PRICE $19.95

Pascal MICROENGINE"™
Reference Manual

THE MICROENGINE COMPAMY

tm
Pascal NICROENGIME Computer

User‘s Manual

Preliminary Edition

March, 197%

Software is provided on a licensed basis only and is the property of the
University of California with permission granted for use on am individual
system basis only. Copies may be made For archival purposes on ly.

Information furnished by The MICROEMGIME Company is believed to be accurate
and reliable. However, no responsibility is assumed by The MICROEMGIME
Company for its use; nor for any infringements of patents or other rights of
third parties which may result from its use. Mo license is granted by
implication or otherwise under any patent or patent rights of The HICROENGINE
Company. The MICROENGINE Company reserves the right to change product
specifications at any time without notice.

Copyright (c) 1979 by The NMICROENGINE Company
First Printed March 1979
All rights reserved.
No part of this document may be reproduced by
any means, nor trarslated. wor transamitted
into a machine languesge without the written
permission of The MICROENGINE Company.

MICROENGIME is a Registered Trademark of
Western Digital Corporation.

The MICROENGINE CTompany is a wholly-owned
subsidiary of Western Digital Corporatiom.

PREFACE

This manual describes the use and operation of the MICROENGINE Company’s
microcomputer products for developing and executing programs in the Pascal
language. These products are:

o the UWD/900 Pascal MICROENGINEtm Single-Board Computer,
an 8 by 16-inch board containing a WD/9000 16-bit
microprocessor that directly executes UCSD’s Pascal p-
code, 44K bytes of memory, 2 RS5-232 asynchronous serial
ports, 2 8-bit parallel ports. and a Floppy Disk
Controller; and

o the UWD/90 Pascal HNICROENGINE Computer, a desktop
microcomputer comprised of a Pascal MICROEMGINE Single-
Board Computer and power supplies enclosed in a
stylized housing.

The manuval is intended to serve both as an introductory guide and as a
reference source. Chapter 1 presents an overview of the computer. It briefly
describes hardware components of the computer; the softwsre provided with the
computer; the mechanical, environmental, and electrical regquirements of the
computer; and the computer operation. Chapters 2, 3, and 4 provide "how-to”
information: how to install a new computer, how to operate the computer, and
how to perform troubleshooting procedures. Chapter 5 presents detailed
information on the computer’s operation.

The software provided with the computer is the Pascal Operating System
developed at the University of California at San Diego (UCSD). This operating
system is described in the Pascal I11.0 Operating System Reference Manval.

13:3:3:3

This manual was prepared and edited using the
UCSD Pascal OScreen Oriented Editor and was
printed using a PRIMTROMIX ilodel P300
lineprinter. The lineprinter was provided by
PRINTRONIX Corporation. Irvine, California.

1.

2.

3.

4,

S

CONTENTS

OVERVIEW wuvnuuvrcauuuuonuncanusnunansnnenasannsansnunannnnnnonnsunanss
1.1 Components of the COBPULET weuvssusscvnnrsvaracrensnnnorsnnnnne
1.2 Pascal Uperating SUSTEM wevsssesensanscuonsennvannronnnunnsnnas
1.3 Requirements of the COMPULET sreaseasnunvncnonannnsavonnonsannn
1.4 Computer Dperation ...eeessecnnssnunsnsnscansnsansnsasmannnnone

IMSTALLATION PROCEDURES vucvuvannsannunssnnunnanonnannannnansnnnnsannsn
2.1 Setting Option SWAitChes wuevecvrsnsvssuvsnrvinarannmoranannanns
2.1.1 Opening the Computer HOUSing.e.vevessocuconornuannnnen
2.1.2 Setting the Floppy Disk Controller Option
SWIitches woveevsnuonnnnsonsnansensvannonnonarsansonnns
2.1.3 Setting the System Terminal Specifications
BWItChES wuveunusnnsannenonssnannnnnavoanonernasnnnnns
2.1.4 Setting the Serial Port Baud Rate Switches ...ccevense
2.1.5 Reclosing the Computer HOUSING euvvssscencvronnnennnns
2.2 Installing System Components ...eevevevusneennvoanuaroncennonne
2.2.1 Installing the Computer .u.sesvsvecsrcavovoncnonannnns
2.2.2 Connecting the Peripherals weuevavesvanessvovenunncnna
2.2.3 Plugging in the Power COTd seuvewevucrvvonvenvocnnunne

OPERATING PROCEDURES weuvvevavannvesssssnnnunvasnnansnansnnnsnosnnnnnn
3.1 Starting and Stopping the SUSTEM wveeewvsnnosenecsasconnrnnunns
3.1.1 Turning On the POBET .avsuvsssnvesnnnvararncsnccnnnnnn
3.1.2 Loading the System SOFtWareveoescenvvsnvonsnnnns
3.1.3 Stopping the SYStem weswssvenssnvensnravnonarnncananans
3.2 Changing Hardware Option Switch Settings sueveevsevssvvanonsunas

TROUBLESHOOTING PROCEDURES vvvuvusnnronnunnunvannmnnsuvanvonnasannenns
4.1 The Troubleshooting Process: A Ceneral DiscuUSSION wavsvenseanss
1.2 Symptom 1: Operating System Fails to Announce Itself ..evvewuns
4,2.1 Repeating the Software Loading Procedure .coveevesenss
4.2.2 Checking the Floppy Disk Controller Option
SWitches wunsunenvusnnunnonsnnnonnnnarnsnunarononnnsnn
4.2.3 Measuring and Adjusting the Power Suppliescowwsnes
4,3 Symptom 2. Transfers to the System Terminal Fail .eevvvscannunn
4.4 Symptom 3: Transfers to the Parallel Ports Device or
Floppy Disk Fail weveneuvscnvunnvunosnanscnnoonuennan
4.5 Symptom 4. System Fails to Pass Diagnostic Program vosewsweesss
4.6 The Troubleshooting Process: a Summary Flow Chart

THEORY OF OPERATIONS vovveusvennssnnonsnonanononnnnasncannnsnurannnans
5.1 Processor/Memory and Processor/Peripherals Communications..a...
5.1.1 Processor/Memory Communication.cvecnsvvsssnsnsvanannne

5.1.2 Processor-Initiated Communication with Peripheral
DEViCEB s s varvnarennnesnancnansnannsabuunrnonmneananans

5.1.3 Device-Initiated Communication with the Processor
InterrUptSeuevnanennsennnnasnnnnsnannsnsvanonnsunnsns
5.2 Pascal MICROENGIME ProCessOtusscensnsesnnrnssnonnnuannonannnnns

5.3 nemarg--------nnn-------.-n-n------un-------u----a--n----.---.-

514 SEPial ports-.llllﬁal.l--.ll.ll'lllnulll.ﬂ---llunl-d'l.a.ll.nn.l

Puge

W R e

U

10
10
11
11
11
12

13
13
13
14
14
15

17
17
14
18

18
19
20

21
21

25
25
28

29
30
31

31

5.4.1 Default Dperation of the Serial PortSiesccscvvausrousuunan 39
5.4.2 Device Programming Mechanism: the Control Registers....e.. 37
5,5 Parallel POrtS.eencecosnnnsnasnsnnssuannvnnnennscinsnvsussnnanna A9
5.5.1 Default Operation of the Parallel POrtSaicusssessccnnansa 4
5.5.2 Device Programming Mechanism: the Control Register...... 4
5.6 Floppu Disk Controller and DNA Controller...cissonsccavunnvnnsnsunae 49
5.6.1 Start-Up Procedures Involving the DMAC and FDC...cvvaaea 31
5.6.2 Processor—Initiated Communication with the DIAC and FDC. 51
5.6.3 DA Controller Orgenization and Operation....cwccsneneas 33
5.6.4 Floppy Disk Control.ler Organization and Operatiow....... 38

ILLUSTRATIONS

Figure

Mumber Title

1—-1 pascal HICRDENGINE Compt’ter 'ENEEEERER N NN NN NN N NN NN I NN N A AN AN NN 1
2-1 Removing the Rear Panel .e.vuuivevcvusuannovncavnannnanvunnnaunnanne 3
2“2 REMDVing the pC Board EEEEEEEREENENNFENNNNENNENNENNNNIE NI R AN SN AN BN 5
2'"3 LDCatiD“ D'F the Opt].Dn S‘Jitth packagES AEassESsEERRSERaNN AR RERARNORRAN \6
2‘4 Air uents I EEEEEEEEEEFEFENFEEREENEEE NN NN N A NI NN NI N SR A A I RN A A AR A I 11
24‘”:) Rear panel .l..llll'.ll.l.l...l*l'.l'l..l..lIll.'.l..llllll.lnﬂllll" 11
3“1 ON/OFF Switch rE R EEEEEEEEFENEENIEE NN EE NN I I I I I B O O O BU B BV N SN BN B0 BE B B AE B L BN A B IE 2N 13
‘q"'.l RESET Button Location S S AR ANEHEERERRD ARG AT AN AR R NN SRR R AN AN 19
43 Locations of the Power Supplie ceeesessssveorsmsnemvnnasnanvrsnnnnns LY
4-3 Measuring and Adjusting a Power SUPPIY veeevcnuvensnuacvuonvcannanns 20
q»..q Fault_Finder Flow Chart R EEEREEEEENERERNRFEENENNNNNNINN NN S & NI NI N N NN 22

5-1 Pascal MICROENGIME Computer Components ..c.ecouvuvscscersnsrsnannnnen 20
5-2 Default Parallel Port Control Register ValueSe.ecaceceronuruanaunnns 48
5-3 Format of First Data Word Transmitted to the FDC.u.vveronnsvoanuanas 33

TABLES
Table
Mumber Title
2-1 Floppy Disk Controller Option Switch Settings ..evecvssvuvsvscvennnn 7
22 Standard System Terminal Switch Setbings veeuvewvesvecmssvsnranensne 8
2-3 System Terminal Specifications Switch Settings s.ceecesvuvmsnannanne 7
2-4 Serial Port Baud Rate Switch Settings .ceewsevsvsensscsnsvrsnussvavans 10

5-1 Communication Bus Structure Control LineSisscssssvsvsavevassncnnanns 27
5-2 Standard General Device AdUTreSS5ES.cerusnsanvnssussnavannanransnsnnns L7
5-3 Interrupt Conditions and Vector AdOresseS.....sssxcssesssennvcannans 30
5-4 Serial Port Cable Connector Pin ASSignmENntS...ecessvvosvnurvcannnnns 3
5-5 Serial POrt AGOTESSES. eevunvvrossnunsaneannnasnanasanananaranannnann F
56 Serial Port Status Register ContentS....sewvesncasnasvsvearcesnsnnns 39

5-7

5-8

5-9

5-10
3-11
5-12
5-13
5-14
5-15
5-16
3-17
5-18
5-19
5~20
5-21
S5-d2
5-23

5-24

Serial Port Control Register 1 Contents...uerssssnsvnancccnsnesunnne
Serial Port Control Register 2 ContentsS.ucescenesessrenurcenonnnnnnn
Serial Port SYM, DLE, and Control Register AdOTESSES..csecovnsnevnnsn
Parallel Port Cable Connector Pin ASSignmentS..s.veevsvecssuoonnuuas
Parallel Ports Control Lines (POPY C)avewcnevuonunnsevmunnonrannunnn
Parallel Ports AQOTESEEE. wuurrransssannsuanssuonnunesnonsosunesssnns
Parallel Ports Control Register Contents....iwciuourvecnancrsnonmnnasn
Floppy Disk Cable Connector Pin Assionments...eesesvuewnusvavannsnnn
DIMAC/FDC AdOresse8. cuvmueonsesnrsarsnesunnncunnsnananrnearansnannnns
DMAC Control Register Contents.wisssvusncsncnunsnaonvesnnernsnnnannn
DHAC Status Register Contents.suersvussnonunesnnannanresvnennnnnnanns
Stepping Motor Rates for FDC Type I CoOMMANGS. e euwnmovnvnmnvuncrnnnns
FDC Command Register Values for Tupe I COMMands..swveensoncnceesunnn
FDC Status Register Contents for Tupe I Commands..sesemnsvvovcnnnnns
FDC Command Register Values for Type IT COMMandS..evsmenrevursnnnnen
FDC Command Register Values for Type II1 CommandS..usssseenuoansssnn
FDC Status Register Contents for Type II and Type 11X

MMM G &t n v wwwunwwn s wnsmunnns s reunnsnssssnsswasesnnsnessonssesnns

FDC Command Register Values for the Force Interrupt Command

(Tgpe Iu)llllllllllllnl.lll.lllll.lllll.n'llln'llll.lllllll.lnl.unn-

37
41
42
44
v
a6
47
50
52
54
55
59
60
61
63
64

64

65

1. OVERVIEW

The WD/90 Pascal MICROENGIME Computer is a desktop microcomputer for
developing and executing programs in the Pascal language. Figure 1-1 shows the
outward appearance of the computer.

Figure 1-1. UWD/90 Pascal MICROENGINE Computer

To create a complete computer system, the user need only add a system
terminal, floppy disk drive, and any other desired I/0 peripheral devices.

This introductory chapter provides an overview of +the hardware
components of the computer: the software provided with the computer; the
mechanical, environmental, and electrical requirements of the computer; and
the computer’s operation. Subsequent chapters describe procedures for using
the computer and also provide detailed information on the operation of the
computer and its components.

1.1 COMPONENTS OF THE COMPUTER

The WD/90 Pascal MICROENGINE Computer is driven by Western Digital’s WD/9000
Pascal PMICROENGINE chip set, a stack-oriented 16-bit processor that directly
executes UCSD‘’s Pascal P-code. The processor and the other hardware
components of the computer are on an 8 by 16-inch board enclosed in & low-
profile (5-1/4 by 16-1/4 by 13-1/2 inch) stylized housing.

Page 1

The WD/9000 processor is a hardware realization of UCSD‘s pseudo P-machine.
The processor is cosprised of five LEI/ZMNOS circuits, each contained in a 40~
pin package. The individual circuits are:

o The Data Chip. containing the microinstruction degoder.
the arithmeetic and logic unit (ALW), and the register
file.

o The Control Chip, containing the macroinstruction
decoder, portions of the control circuitry, the
microinstruction counter, and input/output control
logic.

o Three 22 by 512-bit MICROM chips, containing processor
microinstructions.

The processor uses 4 power supplies (+5V, +12V, =12V, and -5V and rumns off a
3 Mz clock signal that is subdivided into 4 nonoverlapping phases (/5
nanoseconds per phase). All I/0 signals are compatible with transistor-
transistor logic (TTL).

In addition to the five processor chips. the board contains:

o 64K bytes (32K words) of random—access memory (RAMD.

o Two RS-232 asynchronous serial ports with switch-
selectable baud rates from 110 to 19:.200 bits per
second.

o Teo 8-bit parallel ports.

o A Floppy Disk Controller that :is switch-selectsble for
single or double-density 5-1/4 or 8-inch floppy disks
and which can control up to 4 drives of the same tuype.
The Floppy Disk Controller operates under control of
the Direct HMemory Access Controller.

1.2 PASCAL OPERATIMNG SYSTEN

The software provided with the Pascal HNMICROENGINE Computer is the Pascal
Operating System developed at the University of California at BSan Diego
(UCSD). This operating system includes:

o A Pascal Compiler.

o A BASIC Compiler.

o A File Manager.

o A Screen—Oriented Text Editor.

o A Debugging Systea.

Page 2

The operating system is available in any of the following forms:

o One 8-inch single-density floppy disk.

o One 8-inch double-density floppy disk.

o Two 5-1/4-inch single-demnsity floppy disks.

o Two 5-1/4-inch double-density floppy disks.
Chapter 3 of this menual describes the procedures for loading the operating
system into the computer. Complete information of the use of the operating

system is provided in the Pascal II1.0 Operating Sustem Reference Manual.

1.3 REQUIREMENTS OF THE COMPUTER

The Pascal MICROENGINE Computer has a straight forward set of easily satisfied
requirements:

o The computer requires a flat, hard surface to hold the
board enclosure, which i1s 5-1/4 inches high, 16-1/4
inches wide, and 13-1/2 inches deep.

o The computer can operate in temperatures in the range
0-50 degrees C. Humidity can range between 0% and 95X
without affecting the computer’s operation.

o The computer normally runs on 110 volts AC. Optionally,
the wuser can order a Pascal MICROENGIME Computer which
runs on 220 volts AC. In either case, the line frequency
range is 48-63 Hz.

1.4 COMPUTER OPERATION

Commmication between components of the computer -- processor, memory.
peripheral ports, and controllers -— is achieved via a processor-controlled
bus structure. This structure is comprised of an address bus and latch, a
bidirectional data bus, and several control lines.

The processor initiates communication with a peripheral device or a location
in memory by loading the appropriate address onto the address bus. A
peripheral device can initiate communicaton with the processor by generating
an interrupt. Tflemory cammot initiate communication with the processor; all
processor-memory communication is initiated by the processor. In addition, the
Floppy Disk Controller operates under control of the Direct Memory Access
Controller, allowing data transfers between a floppy disk and memory without
involving the processor. Each of these communication mechanisms is discussed
in Chapter 5.

Page 3

2. INSTALLATION PROCEDURES

When a new Pascal MICROENGINE Computer is received, the first step is to
unpack the components and verify that all of the items listed on the packing
slip bhave been included and are intact. {In the event that any of the
components are missing or have been damaged in shipping: contact your
MICROENGINE Company representative immediately.)

After verifying that the delivery is in order. take the steps outlined in this
chapter to install the computer.

2.1 SETTING OPTION SWITCHES

The Pascal MICROENGIME Computer provides switches for specifying the
characteristics of the floppy disk containing the Pascal Operating System. for
providing information about the system terminal, and for selecting the baud
rate for each of the two serial ports.

2.1.1 Opening the Computer Housing

The first step is to open the computer housing. Begin by turning the computer
on its side with the ON/OFF switch toward the top. (CAUTION: the computer
housing has sharp edges. BDe careful not to scratch your table top.) Remove
the four screws located on the rear panel as illustrated in Figure 2-1.

Slide the rear panel and attached PC board about half way out as illustrated
in Figure 2-2.

Figure 2-1. Removing the Rear Panel Figure 2-2. Removing the PC Board

Page 5

]

ONINIL _,l\agag:gzggmzmggg:gggm%EEEE@E% _ I T. Avauy xdowaw e

H#OSS300Hd | SH3J4NE TYNDIS ANV HOSSIOOHd 2 TOULNOD AHOWIN § 3| S 2a s a v e Do v et e

o et— : = ” — B D £ 1)
@ RIRIRERRRIEH A HE A T
BRIttt ls

1 1 §— % .
@ RIRIRRRERIR LR
RNl tTalalalnle

¥ R N —
DL.EELErPrM,T_WLTrWTruPrWL
== L T

i
U AEEEEEEE
21907 E:mmmﬁzx_% =
aNY 300953d ss3gchv

£ 2 MI 3

TOHINOD YINQ ONY MSIA AddOT4

4 02208230 0CICCSCooREIn = QzoaooIn o222 ns SggoeoTesoRonn o

H O “vooooanoonnmoooos O | ‘0 TQuooocofoocoomonos O D Sooowopoosos O 10 _..W.munnﬂuuﬂuﬂuuﬂumnlmn_mum‘ﬂ LI I
| 1HOd %SI0 AddO 74 _ . 1HO/131TvHVd | 81HOdIVIHIS | V.1HOd 1vIH3S } Thve |
wn
L
I
&
=
@ 42 -
I ANn 2B m w
Of « — =0
x @ S8 = o<t
oLzl = oEpe 255
g E7) Wel 0 <op .
o) TC o D = [l elunlsioloal—
FEs p—Srall B w3
& EQ T s » oD
O Z - =0 ©
233 S =
o0~ T —
<
-
>

Location cf the Option Switch Packages
Fage 6

Figure 2-3.

2.1.2 Setting the Floppy Disk Controller Option Switches

Locate the Floppy Disk Controller option switch package {component
designation L9) on the board as shown in Figure 2-3.

This package contains two switches. Switch 81 OFF corresponds to single-
density mode: and switch 1 ON corresponds to double-density mode. Switch §2
OFF corresponds to B-inch disks. and switch 2 ON corresponds to 5-1/4-inch
disks.

Set these switches according to the characteristics of the floppy diskis)
containing the Pascal Operating System. Table 2-1 summarizes the possibile
combinations of disk characteristics and the corresponding option switch
settings.

Table 2-1. Floppy Disk Controller Option Switch Settings

- e e o e it 18 [T rspe—

Operating System Resides On: Set 81 to: Set 82 to:
8-inch double-density disk ON OFF
8~-inch single—density disk OFF OFr
5-1/4-inch double-density disks OM O
5~1/4-inch single-density disks OFF ON

S P e

Page 7

2.1.3 Setting the System Terminal Specifications Switches

After setting the Floppy Disk Controller option switches: the next step is to
provide some information about the system terminal, i.e.. the terminal to be
uvsed as the vehicle for communication between the computer and the user. 2]
hardware option switch package (X14) is provided For supplying this
information, located as shown in Figure 2-3.

Eight switches are provided.

Set these switches according to the characteristics of the system terminal.
Table 2-2 outlines the settings for~ a standard system terminal: Table 2-3
describes the function of each switch. The controls on the sustem terminal
must be set to inhibit parity generation (Operating System constraint).
Switches 57 and 58 must be set to match the number of bits per character
generated by the terminal.

Yable 2-2. Standard System Terminal Switch Settings

Switch Setting
51 1 ("OFF" or "OPEN™)
82 0 ("ON" or "CLOSED™)
53 0 {"ON" or "CLOSED™)
54] ("OFF" or "OPEN")
85 - Don‘t Care
S4 1 ("OFF" or "OPEN"™)
57 X (Bite per character: must
58 y match setting on terminal.)

PARITY MUST BE TURNWED OFF AT TERTIIMAL

- — o . e o s v e v e P]

Pag= 8

Table 2-3. System Terminal Specifications Bwitch Scitings

- st an Ame ML 042 oot bt et S a0 et 2k e S

Switch Function

et net oy e o e 1o i e arom s e e breg

51-3 Select the transmit and receive clock:
83 §2 &1

0 0 0 - Transmit and receive clock input (1X)
0 0 1 - Rate 1 (32X)

0 1 0 - Rate 2 (32X

0 1 1 - Rate 3 (32X)

1 0 0 - Rate 4 (32X)

1 0 1 - Rate 4 - 2 (690

1 1 0~ Rate 4 - 4 (128X)

1 1 1 - Rate 4 - 8 (2560

54 In asynchronous mode (switch 6=0), controls the

alternate Receiver clock rate:

0 - Receiver clock rate determined by

switches 1--3.

1 - Receiver clock rate = Rate 1.
In synchronous mode (switch é=1), controls SYM
character stripping:

1 - SYHN character stripping enabled.

0 ~ BYM character stripping disabled.

85 Controls whether parity is odd or even:
1 - odd parity.
0 ~ even parity.

856 Controls the character mode:
1 ~ synchronous mode.

0 — asynchronous mode.

57-8 Select the number of bite per character:
58 &7
O 0 - 8 bits.
9 1 -7 hits.
1 0 - 6 bits.
1 1 -5 bits.

where: "0 corresponds to "OW' or “CLOSEDY
"1 corresponds to “OFF” or “OPEN"

Page 9

2.1.4 Setting the Serial Port Baud Fate Switches

Locate the serial port baud rate selection switch package (X15) on the board ac
shown in Figure 2-3.

Four switches are provided for easch serial port, allowing 16 possible rate
selections for each port.

Set the switches for each serial port o the baud rates appropriate to the
type of device to be conmnected to that port. Table Z2-4 outlines the settings
for commonly-used baud rates.

Table 2-4. Gerial Port Baud Rate Switch Settings

Switch Settings
Port A Port B

Baud Rate 1234 5678
50 0000 0000
75 1000 0001

110 7100 0010
134.5 L1000 0011
150 00190 0100
300 10190 0101
600 01190 01190
1200 1110 0111
1800 D001 1000
2000 1001 1001
2400 0101 1010
2600 1101 1011
4800 D011 1100
7200 L011 1101
2600 2111 1110
19200 L1111 1111

where: "O0" corresponds to "ON' or "CLOSED”
"1" correspords to "OFF" or “OPEW"

2.1.5 Reclosing the Computer Housinj

The computer housing can be reclosed by reversing the steps outlined in
subsection Z2.1.1. Slide the PC boa~d and rear panel back in place and then
attach the rear panel by replacing the four screws.

Pag2 10

2.2 INSTALLING SYSTERM COMPOMENTS

Once the option switches have been set, the various components of the system
can be installed.

2.2.1 Installing the Computer

Place the housing containing the Pascal MICROENGINE Computer on a flat, hard
surface. Be sure that neither the air intake vent nor the air outlet vent is
blocked. As illustrated in Figure 2-4, The air intake vent is located on the
bottom panel of the computer housing. and the air outlet vent ic located on
the rear panel.

Be scure that the computer is located near an electrical outlet, preferably
within six feet, the length of the power cord.

AIR OUTLET VENTS J4 FLOPPY DISK

J3 PARALLEL PORT

J2 SERIAL PORT B

J1 SERIAL PORT A

ON/OFF SWITCH

POWER
CORD CONNECTION

RESET BUTTON

AIR INTAKE VENTS

Figure 2-4. Air Vents Figure 2-5. Rear Panel

2.2.2 Connecting the Peripherals

Before connecting any peripheral device to the Pascal MICRCENGINE
Computer, review the documentation provided by the manufacturer of that
device. Perform the specified inspections and off-line start-up procedures.

After completing the peripheral device pre-installation iinspection and
verification procedures. locate the port connections on the rear panel of the
computer housing, illustrated in Figure 2-5.

Connect the floppy disk drive cable to the comnection labeled J4 FLOFPY DISK.

Page 11

Cennect the cable from the terminal to be used for sustem/user compunication
to the connection labeled J1 SERIAL PORT A.

{# other devices are to be connected to the auxiliary serial port snd/or the
parallel port, connect those cables accordingly.

vhen a device 1z connected to the peripheral ports, the cable connector must
he wired for either true dats or false data. For true data, conmect the Thu
and TDI lines (pins 32 and 9, respectively to ground {pin 7}. For false
data, cownect TDO and TDI to the +5 volt supply (pin 26).

2.2.3 Flugging In the Power Cord

Next, locate the OM/OFF rocker switch on the rear panel of tho computer
housing, as illustrated in Z-5.

BE. SURE THAYT THIS SUWITCH IS SET TOQ OFF, Then. locate the power cord
connection near the ON/OFF switch on the rear panel. VPlug the system power
cord into this connection.

1f the computer was ordered to operate on 110 velts, the power cord is
delivered with & standard wall outlet plug attached. If the system was
ordered to operate on Z20 volts, the power cord is delivered without an outlet
piug. Attach an appropriate plug to the cord.

After AC power is applied. the system is ready for operation. Operating
procedures are outlined in Chapter 3.

Pagz 12

3. OPERATING PROCEDURES

When the Pascal MICROENGINE Computer is properly installed (see Chapter 2,
operation consists primarily of starting and stopping the system.

3.1 STARTING AND STOPPING THE SYSTER

System start-up involves three operations:
1. Turn on the power.
2. Load the system diskette into the disk drive.
3. Depress the RESET button.

3.1.1 Turning On the Power

Turn on the power by setting the ON/OFF rocker switch to (M. The OM/OFF
switch is located on the rear panel of the computer housing, as illustrated in
Figure 3-1.

The ON/OFF switch lights when set to ON to indicate that the computer is
receiving power. (If the switch fails to light, make sure that both ends of
the power cord are plugged in properly. If the switch still fails to light,
the user can assume that the wall outlet is not suppluing power, since the
switch light is wired directly to the power cord conwection.)

RESET POWER CORD ON/OFF SWITCH
BUTTON CONNECTION

Figure 3-1. ON/OFF Switch

Page 13

3.1.2 lLoading the Systeas Software

The software provided with the Pascal MICROENGINE Computer is the University
of California ot San Diego (UC5D) Pascal Operating Uuystem. This system
inclwdes:

o Pascal Compiler

o BASIC Compiler

o File IManager

o Screen-Oriented Text Editor
o Debugging System

To load the operating system, simply load the operating system floppy disk
into floppy disk drive (0) and depress the RESET button located next to the
power cord connection on the rear panel (see Figure 3-1).

MOTE: The MICROENGINE Company recommends that whenever
the system is started, the steps just discussed
be performed in the order described. That is,
the ON/OFF switch should be set to OM before a
floppy disk is loaded.

The operating system announces itself and then generates the line:
Command: E{(dit, R{un, F(ile, C{omp. L{ink, X(ecute, A(ssem, D{(ebug

to the screen of the system terminal, indicating that the system has been
loaded successfully and is ready to accept any of the listed commends. The
Pascal II1.0 Operating System Reference Manual provides complete information
on the user’s options at this point. In the event that the command prompt
line fails to appear repeat the above procedures carefully. If the prompt line
still fails to appesr consult Section 4.2.

3.1.3 Stopping the System

At the end of a session with the Pascal MICROENGINE Computer system. simply
remove the software floppuy disk{(e) from the floppy disk drive(s) and set the
ON/OFF switch to OFF.

MOTE: The HICROENGIME Company recommends that these
procedures be performed in this order whenever
the system is stopped. That is, the floppy
disk(s) should be removed before the OW/UFF
switch is set to OFF.

Page 14

3.2 CHANGING HARDWARE OPTION SWITCH SETTINGS

Chapter 2 outlines the procedures for setting the Pascal MICROEMGIME Computer
hardware option switches as part of the system installation process. (Switches
are provided for specifying the floppy disk, system terminal and baud rates
for the serial ports.) If the user wishes to change these settings, he follouws
the same procedures, outlined in Chapter 2.

Page 15

4. TROUBLESHOOTING PROCEDURES

The Pascal HMICRDEMGINE Computer requires no preventive maintenance. fhis

chapter outlines procedures that are required only if a
the operation of the system.

problem arises with

After a general discussion of the troubleshooting process, this chapter
describes specific procedures, presented in terms of the "symptom” displaued
by the system. That is, this chapter details the steps to he taken if:

o the Pascal Operating System fails to announce itself

on the system terminal upon loading;

o data transfers to/from the system termingl, the line
printer or other device comnnected to the parallel

ports, or a floppy disk fail, or

o the system exhibits none of the above suymptoms but

operates erratically.

The last section of this chapter summarizes the total fault-Finding process
for a complete Pascal MICROENGINE Computer system, again in flow chart form.

MOTE.: This chapter assumes that each of the system’s

peripheral devices was thoroughly inspected and tested
before it was installed. If this is not the case. The
MICROENGIME Company strongly recommends that the user
perform these procedures before beginning the fault-

finding process. Peripheral inspection and testing

procedures are discussed in subsection 2.2.2.

4.1 THE TROUBLESHOOTING PROCESS: A GEMERAL DISCUSSION

Fault-finding is largely a process of elimination.
verification procedures outlined in this chapter, the

By performing the
user systematically

rules out possible sources of the problem until the melfunctiowing component
is isolated. The procedures reguire a high-quality oscilloscope capable of
resolving pulses of approximately 200 nancseconds and a high input impedence

(10 meg ohms or greater) digital voltage meter.

Unce the defective component has been isolated, three possible courses of

action are open:

0 Repair the component, following appropriate wiring

diagrams.

o Install a replacement component, obtained from a the
MICROENGIME Company distributor or ordered directiy
from The MICRCEMGIME Company. A distributor list is
available from any MICROENGINE Company representative.

o Return +the component for service. If a peripheral

device is malfunctioning, return the device to

Page 17

Lt

manufacturer for service according to that
manufacturer’s service agreement. In the case of @
malfunctioning Pascal PMICROENGINE Computer component.
send that component to The MICROENGINE Company’s
factory for repair. If the computer is under
warranty, the customer is responsible only for
shipping the component to The T™MICROENGINE Company;
The MICROENGIME Company provides required parts and
labor and return shipping. If the computer is not
under warranty, there is a fixed repair fee and the
customer is responsible for all shipping. {For
details, see the Pascal MICROENGIME Computer warranty
statement and factory service agreement.

4.2 SYMPTOM 1: OPERATING SYSTER FAILS TO AMMOUNCE ITSELF

ot - ————

Mormally, when the Pascal Operating system is loaded, it announces itself
on the system terminal and prompts the user to enter a command. If the
announcement and prompt line do not appear when the operating system is loaded,
follow the procedures outlined in this section.

4,2.1 Repeating the Software Loading Procedure

First, try pressing the RESET button. This button is located on the rear panel
of the computer housing, as illustrated in Figure 4-1.

1f the operating system still fails tc announce itself, try reloading the
floppy disk and pressing RESET. I1f this operation does not correct the
problem, verify that the system terminal ON/OFF switch is set to ON. 1If it is
not, set the switch to ON and then press the RESET button. If the operating
system still fails to announce itself, try loading the backup operating system
floppy disk and pressing RESET.

4.2.2 Checking the Floppy Disk Ccontroller Option Switches

1# none of the procedures outlined in subsection 4.1.1 correct the prob lem:
check the settings of the Floppy Disk Controller hardware option switches.
{As explained in subsection 2.1.2, these switches are set according to the
size and demnsity of the floppy disk or disks being loaded.)

If the switches are not set appropriately, change their settings as described

in Section 2.1.1. Reclose the computer housing. reload the floppy disk, and
press the RESET button.

Page 18

Figure 4-1. RESET Button Location Figure 4-2. Location of the Power
Supp lies

4,2.3 Measuring and Adjusting the Power Supplies

If the operating system still fails to announce itself after the Floppy Disk
Controller option switch settings have been checked, verify that the system
power supplies are functioning properly and adjust them if they are not.

Begin by unplugging the system and opening the computer housing. Turn the

computer on its side with the ON/OFF switch located at the top. {Caution:

the computer housing has sharp edges, so be careful not to scratch your

table top.) Remove the four screws on the computer panel and slide the rear

panel and attached PC board all the way out of its mounting rails. Slide the

top cover all the way out of its mounting rails and then replace the printed

circuit board part-way back into its mounting rails. Locate the power supplies
as illustrated in Figure 4-2.

Mote that the board includes 4 adjustable power supplies: +5 volts, +12 volts.

-12 volts, and -5 volts. Ieasure the voltage of each by clipping a digital
voltmeter across each pair of terminals as illustrated in Figure 4-3.

Page 19

Figure 4-3. TMeasuring and Adjusting a Pouer Supp 1y

If any of the supplies are not producing proper voltage, adjust them to within
10 millivolts of their nominal level. Insert a screwdriver into the slot
provided on the power supply ad justment wheel for this purpose; turn the wheel
to the right to increase the voltage or to the left to decrease the wvoltage.
(See Figure 4-3.)

MOTE: When replacing a power supply f(or the entire
board), measure the voltage produced by each new
supply and, 1f necessary. adjust it by tollowing
the procedure just outlined.

After verifying that the hardware option switches are set correctly, the next
step depends on whether the floppy disk drive is active or not. (Activity on
the drive can be detected by clirking noises produced when a Floppy disk is
loaded into it.) The favult-finder #low chart presented in Figure 4-4
diagrams the steps to be taken in either sitvation; see Section 4.4.

4.3 SYMPTOM 2: TRANSFERS TO THE SYSTEM TERMINAL FAIL

If the Pascal Operating System announces itself on the system terminal and
accepts commands from the terminal, but is unable to transmit data to the
system terminal successfully. check the configuration of the Pascal Uperating
System. See the Pascal I11.0 Operating System Reference Panual.

Pige 20

4.4 SYRPTOM 3: TRANSFERS TO THE PARALLEL PORTS DEVICE OR FLOPDY DISK FAIL

R

If the system is unable to perform successful transfers to the device
connected to the parallel ports (e.g.. a line printer) or to the floppy disk,
perform the procedures diagrammed in Figure 4-4; see Section 4. 4.

4.5 SYMPTOM 4: SYSTEM FAILS TO PASS DIAGMOSTIL PROGRANM

- -

If the system displays none of the symptoms discussed in Sections 4.2 - 4.4
but behaves erratically, execute the system diagnostic progrem. Replace
malfunctioning components according to the directions supplied by the program.

4.4 THE TROUBLESHOOTINE PROCESS: A SUMMIARY FLOW CHART

- oo pom ore T T pnp—

Figure 4-4 presents a flow chart diagramming the complete fault-finding
process.

MOTE: Use of this flow chart assumes a high level of
competence with advanced digital circuite and a
background in the wuse and operation of all
peripherals used in the comp lete Pasral
MICROENGINE System. Users not familiar with
digital logic are advised to return the comp lete
unit to The WMICROENGINE Company for comprehensive
auvtomated analysis. This procedure saves the
user downtime and learning delays encountered
when trying to fault-find an advanced electronic
unit such as the Pascal MICROENGINE.

To initiate use of the fault-finder flow chart, the following conditions
must be met:

1) All line cords are plugged in, all power switches are
"OM" with appropriate indicator also "ON", and all
peripherals are on-line.

2) Operating system disk is in disk drive © and is in
"RESET" condition.

3) User must have a high quality oscilloscope capable
of resolving 200 nsec pulses and a high input
impedence (10Meg ohm or greater) D.V.M. for accurate
readings without circuit loading.

4) Pre-installation inspection and testing procedures
have been performed for each peripheral device.

Page 21

Figure 4-4.

FaJslt-Finder

Flow Chart

FAULT-FINDER *
FLOW CHART
START }
-/

\

CHECK OPERATING
SYSTEM
CONFIGURATION

OS YES
ANNOUNCED —
ON CRT

NO

FLOPPY
ACTIVITY

\

CORREC)
UNDAMAGED
DISK

REPLACE DISK AND
GgoTo (B

\//

DISK, DISK DRIVE
OR INTERCONNECTS
ARE SUSPECT.
ISOLATE AND GO
0@

=200 NSEC

PULSES ON

PIN 27 OF
FD1791

DM 1883 IS SUSPECT
IEPLACEANDGOTO [*
(®) OR RETURN
JNIT TO WID

3&40N
#D1791 ARE LOW
AFTER MASTER .
RESET
PUSHED

REPLACE CHIPS
PER INTERACTIVE
DIRECTIONS

EXERCISE
SYSTEM
PERIPHERAL
FUNCTIONS

CAN
DATA BE

TRANSFERRED TO
SYSTEM

TERMINAL

CAN
DATA BE
TRANSFERRED TO
LINE PRINTER

DATA
TRANSFERRED TO
FLOPPIES

EXERCISE
INTERNAL
STRUCTURES

RUN
SYSTEM
DIAGNOSTICS

ERROR

(LOST BIT,

INVERTED,
TC)

YES

SYSTEM
FUNCTIONAL
READY FOR USE

STOP

Figure 4-4.

NO FLOPPY
ACTIVITY

SWITCH DISK TO
PROPER DRIVE AND
GoTo (B

1S
PROPER
DRIVE
SELECTED

REPLACE DRIVE
AND GO TO (&)

CHIP SET SUSPECT
RETURN TO W/D

PROBLEM
CORRECTED

RETURN DEFECTIVE
DRIVE TO
MANUFACTURER

Page 23

Fault-Finder Flow Chart (Continued)

#CHIPSET 1S
SUSPECT. RETURN
UNIT TO W/D

PINS

4 & 13 ARE LOW

PINS 2817 ARE
HI

DM1883

FD1791 IS SUSPECT
REPLACE AND GO
70 (® OR

RETURN TO W/D

DATA
TRANSITIONS
ON PINS 7-14
OF FD1791

M.1.B. DEFECTIVE
RETURN UNIT
TOW/D

DATA
TRANSITIONS
ON PINS 8-15 ON
WwD1931
(X18)

INTERNAL LOGIC
ERROR. RETURN
TO WID

PIN
16 GOES LOW
WHEN MSTR-RESET
PUSHED

WD1931 SUSPECT.
REPLACE AND GO
TO (A) OR RETURN
TO WiD

CRT OR INTERCONNEC-
TIONS ARE SUSPECT.
RECHECK ALL CABLES
AND WIRING DIAGRAMS.
REFER TO CRT CUSTO-
MER MANUAL FOR
PERFORMANCE VALI-
DATION TESTS.

Figure

NO DATA TRANSFER

TO LINE PRINTER

KEYBOARD IS SUSPECT.
REFER TO KB MANUAL
FOR PERFORMANCE
VERIFICATION.

WD1931 IS SUSPECT.
REPLACE AND GO TO
(® ORRETURN TO WID.

M.1.B., MEMORY OR
4CHIPSET {S
DEFECTIVE. RETURN
UNIT TO WID.

79 (8225A) 1S
SUSPECT. REPLACE
AND GO TO (&) OR
RETURN UNIT TO W/D.

A WRITE FAULT FLAG
HAS BEEN RECEIVED

BY THE FD1791 (A16).
EITHER DISK DRIVE,
DiSK, OR INTERCON-
NECTIONS ARE
INCORRECT. REFER TO
APPROPRIATE MANUALS.

