
HARMONY RELEASE NOTES

January 1985

TABLE OF CONTENTS

Introduction

Input/Output

Printin'g ','•.................................... '

Fonts••....•.......•.•.............•..

1108 Local File System

1108 Floppy•.......•..

RS232•.......... '•..........................

NS Fi Ie Servers '

NS Print Servers ' ,

Ethernet Protocol s•..•.........•..........•...........•..............................

Wi ndow System•.........•...........•.........•...•..............................

Tedit•.......•...

Dedit•........................•...

Break Package

Inspector•........•.......... '

;CHAT•....••......•...

TTYIN•......•...

Stack & Interpreter

History and Exec ..•...................................

File Package .. .

Compiler .. .

Masterscope .. .

DWIM & CLISP

Performance Tools '

Storage & Data Types

Arithmetic

Processes .. '

1108 Microcode '

Li brary Packages

Miscellaneous

Appendices:

v

1

7

13

17

19

21

23

25

27

29

37

39

41

43

45

47

49

51

53

57

59

61

65

67

71

73

75

77

83

A: Hardcopy Facilities " . 85

B: Attached Windows "... 89

C: 1100 & 1108 CPE Parallel Port . 99

D: NS Protocol Support ',... 103

E: Resources ... , 125

F: The Use of Fonts in Harmony 131

HARMONY RELEASE NOTES Iii

TABLE OF CONTENTS

[This page intentionally left blank]

IV HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

INTRODUCTION

These notes document features of the Harmony release of
Interlisp-D. Harmony is the successor to Carol, the June 1984
release of Interlisp-D.

Harmony is substantially more reliable than its predecessors:
over 600 system bugs have fixed. Support for NS file and print
servers is now robust and reliable. Major improvements have
been made to the font system. An advanced version of Tedit,
the Interlisp text editor, is being released with Harmony. Image
streams, which allow for the printing of arbitrary text and
graphics on Interpress and Press printers, are supported by
Harmony.

The following pages present detailed descriptions of these, and
many other features, which constitute the Harmony release.

v

HARMONY RELEASE NOTES

INPUT/OUTPUT

• Advance Warning: Changes to OPENFfLE; multiple streams
per file

At some point in the future, the Interlisp-D i/o system will
change so that each call to OPENFILE returns a distinct stream.
This differs from the current behavior, inherited from Interlisp-
10, that there can only be one stream open on any file, and that
a second OPENFILE (assuming both are for INPUT) will return
the same" openi ng". This change is requi red in order to deal
rationally with files in a multiprocessing environment.

This change will of necessity produce the following
incompatibilities:

1) OPENFILE will return a STREAM, not a full file name. To
make this less confusing, STREAMs will have a print
format that reveals the underlying file's actual name,
and the functions UNPACKFILENAME and
FILENAMEFIELD, when given a STREAM, will operate on
the stream's name.

2) A greater penalty will ensue for passing as the FILE
argument to i/o operations anything other than the
object returned from OPENFILE. Passing the file's name
will be significantly slower than passing the stream (even
when passing the "full" file name), and in the case where
there is more than one stream open on the file it might
even act on the wrong one.

Advice for planning for this change:

Users are encouraged to write code which binds a variable to
the result of OPENFILE and passes that variable to all i/o
operations; such code will likely continue to work. Similar code
that will work less well, if at all, is that which binds a variable to
the result of an INFILEP and passes that to OPENFILE and all i/o
operations; such code works well now, but implicitly assumes
that INFILEP and OPEN FILE return the same thing, an invalid
assumption in this future world. (Code that passes incomplete
file names to i/o operations is incurring a substantial
performance penalty even now, and should have been changed
long ago to use the result of the OPEN FILE.)

To see more directly the effects of passing around STREAMs
instead of file names, replace your calls to OPENFILE with calls
to OPENSTREAM. OPENSTREAM is called in exactly the same
way, but returns a STREAM. Streams can be passed to READ,
PRINT, CLOSEF, etc just as the file's full name can be currently,

INPUT/OUTPUT

2

but using them is more efficient. The function FULLNAME,
when applied to a stream, returns its full file name.

• New function OPENSTRINGSTREAM: access strings like files

Interlisp-D inherited a feature from Interlisp-10 such that if a
string was given as the file argument to an input function
(READ, READC, etc.), that the function would interpret the
string as the contents of a file and read the characters of the
string. However, this never was a very clean design, and it
interferes with the desire to use strings as file names. The
following function has been created to handle i/o operations
from/to strings more cleanly.

(OPENSTRINGSTREAM STR ACCESS)
Returns a stream that can be used to access the characters of
the string STR. ACCESS may be either INPUT, OUTPUT, or BOTH;
NIL defaults to INPUT. The stream returned may be used exactly
like a file opened with the same access, except that output
operations may not extend past the end of the original string.
Also, string streams do not appear in the value of (OPENP).

• Advance Warning: (READ <string» will no longer read
string characters in future release

In the current release, (READ < stri ng » conti nues to work as
before. However, in some future release, this feature will be
decommissioned, and OPENSTRINGSTREAM will be the ONLY
way to treat a string as a file. Users who depend on the old
feature are encouraged to change their code now.

• New function COPYCHARS for copying with EOl
convention

Many parts of the system have been changed to automatically
convert between different EOL conventions. COPYFILE,
MAKEFILE, and Tedit have been so modified, but we can't claim
that every possible case has been taken care of. For user
programs, the following function is available to do this
conversion automatically.

(COPYCHARS SRCFIL DSTFIL START END)
This is like COPYBYTES, except that it performs the proper
conversion if the EOL conventions of SRCFIL and DSTFIL are not
the same. START and END are interpreted as byte specifications
in SRCFIL. The number of bytes actually output to DSTFIL might
be more or less than the number of bytes specified by START
and END, depending on what the EOL conventions are. In the
case where the EOL conventions happen to be the same,
COPYCHARS simply calls COPYBYTES

• 1100/1108 Parallel Port functions

The 1100 has a parallel port connector with 8 bidirectional data
lines, 8 unidirectional output lines, and 5 unidirectional input
lines. The 1108 with Extended Processor Opti on (CPE) has a
si mi lar parall el port connector: the differences are (1) it has 6

HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

INPUT/OUTPUT

unidirectional input lines vs. 5, (2) the power lines of the
connector are 5 volts vs .. 12, and -5, and (3) the pin layouts are
different. The Interlisp functions WRITEPRINTERPORT and
READPRINTERPORT are available for accessing the parallel port.
For more information, see Appendix C (1100 & 1108 CPE Parallel
Port).

• "The infamous PEEKC bug" has been fixed: can backspace
over PEEKC-ed chars

This was a longstanding bug in the Interlisp-D keyboard reader
such that following (PEEKC T), the user couldn't backspace over
the character that was peeked. This affected a number of
functions, such as ASKUSER, FILES? and COMPILE, which peek at
the fi rst character of the user's typei n.

• Directory enumeration faster with multiple properties.

The directory enumeration code has been redone so that
remote files do not have to be looked-up repeatedly when
accessing multiple properties of files (size, author, etc). This
improves the performance of DIR and the file browser.

• DIRECTORY pattern interpretation improved

DIRECTORY and FILDIR have been modified to provide a
consistent meaning for omitted fields in the file name pattern.
Unspecified fields in the pattern default to *, except when the
preceding field delimiter is included, in which case the field is
explicitly null. Null version is interpreted as "highest". Thus:

DIR * = DIR *.* = DIR *.*;*
enumerates everything.

DIR *. = DIR *.;*
enumerates all versions of files with null extension.

DIR *.;
enumerates highest version of files with null extension.

DIR *.*;

enumerates highest version of everything.

• Note: Some hosts/devices are not capable of supporting
"highest version" in enumeration. Such hosts instead
enumerate ALL versions.

• WHENCLOSE operations called when streams are closed

Previously, the WHENCLOSE operations of a file, if any, were
only invoked if CLOSEF was called with the file's name, not if
called with the stream.

INPUT/OUTPUT

4

• COPYFILE now uses FTP protocol whenever possible

Previously, COPYFILE used the Leaf protocol when copying
from a fi Ie server that also implemented Leaf. Usi ng the FTP
protocol for such file transfers is much more efficient for some
servers.

• COPYFILE infers file type when source file has none

COPYFILE always tries to create the new file with the same file
type as the original file. If the original file's file type is
unknown, COPYFILE now infers the type (file is BINARY if any of
its 8-bit bytes have their high bit on). Previously, COPYFILE used
the value of DEFAULTFILETYPE (initially TEXT), which was often
the wrong thing to do, for example, when copying DCOM files.

• COPYFILE to protected directory succeeds after password
given

Previously, COPYFILE to a protected directory caused a "FILE
WON'T OPEN" error even after asking for and receiving the
correct password. This problem occurred only for "sequential"
files written to a PupFtp server, not for ordinary MAKEFILEs.

• COPYFILE to {CORE} or {DSK} copies file creation date

Previously, when copying a file to {CORE} or {DSK}, COPYFILE
would ignore the old file's creation date and instead assign the
current date and time as the new file's creation date.
(COPYFILE to a remote file server has always copied the
creation date correctly.)

Defining a user interrupt char no longer turns off previously
defined user interrupts

• INTERRUPTCHAR user interrupts always "soft", no longer
do CLEARBUF and FLASHWINDOW

In Interlisp-D, user interrupts set with INTERRUPTCHAR are
always "soft", but are also "immediate", i.e., executing the
interrupt does not disturb the process that is running or unwind
the stack, but will happen at the next (interruptable) moment.
Interrupts no longer clear the input buffer and flash the screen;
users that want that behavior should explicitly call CLEARBUF
and FLASHWINDOW as appropriate.

• Control·C no longer calls RAID

Control-C no longer calls RAID. For users who like to be able to
use this low-level interrupt (more useful on 1100 than on 1108),
it can be reenabled by executing (INTERRUPTCHAR 3 'RAID).

• Shift-BS *NOT* equivalent to control-W

The key Shift-BS has been changed so it is no longer equivalent
to control-W in the initial Interlisp loadup. Users can change

HAR:Y10NY RELEASE NOTES

HARMONY RELEASE NOTES

INPUT/OUTPUT

this by the appropriate call to KEYACTION, e.g. (KEYACTION 'ss
'«823 NOLOCKSHIFT») will restore the previous behavior.

• UNPACKFILENAME works with strange file names: A.B.C

This is useful when accessing file servers which do not conform
to Interlisp's file name conventions, such as NS file servers and
UNIX-based file servers.

• OPENFILE < Unix Leaf Server File> does not return
filename with version ;0

In some versions of the Unix leaf server code, for files without
version numbers OPENFILE returns a filename with version
zero. If this file name is then passed to OPENFILE again, it fails.
Now, Interlisp explicitely looks for that situation, and strips off
the version number entirely.

• Known Bug: Unix FTP server returns file names like
"FOO;1."

Some versions of the Unix Ftp Server have a bug that causes DIR
to print the names of extensionless files as, say, "FOO; 1." (with
a period AFTER the version number).

• 1100/1132 {DSK} device supports file types

Files created by Interlisp on the 1100/1132 local file system now
have TYPE information saved, where TYPE = TEXT or BINARY.
Files written outside of Interlisp have TYPE = NIL.

• Expande~ documentation for RENAMEFILE

(RENAMEFILE OLDFILE NEWFILE)
Renames OLDFILE to be NEWFILE. Causes an error, FILE NOT
FOUND if OLDFILE does not exist. Returns the full name of the
new file, if successful, else NIL if the rename cannot be
performed. In the general case (e.g., when OLDFILE and
NEWFILE are on different devices), RENAMEFILE works by
copying OLDFILE to NEWflLE and then deleting OLDFILE.

• Documentation correction: METASHIFT arg has to be T

The reference manual is incorrect when it says that the FLG
argument to METASHIFT can be any non-NIL value. To work
correctly, FLG must be T: (METASHIFT T). Other non-NIL values
are passed as the ACTIONS argument to KEYACTION. The
reason for this is that if someone has set Blank~bottom to some
random behavior, then (RESETFORM (METASHIFT T) --) will
correctly restore that random behavior.

• (CLOSEF < display-stream» is a no-op

• GETECHOMODE checks its argument type

GETECHOMODE will now generate an "ILLEGAL TERMINAL
TABLE" error if it is passed an argument that is not a legal

5

INPUT/OUTPUT

6

terminal table. Previously, it would not check its argument, and
cause a more serious error if it was not a terminal tableo

• GETRAISE causes error if given bad terminal table
argument, instead of calling RAID

HARMONY RElEAS~ NOTES

HARMONY RELEASE NOTES

PRINTING

• Hardcopy functions cleaned up, documented

In previous releases, the functions and variables used to send
files to various printers have been redesigned repeatedly. We
have been trying to design a simple interface that would "do
the right thing" for most users, but would also allow users to
get around the defaults when necessary. It was also important
to provide facilities so users could define their own printers,
and hook them into the normal hardcopy functions.

In the Harmony release, the hardcopy facilities have been
simplified considerably. Files and bitmaps can be sent to the
printer using the functions SEND.FILE.TO.PRINTER and
HARDCOPYW. The variable DEFAULTPRINTINGHOST contains
information about the available printers, and the variables
PRINTERTYPES and PRINTFILETYPES contain the the
information necessary to print a file on any given printer. For
full documentation, see Appendix A (Hardcopy Facilities).

• Image streams allow printing arbitrary text and graphics
on Press or Interpress printers

Previously, the only documented way of printing text and
graphics on Press or Interpress printers was to use one of the
supported tools, such as Tedit. While these tools are sufficient
for many needs, there was a need for functions that users could
call from their programs to print arbitrary text and graphics. As
part of a long-range effort to provide a simple, device
independent interface to the various graphics display routines,
"image streams" were created.

An i mage stream is an output stream which "knows" how to
process graphic commands. It can be passed as the
FILE/STREAM argument to the ordinary character-output
functions (PRINT, etc.) and to the graphic functions as well
(DSPXPOSITION, DRAWClRCLE, etc.). Some image streams, such
as display and local-printer streams, may simply execute the
appropriate operations to cause the desired image to appear
immediately on the output medium. Other image streams
(PRESS, INTERPRESS, etc.) interpret the graphic commands by
saving information in a file of the appropriate format. If this
file is on the {LPT} device, it will automatically be transmitted
to a printer device when it is closed by CLOSEF. Non-LPT files
can be transmitted later by explicit calls to LlSTFILES and
SEN D. FI LE. TO.PRI NTER.

7

PRINTING

8

Image streams are created by the following function:

(OPENIMAGESTREAM FILE IMAGETYPE OPTIONS)
Opens and returns an output stream of type IMAGETYPE on a
destination spedfied by FILE. IMAGETYPE can currently be
either PRESS, I NTERPRESS, or DISPLAY. Eventually, other image
types will be implemented for other devices. FILE can name a
file either on a normal storage device or on a printer device. In
the latter case, the file is sent to the printer when the stream is
closed.

FILE = NIL is equivalent to FILE = {LPT}. Names for printer files
are of the form {LPT}PRINTERNAME.TYPE, where
PRINTERNAME, TYPE, or both may be omitted. PRINTERNAME
is the name of the particular printer to which the file will be
transmitted on closing; it defaults to the first printer on
DEFAULTPRINTINGHOST that can print IMAGETYPE files. The
TYPE extension supplies the IMAGETYPE when it is defaulted
(see below). OPENIMAGESTREAM will generate an error if the
specified printer does not accept the kind of file specified by
IMAGETYPE.

If IMAGETYPE is NIL, the image type is inferred from the
extension field of FILE and the EXTENSIONS properties in the
list PRINTFILETYPES. Thus, a PRESS extension denotes a Press~
format stream, while IP, IPR, and INTERPRESS indicate Interpress
format. If FILE is a printer file with no extension (of the form
{LPT}PRINTERNAME), then IMAGETYPE will be the type that
the indicated printer can print. If FILE has no extension but is
not on the printer device {LPT}, then IMAGETYPE will default
to the type accepted by the first printer on
DEFAULTPRINTINGHOST.

Example: Assuming that IP: is an Interpress printer, P is a Press
printer, and DEFAULTPRINTINGHOST is (IP: P):

(OPENIMAGESTREAM)
Returns an Interpress image stream on printer IP:

(OPENIMAGESTREAM NIL 'PRESS)
Returns a Press stream on P

(OPENIMAGESTREAM '{LPT}.INTERPRESS)
Returns an Interpress stream on IP:

(OPENIMAGESTREAM '{CORE}FOO.PRESS)
Returns a Press stream on the file {CORE}FOO.PRESS

If IMAG ETYPE is DISPLAY, then the user is prompted for a
window to open. The file name in this case will be used as the
title of the window.

OPTIONS is a list in property list format that may be used to
specify certain attributes of the image stream; not all attributes
are meaningful or interpreted by all types of streams. Among
the properties are:

HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

REGION

FONTS

HEADING

PRINTING

Value is the region on the page (in stream scale
units, 0,0 being the lower-left corner of the page)
that text will fill. up. It establishes the initial
values for DSPLEFTMARGIN, DSPRIGHTMARGIN,
DSPBOnOMMARGIN (the point at which
carriage returns cause page advancement) and
DSPTOPMARGIN (where the stream is positioned
at the beginning of a new page).

Value is a list of fonts that are expected to be
used in the stream. Some streams (e.g.
Interpress) are more efficient if the expected
fonts are called out in advance, but this is not
necessary. The first font in this list will be the
initial font of the stream, otherwise the
DEFAULTFONT for that image type will be used.

The heading to be placed automatically on each
page, NIL means no heading.

Other functions that are part of the device-independent
graphics interface:

(lMAGESTREAMP X IMAGETYPE)
Returns X (possibly coerced to a stream) if it is an output image
stream of type IMAGETYPE (or of any type if IMAGETYPE = NIL),
otherwise NIL.

(IMAGESTREAMTYPE STREAM)
Returns the image type of STREAM.

(DSPSCALE SCALE STREAM)
Returns the scale of the image stream STREAM, a number
indicating how many units in the streams coordinate system
correspond to one screen point. For example, DSPSCALE
returns 1 for display streams, and 35.27778 for Press and
Interpress streams (the number of micas per screen point). In
order to be device-independent, user graphics programs must
either not specify position values absolutely, or must multiply
absolute screen-point quantities by the DSPSCALE of the
destination stream. (The SCALE argument to DSPSCALE is
currently ignored; in future releases it will enable the scale of
the stream to be changed under user control, so that the
necessary multiplication will be done internal to the stream
interface).

Note: Not all graphics operations can be properly executed
for all image types. Currently, only display streams
support BITBLT, FILLCIRCLE, and the dashing argument
to DRAWCURVE. This functionality is still being
developed, but even in the long run some operations
may be beyond the physical or logical capabilities of
some devices or image file formats. In these cases, the
stream will approximate the specified image as best it
can.

9

PRINTING

10

• Can preview hardcopy on display using
MAKEHARDCOPYSTREAM

The fonts used in the printers are not exactly the same as the
display fonts, because low-resolution screen fonts don't look
good when printed on high-resolution printers. In particular,
the character widths are not the same (even when scaled to
take account of the printer resolution), Because of this, it is
difficult to format text on the display so that it is EXACTLY
where you want it, since it will be slightly different when
printed. In order to allow users to "preview" hardcopy without
actually printing it, the following functions are useful:

(MAKEHARDCOPYSTREAM DISPLA YSTREAM IMAGETYPE)
Changes the display stream so that measurements of character
widths are consistent with the hardcopy device IMAG ETYPE
(PRESS, INTERPRESS, etc), This is useful for seeing on the screen
how an image will look when it is hardcopied. Caveat: This
doesn't work for TEd it windows.

(U NMAKEHARDCOPYSTREAM DISPLA YSTREAM)
Changes a "hardcopy display stream" back into a regular
display stream.

Note: When printing to a "hardcopy display stream ", the
text will not look as good as it will when printed. In
particular, the characters may look crunched together.
However, it accurately displays the relative positions
of the letters, for formatting purposes.

Can print bitmaps on PRESS printers

Bitmaps can be printed on press printers using HARDCOPYW, or
by inserting bitmaps into Tedit documents. If the bitmap is too
large for the press printer to handle (for example, if you try to
print a complete screen image), it is clipped.

• HARDCOPYW sends bitmaps to both PRESS and FULLPRESS
printers

HARDCOPYW now goes through FULLPRESSBITMAP when
going to a full press printer. The function PRESSBITMAP uses
the CLiPPINGREGION argument for clipping, while
FULLPRESSBITMAP recognizes the SCALEFACTOR argument.

• L1STFILES automatically detects and prints formatted Tedit
files

• HARDCOPYW not a no-op if DEFAULTPRINTERTYPE = NIL

• Better error message printed if DEFAULTPRINTINGHOST is
NIL

Previously, attempting a hardcopy operation with
DEFAULTPRINTINGHOST = NIL would produce an obscure low
level error.

HARMONY RELEASE NOTES

PRINTING

• HARDCOPYW has new arg: PRINTERTYPE

By default, HARDCOPYW will create an Interpress file if there
are any Interpress printers on DEFAULTPRINTINGHOST. This
default can be changed by passing PRESS as the PRINTERTYPE
argument to HARDCOPYW,

• HARDCOPY in the background menu does not reposition
the cursor

HARMONY REi..EASE !'JOTES 11

PRINTING

[This page intentionally left blank]

12 HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

FONTS

• Incompatible Change: New·font directory variables.

Previously, Interlisp used a confusing group of variables
(FONTDIRECTORIES, NSFONTDIRECTORIES,
NS FONTWI DTHS 0 IRE CTO R I ES, ST ARFO N TO IRE CTO R I ES,
FONTWIDTHSFILES)

to determine where to search for font bitmap files and font
widths files. These variables have been removed, and a new,
rationally-named, set has been introduced:

DISPLA YFONTDIRECTORIES
Value is a list of directories searched to find font bitmap files
for display fonts.

DISPLA YFONTEXTENSIONS
Value is a list of file extensions used when searching
DISPLA YFONTDIRECTORIES for display fonts. Currently,
Interlisp can read "STRIKE" and "AC" display font file formats.
Eventually, allinteriisp display fonts will be distributed with the
extension .DISPLA YFONT. Therefore, this variable should be
initiaUzed to (DISPLA YFONT STRIKE AC). Note that the
extension on the file is used to locate the file, but once the file
is found Interlisp looks inside it to determine what format it is
and how to read it. The function (FONTFILEFORMAT FILE
LEAVEOPEN) returns the format of a font file (AC, STRIKE, etc.).

INTERPRESSFONTDIRECTORIES
Value is a list of directories searched to find font widths files for
Interpress fonts. These files must have the extension "WD".

PRESSFONTWI DTHSFI LES
Value is a list of files (not directories) searched to find font
widths files for press fonts. Press font widths are packed into
large "FONTS.WIDTHS" files.

All of these variables must be set before Interlisp can auto-load
font files. These variables should be initialized in the site
spedfic INIT file.

• Incompatible Change: FONTDESCRIPTOR·· datatype
changed; Cannot load fonts dumped with UGLYVARS in
Carol

Between the Carol and Harmony releases, the system datatype
FONTDESCRIPTOR was changed, to add a few more fields.
Normally, changes to system datatypes do not affect users very
much: they just have to recompile old files which use the

13

FONTS

14

datatypes. However, in the case that users saved Carol display
fonts on files using the UGl YVARS file package command,
more care is required to update these files to Harmony.

The problem is that datatype objects put on files with
UGl YVARS contain the definition of the datatype. If a Carol
file was loaded into Harmony which redefined a system
datatype such as FONTDESCRIPTOR, Interlisp would almost
certainly crash. In order to prevent people accidently
redefining the FONTDESCRIPTOR datatype, the file package has
been changed so that trying to change a datatype declaration
while reading in an UGl YVARS object causes an error.

If users have created display fonts in Carol that they wish to use
in Harmony, the upgrade procedure is the following: (1) While
running the Carol release, load the lispusers package
EDITFONT.DCOM. (2) Use the function (WRITESTRIKEFONTFllE
<fontdescriptor> <filename» to save each font descriptor
as a "strike" format file. Note that strike files do not contain
information about the font family, size, etc, so give the strike
files descriptive names: e.g., GREEK10B.STRIKE. (3) While
running the Harmony release, load EDITFONT.DCOM (note:
the same package has been tested to work with both Carol and
Harmony). (4) Use the function (READSTRIKEFONTFllE
<family> <size> <face> <file» to read in the strike file,
and create a fontdescriptor with the specified family name,
face, etc.

Note: It is recommended that user-created display fonts be
stored as strike fonts, rather than stored as font
descriptors on lisp files. If the files are named similarly
to strike files distributed with Interlisp, and put on the
same directories, they can be used like any other font.

• Fontclasses are first-class data objects

Fontclasses have been introduced as a first-class data object
which contains a set of related fonts for different devices. The
font functions accept fontciasses, from which they extract the
appropriate font for their device. The normal font class
variables (DEFAUl TFONT, ClISPFONT, etc.) are initialized to
fontclass objects. Fontelasses are created and manipulated with
the following functions:

(FONTCLASS NAME FONTLIST CREATEFORDEVICES)
Returns a new fontclass object with the name NAME and the
device font components specified by FONTLlST, which should
be a list of the form «displayfont> <pressfont>
<interpressfont> <otherfont1> <otherfont2> ...).
< otherfontN > should be a list of the form « devicename >
< font». Each of the fonts in FONTLIST may be either a font
descriptor, or a "font specification list" that FONTCREATE
would accept. CREATEFORDEVICES is a list of the devices for
which the fonts should be automatically created. Otherwise,
the fonts are not actually created until they are accessed. Note:
if a display font is specified in FONTlIST, it is always created.

HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

(FO NTCLASSCOMPO N E NT
NOERRORFLG)

FONTCLASS DEVICE

FONTS

FONT

Returns the font component of the fonctclass for the device
DEVICE (DISPLAY, PRESS, I NTERPRESS, etc.). If FONT is non-N I L,
the specified component is replaced. If NOERRORFLG is non
NIL, FONTCLASSCOMPONENT return NIL if the component is
unspecified in the fontclass, rather than causi ng an error.

Note: Because font classes are no longer represented by lists,
old code which accesses the components of a font class
with CAR, CADR, etc. will not work, and must be
changed.

• Font functions take font in many forms

The font functions have been extended to take fonts specified
in a variety of different ways. CHANGEFONT, DSPFONT,
FONTCREATE, etc. can be appl ied to fontclasses, font
descriptors, and "font lists" such as '(GACHA 10). The pri ntout
command ".FONT" has also been extended to accept fonts
specified in any of these forms.

• FONTCREATE accepts streams for DEVICE argument

The function FONTCREATE has been extended so that the
DEVICE argument can be an image stream, not just an image
type. If a stream is given, the result will be a font appropriate
for that stream.

• New FONTPROP properties: SCALE, SPEC, DEVICESPEC

The function FONTPROP has also been extended to recognize
the new properties SCALE, SPEC, and DEVICESPEC. The value of
the SCALE property is the units per screen-point in which the
font is measured. For example, this is 35.27778 (the number of
micas per screen point) for Press and Interpress fonts, which are
measured in terms of micas. The value of the SPEC property is
the full specification of the font as it is known to Interlisp, a
family-size-face-rotation-device quintuple. The value of the
DEVICESPEC property is the same as the value of the SPEC
property, unless the system has had to coerce the font to
another name to find the most appropriate rendering on a
specific pri nti ng device.

• New font function: FONTSAVAILABLE

This function allows programs to determine what fonts are
available for different devices.

15

FONTS

-~~-

(FONTSAVAILABLE FAMILY SIZE FACE ROTATION DEVICE
CHECKFILESTOO?)
Returns a list of fonts that match the given specification.
FAMILY, SIZE; FACE and DEVICE are the same as for
FONTCREATE. Additionally, any of them can be the wildcard
atom u*u, in which case all values of that field are matched. In
systems with several font directories, wildcard searches may
take a while.

If CHECKFILESTOO? is NIL, only fonts already loaded into virtual
memory will be considered. If CHECKFILESTOO? is non-NIL, the
font directories for the specified device will be searched. When
checking font files, the ROTATION is ignored.

Note: The search is conditional on the status of the server
which holds the font. Thus a file server crash may
prevent FONTCREATE from finding a file that an
earlier FONTSAVAILABLE returned.

Each element of the list returned will be of the form (Family
Size Face Rotation Device). For example:

(FONTSAVAILABLE 'MODERN 10 'MRR 0 'DISPLAY)

will return «MODERN 10 (MEDIUM REGULAR REGULAR) 0
DISPLAY» if Modern 1 0 for the display is in virtual memory; NIL
otherwise.

(FONTSAVAILABLE '* 14 '* '* 'INTERPRESS T)

will return a list of all the size 14 interpress fonts available
either loaded into virtual memory or in the font directories.

• SEE starts printing in correct font

Previously, if the default font of the exec window was changed,
then SEE of an Interlisp source file would start out printing in
that font (until the next font change). Now, SEE resets the font
at the beginning of printing an Interlisp source file.

• EDITCHAR, etc. now work with character # 256 (the
dummy char)

\..J /\ OI\J1f,I\IV Of:1 f: /\ cc l\,flTf:C

HARMONY RELEASE NOTES

11 08 LOCAL FI LE SYSTE M

• Incompatible Change: Local file system format changed;
MUST reformat 1108 disks

The 1108 low-level disk format has been changed. To use the
Harmony release, do the following: (1) copy any valuable local
disk files to floppy or file server; (2) repartition the whole 1108
disk using the Harmony Installation Utility floppy (see the 1108
Users guide). Note that this erases ALL information on the disk;
and (3) use DFSCREATEDIRECTORY to recreate any Lisp
directories on local disk logical volumes.

Important Warning: Because of the change in disk format,
you cannot run a Carol sysout on a
Harmony-partitioned 1108, nor a
Harmony sysout on a Carol-partitioned
1108. Attempting to do so may
destroy information on the local disk.

• Incompatible Change: Access logical volume Faa by
{DSK}< Faa> I instead of {FOO}

There is now a single local hard disk file device, {DSK}. Each
logical volume with a Lisp directory on it now counts as a
separate directory of the device {DSK}. (In Carol, each logical
volume with a Lisp directory counted as a separate device.)

• Incompatible Change: Many local file system functions
renamed

The user functions for the local file system have been
redesigned. A number of functions have been renamed, and
others have been added or deleted. The following functions
have been renamed:

MKDIR = = > DFSCREATEDIRECTORY

MAKEPILOT = = > DFSPURGEDIRECTORY

DFSVOLUMES = = > VOLUMES

For more information, see the 1108 Users Guide.

• (DISKPARTITION) returns the name of virtual memory
logical volume

When Interlisp is running on an 1108, the function
DISKPARTITION returns the name of the 1108 logical vol ume

1108 LOCAL FILE SYSTEM

containing the currently-running Interlisp virtual memory. This
is analogous to the behavior of this function on 1100 or 1132s.
The function CURRENTVOLUME has been removed.

• SCAVENGEVOlUME now preserves filenames

Note: SCAVENGEVOLUME is no longer included in the
standard Interlisp-D system. It is available by loading
the library package DlionFSScavenge.DCOM.

• Running local file system functions on non-1108s will fail
gracefully

Previously, calling local file system functions from Interlisp
running on a non-11 08 would cause strange low-level errors.
Now, all of these functions check whether Interlisp is running
on an 1108, and generate an appropriate error message if not.
One exception: VOLUMEDISPLA Y simply returns NIL if not on
an 1108, so this function can be called from i nit fi les that are
run on different machines.

• local file system does not allocate large files all at once

Previously, COPYFILE of a large file from an NS file server to the
local file system would fail, because the local file system would
try allocating the entire file first, and the connection would
time out.

• Local disk renames files from core device {OSK} to
{PSEUDO-OSK}

If a core device {DSK} exists- when the local file system wants to
create a device DSK for the local file system, a new device
{PSEUDO-DSK} is created, any files are copied over, and the
core device {DSK} is deleted. A warning message is also
printed. If there are no files on the core device DSK, it is simply
deleted with no warning message.

• 1108 local disk coerces HOST/DEVICE names to upper case

When returning full file names, the 1108 local file system
coerces the" host/device" name to upper case: {dsk} -> {DSK}.

• The VOLUMEDISPlAY window can be reshaped

• Known Bug: Local file system does not preserve file type
information.

18 HARMONY REL.EASE ,\lOTES

HARMONY RELEASE NOTES

1108 FLOPPY

• Known bug: Should format new floppies before doing
SYSOUT[{FLOPPY}]

There have been some cases where SYSOUT[{FLOPPY}]
produced an incomplete sysout, when floppies that had never
been formated before were used. Workaround: do
(FLOPPY. FORMAT NIL NIL T) on new floppies first.

• Floppy state flushed over LOGOUT

Previously, if a floppy was left in a drive during LOGOUT and a
new floppy was inserted before Interlisp was restarted, it was
possible that Interlisp would use the old floppy directory
information, which could destroy information on the new
floppy. Now, floppy directory information is refetched the first
time the floppy is used after Interlisp is restarted.

• Trying to access FLOPPY on non-110S no longer hangs

Trying to access the floppy drive when running Interlisp on a
machine other than the 1108 will now print" Floppy: No floppy
drive on this machine" before generating the system error
"FILE WON'T OPEN". Other operations, such as DIR {FLOPPY}*
will not generate an error, but instead make {FLOPPY} look like
it has an empty directory so that file searches work correctly
when {FLOPPY} is on the search path.

• COPYFILE of SYSOUT from non-Interlisp floppies works
correctly

Previously, COPYFILE would not copy a sysout file from floppies
correctly, if the sysout was not originally put there by Interlisp.

• (OUTFILEP '{FLOPPY}xxx) works, instead of returning NIL

• New messages when creating multi-floppy file

When copying a sysout or other large file to floppies (with
FLOPPY.MODE = SYSOUT or HUGEPILOT), a message is printed
at the start saying how many floppies will be required.
Between floppies, the message now says "Insert Floppy #n",
rather than" Insert next floppy".

• (lNFILEP '{FLOPPY}xxx) returns NIL if no floppy in the drive

Used to cause an error.

19

1108 FLOPPY

20

• Floppy file versions on different floppy directories
incremented correctly

Previously, the floppy system ignored floppy file directories
when computing the next version number for a new file. For
example, it would create the file {FLOPPY}< BAR> NAME.;2 if
there was a file {FLOPPY}< FOO>NAME.; 1.

• FLOPPY.MODE no longer changed to SYSOUT after a
sysout

(SYSOUT '{FLOPPY}) wi" automatically change the floppy
mode to SYSOUT during the sysout. However, after the sysout
is completed, it is changed back to what it was before the
sysout.

• FLOPPY now supports file types

• Floppy error msgs are printed in the typescript window,
rather than the prompt window

• (COPYFILE xx '{FLOPPY}) in PILOT mode gives error
message

Previously, copying to {FLOPPY} giving a null file name could
damage the information on the floppy. Now it just gives an
error message.

• Bad error msg "ARG NOT LP: NIL" changed

This obscure error message occurred when trying to read a Pilot
floppy file when FLOPPY.MODE was set to SYSOUT. The
appropriate work around was to execute (FLOPPY.MODE
'PILOT), and trying again.

• FLOPPY.COMPACT accepts "No" as answer to confirmation

• Floppy errors are now regular file system errors

• Sysout to write-protected floppy prints reasonable error
message

HARMONY RELEASE NOTES

RS232

• 1108 optional RS232C port is supported; provides more
reliable communication

The Harmony release supports the optional RS232C port on the
1108. This port is buffered independently of Lisp operations, so
there is little, if any, chance of dropping characters. Use of this
port requires the E30 hardware option.

• RS232 documentation totally revised; new functions

The RS232 documentation has been totally revised so it doesn't
focus on the implementation on the Xerox 1100. A few of the
minor additions explained in the new documentation:

The function RS232SHUTDOWN is a "cleaner" way of doing
(CLOSEF '{RS232})

The function RS2321NPUTSTRING inserts characters into the
input ring buffer. This permits a way to simulate the reception
of characters through the actual UART

The function RS232FORCEOUTPUT has a new argument which
specifies whether the function should return before all the
characters are transmitted (the default).

RS232DEVICEERRORFN is a new global variable used when
handling hardware errors

The RS232LOGIN facility is now documented. This provides a
way for automating the login procedure when connecting to
various hosts.

• Incompatible Change: Global variable RS232XON\XOFF?
replaced by function RS232XON\XOFF?

The interface to the XON/XOFF protocol has been changed:
rather than setting the global variable RS232XON\xOFF?, the
new function (RS232XON\xOFF? ON?) should be used to set and
unset this state. In future release of the I/O processor code,
enabling/disabling XON/XOFF processing by the RS232C port
will require a functional interface to what is now merely a
global variable.

• RS232 no longer breaks over LOGOUT/restart

• RS232CHAT command -Local Echo works as specified

HARMONY RELEASE NOTES 2'

RS232

[This page intentionally left blank]

22 HAR:v10NY REl.EASE NOTeS

NS FILE SERVERS

• Many NS filing reliability problems fixed

The NS filing system has been reworked, and made much more
robust. In particular, a number of problems associated with
open files timing out have been solved.

• NS filing directory operations automatic

NS file servers support a true hierarchical file system, where
subdirectories are just another kind of file. In previous releases
of Interlisp-D, users had to explicitly create subdirectories using
the function NSCREATEDIRECTORY. In Harmony, subdirectories
are created automatically as needed: A call to OPENFILE to
create a file in a non-existent subdirectory automatically
creates the subdirectory; CONN to a non-existent subdirectory
asks the user whether to create the directory. The function
NSCREATEDIRECTORY has thus been removed. Note: Requires
Services Release 8.0.

• DIR fully enumerates NS files in subdirectories

In previous releases, DIR enumerated a directory only to the
first level; it did not recursively enumerate the contents of
subdirectories. In Harmony, DIR can enumerate a directory to
arbitrary depth; the exact depth is controlled by the variable
FILlNG.ENUMERATiON.DEPTH, which is a small positive integer
or T. The default value is T, meaning infinite depth: the entire
directory is enumerated, and subdirectory "files" do not appear
at all. Also, the special function NSDIRECTORY is no longer
needed, and has been removed: DIRECTORY works with NS file
servers exactly as with other devices. Note: Requires Services
Release 8.0. Earlier versions of Services will continue to behave
as if FILlNG.ENUMERATiON.DEPTH = 1.

• NS file operations prompt for password

When the user attempts an NS file server operation, Interlisp
passes the current username and password (as given to the
function LOGIN) to the NS file server. If these are not accepted,
Interlisp prompts the user to enter the correct name and
password. If the current username and password are correct,
the user is not prom pted at all.

Note: The user can abort an NS password prompt by typing
control-E. The result of the file operation will be as if
the NS file server did not exist.

HARMONY RELEASE NOTES 23

NS FILE SERVERS

24

• SETFILEINFO, GETFILEINFO can access the TYPE attribute of
NS files

GETFILEINFO and SETFILEINFO now accept the TYPE and
FILE.TYPE attributes for NS files. TYPE is the standard Lisp file
type, with values TEXT and BINARY. FILE.TYPE is the (server
dependent) numeric value of the file's FILE.TYPE property,
which a 16-bit number for NS file servers. Using the FILE.TYPE
attribute, you can change the file type to other non-lisp file
types.

• GETFILEPTR works with NS files

SETFILEPTR of an NS file causes an error, since NS file servers do
not currently support random access. However, GETFILEPTR
now returns the correct character position for open files on NS
fi I e servers.

Note: SETFILEPTR works in the spedal case where the file is
open for input, and the file pointer is being set
forward. In this case, the· intervening characters are
automatically read.

• (FUllNAME <file> 'NEW) and OUTFILEP now work for NS
file servers.

Used to return NIL.

HAR:v10NY RELEASE ;\JOTES

NS PRINT SERVERS

• Can generate hardcopy of full screen on Xerox 8044 pri nter

Use the HARDCOPYW function or the HARDCOPY command in
the Background menu.

• Multiple transmissions to NS printers no longer cause
break "not an open NS socket"

Multiple concurrent NSPRINTs or HARDCOPYWs no longer
confuse each other. No more breaks with "not an open NS
socket".

• ROTATION argument to HARDCOPYW works to 8044
printers

Previously, the rotation argument was not supported when
sending bitmaps to the 8044 printer. Now, this is supported for
ROTATION = a multi pie of 90 degrees.

• Can print to NS printers with A4 paper: variable
NSPRINT.DEFAULT.MEDtUM

The variable NSPRINT.DEFAULT.MEDIUM can be used to set the
default NS printer medium. NIL (the default) means to use the
printer's default; T means to use the first medium reported
available by the printer; any other value must be a Courier
value of type MEDIUM. The format of this type is a list (PAPER
(KNOWN.SIZE <TYPE») or (PAPER (OTHER.SIZE «WIDTH>
<LENGTH»)). The paper type <TYPE> is one of the atoms
US.LETTER, US. LEGAL, AO through A 10, ISO.BO through ISO.B 1 0,
and JIS.BO through JIS.B 1 O.

For European users who use A4 paper exclusively, it should be
sufficient to set NSPRINT.DEFAULT.MEDIUM to (PAPER
(KNOWN.SIZE "A4")).

Note: When using different paper sizes, it may be necessary
to reset the variable DEFAU LTPAGEREGION, the
region on the page used for printing (measured in
micas from the lower-left corner),

HARMONY RELEASE NOTES 25

NS PRINT SERVERS

(This page intentionally left blank)

26 ""lAR:vlONY RELEASE NOES

ETHERNET PROTOCOLS

• SPP, Courier, Clearinghouse reimplemented: low-level
incompatibilities

As part of the improvements to NS Filing and Printing, the
underlying implementations of SPP, Courier and Clearinghouse
have been substantially rewritten, in several places
incompatibly. Users who program applications that use SPP,
Courier or Clearinghouse directly should read Appendix D (NS
Protocol Support).

• "SPP Retransmit Queue out of order" errors fixed

The SPP retransmit strategy has been completely revised, so this
intermittent problem should disappear.

• SETTIME now broadcasts for both PUP and NS time servers.

SETTIME used to just try for a PUP time server.

• Superfluous "not responding" messages after NS
operations removed

Also, the function CLOSE.NSFILlNG.CONNECTIONS has been
removed.

• GETPUPSTRING applied to a blank pup now returns the null
string instead of erroring

• 1108s can "hear" their own Ethernet transmissions

The 1108 hardware is not capable of receivi ng the Ethernet
packets it transmits. In previous releases, this meant that if an
1108 sent a packet addressed to itself, it would never receive it.
In Harmony, the 1108 low-level Ethernet software takes care of
this by faking receipt of such a packet. The implication of this is
that programmers writing Lisp-based Ethernet servers can now
test them out by running user and server code on the same
machine.

• Interlisp no longer hangs on an 1100 running 3MHz
ethernet microcode without a 3MHz ethernet card

HARMONY RELEASE NOTES 27

ETHERNET PROTOCOLS

. (This page intentionally left blank)

28 HAR;V101\J Y RE~EASE NOTES

HARMONY RELEASE NOTES

WINDOW SYSTEM

• The A TIACHEDWINDOW package has been added to the
standard Interlisp loadup.

The ATTACHEDWINDOW library package has been added to
the standard Interlisp-D window system. Many system tools
(inspector, break package, etc.) now use attached windows for
managing sets of windows. A number of changes have been
made to the attached window facility:

New" attached prompt windows" provide a uniform way to
access a small prompt window attached to another window.

Attached windows can be closed without cl9sing the main
window

BURY now buries all attached windows correctly

New function (DETACHALLWINDOWS MAINWINDOW)
detaches and closes all windows attached to MAINWINDOW.

ATTACHMENU opens menu window immediately; new arg
NOOPENFLG

New function MAINWINDOW for getting the mainwindow
from an attached wi ndow

For complete documentation of the attached window facility,
see Appendix B (Attached Windows).

• Can move icons with LEFT button, expand with MIDDLE
button

Buttoning the LEFT button on an icon allows you to move it.
Pressing the MIDDLE button expands it.

• Changes to WFROMDS reduce empty tty windows

WFROMDS has a new arg, DONTCREATE. If DONTCREATE is
non-NIL, WFROMDS will never create a window, and return NIL
if DISPLA YSTREAM does not have an associated wi ndow

TTYDISPLAYSTREAM calls WFROMDS with DONTCREATE = T,
so it will not create a window unnecessarily. Also, if WFROMDS
does create a window, it calls CREATEW with NOOPENFLG = T.
These changes fix many of the empty tty windows that used to
appear.

29

WINDOW SYSTEM

30

• Many changes to caret behavior

There is now one caret per process. This fixes problems with
carets being left on the screen and with windows being created
just to take the caret down. The caret in the current process is
always visible; if it is hidden by another window, its window is
brought to the top_ The function CARET has been changed,
and the function CARETRATE, which changes the caret rate of
the current process has been added:

(CARET N EWCARET)
Sets the shape that blinks at the location of the next output to
the current process. NEWCARET is either (1) NIL - no changes,
returns a CURSOR representing the current caret, (2) OFF - turns
the caret off, (3) a CU RSOR which gives the new caret shape or
(4) T - resets the caret to the default which is the value of the
variable DEFAU L TCARET. DEFAU L TCARET can be set to change
the initial caret for new processes. The hotspot of NEWCARET
indicates which point in the new caret bitmap should be
located at the current output position. The previous caret is
returned. Note: it is now permissible for the caret bitmap to be
larger than cursor bitmap dimensi'ons (16x16).

(CARETRATE ONRA TE OFFRATE)
Sets the rate at which the caret for the current process wi II
flash. The caret will be visible for ONRATE milliseconds, then
not visible for OFFRA TE milliseconds. If OFFRATE = NIL, the
value of ONRATE is used. If ONRATE is T, both the "on" and
"off" ti mes are set to the val ue of the variabl e
DEFAULTCARETRATE (initially 333). The previous value of
CARETRATE is returned. If the caret is off, CARETRATE return
NIL

• Caret flashing doesn't bring window to top during
buttoning or copy-selecting

The caret code has been changed so that it doesn't bring the
flashing caret's window to the top if the user is buttoning or
has a copy key down. This prevents the destination window
(which has the tty and caret flashing) from interfering with the
window one is trying to select text to copy from.

• Cursor reset correctly after going through scroll bar

Previously, slowly dragging the mouse out of the left of a Tedit
window would change the cursor to a right-facing arrow (in the
left margin), change it to the scrolling cursor (in the scroll bar),
and "restore" it to the right-facing arrow upon leaving the
scroll bar. The window system now restores the cursor correctly
to the value of DEFAULTCURSOR upon leaving a window.

• New Background menu when Copy-key pressed; allows
copy-inserting a SNAP

Various system utilities (TEdit, DEdit, TTYIN) allow information
to be "copy-inserted" at the current cursor position by selecting

HARMONY R:::..EASE !'JorES

HARMONY RELEASE NOTES

WI~DOW SYSTEM

it with the "copy" key held down. (Normally the shift keys are
the "copy" key, this action can be changed in the key action
table.) It is now possible to "copy-insert" the bitmap of a snap
into a Tedit document. If the right mouse button is pr,essed in
the background with the copy key held down, a menu with the
single item "SNAP" appears. If this item is selected, the user is
prompted to select a region, and a bitmap containing the bits
in that region of the screen is inserted into the current tty
process, if that process is able to accept image objects (Ii ke
Tedit).

This is implemented by the new variables
BackgroundCopyMenu and BackgroundCopyMenuCommands,
which are interpreted similar to BackgroundMenu and
BackgroundMenuCommands. If the right mouse button is
pressed in the background when the copy key is down, the
menu stored in the variable BackgroundCopyMenu is envoked.
If this is NIL, a new menu is created from the menu commands
in BackgroundCopyMenuCommands.

• RESHAPEBYREPAINTFN uses new strategy to determine
window contents after reshape

Previously, RESHAPEBYREPAINTFN (the default reshaping
function) always copied the old image to the lower-left corner
of the-new window, adding any new image to the top and left.
This produced unintuitive results in the case where the lower
left corner was grabbed and moved out. The new behavior will
display the part of the object in the direction of the expansion
(if the opposite side is not moved) and only display white space
beyond the extent if the extent is fully visible.

This change required that a fourth argument be passed to the
RESHAPEFN of a window: OLDSCREENREGION, the region that
the window occupied before being reshaped. This allows
RESHAPEBYREPAINTFN to determine which edges of the
window have been moved. Note: in some situations,
RESHAPEBYREPAINTFN may call a window's REPAINTFN as
many as four times on different window regions.

• New Background Button Event Functions

The variables
BACK G RO UN DB U TTO N EV E N TF N,
BACKG ROU N DCU RSORI N FN, BACKG ROU N DCU RSOROU TFN
and BACKGROUNDCURSORMOVEDFN

provide a way of taking action when there is cursor action
when the cursor is in the background. If set to the name of a
function, that function will be called, respectively, whenever
the cursor is in the background and a button changes, when the
cursor moves into the background from a window, when the
cursor moved out of the background into a window, and when
the cursor moves from one place in the background to another.
These are analogous to the window properties
BUTTONEVENTFN, CU RSORINFN, CU RSOROUTFN, and
CU RSORMOVEDFN.

31

WINDOW SYSTEM

32

• New BURYW behavior _. faster algorithm

BURYW has been changed to take down the windows
overlapping the window to be buried, then reopening them in
the right order.

• 1108 background border preserved over LOGOUT/restart

The backgound border (around the screen) on the 1108 can be
changed with the function CHANGEBACKGROUNDBORDER.
During LOGOUT, the border is changed back to the default
shade. Now, the border is restored to its new pattern after
LOGOUT/restart on an 1108.

• Fixed: Caret didn't flash on 1108 after LOGOUT/restart

Sometimes, the caret would not flash after doing LOGOUT and
restarting Interlisp on an 1108. This could be fixed by typing
(CARET), so it was not a major problem, but it was annoying.

• If MENU is called with RELEASECONTROLFLG = T, the menu
window is brought to the top.

Previously, a "released" menu could be hidden by other
windows. Now, the released menu will stay visible until it is
closed or an item is selected.

• Moving an off-screen window onto the screen redisplays
its contents

• DRAWCURVE to the display works correctly in INVERT
mode if BRUSH = 1

DRAWCURVE, DRAWClRCLE, and DRAWELLlPSE to the display
will work if the brush argument is 1, and the "operation" of the
displaystream is INVERT. For brushes larger than 1, the INVERT
operation is the same as the ERASE operation.

