
XEROX

IMPLEMENTATION NOTES

3102464
lyric Release
June 1987

XEROX COMMON LISP IMPLEMENTATION NOTES

3102464

Lyric Release

June 1987

The information in this document is subject to change without notice and should
not be construed as a commitment by Xerox Corporation. While every effort has
been made to ensure the accuracy of this document, Xerox Corporation assumes no
responsibility for any errors that may appear.

Copyright @ 1987 by Xerox Corporation.

Xerox Common Lisp is a trademark.

All rights reserved.

"Copyright protection claimed includes all forms and matters of copyrightable
material and information now allowed by statutory or judicial law or hereinafter
granted, including, without limitation, material generated from the software
programs which are displayed on the screen, such as icons, screen display looks,
etc. "

This manual is set in Modern typeface with text written and formatted on Xerox
Artificial Intelligence workstations. Xerox laser printers were used to produce text
masters.

PREFACE

The Xerox Common Lisp Implementation Notes cover
several aspects of the Lyric release. In these notes you
will find:

• An explanation of how Xerox Common Lisp extends
the Common Lisp standard. For example, in Xerox
Common Lisp the Common Lisp array-constructing
function make-array has additional keyword
arguments that enhance its functionality.

• An explanation of how several ambiguities in
Steele's Common Lisp: the Language were
resolved.

• A description of additional features that provide far
more than extensions to Common Lisp.

How the Implementation Notes are Organized .

These notes are intended to accompany the Guy L.
Steele book, Common Lisp: the Language which
represents the current standard for Co~mon Lisp.

The implementation notes are qrganized to coincide
with the chapter and section arrangement of the
Steele book. Not every section in the book has a
corresponding section in the implementation notes
because most of Common Lisp: the Language is
implemented as presented.

How to Use the Implementation Notes

We recommend that when you consult Guy Steele's
book, you also use these implementation notes to see
if any extensions have been added or ambiguities
resolved for that portion of the text.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE III

TABLE OF CONTENTS

TABLE OF CONTENTS

Only those chapters with additions, ambiguities, or
extensions to Steele's Common Lisp: the Language are
provided in this document.

1, Introduction see the Steele chapter '.--- -:-."-------------------------------_-!--
2. Data Types see the Steele chapter

3. Scope and Extent see the Steele chapter

4. Type Specifiers 1

4.2. Type Specifier lists 1

4.8. Type Conversion Function 1

5. Program Structure

5.1.2. Variables 3

5.2. Functions 3

5.2.2. lambda-Expressions 3

5.3.1. D.efining Named Fun~ions 3

5.3.2. Declaring Global Variables and Named

Constants 4 '

6. Predicates 5

7. Control Structure 7

7.3. Function Invocation 7

7.5. Establishing New Variable Bindings 7

7.6. Conditionars 7

7.9.1. Constructs for Handling Multiple Values 8

'8. Macros 9

Compatibility Note 11

9. Declarations 13

9.1. Declaration Syntax 13

9.2. Declaration Specifiers 13

10. Symbols 15

11. Packages 17

Standard Packages 17

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE v

TABLE OF CONTENTS

Extensions to Standard Packages 17

Modules 20

Error Conditions Raised by the Package System 20

Koto Reader Compatibility Feature 25

Moving Existing Code into a New Package 29

12. Numbers 37

12.10. Implementation Parameter(37

13. Characters 39

13.1. Character Attributes 39

13.2. Predicates on Characters 40

13.4. Character Conversions 40

13.5. Character Control-Bit Functions 41 ---
14. Sequences see the Steele chapter

15. Lists 43

15.1 Conses 43

15.2 lists 43

15.5 Using lists as Sets 43

16. Hash Tables see the Steele chapter

17. Arrays 45

17.1. make-array 45

17.2. Array Access 47

17.3. Array Information 48

17.4. Functions on Arrays of Bits 48

17.5. Fill Pointers 48

17.6. Changing the Dimensions of an Array 48

An Extension to Common lisp-the Array Inspector 50

Inspecting Arrays 50

18. Strings see the Steele chapter

19. Structures 53

19.1. Introduction to Structures 53

19.4. Defstruct Slot-Options 53

19.5. Defstruct Options 53

Non-Standard Options 54

vi XEROX COMMON LISP IMPLEMENTA nON NOTES, LYRIC RELEASE

TABLE OF CONTENTS

20. The Evaluator see the Steele chapter

21. Streams

Xerox Lisp Extensions 57

Predicates 57

Accessors 57

22. Input'Output 59

22.1.3 Macro Characters ~ 59

22.1.4 Standard Dispatching Macro

Character Syntax 59

22.1.6 What the Print function Produces 60

22.3.l Output to Character Streams 60

22.3.3 Formatted Output to Character Streams 60

23. File System Interface 61

24. Error System 63

Introduction to Error System Terminology 63

Program Interface to the Condition System 66 .

Defintngatid Creating Conditions 66

• Signalling C(jndition~ 70

Handling Conditions 72

Proceed Cases 75

Predefined Types 83..

25 Miscellaneous Features 89

25.1 The CompHer 89

Xerox Common Lisp Extensions to Section 25.1 89

Compiler Optimizers-The XCL:Defoptimizer FacHity 92

25.2. Documentation 98

25.3. Debugging Tools 98

Breaking, Tracing and Advising:

the Wrappers Faci-lity 98

Xerox Common Lisp Debugger 112

25.4. Environmentallnquiries 122

XEROX COMMON LISP IMPLEMENTA nON NOTES, LYRIC RELEASE VII

TABLE OF CONTENTS

[This page intentionally left blank]

viii XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

4.2. Type Specifier Lists

4.8. Type Conversion Function

TYPE SPECIFIERS

CHAPTER 4 TYPE SPECIFIERS

The special form "the" operates as an assertion in
interpreted code, but has no effect on compiled code.

Although it is not an error to ask (typep x 'foo)
when foo is not yet a defined type at compile time,
the compiler win produce much more efficient code if
type foo is known at compile time.

The function coerce operates only on the types
explicitly listed in the book.

XEROX COMMON LISP iMPLEMENTATION NOTES, LYRIC RELEASE

TYPE SPECIFIERS

[This page intentionally left blank]

2 XEROX COMMON LISP IMPLEMENTATION NOTES. LYRIC RELEASE

5.1.2. Variables

5.2. Functions

5.2.2. Lambda-Expressions

5.3.1. Defining Named Functions

PROGRAM STRUCTU RE

CHAPTER 5 PROGRAM STRUCTURE

Unbound special variables have il: nobind in their
value cell. If you try to access an unbound variable in
interpreted code, an error is signaled. If you try to use
one in compiled code, il: nobind is returned as its
value.

In this release, argument number checking is
performed in the interpreter, but not in all compiled
code. For those compiled functions that do not check,
if the function is called with fewer arguments than
the function requires, the remaining required
arguments will have value nil; if called with more
arguments than the function permits '(required plus
optionals), the extra arguments are ignored.

Compi!ed functions also do not check for unexpected
keywords, or malformed keyword/value pairs, though
the interpreter does.

lambda-parameters-limi t ~ 512.

xcl :definline name arg-list &body body [Macro]

xcl:definline is exactly like defun except that it
also arranges for the compiler to expand inline any
calls to the named function. In future releases, this
will be accomplished via the inline declaration
mechanism. In Lyric, however, the
xcl :defoptimizer facility is used. As a result, users
should take care not to use xcl:definline for
recursive functions, as this will cause the compiler to
loop indefinitely, expanding the recursive calls.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 3

PROGRAM STRUCTURE

5.3.2. Declaring Global Variables and Named Constants

4

xci :defglobal var name &optional initial-value doc-string [Macro]

xcl:defglobalvar is exactly like defvar except
that it declares the variable name to be global instead
of special. Note that if you change a variable from a
global to a special, all functions using that variable
must be recompiled. See section 9.1 for more
information on global declarations.

xci :defglobalparameter name initial-value &optional doc-string
[Macro]

xci :defglobalparameter is analogous to
defparameter except that it declares the parameter
as global instead of special.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

PREDICATES

CHAPTER 6 PREDICATES

Predicates are required to return nil for false and
non-nil for true. There are some types such that
typep for the type and the specific predicate for the
type are equivalent in truth value only (some
predicates return t, some return the object itself).

The function subtypep is defined to return two
values. The first value is the value of the predicate,
and the second is the certainty of the result.
subtypep could always return (values nil nil)
and be legal; however, that wouldn't be a very useful
implementation of subtypep. Xerox Common Lisp's
subtypep is guaranteed to handle the following
cases:

1. Any two datatypes (including structures defined
with defstruct with no : type option) will return
a definite answer.

2. "Built-in" Common Lisp types will return a definite
answer.

3. nil is subtypep of everything.

4. Everything is subtypep of t.

5. No non-nil type is subtypep of nil.

6. and and or of any of the previous expressions are
handled properly.

Though equalp is required to work for objects "with
components", it is not specified if this includes
structures. However, there is no other interesting way
to test equality of structures. So our implementation
defines equalp to mean all components are equalp.
(This is analagous to Interlisp-D's il: equalall). Of
course, this means equalp may not terminate if
comparing circular structures, just as equal may not
terminate given circular lists.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 5

PREDICATES

[This page intentionally left blank)

6 XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

CONTROL STRUCTU RE

CHAPTER 7 CONTROL STRUCTURE

7.3. Function Invocation

Call-arguments-limi t ~ 512.

7.5. Establishing New Variable Bindings

xcl: destructur ing-bind pattern form &body body [Macro]

7.6. Conditionals

Executes body with the variables in the s-expression
pattern bound to elements of the list structure
returned by form. It is analogous to
mul tiple-value-bi nd. pattern can be any arglist
acceptable to defmacro except that the
&environment keyword may not b~ used. For
example:

(xcl:destructuring-bind
«vl v2) &keya b)
'«1 2) :b 3 :a 4)

... body .••)

is equivalent to:
(let «vl 1)

(v2 2)
(a 4)
(b 3))

... body ...)

Note: xcl:destructuring-bind currently does no
error checking for too many or too few
elements being returned by form.

case keyform {({({key}*) I key} {form}*)}* [Macro]

Be careful about using nil as a keylist in the case
macro. nil is interpreted as the list of no keys, not as
the single key nil. Thus, any clause whose car is nil
will never be selected. To use nil as a key, use the
keylist (nil) instead.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 7

CONTROL STRUCTU RE

Wrong:
(case expression

(nil ..• code for expression being nil ...)

Right:
(case expression

«nil) ••. code for expression being nil ... j

7.9.1. Constructs for Handling Multiple Values

multiple-values-limit ~ 512.

8 XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

MACROS

CHAPTER 8 MACROS

While the Common Lisp construct defmacro does
remove any function definition the given symbol may
have, it does not remove any Interlisp macro
definition that might exist on the il :macro,
il: bytemacro, or il: dmacro properties of the
symbol. If a given symbol has both a Common Lisp
and Interlisp macro definition, the one to be used
depends upon the compiler or interpreter in use. The
Common Lisp interpreter and the new XCL compiler
will both use the Common Lisp macro. The Interlisp
interpreter and compiler will use the Interlisp macro.
Because of this potential for confusion, it is strongly
recommended that, when providing a Common Lisp
defmacro definition for a symbol, any existing
Interlisp macro definition for that symbol should be
removed.

Xerox Common Lisp diverges from Common Lisp: the
Language on the issue of destructuring in &body
parameters. We implement an extension to that
syntax to allow for easy parsing of the bodies of
certain macros, such as defun and defmacro. Some
uses of &body are interpreted as implicit calls to the
XCL function parse-body:

parse-body body environment &optional doc-string-allowed-p [Macro]

The given body should be a list of forms in the syntax
of a standard Common Lisp lambda body, described in
Common Lisp: the Language as

{declaration I doc-string}* {form}*

The environment should be a lexical environment
such as those acquired through the use of the
&env i ronmen t keyword. doc-string-allowed-p
defaults to t. parse-body returns three values:

1. A list of the non-declaration, non-doe-string
form's found in the body

2. A list of the declare forms found in the body

3. The documentation string found, if any, or nil.

parse-body works by examining the forms in body
one by one, macroexpanding them if necessary, trying
to find the first non-declaration, non-string form. The
tail of body beginning with that form is returned as
the first value, a list of all of the declarations found is

XEROX COMMON LiSP IMPLEMENTATION NOTES, LYRIC RELEASE 9

MACROS

10

the second value and, if any documentation string is
found, it is returned as the third value. If
doc-string-allowed-p is nil, any strings found will be
assumed to be the first form in the tail and the search
will end. Note that Common Lisp allows macros to
expand into either documentation strings or
declarations. Because of this, parse-body will always
have macroexpanded the first form in the tail. The
original, unexpanded form is returned as the car of
the first value, though.

Because of the usefulness of parse-body, and the
frequency with which constructs like the following are
used:

(defmacro define-foo (arg-list o.body body
o.environment env)

(multiple-value-bind (code decls doc)
(parse-body body env) ...))

the syntax of the o.body keyword was changed to
allow the following code, with the same meaning:

(defmacro define-foo (arg-list o.body (code decls doc))

...)
This frees the programmer from having to specify an
o.environment parameter when it will only be used
in a call to parse-body.

The full syntax of the XCL &body keyword is as
follows:

o.body symbol

This is treated exactly like o.rest symbol.

o.body (symbol-or-list)

When o.body precedes a list of length one, it is treated
exactly like o.rest symbol-or-list.

& body (symbol-or-list symbol-or-list [symbo/-or-list])

When followed by a list of length two or three, it is
treated as an implicit call to the function
parse-body, described above. The body argument is
the list that would have been bound to a simple
& res t parameter, the environment argument is given
by what would have been supplied to an
o.environment parameter, and doc-string-allowed-p
is passed as t if, and only if, the third element of the
o.body list is provided. Each of the symbol-or-list's is
matched against the corresponding returned value of

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

Compatibility Note

MACROS

parse-body. This allows full destructuring on each
of those three values, even though it is only likely to
be useful at all for the first one.

When this third, so-called "parsing version" of &body
is used, no &key parameters are allowed. Also, as
described in Common Lisp: the Language, only one of
&body and &rest may be used in a single argument
list. Note also that this extension to Common Lisp
contradicts the statement on page 145 of Common
Lisp: the Language that &body "is identical in
function to &rest."

All Interlisp nlambda functions appear to be macros
from the point of view of the Common Lisp function
macro-function. Those Interlisp nlambda functions
that actually evaluate some of their arguments have
also been defined as real Common Lisp macros. Thus,
all calls to Interlisp nlambda 'functions are treated
properly by the Common Lisp interpreter'and the new
XCL compiler.

XEROX COMMON liSP IMPLEMENTATION NOTES. LYRiC RELEASE 11

MACROS

[This page intentionally left blank]

12 XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

9.1. Declaration Syntax

9.2. Declaration Specifiers

DECLARATIONS

CHAPTER 9 DECLARATIONS

Inline declarations are ignored in this release. The
macro xcl:definline creates a function, calls to
which will be expanded inline.

Xerox Common Lisp supports an additional
declaration xcI: global.

(xcI: global varl var2 •••) specifies that all of the
variables named are to be considered global, i.e., it is
a declaration that the variables are never dynamically
bound. All references to such a variable are compiled
to fetch the top level binding directly. This
declaration for global variables is analogous to the
special declaration for special variables.

Xerox Common Lisp supports an additional
declaration, xcI: global.

(xcI: global varl var2 •••) specifies that all ofthe
variables named are to be considered global. This
specifier pervasively affects variable references. The
affected references refer directly to the top-level
value of the variable, bypassing a search for any
intermediate bindings. This can in some cases lead to
a significant performance improvement, especially if
the references are in deeply-nested,
frequently-executed code. Variables declared
xcI: global may not be bound. The declaration
xcI: global is analogous to the special declaration
for special variables.

inline declarations are ignored in the Lyric release.
Inline functions can be defined using the
xcI: def inline macro, described in Section 5.3.1 of
Steele's Common Lisp: the Language.

XEROX COMMON liSP IMPLEMEN-:-ATION NOTES, LYRIC RELEASE 13

DECLARA TIONS

[This page intentionally left blank]

14 XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

SYMBOLS

CHAPTER 10 SYMBOLS

Symbol print names are limited to 255 characters.

symbol-name returns a string displaced to the symbol
pname. Strings returned from symbol-name may be
destructively modified without affecting the symbol
pname.

Interlisp users should note that cl: gensym and
il : gensym are not the same. il: gensym always
creates a symbol in the Interlisp package, while
cl: gensym creates uninterned symbols.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 15

SYMBOLS

[This page intentionally left blank]

16 XEROX COMMON LISP IMPLEMENTATiON NO I ES, LYRIC RELEASE

Standard Packages

PACKAGES

CHAPTER 11 PACKAGES

The following standard packages are included in
Xerox Lisp:

LISP contains all symbols (other than keywords) defined in
Common Lisp: the Language. Some of these symbols
are shared with the Interlisp package (by importing
them into INTERLlSP), in the cases where the
semantics of the symbols are identical (e.g., CAR).

KEYWORD contains all Common Lisp keywords.

SYSTEM contains system internals.

USER is the default package in a standard Common Lisp
Exec. It uses the LISP package.

INTERLISP contains (or imports) allinteriisp symbols. All symbols
in this package are external, reflecting Interlisp-D's
flat symbol name space.

XCL contains symbols of the Xerox Common Lisp
extensions. Many symbols in this package are also
shared with Interlisp. ~ ;!

XCL-USER is the default package in a Xerox Common Lisp Exec.
It uses both LISP and XCL; thus, extensions to Common
Lisp are accessible in, this package. Most users will
prefer this package to USER.

Extensions to Standard Packages

package [Variable]

This symbol is bound in each exec.

xcl:*total-packages-limit* [Constant]

An inclusive limit to the total number of packages in
the system. Currently this is 255 but will increase in
the next release.

do-symbols

do-external-symbols

do-all-symbols

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

[Macro]

[Macro]

[Macro]

17

PACKAGES

18

These macros are as specified in Common Lisp: the
Language, except note that symbols may be iterated
over more than once.

xcl:do-internal-symbols [Macro]

Maps over only the internal symbols of a package, not
those that are external (exported).

xcl:do-Iocal-symbols [Macro]

Maps over the symbols interned in a package, internal
and external (exported) symbols, not bothering to
map those that are merely accessible in it (as by
inheritance).

xcI: delete-package package [Function]

Uninterns all of the symbols interned in package and
then removes the package structure itself. All of
package's symbols become uninterned and. will then
print out preceded by "hash colon," e.g., it: foo. This
should obviously be used with caution.

make-package name &key :prefix-name :internal-symbols
: external-symbols : external-only [Function]

There are several additional keywords for
make-package:

•
:prefix-name name

The symbol printer uses name to prefix symbols that
need to be qualified, instead of the package's full
name.

: internal-symbols positive-integer

The number of internal symbols this package should
expect to accommodate.

: external-symbols positive-integer

The number of external symbols this package should
expect to accommodate.