NO

4-4,

DATA
TRANSITIONS
ON PIN 27 OF X18
(PORT A) OR X19
(PORT B) WIKB
INPUT

DATA
TRANSITIONS

ON PINS 7-15 OF d

X18 OR X19

DATA
TRANSITIONS

ON PINS 27-34 OF ,
79 WIKB /
INPUT

DATA

TAANSITIONS
ON PINS 18-25 OF td
29 WiKH
INPUT

LINE PRINTER AND

L.P INTERCONNEC-
TIONS SUSPECT.
REFER TO L.P. MANUAL

NO DATA TRANSFER

TO FLOPPY

Fault-Finder Flow Chart (Continued)

DISABLE "WRITE
PROTECT AND
GO TO@

1S
DISK “WRITE
PROTECTED’

PUSH MASTER RESET. iF
PINS 3 & 39 DON'T GO
LOW, RETURN UNIT TO
WID. IF PINS GO LOW,
GO 70 (B). IF PROBLEM
PERSISTS RETURN

UNIT TO WID.

PINS
3 & 39 LOW
ON X18 (PORT A)
OR X149 (PORT B)

KEYBOARD IS SUSPECT
REFER TO KB MANUAL
FOR PERFORMANCE
VERIFICATION.

DATA

TRANSITIONS ON
PiN 27 OF X18 OR X19
WIKB INPUT

WD1931 IS SUSPECT.
REPLAGE AND GO TO
(® OR RETURN UNIT
TO WID.

DATA
TRANSITIONS ON
PINS 8:15 WIKB
INPUT

M.1.B. yCHIPSET, OR
MEMOQRY IS SUSPECT.

DATA

TRANSITIONS ON
PINS 7-14 OF FD1791
AND PINS 3 & 2 LOW
PIN 32 Hi

AND WIRING RETURN UNIT TO WID.
DIAGRAMS FOR
VERIFICATION
DiSK DRIVE IS STILL
“WRITE PROTECTED”
OR INTERCONNECTIONS
ARE OPEN OR
INCORRECT. RECHECK
DRIVE UNIT AND CABLE.
RETURN UNIT TO WID
\F PROBLEM PERSISTS.
PiN
33
Hi

Page 24

DISK DRIVE IS
SUSPECT. REFER TO
CUSTOMER MANUAL
FOR PERFORMANCE
VERIFICATION.

FD1791 OR DM 1883 IS
SUSPECT. REPLACE
CHIPS OR RETURN
UNIT TO W/D.

5. THEORY OF OPERATIONS

This chapter describes the operation of the following Pascal MICROENGINE
Computer components:

0 Pascal MICROENGIME processor

0 Memory

o Serial ports

o Parallel ports

o Floppy Disk Controller and DMA Controller
Before discussing the operation of these components individually, this chapter
presents an overview of the mechanisms for communication between the processor

and memory and between the processor and the ports and controllers.

5.1 PROCESSOR/MENMORY AND PROCESSOR/PERIPHERALS COMMUMICATION

The Pascal MICROENGIME processor communicates with the peripheral ports and
controllers and with memory via a 16-bit data bus, a 16-bit address bus, and
several control lines. These busses and control lines emanate from a processor
controlled bus structure. This structure is comprised of a 16~bit address
bus, 16-bit address latch, a 16-bit bi~directional data bus, and latches and
bus drivers as required for the control lines. The key control lines in this
structure are listed in Table 5-1.

The processor initiates communication with & peripheral device or a location
in memory by loading the appropriate address onto the address bus. A
peripheral device can initiate communication with the processor by requesting
an interrupt. (HMemory cannot initiate communication with the processor; all
processor-memory communication is initiated by the processor.) The following
subsections describe each of these communication mechanisms.

In addition, the Floppy Disk Controller operates under control of the Direct
Memory Access Controller, allowing data transfers between a floppy disk and
memory without involving the processor. This type of communication is
described in section 5.4.

Page 25

Figure 5-1 illustrates the location of these components on the PC board.

3 .C — 1
i SERALPORTA | SERIALPORTS PARALLELPCRT FLOPPYDISKPOHT
L I CSRSRSSSSS, 0| O SSRERURMSSSSS O |0
- 2999008 _nﬂnq ARAGATRINS ELT T
- ;
waBaHHHE Ei C10:] a0
aunuAnuAnG
S ADDRESS DECOCE AND
. ¢ g8, INTERRUST LOGIC
. \ . . : Iié ! ;l E SR
MEMEMEMEMEMENMEMN § H :
a33adiadfug i gagind H $ ——
g 88
SRSt AN RS L]
sffafyadicifafiaigagin JTOTp—
mwﬂ&mn'
5 b o by i V3 ogeog g
g aoa § e goe S . - y £d
58 8
7 » REEEEEE
LRI P
sptesdsr g ingsdnngay |4 E- g
o o o o] (] o § E
- . oo
MEMOWY (_}(JN TRDL &

64K MEMORY ARRAY

LEDCETEEET
QH.WQEHRWGFREDNW

1 B

unouutaounucuuecdbb g ;

FLOPPY DISK AND DMA CONTROL

RQQGPNﬂFUBDHGQUR“UUH

adunuuunnhunauuna‘ﬂm

e ,1 il lJ ‘um i JlJ[Ll

S i

5E

FEBAEHEES R ETEEATE

|

AELTLTDEDS

i
H

wvoeoean

‘bban‘nuncréc:nan:;:‘cnna

g »
PROCESSOR AND SIGNAL BUFFERS “PROCESSOR

BUBGIY @

TIMING

Figure 5-1. Pascal MICROENGINE Computer Components

Page 26

Table 5-1.

Communication Bus Structure Control Lines

Line

st s ot

SYNC

REPLY

DIN (Data-In)

DOUT (Data-Out)

WB (Write/Byte)

10, 11, I2, and

IACK (Interrupt

BUSRE®@

BUSGRNT

BUSY

COMPUTE

Function

e 0 wren e o o st

used by the processor to initiate a date
transfer operation

used by the ports and controllers to respond
to the processor’s data transfer signals.

used by the processor to cause the Read Dato
to be enabled onto the data bus.

used by the processor to cause the Write Data
to be enabled onto the data bus.

used by the processor to signify a buyte
(rather than word) output operation.

I3 (Interrupts)

used by the ports and controllers to request a
processor interrupt. (Only IQ is used for all
interrupts in the Pascal MICROEMGINE Computer)

Acknowledge)
used by the processor to signify that it is
responding to an interrupt.

used by the DMA Controller to request access
to a bus for a word transfer operation.

used by the processor to signal the DhA
Controller that the requested bus is being
relinquished to the controller for a word
transfer operation.

used by the DA Controller to signal that the
bus requested by the processor is not
currently available.

used to control execution of microinstructions
by the processor. This line is tied true.

Page 27

5.1.1 Processor/Herory Communication

To initiate communication with a location in memory, the processor loads @ 16~
bit value between 0000 and EFFF onto the address bus. Any value in this range
is a valid memory address and alerts memory for communication; the particular
value corresponds to a 16-bit word at one of the 32,000 locations in memory.

The processor also signals either the Data-In (DIM) control line or the Data-
Qut (DOUT) control line, as appropriate to the type of 1/0 to be performed.
The memory unit acknowledges the communication and generates REMLY to the
processor and then responds to the DIN or DOUT line. On & Read operation, the
memory unit places the contents of the addressed word onto the data bus; on a
Write operation, data from the data bus is loaded into the addressed word in
MEMOT Y.

5.1.2 Processor-Initiated Communication with Peripheral Devices

To initiate communication with a peripheral device, the processor loads a 14~
bit address onto the address bus, as when addressing memory. Unlike a memory
address, which has a simple one-for-one correspondence with a word in memory,
a device address has two components: bits 4-15 identify the port or controller
to which the desired device is attached, and bits 0-3 identify the desired
element within that port or controller. For example, the value:

FC20 (:=1111 1100 0010 Q000)

addresses the control register of serial port B. FCZ2x is the general address
of serial port B, where the value of "x" (0 in the example above) identifies
the particular element (the control ra2gister in the example) of the serial
port.

The processor addresses all peripheral devices in this manner, with one
exception. The general address FClx references either serial port A or the
system terminal specifications hardware option switches. (lhese switches are
discussed in section 2.1.) If bit 3 is set, these switches are activated and
bits 0-2 are ignored; if bit 3 is not set, serial port A is addresced and bits
0 and 1 identify the desired element of that port.

Table 5-2 lists the standard general device addresses. The values for

selecting particular device elements are detailed in subsequent sections of
this chapter.

Bage 28

Table 5-2. Standard General Device Addresses

o —n o

Address thhit

FC7x Parallel ports

FCéx Reserved

FESx Autoload

FCAx Reserved for Interrupt priority latch

FC3x Floppy Disk Controller and DHA
Controller

FC2x Serial port B

FCix Serial port A and system terminal
specifications switches

FEOx System value of nil

As in & memory access, the processor also signals the DIN or DOUT line when
addressing a port or controller. The port or controller acknowledges the
commnication and generates REPLY to the processor and then responds to
the DIM or DOUT line. On a Read operation, the device places data on the data
bus; on a Write operation, dats is loaded from the data bus into the device.

5.1.3 Device-Initiated Communication with the Processor: Interrupts

When an I/0 device requires service, it signals the I0 control line. When the
processor detects the signal, it enables the I0 line and disables the I1, 12,
and I3 lines by loading the general device address I'C4x onto the address bus,
with:

0001

as the wvalue of "x." The device then places a vector address on the data
bus. A vector address is 8 code used to direct the appropriste interrupt
service routine. The processor signals the IACK control line to signify that
it is responding to the interrupt.

If wmultiple interrupts occur simultaneously. the processor responds to them

one at a time, in order of priority. Table 5-3 1lists the interrupt
conditions, their priorities, and the associated vector addresses.

Page 29

Table 5-3. Interrupt Conditions and Vector Addresses

Vectur
Interrupt Priority fddress
bna Highest 0020
Serial port A receive 0024
Serial port B transmit 0028
Serial port B receive 0020
Serial port A transaeit 0030
Serial port A or B exception 0034
Parallel input port 0038
Parallel output port 2 Lowest 003C

5.2 PASCAL NMICROENGINE PROCESSOR

The Pascal HMICROENGINE Computer is driven by the Pascal MNICROENGINE
processor. This processor is comprised of five LSI/MOS circuits, each
contained in a 40-pin package. The chips are:

o The Data Chip, containing the microinstruction decoder,
the Arithmetic and Logic Unit (ALD), and the register
file.

o The Control Chip, containing the macroinstruction
decoder, portions of the control circuitry, the
microinstruction counter, and input/output control
logic.

o Three 22 by 512-bit MICROM chips, holding the
microinstructions.

The processor uses four power supplies (+5 volts, +12 volts, -12 volts, and
-5 volts) and runs off a 3-PHz clock signal that is subdivided into 4
nonover lapping phases (75 nanoseconds per phase). All 1/0 signals are tri-
state.

Figure 5-1 demonstrates the location of the processor chips on the board.

The processor chips are interconnected by an 18-bit microinstruction bus which
provides bidirectional communication between chips for addresses and
instructions. The 16-bit data access bus provides access to the inter-—
component communication bus structure. As described in section 5.1, this
structure allows the processor to comsunicate with memory and the peripheral
ports and controllers.

Pace 30

For more information on the Pascal MICROENGINE processor, see the "WD/9000
Pascal MICROENGINE Microprocessor Chip Set” data sheet.

5.3 MEHMORY

R pE——

The Pascal MICROENGINE Computer includes 32 16K RAM chips, providing 64K bytes
(32K words) of M05 dynamic random access memory (RAM. Each Rait chip is
organized as 14,384 words by 1 bit, and is packaged in a standard 1é&-pin dual
in~line package. Figure 5-1 illustrates the location of the memory package on
the board.

Section 3.1 describes the mechanism by which the processor communicates with
memory. In the Pascal MICROENGINE Computer, the Floppy Disk Controller
operates under control of the DMA Controller. As described in section 5.6,
the DMA Controller allows for direct data transfers between the Floppy Disk
Controller and memory, without involving the processor.

3.4 SERIAL PORTS

L L Twvrorm——

Two RS-232 asynchronous serial ports are provided with the Pascal MICROEMGINE
Computer. One of these ports — the A port — is used for connecting the
system terminal to the system. The second port -- the B port -- is available
for conmnecting any other R5-232 device to the system. (Section 2.2 describes
the procedures for connecting terminals to the serial ports.) The lncation of
the serial ports is presented in Figure 5-1.

Communication between the serial ports and the processor is achieved via the
inter-component communication bus structure, described in section 5.1. A
terminal is connected to & serial port via a serial port cable connector.
This section is concerned with the operation of the serial ports within this
structure. Table 5-4 lists the pin assignments of a serial port cable connector.

Page 31

Table 5-4 Serial Port Cable Connector Pin Assignments

Pin Muasber Signal Description
Ji-1 or J2-1 AA FRAME GROUMD
J1-2 or J2-2 BA TD- WD 1931
J1-3 or J2-3 B8 RD- WD 1931
Ji-4 or J2-4 CA RTS WD 1931
J-5 or J2-5 Ce CTS Wh 1931
Ji-6 or J2-6 cc DSR WD 1931
Ji-7 or J2-7 AB SIGHAL GROUMD
Ji-8 or J2-8 CF CARD WD 1931
J1-9 or J2-9

J1-10 or J2-10
J1-11 or J2-11
J1-12 or J2-12
J1-13 or J2-13
Ji-14 or J2-14

Ji1-15 or J2-15 DB IXRC WD 1931
J1-16 or J2-16
J1-17 or J2-17 pb IXRC WD 1731

Ji-18 or J2-18
J-19 or J2-19

J1-20 or J2-20 cD DTR WD 1931
J1-21 or J2-21
J1-22 or J2-22 (E RING WD 3193}

Ji-23 or J2-23
J1-24 or J2-24
J1-25 or J2-25

The serial ports have been implemented with two UC1931A/B devices. The UC1731
offers a number of programmable capabilities: the device can operate in either
synchronous or asynchronous mode, for example. When the Pascal Operating
System is loaded, it automatically programs the serial port devices according
to a pre-defined set of specifications. Some of these specifications are
provided within the operating system; cthers are read from the hardware option
switches. (Recall from section 2.1 That the system provides hardware option
switches for specifying systes terminal characteristics and for defining the
baud rate for each serial port.)

Subsection 5.4.1 describes how the serial ports operate under this set of
specifications. For the user who wishes to program the serial port devices to
operate in some other manner, subsection 5.4.2 describes the mechanisms for
programming the devices and briefly discusses their full programmable
capabilities.

Page 32

5.4.1 Operation of the Serial Ports

Each serial port device includes several registers. Of primary interest are:

o Receiver Register. This 8-hit shift register receives
data from the attached device. The incoming data is
assembled and then transferred to the Receiver Holding
Register with logic zeros filling any unused high-order
bit positions.

o Receiver Holding Register. This B-bit parallel buffer
register presents the assembled characters to the data
bus when reguested through a Read operation. The ters
"Receiver" is used in this manual to refer to the
Receiver Register and the Receiver Holding Register.

o Transmitter Holding Register. This 8-bit parallel
buffer register holds parallel data transferred from
the data bus by a WUWrite operation. This date is
transferred to the Transmitter Register uwhen
transmission is enabled.

o Transmitter Register. This B8-bit shift register is
loaded from the Transmitter Holding Register. The data
is serialized and presented to the attached device when
transmission is enabled, In this manual, the term
"Transmitter" refers to the Transmitter Holding
Register and the Transmitter Register.

o Control Registers. These two 8-bit registers hold
device programmed control words. The contents of these
registers are described in subsection 5.4.2.

o Status Register. This 8-bit register holds information
on the status of the port’s operation.

The timing of the transfer of data to and from the data bus and the attached
device is controlled by a BR1941L-6 Baud Rate Clock. The rate supplied by the
Baud Rate Clock to each of the serial ports is set by the hardware option
switches provided for this purpose. (These switches are described in
subsection 2.1.3.)

Recall from section 5.1 that the processor initiates communication with serial
port A by loading the general address FClx onto the address bus; to address
serial port B, the processor loads FC2x. In both cases, the value of "x"
determines which serial port register is selected. Recall further that the
general address for serial port A is used also to activate the system terminal
specifications switch.

Table 5-5 lists values used to address serial port registers and the system
terminal specifications switch.

In this table: (and subsequent tables in this chapter), a hyphen {-) denctes a

Page 33

"don’t care" value; i.e.. any value may appear in the corresponding position.

Table 5-5. Serial Port Addresses

General
Operation Address Vialue of "x" Element Selected
Input from
Serial Port A FCix 0-10 Status Register
0-11 Receiver Holding
Register
Output to
Serial Port A FClx 0-11 Transmitter Holding
Register
Activate Systes
Terminal Speci-
fications Switch FC1x 1 - - - -
Input froa
Serial Port B FC2x -=-10 Status Register
- =11 Receiver Holding
Register

Character framing is provided by a Start bit (logic zero) at the beginning of

a character and a Stop bit (logic cne) at the end of a character. Uhen

information is transferred from the Transmitter Holding Register. transmission

is initiated. A Start bit is inserted, followed by the serial output of the

character (least significant bit first) with parity (if enabled) after the

most significant bit. A stop condition (1, 1.5, or 2-bits) is then inserted. 1f
the Transmitter Holding Register is full, the next character transmission

starts after the Stop bit(s) of the character currently in the Transmitter

Register have been transmitted. Otherwise. the Mark (logic one) condition is

continually transmitted until the Transmitter Holding Register is loaded.

Reception of a character into the Receiver Register is initiated when the
first Start bit after a preceding Stop bit is recognized. During the assembly
of the character from serial to parallel. the Start and Stop bits (and the
parity bit, if enabled) are stripped cff. The assembly is completed when the
Stop bit following the last character bit is received. If the Stop bit is a
logi: one, the character is determined to have correct framing and the port is
prepared to receive the next character. If the Stop bit is a logic zero, a
framing error has ocurred. The device assumes that the bit is the OStart bit
of the next character. Character assembly continues if the input is still a
logic zero when sampled at the theoretical center of the assumed Start bit. As
long as the received input is spacing, all zero characters are assemb led.
Error flags and data received interrupts are generated so that line breaks can
be determined. After a character of all zeros is assembled along with a zero
in the Stop bit location, the first received logic one is accepted as a Stop

Page 34

bit:; when this bit is received, the device is prepared to receive the next
character.

As Table 5-5 has demonstrated. the contents of the serial port status
registers can be read onto the data bus. Table 5~6 outlines the significance
of each bit in the status register.

Table 5-6. S8erial Port Status Register Contents

Hit Mame Meaning

e P) et bt rsm cnat s it v

0 TRAMSHITTER HOLDING This bit is set to a 1 bit when
REGISTER EMPTY the Tranemitter Holding Register

does not contain a character and
the Transmitter is enabled. It
is set to a 1 bit when the
contents of the Transmitter
Holding Register are transferred
to the Transmitter Register. It
is cleared to a O bit when the
Transmitter Holding Register is
loaded from the data bus or the
Transmitter is disabled.

1 DATA RECEIVED This bit is set to a 1 bit when
the Receiver Holding Register is
loaded from the Receiver
Register and the Receiver is
enabled. It is cleared to a O
bit when the Receiver Holding
Register is read onto the data
bus or when the Receiver is
disabled.

2 DVERRUN ERROR This bit is set to a 1 bit when
the previous character in the
Receiver Holding Register has
NOT been read when a new
character is ready to be
transferred to the Receiver
Holding Register.

Otherwise, the bit is cleared
when a character is transferred
to the Receiver Holding
Register. It is cleared when
the Receiver is disabled.

Page 35

W

[

PARITY ERROR

FRAMING ERROR

CARRIER DETECTER

DATA SET READY

DATA SET CHANGE

This bit is set to a 1 bit when
the Receiver and parity are
enabled and the last received
character has a parity error.
The bit is set to a O bit if the
character has correct parity.

This tit is set to a 1 bit if
the bit after the last data bit
of a character is a zero and the
Receiver is enabled. This bit
is set to 8 O bit if the hit
after the last data bit of a
character is a one.

This bit is the complement of
the CARRIER DETECTOR input (pin
39,

This bit is the complement of
the DATA SET READY input (pin
3.

This bit is set to a 1 bit when

there is a change in the state

of the DATA SET READY or CARRIER
DETECTOR inputs with the DATA TERMINAL
READY-- output {(pin 17) on, or the
Ring Indicator is turned on with

tha DATA TERMINAL READY~- output off,
This bit is cleared to a O bit when
the Status Register is read onto

the data bus.

Page 36

5.4.2 Device Programming Mechanism: the Control Registers

Each of the serial ports can be individually programmed to operate in either
synchronous mode or asynchronous mode. Asynchronous mode is the default when
the Pascal Operating System is loaded; the operation of a serial port in
asynchronous mode has been described in subsection 5.4.1. In synchronous
mode, two registers are of interest in addition to those discussed in sub-
section 5.4.1:

o SYM Register, This 8-bit register holds the
synchronization code used to establish character
synchronization.

o DLE Register. This 8-bit register holds the DLE
character used when the optional transparent mode is
in effect.

In synchronous mode, character framing is achieved by the SYN character,
transmitted at the beginning of a block of characters. When the Receiver is
enabled, it searches for two continuous characters matching the bit pattern
contained in the SYN Register.

The serial port devices are programmed via two 8-bit control registers:
Control Register 1 and Control Register 2. Tables 5-7 and 5-8 outline the
contents of these registers.

Table 5-7. Serial Port Control Register 1 Contents

Bit Name Function

0 DATA TERPIMAL READY This bit controls the DATA
TERMIMAL READY- gutput (pin 17),
which controls the €D circuit of
the attached terminal. Uhen
this bit is set to a 1 bit, the
Carrier On and Data Set Ready
interrupts are enabled. When
this bit is set to 0. only the
Ring On interrupt is enabled.

Page 37

1

2

3

REGUEST TO SEMD

RECEIVER ENABLE

PARITY ENABLE

ECHO MODE. DLE STRIP,
or MISCELLANEQUS

This bit controls the REQUEST TO
SEND- output (pin 32), which
controls the CA circuit of the
attached terminal. When this
bit is set to a 1 bit and the
CLEAR TO SEND- (pin 29) inputl is
low, transmission of data to the
attached terminal ic enabled and
Transmitter Holding Register
Empty interrupts are generated.
When this bit is set to a O

bit, transmission is disabled
atter any current character has
been transferred.

When set to a 1 bit, this bit
enables the Receiver, allowing
received characters to be placed
in the Receiver Holding
Register. Status bits L, 2,

and 3 are updated and a Data
Received interrupt is

generated. Character reception
starts with a Start bit when in
asynchronous mode or with 2
matches to the contents of the
SYN Register when in synchronous
mode. ¥ When the RECEIVER ENABLE
bit is set to a 0 bit, status
bits 1, 2, 3, and 4 are cleared.

When this bit is set to a 1 bit,
parity checking on received
characters is enabled. In
astnchronous mode, # generation
of parity for transmitted
characters is also enabled. When
this bit is set to a O bit,
parity checking and generation
are both disabled in either
moce.

The function of this bit depends
on whether the device is
operating in synchronous or
asynchronous mode.® In
asymchronous mode, bit 4
controls echo mode. If the
Receiver is enabled and this bit
is set to a 1 bit, the received
data is echoed with a 1-bit
delauy. The clocked regenerated
data, rather than the output of
the Transmitter Register or a

Pane 38

STOP BIT SELECTIOM,

MISCELLANEDUS,
PARITY ENABLE,
FORCE DLE

TRANSHIT
or

steady marking. is presented to
the TRANSHMITTED DATA output
(pin 23). The Transmitter need
not be enabled. In synchronous
mode, the function of this bit
is further dependent on whether
the Receiver is enabled or not.
If the Receiver is enabled and
bit 4 is set to a 1 bit,
received characters which match
the contents of the DLE
Register are stripped out and
parity checking is disabled.
When the Receiver is not
enabled, bit 4 controls the
MISCELLAMEQUS- output (pin 5).
When this bit is set to a 1 bit,
this output is made low; uwhen
the bit is set to a 0 bit, the
output is made high. Uhen
operating with a 32X clock (see
Table 53-8, Bits 2-0), a 1 bit
with the Receiver not enabled
causes the Receiver bit timing
to synchronize on mark—space
transitions. ’

The function of this bit depends
on whether synchronous or
asynchronous mode is in effect. ¥
In asynchronous mode with the
Transmitter enabled, bhit 5 set
to a 1 bit causes a single Stop
bit to be transmitted: bit 5 cet
to a 0 bit causes 2 Stop bits to
be transmitted for character
lengths of 6, 7, or 8 bits, and
1.5 Stop bits for a character
length of 5 bits. Uhen the
Transmitter is not enabled. bit
5 controls the MISCELLAMEDIG-
output (bit 5). When this bit

is set to a 1 bit, this output
is made low; when the bit is set
to a 0 bit, the output is made
high. 1In synchronous mode, the
function of bit 5 is further
dependent on bit 6. If bobh
bits are set to a 1 bit, the
contents of the DLE Register are
transmitted prior to the next
character loaded in the
Transmitter Holding Register.
When bit 5 is set to a 1 bit and

Page 39

b BREAK or TRANSHMIT
TRANSPARENT
7 L.OOP /NORMAL

Synchronous/asynchronous mode is
Control Register 2 (Table 5-8).

hit 6 is set to a 0 bit,
transmit parity is enabled.

When bit 5 is set to a O bit, »no
parity is generated.

The function of this bit depends
on whether synchronous or
asynchronous mode is in effect.®
In asynchronous mode, when bit &
is set to a 1 bit and the
Transmitter is enabled, the
TRANSHMITTED DATA output (pin 25)
is held in a spacing condition
starting with the end of any
current character. Mormal
Transmitter timing continues so
that. the break can be timed out
by loading charaters into the
Transmitter Holding Register.
Thatl. is, interrupts are generated
and the Transmitter operates
normally except for the output
which remains low while bit 6 ir
et to a 1 bit. In synchronous
mode, bit 6 set to a 1 bit
causes the Transmitter to be
concditioned for the transparent
transmission: idle fill is
PLE--SYN and 3 DLE can be forced
ahead of any character in the
Transmitter Holding Register by
use of bit 5.

When this bit is set to a ¢ bit,
the device is configured to
provide an internal data and
control loop and the Ring On
interrupt is disabled. Uhen
this bit is set to a 1 bit.

dev:ice is normal full duplex
contiguration and the Ring On
interrupt is enabled.

the

cont:rolled by bit 5 of

Page 40

Table 53-8. Serial Port Control Register 2 Contents

Bit{s) Hame

3

4

CLOCK SELECT

ALTERNATE RECEIVER
(LOCK or STRIP SYHM

PARITY ODD/EVEM

CHARACTER MODE

Function

These bits select the transmit and
receive clock as follows:

000 - Transmit and receive
clock input (1X)

001~ Rate 1 (3D
01 0 - Rate 2 (32X
011 - Rate 3 (32X)
1 090 - Rate 4 (320
101 -Rate 4 - 2 (32X (6450
110 - Rate 4 ~ 4 (320 (120%
111 - Rate 4 - 8 (32X (2954%)

The function of this bit depends
on whether bit 5 selects
asynchronous or synchronous
mode. In asynchronous mode, if
bit 3 is set to a O bit, Rate }
is selected as the Receiver
clock rate; if bit 3 is set to o
1 bit, the Receiver clock rate
is determined by bits 2-0. (If
1X clocking is selected in bite
2-0, bit 3 must be 1.) In
synchronous mode, if bit 3 is
set to a 1 bit and the Keceiver
is enabled, received characters
which match the contents of the
SYM Register are stripped out
and the SYN status bit is set
with the next character. Mo SYN
stripping occurs if bit 3 is cet
to a 0 bit.

Odd parity is selected when this
bit is set to a 1 bit; when it
is set to a 0 bit, even parity
is selected.

When this bit is set to a 1 bit,
asynchronous mode is selected:
when it is set to a 0 bit.
synchronous mode is selected.

Page 41

7-6 CHARACTER LEMGTH These bits select the number of
bits per character as follows:

20 - 8 bits
D 1 -7 bits
1 0 - 6 bits
11 -5 bits

For example, when the Pascal Operating Suystem is loaded, it reads the system
terminal specifications hardware option switches and then loads the serial
port A Control Register 2 with tne corresponding values. OSwitches 1-8
correspond to Control Register 2 values 0-7 respectively.

The processor can load a value into either control register of either serial
port, and it can read the current contents of either control register of
either port. The processor can also load values into the SYMN and DLE
registers for use in synchronous mode; these registers cannot be read. Table
5-9 lists the values used by the processor to address the serial ports GSYM,
DLE, and control registers.

Table 5-9. Serial Port SYN, DLE, and Control Register Addresses

——

General
Operation Address Value of "x" Element Selected
Input fros
Serial Port A FCix 0-0090 Control Register 1
0-01 Control Register 2
Output to
Serial Port A FCix 0-900 Control Register 1
0-01 Control Register 2
0-10 SYN and DLE Registers
Input from
Serial Port B FC2x -=-00 Control Register |
-~ 01 Control Register 2
Output to
Serial Port B FC2x -=-00 Control Register 1
~ =01 Control Register 2
-=-10 SYN and DLE Registers

For more information of the serial port devices, see the "UC1931A/B" data
sheet, available from Western Digital Corporation.

Page 42

5.5 PARALLEL PORTS

The Pascal MICROEMGIME Computer provides a parallel I/0 capability in the form
of an 8255A Programmable Peripheral Interface device, a standard 40-pin dual
in~line package with 24 programmable pins. See Figure 5-l.

Commmication between the parallel ports and the processor is achieved via the
intra~component communication bus structure, described in section 5.1. A
terminal is connected to the parallel ports via a parallel port cable
connector. Table 5-10 illustrates the pin assignments of a parallel port
cable connector.

This section is concerned with the operation of the parallel ports within this
configuration. Subsection 5.5.1 describes the normal operation of the Pascal
MICROENGIME Computer parallel ports device; that is, it explains how the
device operates when it is programmed automatically by the Pascal Operating
System. For the user who wishes to program the device to operste in some
other manner, subsection 5.5.2 describes the mechanism for programming the
device and briefly discusses the modes in which it can operate.

5.5.1 Default Operation of the Parallel Ports

When the Pascal Operating System is loaded, it automatically programs the
parallel ports device to provide an 8-bit input port (Port A) for reading from
the attached peripheral device. an 8-bit output port (Port B) for writing to
the peripheral device, and an 8-bit control port (Port 0. I/0 data is
transferred between the peripheral device and Ports A and B in conjunction
with strobes, or “handshaking”" signals. These signals are generated or
accepted on Port C lines, as listed in Table 5-11. Imput and output dats are
both latched.

Page 43

fable 5-10 Parallel Port Csble Connector Pin Assignments

B R N Sy ——— —— U s e —" e Voot e pn 4 o [T,

Pin

Mumher Signal Description

J3-1 GND

J3-2 Pal DATA 1 PORT 0

J3-3 PAO DATA O PORT A

J3-4 Fada DATA 4 PORT A

J3-5 PAG DATA & PORTA

J3-6 SACKB- ACKNDWLEDGE B

J3-7 STBA~ STROBE A

J3-8 PABTF- OPEN- PA BUS IN FALGE
J3-9 SPCY DATA 7 PORT €

J3-10 50BFB~ OUTPUT BUFFER FULL B
Ja-11 1/0pCs

J3-12 IBFA INPUT BUFFER FULL &
J3-13

J3--14

J3-15 PBé& DATA & PORT B

J3-16 PB4 DATA 4 PORT B

J3-17 PB3 DATA 3 PORT B

J3-18 pPBO DATA O PORT B

J3-19 RESET

J3-20 GND

J3-21 paz DATA 2 PORT A

J3-22 PA3 DATA 3 PORT A

J3-23 Pab DATA 5 PORT A

J3-24 pa7 DATA 7 PORT A

1325 ACKB - ACKNOWLEDGE B

J3-26

J3--27 SPC&- DATA & PORT C

J3-28

J3--29 1/700C7

J3-30 0BFB- OUTPUT BUFFER FUii. B
J3-31 SIBFB- IMPUT BUFFER FULL B
J3-32 rBBOF OPEN PB BUS OUY FALSE
J3-33 PB7 DATA 7 PORT B

J3-34 pPB5S DATA 5 PORT B

J3-35 pB2 DATA 2 PORT B

J3-36 PB1 DATA 1 PORT B

J3-37 (GHD

Page 44

Table 5-11.

Parallel Ports Device Control Lines (Port ()

Bit

0

Name

oaet oome e ot

INTRB (Interrupt
Request, Port B)

OBFB~ (Output Buffer
Full)

ACKB~ (Acknowledge
Input) or INTEB-
{Interrupt Enable,
Port B)

INTRA (Interrupt
Request, Port A)

STBA- (Strobe Imput)

IBFA (Input Buffer
Full)

INTEA

Function

A high on this output interrupts
the processor when Port H is
requesting service.

A low on this output indicates
that data has been loaded into
the Port B latch for output; it
is, in essence, an acknowledgement.

On output, a high on this pin
enables interrupts from Port B.

On input, s low on this pin indicates

that data output from Port B has
been accepted by the peripheral
device. When the Pascal
Operating System is loaded, it
makes this pin high to enable
Port B interrupts.

A high on this ocutput interrupts
the processor when Port A is
requesting service.

A low on this input loads data
into the Port A latch for input.

A high on this output indicates
that data has been loaded into
the Port A latch for inputi it
is, in essence., an acknowledgement.

A high on this output enables
interrupts from Port A. UWhew
the Pascal Operating System is
loaded, it makes this pin low to
disable Port A interrupts.

This pin is not vced.

Page 45

o 00t 4.0 0ot Bt B4t e i 040 b €08

Recall from section 5.1 that the processor initiates communication with the
parallel ports by loading the general address FC7x onto the address bus, where
the value of "x" determines which device elesent is selected. Table 5-12
lists the values used to address Ports A, B, and C.

Table 5-12. Parallel Ports Addresses

General
Operation Address Value of "x" Element Selected
Input from or FC7x - =139 Port A
autput to - -1 Port B
parallel ports -=-10 Port C

5.5.2 Device Programming Mechanism: the Control Register

Parallel Ports A and B can be individually programmed to operate in any of
three modes:

o Mode 0, the basic input/output mode. In this mode,
data is simply read from or written to the port; no
"handshaking" signals are reguired.

o Mode 1, the strobed input/output mode. This is the
mode selected in the default device programsing.
described in subsection 5.5.1.

o {nde 2, the strobed bidirectional bus irput/output
mode. In this mode, data is transferred to and from a
peripheral device on a single B-bit bus. Handshaking
signals are provided to maintain proper bus flow
discipline in a manner similar to Mopde 1.

Port C is programmed in two sections: the upper half (bits 0-3) and the lower
half (bits 4-7). The mode of the upper half of Port C is defined with the
mode of Port A; the mode of the lower half is defined with the mode of Port B.

The parallel ports device is programmed via the 8-bit Control Register. Table
5-13 outlines the contents of this register.

Page 46

Table 5-13. Parallel Ports Control Register Contents

5,6

LR p—

LOWER PORT C
DIRECTION

PORT B DIRECTIOM

PORT B AMD LOWER

PORT € MODE

UPPER PORT C

DIRECTION

PORT A DIRECTION

PORT A AND UPPER
PORT C MODE

Function

rte sae s 4 onb mot bt b

When this bit is set to 3 1 bit.
the lines on the lower half of
Port C are used as input lives.
bhen this bit is set to & O bit,
these lines are used as output
lines.

This bit, when set to a 1 bit,
defines Port B as an input

port. UWhen this bit is set to =
0 bit, Port B is used as an
output port.

When this bit is set to a 1 bit,
Mode 1 is selected for Port B
and the lower half of Port O,
When this bit is set to a O bit,
Mode 0 is selected.

When this bit is set to & 1 bit,
the lines on the upper half of
Port C are used as input lines;
when this bit is set to a 0 bit,
these lines are used as ocutput
lines.

When this bit is set to a 1 bit,
Port A is used as an input

port. UWhen this bit is set to &
0 bit, Port A is used as an
output port.

These bits select the mode for
Port A and the upper half of
Port C as follows:

Mode 1

0 flode O
1
= fode 2

0
0
1

Page 47

7 MODE SET FLAG This bit controls the mode set
£1ag. UWhen it is set to a 1
bit, this flag is active. Uhen
1t is set to a O bit, this flag
is imactive. (This flag is
normally inactive only while
noles are being changed.)

- [—— —om o e oo

For example, the value automatically loaded into the Control Register by the
Pascal Operating System is shown in Figure 5-2.

______ -Port C lower = input or output
§ e -Port B = ouvtput

—————————————— -Port B & Port C lower = ifode 1

~Port C upper = input

-Port A = input

- -Port A & Port C upper = ilode 1

-Mode set flag = active

. wm wm we we

- m— mw mm wew W
- w. m mm me w e
- W e me we -

- ww mw M ew we we we

Figure 5-2. Default Parallel Port Control Register Yalues

To load a value into the Control Register, the processor uses the parallel
port address, FC7x, with

--11

as the value of "x."”

Page 48

3.6 FLOPPY DISK COMTROLLER AMD DA CONTROLLER

The FD1791/2 Floppy Disk Controller (FDO) provided with the Pascal MICROENGINE
Computer is switch-selectable for single- or double-density S-inch or S-1/4~-
inch disks and can handle up to four disk drives of the same tupe. ‘the Floppy
Disk Controller operates under control of the DI1883A/B Direct Hemory Access
Controller (DMAC). allowing data transfers between the floppy disk and MEROT Y
without involving the processor.

Both the FDC and the DIMAC are standard 40-pin dual in-line packages, located
on the board as shown in Figure 5-1,

Communication between these controllers and the processor is achieved via the
inter-component communicaticn bus structure, described in section S.1. A
floppy disk drive is connected to the floppy disk controller via a Floppy Disk
Controller cable connector. Table 5-14 lists the pin assignments of the FOOC
cable connector.

This section is concerned with the operation of the Floppy Disk Controlier and
the DA Controller within this configuration. Subsection 35.6.1 describes
automatic system start-up procedures that involve the DHAL and the FDC. In
subsection 5.6.2, the mechanism by which the processor initiates communication
with these controllers is discussed. Subsections 5.6.3 and 5.6.4 provide
information on the operation of the DIMAC and FDC, respectivelu.

Page 49

Table 5-14. Floppy Disk Cable Connector Pin Assignments

Pin

Number Signal Description
Ja-1 GND

Ja-2 D51 UNIT SELECT 1
J4-3 DS3 UNIT SELECT 2
Ja-4 SDSEL SIDE SELECT
J4-5 GND

Ja--6 STEP-- STEp

Ja-7 GND

J4-8 WD WRITE DATA
Ja-9

J4-10 WPRT~ WRITE PROTECT
Ja-11 GND

J4-12 TRKO~ TRACK 00
J4-13 D

Ja-14 RDTA RAW READ DATA
Ja-15 GND

Ja-16 READY DRIVE READY
Ja-17 GND

J4-18

Ja-19 WF URITE FAULT
J4-20 GMD

Ja-21 Ds2 UNIT SELECT 2
J4-22 D54 UNIT SELECT 4
J4-23 HLD- HEAD LOAD
J4-24 GMD

Ja4-25 DIRC

Ja-26 GMD

J4-27 W6— WRITE GATE
Ja-28 GND

JA-29 1643 TRACK 43
Ja-30 &HD

Ja-31 Ip IMDEX PULSE
Ja-32 GHD

Ja-33 RCLK READ CLOCK
J4-34 GHD

Ja-35 +5

Ja4-36 +5

J4-37 H.T HEAD LOAD TIMING

Page 50

5.6.1 Start-Up Procedures Involving the DNMAC and FDC

When the Pascal MICROENGIME Computer is started, the settings of the Floppy
Disk Controller hardware option switches take effect. (Recall from subsection
2.1.2 that the user sets these switches according to the characteristics of
the floppy disk or disks to be loaded.)

o If the switch settings specify double-density
operation, the DDEM- idinput (pin 37) of the FDU is
made low. If single-density operation is indicated.
DDEN- is made high.

o If the switch settings call for an B-inch floppy
disk, a 2 IMHz clock signal is supplied to the CLK
input (pin 24) of the FDC. If 5-1/4-inch Ffloppy
disks are indicated, a4 1 PMHz clock signal is
supplied to the CLK input.

Also at system start-up, the AUTLD input (pin 37) of the DMAC is made high.
When a floppy disk is loaded into a drive, this input causes an automatic boot-
loading of the first 64K words from the floppy disk into memory, starting at
memory location O. A high on the AUTLD input also places the DRAC in run mode
and enables two of the device’s three interrupt conditions. (See subsection
5.6.3.)

