
~
en·VfiS

LISP RELEASE NOTES

400006
Medley Release 1.0
September 1988

Address comments to:
ENVOS
User Documentation
1157 San Antonio Rd.
Mountain View, CA 94043
41 5-966-6200

LISP RELEASE NOTES

Medley Release 1.0

400006

September 1988

Copyright © 1988 by ENVOS Corporation.

All rights reserved.

Envos is a trademark of Envos Corporation.

Medley is a trademark of Envos Corporation.

Xerox® is a registered trademark of Xerox Corporation.

Sun® is a registered trademark of Sun Microsystems Inc.

DEC®, VAX®, VMS®, and VT100® are registered trademarks of
Digital Equipment Corporation.

UNIX® is a registered trademark of AT&T Bell Laboratories.

Copyright protection includes material generated from the
software programs displayed on the screen, such as icons, screen
display looks, and the like.

The information in this document is subject to change without
notice and should not be construed as a commitment by Envos
Corporation. While every effort has been made to ensure the
accuracy of this document, Envos Corporation assumes no
responsibility for any errors that may appear.

Text was written and produced with Envos formatting tools using
Xerox printers to produce text masters. The typeface is Modern.

TABLE OF CONTENTS

Preface xvii

How the Release Notes are Organized xvii

Notational Conventions xviii

How to Use the Release Notes xviii

Related Literature xix

1. Introduction 1-1

Summary of Medley Changes 1-1

2. Notes and Cautions 2-1

Changes and Cautions in the Medley Release 2-1

Changes and Cautions in the Lyric Release 2-1

3. Common Lisp/lnterlisp-D Integration 3-1

Chapter 2 Litatoms 3-1

Section 2.1 Using Litatoms as Variables 3-2

Section 2.3 Property Lists 3-2

Section 2.4 Print Names 3-2

Section 2.5 Characters 3-3

Chapter 4 Strings 3-3

Chapter 5 Arrays 3-3

Chapter 6 Hash Arrays 3-4

Chapter 7 Numbers and Arithmetic Functions 3-4

Section 7.2 Integer Arithmetic 3-4

Chapter 10 Function Definition, Manipulation, and Evaluation 3-5

Section 10.1 Function Types 3-5

Section 10.6 Macros 3-5

Section 10.6.1 DEFMACRO 3-5

Chapter 11 Stack Functions 3-5

Section 11.1 The Spaghetti Stack 3-5

Chapter 12 Miscellaneous 3-6

Section 12.4 System Version Information 3-6

Section 12.8 Pattern Matching 3-6

Chapter 131nterlisp Executive 3-7

Chapter 14 Errors and Breaks 3-9

Section 14.3 Break Commands 3-9

Section 14.6 Creating Breaks with BREAK1 3-9

Section 14.7 Signalling Errors 3-9

Section 14.8 Catchi ng Errors 3-10

LISP RELEASE NOTES, MEDLEY RELEASE, TABLE OF CONTENTS iii

TABLE OF CONTENTS

Section 14.9 Changing and Restoring System State 3-11

Section 14.10 Error List 3-11

Chapter 15 Breaking Functions and Debugging 3-13

Section 15.1 Breaking Functions and Debugging 3-13

Section 15.2 Advising 3-14

Chapter 16 List Structure Editor 3-15

Switching Between Editors 3-16

Packages 3-16

Starting a Lisp Editor 3-16

Mapping the Old Edit Interface to ED 3-18

Editing Values Directly 3-18

Section 16.18 Editor Functions 3-19

Chapter 17 File Package 3-19

Reader Environments and the File Manager 3-20

Modifying Standard Readtables 3-22

Programmer's Interface to Reader Environments 3-23

Section 17.1 Loading Files 3-24

Integration of Interlisp and Common Lisp LOAD Functions 3-24

Section 17.2 Storing Files 3-25

Section 17.8.2 Defining New File Manager Types 3-26

Definers: A New Facility for Extending the File Manager 3-26

Chapter 18 Compiler 3-31

Warning when Loading Compiled Files 3-32

Warning with Declarations 3-32

Section 18.3 Local Variables and Special Variables 3-33

Chapter 19 Masterscope 3-33

Chapter 21 CLiSP 3-33

Chapter 22 Performance Issues 3-36

Section 22.3 Performance Measuring 3-36

Chapter 24 Streams and Files 3-37

Section 24.15 Deleting, Copying, and Renaming Files 3-38

Chapter 25 Input/Output Functions 3-38

Variables Affecting Input/Output 3-38

Integration of Common Lisp and Interlisp Input/Output Functions 3-40

Section 25.2 Input Functions 3-40

Section 25.3 Output Functions 3-41

Printing Differences Between IL:PRIN2 and CL:PRIN1 3-42

Internal Printing Functions 3-42

Printing Differences Between Koto and Lyric 3-42

Bitmap Syntax 3-43

IV LISP RELEASE NOTES, MEDLEY RELEASE, TABLE OF CONTENTS

TABLE OF CONTENTS

Section 25.8 Readtables 3-43

Differences Between Interlisp and Common Lisp Readtables 3-44

Section 25.8.2 New Readtable Syntax Classes 3-45

Additional Readtable Properties 3-45

Section 25.8 Predefined Readtables 3-47

Koto Compatibility Considerations 3-48

Specifying Readtables and Packages 3-48

The T Readtable 3-48

PQUOTE Printed Files 3-49

Back-Quote Facility 3-49

Chapter 28 Windows and Menus 3-49

Section 28.5.1 Menu Fields 3-49

4. Changes to Interlisp-D in Lyric/Medley 4-1

Chapter 3 Lists 4-1

Section 3.2 Building Lists From Left To Right 4-1

Section 3.10 Sorting Lists 4-1

Chapter 6 Hash Arrays 4-1

Section 6.1 Hash Overflow 4-2

Chapter 7 Integer Arithmetic 4-2

Section 7.3 Logical Arithmetic Functions 4-3

Section 7.5 Other Arithmetic Functions 4-3

Chapter 8 Record Package 4-3

Chapter 9 Conditionals and Iterative Statements 4-3

Section 9.2 Equality Predicates 4-3

Section 9.8.3 Condition I.s. oprs 4-3

Chapter 10 Function Definition, Manipulation, and Evaluation 4-4

Section 10.2 Defining Functions 4-4

Section 10.5 Functional Arguments 4-4

Section 10.6.2 Interpreting Macros 4-4

Chapter 11 Variable Bindings and the Interlisp Stack 4-4

Section 11.2.1 Searching the Stack 4-5

Section 11.2.2 Variable Bindings in Stack Frames 4-5

Section 11.2.5 Releasing and Reusing Stack Pointers 4-5

Section 11.2.7 Other Stack Functions 4-5

Chapter 12 Miscellaneous 4-6

Section 12.2 Idle Mode 4-6

Section 12.3 Saving Virtual Memory State 4-7

Section 12.4 System Version Information 4-7

Chapter 13 Interlisp Executive 4-8

Chapter 14 Errors and Breaks 4-8

LISP RELEASE NOT~S, MEDLEY RELEASE, TABl E OF CONTEr'-JTS v

TABLE OF CONTENTS

Section 14.5 Break Window Variables 4-8

Section 14.8 Catching Errors 4-8

Chapter 17 File Package 4-9

Section 17.8.1 Functions for Manipulating Typed Definitions 4-9

Section 17.8.2 Defining New File Package Types 4-9

Section 17.9.2 Variables 4-9

Section 17.9.8 Defining New File Package Commands 4-9

Section 17.11 Symbolic File Format 4-9

Section 17.11.3 File Maps 4-10

Chapter 18 Compiler 4-10

Chapter 21 CliSP 4-10

Section 21.8 Miscellaneous Functions and Variables 4-10

Chapter 22 Performance Issues 4-11

Section 22.1 Storage Allocation and Garbage Collection 4-11

Section 22.5 Using Data Types Instead of Records 4-11

Chapter 23 Processes 4-12

Section 23.6 Typein and the TTY Process 4-12

Section 23.8 Process Status Window 4-12

Chapter 24 Streams and Files 4-13

Section 24.7 File Attributes 4-13

Section 24.9 Local Hard Disk Device 4-13

Section 24.10 Floppy Disk Device 4-13

Section 24.12 Temporary Files and CORE Device 4-13

Section 24.18.1 Pup File Server Protocols 4-14

Section 24.18.1-2 Use of BREAKCONNECTION withFile Servers 4-14

Section 24.18.2 NS File Server Protocols 4-15

Section 24.18.3 Operati ng System Designations 4-15

Chapter 25 Input/Output Functions 4-15

Section 25.2 Input Functions 4-15

Section 25.3.2 Printing Numbers 4-15

Section 25.3.4 Printing Unusual Data Structures 4-15

Section 25.4 Random Access File Operations 4-16

Section 25.6 PRINTOUT 4-16

Section 25.8.3 READ Macros 4-16

Chapter 26 User Input/Output Packages 4-16

Section 26.3 ASKUSER 4-16

Section 26.4 TTYIN Display Typein Editor 4-16

Section 26.4.3 Display Editing Commands 4-17

Section 26.4.5 Useful Macros 4-18

Chapter 27 Graphic Output Operations 4-18

VI LISP RELEASE NOTES, MEDLEY RELEASE, TABLE OF CONTENTS

Section 27.1.3 Bitmaps

Section 27.3 Accessing Image Stream Fields

Section 27.6 Drawing Lines

Section 27.7 Drawing Curves

Section 27.8 Miscellaneous Drawing and Printing Operations

Section 27.12 Fonts

Section 27.13 Font Files and Font Directories

Section 27.14 Font Classes

Section 27.14 Font Profiles

Chapter 28 Wi ndows and Menus

Section 28.4 Wi ndows

Section 28.4.5 Reshaping Windows

Section 28.4.8 Shrinking Windows Into Icons

Section 28.4.11 Terminal 1/0 and Page Holding

Section 28.5 Menus

Section 28.6.2 Attached Prompt Windows

Section 28.6.3 Window Operations and Attached Windows

Chapter 29 Hardcopy Facilities

Chapter 30 Terminal Input/Output

Section 30.1 Interrupt Characters

Section 30.2.3 Line Buffering

Section 30.4.1 Changing the Cursor Image

Section 30.5 Keyboard Interpretation

Section 30.6 Display Screen

Section 30.7 Miscellaneous Terminal 1/0

Chapter 31 Ethernet

Section 31.3.1 Name and Address Conventions

Section 31.3.2 Clearinghouse Functions

Section 31.3.3 NS Pri nti ng

Section 31.3.5.3 Performing Courier Transactions

Section 31.3.5.3.3 Using Bulk Data Transfer

Section 31.5 Pup Level One Functions

Section 31.6.1 Creating and Managing XIPs

5. Library Modules
Modules That are New, Moved, or Replaced

Modules Moved From the Library to LispUsers

Modules Moved From LispUsers to the Library

Modules Moved to Their Own Manuals

Modules Moved From the Sysout into the Library

Modules Moved From the Library into the Sysout

LISP RELEASE NOTES, MEDLEY RELEASE, TABLE OF CONTENTS

TABLE OF CONTENTS

4-18

4-18

4-19

4-19

4-19

4-21

4-23

4-23

4-23

4-24

4-24

4-24

4-24

4-25

4-26

4-28

4-28

4-29

4-29

4-29

4-30

4-30

4-31

4-31

4-31

4-32

4-32

4-33

4-34

4-34

4-34

4-34

4-35

5-1

5-1

5-1

5-1

5-1

5-1

5-2

vii

TABLE OF CONTENTS

Modules Replaced 5-2

New Modules 5-2

Details of Change 5-2

4045XLPStream 5-2

Cash-File 5-2

Centronics 5-3

Chat 5-3

CopyFiles 5-3

DataBaseFns 5-3

EditBitMap 5-3

FileBrowser 5-3

FTPServer 5-4

FX-80Driver 5-4

GCHax 5-5

Grapher 5-5

Hash 5-5

Hash-File 5-5

Kermit 5-5

MasterScope 5-5

NSMaintain 5-5

RS232 5-6

Spy 5-6

TableBrowser 5-6

TCP-IP 5-7

TExec 5-8

TextModules 5-8

Vi rtual Keyboards 5-8

Where-Is 5-8

Additional Notes 5-8

Koto CML Library Module 5-8

6. User's Guides 6-1

A User's Guide to TEdit-Release Notes 6-1

Expanded Characters 6-1

Put Submenu 6-1

Get Submenu 6-2

Clarified Paragraph Looks Menu Options 6-2

New Page: Before After 6-3

Displaymode: Hardcopy 6-3

Clarified Page Layout Menu Options 6-3

Added Items to Programmer's Interface 6-3

viii LISP RELEASE NOTES, MEDLEY RELEASE, TABLE OF CONTENTS

TABLE OF CONTENTS

Corrected the AFTERQUITFN Property 6-3

Corrected th eTEXTOBJ Data Structure 6-4

Corrected th eTITLEMENUFN Property 6-4

Expanded the TEDIT.INCLUDE Function 6-4

Expanded the TEDIT.PARALOOKS Function 6-4

Expanded the TEXTPROP Function 6-5

Added Documentation for Global Variables 6-5

Changes to Programmer's Interface to TEd it 6-5

STREAM and TEXTOBJ 6-5

Changes, Additions and Corrections to TEdit Functions 6-5

Changes in Documentation of TEdit Functions 6-7

New Features 6-8

A User's Guide to Sketch-Release Notes 6-10

Manipulating Sketch Elements 6-10

Adding and Deleting Control Points 6-10

Deleting Control Points 6-10

Defaults Command 6-10

Better Feedback for Creating Wires, Circles and Ellipses 6-10

Arrowheads 6-10

Deleting Characters During Type-in 6-10

Using Bit Maps in a Sketch 6-11

Zooming Bitmaps 6-11

Changing Bitmaps 6-11

Freezing Sketch Elements 6-11

Aligning Sketch Elements 6-11

Placing Multiple Copies of Elements 6-11

Making the Window Fit the Sketch 6-12

Overlaying Figure Elements 6-12

Changing How Elements Overlap 6-12

Loading the Sketch Library Module 6-12

The Programmer's Interface 6-13

New Behavior for the Get Command 6-13

Establishing Initial Defaults for Sketch 6-13

1108 User's Guide Release Notes 6-14

What to Look For 6-14

File System 6-14

System Tool s 6-14

Input/Output 6-15

Machine Diagnostics 6-15

1186 User's Guide Release Notes 6-16

LISP RELEASE NOTES, MEDLEY RELEASE, TABLE OF CONTENTS ix

TABLE OF CONTENTS

What to Look For 6-16

File System 6-16

Software Installation 6-16

System Tools 6-17

Input/Output 6-17

Diagnostics 6-17

7. Common Lisp Implementation 7-1

New Features Since Lyric 7-1

Common Lisp Definers 7-1

Compile-Definer 7-2

Compile-Form 7-2

Define-File-Environment 7-2

Site-Name Special Uses 7-3

Record Access 7-3

Defi ne-Record 7-3

Record-Fetch 7-4

Record-FFetch 7-4

Record-Create 7-4

Array Reference 7-4

Shadowing of Global Macros 7-4

Evaluating Load-time Expressions 7-4

Common Lisp Defstruct Options 7-4

Defstruct Options 7-5

Defstruct Slot Options 7-5

Warning When Using Defstruct 7-6

Macros for Collecting Objects 7-6

xci: with-coil ecti on 7-6

Macros for Writi ng Macros 7-7

xci: once-only 7-7

Common Lisp Append Datatypes 7-8

Closure Cache 7-8

Symbols and Packages 7-8

Pkg -goto and In -package 7-8

Defpackage Export Argument 7-9

Debugging Tools 7-9

Breaking 7-9

Advising 7-9

Argument Names Displayed for Interpreted Functions 7-10

Lexical Variables Evaluated by Debugger 7-10

Pathname Component Fixed in FS-ERROR 7-10

x LISP RELEASE NOTES, MEDLEY RELEASE, TABLE OF CONTENTS

TABLE OF CONTENTS

Compiler Optimizations 7-10

Warning when using LABELS Construct 7-10

COMS added to dfasl files 7-11

Loadflg argument 7-11

Changes in MAP, WRITE-STRING, COERCE, GENSYM, DEFERREDCONSTANT 7-11

Compiler keeps Special &REST arguments 7-12

Compiler ignores TEd it formatting 7-12

Compiler notices Tail-recursive Lexical Functions 7-12

Compiler Error Message 7-12

Format -C and WRITE-CHAR 7-13

WITH-OUTPUT-TO-STRING I WITH-INPUT-FROM-STRING 7-13

A. The Exec ~1

Input Formats A-2

Multiple Execs and the Exec's Type A-4

Event Specification A-4

Exec Commands A-S

Variables A-9

Fonts in the Exec A-1 0

Changing the Exec A-11

Defining New Commands A-11

Undoing A-12

Undoing in the Exec A-13

Undoing in Programs A-13

Undoable Versions of Common Functions A-14

Modifying the UNDO Facility A-14

Undoing Out of Order A-16

Format and Use of the History List A-16

Making or Changing an Exec A-18

Editing Exec Input A-20

Editing Your Input A-21

Using the Mouse A-21

Editing Commands A-22

Cursor Movement Commands A-22

Buffer Modification Commands A-23

Miscellaneous Commands A-23

Useful Macros A-24

? = Handler A-24

Assorted Flags A-24

LISP RELEASE NOTES, MEDLEY RELEASE, TABLE OF CONTENTS xi

TABLE OF CONTENTS

B. SEd it-The Lisp Editor B-1

16.1 SEDIT-The Structure Editor B-1

16.1.1 An Edit Session B-1

16.1.2 SEdit Carets B-2

16.1.3 The Mouse B-3

16.1.4 Gaps B-4

16.1.5 Broken Atoms B-4

16.1.6 Special Characters B-5

16.1.7 Commands B-6

16.1.8 Editing Commands B-7

16.1.9 Completion Commands B-7

16.1.10 Undo Commands B-7

16.1.11 Find Commands B-8

16.1.12 General Commands B-9

16.1.13 Miscellaneous B-11

16.1.14 Help Menu B-11

16.1.15 Command Menu B-12

16.1.16 SEdit Programmer's Interface B-12

16.1.17 SEdit Window Region Manager B-12

16.1.18 Options B-13

16.1.19 Control Functions B-14

Warning with Declarations B-18

C.ICONW C-1

28.4.16 Creating Icons with ICONW C-1

28.4.16.1 Creating Icons C-1

28.4.16.2 Modifying Icons C-2

28.4.16.3 Default Ic::ons C-3

28.4.16.4 Sample Icons C-3

D. Free Menu 0-1

28.7 Free Menus 0-1

28.7.1 Making a Free Menu 0-1

28.7.2 Free Menu Formatting 0-1

28.7.3 Free Menu Descriptions 0-2

28.7.4 Free Menu Group Properties 0-7

28.7.5 Other Group Properties 0-8

28.7.6 Free Menu Items 0-8

28.7.7 Free Menu Item Description 0-8

xii LISP RELEASE NOTES, MEDLEY RELEASE, TABLE OF CONTENTS

TABLE OF CONTENTS

28.7.8 Free Menu Item Properties 0-9

28.7.9 Mouse Properties 0-10

28.7.10 System Properties 0-10

28.7.11 Predefined Item Types 0-11

28.7.12 Free Menu Item Highlighting 0-14

28.7.13 Free Menu Item Links 0-14

28.7.14 Free Menu Window Properties 0-15

28.7.15 Free Menu Interface Functions 0-15

28.7.16 Accessing Functions 0-15

28.7.17 Changing Free Menus 0-16

28.7.18 Editor Functions 0-17

28.7.19 Miscellaneous Functions 0-18

28.7.20 Free Menu Macros 0-18

E. Error System E-l

Summary of Error System Changes E-1

Introduction to Error System Terminology E-3

Program Interface to the Condition System E-5

Defining and Creating Conditions E-5

Signalling Conditions E-8

Handling Conditions E-11

Restarts E-13

INDEX INOEX-l

LISP RELEASE NOTES, MEOLEY RELEASE, TABLE OF CONTENTS xiii

TABLE OF CONTENTS

[This page intentionally left blank]

xiv LISP RELEASE NOTES, MEDLEY RELEASE, TABLE OF CONTENTS

LIST OF TABLES

Table Page

1. TEdifs Abbreviations and their Expanded Characters 6-1

LISP RELEASE NOTES, MEDLEY RELEASE, LIST OF TABLES xv

LIST OF TAB LES

[This page intentionally left blank]

xvi LISP RELEASE NOTES, MEDLEY RELEASE, LIST OF TABLES

PREFACE

The Lisp Release Notes provide current information about the
Lisp software development environment. You will find the
following information in these Notes:

• An overview of significant extensions to the Common Lisp
language.

• Descriptions of new features that enhance the integration
and implementation of Common Lisp into the Lisp
envi ronment.

• A summary of changes made in the Library modules, in the
Sketch and TEdit tools, and in the 1108 and 1186 User's
Guides.

• Discussions of how specific Common Lisp features have
affected the Interlisp-D language.

• Notes reflecting the changes made to Interlisp-D,
independent of Common Lisp.

• Known restrictions.

How the Release Notes are Organized

The Lisp Release Notes are organized as follows:

Chapter 1, Introduction, summarizes the Medley release
enhancements.

Chapter 2, Notes and Cautions, highlights significant Medley
and Lyric changes in the Lisp environment.

Chapter 3, Common Lisp/lnterlisp-D Integration, discusses how
the integration of Common Lisp into the Lisp environment
affects Interlisp features.

Chapter 4, Changes to Interlisp-D in Lyric/Medley, outlines
changes that have taken place in Interlisp-D and its environment
during the Lyric and Medley releases. These changes are
primarily independent of Common Lisp integration.

Chapters 3 and 4 are organized to parallel the Interlisp-D
Reference Manual as closely as possible. To make it easy to
use these chapters with the IRM, the following
conventions are used:

Information is organized by Interlisp-D Reference Manual
volume and section. The IRM section level headings are
maintained to aid in cross-referencing.

Chapter 5, Library Modules, is a synopsis of the changes to the
Lisp Library Modules.

Chapter 6, User's Guides, is a collection of release notes on the
1108 and 1186 User's Guides; A User's Guide to Sketch, and A
User's Guide to TEdit.

LISP RELEASE NOTES, MEDLEY RELEASE, PREFACE XVII

PREFACE

Notational Conventions

How to Use The Release Notes

xviii

Chapter 7, Common Lisp Implementation, describes improved
features that integrate Common Lisp into the environment.

Five Appendices contain documentation of newly integrated
system features:

Appendix A, The Exec, describes Lisp's Exec.

Appendix B, SEdit, describes the Lisp structure editor.

Appendix C, ICONW, describes the Lisp feature for building
display icons.

Appendix 0, Free Menu, describes Lisp's flexible menu
feature.

Appendix E, Error System, describes error conditions and
recovery.

Conventions used in the Lisp Release Notes include the
following:

Names of Interlisp functions, macros and variables are shown in
BOLD UPPERCASE; their arguments are in ITALICS.

Names of Common Lisp functions, macros and variables are
shown in bold lowercase; their arguments are in italics.

A backslash (\) character preceding a function or variable name
signifies that it is a property of the system.

Examples are shown in terminal 10.

Text shown with StrikeThru is information that no longer
applies.

Text shown with revision bars in the right margin is information
that has been added or modified since the last release.

References to the Interlisp-D Reference Manual, or IRM, are
used throughout this manual.

The Lisp Release Notes contain current information on the Lisp
environment. The Medley release enhances the Lyric release
with new features and corrections to over 450 known Lyric bugs.
Because Medley primarily contains additions to Lyric, these
Release Notes have been written to include Lyric information
that applies in Medley.

These Lisp Release Notes replace the Lyric Release Notes. The
descriptions contained within these Notes are closely interwoven

LISP RELEASE NOTES, MEDLEY RELEASE, PREFACE

Related Literatu re

PREFACE

with functions, variables and other concepts discussed in the
Interlisp-D Reference Manual, or IRM. Chapters 3 and 4 of
these Notes closely parallel the IRM, preserving section headings
with respect to order and numbering. You might find it helpful
to go through the Release Notes and the IRMtogether, marking
the IRM sections that have new information. Later when you
consult the IRM you will know which sections require you to read
the analogous section of the Release Notes.

We recommend that you use the Lisp Release Notes as a
supplement to the following publications:

Interlisp-D Reference Manual, Volumes I through III, Koto
Release, 1985.

Common Lisp, the Language, by Guy L. Steele Jr., Digital Press,
1984.

Common Lisp Implementation Notes, Lyric Release, 1987.

Lisp Documentation Tools, (includes "A User's Guide to TEdit"
and "A User's Guide to Sketch "), Lyric Release, 1987.

Lisp Library Modules, Medley Release, 1988.

Medley 1.0-S User's Guide, Medley Release, 1988.

LISP RELEASE NOTES, MEDLEY RELEASE, PREFACE xix

PREFACE

[This page intentionally left blank]

xx LISP RELEASE NOTES, MEDLEY RELEASE, PREFACE

Summary of Medley Changes

1. INTRODUCTION

The Lisp Release Notes contain information from both the Lyric
and Medley releases, including descriptions of all Lyric bug fixes.
Medley additions are indicated with revision bars in the right
margin.

The Medley release is currently provided on two platforms,
Xerox 1100 series workstations using Medley 1.0, and Sun 3
workstations using Medley 1.0-5. Medley 1.0 and Medley 1.0-5
are compatible with each other and will let you develop
software on either platform. Source and compiled files are
transferable between the two platforms. Sysouts developed on
Xerox workstations can also be run on the Sun 3. Sysouts made
on the Sun 3, however, cannot be run on Xerox workstations.

The Medley release enhances the Lyric release and fixes over 450
known Lyric bugs. Medley adds new features, improves
Common Lisp implementation, and improves overall reliability
of the Lisp sysout. Specific enhancements include:

• The COMPILER contains many added optimizations and
numerous bug fixes.

• The DEBUGGER evaluates lexical variables. Lexical variables
can now be contained in interpreted code.

• DFASL files now behave at the level of Interlisp-D compiled
files. COMS are contained in DFASLs so that the system loads
a DFASL file only once.

• The SEDIT code editor is more robust and better integrated
with the en vi ronment.

• Common Lisp comments are preserved during loading.
During MAKEFILE, comments can be written out with just
semicolons.

• The new ERROR SYSTEM is compatible with the most recent
standard defined for Common Lisp error systems.

• TEdit contains numerous bug fixes.

• MASTERSCOPE contains Common Lisp query support
allowing you to ask questions about Common Lisp code that
could previously be asked only of Interlisp-D code.
Currently, questions specific to Common Lisp constructs are
not su pported.

• RS232 contains may bug fixes that improve the reliability of
data transfer and the addition of various debugging tools.

• TCP/IP now contains many bug fixes including UNIX file
interface and directory enumeration.

LISP RELEASE NOTES, MEDLEY RELEASE, INTRODUCTION 1-1

1. INTRODUCTION

• A new System Tool lets you fetch sysouts from TCP hosts.

• NS Random Access is now supported.

• A new File Browser user interface now supports file sorting
by dates. The new interface includes the ability to stop in
the middle of operations.

• The Medley sysout is about the same size as the Lyric sysout.

In addition, Medley on the Sun 3 workstation offers the
following new features:

• The UnixChat library module allows you to communicate
with a UNIX shell on your own host.

• The UnixComm library module allows you to start a Unix
process on a Sun workstation and provides an interface to
the SunOS operating system.

• The ability to suspend Medley and use UNIX as a background
process is provided.

1-2 LISP RELEASE NOTES, MEDLEY RELEASE, INTRODUCTION

2. NOTES AND CAUTIONS

This section contains notes and cautions that apply in Lyric and
Medley. Medley notes are indicated with revision bars in the
right margin. Text shown with StrikeThru is that information
from the Lyric release that no longer applies.

Changes and Cautions in the Medley Release

• The Medley Release is currently provided on two platforms,
the Xerox 1100 series workstations and selected Sun
workstations. File structure for the 1108/09/86 remains the
same. For Sun workstations, UNIX file structure is
supported. See the Medley 1.0-5 User's Guide for details.

• Files compiled in Medley cannot be loaded back into Lyric.
Medley-compiled .LCOM and . DFASL files will produce an
error message when loaded into Lyric. (Lyric-compiled
.LCOM and .DFASL files can be loaded and run in Medley.)
If you need to run a Medley file in Lyric, load the source file
and use the Lyric compiler.

• SEdit and definers now support four-semicolon and
balanced comments. Print support for these new types of
comments is also provided. For details, see "TextModules"
in the Lisp Library Modules manual, and "SEdit" in Appendix
8 of this manual.

• Medley and Lyric can both be installed on one machine.

Changes and Cautions in the Lyric Release

• Koto and Lyric cannot both be supported on one machine.

• You must have Services 10.0 installed on your printers to
correctly print TEdit files.

• Interlisp DMACROs are not visible to Common Lisp. If a
symbol has both a function definition and a DMACRO
property, the compiler assumes that the DMACRO is an
optimizer for the old Interlisp compiler and ignores it.

• The Common Lisp functions found in Common Lisp, The
Language, section 25.4.2, "Other environmental Inquiries"
(e.g., L1SP-IMPLEMENTATION-TYPE) are in the COMMON LISP
(eL:) package.

• 80th Medley and Lyric use the new type of Executive, and
both sysouts contain the ability to spawn multiple executive
processes. The default executive is Common Lisp, not
Interlisp. The old Executive (the "Programmer's Assistant") is
not available in Medley.

LISP RELEASE NOTES, MEDLEY RELEASE, NOTES AND CAUTIONS 2-1

2. NOTES AN 0 CAUTIONS

You should be particularly careful in the new Executives
when typing file names, as some file name delimiters now
have syntactic significance in the new readtables. In
particular, the character colon (:) used in NS file server names
is a package delimiter in all new Executives, and the version
delimiter semi-colon (;) is a comment character in the
Common Lisp Executives. If you type a file name in the form
of a symbol to an Exec, you must escape the special
characters, or use the multiple escape character around the
whole name. For example, in a Common Lisp Exec you might
type

{FS\: Me\: Company} < Fred> Stuff. tedit\; 3

or

I{FS:Me:Company}< Fred >Stuff.tedit;31,

which are equivalent, except that the former is read as all
upper case (Common Lisp Exec's read case-insensitively). This
caution should also be noted when copy-selecting file names
out of a File Browser.

It is recommended that you type file names as strings
whenever possible, as virtually all system interfaces accept
strings instead of symbols. Two notable exceptions are
MAKEFILE and TEOIT, which require symbols when naming
files.

These escaping rules apply only to file names typed to an
Executive (or in general, a Lisp reader). Individual tools that
prompt for a file name read the name as a string, so escape
characters need not (and should not) be typed. In particular,
this is true for the prompt windows of TEdit and File Browser,
and the prompt for an Init file when a system with no local
Init file is started up.

• A new error system, based on the current Common Lisp
proposed error standard, replaces the old Interlisp error
system.

• The !EVAL debugger command no longer exists and the =
and -> break commands are no longer supported ..

• The function ERRORN no longer exists and ERRORTYPELIST is
no longer supported. See Chapter 3, Common Lisp IInterlisp
Integration, section 14.10 "Error List" for Interlisp errors that
are no longer supported.

• The Lyric release contained a new compiler and compiled
code format, .DFASL (FASt Loading) files. The old compiler is
still available and produces files in the old format, but with
extension .LCOM. The old compiler will not be available in
future releases.

• Files produced by the Lyric File Manager cannot be loaded
into previous releases of the system. Files compiled in Koto
cannot be loaded into Lyric.

2-2 LISP RELEASE NOTES, MEDLEY RELEASE, NOTES AND CAUTIONS

2. NOTES AND CAUTIONS

• SETQ from the exec does not interact with the File Manager,
nor does it print (var reset) (except in the "Programmer's
Assistant").

• DWIM/CLlSP: CLiSP infix is no longer fully supported; users
should dwimify old Koto code before running it in Lyric.
Additionally, WITH constructs using "E-" and BIND constructs
in the form of an atom AE-B need to be dwimified.

• The functions BREAKDOWN and BRKDWNRESUL TS as well as
the variables, BRKDWNTYPE and BRKDWNTYPES have been
removed from the environment. The Lisp Library Module,
Spy supersedes BREAKDOWN.

• The file system supports having multiple streams opened on
a single file at one time. This means that the input/output
functions accept only streams as arguments, not symbols
naming files. This has several implications for Interlisp
programmers, one being that the function ClOSEAll is no
longer implemented. See the Chapter 3, Common
Lisp/lnterlisp Integration, Streams and Files section, for
details.

• Windows cannot be used interchangeably with streams in
Common Lisp functions. If you need to use a window in the
middle of a Common Lisp function, use (IL:GETSTREAM
window) to get the associated display stream.

• Loading CPM-format floppies is very slow in Lyric.
CPM-format floppies are not supported in Medley.

• The default Interlisp readtable has been modified for
compatibility with Common Lisp. The characters colon (:),
hash (H) and vertical bar {I> have different meaning. The File
Manager gives a choice of reader environments in which to
write files, and remembers which one was used for each file.

• READ/PRINT consistency: Old Interlisp code that used READ
and PRINT without being careful about using a particular
readtable may need to be fixed.

• The Interlisp function SKREAD defaults its readtable
argument to the current readtable, viz., the value of
READTABLE, rather than FILERDTBL.

• FREEMENU and ICONW, formerly Library modules, are
included in the Lisp.sysout in Lyric and Medley.

• The Lyric Lisp editor, SEdit, has been modified in Medley.
DEdit is now a library module.

• Revised fonts: Lyric revised the naming convention for font
files, and printer width files had corrected line leading
information. Old Koto fORts caR still be used, but you are
eRcouraged to start usiRg tt:le ReVII fORts as SOOR as
practicable. Medley and Lyric fonts are completely
compatible.

• Lyric image objects are now stored on files in a way that
cannot always be read into Koto. (Lyric, on the other hand,
can read Koto image objects.) This means, for example, that

LISP RELEASE NOTES, MEDLEY RELEASE, NOTES AND CAUTIONS 2-3

2. NOTES AN D CAUTIONS

.f

2-4

you may not be able to share TEdit files or sketches
containing image objects between Koto and Lyric.

• The field names for the CU RSOR datatype have been
changed.

• Masterscope has been removed from the standard
environment. If you wish to use it, load the Masterscope
Library module.

• Pattern matching is no longer a part of the standard
environment. Pattern matching can be found in the Lisp
Library Module, Match.

• PRESS fonts are not part of the standard Lisp environment.
PRESS is now available as a Library Module.

• In Lyric, the Library module TCP/IP does not work on 1186
workstations that have both lOPs with part number
140K03030 and "old" ROMs. The problem is not with the
lOP board per se, rather it's a problem with the lOP's ROMs.
If TCP/IP doesn't work on your 1186 you should check your
lOP board revision. If you have the old lOP you may need to
replace the ROMs before you can use TCP/lP, contact your
service representative.

TCP/IP does work with newer lOPs-part number 140K05560.

If you attempt to Teleraid a Lyric sysout from a Koto sysout,
you should be aware of the following:

1. All symbols will be read as if they were in the
INTERLISP package and you can only type a subset of the IL
symbols to it.

2. Teleraid will not understand certain Common Lisp
datatypes, such as CHARACTER and strings .

LISP RELEASE NOTES, MEDLEY RELEASE, NOTES AND CAUTIONS

chapter 2 Litatoms

3. COMMON LISP/INTERLISP-D
INTEGRATION

NOTE: Chapter 3 is organized to correspond to the original
Interlisp-D Reference Manual, and explains changes related to
how Common Lisp affects Interlisp-D in your Lisp software
development environment. To make it easy to use this chapter
with the IRM, information is organized by IRM volume and
section numbers. Section headings from the IRM are maintained
to aid in cross-referencing.

Lyric information as well as Medley release enhancements are
included. Medley additions are indicated with revision bars in
the right margin.

VOLUME I-LANGUAGE

(2.1)

What Interlisp calls a "L1TATOM" is the same as what Common
Lisp calls a "SYMBOL" Symbols are partitioned into separate
name spaces called packages. When you type a string of
characters, the resulting symbol is searched for in the "current
package." A colon in the symbol separates a package name from
a symbol name; for example, the string of characters "CL:AREF"
denotes the symbol AREF accessible in the package CL For a full
discussion, see Guy Steele's Common Lisp, the Language.

All the functions in this section that create symbols do so in the
INTERLISP package (IL), which is also where all the symbols in the
Interlisp-D Reference Manual are found. Note that this is true
even in cases where you might not expect it. For example,
U-CASE returns a symbol in the INTERLISP package, even when its
argument is in some other package; similarly with L-CASE and
SUBATOM. In most cases, this is the right thing for an Interlisp
program; e.g., U-CASE in some sense returns a "canonical"
symbol that one might pass to a SELECTQ, regardless of which
executive it was typed in. However, to perform symbol
manipulations that preserve package information, you should
use the appropriate Common Lisp functions (See Common Lisp
the Language, Chapter 11, Packages and Chapter 18, Strings).

Symbols read under an old Interlisp readtable are also searched
for in the INTERLISP package. See Section 25.8, Readtables, for
more details.

LISP RELEME NOTES, MEDLEY RELEASE, COMMON L1SPIINTERLlSP-D INTEGRATION 3-1

3. COMMON LlSP/INTERLlSP-D INTEGRATION

Section 2.1 Using Litatoms as Variables

(BOUNDP VAR)

Section 2.3 Property Lists

(REMPROP A TM PROP)

Section 2.4 Print Names

(1:2.3)

[Function]

The Interlisp interpreter has been modified to consider any
symbol bound to the distinguished symbol NOBIND to be
unbound. It will signal an UNBOUND-VARIABLE condition on
encountering references to such symbols. In prior releases, the
interpreter only considered a symbol unbound if it had no
dynamic binding and in addition its top-level value was NOBIND.

For most user code, this change has no effect, as it is unusual to
bind a variable to the particular value NOBIND and still
deliberately want the variable to be considered bound.
However, it is a particular problem when an interpreted Interlisp
function is passed to the function MAPA TOMS. Since NOBIND is
a symbol, it will eventually be passed as an argument to the
interpreted function. The first reference to that argument
within the function will signal an error.

A work-around for this problem is to use a Common Lisp
function instead. Calls to this function will invoke the Common
Lisp interpreter which will treat the argument as a local, not
special, variable. Thus, no error will be signaled. Alternatively,
one could include the argument to the Interlisp function in a
LOCALVARS declaration and then compile the function before
passing it to MAPA TOMS. This has the advantage of significantly
speeding up the MAPATOMS call.

(1:2.6)

The value returned from the function REMPROP has been
changed in one case:

[Function]

Removes all occurrences of the property PROP (and its value)
from the property list of ATM. Returns PROP if any were found (T
if PROP is NIL), otherwise NIL.

(1:2.7)

The print functions now qualify the name of a symbol with a
package prefix if the symbol is not accessible in the current
package. The Interlisp "PRIN 1" print name of a symbol does not
include the package name.

(1:2.10)

The GENSYM function in Interlisp creates symbols interned in the
INTERLISP package. The Common Lisp CL:GENSYM function
creates uninterned symbols.

3-2 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION

(MAPA TOMS FN)

Section 2.5 Characters

Chapter 4 Strings

chapter 5 Arrays

3. COMMON L1SP/INTERLlSP-D INTEGRATION

(1:2.11)

[Function]

See the note for BOUNDP above.

A "character" in Interlisp is different from the type "character"
in Common Lisp. In Common Lisp, "character" is a distinguished
data type satisfying the predicate CL:CHARACTERP. In Interlisp,
a "character" is a single-character symbol, not distinguishable
from the type symbol (Iitatom). Interlisp also uses a more
efficient object termed "character code", which is
indistinguishable from the type integer.

Interlisp functions that take as an argument a "character" or
"character code" do not in general accept Common Lisp
characters. Similarly, an Interlisp "character" or "character
code" is not acceptable to a Common Lisp function that operates
on characters. However, since Common Lisp characters are a
distinguished datatype, Interlisp string-manipulation functions
are willing to accept them any place that a "string or symbol" is
acceptable; the character object is treated as a single-character
string.

To convert an Interlisp character code n to a Common Lisp
character, evaluate (CL:CODE-CHAR n). To convert a Common
Lisp character to an Interlisp character code, evaluate
(CL:CHAR-CODE n). For character literals, where in Interlisp one
would write (CHARCODE x), to get the equivalent Common Lisp
character one writes #\x. In this syntax, x can be any character or
string acceptable to CHARCODE; e.g., #\GREEK-A.

(/:4.1)

Interlisp strings are a subtype of Common Lisp strings. The
functions in this chapter accept Common Lisp strings, and
produce strings that can be passed to Common Lisp string
manipulation functions.

Interlisp arrays and Common Lisp arrays are disjoint data types.
Interlisp arrays are not acceptable arguments to Common Lisp
array functions, and vice versa. There are no functions that
convert between the two kinds of arrays.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION 3-3

3. COMMON LlSP/INTERLlSP-D INTEGRATION

chapter 6 Hash Arrays

Interlisp hash arrays and Common Lisp hash tables are the same
data type, so Interlisp and Common Lisp hash array functions
may be freely intermixed. However, some of the arguments are
different; e.g., the order of arguments to the map functions in
IL:MAPHASH and CL:MAPHASH differ. The extra functionality
of specifying your own hashing function is available only from
Interlisp HASHARRAY, not CL:MAKE-HASH-TABLE , though the
latter does supply the three built-in types specified by Common
Lisp, the Language.

Chapter 7 Numbers and Arithmetic Functions

Section 7.2 Integer Arithmetic

(I:7.2)

The addition of Common Lisp data structures within the Lisp
environment means that there are some invariants which used to
be true for anything in the environment that are no longer true.

For example, in Interlisp, there were two kinds of numbers:
integer and floating. With Common Lisp, there are additional
kinds of numbers, namely ratios and complex numbers, both of
which satisfy the Interlisp predicate NUMBERP. Thus, NUMBERP
is no longer the simple union of FIXP and FLOATP. It used to be
that a program containing

(if (NUMBERP X)
then (if (FIXP X)

the n .. . assume X is an integer ...
e 1 s e ... can assume X is floating point...))

would be correct in Interlisp. However, this is no longer true; this
program will not deal correctly with ratios or complex numbers,
which are NUMBERP but neither FIXP nor FLOATP.

When typing to a new Interlisp Executive, the input syntax for
integers of radix other than 8 or 10 has been changed to match
that of Common Lisp. Use # instead of I, e.g., #b10101 is the
new syntax for binary numbers, #x1A90 for hexadecimal, etc.
Suffix Q is still recognized as specifying octal radix, but you can
also use Common Lisp's #0 syntax.

(I: 7. 4}

In the Lyric release, the FASL machinery would handle some
positive literals incorrectly, reading them back as negative
numbers. The numbers handled incorrectly were those numbers
x greater than 2**31-1 for which (mod (integer-length x) 8) was
zero. The Medley release fixes this situation. Any files
containing such numbers should be recompiled.

3-4 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION

3. COMMON LlSP/INTERLlSP-D INTEGRATION

chapter 10 Function Definition, Manipulation, and Evaluation

Section 10.1 Function Types

Section 10.6 Macros

Ali Interlisp NLAMBDAs appear to be macros from Common
Lisp's point of view. This is discussed at greater length in
Common Lisp Impementation Notes, Chapter 8, Macros.

(EXPANDMACRO EXP QUIETFLG - -) [Function]

Section 10.6.1 DEFMACRO

Chapter 11 Stack Functions

Section 11.1 The Spaghetti Stack

EXPANDMACRO only works on Interlisp macros, those appearing
on the MACRO, BYTEMACRO or DMACRO properties of symbols.
Use CL:MACROEXPAND·1 to expand Common Lisp macros and
those Interlisp macros that are visible to the Common Lisp
compiler and interpreter.

(1:10.24)

Common Lisp does not permit a symbol to simultaneously name
a function and a macro. In Lyric, this restriction also applies to
Interlisp macros defined by DEFMACRO. That is, evaluating
DEFMACRO for a symbol automatically removes any function
definition for the symbol. Thus, if your purpose for using a
macro is to make a function compile in a special way, you should
instead use the new form XCL:DEFOPTIMIZER, which affects only
compilation. The Xerox Common Lisp Implementation Notes
describe XCL:DEFOPTIMIZER.

Interlisp DMACRO properties have typically been used for
implementation-specific optimizations. They are not subject to
the above restriction on function definition. However, if a
symbol has both a function definition and a DMACRO property,
the Lisp compiler assumes that the DMACRO was intended as an
optimizer for the old Interlisp compiler and ignores it.

Stack poi nters now pri nt in the form

#(Stackp address/framename>.

Some restrictions were placed on spaghetti stack manipulations
in order to integrate reasonably with Common Lisp's CL:CATCH
and CL:THROW. In Lyric, it is an error to return to the same
frame twice, or to return to a frame that has been unwound
through. This means, for example, that if you save a stack
pointer to one of your ancestor frames, then perform a
CL:THROW or RETFROM that returns "around" that frame, i.e.,

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION 3-5

3. COMMON LlSP/INTERLlSP-D INTEGRATION

chapter 12 Miscellaneous

to an ancestor of that frame, then the stack pointer is no longer
valid, and any attempt to use it signals an error "Stack Pointer
has been released". It is also an error to attempt to return to a
frame in a different process, using RETFROM, RETIO, etc.

The existence of spaghetti stacks raises the issue of under what
circumstances the cleanup forms of CL:UNWIND-PROTECT are
performed. In Lisp, CL:THROW always runs the cleanup forms of
any CL:UNWIND-PROTECT it passes. Thanks to the integration of
CL:UNWIND-PROTECT with RESETLST and the other Interlisp
context-saving functions, CL:THROW also runs the cleanup forms
of any RESETLST it passes. The Interlisp control transfer
constructs RETFROM, RETIO, RETEVAL and RETAPPLY also run
the cleanup forms in the analogous case, viz., when returning to
a direct ancestor of the current frame. This is a significant
improvement over prior releases, where RETFROM never ran any
cleanup forms at all.

In the case of RETFROM, etc, returning to a non-ancestor, the
cleanup forms are run for any frames that are being abandoned
as a result of transferring control to the other stack control chain.
However, this should not be relied on, as the frames would not
be abandoned at that time if someone else happened to retain a
pointer to the caller's control chain, but subsequently never
returned to the frame held by the pointer. Cleanup forms are
not run for frames abandoned when a stack pointer is released,
either explicitly or by being garbage-collected. Cleanup forms
are also not run for frames abandoned because of a control
transfer via ENVEVAL or ENVAPPLY. Callers of ENVEVAL or
ENVAPPLY should consider whether their intent would be served
as well by RETEVAL or RETAPPLY, which do run cleanup forms in
most cases.

Section 12.4 System Version Information

Section 12.8 Pattern Matching

All the functions listed on page 12.12 in the Interlisp-D Reference
Manual have had their symbols moved to the LISP (CL) package.
They are not shared with the INTERLISP package and any
references to them in your code will need to be qualified i.e.,
CL:name.

Pattern matching is no longer a standard part of the
environment. The functionality for Pattern matching can be
found in the Lisp Library Module called MATCH.

3-6 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION

Chapter 13 Interlisp Executive

3. COMMON LlSP/INTERLlSP-D INTEGRATION

VOLUME II-ENVIRONMENT

[This chapter of the Interlisp-D Reference Manual has been
renamed Chapter 13, Executives.]

Lisp has a new kind of Executive (or Exec), designed for use in an
environment with both Interlisp and Common Lisp. This
executive is available in three standard modes, distinguished by
their default settings for package and readtable:

XCL New Exec. Uses XCL readtable, XCL-USER package

CL New Exec. Uses LISP readtable, USER package

IL New Exec. Uses INTERLISP readtable, INTERLISP package

OLO-INTERLISP

In addition, the old Interlisp executive, the "Programmer's
Assistant", is still available in this release for the convenience of
Koto users:

Old "Programmer's Assistant" Exec. Uses OLO-INTERLlSP-T
readtable, INTERLISP package. It is likely that this executive will
not be supported in future releases.

When Lisp starts, it is running a single executive, the XCL Exec.
You can spawn additional executives by selecting EXEC from the
background menu. The type of an executive is indicated in the
title of its window; e.g., the initial executive has title "Exec
(XCL)". Each executive runs in its own process; when you are
finished with an executive, you can simply close its window, and
the process is killed.

The new executive is modeled, somewhat, on the old
"Programmer's Assistant" executive and, to a first
approximation, you can type to it just as you did in past releases.
You should note, however, that the default executive (XCL)
expects Common Lisp input syntax, and reads symbols relative to
the XCL-USER package. This means that to type Interlisp symbols,
you must prefix the symbol with the characters "IL:" (in upper or
lower case). And even in the new IL executive, the readtable
being used is the new INTERLISP readtable, in which the
characters colon (:), vertical bar (I) and hash (#) all have different
meanings than in Koto.

The OLO-INTERLISP exec, with one exception, uses exactly the
same input syntax as in Koto; this means in particular that colon
cannot be used to type package-qualfied symbols, since colon is
an ordinary character there. The one exception is that there is a
package delimiter character in the OLD-INTERLISP readtable,
should you have a need to use it-Control-1', which usually
echoes as "1'1''', though it may appear as a black rectangle in
some fonts.

The new executive does differ from the old one in several
respects, especially in terms of its programmatic interface.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-O INTEGRATION 3-7

3. COMMON L1SPIINTERLlSP-D INTEGRATION

3-8

Complete details of the new executive can be found in Appendix
A. The Exec. Some of the important differences are:

• Executives are numbered

Executives, other than the first one, are labeled with a distinct
number. This number appears in the exec window's title, and
also in its prompt, next to the event number. The OLD-INTERLISP
executive does not include this exec number.

• Event number allocation

The numbers for events are allocated at the time the prompt for
the event is printed, but all execs still share a common event
number space and history list. This means that ?? shows all
events that have occurred in any executive, though not
necessarily in the order in which the events actually occurred
(since it is the order in which the event numbers were allocated).
Events for which the type-in has not been completed are labeled
"< in progress>" in the ?? listing. In the old executive, event
numbers are not allocated until type-in is complete, which means
that the number printed next to the prompt is not necessarily the
number associated with the event, in the case that there has
been activity in other executives.

In the new executive, relative event specifications are local to the
exec; e.g., -1 refers to the most recent event in that specific exec.
In the old executive, -1 referred to the immediately preceding
event in any executive.

• New facility for commands

The old Executive has commands based on lISPXMACROS. The
new Executive has its own command facility,
XCl:DEFCOMMAND, which allows commands to be named
without regard to package, and to be written with familiar
Common Lisp style of argument list.

• Commands are typed without parentheses

In the old executive, a command could be typed with or without
enclosing parentheses. In the new executive, a parenthesized
form is always interpreted as an EVAL-style input, never a
command.

• SETQ does not interact with the File Manager

In the Koto release, when you typed in the Exec

(SETQ FOO some-new-value-for-FOO)

the executive responded (FOO reset), and the file package was
told that FOO's value changed. Any files on which FOO
appeared as a variable would then be marked as needing to be
cleaned up. If FOO appeared on no file, you'd be prompted to
put it on one when you ran (FilES?).

This is still the case in the old executive. However, it is no longer
the case in the new executive. If you are setting a variable that is
significant to a program and you want to save it on a file, you
should use the Common Lisp macro Cl:DEFPARAMETER instead
of SETQ. This will give the symbol a definition of type
VARIABLES (rather than VARS), and it will be noticed by the File

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION

Chapter 14 Errors and Breaks

Section 14.3 Break Commands

3. COMMON LlSPIINTERLlSP-D INTEGRATION

manager. If you want to change the value of the variable, you
must either use CL:DEFPARAMETER again, or edit the variable
using ED (not DV).

• Programmatic interface completely different

As a first approximation, all the functions and variables in IRM
Sections 13.3 (except the LlSPXPRINT family) and 13.6 apply only
to the Old Interlisp Executive, unless specified otherwise in
Appendix A. In particular, the variables PROMPT#FLG,
PROMTPCHARFORMS, SYSPRETTYFLG, HISTORYSAVEFORMS,
RESETFORMS, ARCHIVEFN, ARCHIVEFLG, LlSPXUSERFN,
LlSPXMACROS, LlSPXHISTORYMACROS and READBUF are not
used by the new Exec. The function USEREXEC invokes an
old-style Executive, but uses the package and readtable of its
caller. The function LlSPXUNREAD has no effect on the new
Exec. Callers of LlSPXEVAL are encouraged to use EXEC-EVAL
instead.

Some subsystems still use the old-style Executive..:-in particular,
the tty structure editor.

Lisp extends the Interlisp break package to support multiple
values and the Common Lisp lambda syntax. Interlisp errors have
been converted to Common Lisp conditions.

Note that Sections 14.2 through 14.6 in the Interlisp-D Reference
Manual have been replaced by new Debugger information (see
Common Lisp Implementation Notes).

(II: 14.6)

The !EVAL debugger command no longer exists.

(II: 14.10-11)

The Break Commands = and -) are no longer supported.

Section 14.6 Creating Breaks with BREAK1

Section 14.7 Signalling Errors

While the function BREAK1 still exists, broken and traced
functions are no longer redefined in terms of it. More primitive
constructs are used.

Interlisp errors now use the new XCL error system. Most of the
functions still exist for compatibility with existing Interlisp code,
but the underlying machinery is different. There are some
incompatible differences, however, especially with respect to
error numbers.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION 3-9

3. COMMON LlSP/INTERLlSP-D INTEGRATION

Section 14.8 Catching Errors

The old Interlisp error system had a set of registered error
numbers for well known error conditions, and all other errors
were identified by a string (an error message). In the new Lisp
error system, all errors are handled by signalling an object of
type XCL:CONDITION. The mapping from Interlisp error
numbers to Lisp conditions is given below in Section 14.10.

Since one cannot in general map a condition object to an
Interlisp error number, the function ERRORN no longer exists.
The equivalent functionality exists by examining the special
variable *LAST-CONDITION*, whose value is the condition object
most recently signaled.

(ERRORX ERXM) calls CL:ERROR after first converting ERXM into
a condition in the following way: If ERXM is NIL, the value of
LAST-CONDITION is used; if ERXM is an Interlisp error
descriptor, it is first converted to a condition; finally, if ERXM is
already a condition, it is passed along unchanged. ERRORX also
sets up a proceed case for XCL:PROCEED, which will attempt to
re-evaluate the caller of ERRORX, much as OK did in the old
Interlisp break package.

ERROR, HELP, SHOULDNT, RESET, ERRORMESS, ERRORMESS1,
and ERRORSTRING work as before. All output is directed to
ERROR-OUTPUT, initially the terminal.

ERROR! is equivalent to the new error system's XCL:ABORT
proceed function, except that if no ERRORSET or
XCL:CATCH-ABORT is found, it unwinds all the way to the top of
the process.

SETERRORN converts its arguments into a condition, then sets
the value of *LAST-CONDITION* to the result.

ERRORSET, ERSETQ and NLSETQ have been reimplemented in
terms of the new error system, but their behavior is essentially
the same as before. NLSETQ catches all errors (conditions of type
CL:ERROR and its descendants), and sets up a proceed case for
XCL:ABORT so that ERROR! will return from it. ERSETQ also sets
up a proceed case for XCL:ABORT, though it does not catch
errors.

One consequence of the new implementation is that there are
no longer frames named ERRORSET on the stack; programs that
explicitly searched for such frames will have to be changed.

ERRORTYPELIST is no longer supported. The equivalent
functionality is provided by default handlers. Although
condition handlers provide a more powerful mechanism for
programmatically responding to an error condition, old
ERRORTYPELST entries generally cannot be translated directly.
Condition handlers that want to resume a computation (rather
than, say, abort from a well-know stack location) generally
require the cooperation of a proceed case in the signalling code;
there is no easy way to provide a substitute value for the
"culprit" to be re-evaluated in a general way.

3-10 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION

3. COMMON LlSP/INTERLlSP-D INTEGRATION

One important difference between ERRORTYPELIST and
condition handlers is their behavior with respect to NLSETQ. In
Koto, the relevant error handler on ERRORTYPELST would be
tried, even for errors occurring underneath an NLSETQ. In Lyric,
the NLSETQ traps all errors before the default condition handlers
can see the error. This means, for example, that the behavior of
{NLSETQ (OPEN STREAM __ » is now different if the OPENSTREAM
causes a file not found error-in Koto, the system would search
DIRECTORIES for the file; in Lyric, the NLSETQ returns NIL
immediately without searching, since the default handler for
XCL:FILE-NOT-FOUND is not invoked.

Section 14.9 Changing and Restoring System State

Section 14.10 Error List

The special forms RESETLST, RESETSAVE, RESETVAR, RESETVARS
and RESETFORM still exist, but are implemented by a new
mechanism that also supports Common Lisp's
CL:UNWIND-PROTECT. Common Lisp's CL:THROW and (in most
cases) Interlisp's RETFROM and related control transfer
constructs cause the cleanup forms of both
CL:UNWIND-PROTECT and RESETLST (etc) to be performed. This
is discussed in more detail in the notes for Chapter 11, the stack.

Most of the Interlisp errors are mapped into condition types in
Lisp. Some are no longer supported. Following is the list of error
type mappings. The first name is the condition type that the
error descriptor turns into. If there is a second name, it is the slot
whose value is set to CADR of the error descriptor. Any
additional pairs of items are the values of other slots set by the
mapping. Attempting to use an unsupported error type number
will result in a simple error to that effect.

o Obsolete

1 Obsolete

2 STACK-OVERFLOW

3 ILLEGAL-RETURN

4 XCL:SIMPLE-TYPE-ERROR CULPRIT : EXPECTED-TYPE 'LIST

5 XCL:SIMPLE-DEVICE-ERROR MESSAGE

6 XCL:A TTEMPT-TO-CHANGE-CONSTANT

7 XCL:ATTEMPT-TO-RPLAC-NIL MESSAGE

8 ILLEGAL-GO TAG

9 XCL:FILE-WONT-OPEN PATHNAME

10 XCL:SIMPLE-TYPE-ERROR CULPRIT : EXPECTED-TYPE
'CL:NUMBER

11 XCL:SYMBOL-NAME-TOO-LONG

12 XCL:SYMBOL-HT-FULL

13 XCL:STREAM-NOT-OPEN STREAM

14 XCL:SIMPLE-TYPE-ERROR CULPRIT : EXPECTED-TYPE 'CL:SYMBOL

15 Obsolete

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION 3-11

3. COMMON LlSPIINTERLlSP-D INTEGRATION

3-12

16 END-OF-FllE STREAM

17 INTERLlSP-ERROR MESSAGE

18 Not supported (control-B interrupt)

19 ILLEGAl-STACK-ARG ARG

20 Obsolete

21 XCl:ARRAY-SPACE-FULL

22 XCL:FS-RESOURCES-EXCEEDED

23 XCl:FILE-NOT-FOUND PATHNAME

24 Obsolete

25 INVALID-ARGUMENT-LiST ARGUMENT

26 XCL:HASH-TABLE-FULL TABLE

27 INVALID-ARGUMENT-LiST ARGUMENT

28 XCL:SIMPlE-TYPE-ERROR CULPRIT:EXPECTED-TYPE 'ARRAYP

29 Obsolete

30 STACK-POINTER-RElEASED NAME

31 XCL:STORAGE-EXHAUSTED

32 Not supported (attempt to use item of incorrect type)

33 Not supported (illegal data type number)

34 XCL:DATA-TYPES-EXHAUSTED

35 XCL:A TTEMPT-TO-CHANGE-CONSTANT

36 Obsolete

37 Obsolete

38 XCl: SIMPlE-TYPE-ERROR CULPRIT : EXPECTED-TYPE
'READTABLEP

39 XCl:SIMPLE-TYPE-ERROR CULPRIT : EXPECTED-TYPE
'TERMTABlEP

40 Obsolete

41 XCL:FS-PROTECTION-VIOLATION

42 XCL:INVALID-PATHNAME PATHNAME

43 Not supported (user break)

44 UNBOUND-VARIABLE NAME

45 UNDEFINED-CAR-OF-FORM FUNCTION

46 UNDEFINED-FUNCTION-IN-APPLY

47 XCL:CONTROl-E-INTERRUPT

48 XCL: FLOATING-UNDERFLOW

49 XCL: FLOATI NG-OVERFlOW

50 Not supported (integer overflow)

51 XCL:SIMPlE-TYPE-ERROR CULPRIT : EXPECTED-TYPE
'CL:HASH-TABlE

52 TOO-MANY-ARGUMENTS CALLEE :MAXIMUM
CL:CAlL-ARGUMENTS-LiMIT

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION

3. COMMON L1SPIINTERLlSP-D INTEGRATION

Note that there are many other condition types in Lisp; see the
error system documentation in the Common Lisp
Implementation Notes for detai Is.

Chapter 15 Breaking Functions and Debugging

In Lyric the uses of BREAK, TRACE, and ADVISE are unchanged,
from the user's point of view, but the internals of their
implementation are quite different.

For complete documentation on the new implementation of
breaking, tracing and advising, see the Common Lisp
Implementation Notes, Section 25.3.

