
XEROX Interlisp-D Reference Manual
Volume I: Language

3101272
October, 1985

~- .. '
----------------~.-...-~~-...~~,;...,..., ... -. ~~;:-,

Copyright (c) 1985 Xerox Corporation

All rights reserved.

Portions from "Interlisp Reference Manual" Copyright (c) 1983
Xerox Corporation, and "Interlisp Reference Manual" Copyright
(c) 1974, 1975, 1978 Bolt, Beranek & Newman and Xerox
Corporation.

This publication may not be reproduced or transmitted in any
form by any means, electronic, microfilm, xerography, or
otherwise, or incorporated into any information retrieval system,
without the written permission of Xerox Corporation.

TABLE OF CONTENTS

1. Introduction 1.1

1.1. Interlisp as a Programming Language 1 . 1

1.2. Interlisp as an Interactive Environment 1.3

1.3. Interlisp Philosophy 1.5

1.4. How to Use this Manual 1.7

1.5. References 1.8

2. Litatoms 2.1

2.1. Using Litatoms as Variables 2.2

2.2. Function Definition Cells 2.5

2.3. Property Lists 2.5

2.4. Print Names 2.7

2.5. Characters and Character Codes 2.12

3. Lists 3.1

3.1. Creating Lists 3.4

3.2. Building Lists From Left to Right 3.6

3.3. Copying Lists 3.8

3.4. Extracting Tails of Lists 3.9

3.5. Counting List Cells 3.10

3.6. Logical Operations 3.11

3.7. Searching Lists 3.12

3.8. Substitution Functions 3.13

3.9. Association Lists and Property Lists 3.15

3.10. Sorti ng Lists 3.17

3.11. Other List Functions 3.19

4. Strings 4.1

5. Arrays 5.1

6. Hash Arrays 6.1

6.1. Hash Overflow 6.3

TABLE OF CONiENTS Toe 1

MASTER TABLE OFCONTENTS

6.2. User-Specified Hashing Functions 6.4

7 a Numbers and Arithmetic Functions 7.1

7.1. Generic Arithmetic 7.3

7.2. Integer Arithmetic 7.4

7.3. Logical Arithmetic Functions 7.8

7.4. Floating Point Arithmetic 7.11

7.5. Other Arithmetic Functions 7.13

8. Record Package 8.1

8.1. FETCH and REPLACE 8.2

8.2. CREATE 8.3

8.3. TYPE? 8.5

8.4. WITH 8.5

8.5. Record Declarations 8.6

8.5.1. Record Types 8.7

8.5.2. Optional Record Specifications 8.14

8.6. Defining New Record Types 8.15

8.7. Record Manipulation Functions 8.16

8.8. Changetran 8.17

8.9. Built-In and User Data Types 8.20

9. Conditionals and Iterative Statements 9.1

9.1. Data Type Predicates 9.1

9.2. Equality Predicates 9.2

9.3. Logical Predicates 9.3

9.4. The COND Conditional Function 9.4

9.5. The IF Statement 9.5

9.6. Selection Functions 9.6

9.7. PROG and Associated Control Functions 9.7

9.8. The Iterative Statement 9.9

9.8.1. I.s.types 9.10

9.8.2. Iteration Variable I.s.oprs 9.12

9.8.3. Condition I.s.oprs 9.15

9.8.4. Other I.s.oprs 9.16

9.8.5. Miscellaneous Hints on I.S.0prs 9.17

9.8.6. Errors in Iterative Statements 9.19

TOC.2 MASTER TAB LE OF CON TENTS

MASTER TABLE OF CONTENTS

9.S.7. Defining New Iterative Statement Operators 9.20

10. Function Definition, Manipulation, and Evaluation 10.1

10.1. Function Types 10.2

10.1.1. lambda-Spread Functions 10.3

10.1.2. Nlambda-Spread Functions 10.4

10.1.3. lambda-Nospread Functions 10.5

10.1.4. Nlambda-Nospread Functions 10.6

10.1.5. Compiled Functions 10.6

10.1.6. Function Type Functions 10.6

10.2. Defining Functions 10.9

10.3. Function Evaluation 10.11

10.4. Iterating and Mapping Functions 10.14

10.5. Functional Arguments 10.18

10.6. Macros 10.21

10.6.1. DEFMACRO 10.24

10.6.2. I nterpreti ng Macros 10.28

11. Variable Bindings and the Interlisp Stack 1 1 . 1

11.1. The Spaghetti Stack 11.2

11.2. Stack Functions 11.4

11.2.1. Searching the Stack 11.5

11.2.2. Variable Bindings in Stack Frames 11.6

11.2.3. Evaluating Expressions in Stack Frames 11.7

11.2.4. Altering Flow of Control 11.8

11.2.5. Releasing and Reusing Stack Pointers 11.9

11.2.6. Backtrace Functions 11 . 1 1

11.2.7. Other Stack Functions 11.13

11.3. The Stack and the Interpreter 11. 14

11.4. Generators 11.16

11.5. Coroutines 11.18

11.6. Possibilities lists 11.20

12. Miscellaneous 12. 1

12.1. Greeting and Initialization Files 12. 1

12.2. Idle Mode 12.4

12.3. Saving Virtual Memory State 12.6

MASTER TABLE OFCONTENTS TOC.3

MASTER TABLE OF CONTENTS

12.4. System Version Information 12.11

12.5. Date And Time functions 12.13

12.6. Timers and Duration Functions 12.16

12.7. Resources 12.19

12.7.1. A Simple Example 12.20

12.7.2. Trade-offs in More Complicated Cases 12.22

12.7.3. Macros for Accessing Resources 12.23

12.7.4. Saving Resources in a File 12.23

12.8. Pattern Matching "12.24

12.8.1. Pattern Elements 12.25

12.8.2. Element Patterns 12.25

12.8.3. Segment Patterns 12.27

12.8.4. Assignments 12.28

12.8.5. Place-Markers 12.29

12.8.6. Replacements 12.29

12.8.7. Reconstruction 12.30

12.8.S. Examples 12.31

13. Interlisp Executive 13.1

13.1. Input Formats 13.3

13.2. Programmer's Assistant Commands 13.5

13.2.1. Event Specification 13.6

13.2.2. Commands 13.8

13.2.3. P.A. Commands Applied to P.A. Commands 13.20

13.3. Changing The Programmer's Assistant 13.21

13.4. Undoing 13.26

13.4.1. Undoing Out of Order 13.27

13.4.2. SAVESET 13.28

13.4.3. UNDONLSETQ and RESETUNDO 13.29

13.5. Format and Use of the History List 13.31

13.6. Programmer's Assistant Functions 13.35

13.7. The Editor and the Programmer's Assistant 13.43

14. Errors and Breaks 14.1

14.1. Breaks 14.1

14.2. Break Windows 14.3

TOC.4 MASTER TABLE OF CONTENTS

MASTER TABLE OF CONTENTS

14.3. Break Commands 14.5

14.4. Controlling When to Break 14.13

14.5. Break Window Variables 14.14

14.6. Creating Breaks with BREAK1 14.16

14.7. Signalling Errors 14.19

14.8. Catching Errors 14.21

14.9. Changing and Restoring System State 14.24

14.10. Error list 14.27

1 S. Breaking, Tracing, and Advising 15.1

15.1. Breaking Functions and Debugging 15.1

15.2. Advising 15.9

15.2.1. Implementation of Advising 15.10

15.2.2. Advise Functions 15.10

16. List Structure Editor 16.1

16.1. DEdit 16.1

16.1.1. Calling DEdit 16.2

16.1.2. Selecting Objects and Lists 16.4

16.1.3. Typing Characters to DEdit 16.5

16.1.4. Copy-Selection 16.5

16.1.5. DEdit Commands 16.6

16.1.6. Multiple Commands 16.10

16.1.7. DEdit Idioms 16.10

16.1.8. DEdit Parameters 16. 1 2

16.2. Local Attention-Changing Commands 16.13

16.3. Commands That Search 16.18

16.3.1. Search Algorithm 16.20

16.3.2. Search Commands 16.21

16.3.3. Location Specification 16.23

16.4. Commands That Save and Restore the Edit Chain 16.27

16.5. Commands That Modify Structure 16.29

16.5.1. Implementation 16.30

16.5.2. The A, B, and: Commands 16.31

16.5.3. Form Oriented Editing and the Role of UP 16.34

16.5.4. Extract and Embed 16.35

MASTER TABLE OF CONTENTS TOe. 5

MASTER TABLE OF CONTENTS

16.5.5. The MOVE Command 16.37

16.5.6. Commands That Move Parentheses 16.40

16.5.7. TO and THRU 16.42

16.5.8. The R Command 16.45

16.6. Commands That Print 16.47

16.7. Commands for Leaving the Editor 16.49

16.8. Nested Calls to Editor 16.51

16.9. Manipulating the Characters of an Atom or String 16.52

16.10. Manipulating Predicates and Conditional Expressions 16.53

16.11. History commands in the editor 16.54

16.12. Miscellaneous Commands 16.55

16.13. Commands That Evaluate 16.57

16.14. Commands That Test 16.60

16.15. Edit Macros 16.62

16.16. Undo 16.64

16.17. EDITDEFAUL r 16.66

16.18. Editor Functic)ns 16.68

16.19. Time Stamps 16.76

17 a File Package 17.1

17.1. Loading Files 17.5

17.2. Storing Files 17.10

17.3. RemakingaSymbolicFile 17.15

17.4. Loading Files in a Distributed Environment 17.16

17.5. Marking Chan'ges 17.17

17.6. Noticing Files 17.19

17.7. Distributing Change Information 17.21

17.8. File Package Types 1 7.21

17.8.1. Functions for Manipulating Typed Definitions 17.24

17.8.2. Defining New File Package Types 17.29

17.9. FilePackageCommands 17.32

17.9.1. Functions and Macros 17.34

17.9.2. Variables 17.35

17.9.3. Litatom Properties 17.37

17.9.4. Miscellaneous File Package Commands 17.38

TOC.6 MASTER TAB LE OF CON TENTS

MASTER TABLE OF CONTENTS

17.9.5. DECLARE: 17.40

17.9.6. Exporting Definitions 17.42

17.9.7. FileVars 17.44

17.9.S. Defining New File Package Commands 17.45

17.10. Functions for Manipulating File Command Lists 17.48

17.11. Symbolic File Format 17.50

17.11.1. Copyright Notices 17.52

17.11.2. Functions Used Within Source Files 17.54

17.11.3. File Maps 17.55

18. Compiler 18.1

18.1. Compiler Printout 18.3

18.2. Global Variables 18.4

18.3. Local Variables and Special Variables 18.5

18.4. Constants 18.7

18.5. Compiling Function Calls 18.8

18.6. FUNCTION and Functional Arguments 18.10

18.7. Open Functions 18.11

18.8. COMPILETYPELST 18.11

18.9. Compiling CLiSP 18.11

18.10. Compiler Functions 18.13

18.11. Block Compiling 18.17

18.11.1. Block Declarations 18.17

18.11.2. Block Compiling Functions 18.20

18.12. Compiler Error Messages 18.22

19. Masterscope 19.1

19.1. Command Language 19.3

19.1.1. Commands 19.4

19.1.2. Relations 19.7

19.1.3. Set Specifications 19.10

19.1.4. Set Determi ners 19.13

19.1.5. Set Types 19.13

19.1.6. Conjunctions of Sets 19.14

19.2. SHOW PATHS 19.15

19.3. Error Messages 19.17

MASTER TABLE OF(ONTENTS TOC?

MASTER TABLE OFCONTENTS

19.4. Macro Expansion 19.17

19.5. Affecting Masterscope Analysis 19.18

19.6. Data Base Updating 19.22

19.7. MasterscopeEntries 19.22

19.8. Noticing Changes that Requi re Recompiling 19.25

19.9. Implementation Notes 19.25

20. OWl M 20. 1

20.1. Spelling Correction Protocol 20.4

20.2. Parentheses Errors Protocol 20.5

20.3. Undefined Function TErrors 20.6

20.4. DWIM Operation 20.7

:20.4.1. DWIM Correction: Unbound Atoms 20.8

:20.4.2. Undefined CAR of Form 20.9

:20.4.3. Undefined Function in APPLY 20.10

20.5. DWIMUSERFORMS 20.11

20.6. DWIM Functions and Variables 20.13

20.7. Spelling Correction 20.15

20.7.1. Synonyms 20.16

20.7.2. Spelling Lists 20.16

20.7.3. Generators for Spelling Correction 20.19

20.7.4. Spelling Corrector Algorithm 20.19

20.7.5. Spelling Corrector Functions and Variables 20.21

21. (LISP 21.1

21.1. CLiSP Interacti'on with User 21.6

21.2. CLiSP Character Operators 21.7

21.3. Declarations 21.12

21.4. CLI SP Operati em 21.14

21.5. CLiSP Translations 21.17

21.6. DWIMIFY 21.18

21.7. CLiSPIFY 21.22

21.8. Miscellaneous Functions and Variables 21.25

21.9. CLiSP Internal Conventions 21.27

22. Performance Issues 22.1

22.1. Storage Allocation and Garbage Collection 22.1

ToeB MASTER TABLE OF CONTENTS

MASTER TABLE OF CONTENTS

22.2. Variable Bindings 22.5

22.3. Performance Measuring 22.7

22.3.1. BREAKDOWN 22.9

22.4. GAINSPACE 22.11

22.5. Using Data Types Instead of Records 22.13

22.6. Using Incomplete File Names 22.13

22.7. Using "Fast" .and "Destructive" Functions 22.14

23. Processes 23.1

23.1. Creating and Destroying Processes 23.2

23.2. Process Control Constructs 23.5

23.3. Events 23.7

23.4. Monitors 23.8

23.5. Global Resources 23.10

23.6. Typei n and the TTY Process 23.11

23.6.1. Switching the TTY Process 23.12

23.6.2. Handling of Interrupts 23.14

23.7. Keeping the Mouse Alive 23.15

23.S. Process Status Window 23.16

23.9. Non-Process Compatibility 23.17

24. Streams and Files 24.1

24.1. Opening and Closing File Streams 24.2

24.2. File Names 24.5

24.3. Incomplete File Names 24.9

24.4. Version Recognition 24.11

24.5. Using File Names Instead of Streams 24.13

24.5.1. File Name Efficiency Considerations 24.14

24.5.2. Obsolete File Opening Functions 24.14

24.5.3. Converting Old Programs 24.15

24.6. Using Files with Processes 24.16

24.7. File Attributes 24.17

24.S. Closing and Reopening Files 24.20

24.9. Local Hard Disk Device 24.21

24.10. Floppy Disk Device 24.24

24.11. 110 Operations to and from Strings 24.28

MASTER TABLE OF CONTENTS TOC.9

MASTER TABLE OF CONTENTS

24.12. Temporary Files and the CORE Device

24.13. NULL Device

24.15. Deleting, Copying, and Renami ng Files

24.16. Searching File Directories

24.17. Listing File Directories

24.18. Fi Ie Servers

24.18.1. Pup File Server Protocols

2,4.18.2. Xerox NS File Server Protocols

24.18.3. Operating System Designations

24.18.4. Logging In

2,4.18.5. Abnormal Conditions

25. Input/Output Functions

25.1. Specifying Streams for Input/Output Functions

25.2. Input Functions

25.3. Output Functions

25.3.1. PRI NTLEVEL

25.3.2. Printing numbers

25.3.3. User Defined Printing

25.3.4. Printing Unusual Data Structures

25.4. Random Access File Operations

25.5. Input/Output Operations with Characters and Bytes

25.6. PRINTOUT

25.6.1. Horizontal Spacing Commands

25.6.2. Vertical Spacing Commands

25.6.3. Special Formatting Controls

25.6.4. Printing Specifications

25.6.4.1. Paragraph Format

25.6.4.2. Right-Flushing

25.6.4.3. Centering

25.6,4.4. Numbering

25.6.5. Escaping to Lisp

25.6.6. User-Defined Commands

25.6.7. Special Printing Functions

25.7. READFILE and WRITEFILE

24.29

24.30

24.31

24.31

24.33

24.36

24.36

24.37

24.38

24.39

24.41

25.1

25.1

25.2

25.7

25.11

25.13

25.16

25.17

25.18

25.22

25.23

25.25

25.26

25.27

25.27

25.28

25.29

25.29

25.29

25.30

25.31

25.32

25.33

TOC10 MASTER TABLE OF CONTENTS

MASTER TABLE OF CONTENTS

25.8. Read Tables 25.33

25.8.1. Read Table Functions 25.34

25.8.2. Syntax Classes 25.35

25.8.3. Read Macros 25.39

26. User Input/Output Packages 26.1

MASTER TABLE OFCONTENTS

26.1. Inspector 26.1

26.2.

26.3.

26.4.

26.1.1. Calling the Inspector 26.2

26.1.2. Multiple Ways of Inspecting 26.2

26.1.3. Inspect Windows 26.3

26.1~4. Inspect Window Commands 26.4

26.1.5. Interaction With Break Windows 26.5

26.1.6. Controlling the Amount Displayed During Inspection
26.5

26.1.7. Inspect Macros 26.6

26.1.8. I NSPECTWs 26.6

PROMPTFORWORD 26.9

ASKUSER 26.12

26.3.1. Format of KEYLST 26.13

26.3.2. Options 26.15

26.3.3. Operation 26.17

26.3.4. Completi ng a Key 26.18

26.3.S. Special Keys 26.19

26.3.6. Startup Protocol and Typeahead 26.20

TTYIN Display Typein Editor 26.22

26.4.1. Entering Input With TTYIN 26.22

26.4.2. Mouse Commands [lnterlisp-D Only] 26.24

26.4.3. Display Editing Commands 26.25

26.4.4. Using TTYIN for Lisp Input 26.28

26.4.5. Useful Macros 26.29

26.4.6. Programming With TTYIN 26.29

26.4.7. Using TTYIN as a General Editor 26.32

26.4.8. 1:1 Handler 26.33

26.4.9. Read Macros 26.34

26.4.10. Assorted Flags 26.36

TOC 11

MASTER TABLE OF CONTENTS

26.4.11. Special Responses 26.38

26.4.12. Display Types 26.38

26.5. Prettyprint 26.39

26.5.1. Comment Feature 26.42

26.5.2. Comment Pointers 26.44

26.5.3. Converting Comments to lower Case 26.46

26.5.4. Special Prettyprint Controls 26.47

27a Graphics Output Operations 27 .. 1

27.1. Pri mitive Graphics Concepts 27.1

27.1.1. Positions 27.1

27.1.2. Regions 27.1

27.1.3. Bitmaps 27.3

27.1.4. Textures 27.6

27.2. Opening Image Streams 27.8

27.3. Accessing Image Stream Fields 27.10

27.4. Current Position of an Image Stream 27.13

27.5. Moving Bits Between Bitmaps With BITBl T 27.14

27.6. Drawing Lines 27.17

27.7. Drawing Curves 27.18

27.8. Miscellaneous Drawing and Printing Operations 27.20

27.9. Drawing and Shading Grids 27.22

27.10. Display Streams 27.23

27.12. Fonts 27.25

27.13. Font Files and Font Directories 27.31

27.15. Font Profiles 27.32

27.16. Image Objects 27.35

27.16.1. IMAGEFNS Methods 27.36

27.16.2. Registering Image Objects 27.39

27.16.3. Reading and Writing Image Objects on Files 27.40

27.16.4. Copying Image Objects Between Windows 27.41

27.17. Implementation of Image Streams 27.42

28. Windows and Menus 28.1

28.1. Using The Window System 28.2

28.2. Changing Window Command Menus 28.7

TOC.12 MASTER TABLE OF CONTENTS

MASTER TABLE OF CONTENTS

28.3. Interactive Display Functions 28.9

28.4. Wi ndows 28. 1 2

28.4.1. Window Properties 28.13

28.4.2. Creating Windows 28.13

28.4.3. Opening and Closing Windows 28.15

28.4.4. Redisplaying Windows 28.16

28.4.5. Reshaping Windows 28.16

28.4.6. Moving Windows 28.19

28.4.7. Exposing and Burying Windows 28.20

28.4.8. Shrinking Windows Into Icons 28.21

28.4.9. Coordinate Systems, Extents, And Scrolling 28.23

28.4.10. Mouse Activity in Windows 28.27

28.4.11. Terminal 1/0 and Page Holding 28.29

28.4.12. The TTY Process and the Caret 28.30

28.4.13. Miscellaneous Window Functions 28.31

28.4.14. Miscellaneous Window Properties 28.33

28.4.15. Example: A Scrollable Window 28.34

28.5. Menus 28.37

28.5.1. Menu Fields 28.38

28.5.2. Miscellaneous Menu Functions 28.42

28.5.3. Examples of Menu Use 28.43

28.6. Attached Windows 28.45

28.6.1. Attaching Menus To Windows 28.48

. 28.6.2. Attached Prompt Windows 28.50

28.6.3. Window Operations And Attached Windows 28.50

28.6.4. Window Properties Of Attached Windows 28.53

29. Hardcopy Facilities 29.1

29.1. Low-level Hardcopy Variables 29.5

30. Terminallnput/Output 30.1

30.1. Interrupt Characters 30. 1

30.2. Terminal Tables 30.4

30.2.1. Terminal Syntax Classes 30.5

30.2.2. Terminal Control Functions 30.6

30.2.3. Line-Bufferi ng 30.9

MASTER TABLE OFCONTENTS TOC.13

MASTER TABLE OFCONTENTS

30.3. Dribble Files 30.12

30.4. Cursor and Mouse 30.13

30.4.1. Changing the Cursor Image 30.13

30.4.2. Flashing Bars on the Cursor 30.16

30.4.3. Cursor Position 30.17

30.4.4. Mouse Button Testing 30.17

30.4.5. Low Level Mouse Functions 30.18

30.5. Keyboard Interpretation 30.19

30.6. Display Screen 30.22

30.7. Miscellaneous Terminal 1/0 30.24

31. Ethernet 31.1

31.1. Ethernet Protocols 31.1

31.1.1. Protocol Layering 31. 1

31.1.2. Level Zero Protocols 31.2

31.1.3. Level One Protocols 31.3

31.1.4. Higher Level Protocols 31.4

31.1.5. Connecting Networks: Routers and Gateways 31.4

31.1.6. Addressing Conflicts with Level Zero Mediums 31.5

31.1.7. References 31.5

31.2. Higher-level PUP Protocol Functions 31.6

31.3. Higher-level NS Protocol Functions 31.7

31.3.1. Name and Address Conventions 31.7

31.3.2. Clearinghouse Functions 31.9

31.3.3. NS Printing 31.12

31.3.4. SPP Stream Interface 31.12

31.3.5. Courier Remote Procedure Call Protocol 31.15

31.3.5.1. Defining Courier Programs 31.15

31.3.5.2. Courier Type Definitions 31.17

31.3.5.2.1. Pre-defined Types 31.17

31.3.5.2.2. Constructed Types 31.18

31.3.5.2.3. User Extensions to the Type Language 31.19

31.3.5.3. Performing Courier Transactions 31.20

31.3.5.3.1. Expedited Procedure Call 31.22

31.3.5.3.2. Expanding Ring Broadcast 31.23

TOC.14 MASTER TABLE OF CONTENTS

MASTER TABLE OF CONTENTS

31.3.5.3.3. Using Bul k Data Transfer 31.24

31.3.5.3.4. Courier Subfunctions for Data Transfer 31.25

31.4. Level One Ether Packet Format 31.26

31.5. PUP Level One Functions 31.28

31.5.1. Creating and Managing Pups 31.28

31.5.2. Sockets 31.28

31.5.3. Sendi ng and Receiving Pups 31.29

31.5.4. Pup Routing Information 31.30

31.5.5. Miscellaneous PUP Utilities 31.31

31.5.6. PUP Debuggi ng Aids 31.32

31.6. NS Level One Functions 31.36

31.6.1. Creating and Managing XIPs 31.36

31.6.2. NS Sockets 31.37

31.6.3. Sending and Receiving XIPs 31.37

31.6.4. NS Debugging Aids 31.38

31.7. Support for Other Level One Protocols 31.38

31.8. The SYSQUEU E mechanism 31.41

MASTER TABLE OF(ONTENTS TOC 15

MASTER TABLE OFCONTENTS

[This page intentionally left blank]

TOC.16 MASTER TABLE OF CONTENTS

MASTER TABLE OF CONTENTS

1. Introduction 1.1

1.1. Interlisp as a Programming Language 1.1

1.2. Interlisp as an Interactive Environment 1.3

1.3. Interlisp PhiJosophy 1.5

1.4. How to Use this Manual 1.7

1.5. References 1.8

2. Litatoms 2.1

2.1. Using Litatoms as Variables 2.2

2.2. Function Definition Cells 2.5

2.3. Property Lists 2~5

2.4. Print Names 2.7

2.5. Characters and Character Codes 2.12

3. Lists 3.1

3.1. Creati ng Lists 3.4

3.2. Building Lists From Left to Right 3.6

3.3. Copying Lists 3.8

3.4. Extracting Tails of Lists 3.9

3.5. Counti ng List Cells 3.10

3.6. Logical Operations 3.11

3.7. Searching Lists 3.12

3.S. Substitution Functions 3.13

3.9. Association Lists and Property Lists 3.15

3.10. Sorti ng Lists 3.17

3.11. Other List Functions 3.19

4. Strings 4.1

5. Arrays 5.1

6. Hash Arrays 6.1

6.1. Hash Overflow 6.3

--~------------~---MASTER TABLE OFCONTENTS TOC 1

TABLE OF CONTENTS

6.2. User-Specified Hashing Functions 6.4

7. Numbers and Arithmetic Functions 7.1

7.1. Generic Arithmetic 7.3

7.2. Integer Arithmetic 7.4

7.3. Logical Arithmetic Functions 7.8

7.4. Floating Point Arithmetic 7.11

7.5. Other Arithmetic Functions 7.13

8. Record Package 8.1

8.1. FETCH and REPLACE 8.2

8.2. CREATE 8.3

8.3. TYPE? 8.S

8.4. WITH 8.S

8.5. Record Declarations 8.6

8.5.1. Record Types 8.7

8.5.2. Optional Record Specifications 8.14

8.6. Defining New Record Types 8.15

8.7. Record Manipulation Functions 8.16

8.8. Changetran 8.17

8.9. Built-In and User Data Types 8.20

9. Conditionals and Iterative Statements 9.1

9.1. Data Type Predicates 9.1

9.2. Equality Predicates 9.2

9.3. Logical Predicates 9.3

9.4. The CONO Conditional Function 9.4

9.5. The IF Statement 9.5

9.6. Selection Functions 9.6

9.7. PROG and Associated Control Functions 9.7

9.S. The Iterative Statement 9.9

9.S.1. 1.5. types 9.10

9.S.2. Iteration Variable I.s.oprs 9.12

9.S.3. Condition I.s.oprs 9.15

9.S.4. Other I.s.oprs 9.' 6

9.S.s. MisceUaneous Hints on I.S.0prs 9.17

9.S.6. Errors in Iterative Statements 9.19

TOC.2 TABLE OF CON TENTS

TABLE OF CONTENTS

'" 9.8.7. Defining New Iterative Statement Operators 9.20

1 O. Function Definition, Manipulation, and Evaluation 10.1

10.1. Function Types 10.2

10.1.1. Lambda-Spread Functions 10.3

10.1.2. Nlambda·Spread Functions 10.4

10.1.3. Lambda-Nospread Functions 10.5

10.1.4. Nlambda-Nospread Functions 10.6

10.1.5. Compiled Functions 10.6

10.1.6. Function Type Functions 10.6

10.2. Defining Functions 10.9

10.3. Function Evaluation 10.11

10.4. Iterating and Mapping Functions 10.14

10.5. Functional Arguments 10.18

10.6. Macros 10.21

10.6.1. DEFMACRO 10.24

10.6.2. Interpreting Macros 10.28

11. Variable Bindings and the Interlisp Stack 11.1

11.1. The Spaghetti Stack 11 .2

11.2. Stack Functions 11.4

11.2.1. Searching the Stack 11.5

11.2.2. Variable Bindings in Stack Frames 11 .6

11.2.3. Evaluating Expressions in Stack Frames 11.7

11.2.4. Altering Flow of Control 11.8

11.2.5. Releasing and Reusing Stack Pointers 11.9

11.2.6. Backtrace Functions 11 . 1 1

11.2.7. Other Stack Functions 11.13

11.3. The Stack and the Interpreter 11.14

11.4. Generators 1 1 . 1 6

11.5. Coroutines 11 .18

11.6. Possibilities Lists 11.20

12. Miscellaneous 12.1

12.1. Greeting and Initialization Files 12. 1

12.2. Idle Mode 12.4

12.3. Saving Virtual Memory State 12.6

TABLE OF CONTENTS TOC3

TABLE OFCONTENTS

12.4. System Version Information 12.11

12.5. Date And Time Functions 12.13

12.6. Timers and Duration Functions 12.16

12.7. Resources 12.19

12.7.1. A Simple Example 12.20

12.7.2. Trade-offs in More Complicated Cases 12.22

12.7.3. Macros for Accessing Resources' 12.23

12.7.4. Saving Resources in a File 12.23

12.8. Pattern Matching 12.24

12.8.1. Pattern Elements 12.25

12.8.2. Element Patterns 12.25

12.8.3. Segment Patterns 12.27

12.8.4. Assignments 12.28

12.8.5. Place-Markers 12.29

12.8.6. Replacements 12.29

12.8.7. Reconstructi on 12.30

12.8.8. Examples 12.31

TOC.4 TABLE OF CONTENTS

BACKGROUND AND
ACKNOWLEDGEMENTS

1 A Brief History of Interlisp

BACKGROUND AND ACKNOWLEDGEMENTS

Interlisp began with an implementation of the Lisp
programming language for the PDP-1 at Bolt, Beranek and
Newman in 1966. It was followed in 1967 by 940 Lisp for the
505-940 computer, which was the first Lisp system to use
software paging techniques and a large virtual memory in
conjunction with a list-processing system [Bobrow & Murphy,
1967]. DWIM, the Do-What-I-Mean error correction facility, was
introduced into this system in 1968 by Warren Teitelman
[Teitel man, 1969].

In 1970 BBN-Lisp, an upward compatible Lisp system for the
PDP-10, was implemented under the Tenex operating system
[Teitelman, et aI., 1972]. With the hardware paging and 256K of
virtual memory provided by Tenex, it was practical to provide
more extensive and sophisticated user support facilities, and a
library of such facilities began to evolve. In 1972, the name of
the system was changed to Interlisp, and its development
became a joint effort of the Xerox Palo Alto Research Center and
Bolt, Beranek and Newman. The next few years saw a period of
rapid growth and development of the language, the system and
the user support facilities, including the record package., the file
package, and Masterscope.

In 1974, an implementation of Interlisp was begun for the Xerox
Alto, an experimental microprogrammed personal computer
[Thacker et aI., 1979]. AltoLisp [Deutsch, 1973] introduced the
idea of providing a specialized, microcoded instruction set that
modelled the basic operations of Lisp more closely ·than a
general-purpose instruction set could -- and as such was the first .
true" Lisp machine". AltoLisp also served as a departure point·
for Interlisp-D, the implementation of Interlisp for the Xerox
1100 Series of personal computers, which was begun in 1979
[Sheil & Masinter, 1983].

In 1976, partially as a result of the AltoLisp effort, a specification
for the Interlisp "virtual machine" was published [Moore, 1976].
This attempted to specify a small set of "primitive" operations

iii

IV

which would support all of the higher level user facilities, which
were nearly all written in Lisp. Although incomplete and written
at a level which preserved too many of the details of the Tenex
operating system, this document proved to be a watershed in the
development of Interlisp, since it gave a clear definition of a
(relatively) small kernel whose implementation would suffice to
port Interlisp to a new environment. This was decisive in
enabling many subsequent implementations.

Most recently, the implementation of Interlisp on personal
workstations has extended Interlisp in major ways. Most striking
has been the incorporation of interactive graphics and local area
network facilities. Not only have these extensions expanded the
range of applications for which Interlisp is being used, but the
personal machine capabilities have had a major impact on the
Interlisp programming system itself. Whereas the original
Interlisp user interface assumed a very limited (teletype) channel
to the user, the use of interactive graphics and the "mouse"
pointing device has radically expanded the bandwidth of
communication between the user and the machine. This has
enabled completely new styles of interaction with the user (e.g.,
the use of multiple windows to provide several different
interaction channels with the user) and these have provided
both new programming tools and new ways of viewing and
using the existing ones. In addition, the increased use of local
area networks (such as the Ethernet) has expanded the horizon
of the Interlisp user beyond the local machine to a whole
community of machines, processes and services. Large portions
of this manual are devoted to documenting the enhanced
environment that has resulted from these developments.

Development of Interlisp for the PDP-10 was, until
approximately 1978, funded by the Advanced Research Projects
Administration of the Department of Defence (DARPA).
Subsequent developments, which have emphasized the personal
workstation facilities, have been sponsored by the Xerox
Corporation, with contributions from members of the Interlisp
user comm unity. .

Although there are a variety of implementations of Interlisp in
use, this manual is a reference manual for the Interlisp-D
implementation. Notes may occasionally be included on other
implementations, but there is no guarantee that this
information is complete for implementations other than
Interlisp-D. For some implementations, there is a "Users Guide"
which documents features which are completely unique to that

BACKGROUND AND ACKNOWLEDGEMENTS

3 Acknowledgements

BACKGROUND AND ACKNOWLEDGEMENTS

INTERLISP IMPLEMENTATIONS

machine; for example, how to turn on the system, logging on,
and unique facilities which link Interlisp to the host environment
or operating system.

The Interlisp system is the work of many people -- after nearly
twenty years, ~oo many even to list, much less detail their
contributions. Nevertheless, some individuals cannot go
unacknowledged:

Warren Teitelman, more than anyone else, made Interlisp
"happen". Warren designed and implemented large parts of
several generations of Interlisp, including the initial versions of
most of the user facilities, coordinated the system development
and assembled and edited the first four editions of the Interlisp.
reference manual.

Larry Masinter is a principal architect of the current Interlisp
system, has contributed extensively to several implementations,
and has designed and developed major extensions to both the
Interlisp language and the programming environment.

Dan Bobrow was a principal designer of Interlisp's predecessors,
has contributed to the implementation of several generations of
Interlisp, and (in collaboration with others) made major
advances in the underlying architecture, including the spaghetti
stack, the,transaction garbage collector, and the block compiler.

Ron Kaplan has decisively shaped many of the programming
language extensions and user facilities of Interlisp, has played a
key role in two implementations and has contributed extensively
to the design and content of the Interlisp reference manual.

Peter Deutsch designed the AltoU~p impl.~.r:r,.enta·!i9!J·:oftntertTs.p
which developed several key desigrj 'ib'sights .. o~ri .~whi'h""~trie
current generation of personal machine implementations
depends.

No matter where one ends this list, one is tempted to continue.
Many others who contributed to particular implementations or
revisions are acknowledged in the documentation for those
systems. Following that tradition, this manual, which primarily
documents the Interlisp-D implementation, acknowledges, in
addition to those listed above, the work of:

Bill van Melle, who designed and implemented most of the local
area network facilities, the process mechanism, and much of the
run time support system.

Richard Burton, who designed and implemented a great deal of
the interactive display facilities.

v

·ACKNo.WLEDGEMENTS~';f

4 References

[Bobrow & Murphy, 1967]

[Deutsch, 1973]

[Moore, 1976]

[Sheil & Masinter, 1983]

[Teit~lman, 1969]

[Teitelman, et aI., 1972]

[Thacker, et aI., 1979]

VI

and the contributions of Alan Bell, Don Charnley, Mitch
Lichtenberg, Steve Purcell, Eric Schoen, Beau Sheil, John Sybalsky,
and the many others who have helped and contributed to the
development of Interlisp-D.

Like Interlisp itself, the Interlisp Reference Manual is the work of
many people, some of whom are acknowledged above. This
edition was substantially rewritten, designed, edited and
produced by Michael Sannella of Xerox Artificial Intelligence
Systems. It is a major revision of the previous ed it ion --- it has
been completely reorganized, updated in most sections, and
extended with a large amount of new material.

Interlisp is not designed by a formal committee. It grows and
changes in response to the needs of those who use it.
Contributions and discussion from the user community remain,
as they always have been, warmly welcome.

Bobrow, D.G., and Murphy, D.L., "The Structure of a LISP System
Using Two Level Storage" --- Communications of the ACM, Vol.
10,3, (March, 1967).

Deutsch, L.P., "A Lisp machine with very compact programs" --
Proceedings of the Third International Joint Conference on
Artificial Intelligence, Stanford, (1973).

Moore, J.S., "The Interlisp Virtual Machine Specification"
Xerox PARC, CSL-76-5, (1976).

Sheil, B., and Masinter, L.M. (eds.), "Papers on Interlisp-D"
Xerox PARC, CIS-5 (Revised), (1983).

Teitelman, W., "Toward a Programming Laboratory" --
Proceedings of the International Joint Conference on Artificial
Intelligence, Washington, (1969).

Teitelman, W., Bobrow, D.G., Hartley, A.K. Murphy, D.L.,
BBN-LISP TENEX Reference Manual --- Bolt Beranek and
Newman, (July 1971, first revision February 1972, second revision
August 1972).

Thacker, c., Lampson, B., and Sproull, R., "Alto: A personal
computer" --- Xerox PARC,CSL-79-11, (August, 1979).

BACKGROUND AND ACKNOWLEDGEMENTS

TABLE OF CONTENTS

1. Introduction 1.1

1.1. Interlisp as a Programming Language 1.1

1.2. Interlisp as an Interactive Environment 1.3

1.3. Interlisp Philosophy 1.5

1.4. How to Use this Manual 1.7

1.5. References 1.8

TABLE OF CONTENTS TOCl

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TAB LE OF CON TENTS

1. INTRODUCTION

Interlisp is a programming system. A programming system
consists of a programming language, a large number of
predefined programs (or functions, to use the Lisp terminology)
that can be used either as direct user commands or as
subroutines in user programs, and an environment that supports
the programmer by providing a variety of specialized
programming tools. The language and predefined functions of
Interlisp are rich, but similar to those of other modern
programming languages. The Interlisp programming
environment, on the other hand, is very distinctive. Its most
salient characteristic is an integrated set of programming tools
which know enough about Interlisp programming so that they
can act as semi-autonomous, intelligent II assistants II to the
programmer. In addition, the environment provides a
completely self-contained world for creating, debugging and
maintaining Interlisp programs.

This manual describes all three components of the Interlisp
system. There are discussions about the content and structure of
the language, about the pieces of the system that can be
incorporated into user programs, and about the environment.
The line between user code and the environment is thin and
changing. Most users extend the environment with some special
features of their own. Because Inter/isp is so easily extended, the
system has grown over time to incorporate many different ideas
about effective and useful ways to program. This gradual
accumulation over many years has resulted in a rich and diverse
system. That is the reason this manual is so large.

Whereas the rest of this manual describes the individual pieces of
the Interlisp system, this chapter attempts to describe the whole
system---Ianguage, environment, tools, and the otherwise
unstated philosophies that tie it all together. It is intended to
give a global view of Interlisp to readers approaching it for the
first time.

1.1 Interlisp as a Programming Language

INTRODUCTION

This manual does not contain an introduction to programming in
Lisp. In this section, we simply highlight a few key points about
Lisp on which much of the later material depends.

1.1

INTERUSPAS A PROGRAMMING LANGUAGE

12

The Lisp family of languages shares a common structure in which
large programs (or functions) are built up by composing the
results of smaller ones. Although Interlisp, like most modern
Lisps, allows programming in almost any style one can imagine,
the natural style of Lisp is functional and recursive, in that each
function computes its result by selecting from or building upon
the values given to it and then passing that result back to its
caller (rather than by producing "side-effects" on external data
structures, for example). A great many applications can be
written in Lisp in this purely functional style, which is
encouraged by the simplicity with which Lisp functions can be
com posed togethe r.

Lisp is also a list-manipulation language. The essential primitive
data objects of any Lisp are" atoms" (symbols or identifiers) and
"lists" (sequences of atoms or lists), rather than the" characters"
or "numbers" of more conventional programming languages
(although these are also present in all modern Lisps). Each Lisp
dialect has a set of operations that act on atoms and lists, and
these operations comprise the core of the language.

Invisible in the programs, but essential to the Lisp style of
programming, is an automatic memory management system (an
"allocator" and a "garbage collector"). Allocation of new
storage occurs automatically whenever a new data object is
created. Conversely, that storage is automatically reclaimed for
reuse when no other object makes reference to it. Automatic
allocation and deallocation of memory is essential for rapid,
large scale program development because it frees the
programmer from the task of maintaining the details of memory
administration, which change constantly during rapld program
evolution.

A key property of Lisp is that it can represent Lisp function
definitions as pieces of Lisp list data. Each subfunction "call" (or
function application) is written as a list in which the function is
written first, followed by its arguments. Thus, (PLUS 1 2) is a list

structure representation of the expression 1 + 2. Each program
can be written as a list of such function applications. This
representation of program as data allows one to apply the same
operations to programs that one uses to manipulate data, which
makes it very straightforward to write Lisp programs which look
at and change other Lisp programs. This, in turn, makes it easy to
develop programming tools and translators, which was essential
in enabling the development of the Interlispenvironment.

One result of this ability to have one program examine another is
that one can extend the Lisp programming language itself. If
some desired programming idiom is not supported, it can be
added simply by defining a function that translates the desired
expression into simpler Lisp. Interlisp provides extensive facilities
for users to make this type of language extension. Using this

INTRODUCTION

INTERLISP AS A PROGRAMMING LANGUAG E

ability to extend itself, Interlisp has incorporated many of the
constructs that have been developed in other modern
programming languages (e.g. if-then-else, do loops, etc.).

1.2 Interlisp as an Interactive Environment

INTRODUCTION

Interlisp programs should not be thought of as autonomous,
external files of source code. All Interlisp programming takes
place within the Interlisp environment, which is a completely
self-sufficient environment for developing and using Interlisp
programs. Not only does the environment contain the obvious
programming facilities (e.g., program editors, compilers,
debuggers, etc.), but it also contains a variety of tools which
assist the user by "keeping track" of what happens, so the user
doesn't have to. For example, the Interlisp file package notices
when programs or data have been changed, so that the system
will know what needs to be saved at the end of the session. The
"residential" style, where one stays within the environment
throughout the development, from initial program definition
through final debugging, is essential for these tools to operate.
Furthermore, this same environment is available to support the
final production version, some parts providing run time support
and other parts being ignored until the need arises for further
debugging or development.

For terminal interaction with the user, Interlisp provides a top
level" Read-Eval-Print II executive, which reads whatever the user
types in, evaluates it, and prints the result. (This interaction is
also recorded by the programmer's assistant, described below, so
the user can ask to do an action again, or even to undo the
effects of a previous action.) Although each interactive
executive defines a few specialized commands, most of the
interaction will consist of simple evaluations of ordinary Lisp
expressions. Thus, instead of specialized terminal commands for
operations like manipulating the user's files, actions like this are
carried out simply by typing the same expressions that one
would use to accomplish them inside a Lisp program. This
creates a very rich, simple and uniform set of interactive
commands, since any Lisp expression can be typed at a command
executive and evaluated immediately.

In normal use, one writes a program (or rather, "defines a
function") simply by typing in an expression that invokes the
"function defining" function (DEFINEQ), giving it the name of
the function being defined and its new definition. The newly
defined function can be executed immediately, simply by using it
in a Lisp expression. Although most Interlisp code is normally run
compiled (for reasons of efficiency), the initial versions of most

1.3

INTERLISP AS AN INTERACTIVE ENVIRONMENT

List structure editor

, Pretty-printer

Break Package

DWIM

Programmer's Assistant

Masterscope

Record/Oatatype Package

File Package

Performance Analysis

1.4

programs, and all of the user's terminal interactions, will be run
interpreted. Eventually, as a function gets larger or is used in
many places, it becomes more effective to compile it. Usually, by
that stage, the function has been stored on a file and the whole
file (which may contain many functions) is compiled at once.
DEFINEQ, the compiler (COMPILE), and the interpreter (EVAL),
are all themselves Lisp functions that use the ability to treat
other Lisp expressions and programs as data.

In addition to these basic programming tools, Interlisp also
provides a wide variety of programming support mechanisms:

Since Interlisp programs are represented as list structure, Interlisp
provides an editor which allows one to change the list structure
of a function's definition directly. See page 16.1

The pretty printer is a function that prints Lisp function
definitions so that their syntactic structure is displayed by the
indentation and fonts used. See page 26.40.

When errors occur, the break package is called, allowing the user
to examine and modify the context at the point of the error.
Often, this enables execution to continue without starting over
from the beginning. Within a break, the full power of Interlisp is
available to the user. Thus, the broken function can be edited,
data structures can be inspected and changed, other
computations carried out, and so on. All of this occurs in the
context of the suspended computation, which will remain
available to be resumed. See page 14.1.

The" Do What I Mean" package automatically fixes the user's
misspellings and errors in typing. See page 20.1.

Interlisp keeps track of the user's actions during a sessiOn and
allows each one to be replayed, undone, or altered. See page
13.1.

Masterscope is a program analysis and management tool which
can analyze users' functions and build (and automatically
maintain) a data base of the results. This allows the user to ask
questions like "WHO CALLS ARCTAN" or "WHO USES COEF1
FREELY" or to request systematic changes like "EDIT WHERE ANY
(function) FETCHES ANY FIELD OF (the data structure) FOO". See

page 19.1.

Interlisp allows a programmer to define new data structures.
This enables one to separate the issues of data access from the
details of howthe data is actually stored. See page 8.1.

Files in Interlisp are managed by the system, removing the
problem of ensuring timely file updates from the user. The file
package can be modified and extended to accomodate new
types of data. See page 17.1.

These tools allow statistics on program operation to be collected
and analyzed. See page 22.1.

INTRODUCTION

Multiple Processes

Windows

Inspector

1.3 Interlisp Philosophy

INTRODUCTION

INTERLlSPA$ AN INTERACTIVE ENVIRONMENT

These facilities are tightly integrated, so they know about and
use each other, just as they can be used by user programs. For
example, Masterscope uses the structural editor to make
systematic changes. By combining the program analysis features
of Masterscope with the features of the structural editor, large
scale system changes can be made with a single command. For
example, when the lowest-level interface of the Interlisp-D I/O
system was changed to anew format, the entire edit was made
by a single call to Masterscope of the form EDIT WHERE ANY
CALLS '(BIN BOUT ...). [Burton et aI., 1980] This caused
Masterscope to invoke the editor at each point in the system
where any of the functions in the list '(BIN BOUT ...) were called.
This ensured that no functions used in input or output were
overlooked during the modification.

The personal machine implementations of Interlisp, such as
Interlisp-D, provide some additional facilities, and interactive
graphic interfaces to some of the older Interlisp programming
tools:

Multiple and independent processes simplify problems which
require logically separate pieces of code to operate in parallel.
See page 23.1.

The ability to have multiple, independent windows on the
display allows many different processes or activities to be active
on the screen at once. See page 28.2.

The inspector is a display tool for examining complex data
structures encountered during debugging. See page 26.1.

Interlisp-D has embedded within it an entire operating system
written in Interlisp. For the most part, that is of no concern to
the user (although it is nice to know that one can write programs
of this complexity and performance within Interlisp!). However,
some of the facilities provided by this low level code allow the
use of Interlisp for applications that would previou~ly have been
forced into a relatively impoverished system programming
environment. In particular, Interlisp-D provides complete
facilities for experimenting with distributed machines and
services on a local area network, plus access to all the services
that such networks provide (e.g., mail, printing, filing, etc.).

The extensive environmental support that the Interlisp system
provides has developed over the years in order to support a
particular style of programming called "exploratory
programming" [Sheil, 1983]. For many complex programming
problems, the task of program creation is not simply one of

1.5

INTERUSP PHILOSOPHY

1.6

writing a program to fulfill pre-identified specifications. Instead,
it is a matter of exploring the problem (trying out various
solutions expressed as partial programs) until one finds a good
solution (or sometimes, any solution at all !). Such programs are
by their very nature evolutionary; thE~y are transformed over
time from one realization into another in response to a growing
understanding of the problem. This point of view has lead to an
emphasis on having the tools available to analyze, alter, and test
programs easily. One important aspect of this is that the tools be
designed to work together in an integrated fashion, so that
knowledge about the user's programs, once gained, is available
throughout the environment.

The development of programming tools to support exploratory
programming is itself an exploration. No one knows all the tools
that will eventually be found useful, and not all programmers
want all of the tools to behave the same way. In response to this
diversity, Interlisp has been shaped, by its implementors and by
its users, to be easily extensible in several different ways. First,
there are many places in the system where its behavior can be
adjusted by the user. One way that this can be done is by
changing the value of various "flags" or variables whose values
are examined by system code to enable or suppress certain
behavior. The other is where the user can provide functions or
other behavioral specifications of what is to happen in certain
contexts. For example, the format used for each type of list
structure when it is printed by the pretty-printer is determined
by specifications that are found on the list
PRETTYPRINTMACROS. Thus, this format can be changed for a
given type simply by putting a printing specification for it on
that list.

Another way in which users can effect Interlisp's behavior is by
redefining or changing system functions. The "Advise"
capability, for instance, permits the user to modify the operation
of virtually any function in the system by wrapping user code
"around" the selected function. (This same philosophy extends
to the break package and tracing, so almost any function in the
system can be broken or traced.) Experimentation is thus
encouraged and actively facilitated, which allows the user to find
useful pieces of the Interlisp system which can be configured to
assist with application development. Since the entire system is
implemented in Interlisp, there are extremely few places where
the system's behavior depends on anything that the user cannot
modify (such as a low level system implementation language).

While these techniques provide a fair amount of tailorability, the
price paid is that Interlisp presents an overall appearance of
complexity. There are many flags, parameters and controls that
affect the behavior one sees. Because of this complexity,
Interlisp tends to be more comfortable for experts, rather than
casual users. Beginning users of Interlisp should depend on the

INTRODUCTION

1 a4 How to Use this Manual

Lisp object notation:

Case is significant:

INTRODUCTION

INTERLISP PHILOSOPHY

default settings of parameters until they learn what dimensions
of flexibility are available. At that point, they can begin to
"tune" the system to their preferences.

Appropriately enough, even Interlisp's underlying philosophy
was itself discovered during Interlisp's development, rather than
laid out beforehand. The Interlisp environment and its
interactive style were first analyzed in Sandewall's excellent
paper [Sandewall, 1978]. The notion of "exploratory
programming" and the genesis of the Interlisp programming
tools in terms of the characteristic demands of this styl e of
programming was developed in [Sheil, 1983]. The evolution and
structure of the Interlisp programming environment are
discussed in greater depth in [Teitelman & Masinter, 1981 J.

This document is a reference manual, not a primer. We have
tried to provide a manual that is complete, and that allows users
to find particular items as easily as possible. Sometimes, these
goals have been achieved at the expense of simplicity. For
example, many functions have a number of arguments that are
rarely used. In the interest of providing a complete reference,
these arguments are fully explained, even though they would
normally be defaulted. There is a lot of information in this
manual that is only of interest to experts.

Users should not try to read straight through this manual, like a
novel. In general, the chapters are organized with overview
explanations and the most useful functions at the beginning of
the chapter, and implementation details towards the end. If you
are interested in becoming acquainted with Interlisp using this
manual, the best way would be to skim through the whole book,
reading the beginning of each chapter.

A few comments about the notational conventions used in this
manual:

All Interlisp objects in this manual are printed in the same font:
Functions (AND, PLUS, DEFINEQ, LOAD); Variables
(MAX.lNTEGER, FILELST, DFNFLG); and arbitrary Interlisp
expressions: (PLUS 2 3), (PROG «A 1» ...), etc.

An important piece of information, often missed by newcomers
to Interlisp, is that upper and lower case is significant. The
variable FOO is not the same as the variable foo or the variable
Foo. By convention, most Interlisp system functions and
variables are all uppercase, but users are free to use upper and
lower case for their own functions and variables as they wish.

1.7

HOW TO USE THIS MANUAL

(FOO BAR BAZ -)

1 G 5 Referen ces

[Burton, et aI., 1980]

[Sandewall,1978]

[Sheil, 1983]

[Sheil & Masinter, 1983]

[Teitelman & Masinter, 1981]

1.8

One exception to the case-significance rule is provided by the
Interlisp CLiSP facility, which allows iterative statement operators
and record operations to be typed in either all uppercase or all
lowercase letters: (for X from 1 to 5 ...) is the same as (FOR X
FROM 1 TO 5 ...). The few situations where this is the case are
explicitly mentioned in the manual. Generally, one should
assume that case is significant.

This manual contains a large number of descriptions of
functions, variables, commands, etc, which are printed in the
following standard format:

[Function]

This is a description for the function named FOO. FOO has two
arguments, BAR and BAZ. Some system functions have extra
optional arguments that are not documented and should not be
used. These extra arguments are indicated by "-" .

The descriptor [Function] indicates that this is a function, rather
than a [Variable], [Macro], etc. For function definitions only, this
can also indicate the "function type" (see page 10.2): [NLambda
Function], [NoSpread Function], or [N La m bda NoSpread
Function], which describes whether the function takes a fixed or
variable number of arguments, and whether the arguments are
evaluated or not. [Function] indicates a lambda spread function
(the most common function type).

Burton, R. R., L. M. Masinter, A. Bell, D. G. Bobrow, W. S.
Haugeland, R.M. Kaplan and B.A. Sheil, "Interlisp-D: Overview
and Status" --- in [Sheil & Masinter, 1983].

Sandewall, Erik, "Programming in the Interactive Environmnet:
The LISP Experience" --- ACM Computing Surveys, vol 10, no 1, pp
35-72, (March 1978).

Sheil, B.A., "Environments for Exploratory Programming" --.
Datamation, (February, 1983) --- also in [Sheil & Masinter, 1983].

Sheil, B.A. and L. M. Masinter, "Papers on Interlisp-D", Xerox
PARe Technical Report CIS-5 (Revised), (January, 1983).

Teitelman, W. and L. M. Masinter, "The Interlisp Programming
Environment" --- Computer, vol 14, no 4, pp 25-34, (Apri I 1981)
--- also in [Sheil & Masinter, 1983].

INTRODUCTION

TABLE OF CONTENTS

2. Litatoms 2.1

2.1. Using Litatoms as Variables 2.2

2.2. Function Definition Cells 2.5

2.3. Property Lists 2.5

2.4. Print Names 2.7

2.5. Characters and Character Codes 2.12

TABLE OF CONTENTS TOCl

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TAB LE 0 F CON TE N TS

(UTATOMX)

(ATOM X)

L1TATOMS

2. LITATOMS

A "Iitatom" (for "literal atom") is an object which conceptually
consists of a print name, a value, a function definition, and a
property list. In some Lisp dialects, litatoms are also known as
"symbols."

A litatom is read as any string of non-delimiting characters that
cannot be interpreted as a number. The syntatic characters that
delimit litatoms are called separator or break characters (see
page 25.33) and normally are space, end-of-line, line-feed, ((left
paren),) (right paren), " (double quote), [(left bracket), and]
(right bracket). However, any character may be included ina
litatom by preceding' it with the character %. Here are some
examples of litatoms:

A wxyz 23SKIDDOO %] 3.1415 + 17

Long% Litatom% With% Embedded% Spaces

[Function]

Returns T if X is a litatom, NIL otherwise. Note that a number is
not a litatom.

(LiTATOM NIL) = T.

[Function]

Returns T if X is an atom (i.e. a litatom or a number); NIL
otherwise.

Warning: (ATOM X) is NIL if X is an array, string, etc. In many
dialects of Lisp, the function ATOM is defined equivalent to the
Interlisp function NLiSTP.

(ATOM NIL) = T.

Litatoms are printed by PRINT and PRIN2 as a sequence of
characters with % 's inserted before all delimiting characters (so
that the litatom will read back in properly). Litatoms are printed
by PRIN1 as a sequence of characters without these extra % 's.
For example, the litatom consisting of the five characters A, B, C,
(, and 0 will be printed as ABC%(D by PRINT and ABC(D by PRIN1.

Litatoms can also be constructed by PACK, PACK"', SUBATOM,
MKATOM, and GENSYM (which uses MKATOM).

2.1

LlTATOM5

Litatoms are unique. In other words, if two litatoms print the
same, they will a/ways be EQ. Note that this is not true for
strings, large integers, floating point numbers, and lists; they all
can print the same without being EQ. Thus if PACK or MKATOM
is given a list of characters corresponding to a litatom that
already exists, they return a pointer to that litatom, and do not
make a new litatom. Similarly, if the read program is given as
input a sequence of characters for which a litatom already exists,
it returns a pointer to that litatom. Note: Interlisp is different
from other Lisp dialects which allow" uninterned" litatoms.

Note: Litatoms are limited to 255 characters in Interlisp-D; 127
characters in Interlisp-1 O. Attempting to create a larger litatom
either via PACK or by typing one in (or reading from a file) will
cause an error, ATOM TOO LONG.

2 .. 1 Using Litatoms as Variables

2.2

Litatoms are commonly used as variables. Each litatom has a
"top level" variable binding, which can be an arbitrary Interlisp
object. Litatoms may also be given special variable bindings
within PROGs or function calls, which only exist for the duration
of the function. When a litatom is evaluated, the "current"
variable binding is returned. This is the most recent special
variable binding, or the top level binding if the litatom has not
been rebound. SETQ is used to change the current binding. For
more information on variable bindings in Interlisp, see page
11. 1.

Note: The compiler (page 18.1) treats variables somewhat
differently than the interpreter, and the user has to be aware of
these differences when writing functions that will be compiled.
For example, variable references in compiled code are not
checked for NOBIND, so compiled code will not generate
unbound atom errors. In general, it is better to debug
interpreted code, before compiling it for speed. The compiler
offers some facilities to increase the efficiency of variable use in
compiled functions. Global variables (page 18.4) can be defined
so that the entire stack is not searched at each variable reference.
Local variables (page 18.5) allow compiled functions to access
variable bindings which are not on the stack, which reduces
variable conflicts, and also makes variable lookup faster.

By convention, a litatom whose top level binding is to the
litatom NOBIND is considered to have no top level binding. If a
litatom has no local variable bindings, and its top level value is
NOBIND, attempting to evaluate it will cause an unbound atom
error.

LlTA TOMS

LlTATOMS

(BOUNDP VAR)

(SET VAR VALUE)

(SETQ VAR VALUE)

(SETQQ VAR VALUE)

USING LlTATOMS AS VARIABLES

The two litatoms T and NIL always evaluate to themselves
Attempting to change the binding of T or NIL with the functions.
below will generate the error ATTEMPT TO SET T or ATTEMPT TO .

SET NIL.

The following functions (except BOUNDP) will also generate the.

error ARG NOT LlTATOM, if not given a litatom.

[Function] .

Returns T if VAR has a special variable binding (even if bound to ..

NOBIND), orif VAR has a top level value other than NOBIND;
otherwise NIL. In other words, if X is a litatom, (EVAL X) will ;
cause an UNBOUND ATOM error if and only if (BOUNDP X)

returns NIl.

[Function]

Sets the "current" variable binding of VAR to VALUE, and returns
VALUE.

Note that SET is a normal lambda spread function, so both VAR

and VALUE are evaluated before it is called. Thus, if the value of
X is B, and the value of Y is e, then (SET X Y) would result in B
being set to e, and e being returned as the value of SET.

[NLambda NoSpread Function]

Nlambda version of SET; VAR is not evaluated, VALUE is. Thus if
the value of X is B and the value of Y is e, (SETQ X Y) would result .
in X (not B) being set toe, and e being returned.

Note: Since SETQ is an nlambda, neither argument is evaluated
during the calling process. However, SETQ itself calls EVAL on its
second argument. As a result, typing (SETQ VAR FORM) and
SETQ(VAR FORM) to the Interlisp executive is equivalent: in
both cases VAR is not evaluated, and FORM is.

[N Lam bda Function]

Like SETQ except that neither argument is evaluated, e.g.,
(SETQQ X (A B e» sets X to (A B C).

(PSETQ VAR1 VALUE1'" VARN VALUEN) [Macro]

Does a multiple SETQ of VAR1 (unevaluated) to the value of

VALUE1, VAR2 to the value of VALUE2' etc. All of the VALUE;

terms are evaluated before any of the assignments. Therefore,
(PSETQ A B B A) can be used to swap the values of the variables A
and B.

2.3

USING LlTATOMS AS VARIABLES

(GETTOPVAL VAR)

(SETTOPVAL VAR VALUE)

(GETATOMVAL VAR)

(SETATOMVAL VAR VALUE)

2.4

[Function]

Returns the top level value of VAR (even if NOBINO), regardle'ss
of any intervening local bindings.

[Function]

Sets the top level value of VAR to VALUE, regardless of any
intervening bindings, and returns VALUE.

A major difference between various Interlisp implementations is
the way that variable bindings are implemented. Interlisp-l0
and Interlisp-Jerico use what is called "shallow" binding.
Interlisp-D and Interlisp-VAX use what is called "deep" binding.

In a deep binding system, a variable is bound by saving on the
stack the variable's new value. When a variable is accessed, its
value is found by searching the stack for the most recent binding.
If the variable is not found on the stack, the top level binding is
retrieved from a "value cell" associated with the variable.

In a "shallow" binding system, a variable is bound by saving on
the stack the variable name and the variable's old value and
putting the new value in the variable's value cell. When a
variable is accessed, its value is always found in its value cell.

GETTOPVAL and SETTOPVAL are less efficient in a shallow
binding system, because they have to search the stack for
rebindings; it is more economical to simply rebind variables. In a
deep binding system, GETTOPVAL and SETTOPVAL are vE~ry

efficient since they do not have to search the stack, but can
simply access the value cell directly.

GETATOMVAL and SETATOMVAL can be used to access a
variable's value cell, in either a shallow or deep binding system.

[Function]

Returns the value in the value cell of VAR. In a shallow binding
system, this is the same as (EVAL ArM), or simply VAR. In a deep
binding system, this is the same as (GETTOPVAL VAR).

[Function]

Sets the value cell of VAR to VALUE. In a shallow binding system,
this is the same as SET; in a deep binding system, this is the same
as SETTOPVAL.

LlTA TOMS

2.2 Function Definition Cells

2a3 Property Lists

(GETPROP A TM PROP)

(PUTPROP A TM PROP VAL)

lITATOMS

FUNCTION DEFINITION CELLS _

Each litatom has a function definition cell, which is accessed
when a litatom is used as a function. The mechanism for
accessing and setting the function definition cell of a litatom is
described on page 10.9.

Each litatom has an associated property list, which allows a set of
named objects to be associated with the litatom. A property list
associates a name, known as a "property name" or "property",
with an abitrary object, the "property value" or simply "value".
Sometimes the phrase "to store on the property X" is used,
meaning to place the indicated information on a property list
under the property name X.

Property names are usually litatoms or numbers, although no
checks are made. However, the standard property list functions
all use EQ to search for property names, so they may not work
with non-atomic property names. Note that the same object can
be used as both a property name and a property value.

Note: Many litatoms in the system already have property lists,
with properties used by the compiler, the break package, DWIM,
etc. Be careful not to clobber such system properties. The
variable SYSPROPS is a list of property names used by the system.

The functions below are used to manipulate the propert lists of
litatoms. Except when indicated, they generate the error ARG

NOT lITATOM, if given an object that is not a litatom.

[Function]

Returns the property value for PROP from the property list of
ATM. Returns NIL if ATM is not a litatom, or PROP is not found.
Note that GETPROP also returns NIL if there is an occurrence of
PROP but the corresponding property value is NIL; this can be a
source of program errors.

Note: GETPROP used to be called GETP.

[Function]

Puts the property PROP with value VAL on the property list of
ATM. VAL replaces any previous value for the property PROP on
this property list. Returns VAL.

2.5

PROPERTY LISTS

2.6

(ADDPROP ATM PROP NEW FLG) [Function]

(REMPROP A TM PROP)

(REMPROPLIST A TM PROPS)

Adds the value NEW to the list which is the value of property
PROP on the property list of ATM. If FLG is T, NEW is CONSed
onto the front of the property value of PROP, otherwise it is
NCONCed on the end (using NCONC1). If ATM does not have a
property PROP, or the value is not a list, then the effect is the
same as (PUTPROP ATM PROP (LIST NEW». ADDPROP returns the
(new) property value. Example:

~ (PUTPROP 'POCKET 'CONTENTS NIL)

NIL
~ (ADDPROP 'POCKET 'CONTENTS 'COMB)
(COMB)
~ (ADDPROP 'POCKET 'CONTENTS 'WALLET)
(COMB WALLET) .

[Function]

Removes all occurrences of th~ property PROP (and its value)
from the property list of ATM. Returns PROP if any were found,
.otherwise NIL.

[Function]

Removes all occurrences of all properties on the list PROPS (and
their corresponding property values) from the property list of
ATM. Retu rns NIL.

(CHANGEPROP X PROPI PROP2) [Function]

(PROPNAMES ATM)

(DEFLIST L PROP)

Changes the property name of property PROPI to PROP2 on the
property list of X, (but does not affect the value of the property).
Returns X, unless PROPI is not found, in which case it returns NIL.

[Function]

Returns a list of the property names on the property list of ATM.

[Function]

Used to put values under the same property name on the
property lists of several litatoms. L is a list of two-element lists.
The first element of each is a litatom, and the second element is
the property value for the property PROP. Returns NIL. For
example,

(DEFLIST '((FOO MA) (BAR CA) (BAZ RI)) 'STATE)

puts MA on FOO's STATE property, CA on BAR's STATE property,
and RI on BAZ's STATE property.

Property lists are conventionally implemented as lists of the form

(NAMEl VALUEl NAME2 VALUE2 ...)

L1TATOMS

(GETPROPLlST ATM)

(SETPROPLlST A TM LSn

(GETLIS X PROPS)

2.4 Print Names

L1TATOMS

PROPERTY LISTS

although the user can store anything as the property list of a .
litatom. However, the functions which manipulate property lists
observe this convention by searching down the property lists two
CDRs at a time. Most of these functions also generate an error,
ARG NOT LlTATOM, if given an argument which is not a litatom,
so they cannot be used directly on lists. (LlSTPUT, LlSTPUT1, .

LlSTGET, and LlSTGET1 are functions similar to PUTPROP and
GETPROP that work directly on lists. See page 3 16.) The
property lists of litatoms can be directly accessed with the
following functions:

[Function]

Returns the property list of ATM.

[Function]

If ATM is a litatom, sets the property list of ATM to be LST, and
returns LST as its value.

[Function]

Searches the property list of X, and returns the property list as of
the first property on PROPS that it finds. For example,

.- (GETPROPLIST IX)

(PROP1 A PROP3 B A C)
.- (GETLIS IX I(PROP2 PROP3»

(PROP3 B A C)

Returns NIL if no element on PROPS is found. X can also be a list
itself, in which case it is searched as described above. If X is not a
litatom or a list, returns NIL.

Each litatom has a print name, a string of characters that
uniquely identifies that litatom. The term "print name" has
been extended, however, to refer to the characters that are
output when any object is printed. In Interlisp, all objects have
print names, although only litatoms and strings have their print
name explicitly stored. This section describes a set of functions
which can be used to access and manipulate the print names of
any object, though they are primarily used with the print names
of litatoms.

The print name of an object is those characters that are output
when the object is printed using PRIN1, e.g., the print name of
the litatom ABC%(D consists of the five characters ABC(D. The

2.7

PRINT NAMES

(MKATOMX)

(SUBATOM X N M)

(PACK X}

2.8

print name of the list (A B C) consists of the seven characters (A B

C) (two of the characters are spaces).

Sometimes we will have occasion to refer to a "PRIN2-name."
The PRIN2-name of an object is those characters output when
the object is printed using PRIN2. Thus the PRIN2-name of the
litatom ABC%(D is .the six characters ABC%(D. Note that the
PRIN2-name depends on what readtable is being used (see page
25.33), since this determines where % 's will be inserted. Manyof
the functions below allow either print names or PRIN2-names to
be used, as specified by FLG and RDTBL arguments. If FLG is NIL,
print names are used. Otherwise, PRIN2-names are used,
computed with respect to the readtable RDTBL (or the current
readtable, if RDTBL = NIL). .

Note: The print name of an integer depends on the setting of
RADIX (page 25.13). The functions described in this section
(UNPACK, NCHARS, etc.) define the print name of an integer as

though the radix was 10, so that (PACK (UNPACK 'X9» will
always be X9 (and not X11, if RADIX is set to 8). However,
integers will still be printed by PRIN1 using the current radix. The
user can force these functions to use print names in the current
radix by changing the setting of the variable PRXFLG (page
25.14).

[Function]

Creates and returns an atom whose print name is the same as
that of the string X or, if X isn't a string, the same as that of
(MKSTRING X). Examples:

(MKATOM '(A B C» =- > %(A%.B% C%)

(MKATOM "1.5'") • > 1.5

Note that the last example ret,-!rns a number, not a litatom. It is a
deeply-ingrained feature of Interlisp that no litatom can have
the print name of a number.

[Function]

Equivalent to (MKATOM (SUBSTRING X N M», but does not
make a string pointer (see page 4.3). Returns an atom made
from the Nth through Mth characters of the print name of X. If N
or M are negative, they specify positions counting backwards
from the end of the print name. Examples:

(SUBATOM"F001.5BAR"46).> 1.5

(SUBATOM '(A B C) 2 -2) = > A% B% C

[Function}

If X is a list of atoms, PACK returns a single atom whose print
name is the concatenation of the print names of the atoms in X.

lITATOMS

LlTATOMS

(UNPACK X FLG RDTBL)

PRINTNAMES

If the concatenated print name is the same as that of anum ber,
PACK will return that number. For example,

(PACK '(A BC DEF G» == > ABCOEFG

(PACK '(1 3.4» == > 13.4

(PACK '(1 E -2» == > .01

Although X is usually a list of atoms, it can be a list of arbitrary
Interlisp objects. The value of PACK is still a single atom whose

print name is the concatenation of the print names of all the
elements of X, e.g.,

(PACK '«A B) "CD"» == > %(A% B%)CO

If X is not a list or NIL, PACK generates an error, ILLEGAL ARG.

[NoSpread Function]

Nospread version of PACK that takes an arbitrary number of

arguments, instead of a list. Examples:,

(PACK"*' 'A 'BC 'OEF 'G) == > ABCOEFG

(PACK"*' 1 3.4) == > 13.4

[Function]

Returns the print name of X as a list of single-characters atoms,
e.g.,

(UNPACK 'ABCSO) == > (A B C 5 D)

(UNPACK "ABC(O") == > (A B C %(D)

If FLG = T, the PRIN2-name of X is used (computed with respect to
RDTBL), e.g.,

(UNPACK "ABC(O" T) == > (%" ABC %(0 % ")

(UNPACK 'ABC%(D" T) == > (A B C %% %(D)

Note: (UNPACK X) performs N CONSes, where N is the number of

characters in the print name of X.

(DUNPACK X SCRATCHLIST FLG RDTBL) [Function]

(NCHARS X FLG RDTBL)

A destructive version of UNPACK that does not perform any
CONSes but instead reuses the list SCRATCHLIST. If the print

name is too long to fit in SCRATCHLlST, DUNPACK will extend it.
If SCRATCHLIST is not a list, DUNPACK returns (UNPACK X FLG

RDTBL).

[Function]

Returns the number of characters in the print name of X. If
FLG = T, the PRIN2-name is used. For example,

(NCHARS 'ABC) == > 3

2.9

PRINT NAMES

2.10

(NTHCHAR X N FLG RDTBL)

(L-CASE X FLG)

{U-CASE X}

{U-CASEP X}

(NCHARS "ABC" T) = > 5

Note: NCHARS works most efficiently on litatoms and strings,

but can be given any object.

[Function]

Returns the Nth character of the print name of X as an atom. N
can be negative, in which case it counts from the end of the print
name, e.g., -1 refers to the last character, -2 next to last, etc. If N

is greater than the number of characters in the print name, or
less than minus that number, or 0, NTHCHAR returns NIL.

Examples:

(NTHCHAR 'ABC 2) = > B

(NTHCHAR 15.6 2) = > 5

(NTHCHAR 'ABC%{O -3 T) = > % %

(NTHCHAR "ABC" 2) = > B

(NTHCHAR "ABC" 2 T) = > A

Note: NTHCHAR and NCHARS work much faster on objects that
actually have an internal representation of their print name, i.e.,

litatoms and strings, than they do on numbers and lists, as they

do not have to simulate printing.

[Function]

Returns a lower case version of X. If FLG is T, the first letter is

capitalized. If X is a string, the value of L-CASE is also a string. If

X is a list, L-CASE returns a new list in which L-CASE is comp~ted
for each corresponding element and non-NIL tail of the original

list. Examples:

(L-CASE 'FOO) = > foo

(L-CASE 'FOO T) = > Foo

(L-CASE "FILE NOT FOUNO" T) = > "File not found"

{L-CASE '{JANUARY FEBRUARY (MARCH "APRIL")) T)

= > '{January February (March "April"))

[Function]

Similar to L-CASE, except returns the upper case version of X.

[Function]

Returns T if X contains no lower case letters; NIL otherwise.

(GENSYM PREFIX ----) [Function]

Returns a litatom of the form Xnnnn, where X = PREFIX (or A if

PREFIX is NIL) and nnnn is an integer. Thus, the first one

LlTATOMS

LlTATOMS

GENNUM

(MAPATOMS FN)

PRINT NAMES

generated is A0001, the second A0002, etc. The integer suffi x is

always at least four characters long, but it can grow beyond that.
For example, the next litatom produced after A9999 would be
A10000. GENSYM provides a way of generating litatoms for

various uses within the system.

[Variable]

The value of GENNUM, initially 0, determines the next GENSYM,
e.g., if GENNUM is set to 23, (GENSYM) = A0024.

The term "gensym" is used to indicate a litatom that was
produced by the function GENSYM. Litatoms generated by
GENSYM are the same as any other litatoms: they have property
lists, and can be given function definitions. Note that the
litatoms are not guaranteed to be new. For example, if the user
has previously created A0012, either by typing it in, or via PACK
or GENSYM itself, then if GENNUM is set to 11, the next litatom
returned by GENSYM will be the A0012 already in existence.

[Function]

Applies FN (a function or lambda expression) to every litatom in
the system. Returns NIL

For example,

(MAPATOMS (FUNCTION (LAMBDA(X)
(if (GETD X) then (PRINT X)]

will print every litatom with a function definition.

Note: In some implementations of Interlisp, unused litatoms
may be garbage collected, which can effect the action of
MAPATOMS.

{APROPOS STRING ALLFLG QUIETFLG OUTPUn [Function]

APROPOS scans all litatoms in the system for those which have
STRING as a substring and prints them on the terminal along
with a line for each relevant item defined for each selected atom.
Relevant items are (1) function definitions, for which only the
arglist is printed, (2) dynamic variable values, and (3) non-null
property lists. PRINTLEVEL (page 25.11) is set to (3 . 5) when
APROPOS is printing.

If ALLFLG is NIL, then atoms with no relevant items and
"internal" atoms are omitted (" internal" currently means those
litatoms whose print name begins with a \ or those litatoms
produced by GENSYM). If ALLFLG is a function (i.e., (FNTYP
ALLFLG) is non-NIL), then it is used as a predicate on atoms
selected by the substring match, with value NIL meaning to omit
the atom. If ALLFLG is any other non-NIL value, then no atoms
are omitted.

2.11

PRINTNAMES

If QUIETFLG is non-NIL, then no printing at all is done, but
instead a I ist of the selected atoms is retu rned.

If OUTPUT is non-NIL, the printing will be directed to OUTPUT

(which should be a stream open for output) instead of to the
terminal stream.

2.5 Characters and Character Codes

2.12

Characters may be represented in two ways: as single-character
atoms, or as integer character codes. In many situations, it is
more efficient to use character codes, so Interlisp provides
parallel functions for both representations.

Interlisp-D uses the 16-bit NS character set, described in the
document Character Code Standard [Xerox Syst~m Integration
Standards, XSIS 058404, April 1984]. Legal character codes range
from 0 to 65535. The NS (Network Systems) character encoding
encompasses a much wider set of available characters than the
8-bit character standards (such as ASCII), including characters
comprising many foreign alphabets and special symbols. For
instance, Interlisp-D supports the display and printing of the
following:

Le systeme d'information Xerox 11 xx est remarquablement
polyglotte.

Das Xerox 11 xx Kommunikationssystem bietet merkwurdige
multilinguale Nutzm6glichkeiten.

M ~ O[w] # 'V v with Rwv: M ~ [v]

These characters can be used in strings, litatom print names,
symbolic files, or anywhere else 8-bit characters could be used.
All of the standard string and print name functions (RPLSTRING,
GNC, NCHARS, STRPOS, etc.) accept litatoms and strings
containing NS characters. For example:

+-(STRPOS "char" "this is an 8-bit character string")
18

+-(STRPOS "char" "celui-ci com porte des characteres NS")
23

In almost all cases, a program does not have to distinguish
between NS characters or 8-bit characters. The exception to this
rule is the handling of input/output operations (see page 25.22).

The function CHARCODE (page 2.13) provides a simple way to
create individual NS characters codes. The Virtual Keyboards
library package provides a set of virtual keyboards that allow
keyboard or mouse entry of NS characters.

L1TATOMS

LlTATOMS

(PACKCX)

(CHCON X FLG RDTBL)

CHARACTERS AND CHARACTER CODES "

[Function]

Similar to PACK except X is a list of character codes. For example,

(PACKC '(70 79 79)) :t > FOO

[Function]

Like UNPACK, except returns the print name of X as a list of
character codes. If FLG = T, the PRIN2-name is used. For exam pie,

(CHCON 'FOO) :t > (70 7979)

(DCHCON X SCRATCHLIST FLG RDTBL) [Function]

Similar to DUNPACK.

(NTHCHARCODE X N FLG RDTBL) [Function]

(CHCON1 X)

(CHARACTER N)

(FCHARACTER N)

(CHARCODE CHAR)

Similar to NTHCHAR, except returns the character code of the
Nth character of the print name of X. If N is negative, it is
interpreted as a count backwards from the end of X. If the
absolute value of N is greater than the number of characters in X,
or 0, then the value of NTHCHARCODE is NIL.

If FLG is T, then the PRIN2-name of X is used, computed with
respect to the readtable RDTBL

[Function]

Returns the character code of the first character of the print
name of X; equal to (NTHCHARCODE X 1).

[Function]

N is a character code. Returns the atom having the
corresponding single character as its print name.

(CHARACTER 70) :t > F

Fast version of CHARACTER that compiles open.

[Function]

The following function makes it possible to gain the efficiency
that comes from dealing with character codes without losing the
symbolic advantages of character atoms:

[NLambda Function]

Returns the character code specified by CHAR (unevaluated). If
CHAR is a one-character atom or string, the corresponding
character code is sim ply returned. Thus, (CHARCODE A) is 65,
(CHARCODE 0) is 48. If CHAR is a multi-character litatom or
string, it specifies a character code as described below. If CHAR is
NIL, CHARCODE simply returns NIL. Finally, if CHAR is a list

2.13

CHARACTERS AND CHARACTER CODES

2.14

CR, SPACE, etc.

CHARSET,CHARNUM

CHARSET-CHARNUM

i CHARSPEC (control chars)

#CHARSPEC (meta chars)

structure, the value is a copy of CHAR with all the leaves replaced
by the corresponding character codes. For instance, (CHARCODE

(A (B C»)) = > (65 (6667)).

If a character is specified by a multi-character litatom or string,
CHARCODE interprets it as follows:

The variable CHARACTERNAMES contains an association list
mapping special litatoms to character codes. Among the
characters defined this way are CR (13), IF (10), SPACE or SP (32),
ESCAPE or ESC (27), BELL (7), BS (8), TAB (9), NULL (0), and DEL

(127). The litatom EOL maps into the appropriate End-Of-Line
character code in the different Interlisp implementations (31 in
Interlisp-10, 13 in Interlisp-D, 10 in Interlisp-VAX). Examples:

(CHARCODE SPACE) :II > 32

(CHARCO DE CR) :II > 13

If the character specification is a litatom or string of the form
CHARSET,CHARNUM or CHARSET-CHARNUM, the character code
for the character number CHARNUM in the character set
CHARSET is returned.

The 16-bit NS character encoding is divided into a large number
of "character sets." Each 16-bit character can be decoded into a
character set (an integer from 0 to 254 inclusive) and a character
number (also an integer from 0 to 254 inclusive). CHARSET is
either an octal number, or a litatom in the association list
CHARACTERSETNAMES (which defines the character sets for
GREEK, CYRILLIC, etc.).