S5.6.2 Processor-Initiated Communication with the Dnac and FDC

Recall from section 5.1 that the processor initiates communication with the
DMAC or the FDC by loading the general device address FC3x onto the address
bus. This address is transmitted to the DMAC, which tests bit 3 of the "x"
field of the address. If this bit is high. one of the DIMAC registers is
selected, according to the value of bits 0-2, and the DMAC is prepared to
respond to a Read or Write operation. If bit 3 is low one of the FOC
registers is selected. In this case, the DMAC is not prepared to respond to a
Read or Write operation. Instead. the DMAC signals the FDC and the address is
transmitted to the FDC. As when the DNAC is selected, the particular register
of the FOC is selected according to the value of bits 0-2 of the device
address "x" field.

Table 5-15 lists the values used by the processor to address the DMAC and the

FDE. Information on the individual DMAC registers and FDC registers is
provided in subsections 5.6.3 and 5.6.4.

Page 51

Table 5-15. DHAC/FDC Addresses

General

Operation Address Value of "x" Element Selected

Autuload

from floppy

disk FC5x —-— DrAC AUTLD input

Input from

FDC FC3x 0-900 Status Register
-0 Track Register
0-10 Sector Register
O~ 11 Data Register

Output to

Fot FC3x 0-0290 Command Register
0 -01 Track Register
0-10 Sector Register
0-11 Data Register

Input from

or output

to bDiAC FC3x 1000 Control Register
1001 Status Register
1019 Transfer Count Low Register
1011 Transfer Count High Register
110090 Memory Address Low Register
11901 Memory Address High Register
1119 femory Address Ext Register
1111 Interrupt Code Register

When the processor addresses the Floppy Disk Controller, it identifies the
particular drive to be accessed and the side of the floppy disk to be
accessed. This information is provided in the upper byte of each command word
loaded onto the data bus after cosmunication is established. Figure 35-3
diagrams the contents of this word.

pﬂge 52

1531413121110 9 8 7 6 5 4 3 2 1 0

v otr vt

]
!
t
1
1
]
1
1
?
H
1]
]
]
s
1
t
)
]

Not used

¥
]
1
!
1
:
1
]
1
]
]
1
]
H

— ~=3ide Select Bit:

0 - side 1
$ - side 2

i e e =~ | ———~Control Hord Byte

5.46.3

--Unit 1 Select Bit]
~~Unit 2 Select Bit:

> tne Unly

- v tnit 3 Select Rit)
: --Unit 4 Select Bit)

Figure 5-3. Format of First Data Word Transmitted to the FDC

DrMA Controller Organization and Operation

-

The DHAC includes several registers. OFf primary interest are:

o Transfer Count Register. This 16-bit counter register

holds the two’s complement of the block size ~— i.e.,
the transfer count (in words) -- for DMA transfer
operations. The low-order 8 bits are in TC Low and
the high-order 8 bits are in TC High. This count is
incremented after each DMA transfer.

Memory Address Register. This 18-bit register
occupies 3 DMA registers: bits 0-7 are held in Md Low
bits 8-15 are held in MA High, and bits 16 and 17 are
held in A Ext. The carry from bit 15 to 16 is
enabled if and only if bit & of the Control Register
is set to a 1 bit. (5ee Table 5-16.) The Hemory
Address Register is incremented by two after every DiA
transfer and bit 0 is forced to 0.

ID Code Register. This 8-bit programmable register
contains a code for ectablishing a vector address
during a DIAC interrupt. This register is not used.

Control Register. This B8-bit register holds device

programming specifications. The contents of this
register are outlined in Table 5-1é.

Page 53

a Status Register. This 8-bit register contains J
interrupt condition indicator bits and 5 bits which
reflect the status of the Control Register. The
contents of the Status Register are outlined in Table
5-17.

Table 5-16. DMAC Control Register Contents

Bit HName Function

0 RUM then this bit is set to a 1 hit, the
DMAC is placed in run mode; when it is
set to a 0 bit, DMAC operation is
terminated.

1 DEVICE This bit determines whether the device
INTERRUPT interrupt is enabled or not. When this
bit i1s set to a 1 bit, a high on the
DINTR input (pin 39) sets the IMIR
output (piy 40) low.

2 TINE-OUT This bit controls the time-—-out

INTERRUPT interrupt. When this bit is set to a 1
bit, the time—out one-shot sets the INTR
putput (pian 40) low. When this bit is
set to a 0 bit, this interrupt is
disabled. The time—out interrupt is set
during a D1A transfer if REPLY- (pin 3}
does not go low within 5 microseconds of
MSYNC~ (pin 16) going low.

3 TRANGFER COUNT This bit controls whether the transfer
ZERO INTERRUPT count equals zero interrupt is enabled
or not. When this bit is set to a 1 bit,
a rero in the Transfer Count Regicter
sets the INTR- output (pin 40) low. Uhen
this bit is set to a O bit, this
interrupt is disabled.

4 INPUT/0UTPUT This bit controls the I/0 direction of
MODE the device. When set to a 1 bit, this

bit sels Read mode; i.e., date is
transferred from the Floppy Disk
Controller to memory. UWhen set to a 0
bit, this bit sets Write mode; i.e..
data is transferred from memory to the
Fioppy Dick Cenmtroller.

Pege 54

5 HOLD BUS

e} ADDRESS
EXTENSION

When this bit is set to a 1 bit, the
DMAC retains control of the data bus
throughout the transfer of the entire
block. When this bit is set to a O bit,
the DIAC releases the data bus after
each word transfer.

When set to a 1 bit, this bit allows a
carry from DMA address bit 15 1o

CARRY EMABLE propogate into bit 16. UWhen this bit is

set to a 0 bit, address extension carry
is disabled.

7 This bit is not used.
Table 3-17. DMAC Status Register Contents
Bit MName Function
0 BYTE OR UWORD This bit indicates the status of the BOUW

input (pin 36). This bit is always set
to a 0 bit, indicating that word mode is
in effect. In word mode, the DA memory
address is incremented by two (bit 0O is
Forced to a 0 bit) after each DMA
transfer. Bit 0 is a read-only bit.

Page 55

DEVICE
INTERRUPT

TIME-OUT
INTERRUPT

TRANSFER COUNT
ZERO INTERRUPT

INPUT/0UTPUT

MODE

HOLD BUS

ADDRESS

EXTENSION CARRY

ENABLE

BUSY

This bit is set to a 1 bit when a device
interrupt condition occurs. Resetting
this bit to & 0 bit resets the INIR-
output (pin 40). Bit 1 is a read/write
bit.

This bit is set to a 1 bit when o
time—-out interrupt condition occurs.
Resetting this bit to a 0 bit resets the
INTR- output (pin 40). Bit 2 is 4
read/write bit.

This bit is set to a 1 bit when a
transfer count equals zero interrupt
condition occure. When set, this bit
sets the EOB output (pin 28). This bit
is set to O when the Transfer Count
Register is loaded with a non-zero
value. Bit 3 is a read-only bit.

This bit reflectis the status of bit 4 in
the Control Register. When this bit is
set to a 1 bit, the DMAC operates in
Read mode; when it is set to a 0, the
DMAC operates in Write mode. Bit 4 is a
read-only bit.

This bit refleci:s the status of bit 5 in
the Control Register. When this bit is
set to a 1 bit, the DMAC retains control
of the data bus throughout an entire
block transfer. When this bit is set to

a 0 bit, the DMAC releases the bus after
each word transfer. Bit 5 is a read-only
bit.

This bit reflects the status of bit 6 in
the Control Register. Uhen this bit is
set to a8 1 bit, a carry is allowed from
DMA address bit 15 to propagate into bit
16. When this bit is set to a 0 bit,
address extension carry is disabled.

Bit 6 is a read-only bit.

This bit reflects the status of bit 0 of
the Control Register. When this bit is
set to 8 1 bit, the DMAC is in run

mode. When this bit is set to a 0 bit,
DHMAC operation is terminated. In the
Status Register, BUSY is a read-only
bit.

i o o ot e e o W S P P O i PP < TN D A i S e 4 S

When the DIMAC is in run mode, it waits for & Data Request input from the FOC.
When a request is received, the DHAC regquests control of the data bus from the
processor. Once this request is granted, the DHAC controls date transfers
between the FDC and memory. The direction of the transfer is determined by
the status of the R/W output (pin 17), which is tied directly to bit 4 of the
Control Register.

Three interrupt conditions can occur during DNMAC operation:

o Device Interrupt. This condition occurs when the
DINTR dinput (pin 39) is made high., A device
interrupt occurs when the device requires service,
when a failure occurs, when a task is completed, or in
other situations.

o Transfer Count Equals Zero. This condition ocours
when the Transfer Count Register is incremented to 0.

o Time-Out Interrupt. During & DIMA transfer. the
leading edge of the MSYNC- output (pin 16) triggers an
internal time delay of about 5 microseconds. If the
DHAC does not receive an active low REPLY- input (pin
3 within that time delay, a time-out interrupt
condition occurs.

If any of these conditions occurs, the corresponding bit in the Status
Register is set and the Status Register RUM bit is reset. If the appropriate
enable bit in the Control Register is set, the INTR- output (pin 40) is made
active.

For more information on the DI11883 device, see the "DM1883A/B Direct Memory
Access Controller” data sheet, available from Western Digital Corporation.

Page 57

%.6.4 Floppy Disk Controller Organization and Operation

The Floppy Disk Controller includes several registers.
are;

Of primary

o Data Shift Register. This 3-bit register assembles

serial data from the RAW READ- input (pin 27)
Read operations and transfors serial data

during

to the

WRITE DATA output (pin 31) during Write operations.

o Data Register. This 8-bit register 1is used

holding register during Disk Read and

as a
Write

operations. In Disk Read operations, the assembled
data byte is transferred in parallel to the Data
Register from the Data Shift Register. In Disk Write
operations: information is transferred in parallel
from the Data Register to the Data 5hift Register.
In a Seek operation, the Data Register holds the
address of the desired Track position. (The Disk
Read, Disk WUWrite, and Seek operations are described

later in this subsection.)

o Track Register. This @-bit register holds the track

number of the current Read/Urite head position.

This

register is incremented by 1 each time the head is
stepped in (toward track 76) and decremented by 1
each time the head is stepped out (toward track 0).

o Sector Register. This B8-bit register holds

address of the desired sector position.

o Command Register. This B8-bit register holds

command currently in execution.

o Status Register. This 8-bit register holds
status information.

the

the

device

o CRC Logic Register. This logic is used to check or
generate the 16-bit Cyclic Redundancy Check (CRO).

The polynomial is:

16 12 5
F{x) = x + X +x +1

The CRC includes all infcrmation starting with the

address mark up to the CRC claracters.

interest

When data is read from a floppy disk., it passes through the Data Separator, a
counter separator comprised of two irtegrated circuits. The Data Separator is

located on the board as shown in Figure 5-1.

The Data Separator logic serves to derive the flux transition
the raw data; this rate is then supplied to the RCLK- input (pin 24).

Page 58

spacings from

The raw

data is supplied to to the RAW READ- input (pin 27). Essentially, any
transition on RAW READ- loads the Data Separator counter. Uhen this counter
reaches 0, the RCLK flip/flop is toggled.

The Floppy Disk Controller accepts 11 commands. grouped into 4 tuypes. The
following paragraphs describe the command types and the individual commands
within each type.

Type 1 commands include the Restore, OSeek, Step, Step In, and Step Out
commands. Each of these commands includes a rate field (bits © and 1) which,
in conjunction with the frequency of the CLK input. defines the stepping
motor rate, as outlined in Table 5-18.

Table 5-18. Stepping Motor Rates for FDC Tuype 1 Commands

CLK Frequency Rate Field Value Rate Selected

2 Mz 00 3 ms
01 6 me
10 12 ms
11 15 ms
1 MH2 00 6 ms
01 12 ms
10 20 ms
11 30 ms

Bit 2 of all Type I commands is a verification flag. If this bit is set to a
1 bit, a verification operation is performed on the destination track. ¢
this bit is set to a 0 bit, no verification is performed.

The Type I commands alsoc contain a head load flag in bit 3. If this bit is
set to a 1 bit. the Read/Write head is loaded - - i.e., the HLD output (pin
28) is made active —— at the beginning of the command. If bit 3 iz set to a 0
bit, HLD is deactivated at the beginning of the command. Once the head is
loaded, it remains engaged until the FDC receives a command which specifically
disengages the head. Or, if the FDC is busy for 15 revolutions of the disk,
the head is disengaged automatically.

The Step, Step In, and Step Out commands include an update flag in bit 4. When
this bit is set to a 1 bit, the Track Register is updated by 1 for each step.
When this bit is set to a O bit. the Track Register is not updated.

The Type I commands are:

o Restore. If the Read-Write head is positioned over
track 0 when this command is received, the Track
Register is lpaded with zeros and an interrupt is
generated. Otherwise, stepping pulses at the

Page 59

specified rate (see Table 5-17) are issued until the
head is located over track 0.

Seek. This command assumes that the Track Register
contains the track number of the Read-Write head’s
current position and that the Data Register contains
the desired track number. Stepping pulses in the
appropriate direction are issued until the contents of
the Track Register are equal to the contents of the
Data Register.

Step. This command causes the FDC to idssue one
stepping pulse to the disk drive in the same direction

as the previous Step. Step In. or Step Out command.
(At least one Step In or Step Out command must be
executed before a Step command is received.)

o Step In. This commond causes the FDC to issue one
stepping pulse in the direction toward track 76.

o Step Out.

This command causes the FDC to issue one

stepping pulse in the direction toward track 0.

Table 5-19 summarizes the Command Register valves for Type [commands.

Table 5-19. FDC Command Rejister Values for Type I Commands
Command Command Register Value
Restore 0000h v rlr2
Seek 000 1hwvrlr2
Step 001uhvrlr2
Step In 010uhvrlrd
Step Out 011luhvrlr2
where: h - head load flag:
1 - load head at beginning
of command
0 - unload head st beginning
of command

=~
S

-~ update flag:
1 - update Track Register
0 - do not update Track
Register
- verification flag:
1 - verify on last track
0 ~ do not verify
1 and r2 - stepping motor rate
{see Table 5-18)

-
~

Rage 60

Table 5~20 lists the Status Register contents when a Tupe 1 command is executed.

Table 5-20. FDC Status Register Contents for Type I Commands

Bit HName Meaning

ER—— PR [P O —

0 BUgY When set to a 1 bit, this bit indicates
that command execution is in progress.
When no commend execution is in
progress, this bit is set to @ 0 hit.

1 INDEX This bit iz set to a 1 bit when an index
mark is detected on the drive;
otherwise, this bit is set to a 0 bit.
This bit is an inverted copy of the IP
input (pin 35).

2 TRACK 00 This bit is set to a 1 hit when the Read-
Write head is positioned to Track 00;
otherwise, this bit is set to a 0 bit.
This bit is an inverted copy of the TROO
input (bit 34).

w3

CRC ERROR This bit is set to a 1 bit when (RC
characters are encountered in an ID
field; otherwise, this bit is set to a 0
bit.

4 SEEK ERROR This bit is set to a 1 bit when the
desired track was not verified;
otherwise, this bit is set to a 0 bit.

5 HEAD LOADED This bit is set to a 1 bit when the Read-
Write head is loaded and engaged;
otherwise, this bit is set to a 0 bit.
This bit is the logical AND of the HLD
autput (pin 28) and the HLT input (pin
23,

6 PROTECTED This bit is set to a 1 bit when Write
Protect is activated; otherwise, it is
set to a 0 bit. This bit is an inverted
copy of the WRPT- input (pin 36).

Page 61

7 MOT READY This bit is set to a 1 bit if the drive
is not ready. If the drive is ready, this
hit is cet to a 0 bit. This bit is
an inverted copy of the READY input (pin
32), logically ORed with the MR- input
{pin 19).

The Type 11 commands are Read Sector and Write Sector. Prior to loading a
Type II command into the Command Register, the processor loads the desired
sector number into the Sector Register. UWhen a Type II command is received
and an ID field is located on the disk. the track number of the ID field is
compared with the Track Register. If they do not match, the next Ib field is
read. If there is a match, the sector number of the ID field is compared with
the Sector Register. If they do not match, the next 1D field is read. 1f
there is a match, the CRC of the ID field is tested. If the CRC is incorrect.
the next ID field is read. If the CRC is correct, the data field is then
located and its contents are either read or written. The FDC must find an ID
field with the correct track number, sector number, and CRC within four
revolutions of the disk.

The Type 11 commands each provide flags for requesting a 15-microsecond delay
before the Read-UWrite head is loaded against the medium, and for specifying
that multiple sectors are to be read or written. The Write Sector command also
provides a flag for controlling the writing of the data address mark.

The Type II commands sre:

o Read Sector. This command causes the data field
associated with the selected 1D Field (correct track
number, sector number, and CFC) to be presented to the
processor.

o Write Sector. This command causes the FDC to write
data bytes from the Date Shift Register to the data
field of the selected sector (correct track number,
sector number. and CRO).

The Command Register values for Type (I commands are listed in Table 5-21.

PFaje 42

Table 5-21. FDC Command Register Values for Type 11 Commands

—-——— -

Command Command Register Value

Read Sector 1
Write Sector 1

where: m - multiple record flag:

1 - multiple records
0 - single sector

e — head loading delay flag:
1 - 15-me delay
0 - no delay

a - data address mark flag:
1 - F8 (Deleted Data iark)
0 —- FB (Data Mark)

The contents of the O8tatus Register have the same meanings on a Type 11
command as on & Type III command. The Status Register contents for Type 11
and I1I1 commands are described in Table 5-23, presented after the discussion
of the Type 111 commands.

The Type IIX commands are:

o Read Address. This command causes the 6 bytes of the
next encountered ID field to be assembled and
transferred to the Data Register. The ID Field bytes
are: track address, side number, sector address.
sector length, CRC 1, and CRC 2.

o Read Track. This command causes reading to begin with
the leading edge of the next encountered index mark
and to continue until the next index pulse. As each
byte is assembled, it is transferred to to the Data
Register. '

o Write Track. This command causes bytes from the Deota
Register to be written to the disk, starting with the
leading edge of the next encountered index pulse and
continuing until the next index pulse.

Table 53-22 lists the Command Register values for Type 111 commands.

When a Type II or Type III command is executed. the contents of the Status
Register are as listed in Tsble 5-23.

Page 63

Table 5-22.

[

Command

Read Address
Read Track
Write Track

FDC Command Register Values for Type I11 Commands

" 0 11n o e 4 A o e e o e 00 - —— -

Command Register Value

Bit

DATA REQUEST

LOST DATA

CRC ERROR

RECORD TYPL/
HRITE FAULTY

Status Register Contents for Tupe 11
Tupe 111 Commands

- o s i -

When set to a 1| bit, this bit indicates
that a command is under executiom. IF
no commend is under execution., this bit
is set to a O bit.

This bit is a copy of the DRQ output
(pin 38). When set to a 1 bit, it
indicates that the Data Register is full
on a Re:d operation or empty on a Write
operation. Otherwise, this bit is set
to a 0 bit.

This bit is set to a 1 bit if the
processor does not respond to a DRQ
signal (pin 38) in one byte time.
Otherwise, this bit is set to a O bit.

This bit: is set to & 1 bit if an error
ie found in one or more ID fields or in
the data field. Otherwise, this bit is
set to a O bit.

Orn a8 Read Sector command, this bit
indicates the record-type code from the
data field address mark. On any Urite
command, this bit is set to a 1 bit if a
write fault occurs. This bit is not
used by the Read Track command.

Fayge 64

& WRITE PROTECT n any Write command, this bit is set to
3 1 bit if Write Protect is active;
otherwise, it is set to a 0 bit. This
bit is not used by the Read Sector or
Read Track command.

7 NOY READY This bit is set to a 1 bit if the drive
is not ready. If the drive is ready,
this bit is set to a 0 bit. This bit is
an inverted copy of the READY input (pin
32), logically ORed with the MR input
(pin 19).

Tupe IV consists of a single command: the Force Interrupt command. If another
command is under execution when the Force Interrupt command is loaded into the
Command Register, that command is terminated. Depending on the value of bits
0-3 of the Command Register. an interrupt may be generated. Table 5-24 lists
the Command Register values for the Force Interrupt Command.

Table 5-24. FDC Command Register Values for the Force
Interrupt Command (Type IV)

- por—— - -

Command Command Register Value

Force Interrupt, no
interrupt generated 11010000

Force Interrupt, Not-
Ready to Ready Transi-
tion interrupt generated 11010001

Force Interrupt. Ready
to Mot-Ready Transition
interrupt generated 11010010

Force Interrupt, Index
Pulse interrupt generated 11010100

Force Interrupt, Immediate
Interrupt generated 11011000

Page &5

I1f a Force Interrupt command is received while another command is under
execution, the Status Register BUSY bit (bit 0) is reset and the rest of the
Status Register bits are unchanged. If a Force Interrupt command is received
while no other command is being executed, the BUSY bit is resel and the rest
of the Status Register bits are upcdated or cleared. In this case, the GStatus
Register bits have the same meanings as on a Type I command, as outlined in
Table 5-20.

For wmore information on the FD1791 Floppy Disk Controller, see the "FD1791/2
Floppy Disk Controller” data sheet, available from Western Digital Covporation.

Pape 66

THE MICROEMGINE COMPAMY

tm
Pascal MICROENMGINE Computer

Pascal Operations Manual

Preliminary Edition

Harch, 1979

Software is provided on a licensed basis only and is the property of the
University of California with permission granted for use on an individual
system basis only. Copies may be made for archival purposes only.

Information furnished by The MICROENGINE Company is believed to be accurate
and reliasble. However, no responsibility is assumed by The MICROENGINE
Company for its use; nor for any infringements of patents or other rights of
third parties which may result from its use. Mo license is granted by
implication or otherwise under any patent or patent rights of The MICROENGINE
Company. The T™MICROENGINE Company reserves the right to change product
specifications at any time without notice.

Copyright () 1979 by The MICROENGINE Company
Firet Printed March 1979
All richts reserved.
Mo part of this document may be reproduced by
any means, nor trenslated, nor transmitted
into a machine language without the written

permission of The MICFOENGINE Company.

MICROEMGIME is a Fegistered Trademark of
Western Digital Corporation.

The MICROENGINE Company is a wholly-owned
subsidiary of Western Digital Corporation.

PREFACE

This manual is organized primarily for reference purposes. The first section
gives a brief overview of the Pascal Operating System. Section 2 gives
details, including commands, of each of the separate parts of the system.
Section 3 deals with Pascal programming considerations necessary to function
within the system. Section 4 describes the utilities available. Appendices
are for quick reference capability.

:3.3:3.3

This manual was prepared and edited using the
UCSD Pascal Screen Oriented Editor and was
printed using a PRINTROMIX fodel P300
lineprinter. The lineprinter was provided by
PRINTRONIX Corporation, Irvine, California.

WESTERN DIGITAL
PAGCAL OPERATIONS MaMUAL

OUTLINE
Hage

Sectiﬂn 1 ImRODUCTIUN.n.lllnl.lﬂl.l.lIlllullI'llllllllia-llllnlﬂl.llllnl1

Section 2 PASCAL OPERATING SYSTEMu nuscrenrnnnvunnuvansuvumrannuannunnnnuall
2.1 The Operating System HierarChuUseuvescsvscauvvessensnsanonnald
Outer Level CommandS..eusesvonanssunarssnrsanssvunsansssd
Sereen-Oriented Editoree s cunsnsnssncnrvnonconvronnnanuuatd
2.4.1 Hoving Commands.eseassnesunascrsvravonsrnnannnnedd
2.4.2 Text-Changing CommandsS. . muvuranncansvnnavnunannid
2.4, 3 Formatting CommandS, suseosmanncsovvrovvranunenall
2.4.4 Miscellaneous CommandsS. suaasovsanvaansmonnannneldd
2.4.5 L2 EditOrunucsnanennannnascansmnnsunnnrananannnl?
2.3 Yet Another Line-Oriented Editor (YALUE) iuceunorvnnne ouild
2.5.1 Special Key CommandS. sanseavsvasvonssnvananannedd
2.5.2 Input/0utput CommandS. s evworucasovaasvvavnennss 2
2.5.3 Moving Commandse swevavusansasvnanmcnssanssnnenndd
2.5.4
2.5.5
Fil

(S

B~ %

a

Text-Changing CommantS. sersorvsavmsacnasenunnnedid
Miscellaneous ComMants., seuesevrsnvmosvenennanesdO
2.4 Hondleranuusaunsovucnunnonsnnnnsuncavunannnanennneadd
athel "F'" Prompt Line CommantS.ervevvavavnunonnonsnnedd
2.6.2 "2 Prompt Line CommendSe.vevivouvsonvnonnnnnand?
2.7 Pastal Compilereenveuevuesuesueunnnannassnconavurnnsnnnssdd
2.7.1 Compiler Option SyntoX.icavsverranvaonensennnunendy
2.7.2 Compiler Options.esuvacourarranesnsonscnnnnanand
2.8 Basic Compiller.uaescesovenunanssnnnnanonnnnoaveoosnnennesi?
2.8.1 Features of UCSD BasiCeiouvuavasnswnsvnrnvonnensd?
2.8.2 UCSD Basic EnhancementS..scevcvassnavanannannsuadd
2.9 LinKETuwuruwsssussunnnnnanunnnsnannnnususnecsresansnanendd
2.9.1 Using the Linker..ecevsessvavusarnsavononnnanes I
2.9.2 Linker Conventions and Implementation..........5%
2.10 DebUQGET 4 aveevsvasnnnnrncsnasssnsnnnnonnanarannannnonnnnd’
2.10.1 Debugger NMOOES.sssswsnvuvennnvnansnaroncnunasnnd
2.10.2 COMMONUS . s ansuvnonnsnusanvnannoosusanwvonnnensadId

Section 3 PASCAL PROGRAIMIING CONSIDERATIONG. v vsruvnvsnvavavarvounnnnmesldd
3l IntrinGiCSeoununanonnsnanannnunansnasnnunovrnasnesnnnnnneidd

3.4.1 Character Array Manipulation Intrinsicsieees.. .64

3.1.2 170 IntrinsicSesnveevnannnanrssunvnscoannsnsansndO

3.1.3 String IntrinsicS.eoneesnraavnsanensvanruonannnd?

3.1.4 Miscellaneous Intrinsic Routines..cevucvnnwona.?1

3.2 Fileglllllllllllllllllllll.lln'ﬂllllllIl.l“lllﬂlﬂﬂlllllll?‘g
3-2#1 Text Files.llIInllllllllllllllllll!ll‘lllllull‘;’:{
3.2.2 CDdE Files---nu-..nnuuuu.-unuu--annaa-uan---n--?g

3.2!’3 Data FileS--.-----.--n---..--n--.n.a.ann..-.--a73
3412'4 FOtD Files-----n-.-.---u.--..n-u-n..--an.......73

Section 4

Bad FileS.uuanvoenonnoaansnasunanucanunannnnnonsd
WOPK FillBSueuswusnnannunnuannnusnasausvannunonald
VO IUIMES . n s wressnnanmanunnnsosananunanaansusnnnmunsi)
3.2.8 File MafESeennasnnaennannouanvasnssnaumranvnnnnuld

Segme"tSul.luuul.--nll--l.uln...ll-ul--ul-u-.luluc-a.-n-75

nka

h N
N U

»Law

W w
e

LinKBQESa s ussusnssunsnnunnsnannannrssnannuvnaonsnanunnnnsid
3.4.1 Pascal to Pascal Linkages (Units)eeucvcsnnncran/b
LONg INtEgET S vuencnunsnunnnansnannunnsaansnononanunanunl?
UCSD Pascal EnhancementSeceonsnasraassssosoannannnnnnnetdO
Case StatementSeesvsnsusnncvonvrasnsonannnnsnnaldl
COMMENT e wanannnonunsnnnnnnsnsasvovnesonsnannsatdl

Dynamic Memory Allocation.ceeevevvrvnvesnneansatil

=
L]

EOF(F)u, suunmunnmnnvovuannunannonnsuvmusunnnsnssidl
B NIF) e vnwnanumnanuanunanonaaauvansnnrnnnsnnnL
FilBSeueaononnnunsnnanusnnusnnanonnnranonnnnnmsatdl
GOTO and EXIT StatementsS.veavsrvnvronsrunnnansatf
Packed VariableSeuawssasssmsnanconsnunounnonnnnidd
Parametric Procedures and FUnCtionS....cauanwsaf/
Program HEeadingS.cuuwsuvvsvnsonanvuavasansnnnnad/
READ and READIMa e unvuvsnwunsusvuvnvanmonnmnnanaid/
RESET(F wvunonnununanunsvnsaonvunnnunaaanenssnaldd
REWRITE F)uumnnunnouunnonunavananvanavannenanssdD
Segment ProCedUreS.avvusovsssnasasasnsnunusanssid

L]
[

[] L. |
0\&&&00\&&&?\&&??&&&0\0‘

1] Y
L] L

%
bt et bt b bt b b b e b= OO N O S WA e

»
.
NN DLDWR=C

SEtSll-n..lulllln...-lnl-..na-ull.unluln.--l.auaq

S ANQS. savanesanusnnonnnevurannonsnmsvennnsnsaid?
URITE and WRITELM. cuvvonnvonnonnmesnanurnnunnws?d
Implementation Size LimitS.eeowvsuvnanuurnsnunas?0
Extended CompariGOnSeacesevwsssanvansressanannnn?l

W
®

L
s

)
.

UTILITY pROGRAHS...llldllll.lll..llnlll"lllllllllllaulnll.u..n?g

411

-

.b.b:tx.h.b
[= SRV R TR IV I N

4.7

SetUp.-------..-4-----.---------.----n.-.----nn-----u-.nva

4. 1.1 Miscellaneous Information.secswssvassnsasnunnwa?d
4.1.2 General Terminal Information.e.crvanrvvansnnsea?d
1.1.3 Control Key InformatioNessvsvovsvnvarsvsnnsnnns?d
4.1.4 Video Screen Control Characters.saservcasveanns®h
Bootstrap COpPierisveseaessenseannnnussvnnssaunnonannnnuns?/
Duplicate Directory UtilitieS.cucursvveuvmoccvavonnannun?s
LibTrariaN. wesvenanunnunonrnanssansnuonnananunanononnnannn
Library Mapesscscsasvnsasmsnnannnnsnssanancaansnanunnnan??d
P-Code DisascembBler . cuvnosunnnsasnvaanaconannnuaannnancn??
4.6.1 P-Code Jisacsemb leTeevvanssnossnascsnvannsnanns??
4.6.2 Data Segment Reference Statistics....usswaanwalD
4.6.3 Opcode, Procedure Call and Jump Statistics....10d
Patch/DUMP e ssscnanusnnnnannnnmnncnunnsunnsnnssnssannsnnaild
4,7.1 Concole MOdEC. e uacemsnassanssnsucaananssannnnne i
4.7.2 Patchwork MOdeeaswsasusssunavurravsoransnennanlld
4.7.3 Hholewriter MoOE.csveenanasansnnonvsasunsvsnnnssnlOf
ColCUlatOT cnuuusumannnnvnosnnonsnnunanavannennasannnnns O
GOTOXY Procecure Binderecavecsvueasnsasuvarvassrunsonnans i

APPENDICES

Appendix A Command SUMMAT 185, susvsnsnasvesvenosanavnnnanssannssnraunwannnlQ7

Appendix B

Outer Level.icuvvsssvovnsnvnnaunnnununewsvnnunavannnussoeaslD/
Screen Oriented EditOTecwesnvnnnnuvwnvnvanovansasnnaanall7
YALOE s sasnunonnanunaanunnnusunnonnnnununcnnmsranansnanelOF
File Handlerevueensonnnannusanunsnunnaonrnonaoaunsnusnnul?
Pastal Compilerivevvonvannuvesnerunconnsunnanunwnnnsnnnedill
DebuggeT e vunnanssessnnannnnsnansnnssnssnsunsnusnsnennlll

>
N

>p22
O D WA

195;----.-¢u-------------u---.-n-.-u---n--------»--:------lla

Runtime ErrorS.aswssonsnsvonsnvnnmvavnnsarnacnsssnnnnnalld
Syntax Errors Version Juecwecascsascvarncvacunsuovsnnvannlld
I70 ResultEeuveaavwsnnonnnnwansunonavnnswannenononnasnanndl?
Unit Numbers.sveonsenvennonnanunnnvnnnnvusrasornannunanedl?
P-fachine Op Codes Version Seiuvevessnevsssnusncannsannnllll
Assembler SYntax ErrOrSecesscsscnnnsnsevanrnarensnnnannlld/
ASCIT ColeS. cevvnnnvarsvansnumnnunswansnannnonavnnnnannldy

COCUCU?&CQF;{
NNV D W T

x

Appendix © UCSD Pascal Syntax DiagromSeeevenuasvannvocsunansvanvnannnasaslidd

Appﬁndix D Glassaru.lﬂulllln.lllnllllllllklllnIultl.lu.ulll.lanl.a.nnlll135

WRpR YRRy
WNOW DR

e
- e e b e N

ol
R

W W
Tt

X

7
£

T
o

3-7
3-8
3-7
3-10
3-14

ILLUSTRATIONS

Operating System OVervieWssvevessssvvouvannsnonenansnsnvnnroassnuesed
Example of AUEO-Indent..cssevansesnnvsanncusnonunasnasnusavannnunann?
Example of Delete Command.e.esessenvevvunsansnannunsvaonnnaoarsnsnnnll
Example Of EXChangPeescevavannsnnnusvvanunansnnnannvonsnnnanssasnnesld
Example of ReplacCessesuirsvsvennnvranseavavanuncannnnnannnasnncannnnnld
Example of Margine.cenveaesnusassnsanannnsasnnnonsnsnasanscnscannannld
Examples of HMoving CommandS.eessensssansuavuannnanrnsnnananvasnnssndd
Examples of Text-Changing CommandsS...svessnunsnnusnunnnvnvonaannnend?
Example of MHacro Command..cwvecsosnsvnnsnvavnvannnanunsansanansnveandd
File Specification.senssvusscunavunnscnnsnasnnannnnsnoannnancnanuenndd
Example of Compiler DisplaUec.esseassansseansanavuarcannosnvnnansnnsids
Example of Compiled Program Source ListinQeeessssssssnsuvsvoronanands
Example of Entering Examine Modeswssscncnansennunvovvsvssuvesonnanadt
Using Debugger Commands to Debug a PrograMecscvsvenscsncsvarannsnna0

Examples of Character Array Manipulation IntrinsicSisevevssvarnuanndd
Examples of String IntrinsicSiseeevrsvenvssvnvanssunnunonnerannsvann/l
I/0 DeviCeSesunnesnvnnsussnnnuasnannaansssnnnnnnsnnnnnnnasnvacanannsd
Syntax for a Unit Definibionsuecssssnusvnssvaonvnanansnussnavsnnnan’?B
Example Uses of Long IntegerSeeesescusnvennanvnsnncscnsnnnrnnunnnsnBl
Example of Fallthrough in a Case Stotemente.cevvevwercnvonnvvanunuafl
Using Mark and Release to Change Heap Siz@ecewasnsssvvansssnsasnenaa8d
Example of Using Untuyped FileS.evavenasanansnssanncancruvsncoraneenaBd
Example of using the Exit Statement..ccvsecnsvasrvaananunnvcnuvansanatd
Examples of Packed Arrays and ReCOrdS..svavevasnasranansnavcnsnsnasBO
Examples of Set CompariconS.iswvmsennsncnsnnnannansnsavuscrvaanesnan8?

DiSaSSEMblU Example---n--nu----------n..----.--.-----u--ua-.-a-.--lOl
CBlCUlBtOT Examplegn-n.p-.-u-....n.-.n..-a.--.uu-nn.-nun:n-n-u--un105

SECTION 1
INTRODUCTION

The Pascal Operating System described in this document is designed to run on
the MICROENGINEtm computer. For optimum use of the suystems a CRT is
recommended for use as the operator’s console. The Pascal language used in the
system is the modification of Standard Pascal developed at the University of
California, San Diego (UCSD Pascal).

The Operating System consists of a number of modules, each designed for a
particular program control purpose. These modules are accessed by commands
that are displayed in a prompt 1line on the operstor’s console. As each
module is accessed, it generates the display of a prompt line giving the
commands that are to be used in it. The modules are:

o Editor (either for a CRT or line-oriented console)
o File Handler
o Pascal Compiler
o Basic Compiler
o Linker
o Debugger
Basic to the design of the system is the "work file", which is an area used
for program development. Only one work file area is provided by the system.
If another is needed, the contents of the work file may be saved under a
separate file name for later reference (see Section 2.4, File Handler, the
S(ave command). However, any number of files can be retrieved and combined
into one work #£ile.
This document was written with the assumption that the user is already familiar
with the Pascal language and using computer systems. The following documents
will provide supplemental information on both Pascal and this system:
o Pascal User Manual and Report (Standard Pascal)
Kathleen Jensen and Mik laus Wirth
Springer-Verlag, MNew York., (c)1975
o Microcomputer Problem Solving Using Pascal
Kenneth L. Bowles

Springer-Verlag, Mew York, {(c)1977

o Pascal NICROENGINE Computer User’s HManval

Page 1

SECTION 2

PAGCAL OPERATING SYSTEN

2.1 THE OPERATING SYSTEM HEIRARCHY

The Pascal Operating System has what can be described as a tree-like structure.
The root of the tree corresponds with the outer level. Commands from the
root reach out to activate the leaves, or lower levels of the system.
Figure 2-1 diagrams this tree-like heirarchy.

OPERATING SYSTEM OVERVIEW

Outer Commands: E(dit, F{ile, R{um, C(omp, L{ink. X{ecute. D(ebug

~Edit: Aldjust, Clpy, D(lete, Flind, I(nsrt, J(mp, R(place, Q{uit, X(chng, Z(ap

~=Filer: G(et, S(ave, W(hat, M{ew, L{dir, R{em, C<{hng, Ti(rans, D{ate. Qluit

--Run: Invokes the Compiler, Linker and executes the program.

~-Compile: Translates Pascal source programs into P-code. Options are placed
' in program text.

~-L.ink: Links the system library to translated program.

¥
t

~~Execute: Executes compiled and linked programs.

1]
1

—-Debug: Interactive program which aids in debugging executing programs.

The UCSD Pascal Operating System is a single user program development system
which aids in developing and executing user application programe.

Figure 2-1. Operating System Overview

The lower levels of the system are accessed by outer level commands. A
command structure within each level enables the user to direct its execution.
The commands are listed in a prompt line. The prompt line for the outer
level commands appears after Auboload, after execution of a lower level. and
following the entry of some lower level commands, such as @Cuit in the File
Handler. Within each of the lower levels, infrequently used commands may
not appear on the prompt line if there is insufficient room on the line.

Page 3

The lower levels of the Pascal Operating System are:

o Screen—Oriented Editor - #An editor specifically
designed for use with vides display terminals to
insert or delete text in the work file or any text
file.

o Line-Oriented Editor (YALOE) - An editor
specifically designed for use with teleprinters to
insert or delete text in the work file or any text
file,

o File Handler - Used primarily for maintenance of
files stored on the disk.

0 Pascal Compiler - A one-pass compiler used to
compile programs.

o Basic Compiler - Used to comaile programs.

o Linker - Used to combine prezompiled files, written
in Pascal .

o Debugger - Used to facilitate debugging.

MHormally, an installation will have just one of the editors and one of the
compilers, depending on system configuration and need.

Other functions are available as uvtilities. These include the desk calculator.
the patch/dump wutility, the terminal configuration setup program and s
bootstrap mover.

2.2 OUTER LEVEL COMMANDS

The prompt line for the outer level commands appears avtomatically after
Autoload and after any of the lower levels have completed execution.
The prompt line offers a command for each of the other levels of the
operating system. The format of the prompt line is:

Command: E{(dit, R{un, F(iler, C{omp. L{ink, X{ecute, D{(ebug

The operator invokes the execution of the individual commands by entering
the capitalized character on the operator’s console. The function of each
command is as follows:

E{dit

By entering an "E”, either the Screen-Oriented
Editor or the Lire-Oriented Editor (YALOE) is
brought into memory from disk, depending on
whether a CRT or a teleprinter is used as the
operator‘s console in the system. The work file
text is read into the Editor buffer
automatically if one is present. Otherwise, the
fditor prompts for a file.

Vage 4

R{un

Entering an "R" causes the code file associated
with the current work file to be executed. 1f a
cade file does not currently exist, the system
Compiler is called automatically. If the
compilation reguires linkage to separately
compiled code, the Linker aleo is called
automatically and assumes the use of the file
kSYSTEM.LIBRARY. The program is executed after
a successful compilation and linkage.

F{ile
Entering an "F" calls the File Handler into
memory from disk.