In particular, you should note the following differences:

• The variable BRKINFOLST no longer exists and the format
of the value of the variable BROKENFNS has changed. In
addition, the BRKINFO property is no longer used.

• BREAK and TRACE no longer work on CLISP words.

• The BREAKIN and UNBREAKIN functions no longer exist.
No comparable facility exists in Lisp. The user can
manually insert calls to the Common Lisp function
CL:BREAK in order to create a breakpoint at that point in
the function.

Please note the following additional changes to breaking
functions:

Section 15.1 Breaking Functions and Debugging

(BREAKO FN WHEN COMS --) [Function]

The function BREAKO now works when applied to an undefined
function. This allows you to use the breaking facility to create
"stubs" that generate a breakpoint when called. You can then
examine the arguments passed and use the RETURN command in
the debugger to return the proper result(s).

The "break commands" facility (the COMS argument) is no
longer supported. BREAKO now signals an error when supplied
with a non-NIL third argument. If you need finer control over
the functioning of breakpoints you are directed to the ADVISE
facility; it offers complete control of how and when the given
function is evaluated.

Passing a non-atomic argument in the form (FN1 IN FN2) as the
first argument to BREAKO still has the effect of creating a
breakpoint wherever FN2 calls FN1. However, it no longer
creates a function named FN1-IN-FN2 to do so. In addition, the
format of the val ue of the NAMESCHANGED property has
changed and the ALIAS property is no longer used.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON L1SPIINTERLlSP-D INTEGRATION 3-13

3. COMMON LlSPIINTERLlSP-D INTEGRATION

(TRACE X)

(UNBREAK X)

Section 15.2 Advising

[Function]

TRACE is no longer a special case of BREAK, though the functions
UNBREAK and REBREAK continue to work on traced functions.

In addition, the function TRACE no longer calls BREAKO in order
to do its job. Also, non-atomic arguments to TRACE no longer
specify forms the user wishes to see in the tracing output.

[Function]

The function UNBREAK is no longer implemented in terms of
UNBREAKO, although that function continues to exist.

The implementation of advising has been completely reworked.
While the semantics implied by the code shown in Section 15.2.1
of the Interlisp-D Reference Manual is still supported, the details
are quite different. In particular, it is now possible to advise
functions that return multiple values and for AFTER-style advice
to access those values. Also, all advice is now compiled, rather
than interpreted. The advising facility no longer makes use of
the special forms ADV-PROG, ADV-RETURN, and ADV-SETQ.

You should also note the following changes to the advise
facility:

• The editing of advice has changed slightly. In previous
releases, the advice and original function-body were
edited simultaneously. In Lyric, they can only be edited
separately. When you finish editing the advice for a
function, that function is automatically re-advised using
the new advice.

• The variable ADVINFOlST no longer exists and the format
of the value of the variable ADVISEDFNS has changed. In
addition, the properties ADVICE and READVICE are no
longer used, except in the handling of advice saved on
files from previous releases. Advice saved in Lyric does not
use the READVICE property.

• The function ADVISEDUMP no longer exists.

• Advice saved on files in previous releases can, in general,
be loaded into the Lyric system compatibly. A known
exception is the case in which a list of the form (FN1 IN
FN2) was given to the ADVICE or ADVISE file package
commands. When READVISE is called on such a name, the
old-style advice, on the READVICE property of the symbol
FN1-IN-FN2, will not be found. This will eventually lead to
an XCl:A TTEMPT-TO-RPLAC-Nll error. The user should
evaluate the form

(RETFROM'READVISE1)
in the debugger to proceed from the error and later
evaluate

(READVISE FN1-IN-FN2)
by hand to install the advice.

3-14 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION

3. COMMON IISP/iNTERlISP-D INTEGRATION

• The ADVICE and ADVISE File Manager commands now
accept three kinds of arguments:

a symbol, naming an advised function,
a list in the form (FN1 :IN FN2), and
a symbol of the form FN1-IN-FN2.

Arguments of the form (FN1 IN FN2) are not acceptable
any longer. Arguments of the form FN1-IN-FN2 should be
converted into the equivalent form (FN1 :IN FN2).

(ADVISE WHO WHEN WHERE WHA n [Function]

Chapter 16 List Structure Editor

In the Lyric release of Lisp, ADVISE has some changes in the way
arguments are treated and the possible values for those
arguments. Most notably:

• In earlier releases, you could call ADVISE with only one
argument, the name of a function. In this case, ADVISE
"set up" the named function for advising, but installed no
advice. This usage is no longer supported.

• Previously, an undocumented value of BIND was accepted
for the WHEN argument to ADVISE. This kind of advice is
no longer supported. It can be adequately simulated
using AROUND advice.

In addition, advising Common Lisp functions works somewhat
differently with respect to a function's arguments. The
arguments are not available by name. Instead, the variable
XCl:ARGLIST is bound to a list of the values passed to the
function and may be changed to affect what will be passed on.

As with the breaking facility (see above), ADVISE no longer
creates a function named FN1-IN-FN2 as a part of advising (FN1
IN FN2).

The list structure editor, DEdit, is not part of the Lisp
environment. It is now a Lisp Library Module. Chapter 16 has
been renamed Structure Editor.

SEdit, the new Lisp editor, replaced DEdit in the Lyric release. The
description of SEdit may be found in Appendix B of this volume.
The commands used to invoke both SEdit and DEdit are the
same.

Following is a description of the interface to the Lisp editor.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION 3-15

3. COMMON LlSPIINTERLlSP-D INTEGRATION

Switching Between Editors

Packages

Starting a Lisp Editor

If you have both SEdit and DEdit loaded, you can switch between
them by calling: (EDITMODE 'EDI TORNA ME) where
EDITORNAME is one of the symbols SEdit or DEdit.

The ED editor interface accepts TYPE information from the
Interlisp or Common Lisp packages.

In the XCL environment, calling ED with a pathname will start
the editor on the coms of the file (as if DC had been called).

(ED NAME &OPTIONAL OPTIONS) [Function]

3-16

This function starts the Lisp editor. ED is the default interface
to the editor. SEdit is the default Lisp editor. The same symbol,
ED, is exported in both the IL and CL packages.

I

NAME is the name of any File Manager object.

OPTIONS is either a single symbol or a list of symbols, each of
which is either a File Manager type or one or more of the
keywords :DISPlAY, : DONTWAIT, :CURRENT,
:COMPllE-ON-COMPlETION, :ClOSE-ON-COMPlETION, or
:NEW. If exactly one File Manager type is given, ED tries to edit
that type of definition for NAME. If more than one type is given
in OPTIONS, ED will determine for which of them NAME has a
definition. If a definition exists for more than one of the types,
ED gives you a choice of which one to edit. If no File Manager
types are given, ED treats OPTIONS as a list of all of the existing
types; thus you are given a choice of all of the existing
definitions of NAME.

The variable FllEPKGTYPES contains a complete list of the
currently-known manager types.

If the keyword :DISPlAY is included in OPTIONS, ED uses menus
for any prompting, (e.g., to choose one of several possible
definitions to edit). If :DISPLA Y is not included, ED prints its
queries to and reads the user's replies from *QUERY-IO* (usually
the Exec in which you are typing). Thus all of the following are
correct ways to call the editor:

(ED 'NAME :DISPLAY)

(ED 'NAME 'FUNCTIONS)

(ED 'NAME '(:DISPLAY))

(ED 'NAME '(FUNCTIONS :DISPLAY))

(ED 'NAME '(FUNCTIONS VARIABLES :DISPLAY))

The other keywords are interpreted as follows:

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION

3. COMMON LlSP/INTERLlSP-D INTEGRATION

:CURRENT

This is a new option with Medley that causes ED to call TYPESOF
with SOURCE = CURRENT. This prevents TYPESOF from
searching FILECOMS and from looking in WHERE-IS databases.
The CURRENT option looks only for definitions that are currently
loaded. When you know that the definition is loaded, use of
the CURRENT option results in ED being significantly faster.

: DONTWAIT

Lets the edit interface return right away, rather than waiting for
the edit to be complete. OF, DV, DC, and DP specify this option
now, so editing from the exec will not cause the exec to wait.

:NEW

Lets you install a new definition for the name to be edited. You
will be asked what type of dummy definition you wish to install
based on which file manager types were included in OPTIONS.

:COMPllE·ON·COMPlETION

This option specifies that the definition being edited should be
compiled upon completion regardless of the completion
command used.

:ClOSE·ON·COMPlETION

Tells the editor that it must close the editor window after the
first completion. So in SEdit, CONTROL-X will close the window;
shrinking the window is not allowed. Editor windows opened by
the exec command FIX specify this option.

If NAME does not have a definition of any of the given types, ED
can create a dummy definition of any of those types. If :DISPLAY
is provided in OPTIONS, ED will pop-up the following menu
asking you which type of definition to install. Select the
template for the type of definition you wish to create from the
DEFN menus and submenus:

Select ate for a dumm' defn:
OPTIMIZERS ~.
STRUCTURES r
SETFS }-
TYPES }-
VARIABLES }-
FUNCTIONS i·
DEFINE - TYPES ~.
FNS ~.

Don't make a dumm defn

New kinds of dummy definitions can be added to the system
through the use of the :PROTOTYPE option to XCl:DEFDEFINER.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION 3-17

3. COMMON lISP/INTERlISP-D INTEGRATION

Mapping the Old Edit Interface to ED

DP

Editing Values Directly

OF NAME

DV NAME

DP NAME

The old functions for starting the Lisp editor (OF, OV, OP, and DC)
have been reimplemented so that they work with Common Lisp.
The old edit commands map to the new editor function (ED) as
follows:

~ (ED 'NAME '(FUNCTIONS FNS :DONTWAIT»

~ (ED 'NAME '(VARIABLES VARS :DONTWAIT»

~ (ED 'NAME '(PROPERTY-LIST :DONTWAIT»

NAME MYPROP ~ (ED ' (NAME MYPROP) '(PROPS :DONTWAIT»

DC NAME ~ (ED 'NAME '(FILES :DONTWAIT»

Thus, for example, when OF is invoked it looks first for Common
Lisp FUNCTIONS and then for Interlisp FNS. OV, DP and DC
operate in an analogous fashion.

The TYPE you specify for the object you want to edit determines
how that object is edited, i.e. by DEFINITION or VALUE. Normally
you want to edit the DEFINITION (this is the default). For
example, suppose FOO is defined as a variable; to start the
editor on the DEFINITION of FOO, use the form:

(ED 'FOO) or (ED 'FOO 'VARIABLES)

There may be ti mes when you do not have access to the
DEFINITION of an object that you need to edit. This can occur
when you do not have the source code loaded. You can edit its
VALUE directly using the form:

FOR VARIABLES: ~ (ED 'NAME 'I L: VARS)

FOR FUNCTIONS: ~ (ED 'NAME 'IL: FNS)

By starting the editor on the VALUE of an object, you can
change its value without changing its definition. (AR 8971)

To start the editor on the VALUE of FOO, for example, use the
form:

(ED 'FOO 'VARS)

EXAMPLE:

When you load a compiled file, the DEFINITION of an object is
not loaded. Only the VALUE is loaded. The compiler does not
store the defining forms for objects. Suppose you have compiled
code for a system file loaded, but you do not have access to the
sources that contain the DEFINITIONS, and you need to change
the value of a system variable, say NETWORKLOGINFO. This
variable has a defining form and the system knows this, but the
form is not loaded and is not available. You can edit the VALUE
of the variable directly using:

(ED 'NETWORKLOGINFO 'IL:VARS)

An editor window opens displaying the VALUE of
NETWORKLOGINFO:

3-18 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON lISP/INTERlISP-D INTEGRATION

Section 16.18 Editor Functions

chapter 17 File Package

3. COMMON LlSPIINTERLlSP-D INTEGRATION

((rENE>:: LOG IN" LOG IN" USERNAr~E " " PASS~"IORD " "l'W)
ATTACH "ATTACH " USERNAr~E " " PA8SI,'}OF-:D " "1'~1")

WHERE "I,'mERE " USEF-:NA~1E CR
"ATTACH " U8ERNAME
" " PASSWORD CR»

(TOPS20 (LOGIN "LOGIN" USERNAME CR PASSWORD CR)
(A TTACH "ATTACH " USERNAr~E "lama " CF-: PA8SI,\IORD CR::
(WHERE "LOG IN" U8EF-:NAME CR PASSI,',IOF-:D CF-:»

(UNIX (LOGIN WAIT CR WAIT USERNAME CR WAIT PAS8WORD CR»
(IFS (LOGIN "Login" USERNAME " " PASSWORD CR) (ATTACH»
(NS (LOG IN" LCII~1on" CR USERNArl1E CF-: PA8S I,',IOF-:D CF;»
(VMS (LOGIN USERNAME CR PASSWORD CR»)

(II: 16.74)

The function FINDCAllERS has the following limitations in Lisp:

1. FINDCAllERS only identifies by name the occurrences inside
of Interlisp FNS, not Common Lisp FUNCTIONS.

2. Because FINDCALlERS uses a textual search, it may report
more occurrences of the specified ATOMS than there actually
are, if the file contains symbols by the same name in another
package, or symbols with the same p-name but different
alphabetic case. EDITCAllERS still edits only the actual
occurrences, since it reads the functions and operates on the real
Lisp structure, not its printed representation.

The Interlisp-D File Package has been renamed the File Manager.
Its operation is unchanged; however, it has been extended to
manipulate, load and save Common Lisp functions, variables, etc.
It also allows specification of the reader environment (package
and readtable) to use when writing and reading a file, solving
the problem of compatibility between old and new (Common
Lisp) syntax.

Note that although source files from earlier releases can be
loaded into lyric, files produced by the File Manager in the Lyric
release cannot be loaded into previous releases. This is true for
several reasons, the most important being that previous releases
did not have packages, so symbols cannot be read back
consistently.

The new File Manager includes several new types to deal with
the various definition forms supported in Xerox Common Lisp.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION 3-19

3. COMMON LlSP/INTERLlSP-D INTEGRATION

FUNCTIONS

VARIABLES

STRUCTURES

TYPES

SETFS

DEFINE-TYPES

OPTIMIZERS

COMMANDS

The following table associates each new type with the forms that
produce definitions of that type:

CL:DEFUN, CL:DEFMACRO, CL:DEFINE-MODIFV-MACRO,
XCL:DEFINLlNE, XCL:DEFDEFINER,
XCL:DEFINE-PROCEED-FUNCTION.

CL:DEFCONSTANT, CL:DEFVAR, CL:DEFPARAMETER,
XCl:DEFGlOBAlVAR, XCl:DEFGlOBAlPARAMETER

Cl:DEFSTRUCT, XCl:DEFINE-CONDITION

CL:DEFTVPE

Cl:DEFSETF, Cl:DEFINE-SETF-METHOD

XCl: DEF-DEFINE-TYPE

XCl:DEFOPTIMIZER

XCl:DEFCOMMAND

Note that the types listed above, as well as all the old File
Manager types, are symbols in the INTERLISP package. In
addition, the "filecoms" variable of a file and its rootname are
also both in the INTERLISP package. You should be careful when
typing to a Common Lisp exec to qualify all such symbols with
the prefix Il:; e.g.,

3>(setq iI:foocoms '«il:functions bar) (il:prop il:filetype il:foo»)

to indicate you want the function BAR (in the current package)
to live on a file with rootname FOO, and also that FOO's
FILETYPE property should be saved.

Reader Environments and the File Manager

3-20

(11:17.1)

In order for READ to correctly read back the same expression that
PRINT printed, it is necessary that both operations be performed
in the same reader environment, i.e., the collection of
parameters that affect the way the reader interprets the
characters appearing on the input stream. In previous releases of
Interlisp there was, for all practical purposes, a single such
environment, defined entirely by the readtable FILERDTBL. In
the Lyric release of Lisp there are two significantly different
readtables in which to read (Common Lisp and Interlisp). In
addition, there are more parameters than just the readtable that
can potentially affect READ: the current package and the read
base (the bindings of *PACKAGE* and *READ-BASE*).

To handle this diversity, a new type of object is introduced, the
READER-ENVIRONMENT, consisting of a readtable, a package,
and a read/print base. Every file produced by the File Manager
has a header at the beginning specifying the reader environment
for that file. MAKEFllE and the compiler produce this header,
while lOAD, lOADFNS, and other file-reading functions read the
header in order to set their reading environment correctly_ Files
written in older releases of Lisp lack this header and are
interpreted as having been written in the environment
consisting of the readtable FILERDTBL and the package

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION

3. COMMON LlSP/INTERLlSP-D INTEGRATION

INTERLISP. Thus, you need take no special action to be able to
load Koto source files into Lyric; characters that are "special" in
Common Lisp, such as colon, semi-colon and hash, are
interpreted as the "ordinary" characters they were in Koto.

The File Manager's reader environments are specified as a
property list of alternating keywords and values of the form
(:READTABlE readtable :PACKAGE package :BASE base). The
:BASE pair is optional and defaults to 10. The values for
readtable and package should either be strings naming a
readtable and package, or expressions that can be evaluated to
produce a readtable and package. In the former case, the
readtable or package must be one that already exists in a virgin
Lisp sysout (or at least in any Lisp image in which you might
attempt any operation that reads the file). If an expression is
used, care should be exercised that the expression can be
evaluated in an environment where no packages or readtables,
other than the documented ones, are presumed to exist. For
hints and guidelines on writing the package expression for files
that create or use their own private packages, please see Chapter
11 of the Common Lisp Implementation Notes.

When MAKEFllE is writing a source file, it uses the following
algorithm to determine the reading environment for the new
file:

1. If the root name for the file has the property
MAKEFllE-ENVIRONMENT, the property's value is used. It
should be in the form described above. Note that if you
want the file always to be written in this environment, you
should save the MAKEFllE-ENVIRONMENT property itself on
the file, using a (PROP MAKEFllE-ENVIRONMENT file)
command in the filecoms.

2. If a previous version of the file exists, MAKEFllE uses the
previous version's environment. MAKEFllE does this even
when given option NEW or the previous version is no longer
accessible, assuming it still has the previous version's
environment in its cache. If the previous version was written
in an older release, and hence has no explicit reader
environment, MAKEFllE uses the environment (:READTABlE
"INTERLlSP" :PACKAGE "INTERLlSP" :BASE 10).

3. If no previous version exists (this is a new file), MAKEFllE uses
the value of *DEFAUl T-MAKEFllE-ENVIRONMENT*, initially
(:READTABlE "XCL" :PACKAGE "INTERLlSP" :BASE 10).

Note that changing the value of
DEFAUl T-MAKEFllE-ENVIRONMENT only affects new files. If
you decide you don't like the environment in which an existing
file is written, you must give the file a MAKEFllE-ENVIRONMENT
property to override any prior default.

Since the XCL readtable is case-insensitive, you should avoid
using it for files that contain many mixed-case symbols or
old-style Interlisp comments, as these will be printed with many
escape delimiters. This is why the default for reprinted Koto
sources is the INTERLISP readtable.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION 3-21

3. COMMON LlSP/INTERLlSP-D INTEGRATION

Modifying Standard Readtables

The readtable named LISP (the pure Common Lisp readtable)
should ordinarily not be used as part of a MAKEFllE
environment. It exists solely for the use of "pure" Common lisp
(as in the Cl Exec), and thus has no provision for font escapes
(inserted by the Lisp prettyprinter) to be treated as whitespace.
Most users will want to use either XCL or INTERLISP as the
readtable for files.

If the environment for the new version of the file differs from
that of the previous version, MAKEFllE copies unchanged FNS
definitions by actually reading from the old file, rather than just
copying characters as it otherwise would. Similarly, when
RECOMPilE or BRECOMPllE attempt to recompile a file for
which the previous compiled version's reader environment is
different, they must compile afresh all the functions on the file,
i.e., they behave like TCOMPl or BCOMPl.

In the past, programmers have been periodically tempted to
change standard readtables, such as T and FllERDTBl, typically
by adding macros to read certain objects in a convenient way.
For example, the PQUOTE lispUsers module defined single quote
as a macro in FllERDTBl. Unfortunately, changing a standard
readtable means that unless you are very careful, you cannot
read other users' files that were not written with your change,
and they cannot read your files without obtaining your macro.
Furthermore, the effects are often subtle. Rather than breaking,
the system merely reads the file incorrectly. For example,
reading a file written with PQUOTE in an environment lacking
PQUOTE produces many symbols with a single quote packed on
the front.

This confusion can be avoided with MAKEFILE reader
environments. To add your own special macro:

1. Copy some standard readtable; e.g., (COPYRDTBL
" INTERLlSP").

2. Give it a distinguished name of its own, by using
(READTABLEPROP rdtbl'NAME "yourname").

3. Make your change in the copied readtable.

4. Use your new private readtable to write your files: use its
name ("yourname") in the MAKEFllE-ENVIRONMENT
property of selected files and/or change
DEFAUl T-MAKEFllE-ENVIRONMENT to affect all your new
files.

5. Make sure to save your new readtable. It is usually most
convenient to include the code to create it (steps 1-3) in your
system initialization, but you could even write a
self-contained expression to use in a single file's
MAKEFllE-ENVIRONMENT property.

With this strategy, your system will read all files in the proper
environment-your own files with your private readtable and
other users' files in their environments, including the standard
environments, which you have carefully avoided polluting. If

3-22 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION

3. COMMON LlSP/INTERLlSP-D INTEGRATION

another user tries to load one of your files into an environment
that doesn't know about your private readtable, LOAD will give
an error immediately (readtable not found), rather than loading
the file quietly but incorrectly.

Programmer1s Interface to Reader Environments

The following function and macro are available for programmers
to use. Note that reader environments only control the
parameters that determine read/print consistency. There are
other parameters, such as *PRINT-CASE*, that affect the
appearance of the output without affecting its ability to be read.
Thus, reader environments are not sufficient to handle problems
of, for example, repainting expressions on the display in exactly
the same total environment in which they were first written.

(MAKE-READER-ENVIRONMENT PACKAGE READTABLE BASE) [Function]

Creates a READER-ENVIRONMENT object with the indicated
components. The arguments must be valid values for the
variables *PACKAGE*, *READTABLE* and *PRINT-BASE*; names
are not sufficient. If any of the arguments is NIL, the current
value of the corresponding variable is used. Thus
(MAKE-READER-ENVIRONMENT) returns an object that captures
the current environment.

(WITH-READER-ENVIRONMENT ENVIRONMENT. FORMS) [Macro]

Eval uates each of the FORMS with *PACKAGE*, *READTABLE*,
PRINT-BASE and *READ-BASE* bound to the values in the
ENVIRONMENT object. Both *PRINT-BASE* and *READ-BASE*
are bound to the single BASE value in the environment.

(GET-ENVIRONMENT-AND-FILEMAP STREAM DONTCACHE) [Function]

Parses the header of a file produced by the File Manager and
returns up to four values:

1. The reader environment in which the file was written;

2. The file's "filemap", used to locate functions on the file;

3. The file position where the FILECREATED expression starts;
and

4. A value used internally by the File Manager.

STREAM can be a full file name, in which case this function
returns NIL unless the information was previously cached.
Otherwise, STREAM is a stream open for input on the file. It must
be randomly accessible (unless information is available from the
cache). If the file is in Common Lisp format (it begins with a
comment), then value 1 is the default Common Lisp reader
environment (readtable LISP, package USER) and the other
values are NIL. Otherwise, if the file is not in File Manager
format, values 1 and 2 are NIL, 3 is zero.

If DONTCACHE is true, the function does not cache any
information it learns about File Manager files; otherwise, the
information is cached to speed up future inquiries.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION 3-23

3. COMMON LlSP/INTERLlSP-D INTEGRATION

Section 17.1 loading Files

(11:17.5)

Integration of Interlisp and Common Lisp LOAD functions

3-24

There are four kinds of files that can be loaded in Lisp:

1. Interlisp and Common Lisp source files produced by the File
Manager using, for example, the MAKEFILE function.

2. Standard Common Lisp source files produced with a text
editor either in Lisp or from some other Common Lisp
implementation.

3. DFASL files of compiled code, produced by the new XCL
Compiler, CL:COMPILE·FILE (extension DFASL)

4. LCOM files of compiled code, produced by the old Interlisp
Compiler (BCOMPL, TCOMPL).

Types 1 and 4 were the only kind of files that you could load in
Koto; types 2 and 3 are new with Lyric. Both IL:LOAD and
CL:LOAD are capable of loading all four kinds of files. However,
they use the following rules to make the types of files
unambiguous so that they can be loaded in the correct reader
envi ronment.

• If the file begins with an open parenthesis (possibly after
whitespace and font switch characters), it is assumed to be of
type 1 or 4: files produced by the File Manager. The first
expression on the file (at least) is assumed to be written in
the old FILERDTBL environment; for new Lyric files this
expression defines the reader environment for the
remainder of the file. See the section, Reader Environments
and File Manager for details.

• If the file begins with the special FASL signature byte (octal
221), it is assumed to be a compiled file in FASL format, and is
processed by the FASL loader. The FASL loader ignores the
LDFLG argument to IL:LOAD, treating all files as though
LDFLG were SYSLOAD (redefinition occurs, is not undoable,
and no File Manager information is saved).

• If the file begins with a semicolon, it is assumed to be a pure
Common Lisp file. The expressions on the file are read with
the standard Common Lisp readtable and in package USER
(unless a package argument was given to LOAD; see below).

• If the file begins with any other character, LOAD doesn't
know what to do. Currently, it treats the file as a pure
Common Lisp file (as if it started with a comment).

Thus, if you prepare Common Lisp text files you should be sure to
begin them with a comment so that LOAD can tell the file is in
Common Lisp syntax.

The function CL:LOAD accepts an additional keyword
:PACKAGE, whose value must be a package object; the function
IL:LOAD similarly has an optional fourth argument PACKAGE. If
a package argument is given, then LOAD reads Common Lisp

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION

Section 17.2 Storing Files

3. COMMON LlSPIINTERLlSP-D INTEGRATION

text files (type 2 above) with *PACKAGE* bound to the specified
package. In the case of File Manager files (types 1 and 4), the
package argument overrides the package specified in the file's
reader environment.

(II: 17.6-17.8)

The Interlisp functions LOADFNS, LOADFROM, LOADVARS and
LOADCOMP do not work on FASL files. They do still work on files
produced by the old compiler (extension LCOM).

(II: 17.9)

FILESLOAD (also used by the File Manager's FILES command)
now searches for compiled files by looking for a file by the
specified name whose extension is in the list
COMPILED-EXTENSIONS. The default value for
COMPILED-EXTENSIONS in the Lyric release is (DFASL LCOM).
It searches the list of extensions in order for each di rectory on the
search path. This means that FASL files are loaded in preference
to old-style compiled files.

The Lyric release contains two different compilers, the Interlisp
Compiler that was present in Koto and previous releases, and the
new XCL Compiler (see the next section, Chapter 18 Compiler).
With more than one compiler available, the question arises as to
which compiler will be used by the functions CLEANUP and
MAKEFILE. The default behavior of these functions in Lyric is to
always use the new XCL Compiler. This default can be changed,
either on a file-by-file basis or system-wide. Most users,
however, will have no need to change the default.

When the C or RC option has been given to MAKEFILE, the
system first looks for the value of the FILETYPE property on the
symbol naming the file. For example, for the file
"{DSK}<LlSPFILES>MYFILE", the property list of the symbol
MYFILE would be examined.

The FILETYPE property should be either a symbol from the list
below or a list containing one of those symbols. The following
symbols are allowed and have the given meanings:

:TCOMPL Compile this file by calling either TCOMPL or RECOMPILE,
depending upon which of the C or RC options was passed to
MAKEFILE.

:BCOMPL Compile this file by calling either BCOMPL or BRECOMPILE,
depending upon which of the C or RC options was passed to
MAKEFILE. This is equivalent to the Koto behavior.

:COMPILE-FILE Compile this file by calling CL:COMPILE-FILE, regardless of which
option was passed to MAKEFILE.

If no FILETYPE property is found, then the function whose name
is the value of the variable *DEFAULT-CLEANUP-COMPILER* is
used. The only legal values for this variable are TCOMPL,
BCOMPL, and CL:COMPILE-FILE. Initially,
DEFAUL T-CLEANUP-COMPILER is set to CL:COMPILE-FILE.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION 3-25

3. COMMON lISPIINTERlISP-D INTEGRATION

If you choose to set the FILETVPE property of file name, you
should take care that the filecoms for that file saves the value of
that property on the file. This will ensure that the same compiler
will be used every time the file is loaded. To save the value of the
property, you should include a line in the coms like the
following:

(PROP FILETYPE MYFILE)

where MYFILE is the symbol naming your file.

Section 17.8.2 Defining New File Manager Types

(11:17.30)

The File Manager has been extended to allow File Manager types
that accept any Lisp object as a name. A consequence of this is
that any user-defined type's HASDEF function should be
prepared to accept objects other than symbols as the NAME
argument. Names are compared using EQUAl.

Definers: A New Facility for Extending the File Manager

3-26

The Definer facility is provided to make the process of adding a
certain common kind of File Manager type easy. All of the new
File Manager types in the Lyric release (including FUNCTIONS,
VARIABLES, STRUCTURES, etc.) and almost all of the new
defining macros (including CL:DEFUN, CL:DEFPARAMETER,
CL:DEFSTRUCT, etc.) were themselves created using the Definer
facility.

In previous releases, adding new types and commands to the File
Manager involved deeply understanding the way in which it
worked and defining a number of functions to carry out certain
operations on the new type/command. Further, making
functions and macros save away definitions of the new type was
similarly subtle and generally difficult or complicated to do.
With the addition of Common Lisp, it was realized that a large
number of new types and commands would be added, all
needing essentially the same implementation of the various
operations. In addition, many new defining macros were to be
added and all of them needed to save definitions.

As an explanation of the Definer facility, we will describe how
VARIABLES and CL:DEFPARAMETER could be added into the
system, if they were not already there.

First, a little background about our example. The macro
CL:DEFPARAMETER is used in Common Lisp to globally declare a
given variable to be special and to give it an initial value. (For
the purposes of this example, we will ignore the
documentation-string given to real CL:DEFPARAMETER forms.)
The value of a call to the macro should be the name of the
variable being defined. An acceptable definition of this macro
might appear as follows:

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON lISP/INTERLlSP-D INTEGRATION

3. COMMON LlSPIINTERLlSP-D INTEGRATION

(DEFMACRO CL:DEFPARAMETER (SYMBOL EXPRESSION)
, (PROGN

(CL:PROCLAIM '(CL:SPECIAL ,SYMBOL»
(SETQ ,SYMBOL ,EXPRESSION)
, ,SYMBOL»

There are some problems with using such a simple definition in
the Lisp environment, however. For example, if a call to this
macro were typed to the Exec, the File Manager would not be
told to notice it. Thus, there would be no convenient way to
remember to add the form to the filecoms of some file and thus
to save it away. Also, note that the macro does not pay attention
to the DFNFLG variable; thus, loading a file containing a
CL:DEFPARAMETER form would always set the variable to the
value of the initial expression, even when DFNFLG was set to
ALLPROP. This could make editing code using this variable
difficult.

We will now proceed to fix these problems by getting the
Definer facility involved. There are two steps involved in using
Definers:

• Unless one of the currently-existing File Manager types is
appropriate for definitions using the new macro, a new
type must be created. The macro XCL:DEF-DEFINE-TYPE is
used for this purpose .

• The macro must be defined in such a way that the File
Manager can tell that it should notice and save uses of the
macro and under which File Manager type the uses should
be saved. The macro XCL:DEFDEFINER is used for this
purpose.

Since we are pretending for the example that the File Manager
type VARIABLES is not defined, we decide that definitions using
CL:DEFPARAMETER should not be given any of the
already-existing types. We must define a type, therefore, and we
decide to call it VARIABLES. The following
XCL:DEF-DEFINE-TYPE form will do the trick:

(XCL:DEF-DEFINE-TYPE VARIABLES "Common Lisp
variables")

The first argument to XCL:DEF-DEFINE-TYPE is the name for the
new type. The second argument is a descriptive string, to be
used when printing out messages about the type.

With the new type thus created, we can now use
XCL:DEFDEFINER to redefine the macro. Simply changing the
word DEFMACRO into XCL:DEFDEFINER and adding an
argument specifying the new type suffices to change our earlier
definition into a use of the Definer facility:

(XCL:DEFDEFINER CL:DEFPARAMETER VARIABLES
(SYMBOL EXPRESSION)

, (PROGN
(CL:PROCLAIM '(CL:SPECIAL ,SYMBOL»
(SETQ ,SYMBOL ,EXPRESSION)
, • SYMBOL))

(In fact, we could also remove the final ',SYMBOL;
XCL:DEFDEFINER automatically arranges for the new macro to

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION 3-27

3. COMMON LlSP/INTERLlSP-D INTEGRATION

3-28

return the name of the new definition.) Now, if we were to type
the form

(CL:DEFPARAMETER *FOO* 17)

into the Exec and then call the function FilES?, we would be
presented with something like the following:

24> (FilES?)
the Common Lisp variables: *FOO*
... to be dumped. want to say where the above
go?

As with other File Manager types, our definitions are being kept
track of. If we answer Yes to the above question and specify a
file in which to save the definition, a command like the following
will be added to the filecoms:

(VARIABLES *FOO*)

Actually, the output from FilES? as shown above is not quite
accurate. In reality, we would also be asked about the
following:

the Common Lisp functions/macros:
CL:DEFPARAMETER
the Definition types: VARIABLES

The File Manager is also watching for new types and new
Definers being created and will let us save those definitions as
well. These would be listed in the filecoms as follows:

(DEFINE-TYPES VARIABLES)
(FUNCTIONS CL:DEFPARAMETER)

All of these definitions are full-fledged File Manager citizens.
The functions GETDEF, HASDEF, PUTDEF, DElDEF, etc. all work
with the new type. We can edit the definition of *FOO* above
simply by specifying the type to the ED function:

(ED '*FOO* 'VARIABLES)

When we exit the editor, the new definition will be saved and,
unless DFNFlG is set to PROP or AllPROP, evaluated.

It is now time to fully describe the macros XCl:DEF-DEFINE-TYPE
and XCl:DEFDEFINER.

XCl:DEF-DEFINE-TYPE NAME DESCRIPTION &KEY :UNDEFINER [Macro]

Creates a new File Manager type and command with the given
NAME. The string DESCRIPTION will be used to describe the type
in printed messages. The new type implements PUTDEF
operations by evaluating the definition form, GETDEF and
HASDEF by looking up the given name in an internal hash-table,
using EQUAL as the equality test on names, and DElDEF by
removing any named definition from the hash-table. If the
:UNDEFINER argument is provided, it should be the name of a
function to be called with the NAME argument to any DElDEF
operations on this type. The :UNDEFINER function can perform
any other operations necessary to completely delete a definition.

XCl:DEF-DEFINE-TYPE forms are File Manager definitions of type
DEFINE-TYPES.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION

3. COMMON LlSP/INTERLlSP-D INTEGRATION

As an example of the full use of XCL:DEF-DEFINE-TYPE, here is
the complete definition of the type VARIABLES as it exists in the
L yri c rei ease:

(XCL:DEF-DEFINE-TYPE VARIABLES "Common Lisp variables"
:UNDEFINER UNDOABLY-MAKUNBOUND)

The function UNDOABLY-MAKUNBOUND is described in
Appendix D of these Release Notes.

XCL:DEFDEFINER {NAME I (NAME {OPTlON}*)} TYPE ARG-LiST &BODY BODY [Macro]

Creates a macro named NAME, calls to which are seen as File
Manager definitions of type TYPE. TYPE must be a File Manager
type previously defined using XCL:DEF-DEFINE-TYPE. ARG-LiST
and BODY are precisely as in DEFMACRO. A macro defined using
XCL:DEFDEFINER differs from one defined using DEFMACRO in
the following ways:

• BODY will be evaluated if and only if the value of DFNFLG
is not one of PROP or ALLPROP.

• The form returned by BODY will be evaluated in a context
in which the File Manager has been temporarily disabled.
This allows Definers to expand into other Definers without
the subordinate ones being noticed by the File Manager.

• Calls to Definers return the name of the new definition
(as, for example, CL:DEFUN and CL:DEFPARAMETER are
defined to do).

• Calls to Definers are noticed and remembered by the File
Manager, saved as a definition of type TYPE.

• SEdit- and Interlisp-style comment forms (those with a
CAR of IL:*) are stripped from the macro call before it is
passed to BODY. (This comment-removal is partially
controlled by the value of the variable
*REMOVE-INTERLlSP-COMMENTS *, descri bed below.)

The following OPTIONs are allowed:

(:UNDEFINER FN)

If DELDEF is called on a name whose definition is a call to this
Definer, FN will be called with one argument, the name of the
definition. This option allows for Definer-specific actions to be
taken at DELDEF time. This is useful when more than one
Definer exists for a given type. FN should be a form acceptable as
the argument to the FUNCTION special form.

(: NAME NAME-FN)

By default, the Definer facility assumes that the first argument to
any macro defined using XCL:DEFDEFINER will be the name
under which the definition should be saved. This assumption
holds true for almost all Common Lisp defining macros, including
CL:DEFUN, CL:DEFMACRO, CL:DEFPARAMETER and CL:DEFVAR.
It doesn't work, however, for a few other forms, such as
CL:DEFSTRUCT and XCL:DEFDEFINER itself. When defining a
macro for which that assumption is false, the :NAME option
should be used. NAME-FN should be a function of one
argument, a call to the Definer. It should return the Lisp object

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON L1SP/INTERLlSP-D INTEGRATION 3-29

3. COMMON L1SPIINTERLlSP-D INTEGRATION

3-30

naming the given definition (most commonly a symbol, but any
Lisp object is permissible). For example, the :NAME option in the
definitions of Cl:DEFSTRUCT and XCl:DEFDEFINER is as follows:

(:NAME (LAMBDA (FORM)
(LET «NAME (CADR FORM)}}

(COND «LITATOM NAME)
NAME}

(T (CAR NAME))}}}}

NAME-FN should be a form acceptable as the argument to the
FUNCTION special form (i.e., a symbol naming a function or a
LAMBDA-form).

(: PROTOTYPE DEFN-FN)

When the editor function ED is passed a name with no
definitions, the user is offered a choice of several ways to create
a prototype definition. Those choices are specified with the
:PROTOTYPE option to XCl:DEFDEFINER. DEFN-FN should be a
function of one argument, the name to be defined using this
Definer. DEFN-FN should return either NIL, if no definition of
that name can be created with this Definer, or a form that, when
evalauted, would create a definition of that name. For example,
the :PROTOTVPE option for Cl:DEFPARAMETER might look as
follows:

(:PROTOTYPE (LAMBDA (NAME)
(AND (LITATOM NAME)

'(CL:DEFPARAMETER ,NAME "Value")}}}

An example using all of the features of XCl:DEFDEFINER is the
definition of XCl:DEFDEFINER itself, which begins as follows:

(XCL:DEFDEFINER (XCL:DEFDEFINER

... }

(:UNDEFINER \DELETE-DEFINER)
(:NAME

(LAMBDA (FORM)
(LET «NAME (CADR FORM)}}

(COND «LITATOM NAME)
NAME}

(T (CAR NAME)}}}}}
(:PROTOTYPE

(LAMBDA (NAME)

FUNCTIONS

(AND (LITATOM NAME)
'(XCL:DEFDEFINER ,NAME "Type"

("Arg List")
"Body"}}}})

(NAME-AND-OPTIONS TYPE ARG-LIST &BODY BODY)

The following variable is used in the process of removing SEdit­
and Interlisp-style comments from Definer forms:

REMOVE-INTERlISP-COMMENTS [Variable]

Interlisp-style comments are forms whose CAR is the symbol Il:*.
It is possible for certain lists in Lisp code to begin with Il:* but
not be a comment (for example, a SElECTQ clause). When such a
list is discovered, the value of *REMOVE-INTERlISP-COMMENTS*
is examined. If it is T, the list is assumed to be a comment and is
removed without comment. If it is :WARN, a warning message is
printed, saying that a possible comment was not stripped from
the code. If *REMOVE-INTERlISP-COMMENTS* is Nil, the list is

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION

3. COMMON LlSPIINTERLlSP-D INTEGRATION

not removed, but no warning is printed. This variable is initially
set to :WARN.

(CL:EVAl-WHEN WHENCOM1 ... COMN) [File Package Command]

Interprets each of the commands COM1 ... COMN as a file
package command, but output is wrapped in CL:EVAL-WHEN.

EXAMPLE:

(CL:EVAL-WHEN (CL:EVAL CL:COMPILE)

(OPTIMIZERS FOO))

will cause the following to be written to the file:

(CL:EVAL-WHEN (CL:COMPILE)
(DEFOPTIMIZER FOO (optimizer for FOO»)

Chapter 18 Compiler

The Lyric release contains two distinct Lisp compilers:

• The Interlisp Compiler, described in detail in Section 18 of the
IRM,

• The new XCL Compiler, described in the Common Lisp
Implementation Notes.

The Interlisp Compiler provides compatibility with previous
releases of Interlisp-D. It continues to work in very much the
same way as it did in Koto; as before, it compiles all of the
Interlisp language. The Interlisp Compiler does not, however,
compile the Common Lisp language and will not be extended to
do so. The Lyric release is the last release to contain the Interlisp
Compiler as a component; future releases will have only the new
XCL Compiler. The XCL Compiler is designed to handle both
Interlisp and Common Lisp.

Several incompatible changes have been made in the compiled
object code produced by the Interlisp Compiler. This means that
all user code must be recompiled in Lyric. Code compiled in Koto
or previous releases will not load into Lyric, and code compiled in
Lyric wil not load into earlier releases. The filename extension
for Interlisp compiled files has been changed from DCOM to
LCOM in order to minimize possible confusion.

The XCL Compiler writes its output on a new kind of object file,
the DFASL file. These files are quite different from the
DCOM/LCOM files produced by the Interlisp Compiler. DFASL
files are somewhat more compact, much faster to load and can
represent a wider range of data objects than was possible in
LCOMs.

Interlisp source files from Koto can be compiled using the new
XCL compiler. However, some files need to be remade in Lyric
before compilation: files containing bitmaps, Interlisp arrays, or
the UGl YVARS and/or HORRIBLEVARS File Manager commands.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION 3-31

3. COMMON LlSP/INTERLlSP-D INTEGRATION

To compile such a file, first LOAD it, then call MAKEFILE to write
it back out. This action causes the bitmaps and other unusual
objects to be written back in a format acceptable to the new
compiler.

The default behavior of the File Manager's CLEANUP and
MAKEFILE functions is to use the new XCL Compiler to compile
files, rather than the old Interlisp Compiler. To change this
behavior, see Section 17.2, Storing Files.

Note that if you call the compiler explicitly, rather than via
CLEANUP or MAKEFILE, you should be careful to specify the
correct compiler. The new compiler is invoked by calling
CL:COMPILE·FILE. If you inadvertantly call BCOMPL on a file for
which CLEANUP has routinely been using the new XCL compiler,
there are two undesirable consequences: (1) Any Common Lisp
functions on the file will not be compiled (the Interlisp compiler
does not recognize CL:DEFUN), and (2) the DFASL files produced
by earlier calls on the XCL compiler will still be loaded by
FILESLOAD in preference to the LCOM file produced by BCOMPL

Lisp provides a facility, XCl:DEFOPTIMIZER, by which you can
advise the compiler about efficient compilation of certain
functions and macros. XCl:DEFOPTIMIZER works with both the
old Interlisp Compiler and the Lyric XCL Compiler. See the
Common Lisp Implementation Notes for a description of the
compiler.

Warning when Loading Compiled Files

Warning with Declarations

CAUTION: Files compiled in Medley cannot be loaded back into
Lyric. Medley-compiled .LCOM and .DFASL files will produce an
error message when loaded into Lyric. (Lyric-compiled .LCOM
and .DFASL files can be loaded and run in Medley.) If you need
to run a Medley file in Lyric, load the source file and use the Lyric
compiler.

CAUTION: There is a feature of the BYTECOMPILER that is not
supported by either the XCL compiler or SEdit. It is possible to
insert a comment at the beginning of your function that looks
like

(* DECLARATIONS: --)

The tail, or -- section, of this comment is taken as a set of local
record declarations which are then used by the compiler in that
function just as if they had been declared globally. The XCL
compiler does not directly support this feature. If the body of
the function gets DWIMIFIED for some other reason, the record
declarations will happen to be noticed, otherwise they will not
be seen and the compiler will signal an error if it can't find an
appropriate top-level record definition.

There are two caveats that you should note:

3-32 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION

3. COMMON LlSP/INTERLlSP-D INTEGRATION

1. The compiler will give error messages "undefined record name
... " for the records that are declared this way, but will generate
correct code.

2. SEdit does not recognize such declarations. Thus, if the
"Expand" command is used in SEdit, the expansion will not be
done with these record declarations in effect. The code that you
see in the editor will not be the same code compiled by the
BYTECOMPILER.

Section 18.3 Local Variables and Special Variables

chapter 19 Masterscope

Chapter 21 CLISP

(II: 18.5)

The new execs always use the Common Lisp interpreter, causing
LET and PROG statements at top level, particularly in a so-called
Interlisp exec, to create lexical bindings, rather than deep or
"special" bindings This can be worked around by setting
il:specvars to T, which will cause the interpreter to create special
bindings for all variables. This can also be worked around by
wrapping the form to be "interlisp evaluated" in the
IL:INTERLISP special form, which causes the Interlisp interpreter
to be invoked.

Masterscope is now a Lisp Library Module, not part of the
environment.

CLiSP infix forms do not work under the Common Lisp evaluator;
only "clean" CLiSP prefix forms are supported. You should run
DWIMIFY in Koto on all other CLiSP code before attempting to
load it in Ly-ric. The remainder of this note describes the specific
limitations on CLiSP in Lyric.

There are two broad classes of transformations that DWIM
applies to Lisp code:

1. A sort of macro expander that transforms IF, FOR, FETCH, etc.
forms into "pure" Lisp code in well-defined ways.

2. A heuristic "corrector" that performs spelling correction and
transforms CLiSP infix forms such as X + Y into (PLUS X V),
sometimes having to make guesses as to whether X + Y might
really have been the name of a variable.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION 3-33

3. COMMON lISP/INTERlISP-D INTEGRATION

3-34

An operational way of distinguishing the two is that DWIMIFY
applied to code of type (1) makes no alterations in the code,
whereas for code of type (2) it physically changes the form.
Another difference is that code of type (2) must be dwimified
before it can be compiled (user typically sets DWIMIFYCOMPFLG
to T), whereas the compiler is able to treat code of type (1) as a
special kind of macro.

Broadly speaking, code of type (2) is no longer fully supported.
In particular, DWIM is invoked only when the code is
encountered by the Interlisp evaluator. This means code typed
to an "Old Interlisp" Executive, and code inside of an interpreted
Interlisp function. Furthermore, some CLiSP infix forms no
longer DWIMIFY correctly. It is likely that CliSP infix will not be
supported at all in future releases.

Expressions typed to the new Executives and inside of Common
Lisp functions are run by the Common Lisp evaluator (CL:EVAL).
As far as this evaluator is concerned, DWIM does not exist, and
forms beginning with "CLlSP" words (IF, FOR, FETCH, etc) are
macros. These macros perform no DWIM corrections, so all of
the subforms must be correct to begin with. This is a change
from past releases, where the DWIM expansion of a CLiSP word
form also had the side effect of transforming any CLiSP infix that
it might have contained. For example, the macro expansion of

(if X then Y+l)

treats Y + 1 as a variable, rather than as an addition. The correct
form is

(if X then (PLUS Y 1»,

which is the wayan explicit call to DWIMIFY would transform it.

If you have CLiSP code from Koto you are advised to DWIMIFY
the code before attempting to run or compile it in Lyric. Because
of differences in the environments, not all CLiSP constructs will
DWIMIFY correctly in Lyric. In particular, the following do not
work reliably, or at all:

1. The list-composing constructs using < and) do not DWIMIFY
if the < is unpacked (an isolated symbol), because in Common
Lisp, < is a perfectly valid CAR of form. On the other hand,
the closing) must be unpacked if the last list element is
quoted, since, for example, «A 'B» reads as «A (QUOTE
B) ».

2. Because of the conventional use of the characters * and - in
Common Lisp names, those characters are only recognized as
CLiSP operators when they appear unpacked.

3. On the other hand, the operators + and I are the names of
special variables in Common Lisp (Steele, p. 325), and hence
cause no error when passed unpacked to the evaluator. Thus
(LIST X + Y) returns a list of three elements, with no
resort to DWIM; however, the parenthesized version (L I ST
(X + Y)} and the packed version (L I ST X+Y) both
work.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION

3. COMMON L1SP/INTERLlSP-D INTEGRATION

If you routinely DWIMIFY code, so that no CLiSP infix forms (type
2· above) remain on your source files, you may not need to make
any changes. However, note that the fact that DWIMIFY of
prefix forms ilTlplicitly performed infix transformations can hide
code that escaped being completely dwimified before being
written to a fi Ie.

Th~re is a further caution regarding even routinely dwimified
code that has not been edited since before Koto. Two uses of
the assignment operator () no longer work, if not explicitly
dwimified, because their - canonical form (the output of
DWIMIFY) has changed, and the old form is no longer supported
when the form is simply evaluated, macro-expanded, or
compiled (with DWIMIFYCOMPFLG = NIL):

1. Iterative statement bindings must always be lists. For
example, the old form

(bind X_2 for Y in --)

is now canonically

(bind (X 2) for Y in --).

2. In a WITH expression, assignments must be dwimified to
remove _. For example, the old form

(with MY RECORD MYFIELD

is now canonically

(FOO))

(with MYRECORD (SETQ MYFIELD (FOO»).

DWIMIFY in Koto correctly made these transformations;
however, in some older releases, it did not. Such old code must
be explicitly dwimified (which you can do for these cases in Lyric).
The errors resulting from failure to do so can be subtle. In
particular, the compiler issues no special warning when such
code is compiled. For example, in case 1, the macro expansion of
the old form treats the symbol X 2 as a variable to bind, rather
than as a binding of the variable X with initial value 2. The only
hint from the compiler that anything is amiss is likely to be an
indication that the variable X is used freely but not bound. Case
2 is even subtler: the symbols MYFIELD and are treated as
symbols to be evaluated; since their values are not used, the
compiler optimizes them away, reducing the entire expression to
simply (FOa), and there is thus no warning of any sort from the
compiler.

LISP RELEASE 'NOTES, MEDLEYRELEASE"COMMON L1SPIINTERLlSP-D INTEGRATION 3-35

3. COMMON lISP/INTERlISP-D INTEGRATION

chapter 22 Performance Issues

Section 22.3 Performance Measuring

3-36

(11:22.8)

The Interlisp-D TIME function has been withdrawn and replaced
with the Common Lisp TIME macro (the symbol TIME is shared
between IL and CL and thus need not be typed with a package
prefix). The functionality of the TIMEN and TlMETYP arguments
to the old TIME can be had by keywords to the TIME macro. The
Common Lisp Implementation Notes describe the new TIME
macro and its associated command in more detail.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON lISP/INTERlISP-D INTEGRATION

Chapter 24 Streams and Files

3. COMMON LlSP/INTERLlSP-D INTEGRATION

VOLUME III-INPUT/OUTPUT

The Xerox Common Lisp file system supports multiple streams
open simultaneously on the same file. This is an incompatible
change to the semantics of Interlisp-D. You may have to modify
old programs if they have not followed the guidelines listed in
Sec 24.5 of the Interlisp-D Reference Manual. Some of the
implications of this change for Interlisp programs are described
below.

In prior releases of Interlisp-D, the system treated the name of an
open file as a synonym for the stream open on the file. This
meant that only one stream could be open at any time on a given
file. In the Lyric release, a file name is no longer a unique name
for an open stream. Thus, file names are no longer acceptable as
the file/stream argument to any input/output or file system
function that operates on an open stream (READ, PRINT, CLOSEF,
COPYBYTES, etc). The only non-stream values acceptable as
stream designators are the symbols NIL and T, designating the
primary and terminal input/output streams. An attempt to use a
litatom, even a "full file name," as a stream designator signals
the error "LlTATOM 'streams' no longer supported." Strings no
longer designate an input stream whose source is the string
itself-programs should call OPENSTRINGSTREAM instead, or use
the comparable Common Lisp forms, such as
CL:WITH-INPUT-FROM-STRING.

The functions OPENFILE and OPENSTREAM are now
synonymous-both return a stream instead of a "full file name."
The functions INPUT and OUTPUT also return streams. One
exception to this is that INPUT and OUTPUT return T in the case
where the primary input or output stream was previously
directed to the terminal. However, this special behavior is for
the Lyric release only; we recommend that you convert old code
that depended on testing (EQ (OUTPUT) T). Note that the values
of the variables *STANDARD-INPUT* and *STANDARD-OUTPUT*
are always streams, even if they are directed to the terminal.

The function FULLNAME can be used to obtain the name of a
stream. For your convenience, the print syntax of streams now
includes the name of the stream (if to a file) and its access (input,
output, etc.). Functions, such as UNPACKFILENAME, that
manipulate file names generally accept a stream as well,
extracting the name of the file from the stream.

INFILEP still returns a full file name, as it is merely recognizing a
file, not opening a stream to it. Programmers should be wary of
code that subsequently tries to use the value of INFILEP as a
stream argument. And, of course, the FILENAME argument to
OPENSTREAM is still a name (a symbol or string), not a stream.
OPENSTREAM also accepts a Common Lisp pathname as its
FILENAME argument.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION 3-37

3. COMMON L1SP/INTERLlSP-D INTEGRATION

The function CLOSEALL is no longer implemented. The function
OPENP returns NIL when passed a file name (or anything else but
an open stream). However, for the Lyric release, (OPENP NIL)
still returns a list of all streams open to files.

The functions GETFILEINFO and SETFILEINFO can still be given
either an open stream or a file name. However, in the latter case,
the request refers to the file, not to any stream open on the file.
Thus, requesting the value of the attribute LENGTH for a file
name may return a different value than requesting the value of
the attribute LENGTH for a stream currently open on the file.
GETFILEINFO returns NIL if given a file name and an attribute
that only makes sense for streams (e.g., ACCESS,
ENDOFSTREAMOP).

There is no difference between Common Lisp and Interlisp
streams. A stream opened by an Interlisp function can be passed
as argument to a Common Lisp input/output function, and vice
versa.

Even though multiple streams per file are supported, the streams
must still obey consistent access rules. That is, if a stream is open
for output, no other streams on that file can be opened. It is not
possible to RENAMEFILE or DELFILE a file that has any open
stream on it.

The RS-232 or TTY ports are inherently single-user devices (rather
than real files) thus, multiple streams cannot be open
simultaneously on RS-232 or TTY.

Section 24.15 Deleting, Copying, and Renaming Files

(II': 24. f 5)

The support of multiple streams per file now makes it possible to
use COPYFILE without worrying about there being other readers
of the file, in particular even when there is already a stream open
on the file for sequential-only access (a case that failed in prior
releases). Of course, COPYFILE cannot be used if the file already
has an output stream open.

chapter 25 Input/Output Functions

Variables Affecting Input/Output

There are several implicit parameters that affect the behavior of
the input/output functions: the numeric print base, the primary
output file, etc. In Common Lisp, these parameters are
controlled by binding special variables. In Interlisp they are
controlled by a functional interface; e.g., an output expression is
wrappedin (RESETFORM (RADIX 8) --) tocausenumbers
to be printed in octal.

Where the input/output parameters in Common Lisp and
Interlisp have essentially the same semantics, they have been

3-38 LISP RELEASE NOTES, MEDLfY RELEASf, COMMON L1SP/INTERLlSP-D INTEGRATION

3. COMMON LlSPIINTERLlSP-D INTEGRATION

integrated in Lisp. That is, binding the Common Lisp special
variable and calling the Interlisp function are equivalent
operations, and they affect both Interlisp and Common Lisp
inputJoutput. However, it is considerably more efficient to bind
a special variable than to call a function in a RESETFORM
expression. In addition, binding a variable has only a local effect,
whereas calling a function to side-effect the inputJoutput
parameters can also affect other processes. Thus, you are
encouraged to use special variable binding to change
parameters formerly changed via functional interface.

All of these variables are accessible in both the Common Lisp and
Interlisp packages, so no package qualifier is required when
typing them.

These parameters are as follows:

PRINT-BASE vs RADIX Binding *PRINT-BASE* to an integer n from 2 to 36 tells the
printing functions to print numbers in base n. This is equivalent
to (RADIX n). Note: this variable should not be confused with
PRINT-RADIX, another Common Lisp variable that controls
whether Common Lisp functions include radix specifiers when
printing numbers.

STANDARD-1NPUT vs INPUT Binding *STANDARD-INPUT* to an input stream specifies the
stream from which to read when an input functio,n's stream
argument is NIL or omitted. Evaluating *STANDARD-INPUT* is
the same as evaluating (INPUT), except that (INPUT) returns T if
the primary input for the process is the same as the terminal
input stream (this compatibility feature is for the Lyric release
only).

STANDARD-OUTPUT vs OUTPUT Binding *STANDARD-OUTPUT* to an output stream specifies the
stream to which to print when an output function's stream
argument is NIL or omitted. Evaluating *STANDARD-OUTPUT* is
the same as evaluating (OUTPUT) except that (OUTPUT) returns T
if the primary output for the process is the same as the terminal
output stream (this compatibility feature is for the Lyric release
only).

*PRINT-LEVEL * & *PRINT-LENGTH*
vs PRINTLEVEL Binding *PRINT-LEVEL * to a positive integer a and

PRINT-LENGTH to a positive integer d is equivalent to calling
(PRINTLEVEL a d). Binding either variable to NIL is equivalent to
specifying a value of -1 for the corresponding argument to
PRINTLEVEL. i.e., it specifies infinite depth or length. Note that
in Interlisp, print level is "triangular"-the print length decreases
as the depth increases. In Common Lisp, the two are
independent. Thus, although print level for both Interlisp and
Common Lisp is controlled by a common pair of variables, the
Interlisp and Common Lisp print functions interpret them
(specifically *PRINT-LENGTH*) slightly differently. In addition,
Interlisp observes print level only when printing to the terminal,
whereas Common Lisp observes it on all output.

READTABLE vs SETREADTABLE Binding *READTABLE* to a readtable specifies the readtable to
use in any inputJoutput function with a readtable argument
omitted or specified as NIL. Evaluating *READTABLE* is the same
as evaluating (GETREADTABLE). There is no longer a "NIL" or

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION 3-39

3. COMMON L1SP/ INTERLlSP-O INTEGRATION

"T" readtable in Interlisp. See the discussion of readtables for
more details.

Although the binding style is to be preferred to the RESETFORM
expression, one difference should be noted with respect to error
checking. In a form such as

(RESETFORM (RADIX n)
some-printing-code)

the value of n is checked immediately for validity, and an error is
signalled if n is not an integer between 2 and 36. However, in

(LET «*PRINT-BASE* n»
some-printing-code)

there is no error checking at the time of the binding; rather, an
error will not be signalled until the code attempts to print a
number.

Similarly, the values of *STANDARD-INPUT* and
STANDARD-OUTPUT must be actual streams, not the values
that print functions coerce to streams, such as NIL, T or window
objects.

Integration of Common Lisp and Interlisp Input/output Functions

Section 25.2 Input Functions

Common Lisp and Interlisp have slightly different rules for
reading and printing, regarding such things as escape characters,
case sensitivity and number format. Each has two kinds of
printing function, an escaped version (intended for reading back
in) and an unescaped version. In order that Common Lisp and
Interlisp programs can more freely intermix, Xerox Lisp isolates
most of the reading/printing differences in the readtables used
by both languages, rather than in the functions themselves. The
exact rules have been chosen as a reasonable compromise
between backward compatibility with Interlisp and integration
with Common Lisp. This section outlines the details of this
integration.

In what follows, the phrase "the readtable" generally refers to
the readtable in force for the read or print operation being
discussed. Specifically, this means an explicit readtable (other
than NIL or T) passed as readtable argument to an Interlisp
function, or else the current binding of *READTABLE*. See the
section on readtables for more details.

The functions IL:READ and CL:READ, given the same readtable,
interpret an input in exactly the same way. That is, the functions
obey Common Lisp syntax rules when given a Common Lisp
readtable, and Interlisp syntax when given an Interlisp readtable.
Thus, the principal difference between the two is in the
functionality provided by CL:READ's extra arguments: end of file
handling and the ability to specify that the read is recursive,
which is mostly important when reading input containing
circular structure references (the ## and #'= macros). See
Common Lisp, the Language for details of CL:READ's optional
arguments.

3-40 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON L1SP/INTERLlSP-D INTEGRATION

Section 25.3 Output Functions

3. COMMON LlSP/INTERLlSP-D INTEGRATION

There is one further difference between IL:READ and CL:READ,
in the handling of the terminating character. If the read
terminates on a white space character, CL:READ consumes the
character, while IL:READ leaves the character in the buffer, to be
read by the next input operation. Thus, IL:READ is equivalent to
CL:READ-PRESERVING-WHITESPACE. This difference is so that
Interlisp code that calls (READC) following a (READ) of a symbol
will behave consistently between Koto and Lyric.

