

Venue An Introduction to Medley

Release 2.0
February, 1992

Address comments to:
Venue

User Documentation
1549 Industrial Road
San Carlos, CA 94070
415-508-9672

An Introduction to Medley
Release 2.0

February 1992

Copyright ©1992 by Venue.
Allrightsreserved.

Medley is a trademark of Venue.

Xerox® is a registered trademark and InterPress is a trademark of
Xerox Corporation. ‘

UNIX? is a registered trademark of UNIX System Laboratories.
PostScript is a registered trademark of Adobe Systems Inc.
Copyright protection includes material generated from the software

Frog’rams displayed on the screen, such as icons, screen display
ooks, and the like.

The information in this document is subject to change without
notice and should not be construed as a commitment by Venue.
While every effort has been made to ensure the accuracy of this
document, Venue assumes no responsibility for any errors that may

appear.

Text was written and produced with Venue text formatting tools;
}C{lerorg printers were used to produce text masters. The typeface is
assic.

TABLE of CONTENTS

1. BHEF GIOSSANY ...ttt ssesasses s sessas st sassm s secenens 1-1

2. Typing and Typing Shortcuts
Programmer’s ASSISTANL......c..oe ettt cresere s st ee e s e sres e e s ar e s s sa s bessar e msbenns 2-1

T YOU MAKE @ MISLAKEcoceiniiieiieiieiecieeeceteecseressee st sestemeencee e e eesen e esaes st senstessssanssnssnes sesnenen 2-3
3. Using Menus
Making a Selection froM @ MENU ...ttt st e ee s s cesse s s aste s satessrassesnsas s ensans 3-1
Explanations of MENU HEIMSe it erestr e caaasseseseeee s rs e s esasssssanas s snnnanes 3-2
SUDIMIENUS ...ttt eeeecreeceresette st e ssaeesesaeessneessraessemnemeest e ssetesaasmeseaseesstssssastensnenssnnssssns 3-2
SUMMATY ...ttt re s e rrree e s e s s e saessresteaeseee s ansmmes s sssstereaeseeneeenesaesnseesatssanesstassssarsssasssanssses 3-3
4. How to Use Files
TYPES Of FHlES occiieeeceiee et ccetteeeeccette et eee st sree e saneaessaesseesseastasaseannnssssesansssesessnnssssaseannasssners 4-1
DIPECLOFIES ..eeiiicetereiecrie i ciieee e creteeseer e s ae e se et nae s e resremaneesssesesssaassnsasasmsaessesneassesssensesenssssssns 4-1
DiIreCIONY OPLONS .coiiiieiiererieeceitereerere s esree e s seesesseessnaestersseassseassseessesnessssnessnsmtessnnserassasassssrnen 42
SUDQITBCIOMES ..eeeiieirceiree et ce et e ree s st e e see e e st e ese et se s eare s st easaaeasessbesaateseneesam st sesans 4-2
To See What Files Are LOAAEMoiioiieeecreee et see e e sce e ae s e e s eesaeneme e smeae st eescontsane 4-3
Simpie Commands for Manipulating FileSc.cceevieeerer e eee e eree e seeseeeesan e seae e cassene 4-3
ConNNECHNG 10 @ DIFQCIONYot ieee e etee et entaesr e eas e e em e e e e s eesnaesasee e eane e emseanas s senennen 4-4
File Version NUMDEISc..ciiiiii it ivtrereeerteeecsteesstaessesesre seesstsss e ssneessessanasaseessasessnsessssasessenans 4-4
5. FileBrowser
CalliNg the FHEBIOWSETucicieeeeeiiceeeieeeeteeessstssesesseesssssessesssssesssssesssssessssesesasesssssnesssmssasssns 5-1
FileBrowser COMMANASccccceeuiemiiririesiesesrseereestesssrsasssessesssnssassasssssassssssesassserasassaansnsseseases 5-3
6. Those Wondertul Windows!
Windows Provided by MedlY ... et ettt e e e ee e s sn e s e eae 6-1
Creating @ WINGOW oiiiiiiciecreeecee e e etee e eesesste s e e e se e sess e aseasssassnsesssessseassnssnssessnesasseesan 6-2
Right Button Defauit WINAOW MENUcccoeeiieeceeceeceieceerteeeeeececteesecseeeesnseesste s s ssssess s msnassses 6-2
Explanation of EACh MenU ITBMeievireecece et et e ceecteeeseneeseen e eeeeseeestasesssasseasnemsesannes 6-3
ScCrollable WINAOWScocciiieeiiecieccecertetiece s ccees e et e sae ssestene st s ssaesss e esasseessaseesnnesnsansesnsssennens 6-4
Other WINAOW FUNCHONSc..ocieiie ettt et ste s te s e seae st e e e st seesee s saeennanseenmnsensans 6-5
PROMPTPRINT ..ttt sttt e saen e e sas es e e e s ere s e eeteersasas s aesaessasnsessseseseennes 6-5
WHICHW L.ttt s tee sttt te st e e se s e e e ssass e e e asse s s esse et et sestensaensasnsessmassranan 6-6

An Introduction to Medley, Release 2.0

iii

TABLE OF CONTENTS

7. Editing and Saving

Defining FUNCHONSoc.cviiiiiiiiic ettt ettt cecs e e s s eeere et ssaras 7-1
Simple Editing in the EXecUtive WINAOWcc.ciiieeiceniieceereeeeeeresere s s sscemeseese st eeeasnmeassaseeas 7-2
Using the List SrUCLUNE EQHOrccoeeeeereeececteesteieieres e rre s eseeeetesresessesesseesea s e sennesseassnesnsesassen 7-3
ComMmMENtING FUNCHONSoeeecerereiceecerecesteeesteret e ae st e e s e sne s e seesessesnsaessassnneassesess e sasnssanseaesneonann 7-4
File Functions and Variables: How to See and Save Themccccociicrivrcncnninninccnsecssaece 75
FIle VAMHADIESc.eiceeceereieeeeeeieseeeree e eseesassae s e se e e sastasstestasnasssesaensesssessesneasseensestessassaesaessoeans 7-5
Saving INErliSP=D ON FlES ..ot ivrireereereerrtreesetee s rriecereesnesesnesesassessassssassnsssessasaesenneasesesnsnasesannes 75
8. Your Init File
Using the USERGREETFILES Variableccccciveciiiiicceectrersesescerseresereeseaesesnnsesseseseesesssesns 8-1
MAKING AN INIE FIIQ <.oevveeeeeereeeeceeeecemeeaessscessseeessseemasssssssssssnsssessssssesesssnnas e 8-1
9. Medley Forgiveness: DWIM ... nsss e 9-1
10. Break Package
Break WINAOWSccceiiiiieeiieceie i seeteerseeessaee s smnessae sasesasesesasesssessssnnssnsassesasesnse sessasssannas 10-1
Break Package EXamMPIESccccoieieereerieeieereitrereste s rcee st ese e s e e s e ase s me s e s s e e e sr e sasn e esasens 10-1
Ways to Stop Execution from the Keyboard (Breaking LiSP) ...c.ecccccerrerereeneinencreneeneeceiesnnennas 10-3
Break MENU ..ttt e e e ree st e st e s e s e saesnasaneess e s essnsassrassms e snassaenntennreannes 10-3
_ Returning 10 TOP LEVEI ...ttt e ettt teeste s ctaeessasesenesrn e e e aeeesssnesrsnsansne sesesnnnsnnes 10-4
T1.WRAt TO DO I oot 11-1
12. Window and Regions
Windows 12-1
CREATEW ...ttt st test e st et sa e st ase e tesneseasae st et s s neesaesasnsessaeseessarsesnsns sensnennn 121
WINDOWPROP ...ttt et e e e stss e teeaessaesne st e s e eass s sea s e saesasssessensessennsensn 12-2
Getting WINAOWS t0 DO THiNGScccvevertrrirterertanisereseasesresetesessesnessesseesessessessssssssessenes 12-3
BUTTONEVENTFNoiiiiieieeesteetesteettesnteseeneaereseesesssessessensesssensesssesssnssessessnnsssssnsesnns 12-5
Looking at @ WINAOW'S PrOPEIHESccccietrevrinieecireseeeeeeteereeeereeeesseneesesssessesensosnnesnes 12-5
REGIONS ...t ettt et ee st et e et s teae et sae s e s s s aesssseessessaessennssnsssesmnnsensersneanns 12-5
13. What Are Menus?
DiSPlaYiNg MENUSc..ciriiiiiieinticectesteeeeeesteenteessesaearsseneseasssessan s e sestassesnsessssensosesrnnsernnenes 13-1
Getting MenUS t0 DO STUFccceeeceecereceteteetre s e ee s s aene e e see e se s seesesressnsnsnsenssrasnnans 13-2
WHENHELDFN and WHENSELECTEDFN Fields of aMenucccooveevieeeeeeeeeee e 13-3
LOOKING @t @ MENU'S FIRIASeoveeeeeeeeeceee e et ceresee e ecsse e seessaessssesns e s s s ors sanssamsesnen 13-5
T4, BIIM@PS ...t e eesess s s 14-1

iv An Introduction to Medley, Release 2.0

TABLE OF CONTENTS

15. Displaystreams

Drawing on a DiSPlayStrEaMcicvireireccreerieeeieceeeese s s tesseerseotreeaoeressse e s s sesssesssane e sesmanaen 15-1
DRAWIUNEcciietiertectrentttecee e s e et e st snessae st s s s s catenssseneessesssstsnssasserssessnsssaseansansanss 15-1
DRAWTO ...t eteeteeeeeste et cetme e e se s esee st e smas s e s st s et st e satsss s seaassessesnserssosensssarenonnass 15-2
DRAWCIRCLE ...t crteceecesee et st e sassns et sessesse s ese e se e sassssessenssantosasansessonnen 15-3
FILLCIRCLE. ... oottt entestesee st racece et snee st s srnesaens e se s st sses e sss e st e mnensssbestsssnnsesnsessnnnse 15-1

Locating and Changing Your Position in a DisplayStreamccccceevvriercennncnncrsneccccesaneennnne 15-4
DSPXPOSITION ...eciieieieeicirsiriesesseestestesaesesescaesessestsee st sassssneesesstsesssssssssonsensesases 15-5
DSPYPOSITION ...cooiieceeeceeeeeeteer e eneeenstas e s ssecesstsseesteses st sssessnnessssesentessssatesssasssesanes 15-5
MOVETO ..ot eieeeeeeemeite st e sessesnee s e et st em et sa s st cemae e smseneete e st sasnnasssenanason 15-5

16. Fonts

What Makes Up @ FONt NAMET ...ttt et s sssenresessessass s s b e ssnnnns 16-1

Fontdescriptors and FONTCREATEcccccerteienirineerenecsienesssaessessseesaeses s sesiesesenasseessaeenaenean 16-2

DISPlAY FONES ...t ettt ae e e e st e ere s aneae e e s s sees s smennaroe s nananas s nanntanan 16-2

INEEIPIESS FONS ...ttt e e s e e e ettt e e se e s eem e smnsseabe s e e snnreeaee 16-3

FUNCHONS fOr USING FONESiiiieitireeicetrceteeise s cetesaeeeseeessessses s snmnees sonnssssesameaessseen sesnnseas s 16-4
FONTPROP - Looking at FONt Propertiesccceiveeeceerreeeccteeiiecice st eeceeesesae s creeeenanes 16-4
STRINGWIDTH ..ottt ettt e sree e st ese s st st eaeesesse e ssasssn e teseeesensensesnsesns sesseesees 16-5
DSPFONT- Changing the Font in One WiNAOWccccoeeeereneentenicnenicetccecne caeenees 16-5

Personalizing Your FONt Profile ...ttt e, 166

17. The Inspector

Calling the INSPECION ... ecieeeeecreeete s e seesrrst e s e e sse s asaaseasseassessnsessesssnssssenssassennnes 171
18 ET15To IR aT= T8 [1 oT<Te1 o SN RS 17-2
INSPECIOr EXAMPIEooiiiiiiiiicieieecstecrtee et eec e eesntte st sraeeraaeesenesnsasasasssesessessessessssnssnssnseansssanes 17-2

18. Masterscope

SHOW DATA Command and GRAPHERc.cueoieieseeeetreieeeieeeceeeeecaesseesesesessessenssssessnsas 18-2
19. Where Does All the Time Go? SPY

How to Use Spy with the SPY WINAOWc..cooiiiceeeciectecteeestrccte e see e eessenestasses e enneannes 19-1

How to Use SPY from the LiSP TOP LEVEIc.ciciieieiieieecerececeteesesereceres e stesees e s eneemnaenaenaeas 19-2

INTErpreting SPY’S RESUIScccccieieceeceeceeecee e eeereseresecssssrssssessssssnsesssesssessaesssasssenssssesensens 19-2

20. Free Menus
EXAMPIC Fre@ MENUooiiieeeceeeeteteseertte st stteseest e e e e e seesssesse e saasssestaseanssasnessmnenaassanen 201
Parts of a Free Menu ltem
Types of Free Menu ltems

An Introduction to Medley, Release 2.0

TABLE OF CONTENTS

21. The Grapher

SAY L WIth GrapRSoeecieeeccecteceecteecseeecrerseees e s ttesestesse s s e se s e sesnsassnsasasasssnassene sensnmes sese nesesnn 21-1
AGA @INOGEoceirririnrieecnete s eee s st e sae e tasste s st s e ssass s sassesseenensssaneaseessesasessesnse serssonas 21-3
AQA @ LINK ettt cerceere e stsee e e s e sse st et e s saeseesnsesssssessessessassanssssanesaseansssesssenns 21-4
DIEte @ LINK .o.neeiiecieeeier et ettt ee s st et sre s s e ee s s s e s s e e eesenaesea b e san s st neanaran 21-4
Delete @ NOGE ...ttt s ceeers e st eesseen s sae st eesoss sesassenst e s snns s senbnsenesan 214
MOVE @ INOGE.....cie et st re st s ce et e s se s m s sote e s sme e arabsbesa s eass sosansssasssansasnres 21-5
MaKING @ Graph fTOM @ LISeveeeeeeceeeecreee e cee e teesseseee s eesesaesseeseesn s s sasssssnnanss sasasnsns 21-5
Incorporating Grapher intd YOUr PrOGraIMcccccieereeriecensrreseeseseeneessesesessessessesesmasseesessssns 21-5
MOTE Of GIAPRET ...ttt cttrcstee st s e s e s eteesreeras e seesnns sesanesseessassessssansensssaaseassans snsanaten 21-5
22. Resource Management
Naming Variables and RECOIAScccciiiereiiiirceeiecesireseeessncesntesmesssenessasessomsesssacnesesecsesenne 22-1
Some Space and TiMe CONSIEratioNScccccvieervecrerereceereeserseeseseeeaessserensresssessssssaserasees 22-2
GIODAI VANADIESccoieeiereceeccertee et reeettsae e saessse e e sase s e ems e e semtesnean e s sanassaseansensens 22-3
CIPCUIAT LISTS ..neeiveieiiireiceeeceectirsct et ste e e see s e e sesaessme e sasesae st ent et se s sesanesaaensmnesanenansasnnns 22-3
When YOou RUN OUL Of SPACEccveiiieeireeceeeeceecreeereeceer e sss st esneesssesna s s assssessssesansrnsnes 22-4
23. Simple Interactions with the Cursor, a Bitmap, and a Window
GETMOUSESTATE EXample FUNCHONoicieeieeereeeeserceeeee e eseessseeseeseeseasessenese esenenes 23-1
AQVISING GETMOUSESTATEooooeeeeemsenneeseeesessssssoeeseeeeeamssesesssssessessssmnsesssssssmssses s 23-2
ChanGing the CUISOPeeeeiececeeeecreecteieeeecetrre e testeesessssssseessssasssseesssssesssnnsesasenssnss nssesnan 23-2
FUNCHONS fOr TraCing the CUISOTeoociieeeecceeeieerrceeteeceeeeeeeseseesteeceesnsescesnsessaeeessssmnssesnas 23-2
RUNNING the FUNCHONScuiiieeiiieiceieecreeeceeeeeeesceettesiesensseesesessssessssessnsssesenssssensensssseseasesnnnnn 23-6
24. Glossary of Global System Variables
DIFECIONES ...ttt et et et se e st e vaesr e e e st e st et assae s e essesna st asasasssssnsassanssessaessnesannsanes 24-1
FLAGS ittt ettt cree et r et s e e st aee e sr s e see e eressne s seesana st sn s et s s ee s b e s s neesns s snnrares 24-2
HISTOTY LISES ...ttt ettt sttt st e s e st st st e se e e e e ena s et e se st e smaa s e esaassnennas s mnrneenne 24-3
SYSIBM MEIUSutiiieiiietireeeiteseestieitrseseeereessaeessessaesssasssesseesessaesaesesssssanssesaessnnsaessasntesnnsernenn 24-3
WINAOWS ...ttt e e cte e et e st st s e st e s se e s e ss e e ssemanssas st as e s e snessarassnsenssesesssenasessssansasaras 24-4
MISCEIIANEOUS ...ttt et it e s sne s ae e ae e st et et s s sessmsessasssnnssnsennsnsssses 24-4
25. 0ther UsefUl ReferencCes................eeeeeeeeeeeeeeeeeeeeeeeeeeee s 25.1
IA@X ...t sesmss s e eee s seeeemeses e INDEX-1

vi An Introduction to Medley, Release 2.0

PREFACE

It was dawn and the local told him it was down the road a piece, left at the first fishing
bridge in the country, right at the appletree stump, and onto the dirt road just before the
hill. At midnight he knew he was lost. -Anonymous

Welcome to the Medley Lisp Development Environment, a collection of powerful tools for
assisting you in programming in Lisp, developing sophisticated user interfaces, and
creating prototypes of your ideas in a quick and easy manner. Unfortunately, along with
the power comes mind-numbing complexity. The Medley documentation set describes all
the tools in detail, but it would be unreasonable for us to expect a new user to wade
through all of it, so this primer is intended as an introduction, to give you a taste of some
of the features.

We developed this primer to provide a starting point for new Medley users, to enhance
your excitement and challenge you with the potential before you. We're going to make
some assumptions about you. For starters, we're going to assume that you're sitting at a
workstation that can run Medley. All of the examples in the book figure that you're
going to want to try things out. We're also going to assume that you've had some exposure
to Lisp. .

LISP

Medley actually consists of two complete Lisp implementations, Common Lisp and
Interlisp. Most of the examples in this primer are done in Interlisp. However, thanks to
the package system, you can call back and forth between the two languages by simply
including a package delimiter in front of a symbol name (see figure 6-3).

Throughout we make reference to the Interlisp-D Reference Manual (IRM) by section and
page number. The material in the primer is just an introduction. When you need more
depth, use the detailed treatment provided in the manual.

Acknowledgements

The early inspiration and model for this primer came from the Intelligent Tutoring
Systems group and the Learning Research and Development Center at the University of
Pittsburgh. We gratefully acknowledge their pioneering contribution to more effective
artificial intelligence.

This primer was originally developed by Computer Possibilities, a company committed to
making Al technology available. Primary development and writing was done by Cynthia
Cosic, with technical writing support provided by Sam Zordich. It has been re-done by
Venue staff to reflect changes in the environment since the original publication.

At Xerox Artificial Intelligence Systems, John Vittal managed and directed the project.
Substantial assistance was provided by many members of the AlS staff who provided both
editorial and systems support.