Clomp
Entering a "C" initiates either the Pascal
Compiler or the Basic Compiler, whichever is a
part of the system.

L{ink
The "L" command starts the Linker to allow users
to link routines from libraries other than
KSYSTEM. LIBRARY.

X{ecute

After an "X" command is entered, the user is
prompted for the #file name of a previously
compiled code file. If the file reguested
exists, it is executed. Otherwise, the message
"can’t find file” is returned. (Hote: The
"JCODE" suffix on such a file is implicit and
does not need to be entered.) If the code file
is composed of several separately compiled
files, and one part has not been linked, the
message "file (fileid? not linked in" is
returned. Programs can be executed either by
use of X{ecute for a file that has already been
compiled or by use of F{ile, G{(et the #File,
Q{uit the Filer, and then R{(un the program.

D{ebug

Entering a "D" causes the current work file to
be executed. If the program in the work file has
not been compiled, the Compiler will be called
first, as with the R{un command. During
execution, if a runtime error occurs or if a
user— defined breakpoint or halt is encountered,
the Debugger is called.

The X{ecute command can be used to execute wubtility functions. These
functions include a desk calculator, a librarian and library map. and a
GO10XY procedure binder, among others. These are described in Section 4.

Page 5

2.4 SCREEN-ORIENTED EDITOR

The Screen-Oriented Editor is designed to provide a window into the file with

the video display terminal. The window shows that portion of the file in which
editing is taking place. UWhen entering any file, the Editor displays the start
of the file in the upper left corner of the screen. That is where the cursor

is originally positioned, also. The cursor is a marker that indicetes where

the action is taking place. Uhen the user enters an Lditor command to go to

a part of the file that is not displajed. the window is updated to chow that

portion of the file. Thus, the vuser does not need to operate on any portions

of the text that are not seen on the screen; however, he has the option to

do so.

When the Editor has been called by entering the outer level "E" command, the
Editor displays a prompt line at the top of the screen. The prompt line
reminds the user of the current mode and the options available for that mode.
(nly the most commonly used optioas appear on the prompt line. The format
is5:

Edit: Addjust Cipy D(lete F(ind I(nsrt Jimp R{place @fuit X{chng Z{ap

Mote that the cursor is never really "at” a character position; 1t is
hetween the character where it appears (Ffor ease of display) and the one
immediately preceding. This is most clearly noticed in the I(nsrt command
which inserts in front of the character at which the cursor is located.

In the Editor, some of the options are referred to as commands and some as
modes. When an option executes & task and returns control to the Editor,
that option is called a command. When an option issves a prompt for another
level of options, it is called a mode. On entering or returning to the edit
level, the Editor always displays the "Edit:" prompt line.

Repeat factors are allowed by any of the commands to repeat the action of
the command as many times as indicated by the immediately preceding number.
For example, entering

2 (down—arrow’

will cause the (down-arrow) command to be repeated twice, moving the cursor
Jown two lines. The assumed repeat factor is 1 if no number is typed before
the command. A slash (/) typed before the command indicates an infinite
number of repeats.

Some commands are directional. If their direction is forward, they operate
forward through the file; if backuwards. they operate in the reverse. UWhen
direction affects the commands, it is specifically noted.

2.4.1 HMoving Commands

The moving commands move the cursor from one location to another to position

it for the next editing function. Many of these commends are initiated by
keys on the CRT keyboard. They include:

Page &

Command/Key Function

(doun-arrow} Moves cursor down

{up~-arrow? Moves cursor up

{right-arrow) Moves cursor right

{left-arrow? Moves cursor left

" or "M oor " Changes the direction to backward

¥ oar MY or M4 Changes the direction to forward
(space) Moves direction

{hack-space? Moves left

(return} Moves to the beginning of the next line

Direction is always indicated by an arrow ()} or () in front of the prompt
line. The direction is forward when the Editor is entered, but can be
changed by typing the appropriate command whenever the "Edit:" prompt line
is present. On many standard keyboards, the period (.) can be used for
forward because it is the lower case for ")"; and the comma (,) cen be used
for backward, being the lower case for "(".

Repeat factors can be used with any of the keyboard commands given above.

The Editor maintains the column position of the cursor when executing the
(up—-arrow} and (down-arrow) commands. When the cursor is outside the text.
the Editor treats the cursor as though it were immediately after the last
character or before the first in the line.

The moving commands that do not have special function keys on the CRT keyboard
are jump, page and equals. They are described below.

WP

JUMP mode is entered by typing "J" for J(mp. Uhen the
JUMP mode is entered. the prompt line appears:

JUMP: Bleginning E{(nd M(arker {esc)

Entering "B" or "E" moves the cursor to the beginning
or end of the file, displays the "Edit:" prompt line
and the first or last page of the file. Entering "M"
produces the prompt line:

Jump to what marker?

The user then enters the name of the marker, followed
by a (return). The Editor moves the cursor to the
place in the file where the marker having that name
was previously set. If a marker of that name is not
in the file, the error message displayed will be:

ERROR: Marker not there. Please press (space-bar?
to continve.

The instructions for setting a marker in a file are
given in Section 2.4.4, Miscellaneous Commands, under
Set.

Page 7

PAGE

EQUALS

The PAGE command is executad in response to typing
"pr, PAGE moves the cursor on2 whole page up or down,
depending on the direction of the arrow at the
beginning of the prompt line. The cursor moves to the
start of the top line. To nove several pages at one
time, the repeat factor may be used with this command.

The EQUALS command is executed in response to "=". It
makes the cursor jump to the beginning of the last
section of text that was inserted, found or replaced
from anywhere in the file. EQUALS works from
anywhere in the file and is not direction-sensitive.
When an INSERT, FIND or REP_ACE command is executed.
the beginning of that function is saved. However, if
a copy or deletion has been made between the beginning
of the file and that absolute position, the beginning
location is altered and 1s no longer correct for an
EQUALS command.

2.4.2 TEXT-CHANGING COMMANDS

The commands described below change the text of the file.

INGERT

INSERT mode is entered by typing "I" for I{nsrt. Whewn
the INSERT mode is entered, the prompt line appears:

Insert: Text{(bs) a char, {(del> a line} [(etx’
accepts, (esc) escapesl

The text to be inserted is typed in. It may be
followed immediately by <{(etx? or (escl. Before
insertion, a character can be deleted by backspacing
({bs> a char) or an entire line can be deleted ({(del)
a linel.

A new line can be started at a level of indentation
set by options in the SET mode by typing:

{return?
Direction does not affect the INSERT mode. but is
indicated by the arrow in the first position of the

prompt line.

An insertion that is made and corrected is availasble
for use in the COPY mode. However. if (esc) is used,

Pfage 8

AUTO-IND

no string is available for COPY.
ENT and FILLING

AUTO~IMDENT and FILLING are used to control the left
and right margins, respectively. Both are in effect
if True and not in effect if False. (See SET for
setting them to True or False.)

If AUTO-INDENT is True, a <{return) causes the next
line to start at the same level of indentation as the
immediately preceding line. If False, indentation has
to be adjusted by spacing for any line that is not to
start at the normal left-most position in the line.
An example is shown in Figure 2-2. UWhen the left
margin is controlled by AUTO-INDENT (Truel), the level
of indentation is changed by wusing the <(space) and
(backspace? keys immediately following & (returnl.

If FILLING is True, all insertions are forced within
the right margin by automatically inserting a (return’
between words whenever the right mergin would hawve
been exceeded. The Editor considers anything betuween
two spaces or between a space and a hyphen to be a
word. An example is shown in Figure 2-2. (See SET
to set margins.)

FILLING also causes adjustment of the right margin on
the portion of the paragraph following an insertion.
However, any line beginning with the Command character
(see SET) is not touched, and that line is considerved
to terminate the paragraph.

Line 1 Original indentation
Line 2 (RET) rauses indentation to the level of the line above
Line 3 Indention was changed by (space) (space’
Line 4 (RET) causes indentation to the level of the line above
Line 5 Indentation was changed by (Backspace}
Figure 2-2. Example of Auto-Indent
DELETE

DELETE mode is entered by typing "D" for D{lete. On
entering DELETE mode, the following prompt line
appears:

elete: ¢) (Moving commands) {(etx) to delete,
»{esc) to abort)

Page 9

e e e 1t e

The cursor must be positioned at the first character
to be deleted. Uhen entering DELETE. the Editor
rememsbers where the cursor is. That position is
called the anchor. fs the cursor is moved from the
anchor position using the moving commands, text in its
path will disappear. To cccept the deletion. tuype
(etx); to escape, tupe (esc). When (etx) is typed. the
Editor saves everything thet was deleted for COPY to
use. When (esc) is typed, nothing is deleted but the
copy buffer contains what would have been deleted. An
example is shown in Figure 2-34.

. [o o s ren e i+ - -

This is the tert before deleting:

This sentence of the text is to remain the same.
sentence is to be modified by the delete command.

This

Position the cursor over the "T" in tle second occurrence of "to".

"D" followed by typing 5 (space} keys and a (etx) keuy.

the following text:

iAP

——— Lo e e i St 0 A 410 B S 4 PSS S SRS AR B St Sabe i b Bt 7

This sentence of the zext is to remain the same.
sentence is modified by the delete command.

This

Enter a

This will recult in

Figure 2-3. Example of Delete Command

The repeat factor may be used to delete several lines
at once by prefacing a (return) or any other of the
moving commands with the desired repeat number while
in DELETE mode.

The ZAP command is executed by typing "Z" for Z{ap.
This command deletes all +text between the start of
what was previously found. replaced or inserted and
the current position of the cursor. ZAP is designed
to be used immediately after FIND, REPLACE or INSERT.
if more than 80 characters are being zapped, the
fditor will ask for verification.

If a FIMD or REPLACE is made with a repeat €actor and

then ZAP is called, only the last find or replace will
be zapped.

Page 10

Whatever is deleted by ZAP is available for use with
copy.

copyY

COPY mode is entered by typing "C" for Clpy. Uhen
entering the COPY mode, the following prompt line
appears.

YOORY: B{uffer Fiile {(esc?

Enter "B" to copy text in the copy buffer into the
file at the Ilocation of the cursor when the "C" was
typed. On completion of the COPY, the cursor returns
to a position immediately preceding the text that was
copied. The use of COPY does not change the contents
of the copy buffer.

Enter “F" to copy text ¥Ffrom another Ffile. The
following prompt line will appear:

YCOPY: FROM WHAT FILETMARKER, MARKERI?

Any file may be specified. Text is assumed. Harkoers
can be set so that a given portion of a ¢ile can be
copied. On completion of the COPY (from file), the
cursor returns to the beginning of the text |just
copied From the file. Use of COPY does not alter the
contents of the file being copied.

The copy buffer is affected by the following commands:

DELETE - On accepting a deletion, the buffer is
loaded with the deletion: on escape, ‘the buffer is
loaded with what would have been deleted.

IMSERT - On accepting an insertion. the buffer is
loaded with the insertion; on escape. the buffer is
empty.

ZAP - UWhen the ZAP command is used, the buffer is
loaded with the deletion.

When the deletion is greater than the buffer space
available, after tuyping (etx} the Editor will give
the warning:

There is no room to copy the deletion. Do you wish
to delete anyway? {(y/n)

EXCHANGE
EXCHAMGE mode is entered by typing "X". On entering

Page 11

the EXCHANGE mode, the following prompt line appears:

EXCHANGE - TEXT {(bs} a char.- [{esc? escapes; (etx?
acveptsd

EXCHANGE replaces ome character in a file for each
character of text entered. An example is shown in
Figure 2-4. Backspacing one character will ceuse the
original character in that position to reappear.
Tuping {esc> leaves the SXCHANGE mode without making
any of the changes indicated s:ince entering the mode;
while typing <(etx} accepts the changes as part of the
file.

MOTE: EXCHANGE does not allow tuping past the end of
the line or typing in a carriage return.

This is the text before exchanging:

PROGRAI EXCHANGE ;
BEGIN
WRITELM(/THIS TEXT IS FINE’),
WRITELN¢THIS TEX1 IS NOTFIME’);
END.

Pocition the cursor to the first "N" in "NOTFINE'". ©Enter an "X" followed
by tuping "CHANGED" and a (etx) keu. This will result in the followng text:

PROGRAN EXCHANGE ;
BEGIN
WRITELNC THIS TEXT IS FINE’);
WRITELMC THIS TEXT IS CHANGER’),
END.

Figure Z2--4. Etample of Exchange
FIND and REPLACE
The following rules apply to both FIND and REPLACE:
1. The repeat factor 1is wvalid and must be typed
before typing "F" or "R'. The current repeat

factor appears in brackets on the prompt line.

2. The Editor provides two string storage
variables:

Paga 12

targ the target string (used by both)
sub the substitute (REPLACE only)

Both delimiters of either string will be the
same., The Editor considers any character that
is not alphabetic or numeric to be a delimiter.
(space? is & particularly common delimiter.

3. Text is scanned in the direction of the arrow on
the prompt line. The target pattern can be
foumd only if it appears in that section of the
text.

4, In LITERAL mode. the Editor will look fTor any
occurrences of the target string: in TOKEW mode,
it looks for an isolated occurrence. Isolation
means & sbtring is surrounded by any combination
of delimiters. To use the LITERAL mode. tupe
""" after the prompt line and before the target
line; to use TOKEN, type "T". The default
value Ffound in the Environment may be overridden
by typing "L" or "T". TOKEW ignores spaces
within strings so that baoth "(7,7)" and (¢,)
are considered to be the same string.

3. To wuse the same string as used previously, type
"S"., For example, typing "RS/{any-stringl/"
causes REPLACE to wuse the previous target
string; while +typing "R/C(any-string?/8” cauves
the previous substitute string to be used.

FIMD mode is entered by typing "F". On entering FIMD
mode, one of the prompt lines below will appear:

Windlnl: L{it (target) =>
Windlnd: T{ok (target? =

FIND mode finds the repeat factor [nl occurrence of
the <{target) string starting with the current position
and moving in the direction shown by the arrow.

REPLACE mode is entered by typing "R". Un entering
the REPLACE mode, one of the prompt lines below will
appear:

Replacelnd: L{it V{fy (tart? (sub) =)
Replacelnl: T{ok V{fy (targ) (sub) =}

REPLACE mode finds the repeat factor [nl occurrence of
the target string and replaces it with the substitute
string.

The verify option (V{fy allows examination of the

Page 13

target string (to the limit set by the repeat factor)
to decide if it is to be replaced. UWhenever REPLACE
has found the target pattern 3in the file and
verification has been reguested. the following prompt
line appears:

/ 4

Replace: (esc) aborts, “r’ replaces. ’ dpesn’t
Fyping an "R" will cause replacement; typing a space
will cause a continustion of a search for the next
occurrence 1f the limit of the repeat factor has not
uet been reached. The repeat; factor counts the number
of times an occurrence is found, not the number of
times "R" 1s entered. IFf 4 slash (/) is used as the
repeat factor, every occurrence of the target string
will be replaced.

If the Editor cannot find the target string., the error
MESSA0E appears:

ERROR: Pattern not in the file. Please press
{space bar)> to zontinue.

An example of REPLACE i< shown in Figure 2-5.

o e e o g ik A B S s S 408t Sk M 478 S ik 4ms L CBAS i St 2404 o S o2 - A e o BB 0 %t e e i e 8 St P M Soan 1o e e oo - o ot o aaes e e e i S

Thie is the terxt before replacing:

PROGRAM REPLACE:
BEGIN
WRTTELMC SONE WORDS ') ;
WRITELMC/FMORE WORDSG) ;
WRITELMOEVEN FIORE WORDS’);
END.

Position the cursor to the beginning of the text. Enter a 3R and the fellowing
would be displayed:

SREPLACET3]: LCit V(fy Ctarg) (sub?) =) T/WORDS//STUFF/

This will result in the following text:

PROGRAM REPLACE,
REGIN
WRITELN(SONE STUFF) ;
WRITELMOHORE STUFF) ;
NRITELMCEVEN FMORE STUFF);

Fage 14

ERD.

Figure 2-5. Example of Replace

2.4.3 Formatting Commands

The formatting commands ADJUST and MARGIN are used to control indentation and

page format on a line-by-line basis (ADJUST) or by paragraph (MARGIN).

ADRIST

MARGIN

ADJUST mode is entered by typing "A". On entering the
ADJUST mode, the following prompt line appears:

Mdjust: L{just R(just Clenter (left,right,up,down—
arrows) {(etx? to leaved

ADJUST mode adjusts indentation on a line-by-line
basis. On any line, the right-arrow and left-arrouw
commands move the whole line one space to the right or
left, respectively, each time the arrow is typed.
Type C(etx> when indentation is adjusted.

To adjust a sequence of lines, adjust one, then use
the up-arrow and down-arrow commands to adjust the
line above or below respectively, by the same
amount. Repeat factors can be used before any of the
ATTOWs.

"L" and "R" are used to left- and right-justify lines
to margins set in the Environment. "C" will center
the line between the set margins. Typing an up~ or
down-arrow will justify or center the line above or
below to the same specification.

The MARGIM command is executed by typing "FM". This
command does not appear on the prompt line. PMARGIN
is Environment-dependent and cannot be executed except
when FILLIME is set to True and AUTO-IMDENWT is set to
False.

Three parameters are vsed by margin: right-, left- and
paragraph- margin. MARGIM deals with only one
paragraph at a time. It realigns the text to compress
it as mxh as possible without violating the three
margins. To set the margin values, see SET mode. #An
example is shown in Figure 2-6.

Page 15

This paragraph has been MARGINed with the parameters set:

L.2ft margin 10
Right: margin 70
Parayraph margan 18

The Margin Command s executed by typing "M when
the cursor is in the paragroph to be margined. The flargin
Command deals with only one paragraph at a time and
realigns the text to the specification set in the
environment.

This paragraph has been MARGINed with the parameter set:

Lzttt margin 20
Right: margin 60
Paragraph margin 0O

“he Margin Command is executed by typ:ng "I when the
cursor 1s in the paragraph to be
margined. The Margin Command deals
with only one paragraeph at a time and
realigns the text to the specification
set in the environment.

Figure 2-4. Example of Margin

For purposes of formatting. a paragraph is defined as
the lines of text occurring between two blank lines.
To MARGIM a paragraph, move the cursor anywhere in the
paragraph and tupe "f". Aith an exceptionally long
paragraph:, the routine may take several seconds in
execution before redisplaying the paragraph.

Any given line of text can be protected from being
MARGINed if the the Command character appears as the
first non-blank character on the line. The MARGIN
treats that line as though 1t were entirely blank.
(5ee SET for setting the Command characters.)

WARNING: Do not use IMARGIN within & line that
starts with the Command character.

2.4.4 tiscellaneous Commands

Y
SET mode is entered by typing "S". This command does
not appear on the prompt line. On entering the SET
mode, the following prompt line appears:

ySet: Mlarker E{nvironment (esc?

Fage 16

Markere are a convenience in a long file. They are set
by moving the cursor to the position in the text to be
marked, then typing "W'. The following prompt line
will appear:

Name of marker?

The neme may be wup to 8 characters followed by o
(return). llarker names are case-sensitive; upper and
lower cases of the same letter are considered to be
different letters. If the marker already existed. it
will be reset.

Only ten markers are permitted in a file at any one
time. On typing "B, if an overflow occurs, the
following prompt will appear:

Marker ovflw.

Which one to replace.

0) namel
1Y name?
22 nemell

Choose a number O through 2. type that number, and now
that space will be available for setting the desired
marker.

Once markers are set, they can be jumped to by using
the M{arker option in the JUMP mode.

If a copy or deletion is made between the beginning of
the file and the position of the marker, the absolute
position of the marker will be changed.

Through SET mode, the Editor enables the user to set
the Environment to meet the needs of the editing to be
done. When "E" for Elnvironment is typed. the
following prompt appears:

dE(nvironment: (options} (etx? or (sp’ to leave

Aluto indent True
F{illing False
L{eft margin 0
R{ight margin 72

Page 17

VERIFY

QUIT

P(ara margin 5
Clommand ch A
T(oken def True

nnnn bytes used, nnnn available

Patterns:
target = ‘xyz’, subst = “abc’

The option values given in the prompt are defaults for
the Sorok 120. By tuping the appropriate letter, any
or all of the options may b2 changed. Each option is
described below.

Aluto indent - Set to True (turned on) by tuyping
"AT" and to False by "AF". Affects only the INSERT
mode.

F(illing ~ Set to True (turned on) by "FT" and to
False by "FF". Affects the INSERT mode and allows
the MARGIN command to function.

Margins - Set by typing the appropriate letter ("L,
"R" or "P") followed by & positive integer of less
than 4 digits and a (space), Hhen Filling is True,
the margins set here are the ones that affect IMSERT
and IMARGIN and the center and justify commands in
ADJUST.

C{ompand ch - Set by typing "C" followed by any
character. Affects the MARCIN command and the
Filling option of the INSERT mode.

T{oken def - Set to True by "TT" and to False by
"TF", If True, Token it the default; if False,
Literal is the default. Affects FIND and REPLACE.

The VERIFY command is executed in response to typing
M The status of the Editor is verified by
displaying the updated screen. The Editor attempts
to adjust the window so the the cursor is at the
center of the screen.

QUIT mode is entered by typing "Q". On entering the
QUIT mode, the following prospt appears:

XQuit:
U{pdate the workfile ard leave
E{xit without updating
R{eturn to the editor without updating

Dege 18

Wirite to a File name and return

One of the four options must be selected by typing the
appropriate letter. The options are described below:

U{pdate - The Editor writes the file just modified
into the workfile and stores it as SYSTEM.WRK.TEXT.
It is availeble for either the Compile or Run
options or for the Save option in the Filer. The
Filer regards it as the text file.

E{xit ~ The Editor leaves without meking any changes
in SYSTEMLUWRK.TEXT. Any modifications made since
entering the Editor are NOT recorded in the
permanent work #ile.

R{eturn - The Editor returns without updating. The
cursor 15 returned to the exact place in the file
it occupied when "@" was typed. Usually, this
command is vused after typing "@" unintentionally.

Wirite - With this option, a further prompt appears:

Auit:
Mame of output file ((cr) to return) -->

The modified file may be written to any £ile name.
If it is an existing file, the wmodified Ffile will
replace it. The command can be aborted by typing
{return’ instead of & file name; return will be to
the Editor. After the file has been written to
disk, the prompt will be:

uit:

Briting + o « &« + » W

Your file is nnnn bytes long.

Do you want to E{xit from or R{eturn to the Editor?

Typing “E" exits from the Editor and returns to the
Outer Command level. Typing "R" returns the cursor
to the same position in the file as when the "@" was
typed.

2.4.5 L2 Editor

The L2 Editor handles files larger than can fit into the main memory buffer
at one time (i,e., what can fit into the space available on the disk).
Also, it automatically makes & backup copy of the file being edited. There
are very few differences between the L2 Editor and the Screen-Oriented
Editor previously defined in this section. The differences are described
below.

If: on entering the Editor by tuping "E"., there is not room enough on the

Pape 19

dick, the following error message will be displayed:
ERROR: Mot enough room for backup!

The disk must be K(runched by the Filer to combine unused blocks at the
end, or a file must be removed. or another disk must be used. Then, when
“"EM i typed, the following prompt lines appear:

Copuying to filename.back.
Mdit (same as for standard Editor)
Reading . .« « « « + + .

In Yection 2.3 the description of entering a workfile and getting a program
applies also to the 1.2 Editor.

When all changes and additions have been made, the Editor 1o exited as usual.
by typing "@". except that the Wi{rite option is not available. the other
three options have added features:

t{pdate - supplies additional information to indicate
the file mname and length. Below is an example of the
extra information given when a new file is created:

Writing. X
The workfile, ®:F1.TEXT. 1is 73 blocks long.
The backup file is X:F1.BACK.

The newly edited file is .TEXT; and the original file
with no modifications is . BACK.

w

Fixit —~ no LBACK file i
removed.

made and the existing one is

n

R{gturn ~ no changes.
A Few of the Editor commands are handled differently. They are:
JUPR - The prompt line is the same, however the "B”

and "E" refer to the beginning and end of the buffer,
not the file.

FIMD - The Editor displays "Finding . . .'" and gives
the pattern. If the pattern .s not in the buffer, it
displays:

End of buffer encountered. Get more from disk?
& ¥4

{n typing "Y", the Editor will move another section of
the Ffile into the buffer and continue searching. FIND

16 still directional.

SET - Markers sre cet by typing "SI, as in the
wtandard Editor. However, up to 20 markers are

Page 20

permitted, rather than 10. The environment is set by
typing "SE". The prompt displayed gives additional
information, as follows:

Environment: options (etx) or (sp> to lave

A{uto Indent

F{illing

l.{eft margin

Riight margin

P{ara margin

Cl{ommand ch

T(cken def

nnnn bytes used. nnnn available.

There are n pages in the left stack, and n pages in
the right stack. You have n pages of room. and at
most n pages worth in the buffer.

Markers: (P} P2 >P3
{no arrow indicates the marker is in the
current buffer)

Ureated mm dd yy: Last updated mm dd uy (Revision
n.

The L2 Editor contains twe new commands, BANISH and NEXT. Theu are described
below,

BAMISH
BANISH is entered by typing "B". The following prompt
line will appear:

MBanish: To the L{eft or R(ight {(esc)

BANISH moves characters from the buffer into the stack
to provide more room in the buffer to avoid overflow
when doing a8 large insertion or copy. The left and
right stacks are ahead of and behind the cursor,
respectively. The screen is the boundary for the
operation.

MEXT

HEXT is entered by typing "N" to move beyond the
bounds of the buffer. The following prompt line
appears:

Mext: F{orwards, Bfackwards in the file; S{tart,
E(nd of the file. <(esc?

When wusing "F" or "B", an implicit banish occurs using
the cursor as the point of reference. With "F",

Page 21

everything above the screen is banished to the left
stack. More characters are added to the bottom of the
screen to extend the buffer in the forward direction.
With "B, the characters below the cursor are banished
to the right sostack and the lower part of the screen
becomes blank. Tore characters are added above the
screen. Thus, the sumbolic file can be diagrammed as
shown below.

LEFT STACK RIGHT STACK

¥
¥
1
¥
1]
+
]
H
¥
¥

BACKWARD BUFFER
START END

FORUARD ;

O v e e e 14 e ———— "

2.5 YET AMOTHER LINE-ORIEMTED EDITOR (YALOE)

The YALOE text editor is designed for use in systems that have a ‘teleprinter
or teletypeuwriter as the system operator’s console rather than a video display
terminal.

The Editor assumes the existence of a workfile, but is not dependent on it.
The workfile can be created after entering YALOE. If a workfile already
exists, the Editor will print:

Workfile STUFF read in.

I# the FEditor is called and the workfile is empty, the Editor will give the
BESSANe:

No work file read in.

The Editor operates in either Command lode or Text lNode. The Editor is in
Command [ode when entered. In Command Iode, all keybosrd input is assumed to
he commands. Each command may be terminated by (esc’. The commands may be
strung together. Mo commands in a string (or singly) will be executed until
the final command in the string is followed by (esc) {(esc). Spaces, carriage
returns and tabs within a command string are ignored unless they appear in a
text string. When the execution of a command string is complete, the Lditor
prompts for the next command with an asterisk (¥). In contrast to other levels
of the Pascal Operating System., a prompt line of available commands is not
given.

If an error is encountered during command execution, the command will be
~erminated at that point without completing execution.

The Text Mode is entered whenever a command is typed thet must be followed
by text. Then all succeeding characters are considered to be text until the
next (esc). The commands that require text are F{ind, G(et, I(msert. M{acro
define, R{ead file, W(rite to file, and eX{chanpe.

Page 22

MOTE: When typed, (esc) echoes a dollar sign ($). The (esc) terminates
each text string and causes the Editor to re-enter the Command Mode. A
double (esc? terminates the command string and causes the Editor to start
execution.

The workfile is stored in the text buffer. This area is allocated dynamically
by the 7?7 command (section 2.5.5). The Editor can work only on files that
fit completely within the text buffer.

The cursor is the position in the file where the next command will be executed.
Most edit commands function in relation to the cursor.

bome of the YALUE commands described here require a command argument to
precede the command letter. Usually, the argument specifies the number of
times the command should be performed or the particular portion of text to
be affected by the command. With some commands, the specifications are
implicit and no argument is needed. The command arguments used by YALOE
are:

L Any integer, signed or unsigned. Unsigned integers
are assumed to be positive. In a command that accepts
an argument, the absence of one implies 1 (only one
execution) or minus 1 if only the minus sign is
present.

m A number in the range of O through 9.
o] The beginning of the current line.

/ The same as 32700. A "-/" is -32700. 1t is used For
a large repeat factor,

= Represents —n where n equals the length of the last
text argument used. Applies only to the J, D, and C
commands.

2.5.1 Special Key Commands
Various keys on the keyboard have special functions, some of which are

unique to YALOE. These commands are described below. Those control keys
that do not appear below are ignored and discarded by YALOCE.

{eer)
The escape key is echoed as a dollar sign (%) on the
operator’‘s console. A single (esc) terminates a text
string. A double (esc) executes & command string.
RUBCRIT
{ linedel)

On hard-copy terminals, line delete is echoed as
"(ZAP" and a carriage return. On others, it clears

Page 23

CTRL H

the current 1line on the screen. In both cases, the
contents of that line are discarded by the Editor,

{chardel)

CTL X

CTRL. O

CTRL F
flush

CTRL 8
slop

2.5.2

On hard-copy terminals, character delete is echoed as
a percent sign (%) followed by the character deleted.
Deletions are done right to left, with each character
deleted erased by the %, up to the beginning of the
command string. CTRL. ¥ may be used in both Command
and Text Hodes.

CIRL X causes the Editor to ignore the entire command
string, and respond with a carriage return and an
asterisk (%) to prompt for another command. The
command string being ignored may be on several lines.
All lines back to the previous ¥ prompt are ignored.
{A character delete is confined to one line.)

CTRL 0O causes the Editor to switch to the optiomal
character set (bit 7 turned on). This applies only to
the TERAK 8510A.

NOTE: If strange characters start appearing on the

terminal CRTL O may have been hit accidentally.
This is corrected by tuping CRTL O again.

CTRL F causes the Fditor to discard all output to the
terminal until the next CTRL F is typed.

CIRL 5 causes the Editor to hold all output to the
terminal until the next CTRL 5 is typed.

Input/Output Commands

The commands that control [/0 are deuscribed below.

LEIST

The LIST command is specified by typing "L" for
L{ist. It causes the Editor to print a specified
number of lines on the terminal without moving the
cursor. Variations of this command are illustrated in

Pige 24

VERIFY

URITE

READ

the examples below.

K~3L$% Prints all characters starting at the third
preceding line and ending at the cursor.

H3L$$ Prints all characters beginning st the cursor
and terminating at the fifth carriage return
(line).

)L$% Prints from the beginning of the current line
up to the cursor,

The VERIFY command is specified by typing "VU" for
Vierify. It causes the Editor to print the current
text line on the terminal. The position of the
cursor within the line has no effect on the command
and the cursor is not moved. MNo arguments are used.
VERIFY is equivalent in effect to a "#0L$$" 1list
command,

The UWRITE command is specified by typing "W" for
Wirite followed by the file title, in the following
format:

KW File titlel$

The file title is any legal file title described in
Section 3.2, except that the file type is not given.
the Editor will automatically append “.TEXT" as &
suffix unless the title ends with ".", "1" or ".TEXT".
If the title ends in ".", the period will be stripped
from it.

The WRITE command will write the entire text buffer to
a file having the given file title. It will not move
the cursor or alter the contents of the text buffer.
If the volume specified by the file title has
insufficient room for the text buffer, the following
error message will be given:

OUTPUT ERROR. HELP!

The text buffer can be written to another volume.

The READ command is specified by typing "R" for R{ead
followed by the file title, in the following format:

KR(File titiel$

Page 25

QulT

ERAGE

2.5.3

The FEditor will attempt tc locate the file title as
given. If no file is found having that title, a
" TEXT" is appended and a new search is made.

The READ command inserts the specified file into the
text buffer starting at the location of the cursor.
If the file read in does not fit, the entire text
buffer will be undefined in content. This is an
unrecoverable error.

The @QUIT command is specified by typing "Q@" for
Q(uit. It has several forms: as follows:

Qu Quit and update by writing out a new SYSTEM.URK.TEXT
QRF Quit and escape Editor; do not alter the work file.

ar Do not quit; return to the Editor

I£ "@" is typed alone, a prompt will be sent to the
terminal giving the above choices. An option must be
entered (U, E or R).

The "QU" command is a special case of the WRITE
command. If QU does not work, "W" can be used to
write out SYSTEM.WRK.TEXT followed by "@QE" to exit
from the Editor. "@R" is used to return to the
Editor after a Q" has been typed accidentally.

The ERASE command is specified by typing "E" for
E{rase. It functions only with wvideo display
terminals and causes the Editor to erase the screen.

The 0O command is specified by typing "0". It
functions only with video display terminals and causes
the Editor to display the text around the cursor esach
time the cursor is moved. The argument for the O
command specifies the numier of lines to be
displayed. This option is in a disabled state when
the Editor is entered. If needed. it must be enabled
by using the O command. A second O disables the
option. The location of the cursor is denoted by a
split in the line of text.

Moving Commands

The moving commands relocate the cursor to a new position.

are important because most other editing commands

positioning. The moving commands are described below.

BDage 26

Thece commands

are dependent on cursor

The direction of cursor movement is specified in the commands by the sign
of the argument. A positive (+n) argument gives the number of characters
or lines to move in a forward direction; and a negative argument {(-n). in
a backward direction.

Carriage return characters are treated the same as any other character in
text except that the {(cr) denotes the end of a line of text.

Examples of the moving commands are given in Figure 2-7. In the examples,
the cursor position is indicated by an up arrow (A) although the cursor does
not actually appear on the teleprinter or teletypewriter.

JUlp
The JUHP command is specified by typing "J" for
Jlump. JUMP moves the cursor a specified number of
characters in the text buffer. HMovement may be either
forward or backward and is not restricted to just the
current line.

ADUANCE

The ADVANCE command is specified by typing "A" For
A{dvance. ADVANCE moves the cursor a specified number
of lines. The cursor is then positioned at the
beginning of the line to which it moved. @&n argument
of zero moves the cursor to the beginning of the
current line. Fovement may be either forward or
hackward.

Here are the original lines and the cursor position.
THE TIME HAS COMECcr)
THE WALRUS SAIDN cr)
TO TALK OF MAMY THINGSC(cr)

Example 1. u#8J%% moves the cursor forward B characters to the next line
between the K and the space.

TO TALKA OF FMAMY THINGSC(cr)

Example 2. #-24%% moves the cursor to the beginning of the second preceding
line.

ATHE TIHE HAS COMEC(cr)
Example 3. #BGTWIME$=J$$ moves the cursor to the beginning of the text
buffer, then starts searching for the string "TUINE". Uhen the string is

found, the cursor will be positioned immediately before it.

Rage 27

Figure 2-7. EXAMPLES OF THE MOVING COMMIANDS

BEGINNING

GET and

2‘!5.4

The text-changing commands add to, remove or change the text.

The BEGIMNING command is specified by typing a "B" for
B(eginning. BEGINNING moves the cursor to the
bepinning of the text buffer.

FIND

The search commands GET and FIND are synonymous. GET
is specified by typing "G" and FIND by typing "F".
With either command, the current text buffer is
searched starting from the location of the cursor for
the nth occurrence of a specified text string. Upon
completion of a successful search, the cursor is
positioned immediately following the nth occurrence if
n is positive and immediately before if n is
negative. If the search is unsuccessful, the Editor
generates an error message, and the cursor is
positioned at the end of the buffer if n is positive
and at the beginning if n is negative.

Text Changing Commands

described below. Examples are given in Figure 2-8.

INGERT

The INSERT command is specified by typing "I” for
I¢{nsert. INSERT causes the Editor to enter Text Iode
to add characters immediately following the cursor
until an (esc) is typed. After insertion is
comp leted. the cursor is positioned immediately
following the last character inserted.

Occasionally with a 1large insertion, the temporary
buffer will become full. tefore this happens, the
following message is printed on the operator’s
console.

Please finish.

Typing (esc) {esc> will terminate the insertion at
that point so that the temporary buffer can be emptied
into the text buffer. Insertion can then be continued
by again typing "I" to re-enter the Text lode.
Forgetting to type the "I" will cause the characters
that are next entered as insertions to be interpreted
as commands.

Page 28

They are

k-4D%$

KBSGTUINE $=Dé¢$

Deletes the four characters immediately preceding the
cursor, even if they are on the previous line.

Moves the cursor to the beginning of the text buffer,
searches for the string "TWINE". and deletes it.

K/K$$ Deletes 3811 lines in the text buffer from the line in which
the cursor is positioned to the end of the buffer.

KOUARASS Replaces the characters from the beginning of the line to
the cursor with "AAA" (same as EKOXAAA$S).

HBLEAS=CB$% Searches for the first occurrence of "A" and replaces it
with "B".

#-3XMEWE$ Exchanges all characters beginning with the first character
on the third line back and ending at the cursor with the
string "MEW".

Figure 2-8. EXAMPLES OF TEXT-CHANGING COMMANDS
DELETE

The DELETE command is specified by typing "D" for

Di{elete.

DELETE removes a specified number of

characters from the text buffer, starting with the

position
deletion,

of the cursor. On completion of the
the cursor is positioned immediately

following the deleted text.

KILL

The KILL

command is specified by typing "K" for

K{ill. KILL deletes a specified number of lines from

the text
CUrsor.

buffer starting ot the position of the

On completion, the cursor is positioned at

the beginning of the line following the deleted text.

CHANGE

The CHANGE command is specified by typing "C" for

C(hange.

CHAMGE replaces n characters. starting at

the position of the cursor, with the given text

string.

On completion, the cursor is positioned

immediately following the changed text.

EXCHANGE

The EXCHANGE command is specified by tuping "X" for

Page 29

2.5.5

SAVE

UNGAVE

MACRO

eX{change. EXCHANGE exchanges n 1lines. starting with
the line on which the cursor is located, with the
indicated text string. The cursor remains at the end
of the changed text on completion of the command.

Miscellaneous Commands

The GSAVE command is specified by typing "5" for
S{ave. SAVE copies the cpecified number of lines into
the save buffer, cstarting at the cursor. n
completion, the cursor position is unchanged and the
contents of the text buffer are unaltered. Each time
save 1is executed, the previous contents of the save
buffer, if any, are destroyed. If executing o GAVE
will cause the text buffer to over—- flow, the Editor
will generate a message and not perform SAVE.

The UNSAVE command 1s specified by typing "U" for
Uinsave. UNSAVE inserts the entire contents of the
save buffer into the text buffer at the cursor. n
completion, the cursor is still positioned before the
inserted text. If the text buffer does not have
enough room for the contents of the save buffer, the
Editor will generate a message to this effect and
and not execute the unsave.

The save buffer may be removed by typing "0OU".

A macro is a single command that performs a string of
standard., but related commands. fAny group of
frequently used commands can be grouped into a macro
to eliminate the need for having to write the whole
setof instructions whenever they are needed. The user
may create macros by using the l{acro command. The
MACRO command is specified by typing "M for fl{acro in
the following format:

mMZcommand strangZ

where m 1is an integer in the range of 0 through 9.
MACRO is used to define a maximum of 10 macros. The
default number is 1. The command string is stored
into the macro buffer m. The command string delimiter
(% in the above case) is always the first character
following the "I". The delimiter may be any character
that does not appear in the macro command string
itself. The second occurrence of the delimiter
terminates the macro.

Yage 30

A1l characters except the delimiter are legal macro
command string characters, including a single (esc).
All YALOE commands are legal. An example is given in
Figure 2-9.

If an error occurs when defining a macro, the
following error message is generated:

Error in macro definition.
The macro will have to be redefined.
M {(Execute Macro)

The M command 1is specified "N" in the following
format:

nhmé

to execute a specified macro command string. The n is
simply any command argument <(E.GC., a repeat factor)
and m is the macro number to be executed. If n is
omitted, 1 is assumed. Because m is technically a
command text string, the M command must be terminated
by <esc) (echoed as $).

Attempts to execute undefined macrog result in the
generation of the following error message:

Unhappy macnum.
Errors encountered during macro execution generate:
Error in macro.
7 (List)
The 7 command is specified by typing "7?" to print a
list of all commands and the sizes of the text buffer,

zave buffer., and the memory still available For
expansion.

®AZFPREFACES=CEND PREFACESVSLES

This example defines macro number 4. then macro 4 is
executed, the Editor will look for the string "PREFACE",
change it to "EMD PREFACE". and then display the change
to verify it.