: external-only truth-value

If this keyword is present the package will have only
external symbols; i.e., interning a symbol in this
package implicitly exports it.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

PACKAGES

rename-package package new-name &optional new-nicknames
[Function] prefix-name

The function rename-package has been extended
with a second optional argument prefix-name, with is
the name the symbol printer will use to qualify
symbols of this package when needed.

defpackage name &rest option-clauses [NLambda Function]

Define a package named name. If no such package
already exists, create it using option-clauses. If one
does exist, try to make it match the description, or
produce an error if that's not possible. Arguments are
unevaluated (it is an Interlisp NLambda). Each of
option-clauses is a list whose car is a keyword from
those described below.

This function can be used in a file's
il :makefile-environment property to define the
package in which the file is to be read and written. It
is somewhat similar to the Symbolics defpackage.

The following option clauses are implemented:

(:use name1 name2 ...)

Causes the package to use the named package(s).

(: nicknames name1 name2 ...)

Adds the nickname(s) to the package.

(: pref ix-name name)

The symbol printer will use name to prefix symbols
that need to be qualified, rather than the package's
full name.

(: internal-symbols positive-integer)

The number of internal symbols this package should
expect to accommodate (only noticed if the package
needs to be created).

(: external-symbols positive-integer)

The number of external-symbols this package should
expect to accommodate (only noticed if the package
needs to be created).

(: external-only truth-value)

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 19

PACKAGES

Modules

If this keyword is present, the package will have only
external symbols.

(: shadow symbol1 symboI2 ...)

Shadow the given symbol(s) in this package.

(:export symbol1 symboI2 ...)

Export (make external) the given symbol (s) from this
package. Note: This option can only be used in a
defpackage for an already-defined package, because
otherwise the arguments to this option clause
(internal symbols in the package) can't exist yet. (Of
course, you can still export inherited symbols this way,
but this is not a very interesting case.)

(: import symboll symboI2 ...)

Import (make internal and accessible) the given
symbol(s) in this package.

(:shadowing-import symboll symboI2 ...)

Import (make internal and accessible) the given
symbol(s) in this package, shadowing any conflicts.

require module-name &optional pathname [Function]

The implementation-specific way in which Xerox Lisp
searches for a module-name when no path name is
provided is to first merge module-name with
default-pathname-defaults and then with
each of the contents of the variable
il:directories.

Error Conditions Raised by the Package System

20

There are a number of situations in which the package
system will raise error conditions, which can be caught
and handled by the user from within the debugger.
These situations are described below. For details on
how to handle these conditions and invoke these

XEROX COMMON L;S:''VIPLEMENTATION NOTES, LYRIC RELEASE

While in the reader:

PACKAGES

proceed cases, see the error system documentation in
Chapter 24 of this manual.

The conditions listed in this section are all subtypes of
the xcl: read-er ror condition.

xcl:symbol-colon-error name [Condition]

Indicates that the reader has found a name with too
many colons in it. name is a string containing all of
the characters of the invalid symbol.

xcl:escape-colons-proceed [Proceed case]

Returns a symbol made in the current package, with
the colons quoted.

xcl :missing-external-symbol name package [Condition]

This indicates that a name, qualified as external in a
package, has not been found in a package. name is a
string. package is a package.

xcl:make-external-proceed [Proceed case]

Creates and returns an external symbol.

xcl:make-irrternal-proceed [Proceed case]

Creates and returns an internal symbol.

xcl :missing-package package-name symbol-name [Condition]

This indicates that a package named package-name,
referred to in a qualified symbol name, has not been
found. Both package-name and symbol-name are
strings.

xcl:new-package-proceed [Proceed case]

Creates a new package named package-name and
interns the symbol there. The package is created with
default attributes. If the symbol was qualified
external it is exported from the new package.

xcl: ugly-symbol-proceed [Proceed case]

Creates a new internal symbol, in the current package,
with a name composed of the package name, an
appropriate number of colons, and the symbol name.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 21

PACKAGES

That is, it creates the symbol that would have resulted
had the colon(s) in the name been escaped. This is
handy when an old Interlisp symbol like DECLARE:
has been typed, which should (in a Common Lisp
readtable) be typed DECLARE':.

xcI: read-conflict name packages [Condition]

Indicates that the reader compatibility feature has'
found a name whose package it cannot determine.
This is described in detail below under "Koto Reader
Compatibility Feature".

Package System Supertype Conditions:

xcl:package-error package [Condition]

This indicates an error has occurred in a call to
package code that attempts to alter package. It is a
subtype of the error condition. All the conditions
described in this chapter, except for the reader errors
listed above, are a subtype of this one. This error will
almost never be signaled directly; most package
conditions are actually of the type or types described
below. The slot package is inherited by all subtype
conditions of xcI :package-error.

xcI: symbol-conflict symbols [Condition]

This condition is a subtype of the
xcI :package-error condition. It indicates that,
during a package system operation, a set of symbol
names has been found to conflict (the list of symbols
in symbols). This error will almost never be signaled
directly; most package system conditions are subtypes
of this type, since it is the most common error. The
slot symbols is inherited by all subtype conditions of
xcl:symbol-conflict.

While calling use-package:

22

xcl:use-conflict used-package [C and ition]

This is a subtype of the xcI: symbol-conflict
condition. It indicates that during a use-package
operation the conflicting symbols exported by the
used-package have names that conflict with symbols
already accessible in the package. symbols (inherited
from xcI: symbol-conflict) is a list of the symbols.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

PACKAGES

xcl:shadow-use-conflicts-proceed [Proceed case]

Shadow conflicting symbols in the "using" package
(package). This is the the safest way to proceed from
this condition, but remember that references to any
of the shadowed names will now refer to a local
symbol, not the one that you might have been
expecting to inherit.

xcl:unintern-user-proceed [Proceed case]

Unintern conflicting symbols from the "using"
package (package). This is useful if you have
inadvertantly interned the conflicting symbols by
typing them to an executive before calling
use-package. However, unless you are very sure of
the use of the symbols being uninterned this
operation may make those symbols permanently
unavailable. This is a dangerous option; use it with
caution.

xcl:unintern-usee-proceed [Proceed case]

xcl:abort

While calling export:

Unintern conflicting symbols fro·m the package being
used (used-package). Unless you are very sure of the
use of the symbols being uninterned this operation
may make those symbols permanently unavailable.
This is a dangerous option; use it with caution.

[Proceed case]

Abort the use-package operation.

xcl: export-conflict exported-symbols packages [Condition]

A subtype of the xcl: symbol-conflict condition.
This condition indicates that exporting
exported-symbols from package results in name
conflicts with symbols in packages.

xcl:unintern-proceed [Proceed case]

Unintern conflicting symbols in package. Unless you
are very sure of the use of the symbols being
uninterned this operation may make those symbols
permanently unavailable. This is a dangerous option;
use it with caution.

XEROX COMMON LISP IMPLEMENTATION NOTES, LY~IC RELEASE 23

PACKAGES

xcl:abort [Proceed case]

Abort exporting from package.

xcl: export-missing symbols [Condition]

xcl:import-proceed

xcl:abort

A subtype of the xcl :package-error condition.
This condition indicates that the symbols are not
available in package to be exported.

[Proceed Case]

Import these symbols into package before exporting
them.

[Proceed Case]

Abort export from package.

While calling import:

xcl:import-conflict [Condition]

This is a subtype of the xcl: symbol-conflict
condition. It indicates that importing the symbols into

. package causes a name conflict with symbols already
accessible in package.

xcl:shadowing-import-proceed [Proceed case]

Import symbols with shadowing-import.

xcl:abort [Proceed case]

Abort import into package.

While calling unintern:

24

xcl: unintern-conflict symbol [Condition]

This is a subtype of the xcl: symbol-conflict
condition. It indicates that uninterning symbol from
package causes name conflicts among the symbols on
symbols.

xcl:shadowing-import-proceed [Proceed case]

Shadowing-import a new symbol into package to hide
symbols.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

xcl:abort

PACKAGES

[Proceed case]

Abort unintern of symbol from package.

Koto Reader Compatibility Feature

For the benefit of Koto users of the CML Library
module, the Lyric release contains a "reader
compatibility feature" to aid in reading Koto CML
files into Lyric. If you do not have any such files, you
can ignore this section.

The Koto release did not have an implementation of
packages, so the CML module used a syntactic
convention in which symbols containing colons were
used to denote keywords and those Common Lisp
symbols whose names conflicted with Interlisp
symbols. Of course, the vast majority of Common Lisp
names do not conflict, and those symbols were
written with no package prefix. Ordinarily, if you
were to load such a file into Lyric, all the symbols
would be read as Interlisp symbols, and the colons
would be treated as any other alphabetic character,
consistent with the syntactic conventions of Interlisp
in releases prior to Lyric. For example, the character
sequence "CL:UNLESS" would read as the symbol
il:cl\:unless; the sequence "FIND-PACKAGE"
would read as the symbol il: find-package.

Enabling the reader compatibility feature causes the
reader to attempt to resolve all symbols into the
appropriate package. The feature is enabled when

(a) il:litatom-package-conversion-enabled
(a special variable) is true, and

(b) the read table being used (the value of
readtable) is either il: filerdtbl or
il: coderdtbl.

Condition (b) is met when loading files produced by
the File Manager and the compiler prior to Lyric and is
(usually) not true for files produced in Lyric. You
should only enable the compatibility feature when
loading Koto CML files, as it may cause other files to
be read incorrectly.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 25

PACKAGES

26

The reader feature handles two cases: strings
containing an explicit "package prefix", and
unqualified strings that name a symbol in the LISP
package. When enabled, the reader follows the
following procedure when it encounters a string of
characters to be interpreted as a symbol:

1. If the string contains an explicit package prefix,
such as a leading colon, or "CL:", the string is
interned in the package indicated by the prefix.

2.lf the string does not name a symbol in the LISP
package, then no conversion is needed-the
string is interned in the INTERLISP package.

3. If the string names a symbol in the LISP package
and there is not already a symbol by the same
name in the INTERLISP package, the reader
returns the LISP symbol.

4. At this point, the string names symbols in both
LISP and INTERLISP. If the LISP symbol is not an
external one, then the conflict is with a private
LISP symbol and hence accidental; the reader
returns the INTERLISP symbol.

5. If exactly one of the symbols is on the preferred
reading list (see below), the reader returns that
symbol.

6. Otherwise, there is a conflict that cannot be
automatically resolved. This will in general
happen for any symbol of Common Lisp for which
there happens to already exist an Interlisp symbol
that was not "shadowed" in CML

In case 6, a debugger window appears with the
message

Symbols named name exist in packages Lisp and
Interlisp.

Several proceed cases are available under the
"PROCEED" option in the debugger menu. These are:

Return Lisp symbol, make it preferred

This returns the symbol from the Lisp package and
also puts it on the global list
xcl: *preferred-reading-symbols*, removing
the Interlisp symbol if it was there. This is useful in

XEROX COMMON LISP IMPLEMENTAT!ON NOTES, LYRIC RELEASE

PACKAGES

cases where you have accidentally interned an
uninteresting symbol in Interlisp by typing a name
without a CL: qualifier. This usually results in an error,
such as undefined function, but in the meantime you
have created the symbol in the Interlisp package,
making it difficult for the compatibility feature to
decide what to do. From the moment this symbol is
made preferred, you will no longer receive warnings
and it will always be read as a Lisp symbol.

Just return Lisp symbol

This is a conservative version of the above choice.

Return Interlisp symbol, make it preferred

In some cases you may want to prefer the reading of
an Interlisp symbol to that of a similarly named
Common Lisp one. The symbol is made preferred by
placing it on the global list
xci: *preferred-reading-syrnbois*, removing
the Lisp symbol if it was there. The next time it is
encountered, the reader feature will use it instead of
the Lisp symbol.

Just return Interlisp symbol

Again, this is a conservative version of the above
choice, one which does not make the Interlisp symbol
preferred.

Reader Compatibility Feature: Making Symbols Preferred

xci:*preferred-reading-syrnbois* [Global variable]

This global list contains symbols (not namestrings)
whose reading is preferred. If both Interlisp and Lisp
symbols appear on the list the name will still be
considered ambiguous. Be careful about placing
symbols on this list. You should be very sure that they
will never be referred to on a file in such a way that
the other meaning is desired. When a symbol from
one package is marked preferred (via a proceed
option in the debugger), the other one is removed, if
it was present. This list initially contains a set of
Interlisp symbols corresponding to Lisp symbols
"shadowed" in CML (by symbols beginning with
"CL:") or not implemented in CML.

XEROX COMMON LISP IMPLEMENTATION NOTES. LYRIC RELEASE 27

PACKAGES

Reader Compatibility Feature: Enabling and Disabling

il:litatom-package-conversion-enabled [Variable]

Set or bind this flag true to enable the compatibility
feature. Note that reader performance drops
considerably when the compatibility feature is
enabled. This flag should only be turned on while
reading files written using the Koto Common Lisp
library module.

Reader Compatibility Feature: Format of the Conversion Table

28

il:litatom-package-conversion-table [Global variable]

This table is a list of clauses specifying the" package
prefixes" to check when reading a symbol while the
compatibility feature is enabled. The clauses are
searched linearly. Each clause has the form:

(prefix-string exception-list package-name
where-keyword)

The initial contents of this table are suitable for
converting files produced using the Koto CML library
module. Such clauses are:

(":" NIL "KEYWORD" :external)

("CL:" ("CL:FLG") "LISP" :external)

You need only alter the table if you are trying to
convert files that contained additional user
"pseudo-packages. "

prefix-string is a string which is matched to the first
characters of a name. If the name matches the
prefix-string this clause is "activated."

exception-list is a list of strings. If the name, including
its prefix, matches any of these strings it is not
converted and the conversion is aborted.

package-name is a string containing the name of the
package in which the symbol name (without its prefix)
will be interned.

where-keyword is one of the keywords: internal or
: external, indicating whether the symbol is to be
interned or interned and immediately exported.

Note that since the clauses are tested sequentially,
longer prefixes must go earlier in the list. If, for

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

PACKAGES

example, you wanted to convert "CL::" prefixed
names to be internal in "LISP" then you would have to
place a clause before the one starting "CL: ". This
avoids the "CL:" clause being activated for symbols
named "CL: :FOO" and the like.

Reader Compatibility Feature: Conditions

The reader compatibility feature uses the following
condition and proceed cases in its interaction:

xcl:read-conflict name packages [Condition]

This condition indicates that the reader compatibility
feature (see below) has found a name whose package
it cannot determine. It is a subtype of the
xcI: read-error condition. name is a string.
packages contains a list of the packages in which the
name was found, and between whom the reader
feature cannot decide.

xcl:prefer-clsym-proceed [Proceed case]

Return LISP symbol, make it preferred.

xcl:return-clsyrn-proceed [Proceed case]

Just return LISP symbol.

xcl:prefer-ilsym-proceed [Proceed case]

Return INTERLISP symbol, make it preferred.

xcl:return-ilsyrn-proceed [Proceed case]

Just return INTERLISP symbol.

Moving Existing Code into a New Package

Now that Xerox Lisp supports Common Lisp packages,
users may wish to take advantage of package
modularity by moving existing code modules into
their own packages. For Common Lisp code being
maintained in purely text form, Common Lisp: the
Language tells you much of what you need to know.
However, there are several additional considerations
for code maintained by the Xerox Lisp File Manager;
this section addresses some of these considerations.

XEROX COMMON LISP IMPLEMENTATION NOTES. LYRIC RELEASE 29

PACKAGES

The Lyric release contains no tools for completely
automating the conversion to another package, nor
does it supply tools for supporting very complex
packages. The discussion that follows points out some
of the mechanisms that may help for creating
relatively simply user packages. It assumes you have a
file or set of files produced by the File Manager in
Lyric. Files written with the Koto CML module should
first be converted to Lyric as described above.

How to specify the makefile-environment

30

In order to have a file written in your own package, it
must have a makefile-environment property, which
takes the form of a list (: readtable tbl : package
package). The Xerox Lisp Release Notes on the File
Manager discuss how this property is used. The
discussion here is confined to the form in which the
package is described.

If you want to write a file in one of the standard
packages, such as XCL-USER or INTERLlSP, you need
only specify the package name, preferably as a string
(make sure it is upper-case). If you want to use your
own package, you must supply an expression whose
evaluation will return the package, creating it if
necessary. The expression must not assume that any
package, other than the standard ones, already exists;
in particular, the expression cannot contain any
symbols that are in your new package. It should also
be self-contained; e.g., if it calls in-package, it must
be sure to bind *package*, in order not to side-effect
whatever code is loading or otherwise using the
expression to produce a reader environment. And
finally, it should not assume that the file it is on is
actually being loaded; makefile environments are
examined and evaluated by various system utilities
that manipulate files (e.g., il: loadfns), not just the
loader.

For most packages, the simplest expression to use is
defpackage. It creates the package if it does not yet
exist, and returns the package's name in any case, so it
is well suited as a package expression. For example, to
specify a package that inherits both LISP and XCL (as
the pre-supplied XCL-USER package does) and imports
the Interlisp window system symbols createw and
windowprop, you could write

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

(defpackage "MYHACK"
(:use "LISP" "XCL")
(:nicknames "MB")
(:import il:createw il:windowprop»

PACKAGES

The major complication arises if you want to export
any symbols (any package that presents a
programmer's interface surely does). You can't put
the exported symbols in the defpackage expression,
because the package doesn't yet exist in which to type
them. There are two principal ways to do the
exporting: export the symbols later (in the body of
the file), or write a more complex expression.

In the former case, you write a minimal defpackage
expression for the makefile-environment, then write a
more complete one in the body of the file (e.g., in a P
command, or in an initialization function). The
minimal defpackage is responsible for creating
enough of the package so that expressions on the file
can be read. This means it has to specify inheritance,
imported symbols and any shadows. For example, you
might write

(defpackage "MYHACK"
(:use "LISP" "XCL")
(:import il:createw il:windowprop»

as the minimal expression, then in the body of the file
write the "full" expression, which can rely on the
package already having been created:

(defpackage "MYHACK"
(:use "LISP" "XCL")
(:nicknames "MB")
(:export make-hack-window save-hack»

This method requires some discipline on the part of
package users, since the package as created by the
simple expression lacks external symbols. In this state,
forms on the file can still be read correctly (though
when printed from any other package context the not
yet exported symbols will appear with two colons in
their name). However, the package cannot be
properly inherited by any other package, since
references from such a package to the not yet
exported symbols will instead create internal symbols
in the other package, which will (a) be the wrong
symbols and (b) create a package conflict when the
full package definition is evaluated. Thus, users of the
package must ensure that the file containing the full

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 31

PACKAGES

package definition is loaded before attempting to
use-package it or refer to its symbols.

The alternative is to write a single very careful
expression to define the whole package, e.g.,

(let (*package*)
(in-package "MYHACK" "MH" '("LISP" "XCL"»
(import '(il:createw il:windowprop»
(export (mapcar #'intern

'("MAKE-HACK-WINDOW" "SAVE-HACK"»»

If you have a very complex package, or one that is
used on many files, it may be preferable just to create
a file whose sole purpose is to define the package,
then require that file. For example, the package
expression might simply be

(progn (require "MYHACKDEFS") "MYHACK")

Changing the Package of Existing Code

32

Once you've decided how to define the package, you
still have to arrange for the symbols currently in some
old package to be moved into your new package.
Much ofthis task can be done by specifying an explicit
package to the loader, either as the : package
keyword to cl: load, or the fourth argument to
il: load. The package you specify' overrides

. whatever package is specified in the file's makefile
environment.

