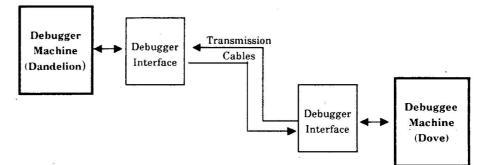
Debugger Interface TABLE OF CONTENTS


10.1. Hardware	10-1
10.1.1 Interface Connector	10-3
10.1.2 Programmable Peripheral Interface	10-4
10.1.3 Line Drivers	10-4
10.1.4 Line Receivers	10-5
10.2. Theory of Operations	10-5
10.2.1 Sending and Receiving Data	10-5
10.2.2 Handshaking	10-6
10.3. Programmer Interface	10-7
10.3.1 Addressing the Debugger Interface	10-7
10.3.2 Programming the PPI	10-7
10.3.2.1 Operational descriptions and configurations	10-7
10.3.2.2 Initialization	10-7
10.3.2.3 Sending a byte	10-8
10.3.2.4 Receiving a byte	10-8
10.3.2.5 Sending boot (Reset) signal to debuggee machine	10-8
10.3.2.6 Sending an NMI signal	10-9
10.3.3 Timing	10-9

10.

The debugger interface (also called Song Board) provides a parallel communication link between the Dove workstation and a debugger machine (Dandelion). This board replaces the previous debugger board.

The main component of the debugger interface is an Intel 8255A-5, programmable peripheral interface. This component handles both handshakings and interrupts and can be directly accessed by the IOP.

Figure 10.1 illustrates a typical debugging system. A debugger interface is attatched to the debugger machine and the debuggee machine. Transmission cables transmit data between the two boards.

Figure 10.1. Debugger boards in a typical debugging system

10.1 Hardware

The debugger interface PWBA is housed in a $4\frac{3}{4}$ -inch x $5\frac{1}{2}$ -inch x 1inch metal case and contains the programmable peripheral interface, line drivers, and line receivers. The total power consumption is about 250 mA. Figure 10.2 illustrates the debugger interface PWB assembly.

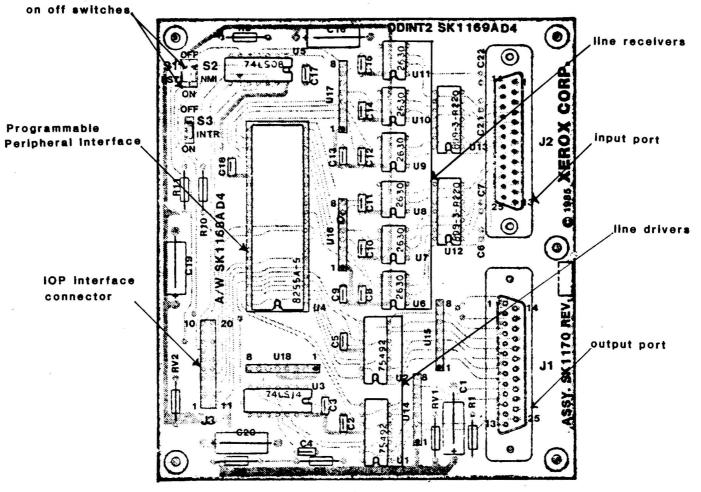
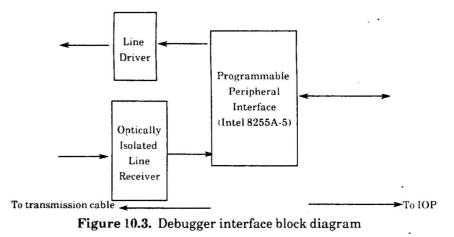



Figure 10.2 Debugger interface PWB assembly

<u>10 - 2</u>

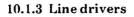
All components on the debugger interface are off-the-shelf components and are socketed for easy servicing. Figure 10.3 illustrates the hardware, broken down into three functional groups: programmable peripheral interface, line drivers, and line receivers. For full schematics, refer to Appendix D.