Page 31

Figure 2-9. EXAMPLE OF MACRO COMTAND

2.6 FILE HANWDLER

The File Handler handles, identifies, structures and restructures the files
described in Section 3.2. The file basic to the Pascal operating system 1s
the work file which is a temporary ccpy of the file being modified or created.
The work file name on the diskette ic SYSTEM.URK.TEXT when the text of a file
is being changed. When o code version is first crested. the name is
#SYSTEN. URK. CODE.

Many File Handler commends require & file specification. The diagram in
Figure 2-10 illustrates the syntex of Ffile specification. Uhenever a
specification is requested, as many files as desired may be specified,
separating the specifications For each file with commas and terminating the
list with a carriage return. Commancs operating on single file names will
keep reading the names Ffrom the list and operating on them until there are
no more names. Commands operating or two file names at once (e.p., CHANGE
antd TRANSFER) will take file names in pairs until one or none remain. In
this case, if only one name remains, the File Handler will prompt for the
second name. If an error is detected in the list, the entire list will be
flushed.

The rules for legal file and volume rames are given in Section J.l, Tiles.

The File Handler performs the requested action on all files wmeeting the
specifications. The wild card cheracters "=" and "7 are used to specity
subsets of the directory. For exemple, a file sospecification containing the
subset-specifying string "PUB=TEXT" notifies the File Handler to perform
the requested action on all files whose names begin with the string "PUB” and
end with the string "TEXT".

If a "7 is used instead, the File Handler requests verification before
performing the requested action on each file meeting the specified criteria.

Either or both strings may be empty. For example, a subset specification
"=(gtring)' or "(string)=" or even "=" is valid. In the last cose, where
both strings are empty the File Handler acts on every file in the volume
directory. The same applies to "?" used alone, except here the File Handler
verifies first,

Page 32

file specification volume ID

volume ID string

\

- [J
O
GER

Do ve r@

Figure 2-10 . FILE SPECIFICATION

The File Handler is entered by typing "F" when at the Outer Level of commands.
The following prompt line will appear:

Filer: G(et, S{ave, UW(hat. Nlew, L(dir, R{em, C{hng, T{(rans, D{ate, Q(uit

Additional File Hendler commands are displayed in response to tuyping 7.
The prompt line is:

Filer: B(ad-blks:, E{(xt-dir, K(rnch. Mi{ake, P(refix, V(ols, X{amine, Z{ero

The operator invokes the execution of individual commands by typing the
character on the operator’s consple. fany of the commands give additional
prompt lines to get all of the information necessary for execution. Answering
a Yes/NMo question on a prompt line with any character other than "YY
comstitutes a Mo answer. Tuping an {esc) will return control to the Outer
Level of commands.

2x6a1 "' Prompt Line Commands
GET

The GET command is specified by typing "G for Glet.
GET loads the designated file into the workfile. UWhen
"' is typed. the File Handler responds with the
following prompt line:

Get what file?

The entire file specification is not necessary. it
the volume ID is not given, the default disk is
sssumed. Wildcards are not allowed, and the saize
specification is ignored. The suffixes ".TEXT" and
".CODE" are not required if both are present and both
are loaded. If only one is present, the File Handler
will load that one regardless of whether code or text
has been specified.

Page 33

SAVE

WHAT

NEUW

When the File Handler has completed loading, it
responds with one of the following messages:

Text and Code file loaded.
Code file loaded.
Text file loaded.

The SAVE command is specified by typing "S" for
S5(ave. GSAVE saves the work file under the file name
specified by the user in response to the prompt:

Save as what file?

The entire file specification is not necessary. If
the volume ID is not given, the default dick is
assumed. Wild cards are not allowed, and the size
option is ignored. The File Handler automatically
appends ".TEXT" or ".CODE", as appropriate, so these
suffixes must MOT be entered.

ény illegal characters in the file mname will be
ignored except a colon (). If the file
specification includes the volume ID, the File Handler
assumes that the work file is to be saved on another
file. In that case, a colon is assumed to separate the
file name from the volume namz.

For example, if the operator enters "BLACK:BART" in
response to the prompt "Save as what file?", the File
Handler will generate the prompt line:

Would you like BART.TEXT written to BLACK: 7

A "Y' answer to this prompt will cause the File
Handler to attempt a transfer of the work file to the
specified volume and file (see TRANSFER).

The UWHAT command ie specified by typing "W" for
Wihat., WHAT identifies the name and status (saved or
not saved) of the work +ile.

The WEW command is specified by typing "M" for M(ew.
MEW clears the work file. Mo file specifications are
permitted. If a work file is already present, the
File Handler responds with:

Throw away current workfile?

Jage 34

LIGT

REMOVE.

A response of "Y" will clear the work file, while "N
returns the user to the outer level of the File
Handler. If a backup work file exists, the following
prompt line is generated:

Remove {(workfile name’.BACK?

The LIST commend is specified by typing "L for
L{dir. LIST lists a disk directory, or some subset
thereof, to the wvolume and file specified. The
default is CONSOLE:. The File Handler responrds to "L"
with the following prompt line:

Dir listing of what vol?

The wuser may list any subset of the directory using
the wildcard option, and may also write the directory
or & subset to a veolume or file name other than
CONSOLE. File specificetion must be in terms of
source and destination.

Source file specification consists of a mandatory
volume ID and optional subset-specifying strings.
which may be empty. If the latter are used, one of
the wildcerd characters is required. A string (1.60..
the full file name including ".TEXT") may not be used
as part of the source file specification unless a
wildcard character is used. Source file information
is separated from destination file information by a
cCOmma .-

Destination file specificetion includes a volume ID
and, if the volume is block-structured, a file name.
File size will be ignored.

This command is most frequently used to list an entire
directory. The bottom line of the listing gives the
number of files listed out of the number on the
volume, and the number of blocks used, and the number
of blocks unused,

The REMOVE command is specified by typing "R™ for
Riem. REROVE reMOVes file entries from the
directory. When "R"” is +typed, the File Handler
responds with the following prompt line:

Remove what file?

One specificetion is required for each file to be

Page 35

CHANGE

removed. Wildcards are legal. Size information is
ignored.

MOTE: SYSTEM.UWRK. TEXT and SYSTEM.WRK.CODE should be
removed only by the MNEW command.

The use of just the initial letter of several file
names will remove all files beginning with that
letter. Tuyping the file specification "=" will remove
every file in the directory unless a subset(s) is also
specified. However, before finalizing any wildcard
removes, the File Handler prompts with:

Update directory?

A "Y' causes all specified files to be removed. "N"
returns the user to the outer level of the File
Handler without removing anything.

The CHAMGE command is specified by typing "C" for
C(hange. CHANGE changes the file or volume name.
Uhen "C" is typed, the File Handler responds with the
following prompt:

Change what file?

This command requires two File specifications: the
file to be changed, and the new name. The first is
separated from the second by either a (ret} or a
comma. Any volume ID information in the second file
specification is ignored because the old and new files
are on the same volume. Size is also ignored.

Wildcard specifications are legal. If a wildcard
character is wused in the first file specification,
then it must be used in the second. The subset-
specifying strings in the first are replaced by the
analogous strings (replacement strings) in the second.

The File Handler will not make the name change if the
new name exceeds 15 characters.

On completion of the change. the File Handler reports
what changes were made. For example, in response to:

HIGH: ST=TEXT, LOW=END

The File Handler will respond with:
HIGH: START.TEXT changed to |.OWRT.END
HIGH: STOPS. TEXT changes to |.OUPS.EMD

Paje 36

TRANGFER

The TRANSFER command is specified by typing "T” for

Ti{ransfer., TRANSFER copies the specified file to the

given destination. leaving the source file intact. Uhen
"I is typed, the File Handler responds with the prompt

line:

Transfer what file?

File specifications for both the source and
destination files are required. separated by a (ret)
or a comma. UWildcards are permitted. and size
information is recognized for the destination file.
The source specification is given in response to the
above prompt line. If the destination is not also
given, the File Handler then responds with the prompt
line:

To where?

On a one-drive machine, the source disk must NOT be
removed until prompted to insert the destination disk,
as follows:

Put in {(destination volume)
Type (space) to continue

After the transfer has taken place, the File Handler
notifies the user as follows:

{source vol:file) transferred to (destination vol:file}

On a one-drive machine the user will have to alternate
inserting the source and destination disks until the
transfer is complete.

A file can be transferred to another volume without
changing name and without specifying the destination
file name by other than & dollar sign ($) to signify
that the name is the same. The destination volume
stil1l must be specified.

WARNING: The file name for the destination cannot be
omitted completely. Otherwise, the directory for the
complete volume may be wiped out. If the file name is
omitted and no "$" is used, the File Handler will
query:

Possibly destroy directory of (destination vol) 7
A "Y" answer will wipe out the directory of the whole

destination volume.

Page 37

Files may be transferred to volumes that are not block
structured {(e.g., CONSOLE or PRINTER) by specifying
the appropriate velume ID. A file name then is
ignored. The user should make certain that the
destination volume is on-line.

Transfer can alsc be made from a non-block-structured
device if it is an input device. In this case, any
file name in the source file specification is
unnecessary and will be ignored, if present.

If the source file specification includes a wildcard
character, and the destination is to a block-
structured device, then the destination file
specification must alsoc contain a wildcerd character.
The subset-specifying strings for the source will be
replaced by analogous strings (replacement strings) in
the destination. Any of the subset-specifying or
replacement strings mau be empty. The file
specification of "=" specifies every file on the
volume.

UARMING: The output buffer may overflow if the
transfer of the whole disk is handled in this way. A
better way of handling volume-to-volume transfers is
by specifying only the source and destination volume
IDs. Transferring from one block-structured volume to
another causes the destination volume to be "wiped
out” so that it becomes an exact copy of the source.

A prompt is generated to verify if that is what

is wanted:

Possibly destroy directory of (destination vol) ?

With a "Y" answer. the directory will be destroyed. A
"N" answer will return control to the outer level of
the File Handler. Often the "Y" answer is desirable to
create a copy of the source disk for backup purposes.
In this case, the name of the destination volume
probably should be changed to indicate that it is a
backup of the source volume (see CHAMGE for name
change). The source volume w1l not be destroyed.

Using "=" as the destination {ile name specification
has the effect of replacing the subset-specifying
strings in the source specification with nothing. The
"M may be used in place of the "=", but then the user
will be asked for a verificat.on before the transfer
is perforaed.

WARNING: Wildcard characters in specifications should

not be used on same—disk transfers. The results are
unpredictable.

Fage 38

QuITY

2:6. 2

A file can be transferred from a volume to the same
volume by specifying the same volume name for both
source and destination. This is useful to relocate a
file on the dicgk. Specifying the number of blocks
desired will cause the File Handler to copy the file
into the first available area of at least that size.
If no size specification is given, the file is
written into the largest unused area.

n & seme—disk transfer, if the same file name is
specified for both the source and destination. the
File Handler rewrites the file to the size-specified
area and removes the older copy.

The QUIT command is specified by tuping "@" for
Q{uit. QUIT returns the user to the Outer Level of
commends. Mo file specification is allowed.

"M prompt Line Commands

BAD BLOCKS

The BAD BLOCKS command is specified by typing "B" for
B(ad blocks. BAD BLOCKS scans the disk and detects bad
blocks. UWhen "B" is typed, the File Handler responds
with the following prompt line:

Bad blocks scan of what volume?

The user must specify the volume ID. The File Handler
checks each block on the given volume for errors and
lists the number of each bad block. Bad blocks can
often be fixed or marked (see EXAMINE).

EXTENDED LIST

KRUNCH

The EXTENDED LIST command is specified by typing "E"
for E(xt-dir. EXTENDED LIST lists the directory in
more detail than the LIST commend. All prompts and
wildcard options are the same as for the LIST command.
All files and unused areas are listed along with the
corresponding block length, last modification date,
starting block address, number of bytes in the last
block in the file, and the file kind. The summation
line at the end of the list is the same as that for
LIST.

The KRUNCH command is specified by typing "K" for
K{runch., KRUNCH moves the files on the specified

Page 39

MAKE

PREFIX

volume so that unused blocks are grouped at the end.
When "K" is typed. the File Handler responds with the
following prompt line:

Crunch what vol?

Uhen the user responds with the volume ID, the File
Handler generates:

Are you sure uou want to crurch (volume ID} 7

A "Y" oanswer initiates the crunch. A "N" returns the
user to the outer level of the File Handler.

The specified volume must te on-line. A bad block
scan of the volume before crunching is strongly
recommended in order to avoid writing files over bad
areas of the disk. If bad blocks are found, they must
be either fixed or marked before crunching ({see
EXAMINE) .

s each file is moved, ite name is reported on the
console. If SYSTENM.PASCAL is moved, the system muct
be reinitialized by bootstrepping. Until this task
has been completed. do not touch the disk, reset-
switch or disk-drive door.

The MAKE command is specified by typing P For
M{ake. MAKE creates & directory entry with the
specified file name. When "H" is typed. the File
Handler responds with the following prompt line:

Make what file?

The file specification must be entered. In this case,
the size is extremelu uvseful because, 1if it is
omitted, the File Handler creates the file by wusing
the largest unused area of disk. The file size is
given by following the volume 1D and file name with
the desired number of blocks enclosed in brackets.
Two special ways of specifying size are:

[01 The same as omitting siie. The file is
created in the largest unused area.

'] The file is created in the second larpgest
or half largest unused area, whichever is
larger.

The PREFIX command 1is specified by typing "P” for
P{refix. PREFIX changes the current default to the

Page 40

VOLARRES

EXAMINE

volume specified. The user must enter a volume ID.
The rest of ¢ file specification is unnecessary. The
cpecified volume does not have to be on-line.

When "P" is typed, the File Handler responds with the
prompt line:

Prefix titles by what vol?

The current default volume can be determined by
responding to the prompt with ":".

The VOLIWES command is specified by typing "V" for
Vipls., VOLUMES lists all of the volumes currently on-
line. along with their associated wnit (device)
numbers. No prompt line is displayed and no file
specification is allowed. An example list of volumes

i6:

Volumes on-line

1 CONSOLE:
2 SYSTERM:
3 ® OMDISK

4 PRINTER:

Prefix is - OMDISK

The asterisk (#) denotes the system (or boot-disk)
volume., This is the default volume unless the prefix
has been changed (see PREFIX). Block-structured
devices are indicated by "¥" or "H".

The EXAMIME command is specified by typing "X" for
X{amine, EXAMINE attempts to physically recover
suspected bad blocks that have been detected by the
B{(AD BLKS command. Hhen "X" is typed, the File
Handler responds with the following prompt line:

Examine blocks on what volume?

When the user responds by typing in a volume ID, the
prompt is generated:

Block number range?
The user enters the block number(s) detected by the
BAD BLOCKS scen, If any files are endangered, the

following prompt appears:

File(s) endangered:
filename

Page 41

LERU

Try to fix them?

A "Y" answer will couce the File Handler to exomine
the blocks and return either of the mescages:

Block (block number} may be ok
Block (block number?® is bad

In the first case. the bad black has probably already
heen fixed. In the second case, the File handler will
offer the user the option of marking the blocks.

The user regponds by giving the block number(s) of
those to mark bad. These blocks will not be shifted
by KRUMCH and will be rendered effectively harmless.

An "N" answer to the "fix them?" prompt returns the
user to the outer level of the File Handler.

The volume to be examined must be on-line.

WARNIMG: A block which "may be ok" is probably
physically ok but msy contain garbage. Fixing @& block
means that the block is ~ead, written out to the
block. and read again. 1f the two reads are the same,
the message '"may be ok" applies. If the reads are
different. the block is decla-~ed bad and may be marked
as such.

The ZERG command is specified by typing "ZI" for
Z{ero. ZERO reformats the spacified volume, rendering
the previous directory unabtainable. UWhen "Z" is
typed, the File Handler responds with +the following
prompt line:

Zero dir of what vol?

The uwser then enters the volume ID. This is followed
by the prompt line:

Destroy {(volume name)> 7?
A "Y" ancwer prompts:

Duplicate dir?
I# the answer is "Y', a duplicate directory will be
maintained. In case the disk directory is destroyed.
a wtility COPYDURPDIR can use the duplicate directory
to restore the disk. The File Handler will then give
the current number of blocks on the disk and ask if

that is the desired number:

Page 42

{current number of blocks on disk? blocks?

A "N" answer generates a prompt requesting the desired
number

of Blocks?

Table 2-1 gives the correct number of blocks for
several types of digks. A "Y' ancwer to "current
number of blocks" generates:

New vol name”?

The user can enter any valid volume name. The File
Handler then queries to validate the name:

{new volume name? correct?

A "Y' answer causes the File Handler to generate the
mESsa Qe

(new volume name) zeroed
A "NY answer to the "new volume name” guestion and to
the questions "destroy volume name” and "duplicate
directory” returns the user to the outer level of the

File Handler.

Table 2-1. BLOCK QUANTITIES OM DIGK

MO OF PISK TYPE

BLOCKS

156 Single—density, soft-sectored, 5 /4"
floppy

312 Double-density. soft-sectored, 5 1/4"
floppy

624 Double-density, dusl sided, soft-sectored. 5 1/4
floppy

494 Single~density, soft-sectored. 8"
floppy

986 Doub le~-density, soft-sectored, 8"
floppy

1974 Double-density, dual sided, sob-sectored 8"
floppy

2.7 PASCAL. COMPILER
The Pascal Compiler is a one-pass recursive descent compiler. 1t is

Page 43

invoked

by wusing the Clompile or Ri{un commands in the Outer Level of the Pascal
Operating Sustem commands.

The Compiler normally compiles the work file, if one exists. Otherwise, it
prompts the user for a source file name by the following prompt line:

{fompile what text?

During the course of compilation, the Compiler will display messages on the
nperator’s console detailing the progress of the compilation. bHote that
this display can be inhibited in one of two ways. The Q@+ (quiet compile)
option, which 1is described later in this section, will suppress the display.
filso, if the HAS SLOW TERPMIMNAL boolean in the system communication area is
False, the display is suppressed (see Section 4.1).

fm example of the output to %he operator’s console is shown in Figure 2-1l.
The identifiers appearing on the screen are the same as those in the program.
The identifier for a procedure is displayed as socon as its compilation has
started. The numbers appearing within [1 give the number of l&-bit words
available for sumhol table storage at that point. The numbers within ¢ » are
the current line numbers. Each dot on the screen represents one source line
compiled.

HEMR TEXT

Compiling...

PASCAL. Compiler [3.03 (Unit Compiler)
(=0 nuavonnuaunanonnernnsnns: snnuunnnn
LAINIT 11710 words]

TERY: ¥ B T

GETFILE 1692 wordsl

(=82 ccunsnnamancusvns

WRITEIT [1474 wordsl]

(==71Yennoanmnnanns

NEW_INE 1634 words]

(_’_Ba}ll-.ll-lll.lllllll-ul'lDlHll.l'llla-.'ll.lEl'llll.ll'lﬂl'llﬂ’..lll

('413‘4).1-u.l--nl.--l.lll.....-lnl-ll-llll.all.ll-lllI-nllllnnl'nlllﬂl

C-188> onvennuwuania
CPYIT (1815 words]
(192 suvennns
SEND 11627 wordsl
(2052 2a0s

211 lines
Smallest available space = 1616 words

Pajze 44

Figure 2-11. EXAMPLE OF COMPILER DISPLAY

I# no syntax errors are detected, the compilation is considered to be success—
ful. 1In this case, the Compiler writes a code file called #5YSTER.URK.CODE to
disk. This is the code file that is executed if the user has specified the
R{un command.

When the Compiler detects a suyntax error, the suymbol in the source where the
error is detected is indicated by the marker "({{(" and the text surrounding
the error and an error number are displayed. If both the G+ ({(quiet compile)
and L+ (list source on disk) options are selected, the compilation will
continue with the syntax error being listed on the file and the consocle
remaining undisturbed.

If those options are not selected, the Compiler gives the user the choice of
three options-—-typing (spacel}, (esc) or "E".

A (space) instructs the Compiler to continue with the compilation; an {esi’
causes tbtermination; and "E" is an E(ditor command that puts the system under
control of the Editor with the cursor located at the error. Syntax errors
are listed in Appendix B.2. All error numbers will be accompanied by a
text message of explanation on entry to the Editor if the file ®SYSTEM.SYNTAX
is available.

2.7.1 Compiler Option Syntax

The Compiler may be instructed to generate code according to certain options.
These options are written as comments in the program text and are preceded by
a dollar sign ($). The general format is:

(ef{option sequence) {(any comment))
Where (# and ¥) bracket a comment.

In the option sequence. options are separated by commas. Each option is
designated by a letter followed by either a plus, if the option is to be
activated. or by & minus, if the option is negated. Uhen "+" or “-" is
not specified. a + is assumed. Uhen default options are desired, they do not
need to be included in the option sequence. Three of the options may be
followed by file names rather than "+" or "-", They are 1 (when including
another source file), L {when listing to a non-default destination), and
U {(when naming the system library file).

The D option causes the Compiler to issue breakpoint
instructions in the code file during compilation so
that the Debugger can be used more effectively. The
default value is D—. The effects of "+" and "-" are:

D- Omit breskpoint instructions during compilation.

Page 45

D+ Incert breakpoint instructions.

The & option affects the boolean variable GOTOOK in
the Compiler. This beoolean is used by the Compiler to
determine whether 1t should allow the use of the
Pascal GOTO statement within the program. The default

value ic G- The effects of "+ and "-" are:
5 enerate a syntax errcr on encountering a GOTO
statement.

st Allow the use of the GOTO statement.

MOTE: In the Pascal program, in some cases where the
GOTO statement may be used, other statement such as
FOR, WHILE or REPEAT may be more appropriate.

The I option has two forms. Uhen it is followed
immediately by a "+ or "=, it affects the boolean
variable IOCHECK in the Compiler. When it 1s
followed by a file name, 1t causes the Compiler to
include a different source file into the compilaton at
that point.

When followed by "+" or "-", the default value is I+,
The effects of the signs are:

I+ Generate code after each 1/0 statement to see
if the 1/0 wasaccumplished successfully. 1If not,
the program will be terminated with a runtime
error.

I- Do not generate any 1/0 checking. In case of on
unsuccessful 1/0 operation, the program is NOT
terminated with a runtime error.

The 1I- option is frequently used with system level
programs that already check the IORESULT function
after each 1/0 operation. The system program can
then detect and report 1/0 errors without terminating
abnormally. However. this may be at the expense of
increased I/0 errors and possibly severe program bugs.

The syntax for instructing the Compiler to include
another source file is:

(H$I{file name) ¥)
The comment must be closed at the end of the file
name, and no other options can follow. If a file name

starts with a "+" or "-", a3 blank must he inserted

Pace 46

between the "I" and the file name.

I# the initial attempt to open the included file
fails, the Compiler appends ".TEXT" to +the name and
tries again. If the second attempt fails, or if an
170 error occurs while reading the included file. the
Compiler responds with a fatal syntax error.

An included file may be inserted at any point into the
original program, provided the rules governing the
normal ordering of Pacscal declarations will wnot be
violated. The Compiler will even accept included
files that contain the declarations CONST., TYPE, VAR,
PROCEDURE and FUMCTION even though the original
program has already completed its declarations. To do
so, the "I" comment must appear between the last VAR
declaration and the first PROCEDURE or FUNCTIOM
declaration of the original program.

The Compiler canmmot keep track of nested include
comments., If an included file conteins another
include comment, & fatal syntax error will be
generated.

The include comment is useful for compiling very large
programs in smaller, more easily managed segments.

The L option tells the Compiler whether to generate a
source program listing to a given file. The default
value is L-. The effect of the sign is:

- Mo compiler listing will be made.
L+ The compiler listing will be sent to a disk
file named "®SYSTEM.LST.TEXT".

The wuser may override this default destination by
specifying a file name following LY. To specify a
file name within a control comment, refer to the
description of the "I1” option {(include another source
file).

NOTE: The file containing the program listing may be
edited the same as any other file if the file name
contains the suffix ", TEXT". Otherwise, the file
will be treated as data rather than text.

Hext to each source line in the program listing, ‘the
Compiler lists the 1line number. segment procedure
number, procedure number and the number of bytes or
words (bytes for code. words for data) required by
that procedure’s declarations or code to that point.
The Compiler also indicates if the line is within the

Page 47

R

code to be executed or is part of the declarations for
the procedure by flagging the line with "D" for
declaration and an integer (0 through 9 for the
lexical level of statement nesting within the code
part. If the D+ option 1s selected, the listing will
incliude an " to specity breaktpoints.

The @ option is for the "quiet compiler". It is used
to suppress the output of procedure names and line
numbers detailing the progress of the compilation to
the operator’s console. The default value is set to
the current wvalue of the SLOWTERM attribute of the
system communication record |YSCOnA {actually
SYSCOMA. MISCINFO.SLOWTERM) . The effect of the signs

15

a+ Suppress output to the COMSOLE device.
Q- Send procedure name and line number output
to the CONSOLE device.

The R option affects the valus of the boolean variable
RANGECHECK 1in the Compiler. If RAMGECHECK is True,
the Compiler will output additional code to check on
array subscripts and the assignments to variables of
subrange types. The default value is R+. The effect
of the signs is:

R Turns on range checking.
R~ Turns off range checking.

NOTE: Programs compiled with the R- option selected
will run slightly faster. However, if an invalid
index occurs or if an invalid assignment is made, the
program will NOT be terminated with a runtime error.

The S option determines whether the Compiler will
operate in swapping mode. In swapping mode, only one
of the two main parts (declarations or statements) is
in main memory at one time. This makes an additional
2500 words aveilable for symbol table storage.
However, compilation is slower. On full size, single-
density floppy disks, the compile time is doubled.
This option must be set before the Compiler encounters
any Pascal syntax. The default wvalue is G5-. The
effect of the signs is:

S Puts the Compiler in swapping mode.
H- Puts the Compiler in nonswapping mode.

Page 48

This option sets the boolean variable SYSCOMP in the compiler
which is used to determine whether the compilation is a uwer
program compilation or a system program compilation. The
default value is U+. The effect of the signs is:

U+ The compilation is to take place on the user program
lexical level.

- Compilation is to teke place at the system lexical
level. This also sets the following options: K-
G+, and I-.

NOTE: Selecting U- will generate programs that may not
behave as expected. It is not recommended for non-
systems work without knowing the method of operation.

Tthe U option also is used to name a library file. The
named file becomes the file in which subsequent USEd
UNITz are sought. The default file for the library is
"#GYSTEM. LIBRARY".

An example of a USES clause with the U option is given
be low.

USES UNITA, UNITD. Found in #SYSTEM.LIBRARY
$U NEW. CODE
UNITB
$UJ OLD.CODE
UNITC, UNITE;

2.8 BASIC COMPILER

The Basic Compiler has been written in the Pascal language. It is invoked
the same as the Pascal Compiler as a result of the Clompile or K{un command
given when at the Outer Level of commands for the Pascal Operating System.
The file name for the Basic Compiler must be changed from its original
name of BASIC.COMPILER to #SYSTEM.COMPILER for it to be invoked by the system.
Thus, only one compiler will be in the system configuration, Basic or Pascal.

The Basic program is created by using one of the system editors. The main
features of UCSD Basic are described below in sufficient detail for those
who are already familiar with Basic to understand what is required by this
Compiler,

2.8.1 Features of UCSD Basic

The Basic Compiler has real and string variables. When a real variable is
applied to indexing or other integer purposes. the rounded value of the number
is used. In the functions described below, "x" and "u" can be real variables
or expressions which are equivalent to real variables. In like manner, ‘si"
and "s2" can be string variables or expressions which are equivalent to a

Page 49

string.

VARIABLE NAPMES

Real variables:

letter{digit)

String variables: letter(digit)$. (The digit is optional.)

INTRINSIC ARITHMETIC FUNCTIOMS

ATN(xX)

EXP{x)

INT(x)
LOG x)
LM{x)
rMoD{x. y)
SIMN(x)

Cos(x)

Returns the angle in radians whose tangent is x.

Returns the base of the natural logarithms raised
to the power of X.

Returns the value of x rounded to the nearest integer.
Returns the log (base 10) of x.

Returns the natural log of x.

Returns x to nmodulo y

Returns the sine of angle x, where x is in radians.

Returns the cosine of angle x., where z is in radiansc.

INTRIMSIC STRING FUNCTIONS

CAT$(s1,82,. . .) Returns a string which is equal to the concatenation

C0p$(511x:g)

DEL%{sl. x, @)

ING$(sl, 52, x)

LEN$(s1)

POS$(sl,s2)

OTHER FUNCTIONS

ORD(s)

of all the strings in the parameter list.

Returns a copy of a portion of the string sl. y
consecutive cnharacters, starting with the character
position x.

Returns the contents of the string sl with y consecu-
tive characters deleted, starting with characier

position x.

Returns the contents of 52 with sl inserted immediately
before cheracter position x.

Returns the length of the string sl.
Returns an integer that is equal to the position of

the first character in the first occurrence of the
string s1 in the string s2.

Returns the £SCII value of the first character of the
string(s),

Page 50

STR$(x) Returns the string containing the character associated
with the ASCII value x.

GET$ Reads & single character from the keyboard without
prompt or echoing, and returns it as a string: no
arguments are required.

D(c,s)

MEW(c.) The numeric constant ¢ (no fraction part) becomes
asspciated with the disk file whose name 15 in o.
OLD expects the file to already exist: NEW creates
a new one with the name s, removing any previous
file of that name. These functions must oocur before
related print or input statements. The numbers may
be reassigned, and must be in the range 0 to i4. For
best results. use only at the beginning of & prograc.
".TEXT" must be appended to the file name For the 1ile
to be edited by either of the suystem editors. These
functions return IORESULT.

PRUGRAIMMING STATEMENTS
Arithmetic statements and operations
~- subtract, add
/) ® divide, multiply
A, RE exponentiation
Relational operators
= equals

(X not equals

? greater than

¢ less than

=,=) greater than or equal
{2, =(less than or equal

IMPUT list

INPUT #c list Inputs from the main system device, ususlly the
keybopard. If the optional Hc is present, input is from
the disk file number c. The input list msy contain
any combination of real and string variasbles. Uhen
a program expects input, the prompt "7 is printed.
Input of real numbers may be terminated with any
non-npumeric character. Input of strings must be
terminated with a (ret).

Page 51

determined by the variable name. The array indices
are 0..n1,0..n2,. . . Both real and string multi-
dimensional arrays can be used. If no dimensions are
declared. they are assumed to be 0..10,0..10,0.. 1,
O0.0lsw « o The number of dimensions autumatically
declared depends on the number that are used in the
program, but must be constant over all uses of the
array.

GOSUB linenumber Executes a subroutine call. The calling address

is placed on the subroutine stack. OSubroutine calls
may be recursive.

RETURM Returns to the line after the last GUSUB that is still
pending. It pops the top address off the stack and
uses it as the return address. A RETURN when no
GOSUBs are pending is an error.

GOTO linenumber Program executidn Jumps to the given line number.
REM text Remark line.

2.8.2 UCSD Basic Enhancements
The following ere unique to UCSD Basic:
o For loops, var=expl is done before exp2 or exp3 are evaluated.

o Continuvation of statements is allowed. Any line not beginning
with a line number is assumed to be a continuation.

o All parameter functions are called by value. Parameters cannot be
vsed to return values from a function. Function calls are allowed
to be recursive.

o Arrays of more than two dimensions are allowed. String functions
and procedures are those found in the UCSD Pascal language.

o Tab stops are not allowed in printing. All list elements are
printed without spaces between them. The carriage return can be
suppressed by ;" as the last symbol of the line.

o Subroutines may be recursive.

o In-line comments may be inserted. The portion of any line following
"@" is ignored by the Compiler.

o The code of PASCAL FUMCTIONs may be added to the Basic Compiler as
new standard Basic functions. This is accomplished by ¢ straight-
forward addition to the Basic Compiler.

2.9 LINKER

The Linker allows the user to combine pre-compiled Pascal files so that they

Page 53

may he executed as one file. HNormally. the pre-compiled files sre resident in
the file ®SYSTEM.LIBRARY and are combined with the current work file.

In writing programs that wutilize pre-compiled routines or subprograms. the
user must declare them in the calling program to be EXTERMAL, or as SEGFENT
PROCEDURES much as PROCEDURES or FUNCTIONS may be declared to be FORWARD (see
Section 3.3 for further details on segmenting a program). The Compiler will
then inform the system that linking .s required before execution. The Linker
also can be used to link in UMITs. groups of routines that will be wused
together to perform a common task. Any files that reference UNLTs or EXTERNAL
routines and have not yet been linked may be compiled and saved, but must be
linked before execution.

2.9.1 Using the Linker
The Linker may be entered by typing either "L" for L{inker for "R" For R{um
when in the Outer Level of commands. The Linker must be invoked explicitly in

the following cases:

o If the file into which the routines are to be
linked is not the work file.

o The external routines to be linked reside in
library files other than ®SYSTEM.LIBRARY.

when "L" is typed, the Linker responds with the following prompt:
Host file?

The host file is the file into which the routines or units are to be linked.
If the work file is to be used, an asterisk and a return is tuyped rather than
a file name. Any file name entered will avtometically be appended with
".CODE" by the Linker. The Linker than asks for the name(s) of the library
file{s) in which the units or external routines are to be found:

Lib file? (codefile identifier)
Up to eight library file names may be entered. Typing an asterisk (¥) and a
return will cause the Linker to reference the HSYSTEM.LIBRARY. The Linker
notifies the user asbout each library file that is successfully opened: for
example:

Lib File? ¥ (ret?}

Upening ®SYSTEM.LIERARY

When all libraruy file names have been entered. the user must type a return to
proceed. The Linker then prompts with:

Map file? (file identifier) {(ret)
The Linker writes the map file to the file requested. The mep file contains
information relevant to the linking process. Responding with a return will

suspend this option. Unless a period is the last letter of the file name. the

Page 54

Linker will automatically append ".TEXT" to the name.

After the Linker has read all of the segments required to enable the linking
process, it prompts the user for the destination file name For the linked code
autput:

Destination File?

The destination file often will be the same as the host +ile. Linking will
begin after a (return) is typed following the output file name. OHimpiy o
(return) only coeuses the output file to be placed on the work £ile.
¥SYSTEM. WRK. CODE.

During the linking process. the Linker will report on the operator’s consclie
all segments being linked and all external routines being copied into the
output file. The linking process will be aborted if any required segments ar
routines are missing or undefined. The user will be informed bu onre of the
following messages. as appropriate:

Unit (identifier) undefined

Proc {identifier) undefined

Func (identifier) undefined

Global <identifier) undefined

Public (identifier) undefined
When ‘typing "R" for Riun, if the program in the work file contains EXTERMAL
declarations or uses UMITs, the Linker is automatically invoked after the
Compiler. The Linker will search the #SYSTEM.LIBRARY for the routines or

units specified and will attempt to link them.

If the routine or unit is not in the #SYSTEM.LIBRARY. the Linker will respond
with one of the messages given above, as appropriate.

2,9.2 Linker Conventions and Implementation

A codefile may contain up to sixteen segments. Block 0 of the program code
file contains information regarding name. kind, relative address and length of
each code segment. This information is called the segtable, and is formatted
in a8 record as follows:

RECORD
DISKIMFO: ARRAYLO. . 151 OF
RECORD
CODELENG, CODEADDR: INTEGER
END

SEGNAME: ARRAYTO. . 151 OF PACKED ARRAYIO. . 71 OF CHAR;
SEGKIND: ARRAY[O. . 153 OF (LINKED,HOSTSEG, SEGPROC, UNITSEG,
SEPRTSER) 5
TEXTADDR: ARRAYTO. . 151 OF INTEGER;
END

Page 55

CODELENG gives the length of the segment in words,
A description of SEGKIND follows:

blaock address.

The code segrent is fully executable.

Either oll

external references have been resolved or none were

The outer blcck of a Pascal program if the program

LIMKED

present.
HOSTSEG

has external references.
SEGPROC A Pascal segment procedure.
UMITSEG A compiled segment.
SEPRTSEG

A separately compiled procedure of function {(e.g..
assembly language code files or Pascal UNIls that are

not SEGHEMT UNITs.

If a segment contains unresolved external references, the Compiler generates
is in a series of variable-length

linker

information. Thie information

records, one for each UNIT, routine or variable that is referenced in but

external to the source.

LIENTRY=RECORD

NAME: ALPHA;

CASE LITYPE: LITYPES OF
UNITREF,
GLOBREF,
PUBLREF,
PRIVREF,
SEPPREF,
SEPFREF,
COMSTREF .

(FORMAT: OPFORPIAT,

NFEFS: INTEGER;

NWORDS: LCRANGE);
GLORDEF:

(HOMEPROC: PROCRANCE.

ICOFFSET: ICRANGE):
PUBLDEF:

(BASEOFFSET: LCRANGE);
CONSTDEF:

(CONSTUAL: INTEGER);
EXTPROC, EXTFUNC,
SEPROC, SEPFUNC:

(SRCPROC: PROCRANGE:

NPARANS: INTEGER):
EOFMARK:

(MEXTBASELL: LCRANGED
EMD{ lientry)

The first e:ght words of each record contain:

format of lientry; name can be BIG,
BYTE, or WORD

of references to lientry nome in
compiled code segment

size of privates in words

which procedure it is in
byte offset in p-code

compiler-assigned word offset
ugser’s defined value
procedure ¥ in source segment
of parameterc expected

private ver allocation info

Fage 56

and CODEADDR gives the

If the LITYPE is one of the first case variant, a list of code pointers into
the code segment follows this portion of the record. Each pointer is the
absolute byte address within the code segment of a reference to a variable,
UNIT or routine named in lientry. These are 8-word records; but oniy the
first MREFs are valid.

2.10 DEBUGGER

The Interactive Debugger is included in the Pascal Operating Suystem to
facilitate debugging the Pascal program. For optimum use of the Debugger, two
Compiler options should be turned on: D+ and L+. The D+ option generates
breakpoint instructions within a program as it is being compiled. The break-
points are necessary for the use of the Crawl, Walk or Breakpoint commands.
The L+ option writes a compiled source listing of the program on disk. ‘The
Debugger uses this listing (file name ®SYSTEM.LST.TEXT) while in the CRAWL or
WALK mode or when a breakpoint is executed.

Both options have their drawbacks. D+ causes a sightly larger code file to be
created; L+ requires space on disk. However. these options can be turned on
and off as needed so that they can be activated for troublesome pieces of
code only, if desired.

A sample progrem to be debugged is shown in Figure 2-1Z. In the compiled
source listing shown, the first column contains the line numbers, the second
has the segment numbers. and the third, the procedure numbers, In the
procedure number column, as asterisk (¥) after the number indicates that the
line has at least one conditional halt <(breakpoint) associated with it;
otherwise. a colon (:) appears. The letter following the asterisk or colon
indicates whether the offset represents a code (C) or data (D) offset. If the
offset is "C", the offset for that procedure is given as the first instruction
generated for the line. If the offset is "D", the number given as the first
instruction represents the word offset in the data area where storage for that
line of the procedure begins.

i 1 1D 1 (#$D+, LDEBUG. TEXT#)
2 1 1D 1 PROGRAM DEBUG:

3 1 1:D 3 VAR A : INTECER;
4 1 1D 4

5 1 2:D 1 PROCEDURE DIVIDE;
6 1 2D 1 VAR B : REaL;

7. 1 2:0 O BEGIMN (#DIVIDER)
g8 1 anl 0 B := 5/

9 1 2450 11 END (s#DIVIDER);
10 1 2:0 24

11 1 1:0 0 BEGIN (®DEBUGH)
12 1 1%l 0 A = 0;

13 181 7 DIVIDE;

14 180 11 END (®DEBUGH) .

Page 57

The debugger is entered by typing "D" for D{ebug, rather tham "K" for Rium.
while in the Outer Level of commands for the Pascal Operating Sustem. If the
program work file has not been compiled, the Compiler will be called first.
automatically. However, if a runtime error occurs during compilation. or if a
breakpoint or halt is encountered, Debugger is called.

After "D" is tuped, the Debugger displsys a message giving the release number
and date of the release:

PASCAL. INTERACTIVE CEBUGGER - January 1978

The Debugger is in EXAMINE mode when entered. This mode is used to peruse
portions of memory, set or clear breakpoints, resume execution of the program
or enter WALK or CRAWL mode to execste the program one statement at a time.
The execution options are prompted by:

EXAMINE: 1.. ¢ {(links, Move, ¢, » L{ink, D{ata, S(tack, H{eap,
E{rase, Ulpdate, (crtl-U(p) <(crtl-D(own) Clrawl, W(alk, Rlesume,
(esc)

R(esume runs the program normally until a BREAK or breakpoints are encountered
or a non-fatal runtime error occurs. C(rawl puts the program into the CRAUL
mode to execute one statement at a time, waiting for input from the user
between steps. W(alk puts the program into WALK mode to execute the program
one statement at s time at an adjustable rate. The other commands are
described later in this section. UWhenever the EXAMINE mode is entered, the
prompt line appears. If entered as a result of an execution error. additional
information is given, as shown in Figure Z2-13.