In order for this to work, the new package must have
fundamentally the same inheritance structure as the
package in which the file was written. For example, if
the file was written in the XCL-USER package, your
new package must inherit LISP and XCL. If the file was
written in the INTERLISP package, your new package
must inherit INTERLISP (but read the cautions below).
When you load the file, the reader will then do the
"right" thing whenever it encounters a symbol with
no package qualifier-if the symbol was inherited by
the old package, it will also be inherited by the new
package, so the exact same symbol is read; if the
symbol was local to the old package, it will not be
inherited, but will be read as a local symbol in the new
package.

After loading the file and doing whatever touchups
seem appropriate (e.g., there may be local symbols in
the old package that really should have been
references to the old package), give the file a new

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

Changing Package Inheritance

PACKAGES

makefile-environment property as described above,
then call il: makef ile to write out the new file.

It may be the case that you want your new package to
have a different inheritance structure than the old.
For example, you have a file written in the INTERLIsP
package that you want to move into a Common lisp
package. In this case, you should temporarily define
your new package to have the same inheritance as the
old package, and load the file as above. At this point,
all the important symbols have been read correctly.
Then change the new package's inheritance structure
to be as desired, for example:

(cl:in-package "RAPT")
(cl:unuse-package "INTERLISP")
(cl:use-package '("LISP" "XCL"»

At this point, your new package is defined the way
you want, but you may still have unexpected
references to other packages, typically in the form of
lexical variables in functions. For example, in the case
of moving from INTERLIsP to a non-INTER LISP
package, many of your module's lexical variables
happened to coincide with symbols already extant in
INTERLlsP, so were still read as INTERLlsP symbols. If
you view the definition of a function in your new
module, you may see such things as

(let «il:x (car il:top»
il:a il:b)
...)

You'll likely want to rename those variables to be
locals in your new package. It is fairly easy to write an
sEdit mutator function that searches for symbols not
accessible in the current package and replaces them
(with user approval) with symbols of the same name
interned in the current package.

Caution about referring to other packages

If you use symbols from other packages (other than
the standard ones), you must, of course. make sure
that the other package is defined. There are some
subtleties here when the File Manager is involved.

If you want your package to inherit another
non-standard package, you must ensure that the
module defining the other package is loaded before

XEROX COMMON LISP IMPLEMENTATION NOTES. LYRIC RELEASE 33

PACKAGES

defining your package. For example, your package
expression might look like:

(progn (require "MYHACKDEFS")
(defpackage "MOREHAX"

(:use "LISP" "MYHACK")))

Similarly, if you simply want to refer to symbols of
another package, you must ensure that its module is
loaded first. The same procedure is recommended,
even if you are not defining your own package. For
example, on an Interlisp file, you might give as
package expression:

(progn (require "MYHACKDEFS")
"INTERLISP")

You might be tempted to do this instead by including
one or more files commands in the file's coms, e.g.,
the command

(il:fi1es 'myhackdefs).

However, there are two problems with this method.
You can't refer to any of the variables in the coms, for
example,

(vars (myhack:defau1t-size 37)
(myhack:defau1t-speed :fast))

because at the time the coms expression itself is read,
the files command contained in it has not yet been
executed, so you can get a missing package error
when the reader encounters myhack: defau1 t-si ze.

Even if you solve that problem, for example by hiding
all the variable settings in an initialization function,
system utilities that attempt to read only part of the
file (e.g., i1: loadfns) may fail when they encounter
the other symbols. The utility will have read the
makefile environment (which is why the require
works there), but will not necessarily have read, much
less evaluated, the commands in the body of the file
that cause the other file to be loaded.

Special considerations for the Il package

34

It is perfectly permissible to define a package that
inherits from the INTERLISP package. However, when
you do so, you must keep in mind a couple of things
that are special about it: INTERLISP is external only,
and the INTER LISP package's external symbols (i.e.,
the entire package) are not all defined in the standard

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

.' .

PACKAGES

sysout-Ioading Library and LispUsers modules
generally adds new symbols to the INTERLISP package.
Following are some of the pitfalls to watch for.

The File Manager currently requires that certain
symbols be in the INTERLISP package, regardless of
the package of the file's contents: the symbol naming
the file's corns (whose value is a list describing the
file's contents), and the file's rootname (whose
property list includes the file's makefile environment,
file type and other File Manager properties).
However, INTERLISP is external only, so those symbols
are automatically inherited by any package using
INTERLISP. Thus, for example, when the File Manager
writes the symbol il: foocoms on the file foo, whose
environment is the package bar inheriting il, the
printer does not qualify the symbol with its package
name, printing simply "foocoms". If you
subsequently load foo into a standard sysout, the
reader encounters the token II foocoms II and, since
il: foocoms does not exist, reads it as
bar: : foocoms.

To avoid this problem, you must ensure that the
sy~bols il: foocoms and il: foo exist when the file
is loaded. The simplest way is to include them in the
makefile environment's package expression:

(progn '(il:foocoms il:foo)
(defpackage "BAR"

(:use "INTERLISP"»)

For essentially the same reason, you must be careful
that your file loads in advance any modules that
define INTERLISP symbols it needs to refer to.
Otherwise, since those symbols are external in
INTERLlSP, references to them are not qualified, and
thus will be read instead as new internal symbols in
your package. See the discussion above about
referring to symbols from other packages.

When you follow the procedure outlined above for
loading an Interlisp file into an Interlisp-inheriting
package, be sure to load the file into a pristine sysout,
or at least one in which your file has never been read.
Otherwise, all the symbols on the file will already have
been interned in INTERLlSP, and thus would be read as
the same INTER LISP symbols, rather than symbols of
your new package.

XEROX COMMON LISP IMPLEMENTATION NOTES. LYRIC RELEASE 35

PACKAGES

[This page intentionally left blank]

36 XEROX COMMON LISP !MPLEMENTAT!ON NOTES. LYRIC RELEASE

NUMBERS

CHAPTER 12 NUMBERS

As stated in Common Lisp: the Language, the values
of named constants are implementation-dependent.
The section that follows lists the limits for the Xerox
Common Lisp implementation of the constants
described by Steele.

12.10. Implementation Parameters

most-positive-fixnum ~65535

most~negative-fixnum ~ -65536

most-positive-short-float ~ 3.4028235E+38

least-positive-short-float~ 1.40129847E-45

least-negative-short-float ~ -1.1754945E-38

most-negative-short-float~ -3.4028235E+38

most-posi tive-single-float ~ 3. 4028235E+38

least-positive-single-float ~ 1.40129847E-45

least-negative-single-float ~ -1.1754945E-38

most-negative-single-float ~ -3.4028235E+38

most-positive-double-float~ 3.4028235E+38

least-positive-double-float~ 1.40129847E-45

least-negative-double-float~ -1.1754945E-38

most-negative-double-float~ -3.4028235E+38

most-positive-long-float~ 3.4028235E+38

least-positive-long-float ~ 1.40129847E-45

least-negative-long-float ~ -1.1754945E-38

most-negative-long-float ~ -3.4028235E+38

short-float-epsilon ~ 1.1920929E-7

single-float-epsilon~ 1.1920929E-7

double-float-epsilon~ 1.1920929E-7

long-float-epsilon ~ 1.1920929E-7

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 37

NUMBERS

38

short-float-negative-epsilon~ 5.9604645E-S

single-float-negative-epsilon ~ 5.9604645E-S

double-float-negative-epsilon ~ 5.9604645E-S

long-float-negative-epsilon ~ 5.9604645E-S

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

13.1. Character Attributes

CHARACTERS

CHAPTER 13 CHARACTERS

Characters in Xerox Common Lisp follow the Xerox NS
Character Code Standard. Character codes are 16-bit
quantities, partitioned into 8 bits of character set and
8 bits of character within the set. The value of the
constant char-code-limi t is 65536. Characters are
an immediate data type; i.e., they consume no
storage.

Xerox Common Lisp supports neither font nor bits
attributes. Hence, the values of the constants
char-font-limi t and char-bi ts-limi t are both
one. The functionality of font and bits attributes are
achieved instead through graphics programming
conventions and the use of a larger character space.

Characters do not themselves have "font" attributes;
however, streams have a notion of a current font, and
some programs attach fonts to larger entities, such as
strings or subranges of a file. In addition, the Xerox
Character Standard encodes in the character itself
some information that other implementations
associate with a font. For example, a lower-case beta
(13) is a distinct character (in the Greek character set),
rather than being a lower-case b with a Greek font
attribute. This distinct character can be rendered in
an assortment of fonts.

The use for which "bits" attributes were originally
intended was to represent different keyboard
keystrokes (e.g., meta-hyper-A). The equivalent
functionality is achieved in Xerox Common Lisp by
assigning codes from other character sets to
keystrokes using the key action table. Xerox Common
Lisp follows the convention that characters typed with
the Meta key depressed are in character set 1. Most of
the extra function keys on the keyboard are in
character set 2.

char-code-limi t ~ 65536

char-font-limi t ~ 1

char-bits-limit ~ 1

XEROX COMMON LISP IMPLEMENTA nON NOTES, LYRIC RELEASE 39

CHARACTERS

13.2. Predicates on Characters

13.4. Character Conversions

40

XCL considers graphic-char-p to be true for exactly
those characters in the space that the Xerox Character
Code Standard calls "graphic" or "rendering". This
space consists of characters whose character set
component is zero or in one of the octal ranges [41,
176] or [241, 376], and whose character byte is in one
of the octal ranges [40, 176] or [241, 376]. In
particular, all of the normal ASCII printing characters
are in the range [40, 176] in character set 0, and hence
are graphic. Not all graphic characters are necessarily
defined or have a rendering in any particular font.

The character sets 1 thru 40 and 177 thru 240 (octal)
are in the range that the Xerox Character Code
Standard calls "control characters". Of these
character sets, only sets 1 and 2 have any assigned
meaning in this release of Xerox Common Lisp.

The names of most non-graphic characters are of the
form cset-char, where cset is a character set name
(e.g., Greek) or its octal representation (O to 376), and
char is the octal representation of the character
within the set (0 to 376). The ASCII control characters
(codes 1 through 32 octal) have names of the form
"l'letter", e.g., (cl:char-name (cl:code-char
2» =* "l'B". Some well-known characters, including
those documented in Common Lisp: the Language,
have more interesting names, which are registered in
the association list il :characternames. Users are
free to add to this list, but should beware of reading
characters with new names in a system that has only
the default il :characternames. Names of
well-known character sets are registered on the list
i1:charactersetnames.

Graphic characters have no name (char-name returns
nil) and print as themselves.

You can input characters using the same syntax, or
you can give the character within the character set a
name. For example, #\1-A and #\1-101 are the same
character (capital A in character set 1, or the character
obtained by typing Meta-A). Lowercase beta can be

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

CHARACTERS

typed #\Greek-142 or #\46-142; being a graphic
character, it always prints as #\13. However, you
cannot use the "names" of lowercase letters, because
Common Lisp reads case-insensitively. Thus, it could
not distinguish #\Greek-B from #\Greek-b.

13.5. Character Control-Bit Functions

The constants char-control-bi t, char-meta-bi t,
char-super-bit, and char-hyper-bit have the
value zero CO), since non-zero bits attributes are not
supported in XCL In addition, the functions
char-bi t and set-char-bi t exist but signal an
error when called.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC ~EL.EASE 41

CHARACTERS

[This page intentionally left blank]

42 XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

15.1. Conses

15.2. Lists

15.5. Using Lists as Sets

LISTS

CHAPTER 15 LISTS

Xerox Common Lisp assumes trees are non-circular.
Therefore, passing circular lists to these functions
results in undefined actions (likely to be stack
overflows or infinite loops).

pushnew uses the same keywords as adjoin, not the
same ones as the standard sequence operands.

It is an error to hand these functions lists which are
not true sets.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 43

LISTS

[This page intentionally left blank]

44 XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

ARRAYS

CHAPTER 17 ARRAYS

17.1. make-array

Additional &key Arguments to make-array:

:fatp

(t or nil, defaults to nil). Affects storage allocation
for arrays of element type string-char (strings). If t,
storage is allocated to accomodate "fat" 16-bit (NS)
characters. The default behavior is to allocate space
for "thin" 8-bit characters. Fat characters can still be
stored into a thin string (the string is automatically
fattened), but it is more efficient to allocate it fat in
the first place if it is known in advance that fat
characters will be used.

:extendable

(t or nil, defaults to nil) similar to :adjustable but
the only aspect of the array you can change is its size.
This restriction allows for a more speed efficient
implementation of extendable arrays, which is
especially useful for those who make frequent use of
vector-push-extend. adjust-array may be passed
an extendable array. The predicate
extendable-ar r ay-p is true for both adjustable and
extendable arrays, but adjustable-array-p is true
only for adjustable arrays.

:read-only-p

(t or nil, defaults to nil). If t, defines the array to
be read-only, which is especially useful for displaced
and displaced-to-base arrays. Read-only arrays may
not be adjustable or extendable. An attempt to write
into a read-only array does not cause an error, rather
the array's storage block is copied before the write
operation, so that the original storage block is
unchanged.

:displaced-to-base pointer

pointer is a bare pointer or memory address. Allows
you to displace an array directly to a memory storage
block (like the screen bitmap). Should usually be used

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 45

ARRAYS

Limitations

with : read-only-p t to prevent unintended
changes to the original storage block.

In sum, Xerox Common Lisp make-array looks like
(extensions are in bold):

make-array dimensions &key:element-type
:initial-element
:initial-contents
:adjustable
: fill-pointer
:displaced-to
:displaced-index-offset
:fatp
: extendable
:read-only-p
:displaced-to-base

[Function]

limits on rank and total size of arrays (i.e., values of
the constants) are:

array-rank-limit => 128

array-dimension-limit=> 65534

array-total-size-limi t => 65534

Xerox Common Lisp Examples

Degenerate Arrays

46

There are two "degenerate" cases in making arrays,
exemplified by the two following uses of make-array

1.(setq a (make-array nil»

The variable a is now bound to a zero dimensional
(non-empty) array. Others might call it a scalar.
Note that dimensions is a required argument to
make-array, so the Nil is given explicitly. The
following relations hold:

(array-dimensions a) returns nil

(array-total-size a) returns

(array-rank a) returns 0

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

17.2. Array Access

Limitations

ARRAYS

The array a has storage for a single element (of the
default element-type, t), which may be accessed by:

(aref a)

Note: There are no indices, since a is zero
dimensional.

2. (setq b (make-array '(0»)

The variable b is now bound to a one dimensional
array, which has no elements. Others might call it an
empty vector. The following relations hold:

(array-dimensions b) returns '(0)

(array-dimension b 0) returns 0

(array-total-size b) returns 0

(array-rank b) returns 1

The array has no associated storage. (aref b i) is
always an error regardless of the value of i, not
because b is not one dimensional, but because the
index i is always out of bounds.

It is possible to make empty arrays of' high.er
dimensions as well; for example, .

(setq c (make-:array '(2 3 4 0»)

also creates an emp~y array! with' no associated
storage. .

In summary, there are two sorts of degenerate
arrays-zero dimensional or scalar arrays, for which
aref is not an error, and empty arrays, arrays with at
least one zero in their dimensions lists, for which
aref is always an error, because there is no associated
storage.

On page 291 in Common Lisp: the Language it states:
"In some implementations of Common Lisp svref
may be faster than aref in situations where it is
applicable. "

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 47

ARRAYS

In Xerox Common Lisp there is no speed advantage in
using svref.

17.3. Array Information

There are two additional predicates:

(xcl: extendable-array-p array) for &key ; extendable

(xcl: read-only-array-p array) for &key : read-only-p

17.4. Functions on Arrays of Bits

17.5. Fill Pointers

On page 293 of Common Lisp: the Language it states:
"In some implementations of Common Lisp, bi t may
be faster than aref in situations where it is
applicable, and sbi t may be similarly faster than
bit."

In Xerox Common Lisp, there is no speed advantage in
using bi tor sbi t.

The default value of extension is the value of the
special variable
xcl:*default-push-extension-size*

which is initially 20.

17.6. Changing the Dimensions of an Array

Adjust-array-Additional &key Arguments

48

:fatp

(t or nil, defaults to nil). Affects storage allocation
for arrays of element type string-char (strings). If t,
storage is allocated to accomodate "fat" 16-bit (NS)
characters. The default behavior is to allocate space
for "thin" 8-bit characters. Fat characters can still be

XEROX COMMON LISP !MPLEMENTATION NOTES, LYRIC RELEASE

ARRAYS

stored into a thin string (the string is automatically
fattened), but it is more efficient to allocate it fat in
the first place if it is known in advance that fat
characters will be used.

:displaced-to-base pointer

pointer is a bare pointer or memory address. Allows
you to displace an array directly to a memory storage
block {like the screen bit map}. Should usually be used
with : read-only-p t to prevent unintended
changes to the original storage block.

adjust-array looks like (XCL extensions are in
bold):

adjust-array array new-dimensions &key :element-type [Function]

Interpretation of adjust-array

: initial-element
:initial-contents
: fill-pointer
:displaced-to
:displaced-index-offset
:fatp
:displaced-to-base

Common Lisp: the Language is obscure on exactly
what adjust-array does. Caref~1 readiAg and
discussions with Common Lisp implementors outside
Xerox has led to the following interpretation.

The adjust-array function encounters three basic
cases. These are listed in order of precedence, highest
to lowest:

• Change size

The array's total number of elements grows or
shrinks and is copied to a new block of storage that
the array is :displaced-to.

• New displacement

If a displacement is provided, none of the original
array contents appear in the resulting array.

• Undisplace an array

If the original array was displaced to another array,
then the original contents of the array disappear
(since they are owned by the other array), and new
storage of the appropriate size is created.

XEROX COM.MON LISP IMPLEMENTATION NOTES,LYRIC RELEASE 49

ARRAYS

Interpretation of Standard &key Arguments to adjust-array

: element-type type-specifier

Does not change the type of elements in the array.
Rather, it signals an error if the array could not hold
elements of this type.

: initial-element object

Causes the newly adjusted array to have this element
in all positions not otherwise filled.

: fill-pointer integer-or-t

The array being adjusted must be one-dimensional
and have a fill pointer. If the value is t the fill pointer
is set to the length of the vector, otherwise it must be
an integer between zero and the size of the vector,
inclusive.

: i ni t ial-con ten t s nested-sequences

Causes the newly adjusted array to have this as its
contents.

:displaced-to array

Causes the adjusted array to be a displaced array, one
whose storage is shared with the given array.

:displaced-index-offsetinteger

Is a positive integer specifying the linear offset from
the beginning of the "displaced to" array's elements,
where this array will begin its addressing.

An Extension to Common lisp-The Array Inspector

Inspecting Arrays

50

Xerox Common Lisp provides you with a way to
examine the contents of arrays-the Array Inspector.

