 in the R2 field,
may be used to reduce the inserted address by 1.

The character address is not stored when significance is forced. To
ensure that general register 1 contains a valid address when significance is
forced, it is necessary to place in the register beforehand the address of the
pattern character that immediately follows the significance starter.

7-60

ENQUEUE (ENQ)

ENQ Rl,D2(X3,B3) (R:x)

I R x 8 D
I 52 1 3 3 2
I
0 8 12 16 20 31

A storage block beginning at the location specified by the third operand
(the sum of the contents of registers 83 and X3) is enqueued on the First-In
First-Out (FIFO) queue specified by the first operand. The queue head
addressed by register Rl is composed of two successive words of storage of
which the first word, or head word, is a pointer to the first storage block in
the queue, and the second word, or tail word, is a pointer to the last storage
block in the queue. When the FIFO queue is empty, both the head and the tail
pointers are null (the last 24 bits of each of these words are binary Os) •
The head pointer must be doubleword aligned.

When a storage block is queued, the head and tail pointers are checked,
and if they are null, the third operand address is placed in both the head and
tail queue positions. If the queue pointers are both not null, then the third
operand address is placed in the block pointed to by the tail pointer at the
displacement position specified by the second operand. The third operand is
then placed in the tail queue position, and in all cases, the chain word in
the queued storage block is made null. Thus, blocks are enqueued so that the
word at the chain word displacement in each block points to the first location
of the next block in the queue, and the last block in the queue has a null
chain word. ENQ does not test or change the first byte of either the head or
tail pointer or the chain words.

An addressing exception is recognized, and the operation terminated, if
either the first-operand (queue) address or the third-operand (storage block)
address is invalid. Both the queue addresses and the chain word locations in
any storage blocks that are modified in the queue are checked for protection
boundary violations and for modification trap exceptions. 'lbe instruction is
suppressed if a violation occurs. A specification exception is recognized and
the operation is terminated if one but not both of the head/tail words is
null. The head/tail pointer must be doubleword aligned and the chain words
must be fullword aligned or a specification exception will be recognized.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch and store, operand 1 and combined operands 2 and 3)
Specification

7-61

BNSTACK (ENSK)

ENSK Rl,D2(X3,B3) (RX)

I R X B
53 I 1 3 3

I
0 8 12 16 20

D
2

31

A storage block beginning at the location specified by the third operand
(the sum of the contents of registers 83 and X3) is stacked in the Last-In
First-Out (LIFO) stack specified by the first operand. 1he stack head
addressed by register Rl consists of one aligned word of storage that is a
stack pointer to the last (or most recent) storage block placed into the
stack. When the stack is empty, the stack pointer is null (the last 24 bits
of this word are binary Os). The second operand is a displacement from the
start of the storage block to the chain word in the storage block.

When a storage block is stacked, the stack pointer word is placed in the
chain word of the storage block being stacked, and the pointer to the start of
the storage block (third operand value) is placed in the stack pointer word.
Storage blocks are intended for removal from a LIFO stack in the reverse order
from the sequence in which they were added to the stack, since the only
pointer kept for a LIFO stack is to the last stacked storage block. ENSK does
not change or test the first byte of the stack pointer or the chain word.

An addressing exception is recognized and the operation terminated if
either the first operand (stack) address or the third operand (storage block)
address is invalid. Both the stack address and the chain word location in the
storage block are checked for protection violations and for modification trap
exceptions; the instruction is suppressed if a violation occurs. Both the
stack pointer and the chain word must be fullword aligned.

Resulting Condition Code

'I1le condition code remains unchanged.

Program Exceptions

Access (fetch and store, operand 1 and combined operands 2 and 3)
Specification

7-62

EXCLUSIVE OR (XR, X, XI, XC)

XR Rl,R2 (RR)

R R
17 1 2

0 8 12 15

x Rl ,D2 (X2 ,B2) (RX)

I I R I x I B I D
I 57 I 1 I 2 I 2 I 2
I I I I I
0 8 12 16 20 31

XI Dl (Bl) , 12 (SI)

I B D
97 I I 1 1

I
0 8 16 20 31

xc Dl (L ,Bl) ,D2 (B2) (SS)

B I ID I B I/ I D
D7 L 1 11 2 I- - 2

I I I I/ I
0 8 16 20 32 36 47

The modulo-two sum ("exclusive OR") of the bits of the first and second
operand is placed in the first operand location.

Operands are treated as unstructured logical quantities, and the
connective EXCLUSIVE OR is applied bit by bit. A bit position in the result
is set to 1 if the corresponding bit positions in the two operands are unlike;
otherwise, the result bit is set to 0.

The instruction differs from AND and OR only in the connective applied.

Operand 2 of the X instruction requires fullword aligrunent. For the XC
instruction, L is the length of each operand, minus 1.

Resulting Condition Code

0 Result is 0
1 Result not 0
2
3

7-63

Program Exceptions

Access (fetch, operand 2, X and xc; fetch and store, operand 1, XI and XC)
Specification

Programming Notes

lbe EXCLUSIVE OR instruction may be used to invert a bit, an operation
particularly useful in testing and setting programmed binary bit switches.

Any field EXCLUSIVE ORed with itself becomes all Os.

7-64

EXECUTE (EX)

EX Rl ,D2 (X2 ,B2) (RX)

I I R x I B I D
I 44 I 1 2 I 2 I 2
I I I I
0 8 12 16 20 31

Bits 8-15 of the instruction designated by the second-operand address
are ORed with bits 24-31 of the register specified by Rl, except when register
0 is specified, which indicates that no modification takes place. The
resulting subject instruction is then executed. The subject instruction may
be two, four, six, or eight bytes in length.

The ORing does not change either the contents of the register specified
by Rl or the instruction in memory, and it is effective only for the
interpretation of the instruction to be executed. The execution and exception
handling of the subject instruction are exactly as if the subject instruction
were obtained in normal sequential operation, except for the instruction
address. The instruction address of the current PCW is increased by the
length of EXECtITE. This updated address of EXECUTE is used as part of the
link information when the subject instruction is BRANCH AND LINK. When the
subject instruction is a successful branching instruction, the updated
instruction address of the current PCW is replaced by the branch address
specified by the subject instruction.

When the subject instruction is in turn an EXECUTE, an execute exception
is recognized, and the operation is suppressed. The subject instruction must
be halfword aligned; otherwise, a specification exception is recognized.

Resulting Condition Code

The condition code may be set by the subject instruction.

Program Exceptions

Execute
Access (fetch, operand 2)
Specification

Programming Notes

The ORing of eight bits from the general register with the designated
instruction pennits indirect length, index, mask, inunediate data, and
arittunetic-register specification. An addressing or specification exception
may be caused by EXECUTE or by the subject instruction.

7-65

When an interruptible instruction is made a target of EXEC1ITE, the
program usually should not specify any register updated by the interruptible
instruction as the Rl, X2, or 82 register of the EXECUTE, since if the
instruction is refetched, the updated values of these registers will be used
in execution of the EXECUTE. Similarly, the program should not let the
destination field of an MVCL instruction include the location of the EXECUTE.

When a relative branch instruction is the target of EXECUTE, the branch
address is relative to the EXECUTE and not to the target instruction.

7-66

EXPAND STRING (XPAND)

XPAND Dl (Rl ,Bl) ,D2 (R2 ,B2) (SS)

I IR R I B l//D IB l//D I
I F7 I 1 2 I 1 I 1 I 2 I 2 I
~l~~~l~__;_~~l~~~~I /~/~~l~~~I_/ I I

0 8 12 16 24 32 36 4 7

The second operand, assumed to be a character string compressed by the
COMP instruction, is placed in the first operand location in expanded form.

The lengths of operands 1 and 2 are taken from registers Rl and R2,
respectively. If the value in either register is 0 or greater than 2048, the
instruction terminates immediately with condition code 2, and operand 1 is
unchanged.

The source string is interpreted as a concatenation of subfields, each
beginning with a length byte in the following form:

Bit 0 = 0 Uncompressed substring follows

Bit 0 = 1 Following byte to be replicated as many
times as specified

Bits 1-7 Length of expanded substring minus 1

Resulting Condition Code

0 String successfully expanded; length of expanded string placed in
register Rl

1 Expanded string too long for operand l; register Rl unchanged; data
in operand 1 valid

2 Length in Rl or R2 equal to 0 or greater than 2048; instruction
suppressed; register Rl unchanged

3 Length byte in operand 2 indicates that a source subfield extends
beyond the source area defined by the R2 length; the instruction
terminates; operand 1 data and register Rl contents are unreliable.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

7-67

p
HALT I/0 (HIO)

HIO Rl (RR)

I R 1//////1
I 03 1 1//////1
I 1//////1
0 8 12 15

HALT I/0 causes the addressed device to tenninate the current operation,
if any. HALT I/0 is executed only when the system is in the supervisor
state. I/0 interrupts should be disabled.

Bits 24 to 31 of Rl identify the device address. Bits O to 23 are
ignored.

When the HALT I/0 instruction is issued to an active I/0 device, the 1/0
operation may be terminated before all data specified in the operation has
been transferred, or before the operation at the device has reached its normal
ending point. A completion interruption becomes pending when the I /0
operation has been terminated and/or all outstanding interruption conditions
pertaining to the device have been cleared. The error completion (EC) and
incorrect length (IL) bits may or may not be set in the stored I/0 Status
Word. HIO clears all interruption conditions that existed at the time the HIO
was issued, including IOP NOW READY (and sets condition code 1 in this case).

If the HIO instruction receives an IOP BUSY indication, the HIO was not
accepted. This also indicates that an IOP NOW READY interrupt will be made
pending.

Resulting Condition Code

0 Device available or HIO not supported
1 Device busy or interruption pending
2 IOP BUSY
3 IOP not operational

Program Exceptions

Privileged operation

Programming Notes

The instruction HALT 1/0 provides the program with a means of
terminating an I/0 operation before all data specified in the operation has
been transferred or before the operation at the device has reached its normal
ending point.

Not all devices support HALT I /0. When it is issued for a device for
which it is not supported, the HIO instruction will return condition code 0 or
1 as appropriate, and program execution will continue.

7-68

HALVE (FLOATING-POINT) (HDR, HER)

HDR Rl,R2 (RR, Long)

I I I R R
I 24 IOI 1 2
I I I
0 8,9 12 15

HER Rl,R2 (RR, Short)

I I I R R I
I 24 111 1 2 I (optional)
I I I I
0 8,9 12 15

The second operand is divided by 2, and the nonnalized quotient is
placed in the first operand location. Tile second operand remains unchanged.

The fraction of the second operand is shifted right one bit position,
placing the contents of the low-order bit position in the high-order bit
position of the guard digit and introducing a 0 into the high-order bit
position of the fraction. Tile intermediate result is subsequently
normalized, and the nonnalized quotient is placed in the first operand
location. The guard digit participates in the normalization.

When normalization causes the characteristic to become less than zero,
exponent underflow occurs. If the exponent underflow mask in the PCW is 0,
the sign, characteristic, and fraction are set to O, thus making the result a
true 0. If the exponent underflow mask is 1, a program interruption occurs.
The result is noI1Dalized, its sign and fraction remain correct, and the
characteristic is made 128 larger than the correct characteristic.

When the fraction of the second operand is O, the sign, characteristic,
and fraction of the result are made O. No normalization is attempted, and a
significance exception is not recognized.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Exponent underflow

Programming Notes

The HALVE operation is identical to a divide operation with the number 2
as divisor, or to a multiply operation with 1/2 as a multiplier.

7-69

The result of HALVE is replaced by a true 0 only when the second operand
fraction is 0, or when exponent underflow occurs with the exponent-underflow
mask set to 0. When the fraction of the ·second operand is 0 except for the
low-order bit position, the low-order 1 is shifted into the guard digit
position and participates in the postnormalization.

1-70

INCREMENT AND INSPECT SEMAPHORE (ISEM)

ISEM Rl ,D2 (83)

A2

0

I R
I 1
I
8

(RS)

1//////1 B
11111111 3
1//////1
12 16

D
2

20 31

The byte addressed by contents of register Rl is treated as a
2's-complement binary number, and 1 is added to it. If the result is greater
than 0, the next instruction is taken. If the result is less than or equal to
O, a dequeuing operation occurs exactly as if the instruction were a DEQ
instruction with the same Rl, 83, and D2 fields, and a binary 1 is subtracted
from the byte at displacement D2 in the dequeued block, without regard for
possible overflow. If a result of 128 is developed, a fixed-point overflow is
indicated. When the fixed-point overflow flag is 1, the exception will be
taken. If there is a fixed-point overflow, the count is updated and the other
effects of the instruction are suppressed. Overflows in the chain field will
not cause an overflow indication or a program check.

Data fields referenced by this instruction must be aligned as required
for the DEQ instruction.

Resulting Condition Code

0 Result of addition not greater than O, no block dequeued
1 Result of addition not greater than O, block dequeued
2 Result of addition greater than 0
3 Overflow

Program Exceptions

Specification

Fixed-point overflow

Access (fetch and store, operand 1; fetch and store, operands 2 and 3 as
for DEQ instruction)

7-71

INSERT CHARACTER (IC)

IC Rl,D2(X2,B2) (RX)

R X B
43 1 2 2

0 8 12 16 20

D
2

31

Tile 8-bit character at the second operand address is inserted into the
low-order byte of the register specified as the first operand location. The
remaining bits of the register remain unchanged.

IC is a storage-to-general-register instruction.
inserted is not changed or inspected.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2)

7-72

The byte to be

INSERT CHARACTERS UNDER MASK (ICM)

ICM Rl,M3,D2(B2)

BF

0 8

R
1

12

M
3

(RS)

16

B
2

20

D
2

31

Bytes from contiguous locations beginning at the second operand address
are inserted into the first operand location under control of a mask.

The contents of the M3 field, bits 12-15, are used as a mask. The four
bits of the mask, left to right, correspond with the four bytes, left to
right, of the general register designated by the Rl field. The byte positions
corresponding to ls in the mask are filled, in the order of ascending byte
numbers, with bytes from the storage operand. Bytes are fetched from
contiguous memory locations beginning at the second operand address. The
length of the second operand is equal to the number of ls in the mask. The
bytes in the general register corresponding to Os in the mask remain unchanged.

The resulting condition code is based on the mask and on the value of
the bits inserted. When the mask is 0 or when all inserted bits are O, the
condition code is made 0. When not al 1 inserted bi ts are 0 , the code is set
according to the leftmost bit of the storage operand: if this bit is 1, the
code is made 1 to indicate a negative algebraic value; if this bit is O, the
code is set to 2, reflecting a positive algebraic value. When the mask is not
O, exceptions associated with storage operand access are recognized only for
the number of bytes specified by the mask. When the mask is 0, access
exceptions are recognized for one byte.

Resulting Condition Code

0 All inserted bits are Os, or mask is 0
1 First bit of the inserted field is 1
2 First bit of the inserted field is 0 and not

all inserted bits are Os
3

Program Exceptions

Access (fetch, operand 2)

Programming Note

The condition code for INSERT CHARACTERS UNDER MASK is defined such that
when the mask is 1111, the instruction causes the same condition code to be
set as for LOAD AND TEST.

7-73

JUMP TO SUBROtrrINE ON CONDITION INDIRECT (JSCI)

JSCI

0

Ml ,D2 (X2 ,82)

61
I M
I 1
I
8

I x
I 2
I
12

(RX)

I B I
I 2 I
I I
16 20

D
2

31

The updated instruction address is replaced by the branch address if the
state of the condition code is as specified by Ml; otherwise, normal
instruction sequencing proceeds with the updated instruction address. If the
branch is taken, the program mask byte of the PCW and the updated instruction
address are pushed onto the system stack, the contents of the three low-order
bytes of control register 1 are then pushed onto the stack, preceded by a byte
containing binary Os, and then the contents of general registers 14 to 0 are
pushed onto the stack. After these items have been pushed onto the stack and
the stack pointer (register 15) has been updated, the value in control
register 1 is set to the current value of the stack pointer, with a high-order
byte of binary Os.

The three low-order bytes of the word at the location designated by the
second operand are used as the branch address. '!be second operand must be
fullword aligned.

The Ml field is used as a 4-bi t mask. The four bi ts of the mask
correspond, left to right, with the four condition codes as follows:

Instruction Mask Position Condition
Bit Value Code

8 8 0
9 4 1

10 2 2
11 1 3

The branch is successful whenever the condition code has a corresponding mask
bit of 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Stack overflow

Access (fetch, operand 2 if the branch is taken; store, the bytes pushed
onto the stack if the branch is taken)

Specification

7-74

Programming Note

'Ibis instruction is a conditional indirect branch. If -the branch is
taken, status will be saved on the stack that will allow the RTC instruction
to return control to the location after the JSCI instruction. Control
register 1 is used to point to the status information saved by a previously
executed JSCI instruction.

7-75

LOAD (LR, L)

LR Rl,R2

18

0 8

R
1

R
2

12 15

(RR)

L Rl ,D2 (X2 ,B2) (RX)

I R X B I
58 I 1 2 2 I

I I
0 8 12 16 20

D
2

31

The second operand is
second operand is not changed.
be fullword aligned.

placed in the first operand location, and the
For the L instruction, the second operand must

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2 of L only)
Specification (L only)

7-76

LOAD (FLOATING-POINT) (LDR, LER, LD, LE)

LDR Rl,R2 (RR, Long)

I I I R I R I
I 28 IOI 1 I 2 I
I I I I I
0 8,9 12 15

LER Rl,R2 (RR, Short)

I I I R I R I
I 28 Ill 1 I 2 I (optional)
I I I I I
0 8,9 12 15

LD Rl ,D2 (X2 ,82) (RX, Long)

I I R x B D
68 IOI 1 2 2 2

I I
0 8,9 12 16 20 31

LE Rl ,D2 (X2 ,B2) (RX, Short)

I I I R x I B I D
I 68 111 1 2 I 2 I 2 (optional)
I I I I I
0 8,9 12 16 20 31

The second operand is placed in the first operand location and is not
changed. Exponent overflow, exponent underflow, or lost significance cannot
occur. For the LD instruction, the second operand must be fullword aligned.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Addressing (LD, LE only)
Specification (LD, LE only)
Access (LD, LE only)

7-77

LOAD ADDRESS (LA)

LA Rl ,D2 (X2 ,B2) (RX)

I R x I B I D I
I 41 1 2 I 2 I 2 I
I I I I
0 8 12 16 20 31

LOAD ADDRESS (RELATIVE) (RLA)

RLA Rl,L2 (RL)

I R I L I
I 71 1 I 2 I
I I I
0 8 12 31

For LA, the address specified by the X2, B2, and D2 fields is inserted
in bit positions 8-31 of the general register specified by the Rl field. For
RLA, the address inserted is the sum of the current instruction address (bits
8-31 of the PCW) and the L2 field. Bits 0-7 of the register are set to Os.
The address computation follows the rules for base-displacement address
fonnation. No memory references for operands take place, and the address is
not inspected for access exceptions.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

Programming Note

The same general register may be specified by the Rl, X2, and 82
instruction field, except that general register 0 can be specified only by the
Rl field. In this manner it is possible to increment the low-order 24 bits of
a general register other than general register 0 by the contents of the D2
field of the instruction. The register to be incremented should be specified
by Rl and by either X2 (with 82 set to 0) or 82 (with X2 set to 0) •

7-78

LOAD AND TEST (LTR, LT)

LTR Rl,R2 (RR)

I R I R
I 12 1 I 2
I I
0 8 12 15

LT Rl ,D2 (X2 ,B2) (RX)

R x B I D I
4D 1 2 2 I 2 I

I I
0 8 12 16 20 31

lhe second operand is placed in the first operand register, and its
value determines the condition code. When the LT instruction is used, a
fullword field from memory as specified by the second operand is loaded into
the first operand register. The second operand is not changed.

lhe condition code of this instruction indicates whether the result is
zero, or, if at least one bit of the result is on, whether the leftmost bit is
on (called less than 0) or off (called greater than 0) .

Operand 2 of the LT instruction requires fullword alignment.

Resulting Condition Code

0 Result is 0
1 Result is less than 0
2 Result is more than 0
3

Program Exceptions

Access (fetch, operand 2, LT)
Specification (LT only)

Programming Note

When the same register is specified as first and second operand
location, the operation is equivalent to a test without data movement.

7-79

LOAD AND TEST (FLOATING-POINT) (LTDR, LTER)

LTDR Rl,R2 (RR, Long)

I I R R
22 IOI 1 2

I I
0 8,9 12 15

LTER Rl,R2 (RR, Short)

I I I R R I
I 22 Ill 1 2 I (optional)
I I I I
0 8,9 12 15

'lhe second operand is placed in the first operand location, and its sign
and magnitude determine the condition code. The second operand is not changed.

Resulting Condition Code

0 Result fraction is 0
1 Result is less than 0
2 Result is greater than 0
3

Program Exceptions

Specification

Prograouning Note

When the same register is specified as first and second operand
location, the operation is equivalent to a test without data movement.

7-80

LOAD CHARACTER (LC)

LC Rl ,D2 (X2 ,82) (RX)

I R x I B I D
62 I 1 2 I 2 I 2

I I I
0 8 12 16 20 31

'!he second operand is placed in the first operand location. The second
operand is one byte in length and is placed in the low-order byte of the first
operand register. The three high-order bytes of the first operand register
are set to binary Os.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2)

7-81

LOAD COMPLEMENT (LCR)

LCR Rl,R2

13

0 8

R
1

R
2

12 15

(RR)

The 2's complement of the second operand is placed in the first operand
location.

The condition code of this instruction indicates whether the result is
zero, or, if at least one bit of the result is on, whether the leftmost bit is
on (called less than 0) or off (called greater than 0) •

An overflow condition occurs when the maximum negative
complemented. Til.e number remains unchanged. The overflow causes
interruption when the fixed-point overflow mask bit is 1.

Resulting Condition Code

0 Result is 0
1 Result is less than 0
2 Result is greater than 0
3 Overflow

Program Exceptions

Fixed-point overflow

Programming Note

number is
a program

Zero and the maximum negative number do not have a 2's complement.

7-82

This manual is updated by: Addendum 800-11OOP0-04.01

LOAD COMPLEMENT (FLOATING-POINT) (LCDR, LCER)

LCDR Rl,R2 (RR, Long)

I I R R
23 IOI 1 2

I I
0 8 9 12 15

LCER Rl,R2 (RR, Short)

I I I R I R I
I 23 Ill 1 I 2 I (optional)
I I I I l
0 8 9 12 15

'Ihe second operand is placed in the first operand location with the sign
changed to the opposite value.

The sign bit of the second operand is inverted, while characteristic and
fraction are not changed.

Resulting Condition Code

0 Result fraction is 0
1 Result is less than O
2 Result is greater than 0
3

Program Exceptions

Specification

7-83

This manual is updated by: Addendum 800-11OOP0-04.01

p
LOAD CONTROL (LCTL)

LCTL Rl ,R3 ,D2 (B2) (RS)

I I R I R I B I D I
I B7 I 1 I 3 I 2 I 2 I
I I I I I I
0 8 12 16 20 31

The set of control registers starting with the control register
designated by the Rl field and ending with the control register designated by
the R3 field is loaded from the locations designated by the second operand
address.

The memory area from which the contents of the control registers are
obtained starts at the location designated by the second operand address and
continues through as many memory words as the number of control registers
specified. The control registers are loaded in ascending order of their
addresses, starting with the control register designated by the Rl field and
continuing up to and including the control register designated by the R3
field. The second operand remains unchanged.

An attempt is made to fetch the operand from main memory for each of the
designated control registers. Whenever the storage reference causes an
access exception, the exception is indicated. 'Ihe second operand must be
designated on a word boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. A specification exception will
also be recognized if Rl is numbered higher than R3 (wraparound).

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Privileged operation
Access (fetch, operand 2)
Specification

7-84

LOAD HALFWORD (IJI)

LH Rl ,D2 (X2 ,B2)

R x
48 1

0 8 12

2

16

This manual is updated by: Addendum 800-11 OOP0-04.01

(RX)

B
2

20

D
2

31

The second operand is placed in the first operand location, is two bytes
in length, and is considered to be a 16-bit signed integer. It requires
halfword alignment.

The second operand is expanded to 32 bits by propagating the sign-bit
value to the 16 high-order bit positions. Expansion occurs after the operand
is obtained from memory and before insertion in the register.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Access (fetch, operand 2)

7-85

This manual is updated by: Addendum 800-11OOP0-04.01

LOAD MULTIPLE (LM)

LM Rl,R3,D2(B2) (RS)

I R R B
98 I 1 3 2

I
0 8 12 16 20

D
2

31

The set of general registers starting with the register specified by Rl
and ending with the register specified by R3 is loaded from the locations
designated by the second operand address.

'lbe memory area from which the contents of the general registers are
obtained starts at the location designated by the second operand address and
continues through as many words as needed. 'Ibe general registers are loaded
in ascending order of their addresses, starting with the register specified by
Rl and continuing up to and including the register specified by R3, with
register 0 following register 15.

The second operand, which must be fullword aligned, remains unchanged.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2)
Specification

7-86

LOAD NEGATIVE (LNR)

LNR Rl,R2

11

0 8

R
1

R
2

12 15

(RR)

The 2's complement of the absolute value of the second operand is placed
in the first operand location. The operation complements positive nwnbers;
negative numbers remain unchanged. The number 0 remains unchanged with
positive sign.

Resulting Condition Code

0 Result is 0
1 Result is less than 0
2
3

Program Exceptions

None

7-87

LOAD NEGATIVE (FLOATING-POINT) (LNDR, LNER)

LNDR Rl,R2 (RR, Long)

I I R R
21 IOI 1 2

I I
0 8,9 12 15

LNER Rl,R2 (RR, Short)

I I R R
21 111 1 2 (optional)

I I
0 8,9 12 15

The second operand is placed in the first operand location with the sign
made minus.

The sign bit of the second operand is made 1, even if the fraction is
O. Characteristic and fraction are not changed.

Resulting Condition Code

0 Result fraction is 0
1 Result is less than 0
2

3

Program Exceptions

Specification

7-88

LOAD OR TRAP (LOT)

LOT Rl ,D2 (X2 ,B2)

A8

0

I R
I 1
I
8 12

x I
2 I

I
16

This manual is updated by: Addendum 800-11OOP0-04.01

{RX)

B I
2 I

I
20

D
2

31

The fullword field from memory as specified by the second operand is
loaded into the first operand register.

'nle high-order bit of the word loaded is inspected. If this bit is 1,
then a 'LOT' program interrupt is taken.

Resulting Condition Code

'Dl.e condition code remains unchanged.

Program Exceptions

Specification
Access (fetch, operand 2)
'LOT' exception

7-89

This manual is updated by: Addendum 800-11OOP0-04.01

p
LOAD PAGE TABLE (LPTO, LPTl, LPT2)

LPTO Rl ,D2(B2) (RS)

I I R 1/////1 B D
I A3 I 1 1/////1 2 2
I I 1/////1
0 8 12 16 20 31

LPTl Rl ,D2(B2) (RS)

I R I/I/Ill B D I
A4 I 1 1/////1 2 2 I

I 1/////1 I
0 8 12 16 20 31

LPT2 Rl,D2(B2) (RS)

I I R 1/////1 B D
I AS I 1 1/////1 2 2
I I 1/////1
0 8 12 16 20 31

The first operand register contains the address of a page table in main
memory in its three low-order bytes, and the length of the page table (in
bytes) minus 1 in its high-order byte. The second operand is the address of a
byte in main memory that is expected to contain the length minus 1 of the page
table currently loaded into local storage for the specified segment. '!his
byte is replaced by the high-order byte of the operand 1 register.

The page table specified by the first operand is copied into the local
page table specified by the operation code. LPTO loads the segment 0 page
table, LPTl the segment 1 page table, and LPT2 the segment 2 table. Bytes of
the local page table beyond the length specified in the first operand register
but not beyond the length specified by the second operand are set to O. '!he
first operand page table address must be doubleword aligned, and the new and
previous lengths must be within the allowed length for the segment and must be
even (length byte in high-order part of register Rl odd) , or a specification
exception occurs and the instruction is suppressed.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification

Privileged operation

Access (fetch, page table addressed by operand 1 register; fetch and
store, operand 2)

7-90

LOAD PARTIAL PAGE TABLE (LPPT)

LPPT Rl,13,D2(B2)

I R I
A.7 I 1 3

I
0 8 12

(RS)

16

B
2

20

D
2

31

The first operand register contains the address of a page table in main
memory in bits 8-31, and the length of the page table (in bytes) minus 1 in
bits 0-7. '!be third operand (13) indicates the segment number. The second
operand indicates the displacement into the local page table in page units.

The partial page table specified by the first operand is copied into the
local page table specified by 13. The length and starting displacement are
used as described for the previous instruction

A. specification exception occurs, and the instruction is suppressed, if
any of the following occurs:

The first operand is not doubleword aligned.

A. segment other than O, 1, or 2 is indicated by 13.

The offset and length of the partial page table exceeds the local
page table length.

The offset (operand 2) is odd.

The length (bits 0-7 of register Rl) is odd.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Specification
Privileged operation
Access (fetch, operand 1)

7-91

p
LOAD PCW (LPCW)

LPCW Dl (Bl)

I
I 82
I
0

(S)

1/////////////1
1/////////////1
1/////////////1
8 16

B
1

20

D
1

31

The two words at the location designated by the operand address replace
the PCW. The operand must be word aligned or the instruction will be
suppressed with a specification exception.

The doubleword that is loaded becomes the PCW for the next sequence of
instructions. lhis loads a new instruction address.

The interruption code of the new PCW is not retained as the PCW is
loaded. When the PCW is subsequently stored because of an interruption,
these bit positions contain a new code.

Resulting Condition Code

The condition code is set according to the condition code bits of the
new PCW.

Program Exceptions

Specification
Privileged operation
Access {fetch, operand 1)

7-92

This manual is updated by: Addendum 800-11OOP0-04.01

p
LOAD PHYSICAL ADDRESS (LPA)

LPA Rl ,D2 (X2 ,B2) (RX)

I I R I x I B I D I
I Bl I 1 I 2 I 2 I 2 I
I I I I I I
0 8 12 16 20 31

The physical address corresponding to the second operand address is
inserted in the general register designated by the Rl field. The remaining
high-order bits of the register are set to 0.

The logical address specified by the X2, B2, and D2 fields is translated
by means of the address translation facility. 'l'he translation is performed
using the contents of the main memory page tables, located through the. SCRs.*
The resultant 24-bit physical address is inserted in bit positions 8-31 of the
general register designated by the Rl field, and bits 0-7 are set to O. The
translated address is not inspected for protection or validity.

The condition code is set to 0 when translation can be completed. When
the page table entry lies within the specified table length, the segment is
valid and the page is not marked with a page fault indication, i.e., its T-RAM I

entry is not X'SOOO'. The corresponding reference bit in the local page frame
table entry for a successfully translated address is set.

When there would be a segment fault, condition code 1 is set. When the
page table entry is X'8000', condition code 2 is set. Whenever the resulting I
condition code is not O, the general register designated by the Rl field is
zeroed.

Resulting Condition Code

0 Translation available
1 Segment index invalid (segment fault)
2 Page table entry invalid (page fault)
3 Page table length violation (past the end of the page table)

Program Exceptions

Privileged operation

* The VS80 uses local page tables, a 19-bit physical address,, and bit I
positions 13-31 of the general register specified by Rl.

7-93

This manual is updated by: Addendum 800-11OOP0-04.01

LOAD POSITIVE (LPR)

LPR Rl,R2

10

0 8

R
1

12

R
2

(RR)

15

Tile absolute value of the second operand is placed in the first operand
location. The operation includes complementing of negative numbers; positive
numbers remain unchanged.

An overflow condition occurs when the maximum negative
complemented; the number remains unchanged. Tile overflow causes
interruption when the fixed-point overflow mask bit is 1.

Resulting Condition Code

0 Result is 0
1
2 Result is greater than O
3 Overflow

Program Exceptions

Fixed-point overflow

7-94

number is
a program

LOAD POSITIVE (FLOATING-POINT) (LPDR, LPER)

LPDR Rl,R2 (RR, Long)

I I I R I R I
I 20 IOI 1 I 2 I
I I I I I
0 8,9 12 15

LPER Rl,R2 (RR, Short)

I I I R I R I
I 20 Ill 1 I 2 I (optional)
I I I I I
0 8,9 12 15

'Til.e second operand is placed in the first operand location with the sign
made positive.

'Til.e sign bit of the second operand is made 0, while the characteristic
and fraction are not changed.

Resulting Condition Code

0 Result fraction is 0
1
2 Result is greater than 0
3

Program Exceptions

Specification

7-95

LOAD ROUNDED (FLOATING-POINT) (LRER)

LRER Rl,R2 (RR, Short)

I I I R R I
I 25 111 1 2 I (optional)
I I I I
0 8,9 12 15

The second operand is rounded to short format, and the result is placed
in the first operand location.

Rounding consists of adding 1 to bit position 32 of the long second
operand, and propagating the carry, if any, to the left. The sign of the
fraction is ignored, and addition is performed as if the fraction were
positive.

If rounding causes a carry out of the high-order digit
fraction, the fraction is shifted right by one digit
characteristic is increased by 1.

position of the
position, and the

'Ille sign of the result is the same as the sign of the second operand.
No normalization takes place.

An exponent overflow exception is recognized when shifting the fraction
right causes the characteristic to exceed 127. The operation is completed by
loading a number whose characteristic is 128 less than the correct value, and
a program interruption for exponent overflow occurs. The result is
normalized, and the sign and fraction remain correct.

Exponent underflow and significance exceptions cannot occur.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

E,lrponent overflow

7-96

This manual is updated by: Addendum 800-11OOP0-04.01

p

LOAD SEGMENT CONTROL REGISTER (LSCTL)

LSCTL Rl ,R3 ,D2 (X2 ,B2) (RS)

I I R I R I B I D
I A3 I 1 I 3 I 2 I 2
I I I I I
0 8 12 16 20 31

The set of segment control registers (SCRs) starting with the register
specified by Rl and ending with the register specified by R3 is loaded from
locations designated by the second operand address.

The memory area from which the contents of the SCRs are obtained starts
at the location designated by the second operand address and continues through
as many words as needed.

The SCRs are loaded in ascending order of their addresses, starting with
the register specified by Rl and continuing up to and including the register
specified by R3. Rl and R3 must fall in the range 0-7, and R3 must be greater
than or equal to Rl. The contents of the memory area remain unchanged.

Operand 2 requires fullword alignment.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (store, operand 2)
Privileged operation
Specification

7-96.1

LOAD SHORT TO LONG (FLOATING-POINT) (LDER)

LDER Rl,R2 (RR, Long)

I I I R R I
I 25 IOI 1 2 I (optional)
I I I I
0 8,9 12 15

The second operand is extended with low-order Os to long format, and the
result is placed in the first operand location.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

None

7-97

p
LOAD SPECIAL REGISTER ~Mro

LS REG Dl(Bl) (S)

I I B I D
I 9B 01 I 1 I 1
I I I

0 8 16 20 31

Data is moved from memory to a special 32-bit register, which may be
accessed only by the LSREG and STSREG instructions (and by STDD).

The fullword at the address specified by the Bl and Dl fields is moved
to the special register. 'Ihe address must be fullword aligned.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Privileged operation
Access (fetch, operand 1)
Specification

7-98

MOVE (MVI, MVC)

MVI Dl(Bl),12 (SI)

I I I B D
I 92 I 2 1 1
I I
0 8 16 20 31

MVC Dl (L ,Bl) ,D2 (B2) (SS)

I I B I I ID I B I/ I D
D2 I L I 1 I 11 2 I- - 2

I I I I I I I/ I
0 8 16 20 32 36 47

The second operand is placed in the first operand location.

The SS format is used for a storage-to-storage move. In the MVC
instruction, the length field in the instruction format is the operand length
minus 1. The SI foI10at introduces one 8-bit byte from the instruction stream.

In storage-to-storage movement the fields may overlap in any desired
way. Movement is left to right through each field a byte at a time.

The bytes to be moved are not changed or inspected.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2 of MVC; store operand 1, MVI and MVC)

Programming Note

It is possible to propagate one character through an entire field by
having the first operand field start one character to the right of the second
operand field.

7-99

MOVE CHARACTERS LONG (MVCL)

MVCL Rl,R2

OE

0 8

R
1

12

R
2

(RR)

15

The second operand is placed in the
overlapping of operand locations does
first operand location.

first operand location, provided
not affect the final contents of the

The Rl and R2 fields each designate an even-odd pair
registers and must each specify an even-nwobered register;
specification exception is recognized.

of general
otherwise, a

The leftmost bytes of the first operand and second operand locations are
designated by the contents of bit positions 8-31 of the general registers
specified by the Rl and R2 fields, respectively. The numbers of bytes in the
first operand and second operand locations are specified by the contents of
bit positions 8-31 of general registers having addresses Rl +1 and R2+1 ,
respectively. Bit positions 0-7 of register R2+1 contain the padding
character. The contents of bit positions 0-7 of registers Rl, Rl+l, and R2
are ignored.

The movement starts at the high-order end of both fields and proceeds to
the right. The bytes to be moved are not changed or inspected. The operation
is ended when the number of bytes specified by bit positions 8-31 of register
Rl+l have been moved into the first operand location. If the second operand
is shorter than the first operand, the remaining low-order bytes of the first
operand are filled with the padding character.

As part of the execution of the instruction, the values of the two count
fields are compared for the setting of the condition code, and a check is made
for destructive overlap of the operands. Operands are said to overlap
destructively when the first operand location is used as a source after data
has been moved into it, assuming movement to be performed one byte at a time.
The inspection for overlap is perfonned by use of logical operand addresses.
When the operands overlap destructively, no movement takes place and condition
code 3 is set. Movement is performed when the high-order byte of the first
operand coincides with or is to the left of the high-order byte of the second
operand, or if the high-order byte of the first operand is to the right of the
rightmost second operand byte participating in the operation. The rightmost
second operand byte is determined by using the smaller of the first operand
and second operand counts.

7-100

When the count specified by bit positions 8-31 of register Rl+l is O, no
movement takes place, and the condition code is set to 0 or 1 to indicate the
relative values of the counts.

The execution of the instruction is interruptible. When an interruption
occurs after a unit of operation other than the last one, the contents of
registers Rl+l and R2+1 are decremented by the number of bytes moved and the
contents of registers Rl and R2 are incremented by the same number, so that
the instruction, when re-executed, resumes at the point of interruption. The
high-order bytes of registers Rl and R2 are set to 0; the contents of the
high-order byte of registers Rl+l and R2+1 remain unchanged. If the operation
is interrupted during padding, the count field in register R2+1 is O, the
address in register R2 is incremented by the original contents of register
~2+1, and the contents of registers Rl and Rl+l reflect the extent of the
padding operation.

The instruction may be refetched from main storage even in the absence
of an interruption during execution.

At the completion of the operation, the count in register Rl+l is 0 and
the address in register Rl is incremented by the original value of the count
i:n register Rl +1. The count in register R2+1 is decremented by the number of
bytes moved out of the second operand location, and the address in register R2
is incremented by the same amount. The contents of bit positions 0-7 of
registers Rl and R2 are set to 0, even in the case when one or both of the
original count values are 0 or when condition code 3 is set. The contents of
bit positions 0-7 of registers Rl+l and R2+1 remain unchanged.

When the count specified by bit positions 8-31 of register Rl+l is 0, or
condition code 3 is set, no exceptions associated with operand access are
recognized. When the count specified by bit positions 8-31 of register R2+1
for the second operand is larger than that for the first operand, access
exceptions are not recognized for the part of the second operand field that is
in excess of the first operand field.

Resulting Condition Code

0 First operand and second operand counts are equal
1 First operand count is low
2 First operand count is high
3 No movement performed because of destructive overlap

Program Interruptions

Access (fetch, operand 2; store, operand 1)
Specification

7-101

Programming Notes

When the first operand count is 0, the operation consists of setting the
condition code and setting the high-order bytes of registers Rl and R2 to O.

When the contents of the Rl and R2 fields are identical, the condition
code is set to O, but protection and addressing exceptions are not indicated
when called for by the operand designation.

Since the execution of MOVE LONG is interruptible, the instruction
cannot be used for situations where the program must rely on uninterrupted
execution of the instruction or on the clock's not being updated during the
execution of the instruction. Similarly, the program should normally not let
the first operand of MOVE LONG include the location of the instruction. Tilis
is because the new contents of the location may be interpreted as the
instruction if execution is resumed after an interruption or if the
instruction is refetched without an interruption.

Special precautions
of an EXECUTE instruction.
the EXECUTE instruction.

should be taken when MOVE LONG is made the subject
See the programming notes in the description of

When the CONTROL MODE button, is pressed during the execution of MOVE
LONG or COMPARE LOGICAL LONG, the CP enters Control mode at the completion of
the execution of the next unit of operation. If the modification trap
condition occurs during the current unit of operation, the trap will be taken
at the completion of execution of the current unit. However, the single-step
trap will only be taken at the completion of the instruction; it will not be
taken at the completion of any other unit of execution. The amount of data
processed in a unit of operation may depend on the particular condition that
caused the execution of the instruction to be interrupted.