DRAWCURVE to other image streams generally only supports
the PAINT operation.

• New window property: NOSCROLLBARS

If a window's NOSCROLLBARS property is non-NIL, scroll bars
will not be brought up for the window, even if it has both
EXTENT and SCROLLFN properties. This allows the creation of
windows that can scroll ONLY under program control.

• New window property: WINDOWTITLESHADE sets shade
used in window title bar.

If a window's WINDOWTITLESHADE property is non-NIL, it
should be a texture which is used as the "backgound texture"
for the title bar on the top of the window. If this property is
NIL, then the value of the variable WINDOWTITLESHADE is
used, initially black. Note that black is always used as the

HARMONY RELEASE NO;-ES

HARMONY RELEASE NOTES

WINDOW SYSTEM

background of the title printed in the title bar, so that the
letters can be read -- the remaining space is painted with the
"title shade".

• Textures can be BITMAPs up to 16 by 16 bits

TEXTU REP, BITBl T, DSPTEXTU RE, DSPFI ll, etc. accept bitmaps
up to 16 bits wide by 16 bits high as textures. When a region is
being filled with a bitmap texture, the texture is treated as if it
were 16 bits wide (if less, the rest is filled with white space).

• New functions INVERTW, FLASHWINDOW

(INVERTW WIN SHADE)
Inverts the window WIN, by XOR-ing it with the shade SHADE.
If SHADE = Nil, the default is to XOR with the shade BLACK,
which simply inverts the bits.

(FLASHWINDOW WIN? N FlASHINTERVAl SHADE)
Flashes the window WIN?, by inverting it twice. N is the
number of times to flash" the window (default is once).
FLASHINTERVAl is the number of milliseconds to wait with the
window inverted (default is 200). SHADE is interpreted as in
INVERTW.

If WIN? is Nil, the whole screen is flashed. ,In this case, the
SHADE argument is ignored (can only invert the screen),

• New function OECOOE.WINOOW.ARG: coerces window
specs to window

(DECODE.WINDOW.ARG WHERESPEC WIDTH HEIGHT TITLE
BORDER NOOPENFLG)
This is a useful function for creating windows. WHERESPEC can
be a WINDOW, a REGION, a POSITION, or NIL. If WHERESPEC is
a WINDOW, it is returned. In all other cases, CREATEW is called
with the arguments TITLE, BORDER, and NOOPENFLG. The
REGION argument to CREATEW is determined from
WHERESPEC as follows:

If WHERESPEC is a REGION, it is adjusted to be on the screen,
then passed to CREATEW. If WIDTH and HEIGHT are not
numbers, CREATEW is given NIL as a REGION argument.

If WIDTH and HEIGHT are numbers and WHERESPEC is a
POSITION, the region whose lower left corner is WHERESPEC,
whose width is WIDTH and whose height is HEIGHT is adjusted
to be on the screen, then passed to CREATEW.

If WIDTH and HEIGHT are numbers and WHERESPEC is not a
POSITION, then GETBOXREGION is called to prompt the user for
the position of a region that is WIDTH by HEIGHT.

If WIDTH and HEIGHT are used, they are used as interior
dimensions for the window.

33

WINDOW SYSTEM

34

• New function MAKEWITHINREGION: moves region within
another region

(MAKEWITHINREGION REGION LlMITREGION)
Changes (destructively modifies) the left and bottom of the
region REGION so that it is within the region LlMITREGION, if
possible. If the dimensions of REGION are larger than
LlMITREGION, REGION is moved to the lower left of
LlMITREGION. If LlMITREGION is NIL, the value of the variable
WHOLEDISPLA Y (the screen region) is used.
MAKEWITHINREGION returns REGION.

• INSIDEP now accepts a window as its REGION arg

If the REGION arg to INSIDEP is a window, the window's interior
(its clipping region) is used.

• REGIONP now true for regions whose components are
floating point numbers.

Previously, only integers were allowed as components of a
region.

• EXPANDBITMAP works without the color package loaded

EXPANDBITMAP uses the function \FAST4BIT, which was
previously only defined in the color library package. \FAST4BIT
has been added to the standard Interlisp loadup.

• READBITMAP, PRINTBITMAP have new argument: FILE

(READBITMAP FILE)
(PRINTBITMAP BITMAP FILE)
These functions can now be used to read and print bitmaps to
arbitrary files, without changing the primary inputJoutput
stream.

• CURSORINFN and CURSOROUTFN window properties
extended

The CURSORINFN and CURSOROUTFN window properties can
now be lists of functions as well as single functions. All
functions on the list are called.

• Scrollbar provides better indication when contents are
a bove the wi ndow

Previously, there were some cases where the serollbar would
not hit the bottom unless the bottom of the extent was a small
distance above the top of the window.

• EDITBM does not reposition the cursor to the center of the
screen

• Control-D during EDITSHADE now closes the window

,-----------_ .. _-------------------------
HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

WINDOW SYSTEM

• (BITMAPHEIGHT <texture» now gives an error for nonm

bitmap textures

• If CHANGEOFFSETFLG menu property is non-NIL, popup
menus come up in correct position

Previously, they would come up one pixel above and to the
right of where they were last time (relative to the cursor).

• Scrolling works correctly after changing window border
size

• If LEFT button down, GETREGION calls NEWREGIONFN with
MOVINGPOINT = NIL

Previously, if GETREGION was called when one of the mouse
buttons is already down (LEFT), the first call to NEWREGIONFN
did not have MOVINGPOINT = NIL

• EXPANDW no longer fails if called on expanded window

• (DSPCREATE < bad-arg » signals "ILLEGAL ARG" error,
instead of going into RAID

• DRAWCURVE no longer generates an error if dashing is
non-NIL

• ADDMENU/DELETEMENU do not modify the menu for
subsequent use

35

WINDOW SYSTEM

(This page intentionally left blank)

36 HARMONY RELE.ASE :\JOTES

HARMONY RELEASE NOTES

TEDIT

• New Tedit page formatting facilities

Tedit now includes facilities for specifying the page layout to be
used when a document is formatted and printed. The user can
now control page formatting such as page numbers, headings,
multiple columns, etc.

• Tedit has separate menus for Para looks, Char looks, and
Page looks

This solves a number of problems. In particular, it is no longer
necessary to scroll a single long menu up and down to set and
apply character and paragraph looks.

• Control-E can be used to abort Get, Put, etc. commands

After selecting the Tedit commands Get, Put, Include, etc. from
the title menu, the user is asked to type in a file name. The
operation can be aborted at this time simply by typing control
E.

• Can shrink an unsaved Tedit document

Previously, Tedit caused an error, when it tried to print the file
name of the document in the icon. Now, it detects this
situation and creates an empty icon.

• Tedit more careful about erasing caret images on the
screen

• EOFP works correctly for text streams

• Tedit hardcopy uses {DSK} to store large files, so larger
files can be printed

• Tedit uses more compact representation for bitmaps

The format of bitmaps in Tedit files has been changed. This
new format should take up about half the space, and it can be
read/written many times as fast of the old format. It does not
do any compression. The old bitmap-reading functions have
not been removed, so old bitmaps will be converted as they are
encountered.

37

TEDIT

(This page intentionally left blank)

38 HARMONY ReLEASE NOTES

DEDIT

• "BREAK" or "0" of top-level expression no longer causes
stack overflow

• Process switch from DEDIT to TEDIT won't cause it to
ignore tabs

• DEdit's internal data structures revised to take 1/3 less
space

This should improve swapping performance over extended
programming sessions.

• (OF < undefined function» creates blank function
template.

If OF is called on a name with no function definition, the user is
prompted with" No FNS defn for < function name>. Do you
wish to edit a dummy defn?". If the user confirms (by clicking
left-button), a "blank" definition is displayed in the Dedit
window. If any changes are made, on exit from the editor, the
definition will be installed as the name's function definition.
Exiting the editor with the STOP command will prevent any
changes to the function definition.

If OF is called with a second arg of NEW, as in (OF < function
name> NEW), a blank defi nition wi II be edited whether the
function already has a definition or not.

• Inserting huge piece of code no longer causes bad screen
extent.

Previously, after inserting a huge piece of code into a function,
Dedit could lose track of the size of the function, so the user
could not scroll up enough to see the last part of the inserted
code.

• DEDIT REPAINTFN redisplays selection highlighting

• Comments print correctly when inserted or SWITCHed

• Deleting first dotted-pair from list of pairs reprints
correctly

HARMONY REtEASE NOTES 39

DEDIT

, 40

• Buttoning in the Dedit Edit Buffer switches the current
process.

Previously, you had to button in the main Dedit window.

• Dedit menu only comes to the top when Dedit is the TIY
process.

• "Shouldn't Happen! DEDITDSPS tangled" errors reduced (

Previously, this could happen if you called the inspector from
Dedit {by EVAL-ing (INSPECT ...)), and called Dedit from the
inspector window. This particular symptom has been cured in
the current Dedit. However, exiti ng DEdit processes out of
order can sti II cause this error.

• Dedit supports the COpy key on the 1108 keyboard

• Shift select supports both the COpy and the right shift keys.

• EditOps menu follows when the main Dedit window is
moved

• Edit buffer doesn't attach to incorrect window

Previously, after "TTYln Form" of atom, the Dedit Typein
window for DEDIT sometimes would attach itself to the bottom
of random wi ndows on the screen.

• Dedit doesn't reprint function on exit.

Previously, in some situations Dedit would reprint the entire
function after exit, as a side effect of changing the edit date
comment.

• !UNDO command is now undoable

• Double deletes give better error message

Previously, if one deleted a deleted selection (in a serious of
commands with the control key down), Dedit would break with
the error "Shouldnt: No MapEntry". Now, Dedit detects this
situation, pri nts out the error message "Cant: AI ready
deleted!", and doesn't cause a break.

• CAP command capitalizes first letter of atom

It used to do the same as RAISE, capitalizing all the letters of the
item selected.

• "7 = .. command in Dedit works for fns of no arguments

Used to give "xxx not a function" error message.

HA~1\I10NY RELEASE NOTES

HARMONY RELEASE NOTES

BREAK PACKAGE

• Editor called from display break package in broken process

Inspecting a function in the display frame window now calls the
editor in the broken process. Thus variables evaluated in the
editor will be in the broken process.

• Can now REVERT to any frame on the stack.

Previously, there were restrictions on reverti ng to internal
01 DUMMY" frames, because it could cause the system to crash or
freeze. Now, REVERT has been fixed so that it is safe to revert
to any frame on the stack.

• Break windows are not opened on "STORAGE FULL" errors.

This is similar to the treatment of "ARRAYS FULL" errors. In
either case, allocating storage for a break window would cause
the error to occur repeatedly.

• Typing control-B in a break window no longer gives "Break
within Break" error

• AUTOBACKTRACEFLG extended: can cause BT for NON
error breaks

Previously, if AUTOBACKTRACEFLG was non-NIL, then the
command BT would be executed automatically on error breaks,
but not on user breaks (calls to functions broken by BREAK). It
has been extended as follows: If AUTOBACKTRACEFLG is NIL
(the default), no backtrace is brought up. If its value is T, then
on error breaks the BT menu is brought up. If its val ue is BT!,
then on error breaks the BTl menu is brought up. If its value is
ALWAYS, then on any break the BT menu is brought up. If its
value is ALWAYSI, then on any break the BTl menu is brought
up.

• ERRORTYPELST is now a SPECVAR

It makes sense for users to change the global value of
ERRORTYPELST, but programs that rebind it clearly want
changed behavior only in their own stack context. It is only
looked up under error conditions, so it shouldn't cause a
performance problem.

41

BREAK PACKAGE

42

• Break package more careful about aborting process on
closing window

Closing a break window now only aborts the associated process
if it was in tty wait and the closed window was the tty window.
This should stop some inadvertant aborts.

Warning: Typed-in BT, BTV commands don't start at top of
stack

When a stack frame name is selected in the backtrace menu,
the variable LASTPOS is set to the selected stack frame. This
allows breaks commands such as REVERT, ? =, etc. to use the
selected frame. However, the value of LASTPOS also indicates
to the break commands BT, BTV, BTV!, etc. where to start listing
the stack.

HARMONY RELEASE NOTES

INSPECTOR

• Using SET to set inspector values no longer creates many
TIVwindows

Previously, the inspector SET command would create a new
window for the user to type a value every time it was used.
Now, the default SET routine uses an attached prompt window
on top of the inspect window to receive the new value.

• New inspect window commands: "IT<E-datum",
"IT<E-selection"

The values displayed in an inspect window can be accessed by
commands on the menu brought up by pressing the MIDDLE
button in the title of the window. The command "ITE-datum"
sets the variable IT to the object being inspected in this
window. The command "ITE-selection" sets the variable IT to
the current property name or value selected in the inspect
window.

• Variable INSPECTPRINTLEVEL used for printing inspector
values

When the inspector prints field values, PRINTLEVEL is reset to
the value of INSPECTPRINTLEVEL, initially (2 .5).

• Inspector calls INSPECTCODE to inspect compiled code
objects

HARMONY RELEASE NOTES 43

INSPECTOR

(This page intentionally left blank)

44 HARMONY RELEASE NOTES

HARMONY RE~EASE NOTES

CHAT

• Chat does not turn off interrupt characters until AFTER
creating the Chat window

This allows the user to abort the call to Chat by typing control-E
while specifying the Chat window region.

• Reshaping Chat window does not change terminal type

Previously, reshaping a Chat window caused Chat to reassert
the terminal type specified when the connection was first
opened. If the user in the meantime had told the remote host
that the terminal type was different, then this would set it
back.

• Chat grabs TIV as soon as it starts to reconnect

Previously, the "reconnect" menu button didn't switch the tty
to the chat process until the connection was reestablished.

• Chat ignores the padding character DEL

• Chat display no longer off by 1 character after EMACS
insert operation

Newer versions of EMACS perform character insertion by an
unusual sequence that Chat was not emulating correctly.

• Chat in EMACS mode updates cursor position promptly

Previously there was a bug that deferred the cursor update
following a positioning command with the mouse until the
next type-in occurred.

• Chat displays the EMACS mode state in the window title

When Chat EMACS-mode is on, "EMACS ON" is printed in the
Chat window title.

45

CHAT

(This page intentionally left blank)

----_._---------------------
46 HARMONY RELE,ASE NOTES

HARMONY RELEASe: NOTES

TTYIN

• Incompatible change: EDITPREFIXCHAR default is NIL

The variable EDITPREFIXCHAR is now by default NIL, meaning
there is initially no TTYIN prefix meta-character defined. This
change was made to avoid confusing users who don't use TTYIN
editing commands. If you want to be able to issue editing
commands to TTYIN, you should either call (TTYINMETA T) to
enable bottom-blank (STOP on 1108's) as a true meta key, or set
EDITPREFIXCHAR to the character code of your preferred meta
prefix (it used to be 193, for top-blank).

• TTYIN is enabled in break windows created by control·S
during type-in

• FIX command with TTYIN prettyprints history events

The programmer's assistant command FIX calls TTYIN to edit
the text of the history event. TTYI N now prettypri nts the event
for ease of editing.

• Typing control·E under TTYIN won't cause "NON·NUMERIC
ARG" error

• Typein lines starting with";" no longer erased

Previously, TTYIN interpreted a line starting with the character
";" as a comment, and would ignore it, erasing the line from
the screen. Although";" is defined on L1SPXHISTORYMACROS
as a no-op anyway, TTYIN's behavior was inappropriate in cases
where one was not typing to the Lisp exec.

The old behavior is still available for those desiring it: if the first
character on a line of typein is equal to the variable
TTYINCOMMENTCHAR (a character code or NIL), then the line is
erased, and no input function will see it.
TTYINCOMMENTCHAR is initially NIL.

47

TTYIN

(This page intentionally left blank)

48 HARMONY RELEASE NOTES

HARMONY RELEASE NO rES

STACK & INTERPRETER

• Known Bug: Must do (HARDRESET) after stack overflow, or
else second stack overflow gives fatal error

If a stack overflow occurs, rather than type II i " to escape from
the break, do a hard reset. Otherwise, the NEXT stack overflow
may cause an unrecoverable error. Either evaluate
(HARDRESET) from the break window, or type control-D from
Teleraid.

• New function: EVALHOOK

(EVALHOOK FORM EVALHOOKFN)
EVALHOOK evaluates the expression FORM, and returns its
value. While evaluating FORM, the function EVAL behaves in a
special way. Whenever a list other than FORM itself is to be
evaluated, whether implicitly or via an explicit call to EVAL,
EVALHOOKFN is invoked (it should be a function), with the
form to be evaluated as its argument. EVALHOOKFN is then
responsible for evaluating the form; whatever is returned is
assumed to be the result of evaluating the form. During the
execution of EVALHOOKFN, this special evaluation is turned
off. (Note that EVALHOOK does not effect the evaluations of
variables, only of lists).

Here is an example of a simple tracing routine that uses the
EVALHOOK feature:

+-(DEFINEQ (PRINTHOOK (FORM)
(pri ntout T "eval: " FORM T)
(EVALHOOK FORM (FUNCTION PRINTHOOK]

(PRINTHOOK)
+-(EVALHOOK '(LIST (CONS 1 2) (CONS 3 4» 'PRINTHOOK)
eval: (CONS 1 2)
eval: (CONS 3 4)
«1 .2) (3 . 4»

• Internal arithmetic functions changed to have the "right"
frame name .

In compiled code, a call to a primitive arithmetic function, such
as PLUS, turns into a Lisp opcode, which normally executes
entirely in microcode. In exceptional cases, however, the
microcode executes a call on an internal arithmetic function,
such as \SLOWPLUS2. Previously, if an error occurred in such a
function, the backtrace contained the internal function name,
rather than the name you would expect from looking at the
source code. This has been changed so that the frame names

49

STACK & INTERPRETER

of internal arithmetic functions are the appropriate user-level
functions.

• EVALV has new argument RELFLG: release·stack-ptr flag

Most of the stack evaluation functions (ENVEVAL, etc.) have a
flag argument which determines whether the stack pointer will
be automatically released. To be cqnsistent, EVALV now has a
RELFLG argument, even though it doesn't strictly need it
(EVALV is guaranteed to return, unlike the other functions).

• (APPLY*) now gives "UNDEFINED FUNCTION: NIL" error

SO HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

HISTORY AND EXEC

• BREAK. TRACE, SEE, etc. recognize quoted arguments: new
function NLAMBDA.ARGS

A number of NLAMBDA functions now recognize if their
argument is quoted. For example, (BREAK 'Faa) will now
break the function Faa, rather than the function QUOTE.
LlSPX macros and commands which normally take their args
unquoted (DIR,CONN, etc.) also work with quoted arguments.
For example, typing DIR 'FOO* is now the same as DIR FOO*.

This change was accomplished by defining a new function
(NLAMBDA.ARGS X). This interprets its argument as a list of
unevaluated nlambda arguments. If any of the elements in this
list are of the form (QUOTE ...), the enclosing QUOTE is stripped
off. Actually, NLAMBDA.ARGS stops processing the list after
the first non-quoted argument. Therefore, whereas
(NLAMBDA.ARGS '«QUOTE Faa) BAR» -> (Faa BAR),
(NLAMBDA.ARGS '(Faa (QUOTE BAR») -> (Faa (QUOTE BAR».

• Error correction of function name doesn't lose args
,-

Previously, if one had an NLAMBDA nospread function Faa,
one could type "Faa ALPHA" to the exec and Faa would be
run, with ALPHA as its argument. If however, one mistyped
Faa (as foo, FOOX,etc.) and the spelling corrector sucessfully
corrected it to Faa, the exec did not pass the arguments along.
This has been fixed.

• PRINTLEVEL UNDO-able from top level exec

Typing PRINTLEVEL to the top-level exec will substitute a call to
the undoable function /PRINTLEVEL.

51

HISTORY AND EXEC

(This page intentionally left blank)

52 HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

FILE PACKAGE

• Incompatible Change: Source/DeOM file location algorithm
changed

Each Interlisp source and compiled code file contains the full
filename of the file, including the host and directory names, in
a FILECREATED expression. The compiled code file also contains
the full file name of the source file it was created from.
Previously, the file package used this information to locate the
appropriate source file when "remaking" or recompiling a file.

This has turned out to be a bad feature in distributed
environments, where users frequently move files from one
place to another, or where files are stored on removable media.
For example, suppose you MAKEFILE to a floppy, and then copy
the file to a file server. If you load and edit the file from a file
server, and try to do MAKEFILE, it will break, trying to locate
the source file on a floppy, which is probably no longer loaded.

In the Harmony release, the file package searches for the source
file on the connected directory, and on the directory search
path (on the variable DIRECTORIES). If it is not found, the
host/directory information from the FILECREATED expression
be used.

Warning: One situation where the new algorithm does the
wrong thing is if you explicitly LOADFROM a file
that is not on your directory search path. Future
MAKEFILEs and CLEANUPs will search the
connected di rectory and DI RECTORI ES to fi nd the
source file, rather than using the file that the
LOADFROM was done from. Even if the correct
file is on the directory search path, you could still
create a bad file if there is another version of the
file in an earlier directory on the search path. In
general, you should either explicitly specify the
SOURCEFILE argument to MAKEFILE to tell it
where to get the old source, or connect to the
directory where the correct source file is.

• HPRINT, UGLYVARS, HORRIBLEVARS don't redeclare
datatypes

The file package commands UGLYVARS and HORRIBLEVARS call
the function HPRINT to print out loadable representations of
arbitrary data structures. If a data structure contains an
instance of an Interlisp datatype, the datatype declaration is
also printed onto the file.

53

FILE PACKAGE

54

This has caused problems when a system datatype declaration
dumped into a file doesn't match the current declaration.
Redefining a system datatype will almost definitely crash
Interlisp. The Interlisp system datatypes do not change very
often, but there is always a possibility when loading in old files
created under an old Interlisp release.

To prevent accidental system crashes, HREAD has been changed
so that loading an HPRINTed structure will NOT redefine
datatypes. Instead, it will cause an error "attempt to read
DATATYPE with different field specification than currently
defined". Continuing from this error will redefine the
datatype.

• Incompatible change: User INIT files are now loaded
normally, and appear on FILELST

Previously, the user init files were SYSLOAD-ed, and their
filecoms were not saved. This was inconvenient when people
wanted to modify their init files. Now, they are loaded with
LDFLG = NIL, so their filecoms are saved, and they appear on
FILELST. Note that the system "site" init file is still loaded with
SYSLOAD.

The function GREET has been changed as follows:

The system greet file (GREETFILENAME T) is loaded with the
SYSLOAD parameter. The user greet file (GREETFILENAME
<username» is loaded with normal file package settings, but
also under errorset protection and with PRETTYHEADER set to
NIL to suppress the "FILE CREATED" message.

Note: Users should try to make sure that their init file is
"undoable". If they use the file package command
"P" to put expressions on the file to be evaluated, they
should use the "undoable" version, e.g. /SETSYNTAX
rather than SETSYNTAX, etc. This is so another user
can come up, do a (G REET) and have the fi rst user's
initialization undone.

• MAKEFILE "remake" option asks whether to load
DONTCOPYexpressions

When a MAKEFILE is performed with the" remake" option to
copy definitions from an old file, MAKEFILE checks to see if all
of the necessary definitions had been loaded from the old file.
In the past, if you had only loaded the compiled version of a file
with (DECLARE: .. DONTCOPY ..) expressions, MAKEFILE would
automatically and quietly load the definitions from the old file.
In some circumstances this could be disastrous -- if the user had
circumvented the file package in some way, and loading the old
definitions overwrote new ones.

HARMOI\JY RELEASE NOTES

HARMONY RE!...EASE NOTES

FILE PACKAGE

MAKEFILE now asks before performing these operations, e.g.

"Only the compiled version of FOO was loaded, do you· want to
LOADVARS the (DECLARE: .. DONTCOPY ..) expressions from
{DSK}<MYDIR> FOO.;3?"

• RESOURCES facility provides tools to explicitly manage the
allocation and reuse of complex data objects

Interlisp is based on the use of a storage-management system
which allocates memory space for new data objects, and
automatically reclaims the space when no longer in use. More
generally, Interlisp manages shared" resources", such as files,
semaphors for processes, etc. Someti mes users need to
explicitly manage the allocation of resources. The filepkg type
RESOURCES is available to help with the definition and usage of
such classes of data; the definition of a RESOURCE specifies
prototype code to do the basic management operations. For
more information, see Appendix E (RESOU RCES).

• HASDEF with SOURCE = ? calls WHEREIS database package
if loaded

According to the documentation, passing SOU RCE = ? to the file
package type functions should try (among other options)
calling the function WHEREIS with FILES = T, which will search
the WHEREIS hashfile database if the WHEREIS package is
loaded. In the case of HASDEF called with SOURCE =?,
WHEREIS was being called with FILES = NIL, so the WHEREIS
package was not being used. This produced strange behavior
in Dedit, such that evaluating (DF < system-function» would
load and edit the function, but selecting the function in a Dedit
window and buttoning "Edit" would not.

• I.S.0PRS now works as a file package "type" for COPYDEF
and UNSAVEDEF

• (* * X ...) no longer signifies that X is a filevar

When a form such as (FNS * FOOFNS) appears in the filecoms of
a file, this means that the list of functions should be taken from
the variable FOOFNS. In this case, FOOFNS is known as a filevar.

