
I Chapter4 

File Formats 

4 .1 DESCRIPTION 

This chapter outlines the formats of various files. 

( 

X/OPEN Portability Guide (5.1 85 / 06 / 25) Part II Page: 4.1 



( 

( 



( 

File Formats ACCT(4) 

NAME 

acct - per-process accounting file format 

SYNOPSIS 

#include < sys/acct.h> 

DESCRIPTION 

Files produced as a result of calling acct(2) have records in the form 
defined by <sys/acct.h>, whose contents include the following 
declarations and definitions. 

A typedef definition of the following type: 

comp_t; /* floating point 13-bit fraction, 3-bit exponent * / 

A structure acct with the following members: 

char ac_flag; / * Accounting flag * / 
char ac_stat; / * Exit status * / 
ushort ac_uid; /* Accounting user 10 */ 
ushort ac_gid; / * Accounting group 10 * / 
dev _t ac_tty; / * control typewriter * / 
time_t ac_btime; / * Beginning time * / 
comp_t ac_utime; / * acctng user time in clock ticks * / 
comp_t ac_stime; / * acctng system time in clock ticks * / 
comp_t ac_etime; / * acctng elapsed time in clock ticks * / 
comp_t ac_mem; / * memory usage in clicks * / 
comp_t ac_io; / * chars trnsfrd by read/write * / 
comp_t ac_rw; / * number of block reads / writes * / 
char ac_comm[8]; / * command name * / 

A definition of the following symbolic names: 

AFORK / * has executed fork, but no exec * / 
ASU /* used super-user privileges */ 
ACCTF / * record type: 00 = acct * / 

In ac_flag, the AFORK flag is turned on by each fork(2) and turned off by 
an exec(2). The ac_comm field is inherited from the parent process and 
is reset by any exec. Each time the system charges the process with a 
clock tick, it also adds to ac_mem the current process size, computed 
as follows: 

(data size) + (text size) / 
(number of in-store processes using text) 

SEE ALSO 

acct(2), exec(2), exit(2), fork(2) . 

X/OPEN Portability Guide (July 1985) Part II Page : ACCT(4) .1 



ACCT(4) File Formats 

APPLICATION USAGE 
The acmem value for a short-lived command gives little information 
about the actual size of the command, because ac_mem may be incre­
mented while a different command (eg . the shell) is being executed by 
the process. 

RELATIONSHIP TO SVID 
The SVID, in Appendix K_EXT 3.0, " Header Files", defines only the 
typedef, the structure members and the list of symbols. All the other 
information derives from the equivalent UNIX System V Release 2.0 
entry . 

Part II Page: ACCT(4).2 X/ OPEN Portability Guide (July 1985) 

( 

( 



( 

File Formats GROUP(4) 

NAME 
group - group file 

DESCRIPTION 

FILES 

Group contains for each group the following information: 

group name 
encrypted password 
numerical group ID 
comma-separated list of all users allowed in the group 

This is an ASCII file. The fields are separated by colons; each group is 
separated from the next by a new-line. If the password field is empty, no 
password is demanded. 

This file resides in directory fetc. Because of the encrypted passwords, 
it can and does have general read permission and can be used, for 
example, to map numerical group ID's to names. 

/ etc / group 

SEE ALSO 
crypt(3C) , passwd( 4). 

RELATIONSHIP TO SVID 
This group file is not part of the SVID. It is identical to the UNIX System 
V release 2.0 definition, except that the SVID reads: " " . field is null" in 
the third sentence of the second paragraph. 

X/ OPEN Portability Guide (July 1985) Part II Page : GROUP( 4) .1 



( 

( 



( 

( 

File Formats PASSWD( 4) 

NAME 

passwd - password file 
DESCRIPTION 

FILES 

The file l etc / passwd contains, for each user, the following information: 

1 name 
2 encrypted password (may be empty) 
3 numerical user ID 
4 numerical group ID (may be empty) 
5 reserved field 
6 initial working directory 
7 program to use as shell (may be empty) 

This is an ASCII file. Each field within each user's entry is separated 
from the next by a colon. Fields 2, 4 and 7 may be empty. However if 
they are not empty, they must be use for their stated purpose. Field 5 is 
a free field that is implementation specific. Fields beyond 7 are also free 
but may be standardized in the future. Each user's entry is separated 
from the next by a new-line. 

This file resides in directory fetc. It has general read permission and 
can be used, for example, to map numerical user IDs to names. 

Name is a character string that identifies a user. Its composit ion should 
follow the same rules as for file names. 

If present, the encrypted password consists of 13 characters chosen 
from a 64-character alphabet (., f, 0-9, A-Z, a-z), except when the pass­
word is empty, in which case the encrypted password is also empty. 
Password aging is effected for a particular user if their encrypted pass­
word in the password file is followed by a comma and a non-null string 
of characters from the above alphabet. 

By convention the last element in the path name of the initial working 
directory is typically name. 

I etc I passwd 
SEE ALSO 

crypt(3C). 
RELATIONSHIP TO SVID 

Identical to the SVID entry, in Appendix 2.9 " Passwd File Format", 
except that the SVID does not number the table , and uses the word 
"null" instead of "empty" when describing passwords in the DESCRIP­
TION. 

X/ OPEN Portability Guide (July 1985) Part II Page : PASSWD( 4) .1 



( 



( 

( 

File Formats UTMP(4) 

NAME 
utmp, wtmp - utmp and wtmp entry formats 

SYNOPSIS 
#include < sys/types.h> 
#include < utmp.h> 

DESCRIPTION 
These files , which hold user and accounting information, have the struc­
ture as defined by < utmp.h>. The header file declares the following 
symbolic names and structure members: 

UTMPJILE /* pathname of utmp file */ 
WTMP JILE / * path name of wtmp file * / 
ut_name 

The structure utmp contains the following members: 

char ut_user[8] ; /* User login name */ 
char uUd[4]; /* / etc / inittab id (usually line #) * / 
char uUine[12]; / * device name (console, Inxx) * / 
short uCpid; / * process id * / 
short uUype; / * type of entry • / 
struct / * The exit status of a process 

exiCstatus uUype; * marked as DEAD_PROCESS. * / 
time_t uUime; /* time entry was made */ 

The structure exit_status contains the following members: 

short e_termination; 
short e_exit; 

X/OPEN Portability Guide (July 1985) Part II Page: UTMP(4).1 



UTMP( 4) 

Definitions for uUype: 

EMPTY 
RUN_LVL 
BOOT_TIME 
OLD_TIME 
NEW_TIME 
INIT _PROCESS 
LOGIN_PROCESS 
USER_PROCESS 
DEAD_PROCESS 
ACCOUNTING 
UTMAXTYPE 

File Formats 

/* Process spawned by " init " */ 
/ * A "getty" process waiting for login * / 
/ * A user process * / 

/ * Largest legal value of uUype * / 
Special strings or formats used in the uUine field when accounting for 
something other than a process. No string for the uUine field can be 
more than 11 chars + a NULL character in length. 

RUNLVL_MSG 
BOOT_MSG 
OTIME_MSG 
NTIME_MSG 

SEE ALSO 
getut(3C). 

APPLICATION USAGE 
Chapter 1, Caveats, warns that the type of uCpid may change from 
short as declared above. This will not cause problems to most applica­
tions provided that they do not use a short explicitly to hold the value of 
uCpid; it is recommended that only int or longer variables are used for 
this purpose. No type-dependent problems will be caused if the field is 
accessed by name, as in the following example: 

Part II Page : UTMP(4) .2 X/OPEN Portability Guide (July 1985) 

( 

( 



( 

( 

File Formats 

#include < stdio.h > 
#include < sys / types.h> 
# include < utmp.h > 
mainO{ 

int pid; 
struct utmp *getutentO. *utp; 

while((utp = getutentO) != NULL){ 
pid = utp-> uCpid; 

UTMP( 4) 

printf( " Value of pid = %d \ n" . pid); 
printf( " Line %12s \ n" . utp-> uUne); 

Problems will only occur if the field is accessed by reference (i.e. its 
address is taken). 

SEE ALSO 
getut(3C). 

RELATIONSHIP TO SVID 
These accounting information files are not part of the SVID. They are 
functionally equivalent to the UNIX System V Release 2.0 definition. 

X/OPEN Portability Guide (July 1985) Part II Page : UTMP( 4) .3 



( 

( 



( 

I ChapterS 

Header Files 

This chapter describes the contents of header files used for several 
system calls and library subroutines. 

Header files contain the definition of symbolic constants, common 
structures, preprocessor macros and defined types, typedefs. The library 
routines in Chapters 2 and 3 specify the header files an application must 
include in order to use the routine. These files will be present on an 
applications development system; they do not have to be present on the 
target execution system. 

This Chapter describes the following in each of the header files: 

• The symbolic names, data types, data structures and macros defined 
in the header file that an application should use. 

• The definition of the manifest constants. 

• The system calls and library routines that may be used by an 
application and which reference the header file. 

The header files < termio.h > , < values.h> and < Iimits.h > are not 
needed explicitly to support use of the routines defined in Chapters 2 and 
3. They are included because they contain information that an 
application may need to use. 

Relationships to the SVID are given as appropriate in the manual pages. 

X/ OPEN Portability Guide (July 1985) Part II Page : 5.1 



( 

( 



( 

Header Files 

NAME 
acct - per-process accounting records structures 

SYNOPSIS 
#inciude <sys/acct.h> 

DESCRIPTION 

ACCT(5) 

This file is described in acct(4). Although also apropriate to mention it 
here, the reader is referred to acct( 4); this ensures that there are not two 
pages containing the same information which the reader would have to 
check for consistency. 

SEE ALSO 
acct( 4). 