CHARNUM is either an octal number, a single-character litatom,
or a litatom from the association list CHARACTERNAMES. Note
that if CHARNUM is a single-digit number, it is interpreted as the
character "2", rather than as the octal number 2. Examples:

(CHARCODE 12,6) :II > 2566

(CHARCODE 12,SPACE) :II > 2592

(CHARCODE GREEK,A) =- > 9793

If the character specification is a litatom or string of one of the
forms above, preceeded by the character " i ", this indicates a
"control character," derived from the normal character c.ode by
clearing the seventh bit of the character code (normally set).
Examples:

(CHARCODE t A) = > 1

(CHARCODE t GREEK,A) = > 9729

If the character specification is a litatom or string of one of the
forms above, preceeded by the character" #", this indicates a
"meta character," derived from the norma I character code by

LlTATOMS

LlTATOMS

CHARACTERS AND CHARACTER CODES .

setting the eighth bit of the character code (normally cleared).

i and # can both be set at once. Examples:

(CHARCODE #A) = > 193

(CHARCODE # i GREEK,A) = > 9857

A CHARCODE form can be used wherever a structure of character

codes would be appropriate. For example:

(FMEMB (NTHCHARCODE X 1) (CHARCODE (CR LF SPACE i A))

(EQ (READ.CCODE FOO) (CHARCODE GREEK,A»

There is a macro for CHARCODE which causes the character-code

structure to be constructed at compile-time. Thus, the compiled

code for these examples is exactly as efficient as the less

readable:

(FMEMB (NTHCHARCODE X 1) (QUOTE (13 10 32 1))

(EQ (READCCODE FOO) 9793)

(SELCHARQ E CLAUSE 1 ... CLAUSEN DEFAUL n [Macro)

Similar to SELECTQ (page 9.6), except that the selection keys are

determined by applying CHARCODE (instead of QUOTE) to the

key-expressions. If the value of E is a character code or Nil and it

is EQ or MEMB to the result of applying CHARCODE to the first
element of a clause, the remaining forms of that clause are
evaluated. Otherwise, the default is evaluated.

Thus

(SELCHARQ (BIN Faa)

{(SPACE TAB) (FUM»

{(i 0 NIL) (BAR»

(a (BAl»

(liP»

is exactly equivalent to

(SELECTQ (BIN Faa)

{(32 9) (FUM»

{(4 Nil) (BAR»

(97 (BAl»

(liP»

Furthermore, SELCHARQ has a macro definition such that it

always compiles as an equivalent SELECTQ.

215

CHARACTERS AND CHARACTER CODES

[This page intentionally left blank]

216 L1TATOMS

TABLE OF CONTENTS

3G Lists 3.1

3.1. Creati ng Lists 3.4

3.2. Building Lists From left to Right 3.6

3.3. Copyi ng Lists 3.8

3.4. Extracting Tails of Lists 3.9

3.5. Counti ng List Cells 3.10

3.6. logical Operations 3.11

3.7. Searching Lists 3.12

3.8. Substitution Functions 3.13

3.9. Association Lists and Property Lists 3.15

3.10. Sorti ng Lists 3.17

3.11. Other List Functions 3.19

TABLE OF CONTENTS TOCl

rABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

(CONS X y)

(lISTP X)

(NlISTP X)

(CAR X)

(CDR X)

CAR/CDRERR

LISTS

LISTS

One of the most useful datatypes in Interlisp is the list cell, a data
structure which contains pointers to two other objects, known as
the CAR and the CDR of the list cell (after the accessing

functions). Very complicated structures can be built out of list

cells, including lattices and trees, but list cells are most frequently
used for representing simple linear lists of objects.

The following functions are used to manipulate list cells:

[Function]

CONS is the primary list construction function. It creates and

returns a new list cell containing pointers to X and Y. If Y is a list,
this returns a list with X added at the beginning of Y.

[Function]

Returns X if X is a list cell, e.g., something created by CONS; Nil
otherwise.

(lISTP Nil) = NIl.

[Function]

(NOT (lISTP X». Returns T if X is not a list cell, Nil otherwise.

(NLlSTP Nil) = T.

[Function]

Returns the first element of the list X. CAR of Nil is always NIl.
For all other nonlists (e.g., litatoms, numbers, strings, arrays), the
value returned is controlled by CAR/CDRERR (below).

[Function]

Returns all but the first element of the list X. CDR of Nil is always
NIl. The value of CDR for other nonlists is controlled by

CAR/CDRERR (below).

[Variable]

The variable CAR/CDRERR controls the behavior of CAR and CDR
when they are passed non-lists (other than Nil).

If CAR/CDRERR = Nil (the current default), then CAR or CDR of a

non-list (other than Nil) return the string "{car of non-list}" or

3.1

LISTS

(RPLACD X y)

(RPLACAX y)

(RPLNODE X A D)

3.2

"{cdr of non-list}". If CAR/CDRERR = T, then CAR and CDR of a

non-list (other than NIL) causes an error.

If CAR/CDRERR = ONCE, then CAR or CDR of a stri ng causes an
error, but CAR or CDR of anything else returns the string "{car of
nonnlist}" or "{cdr of non-list}" as above. This catches loops
which repeatedly take CAR or CDR of an object, but it allows

one··time errors to pass undetected.

If CAR/CDRERR = CDR, then CAR of a non-list returns "{car of
nonnlist}" as above, but CDR of a non-list causes an error. This

setting is based on the observation that nearly all infinite loops
involving non-lists occur from taking CDRs, but a fair amount of
careless code takes CAR of something it has not tested to be a list

Often, combinations of the CAR and CDR functions are used to
extract various components of complex list structures. Functions
of the form C ... R may be used for some of these combinations:

(CAAR X) = :II > (CAR (CAR X))

(CADR X) :II =- > (CAR (CDR X))

(CDDooR X) =- :II > (CDR (CDR (CDR (CDR X))))

All 30 combinations of nested CARs and CDRs up to 4 deep are
included in the system.

[Function]

Replaces the CDR of the list cell X with Y. This physically changes

the internal structure of X, as opposed to CONS, which creates a
new list cell. It is possible to construct a circular list by using
RPLACD to place a pointer to the beginning of a list in a spot at
the end of the list.

The value of RPLACD is X. An attempt to RPlACD NIL will cause
an error, ATTEMPT TO RPLAC NIL (except for (RPLACD NIL NIL)).
An attempt to RPLACD any other non-list will cause an error,
ARG NOT LIST.

[Function]

Similar to RPLACD, but replaces the CAR of X with Y. The value
of RPLACA is X. An attempt to RPLACA NIL will cause an error,
ATTEMPT TO RPLAC NIL, (except for (RPLACA NIL NIL)). An
attempt to RPLACA any other non-list will cause anerror, ARG
NOT LIST.

[Function]

Performs (RPLACA X A), (RPLACD X D), and returns X.

LISTS

(RPlNODE2 X Y)

(FRPlACD X y)

(FRPlACA X y)

(FRPLNODE X A D)

(FRPlNODE2 X Y)

LISTS

LISTS

[Function]

Performs (RPlACA X (CAR Y», (RPLACD X (CDR Y» and returns X.

[Function]

[Function]

[Function]

[Function]

Faster versions of RPlACD, etc.

Usually, single list cells are not manipulated in isolation, but in
structures known as "lists ". By convention, a list is represented
by a list cell whose CAR is the first element of the list, and whose
CDR is the rest of the list (usually another list cell or the" empty
list," Nil). List elements may be any Interlisp objects, including
other lists.

The input syntax for a list is a sequence of Interlisp data objects
(Iitatoms, numbers, other lists, etc.) enclosed in parentheses or
brackets. Note that 0 is read as the litatom NIL. A right bracket
can be used to match all left parenthesis back to the last left
bracket, or terminate the lists, e.g. (A (B (C1.

ff there are two or more elements in a list, the final element can
be preceded by a period delimited on both sides, indicating that
CDR of the final list cell in the list is to be the element
immediately following the period, e.g. (A . B) or (A B C . D),

otherwise CDR of the last list cell in a list will be NIL. Note that a
list does not have to end in NIL. It is simply a structure composed
of one or more list cells. The input sequence (A B C . NIL) is
equivalent to (A B C), and (A B . (C 0» is equivalent to (A BCD).

Note however that (A B . C D) will create a list containing the five
litatoms A, B, %., C, and D.

Lists are printed by printing a left parenthesis, and then printing
the first element of the list, then printing a space, then printing
the second element, etc. until the final list cell is reached. The
individual elements of a list are printed by PRIN1 if the list is
being printed by PRIN1, and by PRIN2 if the list is being printed
by PRINT or PRIN2. Lists are considered to terminate when CDR

of some node is not a list. If CDR of this terminal node is NIL (the
usual case), CAR of the terminal node is printed followed by a
right parenthesis. If CDR of the terminal node is not NIL, CAR of
the terminal node is printed, followed by a space, a period,
another space, CDR of the terminal node, and then the right
parenthesis. Note that a list input as (A B C. NIL) will print as (A B
C), and a list input as (A B. (C 0» will print as (A BCD). Note also

3.3

LISTS

3.1 Creating Lists

(MKlIST X)

3.4

that PRINTlEVEl affects the printing of lists (page 25.11), and

that carriage returns may be inserted where dictated by

lINElENGTH (page 25.11).

Note: One must be careful when testing the equality of list
structures. EQ will be true only when the two lists are the exact
same list. For example,

+- (SETQ A '(1 2»
(1 2)

+-(SETQ B A)

(1 2)

+-(EQ A B)

T
+- (SETQ C '(1 2))

(1 2)

+-(EQ A C)

NIL
+- (EQUAL A C)

T

In the example above, the values of A and B are the exact same
list, so they are EQ. However, the value of C is a totally different

list, although it happens to have the same elements. EQUAL
should be used to compare the elements of two lists. In general,
one should notice whether list manipulation functions use EQ or

EQUAL for comparing lists. This is a frequent source of errors.

Interlisp provides an extensive set of list manipulation functions,
described in the following sections.

[Function]

"Make List." If X is a list or Nil, returns X; Otherwise, returns

(LIST X).

Returns a list of its arguments, e.g.

(LIST 'A 'B '(C 0)) = > (A B (C 0))

[NoSpread Function]

[NoSpread Function]

Returns a list of its arguments, using the last argument for the
tail of the list. This is like an iterated CONS: (lIST* A B C) = =
(CONS A (CONS B C)). For example,

(lIST* 'A 'B VC) = > (A B . C)

LISTS

(NCONC1 LST X)

(ATTACH XL)

LISTS

CREATI NG LISTS

(lIST* 'A '8 '(e 0» = > (A 8 e D)

[NoSpread Function]

Copies the top level of the list X 1 and appends this to a copy of

the top level of the list X2 appended to ... appended to XN, e.g.,

(APPEND '(A 8) '(C 0 E) '(F G» = > (A 8 C 0 E F G)

Note that only the first N-l lists are copied. However N = 1 is
treated specially; (APPEND X) copies the top level of a single list.

To copy a list to all levels, use COPY.

The following examples illustrate the treatment of non-lists:

(APPEND '(A 8 C) 'D) = > (A 8 C . D)

(APPEND' A '(8 CD» = > (8 e D)

(APPEND '(A B C. D) '(E F G» = > (A BeE F G)

(APPEND '(A B C. 0» = > (A B C . D)

[NoSpread Function]

Returns the same value as APPEND, but actually modifies the list

structure of X 1 ... Xn-t-

Note that NeONC cannot change Nil to a list:

~SETQ FOO Nil)
Nil
~NCONC FOO '(A B C»
(A B C)

~FOO

Nil

Although the value of the NeONC is (A B C), FOO has not been

changed. The" problem" is that while it is possible to alter list
structure with RPlACA and RPlAeD, there is no way to change

the non-list Nil to a list.

[Function]

(NCONC LST(lIST X»

[Function]

"Attaches" X to the front of L by doing a RPLACA and RPLACD.

The value is EQUAL to (CONS X L), but EQ to L, which it physically
changes (except if L is Nil). (ATTACH X NIL) is the same as (CONS
X NIL). Otherwise, if L is not a list, an error is generated, ARG
NOT LIST.

3.5

BUILDING LISTS FROM LEFT TO RIGHT

3.2 Building Lists From Left to Right

(TeONe PTR X)

(LeONe PTR X)

3.6

[Function]

TeONe is similar to NeONe1; it is useful for building a list by
adding elements one at a time at the end. Unlike NeONe1,

TeONe does not have to search to the end of the list each time it
is called. Instead, it keeps a pointer to the end of the list being
assembled, and updates this pointer after each call. This can be
considerably faster for long lists. The cost is an extra list cell, PTR.
(CAR PTR) is the list being assembled, (CDR PTR) is (LAST (CAR
PTR». TeONe returns PTR, with its CAR and CDR appropriately
modified.

PTR can be initialized in two ways. If PTR is NIL, TeONe will
create and return a PTR. In this case, the program must set some
variable to the value of the first call to TeONe. After that, it is
unnecessary to reset the variable, since TeONe physically
changes its value. Example:

~SETQ FOO (TeONe NIL 1»
«1) 1)

~for I from 2 to 5 do (TeONe FOO I»
NIL

+-FOO
«1 2345) 5)

If PTR is initially (NIL), the value of TeONe is the same as for
PTR = NIL. but TeONe changes PTR. This method allows the
program to initialize the TeONe variable before adding any
elements to the list. Example:

~SETQ FOO (CONS»
(NIL)

~for I from 1 to 5 do (TeONe FOO I))
NIL

+-FOO
«1 2345) 5)

[Function]

Where TeONe is used to add elements at the end of a list, LeONe
is used for building a list by adding lists at the end, i.e., it is
similar to NeONe instead of NeONe1. Example:

~SETQ FOO (CONS»
(NIL)

~LeONC FOO '(1 2»
«1 2) 2)
~LeONe FOO '(3 4 5))
«1 2 345) 5)
~LeONe FOO NIL)
«1 2345) 5)

LISTS

{DOCOLLECT ITEM LSn

(ENDCOLLECT LST TAIL)

LISTS

BUILDING LISTS FROM LEFT TO RIGH T

lCONC uses the same pointer conventions as TCONC for
eliminat'ing searching to the end of the list, so that the same
pointer can be given to TeONe and leONe interchangeably.
Therefore, continuing from above,

~TeONe FOO Nil)
«1 2·345 Nil) Nil)
E-(TeONC FOO '(3 45))
«1 2 345 Nil (345)) (3 4 5))

The functions DoeOLLEeT and ENDeOLLEeT also permit building
up lists from left-to-right like TeONe, but without the overhead
of an extra list cell. The list being maintained is kept as a circular
list. DOeOLLEeT adds items; ENDCOLLECT replaces the tail with
its second argument, and returns the full list.

[Function]

"Adds" ITEM to the end of LST. Returns the new circular list.
Note that LST is modified, but it is not EQ to the new list. The
new list sho·uld be stored and used as LST to the next call to
DOCOLLECT.

[Function]

Takes LST, a list returned by DOCOLlECT, and returns it as a

non-circular list, adding TAIL as the terminating CDR.

Here is an example using DOCOllECT and ENDCOLLECT. HPRINT
is used to print the results because they are circular lists. Notice
that FOO has fo be set to the value of DOCOLLECT as each
element is added.

E-(SETQ FOO NJL]
NIL
E-(HPRINT {SETQ FOO (DOeOLlEeT 1 FOO]

f (1 . {1})
E-(HPRINT (SETQ FOO (DOeOLLEeT 2 FOO]
f (2 1 . {1})
E-(HPRINT (SETQ FOO (DOCOlLECT 3 FOO]

f(312.{1})
E-(HPRINT {SETQ FOO (DOeOLLEeT 4 FOO]

f (41 23 . {1})
E-(SETQ FOO (ENDeOLLECT FOO 5)
(1 234.5)

The following two functions are useful writing programs that
wish to reuse a scratch list to collect together some result (Both
of these compile open):

3.7

BUILDING LISTS FROM LEFT TO RIGH T

(SCRATCHLIST LST Xl X2 ... XN) [NLambda NoSpread Function]

SCRATCH LIST sets up a context in which the value of LST is used
as a "scratch" list. The expressions X 1, X2, ... XN are evaluated in

turn. During the course of evaluation, any value passed to
ADDTOSCRATCHLIST will be saved, reusing CONS cells from the
value of LST. If the value of LST is not long enough, new CONS

cells will be added onto its end. If the value of LST is NIL, the
entire value of SCRATCHLIST will be "new" (i.e. no CONS cells

will be r~used).

(ADDTOSCRATCHLIST VALUE) [Function]

3D3 Copying Lists

(COpy X)

(COPVALLX)

(HCOPY ALL X)

3.8

For use under calls to SCRATCHLIST. VALUE is added on to the
end of the value being collected by SCRATCHLIST. When
SCRATCH LIST returns, its value is a list contai ni ng all of the thi ngs
that ADDTOSCRATCHLIST has added.

[Function]

Creates and returns a copy of the list X. All levels of X are copied
down to non-lists, so that if X contains arrays and strings, the
copy of X will contain the same arrays and strings, not copies.
COpy is recursive in the CAR direction only, so very long lists can
be copied.

Note: To copy just the top level of X, do (APPEND X).

[Function]

Like COPY except copies down to atoms. Arrays, hash-arrays,
strings, user data types, etc., are all copied. Analagous to
EQUALALL (page 9.3). Note that this will not work if given a data
structure with circular pointers; in this case, use HCOPYALL.

[Function]

Similar to COPYALL, except that it will work even if the data
structure contains circular pointers.

LISTS

3.4 Extracting Tails of Lists

(TAILP X y)

(NTH X N)

(FNTH X N)

(LAST X)

(FLAST X)

(NLEFT L N TAIL)

LISTS

EXTRACTING TAl LS OF LISTS

[Function]

Returns X, if X is a tail of the list Y; otherwise NIL X is a tail of Y

if it is EQ to 0 or more CDRs of Y.

Note: If X is EQ to 1 or more CDRs of Y, X is called a .. proper tail."

[Function]

Returns the tail of X beginning with the Nth element. Returns
NIL if X has fewer than N elements. Examples:

(NTH '(A BCD) 1) = > (A BCD)

(NTH '(A BCD) 3) :I > (C D)

(NTH '(A BCD) 9) :I > .NIL

{NTH '(A . B) 2) = > B

For consistency, if N = 0, NTH returns (CONS NIL X):

{NTH '(A B) 0) :I > (NIL A B)

Faster version of NTH that terminates on a null-check.

[Function]

[Function]

Returns the last list cell in the list X. Returns NIL if X is not a list.

Examples:

{LAST '(A B C» :I > (C)

(LAST '(A B . C» :I > (B. C)

(LAST 'A) :I > NIL

Faster version of LAST that terminates on a null-check.

[Function]

[Function]

NLEFT returns the tail of L that contains N more elements than

TAIL. If L does not contain N more elements than TAIL, NLEFT

returns NIL. If TAIL is NIL or not a tail of L, NLEFT returns the last

N list cells in L. NLEFT can be used to work backwards through a

list. Example:

~SETQ FOa '(A BCD E»
(A BCD E)

~NLEFT Faa 2)
(D E)

~NLEFT Foa 1 (CDDR Faa»
(B C 0 E)

3.9

EXTRACTING TAILS OF LISTS

(LASTN L N)

3.5 Cou nting List Cells

(LENGTH X)

(FLENGTH X)

(EQLENGTH X N)

(COUNT X)

3.10

+-{NLEFT FOO 3 (COOR FOO»

NIL

[Function]

Returns (CONS X V), where Y is the last N elements of L, and X is
the initial segment, e.g.,

(LA:5TN '(A BCD E) 2) = > «A B C) 0 E)

(LA:5TN '(A B) 2) = > (NIL A B)

Returns NIL if L is not a list containing at least N elements.

[Function]

Returns the length of the list X, where "length" is defined as the
number of CORs required to reach a non-list. Examples: .

(LENGTH '(A B C» = > 3

(LENGTH '(A B C . 0» = > 3

(LENGTH' A) = > 0

[Function]

Faster version of LENGTH that terminates on a null-check.

[Function1

Equivalent to (EQUAL (LENGTH X) N), but more efficient, because

EQLENGTH stops as soon as it knows that X is longer than N.

Note that EQLENGTH is safe to use on (possibly) circular lists,
since it is "bounded" by N.

[Function]

Returns the number of list cells in the list X. Thus, COUNT is like a

LENGTH that goes to all levels. COUNT of a non-list is O.
Examples:

(COUNT '(A» = > 1

(COUNT '(A. B» = > 1

(COUNT '(A (B) C» = > 4

In this last example, the value is 4 because the list (A X C) uses 3
list cells for any object X, and (B) uses another list cell.

LISTS

(COUNTDOWN X N)

(EQUALN X Y DEPTH)

3.6 Logical Operations

(LDIFFERENCE X y)

(INTERSECTION X y)

(UNION X y)

LISTS

COUNTING LIST CELLS

[Function]

Counts the number of list cells in X, decrementing N for each"
one. Stops and returns N when it finishes counting, or when N

reaches O. COUNTDOWN can be used on circular structures since
it is "bounded" by N. Examples:

(COUNTDOWN '(A) 100) = > 99

{COUNTDOWN '(A. B) 100) = > 99

{COUNTDOWN '(A (B) C) 100) = > 96

{COUNTDOWN (DOCOLLECT 1 NIL) 100) = > 0

[Function]

Similar to EQUAL, for use with (possibly) circular structures.
Whenever the depth of CAR recursion plus the depth of CDR
recursion exceeds DEPTH, EQUALN does not search.further along
that chain, and returns the litatom 1. If recursion never exceeds
DEPTH, EQUALN returns T if the expressions X and Yare EQUAL;

otherwise NIL.

{EQUALN '({{An B) '({{Z» B) 2) = > 1

{EQUALN '({{An B) '({(Z» B) 3) = > NIL

{EQUALN '({(An B) '({(A» B) 3) = > T

[Function]

"List Difference." Returns a list of those elements in X that are
not members of Y (using EQUAL to compare elements).

Note: If X and Y share no elements, LDIFFERENCE returns a copy
ofX.

[Function]

Returns a list whose elements are members of both lists X and Y
(using EQUAL to compare elements).

Note that (INTERSECTION X X) gives a list of all members of X
without any duplications.

[Function]

Returns a (new) list consisting of all elements included on either ~

of the two original lists {using EQUAL to compare elements}. It is
more efficient to make X be the shorter list.

3 11

LOGICAL OPERATIONS

(LDIFF LST TAIL ADD)

3.7 Searching Lists

(MEMBX Y)

312

The value of UNION is Y with all elements of X not in Y CONSed
on the front of it. Therefore, if an element appears twice in Y, it
will appear twice in (UNION X Y). Since (UNION '(A) '(A A)) = (A
A), while (UNION '(AA) '(A)) = (A), UNION is non-commutative.

[Function]

TAIL must be a tail of LST, i.e., EQ to the result of applying some
number of CDRs to LST. (LDIFF LST TAIL) returns a list of all
elements in LSTup to TAIL

If ADD is not NIL, the value of LDIFF is effectively (NCONC ADD

(LDIFF LST TAIL)), i.e., the list difference is added at the end of

ADD.

If TAIL is not a tail of LST, LDIFF generates an error, LDIFF: NOT A
TAIL. LDIFF terminates on a null-check, so it will go into an
infinite loop if LSTis a circular list and TAIL is not a ta il.

Example:

~SETQ FOO '(A BCD E F))
(A BCD E F)

~CDDR FOO)
(C 0 E F)

~lDIFF FOO (CDDR FOO))
(A B)

~lDIFF FOO (CDDR FOO) '(1 2))
(1 2 A B)

~lDIFF Faa '(C 0 E F»
lDIFF: not a tail
(C 0 E F)

Note that the value of lDIFF is always new list structure unless
TAIL = Nil, in which case the value is LSTitself.

[Function]

Determines if X is a member of the list Y. If there is an element of
Y EQ to X, returns the tail of Y starting with that element.
Otherwise, returns NIl. Examples:

(MEMB 'A '(A (W) CD)) :I > (A (W) CD)

(MEMB 'e '(A (W) eO)) :II > (e D)

(MEMB 'W '(A (W) e 0)) :II > NIL

{MEMB '(W) '(A (W) e 0» :II > Nil

LISTS

(FMEMBX y)

(MEMBERX y)

(EQMEMBX y)

3.8 Su bstitution Fu nctions

(SUBST NEW OLD EXPR)

(DSUBST NEW OLD EXPR)

(LSUBST NEW OLD EXPR)

LISTS

SEARCHING LISTS

[Function]

Faster version of MEMB that terminates on a null-check

[Function]

Identical to MEMB except that it uses EQUAL instead of EQ to
check membership of X in Y. Examples:

(MEMBER 'c '(A (W) C 0)) = > (C D)

(MEMBER 'w '(A (W) CD)) = > NIL

(MEMBER '(W) '(A (W) C 0)) = > «W) C D)

[Function]

Returns T if either X is EQ to Y, or else Y is a list and X is an
FMEMB of Y.

[Function]

Returns the result of substituting NEW for all occurrences of OLD
in the expression EXPR. Substitution occurs whenever OLD is
EQUAL to CAR of some subexpression of EXPR, or when OLD is
atomic and EQ to a non-NIL CDR of some subexpression of EXPR.
For example:

(SUBST 'A 'B '(C B (X. B))) = > (C A (X . A))

(SUBST 'A '(B C) '«B C) 0 B C))
= > (A 0 B C) not (A D. A)

SUBST returns a copy of EXPR with the appropriate changes.
Furthermore, if NEWis a list, it is copied at each substitution.

[Function]

Similar to SUBST, except it does not copy EXPR, but changes the
list structure EXPR itself. Like SUBST, DSUBST substitutes with a
copy of NEW. More efficient than SUBST.

[Function]

Like SUBST except NEW is substituted as a segment of the list
EXPR rather than as an element. For instance,

(LSUBST '(A B) 'V '(X V Z)) = > (X A B Z)

Note that if NEW is not a list, LSUBST returns a copy of EXPR with
all OLD's deleted:

(LSUBST NIL 'V '(X y Z)) = > (X Z)

3.13

SUBSTITUTION FUNCTIONS

(SUBLIS ALST EXPR FLG)

(OSUBLIS ALST EXPR FLG)

[Function]

ALSTis a list of pairs:

({OLD1 . NEW1) {OLD2' NEW2)'" (OLDN' NEWN))

Each OLDj is an atom. SUBLIS returns the result of substituting

each NEW; for the corresponding OLDj in EXPR, e.g.,

{SUBLIS '({A. X) (C . V)) '(A B C 0)) = > (X B V 0)

If FLG = Nil, new structure is created only if needed, so if there

are no substitutions, the value is EQ to EXPR. If FLG = T, the value

is always a copy of EXPR.

[Function]

Similar to SUBlIS, except it changes the list structure EXPR itself

instead of copying it.

(SUBPAIR OLD NEW EXPR FLG) [Function]

3.14

Similar to SUBlIS, except that elements of NEW are substituted

for corresponding atoms of OLD in EXPR, e.g.,

(SUBPAIR '(A C) '(X V) '(A B C 0)) = > (X B V 0)

As with SUBlIS, new structure is created only if needed, or if

FLG = T, e.g., if FLG = Nil and there are no substitutions, the value

is EQ to EXPR.

If OLD ends in an atom other than Nil, the rest of the elements

on NEW are substituted for that atom. For example, if OLD = (A B

. C) and NEW = (U V X V Z), U is substituted for A, V for B, and (X V
Z) for C. Similarly, if OLD itself is an atom (other than Nil), the

entire list NEW is substituted for it. Examples:

(SUBPAIR '(A B. C) '(W X V Z) '(C A B B V)) = > ({V Z) W X X V)

Note that SUBST, OSUBST, and lSUBST all substitute copies of

the appropriate expression, whereas SUBlIS, and OSUBlIS, and

SUBPAIR substitute the identical structure (unless FLG = T). For

example:

~ (SETQ FOO '(A B))

(A B)

~ (SETQ BAR '(X V Z))

(X y Z)

~(OSUBLIS (LIST {CONS 'X FOO)) BAR)

«A B) V Z)
~(OSUBlIS(lIST{CONS 'V FOO)) BAR T)

{(A B) (A B) Z)

~ (EQ (CAR BAR) FOO)

T
~ {EQ (CAOR BAR) FOO)

Nil

LISTS

ASSOCIATION LISTS AND PROPERTY LISTS

3.9 Association Lists and Property Lists

(ASSOC KEY ALSn

(FASSOC KEY ALSn

(SASSOC KEY ALSn

(PUTASSOC KEY VAL ALSn

LISTS

A commonly-used data structure is one that associates an
arbitrary set of property names (NAME1, NAME2, etc.), with a set
of property values (VALUE1, VALUE2, etc.). Two list structures
commonly used to store such associations are called "property
lists" and" association lists." A list in "association list" format is a
list where each element is a dotted pair whose CAR is a property
name, and whose CDR is the value:

«NAME1. VALUE1) (NAME2. VALUE2) ...)

A list in "property list" format is a list where the first, third, etc.
elements are the property names, and the second, forth, etc.
elements are the associated values:

(NAMEl VALUEl NAME2 VALUE2 ...)

The functions below provide facilities for searching and
changing lists in property list or association list format.

Note: Property lists are contained within many Interlisp-D
system datatypes. There are special functions that can be used to
set and retrieve values from the property lists of litatoms (see
page 2.S), from properties of windows (see page 28.13), etc.

Note: Another data structure that offers some of the
advantages of association lists and property lists is the hash array
data type (see page 6.1).

[Function]

ALST is a list of lists. ASSOC returns the first sublist of ALST

whose CAR is EQ to KEY. If such a list is not found, ASSOC returns
NIL. Example:

(ASSOC '8 '«A. 1) (8.2) (C. 3))) :II > (B. 2)

[Function]

Faster version of ASSOC that terminates on a null-check.

[Function]

Same as ASSOC but uses EQUAL instead of EQ when searching
for KEY.

[Function]

Searches ALST for a sublist CAR of which is EQ to KEY. If one is
found, the CDR is replaced (using RPLACD) with VAL. If no such
sublist is found, (CONS KEY VAL) is added at the end of ALST.

Returns VAL. ~f ALST is not a list, generates an error, ARG NOT
LIST.

315

ASSOCIATION LISTS AND PROPERTY LISTS

(LiSTGET LST PROP)

(LiSTPUT LST PROP VAL)

(LiSTGET1 LST PROP)

(LiSTPUT1 LST PROP VAL)

3.16

Note that the argument order for ASSOC, PUTASSOC, etc. is

different from that of LlSTGET, LlSTPUT, etc.

[Function]

Searches LST two elements at a time, by COOR, looking for an

element EQ to PROP. If one is found, returns the next element of

LST, otherwise NIl. Returns Nil if LSTis not a list. Example:

(LiSTGET '(A 1 82 C 3) '8) = > 2

(LiSTGET '(A 1 8 2 C 3) 'W) = > Nil

[Function1

Searches LST two elements at a time, by COOR, looking for an
element EQ to PROP. If PROP is found, replaces the next element

of LSTwith VAL. Otherwise, PROP and VAL are added to the end

of LST. If LSTis a list with an odd number of elements, or ends in
a non-list other than Nil, PROP and VAL are added at its

beginning. Returns VAL. If LST is not a list, generates an error,
ARG NOT LIST.

[Function1

Like LlSTGET, but searches LST one CDR at a time, i.e., looks at

each element. Returns the next element after PROP. Examples:

(lISTGET1 '(A 1 82 C 3) '8) :a > 2

(LiSTGET1 '(A 1 82 C 3) '1) = > B

(LiSTGET1 '(A 1 82 C 3) OW) :a > Nil

Note: LlSTGET1 used to be called GET.

[Function]

Like LlSTPUT, except searches LST one CDR at a time. Returns the

modified LST. Example:

~SETQ FOO '(A 1 82»

(A 1 B 2)

~lISTPUT1 FOO '8 3)

(A 1 83)

~L.lSTPUT1 FOO 'c 4)

(A 1 B 3 C 4)

~L.lSTPUT1 FOO 1 OW)

(A 1 W 3 C 4)

+-FOO

(A 1 W 3 C 4)

Note that if LST is not a list, no error is generated. However,
since a non-list cannot be changed into a list, LSTis not modified.
In this case, the value of liSTPUT1 should be saved. Example:

~SETQ FOO Nil)

LISTS

NIL
~LlSTPUT1 FOO 'A 5)
(A 5)

...-FOO

NIL

ASSOCIA TION LISTS AND PROPERTY LISTS

3e 10 Sorting Lists

LISTS

(SORT DATA COMPAREFN) [Function]

(MERGE A B COMPAREFN)

DATA is a list of items to be sorted using COMPAREFN, a
predicate function of two arguments which can compare any
two items on DATA and return T if the first one belongs before

the second. If COMPAREFN is NIL, ALPHORDER is used; thus

(SORT DATA) will alphabetize a list. If COMPAREFN is T, CAR's of

items that are lists are given to ALPHORDER, otherwise the items

themselves; thus (SORT A-LIST T) will alphabetize an assoc list by

the CAR of each item. (SORT X 'ILESSP) will sort a list of integers.

The value of SORT is the sorted list. The sort is destructive and

uses no extra storage. The value returned is EQ to DATA but

elements have been switched around. Interrupting with control

0, E, or B may cause loss of data, but control H may be used at

any time, and SORT will break at a clean state from which i or

control characters are safe. The algorithm used by SORT is such
that the maximum number of compares is N*1092N, where N is

(LENGTH DATA).

Note: if (COMPAREFN A B) = (COMPAREFN B A), then the

ordering of A and B mayor may not be preserved.

For example, if (FOO . FIE) appears before (FOO . FUM) in X,

(SORT X T) mayor may not reverse the order of these two

elements. Of course, the user can always specify a more precise
COMPAREFN.

[Function]

A and B are lists which have previously been sorted usi ng SORT

and COMPAREFN. Value is a destructive merging of the two lists.
It does not matter which list is longer. After merging both A and

B are equal to the merged list. (In fact, (CDR A) is EQ to (CDR B».
MERGE may be aborted after control-H.

(ALPHORDER A B CASEARRA y) [Function]

A predicate function of two arguments, for alphabetizing.
Returns a non-NIL value if its arguments are in lexIcographic

order, i.e., if 8 does not belong before A. Numbers come before

3.17

SORTING LISTS

3.18

(UALPHORDER A B)

literal atoms, and are ordered by magnitude (using GREATERP).

Literal atoms and strings are ordered by comparing the character
codes in their print names. Thus (ALPHORDER 23 123) is T,
whereas (ALPHORDER 'A23 'A123) is NIL, because the character
code for the digit 2 is greater than the code for 1.

Atoms and strings are ordered before all other data types. If
neither A nor B are atoms or strings, the value of ALPHORDER is
T, i.e., in order.

If CASEARRA Y is non-NIL, it is a casearray (page 25.21 that the
characters of A and B are translated through before being
compared. Note that numbers are not passed through
CASEARRAY.

Note: If either A or B is a number, the value returned in the
"true" case is T. Otherwise, ALPHORDER returns either EQUAL or
LESSP to discriminate the cases of A and B being equal or
unequal strings/atoms.

Note: ALPHORDER does no UNPACKs, CHCONs, CONSes or
NTHCHARs. It is several times faster for alphabetizing than
anything that can be written using these other functions.

[Function]

Defined as (ALPHORDER A 8 UPPERCASEARRA V).
UPPERCASEARRA Y (page 25.22) is a casearray that maps every
lowercase character into the corresponding uppercase character.

(MERGEINSERT NEW LST ONEFLG) [Function]

LST is NIL or a list of partially sorted items. MERGEINSERT tries to
find the "best" place to (destructively) insert NEW, e.g.,

(MERGEINSERT 'FIE2 '(FOO F001 FIE FUM»
=- > (FOO F001 FIE FIE2 FUM)

Returns LST. MERGEINSERT is undoable.

If ONEFLG = T and NEW is already a member of LST,
MERGEINSERT does nothing and returns LST.

MERGEINSERT is used by ADDTOFILE (page 17.48) to insert the
name of a new function into a list of functions. The algorithm is
essentially to look for the item with the longest common leading
sequence of characters with respect to NEW, and then merge
NEWin starting at that point.

LISTS

3a 11 Other List Fu nctions

(REMOVE x L)

(DREMOVE X L)

(REVERSE L)

(OREVERSE L)

(eOMPARELISTS X y)

LISTS

OTHER LIST FUNCTIONS

[Function]

Removes all top-level occurrences of X from list L, returning a
copy of L with all elements EQUAL to X removed. Example:

(REMOVE' A '(A B C (A) A» = > (B C (A»

(REMOVE '(A) '(A B C (A) A» = > (A B C A)

[Function]

Similar to REMOVE, but uses EQ instead of EQUAL, and actually
modifies the list L when removing X, and thus does not use any
additional storage. More efficient than REMOVE.

Note that OREMOVE cannot change a list to Nil:

+-(SETQ FOO '(A»
(A)

+-(OREMOVE 'A FOO)

NIL

+-FOO
(A)

The OREMOVE above returns NIL, and does not perform any
eONSes, but the value of FOO is still (A), because there is no way
to change a list to a non-list. See NeONe.

Reverses (and copies) the top level of a list, e.g.,

(REVERSE '(A B (e 0») =- > «e 0) B A)

If L is not a list, REVERSE just returns L.

[Function]

[Function]

Value is the same as that of REVERSE, but OREVERSE destroys the
original list L and thus does not use any additional storage. More
efficient than REVERSE.

[Function]

Compares the list structures X and Y and prints a description of
any differences to the terminal. If X and Yare EQUAL lists,
eOMPARELISTS simply prints out SAME. Returns NIl.

eOMPARELISTS prints a terse description of the differences
between the two list structures, highlighting the items that have
changed. This printout is not a complete and perfect
comparison. If X and Yare radically different list structures, the
printout will not be very useful. eOMPARELISTS is meant to be

3.19

OTHER LIST FUNCTIONS

(NEGATE X)

3.20

used as a tool to help users isolate differences between similar

structures.

When a single element has been changed for another,

COMPARELISTS prints out items such as (A 0> 8), for example:

~COMPARELISTS '(A BCD) '(X BED»

(A -> X)(C -> E)

NIL

When there are more complex differences between the two lists,
COMPARELISTS prints X and Y, highlighting differences and

abbreviating similar elements as much as possible. "&" is used to

signal a single element that is present in the same place in the
two lists; " __ " signals an arbitrary number of elements in one list

but not in the other; "-2-," "-3-," etc signal a sequence of two,

three, etc. elements that are the same in both lists. Examples:

(COMPARELISTS '(A BCD) '(A 0»
(A B C --)
(AD)

~COMPARELISTS '(A BCD E F G H) '(A BCD X»
(A -3- E F --)

(A -3- X)

~COMPARELISTS '(A B C (0 E F (G) H) I) '(A B (G) C (0 E F H) I»

(A & & (0 -2- (G) &) &)

(A & (G) & (0 -2- &) &)

[Function]

For a form X, returns a form which computes the negation of X .

For exam pie:

(NEGATE '(MEMBER X Y» ::I > (NOT (MEMBER X V»~

(NEGATE '(EQ X Y» ::I > (NEQ X Y)

(NEGATE '(AND X (NUSTP X») ::I > (OR (NULL X) (lISTP X»

(NEGATE NIL) :II > T

LISTS

TABLE OF CONTENTS

4. Strings 4 1

TABLE OF CONTENTS TOC1

TABLE OFCONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

(STRINGP X)

(STREQUAL X y)

STRINGS

4. STRINGS

A string is an object which represents a sequence of characters.
Interlisp provides functions for creating strings, concatenating
strings, and creating sub-strings of a string.

The input syntax for a string is a dour/Ie quote (..), followed by a

sequence of any characters except double quote and %,
terminated by a double quote. The % and double quote
characters may be included in a string by preceding them with
the character 0/.1).

Strings are printed by PRINT and PRIN2 with initial and final
double quotes, and %s inserted where necessary for it to read
back in properly. Strings are printed by PRIN1 without the
delimiting double quotes and extra %s.

A "null string" containing no characters is input as "". The null
string is printed by PRINT and PRIN2 as "". (PRIN1 "") doesn't

print anything.

Internally a string is stored in two parts; a "string pointer" and
the sequence of characters. Several string pointers may
reference the same character sequence, so a substring can be
made by creating a new string pointer, without copying any
characters. Functions that refer to "strings" actually manipulate
string pointers. Some functions take an "old string" argument,
and re-use the string pointer.

[Function]

Returns X if X is a string, NIL otherwise.

[Function]

Returns T if X and Yare both strings and they contain the same
sequence of characters, otherwise NIL. EQUAL uses STREQUAL.

Note that strings may be STREQUAL without bei ng EQ. For
instance,

(STREQUAL "ABC" "ABC") = > T

(EQ "ABC" "ABC") == > NIL

STREQUAL returns T if X and Yare the same string pointer, or
two different string pointers which point to the same character
sequence, or two string pointers which point to different.
character sequences which contain the same characters. Only in
the first case would X and Y be EQ.

4.1

STRINGS

4.2

(STRING-EQUAL X Y) [Function]

Returns T if X and Yare either strings or litatoms, and they

contain the same sequence of characters, ignoring case. For

instance,

(STRING-EQUAL "FOO" "Foo") = > T

(STRING-EQUAL "FOO" 'Foo) = > T

This is useful for comparing things that might want to be
considered "equal" even though they're not both litatoms ina

consistent case, such as file names and user names.

(ALLOCSTRING N INITCHAR OLD FATFLG) [Function]

(MKSTRING X FLG RDTBL)

(NCHARS X FLG RDTBL)

Creates a string of length N characters of INITCHAR (which can
be either a character code or something coercible to a character).
If INITCHAR is NIL, it defaults to character code o. if OLD is

supplied, it must be a string pointer, which is modified and

returned.

If FATFLG is non-NIL, the string is allocated using full 16-bit NS

characters (see page 2.12) instead of 8-bit characters. This can
speed up some string operations if NS characters are later

inserted into the string. This has no other effect on the

operation of the string functions.

[Function]

If X is a string, returns X. Otherwise, creates and returns a string
containing the print name of X. Examples:

(MKSTRING "ABC") = > "ABC"

(MKSTRING '(A B C» =- > "(A B C)"

(MKSTRING NIL) =- > "NIL"

Note that the last example returns the string "NIL", not the atom

NIL.

If FLG is T, then the PRIN2-name of X is used, computed with

respect to the readtable RDTBL. For example,

(MKSTRING "ABC" T) = > "% "ABC% " ..

[Function]

Returns the number of characters rn the print name of X. If
FLG = T, the PRIN2-name is used. For example,

(NCHARS 'ABC) = > 3

(NCHARS "ABC" T) = > 5

Note: NCHARS works most efficiently on litatoms and strings,

but can be given any object.

STRINGS

(SUBSTRING X N M OLDPTR)

(GNCX)

(GLCX)

STRINGS

STRINGS

[Function]

Returns the substring of X consisting of the Nth through Mth
characters of X. If M is NIL, the substring contains the Nth

character thru the end of X. Nand M can be negative numbers,
which are interpreted as counts back from the end of the string,
as with NTHCHAR (page 2.10). SUBSTRING returns NIL if the

substring is not well defined, e.g., N or M specify character
positions outside of X, or N corresponds to a character in X to the
right of the character indicated by M). Examples:

(SUBSTRING "ABCDEFG" 4 6) = > "DEF"

(SUBSTRING "ABCDEFG" 3 3) = > "c"

(SUBSTRING "ABCDEFG" 3 NIL) = > "CDEFG"

(SUBSTRING "ABCDEFG II 4 -2) = > IIDEFII

(SUBSTRING IIABCDEFG" 6 4) ::I > NIL

(SUBSTRING "ABCDEFG II 4 9) ::I > NIL

If X is not a string, it is converted to one. For example,

(SUBSTRING '(A B C) 46) ::I > "B CII

SUBSTRING does not actually copy any characters, but simply

creates a new string pointer to the characters in X. If OLDPTR is a

string pointer, it is modified and returned.

[Function]

"Get Next Character. II Returns the next character of the string X

(as an atom); also removes the character from the stri ng, by

changing the string pointer. Returns NIL if X is the null string. If

X isn't a string, a string is made. Used for sequential access to
characters of a string. Example:

~SETQ Faa "ABCDEFG")

"ABCDEFG It

~GNCFaa)

A

~GNCFaa)

B
~Faa

"CDEFG"

Note that if A is a substring of B, (GNC A) does not remove the
character from B.

[Function]

"Get Last Character." Returns the last character of the string X
(as an atom); also removes the character from the string. Similar
to GNC. Example:

~SETQ Faa" ABCDEFG It)
IIABCDEFG II

4.3

STRINGS

(CONCATLIST L)

(RPLSTRING X NY)

4.4

~GLC FOO)

G
~GLCFOO)

F

+-FOO
"ABCDE"

[NoSpread Function]

Returns a new string which is the concatenation of (copies of) its
arguments. Any arguments which are not strings are
transformed to strings. Examples:

(CONCAT "ABC" 'DEF "GHI") = > "ABCDEFGHI"

(CONCAT '(A B C) "ABC") =- > "(A B C)ABC"

(CONCA T) returns the null string,

[Function]

L is a list of strings and/or other objects. The objects are
transformed to strings if they aren't strings. Returns a new string
which is the concatenation of the strings. Example:

(CONCATLIST '(A B (C D) "EF"» = > "AB(C D)EF"

[Function]

Replaces the characters of string X beginning at character
position N with string Y. X and Yare converted to strings if they
aren't already. N may be positive or negative, as with
SUBSTRING. Characters are smashed into (converted) X. Returns
the string X. Examples:

(RPLSTRING "ABCDEF" -3 "END") = > "ABCEND"

(RPlSTRING "ABCDEFGHIJK" 4 '(A B C)) = > "ABC(A B C)K"

Generates an error if there is not enough room in X for Y, i.e., the
new string would be longer than the original. If Y was not a
string, X will already have been modified since RPLSTRING does
not know whether Y will "fit" without actually attempting the
transfer.

Warning: In some implementations of Interlisp, if X is a
substring of Z, Z will also be modified by the action of RPLSTRING

or RPLCHARCODE. However, this is not guaranteed to be true in
all cases, so programmers should not rely on RPLSTRING or
RPLCHARCODE altering the characters of any string other than
the one directly passed as argument to those functions.

STRINGS

SiRINGS

(RPlCHARCOOE X N CHAR)

STRINGS

[Function]

Replaces the Nth character of the string X with the character
code CHAR. N may be positive or negative. Returns the new X.

Similar to RPlSTRING. Example:

(RPlCHARCODE "ABCDE" 3 (CHARCODE F)) a > "ABFDE"

(STRPOS PAT STRING START SKIP ANCHOR TAIL CASEARRA Y BACKWARDSFLG) [Function]

STRPOS is a function for searching one string looking for
another. PAT and STRING are both strings (or else they are
converted automatically). STRPOS searches STRING beginning at
character number START, (or 1 if START is NIL) and looks for a
sequence of characters equal to PAT. If a match is found, the
character position of the first matching character in STRING IS

returned, otherwise NIL. Examples:

(STRPOS "ABC" "XYZABCOEF") a > 4

(STRPOS "ABC" "XYZABCOEF" 5) =- > NIL

(STRPOS "ABC" "XYZABCOEFABC" 5) =- > 10

SKIP can be used to specify a character in PA T that matches any
character in STRING. Examples:

(STRPOS "A&C&" "XYZABCOEF" NIL' &) a > 4

(STRPOS "OEF&" "XYZABCOEF" NIL' &) a > NIL

If ANCHOR is T, STRPOS compares PAT with the characters
beginning at position START (or 1 if START is NIL). If that

comparison fails, STRPOS returns NIL without searching any
further down STRING. Thus it can be used to compare one string
with some portion of another string. Examples:

(STRPOS "ABC" "XYZABCOEF" NIL NIL T) a > NIL

(STRPOS "ABC" "XYZABCOEF" 4 NIL T) a > 4

If TAIL is T, the value returned by STRPOS if successful is not the
starting position of the sequence of characters corresponding to
PAT, but the position of the first character after that, i.e., the
starting position plus (NCHARS PA n. Examples:

(STRPOS "ABC" "XYZABCOEFABC" NIL NIL NIL T) =- > 7

(STRPOS "A" "A" NIL NIL NIL T) a > 2

If TAIL = NIL, STRPOS returns NIL. or a character position within
STRING which can be passed to SUBSTRING. In particular,
(STRPOS " .. "") a > NIL. However, if TAIL = T, STRPOS may
return a character position outside of STRING. For instance, note
that the second example above returns 2, even though "A" has
only one character.

If CASEARRA Y is non-NIL, this should be a casearray like that
given to FILEPOS (page 25.20). The casearray is used to map the
string characters before comparing them to the search string.

45

STRINGS

46

If BACKWARDSFLG is non-NIL, the search is done backwards from
the end of the stri ng.

(STRPOSL A STRING START NEG BACKWARDSFLG) [Function1

(MAKEBITTABLE L NEG A)

STRING is a string (or else it is converted automatically to a
string), A is a list of characters or character codes. STRPOSL
searches STRING beginning at character number START(or else 1

if START= NIL) for one of the characters in A. If one is found,
STRPOSL returns as its value the corresponding character
position, otherwise NIL. Example:

(STRPOSL I(A B C) "XYZ8COIf
) • > 4

If NEG = T, STRPOSL searches for a character not on A. Example:

(STRPOSL I(A B C) .. ABCOEF" NIL T) • > 4

If any element of A is a number, it is assumed to be a character
code. Otherwise, it is converted to a character code via CHCON1.
Therefore, it is more efficient to call STRPOSL with A a list of
character codes.

If A is a bit table, it is used to specify the characters (see
MAKE81TTABLE below)

If BACKWARDSFLG is non-NIL, the search is done backwards from
the end of the string.

STRPOSL uses a "bit table" data structure to sear,ch efficiently. If
A is not a bit table, it is converted to a bit table using
MAKEBITTABLE. If STRPOSL is to be called frequently with the
same list of characters, a considerable savings can be achieved by

.. converting the list to a bit table once, and then passi ng the bit
table to STRPOSL as its first argument.

[Function]

Returns a bit table suitable for use by STRPOSL. L is a list of
characters or character codes, NEG is the same as descri bed for
STRPOSL. If A is a bit table, MAKEBITTABLE modifies and returns
it. Otherwise, it will create a new bit table.

Note: if NEG = T, STRPOSL must call MAKEBITTABLE whether A is
a list or a bit table. To obtain bit table efficiency with NEG = T,
MAKEBITTABLE should be called with NEG = T, and the resulting
"inverted" bit table should be given to STRPOSl with NEG = NIL.

STRINGS

TABLE OF CONTENTS

5. Arrays 1),1

TABLE OF CONTENTS TOC.l

TABLE OFCONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

ARRAYS

5. ARRAYS

An array in Interlisp is an object representing a one-dimensional
vector of objects. Arrays are generally created by the function
ARRAY.

(ARRA Y SIZE TYPE INIT ORIG -) [Function]

(ARRAYP X)

(El T ARRA Y N)

(SETA ARRA Y N V)

Creates and returns a new array capable of containing SIZE
objects of type TYPE. If TYPE is NIL, the array can contain any
arbitrary Lisp datum. In general, TYPE may be any of the various
field specifications which are legal in DATATYPE declarations
(see page 8.9): POINTER, FIXP, FLOATP, (BITS N), etc. The
implementation will, if necessary, choose an "enclosing" type if
the given one is not supported; for example, an array of (BITS 3)

may be represented by an array of (BITS 8).

INIT is the initial value in each element of the new array. If not
specified, the array elements will be initialized with a (for
number arrays) or NIL (all other types).

Arrays can have either a-origin or 1-origin indexing, as specified
by the ORIG argument; if ORIG is not specified, the default is 1.

Note: Arrays of type FlOATP are stored unboxed. This increases
the space and time efficiency of FlOATP arrays. Users who want
to use boxed floating point numbers should use an array of type
POINTER instead of FlOATP.

[Function]

Returns X if X is an array, Nil otherwise.

Note: In some implementations of Interlisp (but not Interlisp-D),
ARRA YP may also return X if it is of type CCODEP or HARRA YP.

[Function]

Returns the Nth element of the array ARRA Y.

Generates the error ARG NOT ARRAY if ARRA Y is not an array.
Generates the error ILLEGAL ARG if N is out of bounds.

[Function] .

Sets the Nth element of the array ARRA Y to VAL, and returns.
VAL.

Generates thE~ error ARG NOT ARRA Y if ARRA Y is not an array.
Generates the error ILLEGAL ARG if N is out of bou nds. Can

5.1

ARRAYS

5.2

(ARRA YTYP ARRA y)

(ARRA YSIZE ARRA y)

(ARRAYORIG ARRA y)

generate the error NON-NUMERIC. ARG if ARRA Y is an array

whose ARRAYTYP is FIXP or FLOATP and VAL is non-numeric.

[Function]

Returns the type of the elements in the array ARRA Y, a value
corresponding to the second argument to ARRAY.

Note: If ARRAY coerced the array type as described above,

ARRA YTYP will return the new type. For exam pie, (ARRA YTYP

(ARRAY 10 '(BITS 3)) will return BYTE in Interlisp-D, and FIXP in

Interlisp-10.

[Function]

Returns the size of array ARRA Y. Generates the error, ARG NOT

ARRAY, if ARRA Vis not an array.

[Function] --

(COpy ARRA YARRA y)

Returns the origin of array ARRA Y, which may be 0 or 1.
Generates an error, ARG NOT ARRAY, if ARRA Y is not an.array.

[Function]

Returns a new array of the same size and type as ARRA Y, and
with the same contents as ARRA Y. Generates an ARG NOT

ARRAY error, if ARRAY is not an array.

ARRAYS

TABLE OF CONTENTS

6~ Hash Arrays 6.1

6.1. Hash Overflow 6.3

6.2. User-Specified Hashing Functions 6.4

TABLE OF CONTENTS TOC1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC2 TABLE OF CONTENTS

HASH ARRAYS

6. HASH ARRAYS

Hash arrays provide a mechanism for associating arbitrary lisp
objects ("hash keys") with other objects ("hash values"), such
that the hash value associated with a particular hash key can be
quickly obtained. A set of associations could be represented as a
list or array of pairs, but these schemes are very inefficient when
th.e number of associations is large. There are functions for
creating hash arrays, putting a hash key/value pair in a hash
array, and quickly retrieving the hash value associated with a
given hash key.

By default, the hash array functions use EQ for comparing hash
keys. This means that if non-atoms are used as hash keys, the
exact same object (not a copy) must be used to retrieve the hash
value. However, the user can override this default for any hash
array by specifying the functions used to compare hash keys and
to "hash" a hash key to a number. This can be used, for example,
to create hash arrays where EQUAL but non-EQ strings will hash
to the same value. Specifying alternative hashing algorithms is
described below (page 6.4).

In the description of the functions below, the argument HARRA Y
should be a value of the function HASHARRA V, which is used to
create hash arrays. For convenience in interactive program
development, it may also be NIL, in which case a hash array
provided by the system, SVSHASHARRAV, is used; the user must
watch out for confusions if this form is used to associate more
than one kind of value with the same key.

Note: For backwards compatibility, the hash array functions will
accept a list whose CAR is a hash array, and whose CDR is the
"overflow method" for the hash array (see below). However,
hash array functions are guaranteed to perform with maximum
efficiency only if a direct value of HASHARRA V is given.

(HASHARRA V MINKEYS OVERFLOW HASHBITSFN EQUIVFN) [Function]

Creates a hash array containing at least MINKEYS hash keys, with
overflow method OVERFLOW. See discussion of overflow
behavior below (page 6.3).

If HASHBITSFN and EQUIVFN are non-NIL, they specify the
hashing functitOn and comparison function used to interpret
hash keys. This is described in the section on user-specified
hashing functions below (page 6.4). If HASHBITSFN and

6.1

HASH ARRAYS

6.2

(HARRAV MINKEYS)

(HARRAVPX)

EQUIVFN are Nil, the default is to hash EQ hash keys to the same

value.

[Function]

Provided for backward compatibility, this is equivalent to
(HASHARRAV MINKEVS 'ERROR).

[Function]

Returns X if it is a hash array object; otherwise NIl.

Note that HARRAVP returns Nil if X is a list whose CAR is an
HARRA VP, even though this is accepted by the hash array
functions.

(HARRAVPROP HARRA Y PROP NEWVALUE) [NoSpread Function]

(HARRA YSIZE HARRA Y)

(ClRHASH HARRA Y)

Returns the property PROP of HARRA Y; PROP can have the
system-defined values SIZE (returns the maximum occupancy of
HARRA Y), NUMKEVS (number of occupied slots), OVERFLOW

(overflow method), HASHBITSFN (hashing function) and
EQUIVFN (comparison function). Except for SIZE and NUMKEVS,

a new value may be specified as NEWVALUE.

By using other values for PROP, the user may also set and get
arbitrary property values, to associate additional information
with a hash array.

Note: The HASHBITSFN or EQUIVFN properties can only be
changed if the hash array is empty.

[Function]

Equivalent to (HARRAYPROP HARRA V 'SIZE); returns the number
of slots in HARRA Y.

[Function]

Clears all hash keys/values from HARRA Y. Returns HARRA Y.

(PUTHASH KEY VAL HARRA y) [Function]

(GETHASH KEY HARRA y)

Associates the hash value VAL with the hash key KEY in HARRA Y.
Replaces the previous hash value, if any. If VAL is NIL, any old
association is removed (hence a hash value of Nil is not allowed).
If HARRA Y is full when PUTHASH is called with a key not already
in the hash array, the function HASH OVERFLOW is called, and
the PUTHASH is applied to the value returned (see below).
Returns VAL.

[Function]

Returns the hash value associated with the hash key KEY in
HARRAY. Returns NIL, if KEY is not found.

HASH ARRAYS

HASH ARRAYS

(REHASH OLDHARRA Y NEWHARRA y) [Function]

Hashes all hash keys and values in OLDHARRA Y into
NEWHARRA Y. The two hash arrays do not have to be (and
usually aren't) the same size. Returns NEWHARRA Y.

(MAPHASH HARRA Y MAPHFN) [Function]

MAPHFN is a function of two arguments. For each hash key in
HARRAY, MAPHFN will be applied to (1) the hash value, and (2)
the hash key. For example,

[MAPHASH A
{FUNCTION {LAMBDA (VAL KEY)

{if (LlSTP KEY) then (P~INT VAL)]

will print the hash value afor all hash keys that are lists.
MAPHASH returns HARRA Y.

(DMPHASH HARRA Y 1 HARRA Y 2 '" HARRA Y N) [NLambda NoSpread Function]

Prints on the primary output file LOADable forms which will
resto~e the hash-arrays contained as the values of the atoms
HARRAY1, HARRAY2, ... HARRAYN' Example: (DMPHASH

SYSHASHARRAY) will dump the system hash-array.

Note: all EQ identities except atoms and small integers are lost by
dumping and loading because READ will create new structure
for each item. Thus if two lists contain an EQ substructure, when
they are dumped and loaded back in, the corresponding
substructures while EQUAL are no longer EQ. The
HORRIBLEVARS file package command (page 17.36) provides a
way of dumping hash tables such that these identities are
preserved.

6.1 Hash Overflow

the litatom ERROR

NIL

HASH ARRAYS

When a hash array becomes full, attempting to add another hash
key will cause the function HASH OVERFLOW to be called. This
will either automatically enlarge the hash array, or cause the.
error HASH TABLE FULl. How hash overflow is handled is
determined by the value of the OVERFLOW property of the hash
array (which can be accessed by HARRAYPROP). The possibilities
for the overflow method are:

The error HAS~ ARRAY FULL is generated when the hash array
overflows. This is the default overflow behavior for hash arrays
returned by HARRA Y.

The array is automatically enlarged by 1.5. This is the default.
overflow behavior for hash arrays returned by HASHARRA Y.

6.3

HASH OVERFLOW

a positive integer N

a floating point number F

a function or lambda expression FN

The array is enlarged to include N more slots than it currently

has.

The array is changed to include F times the number of current
slots.

Upon hash overflow, FN is called with the hash array as its
argument. If FN returns a number, that will become the size of
the array. Otherwise, the new size defaults to 1.5 times its
previous size. FN could be used to print a message, or perform
some monitor function.

Note: For backwards compatibility, the hash array functions
accept a list whose CAR is the hash array, and whose CDR is the
overflow method. In this case, the overflow method specified in
the list overrides the overflow method set in the hash array.
Note that hash array functions are guaranteed to perform with
maximum efficiency only if a direct value of HASHARRA Y is
given.

6.2 User-Specified Hashing Functions

6.4

In general terms, when a key is looked up in a hash array, it is
converted to an integer, which is used to index into a linear
array. If the key is not the same as the one found at that index,
other indices are tried until it the desired key is found. The value
stored with that key is then returned (from GETHASH) or
replaced (from PUTHASH).

The important features of this algorithm, for purposes of
customizing hash arrays, are (1) the "hashing function" used to
convert a key to an integer; and (2) the comparison function
used to compare the key found in the array with the key being
looked up. In order for hash arrays to work correctly, any two
objects which are equal according to the comparison function
must "hash" to equal integers.

By default, the Interlisp hash array functions use a hashing
function that computes an integer from the internal address of a
key, and use EQ for comparing keys. This means that if
non-atoms are used as hash keys, the exact same object (not a
copy) must be used to retrieve the hash value.

There are some applications for which the EQ constraint is too
restrictive. For example, it may be useful to use strings as hash
keys, without the restriction that EQUAL but not EQ strings are
considered to be different hash keys.

The lIser can override this default behavior for any hash array by
specifyi ng the functions used to compare keys and to "hash" a

HASH ARRAYS

(STRI NGHASH BITS STRING)

HASH ARRAYS

USER-SPECIFIED HASHING FUNCTIONS

key to a number. This can be done by giving the HASHBITSFN

and EQUIVFN arguments to HASHARRA Y (page 6.1).

The EQUIVFN argument is a function of two arguments that
returns non-NIL when its arguments are considered equal. The

HASHBITSFN argument is a function of one argument that
prod uces a positive small integer (i n the range [0 .. 2 i 16-1]) with
the property that objects that are considered equal by the
EQUIVFN produce the same hash bits.

For an existing hash array, the function HARRA YPROP (page 6.2)

can be used to examine the hashing and equivalence functions as
the HASHBITSFN and EQUIVFN hash array properties. These
properties are read-only for non-empty hash arrays, as it.makes
no sense to change the equivalence relationship once some keys
have been hashed.

The following function is useful for creating hash arrays that
take strings as hash keys:

[Function]

Hashes the string STRING into an integer that can be used as a
HASHBITSFN for a hash array. Strings which are STREQUAL hash

to the same integer.

Example:

(HASHARRAY MINKEYS OVERFLOW'STRINGHASHBITS

'STREQUAL)

creates a hash array where you can use strings as hash keys.

6.5

USER-SPECIFIED HASHING FUNCTIONS

[This page intentionally left blank]

6.6 HASH ARRAYS

TABLE OF CONTENTS

7. Numbers and Arithmetic Functions 7.1

7.1. Generic Arithmetic 7.3

7.2. Integer Arithmetic 7.4

7.3. Logical Arithmetic Functions 7.8

7.4. Floating Point Arithmetic 7.11

7.S. Other Arithmetic Functions 7.13

TABLE OF CONTENTS TOCl

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

(SMALLP X)

NUMBERS AND ARITHMETIC FUNCTIONS

7. NUMBERS AND ARITHMETIC
FUNCTIONS

Numerical atoms, or simply numbers, do not have value cells,
function definition cells, property lists, or explicit print names.
There are four different types of numbers in Interlisp: small
integers, large integers, bignums (arbitrary-size integers), and
floating point numbers. Small integers are those integers that
can be directly stored within a pointer value
(implementation-dependent). Large integers and floating point
numbers are full-word quantities that are stored by "boxing" the
number (see below). Bignums are" boxed" as a series of words.

Large integers and floating point numbers can be any full word
quantity. In order to distinguish between those full word
quantities that represent large integers or floating point
numbers, and other Interlisp pointers, these numbers are
"boxed": When a large integer or floating point number is
created (via an arithmetic operation or by READ), Interlisp gets a
new word from "number storage" and puts the large integer or
floating point number into that word. Interlisp then passes
around the pointer to that word, i.e., the "boxed number",
rather than the actual quantity itself. Then when a numeric
function needs the actual numeric quantity, it performs the extra
level of addressing to obtain the "value" of the number. This
latter process is called" unboxing". Note that unboxing does not
use any storage, but that each boxing operation uses one new
word of number storage. Thus, if a computation creates many
large integers or floating point numbers, i.e., does lots of boxes,
it may cause a garbage collection of large integer space, or of
floating point number space.

Note: Different implementations of Interlisp may use different
boxing strategies. Thus, while lots of arithmetic operations may
lead to garbage collections, this is not necessarily always the
case.

The following functions can be used to distinguish the different
types of numbers:

[Function]

Returns X, if X is a small integer; NIL otherwise. Does not
generate an error if X is not a number.

7.1

NUMBERS AND ARITHMETIC FUNCTIONS

(FIXP X)

(FLOATP X)

(NUMBERP X)

(EQP X y)

(OVERFLOW FLG)

72

[Function]

Returns X, if X is an integer; NIL otherwise. Note that FIXP is true

for small integers, large integers, and bignums. Does not
generate an error if X is not a number.

[Function]

Returns X if X is a floating point number; NIL otherwise. Does

not give an error if X is not a number.

[Function]

Retu rns X, if X is anum ber of any type (FIXP or FLOATP); NIL

otherwise. Does not generate an error if X is not a number.

Note that if (NUMBERP X) is true, then either (FIXP X) or (FLOATP
X) is true.

Each small integer has a unique representation, so EQ may be

used to check equality. Note that EQ should not be used for

large integers, bignums, or floating point numbers, EQP, IEQP, or

EQUAL must be used instead.

[Function]

Returns T, if X and Yare EQ, or equal numbers; NIL otherwise.

Note that EQ may be used if X and Yare known to be small
integers. EQP does not convert X and Y to integers, e.g., (EQP

2000 2000.3) :II > NIL, but it can be used to compare an integer
and a floating point number, e.g., (EQP 2000 2000.0) = > T.

EQP does not generate an error if X or Yare not numbers.

Note: EQP can also be used. to compare stack pointers (page

11.4) and compiled code objects (page 10.10).

The action taken on division by zero and floating point overflow
is determined with the following function:

[Function]

Sets a flag that determines the system response to arithmetic
overflow (for floating point arithmetic) and division by zero;
returns the previous setting.

For integer arithmetic: If FLG = T, an error occurs on division by
zero. If FLG = NIL or 0, integer division by zero returns zero.

Integer overflow cannot occur, because small integers are
converted to bignums (page 7.1).

For floating point arithmetic: If FLG = T, an error occurs on

floating overflow or floating division by zero. If FLG = NIL or 0,
the largest (or smallest) floating point number is returned as the

NUMBERS AND ARITHMETIC FUNCTIONS

7.1 Generic Arithmetic

(MINUS X)

(DIFFERENCE X y)

(QUOTIENT X y)

(REMAINDER X y)

(GREATERP X y)

NUMBERS AND ARITHMETIC FUNCTIONS

NUMBERS AND ARITHMETIC FUNCTIONS

result of the overflowed computation or floating division by

zero.

The default value for OVERFLOW is T, meaning to cause an error
on division by zero or floating overflow.

The functions in this section are "generic" arithmetic functions.
If any of the arguments are floating point numbers (page 7.11)/
they act exactly like floating point functions, and float all
arguments, and return a floating point number as their value.
Otherwise, they act like the integer functions (page 7.4). If given
a non-numeric argument, they generate an error,
NON-NUMERIC ARG.

[NoSpread Function]

[Function]

-x

[Function]

X-v

[NoSpread Function]

[Function]

If X and Yare both integers, returns the integer division of X and
Y. Otherwise, converts both X and Y to floating point numbers,
and does a floating point division.

The results of division ~by zero and floating point overflow is
determined by the function OVERFLOW (page 7.2).

[Function]

If X and Yare both integers, returns (lREMAINDER X y),

otherwise (FREMAINDER X y).

[Function]

T, if X > Y, Nil otherwise.

7.3

GENERIC ARITHMETIC

(LESSP X y)

(GEQ X y)

(LEQ X y)

(ZEROP X)

(MINUSP X)

(ABS X)

7.2 Integer Arithmetic

74

123Q

10123

Ib10101

[Function]

T if X < Y, NIL otherwise.

[Function]

T, if X> = Y, NIL otherwise.

[Function]

T, if X < = Y, NIL otherwise.

[Function]

(EQP XO).

[Function]

T, if X is negative; NIL otherwise. Works for both integers and
floating point numbers.

[NoSpread Function]

Returns the minimum of Xl, X2, ... , XN' (MIN) returns the value

of MAX.lNTEGER (page 7.5).

[NoSpread Function]

Returns the maximum of X 1, X2, ... , XN' (MAX) returns the value

of MIN.lNTEGER (page 7.5).

[Function]

X if X > 0, otherwise -X. ABS uses GREATERP and MINUS (not
IGREATERP and IMINUS).

The input syntax for an integer is an optional sign (+ or -)
followed by a sequence of decimal digits, and terminated by a
delimiting character. Integers entered with this syntax are
interpreted as decimal integers. Integers in other radices can be
entered as follows:

If an integer is followed by the letter Q, or proceeded by a
vertical bar and the letter "0", the digits are interpreted an octal
(base 8) integer.

If an integer is proceeded by a vertical bar and the letter "b", the
digits are interpreted as a binary (base 2) integer.

NUMBERS AND ARITHMETIC FUNCTIONS

Ix1A90

ISr1243

MIN.SMALLP

MAX.SMALLP

MIN.FIXP

MAX.FIXP

MINoiNTEGER

MAXoiNTEGER

NUMBERS AND ARITHMETIC FUNCTIONS

INTEGER ARITHMETIC'

If an integer is proceeded by a vertical bar and the letter" x" , the
digits are interpreted as a hexadecimal (base 16) integer. The.
upper-case letters A though F are used as the digits after 9.

If an integer is proceeded by a vertical bar, a positive decimal
integer BASE, and the letter "r", the digits are interpreted as an
integer in the base BASE. For example, 18r123 = 123Q, and
116r12A3 = Ix12A3. When inputting a number in a radix above
ten, the upper-case letters A through Z can be used as the digits
after 9 (but there is no digit above Z, so it is not possible to type
all base-99 digits).

Note that 77Q and 63 both correspond to the same integers, and
in fact are indistinguishable internally since no record is kept of
the syntax used to create an integer. The function RADIX (page

2S.13), sets the rad ix used to print integers.

Integers are created by PACK and MKATOM when given a
sequence of characters observing the above syntax, e.g. (PACK
'(1 2 Q» :I > 10. Integers are also created as a result of
arithmetic operations.

The range· of integers of various types is
implementation-dependent. This information is accessable to
the user through the following variables:

[Variable]

[Variable]

The smallest/largest possible small integer.

[Variable]

[Variable]

The smallest/largest possible large integer.

[Variable]

[Variable]

The smallest/largest possible integers. For some algorithms, it is
useful to have an integer that is larger than any other integer.
Therefore, the values of MAX.INTEGER and MINoiNTEGER are
two special bignums; the value of MAX.lNTEGER is GREATERP
than any other integer, and the value of MIN.INTEGER is LESSP
than any other integer. Trying to do arithmetic using these
special bignums, other than comparison, will cause an error.

All of the functions described below work on integers. Unless
specified otherwise, if given a floating point number, they first

75

INTEGER ARITHMETIC

(IMINUSX)

(IDIFFERENCE X y)

(ADD1 X)

{SUB1 Xl

(IQUOTIENT X y)

(lREMAINDER X y)

(IMODX N)

(lGREATERP X y)

76

convert the number to an integer by truncating the fractional
bits, e.g., (IPLUS 2.3 3.8) = 5; if given a non-numeric argument,
they generate an error, NON-NUMERIC ARG.

[NoSpread Function]

Returns the sum X 1 + X2 + ... + XN· (IPLUS) = O.

[Function]

-X

[Function]

X-v

[Function]

X + 1

[Function]

X - 1

[NoSpread Function]

Returns the product X 1 11 X2 * ... 11 XN. (ITIMES) = 1.

X / Ytruncated. Examples:

(IQUOTIENT 3 2) :II > 1

(IQUOTIENT -3 2) = > -1

[Function]

If Y is zero, the result is determined by the function OVERFLOW

(page 7.2).

[Function]

Returns the remainder when X is divided by Y. Example:

(lREMAINDER 3 2) = > 1

[Function]

Computes the integer modulus; this differs from IREMAINDER in
that the result is always a non-negative integer in the range
lOrN).

[Function]

T, if X > Y; NIL otherwise.

NUMBERS AND ARITHMETIC FUNCTIONS

(lLESSP X y)

(lGEQ X y)

(ILEQ X y)

(lEQP X y)

(FIX N)

(FIXR N)

(Gce N1 N2)

NUMBERS AND ARITHMETIC FUNCTIONS

INTEGER ARITHMETIC ~

[Function]

T, if X < Y; Nil otherwise.

[Function]

T, if X > = Y; NIL otherwise.

[Function]

T, if X < = Y; NIL otherwise.

[NoSpread Function]

Returns the minimum of X " X2, ... , XN. (IMIN) returns the largest

possible large integer, the value of MAX.INTEGER.

[NoSpread Function]

Returns the maximum of X " X2, ... , XN' (IMAX) returns the

smallest possible large i"nteger, the value of MIN.lNTEGER.

[Function]

Returns T if X and Yare EQ or equal integers; Nil otherwise.

Note that EQ may be used if X and Yare known to be small

integers. IEQP converts X and Y to integers, e.g., (lEQP 2000

2000.3) = > T. Causes NON-NUMERIC ARG error if either X or Y

are not numbers.

[Function]

If N is an integer, returns N. Otherwise, converts N to an integer
by truncating fractional bits For example, (FIX 2.3) :=I > 2, (FIX

-1.7) :=I > -1.

Note: Since FIX is also a programmer's assistant command (page

13.12), typing FIX directly to Interlisp will not cause the function

FIX to be called.

[Function]

If N is an integer, returns N. Otherwise, converts N to an integer

by rounding. For example, (FIXR 2.3) = > 2, (FIXR -1.7) = > -2,

(FIXR 3.5) = > 4).

[Function]

Returns the greatest common divisor of N1 and N2, e.g., (GCD 72

64) = 8.

77

LOGICAL ARITHMETIC FUNCTIONS

7.3 Logical Arithmetic Functions

(LSH X N)

(RSH X N)

(LLSH X N)

(LRSH X N)

78

[NoSpread Function]

Returns the logical AND of all its arguments, as an integer.
Example:

(LOGAND 7 5 6) = > 4

[NoSpread Function]

Returns the logical OR of all its arguments, as an integer.
Example:

(LOGOR 1 39) = > 11

[NoSpread Function]

Returns the logical exclusive OR of its arguments, as an integer.
Example:

(LOGXOR 11 5) = > 14

(LOGXOR 11 59) = (LOGXOR 149) = > 7

[Function]

(arithmetic) "Left Shift." Returns X shifted left N places, with the
sign bit unaffected. X can be positive or negative. If N is
negative, X is shifted right -N places.

[Function]

(arithmetic) "Right Shift." Returns X shifted right N places, with
the sign bit unaffected, and copies of the sign bit shifted into the
leftmost bit. X can be positive or negative. If N is negative, X is
shifted left -N places.

Warning: Be careful if using RSH to simulate division; RSHing a
negative number is not generally equivalent to dividing by a
power of two.

[Function]

[Function]

II Logical Left Shift" and "Logical Right Shift". The difference
between a logical and arithmetic right shift lies in the treatment
of the sign bit. Logical shifting treats it just like any other bit;
arithmetic shifting will not change it, and will II propagate II
rightward when actually shifting rightwards. Note that shifting
(arithmetic) a negative number" all the way" to the right yields
-1, not o.

NUMBERS AND ARITHMETIC FUNCTIONS

(lNTEGERLENGTH X)

(POWEROFTWOP X)

(EVENP X Y)

(ODDP N MODULUS)

(LOGNOT N)

(BITIEST N MASK)

(BITCLEAR N MASK)

(BITSET N MASK)

(MASK.1 'S POSITION SIZE)

(MASK.O'S POSITION SIZE)

NUMBERS AND ARITHMETIC FUNCTIONS

LOGICAL ARITHMETIC FUNCTIONS

Note: LLSH and LRSH are currently implemented using
mod-2 i 32 arithmetic. Passing a bignum to either of these will
cause an error. LRSH of negative numbers will shift in Os in the
high bits.

[Function]

Returns the number of bits needed to represent X (coerced to an
integer). This is equivalent to: 1 + floor[log2[abs[X]]].
(INTEGERLENGTH 0) = o.

(Function1

Returns non-NIL if X (coerced to an integer) is a power of two.

[NoSpread Function]

If Y is not given, equivalent to (ZEROP (IMOD X 2»; otherwise

equivalent to (ZEROP (lMOD X Y».

[NoSpread Function1

Equivalent to (NOT (EVENP N MODULUS». MODULUS defaults to
2.

[Macro]

Logical negation of the bits in N. Equivalent to (LOGXOR N -1)

[Macro]

Returns T if any of the bits in MASK are on in the number N.

Equivalent to (NOT (ZEROP (LOGAND N MASK»)

Turns off bits from MASK in N.

(LOG NOT MASK»

[Macro]

Equivalent to (LOGAND N

[Macro]

Turns on the bits from MASK in N. Equivalent to (LOGOR N

MASK)

[Macro]

Returns a bit-mask with SIZE one-bits starting with the bit at
POSITION. Equivalent to (LLSH (SUB1 (EXPT 2 SIZE» POSITION)

[Macro]

Returns a bit-mask with all one bits, except for SIZE bits starting
at POSITION. Equivalent to (LOGNOT (MASK.l 'S POSITION SIZE»

7.9

LOGICAL ARITHMETIC FUNCTIONS

(LOAOBYTE N pas SIZE) [Function1

Extracts SIZE bits from N, starting at position pas. Equivalent to

(LOGANO (RSH N paS) (MASK.'·S 0 SIZE»

(OEPOSITBYTE N pas SIZE VAL) [Function]

(ROT X N FIELDSIZE)

(BYTE SIZE POSITION)

(BYTESIZE BYTESPEC)

(BYTEPOSITION BYTESPEC)

(LOB BYTESPEC VAL)

(OPB N BYTESPEC VAL)

7 10

Insert SIZE bits of VAL at position pas into N, retu rning the
result. Equivalent to

(LOGOR (BITCLEAR N (MASK.'·S pas SIZE»
(LSH (LOGANO VAL (MASK.'·S 0 SIZE))

pas))

[Function]

II Rotate bits in field". It performs a bitwise left-rotation of the
integer X, by N places, within a field of FIELDSIZE bits wide. Bits
being shifted out of the position selected by (EXPT 2 (SUB1

FIELDSIZE» will flow into the II units" position.

The notions of position and size can be combined to make up a
"byte specifier", which is constructed by the macro BYTE [note
reversal of arguments as compare with above functions]:

[Macro]

Constructs and returns a "byte specifier" containing SIZE and
POSITION.

[Macro]

Returns the SIZE componant of the "byte specifier" BYTESPEC.

[Macro]

Returns the POSITION componant of the "byte specifier"
BYTESPEC.

Equivalent to

(LOAOBYTE VAL
(BYTEPOSITION BYTESPEC)
(BYTESIZE BYTESPEC)

Equivalent to

(OEPOSITBYTE VAL
(BYTEPOSITION BY.TESPEC)
(BYTESIZE BYTESPEC)
N)

[Macro]

(Macro]

NUMBERS AND ARITHMETIC FUNCTIONS

7.4 Floating Point Arithmetic

MIN.FLOAT

MAX. FLOAT

NUMBERS AND ARITHMETIC FUNCTIONS

FLOATING POINT ARITHMETIC

A floating point number is input as a signed integer, followed by
a decimal point, followed by another sequence of digits called
the fraction, followed by an exponent (represented by E
followed by a signed integer) and terminated by a delimiter.

Both signs are optional, and either the fraction following the
decimal point, or the integer preceding the decimal point may
be omitted. One or the other of the decimal point or exponent
may also be omitted, but at least one of them must be present to
distinguish a floating point number from an integer. For
example, the following will be recognized as floating point
numbers:

5. 5.00 5.01 .3
5E2 5.1 E2 5E-3 -5.2E + 6

Floating point numbers are printed using the format control
specified by the function FLTFMT (page 25.13). FL TFMT is
initialized to T, or free format. For example, the above floating
point numbers would be printed free format as:

5.0 5.0 5.01 .3
500.0 510.0 .005 -5.2E6

Floating point numbers are created by the read program when a
"." or an E appears in a number, e.g., 1000 is an integer, 1000. a
floating point number, as are 1E3 and 1.E3. Note that 10000,
1000F, and 1 E30 are perfectly legal literal atoms. Floating point
numbers are also created by PACK and MKATOM, and as a result
of arithmetic operations.