7-102

MOVE NUMERICS (MVN)

MVN Dl(L,Bl),D2(B2) (SS)

B I ID I B
Dl L 1 11 2

~~~~~~~---~~~~~~~~~-
I I I 

0 8 16 20 32 

I/ ID 
I- - 2 
I/ I 

----~~ 

36 47 

The low-order four bits of each byte in the second operand field, the 
numerics, are placed in the low-order bit positions of the corresponding bytes 
in the first operand field. 

L is the length of each operand, minus 1. 

The instruction is storage-to-storage. Movement is from left to right 
through each field, one byte at a time, and the fields may overlap in any 
desired way. 

The numerics are not changed or checked for validity. The high-order 
four bits of each byte, the zones, remain unchanged in both operand fields. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (fetch, operand 2; store, operand 1) 

7-103 



MOVE WITH OFFSET (MVO) 

MVO Dl(Ll,Bl),D2(L2,B2) (SS) 

Fl 
L 

1 
L 

2 
B 

1 
I ID I B 

11 2 

--~~~~~~~~~~--~I I I 
0 8 12 16 20 32 

II I D 
I- - 2 
II I 

----~~ 

36 47 

The second operand is placed to the left of and adjacent to the 
low-order four bits of the first operand. 

The low-order four bits of the first operand are attached as low-order 
bits to the second operand; the second operand bits are offset by four bit 
positions, and the result is placed in the first operand location. The first 
operand and second operand bytes are not checked for valid codes. 

The fields are processed right to left. If necessary, the second 
operand is extended with high-order Os. If the first operand field is too 
short to contain all bytes of the second operand, the remaining infonnation is 
ignored. Overlapping fields may occur and are processed by storing a result 
byte as soon as the necessary operand bytes are fetched. 

Ll and L2 are the operand lengths, minus 1. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (fetch, operand 2; fetch and store, operand 1) 

7-104 



MOVE WITH PAD (MVPC) 

MVPC Dl(Ll,Bl) ,D2(L2,B2) ,13 (SSI) 

I I L I I L B I I I D I B I I I D I 
I E2 I 1 I 3 2 1 I - - 1 I 2 I 2 I 
I I I I I I I I I I I 
0 8 16 24 32 36 48 52 63 

The second operand is placed in the first operand location. If the 
first operand length (Ll) is less than the second operand length (12) , only 
the number of bytes specified by Ll is moved. If the first operand length is 
greater than the second operand length, the additional bytes of the first 
operand are filled with the character specified in the 13 field of the 
instruction. 

The bytes to be moved are not changed or inspected. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (fetch, operand 2; store, operand 1) 

Programming Note 

At least one byte of the first operand is always moved by a successful 
MOVE WITH PAD. (The Ll and L2 fields of the instruction are 1 less than the 
lengths they specify.) 

7-105 



MOVE ZONES (MVZ) 

MVZ Dl (L ,Bl) ,D2 (82) (SS) 

B I ID I B 
D3 L 1 11 2 

I I I 
~~-~--~~-~~-~~--~-

0 8 16 20 32 

I/ I D 
I- - 2 
II I ---
36 47 

The high-order four bits of each byte in the second operand field (the 
zones) are placed in the high-order four bit positions of the corresponding 
bytes in the first operand field. 

'!be instruction is storage-to-storage. Movement is from left to right 
through each field one byte at a time, and the fields may overlap in any 
desired way. 

'!be zones are not changed or checked for validity. The low-order four 
bits of each byte (the numerics) remain unchanged in both operand fields. 

L is the length of each operand, minus 1. 

Resulting Condition Code 

'lbe condition code remains unchanged. 

Program Exceptions 

Access (fetch, operand 2; fetch and store, operand 1) 

7-106 



MULTIPLY (MR, M) 

MR Rl,R2 (~) 

I I R R I 
I lC I 1 2 I 
I I I 
0 8 12 15 

M Rl,D2(X2,B2) (R}{) 

R x B D 
SC 1 2 2 2 

0 8 12 16 20 31 

'!be product of the multiplier (the second operand) and the multiplicand 
(the first operand) replaces the multiplicand. For the M instruction, operand 
2 requires fullword alignment. 

Both multiplier and multiplicand are 32-bit signed integers. '11le 
product is always a 64-bit signed integer and occupies register Rl and the 
register following Rl. 'nle multiplicand is taken from the register following 
Rl. '!be contents of register Rl (replaced by the high-order part of the 
product) are ignored. An overflow cannot occur. 

'!be Rl field of the instruction specifies an even/odd pair of registers 
and must contain an even register address. A specification exception occurs 
when Rl is odd. 

'!be sign of the product is determined by the rules of algebra, except 
that a result of 0 is always positive. 

Resulting Condition Code 

'!be condition code remains unchanged. 

Program Exceptions 

Specification 
Access (fetch, operand 2 of M only) 

Programming Note 

'nle significant part of the product usually occupies 62 or fewer bits. 
Only when two maximum negative numbers are multiplied are 63 significant 
product bits formed. Since 2's-complement notation is used, the sign bit is 
extended right until the first significant product digit is encountered. 

7-107 



MULTIPLY (FLOATING-POINI') (MDR, MER, MD, ME) 

MDR Rl,R2 (RR, Long) 

I I R R 
2C IOI 1 2 

I I 
0 8,9 12 15 

MER Rl,R2 (RR, Short) 

I I R R 
2C 111 1 2 (optional) 

I I 
0 8,9 12 15 

MD Rl ,D2 (X2 ,B2) (RX, Long) 

I I R x B D 
6C IOI 1 2 2 2 

I I 
0 8,9 12 16 20 31 

ME Rl ,D2 (X2 ,B2) (RX, Short) 

I I I R I x I B I D 
I 6C Ill 1 I 2 I 2 I 2 (optional) 
I I I I I I 
0 8,9 12 16 20 31 

The normalized product of the multiplier (the second operand) and the 
multiplicand (the first operand) replaces the multiplicand. 

The multiplication of two floating-point numbers consists of adding the 
characteristics and multiplying the fractions. The sum of the characteristics 
less 64 is used as the characteristic of an intermediate product. 'Dle sign 
of the product is determined by the rules of algebra. 

The product fraction is normalized by prenormalizing the operands and 
postnormalizing the intermediate product when necessary. The intermediate swn 
of the characteristics is reduced by the number of left-shifts. The 
intennediate product of the fractions is truncated to 15 digits (for MER and 
ME, 7 digits) before the left-shifting. 

Exponent overflow occurs if the final sum of the characteristics exceeds 
127. The operation is completed and a program interruption occurs. The 
fraction is normalized and correct, the sign is correct, and the 
characteristic is smaller by 128 than the correct characteristic. The 
overflow exception does not occur for an intermediate sum of characteristics 
exceeding 127 when the final characteristic is brought within range because of 
normalization. 

7-108 



Exponent underflow occurs if the final sum of the characteristics is 
less than 0. If the corresponding mask bit is 1, a program interruption 
occurs. 'lbe fraction is normalized and correct, the sign is correct, and the 
characteristic is larger by 128 than the correct characteristic. If the 
corresponding mask bit is not 1, the result is made a true 0. Underflow is 
not signaled when an operand• s characteristic becomes less than 0 during 
prenormalization, and the correct characteristic and fraction value are used 
in the multiplication. 

When all 15 digits (for MER and ME, all 7 digits) of the intennediate 
fraction are 0, the product, sign, and characteristic are all made O, yielding 
a true zero result. No interruption for exponent underflow or exponent 
overflow can occur when the result fraction is 0. The program interruption 
for lost significance is never taken for multiplication. 

The second operand of the MD and ME instructions requires fullword 
alignment. 

Resulting Condition Code 

'lbe condition code remains unchanged. 

Program Exceptions 

Specification (MD and ME only) 
Exponent overflow 
Exponent underflow 
Access (MD and ME only) 

Programming Note 

Interchanging the two operands in a floating-point multiplication does 
not affect the value of the product. 

7-109 



This manual is updated by: Addendum 800-11OOP0-04.01 

MULTIPLY DECIMAL (FLOATING-POINT) (MQR, MQ) 

MQR Rl,R2 (RR) 

I R R 
3C I 1 2 

I 
0 8 12 15 

MQ Rl ,D2 (X2 ,B2) (RX) 

I I R I x I B I D I 
I 7C ~· 1 I 2 I 2 I 2 I 
I I I I I I 
0 8 12 16 20 31 

The normalized product of 
multiplicand (the first operand) 
alignment is required. 

the multiplier (the second operand) and the 
replaces the multiplicand. Fullword 

The multiplication of two decimal floating-point numbers consists of a 
characteristic addition and a fraction multiplication. The sum of the 
characteristics minus 64 is used as the characteristic of an intermediate 
product. The sign of the product is determined by the rules of algebra. 

The product fraction is normalized by prenormalizing 
postnormalizing the intermediate product, if necessary. 
performed after the fraction is truncated to 15 digits. 

the operands and 
Postnormalizing is 

Exponent overflow occurs if the final product characteristic exceeds 
127. The operation is completed and a program interruption occurs. The 
fraction is normalized and correct, the sign is correct, and the 
characteristic is 128 smaller than the correct characteristic. The overflow 
exception does not occur for an intermediate product characteristic exceeding 
127 when the final characteristic is brought within range because of 
postnormalization. 

Exponent underflow occurs if the final product characteristic is less 
than zero. If the corresponding mask bit is 1, a program interruption 
occurs. The fraction is normalized and correct, the sign is correct, and the 
characteristic is 128 larger than the correct characteristic. If the 
corresponding mask bit is O, the result is made a true zero. Underflow is not 
signaled when an operand's characteristic becomes less than zero during 
prenormalization, and the correct characteristic and fraction value are used 
in the multiplication. 

7-110.1 



This manual is updated by: Addendum 800-11OOP0-04.01 

When all 15 digits of the intermediate product fraction are Os, the 
product is made a true zero. No interruption for exponent underflow or 
exponent overflow can occur when the result fraction is zero. The program 
interruption for lost significance is never taken for multiplication. 

Resulting Condition Code 

'!he condition code remains unchanged. 

Program Exceptions 

Specification 
Data 
Exponent overflow 
Exponent underflow 
Access (MQ only) 

7-110.2 



MULTIPLY HALFWORD (MH) 

MH Rl ,D2 (X2 ,B2) 

4C 

0 8 

R 
1 

12 

x 
2 

16 

This manual is updated by: Addendum 800-11 OOP0-04.01 

(RX) 

B 
2 

20 

D 
2 

31 

The product of the second operand (multiplier) and first operand 
(multiplicand) replaces the multiplicand. The second operand is two bytes in 
length, must be halfword aligned, and is considered to be a 16-bit signed 
integer. 

Both multiplicand and product are 32-bit signed integers and may be 
located in any general register. The 16-bit multiplier is expanded to 32 bits 
before multiplication by propagating the sign-bit value through the 16 
high-order bit positions. The multiplicand is replaced by the low-order part 
of the product. The bits to the left of the 32 low-order bits are not tested 
for significance; no overflow indication is given. 

The sign of the product is determined by the rules of algebra from the 
multiplier and multiplicand signs, except that a result of 0 is always 
positive. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (fetch, operand 2) 
Specification 

Programming Note 

The significant part of the product usually occupies 46 or fewer bits, 
the exception of 47 bits being when both operands have the maximum negative 
value. Since the low-order 32 bits of the product are stored llllchanged, 
ignoring all bits to the left, the sign bit of the result may differ from the 
true sign of the product if there is overflow. 

7-111 



This manual is updated by: Addendum 800-11OOP0-04.01 

OR (OR, O, OI, OC) 

OR Rl,R2 (RR) 

I R R 
16 I 1 2 

I 
0 8 12 15 

0 Rl ,D2 (X2 ,B2) (RX) 

I I R I x I B I D I 
I 56 I 1 I 2 I 2 I 2 I 
I I I I I I 
0 8 12 16 20 31 

01 Dl (Bl) ,I2 (SI) 

I I I I B I D f 
I 96 I 2 I 1 I 1 I 
I I I I ! 
0 8 16 20 31 

oc Dl (L ,Bl) ,D2 (B2) (SS) 

I I B I ID I B 11DI 
I D6 I L 1 11 2 2 I 
I I I I I /_/_I 
0 8 16 20 32 36 47 

'lb.e logical sum (OR) of the bits of the first and second operands is 
placed in the first operand location. Operands are treated as unstructured 
logical quantities, and the connective inclusive OR is applied bit by bit. A 
bit position in the result is set to 1 if the corresponding bit position in 
one or both operands contains a 1; otherwise, the result bit is set to O. All 
operands and results are valid. Operand 2 of the 0 instruction requires 
fullword alignment. 

Resulting Condition Code 

0 Result is 0 
1 Result not 0 
2 
3 

Program Exceptions 

Specification (0 only) 

Access (fetch, operand 2, 0 and OC; fetch and store, operand 1, OI and 
OC) 

7-112 



Programming Note 

The OR may be used to set a bit to 1. For this purpose, the second 
operand should have Os in all positions corresponding to the first operand 
bits to be set to 0. 

7-113 



PACK (PACK) 

PACK Dl(Ll,Bl),D2(L2,B2) (SS) 

I L I L I B I ID I B I/ I D I 
I F2 1 I 2 I 1 11 2 I- - 2 I 
I I I I I I I/ I I 
0 8 12 16 20 32 36 47 

The format of the second operand is changed from zoned to packed, and 
the result is placed in the first operand location. 

The second operand is assumed to have the zoned format. All zones are 
ignored except the zone over the low-order digit , which is assumed to 
represent a sign. The sign is placed in the rightmost four bits of the 
low-order byte, and the digits are placed adjacent to the sign and to each 
other in the remainder of the result field. The sign and digits are moved 
unchanged to the first operand field, and are not checked for valid codes. 

The fields are processed right to left. If necessary, the second 
operand is extended with high-order Os. If the first operand field is too 
short to contain all significant digits of the second operand field, the 
remaining high-order digits are ignored. Overlapping fields may occur and are 
processed by storing one result byte immediately after the necessary second 
operand bytes are fetched. Except for the rightmost byte of the result field, 
which is stored immediately upon fetching the rightmost byte of the second 
operand, two operand bytes are needed for each result byte. 

Ll and L2 are the operand lengths, minus 1. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (fetch, operand 2; store, operand 1) 

Programming Notes 

The PACK instruction may be used to interchange the two digits in one 
byte by specifying a 0 in the Ll and L2 fields and the same address for both 
operands. 

To remove the zones of all bytes of a field, including the low-order 
byte, both operands must be extended with a dwnmy byte in the low-order 
position, which subsequently is ignored in the result field. 

7-114 



PACK AND ALIGN (PAL) 

PAL Dl(Ll,Bl),D2(L2,B2) (SS) 

I I L I L B I ID I B I/ I D 
I C4 I 1 I 2 1 11 2 I- - 2 
I I I I I I I/ I 
0 8 12 16 20 32 36 47 

The format of the second operand is changed from external format to 
packed, and the result is placed in the first operand location. 

The second operand is assumed to have the external format. The source 
field may contain (moving right to left) blanks (ASCII space code) , followed 
by a sign (ASCII plus or minus), followed by data. Or it may contain data 
followed by a sign followed by blanks. It may also contain a single ASCII 
decimal point character. Ll and L2 are the operand lengths, minus 1. 

The source field is scanned right to left until the first nonblank 
character is encountered. If the first nonblank character is a valid sign 
character (hexadecimal 2B for plus or hexadecimal 2D for minus) its packed 
equivalent (1111 for plus or 1101 for minus) will be stored in the rightmost 
four bits of the least significant byte of the first operand (receiver 
field). If a decimal point has not previously been encountered, a check for 
decimal point is made. If the character is a decimal point, its existence and 
position will be reflected in the contents of register 1, and the recognition 
of another decimal point will be treated as an invalid character. A final 
test is made to determine whether or not the character is a valid decimal 
character. 'Ille scan continues until the leftmost source byte is reached. If 
the first nonblank character was not a valid sign, the leftmost character is 
checked for a valid sign, and the first operand is set accordingly. If no 
sign is specified in the source field, a plus sign (1111) is stored in the 
first operand. 

Table 7-3 summarizes the scan order, disregarding any leading or 
trailing blanks. 

Order 

1 

2 

3 

4 

Table 7-3. PACK AND ALIGN Scan Order 

Test 

Sign 

Sign 

Decimal point 

Valid decimal 
character 

When Applied 

To rightmost nonblank character 

To leftmost character (if the 
rightmost nonblank character was not 
a sign) 

Until a decimal point is encountered 

Always 

7-115 



The code coversions from external ASCII to packed format are as follows: 

ASCII codes 0 through 9 are converted to 4-bit binary equivalents. 

Tile sign character, if present, is converted to 1111 for plus and 
1101 for minus, and is stored in the rightmost four bi ts of the 
packed field. The presence of the sign character in the source 
field is indicated in register 1. If no sign was found, a plus code 
is stored in the sign position of the packed field. 

lbe decimal point presence and position is indicated in register 1 
and it is skipped. 

'llle destination field is padded with leading packed Os. 

lbe number of source 
Leading Os preceding the 
counted as digits. 

digits converted is indicated in register 1. 
decimal point in the source field are 

'llle target field is filled in from right to left. If necessary, the 
second operand is padded with most significant Os. If the first operand is 
too short to contain all significant digits of the second operand field, the 
remaining digits are ignored and the condition code is set to indicate 
truncation. In all cases of truncation, the operation is completed ignoring 
truncated digits. If an invalid character is encountered during conversion, 
the condition code is set to indicate a data validity error and the 
instruction is terminated. 

If the instruction is completed, register 1 is set to reflect the result 
of the operation. Bit 24 of register 1 is set if a sign character was 
present, and bit 25 is set if a decimal point was present. Bits 0 through 15 
of register 1 are unchanged. Bits 16 through 23 are set to the number of 
digits (including Os) to the left of the decimal point in the source field. 
Bits 26-31 are set to the 2's complement of the count of digits (including Os) 
to the right of the decimal point in the source field. Register 1 appears as 
follows after the PAL instruction is completed without encountering an invalid 
character: 

11III111 Left I I I 
11111111 count I S I D I 
1//////1 I I I 

16 23 24 25 26 

2's complement 
of right 

count 

7-116 

31 



Rl Bits Function 

16-23 Left count: 
decimal point 

count of source digits (including Os) to left of 

24 

25 

S, Sign presence 

0 = no sign present 
1 = sign present 

D, Decimal point presence 

0 = no source field decimal point encountered 
1 = decimal point encountered 

26-31 2's complement of 
digits to right 
field 

right 
of the 

count: 2's complement of count of 
effective decimal point in the source 

Overlapping operand fields will yield unpredictable results. 

Resulting Condition Code 

0 Conversion completed successfully 
1 Invalid character encountered 
2 
3 Left truncation occurred 

Programming Exceptions 

Access (fetch, operand 2; store, operand 1) 

Programming Notes 

The initial contents of register 1 are overwritten by the action of PAL. 

If all digits in the source field are 0, the sign of the result wi 11 
reflect the sign of the source. If truncation of a nonzero field occurs, the 
sign will reflect the value before truncation. 

The "right count" in register 1 after 
2's-complement form for use in the second operand 
DECIMAL (SRP) instruction. 

7-117 

execution of 
of the SHIFT 

PAL 
AND 

is in 
ROUND 



POP (POP) 

POP Sl,R2 (RR) 

I I s R I 
I 08 I 1 2 I 
I I I 
0 8 12 15 

The relevant stack vector is dete110ined from the Sl field of the 
instruction. The stack pointer is incremented by 4. Register R2 is then 
loaded with the contents of the four bytes which were addressed by the stack 
pointer before updating. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Specification 
Access (fetch, bytes popped from stack) 

7-118 



POP CHARACTERS (POPC) 

POPC Dl(L,Bl),O(S2) 

D8 L 
B 

1 

(SS) 

D 
1 

s I I I 
2 I- -

..;.__----'----~----:.....----~-__;_I I ___ I __ 
0 8 16 20 32 36 47 

The relevant stack vector is determined from the S2 field of the 
instruction. Til.e D2 field is ignored. Bytes are taken from the location 
addressed by the stack pointer and ascending locations, and ~tored in 
ascending locations beginning at the location specified by the Bl and Dl 
fields. The munber of bytes specified is stored. The stack pointer is then 
incremented by this number. The stack pointer is then incremented again (by 
O, 1, 2, or 3) so that it addresses a fullword boundary. 

L is the operand length in bytes, minus 1. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Specification 
Access (fetch, bytes popped from stack; store, operand 2) 

Programming Note 

This is a move from a word-aligned location to a location with no 
aligrunent restriction. 

7-119 



POP HALFWORD (POPH) 

POPH Sl,R2 

09 

0 8 

s 
1 

R 
2 

12 15 

(RR) 

The relevant stack vector is determined from the Sl field of the 
instruction. The stack pointer is incremented by 4. Then the low-order 
halfword of register R2 is loaded with the contents of the two bytes that were 
addressed by the stack pointer before updating. Bit 16 of register R2 is then 
propagated through the high-order half (bits 0 through 15) of the register. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Specification 
Access (fetch, bytes popped from stack) 

7-120 



POP MULTIPLE (POPM) 

POPM Sl,R3,R2 (RS) 

S R R 1/////////////////////1 
A6 1 3 2 1/////////////////////1 

1/////////////////////1 
0 8 12 16 20 31 

The relevant stack vector is determined from the Sl field of the 
instruction. The stack pointer is incremented by the number of bytes implied 
by the range of registers R3 to R2. Register R3 and succeeding registers 
(with register 0 following register 15) are then loaded, starting from the 
location that was addressed · by the stack pointer before updating, until 
register R2 has been loaded. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Specification 
Access (fetch, bytes popped from stack) 

7-121 



POP NOTHING (POPN) 

POPN Sl,D2(X2,B2) 

84 

0 8 

s 
1 

12 

x 
2 

(RX) 

16 

B 
2 

20 

D 
2 

31 

'!be relevant stack vector is determined from the Sl field of the 
instruction. The D2(X2,B2) value is added to the address in the stack pointer 
and the result stored in the stack pointer. 'lbe stack pointer is then 
incremented (by O, 1, 2, or 3) so that it addresses a fullword boundary. 

Resulting Condition Code 

'!be condition code remains unchanged. 

Program Exceptions 

Specification 

7-122 



PUSH (PUSH) 

PUSH Sl,R2 (RR) 

I s R 
OB I 1 2 

I 
0 8 12 15 

The relevant stack vector is determined from the Sl field of the 
instruction. The contents of the register specified by the R2 field are 
stored at the location addressed by the stack pointer, minus 4. 'lbe stack 
pointer of the stack vector is then decremented by 4. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Stack overflow 
Specification 
Access (store, bytes pushed onto stack) 

Programming Note 

If the value in the stack pointer is pushed onto a stack by PUSH or 
PUSHM, the value pushed will be that in the register before the instruction 
was executed. 

7-123 



PUSH ADDRESS (PUSHA) 

PU SHA Sl,D2(X2,B2) 

BO 

0 8 

s 
1 

12 

x 
2 

(llX) 

16 

B 
2 

20 

D 
2 

31 

The relevant stack vector is determined from the Sl field of the 
instruction. The address in the stack pointer is decremented by 4. The 
second operand address is then placed in the three low-order bytes of the word 
addressed by the stack pointer. The high-order byte of this word is set to 
binary Os. Address computation follows the rules for base-displacement 
address formation. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Stack overflow 
Specification 
Access (store, bytes pushed onto stack) 

Progranuning Note 

The second operand address is determined before 
decremented, and therefore reflects the contents 
instruction is executed. 

7-124 

the stack pointer is 
of registers before the 



PUSH ADDRESS (RELATIVE) (RPUSHA) 

RPUSHA Rl,L2 

72 

0 

R 
1 

8 12 

(RL) 

L 
2 

31 

The sign of the L2 field is extended 12 bi ts to the left, to fonn a 
32-bit signed 2's-complement displacement. The displacement is added to the 
current instruction address to form the effective address. 

Instruction execution is then identical to the corresponding RX 
instruction. 

When the instruction is executed, the current instruction address used 
in the effective-address calculation is the address of the EXECl.rI'E instruction. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Stack overflow 
Specification 
Access {store, bytes pushed onto stack) 

7-125 



PUSH CHARACTERS (PUSHC) 

PUSHC 0 (L ,Sl) ,D2 (B2) (SS) 

I s I// ///I B 
I D9 L 1 I I I I I I I 2 

..._I ------'-----------;..-.I// II 11 
0 8 16 20 32 

I/ ID 
I- - 2 
I I ..._I ____ 
36 47 

The relevant staclt vector is determined from the Sl field of the 
instruction. The len~th specified is subtracted from the stack pointer in the 
stack vector. The stack pointer is then decremented again (by 0, 1, 2, or 3) 
until it addresses a fullword boundary. Bytes are then taken from the 
location specified by the 82 and D2 fields and ascending locations; they are 
stored in a~cending locations beginning at the location addressed by the 
updated stack pointer. 'nle numb~r of bytes specified is stored. 

L is the ope~and length, min~s 1. 

Resulting Condition Code 

'lb.e condition code r~mains unchanged. 

Program Exceptions 

Stack overflow 
Sp~c:ification 
Access (store, bytes pushed onto stack; fetch, operand 2) 

Progranuning Note 

This is a move from a location with no aligrunent restriction to a 
word-aligned location. 

7-126 



PUSH MULTIPLE (PUSHM) 

PUSHM Sl,R3,R2 

A9 

0 

S R 
1 3 

8 12 

(RS) 

R 1/////////////////////1 
2 1/////////////////////1 

1/////////////////////1 
16 20 31 

The relevant stack vector is determined from the Sl field of the 
instruction. The values in register R2 and preceding registers (with 
register 15 preceding register 0) are stored in descending words starting four 
bytes below the location addressed by the stack pointer, until the register 
specified by the R3 field has been stored. The stack pointer is then 
decremented by the number of bytes stored. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Stack overflow 
Specification 
Access (store, bytes pushed onto stack) 

7-127 



PUSH NOTHING (PUSHN) 

PUSHN Sl ,D2 (X2 ,82) (RX) 

I I s I x I B I D I 
I 85 I 1 I 2 I 2 I 2 I 
I I I I I I 
0 8 12 16 20 31 

The relevant stack vector is determined from the Sl field of the 
instruction. The D2(X2,B2) value is subtracted from the address in the stack 
pointer and the result is stored in the stack top word. The stack pointer is 
then decremented again (by O, 1, 2, or 3) until it addresses a fullword 
boundary. 

Resulting Condition Code 

'nle condition code remains unchanged. 

Program Exceptions 

Stack overflow 
Specification 

7-128 



This manual is updated by: Addendum 800-11 OOP0-04.01 

p 
RESET REFERENCE AND CHANGE BITS (RRCB) 

RRCB Dl (Bl) ,M2 (SI) 

I M B D 
I 9F 2 1 1 
I 
0 8 16 20 31 

The reference and change table (RCT) (for all VS processors) or the 
T-RAM monitor area (for the VS25 and VSlOO) is examined or modified with this 
instruction, according to the value of M2. When used with the RCT, operand 1 
must be a physical address; when used with the T-RAM monitor area, it must be 
a virtual address. The operation of the instruction is explained below. 

REFERENCE AND CHANGE TABLE 

The reference and change table (RCT) makes possible the efficient 
replacement of old memory pages with new pages read in from disk. (Refer also 
to the discussion of paging in Chapter 4 of this manual.) the RCT is an area 
of local CP memory containing 8K entries of 2 bits each. 'Ihese are a 
reference bit and a change bit for each of the up to 8K addressable pages of 
main memory. When some location in a page frame is referenced by a user 
program,· the reference bit for the page frame is set to 1; when the location 
is also modified, the change bit is also set to 1. The system paging task 
uses the reference and change bits along with an aging count in deciding which 
virtual pages to overwrite with new ones during paging operations. 

RRCB Reference and Change Table Function 

The privileged RRCB instruction allows inspection and modification of 
the RCT through use of a physical address. The immediate mask (M2) of the 
instruction, illustrated below, specifies this action. 

SI Rl//1//1//1//1//1//I 
El Cl//1//1//1//1//1//1 

I LI Tl//1//1//1//1//1//I 
bits 8 15 

Figure 1. Format of Operand M2 in RRCB Instruction 
for Reference and Change Table 

The SEL bit selects reference and change bit control (SEL=O) or monitor 
area control (SEL=l). When SEL=O, RCT=l causes resetting of the reference and 
change bits; RCT=O only reports the current setting of the bits. 

7-129 



This manual is updated by: Addendum 800-11OOP0-04.01 

'lbe condition code is set to reflect the state of the reference and 
change bits before they are conditionally reset. 

Resulting Condition Code 

0 Reference bit o, change bit 0 
1 Reference bit o, change bit 1 
2 Reference bit 1, change bit 0 
3 Reference bit 1, change bit 1 

MONITOR AREA 

The monitor area is a section of local CP memory that is typically 
used to record loaded T-RAM entries and thereby control user address space. 
For example, the VS25 and VSlOO use it for efficient clearing of a task's 
T-RAM at the end of each time slice. (Refer also to the description of 
address translation in Chapter 4 of this manual.) For the VS25 the monitor 
area comprises 64 entries; for the VSlOO it comprises 128 entries. 

Monitoring is enabled for a segment of a user's virtual memory if the M 
bit is set in the SCR for the segment; refer to Figure 4-5 for an illustration 
of SCR format. During the successful servicing of a T-RAM fault for a virtual 
page in a segment for which monitoring is enabled, the virtual page address is 
recorded in the next available monitor area location. At the end of a user's 
time slice, only those T-RAM locations identified by monitor entries are 
cleared (i.e., their high order bit is set to 1), rather than the entire 
T-RAM. Because only a fraction of each segment's possible T-RAM entries are 
likely to be loaded during a given time slice, clearing the T-RAM using the 
monitor is much more efficient than clearing the entire T-RAM, which would 
require individually accessing each of 512 entries per segment. 

RRCB Monitor Area Function 

The privileged RRCB instruction allows clearing of all or part of the 
VS25 or VSlOO T-RAM monitor area through use of a virtual address. The 
immediate mask (M2) of the instruction is interpreted differently for the VS25 
and VSlOO, and specifies monitor action as follows: 

SI RI //I Al SI OI Ml DI 
El Cl //I LI El NI OI Ml 
LI Tl //I LI GI El NI Pl 

bits 8 15 

Figure 2. Format of Operand M2 in RRCB Instruction 
for VS25 and VSlOO T-RAM Monitor Area 

7-129.1 



This manual is updated by: Addendum 800-11 OOP0-04.01 

The SEL bit selects reference and change bit control (SEL=O) or monitor 
control (SEL=l). For SEL=l, the remaining bits have the following meaning 
when set to 1: 

RCT ignored 

ALL Clears all T-RAM entries and monitor entries; used 
for diagnostics and initialization. 

SEG Clears T-RAM entries for the segment indicated in 
virtual address operand (operand 1) of the RRCB 
instruction. For the VS25, if monitoring is 
enabled, all T-RAM entries recorded by the monitor 
for any segment are cleared, along with the 
monitor entries themselves; i.e., SEG=MON. For the 
VSlOO, if monitoring is enabled for the segment, 
only those T-RAM entries recorded for the segment 
by the monitor are cleared, along with the monitor 
entries themselves. 

ONE Clears the one T-RAM entry 
virtual address operand of the 
(For the VSlOO only: 
corresponding monitor entry if 
effect for the segment.) 

specified by the 
RRCB instruction. 

also clears the 
monitoring is in 

MON Clears T-RAM entries recorded in the monitor area, 
along with the monitor entries themselves. 

DMP Copies (dumps) the entire monitor area to the 
word-aligned main memory location specified by the 
virtual address operand of the RRCB instruction; 
the T-RAM and monitor are left unchanged. (Not 
currently supported on the VS25.) 

For VSlOO only: ALL, SEG, and MON functions place a count value of 
cleared T-RAM entries in general register 0. 

Program Exceptions 

Access (addressing only, operand 1) 
Privileged operation 

7-129.2 



This manual is updated by: Addendum 800-11OOP0-04.01 

RETURN AND POP ON CONDITION (RPC) 

RPC Ml,R2 

26 

0 

IM 
I 1 
I 
8 

(RR) 

I R 
I 2 I 
I I 
12 15 

This instruction is identical to the RTC instruction, except that after 
all other processing is completed, the stack pointer (general register 15) 
will be loaded with the value that was contained in the R2 register before 
execution of this instruction began. The high-order byte of general register 
15 is set to 0 by this instruction. 

Resulting Condition Code 

Set with value from stack 

Program Exceptions 

Access (fetch, bytes popped from the system stack) 

Specification (if the current control register 1 value is not a multiple 
of 4) 

7-130 



RETURN ON CONDITION (RTC) 

RTC Ml 

04 

0 

(R!t) 

M 1//////1 
1 1//////1 

1//////1 
8 12 15 

If the state of the condition code is as specified by Ml, this 
instruction will set general register 15 (the stack pointer) equal to the 
current value in control register 1, plus 4 (thus skipping over the register 0 
save-area contents stored by a JSCI instruction); the instruction will then 
pop off the system stack general registers 1 to 14. The high byte of control 
register 1 is set to O. The next word will then be popped off the stack and 
its value will replace the current contents of control register 1. One more 
word will then be popped off the stack and will be used as the program mask 
byte and address portion of the current PCW. Control will then pass to the 
address specified in the address portion of the PCW. 

If the state of the condition code is not as specified by Ml, none of 
the above occurs, and normal instruction sequencing proceeds with the updated 
instruction address. 

Resulting Condition Code 

Set with value from stack 

Program Exceptions 

Access (fetch, bytes popped from the system stack) 

Speci~ication (if the current control register 1 value is not a multiple 
of 4) 

7-131 



p 
SAVE 'TIIEN 'AND' SYSTEM MASK (STNSM) 

STNSM Rl,R3,I2 (RS) 

I R R I I 
I AC 1 3 I 2 
I I 
0 8 12 16 31 

This instruction tests whether to save the current PCW status field. If 
the Rl field of the instruction is O, the saving is bypassed. If Rl is not O, 
the current PCW status field is saved in bits 16-31 of register Rl. Bits 0-15 
of Rl are unchanged. 

After the saving is performed or bypassed, the R3 field of the 
instruction is tested. If it is O, 12 is ANDed with the current PCW status 
field. If R3 is not 0, I2 is ANDed with bits 16-31 of register R3, and this 
replaces the current PCW status field. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Privileged operation 

Programming Note 

This instruction is normally used for' one of three functions: 

1. Turning off specified bits in the PCW 

2. Tun1ing off specified bits in the PCW while saving the previous 
status 

3. Re-establishing the previous status. 

7-132 



p 
SAVE THEN 'OR' SYSTEM MASK (STOSM) 

STOSM Rl,R3,I2 (RS) 

R R 
AD 1 3 

0 8 12 16 

I 
2 

31 

This instruction first tests whether to save the current PCW status 
field. If the Rl field of the instruction is O, the saving is bypassed. If Rl 
is not 0, the current PCW status field is saved in bits 16-31 of register Rl. 
Bits 0-15 are wichanged. 

After the saving is perfonned or bypassed, the R3 field of the 
instruction is tested. If it is O, 12 is ORed with the current PCW status 
field. If R3 is not 0, 12 is ORed with bits 16-31 of register R3 and this 
replaces the current PCW status field. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Privileged operation 

Programming Note 

This instruction is normally used for one of three functions: 

1. Turning on specified bits in the PCW 

2. Turning on specified bits in the PCW while saving the previous status 

3. Re-establishing the previous status. 

7-133 



SCAN FOR BYTE (SCAN) 

SCAN Rl ,M3 ,D2 (B2) (RS) 

I R M 
88 I 1 3 

I 
0 8 12 16 

B 
2 

20 

D 
2 

31 

Tile first operand designates an address-length register pair (general 
registers Rl and Rl+l, with Rl even-numbered). Second operand base and 
displacement calculations are performed according to the rules for address 
arithmetic, and the low-order byte of the result is used. The byte string 
specified by the first operand address-length register pair is scanned in 
order of ascending or descending memory addresses, comparing each byte with 
the second operand byte value, until an equal or unequal value is found. 

Options are selected by the M3 field as follows: 

Bit 0 Ascending scan if O; descending scan if 1 

Bit 1 Stop on equal compare if O; stop on unequal compare if 1 

Bits 2, 3 Must be 0 (specification exception if not) 

For an ascending scan, the address-length register pair is updated as 
follows: Register Rl contains the address of the byte that satisfied the 
specified condition, or of the first byte beyond the string if the condition 
is not satisfied. Bits 8-31 of register Rl+l contain either the length of 
that part of the string including and above the byte on which the condition 
was satisfied, or 0 if the condition was not satisfied. 

For a descending scan, the address-length register pair is updated as 
follows: Bits 8-31 of register Rl are unchanged. Bits 8-31 of register Rl+l 
contain either the length of that part of the string including and below the 
byte on which the condition was satisfied, or 0 if the condition was not 
satisfied. 

Tile high-order byte (bits 0-7) of register Rl is set to 0 by the 
instruction. 

7-134 



lbe execution of the instructon is interruptible. When an interruption 
occurs after a unit of operation other than the last one, the contents of 
registers Rl and Rl+l are incremented and/or decremented so that the 
instruction, when re-executed, resumes at the point of interruption. The 
instruction may be refetched from main storage even in the absence of an 
interruption during execution. 

Resulting Condition Code 

0 Condition not satisfied 

1 Condition satisfied, other than at end of operand 1 

2 Condition satisfied at end of operand 1 (highest-addressed byte 
ascending; lowest-addressed byte descending) 

3 

Program Exceptions 

Specification 
Access (fetch, operand 1) 

Progranuning Notes 

'lbe second operand of SCAN FOR BYTE must not be a literal expression. 

For general notes on interruptible instructions, refer to MOVE 
CHARACTERS LONG. 

7-135 



SET PROGRAM MASK (SPM) 

SPM Rl 

OD 

(~) 

R 1//////1 
1 1//////1 

1//////1 
0 8 12 15 

Bits 0-7 of the general register specified by the Rl field replace 
condition code and the rest of the program mask bits of the current PCW. 
8-31 of the register specified by the Rl field are ignored. The contents 
the register specified by the Rl field remain unchanged. 

the 
Bits 

of 

The instruction pennits setting of the condition code and the rest of 
the program mask bits in either the problem program or the supervisor state. 

Resulting Condition Code 

The code is set according to bits 0-1 of the register specified by Rl. 

Program Exception 

None 

Programming Note 

Bits 0-7 of the general register may have been loaded from the PCW by 
BRANCH AND LINK (BAL). 

7-136 



SHUT AND ROUND DECIMAL (SRP) 

SRP Dl(Ll,Bl) ,D2(B2) ,I3 (SS) 

I I L I B I I ID I B I/ I D 
I FO I 1 3 1 I 11 2 I 2 
I I I I I I II I 
0 8 12 16 20 32 36 47 

The first operand is shifted - in the direction and for the number of 
digit positions specified by the second operand address. When shifting to the 
right is specified, the first operand is rounded by the rounding factor, 13. 
Ll is the operand length, minus 1. 

Til.e second operand address is not used to designate data; instead, the 
contents of bit positions 26-31 of the address are considered a signed 
fixed-point quantity, indicating the direction of the shift and the number of 
digit positions to be shifted. The remainder of the address is ignored. When 
bit 26 of the second operand address is 0, a left-shift is specified, and bits 
27-31 of the address are considered a true binary number specifying the number 
of digit positions of shift. When bit 26 is 1, a right-shift is specified, 
and bits 27-31, considered as a binary nwnber in 2's-complement notation, 
specify the amount of the shift. 

The first operand is considered to be in the packed decimal format and 
is checked for the validity of decimal digit codes. Only its digit portion is 
shifted; the sign position does not participate in the shifting. Zeros are 
supplied for the vacated digit positions. The validity of the first operand 
is checked and the condition code is set even if a shift amount of 0 is 
specified. A result of 0 is made positive. 

If a significant digit is shifted out of the high-order digit position 
during left-shift, a decimal overflow condition is recognized. The operation 
is completed by ignoring the overflow. 

During right-shift, bit positions 12-15, the contents of the 13 field, 
are used as a rounding factor. The shifted operand is rounded by decimally 
adding the rounding factor to the last digit shifted out and propagating the 
carry, if any, to the left. Both the first operand and the rounding factor 
are considered positive quantities for the purpose of this addition. Except 
for validity checking and the participation in rounding, the digits shifted 
out of the low-order digit position are ignored and lost. The validity of the 
rounding-factor code is checked regardless of the direction and amount of 
shift specified. 

7-137 



Resulting Condition Code 

0 Result is 0 
1 Result is less than 0 
2 Result is greater than 0 
3 Result overflows 

Program Exceptions 

Access (fetch and store, operand 1) 
Data 
Decimal overflow 

Programming Note 

Because the 2's-complement notation is employed, SHIFT AND ROUND DECIMAL 
can be used for shifting up to 31 digit positions left and up to 32 digit 
positions right. 'nlis is sufficient to clear all digits of any decimal field 
even when rounding in right-shift is specified. 

Please refer to the Programming Note for SLDA. 

7-138 



SHI Fr LEIT DOUBLE (SLDA) 

SLDA Rl ,D2 (B2) (RS) 

R 1//////1 B 
BF 1 1//////1 2 

1//////1 
0 8 12 16 20 

D 
2 

31 

The double-length integer part of the first operand is shifted left the 
number of bits specified by the second operand address. Bits 12-15 of the 
instruction are ignored. 

The second operand address is not used to address data; its low-order 
six bits indicate the number of bit positions to be shifted. The remainder of 
the address is ignored. 

The Rl field of the instruction specifies an even/odd pair of registers 
and must contain an even register address. A specification exception occurs 
when Rl is odd. 

The first operand is treated as a munber with 63 integer bits and a sign 
in the sign position of the high-order register. The sign remains unchanged. 
The high-order bit position of the Rl+l register contains an integer bit, and 
the contents of the Rl+l register participate in the shift in the same manner 
as the other integer bits. Zeros are supplied to the vacated positions of the 
registers. 

If a bit unlike the sign bit is shifted out of bit position 1 of the Rl 
register, an overflow occurs. The overflow causes a program interruption when 
the fixed-point overflow mask bit is set to 1. 

Resulting Condition Code 

0 Result is 0 
1 Result is less than 0 
2 Result is greater than 0 
3 Overflow 

Program Exceptions 

Fixed-point overflow 
Speci fie a ti on 

7-139 



Programming Notes 

The eight shift instructions provide the following three pairs of 
alternatives: left or right, single or double, and algebraic or logical. 
Algebraic shifts differ from the logical shifts in that overflow is 
recognized, the condition code is set, and the high-order bit participates as 
a sign in algebraic shifts. 

The maximwn shift amount that can be specified is 63. For 
shifts this is sufficient to shift out the entire integer field. 
bits participate in the double-logical shifts, the entire register 
cannot be shifted out. 

algebraic 
Since 64 
contents 

A shift amount of 0 in the two algebraic double-shift operations 
provides a double-length sign and magnitude test. 

The base register participating in the generation of the second operand 
address permits indirect specification of the shift amount. A 0 in the B2 
field indicates the absence of indirect shift specification. 

7-140 



SHIFI' LEFT DOUBLE LOGICAL (SLDL) 

SLDL Rl ,D2 (B2) 

SD 

0 

I R 
I 1 
I 
8 

(RS) 

1//////1 B 
1//////1 2 
1//////1 
12 16 

D 
2 

20 31 

'nle double-length first operand is shifted left the nwnber of bits 
specified by the second operand address. The second operand address is not 
used to address data; its rightmost six bits indicate the nwnber of bit 
positions to be shifted. The remainder of the address is ignored. 

'nle Rl field of the instruction specifies an even/odd pair of registers 
and must contain an even register address. A specification exception occurs 
when Rl is odd. 

All 64 bi ts of the register pair specified by Rl participate in the 
shift. Most significant bits are shifted out of the first register and are 
lost. Zeros are supplied to the vacated positions of the registers. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Specification 

Programming Note 

Please refer to the Programming Notes for SLDA. 

7-141 



SHIFT LEFI' SINGLE (SLA) 

SLA Rl ,D2 (B2) (RS) 

R 1//////1 B 
8B 1 1//////1 2 

1//////1 
0 8 12 16 20 

D 
2 

31 

'nle integer part of the first operand is shifted left the number of bits 
specified by the second operand address. Bits 12-15 of the instruction are 
ignored. 

'nle second operand address is not used to address data; its low-order 
six bits indicate the number of bit positions to be shifted. The remainder of 
the address is ignored. 

'nle sign of the first operand remains unchanged. All 31 integer bits of 
the operand participate in the left-shift. Zeros are supplied to the vacated 
low-order register positions. 

If a bit unlike the sign bit is shifted out of position 1, an overflow 
occurs. The overflow causes a program interruption when the fixed-point 
overflow mask bit is set to 1. 

Resulting Condition Code 

0 Result is 0 
1 Result is less than 0 
2 Result is greater than 0 
3 Overflow 

Program Exceptions 

Fixed-point overflow 

Programming Notes 

For numbers with an absolute value of less than 2#'0 '"30, a left shift of 
one bit position is equivalent to multiplying the number by 2. 

Please refer to the Programming Notes for SLDA. 

7-142 



SHIFI' LEFI' SINGLE LOGICAL (SLL) 

SLL Rl ,D2 (B2) 

89 

0 

I R 
I 1 
I 
8 

(RS) 

1//////1 B 
1//////1 2 
1//////1 
12 16 20 

D 
2 

31 

The first operand is shifted left the number of bits specified by the 
second operand address. 

The second operand address is not used to address data; its least 
significant six bits indicate the nwnber of bit positions to be shifted. 'Ille 
remainder of the address is ignored. 

All 32 bits of the general register specified by Rl participate in the 
shift. Most significant bi ts are shifted out and are lost. Zeros are 
supplied to the vacated least-significant register positions. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

None 

Programming Note 

Please refer to the Programming Notes for SLDA. 

7-143 



SHIFT RIGHT DOUBLE (SRDA) 

SRDA Rl ,D2 (82) 

8E 

0 

(RS) 

R 1//////1 B 
1 1//////1 2 

1//////1 
8 12 16 20 

D 
2 

31 

The double-length integer part of the first operand is shifted right the 
number of places specified by the second operand address. Bits 12-15 of the 
instruction are ignored. 

The Rl field of the instruction specifies an even/odd pair of registers 
and must contain an even register address. A specification exception occurs 
when Rl is odd. 

The second operand address is not used to address data; its low-order 
six bits indicate the number of bit positions to be shifted. 'Ihe remainder of 
the address is ignored. 

The first operand is treated as a number with 63 integer bits and a sign 
in the sign position of the high-order register. The sign remains unchanged. 
The high-order bit position of the low-order register contains an integer bit~ 
and the contents of the low-order register participate in the shift in the 
same manner as the other integer bits. The low-order bits are shifted out 
without inspection and are lost. Bits equal to the sign are supplied to the 
vacated positions of the registers. 

Resulting Condition Code 

0 Result is 0 
1 Result is less than 0 
2 Result is greater than 0 
3 

Program Exceptions 

Specification 

Programming Note 

Please refer to the Programming Notes for SLDA. 

7-144 



SHIFT RIGHI' DOUBLE "LOGICAL (SRDL) 

SRDL Rl ,D2 (B2) 

BC 

0 

I R 
I 1 
I 
8 

(RS) 

1//////1 B 
1//////1 2 
1//////1 
12 16 20 

D 
2 

31 

The double-length first operand is shifted right the nwnber of bits 
specified by the second operand address. 

The Rl field of the instruction specifies an even/odd pair of registers 
and must contain an even register address. A specification exception occurs 
when Rl is odd. 

The second operand address is not used to address data; its rightmost 
six bits indicate the number of bit positions to be shifted. The remainder of 
the address is ignored. 

All 64 bits of the register pair specified by Rl participate in the 
shift. Least significant bits are shifted out of the second register and are 
lost. Zeros are supplied to the vacated positions of the registers. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Specification 

Progranuning Note 

Please refer to the Programming Notes for SLDA. 

7-145 



SHIFI RIGHT SINGLE (SRA) 

SRA Rl ,D2 (82) 

8A 

0 

(RS) 

R 1//////1 B 
1 1//////1 2 

I/II/Ill 
8 12 16 20 

D 
2 

31 

The integer part of the first operand is shifted right the number of 
bits specified by the second operand address. Bits 12-15 of the instruction 
are ignored. 

The second operand address is not used to address data; its low-order 
six bits indicate the nwnber of bit positions to be shifted. The remainder of 
the address is ignored. 

The sign of the first operand remains unchanged. All 31 integer bits of 
the operand participate in the right-shift. Bi ts equal to the sign are 
supplied to the vacated high-order bit positions. Low-order bits are shifted 
out without inspection and are lost. 

Resulting Condition Code 

0 Result is 0 
1 Result is less than 0 
2 Result is greater than 0 
3 

Program Exceptions 

None 

Programming Notes 

A right-shift of one bit position is equivalent to division by 2 with 
rounding downward. When an even number is shifted right one position, the 
value of the field is that obtained by dividing the value by 2. When an odd 
number is shifted right one position, the value of the field is that obtained 
by dividing the next lower nwnber by 2. 

Shifts of from 31 to 63 bit positions cause the entire integer to be 
shifted out of the register. When the entire integer field of a positive 
number has been shifted out, the register contains a value of 0. For a 
negative number, the register contains a value of -1. 

Please refer to the Programming Notes for SLDA. 

7-146 



SHIFI' RIGHT SINGLE LOGICAL (SRL) 

SRL Rl ,D2 (B2) 

88 

0 8 

(RS) 

R 1//////1 B 
1 1//////1 2 

Ill/I/II 
12 16 20 

D 
2 

31 

Tile first operand is shifted right the number of bits specified by the 
second operand address. 

The second operand address is not used to address data; ~ts least 
significant six bits indicate the number of bit positions to be shifted. The 
remainder of the address is ignored. 

All 32 bits of the general register specified by Rl participate in the 
shift. Least significant bits are shifted out and are lost. Zeros are 
supplied to the vacated most-significant register positions. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

None 

Programming Note 

Please refer to the Programming Notes for SLDA. 

7-147 



p 
START I/O (SIO) 

SIO Rl (RR) 

R 1//////1 
02 1 1//////1 

1//////1 
0 8 12 15 

An I/0 command is initiated at the addressed 
instruction START I/0 is executed only when the system is 
state. 

I/0 device. The 
in the supervisor 

The register specified by Rl contains the 1/0 device address to which 
the instruction applies. Tile IOCA must be stored in the appropriate IOCA area 
before the SIO is issued, and must not be changed until the completion 
interrupt is accepted. 

In the register specified by Rl, bit positions 24-31 contain the device 
address. Bits 0 to 23 are ignored. 

1/////////////////1 
1/////////////////1 device 
1/////////////////1 address 
1/////////////////1 
0 23 24 31 

The I/0 operation specified by START I/0 is initiated if the addressed 
I/0 device and its I/0 processor (IOP) are available. The I/O operation is 
not initiated in the following cases: when the addressed IOP is not connected 
or is otherwise not operational, when the IOP is unable to service the request 
(IOP BUSY), or when the device is busy with a previous SIO or CIO or has an 
interruption pending other than IOP NOW READY. In these cases the instruction 
is completed and a condition code of 3, 2, or 1, respectively, is returned. 

Whenever an SIO instruction is completed with a condition code 
I/0 operation has been accepted and a pending I/0 interruption 
established on completion of the operation. Until the completion 
has been received, the IOCW and IOCA must not be changed. The IOCA 
are not changed by the IOP. 

of O, the 
will be 

interrupt 
and IOCW 

If the addressed IOP is not connected or is otherwise not operational, 
the I/0 operation is not initiated and a condition code of 3 is returned. It 
is not recommended that this feature be used in a time-critical program; it 
may take the CP some time for the "time out" to detennine that the IOP is not 
present. If the IOP address is valid but the addressed device is not 
attached, the SIO is accepted and the IOSW stored on the completion interrupt 
indicates DEVICE NOT READY. 

7-148 



If the IOP cannot respond to the SIO request, the SIO will complete with 
a condition code of 2 and the I/0 operation will not be started. This 
condition indicates that an IOP NOW READY interrupt bit will be set in the 
next IOSW from that IOP. Note that this interrupt may or may not occur on the 
device on which the IOP BUSY indication was received. 

Resulting Condition Code 

0 I/O operation accepted, execution proceeding 

1 Device busy with previous operation or interruption other than IOP 
NOW READY pending 

2 IOP BUSY 

3 IOP not operational 

Program Exceptions 

Privileged operation 

Programming Notes 

Tile completion of the I/0 operation initiated by the SIO is indicated by 
an 1/0 interruption. Looping on an SIO instruction should be avoided since it 
may interfere with the operation of the IOP. 

Telecommunications (TC) IOPs use the SIO instruction rather than CIO for 
memory diagnostic operations. 

7-149 



STORE (ST) 

ST Rl ,D2 (X2 ,B2) (RX) 

I I R x I B I D 
I 50 I 1 2 I 2 I 2 
I I I I 
0 8 12 16 20 31 

The first operand is stored at the second operand location. The second 
operand must be four bytes long, and it requires fullword alignment. 

The 32 bits in the general register are placed unchanged at the second 
operand location. 

Resulting Condition Code 

'Tile condition code remains unchanged. 

Program Exceptions 

Access (store, operand 2) 
Specification 

7-150 



STORE CHARACTER (STC) 

STC Rl,D2(X2,B2) 

42 

0 

I R 
I 1 
I 
8 

(RX) 

X B I 
2 2 I 

I 
12 16 20 

D 
2 

31 

Bit positions 24-31 of the general register designated as the first 
operand are placed at the second operand address. The byte to be stored is 
not changed or inspected. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (store, operand 2) 

7-151 



STORE CHARACTERS UNDER MASK (STCM) 

STCM Rl ,M3 ,D2 (B2) 

BE 

0 8 

R 
1 

12 

M 
3 

(RS) 

16 

B 
2 

20 

D 
2 

31 

Bytes selected from the first operand under control of a mask are placed 
in contiguous byte locations beginning at the second operand address. 

The contents of the M3 field, bit positions 12-15, are used as a mask. 
The four bits of the mask, left to right, correspond one for one with the four 
bytes, left to right, of the general register designated by tha Rl field. The 

·bytes corresponding to ls in the mask are placed in the same order in 
successive and contiguous memory locations beginning with the location 
designated by the second operand address. The number of bytes stored is equal 
to the number of ls in the mask. nie contents of the general register remain 
unchanged. 

When the mask is not O, exceptions associated with storage-operand 
access are recognized only for the number of bytes specified by the mask. 
When the mask is O, access exceptions are recognized for one byte. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (store, operand 2) 

7-152 



This manual is updated by: Addendum 800-1 1 OOP0-04.01 

STORE CONTROL (STCTL) 

STCTL 

0 

Rl ,R3 ,D2 (B2) 

B6 
I R 
I 1 
I 
8 

(RS) 

R B I 
3 2 ! 

I 
12 16 20 

D 
2 

31 

The set of control registers starting with the control 
designated by the Rl field and ending with the one designated by the 
is stored at the locations designated by the second operand address. 

register 
R3 field 

The memory area where the contents of the control registers are placed 
starts at the location designated by the second operand address and continues 
through as many memory words as the number of control registers specified. 
1be contents of the control registers are stored in ascending order of their 
addresses, starting with the control register designated by the Rl field and 
continuing up to and including the control register designated by the R3 
field. The contents of the control registers remain unchanged. 

Whenever the memory reference causes an access exception, the exception 
is indicated. The second operand must be designated on a word boundary; 
otherwise, a specification exception is recognized, and the operation is 
suppressed. A specification exception will also be recognized if Rl is 
numbered higher than R3. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (store, operand 2) 
Specification 

7-153 



This manual is updated by: Addendum 800-11 OOP0-04.01 

STORE CP TYPE AND MICROCODE VERSION (STCPID) 

STCPID Rl 

9B 

0 8 

80 

(S) 

I R 1//////////////////////1 
I 1 1//////////////////////1 
I 1//////////////////////1 
16 20 31 

A 2-byte code, representing the current CP type and current microcode 
version, is stored in a general register. 

Bits 0-15 of general register Rl are set to O. Tile CP type code is 
stored in bits 16-23 of register Rl; the current microcode version number is 
stored in bits 24-31 of register Rl. 

Current CP type codes are: 
the VS25, 5. 

Resulting Condition Code 

for the VS80, 3; for the VSlOO, and 

For the current VS processor, the condition code is always set to 0. 

Program Exceptions 

None 

Programming Note 

for 

Bits 0-15 of general register Rl, bits 20-31 of this instruction, and 
condition code values other than 0 are reserved. They may eventually be used 
to indicate any optional features present in a particular processor, or for 
other purposes. 

7-154 



p 
STORE DIAGNOSTIC DATA (STDD) 

STDD Dl(Bl) 

98 00 

0 8 

(S) 

B 
1 

16 20 

D 
1 

31 

Diagnostic information, including the contents of the local page tables 
and local page frame table, is stored starting at the location specified by 
the operand 1 address. This address is not translated. (It is a physical 
main memory address.) Operand 1 must be fullword aligned, or a specification 
exception will occur and the instruction will be suppressed. 

Diagnostic data is stored in the order shown below. Floating-point 
registers, control registers, and general registers are stored with high-order 
and low-order halfwords reversed. 'nle local page frame table is stored in 
4-bit entries. The low-order bit (bit 3) is the change bit (0 = set, 1 = 
clear); bit 2 is the reference bit (0 =set, 1 =clear). The other two bits 
of each entry are unused. 

Data Item (and Decimal Size) Offset, in Hexadecimal, 
from Operand 1 Address 

~F_1_·1_e __ r_e_g~i_s_te_r_s __ ( ..... 6_4~)------~ X1 0 1 

Floating-point registers (32) X'40' 

Control registers (32) X1 60' 

___ A_u_x_1_· l_i_a_ry..__re__.g.._1_· s_t_e_r_s___.(._6_4 ..... ) ------"- X' 80 ' 

_G_e_n_e_r_a_l_r_eg_1_·s_t_e_r_s ____ (_6_4 __ ) _______ X'CO' 

P_a __ ge_t_a_bl_e_0---=-(1_2_8..;;._) -----~ X' 100 ' 

~P_a~g~e_f_r_am_e_t_a_b_l_e_(~l_2_8~)----~~ X1 180' 

Page table 1 (256) X'200' 

...._P_a~g~e~t_ab_l_e~2--"-(2_5_6~)~~~~~-'-- X'300' 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (store, operand 1) 
Specification 
Privileged operation 

7-155 



Extended Operation Codes 

Opcode X' 98' has been designated a 2-byte opcode. Opcodes X' 9BOO' 
through X' 9B7F' are privileged opcodes; X' 9B80' through X' 9BFF' are not 
privileged. Executing an instruction with an undefined opcode in the range 
from X'9BOO' through X'9B7F' while the privileged-instruction trap bit in the 
PCW is set may result in a privileged-instruction interrupt rather than an 
invalid-operation interrupt. 

7-156 



This manual is updated by: Addendum 800-11 OOP0-04.01 

STORE (FLOATING-POINT) (STD, STE) 

STD Rl ,D2 (X2 ,B2) (RX, Long) 

I I R x B D 
60 IOI 1 2 2 2 

I I 
0 8 9 12 16 20 31 

STE Rl ,D2 (X2 ,B2) (RX, Short) 

I I I R x B I D 
I 60 111 1 2 2 I 2 (optional) 
I I I I 
0 8 9 12 16 20 31 

'nle first operand is stored at the second operand location. The first 
operand, a floating-point register, remains unchanged. The second operand 
must be eight bytes in length and requires fullword alignment. 

Resulting Condition Code 

'nle condition code remains unchanged. 

Program Exceptions 

Addressing 
Protection (store violation) 
Specification 

7-157 



This manual is updated by: Addendum 800-11OOP0-04.01 

STORE HALFWORD (STH) 

STH Rl,D2(X2,B2) 

I 
I 
I 
0 

40 
I R X 
I 1 2 
I 
8 12 

(RX) 

I B 
I 2 
I 
16 20 

D 
2 

31 

The contents of bit positions 16-31 of the general register designated 
by the Rl field are placed unchanged at the second operand location. The I second operand is two bytes in length and requires halfword alignment. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (store, operand 2) 
Specification 

7-158 



This manual is updated by: Addendum 800-11OOP0-04.01 

STORE MULTIPLE (STM) 

STM Rl ,R3 ,D2 (B2) 

90 

0 8 

R 
1 

12 

R 
3 

(RS) 

16 

B 
2 

20 

D 
2 

31 

The set of general registers starting with the register specified by Rl 
and ending with the register specified by R3 is stored at the locations 
designated by the second operand address. 

The memory area where the contents of the general 
starts at the location designated by the second 
continues through as many words as needed. 

registers are placed 
operand address and 

The general registers are stored in the ascending order of their 
addresses, starting with the register specified by Rl and continuing up to and 
including the register specified by R3, with register 0 following register 
15. The contents of the general registers remain unchanged. 

Operand 2 requires fullword alignment. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (store, operand 2) 
Specification 

7-159 



This manual is updated by: Addendum 800-11OOP0-04.01 

p 
STORE SEGMENT CONTROL REGISTER (STSCTL) 

STSCTL Rl ,R3 ,D2 (X2 ,B2) (RS) 

I I R I R I B I D I 
I A4 I 1 I 3 I 2 I 2 I 
I I I I I I 
0 8 12 16 20 31 

The set of segment control registers (SCRs) starting with the register 
specified by Rl and ending with the register specified by R3 is stored at the 
location designated by the second operand address. 

The memory area where the contents of the SCRs are placed starts at the 
location designated by the second operand address and continues through as 
many words as needed. 

The contents of the SCRs are stored in ascending order of their 
addresses, starting with the register specified by Rl and continuing up to and 
including the register specified by R3. Rl and R3 must fall in the range 0-7, 
and R3 must be greater than or equal to Rl. The contents of the SCRs remain 
unchanged. 

Operand 2 requires fullword alignment. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (store, operand 2) 
Privileged operation 
Specification 

7-159.1 



STORE MULTIPLE (STM) 

STM Rl ,R3 ,D2 (B2) 

90 

0 8 

R 
1 

12 

R 
3 

(RS) 

16 

B 
2 

20 

D 
2 

31 

The set of general registers starting with the register specified by Rl 
and ending with the register specified by R3 is stored at the locations 
designated by the second operand address. 

The memory area where the contents of the general 
starts at the location designated by the second 
continues through as many words as needed. 

registers are placed 
operand address and 

The general registers are stored in the ascending order of their 
addresses, starting with the register specified by Rl and continuing up to and 
including the register specified by R3, with register 0 following register 
15. The contents of the general registers remain unchanged. 

Operand 2 requires fullword aligrunent. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (store, operand 2) 
Speci fie a ti on 

7-159 



This manual is updated by: Addendum 800-11OOP0-04.01 

p 
STORE SPECIAL REGISTER (STSREG) 

STSREG D2 (Bl) 

9B 02 

0 8 

(S) 

16 

B 
1 

20 

D 
1 

31 

Data is moved to memory from a 32-bit special register, which may be 
accessed only by the LSREG and STSREG instructions (and by STDD). 

The contents of the special register are moved to the fullword at the 
address specified by the Bl and Dl fields. The address must be fullword 
aligned. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Privileged operation 
Access (store, operand 1) 
Specification 

7-160 



SUBTRACT (SR, S) 

SR Rl,R2 (RR) 

R R I 
lB 1 2 I 

I 
0 8 12 15 

s Rl ,D2 (X2 ,B2) (RX) 

R x B D 
SB 1 2 2 2 

0 8 12 16 20 31 

The second operand, which must be fullword aligned, is subtracted from 
the first operand, and the difference is placed in the first operand location. 

Subtraction is considered to be perfonned by adding the l's complement 
of the second operand and a low-order 1 to the first operand. All 32 bits of 
both operands participate, as in ADD. If the carry from the sign-bit position 
and the carry from the high-order numeric bit position agree, the difference 
is satisfactory; if they disagree, an overflow occurs. The overflow causes a 
program interruption when the fixed-point overflow mask bit is set to 1. 

Resulting Condition Code 

0 Difference is 0 
1 Difference is less than 0 
2 Difference is greater than 0 
3 Overflow 

Program Exceptions 

Specification 
Access (fetch, operand 2 of S only) 
Fixed-point overflow 

Programming Notes 

The use of the l's complement and the low-order 1 
complement of the second operand is necessary for 
overflow when the maximwn negative number is subtracted. 

instead of the 2's 
proper recognition of 

When in the RR format the Rl and R2 fields designate the same register, 
subtracting is equivalent to clearing the register. 

Subtracting a maKimum negative number from another maximum negative 
number gives a result of 0 and no overflow. 

7-161 



This manual is updated by: Addendum 800-11OOP0-04.01 

SUBTRACT DECIMAL (FLOATING-POINT) (SQR, SQ) 

SQR Rl,R2 (RR) 

R R 
3B 1 2 

0 8 12 15 

SQ Rl ,D2 (X2 ,B2) (RX) 

I I R I x B I D I 
I 7B I 1 I 2 2 I 2 I 
I I I I I 
0 8 12 16 20 31 

The second operand 
normalized difference is 
alignment is required. 

is subtracted from the first operand, 
placed in the first operand location. 

and the 
Fullword 

The SUBTRACT DECIMAL 
DECIMAL (FLOATING-POINT), 
inverted before addition. 

(FLOATING-POINT) 
except that the 

instruction is 
sign of the 

similar to ADD 
second operand is 

The sign of the difference is derived by the rules of algebra. '!be sign 
of a difference with zero result fraction is always positive. 

Resulting Condition Code 

0 Result fraction is 0 
1 Result fraction is less than 0 
2 Result fraction is greater than 0 

Program Exceptions 

Specification 
Data 
Significance 
Exponent overflow 
Exponent underflow 
Access (SQ only) 

7-162.1 



SUBTRACT DECIMAL (SP) 

SP Dl(Ll,Bl) ,D2(L2,B2) (SS) 

I I L L B I I ID I B I/ I D 
I FB I 1 2 1 I 11 2 I- - 2 
I I I I I I I/ I 
0 8 12 16 20 32 36 47 

The second operand is subtracted from the first operand, and the 
difference is placed in the first operand location. 

Subtraction is algebraic, taking into account the signs and all digits 
of both operands. SUBTRACT DECIMAL is similar to ADD DECIMAL, except that the 
sign of the second operand is changed from positive to negative or from 
negative to positive after the operand is obtained from memory and before the 
arithmetic is performed. 

The sign of the difference is determined by the rules of algebra. 

Ll and L2 are the operand lengths in bytes, minus 1. 

Resulting Condition Code 

0 Difference is 0 
1 Difference is less than 0 
2 Difference is geater than 0 
3 Overflow 

Program Exceptions 

Access (fetch, operand 2; store, operand 1) 
Data 
Decimal overflow 

Programming Note 

The operands of SUBTRACT DECIMAL may overlap when their least 
significant bytes coincide, even when their lengths are unequal. This 
property may be used to set to 0 an entire field or the least significant part 
of a field. 

7-162 



This manual is updated by: Addendum 800-1 1OOP0-04.01 

SUBTRACT HALFWORD (SH) 

SH 

0 

Rl ,D2, (X2 ,B2) 

4B 
I R 
I 1 
I 
8 

(RX) 

X B 
2 2 

12 16 20 

D 
2 

31 

'Ille second operand is subtracted from the first operand, and the 
difference is placed in the first operand location. The second operand is two 
bytes in length, must be halfword aligned, and is considered to be a 16-bit 
signed integer. 

The second operand is expanded to 32 bits before the subtraction by 
propagating the sign-bit value through the 16 high-order bit positions. 

Subtraction is considered to be performed by adding the l's complement 
of the expanded second operand and a low-order 1 to the first operand. All 32 
bits of both operands participate, as in ADD. If the carry from the sign-bit 
position and the carry from the high-order nwneric bit position agree, the 
difference is satisfactory; if they disagree, an overflow occurs. The 
overflow causes a program interruption when the fixed-point overflow mask bit 
is 1. 

Resulting Condition Code 

0 Difference is 0 
1 Difference is less than 0 
2 Difference is greater than 
3 Overflow 

Program Exceptions 

Access (fetch, operand 2) 
Fixed-point overflow 
Specification 

0 

7-163 



This manual is updated by: Addendum 800-11 OOP0-04.01 

SUBTRACT LOGICAL (SLR, SL) 

SLR Rl,R2 (RR) 

I R R 

I lF 1 2 
I 
0 8 12 15 

SL Rl,D2(X2,B2) (RX) 

I I R I x I B I D I 
I SF I 1 I 2 I 2 I 2 I 
I I I I I I 
0 8 12 16 20 31 

The second operand is subtracted from the t:irst operand, and the 
difference is placed in the first operand location. The occurrence of a carry 
from the sign position is recorded in the condition code. 

Logical subtraction is considered to be performed by adding the l's 
complement of the second operand and a low-order 1 to the first operand. All 
32 bits of both operands participate, without further change to the resulting 
leftmost bit position. 

If a carry from the sign position occurs, the leftmost bit of the 
condition code is made 1. In the absence of a carry, the left bit is made 
When the sum is o, the rightmost bit of the condition code is made 0. 
nonzero sum is indicated by a 1 in the rightmost bit. 

The second operand of the SL instruction ~equires fullword alignment. 

Resulting Condition Code 

0 
1 Difference is not 0 (no carry) 
2 Difference is 0 (carry) 
3 Difference is not 0 (carry) 

Program Exceptions 

Specification 
Access (fetch, operand 2 for SL) 

7-164 

o. 
A 



SUBTRACT NORMALIZED (FLOATING-POINI') (SDR, SER, SD, SE) 

SDR Rl,R2 (RR, Long) 

I I I R R 
I 2B IOI 1 2 
I I I 
0 8,9 12 15 

SER Rl,R2 (RR, Short) 

I I R R I 
2B Ill 1 2 I (optional) 

I I I 
0 8,9 12 15 

SD Rl,D2(X2,B2 (RX, Long)) 

I I R x B D 
6B IOI 1 2 2 2 

I I 
0 8,9 12 16 20 31 

SE Rl,D2(X2,B2 (RX, Short) 

I I I R I x I B I D I 
I 6B I II 1 I 2 I 2 I 2 I (optional) 
I I I I I I I 
0 8,9 12 16 20 31 

The second operand is subtracted from the first operand, and the 
normalized difference is placed in the first operand location. 

SUBTRACT is similar to ADD NORMALIZED, except that the sign of the 
second operand is inverted before addition. 

The sign of the difference is derived according to the rules of algebra. 
The sign of a difference with a zero result fraction is always positive. 

The second operand of the SD instruction requires fullword alignment and 
is eight bytes long. 

Resulting Condition Code 

0 Result fraction is 0 
1 Result is less than 0 
2 Result is greater than 0 
3 

7-165 



Program Exceptions 

Specification 
Significance 
Exponent overflow 
Exponent underflow 
Access 

7-166 



SUPERVISOR CALL (SVC) 

SVC I (RR) 

OA I 

0 8 15 

If the high-order byte of the Supervisor Call New PCW is less than the 
value in bits 8-15 of the instruction, the instruction is suppressed with a 
supervisor call range program exception. Otherwise the system stack vector is 
retrieved from general register 15 and control register 2. The stack pointer 
(register 15) is decremented by 8. The currently active PCW is stored in the 
eight bytes addressed by the decremented stack pointer. The contents of bit 
positions 8 to 15 of the instruction are placed in the interruption code 
portion of this stored PCW. The contents of the three low-order bytes of 
control register 1 are pushed onto the stack, preceded by a byte containing 
X'Ol'. The contents of general registers 14 through O, in descending order, 
are then pushed onto the stack. The three low-order bytes of control register 
1 are then set to the value of the updated stack pointer, with a high-order 
byte of binary Os. The high-order word of the Supervisor Call New PCW is then 
added to four times the contents of bit positions 8 to 15 of the instruction, 
and the word at the resulting address (which must be the address of a fullword 
present in main memory, not page faulted) becomes the current PCW address 
portion. The second word of the Supervisor Call New PCW becomes the current 
PCW status portion. 

Resulting Condition Code 

The condition code is replaced by the condition code in the new PCW. 

Program Exceptions 

Stack overflow 

Access (store, bytes pushed on to stack; fetch, address word to become 
current PCW address portion) 

Speci fie a ti on 

Supervisor call range 

7-167 



p 
SUPERVISOR CALL EXIT (SVCX) 

svcx 

27 
I R 
I 1 
I 

(~) 

1//////1 
1//////1 
1//////1 

0 8 12 15 

General registers 0 through 14 are loaded from the words addressed by 
control register 1. Control register 1 is loaded from the word above these 
(beginning 60 bytes above the word addressed by control register 1) . '!be 
high-order byte of control register 1 is set to binary 0. General register 15 
is loaded with the value in the general register specified by the Rl field of 
the instruction. The active PCW is replaced by the two words on the system 
stack starting 64 bytes above the word that had been addressed by control 
register 1 before it was updated. 

If the new active PCW has the single-step trap bit on, a single-step 
trap exception will occur immediately on completion of the instruction, even 
if the previously active PCW did not have the single-step trap bit on. 

Resulting Condition Code 

The condition code is replaced by that in the new PCW. 

Program Exceptions 

Access (fetch, bytes on stack) 
Privileged operation 
Specification 

7-168 



TEST UNDER MASK (TM) 

TM Dl (Bl) ,12 

I I 
91 I 2 

I 
0 8 

(SI) 

B 
1 

16 20 

D 
1 

31 

The state of the first operand bits selected by a mask is used to set 
the condition code. 

The byte of immediate data, I2, is used as an 8-bit mask. 111e bits of 
the mask are made to correspond one for one with the bits of the character in 
memory specified by the first operand address. 

A mask bit of 1 indicates that the memory bit is to be tested. When the 
mask bit is O, the memory bit is ignored. When all memory bits thus selected 
are O, the condition code is made 0. The condition code is also made 0 when 
the mask is all Os. When the selected bits are all ls, the code is made 3; 
otherwise, the code is made 1. The character or characters in memory or the 
registers are not changed. 

Resulting Condition Code 

0 Selected bits all O; mask is all Os 
1 Selected bits mixed Os and ls 
2 
3 Selected bits all 1 

Program Exceptions 

Access (fetch, operand 1) 

7-169 



TRANSLATE (TR) 

TR Dl (L ,Bl) ,D2 (82) 

DC L 

(SS) 

B 
1 

I I ID I 
I 11 

.;__~~~~~~~~~~_;_I I I I 
0 8 16 20 32 

B 
2 

I/ I D 
1-- 2 
I I ...__I ____ 
36 47 

The 
the list 
selected 
operand. 

8-bit bytes of the first operand are used as arguments to reference 
designated by the second operand address. Each function byte 
from the list replaces the corresponding argument in the first 

The bytes of the first operand are selected one by one for translation, 
proceeding left to right. Each argument byte is added to the entire initial 
address, the second operand address, in the least significant bit positions. 
'nle sum is used as the address of the function byte, which then replaces the 
original argument byte. 

All result data is valid. The operation proceeds until the first 
operand field is exhausted. The list is not altered unless an overlap occurs. 

L is the length of operand 1, minus 1. 

Resulting Condition Code 

The condition code remains unchanged. 

Program Exceptions 

Access (fetch, operands 1 and 2; store, operand 1) 

Programming Note 

If operand 2 can span a page (using the maximtun table displacement, 
i.e., X'FF'), then operand 1 is scanned to determine the exact range of table 
locations to be referenced. '!be referenced virtual page or pages (two pages, 
at most) are checked to see if they reside in physical page frames. If an I/0 
operation should overlay operand 1 and invalidate this scan, then a page fault 
can be generated in the middle of the instruction, assuming the I/0 operation 
caused a second (nonresident) virtual page to be referenced. This in turn 
will cause retranslation of part of operand 1 after the page fault has been 
serviced, and the instruction is re-executed. 

7-170 



TRANSLATE AND TEST (TRT) 

1RT Dl(L,Bl),D2(B2) 

DD L 

(SS) 

B 
1 

I ID I B 
11 2 