X/OPEN Portability Guide (July 1985) Part II Page : ACCT(5) .1 



( 



( 

( 

Header Files 

NAME 
assert - verify program assertion 

SYNOPSIS 
#include <assert.h> 

DESCRIPTION 

ASSERT(5) 

This file contains the definitions used by assert (3X). A typical example 
of its contents is: 

#ifdef NDEBUG 
#define assert(EX) 
#else 
extern void _assert(); 
#define assert(EX) if (EX) ; else _assert("EX ", _ FILE_ ,_ L1NE_ ) 
#endif - - - -

SEE ALSO 
assert(3X) 

RELATIONSHIP TO SVID 
The SVID entry in Appendix BASE: 2.5, "Other Library Routines", refers 
users to assert (LIB) for the contents of this file. 

X/OPEN Portability Guide (July 1985) Part II Page: ASSERT(5).1 



( 

( 



( 

( 

Header Files CTVPE ( 5) 

NAME 
ctype - character types 

SYNOPSIS 
#include <ctype.h> 

DESCRIPTION 
The following macros are defined in this file: 

isalpha(c) 

isupper(c) 

islower(c) 

isdigit(c) 

isxdigit(c) 

isalnum(c) 

isspace(c) 

ispunct(c) 

isprint(c) 

isgraph(c) 

iscntrl( c) 

c is a letter 

c is an upper case letter 

c is a lower case letter 

c is a digit 

c is a hexadecimal digit [0-9], [A-F] or [a-f] . 

c is an alphanumeric (letter or digit). 

c is a space, tab, carriage return, new-line, vertical tab or 
form-feed 

c is a punctuation character (neither control nor 
alphanumeric). 

c is a printing character, code 040 (space) through 0176 
(tilde). 

c is a printing character, like isprint except false for space. 

c is a delete character (0177) or a ordinary control charac­
ter (code less than 040) 

isascii(c) c is an ASCII character, code less than 0200 

_toupper(c) converts the lower case letter c to the corresponding upper 
case letter. 

_tolower(c) converts the upper case letter c to the corresponding lower 
case letter. 

toascii(c) converts c to an ASCII character by masking out high order 
bits. 

APPLICATION USAGE 
These all assume the ASCII character set is in use. _toupper and 
_tolower both give incorrect results if their arguments are not of the 
correct lower or upper case respectively . 

SEE ALSO 
conv(3C), ctype(3C) 

X/OPEN Portability Guide (July 1985) Part II Page: CTYPE(5) .1 



CTVPE(5) Header Files 

RELATIONSHIP TO SVID 
Identical to the SVID entry in Appendix BASE: 2.6, "Header Files". 

( 

( 

Part II Page : CTYPE(5) .2 X/ OPEN Portability Guide (July 1985) 



( 

( 

Header Files ENVIRON(5) 

NAME 
PATH, HOME, TERM, TZ - user environment 

DESCRIPTION 
An array of strings called the "environment" is made available by 
exec(2) when a process begins. By convention, these strings have the 
form "name=value". The following names are used by various com­
mands: 

PATH The sequence of directory prefixes that some applications apply 
in searching for a file known by an incomplete path name. The 
prefixes are separated by colons (:). The logging-in or 
signing-on procedure will typically set PATH= :/bin:/usr/ bin. 

HOME Name of the user's login directory, set from the password file 
passwd(4). 

TERM The kind of terminal for which output is to be prepared. This 
information is used by applications which want to exploit spe­
cial capabi lities of the terminal. 

TZ Time zone information. The format is xxxnzzz where xxx is 
standard local time zone abbreviation, n is the difference in 
hours from GMT, and zzz is the abbreviation for the daylight­
saving local time zone, if any; for example, MET-tEET. See 
ctime(3C). 

Further names may be placed in the environment by exec(2). It is 
unwise to conflict with certain variables that are frequently exported by 
widely used command interpreters: MAIL, PSt, PS2, IFS. 

SEE ALSO 
exec(2), ctime(3C). 

FUTURE DIRECTIONS 
The number in TZ will be defined as an optional minus sign followed by 
two hour digits and two minute digits, hhmm, in order to represent frac­
tional time zones. 

RELATIONSHIP TO SVID 
The SVID gives the equivalent information in Appendix BASE: 2.8 
Environmental Variables. 

X/OPEN Portability Guide (July 1985) Part II Page : ENVIRON(5) .1 



( 

( 



( 

( 

Header Files ERRNO(5) 

NAME 
errno - system error numbers 

SYNOPSIS 
# include < errno.h> 

DESCRIPTION 
The < errno.h > include file contains the following statements : 

# include < sys / errno.h> 
extern int errno; 

The < sys/errno.h> system include file gives values for the following 
defined names. 

N.B. The braces around the error names are a typographic convention, 
and do not form part of the name. The #define statements in the 
header file will look like this : 

#define E2BIG 12345 / * perhaps .... * / 
and programs using these names will not include the braces. 

[E2BIG] Arg list too long 
[EACCES] Permission denied 
[EAGAIN] Resource unavailable, try again 
[EBADF] Bad file number 
[EBUSY] Device or resource busy 
[ECHILD] No child processes 
[EDEADLK] Deadlock avoided 
[EDOM] Math arg out of domain of func 
[EEXIST] File exists 
[EFAUL T] Bad address t 
[EFBIG] File too large 
[EINTR] Interrupted system call 
[EINVAL] Invalid argument 
[EIO] I/ O error 
[EISDIR] Is a directory 
[EMFILE] Too many open files 
[EMLlNK] Too many links 
[EN FILE] File table overflow 
[ENODEV] No such device 
[ENOENT] No such file or directory 
[ENOEXEC] Exec format error 
[ENOLCK] No locks available 
[ENOMEM] Not enough space 
[ENOSPC] No space left on device 
[ENOTBLK] Block device required 
[ENOTDIR] Not a directory 
[ENOTTY] Not a character device 

X/ OPEN Portability Guide (July 1985) Part II Page : ERRNO( 5) .1 



ERRNO(5) 

[ENXIO] 
[EPERM] 
[EPIPE] 
[ERANGE] 
[EROFS] 
[ESPIPE] 
[ESRCH] 
[ETXTBSY] 
[EXDEV] 

No such device or address 
Not owner 
Broken pipe 
Result too large 
Read only file system 
Illegal seek 
No such process 
Text file busy 
Cross-device link 

Header Files 

t The [EFAUL T] error is caused by a program ' referencing data outside its 
legitimate address space. The reliable detection of this error cannot be 
guaranteed. 

RELATIONSHIP TO SVID 
Identical to the SVID entry in Appendix BASE 2.6 Header Files, in all the 
error definitions. 

Part II Page : ERFJNO(5).2 X/ OPEN Portability Guide (July 1985) 

( 

( 



( 

( 

Header Files FCNTL(5) 

NAME 
tcntl - file control options 

SYNOPSIS 
# include < fcntl.h > 

DESCRIPTION 
The fcnt!(2) function provides for control over open files. This include 
file describes requests and arguments to fcnt! and open(2). 

Flag values accessible to open(2) and fcnt!(2) 
(The first three can only be set by open) 
O_RDONLY /* Open tor reading only */ 
O_WRONL Y / * Open for writing only * / 
O_RDWR / * Open for reading and writing * / 
O_NDELAY / * Non-blocking I/ O * / 
O_APPEND / * append (writes guaranteed at the end) * / 
O_SYNC I * Synchronous write option * / 

Flag values accessible only to open(2) 
O_CREAT /* open with file create (uses third open arg)* / 
O_TRUNC 1* open with truncation */ 
O_EXCL / * exclusive open * / 

fcntl(2) requests 
/ * Duplicate fildes * / 
/ * Get fildes flags * / 
/ * Set fildes flags * / 
/ * Get file flags * / 
/ * Set file flags * / 
/ * Get blocking file locks * / 

F_DUPFD 
F_GETFD 
F_SETFD 
F_GETFL 
F_SETFL 
F_GETLK 
F_SETLK 
F_SETLKW 
F_RDLCK 
F_WRLCK 
F_UNLCK 

/ * Set or clear file locks and fail on busy * / 
/ * Set or clear file locks and wait on busy * / 
/* Read lock * / 
I * Write lock * / 
/* Remove lock(s) */ 

The structure flock contains the following members: 

file segment locking control structure 
Uype; / * type of file * / 
I_whence; / * starting offset * / 
I_start; / * relative offset * / 
Uen; / * if a then until EOF * / 

short 
short 
long 
long 
int 
short 

Lpid; / * returned with F _GETLK * / 
I_sysid; / * returned with F _GETLK * / 

X/OPEN Portability Guide (July 1985) Part II Page: FCNTL( 5) .1 



FCNTL(5) Header Files 

SEE ALSO 
fcntl(2) , open(2). 

RELATIONSHIP TO SVID 
Functionally equivalent to the SVID definition in Appendix BASE: 2.6 
Header Files, with the addition of O_SYNC. 

The SVID does not cater for synchronous writes. 

The type of i-pid in struct flock has been corrected to int. 

Part II Page: FCNTL(5).2 X/OPEN Portability Guide (Ju ly 1985) 

( 

( 



( 

( 

Header Files 

NAME 
ftw - file tree walk 

SYNOPSIS 
#include < ftw.h> 

DESCRIPTION 

FTW(5) 

Codes for the third argument to the user-supplied function which is 
passed as the second argument to ftw: 

F1W_F /* file */ 
F1W_D /* directory */ 
FTW_DN R / * directory without read permission * / 
F1W_NS /* unknown type, stat failed */ 

SEE ALSO 
ftw(3C) 

RELATIONSHIP TO SVID 
Functionally equivalent to the SVID entry in Appendix BASE: 2.6 Header 
Files. 

X/OPEN Portability Guide (July 1985) Part II Page : F1W(5).1 



( 

( 



( 

( 

Header Files 

NAME 
grp - group structure 

SYNOPSIS 
# include < grp.h > 

DESCRIPTION 
struct group contains the following members: 

char *gr_name; 
char *gr_passwd; 
int gr_gid; 
char **gr_mem; 

SEE ALSO 
getgrent(3). 