^{10.1.1} Interface Connector

Table 10.1 lists and describes the signals of the of 20-pin connector chip that connects the debugger interface and the IOP.

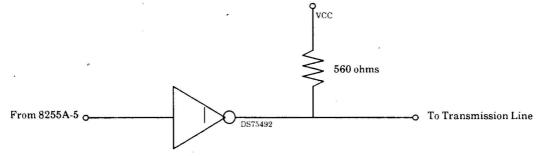
Signal	Туре	Function
IPRD'	Input	A low on this input pin enables the debugger interface to send the data or status information to the IOP on the data bus.
IPWR'	Input	A low on this input pin enables the IOP to write data or control words to the debugger interface.
IPSEL'	Input	A low on this input pin enables the communication between the debugger interface and the IOP.
IPA1 and IPA0	Input	These input signals address the ports (A, B, and C) or the control register.
RESET	Input	A high on this input pin causes the debugger interface to be reset During reset, the control word is cleared and all of the ports are set to input mode.
InINTR	Output	An active high signal indicates a byte was received.
IPReset'	Output	An active low signal resets (boot) IOP. This signal should be disabled in debugger side using the switch located on the debugger box.
OutINTR	Output	An active high signal indicates that the output port is empty and ready to accept another byte from the IOP.
NMI'	Output	An active low signal sends an NMI to the IOP.
IPD7-0	I/O	Lines 7-0 are data buses on the debugger interface. These lines carry data between the debugger interface and the IOP.

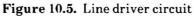
Table 10.1. 2	0-Pin	Connector	Descrip	otion
---------------	-------	-----------	---------	-------


Debugger Interface

10.1.2 Programmable Peripheral Interface

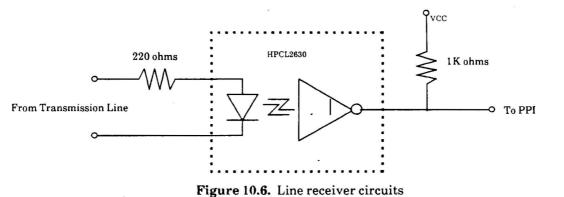
The programmable peripheral interface (PPI), is an Intel 8255A-5. Figure 10.4 illustrates the 40-pin interface chip and also lists the pins and signals.


			. *	
PA3 PA2 PA1 PA0 RD' CS' GND A1 A0 PC7 PC6 PC7 PC6 PC5 PC4 PC0 PC1 PC2 PC3 PB0 PB1 PB2	1 2 3 4 5 6 7 8 9 10 11 8255A-5 12 13 14 15 16 17 18 19 20	PA4 40 PA5 39 PA6 38 PA7 37 WR' 36 RESET 35 D0 34 D1 33 D2 34 D1 30 D5 29 D6 28 D7 27 VCC 26 PB7 25 PB6 24 PB5 23 PB4 22 PB3	Pin Name D7-D0 RESET CS' RD' WR' A0, A1 PA7-PA0 PB7-PB0 PC7-PC0 VCC GND	Pin Signal DATA BUS (BI-DIRECTIONAL) RESET INPUT CHIP SELECT READ INPUT WRITE INPUT PORT ADDRESS PORT A (BIT) PORT B (BIT) PORT C (BIT) + 5 VOLTS 0 VOLTS
			*See Intel data component	book for a detailed description of this


Figure 10.4. PPI pins and signals

10 - 4

The cable between two debugger interfaces is recommended but not required to be at most 10 feet. In order to drive this cable, opencollector Hex LED drivers, DS75492, are used as transmission line drivers. The output of the drivers is individually pulled up with 560 ohm resistors. Figure 10.5 illustrates the line driver circuits.

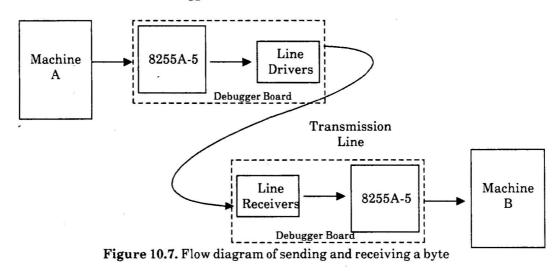


Debugger Interface

10.1.4 Line Receivers

To eliminate ground loops between the debugger machine and the debuggee machine, the opto-isolator, HPCL2630, is used as the line receiver. The characteristics of this device depend on the input voltage, input current, and pull-up resistor.