An Introduction to Medley, Release 2.0 vii

PREFACE

[This page intentionally left blank]

viii An Introduction to Medley, Release 2.0

1. BRIEF GLOSSARY

The following déﬁniﬁons will acquaint you with general terms used throughout this primer. You will
probably want to read through them now, and use this chapter as a reference while you read through

the rest of the primer.

advising

argument

atom

Background Menu

binding

bitmap

BREAK

Break Window

browse

button

caret

CDR

CLISP

cr

A Medley facility for specifying function modifications without
necessarily knowing how a particular function works or even what it
does. Even system functions can be changed with advising.

A piece of information given to a Lisp function so that it can execute
successfully. When a function is explained in the primer, the arguments
that it requires will also be given. Arguments are also called
parameters.

The smallest structure in Lisp; like a variable in other programming
languages, but can also have a property list and a function definition.

The menu that appears when the mouse is not in any window and the
right mouse button is pressed.

The value of a variable. It could be either a local or a global variable.
See unbound.

A rectangular array of "pixels," each of which is on or off representing
one point in the bitmap image.

An Lisp function that causes a function to stop executing, open a Break
window, and allows you to find out what is happening while the
function is halted.

A window that opens when an error is encountered while running your
program (i.e., when your program has broken). There are tools to help
you debug your program from this window. This is explained further in

Chapter 14.

To examine a data structure by use of a display that allows you to
"move" around within the data structure.

(1) (n.) A key on a mouse.
(2) (v.t.) To press one of the mouse keys when making a selection.
A function that returns the head or first element of a list. See CDR.

The small blinking arrowhead that marks where text will appear when
it is typed in from the keyboard.

A function that returns the tail (that is, everything but the first element)
of a list. See CAR.

A mechanism for augmenting the standard Lisp syntax. One such
augmentation included in Interlisp is the iterative statement. See
Chapter 9.

Press your Return key.

(1) The kind of a datum. In Interlisp, there are many system-defined
datatypes, e.g., Floating-Point, Integer, Atom, etc.

An Introduction to Medley, Release 2.0

1-1

1. BRIEF GLOSSARY

DWIM

€ITor

evaluate or EVAL
Executive Window

file package

form

function
history

History List

icon

inspector

iterative statement

iterative variable

(2) A datatype can also be user-defined. In this case, it is like a record
made up from system types and other user-defined datatypes.

"Do-what-I-mean.” Many errors made by Medley users could be
corrected without any information about the purpose of the program or
expression in question (e.g., misspellings, certain kinds of parenthesis
errors). The DWIM facility is called automatically whenever an error
occurs in the evaluation of an Interlisp expression. If DWIM is able to
make a correction, the computation continues as though no error had
occurred; otherwise, the standard error mechanism is invoked.

Qccasionally, while a program is running, an error may occur which
will stop the computation. Interlisp provides extensive facilities for
detecting and handling error conditions, to enable the testing,
debugging, and revising of imperfect programs.

To find the value of a form. For example, if the variable X is bound to
5, we get 5 by evaluating X. Evaluation of a Lisp function involves
evaluating the arguments and then applying the function.

This is your main window, where you will run functions and develop
your programs. This is the window that the caret is in when you turn on
your machine and load Medley.

A set of functions and conventions that facilitate the bookkeeping
involved with working in a large system consisting of many source
code files and their compiled counterparts. Essentially, the file package
keeps track of where things are and what things have changed. It also
keeps track of which files have been modified and need to be updated
and recompiled.

Another way of saying s-expression. A Lisp expression that can be
evaluated.

A piece of Lisp code that executes and returns a value.

The programmer’s assistant is built around a memory structure called
the history list. The history functions (e.g. FIX, UNDQ, REDQ) are part
of this assistant. These operations allow you to conveniently rework
previously specified operations.

As you type on the screen, you will notice a number followed by a
slash, followed by another number. The first number is the exec
number, the second is the event number. Each number, and the
information on that line, is stored sequentially as the History List Using
the History List, you can easily reexecute lines typed earlier in a work
session. See Chapter 2.

A pictorial representation, usually of a shrunken window.

An interactive display program for examining and changing the parts of
a data structure. Medley has inspectors for lists and other data types.

(also called i.s.) A statement in Interlisp that repetitively executes a
body of code For example, (for x from 1 to 5 do (PRINT
x)) isanis.

(also called i.v.) Usually, an iterative statement is controlled by the
value that the i.v. takes on. In the iterative statement example above, x
is the iterative variable because its value is being changed by each

An Introduction to Medley, Release 2.0

1. BRIEF GLOSSARY

Lisp

list

Masterscope

menu

mouse

Mouse Cursor

Mouse Cursor Icons

X
il

NIL

pixel

cycle through the loop. All iterative variables are local to the iterative
statement where they are defined.

Family of languages invented for "list processing.” These languages
have in common a set of basic primitives for creating and manipulating
symbol structures. Interlisp-D is an implementation of the Lisp
language together with an environment (set of tools) for programming,
and a set of packages that extend the functionality of the system.

A collection of atoms and lists; a list is denoted by surrounding its
contents with a pair of parentheses.

_ A program analysis tool. When told to analyze a program, Masterscope

creates a database of information about the program. In particular,
Masterscope knows which functions call other functions and which
functions use which variables. Masterscope can then answer questions
about the program and display the information with a browser.

A way of graphically presenting you with a set of options. There are
two kinds of menus: pop-up menus are created when needed and
disappear after an item has been selected; permanent menus remain on
the screen after use until deliberately closed.

The mouse is the box attached to your keyboard. It controls the
movement of the cursor on your screen. As you become familiar with
the mouse, you will find it much quicker to use the mouse than the
keyboard.

The small arrow on the screen that points to the northwest.

Four types of mouse cursor icons are shown below.
Wait. The processor is busy.

The Mouse Confirm Cursor. It appears when you have to confirm that
the choice you just made was correct. If it was, press the left button. If
the choice was not correct, press the right button to abort.

This means "sweep out" the shape of the window. To do this, move the
mouse to a position where you want a corner. Press the left mouse
button, and hold it down. Move the mouse diagonally to sketch a
rectangle. When the rectangle is the desired size and shape, release the
left button.

This is the "move window" prompt. Move the mouse so that the large
"ghost” rectangle is in the position where you want the window. When
you click the left mouse button, the window will appear at this new
location.

NIL is the Lisp symbol for the empty list. It can also be represented by
a left parenthesis followed by a right parenthesis (). It is the only
expression in Lisp that is both an atom and a list.

Pixel stands for "picture element.” The computer monitor screen is
made up of a rectangular array of pixels. Each pixel corresponds to one
bit. When a bit is turned on (i.e., set to 1), the pixel on the screen
represented by this bit is black.

An Introduction to Medley, Release 2.0

1. BRIEF GLOSSARY

pretty printing

Programmer’s
Assistant

Prompt Window

property list

record

Right Button Default
Window Menu

Pretty printing refers to the way Lisp functions are printed with special
indentation, to make them easier to read. Functions are pretty printed in
the structure editor, SEdit (see Chapter 7). You can pretty print
uncompiled functions by calling the function PP with the function you
would like to see as an argument, i.e. (PP function-name). Note that
the function must be defined in memory before invoking PP or PP will
not work. For an example of this, see Figure 1-5.

108+ PP PP
FNS definition for PP:
(DEFINEQ

(PP
[NLANBDA X (* --)
(DECLARE (LOCALVARS . T))
(MAPC (NLANBDA.ARSS X)
(FUNCTION (LAMBDA (NANE)
(for TYPE in (TYPESOF NAME NIL °(FIELDS)
* CURRENT .
do (CL:FORNAT *TERNINAL-I0* “~A definition for
~S:~%%" TYPE NAME)

(SHOWDEF NANE TYPE])

107¢

Figure 1.5. Example of Pretty Printing Function PP

The programmer’s assistant accesses the History List to allow you to .
FIX, UNDO, andfor REDO your previous expressions typed to the
executive window (see Chapter 2).

The narrow black window at the top of the screen. It displays system
prompts, or prompts you have developed (see Figure 1.6).

Frorpt Window

Figure 1.6. Prompt Window

A list of the form (<property-namel> <property-valuel>
<property-name2> <property-value2>) associated with an atom. It
accessed by the functions GETPROP and PUTPROP.

A record is a data structure that consists of named "fields". Accessing
elements of a record can be separated from the details of how the data
structure is actually stored. This eliminates many programming details.
A record definition establishes a record template, describing the form
of a record. A record instance is an actual record storing data according
to a particular record template. (See datatype, second definition.)

This is the menu that appears when the mouse is in a window, and the
right mouse button is pressed. It looks like the menu in Figure 1.7. If
this menu does not appear when you press the right button of the mouse

An Introduction to Medley, Release 2.0

1. BRIEF GLOSSARY

s-expression

stack

sysout

TRACE

unbound

window

and the mouse is in the window, move the mouse so that it is pointing
to the title bar of the window, and press the right button.

Close
Snap
Paint
Clear
Bury
Redisplay
Hardcopy)?
Move
Shape
Shrink
Keyboard)

Figure 1.7. Right Button Default Window Menu

Short for "symbolic expression”. In Lisp, this refers to any well-formed
collection of left parentheses, atoms, and right parentheses.

A pushdown list. Whenever a function is entered, information about
that specific function call is pushed onto (i.e., added to the front of) the
stack. This information includes the variable names and their values
associated with the function call. When the function is exitted, that data
is popped off the stack.

A file containing a whole Lisp environment: namely, everything you
defined or loaded into the environment, the windows that appeared on
the screen, the amount of memory used, and so on. Everything is stored
in the sysout file exactly as it was when the function SYSOUT was
called.

A function that creates a trace of the execution of another function.
Each time the traced function is called, it prints out the values of the
arguments it was called with, and prints out the value it returns upon
completion.

Without value; an atom is unbound if a value has never been assigned
toit.

A rectangular area of the screen that acts as the main display area for
some Lisp process,

An Introduction to Medley, Release 2.0

1. BRIEF GLOSSARY

[This page intentionally left blank]

1-6 An Introduction to Medley, Release 2.0

2. TYPING & TYPING SHORTCUTS

Once you have logged in to Medley, you are in Lisp. The functions you type into the Executive
Window will now execute, that is, perform the designated task. Lisp is case-sensitive; it often
matters whether text is typed in upper or lowercase letters. Use the Shift-Lock, or Caps, key on your
keyboard to ensure that everything typed is in capital letters.

You must type all Lisp functions in parentheses. The Lisp interpreter will read from the left
parenthesis to the closing right parenthesis to determine both the function you want to execute and
the arguments to that function. Executing this function is called "evaluation." When the function is
evaluated, it returns a value, which is then printed in the Executive Window. This entire process is
called the read-eval-print loop, and is how most Lisp interpreters, including the one for Lisp, run.

The prompt is a number followed by a right angle bracket (see Figure 2-1). This number is the
function’s position on the History List—a list that stores your interactions with the Lisp Exec. Type

(+ 3 4),and notice the History List assigns to the function (the number immediately to the left of
the bracket). Lisp reads in the function and its arguments, evaluates the function, and then prints the
number 7.

A note on keyboards is necessary at this time. All keyboards are not the same, so some compromises
have been made on the location of a few keys to make Medley as useful as possible. One of the most
often used keys is the Backspace key. This is the key that erases the single character directly to the
left of the cursor. On some machines this key is labeled "Delete”. In this book , and all other Medley
documentation, reference to the "Backspace key" can be read as the "Delete key", as appropriate for
your keyboard.

Programmer’s Assistant

In addition to the read-eval-print loop, there is also a "programmer’s assistant.” It is the
programmer’s assistant that prints the number as part of the prompt in the executive window, and
uses these numbers to reference the function calls typed after them.

When you issue commands to the programmer’s assistant, you will not use parentheses as you do
with ordinary function calls. You simply type the command, and some specification that indicates
which item on the history list the command refers to. Some programmer’s assistant commands are
FIX, REDO, and UNDO. They are explained in detail below.

Programmer’s assistant commands are useful only at the Lisp top level, that is, when you are typing
into the Executive Window. They do not work in user-defined functions.

As an example use of the programmer’s assistant, use REDO to redo your function call (+ 3 4).
Type REDO at the prompt (programmer’s assistant commands can be typed in either upper or
lowercase) , then specify the previous expression in one of the following ways:

» When you originally typed in the function you now want to refer to, there was a History List
number to the left of the arrow in the prompt. Type this number after the programmer’s assistant
command. This is the method illustrated in Figure 2-1.

An Introduction to Medley, Release 2.0

2. TYPING & TYPING SHORTCUTS

Figure 2-1. Using a Programmer’s Assistant Command to REDO a Function

« A negative number will specify the function call typed in that number of prompts ago. In this
example, you would type in -1, the position immediately before the current position. This is
shown in Figure 2-2.

Exec (xCL)

403> (+ 3 4)
7

404> REDO =1
7
405>

Figure 2-2. Using a Negative Number after the Programmer’s Assistant Command

* You can also specify the function for the programmer’s assistant with one of the items that was in
that function call. The programmer’s assistant will search backwards in the History List, and use
the first function it finds that includes that item. For example, type REDO + to have the function .

(+ 3 4) re-evaluated.

 If you type a programmer’s assistant command without specifying a function (i.e., simply typing
the command, followed by cr), the programmer’s assistant executes the command using the
function entered at the previous prompt.

Figure 2-3 shows a few more examples of how to use the programmer’s assistant.

2-2

An Introduction to Medley, Release 2.0

2. TYPING & TYPING SHORTCUTS

az22> (» 5 4)
9

423> REDO
424> 7?7 =2

422> (+54a)
9

425> (SETQ B ’BOY)

BOY

a28>B

BOY

427> USE ABB FOR B IN 425
BOY

423> BB

BOY

429> FIX 425

429> (SETQ B 'BOY2)

BOY2

430> V

¥ 1is an unbound variable.

431> B
BOY2
432> BB
BOY
433>

Pe ool

Figure 2-3. Some Applications of the Programmer’s Assistant

If You Make a Mistake

Editing in the Executive Window is explained in detail in Chapter 7. In the following section, only a
few of the most useful commands are repeated.

To move the caret to a new place in the command being typed, point the mouse cursor at the
appropriate position. Then press the left mouse button.

To move the caret back to the end of the command being typed, press Control-X (hold the Control

key down, and type X).

To delete:
Character behind the caret Press the Backspace key
. Word behind the caret Press Control-W (hold the Control key down and type W)

Any part of the command Move the caret to the appropriate place in the command. Hold
the right mouse button down and move the the mouse cursor
over the text. All of the blackened text between the caret and
mouse cursor is deleted when you release the right mouse
button.

Entire command Press Control-U (hold the Control key down and type U)

Deletions can be undone. Just press the UNDO key.

An Introduction to Medley, Release 2.0

2. TYPING & TYPING SHORTCUTS

To add more text to the line, move the caret to the appropriate position and start to type. Whatever
you type will appear at the caret.) ,

2.4 An Introduction to Medley, Release 2.0

3. USING MENUS

The purpose of this chapter is to show you how to use menus. Many things can be done
more easily using menus, and there are many different menus provided in the Medley
environment. Some are "pop-up” menus that are only available until a selection is made,
then disappear until they are needed again. An example of one of these is the
Background Menu that appears when the mouse is not in any window and the right
mouse button is pressed. A background menu is shown in Figure 3-1. Your background
menu may have different items on it.

Idle P
SavevM
Snap
Hardcopy »
EXEC »
PSW

Figure 3-1. Background Menu

Another common pop-up menu is the right button default window menu. This menu is
explained more in Chapter 6.

Other menus are more permanent, such as the menu that is always available for use
with the Filebrowser. This menu is shown in Figure 3-2., and the specifics of its use with
the filebrowser are explained in Chapter 5.

Delete »
Undelete
Copy
Rename
Hardcopy
See
Edit
Load
Compile
Expunge
Recompute
Sort

A4

>
>
>
»
»
»

Figure 3-2. Filebrowser Menu

Making a Selection from a Menu

To make a selection from a menu, point with the mouse cursor to the item you would like
to select. If one of the mouse buttons is already pressed, the menu item should be
highlighted in reverse video. Ifit is a permanent menu, you must press the left mouse
button to highlight the item. When you release the button, the item will be selected.
Figure 3-3 shows a menu with the item "Undo" chosen.

An Introduction to Medley, Release 2.0

3. USING MENUS

Lo

Figure 3-3. Menu with the Item "Undo" Chosen

Explanation of Menu tems

Many menu items have explanations associated with them. If you are not sure what the
consequences of choosing a particular menu item will be, highlight the menu item but do
not release the left mouse button. If the menu item has an explanation associated with it,
the explanation will be printed in the prompt window. Figure 3-4 shows the explanation
associated with the item "Snap" from the background menu.

Skstch »

e

FlleBrowser
Hardcoii N

Idie
Set Postacript Perameters

Set Defauit Display Font
Set Defauit Printsr

....................

Low Leavel Tools
Logout
Directory Connsctor
Clocks
Neet lcons

Mall :

h 4

Y YTYvY

Figure 3-4. Explanation Associated with Selected Menu Item

Submenus

Some menu items have submenus associated with them. This means that, for these
items, you can make even more precise choices if you would like to.

As shown in Figure 3-5, a submenu can be indicated by a gray arrow to the right of the
menu item. To see the submenu, highlight the menu item and move the mouse cursor to
the right to follow the arrow. Choosing an item from a submenu is done the same way
you make a choice from the menu. Any submenus that might be associated with the
items in the submenu are indicated in the same way as the submenus associated with the
items in the main menu.

3-2 v An Introduction to Medley, Release 2.0

3. USING MENUS

Summary

FBE Cormrmands

Delete P
Undelete »
Copy
Rename
Hardcopy ¥ TEgr |
See Lisp Edit
Load M Sketch
Compile »
Expunge
Recompute »
Sort

Figure 3-5. Edit Submenu Displayed with Right Arrow

In summary, here are a few rules of thumb to remember about the interactions of the
mouse and system menus:

e Press the left mouse button to select a menu item
e Press the middle mouse button to get more options on a submenu

o Press the right mouse button to see the default right button window menu, and the
background menu .

An Introduction to Medley, Release 2.0 3-3

3. USING MENUS

[This page intentionally left blank]

34 An Introduction to Mediey, Release 2.0

4. HOW TO USE FILE

Types of Files

A program file, or Lisp file, contains a series of expressions that can be read and evaluated by the
Lisp interpreter. These expressions can include function or macro definitions, variables and their
values, properties of variables, and so on. How to save Interlisp expressions on these files is
explained in Chapter 7. Loading a file is explained in the Simple Commands for Manipulating Files
section below.

Not all files, however, have Lisp expressions stored on them. For example, TEdit files store text;
sketches are stored on files made with the package Sketch , or can be incorporated into TEdit files.
These files are not loaded directly into the environment, but are accessed with the package used to
create them, such as TEdit or Sketch.

When you name a file, there are conventions that you should follow. These conventions allow you to
tell the type of file by the extension to its name.

If a file contains: Then:

Lisp expressions It should either have no extension or it should have the extension
. LISP. For example, a file called MYCODE . LISP should
contain Lisp expressions.

Compiled Code It should have the extension . LCOM or .DFASL. For example,
a file called MYCODE . DFASL should contain compiled code.

A Sketch Its extension should be . SKETCH. For example, a file called
MOUNTAINS.SKETCH should contain a Sketch.