PRINTNUM (page 25.15) permits greater controls on the printed
appearance of floating point numbers, allowing such things as
left-justification, suppression of trailing decimals, etc.

The floating point number range is stored in the following
variables:

[Variable]

The smallest possible flbating point number.

[Variable]

The largest possible floating point number.

All of the functions described below work on floating point
numbers. Unless specified otherwise, if given an integer, they
first convert the number to a floating point number, e.g., (FPLUS
1 2.3) < = > (FPLUS 1.0 2.3) = > 3.3; if given a non-num eric
argument, they generate an error, NON-NUMERIC ARG.

7.11

FLOATING POINT ARITHMETIC

(FPLUS X 1 X2 ... XN)

(FMINUS X)

(FDIFFERENCE X Y)

(FQUOTIENT X y)

(FREMAINDER X y)

(FGREATERP X Y)

(FLESSP X Y)

(FEQP X Y)

7 12

[NoSpread Function]

[Function]

-X

[Function]

X-v

[NoSpread Function]

X 1* X2 * ... * XN

[Function]

XI Y.

The results of division by zero and floating point overflow is
determined by the function OVERFLOW (page 7.2).

[Function]

Returns the remainder when X is divided by Y. Equivalent to:

(FDIFFERENCE X (FTIMES Y (FIX (FQUOTIENT X Y»)))

Example:

(FREMAINDER 7.5 2.3) ~ > 0.6

[Function]

T, if X > Y, NIL otherwise.

[Function]

T, if X < Y, NIL otherwise.

[Function]

Returns T if Nand M are equal floating point numbers; NIL

otherwise. FEQP converts Nand M to floating point
numbers.Causes NON-NUMERIC ARG error if either N or Mare
not numbers.

[NoSpread Function]

Returns the minimum of X 1, X2, ... , XN' (FMIN) returns the largest

possible floating point number, the value of MAX. FLOAT.

NUMBERS AND ARITHMETIC FUNCTIONS

(FLOAT X)

FLOATING POINT ARITHMETIC

[NoSpread Function]

Returns the maximum of X 1, X2, ... , XN. (FMAX) returns the

smallest possible floating point number, the value of
MIN.FLOAT.

Converts Xto a floating point number. Example:

(FLOA TO) = > 0.0

[Function]

7.5 Other Arithmetic Functions

(EXPT AN)

(SQRT N)

(LOG X)

(ANTILOG X)

(SIN X RADIANSFL G)

(COS X RADIANSFLG)

(TAN XRADIANSFLG)

NUMBERS AND ARITHMETIC FUNCTIONS

[Function]

Returns Ai N. If A is an integer and N is a positive integer,
returns an integer, e.g, (EXPT 3 4) = > 81, otherwise returns a
floating point number. If A is negative and N fractional, an error
is generated, ILLEGAL EXPONENTIATION. If N is floating and
either too large or too small, an error is generated, VALUE OUT

OF RANGE EXPT.

[Function]

Returns the square root of N as a floating point number. N may
be fixed or floating point. Generates an error if N is negative.

[Function]

Returns the natural logarithm of X as a floating point number. X

can be integer or floating point.

[Function]

Returns the floating point number whose logarithm is X. X can
be integer or floating point. Example:

(ANTILOG 1) = e = > 2.71828 ...

[Function]

Returns the sine of X as a floating point number. X is in degrees
unless RADIANSFLG = T.

[Function]

Similar to SIN.

[Function]

Similar to SIN.

7.13

OTHER ARITHMETIC FUNCTIONS

(ARCSIN X RADIANSFLG)

(ARCCOS X RADIANSFLG)

(ARCTAN X RADIANSFLG)

[Function]

X is a number between -1 and 1 (or an error is generated). The
value of ARCSIN is a floating point number, and is in degrees
unless RADIANSFLG= T. In other words, if (ARCSIN X

RADIANSFLG) = Z then (SIN Z RADIANSFLG) = X. The range of the
value of ARCSIN is -90 to + 90 for degrees, - -PI-/2 to -PI-12 for

radians.

[Function]

Similar to ARCSIN. Range is 0 to 180,0 to -PI-.

[Function]

Sim ilar to ARCSI N. Range is 0 to 180,0 to -PI-.

(ARCTAN2 Y X RADIANSFL G) [Function]

(RAND LOWER UPPER)

(RANDSET X)

7.14

Computes {ARCTAN (FQUOTIENT Y X) RADIANSFLG), and returns
a corresponding value in the range -180 to 180 (or --PI- to -PI-),
i.e. the result is in the proper quadrant as determined by the
signs of X and Y.

[Function1

Returns a pseudo-random number between LOWER and UPPER

inclusive, i.e., RAND can be used to generate a sequence of
random numbers. If both limits are integers, the value of RAND

is an integer, otherwise it is a floating point number. The
algorithm is completely deterministic, i.e., given the same initial
state, RAND produces the same sequence of values. The internal
state of RAND is initialized using the function RANDSET
described below.

[Function]

Returns the internal state of RAND. If X = NIL, just returns the
current state. If X = T, RAND is initialized using the clocks, and
RANDSET returns the new state. Otherwise, X is interpreted as a

previous internal state, i.e., a value of RANDSET, and is used to
reset RAND. For example,

~ (SETQ OLDSTA TE (RANDSET))

~ (for X from 1 to 10 do {PRIN1 (RAND 1 10)))

2847592748NIL

~ (RANDSET OLDSTATE)

~{for X from 1 to 10 do {PRIN1 (RAND 110)))
2847592748NIL

NUMBERS AND ARITHMETIC FUNCTIONS

TABLE OF CONTENTS

8. Record Package 8.1

8.1. FETCH and REPLACE 8.2

8.2. CREATE 8.3

8.3. TYPE? 8.5

8.4. WITH 8.5

8.5. Record Declarations 8.6

8.5.1. Record Types 8.7

8.5.2. Optional Record Specifications 8.14

8.6. Defining New Record Types 8.15

8.7. Record Manipulation Functions 8.16

8.8. Changetran 8.17

8.9. Built-In and User Data Types 8.20

TABLE OF CONTENTS TOCl

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

RECORD PACKAGE

8. RECORD PACKAGE

The advantages of "data abstraction II have long been known:
more readable code, fewer bugs, the ability to change the data
structure without having to make major modifications to the
program, etc. The record package encourages and facilitates this
good programming practice by providing a uniform syntax for
creating, accessing and storing data into many different types of
data structures (arrays, list structures, association lists, etc.) as
well as removing from the user the task of writing the various
manipulation routines. The user declares (once) the data
structures used by his programs, and thereafter indicates the
manipulations of the data in a data-structure-independent
manner. Using the declarations, the record package
automatically computes the corresponding Interlisp expressions
necessary to accomplish the indicated access/storage operations.
If the data structure is changed by modifying the declarations,
the programs automatically adjust to the new conventions.

The user describes the format of a data structure (record) by
making a II record declaration II (see page 8.6). The record
declaration is a description of the record, associating names with
its various parts, or II fields ". For exam pie, the record declaration
(RECORD MSG (FROM TO . TEXT» descri bes a data structu re
called MSG, which contains three fields: FROM, TO, and TEXT.
The user can reference these fields by name, to retrieve their
values or to store new values into them, by using the FETCH and
REPLACE operators (page 8.2). The CREATE operator (page 8.3)

is used for creating new instances of a record, and TYPE? (page
8.5) is used for testing whether an object is an instance of a
particular record. (note: all record operators can be in either
upper or lower case.)

Records may be implemented in a variety of different ways, as
determined by the first element ("record type") of the record
declaration. RECORD (used to specify elements and tails of a list
structure) is just one of several record types currently
implemented. The user can specify a property list format by
using the record type PROPRECORD, or that fields are to be
associated with parts of a data structure via a specified hash
array by using the record type HASHLlNK, or that an entirely new
data type be allocated (as described on page 8.20) by using the
record-type DATA TYPE.

The record package is implemented through the DWIM/CLISP
facilities, so it contains features such as spelling correction on

8.1

RECORD PACKAGE

8.1 FETCH and REPLACE

8.2

field names, record types, etc. Record operations are translated
using all CLiSP declarations in effect (standard/fast/undoable); it
is also possible to declare local record declarations that override
global ones (see page 21.12).

The file package includes a RECORDS file package command for
dumping record declarations (page 17.38), and FILES? and
CLE.ANUP will inform the user about records that need to be

dumped.

The' fields of a record are accessed and changed with the FETCH
and REPLACE operators. If the record MSG has the record
declaration (RECORD MSG (FROM TO . TEXT)), and X is a MSG
data structure, (fetch FROM of X) will return the value of the
FROM field of X, and (replace FROM of X with Y) will replace this
field with the value of Y. In general, the value of a REPLACE
operation is the same as the value stored into the field.

Note that the form (fetch FROM of X) implicitly states that X is an
instance of the record MSG, or at least it should to be treated as
such for this particular operation. In other words, the
interpretation of (fetch FROM of X) never depends on the value
of X. Therefore, if X is not a MSG record, this may produce
incorrect results. The TYPE? record operation (page 8.5) may be
used to test the types of objects.

If there is another record declaration, (RECORD REPLY (TEXT.
RESPONSE», then (fetch TEXT of X) is ambiguous, because X
could be either a MSG or a REPLY record. In this case, an error
will occur, AMBIGUOUS RECORD FIELD. To clarify this, FETCH
and REPLACE can take a list for their" field" argument: (fetch
(MSG TEXT) of X) will fetch the TEXT field of an MSG record.
Note that if a field has an identical interpretation in two
declarations, e.g. if the field TEXT occurred in the same location
within the declarations of MSG and REPLY, then (fetch TEXT of
X) would not be considered ambiguous.

An exception to this rule is that" user" record declarations take
precedence over "system" record declarations, in cases where an
unqualified field name would be considered ambiguous. System
records are declared by including (SYSTEM) in the record
declaration (see page 8.15). All of the records defined in the
standard Interlisp-D system are defined as system records.

Another complication can occur if the fields of a record are
themselves records. The fields of a record can be further broken
down into sub-fields by a "subdeclaration" within the record
declaration (see page 8.14). For example,

RECORD PACKAGE

8.2 CREATE

RECORD PACKAGE

FETCH AND REPLACE

(RECORD NOD~ (POSITION. LABEL) (RECORD POSITION (XLOC .

YLOC»)

permits the user to access the POSITION field with (fetch
POSITION of X), or its subfield XLOC with (fetch XLOC of X)

The user may also elaborate a field by declaring that field r.ame
in a separate record declaration (as opposed to an embedded
subdeclaration). For instance, the TEXT field in the MSG and
REPLY records above may be subdivided with the seperate record
declaration (RECORD TEXT (HEADER. TXT». Fields of subfields
(to any level of nested subfields) are accessed by specifying the
"data path" as a list of recordlfield names, where there is some
path from each record·to the next in the list. For instance, (fetch
(MSG TEXT HEADER)· of X) indicates that X is to be treated as a
MSG record, its TEXT field should be accessed, and its HEADER

field should be accessed. Only as much of the data path as is
necessary to disambiguate it needs to be specified. In this case,
(fetch (MSG HEADER) of X) is sufficient. The record package
interprets a data path by performing a tree search among all
current record declarations for a path from each name to the
next, considering first local declarations (page 21.13) and then
global ones. The central point of separate declarations is that
the (sub)record is not tied to another record (as with embedded
declarations), and therefore can be used in many different
contexts. If a data-path rather than a single field is ambiguous,
(e.g., if there were yet another declaration (RECORD TO (NAME.

HEADER» and the user specified (fetch (MSG HEADER) of X»), the
error AMBIGUOUS DATA PATH is generated.

FETCH and REPLACE forms are translated using the CLiSP

declarations in effect (see page 21. 12). FFETCH and FREPLACE

are versions which insure fast CLiSP declarations will be in effect,
IREPLACE insures undoable declarations.

Record operations can be applied to arbitrary structures, i.e., the
user can explicitely creating a data structure (using CONS, etc),
and then manipulate it with FETCH and REPLACE. However, to
be consistant with the idea of data abstraction, new data should
be created using the same declarations that define its data paths.
This can be done with an expression of the form:

(create RECORD-NAME. ASSIGNMENTS)

A CREATE expression translates into an appropriate Interlisp
form using CONS, LIST, PUTHASH, ARRAY, etc., that creates the
new datum with the various fields initialized to the appropriate

83

CREATE

FIELD-NAME ~ FORM

USING FORM

COPYING FORM

REUSING FORM

SMASHING FORM

values. ASSIGNMENTS is optional and may contain expressions of

the following form:

Specifies initial value for FIELD-NAME.

Specifies that for all fields not explicitly given a value, the value
of the corresponding field in FORM is to be used.

Similar to USING except the corresponding values are copied
(with COpy ALL).

Similar to USING, except that wherever possible, the

corresponding structure in FORM is used.

A new instance of the record is not created at all; rather, the

value of FORM is used and smashed.

The record package goes to great pains to insure that the order
of evaluation in the translation is the same as that given in the
original CREATE expression if the side effects of one expression
might affect the evaluation of another. For example, given the
declaration (RECORD CONS (CAR. CDR», the expression (create
CONS CDR~X CAR~Y) will translate to (CONS Y X), but (create
CONS CDR~FOO) CAR~FIE)) will translate to «LAMBDA ($$1)
(CONS (PROGN (SETQ $$1 (FOO» (FIE)) $$1))) because FOO might
set some variables used by FIE.

Note that (create RECORD REUSING FORM 00') does not itself do
any destructive operations on the value of FORM. The
distinction between USING and REUSING is that (create RECORD
reusing FORM ...) will incorporate as much as possible of the old
data structure into the new one being created, while (create
RECORD using FORM ...) will create a completely new data
structure, with only the contents of the fields re-used. For
example, REUSING a PROPRECORD just CONSes the new
property names and values onto the list, while USING copies the
top level of the list. Another example of this distinction occurs
when a field is elaborated by a subdeclaration (page 8.14):

US.ING will create a new instance of the sub-record, while
REUSING will use the old contents of the field (unless some field
of the subdeclaration is assigned in the CREATE expression.)

If the value of a field is neither explicitly specified, nor implicitly
specified via USING, COPYING or REUSING, the default value in
the declaration is used, if any, otherwise NIL. (Note: For
BETWEEN fields in DATATYPE records, N1 is used; for other

non-pointer fields zero is used.) For example, following
(RECORD A (B C D) 0 +- 3),

(cr,eate A B~ T)

= = > (LIST T NIL 3)

(create A B~T using X)

= = > (LIST T (CADR X) (CADDR X))

(create A B+-T copying X»

_.---8.4 RECORD PACKAGE

8.3 TYPE?

8.4 WITH

RECORD PACKAGE

CREATE

= = > [LIST T (COPYALL (CADR X» (COPYALL (CADDR Xl

(create A B~T reusing X)

= = > (CONS T (CDR X»

The record package allows the user to test if a given datum
"looks like" an instance of a record. This can be done via an
expression of the form

(type? RECORD-NAME FORM)

TYPE? is mainly intended for records with a record type of
DATATYPE or TYPERECORD. For DATATYPEs, the TYPE? check is
exact; i.e. the TYPE? expression will return non-NIL only if the
value of FORM is an instance of the record named by
RECORD-NAME. For TYPERECORDs, the TYPE? expression will
check that the value 'of FORM is a list beginning with
RECORD-NAME. For ARRA YRECORDs, it checks that the value is
an array of the correct size. For PROPRECORDs and
ASSOCRECORDs, a TYPE? expression will make sure that the
value of FORM is a property/association list with property names
among the field-names of the declaration.

There is no built-in type test for records of type ACCESSFNS,
HASHLINK or RECORD. Type tests can be defined for these kinds
of records, or redefined for the other kinds, by including an
expression of the form (TYP.E? COM) in the record declaration
(see page 8.14). Attempting to execute a TYPE? expression for a
record that has no type test causes a n error, TYPE? NOT
IMPLEMENTED FOR THIS RECORD.

Often one wants to write a complex expression that manipulates
several fields of a single record. The WITH construct can make it
easier to write such expressions by allowing one to refer to the
fields of a record as if they were variables within a lexical scope:

(with RECORD-NAME RECORD-INSTANCE FORM 1 ... FORMN)

RECORD-NAME is the name of a re'cord, and RECORD-INSTANCE
is an expression which evaluates to an instance of that record.
The expressions FORMI ... FORMN are evaluated so that

references to variables which are field-names of RECORD-NAME

8.5

WITH

8.5 Record Declarations

8.6

are implemented via FETCH and SETQs of those variables are

implemented via REPLACE.

For example, given

(RECORD RECN (FLD1 FLD2))
(SETQ INST (create RECN FLD1 ~ 10 FLD2 ~ 20))

Then the construct

(with RECN INST (SETQ FLD2 (PLUS FLD1 FLD2]

is equivalent to

(replace FLD2 of INST with (PLUS (fetch FLD1 of INST) (fetch FLD2

of INST1

Warning: WITH is implemented by doing simple substitutions in
the body of the forms, without regard for how the record fields
are used. This means, for example, if the record FOO is defined
by (RECORD FOO (POINTER1 POINTER2), then the form

(with FOO X (SELECTQ Y (POINTER1 POINTER1) NIL]

will be transtated as

(SELECTQ Y «CAR X) (CAR X)) NIL]

The user should be careful that record field names are not used
except as variables in the WITH forms.

A record is defined by evaluating a record declaration, which is
an expression of the form:

(RECORD-TYPE RECORD-NAME RECORD-FIELDS. RECORD-TAIL)

RECORD-TYPE specifies the "type" of data being described by
the record declaration, and thereby implicitly specifies how the
corresponding access/storage operations are performed. The
different record types are described below.

RECORD-NAME is a litatom used to identify the record
declaration for creating instances of the record via CREATE,
testing via TYPE?, and dumping to files via the RECORDS file
package command (page 17.38). DATATYPE and TYPERECORD
declarations also use RECORD-NAME to identify the data
structure (as described below).

RECORD-FIELDS describes the structure of the record. Its exact
interpretation varies with RECORD-TYPE. For most record types
it defines the names of the fields within the record that can be
accessed with FETCH and REPLACE.

RECOR D PACKAG E

8.5.1 Record Types

RECORD

TYPERECORD

RECORD PACKAGE

RECORD DECLARA TIONS

RECORD- TAIL is an optional list that can be used to specify
default values for record fields, special CREATE and TYPE? forms,
and subdeclarations (described below).

Normally, record declaration forms are typed in to the top-level
executive or read from a file, and they define the structure of the
record globally. Local record declarations within the context of a
function are defined by including a record declaration form in
the CLiSP declaration for the function, rather than evaluating
the expression itself (see page 21.13).

Note: Although record declarations are evaluatable forms, and
thus can be included in functions, changing a record declaration
dynamically (at run-time) is not recommended. When a FETCH or
REPLACE operation is interpreted, and the record declaration has
changed, the form has to be re-translated. If a function
containing FETCH or REPLACE operations has been compiled, it
may be necessary to re-compile. For applications which need to
change record decl.arations dynamically, users should consider
using more flexible data structures, such as association lists or
property lists.

Records can be used to describe a large variety of data objects,
that are manipulated in different ways. The RECORD-TYPE field
of the record declaration specifies how the data object is
created, and how the various record fields are accessed.
Depending on the record type, the record fields may be stored in
a list, or in an array, or on the property list of a litatom. The
following record types are defined:

[Record Type]

The RECORD record type is used to describe list structures.
RECORD-FIELDS is interpreted as a list structure whose non-NIL
literal atoms are taken as field-names to be associated with the
corresponding elements and tails of a list structure. For example,
with the record declaration (RECORD MSG (FROM TO . TEXT)),
(fetch FROM of X) translates as (CAR X) .

. NIL can be used as a place marker to fill an unnamed field, e.g.,

(A NIL B) describes a three element list, with B corresponding to
the third element. A number may be used to indicate a sequence
of NILs, e.g. (A 4 B) is interpreted as (A NIL NIL NIL NIL B).

[Record Type]

The TYPERECORD record type is similar to RECORD, except that
the record name is added to the front of the list structure to
signify what II type" of record it is. This type field is used by the

8.7

RECORD DECLARATIONS

ASSOCRECORO

PROPRECORD

ARRA YRECORD

8.8

record package in the translation of TYPE? expressions. CREATE
will insert an extra field containing RECORD-NAME at the
beginning of the structure, and the translation of the access and
storage functions will take this extra field into account. For
example, for (TYPERECORO MSG (FROM TO . TEXT)), (fetch
FROM of X) translates as (CAOR X), not (CAR X).

[Record Type]

The ASSOCRECORO record type is used to describe list structures
where the fields are stored in association list format:

«FIELDNAME 1 . VALUE 1)(FIELDNAME2. VALUE2) ...)

RECORD-FIELDS is a list of literal atoms, interpreted as the
permissable list of field names in the association list. Accessing is
performed with ASSOC (or FASSOC, depending on current CLiSP
declarations, see page 21.12), storing with PUTASSOC.

[Record Type]

The PROPRECORO record type is used to describe list structures
where the fields are stored in property list format:

(FIELDNAMEl VALUE1 FIELDNAME2 VALUE2 ...)

RECORD-FIELDS is a list of literal atoms, interpr~ted as the
permissable list of field names in the property list. Accessing is
performed with L1STGET, storing with L1STPUT.

Both ASSOCRECORD and PROPRECORD are useful for defining
data structures in which it is often the case that many of the
fields are NIl. A CREATE expression for these record types only
stores those fields which are non-NIl. Note, however, that with
the record declaration (PROPRECORO FIE (H I J)) the expression
(create FIE) would still construct (H Nil), since a later operation of
(replace J of X with Y) could not possibly change the instance of
the record if it were NIl.

[Record Type]

The ARRA YRECORO record type is used to descri be arrays.
RECORD-FIELDS is interpreted as a list of field names that are
associated with the corresponding elements of an array. Nil can

be used as a place marker for an unnamed field (element).
Positive integers can be used as abbreviation for the
corresponding number of Nils. For example, (ARRAYRECORO
(ORG OEST NlllO 3 TEXT» describes an eight element array, with
ORG corresponding to the first element, 10 to the fourth, and
TEXT to the eighth.

RECORD PACKAGE

HASHLINK

ATOMRECORD

DATA TYPE

POINTER

RECORD PACKAGE

RECORD DECLARA TIONS

Note that ARRA YRECORD only creates arrays of pointers. Other
kinds of arrays must be implemented by the user with the
ACCESSFNS record type (page 8.12).

[Record Type]

The HASHLINK record type can be used with any type of data
object: it specifies that the value of a single field can be accessed
by hashing the data object in a given hash array. Since the
HASHLINK record type describes an accessing method, rather
than a data structure, the CREATE expression is meaningless for

HASHLINK records.

RECORD-FIELDS is either an atom FIELD-NAME, or a list
,(FIELD-NAME HARRA YNAME HARRA YSIZE). HARRA YNAME is a
variable whose value is the hash array to be used; if not given,
SYSHASHARRA Y is used. If the value of the variable
HARRA YNAME is not a hash array (at the time of the record
declaration), it will be set to a new hash array with a size of
HARRA YSIZE. HARRA YSIZE defaults to 100.

The HASHLINK record type is useful as a subdeclaration to other
records to add additional fields to already existing data
structures (see page 8.14). For example, suppose that FOO is a
record declared with (RECORD FOO (A B C». To add an aditional
field BAR, without modifying the already existing data strutures,
redeclare FOO with:

(RECORD FOO (A B C) (HASHLINK FOO (BAR BARHARRA Y»)

Now, (fetch BAR of X) will translate into (GETHASH X
BARHARRA V), hashing off the existing list X.

[Record Type]

The ATOMRECORD record type is used to describe property lists
of litatoms. RECORD-FIELDS is a list of property names.
Accessing is performed with GETPROP, storing with PUTPROP.
The CREATE expression is not initially defined for ATOMRECORD
records.

[Record Type]

The DATATYPE record type-is used todefine a new user data type
with type name RECORD-NAME (by calling DECLAREDATATYPE,
page 8.21). Unlike other record types, the records of a
DATA TYPE declaration are represented with a completely new
Interlisp type, and not in terms of other existing types.

RECORD-FIELDS is interpreted as a list of field specifications,
where each specification is either a list (FIELDNAME FIELDTYPE),

or an atom FIELDNAME. If FIELDTYPE is omitted, it defaults to
POINTER. Possible values for FIELDTYPE are:

Field contains a pointer to any arbitrary Interlisp object.

8.9

RECORD DECLARATIONS

8.10

INTEGER
FIXP Field contains a signed integer. Note that an INTEGER field is not

capable of holding everything that satisfies FIXP, such as

bignums (page 7.1).

FLOATING

FLOATP

SIGNEDWORD

FLAG

BITS N

BYTE

WORD

XPOINTER

Field contains a floating point number.

Field contains a 16-bit signed integer

Field is a one bit field that "contains" T or NIL.

Field contains an N-bit unsigned integer.

Equivalent to BITS 8.

Equivalent to BITS 16.

Field contains a pointer like POINTER, except that the field is not
reference counted by the Interlisp-D garbage collector.
XPOINTER fields are useful for implementing back-pointers in

structures that would be circular and not otherwise collected by

the reference-counting garbage collector.

Warning: XPOINTER fields should be used with great care. It is

possible to damage the integrity of the storage allocation system
by using pointers to objects that have been garbage collected.

Code that uses XPOINTER fields should be sure that the objects

pointed to have not been garbage collected. This can be done in
two ways: The first is to maintain the object in a global

structure, so that it is never garbage collected until explicitly
deleted from the structure, at which point the program must

invalidate all the XPOINTER fields of other objects pointing at it.

The second is to declare the object as a DATATYPE beginning

with a POINTER field that the program maintains as a pointer to

an object of another type (e.g., the object containing the

XPOINTER pointing back at it), and test that field for

reasonableness whenever using the contents of the XPOINTER

field.

For example, the declaration

(DATA TYPE FOO

«FLG BITS 12)

lEXT

HEAD
(DATE BITS 18)

(PRIO FLOA TP)

(READ? FLAG»))

would define a data type FOO with two pointer fields, a floating
point number, and fields for a 12 and 18 bit unsigned integers,
and a flag (one bit). Fields are allocated in such a way as to
optimize the storage used and not necessarily in the order
specified. Generally, a DATATYPE record is much more storage

RECORD PACKAGE

BLOCKRECORD

RECORD PACKAGE

RECORD DECLARA TIONS

compact than the corresponding RECORD structure would be; in
addition, access is faster.

Since the user data type must be set up at run-time, the
RECORDS file package command will dump a
DECLAREDATATYPE expression as well as the DATATYPE
declaration itself. If the record declaration is otherwise not
needed at runtime, it can be kept out of the compiled file by
using a (DECLARE: DONTCOPY --) expression (see page 17.40),
but it is still necessary to ensure that the datatype is properly
initialized. For this, one can use the INITRECORDS file package
command (page 17.38), which will dump only the
DECLAREDATATYPE expression.

Note: When defining a new data type, it is sometimes useful to
call the function DEFPRINT (page 25.16) to specify how instances
of the new data type should be printed. This can be specified in
the record declaration by including an INIT record specification
(page 8.14), e.g. (DATATYPE QV.TYPE ... (lNIT (DEFPRINT
'QV.TYPE (FUNCTION PRINT.QV.TYPE)))).

Note: DATATYPE declarations cannot be used within local record
declarations (page 21.13).

[Record Type]

The BLOCKRECORD record type is used inlow-level system
programming to "overlay" an organized structure over an
arbitrary piece of "unboxed" storage. RECORD-FIELDS is
interpreted exactly as with a DATATYPE declaration, except that
fields are not automatically rearranged to maximize storage
efficiency. Like an ACCESSFNS record, a BLOCKRECORD does not
have concrete instances; it merely provides a way of interpreting
some existing block of storage. Thus, one cannot create an
instance of a BLOCKRECORD (unless the declaration includes an
explicit CREATE expression), nor is there a default type?
expression for a BLOCKRECORD.

Warning: The programmer should exercise caution in using
BLOCKRECORD declarations, as they enable one to write
expressions that fetch and store arbitrary data in arbitrary
locations, thereby evading the normal type system. Except in
very specialized situations, a BLOCKRECORD shoul-d never
contain POINTER or XPOINTER fields, nor be used to overlay an
area of storage that contains pointers. Such use could
compromise the garbage collector and storage allocation system.
The programmer is responsible for ensuring that all FETCH and
REPLACE expressions are performed only on suitable objects, as
no type testing is performed.

A typical use for the BLOCKRECORD type in user code is to
overlay a non-pointer portion of an existing DATATYPE. For this
use, the LOCF macro is useful. (LOCF (fetch FIELD of DATUM»

8'1

RECORD DECLARATIONS

ACCESSFNS

8.12

can be used to refer to the storage that begins at the first word
that contains FIELD of DATUM. For example, to define a new
kind of Ethernet packet (page 31.26), one could overlay the
"body" portion of the ETHERPACKET datatype declaration as
follows:

(ACCESSFNS MYPACKET
«MYBASE (LOCF (fetch (ETHERPACKET EPBODV) of DATUM))))

(BLOCKRECORD MVBASE
«MYTYPE WORD)
(MYLENGTH WORD)
(MYSTATUS BYTE)
(MYERRORCODE BYTE)
(MYDATA INTEGER»)

{TYPE? (type? ETHERPACKET DATUM»)

With this declaration in effect, the expression (fetch MYLENGTH
of PACKET) would retrieve the second 16-bit field beyond the

offset inside PACKET where the EPBODY field starts. For more
examples, see the EtherRecords library package.

[Record Type]

The ACCESSFNS record type is used to define data structures with
user-defined access functions. For each field name, the user
specifies how it is to be accessed and set. This allows the use of
the record package with arbitrary data structures, with complex
access methods.

RECORD-FIELDS is interpreted as a list of elements of the form
(FIELD-NAME ACCESSDEF SETDEF). ACCESSDEF should be a
function of one argument, the datum, and will be used for
accessi·ng the value of the field. SETDEF should be a function of
two arguments, the datum and the new value, and will be used
for storing a new value in a field. SETDEF may be omitted, in
which case, no storing operations are allowed.

ACCESSDEF and/or SETDEF may also be a form written in terms of
variables DATUM and (in SETDEF) NEWVALUE. For example,
given the declaration

[ACCESSFNS FOO
«FIRSTCHAR (NTHCHAR DATUM 1)

(RPLSTRING DATUM 1 NEWVALUE))
{FtESTCHARS (SUBSTRING DATUM 2]

(replace (FOa FIRSTCHAR) of X with Y) would translate to

(RPlSTRING X 1 V). Since no SETDEF is given for the RESTCHARS
field, attempting to perform (replace (FOa RESTCHARS) of X

with Y) would generate an error, REPLACE UNDEFINED FOR
FIELD. Note that ACCESSFNS do not have a CREATE definition.
However, the user may su pply one in the defaults or
subdeclarations of the declaration, as described below.

RECORD PACKAGE

RECORD PACKAGE

RECORD DEClARA TIONS

Attempting to CREATE an ACCESSFNS record without specifying
a create definition will cause an error CREATE NOT DEFINED FOR
THIS RECORD.

ACCESSOfF and SETOfF can also be a property list which specify
FAST, STANDARD and UNDOABLE versions of the ACCESSFNS
forms, e.g.

[ACCESSFNS LlTATOM
«DEF (STANDARD GETD FAST FGETD)

(STANDARD PUTD UNDOABLE /PUTD]

means if FAST declaration is in effect, use FGETD for fetching, if
UNDOABLE, use /PUTD for saving (see CLiSP declarations, page
21.12).

Note: SETOfF forms should be written so that they return the
new value, to be consistant with REPLACE operations for other
record types. The REPLACE record operator does not enforce
this, though.

The ACCESSFNS facility allows the use of data structures not
specified by one of the built-in record types. For example, one
possible representation of a data structure is to store the fields in
parallel arrays, especially if the number of instances required is
known, and they do not need to be garbage collected Thus, to
implement a data structure called LINK with two fields FROM
and TO, one would have two arrays FROMARRAY and TOARRAY.
The representation of an "instance" of the record would be an
integer which is used to index into the arrays. This can be
accomplished with the declaration:

[ACCESSFNS LINK
«FROM (ELT FROMARRAY DATUM)

(SETA FROMARRAY DATUM NEWVALUE))
(TO (EL T TOARRA Y DATUM)

(SETA TOARRAY DATUM NEWVALUE»)

(CREATE (PROGl (SETQ LlNKCNT (ADD1 LlNKCNT»
(SETA FROMARRA Y LlNKCNT FROM)
(SETA TOARRA Y LlNKCNT TO»)

(INIT (PROGN
(SETQ FROMARRA Y (ARRA Y 100»
(SETQ TOARRA Y (ARRA Y 100»
(SETQ LlNKCNT 0)]

To create a new LINK, a counter is incremented and the new
elements stored. (Note: The CREATE form given the declaration
probably should include a test for overflow.)

8.13

RECORD DeCLARATIONS

8.5.2 Optional Record Specifications

FIELD-NAME +- FORM

(CREATE FORM)

(lNIT FORM)

(TYPE? FORM)

(SUBRECORD NAME. DEFAUL TS)

a subdeclaration

8.14

After the RECORD-FIELDS item in a record declaration expression
there can be an arbitrary number of additional expressions in
RECORD- TAIL. These expressions can be used to specify default
values for record fields, special CREATE and TYPE? forms, and
subdeclarations. The following expressions are permitted:

Allows the user to specify within the record declaration the
default value to be stored in FIELD-NAME by a CREATE (if no
value is given within the CREATE expression itself). Note that
FORM is evaluated at CREATE time, not when the declaration is
made.

Defines the manner in which CREATE of this record should be
performed. This provides a way of specifying how ACCESSFNS
should be created or overriding the usual definition of CREATE.
If FORM contains the field-names of the declaration as variables,
the forms given in the CREATE operation will be substituted in.
If the word DATUM appears in the create form, the original

CREATE definition is inserted. This effectively allows the user to
"advise" the create.

Note: (CREATE FORM) may also be specified as "RECORD-NAME
+-FORM" .

Specifies that FORM should be evaluated when the record is
declared. FORM will also be dumped by the INITRECORDS file
package command (page 17.38).

For example, see the example of an ACCESSFNS record
declaration above. In this example, FROMARRA Y and TOARRAY
are initialized with an INIT form.

Defines the manner in which TYPE? expressions are to be

translated. FORM may either be an expression in terms of
DATUM or a function of one argument.

NAME must be a field that appears in the current declaration
and the name of another record. This says that, for the purposes
of translating CREATE expressions, substitute the top-level
declaration of NAME for the SUBRECORD form, adding on any
defaults specified.

For example: Given (RECORD B (E F G», (RECORD A (B C D)
(SUBRECORD B» would be treated like (RECORD A (B C D)
(RECORD B (E F G») for the purposes of translating CREATE
expressions.

If a record declaration expression occurs among the record
specifications of another record declaration, it is known as a
"subdeclaration." Subdeclarations are used to declare that fields
of a record are to be interpreted as another type of record, or
that the record data object is to be interpreted in more than one
way.

RECORD PACKAGE

(SYNONYM FIELD (SYNl ... SYNN»

(SYSTEM)

RECORD DECLARA TIONS

The RECORD-NAME of a subdeclaration must be either the
RECORD-NAME of its immediately superior declaration or one of
the superior's field-names. Instead of identifying the declaration
as with top level declarations, the record-name of a
subdeclaration identifies the parent field or record that is being
described by the subdeclaration. Subdeclarations can be nested
to an arbitrary depth.

Giving a subdeclaration (RECORD NAME 1 NAME2) is a simple

way of defining a synonym for the field NAME 1-

It is possible· for a given field to have more than one
subdeclaration. For example, in

(RECORD FOO (A B) (RECORD A (C 0» (RECORD A (Q R»)

(Q R) and (C D) are" overlayed," i.e. (fetch Q of X) and (fetch C of
X) would be equivalent. In such cases, the first subdeclaration is

the one used by CREATE.

FIELD must be a field that appears in the current declaration.

This defines SYN1 ... SYNN all as synonyms of FIELD. If there is

only one synonym, this can be written as (SYNONYM FIELD SYN).

If (SYSTEM) is included in a record declaration, this indicates that
the record is a "system" record rather than a "user" record. The
only distinction between the two types of records is that "user"
record declarations take precedence over "system" record
declarations, in cases where an unqualified field name would be
considered ambiguous. All of the records defined in the
standard Interlisp-D system are defined as system records.

SaG Defining New Record Types

RECORD PACKAGE

In addition to the built-in record types, users can declare their
own record types by performing the following steps:

(1) Add the new record-type to the value of
CLiSPRECORDTYPES; .

(2) Perform (MOVD 'RECORD RECORD-TYPE), i.e. give the
record-type the same definition as that of the function RECORD;

(3) Put the name of a function which will return the translation
on the property list of RECORD-TYPE, as the value of the
property USERRECORDTYPE. Whenever a record declaration of
type RECORD-TYPE is encountered, this function will be passed
the record declaration as its argument, and should return a new
record declaration which the record package will then use in its
place.

8.15

RECORD MANIPULATION FUNCTIONS

8.7 Record Manipulation Functions

816

(EDITREC NAME COM 1 ... COM N) [NLambda NoSpread Function]

EDITREC calls the editor on a copy of all declarations in which
NAME is the record name or a field name. On exit, it redeclares
those that have changed and undeclares any that have been
deleted. If NAME is Nil, all declarations are edited.

COM1 ... COMNare (optional) edit commands.

When the user redeclares a global record, the translations of all
expressions involving that record or any of its fields are
automatically deleted from CllSPARRA V, and thus will be
recomputed using the new information. If the user changes a
local record declaration (page 21.13), or changes some other
CLISP declaration (page 21.12), e.g., STANDARD to FAST, and
wishes the new information to affect record expressions already
translated, he must make sure the corresponding translations are
removed, usually either by CLiSPIFVing or using the OW edit

macro.

(RECLOOK RECNAME ----) [Function]

(FIELDlOOK FIELDNAME)

Returns the entire declaration for the record named RECNAME;

Nil if there is no record declaration with name RECNAME. Note
that the record package maintains internal state about current
record declarations, so performing destructive operations (e.g.
NCONC) on the value of RECLOOK may leave the record package
in an inconsistent state. To change a record declaration, use
EDITREC.

[Function]

Returns the list of declarations in which FIELDNAME is the name
of a field.

(RECORDFIELDNAMES RECORDNAME -) [Function]

Returns the list of fields declared in record RECORDNAME.

RECORDNAME may either be a name or an entire declaration.

(RECORDACCESS FIELD DATUM DEC TYPE NEWVALUE) [Function]

TYPE is one of FETCH, REPLACE, FFETCH, FREPLACE, IREPLACE or
their lowercase equivalents. TYPE = NIL means FETCH. If TYPE

corresponds to a fetch operation, i.e. is FETCH, or FFETCH,
RECORDACCESS performs (TYPE FIELD of DA TUM). If TYPE

corresponds to a replace, RECORDACCESS performs (TYPE FIELD

of DATUM with NEWVALUE). DEC is an optional declaration; if
given, FIELD is interpreted as a field name of that declaration.

RECORD PACKAGE

RECORD MANIPULATION FUNCTIONS

Note that RECORDACCESS is relatively inefficient, although it is
better than constructing the equivalent form and performing an
EVAL.

(RECORDACCESSFORM FIELD DATUM TYPE NEWVALUE) [Function]

8.8 Changetran

RECORD PACKAGE

Returns the form that would be compiled as a result of a record
access. TYPE is one of FETCH, REPLACE, FFETCH, FREPLACE,

IREPLACE or their lowercase equivalents. TYPE = NIL means
FETCH.

A very common programming construction consists of assigning
a new value to some datum that is a function of the current value
of that datum. Some examples of such read-modify-write
s~quences include:

Incrementing a counter:

(SETQ X (lPLUS X 1))

Pushing an item on the front of a list:

(SETQ X (CONS Y X»

Popping an item off a list:

(PROG 1 (CAR X) (SETQ X (CDR X»)

It is easier to express such computations when the datum in
question is a simple variable as above than when it is an element
of some larger data structure. For exam pie, if the datum to be
modified was (CAR X), the above examples would be:

(CAR (RPLACA X (lPLUS (CAR X) 1)))

(CAR (RPLACA X (CONS Y (CAR X))

(PROG1 (CAAR X) (RPLACA X (CDAR X)))

and if the datum was an element inan array, (ELT A N), the
examples would be:

(SETA AN (lPLUS (EL TAN) 1))

(SETA A N (CONS Y (ELT AN»»

(PROG1 (CAR (ELT A N)) (SETA A N (CDR (ELT AN))))

The difficulty in expressing (and reading) modification idioms is
in part due to the well-known asymmetry of setting versus
accessing operations on structures: RPLACA is used to set what
CAR would return, SETA corresponds to ELT, and so on.

The "(hangetran" facility is designed to provide a more
satisfactory notation in which to express certai n com mon (but

8.17

CHANGETRAN

818

user-extensible) structure modification operations. Changetran
defines a set of CLiSP words that encode the kind of modification
that is to take place, e.g. pushing on a list, adding to a number,
etc. More important, the expression that indicates the datum
whose value is to be modified needs to be stated only once.
Thus, the "change word" ADD is used to increase the value of a
datum by the sum of a set of numbers. Its arguments are an
expression denoting the datum, and a set of items to be added
to its current value. The datum expression must be a variable or
an accessing expression (envolving FETCH, CAR, LAST, ELT, etc)
that can be translated to the appropriate setting expr~ssion.

For example, (ADD (CADDR X) (Faa)) is equivalent to:

(CAR (RPLACA (CDDR X)

(PLUS (Faa) (CADDR X)))

If the datum expression is a complicated form involving
subsidiary function calls, such as (ELT (Faa X) (FIE V))),

Changetran goes to some lengths to make sure that those
subsidiary functions are evaluated only once (it binds local
variables to save the results), even though they logically appear
in both the setting and accessing parts of the translation. Thus,
in thinking about both efficiency and possible side effects, the
user can rely on the fact that the forms will be evaluated only as
often as they appear in the expression.

For ADD and all other changewords, the lower-case version (add,
etc.) may also be specified. Like other CLiSP words, change words
are translated using all CLiSP declarations in effect (see page
21.12).

The following is a list of those change words recognized by
Changetran. Except for POP, the value of all built-in
changeword forms is defined to be the new val ue of the datu m.

(ADD DATUM ITEM 1 1TEM2···) [Change Word]

Adds the specified items to the current value of the datum, stores
the result back in the datum location .. The translation will use
IPLUS, PLUS, or FPLUS according to the CLiSP declarations in
effect (see page 2 i .12).

(PUSH DATUM ITEM l'TEM2 ...) [Change Word]

(PUSHNEW DA TUM ITEM)

CONSes the items onto the front of the current value of the
datum, and stores the result back in the datum location. For
example, (PUSH X A B) would translate as (SETQ X (CONS A
(CONS B X))).

[Change Word]

Like PUSH (with only one item) except that the item is not added
if it is already FMEMB of the datum's value.

RECORD PACKAGE

RECORD PACKAG E

CHANGETRAN

Note that, whereas (CAR (PUSH X 'FOO)) will always be FOO,
(CAR (PUSHNEW X 'FOO)) might be something else if FOO
already existed in the middle of the list.

(PUSHlIST DATUM ITEM,ITEM2 ...) [Change Word]

(POP DATUM)

(SWAP DATUM, DATUM2)

(CHANGE DATUM FORM)

Similar to PUSH, except that the items are APPENDed in front of
the current value of the datum. For example, (PUSHlIST X A B)
would translate as (SETQ X (APPEND A B X».

[Change Word]

Returns CAR of the current value of the datum after storing its
CDR into the datum. The curr'ent value is computed only once
even though it is referenced twice. Note that this is the only
built-in changeword for which the value of the form is not the
new value of the datum.

[Change Word]

Sets DATUM 1 to DATUM2 and vice versa.

[Change Word]

This is the most flexible of all change words, since it enables the
user to provide an arbitrary form describing what the new value
should be, but it still highlights the fact that structu re
modification is to occur, and still enables the datum expression
to appear only once. CHANGE sets DATUM to the val ue of
FORM*, where FORM* is constructed from FORM by substituting
the datum expression for every occurrence of the litatom
DATUM. For example, (CHANGE (CAR X) (ITIMES DATUM 5))
translates as (CAR (RPLACA X (lTIMES (CAR X) 5))).

CHANGE is useful for expressing modifications that are not
built-in and are not sufficiently common to justify defining a
user-changeword. As for other changeword expressions, the
user need not repeat the datum-expression and need not worry
about multiple evaluation of the accessing form.

It is possible for the user to define new change words. To define
a change word, say sub, that subtracts items from the current
value of the datum, the user must put the property CLlSPWORD,
value (CHANGETRAN . sub) on both the upper and lower-case
versions of sub:

(PUTPROP 'SUB 'ClISPWORD '(CHANGETRAN. sub))
(PUTPROP 'sub 'ClISPWORD '(CHANGETRAN . sub»

Then, the user must put (on the lower-case version of sub only)
the property CHANGEWORD, with value FN. FN is a fu nction that
will be applied to a single argument, the whole sub form, and
must return a form that Changetran can translate into an

819

CHANGETRAN

appropriate expression. This form should be a list structure with
the atom DATUM used whenever the user wants an accessing
expression for the current value of the datum to appear. The
form (DATUM~ FORM) (note that DATUM~ is a single atom)

should occur once in the expression; this specifies that an
. appropriate storing expression into the datu m shou Id occu r at
that point. For example, sub could be defined with:

{PUTPROP 'sub 'CHANGEWORD

'{LAMBDA (FORM)

(lIST'DATUM~

(LIST 'I DIFFERENCE

'DATUM

(CONS 'IPLUS (CDD~ FORM»»»

If the expression (sub (CAR X) A B) were encountered, the
arguments to SUB would first be dwimified, and then the
CHANGEWORD function would be passed the list (sub (CAR X) A

B), and return (DATUM~ (IDIFFERENCE DATUM (lPLUS A B»),
which Changetran would convert to (CAR {RPLACA X

(lDIFFERENCE (CAR X) (lPLUS A B»».
Note: The sub changeword as defined above will always use
IDIFFERENCE and IPLUS; add uses the correct addition operation
depending on the current CLiSP declarations (see page 21.12).

8.9 Built-In and User Data Types

(DATATYPES -)

(USERDATATYPES)

(TYPENAME DA TUM)

820

Interlisp IS a system for the manipulation of various kinds of
data; it provides a large set of built-in data types, which may be
used to represent a variety of abstract objects, and the user can
also define additional "user data types" which can be
manipulated exactly like built-in data types.

Each data type in Interlisp has an associated "type name," a
litatom. Some of the type names of built-in data types are:
lITATOM, lISTP, STRINGP, ARRAYP, STACKP, SMALLP, FIXP, and
FLOATP. For user data types, the type name is specified when the
data type is created.

[Function]

Returns a list of all type names currently defined.

[Function]

Returns list of names of currently declared user data types.

[Function]

Returns the type name for the data type of DATUM.

RECORD PACKAG E

RECORD PACKAGE

BUILT-IN AND USER DA TA TYPES

(TYPENAMEP DA TUM TYPE) [Function]

Returns T if DATUM is an object with type name equal to TYPE,

otherwise NIL.

Note: TYPENAME and TYPENAMEP distinguish the logical data
types ARRA YP, CCODEP and HARRA YP, even though they may be
implemented as ARRAYPs in some Interlisp implementations.

In addition to built-in data-types such as atoms, lists, arrays, etc.,
Interlisp provides a way of defining completely new classes of
objects, with a fixed number of fields determined by the
definition of the data type. In order to define a new class of
objects, the user must supply a name for the new data type and
specifications for each of its fields. Each field may contain either
a pointer (i.e., any arbitrary Interlisp datum), an integer, a
floating point number, or an N-bit integer.

Note: The most convenient way to define new user data types is
via DATATYPE record declarations (page 8.9) which call the
following functions.

(DECLAREDATATYPE TYPENAME FIELDSPECS --) [Function]

POINTER

FIXP

FLOATP

(BITS N)

BYTE

WORD

SIGNEDWORD

Defines a new user data type, with the name TYPENAME.

FIELDSPECS is a list of "field specifications." Each field
specification may be one of the following:

Field may contain any Interlisp datum.

Field contains an integer.

Field contains a floating point number.

Field contains a non-negative integer less than 2N.

Equivalent to (BITS 8).

Equivalent to (BITS 16).

Field contains a 16 bit signed integer.

DECLAREDATATYPE returns a list of "field descriptors," one for
each element of FIELDSPECS. A field descriptor contains
information about where within the datum the field is actually
stored.

If FIELDSPECS is NIL, TYPENAME is "undeclared." If TYPENAME is

already declared as a data type, it is undeclared, and then
re-declared with the new FIELDSPECS. An instance of a data type
that has been undeclared has a type name of **OEALLOC**.

(FETCH FIELD DESCRIPTOR DA TUM) [Function]

Returns the contents of the field described by DESCRIPTOR from
DATUM. DESCRIPTOR must be a "field descriptor" as returned
by DECLAREDATATYPE or GETDESCRIPTORS. If DATUM is not an

8.21

BUILT-IN AND USER DATA TYPES

8.22

instance of the datatype of which DESCRIPTOR is a descriptor,
causes error DATUM OF INCORRECT TYPE.

(REPLACEFIELD DESCRIPTOR DATUM NEWVALUE) [Function]

(NCREA TE TYPE OLDOBJ)

Store NEWVALUE into the field of DATUM described by
DESCRIPTOR. DESCRIPTOR must be a field descriptor as returned
by DECLAREDATATYPE. If DATUM is not an instance of the
datatype of which DESCRIPTOR is a descriptor, causes error
DATUM OF INCORRECTTYPE. Value is NEWVALUE.

[Function]

Creates and returns a new instance of datatype TYPE.

If OLDOBJ is also a datum of datatype TYPE, the fields of the new
object are initialized to the values of the corresponding fields in
OLDOBJ.

NCREATE will not work for built-in datatypes, such as ARRA YP,

STRINGP, etc. If TYPE is not the type name of a previously
declared userdata.wpe, generates an error, ILLEGAL DATA TYPE.

(GETFIELDSPECS TYPENAME) [Function]

Returns a list which is EQUAL to the FIELDSPECS argument given
to DECLAREDATATYPE for TYPENAME; if TYPENAME is not a
currently declared data-type, returns NIL

(GETDESCRIPTORS TYPENAME) [Function]

Returns a list of field descriptors, EQUAL to the value of
DECLAREDATATYPE for TYPENAME. ,If TYPENAME is not an
atom, (TYPENAME TYPENAME) is used.

Note that the user can define how 'user data types are to be
printed via DEFPRINT (page 25.16), how they are to be evaluated
by the interpreter via DEFEVAL (page 10.13), and how they are to
be compiled by the compiler via COMPILETYPELST (page 18.11).

RECORD PACKAGE

TABLE OF CONTENTS

9. Conditionals and Iterative Statements 9.1

9.1. Data Type Predicates 9.1

9.2. Equality Predicates 9.2

9.3. logical Predicates 9.3

9.4. The COND Conditional Function 9.4

9.5. The IF Statement 9.5

9.6. Selection Functions 9.6

9.7. PROG and Associated Control Functions 9.7

9.8. The Iterative Statement 9.9

9.8.1. Ls.types 9.10

9.8.2. Iteration Variable I,s.oprs 9.12

9.8.3. Condition I.s.oprs 9.15

9.8.4. Other I.s.oprs 9.16

9.8.5. Miscellaneous Hints on I.S.0prs 9.17

9.8.6. Errors in Iterative Statements 9.19

9.8.7. Defining New Iterative Statement Operators 9.20

TABLE OF CONTENTS TOCl

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

9. 1 Data Type Pred icates

(LiTATOM X)

(SMALLP X)

(FIXP X)

(FLOATP X)

(NUMBERP X)

(ATOM X)

CONDITIONALS AND ITERATIVE STATEMENTS

9. CONDITIONALS AND ITERATIVE
STATEMENTS

In order to do any but the simplest computations, it is necessary
to test values and execute expressions conditionally, and to
execute a series of expressions. Interlisp supplies a large number
of predicates, conditional functions, and control functions. Also,
there is a complex" iterative statement" facility which allows the
user to easily create complex loops and iterative constructs (page
9.9).

Interlisp provides separate functions for testing whether objects
are of certain commonly-used types:

[Function]

Returns T if X is a litatom (see page 2.1) NIL otherwise. Note that
a number is not a litatom.

[Function]

Returns X if X is a small integer; NIL otherwise. (Note that the
range of small integers is implementation-dependent. See page
7.1.)

[Function]

Returns X if X is a small or large integer; NIL otherwise.

[Function]

Returns X if X is a floating point number; NIL otherwise.

[Function]

Returns X if X is a number of any type (FIXP or FLOATP), NIL
otherwise.

[Function]

Returns T if X is an atom (i.e. a litatom or a number); Nil
otherwise.

9.1

DATA TYPE PREDICA TES

(lISTP X)

(NlISTP X)

(STRINGP X)

(ARRAVP X)

(HARRAVP X)

9.2' Equality Predicates

9.2

Warning: (ATOM X) is Nil if X is an array, string, etc. In many

dialects of Lisp, the function ATOM is defined equivalent to the

Interlisp function NlISTP.

[Function]

Returns X if X is a list cell, e.g., something created by CONS; Nil

otherwise.

[Function]

(NOT (lISTP X». Returns T if X is not a list cell, Nil otherwise.

[Function]

Returns X if X is a string, Nil otherwise.

[Function]

Returns X if X is an array, Nil otherwise.

Note: In some implementations of Interlisp (but not Interlisp-D),
ARRAVP may also return X if it is of type CCODEP or HARRA VP.

[Function]

Returns X if it is a hash array object; otherwise NIl.

Note that HARRA VP returns Nil if X is a list whose CAR is an
HARRA VP, even though this is accepted by the hash array

functions.

Note: The empty list, () or Nil, is considered to be a litatom,

rather than a list. Therefore, (lITATOM Nil) = (ATOM Nil) = T
and (lISTP Nil) = NIl. Care should be taken when using these
functions if the object may be the empty list NIl.

A common operation when dealing with data objects is to test
whether two objects are equal. In some cases, such as when
comparing two small integers, equality can be easily determined.
However, sometimes there is more than one type of equality. For
instance, given two lists, one can ask whether they are exactly
the same object, or whether they are two distinct lists which
contain the same elements. Confusion between these two types
of equality is often the source of program errors. Interlisp
supplies an extensive set of functions for testing equali~y:

CONDITIONALS AND ITERATIVE STATEMENTS

(EQ X y)

(NEQ X y)

(NULLX)

(NOT X)

(EQP X y)

(EQUALX y)

(EQUALALL X y)

9.3 Logical Predicates

CONDITIONALS AND ITERATIVE STATEMENTS

EQUALITY PREDICA TES

[Function]

Returns T if X and Yare identical pointers; NIL otherwise. EQ

should not be used to compare two numbers, unless they are
small integers; use EQP instead.

[Function]

(NOT (EQ X Y»

[Function]

[Function]

(EQ X NIL)

[Function]

Returns T if X and Yare EQ, or if X and Yare numbers and are
equal in value; NIL otherwise. For more discussion of EQP and
other number functions, see page 7.1.

Note: EQP also can be used to compare stack pointers (page
11.4) and compiled code (page 10.10).

[Function]

EQUAL returns T if X and Yare (1) EQ; or (2) EQP, i.e., numbers
with equal value; or (3) STREQUAL, i.e., strings containing the
same sequence of characters; or (4) lists and CAR of X is EQUAL to
CAR of Y, and CDR of X is EQUAL to CDR of Y. EQUAL returns NIL .
otherwise. Note that EQUAL can be significantly slower than EQ.

A loose description of EQUAL might be to say that X and Yare
EQUAL if they print out the same way.

[Function]

Like EQUAL, except it descends into the contents of arrays, hash
arrays, user data types, etc. Two non-EQ arrays may be
EQUALALL if their respective componants are EQUALALL.

[NLambda NoSpread Function]

Takes an indefinite number of arguments (including zero), that
are evaluated in order. If any argument evaluates to NIL, AND
immediately returns NIL (without evaluating the remaining
arguments). If all of the arguments evaluate to non-NIL, the

value of the last argument is returned. (AND) = > T.

93

LOGICAL PREDICA TES

[NLambda NoSpread Function]

Takes an indefinite number of arguments (including zero), that
are evaluated in order. If any argument is non-NIL, the value of
that argument is returned by OR (without evaluating the
remaining arguments). If all of the arguments evaluate to NIL,

Nil is returned. (OR) = > NIl.

AND and OR can be used as simple logical connectives, but note
that they may not evaluate all of their arguments. This makes a
difference if the evaluation of some of the arguments causes
side-effects. Another result of this implementation of AND and
OR is that they can be used as simple conditional statements. For
example: (AND (LlSTP Xl (CDR X}) returns the value of (CDR X) if
X is a list cell, otherwise it returns Nil without evaluating (CDR
X). In general, this use of AND and OR should be avoided in
favor of more explicit conditional statements in order to make
programs more readable.

9m4 The COND Conditional Function

9.4

(COND CLAUSE 1 CLAUSE2 ... CLAUSEK) [NLambda NoSpread Function]

The conditional function of Interlisp, COND, takes an indefinite

number of arguments, called clauses. Each CLAUSE; is a list of the

form (Pi Cil ... CiN), where Pi is the predicate, and Cil ... CiN are

the consequents. The operation of COND can be paraphrased as:

IF PI THEN C 11 ... C 1 N ELSEIF P2 THEN C21 ... C2N ELSEIF P3 ...

The clauses are considered in sequence as follows: the predicate
PI of the clause CLAUSEj is evaluated. If the value of PI is "true"

(non-Nil), the consequents Cil ... CiN are evaluated in order, and

the value of the COND is the value of CjN, the last expression in

the clause. If PI is "false" (EQ to NIL), then the remainder of

CLAUSE; is ignored, and the next clause, CLAUSEj + 1, is

considered. If no Pj is true for any clause, the value of the COND

is Nil.

Note: If a clause has no consequents, and has the form (Pj), then

if Pi evaluates to non-Nil, it is returned as the value of the CONDo

It is only evaluated once.

Example:

+- (DEFINEQ (DOUBLE (X)

(COND «NUMBERP X) (PLUS X X»

CONDITIONALS AND ITERATIVE STATEMENTS

9.5 The IF Statement

CONDITIONALS AND ITERATIVE STATEMENTS

TH E COND CONDITIONAL FUNCTION

«STRINGP X) (CONCAT X X»

«ATOM X) (PACK* X X))

(T (PRINT "unknown") X)

«HORRIBLE-ERROR»]

(DOUBLE)

~(DOUBLE 5)

10
~ (DOUBLE "FOO")

"FOOFOO"

~ (DOUBLE 'BAR)

BARBAR

~ (DOUBLE '(A B C»

"unknown"
(A B C)

A few points about this example: Notice that 5 is both a number
and an atom, but it is "caught" by the NUMBERP clause before
the ATOM clause. Also notice the predicate T, which is always
true. This is the normal way to indicate a COND clause which will
always be executed (if none of the preceeding clauses are true).
(HORRIBLE-ERROR) will never be executed.

The IF statement provides a way of way of specifying conditional
expressions that is much easier and readable than using the
COND function directly (page 9.4). CLiSP translates expressions
employing IF, THEN, ELSEIF, or ELSE (or their lowercase versions)
into equivalent COND expressions. In general, statements of the
form:

(if AAA then 888 elseif CCCthen DOD else EEE)

are translated to:

(COND (AAA 888)

(CCC DOD) ,

(T EEE»

The segment between IF or ELSEIF and the next THEN

corresponds to the predicate of a COND clause, and the segment
between THEN and the next ELSE or ELSEIF as the consequent(s).
ELSE is the same as ELSEIF T THEN. These words are spelling
corrected using the spelling list CLiSPIFWORDSPLST. Lower case
versions (if, then, elseif, else) may also be used.

If there is nothing following a THEN, or THEN is omitted entirely,
then the resulting COND clause has a predicate but no
consequent. For example, (if X then elseif ...) and (if X elseif ...)

9.5

fHE IF STATEMENT

9.6 Selection Functions

both translate to (COND (X) ...), which means that if X is not Nil,

it is returned as the value of the CONDo

Note that only one expression is allowed as the predicate, but
multiple expressions are allowed as the consequents after THEN
or ELSE. Multiple consequent expressions are implicitely
wrapped in a PROGN, and the value of the last one is returned as
the value of the consequent. For example:

(if X then (PRINT "FOO") (PRINT "BAR") elseif Y then (PRINT
"BAZ"))

CLiSP considers IF, THEN, ELSE, and ElSEIF to have lower
precedence than all infix and prefix operators, as well as Interlisp
forms, so it is sometimes possible to omit parentheses around
predicate or consequent forms. For example, (if Faa x Y then ...)
is equivalent to (if (FOO X Y) then ...), and (if X then Faa X Y else
...) as equivalent to (if X then (Faa X Y) else ...). Essentially, CLiSP

determines whether the segment between THEN and the next
ELSE or ElSEIF corresponds to one form or several and acts
accordingly, occasionally interacting with the user to resolve
ambiguous cases. Note that if Faa is bound as a variable, (if Faa
then ...) is translated as (COND (Faa ... », so if a call to the
function Faa is desired, use (if (Faa) then ...).

(SElECTQ X CLAUSE 1 CLAUSE2'" CLAUSEK DEFAUL n [NLambda NoSpread Function]

96

Selects a form or sequence of forms based on the value of X.
Each clause CLAUSEi is a list of the form (Si Ci1 ... CiN) where Si is

the selection key. The operation of SElECTQ can be paraphrased
as:

IF X = S1 THEN C 11 ... C 1N ELSEIF X = S2 THEN ... ELSE DEFAULT.

If Sj is an atom, the value of X is tested to see if it is EQ to Sj

(which is not evaluated). If so, the expressions Ci1 ... CiN are

evaluated in sequence, and the value of the SElECTQ is the value
of the last expression evaluated, i.e., CiN'

If Sj is a list, the value of X is compared with each element (not

evaluated) of S;, and if X is EQ to anyone of them, then Ci7 ... C;N

are evaluated as above.

If CLAUSE; is not selected in one of the two ways described,

CLAUSEj + 1 is tested, etc., until all the clauses have been tested.

If none is selected, DEFAULT is evaluated, and its value is
returned as the value of the SElECTQ. DEFAUL T must be present.

CONDITIONALS AND ITERATIVE STA TEMENTS

An example of the form of a SElECTQ is:

[SElECTQ MONTH

(FEBRUARY (if (lEAPYEARP) then 29 else 28»

«APRil JUNE SEPTEMBER NOVEMBER) 30)

31]

SELECTION FUNCTIONS

If the value of MONTH is the litatom FEBRUARY, the SElECTQ

returns .. 28 or 29 (depending on (lEAPYEARP»); otherwise if

MONTH is APRil, JUNE, SEPTEMBER, or NOVEMBER, the SElECTQ

returns 30; otherwise it returns 31.

SELECTQ compiles open, and is therefore very fast; however, it

will not work if the value of X is a list, a large integer, or floating

point number, since SElECTQ uses EQ for all comparisons.

Note: SElCHARQ (page 2.15) is a version of SElECTQ that

recognizes CHARCODE litatoms.

(SElECTC X CLAUSE 1 CLAUSE 2··· CLAUSE K DEFAUL n [Nlambda NoSpread Function]

"SElECTQ-on-Constant." Similar to SElECTQ except that the

selection keys are evaluated, and the result used as a

SElECTQ-style selection key.

SElECTC is compiled as a SElECTQ, with the selection keys

evaluated at compile-time. Therefore, the selection keys act like
compile-time constants (see page 18.7). For example:

[SELECTC NU M

«for X from 1 to 9 collect (TIMES X X» "SQUARE")

"HIP"]

compiles as:

[SElECTQ NU M

«1 4 9162536496481) "SQUARE")

"HIP"]

9.7 PROG and Associated Control Functions

CONDITIONALS AND ITERATIVE STATEMENTS

[Nlambda NoSpread Function]

Evaluates its arguments in order, and returns the value of its first.

argument X 1. For example, (PROG1 X (SETQ X Y» sets X to Y,

and returns X's original value.

[NoSpread Function)

Similar to PROG1. Evaluates its arguments in order, and returns

the value of its second argument X2'

9.7

PROG AND ASSOCIATED CONTROL FUNCTIONS

(GO U)

(RETURN X)

98

[NLambda NoSpread Function]

PROGN evaluates each of its arguments in order, and returns the

value of its last argument. PROGN is used to specify more than
one computation where the syntax allows only one, e.g.,
(SELECTQ ... (PROGN ... » allows evaluation of several expressions

as the default condition for a SELECTQ.

[NLambda NoSpread Function]

This function allows the user to write an ALGOL-like program
containing Interlisp expressions (forms) to be executed. The first
argument, VARLST, is a list of local variables (must be NIL if no
variables are used). Each atom in VARLST is treated as the name
of a local variable and bound to NIl. VARLST can also contain
lists of the form (LITATOM FORM). In this case, LlTATOM is the
name of the variable and is bound to the value of FORM. The
evaluation takes place before any of the bindings are performed,
e.g., (PROG «X Y) (Y X)) ...) will bind local variable X to the value
of Y (evaluated outside the PROG) and local variable Y to the
value of X (outside the PROG). An attempt to use anything other
than a litatom as a PROG variable will cause an error, ARG NOT
lITATOM. An attempt to use NIL or T as a PROG variable will
cause an error, ATTEMPT TO BIND NIL OR T.

The rest of the PROG is a sequence of non-atomic statements
(forms) and litatoms (labels). The forms are evaluated
sequentially; the labels serve only as markers. The two special
functions GO and RETURN alter this flow of control as described
below. The value of the PROG is usually specified by the function
RETURN. If no RETURN is executed before the PROG "falls off
the end," the value of the PROG is NIl.

[NLambda NoSpread Function]

GO is used to cause a transfer in a PROG. (GO L) will cause the
PROG to evaluate forms starting at the label L (GO does not
evaluate its argument). A GO can be used at any level in a PROG.
If the label is not found, GO will search higher progs within the
same function, e.g., (PROG ... A ... (PROG ... (GO A»). If the label is
not found in the function in which the PROG appears, an error is
generated, UNDEFINED OR ILLEGAL GO.

[Function]

A RETURN is the normal exit for a PROG. Its argument is
evaluated and is immediately returned the value of the PROG in
which it appears.

Note: If a GO or RETURN is executed in an interpreted function
which is not a PROG, the GO or RETURN will be executed in the
last interpreted PROG entered if any, otherwise cause an error.

CONDITIONALS AND ITERATIVE STATEMENTS

(LET VARLST E 1 E2 ... EN)

9.8 The Iterative Statement

CONDITIONALS AND ITERATIVE STATEMENTS

PROG AND ASSOCIA TED CONTROL FUNCTIONS ,

GO or RETURN inside of a compiled function that is not a PROG is
not allowed, and will cause an error at compile time.

As a corollary, GO or RETURN in a functional argument, e.g., to
SORT, will not work compiled. Also, since NLSETQ's and
ERSETQ's compile as separate functions, a GO or RETURN cannot

be used inside of a compiled NLSETQ or ERSETQ if the
corresponding PROG is outside, i.e., above, the NLSETQ or
ERSETQ.

[Macro]

LET is essentially a PROG that can't contain GO's or RETURN's,
and whose last form is the returned value.

[Macro]

[Macro]

LET* and PROG* differ from LET and PROG only in that the
binding of the bound variables is done "sequentially." Thus

(LET* «A (LIST 5»
(B (LIST A A»)

(EQ A (CAOR B»)

would evaluate to T; whereas the same form with LET might
even find A an unbound variable when evaluating (LIST A A).

The iterative statement (Ls.) in its various forms permits the user
to specify complicated iterative statements in a straightforward
and visible manner. Rather than the user having to perform the
mental transformations to an equivalent Interlisp form using
PROG, MAPC, MAPCAR, etc., the system does it for him. The goal
was to provide a robust and tolerant facility which could "make
sense" out of a wide class of iterative statements. Accordingly,
the user should not feel obliged to read and understand in detail
the description of each operator given below in order to use
iterative statements.

An iterative statement is a form consisting of a number of special
words (known as i.s. operators or i.s.oprs), followed by operands.
Many i.s.oprs (FOR, ~O, WHILE, etc.) are similar to iterative
statements in other programming languages; other i.s.oprs
(COLLECT, JOIN, IN, etc.) specify useful operations ina Lisp
environment. Lower case versions of i.s.oprs (do, collect, etc.)

9.9

THE ITERATIVE STATEMENT

9.8.1 I.s. types

DO FORM

COLLECT FORM

9.10

can also be used. Here are some examples of iterative

statements:

+- (for X from 1 to 5 do (PRINT 'Faa))

Faa
Foa

Foa
Foa
Foa

NIL
+- ("for X from 2 to ~O by 2 collect (TIMES X X))

(4163664100)
+- (-for X in '(A B 1 C 6.5 NIL (45)) count (NUMBERP X))

2

Iterative statements are implemented through CLlSP, which
translates the form into the appropriate PROG, MAPCAR, etc.
Iterative statement forms are translated using all CLiSP
declarations in effect (standardlfast/undoablel etc.); see page
21.12. Misspelled i.s.oprs are recognized and corrected usi ng the
spelling list ClISPFORWORDSPLST. The order of appearance of
operators is never important; CLiSP scans the entire statement
before it begins to construct the equivalent Interlisp form. New
i.s.oprs can be defined as described on page 9.20.

If the user defines a function by the same name as an i.s.opr
(WHILE, TO, etc.), the i.s.opr will no longer have the CLiSP
interpretation when it appears as CAR of a form, although it will
continue to be treated as an i.s.opr if it appears in the interior of
an iterative statement. To alert the user, a warning message is
printed, e.g., (WHILE DEFINED, THEREFORE DISABLED IN ClISP).

The following i.s.oprs are examples of a certain kind of iterative
statement operator called an i.s.type. The i.s.type specifies what
is to be done at each iteration. Its operand is called the II body"
of the iterative statement. Each iterative statement must have
one and only one i.s.type.

[1.5. Operator)

Specifies what is to be done at each iteration. DO with no other
operator specifies an infinite loop. If some explicit or implicit
terminating condition is specified, the value of the i.s. is NIL
Translates to MAPC or MAP whenever possible.

[1.5. Operator]

Specifies that the value of FORM at each iteration is to be
collected in a list, which is returned as the value of the i.s. when it

CONDITIONALS AND ITERATIVE STATEMENTS

JOIN FORM

SUM FORM

COUNT FORM

ALWAYS FORM

NEVER FORM

THEREIS FORM

CONDITIONALS AND ITERATIVE STATEMENTS

THE ITERATIVE STA TEM ENT

terminates. Translates to MAPCAR, MAPLIST or SUBSET

whenever possible.

When COLLECT translates to a PROG (e.g., if UNTIL, WHILE, etc.
appear in the i.s.), the translation employs an open TCONC using
two pointers similar to that used by the compiler for compiling
MAPCAR. To disable this translation, perform (CLDISABLE
'FCOLLECT) (see page 21.26).

[1.5. Operator]

Similar to COLLECT, except that the values of FORM at each
iteration are NCONCed. Translates to MAPCONC or MAPCON
whenever possible. INCONC, IMAPCONC, and IMAPCON are used
when the CLiSP declaration UNDOABLE is in effect.

[1.5. Operator]

Specifies that the values of FORM at each iteration be added
together and returned as the value of the i.s., e.g., (for I from 1 to
5 sum (TIMES I I)) returns 1 + 4 + 9 + 16 + 25 = 55. IPLUS, FPLUS,
or PLUS will be used in the translation depending on the CLiSP
declarations in effect.

[1.5. Operator]

Counts the number of times that FORM is true, and returns that
count as its value.

[1.5. Operator]

Returns T if the value of FORM is non-NIL for all iterations.
(Note: returns NIL as soon as the value of FORM is NIL).

[1.5. Operator]

Similar to ALWAYS, except returns T if the value of FORM is
never true. (Note: returns NIL as soon as the value of FORM is
non-NIL).

The following i.s.types explicitly refer to the iteration variable
(i.v.) of the iterative statement, which is a variable set at each
iteration. This is explained below under FOR.

[1.5. Operator]

Returns the first value of the i.v. for which FORM is non-NIL, e.g.,
(for X in V thereis (NUMBERP X» returns the first num ber in Y.
(Note: returns the value of the i.v. as soon as the value of FORM
is non-NIL).

9.11

THE ITERATIVE STATEMENT

LARGEST FORM

SMALLEST FORM

9.8.2 Iteration Variable I.s.oprs

FOR VAR

FOR VARS

FOR OLD VAR

BIND VAR

BIND VARS

9.12

[1.5. Operator]

[1.5. Operator]

Returns the value of the i.v. that provides the largestJsmallest

value of FORM. $$EXTREME is always bound to the current

greatestJsmaliest value, $$VAL to the value of the i.v. from which

it came.

[1.5. Operator]

Specifies the iteration variable (i.v.) which is used in conjunction
with IN, ON, FROM, TO, and BY. The variable is rebound within

the i.s., so the value of the variable outside the i.s. is not effected.

Example:

.... (SETQ X 55)

55

.... (for X from 1 to 5 collect (TIMES X X))

(1491625)
.... x
55

[1.5. Operator]

VARS a list of variables, e.g., (for (X Y Z) in ...). The first variable is

the i.v., the rest are dummy variables. See BIND below.

[1.5. Operator]

Similar to FOR, except that VAR is not rebound within the i.s., so

the value of the i. v. outside of the i .s. is changed. Example:

+- (SETQ X 55)

55

+- (for old X from 1 to 5 collect (TIMES X X))

(1491625)

+-X
6

[1.5. Operator]

[1.5. Operator]

Used to specify dummy variables, which are bound locally within
the i.s.

Note: FOR, FOR OLD, and BIND variables can be initialized by
using the form VAR+-FORM:

CONDITIONALS AND ITERATIVE STA TEMENTS

INFORM

ON FORM

IN OLD VAR

IN OLD (VAR4:-FORM)

ON OLD VAR

ON OLD (VAR4:-FORM)

INSIDE FORM

CONDITIONALS AND ITERATIVE STATEMENTS

TH E ITERATIVE STATEM ENT

(for old (X4:-FORM) bind (Y4:-FORM) ...)

[1.5. Operator]

Specifies that the i.s. is to iterate down a list with the i.v. being
reset to the corresponding element at each iteration. For
example, (for X in Y do ...) corresponds to (MAPC Y (FUNCTION
(LAMBDA (X) ...))). If no i.v. has been specified, a dummy is
supplied, e.g., (in Y collect CADR) is equivalent to (MAPCAR Y
(FUNCTION CADR)).

[1.5. Operator]

. Same as IN except that the i.v. is reset to the corresponding tail at

each iteration. Thus IN corresponds to MAPC, MAPCAR, and
MAPCONC, while ON corresponds to MAP, MAPlIST, and
MAPCON.

Note: for both IN and ON, FORM is evaluated before the main
part of the i.s. is entered, i.e. outside of the scope of any of the
bound variables of the i.s. For example, (for X bind (Y4:-'(1 2 3})
in Y ...) will map down the list which is the value of Y evaluated
outside of the i.s., not (1 2 3).

[1.5. Operator]

Specifies that the i.s. is to iterate down VAR, with VAR itself
being reset to the corresponding tail at each iteration, e.g., after
(for X in old L do ... until ...) finishes, L will be some tail of its
original value.

[1.5. Operator]

Same as IN OLD VAR, except VAR is first set to value of FORM.

[1.5. Operator]

Same as IN OLD VAR except the i.v. is reset to the current value of
VAR at each iteration, instead of to (CAR VAR).

[1.5. Operator]

Same as ON OLD VAR, except VAR is first set to value of FORM.

[1.5. Operator]

Similar to IN, except treats first non-list, non-NIL tail as the last
element of the iteration, e.g., INSIDE '(A BCD. E) iterates five
times with the i.v. set to E on the last iteration. INSIDE 'A is
equivalent to INSIDE '(A), which will iterate once.

9.13

THE ITERATIVE STATEMENT

FROM FORM

TO FORM

BY FORM (with INION)

BY FORM (without INION)

9.14

[1.5. Operator]

Used to specify an initial value for a numerical i.v. The i.v. is
automatically incremented by 1 after each iteration (unless BY is
specified). If no i.v. has been specified, a dummy i.v. is supplied
and initialized, e.g., (from 2 to 5 collect SQRT) returns (1.414

1.7322.02.236).

[1.5. Operator]

Used to specify the final value for a numerical i. v. If FROM is not
specified, the i.v. is initialized to 1. If no i.v. has been specified, a
dummy i.v. is supplied and initialized. If BY is not specified, the
i.v. is automatically incremented by 1 after each iteration. When
the i.v. is definitely being incremented, i.e., either BY is not
specified, or its operand is a positive number, the i.s. terminates
when the i.v. exceeds the value of FORM. Similarly, when the i.v.
is definitely being decremented the i.s. terminates when the i.v.
becomes less than the value of FORM (see description of BY).

Note: FORM is evaluated only once, when the i.s. is first entered,
and its value bound to a temporary variable against which the
i.v. is checked each interation. If the user wishes to specify an i.s.
in which the value of the boundary condition is recomputed each
iteration, he should use WHILE or UNTIL instead of TO.

Note: When both the operands to TO and FROM are numbers,
and TO's operand is less than FROM's operand, the i.v. is
decremented by 1 after each iteration. In this case, the i .s.
terminates when the i. v. becomes less than the value of FORM.

For example, (from 10 to 1 do PRINT) prints the numbers from 10
down to 1.

[1.5. Operator]

If IN or ON have been specified, the value of FORM determines
the tail for the next iteration, which in turn determines the value
for the i.v. as described earlier, i.e., the new i.v. is CAR of the tail
for IN, the tail itself for ON. In conjunction with IN, the user can
refer to the current tail within FORM by using the i. v. or the
operand for INION, e.g., (for Z in L by (COoR Z) ...) or (for Z in L by
(COoR L) ...). At translation time, the name of the internal
variable which holds the value of the current tail is substituted
for the i.v. throughout FORM. For example, (for X in Y by (CDR
(MEMB 'FOO (CDR X») collect X) specifies that after each
iteration, CDR of the current tail is to be searched for the atom
FOO, and (CDR of) this latter tail to be used for the next iteration.

[1.5. Operator]

If IN or ON have not been used, BY specifies how the i.v. itself is
reset at each iteration. If FROM or TO have been specified, the

CONDITIONALS AND ITERATIVE STA TEMENTS

ASVAR

OUTOFFORM

9.8.3 Condition Ls.oprs

WHEN FORM

CONDITIONALS AND ITERATIVE STATEMENTS

TH E ITERATIVE STA TEM ENT

i.v. is known to be numerical, so the new i.v. is computed by
adding the value of FORM (which is reevaluated each iteration)
to the current value of the i.v., e.g., (for N from 1 to 10 by 2

collect N) makes a list of the first five odd numbers.

If FORM is a positive number (FORM itself, not its value, which in

general CLiSP would have no way of knowing in advance), the i.s.
terminates when the value of the i. v. exceeds the value of TO's

operand. If FORM is a negative number, the i.s. terminates when
the value of the i.v. becomes less than TO's operand, e.g., (for I

from N to M by -2 until (lESSP I M) ...). Otherwise, the

terminating condition for each iteration depends on the value of
FORM for that iteration: if FORM<O, the test is whether the i. v.

is less than TO's operand, if FORM>O the test is whether the i.v.
exceeds TO's operand, otherwise if FORM = 0, the i.s. terminates

unconditionally.

If FROM or TO have not been specified and FORM is not a

number, the i.v. is simply reset to the value of FORM after each
iteration, e.g., (for I from N by M ...) is equivalent to (for I~N by
(PlUS.1 M) ...).

[1.5. Operator]

Used to sp~cify an iterative statement involving more than one
iterative variable, e.g., (for X in V as U in V do ...) corresponds to

MAP2e (page 10.16). The i.s. terminates when any of the

terminating conditions are met, e.g., (for X in V as I from 1 to 10

collect X) makes a list of the first ten elements of V, or however

many elements there are on V if less than 10.

The operand to AS, VAR, specifies the new i. v. For the remainder

of the i.s., or until another AS is encountered, all operators refer

to the new i.v. For example, (for I from 1 to N1 as J from 1 to N2

by 2 as K from N3 to 1 by 11 ...) terminates when I exceeds N1, or J
exceeds N2, or K becomes less than 1. After each iteration, I is

incremented by 1, J by 2, and K by -1.

[1.5. Operator]

For use with generators (page 11.16). On each iteration, the i. v.
is set to successive values returned by the generator. The i.s.
terminates when the generator runs out.