The Interlisp function SKREAD now defaults its readtable
argument to the current readtable, viz., the value of
READTABLE, rather than FILERDTBL. This makes it consistent
with all the other input functions, and is usually the correct
thing, especially with the new reader environments used by the
File Manager, but it is an incompatible change from Koto.
SKREAD is also now implemented using Common Lisp's
READ-SUPPRESS mechanism, which means that, unlike in
Koto, it does something reasonable when it encounters read
macros.

In the Medley release, reading in bitmaps from files is
significantly faster.

The discussion here is limited to the four basic printing functions:
the unescaped and escaped Interlisp printing functions (IL:PRIN1,
IL:PRIN2) and the corresponding Common lisp functions
(CL:PRINC, CL:PRIN1). All other print functions ultimately reduce
to these. For example, IL:PRINT calls IL:PRIN2; CL:FORMAT with
the -S directive performs a CL:PRIN1.

IL:PRIN1 is essentially unchanged from previous releases. It uses
no readtable at all, so is unaffected by the value of
READTABLE. It can be thought of as implicitly using the
INTERLISP readtable.

Roughly speaking, IL:PRIN2 and CL:PRIN1 behave the same when
given the same readtable. In particular, they both produce
output acceptable to either READ function given the same
readtable. Their minor differences are listed below.

CL:PRINC behaves like CL:PRIN1, except that it never prints
escape characters or package prefixes. Thus, unlike IL:PRIN1, it is
affected by the value of *READTABLE*.

For the benefit of user-defined print functions, IL:PRIN2 and
CL:PRIN1 bind *PRINT-ESCAPE* to T, while IL:PRIN1 and
CL:PRINC bind it to NIL. Thus, the print function can always
examine *PRINT-ESCAPE* to decide whether it needs to print
objects in a way that will read back correctly (Common lisp user
print functions may want to use CL:WRITE to pass
PRINT-ESCAPE through transparently; Interlisp functions
should choose IL:PRIN2 or IL:PRIN1 appropriately).

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERlISP-D INTEGRATION 3-41

3. COMMON lISP/INTERlISP-D INTEGRATION

Printing Differences Between IL:PRIN2 and CL:PRIN1

Internal Printing Functions

There are two respects in which the Interlisp print functions
(both IL:PRIN1 and IL:PRIN2) differ from the Common Lisp ones,
independent of readtable:

Line Length. The Interlisp functions respect the output stream's
line length, while the Common Lisp functions all ignore it (they
never insert newline characters when output approaches the
right margin).

Print Level. The Interlisp functions respect the print level
variables only when printing to the terminal (unless PLVLFILEFLG
is true, see the Interlisp-D Reference Manual) or when printing
with a Common Lisp readtable, whereas the Common Lisp
functions respect them on all output.

Interlisp has several functions (e.g., NCHARS, STRINGWIDTH,
CHCON, MKSTRING) that operate on the "prin1 pname" of an
object, or optionally on its "prin2 pname" when given an extra
flag and readtable as arguments. These functions are essentially
unchanged in Lyric.

In terms of the discussion above, the "prin1 pname" of an object
continues to be the characters that would be produced by a call
to IL:PRIN1 at infinite print level and line length, and with
PRINT-BASE bound to 10 (unless PRXFLG is true, see Interlisp-d
Reference Manual). The "prin2 pname" of an object is the list of
characters that would be produced by a call to IL:PRIN2 (or
CL:PRIN1) using the specified readtable (or *READTABLE* if
none is given), again at infinite print level and line length.

Exception: the function STRINGWIDTH computes the width of
the expression as if it were printed at the current *PRINT-LEVEL *
and *PRINT-LENGTH*.

Printing Differences between Koto and Lyric

3-42

The Common Lisp and Interlisp printing functions use the same
strategy for escaping characters in symbol names. Because of
this, symbols may print differently in Lyric than they did in Koto,
for two reasons: the use of the Common Lisp multiple escape
character, and the escaping of numeric print names. Although
the appearance is different, the functionality is the
same-symbols are still printed in a way that allows them to be
correctly read.

Roughly speaking, the multiple escape character is used to
escape symbol names that would require two or more single
escape characters. Thus, for example, a symbol that printed as
%(OH% NO%) in Koto will print in Lyric as 1 (OH NO) I. However,
in the old readtables that lack a multiple escape character (e.g.,
OLD-INTERLlSP-T), the single escapes are still used. Multiple
escapes are also used to print a symbol containing lower-case
letters when the readtable is case-insensitive, e.g., 1 Sma 11 1 in a
Common Lisp readtable. Keep in mind also that some additional

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON IISP/lNTERLlSP-D INTEGRATION

Bitmap Syntax

Section 25.8 Readtables

3. COMMON LlSPIINTERLlSP-D INTEGRATION

characters are now "special", e.g., colon in all new readtables,
semi-colon in Common Lisp. Thus, the typical NS File "full name"
will be printed with the multiple escape character.

Since it is now possible to create symbols that have "numeric"
print names, such symbols must be printed with suitable escape
characters, so that on input they are not misinterpreted as
numbers. For example, the symbol whose print name is "1.2E3"
is printed as 11. 2E31. In read tables lacking a multiple escape
character, the single escape character is used instead, e.g.,
%1.2E3 in the old Interlisp T readtable. A print name is
considered numeric according to the definition of "potential
number" in Common Lisp (p. 341). Even if such a symbol is not
readable in the current system as a number, it still needs to be
escaped in case it is read into another system that treats it as
numeric (either another Common Lisp implementation, or a
future implementation of Xerox Lisp). Thus, some old Interlisp
symbols now print escaped where they didn't in Koto; e.g., the
PRINTOUT directive I . P21 is a potential number.

Bitmaps are printed in a new syntax in Lyric. When
PRINT-ARRAY is Nil (the default at top level), a bitmap prints
in roughly the same compact form as previously:

#<8ITMAP @ nn,nnnnnn>

If *PRINT-ARRAY* is T, a bitmap prints in a manner that allows it
to be read back:

#* (Width Height [BitsPerPixe/])XXXXXXXXX. ..

Width and Height are measured in pixels; BitsPerPixel is supplied
for bitmaps of other than the default of 1 bit per pixel. Each X
represents four bits of a row of the bitmap; the characters @ and
A through a are used in this encoding. Thus, there are
4*rWidth*BitsPerPixeI1161 X's for each row.

MAKEFllE binds *PRINT-ARRAY* to T so that bitmaps print
readably in files. E.g., if the value of Faa is a bitmap, the
command (VARS Faa) dumps something like

(RPAQQ Faa #* (10 10)ADSDKJ FDKJH ...)

Note that with this new format, bitmaps are readable even inside
a complex list structure. This means you need no longer use the
UGl YVARS command when dumping a list containing bitmaps if
the bitmaps were previously the only "unprintable" part of the
list.

(111:25.34)

The input/output syntaxes of Common Lisp and Interlisp differ in
a few significant ways. For example, Common Lisp uses "\" as the
escape character, whereas Interlisp uses "%". Common Lisp
input is case-insensitive (lower-case letters are read as
upper-case), whereas Interlisp is case-sensitive. In Xerox Lisp,
these differences are accommodated by having different

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION 3-43

3. COMMON LlSP/INTERLlSP-D INTEGRATION

readtables for the two dialects. Which syntax is used for input or
output depends on which readtable is being used (either as an
explicit argument to the readlprint function or by being the
"current" readtable).

Interlisp readtables have been extended to include features of
Common Lisp syntax. There is a registry of named readtables to
make it easier to choose a readtable. The default Interlisp
readtable has been modified to make it look a little closer to
Common Lisp.

Also, Lisp has a new mechanism for maintaining readlprint
consistency. This means that even though Koto files may contain
characters that are now "special", such as colon, you need make
no changes to them-the File Manager knows how to load them
correctly. See IRM, Chapter 17, Reader Environments and File
Manager for details of this mechanism.

Differences Between Interlisp and Common Lisp Read Tables

3-44

When reading or printing, the readtable dictates the syntax rules
being followed. As in past releases, the readtable indicates
which characters must be escaped when printing a symbol (and
PRINT-ESCAPE is true). In addition, in Lyric the readtable
specifies such things as which escape character to use (\ or %) and
the package delimiter to print on package-qualified symbols.
The less obvious rules are detailed below.

Printing numbers. Numbers are always printed in the current
print base (the value of the variable *PRINT-BASE*, or
equivalently the value of (RADIX). Whether to print a radix
specifier is determined by the readtable. In Common Lisp, a radix
specifier is printed exactly when the value of *PRINT-RADIX* is
true. The radix specifier is a suffix decimal point in base 10, or a
prefix using # for other bases. In Interlisp, a radix specifier is
printed if the base is not 10, *PRINT-ESCAPE* is true, and the
number is not less than the print base. The radix specifier is a
suffix Q for octal, or a prefix using # (or I in old Interlisp
readtables) for other bases. There is no decimal radix specifier.

Reading numbers. In Common Lisp, numbers are read in the
current value of *READ-BASE*, and a trailing decimal point is
interpreted as a decimal radix specifier. In Interlisp, numbers are
always read in base 10, and trailing decimal point denotes a
floating-point number.

Case conversion. In a case-insensitive readtable (as Common Lisp
is), the value of *PRINT-cASE* controls how upper-case symbols
are printed, and lower-case letters in symbols are escaped. In a
case-sensitive readtable (as Interlisp is), *PRINT-CASE* is ignored,
so all letters in symbols are printed verbatim. *PRINT-CASE* is
also ignored by PRIN1, which implicitly uses an Interlisp
readtable.

Ratios. The character slash (I) is interpreted as the ratio marker in
all readtables except old Interlisp readtables (specifically, those
whose COMMONNUMSYNTAX property is Nil). This is so that
old files containing symbols with slashes are not misinterpreted
as ratios. Thus, the characters "1/2" are read in new readtables

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION

3. COMMON LlSPIINTERLlSP-D INTEGRATION

as the ratio 1/2, but in old Interlisp readtables as the 3-character
symbol 11/21 (I is the mUltiple-escape character, see below).
Ratios are printed in old Interlisp readtables in the form I. (/
numerator denominator).

Packages. Symbols are interned with respect to the current
package (the binding of *PACKAGE*) except in old Interlisp
readtables (specifically, those whose USESILPACKAGE property is
T), where symbols are read with respect to the INTERLISP
package, independent of the binding of *PACKAGE*. Again,
this is a backward-compatibility feature: Interlisp had no
package system, so programmers were not confronted with the
need to read and print in a consistent package environment.

Print Level elision. When *PRINT-LEVEL * or *PRINT-LENGTH* is
exceeded, the printing functions denote elided elements and
elided tails by printing II &" and II - _" with an Interlisp readtable,
or II #" and II ••• II with a Common lisp readtable.

Section 25.8.2 New Readtable Syntax Classes

MULTIPLE-ESCAPE

PACKAGEDELIM

Additional Readtable Properties

The following new syntax classes are recognized by GETSYNTAX
and SETSYNTAX:

This character inhibits any special interpretation of all characters
(except the single escape character) up until the next occurrence
of the multiple escape character. In Common Lisp and in the new
Interlisp readtables this character is the vertical bar ("1"). For
example, l(a)1 is read as the 3-character symbol II (a) II ; Ix\ly\\zl is
read as the 5 character symbol "xly\z".

There is no multiple escape character in the old Interlisp
readtables.

This character separates a package name from the symbol name
in a package-qualified symbol. In Common Lisp and in the new
Interlisp readtables this character is colon (": "). In the old
Interlisp readtables the package delimiter is control-t (" tt "); it
is not intended to be easily typed, but exists only to have a
compatible way to print package-qualified symbols in obsolete
readtables. See Common Lisp, the Language for details of
package specification.

Read tables have several additional properties in Xerox Lisp.
These are accessible via the function READTABLEPROP:

(READTABLEPROP RDTBL PROP NEWVALUE) [Function]

NAME

Returns the current value of the property PROP of the readtable
RDTBL. In addition, if NEWVALUE is specified, the property's
value is set to NEWVALUE. The following properties are
recognized:

The.name of the readtable (a string, case is ignored). The name
is used for identification when printing the readtable object
itself, and can be given to the function FIND-READTABLE to
retrieve a particular readtable.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION 3-45

3. COMMON L1SP/INTERLlSP-D INTEGRATION

3-46

CASEINSENSITIVE

COMMONLISP

COMMONNUMSYNTAX

USESllPACKAGE

If true, then unescaped lower-case letters in symbols are read as
upper-case when this readtable is in effect. This property is true
by default in Common Lisp readtables and false in Interlisp
readtables.

If true, then input/output obeys certain Common Lisp rules;
otherwise it obeys Interlisp rules. This is described in more detail
in the section on reading and printing. Setting this property to
true also sets COMMONNUMSYNTAX true and USESllPACKAGE
false.

If true, then the Common Lisp rules for number parsing are
followed; otherwise the old Interlisp rules are used. This affects
the interpretation of "/" and the floating-point exponent
specifiers "d", "f", "I" and "s". It does not affect the
interpretation of decimal point and *READ-BASE*, which are
controlled by the COMMONLISP property.
COMMONNUMSYNTAX is true for Common Lisp readtables and
the new Interlisp readtables; it is false for old Interlisp
readtables.

This is a backward compatibility feature. If USESllPACKAGE is
true, then the Interlisp input/output functions read and print
symbols with respect to the Interlisp package, independent of
the current value of *PACKAGE*. This property is true by default
for old Interlisp readtables and false for others.

The following properties let the print functions know what
characters are being used for certain variable syntax classes so
that they can print objects in a way that will read back correctly.
Note that it is possible for several characters to have the same
syntax on input, but only one of the characters is used for
output. Also note that only the three syntax classes ESCAPE,
MULTIPLE-ESCAPE and PACKAGEDELIM are parameterized for
output; the others (such as lEFTPAREN and STRINGDElIM) are
hardwired -the same character is always used.

ESCAPECHAR This is the character code for the character to use for single
escape. Setting this property also gives the designated character
the syntax ESCAPE in the readtable.

MUlTIPlE-ESCAPECHAR This is the character code for the character to use for multiple
escape. Setting this property also gives the designated character
the syntax MULTIPLE-ESCAPE in the readtable.

PACKAGECHAR This is the character code for the package delimiter. Setting this
property also gives the designated character the syntax
PACKAGEDELIM in the readtable.

(FIND-READTABlE NAME) [Function]

(COPYREADTABlE RDTBL)

Returns the readtable whose name is NAME, which should be a
symbol or string (case is ignored); returns Nil if no such
readtable is registered. Readtables are registered by calling
(READTABlEPROP rdtbl'NAME name).

[Function]

COPYREADTABlE has been extended to accept a readtable name
as its RDTBL argument (the old value ORIG could be considered a
special case of this). For example, (COPYREADTABlE

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON L1SPIINTERLlSP-D INTEGRATION

Section 25.8 Predefined Readtables

INTERLISP

I (vertical bar)

: (colon)

, (quote)

t (backquote)
, (comma)

3. COMMON LlSPIINTERLlSP-D INTEGRATION

"INTERLlSP") returns a copy of the INTERLISP readtable.
COPYREAOTABlE preserves all syntax settings and properties
except NAME.

The following readtables are registered in the Lyric release of
Lisp:

This is the "new" Interlisp readtable. It is used by default in the
Interlisp Exec and by the File Manager to write new versions of
pre-existing source files. It thus replaces the old T readtable,
FILERDTBL, CODERDTBL and DEDITRDTBL. It differs from them in
the following ways:

has syntax MULTIPLE-ESCAPE rather than being used as a variant
of the Common Lisp dispatching # macro character.

is used as the Common Lisp dispatching # macro character. For
example, to type a number in hexadecimal, the syntax is #xnnn
rather than Ixnnn.

has syntax PACKAGEOELIM.

reads the next expression as (QUOTE expression).

are used to read backquoted expressions

In addition, the Common Lisp syntax for numbers is supported
(the readtable has property COMMUNNUMSYNTAX). For
example, the characters "1/2" denote a ratio, not a symbol.
Note, however, that trailing decimal point still means floating
point, rather than forcing a decimal read base for an integer.

The syntax for quote, backquote, and comma is the same as in
OLD-INTERLlSP-T, so you will not see any difference when typing
to an Interlisp Exec. However, the fact that files are also written
in the new INTERLISP readtable means that the prettyprinter is
now able to print quoted and backquoted expressions much
more attractively on files (and to the display as well).

LISP This readtable implements Common Lisp read syntax, exactly as
described in Common Lisp, the Language.

XCl This readtable is the same as LISP, except that the characters with
ASCII codes 1 thru 26 have white-space (SEPRCHAR) syntax. This
readtable is intended for use in File Manager files, so that font
information can be encoded on the file.

ORIG

OLD-I NTERlISP-FllE

The following readtables are provided for backward
compatibility. They are the same as the corresponding
readtables in the Koto release, with the addition of the
USESllPACKAGE property.

This is the same as the ORIG readtable described in the
Interlisp-D Reference Manual. When using a readtable produced
by (COPYREAOTABlE 'ORIG), expressions will read and print
exactly the same in Koto and Lyric.

This is the same as the FILERDTBL described in the Interlisp-D
Reference Manual. This readtable is used to read source files

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION 3-47

3. COMMON lISP/INTERlISP-D INTEGRATION

OLD-INTERLlSP-T

Koto Compatibility Considerations

Specifying Readtables and Packages

The T Readtable

produced in the Koto release. Note that in Lyric, FILERDTBL is no
longer used when reading or writing new files; see the section
on reader envi ronments.

This is the same as the T readtable described in the Interlisp-D
Reference Manual.

If you wish to change the syntax used by a standard readtable, it
is recommended instead that you copy the readtable, give it a
distinguished name, and make the change in the new readtable.
This will reduce the likelihood that you will try to read another
user's files in an incompatible readtable, or that another user will
fail reading yours. See chpater 17, Reader Environments and the
File Manager, for more details.

In order to consistently read a data structure that you have
previously printed, it is important that READ and PRINT both use
the same readtable and package. Code that calls READ or PRINT
without explicitly specifying a readtable (via the RDTBL
argument or by doing a SETREADTABLE) is thus in some danger
of reading and printing inconsistently.

In Koto, the "primary" (NIL) readtable was not significantly
different from the other Interlisp readtables, and users tended
not to make significant modifications to the primary readtable
anyway. As a result, it was easy to write code that was not
careful about readtables and get away with it. In Lyric, however,
there are significant differences among commonly used
readtables. Thus, if code using the default readtable called
PRINT under, say, the Common Lisp Executive and tried to READ
the expression back while running under an Interlisp Executive, it
might very well get inconsistent results.

Lyric also introduces the extra complication of the default
package, which is the other important parameter affecting the
behavior of READ and PRINT.

Programmers are thus advised to fix any code that uses READ and
PRINT as a way of storing and retrieving Lisp expressions to be
sure to specify a readtable and package environment. For new
code in Lyric, this can be done by binding the special variables
READTABLE and *PACKAGE*. If it is necessary to write code
that works in both Koto and Lyric, the programmer should pass
an explicit readtable to all READ and PRINT functions, or set the
primary readtable using (RESETFORM (SETREADTABLE rdtb/) --).
If the readtable chosen is either FILERDTBL or one derived as a
copy of ORIG, then READ and PRINT will automatically use the
INTERLISP package in Lyric, thereby avoiding any need to specify
a binding for *PACKAGE*.

An additional possible incompatibility exists with regard to the
Koto T readtable: The T readtable was "the readtable used
when reading from the terminal". In Lyric, the T readtable is

3-48 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON lISP/INTERLlSP-D INTEGRATION

PQUOTE Printed Files

Back-Quote Facility

3. COMMON LlSP/INTERLlSP-D INTEGRATION

synonymous with NIL, and all Executives bind *READTABLE* to
the appropriate value for the Exec. This is unlikely to be a major
source of incompatibility, as few programs depend on printing
something in the T readtable in a way that needs to read back
consistently.

In Lyric, the prettyprinter automatically prints quoted and
backquoted expressions attractively. Hence, the PQUOTE
Lispusers module is now obsolete. However, if you have written
files in the past with the PQUOTE module loaded into your
environment, you need to do the following in Lyric in order to
load those files:

(SETSYNTAX (CHARCODE) '(MACRO FIRST READQUOTE)
FILERDTBL)

You can then load the old files. New files produced in Lyric by
MAKEFILE will automatically be loadable, so you need only
perform the SETSYNTAX change as long as you still have old files
written with PQUOTE. Remember, of course, that as long as the
SETSYNTAX is in effect (as with the old PQUOTE module), if you
read old files that were written without PQUOTE you may read
them incorrectly.

The back-quote facility now fully conforms with Common Lisp
the Language. This means some cases of nested back-quote now
work correctly. Back-quote forms are also more attractively
displayed by the prettyprinter. Users should beware, however,
that the back-quote facility does not attempt to create fresh list
structures unless it is necessary to do so. Thus for example,

'(1 23)

is equivalent to

'(1 2 3)

not

(LIST 1 23)

If you need to avoid sharing structure you should explicitly use
LIST, or COpy the output of the back-quote form.

Chapter 28 Windows and Menus

Section 28.5.1 Menu Fields

(/11:28.38)

With the Medley release, multi-column menus can have rollout
submenus.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSPIINTERLlSP-D INTEGRATION 3-49

3. COMMON LlSP/INTERLlSP-D INTEGRATION

[This page intentionally left blank]

3-50 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LlSP/INTERLlSP-D INTEGRATION

Chapter 3 Lists

4. CHANGES TO INTERLISP-D IN
LYRIC/MEDLEY

NOTE: Chapter 4 is organized to correspond to the original
Interlisp-D Reference Manual, and explai ns changes that have
occurred in Interlisp-D with the Lyric and Medley releases. To
make it easy to use this chapter with the IRM, information is
organized by IRM volume and section numbers. Section
headings from the IRM are maintained to aid in
cross-referenci ng.

Lyric information as well as Medley release enhancements are
included. Medley additions are indicated with revision bars in
the right margin.

VOLUME I-LANGUAGE

Section 3.2 Building Lists From Left To Right

(1:3.7)

The functions DOCOLLECT and ENDCOLLECT are no longer
supported.
(1:3.8)

The description of the ADDTOSCRATCHLIST function has been
revi sed to read:

(ADDTOSCRATCHLIST VALUE) [Function]

Section 3.10 Sorting Lists

(SORT DATE COMPAREFN)

For use inside a SCRATCHLIST form. VALUE is added on to the
end of the value being collected by SCRATCH LIST. When the
SCRA TCHLIST returns, its value is a list containing all of the things
that ADDTOSCRATCHLIST has added.

(1:3.17)

[Function]

There is no safe interrupt to SORT-if you abort a call to SORT by
any means the possibility exists for losing elements from the list
being sorted.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSPD 4-1

4. CHANGES TO INTERLlSP-D IN LYRIOMEDLEY

Chapter 6 Hash Arrays

(1:6.1)

(HASHARRA Y MINKEYS OVERFLOW HASHBITSFN EQUIVFN RECLAIMABLE
REHASH-THRESHOLD) [Function]

Section 6.1 Hash Overflow

Chapter 7 Integer Arithmetic

(FIXR N)

4-2

The function HASHARRAY has two new optional arguments,
RECLAIMABLE and REHASH-THRESHOLD. If RECLAIMABLE is
true, then entries in the hash table are considered "reclaimable"
in the sense that the system is permitted to remove any key and
its associated value from the hash table at any time. In practice,
the contract is less severe: the system only removes keys when a
hash table fills and is about to be rehashed, and then it only
removes keys whose reference count is one, and to which there
are thus no pointers outstanding except possibly from the stack
(local variables). This is useful for hash tables that serve to cache
information about Lisp objects to avoid recomputation; for
example, the system hash table CLiSPARRA Y is now reclaimable.
Discarding keys keeps the table from necessarily needing to
grow, and potentially allows the storage consumed by both the
key and value to be reclaimed.

(1:6.3)

You should note changes to the wording of two of the
possibilites for the overflow method:

The first sentence for NIL should read: The array is automatically
enlarged by at least a factor of 1.5 every time it overflows.

The explanation for "a positive integer N" should read: The
array is enlarged to include at least N more slots than it currently
has.

(1:7.5)

The variables MIN.lNTEGER and MAX.lNTEGER have been
removed from the Interlisp-D Reference Manual. Therefore,
calling (MIN) and (MAX) is an error.

(1:7.7J

[Function]

When N is exactly half way between two integers, FIXR rounds it
to the even number. For example (FIXR 1.5) ~ 2 and (FIXR 2.5)
~2.

LISP RELEASE NOTfS, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

4. CHANGES TO INTERLlSP-D IN LYRIOMEDLEY

Section 7.3 Logical Arithmetic Functions

The function INTEGERLENGTH does not coerce floating point
numbers to integers; rather, it signals an error, "Arg not
Integer". (This was true in Koto as well.)

Section 7.5 Other Arithmetic Functions

Chapter 8 Record Package

(1:7.13)

The algorithms for SIN, COS, and other trigometric functions
have been tuned and are now accurate to at least six significant
figures.

(1:8.11)

When using BLOCKRECORD, it is an error to try to declare a
record with a zero-length field. Previously, the system would go
into an infinite loop. In the Medley release, the system will now
detect this and signal an error.

Chapter 9 Conditionals and Iterative Statements

Section 9.2 Equality Predicates

(EQUALALL X y)

Section 9.8.3 Condition 1.5. oprs

UNTIL N (N a number)

(1:9.3)

[Function]

Add the following NOTE to the EQUALALL function:

Note: In general, EQUALALL descends all the way into all
datatypes, both those defined by the user and those built
into the system. If you have a data structure with fonts
and pointers to windows, EQUALALL will descend into
those also. If the data structures are circular, as windows
are, EQUALALL can cause a Stack Overflow error.

[1.5. Operator]

REPEATUNTIL N (N a number) [1.5. Operator]

These descriptions were included in the Interlisp-D Reference
Manual in error and should be removed. UNTIL and
REPEATUNTIL work only with predicate expressions, not
numbers.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLISP D 4-3

4. CHANGES TO INTERLlSP-D IN LYRIOMEDLEY

chapter 10 Function Definition, Manipulation, and Evaluation

Section 10.2 Defining Functions

Section 10.5 Functional Arguments

Section 10.6.2 Interpreting Macros

(1:10.11)

In the definition of the MOVD function, the sentence "COPYDEF
is a higher-level function that only moves expr definitions, but ... "
should be revised to read:

COPYDEF is a higher-level function that not only moves expr
definitions, but also works for variables, records, etc.

(/:10.19)

FUNARG functionality (non-NIL second argument to FUNCTION)
has been withdrawn. Most of the uses for Interlisp FUNARG's are
better written using the lexical closure functionality of Common
Lisp.

The variables SHOULDCOMPILEMACROATOMS and
UNSAFEMACROATOMS no longer exist.

Chapter 11 Variable Bindings and the Interlisp Stack

4-4

(II: 11.2)

In Lisp there is a fixed amount of space allocated for the stack.
When this space is exhausted, the STACK OVERFLOW error
occurs. However, if the system waited until the stack were really
exhausted, there wouldn't be room to run the debugger. Thus,
a portion of the stack space is reserved; when the stack intrudes
into the reserved area, it causes a stack overflow interrupt, and
subsequently a call to the debugger.

In order not to get a STACK OVERFLOW error while inside the
debugger, this intrusion into the reserved area is only noted
once. If the reserved area is exhausted, then a "hard" stack
overflow occurs (a 9319 MP halt), from which the only recourse is
a hard reset via STOP (or Ctrl-D from TeleRaid). Following a hard
reset, the stack is cleared, stack overflow detection is reenabled,
and all processes are restarted.

The implications of this are that you should not attempt any
deep computations while inside the debugger for a stack
overflow error, and you should call (HARDRESET) as soon as
possible in order that subsequent stack overflows can again be
caught in the debugger before they advance to the MP halt. In
order to make this more convenient, the system automatically
calls (HARDRESET) if you exit the debugger via the t or OK
commands, or abort with a Ctrl-D. The only way to exit the

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

Section 11.2.1 Searching the Stack

4. CHANGES TO INTERLlSP-D IN LYRIC/MEDLEY

debugger without having a (HARDRESET) occur is by using the
RETURN command. You can disable this feature by setting
AUTOHARDRESETFLG to NIL, in which case you must be sure to
perform the (HARDRESET) yourself if you want the next stack
overflow to be detected early enough to enter the debugger.

(STKPOS FRAMENAME N POS OLDPOS) [Function]

(STKPOS 'STKPOS) does not cause an error; it merely returns NIL.
(This was true in Koto as well.) It is still not permissible to create
a pointer to the active frame; however, STKPOS never attempts
to, as it starts searching for the specified frame by looking first at
its caller.

Section 11.2.2 Variable Bindings in Stack.Frames

(STKARG N POS -)

(STKNARGS POS -)

(1:11.7)

[Function]

[Function]

The functions STKARG and STKNARGS will now return the
number of arguments supplied to a Lambda Nospread when
there is a break. The? = command wi II show all the arguments.

(SETSTKARGNAME N POS NAME) [Function]

The function SETSTKARGNAME does not work for interpreted
frames.

Section 11.2.5 Releasing and Reusing Stack Pointers

(CLEARSTK FLG)

CLEARSTKLST

NOCLEARSTKLST

Section 11.2.7 Other Stack Functions

[Function]

(CLEARSTK NIL) is a no-op-the ability to clear all stack pointers is
inconsistent with the modularity implicit in a mUlti-processing
environment.

[Variable]

[Variable]

The variables CLEARSTKLST and NOCLEARSTKLST are no longer
used. (More precisely, they are used only by the Old Interlisp
Executive, which means that programs can no longer depend on
them.)

(11:11.13)

In the REALFRAMEP function, the INTERPFLG argument
description has been corrected to read:

If INTERPFLG = T returns T if POS is not a dummy frame. For
example, if (STKNAME POS) = COND, (REALFRAMEP POS) is NIL,
but (REALFRAMEP POS T) is T.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D 4-5

4. CHANGES TO INTERLlSP-O IN LYRIOMEOLEY

chapter 12 Miscellaneous

Section 12.2 Idle Mode

ALLOWED.LOGINS

*

T

A user name

A group name

AUTHENTICA TE

FORGET

The following properties in IDLE.PROFILE are new or have
meanings different from the documentation in the Interlisp-D
Reference Manual:

The authentication aspects of this property have been separated
into the AUTHENTICATE property. The value of this property
now speaks specifically to who is allowed to exit idle mode: If
the value is NIL (or any other non-list), no login at all is required
to exit Idle mode. Otherwise, the value is a list composed of any
of the following:

Require login, but let anyone exit idle mode. This will overwrite
the previous user's name and password each time idle mode is
exited.

Let the previous user (as determined by USERNAME) exit idle
mode. If the user name has not been set, this is equivalent to *.

Let this specific user exit idle mode.

Allow any members of this group (an NS Clearinghouse group
name) to exit idle mode.

The initial value for ALLOWED.LOGINS is (T *), i.e., anyone is
allowed to exit idle mode.

The value of this property determines what mechanism is used to
check passwords. If T, use the NS authentication protocol
(requires the presence of an NS Authentication server accessible
via the network). If NIL, do not check the password at all-accept
any password. This is only particularly useful if
ALLOWED.LOGINS contains *.

The initial value of AUTHENTICATE is T.

If this is the symbol FIRST, the user's password will be erased
when idle mode is entered. Otherwise, this property is relevant
only when ALLOWED.LOGINS is NIL (if ALLOWED.LOGINS is a list,
then some sort of login is required, which will have the effect of
erasing any previous login): If FORGET is non-NIL, the user's
password will be erased when idle mode is exited. Initial value is
T (erase password on exit).

Note: If the password is erased on entry to Idle mode (value
FIRST), any program left running when idle mode is
entered may fail if it tries doing anything requiring
passwords (such as accessing file servers).

LOGIN.TIMEOUT Value is a number indicating how many seconds Idle's prompt for
a login should remain up before timing it out and resuming Idle
mode. Initial value is 30. This feature avoids the problem of
having an Idle machine "freeze up" indefinitely (stop running
the idle pattern) just because someone brushed against the
keyboard.

RESETVARS This property is no longer used; rather, the value of the global
variable IDLE.RESETVARS is used instead.

4-6 LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

SUSPEND.PROCESS.NAMES

4. CHANGES TO INTERLlSP-D IN LYRIC/MEDLEY

This property is no longer used; rather, the value of the global
variable IDLE.SUSPEND.PROCESS.NAMES is used instead.

Section 12.3 Saving Virtual Memory State

AROUNDEXITFNS

BEFORELOGOUT

BEFORESYSOUT
BEFORE MAKES YS

BEFORESAVEVM

AFTERLOGOUT
AFTERSYSOUT

AFTERMAKESYS
AFTERSAVEVM

AFTERDOSYSOUT
AFTERDOMAKESYS

AFTERDOSAVEVM

[Variable]

This variable provides a way to "advise" the system on cleanup
and restoration activities to perform around LOGOUT, SYSOUT,
MAKESYS and SAVEVM; it subsumes the functionality of
BEFORESYSOUTFORMS, AFTERLOGOUTFORMS, etc. Its value is a
list of functions (names) to call around every "exit" of the system.
Each function is called with one argument, a symbol indicating
which particular event is occurring:

The system is about to perform a LOGOUT. The event function
might want to save state, notify a network connection that it is
about to go away, etc.

The system is about to perform a SYSOUT, MAKESYS, or
SAVEVM. Often these three events are treated equivalently;
however, sometimes the distinction is interesting. For example, a
program might want to perform a much more extensive
tidying-up before MAKESYS than if it is merely doing a routine
SAVEVM.

The system is starting up a virtual memory image that was saved
by performing a LOGOUT, SYSOUT, etc. Ordinarily, the event
function should treat all of these the same-in all four cases,
some arbitrary amount of time has passed, remote files may have
come and gone, a different user may be logged in, or the virtual
memory image might even be running on a different
workstation.

The system is continuing in the same virtual memory image
following a SYSOUT, MAKESYS, or SAVEVM (as opposed to
having just booted the same virtual memory image). Ordinarily,
these events are uninteresting; they exist solely so that actions
taken by the BEFORExxx events can be compensated for after
the event. For example, if the before event cleared a cache, the
after event might initiate refilling it. There is, of course, no event
AFTERDOLOGOUT, as LOGOUT does not "continue".

Section 12.4 System Version Information

(/: 12.13)

In the description of the MACHINETYPE function, add another
machine, the DOVE (for the Xerox 1186).

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D 4-7

4. CHANGES TO INTERLlSP-D IN L YRICIMEDLEY

Chapter 13 Interlisp Executive

(READLINE RDTBL --)

Chapter 14 Errors and Breaks

VOLUME II-ENVIRONMENT

(1:23.37)

[Function]

The Interlisp-D Reference Manual states:

The description on p 13.37 of READlINE's behavior when one or
more spaces precede the carriage return applies only when
lISPXREADFN is READ. lISPXREADFN is initially TTVINREAD,
which ignores spaces before the carriage return, and thus will
never prompt you with " ... " for an additional line. Also, the new
Executive does not use READLINE at all, so you will never see this
behavior in a new Executive, independent of the setting of
lISPXREADFN.

Section 14.5 Break Window Variables

Section 14.8 Catching Errors

4-8

(II: 14.15)

Setting the variable BREAKREGIONSPEC to NIL no longer creates
problems if there is a subsequent break.

(II: 14.22)

The Nlambda functions ERSETQ and NLSETQ now allow
evaluation of an arbitrary number of forms, rather than only
one.

(11:14.26)

For Medley, the Interlisp interpreter's handler for RESETFORM
has been fixed (in Lyric, it worked only from the Common lisp
interpreter, or compiled) .

LISP RELEASf NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

4. CHANGES TO INTERlISP-O IN LYRIOMEDLEY

Chapter 17 File Package

Note: The File Package is now known as the File Manager.

Section 17.8.1 Functions for Manipulating Typed Definitions

(/1:17.26)

(HASDEF NAME TYPE SOURCE SPELLFLG) [Function]

Clarification: HASDEF for type FNS (or NIL) indicates that NAME
has an editable source definition, not that NAME is defined at
all. Thus if NAME exists on a file for which you have loaded only
the compiled version but not the source, HASDEF returns NIL.

Section 17.8.2 Defining New File Package Types

Section 17.9.2 Variables

(/I: 17.31)

In the WHENCHANGED File Package Type Property the REASON
argument passed to WHENCHANGED no longer is T or NIL. The
Note has been revised as follows:

Note: The REASON argument passed to WHENCHANGED
functions is either CHANGED or DEFINED.

(/1:17.32)

The Nospread Function FILEPKGTYPE returns a property list
rather than an alist.

(11:17.36)

In the Lyric release, HORRIBLEVARS did not preserve common
substructures across several variables.

In Lyric, you could not dump an UGLYVARS or HORRIBLEVARS
whose printed representation required more than
ARRAY-TOTAL-SIZE-UMIT characters. This is no longer the case
with the Medley release.

Section 17.9.8 Defining New File Package Commands

Section 17.11 Symbolic File Format

(/1:17.47)

The Nospread Function FILEPKGCOM returns a property list
rather than an alist.

(PRETTYDEF PRTTYFNS PRTTYFILE PRTTYCOMS REPRINTFNS SOURCEFILE
CHANGES) [Function]

PRETTYDEF accepts only a symbol for its file argument.

In Lyric and Medley, SYSPRETTYFLG is ignored in Interlisp exec
and does not pretty-print values in the executive.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D 4-9

4. CHANGES TO INTERLlSP-D IN LYRIC/MEDLEY

(LiSPSOURCEFILEP FILE)

Section 11.11.3 File Maps

chapter 18 Compiler

Chapter 21 CLISP

[Function]

LlSPSOURCEFILEP is more specifically defined to mean that the
file is in File Manager format and has a file map.

File maps are no longer stored on the FILEMAP property. See
GET-ENVIRONMENT-AND-FILEMAP in the section entitled
"Programmer's Interface to Reader Environments" in chapter 3.

CAUTION: Files compiled in Medley cannot be loaded back into
Lyric. Medley-compiled .LCOM and .DFASL files will produce an
error message when loaded into Lyric. (Lyric-compiled .LCOM
and .DFASL files can be loaded and run in Medley.) If you need
to run a Medley file in Lyric, load the source file and use the Lyric
compiler.

Note that you should not attempt to compile a file containing a
function named STOP. The format of the .LCOM file produced
by BCOMPL or TCOMPL admits an unfortunate ambiguity in the
treatment of the symbol STOP-LOAD prefers to treat it as the
token signifying the end of the file, rather than as starting the
definition of the function STOP.

There is no such restriction for the .DFASL files produced by
CL:COMPILE-FILE.

Section 21.8 Miscellaneous Functions and Variables

4-10

(CLEARCLISPARRA V NAME --) [Function]

Macro and CLiSP expansions are cached in CLiSPARRA Y, the
system's CLiSP hash array. When anything changes that would
invalidate an expansion, it needs to be removed from the cache.
CLEARCLISPARRA Y removes from the CLiSP hash array any key
whose CAR is NAME. The system does this automatically
whenever you edit a clisp or macro form, or when you redefine a
clisp word or macro definition. However, you may need to call
CLEARCLISPARRAY explicitly if you change something in a more
subtle way, e.g., you redefine a function used by a macro. If your
change invalidates an unknown set of expansions, you might
prefer to take the performance penalty of calling (CLRHASH
CLiSPARRA Y) to invalidate the entire cache, just to make sure no
incorrect expansions are kept around.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

4. CHANGES TO INTERLlSP-D IN LYRIC/MEDLEY

chapter 22 Performance Issues

Section 22.1 Storage Allocation and Garbage Collection

The following should be appended to the description of garbage
collection in Interlisp-D:

Another limitation of the reference-counting garbage collector
is that the table in which reference counts are maintained is of
fixed size. For typical Lisp objects that are pointed to from
exactly one place (e.g., the individual conses in a list), no burden
is placed on this table, since objects whose reference count is 1
are not explicitly represented in the table. However, large,
"rich" data structures, with many interconnections, backward
links, cross references, etc, can contribute many entries to the
reference count table. For example, if you created a data
structure that functioned as a doubly-linked list, such a structure
would contribute an entry (reference count 2) for each element.

When the reference count table fills up, the garbage collector
can no longer maintain consistent reference counts, so it stops
doing so altogether. At this point, a window appears on the
screen with the following message, and the debugger is entered:

Internal garbage collector tables have overflowed, due
to too many pointers with reference count greater than 1.
*** The garbage collector is now disabled. ***
Save your work and reload as soon as possible.

[This message is slightly misleading, in that it should say "count
not equal to 1". In the current implementation, the garbage
collection of a large pointer array whose elements are not
otherwise pointed to can place a special burden on the table, as
each element's reference count simultaneously drops to zero and
is thus added to the reference count table for the short period
before the element is itself reclaimed.]

If you exit the debugger window (e.g., with the RETURN
command), your computation can proceed; however, the
garbage collector is no longer operating. Thus, your virtual
memory will become cluttered with objects no longer accessible,
and if you continue for long enough in the same virtual memory
image you will eventually fill up the virtual memory backing
store and grind to a halt.

Section 22.5 Using Data Types Instead of Records

(11:22.13)

The note in this section states that "pages for datatypes are
allocated one page at a time." The note should read:

Space for datatypes is allocated two pages at a time. Thus, each
datatype for which any instances at all have been allocated has
at least two pages assigned to it.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D 4-11

4. CHANGES TO INTERLlSP-D IN L YRIOMEDLEY

Chapter 23 Processes

Section 23.1 Creating and Destroying Processes

(111:23.2)

ADD.PROCESS no longer coerces the process name to a symbol.
Rather, process names are treated as case-insensitive strings.
Thus, you can use strings for process names, and when typing
process commands to an exec, you need not worry about getting
the alphabetic case correct.

Section 23.2 Process Control Constructs

The Medley release fixes the PROCESS.EVAL and PROCESS.APPLY
functions. In PROCESS.EVAL and PROCESS.APPLY, with
argument WAITFORRESULT = T, if the computation in the other
process aborts (or the process is killed), then PROCESS.EVAL and
PROCESS.APPLY return :ABORTED instead of hanging.

Section 23.6 Typein and the TIV Process

BACKGROUNDFNS

TTYBACKGROUNDFNS

[Variable]

A list of functions to call "in the background". The system runs a
process (called "BACKGROUND") whose sole task is to call each
of the functions on the list BACKGROUNDFNS repeatedly. Each
element is the name of a function of no arguments. This is a
good place to put cheap background tasks that only do
something once in a while and hence do not want to spend their
own separate process on it. However, note that it is considered
good citizenship for a background function with a
time-consuming task to spawn a separate process to do it, so that
the other background functions are not delayed.

[Variable]

This list is like BACKGROUNDFNS, but the functions are only
called while in a tty input wait. That is, they always run in the tty
process, and only when the user is not actively typing. For
example, the flashing caret is implemented by a function on this
list. Again, functions on this list should spend very little time
(much less than a second), or else spawn a separate process.

Section 23.8 Process Status Window

4-12

The Medley release modifies the way in which the Process Status
Window can be reshaped and refreshed.

The Process Status Window is now created in such a way that
reshaping the window reshapes ONLY the backtrace window,
not the main window.

The process status window now refreshes itself automatically
following a KILL command.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

Chapter 24 Streams and Files

Section 24.7 File Attributes

(GETFILEINFO FILE A TTRIB)

READER

PROTECTION

Section 24.9 Local Hard Disk Device

Section 24.10Floppy Disk Device

4. CHANGES TO INTERLlSP-D IN LYRIOMEDLEY

VOLUME III-INPUT/OUTPUT

[Function]

NS file servers implement the following additional attributes for
GETFILEINFO (neither of these attributes is currently settable
with SETFILEINFO):

The name of the user who last read the file.

A list specifying the access rights to the file. Each element of the
list is of the form (name nametype . rights), where name is the
name of a user or group or a name pattern, and rights is one or
more of the symbols ALL READ WRITE DELETE CREATE MODIFY.
For servers running Services release 10.0 or later, nametype is the
symbol " __ "; in earlier releases it is either INDIVIDUAL or GROUP,
to distinguish the type of name. For example, the value «Jane
Jones: -- ALL) (*: -- READ)) means that user Jane Jones has full
access to the file, while all members of the default domain only
have read access to the file.

(111:24.22)

In the Medley release, the {DSK} device now accepts a wider
range of characters in file names. Almost any character in char
set 0 is acceptable. Previously, if you tried to create a file whose
name included, for example, an underscore, you would see a
"FILE NOT FOUND" error.

(111:24.26)

As of the Lyric release, CPM-format floppy disks are no longer
supported.

Section 24.12Temporary Files and CORE Device

(111:24.30)

In Medley, (GETFILEINFO xx 'LENGTH) works for both opened
and closed NODIRCORE streams.

A closed NODIRCORE stream can be reopened.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D 4-13

4. CHANGES TO INTERLlSP-D IN LYRIC/MEDLEY

Section 24.18.1 Pup File Server Protocols

UNIXFTPFlG [Variable]

When the Leaf protocol was first implemented for the Vax Unix
operating system, its use was inconsistent with the operation of
the Pup FTP server on the same host: the Leaf server supported
versions, but the Ftp server knew only about the native,
versionless file system. Thus, Lisp could not use the two protocols
interchangeably. For example, if it used Ftp to write a file FOO,
the Ftp server would, in versionless style, overwrite the
versionless file FOO, rather than create a new version FOO;6 to
supersede the highest version FOO; 5 created by the Leaf server.

Lisp thus makes the conservative assumption that the Ftp server
is unusable for anything other than directory enumeration on a
host of type UNIX. This is unfortunate, since it is often the case
that Ftp is more efficiently implemented than Leaf, since one
need only tune the performance of sequential access.

More recent versions of the Unix Pup software have a Leaf and
Ftp server more in agreement with each other. Setting
UNIXFTPFlG to true (it is initially NIL) informs Lisp that all the
Unix servers accessible on your internetwork that possess Ftp
servers are safe to use in parallel with thei r Leaf servers.

Section 24.18.1 and 24.18.2 Use of BREAKCONNECTION with File Servers

4-14

(111:24.37)

In Medley, the function BREAKCONNECTION can be used equally
well with NS servers and Leaf servers. Formerly, it only worked
on Leaf servers, and there was a separate function
(BREAK.NSFILlNG.CONNECTION HOST) to handle NS servers.

(BREAKCONNECTION HOST FAST) [Function]

Breaks the file server connection to HOST. If HOST = T, breaks
connections to all file servers that understand the
BREAKCONNECTION method (currently Leaf and NS).
BREAKCONNECTION returns the server name, or if HOST = T,
returns a list of all hosts that responded to the
BREAKCONNECTION request.

This function may be useful if Lisp and the server disagree about
what files are open, or if the Lisp system is caching something
that you do not want it to; e.g., if you get a file busy error from
another workstation for a file that you may have touched on this
workstation.

The behavior of BREAKCONNECTION is server-specific. On an NS
server, BREAKCONNECTION releases any locks that Lisp may have
on recently-accessed files, including those for open files, but
does not close any files from Lisp's point of view--any subsequent
access to an open file will quietly reestablish the connection.
Most NS servers have a short timeout on the order of 10 minutes
after which an implicit BREAKCONNECTION occurs if you have no
files open.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

4. CHANGES TO INTERLlSP-O IN LYRIOMEDLEY

On a Leaf server, BREAKCONNECTION first closes any files. If the
argument FAST is true, it marks the files closed without
attempting to close them cleanly. Leaf connections ordinarily do
not timeout if any files at all are open.

Section 24.18.2 NS File Server Protocols

(111:24.37)

Medley incorporates the random access capability on NS servers
provided by the NSRANDOM LispUsers module in Lyric.

The Medley release also supports NS file names containing
characters other than character set 0 (e.g., Greek characters).

Section 24.18.3 Operating System Designations

DEFAUL T.OSTVPE [Variable]

If a host's name is not found in NETWORKOSTVPES, its operating
system type is assumed to be the value of DEFAUL T.OSTVPE. This
variable may be of use to sites with many servers all of the same
type. Its default value (IFS) is, unfortunately, inappropriate for
most sites. It is recommended you set DEFAUL T.OSTVPE in the
initialization file that lives on the local disk (not in an init file on
a file server, since Lisp needs to know the operating system type
before talking to the server).

Chapter 25 Input/Output Functions

Section 25.2 Input Functions

(LASTC FILE)

Section 25.3.2 Printing Numbers

[Function]

The function LASTC can return an incorrect result when called
immediately following a PEEKC on a file that contains run-coded
NS characters.

(111:25.15)

In the PRINTNUM function, the FLOAT format option (FLOAT 72
NIL T) is illegal; change the option to (FLOAT 72 NIL 0).

Section 25.3.4 Printing Unusual Data Structures

(HPRINT EXPR FILE UNCIRCULAR DATA TYPESEEN) [Function]

Using HPRINT to save structures that include pointers to raw
storage will cause stack overflows. This includes dumping things
using the VARS, UGLVVARS, or HORRIBLEVARS filemanager
commands.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP·D 4-15

4. CHANGES TO INTERLlSP-D IN L YRICIMEDlEY

For example, a font descriptor points to raw storage, and cannot
be dumped; for that reason, other system data types (e.g.
windows) that point to fonts also cannot be dumped.

Section 25.4 Random Access File Operations

Section 25.6 PRINTOUT

Section 25.8.3 READ Macros

(11':25.20)

The first argument in the FllEPOS function should be called STR
not PA TTERN.

(11':25.20)

In the Medley release, the function COpy BYTES now accepts
START and END arguments even when the input stream is not
random access. This caused an error in earlier releases.

(11':25.27)

The PRINTOUT command .FONT changes the DSPFONT font
permanently, that is, even after printout finishes.

(11':25.42-43)

These READMACROS appear only in the OLD-INTERLlSP-T
readtable. (See Section 2 for a description of Lyric readtables.)

Chapter 26 User Input/Output Packages

Section 26.3 ASKUSER

(ASKUSER WAIT DEFAULT MESS KEYLST TYPEAHEAD LlSPXPRNTFLG
OPTIONSLST FILE) [Function]

ASKUSER does not accept a string to mean a stream open on the
string; you must call OPENSTRINGSTREAM if that's what you
mean.

Section 26.4 TTYIN Display Typein Editor

4-16

(II': 26.22)

The following fixes have been made to TTYIN in the Medley
release:

• TTYIN now respects the DSPlEFTMARGIN of the
ttydisplaystream, rather than assuming it is zero .

• You can now assign the keyaction 194 (octal 302--acute accent
in the NS character set) to a key and TTYIN will not treat it like
the UNDO key (except on the 1132, where this functionality is
still on blank-middle).

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

4. CHANGES TO INTERLlSP-D IN LYRIOMEDLEY

• TTYIN correctly handles prompts that are wider than the
window.

• TTYIN now handles NS characters correctly when you are using
a fixed-width font into which you have coerced, say, Classic
characters for the non-zero character sets.

• TTYIN now handles Escape completion much more efficiently.
If the completion is ambiguous, it completes the unambiguous
prefix (as it did in Koto but not Lyric); it also correctly
interprets escape characters. For example, in an exec with
Common Lisp readtable, it correctly completes symbols that
start with \\, or a mixed-case symbol written with vertical bars.
Also, Escape completion computes character widths correctly
when it lowercases an upper case string, rather than leave
some garbage bits on the display.

• The off-by-the-descent bug wherein TTYIN sometimes left
stray bits at the bottom of the window has been fixed.

Section 26.4.3 Display Editing Commands

(111:26.25)

? = and Meta-P no longer hang if you had an unbalanced string
quote in the input.

? =, Meta-P, and the FIX command now work correctly when
there are NS characters in the input.

The printout for? = is now improved; it respects *print-case*,
matches up keywords better, and prints abstract syntax
descriptions (such as for cI :do) a bit more clearly.

SMARTARGLIST fetches the argument lists of cI:compiled
functions, so ? = now works in more cases.

The Ctrl-X command, when the caret is already positioned at the
end of the input and everything but parentheses are balanced
(i.e., no unbalanced string quotes or vertical bars), types as many
closing parentheses as necessary to complete the input and then
returns, much as if you had typed right bracket ("]") in Interlisp.
Thus, if the cursor is somewhere in the middle of the input,
typing two Ctrl-X's is sufficient to complete (assuming all you
needed to type were some more parens).

TTYIN can now be used as a substitute for PROMPTFORWORD.
The new function TTYINPROMPTFORWORD takes the same set of
arguments as PROMPTFORWORD. In the most common cases it
then calls TTYIN in "promptforword" mode, so that you can use
the mouse and other TTYIN commands on the input. For cases it
can't handle, it calls the old PROMPTFORWORD. These cases are:
DONTECHOTYPEIN.FLG or KEYBD.CHANNEL is non-NIL;
ECHO.CHANNEL is not a displaystream; or TERMINCHARS.LST
contai ns a character other than cr, space or i X and you have set
the variable TTYIN.USE.EXACT.CHARS (initially NIL) to T. TTYIN
saves the old definition of PROMPTFORWORD, so you can either
have your program explicitly call TTYINPROMPTFORWORD

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D 4-17

4. CHANGES TO INTERLlSP-D IN LYRIC/MEDLEY

Section 26.4.5 Useful Macros

instead of PROMPTFORWORD, or you can have all calls to
PROMPTFORWORD changed by doing a (MOVD
'TTYINPROMPTFORWORD 'PROMPTFORWORD).

(111:26.29)

CTRLUFLG is no longer supported by default. To use this feature,
turn it on explicitly: (INTERRUPTCHAR (CHARCODE t U)
·CTRLUFLG).

chapter 27 Graphic Output Operations

Section 27.1.3 Bitmaps

(ROTATE-BITMAP BITMAP)

Note: The printed representation of bitmaps has changed.
Please see release notes Chapter 3, Integration of
Interlisp-DI Common Lisp, "Bitmap Syntax."

(111:27.4)

The following function has been added to Bitmap Operations
between the functions EXPANDBITMAP and SHRINKBITMAP:

[Function]

Given an m-high by n-wide bitmap, this function returns an
n-high by m-wide bitmap. The returned bitmap is the image of
the original bitmap, rotated 90 degrees clockwise.

(111:27.4)

In the Medley release, the EDITBM function is substantially
faster with the inclusion of FASTEDITBM (a former LispUsers
module) in the sysout.

Section 27.3 Accessing Image Stream Fields

4-18

The following functions were not documented in the Koto
release of the Interlisp-O Reference Manual:

(DSPCLEOL XPOS YPOS HEIGHn [Function]

"Clear to end of line". Clears a region from (XPOS, YPOS) to the
right margin of the display, with a height of HEIGHT. If XPOS
and YPOS are NIL, clears the remainder of the current display
line, using the height of the current font.

(DSPRUBOUTCHAR OS CHAR X Y TTBL) [Function]

Backs up over character code CHAR in the display stream OS,
erasing it. If X, Yare supplied, the rubbing out starts from the
position specified. DSPRUBOUTCHAR assumes CHAR was printed

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

Section 27.6 Drawing Lines

Section 27.7 Drawing Cu ryes

4. CHANGES TO INTERLlSP-D IN LYRIC/MEDLEY

with the terminal table TTBL, so it knows to handle control
characters, etc. TTBL defaults to the primary terminal table.

(111:27.17)

The non-NIL value of the DASHING argument of DRAWLINE uses
LlNEWITHBRUSH. LlNEWITHBRUSH is a width-by-width brush
which draws then lifts.

In the Medley release, when using the color argument,
Interpress DRAWLINE treats 16x 16 bitmaps or negative numbers
as shades/textures. Positive numbers continue to refer to color
maps, and so cannot be used as textures. To convert an integer
shade into a negative number use NEGSHADE (e.g. (NEGSHADE
42495) is -23041).

(111:27.18)

The RELDRAWTO function has been corrected so that it no
longer draws a spot if the OX and DY arguments are O.

(11/:27.18)

For the brush width value of Nil, the previous default value
(ROUND 1) has been changed. The default value for the brush
width value Nil is the DSPSCAlE of the stream (that is, 1 printer's
point wide).

(11/:27.19)

A new image stream function, DRAWARC, follows DRAWCIRCLE
in the InterLisp-D Reference Manual.

(DRAWARC CENTERX CENTERY RADIUS STARTANGLE NDEGREES BRUSH
DASHINGSTREAM) [Function]

Draws an arc of the circle whose center point is (CENTERX
CENTERy) and whose radius is RADIUS from the position at
STARTANGLE degrees for NDEGREES number of degrees. If
STARTANGLE is 0, the starting point will be (CENTERX (CENTERY
+ RADIUS». If NDEGREES is positive, the arc will be
counterclockwise. If NDEGREES is negative, the arc will be
clockwise. The other arguments are interpreted as described in
DRAWCIRClE.

Section 27.8 Miscellaneous Drawing and Printing Operations

(111:27.20)

To have a filled polygon print correctly, set the global variable
PRINTSERVICE to floating point value 9.0 for printers running
Services 9.0 or later.

When using FILlPOl YGON to be sent to Xerox 8044 Interpress
printers, the global variable PRINTSERVICE must be set to the

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D 4-19

4. CHANGES TO INTERLlSP-D IN L YRICIMEDLEY

4-20

same value as the Print Service installed on your printer, currently
either 8.0, 9.0 or 10.0. Thus, if your printer is running Print
Service 9.0, you must set the global variable PRINTSERVICE to the
floating point value 9.0. This works around an incompatible
change in the Xerox 8044 Interpress implementation.

In Medley, Interpress curves are now rendered at a lower
accuracy, allowing faster hardcopy. The spline is now rendered
at 1/150 inch; in Lyric it was 1/300 inch.

The following function was omitted from previous version of the
Interlisp-D Reference Manual:

(DRAWPOLYGON POINTS CLOSED BRUSH DASHING STREAM) [Function]

Draws a polygon on the image stream STREAM. POINTS is a list
of positions to which the figure will be fitted (the vertices of the
polygon). If CLOSED is non-NIL, then the starting position is
specified only once in POINTS. If CLOSED is NIL, then the starting
vertex must be specified twice in POINTS. BRUSH and DASHING
are interpreted as described in Chapter 27 of the Interlisp-D
Reference Manual.

For example,

(DRAWPOLYGON '«100 • 100) (50 • 125)
(150 . 175) (200 • 100) (150 . 50»

T '(ROUND 3) '(4 2) XX)

would draw a polygon like the following on the display stream
XX.

(/11:27.20)

The function FILLPOL YGON contains two new arguments,
OPERATION and WINDNUMBER. The new form for the function,
and definitions for added arguments, follow.

(FILLPOL YGON POINTS TEXTURE OPERA TlON WINDNUMBER STREAM) [Function]

OPERATION is the BITBLT operation (see page 27.15 in the
Interlisp-D Reference Manual) used to fill the polygon. If the
OPERATION is NIL, the OPERATION defaults to the STREAM
default OPERA TlON.

WINDNUMBER is the number for the winding rule convention.
This number is either 0 or 1; 0 indicates the "zero" winding rule,
1 indicates the "odd" winding rule.

When filling a polygon, there is more than one way of dealing
with the situation where two polygon sides intersect, or one

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

Section 27.12 Fonts

4. CHANGES TO INTERLlSP-D IN LYRIOMEDLEY

polygon is fully inside the other. Currently, FILLPOLVGON to a
display stream uses the "odd" winding rule, which means that
intersecting polygon sides define areas that are filled or not
filled somewhat like a checkerboard. For example,

(FILLPOLYGON '«125 . 125) (150 . 200) (175 . 125)
(125 . 175) (175 . 175»

GRAYSHADE WINDOW)

would produce a display something like this:

This fill convention also takes into account all polygons in
POINTS, if it specifies multiple polygons.

A revised set of font printing metrics is a part of the Lyric release
of Lisp. Note that Koto font files are still available to users who
request them.

With the revised font set the interline spacing (line leading) is
now consistent across all fonts within a point size. Previously,
text with multiple fonts (but with the same point size, i.e., if a
word were made bold or italic, or if the family were changed)
would have different leading on different lines. The new .WD
files clean up document appearance.

Note that these printer metric changes affect only hardcopy, not
the display. The contents of the display fonts are essentially
unchanged in Lyric.

Generally, line leading in the Lyric font files is tighter than in
previous releases of the fonts. The default line leading is now
the same as the font's nominal point size. As a consequence of
the above, any text file (one not already formatted for
Interpress) which is printed after installation of the new fonts
will be formatted to a different length. This means that
decisions regarding TEdit line leading, widows and orphans,
left/right pages, references to page numbers, etc. will need to
change. Koto documentation produced by users may need to be
reformatted with different line leading, using the new fonts.

All of the font files now have a new naming scheme, which
allows FONTSAVAILABLE to be able to do more accurate pattern
matching. For example, the display font file for modern 8 bold
italics used to be named:

Modern8-B-I-C41.Displayfont

The file is now named:

Modern08-BIR-C41.Displayfont

In general font files use the following format:

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERlISP· D 4-21

4. CHANGES TO INTERlISP-O IN L YRIOMEOLEY

4-22

The family name (e.g., Mode rn); a two digit size (e.g., 08); a
three letter Face (e.g., B I R, for Bold Italic Regular); the letter C
followed by the font's character set in base 8 (e.g., C41); and
finally an extension (e.g., 0 is P 1 ayfon t).