Previously, there was a bug with comments of the form (* * this
is a comment), where the fi rst word of the comment ("this")
was interpreted as a filevar. This had some strange
consequences, such as the fi rst words of such comments
appeared in (F1LECOMSLST xxx 'VARS), and these atoms were
set to NOBIND if the file was loaded with LDFLG = SYSLOAD.

• Comments allowed in file package commands

The file package now allows comments to appear in most
places in the filecoms. For example:

(INITVARS (* this is a comment) (FOO 5)).

55

FILE PACKAGE

• Default setting of CLEANUPOPTIONS changed to (Re)

Previously, the default value of CLEAN.UPOPTIONS was (LIST
RC), so CLEANUP would list and recompile all files. If you wish
to retain that behavior, simply reset CLEANUPOPTIONS.

• (PF <function> < file» prints message if file not found,
or function not found on file

Previously, PF just returned NIL if either the function was not
found or the file was not found.

DC FOO can find file FOO.LSP

Previously, the user had to type DC FOO.LSP to edit the corns of
a file with a non-NIL extension.

• ADDTOFILE prompt changed from "new file?" to "create
new file XXX?"

"in HARMONY RELEASE NOTE<;

HARMONY RELEASE NOTES

COMPILER

• Incompatible change: Default RECOMPILEDEFAUL T
changed from EXPRS to CHANGES

Previously, the default value of RECOMPILEDEFAULT was
EXPRS. This meant that when recompiling a file, those
functions currently defined by EXPRs would be recompiled.
Generally, this is a good indication of which functions had been
edited. However, a problem occurs if the user explicitly calls
COMPILE to compile a particular function. A later RECOMPILE
or CLEANUP would not recompile that function. By setting the
default RECOMPILEDEFAULT to CHANGES, RECOMPILE or
CLEANUP will recompile those functions which have been
changed according to the FILECREATED expression in the
source file. Under some circumstances, this may cause functions
to be recompiled unnecessarily, but it is safer.

Benefits of RECOMPI LEDE FAU L T = CHANG ES:

If you normally load a source file, edit a few functions, then
MAKEFILE and RECOMPILE, the effect of the change to
RECOMPILEDEFAULT is that fewer functions are recompiled
(only the ones you c~anged, not all the functions on the file).

If you normally load the compiled file, then LOADFROM the
source, and are running with DFNFLG = PROP, so that edited
functions are not unsaved, then the effect of the change is that
the edited functions do get recompiled, even though they are
not defined by EXPRs.

Disadvantages of RECOMPILEDEFAU LT = CHANGES:

If you go thru several rounds of the edit·makefile·recompile
loop, then possibly MORE functions are recompiled than
necessary, since each RECOMPILE will compile ALL the functions
that have changed since you first LOADFROMed the file, not
just the ones changed since the last recompile.

When Masterscope advises you to UNSAVEDEF a set of
functions containing occurrences of records or macros that
changed, the unsaving will have NO effect on which functions
later get recompiled. You need to set RECOMPILEDEFAULT =
EXPRS in order for this to work right.

• Incompatible change: Compiling with mode = ST or STF
redefines functions, even if DFNFLG = PROP

Previously, when the compiler "redefined" a function, it
respected the value of DFNFLG. If DFNFLG = PROP, the compiler

57

COMPLIER

put the new definition on the CODE property instead of in the
definition cell of the function.

The new behavior is that as functions are compiled, they really
ARE "stored and redefined"; the new compiled definition is
placed in the definition cell, even though DFNFLG = PROP.

The new behavior is less confusing, but if you are used to the
old behavior, be careful. If you run with DFNFLG = PROP to
completely avoid inadvertantly redefining something in your
running system, you MUST use compile mode F, not ST.

• Warning: Compiler modified, so don't load Harmony~
compiled files into old sysouts.

A number of modifications have been made to the compiler,
which might cause backward incompatibility. In general, old
compiled code will work in new releases of Interlisp-D, but
compiling in a NEW release and loading into an OLD release is
not guaranteed to work.

• STore-and-Forget option to COMPILE no longer leaves
EXPRs on property list

• LOADTIMECONSTANT works in interpreted code

• Compiler prints warning if user code attempts to bind a
variable previously declared as a constant

58 HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

MASTERSCOPE

• Masterscope CHECK command smarter about CONSTANTS,
blocks

The CHECK command now knows about CONSTANTS.
Previously, constants were treated like any other variable, and
CHECK printed a warning if they were used freely without
being declared. Also, CHECK now omits the preamble "in no
block" (followed by a list of functions) when a file has no block
declarations.

• Show Paths browser properly updated when redisplayed

When a function in a SHOW PATHS browser graph is edited, the
window "greys out", to indicate that (possibly) some of the
information has changed. Previously, under some
ci rcumstances, when a greyed out browser wi ndow was
redisplayed, Masterscope would not reanalyze the functions
that had changed.

• ". SHOW WHERE X CALLS V" now finds lowest (not
highest) level macro containing call

• Masterscope HELP command removed

This used to print out a two-page summary of the Masterscope
commands, which was not very useful in finding out how to use
Masterscope.

59

MASTERSCOPE

(This page intentionally left blank)

60 HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

DWIM & (LISP

• Advance Warning: In future releases, (CLlSPDEC
'MIXED) will be default

In past releases of Interlisp, and in the Harmony release, the
default c1isp declaration is FIXED, which means that all clisp
constructs are translated using integer arithmetic, unless the
user explicitly changes the declaration. Therefore, (A + B)
translates into (IPLUS A B), and (for X from A to B do ...) is
translated usi ng integer arithmetic to increment X and
compare it to B.

In Interlisp-D, mixed (generic) arithmetic is not appreciably
slower than integer arithmetic, so we are trying to convert the
system to use generic arithmetic as much as possible.

Therefore, starting with the next release, the default clisp
declaration will be MIXED, so generic arithmetic functions will
be used when translating c1isp constructs. (A + B) will translate
into (PLUS A B), and (for X from A to B do ...) will be translated
using PLUS and GREATERP. Of course, the user can change this
declaration using CLlSPDEC.

We do not expect that this change will effect any programs: the
only conceivable problems could be in constructs like (for X
from A to 8 do ...) where the programmer COUNTED on
floating A and B being converted to fixed point before the
loop_

• Macro-expansion now independent of DWIM

Previously, macro-expansion was handled by the MACROTRAN
entry on DWIMUSERFORMS. This meant that macros would
only be interpreted if DWIM was turned on. The macro
expansion machinery has been moved to a much 'higher' level
(closer to the source), before DWIM FLG is tested and a large
amount of otherwise unnecessar.y processing was done. This
means that macro expansion can continue even when users
turn off DWIM.

• New variable DWIMINMACROSFLG controls whether args
to macros are dwimified

If the variable DWIMINMACROSFLG = T (the default), DWIM
will recursively dwimify the arguments to macros (i.e. macros
will be treated like LAMBDA functions). If DWIMINMACROSFLG
= NIL, arguments to macros are not dwimified.

61

DWIM & CLiSP

62

To provide finer control over the interpretation of individual
macros, DWIM uses the INFO property of the macro name: If
the INFO prop is or contains the atom EVAL, the macro
arguments are dwimified, even if DWIMINMACROSFLG = NIL. If
the INFO prop is or contains the atom NOEVAL, the macro
arguments are not dwimified, even if DWIMINMACROSFLG =
T.

• DWIM no longer tries to interpret type-in as edit
commands

Previously, one of the actions DWIM took on unbound atom or
undefined function errors was: "if the atom is an edit
command, envoke the editor on the last thing edited, passing
the atom as an edit command". DWIM is of necessity 'heuristic',
attempting to second guess what the user meant. However,
this correction is one that, over time, has become wrong far
more often than right.

• Incompatible Change: DWIMIFYENGLlSH, CLiSPENG
package totally de-supported

The "feature" of translating English into Lisp documented in
the 1978 Interlisp Reference Manual is no longer supported in
Interlisp-D. The lispusers package CLiSPENG is no longer
supported, either.

• DWIM tries upper-casing undefined functions and
unbound atoms

• DWIM now gives warning on coercion from lower to upper
case

Previously, DWIM would upper-case atoms and functions
without warning or notification, which caused a great deal of
confusion. Now, the default is to print a warning" = XX" when
coercing from "xx" to "XX". This feature is controlled by the
variable FIXSPELL.UPPERCASE.QUIET (initially NIL). If non-NIL,
no warning is given.

• CLiSPIFY does not translate (fetch A.a of X) to X:A.B

In the case where a record field has a period in it, it is
inappropriate for CLiSPIFY to translate a fetch or replace
statement into th.e more concise form X:A.B, since DWIM
interprets "A.B" as the "data path" rather than the field name.

• RUNONFLG initialized to NIL in the default environment

If the variable RUNONFLG = T, DWIM will attempt "run-on"
spelling corrections, breaking up unknown names. From
experience, it seems that this hurts more often then it helps.
Therefore, the default has been changed so this feature is
initially disabled.

HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

DWIM & CLiSP

• FIXSPEll only moves words on "real" spelling lists

When spelling-correcting words on the system spelling lists
SPELLINGS 1, SPELLlNGS2, etc, FIXSPELL moves words to the
front of the list when a word is successfully corrected.
However, this is not necessarily the correct behavior for user
supplied spelling lists, where it may be wrong to alter the order
of the list. If FIXSPELL is called with DONTMOVETOPFLG :: non
NIL, words are not moved in the spelling list. As an additional
check, FIXSPELL won't move correct words to the front of a
spelling list unless the spelling list contains the special marker
used to separate the temporary and permanent sections of the
system spelling lists (the value ofSPELLSTR1).

• I.S.0PRS work even if CLJSPFLG = NIL

Contrary to the documentation, some iterative statement
operators would not be translated correctly is CLlSPFLG was NIL,
because thei r defi nition i nd uded forms such as $$VAL~ T.
These operators now work even if II ~" is disabled, either
specially or because CLlSPFLG is NIL.

63

DWIM & CLiSP

(This page intentionally left blank)

64 HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

PERFORMANCE TOOLS

• DOSTATS removed from standard Lisp loadup

Since the Spy package provides most of the functionality of
DOSTATS, in addition to being usable on Xerox 1108's, the
function DOSTATS has been removed from the standard
Interlisp system. The code for DOSTATS is available by loading
in the library files' PCALLSTATS and APS (automatically loaded
by PCALLSTATS).

• DOSTATS now resets DFNFLG and compiler optimizations

Previously, it was possible that DOSTATS would collect stats on
the wrong form if DFNFLG was set improperly. For example, if
DFNFLG = PROP, the form would be put on a property list, and
stats would be collected for whatever happened to be in the
definition cell of STATSDUMMYFUNCTION. Also, DOSTATS
didn't reset compiler optimizations, so that it might "optimize"
forms like (IQUOTIENT 1234567 -1) into a constant.

• Contro/·O out of DOSTATS stops statistics-gatheri ng

Previously, typing control-D duri ng the execution of DOSTATS
would stop the computation, but wouldn't stop the gathering
of statistics. This was a serious problem, because very quickly
the disk would fill up and Interlisp would fall into SWAT, losing
everything. Now, exiti ng DOSTATS with control-D
automatically turns off statistics-gatheri ng.

• TIMEALL now compiles form with optimizations ON

If TIMEALL is called with #TIMES> 1, a dummy form is created,
compiled and executed #TIMES times, to provide more
accurate measurement of small computations. Previously, this
compilation was done with optimizations off if running
multiple times. In the face of objections, this has been
changed: now TIMEALL compiles the dummy form with
compiler optimizations ON.

• Warning: An important result of this change is that it is
not meaningful to use TIMEALL with very simple
forms that are optimized out by the compiler.
For example, (TIMEALL '(IPLUS 2 3) 1000) will
time a compiled function which simply returns
the number 5, since (I PLUS 2 3) is optimized to

. the integer 5.

65

PERFORMANCE TOOLS

66

• BREAKDOWN overhead reduced

The per-call overhead to BREAKDOWN has been substantially
reduced, which should give much more meaningful results.

HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

STORAGE & DATA TYPES

• Incompatible Change: ARRAY default type is POINTER,
FlOATP is stored unboxed

If NIL is given as the TYPE argument to ARRAY, the default
array type is POINTER, not DOUBLEPOINTER. Anyone using the
DOUBLEPOINTER mechanism should change any instances of
(ARRAY x) to (ARRAY x 'DOUBLEPOINTER).

Arrays of type FLOA TP are now stored unboxed. This increases
the space and time efficiency of FLOATP arrays. Users who
want to use boxed floating point numbers should use an array
of type POINTER instead of FLOATP.

• Advance Warning: CAR or CDR of non-list will cause error
in future releases; new variable
CARfCDRERR

According to the Interlisp Reference Manual, the value of
applying the functions CAR and CDR to a non-list (other than
NIL) is undefined. In Interlisp-D, the actual action depended on
the data type: (CAR <atom» returned NIL, (CDR <atom»
returned the atom's property I ist, (CAR < anythi ng else»
returned the stri ng "{car of non-I ist} ", and (CDR < anythi ng
else>) returned the string "{cdr of non-list}".

This has turned out to be a bad design. This design typically
caused obscure bugs in programs which CDR down a list, and
stop on NIL. If the tail of the list is not NIL, then the program
loops endlessly, taking CDR of "{cdr of non-list}". This problem
also occurs with functions like (FMEMB A B), which loop
endlessly if B is not a list.

Because of these problems, the Interlisp maintainers decided
that CAR and CDR should cause an error on non-lists. Places in
the system code which used the old conventions have been
cleaned up. In future releases, the default will be changed so
that CAR or CDR of non-NIL non-lists will cause errors. This will
also effect system functions, such as FMEMB, which use CAR
and CDR. User programs which depend on the old conventions
will have to be modified.

To root out functions in the system which rely on the old
CAR/CDR convention, the global variable CAR/CDRERR has been
created.

67

STORAGE & DATA TYPES

68

If CAR/CDRERR = NIL (the current default), then CAR and CDR
act as they always have, returning a string for non-lists. If
CARlCDRERR = T, then CAR and CDR of a non-list (other than
NIL) causes an error.

If CAR/CDRERR = ONCE, then CAR and CDR of a string causes an
error, but CAR/CDR of anything else returns the string "{c. .. r of
non-list}" as before. This catches loops which repeatedly take
CAR or CDR of an object, but it allows one-time errors to pass
undetected.

If CAR/CDRERR = CDR, then CAR of a non-list returns" {car of
non-list}" as before, but CDR of a non-list causes an error. This
setting is based on the observation that nearly all infinite loops
involving non-lists occur from taking CDRs, but a fair amount of
careless code takes CAR of something it has not tested to be a
list

• MKATOM no longer loops forever when the atom hash
table is full

Previously, running out of atoms (the limit is currently -32K)
would cause an infinite loop. Now, Interlisp will cause a
storage full error when there are about 7 "pages" of atom
space left, and will call RAID (MP 9323 on an 1108) when there
are no more atoms left.

• Hash arrays have been totally reimplemented; better
performance, interface

The hash array facility has been totally reimplemented, to
improve performance and provide a better interface to the
overflow behavior. Old programs using hash arrays will still
work, but not as efficiently as if they were recoded to take
advantage of the new implementation.

In the old implementation, the hash array functions accepted a
list whose CAR was a hash array datum. If the hash array
overflowed during some hash array operation, the action taken
(error, automatically enlarging the hash array, etc.) was
determined by the CDR of the hash array list.

In the new implementation, the "overflow method" is stored as
part of the hash array datatype. The hashing functions will
operate correctly on "old-style" hash arrays of the form
(harrayp . overflow), but more slowly than with "new-style"
hash arrays that contain their overflow methods.

New functions:

(HASHARRAY MINKEYS OVERFLOW)
Creates a hash array containing at least MINKEYS hash keys,
with overflow method OVERFLOW (if NIL, the default overflow
method is to expand the si ze of the hasharray and rehash all
the entries). The function HARRAY still exists for backward
compatibility, equivalent to (HASHARRA Y MINKEYS 'ERROR).

HARMONY RELEASE NO:ES

HARMONY RELEASE NOTES

STORAGE & DATA TYPES

(HARRA YPROP HARRA Y PROP N EWVALU E)
Returns the property PROP of HARRAY; PROP can have the
system-defined values SIZE (returns the maximum occupancy of
HARRA V), NUMKEYS (number of occupied slots), or OVERFLOW
(overflow method). In the case of OVERFLOW, a new method
may be specified as NEWVALUE.

(HASHARRA YP X)
Returns X if X is either an old- or new-style hash array (i.e a hash
array datum or a list whose car is a hash array datum).
Otherwise returns NIL.

(HARRAYP X)
Returns X jf it is a hash array datum, as returned by the function
HARRAY or HASHARRAY. Unlike HASHARRAYP, this returns
NIL for lists whose CAR is a hash array datum. HASHARRAYP
should probably be used instead in most circumstances.

• STORAGE changes: new arguments; prints free list info

The function STORAGE in Interlisp-D now takes two optional
arguments for filtering the amount of information presented:

(STORAGE TYPES PAGETHRESHOLD)
If TYPES is given, STORAGE only lists statistics for the specified
types. TYPES is an atom or list of types. If PAGETHRESHOLD is
given, then STORAGE only lists statistics for types that have at
least PAGETHRESHOLD pages allocated to them.

Note: These optional arguments are different from the
optional arguments to STORAGE in Interlisp-1 O.

STORAGE now prints out more information about the size of
the entries on the array free list, including a breakdown of the
free block sizes. The block sizes are broken down by the value
of the variable STORAGE.ARRAYSIZES, initially (4 10 100 1000
4000 NIL), which yields a printout of the form:

variable-datum free list:
Ie 4 11 items; 44 cells.
Ie 10 34 items; 240 cells.
Ie 100 39 items; 1619 cells.
Ie 1000 25 items; 7856 cells.
Ie 4000 2 items; 2449 cells.
others 0 items; 0 cells.

This information can be useful in determining if the variable
length data space is fragmented. If most of the free space is
composed of small items, then the allocator may not be able to
find room for large items, and will extend the variable datum
space. If this is extended too much, this could cause an ARRAYS
FULL error, even if there is lots of space left in little chunks. This
information is primarily of use to system programmers.

69

STORAGE & DATA TYPES

• New CASEARRA Y arg for STRPOS

STRPOS has been extended to take a new argument
CASEARRAY. If non-NIL. this should be a casearray like that.
given to FI LEPOS. The casearray is used to map the stri ng
characters before comparing them to the search string. See the
documentation for FILEPOS, CASEARRAY, etc. in the reference
manual.

• New BACKWARDSFLG arg for STRPOS, STRPOSL

If non-NIL, this argument specifies that the search should be
done backwards from the end of the stri ng.

• Incompatible Change: LDIFFERENCE always returns copy of
list: resolves Interiisp-D/10 difference

Previously, if (LDIFFERENCE FOO BAR) was EQUAL to FOO (ie,
FOO and BAR shared no elements), Interlisp-D would return a
result which is EQ to FOO, while Interlisp-10 would return a
copy of FOO. Interlisp-D has been changed to make it
compatible with the Interlisp-10 behavior.

• Interpreted REPLACE of a data with a BITS field now
correct.

Previously, the interpreted version of REPLACEFIELD would do
the wrong thing if called to replace a datatype declared with a
BITS field. This only affected interpreted calls to REPLACE and
not compiled calls.

(CREATE ... SMASHING ...) translates into more efficient form

The translation of (CREATE ... SMASHING ...) forms has been
changed for RECORD and TYPERECORD records, to produce
forms that execute more efficiently when compiled.

• (APPEND '(A. B) now runs correctly when compiled

Previously, (APPEND '(A. B)} returned (A . B) when interpreted,
(A) compiled. Now, it returns (A. B) always.

• EL T, SETA error changed from "ILLEGAL ARG" to "ARG NOT
ARRAY"

70 HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

• Advance Warning:

ARITHMETIC

(Overflow default will be changed
from (OVERFLOW 0) to (OVERFLOW T)

In the Interlisp Reference Manual, (ZEROP X) is defined to be
equivalent to (EQ X 0). Some users have complained that this is
inconsistent with other lisp dialects, and that (ZEROP 0.0)
should not return NIL. In a future release, (ZEROP X) will be
equivalent to (EQP X 0). Users who depend on (ZEROP 0.0)
returning NIL should change their code to use (EQ X 0).

In Interlisp-D, the action taken on arithmetic overflow is
globally determined by the function OVERFLOW (described
below). Currently, the default setting is (OVERFLOW 0)/ which
signifies that arithmetic overflow and division by zero will not
cause an error. In a future release, this default will be changed
to (OVERFLOW T) so arithmetic overflow and division by zero
will cause an error. Users are encouraged to run their programs
with (OVERFLOW T), and to change any code which depend on
overflow not causing an error.

(OVERFLOW FLG)
Sets a flag that determines the system response to arithmetic
overflow and division by·zero; returns the previous setting.

For integer arithmetic: If FLG = T, an error occurs on integer
overflow or division by zero. If FLG = NIL, the largest integer is
returned as the result of the overflowed computation. If
FLG = 0, the result is returned modulo 2 i 32 (the default
action). If FLG = NIL or 0, integer division by zero returns zero.

For floating point arithmetic: If FLG = T, an error occurs on
floating overflow or floating division by zero. If FLG = NIL or 0,
the largest floating point number is returned as the result of
the overflowed computation or floating division by zero.

• Advance Warning: (ZEROP X) = (EQ X 0); will be
equivalent to (EQP X 0)

In the Interlisp Reference Manual, (ZEROP X) is defined to be
the same as (EQ X 0). Some users have complained that this is
inconsistant with other lisp dialects, and that (ZEROP 0.0)
should not return NIL. In a future release, (ZEROP X) will be
changed to be the same as (EQP X 0). Users who depend on
(ZEROP 0.0) returning NIL should change their code to use (EQ X
0).

71

ARITHMETIC

72

• FPlUS, FTIMES call microcode when interpreted

Previously, the functions FPLUS and FTIMES, when called from
the interpreter, didn't go thru the microcoded opcodes but
always executed the lisp macrocode.

• Internal function FTIMES2 no longer defined

In an old version of the compiler, the function FTIMES was
compiled into a call to the function FTIMES2, which has been
removed. Some programs compiled in 1982 apparently need
recompilation before they will run; if you get UNDEFINED
FUNCTION, FTIMES2, you should recompile the offending
function.

• (EXPT 3 ·1) returns .333~33333 instead of a

The manual states that (EXPT X Y) returns an integer if and only
if X is an integer and Y is a non-negative integer.

HARMONY RELE.ASE NOTES

HARMONY RELEASE NOTES

PROCESSES

• New process property: BEFOREEXIT used to prevent
LOGOUT

If the process property BEFOREEXIT is the atom DON'T, it will
not be interrupted by a LOGOUT. If LOGOUT is attempted
before the process finishes, a message will appear saying that
Interlisp is waiting for the process to finish. If you want the
LOGOUT to proceed without ,waiting, you must use the process
status window (from the background menu) to delete the
process.

• New process property: RESTARTFORM

If the process property RESTARTFORM is non-NIL, it is the form
used if the process is restarted (instead of the original form
given to ADD. PROCESS). Of course, the process must also have
a non-nil RESTARTABLE prop for this to have any effect.

• Changes to DISMISS: new arg NOBLOCK

(DISMISS MSECSWAIT TIMER NOB LOCK)
If MSECSWAIT and TIMER are both NIL, this is equivalent to
(BLOCK). If NOBLOCK is T, DISMISS will not allow other
processes to run, but will busy-wait until the amount of time
given has elapsed.

• Control·T does not cause a long DISMISS to return

• WAIT.FOR.TTY spawns mouse if called under the mouse
process

• ADD.PROCESS property arguments interpreted correctly

Previously, some combinations of arguments to ADD.PROCESS
would be interpreted incorrectly. For example, (ADD. PROCESS
<form> 'SUSPEND T) would create a (non-suspended) process
with the name SUSPEND.

• PROCESSPROP can remove last user-defined property from
a process

Previously, only the last property value, not both the name and
value, would get removed from the list.

73

PROCESSES

74

• RESTART.PROCESS does not hang

Previously, if RESTART. PROCESS was called on a process which
has been created with SUSPEND = T and never started, this
would cause Interlisp to hang (hard reset required).

HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

1108 MICROCODE

• 1108 microcode available in 4K & 12K versions

The 1108 hardware is now available with either of two
processor boards: the standard board with a 4K microstore, or
the Extended Processor Option (ePE) board with a 12K
microstore. This does not change the installation or operation
of Interlisp --- the Interlisp sysout contains microcode for both
the microstore options, and the appropriate one is
automatically loaded when Interlisp is started. To provide a
visual indication of which size microstore is installed, the 1108
MP display will show 1109 when the 12K microcode is runni ng
(i nstead of 1108).

The 12K microcode contains a number of operations in
microcode which were formally implemented in Lisp, so there is
a performance improvement. For example, DRAWLlNE, BIN,
and MAKENUMBER are implemented in the 12K microcode. In
the future, any announcements of 1108 microcode changes
apply to BOTH microcodes, unless explicitly stated otherwise.

• 1108 microcode fixes

A number of obscure microcode bugs, which could cause
intermittent system failures, have been fixed.

• Pressing 1108 STOP key in RAID will not crash Interlisp

In some circumstances, pressing the STOP key when the 1108
was in RAID caused an unrecoverable error, whereas typing
control-D would succeed. This was due to a microcode bug.