~~~~----~~~~----~-----' I I 
0 8 16 20 32

I/ I D
I- - 2
I I ...__I_,_;,.
36 47

The 8-bit bytes of the first operand are used as argwnents to reference
the list designated by the second operand address.

The L field is the length of the first operand, minus 1.

Each function byte thus selected from the list is used to determine the
continuation of the operation. When the function byte is a 0, the operation
proceeds by fetching and translating the next argwnent byte. When the
function byte is nonzero, the operation is completed by inserting the related
argument address in general register 1 and by inserting the function byte in
general register 2.

The bytes of the first operand are selected one by one for translation,
proceeding from left to right. The first operand remains unchanged in
memory. Fetching of the function byte from the list is performed as in
TRANSLATE. The function byte retrieved from the list is inspected for the
all-zero combination.

When the first operand field is exhausted before a nonzero function
is encountered, the operation is completed by setting condition code 0.
contents of general registers 1 and 2 remain unchanged.

byte
The

When a function byte is nonzero, the related argument address is
inserted in the low-order 24 bits of general register 1. This address points
to the argument last translated. The high-order eight bits of register 1
remain unchanged. The function byte is inserted in the low-order eight bi ts
of general register 2. Bits 0-23 of register 2 remain unchanged. Condition
code 1 is set when one or more argument bytes have not been translated.
Condition code 2 is set if the last function byte is nonzero.

7-171

Resulting Condition Code

0 All function bytes that have been translated are 0

1 Nonzero function byte found before the first operand field is
exhausted; one or more argwnent bytes have not been translated

2 The last function byte is nonzero

3

Program Exceptions

Access (fetch, operands 1 and 2)

Progranuning Note

The instruction TRANSLATE AND TEST may be used to scan the first operand
for characters with special meaning. Tile second operand, or list, is set up
with all-zero function bytes for those characters to be skipped over and with
nonzero function bytes for the characters to be detected.

7-172

UNPACK (UNPK)

UNPK D1 (Ll ,Bl) ,D2 (L2 ,B2) (SS)

L L B I I ID I B I I I D
F3 1 2 1 I 11 2 I- - 2

----~~~_____;~~"----~_;_~-:-.' '~'~' ~~'' -'~-0 8 12 16 20 32 36 47

The format of the second operand is changed from packed to zoned form,
and the result is placed in the first operand location.

The digits and sign of the packed operand are placed unchanged in the
first operand location, using the external format. Zones with coding 0011 are
supplied for all bytes except the low-order byte, which receives the sign of
the packed operand. Tile operand digits are not checked for valid codes.

The fields are processed right to left. The second operand is extended
with high-order Os before unpacking, if necessary. If the first operand field
is too short to contain all significant digits of the second operand, the
remaining high-order digits are ignored. The first and second operand fields
may overlap; if so, they are processed by storing the first result byte
inunediately after the rightmost operand byte is fetched; for the remaining
operand bytes, two result bytes are stored immediately after one byte is
fetched.

Ll and L2 are the operand lengths, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

7-173

UNPACK UNSIGNED (UNPU)

UNPU Dl (Ll ,Bl) ,D2 (L2 ,B2) (SS)

L L B
F4 1 2 1

I I ID I
I - - 11

---~~~~~-"--~--:.~~~I I I I
0 8 12 16 20 32

B I I I D
2 1- - 2

I/ I ------
36 47

The format of the second operand is changed from packed to external, and
the result is placed in the first operand location.

The digits of the packed operand are converted to ASCII form and are
placed in the first operand location. Zones with coding 0011 are supplied for
all bytes. The sign of the second operand is ignored. No sign character is
supplied in the result.

The fields are processed right to left. TI'le second operand is extended
with high-order Os before unpacking, if necessary. If the first operand field
is too short to contain all significant digits of the second operand, the
remaining high-order digits are ignored. The first and second operand fields
may overlap and are processed by storing the first result byte immediately
after the rightmost operand byte is fetched; for the remaining operand bytes,
two result bytes are stored immediately after one byte is fetched.

Ll and L2 are the operand lengths, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

7-174

This manual is updated by: Addendum 800-11OOP0-04.01

UNPACK TO EXTERNAL DECIMAL FORMAT (UNPAL)

UNPAL Dl(Ll,Bl) ,D2(L2,B2) (SS)

I I L L B I /D I B I I !DI
I DB I 1 2 1 ll
~'---~---------~'------'-------------~/I I

0 8 12 16 20 32

2 I 2 I
I/ _/_I
36 47

The format of the second operand is changed from packed to character
format with a separate trailing sign character, and the result is placed in
the first operand location.

The second operand is processed from right to left. First the low-order
byte of operand 1 will be filled with either the '+' or '-' character. If the
low-order digit position of the last byte of operand 2 is 1101, the character
will be '-'; otherwise the character will be'+'. The digits are then moved
from operand 2 to operand 1. The digits are copied unchanged from the second
operand to the first with a zone of 0011 supplied for each digit.

The digits in the source field are not inspected for valid packed
characters and the sign is not inspected for validity.

The fields are processed right to left. The second operand is extended
with high-order zero digits before unpacking, if necessary. If the first
operand field is too short to contain all significant digits of the second
operand, the remaining high-order digits are ignored. The first and second
operand fields may overlap, and are processed by storing two result bytes
iounediately after one byte is fetched.

If the receiving field is one byte, only the sign character will be
placed there.

Ll and L2 are the operand lengths, minus 1.

Resulting Condition Code

The condition code remains unchanged.

Program Exceptions

Access (fetch, operand 2; store, operand 1)

7-175

This manual is updated by: Addendum 800-11OOP0-04.01

ZERO AND ADD (ZAP)

ZAP Dl(Ll,Bl) ,D2(L2,B2) (SS)

I I L I L B I I /D I B I J JDf
I F8 I 1 I 2 1 I 11 2 I 2 I
I I I I I I I I I _/_I
0 8 12 16 20 32 36 47

The second operand is placed in the first operand location.

The operation is equivalent to an addition to 0.
positive. When the most significant digits are lost because
overflow is recognized. If the decimal overflow mask
overflow is recognized, the exception is taken.

A zero result is
of overflow, an
bit is on when an

Only the second operand is checked for valid sign and digit codes.
Extra Os are supplied if needed on the most significant end. When the first
operand field is too short to contain all significant digits of the second
operand, the most significant digits are lost and the overflow condition is
set. 'file first and second operand fields may overlap when the rightmost byte
of the first operand field is coincident with or to the right of the rightmost
byte of the second operand.

Ll and L2 are theoperand lengths, minus 1.

Resulting Condition Code

0 Result is 0
1 Result is less than 0
2 Result is greater than 0
3 Overflow

Program Exceptions

Access (fetch, operand 2; store, operand 1)
Data
Decimal overflow

7-176

7.2 OPERATING SYSTEM ASSIST INSTRUCTIONS

The following instructions, some of which are described in terms of
equivalent pseudo-assembler-language instruction sequences, are intended for
use by operating system routines only. They are reserved for use by software
provided by Wang Laboratories, and their specification and function may change
in the future. Use of these instructions other than by Wang Laboratories
software development groups is discouraged.