(k$D+, LDEBUG. TEXTH)
PROGRAM DEBUG;
VAR A : INTEGER;

PROCEDURE DIVIDE;
VAR B : REAL;
BEGIN (#DIVIDE®)
B = 5/A;

EMD (#DIVIDE%X);

BEGIN (xDEBUGHK)
A = 0;
DIVIDE;

END {®DEBUGX).

Figure 2-13. EXANMPLE OF ENTERING EXAMINE MODE

The bottom line gives the reason why the EXANIME mode was entered. It may
be some type of execution error, a user break, termination of WALK or CRAWL
mode, or execution of a breakpointed statement. In the case shown above.
it was a floating point error (a divide by zero, to be specific). The
procedure in which the error occurred is given by Proc and Seg.

In the CRAWL mode. information about & statement is given prior to its
execution. If #SYSTEM.LST.TEXT exists, the compiled listing line containing

Page 58

the statement is displayed. GOtherwise, the information displayed includes
the line number, the number of the segment and procedure. and the cnde offset
of the first instruction. The user then has two options.

If (space} is typed, the Debugger will execute the line and continue. I#
"Q@" is typed. the Debugger will leave the CRAUL mode and reenter the EXARINE
mode:s

As in the CRAUWL mode, when in the WALK mode information is displayed prior
to execution of the statement. On typing "W" to enter the WALK mode, the
following prompt line appears:

DELAY:

The user then enters an integer that the Debugger uses as the number of
seconds to delay between executing each statement in the program. The BREAK
key is used to reenter the EXAMIME mode.

2.10.2 Commands

An example of how the commands are used to debug a program is given in Figure
2-14. The commands are described below.

LINKS

Entering a number between 0 and 9 gives the number of links to move
up or down the dynamic or static chain. The direction is determined
by the first character of the EXANINE prompt line. A forward arrow
indicates that movement will be in the direction of the older calls
(if dynamic) or ancestors (if static). The reverse arrow indicates
that movement will be towards more recent calls. The type of links
to be traversed, STATIC or DYNAMIC, is specified to the right of
DEFAULTLINK (as shown in the example in Figure 2-12).

MOTE: HMovement towards descendents is not allowed.
MOVE

Typing '"M" specifies the M{ove command that is used to find &
specified procedure and make it the current procedure. This command
has two parameters:

PROC

Procedure number of the desired procedure. Default is the number
of the bombed procedure (the one at the bottom of the call chain).
Typing <(return} will give the default and bypass the normal
search.

SEG
YSegment number of the desired procedure. Typing (return) will give
the default segment (which must be preceded by a {return) for the

defsult procedure).

Page 59

Figure 2-14. USING DEBUGGER COIMMANDS TO DEBUG A PROGRAM

After the procedure and segment numbers have been entered, the Debugger will
search up the dynamic links starting at the caller of the current procedure.
Mote that this implies that cne can never move to the current procedure
because the Debugger will not find it. If the specified procedure is found.
it becomes the current procedure and the information in the prompt line will
be updated. Otherwise. the current procedure remains unchanged.

{
Typing "¢(" or ", changes the direction of link traversal (movement)
to be down the call chain 'i.e., go towards the callees).

>
Typing "> or “." changes *he direction of link traversal to be up
the call chain (i.e., gn towards the callers).

LIMK
Typing "L" specifies the L{ink command to toggle the DEFAULTLINK
from DYNAMIC to STATIC, and vice versa.

DATA

Typing "D" specifies the Dlata command to examine the dalts and
parameter segment of a procedure. The Debugger prompts for four
parameters:

The only parameters that need to be entered are those other than the
defaults. Typing (cr) at any point tells the Debugyger to use the
default values for the remaining perameters. Typing <(space?
delimits a parameter and lets the Debugger prompt for the next one.
The parameters are:

OFFBET

Default value is the last offset displayed plus 1. Beginning value
is 1. The offset may be changed by entering an integer.

LENGTH
The beginning default value is the minimum of the text buffer size
(15 for 24-line screens) and DATA plus PARAM. AfFter that, it is
the last length specified in the D(ata or S(tack command. LENGTH
determines the number of words to be displayed.

PROC

Page 60

STACK

HEAR

ERASE

UPDATE

CRTL-U

The default value is the number of the current procedure. Any
procedure may be specified that is higher in the call chain.

SEG

The default value is the segment to which the current procedure
helongs.

When the Debugger finds the specified procedure, it will display the
data, wrapping around to the top of the screen and erasing
information in the memory display dats bugger, if necessaruy.

When an offset to be displayed is larger than PARAN plus DATA For a
procedure, the message is generated at the bottom of the screen:

Warning - offset too large

The invalid data will not be displayed.

Typing "8" specifies the S(tack command that is used for examining
the sbtack area belonging to a specific procedure. Parameters are
specified in the same way as for the DATA command; but the first
offset is 0, not 1.

Typing "H" specifies the H(eap command that displays a portion of
memory specified by an octal address and a length.

Typing "E" specifies the E{rase command that clears the memory
display buffer on the screen.

Typing "U" specifies the U{pdate command that refreshes the memory
display buffer. G&(tack, D{ata and H{eap commands save the procedure
numbers and offsebts displayed in the memory buffer. UWhen "U" is
tuyped, the buffer is erased. The saved numbers are used to locate
any information belonging there. UPDATE is not able to refresh any
of the information that belongs to procedures that are below the
current procedure in the call chain., It will generate the message:

Proc not found.

Typing "U" specifies the (CRTL-U{p> command that moves the asterisk
(#) up one line.

Page 61

CTRL-D

CRAWL

WALK

RESUME

ESCAPE

Typing "D" specifies the (CRTL-D{own) command that wmoves the
asterisk (#) down one line.

Typing "C" specifies the C(rawl command that resumes execution of
the program in CRAWL mode at the point in the program where the
Debugger was invoked.

Tuping "W" specifies the W(alk command that resumes execution of the
program in the WALK mode starting where the Debugger was invoked.

Tuyping "R" specifies the R{esume command that resumes normal
execution of the program where the Debugger was invoked.

Typing {esc) specifies escape, return to the Outer Level of
commands.

CARRIAGE RETURN

Typing <{cr)> specifies a carriage return that clears the line with
the asterisk (#) and moves down one line.

BREAKPOINT

Typing "S" for S(et or "C" for C(lear sets or clears a breakpoint.
They both require line numbers.

SET
Enter a line number of a line that has an asterisk in the compiled
listing., Whenever a statement in that line is about to be
executed, the Debugger will be called.

CLEAR

Enter (cr) to clear all breakpoints or enter the line number of an
active breakpoint.

Page 62

SECTION 3
PASCAL PROGRAMMING COMSIDERATIONS
Many aspects of the Pascal Operating System need to be considered when
programming in Pascal because they have an influence on how a program should
be written. These aspects are described in this section.

d.1 IMTRINSICS

Users of intrinsice should be fluent in Pascal and experienced in the use of

the Operating System.
responsibility of the user.

All necessary range and validity checks are the
Some intriniscs do no range checking. Those which

are particularly dangerous are noted in their descriptions.

The required parameters are listed along with the function/procedure
Optional parameters are in square brackets [1. The default
values are in metabrackets {F on the line below. Within each subsection,

identifier.

functions and procedures are given in alphabetic order.

The following terms are used in the explanation of the Intrinsics:

ARRAY : a PACKED ARRAY OF CHARacters
BLOCK . one disk block. (512 bytes)
BLOCKS :an INTECGER number of blocks
BLOCKNUMBER . an absolute disk block address
BOOLEAN : any BOOLEAM value
CHARACTER : any expression which evaluates to a character
DESTINATION : a PACKED ARRAY OF CHARacters to write into or
a STRING, context dependent
EXPRESSION : part or all of an exprssion, to be specified
FILEID : a file identifier, must be
VAR fileid: FILE OF (type);
ar TEXT;
or IMTERACTIVE;
or FILE;
INDEX : an index into a STRIMG or PACKED ARRAY OF CHAR-
acters, context dependent or as specified.
NUMBER . 8 literal or identifier whose type is either
INTEGER or REAL.
RELBLOCK : a relative disk block address, relative to the

start of the file in context: the first block
being block zero.

Page 63

SIMPLVARIABLE . any declared PASCAL variable which is of one
of the following TYREs:
BOOLEAN CHAR REAL STRING
or pecked array [..3 OF CHAR

SIZkR o an INTEGER number of bytes or charascters; any
integer value

SOURCE © a STRING or PACKED ARRAY OF CHARacters to be
used as a read-only array. context dependent
or as specified. HE

SCREENM . an array 9400 bytes long: or as needed

STRING : any STRING, call-by-value unless otherwise
otherwise spcified, ie. may be a quoted
string, or string variable or function
which evaluates to a STRING

TITLE : a STRING consisting of a file name

UMITHUMBER . physical device numbr used to determine
device handler used by the interpreter

VaI.ID ;& volume identifier, STRING [7]

k¥ in string intrinsics, SOURCE is going to have to be a string, in intrinsics
that deal with packed arrays of characters, it may be either. A word of
caution about using STRIMGs in intrinsics that expect character arrays. the
zerpeth element of the string is the length bhuyte. which may cause the
programmer some unexpected problems were he not aware of that fact.

3. 1.1 Character Array Manipulation Intrinsics

The Character Array Manipulation Intrinsics are byte oriented. Mo range
checking of any sort is performed on the parameters passed to them:; so handle
with care. The user must know what he is doing because the system does not
protect itself from these operations. Examples are shown in [igure -1,
The intrinsic SIZEOF (Section 3.1.4) is meant for use with these intrinsics
to "remember” the number of bytes of a parameter.

aan a4ma. some e et e e st e P o b A et S 251 e, St e R B SR A A A S5 1= SR B RS Fae S £ B AR HAs A G4 S s B b ound s T 6007 B P o 9984 $4U $04P S S44% G 4w O R PRSP P St S48 7RSO P g AR R U B¢ Tt e o s

Example of SCAN:

PROGRAN SCANTEST;
UAR EX : PACKED ARKAYTO0..371 OF CHAR;
I . INTEGER;

BEGIN (®SCANTEGT®)

EX = 7 EXAMPLE OF CHARACTER ARRAY INTRINSICH’:
I = SCAM(-25,="':",12X[25]);

WRITELN (I);

Page 64

I = GCANCLI00, (Y /LEXTOD);
WRITELN (I);
END (RSCAMTEST #),

Examples of MOVELEFTY
MOVERIGHT

PROGRAN MOVETEST;
VAR BUF1 : PACKED ARRAY [0..191 OF CHAR;:
BUF2 . PACKED ARRAY [0..201 OF CHAR;

BEGIN (#MOVETEST®)
BUF1 .= ‘MOVE CHARACTERS LEFT’;
BUF2 := ’THESE CHARACTERS.....’:
MOVELEFT (BUF1, BUF2,5);
WRITELN (BUF2);
EMD (#MOVETESTHR) .

- [P Rov o e o gt

Figure 3~1. EXAMPLES OF CHARACTER ARRAY MANIPULATION INTRINSICS
FUNMCTION SCAM (LENGTH. PARTIAL EXPRESSION. ARRAY) : INTEGER;

This function returns the number of characters from the starting
position to where it terminated. Termination comes when matching the
specified LENGTH or satisfying the EXPRESSION. The ARRAY should be
packed and may be subscripted to denote the starting point. If the
EXPRESSION was satisfied on the character at which ARRAY is pointed.
the wvalue returned will be zero. If the LENGTH passed was negative.
the number returned will be negative and the function will have
scanned backwasrd. The PARTIAL EXPRESSION must be in the following
format:

" oor "=" followed by character expression
PROCEDURE FILLCHAR (DESTIMATION, LEWGTH, CHARACTER);

This procedure takes a (subscripted) packed array of characters and
fills it with the number (LENGTH) of CHARACTERs specified. This can
be done using & MOVELEFT procedure (described below); but FILLCHAR is
twice as fast because no memory reference is needed for the source.
FILLCHAR will optimize word moves only if the DESTINATION is below the
170 page. Uord moves are not done to the 1/0 page becouse some
hardware relies on byte addressing in this address space.

PROCEDURE MOVELEFT (SOURCE, DESTIMATION, LENGTH);
PROCEDURE NOVERIGHT (SOURCE. DESTINATION, LENGTH):

These procedures do mass moves of bytes for the LENGTH specified.
MOVELEFT starts from the left end of the SOURCE and moves bytes to the

Page &5

3-1.2

left end of the DESTINATION, traveling right. MOVERIGHT starts from
the right end, traveling left. Both are needed when working on a
single array in which the order of the characters moved is critical.

MOVERIGHT never attempts to optimize word moves. AOVELEFT will
optimize only if the DESTINATION is at an address below the 1/0 page.
Word moves are not done to the 1/0 page because scome hardware relies
on byte addressing in this address space.

I/0 Intrinsics

PROCEDURE CLOSE (FILEID OPTIOM);

OPTIONS include ", LOCK™, ", NORMAL", ", PURGE" and ", CRUNCH".
Mote the commas.

A normal CLOSE is done when the OPTIOM is null. CLOSE simply sets
the file state to closed. If the file was opened wusing REWRITE and
is a disk file, it is deleted from the directoru.

The LOCK option will cause the disk file associated with the FILEID
to be made permanent in the directory if the file is on a directory
structured device and the file was opened with a REUWRITE:; otherwise
a normal close is done.

The PURGE cption will delete the title associated with the FILEID
from the directory. The unit will go off-line if the device is not
block-structured.

The intent of the CRUNCH option is to lock a file with a minimum
number of blocks of useful information. (This option is currently
undefined.)

Regardless of option, all CLOSEs will mark the file closed and will
make the implicit wvariasble FILEIDA undefined. CLOSEing an already
closed file causes no action.

FUMCTION EOF (FILEID) : BOOLEANM;
FUMCTION EOLM (FILEID) : BOOLEAM:

EOF and FEOLN return False after the file specified is reset. They
both return True on a closed file. If FILEID is not present, the
fileid INPUT is assumed (e.g., IF EOF THEM. . .). When EOF (FILEID)
is True, FILEID* is undefined.

When GET (FILEID) sets FILEIDA to the EOLN or EOF character, EOLN
(FILEID) will return True. and FILEID™ (in a FILE OF CHAR) will be
set to blank.

While doing puts or writes a: the end of a file, if the file cannot
be expanded to accommodate —he PUT or WRITE, EOF (FILEID) will return
True.

Page 66

PROCEDURE GET (FILEID);
PROCEDURE PUT (FILEID);

GET (FILEID) will 1leave the contents of the current logical record
pointed at by the file pointers in the implicitlu declared window
varisble FILEIDA and increment the file pointer.

BUT (FILEID) puts the contents of FILEIDM into the file at the location
of the current file pointers and then updates those pointers,

Both procedures are used on typed files, files for which a type is
specified in the variable declaration (i.e., "FILEID . FILE OF type ").
tntyped files are simply declared as " FILEID: FILE:". "o FILE OF
CHAR" is equivalent to "F: TEXT'. In a typed file, each logical
record is a memory image fitting the description of a variable of the
associated (typed.

FUMCTION IORESULT : INTEGER;

After any I/0 operation, IORESULT contains an INTEGER value that
corresponds to the values given in Appendix B.3.

PROCEDURE PAGE (FILEID);

PAGE (FILEID) sends a top-of-form (ASCII FF) to the file.

PROCEDURE READ{LM} (FILEID, SOURCE);
PROCEDURE WRITE{LN} (FILEID, SOURCE);

These procedures may be used only on TEXT (FILE OF CHAR) or

INTERACTIVE files for 1/0. The three types of INTERACTIVE files

are INPUT, OUTPUT and KEYBOARD. IMPUT results in echoing of characters
typed to the console. OUTPUT allows the user to halt or #lush the

output. KEYBOARD does no echo:; it allows the programmer complete

response to user typing.

I "FILEID," is omitted. INPUT or OUTRPUT (a5 appropriate) is assumed.
A READ (STRING) will read wup, but not including, the end-of-line
character {(carriage return) and leave EOLN (FILEID) True. 7This means
that any subsequent reads of string varisbles will return the null
skring until a READLM or READ (character) is executed.

PROCEDURE RESET (FILEID, [TITLED;
PROCEDURE REWRITE (FILEID, TITLE);

These procedures open files for reading and writing and mark the file
as open., The FILEID may be any Pascal-structured file. TITLE is
a string containing any legal file title. REURITE creates a new
file on disk for output files; RESET marks an already existing file
open for 1/0. If the device specified is & non-directory-structured
device (e.g., PRINTER), +the file is opened for input, output or

Page &7

both, in either case.

If the Ffile is already open when the RESET or REWRITE is attempted.
an error is returned in IORESULT. The state of the file remains
unchanged.

RESET (FILEID) without an optional string parameter rewinds the
file by setting the File pointers back to the beginning (0 record)
of the file. The boolean funcriions EOF and EOLM will not be set buy
the implied GET in RESET.

With files of the INTERACTIVE -tupe, these fusctions act differentlu
On files of other tuypes, RESET will do am initial GET to the file.
setting the window variable to the first record in the file. On
INTERACTIVE files, RESET will not do the GET.

PROCEDURE SEEK (FILEID, INTEGER).

SEEK changes the file pointers so that the next GET or BUl uses the
INTERGERth record of FILEID. Records in files are numbered starting
with 0. A GET or PUT muss be executed between SEEK calls because
two consecutive SEEKs may cause unpredictable jumk to be held in the
window and associated buffers.

FUHCTION UMITBUSY (UMITMUMBER) : BOOLEANM

This function returns & boolean value. If the value is True, the
device specified is waiting for an 1/0 transfer to complete. For
examp le:

UNITREAD (1(xCONSOLE¥), CHU0J, 1(#lcharacter). 1{¥ASYHCHEK);
WHILE UNITBUSY (1) (uwhile read hasn’t taken placex#) DO
WRITELN {*Please type a character.’);

Execution of the example will result in the continuous ouptut of the
line ‘Please type a character’ until a character is typed.

PROCEDURE UMITCLEAR (UNITHUIMBER)

This procedure cancels all I/0s to the specified umit and resets
the hardware to its power-up state.

PROCEDURE UMITREAD (UMITNUMBER. ARRAY, LENGTH, [BLOCKNUMBERI, [INTEGFERD);
PROCEDURE UNITWRITE (UMITHUMBER. ARRAY. LENGTH, [BLOCKNUMBER], [INTEGERD);
{SEQUENTIALY (0

These procedures are dangerous because no range checking is done.

These are the low-level procedures that do I/0s to various devices.
The UNITMUFMBER is the intejer name of the device. AKRAY iz any
dec lared packed array. It may be subscripted to indicate a starting

position to do the transfers from/to. LEMGETH is an integer giving the

Baga &8

number of bytes to transfer. BLOCKNUMBER is required only when using
o block-structured device, and is the absolute block number where the
transfer will start from/to. If omitted. BLOCKMUMBER is assumed to be
0. The IMTEGER wvalue is optional and assumed to be 0. If 1, it
indicates that the transfer is asuynchronous. If BLOCK~ MUMBER is
omitted, but INTEGER is included. a comma is used to hold the
placement of parameters.

PROCEDURE. UMITWAIT (UNITNUMBER);

This procedure waits for the specified device to complete the 170
in progress.

3.1.3 String Intrinsics
To maintain the integrity of the LENGTH of a string, only string functions or
full-string assignments should be used to albter strings. iHoves and single-
character assignments do not affect the length of a string, which means that
the programmer must do range checking. The individual elements of STRING are
of CHAR type and may be indexed 1. . LENGTH(STRING). Accessing the string
outside this range will have unpredictable results if range-checking is off,
or may cause a runtime error if range-checking is on.
Examples of String Intrinsics are given in Figure 3-2.
FUMCTION COMCAT (SOURCEs) : STRIMG
This function returns a string that is the concatenation of all the
strings passed to it. There may be any number of source strings,
separated by commas.

FUMCTION COPY (SOURCE, IMDEX, SIZE) : STRIMG

This function returns a string containing SIZE characters copied from
SOURCE starting at the INMDEXed position.

FUNCTIOM LEMGTH (STRIMG) : INTEGER

This function returns the integer value of the length of STRING.

Page &9

PROGRAM STRINTST;

UAR name, text, pattern, first, second, third . STRING;
start, get, toomany, more : STRING:
long . INTEGERI8I;
I : IMTEGER;

BEGIN (HSTRIMTSTH®)

I := LENGTH(’ABC’);
WRITEIN (I);
name = ‘JOHN SMITH’;

T = LEMGTH{name);

WRITELM(I) ;

text := ‘THIS IS AN EXAMPLE OF STRING INTRINGSIC’;
pattern = ‘EXA’;

I = POS{pattern, text);
WRITELN(I);

firgt = ‘ABCDE’;

second ='FGHIJ’;

third ;= COMCAT(first, second);
WRITELW (third);

start = 'HERE 1S A STRING OF CHARACTERS’;
get .= COPY{start,POS(’'C’,start), 10);
WRITELH(get):

toomany :=’'THIS STRINE HAS TOO HMAMY CHARACTERS’;
DELETE (toomany, 17, 9);
WRITELN(toomany) i

more =/ TOO FANY’.
INSERT {(more, toomany, 16);
WRITELM(toomany)

long = 1000000;
S5TR(long, more);

WRITELM(‘$’,more);
EMD(STRINTST®) .,

Figure 3-2. EXAMPLES OF STRING INTRIMSICH

Page 70

FUMCTIONM POS (STRING, SOURCE) : INTEGER
This function returns the position of the first occurrence of the
pattern (STRIMG) to be scanned in SOURCE. The INTEGER wvalue of the
first position in the matched pattern will be returned. 1f the
pattern was not found, zero will be returned.

PROCEDURE DELETE (DESTINATION, INDEX, SIZE) : STRING

This procedure deletes SIZE characters from DESTINATION starting at
the INDEXed position.

PROCEDURE TWSERT (SOURCE, DESTINATION, IMDEX)

This procedure inserts OSOURCE into DESTINATION starting with the
INDEXed position in DESTINATION.

3.1.4 fiscellaneous Intrinsic Routines

PROCEDURE GOTOXY (XCOORD. YCOORD);
This procedure sends the cursor to the specified coordinates. The
upper left corner of the screen is assumed to be 0.0. This procedure
defavlts to a Datamedia-terminal. For systems other than Datamedia
or Terak 8510a, a new GOTOXY must be bound in (see Section 4.10).

PROCEDURE HALT:
This procedure generates a HALT opcode that causes a non-fatal runtine
error to occur. UWhen HALT is executed, the Debugger is invoked.
If the Debugger is not in core when a HALT occurs, a Fatal runtime
error will occur (#14).

FUMCTION LOG (MUMBER) : REAL;
This function returns the log base ten of NUMBER.

PROCEDURE DMARK (VAR HEAPPTR: ~INTEGER);
PROCEDURE RELEASE (VAR HEAPPTR: AINTEGER):

These protedures allocate and return heap memory allocations to the

system. HEAPPTR is of type AINTEGER. PMARK sets HEAPPTR to the current

top~ of-heap. RELEASE sets the top-of-heap pointer to HEAPPIK.
FUMCTION PUROFTEN (EXPOMENT: IMTEGER) : REAL;

This function returns the value of ten to the EXPONENT power.
EXPONENT must be an integer in the range of 0 through 37.

FUNCTION SIZEOF (VARIABLE OR TYPE IDENMTIFIER): IMTEGER;
This function returns the number of bytes that & parameter occupies in

Page 71

the stack. It is used with the FILLCHAR and MOVExxxx intrinsics.
PROCEDURE TIME (VAR HIWORD, LOWORD: INTEGER);

This procedure returns the current value of the sustem clock. The
value is given in 40ths of second, assuming a8 16-bit integer size and
a 32-bit clock word. HIWORD contains the most significant portion.
Roth HIWORD and LOWORD must be VARiables of tupe INTEGER.

WARNIMG: The sign of LOMWORD mau be negative beceuse the time 15
represented as & 32-bit unsigned number. This function
currently is undefined.

3.7 FILES

A file may be defined as a body of information that is stored on an 170
device. A file is referenced by the Pascal program and the Pascal Operating
System by the file name. The suffix of the file name is dependent on file
type. The following types of files are used by the Pascal Operating System:

Reserved

Suffix Contents of File

- TEXT Human-readable text

. CODE Machine-execJtable code

«DATA bata file

-FOTO Dne Terak screen image

-BAD A physically danaged area of disk

3.2.1 Text Files
The text file is composed of 1024-byte pages, where a page is defined as:
(IDLEI indentITtextITCRIIDLEIindent I textITCRI. . .[nullsd>

Data Link Escapes are followed bu an indent code, which is a byte that
contains the value 32+ (number to indenw). The nulls at the end of the page
follow & carriage return in all ceses. They pad to the end of the page to
give the Compiler integral numbers of lines on a page. The DLE and indent
code are optional.

The first page of a text file is the header page that is reserved {or infor-
mation for the Text Editor. When a user program opens a text file and
REURITEs or RESETs it with & title ending in ".TEXT", the 1/0 subsystem will
create, then skip over, the header page. This page facilitates users in
editing their I1/0 data. The File Handler will traensfer the header page only
on a disk-to-disk transfer, and will omit it on 3 transfer to a serial device
{(e.g.» to a PRIMTER or COMSOLE).

3.2.2 Code Files

The first block of information in a code file describes the code kept 1in the
file. Heading the block is an array of 16 word pairs, a pair for each segment

Page 72

on the disk. The first word of the psir gives the block number within the
segment where code begine. The second word gives the number of bytes of code
located there.

Following this array is a3 series of 16 eight-character arrays thet describe
the segments by name. These eight characters identify the segment at compile
time.

Then follows a 1é6-word array of state descriptors. The values in this array
tell what kind of segment is at the described location. The values are:

LINKED
HOSTEEG
SEGPROC
UNITSEG
SEPRTSEG

The remaining 144 words of the block are reserved for future use.

3.2.3 Data Files

The content and format of the data files are up to the user.

3.2.4 Foto Files

Foto files contain screen images. Each one is declared in Pascal as follows:

TYPE SCREEN = PACKED ARRAY[O..239.0..3193 OF BOM.EAN;
VAR FOTOFILE: PACKED FILE OF SCREEM

J.2.5 Bad Files

Bad files are those files that protect a user from using a physicaily bad
hlock of disk. They are marked bad by the File Handler after a bad block scaw
has been done and the bad blocks have been examined (see Section 2.4).

3.2.6 Hork File

In addition to the permanent files described above, the Pascal Uperating
System supports a work file that is a temporary copy of the file being
modified. The work file is used by the File Handler, Editor and Compiler.
Uhen the text part of a work file is changed. the system stores it on disk as
"HSYGTEML URK. TEXT". UWhen the code wversiom is first crested, it is namad
"HSYSTEM. URK. CODE™.

32,7 Valumes

A volume is any I/0 device. A block-structured device is one that can have a
directory (e.g.. disk). A non-block-structured device does not have an
internal structure. It simply produces or consumes o stream of characters
{e.g.» printer and console). Table 3-3 gives the volume names reserved for
non-block-structured devices, the unit number associated with each device. and
the unit numbers associsted with the system and alternate disks.

Page 73

Pege 74

FIGURE 3-3 TI/O DEVICES

UNIT
HUMBER VOLUME ID DESCRIPTION
1 CONSOLE Screen and keyboard with echo
2 SYSTERi: Screen and keyboard without echo
4 {valume name): System disk
5 © {volume name?: Alternate disk
6 PRINTER: Line Printer
g REMOTE: Additional peripherals
912 {volume name): Additional disk drives
Volume names for block-structured devices can be assigned by the user. The
name must not exceed seven characters in length and may not contain "=", “§",
" oor ",". The character "#" is the reserved volume 1D of the system disk,
the disk wupon which the system was booted. The character "', when used

alone, is the volume ID of the default disk. The system and default disks are
equivalent unless the default prefix has been chonged (see Section 2.6,
PREFIX). "#{unit number)" is equivalent to the name of the volume in the disk
drive at the current time.

3.2.8 File Names

A legal file name may not exceed 15 characters and may not include the

characters =", "$", "2 op ", ", Lower-case letters will be translated
to upper case. Blanks and non-printing characters will be removed. Legal
characters are the alphanumberics and the special characters =", M/0 ",

"M and ".". Gpecial characters normally are used to indicate heirarchic
relationships between files and to distinguish related files of different
types. The wild card characters "=" and "7 are used to specify subsets
of the directory (see Section 2.6, File Specification).

3.3 SEGHENTS

Segmenting a program so that procedures have to be in memory only when they
are in use has many advantages:

o Large pieces of one~time code (e.g., dinitialization procedures)
can be put into & segment.

o The work can be divided among several programmers, each coding.
compiling and debugging his own segment, to be linked later by
the Linker program.

o A program can be configured to suit storage requirements.

A maximum of six SEGMENT procedures are available to the Pascal programmer.
The disk that holds the code file for the program must be on-line and in the
same drive as when the program was started whenever o SEGIMENT is called.

Page 75

(therwise the system will attempt to retrieve and execute whatever information
currentliy resides on that particular location on the disk.

SEGHEMT procedures must be the first procedure declarations containing code-
generating statements. Declarations of SEGMENT procedures and functions in
sl Pascal are identical to those in standard Pascal, except that they are
preceded by the reserved word "SEGMEMT '.

A5 an example, when the user wishes to put initislization procedures into a
segment becasuse they are one-time-only procedures. the declaration might be:

SEGMENT PROCEDURE INITIM.IZE;
BEGIN

{(¢¥ Pascal code #)
FHD;

The Linker program that can link separately compiled SEGHENTs together is
described 1n Section 2.9.

2.4 LINKAGES

Frequently used routines and data structures can be separstely compiled or
ascembled and can be stored in libraries until needed (see Section 4.4,
Librarian). These externally compiled structures then can be integrated
inte the files needing their capabilities. A file thal references such a
structure need not compile it directly into its code file; the Linker copies
the existing cade of the structure into the host code file (see Section 2.9,
Livker).

Fage 7O

the INTERFACE part of the UMIT as though that part belonged to the host
program itself. Because the constants, types, wvariables, functions and
procedures declared in the IMTERFACE part are global, name conflicts may arise
with identifiers in the host program. The programmer may not use iddentifiers
that are in wse by the UNIT. Procedures and functions may not Use UMIls
locally.

The syntax for a UMIT definition is shown in Figure 3-~4. The declarations of
routine headings in the INTERFACE part are similar to forward declarations:
therefore. when the corresponding routines are defined in the IMPLEHENTATIiON
part. formal parameter specifications are not repeated.

A UNIT may use another UNIT. as shown in the example in Figure 3-5. In thio
case, the USES declaration must appear at the beginning of the INTERFACE
part.

NOTE: Variables of type FILE must be declared in the
IMTERFACE part of & UMITS. A FILE declared in
the IMPLEMENTATION part will cause a syntax error
at compile time.

A user may define a UMIT in—line, after the heading of the host program. In

this case, the user compiles both the UMIT and the host program together.
Subsequent changes in either require a recompilation of both.

Page 77

{Compilation unit’ o 1= {(Program heading’ (Unit definition);
{Uses part) (Block? :
Cnit definition); (Unit definitionl.

{Unit definition? o= {Unit heading);
(Interface part)
(Implementation part}

Ead
(Unit heading> o o= Unit (Unit identifier) :
Separate unit (Unit identifier)
(Unit identifier) o o= (ldentifier’
(Interface part’ . .= Interface

(Jses part?

(Zonstant definition part)

(Type definition part)

{Variahle declaration part)

(Irocedure heading) : (Function heasding’

(Implementation part} Implementation

(Label declaration part)

(Constant definition part’

{Type definition part)

(Variable declaration pari)

(Frocedure and Function declaralion part)

(Uses part? o o= Uses (Unit identifier?
» {Unit identifier’; : (bEmpty?

Figure 3-4. SYNTAX FOR A UNIT DEFINITION

A UMIT or group of UMITs can be compiled separately and stored in o library.
After compiling a host program that uses a UNIT that is stored in & library,
the user must 1link that UMIT into the host program by executing the Linker,
If 3 user calls R{un and an unlinked code file has been requested, the Linker
will be called automatically. If X(ecute is called in such a case, the systenm
will issue a8 reminder to link the code (see Section 2.2, Outer Level Commands).

If the host program has changes, the user must recompile and link in the UNIT.
If the IMPLEPMENTATION part is changed, the UNIT must be recompiled, and then
3ll compilation wunits +that wse the UMIT must be relinked. Changes in the
INTERFACE part requare a recompilation of not only the UMIT, but of all
compilation units that use it. Then. all compilation units must be relinked.

The Compiler generates Linker information in the contiguous bilocks that
follow a program that wuses UNITs. This informetion includes locations of
references to externally defined identifiers (see Sectiom 2.9, Linker),

Page 78

3.5 LONG INTEGERS

is suitable for business, scientific or other applications where there is a
need for extended number length with complete accuracy. The Ffour basic
standard arithmetic operations {addition. subtraction, multiplication and
division) are supported, as well as routines faciliteting conversion to
strings and standard INTEGERs. Strong type checking is enforced to reduce
potential errors. 170, in~line declaration of constants, and inciusion in
structured types are fully supported and are analogous to the wusage of
standard INTEGERs,

LOMG INTEGERS are declared by using the standard identifier "INTEGER” followed
by a length sttribute enclosed in square brackets. The length is given as an
unsigned number, not larger than 36, that denotes the minimus number of
decimal digits to be represented. In the example below, the variable 7 is
capable of storing up to a 12-decimal digit signed number:

VAR Z: INTEGER[123;

LONG INTEGERs may be used, generally, anywhere a REAL would be suntatically
correct. However, care must be taken to ensure that sufficient words have
been allocated by the declared length attribute for storage of the result of
assignment or arithmetic expression statements. INTEGER expressions are
implicitly converted as required upon assignment to., or arithmetic operations
with, a LONG INTEGER.

However, the reverse is not true. The LONG INTEGER probably should not be
used as a subrange. Examples of uses of the LOMG INTEGER are shown in Figure
3-5.

Arithmetic operations that may be used in conjunction with the LOMG INTEGER
are:

+, -, #, DIV, umary plus/minus

On assignment. the length of the LOME INTEGER is adjusted during execution to
the declared length attribute of the variasble. Therefore. an interrupt
{overflow) may result when the intermediate result exceeds the number of words
required to store at least 37 decimal digits: or when the final result is
assigned to a variable with an insufficient length attribute. A1l of the
standard relational operators may be used with mixed INTEGER and LONG INTEGER.

The function TRUMC will accept a LONG INTEGER as well as & REAL as an
argument. The function becomes TRUNC(L), where "L" is a LOMG INTEGEK.
Interrupt (overflow) will result if "L" is greater than FBXINT.

The procedure STR(L,S) will convert the INTEGER or LOMG INTECER "L" intu a
string, complete with minus sign if needed, and will place it in the STRING
"SN.

An attempt to declare a LOMG INTEGER in a parameter list other than for the
routines TRUNC and STR will result in a compile-time error. The error may be

Page 79

rircumvented by creating o bype that is called LONG IMTECER, as fallows:

PROGRAM LIMTEGER;
VAl L INTEGERLZDN
{ . INMTEGER,
REGTH (:LINTECER#)
b= 9a246543210;:
oo
R A S
N UETY
I THUNECL),
FMD (R INTEGER®)

TYPE LONE = INTEGER 15
PROCEDURE OVERSIZE(ACCOUNT: L.OMG)Y:

e i ok Ans e Al At v s e im0 b ¢ St S s el Srne e e M $ %04 an S e e v St S Tt P B 844 e 1 it e i 48 A A o~ P

Figuwre 3-5. EXAMPLE USES OF LONG INTEGERS

The LONG INTEGER is stored as a multi-word, twos-complement binary number.
system routines do the 170 conversions as reguired. Maximom storage
afficiency is achieved by dunamic expansion and contraction of word allpcation
35 required. During LOMG INVEGER operations, the length is plsced on the
stack above the number itself. Mote thot the declared length attribute may be
equal to or less than this length,

3.4 UCED PAGCAL ENHANMCERNLNTS

Precented here is a summary of the areas in which UCSD Pascal differs from
Standard Pascal as well as special enhancements offered by UCSD Pascal, The
Standard PFascal referred to here 1s defined in PASCAL USER MANUAL AND REPORT
{2nd edition) by Kathleen Jensen and Miklaus Wirth (Springer-Verlag. 1975).
rlany of the differences are in the areas of files and 1/0. Some of the key
differences from s programming standpoint are in EOF, EOLN. READ, WRITE. RESET
and REWRITE.

361 Case Statements

In Standard Pascal, if no label is equal to the value of the case statement
selector. the result of the rase statement is undefined (Jensen and Wirthl.

In UCSD Pascal, if no label matrches the value of the case selector, the next
statement executed is the statement following the case statement. An example
iz shown in Figure 3-8. Mote that 2 semicolon is NOT permitted before the
"EMDY of a case variant field declaration within a RECCRD declaration, See
Appendix B.2 for revised syntax diagrams for (field list).

v o e @ e s st 8 e e ot At Mt oaeR A St o LS M - A 01 b Tk A SO P B 1S 4 Bl M N B SO o B P Do b e e e G ot A B e A g B 40 AAES P 4+ S S Y S0 VA e ol ARG Suth O € U S0 O e v

PROGRAM FA_LTHRU,
VAR T INTEGER;

Pape 80

BEGIN (&FALLTHRU#®)

I = 25;

CASE 1 OF

O 0 URITELM({'I = 0);

1o WRITELMCL = 17);
EMDA{®CASER)Y ; _
WRITELM(/HEITHER)
END (eFALLTHRUR) ,

Figure 3-6. EXAMPLE OF FALLTHROUGH IN & CASE STATERENT
B Comments

A comment is any text that appears between the symbols "(¥” and "©)" or the
symbols "{" and "}'. Comments are ignored by the Compiler unless the first
character of a comment is "$", in which case, the comment is interpreted to be
a Compiler control comment {(see Section 2.7, Pascal Compileri. Hote that
matching symbols must be used; they may not be mixed. This feature alicws 4
user to nest comments. For example:

CXOP := XOP + 15 (% NESTED COMMEMT 30 3

The matching sumbols have been used as pairs within paire of difterent
symbols. Using the same pair For nesting will result in g syntax error.

3.56.3 Dynamic Hemory Allocation

In Standard Pascal, DISPOSE asks that storage occupied by one particular
variable be released by the system for other uses.

In UCSD Pascal, DISPOSE is not implemented. However, it can be approximated
by a combined use of the intrinsics MARK and RELEASE,

Storage is allocated for variables by the standard procedure MEMW in & stack-
like structure called a “heap”. The program in Figure -9 illustrates how
MARK and RELEABE can be used to change the size of the heap. As NEW is used
to create a new variable, the size of the heap is augmented by the size of the
variable. UWhen the variable is no longer needed. RELEASE resots the top-of-
heap address that was set originally by FMARK.

A series of calls to NEW between calls to MARK and RELEASE will resutt in the
impediate release of storage occupied by several variables at RELEASE time.
Mote that, due to the stack nature of the heap, it is not possible to release

memory uvsed by a single item in the middle of the heap. This is why MARK and
RELASE only approximate the function of DISPOSE.

Careless use of MARK and RELEASE can lead to “dangling pointers” thst point to
areas of memory that are no longer a part of the defined heap space.

3.46.4 EGF(F)
When text file F is being used as an input file from the CONSOLE device, to

Page 81

set EOF to True, the user must tupe the EOF character. The system default EQF
character is control-C. <(To change the defsult character. see 3Section 4.l.
Setup.)

1# F is closed, EOF(F) will return True for any FILE F. If F is a file of
tupe TEXT and EOF(F) is True, then EOLN(F) is alse True. After a RESET(F).
FOF(F) is False. If EOF(F) becomes True (end-cf-file is reached) during a
GET(F) or READ(F). the data obtsined is invalid.

[P -— ma e ohe 4 o1t e e e TS i BARR T G bue o o et e e 00 b St don P e

PROGRATT HEAPUHNG:
TYPE STUDENT =

RECORD
MAE. . PACKED ARRAY 10..103 OF CHOAK;
m . INMTEGER

LMD

VAR 5 © ASTUDENT; (# ‘' FEANS POINTER¥)
HEAP . AIMTEGER;

REGIN (xHEAPCHNEY)
MARKHEAR)
NEW{S);
GACNAME = ‘GHITH, JOHM'
SALID (= 2654
RELEASE (HEAP) :

END (RHEAPCHNGE) .

Figure 3-7. UBSING MARK AND RELEASE TO CHANGE HEAP GIZ-

When a user proyram starts execution, the system automatically performs a
RESET on the predeclared files INPUT. OUTPUT and KEYRBOARD.