Text It should have the extension . TEDIT. For example, a file called
REPORT . TEDIT should contain text that can be edited with the
editor TEDIT.

Directories

This section focuses on how you can find files, and how you can easily manipulate files. The
commands are demonstrated using an Interlisp Executive Window. To use them in a Xerox Common .
Lisp Executive Window (the default Exec), type IL: immediately in front of the command. To see all
the files listed on a device, use the function DIR. For example, to see what files are stored in your
current directory, type:

(DIR *.*) or (IL:DIR *._.%*)

Partial directory listings can be gotten by specifying a file name, rather than just a device name. The
wildcard character * can be used to match any number of unknown characters. For example, the
command (DIR D*) will list the names of all files that begin with the letter D. An example using
the wildcard is shown in Figure 4-1.

An Introduction to Medley, Release 2.0

4. HOW TO USE FILES

M

128« (DIR {DSK}/USERS/PORTER/TMP/D*)

{DSK}<users>porter>tmp>
DRAFT.TEDIT;1
DRAFT2,.TEDIT;1
127¢

Figure 4-1. Using DIR with a Wildcard

Directory Options

Various words can appear as extra arguments to the DIR command. These words give you extra
information about the files. .

SIZE displays the size of each file in the directory. For example, type:
(DIR {DSK} SIZE)

DATE displays the creation date of each file in the directory. An example of this is shown in Figure
4-2,

Exec (MNTERLIZFE)

127« (DIR {DSK}/USERS/PORTER/TMP/D* DATE)

CREATIONDATE
- {DSK}<users>porter>tmp> '
DRAFT.TEDIT;1 28-Jan-892 11:26:21
DRAFT2.TEDIT;1 28-Jdan-92 11:26:22
128¢

Figure 4-2. Example Using DATE

DEL deletes all the files found by the directory command (WARNING: there is no escape when this
command is invoked, it deletes all the files without asking for confirmation!)

Subdirectories

Sudirectories are very helpful for organizing files. A set of files that have a single purpose (for
example, all the external documentation files for a system) can be grouped together into a

To associate a subdirectory with a filename, simply include the desired subdirectory as part of the
name of the file. Subdirectories are specified after the device name and before the simple filename.
The first subdirectory should be between less-than and greater-than signs (angle brackets) < >, with
nested subdirectory names only followed by a greater than sign >. For example:

{DSK}<Directory>SubDirectory>SubSubDirectory>...>filename
or use the UNIX convention:

{DSK} /Directory/Subdirectory/Subsubdirectory/£filename

4-2 An Introduction to Medley, Release 2.0

4. HOW TO USE FILES

To See What Files Are Loaded
If you type FILELST<CR>, the names of all the files you loaded will be displayed.

Type SYSFILES<CR> to see what files are loaded to create the sysout. If the Exec window turns
black and output ceases, just press the Space Bar twice and output will continue.

Simple Commands for Manipulating Files

‘When using these functions, always be sure to specify the full filename, including subfile directories
if appropriate.
To have the contents of a file displayed in a window:

(SEE '’ filename)

To copy a file (see Figure 4-3):
(COPYFILE ' oldfilename ' newfilename)

13e« (COPYFILE 'TAGREFS.TEDIT 'PRIMERREFS.TEDIT)
{D0SK}<users>sybalsky>PRIMERREFS. TEDIT;1
137¢

Figure 4-3. Example Use of COPYFILE
To delete a file (see Figure 4-4):

(DELFILE ' filename)

Exer {IMTERLISP)

137¢ (DELFILE 'TAGREFS.TEDIT)
{DSK}<usersd>sybalsky>tagrefs.tedit;1
138¢

Figure 4-4. Example Use of DELFILE
To rename a file:
(RENAMEFILE '’ oldfilename ’newfilename)

Files that contain Lisp expressions can be loaded into the environment. That means that the
information on them is read, evaluated, and incorporated into the Medley environment. To load a
file, type:

(LOAD '’ filename)

An Introduction to Medley, Release 2.0 4-3

4. HOW TO USE FILES

Connecting to a Directory

Often, each person or project has a‘subdjrectory where files are stored. If this is your situation, you
will want any files you create to be put into this directory automatically. This means you should
"connect” to the directory.

CONN is the Medley command that connects you to a directory. For example, CONN in Figure 4-5
connects you to the subsubdirectory PORTER, in the subdirectory USERS, on the device DSK. This
information—the device and the directory names down to the subdirectory to which you want to be
connected—is called the "path” to that subdirectory. CONN expects the path to a directory as an
argument.

Exec (INTERLIZF:

132« CONN {dsk}/users/porter/
{DSK}<users>porter>
140¢

Figure 4-5. CONNecting to Subdirectory USERS Subsubdirectory PORTER

Once you are connected to a directory, the command DIR will assume you want to see the files in
that directory, or any of its subdirectories.

Other commands that require a filename as an argument (e.g., SEE, above) will assume that the file is
in the connected directory if there is no path specified with the filename. This will often save you
typing. ‘

File Version Numbers

‘When stored, each filename is followed by a semicolon and a number, as shown in this example:
MYFILE.TEDIT;1

The number is the version number of the file. This is the system’s way of protecting your files from
being overwritten. Each time the file is written, a new file is created with a version number one

greater than the last. This new file will have everything from your previous file, plus all of your
changes.

In most cases, you can exclude the version number when referencing the file. When the version is
not specified, and there is more than one version of the file on that particular directory, the system
generally uses your most recent version. An exception is the function DELFILE, which deletes the
oldest version (the one with the lowest version number) if none is specified.

4-4 An Introduction o Medley, Release 2.0

5. FILEBROWSER

The FileBrowser is a Lisp Library Package that works with files stored on disk and floppy
devices, and can be used as a file directory editor. Ifit is not loaded into your sysout, you
need to load it first by typing:

(LOAD 'FILEBROWSER.LCOM)

Calling the FileBrowser

Calling the FileBrowser with a directory calls up the files stored in that directory:

(FB '<usr>local>lde>)

Another way to call a FileBrowser is to choose "FileBrowser" from the background menu.
You will be prompted for a description of the files to be included (see Figure 5-1). Type an
asterisk (*), then press Return to see all the files in the connected directory.

Frile group aescription:

FFE O vt
Delete
Undelete
Copy
Rename
Hardcopy
See
Edit
Load
Compile
Expunge .

VWV _vyvwwwy

’.

Sort

Figure 5-1. Prompt for Files to Include in FileBrowser

These show a directory of the device in a window you can leave on the screen at all times.
The parts of the FileBrowser window are shown below.

An Introduction to Medley, Release 2.0

5-1

5. FILEBROWSER

. Command Menu
Prompt Window

|

File Eroweser Winddosws FE Commands
C T D
Undelete 3| <—
Copy
Rename
Hardcopy ¥
See »
Edit ¥
Load 2
»

2

File group description:

Compile
Expunge
,Béﬁﬁﬁﬁﬁﬁé

-*Abort -

«————. File List

Figure 5-2. Parts of a FileBrowser Window

To use the FileBrowser, choose a file by pointing to the file with the mouse ¢ursor and
pressing the left or middle mouse button. A small dark arrow appears to the left of the
file name. Choose a command from the menu at the right. In Figure 5-3, the files
OCH1.TEDIT;1,0CH10.TEDIT; 1, and OCE11l.TEDIT;1 have been selected.

The left mouse button allows you to choose only one file at a time. Even if you choose
other files, only the last file you selected with the left mouse button will remain marked
as chosen. When you use the middle mouse button to select a file, the file is added to
those already chosen.

To unpick an already chosen file, hold the Control key down while pressing the middle
mouse button.

R R B I R S IR AL P TEE G it

Tot 15/ 28 pgs__ Del: 0 /0 pgs Deieto ¥
ot Pg g Undetet: ¥
POCHL.TEDIT;1 1 Rename
D OCH1@, TEDIT; 1 2 Hardcopy ¥
POCHi1, TEDIT;1 2 See ¥
OCH12, TEDIT;1 2 Edit H
OCH43.TEDIT;1 2 Load »
OCH14,TEDIT;1 2 Compile ¥
o ebins R

. ?
OCH4.TEDIT;1 2 R
OCHS.TEDIT;2 2 =
OcHs TEDIT;1 2

Figure 5-3. Files Chosen

An Introduction to Medley, Release 2.0

5. FILEBROWSER

FileBrowser Commands

Delete Inthe FileBrowser, this command marks a file, or files, for deletion (see
Figure 5-4). These files are marked by a black line crossing through
them. You may select and mark any number of files for deletion. Delete
does not actually remove these files from the device. The Expunge
command actually wipes out the files marked for deletion.

| S IR I R R St ol HER o S TR T I e

Tot 15/ 29pgs Del: 3/ 5pgse
Moo ESTE I iy

| 4 : ‘ See ﬂ
QCH12.TEDIT;1 2 & Edit - M
OCH43.TEDIT;1 2 8- Load L4
OCHL4.TEDIT;1 2 6§91 cCompils ¥
oo T o R

H3. 3 -

OCH4. TEDIT;1 Y Ry g
OCHB.TEDIT;2 2 8-
OGHS. TEDIT;1 2_ &

Figure 5-4. Files Marked for Deletion

Undelete Undoes the delete command for one or more files. Undelete erases the
black line through a file marked for deletion.

Copy This command copies the chosen file. The destination filename should be
typed at a prompt that appears in the window above the FileBrowser.
Wildcards do not work for this prompt. You must type the whole
unquoted filename. If more than one file is chosen to be copied, you will
be prompted for a directory name. The files will be copied into the
directory you give, but with the same filenames as the ones they have in
their original location.

Rename This command works much like the Copy command, but does not leave
the original file. The chosen file will be renamed to the destination
filename. You will be prompted, in the prompt window, for the
destination filename. Give the complete unquoted filename. If more
than one file is chosen to be renamed, you will be prompted for a directory
name. The files will be moved into the directory you give.

Hardcopy If youdo nothave a printer, using this command causes an error.
Otherwise, it gives a hardcopy of the file.

See Shows you afile in a window. To use this command, choose a single
filename, then the See command. You are prompted for a window. Each

time the See command is chosen, a new window is opened to display the
file.

Edit Callsthe editor with the file as input. If the file is an executable one (i.e.,
Lisp code as opposed to a text file), only the FILECOMS list is edited. The
FILECOMS listis the list of variables, lists, and functions that are
contained on that file. FileBrowser loads it and then allows you to edit
the FILECOMS.

Load Choose a file with the left mouse button, or a group of files with the
middle mouse button. Once the filenames have been highlighted with
the black arrow, choose the Load command to load them all into Medley.

An Introduction to Medley, Release 2.0 5-3

5. FILEBROWSER

"Compile Thiscommand calls the file compiler with the chosen filename(s) as
arguments. The compiler compiles a file found on a storage device
({DSK}), not the functions defined in the Medley sysout. If any functions
on a loaded file have been changed, run the function (MAKEFILE
' filename) to write the current version before compiling it. Files do not
have to be loaded to use the Compile command.

Expunge This command completely removes all the files marked for deletion from
the directory. This allows you to remove unwanted files from your
storage device.

Recompute Choose this command when you know that the directory has been
changed and should be reread (e.g., after creating new versions of a file).

-

5-4 An Introduction to Mediey, Release 2.0

6. THOSE WONDERFUL WINDOWS!

A window is a designated area on the screen. Every rectangular box on the screenisa
window. While Medley supplies many of the windows (such as the Executive Window),
you may also create your own. Among other things, you will type, draw pictures, and save
portions of your screen with windows.

Windows Provided by Medley

Two important windows are available as soon as you enter the Medley environment. One
is the Xerox Common Lisp Executive Window, the main window where you will run your
functions. It is the window that the caret is in when you turn on your machine and load
Medley. Once you have loaded Medley, you may use the right button background menu
to open an Interlisp Executive window to avoid prepending IL: to most of the commands.
Both types are shown in Figure 6-1.

2/341>

Exec JFNTERLISP)
340¢

Figure 6-1. Medley Executive Windows

The other window that is open when you enter Medley is the "Prompt Window". It is the
long thin black window at the top of the screen. It displays system prompts, or prompts
you have associated with your programs. (See Figure 6-2.)

Prormpt Wi o

Figure 6-2. Prompt Window

Other programs, such as the editors, also use windows. These windows appear when the
program starts to run, and close (no longer appear on the screen) when the program is

done running.

An Introduction to Medley, Releaée 2.0

6. THOSE WONDERFUL WINDOWS!

Creating a Window

To create a new window, if you are in an Interlisp Executive window type: (CREATEW); if
you are in a Xerox Common Lisp Executive window type (IL:CREATEW). The mouse
cursor will change, and have a small square attached to it. (See Figure 6-3.)

Exec (IMTERLIZP:

NIL
332« (CREATEW)
{WINDOY}#365,133864
333¢

2s338> (IL:CREATEW)
#CIL:WINDOW @ 366,16864>
2/337>

Figure 6-3, Creating a Window with (CREATEW) in Each Type Executive Window

There may be a prompt in the prompt window to specify a region for a window. Press-and
hold the left mouse button. Move the mouse around, and notice that it sweeps out a
rectangle. When the rectangle is the size that you'd like your window to be, release the
left mouse button. More specific information about the creation of windows, such as
giving them titles and specifying their size and position on the screen when they are
created, is given in the WINDOWPROP section of Chapter 12.

Right Button Default Window Menu

Position the cursor inside the window you just created, and press and hold the right
mouse button. A menu of commands should appear (do not release the right button!), like
the one in Figure 6-4. To execute one of the commands on this menu, choose the item.

Close
Snap
Paint
Clear

- Bury

Redisplay

Hardcopy ¥
Move
Shape
Shrink

Figure 6-4 Right Button Default Window Menu

As an example, select "Move" from this menu. The mouse cursor will become a ghost
window (just an outline of a window, the same size as the one you are moving), with a
square attached to one corner, like the one shown in Figure 6-5.

6-2 An introduction to Medley, Release 2.0

8. THOSE WONDERFUL WINDOWS!

Figure 6-5 Moving a Window

Move the mouse around. The ghost window will follow. Click the left mouse button to
place tho window in a new location.

Choose "Shape", and notice that you are prompted to sweep out another window. Your
original window will have the shape of the window you sketch out.

Explanation of Each Menu item

The meaning of each right button default window menu item is explained below:

Close
Snap
Paint
Clear
Bury
Redisplay
Hardcopy
Move
Shape
Shrink

Expand

Removes the window from the screen

Copies a portion of the screen into a new window

Allows drawing in a window

Clears the window by erasing everything within the window boundaries
Puts the window beneath all other windows that overlap it

Redisplays the window contents

Sends the contents of the window to a printer or toa flle

Allows the window to be moved to a new spot on the screen

Repositions and/or reshapes the window

Reduces the window to an icon of the appropriate shape for that window
type (see Figure 6-6).

{users>
porter)>

tmp>003-
TOC.TEDIT;
3

Figure 6-6 Example of a TEdit Icon

Changes an icon back to its original window. Position the mouse cursor
on the icon, depress the right button, and select Expand. Or, just button
the icon with the middle mouse button.

These right-button default window menu selections are available in most windows,
including the Executive Window. When the right button has other functions in a window

An Introduction to Medley, Release 2.0 6-3

6. THOSE WONDERFUL WINDOWS!

Scrollable

(as in an editor window), the right button default window menu should be accessible by
pressing the right button in the black border at the top of the window.

Windows

Some windows in Medley are "scrollable”. This means that you can move the contents of
the window up and down, or side to side, to see anything that doesn't fit in the window.

Slide the mouse cursor over the left or bottom border of a window. If the window is
scrollable, a "scroll bar” will appear. The mouse cursor will change to a double headed
arrow. (See Figure 6-7.)

* Text Editor Windoees

Figure 6-7. Scroll Bar of Scrollable Window

The scroll bar represents the full contents of the window. The example scroll bar is
completely white because the window has nothing in it. When a part of the scroll bar is
shaded, the amount shaded represents the amount of the window's contents currently
shown. If everything is showing, the scroll bar will be fully shaded. (See Figure 6-8.) The
position of the shading is also important. It represents the relationship of the section
currently displayed to the the full contents of the window. For example, if the shaded
section is at the bottom of the scroll bar, you are looking at the end of the file.

* Text Editor Window
The amount of shading in
the scroll bar represents
the amount of the file
shown in the window. Most
of the file is visible.
Because the shading 1is at
the top of the scroll bar,
you know you are looking
at the top of the file.

Figure 6-8 Top of File When Shading at Top of Scroll Bar

When the scroll bar is visible, you can control the section of the window's contents
displayed:

@ To move the contents higher in the window (scroll the contents up in the window),
press the left button of the mouse, the mouse cursor changes to look like this:

6-4

An Introduction to Mediey, Release 2.0

6. THOSE WONDERFUL WINDOWS!

t

Figure 6-9. Upward Scrolling Cursor

The contents of the window will scroll up, making the line that the cursor is beside the
topmost line in the window.

o Tomove the contents lower in the window (scroll the contents "down" in the window),
press the right button of the mouse, and the mouse cursor changes to look like this:

+

Flgure 6-10. Downward Scrolling Cursor

The contents of the window scroll down, moving the line that is the topmost line in the
window next to the cursor. .

@ To show a specific section of the window's contents, remember that the scroll bar
represents the full contents of the window. Move the mouse cursor to the relative
position of the section you want to see (e.g., to the top of the scroll bar if you want to see
the top of the window's contents). Press the middle button of the mouse. The mouse
cursor will look like this:

Figure 6-11 Proportional Scrolling Cursor

When you release the middle mouse button, the window's contents at that relative
position will be displayed.

The position of the mouse in the scroll bar defines how much of the window will be
scrolled. If it is near the top, then only a little will be scrolled. Ifitis near the bottom,
most of the window will be scrolled.

Other Window Functions

PROMPTPRINT
Prints an expression to the black prompt window.
For example, type
(PROMPTPRINT "THIS WILL BE PRINTED IN THE PROMPT WINDOW")

The message will appear in the prompt window. (See Figure 6-12.)

139« (PROMPTPRINT “THIS WILL BE PRINTED IN
THE PROMPT WINDOW™)

NIL
140¢

An Introduction to Medley, Release 2.0 6-5

6. THOSE WONDERFUL WINDOWS!

BE PRINTED IW THE FREONPT WIMDOW

Figure 6-12 PROMPTPRINTIng

WHICHW

Returns as a value the name of the window that the mouse cursor is in.

(WHICHW) can be used as an argument to any function expecting a window, or to reclaim
a window that has no name (that is not attached to some particular part of the program.).

6-6 _ An Introduction to Medley, Release 2.0

7. EDITING AND SAVING

This chapter explains how to define functions, how to edit them, and how to save your work.

Defining Functions

DEFUN can be used to define new functions in a Xerox Common Lisp Executive window (in an
Interlisp Executive window use (CL:DEFUN). The syntax for it is:

(DEFUN (functionname (parameter-1list) body-of-function)

New functions can be created with DEFUN by typing directly into the Executive Window. Once
defined, a function is a part of the Medley environment. For example, the function
EXAMPLE-ADDER is defined in Figure 7-1.