All instructions in this section are privileged.

7-177

p
MODIFY TIMER QUEUE (Ml'Q)

MTQ Ml,D2(B2),D3(B3),R4 (SS)

C7
R

4
M

1
B

2
I ID

2
B

3
I ID

3
______________ _ ___...._/ I ___________ ! __ I --

0 8 12 16 20 32 36 47

This privileged instruction is used to set a clock comparator expiration
value.

Register R4 contains a time interval value (in binary, in uni ts of one
clock tick). Operand 2 (D2(B2)) addresses a word-aligned, linked-list head,
identical to the stack head word of the ENSK instruction. Operand 3 addresses
a doubleword-aligned timer queue element. The first byte of this element is
unchanged by the instruction. Bit 0 of this byte is tested; if it is 1, this
element is to be removed from the list. The second through fourth bytes
contain elements on the list in ascending order of expiration times. The
fifth through eighth bytes contain the expiration time, in clock ticks, of the
interval represented by this timer queue element.

The instruction operates as follows:

1. If bit 0 of the timer queue element (operand 3) is set, the list is
searched for an element at the operand 3 address, and this element
is removed from the queue. Queue elements examined must not be page
faulted, lest the instruction give erroneous results.

A specification exception will occur if any of the following are
true: the addressed element is not on the queue, or removing this
element empties the queue completely, or more than 256 elements are
found on the queue before this element is encountered.

2. If bit 0 of the instruction's Ml field is set, the instruction is
now terminated.

3. The time interval value in register R4 is added to the current clock
value, and the result stored in the fifth through eighth bytes of
operand 3.

4. The operand 3 timer queue element is placed on the queue in order of
its expiration time (the value just placed in its fifth through
eighth bytes) . The second through fourth bytes of operand 3 are
used as the list chain word.

A specification exception occurs if the chain is empty, or if more
than 256 elements are encountered before the operand 3 timer queue
element is inserted.

7-178

5. The contents of the fifth through eighth bytes of the first element
of the timer list are placed in the clock comparator (control
register 7).

Resulting Condition Code

'Ihe condition code remains unchanged.

Program Exceptions

Access (fetch and s.tore, operands 1 and 2)
Specification
Privileged Operation

Progranuning Note

'nle specification exception taken if more than 256 elements are on the
timer queue is intended to prevent the instruction from 'hanging up' the CP if
the list elements are chained in a loop.

7-179

p
SCAN PAGE FRAME TABLE (SPFT)

SPFT

0

Rl format:

I
I
I
0

R3 foanat:

I
I
I
0

Rl ,R3 ,D2 (B2) (RS)

I R R B
AE I 1 3 2

I
8 12 16 20

I I I
I LRURG I sec I
I I I
8 16 24

LRURG - Least recently used reference group
SCC - Scan class comparand
RGL - Reference group limit

PFTL SD ISP

8

PFTL - Page frame table length
SDISP - Starting PFT displacement

D
2

31

I
RGL I

I
31

31

Page Frame Table fonnat:

ICI I I I
RGN SC IBI for software use I

~~~~~~~~~~~'~'~/~/~~~~~~~I 
0 8 16 17 63 

RGN - Reference group nwnber 
SC - Scan class 
CB - 'Change' bit 

7-180 



The page frame table physical address (operand address D2(B2)), which 
must be doubleword aligned, is added to the SDISP field of the register 
addressed by R3. If the page frame table address is not doubleword aligned or 
if the contents of the SDISP field are not a multiple of 8, a specification 
exception occurs and the instruction is suppressed. Each page frame table 
entry beginning at the resulting address is examined, where the total nwnber 
of entries assumed to be in the table is given by the PFTL field of the 
register addressed by R3. The SC field of each entry is compared with the sec 
field of the register addressed by Rl. If the sec field of this register is 
nonzero and the two fields compared are unequal, the SDISP field of register 
R3 is increased by 8 and the next page frame table entry is processed. If the 
sec field is 0 or the two fields compared contain equal values, the reference 
bit for this page frame is examined in the local page frame table. If it is 0 
it is set to 1, binary Os are placed in field RGN of this page frame table 
entry, and the change bit for this page frame is inclusive ORed with bit CB of 
the page frame table entry. The SDISP field of register R3 is then increased 
by 8 and the next page frame table entry is processed. 

If the reference bit for the page frame is 1 when examined, then field 
RGN of the page frame table entry is compared with field RGL of register Rl. 
If they contain equal values, then the SDISP field of register R3 is increased 
by 8 and the next page frame table entry is processed. If they contain 
unequal values, the following processing occurs: 

If field RGN plus 1 is equal to field RGL, then field RGN is 
incremented by 1 and the instruction completes with condition code 2 
set. 

Otherwise, if field RGN (unincremented) is greater than or equal to 
field LRURG of register Rl, then field RGN is incremented by 1 and 
the resulting value in field RGN is placed in field LRURG. The 
instruction is then completed with condition code 1 set. 

Otherwise (field RGN is not equal to field RGL minus 1 and is not 
greater than field LRURG), field RGN is incremented by 1, the SDISP 
field of register R3 is increased by 8 and the next page frame table 
entry is processed. 

If the end of the page frame table (last entry is at address D2(B2) plus 
8 times PFTL, minus 8) is reached without another completion for the 
instruction (including the cases of PFTL being 0 and of PFTL times 8 being 
less than or equal to SDISP when the instruction is initiated), then the 
instruction is completed with condition code 0 set. 

7-181 



Resulting Condition Code 

0 End of table reached. 

1 RGN-1 greater than LRURG for table entry at second operand address 
plus SDISP. 

2 RGN equal to RGL for table entry at second operand address plus 
SDI SP. 

Program Exceptions 

Privileged operation 
Access (fetch and store, operand 2) 
Specification 

7-182 



This manual is updated by: Addendum 800-11OOP0-04.01 

CHAPTER 8 
INPITr/OtrrPUT OPERATION 

8.1 INTRODUCTION 

Transfer of information between main memory and input/output (I/0) 
devices is referred to as an I/0 operation. These operations use I/0 
processors (IOPs) , which contain the logic circuitry controlling the transfer 
of data between devices and main memory. An I/O COD1Dand Word (IOCW), 
containing a command to be performed, is sent from the CP to the device when 
the I/O operation is initiated. An I/0 Status Word (IOSW), reporting on the 
execution of this command, is sent back later from the device to the CP. 

Chapters 8 through 12 of the manual describe the programmed control of 
I/0 devices by the system. Formats are defined for the various types of I/0 
control information. The formats apply to all 1/0 operations and are 
independent of the types of I/O devices, their speed, or mode of operation. 

The formats described include provision 
particular devices. The way in which a device makes 
defined in the chapter for that device. 

8.2 I/0 SUBSYSTEM 

8.2.1 IOPs 

for functions 
use of each 

unique 
format 

to 
is 

At the beginning of an I/0 operation, the CP issues a privileged START 
I/0 (SIO) instruction to the IOP. (for the VS25, to the BP) controlling the I/0 
device that is to perform the operation. If both the IOP and the indicated 
device can service the request they begin to do so, and there is no further 
communication between the CP and IOP until the IOP issues an· I/0 completion 
interrupt request. Upon receiving the SIO, the IOP accesses the indicated 
IOCW for further information (e.g., the coomand, the type of operation (READ, 
WRITE, etc.), and the location of the data to be transferred. The IOP 
interprets the command for the device, routes the data to or from main memory, 
and performs 1/0 error checking and correction. Finally, the !OP makes an I/0 
completion interrupt request to the CP and stores information regarding the 
completed operation in the IOSW. 

8.2.2 I/0 Devices 

I/0 devices enable communication between data processing systems and 
their environment, and also provide for storage of information outside main 
memory. Such devices include workstations (terminals), magnetic tape drives, 
disk drives, printers, and teleprocessing equipment. 

8-1 



This manual is updated by: Addendum 800-11 OOP0-04.01 

The I/0 subsystem operates independently of virtual memory; 
therefore, all addresses relating to I/0 functions must be 
physical addresses. 

8.2.3 VS25 and VSlOO Device Address (!ODA) 

VS25 and VSlOO systems use the low-order 16 bits of the general register 
specified in an SIO, CIO, or HIO instruction to give the address (IODA) of the 
I/0 device involved. The interpretation of these bits is as follows: 

I I I 
IBAlll IOPI 
I I 41 I 

bits 0 3 6 

Port ~I 

15 

Figure 8-1. I/0 Device Address (IODA) 

Bits 0-2 specify the BP (for the VS25) or BA (for the VSlOO). 
VS25, designations other than '001' cause a. specification exception; 
VSlOO, designations other than '001' (BAl) or '010' (BA2) 
specification exception. 

For the 
for the 
cause a 

Bits 3-5 for the VS25 specify one of 3 DAs: '000' for the diskette DA, 
'001' for the fixed disk DA, or '010' for the serial devices DA. For the 
VSlOO, bits 3-5 specify the IOP, in the range 'OOO' (IOPO) to '111' (IOP7); 
the BA interprets bits 3-5 as indicative of IOP position on the outboard bus. 

Bits 6-15 specify the port number on the VS25 DA or VSlOO IOP. The port 
number is an index into the device configuration table {DCT) for DAs and IOPs 
using a DCT. Current DAs and IOPs do not support the potential 10-bit range 
of port numbers, and reject instructions containing invalid port numbers. 

8.2.4 VS80 1/0 Device Identification 

Each VS80 device has a 1-byte device address, for which all values from 
X'OO' to X'FE' are legitimate. (Note that the priority of interrupt service 
for the VS80 is determined by the physical position of the device's IOP in the 
hardware configuration and not by the device address.) A VS80 device address 
consists of an IOP portion and a device portion; because current IOPs support 
either 4, 16, or 32 devices apiece, the high-order 6, 4, or 3 bits are the IOP 
portion, and the low-order 2, 4, or 5 bits are the device portion. 

8-2 



This manual is updated by: Addendum 800-11OOP0-04.01 

8.3 MEMORY ASSIGNMENTS FOR INTER-PROCESSOR COMMUNICATIONS 

8.3.1 VS25 and VSlOO Assignments 

Table 8-1 summariz~s permanent memory assignments for the VS25 and VSlOO: 

Table 8-1. VS25, VSlOO Permanent Memory Assignments 

Location Data Item Written BI sxstem 

X'00-07' IOSW CP VS25, VSlOO 

x•so• SQB CP VS25, VSlOO 

X'80-81' !ODA (on 1/0) CP VS25, VSlOO 
interrupt) 

I 
X'82-8F' (for VSlOO, area reserved for system use; 

for VS25, CP-BP communications area) 

X1 90 1 (start of DAST) IOSW, SQB BP VS25 

X'90' (start of I OP ST) IOSW IOP VSlOO 

per CTA (start of IOCT) IOCW CP VS25, VSlOO 

Coomunications Areas Co111DOn to VS25 and VSlOO 

Physical Addresses X'00-07': here the CP microprogram writes the IOSW 
associated with the I/0 interrupt just granted. 

Physical Address X'SO': here the CP 
associated with the I/0 interrupt just granted. 
below, for details on the SQB.) 

microprogram writes the SQB 
(Refer to Subsection 8.3.5, 

Physical Address X'80': here the CP microprogram writes the IODA 
associated with the I/0 interrupt just granted. 

VS25-Specific Communications Area 

In addresses X'82-8F' the CP writes (for the BP) IOCWs, IODAs, and other 
information associated with upcoming I/0 comnands, and the BP writes IODAs 
associated with upcoming I/0 completion interrupt requests. 

8-3 



This manual is updated by: Addendum 800-11OOP0-04.01 

8.3.2 VS25 DA Status Table (DAST) 

The VS25's DA Status Table (DAST) begins at location X'90', and consists 
of one 16-byte entry for each DA attached to the system. The entries are 
arranged in ascending order by DA number. The format of each entry is as 
follows: 

I I SI I I 
I IOSW IQI Res. ICTAI 
I IBI I I 

Bytes 0 8 9 13 15 

Figure 8-2. DA Status Table (DAST) for the VS25 

The leftmost half of each DAST entry consists of an IOSW. It is in this 
location that the BP pre-stores the IOSW upon completion (successful or 
otherwise) of an I/0 operation, i.e., when an I/O completion interrupt is 
requested. Immediately following the IOSW it pre-stores the status qualifier 
byte (SQB--see also Subsection 8.3.5, below). When the I/O interrupt is 
granted, the CP microprogram copies the IOSW to location X'OO', and the SQB to 
location X' 050' • 

Immediately following the SQB is a four-byte area reserved for VS25 use. 

The rightmost 3 bytes of each DAST entry are the command table address 
(CTA) of the I/0 Command Table (IOCT) for the particular DA. Refer to 
Subsection 8.3.4, below, for information about the IOCT. 

8.3.3 VSlOO IOP Status Table (IOPST) 

The VSlOO's IOP Status Table (IOPST) begins at location X'90' and 
consists of one 16-byte entry for each IOP attached to the system. The 
entries are arranged from IOPO-IOP7 on BAl, then from IOPO-IOP7 on BA2. The 
format of each entry is as follows: 

I I 
IOSW Res'd. ICTAI 

I I 
Bytes 0 8 13 15 

Figure 8-3. IOP Status Table (IOPST) for the VSIOO 

The leftmost half of each IOPST entry consists of an IOSW. It is to 
this location that an IOP writes the IOSW upon completion (successful or 
otherwise) of an I/0 operation, i.e., when an I/0 completion interrupt is 
requested. When the I/0 interrupt is granted, the CP microprogram copies the 
IOSW from its location in the IOPST to location X'OO'. 

8-4 



This manual is updated by: Addendum 800-11OOP0-04.01 

The rightmost 3 bytes of each IOPST entry are the coomand table address 
(CTA) of the I/0 Command Table (!OCT) for the IOP. 

8.3.4 VS25 and VSlOO I/0 Coounand Table (IOCT) 

The !OCT for each VS25 DA or VSlOO IOP may begin at any 
doubleword-aligned address in main memory, and consists of one 16-byte entry 
for each device attached to the DA or IOP. Tile entries are arranged from port 
0 to port n, where port n is the highest-numbered port through which a device 
is attached to the particular DA or IOP. 

Each IOCT entry begins with a 9-byte IOCW for the particular device. 
The remaining 7 bytes are reserved for use by the outer program. The VSlOO 
operating system uses bytes 13-15 for the Unit Control Block Address (UCBA) 
for the device, thereby establishing a direct link between the device address 
and the device's UCB. 

The format of each !OCT entry is as follows: 

IOCW 

Bytes 0 

I I I 
I Res. IUCBAI 
I i I 
9 13 15 

Figure 8-4. I/0 CODIDand Table (IOCT) 

8.3.5 VS25 and VSlOO Status Qualifier Byte (SQB) 

During certain critical operations required to control its I/0 devices, 
an IOP (for the VS25, the BP) may be unable to accept a CIO, SIO, or HIO. 
'Ibis condition is of limited duration; its frequency depends on the device. 
VS25 and VSlOO systems alert the CP to such- a condition by writing a one-byte 
extension of the upcoming IOSW for the IOP. At loca.tion X'SO' (the interrupt 
code byte of the Old 1/0 Interrupt PCW) , this Status Qualifier Byte (SQB) is 
written in the following format: 

I I IRIRI 
IOOIRes'd.IIIDI 
I I IPIBI 

bits 0 2 5 6 7 

Figure 8-5. Status Qualifier Byte (SQB) 

The SQB is used by both the VS25 and VSlOO to further describe an I/0 
coounand rejected by a particular device: 

8-4.1 



This manual is updated by: Addendum 800-11 OOP0-04.01 

the RIP bit is set to indicate "Rejected--interrupt pending" if the new 
CIO or SIO command is rejected because the particular device has an 
unsolicited interrupt to report but the IOP (for the VS25, the BP) has 
not yet raised its request line, i.e., has not yet stored the IOSW in 
its IOPST (for the VS25, its DAST). An HIO instruction is ignored in 
this case. 

the RDB bit is set to indicate "Rejected--device busy" if the new CIO or 
SIO command is rejected because the particular device is executing a 
previous command and so has not yet requested a completion interrupt. 
'Ihe RDB bit is not set for a new HIO instruction. 

for the VS25 only: both bits are set (i.e., SQB=3) to indicate that the 
DA is not physically present. 

8.3.6 VS80 CoDUDunications Areas 

VS80 IOCA 

'Ihe VS80 I/0 Command Area (IOCA) area starts at main storage location 
128 and contains a halfword entry for every value from 0 to 255, which is the 
highest possible device address. The IOP uses the device address received on 
an SIO or CIO instruction as an index into the IOCA area. Each IOCA entry 
contains a halfword physical address for the IOCW to be executed; thus, these 
addresses cannot be greater than X'FFFF', and must specify locations within 
the first 64K bytes of main memory. 

VS80 Handling of "IOP Busy" and "Device Busy" 

When a VS80 IOP is unable to accept an SIO or HIO, a condition code 
indicating "IOP Busy" is returned. The circumstances causing this response 
are device dependent. Once an IOP has responded to an instruction with an IOP 
Busy interrupt, it will present an "IOP Now Ready" interrupt after the busy 
condition clears. Only one IOP Now Ready will be presented no matter how many 
SIOs, CIOs, or HIOs are rejected._ The IOP Now Ready may be presented to the 
CP with the next IOSW for any of the devices attached to that !OP, or as a 
separate interrupt with the device portion of the indicated device address set 
to zero (whether or not this device is attached to the system). 

If the device either is busy with a previous I/0 command or has a 
pending request for an I/0 completion or unsolicited interrupt, the SIO will 
be terminated with a "Device Busy" indication. 

If the device is not attached or is unable to complete the I/0 
operation, the SIO is accepted and "Device Not Ready--Intervention Required" 
is reported on an I/0 interrupt. 

8.3.7 Resetting of I/0 Devices--All Systems 

All I/0 devices are reset when the LOAD button is pushed or when a 
system power-on sequence is completed. Resetting causes I/0 devices to 
terminate all I/0 operations. Status information and interrupt conditions in 
the devices are lost. Data transfer operations and control operations are 
immediately terminated, and the results are unpredictable. 

8-4.2 



This manual is updated by: Addendum 800-11OOP0-04.01 

8.4 EXECUTION OF I/0 OPERATIONS 

I/0 devices can execute three commands: WRITE, READ, and CONTROL (no 
data transfer); each command initiates a corresponding I/0 operation or 
activity in the device. The next I/0 command to be executed by each device is 
contained in the IOCW for the device, which in turn is written in the 
appropriate entry of the IOCT. Refer to Subsection 8.3.4 for a discussion of 
the IOCT. (For the VS80, the address of the IOCW is found in the IOCA, 
described in Subsection 8.3.6.) 

8.4.1 I/0 Instructions 

SIO, CIO, and HIO are the privileged assembler instructions that control 
I/0 operations. The SIO instruction starts a transfer of data between main 
memory and an I/0 device via an IOP (for the VS25, via the BP and a DA). '!he 
CIO instruction starts control operations for the IOP, or begins memory 
diagnostics or microcode loading.or reading. The HIO instruction halts action 
started by a previous SIO or CIO. The format of all three instructions is as 
follows: 

I I I/ II 11 
I Opcode I Rl 111/ ll 
I I I ////I 

bits 0 8 12 15 

Figure 8-6. SIO, CIO, and HIO Instruction Format 

'!he opcode is X'02' for SIO, X'OC' for CIO, and X'03' for HIO. The 
general register designated by Rl contains the device address of the 1/0 
device involved in the operation, in the following format: 

lllllllJllllllllll I I 
l////////////////IBA#IIOPI Port# 
l////l/Jl/l/l//lll I I 

bits 0 16 19 22 31 

Figure 8-7. Rl Format for SIO, CIO, and HIO Instructions 

Note that this address is simply the IODA, written into the rightmost 
half of the register. This address is used directly by the IOP as an index 
into its IOCT, where the IOCW for the device is written, giving further 
information about the I/0 operation (e.g., data address and data length). 

8.4.2 Transmission of SIO 

'Ille SIO instruction is sent from the CP to devices through an 
intermediate processor. 

8-4.3 



This manual is updated by: Addendum 800-11 OOP0-04.01 

VS25 Receipt of SIO 

For the VS25, the CP sends the SIO instruction not directly to the DA 
but to the BP, and sets a conditionco.de according to the result as follows: 

Condition Code Meaning 

0 Coounand received by the BP 

1 not used 

2 not used 

3 BP busy 

A setting of 0 means typically that the device has accepted the I/O 
command; in some cases where a setting of 0 is returned, the BP may still 
reject the command, setting the RIP or RDB bit in the SQB extension of the 
upcoming IOSW. A setting of 3 means that a previous I/0 instruction has not 
yet been read by the BP. 

VSlOO Receipt of SIO 

For the VSlOO, the CP sends the SIO instruction not directly to the IOP 
but to the BA for that IOP, and sets a condition code according to the result 
as follows: 

Condition Code Meaning 

0 Command received by the IOP 

1 not used 

2 IOP busy 

3 IPC-IN register busy 

A setting of 0 means typically that the device has accepted the I/0 
command; in some cases where a setting of 0 is returned, the IOP may still 
reject the command, setting the RIP or RDB bit in the SQB extension of the 
upcoming IOSW. A setting of 2 means that an I/0 operation is already in 
progress for some device on the IOP. 11lis condition has ended when a 
subsequent IOSW from the !OP, with its IOP Now Ready bit set, is processed by 
the CP. A setting of 3 means that a previous I/0 instruction has not yet been 
read by the IOP. 

8-4.4 



This manual is updated by: Addendum 800-11OOP0-04.01 

VS80 Receipt of SIO 

The VS80 CP sends an SIO instruction to the IOP for the involved device; 
the IOP uses the included device address as an index into the IOCA area, to 
find the address of the associated IOCW. 

8.4.3 I/0 Command Word (IOCW) for SIO Instruction 

The IOCW specifies the command to be executed. For commands initiating 
data transfer, it designates the storage area associated with the operation. 
'nle IOCW is contained in the !OCT entry for the device specified in the SIO 
instruction. (For the VS80, the location of the IOCW is specified by the IOCA 
at SIO time.) 

From the time an SIO is accepted until the clearing of the 
resulting I/0 completion interrupt, the IOCW must not be 
changed. Neither the device nor the IOP will change the 
IOCW or IOCA. 

The IOCW consists of a 6-byte general section and a variable-length 
device-dependent section, as shown in Figure 8-8. The device-dependent 
section can be of any length, but is fixed for each device. The IOCW must be 
fullword aligned. Examples of the IOCW are given in Table 8-2. 

bits 0 

Command 
code 

8 

Data count 

Data address 

31 

I I 
device-dependent section 

~------~------...;_ _______ / ~/ ________________ ____,_ 

32 48 end 

Figure 8-8. I/0 Command Word (IOCW) Format 

The fields in the IOCW are allocated as follows: 

Command code--Bits 0-7 specify the operation to be performed. 

Data address--Bits 8-31 specify a fullword-aligned physical memory 
address. This address is the beginning of the data area for the 
specified operation, or is the beginning of an indirect data address 
list, which in turn specifies the data areas for the operation. 

8-4.5 



IOCW address 

0 15 

Figure 8-1. IOCA Format 

The IOCA is a 16-bit address of the IOCW. All IOCWs must start within 
the first 64K bytes of physical memory. 

8.4.2 I/0 Command Word (IOCW) for SIO Instruction 

The IOCW specifies the command to be executed. For commands initiating 
data transfer, it designates the storage area associated with the operation. 
The location of the IOCW is specified by the IOCA at SIO time. From the time 
an SIO is accepted until the clearing of the I/0 completion interrupt, the 
IOCW must not be changed. The device and IOP will not change the IOCW or IOCA. 

The IOCW consists of a 6-byte general section and a variable-length 
device-dependent section, as shown in Figure 8-2. The device-dependent 
section can be of any length, but is fixed for each device. The IOCW must be 
fullword aligned. Examples of the IOCW are given in Table 8-1. 

I 
I Command codel Data address 
I I 
0 8 31 

I I 
I Data count I device-dependent section 
I I 
32 47 48 end 

Figure 8-2. I/0 Coounand Word Format 

The fields in the IOCW are allocated for the following purposes: 

Command code--Bits 0-7 specify the operation to be perfonned. 

Data address (DA)--Bits 8-31 specify the physical address of an 
8-bit byte in main memory, which must be fullword aligned. This 
byte location is the beginning of the data area for the specified 
operation, or is the beginning of an Indirect Data Address list, 
which in turn addresses the data area(s) for the operation. 

8-4 



Data count field (DC)--Bits 32-47 specify the number of 8-bit byte 
locations in memory to be transmitted either to or from the device. 
'nle data length may be up to 64K, minus 1. 

Command Code 

The command code, bit positions 0-7 of the IOCW, specifies to the I/0 
device the operation to be performed. 

Bi ts 0 and 1 of the command code are the command type, and bi ts 2-7 are 
the command modifier bits. The following four command types are defined: 

Reserved - 'OO' 
READ - 'Ol' 
WRITE - '10' 
CONTROL - I 11' • 

"Reserved" means reserved for system use. 

A READ operation is initiated at the I/0 device, and data is transferred 
from the device to main memory. Data in memory is placed in ascending order 
of addresses, starting with the address specified in the IOCW. 

A WRITE operation is initiated at the I/0 device, and data is 
transferred from main memory to the I/0 device. Data in memory is fetched in 
ascending order of addresses, starting with the address specified in the IOCW. 

A CONTROL operation is initiated at the I/0 device. A CONTROL command 
is used to initiate an operation not involving transfer of data. For most 
control functions, the entire operation is specified by the modifier bi ts in 
the command code. If the command code does not specify the entire control 
function, the device-dependent field of the IOCW can be used. The data 
address field is always ignored for a control command. 

Command Modifier Bits 

The use of the modifier bits is device dependent. The modifier bits of 
the command specify to the device how the coounand is to be executed. The 
fifth modifier bit (bit 6 of the command code) is set to indicate Indirect 
Data Addressing for those devices which support that option. 

When the IOCW designated contains an invalid field, an 1/0 interrupt is 
generated with the invalid condition indicated in the IOSW. 

Programming Note 

Tile IOCW must not be changed between the SIO and the I/0 interruption. 

8-5 



Definition of Storage Area 

The IOCW defines a main memory area associated with an I/0 operation by 
specifying the fullword-aligned address of the first 8-bit byte to be 
transferred and the number of consecutive 8-bit bytes contained in the area. 
The address of the first byte appears in the data-address field of the IOCW, 
unless Indirect Data Addressing is specified. For Indirect Data Addressing, 
the data address field of the IOCW addresses the beginning of the first entry 
of an Indirect Data Address list. The number of bytes contained in the memory 
area is the data count (DC) • 

In the event the IOCW refers to a location not provided in the system, 
an I/0 interrupt is generated with the "memory address error" condition 
indicated in the IOSW. 

Programming Note 

A malfunction that affects the validity of data transferred in an I/0 
operation is signaled at the end of the operation by means of the stored 
IOSW. In order to make use of the checking facilities provided in the system, 
data read in an input operation should not be used until the end of the 
operation has been reached and the validity of the data has been checked. 
Similarly, on writing, the copy of data in main memory should not be destroyed 
until the program has verified that no malfunction affecting the transfer and 
recording of data was detected. 

Indirect Address Lists 

Certain devices expedite the transfer of more than one page of data to 
or from memory by means of an Indirect Address list, as indicated by a 
modifier bit of the command byte of the IOCW. The Indirect Address list is 
composed of 4-byte entries, each consisting of a fullword physical memory 
address. The IOCW data address field addresses the start of the Indirect 
Address list; the list in turn addresses the data areas for the operation. 
Data transfer begins into or from the first address specified and continues 
until a page (2K-byte) boundary is reached. Data transfer then continues into 
or from the address specified in the second and succeeding list entries and 
continues for the length specified in the IOCW or until end-of-data at the 
device occurs. 

Certain devices (especially disk devices) may require that the memory 
addresses specified in Indirect Address list entries have up to 11 low-order 
Os (i.e., be aligned on a boundary as large as 2K bytes). Refer to specific 
device descriptions for the restrictions applicable to particular devices. 

Device-Dependent Section 

This section of the IOCW is not required by all devices. The length is 
specified with the device description. One use for this area is the sector 
address for a disk drive. 

8-6 



8.5 TERMINATION OF I/0 OPERATIONS 

The following sequence of events occurs when I/0 operations are 
performed. 

1. Pending interruption is established. 

2. Interruption remains pending until it is either accepted by the CP 
as an I/0 interruption or cleared by an HIO. 

3. IOSW is stored in fixed low storage when the pending interrupt is 
accepted. (Tile IOSW is explained in Section 8.6.) 

I/O completion is caused either by the operation• s being normally 
completed, with or without errors, or as a result of an HIO. When the pending 
interrupt is cleared, the I/0 completion status is available in the IOSW. 

An IOSW will not be stored a second time. It will be available until 
overlaid when another pending interrupt is cleared. To guarantee the validity 
of an IOSW, it should be moved from the IOSW area in code disabled for I/0 
interruption. This code must have been disabled by the loading of the I/0 New 
PCW or must have been disabled when the SIO was issued. 

8.5.1 Types of Termination 

Normally an I/O operation lasts until the device completes the 
operation. When a system load or power-on is performed, all I/0 operations 
are terminated immediately. The system can force an I/0 operation to 
terminate prematurely by issuing an HIO. 

Termination of Data Transfer 

When the device accepts a data transfer command, the operation will be 
terminated by one of the following five conditions: 

1. A HALT I/O instruction was issued to the device. 

2. The count field in the IOCW has gone to 0 (IOCW exhaustion). 

3. As many bytes have been· transferred as are indicated by the sum of 
the lengths specified in an Indirect Address List (list exhaustion) • 

4. The device has indicated that there is no more data to be 
transferred (data exhaustion). 

5. Hardware malfunction. 

The end condition causes the operation to be terminated and an 
interruption condition to be generated. The status bits in the associated 
IOSW indicate the reasons for termination. The device can signal termination 
at any time after initiation of the operation, and the signal may occur before 
any data has been transferred. The duration of data transfer operations is 
variable and is controlled by the device and its IOP. 

8-7 



Termination by HALT I/O 

If accepted by the IOP, the instruction HALT I/0 causes the current 
operation at the addressed device to be terminated immediately. If an 
interruption for the addressed device was pending, that interruption rematns 
pending. If an I/0 operation was active, the operation is terminated and a 
completion interruption becomes pending. 

Termination Due to Equipment Malfunction 

When equipment malfunctioning is detected, the recovery procedure and 
the subsequent states of the devices depend on the type of error. Normally, 
the device attempts all appropriate error recovery procedures. If the 
recovery is successful, the I/0 operation is completed and the IOSW indicates 
a soft error. If the recovery is unsuccessful, the operation is terminated 
and a hard error is indicated in the IOSW. 

8.5.2 I/0 Interruptions 

I/0 interruptions provide a means for the system to change its state in 
response to conditions that occur in I/0 devices and IOPs. These conditions 
are caused by termination of an I/0 operation or by operator intervention at 
the I/0 device. 

These conditions cause three types of I/0 interruptions: solicited, 
unsolicited, and IOP NOW READY. A solicited interruption is caused by the 
completion of an I/0 operation initiated by an acc.epted SIO or CIO. An 
unsolicited interruption is caused by operator action at the I/0 device such 
as mounting a disk pack or striking a workstation attention key. An IOP NOW 
READY interruption is caused by an IOP's becoming available for acceptance of 
SIOs, CIOs, and HIOs after having reported IOP BUSY in response to one of 
these instructions. 

When multiple I/0 interruption requests are pending, the hardware 
establishes a priority sequence for them before initiating an I/O interruption 
request. While the processor is servicing one interrupt, the others remain 
pending. 

Interruption Conditions 

The conditions causing requests for I/0 interruptions to be initiated 
are called I/0 interruption conditions. An I/0 interruption condition can be 
brought to the attention of the system program only once and is cleared when 
it causes an interruption. The device or IOP attempts to initiate a request 
to the processor for an interruption when any of the following conditions (not 
all of which are defined for every device and IOP) occur: 

1. Attention or device now ready 
2. IOP now ready 
3. I/0 completion 
4. Intervention required. 

8-8 



This manual is updated by: Addendum 800-11OOP0-04.01 

8.5.3 Priority of Interrupts 

All I/0 interrupt requests are asynchronous with system activity; 
interrupt conditions associated with more than one I/0 device may exist at the 
same time. Priority among I/0 interrupt requests is determined by the 
physical position of the associated IOP in the hardware configuration, which 
is determined at installation time. 

8.5.4 Interrupt Action 

I/0 interrupts are handled as described below for the various VS CPs. 

VS25 Interrupt Processing 

BPs report the completion of any I/0 operation (whether successful or 
not) at one of their devices by a solicited I/0 interrupt. At the time of a 
request for an I/0 interrupt, the BP has already pre-stored the IOSW, SQB, and 
IODA in the appropriate locations (refer to Section 8.3, above) in main memory. 

The CP grants an interrupt after ascertaining the DA and device number 
of its origin from the pre-stored !ODA. It then copies the IOSW into location 
X'OO' of main memory, the SQB into location X'SO', and the IODA into location 
X'80'. Finally, an I/0 interrupt is formally granted, by replacing the 
current PCW with the New I/0 Interrupt PCW and storing the replaced PCW in the 
Old I/O Interrupt PCW location. 

VSlOO Interrupt Processing 

IOPs report the completion of any I/0 operation (whether successful or 
not) at one of their devices by a solicited I/O interrupt. At the time of a 
request for an I/0 interrupt, the IOP has already pre-stored the IOSW in the 
appropriate slot of the IOPST in main memory (refer to Subsection 8.3.3, 
above) and has pre-stored the port number of the device, along with the SQB, 
in the IPC-Otrr register of the BA. 

The CP grants an interrupt after ascertaining the BA number and IOP 
number-of its origin from the Interrupt Request Mask (IRM) of the BA, an 
internal register that displays the pending I/0 interrupt requests of the 
associated IOPs. It then copies the IOSW into location X'OO' of main memory, 
the SQB into location X'SO', and the IODA (formed by combining the BA number, 
IOP number, and port number of the involved device) into location X'80'. 
Finally, an I/0 interrupt is formally granted, by replacing the current PCW 
with the New I/0 Interrupt PCW and storing the replaced PCW in the Old I/0 
Interrupt PCW location. 

8.6 I/0 STA'IUS WORD (IOSW) 

All communication from I/0 devices to the system occurs through IOSWs. 
An IOSW is stored at main memory location x•oo• when the associated I/0 
interrupt is granted. It is from one to eight bytes in length. The format of 
the IOSW is summarized in Figure 8-9: 

8-9 



This manual is updated by: Addendum 800-11OOP0-04.01 

I I I I device- I 
I Generali Error I device- I Residual dependent I 
I status I status I deE!endent I b2:te count (extended) I 

bits 0 8 16 32 48 63 

Figure 8-9. IOSW Format 

Examples of the IOSW are given in Table 8-2. 

Table 8-2. lOCWs and IOSWs (from the I/0 Error and IPL Log) 

I/0 Error 
Comand Description IOCW IOSW 

READ soft error 43 OOOF44 0800 000000 60101008 00000000 
WRITE hard error 82 OOF75C 0054 000047 20103FOO 00000000 

Subsections 8.6.1 through 8.6.4 provide an overview of the fields in the 
IOSW, which are discussed in more detail in Sections 8.7 and 8.8. One byte of 
the IOSW, the general status byte, will always be stored. Additional bytes 
are stored as required by particular devices. A given type of device always 
stores an IOSW of the same length. 

8.6.1 General Status Byte 

The general status byte is always stored. 

Bits Mnemonic Meaning 

0 IRQ Intervention required 
1 NC Normal completion 
2 EC Error completion 
3 u Unsolicited 
4 PC IOP now ready 
S-6 Reserved--always 0 
7 Reserved for software use 

8.6.2 Error Status B~te 

This byte is always stored if the error completion bit is set in the 
general status byte. 'I1lis byte may or may not have any error indications in 
it if the error completion bit is set. If any of the conditions listed in the 
error status bits occur, the corresponding flag is set and the error 
completion bit is set. 

8-10 



Bits Mnemonic 

8 IC 
9 MPE 

10 MAE 
11 DM 
12 DAM 
13 IL 
14-15 PP,DP 

=11 (DCT) 

=10 (PP) 

=01 (DP) 

This manual is updated by: Addendum 800-11 OOP0-04.01 

Meaning 

Invalid command 
Memory parity error 
Memory address error 
Device malfunction 
Memory or device damage (error after data transmission) 
Incorrect length 

A device configuration table is required by the IOP 
before any normal I/O operation can be 
perfonned on programmable devices. 

A peripheral processor microprogram is required by the 
IOP before any normal I/0 operation can be 
performed on prograounable devices. 

A device processor microprogram is required by the IOP 
before any normal I/O operation can be 
performed on programmable devices. 

8.6.3 Device-Dependent Status Bytes 

These two bytes (bits 16-31) are different for each type of I/0 device. 
The use of these bytes is described along with device interfaces in Chapters 
9-12 of this manual. 

8-10.1 



Subsections 8.6.1 through 8.6.4 provide an overview of the fields in the 
IOSW, which are discussed in more detail in Sections 8.7 and 8.8. One byte of 
the IOSW, the general stat~s byte, will always be stored. Additional bytes 
are stored as required by particular devices. A given type of device always 
stores an IOSW of the same length. 

8.6.1 General Status Byte 

The general status byte is always stored. 

0 
1 
2 
3 
4 
5-6 
7 

Mnemonic 

IRQ 
NC 
EC 
u 
PC 

8.6.2 Error Status Byte 

Meaning 

Intervention required 
Normal completion 
Error completion 
Unsolicited 
!OP now ready 
Reserved--always 0 
Reserved for software use 

This byte is always stored if the error completion bit is set in the 
general status byte. This byte may or may not have any error indications in 
it if the error completion bit is set. If any of the conditions listed in the 
error status bi ts occur, the corresponding flag is set and the error 
completion bit is set. 

Bits Mnemonic 

8 IC 
9 MPE 

10 MAE 
11 DM 
12 DAM 
13 IL 
14-15 PP,DP 

=11 (DCT) 

=10 (PP) 

=01 (DP) 

Meaning 

Invalid command 
Memory parity error 
Memory address error 
Device malfunction 
Memory or device damage (error after dat~ transmission) 
Incorrect length 

A device configuration table is required by the I/0 
processor before any normal I/0 operation can be 
performed on programmable devices. 

A peripheral processor microprogram is required by the 
1/0 processor before any normal I/0 operation can be 
performed on programmable devices. 

A device processor microprogram is required by the I/0 
processor before any normal I/0 operation can be 
performed on programmable devices. 

8.6.3 Device-Dependent Status Bytes 

These two bytes (bits 16-31) are different for different devices. 'Ibe 
exact description of the use of these bytes can be found under the specific 
device description in Chapters 9-12 of this manual. 

8-10 



8.6.4 Residual Byte Count 

The residual byte count indicates the byte count rema1n1ng at the time 
of I/0 completion. Not all devices support storing of the data count. If the 
device does support it, this field will always be stored if IL is set. If the 
device does not support storing of the residual byte count, it may still set 
the IL bit. 

Meaning 

32-47 Byte count 

8. 7 GENERAL STATUS BYTE 

8.7.1 IRQ--Intervention Required 

This bit is set with Error Completion (EC) and without normal completion 
(NC) to indicate that the device was in a not-ready state when an SIO or CIO 
instruction was accepted, or that no device with the specified device number 
was attached to the specified I/0 processor. This condition requires operator 
intervention to return the device to the ready state. IRQ is also indicated 
when the device becomes not ready during an I/0 operation. In this case it 
always appears by itself (no other general status bit set), and completion is 
indicated later, when the "intervention required" condition has been cleared 
and the operation has been completed. 

8.7.2 NC--Normal Completion 

This bit is set to 
permanent error. An 
for each SIO accepted. 

indicate completion of an I/0 operation without 
interruption with NC or EC set will occur exactly once 

8.7.3 EC--Error Completion 

This bit is set to indicate completion with error of an I/0 operation. 
If NC is also set, the operation was successful after at least one retry by 
the device or IOP. If the EC bit is set, the errors detected will be 
indicated in the error status byte or device-dependent status bytes, whether 
or not NC is also set. Possible combinations are listed below. 

NC 

0 
1 
0 
1 

EC 

0 
0 
1 
1 

Meaning 

Completion not indicated 
Normal completion 
Completion with permanent error 
Completion with corrected error 

8.7.4 U--Unsolicited (Attention/Device Now Ready) 

This bit is set when the device signals an unsolicited interrupt. An 
unsolicited interrupt is one not caused by I/O completion. This indicates 
that either the device has become available for I/0 operations or that someone 
is signaling the CP for attention. This bit is independent of, but may be set 
with, the NC, EC, and/or PC bits on. 

8-11 



8.7.5 PC--IOP Now Ready 

This is an indication that an IOP may now accept an SIO. Tilis bit can 
be set in conjunction with NC or EC (I/0 completion) or U (unsolicited). 
Whenever an SIO is rejected with condition code 2 (IOP BUSY) , an interruption 
with PC set will eventually be presented. If more than one SIO to devices on 
the same IOP is rejected with condition code 2 without an intervening 
interruption with PC set, then only one interruption with PC set wil 1 be 
presented. 

8.8 ERROR STATUS BYTE 

8.8.1 IC--Invalid Command 

This indicates that part of the IOCW or the device-dependent control 
information was invalid (e.g., invalid coounand code or invalid data address 
alignment). This condition also causes a hard error to be indicated. 

8.8.2 MPE--Memory Parity Error 

A memory parity error is indicated whenever there is a parity error 
while the IOP associated with the I/O device is accessing memory. This is the 
method by which a machine check is indicated during an I/O operation. 

8.8.3 MAE--Memory Address Error 

A memory address error is indicated whenever an attempt is made to an 
address outside the available memory on the machine during an I/O operation. 
This is the method by which an addressing exception is indicated during an I/0 
operation. 

8.8.4 DM--Device Malfunction 

A device malfunction indicates that an equipment error has occurred 
during an I/0 operation or that the I/0 operation cannot be completed 
normally. A device malfunction is not indicated in the case where operator 
intervention will correct the problem. Therefore, device malfunction is not 
indicated when Intervention Required (IRQ) is set. 

8.8.5 DAM--Memory or Device Damage 

This bit indicates that the data transfer was interrupted while in 
process and that data either at the device or in memory has been changed. The 
receiver of the data transmission has unpredictable data, and the data must be 
retransmitted (if possible) to correct the problem. The device's status may 
also have changed (e.g. , for a magnetic tape, the tape may have been 
repositioned). DAM will be set only if the hard error indication is set. 

8-12 



8.8.6 IL--Incorrect Length 

This bit is set if the length of the data specified in the data count of 
the IOCW and the length of the corresponding item of data at the device are 
different. If this bit is set, the error completion bit (EC) will be set. If 
the IL bit is set and the device supports storing of the residual data count, 
a valid residual data count will be stored. 

8.8.7 PP and DP--IOP or Device Code Not Loaded 

For programmable IOPs (22V06, 22V07, and 22V17) and programmable devices 
(all models whose model numbers include the letter "S," "C," or "R") , these 
two bits are encoded to indicate that the required microprogram or table for 
the I/0 operation is missing or is damaged. 

(PP) (DP) 
Bit 14 15 Meaning 

1 1 

1 0 

0 1 

A device configuration table is required by the 22V06 
IOP in order to process an I/0 operation. 

Microprogram reloading is required for the peripheral 
processors of the 22V06, 22V07, and 22V17 IOPs. 

Microprogram reloading for the programmable device 
(e.g., 2246S, 2221V-S) is required in order to process 
an I/0 operation. 

8.9 THE CIO INSTRUCTION 

The CIO instruction directs 1/0 processors to perform diagnostic, 
microcode-loading, microcode-reading, and processor control functions. 
Completion interruptions are presented as for SIC-initiated operations. 

8-13 



8.9.1 CIO Microcode-Loading, Microcode-Reading, and Processor 
Control Commands 

Figure 8-4 shows the format for microcode commands. 

0 

Command 
code Memory address 

1 

Data count 

4 5 

Figure 8-4. IOCW Format for Microcode Commands 

Byte O--Command code: lOxxxxxx (WRITE) , Olxxxxxx (READ) , or llxxxxxx 
(CONTROL), where xxxxxx is interpreted by the I/0 processor to 
designate specific functions. These commands are not accepted by 
all I/0 processors. 

The following CIO commands are supported by the 22V06-1, 22V06-2, and 
22V06-3 programmable telecommunication I/0 processors: 

Command 

1000 0000 
1000 0010 

1001 0000 
1001 0010 
1101 0000 
1100 0000 
0101 0000 
0101 0010 
0100 0000 
0100 0010 

1010 1001 
1010 1011 

All other 

Meaning 

Load device control table 
Load device control table, with Indirect 

Data Addressing (IDA) 
Load data link processor 
Load data link processor, with IDA 
Start data link processor 
Restart bus control processor 
Read data link processor's memory 
Read data link processor's memory, with IDA 
Read device control table 
Read device control table, with IDA passed 

to data link processor 
Activate or deactivate a remote device 
Activate or deactivate a remote device, with 

IDA 
By convention, 1010 0000 is used to specify loading 

of device processor microcode, and 1110 0000 is 
used to specify starting of a device processor. 

(For commands 1010 1001 and 1010 1011, a 4-byte data count field of the 
following form is used: 

I 
Cluster I Port 

I 
4 5 

I 
I Device 
I 

6 

Type 

7 

If Cluster = X'FF', then "deactivate" is indicated.) 

8-14 



The following 
serial-device IOPs: 

Command 

1010 0000 
1110 0000 

CIO 

This manual is updated by: Addendum 800-11OOP0-04.01 

commands are supported by 22V07-1 and 22V07-2 

Meaning 

Load device processor microcode 
Start device processor 

8.9.2 CIO Memory Diagnostic Commands for IOPs 

Figure 8-11 illustrates the format of the IOCW for diagnostic commands. 

I I I I I I 
I Command I Memory I Data I Pattern I Index (I) I 
I code I address (M) I count (R) I I I 

Bytes 0 1 4 6 8 

Figure 8-11. IOCW Format for Diagnostic Couunands 

Byte 0 Command code: 00 ccaOOO, where 

cc = 10 Reference memory (REF) 
cc = 01 - Modify memory (MOD) 
a = 0 - Access 2 bytes 
a = 1 - Access 1 byte 

REF means that the specified memory area will be read as determined by 
the increment or index field, and this data will be compared with the given 
data pattern in the IOCW. An error is detected if the comparison is unequal. 

MOD means that the specified memory area will be modified with the given 
data pattern in the IOCW. Immediately after each memory location is modified 
(a 1- or 2-byte write to memory) , it will be read and compared with the given 
pattern. An error is detected if the comparison is unequal. 

Bytes 1-3 

Bytes4-S 

Bytes 6-7 

Byte 8 

Memory address field (M): specifies the starting 
address of the memory area to be accessed. 

Data count field (R): specifies the number 
accesses (of 1 or 2 bytes) to be performed. 
this is not a byte count. 

of memory 
Note that 

Data pattern field: specifies the data value to be used 
for comparison. 

Index field (I): the increment for the memory address 
update (e.g., I= 0 indicates same main memory location 
to be accessed R times, and I = 4 indicates 1 or 2 bytes 
to be accessed for every word, starting from location M 
and finishing at location M+I*(R-1) if physical memory 
size permits). 

s~1s 



This manual is updated by: Addendum 800-11 OOP0-04.01 

Telecommunications (TC) IOPs use the SIO instruction rather 
than CIO for memory diagnostic operations. 

The IOP that receives such a CIO command will initiate the specified 
memory access starting from the given memory address and continuing until the 
specified data count is exhausted. A normal completion will then be reported 
in the IOSW. In case of any data error, the IOP will terminate immediately 
and report an error condition. The IOSW format for CIO coonnands is 
illustrated in Figure 8-12. 

I I I 
I Status I Error I Data Residual 
I I I obtained count 

Bytes 0 1 2 4 

Figure 8-12. IOSW Format for CIO Commands 

IOSW byte 0 and byte 1 are the usual general and error status bytes. 

Byte 0 

Byte 1 

Bytes 2-3 

Bytes 4-5 

General status byte. 

Error status byte. 

Contain the data value last obtained. For normal 
completion, this value should be equal to.the data 
pattern specified in the IOCW. For error completion, 
the bits in error are those in this field that differ 
from their corresponding bits in the given pattern. 
Note that for a 1-byte memory access, only the first 
byte is used. 

Contain the residual data count (in number of memory 
accesses of 1 or 2 bytes each). For normal 
completion, the count is 0. For error completion, the 
residual data count can be used to compute the offset 
from the starting memory address of the memory 
location at which the error is detected. 

8-16 



CHAPTER 9 
WANG WORKSTATION CHARACTERISTICS 

9.1 INTRODUCTION 

The VS workstation is designed both to simplify the operator's job and 
to reduce the processing time required by the central processor to handle its 
I/O. '!his device has two main parts, the CRT and the keyboard. 

9.2 THE CRT 

9.2.1 Screen and Cursor 

The CRT screen is capable of displaying 24 rows of 80 characters each. 
Every position of the screen is capable of displaying any character. A 
special symbol (resembling an underscore) called a cursor is displayed beneath 
a character position to indicate where the next character entered from the 
keyboard will be stored. The cursor is displayed on the screen when data can 
be keyed by the operator. If it is not displayed, the keyboard is locked. 
This has no effect on the display or the computer interface with the 
workstation, but prevents data entry from the keyboard. Each position of the 
screen is referenced by its row and column numbers. 'Ibe first position of the 
screen (upper left corner) is called row 1, column 1. The colwnns are 
numbered from left to right and the rows from top to bottom. Position 2 is 
the second character from the left on the first line. Table 9-1 gives the set 
of displayable characters and the associated representations in bits. 

9-1 



Table 9-1. lhe Character Set 

NOTE: b1 0 0 0 0 1 1 1 1 
b0 always 

equals zero*. b2-- 0 0 1 1 0 0 1 1 

b3- 0 1 0 1 0 1 0 1 

High-Order Digit--- 0 1 2 3 4 5 6 7 

b4 b5 b5 b1 Low-Order Digit 

i i i i i 
0 0 0 0 0 a SP 0 @ p 0 p 

0 0 0 1 1 • e ! 1 A Q a q 

0 0 1 0 2 ... i " 2 B R b r 

0 0 1 1 3 .... 0 # 3 c s c s 

0 1 0 0 4 - u $ 4 D T d t 

0 1 0 1 5 ..... a % 5 E u e u 

0 1 1 0 6 I e & 6 F v f v 

0 1 1 1 7 .. r I 7 G w g w 

1 0 0 0 8 I 0 ( 8 H x h x 

1 0 0 1 9 \ Q ) 9 I y i y 

1 0 1 0 A 
,... a * J z j z 

1 0 1 1 B • e + I K [ k § 

1 1 0 0 c !! u I < L \ I £ 