For example if you define an array a as follows:

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

(setq a (make-array '(4 2 3) :initial-contents
'«(a b c) (1 2 3»
«d e f) (3 1 2»
«g h i) (2 3 1»
«j k 1) (0 0 0»»

ARRAYS

You can call the array inspector, with inspect a, to
examine the contents of the array. The array
inspector has two windows: a header information
window and a content display window attached on
the left. These two windows work in conjuction to
display a slice of an array.

display contents window

t
, . , , . , , , - . . - - e_j(1

0 1 2 ISHowl I APPlYI
A B e 0 E 1 ement-t~Jpe : T
1 2 1 .:- Rank. : 3

o i Dlens i on: B 1 2
Le·· ... eh: 4 2 3

ShO'.m: ~ IAlL! IAlL!

header information window

The header information window displays the element
type, total size, rank, and dimensionality of the array
and controls which slice of the array's contents is
shown in the contents display window. An array slice
is determined by a set of restrictions on all the
dimensions of the array. Selecting SHOW will display,
in the header information window, the set of
restrictions that describe' the array slice being
displayed in the contents window.

The restriction can be ALL (meaning "show every
element of that dimension"), or some integer less
than the value of that dimension of the array. If you
want to change the slice being displayed you must
change the restrictions that define which slice is
displayed. To do this, move the cursor into one of the
boxes on the line labeled "Shown:" and press the left
mouse button. A small menu will pop up with the
choices available for that dimension. For dimension 0

ALL
o
1
.-,
.::.

In the example above this menu looks like: :3

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 51

ARRAYS

52

Select the new value for that dimension then, if you
wish, you may change the values for the other
dimensions in the same way.

After you have changed the restrictions for the
dimensions selecting APPLY will cause the newly
defined array slice to be displayed in the contents
display window.

Imagining the three-dimensional array to be a series
of planes, rows and columns, the above inspector
shows a slice of the array created in the example
above. To get this slice you would APPLY the
restrictions:

plane

rows

columns

(dimension 0) set to 0

(dimension 1) set to ALL

(dimension 2) set to ALL

The contents display window is capable of showing
either a two- or one- or zero-dimensional slice of an
array. The window is scrollable. A particular datum in
the contents display may be selected with the left
mouse button. After you select the datum, pressing
the middle button in the contents display will pop up
a menu that looks like:

Inspect
Set
Indices
IT Selection

This menu allows you to Inspect the datum, display
the indices of the datum (in the box attached to the
bottom of the header information window), set this
position's value, or bind il: it to the selected datum.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

STRUCTURES

CHAPTER 19 STRUCTURES

19.1. Introduction to Structures

19.4. Defstruct Slot-Options

9.5. Defstruct Options

Empty structures {those with no slots} are supported.

Common Lisp: the Language explicitly states that
accessors, constructors, etc. are added to the current
package, not the package containing the name of the
structure. Xerox Common Lisp follows this standard.
Also, accessors, constructors, etc., are defined as inline
functions. If you don't want this behavior, Xerox
Common Lisp provides an extension to the language
that allows (: inline nil) in the argument list.

:type

No type-checking is done on typed slots when the
slots contents are replaced.

The default structure type is unspecified in Common
Lisp: the Language. Xerox Common Lisp uses the
system datatype facilities and its microcode support.

:conc-name

While it is not made explicitly legal Common Lisp: The
Language suggests that conc-names can be strings.
Xerox Common Lisp supports that interpretation.

:print-function

In Xerox Common Lisp print functions are inherited.
You can override this by specifying a print-function of
nil for the subtype.

: include

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 53

STRUCTURES

Xerox Common Lisp does check for the incorrect use
of access functions, by checking the type of the
argument. Moreover, slot descriptions that are
specified using: include are type-checked to ensure
that the "shadowed" slot is a supertype of the new
slot type. This is done in such a way that the resulting
error is continuable, so that the user can disagree with
subtypep.

An error is signaled if you "shadow" a slot name other
than by using the ~ include option. For instance,

(defstruct super a)

(defstruct (sub (:include super» (a 3) b)

is not legal, but the following is:

(defstruct (sub (:include super (a 3» b)

Non-Standard Options

54

Our version of defstruct accepts a non-standard
option, the : inline option, with the following
syntax:

(: inline categories)

categories can be any of the following:

nil don't make optimizers for any defstruct-generated
functions

t make optimizers for the default set of categories,
(:accessor :predicate)

a list should contain only items from the following:

:accessor

:copier

:predicate

:boa-constructor

:constructor

and means to make optimizers for just the set of
defstruct-generated functions in the categories
given.

The default is t, or the list (:accessor
:predicate).

XEROX COMMON LISP IMPLEMENTATiON NOTES, LYRIC RELEASE

STRUCTURES

xcl:*print-structure* [Variable]

Structures of types without a user-specified
:print-function normally print using the tfS
syntax described in Common Lisp, the Language. For
example, a structure of type foo with slots a and b
would print as follows:

tfS(foo a nil b nil)

It is sometimes desirable, especially for structures with
a large number of slots or with slot names in another
package, to be able to use a more concise printing
syntax, such as the following:

tf<foo @ 52,14306>

In Xerox Lisp, the variable xcI: _*print-structure*
provides this flexibility. If xcI: *pr int-structure*
is non-nil, structures of types without a
user-specified :print-function will print using the
tfS syntax. Otherwise, those structures print using the
more concise syntax shown above.

Note that xcI: *pr int-structure* is normally only
examined by the default :pr int-function, though,
of course, users writing their own
:print-functions may choose also to assign some
similar semantics to it.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 55

STRUCTURES

[This page intentionally left blank]

56 XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

STREAMS

CHAPTER 21 STREAMS

Xerox Lisp Extensions

Predicates

Accessors

The following functions have heen added to Xerox
(ammon Lisp.

xcl:synonym-stream-p stream [Function]

Returns t if stream is a synonym stream.

xcl:broadcast-stream-p stream [Function]

Returns t if stream is a broadcast stream.

xcI: concatenated-stream-p stream [Function]

Returns t if stream is a concatenated stream.

xcI: two-way-stream-p stream [Function]

Returns t if stream is a two-way stream.

xcI: echo-stream-p stream [Function]

Returns t if stream is an echo stream.

xcI :open-stream-p stream [Function]

Returns t if stream is an open stream.

xcI: synonym-stream-symbol stream [Function]

Returns the symbol for which stream is a synonym
stream.

xcI: broadcast-stream-streams stream [Function]

Returns the streams (if any) that the broadcast stream
stream broadcasts to.

xcI :concatenated-stream-streams stream [Fun ction 1
If stream is a concatenated stream, returns its
remaining input streams.

XEROX COMMON LISP IMPLEMENTATION NOTES, lYRIC RELEASE 57

STREAMS

Ambiguities

Cautions

58

xcI: two-way-stream-input-st ream stream [Function]

Returns the two-way stream stream's input side.

xcl: two-way-stream-output-st ream stream [Function]

Returns the two-way stream stream's output side.

xcl: echo-stream-input-stream stream [Function]

Returns the echo stream stream's input side.

xcl: echo-stream-output-stream stream [Function]

Returns the echo stream stream's output side.

close specifies that the : abor t option attempts to
clean things up, to whatever extent is possible. In
XCl, if the stream was open for output to a file, the
file is deleted.

close of a synonym or broadcast stream has no effect
on the underlying stream(s).

streamp returns its argument rather than t.

If you pass a string containing fat NS characters to
make-string-input-stream, the value of
file-position for the stream will be wrong (off by
a factor of 2). Similarly, if you read from a fat string
using with-input-from-str ing with the: index
option, the index variable will be off by a factor of 2.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

Ambiguities

Section 22.1.3. Macro Characters

Cautions

INPUT/OUTPUT

CHAPTER 22 INPUT/OUTPUT

The reader. interprets the "potential number" of the
form <octal digits>Q as an octal integer (same as
#o<octal digits», for compatibility with Interlisp. A
potential number that is entirely numeric digits but
illegal (e.g., "89" when *read-base* is 8) signals an
error. All other potential numbers are taken to be
symbols, without signalling an error.

The back-quote facility does not go to any trouble to
create fresh list-structures unless it is necessary to do
so. Thus, for example,

'(123)

is equivalent to

I (1 2 3)

not

(list 1 2 3)

Users needing to avoid sharing structure should use
explicit calls to list or copy-tree.

In this release, comma does not signal an error if used
outside a backquote expression.

Section 22.1.4. Standard Dispatching Macro Character Syntax

. ,

In f+ and #- reader macros, the default package of
symbols in the features expression is keyword. You
can, of course, override the default by explicitly
specifying package prefixes .

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 59

INPUT/OUTPUT

Section 22.1.6. What the Print Function Produces

Cautions

print-circle [Variable]

pr int-circle cannot be used to print large data
structures containing more than 32K pointers.

Section 22.3.1. Output to Character Streams

finish-output is equivalent to force-output for
some kinds of network stream (it merely empties the
stream's buffers, without assuring secure arrival at its
destination).

clear-output is a no-op.

Section 22.3.3 . Formatted Output to Character Streams

Cautions

60

The method to be used to distribute justification pad
characters in the ~ < format directive is not defined.
XCL uses a random distribution function. Note that
this makes text look good, but any tables that happen
to be justified will not line up.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

Ambiguities

Additional Features/Improvements

Limitations

FILE SYSTEM INTERFACE

CHAPTER 23
FILE SYSTEM INTERFACE

load and compile-file require that Common Lisp
plain text files, which must begin with a semi-colon to
distinguish themselves from Interlisp source files. Plain
text files are to be read in the package user (but see
: package keyword below).

Namestring is defined to be of the form:

{HOST}DEVICE:<DIR>SUBDIR>SUBDIR>NAME.EXT;
VERSION

The default value of *load-verbose* is t, meaning
the file name and possibly other information is
printed when the file is loaded.

load accepts an additional keyword, : package,
whose value must be a package. load binds
package to this value while reading the file. In the
case of files produced by the Xerox Lisp File Manager,
the value overrides the package specified in the file's
makefile environment.

:wild is defined to be the same as a * in a
namestring.

The following optional values have been
implemented for version numbers: :oldest. No
other keywords are allowed out of the list shown in
Steele's Common Lisp: the Language.

load makes no attempt to fill in default extensions on
files.

XCL only supports 8-bit files. open accepts as values
for the : element-type keyword only the following
values :string-char, character, :default, and
unsigned-byte. The first three are all equivalent
and produce files of type "text", while
unsigned-byte produces a file oftype "binary".

XEROX COMMON L!SP IMPLEMENTATION NOTES, LYRIC RELEASE 61

FILE SYSTEM INTERFACE

[This page intentionally left blank]

62 XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

ERROR SYSTEM

CHAPTER 24 ERROR SYSTEM

This chapter replaces most of Chapter 24, Errors, of
Common Lisp, the Language.

The Xerox Common Lisp error system is based on
proposal number 8 for the Common Lisp error system.
Deviations from this proposal are noted. In particular,
proceeding and proceed functions are more like those
in an earlier proposal. Since the Common Lisp error
system has not yet been standardized, this system may
change in future releases to accommodate the final
version ofthe Common Lisp error system.

Introduction to Error System Terminology

condition A condition is a kind of object which is created when
an exceptional situation arises in order to represent
the relevant features of that situation.

signal, handlers Once a condition is created, it is common to signal it.
When a condition is signaled, a set of handlers are
tried in some pre-defined order until one decides to
handle the condition or until no more handlers are
found. A condition is said to have been handled if a
handler performs a non-local transfer of control to
exit the signalling process.

proceed Although such transfers of control may be done
directly using traditional Lisp mechanisms such as
catch and throw, block and return, or tagbody
and go, the condition system also provides a more
structured way to proceed from a condition. Among
other things, the use of these structured primitives for
proceeding allow a better and more integrated
relationship between the user program and the
interactive debugger.

serious conditions It is not necessary that all conditions be handled.
Some conditions are trivial enough that a failure to
handle them may be disregarded. Others, which we

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 63

ERROR SYSTEM

will call serious conditions must be handled in order
to assure correct program behavior. If a serious
condition is signalled but no handler is found, the
debugger will be entered so that the user may
interactively specify how to proceed.

errors Serious conditions which result from incorrect
programs or data are called errors. Not all serious
conditions are errors; however. Storage conditions are
examples of serious conditions that are not errors. For
example, the control stack may legitimately overflow
without a program being in error. Even though a
stack overflow is not necessarily a program error, it is
serious enough to warrant entry to the debugger if
the condition goes unhandled.

Some types of conditions are predefined by the
system. All types of conditions are subtypes of
xcI: condi t ion. That is,

(typep c 'xcl:condition)

is true if c is a condition.

creating conditions The only standard way to define a new condition type
is xcI :define-condi tion. The only standard way
to instantiate a condition is xcI :rnake-condi tion.

When a condition object is created, the most common
operation to be performed upon it is to signal it
(although there may be applications in which this
does not happen, or does not happen immediately).

When a condition is signaled, the system tries to
locate the most appropriate handler for the condition
and invoke that handler. Handlers are located
according to the following rules:

bound • Check for locally defined (ie, bound) handlers .

• If no appropriate bound handler is found, check
first for the default handler of the signalled type
and then of each of its superiors.

decline If an appropriate handler is found, the handler may
decline by simply returning without performing a
non-local transfer of control. In such cases, the search
for an appropriate ha"ndler is picked up where it left
off, as if the called handler had never been present.
When a handler is running, the "handler binding
stack" is popped back to just below the binding that
caused that handler to be invoked. This is done to

64 XEROX COMON LISP IMPLEMENTATION NOTE, LYRIC RELEASE

ERROR SYSTEM

avoid infinite recursion in the case that a handler also
signals a condition.

xcI: handler-bind When a condition is signaled, handlers are searched
for in the dynamic environment of the signaller.
Handlers can be established within a dynamic context
by use of xcI: handler-bind.

handler A handler is a function of one argument, the
condition to be handled. The handler may inspect the
object (using primitives described in another section)
to be sure it is interested in handling the condition.
After inspecting the condition, the handler must take
one ofthe following actions:

• It may decline to handle the condition, by simply
returning. When this happened, the returned
values are ignored and the effect is the same as if
the handler had been invisible to the mechanism
seeking to find a handler. The next handler in line
will be tried, or if no such handler exists, the default
action for the given condition will be taken. A
default handler may also decline, in which case the
condition will go unhandled. What happens then
depends on which function was used to signal the
condition (xcI: signal, error, cerror, warn).

• It may perform some non-local transfer of control
using go, return, throw, abort, or
xcl:invoke-proceed-case.

• It may signal another condition.

• It may invoke the interactive debugger.

xcI: proceed-case When a condition is signaled, a facility is available for
use by handlers to non-locally transfer control to an
outer dynamic contour of the program. The form
which creates contours that may be returned to is
called xcI: proceed-case. Each contour is set up by
an xcI: proceed-case clause, and is called a proceed
case. The function that transfers control to a proceed
case is called xcI: invoke-proceed-case.

proceed function Also, control may be transferred along with
parameters to a named xcI: proceed-case clause by
invoking a proceed function of that name.

Proceed functions are created with the macro
xcl:define-proceed-function.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 65

ERROR SYSTEM

proceed type A proceed case with a particular name, or a particular
set of proceed cases that share an interface defined by
a proceed function, are sometimes called a proceed
type.

report In some cases, it may be useful to report a condition or
a proceed case to a user or a log file of some sort.
When the printer is invoked on a condition or proceed
case and *print-escape* is nil, the report function
for that object is invoked. In particular, this means
that an expression like

(prine condition)

will invoke condi tion's report function. Because of
this, no special function is provided for invoking the
report function of a condition or a proceed case.

Program Interface to the Condition System

Defining and Creating Conditions

66

xcl:define-condition name parent-type
{keyword value}*
{slots}*

[Macro]

Defines a new condition type with the given name,
making it a subtype of the given parent-type.

Except as otherwise noted, the arguments are not
evaluated.

The valid keyword/value pairs are:

: cone-name symbol-or-string

As in defstruct, this sets up automatic prefixing
of the names of slot accessors. Also as in
defstruct if no prefix is specified the default
behavior for automatic prefixing is to use the
name of the new type followed by a hyphen.

: report-function expression

expression should be a suitable argument to the
function special form, e.g., a symbol or a
lambda expression. It designates a function of
two arguments, a condition and a stream, which
prints the condition to the stream when
pr int-escape is nil.

XEROX COMaN LISP IMPLEMENTATION NOTE, LYRIC RELEASE

ERROR SYSTEM

The: report-function describes the condition
in a human-sensible form. This item is somewhat
different than a structure's :pr int-function in
that it is only used if *pr int-escape* is nil.

:report form

A short form of: report-function to cover two
common cases.

If form is a constant string, this is the same as

: report-function
(lambda (ignore stream)

(write-string form stream»

Otherwise, this is the same as

: report-function
(lambda (condition

standard-output)
form)

In the latter case, the form describes how to print
objects of the type being defined. The form
should do output to standard output. The
condition being printed will be the value of the
variable condition (the symbol condition in
this usage is in the same package as the name of
the new condition type). The condition's slots are
accessible as simple variables within the report
form.

: handler-function expression

expression should be a suitable argument to the
function special form. It designates a function
of one argument, a condition, which may handle
that condition if no dynamically-bound handler
did.

: handle form

An expression to be used as the body of a default
handler for this condition type. While executing
form, the variable condition will be bound to
the condition being handled (as with : repor t
above, the symbol condi tion in this usage is in
the same package as the name of the new
condition type). That is, this defines a function

(lambda (condition)
form)

as the default handler for that type.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 67

ERROR SYSTEM

68

It is an error to specify both: report-function and
: report in the same xcI :define-condition form.
It is also an error to specify both
: handler-function and : handle. If neither
: report-function nor : report is specified,
information about how to print this type of condition
will be inherited from the parent-type. If neither
:handler-function nor :handle was specified,
there will be no default handler for the new condition
type.

slots is a list of slot-descriptions, and specifies slots to
be used by the given type. In addition to those
specified, the slots of the parent-type are also
available. A slot-description is exactly the same as for
defstruct except that no slot-options are allowed,
only an optional default-value expression. Condition
objects are immutable, i.e., all of their slots are
declared to be : read-only.

xcl:make-condition will accept keywords with the
same name as any of the slots, and will initialize the
corresponding slots in conditions it creates.

Accessors are created according to the same rules as
used by defstruct. For example:

(xcl:define-condition bad-food-color food-Iossage
:report (format t "The food -A was -A"

food
color)

food color)

defines an error of type bad-food-color which
inherits from the food-lossage condition type. The
new type has slots food and color so that
xcI :make-condi tion will accept : food and
: color keywords and accessors
bad-food-color-food and
bad-food-color-color will apply to objects of this
type.

The report function for a condition will be implicitly
called any time a condition is printed with
"'print-escape'" being nil. Hence,

(prine condition)
is a way to invoke the condition's report function.