The defsult file for EOF and EOLM is IWPUT.
48,5 EQLMCF)

EQOLNCF) is defined only if F is a text file. F is defined as a text file
when the window varisble F~ iz of (typelCHAR. EOLH becomes True after
reading the end-of-line character {cr). The carriage return must be typed
immediately Ffollowing the last character on the line. If a space is typed
First, then followed bu a {(cr> EOLN will remein False, and another READ will
take place.

3.8.6 Files

Several aspects of file handling are described below. The enhancements
preseated braing UCSD Pascal closer to the standard definition of the language.
Note that UCSD Pascal includes untyped Ffiles that are not available to the
Standard Pascal user.

WARNING: It is wot currently possible to READ or URITE to files of tupes

Pace 82

other than TEXY or FILE OF CHAR.

Interactive Files

Untyped

The standard predeclared files IMPUT and OUTPUT will always be defined

as type IWTERACTIVE. They behave exactly as do files of type TEXT.

All Files other than INTERACTIVE operate exactly as described in Jensen
and Wirth. including the functioning of EOF(F), EOLNC(F) and RESET(F).

For more details concerning files of tupe INTERACTIVE, see Section 2.6

(READ, READLN and RESET),

Files

Untuyped files are unigque to UCSD Pascal. An untyped File can be
thought of as a file without & window variable FA to which all 170
must be accomplished <(using BLOCKREAD and BLOCKWRITE). Any number
of blocks can be transferred using either BLOCKREAD or BLOCKWRITE.
These functions will return the actual number of blocks read/written.
When untyped files sre used, it is advisable to specify the Compile
option "I", thus requiring that the function IORESULT and the number
of blocks transferred will be checked after each BLUCKREAD or BLOCK-
WRITE to detect any 170 errors. An example of a program that uses
untuped files is shown in Figure 3-8.

Random Access of Files

Individual records in a file can be accessed randomly by the intrinsic

SEEK. The two parameters for OEEK are the file identifier and an

integer giving the record number to which the window should be moved.

The Ffirst record of a structured file has the number 0. SEEK always

sets EOF and EOLM to False. The subsequent GET or PUT will set these

conditions as appropriate. Attempts to PUT records beyond the physical
end of file will set EOF to True.

{HET-K)
PROGRAN FILEXANR,
VAR §5,D @ FIL¥
BUF : PACKED ARRAYIO..5113 OF CHAR;
BLKM, BLKITRAM @ INTEGER;
IOERR : BOQLEAN:
BEGIN (¥FILEXAMPH);
IOERR = FALGE;
REBET(S, "FROM. DATA) 5
REWRITECD, ‘T0);
BLKM = 0;
BLKGTRAM = BLOCKREAD(S, BUF, 1, BLKN) ;
WHILE (NOT EOF(5)) AND (IORESULT = 0)
AMD (NOT TOERR) AND (BLKSTRAN-=1) DO
BEGIN
BLKGTRAM = BLOCKWRITE(D, BUF, 1, BLKH);
IOERR = ((BLKSTRAM ¢ 1) OR (IORESULT (7 0));
BLKN = BLKM + 1;

Page 3

BLKSTRAN = BLOCKRLAD(S, BUF, 1. BLKM);
EMD (RWHILER)

CLOSE (D, LUCKY

EMD (rFEILEXANPE)

Figure 3-8. EXAMPLE OF USING UNTYPED FILES
3.6.7 GOTO and EXIT Statements

The GOTO statement prohibats o GCTO to a label that is not within the same
biock as the statement. This i1s a limitation that is not imposed on the GUIG
statement in Standard Pascal. Because of this limitation, the examples on
pages 31-32 of Jensen and Wirth do nct apply.

EX{T is a UCSD extension statement. [ts only parameter is the identifier
of the procedure to be exited. The EXIT statement was crested beceuse of
the occasional need for a means tc abort a complicated. and possible deepiy
nested, series of procedure calls upon encountering an error. The recursive
descent UCSD Pascal Compiler contains an example of the EXIT statement being
used in this way. However, the uvse of this statement is discouraged.

MOTE: The use of an EXIT statement to exit a function
can result in the #function returning undefined
values 1if no assignment is made to the function
identifier prior to the execution of the EXIT
statement.

¥ the identifier in the EXIT statement is that of a recursive procedure. the
most recent invocation of that procedure will be exited. Upon EXIT. an
implicit CLOSE(F) is done on local files that were opened during execution
of the procedure being exited. @A example of using EXIT is shown in Figure
-9,

3.4.9 Packed Variables

Described below are packed arraus and records, wusing packed variables as
parameters. and (not) using PACK and UNPACK.

2 i v St e S S ot S iy S R Bt S0 o S e Tt e e e Vet LR i 908 VS RS M N S Rt - ——— — - v o S gt o et b e o o e

PROGRAM EXITTEST
YA 5 0 STRING;
I INIEGER:

PROCEDURE CALL; FORWARD;

PRUCEDURE PR [NT:
BEGINM (:PRINT®)
HRITELH{ ~-2>");
READLNCG) S
HRITELN(S) .

Hage 84

IF BU11 = ’“w/ THEM EXIT(CALLY;
HRITELNC/LEAVE PRINT);
END (®PRINTH);

PROCEDURE CALL;

BEGIN (rUALLM

PRINT;

HRITELN(/LEAVE CALL),
EWD (xCALLY);

PROCEDURE COUMT;
BEGIN (#COUMT®)
IF 1 (= 16 THEM CALL;
HRITELMC/LEAVE COUNMT),
EMD (2COUNT®)

BEGCIN (MEXITIYESTH)
3=
WHILE NOT EOF DO
BEGIN
I 1= I+l
COUMT;
WRITELN;
END CeWHILER) ;
EMD (MEXITTESTH),

- TRie 2000 L S0kt o 0080 710D R v a0t $OYD AR vent ah $1%0 pSS S4 BALL St 4143 ¥ PN cure B M S0 b S A b am o AR Lr—_— PSR RO

Figure 3-9. EXAITPLE OF USING THE EXIT STATEMENT

Racked Arrays

The UCED Pascal Compiler will pack arrays if the ARKAY declaration
is preceded by the word PACKED. For example:

ARRAYLO. .91 OF CHAR:
PACKED ARRAYTO..91 OF CHAR;

The array in the first declaration will occupy ten 16-bit words of
memory, with each element occupying one word. The array in the
second declaration will be packed into a total of five worde. since
gach lé-bit word contains two B-bit characters. Thus each element
is eight bits long.

Examples of packed arrays that are not of type CHAR are given in
Figure 3-10.

Due to the recursive mnature of the Compiler, the following two
declarations are not equivalent:

PACKED ARRAYTO0..91 OF ARRAYED..3] OF CHOR;
PACKED ARRAYL0..9,0..03 OF CHAR;

In the first declaration, the second ocurrence of ARKAY causes the

Page &5

e e ot s o s pome

packing option in the Compiler to be turned off, giving an unpacked
array of 40 words. The array in the second declaration occupies a
total of 20 words beceuse ARRAY appears only once. If the second
occurrence of ARRAY in the “irst declaration had also been preceded
by PACKED. the two declarstions would have been equivelent.

©x e - s A e o 28 €+ B 8 B e i o T S 1 i et b eV o e B 0 4w 4 Al SOV o 0 ot A ok SR PR B i e S e 48 a0 A Bk Bk et T8 Yl SO e P, A TR S iy S 0 Y 0TS et B0 e PR sy € v £

PROGRAM PACKTHT
UAR A PACKED ARRAY [0..91 OF 0..2000;
4. PACKED ARRAY [0..151 OF BOOLEAN;
Lo PACKED RECORD
0D BOOLEAN:
(CASF E: BOOLEAM OF
TRUE: (F: IMTEGER)
FALSE: (G PACKED ARRAY [0..71 OF CHAR)
U
REGIN
END.

Figure 3-10. EXANMPLES OF PACKED ARRAYS AMD RECORDS

fn array will be packed only if the final type of array is scaler.
subrange, or a cet that can be represented in eight bits or less or
if the final type is BOOLEAN or CHAR. Mo packing is done if the
array cannot be expresced in a field of eight bits.

Mo packing occurs across word boundaries. IF the tupe of element to
be packed recguires a nunber of bits that does not divide evenly by
16, unused bite will be at the high end of each of the wurds that
comprise the array.

NOTE: It is illegal to assign a string constant to en unpacked
ARRAY OF CHAR, although it may be assigned to a PACKED ARRAY GF
CHAR. Also, comparisons between an ARRAY OF CHAR and a string
constant are illegal. This is because of size differences.

£ PACKED ARRAY OF CHAR may be oubtput with a single UWRITE statement.
and may be initialized by using the intrinsics FILLCHAR and GIZECF.

Packed Records

As with arrays, the Compiler will pack records if the RECORD
dec laration is preceded by PACKED. In the example below, the entire
record is packed intu one 16-bit word.

UAR A PACKED RECORD
®R.GS: 00031
B BOOLEAM
EHD;

Page 85

The variables @, R and & each take up five bits. The boolean variable
it allocated to the sixteenth bit.

PACKED RECORDS may contain fields that also are packed. either arraus
or records. But PACKED must occur before every occurrence of REUORD to
retain packed qualities throughout all fields of the record.

A case variant may be used as the last firld of a PACKED RECORD. The
amount of space allocated to it will be the size of the largest variant
among the cases.

Using Packed Variables as Parameters

Packed variables may be passed as call-by-value parameters to a pro-
cedure or function. However, they may not be passed as call-by-
reference parameters.

PALK and UNPACK

UesD Pascal does NOT support the standard procedures PACK and UMPACK.
(Jensen and Wirth, 104).

3.6.9 Parametric Procedures and Functions

UCSD Pascal does NOT support the use of procedures and functions as formal
parameters in the parameter list of a procedure or function.

3.6.10 Program Headings

A list of file parameters may follow the file identifier. Mowever, they are
IGNORED by the Compiler and have no effect on the program being compiled.
Any file declarations other than the three predeclared files (INMUT, OUTIPUT
and KLYBOARD) of type INTERACTIVE must be declared along with the other UAR
declarations for the program.

3.6.11 READ and READLM

In Standard Pascal, the procedure READ requires that the window variable
F* be loaded with the first character of the file when the file is opened.
If effect, the statement READ(F,CH) would be equivalent to:

CH: =F»a;
GET(F)

To be responsive to the demands of an interactive programming environment,
UCSD Pascal defines the additional file type INTERACTIVE. Declaring s file to
be of type INTERACTIVE is equivalent to declaring it to be tuype TEXT, except
that the definition of READ(F,CH) is reversed:

GET(F);
CH: =FA;

Page 87

The standard definition of the procedure READ reguires tha the process of
ppening a file include loading the window variable F* with the first
character of the file. In an interactive environment it is dinconvenient to
require a user to type a character of the input file when it is open to avoid
the program "hanging” when it is first opened. fo overcome this, UCGD Pascal
has reversed the order. This difference affects the way in which LOLM must be
used when reading from s text file cf the type interactive. LOLM only becomes
true after reading the end of line character, a {return). The rharacter
returned as a result of the KEAD is a blank.

Three predeclared text fiies (INPUT, OUTPUT and KEYBOARD) of tupe IMTER-
ACTIVE are opened sutomatically for a user program. The file INPUT defaults
to the console device. The statement READ(INPUT.CH), where CH is a character
varisble, will echo the charscter tuped from the console back to the console.
WRITE statements to the file GUTRUT will cause the output to appesr on the
console, by default. The fite KEYHOARD is the non-echoing equivalent to
NPT, For example. the following twe statements are equivalent to
READ CYNPUT, CH

READ (KEYBOARD, CH) s

WRITE (QUIPUT, O,
a5 12 RESET(F)
In Standard Pascal, the procedure RESET resets the file window to the
beginning of #ile F. The next GETIF) or PUT(F) affects recurd 0 of the file.
nlso, the window variable FA is loaded with the first record of the file.
Tn UCSD Pascal, the standard conventions hold true unless the file is of type
INTERACTIVE. In that case, the window variable is NOT loaded. Thus, the UCED

equivalent of the Standard RESET(F) is the two-statement sequence:

RESETR)
GETR);

UCSD Pascal also provides an alternative form of opening a pre-existing file.
In it, RESET haes two parameters; the file identifier followed by either a
string constant or variable, whichever corresponds to the directory file name
of the file being reopened.

3.56.10 REMRITELF)

REWKITE opens and creates a new file. It has two parameters: the file
identifier €ollowed by either a string constant or wveriable. whichever

corresponds to the directory file name of the file being created.

REWRITE performs the same as the UCSD intrinsic OPENMEW, and will replace it
sventually (see Section 3.1, Intrirsics).

3.4.14 Segment Procedures
The SECHENT PROCEDURE is a UCSD estension to Pascael. With it. the programmer

Page 8O

can segment a large program so that the entire program does not have to be in
memory at once. For further information, see Section 3.3, Segments.

3.46.15 Sets

All of the Standard Pascal constructe for sets are supported by UGCSD Pascal
{(see p. 30-51 of Jensen and Wirth). Sets of enumeration values are limited to
positive integers only. Also, a set is limited to 255 words and 4080
elements. Comparisons and operations are allowed only between sets that are
either of the same base type or subranges of the same underlying type.
Examples are shown in Figure 3-11.

m ————— sy ——— - —— - - [

PROGRAM SETST:
VAR SETL: SET OF 0..49;
SET2: SET OF 0..99;

BEGIN (#SFTSTH)
SETY = 10,5, 10L
SET2 = [10,20,301;
IF SET1 = SET2 THEM
WRITELMC/ THEY ARE EQUAL ")
ELSE
WRITELM(/THEY ARE NOT EQUAL’);
EMD{RSETETH) .

Sets of different underlying types cannot be compared:

PROGRAM SETCOMP;
TYPE IMGREDIENTS = (FLOUR.SUGAR, EGGS, SALT);

VAR I. GET OF IMEREDIENTS:
M: GET OF 0..49;

BEGIM (#BETCORP)
I = [FLOURY;
M= 11,23, 4,53
IF 1 =M THEN (== ERROR WILL OCCUR MERE
WRITELWC/EQUAL) ;
EMD (#SETCOMP®) .

R e e - - e v o P o osre e o s o e

Figure 3-11. EXAMPLES OF SET COMPARISONS
38,16 Strings

STRIMG wvariables are unique to UCSD Pascal. Essentiallu, they are PACKED
ARRAYs of CHAR with a dynamic LENGTH attribute, the value of which is returned
by the string intrinsic LEMGTH. The default maximum length of 2 string
variable is 80 characters. This value can be overridden in the declaration of
a string by appending the desired length within I'] after the tupe iden- tifier

Page 89

STRING. For further information and examples, see Section Jd.1.1, GString
Intrinsics.

A string variable has an absolute maximum length of 235 characters. Assign-
ment to string variables can be performed using the assignment statement, UCSD
string intrinsics, or with a READ statement. For example:

TITLE: =’ THIS IS MY STRING ’;
READLM(FYSTRING) ;
NAME: = COPY(MYSTRIMG, 1,21);

The individual characters within a string are indexed from 1 to the length of
the string. A string variable may rot be indexed beyond its current dynamic
length.

String variables may be compared to other string variables, no matter what the
current dynamic length of either. The lengths do not have to be equal.

One of the most common uses of string variables in UCSD Pascal is reading file
names from the console device. UWhen & string variasble is used as a parameter
to READ or READLM. all characters up to the end-of-1line character {(carriage
return) in the source file will be assigned to the string variable. In reading
string variables, the single statement READLM(S1,52) is equivalent to the two-
statement sequence:

READ(S1);
READLM(52);

3.6.17 WRITE and WRITELM

The procedures WRITE and WRITELN follow the conventions of OStandard Pascal
except when applied to a wariable of type BOOLEAN. UCSD Pascal does not
support the output of the words TRUE or FALSE when writing out the value of a
boolean variable.

For writing variables of type STRING, see Section 3.1.1, String Intrinsics.
When a string variable is written without specifying a field width. the actual
number of characters written is equal to the dunamic length of the string. If
the field width specified is longer than the dynamic length, leading blanks
are inserted. If the field width is smaller, excess characters will be
truncated on the right.
3.6.18 Implementation Size Limits
The maximum size limitation of UCSD Pascal are:
1. HMaximum number of bytes of object code in a procedure or function
is 1200. THaximum number of words for local variables in a
procedure or function is 16383,

2. HMaximum number of characters in a string variable is 255.

3. Maximum number of elements in 3 set is 255 ¥ 16 = 4030.

rage 70

4., HMaximum number of segment procedures and functions is 16, of
which nine are reserved for the Pascal system and seven are

available to the user.

2. Maximum number of procedures or functions within a segment is 127.

3.6.19 Extended Comparisons

UCHD Pascal permits = and () comparisons of any array or record structure.

Page %1

SECTION 4

UTILITIES
4.1 SETUP
Certain information about the user’s system configuration is kept in a file
called SYSTEM.MISCINFO. During system initialization, this file is read into

memory. From there, it is accessed by many parts of the Pascal Operating
System. particularly, where applicable, by the Screen-Oriented Editor.

fuch of the information in this file must be set up by the user to conform to
his hardware configuration and particular needs. Most concerns the nature of
the terminal and keyboard, although there is some miscellaneous information.

SETUP is run by typing "X" for eX{ecute at the Outer Level of commands, then
the file name SETUP, followed by a carriage return. The following prompt line
appears:

SETUP: CIHANGE T(EACH) H{ELP) Q<UIm
The program is self-teaching. Typing "H" for HELR) will produce an
explanation of what the other commands do. If the SETUP program is not on the
disk, the following message will appear:

no file setup.CODE
SETUP does not tell the system how to do random cursor addressing on the
user‘s terminal. I# this feature is part of the user’s hardware
configuration, information on using the feature can be found in Section 4.9
GOTOXY Procedure Binder.
4,1.1 Miscellaneous Information

HAS 85104

If TRUE, the system is running on a Terak 8510A hardwsre
configuration:; otherwise FALSE.

HAS CLOCK
If TRUE, a real-time clock is available; otherwise FALSE. The real-
time clock module is assumed to be a line frequency clock. Uhen
available, the clock is used by the system to optimize disk directory
updates (see Section 3.1.4, Time Intrinsics).

4.1.2 General Terminal Information

HAS LOWER CASE

If TRUE, the terminal has lower case; otherwise FALGE.

HAS RANDOM CURSOR ADDRESSING

Page 93

If TRUE, +the terminal has random cursor addressing: otherwise FALSE.
This applies only to video terminals.

HAS SLOW TERMINAL

If TRUE, the terminal has a baud rate of 400 or less; otherwise FALSE.
When TRUE, the sustem issues abbreviated prompt lines and messages.

NOM-PRINTING CHARACTER

#ny printing character may 2e entered here to indicate the character
that should be displayed to indicste the presence of a non—printing
character. The suggested character is ASCII "7V,

SCREEN HEIGHT

Enter the number of lines displayed on the screen of o video terminal.
Otherwise, enter O for hard-copy terminal or one in which paging is
not appropriate.

VERTICAL MOVE DELAY

Enter the number of nulls to send after a vertical cursor move. The
nulls will be sent after a carriage return, ERASE TO END OF LIMNE,
ERASE TO END GOF SCREEN and MOVE CURSOR UP. fany types of terminals
require a delay after certain cursor movements to enable the terminal
to complete the movement before the next character is sent.

4,1.3 Control Key Information

Some keyboards generate two codes when a single key is typed. That is
indicated according to the following format:

PREFIXEDI(fieldname] TRUE

The prefix for all such keys wmust be the same. For example. many keys
function as escape keys in addition to their named function. If a user’s
keyboard had a vector pad that generated the value pairs ESC "U" and ESC "D"
for the Uparrow and Downarrow keys. respectively, the following values should
he entered:

KEY FOR MOVING CURSOR Up ASCIT "u”
KEY FOR MOVING CURSOR DOWM ASCII "D"
LEAD-IN KEY FOR KEYBOARD ESC
PREFIXEDIKKEY FOR MOVING CURSOR UP] TRUE
PREFIXEDIKEY FOR MOVING CURSOR DOWNI TRUE

The following keys may apply to all terminals.

KEY FOR BREAK
Typing the BREAK key causes the program currently executing to be
terminated immediately with & runtime error. This should be set to

something that is difficult to hit accidentally.

Page 74

KEY TO DELETE CHARACTER

This key removes one character from the current line. It may be tuped
until nothing is left on the line. The suggested setting is ASCII BS.

KEY TO DELETE LINE

This key will cause the current line of input to be erased. The
suggested setting is ASCII DEL.

KEY TO END FILE

This is the consocle end-of-file character that sets the boolean
function EOF to True. This applies only to INPUT or KEYBOARD files or
the unit CONSOLE. The suggested setting is ASCITI ETX.

KEY FOR FLUSH

This is the console output cancel character. Uhen the FLUSH key is
pressed, output to the file OUTPUT is undisplayed until FLUSH is
pressed again or the system writes to the file KEYBOARD. Processing
is uninterrupted even though the output is not displayed. The
suggested setting is something that is difficult to hit accidentally.

KEY FOR STOP

This is the console output stop character. UWhen preseed, output to
the file OUTPUT ceases. Output resumes where it left off when the key
is pressed again. This function is useful for reading data that is
being displayed too fast for easy reading. The suggested setting is
ASCII DC3.

The following keys are applicable only to video terminals that have selective
Eerase.

EDITUR "ACCEPT" KEY
In the Screen-Oriented Editor. this key is used to accept commands,
thus meking permanent any action taken. The suggested setting is
ASCIT ETX.

EDITOR “EBCAPE" KEY

In the Screen-Oriented Editor, this key is used to escepe from
commands, reversing any action taken. The suggested setting is ASCII

ESC.
KEY TO MOWE CURSOR UP
DOWN
LEFT
RIGHT

These keys are used by the Screen-Oriented Editor for cursor control.

Page 9%

If the keyboard has a vector pad, the keys must be set to the value it
generates., (therwise, four keys may be chosen in the pattern of a
vector pad (e.g.., "0" ".". "k" and ;") and be assigned the control
codes that correspond to them. A prefix character may alsc be used.

4.1. 4 Video Screen Control Characters

fhe video screen control characters are sent by the computer to the terminal
to control the actions of the termina.. The terminal manual will give the
appropriate values. If a terminal does not have one of these characters, the
fieid should be set to 0, unless otherwise directed.

On some terminals, a two-character sequence is required for some functions
(e.g., ESC plus a character). If the first character for all of the functions
is the same, it can be set as the va.iue of the field LEAD-IMN TO SCREEM. Then
the tield PREFIX[(fieldname)] must be set to TRUE for each two-charscter
function.

BACKSPACE
This character causes the cursor to move one space to the left.

ERAGE LIME
This character causes the erasure of all characters on the line where
the cursor is currently located. The cursor is relocated to the
beginning of the line.

ERAGE SCREEMN

This character erases the entire screen. The cursor is repositioned
in the upper left hand corner of the screen.

ERASE TO END OF LINE
This character causes the erasure of all characters from the current
position of the cursor to the end of the line. The cursor location is
unchanged.

ERASE TO END OF SCREEN
This character causes the erasure of all characters from the current
position of the cursor to the end of the screen. The cursor location
is unchanged.

MOVE CURSOR HOME

This character causes the cursor to be relocated to "home", which is
the upper left hand corner of the screen.

NOTE: If the terminal does not have such @ character, the field
shouvld be set to ASCII CR {(carriage return).

HoVE. CURSOR UP

Page 96

LEFT

These characters cause the cursor to move non-destructively one space
in the direction indicated.

4.2 BOOTSTRAP COPIER

The bootstrap copier writes the first two blocks of the specified file to the
specified unit. This utility is on the file BOOTER.CODE. It is run by tuyping
"X for eX{ecute at the Outer Level of commands, followed by BOOTER. A prompt
line appears to ask for the unit number of the volume on which to write the
bootstrap.

Following the entry of the unit number (see Appendix B.4), the file name to
write as the bootstrap will be asked for.

To copy the bootstrap from an existing disk, give the disk name. Then the
bootstrap will be copied from the disk named to the unit numbered.

4.3 DUPLICATE DIRECTORY UTILITIES

These are two utilities to handle duplicate directories. COPYDUPDIR copies
the duplicate directory, and MARKDUPDIR marks a disk that currently is not
maintaining a duplicate directory. They are described below.

CORYDUPDIR

This program copies the duplicate directory into the primary directory
location. It is entered by typing "X" for eX{ecute while in the Outer
Level of commands. followed by COPYDUPDIR. The program then prompte
for the drive (4 or 5) in which the copy is to take place.

If the disk is not currently maintsining a current directory. a
message is generated.

If no duplicate directory is found after the drive number has been
entered, & message is generated.

If & duplicate directory is found, then a prompt will ask if the
directory currently in blocks 2-5 is to be destroyed.

A "Y' answer will cause the execution of the copy. Any other answer
will abort the program.

If the disk dis nobt currently maintaining a current directory, the
RECOVER program should be run. This is described

MARKDURDIR
This program will mark a disk that is currently not maintaining a
duplicate directory. It is entered by typing "X" for eX(ecute while

in the Outer Level of commands, followed by FMARKDUPDIR. The program
will prompt to get the unit (4 or 5) that is to be marked.

Page 97

Blocks é~9 must be free. The program will check for this and will
give the following message if the blocks appear to be in use:

A "Y" response, indicating that the user is sure
that the blocks are free, will execute the mark.
Any other character will sbort the program.

Blocks 6-9 can be checked by using the E(xtended command in the File
Handler. The extended listing will show where the first file starts.
If the Ffirst file starts at block 6, or it if starts at block 10 but
there is a four-block unused cection at the top, then the disk has not
been marked. However, if the first file starts at block 10 and these
are no unused blocks at the beginning, the disk has been marked.

In the examples below, the ditks have not been marked.

SYSTEM. PASCAL 3 10-Jan-79 & Codefile
unused 4 10-Jdan-79 é Codefile
SYSTEH. PASCAL 31 10~-Jan-79 10 Codefile

Below is the directory of a properly marked disk.
SYSTEM. PASCAL 31 10-dan-79 10 Codefile

4.4 L.IBRARIAN
The librarian allows the user to link separately compiled Pascal units and
separately assembled subroutines into a library file. The librarian is
entered by typing "X" for eX(ecute while in the Outer Level of commands,
followed by LIBRARY.
Before adding a segment to the ®SYSTEM.LIBRARY, the user must creste a new
file into which each segment that is wanted from the original ®SYSTEM.LIBRARY
is linked. Then it is possible to add segments by linking from another code
file into the new file being created.

On entering the librarian program. th2 user is prompted for the name of the
output code file:

Output Code File -)
The program then prompts:
Link Code File -2}
to which the user should respond with ¥SYSTEM.LIBRARY. Then the program
displays the names of all segments currently linked into the input library, as
well as their length in bytes. A maximum of 16 segments are permitted in any
Pascal program or library. After the program lists the segments, it prompts:
Segment # to link and (space), N(ew file, @(uit. A(bort

The user responds with the number of the segment within the 1link code file

tage 98

that 1is to be linked into the new library file. followed by {spacel. HMext.
the user enters the number of the segment in the output file to be linked into
(i.een, the new library). followed by a {(spacel. For each segment linked. the
program reads the segment from the input file and writes it to the cutput file
at the segment requested. It then displays the segments currently in the
output library.

When all needed segments have been linked. a new input file is requested by
typing "N" for N(ew. Once the needed segments from all input files have been
linked, the user locks the output file by typing "@" for @{uit, followed by
{(cr}?. The linking process is aborted by typing "A" for Albort. In that case,
control returns to the Outer Level of commands.

The old kSYSTEM.LIBRARY should either be removed or have its name changed if
it resides on the same disk as the new. The name of the new library should be
changed to #SYSTEM.LIBRARY in order to be used.

4.5 L.IBRARY nap

The library map program produces & map of a library or code file and lists the
linker information mantained for each segment of the file. It is entered by
typing "X" for eX{ecute while in the Outer Level of commands, followed by
LIBMAP., The program will return with a prompt asking for a library file name.

An asterisk (%) will indicate ®#8YSTEM.LIBRARY. The Y.CODE™ suffix may be
suppressed when requesting a library or file other than the ®SYSTEM.LIBRARY by
appending a period to the full file name. For example:

typing: will reference the file:
¥ #SYSTEM. LIBRARY

DIGITAL :DIGITAL.CODE
DIG.LIBRARY. :DIG.LIBRARY

The library map utility vusvally is used to list library definitions. However,
when the program prompts for a reference list.

typing & "Y' in response will cause the program to include intra-library
symbol references. A negative response is indicated by typing a ({space’ or
{cr. Then the program prompts for an cutput file name.

If the extra period at the end of the file name entered is not wused, the
program will avtomatically append ".TEXT".

Several libraries may be mapped at the same time. Typing a {cr) when prompted
for a file name will quit the program and return control to the Outer Level of
commands.

4.6 P-CODE DISAGSENMBLER

The P-code disassembler inputs a UCSD code file and outputs symbolic pseudo-
assembly code (P-code) along with statistics on opcode frequency, procedure
calls and data segment references. The disassembler is helpful to the user in
optimizing programs and provides a source of informetion on the subtleties of

Page 99

the UCSD implementation of Pascal. All statistics gathered are static in that
they are collected by making & pass through the code file rather than
collecting them dynamically while the code file is running.

4.56.1 Disassembly

The disassembler is invoked by typing "X" for eX{ecute while at the Outer
lLevel of commands, followed by DISASH.IS. The file OPCODES. IS5 must be on the
system disk. On entering the disasseabler. the first prompt is for an input
code file;

The suffix ".CODE™ is assumed, and therefore is not required. The code Ffile
must be one that has been generated by the Pascal Compiler. If a program USES
3 UMIT, the disassembly program will include the UMIT only if the code file
has been linked. Assembly language routines linked into a Pascal host will
not be included in the disassembly.

The next prompt asks if the first phuysical byte (byte 0) of a machine word is
the most significant byte of the word.

The next prompt is for an output file for the disassembled output. Because
the output file has not bren defined by tuype, either COMSOLE: or PRIMTER: (if
on—-line) may be used.

Then the user must decide if he wishes to take control of the disassembly to
disassemble only selected procedures rather than all of them in the file.

If the user responds with a "Y", a message warns that all statistics are
gathered only on the procedures that are disassembled. The Segment Guide then
displays the segments in the file by name so that a particular segment can be
selected. Then the Procedure Guide is listed when an "L" is tuped to give the
procedures contained in the segment (see Section 4.4.2 below for more
details).

The Segment Guide may be reentered by typing "Q@” while in the Procedure Guide,
enabling the wuser to disassemhle several procedures in several segments on a
selective basis. The Segment Guide ic exited by tuping "@". Figure 4-1 gives
an example of a Pascal program, its disassembly and its statistics.

Pace 100

St

e OGN bW R e

P et et Pt et bk b fed [t e e

b fued e Tk jewb leee e e el Db jews

O e OO TOTCTT

1 (x$l DISASSN. TEXTH)
1 PROGRAM DISAGSH;

UAR J, I : INTEGER:
BUF : ARRAY[O..63 OF INTEGER;

[

BEGIN
o =d;
I =d+l;
BUFLJ] =200;
END.

NOCUUTSORUBWW

B e

Sample Pascal Program

Samp le Program Disassembled

Figure 4-1. DISASSEMBLY EXAMPLE

Page 101

4.4.2 Data Segment Reference Statistics

The most common use of the references to dats segments for a particular
procedure is to optimize the procedure’s code file. By rearranging the order
of the declaration of variables, the offset for a given variable may be
changed within the data segment. The first 16 words offset into the data
segment are the fastest and have cptimized one-byte instructions. Offsets
from 17 to 127 result in instructions at least two buytes 1long: greater than
127, at least three bytes long. If the most frequently used variables have
the smallest offsets, considerasble code file space, and possible execution
time, may be saved.

The Procedure Guide listing gives all of the procedures in a selected segment
by number, lex level and data csegment size. Refering to the previous section,
the listing is made in response to typing an "L" after the segment has been
se lected.

4.6.3 Opcode. Procedure Call and Jump Statistics

The opcode, procedure call and jump statistics are collected as an aid to
optimizing the architecture of P-code. They are of little use to the pro-
grammer. The last prompt of the program asks for the name of the file to
which these statistics should be dumped.

4.7 PATCH/DUMP

The patch/dump program is entered by typing "X" for eX(ecute while in the
Outer Level of commands, followed by PATCH. On entering the program. the
following prompt line appears:

Ctonsole, Platchwrite, W(holewrite, Q<uit

Typing "C" puts the program into conscle mode for working with and altering
the file. Typing "P" puts the program into patchwrite mode for dumping a file
in hex, decimal, octal or ASCII format. Typing W' puts the program into
wvholewrite mode for dumping, concatentating and/or moving blocks in files.
"Q" exits from the patch/dump program and returns control to the Outer Level
of commands. Console, patchwrite and wholewrite modes are described below.

4.7.1 Console Mode

In the console mode, the prompt line changes with each command. The full
prompt line on entering the mode is:

Patch: R(ead, S(ave, H(ex, M{ixed, G{et. Q(uit [nnl
The number in the square bracket at the end of the line is the current block
being patched. The first command to use is G(et, which will return with the
prompt:

Filename: {(cr for unit i1/0)

In response, the name of the file to be patched is entered. However. a
carriage return is typed instead if the disk (or other device) has no

Pape 102

directory or has some problem with the directory. Typing (cr) will generate
the prompt:

Unitnum to patch [4,5,9..127 (0 will Quit)

When either a file name or a unit number has been entered, the next command to
execute is R{ead, which will read a block from the file/unit. On entering
R{ead, the prompt is:

BLOCK:

The block number of the file/unit specified is entered. MNote that no range
checking is provided on this read. HMNow, using the H{ex command will display
the block entirely in hexadecimal characters. The M{ixed command will display
the block in ASCII characters. where possible, and hexadecimal values else-
where. The prompt for M{ixed is:

Alter: pad vector 1,5,3,0 0..F hex characters, S(tuff, Quit
The vector keys on the terminal control cursor movement. Note that the cursor
will not move off the data. Typing a hex character changes the character at
the location of the cursor only if one or more of the data positions is
changed.
The S(tuff command displays the prompt line:

Stuff for how many bytes:

Enter a number from 0 to 512, followed by a carriage return to cause patch to
accept the number. The next prompt line is:

Fill with what hex pair:
Enter a byte value if hexadecimal. The data will reappear on the screen with
the number of bytes specified filled with the value specified. Filling starts
with the location of the cursor.
Tuyping a "@" will *transfer control from the alter mode back to the console
mode. S{ave is the next command to be executed to write the changed data back
where it was read from.
The console mode clears its memory after each session.
4.7.2 Patchwork rMode
In the patchwork mode, a full screen prompt appears:
This procedure writes out sequential blocks to any file as a patch dump.
Tupe the prefix character of the option to be changed. Type ‘P’ to PRINT,
‘@’ to QUIT.
A Input File
B{ Begin Block #
£¢ HNum. of Blocks

Page 103

EC Output File
G{ Hexadecimal

H{ ASCIT
I{ Decimal
GO Octal

K¢ Decimal Bytes
L Qctel Bubes
Me Krunch

N{ Double Space

Following each field is its current value. Typing the character in front of
the field positions the cursor after the field and removes the current value.
Typing "Y" or "T" sets a boolean value to True; any other character sets the
field to False. The input and output file fields reguire a file name followed
by a carriage return. The integer fields (begin block and num. of blocks)
require a number followed by a carriage return or space. Any other character
sets the field to some upnspecified value.

Both Print and Quit csuse control to return to the outer level of the patch/
dump program. Print first dumps the file in the requested formet. The format
may be specified by the options krunch and double space. Krunch, when True,
removes blank lines between logical output lines. Double space, when True,
doublie spaces all output. The default is none.

Mote that the patchwrite mode remembers its parameters across sessions while
remaining in the patch/dump program. Patchwrite paginates its oulput. After
pach block is written, a form feed is generated, PAGE(OUTPUTFILE).

4.7.3 bholewrite flode
In the wholewrite mode. a full screen prompt appears:

this procedure writes any number of blocks from an existing file to a new
file, unchanged. Simply specify the necessary parameters. Tuype ‘P° to
PUT, ‘4@’ to QUIT.

I{nput IFile
S(tart Block
M{umber of Blocks
Q{utput File

Fields are changed the seme way as for the patchwork mode. Yholewrite mode
allows mixing/matching and wmingling of files. Both Put and @it return
control to the outer level of the patch/dump program. Put first writes to the
file.

Mote that the wholewrite mode remembers its parameters across sessions while
remaining in the patch/dump program.

4.3 THE CALCULATOR
The calculator program is entered by typing "X" for eX(ecute while in the
Quter Level of commands. On entering the calculator, the following prompt

appears:

Pace 104

-

This prompt expects a one-line expression in algebraic form as a recponse. Up
to 25 different variables are available, each with different values assigned
using the suyntax of the given grammar. Unly the first eight letters may be
used to distinguish between variables. Variables having a value may be used
as constants. The two built-in variables are PI(3.141593) and E(Z2.718282).
Mo distinction is mede between upper and lower case letters.

The Pascal ML function (\) rounds the operands to integers. UARNING: becavuse
this uses the Pascal definition of MOD (Jensen and Mirth, p.108). the results
obtained may not be as expected.

The operand of the factorial FAC function also is rounded to an integer which
must be between O and 33, inclusive, or the expression will be rejected.

The uparrow is used for exponentiation. The answer is calculated by wusing
e Y LN (X). Therefore, the operand must be positive or the expression will
bhe rejected.

The constent LASTX is assigned the value of the previous correct expression
and may be used in the next expression. This does away with the necessity for
reentering the same expression.

Angles for the TRIG functions must be in RADIANS. Degree-to-radian conversion
is accomplished by RADAMGLE = (PI/180) ¥ DEGAMGLE.

The talculator program will bomb on an execution error if an overflow or
underflow occurs, If this happens: all user-assigned variables and their
values will be lost. Type carrviage return immedistely following the prompt to
leave the calculator., Calculator examples are given in Figure 4-2.

e e - - [y s

3. 14159

2,71828

=3 A = (FAC(I /)
3. 00000

=3+ 6
2. 00000

YA+ 4
7. 00000

-3 {RET? To end the program

R o~ —— e s e s <20 G 50 B 3 T b B s et B0

Figure 4-2. CALCULATOR EXAMPLES

Page 105

4,9 GOTOXY PROCEDURE BINDER

The GOTOXY binder alters the SYSTEN.PASCAL on the default P(refix disk to
create and bind into the system (once only) the GOTOXY procedure that enables
the system to communicate correctly with a video terminal. Only system
configurations containing a video terminal need GOTOXY. The coordinates for
the upper lefthand corner of the videc screen must be X=0, Y=0.

The GOTOXY binder is entered by typing "X" for eX{ecute while in the QOuter
Level of commands, followed by BIMDER. UWhen entered, it prompts for:

local GOTOXY

the procedure that must be created to suit the needs of the particular
installation.

To create "local GOTOXY", examine the file GOTOXY.TEXT, that is on the release
disk, with the Screen-Oriented Editor., This file conteins & few procedures
for doing GUOTOXY cursor addressing on several types of video terminals. If
the procedure needed is 1n the file, remove it from comments. comment out any
other procedures, recompile it anc run BIMDER on it. BIMDER is a self-
instructing program. Directions for entering it are given above. Possible
errors that may occur while reviewing the GOTOXY.TEXT and selecting the pro-
cedure needed are:

Possible Error Fix

Mil memory reference at Remove the program heading and
compile time try again

Yalue range error when (&rlJ-8) should be the first thing
gxecuting BIMDER in the GOTOXY file.

If the needed procedure is not in the file, it must be created. The created
procedure cannot be named GOTOXY because this identifier is predeclared at the
"$U-" level of compilation.

Fape 106

Alssem
C{omp
Diebug
E<dit

ex{ecute
Fiiler
L{ink
R{un

(doun-arrow?
(up—-arrow)
(right-arrow)
{ left-arrow?
{space)
(back-space?
{tab)
{return?

ll(" H’ n o un_n
Il}ll H’ll II+H

ll::)l

Afd just:

APPENDIX A
COMMAND SUMMARIES

el Outer Level

A2 Screen—{Oriented Editor
A.d Line-Oriented Editor
. 4 File Handler

A5 Pascal Compiler

A b Debugger

Appendix Al futer Level

Invokes the system Assembler.

Invokes the system Compiler (Pascal or Basic).

Invokes the Debugger.

Invokes the system Editor (Screen-Oriented Lditor or

Yet Another Line-Oriented Editor).

Executes the code file.

Invokes the File Handler.

Invokes the Linker.

Executes the code file associated with the current work £ile.
If none exists, the Compiler is automatically called. followed
by the Linker, if necessary, before execution.