RELATIONSHIP TO SVID 
Not in the SVID. 

X/OPEN Portability Guide (July 1985) 

GRP(5) 

Part II Page:GRP(5).1 



( 

( 



( 

Header Files LIMITS(5) 

NAME 
limits - Implementation Specific Constants 

SYNOPSIS 
#include < Iimits.h> 

DESCRIPTION 
The following names are defined in < limits.h> and are used throughout 
the descriptive text of the X/OPEN System V specification. The values 
given in the column headed "Portability Value" are the values that appli­
cations should assume for portability across all X/OPEN systems. For 
example LOCK_MAX has a portability value of 32, which means that all 
X/OPEN systems will be capable of supporting up to 32 entries in their 
system lock tables. A particular system may be capable of supporting 
more than 32 entries, in which case its < Iimits.h > file will set 
LOCK_MAX to a higher value, but any application assuming this higher 
number is not guaranteed to be portable to all systems. 

The items at the end of the list ending in " MIN" give the most negative 
values that the mathematical types are guaranteed to be capable of 
representing. Numbers of a more negative value may be supported on 
some systems, as indicated by their < Iimits.h> file, but applications 
requiring such numbers are not guaranteed to be portable to all systems. 

The symbol * in the Portability Value column indicates that there is no 
guaranteed value across all X/OPEN systems. 

By inspecting the limits.h file on a specific system an applications writer 
can determine the actual limits in operation. Similarly, by including the 
file in the compilation an application can test the appropriate limits to 
determine whether it can operate on a particular system, or it may even 
alter its behaviour to match the system thus making itself portable across 
a varying range of limit settings / systems. 

Name Description Portability Value 
ARG_MAX max length of argument to exec(2) 4096 
CHAR_BIT no. of bits in a char 8 
CHAR_MAX max integer value of a char 127 
CHILD_MAX max no. of processes per user id 4 
CLK_TCK no. of clock ticks per second 10 
DBL_DIG digits of precision of a double * 
FCHR_MAX max size of a file in bytes 1,000,000 
FLT_DIG digits of precision of a float * 
FLT_MAX max decimal value of a float * 
I NT_MAX max decimal value of an int 32767 
LINK_MAX max no. of links to a sing le file 8 

X/OPEN Portability Guide (July 1985) Part II Page : LlMITS(5).1 



LlMITS( 5) 

LONG_BIT 
LONG_MAX 
DBL_MAX 
MAX_CHAR 
NAME_MAX 
OPEN_MAX 

SHRT_MAX 
SYSPID_MAX 
STD_BLK 
SYS_NMLN 

UID_MAX 
USI_MAX 
WORD_BIT 
CHAR_MIN 
DBL_MIN 
FLT_MIN 
INT_MIN 
LONG_MIN 
SHRT_MIN 

SEE ALSO 

max no. of entries in system lock 
table 
no. of bits in a long 
max decimal value of a long 
max decimal value of a double 
max size of character input buffer 
max no. of characters in a file name 
max no. of files a process can have 
open 
max no. of significant characters in 
a password 
max no. of characters in a path 
name 
max value for a process 10 
max no. bytes atomic in write to a 
pipe 
max no. bytes written to a pipe in a 
write 
max no. of simultaneous processes, 
system wide 
max decimal value of a short 
max pid of system processes 
no. bytes in a physical 10 block 
no. of chars in uname-returned 
strings 
max no. of files open on system 
max no. of unique names generated 
by tmpnam(3S) 
max value for a user or group 10 
max decimal value of an unsigned 
no. of bits in a "word" or int 
min integer value of a char 
min decimal value of a double 
min decimal value of a float 
min decimal value of a int 
min decimal value of a long 
min decimal value of a short 

Chapter 1 (Caveats: limits.h and values. h) , values(5) 

RELATIONSHIP TO SVIO 

Header Files 

32 

32 
2,147,483,647 

* 
* 
14 
16 

8 

255 

32,000 
512 

4,096 

8 

32,767 
1 
256 
8 

16 
10000 

32,000 
65,535 
16 
o 
* 
* 
-32,768 
-2,147,483,648 
-32,768 

The SVIO does not define a < Iimits.h > include file and therefore does 
not allow for applications to determine the settings on a given system. It 
does use the listed names in place of absolute values in the descriptive 
text. 

Part II Page: LlMITS(5).2 X/ OPEN Portability Guide (July 1985) 

( 

( 



( 

( 

Header Files 

NAME 
lock - process lock types 

SYNOPSIS 
#include < sys/lock.h > 

DESCRIPTION 

LOCK(5) 

Values are given for the following flags for locking processes and texts: 

SEE ALSO 
plock(2). 

PROlOCK lock text and data segments into memory (process 
lock) 

TXTlOCK lock text segment into memory (text lock) 
DATlOCK lock data segment into memory (data lock) 
UNLOCK remove locks 

RELATIONSHIP TO SVID 
Functionally equivalent to the SVID. This include file is identified in 
Appendix K_EXT: 3.0 and its contents are given in p/ock(KEXT). 

X/OPEN Portability Guide (July 1985) Part II Page: LOCK(5).1 



( 

( 



( 

( 

Header Files MALLOC( 5) 

NAME 
malloc - main memory allocator 

SYNOPSIS 
#include < malloc.h> 

DESCRIPTION 
This file provides definitions for constants defining mal/opt, see 
mal/oc(3X) operations and declares the structure mal/info to contain the 
members shown. 

M_MXFAST 
M_NLBLKS 
M_GRAIN 

/ * set size of blocks to be fast * / 
/ * set number of block in a holding block * / 
/* set number of sizes mapped to one, for 
small blocks * / 
/* retain contents of block after a free until 
another allocation * / 

The structure mal/info contains: 

int arena; 
int ordblks; 
int smblks; 
int hblks; 
int hblkhd; 
int usmblks; 
int fsmblks; 
int uordblks; 
int fordblks ; 
int keepcost ; 

SEE ALSO 
malloc(3X). 

RELATIONSHIP TO SVID 

/ * total space in arena * / 
/ * number of ordinary blocks * / 
/ * number of small blocks * / 
/ * number of holding blocks * / 
/ * space in holding block headers * / 
/ * space in small blocks in use * / 
/ * space in free small blocks * / 
/ * space in ordinary blocks in use * / 
/ * space in free ordinary blocks * / 
/* cost of enabling keep option * / 

This is identical to the definition of mal/oc.h given in the SVID, Appendix 
BASE: 2.6 Header Files. 

X/OPEN Portability Guide (July 1985) Part II Page : MALLOC(5). 1 



( 

( 



( 

( 

Header Files MATH(5) 

NAME 
math - mathematical types 

SYNOPSIS 
# include < math.h > 

DESCRIPTION 
Values are given for the following useful constants: 

M_E value of e 
M_LOG2E value of base 2 log e 
M_LOG 1 OE value of base 1 0 log e 
M_LN2 value of base e log2 
M_LN 10 value of base e log 1 0 
M_PI value of pi 
M_PL2 value of pi / 2 
M_PI_4 value of pi / 4 
M_1_PI value of 1/ pi 
M_2_PI value of 2/ pi 
M_2_SQRTPI value of 2/ sqrt(pi) 
M_SQRT2 value of sqrt(2) 
M_SQRT1 _2 value of 1/ sqrt(2) 

The include file contains a define statement for the MAXFLOAT symbol 
which is machine dependent, and the value HUGE which is returned for 
error conditions found in the math library, see FUTURE DIRECTIONS, 
below . . 

MAXFLOAT value of maximum floating point number 
HUGE error value returned by the math library 

The structure exception is defined, containing the following members: 

int type; I * type of error that 
ocurred * I 

char *name; 1* name of the function 
that incurred the error * I 

double arg1; 1* argument 1 of the 
invoked function * I 

double arg2; 1* argument 2 of the 
invoked function * I 

double retval; 1* set of default values 
returned by the function * I 

FUTURE DIRECTIONS 
A macro HUGE_VAL will be defined to represent error values returned by 
the math functions. This macro will call a function which will either 

X/ OPEN Portability Guide (July 1985) Part II Page: MATH(5) .1 



MATH(5) Header Files 

return +00 on a system supporting IEEE P754 standard or +(MAXDOU­
BLE} on a system that does not support the IEEE P754 standard. The 
functions which currently return HUGE or ± HUGE_VAL on overflow will 
return HUGE_VAL or ±HUGE_VAL respectively. 

SEE ALSO 
erf(3M), exp(3M), floor(3M), gamma(3M), hypot(3M), sinh(3M) , trig(3M). 

RELATIONSHIP TO SVID 
This is functionally equivalent to the SVID in Appendix BASE: 2.6, 
Header Files. 

Part II Page : MATH(5).2 X/ OPEN Portability Guide (July 1985) 

( 

( 



( 

( 

Header Files 

NAME 
memory - memory operations 

SYNOPSIS 
#include < memory.h > 

DESCRIPTION 

MEMORY(5) 

This file declares the types of the functions performing memory opera­
tions. 

SEE ALSO 
memory(3C) 

FUTURE DIRECTION 
The declarations in < memory.h > will be moved to < string .h>. 

RELATIONSHIP TO SVID 
Functionally equivalent to the SVID in Appendix BASE: 2.6, Header Files. 

X/OPEN Portability Guide (July 1985) Part II Page: MEMORY(5) .1 



( 

( 



( 

( 

Header Files 

NAME 
man - prepare execution profile 

SYNOPSIS 
# include < mon .h> 

DESCRIPTION 

MON(S) 

The following structures are declared, and their members indicated: 

struet hdr 
char * Ipc; 
char *hpc; 
int nfns; 

/ * low PC of range being profiled * / 
/ * high PC of range being profiled * / 
/ * number of cnt structures * / 

struet ent 
char *fnpc; 
long mcnt; 

/ * function PC * / 
/* call count */ 

A typedef is given for type WORD. 