Here are some examples of defining condition types.
This form defines a condition called machine-error
which inherits from error:

XEROX COMON LISP IMPLEMENTATION NOTE, LYRIC RELEASE

ERROR SYSTEM

(xcl:define-condition machine-error error
:report (format t

"There is a problem with -A."
machine-name)

machine-name)

The following defines a new error condition (a
subtype of machine-error) for use when machines
are not available:

(xcl:define-condition machine-not-available-error
machine-error

:report (format t
"The machine -A is not available."
machine-name)

machine-name)

The following defines a still more specific condition,
built upon machine-not-available-er ror, which
provides a default for machine-name but which does
not provide any new slots:

(xcl:define-condition
my-favorite-machine-not-available-error
machine-not-available-error

(machine-name "Tesuji:AISDev:Xerox"»

This gives the machine-name slot a default
initialization. Since no : report clause was given, the
information supplied in the definition of
machine-not-available-error will be used if a
condition of this type is printed while
*print-escape*isnil.

xcl:condition-reporter type [Macro]

Returns the object used to report conditions of the
given type. This will be either a string, a function of
two arguments (condition and stream) or nil if the
report function is inherited. setf may be used with
this form to change the report function for a
condition type.

xcl:condition-handler rype [Macro]

Returns the default handler for conditions of the
given type. This will be a function of one argument or
nil if the default handler for that type is inherited.
setf may be used with this form to change the
default handler for a condition type.

xci: make-condit i on type & res t slot-initializations [Function]

Calls the appropriate constructor function for the
given type, passing along the given slot initializations

XEROX COMMON LISP IMPLEMENTAT!ON NOTES, L YR!C RELE.ASE 69

ERROR SYSTEM

to the constructor, and returning an instantiated
condition.

The slot-initializations are given in alternating
keyword/value pairs. eg,

(xcl:make-condition 'bad-food-color
:food my-food
:color my-color)

This function is provided mainly for writing
subroutines that manufacture a condition to be
signaled. Since all of the condition-signalling
functions can take a type and s/ot-initializations, it is
usually easier to call them directly.

Signalling Conditions

70

xcl:*current-condition* [Variable]

This variable is bound by condition-signalling forms
(xcl:signal, error, cerror, and warn) to the
condition being signaled. This is especially useful in
proceed case filters. The top-level value of
xcl:*current-condition*isnil.

xcI: signal datum &rest arguments [Function]

Invokes the signal facility on a condition. If the
condition is not handled, xcI: signal returns the
condition object that was signaled.

If datum is a condition then that condition is used
directly. In this case, it is an error for xcI :arguments
to be non-nil.

If datum is a condition type, then the condition used is
the result of doing

(apply f'xcl:make-condition
datum arguments)

If datum is a string, then the condition used is the
result of doing

(xcl:make-condition
'xcl:simple-condition
: format-str ing datum
: format-arguments arguments).

If the condition is of type xcI: ser ious-condi tion,
then xcl:signal will behave exactly like error, i.e.,
it will call xcI: debug if the condition isn't handled,
and will never return to its caller.

error datum &rest arguments [Function]

XEROX COMON LISP IMPLEMENTATION NOTE, LYRIC RELEASE

ERROR SYSTEM

Like xcI: signal except if the condition is not
handled, the debugger is called with the given
condition, and error never returns.

datum is treated as in xcI: signal. If datum is a
string, a conditon of type xcI: simple-error is
made. This form is compatible with that described in
Steele's Common Lisp, the Language.

cerror proceed-format-string datum &rest arguments [Function]

Like error, if the condition is not handled the
debugger is called with the given condition.
However, cerror enables the proceed type
xcI: proceed, which will simply return the condition
being signalled from cerror.

cerror is used to signal continuable errors. Like
error, it signals an error and enters the debugger.
However, cerror allows the program to be
continued from the debugger after resolving the
error.

datum is treated as in error. If datum is a condition,
then that condition is used directly. In this case,
arguments will be used only with the
proceed-format-string and will not be used to
initialize datum .

. The proceed-format-string must be a string. Note that
if datum is not a string, then the format arguments
used by the proceed-format-string will still be the
arguments (in the keyword format as specified). In
this case, some care may be necessary to set up the
proceed-format-string correctly. The format directive
-* may be particularly useful in this situation.

The value returned by cerror is the condition which
was signaled.

See Steele's Common Lisp, the Language, page 430 for
examples of the use of cerror.

warn datum &rest arguments [Function]

Invokes the signal facility on a condition. If the
condition is not handled, then the text of the warning
is output to *error-output*. If the variable
*break-on-warnings * is true, then in addition to
printing the warning, the debugger is entered using
the function break. The value returned by warn is the
condition that was signaled.

XEROX COMMON LISP IMPLEMEN I A liON NO I ES, LYRIC RELEASE 71

ERROR SYSTEM

datum the same as for signal except that if datum is a
string, a condition of type xcI: simple-warning is
made.

The eventual condition type resulting from datum
must be a subtype of xcI :warning.

break-on-warnings

check-type

[Variable]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

ecase

ccase

etypecase

ctypecase

assert

All of the above behave as described in Common Lisp:
the Language. The default clauses of ecase and
ccase forms signal xcI: simple-error conditions.
The default clauses of etypecase and ctypecase
forms signal xcI: type-mismatch conditions.
assert signals the xcI: assertion-failed
condition. ccase and ctypecase set up a
xcI: store-value proceed case.

Handling Conditions

72

xcl:handler-bind bindings &rest forms [Macro]

Executes the forms in a dynamic context where the
given local handler bindings are in effect. The
bindings must take the form (type handler). The
handlers are bound in the order they are given, i.e.,
when searching for a handler, the error system will
consider the leftmost binding in a particular
xcI: handler-bind form first.

type may be the name of a condition type or a list of
condition types.

handler should evaluate to a function of one
argument, a condition, to be used to handle a
signalled condition during execution of the forms.

An example of the use of xcI: handler-bind
appears at the end of the xcI: proceed-case macro
description.

xcl:condition-case form &rest cases [Macro]

Executes the given form. Each case has the form

XEROX COMON LISP IMPLEMENTATION NOTE, LYRIC RELEASE

ERROR SYSTEM

(type ([var]) • body)

If a condition is signalled (and not handled by an
intervening handler) during the execution of the
form, and there is an appropriate clause-i.e., one for
which

(typep condition I type)

is true-then control is transferred to the body of the
relevant clause, binding var, if present, to the
condition that was signaled. If no condition is
signaled, then the values resulting from the form are
returned by the xcl: condi tion-case. If the
condition is not needed, var may be omitted.

Earlier clauses will be considered first by the error
system. I.e.,

(xcl:condition-case form
«(ond1 •••)
«(ond2 •••))

is equivalent to
(xcl:condition-case

(xcl:condition-case form
«(ond1 ••• »

(cond2 ••• »

type may also be a list of types, in which case it will
catch conditions of any of the specified types.

Examples:

(xcl:condition-case (/ x y)
(division-by-zero () nil»

(xcl:condition-case (open *the-file*
:direction :input)

(file-error (condition)
(format t II-&Open failed: -A-%" condition»)

{xcl:condition-case (some-user-function)
(file-error (condition) condition)
(division-by-zero () 0)
«xcl:unbound-variable xcl:undefined-function) ()

I unbound»

Note the difference between xcl: condi tion-case
and xcl:handler-bind. In xcl:handler-bind,
you are specifying functions that will be called in the
dynamic context of the condition-signalling form. In
xcl: condition-case, you are specifying
continuations to be used instead of the original form
if a condition of a particular type is signaled. These

XEROX COMMON LISP IMPLEMENTATION NOTES, LYR!C RELEASE 73

ERROR SYSTEM

74

continuations will be executed in the same dynamic
context as the original form.

xcl:ignore-errors &body forms [Macro]

Executes the forms in a context that handles errors of
type error by returning control to this form. If no
error is signaled, all values returned by the last form
are returned by xcI: ignore-errors. Otherwise,
the form returns nil and the condition that was
signaled. Synonym for

(xcl:condition-case (progn. forms)
(error (condition)

(values nil condition».

xcl:debug &optional datum &rest arguments [Function]

Enters the debugger with a given condition without
signalling that condition. When the debugger is
entered, it will announce the condition by invoking
the condition's report function.

datum is treated the same as for xcI :signal except
if datum is not specified, it defaults to "Call to
DEBUG".

This function will never directly return to its caller.
Return can occur only by a spetial transfer of control,
such as to a catch, block, tagbody,
xcI :proceed-case or xcI: catch-abor t.

break &optional datum &rest arguments [Function]

Like xcI :debug except sets up a proceed case like
cerror.

If datum is not specified, it defaults to "Break ".

If the break is proceeded, the value returned is the
condition that was used.

break is approximately:

(defun break (&optional (datum "Break")
&rest arguments)

(xcl:proceed-case (apply #'xcl:debug datum
arguments)

(xcl:proceed (condition)
. : report "Return from BREAK."
condition)))

XEROX COMON LISP IMPLEMENTATION NOTE, LYRIC RELEASE

ERROR SYSTEM

Proceed Cases

xcI :proceed-case form &rest clauses [Macro]

The form is evaluated in a dynamic context where the
clauses have special meanings as points to which
control may be transferred. If form runs to
completion, all values returned by the form are simply
returned by the xcI :proceed-case form. On the
other hand, the computation of forms may choose to
transfer control to one of the proceed case clauses. If
a transfer to a clause occurs, the forms in the body of
that clause will be evaluated in the same dynamic
context as the xcI: proceed-case form, and any
values returned by the last such form will be returned
bythexcl:proceed-case form.

A proceed case clause has the form:

(proceed-function-name arglist {keyword value}* {body-form}*)

The proceed-function-name may be nil or any
symbol, usually the name of a defined proceed
function. xcI :define-proceed-function will be
described later.

The arglist is a list of optional argument specifications
that will be bound and ,evaluated in the dynamic
context of the xcI: proceed-case form. They will
use whatever values were provided by
xcl:invoke-proceed-case.

The valid keyword/value pairs are:

:filter-function expression

expression should be suitable as an argument to the
function special form. It defines a predicate of no
arguments that determines if this clause is visible to
xcl:find-proceed-function.

: filter form

A shorthand form of :filter-function that is
equivalent to

:filter-function (lambda () form)

:condition type

Shorthand for the common special case of
: filter. The following two key/value pairs are
equivalent:

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 75

ERROR SYSTEM

76

:condition foo

:filter
(lambda ()

(typep xcl:*current-condition*
, foo))

: report-function expression

The expression must be an appropriate argument to
the function special form, and should designate a
function of two arguments, a proceed case and a
stream, that writes to the stream a summary of the
action that this proceed case will take if invoked ..

: report form

This is a shorthand for two important special cases
of : report-function. If form is a constant string,
then this is the same as:

: report-function
(lambda (ignore stream)

(wr ite-str ing form stream»

Otherwise, this is the same as
:report-function

(lambda (xcl:proceed-case
standard-output)

form)

In the latter case, form must do output to
standard-output, summarizing the action that
this proceed case will take if invoked. The
proceed-case will be bound to the variable
xcl:proceed-case.

Only one of :condition, :filter or
: filter-function may be specified. Only one of
: report or : report-function may be specified.

If a named proceed function has a default filter and
the proceed case specifies a filter, then the
information supplied in the proceed case takes
precedence. Similarly, if : report or
: report-function is specified in the proceed case,
then only that information is considered, and any
: report or : report-function specified as a
default for the named proceed function is not used.

If a named proceed function is used but no report
information is supplied, the name of the proceed
function is used to generate the default help
information. It is an error if no named proceed case is

XEROX COMON LISP IMPLEMENTATION NOTE, LYRIC RELEASE

ERROR SYSTEM

used and no report information is provided; this
means that you must always have a way of describing
to the user how to proceed. If you don't specify report
methods, make sure that the name of the proceed
type is something sensible.

When *pr int-escape* is nil, the printer will use
the report information for a proceed case.

Examples:

(xcl:proceed-case (a-random-computation)
(new-function (new-function)

(setq function new-function»)

(xcl:proceed-case (a-random-computation)
(nil «new-function (read-typed-object

'function
"Function: "»)

:report "Use a different function."
:condition undefined-function

(setq function new-function»)

(xcl:proceed-case (a-command-loop)
(return-from-command-level ()

:report

nil))

(loop

(format t
"Return from command level -D."
level)

(xcl:proceed-case (another-computation)
(xcl:proceed (»»

Assuming that new-function is defined as a proceed
function with defaults:

:report "Use a different function."
:condition xcl:undefined-function

then the first and second examples are equivalent
from the point of view of someone using the
interactive debugger, but differ in one important
aspect for non-interactive handling. If a handler
"knows about n proceed function names, as in:

(when (xcl:find-proceed-case 'new-function
condition)

(new-function condition the-replacement»
then only the first example, and not the second, will
have control transferred to its correction clause.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 77

ERROR SYSTEM

78

Here's a more complete example:

(let «my-food 'milk)
(my-color 'greenish-blue»

(do ()
«not (bad-food-color-p food

color»)
(xcl:proceed-case (error 'bad-food-color

:food my-food
:color my-color)

(use-food (new-food)
(setf my-food new-food»

(use-color (new-color)
(setf my-color new-color»»

II We won't get to here until my-food
II and my-color are compatible.
(list my-food my-color»

A handler can then proceed the error in either of two
ways. It may correct the color or correct the food. For
example:

or

#' (lambda (condition) •..
;; Corrects color
(use-color 'whi te) •..)

#'(lambda (condition) ••.
;; Corrects food
(use-food 'cheese) .•.)

Here is an example using xcl: handler-bind and
xcl:proceed-case.

(xcl:handler-bind «foo-error
#'(lambda (condition)

(xcl:use-value 7»»
(xcl:proceed-case (error 'foo-error)

(xcl:use-value (x) (* x x»»

The above form returns 49.

xcl:define-proceed-function name
{keyword value}*
{ variable}*

[Macro]

Valid keyword/value pairs are the same as those which
are defined for the xcl: proceed-case special form.
That is, :filter, :filter-function, :condition,
: report, and : report-function. The filter and
report functions specified in a
xcl :def ine-proceed-function form will be used
for xcl: proceed-case clauses with the same name
that do not specify their own filter or report
functions, respectively.

XEROX COMON LISP IMPLEMENTATION NOTE, LYRIC RELEASE

ERROR SYSTEM

This form defines a function called name which will
invoke a proceed case with the same name. The
proceed function takes optional arguments which are
given by the variables specification. The parameter list
for the proceed function will look like

(&optional . variables)

The only thing that a proceed function really does is
collect values to be passed on to a proceed case clause.

Each element of variables has the form variable-name
or (variable-name initial-value). If initial-value is not
supplied, it defaults to nil.

For example, here are some possible proceed
functions which might be useful in conjunction with
the bad-food-color error we used as an example
earlier:

(xcl:define-proceed-function use-food
:report "Use another food."

(food (read-typed-object 'food
"Food to use instead: H»~)

(xcl:define-proceed-function use-color
:report "Change the food's color."

(color
(read-typed-object 'food

"Color to make the food: H»~)

(defun maybe-use-water (condition)
;; A sample handler
(when (eq (bad-food-color-food condition)

'milk)
(use-food 'water»)

(xcl:handler-bind «bad-food-color
,'maybe-use-water» ...)

If a named proceed function is invoked in a context in
which there is no active proceed case by that name,
the proceed function simply returns nil. So, for
example, in each of the following pairs of handlers,
the first is equivalent to the second but less efficient:

,'(lambda (condition) ; OK, but slow
(when (xcl:find-proceed-case 'use-food)

(use-food 'milk»)
#' (lambda (condition) Preferred

(use-food 'milk»

"(lambda (condition)

XEROX COMMON LISP IMPLEMENTATION NOTES. LYRIC RELEASE 79

ERROR SYSTEM

80

(cond ((xcl:find-proceed-case 'use-food)
(use-food 'chocolate»

((xcl:find-proceed-case 'use-color)
(use-color 'orange»»

#'(lambda (condition)
(use-food 'chocolate)
(use-color 'orange»

xcl:compute-proceed-cases [Function]

Uses the dynamic state of the program to compute a
I ist of proceed cases.

Each proceed case object represents a point in the
current dynamic state of the program to which
control may be transferred. The only operations that
Xerox Lisp defines for such objects are

xcl:proceed-case-name,
xcl:find-proceed-case,
xcl:invoke-proceed-case,
prine, and
print,

the identification of an object as a proceed case using
(typep x 'proceed-case), and standard Lisp
operations that work for all objects, such as eq, eql,
descr ibe, etc.

The list which results from a call to
xcI: compute-proceed-cases is ordered so that
the innermost (ie, more-recently established) proceed
cases are nearer the head of the list.

Note also that xcI: compute-proceed-cases
returns all valid proceed cases, even if some of them
have the same name as others and therefore would
not be found by xcI: f ind-proceed-case.

xcI: proceed-ease-name proceed-case [Function]

Returns the name of the given proceed-case, or nil if
it is not named.

xcI: defaul t -proceed-tes t proceed-ease-name [Macro]

Returns the default filter function for proceed cases
with the given proceed-ease-name. May be used with
setf to change it.

xcI: defaul t-proceed-report proceed-ease-name [Macro]

Returns the default report function for proceed cases
with the given proceed-ease-name. This may be a

XEROX COMON LISP IMPLEMENTATION NOTE, LYRIC RELEASE

ERROR SYSTEM

string or a function just as for condition types. May
be used with setf to change it.

xcl:find-proceed-case name [Function]

Searches for a proceed case by the given name which
is in the current dynamic contour. This is determined
by calling the proceed case's filter function.

If name is a proceed function name, then the
innermost (ie, most recently established) proceed case
with that function name that is active is returned. nil
is returned if no such proceed case is found.

If name is a proceed case object, then it is simply
returned unless it is not currently valid for use. In that
case, nil is returned.

xcI: invoke-proceed-case proceed-case &rest values [Function]

Transfers control to the given proceed-case, passing it
the given values. The proceed-case must be a proceed
case object or the name of a proceed case which is
valid in the current dynamic context. If the argument
is not valid, the error xcI: bad-proceed-case will
be signaled. If the argument is a named proceed case
that has a corresponding proceed function,
xcI: invoke-proceed-case will do the optional
argument resolution specified by that function before
transferring control to the proceed case.

xcI: catch-abort print-form &body forms [Macro]

Sets up a proceed case named xcI: abor t.

If no call to the proceed function xcI: abor t is made
while executing forms and they return normally, all
values returned by the last form in forms are returned.
If an xcl:abort transfers control to this
xcI: catch-abort, two values are returned: nil and
the condition that was given to xcI: abort (or nil if
none was given).

xcI :catch-abort could be defined by:

(defmacro xcl:catch-abort (print-form
&body forms)

'(xcl:proceed-case (progn ,@forms)
(xcl:abort (condition)

:report ,print-form
(values nil condition»»

XEROX COMMON LISP IMPLEMENTA nON NOTES, LYRIC RELEASE 81

ERROR SYSTEM

82

Example:

(defun read-eval-print-Ioop (level)
(xcl:catch-abort

(format t "Exit command level -D."
level)

(loop
(xcl:catch-abort

(format t
"Return to command level -D."
level)

(print (eval (read»»»)

xcI :abort &optional condition [Function]

This is a predefined proceed function that transfers
control to the innermost (dynamic) visible proceed
case named xc I : abo r t .

xcI :abort could be defined by:

(define-proceed-function xcl:abort
:report "Abort")

xcI: proceed &Opt ional condition [Function]

This is a predefined proceed function. It is used by
such functions as break, cerror, etc.

xcl:use-value &optional new-value [Function]

This is a predefined proceed function. It is intended to
be used for supplying an alternate value to be used in
a computation. If new-value is not provided,
xcI: use-value will prompt the user for one.

xcI: store-value &optional new-value [Function]

This is a predefined proceed function. It is intended to
be used for supplying an alternate value to store in
some location as a way of proceeding from an error.
The proceed function xcI: store-value does not
actually store the new value anywhere: it is up to
proceed case to take care of that. If new-value is not
provided, xcI: store-value will prompt the user for
one. xcl:store-value is used by such forms as
check-type and cerror.