1 1 0 1 D t A - = M ] m e 

1 1 1 0 E {3 6 > N t n ~ 

1 1 1 1 F ~ 0 I ? 0 - 0 ¢ 

*Bit combinations 1 0000000 through 11111111 are field attribute characters. 

9-2 



9.2.2 Workstation Memory 

The internal memory of the workstation uses eight bits per character. 

9.2.3 Screen Formatting 

An important feature of the workstation screen is its division iato 
fields. The begi1U1ings of fields on the screen cannot generally be determined 
by inspection, except for high intensity fields, which are easily 
distinguished by their bright or blinking display. Al though not visible• 
fields are very important, because they affect the operation of the 
workstation under both keyboard control and computer control. A field is 
defined as all characters from one field attribute character to the next. 

A field can be from 0 to 80 characters in length. All the characters 
within a given field have the same attributes, which are defined by the field 
attribute character preceding the field. The possible attributes are defined 
in Table 9-2. 

Table 9-2. Field Attribute Character Values 

Bit Field Description 

O Must be 1 

1 Selected-field tag 
for READ ALTERED and WRITE SELECTED 

2 = 1 Underscore 

3-4 Display control 

= 00 Intensified display 
= 01 Low intensity display 
= 10 Blinking display 
= 11 Nondisplay 

5 Protect bit 

= 0 Modifiable field 
= 1 Protected field 

6-7 Valid keyable data specification 

= 00 Alphanumeric upper- and lowercase 
= 01 Alphanumeric uppercase shift 
= 10 Numeric only 
= 11 reserved 

9-3 



Field attribute characters are never displayed regardless of their 
value. Each row is considered to have a field attribute character just before 
the first character in the row and just after the last character in the row. 
'lbese non-displayed field attribute characters do not take up space on the 
screen. They have a default value of low intensity, protected, and 
alphanumeric upper- and lowercase. (See the description of the field 
attribute character, below.) These default field attribute characters allow 
the use of 80-character lines. In addition, any location on the screen can 
contain a field attribute character. 

9.2.4 Field Attributes 

'nle meaning of each field attribute bit is given below. 

Selected field tag: This field has been modified by user data entry at 
the workstation, or (when set in the mapping area) is to be written by 
WRITE SELECTED. 

Underscore: The characters in this field are to be underscored when 
displayed on the screen. 

Intensified display: 'Tile characters in this field will be displayed in 
higher intensity than those in a low-intensity display field. 

Low intensity display: 
on the screen. 

lb.e characters in this field will be displayed 

Blinking display: The characters in this field will be displayed 
alternately in intensified display and display mode. 'Ibe display will 
change modes at a fixed rate of about three times a second. 

Nondisplay: The characters in this field will not be displayed on the 
screen. The field will be displayed as all blanks. 

Unprotected (also called modifiable): Any or all of the positions of 
this field can be changed by the operator. 

Protected: No position of this field can be modified by the operator. 

Alphanumeric: Tilis field allows keying of any character on the keyboard. 

Uppercase shift: Letters will be displayed and stored as uppercase 
only. This is without regard to whether the shift or lock key is 
pressed. All other keys will respond to the shift and lock keys as they 
normally would. 

Numeric only: Only the characters 0-9, decimal point (.), and minus (-) 
may be entered into this field. If other keys are pressed, the 
keystroke is ignored and the alarm sounds. 

Reserved: 'Tilis is not a valid combination at this time. It is intended 
for addition of later options. Its use produces unpredictable results. 

9-4 



9.2.5 Tabs 

Ten tabs can be set by programs; they can be set to any column of the 
workstation's screen (1-80) with the instruction WRITE TABS. They do not take 
up a screen location, are not displayed, and allow forward tabbing operations 
to stop at locations within modifiable fields. A tab position is specified by 
column number and affects the colwnn of every row in which the specified 
column is modifiable. Tabs have no effect within protected fields or during 
back-tab operations. When the workstation is' powered on, all tabs are cleared. 

9.2.6 Audio Indicators 

The audible alarm sounds a short tone whenever an illegal keying 
operation is attempted. This operation can be the user's attempting to enter 
data into a protected field, trying to move the cursor past the end of the 
screen with a field-sensitive key, or trying to enter data when the keyboard 
is locked. The alarm is also sounded when a WRITE is issued while the proper 
bit is on in the wee. 

The keystroke indicator is a small device attached to the keyboard that 
makes a clicking sound. It sounds each time a key is pressed. 

9.3 THE KEYBOARD 

The VS workstation keyboard is illustrated in Figure 9-1. 

9.3.1 Cursor Positioning Keys 

Non-Field-Sensitive Keys 

These keys position the cursor but are not affected in any way by fields 
and field attribute characters. They can position the cursor to any location 
of the screen. There are four keys in this group: 

(Up arrow) Positions the cursor in the same column but up one 
row. If the cursor started in the first row, it is 
positioned in the same column but in the last row. 

(Down arrow) - Positions the cursor in the same column but in the next 
row. If the cursor started in the bottom row of the 
screen, it is positioned in the same colwnn but on the 
first row of the screen. 

(Left arrow) - Moves the cursor one position left in a row. If the 
cursor was at the start of a row, it moves the cursor 
to the last position in the preceding line. If the 
cursor is in the first location of the screen, it is 
positioned in the last position of the screen. 

(Right arrow) - Moves the cursor one position right in a row. If the 
cursor is at the end of a row, it is moved to the first 
position of the next row. If it is at the last 
position of the screen, it is positioned in the first 
position of the screen. 

9-5 



El ~~.F18 ~~ ~~~~ ~~~~ ~~~~ 
u::I Ll.:!..I ~ LI.:!..I ~ u.::.J u.::J ~ u.::J u.::J ll::.I U!!!J u:!:.I u.=J u:!:.I u:J ~ 

Figure 9-1. The Keyboard 



Field-Sensitive Cursor Positioning Keys 

'!be following keys normally move the cursor two or more positions after 
the key is pressed only once. These keys are used to move the cursor to the 
start of a field or a new line and can be used to simplify data entry. They 
position the cursor to a modifiable position. 

'lbese four keys are sensitive to modifiable positions, although none of 
them modify any position. The four keys of this set are as follows: 

TAB 

BACK TAB 

NEW LINE 

HOME 

9.3.2 Data Entry Keys 

Moves the cursor to the next position within a 
modifiable field or to a protected numeric-only field. 
If there are no more modifiable positions, the alarm 
sounds and the cursor does not move. 

Positions the cursor at the first byte of the nearest 
modifiable field preceding the current cursor location. 
If the cursor is in a modifiable field and in other than 
the first location, the cursor is positioned to the 
start of that field. If there is no preceding 
modifiable location, the alarm sounds and the cursor 
does not move. 

Advances the cursor to the first position of the next 
line, and then moves the cursor to the first modifiable 
position following the start of the line. This key may 
cause the cursor to be moved several 1 ines from the 
original position. If there is no modifiable location 
following the start of the next line, the alarm sounds 
and the cursor does not move. 

Positions the cursor at the first modifiable location on 
the screen. If there is no modifiable location on the 
screen, the alarm sounds and the cursor does not move. 

None of the keys talked about so far change data in any positions of the 
screen display. The sole function of the data entry keys is to enter data 
into positions of the screen. For all these keys the cursor must be in a 
modifiable field. If the cursor is not in a modifiable field, the keystroke 
is not honored and the alarm sounds. 

Character 
keys 

These include letters, numbers, and special characters. 
lhese keys enter characters just as a typewriter does 
(with the use of LOCK and SHIFT). If any characters 
other than numerals (0-9), hyphen (-), or period (.) are 
pressed in a numeric attribute field, the same action as 
for a protected field is taken. If the field is an 
uppercase character attribute field, lowercase letters 
are interpreted as uppercase letters. 

9-7 



BRASE 

INS 
(insert) 

DEL 
(delete) 

When the cursor is in the last position of a field and one 
of these keys is pressed, the character is entered into the 
location and the cursor is positioned at the next modifiable 
location. This may involve skipping the field attribute 
character or skipping several lines. If the cursor is 
currently at the last modifiable location on the screen, the 
keystroke is honored, the alarm sounds, and the cursor is 
not moved. 

Sets the cursor location and all subsequent locations of the 
current field to blank characters. Any locations preceding 
the cursor are not changed. The cursor does not move. 

Places a blank at the cursor location and shifts to the 
right by one position all the characters in the current 
field, starting with the one at the cursor location up to 
but not including the last character in the field. The last 
character in the field, if a blank or a pseudo blank, is 
lost. If the last character in the field is not a blank or 
a pseudoblank, no screen location is changed, the alarm 
sounds, and the cursor does not move. Pseudoblanks are the 
characters X'OB' and X'OS' in a modifiable field. 

Deletes the character at the cursor location and moves the 
subsequent characters in the field left by one position. 
The last character moved is the rightmost character in the 
field, and it is followed by a newly inserted blank. If the 
cursor is not in a modifiable field, the key is not honored 
and the alarm sounds. This key is reciprocal in action to 
the INS key. 

9.3.3 Special Keys 

SHIFT 

LOCK 

RESET 

Has the same effect as SHIFT on a typewriter. For keys with 
an upper and lower character on the key face, the SHIFT key 
is used to select which character is to be entered. 
However, it has no effect on letters to be entered in an 
uppercase attribute field. 'lbese are entered as uppercase 
whether the SHIFT key is pressed or not. Pressing this key 
when the SHIFT light is lit causes the SHIFT light to be 
turned off and unSHIFTs the keyboard. 

Lights the SHIFT light. The workstation then behaves as if 
the SHIFI' key were continuously pressed. Pressing this key 
again does not change the device status. Pressing the SHIFT 
key turns off the SHIFT light, returning the keyboard to an 
unSHIFTed state. When the workstation is powered on, the 
device is in an unLOCKed state. 

Causes all field attribute characters on the screen with a 
blinking display to be set to (unblinking) high intensity. 
This key is still effective when the keyboard is locked for 
data entry. 

9-8 



9.3.4 Keys Communicating with the Computer 

This set of keys causes an interruption to be presented to the 
computer. If the key can be honored, the AID byte in the IOSW will be set to 
the character for the struck key and an interruption will be presented to the 
computer. After these keys are pressed, all keys except the HELP key and the 
RESET key are locked, and the alarm will sound if they are struck. The cursor 
is removed from the screen. 

HELP 

PF1-
PF32 

ENTER 

This key is intended for operating system use. The SHIFT 
key does not affect its action. The only time the key 
cannot be honored is when an unsolicited interruption is 
pending for the same device. At any other time the key is 
honored. This includes both when the keyboard is locked for 
any of the data entry keys, and during a READ or WRITE to 
the workstation. A HELP key struck while a READ or WRITE is 
in progress results in a separate attention interruption 
occurring after the READ or WRITE completion interruption. 

(Program Function keys)--There are 16 PF keys; the lowercase 
values for these keys represent PF1-PF16, and the shifted 
(uppercase) values PF17-PF32. These keys work the same as 
ENI'ER, the only difference being in the AID byte generated. 

This key is the normal means of terminating data entry and 
requesting the program to process the data. The SHIFT key 
does not affect the action of the ENTER key. The ENTER key 
is not honored when the keyboard is locked for data entry 
keys. 

9 • 4 WORKSTATION IOCW AND I/ 0 COMMANDS 

The computer communicates with the workstation by using conunands and 
orders. Commands are VS I/0 requests specified by an SIO instruction and are 
part of the IOCW. Orders are requests for actions sent to the workstation as 
part of the data area. Workstation orders are discussed in Subsection 9.5.1; 
computer commands are discussed at the end of that subsection. 

The following is a description of the 
IOCW fields for the workstation. For 
general I/O description in Chapter 8. 
device-dependent extension to the IOCW. 

9.4.1 Command and Modifier Bits 

specific interpretations of the 
a general explanation, refer to the 

Tile workstation does not have a 

For the valid conunands and modifier bits, refer to Subsection 9.5.13. 

9--9 



9.4.2 Data Address 

The data address points to the first byte of the order area, or to an 
Indirect Address list whose first entry points to the first byte of the order 
area. The data to be read or written is to immediately follow the order area 
and is called the mapping area. The data area specified by the IOCW data 
address is discussed in Section 9.5 and is outlined in Table 9-3. 

9.4.3 Data Count 

The minimum data count permitted for this device is the length of the 
order area (four bytes) • If a length shorter than the order area is 
specified, the command will be terminated with an indication in the IOSW of 
incorrect length. The length of the mapping area is the data count minus the 
length of the order area. The length of the mapping area must not extend past 
the end of the workstation screen, so the maximum length of the mapping area 
is 1920 bytes. If the length does extend past the end of the screen, the 
command will be terminated with an indication of incorrect length stored in 
the IOSW. 

9.5 DATA AREA 

The data area specified in the data address for a workstation will 
consist of two adjacent areas: the order area and the mapping area. The 
order area contains the starting row number and specifications of actions to 
be performed (on a WRITE) , or is set by the device to the cursor address (on a 
READ). The mapping area is the data transmitted to or from the screen and 
contains field attribute characters and display characters. The length of the 
entire data area is given by the data count field, shown in Figure 9-2. 

Field Command code Data address I Data count field I 
Bit 0 7 8 311 32 471 
Digit 1 2 3 4 s 6 1 8 I 9 10 11 12 I 

Figure 9-2. Workstation IOCW 

9-10 



9.5.1 Order Area 

The order area is always four bytes long. Table 9-3 shows the layout of 
this area. 

Table 9-3. Significance of Bytes in the Workstation Order Area 

Byte On READ 

0 Row nwnber 

1 Reserved (must be O, 
except for remote 
workstations, where this 
is the AID character. 
Refer to Table 9-6.) 

2 Cursor column address 

3 Cursor row address 

On WRITE 

Row number 

wee (write control charac
ter; discussed below) 

Cursor column address (if 
cursor bit set in WCC) 

Cursor row address (if 
cursor bit set in WCC) 

The contents of the order area and the interpretation of the fields in 
the area are different for a READ and a WRITE. 

9.5.2 Interpretation of the Order Area on a READ 

The first byte of the order area is inspected before the data transfer 
and is used to specify the starting row number for the READ. If this row 
number is not in the range 1-24, the conunand will be terminated with an 
indication of Order Check (OR) in the IOSW. This byte is not changed by the 
READ. 

The third and fourth bytes of the order area are set by the READ to the 
address of the cursor at the time of the read. The first byte of the two will 
contain the column number (l-80), and the second will contain the row number 
(1-24) of the current cursor location. These two bytes are not inspected 
before the READ. 

The second byte of the order area for a READ is not inspected or 
modified, but is to be supplied as binary Os for compatibility with future 
options. 

9-11 



9.5.3 Interpretation of the Order Area on a WRITE 

Neither the order area nor the mapping area is changed on a WRITE. the 
first byte of the order area on a WRITE is interpreted as the row number where 
the WRITE is to start. If this row number is not in the range 1-24, the 
command will be terminated with an indication of order check (OR) in the IOSW. 

The second byte of the order area is interpreted as the Write Control 
Character (WCC). If the "set cursor address" bit is set in the wee, the next 
byte of the order area is interpreted as a cursor column address, and the 
fourth byte as the cursor row address. If the "set cursor addr~ss" bit is not 
set in the wee, the third and fourth bytes of the order area are ignored. 

If the "set cursor address" bit is set in the wee , the cursor row 
address byte must be set to a value between 1 and 24 inclusive, and the cursor 
column address byte must be set to a value between 1 and 80 inclusive. After 
the WRITE completes, the cursor will be positioned to that row and column. If 
the cursor row address byte is 0, it is treated as if it were 1. If the 
cursor column address byte is 0, this will act as if the cursor were 
positioned one location before the first location in the specified row and the 
TAB key were pressed. If there are no modifiable positions on the screen 
after the WRITE command, the cursor will be positioned to the first location 
in the specified row. 

If the "set cursor address" bit is set in the wee and the cursor row 
address byte has a value other than 0-24 or the cursor column address byte has 
a value other than 0-80, the command will be terminated with an indication of 
Order Check (OR) stored in the IOSW. 

9.5.4 WCC Area 

The computer controls the workstation by use of orders. An order is a 
request for workstation action that is coded in the order area. The order 
area is the first 4 bytes of the data area pointed to by the IOCW. The second 
byte of this area is a Write Control Character (WCC) • The area also contains 
the starting screen location for data transfer. '!be positions immediately 
following the order area are the mapping area. Data is transferred between 
the mapping area and the screen as specified by the IOCW command code. The 
length of the mapping area is defined by the length specified in the data 
count in the IOCW minus 4. 

wee (write control character) - This is the 
WRITE. No other byte will be interpreted as a wee. 
the bits of the wee, refer to Table 9-4. 

9-12 

second byte of every 
For the interpretation of 



This manual is updated by: Addendum 800-11OOP0-04.01 

Table 9-4. Workstation Write Control Character (WCC) Codes 

Bit Explanation (if set to 1) 

0 Unlock keyboard (Lock if 0) 

1 Sound alarm 

2 Position cursor 

3 Roll down 

4 Roll up 

5 Erase modifiable fields to pseudoblanks 

6 Erase and protect rest of screen 

7 Reserved (must be 0) 

9.5.5 Unlock the Keyboard 

After the record is written to the screen and after sounding of the 
alarm, if specified, the AID character will be set to blank and the keyboard 
will then be unlocked. 

If bit 0 is O, the keyboard will be locked before any data is 
transmitted to the workstation. This can lock an unlocked keyboard. If the 
keyboard is locked, this bit will not change the status of the keyboard. The 
normal method for locking the keyboard is to wait for the operator to strike 
one of the computer communication keys. If the bit is 0 and the keyboard is 
locked, the AID character in the IOSW will not change. However, if the 
command locks the keyboard, the AID character will be set to " ' " 

9.5.6 Sound the Alarm 

If this bit is set to 1, the alarm will sound before the data is 
transmitted to the screen. 

9.5.7 Position the Cursor 

If this bit is set to 1, after data is transferred to the screen the 
cursor will be positioned as described in Subsection 9.5.3. 

9.5.8 Roll Down 

Setting this bit to 1 causes the bottom line of the screen 
and each line above it to be copied into the next lower line. 
proceeds until the row specified in the order area has been 
specified row is then set to blanks and the WRITE continues. 

9-13 

to be lost 
This copying 

copied. The 



This manual is updated by: Addendum 800-11OOP0-04.01 

9.5.9 Roll Up 

If this bit is set to 1, the row specified in the order area will be 
lost and each line below it will be copied into the next higher line (e.g., 
line 1 will be replaced by the contents of line 2, etc.). This copying will 
proceed until the last row of the screen has been copied. Tile last row will 
then be set to blanks, and the WRITE will proceed on the last line of the 
screen. An attempt to write more than one line in a single command with "roll 
up" specified will result in Order Check (OR) being reported. 

9.5.10 Erase Modifiable yields to Pseudoblanks 

All modifiable locations at and after the row address specified in the 
order area are set to pseudoblank characters (bit pattern 00001011) before the 
data is transferred to the screen. 

9.5.11 Erase and Protect Rest of Screen 

All locations of the screen at and after the row address specified in 
the order area are set to X'8C' before the data is transferred to the screen. 
Therefore, there are no modifiable locations after the data that is written. 

The options of the wee on a WRITE will take place in the following order 
if they are chosen: 

1. The keyboard. is_ locked. 
2. The alarm is sounded. 
3. The roll down is performed. 
4. The roll up is performed. 
5. The "erase modifiable" or "erase and protect rest" is performed. 
6. The data is transferred to the screen. 
7. The keyboard is unlocked. 
8. The cursor is positioned. 
9. If the keyboard is unlocked, the cursor is displayed. 

9.5.12 Mapping Area 

The mapping area contains the data transmitted either to or from the 
screen. Its maximum length is 1920 bytes. The first location of the mapping 
area corresponds to the first character of the row specified in the first 
byte on the order area. Byte number 81 of the mapping area would correspond 
to the first byte of the next row. If the starting row number and the length 
of the mapping area are such that locations in the mapping area would extend 
past the end of the screen, the command will be terminated with an indication 
of incorrect length stored in the- IOSW. Note that, although the mapping 
area's first position will always correspond to the start of a row, the only 
restriction on the end of the mapping area is that it not extend past screen 
end. This means that the mapping area can include more than one row. No 
mapping area need be supplied for a 4-byte READ or WRITE (order area only). 

Figure 9-3 is a summary of the order area and mapping area. 

9-14 



This manual is updated by: Addendum 800-11 OOP0-04.01 

Offset 

0 
1 
2 
3 

4 

Description 

Starting row number 
wee (O for READ) 
Cursor column 
Cursor row 

- - - - -
I 
I 
I 
I 
I 
I -, 
I 
I 
I 

Figure 9-3. Data Area Specified by Workstation IOCW 

9.5.13 Workstation I/0 Commands 

Order area 

Mapping area 

Coounands are I/0 requests issued by the computer. '!be SIO instruction 
starts the command in the IOCW. This causes a transfer of data either from or 
to the workstation. The data sent either from or to the workstation will 
contain one or more orders and (optionally) screen characters. Data sent to 
the workstation with any of the WRITE commands can be used to format the 
screen into fields, display characters, or con~rol workstation functions like 
unlocking the keyboard. Data read fr·om the workstation includes field 
attribute characters that are within the range of the READ, as specified in 
the order area. Commands should normally be issued only when the keyboard is 
known to be locked, unless the screen display is to remain until ENTER is 
pressed. If the keyboard is not locked and a command is issued, keystrokes 
may be lost. '11le valid commands are listed in Table 9-5. 

Table 9-5. Workstation CoDUDands 

Command and 
Command Modifier Bits 

WRITE 10 OOOONO 

WRITE SELECTED 10 OlOONO 

WRITE TABS 10 OOOlNO 

READ 01 OOOONO 

READ ALTERED 01 OlOONO 

READ DIAG 01 OOlONO 

READ TABS 01 OOOlNO 

9-15 



This manual is updated by: Addendum 800-1 1OOP0-04.01 

The bits marked "N" in Table 9-5 are set to indicate indirect data 
addressing. When they are set, the data address portion of the IOCW addresses 
an Indirect Address list as described in Chapter 8. For the workstation, the 
address contained in the first entry of an Indirect Address list must have two 
low-order Os (specifying word alignment), and the Indirect Address list itself 
must be word aligned. 

The READ command causes the contents of the screen locations 
corresponding to the mapping area to be copied into the mapping area. This 
includes all characters and field attribute characters in the range to be 
read. Selected-field tags of the field attribute characters in the portion of 
the screen read are turned off, both in the workstation and in main memory. 
The cursor row and column addresses are stored in the order area. This 
coounand is valid both when the keyboard is locked and when it is unlocked. 
Issuing it is not recoDDDended, however, while the keyboard is unlocked, as 
this may cause some operator keystrokes to be lost. 

If any of the characters in the range of the READ are pseudoblanks 
(i.e., in a modifiable field, characters with bit patterns 00001011 (the 
half-solid character) or 00000101) , these will be converted to blanks on the 
screen before the data is read. When these characters are in protected 
fields, they are not considered to be pseudoblanks, and they will not be 
changed to blanks either on the screen or in memory. 

If any characters in the range 
characters with blink indicated, the blink 
high intensity both on the screen and 
attribute characters that have either 
indications set. 

of the READ are field attribute 
indication will be converted to 
in memory. Th.is is true for field 

protected or modifiable field 

The READ ALTERED command causes the contents of fields within the 
specified range that have selected-field tags set to be copied into 
corresponding positions of the mapping area. Tile selected-field tags in the 
portion of the screen read are turned off at the workstation, but they are set 
in the corresponding field attribute characters of the mapping area. 
Pseudoblanks and blinking fields within the range of the READ ALTERED are 
affected as for the READ command. 

The READ DIAG (diagnostic read) command is identical to the READ 
command, except that it does not change pseudoblanks to blanks, reset blinking 
fields, or turn off selected-field tags either on the screen or in the data 
that is read. 

The READ TABS command reads into memory the column numbers of all set 
tabs. The command transmits up to 10 characters. Each location has a value 
of 0 or 1-80. The first 0 encountered indicates that there are no more set 
tabs and that subsequent locations have undefined values. The tabs are listed 
in the mapping area in order of increasing column numbers. The IOCW must have 
a data count greater than or equal to 14 or the command is rejected with an 
indication of OR (order check). 

9-16 



The WRITE conmand causes a transfer to the screen of the data in the 
mapping area. Field attribute characters, including selected-field tags, are 
transferred unchanged. This command can be issued when the keyboard is locked 
or unlocked. It is, however, normally undesirable to issue a WRITE when the 
keyboard is unlocked, because doing so could cause loss of operator keystrokes. 

The WRITE SELECTED command causes a transfer to the screen of those 
fields in the mapping area that have selected-field tags set in their field 
attribute characters. The selected-field tags in main memory are not reset. 
Selected-field tags at the workstation (indicating altered fields) are turned 
off only in those field attribute characters identifying the fields that are 
written. 

The WRITE TABS coounand causes all tabs to be cleared, and then sets up 
to 10 tabs specified in the first 10 bytes of the mapping area. Each column 
that is to be set as a tab stop has its column number specified in the mapping 
area. Column numbers are to be specified in increasing order (1-80). The 
first zero byte encountered within the 10-byte mapping area terminates the 
list of tab settings; the contents of any subsequent bytes are not examined. 
Incorrect specification of tab settings will result in unpredictable and 
erroneous tab operation. The IOCW must have a data count greater than or 
equal to 14, or the command is rejected with an indication of OR (order check). 

Table 9-6 lists the AID configurations for workstations, along with the 
associated hexadecimal characters and graphic characters. AID characters are 
discussed in Subsection 9.6.3. 

9-17 



Table 9-6. Attention ID (AID) Configurations 

HeK Hex 
Character Graphic Character Graphic 

AID (ASCII) Character AID (ASCII) Character 

Keyboard 20 I I (blank) Locked by 21 I 

Unlocked Write 

ENTER key 40 @ 

PF 1 key 41 A PF 17 key 61 a 

PF 2 key 42 B PF 18 key 62 b 

PF 3 key 43 c PF 19 key 63 c 

PF 4 key 44 D PF 20 key 64 d 

PF 5 key 45 E PF 21 key 65 e 

PF 6 key 46 F PF 22 key 66 f 

PF 7 key 47 G PF 23 key 67 g 

PF 8 key 48 H PF 24 key 68 h 

PF 9 key 49 I PF 25 key 69 i 

PF 10 key 4A J PF 26 key 6A j 

PF 11 key 4B K PF 27 key 6B k 

PF 12 key 4C L PF 28 key 6C 1 

PF 13 key 4D M PF 29 key 6D m 

PF 14 key 4E N PF 30 key 6E n 

PF 15 key 4F 0 PF 31 key 6F 0 

PF 16 key 50 p PF 32 key 70 p 

Screen 
HELP key 30 0 damage 3F '! 

alert 

Note: for remote workstations, X' 00' = Power on (for workstation types 
2246R, 2246S, and 2246C), X'Ol' =Disconnect (2246R only), X'02' = Connect 
(2246R only) , X' 3F' = Power on (2246P only) , and X' 3F' = I/0 error (all 
others). 

9-18 



9. 6 WORKSTATION I/0 STATUS WORD 

For a general discussion of the IOSW, refer to Chapter 8. The general 
status bits and error status bits of the IOSW are set on an interruption as 
described in the following subsections. 

9.6.1 General Status Byte 

IOSW 
Bit Mnemonic 

0 IRQ 

1 NC 

2 EC 

3 u 

4 PC 

5-6 

7 

9.6.2 Error Status Byte 

IOSW 
Bit Mnemonic 

8 IC 

9 MPE 

10 MAE 

11 DM 

12 DAM 

Meaning 

Never set. 

Set on normal completion. 

Set on completion with error. 

Set on power-on or on pressing of ENTER, PROGRAM 
FUNCTION, or HELP key. NC and EC never set along 
with this bit. 

Set only in conjunction with NC, EC, or U. 

Reserved (always 0). 

Reserved for software use. 

Meaning 

Set to indicate invalid command byte in IOCW, IOCW 
not fullword aligned, Indirect Address list not 
fullword aligned, or data area not fullword 
aligned. EC always set when IC is set. 

Set on occurrence of main memory parity error 
reading of IOCA, Indirect Address list, 
data. EC always set when MPE is set. 

\ 

during 
IOCW or 

Set on occurrence of main memory addressing error 
during reading of IOCW, Indirect Address list, or 
data. EC always set when MAE is set. 

Set on timeout during reading or writing of screen 
buffer in response to an I/0 command. EC always set 
when DM is set. 

Set when device RAM parity error or power-off occurs 
on a serial workstation during an I/0 operation. 
Never set for parallel workstations. 

9-19 



IOSW 
Bit 

13 

14 

15 

Mnemonic 

IL 

pp 

DP 

Meaning 

Set if IOCW specifies a data length less than 4, or 
if an operation attempts to read or write beyond the 
end of the screen. (In the latter case, the 
operation is terminated rather than suppressed.) EC 
always set when IL is set. 

Set when microprogram loading for a programmable IOP 
(data link processor) is required. 

Set when a serial programmable workstation (type 
2246R, 22465, or 2246C) is powered off, or when an 
internal RAM parity error occurs. This error 
condition indicates that device processor 
microprogram reloading is required. 

If both PP and DP are set , loading of a device 
configuration table for a progranunable 1/0 processor 
is required. 

9.6.3 Device-Dependent Bits 

The workstation uses both additional status bytes of the IOSW. They are 
always stored on an interrupt. 

IOSW 
Bit 

16-23 

24 

25 

Mnemonic 

OR 

Meaning 

The current AID character. This byte indicates 
whether the keyboard was locked by the last 
completed I/0 operation, or it indicates what PF key 
was last struck. Refer to Table 9-6. 

The AID character is X'20' if the operation is a 
WRITE which has unlocked a previously locked 
keyboard, X'21' if the operation is a WRITE which 
has locked a previously unlocked keyboard. If the 
operation did not change the locked/unlocked status, 
the AID character is the last AID character set by 
workstation interaction (computer conununication key, 
power-on, or error). 

Order check. This indicates that the row or colwnn 
addresses specified in the order area are invalid or 
that the IOCW data count was less than 14 for WRITE 
TABS. '!be row specified in the order area is not 
between 1 and 24, or the colwnn is not from 0 to 80, 
or more than 10 tabs were requested. The screen or 
tab settings may have been modified. 

Set if any data was transferred to memory by this 
command. This bit is set on normal completion of a 
READ ALTERED command only. 

9-20 



Workstation Powered-on Indication and Screen Damage Alert 

When the parallel workstation (2246P) is powered on, an unsolicited 
interruption becomes pending with X'3F' ('?') in the first additional status 
byte of the IOSW (AID character position). This indicates that the screen 
contents, tab positions, and other previous workstation status have been lost 
and that the workstation screen has been filled with X'SC' bytes (default 
field attribute characters). In addition, the keyboard is locked and tab 
positions are cleared. 

In the event of an I/0 error resulting in completion with bi ts MPE or DM 
set (in conjunction with bit EC), X'3F' (''?') is stored in the first 
additional status byte (AID byte) of the IOSW. 

When the serial programmable workstation (22468) is powered on, an 
unsolicited interruption becomes pending with the programmable device status 
stored in the second extended status byte of the IOSW. The corresponding 
microprogram should be loaded by the CPU and restarted before normal I/0 
operations can be attempted. 

9.7 EXAMPLE OF COMPUTER CONVERSATION WITH A WORKSTATION 

When the operator powers on the workstation, an attention interrupt is 
generated. The system then issues a WRITE. The data transmitted to the 
workstation formats the screen into fields and displays the information 
telling the operator what data to insert into the fields. This WRITE has the 
wee set to unlock the keyboard after the WRITE. After this WRITE is finished, 
the computer does not need to communicate with the workstation until the 
operator has signaled that data entry is finished and the system may read the 
data. When the operator has finished entering data, he presses the ENTER key 
(or one of the other communication keys). This causes an interrupt and locks 
the data entry keys, program function keys, and ENTER key. At any time after 
this interrupt the program can issue a READ to the workstation. After the 
READ has finished, the program processes the data read and prepares new 
messages and a new screen format, which are sent to the workstation with a 
WRITE. The WCC has the bit set to unlock the keyboard. The above sequence of 
operations can be repeated until all needed data has been supplied to both the 
operator and the computer. 

9-21 



CHAPTER 10 
WANG PRINTER CHARACTERISTICS 

10.1 INTRODUCTION 

A number of line printers are available as optional peripherals on the 
Wang VS system. More than one printer may be attached to a system, the only 
restriction being on the total number of attached devices. Characteristics of 
the various printer models are shown in Table 10-1. 

Table 10-1. Characteristics of Printer Models 

Char. Lines Chars. 
Set per per 

Model Speed Type 0 Channels Expand Inch Line 

2221V 200 cps Matrix 96 1,5 Yes 6 132 

2231V-2 120 cps Matrix 96 1,5 Yes 6 132 

2273V-1 250 lpm Band 64/96 1,5 No 6/8 132/158 

5521 200 cps Matrix 96 1.5 Yes 6 132 

5531-2 120 cps Matrix 112 1,5 Yes 6/8 132 

5570 600 lpm Line 64 1-12 No 6/8 132 

5571 430 lpm Line 96 1-12 No 6/8 132 

5573 250 lpm Band 64/96 1,5 No 6/8 132/158 

5574 600 lpm Band 64/96 1-12 No 6/8 132 

6581W 30 cps Daisy 86 1,5 No 3,4,6,8 132/158 

6581WC 30 cps Daisy 86 1,5 No 3,4,6,8 180/216 

10-1 



10.2 PRINTER IOCW AND I/0 COMMANDS 

Program control of the printer is always by means of an I/0 Command Word 
(IOCW) specifying the functions to be performed. The printer IOCW is 
diagrammed in Figure 10-1. For a general discussion of the IOCW, refer to 
Chapter 8. The first byte of the IOCW contains the I/0 command and the 
coomand modifier bits. These are as follows: 

CCMM MMMM 

where CC is the command, and MM MMMM are the command modifier bi ts. 
10-1 summarizes the IOCW as discussed in the following subsections of 
10.2. 

10.2.1 WRITE Command 

Figure 
section 

The command for the printer is a WRITE command, with command code of 
binary 10. Bit 7 (last modifier bit) of the command byte is set to 0 to 
request uppercase printing, and to 1 to print lowercase letters. The other 
modifier bits are ignored. 

10.2.2 Data Count and Data Area 

The data count field in the IOCW can have values between 6 and 2048, 
inclusive. A data count of less than 6 or greater than 2048 results in the 
command's being suppressed with error and incorrect length indications. The 
data area as addressed by the IOCW is as follows: 

I I I 
BL Data record I var Data record 

~--~-------'-' ~'--~-----------
0 2 

where BL is the total area (block) length in binary, including the BL bytes. 
'!be 2-byte field BL must contain the same value as the IOCW data count field, 
or the command is suppressed with error and incorrect length indications. 
Each data record is as follows: 

RL Compressed record 

0 2 var 

where RL is the compressed record length in binary, including the RL bytes. 

10-2 



Field Command code 
Bit 0 
Di_g_it 1 2 

Command code 
80 = WRITE 

7 
Data address 

8 
345678 

Data address 
Physical address 
in main memory 

31 
Data count field 

32 
9 10 11 12 

Data count field 
Number of bytes 
to be transferred 

Data Area (in main memo ) Pointed to b Printer IOCW Code 
BL Data record Data record I Data Record 

RL Compressed 
record 

CL I data I CL I data I CL I data I CL I data 

0 = Compress Length Print 
control 
b tes 

1 

1 = No compress of string 

Control Bytes 
two data bytes) 

Bit Meanin 
0 Line or channel spacing select 

0 = Space lines as specified 
in the second byte 

1 = Skip to the channel specified 
in the second byte 

1 0 = Space before printing 
1 = Space after printing 

2 0 = Nonnal width characters 
1 Double width characters 

3 1 = Activate hardware alarm 

4-7 
0 

11-17 

Reserved 
Reserved 

Binary number of lines to 
space (0-127), or Channel 
for ski (1-12) 

Figure 10-1. Printer IOCW Format 

10-3 

Actual 
data 
strin 

47 



The compressed record, which includes print control bytes, is in the 
format produced by the COMP instruction. When expanded, it must be not less 
than two bytes in length or the command is terminated with error and incorrect 
length indications. (Lengths greater than the form width result in 
right-truncation on some printer models.) A compressed record is as follows: 

I I I I 
I CL data I var CL data 

~'~-=--~~I'~'~~~~o 1 

where CL indicates a compression length byte as for the COMPRESS STRING 
instruction, and is followed by one· or more data bytes. If a data area 
extends beyond the end of the record as determined by length RL, the command 
is terminated with error and incorrect length indications. 

10.2.3 Print Control Bytes 

The bits of the control bytes are set to specify all control operations 
for each printer WRITE. The first two (expanded) data bytes of a record are 
print control bytes, defined as indicated in Table 10-2. 

Control 

Byte Bit 

0 0 

1 

2 

3 

4-7 

1 0 

1-7 

Table 10-2. Printer Control Codes 

Function 

Line or channel spacing select: 
O = Space number of lines specified in 

second control byte 
1 = Skip to the channel specified in the 

second byte 

0 = Space before printing 
1 = Space after printing 

0 = Normal width characters 
1 = Double width characters 

1 = Activate hardware alarm 

Reserved 

Reserved 

Binary number of lines to space (0-127) , or 
channel for skip (1-12) 

10-4 



The control bytes are designed for all printers. 
restrictions apply to the currently available printers: 

Suppress spacing (space 0) is valid. 

The following 

Only skips to channel 1 (top of form) and channel 5 (vertical tab) 
are valid for the current matrix and daisy printers. 

Inteimixed pre-spacing and post-spacing produce correct results. 

Invalid control bytes cause an automatic single space after print. 

A valid WRITE colDIDand causes preprint controls, as well as character 
width setting and hardware alarm status, to be interpreted and executed by the 
printer. 

Nonprintable characters print as backslashes (\) or blanks, depending 
upon the printers. 

Successive bytes from the character area are sent to the printer buffer 
and the IOCW count is decremented until it reaches 0, at which time the 
operation normally is completed. 

10.3 PRINTER I/0 STATUS WORD 

When applicable, an "out-of-paper," "ribbon-out," "cover-open," or 
"deselect" condition is reported as an interruption if an operation is 
attempted on a printer that has only the intervention required (IRQ) bit set. 
The operation is halted at the beginning of the next line of printing or 
spacing. When the printer is again successfully selected, the operation 
continues normally. Parallel printers also report a "power-off" condition as 
an Intervention Required (IRQ) interrupt. But for serial printers (denoted by 
a final letter S in their model numbers) , a "power-of£" condition is reported 
as an error completion, with power-off status stored in the extended status 
byte 2. lhe microprogram must then be reloaded before normal I/0 operation 
can be resumed. 

For both parallel and serial printers, part or all of a line or block of 
lines may be lost if a power-off condition occurs during an I/0 operation. 

10-5 



'!be general status bits and error status bits of the IOSW are set on an 
interrupt as described in the following subsections. 

10.3.1 General Status Byte 

IOSW 
Bit 

0 

1 

2 

3 

4 

5 

6-7 

Mnemonic 

IRQ 

NC 

EC 

u 

PC 

DAR 

10.3.2 Error Status Byte 

IOSW 
Bit Mnemonic 

8 IC 

9 MPE 

10 MAE 

11-12 DM,DAM 

13 IL 

Meaning 

Set on device-deselect, ribbon-out, cover-open, or 
out-of-paper condition only; thus, only while a 
WRITE is outstanding. NC or EC never set with IRQ 
(see preceding discussion). PC may be set with IRQ. 

Set on normal completion (see next section). 

Set on completion with error. NC and EC never set 
together. 

Set when a serial.printer is powered on. 

Set only in conjunction with IRQ, NC, or EC. 

Set for some printers on programmable I/0 processors 
in advance of the completion interruption for a 
WRITE operation. Indicates that the main memory 
data area containing the block of records to be 
printed will not be re-accessed and may be reused or 
erased by the central processor program. No other 
status bits are set with DAR. 

Reserved (always 0) 

Meaning 

Set to indicate invalid command byte in IOCW, IOCW 
not fullword aligned, or data area not fullword 
aligned. EC always set when IC is set. 

Set on occurrence of main memory parity error during 
reading of IOCA, IOCW, or data. EC always set when 
MPE is set. 

Set on occurrence of main memory addressing error 
during reading of IOCW or data. EC always set when 
MAE is set. 

Never set. 

Set if IOCW specifies an invalid data count, if the 
IOCW data count is exhausted before end of block is 
reached, or if a record length byte is invalid. 

10-6 



IOSW 
Bit 

14 

15 

Mnemonic 

pp 

DP 

Meaning 

Set when microprogram loading for a programmable IOP 
(data link processor) is required. 

Set when the serial programmable workstation is 
powered off or an intemal RAM parity error occurs. 
This error condition indicates that device processor 
microprogram reloading is required. 

If both PP and DP are set, loading of a device 
configuration table for a programmable I/0 processor 
is required. 

10.3.3 Device-Dependent and Residual Count Bytes 

The IOSW device-dependent status 
IOSW) contains a count of the number of 
(including completion after HIO). 'lb.e 
residual count for the operation, in bytes. 

10.3.4 HALT I/O to Printer 

field (third and fourth bytes of the 
lines printed on any completion 
fifth and sixth bytes contain the 

The printers accept HALT I/0 (HIO) instructions as defined in Chapter 
7. If condition code 1 results from an HIO instruction, a completion 
interruption (bit NC of the IOSW set) will become pending when the printer has 
been cleared of any outstanding operation and of any pending interruptions. 

10-7 



CHAPTER 11 
WANG DISK FACILITY CHARACTERISTICS 

11.1 INTRODUCTION 

'!be VS provides several different disk IOPs to support the various disk 
drives available. The 22V02 IOP supports a 2270V diskette drive and up to 
three 2260V 10-megabyte disk drives, or three 2260V 10-megabyte disk drives. 
'lbe 22V08 IOP supports up to four 2265V-l, 226SV-2, 2280V-1, 2280V-2, or 
2280V-3 disk drives. 

'!be 2260V has a fixed and a removable platter, while the 226SV-1 and 
2265V-2 both have a removable-only multiplatter disk pack. 'Ihe 2270V has only 
a removable platter. The 2280V-1, 2280V-2, and 2280V-3 each have a lSM-byte 
removable platter, with the remarnrng storage area fixed. Disk drive 
specifications are summarized in Table 11-1. 

Table 11-1. Characteristics of Disk Drive Models 

Disk 2260V 2265V-1 2265V-2 2270V 2280V-1 2280V-2 2280V-3 

Removable platter/pack Platter Pack Pack Platter Platter Platter Platter 
Tracks per cylinder 4 5 19 1 1+1 1 +3 l+S 
Cylinders 408 823 823 77 823 823 823 
Sector size (in bytes) 256 2048 2048 2S6 2048 2048 2048 
Sectors per track 24 9 9 16 9 9 9 
Total storage (in millions 

of bytes) 10.03 7S.8S 288.22 .3154 30.34 60.68 91 .02 
Seek average (in ms) 38 30 30 424 30 30 30 
Seek max (in ms) 130 SS SS 847 55 SS 5S 
Seek min (in ms) 9 6 6 11 6 6 6 
Full rotation time (in ms) 25 16.66 16.66 167 16.66 16.66 16.66 
Data transfer rate 

(in bytes/sec) 312K 1.2M 1 .2M 31K 1.2M 1.2M 1. 2M 

11-1 



The 2260V disk drive consists of two disk platters, one permanently 
fixed and the other removable. Each platter has two disk surfaces. The 
capacity of each platter is approximately 5.01 million bytes of data, 
formatted into two surfaces of 408 tracks each. A cylinder consists of all 
tracks that have a coomon access-arm position and that can be addressed 
without moving the access arm. 

The 2265V-l and V-2 facilities consist of one removable disk pack 
containing 5 usable recording surfaces (for the V,;,..l) or 19 usable recording 
surfaces (for the V-2). One access arm controls the positioning on all 
surfaces. Each recording surface is formatted into 823 tracks, with each 
track divided into 9 sectors containing 2048 bytes of data apiece. 

The 2270V diskette drive consists of one diskette and one access at10. 
Only one surface of the diskette contains data. In order to minimize wear on 
the diskette, the IOP unloads the access arm after a period of inactivity 
lasting longer than O. 6 second. There is a 30- to 50-ms delay associated 
with the loading of the head. The total capacity of the diskette is 315,392 
bytes, formatted into 77 tracks of 16 sectors each. Each sector contains 256 
bytes of data. 

The 2280V-l, V-2, and V-3 disk units consist of one removable platter 
and one (V-1) , two (V-2) , or three (V-3) fixed platters. The removable 
platter contains one usable recording surface. The fixed platters have one 
(V-1), three (V-2), or five (V-3) usable recording ~urfaces. One access arm 
controls the positioning on all surfaces. Bach surface is formatted into 823 
tracks of 9 sectors apiece, each sector containing 2048 bytes of data. 

The addressing scheme for the 2260V provides relative sector addressing 
of 256-byte sectors for these units. The last three bytes of the IOCW contain 
the sector address. The first of these three bytes must be 0 or the command 
will be rejected with an indication of invalid command and invalid disk 
address. Both surfaces of a platter are used for recording. On track 0, the 
lower surface contains sectors 0 through 23; the upper surface contains 
sectors 24 through 47. The lower surface of Track 1 contains sectors 48 
through 71; the upper surface contains sectors 72 through 95, etc. 

The 2270V provides the same addressing scheme except that only one 
surface is used for recording and each track contains 16 sectors. Sectors 0 
through 15 are in track O; sectors 16 through 31 are in track 1, etc. 

The addressing scheme for the 226SV-1, 2265V-2, 2280V-l, 2280V-2, and 
2280V-3 provides relative sector addressing of 2048-byte sectors for these 
uni ts. The last three bytes of the IOCW contain the sec tor address times 8. 
(Tilus the lowest three bits must be Os.) Each surface contains nine 2048-byte 
sectors. On the 2265V-1, 45 consecutive sectors can be addressed without 
access-arm movement. On the 2265V-2, 171 sectors can be addressed without 
access-arm movement. 

The platter to be used is specified in the modifier bits of the conunand 
code of the IOCW. These bits are ignored for the 2265V-l, 2265V-2, and 2270V 
facilities. 

11-2 



The number of sectors to be transferred should not be greater than the 
number of sectors in a cylinder. Head select change is accomplished during 
the intersector time. This permits a full track of data to be transferred in 