Size
(two digits) CharacterSet (base 8)

+ +
MOdtrnOBiBJRiC41.DiSPla{font

Family F ce Extension

The old file naming convention is still supported, however, with
the exception of the old Strike file naming convention. In Lyric,
FONTCREATE will first search for fonts using the new font
naming convention, and if the desired font is not found it will
search using the Koto convention.

Compatibility considerations You can continue using the old
printer metrics (.WO files) in Lyric, thus preserving document
looks between Koto and Lyric. If you choose to do so, it is
recommended that you rename your old .WO files to the new
naming scheme (see above), so that you benefit from the
changes to the font searching mechanisms. However, we
strongly urge you to use the new .WO files. Otherwise, if you
exchange TEdit documents with a site that is using the new files,
the documents will print differently at the two sites. The
creation date, rather than the naming convention, determines
whether a .WO fi Ie represents the old or new format.

If, after installing the new .WO files, you wish to print a
document using the old Koto formatting, make the font variable
INTERPRESSFONTDIRECTORIES point to a directory containing
the Koto font files. Also any Lyric printer font file information
must be uncached from the sysout. To uncache the fonts,
perform

(for INFO in (FONTSAVAILABLE '* '* '* '*
'INTERPRESS)

do (APPLY 'SETFONTDESCRIPTOR INFO»

(111:27.30)

(STRINGWIDTH STR FONT FLG RDTBL) [Function]

In Lyric STRINGWIDTH observes *PRINT-lEVEl * and
PRINT-lENGTH .

In Medley, STRINGWIOTH with a NIL argument no longer returns
the string width of the string with *STANOARO-OUTPUT* font.
It now uses OEFAULTFONT.

Some new font manipulation functions have been added to Lisp.
They are:

(WRITESTRIKEFONTFllE FONT CHARSET FILENAME) [Function]

Takes a display font font descriptor and a character set number,
and writes that character set into a file suitable for reading in
again. Note that the font descriptor's current state is used

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

4. CHANGES TO INTERLlSP-D IN LYRIC/MEDLEY

(which was perhaps modified by INSPECTing the datum), so this
provides a mechanism for creating/modifying new fonts.

For example:

{WRITESTRIKEFONTFILE (FONTCREATE 'GACHA 10) 0
'{DSK}Magic10-MRR-CO.DISPLAYFONT)

writes a font file which is identical in appearance to the current
state of Gacha 10 charset o.
If your DISPLA YFONTDIRECTORIES includes {DSK}, then a
subsequent (FONTCREATE 'MAGIC 10) will create a new font
descriptor whose appearance is the same as the old Gacha font
descriptor.

However, the new font is identical to the old one in appearance
only. The individual datatype fields and bitmap may not be the
same as those in the old font descriptor, due to peculiarities of
different font file formats.

Section 27.13 Font Files and Font Directories

Section 27.14 Font Classes

Section 27.14 Font Profiles

(111:27.31)

Press fonts are not part of the sysout si nce PRESS is now a Li brary
module.

(111:27.32-27.48)

This section has been expunged from the InterLisp-D Reference
Manual. Renumber the sections which followed the old Section
27.14 as

SECTION 27.15 =? SECTION 27.14 Font Profiles

SECTION 27.16 =? SECTION 27.151mage Objects

SECTION 27.17 =? SECTION 27.16 Implementation of Image
Streams

(111:27.34)

The variable FONTCHANGEFLG has an additional value, ALL.
FONTCHANGEFLG = ALL indicates that all calls to CHANGEFONT
are executed.

(III :27.33-34)

The function FONTNAME no longer exists. This function was
previously used in Interlisp-D to collect the names and values of
variables on FONTDEFSVARS. The variable FONTDEFSVARS is no
longer used; it was appropriate when most output devices were
fixed-pitch, "line-printer" style devices, but is not suitable for use
when most output devices are laser printers.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D 4-23

4. CHANGES TO INTERLlSP-D IN LYRIOMEDLEY

Chapter 28 Windows and Menus

Section 28.4 Windows

Section 28.4.5 Reshaping Windows

(111:28.13, 28.38)

The ADDMENU function will change a window's RESHAPEFN and
also will change the window's REPAINTFN.

(111:28.17)

The Lisp window system allows the following minimum window
sizes:

When creating a new window, the width and height specified
must be at least 9, or else you will get an error "region too small
to use as a window"

When reshaping a window, the smallest shape you can get is
width = 26 and height = height of the font to be used in the
window. If you specify a smaller region, SHAPEW will simply
adjust it to fit these limits.

Section 28.4.8 Shrinking Windows Into Icons

SHRINKFN

EXPANDREGIONFN

4-24

(111:28.22)

[Wi ndow property]

In previous releases, there was a bug in the attached window
system such that if an attached window had a SHRINKFN of the
single symbol DON'T, attempting to shrink the window resulted
in a break with the message" UNDEFINED FUNCTION DON'T."
For this case in Lyric, all windows that can be shrunk will be,
while those windows with a SHRINKFN of the symbol DON'T will
be left open.

To facilitate the management of window regions, the window
property EXPANDREGIONFN has been added to Lisp. This
feature allows applications to arrange for reshaping a window
when it is expanded.

[Window property]

EXPANDREGIONFN, if non-Nil, should be the function to be
called (with the window as its argument) before the window is
actually expanded.

The EXPANDREGIONFN must return NIL or a valid region, and
must not do any window operations (e.g., redisplaying). If NIL is
returned, the window is expanded normally, as if the
EXPANDREGIONFN had not existed. The region returned
specifies the new region for the main window only, not for the
group including any of its attached windows. The window will
be opened in its new shape, and any attached windows will be
repositioned or rejustified appropriately. The main window

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

DEFAUl TlCONFN

4. CHANGES TO INTERLlSP-D IN LYRIC/MEDLEY

must have a REPAINTFN which can repaint the entire window
under these conditions.

As with expanding windows normally, the OPENFN for the main
window is not called.

Also, the window is reshaped without checking for a special
shape function (e.g., a DOSHAPEFN).

(111:28.23)

Add the variable DEFAUl TICONFN to the Icon section of the
InterLisp-D Reference Manual:

[Variable]

Changes how an icon is created when a window having no
ICONFN is shrunk or when SHRINKW, with a TOWHAT argument
of a string, is called. The value of DEFAUlTICONFN is a function
of two arguments (window text); text is either Nil or a string.
DEFAUlTICONFN returns an icon window.

The initial value of DEFAUlTICONFN is MAKETITlEBARICON. It
creates a window that is a title bar only; the title is either the
text argument, the window's title, or "Icon made <date>" for
titleless windows. MAKETITlEBARICON places the title bar at
some corner of the main window.

An alternative behavior is available by setting DEFAUlTICONFN
to be TEXTICON. TEXTICON creates a titled icon window from
the text or window's title. It is described further in Appendix B
(ICONW).

(111:28.23)

You can now copy-select titled icons such as those used by
FileBrowser, SEdit, TEdit, Sketch. The default behavior is that the
icon's title is unread (via BKSYSBUF), but if the icon window has
a COPYFN property, that gets called instead, with the icon
window as its argument. For example, if the name displayed in
an icon is really a symbol, and you want copy selection to cause
the name to be unread correctly with respect to the package and
read table of the exec you are copying into, you could put the
following COPYFN property on the icon window:

(1 ambda (window)

(i 1 : bksysbuf <fetch symbolic name from window> t
))

Section 28.4.11 Terminal 1/0 and Page Holding

(111:28.29)

TTYDISPLA YSTREAM has been fixed so that it can be successfully
used with non-wi ndows.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D 4-25

4. CHANGES TO INTERLlSP-D IN L YRICIMEDLEY

Section 28.5 Menus

4-26

Two features have been added to this section, ICONW for
creating icons, and FREE MENU, for creating and using free
menus. Both features were formerly part of the Lisp Library.

The description for ICONW is in Appendix C. The FREE MENU
description is in Appendix D.

The Lyric version of Free Menu differs in some respects from the
Koto version of Free Menu. Following is a description of the
incompatible feature changes from the old version to the new
version of Free Menu. Some of the terminology used in these
notes is introduced in the Free Menu documentation found in
Appendix B. Please reference Appendix B before reading the
foil owi ng notes.

• The function FREEMENU is used to create a Free Menu,
replacing and combining the functions FM.MAKEMENU and
FM.FORMATMENU.

The description of Free Menu has these changes:

1. There is no longer a WINDOWPROPS list in the Free Menu
Description. Instead, the window properties TITLE and
BORDER thatwere previously set in the WINDOWPROPS list
can now be passed to the function FREEMENU. Other
window properties (like FM.PROMPTWINDOW) can be set
directly after Free Menu returns the window using the
system function WINDOWPROP. See Appendix B, Section
28.7.14, Free Menu Window Properties.

2. Setting the initial state of an item is now done with the item
property INITSTATE in the item description, rather than the
STATE property.

Free Menu Items has been modified as follows:

1. 3STATE items now have states OFF, NIL, and T (instead of a
NEUTRAL state). They appear by default in the NIL state.

2. STATE items are general purpose items which maintain state,
and replace the functionality of NCHOOSE items. To get the
functionality of NCHOOSE items, specify the property
MENUITEMS (a list of items to go in a popup menu), which
instructs the STATE item to popup the menu when it is
selected. STATE items do not display their current state by
default, like NCHOOSE items used to. Instead, if you want
the state displayed in the Free Menu, you have to link the
STATE item to a DISPLAY item using a Free Menu Item Link
named "DISPLAY". The current state of the STATE item will
then automatically be displayed in the specified DISPLAY
item. The item properties MENUFONT and MENUTITLE also
apply to the popup menu.

3. NWA Y items are declared slightly differently. There is now
the notion of an NWay Collection, which is a collection of
items acting an a single nway item. The Collection is
declared by specifying any number of NWay items, each with
the same COLLECTION property. NWay Collections have
properties themselves, accessible by the macro

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

4. CHANGES TO INTERLlSP-D IN LYRIC/MEDLEY

FM.NWA VPROPS. These properties can be specified in
property list format as the value of the NWAVPROPS Item
Property of the first NWay item declared for each Collection.
NWay Collections by default cannot be deselected (a state in
which no item selected). Setting the Collection property
DESELECT to any non-nil value changes this behavior. The
state of the NWay Collection is maintained in its STATE
property.

4. EDIT items no longer will stop at the edge of the window.
Editing is either restricted by the MAXWIDTH property, or
else it is not restricted at all. The EDITSTOP property is
obsolete. When you start editing with the right mouse
button the item is first cleared.

5. EDITSTART items now specify their associated edit item
(there can only be one, now) by a Free Menu Item Link
named" EDIT" from the EDITSTART item to the EDIT item.

6. TITLE items are replaced by DISPLA V items, which work the
same way.

With Free Menu, the item interface functions can take the actual
item datatype, the item's 10 or LABEL, or a list of the form
(GROUPID ITEMID) specifying a particular item in a group, as the
ITEM argument.

The description for ICONW is in Appendix B. The FREE MENU
description is in Appendix C.

These changes have occurred in the Free Menu Interface
functions:

(FREEMENU DESCRIPTION TITLE BACKGROUND BORDER) [Function]

Replaces FM.MAKEMENU and FM.FORMATMENU. The desi red
format is not specified as the value of the FORMAT property in
the group's PROPS list.

(FM.GETITEM 10 GROUP WINDOW) [Function]

(FM.GETSTATE WINDOW)

Replaces FM.lTEMFROMID.

Searches withi n GROUP for an item whose I D property is 10.

10 is matched against the item ID and then the item LABEl. If
GROUP is NIL, the entire menu is searched.

[Function]

Replaces FM.READSTATE.

Returns a property list of the selected item in the menu. This list
now also includes the NWay Collections and their selected item.

(FM.CHANGELABELITEM NEWLABEL WINDOW UPDA TEFL G) [Function]

Has a new argument order. Now works by rebuilding the item
label from scratch, taking the original specification of
MAXWIDTH and MAXHEIGHT into account. NEWLABEL can be
an atom, string, or bitmap. If UPDATEFLG is set, then the Free
Menu Group's regions are recalculated, so that boxed groups will
be redisplayed properly.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D 4-27

4. CHANGES TO INTERLlSP-D IN LYRIOMEDLEY

(FM.CHANGESTATE X NEWSTATE WINDOW) [Function]

Has a new argument order.

X is either an item or an NWay Collection ID. NEWSTATE is an
appropriate state to the type of item. If an NWay collection,
NEWSTATE is the actual item to be selected, or NIL to deselect.
Toggle items take either T or NIL as NEWSTATE, and 3STATE
items take OFF, NIL, or T, and STATE items take any atom, string,
or bitmap as their new state. For EDIT items, NEWSTATE is the
new label, and FM.CHANGELABEL is called to change the label of
the EDIT item.

(FM.RESETSHAPE WINDOW ALWA YSFLG)

Replaces FM.FIXSHAPE

(FM.HIGHLIGHTITEM ITEM WINDOW)

[Function]

[Function]

Replaces FM.SHADEITEM and FM.SHADEITEMBM.

FM.HIGHLIGHTITEM will programmatically highlight an item, as
specified by its HIGHLIGHT property. The highlighting is
temporary, and will be undone by a redisplay or scroll. To
programmatically shade an item an arbitrary shade, use the new
function FM.SHADE.

Section 28.6.2 Attached Prompt Windows

(GETPROMPTWINDOW MAINWINDOW #L1NES FONT DONTCREATE [Function]

In the Lyric release, the prompt window created by
GETPROMPTWINDOW is not independently closeable, as it was
in Koto. That is, selecting Close from the right-button window
menu in the prompt window is the same as selecting it from the
menu of any other window in the group-the entire window
group is closed.

Section 28.6.3 Window Operations and Attached Windows

4-28

(111:28.51)

Communication of Window Menu Commands between Attached
Windows is dependent on the name of function used to
implement the window command, e.g., CLOSEW implements
CLOSE (refer to PASSTOMAINCOMS documentation under
Attached Windows). Consequently, if an application intercepts a
window command by changing WHENSELECTEDFN for an item
in the WindowMenu (for example, to advise the application that
a window is being closed), windows may not behave correctly
when attached to other wi ndows.

To get around this problem, the Medley release provides the
variable *attached-window-command-synonyms*. This variable
is an ALlST, where each element is of the form
(new-command-function-name . old-command-function-name).

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

Chapter 29 Hardcopy Facilities

4. CHANGES TO INTERLlSP-D IN LYRIC/MEDLEY

For example, if an application redefines the WindowMenu to call
my-close-window when CLOSE is selected, that application
should:

(cl:push '(my-close-window il:closew)
il:*attached-window-command-synonyms*)

in order to tell the attached wi ndow system that
my-close-window is a synonym function for CLOSEW.

(111:29.3)

The HARDCOPYW function now has an additional argument,
HARDCOPYTITLE, which allows you to change or eliminate the
"Window Image" message on IP screen images. Moreover,
HARDCOPYW function now allows you to print large images
occupying more than one page.

(HARDCOPYW WINDOW/BITMAP/REGION FILE HOST SCALEFACTOR ROTA TlON PRINTER TYPE
HARDCOPYTITLE) [Fu ncti on]

HARDCOPYTITLE is a string specifying a title to print on the page
containing the screen image. If NIL, the string "Window Image"
is used. To omit a title, specify the null string.

Chapter 30 TerminallnputlOutput

Section 30.1 Interrupt Characters

Control-P

Control-T

(111:30.2)

The Control-P (PRINTLEVEL) interrupt is no longer supported.
The interrupt of that name still exists and is defaultly assigned to
Control-P, but has no effect on printing.

The Control-T interrupt flashes the window belonging to the tty
process and prints its status information in the prompt window.
This avoids disrupting the user typescript.

(111:30.3)

(INTERRUPTCHAR CHAR TYP/FORM HARDFLG -) [Function]

If the argument TYP/FORM is a symbol designating a predefined
system interrupt (RESET, ERROR, BREAK, etc), and HARDFLG is
omitted or NIL, then the hardness defaults to the standard
hardness of the system interrupt (e.g., MOUSE for the ERROR
interrupt).

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D 4-29

4. CHANGES TO INTERLlSP-O IN LYRIOMEDLEY

Section 30.2.3 line Buffering

(BKSVSBUF X FLG RDTBL)

(BKSVSCHARCODE CODE)

(111:30.11-12)

The BKSVSBUF function has been changed, for compatibility
reasons. The description now reads as follows:

[Function]

BKSVSBUF appends the PRIN1-name of X to the system input
buffer. The effect is the same as though the user had typed X.
Returns X.

If FLG is T, then the PRIN2-name of X is used, computed with
respect to the readtable RDTBL. If RDTBL is NIL or omitted, the
current readtable of the TTY process (which is to receive the
characters) is used. Use this for copy selection functions that
want their output to be a readable expression in an Exec.

Note that if you are typing at the same time as the BKSVSBUF is
being performed, the relative order of the typein and the
characters of X is unpredictable.

(111:30.12)

Add the function BKSVSCHARCODE used in line buffering:

[Function]

This function appends the character code CODE to the system
input buffer. The function BKSVSBUF is implemented by
repeated calls to BKSYSCHARCODE.

Section 30.4.1 Changing the Cursor Image

4-30

(111:30.14)

The CURSOR record has been changed to a DATA TYPE, and its
field names have changed in the following way:

Old Field Name

CURSORBITMAP

CURSORHOTSPOTX

CURSORHOTSPOTV

New Field Name

CUIMAGE

CUHOTSPOTX

CUHOTSPOTV

The CURSORHOTSPOT field no longer exists; its value can be
fetched by composing CUHOTSPOTX and CUHOTSPOTV into a
POSITION, or stored by destructuring a POSITION into those
fields.

In Lyric, the CURSORCREATE function accepted as its argument
bitmaps of any size, but caused an obscure error. In Medley, a
bitmap that is bigger than 16 high or 16 wide wi II cause an
ILLEGAL ARGUMENT error.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

4. CHANGES TO INTERLlSP-D IN LYRIOMEDLEY

Section 30.5 Keyboard Interpretation

(/11: 30. 19-20)

(KEYDOWNP KEYNAME) [Function]

(KEY ACTION KEYNAME ACTIONS -) [Function]

Section 30.6 Display Screen

KEYNAME is interpreted differently in Lyric: If KEYNAME is a
small integer, it is taken to be the internal key number.
Otherwise, it is taken to be the name of the key. This means, for

. example, that the name of the "6" key is not the number 6.
Instead, spelled-out names for all the digit keys have been
assigned. The "6" key is named SIX. It happens that the key
number of the "6" key is 2. Therefore, the following two forms
are equivalent:

(KEYDOWNP 'SIX)

(KEYDOWNP 2)

Note: The key labeled HELP on the 1186 is named DBK-HELP for
use in KEY ACTION.

(111:30.22-23)

(CHANGEBACKGROUND SHADE -) [Function]

(VIDEORATE TYPE)

The function CHANGEBACKGROUND treats the SHADE
argument as a 4 X 4 texture. The CHANGEBACKGROUNDBORDER
function, on the other hand, treats the SHADE argument as a 2 X
8 texture.

Therefore, note that the same SHADE argument, when used by
the two functions, will not necessarily produce the same
background and border shades on the display screen.

(111:30.23)

The VIDEORATE function works only on the 1108. Append the
following note to the VIDEORATE function description:

[Function]

Note: VIDEORATE does not work on the 1186.

Section 30.7 Miscellaneous Terminal 110

(III: 30.24)

(BEEPON FREQ) [Function]

The argument FREQ is measured in hertz, not in TICKS.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D 4-31

4. CHANGES TO INTERLlSP-D IN L YRICIMEDLEY

chapter 31 Ethernet

Section 31.3.1 Name and Address Conventions

NS Address Format

4-32

(1I1:31.8-9)

Amend the first paragraph, describing NSADDRESS, to list, in
order, the components of NSADDRESS:

Addresses of hosts in the NS world consist of three parts, a
network number, a machine number, and a socket number.
These three parts are embodied in the Interlisp-D data type
NSADDRESS. The components of NSADDRESS are 32-bit
network, 48-bit host, 16-bit socket.

Move the following sentence from page 31.9 of the IRM to the
last paragraph of Name and Address Conventions on page 31.8:

If you wish to manipulate NSADDRESS and NSNAME objects
directly you should load the Lisp Library Module ETHERRECORDS.

In Medley, you can now specify NS addresses in decimal notation,
the form presented by the Chat interface of Network Services
software. In this notation, a decimal number is broken up by
hyphens every 3 digits, much like commas in standard American
numerical notation. You can also specify a full 48-bit host
number in octal without breaking it into 16-bit segments.

An NS address is specified in the form:

net#host#socket

If the address contains a hyphen in any field, the entire address is
interpreted in decimal; otherwise in octal. The field socket is
optional, and is defaulted appropriately for the application; if
specified, it is a single integer in the same radix as the rest of the
address. The field net and its terminating # are optional,
defaulting usually to the directly-connected network. The fields
net and host are non-negative integers written in one of three
forms:

• A sequence of 16-bit octal numbers, separated by periods.

• A single integer in octal radix.

• A sequence of 3-digit decimal numbers, separated by hyphens.

The special variable *NSADDRESS-FORMAT* specifies the form
used whenever the system prints an NS address object. Its
possible values are:

Nil Octal radix, with the host number in three 16-bit parts,
the same as in Lyric.

: OCTAL

:DECIMAl

Octal radix without separators.

Decimal radix with hyphens.

For example, the following all represent the same address, in the
three formats listed above:

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

4. CHANGES TO INTERLlSP-D IN LYRIOMEDLEY

1750#0.125000.76771#

1750#25200076771#

1-000#2-852-158-969#

The following functions exist for manipulating NS addresses:

(PARSE-NSADDRESS STR DEFAUL TSOCKED [Function]

Parses the string STR into an NS address by the rules listed above,
or returns NIL if STR is not a well-formed address. If
DEFAULTSOCKET is non-NIL and the string does not include a
socket field, the socket of the resulting NS address is set to
DEFAUL TSOCKET.

(COERCE-TO-NSADDRESS HOST DEFAUL TSOCKED [Function]

Network Routing Maintenance

Returns an NSADDRESS object corresponding to HOST, or NIL if it
can't. This function should be called by any software wanting to
convert a user-supplied NS host specification into a network
address. HOST can be anyone of the following:

• The name of a host, whose address is found by consulting the
Clearinghouse data base.

• A symbol or string in the syntax of an NS address, as described
above.

• An NSADDRESS object.

• A list of the form (NSHOSTNUMBER a b c), specifying the host
number as three 16-bit values. In this case, the network number
is omitted (zero).

If DEFAULTSOCKET is non-NIL and the socket is unspecified, the
socket of the result is set to DEFAUL TSOCKET (if HOST is an
NSADDRESS object, it is copied in this case).

The representation of Pup and NS routing tables has changed,
and the background gateway listener processes have been tuned
to significantly reduce their overhead.

The INFO command for the Pup and NS gateway listener
processes in the process status window now display their routing
tables. Clicking with the left button displays the table in random
order, middle button displays the table sorted by network
number (this takes a little longer).

Section 31.3.2 Clearinghouse Functions

AUTHENTICA TION.NET.HINT

(11':31.9)

The variable AUTHENTICA TlON.NET.HINT has been added to
Clearinghouse Functions. It follows the CH.NET.HINT variable in
the Interlisp-D Reference Manual.

[Variable]

AUTHENTICATION.NET.HINT can be set to CH.NET.HINT to speed
up the initial authentication connection. Its value is interpreted
in the same manner as CH.NET.HINT.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D 4-33

4. CHANGES TO INTERLlSP-D IN L YRICIMEDLEY

Section 31.3.3 NS Printing

(111:31.12)

With the Medley release there is now a single Printer Watcher
process for all NS printers. This mean you won't get a stack
overflow if you hardcopy many files in quick succession.

Section 31.3.5.3 Performing Courier Transactions

(111:31.20-21)

The COURIER.OPEN function requires that a courier server be
running on the host machine.

Section 31.3.5.3.3 Using Bulk Data Transfer

(111:31.24-25)

The following is a correction and clarification to the description
in the Interlisp-D Reference Manual of receiving values from a
bulk data transfer:

It is possible for a Courier procedure to return both bulk data, in
the form of a bulk data sink, and a single value (or list of values)
as the normal result of the call. However, the Lisp function
COURIER.CALL only returns one value, either the bulk data
stream (when the bulk data sink argument is NIL) or the regular
value. There are two principal ways in which a caller can obtain
both val ues.

The usual way to get both values is to pass a function as the bulk
data argument, have it retrieve the bulk data and prcoess it as a
side-effect (e.g., store it into a variable bound around the
COURIER.CALL), then return NIL so that the procedure's returned
value is returned from COURIER.CALL.

The other way, which is documented incorrectly in the IRM, is to
pass NIL as the bulkdata argument, thus getting the bulk data
stream back from COURIER.CALL, process the stream, and then
get the procedure's returned value by closing the stream.
Contrary to the IRM, however, you have to close the bulk data
stream using its internal close function, SPP.CLOSE, rather than
the user-level function CLOSEF, which consumes the value
internally and returns only the stream.

Section 31.5 Pup Level One Functions

\ 1 OMBTYPE.PUP

\10MBTYPE.3T010

4-34

[Variable]

[Variable]

The values of these variables are the 10MB Ethernet
encapsulation types for PUP packets and Pup-to-10MB address
translation packets, respectively. The initial values of these
variables are 512 and 513, respectively. However, these values
are illegal for an Ethernet conforming to IEEE 802.3
specifications.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

4. CHANGES TO INTERLlSP-D IN LYRIOMEDLEY

New encapsulation types have been defined for IEEE 802.3
networks. To use them, set the variable \10MBTYPE.PUP to 2560
(decimal) and \10MBTYPE.3T010 to 2561. Then call either
(RESTART.ETHER) or (LOGOUT), so that the Ethernet code can
reinitialize itself. It may be convenient for a site to smash these
values directly into the standard sysout everyone fetches by using
the function READSYS and its 'tV command from the TeleRaid
Library module (the sysout must be on disk or a random-access
file server). Note that all pup hosts on a network (servers as well
as workstations) must simultaneously choose to use the new
values; those using different values will be unable to
communicate with each other. The System Tool must also be
upgraded at the same time.

Section 31.6.1 Creating and Managing XIPs

(NSNET.DISTANCE NET#)

The function NSNET.DISTANCE was previously undocumented.

[Function]

Returns the "hop count" to network NET#, i.e., the number of
gateways through which an XIP must pass to reach NET#,
according to the best routing information known at this point.
The local (directly-connected) network is considered to be zero
hops away. Current convention is that an inaccessible network is
16 hops away. NSNET.DISTANCE may need to wait to obtain
routing information from an Internetwork Router if NET# is not
currently in its routing cache.

LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D 4-35

4. CHANGES TO INTERlISP-D IN LYRIOMEDLEY

[This page intentionally blank]

4-36 LISP RELEASE NOTES, MEDLEY RELEASE, CHANGES TO INTERLlSP-D

5. LIBRARY MODULES

This section contains release notes indicating changes that have
occurred in the library modules since the Lyric release. Medley
changes are indicated with revision bars in the right margin.

Refer to the Lisp Library Modules manual, Medley release, for
complete documentation of the library modules.

Modules that are New, Moved, or Replaced

Modules Moved from the Library to lispUsers

Big

BitMapFns
BusExtender

BusMaster

CirciPrint

CheckSet

Compi leBang

Color

C150Stream

DECL

Dlnfo

FileCache

HelpSys
Iris

LambdaTran

PCallStats

ReadAIS

Modules Moved from lispUsers to the library

Cash-File

Hash-File

SysEdit

TableBrowser

Modules Moved to Their Own Manuals

TEd it
Sketch

CML, CMLArray, CMLArraylnspector (part of Xerox Common lisp)

Modules Moved From the Sysout Into the library

DEdit
Masterscope

Match

Press

LISP RELEASE NOTES, MEDLEY RELEASE, LIBRARY MODULES 5-1

5. LIBRARY MODU LES

Modules Moved From the Library Into the Sysout

Modules Replaced

New Modules

Details of Changes

4045XLPStream

Cash-File

5-2

IconW
FreeMenu

Old: FX-80stream, FastFX-80stream, FXprinter
New: FX-80Printer

Old: Wherels
New: Where-Is

SysEdit

TableBrowser

TextModules

Enabled its graphics capabilities; added 1108 cable/connector
pin-outs.

A new function has been added to allow owners of the
international 4045 (non-USA model) to use the 4045XLPStream
software.

(4045XLP.CHANGE.MODE MODE) [Function]

This function changes the internal parameters of the software to
allow printing on A4 paper with the international fonts. MODE
is a string, either "USA" or "INTERNATIONAL", with the default
being "USA". Do not use this function unless you have the
international font set and A4 paper tray on a non-USA 4045. A4
page size is 2475 pixels wide by 3525 pixels high in portrait, and
3525 x 2475 in landscape mode.

The new library module Cash-File was formerly in LispUsers.
Cash-File is a front end to Hash-File which uses a hash table to
cache accesses to hash files. This can provide a significant
performance improvement in applications which access a small
number of keys repeatedly. For example, the Where-Is library
module uses this module to achieve acceptable interactive
performance.

LISP RELEASE NOTES, MEDLEY RELEASE, LIBRARY MODULES

Centronics

Chat

CopyFiles

DataBaseFns

EditBitMap

FileBrowser

5. LIBRARY MODULES

Added cable/connector pin-out.

Added information about EMACS.

When told to copy to a non-existent NS subdirectory, it now asks
if it should create it.

Clarifications in the documentation of LOADDBFLG and
SAVEDBFLG are included in Medley.

Added a description of its user interface.

Added enhanced features to Load, Compile, Edit; it now
preserves path name of source files when copying to another
machine or user; sorts files by attributes; and prints hard copies
of directory listings.

The FB command now ignores the package of the attributes you
optionally specify, so you can easily use it from a non-Interlisp
exec.

The enclosing *'s are now included with the names of the
variables * EDITMODE* and * DEFAU L T-CLEANUP-COMPILER* .

In addition to having outstanding problems fixed, FileBrowser
has several new features and NS enhancements.

New features:

• There is an Abort button available during any operation of
indefinite duration.

• You can scroll or reshape a FileBrowser that is "busy", e.g,
while doing a Recompute.

• The browser title includes a timestamp of when the browser
contents were last Recomputed.

• There is a new subcommand of See, "FileBrowse", which
opens a FileBrowser on the selected subdirectory. This
replaces the odd functionality of the old See/Edit commands
that assumed that any file with null name and extension must
be a directory; those commands now always treat the

LISP RELEASE NOTES, MEDLEY RELEASE, LIBRARY MODULES 5-3

5. LIBRARY MODU LES

FTPServer

FX-80Driver

5-4

selection as a file. FileBrowse is mainly useful in the following
situations:

- When browsing NS directories with depth set finite, or
when browsing the top level of a server, which is
automatically depth 1.

When browsing on Unix, a device that gives Lisp no
indication of whether a filename is a directory or not.

• There is a subcommand of Recompute, "Set Depth" that can
be used to set the enumeration depth for future recomputes
and recursive FileBrowses. You can also set the depth in an FB
command by appending :DEPTH n to the command line, e.g.,
FB "{Pogo:}<Carstairs>" :DEPTH 1.

The depth counts levels of directories below the last directory
in the pattern not containing a wildcard; depth 1 means just
the immediate descendants of that directory. Depth is
ignored for nontrivial patterns, i.e., anything but "*.*".

• Another new subcommand of Recompute, "Shape to Fit",
widens or narrows the browser so that all fields, and no more,
are visible but not wider than the screen.

• Directory items are now displayed like files, e.g., you'll see a
single line

Lisp>

rather than the double line

< Carstai rs > Lisp>

NIL

In addition, the "page" count for a directory item is now the
total page size of the directory subtree rooted there.

• FileBrowser consumes somewhat less storage now, and there
have been some performance improvements, especially for
very large browsers.

FTPServer now supports DELFILE.

The Medley release fixes several bugs in Lisp's handling of PUP
FTP connections relating to password handling and filename
recognition.

New software, new text, and 110811186 cable/connector pin-outs
have been added.

Comments are now printed in a compressed font.

LISP RELEASE NOTES, MEDLEY RELEASE, LIBRARY MODULES

GCHax

Grapher

Hash

Hash-File

Kermit

MasterScope

NSMaintain

5. LIBRARY MODULES

Documentation contains a new description of the STORAGE
function.

Grapher can now print graphs larger than one page. The
variable GRAPH/HARDCOPY/FORMAT is used to control the
format of the graph when printing to paper. See the function
HARDCOPYGRAPH and the variable
GRAPH/HARDCOPY/FORMAT in the documentation for Grapher
for more information.

A new GRAPH. PROPS field has been added to Graph record,
which produces a list in property-list format, and is accessed by
the function GRAPHERPROP.

Hash is provided for backwards compatability. New applications
should use the Medley library module Hash-File instead of this
module.

Hash-File is a new library module, upgraded from LispUsers.
Hash-File is similar to but not compatible with the Lyric library
module, Hash. Hash-File is modeled after the Common Lisp hash
table facility, and Hash was modeled after the Interlisp hash
array facility.

Reference to an excellent text/reference book has been added.

Break when graying a browser has been fixed.

In Medley, MasterScope .LCOM files have been changed to
.dfasl file extensions. MasterScope now recognizes Common
Lisp structures.

The module NSMaintain has been completely revised and has all
new documentation. Most commands auto-complete on one or
two keystrokes. The Change Password command works again,
and there are several new commands for listing objects in the
Clearinghouse data base and for manipulating the access lists of
groups. There is a more rational set of default inputs offered for
most commands, and better feedback is given as to whether a
command succeeded or failed.

LISP RELEASE NOTES, MEDLEY RELEASE, LIBRARY MODULES 5-5

5. LIBRARY MODU LES

RS232

Spy

TableBrowser

5-6

The RS232.TRACE function is now documented in the Medley
release.

This version of Spy library module works better with Common
Lisp and incorporates several new features:

• Enters the pending mode when you bring up the Spy menu by
pressing the left or middle button while the control key is
down. Any action invoked from the menu is deferred until
you next press the left or middle mouse button. For example,
you can delete several nodes and then do one update.

• Keeps track of non-symbol frame names.

• Shows the package prefix of symbols in the display.

• Invokes "Merge" menu item from a node menu allowing for a
node to merge with its caller.

• Updates SPY.NOMERGEFNS to correspond more closely to
"system" functions in Medley.

• Knows about the Medley interpreter.

• New functions TB.UNSELECT.ITEM and
TB.UNSELECT.ALL.ITEMS fill an inadvertant void in the Lyric
version.

• Several off-by-ones in the display algorithms have been fixed.

• Performance on large browsers is improved.

• Clarification of TBAFTERCLOSEFN documentation is included
in the Medley release.

• New options to TB.MAKE.BROWSER:

- The option L1NESPERITEM, previously documented but not
implemented, is now supported. Alternatively, you can
specify explicitly the height of items by giving the options
ITEMHEIGHT (total height of each item) and/or BASELINE
(the height of the "baseline" relative to the bottom of the
item; zero if you don't set it). The BASELINE is used for two
things: (1) the ypos of the window is set there when the
browser's print function is called, and (2) selection and
deletion marks are centered between the baseline and the
top of the item. Specifying L1NESPERITEM is a shorthand
method for setting ITEMHEIGHT to fontheight*#lines and
BASELINE to fontheight*(#lines-1) + fontdescent (i.e.,
font's baseline for the first line of the item), so that the
selection marker, deletion lines, and positioning for
printing all point at the first line of a multi-line item. One
further difference: if you change the font of the browser,

LISP RELEASE NOTES, MEDLEY RELEASE, LIBRARY MODULES

TCP-IP

5. LIBRARY MODULES

TableBrowser will recompute the height and baseline
parameters if you specified LlNESPERITEM, but not if you
specified ITEMHEIGHT.

- You can specify an auxiliary window that is to be
horizontally scrolled in parallel with the main window by
giving the window as the HEADINGWINDOW option. The
WIDTH of the window's EXTENT property is maintained in
synch with main window. You still need to create the
auxiliary window, attach it where you want it and supply it
with a REPAINTFN. This is how FileBrowser implements its
header line consisting of "Name" and the attribute names.

- The option LlNETHICKNESS specifies how thick to draw
deletion lines. It defaults to TB.DELETEDLINEHEIGHT,
initially 1. Making it the height of an item gives an
alternative "total blackout" method of deletion.

Added revised/expanded installation procedure.

DIR to VMS via TCP now works.

TCP Chat hosts can now be lowercase.

(TCPFTP.SERVER) now spawns process and runs in it.

TCP-IP to a Sun returns the top-level directory.

TCPFTP.DEFAULT.FILETYPES now contains correct entries for
LCOM, leom, DFASL, and dfasl.

Files loaded by the high-level modules TCPFTP, TCPFTPSRV,
TCPCHAT, and TCPTFTP automatically load their dependencies.
If you load files by hand, you must also load their dependencies
first. See the section "File Dependencies, II or the TCP-IP
documentation for more information.

There is a new flag:

TCP.ALWAYS.READ.HOSTS.FILE [Variable]

This flag is initially T. Setting it to NIL will cause the system to
parse the hosts.txt file only when the filename (stored in the
configuration file) is different from the previously read filename,
or the write date of the file has changed. The hosts.txt file will
always be read at least once when loading the software into a
clean sysout.

If you change your IP.INIT file while TCP-IP is running, you will be
prompted to confirm Restarting Tep. In most cases, you should
confi rm the restart.

LISP RELEASE NOTES, MEDLEY RELEASE, LIBRARY MODULES 5-7

5. LIBRARY MODULES

TExec

TextModules

Virtual Keyboards

Where-Is

Additional Notes

Koto CML Library Module

5-8

A TEXEC executive window no longer has GET in the menu of
possible actions, since GETting text into an executive window
makes no sense.

TextModules is a new library module with the Medley release. It
can be used to import and export textfiles and File Manager files.
It can bring portable Common Lisp sources into the File Manager
without losing any of their contents, and create new textfiles
based on the File Manager's description of the textfile contents.

The Standard-Russian virtual keyboard now has uppercase Be (..
.) and Ve (...) in the right places.

Loading VirtualKeyboards now adds the item KEYBOARD to the
default window menu as well as the background menu.
Selecting this item from the default window menu allows you to
specify a keyboard for an individual window.

Where-Is is a new library module, upgraded from LispUsers. This
modules replaces the Lyric library module Wherels. This is a new
implementation of a facility similar to but not compatible with
the Lyric library module Wherels. Where-Is indexes all definers,
but Wherels only indexed Interlisp FNS definitions.

DEdit is not error-protected. Doing a i in a DEdit break window
closes the DEdit window, too.

In addition, the modules work under all Lisp environments
(lnterlisp-D, Xerox Common Lisp, Common Lisp). However,
many of the functions and variables used within the modules are
those of Interlisp-D, and therefore you'll have to make sure that,
when you are not in Interlisp, you use the IL: prefix.

If you have files that used the Koto CML library module, with its
package-style symbol naming conventions, you will need to
convert them to use the correct symbols in Lyric IMedley. The

LISP RELEASE NOTES, MEDLEY RELEASE, LIBRARY MODULES

5. LIBRARY MODULES

procedure is briefly as follows: see the Common Lisp
Implementation Notes, chapter 11, "Reader com pati bi I ity
feature" for complete details on this mechanism:

First, set the global variable
L1TATOM-PACKAGE-CONVERSION-ENABLED to T. Then for each
of your files, do

(LOAD file 'PROP)

(MAKEFILE file 'NEW)

Afterwards be sure to set the global variable
L1TATOM-PACKAGE-CONVERSION-ENABLED back to NIL.

LISP RELEASE NOTES, MEDLEY RELEASE, LIBRARY MODULES 5-9

5. LIBRARY MODU LES

[This page intentionally left blank]

5-10 LISP RELEASE NOTES, MEDLEY RELEASE, LIBRARY MODULES

6. USER'S GUIDES

A User's Guide to TEd it-Release Notes

Expanded Characters

Put Submenu

For the Medley Release, TEdit has increased the number of
expanded characters, added options to the Put and Get
submenus, clarified several options in the Paragraph Looks and
Page Layout menus, and added several minor items to the
programmer's interface.

TEdit added the following abbreviations and expansions to the
characters shown in Table 1.

Table 1. TEdit's Abbreviations and their Expanded Characters

Abbrevi ati on Expanded character name Expansion Character

p Pilcrow '1 (proofreader's paragraph mark)

t Trademark

tm Trademark

r Registered trademark ®

1/3 Built-up fraction 1
"3

x Times sign x

1 Division sign

o (oh) Degrees sign 0

L Pound sterling sign £

Y Yen sign ¥

+ Plus-or-minus sign ±

i (shift-6) Uparrow (NS character) i
ua Uparrow (NS character) i

Down arrow (NS character) .J,

da Down arrow (NS character) .J,

<- Left arrow (NS character) ~

la Left arrow (NS character) ~

(underscore) Left arrow (NS character) ~

-> Right arrow (NS character) ~

ra Right arrow (NS character) ~

= Two-way arrows (NS characters) ~

The drag-through menu for the Put command now has the
following entries:

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES 6-1

6. USER'S GUIDES

Get Submenu

_.
Get

Include
Find

looks
Substitute

Quit
Expanded Menu;:'

Put Formatted Document
Plain-Text

Old-Format

The Put command has a submenu that offers you several options
for saving your file:

• Keep the formatting in the file. Use this Put Formatted
Document option, which is the default, unless you have special
requ i rements.

• Save the file as plain text, regardless of formatting. Using this
Plain-Text option removes all of TEdit's formatting from the
file, leaving plain text.

• Save TEdit files in an "old" format. This Old-Format option
allows you save files in the format of a previous release of
TEdit. This format option is provided for backward
compatibility.

The drag-through menu for the Get command now has the
following entries:

Put

Include
Find

f~:: Get Formatted Document I
. Unformatted Get

looks
Substitute

Quit
Expanded Menu }.

Get has a submenu that offers you the option of retrieving a
formatted file (Get Formatted Document), or retrieving a file as
though it were plain text, with most formatting information
appearing as black rectangles (I).

Clarified Paragraph Looks Menu Options

New Page: Before After

6-2

Both the menu options New Page: Before After and
Displaymode: Hardcopy have expanded explanations.

Sometimes a page break occurs so that the first paragraph on a
page is marked with the Before command. In these cases, the
text flows continuously from the previous page to this page; a
blank page does not appear between them.

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES

Displaymode: Hardcopy

6. USER'S GUIDES

The Hardcopy displaymode command now works only when the
text is printed in Interpress fonts.

Clarified Page Layout Menu Options

When specifying text to appear before or after page numbers,
you can only enter text in the brackets; image objects are not
allowed.

You may now specify a landscape page layout.

In the page layout menu, Modern 10 MRR is now the default
page number font instead of Gacha 10. Also, there is a global
variable, TEDIT.DEFAULT.FOLlO.LOOKS, that you can set to be
any character-looks specification acceptable to TEDIT.LOOKS.
The default (i.e., if you don't specify one in the page layout
menu) is taken from there.

If you have set page formatting in the past, the page-numbering
font has been set as well (even if you specified nothing). This
behavior continues, but the default is more sensible, and can be
changed.

You may now number the first page of a TEd it file 0 (zero).

TEdit now preserves text before and after page numbers after a
file is saved.

Using numbers with decimal points in the "Text before page
number" field in the page-layout menu now works properly.

Added Items to Programmer's Interface

The TEXTOBJ data structure has a correction, the TEDIT.INCLUDE,
TEDIT.PARALOOKS and TEXTPROP functions are expanded, and
the global variable TEDIT.KNOWN.FONTS is now documented.

Corrected the AFTERQUITFN Property

(AFTERQUITFN WINDOW TEXTSTREAM) is an optional
user-supplied Lisp function that is called after ending an editing
session to peform any required cleanup. The WINDOW
argument was omitted in the manual.

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES 6-3

6. USER'S GUIDES

Corrected the TITLEMENUFN Property

TEDIT.TITLEMENUFN is a window property, not a TEdit property
as documented in the manual.

Corrected the TEXTOBJ Data Structure

The data structure called TEXTOBJ has as its first field of interest
\WINDOW, not WINDOW as documented in the manual.

Expanded the TEDIT.lNCLUDE Function

TEDIT.INCLUDE now accepts optional START and END arguments
that instruct it to restrict its attention to a portion of the TEdit
file, treating this part as a separate file. This feature is useful
when you require that several distinct TEdit documents reside
within a single TEdit file, for example, for database applications.
Each document can be formatted and extracted separately.

CAUTION

If you use START and END arguments with INCLUDE, and then
format the entire TEdit file, you will lose the formatting.

CAUTION

TEDIT.INCLUDE and OPENTEXTSTREAM take optional arguments
that let you take a document out of the middle of a file. This
option requires that Lisp be able to determine the length of the
file before it is read. Some file protocols (TCP FTP in particular)
don't let Lisp do this. If you try to use this option with a file that
resides at the other end of a TCP connection (or, more generally,
on any device where you cannot tell the length of the file until
you have read the whole file), it won't work. The result will be
that your document will contain no characters.

Expanded the TEDIT.PARALOOKS Function

6-4

TEDIT.PARALOOKS can be used to set NEWPAGEBEFORE,
NEWPAGEAFTER, HARDCOPY, TYPE, SUBTYPE, REVISED, KEEP,
STYLE, CHARSTYLES, and USERINFO parameters.

REVISED, if non-NIL, causes a revision bar to be printed one pica
to the right of the right margin of the paragraph. It is a vertical
bar 1 point wide from the top of the top line's ascent to the
bottom of the bottom line's descent.

USERINFO can be used as a property list for saving information of
interest to the user. It is generally used in a number of
undocumented features (e.g. footnote support).

KEEP, STYLE, and CHARSTYLES are reserved for a future release.

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES

Expanded the TEXTPROP Function

6. USER'S GUIDES

You can now also use your own properties, but these properties
are not saved with the document if you Put it.

Added Documentation for a Global Variable

TEDIT.KNOWN.FONTS

The following documentation should be added to TEd it's Global
Variables.

[Variable]

A list of available fonts that appear in the Character Looks menu.
The list in in the form «name-in-the-menu-1 'Real-font-name-1)
(name-in-the-menu-2 'Real-font-name-2) ...), for example,
«Classic 'CLASSIC) (Times 'TIMESROMAN».

Changes to Programmer's Interface to TEdit

STREAM AND TEXTOBJ

All public TEd it functions (non- \) that take a TEXTOBJ argument
accept either a TEXTOBJ or a text STREAM as that argument's
value.

Changes, Additions and Corrections to TEdit functions

The function TEDIT.SINGLE.PAGEFORMAT is incorrectly
documented in the Lisp Library. The following corrections
should be noted: The arguments PG#X, PG#Y, and PG#FONT
should be PX, PY, and PFONT, respectively.

The argument PG#ALlGNMENTshould be PQUAD.

The order for the arguments, TOP BOTTOM LEFT RIGHT should
be LEFT RIGHT TOP BOTTOM.

The argument #COLS should be COLS.

INTERCOLSPACE should be INTERCOL. And between the
INTERCOL and UNITS arguments there is a HEADINGS argument.

The functions and its arguments look like:

(TEDIT.SINGLE.PAGEFORMAT PAGE#S? PX PY PFONT PQUAD LEFT RIGHT
TOP BOTTOM COLS COL WIDTH INTERCOL

PAGE#S?

PX

PY

HEADINGS UNITS PAGEPROPS PAPERSIZE) [Function]

T if you want page numbers on this kind of page, else NIL.

The horizontal location of the page number, measured from the
left edge of the paper. Negative values are measured from the
paper's right edge.

The vertical location of the baseline for the page numbers,
measured from the bottom of the paper. Negative values are
measured from the top of the paper.

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES 6-5

6. USER'S GUIDES

6-6

PFONT

PQUAD

LEFT

RIGHT

TOP

BOTTOM

COLS

COL WIDTH

INTERCOL

HEADINGS

UNITS

PAGEPROPS

PAPERSIZE

The font to be used to display the page numbers. This can be any
specification that is acceptable to TEDIT.LOOKS.

An atom that tells how the page number is to be aligned on the
location specified by PX and PY. LEFT means the location is the
lower-left corner of the page number. RIGHT means the location
is the lower-right corner. CENTERED means the page number
will be centered around the PXyou specified.

The left margin-the distance from the left edge of the paper to
the left edge of the first text column.

The right margin-the distance from the right edge of the
rightmost text column to the right edge of the paper.

The top margin of the page-the distance from the top of the
paper to the top of the first line of body text.

The bottom margin-the distance from the bottom of the last
line of body text to the bottom of the paper.

Number of columns (default is one).

The column width (default is to evenly divide the available space
among the #COLS columns).

The space between the right edge of one column and the left
edge of the next column. Defaults to evenly divide the space left
after the columns are set up. If there is more than one column,
one or the other of COL WIDTH and INTERCOLSPACE must be
specified.

A list of lists in the form of « HEADINGNAMEl XLOCATI0Nt
YLOCATIONd (HEADINGNAME2 XLOCATION2 YLOCATION2)
... (HEADINGNAME n XLOCATION n YLOCATION n))·

The units used in setting the values you specified. May be one of
the atoms PICAS, IN, INCHES, CM, POINTS. Default is POINTS.

A property list of extra information. Properties are
STARTINGPAGE#, FOLIOINFO, and LANDSCAPE?

STARTINGPAGE# is the first page's number; it is ignored if this
isn't the first page.

FOLIOINFO is a list of information about page numbers,
(FORMAT TEXTBEFORE TEXTAFTER). FORMAT can be one of
ARABIC, LOWERROMAN, UPPERROMAN, or NIL (i.e., ARABIC).
TEXTBEFORE is the text preceding the number, and TEXTAFTER is
the text following the number.

LANDSCAPE? determines if the document is printed in the usual
vertical format or printed in landscape format (horizontally). If
NIL the document is printed vertically, if non-NIL the document is
printed landscape. Defaults to NIL.

Is one of LETTER, LEGAL, the metric paper sizes (AO, A 1, A2 A3,
A4, AS, BO, B2, B3, B4), or NIL (which defaults to letter size).

TEDIT.GET accepts an open stream as the file to GET from. You
may still pass it a TEXTOBJ, however.

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES

6. USER'S GUIDES

(TEDIT.GET STREAM FILE UNFORMATTED?) [Function]

Performs the TEdit Get command, loading the text from FILE
onto the editing stream STREAM-replacing the text that is
being edited currently. If FILE is not supplied, the user will be
asked for a file name. If UNFORMATTED? is non-NIL, FILE is
treated as a plain-text document, and all of its contents are
included-even TEdit formatting information.

You can now use TEDIT.PUT to store a TEdit document in the
middle of a larger file (e.g., for saving TEdit documents as part of
a database). The complete documentation is now as follows:

(TEDIT.PUT STREAM FILE FORCENEW UNFORMATTED? OLDFORMAT?) [Function]

Note:

Performs the TEdit Put command, saving the text from the text
stream STREAM onto the file named FILE. If FILE is NIL, the user
will be prompted for a file name. In this case, if FORCENEW is
NIL, the user is offered the old file name as a default; if non-NIL,
no default is given, forcing the user to specify a file name. If
UNFORMATTED? is non-NIL, only characters are put in the
file-no formatting. If OLDFORMAT? is non-NIL, the file will be
written in the format used by the previous version of TEdit, for
backward compatibility.

In order to store a TEdit document as part of another file, call
TEDIT.PUT, passing an open stream on the file as the FILE
argument. The stream should be open for output and
positioned at the place you want TEd it to store the document
(call this file pointer START). When TEDIT.PUT returns, the
stream's end-of-file pointer will be just after the last byte in the
newly-inserted document. Call this file pointer END. To
subsequently retrieve the document from the middle of this
other file, call OPENTEXTSTREAM on the file, passing the START
and END pointers as the START and END arguments.

When TEDIT.PUT returns, the stream will be open for INPUT.

The functions TEDIT.MOVE and TEDIT.COPY were not
documented in Koto. They are:

(TEDIT.MOVE FROM TO) [Function]

FROM and TO are SELECTIONs. Moves the text described by
FROM to the place described by TO, within the same text stream
or between different text streams. The text described by FROM
is deleted from its original location.

(TEDIT.COPY FROM TO) [Function]

FROM and TO are SELECTIONs. Copies the text described by
FROM to the place described by TO, within the same text stream
or between different text streams. The text described by FROM
is not deleted in the FROM location.

Changes in the Documentation ofTEdit Functions

The following functions have had the documentation of their
arguments changed to reflect what will appear if you do a ? = or
evaluate ARGLIST on one of these functions. Arguments that

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES 6-7

6. USER'S GUIDES

were corrected are indicated by bold italics (arg). Please note
that what changed was the documentation, not the way the
functions operate or the values of the arguments themselves.

(TEDIT.SETSEL STREAM CH# LEN POINT PENDINGDELFLG
LEA VECARETLOOKS OPERA TlON)

(COERCETEXTOBJ STREAM TYPE OUTPUTSTREAM)

(TEDIT.DELETE STREAM SEL LEN)

(TEDIT.INCLUDE STREAM FILE START END)

(TEDIT.FIND STREAM TARGETSTRING START# END# WILDCARDS?)

(TEDIT.GET.LOOKS STREAM CH#ORCHARLOOKS)

(TEDIT.PARALOOKS STREAM NEWLOOKS SEL LEN)

(TEDIT.COMPOUND.PAGEFORMAT FIRST VERSO RECTO)

(TEXTOBJ STREAM)

(TEXTSTREAM STREAM)

(TEDIT.CARETLOOKS STREAM LOOKS)

(TEDIT.NORMALIZECARET STREAM SEL)

(COPYTEXTSTREAM ORIGINAL CROSSCOPY)

(TEDIT.PROMPTPRINT TEXTSTREAM MSG CLEAR?)

(TEDIT.SETSYNTAX CHAR CLASS TABLE)

(TEDIT.GETSYNTAX CH TABLE)

(TEDIT.SETFU NCTION CHARCODE FN RTBL)

(TEDIT.WORDGET CH TABLE)

(TEDIT.WORDSET CHARCODE CLASS TABLE)

(TEDIT.INSERT.OBJECT OBJECT STREAM CH#)

[Function1

[Function1

[Function1

[Function1

[Function1

[Function1

[Function]

[Function1

[Function1

[Function]

[Function]

[Function1

[Function]

[Function1

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

The following functions were previously documented as
accepting a TEXTOBJ. They all still take a TEXTOBJ but they will
now also accept a STREAM as the first argument.

(TEDIT.FIND STREAM TARGETSTRING START# END# WILDCARDS?)

(TEDIT.GET. LOOKS STREAM CH#ORCHARLOOKS)

(TEDIT.PARALOOKS STREAM NEWLOOKS SEL LEN)

(TEXTSTREAM STREAM)

(TEDIT.NORMALIZECARET STREAM SEL)

(TEDIT.PROMPTPRINT TEXTSTREAM MSG CLEAR?)

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

New Featu res

6-8

For the benefit of NS file server users, TEdit now writes files of
type TEDIT, instead of BINARY. As a result, LlSTFILES and the
FileBrowser are able to determine that the file is a TEd it file and
call TEdit to create the hardcopy. Previously, it was necessary
that the TEdit file explicitly have the extension I.TEdit".

(OPENSTREAM file 'OUTPUT 'NEW '«TYPE TEDIT»).

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES

6. USER'S GUIDES

This change is for formatted files only. Plain text files are still
written as type TEXT. Also, on devices that don't support
arbitrary file types (such as conventional mainframe file servers),
the type TEDIT coerces to BINARY. Unfortunately, if you
subsequently copy the file to an NS file server from such a device,
the knowledge of its "true" file type is lost.

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES 6-9

6. USER'S GUIDES

A User's Guide to Sketch-Release Notes

Manipulating Sketch Elements

Adding and Deleting Control Points

Deleting Control Points

Defaults Command

The Medley release of Sketch includes several new features,
many added in response to user's requests. A programmer's
interface allows sketches to be created by programs. This
interface is described in a separate document (The Programmer's
Interface to Sketch.)

Individual control points can now be added to and deleted from
wires and curves.

You now have the option to delete elements or delete a control
point. Just select the Delete command, move the mouse cursor
out through the grey arrow, then select the point to be deleted.

Better Feedback for Creating Wires, Circles and Ellipses

Arrowheads

Deleting Characters During Type-in

6-10

Sketch now provides better feedback when you are creati ng
circles, ellipses and wires. You are now prompted with an image
of what the figure will look like if you release the left button.
You can get the old feedback behavior (for example, if this is too
slow) by selecting the Feedback subcommand from the Defaults
submenu, then selecting the Points only subcommand from its
submenu.

A curved arrowhead shape was added and is now the default.
Also, a command was added to the menu of arrowhead change
operations that implements "look same" for arrowheads. To
make the arrowheads on a collection of elements look the same:
select Change; then, when prompted to select the elements to
change, first select the element that has the desired arrowhead,
then, in the same selection, add the elements that you want to
look like the first one; then select the item Arrowheads, then the
item Both, then the item Same as First.

You can now delete characters by using the UNDO key, just as
you would in TEd it. Type in a word or a phrase, then press the
UNDO key, and the text will be deleted.

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES

Using Bit Maps in a Sketch

Zooming Bitmaps

Changing Bitmaps

Freezing Sketch Elements

Aligning Sketch Elements

6. USER'S GUIDES

The bit image element provides a bitmap that zooms. Selecting
the Bit image command from the command menu will prompt
you for a region of the screen that will be inserted as a bit image
into the sketch.

When you apply a Change command to a bit image that it is
being viewed at actual size, you will be prompted with the same
menu as a bitmap image object. If the image is being displayed
at other than original scale, you will be given the menu shown
below.

Scaled bitma 0 erations
Perform edit operations on the source bitmap of this image.

Make the image shown be the source
Make the source be at this scale

Make the image shown be the source at the source scale
Save this ima e to be used as a source at this scale

Menu of commands offered when Change command
is applied to a bit image that is not at the original
scale.

It is now possible to freeze elements, that is to make them
unaffected by edit changes. Frozen elements will not have their
control points highlighted (and hence cannot be selected) after
an edit command has been selected. This provides a way to keep
part of the figure fixed while editing on an overlapping part. It
also reduces the number of control points. The Freeze command
is a subcommand to the Group command. It will prompt you for
a collection of elements that wi II then be frozen. Elements can
be unfrozen by the UnFreeze command that is a subcommand to
the UnGroup command.

Sketch contains a set of commands to align elements. The main
menu command Align prompts for a collection of control points
and moves them so that they all line up with the I'eftmost one.

Placing Multiple Copies of Elements

There is a new feature in Sketch that makes it much easier to
place multiple copies of a collection of elements. While
positioning the image of the elements during the Copy
command, hold down the COpy key. A new copy of the
elements will be positioned everytime a mouse button (left or
right) is pressed and released, until either the image is placed
completely outside the viewer or the COpy key is released before
the mouse button is released.

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES 6-11

6. USER'S GUIDES

Making the Window Fit the Sketch

Overlaying Figure Elements

Changing How Elements Overlap

The Fit to window subcommand under the Move View
command will zoom the sketch so that it just fits within the
current window. It has a sub-subcommand Fit window to sketch
that will reshape the window so that the entire sketch (at the
size shown) just fits within it. This is useful if you change a sketch
that was edited from a document.

Elements that have a filling property (boxes, text boxes, circles,
polygons and closed curves) now have a mode property that
determines how the filling should effect elements it covers. The
option Filling mode now appears in the Which aspect?
submenu.

Elements have an order in which they are displayed. An element
that is displayed early can be covered by elements layed down
later. Thus, changing the order in which overlapping elements
are displayed can effect the resulting image. The Bury command
provides three subcommands to change the order in which
elements are displayed.

The Bury command will prompt you to select an element or
elements and will change their order so that they are displayed
first. That is, they will appear underneath any other elements. If
you select more than one element, they will all be displayed
before any non-selected elements and their relative order
maintained. The Send to bottom subcommand does the same
thing as Bury.

The Bring to top command is a subitem to the Bury command. It
will prompt you to select an element or elements and will
change their order so that they are displayed last. That is, they
will appear on top of any other elements. If you select more than
one element, they will all be displayed after any non-selected
elements and their relative order maintained.

The Reverse order command is a subitem to the Bury command.
It will prompt you to select a collection of elements and will
reverse their display orders. A special case is when two elements
are selected. In this case the element positions are switched.

Loading the Sketch Library Module in the 1186 Environment

6-12

The SKETCH executable files are too large to be contained on
one floppy. The files are now distributed on two floppies:
Medley Library Floppy #3 and Medley Library Floppy #4. To load
SKETCH, type the Interlisp exec command:

(FILESLOAD LOAD-SKETCH)

The LOAD-SKETCH function will copy all SKETCH files from #3;
then prompt you to insert #4, and the remainder of the files will
be copied.

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES

The Programmer's Interface

New Behavior for the Get Command

6. USER'S GUIDES

The programmer's interface allows Sketch to be used as a tool by
other programs. It is documented in the Programmer's Interface
to Sketch .