[1.5. Operator]

Provides a way of excepting certain iterations. For example, (for

X in V collect X when (NUMBERP X» collects only the elements of

V that are numbers.

915

THE ITERATIVE STATEMENT

UNLESS FORM

WHilE FORM

UNTil FORM

UNTil N (N a number)

REPEA TWHllE FORM

REPEATUNTll FORM

[1.5. Operator]

Same as WHEN except for the difference in sign, i.e., WHEN Z is

the same as UNLESS (NOT Z).

[1.5. Operator]

Provides a way of terminating the i.s. WHilE FORM evaluates
FORM before each iteration, and if the value is Nil, exits.

[1.5. Operator]

Same as WHilE except for difference in sign, i.e., WHilE X is

equivalent to UNTil (NOT X).

[1.5. Operator]

Equivalent to UNTIL I. V. > N.

[1.5. Operator]

Same as WHilE except the test is performed after the evalution
of the body, but before the i. v. is reset for the next iteration.

[1.5. Operator]

Same as UNTil, except the test is performed after the evaluation

of the body.

REPEATUNTll N(Na number) [1.5. Operator1

9.8.4 Other Ls.oprs

FIRST FORM

FINAllY FORM

EACHTIME FORM

9.16

Equivalent to REPEATUNTll/. V. > N.

[1.5. Operator]

FORM is evaluated once before the first iteration, e.g., (for X Y Z
in l first (Faa Y Z) ...), and Faa could be used to initialize Yand
Z.

[1.5. Operator]

FORM is evaluated after the i.s. terminates. For example, (for X
in L bind Y~ do (if (ATOM X) then (SETQ Y (PLUS Y 1))) finally
(RETURN V)) will return the number of atoms in l.

[1.5. Operator]

FORM is evaluated at the beginning of each iteration before,
and regardless of, any testing. For example, consider,

(for I from 1 to N
do (... (FOO I) ...)

CONDITIONALS AND ITERATIVE STATEMENTS

DECLARE: DECL

DECLARE DECL

unless (... (FOO I) .0.)

until (... (FOO I) ...))

TH E ITERATIVE STATEMENT _

The user might want to set a temporary variable to the value of
(FOO I) in order to avoid computing it three times each iteration.
However, without knowing the translation, he would not know
whether to put the assignment in the operand to DO, UNLESS, or
UNTIL, i.e., which one would be executed first. He can avoid this
problem by simply writing EACHTIME (SETQ J (FOO I)).

[1.5. Operator]

Inserts the form (DECLARE DECL) immediately following the
PROG variable list in the translation, or, in the case that the
translation is a mapping function rather than a PROG,
immediately following the argument list of the lambda
expression in the translation. This can be used to declare
variables bound in the iterative statement to be compiled as
local or special variables (see page 18.S). For example (for X in Y
declare: (LOCALVARS X) ...). Several DECLARE:s can apppear in
the same i.s.; the declarations are inserted in the order they
appear.

[1.5. Operator]

Same as DECLARE:.

Note that since DECLARE is also the name of a function, DECLARE
cannot be used as an i .s. operator when it appears as CAR of a
form, i.e. as the first i.s. operator in an iterative statement.
However, declare (lower-case version) can be the first i.s.

operator.

ORIGINAL I.S.OPR OPERAND [1.5. Operator]
)

I.S.OPR will be translated using its original, built-in
interpretation, independent of any user defined i.s. operators.
See page 9.20.

There are also a number of i.s.oprs that make it easier to create
iterative statements that use the clock, looping for a given
period of time. See timers, page 12.16.

9.S.s Miscellaneous Hints on I.S.Oprs

•

•

CONDITIONALS AND ITERATIVE STATEMENTS

Lowercase versions of all i.s. operators are equivalent to the
uppercase, e.g., (for X in Y ...) is equivalent to (FOR X IN Y ...).

Each i.s. operator is of lower precedence than all Interlisp forms,
so parentheses around the operands can be omitted, and will be
supplied where necessary, e.g., BIND (X Y Z) can be written BIND

9.17

THE ITERATIVE STATEMENT

9.18

x Y Z, OLD (X+-FORM) as OLD X+-FORM, WHEN (NUMBERP X) as

WHEN NUMBERP X, etc.

• RETURN or GO may be used in any operand. (In this case, the
translation of the iterative statement will always be in the form
of a PROG, never a mapping function.) RETURN means return

from the i.s. (with the indicated value), not from the function in

which the i.s appears. GO refers to a label elsewhere in the

function in which the i.s. appears, except for the labels $$LP,

$$ITERATE, and $$OUT which are reserved, as described below.

• In the case of FIRST, FINALLY, EACHTIME, DECLARE: or one of the
i.s.types, e.g., DO, COLLECT, SUM, etc., the operand can consist

of more than one form, e.g., COLLECT (PRINT (CAR X» (CDR X), in

which case a PROGN is supplied

• Each operand can be the name of a function, in which case it is
applied to the (last) i.v., e.g., (for X in Y do PRINT when

NUMBERP) is the same as (for X in Y do (PRINT X) when

(NlJMBERP X». Note that the i.v. need not be explicitly specified,

e.g., (in Y do PRINT when NUMBERP) will work.

For i.s.types, e.g., DO, COLLECT, JOIN, the function is always

applied to the first i.v. in the i.s., whether explicity named or not.
For example, (in Y as I from 1 to 10 do PRINT) prints elements on

Y, not integers between 1 and 10.

Note that this feature does not make much sense for FOR, OLD,
BIND, IN, or ON, since they "operate" before the loop starts,

when the i.v. may not even be bound.

In the case of BY in conjunction with IN, the function is applied

to the current tail e.g., (for X in Y by CDDR ...) is the same as (for
X in Y by (CDDR X) ...).

• While the exact form of the translation of an iterative statement
depends on which operators are present, a PROG wi" always be

used whenever the i.s. specifies dummy variables, i.e., if a BIND

operator appears, or there is more than one variable specified by
a FOR operator, or a GO, RETURN, or a reference to the variable

$$VAL appears in any of the operands. When a PROG is used, the
form of the translation is:

(PROG VARIABLES

{initialize}

$$LP {eachtime}

{test}
{body}

$$ITERATE

{aftertest}

{update}
(GO $$LP)

$$OUT {finalize}

(RETURN $$VAL»

CONDITIONALS AND ITERATIVE STATEMENTS

9.8.6 Errors in Iterative Statements

THE ITERATIVE STA TEM ENT

where {test} corresponds to that portion of the loop that tests
for termi nation and also for those iterations for which {body} is
not going to be execu,ted, (as indicated by a WHEN or UNLESS);
{body} corresponds to the operand of the i.s.type, e.g., DO,
COllECT, etc.; {aftertest} corresponds to those tests for
termination specified by REPEA TWHllE or REPEATUNTI l; and
{update} corresponds to that part that resets the tail, increments
the counter, etc. in preparation for the next iteration.
{initialize}, {finalize}, and {eachtime} correspond to the
operands of FIRST, FINAllY, and EACHTIME, if any.

Note that since {body} always appears at the top level of the
PROG, the user can insert labels in {body}, and GO to them from
within {body} or from other i.s. operands, e.g., (for X in Y first
(GO A) do (FOO) A (FIE». However, since {body} is dwimified as
a list of forms, the label(s) should be added to the dummy
variables for the iterative statement in order to prevent their
being dwimified and possibly" corrected", e.g., (for X in Y bind A
first (GO A) do (FOO) A (FIE)). The user can also GO to $$lP,
$$ITERATE, or $$OUT, or explicitly set $$VAL.

An error will be generated and an appropriate diagnostic
printed if any of the following conditions hold:

(1) Operator with null operand, i.e., two adjacent operators, as
in (for X in Y until do ...)

(2) Operand consisting of more than one form (except as
operand to FIRST, FINAllY, or one of the i.s.types), e.g., (for X in
Y (PRINT X) collect ...).

(3) IN, ON, FROM, TO, or BY appear twice in same i.s.

(4) Both IN and ON used on same i.v.

(5) FROM or TO used with IN or ON on same i.v.

(6) More than one i.s.type, e.g., a DO and a SUM.

In 3,4, or 5, an error is not generated if an intervening AS occurs.

If an error occurs, the i.s. is left unchanged.

If no DO, COLLECT, JOIN or any of the other i.s.types are
specified, CLISP will first attempt to find an operand consisting of
more than one form, e.g., (for X in Y (PRINT X) when ATOM X ...),
and in this case will insert a DO after the first form. (In this case,
condition 2 is not considered to be met, and an error is not
generated.) If CLISP cannot find such an operand, and no WHILE
or UNTil appears in the i.s., a warning message is printed: NO
DO, COLLECT, OR JOIN: followed by the i.s.

--CONDITIONALS AND ITERATIVE STATEMENTS 9 19

THE ITERATIVE STATEMENT

Similarly, if no terminating condition is detected, i.e., no IN, ON,

WHILE, UNTIL, TO, or a RETURN or GO, a warning message is
printed: POSSIBLE NON-TERMINATING ITERATIVE STATEMENT:

followed by the iterative statement. However, since the user
may be planning to terminate the i.s. via an error, control-E, or a
RETFROM from a lower function, the i.s. is still translated. Note:
The error message is not printed if the value of ClISPI.S.GAG is T
(initially NIL).

9.8.7 Defining New Iterative Statement Operators

920

ThE~ following function is available for defining new or
redefining existing iterative statement operators:

(I.S.0PR NAME FORM OTHERS EVALFLG) [Function]

COLLECT

SUM

NAME is the name of the new i.s.opr. If FORM is a list, NAME will
be a new i.s. type (see page 9.10), and FORM its body.

OTHERS is an (optional) list of additional i.s. operators and
operands which will be added to the i.s. at the place where
NAME appears. If FORM is NIL, NAME is a new i.s.opr defined
entirely by OTHERS.

In both FORM and OTHERS, the atom $$VAL can be used to
reference the value to be returned by the i.s., LV. to reference
the current i.v., and BODY to reference NAME's operand. In
other words, the current i.v. will be substituted for all instances
of LV. and NAME's operand wiil be substituted for all instances
of BODY throughout FORM and OTHERS.

If EVALFLG is T, FORM and OTHERS are evaluated at translation
time, and their values used as described above. A dummy
variable for use in translation that dG>es not clash with a dummy
variable already used by some other i.s. operators can be
obtained by calling (GETDUMMYVAR). (GETDUMMYVAR T) will
return a dummy variable and also insure that it is bound as a
PROG variable in the translation.

If NAME was previously an i.s.opr and is being redefined, the
message (NAME REDEFINED) will be printed (unless DFNFLG = T),

and all expressions using the i.s.opr NAME that have been
translated will have their translations discarded.

The following are some examples of how I.S.0PR could be called
to define some existing i.s.oprs, and create some new ones:

(I.S.0PR 'COLLECT

'(SETQ $$VAL (NCONC1 $$VAL BODY)))

CONDITIONALS AND ITERATIVE STA TEMENTS

NEVER

THEREIS

(LS.OPR 'SU M

'($$VAL~$$VAL + BODY)

'(FIRST $$VAL~O»

THE ITERATIVE STATEMENT

Note: $$VAL + BODY is used instead of (IPLUS $$VAL BODY) so
that the choice of function used in th~ translation, i.e., IPLUS,

FPLUS, or PLUS, will be determined by the declarations then in
effect.

(LS.OPR 'NEVER

'(if BODY then $$VAL~NIL (GO $$OUT»)

Note: (if BODY then (RETURN NIL» would exit from the i .s.
immediately and therefore not execute the operations specified
via a FINALLY (if any).

(LS.OPR'THEREIS
'(if BODY then $$VAL~I.V. (GO $$OUT»)

RCOLLECT To define RCOLLECT, a version of COLLECT which uses CONS

instead of NCONC1 and then reverses the list of values:

(LS.OPR'RCOLLECT
'($$VAL~CONS BODY $$VAL»

'(FINALLY (RETURN (DREVERSE $$VAL»)]

TCOLLECT To define TCOLLECT, a version of COLLECT which uses TCONC:

(LS.OPR'TCOLLECT
'(TCONC $$VAL BODY)

'(FIRST $$VAL~CONS) FINALLY (RETURN (CAR $$VAL»)]

PRODUCT

(LS.OPR 'PRODUCT

'($$VAL~$$VAL *BODY)

'(FIRST $$VAL~1)]

UPTO To define UPTO, a version of TO whose operand is evaluated only
once:

CONDITIONALS AND ITERATIVE STATEMENTS

(I.S.OPR 'UPTO

NIL

'(BIND $$FOO~BODY TO $$FOO)]

TO To redefine TO so that instead of recomputing FORM each
iteration, a variable is bound to the value of FORM, and then
that variable is used:

(I.S.0PR'TO

NIL

'(BIND $$END FIRST $$END~BODY ORIGINAL TO $$END)]

Note the use of ORIGINAL to redefine TO in terms of its original
definition. ORIGINAL is intended for use in redefining built-in
operators, since their definitions are not accessible, and hence

9 21

THE ITERATIVE STATEMENT

9.22

not directly modifiable. Thus if the operator had been defined
by the user via I.S.0PR, ORIGINAL would not obtain its original
definition. In this case, one presumably would simply modify the
i.s.opr definition.

I.S.0PR can also be used to defi ne synonyms for already defi ned
i.s. operators by calling I.S.0PR with FORM an atom, e.g., (LS.OPR

'WHERE 'WHEN) makes WHERE be the same as WHEN. Similarly,
following (LS.OPR 'ISTHERE 'THEREIS), one can write (ISTHERE

ATOM IN V), and following (I.S.0PR 'FIND 'FOR) and (LS.OPR

'SUCHTHAT 'THEREIS), one can write (find X in Y suchthat X
member Z). In the current system, WHERE is synonymous with
WHEN, SUCHTHAT and ISTHERE with THEREIS, FIND with FOR,

and THRU with TO.

If FORM is the atom MODIFIER, then NAME is defined as an
i.s.opr which can immediately follow another i.s. operator (i.e.,
an error will not be generated, as described previously). NAME
will not terminate the scope of the previous operator, and will
be stripped off when DWIMIFY is called on its operand. OLD is an
example of a MODIFIER type of operator. The MODIFIER feature
allows the user to define i.s. operators similar to OLD, for use in
conjunction with some other user defined i.s.opr which will
produce the appropriate translation.

The file package command I.S.OPRS (page 17.39) will dump the
definition of i.s.oprs. (LS.OPRS PRODUCT UPTO) as a file package
command will print suitable expressions so that these iterative
statement operators will be (re)defined when the file is loaded.

CONDITIONALS AND ITERATIVE STATEMENTS

TABLE OF CONTENTS

10. Function Definition, Manipulation; and Evaluation 10.1

10.1. Function Types 10.2

10.1.1. Lam~da-Spread Functions 10.3

10.1.2. Nlambda-Spread Functions 10.4

10.1.3. Lambda-Nospread Functions 10.5

10.1.4. Nlambda-Nospread Functions 10.6

10.1.5. Compiled Functions 10.6

10.1.6. Function Type Functions 10.6

10.2. Defining Functions 10.9

10.3. Function Evaluation 10.11

10.4. Iterating and Mapping Functions 10.14

10.5. Functional Arguments 10.18

10.6. Macros 10.21
[

10.6.1. DEFMACRO 10.24

10.6.2. Interpreting Macros 10.28

TABLE OF CONTENTS TOCl

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

10. FUNCTION DEFINITION,
MANIPULATION, AND EVALUATION

The Interlisp programming system is designed to help the user
define and debug functions. Developing an applications
program in Interlisp involves defining a number of functions in
terms of the system primitives and other user-defined functions.
Once defined, the user's functions may be referenced exactly like
Interlisp primitive functions, so the programming process can be
viewed as extending the Interlisp language to include the
required functionality.

Functions are defined with a list expressions known as an "expr
definition." An expr definition specifies if the function has a
fixed or variable number of arguments, whether these
arguments are evaluated or not, the function argument names,
and a series of forms which define the behavior of the function.
For example:

(LAMBDA (X Y) (PRINT X) (PRINT Y»

A function defined with this expr definition would have two
evaluated arguments, X and Y, and it would execute (PRINT X)
and (PRINT Y) when evaluated. Other types of expr definitions
are described b·elow.

A function is defined by putting an expr definition in the
function definition cell of a litatom. There are a number of
functions for accessing and setting function definition cells, but
one usually defines a function with DEFINEQ (page 10.9). For
example:

+- (DEFINEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT Y»»
(FOO)

The expression above will define the function FOO to have the
expr definition (LAMBDA (X Y) (PRINT'X) (PRINT Y». After being
defined, this function may be evaluated just like any system
function:

+- (FOO 3 (lPLUS 3 4»

3
7

7

All function definition cells do not contain expr definitions. The
compiler (page 18.1) translates expr definitions into compiled
code objects, which execute much faster. Interlisp provides a

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10,1

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

10.1 Function Types

'10.2

number of "function type functions" which determine how a
given function is defined, the number and names of function
arguments, etc. See page 10.7.

Usually, functions are evaluated automatically when they appear
within another function or when typed into Interlisp. However,
sometimes it is useful to envoke the Interlisp interpreter
explicitly to apply a given "functional argument" to some data.
There are a number of functions which will apply a given
function repeatedly. For example, MAPCAR will apply a function
(or an expr definition) to all of the elements of a list, and return
the values returned by the function:

~ (MAPCAR '(1 2345) '(LAMBDA (X) (lTIMES X X»
(1 491625)

When using functional arguments, there are a number of
problems which can arise,. related with accessing free variables
from within a function argument. Many times these problems
can be solved using the function FUNCTION to create a FUNARG
object (see page 10.18).

The macro facility provides another way of specifying the
behavior of a function (see page 10.21). Macros are very useful
when developing code which should run very quickly, which
should be compiled differently than it is interpreted, or which
should run differently in different implementations of Interlisp.

Interlisp functions are defined using list expressions called "expr
definitions." An expr definition is a list of the form
(LAMBDA-WORD ARG-LiST FORM 1 ... FORMN)' LAMBDA-WORD

determines whether the arguments to this function will be
evaluated or not, ARG-LiSTdetermines the number and names of
arguments, and FORM1 ... FORMN are a series of forms to be

evaluated after the arguments are bound to the local variables in
ARG-LiST.

If LAMBDA-WORD is the litatom LAMBDA, then the arguments
to the function are evaluated. If LAMBDA-WORD is the litatom
NLAMBDA, then the arguments to the function are not
evaluated. Functions which evaluate or don't evaluate their
arguments are therefore known as "lambda" or "nlambda"
functions, respectively.

If ARG-LiST is NIL or a list of litatoms, this indicates a function
with a fixed number of arguments. Each litatom is the name of
an argument for the function defined by this expression. The
process of binding these litatoms to the individual arguments is

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

10.1.1 Lambda-Spread Functions

FUNCTION TYPES

called "spreading" the arguments, and the function is called a
"spread" function. If the argument list is any litatom other than
NIL, this indicates a function with a variable num ber of
arguments, known as a "nospread" function.

If ARG-L/ST is anything other than a litatom or a list of litatoms,
such as (LAMBDA "Faa" ...), attempting to use this expr
definition will generate an ARG NOT LITATOM error. In
addition, if NIL or T is used as an argument name, the error
ATTEMPT TO BIND NIL OR T is generated.

These two parameters (lambda/nlambda and spread/nospread)
may be specified independently, so there are four main function
types, known as lambda-spread, nlambda-spread,
lambda-nospread, and nlambda-nospread functions. Each one
has a different form, and is used for a different purpose. These
four function types are described more fully below.

Note: For lambda-spread, lambda-nospread, or nlambda-spread
functions, there is an upper limit to the number of arguments
that a function can have, based on the number of arguments
that can be stored on the stack on anyone function call:
Currently, the limit is 80 arguments. If a function is called with
more than that many arguments, the error TOO MANY
ARGUMENTS occurs. However, nlambda-nospread functions can
be called with an arbitrary number of arguments, since the
arguments are not individually saved on the stack (see page
10.6).

Lambda-spread functions take a fixed number of evaluated
arguments. This is the most common function type. A

lambda-spread expr definition has the form:

(LAMBDA (ARG 1 ... ARG M) FORM 1 ... FORM N)

The argument list (ARG 1 ... ARGM) is a list of litatoms that gives

the number and names of the formal arguments to the function.
If the argument list is () or NIL, this indicates that the function
takes no arguments. When a lambda-spread function is applied
to some arguments, the arguments are evaluated, and bound to
the local variables ARGI ... ARGM. Then, FORMI ... FORMN are

evaluated in order, and the value of the function is the value of
FORMN·

+- (DEFINEQ (Faa (LAMBDA (X Y) (LIST X Y»»
(Faa)
+- (Faa 99 (PLUS 34»
(997)

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.3

FUNCTION TYPES

10.1.2 Nlambda-Spread Functions

10.4

In the above example, the function FOO defined by (LAMBDA (X
V) (LIST X V» is applied to the arguments 99 and (PLUS 3 4), these
arguments are evaluated (giving 99 and 7), the local variable X is
bound to 99 and V to 7, (LIST X V) is evaluated, returning (99 7),
and this is returned as the value of the function.

A standard feature of the Interlisp system is that no error occurs
if a spread function is called with too many or too few
arguments. If a function is called with too many arguments, the
extra arguments are evaluated but ignored. If a function is
called with too few arguments, the unsupplied ones will be
delivered as NIL. In fact, a spread function cannot distinguish
between being given NIL as an argument, and not being given
that argument, e.g., (FOO) and (FOO NIL) are exactly the same
for spread functions. If it is necessary to distinguish between
these two cases, use an nlambda function and explicitly evaluate
the arguments with the EVAL function (page 10.12).

Nlambda-spread functions take a fixed number of unevaluated
arguments. An nlambda-spread expr defi nition has the form:

(NLAMBDA (ARG"" ARGM) FORM,,,,, FORMN)

Nlambda-spread functions are evaluated similarly to
lambda-spread functions, except that the arguments are not
evaluated before being bound to the variables ARG 1 ... ARGM'

+- (DEFINEQ (FOO (NLAMBDA (X V) (LIST X V»))

(FOO)

+- (FOO 99 (PLUS 3 4»
(99 (PLUS 3 4»

In the above example, the function FOO defined by (NLAMBDA

(X V) (LIST X V» is applied to the arguments 99 and (PLUS 3 4),
these arguments are bound unevaluated to X and V, (LIST X V) is
evaluated, returning (99 (PLUS 3 4», and this is returned as the
value of the function.

Note: Functions can be defined so that all of their arguments are
evaluated (lambda functions) or none are evaluated (nlambda
functions). If it is desirable to write a function which only
evaluates some of its arguments (e.g. SETQ), the function should
be defined as an nlambda, with some arguments explicitly
evaluated using the function EVAL (page 10.12). If this is done,
the user should put the litatom EVAL on the property list of the
function under the property INFO. This informs various system
packages such as DWIM, CLlSP, and Masterscope that this
function in fact does evaluate its arguments, even though it is an
nlambda.

FUNCTION DEFINITION. MANIPULA TION. AND EVALUA TION

10.1.3 Lambda-Nospread Functions

(ARG VARM)

(SETARG VAR M X)

FUNCTION TYPES

Warning: A frequent problem that occurs when evaluating
arguments to nlambda functions with EVAL (page 10.12) is that
the form being evaluated may reference variables that are not
accessable within the nlambda function. This is usually not a
problem when interpreting code, but when the code is compiled,
the values of "local" variables may not be accessable on the stack
(see page 18.5). The system nlambda functions that evaluate
their arguments (such as SETQ) are expanded in-line by the
compiler, so this is not a problem. Using the macro facility (page
10.21) is recommended in cases where it is necessary to evaluate
some arguments to an nlambda function.

Lambda-nospread functions take a variable number of evaluated
arguments. A lambda-nospread expr definition has the form:

(LAMBDA VAR FORM, ... FORMN)

VAR may be any litatom, except NIL and T. When a
lambda-nospread function is applied to some arguments, each of
these arguments is evaluated and the values stored on the stack.
VAR is then bound to the number of arguments which have been
evaluated. For example, if FOO is defined by (LAMBDA X ...),
when (FOO A B C) is evaluated, A, B, and C are evaluated and X is
bound to 3. VAR should never be reset.

The following functions are used for accessing the arguments of
lambda-nospread functions:

[NLambda Function]

Returns the Mth argument for the lambda-nospread function
whose argument list is VAR. VAR is the name of the atomic
argument list to a lambda-nospread function, and is not
evaluated; M is the number of the desired argument, and is
evaluated. The value of ARG is undefined for M less than or
equal to 0 or greater than the value of VAR.

[N Lam bda Function]

Sets the Mth argument for the lambda-nospread function whose
argument list is VAR to X. VAR is not evaluated; M and X are
evaluated.M should be between 1 and the value of VAR.

In the example below, the function Foa is defined to collect and
return a list of all of the evaluated arguments it is given (the
value of the for statement).

IE- (DEFINEQ (Faa
(LAMBDA X

(for ARGNUM from 1 to X collect (ARG X ARGNUM)]

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.5

FUNCTION TYPES

(Faa)

+- (FOO 99 (PLUS 3 4»)
(997)
~- (Faa 99 (PLUS 3 4) (TIMES 34))

(99712)

10.1.4 Nlambda-Nospread Functions

10.1.5 Compiled Functions

10.1.6 Function Type Functions

10.6

Nlambda-nospread functions take a variable num ber of
unevaluated arguments. An nlambda-nospread expr definition
has the form:

(NLAMBOA VAR FORM1 .. ' FORMN)

VAR may be any litatom, except NIL and T. Though similar in
form to lambda-nospread expr definitions, an
nlambda-nospread is evaluated quite differently. When an
nlambda-nospread function is applied to some arguments, VAR
is simply bound to a list of the unevaluated arguments. The user
may pick apart this list, and evaluate different arguments.

In the example below, FOO is defined to return the reverse of the
list of arguments it is given (unevaluated):

+- (OEFINEQ (FOO (NLAMBOA X (REVERSE X»»
(FOO)

~- (FOO 99 (PLUS 3 4»
«PLUS 3 4) 99)

+- (Faa 99 (PLUS 34) (TIMES 34»
«TIMES 3 4) (PLUS 3 4) 99)

Note: The warning about evaluating arguments to nlambda
functions (page 10.5) also applies to nlambda-nospread function.

Functions defined by expr definitions can be compiled by the
Interlisp compiler (page 18.1). The compiler produces compiled
code objects (of data type CCOOEP) which execute more quickly
than the corresponding expr definition code. Functions defined
by compiled code objects may have the same four types as expr
definitions (Iambda/nolambda, spread/nospread). Functions
created by the compiler are referred to as com piled functions.

There are a variety of functions used for examining the type,
argument list, etc. of functions. These functions may be given
either a litatom, in which case they obtain the function

FUNCTION DEFINITION. MANIPULATION. AND EVALUATION

(FNTYP FN)

(EXPRPFN)

(CCODEP FN)

(ARGTYPE FN)

EXPR

CEXPR

FEXPR

CFEXPR

EXPR*

CEXPR*

FEXPR*

CFEXPR*

FUNARG

FUNCTION TYPES

definition from the litatom's definition cell, or a function
definition itself.

[Function]

Returns NIL if FN is not a function definition or the name of a
defined function. Otherwise FNTYP returns one of the following
litatoms, depending on the type of function definition:

Lambda-spread expr definition.

Lambda-spread compiled definition.

Nlambda-spread expr definition.

Nlambda-spread compiled definition.

Lambda-nospread expr definition.

Lambda-nospread compiled definition.

Nlambda-nospread expr definition.

Nlambda-nospread compiled definition.

FNTYP returns the litatom FUNARG if FN is a FUNARG expression.
See page 10.18.

EXPR, FEXPR, EXPR*, and FEXPR* indicate that FN is defined by
an expr definition. CEXPR, CFEXPR, CEXPR*, and CFEXPR*

indicate that FN is defined by a compiled definition, as indicated
by the prefix C. The suffix * indicates that FN has an indefinite
number of arguments, i.e., is a nospread functions. The prefix F
indicates unevaluated arguments. Thus, for example, a CFEXPR*

is a compiled nospread-nlambda function.

[Function]

Returns T if (FNTYP FN) is either EXPR, FEXPR, EXPR*, or FEXPR*;

NIL otherwise. However, (EXPRP FN) is also true if FN is (has) a list
definition, even if it does not begin with LAMBDA or NLAMBDA.

In other words, EXPRP is not quite as selective as FNTYP.

[Function]

Returns T if (FNTYP FN) is either CEXPR, CFEXPR, CEXPR*, or
CFEXPR*; NIL otherwise.

[Function]

FN is the name of a function or its definition. ARGTYPE returns 0,
1,2, or 3, or NIL if FN is not a function. The interpretation of this
value is:

° Lambda-spread function (EXPR, CEXPR)

Nlambda-spread function (FEXPR, CFEXPR)

2 Lambda-nospread function (EXPR*, CEXPR*)

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.7

FUNCTION TYPES

10.8

(NARGSFN)

(ARGLIST FN)

3 Nlambda-nospread function (FEXPR*, CFEXPR*)

i.e., ARGTYPE corresponds to the rows of FNTYP's.

[Function]

Returns the num ber of arguments of FN, or NIL if FN is not a
function. If FN is a nospread function, the value of NARGS is 1.

[Function]

Returns the" argument list" for FN. Note that the" argument
list" is a litatom for nospread functions. Since NIL is a possible
value for ARGLIST"an error is generated, ARGS NOT AVAILABLE,
if FN is not a function.

If FN is a compiled function, the argument list is constructed, i.e.,
each call to ARGLIST requires making a new list. For functions
defined by expr definitions, lists beginning with LAMBDA or
NLAMBDA, the argument list is simply CADR of GETD. If FN has
an expr definition, and CAR of the definition is not LAMBDA or
NLAMBDA, ARGLIST will check to see if CAR of the definition is a
member of LAMBDASPLST (page 20.14). If it is, ARGLIST
presumes this is a function object the user is defining via
DWIMUSERFORMS (page 20.11), and simply returns CADR of the
definition as its argument list. Otherwise ARGLIST generates an
error as described above.

(SMARTARGLIST FN EXPLAINFLG TAIL) [Function]

A "smart" version of ARGLIST that tries various strategies to get
the arglist of FN.

First, SMARTARGLIST checks the property list of FN under the
property ARGNAMES. For spread functions, the argument list
itself is stored. For nospread functions, the form is (NIL ARGLIST 1

. ARGLlST2), where ARGLISTl is the value SMARTARGLIST should

return when EXPLAINFLG = T, and ARGLlST2 the value when

EXPLAINFLG = NIL. For example, (GETPROP 'DEFINEQ
'ARGNAMES) = (NIL (X1 XI ... XN) . X). This allows the user to
specify special argument lists.

Second, if FN is not defined as a function, SMARTARGLIST
attempts spelling correction on FN by calling FNCHECK (page
20.23), passing TAIL to be used for the call to FIXSPELL. If
unsuccessful, an error will be generated, FN NOT A FUNCTION.

Third, if FN is known to the file package (page 17.1) but not
loaded in, SMARTARGLIST will obtain the arglist information
from the file.

Otherwise, SMARTARGLIST simply returns (ARGLIST FN).

SMARTARGLIST is used by BREAK (page 15.5) and ADVISE (page
15.11) with EXPLAINFLG = NIL for constructing equivalent expr

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

10.2 Defining Functions

(DEFINE X -)

FUNCTION TYPES

definitions, and by the TTYIN in-line command? = (page 26.33),
with EXPLAINFLG = l.

Function definitions are stored in a "function definition cell"
associated with each litatom. This cell is directly accessible via
the two functions PUlD and GElD (page 10.11), but it is usually
easier to define functions with DEFINEQ:

[NLambda NoSpread Function]

DEFINEQ is the function normally used for defining functions. It
takes an indefinite number of arguments which are not
evaluated. Each Xi must be a list defining one function, of the

form (NAME DEFINITION). For example:

(DEFINEQ (DOUBLE (LAMBDA (X) (IPLUS X X»»

The above expression will define the function DOUBLE with the
expr definition (LAMBDA (X) (IPLUS X X». Xi may also have the

form (NAME ARGS . DEF-BODY), in which case an appropriate
lambda expr definition will be constructed. Therefore, the
above expression is exactly the same as:

(DEFINEQ (DOUBLE (X) (IPLUS X X»)

Note that this alternate form can only be used for Lambda
functions. The first form must be used to define an nlambda
function.

DEFINEQ returns a list of the names of the functions defined.

[Function]

Lambda-spread version of DEFINEQ. Each element of the list X is
itself a list either of the form (NAME DEFINITION) or (NAME

ARGS. DEF-BODY). DEFINE will generate an error, INCORRECT

DEFINING FORM, on encountering an atom where a defining list
is expected.

Note: DEFINE and DEFINEQ will operate correctly if the function
is already defined and BROKEN, ADVISED, or BROKEN-IN.

For expressions involving type-in only, if the time stamp facility is
enabled (page 16.76), both DEFINE and DEFINEQ will stamp the
definition with the user's initials and date.

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.9

DEFINING FUNCTIONS

. UNSAFE.TO.MODIFY.FNS

DFNFLG

(GETD FN)

10.10

[Variable]

Value is a list of functions that should not be redefined, because
doing so may cause unusual bugs (or crash the system!). If the
user tries to modify a function on this list (using DEFINEQ, TRACE,

etc), the system will print "Warning: XXX may be safe to modify
.- continue?" If the users types "Yes", the function is modified,
otherwise an error occurs. This provides a measure of safety for
novices who may accidently redefine important system
functions. Users can add their own functions onto this list.

Note: By convention, all functions starting with the character
backslash ("\") are system internal functions, which should never
be redefined or modified by the user. Backslash functions are
not on UNSAFE.TO.MODIFY.FNS, so trying to redefine them will
not cause a warning.

[Variable]

DFNFLG is a global variable that effects the operation of
DEFINEQ and DEFINE. If DFNFLG = NIL, an attempt to redefine a
function FN will cause DEFINE to print the message (FN

REDEFINED) and to save the old definition of FN using SAVEDEF

(page 17.27) before redefining it (except if the old and new
definitions are EQUAL, inwhich case the effect is simply a no-op).
If DFNFLG = T, the function is simply redefined. If DFNFLG = PROP

or ALLPROP, the new definition is stored on the property list
under the property EXPR. ALLPROP also affects the operation of
RJ-AQQ and RPAQ (page 17.54). DFNFLG is initially NIL.

DFNFLG is reset by LOAD (page 17.6) to enable various ways of
handling the defining of functions and setting of variables when
loading a file. For most applications, the user will not reset
DFNFLG directly.

Note: The compiler does NOT respect the value of DFNFLG when
it redefines functions to their compiled definitions (see page
18.1). Therefore, if you set DFNFLG to PROP to completely avoid
inadvertantly redefining something in your running system, you
must use compile mode F, not ST.

Note: The functions SAVEDEF and UNSAVEDEF (page 17.27) can
be useful for "saving" and restoring function definitions from
property lists.

[Function]

Returns the function definition of FN. Returns NIL if FN is not a
litatom, or has no definition.

GETD of a compiled function constructs a pointer to the
defi nition, with the result that two successive ca lis do not

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

(PUTD FN OEF -)

DEFINING FUNCTIONS

necessarily produce EQ results. EQP or EQUAL must be used to
compare compiled definitions.

[Function]

Puts OEF into FN's function cell, and returns OEF. Generates an
error, ARG NOT LlTATOM, if FN is not a litatom. Generates an
error, ILLEGAL ARG, if OEF is a string, number, or a litatom other
than NIL.

(MOVD FROM TO COPYFLG -) [Function]

Moves the definition of FROM to TO, i.e., redefines TO. If
COPYFLG = T, a COpy of the definition of FROM is used.
COPYFLG = T is only meaningful for expr definitions, although
MOVD works for compiled functions as well. MOVD returns TO.

COPYDEF (page 17.27) is a higher-level function that only moves
expr definitions, but works also for variables, records, etc.

(MOVD? FROM TO COPYFLG -) \ [Function]

10.3 Function Evaluation

(APPL Y FN ARGLIST -)

If TO is not defined, same as (MOVD FROM TO COPYFLG).

Otherwise, does nothing and returns NIL.

Usually, function application is done automatically by the
Interlisp interpreter. If a form is typed into Interlisp whose CAR is
a function, this function is applied to the arguments in the CDR
of the form. These arguments are evaluated or not, and bound
to the function parameters, as determined by the type of the
function, and the body of the function is evaluated. This
sequence is repeated as each form in the body of the function is
evaluated.

There are some situations where it is necessary to explicitly call
the evaluator, and Interlisp supplies a number of functions that
will do this. These functions take "functional arguments", which
may either be litatoms with function definitions, or expr
definition forms such as (LAMBDA (X) ...), or FUNARG expressions
(see page 10.18).

[Function]

Applies the function FNto the arguments in the list ARGLlST, and
returns its value. APPLY is a lambda function, so its arguments
are evaluated, but the individual elements of ARGLIST are not
evaluated. Therefore, lambda and nlambda functions are
treated the same by APPLY-lambda functions take their

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.11

FUNCTION EVALUATION

arguments from ARGLIST without evaluating them. For
example:

~-(APPLV 'APPEND '«PLUS 1 23) (456)))

(PLUS 1 2 3 4 5 6)

Note that FN may explicitly evaluate one or more of its
arguments itself. For example, the system function SETQ is an
nlambda function that explicitly evaluates its second argument.
Therefore, (APPl V 'SETQ '(FOO (ADD1 3»)) will set FOO to 4,
instead of setting it to the expression (ADD1 3).

APPl V can be used for manipulating expr definitions, for
example:

~APPL V '{LAMBDA (X V) (ITIMES X V)) '(3 4))

12

(APPl V* FN ARG 1 ARG2 ... ARGN) [NoSpread Function]

(EVAlX -)

(QUOTE X)

10.12

Nospread version of APPl V. Applies the function FN to the
arguments ARG1 ARG2 ... ARGN. For example,

~APPl V* 'APPEND '(PLUS 1 23) '(4 5 6))

(PLUS 1 2 3 4 5 6)

[Function]

EVAl evaluates the expression X and returns this value, i.e., EVAl
provides a way of calling the Interlisp interpreter. Note that
EVAl is itself a lambda function, so its argument is first
evaluated, e.g.,

~SETQ FOO '(ADD1 3))
(ADD13)
~-(EVAl FOO)

4

~-(EVAl'FOO)

(ADD13)

[NLambda NoSpread Function]

QUOTE prevents its arguments from being evaluated. Its value is
X itself, e.g., (QUOTE FOO) is FOO.

Interlisp functions can either evaluate or not evaluate their
arguments. QUOTE can be used in those cases where it is
desirable to specify arguments unevaluated.

Note: The character single-quote (') is defined with a read macro
so it returns the next expression, wrapped in a call to QUOTE
(page 25.42). For example, 'FOO reads as (QUOTE FOO). This is
the form used for examples in this manual.

Since giving QUOTE more than one argument is almost always a
parentheses error, and one that would otherwise go undetected,

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

(KWOTEX)

(NLAMBDA.ARGS X)

(EVALAX A)

(DEFEVAL TYPE FN)

FUNCTION EVALUATION

QUOTE itself generates -an error in this case, PARENTHESIS

ERROR.

[Function]

Value is an expression which when evaluated yields X. If X is NIL
or a number, this is X itself. Otherwise, {LIST (QUOTE QUOTE) X).

For example,

(KWOTE 5) :::I > 5

{KWOTE (CONS' A 'B» • > {QUOTE (A . B»

[Function]

This function interprets its argument as a list of unevaluated
Nlambda arguments. If any of the elements in this list are of the
form (QUOTE ...), the enclosing QUOTE is stripped off. Actually,
NLAMBDA.ARGS stops processing the list after the first
non-quoted argument. Therefore, whereas {NLAMBDA.ARGS
'({QUOTE FOO) BAR» - > (FOO BAR), {NLAMBDA.ARGS '(Faa

(QUOTE BAR») - > {FOO (QUOTE BAR».

NLAMBDA.ARGS is called by a number of nlambda functions in
the system, to interpret their arguments. For instance, the
function BREAK calls NLAMBDA.ARGS so that (BREAK 'FOO) will
break the function FOO, rather than the function QUOTE.

[Function]

Simulates association list variable lookup. X is a form, A is a list of
the form:

The variable names and values in A are "spread" on the stack,
and then X is evaluated. Therefore, any variables appearing free
in X, that also appears as CAR of an element of A will be given
the value in the CDR of that element.

[Function]

Specifies how a datum of a particular type is to be evaluated.
Intended primarily for user defined data types, but works for all
data types except lists, literal atoms, and numbers. TYPE is a type
name. FN is a function object, i.e. name of a function or a
lambda expression. Whenever the interpreter encounters a
datum of the indicated type, FN is applied to the datum and its
value returned as the result of the evaluation. DEFEVAL returns
the previous evaling function for this type. If FN = NIL, DEFEVAL
returns the current evaling function without changing it. If
FN = T, the evaling function is set back to the system default
(which for all data types except lists is to return the datum itself).

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.13

FUNCTION EVALUATION

Note: COMPILETYPELST (page 18.11) permits the user to specify

how a datum of a particular type is to be compiled.

(EVALHOOK FORM EVALHOOKFN) [Function]

EVALHOOK evaluates the expression FORM, and returns its
value. While evaluating FORM, the function EVAL behaves in a
special way. Whenever a list other than FORM itself is to be
evaluated, whether implicitly or via an explicit call to EVAL,

EVALHOOKFN is invoked (it should be a function), with the form
to be evaluated as its argument. EVALHOOKFN is then
responsible for evaluating the form; whatever is returned is
assumed to be the result of evaluating the form. During the
execution of EVALHOOKFN, this special evaluation is turned off.
(Note that EVALHOOK does not effect the evaluations of

variables, only of lists).

Here is an example of a simple tracing routine that uses the
EVALHOOK feature:

+-(DEFINEQ (PRINTHOOK (FORM)

(printout T "eval: " FORM T)

(EVALHOOK FORM (FUNCTION PRINTHOOK]

(PRINTHOOK)

Using PRINTHOOK, one might see the following interaction:

+--(EVALHOOK '(LIST (CONS 1 2) (CONS 3 4» 'PRINTHOOK)

eval: (CONS 1 2)

eval: (CONS 3 4)

«1 . 2) (3 . 4»

10.4 Iterating and Mapping Functions

1014

The functions below are used to evaluate a form or apply a
function repeatedly. RPT, RPTQ, and FRPTQ evaluate an
expression a specified number of times. MAP, MAPCAR,

MAPLlST, etc. apply a given function repeatedly to different

elements of a list, possibly constructing another list.

These functions allow efficient iterative computations, but they
are difficult to use. For programming iterative computations, it
is usually better to use the CLISP Iterative Statement facility
(page 9.9), which provides a more general and complete facility
for expressing iterative statements. Whenever possible, CLISP
translates iterative statements into expressions using the
functions below, so there is no efficiency loss.

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

(RPTNFORM)

ITERATING AND MAPPING FUNCTIONS

[Function]

Evaluates the expression FORM, N times. Returns the value of
the last evaluation. If N less than or equal to 0, FORM is not
evaluated, and RPT returns NIl.

Before each evaluation, the local variable RPTN is bound to the
number of evaluations yet to take place. This variable can be
referenced within FORM. For example, (RPT 10 '(PRINT RPTN»
will print the numbers 1 0,9, ... 1, and return 1.

(RPTQ N FORM 1 FORM2 ... FORMN) [NLambda NoSpread Function]

Nlambda-nospread version of RPT: N is evaluated, FORMi are

not. Returns the value of the last evaluation of FORMN'

(FRPTQ NFORM1 FORM2'" FORMN) [NLambda NoSpread Function]

Faster version of RPTQ. Does not bind RPTN.

(MAP MAPX MAPFNI MAPFN2) [Function]

If MAPFN2 is NIL, MAP applies the function MAPFN1 to successive
tails of the list MAPX. That is, first it computes (MAPFN1 MAPX),

and then (MAPFN1 (CDR MAPX», etc., until MAPX becomes a
non-list. If MAPFN2 is provided, (MAPFN2 MAPX) is used instead
of (CDR MAPX) for the next call for MAPFN1, e.g., if MAPFN2

were CDDR, alternate elements of the list would be skipped.
MAP returns NIl.

(MAPC MAPX MAPFNI MAPFN2) [Function]

Identical to MAP, except that (MAPFN 1 (CAR MAPX» is
computed at each iteration instead of (MAPFNI MAPX), i.e.,
MAPC works on elements, MAP on tails. MAPC returns NIl.

(MAPLIST MAPX MAPFN1 MAPFN2) [Function]

Successively computes the same values that MAP would
compute, and returns a list consisting of those values.

(MAPCAR MAPX MAPFNI MAPFN2) [Function]

Computes the same values that MAPC would compute, and
returns a list consisting of those values, e.g., (MAPCAR X 'FNTYP)
is a list of FNTYPs for each element on X.

(MAPCON MAPX MAPFN1 MAPFN2) [Function]

Computes the same values as MAP and MAPLIST but NCONCs
these values to form a list which it returns.

FUNCTION DEFINITION. MANIPULA nON. AND EVALUA TION 10 15

ITERATING AND MAPPING FUNCTIONS

1016

(MAPCONC MAPX MAPFN 1 MAPFN2) [Function]

Computes the same values as MAPC and MAPCAR, but NCONCs

the values to form a list which it returns.

Note that MAPCAR creates a new list which is a mapping of the
old list in that each element of the new list is the result of
applying a function to the corresponding element on the
original list. MAPCONC is used when there are a variable
number of elements (including none) to be inserted at eact'l
iteration. Examples:

(MAPCONC '(A B C NIL 0 NIL)
'(LAMBDA (V) (if (NULL Y) then NIL else (LIST Y»»

:. > (A BC D)

This MAPCONC returns a list consisting of MAPX with all NILs
removed.

(MAPCONC '«A B) C (0 E F) (G) H I)

'(LAMBDA (V) (if (LlSTP Y) then Y else Nil»)
:. > (A B 0 E F G)

This MAPCONC returns a linear list consisting of all the lists on
MAPX.

Since MAPCONC uses NCONC to string the corresponding lists
together, in this example the original list will be altered to be «A
B 0 E F G) C (0 E F G) (G) H I). If this is an undesirable side effect,
the functional argument to MAPCONC should return instead a
top level copy of the lists, i.e. (LAMBDA (Y) (if (LlSTP Y) then
(APPEND Y) else NIL»).

(MAP2C MAPX MAPY MAPFN1 MAPFN2) [Function]

Identical to MAPC except MAPFN 1 is a function of two
arguments, and (MAPFN1 (CAR MAPX) (CAR MAPy» is computed
at each iteration. Terminates when either MAPX or MAPY is a
non-list.

MAPFN2 is still a function of one argument, and is applied twice
on each iteration; (MAPFN2 MAPX) gives the new MAPX,
(MAPFN2 MAPy) the new MAPY. CDR is used if MAPFN2 is not
supplied, i.e., is NIl.

(MAP2CAR MAPX MAPY MAPFN1 MAPFN2) [Function]

Identical to MAPCAR except MAPFN1 is a function of two
arguments and (MAPFN1 (CAR MAPX) (CAR MAPy» is used to

assemble the new list. Terminates when either MAPX or MAPY is
a non-list.

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

ITERATING AND MAPPI~G FUNCTIONS
•

(SUBSET MAPX MAPFN1 MAPFN2) [Function]

Applies MAPFN1 to elements of MAPX and returns a list of those
elements for which this application is non-Nil, e.g.,

(SUBSET '(A B 3 C 4) 'NUMBERP) = (34).

MAPFN2 plays the same role as with MAP~ MAPC, et al.

(EVERY EVERYX EVERYFN1 EVERYFN2) [Function]

Returns T if the result of applying EVERYFN1 to each element in
EVERYX is true, otherwise Nil. For example, (EVERY '(X Y Z)
'ATOM) • > T.

EVERY operates by evaluating (EVERYFNl (CAR EVERYX)
EVERYX). The second argument is passed to EVERYFNl so that it
can look at the next element on EVERYX if necessary. If
EVERYFN1 yields Nil, EVERY immediately returns NIl. Otherwise,
EVERY computes (EVERYFN2 EVERYX), or (CDR EVERYX) if
EVERYFN2 = Nil, and uses this as the "new" EVERYX, and the
process continues. For example, (EVERY X 'ATOM 'CODR) is true
if every other element of X is atomic.

(SOME SOMEX SOMEFN 1 SOMEFN2) [Function]

Returns the tail of SOMEX beginning with the first element that
satisfies SOMEFN1, i.e., for which SOMEFNI applied to that
element is true. Value is Nil if no such element exists. (SOME X
'(LAMBDA (Z) (EQUAL Z Y») is equivalent to (MEMBER Y X).

SOME operates analogously to EVERY. At each stage, (SOMEFNl
(CAR SOMEX) SOMEX) is computed, and if this is not Nil, SOMEX
is returned as the value of SOME. Otherwise, (SOMEFN2 SOMEX)
is computed, or (CDR SOMEX) if SOMEFN2 = NI~, and used for the
nextSOMEX.

(NOTANY SOMEXSOMEFNl SOMEFN2) [Function]

(NOT (SOME SOMEX SOMEFN 1 SOMEFN2»

(NOTEVERY EVERYX EVERYFN1 EVERYFN2) [Function]

(NOT (EVERY EVERYX EVERYFN1 EVERYFN2»

(MAPRINT LST FILE LEFT RIGHT SEP PFN LlSPXPRINTFLG) [Function]

A general printing function. For each element of the list LST,
applies PFN to the element, and FILE. If PFN is Nil, PRIN1 is used.
Between each application, MAPRINT performs PRIN1 of SEP (or"
" if SEP= Nil). If LEFT is given, it is printed (using PRIN1) initially;
if RIGHT is given it is printed (using PRIN1) at the end.

For example, (MAPRINT X Nil '%('%» is equivalent to PRIN1 for
lists. To print a list with commas between each element and a
final"." one could use (MAPRINT X T Nil '%. '%,).

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.17

ITERATING AND MAPPING FUNCTIONS

10.5 Functional Arguments

(TRUE XI'" XN)

(ZERO XI'" XN)

(FUNCTION FN ENV)

10.18

If LlSPXPRINTFLG = T, LlSPXPRIN1 (page 13.25) is used instead of

PRIN1.

The functions that call the Interlisp-D evaluator take "functional
arguments", which may either be litatoms with function
definitions, or expr definition forms such as (LAMBDA (X) ...), or
FUNARG expressions (below).

The following functions are useful when one wants to supply a
functional argument which will always return NIL, T, or O. Note
that the arguments XI' •• XN to these functions are evaluated,

though they are not used.

[NoSpread Function]

Retu rns NIL.

[NoSpread Function]

Returns T.

[NoSpread Function]

Returns O.

When using expr definitions as functional arguments, they
should be enclosed within the function FUNCTION rather than
QUOTE, so that they will be compiled as separate functions.
FUNCTION can also be used to create FUNARG expressions, which
can be used to solve some problems with referencing free
variables, or to create functional arguments which carry "state"
along with them.

[N Lam bda Function]

If ENV = NIL, FUNCTION is the same as QUOTE, except that it is
treated differently when compiled. Consider the function
definition:

(DEFINEQ(FOO(LST)

(FIE LST (FUNCTION {LAMBDA (Z) (lTIMES Z Z»]

FOO calls the function FIE with the value of LST and the expr
definition {LAMBDA (Z) (LIST (CAR Z»).

If FOO is run interpreted, it doesn't make any difference whether
FUNCTION or QUOTE is used. However, when FOO is compiled, if
FUNCTION is used the compiler will define and compile the expr

FUNCTION DEFINITION, MANIPULATION, AND EVALUA TION

FUNCTIONAL ARGUMENTS

definition as an auxiliary function (See page 18.10). The
compiledexpr definition will run considerably faster, which can
make a big difference if it is applied repeatedly.

Note: Compiling FUNCTION will not create an auxiliary function
if it is a functional argument to a function that compiles open,
such as most of the mapping functions (MAPCAR, MAPLlST, etc.).

If ENV is not NIL, it can be a list of variables that are (presumably)
used freely by FN. In this case, the value of FUNCTION is an
expression of the form (FUNARG FN POS), where POS is a stack

pointer to a frame that contains the variable bindings for those
variables on ENV. ENV can also be a stack pointer itself, in which
case the value of FUNCTION is (FUNARG FN ENV). Finally, ENV

can be an atom, in which case it is evaluated, and the value
interpreted as described above.

As explained above, one of the possible values that FUNCTION
can return is the form (FUNARG FN POS), where FN is a function
and POS is a stack pointer. FUNARG is not a function itself. Like
LAMBDA and NLAMBDA, it has meaning and is specially
recognized by Interlisp only in the context of applying a function
to arguments. In other words, the expression (FUNARG FN POS) is
used exactly like a function. When a FUNARG expression is
applied or is CAR of a form being EVAL'ed, the APPLY or EVAL
takes place in the access environment specified by ENV (see page
11.1). Considerthe following example:

+- (DEFINEQ (DO.TWICE (FN VAL)
(APPL Y* FN (APPL Y* FN VAL»))

(DO.TWICE)

+- (DO.TWICE [FUNCTION (LAMBDA (X) (lPLUS X X»]
5)

20
+-(SETQ VAL 1)

1
+- (DO. TWICE [FUNCTION (LAMBDA (X) (IPLUS X VAL»]

5)

15
+- (DO. TWICE [FUNCTION (LAMBDA (X) (IPLUS X VAL» (VAL)]

5)

7

DO.TWICE is defined to apply a function FN to a value VAL, and
apply FN again to the value returned; in other words it
calculates (FN (FN VAL». Given the expr definition (LAMBDA (X)
(lPLUS X X», which doubles a given value, it correctly calculates
(FN (FN 5» = (FN 10) = 20. However, when given (LAMBDA (X)
(lPLUS X VAL», which should add the value of the global variable
VAL to the argument X, it does something unexpected, returning
15, rather than 5 + 1 + 1 = 7. The problem is that when the expr

FUNCTION DEFINITION. MANIPULATION, AND EVALUATION 10.19

FUNCTIONAL ARGUMENTS

1020

definition is evaluated, it is evaluated in the context of
DO.TWICE, where VAL is bound to the second argument of
DO. TWICE, namely 5. In this case, one solution is to use the ENV

argument to FUNCTION to construct a FUNARG expression which
contains the value of VAL at the time that the FUNCTION is
executed. Now, when (LAMBDA (X) (lPLUS X VAL» is evaluated,
it is evaluated in an environment where the global value of VAL
is accessable. Admittedly, this is a somewhat contrived example
(it would be easy enough to change the argument names to
DO.TWICE so there would be no conflict), but this situation arises
occasionally with large systems of programs that construct
functions, and pass them around.

Note: System functions with functional arguments (APPLY,
MAPCAR, etc.) are compiled so that their arguments are local,
and not accessable (see page 18.S). This reduces problems with
conflicts with free variables used in functional arguments.

FUNARG expressions can be used for more than just
circumventing the clashing of variables. For example, a FUNARG
expression can be returned as the value of a computation, and
then used "higher up". Furthermore, if the function ina
FUNARG expression sets any of the variables contained in the
frame, only the frame would be changed. For example, consider
the following function:

+-(DEFINEQ (MAKECOUNTER (CNT)
(FUNCTION [LAMBDA NIL

(PROG 1 eNT (SETQ CNT (ADD1 eNT]
(CNT»)]

The function MAKECOUNTER returns a FUNARG that increments
and returns the previous value of the counter eNT. However, this
is done within the environment of the call to MAKECOUNTER
where FUNCTION was executed, which the FUNARG expression
"carries around" with it, even after MAKECOUNTER has finished
executing. Note that each call to MAKECOUNTER creates a
FUNARG expression with a new, independent environment, so
that multiple counters can be generated and used:

+--(SETQ e1 (MAKECOUNTER 1»
(FUNARG (LAMBDA NIL (PROG1 eNT {SETQ CNT (ADD1 eNT»»
#1,13724/*FUNARG)
+-- (APPLY C1)
1

+-- (APPLY C1)
2

<Eo-- (SETQ C2 (MAKECOUNTER 17»
{FUNARG {LAMBDA NIL {PROG1 eNT {SETQ eNT (ADD1 eNT»»
#1,13736/*FUNARG)
+-- (APPL Y e2)
17

FUNCTION DEFINITION, MANIPULATION, AND EVALUA TION

10.6 Macros

+- (APPLY C2)
18
+- (APPL Y C1)
3
+- (APPLY C2)
19

FUNCTIONAL ARGUMENTS

By creating a FUNARG expression with FUNCTION, a program can
create a function object which has updateable binding(s)
associated with the object which last between calls to it, but are
only accessible through that instance of the function. For
example, using the FUNARG device, a program could maintain
two different instances of the same random number generator
in different states, and run them independently.

Macros provide an alternative way of specifying the action of a
function. Whereas function definitions are evaluated with a
"function call", which involves binding variables and other
housekeeping tasks, macros are evaluated by translating one
Interlisp form into another, which is then evaluated.

A litatom may have both a function definition and a macro
definition. When a form is evaluated by the interpreter, if the
CAR has a function definition, it is used (with a function call),
otherwise if it has a macro definition, then that is used.
However, when a form is com piled, the CAR is checked for a
macro definition first, and only if there isnit one is the function
definition compiled. This allows functions that behave
differently when compiled and interpreted. For example, it is
possible to define a function that, when interpreted, has a
function definition that is slow and has a lot of error checks, for
use when debugging a system. This function could also have a
macro definition that defines a fast version of the function,
which is used when the debugged system is compiled.

Macro definitions are represented by lists that are stored on the
property list of a litatom. Macros are often used for functions
that should be compiled differently in different Interlisp
implementations, and the exact property name a macro
definition is stored under determines whether it should be used
in a particular implementation. The global variable
MACROPROPS contains a list of all possible macro property
names which should be saved by the MACROS file package
command. Typical macro property names are DMACRO for
Interlisp-D, 10MACRO for Interlisp-10, VAXMACRO for
Interlisp-VAX, JMACRO for Interlisp-Jerico, and MACRO for

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.21

MACROS

10.22

(LAMBDA ..•)
(NLAMBDA ..•)

(NIL EXPRESSION)
(LIST EXPRESSION)

(OPENLAMBDA ARGS BODy)

"implementation independent" macros. The global variable
COMPILERMACROPROPS is a list of macro property names.
Interlisp determines whether a litatom has a macro definition by
checking these property names, in order, and using the first
non-NIL property value as the macro definition. In Interlisp-D
this list contains DMACRO and MACRO in that order so that
DMACROs will override the implementation-independent
MACRO properties. In general, use a DMACRO property for
macros that are to be used only in Interlisp-D, use 10MACRO for

macros that are to be used only in Interlisp-l 0, and use MACRO
for macros that are to affect both systems.

Macro definitions can take the following forms:

A function can be made to compile open by giving it a macro
definition of the form (LAMBDA ...) or (NLAMBDA ...), e.g.,
(lAMBDA (X) (COND «GREATERP X 0) X) (T (MINUS X»» for ABS.

The effect is as if the macro definition were written in place of
the function wherever it appears in a function being compiled,
i.,e., it compiles as a lambda or nlambda expression. This saves
the time necessary to call the function at the price of more
compiled code generated in-line ..

"Substitution" macro. Each argument in the form being
evaluated or compiled is substituted for the corresponding atom
in LIST, and the result of the substitution is used instead of the
form. For example, if the macro definition of ADD1 is «X) (IPLUS
X 1», then, (ADD1 (CAR Y» is compiled as (lPLUS (CAR Y) 1).

Note that ABS could be defined by the substitution macro «X)
(COND «GREATERP X 0) X) (T (MINUS X»». In this case, however,
(ABS (FOO X» would compile as

(COND «GREATERP (FOO X) 0)

(FOO X»
(T (MINUS (FOO X»»

and (FOO X) would be evaluated two times. {Code to evaluate
(FOO X) would be generated three times.)

This is a cross between substitution and LAMBDA macros. When
the compiler processes an OPENLAMBDA, it attempts to
substitute the actual arguments for the formals wherever this
preserves the frequency and order of evaluation that would have
resulted from a LAMBDA expression, and produces a LAMBDA
binding only for those that require it.

Note: OPENLAMBDA assumes that it can substitute literally the
actual arguments for the formal arguments in the body of the
macro if the actual is side-effect free or a constant. Thus, you.
should be careful to use names in ARGS which don't occur in

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

MACROS

BODY (except as variable references). For example, if Faa has a
macro definition of

(OPENLAMBDA (ENV) (FETCH (MY-RECORD-TYPE ENV) OF BAR»

then (FOO NIL) will e~pand to

(FETCH (MY-RECORD-TYPE NIL) OF BAR)

T When a macro definition is the atom T, it means that the
compiler should ignore the macro, and compile the function
definition; this is a simple way of turning off other macros. For
example, the user may have a function that runs in both
Interlisp-D and Interlisp-l0, but has a macro definition that
should only be used when compiling in Interlisp-l0. If the
MACRO property has the macro specification, a DMACRO of T
will cause it to be ignored by the Interlisp-D compiler. Note that
this DMACRO would not be necessary if the macro were specified
by a 10MACRO instead of a MACRO.

(•. OTHER-FUNCTION) A simple way to tell the compiler to compile one function exactly
as it would compile another. For example, when compiling in
Interlisp-D, FRPLACAs are treated as RPLACAs. This is achieved by
having FRPLACA have a DMACRO of (•. RPLACA).

(LITATOM EXPRESSION) If a macro definition begins with a litatom other than those
given above, this allows computation of the Interlisp expression
to be evaluated or compiled in place of the form. LlTATOM is
bound to the CDR of the calling form, EXPRESSION is evaluated,
and the result of this evaluation is evaluated or compiled in place
of the form. For example, LIST could be compiled using the
computed macro:

[X (LIST 'CONS
(CAR X)
(AND (CDR X)

(CONS 'LIST
(CDR Xl

This would cause (LIST X Y Z) to compile as (CONS X (CONS Y
(CONS Z NIL»). Note the recursion in the macro expansion.

If the result of the evaluation is the litatom IGNOREMACRO, the
macro is ignored and the compilation of the expression proceeds
as if there were no macro definition. If the litatom in question is
normally treated specially by the compiler (CAR, CDR, COND,
AND, etc.), and also has a macro, if the macro expansion returns
IGNOREMACRO, the litatom will still be treated specially.

In Interlisp-l0, if the result of the evaluation is the atom
INSTRUCTIONS, no code will be generated by the compiler. It is
then assumed the evaluation was done for effect and the
necessary code, if any, has been added. This is a way of giving
direct instructions to the compiler if you understand it.

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.23

MACROS

Note: It is often useful, when constructing complex macro
expressions, to use the BQUOTE facility (see page 25.42).

The following function is quite useful for debugging macro
definitions:

(EXPANDMACRO EXP OUIETFL.G --) [Function]

Takes a form whose CAR has a macro definition and expands the
form as it would be compiled. The result is prettyprinted, unless
OUIETFLG = T, in which case the result is simply returned.

10.6.1 DEFMACRO

10.24

Macros defined with the function DEFMACRO are much like
"computed" macros (page 10.23), in that they are defined with a
form that is evaluated, and the result of the evaluation is used
(evaluated or compiled) in place of the macro call. However,
DEFMACRO macros support complex argument lists with
optional arguments, default values, and keyword arguments. In
addition, argument list destructuring is supported.

(DEFMACRO NAME ARGS FORM) [NLambda NoSpread Function]

Defines NAME as a macro with the arguments ARGS and the
definition form FORM (NAME, ARGS, and FORM are
unevaluated). If an expression starting with NAME is evaluated
or compiled, arguments are bound according to ARGS, FORM is
evaluated, and the value of FORM is evaluated or compiled
instead. The interpretation of ARGS is described below.

Note: Unlike the function DEFMACRO in Common Lisp, this
function currently does not remove any function definition for
NAME.

ARGS is a list that defines how the argument list passed to the
macro NAME is interpreted. Specifically, ARGS defines a set of
variables that are set to various arguments in the macro call
(unevaluated), that FORM can reference to construct the macro
form.

In the simplest case, ARGS is a simple list of variable names that
are set to the corresponding elements of the macro call
(unevaluated). For example, given:

(DEFMACRO Faa (A B) (LIST 'PlUS A B B»

The macro call (FOO X (BAR Y Z)) will expand to (PLUS X (BAR Y
Z) (BAR Y Z».

The list ARGS can include any of a number of special
"&-keywords" (beginning with the character "&") that are used

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION

&OPTIONAL

&REST
&BODY

&KEY

MACROS

to set variables to particular items from the macro call form, as
follows:

Used to define optional arguments, possibly with default values.
Each element on ARGS after &OPTIONAL until the next
&-keyword or the end of the list defines an optional argument,
which can either be a litatom or a list, interpreted as follows:

VAR

If an optional argument is specified as a litatom, that variable is
set to the corresponding element of the macro call
(unevaluated).

(VAR DEFAULn

If an optional argument is specified as a two element list, VAR is
the variable to be set, and DEFAUL T is a form that is evaluated
and used as the default if there ·is no corresponding element in
the macro call.

(VAR DEFAULT VA RSETP)

If an optional argument is specified as a three element list, VAR

and DEFAULT are the variable to be set and the default form,
and VARSETP is a variable that is set to T if the optional
argument is given in the macro call, NIL otherwise. This can be
used to determine whether the argument was not given, or
whether it was specified with the default value.

For example, after

(DEFMACRO FOO (&OPTIONAL A (B 5) (C 6 CSET» FORM)

expanding the macro call (FOO) would cause FORM to be
evaluated with A set to NIL, B set to 5, C set to 6, and CSET set to
NIL. (FOO 4 56) would be the same, except that A would be set
to 4 and CSETwouid be set to T.

Used to get a list of all additional arguments from the macro call.
Either &REST or &BODY should be followed by a single litatom,
which is set to a list of all arguments to the macro after the
position of the &-keyword. For example, given

(DEFMACRO FOO (A B &REST C) FORM)

expanding the macro call (FOO 1 234 5) would cause FORM to
be evaluated with A set to 1, B set to 2, and C set to (3 4 5).

Note: If the macro calling form contains keyword arguments
(see &KEY below) these are included in the &REST list.

Used to define keyword arguments, that are specified in the
macro call by including a "keyword" (a litatom starting with the
character": ") followed by a value.

Each element on ARGS after &KEY until the next &-keyword or
the end of the list defines a keyword argument, which can either
be a litatom or a list, interpreted as follows:

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.25

MACROS

&ALLOW-OTH ER-KEYS

&AUX

10.26

VAR

(VAR)

«KEYWORD VAR))

If a keyword argument is specified by a single litatom VAR, or a
one-element list containing VAR, it is set to the value of a
keyword argument, where the keyword used is created by
adding the character ":" to the front of VAR. If a keyword
argument is specified by a single-element list containing a
two-element list, KEYWORD is interpreted as the keyword
(which should start with the letter ": to), and VAR is the variable
to set.

(VAR DEFAULn

«KEYWORD VAR) DEFAULn

(VAR DEFAULT VA RSETP)

«KEYWORD VAR) DEFAULT VA RSETP)

If a keyword argument is specified by a two or three-element list,
the first element of the list specifies the keyword and variable to
set as above. Similar to &OPTIONAL (above), the second element
DEFAULT is a form that is evaluated and used as the default if
there is no corresponding element in the macro call, and the
third element VARSETP is a variable that is set to T if the optional
argument is given in the macro call, NIL otherwise.

For example, the form

(DEFMACRO FOO (&KEY A (B 5 BSET) «:BAR C) 6 CSET» FORM)

Defines a macro with keys :A, :B (defaulting to 5), and :BAR.
Expanding the macro call (FOO :BAR 2 :A 1) would cause FORM

to be evaluated with A set to 1, B set to 5, BSET set to NIL, C set to
2, and CSET set to T.

It is an error for any keywords to be suplied in a macro call that
are not defined as keywords in the macro argument list, unless
either the &-keyword &ALLOW-OTHER-KEYS appears in ARGS, or
the keyword :ALLOW-OTHER-KEYS (with a non-NIL value)
appears in the macro call.

Used to bind and initialize auxiliary varables, using a syntax
similar to PROG (page 9.8). Any elements after &AUX should be
either litatoms or lists, interpreted as follows:

VAR

Single litatoms are interpreted as auxiliary variables that are
initially bound to NIL.

(VAR EXP)

If an auxiliary variable is specified as a two element list, VAR is a
variable initially bound to the result of evaluating the form EXP.

For example, given

FUNCTION DEFINITION. MANIPULATION, AND EVALUATION

&WHOLE

MACROS

(oEFMACRO FOO (A B &AUX C (0 5)) FORM)

C will be bound to NIL and 0 to 5 when FORM is evaluated.

Used to get the whole macro calling form. Should be the first
element of ARGS, and should be followed by a single litatom,
which is set to the entire macro calling form. Other &-keywords
or arguments can follow. For example, given

(oEFMACRO FOO (&WHOLE X A B) FORM)

Expanding the macro call (FOO 1 2) would cause FORM to be
evaluated with X set to (FOO 1 2), A set to 1, and B set to 2.

oEFMACRO macros also support argument list "destructuring," a
facility for accessing the structure of individual arguments to a
macro. Any place in an argument list where a litatom is
expected, an argument list (in the form described above) can
appear instead. Such an embedded argument list is used to
match the corresponding parts of that particular argument,
which should be a list structure in the same form. In the simplest
case, where the embedded argument list does not include
&-keywords, this provides a simple way of picking apart list
structures passed as arguments to a macro. For example, given

(oEFMACRO FOO (A (B (C. 0)) E) FORM)

Expanding the macro call (FOO 1 (2 (3 4 5)) 6) would cause FORM
to be evaluated with with A set to 1, B set to 2, C set to 3, 0 set to
(45), and E set to 6. Note that the embedded argument list (B (C
. 0» has an embedded argument list (C. D). Also notice that if an
argument list ends in a dotted pair, that the final litatom
matches the rest of the arguments in the macro call.

An embedded argument list can also include &-keywords, for
interpreting parts of embedded list structures as if they appeared
in a top-level macro call. For example, given

(oEFMACRO FOO (A (B &OPTIONAL (C 6)) D) FORM)

Expanding the macro call (FOO 1 (2) 3) would cause FORM to be
evaluated with with A set to 1, B set to 2, C set to 6 (because of
the default value), and 0 set to 3.

Warning: Embedded argument lists can only appear in positions
in an argument list where a list is otherwise not accepted. In the
above example, it would not be possible to specify an embedded
argument list after the &OPTIONAL keyword, because it would
be interpreted as an optional argument specification (with
variable name, default value, set variable). However, it would be
possible to specify an embedded argument list as the first
element of an optional argument specification list, as so:

(oEFMACRO FOO (A (B &OPTIONAL «X (V) Z) '(1 (2) 3))) D) FORM)

In this case, X, V, and Z default to 1, 2, and 3, respectively. Note
that the "default" value has to be an appropriate list structure.
Also, in this case either the whole structure (X (V) Z) can be

FUNCTION DEFINITION, MANIPULATION, AND EVALUATION 10.27

MACROS

10.6.2 Interpreting Macros

10.28

supplied, or it can be defaulted (i.e. is not possible to specify X
while letting Y default).

When the interpreter encounters a form CAR of which is an
undefined function, it tries interpreting it as a macro. If CAR of
the form has a macro definition, the macro is expanded, and the
result of this expansion is evaluated in place of the original form.
CLISPTRAN (page 21.25) is used to save the result of this
expansion so that the expansion only has to be done once. On
subsequent occasions, the translation (expansion) is retrieved
from CLiSPARRA Y the same as for other CLiSP constructs.

Note: Because of the way that the evaluator processes macros, if
you have a macro on FOO, then typing (FOO 'A 'B) will work, but
FOO(A B) will not work.

Sometimes, macros contain calls to functions that assume that
the macro is being compiled. The variable
SHOULDCOMPILEMACROATOMS is a list of functions that should
be compiled to work correctly (initially (OPCODES) in Interlisp-D,
(ASSEMBLE LOC) in Interlisp-l 0). UNSAFEMACROATOMS is a list
of functions which effect the operation of the compiler, so such
macro forms shouldn't even be expanded except by the compiler
(initially NIL in Interlisp-D, (C2EXP STORIN CEXP COMP) in
Interlisp-l0). If the interpreter encounters a macro containing
calls to functions on these two lists, instead of the macro being
expanded, a dummy function is created with the form as its
definition, and the dummy function is then compiled. A form
consisting of a call to this dummy function with no arguments is
then evaluated in place of the original form, and CLlSPTRAN is
used to save the translation as described above. There are some
situations for which this procedure is not amenable, e.g. a GO

inside the form which is being compiled will cause the compiler
to give an UNDEFINED TAG error message because it is not
compiling the entire function, just a part of it.

FUNCTION DEFINITION, MANIPULA TION, AND EVALUATION

TABLE OF CONTENTS

11. Variable Bindings and the Interlisp Stack 11.1

11.1. The Spaghetti Stack 11.2

11.2. Stack Functions 11.4

11.2.1. Search; ng the Stack 11 .5

11.2.2. Variable Bindings in Stack Frames 11.6

11.2.3. Evaluating Expressions in Stack Frames 11.7

11.2.4. Altering Flow of Control 11.8

11.2.5. Releasing and Reusing Stack Pointers 11.9

11.2.6. Backtrace Functions 11. 11

11.2.7. Other Stack Functions 11 . 1 3

11.3. The Stack and the Interpreter 11.14

11.4. Generators 11 . 1 6

11.5. Coroutines 11 .18

11.6. Possibilities Lists 11.20

TABLE OF CONTENTS Toe1

TABLE OFCONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

11. VARIABLE BINDINGS AND THE
INTERLISP STACK

A number of schemes have been used in different
implementations of Lisp for stori ng the values of variables.
These include:

_ (1) Storing values on an association list paired with the variable
names.

(2) Storing values on the property list of the atom which is the name
of the variable.

(3) Storing values in a special value cell associated with the atom
name, putting Qld values on the function call stack, and restoring
these valueswhen exiting from a function.

(4) Storing values on on the function call stack.

VARIABLE BINDINGS AND THE INTERLISPSTACK

Interlisp-10 uses the third scheme, so called "shallow binding".
When a function is entered, the value of each variable bound by
the function (function argument) is stored in a value cell
associated with that variable name. The value that was in the
value cell is stored in a block of storage called the basic frame for
this function call. In addition, on exit from the function each
variable must be individually unbound; that is, the old value
saved in the basic frame must be restored to the value cell. Thus
there is a higher cost for binding and unbinding a variable than
in the fourth scheme, "deep binding". However, to find the
current value of any variable, it is only necessary to access the
variable's value cell, thus making variable reference considerably
cheaper under shallow binding than under deep binding,
especially for free variables. However, the shallow binding
scheme used does require an additional overhead in switching
contexts when doing "spaghetti stack" operations.

Interlisp-D uses the forth scheme, "deep binding." Every time a
function is entered, a basic frame containing the new variables is
put on top of the stack. Therefore, any variable reference
requires searching the stack for the first instance of that variable,
which makes free variable use somewhat more expensive than in
a shallow binding scheme. On the other hand, spaghetti stack
operations are considerably faster. Some other tricks involving
copying freely-referenced variables to higher frames on the stack
are also used to speed up the search.

The basic frames are allocated on a stack; for most user purposes,
these frames should be thought of as containing the variable

11. 1

VARIABLE BINDINGS AND TH E INTERLISP STACK

11.1 The Spaghetti Stack

11.2

names associated with the function call, and the current values
for that frame. The descriptions of the stack functions in below
are presented from this viewpoint. Both interpreted and
compiled functions store both the names and values of variables
so that interpreted and compiled functions are compatible and
can be freely intermixed, i.e., free variables can be used with no
SPECVAR declarations necessary. However, it is possible to
suppress storing of names in compiled functions, either for
efficiency or to avoid a clash, via a LOCALVAR declaration (see
page 18.5). The names are also very useful in debuggi ng, for
they make possible a complete symbolic backtrace in case of
error.

In addition to the binding information, additional information is
associated with each function call: access information indicating
the path to search the basic frames for variable bindings, control
information, and temporary results are also stored on the stack
in a block called the frame extension. The interpreter also stores
information about partially evaluated expressions as described
on page 11.14.

The Bobrow/Wegbreit paper, "A Model and Stack
Implementation for Multiple Environments" (Communications
of the ACM, Vol. 16,10, October 1973.), describes an access and
control mechanism more general than a simple linear stack. The
access and control mechanism used by Interlisp is a slightly
modified version of the one proposed by Bobrow and Wegbreit.
This mechanism is called the "spaghetti stack."

The spaghetti system presents the access and control stack as a
data structure composed of "frames." The functions described
below operate on this structure. These primitives allow user
functions to manipulate the stack in a machine independent
way. Backtracking, coroutines, and more sophisticated control
schemes can be easily implemented with these primitives.

The evaluation of a function requires the allocation of storage to
hold the values of its local variables during the computation. In
addition to variable bindings, an activation of a function
requires a return link (indicating where control is to go after the
completion of the computation) an~ room for temporaries
needed during the computation. In the spaghetti system, one
"stack" is used for storing all this information, but it is best to
view this stack as a tree of linked objects called frame extensions
(or simply frames).

VARIABLE BINDINGS AND THE INTERLISP STACK

VARIABLE BINDINGS AND TH E INTERLISP STACK

THE SPAGHETTI STACK

A frame extension is a variable sized block of storage containing
a frame name, a pointer to some variable bindings (the BLINK),
and two pointers to other frame extensions (the ALINK and
CLINK). In addition to these components, a frame extension
contains other information (such as temporaries and reference
counts) that does not inte'rest us here.

The block of storage holding the variable bindings is called a
basic frame. A basic frame is essentially an array of pairs, each of
which contains a variable name and its value. The reason frame
extensions point to basic frames (rather than just having them
"built in") is so that two frame extensions can share a common
basic frame. This allows two processes to communicate via
shared variable bindings.

The chain of frame extensions which can be reached via the
successive ALiNKs from a given frame is called the "access chain"
of the frame. The first frame in the access chain is the starting
frame. The chain through successive CLINKs is called the "control
chain".

A frame extension completely specifies the variable bindings and
control information necessary for the evaluation of a fu nction.
Whenever a function (or in fact, any form which generally binds
local variables) is evaluated, it is associated with some frame
extension.

In the beginning there is precisely one frame extension in
existence. This is the frame in which the top-level call to the
interpreter is being run. This frame is called the "top-level"
frame.

Since precisely one function is being executed at any instant,
exactly one frame is distinguished as having the "control
bubble" in it. This frame is called the active frame. Initially, the
top-level frame is the active frame. If the computation in the
active frame invokes another function, a new basic frame and
frame extension are built. The frame name of this basic frame
will be the name of the function being called. The ALINK, BLINK,
and CLIN K of the new frame all depend on precisely how the
function is invoked. The new function is then run in this new
frame by passing control to that frame, i.e., it is made the active
frame.

Once the active computation has been completed, control
normally returns to the frame pointed to by the CLiN K of the
active frame. That is, the frame in the CLINK becomes the active
frame.

In most cases, the storage associated with the basic frame and
frame extension just abandoned can be reclaimed. However, it is
possible to obtain a pointer to a frame extension and to "hold
on" to this frame even after it has been exited. This pointer can

11.3

THE SPAGHETII STACK

11.2 Stack Functions

114

be used later to run another computation in that environment,
or even "continue" the exited computation.

A separate data type, called a stack pointer, is used for this
purpose. A stack pointer is just a cell that literally points to a
frame extension. Stack pointers print as #ADRIFRAMENAME,

e.g., #1,13636/COND. Stack pointers are returned by many of
the stack manipulating functions described below. Except for
certain abbreviations (such as "the frame with such-and-such a
name"), stack pointers are the only way the user can reference a
frame extension. As long as the user has a stack pointer which
references a frame extension, that frame extension (and all those
that can be reached from it) will not be garbage collected.

Note that two stack pointers referencing the same frame
extension are not necessarily EQ, i.e., (EQ (STKPOS 'FOO)
(STKPOS 'FOO» = NIl. However, EQP can be used to test if two
different stack pointers reference the same frame extension
(page 9.3).

It is possible to evaluate a form with respect to an access chain
other than the current one by using a stack pointer to refer to
the he.ad of the access chain desired. Note, however, that this
can be very expensive when using a shallow binding scheme such
as that in Interlisp-l0. When evaluating the form, since all
references to variables under the shallow binding scheme go
through the variable's value cell, the values in the value cells
must be adjusted to reflect the values appropriate to the desired
access chain. This is done by changing all the bindings on the
current access chain (all the name-value pairs) so that they
contain the value current at the time of the call. Then along the
new access path, all bindings are made to contain the previous
value of the variable, and the current value is placed in the value
cell. For that part of the access path which is shared by the old
and new chain, no work has to be done. The context switching
time, i.e. the overhead in switching from the current, active,
access chain to another one, is directly proportional to the size of
the two branches that are not shared between the access
contexts. This cost should be remembered in using generators
and coroutines (page 11.16).