Appendix A. 2 SCREEN-ORIENTED EDITOR
moves (repeat-factor) lines doun
" " lines up
spaces right
spates left
spaces in direction
spaces left
moves (repeat-factor? tab positions in direction
moves to the beginning of line (repeat-factor? lines in
direction.

1" "
n 3]
o H

n »

change direction to backward

thange direction to forward

moves to the beginning of what was just found/rveplaced/
inserted/exchanged

Ad justs the indentation of the line that the cursor is on. Use
the arrow keys to move.
by same amount of adjustment as current line.
valid.

Moving up (down) adjusts line above (below)
Repeat factors are

Page 107

C{opy: Copies what was last inserted/deleted/zapped into the file at the
position of the cursor.

Melete: Treats the starting position of the cursor as the anchor. Use any
moving commands to move the cursor. <(etx) deletes everything
between the cursor and the anchor.

Fiind: Operates in L{iteral or T(oken mode. Finds the (targ? string. RKepest

factors are valid, direction is applied. "5" = use same string as

hefure.

[{nsert: Inserts text. Can use (backspace) and (del’ to regect part of your
insertion.

Jlump: Jumps to the beginning, end or previocusly set marker.
Miargin: Adjusts anything between two blank lines to the margins which have
heen set. Command characters protect text from being margined.

Invalidetes the copy huffer.

Plage: TMoves the cursor one page in direction. Repeat factors are valid,
direction 1s applied.

Qluit: Leaves the editor. You may Wpdate, EXxit, Write., or K)eturn.

R{eplace. OUperates in L{iteral or Tt(oken mode. Replaces the (targ) string
with the (subs) string. Vierify option asks you to verify before
it replaces. "S" option uses the Same string as before. Repeat

factors replace the target several times. Direction is valid.

G¢el: Gets Mlarkers by assigning a string name to them. OSets E(nvironsent
for Aluto-indent, F{illing. margins, T{(oken. and C{ommand characters.

Vlerify: Redisplaus the screen with the cursor centered.
eX{change: Exchanges the current text for the text tuped while in this mode.
Lach line must be done separately. <(back-space} causes the
ariginal character to re-appear.
Z¢ap: Treats the starting position of the last thing found/replaced/inserted
as an anchor and deletes everytning between the anchor and the current

cursor position.

(repeat-factor) is any number tuyped before a command. Typing a / is the
infinite noumber.

Appendix A.3 YALOE
» - an argument m - macTo nmbher
N Advance the cursor to the beginning of the n th line from the current

Page 108

B: Go to the Beginning of the file,

n: Change by deleting n characters and inserting the Fol]omlng text.
Terminate text with (esc).

ni) Delete n characters.

k: Erase the screen,

nF: Find the n th occurrence from the current cursor position of the
following string. Terminate target string with {esc).

nb: Get - ditto -

H: - invalid -
I: Insert the following text. Terminate text with (esc).

mk: Jump cursor n characters.

nK: Kill n lines of text. If current cursor position is not ot the start
of the line, the first part of the line remains.

nk.: List n lines of text.

mi; Define macro number m.

nhm: Perform macro number m,» n times.

n(: On. off toggle. If on, n lines of text will be displaued above and
below the cursor each time the cursor is moved. If the cursor is in
the middle of a line then the line will be split into two parts.
The default is whatever fills the screen. Type 0 to turn off.

B - invalid -
Q: Quit this session, followed hy:
U: (pdate Write out a new SYSTER. URK.TEXT
E: {scape Escape from session
R: {eturn Return to editor
R: Read this file into buffer (insert at cursor);
‘R’ must be followed by (file name’ (esc);
WARMINEG: If the file will not fit into the buffer, the content
of the buffer becomes undefined!

nS; Put the next n lines of text from the cursor position into the Save
Buffer.,

T: - invalid -

u: Insert (Unsave) the contents of the Save Buffer into the text at
the cursor; does not destroy the Save Buffer.

Y Verify: display the current line

U Write this file (from start of buffer);
‘W must be followed by (file name) {esc)

nX: Delete n lines of text: and insert the following text; terminate
with (esc)

Y: -~ invalid -

Z: -~ invalid -

Appendix A.4 File Handler

Bad-hilks Scans the disk and detects bad blocks, listing the number of

each.

Clhange Changes file or volume name.

Di{ate Lists current system date and enables user to change date;

position.

format is dd-mmm—yy.

Page 109

Edxt-dir

GLlet

K{runch

Licir

Fi{ake

N{ew

Pirefix

Qtuit

Riem

Slave

Tiyans

Y{oly

Wihat

X{amine

I{ero

l.Lists the directory in more detail than the L{dir command.
Loads the designated file into the work file.

Moves the files on the specified volume so that unused blocks
are combined at the end of the diski: disk files only.

Liste a disk directory, or subset of one., to the volume and
file specified; default is CONGOLE:).

Creates a directory entry with the specified filename.
Clears the work file.

Changes the current default volume to the volume specified.
Returns control to the Outer Level of commands.

Removes file entries from the directory.

Saves the work file under the specified file name.

Copies (transfers) the specified file to the specified
destination volume; directories are not changed avtomatically.

Lists the volimes currently on-line along with their
correspontding device numbers.

Identifies the file name and state (saved or not) of the work
file.

Attempts to recover bad blocks physically; a bad-block scan
should be done first.

Reformats the specified volume and makes the old directory
irretrievable.

Appendix ALD Pascal Compiler

Causes the Compiler to insert breakpoint instructions into
the code File during compilation so that the Debugger can be
used more effectively. Default is “-’, no breaskpoint.

Affects the boolean variable GOTOOK to allow the use of the
Pascal GOTD statement in the program. Default is ', no
GOT0.

bhen followed by & ‘+°, causes the Compiler to generate code
after any [/0 statement to check for succeseful completion of
1/0. This is the default.

When followed by & ‘-, inhibits I/0 checking.

Page 110

When followed by a file neme, includes another source file
into the compilation.

L.: Cavses the Compiler to generate a listing of the sowrce
praogram on a specified file. If a ‘+7, the default File is
KSYSTEM.LIST.TEXT. Default if ‘-/, no listing.

Q: "Quiet compile" option used to suppress output to the CONSOLE
listing procedure names and line numbers during compilation,
Default is set to the current value of SYSCORA. HISCINFO. SLOW-
TERHM.

R: Affects the value of the boolean variable RANGECHECK to perform
checking on array subscripts and assignments to variables of
subrange types. Default is ’+/, code for checking is inserted.

8: Causes the Compiler to operate in swapping mode so that only
one of the two main parts of the Compiler (declarations proces-
sor or statement handler) is in main memory at one time;
freeing about 2500 words for suymbol table storage. Default is
45 1o swapping.

t: Affects the boolean variable SYSCOMP to determine if the
compilation is of a user program or a system program. Default
is ‘+‘, user program.

When followed by a file name, U: names the library file.

Appendix A.6 Debugger
EXECUTE OPTIONS

E{ranl Executes a program one statement at a time, waiting for input
from user between stops.

R{esume Runs program normally until a BREAK or breakpoint is encountered
or a non-fatal runtime error occurs.

Walk Runs a program one statement at a time at an adjustable rate.
EXAMIME FODE OPTIONS

“{or Changes the direction of link traversal to go toward the
ctallees, down the call chain.

o ‘LY Changes the direction of link traversal to go toward the
callers, up the call chain.

{(esc) Returns control to the Outer Level of commands.
(CR> (Clears the line with the ‘%’ and moves down one line.

Page 111

CCTRL DY
COERL--UD

links

B{reakparnt

C{rawl

Diata
E{raue

Hieap

L{ink

Miove

R {evayne

Sitack
Uipdate

Wialk

Moves the ‘¥’ down one line.
Moves the ‘¥ up one line.

Indicates how many links to move up or down the dynamic or
static chain: enter a number 0-9.

Used to S{et or C{lear a breakpoint.

Resumes running the program in crawl mode at the point the
Debugger was invoked.

Used to examine the DATA and parameter segments of & procedure.
Clars the mewory display buffer on the screen.

Displays the portion of memory specified by the octal address
and lenuyth.

Toggles the default link from dynamic to static, and vice-versae.

Finds the specified procedure and makes 1t the current pro-
cedure.

Resumes normal execution of the program at the point the
Debugoer waes invoked.

Examines the stack area belonging to the specified procedure.
Refreshes the memory cisplay buffer.

Resumes execution of the program in walk mode at the point where
the Debugger was invoked.

Fage 112

APPENDIX B
TABLES

Runtime Ervors

Syntax Errors

1/0 Results

Unit Mumbers

P-Machine Opcodes
Assemb ler Syntax Errorg
ASCII

= =

b

x =

t

DWW wm
NN A D 3 M) e

Appendix B.1 RUNTIME ERRORSG

Version 3
0 System error FATAL
1 Invalid index, wvalue out of range (XINUNDX)
2 Mo segment, bad code €ile (XNOPROC)
3 Procedure not present at exit time (XNOEXIT)
4 Stack overflow (X5TKOVR)
5 Integer overflow (XINTOUR)
& Divide by zero (XDIVZER)
7 Invalid memory reference (bus timed out) (XBADMEID
8 User Break (XUBREAK)
9 System 1/0 error (XSYIOER) FATAL
10 User /0 error (XUIOERR)
11 Unimp lemented instruction (XNOTLMP)
12 Floating Point math error (XFPIERR)
13 String too long (X52LUNG)
14 Halt, Breakpoint {(without debugger in core) (XHLTBPT)
15 Bad Block

All fatal errors either cause the system to rebootstrap, or if the error was
totally lethal to the system. the user will have to reboot. All errors cause
the system to re-initialize itself (call system procedure IMITIALIZE).

Appendix B.Z SYNTAX ERRORS

Version 3

Page 113

Error in simple type
Identifier expected

3. ‘PROGRAMY expected

4. /)’ expected

5: /.7 expected

. Illegal symbol

7: Error in parameter list
a4 ‘OF’ expected

9. ‘{’ expected
10. Error in type
13: ‘I’ expected
12: ‘1 expected
13: END’ expected
4. 75’ expected
15: Integer expected
14: ‘=’ expected
i7: BEGIN’ expected
i18: Error in declaration part
19: Error in (field-list)
20: ‘.’ expected
21, ‘¥’ expected
22: ‘Interface’ expected
23: ‘Implementation’ expected
24: ‘Unit’ expected

B -

50: Error in constant

51 ‘=" expected

52: ‘THEN’ expected

53: ‘UNTIL’ expected

54 ‘DO’ expected

55: ‘T0’ or ‘DOUWNTOY expected in for statement
546 71F’ expected

57: ‘FILE’ expected

54: Error in (factor) (bad expression)

%9 Error in variable

101: Identifier declared twice

102: Low bound exceeds high bound

103: Identifier is not of the appropriate class
104: Undeclared identifier

105: Sign not allowed

1048: Number expected

107: Incompatible subrange types

108: File not allowed here

109: Type must not be real

110: (tagfield) type must be scalar or subrange
111: Incompatible with (tagfield) part

112: Index type must not be real

113: Index type must be a scalar or a subrange
114: Base type must not be real

115: Base type must be a scalar or a subrange
1146: Error in type of standard procedure parameter
117 Unsatisfied forward reference

Page 114

118:
119
120:
121
122:
123:
124
125:
124;
127:
128:
129:
130
131:
132:
133:
134
135:
136:
137:
138:
139
140:
141
142
143:
144:
145:
144:
147
148:
149
150:

151
152:
153
154:
155:
154:;
157
158:
159
160:
141:
162:
163:
164:
145:
164;
167
164
149:
170:

Forward reference type identifier in variable declaration
Re-specified params not OK for a forward declared procedure
Function result type must be scalar. subrange or pointer
File value parameter not allowed

A forware declared function’s result type can’t be re-specified
Missing result type in function declaration

F-format for reals only

Error in type of standard procedure parameter

Number of parameters does not agree with declaration
Iliegal parameter substitution

Result type does not agree with declaration

Type conflict of operands

Expression is not of set type

Tests on equality allowed only

strict inclusion not allowed

File comparison not allowed

Illegal tupe of operand(s)

Type of operand must be boolean

Set element type must be scalar or subrange

Set element types must be compatible

Type of variable is not array

Index type is not compatible with the declaration

Type of variable is not record

Type of variable must be file or pointer

I1legal parameter solution

Illegal type of loop control variable

Illegal tupe of expression

Tupe conflict

Assignment of files not allowed

Label type incompatible with selecting expression

Subrange bounds must be scalar

Index type must be integer
Assignment to standard function is not allowed

Assignment to formal function is not allowed
Mo such field in this record

Tuype error in read

Actual parameter must be a variable

Control variable cannot be formal or non-local
Multidefined case label

Too many cases in case statement

Mo such variant in this record

Real or string tagfields not allowed

Previous declaration was not forward

Again forward declared

Parameter size must be constant

Missing variant in declaration

Substitution of standard proc/func not ollowed
Multidefined label

Multideclared label

Undec lared label

Undefined label

Error in base set

Value parameter expected

Page 115

300
301,
302
304
304:
2981
299

GO0
401
402

AR

404
405
406

Standard file wss re-declared

Undec lared external file

Pascal function or procedure expected

Nested units not allowed

External declaration not allowed at this nesting level
External declaration not allowed in interface section
Segment declaration not allowed in unit

Labels not allowed in interface section

Attempt to open library unsuccessful

Unit not declared in previous uses declaration

‘Uses’ not allowed at this nesting level

Unit not in library

Mo private files

‘Uses’ must be in interface sectiom

Mot encugh room for this operation

Comment must appear at top of program

Unit not importable

Error in real number - digit expected
String constant must not exceed source line
Integer constant exceeds range

8 or 9 iv octal number

Too many scopes of nested identifiers

Too many nested procedures or functions

Too many Forward references of procedure entries
Procedure too long

Too many long constants in this procedure
Too many external references

Too many externals

Too many local files

Expression too complicated

Division by zero

Mo case provided for this value

Index expression out of hounds

Value to be assigned is cut of bounds
Element expression out of range
Implementation restriction
Implementation restriction

I{llegal character in text

Unexpected end of input

Error in writing code file, not enough room
Error in reading include File

Frror in writing list file, not enough room
Call not allowed in ceparate procedure
Include file not legal

nige 116

Appendix B.3 170 RESULTS

Version 3
0 Ho error
1 Bad Block, Parity error (CRC)
2 Bad Unit Mumer
3 Bad NMode, Yllegal operation
4 Undefined hardware error
5 Lost unit, Unit is no longer on-line
& Lost file, File is no longer in directory
7 Bad Title. Illegal file name
8 Mo room, insufficient space
9 Ho unit, Mo such volume on line
10 Mo file. Mo such file on volume
13 Duplicate file
i2 ot closed, attempt to open an open file
13 Mot open, attempt to access a closed file
14 Bad format, error in reading real or integer
15 Ring huffer overflow
Appendix B.4 UMIT MUMBERS
Versimm 3

MUMRER VOLUME MANE

0 {empty’

1 CONSOLE

2 SYSTERM

3 GRAPHIC

1 floppy0

5 floppuyl

& PRINTER

7 available - (unimplemented)

8 REMOTE <(reserved for future use)

4 blockl

10 block2

11 block3

1z block4

Devices 9 ~ 12 are block-structures devices, in most cases (RK-05).

Page 117

Appendix B.5 P-MACHINE OP-CODES

Version 3
o
Instruction
Fnemenic {‘ode Parameterc Description
Constant One Word Loads
SLbC 0..31 Short Leoad Word Constant (Value ¢-31).,

Pushes the opcode, with high byte
zero, onto stack.

1.DEN 152 Load Constant Nil. Pushes nil onto
stack.

L.DCB 128 L+ Load Constant Byte. Puches UB, with
high byte zero, onto stack.

LDCI 129 W Load Constant HWord. Puches W onto
stack.

) 130 B Load Constant Address. Pushes the word

Address of the constant with offset B
in constant word block.

Local One Word Loads and Store

SLDil..16 32. .47 Short Load Local Word., GSLDLX fetches
the word with offset X in HP activation
record and pushes it.

LDL 135 B Load Local Word. Fetches the word with
offset B in MP activetion record and
pushes it.

LLA 132 B Load Local Address. Fetches address of

the word with offset B in #P activation
record and pushes it.

STL 1464 B Store Local. Stores Tos into word with
offset B in MP activation record.
Global One Word Loads and Store
GLD01..16 48, .43 Short Load Global lWord., GSLDBX fetches

Page 118

1L.DG 133 B
LAD 134 B
aRO 165 B

Intermediate One~Word Loads and Store

LoD 137 DB, B
LDA 136 DB.B
681R 166 D8.B

Indirect One-Word Loads and Store

s5T0 1946

Extended One-Word Loads and Store

LDE 154 ug. B
LAE 155 us.B
oTE 217 uB.B

the word with offset X in base
activation record and pushes it.

Load Global Word. Fetches the word
with offset B in base activation
record and pushes it.

Load Global Address. Pushes the word
addres of the word with offset B in
hase activation record.

Store Global Word. Stores Tos into the
word with offset B in base activation
record.

Load Intermediate Word. DB indicates

the number of static links to traverse
to find the activation record to use.

B is the offset within the activation

record.

Load Intermediate Address.

Store Intermediate Word.

Store Indirect. Tos ie stored into the
word pointed to by Tos-1.

Load Word Extended. UB is segment
number. B is the offset within the
segment.

Load Address Extended.

Store Word Extended.

Multiple Word Loads and Stores (Sets and Reals)

L.DG 131 B, UB

LD 208 ug

Load Multiple Word Constant. B is the
offset within the constant word block,
and UB is the number of words to load.
Push the block onto the stack.

Load Multiple Words. Tos is a pointer

Page 119

Byte Arrays

LDB

518

142

167

200

to the beginning of & block of U4 words.
push the block onto the stock.

Store Multiple Words. Tos ie a block of
UB words, Tos-1 is a word pointer to

a similar block. Transfer the hlock
from the stack to the destination

block.

l.oad Byte. Push the buyte (after
zeroing high byte) pointed to by byle
poiuter Tos.

Store Byte. Store byte Tos into the
location specified by Bute Pointer
Tous-1.

Record and Array Indexing and Assignmant

I

SINDO. .7

IND

IHC

1XA

Ixp

197

120. . 127

230

231

216

R

UB1, LB

MNove Words. Tos is a source pointer
to a block of B words, Tos-1 is a
destination pointer to a similar block.
Transfer the block from the source to
the destination.

Short Index and Load Word, GINDX
indexes the word pointer Tos by X
words, and pushes the wod pointed to
by the result.

Static Index and Load Word. Indexe
the word pointer Tos by B words, and
pushes the word pointed to.

Increment Field Pointer. The word
pointer Tos is indexed by B words and
the resultant pointer is pushed.

Index Array. Tos is an integer index,
Tos-1 is the array base word pointer.
and B is the size (in words) of an
array element. A word pointer to the
indexed element is pushed.

Index Packed Array. Tos is an integer
index., Tos—1 is the array base word
pointer. UB{1) is the number of
element-per-word, and UB{Z) 1s the
tield—width (in bits). Compubte and
push a packed field pointer.

p-»lge 120

Lop

oip

Logicals
LAND
LOR

LNOT

LEUSW

GELISY

Integers

ABI

DUPL

bVl

202

161

1490

220

180

181

224

225

162

163

140

226

141

Load A Packed Field. Push the field
described by the packed field pointer
Tos.

Store Into A Packed Field., Tos is the
data, Tos-1 is a packd field pointer.
Store Tos into the field described

by Tos-1.

Logical And. And Tos into Tos~1,
Logical Or. Or Tos into Tos-i.

Logical Hot. Take one’s complement
of Tos.

Compare Unsigned Word (=. Compare
unsigned word of Tos-1 to unsigned
word of Tos and push true or false.

Compare Unsigned Word)>=. Compare
unsigned word of Tos-1 to unsigned
word of Tos and push true or false.

Absolute Value of Integer. Take
absoiute value of integer Tos. Result
is undefined if Tos is initially
~32768.

Megate Integer. Take the two’s co
comp lement of Tos.

Add Integers., Add Tos and Tos-1.

Subtract Integers., Subtract Tos from
Tos~1.

Multiply Integers. HMultiply Tos and
Tos-1. This instruction may cause
overflow if result if larger than

16 bits.

Copy Integer. Duplicate one word
on Tos.

Divide Integers. Divide Tos-1 by
Tos and push guotient.

Page 121

CHK

EQUI

NEQT

LEQI

GEQI

143

203

176

177

178

179

Modulo Integers. Divide Tus-l by fos
and push the remainder.

Check Against Subrange Bounds. Insure
that Tos-1 (= Tos-2 (= Tus, leaving
Tos-2 on the stack. If conditions are
not satisfied 2 run-time error occurs.

Compare Integer =. {Compare Tos-1 to
to Tos and push true or false.

Compare Integer (). Compare Tos-1 to
to Tos and push true or false.

Compare Integer (=. Compare Tos-1 to
to Tos and push true or false.

Compare Integer »=. Compare Tos-1 to
to Tos and push true or false.

Reals (All Over/Underflows Cause a Run-Time Error)

FLT

TNC

RMD

ABR -

ADR

HGR

S8R

HPR

Dus2

DUR

EGUREAL

204

190

191

227

192

228

193

194

198

195

205

Float Top-of-Stack. The integer Tos
is converted to a floating point
number.

Truncate Real. The real Toy is
truncated and converted to an integer.

Round Real. The real Tos ic rounded,
then truncated and converted to an

integer.

fAbsolute Value of Real. Take the
absolute value of the resl Tou.

Add Reals. Add Tos ond Tos-l.
Megate Real. MNegate the Real Tos.

Subtract Reals. Subtract Tos from
Tos—1.

Multipluy Reals. Hultiply Tos and
Tos—1.

Copu Real, Duplicate two words on
Tos.

Divide Reals. Divide Tos-1 by Tos.

Compare Real =. Compare Tos-1 to Tos

bFage 122

and push true or false.

LEQREAL. 206 Compare Real ¢(=. Compare Tos-1 to Jos
and push true or false.

GEQREAL 207 Compare Real »=. Compare Tos-1 to Yoo
and push true or false.

Hets

A\ 199 UB Adjust Set. The set Tos is forced to
occupy UB words, either by expaension
{(putting zeroes "between" Toc and
Tos-1) or compression (chopping of
high words of set), and its length
word is discarded.

oRE 188 Build Subrange Set. The integers Tos
and Tos-1 are checked to insure that
0(=Tos(=4079 and 0(=Tos-1{(=4079, a
run-time error occuring if wot. The
set [Tos-1..Tosl is pushed. (The set
[1 is pushed if Tos—~1) Tos.)

Thid 218 Set Membership. See if integer Tos-1
is in set Tos, pushing true or false.

UMY 219 dJet Union. The union of sets Tos and
Tos~-1 is pushed. (Tos or Tos~1.)

INT 220 et Intersection. The intersection of
sets Tos and Tos-1 is pushed. (Tos
and Tos-1.)

)

DIF 221 Set Difference. The difference of sets
Tos~1 and Tos is pushed. (Tos-1 and
not Tos.)

EQUPUR 182 Set Compare =,

LEGPHR 183 Set Compare (= (Subset of).

GEOPUR 184 Set Compare)= (Superset of).

Buyte Arrays

EQUBYT 185 B Byte Array Compare =.

LEGBYT 184 B Byte Array Compare (=,

GEQBYT 187 B Byte Array Compare)=,

Page 123

Jumps
L
Fap

EFJ

NFJ

bl

Fuph

XJp

138

212

210

211

139

213

214

SB

S8

5B

tUnconditional Jump.
False Jump. dJump is Tos is false.

Equal False Jump. Jump if integer
Tos () Tos-—-1.

Not Equal False Jump. Jump if integer
Tos = Tos-1.

Unconditional Long Jump. Jusp
unconditionally to location with offuet
W from current location.

False Long Jump. Jump to location with
offset W from current location if Tos
is false.

Case Jump. The first word with offset
B in constant word block., Wi, is word-
aligned and is the minimum index of
the table. The next word up, U2, is
the maximum index. The cese table is
the next W2-UWl words.

If Tos, the actual index, is in the
range of Wi..W2 then jump to location
with offset W3 from current location.
Where W3 is the contents of the word
pointed by Tos in the case table.

Procedure and Function Calls and Returns

Pl

PG

CPI

144

145

146

t|

D8, UB

Call Local Procedure. Cal procedure
UB, which is an immediate child of the
currently executing procedure and in
the same segment. Static link of NMSCY
is set to old MP.

Call Global Procedure. Cal procedure
UB, which is at lex level 1 and in the
same segment. The static link of the
MSCY is set to base.

Call Intermediate Procedure. Call
procedure UB, which is at lex level DB
less than the currently executing
procedure and in the same segment. Use
that activation record’s static link

as the static link of the wew MSCU.

Page 124

Xl

CxG

X1

CPrF

RPU

koL

System Control

BIGNAL

WALT

LPR

PR

147

148

149

151

150

153

209

ugl,uB2

UB1.uB2

upi, DB, UB2

DB

Call Local External Procedure. Call
procedure UB{(2) which is an immediate
child of the currently executing
procedure and in the segment UB{(1).

Call Global External Procedure. Call
procedure UB{(2) which is at lex level
1 and in the segment (1),

Call Intermediate External Procedure.
Call procedure UB(2) which is at lex
level DB less than the currently
executing procedure, and in the segment
uB(l).

Call Formal Procedure. Tos contains
segment number and procedure number and
Tos-1 contains static link for the
called procedure.

Return From User Procedure. Static 1
link if discarded, MP is reset from
MEDYM, IPC is also reset from NSIPC.

If segment number is not zero. segment
pointer is set from segment dictionary.
Stack pointer is decremented hy B.

Load Static Link Onto Stack. DB
indicates the number of static link
to traverse to get the static link to
load.

Signal. Tos is a semaphore address
signal on this semaphore.

Wait on Semaphore. Tos is & semaphore
address wait on this semaphore.

Load Processor Register. Tos is a
Reg # (If it is positive it is one of
the TIB registers. If not -1 is
current task pointer, -2 is segment
dic. pointer and -3 is ready queue
pointer.) Load contents of this
register on top of stack.

Store Processor Register. Tos~1 is a
register number {same definition as
LPR). Store Tos in this register.

Page 125

Debugger
BrY

RBP

Miscellaneous
NOp

SHAP

158

159

Break Point.

Return From Breakpoint.

Mo Operation.

Swap Top-of-Stack with Mext
Top-of-Stack.

to

Page 1256

This section lists all the general errors found in the ERRUKS file, specific
machine errors are found in the sections below dealing with machine specifics.

az:

37

39
40:
4%
42
43:
44;

44
47

MBNOUSWNe

Appendix B.6 ASSEMBLER SYMTAX ERRORS

Version 3

Undefined label

Operand out of range

flust have procedure name

Number of parameters expected
Extra garbage on line

Input line over 80 characters

Mot enough ifs

Must be declared in ASECT before use
Identifier previously declared
Improper format

EQU expected

Must EQU before use if not to a label
Macro identifier expected

Word addressed machine

Backward ORG wot allowed
Identifier expected

Constant expected

Invalid structure

Extra speciszl symbol

Branch too far

Variable not PC relsative

Illegal macro parameter index

Mot enough macro parameters
Operand not absolute

Illegal use of special symbols
Il1l-formed expression

Mot enough operands

Cannot handle this relative
Constant overflow

Illegal decimal constant

Illegal octal constant

Illegal binary constant

Invalid key word

Unexpected end of input - after macro
Include files must not be nested
Unexpected end of input

Bad place for an include file
Only labels & comments may occupy column one
Expected local label

Local label stack overflow

String constant must be on 1 line
String constant exceeds 80 chars
Illegal vse of macro parameter

No local labels in ASECT

Expected key word

String expected

Bad block. parity error (crc)

Fage 127

49

5%
52:
53:

55:
564
57
58:
59:
60

Bad unit number

Bad mode, illegal operation

Undefined hardware error

Lost unit, no longer on—line

Lost file. no longer in directory

Bad title, illegal file name

Mo room: insufficient space

Mo unit, no such volumn on-line

No file, no such file on volumn
Duplicate file

No closed, attempt to open an open file
Mo open, attempt to access a closed file
Bad format, error in reading real or integer

Page 128

NMOAONSTUMBWOR =O

B D) b e i e fad ek ek e et e
O LNV D W D

22
23
24
25
26
27
28
29
30
31

Appendix B.7

000
001
002
003
004
005
004
007
010
011
012
013
014
015
(Y]
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
307

00
01
02
03
04
05
06
07
08
09
0A
0B
oC

OE
oF
10
11
12
13
14
15
16
17
18
19
1A
iB
1C
1D
1E
iF

MU,
SOH
5TX
ETX
EOT
ENG
ACK
BEL
BS
HT
LF
YT
FF
CR
50
s1
DLE
DC1
DC2
De3
pC4
NAK
SYN
ETB
CAN
EN
SuB
ESC
FS
65
RS

us

American Standard Code for Information Interchange

32
33
34
a5
36
a7
48
49
40
a1
42
a3
44
a5
46
47
48
49
50
51
52
53
54
55
54
57
58
59
60
41
42
63

040
040
042
043
Q44
045
0416
047
050
051
052
053
054
055
056
057
040
D61
062
063
064
064
086
067
070
071
072
073
074
075
076
077

20
231
22
23
24
25
26
27
28
29
2A
28

2D
2E
2F
30
31
32
33
34
35
36
37

39
3A

3C
3D

Version 3

5p
!

WA e N B

-

VN U WO - O N

R

Page 129

64
65
66
67
78
&9
70
71
72
73
79
75
76
77
78
79
80
81
82
83
84
85
86
a7
89
89
0
71
92
73
?4
95

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

40
a1
42
43
44
45
44
47
43
49
4
48
4
4p
&
4
50
51
52
53
54
55
56
57
58
59
54
58
5
5D
SE
SF

P /AN A X ETDCOT -1 UADSDDUWTIZTIIrXNoL~mIaogmmooweds

i

76

97

74

99
100
101
102
103
104
105
1046
107
108
109
110
111
112
113
114
115
114
117
118
119
120
121
122
123
124
125
124
127

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
151
162
163
144
165
166
167
170
171
172
173
174
175
176
177

60
64
62
63
64
b5
b6
&7
48
59
oA
6B
&6C
6D
46E
&oF
70
71
72
73
74
75
76
77
78
79
7h
78
7C
7D
7E
7F

Woee M@ X B C T ort T 21T D

DEL

Page 130

APPENDIX C

UCSD PASCAL SYNTAX DIAGRANMS

Appendix C UCSD Pascal Syntax Diagrams

Page 131

UCSD PASCAL SYMTAX DIAGRAMS

1DENTIFIER VARIABLE
—T/armbh*" dentitier l o}
—> O, (D>
.
O
FACTOR A
UNSIGNED NUMBER
s e . -m*w—-’l unsigned (:onsmn—\jrf »
——. #' variable rl ' !
—--—-»-»—<| unsigned nteger —p JS— R
|| “function” identitier
Gnsignen
ngyer L
UNSIGNED CONSTANT
R S NOT }—-’I factor 1
mram » m.v—l Qe e e s e —p J
mm—— 0 O
- unsigred number P
et I et (-)»opression
\ I A NG e
r—— charamer ST
CONSTANT TERM

P
—
L

‘constant” ld(’f‘ll'lel % e

S ‘ chdrduu ‘_]-’@—--__...

EEIIII

SIMPLE TYPE SIMPLE EXPRESSION
»[e} —» [—@—#
»- 1 term
—»®~E——J—*®~> Lot “‘Jé é *
L"‘"'W;‘—”"‘ T EXPRESSION
TYPE simple (-:xnmssmn—1 >
O o¥e¥o
5

PARAMETER LIST

VAR |
PERTD Co e
o el — — — [e - —

- O e T
b e p(RECORD (eno

FIELD LIST

CASE [© '«yper-—.dm@_.@]

Y.

f - —-Ye- (¢

constant

»O (-

Fane 132

STATEMENT

unsigned integer

UCSD PASCAL SYNTAX DIAGRANG

BLOCK
[+, variabie expression Y » — m Iunsngned integes },
function” identifier] e ()
- “procedure” identifier 4———@1
- (CONST)—5—{ tentitier |-0{ -)
> 1 :
D))
statement END
) »
TYPE y identifier ‘
O >
’®§| expression MTHEN)—>[statement ELSE M
—p{ VAR)—A—ﬂ identifier ’—‘ o
CASE expression OF
- (CasE - croression | (0D —()—
e——e oo _Je—()e
——-~————~-»——-—b(WH | LQ—){ expression H]
PROCEDUR identifier }--—b! parameter lnstl—————-—————
—%UNCTIOM i(lenli(ieH parameter list l}@-ﬂ type »dennherl—
FOR “variable’ identifie Lw{ BEGIN statement END
COMPILATION
- — —_
b p(WiTH statement » PROGRAM |vdemiﬁen|—>((}TbEienl.«.eﬂ—Tb())—b@———'
i |
b(GOTO H unsigned in(ege'rJl e O R |
>
>
DASHED LINES (-~} ARE NOT INCLUDED

SHADED AREAS REPRESENT UCSD EXTENSIONS

Page 133

APPENDIX D

GLOGEARY

Appendix Glossary

ARRAY 2
An ordered arrangement of characters: a PAUKED ABRAY

BACKUP FILE
A copy of a file crested for protection in case the
destroyed unintentionally. .

BAD BLOCK ,
A defective block on a storage medium. such as
a hardware error when attempting to read or write

BASE SEGMENT it
The portion of a segmented program that is always

BLOCK B
A group of characters or bytes transmitted as & 199
of 512 bytes.

BOWL.EAN VARIABLE e
A variable which, when evaluated, pPOdUCEﬁ'Qiﬁﬁgf
result. v

BOOTSTRAP
A routine whose first instructions are sufficiest
of the routine into memory from an input device,
a complex system of programs. :

BREAKPOINT :
A program peint indicated by a breakpoint instrue
inserted by the Compiler to interrupt the program
can be checked before continuing to completien:. en.

Page 135

BUFFER
A storage ares used to hold information temporarily whew it is being
transferred between two devices or between a device and memcriy: often
a specially designated asrea of memory.

CODE FILE
A file containing code to be executed: has the suffix of ".CODE".

COMAND or COMRAND NaTi:
A word. mnewonic or character, by virtue of its syntax in & line of
input, causes a predefined operation to be performed.

COMHAND STRING
A line of input that includes. generally, a command, one or more
file specifications, and optional gqualifiers.

COMPILE
The production of binary code (machine-readable) from suymbolic
instructions written in a high-level language.

COMPILER
Translates high-level language (Pascal or Basci) into machine code.

CONF TGURATION
A particular selection of hardware devices or software routines or
programs that function togetier.

COMLOLE
The terminal that acte as the primary interface between the computer
operator/user and the system; used to initiaste and direct overall
system operation.

COMSTANT
fA value that remains the same throughout a distinct operation; as
compared to a variable,

COWTROL CHARACTER 7
Controls an action rather that passing on data to a program.

(REATE
To open, write data to, and close a file for the first time.

DATHA FILE
A file containing dats to be manipulated by a program.

DERUGEING
Searching for, and eliminating. sources of error (bugs) in a program.

DEFAR.T
The value of an argument. operand or field assumed by a program if a
specific assignment is not specified by the vser.

‘DEVICE
A hardware unit such as an 170 peripheral (e.g.. disk, video terminald;

Page 136

the physical unit es opposed to VOLUME, the logical unit.

DIRECTORY
A table that contains the names of. and pointers to, files on a mass-—
storage device.

DISAGSEMBLER
A program that translates object code back to source statements.

EXPRESSION
A combination of commands and operands that can be evaluated to a
distinct result.

FILE
A logical collection of data treated as o unit: may be work, code.
text, foto or data file.

FILE SPECIFICATION
A name that identifies uniguely a file maintained in any system:
must contain: at & minimum, the file name; may also contain the volume
number and name.

FUNCTION
A routine that returns a value.

HEXADECIHMAL
Whaole numbers in positional notation using 16 as a basse.

HIGH-LEVEL LAMCUAGE
A problem-oriented language rather that a machine-oriented one.

INITIALIZE
Setting all hardware and software controls to starting values at the
beginning of a new program.

INTERRUPT
The suspension of the normal programming routine to handle a sudden
request for service. After completion of interrupt service, the
program is resumed where it left off.

KEYROARD EMTRY DEVICE
A device with a keybord (e.g.. teletypewriter, video terminal) uvsed
by the system operator to control the system: CONSOLL.

LIBRARY
A collection of programs or subprograms contained as segments in
a library file; normally contains frequently needed routines that mey
be accessed by other programs.

LISTING
A hard copy generated by a line printer.

LITERAL
The explicit representation of character strings.

Page 137

LOAD
To store a program or dats in memory.

LOGICAL DEVICE HWARE
fAn alphanumeric name acsigned by the user to represent s phuysical
device; used sunonuymously with the physical device name/number in the
logical program.

MACHINE LANCUAGE
Instructions in binary code that can be operated on by the computer:
as compared with high-level languages that can be read and understood
by the veer.

MATM MEMORY
A set of storage locations coanected directly to the proceseor.

NEGTING
Routines enclosed within larger routines hut not necescerily a part
of the larger; a series of looping instructions mey be nested.

OBJECT CODE
Relocatahle machine-language code.

0BJ-CT PROGRAM
The source language program after it has been translated into machine
language, outpul of the Compiler.

Ok -1 IHE
bquipment and devices directly connected to, and controlled by, the
central processing unit.

OVERLAY SEGNENT
A segment of code trested as a unit that can overlay code already in
memory and be overlaild by other segments.

OVERLAY STRUCTURE
An overlay system consisting of a root cegment and, optionally. one
or more over lay segmente.

PALK
To compress dats in storage.

PRUCEDURE
A routine that dees not return a value.

QUAL TFIER
A parameter specified in a command string that modifies some other
parameter.

SOURCE LANGUAGE

A system of symbnls and syntax easily understood by people thet is
used to describe a procedure that o computer can execute.

Page 139

STACK
A block of successive memory locations accessible from one end on o
LIFO basis {last-in-first-out).

SUBSCRIPT
A numerically valued expression or expression element that is appended
to a variable name to uniquely identify elements of on arrasy.

SWAPPTHG
Copying areas of memory to mass storage and back in order to use the
memory for two or more purposes.

UTILITY
Any general-purpose program included in an operating sustem to perform
common functions.

VARIARLE
The suymbolic representation of a logical storage locebion that can
contain a value that changes during a discrete processing operation;
as compared to constant.

Page 139

3128 REDHILL AVENUE, BOX 2180
NEWPORT BEACH, CA 92663
(714) 557-3550, TWX 910-595-1139

PRINTED IN USA. .

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	OS_0000
	OS_0001
	OS_0002
	OS_0003
	OS_0004
	OS_0005
	OS_0006
	OS_0007
	OS_001
	OS_002
	OS_003
	OS_004
	OS_005
	OS_006
	OS_007
	OS_008
	OS_009
	OS_010
	OS_011
	OS_012
	OS_013
	OS_014
	OS_015
	OS_016
	OS_017
	OS_018
	OS_019
	OS_020
	OS_021
	OS_022
	OS_023
	OS_024
	OS_025
	OS_026
	OS_027
	OS_028
	OS_029
	OS_030
	OS_031
	OS_032
	OS_033
	OS_034
	OS_035
	OS_036
	OS_037
	OS_038
	OS_039
	OS_040
	OS_041
	OS_042
	OS_043
	OS_044
	OS_045
	OS_046
	OS_047
	OS_048
	OS_049
	OS_050
	OS_051
	OS_053
	OS_054
	OS_055
	OS_056
	OS_057
	OS_058
	OS_059
	OS_060
	OS_061
	OS_062
	OS_063
	OS_064
	OS_065
	OS_066
	OS_067
	OS_068
	OS_069
	OS_070
	OS_071
	OS_072
	OS_073
	OS_074
	OS_075
	OS_076
	OS_077
	OS_078
	OS_079
	OS_080
	OS_081
	OS_082
	OS_083
	OS_084
	OS_085
	OS_086
	OS_087
	OS_088
	OS_089
	OS_090
	OS_091
	OS_092
	OS_093
	OS_094
	OS_095
	OS_096
	OS_097
	OS_098
	OS_099
	OS_100
	OS_101
	OS_102
	OS_103
	OS_104
	OS_105
	OS_106
	OS_107
	OS_108
	OS_109
	OS_110
	OS_111
	OS_112
	OS_113
	OS_114
	OS_115
	OS_116
	OS_117
	OS_118
	OS_119
	OS_120
	OS_121
	OS_122
	OS_123
	OS_124
	OS_125
	OS_126
	OS_127
	OS_128
	OS_129
	OS_130
	OS_131
	OS_132
	OS_133
	OS_134
	OS_135
	OS_136
	OS_137
	OS_138
	OS_139
	xback