(Execoicle

3/23) (defun example-adder (a b c) “example function” {(print
"The sum of the three numbers is "} (+ a b c})
EXAMPLE-ADDER

3/31>

Figure 7-1. Defining the Function EXAMPLE-ADDER

Now that the function is defined, it can be called from the Executive Window:

Exec 3 :XCLL)

3/33)>
3/33) (example=-adder 1 2 3)

"The sum of the three numbers is *
6

3/34>

3/34)

3/34>

Figure 7-2.. After EXAMPLE-ADDER is defined, it can he executed
The function returns 6, after printing out the message.
Functions can also be defined using the editor SEdit described below. To do this, simply type
(ED ' function-name 'FUNCTIONS)

You will be told that no definition exists for the function, and a menu will pop up asking you what
type of function you would like to create:

An Introduction to Medley, Release 2.0

7. EDITING AND SAVING

339> (ed *foo *functions)
FOO has no FUNCTIONS definition.
Select a definer to use for a dummy definition,

Zelect a definer for a durmrmey defre

DEFINE-MODIFY-MACRO

Don’t make a dummy defn

Figure 7-3 Selecting a Function Template

Selecting the appropriate type will pop up an editor window with a function template. The use of the
“editor is explained in the Using the List Structure Editor section below.

Simple Editing in the Executive Window
First, type in an example function to edit:

(DEFUN MY-FIRST-FUNCTION (A B)
(IF (> A B)
’ (THE FIRST IS GREATER)
’ (THE SECOND IS GREATER))))

To run the function, type:

(MY-FIRST-FUNCTION 3 5)
Now, let’s alter this. Type:

FIX <the history list number of the function definition>
Note that your original function is redisplayed, and ready to edit. (SeeFigure 7-4.)

MY-FIRST-FUNCTION

447> (MY=FIRST-FUNCTION 3 5)

(THE SECOND IS GREATER)

448> FIX 446

448> (DEFUN MY~-FIRST-FUNCTION (A B)
{IF (> AB)

, FIRST IS GREATER)
*(THE SECOND IS BIGGER)))

New FUNCTIONS definition for MY-FIRST-FUNCTION

MY-FIRST-FUNCTION
449>

Figure 7-4. Using FIX to Edit a Fundion

Move the text cursor to the appropriate place in the function by positioning the mouse cursor and
pressing the left mouse button.

7-2 ‘ - An Introduction to Medley, Release 2.0

7. EDITING AND SAVING

Delete text by moving the caret to the beginning of the section to be deleted. Hold the right mouse
button down and move the mouse cursor over the text. All of the highlighted text between the caret
and mouse cursor is deleted when you release the right mouse button.

If you make a mistake, deletions can be undone. Press the UNDO key on the keypad to the left of
the keyboard.

Now change the second GREATER t0 BIGGER:

1. Position the mouse cursor on the G of GREATER, and click the left mouse button. The text cursor
is now where the mouse cursor is.

2. Next, press the right mouse button and hold it down. Notice that if you move the mouse cursor
around, it will blacken the characters from the text cursor to the mouse cursor. Move the mouse
so that the word "GREATER" is highlighted.

3. Release the right mouse button and GREATER is deleted.
4. Without moving the cursor, type in BIGGER.

5. There are two ways to end the editing session and run the function. One is to type Control-X.
(Hold the Control key down, and type X.) Another is to move the text cursor to the end of the
line and cr. In both cases, the function has been edited!

Try the new version of the function by typing:
(MY-FIRST-FUNCTION 8 9)
and get the new result, or you can type:

REDO <the history list number of the first function call>

Using the List Structure Editor

If the function you want to edit is not readily available (i.e. the function is not in the Executive
Window, and you can’t remember the history list number, or you simply have a lot of editing), use
the List Structure Editor, often called SEdit. This editor is invoked with a call to ED:

(ED 'MY-FIRST-FUNCTION ’FUNCTIONS)

Your function will be displayed in an edit window, as in Figure 7-5.

If there is no edit window on the screen, you will be prompted to create a window. As before, hold
the left mouse button down, move the mouse until it forms a rectangle of an acceptable size and
shape, then release the button. Your function definition will automatically appear in this edit window.

SEdit MY -FIRST-FUMNCTION Package: XCL-USER
(DEFUN MY-FIRST-FUNCTION (A B)
(IF (> & B)
*(THE FIRST IS GREATER)
* (THE SECOND IS BIGSER)))

Figure 7-5. An S-Edit Window

An Introduction to Medley, Release 2.0

7. EDITING AND SAVING

Many changes are easily done with the structure editor. Notice that by pressing the left mouse button
you can place the caret in position, and by pressing the middle mouse button you can select atoms or
s-expressions. Repeated pressing of the middle button selects bigger pieces of text.

To add an expression that does not appear in the edit window place the caret at the insertion point and
type it in. For example, to replace the first GREATER with LARGER, place the caret to the right of
GREATER, as shown in Figure 7-6.

SEAdit R -FIRST-FUMCTION Package: X CL-USER
(DEFUN MY-FIRST-FUNCTION {A B)
(IF (> & B)
*(THE FIRST IS BREATER)
*{THE SECOND IS BIBBER)))

Figure 7-6. Caret Placement Prior to Changing GREATER to LARGER
Now press the Backspace key seven times, and type in LARGER. The window now looks like this:

SEdit MY -FIRST-FUNCTION Fackage: XCL-USER
(DEFUN MY-FIRST-FUNCTION (A B)
{IF (> A B)
*{THE FIRST IS LARBER)
* (THE SECOND IS BIGBER)))

Figure 7-7. GREATER Changed to LARGER
Now exit the edit session by typing Control-X, and the function will be redefined.

Commenting Functions

Text can be marked as a comment by typing a semi-colon before the text of the comment.

; This is the form of a comment

Inside an editor window, the comment will be printed in a different font and may be moved to the far
right of the code. SEdit is familiar with the Common Lisp convention of single comments being on
the far right, double comments being justified with the function level, and triple comments being on
the far left, as is shown in Figure 7-8.

7.4 An Introduction to Mediey, Release 2.0

7. EDITING AND SAVING

SEGit kY -FIRST-FURMCTION Package: XCZLIJSER

(DEFUN MY-FIRST-FUNCTION (A B)
33 print outthe appropriate text
(IF (> A B) s checkforA> B
*(THE FIRST IS LARGER)
>(THE SECOND IS BIGBER))
333 Now we’re done

Figure 7-8. Placement of Comments

There are other editor commands which can be very useful. To learn about them, read Appendix B of
the Release Notes.

File Functions and Variables: How to See and Save Them

With Medley, all work is done inside the Lisp environment. There is no operating system or
command level other than the Executive Window. All functions and data structures are defined and
edited using normal Lisp commands. This section describes tools in the Medley environment that will
keep track of any changes that you make in the environment that you have not yet saved on files,
such as defining new functions, changing the values of variables, or adding new variables. And it
then has you save the changes in a file you specify. All of these functions are in the INTERLISP

(IL:) package.

File Variables

Certain system-defined global variables are used by the file package to keep track of the environment
as it stands. You can get system information by checking the values of these variables. Two
important variables are:

e FILELST evaluates to a list of all the files you have loaded into the Medley environment.

« filenameCOMS (Each file loaded into the Lisp environment has associated with it a global variable,
whose name is formed by appending COMS to the filename.) This variable evaluates to a list of all
the functions, variables, bitmaps, windows, and so on, that are stored on that particular file.

For example, if you type:
MYFILECOMS
the system will respond with something like:

((FNS YOUR-FIRST-FUNCTION)
VARS))

Saving Interlisp on Files

The functions (FILES?) and (MAKEFILE ’filename) are useful when it is time to save function,
variables, windows, bitmaps, records and whatever else to files.

(FILES?) displays a list of variables that have values and are not already a part of any file,
and then the functions that are not already part of any file.

An Introduction to Medley, Release 2.0 7-5

7. EDITING AND SAVING

Type:
(FILES?)
the system will respond with something like:

the variables: MY.VARIABLE CURRENT.TURTLE...to be
dumped

the functions: RIGHT LEFT FORWARD BACKWARD
CLEAR-SCREEN. . .to be dumped

want to say where the above go?

If you type Y (the system will echo with "yes™), the system will prompt with each
item. There are three options:

1. To save the item, type the filename (unquoted) of the file where the item
should be placed. (This can be a brand new file or an existing file.)

2. To skip the item, without removing it from consideration the next time
(FILES?) is called, type cr. This will allow you to postpone the decision
about where to save the item.

3. If the item should not be saved at all, type]. Nowhere will appear after the
item.

Part of an example interaction is shown in the following figure:

Exec {IMTERLISF}

S8¢

sve (FILES?)
To be dumped:
NEWFILE ...changes to VARS: NEWFILECOMS

plus the Common Lisp structures: MyStruct
plus the functions: Function
want to say where the above go 7 yes
{(Common Lisp structures)
MyStruct Nowhere
{functions)
Function File name: NFILE
create new file NFILE 7 ves
To be compiled: FOREIGN-FUNCTIONS, FOO
To be Tisted: PAINTW, FOREIGN-FUNCTIONS, F00, COURIERSERYE

FNS: TEST

Figure 7-9. Part of an interaction using the function (FILES?)

(FILES?) assembles the items by adding them to the appropriate file’s COMS
variable (see the File Variables section above). (FILES?) does NOT write the file
to secondary storage (disks or floppies). It only updates the global variables
discussed in the File Variables section above.

(MAKEFILE ’‘filename)

actually writes the file to secondary storage.
Type:

7-6

_An Introduction to Medley, Release 2.0

7. EDITING AND SAVING

(MAREFILE ’'MY.FILE.NAME)

and the system will create the file. The function returns the full name of the file
created. (i.e. {DSKIMY.FlLE.NAME.; 1).

Files written to { DSK) are permanent files. They can be removed only by the user
deleting them or by reformatting the disk.

Other file manipulation functions can be found in Chapter 4.

An Introduction to Medley, Release 2.0 7-7

7. EDITING AND SAVING

[This page intentionally left blank]

7.8 An Introduction to Mediey, Release 2.0

8. YOUR INIT FILE

Lisp has a number of global variables that control the environment. Global variables
make it easy to customize the environment to fit your needs. One way to do this is to
develop an INIT file, a file that is loaded when you start a fresh sysout. You can use it to
set variables, load files, define functions, and do other things to make Medley's
environment suit you.

Using the USERGREETFILES Variable

Your INIT file may be called INIT, INIT.LISP, INIT.USER, or whatever the convention
is at your site. There is no default name preferred by the system; it just looks for the files
listed in the variable USERGREETFILES (see below). Check to see what the preference is
at your site. Put this file in your directory. Your directory name should be the same as
your login name. The INIT file is loaded by the function GREET. GREET is normally run
when Medley is started. If this is not the case at your site, or you want to use the machine
and Medley has already been started, you can run the function GREET yourself. If your
user name were, for example, TURING, then you would type:

(GREET 'TURING)

This does a number of things, including undoing any previous greeting operation, loading
the site init file, and loading your init file. Where GREET looks for your INIT file depends
on the value of the variable USERGREETFILES. The value of this variable is set when the
system's SYSOUT file is made, so check its value at your site! For example, its value could
be:

eo+ USERGREETFILES
(({DSK}INIT %. coM)
({DSK}INIT- USER %. COM)
({DSK}INIT- USER)
({DSK}INIT))

Figure 8-1. Possible Value of USERGREETFILES

In each place you see USER, the argument passed to GREET is substituted into the path.
This is your login name if you are just starting Medley. For example, the first value in the
list would have the system check to see whether there was a ’
{DSK}<USERS>TURING>INIT.LISP file. No error is generated if you do not have an

INIT file, and none of the files in USERGREETFILES are found.

Making an Init File

As described in the File Variables section of Chapter 7, each program file has a global
variable associated with it, whose name is formed by appending COMS to the end of the
root filename. For any of the standard INIT file names, the variable INITCOMS is used.
To set up an init file, begin by editing this variable. Type:

(DV INITCOMS)

An SEdit window will appear. This window is the same as the one called with the
function DF, and described in the Using the List Structure Editor section in Chapter 7.

An Intmduction to Medley, Release 2.0 8-1

8. YOUR INIT FILE

The COMS variable is a list of lists. The first atom in each internal list specifies for the file
package what types of items are in the list, and what it is to do with them. This section
will deal with three types of lists: VARS, FILES, and P. Please read about others in
Chapter 17 of the IRM. :

Notice that inside the vars list, there is yet another list. The first item in the list is the
name of the variable. It is bound to the value of the second item. There are many other
variables that you can set by adding them to the VARS list. Some of these variables are
described in Chapter 24, and many others can be found in the JRM.

If you want to automatically load files, that can be done in your init file also. For
example, if you always want to load the Library file SPY . LCOM, you can load it by editing
the INITCOMS variable to list the appropriate file in the list starting with FILES:

(FILES SPY)

Figure 8-2. INITCOMS Changed to Load SPY. LCOM File
Other files can also be added by simply adding their names to this FILES list.

Another list that can appear in a COMS list begins with P. This list contains Lisp
expressions that are evaluated when the file is loaded. Do not put DEFINEQ expressions
in this list. Define the function in the environment, and then save it on the file in the
usual way (see Chapter 7).

One type of expression you might want to see here, however, is a FONTCREATE function
(see Chapter 16). For example, of you want to use a Helvetica 12 BOLD font, and there is
not a fontdescriptor for it normally in your environment, the appropriate call to
FONTCREATE should be in the "P" list. The INITCOMS would look like this:

(FILES SPY)
(P (FONTCREATE 'HELVETICA 12 'BOLD))

Figure 8-3. INITCOMS Edited to Include a call to FONTCREATE

To quit, exit from SEdit in the usual way. When you run the function MAKEFILES (see
Chapter 7), be sure that you are connected to the directory (see Chapter 4) where the
INIT file should appear. Now when GREET is run, your Init file will be loaded.

8-2

An Introduction to Medley, Release 2.0

9. MEDLEY FORGIVENESS: DWIM

DWIM (Do What I Mean) is an Interlisp utility that makes life easier.

DWIM tries to match unrecognized variable and function names to known ones. This allows Lisp to
interpret minor typing errors or misspellings in a function, without causing a break. Line 152 of
Figure 9-1 illustrates how the misspelled BANNANNA was replaced by BANANA before the expression
was evaluated.

M

1(51« (I)JEFINEQ (PEEL (BANANA) (COR BANNANNA)))
PEEL

1s2¢ (PEEL ’(A B D))

BANNANNA {in PEEL} -> BANANA ? Yes

(8 D)

153¢

Figure 9-1. Examples of DWIM Features

Sometimes DWIM may alter an expression you didn’t want it to. This may occur if, for example, a
hyphenated function name (e.g., (MY-FUNCTION)) is misused. If the system does not recognize the
function name, it may think you are trying to subtract "FUNCTION" from "MY". DWIM also takes the

liberty of updating the function, so it will have to be fixed. However, this is as much a blessing as a
curse, since it points out the misused expression!

An Introduction to Medley, Release 2.0

9. MEDLEY FORGIVENESS: DWIM

[This page intentionally left blank]

9-2 An Introduction to Mediey, Release 2.0

10. BREAK PACKAGE

The Break Package is a part of Interlisp that makes debugging your programs much
easier.

Break Windows

A break is a function either called by the programmer or by the system when an error has
occurred. A separate window opens for each break. A break window works much like the
Executive Window, except for extra menus unique to it. Inside a break window, you can
examine variables, look at the call stack at the time of the break, or call the editor. Each
successive break opens a new window, where you can execute functions without
disturbing the original system stack. These windows disappear when you resolve the
break and return to a higher level.

Break Package Example

This example illustrates the basic break package functions. A more complete explanation
of the breaking functions, and the break package will follow.

The correct definition of FACTORIAL is:

(defun factorial (x)
(if (zerop x)
1

(* x (factorial (1- x)))))

To demonstrate the break package, we have edited in an error: DUMMY in the IF statement
is an unbound atom, it lacks a value.

(defun factorial (x)
(if (zerop x)
dummy
(* x (factorial (1- x)))))

The evaluated function

(FACTORIAL 4)

should return 24, but the above function has an error. DUMMY is an unbound atom, so Lisp
will "break"”. A break window appears (Figure 10-1), that has all the functionality of
typing Lisp expressions into the Executive Window (the top level), in addition to the
break menu functions. Each consecutive break will move another level "down".

An Introduction to Medley, Release 2.0

10-1

10. BREAKPACKAGE

UMNBECUND-Y ARIAELE
In EVAL:
DUMNY s

3/62(debug)

an unbound variable.

Figure 10-1. Break Window

Move the mouse cursor into the break window and hold down the middle mouse button.
The Break Menu will appear. Choose BT. Another menu, called the stack menu, will
appear beside the break window. Choosing stack items from this menu will display
another window. This window displays the function's local variable bindings, or values
(see Figure 10-2). This new window, titled FACTORIAL Frame, is an inspector window
(see Inspector Chapter 17).

FaZToRIAL Frame

FACTORIAL
IIXII

8

LI

3/84(debug)

LINBCUMND-Y 2RISELE

I T

Mlees | IHIVSIPIC Y &1 |
(IF (ZER

EACTORE

(FACTORI

(» % (FACTORIAL #))
CL:: |interpret=IF|
(IF (ZEROP ¥) DUMMY ...
FACTORI

AL
(FACTORIAL (1- %))
(% ¥ (FACTORTA #1

TGN s

Figure 10-2. Back Trace of the System Stack

From the break window, you can call the editor for the function FACTORIAL by
middle-buttoning on the word FACTORIAL and selecting DisplayEdit from the menu that
Pops up.

Replace the unbound atom DUMMY with 1. Exit the editor .

The function is fixed, and you can restart it from the last call on the stack. (It does not
have to be started again from the Top Level.) To begin again from the last call on the
stack, choose the last (top) FACTORIAL call in the BT menu. Select REVERT from the
middle button break window, or type it into the window. The break window will close,
and a new one will appear with the message: Breakpoint at FACTORIAL

To start execution with this last call to FACTORIAL, choose OK from the middle button
break menu. The break window will disappear, and the correct answer, 24, will be
returned to the top level.

10-2

An Introduction to Medley. Release 2.0

10. BREAKPACKAGE

Ways to Stop Execution from the Keyboard (Breaking Lisp)

There are ways you can stop execution from the keyboard. They differ in terms of how
much of the current operating state is saved:

Control-G

Control-B

Break Menu

Provides you with a menu of processes to interrupt. Your process will
usually be "EXEC". Choose it to break your process. A break window will
then appear.

Causes your function to break, saves the stack, then displays a break
window with all the usual break functions. For information on other
interrupt characters, see Chapter 30 in the IRM.

Move the mouse cursor into the break window. Hold the middle button down, and a new

menu will

pop up, like the one in Figure 10-3.

EVAL
EDIT
REVERT

?
PROCEED

Figure 10-3. Middle Button Menu in Break window

Five of the selections are particularly important when just starting to use Medley:

BT

REVERT

OK

Back Trace displays the stack in a menu beside the break window. Back Trace
is a very powerful debugging tool. Each function call is placed on the stack and
removed when the execution of that function is complete. Choosing an item on
the stack will open another window displaying that item's local variables and
their bindings. This is an inspector window that offers all the power of the
inspector. (For details, see the section on the Inspector, Chapter 17.)

Before you use this menu option, display the stack by choosing BT from this
menu, and choose a function from it. Now, choose ?=. It will display the current
values of the arguments to the function that has been chosen from the stack.

Move back to the previous break window, or if there is no other break window,
back to the top level.