In the descriptions of the stack functions below, when we refer
to an argument as a stack descriptor, we mean that it is one of
the following:

VARIABLE BINDINGS AND THE INTERLISP STACK

STACK FUNCTIONS

A stack pointer A stack pointer is an object that points to a frame on the stack.
Stack pointers are returned by many of the stack manipulating
functions described below.

NIL Specifies the active frame; that is, the frame of the stack function
itself.

T Specifies the top-level frame.

A litatom Specifies the first frame (along the control chain from the active
frame) that has the frame name LlTATOM. Equivalent to
(STKPOS LlTATOM-1).

A list of litatoms Specifies the first frame (along the control chain from the active
frame) whose frame name is included in the list.

A number N Specifies the Nth frame back from the active frame. If N is
negative, the control chain is followed, otherwise the access
chain is followed. Equivalent to (STKNTH N)

11.2.1 Searching the Stack

In the stack functions described below, the following errors can
occur: The error ILLEGAL STACK ARG occurs when a stack
descriptor is expected and the supplied argument is either not a
legal stack descriptor (i.e., not a stack pointer, litatom, or
number), or is a litatom or number for which there is no
corresponding stack frame, e.g., (STKNTH -1 'FOO) where there
is no frame named FOO in the active control chain or (STKNTH

-10 'EVALQT). The error STACK POINTER HAS BEEN RELEASED

occurs whenever a released stack pointer is supplied as a stack
descriptor argument for any purpose other than as a stack
pointer to re-use.

Note: The creation of a single stack pointer can result in the
retention of a large amount of stack space. Therefore, one
should try to release stack pointers when they are no longer
needed (see page 11.9).

(STKPOS FRAMENAME N POS OLOPOS) [Function]

VARIABLE BINDINGS AND TH E INTERLISP STACK

Returns a stack pointer to the Nth frame with frame name
FRAMENAME. The search begins with (and includes) the frame
specified by the stack descriptor POS. The search proceeds along
the control chain from POS if N is negative, or along the access
chain if N is positive. If N is NIL, -1 is used. Returns a stack pointer
to the frame if such a frame exists, otherwise returns NIL. If
OLOPOS is supplied and is a stack pointer, it is reused. If OLOPOS

is supplied and is a stack pointer and STKPOS returns NIL,

OLOPOS is released. If OLOPOS is not a stack pointer it is ignored.

Note: (STKPOS 'STKPOS) causes an error, ILLEGAL STACK ARG; it
is not permissible to create a stack pointer to the active frame.

115

STACK FUNCTIONS

(STKNTH N POS OLOPOS)

(STKNAME POS)

(SETSTKNAME POS NAME)

(STKNTHNAME N POS)

[Function]

Returns a stack pointer to the Nth frame back from the frame
specified by the stack descriptor POS.lf N is negative, the control
chain from POS is followed. If N is positive the access chain is
followed. If N equals 0, STKNTH returns a stack pointer to POS
(this provides a way to copy a stack pointer). Returns NIL if there
are fewer than N frames in the appropriate chain. If OLOPOS is
supplied and is a stack pointer, it is reused. If OLOPOS is not a
stack pointer it is ignored.

Note: (STKNTH 0) causes an error, ILLEGAL STACK ARG; it is not
possible to create a stack pointer to the active frame.

[Function]

Returns the frame name of the frame specified by the stack
descriptor POS.

[Function]

Changes the frame name of the frame specified by POS to be
NAME. Returns NAME.

[Function]

Returns the frame name of the Nth frame back from POS.
Equivalent to (STKNAME (STKNTH N POS» but avoids creation of
a stack pointer.

In summary, STKPOS converts function names to stack pointers,
STKNTH converts numbers to stack pointers, STKNAME converts
stack pointers to function names, and STKNTHNAME converts
numbers to function names.

11.2.2 Variable Bindings in Stack Frames

(STKSCAN VAR IPOS OPOS)

11.6

The following functions are used for accessing and changing
bindings. Some of functions take an argument, N, which
specifies a particular binding in the basic frame. If N is a literal
atom, it is assumed to be the name of a variable bound in the
basic frame. If N is a number, it is assumed to reference the Nth
binding in the basic frame. The first binding is 1. If the basic
frame contains no binding with the given name or if the number
is too large or too small, the error ILLEGAL ARG occurs.

[Function]

Searches beginning at IPOS for a frame in which a variable
named VAR is bound. The search follows the access chain.
Returns a stack pointer to the frame if found, otherwise returns
NIL. If OP~S is a stack pointer it is reused, otherwise it is ignored.

VARIABLE BINDINGS AND THE INTERUSP STACK

(FRAMESCAN A TOM POS)

(STKARG N POS -)

(STKARGNAME N POS)

(SETSTKARG N POS VAL)

STACK FUNCTIONS

[Function]

Returns the relative position of the binding of ATOM in the basic
frame of POS. Returns NIL if ATOM is not found.

[Function]

Returns the value of the binding specified by N in the basic frame
of the frame specified by the stack descriptor POS. N can be a
literal atom or number.

[Function1

Returns the name of the binding specified by N, in the basic
frame of the frame specified by the stack descriptor POS. N can
be a literal atom or number.

[Function]

Sets the value of the binding specified by N in the basic frame of
the frame specified by the stack descriptor POS. N can be a literal
atom or a number. Returns VAL.

(SETSTKARGNAME N POS NAME) [Function]

(STKNARGS POS-)

(VARIABLES POS)

(STKARGS POS -)

Sets the variable name to NAME of the binding specified by N in
the basic frame of the frame specified by the stack descri ptor
POS. N can be a literal atom or anum ber. Returns NAME.

[Function1

Returns the number of arguments bound in the basic frame of
the frame specified by the stack descriptor POS.

[Function1

Returns a list of the variables bound at POS.

[Function]

Returns a list of the values of the variables bound at POS.

11.2.3 Evaluating Expressions in Stack Frames

The following functions are used to evaluate an expression in a
different environment:

(ENVEVAL FORM APOS CPOS AFLG CFLG) [Function]

VARIABLE BINDINGS AND TH E INTERLISP STACK

Evaluates FORM in the environment specified by APOS and CPOS.

That is, a new active frame is created with the frame specified by
the stack descriptor APOS as its ALINK, and the frame specified
by the stack descriptor CPOS as its CLINK. Then FORM is
evaluated. If AFLG is not NIL, and APOS is a stack pointer, then

11.7

STACK FUNCTIONS

APOS will be released. Similarly, if CFLG is not NIL, and CPOS is a

stack pointer, then CPOS will be released.

(ENVAPPl Y FN ARGS APOS CPOS AFLG CFLG) [Function]

(EVALV VAR POS RELFLG)

APPLYs FN to ARGS in the environment specified by APOS and
CPOS. AFLG and CFLG have the same interpretation as with
ENVEVAL.

[Function]

Evaluates VAR, where VAR is assumed to be a litatom, in the
access environment specifed by the stack descriptor POS. If VAR
is unbound, EVALV returns NOBIND and does not generate an
en'or. If RELFLG is non-NIL and POS is a stack pointer, it will be
released after the variable is looked up. While EVALV could be
defined as (ENVEVAL VAR POS NIL RELFLG) it is in fact somewhat
faster.

(STKEVAL POS FORM FLG-) [Function]

Evaluates FORM in the access environment of the frame specified
by the stack descriptor POS. If FLG is not NIL and POS is a stack
pointer, releases POS. The definition of STKEVAL is (ENVEVAL
FORM POS NIL FLG).

(STKAPPL Y POS FN ARGS FLG) [Function]

Similar to STKEVAL but applies FN to ARGS.

11.2.4 Altering Flow of Control

(RETFROM POS VAL FLG)

11.8

The following functions are used to alter the normal flow of
control, possibly jumping to a different frame on the stack.
RETEVAL and RETAPPl Y allow evaluating an expression in the
specified environment first.

[Function]

Return from the frame specified by the stack descriptor POS, with
the value VAL. If FLG is not NIL, and POS is a stack pointer, then
POS is released. An attempt to RETFROM the top level (e.g.,
(RETFROM T» causes an error, ILLEGAL STACK ARG. RETFROM
ca n be writte n in terms of ENVEVAL as follows:

(RETFROM
(LAMBDA CPOS VAL FLG)

(ENVEVAL (LIST 'QUOTE VAL)
NIL
{if {STKNTH -1 POS (if FLG then paS))

else {ERRORX (LIST 19 paS»)

VARIABLE BINDINGS AND THE INTERLISP STACK

(RETTO POS VAL FL G)

NIL

T»)

STACK FUNCTIONS·

[Function]

Like RETFROM, except returns to the frame specified by POS.

(RETEVAL POS FORM FLG-) [Function]

Evaluates FORM in the access environment of the frame specified
by the stack descriptor POS, and then returns from POS with that
value. If FLG is not NIL and POS is a stack pointer, then POS is
released. The definition of RETEVAL is equivalent to (ENVEVAL

FORM POS (STKNTH -1 POS) FLG T), except that RETEVAL does
not create a stack pointer.

(RETAPPL Y POS FN ARGS FLG) [Function]

Similar to RETEVAL except applies FN to ARGS.

11.2.5 Releasing and Reusing Stack Pointers

(STACKP X)

(RELSTK POS)

(RELSTKP X)

(CLEARSTK FLG)

CLEARSTKLST

VARIABLE BINDINGS AND THE INTERUSPSTACK

The following functions and variables are used for manipulating
stack pointers:

[Function]

Returns X if X is a stack pointer, otherwise returns NIL.

[Function]

Release the stack pointer POS (see below). If POS is not a stack
pointer, does nothing. Returns POS.

[Function]

Returns T is X is a released stack pointer, NIL otherwise.

[Function]

If FLG is NIL, releases all active stack pointers, and returns NIl. If
FLG is T, returns a list of a" the active (unreleased) stack pointers.

[Variable]

A variable used by the top-level executive. Every time the
top-level executive is re-entered (e.g., following errors, or
control-D), CLEARSTKLST is checked. If its value is T, all active
stack pointers are released using CLEARSTK. If its value is a list,
then all stack pointers on that list are released. If its value is NIL,

nothing is released. CLEARSTKLST is initially T.

11.9

STACK FUNCTIONS

NOCLEARSTKLS T

11.10

[Variable]

A variable used by the top-level executive. If CLEARSTKLST is T
(see above) all active stack pointers except those on
NOCLEARSTKLST are released. NOCLEARSTKLST is initially NIl.

Note: If one wishes to use multiple environments that survive
through control-D, either CLEARSTKLST should be set to NIL, or
else those stack pointers to be retained should be explicitly
added to NOCLEARSTKLST.

The creation of a single stack pointer can result in the retention
of a large amount of stack space. Furthermore, this space will
not be freed until the next garbage collection, even if the stack
pointer is no longer being used, unless the stack pointer is
explicitly released or reused. If there is sufficient amount of stack
space tied up in this fashion, a STACK OVERFLOW condition can
occur, even in the simplest of computations. For this reason, the
user should consider releasing a stack pointer when the
environment referenced by the stack pointer is no longer
nE!eded.

The effects of releasing a stack pointer are:

(1) The link between the stack pointer and the stack is broken by
setting the contents of the stack pointer to the" released mark"
(currently unboxed 0). A released stack pointer prints as
#AOR/#O.

(2) If this stack pointer was the last remaining reference to a
frame extension; that is, if no other stack pointer references the
frame extension and the extension is not contained in the active
control or access chain, then the extension may be reclaimed,
and is reclaimed immediately. The process repeats for the access
and control chains of the reclaimed extension so that all stack
space that was reachable only from the released stack pointer is
reclaimed.

A stack pointer may be released using the fu nction RELSTK, but
there are some cases for which RELSTK is not sufficient. For
example, if a function contains a call to RETFROM in which a
stack pointer was used to specify where to return to, it would not
be possible to simultaneously release the stack pointer. (A
RELSTK appearing in the function following the call to RETFROM
would not be executed!) To permit release of a stack pointer in
this situation, the stack functions that relinquish control have
optional flag arguments to denote whether or not a stack
pointer is to be released (AFLG and CFLG). Note that in this case
releasing the stack pointer will not cause the stack space to be
reclaimed immediately because the frame referenced by the
stack pointer will have become part of the active environment.

Another way of avoiding creating new stack pointers is to reuse
stack pointers that are no longer needed. The stack functions

VARIABLE BINDINGS AND THE INTERLISP STACK

11.2.6 Backtrace Functions

STACK FUNCTIONS

that create stack pointers (STKPOS, STKNTH, and STKSCAN) have
an optional argument which is a stack pointer to reuse. When a
stack pointer is reused, two things happen. First the stack
pointer is released (see above). Then the pointer to the new
frame extension is deposited in the stack pointer. The old stack
pointer (with its new contents) is the value of the function. Note
that the reused stack pointer will be released even if the function
does not find the specified frame.

Note that even ff stack pointers are explicitly being released,
creation of many stack pointers can cause a garbage collection of
stack pointer space. Thus, if the user's application requires
creating many stack pointers, he definitely should take
advantage of reusing stack pointers.

The following functions perform a "backtrace, II printing
information about every frame on the stack. Arguments allow
only backtracing a selected range of the stack, skipping selected
frames, and printing different amounts of information about
each frame.

(BACKTRACE IPOS EPOS FLAGS FILE PRINTFN) [Function]

Performs a backtrace beginning at the frame specified by the
stack descriptor IPOS, and ending with the frame specified by the
stack descriptor EPOS. FLAGS is a number in which the options of
the BACKTRACE are encoded. If a bit is set, the corresponding
information is included in the backtrace.

bit 0 - print arguments of non-SUBRs.

bit 1 - print temporaries of the interpreter.

bit 2 - print SUBR arguments and local variables.

bit 3 - omit printing of UNTRACE: and function names.

bit 4 - follow access chain instead of control chain.

bit 5 - print temporaries, i.e. the blips (see page 11.14).

For example: If FLAGS = 47Q, everything is printed. If
FLAGS = 21 Q, follows the access chain, prints arguments.

FILE is the file that the backtrace is printed to. FILE must be open.
PRINTFN is used when printing the values of variables,
temporaries, blips, etc. PRINTFN = NIL defaults to PRINT.

(BAKTRACE IPOS EPOS SKIPFNS FLAGS FILE) [Function]

VARIABLE BINDINGS AND TH E INTERLISP STACK

Prints a backtrace from IPOS to EPOS onto FILE. FLAGS specifies
the options of the backtrace, e.g., do/don't print arguments,

11 . 11

STACK FUNCTIONS

BAKTRACELST

11.12

do/don't print temporaries of the interpreter, etc., and is the
same as for BACKTRACE.

SKIPFNS is a list of functions. As BAKTRACE scans down the stack,
the stack name of each frame is passed to each ~unction in
SKIPFNS, and if any of them return non-NIL, POS is skipped
(including all variables).

BAKTRACE collapses the sequence of several function calls
corresponding to a call to a system package into a single
"function" using BAKTRACELST as described below. For
example, any call to the editor is printed as **EDITOR**, a break
is printed as **BREAK**, etc.

BAKTRACE is used by the BT, BTV, BTV +, BTV*, and BTV! break
commands, with FLAGS = 0, 1, 5, 7, and 47Q respectively.

Note: BAKTRACE calls BACKTRACE. with a PRINTFN of
SHOWPRINT (page 25.10), so that if SYSPRETTYFLG = T, the
values will be prettyprinted.

[Variable]

Used for telling BAKTRACE (therefore, the BT, BTV, etc.
commands) to abbreviate various sequences of function calls on
the stack by a single key, e.g. **BREAK**, **EDITOR**, etc.

The operation of BAKTRACE and format of BAKTRACELST is
described so that the user can add his own entries to
BAKTRACELST. Each entry on BAKTRACELST is a list of the form
(FRAMENAME KEY . PATTERN) or (FRAMENAME (KEY 1 .

PATTERN,) .•• (KEYN . PATTERNN)), where a pattern is a list of

elements that are either atoms, which match a single frame, or
lists, which are interpreted as a list of alternative patterns, e.g.
(PROGN **BREAK** EVAL «ERRORSET BREAK1A BREAK1)
(BREAK1»)

BAKTRACE operates by scanning up the stack and, at each point,
comparing the current frame name, with the frame names on
BAKTRACELST, i.e. it does an ASSOC. If the frame name does
appear, BAKTRACE attempts to match the stack as of that point
with (one of) the patterns. If the match is successful, BAKTRACE
prints the corresponding key, and continues with where the
match left off. If the frame name does not appear, or the match
fails, BAKTRACE simply prints the frame name and continues
with the next higher frame (unless the SKIPFNS applied to the
frame name are non-NIL as described above).

Matching is performed by comparing atoms in the pattern with
the current frame name, and matching lists as patterns, i.e.
sequences of function calls, always working up the stack. For
example, either of the sequence of function calls" ... BREAK1
BREAK1A ERRORSET EVAL PROGN ... " or " ... BREAK1 EVAL

VARIABLE BINDINGS AND THE INTERUSP STACK

11.2.7 Other Stack Functions

STACK FUNCTIONS

PROGN II would match with the sample entry given above,

causing **BREAK** to be printed.

Special features:

• The litatom & can be used to match any frame.

• The pattern "." can be used to match nothing. • is useful for
specifying an optional match, e.g. the example above could also
have been written as (PROGN **BREAK** EVAL «ERRORSET

BREAK1A)·) BREAK1).

• It is not necessary to provide in the pattern for matching dummy
frames, i.e. frames for which OUMMYFRAMEP (see page 11.13) is
true, e.g. in Interlisp-l 0, *PROG*LAM, *ENV*, NOLINKOEF1, etc.
When working on a match, the matcher automatically skips over
these frames when they do not match.

• If a match succeeds and the KEY is NIL, nothing is printed. For
example, (*PROG*LAM NIL EVALA *ENV). This sequence wi"
occur following an error which then causes a break if some of the
function's arguments are LOCALVARS.

(OUMMYFRAMEP POS) (Function]

Returns T if the user never wrote a call to the function at POS,
e.g. in Interlisp-1 0, OUMMYFRAMEP is T for *PROG*LAM, *ENV*,
and FOOBLOCK frames (see block compiler, page 18.17).

REALFRAMEP and REALSTKNTH can be used to write functions
which manipulate the stack and work on either interpreted or
compiled code:

(REALFRAMEP POS INTERPFLG) [Function]

Returns POS if POS is a "real" frame, i.e. if POS is not a dummy
frame and POS is a frame that does not disappear when
compiled (such as CONO); otherwise NIL. If INTERPFLG = T,
returns POS if POS is not a dummy frame. For example, if
(STKNAME POS) = CONO, (REALFRAMEP POS) is NIL, but
(REALFRAMEP POST) is POS.

(REALSTKNTH N POS INTERPFLG OLOPOS) [Function]

Returns a stack pointer to the Nth (or -Nth) frames for which
(REALFRAMEP POS INTERPFLG) is POS.

(MAPDL MAPDLFN MAPDLPOS) [Function]

VARIABLE BINDINGS AND TH E INTERLISP STACK

Starts at MAPDLPOS and applies the function MAPDLFN to two
arguments (the frame name and a stack pointer to the frame),

11.13

STACK FUNCTIONS

for each frame until the top of the stack is reached. Returns Nil.
For example,

[MAPDl (FUNCTION (LAMBDA (X POS)
(if (lGREATERP (STKNARGS POS) 2)

then (PRINT X)]

will print all functions of more than two arguments.

(SEARCHPDl SRCHFN SRCHPOS) [Function]

Similar to MAPDl, except searches the stack starting at position
SRCHPOS until it finds a frame for which SRCHFN, a function of
two arguments applied to the name of the frame and the frame
itself, is not NIl. Returns (NAME. FRAME) if such a frame is
found, otherwise NIl.

11.3 The Stack and the Interpreter

1114

In addition to the names and values of arguments for functions,
information regarding partially-evaluated expressions is kept on
the push-down list. For example, consider the following
definition of the function FACT (intentionally faulty):

(FACT
[LAMBDA(N)

(COND
«ZEROP N)
l)

(T (lTIMES N (FACT (SUB1 N))

In evaluating the form (FACT 1), as soon as FACT is entered, the
interpreter begins evaluating the implicit PROGN following the
LAMBDA. The first function entered in this process is CONDo
COND begins to process its list of clauses. After calling ZEROP
and getting a NIL value, COND proceeds to the next clause. and
evaluates T. Since T is true, the evaluati,on of the implicit PROGN
that is the consequent of the T clause is begun. This requires
calling the function ITIMES. However before ITIMES can be
called, its arguments must be evaluated. The first argument is
evaluated by retrieving the current binding of N from its value
cell; the second involves a recursive call to FACT, and another
implicit PROGN, etc.

Note that at each stage of this process, some portion of an
expression has been evaluated, and another is awaiting
evaluation. The output below (from Interlisp-10) illustrates this
by showing the state of the push-down list at the point in the
computation of (FACT 1) when the unbound atom l is reached.

oE-FACT(1)

VARIABLE BINDINGS AND THE INTERLISP STACK

VARIABLE BINDINGS AND THE INTERLISPSTACK

THE STACK AND TH E INTERPRETER

u.b.a. l {in FACT} in «ZEROP N) l)
(l broken)
:BTV!

*TAll * (l)

*ARG1 «(ZEROP N) l)(T (lTIMES N (FACT (SUB1 N»»)

COND

FORM (COND «ZEROP N) l) (T (lTIMES N (FACT (SUB1 N»»)
*TAll * «COND «ZEROP N) l) (T (lTlMES N (FACT (SUB1 N»»»

NO
FACT

FORM (FACT (SUB1 N»
FN ITIMES
*TAll * «FACT (SUB1 N»)
*ARGVAl*1
FORM (lTlMES N (FACT (SUB1 N»)
*TAll * «ITIMES N (FACT (SUB1 N»»

*ARG1 «(ZEROP N) l) (T (lTIMES N (FACT (SUB1 N»»)
COND

FORM (COND «ZEROP N) l) (T (lTIMES N (FACT (SUB1 N»»)
*TAll * «COND «ZEROP N) l) (T (lTIMES N (FACT (SUB1 N»»»

N1
FACT

TOP

Internal calls to EVAl, e.g., from COND and the interpreter, are
marked on the push-down list by a special mark or blip which the
backtrace prints as *FORM*. The genealogy of *FORM*'s is thus
a history of the computation. Other temporary information
stored on the stack by the interpreter includes the tail of a
partially evaluated implicit PROGN (e.g., a cond clause or lambda
expression) and the tail of a partially evaluated form (i.e., those
arguments not yet evaluated), both indicated on the backtrace
by *TAll *, the values of arguments that have already been
evaluated, indicated by * ARGVAl *, and the names of functions
waiting to be called, indicated by *FN*. *ARG1, ... , *ARGn are
used by the backtrace to indicate the (unnamed) arguments to
SUBRs.

Note that a function is not actually entered and does not appear
on the stack, until its arguments have been evaluated (except for
nlambda functions, of course). Also note that the * ARG1,

11.15

THE STACK AND THE INTERPRETER

FORM, *TAIL *, etc. "bindings" comprise the actual working
storage. In other words, in the above example, if a (lower)
function changed the value of the *ARG1 binding, the COND
would continue interpreting the new binding as a list of COND
clauses. Similarly, if the * ARGVAL * binding were changed, the
new value would be given to ITIMES as its first argument after its
second argument had been evaluated, and ITIMES was actually
called.

Note that *FORM*, *TAIL*, *ARGVAL*, etc., do not actually
appear as variables on the stack, i.e., evaluating *FORM* or
calling STKSCAN to search for it will not work. However, the
functions BLIPVAL, SETBLlPVAL, and BLiPSCAN described below
are available for accessing these internal blips. These functions
currently know about four different types of blips:

FN The name of a function about to be called.

*ARGVAL * An argument for a function about to be called.

FORM A form in the process of evaluation.

*TAIL * The tail of a COND clause, implicit PROGN, PROG, etc.

(BLlPVAL BLIPTYP IPOS FLG) [Function]

Returns the value of the specified blip of type BLIPTYP. If FLG is a
number N, finds the Nth blip of the desired type, searching the
control chain beginning at the frame specified by the stack
descriptor IPOS. If FLG is NIL, 1 is used. If FLG is T, returns the
num ber of bli ps of the specified type at IPOS.

(SETBLlPVAL BLIPTYP IPOS N VAL) [Function]

Sets the value of the specified blip of type BLIPTYP. Searches for
the Nth blip of the desired type, beginning with the frame
specified by the stack descriptor IPOS, and following the control
chain.

(BLIPSCAN BLIPTYP IPOS) [Function]

Returns a stack pointer to the frame in which a blip of type
BUPTYP is located. Search begins at the frame specified by the
stack descriptor IPOS and follows the control chain.

11 a4 Generators

11 16

A generator is like a subroutine except that it retains information
about previous times it has been called. Some of this state may
be data (for example, the seed in a random number generator),
and some may be in program state (as in a recursive generator

VARIABLE BINDINGS AND THE INTERUSP STACK

GENERATORS

which finds all the atoms in a list structure). For example, if
LlSTGEN is defined by:

{DEFINEQ {LiSTGEN (L)

{if L then {PRODUCE (CAR L»

(LISTGEN (CDR L»»

we can use the function GENERATOR (descri bed below) to create
a generator that uses LlSTGEN to produce the elements of a list
one at a time, e.g.,

{SETQ GR {GENERATOR (LiSTGEN I{A B C»»

creates a generator, which can be called by

(GENERATE GR)

to produce as values on successive calls, A, B, C. When GENERATE

(not GENERATOR) is called the first time, it simply starts
evaluating {LiSTGEN '(A B C». PRODUCE gets called from
LISTGEN, and pops back up to GENERATE with the indicated.
value after saving the state. When GENERATE gets called again,
it continues from where the last PRODUCE left off. This process
continues until finally LlSTGEN completes and returns a value (it
doesn't matter what it is). GENERATE then returns GR itself as its
value, so that the program that called GENERATE can tell that it
is finished, i.e., there are no more values to be generated.

(GENERATOR FORM COMVAR) [NLambda Function]

(PRODUCE VAL)

(GENERATE HANDLE VAL)

VARIABLE BINDINGS AND TH E INTERLISP STACK

An nlambda function that creates a generator which uses FORM
to compute values. GENERATOR returns a generator handle
which is represented by a dotted pair of stack pointers.

COMVAR is optional. If its value (EVAL of) is a generator handle,
the list structure and stack pointers will be reused. Otherwise, a
new generator handle will be constructed.

GENERATOR compiles open.

[Function]

Used from within a generator to return VAL as the value of the
corresponding call to GENERATE.

[Function]

Restarts the generator represented by HANDLE. VAL is returned
as the value of the PRODUCE which last suspended the operation
of the generator. When the generator runs out of values,
GENERATE returns HANDLE itself.

Examples:

11.17

GENERATORS

11.5 Coroutines

11.18

The following function will go down recursively through a list
structure and produce the atoms in the list structure one at a
time.

(DEFI NEQ (lEA VESG (l)
(if (ATOM l)
then (PRODUCE l)
else (lEAVESG (CAR l»

(if (CDR l)
then (lEAVESG (CDR l)]

The following function prints each of these atoms as it appears.
It illustrates how a loop can be set up to use a generator.

(DEFINEQ (PlEAVESG1 (l)
(PROG (X lHANDlE)

(SETQ lHANDlE (GENERATOR (lEAVESG l»)
lP (SETQ X (GENERATE lHANDlE»

(if (EQ X lHANDlE)
then (RETURN Nil»

(PRINT X)

(GO lP»]

Note that the loop terminates when the value of the generator is
EQ to the dotted pair which is the value produced by the call to
GENERATOR. A eLlsP iterative operator, OUTOF, is provided
which makes it much easier to write the loop in PLEAVESG1.
OUTOF (or outof) can precede a form which is to be used as a
generator. On each iteration, the iteration variable will be set to
successive values returned by the generator; the loop will be
terminated automatically when the generator runs out.
Therefore, the following is equivalent to the above program
PlEAVESG1:

(DEFINEQ (PLEAVESG2 (l)
(for X outof (lEAVESG l) do (PRINT x»]

Here is another example; the following form will print the first N

atoms.

(for X outof (MAPATOMS (FUNCTION PRODUCE»
as I from 1 to N do (PRINT X»

This package provides facilities for the creation and use of fully
general coroutine structures. It uses a stack pointer to preserve
the state of a coroutine, and allows arbitrary switching between
N different coroutines, rather than just a call to a generator and
return. This package is slightly more efficient than the generator

VARIABLE BINDINGS AND THE INTERUSP STACK

COROUTINES

package described above, and allows more flexibility on
specification of what to do when a coroutine terminates.

(COROUTINE CALLPTR COROUTPTR COROUTFORMENDFORM) [N Lam bda Function]

This nlambda function is used to create a coroutine and initialize
the linkage. CALLPTR and COROUTPTR are the names of two
variables, which will be set to appropriate stack pointers. If the
values of CALLPTR or COROUTPTR are already stack pointers, the
stack pointers will be reused. COROUTFORM is the form which is
evaluated to start the coroutine; ENDFORM is a form to be
evaluated if COROUTFORM actually returns when it runs out of
values.

COROUTINE compiles open.

(RESUME FROMPTR TOPTR VAL) [Function]

VARIABLE BINDINGS AND THE INTERLISPSTACK

Used to transfer control from one coroutine to another.
FROMPTR should be the stack pointer for the current coroutine,
which will be smashed to preserve the current state. TOPTR
should be the stack pointer which has preserved the state of the
coroutine to be transferred to, and VAL is the value that is to be
returned to the latter coroutine as the value of the RESUME
which suspended the operation of that coroutine.

For example, the following is the way one might write the
LEAVES program using the coroutine package:

(DEFINEQ (LEAVESC (L COROUTPTR CALLPTR)
(if (ATOM L)
then (RESUME COROUTPTR CALLPTR L)
else (LEAVESC(CAR L) COROUTPTR CALLPTR)

(if (CDR L) then (LEAVESC (CDR L) COROUTPTR CALLPTR»»]

A function PLEAVESC which uses LEAVESC can be defined as
follows:

(DEFINEQ (PLEAVESC (L)
(bind PLHANDLE LHANDLE
first (COROUTINE PlHANDLE LHANDLE

(LEAVESC L LHANDLE PlHANDLE)
(RETFROM 'PlEAVESC)

do (PRINT (RESUME PLHANDLE LHANDLE))]

By RESUMEing LEAVESC repeatedly, this function will print all
the leaves of list L and then return out of PLEAVESC via the
RETFROM. The RETFROM is necessary to break out of the
non-terminating do-loop. This was done to illustrate the
additional flexibility allowed through the use of ENDFORM.

We use two coroutines working on two trees in the example
EQLEAVES, defined below. EQLEAVES tests to see whether two

11.19

COROUTINES

11.6 Possibilities Lists

(POSSIBILITIES FORM)

(NOTE VAL LSTFLG)

trees have the same leaf set in the same order, e.g., (EQlEAVES
'(A B C) '(A B (C») is true.

(DEFINEQ (EQLEAVES (L 1 L2)
(bind lHANDlE1 LHANDlE2 PE El1 El2
first (COROUTINE PE lHANDLE1 (LEAVESC L 1lHANDlE1 PE)

'NO-MORE)
(COROUTINE PE LHANDlE2 (LEAVESC l2 LHANDlE2 PE)

'NO-MORE)
do (SETQ EL 1 (RESUME PE lHANDlE1»

(SETQ EL2 (RESUME PE LHANOlE2»
(if (NEQ EL 1 EL2)
then (RETURN Nil»

repeatuntil (EQ EL 1 'NO·MORE)
finally (RETURN T»)]

A possibilities list is the interface between a generator and a
consumer. The possibilities list is initialized by a call to
POSSIBILITIES, and elements are obtained from it by using
TRVNEXT. By using the spaghetti stack to maintain separate
environments, this package allows a regime in which a generator
can put a few items in a possibilities list, suspend itself until they
have been consumed, and be subsequently aroused and
generate some more.

[NLambda Function]

This nlambda function is used for the initial creation of a
possibilities list. FORM will be evaluated to create the list. It
should use the functions NOTE and AU-REVOIR described below
to generate possibilities. Normally, one would set some variable
to the possibilities list which is returned, so it can be used later,
e.g.:

(SETQ PliST (POSSIBILITIES (GENERFN V1 V2»).

POSSIBILITIES compiles open.

[Function]

Used within a generator to put items on the possibilities list
being generated. If LSTFLG is equal to Nil, VAL is treated as a
single item. If LSTFLG is non-NIL, then the list VAL is NCONCed on
the end of the possibilities list. Note that it is perfectly
reasonable to create a possibilities list usi ng a second generator,
and NOTE that list as possibilities for the current generator with

-----------------------------------.---11.20 VARIABLE BINDINGS AND THE INTERUSP STACK

(AU-REVOI R VAL)

(ADIEU VAL)

POSSIBILITIES LISTS

LSTFLG equal to T. The lower generator will be resumed at the
appropriate poi nt.

[NoSpread Function]

Puts VAL on the possibilities list if it is giver), and then suspends
the generator and returns to the consumer in such a fashion that
control will return to the generator at the AU-REVOIR if the
consumer exhausts the possibilities list.

Note: NIL is not put on the possibilities list unless it is explicitly
given as an argument to AU-REVOIR, i.e., (AU-REVOIR) and
(AU-REVOIR NIL) are not the same. AU-REVOIR and ADIEU are
lambda nospreads to enable them to distinguish these two cases.

[NoSpread Function]

Like AU-REVOIR except releases the generator instead of
suspending it.

(TRYNEXT PLST ENDFORM VAL) [N Lam bda Function]

(CLEANPOSLST PLSn

VARIABLE BINDINGS AND THE INTERLISPSTACK

This nlambda function allows a consumer to use a possibilities
list. It removes the first item from the possibilities list named by
PLST(i.e. PLST must be an atom whose value is a possiblities list),
and returns that item, provided it is not a generator handle. If a
generator handle is encountered, the generator is reawakened.
When it returns a possibilities list, this list is added to the front of
the current list. When a call to TRYNEXT causes a generator to be
awakened, VAL is returned as the value of the AU-REVOIR which
put that generator to sleep. If PLST is empty, it evaluates
ENDFORM in the caller's environment.

TRYNEXT compiles open.

[Function]

This function is provided to release any stack pointers which may
be left in the PLSTwhich was not used to exhaustion.

For example, FIB is a generator for fibonnaci numbers. It starts
out by NOTEing its two arguments, then suspends itself.
Thereafter, on being re-awakened, it will NOTE two more terms
in the series and suspends again. PRINTFIB uses FIB to print the
first N fibonacci numbers.

(DEFINEQ (FIB (F1 F2)
(do (NOTE F1)

(NOTE F2)
(SETQ F1 (lPLUS F1 F2»
(SETQ F2 (IPlUS F1 F2»
(AU-REVOIR)]

11.21

POSSIBILITIES LISTS

1122

Note that this AU-REVOIR just suspends the generator and adds
nothing to the possibilities list except the generator.

(DEFINEQ (PRINTFIB (N)

(PROG «Fl (POSSIBILITIES (FIB 0 1»»

(RPTQ N (PRINT (TRYNEXT Fl»)

(CLEANPOSlST FL)]

Note that FIB itself will never terminate.

VARIABLE BINDINGS AND THE INTERLISP STACK

TABLE OF CONTENTS

12. Miscellaneous 12. 1

12.1. Greeting and Initialization Files 12. 1

12.2. Idle Mode 12.4

12.3. Saving Virtual Memory State 12.6

12.4. System Version Information 12.11

12.5. Date And Time Functions 12.13

12.6. Timers and Duration Functions 12.16

12.7. Resources 12.19

12.7.1. A Simple Example 12.20

12.7.2. Trade-offs in More Complicated Cases 12.22

12.7.3. Macros for Accessing Resources 12.23

12.7.4. Saving Resources in a File' 12.23

12.8. Pattern Matching 12.24

12.8.1. Pattern Elements 12.25

12.8.2. Element Patterns 12.25

12.8.3. Segment Patterns 12.27

12.8.4. Assignments 12.28

12.8.5. Place-Markers 12.29

12.8.6. Replacements 12.29

12.8.7. Reconstruction 12.30

12.8.8. Examples 12.31

TABLE OF CONTENTS TOCl

TABLE OFCONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

12. MISCELLANEOUS

12.1 Greeting and Initialization Fil~s

MISCELLANEOUS

Many of the features of Interlisp are controlled by variables that
the user can adjust to his or her own tastes. In addition, the user
can modify the action of system functions in ways not specifically
provided for by using ADVISE (page 15.11). In order to
encourage customizing the Interlisp environment, Interlisp
includes a facility for automatically loading initialization files (or
"init files") when an Interlisp system is first started. Each user can
have a separate "user init file" that customizes the Interlisp
environment to his/her tastes. In addition, there can be a "site
init file" that applies to all users at a given physical site, setting
system variables that are the same for all users such as the name
of the nearest printer, etc.

The process of loading init files, also known as "greeting""
occurs when an Interlisp system created by MAKESYS (page 12.9)
is started for the first time. The user can also explicitly invoke the
greeting operation at any time via the function GREET (below).
The process of greeting includes the following steps:

(1) Any previous greeting operation is undone. The side effects of
the greeting operation are stored on a global variable as well as
on the history list, thus enabling the previous greeting to be
undone even if it has dropped off of the bottom of the history
list.

(2) All of the items on the list PREGREETFORMS are evaluated:

(3) The site init file is loaded. GREET looks for a file by the name
{DSK}INIT.LlSP. If this is found, it is loaded. If it is not found, the
system prints "Please enter name of system init file (e.g.
{server}<directory>INIT.extension):" and waits for the user to
type a file name, followed by a carriage return. If the user just
types a carriage return without typing a file name, no site init file
is loaded. Note: The site init file is loaded with LDFLG set to
SYSLOAD, so that no file package information is saved, and
nothing is printed out.

(4) The user init file is loaded. The user init file is found by using the
variable USERGREETFILES (described below), which is normally
set in the site init file. The user init file is loaded with normal file

12.1

GREETING AND INITIALIZATION FILES

(GREET NAME-)

package settings, but under errorset protection and with
PRETTYHEADER set to NIL to suppress the "FILE CREATED"

message.

(5) All of the items on the list POSTGREETFORMS are evaluated.

(6) A greeting is printed such as "Hello, XXX.", where XXX is the
value of the variable FIRSTNAME (if non-NIL). The variable
GREETDATES (below) can be set to modify this greeting for
particular dates.

[Function]

Performs the greeting for the user whose username is NAME (if
NAME = NIL, uses the login name). When Interlisp first starts u P,
it performs (GREET).

(GREETFILENAME USER) [Function]

USERGREETFtLES

GREETDATES

12.2

If USER is T, GREETFILENAME returns the file name of the site init
file, asking the user if it doesn't exist. Otherwise, USER is
interpreted to be a user's system name, and GREETFILENAME
returns the file name for the user init file (if it exists).

[Variable]

USERGREETFILES specifies a series of file names to try as the user
init file. The value of USERGREETFILES is a list, where each
element is a list of litatoms. For each item in USERGREETFILES,
the user name is substituted for the litatom USER and the value.
of COMPILE.EXT (page 18.13) is substituted for the litatom COM,
and the litatoms are packed into a single file name. The first such
file that is found is the user init file.

For example, suppose that the value of USERGREETFILES was

«{ERIS}< USER >LlSP>INIT. COM)
({ERIS}< USER >LlSP>INln
({ERIS}< USER >INIT. COM)
({ERIS}< USER >INIT»

If the user name was JONES, and the value of COMPILE.EXT was
DCOM, then this would search for the files
{ERIS}<JONES>LlSP>INIT.DCOM, {ERIS}<JONES>USP>INIT,
{ERIS}<JONES>INIT.DCOM, and {ERIS}<JONES>INIT.

Note: The file name "specifications" in USERGREETFILES should
be fully qualified, including all host and directory information.
The directory search path (the value of DIRECTORIES, page 24.31)
is not used to find the user greet files.

[Variable]

The value of GREETDATES can be used to specify special greeting
messages for various dates. GREETDATES is a list of elements of

MISCELLANEOUS

MISCELLANEOUS

GREETING AND INITIALIZATION FILES

the form (DATESTRING . STRING), e.g. ("2S-DEC" . "Merry
Christmas"). The user can add entries to this list in his/her
INIT.LlSP file by using a ADDVARS file package command like
(ADDVARS (GREETDATES ("S-FEB" . "Happy Birthday"»). On the
specified date, the GREET will use the indicated salutation.

Note: Users should try to make sure that their init file is
"undoable". If they use the file package command lip" (page
17.40) to put expressions on the file to be evaluated, they should
use the "undoable" version, e.g. ISETSYNTAX rather than
SETSYNTAX, etc (see page 13.26). This is so another user can
come up, do· a (GREET) and have the first user's initialization
undone.

It is impossible to give a complete list of all of the variables and
functions that users may want to set in their init files. The
default values for system variables are chosen in the hope that
they will be correct for the majority of users, so many users get
along with very small init files. The following describes some of
the variables that users may want to reset in their init files:

Directories The variables DIRECTORIES and LISPUSERSDIRECTORIES (page
24.31) contain lists of directories used when searching for files.
LOGINHOST/DIR (page 24.11) determines the default directory
used when calling CONN with no argument.

Fonts and Printing The variables DISPLA YFONTDIRECTORIES,
DISPLA YFONTEXTENSI ON S, I NTERPRESSFONTDI RECTO RI ES, and
PRESSFONTWIDTHSFILES (page 27.31) must be set before fonts
can be automatically loaded from files. OEFAULTPRINTINGHOST
(page 29.4) should be· set before attempting to generate
hardcopy to a printer.

Network Systems CH.OEFAULT.ORGANIZATION and CH.DEFAULT.DOMAIN (page
31.8) should be set to the default NS organization and domain,
when using NS network communications. If CH.NET.HINT (page
31.9) is set, it can reduce the amount of time spent searching for
a clearinghouse.

Interlisp-D Executive The variable PROMPT#FLG (page 13.22) determines whether an
"event number" is printed at the beginning of every input line.
The function CHANGESLICE (page 13.21) can be used to change
the number of events that are remembered on the history list.

Copyright Notices COPYRIGHTFLG, COPYRIGHTOWNERS, and
OEFAULTCOPYRIGHTOWNER (page 17.53) control the inclusion
of copyright notices on source files.

Printing Functions **COMMENT**FLG (page 26.43) determines how program
comments are printed. FIRSTCOL, PRETTYFLG, and
CLiSPIFYPRETTYFLG (page 26.47) are among the many variables
controlling how functions are pretty printed.

12.3

GREETING AND INITIALIZATION FILES

List Structure Editor

12.2 Idle Mode

I OLE.PROFI LE

TIMEOUT

12.4

The variable INITIALSLST (page 16.76) is used when
"time-stamps" are inserted in a function when it is edited.
EDITCHARACTERS (page 16.76) is used to set the read macros
used in the teletype editor.

The Interlisp-D environment runs on small single-user computers,
usually located in users' offices. Often, users leave their
computers up and running for days, which can cause several
problems. First, the phosphor in the video display screen can be
perminantly marked if the same pattern is displayed for a long
time (weeks). Second, if the user goes away, leaving an
Interlisp-D system running, another person could possibly walk
up and use the environment, taking advantage of any passwords
that had been entered. To solve these problems, the Interlisp~D
environment implements the concept of "idle mode."

If no keyboard or mouse action has occurred for a specified time,
the Intertisp-D environment automatically enters idle mode.
While idle mode is on, the display screen is blacked out, to
protect the phosphor. Idle mode also runs a program to display
some moving pattern on the black screen, so the screen doesn't
appear broken. Usually, idle mode can be exited by pressing any
key on the keyboard or mouse. However, the user can optionally
specify that idle mode should erase the current password cache
when it is entered, and require the next user to supply a
password to exit idle mode.

Note: If either shift key is pressed while Interlisp-D is in idle
mode, the current user name and the amount of time spent
idling are displayed in the prompt window (which appears as
long as the shift key is held down).

Idle mode can also be entered by calling the function IDLE, or by
selecting the Idle menu command from the background menu
(page 28.6). The Idle menu command has subitems that allow
the user to interactively set the idle options (display program,
erasing password, etc.) specified by the variable IDLE.PROFILE:

[Variable]

The value of this variable is a property list (page 3.15) which
controls most aspects of idle mode. The following properties are
recognized:

Value is a number that determines how long (in minutes)
Interlisp-D will wait before automatically entering idle mode. If
NIL, idle mode will never be entered automatically. Default is 10
minutes.

MISCELLANEOUS

IDLE MODE

FORGET If non-NIL, the user's password will be erased when idle mode is
entered. Default is NIL (don't erase password).

ALLOWED.LOGINS

DISPLAYFN

SAVEVM

RESETVARS

Note: If the password is erased, any programs left running when
idle mode is entered will fail if they try doing anything requiring
passwords (such as accessing file servers).

Determines who can exit idle mode, as follows:

If the value is NIL, idle mode is exited without requesting login.

If the value is LOGIN (the default), login is required, but anyone
is allowed to exit idle mode. This will overwrite the previous
user's user name and password each time idle mode is exited.

If the value is one of AUTHENTICATE, NS.AUTHENTICA TE, or
GV.AUTHENTICATE, login is required and the password is
checked with the net. Only allow users with accounts to exit idl e
mode. NS.AUTHENTICATE or GV.AUTHENTICATE specify that NS
or grapevine authentication must be used, respectively.
AUTHENTICATE indicates that either type of authentication can
be tried.

If the value is a list, it should be a list of group and/or user names.
The value T in the list means the user who was using the machine
before idle mode was entered. If the value is a list, idle mode will
only be exited if: (a) the new user's user name is in this list, (b)
the new user is a member of a group whose name is on this list,
or (c) if T is a member of the list, and the same user logs in with
the same password.

The value of this property, which should be a function name or
lambda expression, is called to display a moving pattern on the
screen while in idle mode. This function is called with one
argument, a window covering the whole screen. The default is
IDLE.BOUNCING.BOX (below).

Note: Any function used as a DISPLA YFN should call BLOCK
(page 23.5) frequently, so other programs can run during idle
mode.

Value is a number that determines how long (in minutes) after
idle mode is entered that SAVEVM (page 12.7) will be called to
save the virtual memory. If NIL, SAVEVM is never called
automatically from idle mode. Default is 10 minutes.

Value is a list of two-element lists: «VAR1 EXP1) (VAR2 EXP2) ...).

On entering idle mode, each variable VARN is bound to the value

of the corresponding expression EXPN' When idle mode is

exited, each variable VARN is reset to its original value.

SUSPEND.PROCESS.NAMES Value is a list of names. For each name on this list, if a process by
that name is found, it will be suspended upon entering idle
mode and woken upon exiting idle mode.

M ISCELLAN EOUS 12.5

IDLE MODE

IDLE.FUNCTIONS [Variable]

The value of this variable determines the menu raised by
selecting the Oisplay subitem of the Idle background menu
command. It should be in the format used for the ITEMS field of
a menu (page 28.39), with the selection of an item returning the
appropriate display function.

(lDLE.BOUNCING.BOX WINDOW BOX WAin [Function]

This is the default display function used for idle mode. BOX is
bounced about WINDOW, with bounces taking place every WAIT
milliseconds. BOX can be a string, a bitmap, a window (whose
image will be bounced about), or a list containing any number of
these (which will be cycled through). BOX defaults to the value
of the variable IDLE.BOUNCING.BOX, which is is initially the
string "Interlisp-O". WAITdefaults to 1000 (one second).

12.3 Saving Virtual Memory State

12.6

Interlisp storage allocation occurs within a virtual memory space
that is usually much larger than the physical memory on the
computer. The virtual memory is stored as a large file on the
computer's hard disk, called the virtual memory file. Interlisp
controls the swapping of pages between this file and the real
memory, swapping in virtual memory pages as they are accessed,
and swapping out pages that have been modified. At any
moment, the total state of the Interlisp virtual memory is stored
partially in the virtual memory file, and partially in the real
physical memory.

Interlisp provides facilities for saving the total state of the virtual
memory, either on the virtual memory file, or in a file on an
arbitrary file device. The function LOGOUT is used to write all
altered (dirty) pages from the real memory to the virtual memory
file and stop Interlisp, so that Interlisp can be restarted from the
state of the LOGOUT. SAVEVM updates the virtual memory file
without stopping Interlisp, which puts the virtual memory file
into a consistant state (temporarily), so it could be restarted if
the system crashes. SYSOUT and MAKESYS are used to save a
copy of the total virtual memory state on a file, which can be
loaded into another machine to restore the Interlisp state.
VMEM.PURE.STATE can be used to "freeze" the current state of
the virtual memory, so that Interlisp will come up in that state if
it is restarted.

MISCELLANEOUS

(LOGOUT FASn

(SAVEVM-)

SAVEVMWAIT

SAVEVMMAX

MISCELLANEOUS

SAVING VIRTUAL MEMORY STA TE

[Function]

Stops Interlisp, and returns control to the operating system. If
Interlisp is restarted, it should come up in the same state as when
the LOGOUT was called. LOGOUT will not affect the state of
open files.

LOGOUT writes out all altered pages from real memory to the
virtual memory file. If FAST is T, Interlisp is stopped without
updating the virtual memory file. Note that after doing LOGOUT
T) it will not be possible to restart Interlisp from the point of the
LOGOUT, and it may not be possible to restart it at all. Typing
(LOGOUT T) is preferable to just booting the machine, because it
also does other cleanup operations (closing network
connections, etc.).

If FAST is the litatom 7, LOGOUT acts like FLG = T if the virtual
memory file is consistant, otherwise it acts like FLG = NIL. This
insures that the virtual memory image can be restarted as of
some previous state, not necessarily as of the LOGOUT.

[Function]

This function is similar to logging out and continuing, but faster.
It takes about as long as a logout, which can be as brief as 10
seconds or so if you have already written out most of your dirty
pages by virtue of being idle a while. After the SAVEVM, and
until the pagefault handler is next forced to write out a dirty
page, your virtual memory image will be continuable (as of the
SAVEVM) should there be a system crash or other disaster.

If the system has been idle long enough (no keyboard or mouse
activity), there are dirty pages to be written, and there are few
enough dirty pages left to write that a SAVEVM would be quick,
SAVEVM is automatically called. When SAVEVM is called

automatically, the cursor is changed to a special cursor: $rt~G,
stored in the variable SAVINGCURSOR. You can control how
often SAVEVM is automatically called by setting the following
two global variables:

[Variable]

[Variable]

The system will call SAVEVM after being idle for SAVEVMWAIT
seconds (initially 300) if there are fewer than SAVEVMMAX
pages dirty (initially 600). These values are fairly conservative. If
you want to be extremely wary, you can set SAVEVMWAIT = a
and SAVEVMMAX = 10000, in which case SAVEVM will be called
the first chance available after the first dirty page has been
written.

12.7

SAVING VIRTUAL MEMORY STATE

(SYSOUT FILE)

12.8

The function SYSOUT saves the current state of the Interlisp
virtual memory on a file, known as a "sysout file", or simply a
"sysout". The file package can be used to save particular
function definitions and other arbitrary objects on files, but
SYSOUTsaves the total state of the system. This capability can be
useful in many situations: for creating customized systems for
other people to use, or to save a particular system state for
debugging purposes. Note that a sysout file can be very large
(thousands of pages), and can take a long time to create, so it is
not to be done lightly. The file produced by SYSOUT can be
loaded into the Interlisp virtual memory and restarted to restore
the virtual memory to the exact state that it had when the sysout
file was made. The exact method of loading a sysout depend on
the implementation. For more information on loading sysout
files, see the users guide for your computer.

[Function]

Saves the current state of the Interlisp virtual memory on the file
FILE, in a form that can be subsequently restarted. The current
state of program execution is saved in the sysout file, so (PROGN
(SYSOUT 'FOO) (PRINT 'HELLO» will cause HELLO to be printed
a~fter the sysout file is restarted.

SYSOUT can take a very long time (ten or fifteen minutes),
particularly when storing a file on a remote file server. To display
some indication that something is happening, the cursor is

SI'S
changed to: OIJT. Also, as the sysout file is being written, the
cursor is inverted line by line, to show that activity is taking place,
and how much of the sysout has completed. For example, after
the SYSOUT is about two-thirds done, the cursor would look

like: e. The SYSOUT cursor is stored in the variable
SYSOUTCURSOR.

If FILE is non-NIL, the variable SYSOUTFILE is set to the body of
FILE. If FILE is NIL, then the value of SYSOUTFILE instead.
Therefore, (SYSOUT) will save the current state on the next
higher version of a file with the same name as the previous
SYSOUT. Also, if the extension for FILE is not specified, the value
of SYSOUT.EXT is used. SYSOUT sets SYSOUTDATE (page 12.13)
to (DATE), the time and date that the SYSOUTwas performed.

If SYSOUT was not able to create the sysout file, because of disk
or computer error, or because there was not enough space on
the directory, SYSOUT returns NIl. Otherwise it returns the full
file name of FILE.

Actually, SYSOUT "returns" twice; when the sysout file is first
created, and when it is subsequently restarted. In the latter case,
SYSOUT returns a list whose CAR is the full file name of FILE. For
example, (if (LlSTP (SYSOUT 'FOO» then (PRINT 'HELLO» will

MISCELLANEOUS

SYSOUTGAG

(MAKESYS FILE NAME)

MISCELLANEOUS

SAVING VIRTUAL MEMORY STATE

cause HELLO to be printed when the sysout file is restarted, but
not when SYSOUT is initially performed.

Note: SYSOUT does not save the state of any open files.
WHENCLOSE (page 24.20) can be used to associate certain
operations with open files so that when a SYSOUT is started up,
these files will be reopened, and file pointers repositioned.

SYSOUT evaluates the expressions on BEFORESYSOUTFORMS
before creating the sysout file. This variable initially includes
expressions to: (1) Set the variables SYSOUTDATE and
SYSOUTFILE as described above; (2) Default the sysout file name
FILE according to the values of the variables SYSOUTFILE and
SYSOUT.EXT, as described above; and (3) Perform any necessary
operations on open files as specified by calls to WHENCLOSE
(page 24.20).

After a sysout file is restarted (but not when it is initially created),
SYSOUT evaluates the expressio'ns on AFTERSYSOUTFORMS.
This initially includes expressions to: (1) Perform any necessary
operations on previously-opened files as specified by calls to
WHENCLOSE (page 24.20); (2) Possibly print a message, as
determined by the value of SYSOUTGAG (see below); and (3)
Call SETINITIALS to reset the initials used for time-stamping
(page 16.76).

[Variable]

The value of SYSOUTGAG determines what is printed when a
sysout file is restarted. If the value of SYSOUTGAG is a list, the
list is evaluated, and no additional message is printed. This
allows the user to print a message. If SYSOUTGAG is non-NIL and
not a list, no message is printed. Finally, if SYSOUTGAG is NIL (its
initial value), and the sysout file is being restarted by the same
user that made the sysout originally, the user is greeted by
printing the value of HERALDSTRING (see below) followed by a
greeting message. If the sysout file was made by a different user,
a message is printed, warning that the currently-loaded user init
file may be incorrect for the current user (see page 12.1);

[Function]

Used to store a new Interlisp system on the" makesys file" FILE.

Similar to SYSOUT, except that before the file is made, the
system is "initialized" by undoing the greet history, and clearing
the display.

When the system is first started up, a "herald" is printed
identifying the system, typically "Interlisp-XX DATE ... ". If NAME

is non-NIL, MAKESYS will use it instead of Interfisp-XX in the
herald. MAKESYS sets HERALDSTRING to the herald ,string
printed out.

129

SAVING VIRTUAL MEMORY STATE

BACKGROUNpPAGEFREQ

(VMEM.PURE.STATE X)

(REALMEMORYSIZE)

12.10

MAKESYS also sets the variable MAKESYSDATE (page 12.13) to

(DATE), i.e. the time and date the system was made.

Interlisp-D contains a routine that writes out dirty pages of the
virtual memory during I/O wait, assuming that swapping has
caused at least one dirty page to be written back into the virtual
memory file (making it non-continuable). The frequency with
which this routine runs is determined by:

[Variable]

This variable determines how often the routine that writes out
dirty pages is run. The higher BACKGROUNDPAGEFREQ is set,
the greater the time between running the dirty page writing
routine. Initially it is set to 4. The lower
BACKGROUNDPAGEFREQ is set, the less responsiveness you get
at typein, so it may not be desirable to set it all the way down to
1.

[NoSpread Function]

VMEM.PURE.STATE modifies the swapper's page replacement
algorithm so that dirty pages are only written at the end of the
virtual memory backing file. This "freezes" a given virtual
memory state, so that Interlisp will come up in that state
whenever it is restarted. This can be used to set up a "clean"
environment on a pool machine, allowing each user to initialize
the system simply by rebooting the computer.

The way to use VMEM.PURE.STATE is to set up the environment
as you wish it to be "frozen," evaluate (VMEM.PURE.STATE T),
and then call any function that saves the virtual memory state
(LOGOUT, SAVEVM, SYSOUT, or MAKESYS). From that point on,
whenever the system is restarted, it will return to the state as of
the saving operation. Future LOGOUT, SAVEVM, etc. operations
will not reset this state.

Note: When the system is running in "pure state" mode, it uses a
significant amount of the virtual memory backing file to save the
"frozen" memory image, so this will reduce the amount of
virtual memory space available for use.

(VMEM.PURE.STATE) returns T if the system is running in "pure
state" mode, NIL otherwise.

[Function]

Returns the number of real memory pages in the computer.

MISCELLANEOUS

(VMEMSIZE)

\LASTVMEMFILEPAGE

SAVING VIRTUAL MEMORY STATE

[Function]

Returns the number of pages in use in the virtual memory. This is
the roughly the same as the number of pages required to make a
sysout file on the local disk (see SYSOUT, page 12.8).

[Variable]

Value is the total size of the virtual memory backing file. This
variable is set when the system is started. It should not be set by
the user.

Note: When the virtual memory expands to the point where the
virtual memory backing file is almost full, a break will occur with
the warning message "Your virtual memory backing file is
almost full. Save your work & reload asap." When this happens,
it is strongly suggested that you save any important work and
reload the system. If you continue working past this point, the
system will start slowing down considerably, and it will
eventually stop working.

12.4 System Version Information

MISCELLANEOUS

Interlisp-D runs on a number of different machines, with many
possible hardware configurations. There have been a number of
different releases of the Interlisp-D software. These facts make it
difficult to answer the important question "what
software/hardware environment are you running?" when
reporting bugs. The following functions allow the novice to
collect this information.

(PRINT-LlSP-INFORMA TlON STREAM FILESTRING) [NoSpread Function]

Prints out a summary of the software and hardware environment
that Interlisp-D is running in, and a list of all loaded patch files:

Interlisp-D version KOTO of 10-Sep-85 08:25:46
on 1108, microcode 5658,8191 pages,
machine 222#0.125000.34652#0 on
Interlisp-D version 9-Sep-8518:54:29
Patch files: GCPATCH dated 11-Sep-8510:56:37

STREAM is the stream used to print the summary. If not given, it
defaults to T.

FILESTRING is a string used to determine what loaded files should
be listed as "patch files." All file names on LOADEDFILELST
(page 17.20) that have FILESTRING as a substring as listed. If
FILESTRING is not given, it defaults to the string" PATCH" .

12.11

SYSTEM VERSION INFORMA TION

12.12

(LISP-I MPLEMENTA TION-TYPE) [Function]

Returns a string identifying the type of Interlisp implementation
that is running, e.g., "Interlisp-D" .

(LlSP-IMPLEMENTATION-VERSION) [Function]

(SOFTWARE-TYPE)

(SOFTWARE-VERSION)

(MACHINE-TYPE)

(MACHINE-VERSION)

(MACHINE-INSTANCE)

(SHORT -SITE-NAM E)

(LONG-SITE-NAME)

Returns a string identifying the version of Interlisp that is
running. Currently gives the system name and date, e.g., "KOTO
of 10-Sep-85 08:25:46".

This uses the variables MAKESYSNAME and MAKESYSDATE
(below), so it will change if the user uses MAKESYS (page 12.9) to
create a custom sysout file, or explicitly changes these variables.

[Function]

Returns a string identifying the operating system that Interlisp is
running under. Currently returns the string "Interlisp-D".

[Function]

Returns a string identifying the version of the operating system
that Interlisp is running under. Currently, this returns the date
that the Interlisp-D release was originally created, so it doesn't
change over MAKESYS or SYSOUT.

[Function]

Returns a string identifying the type of computer hardware that
Interlisp-D is running on, i.e., "1108" , " 1132", " 1186", etc.

[Function]

Returns a string identifying the version of the computer
hardware that Interlisp-D is running on. Currently returns the
microcode version and real memory size.

[Function]

Returns a string identifying the particular machine that
Interlisp-D is running on. Currently returns the machine's NS
address.

[Function]

Returns a short string identifying the site where the machine is
located. Currently returns (ETHERHOSTNAME) (if non-NIL) or the
string "unknown".

[Function]

Returns a long string identifying the site where the machine is
located. Currently returns the same as SHORT-SITE-NAME.

MISCELLANEOUS

SYSOUTDATE

MAKESYSDATE

MAKESYSNAME

(SYSTEMTYPE)

(MACHINETYPE)

12.5 Date And Time Functions

(DA TE FORMA n

(I DATE STR)

MISCELLANEOUS

SYSTEM VERSION INFORMATION

[Variable]

Value is set by SYSOUT (page 12.8) to the date before generating
a virtual memory image file.

[Variable]

Value is set by MAKESYS (page 12.9) to the date before
generating a virtual memory image file.

[Variable]

Value is a litatom identifying the release name of the current
Interlisp-D system, e.g., KOTO.

[Function]

The SYSTEMTYPE function is intended to allow programmers to
write system-dependent code. SYSTEMTYPE returns a litatom
corresponding to the implementation of Interlisp: D (for
Interlisp·D), TOPS-20, TENEX, JERICO, or VAX.

In Interlisp-D (and Interlisp-10), (SElECTQ (SYSTEMTYPE) ...)

expressions are expanded at compile time so that this is an
effective way to perform conditional compilation.

[Function]

Returns the type of machine that Interlisp-D is running on:
either DORADO (for the Xerox 1132), DOLPHIN (for the Xerox
1100), or DANDELION (for the Xerox 1108).

[Function]

Returns the current date and time as a string with format
"DD-MM-YY HH:MMM:SS", where DD is day, MM is month, YY
year, HH hours, MMM minutes, SS seconds, e.g., " 7-Jun-85
15:49:34" .

If FORMA T is a date format as returned by DATEFORMAT

(below), it is used to modify the format of the date string
returned by DATE.

[Function]

STR is a date and time string. IDATE returns STR converted to a
number such that if DATE 1 is before (earlier than) DATE2, then

(lDATE DATE1) < (lDATE DATE2). If STR is NIL, the current date

and time is used.

12.13

DATE AND TIME FUNCTIONS

Note that different Interlisp implementations can have different
internal date formats. However, IDATE always has the essential
property that (I DATE X) is less than (lDATE Y) if X is before Y, and
{lCATE (GDATE N)) equals N. Programs which do arithmetic
other than numerical comparisons between IDATE num bers may
not work when moved from one implementation to another.

Generally, it is possible to increment an IDATE number by an
integral number of days by computing a "1 day" constant, the
difference between two convenient IDATE's, e.g. (IDIFFERENCE
(lDATE II 2-JAN-80 12:00") (lDATE II 1-JAN-80 12:00")). This" 1

day" constant can be evaluated at compile time.

IDATE is guaranteed to accept as input the dates that DATE will
output. It will ignore the parenthesized day of the week (if any).
IDATE also correctly handles time zone specifications for those
time zones registered in the list TIME.ZONES (page 12.15).

(GOA TE DA TE FORMA T -) [Function]

Like DATE, except that DATE CJn be a number in internal date
and time format as returned by IDATE. If DATE is NIL, the current
time and date is used.

(DATEFORMAT KEY1 .. ' KEYN) [NLambda NoSpread Function]

DATEFORMAT returns a date format suitable as a parameter to
DATE and GDATE. KEY1 ... KEYN are a set of keywords

(unevaluated). Each keyword affects the format of the date
independently (except for SLASHES and SPACES). If the date
returned by (DATE) with the default formatting was II 7-Jun-85
15:49:34", the keywords would affect the format~ing as follows:

NO. DATE Doesn't indude the date information, e.g. "15:49:34".

NUMBER.Of.MONTH Shows the month as a number instead of a name, e.g. II 7-06-85
15:49:34" .

YEAR.LONG Prints the year using four digits, e.g. II 7-Jun-198515:49:34".

SLASHES Separates the day, month, and year fields with slashes, e.g. "
7/Jun/85 15:49:34".

SPACES Separates the day, month, and year fields with spaces, e.g. " 7
Jun 8515:49:34".

NO.LEADING.SPACES By default, the day field will always be two characters long. If
NO.LEADING.SPACES is specified, the day field will be one
character for dates earlier than the 10th, e.g. "7-Jun-85
15:49:34" instead of" 7-Jun-85 15:49:34".

NO.TIME Doesn't include the time information, e.g. " 7-Jun-85".

TIME.ZONE Includes the time zone in the time specification, e.g ... 7-Jun-85
15:49:34 PDT".

NO.SECONDS Doesn't include the seconds, e.g ... 7-Jun-85 15:49".

12.14 MISCELLANEOUS

MISCELLANEOUS

DATE AND TIME FUNCTIONS

DAY.Of.WEEK Includes the day of the week in the time specification, e.g. II

7-Jun-85 15:49:34 PDT (friday)".

DAY.SHORT If DAY.Of.WEEK is specified to include the day of the week, the
week day is shortened to the first three letters, e.g. " 7-Jun-85
15:49:34 PDT (fri) " . Note that DAY .SHORT has no effect unless
DAY.Of.WEEK is also specified.

(CLOCK N -) [Function] ,

(SETTIMEOn

TIME.ZONES

If N= 0, CLOCK returns the current value of the time of day clock
i.e., the number of milliseconds since last system start up.

If N = 1, returns the value of the time of day clock when the user
started up this Interlisp, i.e., difference between (CLOCK 0) and
(CLOCK 1) is number of milliseconds (real time) since this Interlisp
system was started.

If N= 2, returns the number of milliseconds of compute time
since user started up this Interlisp (garbage collection time is
subtracted off).

If N= 3, returns the number of milliseconds of compute time
spent in garbage collections (all types).

[Function]

Sets the internal time-of-day clock. If OT = NIL, SETTIME
attempts to get the time from the communications net; if it fails,
the user is prompted for the time. If OTis a string in a form that
IDATE recognizes, it is used to set the time.

The following variables are used to interpret times indifferent
time zones. \TimeZoneComp, \BeginDST, and \EndOST are
normally set automatically if your machine is connected to a
network with a time server. For standalone machines, it may be
necessary to set them by hand (or in your init file, see page 12.1)
if you are not in the Pacific time zone.

[Variable]

Value is an association list that associates time zone
specifications (PDT, EST, GMT, etc.) with the number of hours
west of Greenwich (negative if east). If the time zone
specification is a single letter, it is appended to "DT" or "ST"
depending on whether daylight saving time is in effect. Initially
set to:

«8. P) (7 . M) (6. C) (5 . E) (0 . GMT»

This list is used by DATE and GDATE when generati ng a date with
the TIME.ZONE format is specified, and by IDATE when parsing
dates.

1215

DATE AND TIME FUNCTIONS

\TimeZoneComp

\BeginDST

\EndDST

[Variable]

This variable should be initialized to the number of hours west of
Greenwich (negative if east). For the U.S. west coast it is 8. For
the east coast it is 5.

[Variable]

[Variable]

\BeginDST is the day of the year on or before which Daylight
Savings Time takes effect (i.e., the Sunday on or immediately
preceding this day); \EndDST is the day on or before which
Daylight Savings Time ends. Days are numbered with 1 being
January 1, and counting the days as for a leap year. In the USA
where Daylight Savings Time is observed, \BeginDST = 121 and
\EndDST = 305. In a region where Daylight Savings Time is not
observed at all, set \BeginDST to 367.

12.6 Timers and Duration Functions

12.16

Often one needs to loop over some code, stopping when a
certain interval of time has passed. Some systems provide an
II alarm clock II facility, which provides an asynchronous interrupt
when a time interval runs out. This is not particularly feasible in
the current Interlisp-D environment, so the following facilities
are supplied for efficiently testing for the expiration of a time
interval in a loop context.

Three functions are provided: SETUPTIMER, SETUPTIMER.DATE,
and TIMEREXPIRED? Also several new i.s.oprs have been
defined: forDuration, during, untilDate, timerUnits, usingTimer,
and resourceName (reasonable variations on upper/lower case
are permissible).

These functions use an object called a timer, which encodes a
future clock time at which a signal is desired. A timer is
constructed by the functions SETUPTIMER and
SETUPTIMER.DATE, and is created with a basic clock "unit"
selected from among SECONDS, MILLISECONDS, or TICKS. The
first two timer units provide a machine/system independent
interface, and the latter provides access to the "real", basic
strobe unit of the machine's clock on which the program is
running. The default unit is MILLISECONDS.

Currently, the TICKS unit is a function of the particular machine
that Interlisp-D is running on. The Xerox 1132 has about 1680
ticks per millisecond; the Xerox 1108 has about 34.746 ticks per
millisecond; the Xerox 1185 and 1186 have about 62.5 ticks per

MISCELLANEOUS

MISCELLANEOUS

TIMERS AND DURATION FUNCTIONS

millisecond. The advantage of using TICKS rather than one of
the uniform interfaces is primarily speed; e.g., it may take over
400 microseconds to read the milliseconds clock (a software
facility that uses the real clock), whereas reading the real clock
itself may take less than ten microseconds. The disadvantage of
the TICKS unit is its short roll-over interval (about 20 minutes)
compared to the MILLISECONDS roll-over interval (about two
weeks), and also the dependency on particular machine
parameters.

(SETUPTIMER INTERVAL OldTimer? timerUnits intervalUnits) [Function]

SETUPTIMER returns a timer that will "go off" (as tested by
TIMEREXPIRED7) after a specified time-interval measured from
the current clock time. SETUPTIMER has one required and three
optional arguments:

INTERVAL must be a integer specifying how long an interval is
desired. timerUnits specifies the units of measure for the interval
(defaults to MILLISECONDS).

If OldTimer? is a timer, it will be reus'ed and returned, rather than
allocating a new timer. intervalUnits specifies the units in which
the OldTimer? is expressed (defaults to the value of timerUnits.

(SETUPTIMER.DATE DTS OldTimer7) [Function]

SETUPTIMER.DATE returns a timer (using the SECONDS time
unit) that will" go off'" at a specified date and time. DTS is a
Date/Time string such as IDATE accepts (page 12.14). If
OldTimer? is a timer, it will be reused and returned, rather than
allocating a new timer.

SETUPTIMER.DATE operates by first subtracting (lDATE) from
(lDATE DTS), so there may be some large integer creation
involved, even if OLDTIMER? is given.

(TiMEREXPIRED7 TIMER Clock Value. or. timerUnits) [Function]

If TIMER is a timer, and C/ockValue.or.timerUnits is the time-unit
of TIMER, TlMEREXPIRED7 returns true if TIMER has" gone off" .

C/ockValue.or.timerUnits can also be a timer, in which case
TIMEREXPIRED7 compares the two timers (which must be in the
same timer units). If X and Yare timers, then (TIMEREXPIRED? X

Y) is true if X is set for an earlier time than Y.

There are a number of i.s.oprs that make it easier to use timers in
iterative statements (page 9.9). These i.s.oprs are given below in
the "canonical" form, with the second "word" capitalized, but
the all-caps and all-lower-case versions are also acceptable.

12.17

TIMERS AND DURA nON FUNCTIONS

forDuration INTERVAL

duri ng INTERVAL

timerUnits UNITS

untiiDate DTS

usingTimer TIMER

resourceName RESOURCE

12.18

[1.5. Operator]

[1.5. Operator]

INTERVAL is an integer specifying an interval of time during
which the iterative statement will loop.

[1.5. Operator]

UNITS specifies the time units of the INTERVAL specified in
forDuration.

[1.5. Operator]

Drs is a DatefTime string (such as IDATE accepts) specifying when
the iterative statement should stop looping.

[1.5. Operator]

If usingTimer is given, TIMER is reused as the timer for
forDuration or untilDate, rather than creating a new timer. This
can reduce allocation if one of these i.s.oprs is used within
another loop.

[1.5. Operator]

RESOURCE specifies a resource name to be used as the timer
storage (see page 17.24). If RESOURCE = T, it will be converted to
an internal name.

Some examples:

(during 6MONTHS timerUnits 'SECONDS
until (TENANT-VACATED? HouseHolder)
do (DISMISS < for-about-a-day >)

(HARRASS HouseHolder)
finally (if (NOT (TENANT-VACATED? HouseHolder))

then (EVICT-TENANT HouseHolder»))

This example shows that how is is possible to have two
termination condition: (1) when the time interval of 6MONTHS
has elapsed, or (2) when the predicate (TENANT-VACATED?
HouseHolder) becomes true. Note that the "finally" clause is
executed regardless of which termination condition caused it.

Also note that since the millisecond clock will "roll over" about
every two weeks, "6MONTHS" wouldn't be an appropriate
interval if the timer units were the default case, namely
MILLISECONDS.

(do (forDuration (CONSTANT (lTIMES 10 2460601000))
do (CARRY.ON.AS.USUAL)
finally (PROMPTPRINT "Have you had your 10-day

check-up?"»)

M ISCELLAN EOUS

12 .. 7 Resources

MISCELLANEOUS

TIMERS AND DURATION FUNCTIONS

This infinite loop breaks out with a warning message every 10

days. One could question whether the millisecond clock, which is
used by default, is appropriate for this loop, since it rolls-over
about every two weeks.

(SETQ \RandomTimer (SETUPTIMER 0»
(untilDate "31-DEC-83 23:59:59" usingTimer \RandomTimer
when (WINNING?) do (RETURN)
finally (ERROR "You've been losing this whole year! n»
Here we see a usage of an explicit date for the time interval; also,
the user has squirreled away some storage (as the val ue of
\RandomTimer) for use by the call to SETUPTIMER in this loop.

{forDuration SOMEINTERVAL
resourceName \INNERLOOPBOX
timerunits'TlCKS
do (CRITICAL.lNNER.LOOP»

For this loop, the user doesn't want any CONSing to take place,
so \INNERLOOPBOX will be defined as a resource which "caches"
a timer cell (if it isn't already so defined), and wraps the entire
statement in a WITH-RESOURCES call. Furthermore, he has
specified a time unit of TICKS, for lower overhead in this critical
inner loop. In fact specifying a resourceName of T would have
been the same as specifying it to be \ForDurationOfBox; this is
just a simpler way to specify that a resource is wanted, without
having to think up a name.

Interlisp is based on the use of a storage-management system
which allocates memory space for new data objects, and
automatically reclaims the space when no longer in use. More
generally, Interlisp manages shared "resources", such as files,
semaphors for processes, etc:. The protocols for allocating and
freeing such resources resemble those of ordinary storage
management.

Sometimes users need to explicitly manage the allocation of
resources. They may desire the efficiency of explicit reclamation
of certain temporary data; or it may be expensive to initialize a
complex data object; or there may be an application that must
not allocate new cells during some critical section of code.

The file package type RESOURCES is available to help with the
definition and usage of such classes of data; the definition of a
RESOURCE specifies prototype code to do the basic management
operations. The filepkg command RESOURCES (page , 7.39) is

12.19

RESOURCES

12.7.1 A Simple Example

12.20

u'sed to save such definitions on files, and INITRESOURCES (page
17.39) causes the initialization code to be output.

The basic needs of resource management are (1) obtaining a
data item from the Lisp memory management system and
configuring it to be a totally new instance of the resource in
question, (2) freeing up an instance which is no longer needed,
(3) getting an instance of the resource for temporary usage
[whether "fresh" or a formerly freed-up instance], and (4)
setting up any prerequisite global data structures and variables.
A resources definition consists of four "methods": INIT, NEW,
GET, and FREE; each "method" is a form that will specialize the
definition for four corresponding user-level macros
INITRESOURCE, NEWRESOURCE, GETRESOURCE, and
FREERESOURCE. PUTDEF is used to make a resources definition,
and the four components are specified in a proplist:

(PUTDEF
'RE50URCENAME

"RESOURCES
"(NEW NEW-iNSTANCE-GENERA nON-CODE

FREE FREEING-UP-CODE

GET GET-iNSTANCE-CODE

INIT INITIALIZA TlON-CODE))

E(~ch of the xxx-CODE forms is a form that will appear as if it were
the body of a substitution macro definition for the
corresponding macro [see the discussion on the macros below).

Suppose one has several pieces of code which use a 256-character
string as a scratch string. One could simply generate a new string
each time, but that would be inefficient if done repeatedly. If
the user can guarantee that there are no re-entrant uses of the
scratch string, then it could simply be stored in a global variable.
However, if the code might be re-entrant on occasion, the
program has to take precautions that two programs do not use
the same scratch string at the same time. [Note: 'this
consideration becomes very important in a multi-process
environment. It is hard to guarantee that two processes won't
be running the same code at the same time, without using
elaborate locks.] A typical tactic would be to store the scratch
string in a global variable, and set the variable to NIL whenever
the string is in use (so that re-entrant usages would know to get
a "new" instance). For example, assuming the global variable
TEMPSTRINGBUFFER is initialized to NIL:

[DEFINEQ (WITHSTRING NIL
(PROG «BUF (OR (PROG1 TEMPSTRINGBUFFER

(SETQ TEMPSTRINGBUFFER NIL»

M ISCELLAN EOUS

MISCELLANEOUS

(ALLOCSTRING 256»))
... use the scratch string in the variable BUF ...

(SETQ TEMPSTRINGBUFFER BUF)

(RETURN]

RESOURCES

Here, the basic elements of a "resource" usage may be seen: (1) a
call (ALLOCSTRING 256) allocates fresh instances of "buffer", (2)
after usage is completed the instance is returned to the "free"
state, by putting it back in the global variable
TEMPSTRINGBUFFER where a subsequent call will find it, (3) the
prog-binding of BUF will get an existing instance of a string
buffer if there is one -- otherwise it will get a new instance which
will later be available for reuse, and (4) some initialization is
performed before usage of the resource (in this case, it is the
setting of the global variable TEMPSTRINGBUFFER).

Given the following resources definition:

(PUTDEF

'STRINGBUFFER

'RESOURCES

'(NEW (ALLOCSTRING 256)
FREE (SETQ TEMPSTRINGBUFFER (PROG1 . ARGS»

GET (OR (PROG1 TEMPSTRINGBUFFER

(SETQ TEMPSTRINGBUFFER NIL»

(NEWRESOURCE TEMPSTRINGBUFFER»)

INIT (SETQ TEMPSTRINGBUFFER NIL»)

we could then redo the example above as

(DEFINEQ (WITHSTRING NIL

(PROG «BUF (GETRESOURCE STRINGBUFFER»)

... use the string in the variable BUF ...

(FREERESOURCE STRINGBUFFER BUF)

(RETURN]

The advantage of doing the coding this way is that the resource
management part of WITHSTRING is fully contained in the
expansions of GETRESOURCE and FREERESOURCE, and thus
there is no confusion between what is WITHSTRING code and
what is resource management code. This particuar advantage
will be multiplied if there are other functions which need a
"temporary" string buffer; and of course, the resultant
modularity makes it much easier to contemplate minor
variations on, as well as multiple clients of, the 5TRINGBUFFER

resource.

In fact, the scenario just shown above in the WITHSTRING

example is so commonly useful that an abbreviation has been
added; if a resources definition is made with *only* a NEW

method, then appropriate FREE, GET, and INIT methods will be
inferred, along with a coordinated globalvar, to be parallel to
the above definition. So the above definition could be more
sim ply written

12.21

RESOURCES

(PUTDEF'STRINGBUFFER

'RESOURCES
'(NEW (ALLOCSTRING 256»)

and every thing would work the same.

The macro WITH-RESOURCES simplifies the common scoping
case, where at the beginning of some piece of code, there are
one or more GETRESOURCE calls the results of which are each
bound to a lambda variable; and at the ending of that code a
FREERESO·URCE call is done on each instance. Since the resources
are locally bound to variables with the same name as the
resource itself, the definition for WITHSTRING then simplifies to

(DEFINEQ (WITHSTRING NIL
(WITH-RESOURCES (STRINGBUFFER)
... use the string in the variable STRINGBUFFER: ..]