The action of the Get command was changed to be consistent
with the TEdit Get command. It now deletes any sketch elements
that are in the sketch prior to the Get command. The affect of
the old Get command is available as the Include command on a
submenu to the Get command.

Establishing Initial Defaults for Sketch

The variable SK.DEFAULT.FONT, if non-NIL, is used as the default
font. If SK.DEFAULT.FONT is NIL, the default font
(DEFAULTFONT) is used.

The following variables are used to establish the default setting
for a new sketch. Descriptions of legal values can be found in the
Programmer's Interface to Sketch. SK.DEFAU L T.BRUSH is the
default brush. SK.DEFAULT.ARROW.LENGTH is the default
arrowhead size. SK.DEFAULT.ARROW.TYPE is the default type
(one of LINE, CURVE, CLOSEDLINE or SOLID).
SK.DEFAULT.ARROW.ANGLE is the default angle for arrowheads.
SK.DEFAUL T.TEXT.ALlGNMENT is the default text alignment.
SK.DEFAULT.TEXTBOX.ALlGNMENT is the default textbox
alignment. SK.DEFAULT.DASHING is the default dashing.
SK.DEFAULT.TEXTURE, SK.DEFAULT.BACKCOLOR and
SK.DEFAULT.OPERATION are combined to create the default
filling.

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES 6-13

6. USER'S GUIDES

1108 User's Guide Release Notes

What to Look For

4. File System

6. System Tools

6-14

The 1108 User's Guide was extensively reorganized and rewritten
for the Lyric Release. This made it nearly identical to the 1186
User's Guide. This section contains a summary of changes
affecting 1108 environments with the Medley release. Details
are described in update pages available for the 1108 User's
Guide.

In every 1108 chapter that requires use of Lisp expressions of any
kind, there is a notice regarding the use of Il: and a suggestion
that expressions, functions, and variables be typed into an
Interlisp Exec.

Medley will accept floppy names up to 40 characters in length.
Some of the Lyric font floppies have names in excess of 40
characters. Medley truncates the floppy name to 40 characters if
asked to read a Lyric floppy with a longer name. The function
FLOPPY.NAME is used to name a floppy. When it is not given any
arguments, it returns the name stored on the floppy disk. When
it is given a NAME argument, the floppy name is set to NAME.
The 40 character limitation holds for both 1108 and 1186
floppies.

The {DSK} device on the 1108 and 1186 now accepts a wider
range of characters in file names. Almost any character in
character set 0 is acceptable. Previously, if you tried to create a
file whose name included, for example, an underscore, you
would see a "FILE NOT FOUND" error.

The 1108 and 1186 file systems had a problem with large
partitions which would manifest itself as "HARD DISK error -
can't find file page" when accessing newly created files. This
would only appear on logical volumes larger than 64K pages.
This problem has been fixed.

The function FILENAMEFROMID is now implemented.

In System Tools, it is no longer necessary to execute a Floppy
Info! command before attempting a List!.

The Medley System Tool now displays an error message when an
NS Domain or Organization name is more than the allowed 20
characters long.

The Medley System Tool now supports sysout and microcode
installation using the TCP FTP protocol. This feature may be used
by selecting the "TCP/FTP" device type in the main System Tool

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES

7. Input/Output

8. Machine Diagnostics

6. USER'S GUIDES

window. Update pages for the 1108 User's Guide describing
this feature, are included with the Medley release.

Every time you allocate space on a floppy disk that has fewer
than 200 free pages, a message is printed in the prompt window.
That message gives an approximate number of free pages
remaining after the allocation; it's intended to give you warning
when your floppy is nearing full. The page count is correct only
within + /- 2 pages because the message is printed in the course
of the allocation, and the floppy's directory may grow when the
new file is added to it.

Medley Boot Diagnostics for the 1108 include changed floppy
disk names and slight changes in the prompts for running
diagnostics from floppies.

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES 6-15

6. USER'S GUIDES

1186 User's Guide Release Notes

What to Look For

1. Introduction

4. File System

5. Software Installation

6-16

The 1186 User's Guide was extensively reorganized and rewritten
for the Lyric Release. This section contains a summary of
changes affecting 1186 environments with the Medley release.
Details are described in update pages available for the 1186
User's Guide.

In every 1186 chapter that requires use of Lisp expressions of any
kind, there is a notice regarding the use of Il: and a suggestion
that expressions, functions, and variables be typed into an
Interlisp Exec.

For Medley, the Xerox Lisp logo window has been changed to
reflect the new name, Envos.

Medley will accept floppy names up to 40 characters in length.
Some of the Lyric font floppies have names in excess of 40
characters. Medley truncates the floppy name to 40 characters if
asked to read a Lyric floppy with a longer name. The function
FLOPPY.NAME is used to name a floppy. When it is not given any
arguments, it returns the name stored on the floppy disk. When
it is given a NAME argument, the floppy name is set to NAME.
The 40 character limitation holds for both 1108 and 1186
floppies.

The {DSK} device on the 1108 and 1186 now accepts a wider
range of characters in file names. Almost any character in
character set 0 is acceptable. Previously, if you tried to create a
file whose name included, for example, an underscore, you
would see a "FILE NOT FOUND" error.

The 1108 and 1186 file systems had a problem with large
partitions which would manifest itself as "HARD DISK error -
can't find file page" when accessing newly created files. This
would only appear on logical volumes larger than 64K pages.
This problem has been fixed.

The function FILENAMEFROMID is now implemented.

The SKETCH executable files are too large to be contained on
one floppy. The files are now distributed on two floppies:
Medley Library Floppy #3 and Medley Library Floppy #4. To load
SKETCH, type the Interlisp exec command:

(FILESLOAD LOAD-SKETCH)

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES

6. System Tools

7. Input/Output

6. USER'S GUIDES

The LOAD-SKETCH function will copy all SKETCH files from #3;
then prompt you to insert #4, and the remainder of the files will
be copied.

In System Tools, it is no longer necessary to execute a Floppy
Info! command before attempting a List!.

The Medley System Tool now displays an error message when an
NS Domain or Organization name is more than the allowed 20
characters long.

The Medley System Tool now supports sysout and microcode
installation using the TCP FTP protocol. This feature may be used
by selecting the "TCP/FTP" device type in the main System Tool
window. Update pages for the 1186 User's Guide describing this
feature, are included with the Medley release.

Every time you allocate space on a floppy disk that has fewer
than 200 free pages, a message is printed in the prompt window.
That message gives an approximate number of free pages
remaining after the allocation; it's intended to give you warning
when your floppy is nearing full. The page count is correct only
within + /- 2 pages because the message is printed in the course
of the allocation, and the floppy's directory may grow when the
new file is added to it.

The following function applies only to 1186 users:

(dove.xor.cursor &optional xor-p) [Function]

8. Diagnostics

If no argument is given, this function returns the current state of
the 1186 cursor (nil implies an or'ing cursor, tan xor'ing cursor).
If an argument is given, changes the state of the 1186 cursor
appropriately.

Medley Boot Diagnostics for the 1186 include changed floppy
disk names and slight changes in the prompts for running
diagnostics from floppies.

LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES 6-17

6. USER'S GUIDES

[This page intentionally left blank]

6-18 LISP RELEASE NOTES, MEDLEY RELEASE, USER'S GUIDES

New Features Since Lyric

Common Lisp Definers

7.COMMON LISP IMPLEMENTATION

This section describes new features and enhancements that
implement Common Lisp into the Lisp operating environment
within the Medley release. This information supplements the
Common Lisp Implementation Notes, Lyric release. Medley
enhancements are indicated with revision bars in the right
margin.

The following description summarizes the new Common Lisp
implementation features that have been added or changed
since the Lyric release.

New compiler Interface -- The Medley compiler gives better
progress reports and it is now possible to invoke the compiler on
any definer (not just functions, as before).

New Implementation of Defstruct -- A new version of defstruct
compiles more compactly and gives more options so that
defstruct has at least as much functionality as the Interlisp record
package.

Adoption of features and clarifications suggested by the
Common Lisp Cleanup Committee -- Among other changes,
the behavior of append on dotted lists is now better defined,
and a new function xcl:row-major-aref has been added.

Common Lisp Veneer on the Interlisp record package -- A
collection of macros that make the use of existing Interlisp
datatypes more appealing has been added.

Performance enhancements -- A closure caching scheme now
insures that repeated calls to symbol-functions of the same
symbol will return EQ compiled-function objects.

New opcodes have been added for several common list
functions, such as member and assoc.

The Medley release contains a new implementation of definers
and a reworking of the top level of the XCL Compiler. These
represent upward compatible changes that have the effect of
allowing the Common Lisp compiler to print out progress reports
indicating which definer is currently being compiled. To receive
the full benefit of these changes, recompile any file containing
a defdefiner expression.

It is now possible to compile individual definers by using any of
the following forms:

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLFMENTATION 7-1

7. COMMON LISP IMPLEMENTATION

Compile-Definer

Compile-Form

(xcl:compile-definer name type)

Compile and install the definer of type type named name.

EXAMPLE:

(xcl:compile-definer 'foo 'structures)

(xcl:compile-form form)

In this example, the definer will compile and install the structures
definition of foo.

Compile and evaluate form.

EXAMPLE:

(xcl:compile-form '(progn (defconstant c 1) (defun foo (a b) (+ c a
b»»

In this example, the definer will compile and evaluate the progn
using compile-file semantics.

EXAMPLE:

(xcl:compile-form '(with-collection (dotimes (i 10) (collect i»»

In this example, the definer returns:

(0 1 2 3 4 5 6 7 8 9)

Defi ne-Fi Ie-Environment

7-2

Rather than establishing il:makefile-environment props and
il:filetypes on the root name of a file, you can define a file
envi ronment usi ng the form:

(xci :define-file-environment filename &key readtable package base compiler)

This produces an object of file-manager type
xcl:file-environments. The filename can be either a string or a
symbol. The rootname of the file is constructed by interning the
filename in the Interlisp package. Puts the compiler argument (if
any) under the il:filetype prop of the file rootname. Puts the
readtable, package and base arguments (if any) under the
il:makefile-environment prop of the file rootname. None of the
arguments are evaluated. There are no defaults.

EXAMPLE:

(xcl:define-file-environment myfile :package "XCL-USER" :readtable
"XCL" :compiler :compile-file)

In this example, compile-file is put under the il :filetype prop of
myfile. The readtable, XCL and compile arguments are put
under the il:makefile-environment prop of myfile.

NOTE: xcl:define-file-environment is a definer and hence will
not be installed if il:dfnflg is il:prop or if a file is prop loaded.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Site-Name Special Uses

xci: *short-site-name*

xci: *Iong-site-name*

The following special variables are defined and may be set in
your init file to inform Common Lisp of site information:

This variable is used in the function short-site-name.

This variable is used in the function long-site-name.

EXAMPLES:

(setq xcl:*short-site-name* "AIS")

(setq xcl:*long-site-name* "Artificial Intelligence Systems")

In these examples, (short-site-name) returns II AIS" and
(Iong-site-name) returns II Artificial Intelligence Systems".

Record Access

Defi ne-Record

The Medley release contains several methods for accessing
existing Interlisp records using Common Lisp syntax. These
features help to integrate Interlisp and Common Lisp. The
following sections describe these additions.

(xcl:define-record name interlisp-record-name

&key conc-name constructor predicate fast-accessors) [Definer]

Creates a structures object named by the symbol name that
provides Common Lisp accessors, settors, predicates and
constructors for the Interlisp record named by the symbol
interlisp-record-name. The Interlisp record must be defined
before the xcl:define-record expression is evaluated. The
keyword arguments are treated as in defstruct. The package of
constructed names is taken from the value of *package* at the
time of evaluation (as in defstruct). The system contains no
predeclared define-records.

EXAMPLE:

The form:

(xc1:define-record menu il:menu)

allows you to write:

(menu-items faa) and (setf (menu-items faa) fie)

rather than:

(i1 :fetch (il :menu i1: items) il :of faa)

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION 7-3

7. COMMON LISP IMPLEMENTATION

Record-Fetch

(xci: record-fetch record field object) [Macro]

Record-FFetch

Evaluates object. Does not evaluate record and field. Both
record and field must be symbols. Symbols with the same
p-names are interned in the Interlisp package and are used to
construct an il:fetch form. xcl:record-fetch may be used with
setf and expands to the suitable replace form.

(xci: record-ffetch record field object) [Macro]

Record-Create

Similar to xcl:record-fetch, but an il:ffetch form is generated
instead. Evaluates object. Does not evaluate record and field.
Both record and field must be symbols. Symbols with the same
p-names are interned in the Interlisp package and are used to
construct an il:ffetch form. Ffetch may be used with setf and
expands to the suitable freplace form.

(xci: record-create record &rest keyword-pairs) [Macro]

Array Reference

Evaluates the second element of each pair. Does not evaluate
record (record must be a symbol). A symbol with the same
p-name is interned in the Interlisp package and used to construct
an il:create form. The rest of the arguments form keyword pairs.
The first element of each pair should be a symbol such that a
symbol with the same p-name exists in the Interlisp package and
names either a valid slot for this record or is one of :using,
:copying, :reusing, or :smashing.

(xci: row-major-aref array index) [Function]

Shadowing of Global Macros

Evaluating Load-time Expressions

Common Lisp Defstruct Options

Returns the element of array given by the row-major-index
index. The array can be of any dimension. This function can be
used with setf .

The XCL Compiler now properly handles shadowing of global
macros by lexical functions. In the Lyric Compiler, lexical
functions defined with flet did not shadow global definitions of
the same name. This has been fixed in Medley.

The XCL Compiler now handles il:loadtimeconstant correctly.
The new Compiler substitutes the entire expression for each
reference to the value of a load-time constant. There are
potential problems if the code depends on the expression being
evaluated exactly once, e.g. if it contains (IDATE).

The Medley release contains a new implementation of defstruct
that offers greater compiled-code compaction, and several new
extensions that increase efficiency. This implementation
introduces functionality that allows defstruct to parallel the

7-4 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

Defstruct Options

:inline

:fast-accessors

:template

Defstruct Slot Options

7. COMMON LISP IMPLEMENTATION

Interlisp record module in flexibility. These features also help to
integrate Interlisp and Common Lisp. The following sections
describe these additions.

Can be one or both of :accessor and :predicate or t, implying
'(:accessor : predicate) or nil, implying no optimizations allowed
or :only, implying all accessors and the predicate will be inline
only and not funcallable (not usable with the Lisp primitive
"funcall"). The default is '(:accessor :predicate).

Copiers and constructors are never inline. The option (:inline
:only) implies that no funcallable accessors will be generated
(similarly, the predicate, if any, will not be funcallable).

Can be t or nil. t implies inline accessors will not type check. The
default is nil.

Note that funcallable accessors (if any), always type check, if
possible.

NOTE: This represents a change from the Lyric implementation,
which allowed specification of a list of slot names that had fast
inline accessors.

Can be t or nil, t implies that no datatype will be instantiated.
(:template t) implies no :type option. The default is nil.

Templated defstructs have no predicates, copiers or constructs.
It is an error to supply any such option in combination with
(:template t). Templated defstructs are intended to be used as
are IL:blockrecord's. It is possible for a templated defstruct to
include another templated structure, but it is an error for a
standard defstruct to include a templated structure.

Funcallable accessors (accessors that may be used with the Lisp
primative "funcall") share code with suitable closure templates
if the defstruct is compiled with the XCL Compiler. Byte
compiled defstructs still generate explicit defun's for all
funcallable accessors.

The following specialized types are recognized:

(unsigned-byte {1 - 16})

(signed-byte {16, 32})

float, etc.

(member t nil)

il :fullpointer

il :xpointer

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION 7-5

7. COMMON LISP IMPLEMENTATION

il :fullxpointer

Warning When Using Defstruct

Defstruct automatically generates a number of auxilliary
functions without checking whether redefining those functions
will affect the system. To avoid redefining key functions, you
should be aware of the names that will be used. For example:

Do not attempt to define a Structure named TREE. This use of
Defstruct implicitly redefines the built-in Common Lisp function
COPY-TREE, which renders your system inoperable.

If you have already tried to define a (DEFSTRUCT TREE A B)
structure by mistake, you will need to reload your system.

Macros for Collecting Objects

xci :with -collection

7-6

(xcl:with-collection &body forms) [Macro]

(xcl:collect form)

{xcl:with-collection
{maphash

[Macro]

This pair of macros is provided for efficiently collecting objects
into a list. In Common Lisp, there is no direct facility provided for
doing this, so one must either push objects onto a list, then
reverse it, or maintain a tail pointer to the list and use rplacd to
add new items. The latter has an efficient implementation in
Xerox Common Lisp, and xci :with-collection is provided to take
advantage of it.

Lexically within the body of an xcl:with-collection, the macro
xcl:collect is defined. It will append the value of its argument to
the end of the list being collected. The value of
xcl:with-collection is the collected list.

xcl:collect may be used inside of functions passed as arguments
to other functions.

EXAMPLE:

"{lambda (key val)
(when (interesting-p val) (xcl:collect key»)

the-hash-table»

will collect a list of all the "interesting" keys in the order that
they were encountered.

It is an error to use xci : collect outside the scope of an
xcl:with-collection. Proper lexical nesting is observed, so an
instance of xcl:collect applies to the most deeply nested
xcl:with-collection that is is found in.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Macros for Writing Macros

xci :once-only

(xcl:once-only ({variable)*) &body forms) [Macro]

This macro is provided to aid in writing macros. xcl:once-only
helps solve the problem of multiple evaluation of subforms of a
macro.

EXAMPLE:

(defmacro test (reference form)
'(setf ,reference (cons ,form ,form»)

This example has the problem that form will be evaluated twice.
To avoid this, one might instead write:

(defmacro test (reference form)
(let «value (gensym»)

'(let «,value ,form»
(setf ,reference (cons ,value ,value»»)

This solves the problem of multiple evaluation, but introduces
some others. If form is in fact something simple, like a reference
to a variable or a literal, there was no need to create the
temporary variable, thus "wasting" a symbol. This can be
extremely important in Xerox Common Lisp as symbol space is
limited and symbols are never reclaimed. If there are many
temporary values to be computed, the macro definition becomes
cluttered with calls to gensym that obscure the essence of the
code.

xcl:once-only helps solve these problems. For each of the
variables listed, xcl:once-only determines if its value (at
macroexpansion time) is simple: a symbol or a literal. If it is,
appearances of that variable in the macroexpansion will remain
unchanged. If it is not, the macroexpansion will contain code to
store the value in a temporary gensym'ed variable and use that
variable in the macroexpansion. Thus, the example could be
written as

(defmacro test (reference form)
(xcl:once-only (form)

'(setf ,reference (cons ,form ,form»»

Then (tes t (aref the-array x) y) will expand to
something like

(setf (aref the-array x) (cons y y»

while (test (aref the-array x) (random-form» will
expand to something like

(let «(#:g377 (random-form»)
(setf (aref the-array x) (cons #:g377 #:g377»)

Note that xcl:once-only does not attempt to preserve order of
evaluation. If this is important then you will still have to create
temporary variables yourself.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION 7-7

7. COMMON LISP IMPLEMENTATION

Common Lisp Append Datatypes

A clarification adopted by X3J 13 involves the behavior of the
APPEND function with non-lists. The cdr of the last cons in any
but the last argument given to APPEND is discarded (whether NIL
or not) when preparing the list to be returned. In the case where
there is no last cons (i.e., the argument is not a list) in any but
the last list argument, the entire argument is effectively ignored.
In this situation, if the last argument is a non-list, the result of
APPEND can be a non-list. NB: APPEND and COPY-LIST now
produce different results for non-lists.

EXAMPLE:

(append '(a be. d) '())

produces the result:

(a b c)

EXAMPLE:

(append '(a b . c) '() 3)

produces the result:

(a b. 3)

EXAMPLE:

(append 3 17)

produces the result:

17.

Closure Cache

Symbols and Packages

Pkg-goto and In-package

The Medley sysout contains a closure cache that provides
increased time and space efficiency. Less new memory is
allocated because repeated calls to symbol-function of the same
symbol now will cons exactly one closure object. Repeated calls
to symbol-function of the same symbol now return EQ­
compiled function objects.

PKG-GOTO is now a synonym for IN-PACKAGE. The PKG-GOTO
function can be used to change packages in an exec.

PKG-GOTO takes one argument, which can be either a
double-quoted string, a symbol, or a package structure. This
function is used to set package in an exec.

(xcl:pkg-goto package-name &key nicknames use) [Function]

7-8

PKG-GOTO operates like IN-PACKAGE, but asks for confirmation
if a new package is being created. The function is useful at the
top level in the exec, to avoid creating new packages when a
name is misspelled.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

Oefpackage Export argument

Debugging Tools

Breaking

Advising

7. COMMON LISP IMPLEMENTATION

Defpackage's EXPORT argument now accepts strings. Optionally,
strings can be given to : EXPORT instead of symbols. This is
recommended when defpackage is used in the
makefile-environment property of a file. The strings are
interned in the package being defined and then exported.

Even with HELPDEPTH set to zero, some errors do not cause a
break. In Koto and the old Interlisp execs in Lyric, the
workaround is:

(SETTOPVAL 'HELPFLAG 'BREAK!)

In Medley and Lyric's new execs, HELPFLAG is bound but not
continually reset. The workaround:

(SETQ HELPFLAG 'BREAK!)

affects the current exec until the next time you call RESET (or
control-D). If you want the change in HELPFLAG to be seen by
other processes, you still need to use SETTOPVAL, and RESET any
execs in which you want to see the effect.

For related information, see the Medley error system variable
XCL:*BREAK-ON-SIGNALS* described in Appendix E.

In Lyric, putting a second piece of advice on a function caused
the system to believe that the function was in fact not advised, so
any further advice threw out the already existing advice. This
has been fixed. In Medley, the correct list entries are made
regardless of whether the function was previously advised.

In Lyric, loading a file with advice caused multiple instances of
the advice to be instantiated. To prevent this, ADVISE is now
changed in Medley in the following way: When a new piece of
advice is put on a function, the system examines the already
existing advice to see if the some advice is already there. If so,
the old advice is removed before adding the new advice.
Sameness is determined by a test similar to CL:EQUALP, except
that case distinctions are significant in strings and characters.
The priority and location of the advice is taken into account
when determining the "sameness." This makes it possible, for
instance, to have identical advice be both: FIRST and: LAST.

Advice is no longer replicated when loaded more than once.

The debugger and inspector now display interpreted lexical
closures conveniently. Displayed lexical closure contents include
the function contained, and any lexical bindings in the closure.
Compiled closures are not conveniently inspectable. Common
Lisp eval stack frames show their associated lexical environment
in a similar manner.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION 7-9

7. COMMON LISP IMPLEMENTATION

The :when option to XCL:BREAK-FUNCTION no longer causes
the broken function to return NIL when the break is not taken.
The correct values are returned.

Argument Names Displayed for Interpreted Functions

Lexical Variables Evaluated by Debugger

In the debugger, the frame inspector window will now display
the argument names for interpreted Common Lisp functions.
Previously, it gave them pseudonames "argO" "arg1" etc.

The debugger EVAL command now evaluate expressions in the
lexical environment --i.e., you can evaluate an expression and
use variables that are lexically bound in your code. Only the
lexical environment at the point of the break can be evaluated.
You can't presently back up to any given lexicai environment.

EXAMPLE:

(defun fact(x)(if(= 1 x)nil(*x(fact(l-x»»)

(fact 4)

EVAL x

2

Pathname Component Fixed in FS-ERROR

Compiler Optimizations

Warning when using LABELS construct

;; breaks. if you then type

In Lyric, only one of the three FS-ERROR conditions was passed a
pathname component, resulting in the File Cacher not knowing
which file had the error, or resulting in pathname being lost
when PROTECTION VIOLATION or FILE SYSTEM RESOURCES
EXCEEDED were signaled. This problem occurred most
noticeably in Lyric when Interlisp errors were translated to XCL.
This condition has been fixed in Medley. FS-ERROR now correctly
receives all the pathname components.

In Lyric, use of the LABELS construct generated circular structure
that would not get collected. Interpreted, a LABELS construct
always creates this non-collectible structure. Compiled, such
structure would be created if there were non-tail-recursive or
mutually referencing subfunctions. The values of any closed-over
variables are captured by this structure and thus also not
collected, potentially causing large storage leaks. The latter
situation has been relieved somewhat for Medley.

In Medley, the unavoidable circularity has been reduced to
include only the mutually referencing functions, but not any of
the other data that they access. Thus, the uncollectable structure
is created only when a new copy of the code blocks are created,
such a by compiling the function containing the LABELS rather
than each time that function is called.

7-10 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

COMS added to dfasl files

Loadflg argument

7. COMMON LISP IMPLEMENTATION

The Medley compiler has been modified to better handle the
il :define-file-info, and defpackage forms. Now, loading a dfasl
file is not implicitly SYSLOAD. Since the file CaMS for the file is
now included in the dfasl, that file will be noticed by the file
manager unless the load is explicitly SYSLOAD. (SYSLOADing of
compiled leom and dfasl files is recommended.)

In Lyric, dfasls of file manager files did not contain the CaMS of
the file. In Medley, CaMS are present in dfasl files, just as they
are in leom files. As with Icom files, the CaMS will not be loaded
when the LDFLG argument to LOAD is SYSLOAD, nor will the
name of the file be added to FILELST, but instead will be added
to SYSFILES.

Note: We discourage loading either sort of compiled file (leom or
dfasl) with any value for LDFLG but SYSLOAD. Unless you intend
to edit a file, you should always load it SYSLOAD. Even when you
intend to edit it, it is usually preferable to SYSLOAD it and then
load the source PROP. If there are too many source files for this
to be practical, we recommend use of the WHERE-IS Library
module.

While the location of definitions is made known to the edit
interface when files are loaded, it can be very inefficient when
files are not SYSLOADed. If, for example, you load ten compiled
files with LDFLG = NIL and then evaluate (ED 'Faa), then the
CaMS of all ten files must be searched for definitions of each
manager type with name Faa. With forty manager types this
comes to 400 parses of CaMS -- a time-consuming operation. If
you instead load the compiled files SYSLOAD and the sources
PROP, then no CaMS need be searched, as checking for
definitions of each manager type is sufficient.

The Medley release contains a new keyword argument to
cI:load.

(cI:load filename &key verbose print if-does-not-exist loadflg)

The loadflg argument follows the sematics of the loadflg
argument to il:load, with the exception that the loadflg
argument will always be interned in the Interlisp package.

EXAMPLE:

(cl:load "Mycompiled-file.dfasl" :loadflg :sysload)

In this example, "Mycompiled-file.dfasl" will load without the
file manager noticing that file.

Note: As explained in the previous section, we discourage
loading either sort of compiled file (leom or dfasl) with any value
for Idflg but SYSLOAD.

Changes in CL:MAP, CL:WRITE-STRING, CL:COERCE , CL:GENSYM and IL:DEFERREDCONSTANT

In Lyric, a compiled call to CL: MAP that had been used for effect
would occasionally cons up a new list anyway. It would fail in

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMFNTATION 7-11

7. COMMON LISP IMPLEMENTATION

Compiler keeps Special &REST arguments

Compiler ignores TEdit formatting

the case that the first argument was a constant that evaluated to
NIL, but not NIL itself, e.g. 'NIL. This has been fixed and no
longer occurs in Medley.

CL:WRITE-STRING is now twice as fast and creates no new
structure.

CL:COERCE now correctly returns the original object in all cases
where Common Lisp and Lisp require it.

The CL Compiler now compiles CL:GENSYM properly.

IL: DEFERREDCONSTANT is now handled correctly by the XCL
compiler.

ADD.PROCESS no longer coerces the process name to a symbol.
Rather, process names are treated as case-insensitive strings.
Thus, you can use strings for process names, and when typing
process commands to an exec, you need not worry about getting
the alphabetic case correct.

The CL Compiler now retains special &REST arguments. The
Lyric compiler threw away special &REST arguments. This has
been fixed in the Medley CL Compiler.

COMPILE-FILE will now ignore TEdit formatting, but only if TEd it
is loaded.

Compiler notices Tail-recursive Lexical Functions

The XCL Compiler now performs tail recursion elimination on
FLETed lexical functions.

Compiler Error Message "BUG: Inconsistent stack depths seen"

7-12

You may occasionally see this error message while compiling.
Normally, error messages from the compiler beginning with
"BUG" indicate an internal compiler error. In this particular case,
the compiler error may reflect an error in the code you are
compiling.

There is currently no compile-time argument checking. The
compiler performs an optimization that turns a tail-recursive
function call into a jump back to the beginning of the function. If
this tail-recursive call has the wrong number of arguments, the
stack modeler in the assembler will detect this as incosistent stack
depths, leading to the above error message.

EXAMPLE:

(defun bad-length (x n)

(if (endp x) n (bad-length (cdr x»»

Compiling this form will result in the error "BUG: Inconsistent
stack depths seen." The recursive call to bad-length has only one
argument, but the function expects two.

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

Format -C and WRITE-CHAR

7. COMMON LISP IMPLEMENTATION

Thus, if you see this error message, you should check for
tail-recursive function calls with the wrong number of
arguments.

In accordance with a recommendation of X3J13, the -C FORMAT
operation with no modifiers now behaves exactly the same as
WRITE-CHAR for characters with no bits. The Medley release of
XCL conforms to this; the Lyric release did not. If you need to
obtain the Lyric behavior of -C, use -:c.

WITH-OUTPUT-TO-STRING and WITH-INPUT-FROM-STRING

For consistency with WITH-OPEN-STREAM and WITH-OPEN-FILE,
WITH-OUTPUT-TO-STRING and WITH-INPUT-FROM-STRING now
close the stream
WITH-OU TPU T -TO-STRI NG
writing long strings.

on exit from the form.
is now significantly faster when

LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION 7-13

7. COMMON LISP IMPLEMENTATION

[This page intentionally left blank]

7-14 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

APPENDIXA. THE EXEC

In most Common Lisp implementations, there is a"top-level
read-eval-print loop, II which reads an expression, evaluates it,
and prints the results. In Xerox Common Lisp, the Exec acts as the
top-level loop, but in addition to read-eval-print, it also performs
a number of other tasks, and allows a much greater range of
inputs. This appendix contains information from the Lyric and
Medley releases. Medley additions are indicated with revision
bars in the right margin.

The Exec is based on concepts from the Interlisp Programmer's
Assistant (see the Interlisp-D Reference Manual).

The Exec traps all throws, and recovers gracefully. It prints all
values resulting from evaluation, on separate lines. When zero
values are returned, nothing is printed.

The Exec keeps track of your previous input, in a structure called
the history list. A history list is a list of the information associated
with each of the individual events that have occurred, where
each event corresponds to one input. Associated with each
event on the history list is the input, its values, plus other
optional information such as side-effects, formatting
information, etc.

The following dialogue contains illustrative examples and gives
the flavor of the use of the Exec. Be sure to type these examples
to an Exec whose *PACKAGE* is set to the XCL-USER package.
The Exec that Lisp starts up with is set to the XCl-USER package.
Each prompt consists of an event number and a prompt
character (" > ").

12>(setq foo 5)
5
13 > (setq foo 10)
10
14>undocr
SETQ undone.
15>foocr
5

This is an example of direct communication with the Exec. You
have instructed the Exec to undo the previous event.

25 >set(lst1 (a be»

(A B C)

26 > (setq Ist2 '(d e f»

(D E F)

27>(mape #'(Iambda (x) (setf (get x 'myprop) t» Ist1)

(A B C)

The Exec accepts input both in APPLY format (the SET) and EVAL
format (the SETQ.) In event 27, the user adds a property MYPROP
to the symbols A, 8, and C.

28>use Ist2 for Ist1 in 27cr

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC A-1

APPENDIX A - THE EXEC

Input Formats

EVAL-format input

A-2

NIL

You just instructed the Exec to go back to event number 27,
substitute LST2 for LST1, and then re-execute the expression.
You could have also used -2 instead of 27, specifying a relative
address.

46 > (setf my-hash-table (make-hash-table»

#<Hash-Table @ 66,114034)

47 > (setf (gethash 'foo my-hash-table) (string 'foo»
"FOO"

If STRING were computationally expensive (which it is not), then
you might be caching its value for later use.

48>use fie for foo in stringcr
"FIE"

You now decide you would like to redo the SETF with a different
value. You specify the event using "IN STRING" rather than SETF.

49> 11 usecr

USE FIE FOR FOO IN STRING
48> (SETF (GETHASH 'FIE MY-HASH-TABLE)

(STRING 'FIE»
"FIE"

Here you ask the Exec (using the ?? command) what it has on its
history list for the last input. Since the event corresponds to a
command, the Exec displays both the original command and the
generated input.

The most common interaction with the Exec occurs at the top
level or in the debugger, where you type in expressions for
evaluation, and see the values printed out. In this mode, the
Exec acts much like a standard Common Lisp top-level loop,
except that before attempting to evaluate an input, the Exec first
stores it in a new entry on the history list. Thus if the operation is
aborted or causes an error, the input is still saved and available
for modification and/or re-execution. The Exec also notes new
functions and variables to be added to its spelling lists to enable
future corrections.

After updating the history list, the Exec executes the
computation (i.e., evaluates the form or applies the function to
its arguments), saves the value in the entry on the history list
corresponding to the input, and prints the result. Finally the
Exec displays a prompt to indicate it is again ready for input.

The Exec accepts three forms of input: an expression to be
evaluated (EVAL-format), a function-name and arguments to
apply it to (APPLY-format), and Exec commands, as follows:

If you type a single expression, either followed by a
carriage-return, or, in the case of a list, terminated with balanced
parenthesis, the expression is evaluated and the value is

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPLY-format input

Exec commands

APPENDIX A - THE EXEC

returned. For example, if the value of the variable FOO is the list
(A BC):

32>Foocr
(A B C)

Similarly, if you type a Lisp expression, beginning with a left
parenthesis and terminated by a matching right parenthesis, the
form is simply passed to EVAL for evaluation. Notice that it is not
necessary to type a carriage return at the end of such a form; the
reader will supply one automatically. If a carriage-return is typed
before the final matching right parenthesis or bracket, it is
treated the same as a space, and input continues. The following
examples are interpreted identically:

123> (+ 1 (* 2 3»
7
124> (+ 1 (*cr
23»
7

Often, when typing at the keyboard, you call functions with
constant argument values, which would have to be quoted if you
typed them in .. EVAL-format." For convenience, if you type a
symbol immediately followed by a list form, the symbol is
APPL Yed to the elements within the list, unevaluated. The input
is terminated by the matching right parenthesis. For example,
typing LOAD(FOO) is equivalent to typing (LOAD 'FOO), and
GET(X COLOR) is equivalent to (GET 'X 'COLOR). As a simple
special case, a single right parenthesis is treated as a balanced set
of parentheses, e.g.

12S>UNBREAK)

is equivalent to

12S>UNBREAK()

The reader will only supply the "carriage return" automatically if
no space appears between the initial symbol and the list that
follows; if there is a space after the initial symbol on the line and
the list that follows, the input is not terminated until a carriage
return is explicitly typed.

Note that APPLY-format input cannot be used for macros or
special forms.

The Exec recognizes a number of commands, which usually refer
to past events on the history list. These commands are treated
specially; for example, they may not be put on the history list.
The format of a command is always a line beginning with the
command name. (The Exec looks up the command name
independent of package, so that Exec commands are package
independent.) The remainder of the line, if any, is treated as
"arguments" to the command. For example,

128>UNDocr
mapc undone
129>UNDO {FOO __)cr
faa undone

are all valid command inputs.

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC A-3

APPENDIX A - THE EXEC

Multiple Execs and the Exec's Type

Event Specification

A-4

Multiple Execs More than one Exec can be active at anyone time. New Execs can
be created by selecting the Exec menu item in the background
pop-up menu. When a prompt is printed for an event in other
than the first Exec, the prompt is preceded with the Exec
number; for example:

2/50>

might be a prompt in Exec 2. All Execs share the same history list,
but each event records which Exec it goes with. That is, although
a single global list exists, the Xerox Lisp history system maintains
the separate threads of control withi n each Exec.

Exec type Several variables are very important to an Exec since they control
the format of reading and printing. Together these variables
describe a type of exec. Put another way, this is the Exec's mode.
To allow easier setting of these modes some standard bindings
for the variables have been named. The names provide the user
an Exec of the Common Lisp (CL), Interlisp (IL) or Xerox Extended
Common Lisp (XCL) type. An Exec's type is usually displayed in
the title bar of its window in parentheses:

N (an integer)

Exec 2 (XCL)

2/50) *package *
#<Packaqe XCL-USER)
2/51 > *re-adtable *
#<ReadTable XCL/75,35670)
2l52)

Exec commands, like UNDO, frequently refer to previous events
in the session's history. All Exec commands use the same
conventions and syntax for indicating which event(s) the
command refers to. This section shows you the syntax used to
specify previous events.

An event address identifies one event on the history list. For
example, the event address 42 refers to the event with event
number 42, and -2 refers to two events back in the current Exec.
Usually, an event address will contain only one or two
commands.

Event addresses can be concatenated. For example, if FOO refers
to event N, FOO FIE will refer to the first event before event N
which contains FIE.

The symbols used in event addresses (such as AND, F, =, etc. are
compared with STRING-EQUAL, so that it does not matter what
the current package is when you type an event address symbol to
an Exec.

Event addresses are interpreted as follows:

If N is positive, it refers to the event with event number N (no
matter which Exec the event occurred in.) If N is negative, it

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

always refers to the event -N events backwards counting only
events belonging to the current Exec.

F Specifies that the next object in the event address is to be
searched for, regardless of what it is. For example, F -2 looks for
an event containing -2.

= Specifies that the next object is to be searched for in the values of
events, instead of the inputs.

SUCHTHAT PRED Specifies an event for which the function PRED returns true.
PRED should be a function of two arguments, the input portion
of the event, and the event itself.

PAT Any other event address command specifies an event whose
input contains an expression that matches PAT. When multiple
Execs are active, all events are searched, no matter which Exec
they belong to. The pattern can be a simple symbol, or a more
complex search pattern.

Note: Specifications used below of the form EventAddressj refer

to event addresses, as described above. Since an event
address may contain multiple words, the event address is
parsed by searching for the words which delimit it. For
example, in EventAddress , AND EventAddress2' the

notation EventAddress 1 corresponds to all words up to the

AND in the event specification, and EventAddress2 to all

words after the AND in the event specification.

FROM EventAddress All events since EventAddress, inclusive. For example, if there is a
single Exec and the current event is number 53, then FROM 49
specifies events 49, 50, 51, and 52. FROM will include events
from all Execs.

ALL EventAddress Specifies all events satisfying EventAddress. For example, ALL
LOAD, ALL SUCH THAT FOO-P.

empty If nothing is specified, it is the same as specifying -1, i.e., the last
event in the current Exec.

EventSpec 1 AND EventSpec 2 AND ... AND EventSpecN

Exec Commands

Each of the EventSpecj is an event specification. The lists of

events are concatenated. For example, ALL MAPC AND ALL
STRING AND 32 specifies all events containing MAPC, all
containing STRING, and also event 32. Duplicate events are
removed.

All Exec commands are input as lines which begin with the name
of the command. The name of an Exec command is not a symbol
and therefore is not sensitive to the setting of the current
package (the value of *PACKAGE*).

EventSpec is used to denote an event specification which in most
cases will be either a specific event address (e.g., 42) or a relative
one (e.g., -3). Unless specified otherwise, omitting EventSpec is

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC A-5

APPENDIX A - THE EXEC

A-6

REDO EventSpec

RETRY EventSpec

the same as specifying EventSpec = -1. For example, REDO and
REDO -1 are the same.

[Exec command]

Redoes the event or events specified by EventSpec. For example,
REDO 123 redoes the event numbered 123.

[Exec command]

Similar to REDO except sets the debugger parameters so that any
errors that occur while executing EventSpecwili cause breaks.

USE NEW [FOR OLD] [IN EventSpec] [Exec command]

Substitutes NEW for OLD in the events specified by EventSpec,
and redoes the result. NEW and OLD can include lists or symbols,
etc.

For example, USE SIN (- X) FOR COS X IN -2 AND -1 will substitute
SIN for every occurrence of COS in the previous two events, and
substitute (- X) for every occurrence of X, and reexecute them.
(The substitutions do not change the previous information saved
about these events on the history list.)

If IN EventSpec is omitted, the first member of OLD is used to
search for the appropriate event. For example, USE
DEFAULTFONT FOR DEFLATFONT is equivalent to USE
DEFAULTFONT FOR DEFLATFONT IN F DEFLATFONT. The F is
inserted to handle correctly the case where the first member of
OLD could be interpreted as an event address command.

If OLD is omitted, substitution is for the "operator" in that
command. For example FBOUNDP(FF) followed by USE CALLS is
equivalent to USE CALLS FOR FBOUNDP IN -1.

If OLD is not found, USE will print a question mark, several spaces
and the pattern that was not found. For example, if you
specified USE Y FOR X IN 104 and X was not found, "X ?" is
pri nted to the Exec. .

You can also specify more than one substitution simultaneously
as follows:

USE NEW1 FOR OLD1 AND ... AND NEWNFOR OLDN[lN EventSpec [Exec command]

Note: The USE command is parsed by a small finite state parser
to distinguish the expressions and arguments. For
example, USE FOR FOR AND AND AND FOR FOR will be
parsed correctly.

Every USE command involves three pieces of information: the
expressions to be substituted, the arguments to be substituted
for, and an event specification that defines the input expression
in which the substitution takes place. If the USE command has
the same number of expressions as arguments, the substitution
procedure is straightforward. For example, USE X Y FOR U V

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

1 &OPTIONAL NAME

11 EventSpec

CONN DIRECTORY

OA

APPENDIX A - THE EXEC

means substitute X for U and V for V, and is equivalent to USE X
FOR U AND V FORV.

However, the USE command also permits distributive
substitutions for substituting several expressions for the same
argument. For example, USE ABC FOR X means first substitute A
for X then substitute B for X (in a new copy of the expression),
then substitute C for X. The effect is the same as three separate
USE commands.

Similarly, USE ABC FOR 0 AND X Y Z FOR W is equivalent to USE
A FOR 0 AND X FOR W, followed by USE B FOR 0 AND V FOR W,
followed by USE C FOR 0 AND Z FOR W. USE ABC FOR 0 AND X
FOR V also corresponds to three substitutions, the first with A for
o and X for V, the second with B for 0, and X for V, and the third
with C for 0, and again X for V. However, USE ABC FOR 0 AND
X V FOR Z is ambiguous and will cause an error.

Essentially, the USE command operates by proceeding from left
to right handling each AND separately. Whenever the number
of expressions exceeds the number of expressions available,
multiple USE expressions are generated. Thus USE ABC 0 FOR E
F means substitute A for E at the same time as substituting B for
F, then in another copy of the indicated expression, substitute C
for E and 0 for F. This is also equivalent to USE A C FOR E AND B 0
FORF.

Note: The USE command correctly handles the situation where
one of the old expressions is the same as one of the new
ones, USE X V FOR V X, or USE X FOR V AND V FOR X.

[Exec command]

If NAME is not provided describes all available Exec commands by
printing the name, argument list, and description of each. With
NAME, only that command is described.

[Exec command]

Prints the most recent event matching the given EventSpec.

[Exec command]

Changes default pathname to DIRECTORY.

[Exec command]

Returns current date and time.

OIR &OPTIONAL PATHNAME &REST KEYWORDS [Exec command]

Shows a directory listing for PATHNAME or the connected
directory. If provided, KEYWORDS indicate information to be
displayed for each file. Some keywords are: AUTHOR, AU,
CREATION DATE, DA, etc.

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC A-7

APPENDIX A - THE EXEC

A-8

DO-EVENTS &REST INPUTS &ENVIRONMENT ENV [Exec command]

FIX &REST EventSpec

FORGET &REST EventSpec

DO-EVENTS is intended as a way of putting together several
different events, which can include commands. It executes the
multiple INPUTS as a single event. The values returned by the
DO-EVENTS event are the concatenation of the values of the
inputs. An input is not an EventSpec, but a call to a function or
command. If ENV is provided it is a lexical environment in which
all evaluations (functions and commands) will take place. Event
specification in the INPUTS should be explicit, not relative, since
referring to the last event will reinvoke the executing
DO-EVENTS command.

[Exec command]

Edits the specified event prior to reexecuting it. If the number of
characters in the Fixed line is less than the variable
TTYINFIXLIMIT then it will be edited using TTYIN, otherwise the
Lisp editor is called via EDITE.

[Exec command]

Erases UNDO information for the specified events.

NAME COMMAND-NAME &OPTIONAL ARGUMENTS &REST EVENT-SPEC [Exec command]

Defines a new command, COMMAND-NAME, and its
ARGUMENTS, containing the events in EVENT-SPEC.

NDIR &OPTIONAL PATHNAME &REST KEYWORDS [Exec command]

PLSYMBOL

Shows a directory listing for PATHNAME or the connected
directory in abbreviated format. If provided, KEYWORDS
indicate information to be displayed for each file. Some
keywords are: AUTHOR, AU, CREATIONDATE, DA, etc.

[Exec command]

Prints the property list of SYMBOL in an easy to read format.

REMEMBER &REST EVENT-SPEC [Exec command]

SHH &REST LINE

UNDO &REST EventSpec

Tells File Manager to remember type-in from specified event(s) ,
,EVENT-SPEC, as expressions to save.

[Exec command]

Executes LINE without history list processing.

[Exec command]

Undoes the side effects of the specified event (see below under
"Undoing").

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

Variables

APPENDIX A - THE EXEC

PP &OPTIONAL NAME &REST TYPES [Exec command]

SEE &REST FILES

SEE* &REST FILES

Shows (prettyprinted) the definitions for NAME specified by
TYPES.

[Exec command]

Prints the contents of FILES in the Exec window, hiding
comments.

[Exec command]

Prints the contents of FILES in the Exec window, showing
comments.

TIME FORM &KEY REPEAT &ENVIRONMENT ENV [Exec command]

TY &REST FILES

TYPE &REST FILES

IL:IT

Times the evaluation of FORM in the lexical environment ENV,
repeating REPEAT number of times. Information is displayed in
the Exec window.

[Exec command]

Exactly like the TYPE Exec command.

[Exec command]

Prints the contents of FILES in the Exec window, hiding
comments.

A number of variables are provided for convenience in the Exec.

[Variable]

Whenever an event is completed, the global value of the variable
IT is reset to the event's value. For example,

312 >(SQRT 2)
1.414214
313>(SQRT IL:IT)
1.189207

Following a 11 command, IL:IT is set to the value of the last event
printed. The inspector has an option for setting the variable IL:IT
to the current selection or inspected object, as well. The variable
IL:IT is global, and is shared among all Execs. IL:IT is a convenient
mechanism for passing values from one process to another.

Note: IT is in the INTERLISP package and these examples are
intended for an Exec whose *PACKAGE* is set to
XCL-USER. Thus, IT must be package qualified (the IL:).

The following variables are maintained independently by each
Exec. (When a new Exec is started, the initial values are NIL, or,
for a nested Exec, the value for the "parent" Exec. However,
events executed under a nested Exec will not affect the parent
values.)

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC A-9

APPENDIX A - THE EXEC

CL:-

CL:+

CL: + +

CL: + + +

CL:*

CL:**

CL:***

CL:!

CL:II

CL:II!

Fonts in the Exec

PROMPTFONT

INPUTFONT

A-10

[Variable]

[Variable]

[Variable]

[Variable]

While a form is being evaluated by the Exec, the variable - is
bound to the form, CL: + is bound to the previous form, CL: + +
the one before, etc. If the input is in apply-format rather than
eval-format, the value of the respective variable is just the
function name.

[Variable]

[Variable]

[Variable]

While a form is being evaluated by the Exec, the variable CL:* is
bound to the (first) value returned by the last event, CL:** to the
event before that, etc. The variable CL:* differs from IT in that IT
is global while each separate Exec maintains its own copy of CL:*,
CL:** and CL:***. In addition, the history commands change IT,
but only inputs which are retained on the history list can change
CL:*.

[Variable]

[Variable]

[Variable]

While a form is being evaluated by an Exec, the variable CL:! is
bound to a list of the results of the last event in that Exec, CL:II to
the values of the event before that, etc.

The Exec can use different fonts for displaying the prompt, user's
input, intermediate printout, and the values returned by
evaluation. The following variables control the Exec's font use:

[Variable]

Font used for printing the event prompt.

[Variable]

Font used for echoing user's type-in.

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

PRINTOUTFONT

VAlUEFONT

Changing the Exec

APPENDIX A - THE EXEC

[Variable]

Font used for any intermediate printing caused by execution of a
command or evaluation of a form. Initially the same as
DEFAUl TFONT.

[Variable]

Font used to print the values returned by evaluation of a form.
Initially the same as DEFAUl TFONT.

(CHANGESLICE N HISTORY -) [Function]

Defining New Commands

Changes the time-slice of the history list HISTORY to N. If Nil,
HISTORY defaults to the top level history lISPXHISTORY.

Note: The effect of increasing the time-slice is gradual: the
history list is simply allowed to grow to the corresponding
length before any events are forgotten. Decreasing the
time-slice will immediately remove a sufficient number of
the older events to bring the history list down to the
proper size. However, CHANGESLICE is undoable, so that
these events are (temporarily) recoverable. Therefore, if
you want to recover the storage associated with these
events without waiting N more events until the
CHANGESLICE event drops off the history list, you must
perform a FORGET command.

You can define new Exec commands using the
XCl: DEFCOMMAND macro.

(XCl:DEFCOMMAND NAME ARGUMENT-LIST &REST BODy) [Macro]

XCl:DEFCOMMAND is similar to XCl:DEFMACRO, but defines
new Exec commands. The ARGUMENT-LIST can have keywords,
defstructure, and use all of the features of macro argument lists.
When NAME is subsequently typed to the Exec, the rest of the
line is processed like the arguments to a macro, and the BODY is
executed. XCl:DEFCOMMAND is a definer; the File Manager will
remember typed-in definitions and allow them to be saved,
edited with EDITDEF, etc.

There are actually three kinds of commands that can be defined,
: EVAl, :QUIET, and :INPUT. Commands can also be marked as
only for the debugger, in which case they are labelled as
:DEBUGGER. The command type is noted by supplying a list for
the NAME argument to XCl:DEFCOMMAND, where the first
element of the list is the command name, and the other
elements are keyword(s) for the command type and, optionally
:DEBUGGER.

Note: The documentation string in user defined Exec
commands is automatically added to the documentation

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC A-11

APPENDIX A - THE EXEC

Undoing

A-12

descriptions by the CL:DOCUMENTATION function under
the COMMANDS type and can be shown using the 1 Exec
command.

:EVAL This is the default. The body of the command just gets executed,
and its value is the value of the event. For example (in an XCL
Exec),

{DEFCOMMAND (LS : EVAL)
{&OPTIONAL (NAMESTRING *DEFAUL T-PATHNAME-DEFAULTS*)
&REST DIRECTORY-KEYWORDS)
{MAPC

#"{LAMBDA (PATHNAME) {FORMAT T II-&-AII (NAMESTRING PATHNAME»)
(APPLY #"DIRECTORY NAMESTRING DIRECTORY-KEYWORDS»

(VALUES»

would define the LS command to print out a" file names that
match the input namestring. The (VALUES) means that no value
will be printed by the event, only the intermediate output from
the FORMAT.

:QUIET These commands are evaluated, but neither your input nor the
results of the command are stored on the history list. For
example, the 11 and SHH commands are quiet.

:INPUT These commands work more like macros, in that the result of
evaluating the command is treated as a new line of input. The
FIX command is an input command. The result is treated as a
line; a single expression in EVAL-format should be returned as a
list of the expression to EVAL.

The new Exec now will not consider unparenthesized input with
more than one argument to be in apply format. This is the same
behavior as the older execs, e.g.:

list(l)

list (1)

; is apply format (executes after close paren is typed)

; is apply format (second arg is a list, no trailing args
given)

list '(1) 23; is NOT apply format, arguments are evaluated

list 1 23 ; is NOT apply format, arguments are evaluated

list 1 ; not legal input: second argument is not a list

Note: This discussion only applies to undoing under the Exec,
Debugger and within the UNDOABLY macro; editors
handle undoing in a different fashion.

The UNDO facility allows recording of destructive changes such
that they can be played back to restore a previous state. There
are two kinds of UNDOing: one is done by the Exec, the other is
available for use in a programmer's code. Both methods share
information about what kind of operations can be undone and
where the changes are recorded.

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

Undoing in the Exec

UNDO EventSpec

Undoing in Programs

APPENDIX A - THE EXEC

[Exec command]

The Exec's UNDO command is implemented by watching the
evaluation of forms and requiring undoable operations in that
evaluation to save enough information on the history list to
reverse their side effects. The Exec simply executes operations,
and any undoable changes that occur are automatically saved on
the history list by the responsible functions. The UNDO
command works on itself the same way: it recovers the saved
information and performs the corresponding inverses. Thus,
UNDO is effective on itself, so that you can UNDO an UNDO, and
UNDO that, etc.

Only when you attempt to undo an operation does the Exec
check to see whether any information has been saved. If none
has been saved, and you have specifically named the event you
want undone, the Exec types nothing saved. (When you just
type UNDO, the Exec only tries to undo the last operation.)

UNDO watches evaluation using CL:EVALHOOK (thus, calling
CL:EVALHOOK cannot be undone). Each form given to EVAL is
examined against the list LlSPXFNS to see if it has a
corresponding undoable version. If an undoable version of a call
is found, it is called with the same arguments instead of the
original. Therefore, before evaluating all subforms of your
input, the Exec substitutes the corresponding undoable call for
any destructive operation. For example, if you type (DEFUN FOO
...), undoable versions of the forms that set the definition into
the symbol function cell are evaluated. FOO's function
definition itself is not made undoable.

There are two ways to make a program undoable. The simplest
method is to wrap the program's form in the UNDOABLY macro.
The other is to call undoable versions of destructive operations
directly.

(XCL:UNDOABLY &RESTFORMS) [Macro]

Executes the forms in FORMS using undoable versions of all
destructive operations. This is done by "walking" (see
WALKFORM) all of the FORMS and rewriting them to use the
undoable versions of destructive operations (LlSPXFNS makes
the association).

(STOP-UNDOABLY &RESTFORMS) [Macro]

Normally executes as PROGN; however, within an UNDOABLY
form, explicitly causes FORMS not to be done undoably. Turns
off rewriting of the FORMS to be undoable inside an UNDOABLY
macro.

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC A-13

APPENDIX A - THE EXEC

Undoable Versions of Common Functions

Modifying the UNDO Facility

A-14

Efficiency and overhead are serious considerations for the
execution of a user program. Thus, the programmer may need
more control over the saving of undo information than that
provided by the UNDOABL Y macro.

To make a function undoable, you can simply substitute the
corresponding undoable function if you want to make a
destructive operation in your own program undoable. When the
undoable function is called, it will save the undo information in
the current event on the history list.

Various operations, most notably SETF, have undoable versions.
The following undoable macros are initially available:

UNDOABLY-POP

UNDOABLY-PUSH

UNDOABLY-PUSHNEW

UNDOABLY-REMF

UNDOABLY-ROTATEF

UNDOABLY-SHIFTF

UNDOABLY-DECF

UNDOABLY-INCF

UNDOABL Y-SET-SYMBOL

UNDOABLY-MAKUNBOUND

UNDOABLY-FMAKUNBOUND

UNDOABLY-SETQ

XCL:UNDOABLY-SETF

UNDOABL Y-PSETF

UNDOABLY-SETF-SYMBOL-FUNCTION

UNDOABL Y-SETF-MACRO-FUNCTION

Note: Many destructive Common Lisp functions do not currently
have undoable versions, e.g., CL:NREVERSE, CL:SORT, etc.
The current list of undoable functions is saved on the
association list LlSPXFNS.

You will usually wish to extend the UNDO facility after creating a
form whose side effects it might be desirable to undo, for
instance a file renaming function.

An undoable version of the function needs to be written. This
can be done by explicitly saving previous state information away,
or by renaming calls in the function to their undoable
equivalent. Undo information should be saved on the history list
using IL:UNDOSAVE.

You must then hook the undoable version of the function into
the undo facility. You do this by either using the IL:LlSPXFNS
association list, or in the case of a SETF modifier, on the
IL:UNDOABLE-SETF-INVERSE property of the SETF function.

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

LlSPXFNS

APPENDIX A - THE EXEC

[Variable]

Contains an association list which maps from destructive
operations to their undoable form. Initially this list contains:

«CL:POP. UNDOABLY-POP)

(CL:PSETF . NDOABLY-PSETF)

(CL:PUSH . UNDOABL V-PUSH)

(CL:PUSHNEW. UNDOABLY-PUSHNEW)

«CL:REMF). UNDOABLY-REMF)

(CL:ROTATEF. UNDOABLY-ROTATEF)

(CL:SHIFTF. UNDOABLY-SHIFTF)

(CL:DECF. UNDOABL Y-DECF)

(CL:INCF. UNDOABLY-INCF)

(CL:SET. UNDOABL Y-SET-SYMBOL)

(CL:MAKUNBOUND. UNDOABLY-MAKUNBOUND)

(CL:FMAKUNBOUND. UNDOABLY-FMAKUNBOUND)

... plus the original Interlisp undo associations)

(XCL:UNDOABLY-SETF PLACE VALUE ...) [Macro]

Like CL:SETF but saves information so it may be undone.
UNDOABLY-SETF uses undoable versions of the setf function
located on the UNDOABLE-SETF-INVERSE property of the
function being SETFed. Initially these SETF names have such a
property:

CL:SYMBOL-FUNCTION - UNDOABLY-SETF·SYMBOL·FUNCTION

CL:MACRO·FUNCTION - UNDOABLY·SETF·MACRO·FUNCTION

(UNDOABLY·SETQ &REST FORMS) [Function]

Typed-in SETQs (and SETFs on symbols) are made undoable by
substituting a call to UNDOABLY·SETQ. UNDOABLY-SETQ
operates like SETQ on lexical variables or those with dynamic
bindings; it only saves information on the history list for changes
to global, "top-level" values.

(UNDOSAVE UNDOFORM HISTENTRY) [Function]

\#UNDOSAVES

Adds the undo information UNDOFORM to the SIDE property of
the history event HISTENTRY. If there is no SIDE property, one is
created. If the value of the SIDE property is NOSAVE, the
information is not saved. HISTENTRY specifies an event. If
HISTENTRY = NIL, the value of LlSPXHIST is used. If both
HISTENTRYand LlSPXHIST are NIL, UNDOSAVE is a no-op.

The form of UNDOFORM is (FN . ARGS). Undoing is done by
performing (APPLY (CAR UNDOFORM) (CDR UNDOFORM».

[Variable]

The value of \#UNDOSAVES is the maximum number of
UNDOFORMs to be saved for a single event. When the count of

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC A-15

APPENDIX A - THE EXEC

Undoing Out of Order

Format and Use of the History List

LlSPXHISTORV

A-16

UNDOFORMs reaches this number, UNDOSAVE prints the
message CONTINUE SAVING?, asking if you want to continue
saving. If you answer NO or default, UNDOSAVE discards the
previously saved information for this event, and makes NOSAVE
be the value of the property SIDE, which disables any further
saving for this event. If you answer YES, UNDOSAVE changes the
count to -1, which is then never incremented, and continues
saving. The purpose of this feature is to avoid tying up large
quantities of storage for operations that will never need to be
undone.

If \#UNDOSAVES is negative, then when the count reaches (ABS
\#UNDOSAVES), UNDOSAVE simply stops saving without
printing any messages or other interactions.
\#UNDOSAVES = NIL is equivalent to \#UNDOSAVES = infinity.
\#UNDOSAVES is initially NIL.

The configuration described here has been found to be a very
satisfactory one. You pay a very small price for the ability to
undo what you type in, since the interpreted evaluation is simply
watched for destructive operations, or if you wish to protect
yourself from malfunctioning in your own programs, you can
explicitly call, or have your program rewritten to explicitly call,
undoable functions.

UNDOABLV-SETF operates undoably by saving (on the history
list) the cell that is to be changed and its original contents.
Undoing an UNDOABLV-SETF restores the saved contents.

This implementation can produce unexpected results when
multiple modifications are made to the same piece of storage
and then undone out of order. For example, if you type (SETF
(CAR FOO) 1), followed by (SETF (CAR FOO) 2), then undo both
events by undoing the most recent event first, then undoing the
older event, FOO will be restored to its state before either event
operated. However if you undo the first event, then the second
event, (CAR FOO) will be 1, since this is what was in CAR of FOO
before (UNDOABLV-SETF (CAR FOO) 2) was executed. Similarly,
if you type (NCONC FOO '(1», followed by (NCONC FOO '(2»,
undoing just (NCONC FOO '(1» will remove both 1 and 2 from
FOO. The problem in both cases is that the two operations are
not independent.

In general, operations are always independent if they affect
different lists or different sublists of the same list. Undoing in
reverse order of execution, or undoing independent operations,
is always guaranteed to do the right thing. However, undoing
dependent operations out of order may not always have the
predicted effect.

(Variable]

The Exec currently uses one primary history list, LlSPXHISTORV
for the stori ng events.