75

1108 MICROCODE

(This page intentionally left blank)

7F.

HARMONY RELEASE NOTES

LIBRARY PACKAGES

• BUSEXTENDER, BUSMASTER: new, prototype packages for
using high-speed parallel port on 1108 CPE board

The extended 1108 CPE board includes a high-speed parallel
port. Currently, hardware for usi ng this parallel port is in
development. BUSEXTENDER and BUSMASTER are the
prototype versions of the software used for controlling this
port. They are being made available to the user community to
provide advance information to potential future users.

BUSEXTENDER contains the low-level Interlisp functions used to
access the parallel port.

BUSMASTER is an application which uses BUSEXTENDER and
special hardware (currently under development) to
communicate to IBM PC- or Multibus-compatib!e peripheral
devices.

• CMLARRA Y: the CMLARRA YS file package command now
works as advertised

• CMLARRA Y: I NITIALCONTENTS property works correctly

• COLOR: LOGOUT no longer crashes if color display on

• COLOR: (COLORDISPLA Y T) no longer breaks with "Illegal
arg - NOBIND"

• FILEBROWSER: Totally rewritten; many improvements

The most significant changes are:

The Info command has been removed, and the info window has
been merged with the browser window. There is a menu of file
properties under the main window; this selects the information
to be fetched when the Update command is buttoned.

The Rename command now takes a default destination
directory when called.

The Copy command now works when you're only copying a
single file.

77

LIBRARY PACKAGES

78

The See command pops up a scrollable window containing the
listing of the file. (The old version's window didn't scroll). This
window is reused for the next See command if it has been
closed.

The file browser has its own prompt window, and no longer
pops up superfluous windows.

If you close or shrink a file browser window and there are
unexpunged deleted files, an "FB close options" menu will
appear, asking whether or not to expunge deleted files before
shrinking or closing the window.

The file browser window shrinks to a distinctive "file drawer"
icon, which includes the current file browser pattern.

It uses a "nicer" font for the list of fi les.

Multiple file browsers can "do things" at the same time

Shift-selecting out of a file browser window will shift-select the
full name of the file selected. Only one file can be shift-selected
at a time.

Can supply new pattern to the filebrowser by middle-buttoning
the UPDATE command, and selecting the" New Pattern" option
from the menu that pops up.

The file browser window can scroll horizontally, so the user can
see all of the properties listed. Above the browser window is a
list of colume labels, which scroll horizontally as the browser
window does.

• FTPSERVER: Enumerating files on a remote machine
running FTPSERVER now works correctly

• FTPSERVER: COPYFILE to remote 1108 won't cause MP 9318
error

COPYFILE to a remote 1108 running FTPSERVER would
sometimes cause a serious error. FTPSERVER has been fixed so
this will not happen.

• GRAPHER: Extensively revised; new function
HARDCOPYGRAPH; node formatting extended.

GRAPHER has been extensively revised, so that it uses much less
memory space per node. Whereas the old Grapher created a
bitmap per node, the new one doesn't. The price is that
scrolling may take a little longer. To REDISPLAYW a very large
graph takes twice as long as it used to (if you don't like this, set
CACHE/NODE/LABEUBITMAPS/FLG to T). Also, the
GRAPH RECORD was changed to use half as many cons cells.
This version will not run in Carol or older <Iispcore> systems if
the user depends on nodefonts being defaulted to the
DEFAU L TFONT font class.

HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

LIBRARY PACKAGES

(HARDCOPYGRAPH GRAPHIWINDOW FILE IMAGETYPE TRANS).
Produces a file from a formated graph (e.g., like SHOWGRAPH,
only for files). If GRAPHIWINDOW is a window,
HARDCOPYGRAPH will operate on the GRAPH property of the
window. If the device field of the file name is LPT, the file will
automatical.ly get sent to the appropriate printer. IMAGETYPE
is either PRESS or INTERPRESS, and defaults to INTERPRESS.
TRANS is a position in screen points of the lower left corner of
the graph from the lower left corner of the piece of paper.

(DISPLAYGRAPH GRAPH STREAM CLIP/REG TRANS).
Put the specified graph on STREAM (which can be any image
stream) with coordinates translated to TRANS. Some streams
might also implement CLIP/REG as a clipping region. This is
primarily an efficiency hack for the display.

GRAPHER now allows nodes to be "boxed" with borders of
arbitrary shades and widths. Borders work for regular labels
and bitmap labels, but not for imageobject labels. The old
graphnode field BOXNODEFLG has been renamed
NODEBORDER. It takes the following values:

NIL no border, as before

T black border, 1 pixel wide, as before

o no border

,2,3... black border of the given width

-1,-2... white border of the given width

(w s) where w is a fixp and s is a texture or a shade; yields
a border w wide filled with the given shade s.

A new graphnode field, NODELABELSHADE, contains the
background shade of the node. This allows GRAPHER to
remember when a node is inverted. When a node is displayed,
the label area for the node is first painted as specified by
NODELABELSHADE, then the label is printed in INVERT mode.
This does not apply to labels that are bitmaps or image objects.
The legal values for the field are: NIL (same as WHITESHADE), T
(same as BLACKSHADE), a texture, or a bitmap.

(RESET/NODE/BORDER < node> < border> < stream>
<graph»
(RESET/NODE/LABELSHADE < node> < shade> < stream»
These functions reset the appropriate fields in the node. If
<stream> is a displaystream or a window, the old node will be
erased and the new node will be displayed. Changing the
border may change the size of the node, in which case the lines
to and from the node will be redrawn. The entire graph must
be available to RESET/NODE/BORDER for this purpose, either
supplied as the < graph> argument or obtained from the
GRAPH property of <stream>, if it is a window. Both
functions take the atom INVERT as a special value for

79

LIBRARY PACKAGES

80

<border> and <shade>. They read the node's current
border or shade, calculate what would be needed to invert it,
and do so.

LA YOUTGRAPH previously used a 1-pixel black box to mark
certain nodes in order to indicate where it had snapped links.
That is still the default action. However, the appearance of
marked nodes can be controlled by adding (MARK) to the
FORMAT argument of LA YOUTGRAPH. The tail of (MARK) is
a property list. If the property list is NIL, marking is suppressed
altogether. If a BORDER property is specified, the value will be
used as the NODEBORDER of marked nodes. If a LABELSHADE
property is specified, its value will be used on the marked
nodes. Of course, you can specify both a BORDER and
NODE LABEL property.

LA YOUTGRAPH will read, but not change, the fields
NODEBORDER and NODELABELSHADE of the nodes given it
(except for the marked nodes, of course). Thus, if one is
planning on installing black borders around the nodes after the
nodes have been layed out, its a good idea to give
LA YOUTGRAPH nodes that have white borders. This will cause
the nodes to be layed out far enough apart that when you
blacken the borders later, the labels of adjacent nodes will not
be overwritten.

When a graphnode is created by the record package, the
default values are now taken from the value of the following
variables:

DEFAULT.GRAPH.NODEBORDER,
DEFAULT.GRAPH.NODELABELSHADE, and
DEFAULT.GRAPH.NODEFONT. GRAPHER

initializes these to NIL. To get the benefits of this new feature,
the user will have to recompile functions that create
graphnodes

FLIPNODE now inverts a region that is 1 pixel bigger all around
than the node's region. This makes it possible to see black
borders after the node has been flipped.

LA YOUTGRAPH takes a new format token. Adding
REVERSE/DAUGHTERS to the list of format items will reflect
horizontal graphs vertically, and vertical graphs horizontally.

• LOGOCLOCK process restarts after HARDRESET

• SAMEDIR: MIGRATIONS modified: can now have list of
directories

• SINGLEFILEINDEX: Printing process prevents LOGOUT until
finished

SINGLEFILEINDEX now spawns its process with the process
property BEFOREEXIT = DON'T, so that it will not be interrupted
by a LOGOUT. If LOGOUT is executed before the process
finishes, a message will appear saying that Interlisp is waiting
for the process to finish. If you want the LOGOUT to proceed

HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

LIBRARY PACKAGES

without waiting, you must use the process status window (from
the background menu) to delete the process.

• SINGLEFILEINDEX: new variable
\SI NGLEFI LEI N DEX. DONTSPAWN

If the global variable \SINGLEFILEINDEX.DONTSPAWN = NIL,
SINGLEFILEINDEX will spawn a process to process and print the
file. If the variable is non-NIL, the processing is done in the
current process. When SINGLEFILEINDEX is loaded,
\SINGLEFILEINDEX.DONTSPAWN is initialized to NIL if it is not
al ready set.

• SPY: "recursive merging" reworked, new functions}

The Spy merge algorithm sometimes produced incorrect results
when viewing recursive calls, like functions showing up at
200%. This has been fixed.

The macro WITH.SPY has been added, identical to the
i nconsistantly-named WITH-SPY.

(SPY.LEGEND) creates a window documenting the meaning of
the different Spy node types.

(SPY.BUTTON) creates a button which, when touched once
turns on SPY, touched again, turns it off and calls (SPY.TREE 10).
This is useful for watching what's going on in the system
without typi ng a lot.

• SYSEDIT: EXPORTS.ALL (loaded by SYSEDIT) does not reset
DIRECTORIES

EXPORTS.ALL contains definitions for system records, and is
used to edit system code. Previously, when this file was loaded,
it would reset the variables DIRECTORIES and
LlSPUSERSDIRECTORIES to point to the directories used by the
Interlisp-D maintainance group.

• WHEREIS: Several changes to help users create and
maintain their own databases

Previously, the WHEREIS package interpreted the value of the
variable WHEREIS.HASH as the full file name of the single hash
file database to search. Now, WHEREIS.HASH is interpreted as a
list of hash file names, to be searched in order. This allows the
user to keep a number of separate WHEREIS databases for
different projects. Also, instead of accepting the hash file
filenames as fully-qualified filenames, they are found by
searching the directories on DIRECTORIES. WHEREIS.HASH is
initialized to NIL.

The function WHEREISNOTICE has also been extended, to help
users create and maintain WHEREIS databases:

(WHEREISNOTICE FILEGROUP NEWFLG DATABASEFILE)
Inserts the information about all of the functions on the files in

81

LIBRARY PACKAGES

82

FILEGROUP into the WHEREIS database contained on
DATABASEFILE. If DATABASEFILE is NIL, the first entry on
WHEREIS.HASH is used.

FILEGROUP may be simply a list of files, in which case each file
thereon is handled directly; but it may also be a pattern to be
given as a filegroup argument to DIRECTORY, so &, $, etc. may
be used.

IfNEWFLG is NIL, the information from the files in FILEGROUP is
added to the database DATABASE FI LE. If N EWFLG is non-N I L, a
new version of DATABASEFILE will be created containing the
database for the functions specified in FILEGROUP. If NEWFLG
is a numbe'r, the hash file will be created with NEWFLG entries.
Otherwise, it will be created to allow 20000 entries.

HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

MISCELLANEOUS

• New variable MAKESVSNAME for identifying Interlisp-D
releases

In the Harmony release sysout, the variable MAKESYSNAME is
set to the atom HARMONY. In future releases, this variable will
be set to the current release name.

• For Harmony Release, (L1SPVERSION) = 37376

Previously, the built-in version number was not consistantly
changed for different releases of Interlisp-D. In future releases,
the Interlisp version number will be incremented, and
announced in the release message.

• PROMPTFORWORD revised; doesn't grab nv; argument
renamed

PROMPTFORWORD no longer grabs the tty stream by default.
Like READ, if it is called in a process that is not the tty process, it
waits for the user to click the mouse in its window, then grabs
the tty.

The PROMPTFORWORD argument TIMELlMIT.secs has been
renamed URGENCY.OPTION, which is interpreted as follows: If
NIL, PROMPTFORWORD quietly wait for input, as READ does; if
a number, this is the number of seconds to wait for the user to
respond; if T, this means to wait forever, but periodically flash
the window to alert the user; if TTY, then PROMPTFORWORD
grabs the TTY immediately. When URGENCY.OPTION = TTY,
the cursor is temporarily changed to a different shape to
indicate the urgent nature of the request.

The last argument to PROMPTFORWORD, OLDSTRING, has been
deleted.

Typing control-W now has the normal behavior (delete last
word), rather than being a synonym of control-Q (delete all
type-in).

PROMPTFORWORD only calls RINGBELLS once to attract the
attention of the user.

• Time-zone variables to control date printout:
\TimeZoneComp, \BeginDST, \EndDST

These variables are normally set automatically if you have a
properly functioning time server on your net. For standalone

83

MISCELLANEOUS

84

machines, or old sysouts, you may need to set them by hand (in
your init file) if you are not in the Pacific time zone.
\TimeZoneComp is the number of hours west of Greenwich
(negative if east); \BeginDST is the day of the year on or before
which Daylight Savings Time takes effect (i.e., the Sunday on or
immediately preceding this day); \EndDST is the day on or
before which Daylight Savings Time ends. Days are numbered
with 1 being January 1, and counting the days as for a leap
year. In the USA where Daylight Savings Time is observed,
\BeginDST = 121 and \EndDST = 305. In a region where
Daylight Savings Time is not observed at all, set \BeginDST to
367.

• (TIMEREXPIRED? X Y) documentation wrong

If X and Yare variables whose values are timers,
(TIMEREXPIRED? X Y) is true if X is set to an EARLIER time than
Y. The Reference Manual was wrong: it said that it returned
true if X was later than Y.

• IDATE was wrong in March of leap year _. fixed

• GREET now asks for init file in typescript window

In GREET, if the system can't find the file {DSK}INIT.LlSP, the
user is asked to type the name of the site initialization file.
Previously, this prompt was printed in the prompt window.
Now, the prompt is printed in the top level typescript window.

• New function NORMALCOMMENTS for setting
NORMALCOMMENTSFLG

The interface for setting the "remote comment" facility has
changed. The recommended way to enable and disable this
facility is to call the new function NORMALCOMMENTS, rather
than setting the variable NORMALCOMMENTSFLG.

(NORMALCOMMENTS NIL) enables the "remote comment"
facility, and (NORMALCOMMENTS T) disables it (the default).

HARMONY RELEASE NOTES

Hardcopy Facilities

APPENDIX A

Interlisp-D includes facilities for generating hardcopy in both
"Press" and "Interpress" formats. Press is a file format used for
communicating documents to Xerox prototype laser
Xerographic printers known by the names" Dover", "Spruce",
"Penguin", and "Raven". Interpress is a file format used for
communicating documents to Xerox Network System printers
such as the Xerox 8044 and Xerox 5700.

Files can be in a number of formats: Interpress and Press files,
plain text files, and formatted Tedit files. In order to print a file
on a given printer, it is necessary to identify the format of the
file, convert the file to a format that the printer can accept, and
transmit it. Rather than require that the user explicitly
determine file types and do the conversion, the Interlisp-D
hardcopy functions generate Press or Interpress output
depending on the appropriate choice for the designated
printer. The hardcopy functions use the variables
PRINTERTYPES and PRINTFILETYPES (described below) to
determine the type of a file, how to convert it for a given
printer, and how to send it. By changing these variables, the
user can define other kinds of printers and print to them using
the normal hardcopy functions.

(SEND.FILE.TO.PRINTER FILE HOST PRINTOPTIONS) [function]

HARMONY RELEASE NOTES

The function SEND.FILE.TO.PRINTER causes the file FILE to be
sent to the printer HOST. If HOST is NIL, the first host in the list
DEFAULTPRINTINGHOST which can print FILE is used.

PRINTOPTIONS is a property list of the form (PROP1 VALUE1
PROP2 VALUE2 ...). Properties can include: HEADING - a string
to use on the top of each page; #COPIES - the number of copies
of the file to print; #SIDES - if 2, select two-sided printing (if
HOST can print two-sided copies); DOCUMENT.NAME - the
'name' of the document, which often appears on a cover sheet.
For example,

(SEND.FILE.TO.PRINTER 'FOO NIL

'(#COPIES 3 #SIDES 2 DOCUMENT.NAME "For John")

85

APPENDIXA

SEND.FllE.TO.PRINTER calls PRINTERTYPE and PRINTFILETYPE
to determine the printer type of HOST and the file format of
FILE. If FILE is a formatted file (e.g., already in Press or
Interpress format) in a form that the printer can print, it is
transmitted directly. Otherwise,
CONVERT.FllE.TO.TYPE.FOR.PRINTER is called to do the
conversion. All of these functions use the lists PRINTERTYPES
and PRINTFllETYPES to actually determine how to do the
conversion.

lISTFllES calls the function lISTFILES1 to send a single file to a
hardcopy printing device. Interlisp-D is initialized with
lISTFllES1 defined to call SEND.FIlE.TO.PRINTER.

Note: For backwards compatibility, the function EMPRESS is defined
to pack its arguments into a list, and call
SEND.FllE.TO.PRINTER.

(HARDCOPVW WINDOW/BITMAP/REGION FILE
HOST SCALEFACTOR ROTA TlON PRINTERTYPE) [function]

86

Creates a hardcopy file from a bitmap and optionally sends it to
a printer. WINDOW/BITMAP/REGION can either be a WINDOW
(open or closed), a BITMAP, or a REGION (interpreted as a
region of the screen). If Nil, the user is prompted for a screen
region using GETREGION.

If FILE is non-Nil, it is used as the name of the file for output. If
HOST= Nil, this file is not printed.

If FILE is Nil, output is sent to HOST. If HOST is NI L, the fi rst host
on DEFAUl TPRINTINGHOST of the type PRINTERTYPE is used.

To save an image on a file without printing it, perform
(HARDCOPVW IMAGE FILE). To print an image without saving
the file, perform (HARDCOPVW IMAGE), or, to send it to a
specific printer, (HARDCOPVW IMAGE Nil PRINTER).

SCALEFACTOR is a reduction factor. If not given, it is computed
automatically based on the size of the bitmap and the
capabilities of the printer type.

ROTATION specifies how the bitmap image should be rotated
on the printed page. Most printers (including current
INTERPRESS and PRESS) only support a ROTA TlON of mUltiples
of90.

PRINTERTYPE specifies what 'kind' of printer to use in
environments that have more than one kind of printer around.
For example, if you specify PRINTERTYPE to be PRESS or
INTERPRESS, HARDCOPVW will use that information to select
which printer to use or what print file format to convert the
output into. If PRINTER TYPE is NIL, it defaults to INTERPRESS.

HARMONY RELEASE NOTES

Note

DEFAUL TPRINTINGHOST

(PRINTFILETYPE FILE)

(PRI NTERTYPE HOSn

PRINTERTYPES

HARMONY RELEASE NOTES

APPENDIXA

that the II Hardcopy" command in the background menu
merely evaluates (HARDCOPYW), which prompts the user for a
region on the screen, and sends the image to the default
printer. The II Hardcopy" command in the paint menu
performs (HARDCOPYW WINDOW), which sends an image of
the whole window to the default printer.

[Variable]

The variable DEFAUL TPRINTINGHOST is used to designate the
default printer to be used as the output of printing operations.
It should be a list of the known printer host names, for
example, (QUAKE L1SPPRINT:). If an element of
DEFAULTPRINTINGHOST is a list, is interpreted as (PRINTER TYPE
HOSn, specifying both the host type and the host name. The
type of the printer, which determines the protocol used to send
to it and the file format it requires, is determined by the
function PRINTERTYPE.

If DEFAULTPRINTINGHOST is a single printer name, it is treated
as if it were a list of one element.

[Function]

Returns the format of the file FILE. Possible values include
PRESS, INTERPRESS, TEDIT, etc. If it cannot determine the file
type, it returns NIL. Uses the global variable PRINTFILETYPES.

[Function]

Returns the type of a printer HOST. Currently uses the
following simple heuristic: printers whose name have a colon in
them (e.g., PRINTER:PARC:XEROX) are assumed to be
INTERPRESS printers. If HOSTis a list, the CAR is assumed to be
the printer type and CADR the name of the printer, e.g., (PRESS
LASSEN). Otherwise, the printer is assumed to be the type
which is the value of DEFAULTPRINTERTYPE, initially PRESS.

[Variable]

The characteristics of a given printer are determined by the
value of the list PRINTERTYPES. Each element is a list of the
form

(TYPES (PROPERTY 1 VALUE1) (PROPERTY2 VALUE2) ...)

87

APPENDIX A

PRJ NTFI LETYPES

88

TYPES is a list of the printer types that this entry addresses. The
(PROPERTYn VALUEn) pairs define properties associated with
each printer type.

PRINTERTYPES initially contains entries for the printer types
INTERPRESS (or 8044), PRESS (SPRUCE, PENGUIN, DOVER),
FULLPRESS (RAVEN).

The printer properties include CANPRINT - a list of the file types
that the printer can print directly; STATUS - a function that
knows how to find out the status of the printer, used by
PRINTERSTATUS; PROPERTIES - a function which returns a list
of known printer properties; SEND - a function which invokes
the appropriate protocol to send a file to the printer;
BITMAPSCALE - a function of arguments WIDTH and HEIGHT in
bits which returns a scale factor for scaling a bitmap; and
BITMAPFILE - a form which, when evaluated, converts a BITMAP
to a file format that the printer will accept.

[Variable]

The variable PRINTFILETYPES contains information about
various file formats, such as Tedit files, Press files, and Interpress
files. The format is similar to PRINTERTYPES. The properties
that can be specified include TEST - a function which tests a file
if it is of the given type; CONVERSION - a property list of other
file types and ways to convert from one to the other; and
EXTENSION - a list of possible file extensions for files of this
type.

Hardcopy output may also be obtained by writing a file on the
printer device LPT, e.g. (COPYFILE 'FOO '{LPT}}. When a file on
this device is closed, it is converted to Press or Interpress format
(if necessary) and sent to the default printer {the first host on
DEFAULTPRINTlNGHOSn. Thus, {LPT} acts like the device LPT:
in Interlisp-10. One can include the printer name directly in the
file name, e.g. (COPYFILE 'FOO {LPT}QUAKE) will send the file
to the pri nter QUAKE.

HARMONY RELEASE NOTES

APPENDIX 8

Interlisp-D Attached Window Facility

The Interlisp-D attached window facility is a package designed
to make it easy to manipulate a group of windows as a unit.
Standard operations like MOVE, RESHAPE, OPEN and CLOSE
can be done so that it appears to the user as if the wi ndows are
a single entity. Each collection of attached windows has one
main window and any number of other windows that are
"attached" to it. Moving or reshaping the main window causes
all of the attached wi ndows to be moved or reshaped as well.
Moving or reshaping an attached window does not affect the
main window. The initial motivation for attached windows was
to allow multiple menus to be associated with the same
window but there is no restriction on what windows can be
attached.

(ATTACHWINDOW WINDOWTOA ITACH MAINWINDOW EDGE POSITIONONEDGE WINDOWCOMACTlON)

HARMONY RELEASE NOTES

Associates WINDOWTOAITACH with MAINWINDOW so that
shape, move, close, shrink and expand operations done to
MAINWINDOW are also done to WINDOWTOA ITACH.
ATIACHWINDOW moves WINDOWTOAITACH to its position
relative to MAINWINDOW but does not open it.

EDGE and POSITIONONEDGE indicate where
WINDOWTOA ITACH is to be positioned. The argument EDGE
determines which edge: TOP, BOTTOM, LEFT, or RIGHT. The
default, used if EDGE is NIL, is TOP. The argument
POSITIONONEDGE determines where along edge the window is
positioned:

JUSTIFY means that the attached window is to fill the entire
edge. ATIACHWINDOW reshapes the window if necessary;

LEFT or RIGHT for the left or right (for a TOP or BonOM
edge);

BOTTOM or TQP for the bottom or top (of a LEFT or RIGHT
edge);

CENTER for the center of the edge.

The default for POSITIONONEDGE is JUSTIFY.

89

APPENDIX B

(DETACHWINDOW WINDOWTODETACH)

The size that is filled by the justification includes the extent of
any other windows that have already been attached to
MAINWINDOW. Thus (ATIACHWINDOW A MW 'RIGHT
'JUSTIFY) followed by (ATIACHWINDOW B MW 'TOP 'JUSTIFY)
will put B across the top of both MW and A.

WINDOWCOMACTION provides a convenient way of setting
the way the attached window responds to right buttoning. If
WINDOWCOMACTION is MAIN, the DOWINDOWCOMFN of
WINDOWTOATTACH is set to DOMAINWINDOWCOMFN. If
WINDOWCOMACTION is HERE, the DOWINDOWCOMFN of
WINDOWTOATTACH is not changed. If WINDOWCOMACTION
is LOCALCLOSE, the DOWI N DOWCOM FN of
WINDOWTOATTACH is set to DOATIACHEDWINDOWCOM2.
Otherwise, the DOWINDOWCOMFN of WINDOWTOA TTACH is
set to DOATIACHEDWINDOWCOM. These functions are
described below in the section on "attached window menu
commands."

Detaches WINDOWTODETACH from its main window. Returns
a dotted pair whose CAR is EDGE and whose CDR is
POSITIONONEDGE if WINDOWTODETACH was an attached
window. Returns NIL otherwise. This does not close
WINDOWTODETACH.

Behavior on standard window operations

Move:

90

When a window operation, such as moving or clearing, is
performed on a window, there is a question about whether or
not that operation also be performed on the windows attached
to it or performed on the window it is attached to. The
following are the default behaviors of main and attached
windows under the window operations when invoked
programmatically, e.g., from the functions MOVEW, SHAPEW,
etc.