Definitions are given for the following names: 

MaN_OUT filename for profile, e.g. "man.out" 
MPROGSO 
MSCALEO 
NULL zero 

SEE ALSO 
monitor(3C). 

RELATIONSHIP TO SVID 
This include file is not defined in the SVID. 

X/OPEN Portability Guide (July 1985) Part II Page : MON(5) .1 



( 

( 



( 

( 

Header Files PWD(5) 

NAME 
pwd - password file structure 

SYNOPSIS 
#include <pwd .h> 

DESCRIPTION 
Definitions are given for the following structures and their members. 

struct passwd 
char *pw_name; 
char *pw_passwd; 
int pw_uid; 
int pw_gid; 
char *pw_age; 
char *pw_comment; 
char *pw_gecos; 
char *pw_dir; 
char *pw_shell; 

struct comment 
char *c_dept; 
char *c_name; 
char *c_acct; 
char *c_bin; 

SEE ALSO 

/* name */ 
/ * encrypted password (may be empty) * / 
/* numerical user ID */ 
/ * numerical group ID (may be empty) * / 
/ * password age * / 

/ * free field * / 
/ * initial working directory * / 
/ * program to use as shell (may be empty) * / 

getpwent(3C). putpwent(3C). 

RELATIONSHIP TO SVID 
This include file is not defined in the SVID. 

X/ OPEN Portability Guide (July 1985) Part II Page: PWO(5) .1 



( 

( 



( 

( 

Header Files 

NAME 
search - hash search tables 

SYNOPSIS 
# include < search.h > 

DESCRIPTION 

SEARCH ( S) 

Defines ENTRY as the structure entry through a typedef. Entry includes 
the following members: 

char *key, *data; 

Defines ACTION and VISIT as enumeration data types through typedefs as 
follows: 

enum ( FIND, ENTER) ACTION; 

enum ( preorder, postorder, endorder, leaf) VISIT; 

SEE ALSO 
bsearch(3C), hsearch(3C), Isearch(3C) , tsearch(3C) 

RELATIONSHIP TO SVID 
Identical to the SVID in Appendix BASE: 2.6 Header Files. 

X/OPEN Portability Guide (July 1985) Part II Page: SEARCH(5) .1 



( 

( 



( 

( 

Header Files 

NAME 
setjmp - stack environment type 

SYNOPSIS 
#include < setjmp.h > 

DESCRIPTION 

SETJMP(5) 

The include file contains a statement defining the symbolic constant 
_JBLEN which is machine dependent. A typedef is provided for type 
jmp_but. 

SEE ALSO 
setjmp(3C) 

RELATIONSHIP TO SVID 
The SVID does not define this include file. 

X/OPEN Portability Guide (July 1985) Part II Page: SETJMP(5).1 



( 

( 



( 

( 

Header Files SIGNAL(S) 

NAME 
signal - signals 

SYNOPSIS 
#include <signal.h> 

DESCRIPTION 
The <signal.h> include file contains definitions of the following sym­
bolic names: 

SIGABRT 
SIGALRM 
SIGFPE 
SIGHUP 
SIGILL 
SIGINT 
SIGKILL 
SIGPIPE 
SIGQUlT 
SIGSEGV 
SIGSYS 
SIGTERM 
SIGTRAP 
SIGUSRI 
SIGUSR2 

process abort signal 
alarm clock 
floating point exception 
hang up 
illegal instruction (not reset when caught)* / 
interrupt 
kill (cannot be caught or ignored) 
write on a pipe with no one to read it. 
quit 
segmentation violation 
bad argument to system call 
software termination signal from kill 
trace trap (not reset when caught) 
user defined signal 1 
user defined signal 2 

The include file contains a statement to define the symbolic constant 
NSIG which is machine dependent, and also the names SIG_DFL and 
SIG_IGN. 

FUTURE DIRECTIONS 
A macro SIG_ERR will be defined in <signal.h> to represent the return 
value (int( *)()) -1 by signa/(2) in case of error. 

APPLICATIONS USAGE 
Refer back to Chapter 1 on portable signals. 

RELATIONSHIP TO SVID 
This is identical to the SVID definition in Appendix BASE: 2.6 Header 
Files, except that SIGSEGV has been addded from System V, Release 2.0 
and SIGABRT is a future direction in the SVID. 

X/OPEN Portability Guide (July 1985) Part II Page : SIGNAL(5).1 



( 

( 



( 

( 

Header Files STAT(5) 

NAME 
stat - data returned by stat system call 

SYNOPSIS 
#include < sys/types.h > 
#include <sys/stat.h > 

DESCRIPTION 
The system calls stat and (stat return data whose structure is defined by 
this include file. 

The structure stat contains the following members: 
dev_t sCdev; /* device with directory entry for 

file * / 
ino_t 
ushort 
short 
ushort 
ushort 
dev_t 

sUno; 
st_mode; 
sCnlink; 
sCuid; 
st_gid; 
st_rdev; 

/ * inode number * / 
/ * type of file (see below) * / 
/ * number of links * / 
/ * user id of file owner * / 
/ *group id of file owner * / 
/ * device (if file is character or 
block special) * / 

ofU sCsize; / * file size in bytes * / 
time_t st_atime; / * time of last access * / 
time_t sCmtime; / * time of last data modification * / 
time_t st_ctime; / * time of last status change * / 

Symbolic names for the values of sCmode as well as macros to manipu­
late this field are also defined: 

File type: 
S_IFMT 
S_IFBLK 
S_IFCHR 
S_IFDIR 
S_IFIFO 
S_IFREG 

File modes: 
S_ISUID 
S_ISGID 
S_ISVTXt 
S_IRWXU 
S_IRUSR 
S_IWUSR 
S_IXUSR 
S_IRWXG 
S_IRGRP 
S_IWGRP 

X/OPEN Portability Guide (July 1985) 

/* type of file * / 
/ * block special * / 
/ * character special * / 
/ * directory * / 
/ * fifo special * / 
/ * regular * / 

/ * set user id on execution * / 
/ * set group id on execution * / 
/* SEE APPLICATION USAGE BELOW */ 
/* read, write, execute/search by owner */ 
/ * read permission, owner * / 
/ * write permission, owner * / 
/* execute /search permission, owner */ 
/ * read, write, execute/search by group * / 
/ * read permission, group * / 
/ * write permission, group * / 

Part II Page: STAT(5).1 



STAT(S) 

S_IXGRP 
S_IRWXO 
S_IROTH 
SJWOTH 
S_IXOTH 

Header Files 

/ * execute/search permission, group * / 
/* read, write, execute / search by others */ 
/ * read permission, others * / 
/ * write permission, others * / 
/* execute / search permission, others */ 

S_IREAD /* read premission, owner * / 
S_IWRITE / * write permission, owner * / 
S_IEXEC / * execute / search premission, owner * / 

The following macros are defined: 
S_ISBLK() / * test for a block special file * / 
S_ISCHR() / * test for a character special file * / 
S_ISDIR() /* test for a directory */ 
S_ISFIFOO / * test for a FIFO special file * / 
S_ISREG() / * test for a regular file * / 

SEE ALSO 
mknod(2), stat(2), types(5) . 

APPLICATIONS USAGE 
Use of the macros is recommended for determining the type of a file. 

It should be noted that S_IREAD, S_IWRITE and S_IEXEC are duplicated 
with the names S_IRUSR, S_IWUSR and S_IXUSR and the latter are pre­
ferred for portability as they are compatible with the / usr / group stan­
dard. 

S_ENFMT: record locking enforcement is not currently part of the XVS but 
this name is reserved for future use. 

1S_ISVTX: Although this name is defined, the "save swapped text after 
use" functionality is becoming redundant and its use in not recom­
mended. 

RELATIONSHIP TO SVID 
The stat structure is identical to that given in the SVID Appendix 
BASE 2.6: Header Files. The remainder is taken from the SVID FUTURE 
DIRECTION statement in Appendix BASE 1.6: Comparison to 1984 
/ usr / group Standard. 

Part /I Page : STAT(S).2 X/OPEN Portability Guide (July 1985) 

( 

( 



( 

( 

Header Files STDIO( 5) 

NAME 
stdio - standard buffered input/output 

SYNOPSIS 
#include < stdio.h> 

DESCRIPTION 
Defines the following symbolic names: 

BUFSIZ / * size of stdio buffers * / 
NULL / * NULL stdio pOinter * / 
EOF / * End of File return value */ 
stdin / * File pointer to standard input * / 
stdout / * File pOinter to standard output * / 
stderr / * File pOinter to standard error output * / 

Defines the following data type through typedef : 
FILE A structure containing information about a file. 

APPLICATIONS USAGE 
The following names may also be defined in this header file, and should 
only be used by applications developers in accordance with the 
definitions (where given) in other interface specifications. 

L_ctermid L_cuserid L_tmpnam 
P _tmpdir JOERR IOFBF 
_IOLBF IOMYBUF _IONBF 
_IOREAD IORW IOWRT 
_NFILE _SBSIZE bufend 

bufsiz ciearerr feof 
terror fileno getc 
getchar putc putchar 

SEE ALSO 
bsearch(3C), ctermid(3S), cuserid(3S), fclose(3S), ferror(3S), fopen(3S) , 
fread(3S) , fseek(3S), getc(3S), gets(3S), hsearch(3C), Isearch(3C), 
popen(3S), printf(3S), putc(3S), puts(3S), scanf(3S), setbuf(3S), 
stdio(3S), system(3S), tmpfile(3S), tmpnam(3S), tsearch(3C), ungetc(3S), 
vprintf(3S). 

RELATIONSHIP TO SVID 
Identical to the SVID entry in Appendix BASE 2.6: Header Files. 

X/OPEN Portability Guide (July 1985) Part II Page: STDIO(5) .1 



( 

( 



( 

( 

Header Files 

NAME 
string - string operations 

SYNOPSIS 
#include < string.h > 

DESCRIPTION 
The types of the string functions are declared. 