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

The history list is in the form (EVENTS EVENT# SIZE MOD), where
EVENTS is a list of events with the most recent event first,
EVENT# is the event number for the most recent event on
EVENTS, SIZE is the the maximum length EVENTS is allowed to
grow. MOD is is the maximum event number to use, after which
event numbers rollover. LlSPXHISTORV is initialized to (NIL 0100
1000).

The history list has a maximum length, called its time-slice. As
new events occur, existing events are aged, and the oldest events
are forgotten. The time-slice can be changed with the function
CHANGESLICE. Larger time-slices enable longer memory spans,
but tie up correspondingly greater amounts of storage. Since a
user seldom needs really ancient history, a relatively small
time-slice such as 30 events is usually adequate, although some
users prefer to set the time-slice as large as 200 events.

Each individual event on EVENTS is a list of the form (INPUT ID
VALUE . PROPS). For Exec events, ID is a I ist (EVENT-NUMBER
EXEC-ID). The EVENT-NUMBER is the number of the event, while
the EXEC-ID is a string that uniquely identifies the Exec. (The
EXEC-ID is used to identify which events belong to the "same"
Exec.) VALUE is the (first) value of the event. PROPS is a property
list used to associate other information with the event (described
below).

INPUT is the input sequence for the event. Normally, this is just
the input that the user typed-in. For an APPLY-format input this
is a list consisting of two expressions; for an EVAL-format input,
this is a list of just one expression; for an input entered as list of
atoms, INPUT is simply that list. For example,

User Input

LlST(1 2)

(LIST 11)

01 R "{DSK} < LlSPFI LES > "cr

INPUT is:

(LIST (1 2»

«LIST 11»

(DIR "{DSK}<LlSPFILES>")

If you type in an Exec command that executes other events
(REDO, USE, etc.), several events might result. When there is
more than one input, they are wrapped together into one
invocation of the DO-EVENTS command.

The same convention is used for representing multiple inputs
when a USE command involves sequential substitutions. For
example, if you type FBOUNDP{FOO) and then USE FIE FUM FOR
FOO, the input sequence that will be constructed is DO-EVENTS
(EVENT FBOUNDP (FIE» (EVENT FBOUNDP (FUM», which is the
result of substituting FIE for FOO in (FBOUNDP (FOO»
concatenated with the result of substituting FUM for FOO in
(FBOUNDP (FOO».

PROPS is a property list of the form (PROPERTY, VALUE,

PROPERTY2 VALUE2 ...), that can be used to associate arbitrary

information with a particular event. Currently, the following
properties are used by the Exec:

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC A-17

APPENDIX A - THE EXEC

SIDE A list of the side effects of the event. See UNDOSAVE.

LlSPXPRINT Used to record calls to EXEC-FORMAT, and printed by the ??
command.

Making or Changing an Exec

A-18

(XCL:ADD-EXEC &KEY PROFILE REGION TTY 10) [Function]

Creates a new process and window with an Exec running in it.
PROFILE is the type of the Exec to be created (see below under
XCL:SET-EXEC-TYPE). REGION optionally gives the shape and
location of the window to be used. If not provided the user will
be prompted. TTY is a flag, which, if true, causes the tty to be
given to the new Exec process. 10 is a stri ng identifier to use for
events generated in this exec. 10 defaults to the number given to
the Exec process created.

(XCL: EXEC &KEY WINOOW PROMPT COMMA ND-TABLES ENVIRONMENT PROFILE
TOP-LEVEL-P TITLE FUNCTION 10) [Function]

This is the main entry to the Exec. The arguments are:

WINDOW defaults to the current TTY display stream, or can be
provided a window in which the Exec will run.

PROMPT is the prompt to print.

COMMAND-TABLES is a list of hash-tables for looking up
commands (e.g., *EXEC-COMMAND-TABLE* or
DEBUGGER-COMMAND-TABLE).

ENVIRONMENT is a lexical environment used to evaluate things
in.

REAOTABLE is the default readtable to use (defaults to the
"Common Lisp" readtable).

PROFILE is a way to set the Exec's type (see above, "Multiple
Execs and the Exec's Type").

TOP-LEVEL-P is a boolean, which should be true if this Exec is at
the top level.

TITLE is an identifying title for the window title of the Exec.

FUNCTION is a function used to actually evaluate events, default
is EVAL-INPUT.

10 is a string identifier to use for events generated in this Exec. 10
defaults to the number given to the Exec process.

XCL:*PER-EXEC-VARIABLES* [Variable]

A list of pairs of the form (VAR INln. Each time an Exec is
entered, the variables in *PER-EXEC-VARIABLES* are rebound to
the value returned by evaluating IN/T. The initial value of
PER-EXEC-VARIABLES is:

({*PACKAGE* *PACKAGE*)
(* *)

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

XCL: *EVAL-FUNCTION*

XCL: *EXEC-PROMPT*

XCL: *DEBUGGER-PROMPT*

APPENDIX A - THE EXEC

(** **)
(*** ***)
(+ +)
(++ ++)
(+++ +++)
(- -)
(I I)
(II II)
(III III)
(HELPFLAG T)
(*EVALHOOK* NIL)
(*APPLYHOOK* nil)
(*ERROR-OUPUT* *TERMINAL-IO*)
(*REAOTABLE* *REAOTABLE*)
(*package* *package*)
(*eval-function* *eval-function*)
(*exec-prompt* *exec-prompt*)
(*debugger-prompt* *debugger-prompt*»

Most of these cause the values to be (re)bound to their current
value in any inferior Exec, or to NIL, their value at the "top level".

[Variable]

Bound to the function used by the Exec to evaluate input.
Typically in an INTERLISP Exec this is IL:EVAL, and in a Common
Lisp Exec, CL:EVAL

[Variable]

Bound to the string printed by the Exec as a prompt for input.
Typically in an INTERLISP Exec this is " ~ ", and in a Common Lisp
Exec," > ".

[Variable]

Bound to the string printed by the debugger Exec as a prompt
for input. Typically in an INTERLISP Exec this is " ~ : ", and in a
Common Lisp Exec, ": ".

(XCL:EXEC-EVAL FORM &OPTIONAL ENVIRONMENn [Function]

Evaluates FORM (using EVAL) in the lexical environment
ENVIRONMENT the same as though it were typed in to EXEC, i.e.,
the event is recorded, and the evaluation is made undoable by
substituting the UNDOABLE-functions for the corresponding
destructive functions. XCL:EXEC-EVAL returns the value(s) of the
form, but does not print it, and does not reset the variables *, **,
***, etc.

(XCL:EXEC-FORMAT CONTROL-STRING &REST ARGUMENTS) [Function]

In addition to saving inputs and values, the Exec saves many
system messages on the history list. For example, FILE CREATED
... , FN redefined, VAR reset, output of TIME, BREAKDOWN,
ROOM, save their output on the history list, so that when 11
prints the event, the output is also printed. The function

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC A-19

APPENDIX A - THE EXEC

XCL:EXEC-FORMAT can be used in user code similarly.
XCL:EXEC-FORMAT performs (APPLY #'CL:FORMAT
TERMINAL-IO CONTROL-STRING ARGUMENTS) and also saves
the format string and arguments on the history list associated
with the current event.

(XCL:SET-EXEC-TYPE NAME) [Function]

Sets the type of the current Exec to that indicated by NAME. This
can be used to set up the Exec to your liking. NAME may be an
atom or string. Possible names are:

INTERLlSP,IL *READTABLE* INTERLISP

PACKAGE INTERLISP

XCL:*DEBUGGER-PROMPT* "~: II

XCL:*EXEC-PROMPT* "~"

XCL:*EVAL-FUNCTION* IL:EVAL

XEROX-COMMON-LlSP, XCL *READTABLE* XCL

PACKAGE XCL-USER

XCL:*DEBUGGER-PROMPT* ": II

XCL:*EXEC-PROMPT* II > "

XCL:*EVAL-FUNCTION* CL:EVAL

COMMON-LISP, CL *READTABLE* LISP

PACKAGE USER

XCL:*DEBUGGER-PROMPT* ": II

XCL:*EXEC-PROMPT* II > "

XCL:*EVAL-FUNCTION* CL:EVAL

OLD-INTERLlSP-T *READTABLE* OLD-INTERLlSP-T

PACKAGE INTERLISP

XCL:*DEBUGGER-PROMPT* "~: II

XCL:*EXEC-PROMPT* ": II

XCL:*EVAL-FUNCTION* IL:EVAL

(XCL:SET-DEFAUL T-EXEC-TYPE NAME) [Function]

Like XCL:SET-EXEC-TYPE , but sets the type of Execs created by
default, as from the background menu. Initially XCL This can be
used in your greet file to set default Execs to your liking.

Editing Exec Input

A-20

The Exec features an editor for input which provides completion,
spelling correction, help facility, and character-level editing. The
implementation is borrowed from the Interlisp module TTYIN.

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

Editing Your Input

CONTROL-A, BACKSPACE

CONTROL-W

CONTROL-Q

CONTROL-R

ESCAPE

UNDO key (on 1108 and 1186)
Middle-blank key (on 1132)

CONTROL-X

Using the Mouse

APPENDIX A - THE EXEC

This section describes the use of the TTYIN editor from the
perspective of the Exec.

Some editing operations can be performed using any of several
characters; characters that are interrupts will, of course, not be
read, so several alternatives are given. The following characters
may be used to edit your input:

Deletes a character. At the start of the second or subsequent
lines of your input, deletes the last character of the previous line.

Deletes a "word". Generally this means back to the last space or
parenthesis.

Deletes the current line, or if the current line is blank, deletes the
previous line.

Refreshes the current line. Two in a row refreshes the whole
buffer (when doing multiline input).

Tries to complete the current word from the spelling list
USERWORDS. In the case of ambiguity, completes as far as is
uniquely determined, or beeps.

Retrieves characters from the previous non-empty buffer when it
is able to; e.g., when typed at the beginning of the line this
command restores the previous line you typed; when typed in
the middle of a line fills in the remaining text from the old line;
when typed following CONTROL-Q or CONTROL-W restores what
those commands erased.

Goes to the end of your input (or end of expression if there is an
excess right parenthesis) and returns if parentheses are balanced.

If you are already at the end of the input and the expression is
balanced except for lacking one or more right parentheses,
CONTROL-X adds the required right parentheses to balance
and returns.

During most kinds of input, lines are broken, if possible, so that
no word straddles the end of the line. The pseudo-carriage
return ending the line is still read as a space, however; i.e., the
program keeps track of whether a line ends in a carriage return
or is merely broken at some convenient point. You will not get
carriage returns in your strings unless you explicitly type them.

Editing with the mouse during TTYIN input is slightly different
than with other modules. The mouse buttons are interpreted as
follo~s during TTYIN input:

LEFT Moves the caret to where the cursor is pointing. As you hold
down LEFT, the caret moves around with the cursor; after you let
up, any type-in will be inserted at the new position.

MIDDLE or LEFT + RIGHT Like LEFT, but moves only to word boundaries.

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC A-21

APPENDIX A - THE EXEC

RIGHT Deletes text from the caret to the cursor, either forward or
backward. While you hold down RIGHT, the text to be deleted is
inverted; when you let up, the text goes away. If you let up
outside the scope of the text, nothing is deleted (this is how to
cancel this operation).

If you hold down MOVE, COPY, SHIFTor CTRL while pressing the
mouse buttons, you instead get secondary selection, move
selection or delete selection. The selection is made by holding
the appropriate key down while pressing the mouse buttons
LEFT (to select a character) or MIDDLE (to select a word), and
optionally extend the selection either left or right using RIGHT.
While you are doing this, the caret does not move, but the
selected text is highlighted in a manner indicating what is about
to happen. When the selection is complete, release the mouse
buttons and then lift up on MOVE/COPY/CTRLlSHIFT and the
appropriate action will occur:

COpy or SHIFT The selected text is inserted as if it were typed. The text is
highlighted with a broken underline during selection.

CTRL The selected text is deleted. The text is complemented during
selection.

MOVE or CTRL + SHIFT Combines copy and delete. The selected text is moved to the
caret.

Editing Commands

Cursor Movement Commands

[bs]

A-22

You can cancel a selection in progress by pressing LEFT or
MIDDLE as if to select, and moving outside the range of the text.

The most recent text deleted by mouse command can be inserted
at the caret by typing the UNDO key (on the Xerox
1108/118611185) or the Middle-blank key (on the Xerox 1132).
This is the same key that retrieves the previous buffer when
issued at the end of a line.

A number of characters have special effects while typing to the
Exec. Some of them merely move the caret inside the input
stream. While caret positioning can often be done more
conveniently with the mouse, some of the commands, such as
the case changing commands, can be useful for modifying the
input.

In the descriptions below, current word means the word the
cursor is under, or if under a space, the previous word. Currently,
parentheses are treated as spaces, which is usually what you
want, but can occasionally cause confusion in the word deletion
commands. The notation [CHAR] means meta-CHAR. The
notation $ stands for the ESCAPE/EXPAND key. Most commands
can be preceded by numbers or escape (means infinity), only the
first of which requires the meta key (or the edit prefix). Some
commands also accept negative arguments, but some only look
at the magnitude of the argument. Most of these commands are
confined to work within one line of text unless otherwise noted.

Backs up one (or n) characters.

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX A - THE EXEC

[space] Moves forward one (or n) characters.

[i] Moves up one (or n) lines.

[If] Moves down one (or n) lines.

[(] Moves back one (or n) words.

[)] Moves ahead one (or n) words.

[tab] Moves to end of line; with an argument moves to nth end of
line; [$tab] goes to end of buffer.

[control-L] Moves to start of line (or nth previous, or start of buffer).

[{] and [}] Goes to start and end of buffer, respectively (like [$control-L]
and [$tab]).

[[] (meta-left-bracket) Moves to beginning of the current list, where cursor is currently
under an element of that list or its closing paren. (See also the
auto-parenthesis-matching feature below under "Assorted
Flags" .)

[]] (meta-right-bracket) Moves to end of current list.

[Sx] Skips ahead to next (or nth) occurrence of character x, or rings
the be".

[Bx] Backward search, i.e., short for [-S] or [-nS].

Buffer Modification Commands

[Zx]

[A] or [R]

[K]

Zaps characters from cursor to next (or nth) occurrence of x.
There is no unzap command.

Repeats the last S, B, or Z command, regardless of any
i nterveni ng input.

Ki"s the character under the cursor, or n chars starting at the
cursor.

[cr] When the buffer is empty is the same as undo i.e. restores
buffer's previous contents. Otherwise is just like a <cr> (except
that it also terminates an insert). Thus, [<cr> <cr>] wi" repeat
the previous input (as wi" undo<cr> without the meta key).

[0] Does "Open line", inserting a crlf after the cursor, i.e., it breaks
the line but leaves the cursor where it is.

[T] Transposes the characters before and after the cursor. When
typed at the end of a line, transposes the previous two
characters. Refuses to handle odd cases, such as tabs.

[G] Grabs the contents of the previous line from the cursor position
onward. [nG] grabs the nth previous line.

[L] Puts the current word, or n words on line, in lower case. [$L] puts
the rest of the linein lower case; or if given at the end of line puts
the entire line in lower case.

[U] Analogous to [L], for putting word, line, or portion of line in
upper case.

[C] Capitalizes. If you give it an argument, only the first word is
capitalized; the rest are just lowercased.

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC A-23

APPENDIX A - THE EXEC

Miscellaneous Commands

Useful Macros

1= Handler

Assorted Flags

[control-Q]

[control-W]

Deletes the current line. [$control-Q] deletes from the current
cursor position to the end of the buffer. No other arguments are
handled.

Deletes the current word, or the previous word if sitting on a
space.

[P] Prettyprints buffer. Clears the buffer and reprints it using
prettyprint. If there are not enough right parentheses, it will
supply more; if there are too many, any excess remains
unprettyprinted at the end of the buffer. May refuse to do
anything if there is an unclosed string or other error trying to
read the buffer.

[N] Refreshes line. Same as control-R. [$N] refreshes the whole
buffer; [nN] refreshes n lines. Cursor movement in TTYIN
depends on TTYIN being the only source of output to the
window; in some circumstances, you may need to refresh the line
for best resu Its.

[control-Y] Gets an Interlisp Exec.

[$control-Y] Gets an Interlisp Exec, but first unreads the contents of the buffer
from the cursor onward. Thus if you typed at TTYIN something
destined for Interlisp, you can do [control-L$control-Y] and give
it to Lisp.

[Eo-] Adds the current word to the spelling list USERWORDS. With
zero argument, removes word. See TTYINCOMPLETEFLG .

If the event is considered short enough, the Exec command FIX
will load the buffer with the event's input, rather than calling
the structure editor. If you really wanted the Lisp editor for your
fix, you can say FIX EVENT -ITTY:I.

Typing the characters? = <cr> displays the arguments to the
function currently in progress. Since TTYIN wants you to be able
to continue editing the buffer after a ? =, it prints the arguments
below your type-in and then puts the cursor back where it was
when? = was typed.

These flags control aspects of TTYIN's behavior. Some have
already been mentioned. In Interlisp-D, the flags are a" initially
set to T.

?ACTIVATEFLG [Variable]

A-24

If true, enables the feature whereby ? lists alternative
completions from the current spelling list.

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

SHOWPARENFLG

USERWORDS

APPENDIX A - THE EXEC

[Variable]

If true, then whenever you are typing Lisp input and type a right
parenthesis, TTYIN will briefly move the cursor to the matching
parenthesis, assuming it is still on the screen. The cursor stays
there for about 1 second, or until you type another character
(i.e., if you type fast you will never notice it).

[Variable]

USERWORDS contains words you mentioned recently: functions
you have defined or edited, variables you have set or evaluated
at the executive level, etc. This happens to be a very convenient
list for context-free escape completion; if you have recently
edited a function, chances are good you may want to edit it
again (typing IED(xx$)") or type a call to it. If there is no
completion for the current word from USERWORDS, or there is
more than one possible completion, TTYIN beeps. If typed when
not inside a word, Escape completes to the value of LASTWORD,
i.e., the last thing you typed that the Exec noticed, except that
Escape at the beginning of the line is left alone (it is an Old
Interlisp Exec command).

If you really wanted to enter an escape, you can, of course, just
quote it with a CONTROL-V, like you can other control
characters.

You may explicitly add words to USERWORDS yourself that
would not get there otherwise. To make this convenient online
the edit command [E-] means "add the current atom to
USERWORDS" (you might think of the command as pointing out
this atom). For example, you might be entering a function
definition and want to point to one or more of its arguments or
prog variables. Giving an argument of zero to this command will
instead remove the indicated atom from USERWORDS.

Note that this feature loses some of its value if the spelling list is
too long, if there are too many alternative completions for you
to get by with typing a few characters followed by escape. Lisp's
maintenance of the spelling list USERWORDS keeps the
temporary section (which is where everything goes initially
unless you say otherwise) limited to \#USERWORDS atoms,
initially 100. Words fall off the end if they haven't been used
(they are used if FIXSPELL corrects to one, or you use <escape>
to complete one).

LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC A-25

APPENDIX A - THE EXEC

[This page intentionally left blank]

A-26 LISP RELEASE NOTES, MEDLEY RELEASE, THE EXEC

APPENDIX B. SEDIT-THE LISP
EDITOR

SEdit is the Lisp structure editor. It allows you to edit Lisp code
directly in memory. This editor replaces DEdit in Chapter 16,
Structure Editor, of the Interlisp-D Reference Manual. First
introduced in Lyric, the SEdit structure editor has been greatly
enhanced in the Medley release. Medley additions are
indicated with revision bars in the right margin.

16.1 SEdit - The Structure Editor

16.1.1 An Edit Session

As a structure editor, SEdit alters Lisp code directly in memory.
The effect this has on the running system depends on what is
being edited.

For Common Lisp definitions, SEdit always edits a copy of the
object. For example, with functions, it edits the definition of the
function. What the system actually runs is the installed function,
either compiled or interpreted. The primary difference between
the definition and the installed function is that comment forms
are removed from the definition to produce the installed
function. The changes made while editing a function will not be
installed until the edit session is complete.

For Interlisp functions and macros, SEdit edits the actual
structure that will be run. An exception to this is an edit of an
EXPR definition of a compiled function. In this case, changes are
included and the function is unsaved when the edit session is
completed.

SEdit edits all other structures, such as variables and property
lists, directly. SEdit installs all changes as they are made.

If an error is made during an SEdit session, abort the edit with an
Abort command (see Section 16.1.7, Command Keys). This
command undoes all changes from the beginning of the edit
session and exits from SEdit without changing your
environment.

If the definition being edited is redefined while the edit window
is open, SEdit redisplays the new definition. Any edits on the old
definition will be lost. If SEdit was busy when the redefinition
occurred, the SEdit window will be gray. When SEdit is no longer
busy, position the cursor in the SEdit window and press the left
mouse button; SEdit will get the new definition and display it.

The List Structure Editor discussion in Chapter 3, Language
Integration, explains how to start an editor in Lisp.

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT B-1

APPENDIX B. SEDIT

16.1.2 SEdit Carets

B-2

Whenever you call SEdit, a new SEdit window is created. This
SEdit window has its own process, and thus does not rely on an
Exec to run in. You can make edits in the window, shrink it while
you do something else, expand it and edit some more, and finally
close the window when you are done.

Throughout an edit session, SEdit remembers everything that
you do through a change history. All edits can be undone and
redone sequentially. When an edit session ends, SEdit forgets
this information and installs the changes in the system.

The session ends with an event signalling to the editor that
changes are complete. Three events signal completion:

• Closing the window.

Do this to terminate the edit session when you are finished.

• Shrinking the window.

Shrink the window when you have made some edits and may
want to continue the editing session at a later time.

• Typing one of the Completion Commands, listed below.

Each of these commands has the effect of installing your
changes, completing the edit, and returning the TTY process to
the Exec. They vary in what is done in addition to completing.
Using these commands the definition that you were editing can
be automatically compiled, the edit window can be closed, or
both.

A new edit session begins when you come back to an SEdit after
completing. The change history is discarded at this point.

If the Exec is waiting for SEdit to return before going on,
complete the edit session using any of the methods above to
alert the Exec that SEdit is done. The TTY process passes back to
the Exec.

There are two carets in SEd it, the edit caret and the structure
caret. The edit caret appears when characters are edited within
a single structure, such as an atom, string, or comment.
Anything typed in will appear at the edit caret as part of the
structure that the caret is within. The edit caret looks like this:

The structure caret appears when the edit point is between
structures, so that anything inserted will go into a new structure.
It looks like this:

(.:JAb)

SEdit changes the caret frequently, depending on where you are
in the structure you are editing, and how the caret is positioned.
The left mouse button allows an edit caret position to be set.

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

16.1.3 The Mouse

APPENDIX a. SEDIT

The middle mouse button allows the structure caret position to
be set.

In SEdit, the mouse buttons are used as follows. The left mouse
button positions the mouse cursor to point to parts of Lisp
structures. The middle mouse button positions the mouse cursor
to point to whole Lisp structures. Thus, selecting the Q in LEQ
using the left mouse button selects that character, and sets the
edit caret after the Q:

(LE~ n 1)

Any characters typed in at this point would be appended to the
atom LEQ.

Selecting the same letter using the middle mouse button selects
the whole atom (this convention matches TEdit's character/word
selection convention), and sets a structure caret between the
LEQ and the n:

(LEO ... n 1)

At this point, any characters typed in would form a new atom
between the LEQ and the n.

Larger structures can be selected in two ways. Use the middle
mouse button to position the mouse cursor on the parenthesis of
the desired list to select that list. Press the mouse button
multiple times, without moving the mouse, extends the
selection. Using the previous example, if the middle button were
pressed twice, the list (LEQ ...) would be selected:

(LEO n 1)

Pressing the button a third time would cause the list containing
the (LEQ n 1) to be selected.

The right mouse button positions the mouse cursor for selecting
sequences of structures or substructures. Extended selections are
indicated by a box enclosing the structures selected. The
selection is extended in the same mode as the original selection.
That is, if the original selection were a character selection, the
right button could be used to select more characters in the same
atom. Extended selections also have the property of being
marked for pending deletion. That is, the selection takes the
place of the caret, and anything typed in is inserted in place of
the selection.

For example, selecting the E by pressing the left mouse button
and selecting the Q by pressing the right mouse button would
produce:

(@ n 1)

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT 8-3

APPENDIX B. SEDIT

16.1.4 Gaps

16.1.5 Broken Atoms

Similarly, pressing the middle mouse button and then selecting
with the right mouse button extends the selection by whole
structures. Thus, in our example, pressing the middle mouse
button to select lEQ and pressing the right mouse button to
select the 1 would produce:

(ILEQ n 1\)

This is not the same as selecting the entire list, as above. Instead,
the elements in the list are collectively selected, but the list itself
is not.

The SEdit structure editor requires that everything edited must
have an underlying lisp structure, even if the structure is not
directly displayed. For example, with quoted forms the actual
structure might be (QUOTE GREEN), although this would be
displayed as 'GREEN. Even when the user is in the midst of
typing in a form, the underlying lisp structure must exist.

Because of this necessity, SEdit provides gaps to serve as dummy
lisp objects during typing. SEdit does not need a gap for every
form typed in, but gaps are necessary for quoted objects. When
something is typed that requires SEdit to build a lisp structure
and thus create a gap, as the quote character does, the gap will
appear marked for pending deletion. This means it is ready to be
replaced by the structure to be typed in. In this way it is possible
to type special structures, like quotes, directly, while SEdit
maintains the structure.

A gap looks like: -:x:-

A gap displayed after a quote has been typed in would look like
this:

with the gap marked for pending deletion, ready for typein of
the object to be quoted.

When you are typing an atom (a symbol or a number), SEdit
saves the characters you type until you finish the atom. SEdit
determines that you've finished the atom when you type a
character that cannot (without being escaped) belong to an
atom, such as a space or open parenthesis. SEdit then tries to
create an atom with these characters, just as if it were the lisp
reader. If it succeeds, the atom becomes part of the structure
you're editing. However, if it fails, SEdit intercepts the reader
error that would otherwise occur and instead creates a special
SEd it structure called a Broken-Atom. A Broken-Atom looks and
behaves in SEdit just like a normal atom, but is printed in italics
to alert you to its needing correction.

SEdit has to create a Broken-Atom when the characters typed
don't make a legal atom. For example, the characters

--- ---
8-4 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

16.1.6 Special Characters

Lists- { and}

Quoted Structures:

Single Quote -'

Backquote -'

Comma-,

AtSign-@

Oot-.

Hash Quote - #'

Dotted Lists:

APPENDIX B. SEDIT

"DECLARE:" cannot make a symbol because the colon is a
package specifier, but the form is not correct for a
package-qualified symbol. Similarly, the characters "#b123"
cannot represent an integer in base two, because 2 and 3 are not
legal digits in base two, so SEdit would make a Broken-Atom
that looks like #b123.

Broken-Atoms can be edited in SEdit just like real atoms.
Whenever you finish editing a Broken-Atom, SEdit again tries to
create an atom from the characters. If it succeeds, it repri nts the
atom in SEdit's default font, rather than in italics. You should be
sure to correct any Broken-Atoms you create before exiting
SEdit, since Broken-Atoms do not behave in any useful way
outside SEdit.

A few characters have special meaning in Lisp, and are treated
specially by SEdit. SEdit must always have a complete structure
to work on at any level of the edit. This means that SEdit needs a
special way to type in structures such as lists, strings, and quoted
objects. In most instances these structures can be typed in just as
they would be to a regular Exec, but in a few cases this is not
possible.

Lists begi n with an open parenthesis character (. Typi ng an open
parenthesis gives a balanced list, that is, SEdit inserts both an
open and a close parenthesis. The structure caret is between the
two parentheses. List elements can be typed in at the structure
caret. When a close parenthesis,) is typed, the caret will be
moved outside the list (and the close parenthesis), effectively
finishing the list. Square bracket characters, [and], have no
special meaning in SEdit, as they have no special meaning in
Common Lisp.

SEdit handles the quote keys so that it is possible to type in all
quote forms directly. When typing one of the following quote
keys at a structure caret, the quote character typed will appear,
followed by a gap to be replaced by the object to be quoted.

Use to enter quoted structures.

Use to enter backquoted structures.

Use to enter comma forms, as used with a Backquote form.

Use after a comma to create a comma-at-sign gap. This allows
type-in of comma-at forms, e.g. ,@Iist, as used within a
Backquote form.

Use the dot (period) after a comma to create a comma-dot gap.
This allows type-in of comma-dot forms, e.g. ,.list, as used
within a Backquote form.

Use this two character sequence to enter the CL:FUNCTION
abbreviation hash-quote (#').

The dot, or period, character (.) is used to type dotted lists in
SEdit. After typing a dot, SEdit inserts a dot and a gap to fill in

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT 8-5

APPENDIX B. SEDIT

Escape- \ or 0/0

Multiple Escape-I

Comments- ;

Strings- II

16.1.7 Commands

B-6

for the tail of the list. To dot an existing list, point the cursor
between the last and second to the last element in the list, and
type a dot. To undot a list, select the tail of the list before the
dot while holding down the SHIFT key.

Use to escape from a specific typed in character. Use the escape
key to enter characters, like parentheses, which otherwise have
special meaning to the SEdit reader. Press the escape key then
type in the character to escape. SEdit uses the escape key
appropriate to the environment it is editing in; it depends on the
readtable that was current when the editor was started. The
backslash key (\) is used when editing Common Lisp, and the
percent key (%) is used when editing Interlisp.

Use the multiple escape key, the vertical bar character (I), to
escape a sequence of typed in characters. SEdit always balances
multiple escape characters. When one multiple escape character
is typed, SEdit produces a balanced pair, with the caret between
them, ready for typing in the characters to be escaped. If you
type a second vertical bar, the caret moves after the second
vertical bar, and is still within the same atom, so that you can
add more unescaped characters to the atom.

The comment key, a semicolon (;), starts a comment. When a
semicolon is typed, an empty comment is inserted with the caret
in position for typing in the comment. Comments can be edited
like strings. There are three levels of comments supported by
SEdit: single, double, and triple. Single semicolon comments are
formatted at the comment column, about three-quarters of the
way across the SEdit window, towards the right margin. Double
semicolon comments are formatted at the current indentation of
the code that they are in. Triple semicolon comments are
formatted against the left margin of the SEdit window. The level
of a comment can be increased or decreased by pointing after
the semicolon, and either typing another semicolon, or
backspacing over the preceding semicolon. Comments can be
placed anywhere in your Common Lisp code. However, in
Interlisp code, they must follow the placement rules for Interlisp
comments.

Enter strings in SEdit by typing a double quote ("). SEdit
balances the double quotes. When one is typed, SEd it produces a
second, with the caret between the two, ready for typi ng the
characters of the string. If a double quote character is typed in
the middle of a string, SEdit breaks the string into two smaller
strings, leaving the caret between them.

SEdit commands are most easily entered through the keyboard.
When possible, SEdit uses a named key on the keyboard, for
example, the DELETE key. The other commands are either Meta,
Control, or Meta-Contol key combinations. For the alphabetic
command keys, either uppercase or lowercase will work.

There are two menus available, as an alternative means of
invoking commands. They are the middle button popup menu,

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

16.1.8 Editing Commands

Redisplay: Control-L

Delete Selection: DELETE

Delete Word: Control-W

Control-Meta-O

16.1.9 Completion Commands

Abort: Meta-A

Control-X

Control-C

Control-Meta-X

Control-Meta-C

16.1.10 Undo Commands

Undo: Meta-U or UNDO

APPENDIX B. SEDIT

and the attached command menu. These menus are described in
more detail below.

[Editor Command]

Redisplays the structure being edited.
[Editor Command]

Deletes the current selection.
[Editor Command]

Deletes the previous atom or whole structure. If the caret is in
the middle of an atom, deletes backward to the beginning of the
atom only.

[Editor Command]

Performs a fast edit by calling ED with its CURRENT option.

[Editor Command]

Aborts. This command must be confirmed. All changes since the
beginning of the edit session are undone, and the edit is closed.

The following commands signal completion of an edit session
and install the structure you were editing.

[Editor Command]

Signals the system that this edit is complete. The window
remains open, though, so the user can see the edit and start
editing again directly.

[Editor Command]

Signals the system that this edit is complete and compiles the
definition being edited. The variable *compile-fn* determines
the function to be called to do the compilation. See the Options
section below.

[Editor Command]

Signals the system that this edit is complete and closes the
window.

[Editor Command]

Signals the system that this edit is complete, compiles the
definition being editing, and closes the window.

[Editor Command]

Undoes the last edit. All changes since the beginning of the edit
session are remembered, and can be undone sequentially.

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT B-7

APPENDIX B. sEOIT

Redo: Meta-R or AGAIN [Editor Command]

Redoes the edit change that was just undone. Redo only works
directly following an Undo. Any number of Undo commands
can be sequentially redone.

16.1.11 Find Commands

B-8

Find: Meta-F or FIND [Editor Command]

Finds a specified structure, or sequence of structures. If there is a
current selection, SEdit looks for the next occurrence of the
selected structure. If there is no selection, sEdit prompts for the
structure to find, and searches forward from the position of the
caret. The found structure will be selected, so the Find command
can be used to easily find the same structure again.

If a sequence of structures is selected, SEdit will look for the next
occurrence of the same sequence. Similarly, when SEdit prompts
for the structure to find, you can type a sequence of structures to
look for.

The variable *wrap-search* controls whether or not SEdit wraps
around from the end of the structure being edited and continues
searching from the beginning.

Reverse Find: Control-Meta-F [Editor Command]

Finds a specified structure, searching in reverse from the position
of the caret.

The variable *wrap-search* controls whether or not sEdit wraps
around from the beginning of the structure being edited and
conti nues searchi ng from the end.

Find Gap: Meta-N or SKIP-NEXT [Editor Command]

Skips to the next gap in the structure, leaving it selected for
pending deletion.

Substitute: Meta-S or SHIFT-FIND [Editor Command]

Substitutes one structure, or sequence of structures, for another
structure, or sequence, within the current selection. SEd it
prompts you in the SEdit prompt window for the structures to
replace, and the structures to replace with.

The selection to substitute within must be a structure selection.
To get a structure selection, click with the middle mouse button
(not the left), and extend it, if necessary, with the right mouse
button. If you begin with the left button, you will get an
informational message "Select the structure to substitute
within", because the selection was of characters, rather than
structures.

Delete Structure: Control-Meta-S [Editor Command]

Removes all occurences of a structure or sequence of structures
within the current selection. SEdit prompts the user in the SEdit
prompt window for the structures to delete.

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

16.1.12 General Commands

Arglist: Meta-H or HELP

Convert Comments: Meta-;

APPENDIX B. SEDIT

[Editor Command]

Shows the argument list for the function currently selected, or
currently being typed in, in the SEdit prompt window. If the
argument list will not fit in the SEdit prompt window, it is
displayed in the main Prompt Window.

[Editor Command]

Converts old style comments in the selected structure to new
style comments. This converter notices any list that begins with
an asterisk (*) in the INTERLISP package (IL:*) as an old style
comment. Section 16.1.18, Options, describes the converter
options.

Comment Out Selection: Control-Meta-; [Editor Command]

Edit: Meta-O

Eval: Meta-E

This command puts the contents of a structure selection into a
comment. This provides an easy way to "comment out" a chunk
of code. The Extract command can be used to reverse this
process, returning the comment to the structures contained
therein.

[Editor Command]

Edits the definition of the current selection. If the selected name
has more than one type of definition, SEdit asks for the type to
be edited. If the selection has no definition, a menu pops up.
This menu lets the user specify either the type of definition to be
created, or no definition if none needs to be created.

[Editor Command]

Evaluates the current selection. If the result is a structure, the
inspector is called on it, allowing the user to choose how to look
at the result. Otherwise, the result is printed in the SEdit prompt
window. The evaluation is done in the process from which the
edit session was started. Thus, while editing a function from a
break window, evaluations are done in the context of the break.

Expand: Meta-X or EXPAND [Editor Command]

Extract: Meta- I

Replaces the current selection with its definition. This command
can be used to expand macros and translate CLISP.

[Editor Command]

Extracts one level of structure from the current selection. If there
is no selection, but there is a structure caret, the list containing
the caret is used. This command can be used to strip the
parentheses off a list, or to unquote a quoted structure, or to
replace a comment with the structures contained therein.

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT B-9

APPENDIX B. SEDIT

B-10

Inspect: Meta-I

Joi n: Meta-J

Mutate: Meta-Z

Quote: Meta-'
Meta-'
Meta-,
Meta-.
Meta-@ or Meta-2

Meta-# or Meta-3

[Editor Command]

Inspect the current selection.

[Editor Command]

Joi'Ms. Th.5 cOflilrF1;and joins any number of sequential Lisp obj,ec:ts
of the same type into one object of that type. Join is supported
for atoms, strings, lists, and comments. In addi1lon. SEd,t permits
joining of a sequence of atoms and stri;ngs. since either type can
easily be coerced into the other.. rn this c.ase, the result of the
Join will be an atom if the first object in the selection is an atom,
otherwise the result will be a string_

[Editor Command]

Mutates. This command allows the user to do arbitrary
operations on a LISP structure. First select the structure to be
mutated (it must be a whole structure, not an extended
selection). When the user presses Meta-Z SEdit prompts for the
function to use for mutating. This function is called with the
selected structure as its argument~ and the structure is replaced
with the result of the mutation.

For example, an atom can be put in upper case by selecting the
atom and mutating by the function U-CASE. You can replace a
structure with its value by selecting it and mutating by EVAL.

[Editor Command]

Quotes the current selection with the specified kind of quote,
respectively, Single Quote, Backquote, Comma,
Comma-At-Sign, Comma-Dot, or Hash-Quote.

Normalize Selection: Meta-Space or Meta-Return [Editor Command]

Scrolls the current sefection to the center of the window.
Similarly, the Space or Return key can be used to normalrze the
caret.

Parenthesize: Meta-) or Meta-O [Editor Command1

Parenthesizes the current selection, positioning the caret after
the new list.

Parenthesize: Meta- (or Meta-9 [Editor Command]

Parenthesizes the current selection, positioning the caret at the
beginning of the new list. Only a whole structure selection or an
extended selection of a sequence of whole structures can be
parenthesized.

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

16.1.13 Miscellaneous

Change Print Base: Meta-B

Set Package: Meta-P

Attached Menu: Meta-M

16.1.14 Help Menu

APPENDIX B. SEDIT

[Editor Command]

Changes Print Base. Prompts for entry of the desired Print Base,
in decimal. SEdit redisplays fixed point numbers in this new base.

[Editor Command]

Changes the current package for this edit. Prompts the user, in
the SEdit prompt window, for a new package name. SEdit will
redisplay atoms with respect to that package.

[Editor Command]

Attaches a menu of the commonly used commands (the SEdit
Command Menu) to the top of the SEdit window. Each SEdit
window can have its own menu, if desired.

When the mouse cursor is positioned in the SEdit title bar and
the middle mouse button is pressed, a Help Menu of commands
pops up. The menu looks like this:

Commands
. l!..bot"t

Done
Done c .. C:ornpile
Done .~ .. Clo::;e
Done, Corn pile, c:,. C:lose

Undo
F:ec~o

Find
Reverse Find
F:ernove
:::: u b stitute
Find (:;ap

.l!..r!~list
Convet"t C:ornrnent
Ec~it
E··.··al
Expanc~
E)::tt'act
Inspect
Join
~""lutate
Pare nttl e s i z e
G!uote

Set Pdnt-Base
Set Package
.l!..tta.ch r-.llenu

r· ... ·' -.l!. .

C:-:x:
(:::::-(::
r··.··'- C- :::(
r·· . ..,-c-C

r··.··'-U
~· . ..,-F:

~·.··'-F
h"'-C-F
r··.··'-C:-S
r··.··' -::;:
~·."'-N

r··.··l-H
rvl- ;
~'ll-CI
r·· . ..,-E
~ ... ·,-:x:
r-.ll-.l
r··.··l-1
r\·1- J
~· . ..,-z
~ ... 1-(
~'ll- '

~·."'-B
~'l'-P
h·1-rv'

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT B-11

APPENDIX B. SEDIT

16.1.15 Command Menu

The Help Menu lists each command and its corresponding
Command Key. (In the menu, the letter C stands for CONTROL,
while M indicates Meta.) The command selected is executed just
as if the command had been entered from the keyboard. The
menu remembers which command was selected last, and pops up
with the mouse cursor next to that same command the next time
the menu is used. This provides a very fast way to repeat the
same command when using the mouse.

The SEdit Attached Command Menu contains the commonly
used commands. Use the Meta-M keyboard command to bring
up this menu. The menu can be closed, independently of the
SEdit window, when desired. The menu looks like:

S Edit: Comrn.a..rui Menu.
I EXIT DONE ABORT I I PAREN QUOTE EXTRACT I
I UNDO REDO ARGllSTI I EDIT EVAl EXPAND I
PRINT-BASE 10 PACKAGE >~CL-U8ER

FIND:
SUBSTITUTE:

All of the commands in the menu function identically to their
corresponding keyboard commands, except for Find and
Substitute.

When Find is selected with the mouse cursor, SEdit prompts in
the menu window, next to the Find button, for the structures to
find. Type in the structures then select Find again. The search
begins from the caret position in the SEdit window.

Similarly, Substitute prompts, next to the Find button, for the
structures to find, and next to the Substitute button for the
structures to substitute with. After both have been typed in,
selecting Substitute replaces all occurrences of the Find
structures with the Substitute structures, within the current
selection.

To do a confirmed substitute, set the edit point before the first
desired substitution, and select Find. Then if you want to
substitute that occurrence of the structure, select Substitute.
Otherwise, select Find again to go on.

Selecting either Find or Substitute with the right mouse button
erases the old structure to find or substitute from the menu, and
prompts for a new one.

16.1.16 SEdit Programmerls Interface

The following sections describe SEd it's programmer's interface.
All symbols are external in the package named "SEdit".

16.1.17 SEdit Window Region Manager

8-12

SEdit provides user redefinable functions which control how
SEdit chooses the region for a new edit window.

LISP RELEASE NOTES, MEDLEY RELEASF 5fDIT

APPENDIX B. SEDIT

(get-window-region context reason name type) [Function]

This function is called when SEdit wants to know where to place
a window it is about to open. This happens whenever the user
starts a new SEdit or expands an Sedit icon.The default behavior
is to pop a window region off SEdit's stack of regions that have
been used in the past. If the stack is empty, SEdit prompts for a
new region.

This function can be redefined to provide different behavior. It is
called with the edit context, a reason for needing a region, the
name of the structure to be edited, and the type of the structure
to be edited. The edit context is SEdit's main data structure and
can be useful for associating particular edits with specific
regions. The reason argument specifies why SEdit wants a
region, and will be one of the keywords :CREATE or :EXPAND.

(save-window-region context reason name tyPe region) [Function]

keep-window-region

16.1.18 Options

wrap-parens

This function is called whenever SEdit is finished with a region
and wants to make the region available for other SEdits. This
happens whenever an SEdit window is closed or shrunk, or when
an SEdit Icon is closed. The default behavior is simply to push the
region onto SEdit's stack of regions.

This function can be redefined to provide different behavior. It
is also called with the edit context, the reason, the name, the
type, and additionally the window region that is being released.
The reason argument specifies why SEdit is releasing the region,
and will be one of the keywords :CLOSE, :SHRINK, or
:CLOSE-ICON.

[Variable]

Default 1. This flag determines the behavior of the default SEdit
region manager, explained above, for shrinking and expanding
windows. When set to T, shrinking an SEdit window will not
give up that window's region; the icon will always expand back
into the same region. When set to NIL, the window's region is
made available for other SEdits when the window is shrunk.
Then when an SEdit icon is expanded, the window will be
reshaped to the next available region.

This variable is only used by the default implementations of the
functions get-window-region and save-window-region. If
these functions are redefined, this flag is no longer used.

The following parameters can be set as desired.

[Variable]

This SEdit pretty printer flag determines whether or not trailing
close parenthesis characters,), are forced to be visible in the
window without scrolling. By default it is set to NIL, meaning
that close parens are allowed to "fall off" the right edge of the
window. If set to T, the pretty printer will start a new line before
the structure preceding the close parens, so that all the parens
will be visible.

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT B-13

APPENDIX B. SEDIT

*wra p-sea rch * [Variable]

This flag determines whether or not SEdit find will wrap around
to the top of the structure when it reaches the end, or vice versa
in the case of reverse find. The default is NIL.

clear-linear-on-completion [Variable]

convert-upgrade

16.1.19 Control Functions

(reset)

This flag determines whether or not SEdit completely re-pretty
prints the structure being edited when you complete the edit.
The default value is NIL, meaning that SEdit reuses the pretty
printing.

[Variable]

Default 100. When using Meta-; to convert old-style single­
asterisk comments, if the length of the comment exceeds
convert-upgrade characters, the comment is converted into a
double semicolon comment. Otherwise, the comment is
converted into a single semicolon comment.

Old-style double-asterisk comments are always converted into
new-style triple-semicolon comments.

[Function]

This function recomputes the SEdit edit environment. Any
changes made in the font profile, or any changes made to SEd it's
commands are captured by resetting. Close all SEdit windows
before calling this function.

(add-command key-code form &optional scroll? key-name command-name help-string)

B-14

[Function]

This function allows you to write your own SEdit keyboard
commands. You can add commands to new keys, or you can
redefine keys that SEdit already uses as command keys. If you
mistakenly redefine an SEdit command, the funtion
Reset-Commands will remove all user-added commands, leaving
SEdit with its default set of commands.

key-code can be a character code, or any form acceptible to
il :charcode.

form determines the function to be called when the key
command is typed. It can be a symbol naming a function, or a
list, whose first element is a symbol naming a function and the
rest of the elements are extra arguments to the function. When
the command is invoked, SEdit will apply the function to the edit
context (SEdit's main data structure), the charcode that was
typed, and any extra arguments supplied in form. The extra
arguments do not get evaluated, but are useful as keywords or
flags, depending on how the command was invoked. The
command function must return T if it handled the command. If
the function returns NIL, SEdit will ignore the command and
insert the character typed.

The first optional argument, scroll?, determines whether or not
SEdit scrolls the window after running the command. This

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

(reset-commands)

(default-commands)

APPENDIX B. SEDIT

argument defaults to NIL, meaning don't scroll. If the value of
SCROLL is T, then SEdit will scroll the window to ensure that the
caret is visible.

The rest of the optional arguments are used to add this
command to SEd it's middle button menu. When the item is
selected from the menu, the command function will be called as
described above, with the charcode argument set to NIL.

key-name is a string to identify the key (combination) to be
typed to invoke the command. For example "M-A" to represent
the Meta-A key combination, and "C-M-A" for Control-Meta-A.

command-name is a string to identify the command function,
and will appear in the menu next to the key-name.

help-string is a string to be printed in the prompt window when
a mouse button is held down over the menu item.

After adding all the commands that you want, you must call
Reset-Commands to install them.

For example:

(add-command "~U" (my-change-case t)}

(add-command "~Y" (my-change-case nil)}

(add-command "l,r" my-remove-nil

"M-R" "Remove NIL"

"Remove NIL from the selected structure")}

(reset-commands)

will add three commands. Suppose my-change-case takes the
arguments context, charcode, and upper-case? upper-case? will
be set to T when my-change-case is called from Control-U, and
NIL when called from Control-Y. my- remove-n i 1 will be called
with only context and charcode arguments when Meta-R is
typed.

Below are some SEdit functions which are useful in writing new
commands.

[Function]

This function installs all commands added by add-command.
SEdits which are open at the time of the reset-commands will
not see the new commands; only new SEdits will have the new
commands available.

[Function]

This function removes all commands added by add-command,
leaving SEdit with its default set of commands. As in
reset-commands, open SEdits will not be changed; only new
SEdits will have the user commands removed.

(get-prompt-wi ndow context) [Function]

This function returns the attached prompt window for a
particular SEdit.

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT B-15

APPENDIX B. SEDIT

B-16

(get-selection context) [Function]

This function returns two values: the selected structure, and the
type of selection, one of NIL, T, or :SUB-LlST. The selection type
NIL means there is not a valid selection (in this case the structure
is meaningless). T means the selection is one complete structure.
:SUB-LlST means a series of elements in a list is selected, in which
case the structure returned is a list of the elements selected.

(replace-selection context structure selection-type) [Function]

getdef-fn

This function replaces the current selection with a new structure,
or multiple structures, by deleting the selection and then
inserting the new structure(s). The selection-type argument
must be one of T or :SUB-LlST. If T the structure is inserted as one
complete structure. If :SUB-LlST, the structure is treated as a list
of elements, each of which is insertd.

[Variable]

This function is called with the arguments name, type, and
olddef, when SEdit needs to refetch the definition for the named
object being edited. When SEdit is first started it gets passed the
structure, so this function doesn't get called. But after
completion, SEdit refetches because it doesn't know if the Edit
Interface (File Manager) changed the definition upon
installation. The function returns the new definition.

fetch-definition-error-break-flag [Variable]

* getdef-error-fn *

edit-fn

compile-fn

This flag, along with the error options listed below, determines
what happens when the getdef-fn errors. The default value is
NIL, causing errors to be suppressed. When set to T, the break
will be allowed.

[Variable]

This function is funcalled with the arguments name, type,
olddef, and prompt-window, when the getdef-fn errors,
independent of whether or not the break is suppressed. This
function should return the structure to be used in place of the
unavailable new definition.

[Variable]

This function is funcalled with the selected structure and the edit
options as its arguments from the Edit (M-O) command. It
should start the editor as appropriate, or else generate an error if
the selection is not editable.

[Variable]

This function is funcalled with the arguments name, type, and
body, from the compile completion commands. It should
compile the definition, body, and install the code as appropriate.

(sed it structure props options) [Function]

This function provides a means of starting SEdit directly.
structure is the structure to be edited.

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

props is a property list, which may specify the following
properties:

:name - the name of the object being edited

:type - the file manager type of the object being edited. If
NIL, SEdit will not call the file manager when it tries to
refetch the definition it is editing. Instead, it will just
continue to use the structure that it has.

:completion-fn - the function to be called when the edit
session is completed. This function is called with the
context, structure, and changed? arguments. context is
SEdits main data structure. structure is the structure being
edited. changed? specifies if any changes have been made,
and is one of NIL, T, or :ABORT, where :ABORT means the
user is aborting the edit and throwing away any changes
made. If the value of this property is a list, the first element
is treated as the function, and the rest of the elements are
extra arguments that the function is applied to following
the main arguments above.

:root-changed-fn - the function to be called when the entire
structure being edited is replaced with a new structure.
This function is called with the new structure as its
argument. If the value of this property is a list, the first
element is treated as the function, and the rest of the
elements are extra arguments that the function is applied
to following the structure argument.

options is one or a list of any number of the followng keywords:

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

:fetch-definition-suppress-errors - If this option is provided,
any error under the getdef-fn will be suppressed, regardless
of the :fetch-definition-allow-errors option or the value of
*fetch-definition-error-break-flag *.

:fetch-definition-allow-errors - If this option is provided, any
error under the getdef-fn will be allowed to break.

:dontwait - This option specifies that the call to SEdit should
return as soon as the editor is started, rather than waiti ng
for a completion command.

:close-on-completion - This option specifies that SEdit cannot
remain active for multiple completions. That is, the SEdit
window cannot be shrunk, and the completion commands
that normally leave the window open will in this case close
the window and terminate the edit.

:compile-on-completion - This option specifies that SEdit
should call the *compile-fn* to compile the definition
being edited upon completion, regardless of the
completion command used.

B-17

APPENDIX B. SEDIT

Warning with Declarations

B-18

CAUTION: There is a feature of the BYTECOMPILER that is not
supported by SEdit or the XCL compiler. It is possible to insert a
comment at the beginning of your function that looks like

(* DECLARATIONS: --)

The tail, or -- section, of this comment is taken as a set of local
record declarations which are then used by the compiler in that
function just as if they had been declared globally. See the
"Compiler" 'section in Chapter 3 of these Notes for additional
behavior in XCL.

SEdit does not recognize such declarations. Thus, if the" Expand"
command is used, the expansion will not be done with these
record declarations in effect. The code that you see in SEdit will
not be the same code compiled by the BYTECOMPILER.

LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

28.4.16 Creating Icons with ICONW

28.4.16.1 Creating Icons

APPENDIX C. ICONW

ICONW, used to build small windows that will appear as icons
on the display, is a standard input/output feature. This feature
was introduced in Lyric and has been enhanced in Medley. The
following description of ICONW should be appended to Section
28.4, Windows, of the Interlisp-D Reference Manual. Medley
changes are indicated with revision bars in the right margin.

ICONW is a group of functions available for building small
windows of arbitrary shape. These windows are principally for
use as icons for shrinking windows; i.e., these functions are likely
to be invoked from within the ICONFN of a window. An icon is
specified by supplying its image (a bitmap) and a mask that
specifies its shape. The mask is a bitmap of the same dimensions
as the image whose bits are on (black) in those positions
considered to be in the image, and off (white) in those positions
where the background should show through. By using the mask
and appropriate window functions, ICONW maintains the
illusion that the icon window is nonrectangular, even though the
actual window itself is rectangular. The illusion is not complete,
of course. For example, if you try to select what looks like the
background (or an occluded window) around the icon but still
within its rectangular perimeter, the icon window itself is
selected. Also, if you move a window occluded by an icon, the
icon never notices that the background changed behind it. Icons
created with ICONW can also have titles; some part of the image
can be filled with text computed at the time the icon is created,
or text may be changed after creation.

Two types of icons can be created with ICONW, a borderless
window containing an image defined by a mask and a window
with a title.

(lCONW IMAGE MASK POSITION NOOPENFLG) [Function]

Creates a window at POSITION, or prompts for a position if
POSITION is NIL The window is borderless, and filled with
IMAGE, as cookie-cut by MASK. If MASK is NIL, the image is
considered rectangular (i.e., MASK defaults to a black bitmap of
the same dimensions as IMAGE). If NOOPENFLG is T, the window
is returned unopened.

(TITLEDICONW ICON TITLE FONT POSITION NOOPENFLG JUST BREAKCHARS OPERA TlON)
[Function]

Creates a titled icon at POSITION, or prompts for a position if
POSITION is NIL If NOOPENFLG is T, the window is returned
unopened. The argument ICON is an instance of the record
TITLEDICON, which specifies the icon image and mask, as with
ICONW, and a region within the image to be used for displaying
the title. Thus, the ICON argument is usually of the form

(create TITLEDICON ICON ~ somelconlmage
MASK ~ iconMask TITLEREG ~
someRegionWithinICON)

LISP RELEASE NOTES, MEDLEY RELEASE, ICONW C-1

APPENDIX C. ICONW

28.4.16.2 Modifying Icons

(ICONW. TITLE ICON TITLE)

The title region is specified in coordinates relative to the icon,
i.e., the lower-left corner of the image bitmap is (0, 0). The mask
can be Nil if the icon is rectangular. The image should be white
where it is covered by the title region. TITlEDICONW clears the
region before printing on it. The title is printed into the specified
region in the image, using FONT. If FONT is Nil it defaults to the
value of DEFAUl TICONFONT, initially Helvetica 10. The title is
broken into multiple lines if necessary; TITlEDICONW attempts
to place the breaks at characters that are in the list of character
codes BREAKCHARS. BREAKCHARS defaults to (CHARCODE
(SPACE -». In addition, line breaks are forced by any carriage
returns in TITLE, independent of BREA KCHA RS. BREAKCHARS is
ignored if a long title would not otherwise fit in the specified
region. For convenience, BREAKCHARS = FilE means the title is
a file name, so break at file name field delimiters. The argument
JUST indicates how the text should be justified relative to the
region. It is an atom or list of atoms chosen from TOP, BOTTOM,
lEFT, or RIGHT, which indicate the vertical positioning (flush to
top or bottom) and/or horizontal positioning (flush to left edge
or right). If JUST = Nil, the text is centered. The argument
OPERATION is a display stream operation indicating how the title
should be printed. If OPERATION is INVERT, then the title is
printed white-on-black. The default OPERATION is REPLACE,
meaning black-on-white. ERASE is the same as INVERT; PAINT is
the same as REPLACE.

For convenience, TITlEDICONW can also be used to create icons
that consist solely of a title, with no special image. If the
argument ICON is Nil, TITlEDICONW creates a rectangular icon
large enough to contain TITLE, with a border the same width as
that on a regular window. The remaining arguments are as
described above, except that a JUST of TOP or BOTTOM is not
meaningful.

In the Medley release, TITlEDICONW can create icons with white
text on a black background. To get this effect, your icon image
must be black in the correct area, and you must specify the
OPERA TlON argument as INVERT.

In Medley, you can copy- select the title of an icon.

[Function]

Returns the current title of the window ICON, which must be a
window returned by T1TlEDICONW. In addition, if TITLE is
non-Nil, makes TITLE the new title of the window and repaints it
accordingly. To erase the current title, make TITLE a null string.

(ICONW.SHADE WINDOW SHADE) [Function]

C-2

Returns the current shading of the window ICON, which must be
a window returned by ICONW or TITlEDICONW. In addition, if
SHADE is non-Nil, paints the texture SHADE on WINDOW. A
typical use for this function is to communicate a change of state
in a window that is shrunken, without reopening the window.
To remove any shading, make SHADE be WHITESHADE.

LISP RELEASE NOTES, MEDLEY RELEASE, ICONW

28.4.16.3 Default Icons

(TEXTICON WINDOW TEXn

DEFAUl TTEXTICON

28.4.16.4 Sample Icons

APPENDIX C. ICONW

When you shrink a window that has no ICONFN, the system
currently creates an icon that looks like the window's title bar.
You can make the system instead create titled icons by setting
the global variable DEFAULTICONFN to the value TEXTICON.

[Function]

Creates a titled icon window for the main window WINDOW
containing the text TEXT, or the window's title if TEXT is NIL.

[Variable]

The value that TEXTICON passes to TITLEDICONW as its ICON
argument. Initially it is NIL, which creates an unadorned
rectangular window. However, you can set it to a TITLEDICON
record of your choosing if you would like default icons to have a
different appearance.

The LispUsers Stocklcons module contains a collection of icons
and their masks usable with ICONW, including:

• FOLDER, FOLDERMASK - a file folder

• PAPERICON, PAPERICONMASK - a sheet of paper with the top
right corner turned

• FILEDRAWER, FILEDRAWERMASK - front of a file drawer

• ENVELOPEICON, ENVELOPEMASK - envelope

• TITLED.FILEDRAWER - Titledlcon of the filedrawer front
(capacity, about three lines of 10-point text)

• TITLED.FILEFOLDER - Titledlcon of the file folder (capacity,
about three lines of 10-point text)

• TITLED.ENVELOPE - Titledlcon of the envelope (capacity, one
short line of 1 O-poi nt text)

LISP RELEASE NOTES, MEDLEY RELEASE, ICONW C-3

APPENDIX C. ICONW

[This page intentionally left blank]

C-4 LISP RELEASE NOTES, MEDLEY RELEASE, ICONW

28.7 Free Menus

28.7.1 Making a Free Menu

28.7.2 Free Menu Formatting

APPENDIX D. Free Menu

Free Menu is a standard input/output feature of Lisp. This
appendix contains Lyric information as well as Medley release
enhancements. Medley additions are indicated with revision
bars in the right margin. The following description should be
added to the Menus segment of Chapter 28, Windows and
Menus, in the Interlisp-D Reference Manual.

Free Menus are powerful and flexible menus that are useful for
applications needing menus with different types of items,
including command items, state items, and items that can be
edited. A Free Menu is part of a window. It can can be opened
and closed as desired, or attached as a control menu to the
application window.

A Free Menu is built from a description of the contents and
layout of the menu. As a Free Menu is simply a group of items, a
Free Menu Description is simply a specification of a group of
items. Each group has properties associated with it, as does each
Free Menu Item. These properties specify the format of the items
in the group, and the behavior of each item. The function
FREEMENU takes a Free Menu Description, and returns a closed
window with the Free Menu in it.

The easiest way to make a Free Menu is to define a specific
function which calls FREEMENU with the Free Menu Description
in the function. This function can then also set up the Free Menu
window as required by the application. The Free Menu
Description is saved as part of the specific function when the
application is saved. Alternately, the Free Menu Description can
be saved as a variable in your file; then just call FREEMENU with
the name of the variable. This may be a more difficult
alternative if the backquote facility is used to build the Free
Menu Description (see Section 28.7.7, Free Menu Item
Descriptions, for more information on using backquote with a
Free Menu Description) .

A Free Menu can be formatted in one of four ways. The items in
any group can be automatically laid out in rows, in columns, or in
a table, or else the application can specify the exact location of
each item in the group. Free Menu keeps track of the region that
a group of items occupies, and items can be justified within that
region. This wayan item can be automatically positioned at one
of the nine justification locations, top-left, top-center, top-right,
middle-left, etc.

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU D-1

APPENDIX D. FREE MENU

28.7.3 Free Menu Description

0-2

A Free Menu Description, specifying a group of items, is a list
structure. The first entry in the list is an optional list of the
properties for this group of items. This entry is in the form:

(PROPS <PROP> <VALUE> <PROP> <VALUE> ...)

The keyword PROPS determines whether or not the optional
group properties list is specified. Section 28.7.4, "Free Menu
Group Properties, " describes each group property.