The behavior when an operation is invoked from the window
menu depends on the WINDOWCOMACTION argument to
ATIACHWINDOW, or ultimately the window's
DOWINDOWCOMFN property. Mention of "menu" below
assumes that the window was attached using the default (NIL)
WINDOWCOMACTION.

The behavior for any particular operation can, of course, be
changed for particular windows by setting the standard
window properties (e.g., MOVEFN or CLOSEFN) of the
particular attached window.

If the main window moves, all attached windows move with it,
and the relative positioning between the main window and

HARMONY RELEASE NOTES

Reshape:

Close:

Open:

Shrink:

Redisplay:

Totop:

Expand:

Scrolling:

Clear:

HARMONY RELEASE NOTES

APPENDIX 8

the attached windows is maintained. If the region is
determined interactively, the prompt region for the move is
the union of the extent of the main window and all attached
windows.

MOVEW moves an attached window without affecting the
main window. The Move command in the window menu is by
default passed on to the main window, so that all windows in
the group move.

If the main window is reshaped, the minimum size of it and all
of its attached windows is used as the minimum of the space
for the result. Any space greater than the minimum is
distributed among the main window and its attached
windows.

SHAPEW reshapes an attached window independently. The
Shape command in the window menu is by default passed on to
the main window.

If the main window is closed, all of the attached windows are
closed also and the links from the attached windows to the
main window are broken. This is necessary for the windows to
be garbage collected.

ClOSEW closes an attached window without affecting the main
window. Close in the window menu is by default passed on to
the main window. If WINDOWCOMACTION of lOCAlCLOSE
was specified in the call to ATTACHWINDOW, the menu Close
operates independently. Note that closing an attached
wi ndow does not detach it.

If the main window is opened, it opens all attached windows
and reestablishes links from them to the main window.

Attached windows can be opened independently and this does
not affect the main window.

The collection of windows shrinks as a group .. The SHRINKFNs
of the attached windows are evaluated but the only icon
displayed is the one for the main window.

The main or attached windows can be redisplayed
independently.

If any main or attached window is brought to the top, all of the
other windows are brought to the top also.

Expanding any of the windows expands the whole collection.

All of the windows involved in the group scroll independently.

All windows clear independently of each other.

The question of how to handle the window command menu of
any particular window (either by right buttoning or by a call to
the function DOWINDOWCOM) is handled by the window's

91

APPENDIX B

Attached window menu commands

DOWINDOWCOMFN property. The WINDOWCOMACTION
argument to ATIACHWINDOW selects one of the following
three functions to be the attached window's
DOWINDOWCOMFN property, or leaves the property Nil if
WINDOWCOMACTION is HERE, meaning to use the standard
window command menu, ignorant of the window's
attachments. The programmer can instead supply her own
DOWINDOWCOMFN property if some other behavior is desired.

(DOATTACHEDWINDOWCOM ATTACHEDW LOCALCLOSEFLG)

(DOA TTACHEDWINDOWCOM2 A TTACHEDW)

(DOMAINWINDOWCOMFN A TTACHEDW)

Attaching menus to windows

92

The default (when WINDOWCOMACTION is Nil). Brings up the
window command menu and then, depending upon the
command selected, either passes the command to the main
window of ATTACHEDW or performs it on ATTACHEDW. If
LOCALCLOSEFLG is non-Nil, the CLOSE command is applied to
A TTACHEDW. Otherwise, the CLOSE command is passed to the
main window. The commands MOVE, RESHAPE, SHRINK and
BURY are passed to the main window. The other commands
are performed on ATTACHEDW.

Used when WINDOWCOMACTION is lOCAlClOSE. Performs
(DOATIACHEDWINDOWCOM ATTACHEDW T) so that the
command CLOSE is performed on A TTACHEDW.

Used when WINDOWCOMACTION is MAIN. Performs
DOWINDOWCOM on the window that is the MAINWINDOW
property of ATTACHEDW. In other words, assuming the
DOWINDOWCOMFN of the main window hasn't been changed,
this passes all window commands on to the main window.

ATIACHEDWINDOW supersedes the MENUEDWINDOW
package and users of it are encouraged to convert their code.
The following functions are provided to associate menus to
windows.

HARMONY RELEASE NOTES

APPENDIX 8

(A TTACHMENU MENU MAINWINDOW EDGE POSITIONONEDGE NOOPENFLG)

(MENUWINDQW MENU VERTFLG)

Creates a window that contains the menu MENU (by calling
MENUWINDOW, see below) and attaches it to the window
MAINWINDOW on edge EDGE at position POSITIONONEDGE.
The menu window is opened unless MAINWINDOW is closed, or
NOOPENFLG is T

Returns a closed window that has the menu MENU in it. If
MENU is a list, a menu is created with MENU as its items.
Otherwise, MENU should be a menu. The returned window has
the appropriate RESHAPEFN, MINSIZE and MAXSIZE window
properties to allow its use in a window group. VERTFLG is
provided to allow convenient setting of the default menu
shape and will only be considered if both the MENUROWS and
MENUCOlUMNS fields of MENU are NIl. If VERTFLG is non-Nil,
the MENUROWS field of MENU will be set to 1; otherwise the
MENUCOlUMNS field of MENU will be set to 1.

(CREATEMENUEDWINDOW MENU WINDOWTlTLE LOCA TlON WINDOWSPEC)

HARMONY RELEASE NOTES

Creates a window with an attached menu and returns the main
window. MENU is the only required argument, and may be a
menu or a list of menu items. WINDOWTlTLE is a string
specifying the title of the main window. LOCA TlON specifies
the edge on which to place the menu, as with
ATTACHWINDOW's EDGE argument; the default is TOP.
WINDOWSPEC is a REGION, specifying a region for the
aggregate window; if NIL, the user is prompted for a region.

This function is similar to MENUEDWINDOW's function
MAKEMENUEDWINDOW. However, note that it is not an exact
replacement. In particular, the MENUWINDOW property is not
used.

Examples:

(SETQ MENUW
(MENUWINDOW (create MENU

ITEMS ~ '(smaller LARGER)

MENU FONT ~ '(GACHA 12)

TITLE ~ "zoom controls"
CENTERFlG ~ T

WHENSElECTEDFN +- (FUNCTION

ZOOMMAINWINDOW))))

93

APPENDIX B

creates a menu window that contains the two items "smaller"
and "LARGER" with the title "zoom controls" and that calls the
function ZOOMMAINWINDOW when an item is selected.

(ATTACHWINDOW MENUW (CREATEW '(50 50 150 150» 'TOP 'JUSTIFY)

Attached Prompt Windows

creates a wi ndow on the screen and attaches the above created
menu window to its top.

(CREATEMENUEDWINDOW (CREATE MENU

ITEMS <E- '(smaller LARGER)

MENU FONT <E- '(GACHA 12)

TITLE <E- "zoom controls"

CENTERFLG <E- T

WHENSELECTEDFN <E- (FUNCTION

ZOOMMAINWINDOW))))

creates the same sort of window in one step, prompting the
user for a region.

Many packages have a need to display status information or
prompt for small amounts of user input in a place outside their
standard window. A convenient way to do this is to attach a
small window to the top of the program's main window. The
following functions do so in a uniform way that can be
depended on among diverse applications.

(GETPROMPTWINDOW MAINWINDOW #L1NES FONT DONTCREATE)

(REMOVEPROMPTWINDOW MAINWINDOW)

Returns the attached prompt window associated with
MAINWINDOW, creating it if necessary. The window is always
attached to the top of MAINWINDOW, has DSPSCROLL set to T,
and has a PAGEFULLFN of NILL to inhibit page holding. The
window is at least #L1NES lines high (default 1); if a pre-existing
window is shorter than that, it is reshaped to make it large
enough. FONT is the font to give the prompt window (defaults
to the font of MAINWINDOW) , and applies only when the
window is first created. If DONTCREATE is true, returns the
window if it exists, otherwise NIL without creating any prompt
window.

Detaches the attached prompt window, if any, associated with
MAINWINDOW, and closes it.

HARMONY RELEASE NOTES

APPENDIX B

Window properties of attached windows

HARMONY RELEASE NOTES

Windows that are involved in a collection either as a main
window or as an attached window have properties stored on
them. The only properties that are intended to be set be set by
the user are the MINSIZE and MAXSIZE properties. The other
properties should be considered read only; they are maintained
by the ATTACHEDWINDOW package.

MINSIZE, MAXSIZE: Each should be a dotted pair (width .
height) or a function to apply to the wi ndow that returns a
dotted pair. The numbers are used when the main window is
reshaped. The MINSIZE is used to determine the size of the
smallest region acceptable during reshaping. Any amount
greater than the collective minimum is spread evenly among
the windows until each reaches MAXSIZE. Any excess is given
to the main window. This algorithm may change as experience
is gained.

Note: If you give the main window of an attached
window group a MINSIZE or MAXSIZE property, its
value is moved to the MAINWINDOWMINSIZE or
MAINWINDOWMAXSIZE property, so that the main
window can be given a size function that computes
the minimum or maximum size of the entire group.
Thus, if you want to change the main window's
minimum or maximum size after attaching windows
to it, you should change the
MAINWINDOWMINSIZE or MAINWINDOWMAXSIZE
property instead.

Note: This doesn't address the hard problem of
overlapping attached windows side to side, for
example if window A was attached as [TOP, LEFT]
and B as [TOP, RIGHT]. Initially the reshape
getregion won't worry about the overlap.

Default MAXSIZE is NIL, which will let the region grow
indefinitely.

MAINWINDOW: pointer from attached windows to the main
window of the group. This link is not available if the main
window is closed. The function MAINWINDOW is the preferred
way to access this property.

ATTACHEDWINDOWS: pointer from a window to its attached
windows. For functional access to this information, the
function ATTACHEDWINDOWS is documented below.

WHEREATTACHED: for attached windows, a list whose first
element is the EDGE and whose second element is the
POSITIONONEDGE that determine the placement condition for
this window.

95

APPENDIX B

Notes

96

The TOTOPFN property on attached windows and the
properties TOTOPFN, DOSHAPEFN, MOVEFN, CLOSEFN,
OPENFN, SHRINKFN, EXPANDFN and CALCULATEREGIONFN
contain elements that implement the window manipulation
facilities. Care should be used in modifying or replacing these
properties.

A window can be attached to only one other window.
Attaching a window to a second window will detach it from the
first.

Attachments can not form loops. That is, a window cannot be
attached to itself or to a window that is attached to it.
ATTACHWINDOW will generate an error if this is attempted.

Attached windows can have other windows attached to them.
Thus, it is possible to attach window A to window B when B is
already attached to window C. Similarly, if A has other
windows attached to it it can still be attached to B.

Moving the main window will maintain the relationships
between windows.

Reshaping the main window will restore the conditions
established by the call to ATTACHWINDOW, moving the main
window does not. Thus, if A is attached to the top of Band
then moved by the user, its new position relative to B will be
maintained if B is moved. If B is reshaped, A will be reshaped to
the top of B. Additionally, if, while A is moved away from the
top of B, C is attached to the top of B, C will position itself
above where A used to be.

The attached windows can be closed by themselves. They will
be reopened whenever the mainwindow is reshaped. The
closefn for the main window breaks the links from the attached
windows to it to allow them to be garbage-collected. The
reopenfn for the mai n wi ndow reestabl ishes these links. Thus it
is possible to reopen a closed, attached window and not have it
linked to its mainwindow.

HARMONY RELEASE NOTES

APPENDIX B

Example of use

(ATIACHWINDOWATWIN MAINWIN 'TOP 'CENTER)

Will move ATWIN to immediately above MAINWIN and
maintain its attachment there.

(ATTACHWINDOW NOTHERWIN MAINWIN 'TOP 'CENTER)

Miscellaneous functions

(MAINWINDOW WINDOW RECURSEFLG)

(WINDOWREGION WINDOW)

(WINDOWSIZE WINDOW)

HARMONY RELEASE NOTES

Will move NOTHERWIN to immediately above ATWIN and
mai ntai n its attachment there.

If WINDOW is not a WINDOW, it generates an error. If
WINDOW is closed, it returns WINDOW. If WINDOW is not
attached to another window, it returns WINDOW itself. If
RECURSEFLG is NIL and WINDOW is attached to a window, it
returns that window. If RECURSEFLG is T, it returns the first
window up the "main window" chain starting at WINDOW that
is not attached to any other window.

Returns the screen region occupied by WINDOW and its
attached windows, if it has any.

Returns the size of WINDOW (a dotted pair of width and
height) and its attached windows, if it has any.

97

APPENDIX B

(MINA TTACHEDWINDOWEXTENT WINDOIN)

(ATTACHEDWINDOWS MAINWINDOIN)

(ALLATTACHEDWINDOWS MAINWINDOIN)

(DETACHALLWINDOWS MAINWINDOIN)

98

Returns the minimum extent (a dotted pair of width and
height) of WINDOW and its attached windows (if any) will
accept.

Returns the list of windows attached to this window.

Returns a list of all of the windows attached to MAINWINDOW
or attached to a window attached to it.

Detaches and closes all windows attached to MAINWINDOW.

HARMONY RELEASE NOTES

APPENDIX C

Parallel Port for the 1100 and for the 1108 with
Extended Processor Option ((PE)

The 1100 has a parallel port connector with 8 bidi rectional data
lines, 8 unidirectional output lines (with inverted duplicates for
noise immunity), and 5 unidirectional input lines. The 1108
with Extended Processor Option (CPE) has a similar parallel port
connector: the differences are (1) it has 6 unidirectional input
lines vs. 5, (2) the power lines of the connector are 5 volts vs. 12,
and (3) the pi n layouts are" reversed". (These differences are
also described below in the "Pin List".) A cable adapter is
available to map the 1108's parallel port's pin layout into that
of the 1100, or vice versa.

This document describes the protocol for the parallel port
connector, and basic Interlisp-D functions for accessing it.

The maximum transfer rate when the parallel port is accessed
directly from the Interlisp-D functions below is about 240K
operations/second. Centronics-driver block-transfer microcode
will be able to transfer data as fast as the Centronics standard
will allow.

On the 1108, the parallel port connector is the CPE board's
upper D-37 connector J2 (female), also cabled to the "PAR
PORT" connector on the rear of the 1108.

Description of signals on the connector

HARMONY RELEASE NOTES

PIO.0-7

PI.0-4/5
PO.0-6

PO.7

Bidirectional data lines. Driven by the central processor if PO.7
= 1, input if PO.7 = O.
Input data lines. (PI.0-4 on the 1100; P1.0-5 on the 1108.)
Output data lines.
Output data line. Special in that:

If PO.7 = 0 = 'output' then the bidirectional lines PIO.0-7 are
driven by the central processor (and, on the 1108, a
program readi ng the parallel port wi 1/ read a set of
miscellaneous status lines rather than the values of PIO.0-7
as on the 1100);
If PO.7 = 1 = 'input' then the bidirectional lines PIO.0-7 are
not driven by the central processor, and a program reading
the parallel port will read the input values of PIO.0-7;

99

APPENDIX C

PO.O'-7'

Pin List

100

Output data lines. Inverted copies of PO.0-7.

Signals are TTL levels. All output lines are latched; input lines
are read asynchronously.

On the 1108 only, other hardware has status flags "hidden" in
the parallel port. Microcode for this other hardware must
someti mes set PO.7 = 1 to enable access to these flags. As a
result, the user device on the parallel port, and its handshaking
protocol, must tolerate that at any time when PO.7 = 1 (PIO.0-7
output drivers disabled)' PO.7 may be toggled to 0 then back to
1, briefly enabling the central processor's output drivers on
PIO.0-7. This disruption is otherwise invisible to the parallel
port user. This disruption can be avoided during
uninterruptable microcode.

pin no. signal pin no. pin no. signal pin no.
(1100) name (1108) (1100) name (1108)

1 PIO.O 19 20 PO.O 37
2 PIO.1 18 21 PO.O' 36
3 PIO.2 17 22 PO.1 35
4 PIO.3 16 23 PO.1' 34
5 PIO.4 15 24 PO.2 33
6 PIO.S 14 25 PO.2' 32
7 PIO.6 13 26 PO.3 31
8 PIO.7 12 27 PO.3' 30
9 PI.O 11 28 PO.4 29

10 PI.1 10 29 PO.4' 28
11 PI.2 9 30 PO.5 27
12 PI.3 8 31 PO.5' 26
13 PI.4 7 32 PO.6 25
14 12volt 5volt 6 33 PO.G' 24
15 12volt 5volt 5 34 PO.7 23
16 resv'd 4 35 PO.l' 22
17 GND 3 36 GND PI.5 21
18 GND 2 37 GND 20
19 GND

The 1108's 5volt lines will drive about 1 amp.

HARMONY RELEASE NOTES

Interlisp-D access

(WRITEPRINTERPORT datum)

(READPRINTERPORT)

HARMONY RELEASE NOTES

APPENDIX C

Writes the less significant 16 bits of the integer datum to the
parallel port. The format is: PO.O, .. PO.7,PIO.O, .. ,PIO.7 (least
significant bit). All outputs to the parallel port are latched.
Note that the value written to PO.7 controls whether PIO.0-7
are driven (output) or passive (input). On the 1108, the value
written to PO.7 also affects the results of READPRINTERPORT.

Reads a 16-bit datum from the parallel port, returning it as a
positive integer. The more significant 6 bits of these 16 are
(most significant first) PI.O, .. ,PI.5. The next less significant two
bits are not relevant to parallel port i/o. On the 1100, the least
significant 8 bits of the result are PIO.O, .. ,PIO.7 (least significant
bit). On the 1108, the least significant 8 bits of the result are
relevant to parallel port i/o only if the value most recently
written to PO.7 was 1, in which case they are PIO.O, .. ,PIO.7 (least
significant bit) as on the 1108.

101

APPENDIX C

(This page intentionaly left blank)

102 HARMONY RELEASE NOTES

APPENDIX D

Higher-Level NS Protocol Functions

Name and Address Conventions

HARMONY RELEASE NOTES

The following is a description of the Interlisp-D facilities for
using Xerox SPP and Courier protocols and the services based
on them. The sections on naming conventions, Printing, and
Filing are of general interest to users of Network Systems
servers. The remaining sections describe interfaces of interest
to those who wish to program other applications on top of
either Courier or SPP.

Addresses of hosts in the NS world consist of three parts, a
network number, a machine number, and a socket number.
These three parts are embodied in the Interlisp-D datatype
NSADDRESS. Objects of type NSADDRESS print as
"net#h1.h2.h3#socket", where all the numbers are printed in
octal radix, and the 48-bit host number is broken into three 16-
bit fields. Most functions that accept an address argument will
accept either an NSADDRESS object or a string that is the
printed representation of the address.

Higher-level functions accept host arguments in the form of a
symbolic name for the host. The NS world has a hierarchical
name space. Each object name is in three parts: the
Organization, the Domain, and the Object parts. There can be
many domains in a single organization, and many objects in a
single domain. The name space is maintained by the
Clearinghouse, a distributed network database service.

A Clearinghouse name is standardly notated as
object:domain:organization. The parts organization or
domain:organization may be omitted if they are the default
(see below). Alphabetic case is not significant. Internally,
names are represented as objects of datatype NSNAME, but
most functions accept the textual representation as well, either
as a litatom or a string. Objects of type NSNAME print as
object:domain:organization, with fields omitted when they are
equal to the default. A Domain is standardly represented as an
NSNAME in which the object part is null. If frequent use is to be
made of an NS name, it is generally preferable to convert it to
an NSNAME once, by calling PARSE.NSNAME, then passing the
resultant object to all functions desiring it.

103

APPENDIX D

CH.DEFAUL T.ORGANIZATION

CH.DEFAUL T.DOMAIN

[Variable]

This is a string specifying the default Clearinghouse
organization.

[Variable]

This is a string specifying the default Clearinghouse domain. If
it or the variable CH.DEFAUL T.ORGANIZATION is NIL, they are
set by Lisp system code (when they are needed) to be the first
domain served by the nearest Clearinghouse server.

In small organizations with just one domain, it is reasonable to
just leave these variables NIL and have the system set them
appropriately_ In organizations with more than one domain, it
is wise to set them in the site initialization file, so as not to be
dependent on exactly which Clearinghouse servers are up at
any time.

(PARSE.NSNAME NAME #PARTS DEFAUL TDOMAIN) [Function]

When #PARTS is 3 (or NIL), parses NAME, a litatom or string,
into its three parts, returning an object of type NSNAME. If the
domain or organization is omitted, defaults are supplied, either
from DEFAULTDOMAIN (an NSNAME whose domain and
organization fields only are used) or from the variables
CH.DEFAUL T.DOMAIN and CH.DEFAUL T.ORGANIZATION.

If #PARTS is 2, NAME is interpreted as a domain name, and an
NSNAME with null object is returned. In this case, if NAME is a
full 3-part name, the object part is stripped off.

If #PARTS is 1, NAME is interpreted as an organization name,
and a simple string is returned. In this case, if NAME is a 2- or 3-
part name, the organization is extracted from it.

If NAME is already an object of type NSNAME, then it is
returned as is (if #PARTS is 3), or its domai nand/or
organization parts are extracted (if #PARTS is 1 or 2).

(NSNAME.TO.STRING NSNAME FULLNAMEFLG) [Function]

104

Converts NSNAME, an object of type NSNAME, to its string
representation. If FULLNAMEFLG is true, the full printed name
is returned; otherwise, fields that are equal to the default are
omitted.

HARMONY RELEASE NOTES

Clearinghouse Functions

(START.CLEARINGHOUSE RESTARTFLG)

CH.NET.HINT

APPENDIX D

Programmers who wish to manipulate NSADDRESS and
NSNAME objects directly should load the Library package
ETHERRECORDS.

This section describes functions that may be used to access
information in the Clearinghouse.

[Function]

Performs an expanding ring broadcast in order to find the
nearest Clearinghouse server, whose address it returns. If a
Clearinghouse has already been located, this function simply
returns its address immediately, unless RESTARTFLG is true, in
which case the cache of Clearinghouse infdrmation is
invalidated and a new broadcast is performed.
START.CLEARINGHOUSE is normally performed automatically
by the system the first time it needs Clearinghouse information;
however, it may be necessary to call it explicitly (with
RESTARTFLG set) if the local Clearinghouse server goes down.

[Variable]

A number or list of numbers, giving a hint as to which network
the nearest Clearinghouse server is on. When
START.CLEARINGHOUSE looks for a Clearinghouse server, it
probes the network(s) given by CH.NET.HINT first, performing
the expanding ring broadcast only if it fails there. If the nearest
Clearinghouse server is not on the directly connected network,
setting CH.NET.HINT to the proper network number in the local
INIT file can speed up START.CLEARINGHOUSE considerably_

(SHOW.CLEARINGHOUSE ENTIRE. CLEARINGHOUSE? DONT. GRAPH) [Function]

HARMONY RELEASE NOTES

This function displays the structure of the cached Clearinghouse
information in a window. Once created, it will be redisplayed
whenever the cache is updated, until the window is closed. The
structure is shown using the Library package GRAPHER.

·If ENTIRE.CLEARINGHOUSE? is true, then this function probes
the Clearinghouse to discover the entire domain:organization
structure of the Internet, and graphs the result. If
DONT.GRAPH is true, the structure is not graphed, but rather
the results are returned as a nested list indicating the structure.

105

APPENDIX D

(LOOKUP.NS.SERVER NAME TYPE FULLFLG)

(CH.LOOKUP.OBJECT OBJECTPA TTERN)

[Function]

Returns the address, as an NSADDRESS, for the object NAME.
TYPE is the property under which the address is stored, which
defaults to ADDRESS.LlST. The information is cached so that it
need not be recomputed on each call; the cache is cleared by
restarting the Clearinghouse. If FULLFLG is true, returns a list
whose first element is the canonical name of NAME and whose
tail is the address list.

The following functions perform various sorts of retrieval
operations on database entries in the Clearinghouse. Here,
"The Clearinghouse" refers to the collective service offered by
a" the Clearinghouse servers on an internet; Lisp internally
deals with which actual server(s) it needs to contact to obtai n
the desried information. The argument(s) describing the
objects under consideration can be stri ngs or NSNAME's, and in
most cases can contain the wild card "*", which matches a
subsequence of zero or more characters. Wildcards are
permitted only in the most specific field of a name (e.g., in the
object part of a full three-part name). When an operation
intended for a single object is instead given a pattern, the
operation is usually performed on the first matching object in
the database, which mayor may not be interesting.

[Function]

Looks up OBJECTPATTERN in the Clearinghouse database,
returning its canonical name (as an NSNAME) if found, NIL
otherwise. If OBJECTPA TTERN contai ns a "*", returns the fi rst
matching name.

(CH.LlST.ORGANIZATIONS ORGANIZA TlONPA TTERN) [Function]

(CH.LlST.DOMAINS DOMAINPA TTERN)

106

Returns a list of organization names in the Clearinghouse
database matching ORGANIZA TlONPA TTERN. The default
pattern is "*" , which matches anythi ng.

[Function]

Returns a list of domain names (two-part NSNAME's) in the
C1eari nghouse database matchi ng DOMAINPA TTERN. The
default pattern is "*", which matches anything in the default
organization.