Move the point of execution back to a specified function call before the error.
The function to revert back to is, by default, the last function call before the
break. If, however, a different function call is chosen on the BT menu, REVERT
will go back to the start of this function and open a new break window. The
items on the stack above the new starting place will no longer exist. This is
used in the tutorial example (see the Break Package Example section above).

Continue execution from the point of the break. This is useful if you have a
simple error, i.e., an unbound variable or a nonnumeric argument to an

An Introduction to Medley,

Release 2.Q 10-3

10. BREAKPACKAGE

arithmetic function. Reset the variable in the break window, then select OK.
(see the Break Package Example section above).

In addition to being available on the middle button menu of the break window, all of
these functions can be typed directly into the window. Only BT behaves differently when
typed. It types the stack into the trace window instead of opening a new window.)

Returning to Top Level

Typing Control-D will immediately take you to the top level from any break window. The
functions called before the break will stop, but any side effects of the function that
occurred before the break remain. For example, if a function set a global variable before
it broke, the variable will still be set after typing Control-D.

10-4 ' An Introduction to Medley. Release 2.0

11. WHAT TO DO IF ...

The purpose of this chapter is to explain what to do with some of the problems commonly
experienced by Medley users.

Executive Window turns black
An example is shown in Figure 11-1.

Press any key to unfreeze the window and continue. This pause happens when the
command you just typed causes enough information to be printed to fill the window. It
gives you a chance to read that one window of text before moving on. '

| Figure 11-1. Blackened Executive Window
You closed the Executive Window
Open another from the Backgrouhd Menu.
Cursor disappears
Type (CURSOR T) inthe Executive Window. The cursor will reappear.
Second window appears

This probably happens because you made a typing mistake, as in Figure 11-2.

In OLDFAULT1:
TOMORRWO 1is an undefined function.

8o

 Figure 11-2. Second Window Appears (Break Window) After Typing Error Made

Type a Control-D by simultaneously pressing the Control key and the "D". This aborts
the error condition, returning control to the Executive Window.

You keep getting beeped at

Usually the beeping means that Medley wants input from you. Look for the flashing
caret. It will usually be preceeded by some kind of prompt, indicating what you should
type.

An Introduction to Medley, Release 2.0

11. WHAT TO DO IF...

You cannot delete the first letter

of the filename you are typing to (FILES?). Type Control-E (error) You will geta
linefeed and «——— printed to the window. Now type the correct filename.

Your function is just sitting there

It is not returning a value, and you think that your program may be in an infinite loop or
is having some other major problem. You can see what process is currently running by
typing Control-T, or you could interrupt the process by typing Control-E.

A Break Window appears

If the Break Window looks something like that shown in Figure 11-3, you are trying to
save a file, but there is not enough space on the hard disk.

FE-REZOURCEZ.EXCEEDED

In \EVALFORM:
File system resources exceeded: {DSK}~/results

88¢;

Figure 11-3. Break Winddw Caused by Insufficient Space in Save File

Exit from the Break Window by typing an up arrow 1 followed by a Return. Delete old
versions of files, and any other files you do not need. Then try again to save the file.

You have run out of space

Generally, a Break Window has appeared. The GAINSPACE function allows you to delete
non-essential data structures. To use it, type:

(GAINSPACE) .
into the Executive Window. Answer N to all questions except the following:
Delete edit history
Delete history list
Delete values of old variables

Delete your MASTERSCOPE database

Delete information for undoing your greeting.

Save your work and reload Lisp as soon as possible.

A redefined message appears

The message (Some.Crucial. Function.Or. Variable redefined) appears in the
Executive Window (see Figure 11-4). The function, variable, or other property has been
"smashed" (i.e., its original definition has been changed). If this is not what you wanted,
type UNDO immediately!

11-2 An Introduction to Med!- Release 2.0

11. WHAT TO DO IF...

Exec (IMNTERLIZPY

124« (DEFINEQ (CAR (A) (SomeOtherfFn A)))
New fns definition for CAR,

(CAR)

125« UNDO

DEFINEQ undone.

128¢

Figure 11-4. CAR redefined!
UNBOUND ATOM

If this occurs, you probably just typed something wrong, or you passed an argument that
should have been quoted to a function.

UNDEFINED CAR OF FORM

First, look at what caused the error. If the CAR of the form is a list, then you typed
something wrong. If it is an atom, then perhaps that atom does not have a function
associated with it. Ifitis a CLISP word like if or for, then DWIM may have been turned
off (see Chapter 9). Type (DWIM °C) toreenable DWIM.

You have traced APPLY

and your screen is spewing out information about everything going on in the
environment. Type Control E, and type (UNBREAK 'APPLY) before returning to the
Executive. : :

An Introduction to Medley, Release 2.0 11-3

11. NVHAT TO DO IF...

[This page intentionally left blank]

11-4 ‘ An introduction to Mes - Release 2.0

12. WINDOWS AND REGIONS

Windows
Windows have two basic parts: an area on the screen containing a collection of pixels, and
a property list. The window properties determine how the window looks, the menus that
can be accessed from it, what should happen when the mouse is inside the window and a
mouse button is pressed, and so on.
CREATEW

Some of the window's properties can be specified when a window is created with the
function CREATEW. In particular, it is easy to specify the size and position of the window,
its title, and the width of its borders.

(CREATEW region title borderwidth)

Region is a record (named REGION, with the fields left, bottom,width, and height) or
a list. A region describes arectangular area on the screen, the window's dimensions and
position. The fields lef t and bot tom refer to the position of the bottom left corner of the
region on the screen. Width and height refer to the width and height of the region. The
usable space inside the window will be smaller than the width and height, because some
of the window's region is consumed by the title bar, and some is taken by the borders.

Title is a string that will be placed in the title bar of the window.

Borderwidth is the width of the border around the exterior of the window, in number of
pixels.

For example, typing:

(SETQ MY.WINDOW (CREATEW

(CREATEREGION 100 150 300 200)
"THIS IS MY OWN WINDOW")

or

(SETQ MY.WINDOW (CREATEW

(CREATEW '(100 150 300 200)
"THIS IS MY OWN WINDOW")

produces a window with a default borderwidth of two pizels. Note that you did not need to
specify all the window's properties (see Figure 12-1).

An Introduction to Medley, Release 2.0 1241

12. WINDOWS AND REGIONS

NIL

o7« FIX 85

e7« (SETQ MY.WINDOW (CREATEW (CREATEREGION 100 150 300 200)
“THIS IS MY OWN WINDOW!"))

{WINDOW}#343,151554
28«

THIS IS el St W DT |

Figure 12-1. Creating a Window

In fact, if (CREATEW) is called without specifying a region, you will be prompted to sweep
out a region for the window (see Chapter 10)

WINDOWPROP

The function to access or add to any property of a window's property list is WINDOWPROP.
(WINDOWPROP window property <value>)

When you use WINDOWPROP with only two arguments—window and property—it returns
the value of the window's property. When you use WINDOWPROP with all three
arguments—window, property and value—it sets the value the window's property to the
value you inserted for the third argument.

For example, consider the window, MY WINDOW, created using (CREATEW). TITLE and
REGION are both properties. Type

(WINDOWPROP MY.WINDOW 'TITLE)

and the value of MY.WLNDOW's TITLE property is returned, "THIS 1S MY OWN WINDOW".
To change the title, use the WINDOWPROP function, and give it the window, the property
title, and the new title of the window.

(WINDOWPROP MY.WINDOW 'TITLE "MY FIRST WINDOW")

automatically changes the title and automatically updates the window. Now the window
looks like Figure 12-2.

122 An Introduction to Mediey, Release 2.0

12. WINDOWS AND REGIONS

Exec (INMTERLIZP:

or« (SETQ MY.WINDOW (CREATEW (CREATEREGION 100 150 300 200)
“THIS IS MY OWN WINDOW!"})

{WINDOW}#343,151554

98« (WINDOWPROP MY.WINDOW °TITLE “MY FIRST WINDOW™)

"THIS IS MY OWN WINDOW!'"

29«

EAY FIRST W (MO

Figure 12-2. TITLE is a Window Property

Altering the region of the window, MY . WINDOW, is also be done with WINDOWPROP, in the
same way you changed the title. (Changing either of the first two numbers of a region
changes the position of the window on the screen. Changing either of the last two
numbers changes the dimensions of the window itself.)

Getting Windows to Do Things

Four basic window properties will be discussed here: CURSORINFN, CURSOROUTFN,
CURSORMOVEDFN, and BUTTONEVENTFN.

A function can be stored as the value of the CURSORINFN property of a window. It is called
when the mouse cursor is moved into that window.

Look at the following example:

1. First, create a window called MY . WINDOW. Type:

(SETQ MY.WINDQW
(CREATEW
(CREATEREGION 200 200 200 200)
"THIS WINDOW WILL SCREAM!"))

This creates a window tiltled THIS WINDOW WILL SCREAM!.

2. Now define the function SCREAMER. It will be stored on the property CURSORINFN.
(Notice that this function has one argument, WANDOWNAME. All functions called from
the property CURSORINFN are passed the window it was called from. So the value of
MY .WINDOW is bound to WINDOWNAME. When it is called, SCREAMER simply rings bells.

An Introduction to Medley, Release 2.0 12-3

12. WINDOWS AND REGIONS

(DEFINEQ (SCREAMER (WINDOWNAME)

(RINGBELLS)
(PROMPTPRINT "YAY - IT WORKS!")
(RINGBELLS)))

3. Now, alter your window's CURSORINFN property, so that the system calls the function

4.

SCREAMER at the appropriate time. Type:
(WINDOWPROP MY .WINDOW 'CURSORINFN

(FUNCTION SCREAMER))

After this, when you move the mouse cursor into MY . WINDOW, the CURSORINFN
property's function is called, and it rings bells twice.

CURSORINFN is one of the many window properties that come with each window - just as

REGION and TITLE did. Other properties include:

CURSOROUTFN The function that is the value of this property is executed when the
cursor is moved out of a window.

CURSORMOVEDFN The function that is the value of this property is executed when the
cursor is moved while it is inside the window.

BUTTONEVENTFN

The function that is the value of this property is executed when

either the left or middle mouse buttons are pressed (or released).

Figure 12-3 shows MY . WINDOW's properties. Notice that the CURSORINFN has the
function SCREAMER stored in it. The properties were shown in this window using the
function INSPECT. INSPECT is covered in Chapter 17.

O IHDOWY R 37247063 Inspector

DSP #{0utput Display Stream/372,116766>
NEXTW {WINDOW}#372,47158
SAVE {BITMAP}#65,140030
REG (200 260 280 208)
BUTTONEVENTFN TOTOPW
RIGHTBUTTONFN NIL .
CURSORINFN SCREAMER
CURSOROUTFN - NIL

CURSORMOVEDFN NIL

REPAINTFN ~NIL

RESHAPEFN NIL

EXTENT NIL

USERDATS NIL

VERTSCROLLREG NIL

HORIZSCROLLREG NIL

SCROLLFN NIL

VERTSCROLLWINDOW NIL
HORIZSCROLLWINDOW NIL

CLOSEFN NIL

MOVEFN NIL

WTITLE “THIS WINDOW WILL SCREAM!"
NEWREGIONFN NIL

WBORDER 4

PROCESS NIL :
WINDOWENTRYFN GIVE.TTY.PROCESS

SCREEN {SCREEN}#65,156748

Figure 12-3. Inspecting MY . WINDOW for Mouse-Related Window Properties

124

An introduction to Medley, Release 2.0

12. WINDOWS AND REGIONS

You can define functions for the values of the properties CURSOROUTFN and
CURSORMOVEDFN in much the same way as you did for CURSORINFN. The function that is
the value of the property BUTTONEVENTFN, however, can be specialized to respond in
different ways, depending on which mouse button is pressed. This is explained in the next
section.

BUTTONEVENTFN

BUTTONEVENTFN is another property of a window. The function that is stored as the value
of this property is called when the mouse is inside the window, and a mouse button is
pressed. As an example of how to use it, type:

(WINDOWPROP MY.WINDOW 'BUTTONEVENTFN
(FUNCTION SCREAMER))

When the mouse cursor is moved into the window, bells will ring because of the
CURSORINFN, but it will also ring bells when either the left or middle mouse button is
pressed. Notice that the right mouse button functions as it usually does, with the window
manipulation menu. If only the left button should invoke the function SCREAMER, then
the function can be written to do just this, using the function MOUSESTATE, and a form
that only MOUSESTATE understands, ONLY. For example:

(DEFINEQ
(SCREAMER2 (WINDOWNAME)
(IF (MOUSESTATE (ONLY LEFT))
THEN (RINGBELLS))))

In addition to (ONLY LEFT),MOUSESTATE can also be passed (ONLY MIDDLE), (ONLY
RIGHT) or combinations of these (e.g. (OR (ONLY LEFT) (ONLY MIDDLE))). Youdo not
need to use ONLY with MOUSESTATE for every application. ONLY means that that button is
pressed and no other.

If you do write a function using (ONLY RIGHT), be sure that your function also checks
the position of the mouse cursor. Even if you want your function to be executed when the
mouse cursor is inside the window and the right button is pressed, there is a convention
that the function DOWINDOWCOM should be executed when the mouse cursor is in the title
bar or the border of the window and the right mouse button is pressed. Please program
your windows using this tradition! For more information, please see Chapter 28 in the
IRM.

Looking at a Window’s Properties

INSPECT is a function that displays a list of the properties of a window, and their values.
Figure 12-3 shows the INSPECT function run with MY . WINDOW. Note the properties
introduced in CREATEW: WBORDER is the window's border, REG is the region, and WTITLE
is the window's title.

Regions

A region is a record, with the fields LEFT, BOTTOM, WIDTH, and HEIGHT. LEFT and
BOTTOM refer to where the bottom left hand corner of the rectangular region is positioned
on the screen. WIDTH and HEIGHT refer to the width and height of the region.

An lntroductiqn to Medley, Release 2.0 4 12-5

12. WINDOWS AND REGIONS

CREATEREGION creates a REGION. Type:
(SETQ MY.REGION (CREATEREGION 15 100 200 450))

to create a record of type REGION that denotes a rectangle 200 pixels high, and 450 pixels
wide, whose bottom left corner is at position (15, 100). This record instance can be passed
to any function that requires a region as an argument, such as CREATEW, above.

12-6 An Introduction to Medley, Release 2.0

13. WHAT ARE MENUS?

While Medley provides a number of menus of its own (see Chapter 3), this section addresses the
menus you wish to create. You will learn how to create a menu, display a menu, and define functions
that make your menu useful. Menus are instances of records (see Chapter 22). There are 27 fields that
determine the composition of every menu. Because Medley provides default values for most of these
descriptive fields, you need to familiarize yourself with only a few that we describe in this section.

Two of these fields, the TITLE of your menu, and the ITEMS you wish it to contain, can be typed
into the executive window as shown below:

Evec 2 (MTERLIZR:

2/154¢ (SETQ MY.MENU (CREATE MENU
TITLE « “PLEASE CHOOSE ONE OF THE
ITEMS™
ITEMS « *(QUIT NEXT-QUESTION
NEXT-TOPIC SEE-TOPICS)))
{MENU}#374,123464
2/155¢

Figure 13-1. Creating a menu

Note that creating a menu does not display it. MY . MENU is set to an instance of a menu record that
specifies how the menu will look, but the menu is not displayed.

Displaying Menus

Typing either the MENU or ADDMENU functions will display your menu on the screen. MENU
implements pop-up menus, like the Background Menu or the Window Menu. ADDMENU puts menus
into a semi-permanent window on the screen, and lets you select items from it.

(MENU menu position) pops up a menu at a particular position on the screen.

Type:
(MENU -MY .MENU NIL)

to position the menu at the end of the mouse cursor. Note that the position argument is NIL. In order
to go on, you must either choose an item, or move outside the menu window and press a mouse
button. When you do either, the menu will disappear. If you choose an item, then want to choose
another, the menu must be redisplayed.

(ADDMENU menu window position) positions a permanent menu on the screen, or in an existing
window.
Type:
(ADDMENU MY .MENU)
to display the menu as shown in Figure 13-2. This menu will remain active, (will stay on the screen)

without stopping all the other processes. Because ADDMENU can display a menu without stopping all
other processes, it is very popular in users programs.

If window is specified, the menu is displayed in that window. If window is not specified, a window
the correct size fo; the menu is created, and the menu is displayed in it.

An Introduction to Medley, Release 2.0 13-1

13. WHAT ARE MENUS?

If position is not specified, the menu appears at the current position of the mouse cursor.

FLELSE CHOOEE OME OF THE ITERES
QUIT
NEXT-QUESTION
NEXT-TOPIC
SEE.TOPICS

Figure 13-2. Simple Menu Displayed with ADDMENU

Getting Menus to Do Stuff

One way to make a menu do things is to specify more about the menu items. Instead of items simply
being the strings or atoms that will appear in the menu, items can be lists, each list with three
elements (see Figure 13-3). The first element of each list is what will appear in the menu; the second
expression is what is evaluated, and the results of the evaluation returned, when the item is selected;
and the third expression is the expression that should be printed in the Prompt window when a mouse
button is held down while the mouse is pointing to that menu item. This third item should be thought
of as help text for the user. If the third element of the list is NI L, the system responds with Will
select this item when you release the button.

Exec (IMTERLIZP)

104« (SETQ MY.MENU2 (CREATE MENU TITLE ¢ “PLEASE CHOOSE ONE
OF THE ITEMS" ITEMS €
*({QUIT (PRINT “STOPPED")
“CHOOSE THIS TO STOP™)
(NEXT-QUESTION (PRINT “HERE IS THE NEXT

QUESTION...™)
“CHOOSE THIS TO SEE NEXT QUESTION™)
{NEXT-TOPIC (PRINT "HERE IS THE NEXT TOPIC...")
“CHOOSE THIS TO SEE NEXT TOPIC™)
(SEE-TOPICS (PRINT “THESE HAVE NOT BEEN
|LEARNED...™) .
“CHOOSE THIS TO SEE UNLEARNED
TOPICS™))))
{MENU}#366,17464

105« (ADDMENU MY.MENU2)
{WINDOW}#366, 16234
106¢

PLELSE CHC0OSE OMNE OF THE ITERIS

Figure 13-3. Creating 2 Menu to do Things, then Displaying it With the Function ADDMENU
Now when an item is selected from MY . MENU2, something will happen. When a mouse button is

held down, the expression typed as the third element in the item’s specification will be printed in the
Prompt Window. (See Figure 13-4.)

FLE&SSE CHOOEE ONE OF THE ITEME

TGO SEE MEXT QUESTION

ME X T-CHIE =TI
NEXT-TOPIC
SEE-TOPICS

13-2 ' ‘ An Introduction to Mediey, Release 2.0

13. WHAT ARE MENUS?

Figure 13-4. Mouse Button Held Down While Mouse Cursor Selects NEXT . QUESTION

‘When the mouse button is released (i.e., the item is selected) the expression that was typed as the
second element of the item’s specification will be run. (See Figure 13-5.)

FPLE&SE CHOOOSE DME OF THE ITEMS
QUIT

NEXT-QUESTION

NEXT-TOPIC

SEE-TOPICS

Nowirnndoey for PRINT

"HERE IS THE NEXT QUESTION..."