One important group property is FORMAT. The four types of
formatting, ROW, TABLE, COLUMN, or EXPLICIT, determine the
syntax of the rest of the Free Menu Description. When using
EXPLICIT formatting, the rest of the description is any number of
Item Descriptions which have LEFT and BOTTOM properties
specifying the position of the item in the menu. The syntax is:

«PROPS FORMAT EXPLICIT ...)
< ITEM DESCRIPTION>
< ITEM DESCRIPTION> ...)

When using ROW or TABLE formatting, the rest of the
description is any number of item groups, each group
corresponding to a row in the menu. These groups are identical
in syntax to an EXPLICIT group description. The groups have an
optional PROPS list and any number of Item Descriptions. The
items need not have LEFT and BOTTOM properties, as the
location of each item is determined by the formatter. However,
the order of the rows and items is important. The menu is laid
out top to bottom by row, and left to right within each row. The
syntax is:

«PROPS FORMAT ROW ...)
(< ITEM DESCRIPTION>
< ITEM DESCRIPTION> ...)
«PROPS ...)
< ITEM DESCRIPTION>
< ITEM DESCRIPTION> ... »

; props of this group
; items in first row

; props of second row
; items in second row

(The comments above only describe the syntax.)

For COLUMN formatting, the syntax is identical to that of ROW
formatting. However, each group of items corresponds to a
column in the menu, rather than a row. The menu is laid out left
to right by column, top to bottom within each column.

Finally, a Free Menu Description can have recursively nested
groups. Anywhere the description can take an Item Description,
it can take a group, marked by the keyword GROUP. A nested
group inherits all of the properties of its mother group, by
default. However, any of these properties can be overridden in
the nested groups PROPS list, including the FORMAT. The syntax
is:

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU

APPENDIX D. FREE MENU

(; no PROPS list, default row format
«ITEM DESCRIPTION> ; first in row
(GROUP ; nested group, second in row

(PROPS FORMAT COLUMN ...) ; optional props
«ITEM DESCRIPTION> ...) ; first column
(< ITEM DESCRIPTION> ... »
<ITEM DESCRIPTION>)) ; third in row

Here is an example of a simple Free Menu Description for a menu
which might provide access to a simple data base:

«(LABEL LOOKUP SELECTEDFN MYLOOKUPFN)
(LABEL EXIT SELECTEDFN MYEXITFN)}

«LABEL Name: TYPE DISPLAY) (LABEL "" TYPE EDIT ID NAME})
«LABEL Address: TYPE DISPLAY) (LABEL TYPE EDIT ID ADDRESS»
«LABEL Phone: TYPE DISPLAY)

(LABEL "" TYPE EDIT LIMITCHARS MYPHONEP ID PHONE»)

This menu has two command buttons, LOOKUP and EXIT, and
three edit fields, with IDs NAME, PHONE, and ADDRESS. The Edit
items are initialized to the empty string, as in this example they
need no other initial value. The user could select the Name:
prompt, type a person's name, and then press the LOOKUP
button. The function MYLOOKUPFN would be called. That
function would look at the NAME Edit item, look up that name
in the data base, and fill in the rest of the fields appropriately.
The PHONE item has MYPHONEP as a LlMITCHARS function. This
function would be called when editing the phone number, in
order to restrict input to a valid phone number. After looking up
Perry, the Free Menu might look like:

LOOKUP E>:: I T
Name: Herbert Q Perry
Address: 13 Middleperry Dr
Phone: (411) 7E;7-1234

Here is a more complicated example:

«PROPS FONT (MODERN 10)}
«LABEL Example FONT (MODERN 10 BOLD) HJUSTIFY CENTER})
«LABEL NORTH) (LABEL SOUTH) (LABEL EAST) (LABEL WEST)}
«PROPS ID ROW3 BOX 1)

(LABEL ONE) (LABEL TWO) (LABEL THREE})
«PROPS ID ROW4)

(LABEL ONE ID ALPHA)
(GROUP (PROPS FORMAT COLUMN BACKGROUND 23130 BOX 2 BOXSPACE 4)

«TYPE NWAY LABEL A BOX 1 COLLECTION COLl NWAYPROPS (DESELECT T})
(TYPE NWAY LABEL B BOX 1 COLLECTION COL1)
(TYPE NWAY LABEL C BOX 1 COLLECTION COL1})

«TYPE STATE LABEL "Choose Me" BOX 1 MENUITEMS (BRAVO DELTA)
INITSTATE DELTA LINKS (DISPLAY (GROUP ALPHA)})

(TYPE DISPLAY ID ALPHA LABEL "" BOX 1 MAXWIDTH 35)})
(LABEL THREE}» ,

which will produce the following Free Menu:

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU 0-3

APPENDIX D. FREE MENU

0-4

EHample

NORTH SOUTH EAST ''''lEST

lONE T'WO THREEI

ONE THREE

And if the Free Menu were formatted as a Table, instead of in
Rows, it would look like:

EHample
NORTH SOUTH E.AST 'lIVEST

IrIO-N-E-----T-W-'O-----------TH-R-E~EI

ONE THREE

The following breakdown of the example explains how each
part contributes to the Free Menu shown above.

(PROPS FONT (MODERN 10»

This line specifies the properties of the group that is the entire
Free Menu. These properties are described in Section 28.7.4, Free
Menu Group Properties. In this example, all items in the Free
Menu, unless otherwise specified, will be in Modern 10.

«LABEL Example FONT (MODERN 10 BOLD) HJUSTIFY CENTER»

This line of the Free Menu Description describes the first row of
the menu. Since the FORMAT specification of a Free Menu is, by
default, ROW formatting, this line sets the first row in the menu.
If the menu were in COLUMN formatting, this position in the
description would specify the first column in the menu.

In this example the first row contains only one item. The item is,
by default, a type MOMENTARY item. It has its own Font
declaration (FONT (MODERN 10 BOLD», that overrides the font
specified for the Free Menu as a whole, so the item appears
bolded.

Finally, the item is justified, in this case centered. The HJUSTIFY
Item Property indicates that the item is to be centered
horizontally within its row.

«LABEL NORTH) (LABEL SOUTH) (LABEL EAST) (LABEL WEST»

This line specifies the second row of the menu. The second row
has four very simple items, labeled NORTH, SOUTH, EAST, and
WEST next to each other within the same row.

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU

APPENDIX D. FREE MENU

«PROPS 10 ROW3 BOX 1)
(LABEL ONE) (LABEL TWO) (LABEL THREE»

The third row in the menu is similar to the second row, except
that it has a box drawn around it. The box is specified in the
PROPS declaration for this row. Rows (and columns) are just like
Groups in that the first thing in the declaration can be a list of
properties for that row. In this case the row is named by giving it
an ID property of ROW3. It is useful to name your groups if you
want to be able to access and modify their properties later (via
the function FM.GROUPPROP). It is boxed by specifying the BOX
property with a value of 1, meaning draw the box one dot wide.

«PROPS 10 ROW4)
(LABEL ONE 10 ALPHA)
(GROUP (PROPS FORMAT COLUMN BACKGROUND 23130 BOX 2 BOXSPACE 4)

«TYPE NWAY LABEL A BOX 1 COLLECTION COLl NWAYPROPS (DESELECT T»
(TYPE NWAY LABEL B BOX 1 COLLECTION COL1)
(TYPE NWAY LABEL C BOX 1 COLLECTION COL1»

«TYPE STATE LABEL "Choose Me" BOX 1 MENUITEMS (BRAVO DELTA)
INITSTATE DELTA LINKS (DISPLAY (GROUP ALPHA»)

(TYPE DISPLAY 10 ALPHA LABEL "" BOX 1 MAXWIDTH 35»)
(LABEL THREE»)

This part of the description specifies the fourth row in the menu.
This row consists of: an item labelled ONE, a group of items, and
an item labelled THREE. That is, Free Menu thinks of the group
as an entry, and formats the rest of the row just as it it were a
large item.

(GROUP (PROPS FORMAT COLUMN BACKGROUND 23130 BOX 2 BOXSPACE 4)
«TYPE NWAY LABEL A BOX 1 COLLECTION COLl NWAYPROPS (DESELECT T»

(TYPE NWAY LABEL B BOX 1 COLLECTION COL1)
(TYPE NWAY LABEL C BOX 1 COLLECTION COL1»

«TYPE STATE LABEL "Choose Me" BOX 1 MENUITEMS (BRAVO DELTA)
INITSTATE DELTA LINKS (DISPLAY (GROUP ALPHA»)

(TYPE DISPLAY 10 ALPHA LABEL "" BOX 1 MAXWIDTH 35»)

The second part of this row is a nested group of items. It is
declared as a group by placing the keyword GROUP as the first
word in the declaration. A group can be declared anywhere a
Free Menu Description can take a Free Menu Item Description (as
opposed to a row or column declaration).

The first thing in what would have been the second item
declaration in this row is the keyword GROUP. Following this
keyword comes a normal group description, starting with an
optional list of properties, and followed by any number of things
to go in the group (based on the format of the group).

This group's Props declaration is:

(PROPS FORMAT COLUMN BACKGROUND 23130 BOX 2 BOXSPACE 4).

It specifies that the group is to be formatted as a number of
columns (instead of rows, the default). The entire group will
have a background shade of 23130, and a box of width 2 around
it, as you can see in the sample menu. The BOXSPACE
declaration tells Free Menu to leave an extra four dots of room
between the edge of the group (ie the box around the group)
and the items in the group.

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU 0-5

APPENDIX D. FREE MENU

0-6

The first column of this group is a Collection of NWAY items:

«TYPE NWAY LABEL A BOX 1 COLLECTION COLl NWAYPROPS (DESELECT T))
(TYPE NWAY LABEL B BOX 1 COLLECTION COL1)
(TYPE NWAY LABEL C BOX 1 COLLECTION COL1))

The three items, labelled A, B, and C are all declared as NWAY
items, and are also specified to belong to the same NWAY
Collection, Co11. This is how a number of NWA Y items are
collected together. The property NWAYPROPS (DESELECT T) on
the first NWAY item specifies that the Col 1 Collection is to have
the Deselect property enabled. This simply means that the NWA Y
collection can be put in the state where none of the items (A, B,
or C) are selected (highlighted). Additionally, each item is
declared with a box whose width is one dot (pixel) around it.

The second column in this nested group is specified by:

«TYPE STATE LABEL "Choose Me" BOX 1 MENUITEMS (BRAVO DELTA)
INITSTATE DELTA LINKS (DISPLAY (GROUP ALPHA)))

(TYPE DISPLAY ID ALPHA LABEL "" BOX 1 MAXWIDTH 35))

Column two contains two items, a STATE item and a DISPLAY
item. The STATE item is labelled "Choose Me." A Label can be a
string or a bitmap, as well as an atom. Selecting the STATE item
will cause a pop-up menu to appear with two choices for the
state of the item, BRAVO and DELTA. The items to go in the
pop-up menu are designated by the MENUITEMS property.

The pop-up menu would look like:

BRAVO.
DELTA

The initial state of the "Choose Me" item is designated to be
DELTA by the INITSTATE Item Property. The initial state can be
anything; it does not have to be one of the items in the pop-up
menu.

Next, the STATE item is Linked to a DISPLAY item, so that the
current state of the item will be displayed in the Free Menu. The
link's name is DISPLAY (a special link name for STATE items), and
the item linked to is described by the Link Description, (GROUP
ALPHA). Normally the linked item can just be described by its 10.
But in this case, there is more than one item whose 10 is ALPHA
(for the sake of this example), specifically the first item in the
fourth row and the display item in this nested group. The form
(GROUP ALPHA) tells Free Menu to search for an item whose 10 is
ALPHA, limiting the search to the items that are within this
lexical group. The lexical group is the smallest group that is
declared with the GROUP keyword (i.e., not row and column
groups) that contains this item declaration. So in this case, Free
Menu will link the STATE item to the DISPLAY item, rather than
the first item in the fourth row, since that item is outside of the
nested group. For further discussion of linking items, see
Section 28.7. 12, Free Menu Item Li nks.

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU

APPENDIX D. FREE MENU

Now, establish the DISPLAY item:

(TYPE DISPLAY 10 ALPHA LABEL "" BOX 1 MAXWIDTH 35)

(LABEL THREE)

28.7.4 Free Menu Group Properties

10

FORMAT

FONT

COORDINATES

LEFT

BOTTOM

ROWSPACE

COLUMNSPACE

We have given it the ID of Alpha that the above STATE item uses
in finding the proper DISPLAY item to link to. This display item is
used to display the current state of the item "Choose Me." Every
item is required to have a Label property specified, but the label
for this DISPLAY item will depend on the state of "Choose Me."
That is, when the state of the "Choose Me" item is changed from
DELTA to BRAVO, the label of the DISPLAY item will also change.
The null string serves to hold the place for the changeable label.

A box is specified for this item. Since the label is the empty
string, Free Menu would draw a very small box. Instead, the
MAXWIDTH property indicates that the label, whatever it
becomes, will be limited to a stringwidth of 35. The width
restriction of 35 was chosen because it is big enough for each of
the possible labels for this display item. So Free Menu draws the
box big enough to enclose any item within this width restriction.

Finally we specify the final item in row four:

Each group has properties. Most group properties are relevant
and should be set in the group's PROPS list in the Free Menu
Description. User properties can be freely included in the PROPS
list. A few other properties are set up by the formatter. The
macros FM.GROUPPROP or FM.MENUPROP allow access to
group properties after the Free Menu is created.

The identifier of this group. Setting the group 10 is desirable, for
example, if the application needs to get handles on items in
particular groups, or access group properties.

One of ROW, COLUMN, TABLE, or EXPLICIT. The default is ROW.

A font description of the form (FAMILY SIZE FACE), or a
FONTDESCRIPTOR data type. This will be the default font for
each item in this group. The default font of the top group is the
value of the variable DEFAULTFONT.

One of GROUP or MENU. This property applies only to EXPLICIT
formatting. If GROUP, the items in the EXPLICIT group are
positioned in coordinates relative to the lower left corner of the
group, as determined by the mother group. If MENU, which is
the default, the items are positioned relative to the lower left
corner of the menu.

Specifies a left offset for this group, pushing the group to the
right.

Specifies a bottom offset for this group, pushing the group up.

Specifies the number of dots between rows in this group.

Specifies the number of dots between columns in this group.

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU D-7

APPENDIX D. FREE MENU

BOX

BOXSHADE

BOXSPACE

BACKGROUND

28.7.5 Other Group Properties

ITEMS

REGION

MOTHER

DAUGHTERS

28.7.6 Free Menu Items

28.7.7 Free Menu Item Descriptions

0-8

Specifies the number of dots in the box around this group of
items.

Specifies the shade of the box.

Specifies the number of bits between the box and the items.

The background shade of this group. Nested groups inherit this
background shade, but items in this group and nested groups do
not. This is because, in general, it is difficult to read text on a
background, so items appear on a white background by default.
This can be overridden by the BACKGROUND Item Property.

The following group properties are set up and maintained by
Free Menu. The application should probably not change any of
these properti es.

A list of the items in the group.

The region that is the extent of the items in the group.

The 10 of the group that is the mother of this group.

A list of 10 of groups which are daughters to this group.

Each Free Menu Item is stored as an instance of the data type
FREEMENUITEM. Free Menu Items can be thought of as objects,
each item having its own particular properties, such as its type,
label, and mouse event functions. A number of useful item
types, described in Section 28.7.11, Predefined Item Types, are
predefined by Free Menu. New types of items can be defined by
the application, using Display items as a base. Each Free Menu
Item is created from a Free Menu Item Description when the Free
Menu is created.

CAUTION: Edit (and thus Number) Freemenu Items do not
perform well when boxed or when there is another item to the
right in the same row. The display to the right of the edit item
may be corrupted under editing and fm.changelabel operations.

A Free Menu Item Description is a list in property list format,
specifying the properties of the item. For example:

(LABEL Refetch SELECTEDFN MY.REFETCHFN)

describes a MOMENTARY item labelled Refetch, with the
function MY.REFETCHFN to be called when the item is selected.
None of the property values in an item description are evaluated.
When constructing Free Menu descriptions that incorporate
evaluated expressions (for example labels that are bitmaps) it is
helpful to use the backquote facility. For instance, if the value of
the variable MYBITMAP is a bitmap, then

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU

28.7.8 Free Menu Item Properties

TYPE

LABEL

FONT

10

LEFT and BOTTOM

HJUSTIFY

VJUSTIFY

HIGHLIGHT

MESSAGE

INITSTATE

MAXWIDTH

MAXHEIGHT

APPENDIX D. FREE MENU

(FREEMENU '«(LABEL A) (LABEL .MYBITMAP))))

would create a Free Menu of one row, with two items in that
row, the second of which has the value of MYBITMAP as its label.

The following Free Menu Item Properties can be set in the Item
Description. Any other properties given in an Item Description
will be treated as user properties, and will be saved on the
USERDATA property of the item.

The type of the item. Choose from one of the Free Menu Item
type keywords MOMENTARY, TOGGLE, 3STATE, STATE, NWAY,
EDITSTART, EDIT, NUMBER, or DISPLAY. The default is
MOMENTARY.

An atom, string, or bitmap. Bitmaps are always copied, so that
the original will not be changed. This property must be specified
for every item.

The font in which the item appears. The default is the font
specified for the group containing this item. Can be a font
description of the form (FAMILY SIZE FACE), or a
FONTDESCRIPTOR data type.

May be used to specify a unique identifier for this item, but is not
necessary.

When ROW, COLUMN, or TABLE formatting, these specify
offsets, pushing the item right and up, respectively, from where
the formatter would have put the item. In EXPLICIT formatting,
these are the actual coordinates of the item, in the coordinate
system given by the group's COORDINATES property.

Indicates horizontal justification type: LEFT, CENTER, or RIGHT.
Specifies that this item is to be horizontally justified within the
extent of its group. Note that the main group, as opposed to
the smaller row or column group, is used.

Specifies that this item is to be vertically justified. Values are
TOP, MIDDLE, or BOTTOM.

Specifies the highlighted looks of the item, that is, how the item
changes when a mouse event occurs on it. See Section 28.7.12,
Free Menu Item Highlighting, for more details on highlighting.

Specifies a string that will be printed in the prompt window after
a mouse cursor selects this item for MENUHELDWAIT
milliseconds. Or, if an atom, treated as a function to get the
message. The function is passed three arguments, ITEM,
WINDOW, and BUTTONS, and should return a string. The
default is a message appropriate to the type of the item.

Specifies the initial state of the item. This is only appropriate to
TOGGLE, 3STATE, and STATE items.

Specifies the width allowed for this item. The formatter will
leave enough space after the item for the item to grow to this
width without collisions.

Similarto MAXWIDTH, but in the vertical dimension.

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU D-9

APPENDIX D. FREE MENU

BOX

BOXSHADE

BOXSPACE

BACKGROUND

LINKS

28.7.9 Mouse Properties

SElECTEDFN

DOWNFN

HElDFN

MOVEDFN

28.7.10 System Properties

GROUPID

STATE

BITMAP

D-10

Specifies the number of bits in the box around this item. Boxes
are made around MAXWIDTH and MAXHEIGHT dimensions. If
unspecified, no box is drawn.

Specifies the shade that the box is drawn in. The default is
BLACKSHADE.

Specifies the number of bits between the box and the label. The
default is one bit.

Specifies the background shade on which the item appears. The
default is WHITESHADE, regardless of the group's background.

Can be used to link this item to other items in the Free Menu.
See Section 28.7.13, Free Menu Item Links, for more information.

The following properties provide a way for application functions
to be called under certain mouse events. These functions are
called with the ITEM, the WINDOW, and the BunONS passed as
arguments. These application functions do not interfere with
any Free Menu system functions that take care of handling the
different item types. In each case, though, the application
function is called after the system function. The default for all of
these functions is Nill. The value of each of the following
properties can be the name of a function, or a lambda
expression.

Specifies the function to be called when this item is selected. The
Edit and EditStart items cannot have a SElECTEDFN. See the Edit
Free Menu item description in Section 28.7.11, Predefined Item
Types, for more information.

Specifies the function to be called when the item is selected with
the mouse cursor.

Specifies the function to be called repeatedly when the item is
selected with the mouse cursor.

Specifies the function to be called when the mouse cursor moves
off this item (mouse buttons are still depressed).

The following Free Menu Item properties are set and maintained
by Free Menu. The application should probably not change
these properties directly.

Specifies the 10 of the smallest group that the item is in. For
example, in a row formatted group, the item's GROUPID will be
set to the 10 of the row that the item is in, not the 10 of the
whole group.

Specifies the current state of TOGGLE, 3STATE, or STATE items.
The state of an NWAY item behaves like that of a toggle item.

Specifies the bitmap from which the item is displayed.

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU

REGION

MAXREGION

SYSDOWNFN
SYSMOVEDFN

S YSSELECTEDFN

USERDATA

28.7.11 Predefined Item Types

MOMENTARY

TOGGLE

3STATE

APPENDIX D. FREE MENU

Specifies the region of the item, in window coordinates. This is
used for locating the display position, as well as determining the
mouse sensitive region of the item.

Specifies the maximum region the item may occupy, determined
by the MAXWIDTH and MAXHEIGHT properties (see Section
28.7.8, Free Menu item Properties). This is used by the formatter
and the display routines.

These are the system mouse event functions, set up by Free Menu
according to the item type. These functions are called before the
mouse event functions, and are used to implement highlighting,
state changes, editing, etc.

Specifies how any other properties are stored on this list in
property list format. This list should probably not need to be
manipulated directly.

[Free Menu Item]

MOMENTARY items are like command buttons. When the
button is selected, its associated function is called.

[Free Menu Item]

Toggle items are simple two-state buttons. When pressed, the
button is highlighted; it stays that way until pressed again. The
states of a toggle button are T and NIL; the initial state is NIL.

[Free Menu Item]

3STATE items rotate through NIL, T, and OFF, states each time
they are pressed. The default looks of the OFF state are with a
diagonal line through the button, while T is highlighted, and NIL
is normal. The default initial state is NIL.

The following Item Property applies to 3STATE items:

OFF Specifies the looks of a 3STATE item in its OFF state. Similar to
HIGHLIGHT. The default is that the label gets a diagonal slash
through it.

STATE

CHANGESTATE

NOTE: If you specify special highlighting (a different bitmap of
string) for Toggle or 3State items AND use this item in a group
formatted as a Column or a Table, the highlight looks of the
item may not appear in the correct place.

[Free Menu Item]

STATE items are general multiple state items. The following
Item Property determines how the item changes state:

This Item Property can be changed at any time to change the
effect of the item. If a MENU data type, this menu pops up when
the item is selected, and the user can select the new state.
Otherwise, if this property is given, it is treated as a function
name, which is passed three arguments, ITEM, WINDOW, and

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU 0-11

APPENDIX D. FREE MENU

NWAY

0-12

MENUITEMS

MENU FONT

MENUTITLE

COLLECTION

NWAYPROPS

DESELECT

STATE

INITSTATE

BunONS. This function can do whatever it wants, and is
expected to return the new state (an atom, string, or bitmap), or
NIL, indicating the state should not change. The state of the item
can automatically be indicated in the Free Menu, by setting up a
DISPLAY link to a DISPLAY item in the menu (see Section 28.7.13,
Free Menu Item Links). If such a link exists, the label of the
DISPLAY item will be changed to the new state. The possible
states are not restricted at all, with the exception of selections
from a pop-up menu. The state can be changed to any atom,
string, or bitmap, manually via FM.CHANGESTATE.

The following Item Properties are relevant to STATE items when
building a Free Menu:

If specified, should be a list of items to go in a pop-up menu for
this item. Free Menu will build the menu and save it as the
CHANGESTATE property of the item.

The font of the items in the pop-up menu.

The title of the pop-up menu. The default title is the label of the
STATE item.

[Free Menu Item]

NWA Y items provide a way to collect any number of items
together, in any format within the Free Menu. Only one item
from each Collection can be selected at a time, and that item is
highlighted to indicate this. The following Item Properties are
particular to NWA Y items:

An identifier that specifies which NWAY Collection this item
belongs to.

A property list of information to be associated with this
collection. This property is only noticed in the Free Menu
Description on the first item in a COLLECTION. NWAY
Collections are formed by creating a number of NWAY items
with the same COLLECTION property. Each NWA Y item acts
individually as a Toggle item, and can have its own mouse event
functions. Each NWAY Collection itself has properties, its state
for instance. After the Free Menu is created, these Collection
properties can be accessed by the macro FM.NWA YPROPS. Note
that NWAY Collections are different from Free Menu Groups.
There are three NWAY Collection properties that Free Menu
looks at:

If given, specifies that the Collection can be deselected, yielding
a state in which no item in the Collection is selected. When this
property is set, the Collection can be deselected by selecting any
item in the Collection and pressing the right mouse button.

The current state of the Collection, which is the actual item
selected.

Specifies the initial state of the Collection. The value of this
property is an Item Link Description (see Section 28.7.13, Free
Menu Item Links.)

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU

EDIT

MAXWIDTH

INFINITEWIDTH

LlMITCHARS

ECHOCHAR

APPENDIX D. FREE MENU

[Free Menu Item]

EDIT items are textual items that can be edited. The label for an
EDIT item cannot be a bitmap. When the item is selected an edit
caret appears at that cursor position within the item, allowing
insertion and deletion of characters at that point. If selected
with the right mouse button, the item is cleared before editing
starts. While editing, the left mouse button moves the caret to a
new position within the item. The right mouse button deletes
from the caret to the cursor. CONTROL-W deletes the previous
word. Editing is stopped when another item is selected, when
the user moves the cursor into another TTY window and clicks
the cursor, or when the Free Menu function FM.ENDEDIT is called
(called when the Free Menu is reset, or the window is closed).
The Free Menu editor will time out after about a minute,
returning automatically. Because of the many ways in which
editing can terminate, EDIT items are not allowed to have a
SELECTEDFN, as it is not clear when this function should be
called. Each EDIT item should have an ID specified, which is used
when getting the state of the Free Menu, since the string being
edited is defined as the state of the item, and thus cannot
distinguish edit items. The following Item Properties are specific
to EDIT items.

Specifies the maximum string width of the item, in bits, after
which input will be ignored. If MAXWIDTH is not specified, the
items becomes infinitely wide and input is never restricted.

This property is set automatically when MAXWIDTH is not
specified. This tells Free Menu that the item has no right end, so
that the item becomes mouse sensitive from its left edge to the
right edge of the window, within the vertical space of the item.

In Medley, Changestate of an infinite width Edit item to a
smaller item clears the old item properly.

The input characters allowed can be restricted in two ways: If
this item property is a list, it is treated as a list of legal characters;
any character not in the list will be ignored. If it is an atom, it is
treated as the name of a test predicate, which is passed three
arguments, ITEM, WINDOW, and CHARACTER, when each
character is typed. This predicate should return T if the character
is legal, NIL otherwise. The LlMITCHARS function can also call
FM.ENDEDIT to force the editor to terminate, or FM.SKIPNEXT,
to cause the editor to jump to the next edit item in the menu.

This item property can be set to any character. This character will
be echoed in the window, regardless of what character is typed.
However the item's label contains the actual string typed. This is
useful for operations like password prompting. If ECHOCHAR is
used, the font of the item must be fixed pitch. Unrestricted EDIT
items should not have other items to their right in the menu, as
they will be replaced. If the item is boxed, input is restricted to
what will fit in the box. Typing off the edge of the window will
cause the window to scroll appropriately. Control characters can
be edited, including the carriage return and line feed, and they
are echoed as a black box. While editing, the Skip/Next key ends
editing the current item, and starts editing the next EDIT item in
the Free Menu.

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU D-13

APPENDIX D. FREE MENU

NUMBER

NUMBERTYPE

EDITSTART

DISPLAY

28.7.12 Free Menu Item Highlighting

28.7.13 Free Menu Item Links

0-14

[Free Menu Item]

NUMBER items are EDIT items that are restricted to numerals.
The state of the item is coerced to the the number itself, not a
string of numerals. There is on~UMBER- specific Item Property:

If FLOATP (or FLOAT), then decimals are accepted. Otherwise
only whole numbers can be edited.

[Free Menu Item]

EDITSTART items serve the purpose of starting editing on
another item when they are selected. The associated Edit item is
linked to the EditStart item by an EDIT link (see Free Menu Item
Links below). If the EDITSTART item is selected with the right
mouse button, the Edit item is cleared before editing is started.
Similar to EDIT items, EDITSTART items cannot have a
SElECTEDFN, as it is not clear when the associated editing will
terminate.

In Medley, EDITSTART items linked to a Number item properly
set number state when editing has completed.

[Free Menu Item]

DISPLAY items serve two purposes. First, they simply provide a
way of putting dummy text in a Free Menu, which does nothing
when selected. The item's label can be changed, though.
Secondly, DISPLAY items can be used as the base for new item
types. The application can create new item types by specifying
DOWNFN, HELDFN, MOVEDFN, and SELECTEDFN for a DISPLAY
item, making it behave as desired.

Each Free Menu Item can specify how it wants to be highlighted.
First of all, if the item does not specify a HIGHLIGHT property,
there are two default highlights. If the item is not boxed, the
label is simply inverted, as in normal menus. If the item is boxed,
it is highlighted in the shade of the box. Alternatively, the value
of the HIGHLIGHT property can be a SHADE, which will be
painted on top of the item when a mouse event occurs on it. Or
the HIGHLIGHT property can be an alternate label, which can be
an atom, string or bitmap. If the highlight label is a different size
than the item label, the formatter will leave enough space for
the larger of the two. In all of these cases, the looks of the
highlighted item are determined when the Free Menu is built,
and a bitmap of the item with these looks is created. This bitmap
is stored on the item's HIGHLIGHT property, and simply displayed
when a mouse event occurs. The value of the highlight property
in the Item Description is copied to the USERDATA list, in case it is
needed later for a label change.

Links between items are useful for grouping items in abstract
ways. In particular, links are used for associating EDITSTART
items with their item to edit, and STATE items with their state

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU

<10>

«GROUPID> <ID»

(GROUP <10»

APPENDIX D. FREE MENU

display. The Free Menu Item property LINKS is a property list,
where the value of each Link Name property is a pointer to
another item. In the Item Description, the value of the LINK
property should be a property list as above. The value of each
Link Name property is a Link Description. A Link Description can
be one of the following forms:

An ID of an item in the Free Menu. This is acceptable if items can
be distinguished by ID alone.

A list whose first element is a GROUPID, and whose second
element is the ID of an item in that group. This way items with
similar purposes, and thus similar ID's, can be distinguished
across groups.

A list whose first element is the keyword GROUP, and whose
second element is an item ID. This form describes an item with
ID, in the same group that this item is in. This way you do not
need to know the GROUPID, just which group it is in.

Then after the entire menu is built, the links are set up, turning
the Link Descriptions into actual pointers to Free Menu Items.
There is no reason why circular Item Links cannot be created,
although such a link would probably not be very useful. If
circular links are created, the Free Menu will not be garbage
collected after it is not longer being used. The application is
responsible for breaking any such links that it creates.

28.7.14 Free Menu Window Properties

FM.PROMPTWINDOW

FM.BACKGROUND

FM.DONTRESHAPE

Specifies the window that Free Menu should use for displaying
the item's messages. If not specified, PROMPTWINDOW is used.

The background shade of the entire Free Menu. This property
can be set automatically by specifying a BACKGROUND
argument to the function FREEMENU. The window border must
be 4 or greater when a Free Menu background is used, due to
the way the Window System handles window borders.

Normally, Free Menu will attempt to use empty space in a
window by pushing items around to fill the space. When a Free
Menu window is reshaped, the items are repositioned in the new
shape. This can be disabled by setting the FM.DONTRESHAPE
wi ndow property.

28.7.15 Free Menu Interface Functions

(FREEMENU DESCRIPTION TITLE BACKGROUND BORDER) [Function]

28.7.16 Accessing Functions

Creates a Free Menu from a Free Menu Description, returning
the window. This function will return quickly unless new display
fonts have to be created.

(FM.GETITEM 10 GROUP WINDOW) [Function]

Gets item 10 in GROUP of the Free Menu in WINDOW. This
function will search the Free Menu for an item whose 10 property

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU D-15

APPENDIX O. FREE MENU

(FM.GETSTATE WINDOW)

28.7.17 Changing Free Menus

<10>

«GROUPIO> <10»

matches, or secondly whose LABEL property matches ID. If
GROUP is NIL, then the entire Free Menu is searched. If no
matching item is found, NIL is returned.

[Function]

Returns in property list format the 10 and current STATE of every
NWAY Collection and item in the Free Menu. If an item's or
Collection's state is NIL, then it is not included in the list. This
provides an easy way of getting the state of the menu all at once.
If the state of only one item or Collection is needed, the
application can directly access the STATE property of that object
using the Accessing Macros described in Section 28.7.20, Free
Menu Macros. This function can be called when editing is in
progress, in which case it will provide the label of the item being
edited at that point.

Many of the following functions operate on Free Menu Items,
and thus take the item as an argument. The ITEM argument to
these functions can be the Free Menu Item itself, or just a
reference to the item. In the second case, FM.GETITEM (see
Section 28.7.16, Accessing Functions) will be used to find the
item in the Free Menu. The reference can be in one of the
following forms:

Specifies the first item in the Free Menu whose 10 or LABEL
property matches < 10> .

Specifies the item whose 10 or LABEL property matches < 10 >
within the group specified by <GROUPIO>.

(FM.CHANGELABEL ITEM NEWLABEL WINDOW UPDATEFLG) [Function]

0-16

CHANGELABELUPDATE

Changes an ITEM's label after the Free Menu has been created. It
works for any type of item, and STATE items will remain in their
current state. If the window is open, the item will be redisplayed
with its new appearance. NEWLABEL can be an atom, a string, or
a bitmap (except for EDIT items), and will be restricted in size by
the MAXWIDTH and MAXHEIGHT Item Properties. If these
properties are unspecified, the ITEM will be able to grow to any
size. UPDATEFLG specifies whether or not the regions of the
groups in the menu are recalculated to take into account the
change of size of this item. The application should not change
the label of an EDIT item while it is being edited. The following
Item Property is relevant to changing labels:

Exactly like UPDATEFLG except specified on the item, rather than
as a function paramater.

(FM.CHANGESTATE X NEWSTATE WINDOW) [Function]

Programmatically changes the state of items and NWAY
Collections. X is either an item or a Collection name. For items
NEWSTATE is a state appropriate to the type of the item. For
NWA Y Collections, NEWSTATE should be the desired item in the
Collection, or NIL to deselect. For EDIT and NUMBER items, this

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU

APPENDIX D. FREE MENU

function just does a label change. If the window is open, the
item will be redisplayed.

(FM.RESETSTATE ITEM WINDOW) [Function]

Sets an ITEM back to its initial state.

(FM.RESETMENU WINDOW) [Function]

Resets every item in the menu back to its initial state.

(FM.RESETSHAPE WINDOWALWAYSFLG) [Function]

Reshapes the WINDOW to its full extent, leaving the lower-left
corner unmoved. Unless ALWA YSFLG is T, the window will only
be increased in size as a result of resetting the shape.

(FM.RESETGROUPS WINDOW) [Function]

Recalculates the extent of each group in the menu, updating
group boxes and backgrounds appropriately.

(FM.HIGHLIGHTITEM ITEM WINDOW) [Function]

28.7.18 Editor Functions

Programmatically forces an ITEM to be highlighted. This might
be useful for ITEMs which have a direct effect on other ITEMs in
the menu. The ITEM will be highlighted according to its
HIGHLIGHT property, as described in Section 28.7.12, Free Menu
Item Highlighting. This highlight is temporary, and will be lost if
the ITEM is redisplayed, by scrolling for example.

(FM.EDITITEM ITEM WINDOW CLEARFLG) [Function]

Starts editing an EDIT or NUMBER ITEM at the beginning of the
ITEM, as long as the WINDOW is open. This function will most
likely be useful for starting editing of an ITEM that is currently
the null string. If CLEARFLG is set, the ITEM is cleared first.

(FM.SKIPNEXT WINDOW CLEARFLG) [Function]

Causes the editor to jump to the beginning of the next EDIT item
in the Free Menu. If CLEARFLG is set, then the next item will be
cleared first. If there is not another EDIT item in the menu, this
function will simply cause editing to stop. If this function is
called when editing is not in progress, editing will begin on the
first EDIT item in the menu. This function can be called from any
process, and can also be called from inside the editor, in a
LlMITCHARS function.

(FM.ENDEDIT WINDOW WAITFLG) [Function]

(FM.EDITP WINDOW)

Stops any editing going on in WINDOW. If WAITFLG is T, then
block until the editor has completely finished. This function can
be called from another process, or from a LlMITCHARS function.

[Function]

If an item is in the process of being edited in the Free Menu
WINDOW, that item is returned. Otherwise, NIL is returned.

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU D-17

APPENDIX D. FREE MENU

28.7.19 Miscellaneous Functions

(FM.REDISPLA YMENU WINDOW) [Function]

Redisplays the entire Free Menu in its WINDOW, if the WINDOW
is open.

(FM.REDISPLA YITEM ITEM WINDOW) [Function]

Redisplays a particular Free Menu ITEM in its WINDOW, if the
WINDOW is open.

(FM.SHADE X SHADE WINDOW) [Function]

X can be an item, or a group 10. SHADE is painted on top of the
item or group. Note that this is a temporary operation, and will
be undone by redisplaying. For more permanent shading, the
application may be able to add a REDEDISPLA YFN and SCROLLFN
for the window as necessary to update the shading.

(FM.WHICHITEM WINDOW POSorX y) [Function]

Locates and identifies an item from its known location within the
WINDOW. If WINDOW is NIL, (WHICHW) is used, and if POSorX is
NIL, the current cursor location is used.

(FM.TOPGROUPID WINDOW) [Function]

Returns the 10 of the top group of this Free Menu.

28.7.20 Free Menu Macros

0-18

These Accessing Macros are provided to allow the application to
get and set information in the Free Menu data structures. They
are implemented as macros so that the operation will compile
into the actual access form, rather than figuring that out at run
time.

(FM.lTEMPROP ITEM PROP (VALUE}) [Macro]

Similar to WINDOWPROP, this macro provides an easy access to
the fields of a Free Menu Item. The function FM.GETITEM gets
the ITEM, described in Section 28.7.16, Accessing Function.
VALUE is optional, and if not given, the current value of the
PROP property will be returned. If VALUE is given, it will be used
as the new value for that PROP, and the old value will be
returned. When a call to FM.lTEMPROP is compiled, if the PROP
is known (quoted in the calling form), the macro figures out
what field to access, and the appropriate Data Type access form
is compiled. However, if the PROP is not known at compile time,
the function FM.lTEMPROP, which goes through the necessary
property selection at run time, is compiled. The TYPE and
USERDATA properties of a Free Menu Item are Read Only, and
an error will result from trying to change the value of one of
these properties.

(FM.GROUPPROP WINDOW GROUP PROP (VALUE}) [Macro]

Provides access to the Group Properties set up in the PROPS list
for each group in the Free Menu Description. GROUP specifies

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU

APPENDIX D. FREE MENU

the 10 of the desired group, and PROP the name of the desired
property. If VALUE is specified, it will become the new value of
the property, and the old value will be returned. Otherwise, the
current value is returned.

{FM.MENUPROP WINDOW PROP (VALUE}) [Macro]

Provides access to the group properties of the top-most group in
the Free Menu, that is to say, the entire menu. This provides an
easy way for the application to attach properties to the menu as
a whole, as well as access the Group Properties for the entire
menu.

{FM.NWA YPROP WINDOW COLLECTION PROP (VALUE}) [Macro]

This macro works just like FM.GROUPPROP, except it provides
access to the NWay Collections.

LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU 0-19

APPENDIX D. FREE MENU

[This page intentionally left blank]

0-20 LISP RELEASE NOTES, MEDLEY RELEASE, FREE MENU

APPENDIX E. ERROR SYSTEM

This appendix replaces Chapter 24, Error System, of Common Lisp
Implementation Notes, Lyric Release, which replaced most of
Chapter 24, Errors, of Common Lisp, the Language. Text shown
with Strik:eThru is that text from the Lyric release that no longer
applies in Medley. Enhancements added in Medley are indicated
with revision bars in the right margin.

The XCL error system has been updated to reflect the current
ANSI Common Lisp error system proposal. This version seems to
be gaining wide use in other Common Lisp implementations, so
no further major changes are anticipated.

The Common Lisp error system is based on proposal number 18
for the Common Lisp error system. Deviations from this proposal
are noted. Since the Common Lisp error system has not yet been
standardized, this system may change in future releases to
accommodate the final version of the Common Lisp error system.

If you have access to the ARPANet, a copy of this proposal may be
retrieved from MIT-AI.ARPA as the file "COMMON;COND18
TXT".

All symbols described in the error system proposal that are not
already in the "LISP" package are exported from the
"CONDITIONS" package. In addition, the
"XEROX-COMMON-LlSP" package exports these symbols, so you
can make them available either by using "XCL" or using
"CONDITIONS", whichever is appropriate to your application.
The distinction is made so that XCL extensions of the Common
Lisp error system will be clear. All unqualified symbols are
assumed to be in the" LISP" package.

Summary of Error System Changes

The semantics of HANDLER-BIND where multiple bindings are set
up or mutiple condition types are being handled are slightly
different. Old code that used this will probably not behave as
expected.

HANDLER-BIND and HANDLER-CASE (a.k.a. CONDITION-CASE)
now always take a typespec instead of a list of condition types to
indicate the conditions to be handled. Old code that uses this will
only handle the first condition type in the list. The function,
CONDITIONS: :CONVERT-HANDLER-CASE is provided to aid in
converting old code. It may be used as a mutation function in
SEdit.

HANDLER-CASE now supports a :NO-ERROR option that is
executed if none of the other clauses are taken. This is handy for
writing code that depends on the normal completion of some

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM E-l

APPENDIX E - ERROR SYSTEM

E-2

operation, for example, creating auxilliary files if a particular
stream is successfully opened.

SERIOUS-CONDITION no longer forces entry to the debugger.
The function used to signal the condition now determines what
happens if the condition is not handled. This means that
SERIOUS-CONDITION has no more interesting properties and is
likely to be removed in the final version of the error standard.

Several new condition types have been defined. Others have
moved in the hierarchy. For example, ILLEGAL-GO is now a
subtype of PROGRAM-ERROR.

No standard condition type has a default handler.

The standard debugger entry point is now called
INVOKE-DEBUGGER instead of DEBUG.

The syntax of DEFINE-CONDITION has been changed to make it
more like CLOS' DEFCLASS. The function
CONDITIONS: :CONVERT-OLD-DEFINE-CONDITION is provided to
aid in converting old code. It may be used as a mutation function
in SEd it.

Several DEFINE-CONDITION options have been merged, while
others have been removed. In particular, there are no more
"instant variables."

PROCEED-CASE has been replaced by RESTART-CASE. The
semantics of restarts have been cleaned up and several new
features added. Related functions, such as
COMPUTE-PROCEED-CASES, have been renamed appropriately.

INVOKE-PROCEED-CASE has been renamed to INVOKE-RESTART.

DEFINE-PROCEED-FUNCTION has been removed, although XCL
will continue to support it for compatibility.

The arguments to a restart's report function are different. Old
code that used something other than a string for the report
method will not work correctly.

A distinction is now made between invoking a restart
interactively and simply invoking one. To this end, there is the
function INVOKE-RESTART-INTERACTIVELY and the
:INTERACTIVE option to RESTART-CASE.

RESTART-BIND, in analogy to HANDLER-BIND, has been added.

A new variable, *BREAK-ON-SIGNALS* exists to aid in
debugging. It is a generalization of *BREAK-ON-WARNINGS*.
The latter has been retained for compatibility.

The proceed function PROCEED has been changed to CONTINUE.

Old compiled code will continue to work except in the following
cases, some of which have been mentioned above:

A proceed case's report function was not a simple string. Such
code can cause stack overflow trying to report the condition
(*STANDARD-OUTPUT* ends up being bound to NIL). Such code
should be rewritten.

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

A handler binding is made to a list of condition types. Only the
first type in the list will be handled.

Multiple handler bindings were created by the same
HANDLER-BIND or HANDLER-CASE. Such code will work as
expected, but if recompiled in Medley, will not. To get the effect
of the current semantics, you must use nested HANDLER-BINDs.

Under the new error system, use-value and store-value
no longer prompt for a value.

Introduction to Error System Terminology

condition A condition is a kind of object which is created when an
exceptional situation arises in order to represent the relevant
features of that situation.

signal, handlers Once a condition is created, it is common to signal it. When a
condition is signaled, a set of handlers are tried in some
pre-defined order until one decides to handle the condition or
until no more handlers are found. A condition is said to have
been handled if a handler performs a non-local transfer of
control to exit the signalling process.

restart Although such transfers of control may be done directly using
traditional Lisp mechanisms such as catch and throw, block
and return, or tagbody and go, the condition system also
provides a more structured way to restart a computation. Among
other things, the use of these structured primitives for restarting
allows a better and more integrated relationship between the
user program and the interactive debugger.

serious cOAdi!ioAS It is not necessar~ that all conditions be handled. Some
conditions are trivial enou9h that a failure to handle them ma~
be disre9arded. Others, vvhich ¥ve ¥viII call seriotls cOAdfftioAs
must be handled iFi order to assure correct program behavior. If
a serious cOFiditioFi is sigFialied but flO haFidler is fouFld, the
debugger ¥viII be eFitered so that the user ma~ iFiteractivel~

speciry hOn to proceed.

errors conditions which result from incorrect programs or data are
called errors. Not all conditions are errors, however. Storage
conditions are examples of conditions that are not errors. For
example, the control stack may legitimately overflow without a
program being in error. Even though a stack overflow is not
necessarily a program error, it is serious enough to warrant entry
to the debugger if the condition goes unhandled.

Some types of conditions are predefined by the system. All types
of conditions are SUbtypes of condi tions: condi tion. That is,

(typep c 'conditions:condition)

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM E-3

APPENDIX E - ERROR SYSTEM

E-4

is true if c is a condition.

creating conditions The only standard way to define a new condition type is
conditions:define-condition. The only standard way to
instantiate a condition is cond i t ions: make-cond it ion.

When a condition object is created, the most common operation
to be performed upon it is to signal it (although there may be
applications in which this does not happen, or does not happen
immediately).

When a condition is signaled, the system tries to locate the most
appropriate handler for the condition and invoke that handler.
Handlers are located according to the following rules:

bound • Check for locally defined (ie, bound) handlers.

• If no appropriate bound handler is found, check first for the
default handler of the signaled type and then of each of its
superiors.

decline If an appropriate handler is found, the handler may decline by
simply returning without performing a non-local transfer of
control. In such cases, the search for an appropriate handler is
picked up where it left off, as if the called handler had never
been present. When a handler is running, the "handler binding
stack" is popped back to just below the binding that caused that
handler to be invoked. This is done to avoid infinite recursion in
the case that a handler also signals a condition.

conditions:handler-bind When a condition is signaled, handlers are searched for in the
dynamic environment of the signaller. Handlers can be
established within a dynamic context by use of
condi tions: handler-bind and other forms based on it.

handler A handler is a function of one argument, the condition to be
handled. The handler may inspect the object (using primitives
described in another section) to be sure it is interested in
handling the condition. After inspecting the condition, the
handler must take one of the followi ng actions:

• It may decline to handle the condition by simply returning.
When this happens, any returned values are ignored and the
effect on the signaling process is the same as if the handler
had not run. The next handler in line will be tried, or if no such
handler exists, the default action for the given condition will
be taken. A default handler may also decline, in which case
the condition will go unhandled. What happens then
depends on which function was used to signal the condition
(xcI: signal, er ror, cer ror, warn).

• It may perform some non-local transfer of control using go,
return,throw,abort,orconditions:invoke-restart.

• It may signal another condition.

• It may invoke the debugger.

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

condi tions: restart-case When a condition is signalled, a facility is available for use by
handlers to transfer control to an outer dynamic contour of the
program. The form which creates contours that may be returned
to is condi tions: restart-case. Each contour is set up by a
condi tions: restart-case clause, and is called a restart. The
function that transfers control to a restart is
conditions: invoke-restart.

pFoceed fl:lRctioR Also, cORtrol ffla~ be traRsferred aloRg hitA !9araffleters to a
Raffled xcI. proceed case clause b~ iRvokiRg a proceed
fl:lRctioR oftAat name.

Proceed fl:lRctioRS are Cfeated h itA tAe fflaCfO
xcI.define proceed ftinction.

restart type A restart with a particular name is sometimes called a restart
type.

report In some cases, it may be useful to report a condition or a restart
to a user or a log file of some sort. When the printer is invoked
on a condition or proceed case and *print-escape* is nil, the
report function for that object is invoked. In particular, this
means that an expression like

(princ condition)

will invoke condi tion's report function. Because of this, no
special function is provided for invoking the report function of a
condition or a restart.

Program Interface to the Condition System

Defining and Creating Conditions
conditions:define-condition name (parent-type) [({slot}*) {option}*]

[Macro]

Defines a new condition type with the given name, making it a
subtype of the given parent-type.

Except as otherwise noted, the arguments are not evaluated.

The valid options are:

(:documentation doc-string)

doc-string should be a string which describes the purpose of
the condition type or NIL. If this option is omitted, NIL is
assumed. (documentation name I type) will retrieve
this information.

(: conc-name symbol-or-string)

As in defstruct, this sets up automatic prefixing of the
names of slot accessors. Also as in defstruct if no prefix is
specified the default behavior for automatic prefixing is to
use the name of the new type followed by a hyphen
interned in the package which is current at the time that
the condi tions: define-condi t ion is processed.

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM E-S

APPENDIX E - ERROR SYSTEM

E-6

.report £tlnction expr=essioR

e}(preSSioR Sf10uld be a suitable argumeflt to tRe £tlnc t ion
special form, e.g., a symbol or a lambela expressiofl. It
e1esigflates a fUflctiofl of huo argumeflts, a cOflelitiofl afld a
stream, uiRieR priflts tRe eOflditiofl to tRe stream {iRefl
·print escape· isnil.

TRe • report rtlnction e1eseribes tRe eOflditioR ifl a
"'umal"l sel"lsible form. T,.,is item is somewRat differel"lt t"'81"1
a structure's • pr i nt Etlne t ion il"l t"'at it is ol"ll~ used if
·print escape· isnil.

(:report exp)

This option specifies the report function for this condition
type. Report function are inherited, so if a particular
condition type does not have one, the report function of its
parent will be used.

If exp is a string, it is a shorthand for

{:report {lambda (condition stream)

{declare (ignore conditions»

(princ exp stream»)

If exp is not a string, (function exp) will be evaluated in
the current lexical environment. This should return a
function of two arguments, a condition and a stream. It will
be called when a condition of this type is to be printed and
print-escape is nil. The report function will be called
with the condition to be reported and the stream to which
the report is to be made .

• handler Etlnction eKpFCssioR

expressioR s"'oulel be a suitable argument to tRe rtll'tC t ion
speeial form. It designates a funetion of ORe argumeRt, a
eonelition, o'iRie'" may Randle tRat eonelition if no
e1~Ramieally bounel RaRdler e1iel.

(: handle exp)

This option specifies a default handler for conditions of this
type. (func t ion exp) will be evaluated in the current
lexical context. This should result in a function of one
argument, a condition, to be used as the default handler
for this condition type.

Each slot is a defstruct slot-description. In addition to those
specified, the slots of the parent-type are also available. No
slot-options are allowed, only an optional default-value
expression. Condition objects are immutable, i.e., all of their slots
are automatically declared to be : read-only.

conditions:make-condition will accept keywords with the
same name as any of the slots, and will initialize the
corresponding slots in conditions it creates.

Accessors are created according to the same rules as used by
defstruct. For example:

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

(conditions:define-condition bad-food-color (food-lossage)
(food color)

(:report (lambda (c s) (format s "The food -A was -A"
(bad-food-color-food c)

(bad-food-color-color c»»)

defines a condition of type bad-food-color which inherits
from the food-lossage condition type. The new type has slots
food and color so that conditions:make-condition will
accept : food and : color keywords and accessors
bad-food-color-food and bad-food-color-color will
apply to objects of this type.

The report function for a condition will be implicitly called any
time a condition is printed with *pr int-escape* being nil.
Hence,

(princ condition)
is a way to invoke the condition's report function.

Here are some examples of defining condition types. This form
defines a condition called machine-error which inherits from
error:

(conditions:define-condition machine-error (error)
(machine-name)

(:report (lambda (c s) (format s
"There is a problem with -A."
(machine-error-machine-name c»»

The following defines a new error condition (a subtype of
machine-error) for use when machines are not available:

(conditions:define-condition machine-not-available-error
(machine-error) (machine-name)

(:report (lambda (c s) (format s
"The machine -A is not available."
(machine-error-machine-name c»»

The following defines a still more specific condition, built upon
machine-not-avai lable-er ror, which provides a default for
machine-name but which does not provide any new slots:

(conditions:define-condition
my-favorite-machine-not-available-error
(machine-not-available-error)

«machine-name "Tesuji:AISDev"»)

xci :condition-reporter type

This gives the machine-name slot a default initialization. Since
no : report clause was given, the information supplied in the
definition of machine-not-available-er ror will be used if a
condition of this type is printed while *pr int-escape* is ni 1.

[Macro]

Returns the object used to report conditions of the given type.
This will be either a string, a function of two arguments
(condition and stream) or nil if there is no report function. setf
may be used with this form to change the report function for a
condition type.

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM E-7

APPENDIX E - ERROR SYSTEM

xci :condition-handler type [Macro]

Returns the default handler for conditions of the given type. This
will be a function of one argument or nil if there is no default
handler. setf may be used with this form to change the default
handler for a condition type.

conditions:make-condition type &rest slot-initializations [Function]

Signalling Conditions

xcl:*current-condition*

Calls the appropriate constructor function for the given type,
passing along the given slot initializations to the constructor,
and returning an instantiated condition.

The slot-initializations are given in alternating keyword/value
pairs. eg,

(conditions:make-condition 'bad-food-color
:food my-food
:color my-color)

This function is provided mainly for writing subroutines that
manufacture a condition to be signaled. Since all of the
condition signalling functions can take a type and
slot-initializations, it is usually easier to call them directly.

[Variable]

This variable is bound by condition-signalling forms
(cond i t ions: signal, er ror I cer ror, and warn) to the
condition being signaled. This is especially useful in restart
filters. The top-level value of xcI: *cur rent-cond i t ion* is
nil.

conditions:signal datum &rest arguments [Function]

E-8

Invokes the signal facility on a condition. If the condition is not
handled, cond i t ions: signal returns the condition object that
was signaled.

If datum is a condition then that condition is used directly. In this
case, it is an error for arguments to be non-n i 1.

If datum is a condition type, then the condition used is the result
of doing

(apply ,'conditions:make-condition
datum arguments)

If datum is a string, then the condition used is the result of doing
(conditions:make-condition

'conditions:simple-condition
: format-str ing datum
: format-arguments arguments).

If the condition is of t~pe xci. seriotls condition, then
xcl.signal hill behave exactl~ like error, i.e., it hill call
xci. debtlg if the condition isn't handled, and hill never return
to its caller.

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

If (typep condition cond i t ions: * break -on-s ignals*) is
true, then the debugger will be entered prior to the signalling
process. This is true for all other functions and macros that signal
conditions, such as warn, error, cerror, assert and
check-type.

conditions:*break-on-signals* [Variable]

This flag is primarily for use when debugging programs that do
signaling. Its value is a type specifier.

When (typep condition
condi t ions: *break-on-s ignal s *) is true, then calls to
condi tions: signal and other functions that implicitly call
cond it ions: signal will enter the debugger prior to signalling
the condition. The conditions:continue restart may be used
to continue with the normal signalling process.

The default value of this variable is ni l.

Note: the variable *break-on-warnings* continues to be
supported for compatibility, but
condi tions: *break-on-signals* offers that power and
more. New code should not use *break-on-warnings*.

error datum &rest arguments [Function]

Like conditions:signal except if the condition is not
handled, the debugger is called with the given condition, and
error never returns.

datum is treated as in conditions: signal. If datum is a string,
a conditon of type condi tions: simple-error is made. This
form is compatible with that described in Steele's Common Lisp,
the Language.

cerror proceed-format-string datum &rest arguments [Function]

Like er ror, if the condition is not handled the debugger is called
with the given condition. However, cer ror enables the restart
condi tions: continue, which will simply return the condition
being signalled from cer ror.

datum is treated as in er ror. If datum is a condition, then that
condition is used directly. In this case, arguments will be used
only with the proceed-format-string and will not be used to
initialize datum.

The proceed-format-string must be a string. Note that if datum is
not a string, then the format arguments used by the
proceed-format-string will still be the arguments (in the keyword
format as specified). In this case, some care may be necessary to
set up the proceed-format-string correctly. The format directive
-* may be particularly useful in this situation.

The value returned by cer ror is the condition which was
signaled.

See Steele's Common Lisp, the Language, page 430 for examples
of the use of cer ror.

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM E-9

APPENDIX E - ERROR SYSTEM

warn datum &rest arguments [Function]

break-on-warnings

check-t~~e

ecase

cease

et~~ecase

ct~~ecase

assert

Invokes the signal facility on a condition. If the condition is not
handled, then the text of the warning is printed on
error-output. If the variable *break-on-warnings* is
true, then in addition to printing the warning, the debugger is
entered using the function break. The value returned by warn is
the condition that was signalled.

If datum is a condition, then that condition is used directly. In
this case, if the condition is not of type cond i t ions: warning or
arguments is non-null, then an error of type
cond it ions: type-er ror is signalled.

If datum is a condition type, then the condition used is the result
of doing (apply # 'conditions:make-conditions datum
arguments). This result must be of type conditions:warning
or an error of type cond i t ions: type-er ror is signalled.

If datum is a string, then the condition used is the result of
(conditions:make-conditions
'conditions:simple-warning :format-string datum
: format-arguments arguments).

The precise mechanism for warning is as follows:

1) If *break-on-warnings* is true, the debugger will be
entered. This feature is primarily for compatibility with old code:
use of condi tions: *break-on-signals* is preferred. If the
break is continued using the condi tions: continue restart,
warn proceeds with step 2.

2) The warning condition is signalled. While it is being signalled,
the cond i t ions: muffle-warn i ng restart is established for use
by a handler to bypass further action by warn, i.e., to cause warn
to immediately return.

3) The warning condition is reported to *er ror-output* by the
warn function. Note that warn wi" indicate that the condition
being signalled is a warning when it reports it, so there is no
need for the condition to do so in its report method.

[Variable]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

All of the above behave as described in Common Lisp: the
Language. The default clauses of ecase and ccase forms signal
cond i t ions: s imple-er ror conditions. The default clauses of
etypecase and ctypecase forms signal
condi tions: type-error conditions. assert signals the
xcI: assertion-failed condition. ccase and ctypecase set
up a cond i t ions: s tore-value restart.

--
E-10 LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

Handling Conditions

conditions:handler-bind bindings &rest forms [Macro]

Executes the forms in a dynamic context where the given local
handler bindings are in effect. The elements of bindings must
take the form (type-spec handler). The handlers are bound in
the order they are given, i.e., when searching for a handler, the
error system will consider the leftmost binding in a particular
conditions:handler-bind form first. However, while one of
these handlers is running, none of the bindings established by
the condi tions: handler-bind will be in effect.

type must be a type specifier. To make a binding for several
condition types, use (or type 1 type2 ...).

handler should evaluate to a function of one argument, a
condition, to be used to handle a signalled condition during
execution of the forms.

An example of the use of conditions:handler-bind appears
at the end of the cond i t ions: res tar t -case macro
description.

conditions:handler-case form &rest cases [Macro]

xcl:condition-case form &rest cases [Macro]

Executes the given form. Each case has the form

(type ([var]) • body)

If a condition is signalled (and not handled by an intervening
handler) during the execution of the form, and there is an
appropriate clause-i.e., one for which

(typep condition 'type)

is true-then control is transferred to the body of the relevant
clause, binding var, if present, to the condition that was
signaled. If no condition is signalled, then the values resulting
from the form are returned by the xcl:condition-case. If the
condition is not needed, var may be omitted.

Earlier clauses will be considered first by the error system. I.e.,
(xcl:condition-case form

(condl .••)
(cond2 .••))

is equivalent to
(xcl:condition-case

(xcI: cond i t ion-case form
(condl ••• »

(cond2 .•• »

type ffla~ also be a list of t~pes, in nhich case it nill catch
conditions of an~ of the specified t~pes.

One may also specify an action to be taken if execution of form
completes normally. This may be done by specifying a clause that
has: no-error as its type. Such a clause, if provided, must be
last. A : no-er ror clause looks like:

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM E-ll

APPENDIX E - ERROR SYSTEM

(: no-error lambda-list • body)

If execution of the form completes normally and there is a
: no-er ror clause, the values produced by the form will be
bound to variables in the clause's lambda-list and the body will
be executed with none of the handler bindings in effect. In this
case the value of the xcl:condition-case form is the value
returned by the last form of the body of its: no-error clause.
Having a : no-error clause is equivalent to wrapping
(mutiple-value-call I' (lambda lambda-list body)
...) around the xcI: condi tion-case form.

conditions:handler-case
xcl:condition-case.