12.7.2 Trade-offs in More Complicated Cases

12.22

This simple example presumes that the various functions which
use the resource are generally not re-entrant. While an
occasional re-entrant use will be handled correctly (another
example of the resource will simply be created), if this were to
happen too often, then many of the resource requests will create
and throwaway new obje~s, which defeats one of the major
purposes of using resources. A slightly more complex GET and
FREE method can be of much benefit in maintaining a pool of
available resources; if the resource were defined to maintain a
list of "free" instances, then the GET method could simply take
one off the list and the FREE method could just push it back onto
the list. In this simple example, the SETQ in the FREE method
defined above would just become a "push", and the first clause
of the GET method would just be (pop TEMPSTRINGBUFFER)

A word of caution: if the datatype of the resource is something
very small that Interlisp system is "good" at allocating and
reclaiming, then explicit user storage management will probably
not do much better than the combination of cons/createcell and
the garbage collector. This would especially be so if more
complicated GET and FREE methods were to be used, since their
overhead would be closer to that of the built-in system facilities.
Finally, it must be considered whether retaining multiple
instances of the resource is a net gain; if the re-entrant case is
truly rare, it may be more worthwhile to retain at most one
instance, and simply let the instances created by the rarely-used
case be reclaimed in the normal course of garbage collection.

MISCELLANEOUS

RESOURCES

12.7.3 Macros for Accessing Resources

Four user-level macros are defined for accessing resources:

(NEWRESOURCE RESOURCENAME . ARGS) [Macro]

(FREERESOURCE RESOURCENAME . ARGS) [Macro]

(GETRESOURCE RESOURCENAME . ARGS) [Macro]

(lNITRESOURCE RESOURCENAME . ARGS) [Macro]

Each of these macros behave as if they were defi ned as a
substitution macro of the form

«RESOURCENAME. ARGS) MACROBODy)

where the expression MACROBODY is selected by using the
"code" supplied by the corresponding method from the
RESOURCENAME definition.

Note that it is possible to pass" arguments" to the user's resource
allocation macros. For example, if the GET method for the
resource FOO is (GETFOO . ARGS), then (GETRESOURCE FOO X Y)
is transformed into (GETFOO X V). This form was used in the
FREE method of the STRINGBUFFER resource described above, to
pass the old STRINGBUFFER object to be freed.

{WITH-RESOURCES (RESOURCE 1 RESOURCE2 ...) FORM1 FORM2 ...) [Macro]

The WITH-RESOURCES macro binds lambda variables of the same
name as the resources (for each of the resources RESOURCE I,

RESOURCE2, etc.) to the result of the GETRESOURCE macro; then

executes the forms FORM1, FORM2, etc., does a FREERESOURCE

on each instance, and returns the value of the last form
(evaluated and saved before the FREERESOURCEs).

Note: (WITH-RESOURCES RESOURCE ...) is interpreted the same
as (WITH-RESOURCES (RESOURCE) ...). Also, the singular name
WITH-RESOURCE is accepted as a synonym for
WITH-RESOURCES.

12.7.4 Saving Resources in a File

MISCELLANEOUS

Resources definitions may be saved on files using the
RESOURCES file package command (page 17.39). Typically, one
only needs the full definition available when compiling or
interpreting the code, so it is appropriate to put the file package
command in a (DECLARE: EVAL@COMPILE DONTCOPY ...)

declaration, just as one might do for a RECORDS declaration. But

12.23

RESOURCES

12.8 Pattern Matching

12.24

just as certain record declarations need *some* initialization in
the run-time environment, so do most resources. This
initialization is specified by the resource's INIT method, which is
executed automatically when the resource is defined by the
PUTDEF output by the RESOURCES command. However, if the
RESOURCES command is in a OONTCOPY expression and thus is
not included in the compiled file, then it is necessary to include a
separate INITRESOURCES command (page 17.39) in the filecoms
to insure that the resource is properly initialized.

Interlisp provides a fairly general pattern match facility that
allows the user to specify certain tests that would otherwise be
clumsy to write, by giving a pattern which the datum is supposed
to match. Essentially, the user writes "Does the (expressionJ X
look like (the pattern) P?" For example, (match X with (& 'A -
IB» asks whether the second element of X is an A, and the last
element a B. The implementation of the matching is performed
by computing (once) the equivalent Interlisp expression which
will perform the indicated operation, and substituting this for
the pattern, and not by invoking each time a general purpose
capability such as that found in FLIP or PlANNER. For example,
the translation of (match X with (& IA· .. 'B» is:

(AND (EQ (CAOR X) 'A)
(EQ (CAR (LAST (CDOR X») IB»

Thus the pattern match facility is really a pattern match compiler,
and the emphasis in its design and implementation has been
more on the efficiency of object code than on generality and
sophistication of its matching capabilities. The goal was to
provide a facility that could and would be used even where
efficiency was paramount, e.g., in inner loops. As a result, the
pattern match facility does not contain (yet) some of the more
esoteric features of other pattern match languages, such as
repeated patterns, disjunctive and conjunctive patterns,
recursion, etc. However, the user can be confident that what
facilities it does provide will result in Interlisp expressions
comparable to those he would generate by hand. Wherever
possible, already existing Interlisp functions are used in the
translation, e.g., the translation of ($ 'A $) uses MEMB, ($ ('A $) $)

uses ASSOC, etc.

The syntax for pattern match expressions is (match FORM with
PA TTERN), where PA TTERN is a list as described below. If FORM
appears more than once in the translation, and it is not either a

MISCELLANEOUS

12.8.1 Pattern Elements

12.8.2 Element Patterns

MISCELLANEOUS

PA TIERN MATCHING

variable, or an expression that is easy to (re)compute, such as
(CAR V), (CDDR Z), etc., a dummy variable will be generated and
bound to the value of FORM so that FORM is not evaluated a
multiple number of times. For example, the translation of
(match (FOO X) with ($ 'A $» is simply (MEMB 'A (FOO X», while

the translation of (match (FOO X) with ('A 'B --» is:

[PROG ($$2)
(RETURN

(AND (EQ (CAR (SETQ $$2 (Faa X»)
'A)

(EQ (CADR $$2) 'B]

In the interests of efficiency, the pattern match compiler assumes
that all lists end in NIL, i.e., there are no LlSTP checks inserted in
the translation to check tails. For example, the translation of
(match X with ('A & _.» is (AND (EQ (CAR X) (QUOTE A» (CDR X»,

which will match with (A B) as well as (A . B). Similarly, the
pattern match compiler does not insert LISTP checks on
elements, e.g., (match X with «I A _.) _.» translates sim ply as (EQ

(CAAR X) 'A), and (match X with «$1 $1 _.) _.» as (CDAR X). Note

that the user can explicitly insert LlSTP checks himself by using @,

as described below, e.g., (match X with «$1 $1 -·)@LlSTP --»
translates as (CDR (LlSTP (CAR X»).

Note: The insertion of LlSTP checks for elements is controlled by
the variable PATLlSTPCHECK. When PATLlSTPCHECK is T, LlSTP

checks are inserted, e.g., (match X with «'A _.) _.» translates as:

(EQ (CAR (LlSTP (CAR (LISTP X»» 'A). PATLlSTPCHECK is initially
NIL. Its value can be' changed within a particular function by

using a local CLISP declaration (see page 21.13).

Note: Pattern match expressions are translated using the DWIM
and CLISP facilities, using all CLISP declarations in effect
(standard/fastlundoable) (see page 21.12).

A pattern consists of a list of pattern elements. Each pattern
element is said to match either an element of a data structure or
a segment. For example, in the editor's pattern matcher, "._"
(page 16.19) matches any arbitrary segment of a list, while & or a
subpattern match only one element of a list. Those patterns
which may match a segment of a list are called segment patterns;
those that match a single element are called element patterns.

There are several types of element patterns, best given by their
syntax:

12.25

PATIERN MATCHING

12.26

$1 or & Matches an arbitrary element of a list.

I EXPRESSION Matches only an element which is equal to the given expression
e.g., I A, '(A B).

EQ, MEMB, and ASSOC are automatically used in the translation
when the quoted expression is atomic, otherwise EQUAL,
MEMBER, and SASSOC .

• FORM Matches only an element which is EQUAL to the value of FORM,
e.g., • X, • (REVERSE V) .

• • FORM Same as ., but uses an EQ check instead of EQUAl.

ATOM The treatment depends on setting of PATVARDEFAUl T. If
PATVARDEFAUlT is I or QUOTE, same as 'ATOM. If
PATVARDEFAULT is • or EQUAL, same as • ATOM. If
PA TVARDEFAUL T is •• or EQ, same as •• A TOM. If
PATVARDEFAULT is +- or SETQ, same as A TOM+-&.
PATVARDEFAULT is initially I.

PATVARDEFAULT can be changed within a particular function by
using a local CLiSP declaration (see page 21.13).

Note: numbers and strings are always interpreted as though
PATVARDEFAULT were., regardless of its setting. EQ, MEMB,
and ASSOC are used for comparisons involving small integers.

(PAITERNl ..• PATTERNN) Matches a list which matches the given patterns, e.g., (& &), (-

'A).

ELEMENT-PA TTERN@FN Matches an element if ELEMENT-PATTERN matches it, and FN
(name of a function or a lAMBDA expression) applied to that
element returns non-Nil. For example, &@NUMBERP matches a
number and ('A --)@FOO matches a list whose first element is A,
and for which FOO applied to that list is non-NIl.

*

For "simple" tests, the function-object is applied before a match
is attempted with the pattern, e.g., «-- · A --)@lISTP --) translates
as (AND (lISTP (CAR X» (MEMB 'A (CAR X»), not the other way
around. FN may also be a FORM in terms of the variable @, e.g.,
&@(EQ @ 3) is equivalent to .3.

Matches any arbitrary element. If the entire match succeeds, the
element which matched the * will be returned as the val ue of the
match.

Note: Normally, the pattern match compiler constructs an
expression whose value is guaranteed to be non-NIL if the match
succeeds and Nil if it fails. However, if a * appears in the pattern,
the expression generated could also return Nil if the match
succeeds and * was matched to NIl. For example, (match X with
(' A * --» translates as (AND (EQ (CAR X) • A) (CADR X», so if X is
equal to (A Nil B) then (match X with (' A * --» returns Nil even
though the match succeeded.

MISCELLANEOUS

PATTERN MATCHING

- ELEMENT-PA TTERN Matches an element if the element is not matched by
ELEMENT-PATTERN, e.g., -'A, -.= X, -(-- 'A _.).

(*ANY* ELEMENT-PATTERN ELEMENT-PATTERN .•.) Matches if any of the contained patterns match.

12.8.3 Segment Patterns
$ or _. Matches any segment of a list (including one of zero length).

$2, $3, etc.

The difference between $ and -- is in the type of search they
generate. For example, (match X with ($ 'A 'B $» translates as
(EQ (CADR (MEMB 'A X» 'B), whereas (match X with (-- 'A 'B $»
translates as:

[SOME X (FUNCTION (LAMBDA ($$2 $$1)

(AND (EQ $$2 • A)
(EQ (CADR $$1) 'B)

Thus, a paraphrase of ($ 'A 'B $) would be "Is the element
following the first A a B?", whereas a paraphrase of (-- 'A 'B $)

would be II Is there any A immediately followed by a B?" Note
that the pattern employing $ will result in a more efficient search
than that employing --. However, ($ 'A 'B $) will not match with
(X Y Z A M 0 A B C), but (-- 'A 'B $) will.

Essentially, once a pattern following a $ matches, the $ never
resumes searching, whereas -- produces a translation that will
always continue searching until there is no possibility of success.
However, if the pattern match compiler can deduce from the
pattern that continuing a search after a particular failure cannot
possibly succeed, then the translations for both -- and $ will be
the same. For exam pie, both (match X with ($ 'A $3 $» and
(match X with (-- 'A $3 --» translate as (CDDDR (MEMB (QUOTE
A) X», because if there are not three elements following the first
A, there certainly will not be three elements following
subsequent A's, so there is no reason to continue searching, even
for _a. Similarly, ($ 'A $ 'B $) and (-- 'A -- 'B _a) are equivalent.

Matches a segment of the given length. Note that $1 is not a
segment pattern.

!ELEMENT-PA TTERN Matches any segment which ELEMENT-PA TTERN would match as
a list. For example, if the value of FOO is (A B C), ! • FOO will
match the segment ... ABC ... etc.

Note: Since! appearing in front of the last pattern specifies a
match with some tail of the given expression, it also makes sense
in this case for a! to appear in front of a pattern that can only
match with an atom, e.g., ($2 !'A) means match if CODR of the
expression is the atom A. Similarly, (match X with ($! 'A»
translates to (EQ (CDR (LAST X» 'A).

!ATOM treatment depends on setting of PATVARDEFAULT. If
PATVARDEFAULT is ' or QUOTE, same as !'ATOM (see above

MISCELLANEOUS 12.27

PATTERN MATCHING

discussion). If PATVAROEFAUl T is :II or EQUAL, same as
! :a ATOM. IfPATVAROEFAUlTis:ll:ll orEQ,sameas!:II :II ATOM.

If PA TVAROEFAUl T is ~ or SETQ, same as ATOM~$.

The atom"." is treated exactly like"!". In addition, if a pattern
ends in an atom, the "." is first changed to "!", e.g., ($1 . A) and
($1 ! A) are equivalent, even though the atom "," does not

explicitly appear in the pattern.

One exception where "." is not treated like"!": "," preceding
an assignment does not have the special interpretation that"!"
has preceding an assignment (see below). For example, {match X
with ('A. Faa~'8» translates as:

{AND (EQ (CAR X) 'A)
(EQ (CDR X) '8)
(SETQ Faa (CDR X»)

but (match X with ('A ! Faa~'8» translates as:

(AND (EQ (CAR X) 'A)
(NUll (COOR X»
(EQ (CAOR X) '8)
(SETQ Faa (CDR X»)

SEGMENT-PA TTERN@FUNCTION-OBJECT Matches a segment if the segment-pattern matches it, and the
function object applied to the corresponding segment (as a list)
returns non-NIl. For example, ($@COOR '0 $) matches (A 8 C 0
E) but not (A 8 0 E), since COoR of (A 8) is NIl.

12.8.4 Assignments

12.28

Note: an @ pattern applied to a segment will require computing
the corresponding structure (with lOIFF) each time the predicate
is applied (except when the segment in question is a tail of the
list being matched).

Any pattern element may be preceded by "VARIABLE~",

meaning that if the match succeeds (i.e., everything matches),
VARIABLE is to be set to the thing that matches that pattern
element. For example, if X is (A 8 C 0 E), (match X with ($2
VoE-$3» will set Y to (C· 0 E). Note that assignments are not
performed until the entire match has succeeded, so assignments
cannot be used to specify a search for an element found earlier
in the match, e.g., (match X with (V~$1 :II V _.» will not match
with (A A 8 C ...), unless, of course, the value of Y was A before
the match started. This type of match is achieved by using
place-markers, described below.

If the variable is preceded by a !, the assignment is to the tail of
the list as of that point in the pattern, i.e., that portion of the list
matched by the remainder of the pattern. For example, if X is (A
BCD E), {match X with ($!V~'C '0 $» sets V to (C 0 E), i.e., COOR

MISCELLANEOUS

12.8.5 Place-Markers

12.8.6 Replacements

MISCELLANEOUS

PATTERN MATCHING

of X. In other words, when! precedes an assignment, it acts as a
modifier to the +-, and has no effect whatsoever on the pattern
itself, e.g., (match X with fA 'B» and (match X with fA
!FOO+-'B» match identically, and in the latter case, FOO will be
set to CDR of X.

Note: *+-PATTERN-ELEMENT and !*+-PATTERN-ELEMENT are
acceptable, e.g., (match X with ($ 'A *+-('B --) --» translates as:

[PROG ($$2) (RETURN
(AND (EQ (CAADR (SETQ $$2 (MEMB 'A X») 'B)

(CADR $$2]

Variables of the form #N, N a number, are called place-markers,
and are interpreted specially by the pattern match compiler.
Place-markers are used in a pattern to mark or refer to a
particular pattern element. Functionally, they are used like
ordinary variables, i.e., they can be assigned values, or used
freely in forms appearing in the pattern, e.g., (match X with
(#1+-$1 • (ADD1 #1») will match the list (2 3). However, they
are not really variables in the sense that they are not bound, nor
can a function called from within the pattern expect to be able
to obtain their values. For convenience, regardless of the setting
of PATVARDEFAULT, the first appearance of a defaulted
place-marker is interpreted as though PATVARDEFAULTwere +-.
Thus the above pattern could have been written as (match X
with (1 • (ADD1 1»). Subsequent appearances of a
place-marker are interpreted as though PATVARDEFAULT were
•. For example, (match X with (#1 #1 --» is- equivalent to
(match X with (#1 +-$1 • #1 --», and translates as (AND (CDR X)
(EQUAL (CAR X) (CADR X». (Note that (EQUAL (CAR X) (CAOR X»
would incorrectly match with (NIL).)

The construct PA TTERN-ELEMENT+-FORM specifies that if the
match succeeds, the part of the data that matched is to be
rep/aced with the value of FORM. For example, if X = (A B C 0 E),
(match X with ($ 'c $1+-Y $1» will replace the third element of X
with the value of Y. As with assignments, replacements are not
performed until after it is determined that the entire match will
be successfu I.

Replacements involving segments splice the corresponding
structure into the list being matched, e.g., if X is (A B C 0 E F) and
FOO is (1 2 3), after the pattern (' A $+-FOO '0 $) is matched with

12.29

PATTERN MATCHING

12.8.7 Reconstruction

12.30

x, X will be (A 1 23 0 E F), and FOO will be EQ to CDR of X, i.e., (1

230 E F).

Note that ($ FOO+-FIE $) is ambiguous, since it is not clear
whether FOO or FIE is the pattern element, i.e., whether +
specifies assignment or replacement. For example, if
PA TVAROEFAUL T is :I, this pattern can be interpreted as ($

FOO+-:I FIE $), meaning search for the value of FIE, and if found
set FOO to it, or ($ =- FOO+-FIE $) meaning search for the value of
FOO, and if found, store the value of fiE into the corresponding
position. In such cases, the user should disambiguate by not
using the PATVAROEFAULToption, i.e., by specifying' or :I.

Note: Replacements are normally done with RPLACA or RPLACO.
The user can specify that IRPLACA and IRPLACD should be used,
or FRPLACA and FRPLACO, by means of CliSP declarations (see
page 21. 12).

The user can specify a value for a pattern match operation other
than what is returned by the match by writing (match FORM1

with PATTERN :I> FORM2). For example, (match X with

(FOO+-$ 'A _.) :I > (REVERSE FOO» translates as:

[PROG ($$2)

(RETURN

(CONO «SETQ $$2 (MEMB 'A X»
(SETQ FOO (LOI FF X $2»
(REVERSE FOO]

Place-markers in the pattern can be referred to from within
FORM, e.g., the above could also have been written as (match X
with (!#1'A _.) :I > (REVERSE #1)). If·> is used in place of :I >,

the expression being matched is also physically changed to the
value of FORM. For example, (match X with (#1 'A !#2) ->

(CONS #1 #2» would remove the second element from X, if it
were equal to A.

In general, (match FORM1 with PATTERN -> FORM2) is

translated so as to compute FORM2 if the match is successful, and

then smash its value into the first node of FORM1. However,

whenever possible, the translation does not actually require
FORM2 to be computed in its entirety, but instead the pattern

match compiler uses FORM2 as an indication of what should be

done to FORM1- For example, (match X with (#1 'A !#2) ->

(CONS #1 #2» translates as (AND (EQ (CADR X) 'A) (RPLACD X
(CODR X»).

MISCELLANEOUS

12.8.8 Examples

MISCELLANEOUS

PATTERN MATCHING

Example: (match X with (-- 'A --»
•• matches any arbitrary segment. 'A matches only an A, and the

second -- again matches an arbitrary segment; thus this
translates to (MEMB 'A X).

Example: (match X with (-- 'A»

Again, -- matches an arbitrary segment; however, since there is
no -- after the 'A, A must be the last element of X. Thus this
translates to: (EQ (CAR (LAST X» 'A).

Example: (match X with ('A 'B -- 'c $3 --»
CAR .of X must be A, and CAoR must be B, and there must be at
least three elements after the first C, so the translation is:

(AND (EQ (CAR X) 'A)

(EQ (CADR X) 'B)

(CODoR (MEMB 'C (COoR X»»

Example: (match X with «'A 'B) 'C Y~$1 $»

Since ('A '8) does not end in $ or --, (CoDAR X) must be NIL. The
translation is:

(COND

«AND (EQ (CAAR X) 'A)

(EQ (CAoAR X) '8)

(NUll (CooAR X»
(EQ (CAoR X) 'C)

(CooR X»
(SETQ Y (CADoR X»
T»

Example: (match X with (#1 fA $ '8 'c #1 $»

#1 is im pi icitly assigned to the first element in the list. The $
searches for the first B following A. This 8 must be followed by a
C, and the C by an expression equal to the first element. The
translation is:

[PROG ($$2)

(RETURN

(AND (EQ (CAoR X) 'A)

(EQ [CADR (SETQ $$2 (MEM8 '8 (CoDR Xl 'C)

(COoR $$2)

(EQUAL (CAoDR $$2) (CAR Xl

Example: (match X with (#1 'A·- '8 'c #1 $»

Similar to the pattern above, except that -- specifies a search for
any 8 followed by a C followed by the first element, so the
translation is:

[AND (EQ (CADR X) 'A)

(SOME (CooR X)

12.31

PATTERN MATCHING

12.32

(FUNCTION (LAMBDA ($$2 $$1)
(AND (EQ $$2 'B)

(EQ (CADR $$1) 'C)

(CDDR $$1)
(EQUAL (CADDR $$1) (CAR X]

MISCELLANEOUS

A

(A E1'" EM) (EditorCommand) II: 16.32

AOOOn (gensym) I: 2. 11

ABBREVLST (Variable) III: 26.46; 26.47

(ABS X) I: 7.4

ACCESS (File Attribute) III: 24.19

Access chain (on stack) I: 11.3

ACCESSFNS (Record Type) I: 8.12; 8.14

?ACTlVATEFLG (Variable) III: 26.36

Active frame I: 11.3

(ADD DATUM ITEMI'TEM2 ...) (Change Word) I:

8.18

ADD (File Package Command Property) II: 17.45

(\ADD.PACKET.FIL TER FIL TER) (Function) III: 31 .40

(ADD.PROCESS FORM PROP1 VALUE1'" PROPN

VALUEN) II: 23.2

(ADD1 X) I: 7.6

(ADDFILE FILE ---) II: 17.19

(ADDMENU MENU WINDOW POSITION
DONTOPENFLG) III: 28.38

(ADDPROP ATM PROP NEW FLG) I: 2.6

(ADDSPELL X SPLST N) II: 20.21; 20.23

ADDSPELLFLG (Variable) II: 20.13; 17.5; 20.16,22

(ADDTOCOMS COMS NAME TYPE NEAR LlSTNAME)
II: 17.48

(ADDTOFILE NAME TYPE FILE NEAR LlSTNAME) II:

17.48

(ADDTOFILES7-) II: 17.13

(ADDTOSCRATCHLIST VALUE) I: 3.8

(ADDTOVAR VAR X 1 X2'" XN) II: 17.54; 17.36

{ADDVARS (VAR1 . LST1) '" (VARN' LSTN» (File

Package Command) II: 17.36

(ADIEU VAL) I: 11.21

(ADJUSTCURSORPOSITION DEL TAX DELTA y) III:

30.17
ADV-PROG (Function) II: 15.10-11

ADV-RETURN (Function) II: 15.10-11

ADV-SETQ (Function) II: 15.10-11

(ADVICE FN1 ... FNN) (File Package Command) II:

17.35; 15.13

ADVICE (File Package Type) II: 17.22

ADVICE (Property Name) II: 15.12-13; 17.18

INDEX

INDEX

Advice to functions II: 15.9

ADVINFOLST (Variable) II: 15.12-13

(ADVISE FN 1 ... FN N) (File Package Command) II:

17.34; 15.13

(ADVISE FN WHEN WHERE WHA nil: 15.11; 1 5.10

ADVISED (Property Name) I: 1 0.9; II: 15.11

ADVISEDFNS (Variable) II: 15.11-12

(ADVISEDUMP X FLG) II: 15.13

Advising functions II: 15.9

AFTER (as argument to ADVISE) II: 15.10; 15.11

AFTER (asargumenttoBREAKIN) II: 15.6; 14.5

After (DEdit Command) II: 16.7

AFTER (in INSERT editor command) II: 16.33

AFTER (in MOVE editor command) II: 16.38
AFTER LlTA TOM (Prog. Asst. Command) II: 13.15;

13.24,33
AFTEREXIT (Process Property) II: 23.3

AFTERMOVEFN (Window Property) III: 28.20

AFTERSYSOUTFORMS (Variable) I: 12.9

ALIAS (Property Name) II: 15.5; 15.8

ALINK (in stack frame) I: 11.3

(ALlSTS{VAR1 KEY1 KEY2"')'" (VARNKEY3KEY4

... » (File Package Command) II: 17.37

ALiSTS (File Package Type) II: 17.22

ALL (in event specification) II: 13.7

ALL (in PROP file package command) II: 17.37
(ALLATTACHEDWINDOWS WINDO'vV) III: 28.48

(\ALLOCATE.ETHERPACKET) (Function) III: 31.39

(ALLOCA TE.PUP) III: 31.28

(ALLOCATE.XIP) III: 31.36

(ALLOCSTRING N INITCHAR OLD FATFLG) I: 4.2

&ALLOW-OTHER-KEYS (DEFMACRO keyword) I:

10.26
{ALLOW. BUTTON. EVENTS) II: 23.15

ALLPROP (Litatom) I: 10.10; II: 13.29; 17.5,54

ALONE (type of read macro) III: 25.40
(ALPHORDER A B CASEARRA y) I: 3.17

already undone (Printed by System) II: 13.13; 13.42

ALWAYS FORM (1.5. Operator) I: 9.11

ALWAYS (type of read macro) III: 25.40
AMBIGUOUS (printed by DWIM) II: 20.16

AMBIGUOUS DATA PATH (Error Message) I: 8.3

INDEX.l

INDEX

AMBIGUOUS RECORD FIELD (Error Message) I: 8.2
AMONG (Masterscope Path Option) II: 19.16
ANALYZE SET (Masterscope Command) II: 19.4

(AND X 1 X2 ... XN) I: 9.3

AND (inevent specification) II: 13.7
AND (in USE command) II: 13.10
ANSWER (Variable) III: 26.15
(ANTILOG X) I: 7.13
"'ANY" (in edit pattern) II: 16.18
APPEND (File access) III: 24.2
(APPEND X, X2 ... XN) I: 3.5

(APPENDTOVAR VARX, X2 ... XN) II: 17.55; 17.36

(APPENDVARS (VAR" LST,) ... (VARN' LSTN» (File

Package Command) II: 17.36
(APPLY FNARGLIST -) I: 10.11; II: 18.19
(APPLY'" FN ARG, ARG2 ... ARGN) I: 10.12; II:

18.19
APPLY-format input II: 13.4
Applying functions to arguments I: 10.11
Approval of DWIM corrections II: 20.4; 20.3
APPROVEFLG (Variable) II: 20.14; 20.22,24
(APROPOS STRING ALLFLG QUIETFLG OUTPUn I:

2.11
Arbitrary-size integers I: 7.1
(ARCCOS X RADIANSFLG) I: 7.14
ARCCOS: ARG NOT IN RANGE (Error Message) I:

7.14
"'ARCHIVE'" (history list property) II: 13.33
ARCHIVE EventSpec (Prog. Asst. Command) II:

13.16
ARCHIVEFLG (Variable) II: 13.23
ARCHIVEFN (Variable) II: 13.23; 13.16
ARCHIVELST (Variable) II: 13.31; 13.16
(ARCSIN X RADIANSFLG) I: 7.14
ARCSIN: ARG NOT IN RANGE (Error Message) I:

7.14
(ARCTAN X RADIANSFLG) I: 7.14
(ARCTAN2 Y X RADIANSFLG) I: 7.14
SETARE SET (Masterscope Command) II: 19.5
(ARG VAR M) I: 10.5
." ARGN (Stack blip) I: 11.15
ARG NOT ARRAY (Error Message) I: 5.1-2; II: 14.30
ARG NOT HARRAY (Error Message) II: 14.31
ARG NOTUST (Error Message) I: 3.2,5,15-16; II:

14.28
ARG NOT UTATOM (Error Message) I: 2.3,5,7; 9.8;

10.3,11; II: 14.28; 17.54
(ARGUST FN) I: 10.8; II: 14.10

INDEX.2

ARGNAMES (Property Name) I: 10.8
ARGS (Break Command) II: 14.10
... ARGS (history list property) II: 13.33
ARGS NOT AVAILABLE (Error Message) I: 10.8
(ARGTYPE FN) I: 10.7
Argument lists of functions I: 10.2
"'ARGVAL'" (stack blip) I: 11.16
Arithmetic I: 7.1
AROUND (as argument to ADVISE) II: 15.10;

15.11-12
AROUND (as argument to BREAKIN) II: 15.6; 14.5
(ARRA Y SIZE TYPE INIT ORIG -) I: 5.1
(ARRAYORIG ARRA y) I: 5.2
(ARRAYP X) I: 5.1; 9.2
ARRA YRECORD (Record Type) I: 8.8
Arrays I: 5.1; 9.2
ARRAYS FULL (Error Message) II: 14.29; 22.5
(ARRA YSIZE ARRA y) I: 5.2
(ARRA YTYP ARRA y) I: 5.2
AS VAR (I.S. Operator) I: 9.15
ASCENT (Font property) III: 27.27
(ASKUSER WAIT DEFAUL T MESS KEYLST

TYPEAHEAD LlSPXPRNTFLG OPTIONSLST FILE)
III: 26.12

ASKUSERTTBL (Variable) III: 26.17
Assignments in CLISP II: 21.9
Assignments in pattern matching I: 12.28
(ASSOC KEY ALSn I: 3.15
Association lists I: 3.15
Association lists in EVALA I: 10.13
ASSOCRECORD (Record Type) I: 8.8
(ATOM X) I: 2.1; 9.1
ATOM HASH TABLE FULL (Error Message) II: 14.28
ATOM TOO LONG (Error Message) I: 2.2; II: 14.28
ATOMRECORD (Record Type) I: 8.9
Atoms I: 2.1; 9.1
(ATTACH X L) I: 3.5
Attached windows III: 28.45; 28.1
(ATTACHEDWINDOWS WINDOW COM) III: 28.47
ATTACHEDWINDOWS (Window Property) III:

28.54
(ATTACHMENU MENU MAINWINDOW EDGE

POSITIONONEDGE NOOPENFLG) III: 28.48
(ATTACHWINDOW WINDOWTOATTACH

MAINWINDOW EDGE POSITIONONEDGE
WINDOWCOMACTlON) III: 28.45

ATTEMPT TO BIND NIL OR T (Error Message) I: 9.8;
10.3; II: 14.30

INDEX

attempt to read DATA TYPE with different field

specification than currently defined (Error
Message) III: 25.18

ATTEMPT TO RPLAC NIL (Error Message) I: 3.2; II:
14.28

ATTEMPT TO SET NIL (Error Message) I: 2.3; II:
14.28

ATTEMPT TO SETT (ErrorMessage) I: 2.3
ATTEMPT TO USE ITEM OF INCORRECT TYPE (Error

Message) II: 14.30
(AU-REVOI R VAL) I: 11.21
AUTHOR (File Attribute) III: 24.18
AUTOBACKTRACEFLG (Variable) II: 14.15
AUTOCOMPLETEFLG (ASK USER option) III: 26.17
AUTOPROCESSFLG (Variable) II: 23.1
&AUX (DEFMACRO keyword) I: 10.26
AVOIDING SET (MasterscopePath Option) II: 19.16
(AWAIT. EVENT EVENT TIMEOUT T1MERp) II: 23.7

B
(B E,,,, EM) (EditorCommand) II: 16.32

Background menu III: 28.6
Background shade III: 30.22
BACKGROUNDBUTTONEVENTFN (Variable) III:

28.29
BackgroundCopyMenu (Variable) III: 28.8
BackgroundCopyMenuCommands (Variable) III:

28.8
BACKGROUNDCURSORINFN (Variable) III: 28.29
BACKGROUNDCURSORMOVEDFN (Variable) III:

28.29
BACKGROUNDCURSOROUTFN (Variable) III: 28.29
BackgroundMenu (Variable) III: 28.8
BackgroundMenuCommands (Variable) III: 28.8
BACKGROUNDPAGEFREQ (Variable) I: 12.10
BACKGROUNDWHENSELECTEDFN (Function) III:

28.40
Backquote (') III: 25.42
Backslash functions I: 10.10
Backspace III: 30.5; 25.2; 26.23
(BACKTRACE IPOS EPOS FLAGS FILE PRINTFN) I:

11.11
Backtrace break commands II: 14.9
Backtrace frame window II: 14.3
Backtrace functions I: 11.11
BACKTRACEFONT (Variable) II: 14.15
BAD FILE NAME (Error Message) II: 14.31
BAD FILE PACKAGE COMMAND (Error Message) II:

17.34

INDEX

BAD PROG BINDING (Error Message) II: 18.23
BAD SETQ (Error Message) II: 18.23
BAD SYSOUT FILE (Error Message) II: 14.29
(BAKTRACE IPOS EPOS SKIPFNs FLAGS FILE) I:

11.11
BAKTRACELST (Variable) I: 11.12
Barson cursor III: 30.16
.BASE (PRINTOUT command) III: 25.27
Basic frames on stack I: 11.3; 11.1,6
(BCOMPL FILES CFILE--) II: 18.21; 18.17-18
(BEEPOFF) III: 30.24
(BEEPON FREO) III: 30.24

INDEX

BEFORE (as argument to ADVISE) II: 15.10; 15.11
BEFORE (as argument to BREAKIN) II: 15.6; 14.5
Before (DEdit Command) II: 16.7
BEFORE (in INSERT editor command) II: 16.33
BEFORE (in MOVE editor command) II: 16.38
BEFORE LlTATOM (Prog. Asst. Command) II: 13.15;

13.24,33
BEFOREEXIT (Process Property) II: 23.3
BEFORESYSOUTFORMS (Variable) I: 12.9
\BeginDST (Variable) I: 12.16
Bell (in history event) II: 13.19; 13.13,31,39
Bell in terminal III: 30.24
Bells printed by DWIM II: 20.3
(BELOW COM X) (Editor Command) II: 16.25
(BELOW COM) (Editor Command) II: 16.25
BF PA TTERN NIL (Editor Command) II: 16.23
(BF PA TTERN) (Editor Command) II: 16.23
BF PATTERNT (EditorCommand) II: 16.23
BF PA TTERN (Editor Command) II: 16.23
(BI N M) (Editor Command) II: 16.40
(BI N) (Editor Command) II: 16.41
Bignums I: 7.1
(BIN STREAM) III: 25.5
(BIND COMS1'" COMSN) (Editor Command) II:

16.63
BIND VARS (1.5. Operator) I: 9.12
BIND VAR (1.5. Operator) I: 9.12
BIND (in Masterscope template) II: 19.20
BIND (Masterscope Relation) II: 19.9
Bindings in stack frames I: 11.6
BINDS (Litatom) II: 21.21
BIR (Font face) III: 27.26
Bit tables I: 4.6
(BITBL T SOURCE SOURCELEFT SOURCEBOTTOM

DES TINA TION DESTINA TlONLEFT
DES TINA TlONBOTTOM WIDTH HEIGHT

INDEX 3

INDEX

SOURCETYPE OPERA TlON TEXTURE
CLiPPINGREGION) III: 27.14

(BITCLEAR N MASK) (Macro) I: 7.9
BITMAP (Data Type) III: 27.3
(BITMAPSIT BITMAP X Y NEWVALUE) III: 27.3
(BITMAPCOPY BITMAP) III: 27.4
(BITMAPCREATE WIDTH HEIGHTBITSPERPIXEL) III:

27.3
(BITMAPHEIGHT BITMAP) III: 27.3
(BITMAPIMAGESIZE BITMAP DIMENSION STREAM)

III: 27.16
(BITMAPP X) III: 27.3

Bitmaps III: 27.3
(BITMAPWIDTH BITMAP) III: 27.3
BITS (as a field specification) I: 8.21
BITS (record field type) I: 8.10
(BITSET N MASK) (Macro) I: 7.9
(BITSPERPIXEL BITMAP) III: 27.3
(BITIEST N MASK) (Macro) I: 7.9
(BK N) (EditorCommand) II: 16.16
BK (Editor Command) II: 16.16
(BKLlNBUF STR) III: 30.12
(BKSYSBU F X FLG RDTBL) III: 30.11; 30.1 2
BLACKSHADE (Variable) III: 27.7

BLINK (in stack frame) I: 11.3
Blips on the stack I: 11.14
(BLIPSCAN BLiPTYPIPOS) I: 11.16
(BLlPVAL BLiPTYP IPOS FLG) I: 11.16

BLKAPPl Y (Function) II: 18.19
BLKAPPl Y* (Function) II: 18.19
BLKAPPl YFNS (in Masterscope Set Specification) II:

19.12
BLKAPPlYFNS (Variable) II: 18.19; 18.18
BLKFNS (in Masterscope Set Specification) II: 19.12
BLKLIBRARY (Variable) II: 18.20; 18.18
BLKLIBRARYDEF (Property Name) II: 18.20
BLKNAME (Variable) II: 18.18

(BLOCK MSECSWAIT TIMER) II: 23.5
Block compiling II: 18.17
Block compiling functions II: 18.20
Block declarations II: 18.17; 17.42
Block library II: 18.19
(BLOCKCOMPILE BLKNAME BLKFNS ENTRIES FLG)

II: 18.20; 18.18
BLOCKED (Printed by Editor) II: 16.65
BLOCKRECORD (Record Type) I: 8.11

(BLOCKS BLOCK 1 ... BLOCKN) (File Package

Command) II: 17.42; 18.17

INDEX.4

(BL TSHADE TEXTURE DES TINA TlON
DES TINA TlONLEFT DESTINA TlONBOTTOM
WIDTH HEIGHT OPERA TlON CLiPPINGREGION)

III: 27.16
(BO N) (Editor Command) II: 16.41
&BODY (DEFMACROkeyword) I: 10.25
BOLDITALIC (Font face) III: 27.26
BORDER (Window Property) III: 28.33
BOTH (File access) III: 24.2
(BOTH TEMPLATE 1 TEMPLATE2) (in Masterscope

template) II: 19.20
BOTTOM (as argument to ADVISE) II: 15.11

Bottom margin III: 27.11
(BOTIOMOFGRIDCOORD GRIDY GRIDSPEC) III:

27.23
(BOUNDP VAR) I: 2.3
(BOUT STREAM BYTE) III: 25.9
(BOXCOU NT TYPE N) II: 22.8
BOXCURSOR (Variable) III: 28.9; 30.15

Boxing numbers I: 7.1
Boyer-Moore fast string searching algorithm III:

25.21
BQUOTE (Function) III: 25.42
Break (DEdit Command) II: 16.9
BREAK (Error Message) II: 14.29
(BREAK X) II: 15.5; 14.5; 15.1,7

BREAK (in backtrace) II: 14.9
BREAK (Interrupt Channel) II: 23.15; III: 30.3

BREAK (Syntax Class) III: 25.37
Break characters III: 25.36; 25.4; 30.10
Break commands II: 14.5; 14.17

Break expression II: 14.5; 14.12
BREAK INSERTED AFTER (Printed by BREAKIN) II:

15.7
Break package II: 14.1
Break windows II: 14.3; 14.1
Break within a br~ak on FN (Printed by system) II:

14.16
(BREAK.NSFILlNG.CONNECTION HOSn III: 24.38
(BREAKO FN WHENCOMS--) II: 15.4; 15.5,8
(BREAK1 BRKEXP BRKWHEN BRKFN BRKCOMS

BRKTYPE ERRORN) II: 14.16; 14.20; 15.1,3-6;

20.24
BREAKCHAR (Syntax Class) III: 25.35
(BREAKCHECK ERRORPOS ERXN) II: 14.13;

14.19,22,27
BREAKCH K (Variable) II: 14.23
BREAKCOMSLST (Variable) II: 14.17
BREAKCONNECTION (Function) III: 24.37

INDEX

BREAKDELIMITER (Variable) II: 14.10

(BREAKDOWN FN1'" FNN) II: 22.9

(BREAKIN FN WHERE WHEN COMS) II: 15.6; 14.5;

15.1,3-4,7-8
Breaking CLISP expressions II: 15.4

Breaking functions II: 15.1
BREAKMACROS (Variable) II: 14.17; 14.16
(BREAKREAD TYPE) II: 14.18

BREAKREGIONSPEC (Variable) II: 14.15

BREAKRESETFORMS (Variable) II: 14.18

(BRECOMPILE FILES CFILE FNS -) II: 18.21; 17.12;

. 18.17-18
BRKCOMS (Variable) II: 14.17; 14.7-8,16; 15.4
BRKDWNCOMPFLG (Variable) II: 22.11
(BRKDWNRESUL TS RETURNVALUESFLG) II: 22.9

BRKDWNTYPE (Variable) II: 22.10; 22.11
BRKDWNTYPES (Variable) II: 22.10

BRKEXP (Variable) II: 14.5; 14.8,11-12,16; 15.4
BRKFILE (Variable) II: 14.17

BRKFN (Variable) II: 14.16; 14.6; 15.4
BRKINFO (Property Name) II: 15.4,7-8
BRKINFOLST (Variable) II: 15.7-8
BRKTYPE (Variable) II: 14.16

BRKWHEN (Variable) II: 14.16; 15.4
BROADSCOPE (Property Name) II: 21.28

BROKEN (Property Name) I: 10.9; II: 15.4

BROKEN-IN (PropertyName) I: 10.9; II: 15.7; 15.8
BROKENFNS (Variable) II: 15.4,7; 20.24

Brushes for drawing curves III: 27.18
BT (Break Command) II: 14.9

BT (Break Window Command) II: 14.3

BT! (Break Window Command) II: 14.3
BTV (Break Command) II: 14.9

BTV! (Break Command) II: 14.9

BTV* (Break Command) II: 14.9

BTV + (Break Command) II: 14.9
BUF (Editor Command) III: 26.29
BUFFERS (File Attribute) III: 24.19
BUILDMAPFLG "(Variable) II: 17.56; 17.5; 18.15

Bulk Data Transfer III: 31.24

Bury (Window Menu Command) III: 28.4
(BURYW WINDOW) III: 28.20

BUTTONEVENTFN (Window Property) III: 28.28;

28.38
(BUTTONEVENTINFN IMAGEOBJ WINDOWSTREAM

SELECTION RELX REL Y WINDOW HOSTSTREAM
BUTTON) (IMAGEFNS Method) III: 27.38

Buttons on mouse III: 30.17

BY FORM (without INION) (/.5. Operator) I: 9.14

INDEX

INDEX

BY FORM (with INION) (1.5. Operator) I: 9.14; 9.18

BY (in REPLACE editor command) II: 16.33
BYTE (as a field specification) I: 8.21
(BYTE SIZE POSITION) (Macro) I: 7.10

BYT€ (record field type) I: 8.10
(BYTEPOSITION BYTESPEC) (Macro) I: 7.10

BYTESIZE (File Attribute) III: 24.17
(BYTESIZE BYTESPEC) (Macro) I: 7.10

C
C (MAKEFILEoption) II: 17.10

C. .. R functions I: 3.2
CAAR (Function) I: 3.2
CADR (Function) I: 3.2
CALCULATEREGION (Window Property) III: 28.20

CALL (in Masterscope template) II: 19.20

CALL (Masterscope Relation) II: 19.7

CALL DIRECTL Y (Masterscope Relation) II: 19.8
CALL FOR EFFECT (Masterscope Relation) II: 19.9
CALL FOR VALUE (Masterscope Relation) II: 19.9
CALL INDIRECTLY (Masterscope Relation) II: 19.8

CALL SOMEHOW (Masterscope Relation) II: 19.8

(CALLS FN USEDATABASE -) II: 19.22

(CALLSCCODE FN--) II: 19.22

CAN'T-ATTOP (Printed by Editor) II: 16.15

CAN'T BE BOTH AN ENTRY AND THE BLOCK NAME

(Error Message) II: 18.22; 18.20
CAN'T FIND EITHER THE PREVIOUS VERSION ...

(Printed by System) II: 17.16
CANFILEDEF (File Package Type Rroperty) II: 17.30

(CANONICAL.HOSTNAME HOSTNAME) III: 24.39

CAP (Editor Command) II: 16.52

(CAR Xl I: 3.1
CAR/CDRERR (Variable) I: 3.1

#CAREFULCOLUMNS (Variable) III: 26.47
(CARET NEWCAREn III: 28.31

(CARETRATE ONRATEOFFRATE) III: 28.31

Carets III: 28.30

Carriage-return II: 13.37; III: 25.8; 25.4
Case arrays III: 25.21
(CASEARRA Y OLDARRA y) III: 25.21

CAUTIOUS (DWIM mode) II: 20.4; 20.3,24; 21.4,6
CCOoEP (data type) I: 10.6
(CCOoEP FN) I: 10.7

CDAR (Function) I: 3.2
CDoR (Function) I: 3.2

(CDR Xl I: 3.1
Center (DEdit Command) II: 16.8
.CENTER POS EXPR (PRINTOUT command) III: 25.29

INDEX.S

INDEX

.CENTER2 POS EXPR (PRINTOUT command) III:

25.29
CENTERFLG (Menu Field) III: 28.41
(CENTERPRINTINREGION EXP REGION STREAM) III:

27.21
CEXPR (Litatom) I: 10.7
CEXPR* (Litatom) I: 10.7
CFEXPR (Litatom) I: 10.7
CFEXPR* (Litatom) I: 10.7; 10.8
CH.DEFAULT.DOMAIN (Variable) I: 12.3; III: 31.8
CH.DEFAULT.ORGANIZATION (Variable) I: 12.3; III:

31.S
(CH.lSMEMBER GROUPNAME PROPERTY

SECONDARYPROPERTY NAME) III: 31.12
(CH.LIST.ALIASES OBJECTNAMEPA TTERN) III:

31.11
(CH.LIST.ALIASES.OF 08JECTPA TTERN) III: 31.11
(CH.L1ST.DOMAINS DOMAINPA ITERN) III: 31.11
(CH.L1ST.OBJECTS 08JECTPA TTERN PROPERTy) III:

31.11
(CH.LIST.ORGANIZA TIONS

ORGANIZATIONPATTERN) III: 31.11

(CH.LOOKUP.OBJECT 08JECTPATTERN) III: 31.10
CH.NET.HINT (Variable) I: 12.3; III: 31.9

(CH.RETRIEVE.lTEM 08JECTPA TTERN PROPERTY

INTERPRETATION) III: 31.11
(CH.RETRIEVE.MEMBERS 08JECTPA TTERN

PROPERTY -) III: 31.11
(CHANGE DATUM FORM) (Change Word) I: 8.19

(CHANGE @TO E1 ... EM) (Editor Command) II:

16.34

(CHANGEBACKGROUND SHADE -) III: 30.22
(CHANGEBACKGROUNDBORDER SHADE -) III:

30.23
(CHANGECALLERS OLD NEW TYPES FILES METHOD)

II: 17.28
CHANGECHAR (Variable) II: 16.30; III: 26.49
CHANGED (MARKASCHANGED reason) II: 17.18
changed, but not unsaved (Printed by Editor) II:

16.69
CHANGEFONT (Font class) III: 27.32
(CHANGEFONT FONT STREAM) III: 27.34
(CHANGENAME FN FROM TO) II: 15.8
CHANGEOFFSETFLG (Menu Field) III: 28.42
(CHANGEPROP X PROP1 PROP2) I: 2.6
CHANGESARRA Y (Variable) II: 16.30
(CHANGESLICE N HISTORY -) I: 12.3; II: 13.21;

13.31
Changetran I: 8.17

INDEX.6

CHANGEWORD (Property Name) I: 8.19

(CHARACTER N) I: 2.13
Character codes I: 2.12
Character echoing III: 30.6
Character I/O III: 25.22
Character sets I: 2.14; III: 25.22
CHARACTERNAMES (Variable) I: 2.14

Characters I: 2.12
CHARACTERSETNAMES (Variable) I: 2.14

(CHARCODE CHAR) I: 2.13
CHARDELETE (syntax class) III: 30.5,8
(CHARSET STREAM CHARACTERSEn III: 25.23
(CHARWIDTH CHARCODEFONn III: 27.30
(CHARWIDTHY CHARCODE FONn III: 27.30
(CHCON X FLG RDT8L) I: 2.13

(CHCON1 X) I: 2.13
CHECK SET (Masterscope Command) II: 19.7
(CHECKIMPORTS FILES NOASKFLG) II: 17.43
(\CHECKSUM BASE NWORDS INITSUM) (Function)

III: 31.40
CHOOZ (Function) II: 20.19
CL (Editor Command) II: 16.55; 21.27
CL:FLG (Variable) II: 21.23
(CLDISABLE OP) I: 9.11; II: 21.26

(CLEANPOSLST PLSn I: 11.21

(CLEANUP FILE 1 FILE 2·" FILE N) II: 17.12

CLEANUPOPTIONS (Variable) II: 17.12
Clear (DEdit Command) II: 16.8
Clear (Window Menu Command) III: 28.4
(CLEARBU F FILE FLG) III: 30.11; 30.12
Clearinghouse III: 31.8
(CLEARPUP PUP) III: 31.28
(CLEARSTK FLG) I: 11.9

CLEARSTKLST (Variable) I: 11.9
(CLEARW WINDOW) III: 28.31
CLINK (in stack frame) I: 11.3
Clipping region III: 27.11
CLISP II: 21.1; 20.8,10-11
CLiSP (as CAR of form) II: 21.17

CLiSP (in Masterscope template) II: 19.20
CLiSP (MARKASCHANGED reason) II: 17.18
CLISP and compiler II: 18.9,14
CLISP declarations II: 21.12; 21.17
CLISP interaction with user II: 21.6
CLISP internal conventions II: 21.27
CLISP operation II: 21.14
CLISP words II: 20.9
CLlSP: (Editor Command) II: 21.26; 21.17
CLiSPARRAY (Variable) II: 21.25; 21.17,26

INDEX

CLlSPCHARRA Y (Variable) 1/: 21.25
CLISPCHARS (Variable) 1/: 21.25
(CLlSPDEC DECLSn II: 21.12; 21.25
CLlSPFLG (Variable) II: 21.25
CLlSPFONT (Font class) 1/1: 27.32
CLISPFORWORDSPlST (Variable) I: 9.10
CLiSPHELPFLG (Variable) 1/: 21.21; 21.6
CLlSPI.S.GAG (Variable) I: 9.20
CLiSPIFTRANFLG (Variable) II: 21.26
CLiSPIFWORDSPlST (Variable) I: 9.5
(CLISPIFY XEDITCHAIN) II: 21.22; 21.23; 17.11;

21.14
CLiSPIFY (MAKEFILEoption) II: 17.11; 21.26

(CLISPIFYFNS FN",. FNN) II: 21.23

CLiSPIFYPACKFlG (Variable) 1/: 21.24
CLiSPIFYPRETTYFLG (Variable) I: 12.3; II: 21.26;

17.11; III: 26.48
CLiSPIFYUSERFN (Variable) II: 21.24
CLiSPINFIX (Property Name) II: 21.29
CLiSPINFIXSPLST (Variable) II: 21.25; 21.9
CLiSPRECORDTYPES (Variable) I: 8.15
CLiSPRETRANFLG (Variable) II: 21.22; 21.17
(CLISPTRAN X TRAN) II: 21.25
CLlSPTYPE (Property Name) II: 21.27; 21.28
CLISPWORD (Property Name) I: 8.19; II: 21.29
(CLOCK N-) I: 12.15
Close (Window Menu Command) III: 28.3
(CLOSEALLALLFLG) III: 24.5; 24.20
CLOSEBREAKWINDOWFLG (Variable) II: 14.15
(CLOSEF FILE) III: 24.4
(CLOSEF? FILE) III: 24.4
CLOSEFN (Window Property) III: 28.15
(CLOSENSOCKET NSOC NOERRORFLG) III: 31.37
(CLOSEPUPSOCKET PUPSOC NOERRORFLG) III:

31.29
(CLOSEW WINDOW) III: 28.15
Closing and reopening files III: 24.20
CLREMPARSFLG (Variable) II: 21.23
(CLRHASH HARRA y) I: 6.2
(CLRPROMPT) III: 28.3
(CNDIR HOSTIDIR) III: 24.10
CNTRlV (syntax class) III: 30.6
CODE (Property Name) II: 17.27
CODERDTBl (Variable) III: 25.34
COLLECT FORM (1.5. Operator) I: 9.10
COMMAND (Variable) III: 26.38
COMMENT (printed by editor) II: 16.48
COMMENT (printed by system) III: 26.43
Comment pointers II: 16.55; III: 26.44

INDEX

INDEX

COMMENT USED FOR VALUE (Error Message) II:
18.23

COMMENTFLG (Variable) III: 26.43
(COMMENT1 L -) III: 26.43
COMMENTFLG (Variable) III: 26.43; 26.45
COMMENTFONT (Font class) III: 27.32
COMMENTLINELENGTH (Variable) III: 27.34
Comments in functions III: 26.42
(COMPARE NAME 1 NAME2 TYPE SOURCE 1

SOURCE2) II: 17.29
(COMPAREDEFS NAME TYPE SOURCES) II: 17.29
(COMPARELISTSXy) I: 3.19
Comparing lists I: 3.19
(COMPilE X FLG) II: 18.14
COMPllE.EXT (Variable) II: 18.13
(COMPllE1 FN DEF -) II: 18.14
Compiled files II: 18.13
Compiled function objects I: 10.6
COMPILED ON (printed when file is loaded) II:

18.13
(COMPILEFILES FILE 1 FILE 2··. FILE N) 1/: 17.14

COMPILEHEADER (Variable) II: 18.13
Compiler II: 18.1
Compiler error messages II: 18.22
Compiler functions II: 18.13; 18.20
Compiler printout II: 18.3
Compiler questions II: 18.1
COMPILERMACROPROPS (Variable) I: 10.22
COMPllETYPELST (Variable) I: 10.14; II: 18.11; 18.9
COMPILEUSERFN (Function) II: 18.12
COMPllEUSERFN (Variable) II: 18.9; 18.11
Compiling CLISP II: 18.11; 18.9,14
Compiling data types II: 18.11
Compiling files II: 18.14; 18.21
Compiling FUNCTION II: 18.10
Compiling function calls II: 18.8
Compiling functional arguments II: 18.10
Compiling open functions II: 18.11
COMPLETEON (ASKUSER option) III: 26.16
COMPSET (Function) II: 18.1
Computed macros I: 10.23
(COMS X 1 .,. XM) (Editor Command) II: 16.59

(COMS COM, ... COM N) (File Package Command)

1/: 17.40
(COMSQ COM, ... COMN) (Editor Command) II:

16.59
(CONCAT X 7 X2 ... XN) I: 4.4

(CONCATLIST L) I: 4.4

INDEX.?

INDEX

«(OND CLAUSE, CLAUSE2'" CLAUSEK) I: 9.4

COND clause I: 9.4
CONFIRMFLG (ASKUSER option) III: 26.15
Conjunctions in Masterscope II: 19.14
CONN HOSTIDIR (Prog. Asst. Command) III: 24·.11
Connected directory III: 24.9
Connection Lost (Error Message) III: 24.41
(CONS X y) I: 3.1
(CONSCOUNT N) II: 22.8
(CONSTANT X) II: 18.7
(CONSTANTS VAR, ... VARN) (File Package

Command) II: 17.37
(CONSTANTS VAR, VAR2'" VARN) II: 18.8

Constants in compiled code II: 18.7
Constructing lists in CLiSP II: 21.10
CONTAIN (File Package Command Property) II:

17.46
CONTAIN (Masterscope Relation) II: 19.10
CONTENTS (File Package Command Property) II:

17.46
CONTEXT (history list property) II: 13.33
Context switching I: 11.4
CONTINUE SAVING? (Printed by System) II: 13.41
CONTINUE WITH T CLAUSE (printed by DWIM) II:

20.7
Continuing an edit session II: 16.50
(CONTROL MODE TTBL) III: 30.10; 25.3,5
Control chain (on stack) I: 11.3
Control-A III: 30.5; 25.41; 26.23
Control·B (Interrupt Character) II: 14.27,29; 23.15;

III: 30.2
Control-character echoing III: 30.6
Control·D (Interrupt Character) II: 14.2,17,20;

16.49; 18.4; 23.14; III: 30.2; 30.11
CONTROL-E (Error Message) II: 14.31
Control-E (Interrupt Character) II: 13.18;

14.2,20,31; 15.7; 20.5,7; 23.14; III: 30.2; 24.40;
30.11

Control-F III: 26.23
Control-G (in history list) II: 13.19; 13.13
Control·G (Interrupt Character) II: 23.14; III: 30.2;

30.11
Control-L III: 25.26
Control-P (interruptcharacter) II: 14.10; III: 30.2;

30.11
Control-Q III: 30.5; 25.2,41; 26.23
Control-R III: 30.6; 26.23
Control-T (Interrupt Character) III: 30.2
Control-V III: 30.6; 25.3

INDEX.S

Control-W III: 30.6; 25.2; 26.23

Control-X III: 26.24
Control .. X (Editor Command) II: 16.18
Control-Y II: 16.75; III: 25.42; 26.23
Control-Z (Editor Command) II: 16.18
CONVERT.FILE. TO. TYPE.FOR.PRINTER (Function)

III: 29.2
Coordinate Systems III: 28.23
COpy (DECLARE: Option) II: 17.41
Copy (DEdit Command) II: 16.9
(COpy X) I: 3.8

(COPYALLX) I: 3.8
(COPYARRA YARRA y) I: 5.2
COPYBUTTONEVENTFN (Window Property) III:

27.41
(COPYBUTTONEVENTINFN IMAGEOBJ

WINDOWSTREAM) (lMAGEFNS Method) III:

27.38
(COpy BYTES SRCFIL DSTFIL START END) III: 25.20
(COPYCHARS SRCFI!. DSTFIL START END) III: 25.20
(COPYDEF OLD NEW TYPE SOURCE OPTIONS) II:

17.27
(COPYFILE FROMFILE TOFILE) III: 24.31
(COPYFN IMAGEOBJ SOURCEHOSTSTREAM

TARGETHOSTSTREAM) (lMAGEFN5 Method)
III: 27.38

COPYING (in CREATE form) I: 8.4
Copying files III: 24.31
Copying image objects between windows III:

27.41
Copying lists I: 3.8; 3.5,13-14,19
(COPYINSERT IMAGEOBJ) III: 27.42
COPYINSERTFN (Window Property) III: 27.42
(COPYREADTABLE RDTBL) III: 25.35
COPYRIGHTFLG (Variable) I: 12.3; II: 17.53
COPYRIGHTOWNERS (Variable) I: 12.3; II: 17.54
(COPYTERMTABLE TTBL) III: 30.5
COPYWHEN (DECLARE: Option) II: 17.42
CORE (file device) III: 24.29
(COREDEVICE NAME NODIRFLG) III: 24.30
(COROUTI NE CALLPTR COROUTPTR COROUTFORM

ENDFORM) I: 11.19
Coroutines I: 11.18
(COS X RADIANSFLG) I: 7.13
(COUNT X) I: 3.10
COUNT FORM (1.5. Operator) I: 9.11
(COUNTDOWN X N) I: 3.11
Courier III: 31.15
Courier programs III: 31.15

INDEX

(COURIER.BROADCAST.CALL DESTSOCKET#
PROGRAM PROCEDURE ARGS RESUL TFN
NETHINT MESSAGE) III: 31.23

(COURIER.CALL STREAM PROGRAM PROCEDURE

ARG7 ... ARGNNOERRORFLG) III: 31.21

(COURIER.CREATE TYPE FIELDNAME (- VALUE ...

FIELDNAME~VALUE) (Macro) III: 31.18
(COURIER.EXPEDITED.CALL ADDRESS SOCKET#

PROGRAM PROCEDURE ARG, ... ARGN

NOERRORFLG) III: 31.22
(COURIER.FETCH TYPE FIELD OBJECn (Macro) III:

31.19
(COURIER.OPEN HOSTNAME SERVER7YPE

NOERRORFLG NAME WHENCLOSEDFN
OTHERPROPS) III: 31.20

(COURIER.READ STREAM PROGRAM 7YPE) III:

31.25
(COURIER.READ.BULKDATA STREAM PROGRAM

TYPE DONTCLOSE) III: 31.25
(COURIER.READ.REP LIST. OF. WORDS PROGRAM

TYPE) . III: 31.26
(COURIER.READ.SEQUENCE STREAM J)ROGRAM

TYPE) III: 31.25
(COURIER.WRITE STREAM ITEM PROGRAM TYPE)

III: 31.25
(COURIER.WRITE.REP VALUE PROGRAM· TYPE) III:

31.26
(COURIER.WRITE.SEQUENCE STREAM ITEM

PROGRAM TYPE) III: 31.26
(COURIER.WRITE.SEQUENCE.UNSPECIFIED STREAM

ITEM PROGRAM TYPE) III: 31.26
COURIERDEF (Property Name) III: 31.19
(COURIERPROGRAM NAME ...) III: 311.15
(COURIERPROGRAMS NAME 7 ... NAMEN) (File

Package Command) II: 17.39; III: 31.15
COURIERPROGRAMS (File Package Type) II: 17.23;

III: 31.15
COUTFILE (Variable) II: 18.4
CREATE (in Masterscope template) II: 19.20
CREATE (in record declarations) I: 8.14
CREATE (Masterscope Relation) II: 19.9
CREATE (Record Operator) I: 8.3; 8.14
CREA TE NOT DEFINED FOR THIS RECORD (Error

Message) I: 8.13
(CREATE. EVENT NAME) II: 23.7
(CREATE.MONITORLOCK NAME -) III: 23.8
(CREATEDSKDIRECTORY VOLUMENA/WE -) III:

24.22

INDEX

INDEX

(CREATEMENUEDWINDOW MENU WINDOWTlTLE

LOCATION WINDOWSPEC) III: 28.49
(CREATEREGION LEFT BOTTOM WIDTH HEIGHn

III: 27.2
(CREATETEXTUREFROMBITMAP BITMAP) III: 27.7
(CREATEW REGION TITLE BORDERSIZE NOOPENFLG)

III: 28.13
CREATIONDATE (File Attribute) III: 24.17
CROSSHAIRS (Variable) III: 28.9; 30.15
CTRLV . (syntax class) III: 30.6
CTRLVFLG (Variable) III: 26.31
Current expression in editor II: 16.13; 16.20
Current position of image stream III: 27.13
CURRENTITEM (Window Property) III: 26.8
Cursor III: 30.13
(CURSOR NEWCURSOR-) III: 30.14
CURSOR (Record) III: 30.14
(CURSORBITMAP) III: 30.13
(CURSORCREATE BITMAP X y) III: 30.14
CURSORHEIGHT (Variable) III: 30.14
CURSORINFN (Window Property) III: 28.28; 28.38
CURSORMOVEDFN (Window Property) III: 28.28;

28.38
CURSOROUTFN (Window Property) III: 28.28
(CURSORPOSITION NEWPOSITION DISPLA YSTREAM

OLDPOSITION) III: 30.17
CURSORS (File Package Command) III: 30.14
CURSORWIDTH (Variable) III: 30.14

o
o (Editor Command) II: 16.57
Dashing of curves III: 27.18
(DASSEM.SAVELOCALVARS FN) II: 18.6
Data fragmentation II: 22.1
Datatypecompiling 11:18.11
Data type eval uati ng I: 10.13
Data type names I: 8.20
Data types I: 8.20; II: 22.13
DATA TYPES FULL (Error Message) II: 14.30
DATABASECOMS (Variable) II: 19.24
DATATYPE (Record Type) I: 8.9
(DATA TYPES -) I: 8.20
(DATE FORMAn I: 12.13
(DATEFORMAT KEY7 ... KEYN) I: 12.14

DATUM (in Changetran) I: 8.19
DATUM (Variable) I: 8.12,14
DATUM (Window Property) III: 26.8
DATUM OF INCORRECT TYPE (Error Message) I:

8.22

INDEX 9

INDEX

(DeFILE) II: 16.3
(DeHCON x SCRA TCHLIST FLG RDTBL) I: 2.13
DeOM (file name extension) II: 18.13; 18.14,21
DEALLOC (data type name) I: 8.21
Debugging functions II: 15.1
Declarations in CLiSP II: 21.12
DECLARE (Function) II: 18.5; 21.19
DECLARE DECL (1.5. Operator) I: 9.17
DECLARE AS LOCALVAR (Masterscope Relation) II:

19.10
DECLARE AS SPECVAR (Masterscope Relation) II:

19.10
(DECLARE: • FILEPKGCOMSIFLAGS) (File Package

Command) II: 17.40; 18.14,17
DECLARE: (Function) II: 17.41
DECLARE: DECL (1.5. Operator) I: 9.17
(DECLAREDA TATYPE TYPENAME FIELDSPECS ---)

I: 8.21
DECLARETAGSLST (Variable) II: 17.42
(DECODE.WINDOW.ARG WHERESPEC WIDTH

HEIGHT TITLE BORDER NOOPENFLG)· III:

28.14
(DECODEIWtNDOW/ORlDISPLA YSTREAM DSORW

WINDOWVAR TITLE BORDER) III: 28.32
(DECODEBUTTONS BUTTONSTATE) III: 30.19
Dedit II: 16.1
DEDITL (Function) II: 16.4
DEditLinger (Variable) II: 16.12
DEDITRDTBL (Variable) III: 25.34
DEDITTYPEINCOMS (Variable) II: 16.12
Deepbinding I: 11.1; 2.4; II: 22.6
DEFAULT.lNSPECTW.PROPCOMMANDFN (Function)

III: 26.7
DEFAU LT.I NSPECTW. TITLECOMMANDFN (Function)

III: 26.8
DEFAULT.lNSPECTW.VALUECOMMANDFN

(Function) III: 26.8
DEFAULTCARET (Variable) III: 28.31
DEFAULTCARETRATE (Variable) III: 28.31
DEFAULTCOPYRIGHTOWNER (Variable) I: 12.3; II:

17.54
DEFAULTCURSOR (Variable) III: 30.14; 30.15
DEFAULTEOFCLOSE (Variable) III: 24.21
DEFAULTFILETYPE (Variable) III: 24.18
DEFAULTFONT (Fonte/ass) III: 27.32
(DEFAULTFONT DEVICE FONT -) III: 27.29
DEFAULTINITIALS (Variable) II: 16.76
DEFAULTMAKENEWCOM (Function) II: 17.31
DEFAULTMENUHELDFN (Function) III: 28.40

INDEX.l0

DEFAULTPAGEREGION (Variable) III: 27.10; 29.2
DEFAULTPRINTERTYPE (Variable) III: 29.5
DEFAUL TPRINTINGHOST (Variable) I: 12.3; III: 29.4
DEFAULTPROMPT (Variable) III: 26.30
DEFAULTRENAMEMETHOD (Variable) II: 17.29
DEFAULTSUBITEMFN (Function) III: 28.39
DEFAUL TTTYREGION (Variable) II: 23.10
DEFAULTWHENSELECTEDFN (Function) III: 28.40
DEFC (Function) II: 13.27
(DEFERREDCONSTANT X) II: 18.8
(DEFEVAL TYPE FN) I: 10.13
Defgroups II: 17.1
(DEFINE X -) I: 10.9
DEFINED (MARKASCHANGEDreason) II: 17.18
DEFINED. THEREFORE DISABLED IN CLiSP (Error

Message) I: 9.10; II: 21.6
(DEFINEQ X 1 X2 ... XN) I: 10.9

Defining file package commands II: 17.45
Defining file package types II: 17.29
Defining functions I: 10.9
Defining iterative statement operators I: 9.20
Definition groups II: 17.1
(DEFLIST L PROP) I: 2.6
(DEFMACRO NAME ARGS FORM) I: 10.24
(DEFPRINT TYPE FN) III: 25.16
(\DEL.PACKET.FILTER FILTER) (Function) III: 31.40
(DEL. PROCESS PROC -) II: 23.4
DELDEF (File Package Type Property) II: 17.31
(DELDEF NAME TYPE) II: 17.27
Delete III: 30.11; 26.23
Delete (DEdit Command) II: 16.7
(DELETE. @) (Editor Command) II: 16.34
DELETE (Editor Command) II: 16.32; 16.30
DELETE (File Package Command Property) II: 17.46
DELETE (Interrupt Character) II: 23.15; III: 30.3
(DELETECONTROL TYPE MESSAGE TTBL) III: 30.8
DELETED (MARKASCHANGED reason) II: 17.18
(DELETEMENU MENU CLOSEFLG FROMWINDOW)

III: 28.38
Deleting files III: 24.31
(DELFILE FILE) III: 24.31
(DELFROMCOMS COMS NAME TYPE) II: 17.49
(DELFROMFILES NAME TYPE FILES) II: 17.48
(DEPOSITBYTE N POS SIZE VAL) I: 7.10
(\DEQUEUE Q) (Function) III: 31.41
DESCENT (Font property) III: 27.27
DESCRIBE SET (Masterscope Command) II: 19.6
DESCRIBELST (Variable) II: 19.6
DESCRIPTION (File Package Type Property) II: 17.32

INDEX

Destination bitmap III: 27.23
DESTINATION IS INSIDE EXPRESSION BEING MOVED

(Printed by Editor) II: 16.38
Destructive functions I: 3.13,19; II: 2:2.14
Destructuring argument lists I: 10.27
(DETACHALLWINDOWS MAINWINDOW) III: 28.47
(DETACHWINDOW WINDOWTODETACH) III: 28.47
Determiners in Masterscope II: 19.13
DEVICE (File.name field) III: 24.5
DEVICE (Font property) III: 27.27
Device-independent graphics III: 27.,42
DEVICESPEC (Font property) III: 27.28
(OF FN NEW?) II: 16.2
DFNFLG (Variable) I: 10.10; II: 13.29; 16.69; 17.5,28
(DIFFERENCE X y) I: 7.3
different expression (Printed by Editor) II: 16.66
DIG (Device-Independent Graphics) III: 27.42
(DIR FILEGROUP COM 1 ... COMN) III: 24.35

DIRCOMMANDS (Variable) III: 24.35
Directories III: 24.31
DIRECTORIES (Variable) I: 12.3; II: 17.16; III: 24.31;

24.32
DIRECTORY (File name field) III: 24.6
(DIRECTORY FILES COMMANDS DEFAUL TEXT

DEFAUL TVERS) III: 24.33
(DIRECTORYNAME DIRNAMESTRPTR--) III: 24.11
(DIRECTORYNAMEP DIRNAME HOSTNAME) III:

24.11
Disabling CLiSP operators II: 21.26
(DISCARDPUPS SOC) III: 31.30
(DISCARDXIPS NSOC) III: 31.38
(DISKFREEPAGES VOLUMENAME -) III: 24.23;

24.21
(DISKPARTITlON) III: 24.23; 24.21
(DISMISS MSECSWAIT TIMER NOBLOCK) II: 23.5
DISPLA Y (Image stream type) III: 27.23; 27.8
Display screens I: 12.4; III: 30.22
Display streams III: 27.23; 27.8
(DISPLA YDOWN FORM NSCANLINES) III~ 30.24
(DISPLA YFN IMAGEOBJ IMAGESTREAIVI

IMAGESTREAMTYPE HOSTSTREAM)

(lMAGEFNS Method) III: 27.37
DISPLAYFONTDIRECTORIES (Variable) I: 12.3; III:

27.31
DISPLAYFONTEXTENSIONS (Variable), I: 12'.3; III:

27.31
DISPLA YHElP (Function) III: 26.30
DISPLA YTYPES (Variable) III: 26.39
Division by zero I: 7.2

INDEX

INDEX

DMACRO (Property Name) I: 10.21
(DMPHASH HARRA Y 1 HARRA Y 2 .. · HARRA Y N) I:

6.3
DO COM (EditorCommand) II: 16.54; 13.43
DO FORM (1.5. Operator) I: 9.10
(DOBACKGROUNDCOM) III: 28.7
(DOCOllECT ITEM LST) I: 3.7
DOCqPY (DECLARE: Option) II: 17.41
Document printing III: 29.1
DOEVAL@COMPILE (DECLARE: Option) II: 17.42
DOEVAL@LOAD (DECLARE: Option) II: 17.41
DON'T.CHANGE.DATE (OPENSTREAM parameter)

III: 24.3
DONTCOMPILEFNS (Variable) II: 18.14; 18.15,18
DONTCOPY (DECLARE: Option) II: 17.41
DONTEVAL@COMPILE (DECLARE: Option) II: 17.42
DONTEVAL@LOAD (DECLARE: Option) II: 17.41
(DOSELECTEDITEM MENU ITEM BUTTON) III: 28.43
DOSHAPEFN (Window Property) III: 28.18
DOVER (Printer type) III: 29.5
(DOWINDOWCOM WINDOW) III: 28.7
DOWINDOWCOMFN (Window Property) III: 28.7

(DP NAME PROP) II: 16.2
(DPB N BYTESPEC VAL) (Macro) I: 7.10
(DRAWBETWEEN POSITION 1 POSITlON2 WIDTH

OPERATION STREAM COLOR DASHING) III:

27.17
(DRAWCIRClE CENTERX CENTERY RADIUS BRUSH

DASHING STREAM) III: 27.19
(DRAWCURVE KNOTS CLOSED BRUSH DASHING

STREAM) III: 27.19
(DRAWELLIPSE CENTERX CENTERY

SEMIMINORRADIUS SEMIMAJORRADIUS
ORIENTATION BRUSH DASHING STREAM) III:

27.19
(DRAWLINE X 1 Y 1 X2 y 2 WIDTH OPERA TlON

STREAM COLOR DASHING) III: 27.17
(DRAWPOINT X Y BRUSH STREAM OPERATION) III:

27.20
(DRAWTO X Y WIDTH OPERA TlON STREAM COLOR

DASHING) III: 27.17
(DREMOVE X L) I: 3.19
(DREVERSE L) I: 3.19
(DRIBBLE FILE APPENDFLG THAWEDFLG) III: 30.12
Dribble files III: 30.12
(DRIBBLEFllE) III: 30.13
DSK (file device) III: 24.21
(DSKDISPLA Y NEWSTATE) III: 24.23
DSKDISPLA Y .POSITION (Variable) III: 24.23

INDEX.11

INDEX

DSP (Window Property) III: 28.34

(DSPBACKCOLOR COLOR STREAM) III: 27.13

(DSPBACKUP WIDTH DISPLAYSTREAM) III: 27.25

(DSPBOTTOMMARGI N YPOSITION STREAM) III:

27.11

(DSPCLIPPINGREGION REGION STREAM) III: 27.11

(DSPCOLOR COLOR STREAM) III: 27.13

(DSPCREATE DESTINA TlON) III: 27.23

(DSPDESTINA TlON DES TINA TlON DISPLA YSTREAM)

III: 27.23

(DSPFILL REGION TEXTURE OPERA TlON STREAM)

III: 27.20

(DSPFONT FONT STREAM) III: 27.11

(DSPlEFTMARGIN XPOSITION STREAM) III: 21.11

(DSPLINEFEED DELTAY STREAM) III: 27.12

(DSPNEWPAGE STREAM) III: 27.21

(DSPOPERATION OPERATION STREAM) III: 27.12

(DSPRESET STREAM) III: 27.21

(DSPRIGHTMARGI N XPOSITION STREAM) III: 27.11

(DSPSCALE SCALE STREAM) III: 27.12

(DSPSCROLL SWITCHSEITING DISPLA YSTREAM)

III: 27.24

(DSPSOURCETYPE SOURCETYPE DISPLA YSTREAM)

III: 27.24

(DSPSPACEFACTOR FACTOR STREAM) III: 27.12

(DSPTEXTURE TEXTURE DISPLAYSTREAM) III::
27.24

(DSPTOPMARGIN YPOSITION STREAM) III: 21.11

(DSPXOFFSET XOFFSET DISPLA YSTREAM) III: 27.23

(DSPXPOSITION XPOSITION STREAM) III: 27.13

(DSPYOFFSET YOFFSET DISPLAYSTREAM) III: 27.23

(DSPYPOSITION YPOSITION STREAM) III: 27.13

(DSUBLISALSTEXPRFLG) I: 3.14

(DSUBST NEW OLD EXPR) I: 3.13

DT.EDITMACROS (Variable) II: 16.12

DUMMY-EDIT-FUNCTION-BODY (Variable) II:

16.70; 16.2
(DUMMYFRAMEP POS) I: 11.13

(DUMPDATABASE FNLSn II: 19.24

(DUNPACK X SCRA TCHLIST FLG RDTBL) I: 2.9

Duration Functions I: 12.16

during INTERVAL (1.5. Operator) I: 12.18

(DV VAR) II: 16.2

OW (Editor Command) II: 16.55; 21.27

DWIM II: 20.1

(DWIM X) II: 20.4

DWIM interaction with user II: 20.4

DWIM variables II: 20.12
DWIMCHECK#ARGSFLG (Variable) II: 21.22

INDEX.12

DWIMCHECKPROGLABELSFLG (Variable) II: 21.22;

21.19
DWIMESSGAG (Variable) II: 21.22; 18.12
DWIMFLG (Variable) II: 20.14; 16.66,68,71; 20.23
(DWIMIFY X QUIETFLG L) II: 21.18; 21.20; 21.15

DWIMIFYCOMPFlG (Variable) II: 21.22;

18.12,15,21
DWIMIFYFLG (Variable) II: 20.13

(DWIMIFYFNSFN1'" FNN) II: 21.20; 21.19

DWIMINMACROSFLG (Variable) II: 21.20

DWIMLOADFNS? (Function) II: 20.13
DWIMLOADFNSFLG (Variable) II: 20.14; 20.13
DWIMUSERFORMS (Variable) II: 20.11; 20.9-10
DWIMWAIT (Variable) II: 20.13; 20.5-6

E
(E X T) (Editor Command) II: 16.58

(E X) (Editor Command) II: 16.58

E (EditorCommand) II: 16.57; 13.43; 16.55

(E FORM1'" FORMN) (File Package Command) II:

17.40

E (in a floating point number) I: 7.11; III: 25.3
E (use in comments) III: 26.43

EACHTIME FORM (1.5. Operator) I: 9.16; 9.18
(ECHOCHAR CHARCODE MODE TTBL) III: 30.6

(ECHOCONTROL CHAR MODE TTBL) III: 30.7

Echoing characters III: 30.6

(ECHOMODE FLG TTBL) III: 30.7

ED (Editor Command) III: 26.29
RELA TlONED BY SET (Masterscope Set

Specification) II: 19.12

RELA TlONED IN SET (Masterscope Set Specification)

II: 19.12

EDIT (Break Command) II: 14.11; 14.12-13
EDIT (Break Window Command) II: 14.3

Edit (DEdit Command) II: 16.9

(EDIT NAME -) II: 16.68

EDIT (Litatom) II: 16.50
EDIT SET [- EDITCOMS] (Masterscope Command) II:

19.6

edit (Printed by Editor) II: 16.72
Edit chain II: 16.13; 16.20
Edit macros II: 16.62

EDIT WHERE SET RELA TlON SET [- ED/TCOMS]

(Masterscope Command) II: 19.6

EDIT-SAVE (Property Name) II: 16.49-50
(EDIT4E PAT X -) II: 16.72

(EDITBM BMSPEC) III: 27.4

(EDITCALLERSATOMS FILES COMS) II: 16.74

INDEX

(EDITCHAR CHARCODE FONn III: 27.31

EDITCHARACTERS (Variable) I: 12.4; II: 16.76

EditCom (DEdit Command) II: 16.9

EDITCOMSA (Variable) II: 16.68; 16.66

EDITCOMSL (Variable) II: 16.66; 16.67-68

EDITDATE (Function) II: 16.76

EDITDATE? (Function) II: 16.76

EDITDEF (File Package Type Property) II: 17.31

. (EDITDEF NAME TYPE SOURCE ED/TeOMS) II:
17.27

EDITDEFAULT (Function) II: 16.66; 13.43

(EDITE EXPR COMS ATM TYPE /FCHAN(iEDFN) II:

16.71

EDITEMBEDTOKEN (Variable) II: 16.12; 16.37

(EDITF NAMECOMl COM2'" COMN) II: 16.68

(EDITFINDP X PATFLG) II: 16.73

(EDITFNS NAME COM 1 COM2 ... COM N) II: 16.70

(EDITFPAT PAT -) II: 16.73

EDITHISTORY (Variable) II: 13.43;