Figure 13-5. NEXT-QUESTION Selected

WHENHELDFN and WHENSELECTEDFN Fields of a Menu

Another way to get a menu to do things is to define functions, and make them the values of the
menu’s WHENHELDFN and WHENSELECTEDFN fields. As the value of the WHENHELDFN field of a
menu, the function you define will be executed when you press and hold a mouse button inside the
menu. As the value of the WHENSELECTEDFN field of a menu, the function you define will be
executed when you choose a menu item. This example has the same functionality as the previous
example, where each menu item was entered as a list of three items.

As an example, type in these two functions so that they can be executed when the menu is created
and displayed:

(DEFINEQ (MY.MENU3.WHENHELD (ITEM.SELECTED MENU.FROM
BUTTCN.PRESSED)
(SELECTQ ITEM.SELECTED
(QUIT (PROMPTPRINT "CHOOSE THIS TO STOP")
(NEXT-QUESTION (PROMPTPRINT "CHOOSE THIS TO BE ASKED THE
NEXT QUESTION"))
(NEXT-TOPIC (PROMPTPRINT "CHOOSE THIS TO MOVE ON TO THE
NEXT SUBJECT"))
(SEE-TOPICS (PROMPTPRINT "CHOOSE THIS TO SEE THE TOPICS
NOT YET LEARNED"))
(ERROR (PROMPTPRINT "NO MATCH FOUND"))))))

(DEFINEQ (MY.MENU3.WHENSELECTED (ITEM.SELECTED MENU.FROM
BUTTON.PRESSED)
(SELECTQ ITEM.SELECTED
(QUIT (PRINT "STOPPED")
(NEXT-QUESTION (PRINT "HERE IS THE NEXT QUESTION"))
(NEXT-TOPIC (PRINT "HERE IS THE NEXT SUBJECT"))
(SEE-TOPICS (PRINT "THE FOLLOWING HAVE NOT BEEN
LEARNED . . ."))
(ERRCR (PROMPTPRINT "NO MATCH FOUND"))))))

Now, to create the menu, type:

(SETQ MY.MENU3 (CREATE MENU
TITLE « "PLEASE CHOOSE ONE OF THE ITEMS"
ITEMS ¢ ' (QUIT NEXT-QUESTION NEXT-TOPIC SEE-TOPICS)
WHENHELDFN ¢ (FUNCTION MY.MENU3.WHENHELD)

An Introduction to Medley, Release 2.0 13-3

 13. WHAT ARE MENUS?

WHENSELECTEDFN < (FUNCTION MY.MENU3.WHENSELECTED)))
To se¢ your menu work, type
(ADDMENU MY .MENU3)

Now, due to executing the WHENHELDFN function, holding down any mouse button while pointing
to a menu item will display an explanation of the item in the prompt window. The screen will once

again look like Figure 13-4 when the mouse button is held when the mouse cursor is pointing to the
item NEXT-QUESTION.

Now, due to executing the WHENSELECTEDFN function, releasing the mouse button to select an item
will canse the proper actions for that item to be taken. The screen will once again look like Figure
13-5 when the item NEXT-QUESTION is selected. The crucial thing to note is that the functions you
defined for WHENHELDFN and WHENSELECTEDFN are automatically given the following
arguments:

1. 'The item that was selected, ITEM. SELECTED
2. The menu it was selected from, MENU . FROM

3. The mouse button that was pressed BUTTON. PRESSED

These functions, MY . MENU3 . WHENHELD and MY . MENU 3 . WHENSELECTED, were quoted using
FUNCTION instead of QUOTE both for program readability and so that the compiler can produce

faster code when the program is compiled. It is good style to quote functions in Lisp by using the
function FUNCTION instead of QUOTE.

134 An Introduction to Medley, Release 2.0

13. WHAT ARE MENUS?

Looking at a Menu’s Fields

INSPECT is a function that displays a list of the fields of a menu, and their values. Figure 13-6

shows the various fields of MY .MENU3 when the function (INSPECT MY .MENU3) was called.

Notice the values that were assigned by the examples, and all the defaults.

181¢ (INSPECT MY.MENU3)
{WINDOW}#357, 73864

ITEMWIDTH
ITEMHEIGHT
IMABEWIDTH
IMABGEHEIGHT
MENUREGIONLEFT
MENUREGIONBOTTON
IMABE
SAVEIMABE

ITEMS

MENUROWS
MENUCOLUMNS
MENUBRID
CENTERFLG
CHANGEOFFSETFLG
MENUFONT

TITLE
MENUOFFSET
WHENSELECTEDFN
MENUBORDERSIZE
MENUOUTLINESIZE
WHENHELOFN
MENUPOSITION
WHENUNHELDFN
MENUUSERDATA
MENUTITLEFONT
SUBITEMFN
MENUFEEDBACKFLG
SHADEDITEMS

162¢ TRAEMUY 3 336 4174484 Inspector

236

12

238

62

-1

-1

{WINDOW}#376,26000

NIL

(QUIT NEXT-QUESTION NEXT-TOPIC SEE-T
4

1

(6 @ 236 12)

NIL

NIL
{FONTDESCRIPTOR}#74,708204
EPLEASE CHOOSE ONE OF THE ITEMS"
8 . 0)

MY .MENUS.WHENSELECTED

)

1

MY . MENUS3 . WHENHELD

NIL

CLRPROMPT

NIL

NIL

NIL

NIL

NIL

Figure 13-6. MY . MENUS3 Fields

An Introduction to Medley, Release 2.0

13-5

13. WHAT ARE MENUS?

[This page intentionally left blank]

13-6 An Introduction to Medley, Release 2.0

14. BITMAPS

A bitmap is a rectangular array of dots. The dots are called "pixels” (for picture elements). Each dot,
or pixel, is represented by a single bit. When a pixel or bit is turned on (i.¢. that bit set to 1), a black
dot is inserted into a bitmap. If you have a bitmap of a floppy on your screen (Figure 14-1), then all
of the bits in the area that make up the floppy are turned on, and the surrounding bits are turned off.

®

3

e

Figure 14-1. Bitmap of a Floppy"

BITMAPCREATE creates a bitmap, even though it can’t be seen.
(BITMAPCREATE width height)
If width and height are not supplied, the system will prompt you for them.
EDITEM edits the bitmap. The syntax of the function is:
(EDITEM bitmapname)
Try the following to produce results like those in Figure 14-4:

(SETQ MY.BITMAP (BITMAPCREATE 60 40))
(EDITBM MY.BITMAP)

To draw - In the bitmap, move the mouse cursor into the gridded section of the bitmap editor, and
press and hold the left mouse button. Move the mouse around to turn on the bits represented by the
spaces in the grid. Notice that each space in the grid represents one pixel on the bitmap

To erase - Move the mouse cursor into the gridded section of ihe bitmap editor, and press and hold
the center mouse button. Move the mouse around to turn off the bits represented by the filled spaces
in the gridded section of the bitmap editor.

To work on a different section - Point with the mouse cursor to the picture of the actual bitmap (the
upper left comer of the bitmap editor). Press and hold the left mouse button. A menu with the single
item, Move will appear. (See Figure 14-2.) Choose this item.

An Introduction to Medley, Release 2.0 14-1

14. BITMAPS

Figure 14-2. Menu with Single Item (Move)

You will be asked to position a ghost window over the bitmap. This ghost window represents the
portion of the bitmap that you are currently editing. Place it over the section of the bitmap that you
wish to edit and click the left mouse button (see Figure 14-3).

 EEEREEREREEEREREEER

I!’R’Kﬁ!ﬁﬁ&‘ﬁﬁ&'ﬁﬁﬁﬁﬁg

Figure 14-3. Ghost Window Awaiting Positioning

To.end the session - bring the mouse cursor into the upper-right portion of the window (the grey
area) and press the center button. Select OK from the menu to save your artwork.

14-2 An Introduction to Medley, Release 2.0

14. BITMAPS

NIL

180« (SETQ MY.BITMAP (BITMAPCREATE 60 40))
{BITHAP}#65,135242

181« (EDITBM MY .BITMAP)

Eitrnap Editor

Figure 144, Editing a Bitmap

BITBLT is the primitive function for moving bits (or pixels) from one bitmap to another. It extracts
bits from the source bitmap, and combines them in appropriate ways with those of the destination
bitmap. The syntax of the function is:

(BITBLT sourcebitmap sourceleft sourcebottom destinationbitmap destinationleft
destinationbottom width height sourcetype operation texture clippingregion)

Here’s how it’s done —using MY . BITMAP as the sourcebitmap and MY . W1NDOW as the
destinationbitmap.

(SETQ MY.WINDOW (CREATEW))

(BITBLT MY.BITMAP NIL NIL
MY.WINDOW NIL NIL NIL NIL ‘INPUT ‘REPLACE)

Note that the destination bitmap can be, and usually is, a window. Actually, it is the bitmap of a
window, but the system handles that detail for you. Because of the NILs (meaning "use the default"),
MY . BITMAP will be BITBLT’d into the lower right corner of MY . W1NDOW (see Figure 14-5).

An Introduction to Mediey, Release 2.0 14-3

14. BITMAPS

Exec {(INTERLIZF

NIL
193¢ (SETQ MY.WINDOW (CREATEW))
{WINDOVW}#372,114404
184« {BITBLT MY .BITMAP NIL NIL

MY .WINDOW NIL NIL NIL NIL 'INPUT *REPLACE)
NIL
195¢€

————————

Figure 14-5. BITBLTIng a Bitmap onto a2 Window

Here is what each of the BITBLT arguments to the function mean:

sourcebitmap The bitmap to be moved into the destinationbitmap

sourceleft A number, starting at 0 for the left edge of the sourcebitmap,
that tells BITBLT where to start moving pixels from the
sourcebitmap. For example, if the leftmost 10 pixels of
sourcebitmap were not to be moved, sourceleft should be
10. The default value is 0.

sourcebottom A number, starting at O for the bottom edge of the
sourcebitmap, that tells BITBLT where to start moving pixels
from the sourcebitmap. For example, if the bottom 10 rows of
pixels of sourcebitmap were not to be moved, sourcebottom

should be 10 The default value is O.

destinationbitmap The bitmap that will receive the sourcebitmap. This is often a
window (actually the bitmap of a window, but Interlisp takes care of
that for you). »

destinationleft A number, starting at 0 for the left edge of the

destinationbitmap, that tells BITBLT where to start placing
pixels from the sourcebi tmap. For example, to place the
sourcebitmap 10 pixels in from the left, destinationleft
should be 10. The default value is O.

14-4 An Introduction to Medley, Release 2.0

14. BITMAPS

destinationbottom

width

height

sourcetype

operation

texture

clippingregion

A number, starting at O for the bottom edge of the
destinationbitmap, that tells BITBLT where to start placing
pixels from the sourcebitmap. For example, to place the
sourcebitmap 10 pixels up from the bottom,
destinationbottomshould be 10. The default value is O.

How many pixels in each row of sourcebitmap should be
moved. The samc amount of space is used in
destinationbitmap to receive the sourcebitmap. If this
argument is NIL, it defaults to the number of pixels from
sourceleft to the end of the row of sourcebitmap.

How many rows of pixels of sourcebi tmap should be moved.
The same amount of space is used in destinationbitmap to
receive the sourcebitmap. If this argument is NIL, it defaults to
the number of rows from sourcebottomto the top of the
Sourcebitmap.

Refers to one of three ways to convert the sourcebitmap for
writing. For now, just use / INPUT.

Refers to how the sourcebitmap gets BITBLT’d on to the
destinationbitmap. ' REPLACE will BLT the exact
sourcebitmap. Other operations allow you to AND, OR Or XOR
the bits from the sourcebitmap onto the bits on the
destinationbitmap.

Just use NIL for now.

Just use NIL for now.

For more information on these operations, see Chapter 27 in the JRM.

An Introduction to Medley, Release 2.0

14-5

14. BITMAPS

[This page intentionally left blank]

14-6 An Introduction to Medley, Release 2.0

15. DISPLAYSTREAMS

A displaystream is a generalized "place to display”. It determines exactly what is displayed where.
One example of a displaystream is a window. Windows are the only displaystreams that will be used
in this chapter. If you want to draw on a bitmap that is not a window, other than with BITBLT, or
want to use other types of displaystreams, please refer to Chapter 27 in the JRM.

This chapter explains functions for drawing on displaystreams: DRAWLINE, DRAWTO,
DRAWCIRCLE., and FILLCIRCLE. In addition, functions for locating and changing your current
position in the displaystream are covered: DSPXPOSITION, DSPYPOSITION, and MOVETO.

Drawing on a Displaystream

The examples below show you how the functions for drawing on a displaystream work. First, create a
window. Windows are displaystreams, and the one you create is used for the examples in this
chapter. Type:

(SETQ EXAMPLE.WINDOW (CREATEW))
DRAWLINE

DRAWLINE draws a line in a displaystream. For example, type:
(DRAWLINE 10 15 100 150 5 ’/INVERT EXAMPLE.WINDOW)
The results should look like Figure 15-1:

Figure 15-1. Line Drawn onto the EXAMPLE . WINDOW Displaystream
The syntax of DRAWLINE is
(DRAWLINE xI yl x2 y2 width operation stream color dashing)
The coordinates of the left bottom corner of the displaystream are 0 O.
x1 and yl xandy coordinates of the beginning of the line
x2 and y2 ending coordinates of the line

An Introduction to Medley, Release 2.0 15-1

15. DISPLAYSTREAMS

width width of the line, in pixels

operation way the line is to be drawn. INVERT causes the line to invert the bits that are
already in the displaystream. Drawing a line the second time using INVERT erases
the line. For other operations, see Chapter 27 in the JRM.

stream displaystream. In this case, you used a window.
color color specification used for image streams that support color.
dashing a list of positive integers that determines the dashing characteristics of the line.

The first integer indicates the number of points the line is "on", the second integer
the number of points the line is "off", the third integer indicates how long it will be
"on" again, etc. The sequence is repeated from the beginning when the list is
exhausted.

DRAWTO

DRAWTO draws a line that begins at your current position in the displaystream. For example, type:
(DRAWTO 120 135 5 ‘INVERT EXAMPLE.WINDOW)
The results should look like Figure 15-2:

Figure 15-2. Another Line drawn onto the EXAMPLE . WINDOW Displaystream
The syntax of DRAWTO is

(DRAWTO x y width operation stream color dashing)

The line begins at the current position in the displaystream.

x x coordinate of the end of the line
y y coordinate of the end of the line
width width of the line

operation way the line is to be drawn. INVERT causes the line to invert the bits that aro
already in tho displaystream. Drawing a line the second time using INVERT erases
the line. For other operations, see Chapter 27 in the JRM

Sstream displaystreom. In this case. you used a window.

15-2 An Introduction to Medley, Release 2.0

15. DISPLAYSTREAMS

color

dashing

DRAWCIRCLE

color specification used for image streams that support color.

a list of positive integers that determines the dashing characteristics of the line.

The first integer indicates the number of points the line is "on", the second integer
the number of points the line is "off", the third integer indicates how long it will be
"on" again, etc. The sequence is repeated from the beginning when the list is
exhausted.

DRAWCIRCLE draws a circle on a displaystream. To use it, type:

(DRAWCIRCLE 150 100 30 ’ (VERTICAL 5) NIL EXAMPLE.WINDOW)

Now your window, EXAMPLE . WINDOW, should look like Figure 15-3:

Figure 15-3. Circle Drawn onto the EXAMPLE . W1NDOW Displaystream

The syntax of DRAWCIRCLE is

(DRAWCIRCLE centerx centery radius brush dashing stream)

centerx
centery
radius

brush

dashing

stream

x coordinate of the center of the circle
y coordinate of the center of the circle
radius of the circle in pixels

list of brush options. - The first item of the list is the shape of the brush. Some of
your options include ROUND, SQUARE, and VERTICAL. The second item of the
list is the width of the brush in pixels.

list of positive integers. The brush is "on" for the number of units indicated by the
first element of the list, "off™ for the number of units indicated by the second
element of the list. The third element specifies how long it will be on again, and so
forth. The sequence is repeated until the circle has been drawn.

displaystream. In this case, you used a window.

- An Introduction to Medley, Release 2.0

15-3

15. DISPLAYSTREAMS

FILLCIRCLE

FILLCIRCLE draws a filled circle on a displaystream. To use it, type:
(FILLCIRCLE 200 150 10 GRAYSHADE EXAMPLE.WINDOW)

EXAMPLE . WINDOW now looks like Figure 15-4:

Figure 15-4. A Filled Circle Drawn Onto the Displaystream
The syntax of FILLCIRCLE is:
(FILLCIRCLE centerx centery radius texture stream)

centerx x coordinate of the center of the circle

centery y coordinate of the center of the circle
radius radius of the circle in pixels
texture shade that will be used to fill in the circle. Interlisp provides you with three shades:

WHITESHADE, BLACKSHADE, and GRAYSHADE. You can also create your own
shades. For more information on how to do this, see Chapter 27 in the JRM.

stream displaystream. In this case, you used a window

There are many other functions for drawing on a displaystream. Please refer to Chapter 27 in the
IRM.

Text can also be placed into displaystreams. To do this, use printing functions such as PRIN1 and
PRIN2, but supply the name of the displaystream as the "file" to print to. To place the text in the
proper position in the displaystream, see the section below.

Locating and Changing Your Position in a Displaystream

There are functions provided to locate, and to change your current position in a displaystream. This
can help you place text, and other images where you want them in a displaystream. This primer will
only discuss three of these. There are others, and they can be found in the Chapter 27 of the IRM.

15-4 An Introduction to Mediey, Release 2.0

15. DISPLAYSTREAMS

DSPXPOSITION

DSPXPOSITION is a function that will either change the current x position in a displaystream, or
simply report it. To have the function report the current x position in EXAMPLE . W1NDOW, type:

(DSPXPOSITION NIL EXAMPLE.WINDOW)
DSPXPOSITION expects two arguments. The first is the new x position. If this argument is NIL, the
current position is not changed, merely reported. The second argument is the displaystream.
DSPYPOSITION

DSPYPOSITION is an analogous function, but it changes or reports the current y position in a
displaystream. As with DSPXPOSITION, if the first argument is a number, the current y position
will be changed to that position. If it is NI L, the current position is simply reported. To have the
function report the current y position in EXAMPLE . WINDOW, type:

(DSPYPOSITION NIL EXAMPLE.WINDOW)

MOVETO

The function MOVETO always changes your position in the displaystream. It expects three arguments:
(MOVETO x y stream)

x new x position in the display stream
y new y position in the display stream

stream displaystream. The examples so far have used a window

An Introduction to Medley, Release 2.0 15-5

15. DISPLAYSTREAMS

[This page intentionally left blank]

15-6 An Introduction to Mediey, Release 2.0

16. FONTS

This chapter explains fonts and fontdescriptors, what they are and how to use them, so
that you can use functions requiring fontdescriptors

You have already been exposed to many fonts in Medley. For example, when you use the
structure editor, SEdit (see the Using the List Structure Editor section of Chapter 7), you
noticed that the comments were printed in a smaller font than the code, and that CLISP
words were printed in a darker font than the other words in the function. These are only
some of the fonts that are available in Medley.

In addition to the fonts that appear on your screen, Medley uses fonts for printers that are
different than the ones used for the screen. The fonts used to print to the screen are called
DISPLAYFONTS. The fonts used for printing are called INTERPRESSFONTS, or
PRESSFONTS, depending on the type of printer.

What Makes Up a Font Name?

Fonts are described by family, weight, slope, width, and size. This section discusses each
of these, and describes how they affect the font you see on the screen.