SEE ALSO 
string(3C). 

FUTURE DIRECTIONS 

STRING(5) 

The SVID mentions that declarations in < memory.h> will be moved to 
< string.h >. 

RELATIONSHIP TO SVID 
Functionally identical to SVID in Appendix BASE 2.6: Header Files. 

X/OPEN Portability Guide (July 1985) Part II Page : STRING(5) .1 



( 

( 



( 

( 

Header Files TERMIO( 5) 

NAME 
termio - define values for termio and iocti 

SYNOPSIS 
#include <termio.h > 

DESCRIPTION 
This file contains the definitions used by termio (7) and ioctl (2) . Refer to 
those descriptions for the structures and names defined. 

SEE ALSO 
ioctl(2), termio(7) . 

RELATIONSHIP TO SVID 
The SVID entry in Appendix BASE: 2.6, Header Files, likewise refers 
users to ioctl (OS) and termio (DEV) for the contents of this file. 

X/ OPEN Portability Guide (July 1985) Part II Page : TERMIO(5).1 



( 

( 



( 

( 

Header Files 

NAME 
time - time types 

SYNOPSIS 
# include < time.h> 

DESCRIPTION 

TIME(5) 

The structure tm is declared, containing the following members: 
int tm_sec; 
int tm_min; 
int tm_hour; 
int tm_mday; 
int tm_mon; 
int tm_year; 
int tm_wday; 
int tm_yday; 
int tm_isdst ; 

SEE ALSO 
ctime(3C). 

RELATIONSHIP TO SVID 
Identical to the SVID entry in Appendix BASE: 2.6 Header Files. 

X/OPEN Portability Guide (July 1985) Part II Page: TIME(5).1 



( 

( 



( 

( 

Header Files TIMES(5) 

NAME 
times - file access and modification times structure 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/times.h> 

DESCRIPTION 
The structure returned by times() , struct tms, contains the following 
members: 

time_t tms_utime; 
time_t tms_stime; 
time_t tms_cutime; 
time_t tms_cstime; 

SEE ALSO 
times(2). 

RELATIONSHIP TO SVI D 

1* user time *1 
1 * system time * 1 
1 * user time, children * 1 
1* system time, children *1 

The SVID defines <sys/times.h> only within the times (OS) description. 
It is not mentioned in Appendix BASE: 2.6 Header Files. 

X/OPEN Portability Guide (July 1985) Part II Page: TIMES(5) .1 



( 



( 

Header Files TVPES(5) 

NAME 
types - primitive system data types 

SYNOPSIS 
#include < sys/types.h> 

DESCRIPTION 
Some data types used in system code are implementation dependent. 
These are defined in the <types.h> include file, which contains 
definitions for at least the following types: 

daddU Used for disk block addresses 
ushort Unsigned short 
ino_t Used for file serials numbers 
time_t Used for system time 
dev_t Used for device numbers 
ofU Used for file sizes 

Times are encoded in seconds since 00:00:00 GMT, January 1, 1970. 
The major and minor parts of a device code specify kind and unit 
number of a device and are installation-dependent. Offsets are meas­
ured in bytes from the beginning of a file . 

SEE ALSO 
ctime(3C), stat(2), times(2), utime(2) . 

RELATI ONSHIP TO SVID 
The type daddr_t is not defined in the SVID, the other types are defined 
in Appendix BASE: 2.6 Header Files. (The type key_t defined in Appen­
dix K_EXT: 3.0 is used in shared memory, semaphore and message calls 
which are not included in the X/OPEN System V specification) . 

X/OPEN Portability Guide (July 1985) Part II Page: TYPES( 5) .1 



( 

( 



( 

( 

Header Files UNISTD(5) 

NAME 
unistd - standard symbolic constants and structures 

SYNOPSIS 
#include <unistd.h > 

DESCRIPTION 
The file defines the symbolic constants and structures which are refer­
enced elsewhere in the standard and which are not already defined or 
declared in some other "include" file. The contents of this file is shown 
below: 

SEE ALSO 

Symbolic constants for the " access" function: 
R_OK /* Test for "Read" Permission */ 
W_OK / * Test for "Write" Permission */ 
X_OK /* Test for " Execute"(Search) Permission */ 
F_OK / * Test for existence of file */ 

Symbolic constants for the "Iockf" function: 
F_ULOCK 
F_LOCK 
F_TLOCK 
F_TEST 

/ * Unlock a previously locked region * / 
/ * Lock a region for exclusive use * / 
/ * Test and lock a region for exclusive use */ 
/ * Test a region for a previous lock * / 

Symbolic constants for the " Iseek" function : 
SEEK_SET / * Set file pointer to "offset" * / 
SEEK_CUR / * Set file pointer to current plus " offset" * / 
SEEK_END / * Set file pointer to EOF plus "offset" */ 

Path names of the passwd and group files: 
GF _PATH / * Path name of the "group" file * / 
PF_PATH / * Path name of the "passwd" file */ 
IF_PATH / * Path name for <. .. > files */ 

fcntl(2), open(2). 

RELATIONSHIP TO SVID 
The SVID defines only F _ULOCK, F _LOCK, F _ TLOCK and F _TEST. These 
are defined within the description of lockf(OS) and not in Appendix 
BASE: 2.6; the rest is described in Appendix BASE: 1.6, as a future 
direction. 

X/OPEN Portability Guide (July 1985) Part II Page: UNISTD(5) .1 



( 

( 



( 

( 

Header Files 

NAME 
ustat - file system statistics 

SYNOPSIS 
#include <ustat.h> 

DESCRIPTION 
struct ustat declares at least the following members: 

daddU Ufree; / * total free * / 

USTAT(5) 

ino_t Uinode; / * total inodes free * / 
char Uname[6]; /* filsys name */ 
char Upack[6]; /* filsys pack name */ 

SEE ALSO 
ustat(2). 

RELATIONSHIP TO SVID 
Identical to the SVID entry in Appendix BASE: 2.6 Header Files. 

X/OPEN Portability Guide (July 1985) Part II Page : USTAT(5) .1 



( 

( 



( 

( 

Header Files 

NAME 
utmp - utmp file structure 

SYNOPSIS 
Refer to utmp(4). 

SEE ALSO 
utmp(4). 

X/OPEN Portability Guide (July 1985) 

UTMP(5) 

Part II Page : UTMP(5) .1 



( 

( 



( 

( 

Header Files 

NAME 
utsname - system name structure 

SYNOPSIS 
#include <sys/utsname.h > 

DESCRIPTION 

UTSNAME( 5) 

This file declares struct utsname which includes the following members: 

char sysname[{SYS_NMLN)]; 
char nodename[{SYS_NMLN}]; 
char release[ {SYS_NMLN}]; 
char version[{SYS_NMLN}]; 
char machine[{SYS_NMLN}l; 

SEE ALSO 
uname(2) 

RELATIONSHIP TO SVID 
Identical to the SVID in Appendix BASE: 2.6 Header Files. 

X/ OPEN Portability Guide (July 1985) Part II Page : UTSNAME(5) .1 



( 

( 



( 

( 

Header Files VALUES(5) 

NAME 
values - machine-dependent values 

SYNOPSIS 
#include <values.h> 

DESCRIPTION 
Th is file contains a set of manifest constants, conditionally defined for 
particular processor architectures. 

The model assumed for integers is binary representation (one's or two's 
complement), where the sign is represented by the value of the high­
order bit. 

BITSPERBYTE 

BITS(type) 

HIBITS 

HIBITL 

HIBITI 

MAXSHORT 

MAXLONG 

MAXINT 

DMAXEXP 

FMAXEXP 

DMINEXP 

FMINEXP 

DMAXPOWTWO 

FMAXPOWTWO 

X/OPEN Portability Guide (July 1985) 

The number of bits in a byte. 

The number of bits in a specified type (e.g ., int). 

The value of a short integer with only the high­
order bit set (in most implementations, Ox8000). 

The value of a long integer with only the high­
order bit set (in most implementations, 
Ox80000000). 

The value of a regular integer with only the high­
order bit set (usually the same as HIBITS or 
HIBITL). 

The maximum value of a signed short integer (in 
most implementations, Ox7FFF - 32767). 

The maximum value of a signed long integer (in 
most implementations, Ox7FFFFFFF 
2147483647). 

The maximum value of a signed regular integer 
(usually the same as MAXSHORT or MAXLONG). 

The maximum exponent of a double. 

The maximum exponent of a float. 

The minimum exponent of a double. 

The minimum exponent of a float. 

The largest power of two exactly representable as 
a double. 

The largest power of two exactly representable as 
a float. 

Part II Page : VALUES(5).1 



VALUES ( S) Header Files 

FILES 

FEXPLEN 

EXPBASE 

DEXPLEN 

IEEE 

LENBASE 

HIDDENBIT 

FSIGNIF 

The number of bits for the exponent of a float. 

The exponent base. 

The number of bits for the exponent of a double. 

1 if the IEEE standard representation is used. 

Number of bits in the exponent base. 

1 if high-significance bit in the mantissa is implicit. 
The largest power of two exactly representable as 
a double. 

The number of significant bits in the mantissa of a 
single-precision floating-point number. 

DSIGNIF The number of significant bits in the mantissa of a 
double-precision floating-point number. 

MAXFLOAT, LN_MAXFLOAT The maximum value of a single­
precision floating-point number, and its 
natural logarithm. 

MAXDOUBLE, LN_MAXDOUBLE 

MINFLOAT, LN_MINFLOAT 

MINDOUBLE, LN_MINDOUBLE 

The maximum value of a double­
precision floating-point number, and its 
natural logarithm. 

The minimum positive value of a 
single-precision floating-point number, 
and its natural logarithm. 

The minimum positive value of a 
double-precision floating-point 
number, and its natural logarithm. 

/ usr /include/values .h 

SEE ALSO 
limits(5), math(5). 