The values of the resistors used with line drivers and receivers are carefully balanced for proper and reliable operations. Figure 10.6 illustrates the line receiver circuits.

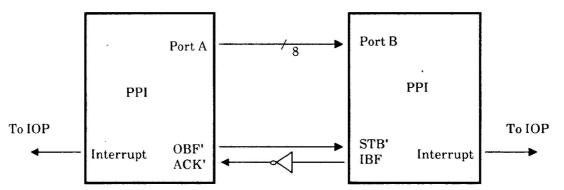


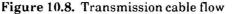
10.2 Theory of Operations

The debugger interface performs two major tasks: sending a byte and receiving a byte. This section describes both of these tasks and the steps that must take place before either action can occur. Refer to Intel's 1984 Micropressor Handbook Volume II for further information on modes.

10.2.1 Sending and Receiving Data

Figure 10.7 illustrates how data is sent from the debuggee to the debugger.




Debugger Interface

- 1. Machine A writes a byte of data to the output port of the PPI attached to machine A.
- 2. This byte is transmitted through the line drivers and received by the line receivers.
- 3. The data is obtained by the PPI attached to machine B by handshaking.
- 4. Machine B retrieves the byte by reading from the PPI input port.

10.2.2 Handshaking

Port A of the PPI is programmed as a mode 1 output port, and port B is programmed as a mode 1 input port. Both ports use handshaking for data transmissions. In mode 1, handshaking is done by PPI port C, internally. Figure 10.8 illustrates the connection between the input port of one debugger interface and the output port of the other debugger interface. The line drivers and receivers are omitted. Table 10.2 lists the steps involved in the handshaking procedure.

Table 1	0.2. Har	dshakir	ng Proced	ure
---------	----------	---------	-----------	-----

Output Port	Input Port
- IOP writes a byte to Port A - 1. Lower OBF'	
PPI turns off the Interrupt (LOW)	
	2. Detect LOW in STB'
	3. Port B latches the byte into the
	buffer
	4. Raise IBF
	Notify IOP by an interrupt (HIGH).
5. Detect Low in ACK'	
6. Raise OBF'	
Notify IOP by an interrupt (HIGH)	
nenne sen 🗸 sona na an 🖉 sonastanensä 122 il 🖬 il foldeni 201928	- IOP reads the byte from Port B -
	PPI turns off the Interrupt (LOW)

Debugger Interface

10 - 6

10.3 Programmer Interface

Improper programming of the debugger interface may result in damage to the circuits on the board. The following sections describe information necessary to program the debugger interface.

10.3.1 Addressing the Debugger Interface

The debugger interface uses four address spaces. Table 10.3 lists the I/O address spaces in the IOP.

Address	RD'	WR'	CS'	Input Operation (Read)	
70H	0	1	0	Port A X Data Bus	
72H	0	1	0	Port B X Data Bus	
74H	0	1	0	Port C X Data Bus	
				Output Operation (Write)	
70H	1	0	0	Data Bus X Port A	
72H	1	0	0	Data Bus X Port B	
74H	1	0	0	Data Bus X Port C	
76H	1	0	0	Da'ta Bus X Control	
0 12 12 YOF 0				Disable Function	
	X	X	1	Data Bus X 3-State	
76H	0	1	0	Illegal Condition	
	1	1	0	Data Bus X 3-State	

Table 10.3. Basic Operations of the Debugger Interface (PPI)

10.3.2 Programming the PPI

The Programmable Peripheral Interface must be programmed in the following way for correct operations to occur.