Family is one way that fonts can differ. Here are some examples of how "family” affects

the look of a font: ,
CLASSIC This family makes the word "Able" look like this: Able
MODERN This family makes the word "Able" look like this: Able
TITAN This family makes the word "Able" look like this: Able

Weight also determines the look of a font. Once again, "Able" will be used as an example,
this time only with the Classic family. A font's weight can be:

BOLD And look like this: Able

MEDIUM
or REGULAR And look like this: Able

The slope of a font is italic or regular. Using the Classic family font again, in a regular
weight, the slope affects the font like this:

ITALIC Looks like this: Able
REGULAR Looks like this: Able

The width of a font is called its "expansion". It can be COMPRESSED, REGULAR, or
EXPANDED.

Together, the weight, slope, and expansion of a font specifies the font's "face”.
Specifically, the face of a font is a three element list:

(weight slope expansion)

To make it easier to type, when a function requires a font face as an argument, it can be
abbreviated with a three-character atom. The first specifies the weight, the second the
slope, and the third character the expansion. For example, some common font faces are
abbreviated:

An Introduction to Medley, Release 2.0 16-1

16. FONTS

MRR This is the usual face, MEDIUM, REGULAR, REGULAR

MIR Makes an italic font. It stands for: MEDIUM, ITALIC, REGULAR

BRR Makes a bold font. The abbreviation means: BOLD, REGULAR, REGULAR
BIR Means that the font should be both bold and italic. BIR stands for BOLD,

ITALIC, REGULAR .

The above examples are used so oflen, that there are also more mnemonic abbreviations
for them. They can also be used to specify a font face for a function that requires a face as
an argument. They are:

STANDARD This is the usual face: MEDIUM, REGULAR, REGULAR,; it was abbreviated

above, MRR
ITALIC This was abbreviated above as MIR, and specifies an italic font
BOLD . Makes a bold font; it was abbreviated above, BRR

BOLDITALIC Makes a font both bold and italic: BOLD, ITALIC, REGULAR; it was
abbreviated above, BIR

A font also has a size. It is a positive integer that specifies the height of the font in
printer's points. about 1/72 of an inch per point. The size of the font used in this chapter is
10. For comparison, here is an example of a TITAN, MRR, size 12 font: Able.

Fontdescriptors and FONTCREATE

For Medley to use a font, it must have a fontdescriptor. A fontdescriptor is a data type in
Interlisp that that holds all the information needed in order to use a particular font.
When you print out a fontdescriptor, it looks like this:

. {FONTDESCRIPTOR}#74,45540
Fontdescriptors are created by the function FONTCREATE. For example,
(FONTCREATE 'HELVETICA 12 'BOLD) ‘

creates a fontdescriptor that, when used by other functions, prints in BEELVETICA BOLD
size 12.Interlisp functions that work with fonts expect a fontdescriptor produced with
the FONTCREATE function.

The syntax of FONTCREATE is:
(FONTCREATE family size face)

Remember from the previous section, face is either a three element list (weight slope
expansion), a three character atom abbreviation, e.g. MRR, or one of the mnemonic
abbreviations, e.g. STANDARD.

If FONTCREATE is asked to create a fontdescriptor that already exists, the existing
fontdescriptor is simply returned.

Display Fonts

Display fonts require files that contain the bitmaps used to print each character on the
screen. All of these files have the extension . DISPLAYFONT. The file name itself
describes the font style and size that uses its bitmaps. For example:

16-2 An Introduction to Medley, Release 2.0

16. FONTS

MODERN12.DISPLAYFONT
contains bitmaps for the font family MODERN in size 12 points.

The directory where you put your . DISPLAYFONT files should be one of the values of the
DISPLAYFONTDIRECTORIES variable. Its value is a list of directories to search for the
bitmap files for display fonts. When looking for a . DISPLAYFONT file, the system checks
the FONT directory on the hard disk, then the current connected directory.

Figure 16-1 shows an example value of DISPLAYFONTDIRECTORIES:

Exec (NTERLISF

183« DISPLAYFONTDIRECTORIES
("{dsk}/users/sybalsky/sd/" "{dsk}/usr/local/lde/L1
spcore>XeroxPrivate>Fonts>”

"{Pallas:mv:envos}<Fontsddisplay>presentationd"
"{Pa11as:mv:envos}(Fonts)disp1a§>pub1ishing)"
“{Pallas:mv:envos}<Fontsd>displaydprintwheel>"

"{Pallas:mv:envos}<{Fonts>display>miscellaneous>"
"{Pallas:mv:envos}<{Fonts>display>JIS1>"
"{Pallas:mv:envos}<Fonts>display>JIs2>"

"{Pallas:mv:envos}<{Fonts>display>CHINESE> ")
184¢€

Figure 16-1. Value for the Atom DISFLAYFONTDIRECTORIES

InterPress Fonts

InterPress is the format that is used by Xerox laser printers. These printers normally
have a resolution that is much higher than that of the screen: 300 points per inch.

To format files appropriately for output on such a printer, Interlisp must know the actual
size for each character that is to be printed. This is done through the use of width files
that contain font width information for fonts in InterPress format. For InterPress fonts,
you should make the location of these files one of the values of the variable
INTERPRESSFONTDIRECTORIES. Its value is a list of directories to search for the font
widths files for InterPress fonts. Figure 16-2 is an example value of
INTERPRESSFONTDIRECTORIES:

An Introduction to Medley, Release 2.0 16-3

16. FONTS

Exec {INTERLISF)

184« INTERPRESSFONTDIRECTORIES
("{dsk}/users/sybalsky/sd/" "{dsk}/usrislocal/ldesL1
spcore>XeroxPrivate>Fonts>"

"{Pallas:mv:envos}<{Fonts)>interpress>presenta
tion>"

*{Pallas:mv:envos}<{Fontsd>interpressd>publishing>"

"{Pallas:mv:envos}<Fonts>interpressdprintuwheel>"
"{Pallas:mv:envos}<Fonts)interpress>miscella
neous>"
“{Pzllas:mv:envos}<Fonts>interpress>JIS1>"
“{Pallas:mv:envos}t<{Fonts>interpress>JIS2>"

”{Pa]ias:mv:envos}(Fonts>1nterpéess>CHINESE>“

)

185¢

Figure 16-2. Value for Atom INTERPRESSFONTDIRECTORIES

Functions for Using Fonts

FONTPROP Looking at Font Properties

It is possible to see the properties of a fontdescriptor. This is done with the function
FONTPROP. For the following examples, the fontdescriptor used will be the one returned
by the function (DEFAULTFONT 'DISPLAY).In other words, the fontdescriptor
examined will be the default display font for the system.

There are many properties of a font that might be useful to you. Some of these are:

FAMILY To see the family of a font descriptor, type:
(FONTPROP (DEFAULTFONT 'DISPLAY) 'FAMILY)

SIZE As above, thisis a positive integer that determines the height of the font
in printer's points. As an example, the SIZE of the current default font is:

Exec (IMTERLIZF)

120« (FONTPROP (DEFAULTFONT ’DISPLAY) *SIZE)
i ’
130¢

Figure 16-3. Value of Font Property SIZE of Default Font

ASCENT The value of this property is a positive integer, the maximum height of
any character in the specified font from the baseline (bottom). The top of
the tallest character in the font, then, will be at (BASELINE + ASCENT
- 1). For example, the ASCENT of the default font is:

164

An Introduction to Medley, Release 2.0

16. FONTS

128#(FDNTPROP(DEFAULTFONT’DBPLAY)’ASGENT)
S
120¢

Figure 16-4. Value Font Property ASCENT of Default Font

DESCENT The DESCENT is an integer that specifies the maximum number of points
that a character in the font descends below the baseline (e.g., letters such
as "p" and "g" have tails that descend below the baseline.). The bottom of
the lowest character in the font will be at (BASELINE - DESCENT). To
see the DESCENT of the default font, type:

(FONTPROP (DEFAULTFONT 'DISPLAY) 'DESCENT)
HEIGHT HEIGHT is equal to (DESCENT - ASCENT).

FACE The value of this property is a list of the form (weight slope expansion).
These are the weight, slope, and expansion described above. You can see
each one separately, also. Use the property that you are interested in,
WEIGHT, SLOPE, or EXPANSION, instead of FACE as the second argument
to FONTPROP.

For other font properties, see Chapter 27 of the IRM.

STRINGWIDTH

It is often useful to see how much space is required to print an expression in a particular
font. The function STRINGWIDTH does this. For example, type:

(STRINGWIDTH "Hi there!" (FONTCREATE 'GACHA 10 'STANDARD))

The number returned is how many left to right pixels would be needed if the string were
printed in this font. (Note that this doesn't just work for pixels on the screen, but for all
kinds of streams. For more information about streams, see Chapter 15.) Compare the
number returned from the example call with the number returned when you change
GACHA to TIMESROMAN.

DSPFONT - Changing the Font in One Window

The function DSPFONT changes the font in a single window. As an example of its use, first
create a window to write in. Type:

(SETQ MY.FONT.WINDOW (CREATEW))

and sweep out the window. To print something in the default font, type:
(PRINT 'HELLO MY.FONT.WINDOW)

Your window, MY . FONT . WINDOW, will look something like Figure 16-5:

An Introduction to Medley, Release 2.0 16-5

16. FONTS

HELLO

Figure 16-5. HELLO, Printed with the Default Font in MY . FONT . WINDOW
Now change the font in the window. Type:
(DSPFONT (FONTCREATE 'BELVETICA 12 'BOLD) MY.FONT.WINDOW)

The arguments to FONTCREATE can be changed to create any desired font. Now retype the
PRINT statement, and your window will look something like Figure 16-6:

e UNTER_IZED

1ee¢ (DSPFONT (FONTCREATE ’HELVETICA 12 ’BOLD)
|Mv FONT winDOW)

{FONTDESCRIPTOR}#74,114678

167¢ ’

(PRINT *HELLO MY FONT.WINDOW)

HELLO

168¢

HELLOQ
HELLO

Flgure 16-6. Font in MY . FONT.WINDOW Changed
Notice the font has been changed.

Personalizing Your Font Profile

Medley keeps a list of default font specifications. This list is used to set the font in all
windows where the font is not specifically set by the user (see the DSPFONT section
above). The value of the atom FONTPROFILE is this list (see Figure 16-7).

A FONTPROF ILE is a list of font descriptions that certain system functions access when
printing output. It contains specifications for big fonts (used when pretty printing a
function to type the function name), small fonts (used for printing comments in the
editor), and various other fonts.

16-6 An Introduction to Mediey, Release 2.0

16. FONTS

17e+ FONTPROFLLE
((|FILE BROWSER PROMPT| 18
(HELYETICA 8 (MEDIUN)’}?GULAR REGULAR
J

(|FILE BROWSER FONT| §
(GACHA 18 (MEDIUN REGULAR REGULAR)))
(PRONPTZ WINDOW 8 (GACHA 18
(MEDIUN REGULAR

REBGULAR)))
(DEFAULTFONT 1 (GACHA 18)
{GACHA 8)
{TERMINAL 8))
(ITALICFONT 1 (HELVETICA 18 MIR)
(GACHA 8 MIR)
(MODERN 8 MIR))
{BOLDFONT 2 (HELVETICA 18 BRR)
(HELVETICA 8 BRR)
: (MODERN 8 BRR))
(LITTLEFONT 3 (HELVETICA 8)
(HELVETICA 6 NIR)
(MODERN 8 MIR))
(TINYFONT 6 (GACHA 8)
{GACHA 6)
(TERMINAL 6))
(BIGFONT 4 (HELVETICA 12 BRR)
NIL

(MODERN 1@ BRR))
(MENUFONT 5 (HELVETICA 1@))
{COMMENTFONT 6 (HELYETICA 18)
(HELVETICA 8)
{MODERN 8))
(TEXTFONT 7 (TIMESROMAN 18)
NIL

(CLASSIC 18)))
177+«

Figure 16-7. Value of the Atom FONTPROFILE

The list is in the form of an association list. The font class names (e.g., DEFAULTFONT, or
BOLDFONT) are the keywords of the association list. When a number follows the keyword,
it is the font number for that font class.

The lists following the font class name or number are the font specifications, in a form
that the function FONTCREATE can use. The first font specification list after a keyword is
the specification for printing to windows. The list(GACEA 10) in the figure above isan
example of the default specification for the printing to windows. The last two font
specification lists are for Press and InterPress file printing, respectively. For more
information, see Chapter 27 in the IRM.

Now, to change your default font settings, change the value of the variable
FONTPROFILE. Medley has a list of profiles stored as the value of the atom FONTDEFS.
Choose the profile to use, then install it as the default FONTPROFILE. -

Evaluate the atom FONTDEFS and notice that each profile list begins with a keyword (see
Figure 16-8). This keyword corresponds to the size of the fonts included. BIG, SMALL, and
STANDARD are some of the keywords for profiles on this list—SMALL and STANDARD
appear in Figure 16-8.

An Introduction to Medley, Release 2.0

16-7

16. FONTS

Exec (IMTERLISF:

187« FONTDEFS
[[HUGE (FONTPROFILE (DEFAULTFONT 1 (MODERN 24)
NIL
(TERMINAL 8))
{BOLDFONT 2 (MODERN 24 BRR)
NIL
{MODERN 8 BRR))
(LITTLEFONT 3 (MODERN 18 MRR)
NIL
(MODERN 8 MIR)) -
(BIGFONT 4 (MODERN 36 BRR)
NIL
(MODERN 18 BRR))

fmemiim i = (A aAmYA Aa N

Figure 16-8. Part of Value of the Atom FONTDEFS

To install a new profile from this list, follow the following example, but insert any
keyword for BIG.

To use the profile with the keyword BIG instead of the standard one, evaluate the
following expression:

(FONTSET 'BIG)) .

Now the fonts are permanently replaced. (That is, until another profile is installed.)

16-8

An Introduction to Mediey, Release 2.0

17. THE INSPECTOR

The Inspector is a window-oriented tool designed to examine data structures. Because
Medley is such a powerful programming environment, many types of data structures
would be difficult to see in any other way.

Calling the Inspector

Take as an example an object defined through a sequence of pointers (i.e., a bitmap on the
property list of a window on the property list of an atom in a program.)

To inspect an object named NAME, type:
(INSPECT 'NAME)

If NAME has many possible interpretations, an option menu will appear. For example, in
Interlisp, a litatom can refer to both an atom and a function. For example, if NAME was a
record, had a function definition, and had properties on its property list, then the menu
would appear as in Figure 17-1.

Which defr of FARIE?

Figure 17-1. Option Window for Inspection of NAME

If NAME were a list, then the option menu shown in Figure 17.2 would appear. The optiims
include:

e Calling the display editor on the list
o Calling the TTY editor (see Chapter 6)

o Seeing the list's elements in a display window. If you choose this option, each element
in the list will appear in the right column of the Inspector window. The left column of
the Inspector window will be made up of numbers (see Figure 17-3).

e Inspecting the list as a record type (this last option would produce a menu of known
record types). If you choose a record type, the items in the list will appear in the right
column of the Inspector window. The left column of the Inspector window will be
made up of the field names of the record.

DisplayEdit
TtyEdit
Inspect

As arecord

Figure 17-2. Option Window for Inspection of List

An Introduction to Medley, Release 2.0 1741

17. THE INSPECTOR

Using the Inspector

If you choose to display your data structure in an edit window, simply edit the structure
and exit in the normal manner when done. If you choose to display the data structure in
an inspect window, then follow these instructions:

o Toselect an item, point the mouse cursor at it and press the left mouse button.

e Items in the right column of an Inspector window can themselves be inspected. To do
this, choose the item, and press the center mouse button.

e Items in the right column of an Inspector window can be changed. To do this, choose
the corresponding item in the left column, and press the center mouse button. You
will be prompted for the new value, and the item will be changed. The sequence of
steps is shown in Figure 17-3.

The item in the left column is selected, and the middle mouse button pressed. Select the
SET option from the menu that pops up.

You will then be prompted for the new value. Type it in.

The item in the right column is updated to the value of what you typed in.

SHERECT-ME- T3 EFECT-
1 INSPECT-ME-TOO1
2 INSPECT-ME-TOO2
E INSPECT-ME-T003

Eval> 'CHANBED-VALUE

OMSRECT ME Tl IMZRFECT.

INSPECT-ME-TOO1
INSPECT-ME-T002
[NZPECT-ME-TOOZ

o -

EFECT RE - T 2ol IHIZRECT-
1 INSPECT-ME-TOD01
2 INSPECT-ME-TOO2
E CHANBED-YALUE

Figure 17-3. Steps Involved in Changing Value in Right Column of Inspector Window

Inspector Example

This example will use ideas discussed in Chapter 21. An example, ANIMALGRAPH, is
created in that section. You do not need to know the details of how it was created, but the
structure is examined in this chapter.

If you type
(INSPECT ANIMAL.GRAPH)

and then choose the Inspect option from the menu, a display appears as shown in Figure
17-4. ANIMAL.GRAPH is being inspected as a list. Note the numbers in the left column of
the Inspector window.

17-2 An introduction to Medley, Release 2.0

17. THE INSPECTOR

S TET A ey T RIL HIL -

1 ((FISH & NIL NIL --) (BIRD & NIL NIL
2 T

3 NIL
4 NIL
5 NIL
6 NIL
7 NIL
8 NIL
S NIL
18 NIL
11 NIL
12 NIL

Figure 17-4. Inspector Window For ANIMAL . GRAPH Inspected as List

If you choose the "As A Record" option, and choose "GRAPB" from the menu that appears,
the inspector window looks like Figure 17-5. Note the field names in the left column of
the inspector window.

iFlTH s o BIRD A ol aT A s a T HIL PHL -2 Imspectar

GRAPH.PROPS NIL
BRAPH.CHANGELABELFN NIL
GRAPH, INVERTLABELFN NIL
GRAPH. INVERTBORDERFN NIL
GRAPH.FONTCHANBEFN NIL
GRAPH.DELETELINKFN NIL

GRAPH . ADDL INKFN NIL

GRAPH.DELETENODEFN NIL

GRAPH . ADDNODEFN NIL

GRAPH . MOYENODEFN NIL

DIRECTEDFLE NIL

SIDESFLEG T

GRAPHNODES ((FISH & NIL NIL --) (BIRD & NIL NIL

Figure 17-5. Inspector Window for ANIMAL . GRAPH, Inspected as Instance of GRAPH
Record

The remaining examples will use ANIMAL.GRAPH inspected as a list. When the first item
in the Inspector window is chosen with the left mouse button, the Inspector window looks
like Figure 17-6.

EIRD S a0 TaT S

(FITH o NIL HNIL

o T RHIL HIL .-
-=1 TRIRED o MIL MIL

1

2

3 NIL
4 NIL
5 NIL
6 NIL
7 NIL
8 NIL
g NIL
18 NIL
11 NIL
12 NIL

Figure 17-6. Inspector Window for ANIMAL . GRAPH With First Element Selected

When you use the middle mouse button to inspect the selected list element, the display
looks like Figure 17-7.