XEROX COMON LISP IMPLEMENTATION NOTE, LYRIC RELEASE

ERROR SYSTEM

Predefined Types

xcl:proceed-case [Type]

CONDITION

\

This is the data type used to represent a proceed case.

The condition type hierarchy looks like this:

SIMPLE-CONDITION WARNING
SERIOUS-CONDITION ~ ______

SIMPLE-WARNING
DEVICE-ERROR

----------STORAGE-CONDITION SIMPLE-DEVICE-ERROR

~IL'SIAC'-OVE'EL,"
CRITICAL-STORAGE-CONDITION ~ATA-TYPES-EXHAUSTED

CL:ERROR ARRAY-SPACE-FULL

YMBOL-HT-FULL

STORAGE-EXHAUSTED

All condition types shown in the graph above, and in
the one that foiiows, are in the XCL package, unless
otherwise qualified.

The hierarchy continues on the next page.

XEROX COMMON LISP IMPLEMENTATION NOTES. LYRIC RELEASE 83

ERROR SYSTEM

CL:ERROR

84

~
UNINTERN-CONFLICT
IMPORT -CONFLICT

PACKAGE-ERROR --=-- EXPORT-MISSING EXPORT-CONFLICT
~ SYMBOL-CONFLICT USE-CONFLICT

IL:FORMAT-ERROR

IL:NO-SUCH-DEFINITION

IL:INTERLISP-ERROR

PATHNAME-ERROR --=-- INVALID-PATHNAME
~ FILE-NOT-FOUND

ARITHMETIC-ERROR ~ FLOATING-UNDERFLOW
~ FLOATING-OVERFLOW

FS-PROTECTION-VIOLATION
FS-ERROR~ FS-RESOURCES-EXCEEDED
~ FILE-WONT-OPEN

~
SYMBOL-COLON-ERROR
MISSING-PACKAGE
MISSING-EXTERNAL-SYMBOL

READ-ERROR READ-CONFLICT
END-OF-FILE

STREAM-ERROR ~ SYMBOL-NAME-TOO-LONG
STREAM-NOT-OPEN

~
IL:INVALID-ARGUMENT-LIST
IL:TOO-FEW-ARGUMENTS

IL:ILLEGAL-STACK-ARG
CONTROL-ERROR IL:UNDEFINED-CAR-OF-FORM ~

IL:CALL-ERROR IL:TOO-MANY-ARGUMENTS

BAD-PROCEED-CASE
ILLEGAL-THROW
ILLEGAL-RETURN
ILLEGAL-GO

TYPE-ERROR -=------ TYPE-MISMATCH
------- SIMPLE-TYPE-ERROR

~
IL:INDEX-BOUNDS-ERROR

CELL-ERROR IL:STACK-POINTER-RELEASED
ATTEMPT-TO-CHANGE-CONSTANT

UNBOUND-VARIABLE~
UNDEFINED-FUNCTION ATTEMPT-TO-RPLAC-NIL

HASH-TABLE-FULL ~ IL:UNDEFINED-FUNCTION-IN-APPLY

SIMPLE-ERROR
------ ASSERTION-FAILED

XEROX COMON LISP IMPLEMENTATION NOTE. LYRIC RELEASE

xcl:condition

xcl:warning

ERROR SYSTEM

The types that are non-terminals in the above tree:
xcI: condi tion,
xcI: warning,
xcl:serious-condition,
xcl:storage-condition,
error,
xcI: cont rol-er ror, etc.

are provided primarily for type inclusion purposes.
Normally, they would not be directly instantiated.

!n the descriptions of condition types below, the
names in italics on the first line of each description are
the names of the slots defined for that condition type.

[Condition]

All types of conditions, whether error or non-error,
must inherit from this type.

[C ond ition]

All types of warnings should inherit from this type.
This is a subtype of condi t ion.

xcl:serious-condition [Condition]

error

Any condition, whether error or non-error, which
should enter the debugger when signalled but not
handled should inherit from this type. This is a
subtype of xcI: condi tion.

Note: ignore-errors will ignore conditions of type
er ror, not of type xcI: serious-condi tion.
Conditions which are serious conditions but not
errors are typically those that may require more
sophisticated handling than simply being
ignored. For example, xcI: ignore-errors
will not ignore an xcI: storage-condi tion,
which is a serious condition but is not generally
a program error.

Compatibility Note: ser ious-condition is similar
to Zetalisp's dbg: debugger-condi t ion.

[Condition]

All types of error conditions inherit from this
condition. This is a subtype of
xcl:serious-condition.

xcI: simple-condi tion format-string format-arguments [Condition]

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 85

ERROR SYSTEM

86

Conditions signalled by xcI: signal when given a
format string as a first argument are of this type. This
is a subtype of xcI: condi tion.

xcI: simple-warning format-string format-arguments [Condition]

Conditions signalled by warn when given a format
string as a first argument are of this type. This is a
subtype of xcI :warning.

xcI: simple-error format-string format-arguments [Condition]

Conditions signalled by error and cerror when
given a format string as a first argument are of this
type. This is a subtype of error.

xcl:storage-condition [Condition]

xcl:stack-overflow

xcl:control-erro~

Conditions which relate to memory overflow
conditions should inherit from this type. This is a
subtype of xcI: ser ious-condi tion.

[Condition]

Conditions which relate to stack overflow should
inherit from this type. This is a subtype of
xcl:storage-condition.

[Condition]

Errors in the transfer of control in a program should
inherit from this type. This is a subtype of er ror.

xcl:illegal-throw tag [Condition]

xcl:illegal-go tag

The error which results when throw is given a tag
which is not active should inherit from this. This is a
subtype of xcI: control-error. tag is the
offending tag.

[Condition]

The error which results when go is given a tag which is
no longer available should inherit from this. This is a
subtype of xcl:control-error. tag is the
offending tag.

xcl:illegal-return tag [Condition]

The error which results when return-from is given a
block name which is no longer accessible should
inherit from this. This is a subtype of
xcI: control-error. tag is the offending block
name.

XEROX COMON LISP IMPLEMENTATION NOTE, LYRIC RELEASE

::RROR SYSTEM

xcI: stream-error stream [Condition]

xcl:read-error

xcl:end-of-file

Errors which occur during input from or output to a
stream should inherit from this type. This is a subtype
of error. The function stream-error-stream will
access the offending stream.

[Condition]

Errors which occur during an input operation on a
stream should inherit from this type. This is a subtype
ofxcl:stream-error.

[Condition]

The error which results when a read operation is done
on a stream which has no more tokens should inherit
from this type. This is a subtype of read-error.

xcl:ceII-error name [Condition]

Errors which occur while accessing a location should
inherit from this type. This is a subtype of er ror.
name is the name of the offending cell.

xcl:unbound-variable [Condition]

The error which results from trying to access the value
of an unbound variable should inherit from this type.
This is a subtype of xcI: cell-er ror.

xcl:undefined-function [Condition]

The error which results from trying to access the value
of an undefined function should inherit from this
type. This is a subtype of xcI: cell-er ror.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 87

ERROR SYSTEM

[This page intentionally left blank]

88 XEROX COMON LISP IMPLEMENTATION NOTE, LYRIC RELEASE

25.1. The Compiler

MISCELLANEOUS FEATURES

CHAPTER 25
MISCELLANEOUS FEATURES

There are two entry points to the XCL Compiler, one
for compiling a single function already in memory,
and one for compiling a file full of code.

compile name &optional defini tion &key : lap [Function]

Works precisely as defined in Common Lisp: the
Language. Xerox Common Lisp provides an
additional &key parameter : lap which, if non-nil,
causes the compiler to pretty-print the Lisp Assembly
Program input to *standard-output*. This is the
Xerox Lisp equivalent of the assembly-language code
produced by compilers for other languages. This code
is primarily only of use when debugging the compiler,
but users may find it interesting on occasion.

Xerox Common Lisp Extensions to Section 25.1

compile-f ile input-file &key : output-f ile
:error-file
:errors-to-terminal
: lap-file
:load
:file-manager-format
:process-entire-file

[Function]

Compiles the forms on input-file and produces a
DFASL file containing the compiled code. The
keyword arguments are as follows:

:output-file

The name of the file on which the DFASL output
should be written. Defaults to input-file but with the
extension II dfasl. II

:error-file

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 89

MISCELLANEOUS FEATURES

90

The name of the file on which warnings and error
messages from the compiler should be printed. If the
value is nil, the messages will not be saved on a file.
If the value is t, the file name is input-file but with the
extension "log." The default value is nil.

:errors-to-terminal

If non-nil, warnings and error messages from the
compiler will, in addition to being saved on any error
file, be printed on *error-output*, usually bound
to a display stream. Defaults to t.

:lap-file

If an explicit file name is given as the value for
: lap-f ile, the compiler will pretty-print all Lisp
Assembly Program (LAP) input to that file before
sending the LAP input to the assembler. If the value is
t, the file name is input-file but with the extension
"dlap." If the value is nil, no LAP code will be
printed. The default value is nil.

:load

If non-nil, all code will be loaded into the
environment after it is compiled. If the value is
: save, then any previous contents of changed
function definition cells will be saved on the il: expr
property of the symbol. This saving will not be done if
the symbol has a File Manager functions definition.

:file-manager-format

If non-nil, the compiler will assume that input-file is
produced by the File Manager and will process it
accordingly. The default value is t if (and only if) the
first non-blank character on the input-file is "(" (a left
parenthesis).

If nil, the compiler will assume that the file is a
standard Common Lisp source file produced by a text
editor, either in Xerox Lisp or in another
implementation.

:process-entire-file

If non-nil, the compiler will read through the entire
file, looking for implicitly or explicitly (eval-when
(compile) •••) forms, evaluating them as it finds
them. Afterwards, the forms on the file will be
compiled. This behavior allows the user to put
macros, proclamations, and other compile-time forms
anywhere on the file, not necessarily before any uses

XEROX COMMON LISP IMPLEMENTA nON NOTES, LYRIC RELEASE

MISCELLANEOUS FEATURES

of them. This option defaults to the value of the
: f ile-manager-forma t option.

Supported Features of the Interlisp Compiler

The XCL Compiler will compile programs written in
Common Lisp, Interlisp, or a combination of the two.
In particular, the following features of the old
Interlisp Compiler are supported by the XCL Compiler
(refer to the interiisp Reference Manual for details on
their use):

• il:Iocalvars,il:globalvars,and
il: specvars declarations

• The special forms
il:deferredconstant
il:Ioadtimeconstant

• The lists i I: nlama,
il:dontcompilefns

• Block compilation

il: constant,
and

il:nIaml and

• Macros defined on the il :macro property of a
symbol

Unsupported Features of the Interlisp Byte Compiler

The XCL Compiler does not support the following
features ofthe old Interlisp Compiler:

• The XCL Compiler will not ask the user any of the
questions asked by the Interlisp Compiler. The
function il: compset is never called.

• The function il :dassem. savelocalvars is never
called.

• The variable il: compileuser fn is never
examined. The compilation of Interlisp's iterative
statements and IF-THEN-ELSE statements is achieved
through the normal macro-expansion process.

• Macros defined on the il: dmacro or
il: bytemacro properties of symbols are ignored
by the XCL Compiler. The new xcI :defoptimizer
facility should be used instead (see below).

• The list il: compiletypelst is not consulted.
Non-list, non-symbol data encountered during
compilation are treated as though they had been
quoted; that is, such data are considered
self-evaluating.

XEROX COMMON LISP !MPLEMENTATION NOTES, LYRIC RELEASE 91

MISCELLANEOUS FEATURES

• The variable il: dwimifycompf 19 is not consulted.
The XCL Compiler does not call the il: dwimify
function and thus does not properly treat code that
requires such treatment.

Compiler Optimizers: The XCl: Defoptimizer Facility

92

Xerox Lisp provides a facility that allows you to advise
the compiler about efficient compilation of certain
functions and macros. This facility works both with
the old Interlisp Compiler and with the new XCL
Compiler.

An optimizer is, to a rough approximation, a macro
that is only invoked at compile-time and which takes
precedence over any normal macro definition that
might exist for the form. Unlike normal macros,
optimizers should not be used for the definition of
new language features; they are only understood by
the compiler and thus will not be recognized in
interpreted code. The usual paradigm involves the
use of defun or defmacro to define the general case
of a new form and the definition of optimizers to take
advantage of common special cases.

Optimizers have access to the lexical environment and
compilation-context of the form. The latter is a
representation of certain information about the use
to which the value of the form will be put; for
example, whether or not the value will be used and, if
so, how many values are expected.

The compiler uses optimizers to encode many of the
source-to-source transformations it employs; you can
add to this store of knowledge to achieve improved
performance of both built-in Xerox Common Lisp
constructs and new, user-written ones.

The compilers also provide a set of facilities for
accessing the information carried in the lexical
environment objects passed to macros and optimizers
via the &environment lambda-list keyword. It is
possible both to make queries on that object and to
create new ones which only differ on a given set of
names.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

Defining optimizers

MISCELLANEOUS FEATURES

New optimizers are defined using the following
macro:

xcI: defoptimizer form-name [opt-name] [arg-list [dedi doc-string]* body]
[Macro]

form-name is an optional symbol which is the car of
forms to which this optimizer should be applied.

opt-name is a symbol used as the name of the
function created to perform the optimization (for
purposes of breaking, advising, etc.).

arg-list is a standard defmacro argument list, allowing
the usual &environment keyword and one more:
&context ctxt. ctxt is a variable to be bound to a
value that can be queried for information about the
evaluation context of the form. For example, it is
possible to determine whether or not the given form
is being evaluated for effect or value. Some
optimizers produce different expansions under
different conditions.

The arg-list and body may be simultaneously omitted,
in which case opt-name should name a
previously-defined function of three arguments: a
form, an environment object, and a compilation
context. Previously-defined optimizers may be used
for this purpose, allowing the user to specify a single
optimizer for a large number of kinds of forms.

It is possible for more than one optimizer to be
defined for the same form-name; new ones are added
to a list and do not replace any previous ones. The
only exception to this is when a new optimizer is
defined for the same form-name and opt-name as an
earlier one; in this case, the old optimizer is replaced
by the new one. Note that no guarantees are made
about the order of the optimizers in the list;
optimizations should not depend upon whether or
not other optimizations have been performed.

The xcI: defoptimizer form produces a File
Manager definition of type optimizers. The name of
the definition is the list (form-name :optimized-by
opt-name) unless no opt-name was given, in which
case the definition is named simply form-name.

The compiler, in considering a new form, first looks to
see if any optimizers are defined for the car of the

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 93

MISCELLANEOUS FEATURES

Examples

94

form. If so, they are each applied in turn. An
optimizer may refuse to change the form by returning
anyone of the following three values:

1. The symbol compiler :pass.

2. A form eq to the given one. To do this, the
argument-list of the optimizer must have specified
the &whole keyword.

3. The symbol il: ignoremacro. This is provided
purely for backward compatibility with Interlisp-D
macros.

If an optimizer returns one of these values, the
compiler will move on to the next one on the list.
Whenever an optimizer does not return one of these
(that is, it actually performs an optimization), the
compiler begins the whole process anew, starting
with the first optimizer on the list for the new car of
the returned form. This allows optimizers to produce
forms which themselves have optimizers.

If all of the optimizers on the list have refused to
change the form, the compiler will finally check for an
ordinary macro definition, as produced by defmacro.
This priority of optimizers over macros allows you to
put optimizers on macros.

The following simple optimizer changes (eq form nil)
into (not form):

(xcl:defoptimizer eq eq-nil-check (&whole form)
(cond «eq nil (second form»

'(not ,(third form»)
«eq nil (third form»

'(not ,(second form»)
(t form»)

Note the return of the input form as a refusal to apply
the optimization. A slightly more complex optimizer,
actually in use in the system, open codes calls to the
function nth when given a small integer argument:

(xcl:defoptimizer nth (n-form list-form)
(if (and (typep n-form 'fixnum)

«= 0 n-form 10»
'(car ,(let «cdr-form list-form»

(dotimes (i ,n-form cdr-form)
(setq cdr-form' (cdr ,cdr-form))}}}

'compiler :pass))

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

MISCELLANEOUS FEATURES

Operations on Compilation Contexts

Examples

Optimizers can arrange to be passed a
compilation-context argument. This value encodes
information about the position of the given form in
the code around it. The following functions can
access that information (all of these functions are in
the compiler package). For brevity in what follows,
we will refer to "the form", meaning the form that
was passed to the optimizer along with the given
context.

compiler: context-top-level-p ctxt [Function]

Returns true if and only if the form appears at "top
level" in the file being compiled.

compi ler: context-values-used ctxt [Function]

Returns the number of values the surrounding code
expects from the form. This is a if the form will be
evaluated for effect, a positive integer if a specific
number of values are expected, and : unknown if the
compiler is unable to tell how many will be used.
Forms providing the returned value of a function or
occurring in the arguments to the
multiple-value-call special form can cause this
latter condition.

compiler: context-predicate-p ctxt [Function]

Returns true if and only if the form appears in a
context in which only the nil-ness of the value is
used, as in the predicate position of an if. In general,
context-predicate-p will only be true of contexts
for which context-va lues-used returns 1.

make-context &key (top-level-p nil)
(values-used :unknown)
(predicate-p nil)

[Function]

Creates a new context object with the given
properties.

Information about the context of a form can come in
handy for functions that return multiple values. For
example, the following might be a worthwhile
optimizer on the floor function, which normally
returns two values: the result of the rounding and the
remainder. This code checks for the (frequent) case in

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 95

MISCELLANEOUS FEATURES

which the remainder is unused and translates the call
to floor into a call on a (hypothetical) lower-level
function which does not compute it.

(xcl:defoptimizer floor (&whole form &context ctxt)
(if (= (context-values-used ctxt) 1)
'(lisp::%div-floor ,@(cdr form»
I compiler: pass))

Another example uses the context of a call to
intersection to decide whether or not it is really
necessary to cons together the result; if the call is
being used as a predicate, a faster and more
storage-efficient version can be substituted instead:

(xcl:defoptimizer intersection intersection-predicate
(&whole form &context ctxt)

(if (context-predicate-p ctxt)
'(lisp::%share-a-member-p ,@(cdr form»
form))

Operations on lexical Environment Objects

96

The &environment values optionally passed to
macros and optimizers are entirely unspecified in
Common Lisp. No operations exist on them and it is
not possible for the user to create or change one. It is
frequently the case that an optimizer can produce
better expansions given' access ,to the lexical
environment information contained in such values.
The following functions implement that access:

compiler: env-boundp env var [Function]

Returns : global, : special or : lexical, as
appropriate, if the symbol var is either bound or
declared as a variable in the environment env. If var is
not bound or declared in a lexically-apparent place,
env-boundp returns nil.

compiler: env-fboundp env fn [Function]

Returns either: function or :macro, as appropriate,
if and only if the symbol fn is bound as a function (in
flet or labels) or macro (in macrolet) in the
environment env. If :macro is returned, then a
second value is also returned, the expansion function
for the macro definition. If fn is not bound in a
lexically-apparent place, env-fboundp returns nil.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

MISCELLANEOUS FEATURES

compiler:make-empty-env [Function]

Returns an environment on which env-boundp and
env-fboundp always return nil.

compiler: copy-env-wi th-var env var &optional (kind: lexical)
[Function]

Returns a copy of env in which the symbol var is
bound as a variable of kind kind. It is an error for kind
to be nil or a value not returnable by env-boundp.
The env may be given as nil, in which case it is
equivalent to passing the result of calling
make-empty-env.

compiler: copy-env-wi th-fn env fn &optional (kind: function)
exp-fn

Expanding Compiler Optimizers

[Function]

Returns a copy of env in which the symbol fn is bound
as a function or macro, depending upon the value of
kind. It is an error for kind to be nil or a value not
returnable by env-fboundp. If kind is :macro, then
exp-fn, an expansion function taking a form and an
environment and returning a new form, must be
provided. The env may be given as nil, in which case
it is equivalent to passing the result of calling
make-empty-env.