HARMONY RELEASE NOTES

APPENDIX D

(CH.LlST.OBJECTS OBJECTPA TTERN PROPERTY) [Function]

(CH.LlST.ALlASES OBJECTNAMEPA TTERN)

(CH.LlST.ALlASES.OF OBJECn

Returns a list of object names matching OBJECTPA TTERN and
having the property PROPERTY. PROPERTY is a number10r a
symbolic name for a Clearinghouse property; the latter include
USER, PRINT.SERVICE, FILE.SERVICE, MEMBERS, ADDRESS.LlST
and ALl.

For example,

(CH.LlST.OBJECTS "*:PARC:Xerox" (QUOTE USER))

returns a list of the names of users in the domain PARC:Xerox.

(CH.LlST.OBJECTS n*lisp*:PARC:Xerox" (QUOTE MEMBERS))

returns a list of all group names in PARC:Xerox containing the
substring "lisp".

[Function]

Returns a list of all objects in the Clearinghouse database that
are aliases and match OBJECTNAMEPATTERN.

[Function]

Returns a list of all objects in the Clearinghouse database that
are aliases of OBJECT.

(CH.RETRJEVE.ITEM OBJECT PROPERTY INTERPRETA TlON) [Function]

Retrieves the value of the PROPERTY property of OBJECT.
Returns a list of two elements, the canonical name of the object
and the value. If INTERPRETA TlON is given, it is a Clearinghouse
type (see section X.XX) with which to interpret the bits that
come back; otherwise, the value is simply of the form
(SEQUENCE UNSPECIFIED), a list of 16-bit integers representing
the value.

(CH.RETRIEVE.MEMBERS OBJECT PROPERTY ---) [Function]

HARMONY RELEASE NOTES

Retrieves the members of the group OBJECT, as a list of
NSNAME's. PROPERTY is Clearinghouse Group property under
which the members are stored; the usual property used for this
purpose is MEMBERS.

107

APPENDIX D

(CH.lSMEMBER GROUPNAME PROPERTY SECONDARYPROPERTY NAME) [Function]

NS Printing

(NSPRINT PRINTER FILE OPTIONS)

DOCU MENT.NAME

DOCUMENT.CREATION.DATE

SENDER. NAME

RECIPI ENT. NAM E

#COPIES

MEDIUM

STAPLE?

108

Tests whether NAME is a member of GROUPNAME's PROPERTY
property. This is a potentially complex operation; see the
description of procedure IsMember in the Clearinghouse
Protocol documentation for details.

This section describes the facilities that are available for
pri nti ng Interpress masters on NS Pri nt servers.

[Function]

This function prints an Interpress master on PRINTER, which is a
Clearinghouse name represented as a string or NSNAME. If
PRINTER is NIL, NSPRINT uses the first print server registered in
the default domain. FILE is the name of an Interpress file to be
printed. OPTIONS is a list in property list format that controls
details of the printing. Possible properties are as follows:

The document name to appear on the header page (a string).
Default is the full name of the file.

The creation date to appear on the header page (a Lisp integer
date, such as returned by IDATE). The default val ue is the
creation date of the file.

The name of the sender to appear on the header page (a
string). The default value is the name of the user.

The name of the recipient to appear on the header page (a
string). The default is none.

The number of copies to be printed. The default value is 1.

The medium on which the master is to be printed. If omitted,
this defaults to the value of NSPRINT.DEFAUl T.MEDIUM, as
follows: NIL means to use the printer's default; T means to use
the first medium reported available by the printer; any other
value must be a Courier value of type MEDIUM. The format of
this type is a list (PAPER (KNOWN.SIZE TYPE» or (PAPER
(OTHER.SIZE (WIDTH LENGTH)). The paper TYPE is one of
US. LETTER, US. LEGAL, AO through A 10, ISO.BO through
ISO.B10, and JIS.BO through JIS.B10.

True if the document should be stapled.

HARMONY RELEASE NOTES

#SIDES

PRIORITY

(NSPRINTER.STATUS PRINTER)

(NSPRINTER.PROPERTIES PRINTER)

NS Filing

(BREAK.NSFILlNG.CONNECTION HOST)

HARMONY RELEASE NOTES

APPENDIX D

or 2 to indicate that the document should be printed on one or
two sides, respectively. The default is the value of
EMPRESS#SIDES.

The priority of this print request, one of LOW, NORMAL, or
HIGH. The default is the printer's default.

[Function]

This function returns a list describing the printer's current
status---whether it is available or busy, and what kind of paper
is loaded.

[Function]

This function returns a list describing the printer's capabilities
at the moment---type of paper loaded, whether it can print
two-sided, etc.

Lisp accesses Xerox NS fileservers using the NS Filing Protocol.
For most operations, the programmer simply treats the NS
fileserver as any other host or device. OPENFILE, GETFILEINFO,
DIRECTORY all work appropriately when the filename specifies
an NS file server host name, e.g.,
{PHYLEX:PARC:XEROX} < LISP> LI BRARY > GRAPH ER.DCOM; 1.
Note that all NS File Server host names must contain a colon,
even if the domain and organization fields are defaulted, in
order that they be distinguishable from other types of host
names (e.g., Pup server names). Note also th~t spaces are
allowable characters in NS names. Thus, if an NS file name
contains spaces (in the file name or the server name) and is
presented as a litatom, the spaces must be quoted with %.
However, all the standard file operations also work when the
name is presented as a string, in which case there is no problem
with spaces.

The following are features specific to NS fileservers.

[Function]

Closes any open connections to NS file server HOST.

109

APPENDIX D

FILlNG.ENUMERATION.DEPTH

spp Stream Interface

[Variable]

The full NS Filing Protocol supports a true hierarchical name
space for files. This leaves some ambiguity about how deep the
function DIRECTORY should enumerate files. The depth is
controlled by the variable FILlNG.ENUMERATION.DEPTH, which
is either a number, specifying the number of levels deep to
enumerate, or T, meaning enumerate to all levels. In the
former case, when the enumeration reaches the specified
depth, only the subdirectory name rooted at that level is listed,
and none of its descendants is listed. When
FILlNG.ENUMERATION.DEPTH is T, all files are listed, and no
subdirectory names are listed. FILlNG.ENUMERATION.DEPTH is
initially T.

Independent of FILlNG.ENUMERATION.DEPTH, a request to
enumerate the top-level of a file server's hierarchy lists only the
top level, i.e., assumes a depth of 1. For example, (DIRECTORY
'{PHYLEX:}) lists exactly the top-level directories of the server
PHYLEX:.

This section describes the stream interface to the Sequenced
Packet Protocol. SPP is the transport protocol for Courier,
which in turn is the transport layer for Filing and Printing.

(SPP.OPEN HOST SOCKET PROBEP NAME WHENCLOSEDFN) [Function]

110

This function is used to open a bidirectional SPP stream. There
are two cases: user and server.

User: If HOST is specified, an SPP connection is initiated to
HOST, an NSADDRESS or string representing an NS address. If
the socket part of the address is null (zero), it is defaulted to
SOCKET. If both HOST and PROBEP are specified, then the
connection is probed for a response before returni ng the
stream; NIL is returned if HOST doesn't respond.

Server: If HOST is NIL, a passive connection is created which
listens for an incoming connection to local socket SOCKET.

SPP.OPEN returns the input side of the bidirectional stream; the
function SPPOUTPUTSTREAM is used to obtain the output side.
The standard stream operations BIN, READP, EOFP (on the input
side), and BOUT, FORCEOUTPUT (on the output side), are
defined on these streams, as is CLOSEF, which can be applied to
either stream to close the connection.

HARMONY RELEASE NOTES

(SPPOUTPUTSTREAM STREAM)

SPP.USER.TIMEOUT

(SPP.SENDEOM STREAM)

(SPP.DSTVPE STREAM DSTYPE)

(SPP.EOMP STREAM)

(SPP.CLEAREOM STREAM NOERRORFLG)

HARMONY RELEASE NOTES

APPENDIX D

NAME is a mnemonic name for the connection process, mainly
useful for debugging. WHENCLOSEDFN is an optional function
or list of functions to call when the stream is closed, either by
the user or the server.

(Function]

Applied to the input stream of an SPP connection, this function
returns the corresponding output stream.

[Variable]

Specifies the time, in milliseconds, to wait before deciding that
a host isn't responding.

[Function]

Transmits the data buffered so far on this output stream, if any,
with the End of Message bit set. If there is nothing buffered,
sends a zero-length packet with End of Message bit set.

(Function]

Accesses the current datastream type of the connection. If
DSTYPE is NIL, returns the datastream type of the current
packet being read. If DSTYPE is non-NIL, sets the datastream
type of all subsequent packets sent on this connection, until the
next call to SPP.DSTYPE. Since this affects the current partially
filled packet, the stream should probably be flushed (via
FORCEOUTPUT) before this function is called.

(Function]

This function returns T or NIL depending on whether or not an
End of Message indication has been reached. This is only true
after the last byte of data in the message has been read. By
convention, EOFP is true of a stream that is at EOM.

(Function]

Clears the End of Message indication on STREAM. This is
necessary in order to read beyond the EOM. Causes an error if

111

APPENDIX D

the stream is not currently at the End of Message, unless
NOERRORFLG is true.

(SPP.SENDA TIENTION STREAM A TTENTlONBYTE) [Function]

Sends an SPP "attention" packet, one with the Attention bit set
and containing the single byte of data A TTENTlONBYTE.

Courier Remote Procedure Call Protocol

(COURIERPROGRAM NAME ...)

112

Courier is the Xerox Network Systems Remote Procedure Call
protocol. It uses the Sequenced Packet Protocol for reliable
transport. Courier uses procedure call as a metaphor for the
exchange of a request from a user process and its positive reply
from a server process; exceptions or error conditions are the
metaphor for a negative reply. A family of remote procedures
and the errors they can raise constitute a remote program. A
remote program generally represents a complete service, such
as the Filing or Printing programs described earlier in this
chapter.

For more detail about Courier, the reader is referred to the
published specification of the Courier protocol. The following
documentation assumes some familiarity with the protocol. It
describes how to define a Courier program and use it to
communicate with a remote system element that implements a
server for that program. This section does not discuss how to
construct such a server.

Defining Courier Programs

A Courier program definition is a file package type and
command, COURIERPROGRAMS. Thus, you can use GETDEF,
PUTDEF, and EDITDEF to manipulate them, or use the file
package command (COURIERPROGRAMS name1 name2 ...) to
save them. The function COURIERPROGRAM can be used to
define a Courier program initially.

[NLambda NoSpread Function]

This function is used to define Courier programs. The syntax is
(COURIERPROGRAM NAME (PROGRAMNUMBER
VERSIONNUMBER) . DEFINITIONS)

The tail DEFINITIONS is a property list where the properties are
selected from TYPES, PROCEDURES, ERRORS and INHERITS; the
values are lists of pairs of the form (LABEL. DEFINITION). These
are described in more detail as follows:

HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

APPENDIX D

The TYPES section lists the symbolically-defined types used to
represent the arguments and results of procedures and errors in
this Courier program. Each element in this section is of the
form (TYPENAME TYPEDEFINITlON), e.g., (PRIORITY INTEGER).
The TYPEDEFINITION can be a predefined type (see next
section), another type defined in this TYPES section, or a
qualified typename taken from another Courier program;
these latter are written as a dotted pair (PROGRAMNAME .
TYPENAME).

The PROCEDURES section lists the remote procedures defined
by this Courier program. A procedure definition is a stylized
reduction of the Courier definition syntax defined in the
Courier Protocol specification:

(PROCEDURENAME NUMBER ARGUMENTS
RETURNS RESUL /TYPES REPORTS ERRORNAMES)

ARGUMENTS is a list of type names, one per argument to the
remote procedure, or NIL if the procedure takes no arguments.
RESUL TTYPES is a list of type names, one for each value to be
returned. ERRORNAMES is a list of names of errors that can be
raised by this procedure; each such error must be listed in the
program's ERRORS section. The atoms RETURNS and REPORTS
are noise words to aid readability.

The ERRORS section lists the errors that can be raised by
procedures in this program. An error definition is of the form

(ERRORNAME NUMBER ARGUMENTS),

Where ARGUMENTS is a list of type names, one for each
argument, if any, reported by the error.

The INHERITS section is an optional list of other Courier
programs, some of whose defi nitions are II inherited II by this
program. More specifically, if a type, procedure or error
referenced in the current program definition is not defined in
this program, the system searches for a definition of it in each
of the inherited programs in turn, and uses the first such
definition found.

The INHERITS section is useful when defining variants of a given
Courier program. For example, if one wanted to tryout version
4 of Courier program BAR, and version 4 differed from version 3
of program BAR only in a small number of procedure or type
definitions, one could define a program NEWBAR with an
INHERITS section of (BAR) and only need to list the few
changed definitions inside NEWBAR.

113

APPENDIX D

114

Courier Type Definitions

This section describes how the Courier types described in the
Courier Protocol document are expressed in a Lisp Courier
program definition, and how values of each type are
represented. Each type in a Courier program's TYPES section
must ultimately be defined in terms of one of the following
"base" types, although the definition can be indirect through
arbitrarily many levels. That is, a type can be defined in terms
of any other type known by an extant Courier definition. The
names of the base types are "global"; they need no
qualification, nor do type names mentioned in the same
Courier program. To refer to a type not defined in the same
Courier program (or to any non-base type when there is no
program context), one writes a Qualified name, in the form
(PROGRAM. TYPE). In general, a Qualified name is legal in any
place that calls for a Courier type.

Pre-defined Types

Pre-defined (atomic) types are expressed as uppercase litatoms
from the following set:

BOOLEAN Values are represented by T and NIL.

INTEGER Values are represented as small integers
in the range [-32768 .. 32767].

CARDINAL Values are represented as small integers
in the range [0 .. 65535].

UNSPECIFIED Same as CARDINAL.

LONGINTEGER Values are represented as FIXP's.

LONGCARDINAL Same as LONGINTEGER. Note that
Interlisp-D does not (currently) have a
datatype that truly represents a 32-bit
unsigned integer.

STRING Values are represented as Lisp strings.

In addition, the following types not in the document have been
added for convenience:

TIME Represents a date and ti me in
accordance with the Network Time
Standard. The value is a FIXP such as
returned by the function I DATE, and is
encoded as a LONGCARDINAL.

HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

NSADDRESS

NSNAME

NSNAME2

Constructed Types

APPENDIX D

Represents a network address. The
value is an object of type NSADDRESS
(section X.XX), and is encoded as six
items of type UNSPECIFIED.

Represents a three-part Clearinghouse
name. The value is an object of type
NSNAME (section X.XX), and is encoded
as three items of type STRI NG.

Represents a two-part Clearinghouse
name, i.e., a domain. The value is an
object of type NSNAME (section X.XX),
and is encoded as two items of type
STRING.

Constructed Types are composite objects made up of elements
of other types. They are all expressed as a list whose CAR names
the type and whose remaining elements give details. The
following are available:

(ENUMERATION (NAME INDEX) ... (NAME INDEX» Each NAME
is an arbitrary litatom or string; the corresponding INDEX is its
Courier encoding (a CARDINAL). Values of type ENUMERATION
are represented as a NAME from the list of choices. For
example, a value of type (ENUMERATION (UNKNOWN 0) (RED
1) (BLUE 2» might be the litatom RED.

(SEQUENCE TYPE) A SEQUENCE value is represented as a list,
each element being of type TYPE. A SEQUENCE of length zero
is represented as NIl. Note that there is no maximum length for
a SEQUENCE in the Lisp implementation of Courier.

(ARRAY LENGTH TYPE) An ARRAY value is represented as a list
of LENGTH elements, each of type TYPE.

(CHOICE (NAME INDEX TYPE) ... (NAME INDEX TYPE» The
CHOICE type allows one to select among several different types
at runtime; the INDEX is used in the encoding to distinguish the
value types. A value of type CHOICE is represented in Lisp as a
list of two elements, (NAME VALUE). For example, a value of
type

(CHOICE (STATUS 0 {ENUMERATION (BUSY 0) (COMPLETE
1») (MESSAGE 1 STRING» could be (STATUS COMPLETE) or
(MESSAGE "Out of paper. ").

(RECORD (FIELDNAME TYPE) ... (FIELDNAME TYPE» Values of
type RECORD are represented as lists, with one element for
each field of the record. The field names are not part of the
value, but are included for documentation purposes.

115

APPENDIX D

For programmer convenience, there are two macros that allow
Courier records to be constructed and dissected in a manner
similar to Lisp records. These compile into the appropriate
composites of CONS, CAR and CDR.

(COURIEFtCREATE TYPE FIELDNAME r VALUE ... FIELDNAME r VALUE) [Macro]

(COURIER.FETCH TYPE FIELD OBJECn

116

Creates a value of type TYPE, which should be a fully-qualified
type name that designates a RECORD type, e.g.,
(MAIL TRANSPORT . POSTMARK). Each FIELDNAME should
correspond to a field of the record, and all fields must be
included. Each VALUE is evaluated; all other arguments are
not. The assignment arrows are for readability, and are
optional.

[Macro]

Analogous to the Record Package operator fetch. Argument
TYPE is as with COURIER.CREATE; FIELD is the name of one of
its fields. COURIER.FETCH extracts the indicated field from
OBJECT. For readability, the noiseword "of" may be inserted
between FIELD and OBJECT. Only the argument OBJECT is
evaluated.

For example, if the program CLEARINGHOUSE has a type
declaration

(USERDATA.VALUE (RECORD (LAST.NAME.lNDEX CARDINAL)
(FILE.SERVICE STRING»),

then the expression

(SETQ INFO (COURIER.CREATE (CLEARINGHOUSE
USERDATA.VALUE)

LAST.NAME.INDEX +-12
FILE.SERVICE +- "Phylex:PARC:Xerox")

Would set the variable INFO to the list (12
"Phylex:PARC:Xerox"). The expression

(COURIER.FETCH (CLEARINGHOUSE USERDATA.VALUE)
FILE.SERVICE of INFO)

would produce "Phylex:PARC:Xerox".

User Extensions to the Type Language

The programmer can add new base types to the Courier
language by telling the system how to read and write values of
that type. The programmer chooses a name for the type, and

HARMONY RELEASE NOTES

COURIERDEF

HARMONY RELEASE NOTES

APPENDIX D

gives the name a COURIERDEF property. The new name can
then be used anywhere that the type names listed in the
previous sections, such as CARDINAL, can be used. Such
extensions are useful for user-defined objects, such as
datatypes, that are not naturally represented by any
predefined or constructed type. The NSADDRESS and NSNAME
Courier types are defined by this mechanism.

[Property Name]

The format of the COURIERDEF property is a list of up to four
elements, (READFN WRITEFN LENGTHFN WRITEREPFN). The
first two elements are required; if the latter two are omitted,
the system will simulate them as needed. The elements are as
follows:

READFN

WRITEFN

LENGTHFN

This is a function of three arguments,
(STREAM PROGRAM TYPE). The function is
called by Courier when it needs to read a
value of this type from STREAM as part of a
Courier transaction. The function reads and
returns the value from STREAM, possibly
using some of the functions described in
section X.XX. PROGRAM and TYPE are the
name of the Courier program and the type.
In the case of atomic types, TYPE is a
litatom, and is provided for type
discrimination in case the programmer has
supplied a single reading function for
several different types. In the case of
constructed types, TYPE is a list, CAR of
which is the type name.

This is a function of four arguments,
(STREAM VALUE PROGRAM TYPE). The
function is called by Courier when it needs
to write VALUE to STREAM. PROGRAM and
TYPE are as with the reading function. The
function should write VALUE on STREAM.
The result returned from this function is
ignored.

This function is called when Courier wants
to write a value of this type in the form
(SEQUENCE UNSPECIFIED), and then only if
the WRITEREPFN is omitted. The function is
of three arguments, (VALUE PROGRAM
TYPE). It should return, as an integer, the
number of 16-bit words that the WRITEFN
would require to write out this value. If
values of this type are all the same length,
the LENGTHFN can be a simple integer
instead of a function. See discussion of

117

APPENDIX D

WRITEREPFN

COURIER.WRITE.SEQUENCE.UNSPECIFIED
(section X.XX.

This function is called when Courier wants
to write a value of this type in the form
(SEQUENCE UNSPECIFIED). The function
takes the same arguments as the WRITEFN,
but must write the value to the stream
preceded by its length. If this function is
omitted, Courier invokes the LENGTHFN to
find out how long the value is, and then
invokes the WRITEFN. If the LENGTHFN is
omitted, Courier invokes the WRITEFN on a
scratch stream to fi nd out how long the
value is.

Performing Courier Transactions

The normal use of Courier is to open a connection with a
remote system element using COURIER.OPEN, perform one or
more remote procedure calls using COURIER.CALL, then close
the connection with CLOSEF.

(COURIER.OPEN HOSTNAME SERVERTYPE NOERRORFLG NAME WHENCLOSEDFN) [Function]

Opens a Courier connection to the Courier socket on HOST, and
returns an SPP stream that can be passed to COURIER.CALL.
HOST can be an NS address, or a symbolic Clearinghouse name
in the form of a string, litatom or NSNAME. In the case of a
symbolic name, SERVERTYPE specifies the Clearinghouse
property under which the server's address may be found;
normally, this is NIL, in which case the ADDRESS.LlST property is
used. If NOERRORFLG is true, NIL is returned if a connection
cannot be made, or the server supports the wrong version of
Courier. The Courier connection process is named NAME, if
specified. WHENCLOSEDFN is a function of one argument, the
Courier stream, that will be called when the connection is
closed, either by user or server.

(COURIER.CALL STREAM PROGRAM PROCEDURE ARG1 ... ARGN NOERRORFLG) [NoSpread Function]

118

This function calls the remote procedure PROCEDURE of the
Courier program PROGRAM. STREAM is the stream returned by
COURIER.OPEN. The arguments should be Lisp values
appropriate for the Courier types of the corresponding formal
parameters of the procedure. There must be the same number
of actual and formal arguments. If the procedure call is
successful, Courier returns the result(s) of the call as specified in
the RETURNS section of the procedure definition. If there is

HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

APPENDIX D
.j

only a single result, it is returned directly, otherwise a list of
results is returned. .

Procedures that take a Bulk Data argument (source or sink) are
treated specially; see section X.XX.

If the procedure call results in an error, one of three possible
courses is available. The default behavior is to cause a Lisp
error. To suppress the error, an optional keyword can be
appended to the argument list, as if an extra argument. This
NOERRORFLG argument can be the atom NOERROR, in which
case NIL is returned as the result of the call. If NOERRORFLG is
RETURNERRORS, the result of the call is a list (ERROR
ERRORNAME. ERRORARGS). If the failure was a Courier Reject,
rather than Error, then ERRORNAME is the atom REJECT.

Examples:

(COURIERPROGRAM PERSONNEL (17 1)
TYPES
«PERSON.NAME (RECORD (FIRST.NAME STRING)

(MIDDLE MIDDLE.PART)
(LAST.NAME STRING»)

(MIDDLE.PART (CHOICE (NAME 0 STRING)
(INITIAL 1 STRING»)

(BIRTHDAY (RECORD (YEAR CARDINAL)
(MONTH STRI NG)
(DA Y CAROl NAL»»

PROCEDURES
({GETBIRTHDA Y 3 (PERSON.NAME)

RETURNS (BIRTHDA Y) REPORTS
(NO.SUCH.PERSON»)

ERRORS
«NO.SUCH.PERSON 1»

This expression defines PERSONNEL to be Courier program
number 17, version number 1. The example defines three
types, PERSON.NAME, MIDDLE.PART and BIRTHDAY, and one
procedure, GETBIRTHDAY, whose procedure number is 3. The
following code could be used to call the remote GETBIRTHDA Y
procedure on the host with address HOSTADDRESS.

{SETQ STREAM (COURIER.OPEN HOSTADDRESS»
{PROG1 (COURIER.CALL STREAM 'PERSONNEL 'GETBIRTHDAY

(COURIER.CREATE (PERSONNEL. BIRTHDAY)
FIRST.NAME +- "Eric"
MIDDLE +- '(INITIAL "C")
LAST.NAME +- "Cooper"»

(CLOSEF STREAM))

COURIER.CALL in this example might return a value such as
(1 959 "J a n u a ry" 1 0) .

119

APPENDIX D

Expedited Procedure Call

Some Courier servers support "Expedited Procedure Call",
which is a way of performing a single Courier transaction by a
Packet Exchange protocol, rather than goi ng to the expense of
setting up a full Courier connection. Expedited calls must have
no bulk data arguments, and their arguments and results must
each fit into a single packet.

(COURIER.EXPEDITED.CALL ADDRESS SOCKET# PROGRAM PROCEDURE
ARGl ... ARGN NOERRORFLG) [NoSpread Function]

120

Attempts to perform a Courier call using the Expedited
Procedure Call. ADDRESS is the NS address of the remote host
and SOCKET# is the socket on which it is known to listen for
expedited calls. The remaining arguments are exactly as with
COURIER.CALL. If the arguments to the procedure do not fit in
one packet, or if there is no response to the call, or if the call
returns the error USE.COURIER (which must be defined by
exactly that name in PROGRAM), then the call is attempted
instead by the normal, non-expedited method---a Courier
connection is opened with ADDRESS, and COURIER.CALL is
invoked on the arguments given.

Expanding Ring Broadcast

"Expanding Ring Broadcast" is a method of locating a server of
a particular type whose address is not known in advance. The
system broadcasts some sort of request packet on the directly
connected network, then on networks one hop away, then on
networks tw.o hops away, etc., until a positive response is
received.