13.31-32,35,42,44; 16.54

Editing compiled code II: 15.8

(EDITL L COMS ATM MESS ED/TCHANGES) II: 16.72

(EDITLO L COMS MESS -) II: 16.72

(EDITLOADFNS1 FN STR ASKFLG FILES) II: 16.73

EDITLOADFNSFLG (Variable) II: 16.70

(EDITMODE NEWMODE) II: 16.4

EDITOR (in backtrace) II: 14.9

(EDITPNAMECOMl COM2'" COMN) II: 16.71

EDITPREFIXCHAR (Variable) III: 26.25; 26.39

EDITQUIETFLG (Variable) II: 16.19

EDITRACEFN (Variable) II: 16.75

EDITRDTBL (Variable) II: 16.72; III: 25.34

(EDITRECNAMECOM1'" COMN) I: 8,,16

(EDITSHADE SHADE) III: 27.7

EDITUSERFN (Variable) II: 16.66

(EDITV NAME COM 1 COM2'" COMN) II: 16.71

EE (Editor Command) III: 26.29

EF (Editor Command) II: 16.52

EF (Function) II: 16.4

EFFECT (in Masterscope template) II: '19.19

(EFTP HOSTFILE PR/NTOPT/ONS) III: 31.7

Element patterns in pattern matching I: 12.25

(EL T ARRA Y N) I: 5.1

(EMBED @IN.X) (EditorCommand) II: 16.37

EMPRESS#SIDES (Variable) III: 29.2

Empty list I: 3.3

(ENCAPSULA TE.ETHERPACKET NDB PACKET PDH
NBYTES ETYPE) III: 31.40

INDEX

Encapsulated image objects III: 27.41

END (as argument to ADVISE) II: 15.11

END OF FILE (Error) III: 24.19

INDEX

END OF FILE (Error Message) III: 25.3,6,19

End-of-linecharaeter I: 2.14; III: 24.19; 25.8-9,19

(ENDCOLLECT LSTTA/L) I: 3.7

\EndDST (Variable) I: 12.16

(ENDFILE FILE) III: 25.33

ENDOFSTREAMOP (File Attribute) III: 24.19

(\ENQUEUE Q ITEM) (Function) III: 31.41

ENTRIES (in Masterscope Set Specification) II: 19. 12

ENTRIES (Variable) II: 18.18

Entries to a block II: 18.17; 18.20

(ENTRY # HIST X) II: 13.40

Enumerating files III: 24.33

(ENVAPPl Y FN ARGS APOS CPOS AFLG CFLG) I:

11.8

(ENVEVALFORMAPOSCPOSAFLGCFLG) I: 11.7

(EOFP FILE) III: 25.6; 31.14

EOl (File Attribute) III: 24.19

EOl (syntax class) III: 30.6

EP (EditorCommand) II: 16.52

EP (Function) II: 16.4

(EQ X y) I: 9.3

(EQLENGTH X N) I: 3.10

(EQMEMB X Y) I: 3.13

(EQP X Y) I: 7.2; 9.3; 11.4

(EQUAL X Y) I: 9.3; 3.4; 7.2

(EQUALALL X y) I: 9.3

(EQUALN X Y DEPTH) I: 3.11

ERASE SET (Masterscope Command) II: 19.5

ERROR (Error Message) II: 14.29; 14.19

(ERROR MESS 1 MESS2 NOBREAK) II: 14.19;

14.29,32

ERROR (historylistproperty) II: 13.33

ERROR (Interrupt Channel) II: 23.14; III: 30.3

Error correction II: 20.1

Error numbers II: 14.27; 14.20,22

(ERROR!) II: 14.20; 14.6

(ERRORMESS U) II: 14.20; 14.16,27

ERRORMESS (Variable) II: 14.22

(ERRORMESS1 MESSl MESS2 MESS3) II: 14.21;

14.16

(ERRORN) II: 14.20; 14.27

ERRORPOS (Variable) II: 14.23

Errors in iterative statements I: 9.19

Errors messages from compiler II: 18.22

(ERRORSET FORM FLAG-) II: 14.21; 14.14,19-20

(ERRORSTRING X) II: 14.21

INDEX.13

INDEX

ERRORTYPELST (Variable) II: 14.22; III: 24.3

(ERRORX ERXM) II: 14.19
ERRORX (Litatom) II: 14.16
(ERSETQ FORM) I: 9.9; II: 14.22
ESC (type of read macro) III: 25.40
(ESCAPE FLG RDTBL) III: 25.39

ESCAPE (Syntax Class) III: 25.35
Escape ($) (in CLlSP) II: 21.10-11
Escape ($) (in Edit Pattern) II: 16.18
Escape ($) (in Editor) II: 16.45-46
Escape ($) (in spelling correction) II: 20.15; 20.22
Escape ($) (in TTYIN) III: 26.23
Escape ($) (Prog. Asst. Command) II: 13.11
Escape ($) (use in ASKUSER) III: 26.19
Escape-GO ($GO) (TYPE-AHEAD command) II:

13.18
Escape-Q ($Q) (TYPE-AHEAD command) II: 13.18
Escape-STOP ($STOP) (TYPE-AHEAD command) II:

13.18
ESCQUOTE (type of read macro) III: 25.40
(ESUBST NEW OLD EXPR ERRORFLG CHARFLG) II:

16.73; 13.9
(ETHERHOSTNAME PORT USE. OCTAL. DEFAUL n

III: 31.6

(ETHERHOSTNUMBER NAME) III: 31.6
Ethernet III: 31.1
ETHERPACKET (data type) III: 31.26
(ETHERPORT NAME ERRORFLG MULTFLG) III: 31.6
\ETHERTIMEOUT (Variable) III: 31.38
EV (Editor Command) II: 16.52
EV (Function) II: 16.4

EVAL (Break Command) II: 14.5; 14.6; 15.6
EVAL (Break Window Command) II: 14.3
Eval (DEdit Command) II: 16.9
EVAL (Editor Command) II: 16.58
(EVAL X -) I: 10.12

EVAL (in Masterscope template) II: 19.19
EVAL (Litatom) II: 21.21
EVAL-format input II: 13.4
(EVAL.AS.PROCESS FORM) II: 23.17

(EVAL.IN.TTY.PROCESS FORM WAITFORRESULn
II: 23.18

EVAL@COMPILE (DECLARE: Option) II: 17.42

EVAL@COMPILEWHEN (DECLARE: Option) II:
17.42

EVAL@LOAD (DECLARE: Option) II: 17.41
EVAL@LOADWHEN (DECLARE: Option) II: 17.41
(EVALA X A) I: 10.13
(EVALHOOK FORM EVALHOOKFN) I: 10.14

INDEX.14

Evaluating arguments to functions I: 10.2; 10.12

Evaluating data types I: 10.13
Evaluating expressions I: 10.11
Evaluating functions I: 10.11
Evaluating nlambda arguments I: 10.5
(EVALV VAR pas RELFLG) I: 11.8

EVALV-format input II: 13.4
(EVENP X y) I: 7.9
EVENT (Variable) II: 13.22

Event addresses II: 13.6
Event numbers II: 13.31; 13.6,13,22,40
Event specifications II: 13.5; 13.21
(EVERY EVERYX EVERYFN1 EVERYFN2) I: 10.17
(EXAM X) (EditorCommand) II: 16.61
(EXCHANGEPUPS SOC OUTPUP DUMMY IDFILTER

T1MEOUn III: 31.30
(EXCHANGEXIPS SOC OUTXIP IDFIL TER T1MEOUn

III: 31.38
Executive II: 13.1
Executivewindow III: 28.3
Exit (DEdit Command) II: 16.10
EXP (Variable) II: 15.4
Expand (Window Menu Command) III: 28.5
(EXPANDBITMAP BITMAP WIDTHFACTOR

HEIGHTFACTOR) III: 27.4
EXPANDFN (Window Property) III: 28.23
EXPANDINGBOX (Variable) III: 30.15

(EXPANDMACRO EXP QUIETFLG - -) I: 10.24
(EXPANDW ICONW) III: 28.22

EXPANSION (Font property) III: 27.27
EXPLAINDELIMITER (ASK USER option) III: 26.17

EXPLAINSTRING (ASKUSER option) III: 26.16
(EXPORT COM 1 ... COM N) (File Package Command)

II: 17.43
EXPR (Litatom) I: 10.7
EXPR (Property Name) I: 10.10; II: 16.69-70;

17.5,18,27; 18.13; 20.9-10
EXPR (Variable) II: 20.13; 19.21
Expr definitions I: 10.2; 10.1
EXPR * (Litatom) I: 10.7
EXPRESSIONS (File Package Type) II: 17.23; 13.17
(EXPRP FN) I: 10.7
(EXPT A N) I: 7.13

(EXTENDREGION REGION INCLUDEREGION) III:
27.2

EXTENSION (File name field) III: 24.6
EXTENT (Window Property) III: 28.26; 28.23-25,34
Extents III: 28.23

INDEX

(EXTRACT@1 FROM. @2) (EditorCornmand) II:

16.36
$$EXTREME (Variable) I: 9.12

F
F PA TTERN Nil (Editor Command) II: 16.22

(F PA TTERN N) (Editor Command) II: 16.22
(F PA TTERN) (Editor Command) II: 16.22
F PA TTERN T (Editor Command) II: 16.21

F PATTERN N (EditorCommand) II: 16.21; 16.55

F (in event address) II: 13.6
,FFORMAT NUMBER (PRINTOUT command) III:

25.30
F (Response to Compiler Question) II: 18.2
F PATTERN (Editor Command) II: 16.21

F/l (as a DWIM construct) II: 20.9

(F. EXPRESSION Xl (Editor Command) II: 16.22
FACE (Font property) III: 27.27

FAMilY (Font property) III: 27.27
(FASSOCKEYALSn I: 3.15; II: 21.13

FAST (MAKEFILE option) II: 17.11

Fast functions II: 22.14
FASTYPEFlG (Variable) II: 20.21

FAULT IN EVAl (Error Message) II: 14.29

FAUl TAPPl Y (Function) II: 20.7; 20.11

FAUlTAPPlYFlG (Variable) II: 20.12

FAUl TARGS (Variable) II: 20.12
FAUlTEVAl (Function) II: 20.7; 14.29; 20.11

FAUlTFN (Variable) II: 20.12
FAUl TX (Variable) II: 20.12

(FCHARACTER N) I: 2.13

(FDI FFERENCE X y) I: 7.12

(FEQP X y) I: 7.12

FETCH (in Masterscope template) II: 19.19

FETCH (Masterscope Relation) II: 19.19
FETCH (Record Operator) I: 8.2; II: 2 '1.9
(FETCHFIElD DESCRIPTOR DATUM) I: 8.21
FETCHFN (Window Property) III: 26.8
FEXPR (Litatom) I: 10.7

FEXPR* (Litatom) I: 10.7; 10.8

FFETCH (Record Operator) I: 8.3

(FFllEPOS PA TTERN FILE START END SKIP TAIL
CASEARRA y) III: 25.21

(FGREATERP X y) I: 7.12
(FIElDlOOK FIELONAME) I: 8.16
FIELDS (File Package Type) II: 17.23
FIELDS OF SET (Masterscope Set Specification) II:

19.12

(FILDIR FILEGROUP) III: 24.35

INDEX

FILE (GETFN Property) III: 27.40

FI LE (Property Name) II: 17.19
File access rights III: 24.2

File attributes III: 24.17

File devices III: 24.1

File directories III: 24.31

File enumeration III: 24.33

File maps II: 17.55

· INDEX

File names II: 22.13; III: 24.5; 24.1,9,12-13

FILE NOT FOUND (Error Message) II: 14.29; III:
24.3,31

FILE NOT OPEN (ErrorMessage) II: 14.28; III:

24.4,14; 25.2,6,20
File package II: 17.1

File package commands II: 17.32

File package types II: 17.21

File pointers III: 25.18; 25.19,23
File servers III: 24.36

FILE SYSTEM RESOURCES EXCEEDED (Error
Message) II: 14.29; III: 24.3,13

FILE WON'T OPEN (Error Message) II: 14.28; III:

24.3
FILE: (Compiler Question) II: 18.1

(FILECHANGES FILE TYPE) II: 17.52
FllECHANGES (Property Name) II: 17.20; 17.15

Filecoms II: 17.32; 17.4-5,48
(FllECOMS FILE TYPE) II: 17.49

(FILECOMSLST FILE TYPE -) II: 17.49

(FILECREATEDX) II: 17.51; 18.13
(FllEDATE FILE -) II: 17,52

FILEDATES (PropertyName) II: 17,20; 17.15,51

FllEDEF (Property Name) II: 20.10
(FllEFNSlST FILE) II: 17.49

FllEGETDEF (File Package Type Property) II: 17.30

FILEGROUP (Property Name) II: 17.12
FllELINElENGTH (Variable) III: 25.11; 26.48

FILElST (Variable) II: 17.20; 17.6,12; 20.24
FILEMAP (Property Name) II: 17.20; 17.55

FllEMAP DOES NOT AGREE WITH CONTENTS OF
(Error Message) II: 17.56

(FllENAMEFIELD FILENAME FIELONAME) III: 24,8

\PILEOUTCHARFN (Function) III: 27.48

FILEPKG.SCRATCH (file) II: 17.30
(FILEPKGCHANGES TYPE LSn II: 17.18

(FILEPKGCOM COMMA NONA ME PROP1 VAL1 ...

PROPN VALN) II: 17.47

(FILEPKGCOMS LlTATOM1'" LlTATOMN) (File

Package Command) II: 17.39
FILEPKGCOMS (File Package Type) II: 17.23

INDEX 15

INDEX

FllEPKGCOMSPlST (Variable) II: 17.34
FllEPKGFlG (Variable) II: 17.5
(FllEPKGTYPE TYPE PROP, VAL"" PROPN VALN)

II: 17.32
FllEPKGTYPES (Variable) II: 17.22
{FllEPOS PA TTERN FILE START END SKIP TAIL

CASEARRA y} III: 25.20; 25.21
FllERDTBl (Variable) II: 17.5-6,50; III: 25.34;

25.7,33; 26.44
Files III: 24.1
(FilES FILE 1 ... FILE N) (File Package Command) II:

17.39
FilES (File Package Type) II: 17.23
(FilES?) II: 17.12
(FllESlOAD FILE 1 ... FILEN) II: 17.9

FllETYPE (Property Name) II: 18.12,15; 21.26
Filevars II: 17.44; 17.5,49
FllEVARS (File Package Type) II: 17.23
FllING.ENUMERATION.DEPTH (Variable) III: 24.38
FllING.TYPES (Variable) III: 24.18
(FlllCIRClE CENTERX CENTERY RADIUS TEXTURE

STREAM) III: 27.21
(FllLPOl YGON POINTS TEXTURE STREAM) III:

27.20
FINAllY FORM (I.S. Operator) I: 9.16; 9.18
Find (DEdit Command) II: 16.8
FIND (I.S. Operator) I: 9.22
(FIND.PROCESS PROC ERRORFLG) II: 23.5
(FINDCAllERSATOMS FILES) II: 16.75
(FINDFllE FILE NSFLG DIRLSn III: 24.32
FIRST (as argument to ADVISE) II: 15.11
FIRST (DECLARE: Option) II: 17.42
FIRST FORM (I.S. Operator) I: 9.16; 9.18
FIRST (type of read macro) III: 25.40
FIRSTCOl (Variable) I: 12.3; III: 26.47; 26.48
FIRSTNAME (Variable) I: 12.2
(FIX N) I: 7.7
FIX EventSpec (Prog. Asst. Command) II: 13.12;

13.33
FIX format (in PRINTNUM) III: 25.15
FIXEDITDATE (Function) II: 16.76
FIXP (as a field specification) I: 8.21
(FIXP Xl I: 7.2; 9.1
FIXP (record field type) I: 8.10
(FIXR N) I: 7.7
(FIXSPELL XWORD REL SPLST FLG TAIL FN TlEFLG

DONTMOVETOPFLG --) 1\: 20.22; 20.24
FIXSPELL.UPPERCASE.QUIET (Variable) 1\: 20.22
FIXSPELLDEFAULT (Variable) II: 20.13; 20.5; 21.19

INDEX.16

FIXSPElLREL (Variable) II: 20.22
FLAG (record field type) I: 8.10
Flashing bars on cursor III: 30.16
(FLASHWINDOW WIN? N FLASHINTERVAL SHADE)

III: 28.32
(FLAST X) I: 3.9; II: 21.13
(FLENGTH Xl I: 3.10
(FLESSP X Y) I: 7.12
(FlIPCURSOR) III: 30.14
(FLOAT Xl I: 7.13
FLOAT format (i n PRINTN U M) III: 25.15
FLOATING (record field type) I: 8.10
FLOATING OVERFLOW (Error Message) II: 14.31
Floating point arithmetic I: 7.11
Floating point numbers I: 7.11; 7.1-2; 9.1; III: 25.3
Floating point overflow I: 7.2
FLOATING UNDERFLOW (Error Message) 1\: 14.31
FLOATP (as a field specification) I: 8.21
(FLOATP X) I: 7.2; 9.1
FLOATP (record field type) I: 8.10
FLOPPY (file device) III: 24.24
Floppy disk drive III: 24.24
Floppy disk modes III: 24.24
Floppy image file III: 24.27
(FLOPPY.ARCHIVE FILES NAME) III: 24.28
(FLOPPY.CAN.READP) III: 24.27
(FLOPPY.CAN.WRITEP) III: 24.27
(FLOPPY.FORMAT NAME AUTOCONFIRMFLG

SLOWFLG) III: 24.26
(FLOPPY.FREE.PAGES) III: 24.27
(FLOPPY.FROM.FILE FROMFILE) III: 24.28
(FLOPPY.MODE MODE) III: 24.24
(FLOPPY.NAME NAME) III: 24.27
(FLOPPY.SCAVENGE) III: 24.27
(FLOPPY.TO.FILE TOFILE) III: 24.27
(FLOPPY.UNARCHIVE HOST/DIRECTORy) III: 24.28
(FLOPPY.WAIT.FOR.FLOPPV NEWFLG) III: 24.27
{FL TFMT FORMA n III: 25.13
(FLUSH RIGHT POS X MIN P2FLAG CENTERFLAG FILE)

III: 25.32
(FMAXX, X2 .0. XN) I: 7.13

(FMEMBXy) I: 3.13; II: 21.13
(FMIN X, X2'" XN) I: 7.12
(FMINUS X) I: 7.12
FN (stack blip) I: 11.16
FN (Variable) II: 19.7
(FNCHECK FN NOERRORFLG SPELLFLG PROPFLG

TAIL) I: 10.8; II: 20.23

INDEX

(FNS FN1 ... FNN) (File Package CommcJnd) II: 17.34

FNS (File Package Type) II: 17.23
IFNS (Variable) II: 13.26
(FNTH X N) I: 3.9
(FNTYP FN) I: 10.7; II: 17.27
.FONT FONTSPEC (PRINTOUT command) III: 25.27
Font configurations III: 27.33
Font descriptors III: 27.26
FONT NOT FOUND (Error Message) III: 27.27
FONTCHANGEFlG (Variable) III: 27.34
(FONTCOPY OLDFONT PROP1 VAL 1 PROP2 VAL2 ...)

III: 27.28
(FONTCREA TE FA MIL Y SIZE FACE ROTA TlON DEVICE

NOERRORFLG CHARSEn III: 27.26
(FONTCREATEFN FAMILY SIZE FACE ROTATION

DEVICE) (Image Stream Method) III: 27.43
FONTDEFS (Variable) III: 27.34
FONTDEFSVARS (Variable) III: 27.34
FONTESCAPECHAR (Variable) III: 27.314
FONTFNS (Variable) III: 27.32
(FONTNAME NAME) III: 27.33
(FONTP X) III: 27.27
(FONTPROFllE PROFILE) III: 27.32
FONTPROFllE (Variable) III: 27.33
(FONTPROP FONT PROP) III: 27.27
Fonts III: 27.25; 27.11
FONTS.WIDTHS (File name) III: 27.29,31
(FONTSAVAILABlE FA MIL Y SIZE FACE ROTA TlON

DEVICE CHECKFILESTOO?) III: 27.28
(FONTSAVAILABLEFN FAMILY SIZE FACE ROTA TlON

DEVICE) (Image Stream Method) III: 27.43
(FONTSET NAME) III: 27.34
(FOO BAR BAZ -) I: 1.8
FOR VARS (1.5. Operator) I: 9.12
FOR VAR (1.5. Operator) I: 9.12
FOR (in INSERT editor command) II: 16.33
FOR (in USE command) II: 13.9
FOR VARIABLE SET 1.5. TAIL (Masterscope

Command) II: 19.7
FOR OLD VAR (1.5. Operator) I: 9.12
(FORCEOUTPUT STREAM WAITFORFINISH) III:

25.10
FORCEPS (Variable) III: 30.15
forDuration INTERVAL (1.5. Operator) I: 12.18
FORGET EventSpec (Prog. Asst. Command) II:

13.16; 13.21
FORM (Process Property) II: 23.2
FORM (stack blip) I: 11.16
Form-feed III: 25.26

INDEX

(FPLUS X 1 X2'" XN) I: 7.12

(FQUOTIENT X Y) I: 7.12
.FR POS EXPR (PRINTOUT command) III: 25.29
.FR2 POS EXPR (PRINTOUT command) III: 25.29
Fragmentation of data space II: 22.1
Frame extensions of stack frames I: 11.3
Frame names of stack frames I: 11.3
Frames on the stack I: 11.2
(FRAMESCAN A TOM POS) I: 11.7

INDEX

Free variable access II: 22.5
(FREEATTACHEDWINDOW WINDOW) III: 28.47
FREELY (use in Masterscope) II: 19.8
(FREERESOURCE RE50URCENAME . ARGS) (Macro)

I: 12.23
(FREEVARS FN USEDATABASE) II: 19.22
(FREMAINDERX Y) I: 7.12
FREPLACE (Record Operator) I: 8.3
(FRESHLINE STREAM) III: 25.10
FROM FORM (1.5. Operator) I: 9.14; 9.15
FROM (in event specification) II: 13.7
FROM (in EXTRACT editor command) II: 16.36
FROM SET (Masterscope Path Option) II: 19.16
(FRPLACA X Y) I: 3.3; II: 21.13
(FRPLACD X Y) I: 3.3; II: 21.13
(FRPlNODE XA D) I: 3.3
(FRPLNODE2 X y) I: 3.3

(FRPTQ N FORM 1 FORM2 ... FORMN) I: 10.15

(FSPATTERN1'" PATTERNN) (EditorCommand) II:

16.22

(FTIMES X1 X2'" XN) I: 7.12

\FTPAVAILABLE (Variable) III: 24.36
Full file names III: 24.12
(FU LLNAME X RECOG) III: 24.12
FULLPRESS (Printer type) III: 29.5
FUNARG (Litatom) I: 10.19; 10.7
(FUNCTlONFNENV) I: 10.18
FUNCTION (in Masterscope template) II: 19.19
Function debugging II: 15.1
Function definition cells I: 10.9; 2.5
Function definitions I: 10.2; 10.9
Fu nction types I: 10.2
FUNCTIONAL (in Masterscope template) II: 19.19
Functional arguments I: 10.18; II: 18.10
FUNNYATOMLST (Variable) II: 21.24

G
(GAINSPACE) II: 22.12
GAINSPACEFORMS (Variable) II: 22.12
Garbage collection II: 22.1

INDEX.17

INDEX

(GATHEREXPORTS FROMFILES TOFILE FLG) II:

17.43
(GCD N1 N2) I: 7.7
(GCGAG MESSAGE) II: 22.3
(GCTRP) II: 22.3
(GDATEDATEFORMAT-) I: 12.14
GE (CLISP Operator) II: 21.8
(GENERATE HANDLE VAL) I: 11.17
(GENERATOR FORMCOMVAR) I: 11.17
Generator handles I: 11.17
Generators I: 11.16
Generators for spell ing correction II: 20.19
Generic arithmetic I: 7.3
GENNUM (Variable) I: 2.11
(GENSYMPREFIX----) I: 2.10; II: 15.10-11

(GEQ X y) I: 7.4
GET (old name for LlSTGET1) I: 3.16
GET· (Editor Command) II: 16.55; III: 26.44
(GETATOMVAL VAR) I: 2.4
(GETBOXPOSITION BOXWIDTH BOXHEIGHT ORGX

ORGY WINDOW PROMPTMSG) 11\: 28.9
(GETBOXREGION WIDTH HEIGHT ORGX ORGY

WINDOWPROMPTMSG) III: 28.11
(GETBRK RDTBL) III: 25.38
(GETCASEARRAY CASEARRAYFROMCODE) III:

25.22
(GETCHARBITMAP CHARCODE FONn 11\: 27.30
(GETCOMMENT X DESTFL -) III: 26.44
(GETCONTROL ITBL) III: 30.10
GETD (Editor Command) II: 16.56
(GETD FN) I: 10.10
GETDEF (File Package Type Property) II: 17.30
(GETDEF NAME TYPE SOURCE OPTIONS) II: 17.25
(GETDELETECONTROL TYPE ITBL) III: 30.9
(GETDESCRIPTORS TYPENAME) I: 8.22
GETDUMMYVAR (Function) I: 9.20
(GETECHOMODE ITBL) III: 30.7
(GETEOFPTR FILE) III: 25.20
(GETFIELDSPECS TYPENAME) I: 8.22

(GETFILEINFO FILE A TTRIB) III: 24.17
(GETFILEPTR FILE) III: 25.19
(GETFN FILESTREAM) (lMAGEFNS Method) III:

27.37
(GETHASH KEY HARRA y) I: 6.2; II: 21.17
(GETLIS X PROPS) I: 2.7
(GETMENUPROP MENU PROPERTy) III: 28.43
(GETMOUSESTATE) III: 30.19
GETP (old name of GET PROP) I: 2.5
(GETPOSITION WINDOW CURSOR) III: 28.9

INDEX.18

(GETPROMPTWINDOW MAINWINDOW #LlNES

FONT DONTCREA TE) III: 28.50
(GETPROP A TM PROP) I: 2.5
(GETPROPLIST ATM) I: 2.7
(GETPUP PUPSOC WAin III: 31.30
(GETPUPBYTE PUP BYTE#) III: 31.31
(GETPUPSTRING PUPOFFSEn III: 31.32
(GETPUPWORD PUP WORD#) III: 31.31
(GETRAISE ITBL) III: 30.8
(GETREADTABLE RDTBL) III: 25.34
(GETREGION MINWIDTH MINHEIGHT OLDREGION

NEWREGIONFN NEWREGIONFNARG
INITCORNERS) III: 28.10

(GETRELA nON ITEM RELA TlON INVERTED) II:

19.23
(GETRESOURCE RESOURCENAME . ARGS) (Macro)

I: 12.23
(GETSEPR RDTBL) III: 25.38
(GETSTREAM FILE ACCESS) III: 25.2
(GETSYNTAX CH TABLE) III: 25.36
(GETTEMPLATE FN) II: 19.21
(GETTERMTABLE ITBL) III: 30.5
(GETTOPVAL VAR) I: 2.4
GETVAL (Editor Command) II: 16.58

(GETXIP NSOCWAln III: 31.37
(GIVE.ITY.PROCESS WINDOW) II: 23.13
(GLC X) I: 4.3
Global variables II: 18.4; 21.19; 22.5
GLOBALVAR (Property Name) II: 18.4; 21.19
Globalvars II: 18.4
(GLOBALVARS VAR1'" VARN) (File Package

Command) II: 17.37; 18.4
GLOBALVARS (in Masterscope Set Specification) II:

19.12
GLOBALVARS (Variable) II: 18.4; 18.18; 21.19
(GNC X) I: 4.3
GO (Break Command) II: 14.5; 14.6
(GO LABEL) (Editor Command) II: 16.23

(GO U) I: 9.8
GO (in iterative statement) I: 9.18
$GO (escape-GO) (TYPE-AHEAD command) II:

13.18
GRAYSHADE (Variable) III: 27.7
(GREATERP X y) I: 7.3
(GREET NAME -) I: 12.2
GREETDATES (Variable) I: 12.2
(GREETFILENAME USER) I: 12.2
Greeting I: 12.1

INDEX

(GRID GRIDSPEC WIDTH HEIGHT BORDER STREAM

GRIDSHADE) III: 27.22
Grid specification III: 27.22
Grids III: 27.22
(GRIDXCOORD XCOORD GRIDSPEC) III: 27.22
(GRIDVCOORD YCOORD GRIDSPEC) III: 27.22
GROUP (history list property) II: 13.33
GT (CLISP Operator) II: 21.8

H
Hard disk device III: 24.21
HARD DISK ERROR (Error Message) II: 14.28; III:

24.24
Hardcopy (Background Menu Command) III: 28~6
Hardcopy (Window Menu Command) III: 28.4
Hardcopy facilities III: 29.1
HARDCOPYFN (Window Property) 1.11: 28.34
(HARDCOPYW WINDOW/BITMAP/REGION FILE'

HOST SCALEFACTOR ROTA TlON PRINTER TYPE)

III: 29.3
(HARDRESET) II: 23.1; 14.26
(HARRA Y MINKEYS) I: 6.2
(HARRA YP X) I: 6.2; 9.2
(HARRA YPROP HARRA Y PROP NEWVALUE) I: 6.2
(HARRA YSIZE HARRA y) I: 6.2
HASDEF (File Package Type Property) II: 17.30
(HASDEF NAME TYPE SOURCE SPELLFLG) II: 17.26
HASH ARRA V FULL (Error Message) I: 6.3
Hash arrays I: 6.1
Hash keys I: 6.1
Hash overflow I: 6.3
HASH TABLE FULL (Error Message) I: 6.3; II: 14.29
Hash values I: 6.1
(HASHARRA Y MINKEYS OVERFLOW HASHBITSFN

EQUIVFN) I: 6.1
Hashing functions I: 6.4
HASHLINK (Record Type) I: 8.9
HASH OVERFLOW (Function) I: 6.3
(HASTTYWINDOWP PROCESS) II: 23.11
(HCOPYALLX) I: 3.8; III: 25.18
HEIGHT (Font property) III: 27.28
HEIGHT (Window Property) III: 28.34
(HEIGHTIFWINDOW INTERIORHEIGHT" TlTLEFLG

BORDER) III: 28.32
(HELP MESS 1 MESS2 BRKTYPE) II: 14.20
HELP (Interrupt Channel) II: 23.14; Iii: 30.3
Help! (Error Message) II: 14.20
HELPCLOCK (Variable) II: 14.14; 13.9,35
HELPDEPTH (Variable) II: 14.13

INDEX

H ELPFLAG (Variable) II: 14.14; 14.27
HELPTIME (Variable) II: 14.14
HERALDSTRING (Variable) I: 12.9
HERE (in edit command) II: 16.34
HISTORY (history list property) II: 13.33
HISTORY (Property Name) II: 13.14
HISTORY (Variable) II: 13.22
History list format II: 13.31
History lists II: 13.1; 13.31; 16.54
HISTORYCOMS (Variable) II: 13.43

INDEX

(HISTORYFIND LST INDEX MOD EVENTADDRESS-)

II: 13.40; 13.39
(HISTORYMATCH INPUT PAT EVENn II: 13.40
(HISTORYSAVE HISTORY ID INPUT1 INPUT2 INPUT3

PROPS) II: 13.38; 13.31,33-34,43
HISTORYSAVEFORMS (Variable) II: 13.22
HISTSTRO (Variable) II: 13.32
HISTSTR1 (Variable) III: 26.32
HorizScroliCursor (Variable) III: 30.16
HorizThumbCursor (Variable) III: 30.16

(HORRIBLEVARS VAR1 ... VARN) (File Package

Command) II: 17.36; III: 25.18
HOST (File name field) III: 24.5
(HOSTNAMEP NAME) III: 24.11

Hot spot of cursor III: 30.14
Hotspot III: 30.14
(HPRINT EXPR FILE UNCIRCULAR DATA TYPESEEN)

III: 25.17
HPRINT.SCRATCH (File name) III: 25.17
(HREAD FILE) III: 25.18

(I C X1 ... XN) (Editor Command) II: 16.58

.I FORMA T NUMBER (PRINTOUT command) III:

25.30
(LS.OPR NAME FORM OTHERS EVALFLG) I: 9.20
LS.OPR (Property Name) II: 17.18

I.s.oprs I: 9.9
(I.S.OPRS OPR1 ... OPRN) (File Package Command)

I: 9.22; II: 17.39
I.S.0PRS (File Package Type) II: 17.23
I.s.types I: 9.10; 9.20
ICON (Window Property) III: 28.22
ICONFN (Window Property) III: 28.22
Icons 111:28.21;28.5
ICONWINDOW (Window Property) III: 28.23
lconWindowMenu (Variable) III: 28.8
lconWindowMenuCommands (Variable) III: 28.8
ICREATIONDATE (FileAttribute) III: 24.18

INDEX.19

INDEX

10 (Variable) II: 13.22
(lDATE STR) I: 12.13
(lDIFFERENCE X y) I: 7.6
Idle (Background Menu Command) III: 28.6
IDLE (Function) I: 12.4
Idle mode I: 12.4
(lDLE.BOUNCiNG.BOX WINDOW BOX WAIn I:

12.6
IDLE.BOUNCING.BOX (Variable) I: 12.6
IDLE.FUNCTIONS (Variable) I: 12.6
IDLE.PROFILE (Variable) I: 12.4
Idling I: 12.4
(lEQP X y) I: 7.7
(IF X COMSI COMS2) (EditorCommand) II: 16.60

(IF X COMS1) (Editor Command) II: 16.60

(IF X) (Editor Command) II: 16.60
(IF EXPRESSION TEMPLATE 1 TEMPLATE2) (in

Masterscope template) II: 19.21
IF (Statement) I: 9.S
IF-THEN-ELSE statements I: 9.S
(IFPROP PROPNAME LlTATOM1'" LlTATOMN) (File

Package Command) II: 17.38; 17.45
IFY (Editor Command) II: 16.55
(IGEQ X y) I: 7.7
IGNORE (Litatom) III: 26.38
IGNOREMACRO (Litatom) I: 10.23
(lGREATERP X y) I: 7.6
(lLEQ X y) I: 7.7
(lLESSP X y) I: 7.7
ILLEGAL ARG (Error Message) I: 2.9; 5.1; 10.11;

11.6; II: 14.29; III: 24.12
ILLEGAL DATA TYPE (Error Message) I: 8.22
ILLEGAL DATA TYPE NUMBER (Error Message) II:

14.30
ILLEGAL EXPONENTIATION (Error Message) I: 7.13
ILLEGAL GO (Error Message) II: 18.23
ILLEGAL OR IMPOSSIBLE BLOCK (Error Message) II:

14.30
ILLEGAL READTABLE (ErrorMessage) II: 14.30; III:

25.34-35; 30.6
ILLEGAL RETURN (Error Message) I: 9.8; II: 14.28;

18.23
ILLEGAL STACK ARG (Error Message) I: 11.5; II:

14.29
ILLEGAL TERMINAL TABLE (Error Message) II:

14.30; III: 30.5-6
Image objects III: 27.35
Image stream types III: 27.8

INDEX.20

Image streams III: 27.8; 24.1
IMAGEBOX (Record) III: 27.37
(lMAGEBOXFN IMAGEOBJ IMAGESTREAM

CURRENTX RIGHTMARGIN) (lMAGEFNS

Method) III: 27.37
IMAGEDATA (Stream Field) III: 27.43
IMAGEFNS (Data Type) III: 27.35
(IMAGEFNSCREATE DISPLA YFN IMAGEBOXFN

PUTFN GETFN COPYFN BUTTONEVENTINFN
COPYBUTTONEVENTlNFN WHENMOVEDFN
WHENINSERTEDFN WHENDELETEDFN
WHENCOPIEDFN WHENOPERATEDONFN
PREPRINTFN -) III: 27.36

(IMAGEFNSP X) III: 27.36
IMAGEHEIGHT (Menu Field) III: 28.42
IMAGEOBJ (Data Type) III: 27.35
(lMAGEOBJCREATE OBJECTDA TUM IMAGEFNS)

III: 27.36
IMAGEOBJGETFNS (Variable) III: 27.40
(lMAGEOBJP X) III: 27.36
(lMAGEOBJPROP IMAGEOBJECT PROPERTY

NEWVALUE) III: 27.36
IMAGEOPS (Data type) III: 27.43
IMAGEOPS (Stream Field) III: 27.43
(lMAGESTREAMP X IMAGETYPE) III: 27.10
(lMAGESTREAMTYPE STREAM) III: 27.10
(IMAGESTREAMTYPEP STREAM TYPE) III: 27.10
IMAGESTREAMTYPES (Variable) III: 27.42
IMAGETYPE (lMAGEOPS Field) III: 27.44
IMAGEWIDTH (Menu Field) III: 28.42
(I MAX XI X2 ... XN) I: 7.7

(lMBACKCOLOR STREAM COLOR) (Image Stream
Method) III: 27.48

(lMBITBL T SOURCEBITMAP SOURCELEFT
SOURCEBOTTOM STREAM DESTINA TlONLEFT
DESTINATIONBOTTOM WIDTH HEIGHT
SOURCETYPE OPERA TlON TEXTURE
'.L1PPINGREGION CLiPPEDSOURCELEFT
CLiPPEDSOURCEBOITOM SCALE) (Image

Stream Method) III: 27.45
(lMBITMAPSIZE STREAM BITMAP DIMENSION)

(Image Stream Method) III: 27.46
(IMBLTSHADE TEXTURE STREAM DESTINATIONLEFT

DES TINA TlONBOTTOM WIDTH HEIGHT
OPERA TlON CLiPPINGREGION) (Image Stream

Method) III: 27.45
(lMBOTTOMMARGIN STREAM YPOSITlON) (Image

Stream Method) III: 27.47
(lMCHARWIDTH STREAM CHARCODE) (Image

Stream Method) III: 27.46

INDEX

(lMCHARWIDTHY STREAM CHARCODE) (Image

Stream Method) III: 27.46
(lMCLlPPINGREGION STREAM REGION) (Image

Stream Method) III: 27.47
(lMCLOSEFN STREAM) (Image Stream Method) III:

27.44
(lMCOLOR STREAM COLOR) (Image Stream

Method) III: 27.48
(lMDRAWCIRCLE STREAM CENTERX CfNTERY

RADIUS BRUSH DASHING) (Image Stream
Method) III: 27.44

(lMDRAWCURVE STREAM KNOTS CLOSED BRUSH

DASHING) (Image Stream Method) III: 27.44
(lMDRAWELLIPSE STREAM CENTERX CENTERY

SEMIMINORRADIUS SEMIMAJORRADIUS
ORIENTATION BRUSH DASHING) (Image

Stream Method) III: 27.45
(lMDRAWLINE STREAM X 1 Y 7 X2 Y 2 WIDTH

OPERATION COLOR DASHING) (Image Stream
Method) III: 27.44

(lMFILLCIRCLE STREAM CENTERX CENTERY RADIUS
TEXTURE) (Image Stream Method) III: 27.45

(lMFILLPOL YGON STREAM POINTS TEXTURE)
(Image Stream Method) III: 27.45

(lMFONT STREAM FONn (Image Stream Method)
III: 27.47

IMFONTCREATE (lMAGEOPSField) III: 27.44
(lMIN X 7 X2 ... XN) I: 7.7
(lMINUS X) I: 7.6
(lMLEFTMARGIN STREAM LEFTMARGIN) (Image

Stream Method) III: 27.47
(lMLINEFEED STREAM DELTA) (Image Stream

Method) III: 27.47
IMMED (type of read macro) III: 25.4 'I
IMMEDIATE (typeofreadmacro) III: 25.41
(lMMOVETO STREAM X Y) (Image Stream Method)

III: 27.45
(IMNEWPAGE STREAM) (Image Stream Method)

III: 27.46
(IMOD X N) I: 7.6
(IMOPERATION STREAM OPERATION) (Image

Stream Method) III: 27.48
'(lMPORTFILE FILE RETURNFLG) II: 17.43
(lMRESET STREAM) (Image Stream Method) III:

27.46
(lMRIGHTMARGIN STREAM RIGHTMAl~GIN) (Image

Stream Method) III: 27.47
(I MSCALE STREAM SCALE) (Image StfE~am Method)

III: 27.48; 27.44

INDEX

INDEX

. (lMSCALEDBITBL T SOURCEBITMAP SOURCELEFT
, SOURCEBOTTOM STREAM DESTINATIONLEFT
DESTINA TlONBOTTOM WIDTH HEIGHT
SOURCETYPE OPERA TlON TEXTURE
CLIPPINGREGION CLIPPEDSOURCELEFT
CLIPPEDSOURCEBOTTOM SCALE) (Image

Stream Method) III: 27.45
(IMSPACEFACTOR STREAM FACTOR) (Image Stream

Method) III: 27.48
(lMSTRINGWIDTH STREAM STR RDTBL) (Image

Stream Method) III: 27.46
(lMTERPRI STREAM) (Image Stream Method) III:

27.46
(lMTOPMARGIN STREAM YPOSITlON) (Image

Stream Method) III: 27.47
(lMXPOSITION STREAM XPOSITION) (Image Stream

Method) III: 27.47
(lMYPOSITlON STREAM YPOSITION) (Image Stream

Method) III: 27.47
(FN7 IN FN2) (arg to BREAKO) II: 15.4
IN FORM (I.S. Operator) I: 9.13; 9.14,18
IN (in EMBED editor command) II: 16.37
IN (in USE command) II: 13.9
IN EXPRESSION (Masterscope Set Specification) II:

19.11
ON OLD (VAR+-FORM) (I.S. Operator) I: 9.13
IN OLD (VAR+-oFORM) (I.S. Operator) I: 9.13
IN OLD VAR (I.S. Operator) I: 9.13
IN? (Break Command) II: 14.13
Incomplete file names II: 22.13; III: 24.9; 24.14
INCORRECT DEFINING FORM (Error Message) I:

10.9
(INFILE FILE) III: 24.15
(lNFILECOMS? NAME TYPE COMS -) II: 17.48
(INFILEP FILE) III: 24.13
INFIX (type of read macro) III: 25.39
Infix operators in CLISP II: 21.7
INFO (Property Name) I: 10.4; II: 21.21; 13.41;

21.18,23
INFOHOOK (Process Property) II: 23.16; 23.3
RELA TlOMNG SET (Masterscope Set Specification)

II: 19.11
INIT (in record declarations) I: 8.14
Init files I: 12.1
INIT.LlSP (File name) I: 12.1
INITCORNERSFN (Window Property) III: 28.18
Initialization files I: 12.1
INITIALS (Variable) II: 16.76
INITIALSLST (Variable) I: 12.4; II: 16.76

INDEX.21

INDEX

(lNITRECORDS REC, ... RECN) (File Package

Command) I: 8.11; II: 17.38
(lNITRESOURCE RESOURCENAME . ARGS) (Macro)

I: 12.23
(lNITRESOURCES RESOURCE 1 ... RESOURCEN) (File

Package Command) I: 12.20,24; II: 17.39
(I NITV ARS VAR 1 ... VAR N) (File Package Command)

II: 17.36
INPUT (File access) III: 24.2
(INPUT FILE) III: 25.3
Input buffer II: 14.16; III: 30.11; 25.6

Input functions III: 25.2
Input/Output functions III: 25.1
(lNREADMACROP) III: 25.42
(INSERT E"" EM BEFORE . @) (EditorCommand)

II: 16.33
(INSERT E, ... EM AFTER . @) (Editor Command) II:

16.33
(INSERT E, ... EM FOR. @) (Editor Command) II:

16.33
INSIDE FORM (I.S. Operator) I: 9.13
(lNSIDEP REG/ON POSORX y) III: 27.3
(INSPECT OBJECT ASTYPE WHERE) III: 26.2
I NSPECT/ARRA Y (Function) III: 26.5

INSPECTALLFIELDSFLG (Variable) III: 26.6
(lNSPECTCODE FN WHERE ----) III: 26.2
INSPECTMACROS (Variable) III: 26.6
I nspector III: 26.1
INSPE0PRINTLEVEL (Variable) III: 26.5
(I NSPEClW.CREATE DATUM PROPERTIES FETCHFN

STOREFN PROPCOMMANDFN
VALUECOMMANDFN TlTLECOMMANDFN
TITLE SELECTlONFN WHERE PROPPRINTFN)

III: 26.7
(lNSPEClW.REDISPLAY INSPECTWPROPS-) III:

26.9
(lNSPEClW.REPLACE INSPECTW PROPERTY

NEWVALUE) III: 26.9
(lNSPEClW.SELECTITEM INSPECTW PROPERTY

VALUEFLG) III: 26.9
INSPEClWTITLE (Window Property) III: 26.8
(lNSTALLBRUSH BRUSHNAME BRUSHFN

BRUSHARRA y) III: 27.19
INSTRUCTIONS (Litatom) I: 10.23
INTEGER (record field type) I: 8.10
Integer arithmetic I: 7.5
Integer input syntax I: 7.4; III: 25.3,9
(INTEGERLENGTH X) I: 7.9
Integers I: 7.4; 9. 1

INDEX.22

Interlisp-D executive II: 13.1
Interlisp-D executive window III: 28.3
INTERPRESS (Image stream type) III: 27.8
Interpress format I: 12.3; III: 27.8-10,12,31,33;

29.1,5
INTERPRESSFONTDIRECTORIES (Variable) I: 12.3;

III: 27.31
Interpreter and the stack I: 11.14
Interpreting expressions I: 10.11
Interpretor blips on the stack I: 11.14
INTERRUPT (Litatom) II: 14.16
Interrupt characters III: 30.1
(INTERRUPTABLE FLAG) III: 30.4
(lNTERRUPTCHAR CHAR TYPIFORM HARDFLG-)

III: 30.3
(INTERSECTION X y) I: 3.11
(lNTERSECTREGIONS REGION, REGION2 ...

REG/ONn) III: 27.2

Inverted cursor III: 30.16
(lNVERTW WINDOW SHADE) III: 28.31
(lOFILE FILE) III: 24.15

(lPLUS X 1 X2'" XN) I: 7.6
(lQUOTIENT X y) I: 7.6
IREADDATE (File Attribute) III: 24.18
(lREMAINDER X y) I: 7.6
SETIS SET (Masterscope Command) II: 19.5
ISTHERE (1.5. Operator) I: 9.22
IT (Variable) II: 13.20
ITALIC (Font face) III: 27.26
ITEMHEIGHT (Menu Field) III: 28.41
ITEMS (Menu Field) III: 28.39
ITEMWIDTH (Menu Field) III: 28.41
Iterative statements I: 9.9

(lTIMES X 1 X2'" XN) I: 7.6
IT+-datum (Inspect Window Command) III: 26.4
ITtf-selection (Inspect Window Command) III: 26.5
IWRITEDATE (File Attribute) III: 24.18

J
JMACRO (Property Name) I: 10.21
JOIN FORM (1.5. Operator) I: 9.11
JOINC (Editor Command) II: 16.53

K
&KEY (DEFMACRO keyword) I: 10.25
Key names III: 30.19
(KEYACTION KEYNAME ACTIONS -) III: 30.20
Keyboard III: 30.19
(KEYDOWNP KEYNAME) III: 30.19

INDEX

KEYLST (ASKUSER argument) III: 26.13
. KEYLST ·(ASKUSER option) III: 26.15

Keys on mouse III: 30.17
KEYSTRING (ASKUSER option) III: 26.16

Keyword macro arguments I: 10.24

KNOWN (Masterscope Set Specification) II: 19.12

(KWOTE X) I: 10.13

L
(L-CASE X FLG) I: 2.10; II: 16.52

LABELS (Litatom) II: 21.21,23
LAMBDA (Litatom) I: 10.2
LAMBDA (Macro Type) I: 10.22

lambda functions I: 10.2

lambda-nospread functions I: 10.5

lambda-spread functions I: 10.3
LAMBDAFONT (Font class) III: 27.32

LAMBDASPLST (Variable) I: 10.8; II: 20.14; 20.9-11
LAMS (Variable) II: 18.9; 18.14

landscape fonts III: 27.27
LAPFLG (Variable) II: 18.1

large integers I: 7.1; 7.2; 9.1

LARGEST FORM (I.S. Operator) I: 9.12

LAST (as argument to ADVISE) II: 15.111

(LAST X) I: 3.9

LASTAIL (Variable) II: 16.14; 16.15,21,72
(LASTC FILE) III: 25.5

LASTKEYBOARD (Variable) III: 30.19

LASTMOUSEBUTTONS (Variable) III: 30.18

(LASTMOUSESTATE BUrrONFORM) (Macro) III:
30.18

(LASTMOUSEX DISPLA YSTREAM) III: 30.18

LASTMOUSEX (Variable) III: 30.18
(LASTMOUSEY DISPLA YSTREAM) III: 30.18
LASTMOUSEY (Variable) III: 30.18

(LASTN L N) I: 3.10
LASTPOS (Variable) II: 14.6; 14.4,7-10,12

LASTV ALU E (Property Name) II: 16.50
\LASTVMEMFILEPAGE (Variable) I: 12.11

LASTWORD (Variable) II: 20.18; 20.21-23; 21.10

(LC . @) (Editor Command) II: 16.24
LCASELST (Variable) III: 26.46
LCFIL (Variable) II: 18.1-2
(LCL . @) (Editor Command) II: 16.24

(LCONC PTR X) I: 3.6; 3.7
(LOB BYTESPEC VAL) (Macro) I: 7.10

LOFLG (Argument to LOAD) II: 17.5
(LOIFF LSTTAIL ADD) I: 3.12

LDIFF: NOT A TAIL (Error Message) I: 3.12

INDEX

(LOI FFERENCE X y) I: 3.11

LE (CLISP Operator) II: 21.8
LEFT (key indicator) III: 30.17

left margin III: 27.11

INDEX

LEFTBRACKET (Syntax Class) III: 25.35

(LEFTOFGRIDCOORD GRIDX GRIDSPEQ III: 27.23

LEFTPAREN (Syntax Class) III: 25.35

LENGTH (File Attribute) III: 24.17

(LENGTH X) I: 3.10
(LEQ X y) I: 7.4
(LESSP X y) I: 7.4

(LET VARLSTE, E2 .•• EN) (Macro) I: 9.9

(LET""·VARLSTE, E2'" EN) (Macro) I: 9.9

(L1 N) (Editor Command) II: 16.41

LIKE ATOM (Masterscope Set Specification) II:
19.11

(LiNBUF FLG) III: 30.11; 30.12
LINE (Variable) III: 26.38
line buffer III: 30.9; 30.11
line length III: 27.12
line-buffering III: 30.9; 25.3-6

line-feed (EditorCommand) II: 16.18

LINEOELETE (syntax class) III: 30.5,8

(LiNELENGTH N FILE) III: 25.11; 27.12

LINELENGTH N (Masterscope Path Option) II: 19.17
(LISP-I MPLEM ENTA TI ON-TYPE) I: 12.12
(LlSP-IMPLEMENTATION-VERSION) I: 12.12

(LlSPDIRECTORYP VOLUMENAME) III: 24.23

LlSPFN (Property Name) II: 21.28

(LiSPINTERRUPTS) III: 30.4

(LiSPSOURCEFILEP FILE) II: 17.52
LlSPUSERSDIRECTORIES (Variable) I: 12.3; II: 17.9;

III: 24.32
(LlSPX LlSPXX LlSPXID LlSPXXMACROS

LlSPXXUSERFN LlSPXFLG) II: 13.35;
13.12,1.9,32-34,36,43; 16.51,57; 20.4,17,24

LlSPX Printing Functions II: 13.25

(LlSPx/XFNVARS) II: 13.41; 13.27

LlSPXCOMS (Variable) II: 13.35; 17.39

(L1SPXEVAL LlSPXFORM LlSPXID) II: 13.36
(LlSPXFIND HISTORY LINE TYPE BACKUP -) II:

13.39; 13.44
LlSPXFINDSPLST (Variable) II: 13.8
LlSPXHIST (Variable) II: 13.33; 13.30,34,42
LlSPXHISTORY (Variable) II: 13.31; 13.35,43
LlSPXHISTORYMACROS (Variable) II: 13.23

LlSPXLlNE (Variable) II: 13.23

(LlSPXMACROS LlTATOM, ... LlTATOMN) (File

Package Command) II: 17.39

INDEX.23

INDEX

L1SPXMACROS (File Package Type) II: 17.23

L1SPXMACROS (Variable) II: 13.23; 13.35

(lISP.XPRIN1 X Y Z NODOFLG) II: 13.25

(lISPXPRIN2 X Y Z NODOFLG) II: 13.25

(lISPXPRINT X Y Z NODOFLG) II: 13.25; 13.33

L1SPXPRINT (history list property) II: 13.33

(lISPXPRINTDEF EXPR FILE LEFTDEF TAIL NODOFLG)

II: 13.25

L1SPXPRINTFLG (Variable) II: 13.25

(lISPXREAD FILE RDTBL) II: 13.38; 13.3,19,32,35,43

L1SPXREADFN (Variable) II: 13.36; 13.5,38; III:

26.28

(lISPXREADP FLG) II: 13.38; 13.43

(lISPXSPACES'X Y Z NODOFLG) II: 13.25

(lISPXSTOREVALUE EVENT VALUE) II: 13.39

(lISPXTAB X Y Z NODOFLG) II: 13.25

(lISPXTERPRI X Y Z NODOFLG) II: 13.25

(L1SPXUNREAD LSt -) II: 13.38

L1SPXUSERFN (Variable) II: 13.24; 13.35

L1SPXVALUE (Variable) II: 13.24

(LIST X, X2 ... XN) I: 3.4

LIST (MAKEFILEoption) II: 17.11

LIST (Property Name) II: 17.27

List cells 1:3.1;9.2

List structure editor II: 16.1

(L1ST* X, X2'" XN) I: 3.4

(L1STFILES FILE 1 FILE2 ... FILEN) II: 17.14; 17.11

L1STFILES1 (Function) II: 17.14

L1STFILESTR (Variable) III: 27.34

(L1STGET LSTPROP) I: 3.16

(L1STGET1 LSTPROP) I: 3.16

Listing file directories III: 24.33

LISTING? (Compiler Question) II: 18.1

(L1STP X) I: 3.1; 9.2

L1STP checks in pattern matching I: 12.25
(L1STPUT LSTPROP VAL) I: 3.16

(L1STPUT1 LSTPROP VAL) I: 3.16

Lists I: 3.1; 3.3

(L1TATOMX) I: 2.1; 9.1

Litatoms I: 2.1; 9.1

Literal atoms I: 2.1

(LLSH X N) I: 7.8

(LO N) (Editor Command) II: 16.41

(LOAD FILE LDFLG PRINTFLG) II: 17.6; 13.40; 18.13

(LOAD? FILE LDFLG PRINTFLG) II: 17.6

(LOADBLOCK FN FILE LDFLG) II: 17.8

(LOADBYTE N POS SIZE) I: 7.10

(LOADCOMP FILE LDFLG) II: 17.8

INDEX.24

(LOADCOMP? FILE LDFLG) II: 17.8

(LOADDEF NAME TYPE SOURCE) II: 17.28

LOADEDFILELST (Variable) I: 12.11; II: 17.20

(LOADFNS FNS FILE LDFLG VARS) II: 17.6

(LOADFROM FILE FNS LDFLG) II: 17.8; 18.16

Loading files II: 17.5

LOADOPTIONS (Variable) II: 17.6

(LOADTIMECONSTANT X) II: 18.8

(LOADVARS VARS FILE LDFLG) II: 17.8

Local CLISP declarations II: 21.13

Local hard disk device III: 24.21

Local record declarations I: 8.7,11; II: 21.13

Local variables I: 9.8; II: 18.5; 22.S

LOCALLY (use in Masterscope) II: 19.8

\LOCALNDBS (Variable) III: 31.39

Localvars II: 18.5

(LOCALVARS VAR"" VARN) (File Package

Command) II: 17.37

LOCALVARS (in Masterscope Set Specification) II:

19.12

LOCALVARS (Variable) II: 18.5

Location specification in the editor II: 16.23;

16.24,60

LOCATION UNCERTAIN (Printed by Editor) II: 16.14

LOCF (Macro) I: 8.11

(LOG X) I: 7.13

(LOGAND X, X2 ... XN) I: 7.8

Logging into file servers III: 24.39

Logical arithmetic functions I: 7.8

Logical volumes III: 24.21

(LOGIN HOSTNAME FLG DIRECTORY MSG) III:

24.40

LOGINHOST/DIR (Variable) I: 12.3; III: 24.11

(LOGNOT N) (Macro) I: 7.9

Logo window III: 28.2

(LOGOR X, X2'" XN) I: 7.8

(LOGOUT FASn I: 12.7

(LOGOW STRING WHERE TITLE ANGLEDEL TA) III:

28.2

LOGOW (Variable) III: 28.2

(LOGXOR X, X2'" XN) I: 7.8

(LONG-SITE-NAME) I: 12.12

(LOOKUP.NS.SERVER NAME TYPE FULLFLGl III:

31.10

(LOWER X) (Editor Command) II: 16.53

LOWER (Editor Command) II: 16.52

Lower case characters I: 2.10

Lower case comments III: 26.46

INDEX

LowercaseinCLISP II: 21.27
Lower case input III: 30.8
(LOWERCASE FLG) II: 21.27
LowerLeftCursor (Variable) III: 30.15

LowerRightCursor (Variable) III: 30.15

(LP COMS1'" COMSN) (EditorCommand) II: 16.60;

16.61
LPARKEY (Variable) II: 20.14; 20.6
(LPQ COMS 1 ... COMSN) (Editor Comrr,and) II:

16.61
LPT (printer device) III: 29.4
(LRSH X N) I: 7.8
(LSH X N) I: 7.8

. LSTFIL (Variable) II: 18.1

(LSUBST NEW OLD EXPR) I: 3.13
L T (CLISP Operator) II: 21.8
(LVLPRIN1 XFILECARLVL CDRLVL TAIL) III: 25.13
(L VLPRI N2 X FILE CARL VL CDRL VL TAIL) III: 25.13
(LVLPRINT X FILE CARLVL CDRLVL TAIL) III: 25.13

M

(M (C) (ARG 1 ... ARG N) COMS 1 ... COMS M) (Editor

Command) II: 16.62
(M (C) ARG COMS1 ... COMSM) (Editor Command)

II: 16.62

(M CCOMS1'" COMSN) (EditorCommand) II:

16.62
(MACHINE-INSTANCE) I: 12.12
(MACHINE-TYPE) I: 12.12
(MACHINE-VERSION) I: 12.12
(MACHINETYPE) I: 12.13
MACRO (File Package Command Property) II: 17.45
(MACRO. MACRO) (in Masterscope template) II:

19.21

MACRO (PropertyName) I: 10.21; II: 17.18; 18.11
MACRO (type of read macro) III: 25.39

Macro expansion in Masterscope II: 19.17
MACROCHARS (ASKUSER option) III: 26.17
MACROPROPS (Variable) I: 10.21
Macros I: 10.21

(MACROS LlTATOM1'" LlTATOMN) (Pile Package

Command) II: 17.35
MACROS (File Package Type) II: 17.24
Macros in the editor II: 16.62
Maintanance panel III: 30.24
(MAINWINDOW WINDOW RECURSEFL.G) III: 28.47
MAINWINDOW (Window Property) III: 28.54

INDEX

INDEX

MAINWINDOWMAXSIZE (Window Property) III:

28.54
MAINWINDOWMINSIZE (Window Property) III:

28.54
(MAKE ARGNAME EXP) (Editor Command) II: 16.57

. (MAKEBITT ABLE L NEG A) I: 4.6

(MAKEFILE FILE OPTIONS REPRINTFNS SOURCEFILE)

II: 17.10; 17.14; 18.16; 20.24
MAKEFILE and CLiSP II: 21.26
MAKEFILEFORMS (Variable) II: 17.12
MAKEFILEOPTIONS (Variable) II: 17.10
MAKEFILEREMAKEFLG (Variable) II: 17.15; 17.11
(MAKEFILES OPTIONS FILES) II: 17.12

(MAKEFN (FN . ACTUALARGS) ARGLIST N 1 N2)

(Editor Command) II: 16.56
(MAKEKEYLST LST DEFAULTKEY LCASEFLG

A UTOCOMPLETEFL G) III: 26.13
(MAKENEWCOM NAME TYPE --) II: 17.49
(MAKESYS FILE NAME) I: 12.9
MAKESYSDATE (Variable) I: 12.13; 12.10
MAKESYSNAME (Variable) I: 12.13
(MAKEWITHINREGION REGION LlMITREGION) III:

27.2
Manipulating file names III: 24.5
(MAP MAPX MAPFN 1 MAPFN2) I: 10.15

(MAP.PROCESSES MAPFN) II: 23.5
(MAP2C MAPX MAPY MAPFN1 MAPFN2) I: 10.16

(MAP2CAR MAPX MAPY MAPFN1 MAPFN2) I:
10.16

(MAPATOMS FN) I: 2.11
(MAPC MAPX MAPFN1 MAPFN2) I: 10.15
(MAPCAR MAPX MAPFN 1 MAPFN2) I: 10.15
(MAPCON MAPX MAPFN1 MAPFN2) I: 10.15; II:

21.13
(MAPCONC MAPX MAPFN1 MAPFN2) I: 10.16; II:

21.13
(MAPDL MAPDLFN MAPDLPOS) I: 11.13
(MAPHASH HARRA Y MAPHFN) I: 6.3
(MAPLIST MAPX MAPFN1 MAPFN2) I: 10.15
(MAPRELATION RELATION MAPFN) II: 19.24
(MAPRINT LST FILE LEFT RIGHT SEP PFN

LlSPXPRINTFLG) I: 10.17
(MARK LlTATOM) (Editor Command) II: 16.28
MARK (Editor Command) II: 16.27; 16.28
Mark-and-sweep garbage collection II: 22.1
(MARKASCHANGED NAME TYPE REASON) II:

17.17
MARKASCHANGEDFNS (Variable) II: 17.18
Marking changes II: 17.17

INDEX.2S

INDEX

MARKLST (Variable) II: 16.27; 16.72
(MASK.O'S POSITION SIZE) (Macro) I: 7.9
(MASK.1'S POSITION SIZE) (Macro) I: 7.9
Masterscope II: 19.1
(MASTERSCOPE COMMAND-) II: 19.22
Masterscope commands II: 19.4
Masterscopetemplates II: 19.18
MATCH (Pattern Matching Operator) I: 12.24

(MAXX1 X2 ... XN) I: 7.4

MAX.FIXP (Variable) I: 7.5
MAX.FLOA T (Variable) I: 7.11; 7.12
MAX.lNTEGER (Variable) I: 7.5; 7.7
MAX.SMALLP (Variable) I: 7.5
MaxBkMenuHeight (Variable) II: 14.15
MaxBkMenuWidth (Variable) II: 14.15
MAXINSPECTARRAYLEVEL (Variable) III: 26.5
MAXINSPECTCDRLEVEL (Variable) III: 26.5
MAXLEVEL (Variable) II: 16.20; 16.23
MAXLOOP (Variable) II: 16.61
MAXLOOP EXCEEDED (Printed by Editor) II: 16.61
(MAXMENUITEMHEIGHT MENU) III: 28.42
(MAXMENUITEMWIDTH MENU) III: 28.42
MAXSIZE (Window Property) III: 28.53
(MBD E1 ... EM) (EditorCommand) II: 16.36

(MEMB X y) I: 3.12
(MEMBER X y) I: 3.13
MEMBERS (Clearinghouse Group property) IIi:

31.12
(MENU MENU POSITION RELEASECONTROLFLG -)

III: 28.37
MENUBORDERSIZE (Menu Field) III: 28.41
MENUBUTTONFN (Function) III: 28.38
MENUCOLUMNS (Menu Field) III: 28.41
MENUFONT (Menu Field) III: 28.41
MENUFONT (Variable) III: 28.8,41
MENUHELDWAIT (Variable) III: 28.40

(MENUITEMREGION ITEM MENU) '": 28.43
MENUOFFSET (Menu Field) III: 28.40
MENUOUTLINESIZE (Menu Field) III: 28.42
MENUPOSITION (Menu Field) III: 28.40
(MENUREGION MENU) III: 28.42
MENU ROWS (Menu Field) III: 28.41
Menus III: 28.37; 28.1
MENUTITLEFONT (Menu Field) III: 28.41
(MENUWINDOW MENU VERTFLG) III: 28.48
(MERGE A B COMPAREFN) I: 3.17
(MERGEINSERT NEW LST ONEFLG) I: 3.18
Meta-character echoing III: 30.6
(METASHIFT FLG) III: 30.22

INDEX.26

MIDDLE (key indicator) III: 30.17
Middle-blank key III: 26.23,25
MILLISECONDS (Timer Unit) I: 12.16

(MIN X 1 X2 ... XN) I: 7.4

MIN.FIXP (Variable) I: 7.5
MIN.FLOAT (Variable) I: 7.11; 7.13
MIN.lNTEGER (Variable) I: 7.5; 7.7
MIN.SMALLP (Variable) I: 7.5
(MINATTACHEDWINDOWEXTENT WINDOW) III:

28.48
(MINIMUMWINDOWSIZE WINDOW) III: 28.33
MINSIZE (Window Property) III: 28.53; 28.33
(MINUS X) I: 7.3
(MINUSP X) I: 7.4
MIR (Font face) III: 27.26
MISSING OPERAND (DWIM error message) II: 21.15
MISSING OPERATOR (CLISP error message) II: 21.15
(MISSPELLED? XWORD REL SPLST FLG TAIL FN) II:

20.22; 20.23-24
(MKA TOM X) I: 2.8
(MKLlST X) I: 3.4
(MKSTRING X FLG RDTBL) I: 4.2
MODIFIER (Litatom) I: 9.22
(MODIFY.KEYACTIONS KEYACT/ONS

SAVECURRENT?) III: 30.21
Modules II: 17.1
(MONITOR.AWAIT.EVENT RELEASELOCK EVENT

TIMEOUT TIMERP) II: 23.8
Mouse III: 30.13
Mouse buttons III: 30.17
Mouse Keys III: 30.17
(MOUSECONFI RM PROMPTSTRING HELPSTRING

WINDOW DON'TCLEARWINDOWFLG) III:

28.11
MOUSECONFIRMCURSOR (Variable) III: 28.11;

30.15
(MOUSESTATE BUTTONFORM) (Macro) III: 30.17
(MOVD FROM TO COPYFLG -) I: 10.11
(MOVD? FROM TO COPYFLG -) I: 10.11
(MOVE @1 TO COM. @2) (Editor Command) II:

16.38; 16.37
Move (Window Menu Conlmand) III: 28.5
MOVEFN (Window Property) III: 28.20
(MOVETOXYSTREAM) III: 27.13
(MOVETOFILE TOFILE NAME TYPE FROMFILE) II:

17.49

(MOVETOUPPERLEFT STREAM REGION) III: 27.14
(MOVEW WINDOWPOSorX y) III: 28.19

INDEX

MRR (Font face) III: 27.26
MSMACROPROPS (Variable) II: 19.17
(MSMARKCHANGED NAME TYPE REASON) II:

19.24
(MSNEEDUNSAVE FNS MSG MARKCHANGEFLG) II:

19.24
MSNEEDUNSAVE (Variable) II: 19.25
MSPRINTFLG (Variable) II: 19.2
Multiple streams to a file III: 24.15
MULTIPLY DEFINED.TAG (Error Message) II: 18.23
MULTIPLY DEFINED TAG, ASSEMBLE (Error

Message) II: 18.23
MULTIPLY DEFINED TAG, LAP (ErrorMessage) II:

18.23

N
(-NE, ... EM)(N> .1) (EditorCommand) II: 16.29

(N E, .. , EM)(N) .1) (EditorCommand) II: 16.29

(N E 1 ... EM) (Editor Command) II: 16 .. 29

(N)(N> .1) (Editor Command) II: 16.29
-N(N) .1) (EditorCommand) II: 16.15
N(N) .1) (EditorCommand) II: 16.15; 16.29;

16.55
-N (N a number) (PRINTOUT command) III: 25.26
N(N a number) (PRINTOUT command) III: 25.25;

25.30
NAME (File name field) III: 24.6
NAME (Process Property) II: 23.2
NAME LlTATOM(ARG,,,, ARGN): EventSpec (Prog.

Asst. Command) II: 13.14
NAME LlTATOM ARG,,,, ARGN: EventSpec (Prog.

Asst. Command) II: 13.14
NAME LlTATOM EventSpec (Prog. Asst. Command)

II: 13.14; 13.16,33
NAMES RESTORED (Printed by System) II: 15.9
NAMESCHANGED (Property Name) II: 15.5
(NARGS FN) I: 10.8
(NCHARS X FLG ROTBL) I: 2.9; 4.2

(NCONC X 1 X2'" XN) I: 3.5; 3.6; II: 21.13

(NCONC1 LST X) I: 3.5; 3.6; II: 21.13
(NCREA TE TYPE OLOOB) I: 8.22
(NDIR FILEGROUPCOM,,,, COMN) III: 24.35

NEGATE (Editor Command) II: 16.54
(NEGATE X) I: 3.20; II: 16.54
(NEQ X y) I: 9.3
NElWORKOSTYPES (Variable) III: 24.38
NEVER FORM (I.S. Operator) I: 9.11
NEW (MAKEFILEoption) II: 17.11

INDEX

INDEX

(NEW/FN FN) II: 13.41
NEWCOM (File Package Type Property) II: 17.31
NEWREGIONFN (Window Property) III: 28.18
(NEWRESOURCE RESOURCENAME . ARGS) (Macro)

I: 12.23
NEWVALUE (Variable) I: 8.12
(NEX COM) (Editor Command) II: 16.26
NEX (Editor Command) II: 16.26
NIL (Editor Command) II: 16.55; 16.59
NIL (in block declarations) II: 18.18
NIL (in Masterscope template) II: 19.18
NIL (Litatom) I: 2.3; 9.2
NIL (Primary stream) III: 25.1
NILCOMS (Variable) II: 17.13

(NILLX""XN) 1:10.18

NILNUMPRINTFLG (Variable) III: 25.16
NLAMA (Variable) II: 18.9; 18.14
NLAMBDA (Utatom) I: 10.2
NLAMBDA (Macro Type) I: 10.22
Nlambda functions I: 10.2
Nlambda·nospread functions I: 10.6
Nlambda·spread functions I: 10.4
(NLAMBDA.ARGS X) I: 10.13
NLAML (Variable) II: 18.9; 18.14
(NLEFT L N TAIL) I: 3.9
(NLlSTP X) I: 3.1; 9.2

(NLSETQ FORM) I: 9.9; II: 14.22; 13.30
NLSETQGAG (Variable) II: 14.22
NO BINARY CODE GENERATED OR LOADED (Error

Message) II: 18.23
(FN- NO BREAK INFORMATION SAVED) (value of

REBREAK) II: 15.8
NO DO, COLLECT, OR JOIN (Error Message) I: 9.19
NO FILE PACKAGE COMMAND FOR (Error Message)

II: 17.40
NO LONGER INTERPRETED AS FUNCTIONAL

ARGUMENT (Error Message) II: 18.23
NO PROPERTY FOR (Error Message) II: 17.38
NO USERMACRO FOR (Error Message) II: 17.34
NO VALUE SAVED: (ErrorMessage) II: 13.29
NOBIND (Litatom) I: 2.2; 11.8; II: 13.28-29; 17.5
NOBREAKS (Variable) II: 15.7
NOCASEFLG (ASK USER option) III: 26.15
NOCLEARSTKLST (Variable) I: 11.10
NODIRCORE (file device) III: 24.30
NOECHOFLG (ASKUSER option) III: 26.16
NOESC (type of read macro) III: 25.40
NOESCQUOTE (type of read macro) III: 25.40
NOEVAL (Litatom) II: 21.21

INDEX.27

INDEX

NOFILESPELLFLG(Variable) III: 24.32
NOFIXFNSLST (Variable) II: 21.21; 17.8; 18.12;

21.19
NOFIXVARSLST (Variable) II: 21.21; 17.8; 18.12;

21.15,19
NON-ATOMIC CAR OF FORM (Error Message) II:

18.23
Non-existent directory (Error Message) III: 24.10
NON"NUMERIC ARG (Error Message) I: 5.2;

7.3,6,11; II: 14.28
NONE (syntax class) III: 30.6
NONIMMED (type of read macro) III: 25.41
NONIMMEDIATE (type of read macro) III: 25.41
NOPRINT (Litatom) II: 13.29
(NORMALCOMMENTS FLG) III: 26.44; 26.45
NOSAVE (Function) II: 13.41
NOSAVE (Litatom) II: 13.29,40
NOSCROLLBARS (Window Property) III: 28.26;

28.25
NOSPELLFLG (Variable) II: 20.13; 21.21; III: 24.32
Nospread functions I: 10.3
NOSTACKUNDO (Litatom) II: 13.29
(NOT X) I: 9.3
NOT A BINDABLE VARIABLE (Error Message) II:

18.23
NOT A FUNCTION (Error Message) I: 10.8; II: 15.11
NOT BLOCKED (Printed by Editor) II: 16.65
(NOT BROKEN) (value of UNBREAKO) II: 15.8
not changed, so not unsaved (Printed by Editor) II:

16.69
NOT COMPILEABLE (Error Message) II: 18.22;

18.14,18
(FILE NOT DUMPED) (returned by MAKEFILE) II:

17.12
not editable (ErrorMessage) II: 16.70-71
NOT FOUND (Error Message) II: 18.22 .
(FN NOT FOUND) (printed by break) II: 14.7
(NOT FOUND) (printed by BREAKIN) II: 15.6-7
FILENAME NOT FOUND (printed by LlSTFILES) II:

17.14
(FN1 NOT FOUND IN FN2) (value of BREAKO) II:

15.4
NOT FOUND~ SO ITWILL BE WRITTEN ANEW (Error

Message) II: 17.51
NOT IN FILE - USING DEFINITION IN CORE (Error

Message) II: 18.22
NOT ON BLKFNS (Error Message) II: 18.22;

18.19-20

INDEX.28

NOT ON FILE, COMPILING IN CORE DEFINITION

(Error Message) II: 18.18
(FN NOT PRINTABLE) (returned by PRETTYPRINT)

III: 26.40
NOT-FOUND: (Litatom) II: 17.7
(NOTANY SOMEX SOMEFN1 SOMEFN2) I: 10.17
NOTCOMPILEDFILES (Variable) II: 17.14; 17.10-11
(NOTE VAL LSTFLG) I: 11.20
NOTE: BRKEXP NOT CHANGED. (Printed by Break)

II: 14.12
(NOTEVERY EVERYX EVERYFN1 EVERYFN2) I:

10.17
NOTFIRST (DECLARE: Option) II: 17.42
nothing saved (Printed by Editor) II: 16.64-65
nothing saved (Printed by System) II: 13.26; 13.13
Noticing files II: 17.19
(NOTlFY.EVENT EVENTONCEONL y) II: 23.7
NOTlISTEDFILES (Variable) II: 17.14; 17.10
NOTRACE SET (Masterscope Path Option) II: 19.16
NS character I/O III: 25.22; 25.6,9,19
NScharacters I: 2.12; 4.2; III: 25.19-20,36; 27.27;

30.3,6-7,20
NS.ECHOUSER (Function) III: 31.38
NSADDRESS (Data type) III: 31.7; 31.17
NSNAME (Data type) III: 31.8; 31.17-18
(NSNAME.TO.STRING NSNAME FULLNAMEFLG) III:

31.9
(NSOCKETEVENT NSOO III: 31.37
(NSOCKETNUMBER NSOO III: 31.37
(NSPRINTPRINTERFILEOPTIONS) III: 31.12
NSPRINT.DEFAULT.MEDIUM (Variable) III: 29.2
(NSPRINTER.PROPERTI ES PRINTER) III: 31.12
(NSPRINTER.STATUSPRINTER) III: 31.12
(NTH COM) (Editor Command) II: 16.26
(NTH N) (Editor Command) II: 16.17; 16.26
(NTH X N) I: 3.9
(NTHCHARXNFLGRDTBL) I: 2.10
(NTHCHARCODE X N FLG RDTBL) I: 2.13
NUll (file device) III: 24.30
(NUll X) I: 9.3
Null strings I: 4.1
NUllDEF (File Package Type Property) II: 17.30
(NUMBERP X) I: 7.2; 9.1
Numbers I: 7.1; 9.1; III: 25.4
(NX N) (Editor Command) II: 16.16
NX (Editor Command) II: 16.16

INDEX

o
(OBTAIN.MONITORLOCK LOCK DONTVVAIT

UNWINDSA VE) II: 23.9
OCCURRENCES (Printed by Editor) II: 16.61

Octal integers I: 7.4
(OCTALSTRING N) III: 31.36
(OOOP N MODULUS) I: 7.9
BLOCKTYPE OF FUNCTIONS (Masterscope Set

Specification) II: 19.12
OK (Break Command) II: 14.5; 14.6,12
OK (Break Window Command) ,,: 14.3

OK (DEdit Command) II: 16.10
OK (Editor Command) II: 16.49; 16.53,72
OK (Masterscope Command) II: 19.2
OK (Prog. Asst. Command) II: 13.36
OK TO REEVALUATE (printed by DWlTv1) II: 20.7
OKREEVALST (Variable) II: 20.14; 20.'7

OLD (1.5. Operator) I: 9.13
OLOVALUE (Variable) II: 14.27
ON FORM (1.5. Operator) I: 9.13; ~.14
BLOCKTYPE ON FILES (Masterscope Set

Specification) II: 19.12
ON OLD VAR (1.5. Operator) I: 9.13
ON PATH PATHOPTIONS (Masterscope Set

Specification) II: 19.13
Only the compiled version ... was loaded

(MAKEFILE message) II: 17.16
(\ONQUEUE ITEM Q) (Function) III: 31.41
OPCODE? • ASSEMBLE (Error Message) II: 18.23

Open functions II: 18.11 •
(OPENFILE FILE ACCESS RECOG PARAMETERS-)

III: 24.15
OPENFN (Window Property) III: 28.15
(OPENIMAGESTREAM FILE IMAGETYPE OPTIONS)

III: 27.9
OPENLAMBOA (Macro Type) I: 10.22
(OPENNSOCKET SKT# IFCLASH) III: 31.37
(OPENP FILE ACCESS) III: 24.4
(OPENPUPSOCKET SKT# IFCLASH) III: 31.29
(OPENSTREAM FILE ACCESS RECOG PARAMETERS

-) III: 24.2 .
(OPENSTREAMFN FILE OPTIONS) (Image Stream

Method) III: 27.43
(OPENSTRINGSTREAM STR ACCESS) III: 24.28
(OPENW WINDOW) III: 28.15
(OPENWINOOWS) III: 28.15
(OPENWP WINDOW) III: 28.15
OPERATION (BITBLTargument) III: 27.15
&OPTIONAL (DEFMACRO keyword) I: 10.25

INDEX

Optional macro arguments I: 10.24

(ORX,X2",XN) 1:9.4

INDEX

Order of precedence of CLiSP operators II: 21,12
(ORF PA TTERN 1 ... PA TTERNN) (Editor Command)

II: 16.22
ORIG (Litatom) III: 25.33
ORIGINAL (Break Command) II: 14.10

(ORIGINAL COMS"" COMSN) (EditorCommand)

II: 16.64

(ORIGINAL COM"" COMN) (File Package

Command) II: 17.40
ORIGINAL 1.5. OPR OPERAND (1.5. Operator) I: 9.17;

9.21
(ORR COMS1 ... COMSN) (Editor Command) II:

, 16.61
OTHER (Syntax Class) III: 25.35
(OUTCHARFN STREAM CHARCODE) (Stream

Method) III: 27.48
(OUTFILE FILE) III: 24.15
(OUTFILEP FILE) III: 24.13
OUTOF FORM (1.5. Operator) I: 9.15; 11.18

OUTPUT (File access) III: 24.2
(OUTPUT FILE) III: 25.8
OUTPUT (Masterscope Command) II: 19.4
OUTPUT FILE? (Compiler Question) II: 18.2

Output functions III: 25.7
OVERFLOW (Error Message) I: 7.2; II: 14.31
(OVERFLOW FLG) I: 7.2
Overflow of floating point numbers I: 7.2

P

/ (P 0 N) (Editor Command) II: 16.48
(P M N) (Editor Command) II: 16.48
(P 0) (Editor Command) ,,: 16.48

(P M) (Editor Command) II: 16.47
P (EditorCommand) II: 16.47; 16.28
(P EXP7'" EXPN) (File Package Command) II: 17.40

P.A. II: 13.1
.P2 THING (PRINTOUT command) III: 25.28
(PACK X) I: 2.8

(PACK*' X 1 X2'" XN) I: 2.9

(PACKCX) I: 2.13
\PACKET.PRINTERS (Variable) III: 31.41
(PACKFILENAME FIELD 7 CONTENTS7 ... FIELDN

CON TEN TS N) III: 24.9

(PACKFILENAME.STRING FIELD 1 CONTENTS 1 ...