The following two functions are available for use in
expanding compiler optimizers under program
control.

compiler:optimize-and-macroexpand form env ctxt [Function]

[Function] compiler:optimize-and-macroexpand-l form env ctxt

Analagous to the functions macroexpand and
macroexpand-l of Common Lisp, these entries into
the compiler perform expansion of compiler
optimizers and normal macros on the given form. The
first function will apply such expansions until none are
possible while the second will expand the form at
most once. Both functions return two values: the new
form (or the old one if nothing was done) and either t
or nil, depending upon whether or not any
expansions actually took place.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 97

MISCELLANEOUS FEATURES

25.2. Documentation

Anything that was created with
xcl :def-define-type can have documentation.

25.3. Debugging Tools

Breaking, Tracing and Advising: the Wrappers Facility

Xerox Common Lisp greatly extends the trace facility
described in Common Lisp: the Language and adds
two more extremely useful tools for debugging:
setting breakpoints and advising existing functions.
Collectively, these three tools are known as the
Wrappers fad I ity.

Concepts Common to Breaking, Tracing and Advising

98

As might be guessed from the name, the Wrappers
facility works by encapsulating a named function
definition in a new function. The new function can
control when and how the original function is called
and can specify other actions to occur around that
call. The different aspects of the Wrappers facility
(breaking, tracing and advising) specify different sets
of actions, depending upon their individual semantics.
For example,1:he tracing facility simply arranges to
print out certain information before and after calling
the original function. All encapsulating code,
including any provided by the user, is compiled before
installation. Thus, little or no performance penalty is
paid for use of the Wrappers facility. Note that, if the
original function is running interpreted, it will remain
so; only the encapsulation will be compiled.

There are two ways to specify the function upon
which the Wrappers facility will operate. In the
simpler of the two, the user passes a symbol naming
the function. All calls to this function, from anywhere
in the system, will be affected by the encapsulation.
For cases in which such a widespread effect would be
either unsafe or otherwise undesirable, the user may
specify the precise set of functions whose calls should
be affected. The :in argument to the Wrappers
functions is used for specifying this list. For example,
to have tracing output printed every time the

XEROX COMMON LISP IMPLEMEN I ATION NOTES, LYRIC RELEASE

Interlisp functions:

MISCELLANEOUS FEATURES

function foo is called from any of the functions bar,
baz, and bax, the following call should be used:

(xcl:trace-function 'foo :in '(bar baz bax»

The :in argument may be given as a symbol if only one
function is to be specified.

The breaking and advising aspects of the Wrappers
facility allow for the specification of arbitrary
expressions to be evaluated under certain conditions.
Such expresions are evaluated in a lexica!
environment that depends upon the kind of function
being wrapped. The following lays out the rules for
determining what variables are lexically available:

lambda spread functions (ARGTYPE 0)
Expressions in wrapped lambda spread functions may
refer to and set any of the arguments to the original
function by the names given in the original function's
definition.

Nlambda spread functions (ARGTYPE 1)
As with lambda spread functions, expressions in
wrapped nlambda spread functions may refer to and
set any of the arguments to the original function by
the names given in the original function's definition.

lambda no-spread functions (ARGTYPE 2)
Because compiling a lambda no-spread loses
information, the lexical environment of expressions
in wrapped lambda no-spread functions is different
for the interpreted and compiled cases.
When the original function is interpreted, expressions
may refer to the named parameter specified in the
function definition. The Interlisp functions il:arg and
il:setarg may be used with that parameter to examine
and change the arguments that were passed to the
wrapped function and will be passed to the original
function.
When the original function is compiled, the name of
the original parameter has, in general, been lost. As a
result, expressions must use the name il:u instead of
the one used in the original function's definition. As
in the interpreted case, this variable may be passed to
il:arg and il:setarg to access and change the
arguments.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 99

MISCELLANEOUS FEATURES

NLambda no-spread functions (ARGTYPE 3)

Expressions in wrapped nlambda no-spread functions
may refer to and set the argument using the name
given in the original function's definition.

Common Lisp functions:

100

Because of semantic difficulties involving the
treatment of &optional and &key parameters with
default values and associated supplied-p parameters,
expressions in wrapped Common Lisp functions have
access to the arguments via the single &rest
parameter xcl:arglist. The elements of this list
may be examined and the value of xcI: arglist
changed in order to modify the arguments that will
be passed to the original function. In the Lyric release
of Xerox Lisp, it is safe to destructively modify the list
in xcI :arglist; it is guaranteed to be
freshly-consed and thus not to share structure with
any other list.

As an example, consider a function with the following
parameter list:

(a &optional b &rest c &key d e)

An expression in a wrapped version of this function
could use the following expressions to discover the
values of the five different parameters:

a (first xcl:arglist)
b (if (null (cdr xcl:arglist»

nil
(second xcl:arglist»

c (cddr xcl:arglist)
d (getf (cddr xcl:arglist) :d)
e (getf (cddr xcl:arglist) :e)

The following expression could be used to provide the
value 17 for b in the case where no value was
supplied:

(if (null (cdr xcl:arglist» ; b was not
supplied

(setq xcl:arglist (list (first xcl:arglist)
17)))

Finally, the following expression could be used after
the one above to either provide the value 0 for the: d
keyword if none was supplied or to increase by 1 the
value that was supplied:

XEROX COMMON LiSP IMPLEMENTATION NOTES, LYRIC RELEASE

MISCELLANEOUS FEATURES

(cond «null (cddr xcl:arglist» ; No keywords were supplied
(setq xcl:arglist (nconc xcl:arglist (list :d 0»»

«null (getf (cddr xcl:arglist) :d»
; There are keywords, but
; not :d.

(setf (getf (cddr xcl:arglist) :d)
0))

(t ; The keyword :d was
; supplied.

(incf (getf (cddr xcl:arglist) :d»»

The mechanism for accessing arguments to wrapped
Common Lisp functions may be revised in a future
release.

Breaking: Setting Debugger Breakpoints

Common Lisp provides only one way for a user to
intentionally and cleanly enter the debugger, the
function break. While it is possible for users to insert
calls to this function at desired locations in their code,

. this is not generally convenient, especially when the
code to contain the breakpoint is compiled or was
written by others, such as Xerox Lisp system code. The
breakpoint facility allows the user to specify a
function as described above and arranges for calls to
that function to enter the debugger before actually
making the call. The user can then examine the
arguments passed to the function and the general
state of the computation. Afterwards, the debugger's
ok command can be used to continue the
computation by executing the originally-intended
function-call. Alternatively, the user could choose to
abort the computation using the i command or other
means. This style of setting breakpoints is known as
breaking the designated function.

It is sometimes desirable to exert some control over
whether or not a particular breakpoint activates (i.e.,
actually enters the debugger) before calling the
function. The breaking facility allows for the
specification of an arbitrary expression to be
evaluated to determine whether or not the debugger
entry should occur. If the given expression returns a
non-nil value, the debugger is entered as usual.
Otherwise, the program behaves as if nO,breakpoint
were set and calls the broken function. Such
conditionalizing expressions are known as
break-when expressions. The lexical environment

. available to break-when expressions is as described in
the general discussion of Wrappers above.

XEROX COMMON LISP iMPLEMENTATION NOTES. LYR!C RELEASE 101

MISCELLANEOUS FEATURES

102

The breaking facility allows the specification of a
special kind of breakpoint, the one-shot breakpoint.
Such breakpoints are guaranteed to activate exactly
once, the first time they are encountered. This
feature can be extremely useful when setting
breakpoints in functions used by the debugger, such
as those that open windows, compute backtraces, etc.
If a normal breakpoint was used, an infinite recursion
would result, with the debugger repeatedly calling
itself in order to respond to the breakpoint. One-shot
breakpoints avoid this problem.

xcI :break-function fn-to-break &key : in (:when t) [Function]

Breaks the designated fn-to-break as described
earlier, unbreaking it first if it was already broken.
The : in argument may be used as specified in the
general Wrappers description above. The: when
argument is used for specifying a break-when
expression; the expression defaults to t. If the
: when argument is given as : once, a one-shot
breakpoint is installed.

xcI: unbreak-function fn-to-unbreak &key : in : no-error [Function]

Restores the designated fn-to-unbreak to its original,
unbroken state. The : in argument may be used as
specified in the general Wrappers description above.
If the designated function is not broken, an error
message is printed, unless the : no-error argument
is specified and non-nil.

xcI: rebreak-function fn-to-rebreak &key : in [Function]

Breaks the designated fn-to-rebreak using the same
break-when expression as was used the last time it
was broken. The function is unbroken first if it was
already broken. The : in argument may be used as
specified in the general Wrappers description above.

The following functions comprise the original
Interlisp-D interface to the breaking facility. They are
provided in the Lyric release for backward
compatibility. Existing user programs employing the
breaking facility should be changed to use the new
functions, described above. The old interface may be
eliminated in a future release.

il: breakO fn &optional (when t)

If fn is a symbol, this is equivalent to

(xcl:break-function fu :when when)

[Function]

XEROX COMMON LISP IMPLEMENTATION NOTES. LYRIC RELEASE

il:break x

MISCELLANEOUS FEATURES

If fn is a list of the form (fn 1 in fn2), this is equivalent
to

(xcl:break-function fn1 :in fn2 :when when)
Otherwise, fn should be a list and il: breakO is called
recursively on each member of fn, all with the given
value of when.

[NLambda No-Spread Function]

For each argument that is either a symbol or a list in
the form (fn 1 in fn2), the call (il: break 0 arg t) is
performed. Each other list argument is used as the
arguments in a call to il: breakO; that is, the call
(apply 'il:breakO arg) is performed. For
example,

(il:break foo (bax (> n 2»)

is equivalent to

(progn (il:breakO 'foo t)
(il:breakO 'bax '(> n 2»)

il: unbreakO fn [Function]

il:unbreak fns

iI: rebreak fns

If fn is a symbol, this is equivalent to

(xcl:unbreak-function fn)

Otherwise, fn should a list in the form (fn 1 in fn2) in
which case this is equivalent to

(xcl:unbreak-function fn1 :in fn2)

[NLambda No-Spread Functionj

All of the arguments should be either symbols or lists
in the form (fn 1 in fn2). This is equivalent to calling
il: unbreak 0 on each of the arguments. If no
arguments are given, this is equivalent to calling
xcI :unbreak-function on all functions currently
broken, in reverse order of their breaking. If exactly
one argument, t, is given, the most-recently broken
function is unbroken.

[NLambda No-Spread Function]

For each argument that is a symbol, this is equivalent
to

(xcI:rebreak-function arg)

For each argument that is a list in the form (fn 1 in
fn2), this is equivalent to

(xcI:rebreak-function fn1 :in fn2)

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 103

MISCELLANEOUS FEATURES

If no arguments are given, all functions that have ever
been unbroken are rebroken, in reverse order of
being unbroken. If exactly one argument, t, is
given, the most-recently unbroken function is
rebroken.

Tracing: Recording Function Calls and Returns

104

The tracing aspect of Wrappers provides for
recording, in a human-readable fashion, all of the
calls to and returns from a given set of functions. On
entry to the affected functions, information is printed
giving the name of the function and the names and
values of all of the arguments. On exit, more is
printed, including, again, the name of the function
and the value (or values) returned. The information
from nested calls to traced functions is printed
indented under the entry information for the outer
calls.

For backward compatibility with Interlisp-O, tracing is
treated in some ways as a special case of breaking. In
particular, the functions il: unbreak,
il:unbreakO, and xcl:unbreak-function will
serve to turn off tracing on a given function. Also, the
functions xcl: rebreak-function and
il: rebr-eak and xcl: rebreak-function will
restore a function to its traced state. This
special-casing behavior is likely to change in future
releases.

xcl: trace-function fn-to-trace &key : in [Function]

trace {fn}*

untrace {fn}*

Traces the designated fn-to-trace. The :in argument
may be used as specified in the general Wrappers
description above. If the function was broken, it is
first unbroken.

[Macro]

For each argument given, if fn is a symbol naming a
function, this is equivalent to

(xcl:trace-function fn)

If fn is a list in the form (fn 1 :in fn2), this is equivalent
to

(xcl: trace-function fn 1 : in fn2)

If no arguments are given, this returns a list of all
functions currently traced.

[Macro]

XEROX COMMON LISP IMPLEM ENTATION NOTES, LYRIC RELEASE

MISCELLANEOUS FEATURES

For each argument given, if fn is a symbol naming a
function, this is equivalent to

(xcl:unbreak-function fn)

If fn is a list in the form (fn T :in fn2), this is equivalent
to

(xcl:unbreak-function fnT :in fn2)

If no arguments are given, all functions currently
traced are untraced.

All tracing information is printed to the stream that is
the current value of *trace-output*. Initially,
*trace-output * is bound to a window named
.. *Trace-Output* If. This window will pop up
whenever tracing output is printed; it can be closed
whenever it is not needed. Should users have a need
to create a new tracing window, the function
xcI: create-trace-window is provided.

xcl:create-trace-window &key
[Function 1

(:regionil:traceregion)

xcl:*trace-Iength*
xcl:*trace-Ievel*

(:open? nil)
(:title "*Trace-Output*")

Creates and returns a window suitable for the value of
trace-output. The: region argument is used
for the location and size of the window; it defaults to
the value of the variable il: traceregion, initially
an area in the lower left corner of the display. If the
:open? argument is non-nil, the window is opened
immediately; otherwise, it will stay closed until the
first time tracing information is printed to it. The
: title argument provides the title for the window.

Three variables are provided to allow the user to
customize the format of the tracing information.

[Variable]
[Variable]

During the printing of the values of arguments and
the returned values of traced functions the
printing-control variables *print-Iength* and
*print-Ievel * are bound to the values of these
variables. Both are initially setto nil.

xcl:*trace-verbose* [Variable]

Certain non-essential parts of the tracing information
are printed only when the value of
xcI: *trace-verbose* is non-nil. In the lyric

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 105

MISCELLANEOUS FEATURES

release of Xerox Lisp, the following pieces of
information are so controlled:

• The lambda-list keywords &optional, &rest, and
&key, normally printed as separators between the
various kinds of arguments.

• Trailing unsupplied &optional arguments,
normally printed as" name unsupplied".

Initially, xcI: *trace-verbose* is set to t.

Advising: Modifying the Behavior of Functions

106

The most powerful aspect of the Wrappers facility is
advice. The advising aspect is sufficiently expressive to
be able to subsume the other two, breaking and
traCing. With it, the user can specify arbitrary
expressions to be evaluated before, after or around
the body of the original function. Here are some ways
in which advice has been used to advantage:

• Changing the effective default value of an
argument or even overriding supplied values when
they are in some way unsatisfactory.

• Binding certain special variables around all calls to a
given function.

• Customizing the behavior of certain system
functions for individual users.

• Building breaking or tracing interfaces that go
beyond the facilities described above, suited
speCially to local Circumstances.

It is possible for a given function to have more than
one piece of advice attached to it simultaneously. If
xcI :advise-function is called when the
designated function is already advised, the new
advice is added to that already existing. The relative
ordering of multiple pieces of advice is controlled by
the :prior ity attributes of the pieces of advice
involved, described below. Multiply-advised functions
have but one "layer" of wrapping around them; all of
the advice has been merged into a single whole.

There are three important attributes for a given piece
of advice, :when, :priority, and the
advice-expression itself.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

MISCELLANEOUS FEATURES

:when can be one of :before, :after, or :around
as described below:

:before advice is executed before the original function is
called. It may examine and/or change the values of
arguments passed to the function and can even avoid
the call to the original function, specifying the values
to be returned. More simply, it can also specify
independent actions to be performed before calling
the original function. When more than one piece of
: before is present, they are executed one after
another in order. Thus, later advice can be affected by
the workings of earlier.

:after advice is executed after the original function has been
called. It may examine and/or change the value (or
values) to be returned by the function. More simply, it
can also specify independent actions to be performed
after calling the original function. As with the
previous case, when more than one piece of : after
advice is present, they are executed one after another
in order.

: around advice is literally wrapped around the call to the
original function. The advice-expression can contain
one or more calls to the macro xcI: inner; these
specify the locations of calls to the original function.
Thus, : around advice can be used, for example, to
bind special variables around the original call, or to
conditionally avoid calling the original function.
When multiple pieces of :around advice are present,
earlier ones are nested inside later ones.

For backward compatibility with Interlisp-D, the
symbol il: * may be used instead of a call to
xcI: inner to specify where calls to the original
function should be placed. This convention may be
desupported in future releases.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 107

MISCELLANEOUS FEATURES

108

(block nil

The following code template illustrates the
positioning of the three kinds of advice and the lexical
environment available to them.

(xcl:destructuring-bind (il:!value &rest il:!other-values)
(multiple-value-list

after-advice

(block nil
before-advice
around-advice-and-original-call))

(apply #'values il:!value il:!other-values»)

Note that, in addition to the lexical entities shown
here, some representation of the arguments to the
function is available as well, depending upon the kind
of function. See the general information on
Wrappers, above, for complete details.

The variables il: !value and il: !other-values
are used for backward compatibility with Interlisp-D.
However, the code above does not properly handle
original functions that return no values at all.
Advising such functions in the Lyric release will
change their behavior, causing them to return a single
value, nil. In the next release, the mechanism will
be changed slightly so that a single variable, values,
will hold a list of all of the values returned by the
function. At that time, :after advice using the
variables il: !value and il: !other-values may
have to be changed. A particularly common example
of functions that return no values at all is
reader-macro functions. Beware of advising such
functions in the Lyric release.

:priority can be one of : first or : last,
meaning that the given piece of advice should be
placed at the beginning or end, respectively, of the list
of pieces of advice with the same: when attribute.

For backward compatibility with Interlisp-D, a list in
the form (il: before . corns) or (il: after. corns)
is also acceptable as the :priority attribute. In this
case, corns should be a list of commands to the
Interlisp-D list-structure editor. These commands will
be applied to the list of pieces of advice with the same
: when attribute; when they complete, the given
advice will be inserted either before or after the
selected piece, as specified. This compatibility feature

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

MISCELLANEOUS FEATURES

may be removed in a future release, possibly to be
replaced by another facility with similar functionality.