For use in locating a server for a particular Courier program, a
stylized form of Expanding Ring Broadcast is defined. The
request packet is essentially the call portion of an Expedited
Procedure Call for some procedure defined in the program.
The response packet is a Courier response, and typically
contains at least the server's address as the result of the call.
The designer of the protocol must, of course, specify which
procedure to use in the broadcast (usually it is procedure
number zero) and on what socket the server should listen for
broadcasts.

START.CLEARINGHOUSE uses this procedure to locate the
nearest Clearinghouse server.

HARMONY RELEASE NOTES

APPENDIX D

(COURIER.BROADCAST.CALL DESTSOCKET# PROGRAM PROCEDURE
ARGS RESUL TFN NETHINT MESSAGE) [Function]

HARMONY RELEASE NOTES

Performs an expanding ring broadcast for servers willing to
implement PROCEDURE in Courier program PROGRAM.
DESTSOCKET# is the socket on which such servers of this type
are known to listen for broadcasts, typically the same socket on
which they listen for expedited calls. ARGS is the argument list,
if any, to the procedure (note that it is not spread, unlike with
COURIER.CALL).

If a host responds positively, then the function RESUL TFN is
called with one argument, the Courier results of the procedure
call. If RESULTFN returns a non-null value, the value is returned
as the value of COURIER.BROADCAST.CALL and the search
stops there; otherwise, the search for a responsive host
continues. If RESULTFN is not supplied (or is NIL), then the
results of the procedure call are returned directly from
COURIER.BROADCAST.CALL; i.e., RESULTFN defaults to the
identity function.

NETHINT, if supplied, is a net number or list of net numbers as a
hint concerning which net(s) to try first before performing a
pure expanding-ring broadcast. If MESSAGE is non-NIL, it is a
description (string) of what the broadcast is looking fort to be
printed in the prompt window to inform the user of what is
happening. For example, START.CLEARINGHOUSE passes in the
message "Clearinghouse servers" and the hint CH.NET.HINT.

Using Bulk Data Transfer

When a Courier program needs to transfer an arbitrary amount
of information as an argument or result of a Courier procedure,
the procedure is usually defined to have one argument of type
"Bulk Data". The argument is a "source" if it is information
transferred from caller to server (as though a procedure
argument), a "sink" if it is information transferred from server
to caller (as though a procedure result). These two "types" are
indicated in a Courier procedure's formal argument list as
BULK.DATA.SOURCE and BULK.DATA.SINK, respectively. A
Courier procedure may have at most one such argument.

In a Courier call, the bulk data is transmitted in a special way,
between the arguments and the results. There are two basic
ways to handle this in the call. The caller can specify how the
bulk data is to be interpreted (how to read or write it), or the
caller can request to be given a bulk data stream as the result of
the Courier call. The former is the preferred way; both are
described below.

In the first method, the caller passes as the actual argument to
the Courier call (i.e., in the position in the argument list

121

APPENDIX D

occupied by BULK.DATA.SOURCE or BULK.DATA.SINK) a
function to perform the transfer. Courier sets up the
transaction, then calls the supplied function with one
argument, a stream on which to write (if a source argument) or
read (if a sink) the bulk data. If the function returns normally,
the Courier transaction proceeds as usual; if it errors out,
Courier sends a Bulk Data Abort to abort the transaction.

In the case of a sink argument, if the value returned from the
sink function is non-NIL, it is returned as the result of
COURIER.CALL; otherwise, the result of COURIER.CALL is the
usual procedure result, as declared in the Courier program.

For convenience, a Bulk Data sink argument to a Courier call
can be specified as a fully qualified Courier type, e.g.,
(CLEARINGHOUSE. NAME), in which case the Bulk Data stream
is read as a "stream of" that type (see
COURIER.READ.BULKDATA, below).

The second method for handling bulk data is to pass NIL as the
bulk data" argument" to COURIER.CALL. In this case, Courier
sets up the call, then returns a stream that is open for OUTPUT
(if a source argument) or INPUT (if a sink). The caller is
responsible for transferring the bulk data on the stream, then
closing the stream to complete the transaction. The value
returned from CLOSEF is the Courier result. This method is
required if the caller's control structure is open-ended ina way
such that the bulk data cannot be transferred within the scope
of the call to COURIER.CALL.

In either method, the stream on which the bulk data is
transferred is a standard Interlisp stream, so BIN, BOUT,
COPYBYTES are all appropriate.

Many Courier programs define a "Stream of <type>" as a
means of transferring an arbitrary number of objects, all of the
same type. Although this is typically specified formally in the
printed Courier documentation as a recursive definition, the
recursion is in practice unnecessary and unwieldy; instead, the
following function should be used.

(COURIER.READ.BULKDATA STREAM PROGRAM TYPE) [Function]

122

Reads from STREAM a "Stream of TYPE" for Courier program
PROGRAM, and returns a list of the objects read.

Passing (X . Y) as the bulk argument to a Courier call is thus
equivalent to passing the f~nction (LAMBDA (STREAM)
(COURIER.READ.BULKDATA STREAM"X Y».

HARMONY RELEASE NOTES

(COURIER.READ STREAM PROGRAM TYPE)

APPENDIX D

Courier Subfunctions for Data Transfer

The following functions are of interest to those who transfer
data in Courier representations, e.g., as part of a function to
implement a user-defined Courier type.

[Function]

Reads from the stream STREAM a Courier value of type TYPE for
program PROGRAM. If TYPE is a predefined type, then
PROGRAM is irrelevant; otherwise, it is required in order to
qualify TYPE.

(COURIER.WRITE STREAM ITEM PROGRAM TYPE) [Function]

Writes ITEM to the stream STREAM as a Courier value of type
TYPE for program PROGRAM.

(COURIER.READ.SEQUENCE STREAM PROGRAM BASETYPE) [Function]

Reads from the stream STREAM a Courier value SEQUENCE of
values of type TYPE for program PROGRAM. Equivalent to
(COURIER.READ STREAM PROGRAM (SEQUENCE BASETYPE».

(COURIER.WRITE.SEQUENCE STREAM ITEM PROGRAM BASETYPE) [Function]

Equivalent to (COURIER.WRITE STREAM ITEM PROGRAM
(SEQUENCE BASETYPE).

Some Courier programs traffic in values whose interpretation is
left up to the clients of the program; the values are transferred
in Courier transactions as values of type (SEQUENCE
UNSPECIFIED). For example, the Clearinghouse program
transfers the value of a database property as an uninterpreted
sequence, leaving it up to the caller, who knows what type of
value the particular property takes, to interpret the sequence
of raw bits as some other Courier representation. The
following functions are useful when dealing with such values.

(COURIER.WRITE.REP VALUE PROGRAM TYPE) [Function]

HARMONY RELEASE NOTES

Produces a list of 16-bit integers, i.e., a value of type
(SEQUENCE UNSPECIFIED), that represents VALUE when

123

APPENDIX D

interpreted as a Courier value of type TYPE in PROGRAM.
Examples:

(COURIER.WRITE.REP T NIL 'BOOLEAN) = > (1)
(COURIER.WRITE.REP "Thing" NIL 'STRING) = >

(5 52150Q 64556Q 63400Q)
(COURIER.WRITE.REP '(1025) Nil '(SEQUENCE INTEGER)) = >

(21025)

(COURIER.READ.REP LIST. OF. WORDS PROGRAM TYPE) [Function]

Interprets LIST. OF. WORDS, a list of 16-bit integers, as a Courier
object of type TYPE in the Courier program PROGRAM.

(COURIER.WRITE.SEQUENCE.UNSPECIFIED STREAM ITEM PROGRAM TYPE) [Function]

124

Writes to the stream STREAM in the form (SEQUENCE
UNSPECIFIED) the object ITEM, whose value is really a Courier
value of type TYPE for program PROGRAM. Equivalent to, but
usually much more efficient than, (COURIER.WRITE STREAM
(COURIER.WRITE.REP ITEM PROGRAM TYPE) NIL '(SEQUENCE
UNSPECIFIED»).

HARMONY RELEASE NOTES

Resources

A Resource Management Tool

HARMONY RELEASE NOTES

APPENDIX E

Interlisp is based on the use of a storage-management system
which allocates memory space for new data objects, and
automatically reclaims the space when no longer in use. More
generally, Interlisp manages shared "resources" I such as files,
semaphors for processes, etc. The protocols for allocating and
freeing such resources resemble those of ordinary storage
management.

Sometimes users need to explicitly manage the allocation of
resources. They may desire the efficiency of explicit
reclamation of certain temporary data; or it may be expensive
to initialize a complex data object; or there may be an
application that must not allocate new cells during some critical
section of code.

The file package type RESOURCES is available to help with the
definition and usage of such classes of data; the definition of a
RESOURCE .. ~ specifies prototype code to do the basic
management operations. The filepkg command RESOURCES is
used to save such definitions on files, and INITRESOURCES
causes the initialization code to be output (similar to
INITRECORDS).

The basic needs of resource management are (1) obtai ni ng a
data item from the Lisp memory management system and
configuring it to be a totally new instance of the resource in
question, (2) freeing up an instance which is no longer needed,
(3) getting an instance of the resource for temporary usage
[whether "fresh" or a formerly freed-up instance], and (4)
setting up any prerequisite global data structures and variables.
A RESOU RCES defi nition consists of fou r "methods": I NIT,
NEW, GET, and FREE; each "method" is a form that will
specialize the definition for four corresponding user-level
macros INITRESOURCE, NEWRESOURCE, GETRESOURCE, and
FREERESOU RCE. PUTDEF is used to make a RESOU RCES
definition, and the four components are specified in a proplist:

125

APPENDIX E

A Simple Example

126

(PUTOEF '< resourceName >
RESOURCES
'(NEW < new-instance-generation code>

FREE <freeing-up code>
GET < get-i nstance code>
INIT <initialization code>))

In each case the < .. code> is a form that will appear as if it
were the body of a substitution macro definition for the
corresponding macro [see the discussion on the macros below].

Suppose one has several pieces of code which use a 256-
character string as a scratch string. One could simply generate a
new string each time, but that would be inefficient if done
repeatedly. If the user can guarantee that there are no re
entrant uses of the scratch string, then it could simply be stored
in a global variable. However, if the code might be re-entrant
on occasion, the program has to take precautions that two
programs do not use the same scratch string at the same time.
[Note: this consideration becomes very important in a multi
process environment. It is hard to guarantee that two processes
won't be running the same code at the same time, without
using elaborate locks.] A typical tactic would be to store the
scratch string in a global variable, and set the variable to NIL
whenever the string is in use (so that re-entrant usages would
know to get a "new" instance). For example, assuming the
global variable TEMPSTRINGBUFFER is initialized to NIL:

[OEFINEQ (WITHSTRING NIL
(PROG «BUF (OR (PROG 1 TEMPSTRINGBUFFER (SETQ

TEMPSTRINGBUFFER NIL»
(ALLOCSTRING 256))))
... use the scratch string in the variable BUF '.'
(SETQ TEMPSTRINGBUFFER BUF)
(RETURN]

Here, the basic elements of a "resource" usage may be seen: (1)
a call (ALLOCSTRING 256) allocates fresh instances of "buffer",
(2) after usage is completed the instance is returned to the
"free" state, by putting it back in the globalvar
TEMPSTRINGBUFFER where a subsequent call will find it, (3) the
prog-binding of BUF will get an existing instance of a string
buffer if there is one -- otherwise it will get a new instance
which will later be available for reuse, and (4) some
initialization is performed before usage of the resource (in this
case, it is the setting of the global variable
TEMPSTRINGBUFFER).

HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

APPENDIX E

Given the following RESOURCES definition:

{PUTDEF 'STRINGBUFFER
RESOURCES
'(NEW (ALLOCSTRING 256)

FREE (SETQ TEMPSTRINGBUFFER (PROG 1 . ARGS»
GET (OR (PROG 1 TEMPSTRINGBUFFER (SETQ

TEMPSTRINGBUFFER NIL»
(N EW R E SO U R C E T E M PS T R IN G B U F FER)))

INIT (SETQ TEMPSTRINGBUFFER NIL))

we could then redo the example above as

(DEFINEQ (WITHSTRING NIL
(PROG «BUF (GETRESOURCE STRINGBUFFER)))

... use the string in the variable BUF ...
(FREERESOURCE STRINGBUFFER BUF)
(RETURN]

The advantage of doing the coding this way is that the resource
management part of WITHSTRING is fully contained in the
expansions of GETRESOURCE and FREERESOURCE, and thus
there is no confusion between what is WITHSTRING code and
what is resource management code. This particuar advantage
will be multiplied if there are other functions which need a
"temporary" string buffer; and of course, the resultant
modularity makes it much easier to contemplate minor
variations on, as well as multiple clients of, the STRINGBUFFER
resource.

In fact, the scenario just shown above in the WITHSTRING
example is so commonly useful that an abbreviation has been
added; if a RESOURCES definition is made with *only* a NEW
method, then appropriate FREE, GET, and INIT methods will be
inferred, along with a coordinated globalvar, to be parallel to
the above definition. So the above definition could be more
simply written

(PUTDEF 'STRINGBUFFER
'RESOURCES
'(NEW (ALLOCSTRING 256)))

and every thing would work the same.

The macro WITH-RESOURCES simplifies the common scoping
case, where at the beginning of some piece of code, there are
one or more GETRESOURCE calls the results of which are each
bound to a lambda variable; and at the ending of that code a
FREERESOURCE call is done on each instance. Since the
resources are locally bound to variables with the same name as
the resource itself, the definition for WITHSTRING then
simplifies to

(DEFINEQ (WITHSTRING NIL
(WITH-RESOURCES (STRINGBUFFER)

... use the string in the variable STRINGBUFFER ...)

127

APPENDIX E

Trade-offs in More Complicated Cases

This simple example presumes that the various functions which
use the resource are generally not re-entrant. While an
occasional re-entrant use will be handled correctly (another
example of the resource will simply be created), if this were to
happen too often, then many of the resource requests will
create and throwaway new objects, which defeats one of the
major purposes of using RESOURCES. A slightly more complex
GET and FREE method can be of much benefit in maintaining a
pool of available resources; if the resource were defined to
maintain a list of "free" instances, then the GET method could
simply take one off the list and the FREE method could just
push it back onto the list. In this simple example, the SETQ in
the FREE method defined above would just become a "push",
and the first clause of the GET method would just be (pop
TEMPSTRINGBUFFER)

A word of caution: if the datatype of the resource is something
very small that Interlisp system is "good" at allocating and
reclaiming, then explicit user storage management will
probably not do much better than the combination of
cons/createcell and the garbage collector. This would especially
be so if more complicated GET and FREE methods were to be
used, since their overhead would be closer to that of the built
in system facilities. Finally, it must be considered whether
retaining multiple instances of the resource is a net gain; if the
re-entrant case is truly rare, it may be more worthwhile to
retain at most one instance, and simply let the instances created
by the rarely-used case be reclaimed in the normal course of
garbage collection.

User-Level Macros for Accessing RESOURCES

128

Four user-level macros are defined for accessing RESOURCES:

(N EWRESOU RCE < resourceName > . ARGS)
(FREERESOURCE <resourceName> . ARGS)
(GETRESOU RCE < resourceName > . ARGS)
(INITRESOU RCE < resourceName > . ARGS)

[Macro]
[Macro]
[Macro]
[Macro]

Each of these macros behave as if they were defined as a
substitution macro of the form

«RESOU RCENAME . ARGS) ... macrobody ...)

where the expression" ... macrobody ... " is selected by using the
"code" supplied by the corresponding method from the
< resourceName > definition.

Note that it is possible to pass "arguments" to the user's
resource allocation macros. For example, if the "GET" method

HARMONY RELEASE NOTES

Saving RESOURCES in a File

HARMONY RELEASE NOTES

APPENDIX E

for the resource FOO is (GETFOO . ARGS), then (GETRESOURCE
FOO X Y) is transformed into (GETFOO X V). This form was used
in the "FREE" method of the STRINGBUFFER resource described
above, to pass the old STRINGBUFFER object to be freed.

(WITH-RE~OU RCES « resource 1 > < resource2 > ...) < form 1 >
< form2 > ...) [Macro]

The WITH-RESOURCES macro binds lambda variables of the
same name as the resources (for each of the resources
<resource1 >, <resource2>, ...) to the result of the
G ETRESOU RCE macro; then executes the forms < form 1 >,
<form2>, etc., does a FREERESOURCE on each instance, and
returns the value of the last form (evaluated and saved before
the FREERESOU RCEs).

Note: (WITH-RESOU RCES < resourceName > ...) is
interpreted the same as (WITH-RESOURCES
« resourceName » ...). Also, the singular name
WITH-RESOU RCE is accepted as a synonym for WITH
RESOURCES.

RESOURCES definitions may be saved on files using the
RESOU RCES filepkg command. Typically, one only needs the
full definition available when compiling or interpreting the
code, so it is appropriate to put the filepkg command in a
(DECLARE: EVAL@COMPILE DONTCOPY ...) declaration, just as
one might do for a RECORDS declaration. But just as certain
record declarations need *some* initialization in the run-time
environment, so do most resources. This initialization is
specified by the resource' INIT method, which is executed
automatically when the 'resource is defined by the PUTDEF
output by the RESOURCES command. However, if the
RESOU RCES command is in a DONTCOPY expression and thus is
not included in the compiled file, then it is necessary to include
a separate INITRESOURCES command in the filecoms to insure
that the resource is properly initialized.

129

APPENDIX E

[This page intentionally left blank]

130 HARMONY RELEASE NOTES

The Use of Fonts in Harmony

Display Fonts

HARMONY RELEASE NOTES

APPENDIX F

Harmony introduces some new conventions for using fonts
within Interlisp-D. This is a description of such use of fonts,
especially as they relate to output on the screen and product
(Interpress) pri nters.

Each display font distributed with the Harmony release has the
extension .DISPLAYFONT. The variable

DISPLA YFONTEXTENSIONS
should be initially set to the list (DISPLAYFONT). Other
extensions such as .AC or .STRIKE can be included in the list for
backward compatibility to other display fonts.

DISPLAYFONTDIRECTORIES should be initialized to a list
containing the names of directories to be searched for display
fonts.

With these variables set, and given the format
<family> <size>{-B}{-I}-CO,where:

<family> isthe font family
<size> is the point size of the font
-B is present only for Bold fonts
-I is present only for Ital ic fonts,
-co is Character Set 0

and DISPLAYFONTEXTENSIONS set to (DISPLA YFONT STRIKE
AC),

the system will perform the search for display fonts as follows:

Search DISPLAYFONTDIRECTORIES for <family> <size>
{-B}{-I}-CO.DISPLA YFONT

Search DISPLAYFONTDIRECTORIES for <family> <size>
{B}{I}.STRIKE

Search DISPLAYFONTDIRECTORIES for <family> <size>
{-B}{-I}-CO.AC

131

APPENDIX F

Printer Fonts

132

If bold or italic of the specified font is not found,it will be
synthesized from the existing medium or regular font
respectively.

In order to print a specified font on a product (Interpress)
printer, a width file must be accessed for each font. These
width files all have extensions of .WD and come from various
character sets; character sets for widths distri buted with the
Harmony release include sets 0, 357 and certain others for
special fonts. The names of directories to be searched for these
files should be included in the list
INTERPRESSFONTDI RECTORI ES.

In order to print a specified font on a Press printer, the list
PRESSFONTWIDTHSFILES should include the file names
(including host and directory) of the FONTS.WIDTHS file.

The following is a sample procedure for loading fonts in the
Harmony release of Interlisp-D.

[1] Check with the system administrator to determine what
fonts are loaded on the printer.

Example: On a product printer running Services 7.0.1
software, one should Logon and List Fonts. On a
product printer running Services 8.0 software, one
should Logon, Enable, and List Software Services.
Fonts on the printer AND printable from Lisp will
be a subset of the following fonts:

Classic
Modern
Terminal
BoldPS
Titan
ClassicThi n
LetterGothic

[2] Copy the all corresponding display and widths font files
distributed with the Harmony release from floppies to a
centralized directory. It will be useful to have the Lisp
Library package COPYFILES.DCOM loaded.

Example:

and

(COPYFILES '{FLOPPY}CLASSIC* .DISPLA YFONT
'{DSK}< LlSPFILES > FONTS> DISPLA Y > CLASS
IC*.DISPLAYFONT)

(COPYFILES '{FLOPPY}CLASSIC* .WD
'{DSK}< LlSPFILES> FONTS >WIDTHS >CLASS
IC*.WD)

HARMONY RELEASE NOTES

HARMONY RELEASE NOTES

APPENDIX F

[3] Set DISPLA YFONTEXTENSIONS to a list of all extensions
used for Display fonts.

Example: (SETQ DISPLA YFONTEXTENSIONS
'(DISPLA YFONT»

[4] Set DISPLAYFONTDIRECTORIES to a list of all directories
to be searched for Display fonts.

Example: Note the directory as chosen in step [2] to be
included in the list.
(SETQ DISPLAYFONTDIRECTORIES
'({DSK} < LlSPFILES > FONTS > DISPLAY»

[5] Set INTERPRESSFONTDIRECTORIES to a list of all
directories to be searched for font widths files.

Example: Note the directory as chosen in step [2] to be
included in the list.
(SETQ INTERPRESSFONTDIRECTORIES
'({DSK}< LlSPFILES > FONTS >WIDTHS »

• CUSTOMERS WITH PRESS PRINTERS:

[6] Copy the FONTS.WIDTHS file to a file in a centralized
directory.

Example: (COPYFILE '{FLOPPY}FONTS.WIDTHS
'{DSK} < LlSPFILES > FONTS.WIDTHS)

[7] Set PRESSFONTWIDTHSFILES to a list of all files where
FONTS.WIDTHS might be found.

Example: (SETQ PRESSFONTWIDTHSFILES
'({DSK}< LlSPFILES > FONTS.WIDTHS»

• Other important font-related variables within Interlisp-D
are described below.

FONTDEFS is a dictionary in a-list form of complete "fontsets".
Fontsets are used to facilitate switching back and forth
between different styles of listing streams. The Harmony
Lisp.sysout FONTDEFS includes three such fontsets called PARC,
STANDARD and SMALL. Each of these sets contains variable
settings and a FONTPROFILE.

A FONTCLASS is a record consisting of a name, three fonts
(display, press, interpress) in a form acceptable to FONTCREATE,
and a number which identifies that FONTCLASS. The
PRETTYPRINTER uses eight FONTCLASSes, each of which is
described on p. 6.55 of the Interlisp Reference Manual.
FONTCLASSes are also used by the function CHANGEFONT (p.
6.57) and the PRINTOUT command .FONT (p. 6.27).

A FONTPROFILE is a list of lists, each of which consists of a
FONTCLASSNAME, PRETTYFONT#, DISPLA YFONT, PRESSFONT

133

APPENDIX F

134

and INTERPRESSFONT. Where the second element of the sub
list is a litatom (as opposed to PRETTYFONT#) the first
FONTCLASSNAME becomes an alias for the second. Note that
the second FONTCLASSNAME must already have been defined.

Because each FONTCLASS is in fact a record of font
information, functions such as FONTCOPY and FONTCREATE
can be used to create new fonts easily by using fields of any
given FONTCLASS as parameters. For example, given the
following FONTCLASS with:

FONTCLASSNAM E
PRETTYFONT#
DISPLAYFD
PRESSFD
INTERPRESSFD

BIGFONT
4
(HELVETICA 12 BRR)
(HELVETICA 10 BRR)
(MODERN 10 BRR)

One could specify a new italic interpress font named NEWFONT
from the FONTCLASS BIGFONT by saying:

(SETQ NEWFONT (FONTCOPY BIGFONT 'SLOPE 'ITALIC 'DEVICE
'INTERPRESS))

The result would be a fontdescriptor of the same font name
[MODERN], size [10], weight [BOLD] and expansion [REGULAR]
as specified for the INTERPRESSFD of the FONTCLASS BIGFONT,
but with a different slope [ITALIC].

HARMONY RELEASE NOTES

Known Problems in this Release

APPENDIX G

• If Harmony and Carol are installed on the same machine,
the local file system will become unusable by either.

• AR (Action Request) 2726 - shift selecting from DEDIT will
smash TAB key in TEDtT;

• AR 869 - DEDIT from inspector smashes TAB. The recovery
action is KEYACTION(TAB ({9 9 NOLOCKSHIFT) . IGNORE).

• If users have created display fonts in Carol that they wish to
use in Harmony, the upgrade procedure is the following:
(1) While running the Carol release, load the lispusers
package EDITFONT.DCOM. (2) Use the function
(WRITESTRIKEFONTFILE <fontdescriptor> <filename»
to save each font descriptor as a "strike" format file. Note
that strike files do not contain information about the font
family, size, etc, so give the strike files descriptive names:
e.g., GREEK10B.STRIKE. (3) While running the Harmony
release, load EDITFONT.DCOM (note: the same package
has been tested to work with both Carol and Harmony). (4)
Use the function (READSTRIKEFONTFILE <family> <size>
<face> <file» to read in the strike file, and create a
fontdescriptor with the specified family name, face, etc.

• If COPYRIGHTFLG is NIL (the default when the lisp.sysout is
installed), the system will still put out a message "(*
Copyright (c) by NIL. All rights reserved.)" A simple
workaround is ADVISE(PRINTCOPYRIGHT1 (OR OWNER
(RETURN]

HARMONY RELEASE NOTES 135

	000
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135