RELATIONSHIP TO SVID 
Identical to the SVID in Appendix BASE: 2.6 Header Files, except that the 
names LN_MINFLOAT and LN_MAXFLOAT have been included from System 
V Release 2.0. It is not apparent why they are not part of the SVID. 

Part II Page: VALUES(5).2 X/OPEN Portability Guide (July 1985) 

( 

( 



( 

( 

Header Files VARARGS(5) 

NAME 
varargs - handle variable argument list 

SYNOPSIS 
#include <varargs.h> 

va_alist 

va_dcl 

void va_start(pvar) 
va_list pvar; 

type va_arg(pvar. type) 
va_list pvar; 

void va_end(pvar) 
va_list pvar; 

DESCRIPTION 
This set of macros allows portable procedures that accept variable argu­
ment lists to be written. Routines that have variable argument lists (such 
as printf(3S» but do not use varargs are inherently non portable. as 
different machines use different argument-passing conventions. 

va_a list is used as the parameter list in a function header. 

va_del is a declaration for va_alist. No semicolon should follow va_del. 

va_list is a type defined for the variable used to traverse the list. 

va_start is called to initialize pvar to the beginning of the list. 

va_arg will return the next argument in the list pOinted to by pvar. Type 
is the type the argument is expected to be. Different types can be 
mixed. but it is up to the routine to know what type of argument is 
expected. as it cannot be determined at runtime. 

va_end is used to clean up. 

Multiple traversals. each bracketed by va_start ... va_end. are possible. 

EXAMPLE 
This example is a possible implementation of exee/(2) . 

# include <varargs.h > 
#define MAXARGS 100 

/ * execl is called by 
execl(file. arg1. arg2 ..... (char *)0); 

*/ 
execl(va_alist) 
va_del 

X/OPEN Portability Guide (July 1985) Part II Page: VARARGS(5).1 



VARARGS(5) 

va_list ap; 
char *fi le; 
char *args[MAXARGS]; 
int argno = 0; 

va_start(ap); 
file = va_arg(ap, char *); 
while ((args[argno+ +] = 

Header Files 

va_arg(ap, char *)) != (char *)0) 
, 

va_end(ap); 
return execv(file, args); 

SEE ALSO 
exec(2), printf(3S). 

APPLICATION USAGE 
It is up to the calling routine to specify how many arguments there are, 
since it is not always possible to determine this from the stack frame. 
For example, exec! is passed a zero pOinter to signal the end of the list. 
Printf can tell how many arguments are there by the format. 
It is non-portable to specify a second argument of char, short, or float 
to va_arg, since arguments seen by the called function are not char, 
short, or float. C converts char and short arguments to int and con­
verts float arguments to double before passing them to a function . 

RELATIONSHIP TO SVID 
The SVID simply mentions the declaration, typedef or definition of the 
names va_list, va_start, va_end, va_arg and va_dec! in Appendix BASE: 
2.6 Header Files. The application writer is given no hint how to use 
them. 

Part II Page: VARARGS(5).2 X/OPEN Portability Guide (July 1985) 

( 

( 



I Chapte'. 

( 
This chapter is reserved for future use. 

( 

X/OPEN Portability Guide (July 1985) Part II Page : 6.1 



( 

( 



( 

( 

I Chapter7 

Special Files 

This chapter describes various special files which are present in all 
X/OPEN systems. Most systems will contain other entries for specific 
devices. 

The entries shown here are mandatory on all systems, except for the 
source code transfer devices sct (7) which are only mandatory on 
systems with the relevant hardware. 

Where there are corresponding entries in the SVID, they are to be found 
in Appendix 2.11 , "Special Device Files". 

X/OPEN Portability Guide (July 1985) Part II Page : 7.1 



( 

( 



( 

( 

Special Files CONSOLE ( 7) 

NAME 
console - System console interface 

DESCRIPTION 

FILES 

/dev/console is a generic name given to the system console. It is usu­
ally linked to a particular machine dependent special file. It provides a 
basic I/ O interface to the system console. 

/ dev / console. 

SEE ALSO 
termio(7). 

RELATIONSHIP TO SVID 
Identical to the SVID definition in Appendix 2.11, "Special Device Files" , 
except that the SVID states that the system console works through the 
termio interface. This is not necessarily true of X/ OPEN systems. 

X/ OPEN Portability Guide (July 1985) Part II Page : CONSOLE(7) .1 



( 

( 



( 

( 

Special Files NULL(7) 

NAME 
null - the null file 

DESCRIPTION 
Data written on a null special file is discarded. 

Reads from a null special file always return 0 bytes. 

FILES 
I dev/ null 

RELATIONSHIP TO SVID 
Identical to the SVID definition in Appendix 2.11, " Special Device Files", 
except that the SVID also states that the "output of a command is written 
to the special file I devl null when the command is executed for its side 
effects and not for its output" . This information is not relevant to appli­
cations development. 

X/OPEN Portabilily Guide (July 1985) Part II Page : NULL(7) .1 



( 

( 



( 

( 

Special Files SCT( 7) 

NAME 
sctmt, sctfd - source code transfer devices (OPTIONAL) 

DESCRIPTION 
The fi les / dev/sctmt{ lmh} and /dev/sctfd{lm} are the names of the 
special files used to transfer software between X/OPEN systems. Their 
descriptions follow. 

Y2 Inch Magnetic Tape 
The standard physical tape recording format is 

• 9 track Phase Encoded (PE), 1600 bits per inch (bpi) . 

optional formats that may also be supported by particular systems in 
addition to this are 

. 9 track Group Code Recording (GCR) , 6250 bpi. 
• 9 track Non Return to Zero Inverted (NRZI), 800 bpi. 

Special File Names and Blocking 
The device names associated with these formats are 

name format blocksize(bytes) remarks 
/ dev / sctmtl < number> NRZI 512 optional 

/ dev I sctmtm < number> PE 512 
/ dev I sctmth < number> GCR 512 optional 

/ dev I rsctmtl < number> NRZI see below optional 
/ dev I rsctmtm < number> PE see below 
/ dev / rsctmth < number> GCR see below optional 

Note that on the "raw" devices (rsct...) , data is both read and written in 
blocks corresponding to the length requested in the read or write system 
call, see read(2) and write(2) in part 2 of the Guide. 

The device names are usually links to system-specific device names. 

Device Numbers 
The part of the special file name described in the table above as 
< number> is constructed from the physical tape unit number with the 
addition of 0 or 128 (decimal) to indicate whether the tape is to be 
rewound on closure. Any tape that is opened for writ ing has a tape 
mark written on closure. Addition of 0 to the unit number causes the 
tape to be rewound to the beginning of tape mark (BOT); addition of 128 
inhibits this. 

Hosted implementations may need extra information to be specified in 
the device names, for example volume names. 

X/ OPEN Portability Guide (July 1985) Part II Page : SeT( 7) .1 



SCT(7) Special Files 

5 1/.t inch Floppy Disk Exchange 
Physical Recording 

The standard floppy disk recording formats are 

Floppy Disc Recording Formats 
a) 80 tracks (96 tracks per inch) 

2 tracks per cylinder 
9 sectors per track 
51 2 bytes per sector 
Modified Frequency Modulation (MFM) recording 

b) 40 tracks (48 tracks per inch) 
2 tracks per cylinder 
8 sectors per track 
51 2 bytes per sector 
Modified Frequency Modulation (MFM) recording 
read only 

Note that 80 track is the preferred format; systems equipped only with 
80 track drives will be able to read but not write 40 track disks. 

Special File Names 

FILES 

The special file names associated with these formats are 

Name Number of Tracks 
I dev / sctfdl < number> 40 

I dev / sctfdm< number> 80 

The device number is constructed from the physical drive number. To 
this is added 0 or 128 (decimal) to define whether cylinder 0 is accessi­
ble. 0 means that cylinder 0 is accessible, so the first sector accessed 
is sector 1 track 0 cylinder O. 128 means that cylinder 0 is not accessi­
ble, so the first sector accessed is sector 1 track 0 cylinder 1. 

I dev / sctmtm, I dev / sctfdm. 

SEE ALSO 
Part 6 of the Guide. 

RELATIONSHIP TO SVID 
This is not in the SVID. It is specific to X/ OPEN systems. 

Part II Page : SCT(7) .2 X/OPEN Portability Guide (July 1985) 

( 

( 



( 

( 

Special Files TERMIO( 7) 

NAME 
termio - general terminal interface (OPTIONAL) 

SYNOPSIS 
#include <termio.h > 

DESCRIPTION 
This is the System V interface for asynchronous lines, irrespective of 
hardware involved. Refer to Chapter 1 for a discussion of the caveats 
with respect to this interface. The description below is relevant only to 
those lines configured to use this interface. 

When a terminal file is opened, it normally causes the process to wait 
until a connection is established. In practice, users' programs seldom 
open these files; they are opened by the system and become a user's 
standard input, output, and error files . The very first terminal file opened 
by the process group leader of a terminal file not already associated with 
a process group becomes the control terminal for that process group. 
The control terminal plays a special role in handling quit and interrupt 
signals, as discussed below. The control terminal is inherited by a child 
process during a fork(2) . A process can break this association by 
changing its process group using setpgrp(2) . 

A terminal associated with one of these files ordinarily operates in full­
duplex mode. Characters may be typed at any time, even while output 
is occurring, and are only lost when the system's character input buffers 
become completely full, or when an input line exceeds the maximum 
allowable number of input characters. Currently, this limit is 
{MAX_CHAR} characters. When the input limit is reached, all the saved 
characters are thrown away without notice. 

Normally, terminal input is processed in units of lines. A line is delimited 
by a new-line (ASCII LF) character, an end-of-file (ASCII EOT) character , 
or an end-of-line character. This means that a program attempting to 
read will be suspended until an entire line has been typed. Also, no 
matter how many characters are requested in the read call, at most one 
line will be returned. It is not, however, necessary to read a whole line 
at once; any number of characters may be requested in a read, even 
one, without losing information. 