one rotation, and a full cylinder of data in a minimum number of rotations. A 
mul tisector transfer need not start or end on a track boundary and may span 
more than one track of a cylinder. If the starting sector and data count 
imply a cylinder change, the coomand will be rejected with an indication of 
invalid coDIDand and invalid data count. 

11.2 DISK IOCW AND I/O COMMANDS 

I/0 commands to the disk consist of a command, command modifier bits, a 
memory address, a data count, and a disk address (device-dependent section). 

The I/0 Command Word (IOCW) is discussed in Chapter 8. 
of the IOCW contains the 1/0 command and the command modifier 
are as follows: 

The first byte 
bits. These 

CCCMMMMM 

where CCC is the command and MMMMM are the command modifier bits. Valid 
commands are listed in Table 11-2. 

Table 11-2. Valid I/0 Commands 

COD1Dand Code Command Function 

OlOX XXXX READ disk sector(s) 
lOOX XXXX WRITE disk sector(s) 
101X XXXX WRITE VERIFY 
llOX XXXX SEEK 
lllX XXXX FORMAT 

If the command byte is not as defined, the command will be rejected with an 
indication of invalid command. 

The command modifier bits are presented in the following listing. 

Command Modifier Bit 

oxooo 

Modifier Function 

Read/Write diagnostics for 2265V-1, 2265V-2, 
2280V-l, 2280V-2, and 2280V-3. When this bit is 
set, the data transfer is limited to one sector 
only. Indirect data addressing is not allowed. 
When this bit is set on a READ command, the eight 
bytes of ECC code associated with the specified 
sector are transferred into memory immediately 
following the data. The total data transferred is 
(2048 + 8) bytes. ECC error recovery is suppressed. 

11-3 

• 



Coamand Modifier Bit 

oxooo 
(continued) 

ooxoo 

oooxo 

oooox 

Modifier Function 

When this bit is set with a WRITE command, 2048 
bytes of memory, starting from the address specified 
in the IOCW, are transferred to the disk sec tor as 
data, as in a normal READ command. However, instead 
of generating an ECC code for the sector, the disk 
hardware uses the next 8 bytes of memory as its ECC 
code and writes these into the sector. ECC error 
recovery is suppressed. 

Suppress retry. When this bit is set, any automatic 
retry procedures normally initiated by the device 
are bypassed. All error conditions are reported 
immediately as irrecoverable errors (IOSW bit EC 
set, bit NC not set). 

Indirect data addressing. When this bit is set, the 
data address portion of the IOCW addresses an 
Indirect Address list as described in Chapter 8. 
For disk devices, the address contained in the first 
entry of the Indirect Address list is required to 
have 11 low-order Os (2048-byte alignment) . 

Removable platter operation. When this bit is on, 
the I/0 command disk address refers to the removable 
platter. Otherwise the conunand is for the fixed 
platter. (Ignored for the 2265V-1, 226SV-2, and 
2270V facilities.) 

For data transfer operations, the data count field of the IOCW specifies 
the number of bytes to be transferred between the disk and memory. This 
number must be divisible by the sector size (256 or 2048) , or the command will 
be rejected with an indication of "invalid data count." The sector address 
field of the IOCW specifies the starting sector on the disk to which the 
command pertains. As for all I/0, the memory address must be fullword 
aligned. If indirect data addressing is specified, the memory data area (as 
addressed by the first word of the Indirect Address list) must be 256-byte 
aligned for the 2260V and 2270V, and 2048-byte aligned for the 226SV-1, 
2265V-2, 2280V-l, 2280V-2, and 2280V-3. If these conditions are not met, the 
command will be rejected with an indication of "invalid command." 

11.2.1 READ Coounand 

Execution of a READ command results in the positioning of the access 
mechanism and the transfer of information from the disk into memory. On all 
READ commands, the access mechanism is positioned at the specified sector 
within the specified cylinder. On all READ commands, the disk verifies (using 
the cyclic redundancy checks attached to each sector) that the data as read is 
valid. Also, it verifies that the sector(s) read are those requested, by 
comparing the sector address identification with the specified sector of the 
READ command. 

11-4 



If any error is detected, the I/0 device will initiate the appropriate 
retry procedures. If retry is successful, normal processing is continued. In 
this case, the error is reported at the end of the I/0 sequence by means of an 
IOSW (status word) with both NC and EC bits set. The appropriate status bits 
are set in the IOSW to describe the error. 

If an irrecoverable error occurs (i.e., if all retry attempts have 
failed) , then as much data as possible is transferred to memory and the error 
is reported as irrecoverable by means of the IOSW. 

The READ command allows any number of sectors on a cylindei; to be read 
by one command. 

11.2.2 WRITE and WRITE (VERIFY) Commands 

Execution of a WRITE command results in transfer of information from 
memory to the disk. On all WRITE commands, the access mechanism is positioned 
to the specified cylinder and sector within the cylinder. As the WRITE 
operation is performed, a Cyclic Redundancy Check (CRC) for parity is computed 
by the disk controller and appended to the sector record. For the WRITE 
(VERIFY) command on the 2260V or 2270V, the contents of the sectors as written 
on the disk are validated by a reading of all the data written and a 
comparison of that data with the data as it is found in memory. The sector 
addresses and the CRC are also verified. On the 2265V-l, 2265V-2, 2280V-1, 
2280V-2, and 2280V-3, the ECC is recalculated and checked; comparison of data 
with memory does not occur. This form of the WRITE command requires a second 
revolution of the disk mechanism. If an error is found during data 
verification and retry attempts fail, the residual data count in the stored 
IOSW indicates the sector in error. lbis residual count is decremented each 
time a sector is successfully verified. Thus an error on the first sector 
written would result in a residual count equal to the original data count; an 
error on the second sector written would result in a residual count equal to 
the original count minus 256 or 2048, and so forth. 

If any error occurs during a WRITE command, retry procedures are 
automatically instituted as for READ. If retry is successful, the operation 
is reported back through the IOSW with both Normal Completion (NC) and Error 
Completion (EC) bits set. As with READ, in cases of hard (irrecoverable) 
errors the disk operation is terminated and must be restarted by another SIO 
operation, if desired. 

The WRITE command allows any number of sectors on a cylinder to be 
written. 

11.3 DISK CONTROL COMMANDS 

11. 3 .1 SEEK 

Execution of a SEEK disk address command results in a positioning of the 
disk access mechanism. The block count field and the memory address field of 
the IOCW are ignored. No validity checking of the actual disk mechanism 
position occurs during this command. The SEEK operation is automatic on READ, 
WRITE, and FORMAT commands. 

11-5 



11.3.2 FORMAT 

The FORMAT coounand will cause the addressed sectors to be formatted with 
sector preambles. The data in the sectors after successful execution of the 
command is unpredictable. 

The FORMAT command allows any number of sectors on a cylinder to be • 
formatted. 

11.4 DISK 1/0 STATUS WORD 

The IOSW is presented in Chapter 8. 
status bits of the IOSW are set on 
following subsections. 

The general status bits and error 
an interruption as described in the 

11.4.1 General Status Byte 

IOSW 
Bit 

0 

1 

2 

3 

4 

5-6 

7 

11.4.2 Error 

IOSW 
Bit 

8 

Mnemonic 

IRQ 

NC 

EC 

u 

PC 

Status Byte 

Mnemonic 

IC 

Meaning 

Set only when an "intervention required" condition 
is detected at the start of an operation. Not set 
when "Not Ready During Operation" device status is 
set. EC is always set when IRQ is set. 

Set on successful completion, with 
retries. 

or without 

Set when any error status 
condition corrected by retry. 
a retry is successful. 

bit is set, even if 
NC and EC both set if 

Set whenever device becomes ready after 
button at the device is pressed. NC, EC, or 
also be set. 

Set only with NC, EC, or U. 

Reserved (always 0). 

Reserved for software use. 

Meaning 

the RUN 
PC may 

Set to indicate invalid command byte in IOCW, IOCW 
not fullword aligned, Indirect Address list not 
fullword aligned, or data not properly aligned 
(fullword for non-indirect-addressing operation, and 
256-byte for indirect-addressing operation). EC 
always set if IC is set. 

11-6 



IOSW 
Bit 

9 

10 

11 

12 

13 

14-15 

Mnemonic 

MPE 

MAE 

DM 

DAM 

IL 

Meaning 

Set on occurrence of main memory parity error during 
reading of IOCA, IOCW, Indirect Address list, or 
data. EC always set if MPE is set. 

Set on occurrence of 
during reading of IOCW, 
data, or writing data. 

main memory addressing error 
Indirect Address list, or 

EC always set if MAE is set. 

Set if and only if one or more of the following 
conditions is indicated in the device-dependent 
status bytes: 

Sector overrun 
SEEK incomplete 
Not ready during operation 
Timeout on sector 
Data compare error 
Invalid sector ID 
Invalid CRC or ECC check 
Overrun 
Short sector. 

Set whenever command tenninated with error (EC set; 
NC not set) after main memory or data on disk has 
been modified. 

Never set. 

Reserved (always 0). 

11.4.3 Device-Dependent Bits 

In addition to the general device status bits, the following extended 
status bits or device-dependent section in the IOSW refers to specific disk 
and/or controller states. These bits are discussed in detail below. 

IOSW 
Bit Mnemonic 

16 

17 

18 

19 

20 IDA 

21 IDC 

Meaning 

Sector reformatted on WRITE retry 

Sector leader skipped on READ retry (except 2260V 
and 2270V) 

ECC transferred (except 2260V and 2270V) 

Reserved 

1 = Invalid disk address 

1 = Invalid data count 

11-7 



IOSW 
Bit 

Mnemonic 

22 so 

23 SI 

24 WP 

25 NRO 

26 ST 

27 DC 

28 !ID 

29 CRC 

30 0 

31 ISP 

32-47 

Invalid Disk Address 

Meaning 

1 = Sector overrun 

1 = SEEK incomplete 

1 = Write protect 

1 = Not ready during operation 

1 = Timeout on sector 

1 = Data compare error 

1 = Invalid sector ID 

1 = Invalid CRC or ECC 

1 = Overrun 

1 = Short sector 

Residual data count 

This bit is set to 1 when the starting sector address points to a 
nonexistent cylinder, a condition that also causes the error completion bit 
and the invalid command bit to be set to 1. 

Invalid Data Count 

This bit is set to 1 for the following conditions: 

Data count is not a multiple of the sector size. 

Data count is greater than the number of data bytes in a cylinder. 

Data count implies a cylinder change. 

Data count is not equal to the number of data bytes in a track 
surface for the FORMAT command. 

Data count is 0. 

'11l.ese conditions cause the error completion bit and the invalid conunand bit to 
be set to 1. 

11-8 



Sector Overrun 

This bit is set to 1 when a sector in a multiple sector operation 
requires an additional rotation for transfer to or from main memory. The 
operation is retried starting at the "missed" sector. The condition may be 
caused by insufficient intersector gap time due to a defective disk pack or 
incorrect disk drive alignment. 

SEEK Incomplete 

This bit is set to 1 if the disk was unable to complete a SEEK due to a 
malfunction. Whenever this situation arises, the access arms are placed at 
cylinder 0 and the SEEK is retried. This bit is not set by the 2270V. 

Write Protect 

This bit is set to 1 only for the 2270V on all conunands when the 
diskette is write protected. The setting of this bit on a WRITE command 
causes the error completion bit and the invalid command bit to be set to 1. 

Not Ready During Operation 

This bit is set to 1 whenever a disk becomes not ready during an 
operation. The setting of this bit causes DEVICE MALFUNCTION to be set and a 
later DEVICE NOW READY to be reported. 

Timeout on Sector 

This bit is set to 1 
complete than a sector's 
command is not retried. 

Data Compare Error 

whenever a sector operation 
time. Device malfunction is 

takes longer to 
indicated and the 

This bit is set to 1 whenever the controller detects a data mismatch 
during the verify part of a WRITE VERIFY command. 

Invalid Sector ID 

This bit is set to 1 if at the start of an operation the controller 
finds that the sector identifier bytes are not as expected. When this 
situation arises, the access anus are placed at cylinder 0 and the command is 
retried. 

Invalid CRC or ECC Check 

This bit is set during a read operation if the CRC or ECC calculated 
during the operation is not the same as the CRC or ECC written on the disk. 

Overrun 

This 
with the 
operation. 

bit is set if memory service is not provided fast enough to keep up 
disk data transfer (rotation) speed during a read or write 

Data transfer stops as soon as this condition is detected. 

11-9 



Short Sector 

'Ibis bit is set to 1 when the controller detects the end of a sector 
before the operation for that sector has come to an end. The most likely 
cause of this error is lack of formatting. 

Retry Indicator Byte 

IOSW 
Bit Value 

48-51 = 0 

= 1 

= 2 

= 3 

= 4 

= 5 

= 6 

= 7 

= 8 

= 9 

52-55 = n 

Meaning 

No special adjustment 

Data strobe early adjustment applied during retry 

Data strobe late adjustment applied during retry 

Servo offset minus adjustment applied during retry 

Servo offset plus adjustment applied during retry 

Data strobe early and servo offset minus adjustments 
applied during retry 

Data strobe late and servo offset minus adjustments 
applied during retry 

Data strobe early and servo offset plus adjustments 
applied during retry 

Data strobe late and servo offset plus adjustments 
applied during retry 

BCC applied on READ retry 

Number of retries (n) for the above adjustments 
before terminating 

For all disks except 2260V and 2270V, whenever an error is detected that 
is reflected in the device-dependent status and that is not a specification 
error (invalid disk address or invalid data count) , the retry count (bits 
52-55) is updated. After four retries of a particular type, the retry 
indicators (bits 48-51) are updated, the retry count is zeroed, and the next 
type of retry is attempted. 

For the 2260V and 2270V, the retry indicators (bi ts 48-55) will be 
updated after up to 16 retries, with no special adjustment for both READ and 
WRITE operations. 

11-10 



Diskette Drive Indicator Bits 

IOSW 
Bit 

56 
60 

Value 

= 1 
= 1 

Meaning 

Diskette write protected 
Soft-sectored medium 

61 = 1 Double-sided medium (valid only for soft-sectored 
diskettes) 

11.4.4 Disk Unsolicited Interruptions 

When a disk drive first becomes ready (i.e., after a disk 
mounted), an unsolicited "device now readied" interruption 
generated. 

platter 
request 

The disk IOPs do not support Halt 1/0. If this command is 
received, a condition code of 0 is returned if the 
specified device is idle. If an operation is in progress 
or an interruption is pending, a condition code of 1 is 
returned and disk processing continues until the operation 
completes. 

11-11 

is 
is 



CHAPTER 12 
WANG MAGNETIC TAPE CHARACTERISTICS 

12.1 INI'RODUCTION 

The Wang 2209V-1, 2209V-2, and 2209V-3 magnetic tape drives are optional 
features of the Wang VS. More than one tape drive may be attached to a 
system, restricted only by the total number of attached devices. 'Ihe 2209V-l 
is a 9-track 1/2-inch (13-mm) tape transport and controller that records at 
1600 bits per inch (bpi) (phase encoded). The 2209V-2 is a 9-track 1/2-inch 
tape transport and controller that records at 1600 bpi (phase encoded) and 800 
bpi (NRZI). The 2209V-3 is a 7-track 1/2-inch tape transport which records at 
800 bpi (NRZI). 'lbe tape drives and controllers are compatible with industry 
standards. 

The magnetic tape is designed to facilitate infonnation interchange 
between the Wang VS and other computer systems. 

12.2 MAGNETIC TAPE GENERAL DESCRIPTION 

12.2.1 Track Allocation 

Information is written on tape by magnetizing small discrete positions 
across the width of the tape. the result is a column of bits representing a 
byte of information plus parity. Bit positions do not correspond sequentially 
to track numbers across the tape. Bit positions are allocated as shown in 
Figure 12-1, numbering the tracks from the near edge with the oxide side down 
and with the take-up reel on the right. 

Track number 
Bit position 

9-Track 

1 2 3 4 5 6 7 8 9 
4 6 0 1 2 p 3 7 5 

Figure 12-1. Tape Bit Positions 

7-Track 

1234567 
p 0 1 2 3 4 5 

The 7-track tape bit positions 0-5 correspond to main memory locations 2-7. 

12-1 



12.2.2 Tape Markers 

Magnetic tape must have some blank space at the beginning and end of the 
reel to allow threading it through the feed mechanism of the tape unit. 
Markers called reflective strips are placed on the tape by the operator to 
enable the tape unit to sense the beginning and the end of the usable portion 
of the tape. The tape unit senses a marker either as the load point marker, 
where reading or writing is to begin, or as the end-of-tape marker, 
approximately where writing is to stop. 

12.2.3 Load Point Marker 

At least 10 feet (3 meters) of tape must be allowed between the 
beginning of the reel and the load point marker as a leader for threading the 
tape on the tape unit. To indicate the load point, the marker must be 
parallel to and not more than 1/32 inch (0. 75 mm) from the edge of the tape 
nearest the tape unit. 

12.2.4 End-of-Tape Marker 

About 14 feet (4 meters) of tape are usually reserved between the 
end-of-tape marker and the end of the tape. This space includes at least 10 
feet (3 meters) of leader and 4 feet (1 meter) for the recording of data after 
the end-of-tape marker is sensed. When the tape is mounted, the marker is 
placed parallel to and not more than 1/32 inch (0.75 mm) from the edge of the 
tape nearest the tape unit. The end-of-tape reflective marker indicates the 
beginning of the end-of-tape area. A WRITE or WRITE TAPE MARK operation into 
this area sets the EOT indicator (bit 29 of the IOSW). 

12.2.5 File Protection 

Because the writing operation automatically erases any previous 
information on the tape, a file protection device is provided to prevent 
accidental erasure. A plastic write-enable ring fits in a circular groove 
molded in the back (machine side) of the tape reel. lbis ring must be in 
place to enable the machine to write on the tape in the reel. When the ring 
is removed, only reading can take place; the file is thus protected from 
accidental writing, which could erase valuable information. 

12.2.6 Tape Blocks 

Information on tape is arranged in blocks, as shown in Figure 12-2. A 
tape block consists of one or more records, which are logical units of data. 
Blocks are separated on tape by an interblock gap--a length of blank tape of 
approximately 0.6 inch (15 mm). During writing, the gap is always produced at 
the end of a block. A tape block is therefore defined or marked by an 
interblock gap before and after the, block. 

12-2 



Forward Tape Motion ------> 

1/////1 I I I I I I 1/////1 
I //II 11 IB I L I Cl Logical I Logical I Logical I Logical I IB I///// I 
I //I 111 gap IR I RI data I data I data I data I gap I II II I I 
1/////1 IC I Cl record I record I record I record I 1/////1 

1--------------------one block--------------------1 

12.2.7 Tape Mark 

IB Gap - Interblock gap 
LRC - Longitudinal redundancy check 
CRC - Cyclic redundancy check 

Figure 12-2. Tape Blocks 

'nle end of a file of information is indicated by a tape mark--a special 
block written only by a WRITE TAPE MARK command. The tape mark is a special 
single-byte block with X' 13' (X' OF' for 7-track tape) • One or more files may 
be written on a reel of tape. 

12.2.8 Checking Tape Validity 

'nle validity of information written on or read from tape is insured 
through the use of longitudinal, vertical, and skew checks; there is also a 
cyclic redundancy check for 9-track tape. The checking of tape information is 
accomplished during a READ operation or during a read check of a WRITE 
operation. 

12. 3 TAPE IOCW AND I/0 COMMANDS 

'nle IOCW is discussed in Chapter 8. I /0 commands to the magnetic tape 
consist of a command, a memory address, and a data count, as shown in Figure 
12-3. 'There is no device-dependent section. 

Command 
(1 byte) 

Memory address 
(3 bytes) 

Data count 
(2 bytes) 

Figure 12-3. Tape IOCW 

'nle first byte of the IOCW contains the I/0 
modifier bits, the indirect data addressing flag, and 
indication flags. 'lbese are as follows: 

CCMMMMIR 

12-3 

command, the command 
the suppress length 



where CC is the coomand, MMMM are the command modifier bits, I is the indirect 
data addressing flag, and R is the reduced retry flag. There are three valid 
commands. 

Command Code 

01 
10 
11 

Command Function 

READ 
WRITE 
CONTROL 

If the reduced retry flag is set for a READ command, the number of 
attempts to read a tape block before reporting a hard error will be reduced 
from 100 to 5. 

If the indirect data addressing (IDA) bit is set, the address of the 
memory storage from which or into which data is to be transferred will be 
fetched from the IDA list addressed by the memory address portion of the IOCW. 

If the IDA bit is not set, the memory address portion of the IOCW 
directly addresses a memory area from which or into which data is to be 
transferred. This area of memory must be word aligned. The data count 
portion of the IOCW contains the number of bytes to be transferred. 

12.3.1 READ 

A valid READ command causes the selected tape unit to 
the next interblock gap. Information recorded on the tape 
in contiguous ascending locations in main memory, starting 
specified in the IOCW. If no data is detected on 
approximately 7 seconds after the command is issued, 
terminated and the incorrect length bit is set in the IOSW. 

move forward to 
is read and placed 
with the address 

the tape within 
the operation is 

Reading a tape mark sets the TM indicator (bit 28 of the IOSW) • The 
tape mark is not sent to storage. Sensing the EOT reflective marker during 
the read operation does not cause any status to be indicated. 

12.3.2 WRITE 

A val id WRITE command causes the tape unit to move the tape forward , 
writing data fetched from main memory, starting with the address specified in 
the IOCW. The number of bytes to be transferred is specified in the data 
count field. These bytes are written in the fonn of a single physical record 
(a block) with vertical, longitudinal, and cyclic redundancy checks for parity 
applied where appropriate. Sensing the EQT reflective marker during a WRITE 
operation sets the EOT indicator in the IOSW. 

12-4 



12.4 TAPE CONTROL COMMANDS 

The control operations, specified by the modifier bits of the conunand 
code, involve no data transfer. With the exceptions of SENSE, SET DENSITY, 
and SET PARITY, they are tape motion commands. A control command ignores the 
memory address and the data count fields of the IOCW. The command modifier 
bits correspond to the functions listed in Table 12-1. 

Table 12-1. Tape Control Modifier Bits 

Conunand 
Modifier Bits 

0000 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

CoDUDand Control Function 

SENSE 
ERASE TAPE 
WRITE TAPE MARK 
FORWARD SPACE BLOCK 
FORWARD SPACE FILE 
REWIND 
REWIND/UNLOAD 
BACKSPACE BLOCK 
BACKSPACE FILE 
SET DENSITY to 1600 bpi (phase encoded) 
SET DENSITY to 800 bpi (NRZI) 
SET PARITY to odd (7-track only) 
SET PARITY to even (7-track only) 

A valid control conunand causes the specified control function to be 
control function, a normal completion executed. At the end of the 

interruption is issued. 

12.4.1 ERASE TAPE 

Execution of an ERASE TAPE command causes the tape drive to erase 
approximately 3.75 inches (9.5 cm) of tape. Performing this operation in the 
EOT area sets the EOT indicator in the IOSW. 

12.4.2 REWIND 

Execution of a REWIND control command causes the tape drive to enter 
rewind mode and reposition the tape at the LP reflective marker. This causes 
the LP indicator to be set in the IOSW. 

12.4.3 REWIND AND UNLOAD 

Execution of a REWIND/UNLOAD control command causes the tape drive to 
enter rewind mode, reposition the tape at the LP reflective marker, and reset 
the tape status to of£ line. 

12-5 



12.4.4 WRITE TAPE MARK 

Execution of the WRITE TAPE MARK command causes the tape drive to write 
a tape mark (a special block) on tape. Performing this operation in the BOT 
area sets the EOT indicator in the IOSW. 

12.4.5 FORWARD SPACE BLOCK 

Execution of the FORWARD SPACE BLOCK command causes the tape drive to 
move the tape forward to the next interblock gap. Sensing a tape mark sets 
the TM indicator in the IOSW. 

12.4.6 FORWARD SPACE FILE 

Execution of the FORWARD SPACE FILE command causes the tape drive to 
move the tape forward to the interblock gap beyond the next tape mark. 
Sensing the tape mark does not cause the TM indicator to be set in the IOSW. 

12.4.7 BACKSPACE BLOCK 

Execution of the BACKSPACE BLOCK coounand causes the tape drive to move 
the tape backward to the nearest interblock gap or to the load point, 
whichever comes first. Sensing a tape mark sets the TM indicator in the 
IOSW. Sensing the load point before the backspace operation sets the LP 
indicator in the IOSW with Error Completion (EC). 

12.4.8 BACKSPACE FILE 

Execution of the BACKSPACE FILE corwnand causes the tape drive to move 
the tape backward to the interblock gap beyond the next tape mark or to the 
load point, whichever comes first. Sensing the load point sets the LP 
indicator in the IOSW. Sensing the tape mark does not cause the 'IM indicator 
in the IOSW to be set. 

12.4.9 SENSE 

Execution of the SENSE command causes the current status of the tape 
drive to be stored in the IOSW. 

12.4.10 SET DENSITY 

Execution of the SET DENSITY command causes the tape drive to be 
logically switched to the indicated density. The IOSW indicates the change in 
the density status bits. 'The change does not become effective until an I/0 
operation is initiated, at which point the wrong density status bit appears in 
the IOSW if the selected density is unavailable. This command is valid for 
9-track drives only, and effective only for dual-density drives. 

12.4.11 SET PARITY 

Execution of the SET PARITY command causes the tape drive to be 
logically switched to the selected parity. The IOSW indicates the change in 
the parity status bit. This command is valid for 7-track drives only. 

12-6 



12.4.12 Effect of Tape Markers on IOSW Bits 

The following tape markers, when encountered by the specified operation, 
set the LP, TM, EC, and EOT bits if those bits are listed in the corresponding 
row and column. 

Load Point Tape Mark End-of-Tape 
Tape Operation Mark (LP) (TM) Mark (EOT) 

WRITE EOT 
READ TM 
REWIND LP 
REWIND/UNLOAD 
WRITE TAPE MARK EQT 
FORWARD SPACE BLOCK TM 
FORWARD SPACE FILE 
BACKSPACE BLOCK LP (EC) TM 
BACKSPACE FILE LP 

Programming Note: Tape drives have no interlocking to prevent the execution 
of improper sequences of WRITE and READ operations that may result in writing 
partial blocks on tape. Avoiding these improper sequences is a program 
responsibility. 

12.5 TAPE I/0 STATIJS WORD 

The I/0 Status Word (IOSW) is discussed in Chapter 8. A full IOSW is 
always stored on tape I/O completion. The error status byte is stored even if 
the completion is not an error completion (bit EC of general status not set) • 

When a tape is manually loaded and reaches load point, an unsolicited 
interruption occurs with general status bit U (unsolicited interruption) set. 
IOSW bits LP (load point) and/or FP (file protected) may be set. 

12.5.1 General Status Byte 

IOSW 
Bit 

0 

1 

2 

3 

4 

5-7 

Mnemonic 

IRQ 

NC 

EC 

u 

PC 

Meaning 

Never set. 

Set on successful completion with or without retries. 

Set when any error status bit is set, even if the 
condition has been corrected by retry. NC and EC 
are both set when a retry is successful. 

Set whenever the device becomes ready after the 
ONLINE button at the device is pressed. NC, EC, or 
PC may also be set. 

IOP now ready; may be set alone or with NC, EC, or U. 

Reserved (always 0). 

12-7 



12.5.2 Error Status Byte 

IOSW 
Bit 

8 

9 

10 

11 

12 

13 

14-15 

Mnemonic 

IC 

MPE 

MAE 

DM 

DAM 

IL 

Meaning 

Set, with EC, to indicate an invalid command byte in 
IOCW for any of the following reasons: IOCW not 
fullword aligned, Indirect Address list not fullword 
aligned or at an invalid address, or data not 
properly aligned (i.e., not fullword aligned for 
non-indirect-addressing operation or for first entry 
in Indirect Address list, or not 2048-byte aligned 
for subsequent entries in Indirect Address list); 
attempt made to select parity on a 9-track drive; 
attempt made to issue diagnostic commands except on 
a 9-track NRZI drive, or to use data length over 
32,768; attempt made to backspace when tape is at 
load point, or to write, write tape mark, or erase 
tape when tape is write protected; attempt made to 
specify a maximum size READ operation of less than 8 
bytes, or a maximum size WRITE operation of less 
than 12 bytes. 

Set in conjunction with EC 
memory parity error reading 
Address List, or data. 

on occurrence of main 
IOCA, IOCW, Indirect 

Set in conjunction with EC on occurrence of main 
memory addressing error reading IOCW, Indirect 
Address List or data, or writing data. 

Set if one or more of the following conditions exist: 

Memory addressing error 
Memory parity error 
Memory overrun 
CRC or ECC error 
LRC error 
VRC error 
Parity error 
Tape drive not ready during operation 
Tape drive of£ line during operation 
Given density not available at tape drive 

Set whenever command terminated with error (EC set; 
NC not set) after main memory or data on disk has 
been modified. 

Set if the size of a block read from tape is not the 
same as the data count in the IOCW. If the IOCW 
residual count is O, the block was longer than 
expected; if not, it reflects the difference between 
the data count and the block length. 

Reserved (always 0). 

12-8 



12.5.3 Device-Dependent Bits 

The extended status portion of the IOSW provides a number of bi ts to 
reflect the status of each I/0 operation. This extended status consists of 
both the unusual conditions detected in the I/0 operation and the status of 
the device. 

IOSW 
Bit Mnemonic 

16 VRC 

17 LRC 

18 CRC 

19 SC 

20 WD 

21 PE 

22 TR7 

23 PAR 

24 FP 

25-26 Density 

27 LP 

28 TM 

29 EQT 

30 0 

31 OFF 

32-47 

48-55 

Meaning 

1 = Invalid vertical redundancy check 

1 = Invalid longitudinal redundancy check 

1 = Invalid cyclic redundancy check 

1 = Skew check on WRITE 

1 = Wrong density (density not available) 

1 = Phase-encoded ID burst detected 

1 = 7-track tape drive 

0 = Odd parity; 1 = Even parity 

1 = File protected 

00 = 1600 bpi (phase encoded) 
10 = 800 bpi (NRZI) 

1 = Load point encountered 

1 = Tape mark encountered 

1 = End-of-Tape marker encountered 

1 = Overrun 

1 = Tape off line 

Residual data count bytes 

Error count bits 

These bits are discussed in detail in the following subsections. 

Invalid Vertical Redundancy Check (VRC) 

This bit is set during a READ operation if the VRC stored for a byte 
does not give that byte odd parity on the tape. 

12-9 



Invalid Longitudinal Redundancy Check (LRC) 

This bit is set during a READ operation if the number of 1 bits in a 
track for the tape block including the LRC bit is not even. 

Invalid Cyclic Redundancy Check (CRC) 

This bit is set during a READ operation if the CRC character calculated 
during the operation is not the same as the CRC character written after the 
block on the tape. 

Skew Check 

This bit is set during a WRITE operation if excessive skew is detected. 

Wrong Density 

This bit indicates that an I/0 operation has been attempted at a density 
not supported by the tape formatter. 

Phase-Encoded ID Burst Detected 

This bit indicates that a phase-encoded ID burst has been detected 
during the reading of the tape from load point. 

7-Track Tape Drive 

This bit indicates that the tape drive is a 7-track drive. 

Parity 

This bit is set when even parity has been selected. 

File Protected 

This bit is set whenever there is no "write-enable" ring on the tape. 
Absence of this ring prevents accidental writing on the tape. 

Density 

These bits indicate the density at which the tape drive has been set. 

Load Point 

This bit is set whenever the tape is at load point when the operation is 
completed. 

Tape Mark Indicator 

This bit is set whenever a tape mark has been read during a READ, 
forward space block, or backspace block operation. 

12-10 



End-of-Tape Indicator 

This bit is set whenever the EOT reflective strip has been detected 
during a WRITE or WRITE TAPE MARK operation. 

Overrun 

This bit is set if memory service is not provided fast enough to keep up 
with the magnetic tape data transfer speed during a READ or WRITE operation. 
Data transfer stops as soon as this condition is detected. 

Off Line 

This bit is set when the tape is sensed to be off line during an 
operation. 

Error Cooot 

When an error is detected (as indicated in the following extended status 
bits), the error count is incremented by 1 and the operation is retried. For 
a WRITE operation, a maximtun of 50 retries of the following sequence will be 
attempted upon the detection of an error: the tape will be backspaced over 
the block just written, then an ERASE operation will be initiated to erase 
over 3.75 inches (9.5 cm) of tape, and the WRITE operation retried. For a 
READ operation, a maximtun of 100 retries (5 retries if bit R is set in IOCW) 
of the following sequence is attempted: the tape is backspaced over the block 
just read, and the READ operation is retried. 

12-11 



This manual is updated by: Addendum 800-11 OOP0-04.01 

APPENDIX A 
OPERATION CODE AND ASCII CHARACTER LIST 

Op Code Mnemonic Format Character Op Code Mnemonic Format Character 

00 RR 2B SDR, SER RR + 
01 BCS RR 2C MDR, MER RR 
02 SIO RR 2D DDR, DER RR 
03 HIO RR 2E CID RR 
04 RTC RR 2F CDI RR I 
05 BALR RR 30 0 
06 BCTR RR 31 1 
07 BCR RR 32 2 
08 POP RR 33 3 
09 POPH RR 34 4 
OA SVC RR 35 5 
OB PUSH RR 36 6 
oc CIO RR 37 7 
OD SPM RR 38 8 
OE MVCL RR 39 9 
OF CLCL RR 3A AQR RR 
10 LPR RR 3B SQR RR . 

' 11 LNR RR 3C MQR RR < 
12 LTR RR 3D DQR RR = 
13 LCR RR 3E > 
14 NR RR 3F 'l 
15 CLR RR 40 STH RX @ 

16 OR RR 41 LA RX A 
17 XR RR 42 STC RX B 
18 LR RR 43 IC RX c 
19 CR RR 44 EX RX D 
lA AR RR 45 BAL RX E 
lB SR RR 46 BCT RX F 
lC MR RR 47 BC RX G 
lD DR RR 48 LH RX H 
lE ALR RR 49 CH RX I 
lF SLR RR 4A AH RX J 
20 LPDR, LPER RR (Space) 48 SH RX K 
21 LNDR, LNER RR 4C MH RX L 
22 LTDR, LTER RR II 4D LT RX M 
23 LCDR, LCER RR II 4E CVD RX N 
24 HDR, HER RR $ 4F CVB RX 0 
25 LDER, LRER RR % 50 ST RX p 
26 RPG RR & 51 DSEM RX Q 
27 svcx RR 52 ENQ RX R 
28 LDR, LER RR ( 53 ENSK RX s 
29 CDR, CER RR ) 54 N RX T 
2A ADR, AER RR * 55 CL RX u 

A-1 



This manual is updated by: Addendum 800-11 OOP0-04.01 

Op Code Mnemonic Format Character Op Code Mnemonic Format Character 

56 0 RX v 86 BHX RS 
57 x RX w 87 BXLE RS 
58 L RX x 88 SRL RS 
59 c RX y 89 SRL RS 
SA A RX z 8A SRA RS 
SB s RX [ BB SLA RS 
SC M RX (Backslash) 8C SRDL RS 
SD D RX ] 8D SRDL RS 
SE AL RX (Up-Arrow) BE SRDA RS 
SF SL RX (Back-Arrow 8F SLDA RS 

or underscore) 
60 STD, STE RX 90 STM RS 
61 JSCI RX a 91 TM SI 
62 LC RX b 92 MVI SI 
63 c 93 
64 d 94 NI SI 
65 RBCX BRL e 95 CLI SI 
66 RBXH RRL f 96 OI SI 
67 RBXLE RRL g 97 XI SI 
68 LD, LE RX h 98 LM RS 
69 CD, CE RX i 99 BALCI RS 
6A AD, AB RX j 9A 
6B SD, SE RX k 9B Extended opcodes 

(see list below) 
6C MD, ME RX 1 9C BSET SI 
6D DD, DE RX m 9D BRESET SI 
6E AW, AU RX n 9E BTEST SI 
6F 0 9F RRCB SI 
70 p AO DEQ RS 
71 RLA RL q Al DESK RS 
72 RPUSHA RL r A2 ISEM RS 
73 RBALS RL s A3 LPTO, LSCTL RS 
74 t A4 LPTl, STSCTL RS 
75 RBAL RL u AS LPT2 RS 
76 RBCT RL v A6 POPM RS 
77 RBC RL w A7 LPPT RS 
78 x A8 LOT RX 
79 y A9 PUSHM RS 
7A AQ RX z AA 
7B SQ RX AB Reserved for 

diagnostic use 
7C MQ RX AC STNSM RS 
7D DQ RX AD STOSM RS 
7E CVQ RX AE SPFI' RS 
7F CVP RX AF 
80 BO PU SHA RX 
81 BALS RX Bl LPA RX 
82 LPCW s B2 
83 B3 
84 POPN RX B4 
85 PUSHN RX BS 

A-2 



Op Code Mnemonic 

86 STCTL 
87 LCTL 
88 SCAN 
89 
BA 
BB 
BC 
BD CLM 
BE STCM 
BF ICM 
co 
Cl 
C2 
C3 
C4 PAL 
cs 
C6 
C7 MTQ 
CB 
C9 
CA 
CB 
cc 
CD 
CE 
CF 
DO 
Dl MVN 

D2 MVC 
D3 MVZ 
D4 NC 
DS CLC 
D6 oc 
D7 xc 
D8 POPC 
D9 PUSHC 
DA 
DB UNPAL 
DC TR 
DD TR'r 
DE ED 
DF EDMK 
EO 
El 
E2 MVPC 
E3 
E4 
ES CLPC 

Format Character 

RS 
RS 
RS 

RS 
RS 
RS 

SS 

SS 

SS 

SS 
SS 
SS 
SS 
SS 
SS 
SS 
SS 

SS 
SS 
SS 
SS 
SS 

SSI 

SSI 

A-3 

Op Code Mnemonic Format Character 

E6 
E7 
E8 
E9 
EA 
EB 
EC 
ED 
EE 
EF 
FO 
Fl 
F2 
F3 
F4 
FS 
F6 
F7 
F8 
F9 
FA 
FB 
FC 
FD 
FE 
FF 

SRP 
MVO 
PACK 
UNPK 
UNPU 

COMP 
XPAND 
ZAP 
CP 
AP 
SP 
MP 
DP 

SS 
SS 
SS 
SS 
SS 

SS 
SS 
SS 
SS 
SS 
SS 
SS 
SS 

Extended Opcodes 

9800 STDD S 
9801 LSREG S 
9802 STSREG S 
9B03-987F Unused 
9880 STCPID 
9B81-9BFF Unused 



APPENDIX B 
GLOSSARY 

Address 
The location of a byte in main memory. 
Displacement (Offset). 

See also Base Address and 

Address Translation 

ASCII 

Translation of virtual addresses supplied by a program to addresses in 
main memory. Address translation is done by reference to the local page 
table. 

American National Standard Code for Information Interchange. The VS 
uses ASCII for its intenial character code. 

Base Address 

Bit 

An absolute address in storage, contained in a general register. If 
general register 0 is used, a base address of 0 is assumed. 

A binary digit; the smallest unit of computer information, presented in 
binary form to correspond to the on or off state of a computer memory 
element. 

Boundary Alignment 

Byte 

The positioning of a field on an integral boundary (such that the 
address of the first byte of the field, as expressed in binary, has one 
or more low-order Os) . Boundary alignment is required for halfwords, 
words, and doublewords on the VS. Instructions must be on halfword 
boundaries. 

On the VS, a sequence of eight bits that constitutes the smallest 
addressable or transferable unit of information. 

Change Bit 
The change bit is tunied on by hardware whenever the associated page in 
real storage is modified. 

Condition Code 
A 2-bit field in the PCW that is set by certain arithmetic and logical 
instructions and tested by conditional branching instructions. The 
condition code remains unchanged in the PCW until an instruction changes 
it. The meaning of the code is described for each instruction in 
Chapter 7 of this manual. 

B-1 



Control Mode 
A state of the computer system in which normal program execution is 
halted and special facilities for diagnostics, restart, and debugging 
are made available. 

Control Register 
Eight registers, holding 32 bits each, that contain a stack limit word, 
a stack limit address, the system clock, and various controls for trap 
handling. 

Data Count Field 
Bi ts 32-4 7 of the IOCW for a READ or WRITE command, specifying the 
number of bytes to be transmitted between an IO device and storage. 

Device-Dependent Status Area 
Bits 16-31 of the IO Status Word. 

Displacement (Offset) 
The relative address of a byte beyond the base register address. 

Doubleword 
On the VS, a sequence of eight bytes aligned on an 8-byte boundary. 

Error Status Byte 
The second byte of the IOSW, where relatively device-independent error 
indications may be stored. 

Extended Status Bits 
Bits 48-63 (bytes 6 and 7, counting from byte 0) of the IO Status Word. 

Floating-Point Register 
Used to contain data that is to be manipulated in floating-point format. 
The VS has four floating-point registers, each 64 bi ts in length, and 
numbered O, 2, 4, and 6. 

General Register 
On the VS, holds 32 bits or one word 
logical manipulations and addressing. 

High-Order 

and is used for arithmetic and 
The VS has 16 general registers. 

The leftmost bit or digit; in reference to bytes, the byte at the lowest 
main memory address. 

Index Register 
The general register containing a 24-bi t number used as the index in 
base-index-displacement address calculations. The index can be used to 
provide the address of an element within a list or an array. 

Indirect Address List 
A list of words containing addresses which designate the main memory 
location of data areas for an I/0 operation. An Indirect Address list 
is used to expedite the transfer of more than one page of data at a time. 

Interrupt or Interruption 
A transfer of control effected by switching PCWs. 

B-2 



This manual is updated by: Addendum 800-11 OOP0-04.01 

I/0 Command Address (IOCA) 
Tile address of the I/O Conunand Word (IOCW) to be executed for a device. 
The I/0 Command Area reserves two bytes for the IOCA for each device. 

I/0 Command Word (IOCW) 
A variable-length area (1 to 8 bytes) that specifies the next command to 
be executed for a device. Byte 0 holds the command code. Bytes 1-3 
hold a data address or beginning address of an indirect address list; 
bytes 4-5 hold the data count (number of bytes to be operated on or 
transferred); bytes 6 to end may hold additional device-dependent 
information. 

Input/Output Processor (IOP) 
On the VS, a small computing unit that handles 
between main storage and peripheral units, 
processing unit of this slower function. 

the transfer of data 
relieving the central 

I/0 Status Word (IOSW) 
Eight bytes of data, stored at main memory location O, that pass 
information concerning the status of an I/0 device to the central 
processing unit. Byte 0 is the general status byte. Byte 1 is the 
error status byte, stored if the error completion bit is set to 1 in the 
general status byte. Bytes 2-3 are the device-dependent bytes; bytes 
4-5 hold the residual byte count. Bytes 2-6 (bits 16-55) are sometimes 
referred to as the extended status bits for disk and tape. 

Least Significant 
The rightmost bit or digit. 

Local Page Frame Table 
In local memory, a table with two bits for each page frame of main 
memory. 

Local Page Table 
In local memory, a table consisting of 
segment, containing the physical page number 
main memory. There is one local page 
segments of virtual memory. These tables 
processor in translating virtual memory 
addresses. 

Low-Order 

one byte for each page in a 
of that page when it is in 
table for each of the three 
are used by the central 
addresses to main memory 

The rightmost bit or digit; the byte at the lowest main memory address. 

Main Memory 
Real or physical memory in the CPU. 

Masking 
1. Use of the program mask field in the PCW to suppress or delay 
processing of interruptions so that only one at a time is processed and 

1
. 

the link back to the current instruction address is saved. 2. Use of 
instructions to turn off a mask bit in the PCW's status field or program 
mask field corresponding to a program interruption for a specific state •. 
Masking an interruption can allow other interrupt messages with lower 
priority to be handled first. 

B-3 



This manual is updated by: Addendum 800-11 OOP0-04.01 

Monitor Area 
An area of local CP memory that maintains a list of recently referenced 
T-RAM entries. 

Most Significant 
The leftmost bit or digit. 

Operand 
A field of an instruction that defines an address or element of data on 
which the instruction operates. 

Operation Code (Op Code) 

Page 

The field of an instruction that specifies the operation to be performed. 

On the VS, a 2048-byte block of 
auxiliary storage, which can be 
automatically by the computer. 

virtual memory located in main or 
transferred between the two 

Page Frame 
An area of main memory that has a 2048-byte boundary alignment. 

Parity 
The nwnber of ls in a unit of data, whether odd or even. Parity checks 
ensure that a bit has not been changed accidentally while being read. 

Program Control Word (PCW) 
A data item of 8 bytes maintained by the central processor to control 
the order in which instructions are executed and to maintain the status 
of the central processor. Byte 0 holds the interruption code, bytes 1-3 
hold the address of the current instruction, bytes 4-5 are the status 
field for some causes of interruption, and bytes 6 and 7 are the program 
mask field. 

Privileged Instruction 
One that will cause a program interruption unless the user mode bit (bit 
34) in the PCW has been set to O. Some VS privileged instructions are 
CIO, HIO, LCTL, LPTO, LPTl, LPT2, LPCW, LSREG, STNSM, STOSM, RRCB, SIO, 
STDD, STSREG, and SVCX. 

Reference Bit 
The reference bit is turned on by hardware whenever the associated page 
in real storage is referred to. 

Register 
A storage device in the central processor. See also General Register, 
Control Register, and Floating Point Register. 

Residual Byte Count 
Bits 32-47 of the IOSW, the data count in an IOCW minus the number of 
bytes transferred by an IO operation. 

Sector 
That part of a track on a disk that can fit into a page (2K bytes). 

B-4 



This manual is updated by: Addendum 800-11 OOP0-04.01 

Segment 
An area of contiguous virtual addresses beginning on a 1,048,576-byte 
boundary, whose address translation is effected through a single local 
page table. A segment may consist of more than one page, with only 
portions of a segment being within main memory at any time. 

Segment Control Register (SCR) 
A privileged 32-bit register holding the address of a task's main memory 
page table for a segment. 

Semaphore 

Stack 

On the VS, a doubleword data type consisting of a 1-byte count field and 
head and tail pointers to elements of a first-in first-out list. 

A line or list of elements in a pushdown storage device that handles 
data so that the next item to be retrieved is the one that has been most 
recently stored. The system stack on the VS is addressed by register 15. 

Stack Limit Word 
The address of the lowest byte location into which the stack may extend. 

Stack Pointer 
Contains the address of the current stack top. See also Stack Vector. 

Stack Vector 

Trap 

Holds a stack pointer and a stack limit word. On the VS, the system 
stack vector consists of general register 15 and control register 2. A 
program may use any two consecutive general registers (except the pair 
15 and 0) as an additional stack vector. 

An unprogrammed conditional transfer of control to a specified address. 

Translation RAM (T-RAM) 
A local page table, i.e. , an area of local CP memory holding page frame 
numbers for the loaded portion of a task's virtual address space. 

Virtual Memory or Virtual Storage 

wee 

Word 

An address space that does not correspond to the physical main memory 
addressing of the computer (and may be larger than the main memory 
available) , a portion of which is mapped onto main memory in page size 
blocks (2K). 'Ibis storage space may be used as addressable main memory 
by the user, as the computer handles all paging in and out of main 
memory automatically. 

Write Control Character for the VS workstation, the second byte of every 
WRITE command to the workstation. It controls locking, the alarm, the 
cursor, scrolling of the screen, and erasing. 

On the VS, a sequence of 4 bytes, aligned on a 4-byte boundary. 

B-5 



Type 

New Features 

Documentation 
Changes 

This manual is updated by: Addendum 800-11 OOP0-04.01 

DOCUMENT HISTORY 

4TH EDITION OF VS PRINCIPLES OF OPERATION 

Description 

Index 

Glossary 

New tables and figures: 

• Data representation and 
boundary alig0ment 

• Sample PCW 
• Sample IOCW 
• Sample IOSW 
• Workstation IOCW 
• Printer IOCW 

SSI instructions format 

More on the CIO instruction 

Tape general status byte 
and error status byte 

Chapters 6 and 8 reversed 

Chapters 9-12 reorganized to follow 
format of the new Chapter 8 

'!he section on debugging aids 
moved from Chapter 3 to Chapter 5. 
'!he debugging aids have been 
completely redesigned. 

Section 3.1 on instruction formats 
reorganized 

'!be pages on the EDIT instruction 
reorganized 

"Stack pointer" substituted for 
"stack top word" 

Changes in instruction formats for: 

• CLPC 
• POPC 
• PUSHC 

DH-1 

Pages 

INDEX-1 

B-1 

3-5 
4-2 

8-4.5 
8-10 
9-6 

10-3 

3-4 

8-13 

12-7 

5-8 

3-1 

7-53 

3-16 

7-38 
7-119 
7-126 



This manual is updated by: Addendum 800-11 OOP0-04.01 

Type 

Documentation 
Changes 
(continued) 

Description 

'!be Physical Destination Trap has been 
removed. 

A special 32-bit internal register, 
accessible only by the (privileged) 
instructions LSREG, STSREG, and STDD, 
has been created. 

Instructions deleted: 

• BFBV 
• FIX 
• STS 
• UNFIX 

Instructions modified: 

• CID 
• STDD 

New instructions: 

• CLCL 
• LSREG 
• LOT 
• LPPT 
• MTQ 
• MVCL 
• RPC 
• SCAN 
.. STSREG 
• STCPID 

COMPARE LOGICAL LONG 
LOAD SPECIAL REGISTER 
LOAD OR TRAP 
LOAD PARTIAL PAGE TABLE 
MODIFY TIMER QUEUE 
MOVE CHARACTERS LONG 
RETURN AND POP ON CONDITION 
SCAN FOR BYTE 
STORE SPECIAL REGISTER 
STORE CP AND MICROCODE ID 

Short floating-point instructions (new): 

• AE, AER ADD NORMALIZED 
• AU ADD UNNORMALIZED 
,, CE, CER COMPARE 
• DE, DER DIVIDE 
• HER HALVE 
• LCER LOAD COMPLEMENT 
• LDER LOAD SHORT TO LONG 
• LE, LER LOAD 
• LNER LOAD NEGATIVE 
• LPER LOAD POSITIVE 
• LRER LOAD ROUNDED 
• LTER LOAD AND TEST 

DH-2 

Pages 

7-98 

7-44 
7-155 

7-36 
7-98 
7-89 
7-91 

7-178 
7-100 
7-130 
7-134 
7-160 
7-154 

7-7 
7-9 

7-29 
7-49 
7-69 
7-83 
7-97 
7-87 
7-88 
7-95 
7-96 
7-80 



This manual is updated by: Addendum 800-11OOP0-04.01 

fype Description Pages 

Documentation • ME, MER MULTIPLY 7-108 
Changes • SE, SER SUBTRACT NORMALIZED 7-165 
(continued) • STE STORE 7-157 

Relative addressing version 
of existing instructions: 

• RBAL BRANCH AND LINK 7-15 
. RBALS BRANCH AND LINK STACK 7-18 
• RBC BRANCH CONDITIONAL 7-19 
• RBCT BRANCH ON COUNT 7-24 
• RBCX BRANCH CONDITIONAL INDEXED 7-21 
. RBXH BRANCH INDEX HIGH 7-25 
• RBXLE BRANCH INDEX LOW OR EQUAL 1-21 
• RLA LOAD ADDRESS 7-78 
• RPUSHA PUSH ADDRESS 7-125 

DH-3 



This manual is updated by: Addendum 800-11OOP0-04.01 

INDEX 

A (ADD) Instruction ........................................................ 
Absolute Address, see Direct Addressing 
Access Exceptions ......................................................... 
AD (ADD NORMALIZED (FLOATING-POINT)) Instruction 
Address Modification ..................................................... 