FIELDN CONTENTSN) III: 24.8

.PAGE (PRINTOUT command) III: 25.26

INDEX.29

INDEX

Page holding in windows III: 28.30
(PAGEFAULTS) II: 22.8
PAGEFULLFN (Function) III: 28.30
PAGEFULLFN (Window Property) III: 28.30
(PAGEHEIGHT N) III: 28.30
Paint (Window Menu Command) III: 28.4
.PARA LMARG RMARG LIST (PRINTOUT command)

III: 25.28
.PARA2 LMARG RMARG LIST (PRINTOUT command)

III: 25.28
PARENT (Variable) II: 20.12
Parentheses counting by READ III: 25.4; 30.9
PARENTHESIS ERROR (Error Message) I: 10.13
Parenthesis-moving commands in the editor II:

16.40
(PARSE.NSNAME NAME #PARTS DEFAUL TDOMAIN)

III: 31.8
(PARSERELATION RELATION) II: 19.23
PASSTOMAINCOMS (Window Property) III: 28.51
Passwords III: 24.39
Path options in Masterscope II: 19.16
Paths in Masterscope II: 19.15
PATLlSTPCHECK (Variable) I: 12.25
Pattern match compiler I: 12.24
Pattern matchi n9 I: 12.24
Pattern matchi n9 in the editor II: 16.18; 16.72-73
PATVARDEFAULT (Variable) I: 12.26-27,30
PB (Break Command) II: 14.8
PB LlTATOM (Prog. Asst. Command) II: 13.17
(PEEKC FILE -) III: 25.5; 30.10
(PEEKCCODE FILE -) III: 25.5
PENGUIN (Printer type) III: 29.5
Performance analysis II: 22.1
Period ina list I: 3.3
(PF FN FROMFILES TOFILE) III: 26.41
(PF* FN FROMFILES TOFILE) III: 26.41
PFDEFAULT (Variable) III: 26.41
Pilot floppy disk format III: 24.25
Pixels III: 27.3
Pl LlTATOM (Prog. Asst. Command) II: 13.17
Place markers in pattern matching I: 12.29
(PLA YTUNE FrequencyIDuration.pairlist) III: 30.24
(PLUS X 1 X2 ... XN) I: 7.3

PLVLFILEFLG (Variable) III: 25.12
POINTER (as a field specification) I: 8.21
POINTER (record field type) I: 8.9
Polygons III: 27.20,45
(POP DATUM) (Change Word) I: 8.19
Pop (DEditCommand) II: 16.9

INDEX.30

Portrait fonts III: 27.27
(PORTSTRING NETHOST SOCKEn III: 31.35
(POSITION FILE N) III: 25.11
POSITION (Record) III: 27.1
(POSITIONP X) III: 27.1
Positions III: 27.1
(POSSIBILITIES FORM) I: 11.20
Possibilities lists I: 11.20
POSSIBLE NON .. TERMINATING ITERATIVE

STATEMENT (Error Message) I: 9.20
POSSIBLE PARENTHESIS ERROR (Error Message) II:

21.19
POSTGREETFORMS (Variable) I: 12.2
(POWEROFTWOP X) I: 7.9
PP (Editor Command) II: 16.47
(PP FN, ... FNN) III: 26.40

PP* (Editor Command) II: 16.48
(PP* X) III: 26.41
PPE (in Masterscope template) II: 19.18
ppe (used in Masterscope) II: 19.18
.PPF THING (PRINTOUT command) III: 25.28
.PPFTL THING (PRINTOUT command) III: 25.28
PPT (EditorCommand) II: 16.48; 21.17,26
(PPT X) II: 21.26; 21.17
PPV (Editor Command) II: 16.48; III: 26.42
.PPV THING (PRINTOUT command) III: 25.28
.PPVTL THING (PRINTOUTcommand) III: 25.28
Precedence rules for CLISP operators II: 21.8
Prefix operators in CLISP II: 21.7
PREGREETFORMS (Variable) I: 12.1
(PREPRINTFN IMAGEOBJ) (lMAGEFNS Method) III:

27.39
PRESS (Image stream type) III: 27.8
Press format I: 12.3; III: 27.8-10,12,29,31,33;

29.1-2,5
PRESSFONTWIDTHSFILES (Variable) I: 12.3; III:

27.31
PRETTYCOMFONT (Font class) III: 27.32
(PRETTYCOMPRINT X) II: 17.52
(PRETTYDEF PRTTYFNS PRTTYFILE PRTTYCOMS

REPRINTFNS SOURCEFILE CHANGES) II:
17.50; 1 5. 1 3

PRETTYEQUIVLST (Variable) III: 26.49
PRETTYFLG (Variable) I: 12.3; II: 17.11; III: 26.48
PRETTYHEADER (Variable) II: 17.52; 17.51
PRETTYLCOM (Var~able) III: 26.47; 26.48
(PRETTYPRINT FNS PRETTYDEFLG -) III: 26.40
Prettyprinting function definitions III: 26.39
PRETTYPRINTMACROS (Variable) III: 26.48

INDEX

PRETTYPRINTYPEMACROS (Variable) III: 26.48

PRETTYTABFLG (Variable) III: 26.47
Primary input stream III: 25.3; 24.4
Primary output stream III: 25.8; 24.4
Primary read table III: 25.33; 25.3,8; 30.6
Primary streams III: 25.1; 25.3,8
Primary terminal table III: 30.4; 30.6
{PRIN1 X FILE} III: 25.8; 25.11
(PRIN2 X FILE RDTBL) III: 25.8; 25.11

PRIN2-names I: 2.8-9,13; 4.2
{PRIN3 X FILE} III: 25.9
(PRIN4 X FILE RDTBL) III: 25.9
(PRINT X FILE RDTBL) III: 25.9; 25.11
PRINT (history list property) II: 13.33
Print names I: 2.7
(PRINT-LlSP-INFORMA TlON STREAM FILESTR)NG)

I: 12.11
(PRINTBELLS-) II: 20.3; III: 25.10
PRINTBINDINGS (Function) II: 13.17; 14.9
{PRINTBITMAP BITMAP FILE} III: 27.4
(PRINTCCODE CHARCODE FILE) III: 25.9
PRINTCODE (Function) III: 26.2
(PRINTCOMMENT X) III: 26.45
(PRINTCONSTANT VAR CONSTANTLISTFILE PREFIX)

111:31.35
(PRINTDATE FILE CHANGES) II: 17.51
{PRINTDEF EXPR LEFT DEF TAILFLG FNSLST FILE} III:

26.42; 26.48
(PRINTERSTATUS PRINTER) III: 29.4
{PRI NTERTYPE HOSn III: 29.4
PRINTERTYPE (Property Name) III: 29.4
PRINTERTYPES (Variable) III: 29.5
(PRINTFILETYPE FILE -) III: 29.4
PRINTFILETYPES (Variable) III: 29.6; 27.9
(PRINTFNS X -) II: 17.51
(PRINTHISTORY HISTORY LINE SKIPFN NOVALUES

FILE) 11:13.42;13.13

Printing circular lists III: 25.17
Printing documents III: 29.1
Printing numbers III: 25.13
Printing unusual data structures III: 25.17
(PRINTLEVELCARVAL CDRVAL) III: 25.11
PRINTLEVEL (Interrupt Channel) III: 30.3
PRINTMSG (Variable) II: 14.23
(PRINTNUM FORMA T NUMBER FILE) III: 25.15;

25.14
PRINTOUT (CLISP word) III: 25.23
PRINTOUTMACROS (Variable) III: 25,.31

INDEX

(PRINTPACKET PACKET CALLER FILE PRE. NOTE

DOFILTER) III: 31.41

INDEX

(PRINTPACKETDATA BASE OFFSET MACRO LENGTH

FILE) III: 31.35
(PRINTPARA LMARG RMARG LIST P2FLAG

PARENFLAG FILE) III: 25.32

PRINTPROPS (Function) II: 13.17
(PRINTPUP PACKET CALLER FILE PRE. NOTE

DOFILTER) III: 31.33
(PRINTPUPROUTE PACKET CALLER FILE) III: 31.35
(PRINTROUTINGTABLE TABLE SORT FILE) III: 31.31
PRINTXIP (Function) III: 31.38
PRINTXIPROUTE (Function) III: 31.38
PROCESS (Window Property) II: 23.13; III: 28.30

Process mechanism II: 23.1
Process status window II: 23.16
{PROCESS.APPL Y PROC FN ARGS WAITFORRESUL n

II: 23.6
{PROCESS.EVAL PROC FORM WAITFORRESUL nil:

23.6
(PROCESS.EVAL V PROC VAR) II: 23.6
(PROCESS.FINISHEDP PROCESS) II: 23.4
{PROCESS.RESUL T PROCESS WAITFORRESUL n II:

23.4
(PROCESS.RETURN VALUE) II: 23.4
{PROCESS.STATUS.WINDOW WHERE} II: 23.17
Processes II: 23.1
(PROCESSP PROC) II: 23.4
(PROCESSPROP PROC PROP NEWVALUE) II: 23.2
(PROCESSWORLD FLG) II: 23.1
(PRODUCE VAL) I: 11.17

{PROG VARLSTE, E2'" EN} I: 9.8

PROG label I: 9.8

{PROG* VARLST E, E2'" EN} (Macro) I: 9.9

(PROG1 X, X2 ... XN) I: 9.7

{PROG2 X, X2 ... XN} I: 9.7

{PROGN X, X2 ... XN} I: 9.8

Programmer's assistant II: 13.1
Programmer's assistant and the editor II: 13.43
Programmer's assistant commands applied to P.A.

commands II: 13.20
Programmer's assistant commands that fail II:

13.20
Prompt character II: 13.38; 13.3,22; 14.1
Prompt window III: 28.3
PROMPT#FLG (Variable) I: 12.3; II: 13.22; 13.38
(PROMPTCHAR ID FLG HISTORY) II: 13.38;

13.22,43

INDEX.31

INDEX

PROMPTCHARFORMS (Variable) II: 13.22; 13.38
PROMPTCONFIRMFLG (ASK USER option) III: 26.15
(PROMPTFORWORD PROMPT.STR CANDIDATE. sTR

GENERATE?LlST.FN ECHO. CHANNEL
DONTECHOTYPEIN.FLG URGENCY. OPTION
TERMINCHARS.LST KEYBD.CHANNEL) III:

26.9; 26.10
PROMPTON (ASK USER option) III: 26.16
(PROMPTPRINT EXP, ... EXPN) III: 28.3

PROMPTSTR (Variable) II: 13.22
PROMPTWINDOW (Variable) II: 23.14; III: 28.3
(PROP PROPNAME LlTATOM, ... LITATOMN) (File

Package Command) II: 17.37; 17.45
PROP (in Masterscope template) II: 19.19
PROP (Litatom) I: 10.10
prop (Printed by Editor) II: 16.69 ,
PROPCOMMANDFN (Window Property) III: 26.8
Proper tail I: 3.9
PROPERTIES (Window Property) III: 26.8
Properties of litatoms I: 2.5
Property lists I: 3.15
Property names I: 3.15; 2.5-6
Property values I: 3.15; 2.5-6
(PROPNAMES A TM) I: 2.6

PROPPRINTFN (Window Property) III: 26.8
PROPRECORD (Record Type) I: 8.8
(PROPS (LIT A TOM, PROPNAME,) ... (LITATOMN

PROPNAMEN» (File Package Command) II:

17.38
PROPS (File Package Type) II: 17.24
PROPTYPE (Property Name) II: 17.24; 17.18
PROTECTION VIOLATION (Error Message) II: 14.31;

III: 24.3,39
PRXFLG (Variable) III: 25.14
(PSETQ VAR, VALUE, ... VARN VALUEN) (Macro) I:

2.3
Pseudo-carriage return II: 13.32
PSW (Background Menu Command) III: 28.6

(PUP.ECHOUSER HOST ECHOsTREAM INTERVAL
NTIMES) III: 31.34

PUPIGNORETYPES (Variable) III: 31.32
(PUPNET.DISTANCE NET#) III: 31.30
PUPONL YTYPES (Variable) III: 31.32
PUPPRINTMACROS (Variable) III: 31.33
(PUPSOCKETEVENT PUPsOO III: 31.29
(PUPSOCKETNUMBER PUPSOO III: 31.29
(PUPTRACE FLG REGION) III: 31.33
PUPTRACEFllE (Variable) III: 31.32
PUPTRACEFLG (Variable) III: 31.32

INDEX.32

PUPTRACETIME (Variable) III: 31.33
(PURGEDSKDIRECTORY VOLUMENAME -) III:

24.22
(PUSH DATUM ITEM,ITEM2 ...) (Change Word) I:

8.18
(PUSHLIST DATUM ITEM ,ITEM2 ...) (Change Word)

I: 8.19
(PUSHNEW DATUM ITEM) (Change Word) I: 8.18
(PUTASSOC KEY VAL ALSn I: 3.15
(PUTCHARBITMAP CHARCODE FONT

NEWCHARBITMAP NEWCHARDESCENn III:

27.30
(PUTD FN DEF -) I: 10.11
PUTDEF (File Package Type Property) II: 17.30
(PUTDEF NAME TYPE DEFINITION REASON) \I:

17.26
(PUTFN IMAGEOBJ FILESTREAM) (lMAGEFNs

Method) III: 27.37
(PUTHASH KEY VAL HARRA y) I: 6.2

(PUTMENUPROP MENU PROPERTY VALUE) III:

28.43
(PUTPROPATM PROP VAL) I: 2.5; 2.6

(PUTPROPS ATM PROP, VAL, ... PROPN VALN) II:

17.55
(PUTPUPBYTE PUP BYTE# VALUE) III: 31.31
(PUTPUPSTRING PUP STR) III: 31.32
(PUTPUPWORD PUP WORD # VALUE) III: 31.31

Q
Q (Editor Command) II: 16.57
Q (following a number) I: 7.4
$Q (escape-Q) (TYPE-AHEAD command) II: 13.18
(\QUEUELENGTH Q) (Function) III: 31.41
(QUOTE X) I: 10.12
(QUOTIENT X y) I: 7.3
Quoting file names III: 24.6

R
(R X y) (Editor Command) II: 16.45
(R 1 X y) (Editor Command) II: 16.46
(RADIX N) I: 2.8; 7.5; III: 25.13; 25.3,8
RAID (Interrupt Channel) II: 23.15; III: 30.3

(RAISE X) (Editor Command) II: 16.53
RAISE (EditorCommand) II: 16.52
(RAISE FLG TTBL) III: 30.8

(RAND LOWER UPPER) I: 7.14
(RANDACCESSP FILE) III: 25.20
Random numbers I: 7.14
Random Iy accessible files III: 25.18

INDEX

(RANDSET X) I: 7.14
(RATEST FLG) III: 25.4
(RATOM FILE RDTBL) III: 25.4; 25.36; 30.10
(RATOMS A FILE RDTBL) III: 25.4
RAVEN (Printer type) III: 29.5
(Re X Y) (Editor Command) II: 16.46
RC (MAKEFILEoption) II: 17.10
(RC1 X Y) (Editor Command) II: 16.46

(READ FILE RDTBL FLG) III: 25.3; 30.10
Read macros III: 25.39
Read tables III: 25.33; 25.3,8
READ-MACRO CONTEXT ERROR (Error Message) II:

14.30
(READBITMAP FILE) III: 27.4
READBUF (Variable) II: 13.36; 13.38
(READe FILE RDTBL) III: 25.5; 30.10 ,
(READeCODE FILE RDTBL) III: 25.5
(READeOMMENT FL RDTBL LSn III: 26.45
READDATE (File Attribute) III: 24.18
(READFILE FILE RDTBL END TOKEN) III: 25.33
(READIMAGEOBJ STREAM GETFN NOE'RROR) III:

27.41
(READLINE RDTBL--) II: 13.36;

13.24,32,35,37,43; 16.67
(READMACROS FLG RDTBL) III: 25.42
(READP FILE FLG) 1\1: 25.6
(READTABLEP RDTBL) III: 25.34
READVICE (Property Name) II: 15.12-13
(READVISEX) II: 15.12; 15.13; 17.35
(REALFRAMEPPOS INTERPFLG) I: 11.13-
(REALMEMORVSIZE) I: 12.10
(REALSTKNTH N POS INTERPFLG OLDPOS) I: 11.13
REANAL VZE SET (Masterscope Command) II: 19.4
(REBREAK X) II: 15.8; 15.4
(RECLAIM) II: 22.3
(RECLAIMMIN N) II: 22.3
RECLAIMWAIT (Variable) II: 22.3

(RECLOOK RECNAME - - - -) I: 8.16
Recognition of file versions III: 24.11
(RECOMPI LE PFILE CFILE FNS) II: 18.15; 17.12;

18.14,18
RECOMPILEDEFAULT (Variable) II: 18.16; 18.22
Reconstruction in pattern matching I: 12.30
RECORD (in Masterscope template) II: 19.20
RECORD (Record Type) I: 8.7
Record declarations I: 8.6
Record dedarationsinCLISP II: 21.14
Record package I: 8.1
Record types I: 8.7; 8.6

INDEX

(REeORDACCESS FIELD DATUM DEC TYPE

NEWVALUE) I: 8.16
(RECORDACCESSFORM FIELD DATUM TYPE

NEWVALUE) I: 8.17

INDEX-

(REeORDFIELDNAMES RECORDNAME -) I: 8.16
(RECORDS REC 1 ... RECN) (File Package Command)

I: 8.2,11; II: 17.38
RECORDS (File Package Type) II: 17.24
REDEFINE? (Compiler Question) II: 18.1
(FN redefined) (printed by system) I: 10.10
Redisplay (Window Menu Command) III: 28.4
(REDISPLA VW WINDOW REGION ALWA YSFLG) III:

28.16
REDO EventSpec UNTIL FORM (Prog. Asst.

Command) II: 13.8
REDO EventSpec WHILE FORM (Prog. Asst.

Command) II: 13.8
REDO EventSpec N TIMES (Prog. Asst. Command)

II: 13.8
REDO EventSpec (Prog. Asst. Command) II: 13.8;

13.33
REDOCNT (Variable) II: 13.9
REFERENCE (Masterscope Relation) II: 19.8
Reference-counting garbage collection II: 22.2
ReFetch (Inspect Window Command) III: 26.4

REGION (Record) III: 27.1
REGION (Window Property) Ill: 28.34; 28.24

(REGIONP X) III: 27.2

Regions 111:27.1
(REGIONSINTERSECTP REGION 1 REGION2) III: 27.2

Registering image objects III: 27.39
(REHASH OLDHARRA Y NEWHARRA Y) I: 6.3
REJECTMAINCOMS (Window Property) III: 28.51
SET RELA TlON SET (Masterscope Command) II:

19.5
Relations in Masterscope II: 19.7
(RELDRAWTO OX DY WIDTH OPERA TlON STREAM

COLOR DASHING) III: 27.18
(\RELEASE.ETHERPACKET EPKn (Function) III:

31.39
(RELEASE.MONITORLOCK LOCK EVENIFNOTMINE)

II: 23.9
(RELEASE.PUP PUP) III: 31.28
(RELEASE.XIP XIP) III: 31.36
Releasi ng stack poi nte rs I: 11.9
(RELMOVETO DX DY STREAM) III: 2.:.7.14
(RELMOVEW WINDOW POSITION) , III: 28.19

(RELPROCESSP PROCHANDLE) II: 23.4
(RELSTK POS) I: 11.9; 11.10

INDEX.33

INDEX

(RELSTKPX) 1:11.9
(REMAINDER X y) I: 7.3
REMAKE (MAKEFILEoption) II: 17.11
Remakingasymbolicfile II: 17.15
REMEMBER EventSpec (Prog. Asst. Command) II:

13.17
(REMOVE X L) I: 3.19
(REMOVEPROMPTWINDOW MAINWINDOW) III:

28.50
(REMOVEWINDOW WINDOW) III: 28.47
(REMPROP A TM PROP) I: 2.6
(REMPROPLIST ATM PROPS) I: 2.6
(RENAME OLD NEW TYPES FILES METHOD) II:

17.29
(RENAMEFILE OLDFILE NEWFILE) III: 24.31 ,
Renaming files III: 24.31
Reopening files III: 24.20
(REPACK @) (Editor Command) II: 16.53
REPACK (EditorCommand) II: 16.53
REPAINTFN (Window Property) III: 28.16; 28.38
REPEAT EventSpec UNTIL FORM (Prog. Asst.

Command) II: 13.8
REPEA T EventSpec WHILE FORM (Prog. Asst.

Command) 11:'13.8

REPEAT EventSpec (Prog. Asst. Command) 11:13.8
REPEATUNnL N (N a number) (1.5. Operator) I: 9.16
REPEATUNnLFORM (1.5. Operator) I: 9.16
REPEATWHILEFORM (1.5. Operator) I: 9.16
Replace (DEdit Command) II: 16.7
(REPLACE @WITH E, ... EM) (EditorCommand) II:

16.33
(REPLACE @ BY E, ... EM) (EditorCommand) II:

16.33
REPLACE (in Masterscope template) II: 19.19
REPLACE (Masterscope Relation) II: 19.9
REPLACE (Record Operator) I: 8.2; 8.3; II: 21.10
REPLACE UNDEFINED FOR FIELD (Error Message) I:

8.12
(REPLACEFIELD DESCRIPTOR DATUM NEWVALUE)

I: 8.22
Replacements in pattern matching I: 12.29
(REPOSlnONATTACHEOWINDOWS WINDOW) III:

28.47
Reprint (DEdit Command) II: 16.9
REREADFLG (Variable) II: 13.39; 13.38
(RESET) II: 14.20; 14.25
RESET (Interrupt Channel) II: 23.14; III: 30.3
(VARIABLE RESET) (printedbysystem) II: 13.28

INDEX.34

(RESET.I NTER RU PTS PERM lITE Of NTE R R UP TS

SAVECURRENT?) III: 30.4
(RESETBUFS FORMI FORM2'" FORMN) 111.30.12

(RESETDEDIT) II: 16.3
(RESETFORM RESETFORM FORM 1 FORM2 ...

FORMN) II: 14.26

RESETFORMS (Variable) II: 13.22
(RESETLST FORM1'" FORMN) II: 14.24

(RESETREADTABLE RDTBL FROM) III: 25.35
(RESETSAVE X Y) II: 14.24
RESETSTATE (Variable) II: 14.26; 23 11
(RESETTERMTABLE TTBL FROM) III: 30.5
(RESETUNDO X 5 TOPFL G) II: 13.30; 14.27
(RESETVAR VAR NEWVALUE FORM) II: 14.25; 18.4

(RESETVARS VARSLSTE, E2'" EN) II: 14.25

(RESHAPEBYREPAINTFN WINDOW OLD/MAGE
/MAGEREGION OLDSCREENREGION) III:

28018
RESHAPEFN (Window Property) III: 28.17
resourceName RESOURCE (1.5. Operator) I: 12.18
Resources I: 12.19
(RESOURCES RESOURCE 1 ... RESOURCEN) (File

Package Command) I: 12.19,23; II: 17.39
RESOURCES (File Package Type) I: 12.19; II: 17.24
RESPONSE (Variable) II: 22.12
&REST (DEFMACRO keyword) I: 10.25
(RESTART.ETHER) III: 31.38; 24.41
(RESTART.PROCESS PROO II: 23.5
RESTARTABLE (Process Property) II: 23.2
RESTARTFORM (Process Property) II: 23.3
(RESUME FROMPTR TOPTR VAL) I: 11.19

(RETAPPLY POS FN ARGS FLG) I: 11.9

(RETEVALPOS FORM FLG -) I: 11.9; II: 20.7
RETFNS (in Masterscope Set Specification) II: 19.12
RETFNS (Variable) II: 18.19; 18.18
(RETFROM POS VAL FLG) I: 11.8
RETRIEVE LlTATOM (Prog. Asst. Command) ,,:

13.15; 13.24,33
RETRY EventSpec (Prog, Asst. Command) II: 13.9;

13.33

(RETTO POS VAL FLG) I: 11.9

RETURN (ASKUSER option) III: 26.15
RETU RN FORM (Break Command) ,,: 14.6
(RETURN X) I: 9.8
RETURN (in iterative statement) I: 9.18
RETURN (in Masterscope template) II: 19.19

RETYPE (syntax class) III: 30.6

REUSING (in CREATE form) I: 8.4

INDEX

Reusing stack pointers I: 11.10
(REVERSE L) I: 3.19
REVERT (Break Command) II: 14.10
revert (Break Window Command) II: 14.3
(RI N M) (Editor Command) II: 16.41

RIGHT (key indicator) III: 30.17
Right margin III: 27.11
Right-button background menu III: :28.6
Right-button window menu III: 28.3
RIGHTBRACKET (Syntax Class) III: 25.35
RIGHTBUTTONFN (Window Property) III: 28.28
RIGHTPAREN (Syntax Class) III: 25.35
(RINGBELLS N) III: 30.24
(RO N) (Editor Command) II: 16.41
Root name of a file II: 17.4
ROOTFILENAME (Function) II: 17.4,2()

(ROT X N FIELDSIZE) I: 7.10
ROTATION (Font property) III: 27.27
(RPAQ VAR VALUE) II: 17.54; 13.28; 17.5
(RPAQ1 VAR VALUE) II: 17.54; 17.5

,

(RPAQQ VAR VALUE) II: 17.54; 13.28; 17.5,50
RPARKEY (Variable) II: 20.14; 20.6
#RPARS (Variable) III: 26.47
(RPLACA X y) I: 3.2; II: 21. 13
(RPLACD X y) I: 3.2; II: 21.13
(RPLCHARCODE X N CHAR) I: 4.5
(RPLNODE X A D) I: 3.2; II: 13.40
(RPLNODE2 X y) I: 3.3; II: 13.40
(RPLSTRING X NY) I: 4.4
(RPTNFORM) 1:10.15

(RPTQ N FORM, FORM2'" FORMN) I: 10.15

(RSH X N) I: 7.8

(RSTRING FILE RDTBL) III: 25.4
RUBOUT (Interrupt Channel) II: 23.15; III: 30.3
Run-encoding of NS characters III: 2!i.22
Run-on spelling corrections II: 20.22; 20.4
RUNONFLG (Variable) II: 20.14; 20.22

S
S LlTATOM@ (EditorCommand) II: '16.29
S (Response to Compiler Question) II:: 18.2
(SASSOC KEYALSn I: 3.15
SAV/ING cursor I: 12.7
SAVE (Editor Command) II: 16.49; 16.51,72
SAVE EXPRS? (Compiler Question) II: 18.2
(SAVEDEF NAME TYPE DEFINITION) II: 17.27
(SAVEPUT ATM PROP VAL) II: 17.55
(SAVESET NAME VALUE TOPFLG FLG) II: 13.29;

13.28

INDEX

SAVESETQ (Function) II: 13.28
SAVESETQQ (Function) II: 13.28

INDEX

SaveVM (Background Menu Command) III: 28.6
(SAVEVM -) I: 12.7
SAVEVMMAX (Variable) I: 12.7
SAVEVMWAIT (Variable) I: 12.7
Saving bitmaps on files III: 27.3
SAVINGCURSOR (Variable) I: 12.7; III: 30.15
SCALE (Font property) III: 27.28
(SCAVENGEDSKDIRECTORY VOLUMENAME SILENn

III: 24.23

(SCRATCHLISTLSTX,X2'" XN) I: 3.8

(SCREENBITMAP) III: 30.22
SCREENHEIGHT (Variable) III: 30.22
Screens I: 12.4; III: 30.22
SCREENWIDTH (Variable) III: 30.22
(SCROLL.HANDLER WINDOW) III: 28.24
SCROLLBARWIDTH (Variable) III: 28.24
(SCROLLBYREPAINTFN WINDOW DEL TAX DEL TA Y

CONTINUOUSFLG) III: 28.25
ScroliDownCursor (Variable) III: 30.15
SCROLLEXTENTUSE (Window Property) III: 28.26;

28.25
SCROLLFN (Window Property) III: 28.26; 28.25,38
Scrolling III: 28.23; 27.24

ScrollLeftCursor (Variable) III: 30.16
ScroliRightCursor (Variable) III: 30.16
ScrollUpCursor (Variable) III: 30.15
(SCROLLW WINDOW DELrAX DELrAY

CONTINUOUSFLG) III: 28.24
SCROLLWAITTIME (Variable) III: 28.24
Searching file directories III: 24.31

Searching files III: 25.20
Searching in the editor II: 16.18; 16.20
Searching strings I: 4.5
SEARCHI~G ... (Printed by BREAKIN) II: 15.7
(SEARCHPDL SRCHFN SRCHPOS) I: 11.14
SECONDS (Timer Unit) I: 12.16
(SEE FROMFILE rOFILE) III: 26.41

(SEE* FROMFILE TOFILE) III: 26.41
Segment patterns in pattern matching I: 12.27
(SELCHARQ E CLAUSE 1 ... CLAUSEN DEFAUL n

(Macro) I: 2.15
SELECTABLEITEMS (Window Property) III: 26.8

(SELECTC X CLAUSE 1 CLAUSE2'" CLAUSEK

DEFAULn I: 9.7
SELECTIONFN (Window Property) III: 26.8

INDEX.35

INDEX

(SElECTQ X CLAUSE 1 CLAUSE 2··· CLAUSE K

DEFAUL n I: 9.6
(SEND.FllE.TO.PRINTER FILE HOSTPRINTOPTIONS)

111:29.1
(SENDPUP PUPSOC PUP) III: 31.29
(SENDXIP NSOC XIP) III: 31.37
SEPARATE SET (Masterscope Path Option) II: 19.16
Separator characters III: 25.36; 25.4; 30.10
SEPR (Syntax Class) III: 25.37
(SEPRCASE CLFLG) III: 25.22
SEPRCHAR (Syntax Class) III: 25.35
SEQUENTIAL (OPENSTREAM parameter) III: 24.3
(SET VAR VALUE) I: 2.3
SET (in Masterscope template) II: 19.18
SET (Masterscope Relation) II: 19.8
Set specifications in Masterscope II: 19.10 ,
(SET.TTYINEDIT.WINDOW WINDOW) III: 26.33
(SETA ARRA Y N V) I: 5.1
(SETARG VAR M X) I: 10.5
(SETATOMVAl VAR VALUE) I: 2.4
(SETBlIPVAl BLIPTYP IPOS N VAL) I: 11.16
(SETBRK LSTFLG RDTBL) III: 25.38
(SETCASEARRA Y CASEARRA Y FROMCODE TOCODE)

III: 25.22
(SETCURSOR NEWCURSOR -) III: 30.14
(SETDISPLA YHEIGHT NSCANLINES) III: 30.23
(SETERRORN NUM MESS) II: 14.20
(SETFllEINFO FILE ATTRIB VALUE) III: 24.17
(SETFllEPTR FILE ADR) III: 25.19
SETFN (Property Name) II: 21.28
(SETFONTDESCRIPTOR FAMIL Y SIZE FACE

ROTATION DEVICE FONn III: 27.29
SETINITIAlS (Variable) II: 16.76
(SETLINElENGTH N) III: 25.11
(SETMAINTPANEl N) III: 30.24
(SETPASSWORD HOST USER PASSWORD

DIRECTOR y) III: 24.40
(SETPROPLIST A TM LSn I: 2.7
(SETQ VAR VALUE) I: 2.3
(SETQQ VAR VALUE) I: 2.3
SETREADFN (Function) III: 26.28
(SETREADTABlE RDTBL FLG) III: 25.34
Sets in Masterscope II: 19.10
(SETSEPR LST FLG RDTBL) III: 25.38
(SETSTKARG N POS VAL) I: 11.7
(SETSTKARGNAME N POS NAME) I: 11.7
(SETSTKNAMEPOSNAME) I: 11.6
(SETSYNONYM PHRASE MEANING -) II: 19.23
(SETSYNTAX CHAR CLASS TABLE) III: 25.37

INDEX.36

(SETTEMPLA TE FN TEMPLA TE) II: 19.21
(SETTERMCHARS NEXTCHAR BKCHAR LASTCHAR

UNQUOTECHAR 2CHAR PPCHAR) II: 16.75;

16.18
(SETTERMTABlE TTBL) III: 30.5
(SETTIME Dn I: 12.15
Setting maintanance panel III: 30.24
(SETTOPVAl VAR VALUE) I: 2.4
(SETUPPUP PUP DESTHOST DESTSOCKET TYPE 10

SOC REQUEUE) III: 31.31
(SETUPTIMER INTERVAL OldTimer? timerUnits

intervalUnits) I: 12.17
(SETUPTIMER.DATE DTS OldTimer?) I: 12.17
(SETUSERNAME NAME) III: 24.40
(SHADEGRIDBOX X Y SHADE OPERA TlON GRIDSPEC

GRIDBORDER STREAM) III: 27.22
(SHADEITEM ITEM MENU SHADE DS/W) III: 28.43
SHAll I lOAD (printed by DWIM) II: 20.10
Shallow binding I: 11.1; 2.4; II: 22.6
Shape (Window Menu Command) III: 28.5
(SHAPEW WINDOW NEWREGION) III: 28.16
(SHAPEW1 WINDOW REGION) III: 28.17
SHH FORM (Prog. Asst. Command) II: 13.18
(SHIFTDOWNP SHIFn III: 30.20
(SHORT-SITE .. NAME) I: 12.12
SHOULD BE A SPECVAR (Error Message) II: 18.22
SHOUlDCOMPllEMACROA TOMS (Variable) I:

10.28
Shouldn't happen! (Error Message) II: 14.20
(SHOUlDNT MESS) II: 14.20
(SHOW X) (Editor Command) II: 16.61
SHOW PATHS PATHOPTIONS (Masterscope

Command) II: 19.5; 19.15
SHOW WHERE SET RELA TlON SET (Masterscope

Command) II: 19.6
(SHOW.ClEARINGHOUSE ENTIRE. CLEARINGHOUSE?

DONT.GRAPH) III: 31.10
(SHOWDEF NAME TYPE FILE) II: 17.27
SHOWPARENFlG (Variable) III: 26.36
(SHOWPRIN2 X FILE RDTBL) II: 13.13,42; III: 25.10
(SHOWPRINT X FILE RDTBL) I: 11.12; II: 14.8-9; III:

25.10
Shrink (Window Menu Command) III: 28.5
(SHRINKBITMAP BITMAP WIDTHFACTOR

HEIGHTFACTOR DESTlNATIONBITMAP) III:
27.4

SHRINKFN (Window Property) III: 28.22
Shrinking windows III: 28.21

INDEX

(SHRINKW WINDOW TOWHA T ICONPOSITION
EXPANDFN) III: 28.21

SIDE (History List Property) II: 13.33; 13.40-43

SIDE (Property Name) II: 13.34

SIGNEDWORD (as a field specification) I: 8.21

SIGNEDWORD (record field type) I: 8.10

(SIN X RADIANSFLG) I: 7.13

Siteinitfile 1:12.1

SIZE (File Attribute) III: 24.17

SIZE (Font property) III: 27.27
.SKIP LINES (PRINTOUT command) III: 25.26

(SKIPSEPRS FILE RDTBL) III: 25.7

SKOR (Function) II: 20.20

(SKREAD FILE REREADSTRING RDTBL) III: 25.7

SLOPE (Font property) III: 27.27

Small integers I: 7.1; 9.1

SMALLEST FORM (I.S. Operator) I: 9.12

(SMALLP X) I: 7.1; 9.1

•

(SMARTARGLIST FN EXPLAINFLG TAIL) I: 10.8

SMASH (in Masterscope template) II: 19.18

SMASH (Masterscope Relation) II: 19.8

(SMASHFILECOMS FILE) II: 17.49

SMASHING (in CREATE form) I: 8.4

SMASH PROPS (Variable) II: 22.12

SMASHPROPSLST (Variable) II: 22.12

SMASHPROPSMENU (Variable) II: 22.12

Snap (Background Menu Command) III: 28.6

Snap (Window Menu Command) III: :28.4

(SOFTWARE-TYPE) I: 12.12

(SOFTWARE-VERSIO N) I: 12.12

(SOME SOMEX SOMEFN1 SOMEFN2) I: 10.17

SORRY, I CAN'T PARSE THA T (Error Message) II:

19.17
SORRY, NO FUNCTIONS HAVE BEEN ANALYZED

(Error Message) II: 19.17

SORRY, THAT ISN'T IMPLEMENTED (Error Message)
II: 19.17

(SORT DATA COMPAREFN) I: 3.17

(SORT.PUPHOSTS.BY.DISTANCE HOSTLlSn III:
31.30

SOURCETVPE (BITBLTargument) III: :Z7.15

.SP DISTANCE (PRINTOUT command) III: 25.26

Space factor 111:27.12
(SPACES N FILE) III: 25.9

Spaghetti stacks I: 11.2

(SPAWN.MOUSE -) II: 23.15

Speaker in terminal III: 30.24
SPEC (Font property) III: 27.28

Special variables II: 18.5; 22.5

INDEX

INDEX

Specvars II: 18.5; 14.26

(SPECVARS VAR1 ... VARN) (File Package Command)

II: 17.37

SPECVARS (in Masterscope Set Specification) II:

19.12
SPECVARS (Variable) II: 18.5; 18.18

(SPELLFILE FILE NOPRINTFLG NSFLG DIRLSn II:

14.23,29; III: 24.32; 24.3

Spellingcorrection II: 20.15; 13.8,35; 14.17;

16.66,68; 17.34,42; 20.2,19; 21.9,25
Spelling correction on file names II: 20.24; III:

24.32

Spelling correction protocol II: 20.4
Spelling lists I: 9.10; II: 20.16; 13.8,35; 14.17;

16.66,68; 17.6,34,42; 20.9-11; 21.9,25; III:

24.35
SPELLlNGS1 (Variable) II: 20.17; 20.11,18,21

SPELLlNGS2 (Variable) II: 20.17; 20.10-11,18,21

SPELLlNGS3 (Variable) II: 20.17; 13.29; 20.9,18,21
SPELLSTR1 (Variable) II: 20.18

SPLICE (type of read macro) III: 25.39

(SPLITC X) (Editor Command) II: 16.54

(SPP.CLEARATTENTION STREAM NOERRORFLG)

III: 31.15

(SPP.CLEAREOM STREAM NOERRORFLG) III: 31.15

(SPP.DSTVPE STREAM DSTYPE) III: 31.14

(SPP.OPEN HOST SOCKET PROBEP NAME PROPS)
III: 31.12

(SPP.SENDA TTENTION STREAM A TTENTlONBYTE -)

111:31.14

(SPP.SENDEOM STREAM) III: 31.14

SPP.USER.TlMEOUT (Variable) III: 31.14

(SPPOUTPUTSTREAM STREAM) III: 31.14

Spread functions I: 10.3

SPRUCE (Printer type) III: 29.5
(SQRT N) I: 7.13

SQRT OF NEGATIVE VALUE (Error Message) I: 7.13

Square brackets inserted by PRETTYPRINT III:
26.47

ST (Response to Compiler Question) II: 18.2

Stack I: 11.1

Stack and the interpreter I: 11.14

Stack descriptors I: 11.4

Stack functions I: 11.4

STACK OVERFLOW (Error Message) I: 11.10; II:

14.28; 23.15

STACK POINTER HAS BEEN RELEASED (Error'
Message) I: 11.5

Stack pointers I: 11.4; 11.5,9

INDEX.37

INDEX

STACK PTR HAS BEEN RELEASED (Error Message)

II: 14.30
(STACKP X) I: 11.9
STANDARD (Font face) III: 27.26
(START.CLEARINGHOUSE RESTARTFLG) III: 31.9
STF (Response to Compiler Question) II: 18.2
(STKAPPL Y POS FN ARGS FLG) I: 11.8
(STKARG NPOS-) I: 11.7; II: 14.8
(STKARGNAME N POS) I: 11.7

(STKARGS POS -) I: 11.7
(STKEVAL POS FORM FLG -) I: 11.8; II: 14.8

(STKNAM E POS) I: 11.6
(STKNARGSPOS-) I: 11.7
(STKNTH N POS OLDPOS) I: 11.6
(STKNTHNAME N POS) I: 11.6
(STKPOS FRAMENAME N POS OLDPOS) I: 1 \.5

(STKSCAN VAR IPOS OPOS) I: 11.6
STOP (at the endofa file) II: 17.6; III: 25.33
Stop (DEdit Command) II: 16.10
STOP (EditorCommand) II: 16.49: 15.6; 16.53,72
SSTOP (escape-STOP) (TYPE-AHEAD command) II:

13.18
(STORAGE TYPES PAGETHRESHOLD) II: 22.3

Storage allocation II: 22.1
STORAGE FULL (Error Message) II: 14.30; 23.15
STORAGE.ARRA YSIZES (Variable) II: 22.4
(STORAGE. LEFT) II: 22.5
STOREFN (Window Property) III: 26.8
Storing files II: 17.10
(STREAMP X) III: 25.2
Streams III: 24.1
(STREQUAL X y) I: 4.1
STRF (Variable) II: 18.1; 18.2,14
String pointers I: 4.1
(STRING-EQUAL X y) I: 4.2
STRINGDELIM (Syntax Class) III: 25.35
(STRINGHASHBITS STRING) I: 6.5

(STI:tINGP X) I: 4.1; 9.2
(STRINGREGION STR STREAM PRIN2FLG RDTBL) III:

27.30
Strings I: 4.1; 9.2; III: 25.3
(STRINGWIDTH STR FONTFLG RDTBL) III: 27.30
(STRMBOUTFN STREAM CHARCODE) (Stream

Method) III: 27.48
(STRPOS PAT STRING START SKIP ANCHOR TAIL

CASEARRA Y BACKWARDSFLG) I: 4.5; III:
25.20

(STRPOSL A STRING START NEG BACKWARDSFLG)
I: 4.6

INDEX.38

Structure modification commands in the editor II:

16.29
.SUB (PRINTOUT command) III: 25.27

(SUB1 X) I: 7.6
(SUBATOM X N M) I: 2.8
Subdeclarations I: 8.14
SUBITEMFN (Menu Field) III: 28.39
SUBITEMS (Litatom) III: 28.39
(SUBLIS ALST EXPR FLG) I: 3.14
(SUBPAIR OLD NEW EXPR FLG) I: 3.14
SUBRECORD (in record declarations) I: 8.14
(SUBREGIONP LARGEREGION SMALLREGION) III:

27.2
(SUBSET MAPX MAPFN1 MAPFN2) I: 10.17
(SU BST NEW OLD EXPR) I: 3.13
Substitution macros I: 10.22
(SUBSTRING X N M OLDPTR) I: 4.3
SUCHTHAT (I.S. Operator) I: 9.22
SUCHTHAT (in event address) II: 13.6
SUM FORM (1.5. Operator) I: 9.11
.SUP (PRINTOUT command) III: 25.27
SURROUND (Editor Command) II: 16.37
SUSPEND (Process Property) II: 23.2
(SUSPEND. PROCESS PROC) II: 23.6
SUSPICIOUS PROG LABEL (Error Message) II: 21.19
SVFLG (Variable) II: 18.1-2
(SW N M) (Editor Command) II: 16.47
(SWAP DATUM1 DATUM2) (Change Word) I: 8.19

Swap (DEdit Command) 11: 16.8
(SWAP @1 @2) (Editor Command) II: 16.47

SWAPBLOCK TOO BIG FOR BUFFER (Error Message)

II: 14.31
SWAPC (Editor Command) II: 16.54
(SWAPPUPPORTS PUP) III: 31.31
Switch (DEdit Command) II: 16.7

Symbols 1:2.1
SYNONYM (in record declarations) I: 8.15
Synonyms for file package commands II: 17.47

Synonyms for file package types II: 17.32
Synonyms in spelling correction II: 20.16
Syntax classes III: 25.35
(SYNTAXP CODE CLASS TABLE) III: 25.37

SYS/OUTcursor 1:12.8
(SYSBUF FLG) III: 30.11; 30.12
SYSFILES (Variable) II: 17.6
SYSHASHARRAY (Variable) I: 6.1
SYSLOAD (LOAD option) II: 17.5; 17.6; 20.10
(SYSOUT FILE) I: 12.8

INDEX

Sysout files I: 12.8; In: 24.25
SYSOUT.EXT (Variable) I: 12.8
SYSOUTCURSOR (Variable) I: 12.8; III: 30.15
SYSOUTDATE (Variable) I: 12.13; 12.8
SYSOUTFILE (Variable) I: 12.8
SYSOUTGAG (Variable) I: 12.9
SYSPRETTYFLG (Variable) I: 11.12; II: 13.13,42;

14.8-9; III: 25.10
SYSPROPS (Variable) I: 2.5; II: 17.38
SYSTEM (in record declarations) I: 8.15
System buffer III: 30.9; 30.11
SYSTEM ERROR (Error Message) II: 14.27
System version information I: 12.11
SYSTEMFONT (Font class) III: 27.32
(SYSTEMTYPE) I: 12.13

T

T (Litatom) I: 2.3
T (Macro Type) I: 10.23
T (PRINTOUT command) III: 25.26
T (Terminal stream) III: 25.1; 25.2
T FIXED (printed by DWIM) II: 20.6
(TAB POS MINSPACES FILE) III: 25.10
.TAB POS (PRINTOUT command) III: 25.25
.TABO POS (PRINTOUT command) III: 25.26
*TAIL * (stack blip) I: 11.16
TAIL (Variable) II: 20.12
Tail of a list I: 3.9
(TAILP X y) I: 3.9
(TAN X RADIANSFLG) I: 7.13
(TCOMPL FILES) II: 18.14; 18.15,18,21
(TCONC PTR X) I: 3.6; 3.7
TCPIIP III: 24.36
Teletype list structure editor II: 16.1

•

(TEMPLA TES LIT A TOM 1 ... LlTA TOM N) (File Package

Command) II: 17.39
TEMPLATES (File Package Type) II: 1'7.24
Templates in Masterscope II: 19.18
Terminal input/output III: 30.1; 25.3
Terminal streams III: 25.1; 25.2
Terminal syntax classes III: 30.5
Terminal tables III: 30.4
(TERMTABLEP TTBL) III: 30.5
(TERPRI FILE) III: 25.9
TEST (Editor Command) II: 16.65
TEST (in Masterscope template) II: 19.19
TEST (Masterscope Relation) II: 19.8
(TESTRELATION ITEM RELATION ITEM'2INVERTED)

II: 19.23

INDEX

INDEX

TESTRETURN (in Masterscope template) II: 19.19
(TEXTUREP OBJECn III: 27.7
Textures III: 27.6
THEREIS FORM (1.5. Operator) I: 9.11
(THIS.PROCESS) II: 23.4
THOSE (Masterscope Set Specification) II: 19.12
(@1 THRU @2) (Editor Command) II: 16.42

(@1 THRU) (Editor Command) II: 16.42; 16.44

THRU (1.5. Operator) I: 9.22
THRU (in event specification) II: 13.7
TICKS (Timer Unit) I: 12.16
(TIME TIMEX TIM EN TIMETYP) II: 22.8
Time stamps I: 10.9; II: 16.76
Time-slice of history list II: 13.31; 13.21
TlME.ZONES (Variable) I: 12.15
(TIMEALL TlMEFORM NUMBEROFTIMES TlMEWHAT

INTERPFLG -) II: 22.7
(TIMEREXPIRED? TIMER Clock Value. or. timerUnits)

I: 12.17
Timers I: 12.16
timerUnits UNITS (I.S. Operator) I: 12.18
(TIMES X 1 Xl'" XN) I: 7.3
TIMES (use with REDO) II: 13.8
\TimeZoneComp (Variable) I: 12.16
TITLE (Menu Field) III: 28.41
TITLE (Window Property) III: 28.33
(@1 TO @2) (Editor Command) II: 16.42

(@1 TO) (Editor Command) II: 16.42; 16.44

TO FORM (1.5. Operator) I: 9.14; 9.15
TO (in event specification) II: 13.7
TO SET (Masterscope Path Option) II: 19.16
TOO MANY ARGUMENTS (Error Message) I: 10.3;

II: 14.31
TOO MANY FILES OPEN (Error Message) II: 14.28
TOO MANY USER INTERRUPT CHARACTERS (Error

Message) II: 14.30
TOP (as argument to ADVISE) II: 15.11
TOP (inbacktrace) II: 14.9
Top margin III: 27.11
TOTOPFN (Window Property) III: 28.20
(TOTOPW WINDOW NOCALLTO TOPFNFL G) III:

28.20
(TRACEX) II: 15.5; 14.5,17; 15.1,7
TRACEREGION (Variable) II: 14.16
TRACEWINDOW (Variable) II: 14.16
Tracing functions II: 15.1
Transcript files III: 30.12
Translations in ClISP II: 21.17

INDEX.39

INDEX

(TRANSMIT.ETHERPACKET NOB PACKEn III: 31.40
TREAT AS CLlSP? (Printed by DWIM) II: 21.1 5
TREATASCLlSPFLG (Variable) II: 21.16
TREATED AS CLiSP (Printed by DWIM) II: 21.16

(TRUEX1'" XN) I: 10.18

TRUSTING (DWIM mode) II: 20.4; 20.2; 21.4,6,16
(TRY NEXT PLST ENDFORM VAL) I: 11.21

TTY process III: 28.30
(TTY.PROCESS PROO II: 23.12
(TTY.PROCESSP PROO II: 23.12
TTY: (Editor Command) II: 16.51; 15.6; 16.49,52,61
TTY: (Printed by Editor) II: 16.52
(TTYDISPLA YSTREAM DISPLA YSTREAM) III: 28.29
TTYENTRYFN (Process Property) II: 23.13; 23.3
TTYEXITFN (Process Property) II: 23.13; 23.3
(TTYIN PROMPT SPLST HELP OPTIONS ECHOT~FILE

TABS UNREADBUF RDTBL) III: 26.22; 26.29
(TTYIN.PRINTARGS FN ARGS ACTUALS ARGTYPE)

III: 26.34
(TTYIN.READ?- ARGS) III: 26.34
(TTYIN.SCRATCHFILE) III: 26.33
TTYIN1. FN (Variable) III: 26.34
TTYINAUTOCLOSEFLG (Variable) III: 26.33
TTYINBSFLG (Variable) III: 26.36
TTYINCOMMENTCHAR (Variable) III: 26.37; 26.24
TTYINCOMPLETEFLG (Variable) III: 26.37
(TTYINEDIT EXPRS WINDOW PRINTFN PROMPn

III: 26.32
TTYINEDITPROMPT (Variable) III: 26.29; 26.33
TTYINEDITWINDOW (Variable) III: 26.33
TTYINERRORSETFLG (Variable) III: 26.37
TTYINPRINTFN (Variable) III: 26.33
TTYINREAD (Function) III: 26.28
TTYINREADMACROS (Variable) III: 26.35
TTYINRESPONSES (Variable) III: 26.37; 26.38
TTYJUSTLENGTH (Variable) III: 26.27
'TV (Prog. Asst. Command) III: 26.29
TYPE (File Attribute) III: 24.18

Type names of data types I: 8.20
TYPE-AHEAD (Prog. Asst. Command) II: 13.18
TYPE-IN1 (Variable) II: 20.12
TYPE? (in record declarations) I: 8.14
TYPE? (Record Operator) I: 8.5; 8.8
TYPE? NOT IMPLEMENTED FOR THIS RECORD (Error

Message) I: 8.5
TYPEAHEADFLG (Variable) III: 26.36; 26.32
(TYPENAME DATUM) I: 8.20
(TYPENAMEP DATUM TYPE) I: 8.21
TYPERECORD (Record Type) I: 8.7

INDEX.40

Types in Masterscope II: 19.13
(TYPESOf.· NAME POSSIBLETYPES IMPOSSIBLETYPES

SOURCE) II: 17.21

U
(U-CASEX) I: 2.10; II: 16.52
(U-CASEP X) I: 2.10
(UALPHORDERA B) I: 3.18
U B (Break Command) II: 14.6
UCASELST (Variable) III: 26.46
(UGLYVARS VAR, ... VARN) (File Package

Command) II: 17.36; III: 25.18
UNABLE TO DWIMIFY (Error Message) II: 18.12
(UNADVISE X) II: 15.12; 15.11,13
UNADVISED (Printed by System) II: 15.9
UNARYOP (Property Name) II: 21.28
UNBLOCK (Editor Command) II: 16.65
UNBOUND ATOM (Error Message) I: 2.2-3; II: 14.31

Unboxing numbers I: 7.1
(UNBREAK X) II: 15.7; 15.5,8; 22.9
(UNBREAKO FN-) II: 15.7; 15.8
(FN UNBREAKABLE) (value of BREAKIN) II: 15.6
(UNBREAKINFN) II: 15.8; 15.7
UNBROKEN (Printed by ADVISE) II: 15.11
UNBROKEN (printed by compiler) II: 18.13
UNBROKEN (Printed by System) II: 15.9
UNDEFINED CAR OF FORM (Error Message) II:

14.31
UNDEFINED FUNCTION (Error Message) II: 14.31;

20.2
UNDEFINED OR ILLEGAL GO (Error Message) I: 9.8;

II: 14.28
UNDEFINED TAG (Error Message) I: 10.28; II: 18.23
UNDEFINED TAG. ASSEMBLE (Error Message) II:

18.23
UNDEFINED TAG. LAP (Error Message) II: 18.23
Undo (DEdit Command) II: 16.8
(UNDO EventSpec) (Editor Command) II: 16.66
UNDO (Editor Command) II: 16.64; 13.43

UNDO EventSpec : X"" XN (Prog. Asst. Command)

II: 13.14
UNDO EventSpec (Prog. Asst. Command) II: 13.13;

13.7,28,33,42-43; 20.3
Undoing II: 13.26; 13.44
Undoing DWIM corrections II: 13.14; 21.20
Undoing in the editor II: 16.64; 13.44; 16.29
Undoing out of order II: 13.27; 13.13
(UNDOLlSPX LINE) II: 13.42
(UNDOLlSPX1 EVENT FLG -) II: 13.42

INDEX

UNDOLST (Variable) II: 16.64; 13.44; 16.50,65,72
undone (Printed by Editor) II: 16.64
undone (Printed by System) II: 13.13,42
(UNDONLSETQ UNDOFORM -) II: 13.30
(UNDOSAVE UNDOFORM HISTENTRy) II: 13.40;

13.34,41
#UNDOSAVES (Variable) II: 13.41
UNFIND (Variable) II: 16.28;

16.21,33-34,36-40,50,56,72
(UNION X y) I: 3.11
(UNIONREGIONS REGIONI REGION2 ... REGIONn)

III: 27.2
UNIX file names III: 24.6
UNLESS FORM (1.5. Operator) I: 9.16
(UNMARKASCHANGED NAME TYPE) II: 17.18
(UNPACK X FLG RDTBL) I: 2.9 •
(UNPACKFILENAME FILE -) III: 24.7
(UNPACKFILENAME.STRING FILENAME - --)

III: 24.7
(\UNQUEUE Q ITEM NOERRORFL-G) (Function) III:

31.41
Unreading II: 13.38; 13.3
UNSAFE.TO.MODIFY.FNS (Variable) I: 10.10; II:

15.5; 17.26
UNSAFEMACROA TOMS (Variable) I: 10.28
UNSAVED (printedbyDWIM) II: 20.9~10

unsaved (Printed by Editor) II: 16.69
(UNSAVEDEF NAME TYPE -) II: 17.28; 20.9-10
(UNSAVEFNS -) II: 19.25
(UNSET NAME) II: 13.29; 13.2B

UNTIL N(N a number) (1.5. Operator) I: 9.16
UNTIL FORM (1.5. Operator) I: 9.16
UNTIL (use with REDO) II: 13.8
untilDate DTS (1.5. Operator) I: 12.18
(UNTILMOUSESTATE BUTTONFORM INTERVAL)

(Macro) III: 30.18
UNUSUAL CDR ARG LIST (Error Message) II: 14.29
UP (Editor Command) II: 16.13; 16.14,21,34
(UPDATECHANGED) II: 19.24
(UPDATEFILES --) II: 17.21
(UPDATEFN FN EVENIFVALID-) II: 19.24
Updating files II: 17.21
UPFI NDFLG (Variable) II: 16.35; 16.21,23
Upper case characters I: 2.10
UPPERCASEARRA Y (Variable) III: 25.22
UpperLeftCursor (Variable) III: 30.15
UpperRightCursor (Variable) III: 30.15
USE (Masterscope Relation) II: 19.8

INDEX

INDEX

USE EXPRSI FORARGSI AND ... AND EXPRSN FOR

ARGSN IN EventSpec (Prog. Asst. Command)

II: 13.10
USE EXPRS FOR ARGS IN EventSpec (Prog. Asst.

Command) II: 13.9
USE EXPRS IN EventSpec (Prog. Asst. Command) II:

13.9; 13.10; 13.32-33
USE AS A CLlSPWORD (Masterscope Relation) II:

19.9
USE AS A FIELD (Masterscope Relation) II: 19.9
USE AS A PROPERTY NAME (Masterscope Relation)

II: 19.9
USE AS A RECORD (Masterscope Relation) II: 19.9
USE-ARGS (History List Property) II: 13.33
USED AS ARG TO NUMBER FN? (Error Message) II:

18.23
USED BLKAPPL Y WHEN NOT APPLICABLE (Error

Message) II: 18.22
USEDFREE (CLISP declaration) II: 18.12; 21.19
USEMAPFLG (Variable) II: 17.56
USER BREAK (Error Message) II: 14.31
User data types I: 8.20
User defined printing III: 25.16
User init file I: 12.1
User interrupt characters III: 30.3
(USERDATATYPES) I: 8.20
(USEREXEC LlSPXID LlSPXXMACROS LlSPXXUSERFN)

II: 13.35
USERFONT (Font class) III: 27.32
USERGREETFILES (Variable) I: 12.2
(USERLlSPXPRINT X FILE Z NODOFLG) II: 13.25
(USERMACROS LlTATOMI'" .LlTATOMN) (File

Package Command) II: 17.34; 16.64,66
USERMACROS (File Package Type) II: 17.24
USERMACROS (Variable) II: 16.64; 17.34
(USERNAME FLG STRPTR PRESERVECASE) III: 24.40
USERRECORDTYPE (Property Name) I: 8. 1 5
USERWORDS (Variable) II: 20.17; 16.68,71;

20.18,21,23-24
USING (in CREATE form) I: 8.4
usingTimer TIMER (1.5. Operator) I: 12.18

V
$$VAL (Variable) I: 9.12
VALUE (Property Name) II: 17.28; 13.28-29
!VALUE (Variable) II: 14.5
Value cell of a (Litatom) I: 2.4; 11.1
Value of a break II: 14.5

INDEX 41

INDEX

VALUE OUT OF RANGE EXPT (Error Message) I:

7.13
VALUECOMMANDFN (Window Property) III: .26.8

(VALUEOF LINE) II: 13.19; 13.34
Variable bindings I: 11.1; 10.19; II: 17.54
Variable bindings in stack frames I: 11.6
(VARIABLES POS) I: 11.7; II: 14.1 0
(VARS VAR, ... VAR N) (File Package Command) II:

17.35
VARS (File Package Type) II: 17.24
VARTYPE (Property Name) II: 17.22; 17. 18
VAXMACRO (Property Name) I: 10.21
VERSION (File name field) III: 24.6
Version information I: 12.11
Version recognition of files III: 24.11
VertScroliCursor (Variable) III: 30.15 •
VertThumbCursor (Variable) III: 30.15
Video display screens I: 12.4; III: 30.22
Video taping from the screen III: 30.23
(VIDEOCOLOR BLACKFLG) III: 30.23
(VIDEORATE TYPE) III: 30.23
(VIRGINFN FN FLG) II: 15.8
Virtual memory I: 12.6
Virtual memory file I: 12.6; III: 24.21,23
(VMEM.PURE.STATE X) I: 12.10
(VMEMSIZE) I: 12.11
(VOLUMES) III: 24.23
(VOLUMESIZE VOLUMENAME -) III: 24.23

W
(WAIT.FOR.TTY MSECS NEEDWINDOW) II: 23.12
WAITBEFORESCROLLTIME (Variable) III: 28.24
WAITBElWEENSCROLLTIME (Variable) III: 28.24
(WAITFORINPUT FILE) III: 25.6

WAITlNGCURSOR (Variable) III: 30.15
(WAKE.PROCESS PROCSTATUS) II: 23.5
WBorder (Variable) III: 28.14,32-33
(WBREAK ONFLG) II: 14.15
WEIGHT (Font property) III: 27.27
(WFROMDS DISPLA YSTREAM DONTCREA TE) III:

27.25
(WFROMMENU MENU) III: 28.42
WHEN FORM (I.S. Operator) I: 9.15

WHENCHANGED (File Package Type Property) II:
17.31

(WHENCLOSE FILE PROP, VAL, ... PROPN VALN)

III: 24.20
(WHENCOPIEDFN IMAGEOBJ

TARGETWINDOWSTREAM

INDEX.42

SOURCEHOSTSTREAM TARGETHOSTSTREAM)

(lMAGEFNS Method) III: 27.39
(WHENDELETEDFN IMAGEOBJ

TARGETWINDOWSTREAM) (lMAGEFNS

Method) III: 27.39
WHENFILED (File Package Type Property) II: 17.32
WHENHELDFN (Menu Field) III: 28.40

(WHENINSERTEDFN IMAGEOBJ
TARGETWINDOWSTREAM
SOURCEHOSTSTREAM TARGETHOSTSTREAM)

(lMAGEFNS Method) III: 27.39
(WHENMOVEDFf\l/MAGEOBJ

TARGETWINDOWSTREAM .
SOURCEHOSTSTREAM TARGETHOSTSTREAM)

(lMAGEFNS Method) III: 27.38
(WHENOPERATEDONFN IMAGEOBJ

WINDOWSTREAM HOWOPERATEDON
SELECTION HOSTSTREAM) (lMAGEFNS

Method) III: 27.39
WHENSELECTEDFN (Menu Field) III: 28.40
WHENUNFILED (File Package Type Property) II:

17.32
WHENUNHELDFN (Menu Field) III: 28.40
WHERE (I.S. Operator) I: 9.22
WHEREAITACHED (Window Property) III: 28.54
(WHEREIS NAME TYPE FILES FN) II: 17.14

(WHICHW X y) III: 28.32
WHILE FORM (I.S. Operator) I: 9.16
WHILE (use with REDO) II: 13.8
WHITESHADE (Variable) III: 27.7
&WHOLE (DEFMACRO keyword) I: 10.27
WHOLEDISPLAY (Variable) III: 30.22; 27.2
(WIDEPAPER FLG) III: 26.48

WIDTH (Window Property) III: 28.34
(WIDTHIFWINDOW INTERIORWIDTH BORDER) III:

28.32
WINDOW (Process Property) II: 23.3
Window command menu III: 28.3
Window has no REPAINTFN. Can't redisplay.

(printed in prompt window) III: 28.16
Window menu III: 28.3
Window properties III: 28.13
Window system III: 28.2; 28.1
(WINDOWADDPROP WINDOW PROP ITEMTOADD

FIRSTFLG) III: 28.13
WINDOWBACKGROUNDSHADE (Variable) III:

30.23
(WINDOWDELPROP WINDOW PROP

ITEMTODELETE) III: 28.13

INDEX

WINDOWENTRYFN (Window Property) II: 23.13;

III: 28.27
WindowMenu (Variable) III: 28.8
WindowMenuCommands (Variable) m: 28.8
(WINDOWPX) III: 28.14
(WINDOWPROP WINDOW PROP NEWVALUE) III:

28.13
(WINOOWREGION WINDOW COM) III: 28.48
Windows III: 28.12; 28.1

(WINDOWSIZE WINDOW) III: 28.48
WindowTitleDisplayStream (Variable) III: 28.14

WINDOWTITLESHADE (Variable) III: 28.33

WINDOWTITLESHADE (Window Property) III:

28.33
(WINDOWWORLD FLAG) III: 28.1
WITH (in REPLACE editor command) II: 16.33
WITH (in SURROUND editor command) II: 1 ~37
WITH (Record Operator) I: 8.5
WITH (in REPLACE command) (in Editor) II: 16.33
WITH-RESOURCE (Macro) I: 12.23
(WITH-RESOURCES (RESOURCE 1 RESOURCEl ...)

FORM, FORMl ...) (Macro) I: 12 .. 23

(WITH.FAST.MONITOR LOCK FORM",,, FORMN)

(Macro) II: 23.8
(WITH.MONITOR LOCK FORM 1 ... FORMN) (Macro)

II: 23.8
WORD (as a field specification) I: 8.21
WORD (record field type) I: 8.10

WORDDELETE (syntax class) III: 30.6
Working set II: 22.1
WRITEDATE (File Attribute) III: 24.18

(WRITEFILE X FILE) III: 25.33
(WRITEIMAGEOBJ IMAGEOBJ STREAM) III: 27.40

x
X offset III: 27.24
XIPIG~ORETYPES (Variable) III: 31.38
XIPONLYTYPES (Variable) III: 31.38
XIPPRINTMACROS (Variable) III: 31.38
XIPTRACE (Function) III: 31.38
XIPTRACEFILE (Variable) III: 31.38
XIPTRACEFLG (Variable) III: 31.38
XKERN (lMAGEBOX Field) III: 27.37

XPOfNTER (record field type) I: 8.10
XSIZE (lMAGEBOX Field) III: 27.37

(XTR . @) (Editor Command) II: 16.35

Y

Yoffset III: 27.24

INDEX

INDEX

YOESC (IMAGEBOX Field) III: 27.37,

Your virtual memory backing file is almost full. ..
(Error Message) I: 12.11

YSIZE (lMAGEBOX Field) III: 27.37

Z
(ZERO X, ... XN) I: 10.18

(ZEROP X) I: 7.4

[,] inserted by PRETTYPRINT III: 26.47

,
(\ LlTATOM) (EditorCommand) II: 16.28
, (Editor Command) II: 16.28; 16.33

'(ineventaddress) II: 13.6

'functions I: 10.10
(\ADD.PACKET.FILTER FILTER) III: 31.40
(\ALLOCATE.ETHERPACKET) III: 31.39
\BeginDST (Variable) I: 12.16
(\CHECKSUM BASE NWORDS INITSUM) III: 31.40
(\DEL.PACKET.FILTER FILTER) III: 31.40
(\DEQUEUE Q) III: 31.41
\EndDST (Variable) I: 12.16
(\ENQUEUE Q ITEM) III: 31.41
\ETHERTIMEOUT (Variable) III: 31.38; 31.30

\FILEOUTCHARFN (Function) III: 27.48
\FTPAVAILABLE (Variable) III: 24.36
\LASTVMEMFILEPAGE (Variable) I: 12.11
\LOCALNDBS (Variable) III: 31.39
(\ONQUEUE ITEM Q) III: 31.41
\P (Editor Command) II: 16.28; 16.49

\PACKET.PRINTERS (Variable) III: 31.41
(\QUEUELENGTH Q) III: 31.41
(\RELEASE.ETHERPACKET EPKn III: 31.39
\TimeZoneComp (Variable) I: 12.16
(\UNQUEUE Q ITEM NOERRORFLG) III: 31.41

] (use in input) II: 13.36

f
f (Break Command) II: 14.6; 14.17

f (Break Window Command) II: 14.3
f (CLISP Operator) II: 21.7
f (EditorCommand) II: 16.16
f (use in comments) III: 26.46

+-
+- (CLISP Operator) ,,: 21.9

INDEX.43

INDEX

(~PATTERN) (EditorCommand) II: 16.25
~ (Editor Command) II: 16.25; 16.27
~ (in event address) II: 13.6
~ (in pattern matching) I: 12.28
~ (in record declarations) I: 8.14
~ (Printed by System) II: 14.2
+-+- (Editor Command) II: 16.28

, (backquote) (Read Macro) III: 25.42

I
I (change character) II: 16.30; III: 26.49
I (Read Macro) I: 7.4; III: 25.43

- (CLlSPOperator) II: 21.11 •
- (in pattern matching) I: 12.27

!
! (in Masterscope template) II: 19.20
! (in PA commands) II: 13.9
! (in pattern matching) I: 12.27-28
! (use with <,> in CLlSP) II: 21.10
!! (use with <, > in CLlSP) II: 21.10
!O (Editor Command) II: 16.15
!E (EditorCommand) II: 16.55; 13.43
! EVAL (Break Command) II: 14.6
!EVAL (Break Window Command) II: 14.3
!F (EditorCommand) II: 16.55; 13.43
!GO (Break Command) II: 14.6
!N (EditorCommand) II: 16.55; 13.43
! NX (Editor Command) II: 16.16; 16.17
!OK (Break Command) II: 14.6
!Undo (DEdit Command) II: 16.8
!UNDO (EditorCommand) II: 16.64
!VALUE (Variable) II: 14.5; 14.16; 15.9-10

.. (stringdelimiter) 1:4.1; III: 25.3-4

.... (use in ASK USER) III: 26.20

"<c.r.>" (in history commands) II: 13.32

#N (N a number) (in pattern matching) I: 12.29
FORM (PRINTOUT command) III: 25.30

(## COM1 COM2'" COMN) II: 16.59; 16.24

(in INSERT, REPLACE, and CHANGE commands)
II: 16.34

INDEX.44

(Printed by System) III: 30.10
#CAREFULCOLUMNS (Variable) III: 26.47
#RPARS (Variable) III: 26.47
#SPELLINGS 1 (Variable) II: 20.18
#SPELLlNGS2 (Variable) II: 20.18
#SPELLlNGS3 (Variable) II: 20.18
#UNDOSAVES (Variable) II: 13.41; 13.30
#USERWORDS (Variable) II: 20.18

$
$ X FOR YIN EventSpec (Prog. Asst. Command) II:

13.11
$ Y -> X IN EventSpec (Prog. Asst. Command) II:

13.11
$ Y TO X IN EventSpec (Prog. Asst. Command) II:

13.11
$ Y =- X IN EventSpec (Prog. Asst. Command) II:

13.11
$ Y X IN EventSpec (Prog. Asst. Command) II: 13.11
$ (dollar) (in pattern matching) I: 12.27
$ (escape) (in CLlSP) II: 21.10-11
$ (escape) (in Edit Pattern) II: 16.18
$ (escape) (in Editor) II: 16.45-46
$ (escape) (in spelling correction) II: 20.15; 20.22
$ (escape) (Prog. Asst. Command) II: 13.11
$ (escape) (use in ASKUSER) III: 26.19
$$ (escape, escape) (in Edit Pattern) II: 16.18
$$ (escape, escape) (use in ASKUSER) III: 26.20
$$EXTREME (Variable) I: 9.12
$$VAL (Variable) I: 9.12; 9.19
$1 (in pattern matching) I: 12.26
$GO (escape-GO) (TYPE-AHEAD command) II:

13.18
$Q (escape-Q) (TYPE-AHEAD command) II: 13.18
$STOP (escape-STOP) (TYPE-AHEAD command) II:

13.18

%
% I: 2.1; 4.1; III: 25.3; 25.4,38; 30.11
% (use in comments) III: 26.46
%% (use in comments) III: 26.46

&
& (in Edit Pattern) II: 16.18
& (in MBD command) II: 16.36-37
& (in pattern matching) I: 12.26
& (Printed by System) III: 25.12
& (use in ASKUSER) III: 26.19

INDEX

&ALLOW-OTHER-KEYS (DEFMACRo. keyword) .. 1:
10.26

&AUX (DEFMACRO keyword) I: 10.26
&BODY (DEFMACRO keyword) I: 10.25
&KEY (DEFMACRO keyword) I: 10.25
&OPTIONAL (DEFMACRO keyword) I: 10.25
&REST (DEFMACROkeyword) I: 10.25
&Undo (DEdit Command) II: 16.8
&WHOLE (DEFMACROkeyword) I: 10.27

, (CLlSPOperator) II: 21.11
, (in DWIM) II: 20.8

<. {"

, (in pattern matching) I: 12.26 .. '
'LIST (Masterscope Set Specification) II: 19.11
'ATOM (Masterscope Set Specification) II: 19~ 10:
, (Read macro) I: 10.12; III: 25.42 •

(in (DEdit Command) II: 16.7
(out (DEdit Command) II: 16.8
o I: 3.3
() (DEdit Command) II: 16.7
() out (DEdit Command) II: 16.7

) in (DEdit Command) II: 16.7
) out (DEdit Command) II: 16.8

*
* (as a prettyprint macro) III: 26.44
* (as a read macro) III: 26.44
* (CLlSPOperator) II: 21.7
(* . X) (Editor Command) II: 16.56
(* . TEXn (File Package Command) II:: 17.40
* (Function) III: 26.42
* (In File Group) III: 24.33
* (in file package command) II: 17.44
* (in pattern matching) I: 12.26
* (use in comments) III: 26.42; 26.43
*** note: FILENAME dated DATE isn't current

version; FILENAME dated DATE is. (printed by
EDITLOADFNS?) II: 16.74

***** (in compiler error messages) II: 18.22
BREAK (in backtrace) II: 14.9
COMMENT (printed by editor) II: 16.48
COMMENT (printed by system) III: 26.43
COMMENTFLG (Variable) I: 12.3; II: 16.48; III:

26.43

INDEX

DEALLOC (data type name) I: 8.21; II: 22.4
*"'EDITOR** (in backtrace) II: 14.9
"'TOP'" (in backtrace) II: 14.9
* ANY* (in edit pattern) II: 16.18

INDEX

* ARCHIVE* (History list property) II: 13.33; 13.16
*ARGN (Stack blip) I: 11.15
*ARGVAL * (stack blip) I: 11.16
"'CONTEXT* (history list property) II: 13.33
"'ERROR* (history list property) II: 13.33
*~N'" (stack blip) I: 11.16
"'FORM'" (stackblip) I: 11.16
"'GROUP* (history list property) II: 13.33
HISTORY (history list property) II: 13.33
LlSPXPRINT (history list property) II: 13.33
PRINT (history list property) ,,: 13.33
TAIL (stackblip) I: 11.16

+
+ (CLISP Operator) II: 21.7

, (PRINTOUT command) II I: 25.26
,. (PRINTOUT command) III: 25.26
,.. (PRINTOUT command) II I: 25.26

- (CLlSPOperator) II: 21.7
-- (in Edit Pattern) II: 16.19
•• (in pattern matching) I: 12.27
•• (Printed by System) III: 25.12
.> EXPR (Break Command) II: 14.11
· > (in pattern matching) I: 12.30
· > (printed by DWIM) 1/: 20.4; 20.2-3,6
· > (printed by editor) II: 16.46

· (CLISP Operator) II: 21.9
· (in a floating point number) I: 7.11
· (in a list) I: 3.3
· (in Masterscope) II: 19.2
· (in pattern matching) I: 12.28
· (printed by Masterscope) II: 19.2
PA TTERN .. @ (Editor Command) II: 16.27
.. (in Edit Pattern) II: 16.19
.. TEMPLATE (in Masterscope template) II: 19.20
... (in Edit Pattern) II: 16.19-20
... (printed by DWIM) II: 20.3,5
... (Printed by Editor) II: 16.14
... (printed during input) II: 13.37; 13.5

INDEX.45

... VARS (Prog. Asst. Command) II: 13.10; 13.33

... ARGS (history list property) II: 13.33

.BASE (PRINTOUT command) III: 25.27

.CENTER POS EXPR (PRINTOUT command) III: 25.29

.CENTER2 POS EXPR (PRINTOUT command) III:

25.29
.FFORMA T NUMBER (PRINTOUT command) III:

25.30

.FONT FONTSPEC (PRINTOUT command) III: 25.~7

.FR POS EXPR (PRINTOUT command) III: 25.29

.FR2 POS EXPR (PRINTOUT command) III: 25.29

.IFORMAT NUMBER (PRINTOUT command) III:
25.30 .

.N FORMAT NUMBER (PRINTOUT command) III:

25.30

.P2 THING (PRINTOUT command) III: 25.28, •

.PAGE (PRINTOUT command) III: 25.26

.PARA LMARG RMARG LIST (PRINTOUT command)
III: 25.28

.PARA2 LMARG RMARG LIST (PRINTOUT command)
III: 25.28

.PPF THING (PRINTOUT command) III: 25.28

.PPFTL THING (PRINTOUT command) 1\1: 25.28

.PPV THING (PRINTOUT command) III: 25.28

.PPVTL THING (PRINTOUT command) III: 25.28

.SKIP LINES (PRINTOUT command) III: 25.26

.SP DISTANCE (PRINTOUTcominand) III: 25.26

.SUB (PRINTOUT command) III: 25.27

.SUP (PRINTOUT command) III: 25.27

.TAB POS (PRINTOUT command) III: 25.25

.TABO POS (PRINTOUT command) III: 25.26

I (CLISP Operator) II: 21.7

I (use with @break command) II: 14.7

I functions II: 13.26; 13.27,41

IFNS (Variable) II: 13.26

IMAPCON (Function) II: 21.13

IMAPCONC (Function) II: 21.13

INCONC (Function) II: 21.13

INCONC1 (Function) II: 21.13

IREPLACE (Record Operator) I: 8.3
IRPLACA (Function) II: 21.13

IRPLACD (Function) II: 21.13

IRPlNODE (Function) II: 13.40

IRPlNODE2 (Function) II: 13.40

o
o (Editor Command) II: 16.15

INDEX.46

o (inst,ead of right parenthesis) II: 20.5; 20.1,8,10

1
10MACRO (Property Name) I: 10.21

2
(2ND. @) (Editor Command) II: 16.24

3
32MBADDRESSABLE (Function) II: 22.5

(3ND ~f9})t ~E:di(?rCommand) II: 16.25

7
7 (insteaJof'J :Ii: 20.9

'8
8 (instead of/eft~parenthesis) II: 16.67

8044 (Printer type). III: 29.5

9<: ~ (;:;"::'3':1.t~"

9 (instead of left parenthesis) II: 20.5; 20.1,8,10-11
r

: (CLlSP$j1~tor) II: 21.9

(: E1 ... EM) (Editor Command) U: 16.32
.:. \ "

(:) (Editor Command) II: 16.32

: (Printedb'ySystem) II: 14.1

:: (CLISP Operator) II: 21.9

; FORM (Prog. Asst. Command) II: 13.18

<
< (CLlSPOperator) II: 21.10

<,> (use in CLlSP) II: 21.10

•
• FORM (Break Command) II: 14.10
• (CLISP Operator) II: 21.8

• (in event address) II: 13.6

• (in pattern matching) I: 12.26

• (printed by DWIM) II: 20.5

• (use with @break command) II: 14.7
•• (in EditPa ttern) II: 16.19

• • (in pattern matching) I: 12.26

• > (in pattern matching) I: 12.30

• E (Printed by Editor) II: 16.67

>
> (CLlSPQperator) II: 21.10

INDEX

7
1 (Editor Command) II: 16.48
1 (Litatom) I: 3.11
1 (printed by DWIM) II: 20.4-5
1 (printed by Masterscope) II: 19.18
1 (Read Macro) II: 14.8; III: 25.43

7. (Break Command) II: 14.7
7. (Break Window Command) II: 14.3

1. (EditorCommand) II: 16.48
1. (in rrYIN) III: 26.33
71 EventSpec (Prog. Asst. Command) rI: '13':'f3;

13.33
1ACTlVATEFlG (Variable) III: 26.36; 26.23_
7Undo (DEdit Command) II: 16.8

@

@ (Break Command) If: 14.6;14.12,

@ (in event specification) II: 1'3.39'
(@ EXPRFORM TEMPLATEFORM) (in Masterscope

template) II: 19.21
@ (in pattern matchingi I: 1'2.26,28
@ (location specification in editor) II: 16.24

@ PREDICA TE (Masterscope Set Specifi(.atio());;::,lIi::
19.11

@ (use with @ break command) 'II: 14.7'

@@ (in event specification) II: 13.8; 13.J6,3~,

INDEX INDEX 47

.. j,

INDEX

	0001
	0002
	001_TOC01
	001_TOC02
	001_TOC03
	001_TOC04
	001_TOC05
	001_TOC06
	001_TOC07
	001_TOC08
	001_TOC09
	001_TOC10
	001_TOC11
	001_TOC12
	001_TOC13
	001_TOC14
	001_TOC15
	001_TOC16
	002_MTOC_1
	002_MTOC_2
	002_MTOC_3
	002_MTOC_4
	003
	004
	005
	006
	01-001
	01-002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-001
	02-002
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	03-001
	03-002
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-001
	04-002
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-001
	05-002
	05-01
	05-02
	06-001
	06-002
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-001
	07-002
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	08-001
	08-002
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-001
	09-002
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-001
	10-002
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	11-001
	11-002
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	12-001
	12-002
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16
	index-17
	index-18
	index-19
	index-20
	index-21
	index-22
	index-23
	index-24
	index-25
	index-26
	index-27
	index-28
	index-29
	index-30
	index-31
	index-32
	index-33
	index-34
	index-35
	index-36
	index-37
	index-38
	index-39
	index-40
	index-41
	index-42
	index-43
	index-44
	index-45
	index-46
	index-47
	index-48