During input, erase and kill processing is normally done. By default, the 
character '#' erases the last character typed, except that it will not erase 
beyond the beginning of the line. By default, the character '@' kills 
(deletes) the entire input line, and optionally outputs a new-line charac­
ter. Both these characters operate on a key-stroke basis, independently 
of any backspacing or tabbing that may have been done. Both the 
erase and kill characters may be entered literally by preceding them with 
the escape character C\'). In this case the escape character is not 

X/OPEN Portability Guide (July 1985) Part II Page: TERMIO(7) .1 



TERMIO( 7) Special Files 

read. The erase and kill characters may be changed. 

Certain characters have special functions on input. These functions and 
their default character values are summarized as follows: 

INTR 

QUIT 

(Rubout or ASCII DEL) generates an interrupt signal which is 
sent to all processes with the associated control terminal. Nor­
mally, each such process is forced to terminate, but arrange­
ments may be made either to ignore the signal or to receive a 
trap to an agreed-upon location, see signa/(2) . 

(Control-lor ASCII FS) generates a quit signal. Its treatment is 
identical to the interrupt signal except that, unless a receiving 
process has made other arrangements, it will not only be ter­
minated but the abnormal termination routines will be executed. 

ERASE (#) erases the preceding character. It will not erase beyond 
the start of a line, as delimited by a NL, EOF, or EOL character. 

KILL (@) deletes the entire line, as delimited by a NL, EOF, or EOL 
character. 

EOF (Control-d or ASCII EOT) may be used to generate an end-of-file 
from a terminal. When received, all the characters waiting to 
be read are immediately passed to the program, without waiting 
for a new-line, and the EOF is discarded. Thus, if there are no 
characters waiting, which is to say the EOF occurred at the 
beginning of a line, zero characters will be passed back, which 
is the standard end-of-file indication. 

NL (ASCII LF) is the normal line delimiter. It can not be changed or 
escaped. 

EOL (ASCII NUL) is an additional line delimiter, like NL. It is not nor­
mally used . 

STOP (Control-s or ASCII DC3) can be used to temporarily suspend 
output. It is useful with CRT terminals to prevent output from 
disappearing before it can be read. While output is suspended, 
STOP characters are ignored and not read. 

START (Control-q or ASCII DC1) is used to resume output which has 
been suspended by a STOP character. While output is not 
suspended, START characters are ignored and not read. The 
start/stop characters can not be changed or escaped. 

The character values for INTR, QUIT, ERASE, KILL, EOF, and EOL may be 
redefined by the user. The ERASE, KILL, and EOF characters may be 
escaped by a preceding ' \ ' character, in which case no special function 
is done. 

Part \I Page : TERMIO(7) .2 X/ OPEN Portability Guide (July 1985) 

( 

( 



( 

( 

Special Files TERMIO(7) 

When the carrier signal from the data-set drops, a hang-up signal is sent 
to all processes that have this terminal as the control terminal. Unless 
other arrangements have been made, this signal causes the processes to 
terminate. If the hang-up signal is ignored, any subsequent read returns 
with an end-of-file indication . Thus, programs that read a terminal and 
test for end-of-file can terminate appropriately when hung up on . 

When one or more characters are written, they are transmitted to the ter­
minal as soon as previously-written characters have finished typing. 
Input characters are echoed by putting them in the output queue as they 
arrive. If a process produces characters more rapidly than they can be 
typed, it will be suspended when its output queue exceeds some limit. 
When the queue has drained down to some threshold, the program is 
resumed. 

Several ioct/(2) system calls apply to terminal files . The primary calls 
use the termio structure, defined in < termio.h>: 

A definition is given for: 
NCC / * size of the array 

* c_cc for special control characters * / 

The structure termio includes the following members: 

unsigned 
unsigned 
unsigned 
unsigned 
char 
unsigned 

short 
short 
short 
short 
c_line; 
char 

c_iflag; / * input modes * / 
c_oflag; / * output modes * / 
c_cflag; / * control modes */ 
c_lflag; / * local modes */ 

/ * line discipline * / 
C_CC[NCC] ; / * control chars */ 

The special control characters are defined by the array c_cc. The rela­
tive positions and initial values for each function are as follows: 

o VINTR DEL 
1 vaUlT FS 
2 VERASE '#' 
3 VKlll '@' 
4 VEOF EOT 
5 VEOl NUL 
6 reseNed 
7 SWTCH 

The c_iflag field describes the basic terminal input control : 

IGNBRK Ignore break condition. 
BRKINT Signal interrupt on break. 
IGNPAR Ignore characters with parity errors. 
PARMRK Mark parity errors. 

X/OPEN Portability Guide (July 1985) Part II Page : TERMIO(7) .3 



TERMIO(7) 

INPCK 
ISTRIP 
INLCR 
IGNCR 
ICRNL 
IUCLC 
IXON 
IXANY 
IXOFF 

Enable input parity check. 
Strip character. 
Map NL to CR on input. 
Ignore CR. 
Map CR to NL on input. 

Special Files 

Map upper-case to lower-case on input. 
Enable start/stop output control. 
Enable any character to restart output. 
Enable start /stop input control. 

If IGNBRK is set, the break condition (a character framing error with data 
all zeros) is ignored, that is, not put on the input queue and therefore not 
read by any process. Otherwise if BRKINT is set, the break condition will 
generate an interrupt signal and flush both the input and output queues. 
If IGNPAR is set, characters with other framing and parity errors are 
ignored. 

If PARMRK is set, a character with a framing or parity error which is not 
ignored is read as the three-character sequence: 0377, 0, X, where X is 
the data of the character received in error. To avoid ambiguity in this 
case, if ISTRIP is not set, a valid character of 0377 is read as 0377, 
0377 . If PARMRK is not set, a framing or parity error which is not 
ignored is read as the character NUL (0) . 

If INPCK is set, input parity checking is enabled . If INPCK is not set, input 
parity checking is disabled. This allows output parity generation without 
input parity errors. 

If ISTRIP is set, valid input characters are first stripped to 7 -bits, otherwise 
all 8-bits are processed. 

If INLCR is set, a received NL character is translated into a CR character. 
If IGNCR is set, a received CR character is ignored (not read) . Otherwise 
if ICRNL is set, a received CR character is translated into a NL character. 

If IUCLC is set, a received upper-case alphabetic character is translated 
into the corresponding lower-case character. 

If IXON is set, start / stop output control is enabled. A received STOP 
character will suspend output and a received START character will restart 
output. All start / stop characters are ignored and not read. If IXANY is 
set, any input character, will restart output which has been suspended. 

If IXOFF is set, the system will transmit START/ STOP characters when the 
input queue is nearly empty / full. 

The initial input control value is all-bits-clear. 

Part II Page: TERMIO(7) .4 X/OPEN Portability Guide (July 1985) 

( 

( 



( 

( 

Special Files TERMIO(7) 

The c_of/ag field specifies the system treatment of output: 

OPOST Postprocess output. 
OLCUC Map lower case to upper on output. 
ONLCR 
OCRNL 
ONOCR 
ONLRET 
OFILL 
OFDEL 
NLDLY 
NLO 
NL1 
CRDLY 
CRO 
CRl 
CR2 
CR3 
TABDLY 
TABO 
TABl 
TAB2 
TAB3 
BSDLY 
BSO 
BSl 
VTDLY 
VTO 
VTl 
FFDLY 
FFO 
FFl 

Map NL to CR-NL on output. 
Map CR to NL on output. 
No CR output at column O. 
NL performs CR function. 
Use fill characters for delay. 
Fill is DEL, else NUL. 
Select new-line delays: 
New-Line character type 0 
New-Line character type 1 
Select carriage-return delays: 
Carriage-return delay type 0 
Carriage-return delay type 1 
Carriage-return delay type 2 
Carriage-return delay type 3 
Select horizontal-tab delays: 
Horizontal-tab delay type 0 
Horizontal-tab delay type 1 
Horizontal-tab delay type 2 
Expand tabs to spaces. 
Select backspace delays: 
Backspace-delay type 0 
Backspace-delay type 1 
Select vertical-tab delays: 
Vertical-tab delay type 0 
Vertical-tab delay type 1 
Select form-feed delays: 
Form-feed delay type 0 
Form-feed delay type 1 

If OPOST is set, output characters are post-processed as indicated by the 
remaining flags, otherwise characters are transmitted without change. 

If OLCUC is set , a lower-case alphabetic character is transmitted as the 
corresponding upper-case character. This function is of1en used in con­
junction with IUCLC. 

If ONLCR is set, the NL character is transmitted as the CR-NL character 
pair. If OCRNL is set, the CR character is transmitted as the NL charac­
ter. If ONOCR is set, no CR character is transmitted when at column 0 
(first position). If ONLRET is set , the NL character is assumed to do the 
carriage-return function ; the column pointer will be set to 0 and the 
delays specified for CR will be used. Otherwise the NL character is 
assumed to do just the line-feed function; the column pOinter will remain 

X/OPEN Portability Guide (July 1985) Part II Page : TERMIO(7).5 



TERMIO(7) Special Files 

unchanged. The column pointer is also set to 0 if the CR character is 
actually transmitted. 

The delay bits specify how long transmission stops to allow for mechani­
calor other movement when certain characters are sent to the terminal. 
In all cases a value of 0 indicates no delay. If OFILL is set , fill characters 
will be transmitted for delay instead of a timed delay. This is useful for 
high baud rate terminals which need only a minimal delay. If OFDEL is 
set, the fill character is DEL, otherwise NUL. 

If a form-feed or vertical-tab delay is specified, it lasts for about 2 
seconds. 

New-line delay lasts about 0.10 seconds. If ONLRET is set, the carriage­
return delays are used instead of the new-line delays . If OFILL is set, two 
fill characters will be transmitted. 