10.3.2.1. Operational Descriptions and Configurations	Table 10.4 lists the debugger interface configurations.
10.3.2.2. Initialization	While the PPI is being reset, the control register is cleared and all ports are set to input mode. To configure the PPI as the debugger interface, the following steps are necessary.
	 Configure the ports to the following modes:
	Port A to mode 1 output port Port B to mode 1 input port Port C, bits 4 and 5, to output port Data, A6H, should be written into the control register, 76H.
	2. Set the interrupts.
	Set the input interrupt: Data, 05H, should be written into the

control register, 76H.

Debugger Interface

10 - 7

Port	Pin #	I/O	Use
A	PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0	OUT OUT OUT OUT OUT OUT OUT	Output Port
В	PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0	IN IN IN IN IN IN IN	Input Port
С	PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0	OUT IN OUT OUT IN OUT OUT	OBF _A ' ACK _A I/O INTR _A STB _B ' IBF _B INTR _B

Set the output interrupt: Data, 0DH, should be written into the control register, 74H.

Table 10.4. Configuration of the Intel 8255A-5 in the debugger interface

Signal Key

OBFA'	= Output buffer full'
ACKA'	= Acknowledge input
I/O INTRA	 Input/Output Interrupt acknowledge. This signal is reset by the falling edge of Write'.
STBB'	= Strobe input
IBFB'	= Input buffer full
INTRB	= Interrupt Acknowledge. This signal is reset by the falling edge of Read'.

10.3.2.3.

Sending a Byte

First, check the status of the output port, Port A, by reading Port C. A high in bit 3 of Port C indicates that the output port is empty and ready to send the next byte. Write the byte to Port A.

10.3.2.4.

Receiving a Byte

Check the status of the input port, Port B, by reading Port C. A high in bit 0 of Port C indicates that the input port is full and ready to be read.

10.3.2.5.

Sending Boot (Reset) Signal to Debuggee

Machine

In order to boot the debuggee machine, bit 4 of port C in the debugger side must be toggled.

- 1. Set bit 4 of port C: Write data, 09H, to control register C, 76H.
- 2. Wait for about 50 ms.
- 3. Reset bit 4 of port C: Write data, 08H, to control register C, 76H.

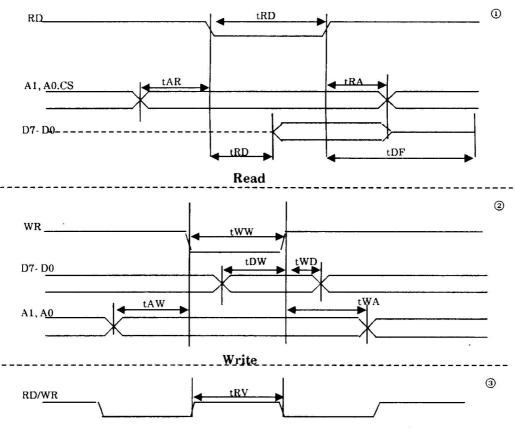

10.3.2.6. Sending an NMI Signal	In order to send NMI, bit 5 of port C must be toggled.
	1. Set bit 5 of port C: Write data, 0BH, to control register, 76H.
	2. Reset bit 5 of port C: Write data, 0AH, to control register, 76H.
10.3.3 Timing	

Table 10.5 lists the timing characteristics for a read and a write. Figure 10.9 illustrates the timing for a read, write, and a read-write.

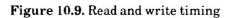

		_	PPI		
	Symbol	Parameter	Min	Max	Unit
Read	ιAR	Address is stable before a Read	0		ns
	tRA	Address is stable after a Read occurs	0		ns
	tRR	Read pulse width	300		ns
•	tRD	Data is valid from Read		200	ns
	tDF	Data floats after Read	10	100	ns
	tAW	Address is stable before a Write	0		
	tWA	Address is stable after a Write	20		
<u>Write</u>	tWW	Write pulse width	300		
	tDW	Data valid to Write	100		
	tWD	Data valid after Write	30		ns
Read/Write	tRV	Time between Reads and/or Writes	850		ns

Table 10.5. Timing Characteristics

Dove IOP Board

Read/Write

Debugger Interface

<u>10 - 10</u>