Examples:

(xcl:condition-case (/ x y)
(division-by-zero () nil»

is synonymous

(xcl:condition-case (open *the-file*
:direction :input)

(file-error (condition)
(format t "-&Open failed: -A-%" condition»)

(xcl:condition-case (some-user-function)
(file-error (condition) condition)
(division-by-zero () 0)
«or unbound-variable undefined-function) ()

'unbound))

(xcl:condition-case (open my-file)
(file-error ()

(format *error-output* "Couldn't open -S."
my-file»

(:no-error (stream)
(open-more-files my-file stream) stream»)

with

Note the difference between xcI: condi tion-case and
condi tions: handler-bind. In condi tions: handler-bind,
you are specifying functions that will be called in the dynamic
context of the condition signalling form. In
xcl:condition-case, you are specifying continuations to be
used instead of the original form if a condition of a particular
type is signaled. These continuations will be executed in the
same dynamic context as the original form.

conditions:ignore-errors &body forms [Macro]

E-12

Executes the forms in a context that handles conditions of type
er ror by returning control to this form. If no error is signaled, all
values returned by the last form are returned by
condi tions: ignore-er rors. Otherwise, the form returns the
two values nil and the condition that was signaled. Synonym
for

(xc I: cond it ion-case (progn . forms)
(error (condition)

(values nil condition».

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

Restarts

APPENDIX E - ERROR SYSTEM

xel. debtlg 'optional ciattJFA 'rest argtJFAeRB [Function]

Enters tMe debu9ger ooitM a 9i oen condition vvitMout si9nallin9
t~at condition. V"~en t~e debu9ger is entered, it 'i'iill announce
t~e condition b~ invokin9 t~e condition's report function.

eJa.ttmt is treated tMe same as for xel. signal except if ciattJFA~
not specified, it defaults to "Call to DEBUS".

TMis function ¥vi" never directly return to its caller. Return can
occur only by a special transfer of control, SUCM as to a eaten,
bloek,tagbody,xel.proeeed easeorxel.eateh abort.

conditions: invoke-debugger condition [Function]

Invokes the debugger with the given condition. This is intended
to be used as a portable entry point to the debugger. For finer
control over the debugging state, see the function
xcl :debugger.

break &optional format-string &rest format-arguments [Function]

Enters the debugger with a simple condition with the given
arguments. If no format-string is provided, it defaults to
"Break." Computation may be continued by invoking the
condi t ions: cont inue restart. If continued, break returns
nil.

break is approximately:

(defun break (&optional (format-string "Break")
&rest format-arguments)

(conditions:restart-case (conditions:invoke-debugger
(conditions:make-conditions 'conditions:simple-condition
:format-string format-string :format-arguments
format-arguments)

(conditions:continue ()
:report "Return from BREAK."

nil»)

conditions:restart-case expression {(case-name arglist {keyword value}* {form}*) }*
[Macro]

The expression is evaluated in a dynamic context where the case
clauses have special meanings as points to which control may be
transferred. If expression runs to completion, all values returned
by the form are simply returned by the
condi tions: restart-case form. On the other hand, the
computation of expression may choose to transfer control to one
of the restart clauses. If a transfer to a clause occurs, the forms in
the body of that clause will be evaluated in the same dynamic
context as the condi tions: restart-case form, and any
values returned by the last such form will be returned by the
conditions:restart-case form.

A restart clause has the form given above:

(case-name arglist {keyword value}* {form}*)

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM E-13

APPENDIX E - ERROR SYSTEM

E-14

The case-name may be nil or any symbol.

The arg/ist is a normal lambda list that will be bound and
evaluated in the dynamic context of the
condi tions: restart-case form. They will use whatever
values were provided by cond i t ions: i nvoke- res tar t or
cond i t ions: invoke-res tar t- interac t i vely. Definitions
of these two functions appear later in this section.

The valid keyword/value pairs are:

: f i 1 te r expression

expression should be suitable as an argument to the
function special form. It defines a predicate of no
arguments that determines if this clause is visible to
conditions:find-restart. Default = true.

:condition type

Shorthand for a common special case of : f i 1 ter. The
following two key/value pairs are equivalent:

:condition foo

:filter
(lambda ()

(typep xcl:*current-condition*
, foo))

: interactive expression

The expression must be a form suitable as an argument to
function. (function expression) will be evaluated in the
current lexical and dynamic environments. The result should
be a function of no arguments which returns a list of values to
be used by
conditions: invoke-restart-interactively. This
function will be called in the dynamic environment available
prior to any restart attempt. Any interaction with the user
should be done here and not in the body of the restart.

If there is no : interactive option specified and the restart is
invoked interactively, no arguments will be supplied.

: report expression

The expression can either be a constant string or a form
suitable as an argument to funct ion.

If expression is not a string, (function expression) will be
evaluated in the current lexical and dynamic environment. The
result should be a function of one argument, a stream, which
will be called to report that restart. This function should print
a short summary of the action that restart will take if invoked.

If expression is a string, it is a shorthand for (lambda (s)
(format s expression».

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

Only one of :condition or :filter may be specified. If no
: report is specified, the case-name will be used. It is an error to
have a null case name and no report function.

Examples:

(loop
(conditions:restart-case

(return (apply function some-args)}
(new-function (new-fn)

:report "Use a different function."
:interactive (lambda ()

(list (prompt-for 'function "Function:
")))

(setq function new-fn»»

(loop
(conditions:restart-case

(return (apply function some-args»
(nil (new-fn)

:report "Use a different function."
:interactive (lambda ()

(list (prompt-for 'function "Function:
n)))

(setq function new-fn»»

(conditions:restart-case (a-command-Ioop)
(return-from-command-Ievel ()

:report

-D." level»
nil»

(loop

(lambda (stream)
(format stream "Return from command level

(conditions:restart-case (another-computation)
(conditions:continue () nil»)

The first and second examples are equivalent from the point of
view of someone using the interactive debugger, but differ in
one important aspect for non-interactive handling. If a handler
"knows about" restart names, as in:

(when (conditions:find-restart 'new-function)
(conditions:invoke-restart 'new-function

the-replacement»

then only the first example, and not the second, will have control
transferred to its correction clause.

Here's a more complete example:

(let «my-food 'milk)
(my-color 'greenish-blue»

(do ()
«not (food-colorable-p my-food

my-color»}
(conditions:restart-case (error 'bad-food-color

:food my-food
:color my-color)

(use-food (new-food)
:report "Use another food."
(setf my-food new-food»

(use-color (new-color)

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM E-15

APPENDIX E - ERROR SYSTEM

:report "Use another color."
(setf my-color new-color»»

:: We won't get to here until my-food
:: and my-color are compatible.
(list my-food my-color»

Assuming that use-food and use-color have been defined as

(defun use-food (new-food)
(invoke-restart 'use-food new-food»

(defun use-color (new-color)
(invoke-restart 'use-color new-color»

then a handler can proceed from the error in either of two ways.
It may correct the color or correct the food. For example:

or

,'(lambda (condition) ...
:: Corrects color
(use-color 'white) ...)

.' (lambda (condition) ...
:: Corrects food
(use- food 'cheese) ... }

Here is an example using condi tions :handler-bind and
conditions:restart-case.

(conditions:handler-bind «foo-error
,'(lambda (condition)

(conditions:use-value 7»»
(conditions:restart-case (error 'foo-error)

(conditions:use-value (x) (* x x»»

The above form returns 49.

xcl.define proceed function Raffle [Macro]

E-16

(keYVloFfl Vl3/t1e}*-
(Vl3riaBle} *

V8t+d-keyvloFdIVl3/tie "airs are the same as those nhich are
defined for the xcl. proceed case s"ec:ial form. That is,
.filter, .filter function, .coftdition, .report, and
. repor t func t ion. The filter aFld report fUFlctions specified in
a xcl.define proceed function form nill be used for
xcl. proceed case clauses 'It'oith the same Flame that do not
specif:y their Onn filter or report fUFlctioFls, respectivel:y.

This form defiFles a fUFlctioFl called name nhich nill iRQ'oke a
proceed case ,'lith the same Flame. The proceed fURctioR takes
optioRal argumeRts nhich are gi veR by the variaBles
specificatioFl. The parameter list for the proceed fURctioR nill
look like

('optional . Vl3riaB!es)

The only thing that a "roceed function reall:y does is collect
values to be "assed on to a "roceed case clause.

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

[ad" elemeRt of variables has the form variable Raffle or
(variae/e Rame iRifial \lall:lc). If iRitia! \lall:lc is Rot supplied, it
defaults to nil.

For example, here are some possible proeeed fURetioRs i'.,hkh
might be useful iR eORjuRetioR hith the bad food color error
'vie used as aR example earlier:

(xcl.define proceed ftlnction tlse food
.report "Use another food."

(food (read typed object 'food
"Food to tlse instead. H»~)

(xcl.define proceed ftlnction tlse color
.report "Change the food's color."

(color
(read tlped object 'food

"Color to make the food. H»~)

(deftln malbe tlse water (condition)
" A sample handler
(when (eq (bad food color food condition)

'millt)
(tlse food 'water»)

(xcl.handler bind «bad food color
"malbe tlse water» ...)

If a Ramed proeeed fURetion is invoked in a eontext in vvhich
there is no acti \fe proceed case by that name, the proceed
function simpl~ returRS nil. So, for example, in each of the
follovving pairs of haRdlers, the first is equivalent to the seCORd
but less efficieRt.

,'(lambda (condition) , OK, btlt slow
(when (xcI. find proceed ease 'tlse food)

(tlse food 'milk»)
,'(lambda (condition) , Preferred

(tlse food 'milk»

,'(lambda (condition)
(cond «xcl.find proceed case 'tlse food)

(tlse food 'chocolate»
«xcl.find proceed ease 'tlse color)

(tlse color 'orange»»
,'(lambda (condition)

(tlse food 'chocolate)
(tlse color 'orange»

conditions:restart-bind ({ {name function {keyword value}*)}* {form}* [Macro]

Executes the forms in a dynamic context where the given restart
bindings are in effect.

name may be nil to indicate an anonymous restart, or some
other symbol to indicate a named restart.

function will be evaluated in the current lexical and dynamic
contexts and should produce a function of no arguments to be
used to perform the restart. This function will be called when
that restart is activated by condi tions: invoke-res tar t or
condi tions: invoke-restart-interac t i vely. Note that

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM E-17

APPENDIX E - ERROR SYSTEM

conditions: compute-restarts

E-18

unlike condi tions: restart-case, invoking the restart does
not automatically transfer control back to the contour in which it
was established. If that is appropriate for that restart it is up to
the individual restart function to do this.

The valid keyword/value pairs are:

: interactive-function form

form will be evaluated in the current lexical and dynamic
environments and should produce a function of no arguments
that will construct the list of values to be used by
conditions:invoke-restart-interactively.

: report-function form

form will be evaluated in the current lexical and dynamic
environments and should produce a function of one
argument, a stream, that will be used to report that restart.

:filter-function form

form will be evaluated in the current lexical and dynamic
environments and should produce a function of no arguments
that will be used to determine if the given restart is currently
active.

This form is a more primitive way of establishing restarts than
conditions:restart-case. It is expected that
conditions:restart-case will be sufficient for most uses of the
restart facility. An example of where the more general facility
provided by conditions: restart-bind may be useful is:

(conditions:restart-bind «nil ,'(lambda ()
(expunge-directory the-dir» :report-function
I' (lambda (stream) (format stream "Expunge -A."
(directory-namestring the-dir»») (cerror "Try
this file operation again." 'directory-full
:directory the-dir»

In this case, a restart is provided that allows the user to expunge
the full directory and return to the debugger after doing so. He
can then try some other restart, such as conditions:continue
to retry the failed operation.

[Function]

Uses the dynamic state of the program to compute a list of
restarts.

Each restart object represents a point in the current dynamic
state of the program to which control may be transferred. The
only operations that Lisp defines for such objects are:

conditions:restart-name,
conditions:find-restart,

conditions: invoke-restart,

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

eonditions:invoke-restart-interaetively,
prine, and
pr inl,

to identify an object as a restart using (typep x
'eonditions:restart), and standard Lisp operations that
work for all objects, such as eq, eql, deser ibe, etc.

The list which results from a call to
eonditions:eompute-restarts is ordered so that the
innermost (ie, more-recently established) restarts are nearer the
head of the list.

Note also that eonditions:eompute-restarts returns all
valid restarts, even if some of them have the same name as
others and therefore would not be found by
eonditions:find-restart.

It is an error to modify the list returned by
eonditions:eompute-restarts.

conditions:restart-name restart [Function]

Returns the name of the given restart, or nil if it is not named.

xcl. defatll t proceed tes t pr:oceed case Rame [Macro]

ReturRS tto!e default filter fURctioR for ~roceed cases ¥vitto! tto!e
gtveft-proceed case name. Ma~ be used vliitto! setf to cto!aRge it.

xel. default proeeed repor t proceed case name [Macro]

ReturRS tto!e default re~oft fURctioR for ~roceed cases witto! tto!e
gi'o'eR p.'CfJceed case Rame. Tto!is ma~ be a striRg or a fURctioR just
as for cORditioR t~~es. Ma~ be used ¥vitto! setf to cto!aRge it.

conditions:find-restart identifier [Function]

Searches for a restart by the given identifier which is in the
current dynamic environment.

If identifier is a symbol, then the innermost (ie, most recently
established) restart with that name that is active is returned. nil
is returned if no such restart is found.

If identifier is a restart object, then it is simply returned unless it
is not currently valid for use. In that case, nil is returned.

When searching for a matching restart, the filter function, if any,
of potential matches will be called to see if they are active. If it
returns nil, then the restart is considered to not have been seen
and the search for a match conti nues.

Although anonymous restarts have a name of nil, it is an error
for the symbol nil to be given as an identifier to this function. If
it is approriate to search for anonymous restarts, you should use
eonditions:eompute-restartsin~ead.

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM E-19

APPENDIX E - ERROR SYSTEM

E-20

conditions:invoke-restart restart ,rest values [Function]

Calls the function associated with the given restart, passing the
values as arguments. The restart must be a restart object or the
non-null name of a restart which is valid in the current dynamic
context. If an argument is not valid, an error of type
condi tions: control-er ror will be signalled.

If the argumeFlt is a Flamed preeeed case that has a
eerrespeFldiFlg preeeed fUFletieFl, xel. invoke proeeed ease
vllill de the eptieFlal argumeFlt reselutieFl specified b~ that
fUFletieFl befere traFlsfeffiFlg eeFltrel te the proceed case.

conditions:invoke-restart-interactively restart [Function]

Calls the function associated with the given restart, providing
for any necessary arguments. The restart must be a restart object
or the non-null name or a restart which is valid in the current
dynamic context. If the restart is not valid, an error of type
condi t ions: con trol-er ror will be signalled.

conditions: invoke-restart-interactively will first call
the restart's interactive function as specified by the
: interactive keyword of condi tions: restart-case or the
: interactive-function keyword of
conditions:restart-bind. The interactive function should
return a list of values to be passed as arguments to the restart.
This list must be at least as long as the number of required
arguments that the restart has.

If the restart has no interactive function, no arguments will be
passed to the restart function. It is an error for a restart to
require arguments but not have an interactive function.

Once the arguments have been determined,
conditions: invoke-restart-interactively will simply
do (apply * 'conditions: invoke-restart restart
arguments) .

conditions:with-simple-restart (name format-string {format-arguments}*) {form }*

[Macro]

This is a shorthand for one of the most common uses of
conditions:restart-case.

If the restart designated by name is not invoked while executing
the forms, all values produced by the last form are returned. If
the restart established by condi tions :wi th-simple-restart
is invoked, control is transferred to the
condi tions: wi th-simple-restar t form, which immediately
returns the two values nil and t.

It is permissible for name to be nil. In that case, an anonymous
restart is established.

cond i t ions: wi th-s imple-res tar t is essentially:

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

(defmacro conditions:with-simple-restart
«restart-name format-string

&rest format-arguments)
&body forms)

'(conditions:restart-case (progn ,@forms)
(,restart-name ()

:report (lambda (stream)
(format stream

,format-string
,@format-arguments»

(values nil t»»

Example:

(defun read-eval-print-loop (level)
(conditions:with-simple-restart

(conditions:abort "Exit command level -D." level)
(loop

(conditions:with-simple-restart
(conditions:abort "Return to command level -D."

level)
(print (eval (read»»»)

xcl:catch-abort print-form &body forms [Macro]

Like condi tions: wi th-s imple-res tar t, but always uses the
name condi tions: abort.

xcl:catch-abort could be defined by:

(defmacro xcl:catch-abort (print-form
&body forms)

conditions:abort

, (conditions:with-simple-restart
(conditions:abort ,print-form)

,@forms»

[Function]

This function transfers control to the nearest active restart
named condi tions: abort. If there is none, this function
signals an error of type condi tions: control-er ror.

xcI. abor t (ould be defiFled b~:

(define proceed ftlnction xcl.abort
.report "Abort")

cond iti ons: conti n ue [Function]

This function transfers control to the nearest active restart
named conditions:continue. If none exists it simply returns
nil.

The condi tions: continue restart is generally part of simple
protocols where there is a single "obvious" way to continue,
such as in break and cer ror.

NB: conditions:continue replaces xcl:proceed.

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM E-2.1

APPENDIX E - ERROR SYSTEM

E-22

xei. proeeed &optioftai cORditioR

conditions: muffle-warni n9

This is 8 predefil"led proceed fUl"lctiol"l. It is used by such fUl"lctiol"ls
asbreak,eerror,etc.

[Function]

This function transfers control to the nearest active restart
named conditions:muffle-warning. If none exists, an error
of type cond i t ions: control-er ror is signalled.

warn sets up this restart so that handlers of
cond i t ions: warning conditions have a way to tell warn that
the warning has been dealt with and that no further action is
warranted.

conditions:use-value new-value [Function]

This function transfers control (and one value) to the nearest
active restart named condi tions: use-value. If no such restart
exists, this function simply returns nil.

The condi tions: use-value restart is generally used by
handlers trying to recover from errors of types such as
condi tions: cell-error, where the handler may wish to
supply a replacement datum for one-time use.

conditions:store-value new-value [Function]

This function transfers control (and one value) to the nearest
active restart named condi tions: store-value. If no such
restart exists, this function simply returns nil.

The condi tions: use-value restart is generally used by
handlers trying to recover from errors of types such as
conditions:cell-error, where the handler may wish to
supply a replacement datum to be stored in the offending cell.

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

[This page intentionally left blank]

LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM E-23

A
Abort (Editor Command) B-7
ACCESS 3-38
Add-Command (Function) B-14
add.process (Function) 4-12; 7-12
ADDMENU (Function) 4-24
ADDTOSCRATCHLIST (Function) 4-1
ADVICE (File Manager Command) 3-15
ADVINFOLST (Variable) 3-14
ADVISE (File Manager Command) 3-15
ADVISE (Function) 3-13,15
ADVISEDFNS (Variable) 3-14
ADVISEDUMP (Function) 3-14
Advising 3-14; 7-9
AFTERDOMAKESYS 4-7
AFTERDOSAVEVM 4-7
AFTERDOSYSOUT 4-7
AFTERLOGOUT 4-7
AFTERLOGOUTFORMS 4-7
AFTERMAKESYS 4-7
AFTERSAVEVM 4-7
AFTERSYSOUT 4-7
AGAIN (Editor Command) B-8
ALL (Event Address) A-5
ALLOWED-LOGINS 4-6
append (Function)

with non-list argument 7-8
Application Menus 0-1
APPLY-format input A-3
ARCHIVEFLG (Variable) 3-9
ARCHIVEFN (Variable) 3-9
Arglist (Editor Command) B-9
AROUNDEXITFNS (Variable) 4-7
array reference 7-4
arrays 3-3
ASKUSER (Function) 4-16
assert (Macro) E-10
Attach Menu (Editor Command) B-11
Attached Windows 4-28
AUTHENTICATE 4-6
AUTHENTICA TION.NET.HINT (Variable) 4-33
AUTOHARDRESETFLG 4-5

B
back-quote facility 3-49
BACKGROUND (FreeMenu Group Property) 0-8
BACKGROUND (FreeMenu Item Property) 0-10
BACKGROUNDFNS (Variable) 4-12
BACKSPACE (Editing Command) A-21
BCOMPL (Function) 3-22,25; 4-10
BEEPON (Function) 4-31
BEFORELOGOUT 4-7
BEFOREMAKESYS 4-7
BEFORESAVEVM 4-7
BEFORESYSOUT 4-7
BEFORESYSOUTFORMS 4-7
BITMAP (FreeMenu System Property) D-10
BKSYSBUF (Function) 4-30
BKSYSCHARCODE (Function) 4-30
BLOCKRECORD (Record Type) 4-3
BOnOM (FreeMenu Group Property) 0-7
bound E-4

LISP RELEASE NOTES, MEDLEY RELEASE, INDEX

INDEX

BOUNDP (Function) 3-2
BOX (FreeMenu Group Property) D-5,8
BOX (FreeMenu Item Property) 0-10
BOXSHADE (FreeMenu Group Property) 0-8
BOXSHADE (FreeMenu Item Property) 0-10
BOXSPACE (Free Menu Group Property) 0-8
BOXSPACE (FreeMenu Item Property) D-10
break (Function) 3-13; E-13
break commands 3-13
Break packages 3-9
BREAKO (Function) 3-13
BREAK1 (Function) 3-9
BREAKCONNECTION (Function) 4-14
BREAKIN (Function) 3-13
breaking 7-9
BREAKREGIONSPEC (Variable) 4-8
BRECOMPILE (Function) 3-22,25
BRKINFOLST (Variable) 3-13
BROKENFNS (Variable) 3-13
bulk data transfer 4-34

C
Catch errors 3-10
ccase (Macro) E-10
cerror (Function) E-9
Change Print Base (Editor Command) B-11
CHANGEBACKGROUND (Function) 4-31
CHANGEFONT (Function) 4-23
CHANGESLICE (Function) A-11,17
CHANGESTATE (FreeMenu Item Property) 0-11
changing a standard readtable 3-22
characters 3-3
CHARCODE (Function) 3-3
CHCON (Function) 3-42
check-type (Macro) E-10
CL Exec 3-7
CL:* (Variable) A-10
CL: ** (Variable) A-10
CL:*** (Variable) A-10
CL: + (Variable) A-10
CL: + + (Variable) A-10
CL: + + + (Variable) A-10
CL:- (Variable) A-10
CL:I (Variable) A-10
CL:II (Variable) A-10
CL:III (Variable) A-10
CL: BREAK (Function) 3-13
CL:CA TCH (Function) 3-5
CL:CODE-CHAR (Function) 3
CL:COMPILE-FILE (Function) 3-24-25; 4-10
CL:DEFCONSTANT (Variable) 3-20
CL:DEFINE-MODIFY-MACRO (Function) 3-20
CL:DEFMACRO (Function) 3-20
CL:DEFMACRO (Macro) 3-29
CL:DEFPARAMETER (Macro) 3-26,29
CL:DEFPARAMETER (Variable) 3-20
CL:DEFUN (Function) 3-20
CL:DEFUN (Macro) 3-29
CL:DEFVAR (Macro) 3-29
CL:DEFVAR (Variable) 3-20
CL:ERROR 3-10
CL:EVAL-WHEN (File Package Command) 3-31

INDEX-1

INDEX

CL:GENSYM (Function) 3-2
CL:LOAD (Function) 3-24
CL: MAKE-HASH-TABLE (Function) 3-4
CL: MAPHASH (Function) 3-4
CL:PRIN1 (Function) 3-41-42
CL:PRINC (Function) 3-41
CL:READ (Function) 3-40
CL: READ-PRESERVI NG-WHITESPACE (Function)

3-41
CL:THROW (Function) 3-5,11
CL: UNWIND-PROTECT 3-6
CL:UNWIND-PROTECT (Function) 3-11
CL:WITH-INPUT-FROM-STRING 3-37
CL:WRITE (Function) 3-41
CLEANUP (Function) 3-25
cleanup forms 3-6
CLEARCLISPARRAY (Function) 4-10
CLEARSTK (Function) 4-5
CLEARSTKLST (Variable) 4-5
CLiSP infix forms 3-33
CLiSPARRA Y 4-2
CLOSEALL (Function) 3-38
closure 7-8
coerce (Function) 7-12
COERCE-TO-NSADDRESS (Function) 4-33
collect (Macro) 7-6
collecting objects

macros for 7-6
COLLECTION (FreeMenu Item Property) D-12
COLLECTION property 4-26
COLUMN (FreeMenu Group Property) D-7
COLUMNSPACE (FreeMenu Group Property) D-7
Comment Out Selection (Editor Command) 8-9
comment treated as declaration 3-32
Comments

in SEdit 8-6
Common Lisp strings 3-3
Common Lisp Symbols 3-1
COMMONNUMSYNTAX 3-44
compile-definer (Definer) 7-2
compile-form (Definer) 7-2
compiler

behavior with FLETed lexical functions 7-12
behavior with recursion 7-12
ignoring TEdit formatting 7-12
retaining special arguments 7-12

complex numbers 3-4
corns 7-11
condition E-3
conditions:*break-on-signals* (Variable) E-9
conditions:abort (Function) E-21
conditions:compute-restarts (Function) E-18
conditions:continue (Function) E-21
conditions:define-condition (Macro) E-5
conditions:find-restart (Function) E-19
conditions:handler-bind (Macro) E-4,11
conditions:handler-case (Macro) E-11
conditions:ignore-errors (Macro) E-12
conditions:invoke-debugger (Function) E-13
conditions:invoke-restart (Function) E-5,20
conditions:invoke-restart-interactively (Function)

E-20
conditions:make-condition (Function) E-6,8
conditions:muffle-warning (Function) E-22
conditions:restart-bind (Macro) E-17
conditions:restart-case (Function) E-5
conditions: restart-case (Macro) E-13
conditions: restart-name (Function) E-19

INDEX-2

conditions:signal (Function) E-8
conditions:store-value (Function) E-22
conditions: use-value (Function) E-22
conditions:with-simple-restart (Macro) E-20
CONN (Exec Command) A-7
CONTROL-A (Editing Command) A-21
Control-C (Editor Command) 8-7
Control-L (Editor Command) 8-7
Control-Meta-; (Editor Command) 8-9
Control-Meta-F (Editor Command) 8-8
Control-Meta-O (Editor Command) 8-7
Control-P 4-29
CONTROL-Q (Editing Command) A-21
CONTROL-R (Editing Command) A-21
Control-T 4-29
CONTROL-W (Editing Command) A-21
Control-W (Editor Command) 8-7
CONTROL-X (Editing Command) A-21
Control-X (Editor Command) 8-7
Convert Comments (Editor Command) 8-9
Convert-Upgrade (Variable) 8-14
converting characters 3-3
Converti ng old code

for use with new Error system E-1
COORDINATES (FreeMenu Group Property) 0-7
COPY (Function) 3-49
COpy BYTES (Function) 4-16
COPYDEF (Function) 4-4
COPYFILE (Function) 3-38
COPYREADTABLE (Function) 3-46
COS (Function) 4-3
COURIER.CALL (Function) 4-34
COURIER.OPEN (Function) 4-34
Creati ng an Exec process A-18
Creating conditions E-4
Creati ng icons

with ICONW C-1
CTRLU FLG 4-18
ctypecase (Macro) E-10
CU HOTSPOTX 4-30
CU HOTSPOTY 4-30
CUIMAGE 4-30
current package 3-45
CURSOR 4-30
Cursor Movement Commands A-22
CURSOR81TMAP 4-30
CURSORCREATE (Function) 4-30
CU RSORHOTSPOTX 4-30
CU RSORHOTSPOTY 4-30

D
DA (Exec Command) A-7
DAUGHTERS (FreeMenu Group Property) D-8
DC (Function) 3-18
Declining by Condition handler E-4
DEdit 3-15
Default handlers 3-10
Default-Commands (Function) 8-15
DEFAUL T.OSTYPE (Variable) 4-15
DEFAULTFONT (Variable) D-7
DEFAUL TICONFN (Variable) 4-25
DEFAUL TTEXTICON (Variable) C-3
deferredconstant (Function) 7-12
define-file-environment (Definer) 7-2
define-record (Definer) 7-3
Defining New Terms A-11
DEFMACRO (Macro) 3-5
defstruct (Macro) 7-4

LISP RELtASE NOTES, MEDLEY RELEASE, INDEX

warning 7-6
DELDEF (Function) 3-28
Delete Selection (Editor Command) 8-7
Delete Structure (Editor Command) 8-8
Delete Word (Editor Command) 8-7
DELFILE (Function) 3-38
DESELECT (FreeMenu Item Property) D-12
OF (Function) 3-18
DFASL files 2-1
DFNFLG (Variable) 3-27
DIR (Exec Command) A-7
DISPLAY (FreeMenu Item) 0-6-7,14
Display icons C-1
DISPLAY item 4-26
DISPLAYFONTDIRECTORIES (Variable) 4-23
DMACRO (Property) 3-5
OMACROs 2-1
DO-EVENTS (Exec Command) A-8
DOCOLLECT (Function) 4-1
DOSHAPEFN (Window Property) 4-25
DOWNFN (FreeMenu Mouse Property) 0-10
DP (Function) 3-18
DRAWARC (Function) 4-19
DRAWLINE (Function) 4-19
DRAWPOLYGON (Function) 4-20
DSPCLEOL (Function) 4-18
OSPFONT 4-16
DSPRUBOUTCHAR (Function) 4-18
OSPSCALE 4-19
dummy definitions 3-17
DV (Function) 3-18
DWIMIFYCOMPFLG (Variable) 3-34

E
ecase (Macro) E-10
ECHOCHAR (FreeMenu Item Property) 0-13
ED (Function) 3-16
Edit (Editor Command) B-9
EDIT (FreeMenu Item) 4-27; 0-13
Edit caret in SEdit B-2
Edit Interface 3-18
EDITBM (Function) 4-18
EDITCALLERS (Function) 3-19
Editi ng Exec Input A-20
Editing Lisp Code in Memory B-1
Editing VALUES 3-18
EDITMODE (Function) 3-16
EDITSTART (FreeMenu Item) 4-27; 0-14
END-OF-FILE (Error Type) 3-12
ENDCOLLECT (Function) 4-1
Ending an SEdit session B-2
ENDOFSTREAMOP 3-38
ENVAPPLY 3-6
ENVEVAL 3-6
EQUAL (Function) 3-26
EQUALALL (Function) 4-3
ERROR (Function) 3-10
error (Function) E-9
Error conditions 3-10
error system 3-10
Error system

differences between old and new E-1
Error system proposal E-1
Error type mapping 3-11
Error type name 3-11
Error type number 3-11
ERROR! (Function) 3-10
ERRORMESS (Function) 3-10

LISP RELEASE NOTES, MEDLEY RELEASE, INDEX

ERRORMESS1 (Function) 3-10
ERRORN (Function) 2-2; 3-10
Errors

definition of E-3
ERRORSET 3-10
ERRORSTRING (Function) 3-10
ERRORTYPELIST 3-10
ERRORTYPELIST (Variable) 2-2
ERSETQ (Function) 3-10; 4-8
ERXM 3-10
ESCAPE (Editing Command) A-21
Escape

in SEdit B-6

INDEX

Establishing handlers within dynamic context E-4
etypecase (Macro) E-10
Eval (Editor Command) B-9
EVAL-format input A-2
Exec Editing Commands A-22
Exec type A-4
EXEC-EVAL (Function) 3-9
EXPAND (Editor Command) B-9
EXPANDBITMAP (Function) 4-18
EXPANDMACRO (Function) 3-5
EXPANDREGIONFN (Window Property) 4-24
EXPLICIT (FreeMenu Group Property) 0-7
export (Function) 7-9
Extract (Editor Command) B-9

F
F (Event Address) A-5
features

new Common Lisp 7-1
FETCH 3-33
Fi Ie Manager 3-19
file-reading functions 3-20
FILEPKGCOM (Function) 4-9
FILEPKGTYPE (Function) 4-9
FILEPKGTYPES (Variable) 3-16
FILEPOS (Function) 4-16
FILEROTBL 3-22
files containing bitmaps 3-31
FILES? (Function) 3-28
FILETYPE (Property) 3-25
FILLPOLYGON (Function) 4-19-20
FIND (Editor Command) B-8
Find Gap (Editor Command) B-8
FIND-READTABLE (Function) 3-45
FINDCALLERS (Function) 3-19
FIX (Exec Command) A-8
FIXP (Predicate) 3-4
flet (Special form) 7-4
floating point 3-4
FLOA TP (Predicate) 3-4
FM.BACKGROUND (FreeMenu Window Property)

D-15
FM.CHANGELABEL (FreeMenu Function) D-16
FM.CHANGELABEL (Function) 4-27-28
FM.CHANGESTATE (FreeMenu Function) 0-16
FM.CHANGESTATE (Function) 4-28
FM.DONTRESHAPE (FreeMenu Window Property)

0-15
FM.EDITITEM (FreeMenu Function) D-17
FM.EDITP (FreeMenu Function) 0-17
FM.ENDEDIT (FreeMenu Function) 0-17
FM.FIXSHAPE (Function) 4-28
FM.FORMATMENU (Function) 4-26-27
FM.GETITEM (Function) 4-27
FM.GETITEM (FreeMenu Function) 0-15

INDEX-3

INDEX

FM.GETSTATE (FreeMenu Function) 0-16
FM.GETSTATE (Function) 4-27
FM.GROUPPROP (FreeMenu Macro) 0-7,18
FM.HIGHLIGHTITEM (FreeMenu Function) 0-17
FM.HIGHLIGHTITEM (Function) 4-28
FM.lTEMFROMID (Function) 4-27
FM.lTEMPROP (FreeMenu Macro) 0-18
FM.MAKEMENU (Function) 4-26-27
FM.MENUPROP (FreeMenu Macro) 0-7,19
FM.NWA YPROP (FreeMenu Macro) 0-19
FM.NWA YPROPS (Macro) 4-27
FM.PROMPTWINDOW (FreeMenu Window

Property) 0-15
FM.READSTATE (Function) 4-27
FM.REDISPLA YITEM (FreeMenu Function) 0-18
FM.REDISPLA YMENU (FreeMenu Function) 0-18
FM.RESETGROUPS (FreeMenu Function) 0-17
FM.RESETMENU (FreeMenu Function) 0-17
FM.RESETSHAPE (FreeMenu Function) 0-17
FM.RESETSHAPE (Function) 4-28
FM.RESETSTATE (FreeMenu Function) 0-17
FM.SHADE (FreeMenu Function) 0-18
FM.SHADE (Function) 4-28
FM.SHADEITEM (Function) 4-28
FM.SHADEITEMBM (Function) 4-28
FM.SKIPNEXT (FreeMenu Function) D-17
FM.TOPGROUPID (FreeMenu Function) 0-18
FM.WHICHITEM (FreeMenu Function) 0-18
FONT (FreeMenu Group Property) 0-7
FONT (FreeMenu Item Property) 0-9
font descri ptor 4-22
FONTCHANGEFLG (Variable) 4-23
FONTCREA TE (Function) 4-22
FONTSAVAlLA8LE 4-21
FOR 3-33
FOR (Exec Command) A-6
FORGET 4-6
FORGET (Exec Command) A-8
FORMAT (FreeMenu Group Property) 0-4,7
Free Menu

How to make a 0-1
Free Menu format D-2
Free Menu layout 0-1
FREEMENU (FreeMenu Function) 0-15
FREEMENU (Function) 4-26-27
FROM (Event Address) A-5
FULLNAME (Function) 3-37
FUNARG 4-4

G
Gaps

in SEdit 8-4
garbage collector 4-11
gensym (Function) 3-2; 7-12
GET-ENVIRONMENT-AND-FILEMAP (Function)

3-23
Get-Prompt-Window (Function) 8-15
Get-Selection (Function) 8-16
Get-Window-Region (Function) 8-13
GETDEF (Function) 3-28
GETFILEINFO (Function) 3-38; 4-13
GETPROMPTWINDOW (Function) 4-28
GETREADTABLE (Function) 3-39
GETSYNTAX 3-45
global macro shadowing 7-4
GROUP (FreeMenu Group Property) 0-7
GROUPID (FreeMenu System Property) 0-10

INDEX-4

H
handler (Function) E-4
Handling conditions E-3
HARDCOPYW (Function) 4-29
HARDRESET (Function) 4-4
HASDEF (Function) 3-26,28; 4-9
hash arrays 3-4
HASHARRA Y 3-4
HASHARRA Y (Function) 4-2
HELDFN (FreeMenu Mouse Property) 0-10
HELP (Editor Command) 8-9
HELP (Function) 3-10
Help Menu Commands 8-11
HIGHLIGHT (FreeMenu Item Property) 0-9,14
History list A-16
HISTORYSAVEFORMS (Variable) 3-9
HJUSTIFY (FreeMenu Item Property) 0-4,9
HORRI8LEVARS 4-9,15
HPRINT (Function) 4-15

I
ICONW (Function) C-1
ICONWwindows

from an image defined by a mask C-1
with titles C-1

ICONW.SHADE (Function) C-2
ICONW.TITLE (Function) C-2
10 (FreeMenu Group Property) 0-7
10 (FreeMenu Item Property) 0-9
IDLE-PROFILE 4-6
IDLE-RESETVARS (Variable) 4-6
IDLE-SUSPEND-PROCESS.NAMES (Variable) 4-7
IEEE 802-3 specification 4-34
IF 3-33
IL Exec 3-7
IL:IT (Variable) A-9
IL:LOAD (Function) 3-24
IL:MAPHASH (Function) 3-4
IL:PRIN1 (Function) 3-41
IL:PRIN2 (Function) 3-41
IL:READ (Function) 3-40
ILLEGAL-GO (Error Type) 3-11
ILLEGAL-RETURN (Error Type) 3-11
ILLEGAL-STACK-ARG (Error Type) 3-12
IN (Exec Command) A-6
in-package (Function) 7-8
INFILEP (Function) 3-37
INFINITEWIDTH (FreeMenu Item Property) 0-13
INITSTATE (FreeMenu Item Prop) 4-26
INITSTATE (FreeMenu Item Property) 0-9,12
INPUT (Function) 3-37
INPUTFONT (Variable) A-10
Inspect (Editor Command) 8-10
INTEGERLENGTH (Function) 4-3
integers 3-4
Interlisp Compiler 3-31
INTERLlSP-ERROR (Error Type) 3-12
INTERPRESSFONTDIRECTORIES (Variable) 4-22
INTERRUPTCHAR (Function) 4-29
INVALID-ARGUMENT-LiST (Error Type) 3-12
ITEMS (FreeMenu Group Property) 0-8

J
Join (Editor Command) 8-10

K
Keep-Window-Region (Variable) 8-13

LISP RELEASE NOTES, MEDLEY RELEASE, INDEX

KEY ACTION (Function) 4-31
KEYDOWNP (Function) 4-31

L
LABEL (FreeMenu Item Property) 0-9
LABELS construct

warning 7-10
LASTC (Function) 4-15
Layout

of Free Menu 0-1
LCOM files 2-1
Idflg 7-11
LEFT (FreeMenu Group Property) 0-7
LEFT and BOTTOM (FreeMenu Item Property) 0-9
Left mouse button

in SEdit B-3
lexical bindings 3-33
Library modules

summary of changes 5-1
lIMITCHARS (FreeMenu Item Property) 0-3,13
LINKS (FreeMenu Item Property) 0-10,15
LISP 3-47
Lisp structures

SEdit gaps for B-4
LlSPSOURCEFllEP (Function) 4-10
LlSPXEVAL (Function) 3-9
LlSPXFNS (Variable) A-15
LlSPXHISTORY (Variable) A-16
LlSPXHISTORYMACROS (Variable) 3-9
LlSPXMACROS 3-8
LlSPXMACROS (Variable) 3-9
LlSPXREADFN (Function) 4-8
LlSPXUNREAD (Function) 3-9
LlSPXUSERFN (Variable) 3-9
LIST (Function) 3-49
Lists

in SEdit B-5
LOAD (Function) 3-20

loadflg (Argument) 7-11
load-time expression 7-4
LOADCOMP (Function) 3-25
LOADFNS (Function) 3-20,25
LOADFROM (Function) 3-25
loading compiled files 3-32
loading Medley files into Lyric 4-10
lOADVARS (Function) 3-25
L<;>cally defined handler E-4
LOCALVARS 3-2
LOGIN.TIMEOUT 4-6
LOGOUT (Function) 4-7
long-site-name (Variable) 7-3

M
MACHINETYPE (Function) 4-7
MAKE-READER-ENVIRONMENT (Function) 3-23
MAKEFILE (Function) 3-20,25,43,49
MAKEFllE-ENVIRONMENT (Property) 3-21
MAKESYS (Function) 4-7
MAKETITLEBARICON 4-25
map (Function) 7-11
MAPATOMS (Function) 3-2-3
MAX (Function) 4-2
MAX.lNTEGER (Variable) 4-2
MAXHEIGHT (FreeMenu Item Property) 0-9
MAXREGION (FreeMenu System Property) 0-11
MAXWIDTH (FreeMenu Item Property) 0-7,9,13
Medley

LISP RELEASE NOTES, MEDLEY RELEASE, INOEX

on Sun workstations 1-1
on Xerox workstations 1-1

Medley compiled files 2-1
Medley enhancements

summary 1-1
MENU (FreeMenu Group Property) 0-7

INDEX

MENU FONT (FreeMenu Item Property) 0-12
MENUITEMS (FreeMenu Item Property) 0-6,12
MENUTITlE (FreeMenu Item Property) 0-12
MESSAGE (FreeMenu Item Property) 0-9
Meta- ((Editor Command) B-10
Meta-) (Editor Command) B-10
Meta-! (Editor Command) B-9
Meta-9 (Editor Command) B-10
Meta-; (Editor Command) B-9
Meta-A (Editor Command) B-7
Meta-B (Editor Command) B-11
Meta-Control-C (Editor Command) B-7
Meta-Control-S (Editor Command) B-8
Meta-Control-X (Editor Command) B-7
Meta-E (Editor Command) B-9
Meta-F (Editor Command) B-8
Meta-H (Editor Command) B-9
Meta-I (Editor Command) B-10
Meta-J (Editor Command) B-10
Meta-M (Editor Command) B-11
Meta-N (Editor Command) B-8
Meta-O (Editor Command) B-9
Meta-P (Editor Command) B-11
Meta-R (Editor Command) B-8
Meta-Return (Editor Command) B-10
Meta-S (Editor Command) B-8
Meta-Space (Editor Command) B-10
Meta-U (Editor Command) B-7
Meta-X (Editor Command) B-9
Meta-Z (Editor Command) B-10
Middle mouse button

in SEdit B-3
MIN (Function) 4-2
MIN.lNTEGER (Variable) 4-2
minimum window size 4-24
MKSTRING (Function) 3-42
MOMENTARY (FreeMenu Item) 0-11
MOTHER (FreeMenu Group Property) 0-8
Mouse buttons

in SEdit B:..3
MOVD (Function) 4-4
MOVEDFN (FreeMenu Mouse Property) 0-10
multiple escape character 3-42
Multiple Execs A-4
multiple streams 3-37
MULTIPLE-ESCAPE 3-45
Mutate (Editor Command) B-10

N
NAME (Exec Command) A-8
NCHARS (Function) 3-42
NCHOOSE item 4-26
NDIR (Exec Command) A-8
Nesting Free Menu Groups 0-2
NETWORKOSTYPES (Variable) 4-15
NEW (MAKEFILE Option) 3-21
NLAMBOA 3-5
NlSETQ (Function) 3-10; 4-8
NOBINO 3-2
NOClEARSTKLST (Variable) 4-5
NODIRCORE (File Device) 4-13
Normalize Selection (Editor Command) B-10

INOEX-5

INDEX

notational conventions 18
NSADDRESS 4-32
NSNAME 4-32
NSNET.DISTANCE (Function) 4-35
NUMBER (FreeMenu Item) 0-14
NUMBERP (Predicate) 3-4
NUMBERTYPE (FreeMenu Item Property) 0-14
NWA Y (FreeMenu Item) 4-26; 0-6; 12
NWA YPROPS (FreeMenu Item Prop) 4-27
NWAYPROPS (FreeMenu Item Property) D-6,12

o
OLO-INTERlISP-FILE 3-47
OLD-INTERlISP-T 3-48
once-only (Macro) 7-7
OPENFILE (Function) 3-37
OPENFN (Window Property) 4-25
OPENP (Function) 3-38
OPENSTREAM (Function) 3-11,37
OPENSTRINGSTREAM (Function) 3-37; 4-16
options E-5
ORIG 3-46
OUTPUT (Function) 3-37

P
package delimiter 2-2
PACKAGEOELIM 3-47
packages 3-19
PARSE-NSADDRESS (Function) 4-33
PAT (Event Address) A-5
pattern matching 3-6
PEEKC (Function) 4-15
pkg-goto (Function) 7-8
PL (Exec Command) A-8
PLVLFILEFLG 3-42
PP (Exec Command) A-9
PRETTYDEF (Function) 4-9
PRIN1 4-30
PRIN2 4-30
PRINT (Function) 3-20,48
PRINTLEVEL 4-29
PRINTNUM (Function) 4-15
PRINTOUT 3-43
PRINTOUTFONT (Variable) A-11
PRINTSERVICE (Variable) 4-19
process status wi ndow 4-12
PROCESS.APPL Y (Function) 4-12
PROCESS.EVAL (Function) 4-12
Programmer's interface

to SEdit 8-12
PROMPT#FLG (Variable) 3-9
PROMPTFONT (Variable) A-10
PROMTPCHARFORMS (Variable) 3-9
PROTECTION 4-13
PRXFLG 3-42
PUTDEF (Function) 3-28

Q
Quote (Editor Command) 8-10
Quoted structures

in SEdit 8-5

R
RADIX (Function) 3-44
ratios 3-4
READ (Function) 3-20,48
read-eval-print A-1

INDEX-6

read/print consistency 3-44
READBUF (Variable) 3-9
READC (Function) 3-41
READER 4-13
READER-ENVIRONMENT 3-20
READLINE (Function) 4-8
READMACROS 4-16
READSYS (Function) 4-35
READTABLEPROP (Function) 3-45
READVISE (Function) 3-14
REALFRAMEP (Function) 4-5
REBREAK (Function) 3-14
RECOMPILE (Function) 3-22,25
record-create (Macro) 7-4
record-fetch (Macro) 7-4
record-ffetch (Macro) 7-4
Redisplay (Editor Command) 8-7
Redo (Editor Command) 8-8
REDO (Exec Command) A-6
REGION (FreeMenu Group Property) D-8
REGION (FreeMenu System Property) 0-11
RELDRAWTO (Function) 4-19
Release Notes

organization of 17
REMEMBER (Exec Command) A-8
REMPROP (Function) 3-2
RENAMEFILE (Function) 3-38
REPAI NTFN 4-24
REPAINTFN (Window Property) 4-25
REPEATUNTIL 4-3
Replace-Selection (Function) 8-16
Reporting a condition or restart E-5
Reset (Function) 3-10; 8-14
Reset-Commands (Function) 8-15
RESETFORM 3-40
RESETFORM 3-39
RESETFORMS (Variable) 3-9
RESETLST 3-6
Resetti ng system state 3-11
RESETVARS 4-6
RESHAPEFN 4-24
Restart type E-5
Restarting computations E-3
Restarting conditions E-5
RET APPLY 3-6
RETEVAL 3-6
RETFROM 3-6
RETFROM (Function) 3-11
RETRY (Exec Command) A-6
RETTO 3-6
RETURN 3-13; 4-5
Reverse Find (Editor Command) 8-8
Right mouse button

in SEdit 8-3
ROTATE-BITMAP (Function) 4-18
ROW (FreeMenu Group Property) 0-7
row-major-aref (Function) 7-4
ROWSPACE (FreeMenu Group Property) 0-7
RS232 or TTY ports 3-38

S
Save-Window-Region (Function) 8-13
SAVEVM (Function) 4-7
SCRATCH LIST 4-1
SEdit 3-15
SEdit (Function) 8-16
SEdit Command Menu 8-12
SEE (Exec Command) A-9

LISP RELEASE NOTES, MEDLEY RELEASE, INDEX

SEE* (Exec Command) A-9
SELECTEDFN (Free Menu Mouse Property) D-10
Set Package (Editor Command) B-11
SETERRORN (Function) 3-10
SETFILEINFO (Function) 3-38; 4-13
SETREADTABLE (Function) 3-48
SETSTKARGNAME (Function) 4-5
SETSYNTAX 3-45,49
SHAPEW (Function) 4-24
SH H (Exec Command) A-8
SHIFT-FIND (Editor Command) B-8
short-site-name (Variable) 7-3
SHOULDCOMPILEMACROATOMS (Variable) 4-4
SHOULDNT (Function) 3-10
SHOWPARENFLG (Variable) A-25
SHRINKBITMAP (Function) 4-18
SHRINKFN (Window Property) 4-24
SI DE effects of event A-18
Signalling conditions E-3
SIN (Function) 4-3
Sketch

summary of changes 6-10
SKIP-NEXT (Editor Command) B-8
SKREAD (Function) 3-41
SORT (Function) 4-1
Special characters

in SEdit B-5
Specifying event addresses A-4
Specifying Free Menu Items D-2
stack manipulations 3-5
STACK OVERFLOW (Error Type) 4-4
Stack pointers 3-5
STACK-OVERFLOW (Error Type) 3-11
STACK-POINTER-RELEASED (Error Type) 3-12
Starting an SEdit session B-2
STATE 4-26
STATE (FreeMenu Item) D-7,11
STATE (FreeMenu Item Property) D-12
STATE (FreeMenu System Property) D-10
STKARG (Function) 4-5
STKNARGS (Function) 4-5
STKPOS (Function) 4-5
STOP (Function) 4-10
STOP-UNDOABL Y (Macro) A-13
strings 3-3

in SEdit B-6
STRINGWIDTH (Function) 3-42; 4-22
Structure caret in SEdit B-2
Structure editor 3-15
Substitute (Editor Command) B-8
SUCHTHA T (Event Address) A-5
SUSPEND-PROCESS.NAMES 4-7
Switching between editors 3-16
Symbols 3-1,6

in Error system E-1
symbols in the INTERLISP package 3-20
SYSDOWNFN (FreeMenu System Property) D-11
sysload 3-24; 7-11
SYSMOVEDFN (FreeMenu System Property) D-11
SYSOUT (Function) 4-7
SYSPRETTYFLG (Variable) 3-9
SYSSELECTEDFN (FreeMenu System Property)

D-11

T
TABLE (FreeMenu Group Property) D-7
TCOMPL (Function) 3-22,25; 4-10
TEdit

LISP RELEASE NOTES, MEDLEY RELEASE, INDEX

summary of changes 6-1
TeleRaid Library module 4-35
TEXTICON (Function) 4-25; C-3
TIME (Exec Command) A-9
TIME (Function) 3-36
TIME (Macro) 3-36
TITLE (FreeMenu Item) 4-27
titled icons 4-25
TITLEDICONW (Function) C-1
TOGGLE (FreeMenu Item) D-11
TOO-MANY-ARGUMENTS (Error Type) 3-12
TRACE (Function) 3-13-14
TTYBACKGROUNDFNS (Variable) 4-12
TTYDISPLA YSTREAM (Function) 4-25
TTYIN displaytypein editor 4-16
TTYIN Editor from Exec A-20
TY (Exec Command) A-9
TYPE (Exec Command) A-9
TYPE (FreeMenu Item Property) D-9

U
UGLYVARS 3-43; 4-9,15
UNBOUND-VARIABLE (ErrorType) 3-12
UNBREAK (Function) 3-14

INDEX

UNBREAKIN (Function) 3-13
UNDEFINED-CAR-OF-FORM (Error Type) 3-12
UNDEFINED-FUNCTION-IN-APPL Y (Error Type) 3-12
UNDO (Editor Command) B-7
UNDO (Exec Command) A-4,8,13
UNDO key (Editing Command) A-21
UNDOABL Y-MAKUNBOUND (Function) 3-29
UNDOABLY-SETQ (Function) A-15
Undoing in Functions A-14
Undoing In Programs A-13
U ndoi ng out of order A-16
U NDOSAVE (Function) A-15
UNIXFTPFLG (Variable) 4-14
UNPACKFILENAME (Function) 3-37
UNSAFEMACROATOMS (Variable) 4-4
UNTIL 4-3
USE (Exec Command) A-6
USERDATA (FreeMenu System Property) D-11
USERDATA LIST D-14
USEREXEC (Function) 3-9
USERNAME 4-6
USERWORDS (Variable) A-25
USESILPACKAGE 3-45
Using Execs 3-7

V
VALUEFONT (Variable) A-11
VARS 4-15
version delimiter 2-2
VIDEORATE (Function) 4-31
VJUSTIFY (FreeMenu Item Property) D-9

W
warn (Function) E-10
WHENCHANGED 4-9
WINDOWPROP (Function) 4-26
WINDOWPROPS 4-26
with-collection (Macro) 7-6
with-input-from-string (Macro) 7-13
with-output-to-string (Macro) 7-13
WITH-READER-ENVIRONMENT (Macro) 3-23
write-string (Function) 7-12
WRITESTRIKEFONTFILE (Function) 4-22

INDEX-7

INDEX

writi ng macros
macros for 7-7

Writing your own SEdit commands B-14

X
XCL 3-47
XCL Compiler 3-31
XCL Exec 3-7
XCL readtable 3-21
xci: *current-condition* (Variable) E-8
XCL: *DEBUGGER-PROMPT* (Variable) A-19
XCL:*EVAL-FUNCTION* (Variable) A-19
XCL: *EXEC-PROMPT* (Variable) A-19
XCL:*PER-EXEC-VARIABLES* (Variable) A-18
XCL:ABORT (Function) 3-10
XCL:ADD-EXEC (Function) A-18
XCL:ARGLIST (Variable) 3-15
XCL:ARRA Y-SPACE-FULL (Error Type) 3-12
XCL:A TTEMPT-TO-CHANGE-CONSTANT (Error

Type) 3-11-12
XCL:A TTEMPT-TO-RPLAC-NIL (Error Type) 3-11
XCL:CATCH-ABORT 3-10
xci : catch-abort (Macro) E-21
XCL:CONDITION 3-10
xci :condition-case (Macro) E-11
xci :condition-handler (Macro) E-8
xcl:condition-reporter (Macro) E-7
XCL:CONTROL-E-INTERRUPT (Error Type) 3-12
XCL:DATA-TYPES-EXHAUSTED (Error Type) 3-12
XCL:DEF-DEFINE-TYPE (Macro) 3-27-28
XCL: DEFCOMMAND 3-8
XCL:DEFCOMMAND (Macro) A-11
XCL:DEFDEFINER (Function) 3-20
XCL:DEFDEFINER (Macro) 3-29
XCL:DEFGLOBALPARAMETER (Variable) 3-20
XCL:DEFGLOBALVAR (Variable) 3-20
XCL:DEFINE-PROCEED-FUNCTION (Function) 3-20
XCL:DEFINLINE (Function) 3-20
XCL:DEFOPTIMIZER 3-32
XCL:DEFOPTIMIZER (Macro) 3-5
XCL:EXEC (Function) A-18
XCL:EXEC-EVAL (Function) A-19
XCL: EXEC-FORMAT (Function) A-19
XCL:FILE-NOT-FOUND (Error Type) 3-12
XCL:FILE-WONT-OPEN (Error Type) 3-11
XCL: FLOATI NG-OVERFLOW (Error Type) 3-12
XCL:FLOATING-UNDERFLOW (Error Type) 3-12
XCL: FS-PROTECTION-VIOLATION (Error Type) 3-12
XCL:FS-RESOURCES-EXCEEDED (Error Type) 3-12
XCL:HASH-TABLE-FULL (Error Type) 3-12
XCL:INVALID-PATHNAME (Error Type) 3-12
XCL:SET-DEFAULT-EXEC-TYPE (Function) A-20
XCL:SET-EXEC-TYPE (Function) A-20
XCL:SIMPLE-DEVICE-ERROR (Error Type) 3-11
XCL:SIMPLE-TYPE-ERROR (Error Type) 3-11
XCL:STORAGE-EXHAUSTED (Error Type) 3-12
XCL:STREAM-NOT-OPEN (Error Type) 3-11
XCL:SYMBOL-HT-FULL (Error Type) 3-11
XCL:SYMBOL-NAME-TOO-LONG (Error Type) 3-11
XCL:UNDOABLY (Macro) A-13
XCL:UNDOABLY-SETF (Macro) A-15

1
10MB Ethernet encapsulation types 4-34
1108 User's Guide

summary of changes 6-14
1186 User's Guide

INDEX-8

summary of changes 6-16

3
3STATE (FreeMenu Item) 4-26; D-11

\
\#UNDOSAVES (Variable) A-15
\ 1 OMBTYPE-3T01 0 (Variable) 4-34
\10MBTYPE-PUP (Variable) 4-34

-C (Format directive) 7-13

!
!EVAL 2-2

*
break-on-warnings (Variable) E-10
Clear-Linear-On-Completion (Variable) B-14
Compile-Fn (Variable) B-16
COMPILED-EXTENSIONS (Variable) 3-25
DEFAULT-CLEANUP-COMPILER (Variable) 3-25
DEFAULT-MAKEFILE-ENVIRONMENT (Variable)

3-21
Edit-Fn (Variable) B-16
ERROR-OUTPUT (Variable) 3-10
Fetch-Definition-Error-Break-Flag (Variable)

B-16
Getdef-Error-Fn (Variable) B-16
Getdef-Fn (Variable) B-16
LAST-CONDITION (Variable) 3-10
LlSPXPRINT (Property) A-18
NSADDRESS-FORMAT (Variable) 4-32
PACKAGE (Variable) 3-20,45-46; A-1
PRINT-ARRA Y (Variable) 3-43
PRINT-BASE (Variable) 3-39,42,44
PRINT-BASE vs RADIX 3-39
PRINT-CASE (Variable) 3-44
PRINT-ESCAPE (Variable) 3-41,44
PRINT-LENGTH (Variable) 4-22
*PRINT-LEVEL * (Variable) 4-22
*PRINT-LEVEL * & *PRINT-LENGTH* vs

PRINTLEVEL 3-39
*PRINT-LEVEL * or *PRINT-LENGTH* is exceeded

3-45
PRINT-RADIX (Variable) 3-39,44
READ-BASE (Variable) 3-20,44
READ-SUPPRESS (Variable) 3-41
READTABLE (Variable) 3-39,41-42,48
READTABLE vs SETREADTABLE 3-39
*REMOVE-I NTERLlSP-COMMENTS * (Variable)

3-29-30
STANDARD-INPUT (Variable) 3-37
STANDARD-INPUT vs INPUT 3-39
STANDARD-OUTPUT (Variable) 3-37
STANDARD-OUTPUT vs OUTPUT 3-39
Wrap-Parens (Variable) B-13
*Wrap-Search * (Variable) B-14

:fast-accessors (Defstruct option) 7-5
:inline (Defstruct option) 7-5
:template (Defstruct option) 7-5
:type (Defstruct option) 7-5

LISP RELEASE NOTES, MEDLEY RELEASE, INDEX

=
= (Event Address) A-S

?
? (Exec Command) A-7
?? (Exec Command) A-7
?ACTIVATEFlG (Variable) A-24

LISP RELEASE NOTES, MEDLEY RELEASE, INDEX

INDEX

INDEX-9

C
U
T

o
N

D
o
T
T
E
D

L
I
N
E

Envos Corporation

READER COMMENT FORM

WE WOULD APPRECIATE YOUR COMMENTS AND SUGGESTIONS FOR IMPROVING THIS PUBLICATION_

PUBLICATION NUMBER I RELEASE DATE I TITLE I CURRENT DATE

HOW DID YOU USE THIS PUBLICATION? IS THE MATERIAL PRESENTED IN THIS GUIDE:

D LEARNING D WRITING/GRAPHIC
FULLY WELL WELL o REFERENCE o INSTALLATION o COVERED D ILLUSTRATED D ORGANIZED D CLEAR

WHAT IS YOUR OVERALL RATING OF THIS PUBLICATION? DO YOU HAVE SUGGESTED CONTENT CORRECTIONS, CHANGES

D VERY GOOD o FAIR o VERY POOR
OR ADDITIONS)

DGOOD o POOR DYES o NO

YOUR OTHER COMMENTS MAY BE ENTERED HERE_ PLEASE BE SPECIFIC AND GIVE PAGE, PARAGRAPH AND LINE NUMBER
REFERENCES WHERE APPLICABLE_

YOUR NAME & RETURN ADDRESS

THANK YOU FOR YOUR INTEREST (FOLD AND FASTEN AS SHOWN ON BACK AND MAIL)

TAPE HERE ONLY

___ f9.~~ _ _ _ _ .. _. _ _ _ .. _. _ _ . _ ... _ _ -..... _

FOLD

BUSINESS REPLY MAIL
First Class Permit No. 1744 Mountain View, California

Postage will be paid by Addressee

Envos Corporation
Attn: Customer Support
1157 San Antonio Road
Mountain View, California 94043

No Postage
Necessary
If Mailed

in the
United States

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	replyA
	replyB