The Xerox Lisp interface to advising consists of the
following three functions:

xcI: advise-function fn-to-advise form &key : in [Function]
(: when : before)
(:priority :Iast)

Advises the designated fn-to-advise using the given
form as the advice-expression and the given : when
and :priority attributes. The : in argument may
be used as specified in the general Wrappers
description above. If the designated fn-to-advise is
already advised, the new advice is added that already
existing and the new, merged advice is applied to the
original function.

xcI: unadvise-function fn-to-unadvise &key : in : no-error
[Function]

Removes the advice from the designated
fn-to-unadvise. The : in argument may be used as
specified in the general Wrappers description above.
If the designated function is not advised, an error
message is printed, unless the: no-error argument is
supplied and non-nil.

xcI: readvise-function fn-to-readvise &key : in [Function]

Advises the designated fn-to-readvise using the advice
that was present the last time the function was
unadvised. The : in argument may be used as
specified in the general Wrappers description above.

The following three functions comprise the original
Interlisp-D interface to the advising facility. They are
provided in the Lyric release for backward
compatibility. Existing user programs employing the
advising facility should be changed to use the new
functions, described above. The old interface may be
eliminated in a future release.

il:advise who when where what [Function]

Advises the function named by who, using what as the
advice-expression. The; when attribute is taken from
the when argument and the :pr ior i ty argument.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 109

MISCELLANEOUS FEATURES

il :unadvise fns

il: readvise fns

110

The when and where arguments are optional. If only
two arguments are given to il: advise, they are
interpreted as who and what, respectively. If three
are given, they are who, when, and what.

If when is not supplied, :before is used. The when
argument il: before is treated as a synonym for
: before, as il: after is for :after and
il:aroundfor :around.

If where is not supplied, : last is used. The where
arguments il:last, il:bottom and il:end are
treated as synonyms for : las t, as i I: fir stand
il:top are for :first.

If who is a symbol, this is equivalent to
(xcl:advise-function who what

:when when
:priority

where)

If who is a list in the form (fn 1 in fn2), this is
equivalent to

(xcI :advise-function fn 1 what

where)

: in fn2
:when when
:priority

Otherwise, who should be a list of symbols and/or
sublists in the form (fn 1 in fn2). Each of the elements
of the list is treated in turn, as shown above.

[NLambda No-Spread Function]

For each argument given, if it is a symbol this is
equivalent to

(xcl:unadvise-function arg)

If the argument is a list in the form (fn 1 in fn2), this is
equivalent to

(xcl:unadvise-function fn1 :in fn2)

If no arguments are given, then all currently-advised
functions are unadvised. If a single argument of t is
given, the most-recently advised function is
unadvised.

[NLambda No-Spread Function]

XEROX COMMON LISP IMPLEMENTATION NOTES,LYRIC RELEASE

Stepping

MISCELLANEOUS FEATURES

For each argument given, if it is a symbol this is
equivalent to

(xcI:readvise-function arg)

If the argument is a list in the form (fn 1 in fn2), this is
equivalent to

(xcl:readvise-function fnT :in fn2)

If no arguments are given, then all functions that have
ever been unadvised are readvised. If a single
argument of t is given, the most-recently unadvised
function is read vised.

Alone of the three aspects of the Wrappers facility,
advising has some interaction with the File Manager.
It is possible to save advice on a file and to optionally
arrange for that advice to be re-applied when the file
is loaded. The File Manager notices every time a
function is advised or read vised and two File Manager
commands exist for the saving of that advice:

il:advice {advice-name}*
il: advise {advice-name}*

[File Manager command]
[File Manager command]

advice-name should be either a symbol or a list in the
form (fn 1 :in fn2), where fn 1 and fn2 are symbols.
The advice on the indicated function is saved on the
file. The il :advice command only arranges for the
advice to be stored away when the file is loaded. The
il :advise command additionally arranges for that
advice to be installed on the indicated functions. If
the il :advice command is used, the user can call
the function xcI: readvise-function to install the
stored away advice.

For backward compatibility with Interlisp-D, an
advice-name that is an INTERlISP symbol in the form
fn l-in-fn2 is interpreted as if it were (fn 1 :in fn2), with
fn 1 and fn2 interned in the INTERlISP package. This
compatibility feature may be removed in a future
release.

Single stepping is a way of observing the evaluation
of a form. At each point where the eval function is
called execution is halted and the form about to be
evaluated, along with any arguments, is printed.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 111

MISCELLANEOUS FEATURES

To Begin Stepping

step form

What's Displayed

The Next Step

When a computation is completed the result is also
printed. In a sense, single stepping is like performing
a stop and go trace of all the functions in an
evaluation.

Only interpreted code can be stepped.

[Macro]

Single-steps the execution of form. Returns the result
of executing form.

Each step has an indentation level, initially 0, which
increases every time eval is called in a subform. At
the start of each step, the form is printed at the
current indentation level, then a space and the
prompt ": ". When a subform's evaluation is
completed its result is printed at the start of a new
line. Variable and constant evaluation is shown by
printing the variable or constant, an equal sign, and
its value.

When execution is halted and the n:" prompt
reappears, you have several options for the next step.
Display a list of these options by pressing the? key.
They are:

<space> evaluate until eval is called again.

Next evaluate the current form without stepping its
subforms, halt on the next form after this one

Finish finish evaluation without stepping any more
subforms.

Debugger enter the debugger.

i abort all stepping, returning to top level.

Xerox Common Lisp Debugger

112

In Xerox Common Lisp, errors, interrupts and
breakpoints wind up calling the Debugger. The
debugger is an interactive Exec which can run under a
Lisp computation, and display useful information
about the state of the computation. This allows the
user to interrogate the state of the world and affect
the course of the computation.

XEROX COMMON LISP IMPLEMENTATION NOTES. LYRIC RELEASE

MISCELLANEOUS FEATURES

When the debugger is entered, a separate "debugger
window" is brought up. All interaction within the
debugger occurs inside this separate debugger
window. The default prompt for debugger windows is
the character":". Input to the debugger is evaluated
within the dynamic context where the error occurred.

Note: In the Lyric release, forms typed to the
debugger do not have access to the lexical
context where the error occurred, even in
interpreted code. This lack will be addressed in
a future release.

In addition, the debugger recognizes a number of
useful commands in addition to the normal Exec
commands. These provide an easy way to interrogate
the state of the computation.

The debugger may be entered in several different
ways. Some interrupt characters invoke the
debugger when they are typed. Errors may invoke the
debugger. Finally, the user can add breakpoints,
either around entire functions (using
xcI: break-function) or around individual
expressions.

Within the debugger the user has access to all the
power of Lisp; any operations available at the Exec
are also available within a debugger window,
including all of the Exec commands, e.g., to redo or
undo previously executed events.

Once in the debugger, the user is in complete control
of the flow of the computation, and the computation
will not proceed without specific instruction. That is,
the debugger will itself catch aborts, errors and the
like. The debugger catches the il: error
(CONTROL-E) interrupt but does not "turn off" the
il: reset interrupt, so a CONTROL-D interrupt
character will force an immediate return back to the
top level.

When the debugger is invoked, a new window is
brought up. The title of the debugger window
indicates the type of condition that invoked the
debugger. If the debugger is invoked under another
call to the debugger, a new window is created. The
initial placement of the debugger is relative to the
placement of the typescript window of the process
being invoked.

XEROX COMMON LISP IMPLEMENTATION NOTES, L YR!C RELEASE 113

MISCELLANEOUS FEATURES

eval

ub

value

114

Note: Storage errors (running out of storage) will
not try to open a new window, since this
might cause the error to occur repeatedly.

Note: The debugger can also operate in a mode
where a new window is not created. If the
variable il :wbreak is nil, debugging
interactions occur within the same window as
the primary typescript window.

Debugger commands can be invoked either by typing
them in, or, for those debugger commands in
xcI: *debugger-rnenu- i terns *, by invoking them
directly from the middle-button pop-up menu in a
debugger window. The operation of interactive
commands differs depending on how they are
invoked: for those invoked by typing the command,
the interaction happens in the typescript window,
while those invoked by mouse action cause a
mouse/menu interaction instead.

[Debugger command]

For breakpoints, this command evaluates the
breakpointed function/expression, and prints the
values it returns. A subsequent value command will
(re)print these values. A subsequent ok command will
merely return the values already computed. However,
a subsequent eval command will perform the
computation again.

For error calls to the debugger, this command
attempts to back up the stack to the last II user"
function and reapply it to its arguments, presuming
that somehow the user has modified the
computation. If successful, this value will be returned
by a subsequent ok command from the user function.
The "user" function is determined by looking back on
the stack to the last stack frame which is not part of
the interpreter.

[Debugger command]

Removes the current breakpoint, if there is one.

Not available from the menu.

[Debugger command]

Prints the result of the last eval command executed
in this debugger instance. If no eval has been done
yet, simply prints "Not yet evaluated. "

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

MISCELLANEOUS FEATURES

t , stop [Debugger commands]

Abort the Debugger, making it "go away" without
returning a value. This is a useful way to unwind to a
higher level debugger or Exec.

return &optional expression [Debugger command]

expression is evaluated, and returned as the value the
debugger call. For example, one could use the eval
command and follow this with return (reverse
value).

Not available from the menu.

proceed, pr [Debugger command]

It constructs a list of currently enabled proceed cases,
then prompts the user to select one to invoke. If this
command is invoked from the debugger exec,
il: askuser is used to select a proceed case. If this
command was invoked from the debugger's menu, a
menu of proceed cases to select from is presented. In
either case, the proceed cases will be described by the
results of invoking their report methods.

ok

For example, if you evaluated

(xcl:proceed-case (break)
(xcl:use-value (x)

:report "Provide a value to use as the result"
x)

(nil ()
:report "Just return NIL"

nil))

and then executed the PR command in the debugger,
you would see:

1 - Return from BREAK
2 - Provide a value to use as the result
3 - Just return NIL
4 - Unwind to ERRORSET
No - don't proceed
Proceed how?

Selecting No will abort the command.

[Debugger command]

If the debugger was entered through a breakpoint,
the debugger first executes an eval if the user has
not done so already. These values are then returned as
the values of the breakpointed function/expression.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 115

MISCELLANEOUS FEATURES

pb variable

il:1astpos

?=

il:breakdelimiter

116

If the debugger was entered through an error, the ok
command first calls the function xcI :proceed. For
many errors, there is a proceed case by that name
enabled that will reapply the .ast "user"function
(before the error) to its arguments. If this call to
xcI :proceed returns, this means that there was no
proceed case with the name xcl: proceed enabled,
so the debugger will ask the user to select a proceed
case to invoke, just as the pr command would.

{Exec command]

Prints the bindings of the special variable variable.
This command is available in top-level Execs as well as
in the Debugger, but is most useful in the Debug_ger.

[Va riable 1

Some debugger commands manipulate the stack. The
special variable il: las tpos contains a stack pointer
to the "focus" for stack commands. When the
debugger is entered, il: Iastpos is bound to a stack
pointer to the user frame before whatever called the
the debugger, e.g., the frame hefore the call- to
error, il :errorx, etc.

[Debugger command]

This command is used is to interrogate the values of
the arguments at il: 1astpos. For example, if faa
has three arguments (x y z), then typing.?= when at
foo wilt produce:

12:1=
X = value of X
Y = valueofY
z = valueofZ
13:

1= is a universal- mnemonic for displaying argument
names and their corresponding values. Additional
frame information can be obtained using the
debugger frame menu, but a typed ?= is often a quick
way of getting information.

[Variable}

For output to the typescript window, the value of
i1: breakdelimiter, initially a string with a
new-line character in it, is printed to delimit the

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE

bt

MISCELLANEOUS FEATURES

output of ?= and backtrace commands. Resetting it to
" ," would prod uce more compact output.

[Debugger command]

Shows a backtrace of "interesting" function names
starting at il: lastpos. Whether or not a function is
interesting is determined by the predicate in the
variable il: *short-backtrace-fil ter*.

When invoked from the debugger menu with the
mouse, causes a menu of frames to be attached to the
Debugger window.

il:*short-backtrace-filter* [Variable]

dbt

bt!, dbt!

btv

btv!

Contains a predicate used by the bt command to
determine if a frame is interesting. The initial
definition of "interesting" is that a frame is
interesting if it corresponds to a "user" function,
currently defined as any symbol whose name does not
begin with the character backslash (\).

[Debugger command]

Same as invoking bt from the debugger menu, i.e.,
causes a menu of frames that bt would have listed to
be attached to the debugger window.

[Debugger command]

Like bt and dbt, respectively, but show all frames, not
just interesting ones.

[Debugger command]

Shows not only all frames, but also all special bindings
on the stack, beginning at il: lastpos.

Not available from the menu.

[Debugger command]

Prints everything on the stack, including binary stack
locations, etc. Normally for system debugging only.

XEROX COMMON LISP IMPLEMENTATION NOTES. LYRIC RELEASE 117

MISCELLANEOUS FEATURES

118

@ &rest frame-specification [Debugger command]

Resets the variable il: las tpos, according to
frame-specification; the position is set first according
to the initial debugger entry position, and then, for
each element in frame-specification, the frame is
changed.·

Note that @ on a line by itself resets il: lastpos to
its initial value. Normally, symbols witin a @ command
refer to the next frame with the given symbol as the
frame-name, e.g., "@ +" sets il: lastpos to a
pointer to the last + frame. The following tokens are
looked for (using str ing-equal, i.e., package does
not matter) and treated specially:

@ This effectively means to leave il: lastpos alone,
i.e., not reset it before processing the rest of the line.

a number n Move il: lastpos down the stack n frames back.
E.g., "@ 3" means 3 frames before the initial call, and
"@ @ 3" means 3 more frames.

I The next element on the line (which should be a
positive integer) specifies that the previous symbol
should be searched for that many times. For example,
"@ foo I 3" is equivalentto "@ foo foo foo."

= Resets il: lastpos to the value of the next
expression, e.g., if the value of foo is a stack pointer,
"@ = foo fie" will search for fie in the
environment specified by (the value of) foo.

For example, tfthe stack looks like:
[91 debugger
[81 foo
[7J cond
[6J fie
[5J cond
[4J fie
[3J cond
12J fie
[1J fum

then "@ fie cond" will set il: lastpos to the
position corresponding to [5J; "@ @ cond" will then
set il:lastpostoI3J;and"@fie/ 3 l"to[1J.

If the search is still unsuccessful, @ aborts. When @
finishes, it returns the name of the frame at
il: lastpos, i.e., (il: stkname il: lastpos).

XEROX COMMON LISP IMPLEMENTATION NOTES. LYRIC RELEASE

MISCELLANEOUS FEATURES

Note: il: lastpos is also reset by selecting a frame
in an attached backtrace menu.

r eve r t & r es t frame-specification [Debugger command]

Goes back to a stack frame and reenters the function
called at that point with the arguments found on the
stack.

If no argument is given to revert, it reverts to the
frame selected by il: lastpos. Otherwise, the
revert command processes the rest of the line
similarly to the @ command, e.g., "revert faa I"
is equivalent to "@ faa I" followed by revert.

revert is useful for restarting a computation in the
situation where a bug is discovered at some point
below where the problem actually occurred. revert
essentially says "go back there and start over."

Controlling When to Enter the Debugger

For simple errors which occur as the result of user
type-in, it is sometimes more convenient to merely use
the fix command to correct the input or to retype it
than to enter the debugger, proceed, or the like.
Thus, in Xerox Common Lisp, the error system employs
a simple heuristic in the function
xcI :enter-debugger-p. The actual algorithm is
described in detail below; however, the parameters
affecting the decision have been adjusted empirically
so that trivial type-in errors do not cause breaks, but
deep errors do.

xcI: enter-debugger-p pos condition [Function]

il: helpflag

xcI: enter-debugger-p is called by the error
routines to decide whether or not to actually enter
the debugger when an error occurs. pos is the stack
position at which the error occurred; condition is the
error condition. Returns t if the debugger should
occur; nil if the computation should simply abort.

[Variable]

If il: helpflag is nil, xcI: enter-debugger-p
will return nil. If il:helpflag is break!, then
xcI: enter-debugger-p will return t. Otherwise,
xcI: enter-debugger-p will look at the stack depth,
using il: helpdepth.

XEROX COMMON LISP IMPLEMENTATION NOTES, LYRIC RELEASE 119

MISCELLANEOUS FEATURES

i1:helpdepth

il :helpclock

i1:helptime

Interface to "the Debugger

[Variable]

If more than il :helpdepth "interesting" function
frames occur between the error call and the type-in
form that eventually caused it,
xcI: enter-debugger-p will return t. Otherwise,
xcl:enter-debugger-p will look at the amount of
time elapsed since execution was started for the
expression that invoked this exec.

[Variable]

At each Exec command (inctuding inside the
debugger) the variable il :helpclock is rebound to
the current value of (get-internal-real-time) •

[Variable)

If more than i1 :helptime milliseconds of runtime
stnce i1 :helpclock have elapsed, then
xcI: enter-debugger-p will be true. The time
criterion for breaking can be suppressed by setting
i1 :helptime to nil.

il:1 MaxBkMenuWidth~

i1: lMaxBkMenuHeightl

[Variable]

[Variable1

The variables il : IMaxBkMe nuW i d t hi (defau~t 125)
and il:IMaxBkMenuHeightl {default 300) controt the
maximum size of the backtrace menu. If this. menu is
too small to contain aU of the frames in the backtrace,
it is made scroHable in both vertical and horizontal
directions.

il:autobacktraceflg [Variable]

This variable controls when and what kind of
backtrace menu is automatically brought up. The
value of il :autohacktraceflg can be one of the
following:

ni 1 The backtrace menu is not automatically brought up
(the default).

t On- error breaks the bt menu is brought up.

i 1: bt ! On error breaks the bt! menu is brought up.

120 XEROX COMMON LISP IMPLEMENTATION NOTES. LYRIC RELEASE

MISCELLANEOUS FEATURES

25.4. Environmentallnquiries

loop in which only eval expressions can be typed. If
the recursive debugger entry was because of a
breakpoint, the second debugger invocation is
ignored.

25.4.1 Time Functions and Commands

122

In addition to the time functions explained in·
Common Lisp: the Language, Xerox Common Lisp
provides the following function:

time form &key : repeat :output :datatypes [Function]

Reports the time required to evaluate form, and
returns the value of form. By default, timing
information is sent to *trace-output*, which is
usually a window with the same title. If the: repea t
argument is provided, it should be an integer which
indicates the number of times to repeat the
evaluation of form. If the : outpu t argument is
provided, it should be a valid stream argument (like
terminal-io). If :datatypes is provided, it
should be a list of data type names; time will then
only report storage allocations for the listed
datatypes.

time does not use global state, so it may be nested,
etc.

There's also an Exec command:

time expression &key:repeat :datatypes [Command]

room &optional x

The time command sends its output to
terminal-io by default.

[Function]

The function room is implemented as (il: storage);
the optional argument is currently ignored.
Documentation for il: storage may be found in the
Lisp Library module GCHAX.

XEROX COMMON LISP IMPLEMENTA nON NOTES, LYRIC RELEASE

	0001
	0002
	0003
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	122