7-2 

5-5 
7-7 

4-13 
Address Translation 
Addressing ••••••••• 
Addressing Exception 

•••••••••••••••••.• 4-7, 5-11 
••••••••••••••••.••• 2-5, 4-4 

2-5, 5-11 
ADR (ADD NORMALIZED REGISTER (FLOATING-POINT)) Instruction •••••••••••••••• 7-7 
AE (ADD NORMALIZED (FLOATING-POINT)) Instruction ••••••••••••••••••.••••••• 
AER (ADD NORMALIZED REGISTER (FLOATING-POINT)) Instruction •••••••••••••••• 
AH (ADD HALFWORD) Instruction ............................................. 
AID Characters 9-18, 
AL (ADD LOGICAL) Instruction ••••••••••••• 
Alarm for Workstation •••••••••••••••••••• 
Alignment, see Boundary Alignment 

7-7 
7-7 
7-5 

9-21 
7-6 
9-5 

ALR (ADD LOGICAL REGISTER) Instruction .................................... 7-6 
7-3 

7-4.1 
7-4.1 

AP (ADD DECIMAL) Instruction •••••••••••••••••••••••••••••••••••••••••••••• 
AQ (ADD DECIMAL (FLOATING-POINT)) Instruction •••••••••••••••••••••. 
AQR (ADD DECIMAL REGISTER (FLOATING-POINT)) Instruction •••••••••••• 
AR (ADD REGISTER) Instruction 
Arithmetic and Logical Unit 

1-2 
2-3 

ASCII ............................................................... 3-9, 3-14 
AU (ADD UNNORMALIZED (FLOATING-POINT)) Instruction 
AW (ADD UNNORMALIZED (FLOATING-POINT)) Instruction 

. . . . . . . . . . . . . . . . . . . . . . . . 7-9 

. . . . . . . . . . . . . . . . . . . . . . . . 7-9 

BA (Bus Adapter) 1-4, 8-2 
BAL (BRANCH AND LINK) Instruction •••••••••••••••••••••••••••••••••••••••• 7-15 
BALCI (BRANCH AND LINK ON CONDITION INDIRECT) 
BALR (BRANCH AND LINK REGISTER) Instruction 
BALS (BRANCH AND LINK STACK) Instruction 

Instruction •••••••••••••••• 7-16 .............................. 
Base Address 
BC (BRANCH ON CONDITION) Instruction 
BCR (BRANCH ON CONDITION REGISTER) Instruction ••••••••••••••••••••••••••• 

7-15 
7-17 

4-5 
7-19 
7-19 

BCS (BRANCH ON CONDITION STACK) Instruction 
BCT (BRANCH ON COUNI') Instruction ••••••••••••• 
BCTR (BRANCH ON COUNT REGISTER) Instruction 

. . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22 
. . . . . . . . . . . . . . . . . . . . . . . 7-23 

Binary Arithmetic 
7-23 

3-5 
Binary Notation ••••••••••••••••••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 
Boundary Alignment 

BP 
of IOCW •••••••• 

(Bus Processor) 

............................................. 2-5, 3-2, 3-14 . .............................. . 8-4.5 
1-2, 8-2 ............................. 

Branching ............................................................... . 4-13 
4-3 Breakpoint Mask ........................................................... 

INDEX-1 



This manual is updated by: Addendum 800-11OOP0-04.01 

BRESET (BIT RESET) Instruction ••••••••••••••••••••••••••••••••••••••••••• 7-12 
BSET (BIT SET) Instruction ~.... • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 7-13 
BTEST (BIT TEST) Instruction • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 7-14 
Bus Adapter, see BA 
Bus Processor, see BP 
BXH (BRANCH ON INDEX HIGH) Instruction ••••••••••••••••••••••••••••••••••• 7-25 
BXLE (BRANCH ON INDEX LOW OR EQUAL) Instruction •••••••••••••••••••.••..•• 7-26 
Byte, Defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 

C (COMPARE) Instruction .................................................. . 
CD (COMPARE (FLOATING-POINT)) Instruction •••••••••. 
CDI (CONVERT FLOATING-POINT TO INTEGER) Instruction ...................... 
CDR (COMPARE REGISTER (FLOATING-POINT)) Instruction •••••••••••••••••••••• 

7-28 
7-29 
7-43 
7-29 

CE (COMPARE (FLOATING-POINT)) Instruction • • • • • • . . . . . • • . • . • • • . . . . . • . • • . . • • 7-29 
Central Processor ••••••••.••••••••••••••••••••••••••••••••••.•••••••. 1-1, 2-1 
CER (COMPARE REGISTER 
CH (COMPARE HALFWORD) 

(FLOATING-POINT)) Instruction •••••••••••••••••••••• 7-29 
Instruction •••••••••••••••••••••••••••••••••••••••• 7-32 

Change Bit in Local Page Frame Table ••••••••••••••••••••••••••• 2-3, 4-12, 6-5 
Cha:cmel Selection for Printer •••••••••••••••••••••••••••••••••••••••••••• 10-4 
Character Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14, 9-2 
Characteristic of a Floating-Point Number •••••••••••••••••••••••••••••••• 
CID (CONVERT INTEGER TO FLOATING-POINT) Instruction •••••••••••••••••.•••• 
CIO (CONTROL I/0) Instruction •••••••••••••••••••••••••••••••••••••• 7-40, 
CL (COMPARE LOGICAL) Inst rue tion ••••••••••••••••••••••••••••••••••••••••• 
CLC (COMPARE LOGICAL CHARACTERS) Instruction ••••••••••••••••••••••••••••• 
CLCL (COMPARE LOGICAL LONG) Instruction •••••••••••••••••••••••••••••••••• 
CLI (COMPARE LOGICAL IMMEDIATE) Instruction ••••••.•••••••••••••.••••••••• 
CLM (COMPARE LOGICAL CHARACTERS UNDER MASK) Instruction •••••••••••••••••• 
Clock Comparator Value 2-2, 2-3, 5-4, 
Clock Interruption ........................................................ . 

3-11 
7-44 
8-13 
7-33 
7-33 
7-36 
7-33 
7-35 

6-2 
5-4 

Clock Interruption Mask in PCW ••••••••••••••••••••••••••••••••••••••• 4-3, 5-4 
Clock Value, see Clock Comparator Value 
Clock Word 
CLPC (COMPARE LOGICAL WITH PAD) Instruction •••••••••••••••••••••••••••••• 
CLR (COMPARE LOGICAL REGISTER) Instruction ................................ 
Command Modifier Bi ts of IOCW •••••••••••••••••••••••••••••••••••••••••••.• 

for disk 
for printer ........................................................... . 
for tape ........................................................ · · · • · · · 

COMP (COMPRESS STRING) Instruction ...................................... . 
Comparator, see Clock 

2-2 
7-38 
7-33 
8-5 

11-3 
10-2 
12-3 
7-39 

Compressed Record • . • • • . • . . • • . • • • . • . • • • • • • • • • . • . • • • • • . • • • . . • • . • . . . • . . . . . . . 10-2 
Condition Codes •••••••••••••••••••••••••••••.••••••••••••• 3-5, 3-7, 3-10, 4-4 
Control Bytes, see Print Control Bytes 
Control Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 4-2, 6-1 to 6-5 
Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 
CP (Central Processor) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • 1-1, 2-1 
CP (COMPARE DECIMAL) Instruction ••••••••••••••••••••••••••••••••••..••.•• 7-31 
CR (COMPARE REGISTER) Instruction ••••••••••••••••••••••••••••••••••.••••• 7-28 
CRC, see Cyclic Redundancy Check 
CRT (Cathode Ray Tube), see Workstation 
Cursor, Defined • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • 9-1, 9-5 

INDEX-2 



This manual is updated by: Addendum 800-11 OOP0-04.01 

Cursor Positioning Keys for Workstation ••••••••••••••••••••••••••••••••••• 9-5 
CVB (CONVERT TO BINARY) Instruction •••••••••••••••••••••••••••••••••••••• 7-41 

7-42 
7-40.1 
7-40.2 

11-S 

CVD (CONVERT TO DECIMAL) Instruction 
CVP (CONVERT DECIMAL (FLOATING-POINT) TO PACKED DECIMAL) 
CVQ (CONVERT PACKED DECIMAL TO DECIMAL (FLOATING-POINT)) 
Cyclic Redundancy Checks for Disk 

Instruction 
Instruction 

for tape 
Cylinder 

............................................................. ............................................................. 12-9 
11-1 

D (DIVIDE) Instruction 
DA (Device Adapter) 

7-48 
1-2, 8-2 

DAM (Memory or Device Damage) Bit in IOSW 
DAR (Data Area Early Release) Bit in IOSW 
DAST (Device Adapter Status Table) •••••• 

•••••••••••••••••••••••• 8-10.1, 8-12 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 

Data Area for Workstation I/0 
Data Count Field of IOCW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4. 5 ' 

for disk ••••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
for printer ........................................................... . 
for tape ........................................................... · · · · 
for workstation 

Data Entry Keys for Workstation ••••••••••••••••••••••••••••••••••••••••••• 
Data Exception 
Data Formats, see Fixed-Point, Floating-Point, Decimal, Logical 
Data Link Processor •••••••••••••••••••••••••••••••••••••••••••••••.•••••• 
Data Strobe Adjustment ................................................... 
DC (Data Compare Error) Bit in Disk IOSW ................................. 
DC (Data Count) ........................................................... 

9-10 
8-14 
11-3 
10-2 
12-3 
9-10 
9-7 
5-7 

8-14 
11-7 
11-8 

8-5 
DCT (Device Configuration Table) 8-2, 8-13 
DD (DIVIDE (FLOATING-POINT)) Instruction ................................. 
DDR (DIVIDE REGISTER (FLOATING-POINT)) Instruction ••••••••••••••••••••••• 
DE (DIVIDE (FLOATING-POINT)) Instruction 

7-49 
7-49 
7-49 

Debugging •••••••••••••••••••• 5-8, 6-4 
Decimal Data .............................................................. 3-7 

5-8 Decimal Divide Exception 
Decimal Floating-Point Numbers 
Decimal Overflow Exception 

............................................. 
3-12.1 

5-1 
Decimal Overflow Mask ..................................................... 4-4 

9-8 DEL (Delete Key) .......................................................... 
Density for Tape, see Recording Density 
DEQ (DEQUEUE) Instruction ................................................ 7-46 
DER (DIVIDE REGISTER (FLOATING-POINT)) 
DESK (DESTACK) Instruction 

Instruction . . . . . . . . . . . . . . . . . . . . . . . 7-49 
. . . . . . . . . . . . . . . . . . . . . . 7-47 

Device Address ••••••••••••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 
8-14 

8-4.S, 8-6 
Device Control Table ..................................................... 
Device-Dependent Status Bytes of IOCW 

for disk 
for printer 
for tape 
for workstation •••••• 
of IOSW ••••••••••••••.••• 

Device Malfunction Bit in IOSW 
Device Processor 

INDEX-3 

. . . . . . . . . . . . . . . . • . 11-7 
10-7 
12-9 

. . . . . . . . . . . . . . 9-9' 9-21 
8-10.1 

• •.•••••••• 8-10.1, 8-12 
8-10.1, 8-14 



This manual is updated by: Addendum 800-11 OOP0-04.01 

Diagnostics, see Memory Diagnostic Commands 
Direct Addressing ~ ....................................................... . 4-7 

11-11 
11-10 

4-5 

Disk Characteristics 11-1 to ................................................................ Diskette 
Displacement .......................................................... 
DM, see Device Malfunction bit 
Doubleword, Defined ....................................................... 
DP, see Device Processor 

2-5 

DP (DIVIDE DECIMAL) Instruction ••••••••••••••••••••••••••. • • • • • • • • c • • • • • • 7-51 
DQ (DIVIDE DECIMAL (FLOATING-POINT)) Instruction ••••••••e••············ 
DQR (DIVIDE DECIMAL REGISTER (FLOATING-POINT)) Instruction ••..•••••••.. 

7-52.1 
7-52.1 

7-48 
7-45 

6-1, 6-5 

DR (DIVIDE REGISTER) Instruction ••••••••••••••••••••••••••••••••••••••••• 
DSEM (DECREMENT AND INSPECT SEMAPHORE) Instruction ••••••••••.••••.••••••• 
Dumps 

EC, see Error Completion Bit 
ECC Code for Disk ........................................................ 
ED (EDIT) Instruction .................................................... 
EDMK (EDIT AND MARK) Instruction •••••• 
End-Of-Tape Marker •••••••••••.••••.••• 

bit in tape IOSW •••••••••••••••••••• 12-7, 
ENQ (ENQUEUE) Instruction ................................................ 
ENSK (ENSTACK) Instruction •••••••••••• 
ENI'ER Key .................................................................. 
EOT, see End of Tape 
ERASE Key ••••••••••••.••••••••••••••••••••••••••••••••••••••••••••••• • ••••• 
Error Completion 

for disk 
for 
for 

printer 
tape 

(EC) Bit in IOSW 8-10.1, 

......................................................... ......................................................... 
for 

Error 
Error 
Error 

workstation ••••••••••••••••••••• 

EX 

..................................................... Cowit for Tape 
Retry, see Retry 
Status Byte of IOSW 

for disk 
for printer 
for tape 
for workstation 

.......................................... 8-10, ...................................................... ...................................................... 

(EXECUTE) Instruction ................................................. 
Exceptions 

11-6 
7-53 
7-60 
12-2 
12-9 
7-61 
7-62 
9-9 

9-8 
8-11 
11-6 
10-6 
12-7 
9-19 
12-9 

8-12 
11-6 
10-6 
12-8 
9-19 
7-65 

access .•••••..•.•••••••••••...••.•.•.••...••.••.•.•..•............•.••.• 
address translation •••••••••••••••••••••••••••••••••.••••••••••••.••••• 

5-5 
S-11 

.•••••• 2-5, 5-7, 5-11 addressing 
data ••••••••••••• 8 •••••••••••••••••••••••••••••••• I e • e e e • • • • 8 e e e e e e e 5-7 
decimal divide 
decimal overflow 
execute •••••.••••••••••••••• 
fetch ...................... . 
fixed-point divide ••••••••• 
fixed-point overflow •••••••••••• 
floating-point •.•••••••••••••••••••• 

.................................... 5-8 
. . . . . . . . . . . . . . . . . . 5-8 
•••••• 11!11 • • • • • • • • • • • 5-6 
. . . . . . . . . . . . . . . . . . 5-5 

. ................................ . . ................................ . 
5-7 
5-7 

. . . . . . . . . . . . . . . . . 3-13 
operation .......................................................... 5-6 

INDEX-4 



This manual is updated by: Addendum 800-11 OOP0-04.01 

page fault ............................................................ . 
page table address fault ••••••••••••• &. •••••••••••••••••••••••••••••• 

5-11 
5-12 

page translation ........................... c • • • • • • • • • • • • • • • • • • • • • • • • • • • 5-11 
privileged operation •••••••••••••••••••••••••••••••••••••••••••••••••••• 5-6 
protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 
SCR recursion • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 4-11, 5-12 
segoient fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 
sigriifican.ce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 
specification • • • • • • • • • • • • • • • • • • • .. • • • • • • • • •.• • • • • • • • • • • • • • • • • 3-12 .1, 5-7 
stack overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 
supervisor call range 

Exponent ........................................................... 5-8 
3-10, 3-13 

Exponent Underflow Mask 
External Decimal Format 

FAC, see Field Attribute Characters 
Fetch Exceptions ............ •, ............................................ . 
Field Attribute Characters 
FIFO, see First-In First-Out List 
File Protected Bit in Tape IOSW ••••••• 
First-In First-Out List ••••••••.•••••••••••••• 
Fixed-Point Data •••••••• 
Fixed-Point Divide Exception 

Instructions 

9-3, 

Fixed-Point 
Fixed-Point Numbers .................................................. 

4-4 
3-9 

S-6 
9-4 

12-9 
3-15 
3-5 
5-7 
3-5 
3-5 

Fixed-Point Overflow Exception •••••••••••••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 
Floating-Point Arithmetic ................................................ 
Floating-Point Data 
Floating-Point Divide Exception •••••••••••••••••••••••••••••••••••• 3-13, 
Floating-Point Instructions •••••••••••••••••••••••••••••••••••••••••••••• 

••••••• « •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Overflow Exception 

3-10 
3-10 
5-13 
3-10 
3-11 
5-12 

short 
Floating-Point 
Floating-Point 
Floating-Point 
Floating-Point 

Registers .................................... 
Sigriificance Exception 
Underflow Exception •••••••••••• 

2-1, 3-11, 6-4 
5-13 

. . .. . . . . . . . . . . . . . . . . . . . . . . . . 5-13 
FORMAT Coounand for Disk •••••• 11-3, 11-6 
FP, see File Protected Bit 
Fraction of a Floating-Point Number ...................................... 3-11 

General Registers 2-1, 6-4 
General Status Byte of IOSW .............................................. 

for disk •••••• . . . , ................. -................................... . 
for printer ......................................................... 
for tape ............................................................... 
for workstation 

Graphics ................................................................. 
displayable graphics 

Guard Digit 
.................................................... 

................. ._ ......................................... . Halfword, Defined 
Hard Error, see Error 
HDR (HALVE (FLOATING-POINT)) Instruction 

INDEX-5 

8-10 
11-6 
10-6 
12-7 
9-19 
3-14 

9-2 
3-11 

2-4 

7-69 



This manual is updated by: Addendum 800-11 OOP0-04.01 

Head Pointer 
HELP Key 
HER (HALVE (FLOATING-POINT)) Instruction 
High-Order, Defined ••••••••••••••••••• 
HIO (HALT I/0) Instruction 
HOME Key 

IAL, see Indirect Address List 
IB, see Interblock Gap 

3-15, 

7-68, 8-8, ............................... 

5-7 
9-9 

7-69 
3-1 

10-7 
9-7 

IC (INSERT CHARACTER) Instruction ........................................ 1-12 
IC, see Invalid Command Bit 
ICM (INSERT CHARACTERS UNDER MASK) Instruction ••••••••••••••••••••••••••• 7-73 
IDA, see Invalid Disk Address and Indirect Data Addressing 
IDC, see Invalid Data Count Bit 
IID, see Invalid Sector ID Bit 
IL, see Incorrect Length Bit 
Immediate Operand 
Incorrect Length Bit in IOSW •••••••••••••. 
Index Register ••••••••••.•. 

8-10.1, 

Indirect Address List •••••••••••••••••••••••••••• 
Indirect Data Addressing ••••••••••••••••••••••••• 

8-6, 

3-2 
8-13 
4-5 

11-4 
8-6 

for disk •••••.•••.••••••••• • ••••••••••• 11-4 
Indirect Data Addressing Flag in IOCW for Tape . . . . . . . . . . . . . . . . . . . . . . 12-3 
Initialization ............................................................ 6-3 

6-3 Input/Output Command Address (IOCA) 
defined •••••••• 
default IOCA 

Input/Output Conunand Table (IOCT) 
Input/Output Command Word (IOCW) 

for microcode •••••••••••••• 
Input/Output Interruptions 
Input/Output Processor, see IOP 
Input/Output Status Word 

for disk •••••.•.•••.•.••• 

. . . . . . . . . . . 8-4. 2 

. . . . . . . . . . . . . 6-3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 .1 

8-1, 8-4.5, 9-9, 10-2, 11-3, 12-3 
• ••••••••••• 8-14 
•••••••• 5-3, 8-8 

••••••••••••••••••• 5-2, 6-3, 8-1, 8-9 
. . . . . . . . . . . . 11-4 

for microcode loading •••••••••••••••••••••••••••••••••• . . . . . . . . . . . . 8-16 
. . . . . . . . . . . . 10-5 
• . . • • . • • • • . . 12-7 

for printer ••••••••.••••••.. 
for tape 
for workstation 

INS, see Insert Key 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19 

•••••••••••••••••• & ••••••••••••••••••••••••••••••••••••••••••••• Insert Key 
Instruction Formats 

9-8 
3-1 

for branching 
Interblock Gap 
Interruption Codes 

of PCW ••••••••••••• 
see also program interruption codes 

Interruption Condition ••••••• 
Interruption Mask •••••••••••• 
Interruptions 
Interruptions 

clock •••••. 
input/output 

INDEX-6 

4-13 
12-3 
4-2 
8-7 

8-8 
5-3 

5-1 to 5-15 

5-4 
5-3 



This manual is updated by: Addendum 800-11OOP0-04.01 

IOP Busy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4. 2, 8-4. 4 
see also SIO and HIO instructions 

IOP Now Ready ••••••••••••••••••••••••••••• • •• • • • • • • • • • • • • • • • • • • • · 8-4.2, 8-8 
machine check ..................................................... · . · · . 5-13 

4-10, 5-11 page fault ....................................................... 
priority of .......................................... · · · · • · • • · · · · · • · • • · 
supervisor cal 1 ....................................................... . 

5-15 
5-13 

INT REQ (Intervention Required Bit of IOSW) .......................... 6-4 t 8-10 
INV DEV (Nonexistent Device Message) 
Invalid CoDUD.and Bit in IOSW •••••••••••••••.••••••••.••••••••.••••..•••••• 
Invalid Data Count Bit in Disk IOSW •••••••.••••••..••••••..•.•••..••.•••• 
Invalid Disk Address Bit in Disk IOSW •••••••••••••••••••••••••••••••••••• 
Invalid Sector ID Bit in Disk IOSW ••••••••••••••••••••••••••••••••••••••• 
Invalid Sector Preamble Bit in Disk IOSW ••••••••••••••••••••••••••.•••••• 

6-3 
8-12 
11-7 
11-7 
11-8 
11-8 

I I 0 Devices .............................................................. . 8-1 
4-3 1/0 Interruption Mask (in PCW) 

I/0 Interruptions, see Input/Output Interruptions 
I/0 Operation, Defined .................................................... . 8-1 
IOCA, see Input/Output Command Address 
IOCT, see Input/Output Command Table 
IOCW, see Input/Output C0111Dand Word 
IOPs • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1-1 , 2-4 
IOP Busy Interruption • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 8-4. 2 

see also SIO and HIO instructions 
IOP Now Ready (PC Bit in IOSW) 
IOP Now Ready Interruption •••••••••••••••••••••••••••••••••••••••••••.•• 
IOPST (IOP Status Table) 
IOSW, see Input/Output Status Word 
IRQ, see INT REQ 
ISEM. (INCREMENT AND INSPECT SEMAPHORE) Instruction •••••••••••••••••••.••• 
ISP, see Invalid Sector Preamble and Short Sector 

JSCI (JUMP TO SUBROurINE ON CONDITION INDIRECT) Instruction 

8-4.2 
8-4.2 

8-4 

7-71 

7-74 

Keyboard •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 9-6 
6-5 Keys, Screen Manipulation 

L (LOAD) Instruction .................................................... . 
Instruction ........................................... . LA (LOAD ADDRESS) 

LC (LOAD CHARACTER) Instruction ......................................... . 
LCDR (LOAD COMPLEMENT (FLOATING-POINT)) Instruction 
LCER (LOAD COMPLEMENT (FLOATING-POINT)) Instruction •••••••••••••••••••••• 

Instruction ....................................... . LCR (LOAD COMPLEMENT) 
LCTL (LOAD CONTROL) Instruction .......................................... . 
LD (LOAD (FLOATING-POINT)) Instruction ••••••••••••••••••••••••••••••••••• 
LDER (LOAD SHORT TO LONG (FLOATING-POINT)) Instruction •••••••••••.•.••••• 
LDR (LOAD REGISTER (FLOATING-POINT)) Ins true tion ••••••••••••••••••••••••• 
LE (LOAD (FLOATING-POINT)) Instruction ••••••••••••••••••••••••••••••••••• 
LER (LOAD REGISTER (FLOATING-POINT)) Instruction ••••••••••••••••••••••••• 
LH (LOAD HALFWORD) Instruction 
LIFO (Last-In First-Out) • • • • • • • • • • • • • • • • • • • • • • a • • • • • • • • • • • • • • • • • • • • • • • • • • 

INDEX-7 

7-76 
7-78 
7-81 
7-83 
7-83 
7-82 
7-84 
1-11 
7-97 
1-11 
1-11 
7-77 
7-85 
3-15 



This manual is updated by: Addendum 800-11OOP0-04.01 

Linked List Instructions • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 3-15 
LM (LOAD MULTIPLE) Instruction • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • . . • • • • • • 7-86 
LNDR (LOAD NEGATIVE (FLOATING-POINT)) Instruction •••••••••••••••••••••••• 7-88 
LNER (LOAD NEGATIVE (FLOATING-POINT)) Instruction •••••.•••••.•.•.•.•.•••• 7-88 
LNR (LOAD NEGATIVE) Instruction • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • . • • • • • • 7-87 
LOAD CoDUDand • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 6-2 , 8-4. 2 
Load Point Marker on Tape .••••••••••••••••••••••••••••••••••••••••.•.•••• 12-2 
Local Memory • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • . • • • • • • • . . • • • • • • • • • • • • • • • • . • • • • 4-10 
Local Page Fra111e Table • • • . • • • . • • • • • • • . • • • • • • • • • . . • . • • • • • . • . • • . . • . • . • . • • . • 4-12 

in Control mode • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • 6-3 
Local Page Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 
LOCK Key on Workstation • • • • • • .. • • • • • • • • • • • • • • • •. • • • • • • • • • • • .. • • • • • • • • • • • • • • • • 9-8 
Logical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13 
Logical Instructions . • • . . . • • . • . . . . • • . . • • . .. . . . • • . . . . . . . . • . . . . . • . . . . . . . . • . . 3-13 
LOT (LOAD OR TRAP) Instruction . . . • . • . • • • • • . . • • • • • • . . • • . • • • . . • • . • . • . • . . . . . 7-89 
Low Order, Defined • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • • • . • • • • • • • • • . • . • . • • . • • 3-1 
LP (Load Point) Bit in Tape IOSW ••••••••••••••••••••••••••••••••••••••••• 12-5 
LPA (LOAD PHYSICAL ADDRESS) Instruction ··~····••••••••••••••••••••••••••• 7-93 
LPCW (LOAD PCW) Instruction •••••••••••••••••••••••••••••••••••••••.•.•••• 7-92 
LPDR (LOAD POSITIVE (FLOATING-POINT)) Instruction •••••••••••••••.•.•..••• 7-95 
LPER (LOAD POSITIVE (FLOATING-POINT)) Instruction •••••••••••••••••••.•••• 7-95 
LPPT (LOAD PARTIAL PAGE TABLE) Instruction••••••••••••••••••••••••••••••• 7-91 
LPR (LOAD POSITIVE) Instruction •••••••••••••••••••••••••••••••••••••••••• 7-94 
LPTO, LPTl, LPT2 (LOAD PAGE TABLE) Instructions •••••••••••••.•••••••.•••• 7-90 
LR (LOAD REGISTER) Instruction ••••••••••••••••••••••••••••••••••••••.•••• 7-76 
LRC (Longitudinal Redundancy Check-Bit for Tape) ••••••••••••••••••••.•••• 12-3 
LRER (LOAD ROUNDED (FLOATING-POINT)) Instruction ••••••••••••••••••••••••• 7-96 
LSCTL (LOAD SEGMENT CONTROL REGISTER) Instruction •••••••••••••••••••••• 7-96.1 
LSREG (LOAD SPECIAL REGISTER) Instruction •••••••••••••••••.•..••.•.•.•.•• 7-98 
LT (LOAD AND TEST) Instruction ••••••••••••••••••••••••••••••••••••••.•••• 7-79 
LTDR (LOAD AND TEST REGISTER (FLOATING-POINT)) Instruction ••••••••.•.•••• 7-80 
LTER (LOAD AND TEST REGISTER (FLOATING-POINT)) Instruction ••••••.•.•.•••• 7-80 
LTR (LOAD AND TEST REGISTER) Instruction ••••••••••••••••••••••••••••.•.•• 7-79 

M (MULTIPLY) Instruction • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 7-107 
Machine Check Interruption •••••••••••••••••••••••••••••••••••••••••..•••• 5-13 
Machine Check Interruption Mask (in PCW) •••••••••••••••••••••••••••• 4-3, 5-14 
Machine Check Reporting Area •.••••••••••••••••••••••••••••••••••.•.•...•• 5-14 
MAE (Memory Address Error) Bit in IOSW ••••••••••••••••••••••••••.•••••• 8-10.1 
Magnitude, of a Floating-Point Number ••••••••••••••••••••.••••••••.•••••• 3-12 
Main Memory • • . • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • . . • • • • • • • . • . • . . . • • • 2-4 
Mapping Area for Workstation I/0 ·····~····························· 9-10, 9-15 
Mask, for Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 

see also breakpoint mask, clock interruption mask, 
exponent underflow mask, interruption mask, machine check 
interruption mask, overflow mask, program mask field, and 
significance program mask bit; 
for interrupts, see progra111 mask field 

Masking of Interruptions •••••••••••••••••••••••••••••••••••••••••••• 5-3, 5-14 
MD (MULTIPLY (FLOATING-POINT)) Instruction •••••••••••••••••••••••••••••• 7-108 
MDR (MULTIPLY REGISTER (FLOATING-POINT)) Instruction •••.•••••••••••••••• 7-108 

INDEX-8 



This manual is updated by: Addendum 800-11OOP0-04.01 

ME (MULTIPLY (FLOATING-POINT)) Instruction 
Memory Address Error ••••••••.•••••••• 

• • • • • • • • • • • • • • • • • • • • • • • • • • • 7-108 
. . • • • . • • • . . • • • • . • . . • . • . • • . • • 8-6 

Memory Cycles ••••••••••.••••••••••••• . .................................. . 
. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 2-4 

8-12 Memory Diagnostic Commands ••••••••••••. 
MER (MULTIPLY REGISTER (FLOATING-POINT)) Instruction •••••••••••••••••••• 7-108 
MH (MULTIPLY HALFWORD) Instruction 
Microcode Loading ••••••.••••••••••••• 
Modification Trap Feature •••••••••••• 
Modifier Bits, see Command Modifier Bits 

7-111 
8-13 
5-8 . .............................. . 

Monitor Area •••••••••••••••••••••.•••••••.•••••.••••••••••••••••.•••. 
................................................. Most Significant Bit 

Most Significant Byte ..................................................... 
4-12 

3-1 
3-1 

MP (MULTIPLY DECIMAL) Instruction ....................................... 7-110 
8-10.1, 8-12 MPE (Memory Parity Error) Bit in IOSW •••••••••••••••••••••••••••• 

MQ (MULTIPLY DECIMAL (FLOATING-POINT)) Instruction •••••••••••••••••••• 7-110.1 
MQR (MULTIPLY DECIMAL REGISTER (FLOATING-POINI')) Instruction ••••••••••• 7-110.1 
MR (MULTIPLY REGISTER) Instruction 
MSB, see Most Significant Byte 
MSb, see Most Significant Bit 

•••••••••••••••••••••••••••••••••••• fit • 

MTQ (MODIFY TIMER QUEUE) Instruction 
MVC (MOVE CHARACTER) Instruction ..................................... 
MVCL (MOVE CHARACTERS LONG) Instruction ••••••••••••••••••••••••.••... 
MVI (MOVE IMMEDIATE) Instruction 
MVN (MOVE NUMERIC) Instruction ••••••• 
MVO (MOVE WITH OFFSET) Instruction 

........................... 

MVPC (MOVE WITH PAD) Instruction ........................................ 
MVZ (MOVE ZONES) Instruction ............................................ 
N (AND) Instruction •••••••••••••••••••••••••••••• 8 ••••••••••••••••••••••• 

NC (AND CHARACTER) Instruction ........................................... 
NC (Normal Completion) Bit in IOSW 8-10, 

.......................................................... for disk IOSW 
NI (AND IMMEDIATE) Instruction ••••••••••••••••••••••••••••••••••••••••••• 
Normalization ............................................................ 
Not Ready During Operation Bit in IOSW for Disk •••••••••••••••••••••••••• 
NR (AND REGISTER) Instruction ••••••••••••••••••••••••••• (I •••••••••••••••• 

NRO, see Not Ready During Operation 

O, See Overrun Bit in IOSW 
0 (OR) Inst rue tion •••••••••••••••••••••••••••••••••••••••••••••••••••••• 
OC (OR CHARACTER) Instruction ........................................ 
OFF (Tape Offline) Bit in IOSW ••••••••••••••••••••••••••••••••••••••••••• 
Offset, see Displacement 
OI (OR IMMEDIATE) Instruction 
Op Code, see Operation Code 

............................................ 

7-107 

7-178 
7-99 

7-100 
7-99 

7-103 
7-104 
7-105 
7-106 

7-10 
7-10 
8-11 
11-5 
7-10 
3-12 
11-7 
7-10 

7-112 
7-112 
12-7 

7-112 

Operands ................................................................... 3-2 
7-177 

3-1 
5-6 

7-112 

Operating System Assist Instructions .................................... 
Operation Code ••••••••••••••.••••••. 
Operation Exceptions ••••••••••••••••• 

.................................. 

. ................................. . 
OR (OR REGISTER) Instruction •••••••••••••••••••••••••••••••••••••••••••• 
OR, see Order Check 

INDEX-9 



This manual is updated by: Addendum 800-11 OOP0-04.01 

Order Check for Workstation ........................................ 
Order Area for Workstation I/0 
Overflow 

9-17, 
9-11, 

9-20 
9-20 
3-12 

Overflow Mask (in PCW) .................................................... 4-4 
3-9 Overlapped Fields ......................................................... 

Overrun Bit in IOSW •••••••• 
for tape ............................................................... 

PACK Instruction e e e e e e e e e e e e e e e e • e e e e e e e e e e e e e e e e e e I e e e e e e e e e • e e e e e e e e e e 

4-7, 

11-7 
12-9 

Packed Decimal Format •••••• 
Page Fault Exception .••..•• 
Page Fault Program Interruption 

7-114 
3-8 

5-11 
4-2 
5-3 

....................................... 
Page Fault Reporting Area ................................................. 
Page FraDle ••••••••••••.•••.••••••••••.••••••••••.• a • • • • • • • • • • • • • • • • • • • • • • • 4-2 
Page Frame Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 

see also Local Page Frame Table 
Page Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 
Page Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 
Page Table Address Fault Exception·······~······························· 5-12 
Page Translation Exception •••••••••••••••••••••••••••••••••••••••••• 4-7, 5-11 
Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7 
PAL (PACK AND ALIGN) Instruction •••••••••••••••••••••••••••••••••••••••• 7-115 
PAR, see Parity for Tape 
Parity Error •••••• 5-13, 6-4 
Parity for Printer .......................................... 10-6 

12-6 
12-4 

bit in IOSW •••••••••• 
for tape ••••••••••••• . .......................................... . 

PC Bit, see IOP NOW READY 
PCW (Program Control Word) , Defined 4-1, 5-1, 
PCW Address Compare Trap 
PCW Trap Feature •••a•••••• 
PE (Phase-Encoded ID Burst) Bit in Tape IOSW ••••••••• 

6-2 
4-3 
5-9 

Peripheral Processor ••.••••••••••••••••••••••••••••••••••••••••••••••••••• 
12-5 
8-7 

PF Keys, see Program Function Keys 
PFT, PFTL, see Page Frame Table 
Physical Address 
Physical Address Modification Trap •••••••••••••• 
Pointers for Semaphore •••••••••••••••••••••••••• 

see also Head Pointer, Tail Pointer 

4-7, 4-12 
4-3 

. . . . . . . . . . . . . . . . . . . . 3-16 

POP Instruction • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 7-118 
POPC (POP CHARACTERS) Instruction •••••••••••••••••••••••••••••.••••• 7-119 
POPH (POP HALFWORD) 
POPM (POP MULTIPLE) 
POPN (POP NOTHING) 

Instruction 
Instruction 

Instruction 
PP, see Peripheral Processor 
Print Control Bytes ....................................................... 
Printer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 to 
Priority of Interruptions • • • • • • • • • • • . • • • • • . • • • ••..•••••••••••••..•••••• 

7-120 
7-121 
7-122 

10-4 
10-7 
5-15 

Privileged Instruction or Operation, Defined •••••••.•••••..•••••••.•..•..• 
Privileged Instruction Symbol 

5-6 
7-1 
5-6 Privileged Operation Exceptions ••••••••.•• 

INDEX-10 



This manual is updated by: Addendum 800-11 OOP0-04.01 

Function Keys ..................................................... Program 
Program 
Program 

In ter-ru.ption •.......•.....•..........•..•••.•...•........... · . · · · • 
9-9 
5-4 
5-5 Interruption Codes ............................................... . 

Program Mask Field (in PCW) 
Protection Exceptions ..................................................... 

4-2 
5-6 

7-123 
7-124 
7-126 
7-127 
7-128 

PUSH Inst-ruction ........................................................ 
PUSHA (PUSH ADDRESS) Instruction 
PUSHC (PUSH CHARACTERS) Instruction ..................................... 
PUSHM (PUSH MULTIPLE) Instruction ••••••••••••• 
PUSHN (PUSH NOTHING) Instruction •••••••••••••• 

........................ 

Radix Point .............................................................. 3-11 
RAM (Random Access Memory) 1-1, 4-7 
RBAL (BRANCH AND LINK (RELATIVE)) Instruction •••••••••••••••••••••••••••• 7-15 
RBALS (BRANCH AND LINK STACK (RELATIVE)) Instruction ••••••••••••••••••••• 
RBC (BRANCH ON CONDITION (RELATIVE)) Instruction ••••••••••••••••••••••••• 
RBCT (BRANCH ON COUNT (RELATIVE)) Instruction ••••••••••••••••••••..•••••• 
RBCX (BRANCH ON CONDITION INDEXED (RELATIVE)) Instruction •••••••••••••••• 
RBXH (BRANCH ON INDEX HIGH (RELATIVE)) Instruction ••••••••••••••••••••••• 
RBXLE (BRANCH ON INDEX LOW OR EQUAL (RELATIVE)) Instruction •••••••••••••• 
RCT, see Reference and Change Table 
RDB Bit of IOSW 
READ ALTERED •••••••••••••• 
READ DIAG 
READ TABS 

................................................................ ................................................................ 
READ Command for Disk 
READ from Workstation 
Recording Density for Tape ............................................... 
Recursion Exception, see SCR Recursion Exception 
Reduced Retry Flag for Tape •••••••••••••••.•.•.• 
Reference and Change Table (RCT) ••••••.••••••••• 
Reference Bit in Local Page Frame Table .•••••••• 
Reflective Strips, see Tape Markers 
Registers 

7-18 
7-19 
7-24 
7-21 
7-25 
7-27 

8-4.4 
9-16 
9-16 
9-16 
11-4 
9-16 
12-5 

12-4 
4-12 
4-12 

control . . . . . . . . . . . . . . . . . . ... _ .............................. 2-1, 2-3 
floating point • • • • • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2-1, 3-10 
general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 

Relative Sector Addressing ••••••••••••.•••••••••••••••••••••••••• 11-2 
RESET Key on Workstation .••••••••••••••••••••••••••••••••••••••• 9-8 
Residual Byte Count of IOSW •••••••••••••••••••••.••••••••••••••••••••• 8-10 

for printer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 
Retcy for Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4 

for tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4 
Retcy Indicator Bytes for Disk ••••••••••••••••••••••••••••••••••••••••• 11-5 
RIP Bit of IOSW • . . . . . . . . . . . . . . . . . • . . . . . . . • . • . . . . . . • . . . • . . . . . . . . . . . . . . . 8-4. 4 
RLA (LOAD ADDRESS (RELATIVE)) Instruction •••••••.•••••••••••••••••••••••• 7-78 
RP Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 
RPC (RETURN AND POP ON CONDITION) 
RPUSHA (PUSH ADDRESS (RELATIVE)) 

Instruction 
Instruction 

. . . . . . . . . . . . . . . . 7-130 
. • • • • • • • . • . 7-125 
. . . . . . . . . . . . . 3-3 RR Instruction Format ••.••.••••••..•• 

RRCB (RESET REFERENCE AND CHANGE BITS) Inst rue tion •••••••••••••••••••••• 7-129 

INDEX-11 



This manual is updated by: Addendum 800-11 OOP0-04.01 

RS Instruction Format ••••••••.•••••••••••••••••••••.•••••••••••••••••••••• 3-3 
7-131 

3-3 
RTC (RETURN ON CONDITION) Instruction 
RX Instruction Format 

S Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 
S (SUBTRACT) Instruction 
SC, see Skew Check Bit in Tape IOSW 
SCAN (SCAN FOR BYTE) Instruction 
SCR Recursion Exception 
Screen Damage Alert 

4-11, 

7-161 

7-134 
5-12 
9-21 

SCRs •••••••••••••••••••••••••••••••••••••••••••••• 'Ii ••••••••••••• • • • • • • • • • 4-10 
7-165 
7-165 
7-165 

SD (SUBTRACT (FLOATING-POINT)) Instruction •••••••••••••••••••••••••••••• 
SDR (SUBTRACT REGISTER (FLOATING-POINT)) Instruction •••••••••••.••..•••• 
SE (SUBTRACT NORMALIZED (FLOATING-POINT)) Instruction ••...••.........•.. 
Sector Addressing for Disk 11-2 

11-7 Sector Overrun Bit in Disk IOSW .......................................... 
Sector Preambles •••••••••••••••••.••••••• 
SEEK Command for Disk ............................. 

Control Register, see SCRs 

11-6 
11-5 

4-7 Segment 
Segment 
Segment Fault ........................................................... . 4-11 

5-11 
4-8, 5-2 

9-4 
3-16 

Segment Fault Exception •••••••••••••••••• 
Segment Index 
Selected-Field Tags 
Semaphore Manipulation 
SER (SUBTRACT NORMALIZED REGISTER (FLOATING-POINT)) Instruction 
SH (SUBTRACT HALFWORD) Instruction •••••••••••••••••••••••.••••• 
SHIFT Key on Workstation 
Short Floating-Point Instructions 

••••••••• 7-165 
• . . . • • • • • 7-163 

9-8 
3-1 

Short Sector ............................................................. 11-7 
SI (SEEK Incomplete) Bit in Disk IOSW . . . . . . . . • . 11-7 
SI Instruction Fonnat .................................................... . 3-4 
Sigri Codes ..•.•..•••.••••••••.••••.. 
Significance Exception •••••••••••••• 
Sigriificance Program Mask ••••••••••• 
Single-Step Trap Feature 

. . . . . . . . . . . 3-8 

SIO (STAR.T I /0) Instruction •••••••••••••••..•••••• ., •••.••.••.•. 

5-13 
4-4, 5-13 

4-3, 5-10, 6-1 
7-148, 8-4.3 

Skew Check Bit in Tape IOSW ....................... ., ..................... . 
SL (SUBTRACT LOGICAL) Instruction 
SLA (SHIFT LEFT SINGLE) Instruction 
SLDA (SHIFT LEFT DOUBLE) Instruction 

12-9 
7-163 
7-142 

SLDL (SHIFT LEFT DOUBLE LOGICAL) Instruction•••••••••••••••••&•••••••••• 
7-139 
7-141 

SLL (SHIFT LEFT SINGLE LOGICAL) Instruction···············•••&•••••••••• 7-143 
SLR (SUBTRACT LOGICAL REGISTER) Instruction ••••••••••••••••••c•••······· 7-164 
SO, see Sector Overrun 
Soft Error, see Error 
SP (SUBTRACT DECIMAL) 
Spacing on Printer 

Instruction 

Specification Exception •••••••••••••••••• 
SPF!' (SCAN PAGE FRAME TABLE) Instruction 
SPM (SET PROGRAM MASK) Instruction ••••••• 

• ~ •• ill. • • • • • • 7-162 
• 0 • • • • • • • • • • • 10-4 

••••••••••••••••••••o•••• 3-12.1, 5-7 
7-180 

•••••••••••••••••••• 0 •••••••••• 7-136 

INDEX-12 



This manual is updated by: Addendum 800-11 OOP0-04.01 

SQ (SUBTRACT DECIMAL (FLOATING-POINT)) Instruction •••••••••••••••••••• 7-162.1 
SQB (Status Qualifier Byte) •••.••.•.••••••••••• . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 .1 
SQR (SUBTRACT DECIMAL REGISTER (FLOATING-POINT)) Instruction ••••••••.• 7-162.1 

7-161 
7-146 

SR (SUBTRACT REGISTER) Instruction •••••••••••••.••••••••••••••••••••.••• 
SRA (SHIFT RIGHT SINGLE) Instruction 
SRDA (SHIFT RIGHT DOUBLE) Instruction 
SRDL (SHIFT RIGHT DOUBLE LOGICAL) Instruction •••••••••••••••••••••••• 
SRL (SHIFT RIGHT SINGLE LOGICAL) Instruction ••••••••••••••••••••••••. 
SRP (SHIFT AND ROUND DECIMAL) Instruction 
SS Instruction Format 
SSI Instruction Format •••••••••••••. 
ST (STORE) Instruction ................................................ 
ST (Timeout on Sector) Bit in Disk IOSW 
Stack Facility ......•.................... 
Stack Limit Word 

defined •••••••••••••••••••••••••••••••••••••••••••••••••••• 2i ••••••• 

Overflow Exception 

7-144 
7-145 
7-147 
7-137 

3-4 
3-4 

7-150 
11-8 
3-16 
2-2 

3-16 
5-12 Stack 

Stack Pointer, Defined ••••••••••••••••••••••••••••••••••••••••••••.•. 3-16 
3-16, 5-12 Stack Vector ••..•••••.•.•••••..•••••••.•.•.••.•..••.••••..••......• 

Status Bits of IOSW 
Status Field in PCW ......................................... ., ........ . 
STC (STORE CHARACTER) Instruction ••••••••••••••••••••••••••••••.••••• 
STCM (STORE CHARACTERS UNDER MASK) Instruction ••••••••••••••••••••••• 
STCPID (STORE CP TYPE AND MICROCODE VERSION) Instruction ••••••••••••• 
STCTL (STORE CONI'ROL) Instruction 
STD (STORE (FLOATING-POINT)) Instruction ••••••••••••••••••••••••••••• 
STDD (STORE DIAGNOSTIC DATA) Instruction •••••••••••••••••••••••.••••. 
STE (STORE (FLOATING-POINT)) Instruction ••••••••••••••••••••••••••••• 
STH (STORE HALFWORD) Inst rue ti on • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ••••••• 

8-10 
4-3 

7-151 
7-152 
7-154 
7-153 
7-157 
7-155 
7-157 
7-158 

STM (STORE MULTIPLE) Instruction•••••••••••••• 
STNSM (SAVE THEN 'AND' SYSTEM MASK) Instruction 

•••••••••••••••••••••••••• 7-159 
••••••••••••••••••••••••• 7-132 

STOSM (SAVE THEN 'OR' SYSTEM MASK) Instruction ••••••••••••••••••••••• 7-133 
STSCTL (STORE SEGMENT CONI'ROL REGISTER) Instruction ••••••••••••••••••• 7-159.1 
STSREG (STORE SPECIAL REGISTER) Instruction 
Supervisor Call Interruption •••••••••••••••••• 
Supervisor Call Range Exception ••••••••••• 
Supervisor Calls 
Supervisor State 
SVC (SUPERVISOR CALL) Instruction •.•.••••• 

7-160 
5-1, 5-13 

5-8 
2-2 

5-13 
7-167 

................................. SVCX (SUPERVISOR CALL EXIT) Instruction 
System Stack Limit Word, see Stack Limit Word 
System Stack Vector, see Stack Vector 

7-168 

Tabs 
Tail Pointer 
Tape Characteristics •••••••••••••••••••••• 
Tape Mark 
Tape Mark Indicator Bit in IOSW ••••••••••• 
Tape Markers 
Termination, by HALT I/0 •••.••••••••.••••• 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 
. . . . . . . . . . . . . . . . . . . . . . . 3-15 
••••••.••••••• 12-1 to 12-11 
. . . . . . . . . . . . . . . . . . . . . . . 12-3 

12-4, 12-6 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8 

due to equipment malfunction ............................................ 8-8 
8-7 of data transfer • ts •••••••••••••••••••••••••••••••••••••••••••••••••••••• 

INDEX-13 



This manual is updated by: Addendum 800-11OOP0-04.01 

Time-out Failure ...................................................... 
Timer, see Clock 
TM (TEST UNDER MASK) Instruction ........................................ 
TM Indicator Bit, see Tape Mark Indicator 
TR (TRANSLATE) Instruction ••••••••••••• 
Track Numbers on Tape 
T-RAM (Translation RAM) 

......................... .......................... 

5-14 

7-169 

7-170 
12-1 
4-10 

Translation, see Address Translation 
Traps 
TRT (TRANSLATE AND TEST) Instruction 

. • . • • • • • • • • • • • • • • • • • • • • • • • . • • • 2-2, S-8 
. . . . . . . . . . . . . . . . . . . . . . 7-171 

TR7 Bit in Tape IOSW 
Two's-Complement Notation 

U (Unsolicited Interruption) Bit in IOSW 
Underflow ............................... . 
UNPAL (UNPACK TO EXTERNAL DECIMAL FORMAT) Instruction 
UNPK (UNPACK) Instruction ............................................... 
UNPU (UNPACK UNSIGNED) Instruction 
User Stack Vector, see Stack Vector 

...................................... 

Validity Check for Tape •••••••••••••.•••••• 
Verify on Disk WRITE 
Vertical Redundancy Check for Tape ••••••••• 
Virtual Address ••••••••.••••..••.•••••••••• 
Virtual Address Modification Trap •••••••••• 
Virtual Destination Trap Address 
Virtual Memory 
VP Bit •..•.•....... 
VRC, see Vertical Redundancy Check for Tape 

12-9 
3-6 

8-10 
3-12 

7-175 
7-173 
7·-174 

12-3 
11-5 
12-9 
4-7 
5-8 
5-8 
4-7 

4-11 

Wait State (in PCW) ....................................................... 4-2 
WCC, see Write Control Character 
WD, see Wrong Density 
Word, Defined •••••••.•••••• 
Workstation •••••••••.•••••. 

• • • • • • • • • • • • • • • • . . • • • • • . • . . • . . • 2-4 
••••••••••••••••.•.• 9-1 to 9-21 

WP (Write Protect) Bit ••••••••.••••••.••. 
WRITE Commands for Workstation ••••••••••• 

for disk •••••.••• 
for printer •••••• 
for tape ••••••••• 

Write Control Character for Workstation 

4-9, 

Write Protect Bit in Tape IOSW 
WRITE SELECTED 

........................................ 
WRITE TABS •••.•. 
Write-Enable Ring .................................................... . 
Wrong Density Bit in Tape IOSW •••••••..••..••.••.••.•.••.•••.•...•.... 
X (EXCLUSIVE OR) Instruction •••••••••••••••••• 
XC (EXCLUSIVE OR CHARACTERS) Instruction ••.••••••••••••••••••..•.•..•• 
XI (EXCLUSIVE OR IMMEDIATE) Instruction ••••••••••••.••••.•••••.•.•....••• 
XPAND (EXPAND STRING) Instruction 
XR (EXCLUSIVE OR REGISTER) Instruction ...•••••••.•••••.••.••••.•....•.••. 

11-7 
9-17 
11-5 
10-2 
12-4 
9-12 
11-7 
9-17 
9-17 
12-2 
12-6 
7-63 
7-63 
7-63 
7-67 
7-63 

ZAP (ZERO AND ADD) Instruction 
Zoned Decimal Format .••••••••.•••••••••••••••• 

........................ 7-176 

. . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 

INDEX-14 



WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL. MA 01851 • TELEPHONE (617) 459-5000, TWX 710-343-6769, TELEX 94-7 421 

WANG 

TO:. VS System Users 

FROM: Corporate Publications Department 

SUBJ: Addendum to the VS Principles of Operation Manual (800-llOOP0-04.01) 

DATE: September 1982 

This addendum chiefly describes VS architecture for systems based on the 
VS25 and VSlOO CPs. Changes have been made to physical and virtual address 
format, page tables and address translation, the I/O subsystem, and low memory 
and register assignments. Diagrams of system architecture are included. The 
addendum also describes the decimal floating-point instructions, and makes 
some minor corrections to other sections of the manual. 

To update your manual, replace existing pages with like-numbered new 
pages and appropriate point pages; pages DH-1 through DH-3 come just before 
the index. 

Thank you, 

Corporate Publications Department 

Printed in U.S.A. 
800-11OOP0-04.01 

9-82- 5M 



WANG Customer Comment Form Title VS PRINCIPLES OF OPERATION 

Publications Number 800-11OOP0-04.01 
Help Us Help You ... 

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell us! 
Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us 
know how you feel. 

How did you receive this publication? How did you use this Publication? 

0 Support or 0 Don't know 0 Introduction 0 Aid to advanced 
Sales Rep to the subject knowledge 

0 Wang Supplies 0 Other 0 Classroom text 0 Guide to operating 
Division (student) instructions 

0 From another 0 Classroom text 0 As a reference 
user (teacher) manual 

0 Enclosed 0 Self-study 0 Other 
with equipment text 

Please rate the quality of this publication in each of the following areas. 

EXCELLENT GOOD FAIR POOR 

Technical Accuracy - Does the system work the way the manual says it does? 0 0 0 0 

Readability - Is the manual easy to read and understand? 0 0 0 0 

Clarity - Are the instructions easy to follow? D 0 0 0 

Examples - Were they helpful, realistic? Were there enough of them? D 0 0 D 

Organization - Was it logical? Was it easy to find what you needed to know? D 0 0 0 

Illustrations - Were they clear and useful? D 0 0 0 

Physical Attractiveness - What did you think of the printing, binding, etc? D 0 0 0 

VERY 
POOR 

0 

0 

0 

0 

0 

0 

D 

Were there any terms or concepts that were not defined properly? 0 Y 0 N If so, what were they? ---------

After reading this document do you feel that you will be able to operate the equipment/software? 0 Yes D No 
0 Yes, with practice 

What errors or faults did you find in the manual? (Please include page numbers)------------------

Doyouhaveanyofufilcommen~orwggestio~? ____________________________ _ 

Name __________________ _ Street ____________________ _ 

Title ___________________ _ City ____________________ _ 

Dept/Mail Stop ____________ _ State/Country _______________ _ 

Company _________________ _ Zip Code _____ Telephone---------

Thank you for your help. 

All comments and suggestions become the property of Wang Laboratories. Inc. Printed in U.S.A. 14-3140 3-82-5C 



WANG 

Fold 

111111 

BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO. 16 LOWELL, MA 

POSTAGE WILL BE PAID BY ADDRESSEE 

WANG LABORATORIES, INC. 
CHARLES T. PEERS, JR., MAIL STOP 1363 
ONE INDUSTRIAL AVENUE 
LOWELL, MASSACHUSETTS 01851 

Fold 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

ai 
~ 

~ 
0 
"O 
Cl 
c 
0 

<ii 
5 
u 



WANG 
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE. LOWELL, MA 01851 •TEL. (617) 459-5000, TWX 710-343-6769, Telex 94-7421 Printed in U.S.A. 

800- 11 OOP0-04 
8-82-BM 


	000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12.0
	03-12.1
	03-13
	03-14
	03-15
	03-16
	03-17
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	06-01
	06-02
	06-03
	06-04
	06-05
	07-001
	07-002
	07-003
	07-004.0
	07-004.1
	07-004.2
	07-005
	07-006
	07-007
	07-008
	07-009
	07-010
	07-011
	07-012
	07-013
	07-014
	07-015
	07-016
	07-017
	07-018
	07-019
	07-020
	07-021
	07-022
	07-023
	07-024
	07-025
	07-026
	07-027
	07-028
	07-029
	07-030
	07-031
	07-032
	07-033
	07-034
	07-035
	07-036
	07-037
	07-038
	07-039
	07-040.0
	07-040.1
	07-040.2
	07-041
	07-042
	07-043
	07-044
	07-045
	07-046
	07-047
	07-048
	07-049
	07-050
	07-051
	07-052.0
	07-052.1
	07-052.2
	07-053
	07-054
	07-055
	07-056
	07-057
	07-058
	07-059
	07-060
	07-061
	07-062
	07-063
	07-064
	07-065
	07-066
	07-067
	07-068
	07-069
	07-070
	07-071
	07-072
	07-073
	07-074
	07-075
	07-076
	07-077
	07-078
	07-079
	07-080
	07-081
	07-082
	07-083
	07-084
	07-085
	07-086
	07-087
	07-088
	07-089
	07-090
	07-091
	07-092
	07-093
	07-094
	07-095
	07-096.0
	07-096.1
	07-097
	07-098
	07-099
	07-100
	07-101
	07-102
	07-103
	07-104
	07-105
	07-106
	07-107
	07-108
	07-109
	07-110.1
	07-110.2
	07-111
	07-112
	07-113
	07-114
	07-115
	07-116
	07-117
	07-118
	07-119
	07-120
	07-121
	07-122
	07-123
	07-124
	07-125
	07-126
	07-127
	07-128
	07-129.0
	07-129.1
	07-129.2
	07-130
	07-131
	07-132
	07-133
	07-134
	07-135
	07-136
	07-137
	07-138
	07-139
	07-140
	07-141
	07-142
	07-143
	07-144
	07-145
	07-146
	07-147
	07-148
	07-149
	07-150
	07-151
	07-152
	07-153
	07-154
	07-155
	07-156
	07-157
	07-158
	07-159.0
	07-159.1
	07-159
	07-160
	07-161.0
	07-162.1
	07-162
	07-163
	07-164
	07-165
	07-166
	07-167
	07-168
	07-169
	07-170
	07-171
	07-172
	07-173
	07-174
	07-175
	07-176
	07-177
	07-178
	07-179
	07-180
	07-181
	07-182
	08-01
	08-02
	08-03
	08-04.0
	08-04.1
	08-04.2
	08-04.3
	08-04.4
	08-04.5
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10.0
	08-10.1
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	DH-1
	DH-2
	DH-3
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	_01
	replyA
	replyB
	xBack