Carriage-return delay type 1 is dependent on the current column posi­
tion, type 2 is about 0.10 seconds, and type 3 is about 0.15 seconds. If 
OFILL is set, delay type 1 transmits two fill characters , and type 2, four 
fill characters. 

Horizontal-tab delay type 1 is dependent on the current column position. 
Type 2 is about 0.10 seconds. Type 3 specifies that tabs are to be 
expanded into spaces. If OFILL is set, two fill characters will be transmit­
ted for any delay. 

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill char­
acter will be transmitted. 

The actual delays depend on line speed and system load. 

The initial output control value is all bits clear. 

The c_cf/ag field describes the hardware control of the terminal: 

CBAUD Baud rate : 
BO Hang up 
B50 50 baud 
B75 75 baud 
B 11 0 11 0 baud 
B134 134.5 baud 
B150 150 baud 
B200 200 baud 
B300 300 baud 
B600 600 baud 
B1200 1200 baud 
B1800 1800 baud 
B2400 2400 baud 
B4800 4800 baud 

Part II Page : TERMIO(7).6 X/ OPEN Portability Guide (July 1985) 

( 

( 



( 

( 

Special Files 

B9600 
B19200 
B38400 
CSIZE 
CS5 
CS6 
CS7 
CS8 
CSTOPS 
CREAD 
PARENS 
PARODD 
HUPCL 
CLOCAL 
LOSLK 

9600 baud 
19200 baud 
38400 baud 
Character size: 
5 bits 
6 bits 
7 bits 
8 bits 
Send two stop bits, else one. 
Enable receiver. 
Parity enable. 
Odd parity, else even . 
Hang up on last close. 
Local line, else dial-up. 
Block layer output. 

TERMIO(7) 

The CSAUD bits specify the baud rate. The zero baud rate , so, is used to 
hang up the connection. If SO is specified, the data-terminal-ready signal 
will not be asserted . Normally, this will disconnect the line. For any par­
ticular hardware, impossible speed changes are ignored. 

The CSIZE bits specify the character size in bits for both transmission 
and reception. This size does not include the parity bit , if any. If 
CSTOPS is set, two stop bits are used, otherwise one stop bit. For exam­
ple, at 110 baud , two stops bits are required . 

If PARENS is set, parity generation and detection is enabled and a parity 
bit is added to each character. If parity is enabled, the PARODD flag 
specifies odd parity if set, otherwise even parity is used. 

If CREAD is set, the receiver is enabled. Otherwise no characters will be 
received. 

If HUPCL is set, the line will be disconnected when the last process with 
the line open closes it or terminates. That is, the data-terminal-ready 
signal will not be asserted . 

If CLOCAL is set, the line is assumed to be a local , direct connection with 
no modem control. Otherwise modem control is assumed. 

If LOSLK is set, the output of a job control layer will be blocked when it is 
not the current layer. Otherwise the output generated by that layer will 
be multiplexed onto the current layer. 

The initial hardware control value after open is S300, CS8, CREAD, HUPCL. 

X/OPEN Portability Guide (July 1985) Part II Page: TERMIO(7).7 



TERMIO( 7) Special Files 

The c_lflag field of the argument structure is used by the line discipline 
to control terminal functions. The basic line discipline (0) provides the 
following: 

ISIG 
ICANON 
XCASE 
ECHO 
ECHOE 
ECHOK 
ECHONL 
NOFLSH 

Enable signals. 
Canonical input (erase and kill processing). 
Canonical upper / lower presentation. 
Enable echo. 
Echo erase character as BS-SP-BS. 
Echo NL after kill character. 
Echo NL. 
Disable flush after interrupt or quit. 

If ISIG is set, each input character is checked against the special control 
characters INTR, SWTCH, and QUIT. If an input character matches one of 
these control characters, the function associated with that character is 
performed. If ISIG is not set, no checking is done. Thus these special 
input functions are possible only if ISIG is set. These functions may be 
disabled individually by changing the value of the control character to an 
unlikely or impossible value (e.g., 0377). 

If ICANON is set, canonical processing is enabled. This enables the 
erase and kill edit functions, and the assembly of input characters into 
lines delimited by NL, EOF, and EOL. If ICANON is not set, read requests 
are satisfied directly from the input queue. A read will not be satisfied 
until at least MIN characters have been received or the timeout value 
TIME has expired between characters. (See the "MIN / TIME Interaction 
Section" below). This allows fast bursts of input to be read efficiently 
while still allowing single character input. The MIN and TIME values are 
stored in the position for the EOF and EOL characters, respectively . The 
time value represents tenths of seconds. 

If XCASE is set, and if ICANON is set, an upper-case letter is accepted on 
input by preceding it with a '\' character, and is output preceded by a 
'\' character. In this mode, the following escape sequences are gen­
erated on output and accepted on input: 

for : use : 
\ ' 
\ ! 
'\ 

{ \ ( 
} \) 
\ \ \ 

For example, 'A ' is input as \ a, ' \ n' as \ \ n, and '\N' as \ \ \ n. 

If ECHO is set, characters are echoed as received . 

Part II Page: TERMIO(7).8 X/OPEN Portability Guide (July 1985) 

( 



( 

( 

Special Files TERMIO(7) 

When ICANON is set, the following echo functions are possible. If ECHO 
and ECHOE are set, the erase character is echoed as ASCII BS SP BS, 
which will clear the last character from a CRT screen . If ECHOE is set 
and ECHO is not set, the erase character is echoed as ASCII SP BS. If 
ECHOK is set, the NL character will be echoed after the kill character to 
emphasize that the line will be deleted. Note that an escape character 
preceding the erase or kill character removes any special function . If 
ECHONL is set, the NL character will be echoed even if ECHO is not set. 
This is useful for terminals set to local echo (so-called half duplex) . 
Unless escaped, the EOF character is not echoed . Because EOT is the 
default EOF character, this prevents terminals that respond to EOT from 
hanging up. 

If NOFLSH is set, the normal flush of the input and output queues associ­
ated with the quit, switch, and interrupt characters will not be done. 

The initial line-discipline control value is all bits clear. 

The primary ioct/(2) system calls have the form: 

ioctl (fildes, command, arg) 
struct termio *arg ; 

The commands using this form are: 

TCGETS Get the parameters associated with the terminal 
and store in the termio structure referenced by arg 
(see the APPLICATION USAGE section below). 

TCSETS Set the parameters associated with the terminal 
from the structure referenced by arg o The change 
is immediate. (see the APPLICATION USAGE sec­
tion below). 

TCSETAW Wait for the output to drain before setting the new 
parameters. This form should be used when 
changing parameters that will affect output. 

TCSETAF Wait for the output to drain , then flush the input 
queue and set the new parameters. 

Additional ioct/(2) calls have the form: 

ioctl (fildes, command, arg) 
int arg; 

The commands using this form are: 

TCSBRK Wait for the output to drain. If arg is 0, then send 
a break (zero bits for 0.25 seconds). 

TCXONC 

X/OPEN Portability Guide (July 1985) 

Start / stop control. If arg is 0, suspend output; if 1, 
restart suspended output. 

Part II Page : TERMIO(7) .9 



TERMIO(7) Special Files 

TCFLSH If arg is 0, flush the input queue; if 1, flush the out­
put queue; if 2, flush both the input and output 
queues. 

MIN ITIME Interaction 

FILES 

MIN represents the minimum number of characters that should be 
received when the read is satisfied ( i.e., that is the characters are 
returned to the user). TIME is a timer of 0 .1 second granularity that is 
used to timeout bursty and short term data transmissions. The four pos­
sible combinations of MIN and TIME and their interactions are described 
below. 

A. MIN >0, TIME > 0 

In this case TIME serves as an intercharacter timer and is activated after 
the first character is received. It is reset upon receipt of each character. 
As soon as one character is received the intercharacter timer is started. 
If MIN characters are received befor the timer expires the read is 
satisfied. If the timer expires before MIN characters are received the 
characters received to that point are returned to the user. 

B. MIN > 0, TIME = ° 
Since the value of TIME is zero, the timer plays no role and only MIN is 
significant. In this case, the read is not satisfied until MIN characters are 
received. 

C. MIN = 0 , TIME > ° 
Since MIN = 0, TIME no longer represents an intercharacter timer. It now 
serves as a read timer that is activated as soon as the read(2) call is 
processed (in canon). A read is satisfied as soon as a single character 
is received or the read timer expires, in which case the read will return 
with zero characters. 

D. MIN = 0, TIME = ° 
In this case the return is immediate. If characters are present they will 
be returned to the user. 

I dev / tty*, termio.h 

SEE ALSO 
fork(2), ioctl(2), setpgrp(2), signal(2). 

APPLICATION USAGE 
TCGETA and are ioct/(2) commands that are reserved to maintain source 
code compatibility . Their use is even more system dependent than the 
termio interface and source code that uses these commands may not 
work correctly on all systems. 

Part II Page : TERMIO(7).10 X/OPEN Portability Guide (July 1985) 

( 

( 



( 

( 

Special Files TERMIO( 7) 

RELATIONSHIP TO SVID 
Identical to the SVID entry in Appendix BASE 2.11, "Special Device 
Files" except for minor changes to the first paragraph. 

X/OPEN Portability Guide (July 1985) Part II Page : TERMIO(7) .11 



( 

( 



( 

( 

Special Files TTY(7) 

NAME 
tty - controlling terminal interface 

DESCRIPTION 

FILES 

The file Idev/tty is, in each process, a synonym for the control terminal 
associated with the process group of that process, if any. It is useful for 
programs that wish to be sure of writing messages on the terminal no 
matter how output has been redirected. It can also be used for pro­
grams that demand the name of a file for output, when typed output is 
desired and it is tiresome to find out what terminal is currently in use. 

I dev I tty. 

RELATIONSHIP TO SVID 
Identical to the SVID definition in Appendix 2.11, "Special Device Files". 

X/OPEN Portability Guide (July 1985) Part II Page : TTY(7).1 



( , ' 