An Introduction to Medley, Release 2.0 17-3

17. THE INSPECTOR

GFITH S L BIRD A& 0T aT & e T HIL ML --

1 (i SoMIL MIL --0 (BIRD o WNIL NI

2 T

3 NIL

CR (P ITH 10D ATl B RO a2 T2 L -
5 1 (FISH (182 . 4B) NIL NIL NIL --)

B 2 (BIRD (182 . 32) NIL NIL NIL --)

7 3 (CAT (186 . 24) NIL NIL NIL --)

8 4 (DOG (178 . 18) NIL NIL NIL -=)

9 5 ((MAMMAL DOB CAT) (189 . 16) NIL NIL
i? & {({ANIMAL & BIRD FISH) (22 . 32) NIL
12 NIL

Figure 17-7. Inspector Window for ANIMAL.GRAPE and for First Element of

ANIMAL.GRAPH

How you can see that six items make up the list, and you can further choose to inspect one
of these items. Notice that this is also inspected as a list. As usual, it could also have been

inspected as a record.

Select item 5 - MAMMAL DOG CAT - with the left mouse button. Press the middle mouse
button. Choose "Inspect” to inspect your choice as a list. The Inspector now displays the
values of the structure that makes up MAMMAL DOG CAT. (See Figure 17-8.)

kA& RARIAL DTS JaTd 09,
(MAMMAL DOG CAT)
(188 . 18)

NIL

NIL

NIL

45

16

(DOG CAT)

((ANIMAL & BIRD FISH
18 {FONTCLASS}#74,61752
11 MAMMAL

12 NIL

DOO~NODONPLWN K

1E

»

Figure 17-8. Inspector Window for Element 5 From Figure 17-7 That Begins

((MAMMAL DOG CAT).

17-4

An Introduction to Medley, Release 2.0

18. MASTERSCOPE

Masterscope is a tool that allows you to quickly examine the structure of complex programs. As your
programs enlarge, you may forget what variables are global, what functions call other functions, and
so forth. Masterscope keeps track of this for you.

To use Masterscope, first load MASTERSCOPE . DFASL and EXPORTS . ALL.

Suppose that JVTO is the name of a file that contains many of the functions involved in a complex
system and that LINTRANS is the file containing the remaining functions. The first step is to ask
Masterscope to analyze these files. These files must be loaded. All Masterscope queries and
commands begin with a period followed by a space, as in

. ANALYZE FNS ON MSCOPEDEMO

The ANALYZE process takes a while, so the system prints a period on the screen for each function it
has analyzed. (See Figure 18-1)

Exec 2 (INTERLIZF)

2/108> . ANALYZE FNS ON MSCOPEDEMO

Figure 18-1. Executive Window After Analyzing Files

If you are not quite sure what functions were just analyzed, type the file’s COMS variable (see the File
Variables section in Chapter 7) into the Executive Window. The names of the functions stored on the
file will be a part of the value of this variable.

A variety of commands are now possible, all referring to individual functions within the analyzed
files. Substantial variation in exact wording is permitted. Some commands are:

. SHOW PATHS FROM ANY TO ANY

. EDIT WHERE ANY CALLS functionname
. EDIT WHERE ANY USES variablename
. WHO CALLS WHOM

. WHO CALLS functionname

. BY WHOM IS functionname CALLED

. WHO USES variablename 25 FIELD

Note that the function is being called to invoke each command. Refer to the IRM for commands not
listed here.

Figure 18-2 shows the Executive Window after the commands . WHO CALLS GetCTType and .
WHO DOES ReadBeginEnd CALL.

2/107> . WHO CALLS GetCTType
{ReadBeginEnd Parselist)

2/108> . WHO DOES ReadBeginEnd CALL

(ConcatlList ParselList BetCTType PrintError apply)
2,108

Figure 18-2. Sample Masterscope Output

An Introduction to Medley, Release 2.0) . 181

18. MASTERSCOPE

SHOW DATA Command and GRAPHER

When the library package GRAPHER is loaded (to load this package, type (FILESLOAD
GRAPHER)), Masterscope’s SHOWPATHS command is modified. The command will be changed to
generate a tree structure showing how the program’s functions interact instead of a tabular printout
into the Executive window. For example, typing:

. SHOW PATHS FROM ProcessEND

produced the display shown in Figure 18-3.

FATHS FROM Pro

PrintWarning
ProcessEND
- = . etMyProp AncestorProp
GetBeginTagString ConcatL iStWithopaces

Figure 18-3. SHOW PATHS Display Example

All the functions in the display are part of this analyzed file or a previously analyzed file. Boxed
functions indicate that the function name has been duplicated in another place on the display.

Selecting any function name on the display will pretty print the function in a window (see Figure
18-4).

PrintWarning

6etCTType

ncatl ist ————Concatlist|

tMyProp etancestorProp
istiithSpaces

Erowszer print out window

(GetMy
[LAMBDA (PropName) ; Edited 20-Feb-82 22:14 by

;, welch
{GetAncestorProp PropName (CAR TOIstack])

Figure 18-4. Browser Printout Example

Selecting it again with the left mouse button will produce a description of the function’s role in the
overall system (see Figure 18-5).

18-2 An Introduction to Medley, Release 2.0

18. MASTERSCOPE

s | e

(GetMyProp PropName)

calls: BetAncestorProp

called by: ProcessEND,
BetBeginTagString

uses free: TOIstack

Figure 18-5. Browser Description Example

An introduction to Medley, Release 2.0 18-3

18. MASTERSCOPE

[This page intentionally left blank]

18-4 An Introduction to Mediey, Release 2.0

19. WHERE DOES ALL THE TIME GO? SPY

SPY is a Lisp library package that shows you where you spend your time when you run
your system. It is easy to learn, and very useful when trying to make programs run
faster.

How to Use Spy with the SPY Window

The function SPY .BUTTON brings up a small window which you will be prompted to
position. Using the mouse buttons in this window controls the action of the SPY program.
When you are not using SPY, the window appears as in Figure 19-1.

SPY off;

Figure 19-1. sSPY Window When SPY is Not Being Used

To use SPY, click either the left or middle mouse button with the mouse cursor in the SPY
window. The window will appear as in Figure 19-2, and means that SPY is accumulating
data about your program.

SPY on

Figure 19-2. sSPY Window When SPY is Being Used

To turn off SPY after the program has run, again click a mouse button in the SPY window.
The eye closes, and you are asked to position another window. This window contains
SPY'sresults. An example of the resulting window is shown in Figure 19-3.

An Introduction to Medley, Release 2.0 19-1

19. WHERE DOES ALL THE TIME GO? SPY

SRy T, 90 samples

------ i1 866K

tesrrseraad

12 \TIMER.PROCESS

£3 %BACKGROUND. PROCESS

108 T 16 WINDOL. MOUSE, HANDLERp—:11 G

26 \MOUSE. PROCESS|

22222 A A2 AR RARAAARRA2A L]

e
ny
A
m
5
5N
o

VNIV S

17 \TTYBAKGROUNE,

Figure 19.3. Window Produced After Running SPY

This window is scrollable horizontally and vertically. This is useful, since the whole tree
does not fit in the window.

How to Use SPY from the Lisp Top Level

SPY can also be run while a specific function or system is being used. To do this, type the
function WITH.SPY:

(WITH.SPY form)

The expression used for form should be the call to begin running the function or system
that SPY is to watch. If you watch the SPY window, the eye will blink! To see your results,
run the function SPY. TREE. To do this, type:

(SPY.TREE)

The results of the last running of SPY will be displayed. If you do this, and SPY . TREE
returns (no SPY samples have been gathered), your function ran too fast for SPY to follow.

Interpreting SPY’s Resuits

Each node in the tree is a box that contains, first, the percentage of time spent running
that particular function, and second, the function name. There are two modes that can be
used to display this tree.

The default mode is cumulative. In this mode, each percentage is the amount of time that
function spent on top of the stack, plus the amount of time spent by the functions it calls.
The second mode is individual. To change the mode to individual, point to the title bar of
the window, and press the middle mouse button. Choose Individual from the menu
that appears. In this mode, the percentage shown is the amount of time the function spent
on the top of the stack.

To look at a single branch of the tree, point with the mouse cursor at one of the nodes of
the tree, and press the right mouse button. From the menu that appears, choose the
option SubTree. Another SPY window will appear, with just this branch of the tree in it.

192 An Introduction to Medley, Release 2.0

19. WHERE DOES ALL THE TIME GO? SPY

Another way to focus within the tree is to remove branches from the tree. To do this, point
to the node at the top of the branch you would like to delete. Press the middle mouse
button, and choose Delete from the menu that appears.

There are also different amounts of "merging" of functions that can be done in the
window. A function can be called by another function more than once. The amount of
merging determines where the subfunction, and the functions that it calls, appear in the
tree, and how often. (For a detailed explanation of merging, see the Lisp Library
Packages Manual.)

An Introductipn to Medley, Release 2.0 19-3

20. FREE MENUS

Free Menu isa package that is even more flexible than the regular menu package. It allows you to
create menus with different types of items in them, and format them as you would like. Free menus
are particularly useful when you want a "fill in the form" type interaction with the user.

Each menu item is described with a list of properties and values. The following example will give
you an idea of the structure of the description list, and some of your options. The most commonly
used properties, and each type of menu item will be described in the Parts of a Free Menu Item and
Types of Free Menu Items sections below.

Example Free Menu

Free menus can be created and formatted automatically! It is done with the function FREEMENU.
This function takes four arguments: a description of the menu, a title, a background shade, and a
border width. The description is a list of lists; each internal list describes one row of the free menu. A
free menu row can have more than one item in it, so there are really lists of lists of lists! As in the
following example:

(SETQ ExampleMenu
(FREEMENU
’ (((LABEL TitlesDoNothing)
(TYPE 3STATE LABEL Example3State))
((TYPE EDITSTART LABEL PressToStartEditing
LINKS (EDIT EDITITEM))
(TYPE EDIT ID EDITITEM LABEL "")))

"Example Does Nothing")))
(OPENW ExampleMenu)

The first row has two items in it, a TITLE and a 3STATE item. The second row also has two items.
The second, the EDIT item, is invisible, because its label is an empty string. The caret will appear for
editing, however, if the EDITSTART item is chosen. WINDOWPROPS can appear as part of the
description of the menu, because a menu is, after all, just a special window. You can specify not only
the title with WINDOWPROPS, but also the position of the free menu, using the "left" and "bottom"
properties, and the width of the border in pixels, with the "border” property. Evaluating this
expression will return a window. You can see the menu by using the function OPENW. The following
example illustrates this:

Exec 2 (INTERLIZP)

2/71e0> (SETQ ExampleMenu {FREEMENU *({(LABEL TitlesDoNothing)
{TYPE 3STATE LABEL Example3State))
{(TYPE EDITSTART LABEL
PressToStartEditing LINKS (EDIT EDITITEM))
(TYPE EDIT ID EDITITEM LABEL **)))
“Example Does Nothing™))
{VINDOW}#377,72008
2/1e1> (OPENW ExampieMenu)
{WINDOW}#377,720080
2/162>

Example Does Waothing
TitlesDoNothing Example3State
PressToStartEditing

Figure 20-1. Example Free Menu

An introduction to Mediey, Release 2.0 20-1

20. FREE MENUS

The next example shows you what the menu looks like after the EDITSTART item,
PressToStartEditing, has been chosen.

Exarnple Does Wothing
TitlesDoNothing Exampie3State
FrezzToltartEditing

Figure 20-2. Free menu after EDITSTART Item Chosen

The following example shows the menu with the 3STATE item in its T state, with the item
highlighted. (In the previous bitmaps, it was in its neutral state.)

Exarmple Does Wothing

TitlesDoNothing B
PressToStartEditing

Figure 20-3. Free menu with 3STATE Item in its T State
Finally, Figure 20-4 shows the 3STATE item in its NIL state, with a diagonal line through the item

warnple Dioes MNothing

TitlesDoNothing Examples8vare

PressToStartEditing

Fxg_ure 20-4 Free menu with the 3STATE item in its NIL State

If you would like to specify the layout of the menu yourself, you can do that too. See the Free Menu
documentation in the Lisp Release Notes, Medley Release, Appendix D for more information.

Parts of a Free Menu ltem

There are nine different types of items that you can use in a free menu. No matter what type, the
menu item is easily described by a list of properties and values. Some of the properties you will use

most often are listed below:
LABEL Required for every type of menu item. It is the atom, string, or bitmap that

' appears as a menu selection.
TYPE One of eight types of menu items. Each of these are described below.
MESSAGE The message that will appear in the prompt window if a mouse button is held

down over the item.

ID An item’s unique identifier. An ID is needed for certain types of menu items.
LINKS Used to list a series of choices for an NWAY item, and to list the ID’s of the

editable items for an EDITSTART item.

SELECTEDFN The name of the function to be called if the item is chosen.

20-2 An Introduction to Mediey, Release 2.0

20. FREE MENUS

Types of Free Menu ltems

Each type of menu item is described in the following list, including an example description list for

each one.

MOMENTARY

TOGGLE

3STATE

STATE

DISPLAY

NWAY

EDITSTART

This is the familiar sort of menu item. When it is selected, the function stored

with it is called. A description for the function that creates and formats the menu
looks like this:
(TYPE MOMENTARY
LABEL Blink-N-Ring
MESSAGE "Blinks the screen and rings bells"
SELECTEDFN RINGBELLS)

This menu item has two states, T and NI L. The default state is NIL, but
choosing the item toggles its state. The following is an example description list,
without code for the SELECTEDFN function, for this type of item:

(TYPE TOGGLE .
LABEL DwimDisable
SELECTEDFN ChangeDwimState)

This type of menu item has three states, NEUTRAL, T, and NIL. NEUTRAL is
the default state. T is shown by highlighting the item, and NIL is shown with
diagonal lines. The following is an example description list, without code for the
SELECTEDFN function, for this type of item:

(TYPE 3STATE
LABEL CorrectProgramAllOrNoSpelling
SELECTEDFN ToggleSpellingCorrection)

This type of menu item has allows general multiple state items, and the
CHANGESTATE item property determines how the item changes state. The
following is an example description list:

(TYPE STATE
LABEL "Choose Me" MENUITEMS (Iteml Item2))

This menu item appears on the menu as dummy text. It does nothing when
chosen. An example of its description:

(TYPE DISPLAY LABEL "Choices:")

A group of items, only one of which can be chosen at a time. The items in the
NWAY group should all have a COLLECTION field, and the COLLECTION’S
should be the same. For example, to set up a menu that would allow the user to
choose between Helvetica, Gacha, Modern, and Classic fonts, the descriptions
might look like this (once again, without the code for the SELECTEDFN):

(TYPE NWAY COLLECTION FONTCHOICE
LABEL Helvetica
SELECTEDFN ChangeFont)

(TYPE NWAY COLLECTION FONTCHOICE
LABEL Gacha
SELECTEDFN ChangeFont)

(TYPE NWAY COLLECTION FONTCHOICE)
LABEL Modern
SELECTEDFN ChangeFont)

(TYPE NWAY COLLECTION FONTCHOICE
LABEL Classic
SELECTEDFN Changefont)

When this type of menu item is chosen, it activates another type of item, an
EDIT item. The EDIT item or items associated with an EDITSTART item have

An Introduction to Medley, Release 2.0

20-3

20. FREE MENUS

their 1D’s listed on the EDITSTART’s LINKS property. An example
description list is: . _
(TYPE EDITSTART LABEL "Fn to add?" LINKS (EDIT Fn))

EDIT This type of menu item can actually be edited by you. It is often associated with
an EDITSTART item (see above), but the caret that prompts for input will also
appear if the item itself is chosen. An EDIT item follows the same editing
conventions as editing in an Executive Window:

Add characters by typing them at the caret.

Move the caret by pointing the mouse cursor at the new position, and clicking
the left button.

Delete characters from the caret to the mouse cursor by pressing the right
button of the mouse. Delete a character behind the caret by pressing the

Backspace key.

Stop editing by typing a carriage return, a Control-X, or by choosing another
item from the menu.

An example description list for this type of item is:
(TYPE EDIT ID Fn LABEL "")

NUMBER NUMBER items are EDIT items that are restricted to numerals.

20-4 An Introduction to Mediey, Release 2.0

20. FREE MENUS

[This page intentionally left blank]

An Introduction to Mediey, Release 2.0 20-5

21. THE GRAPHER

Say it with Graphs

Grapher is a collection of functions for creating and displaying graphs, networks of nodes
and links. Grapher also allows you to associate program behavior with mouse selection of
graph nodes. To load this package, type

(FILESLOAD GRAPHER)

Figure 21-1 shows a simple graph.

Exec (MTERLIZF:

142¢ (SHOWGRAPH ANIMAL.GRAPH "ANIMAL GRAPH")
{WINDOW}#367,17000
143¢

srnirnal Sragph

[ANIMAL ———BIRD]
D06
[MammaL
caT

Figure 21-1. Simple Graph

In Figure 21-1 there are six nodes (ANIMAL, MAMMAL, DOG, CAT, FISH, and BIRD)
connected by five links. A GRAPH is a record containing several fields. Perhaps the most
important field is GRAPENODES—which is itself a list of GRAPHNODE records. Figure 21-2
illustrates these data structures. The window on top contains the fields from the simple
graph. The window on the bottom is an inspection of the node, DOG.

An Introduction to Medley, Release 2.0

21. THE GRAPHER

(GFISH & - iBIRD & -0 AT & - -0 T RIL WIL -3 Inspector
GRAPH.PROPS NIL
GRAPH.CHANGELABELFN NIL
GRAPH.INVERTLABELFN NIL
GRAPH.INVERTBORDERFN NIL
BRAPH.FONTCHANGEFN NIL
GRAPH.DELETELINKFN NIL

GRAPH.ADDLINKFN NIL
GRAPH.DELETENODEFN NIL
GRAPH.ADDNODEFN NIL
GRAPH.MOVENODEFN NIL
DIRECTEDFLG NIL
SIDESFLG T
GRAPHNODES ((FISH & NIL NIL --) (BIRD & NIL NIL
(DZo3 (478 100 ML ML -2 Inspector
NODEBORDER NIL
NODELABEL DOG
NODEFONT (HELVETICA 16 (MEDIUM REGULAR REGUL#
FROMNODES ((MAMMAL DOG CAT))
TONODES NIL
NODEHEIGHT 14
NODEWIDTH 31

NODELABELSHADE NIL
NODELABELBITMAP NIL
NODEPOSITION (178 . 18)
NODEID DoG

Figure 21-2. Inspecting a Graph and a Node

The GRAPHNODE data structure is described by its text (NODEID), what goes into it
(FROMNODES), what leaves it (TONODES), and other fields that specify its looks. The basic
model of graph building is to create a bunch of nodes, then layout the nodes into a graph,
and finally display the resultant graph. This can be done in a number of ways. One is to
use the function NODECREATE to create the nodes, LAYOUTGRAPH to lay out the nodes, and
SHOWGRAPH to display the graph. The primer shows you two simpler ways, but please see
the Library Packages Manual for more information about these other functions. The
primer's first method is to use SHOWGRAPH to display a graph with no nodes or links, then
interactively add them. The second is to use the function LAYOUTSEXPR, which does the
appropriate NODECREATES and a LAYOUTGRAPH, with a list.

The function SBOWGRAPH displays graphs and allows you to edit them. The syntax of
SHOWGRAPH is ’

(SHOWGRAPE graph window leftbuttonfn middlebuttonfn
topjustifyflg alloweditflg copybuttoneventfn)

Obviously the graph structure is very complex. Here's the easiest way to create a graph.

(SETQ MY.GRAPH NIL)
(SHOWGRAPE MY.GRAPHE "My Graph" NIL NIL NIL T)

212 An Introduction to Medley, Release 2.0

21. THE GRAPHER

Exec (IMTERLIZF

(SETQ MY.GRAPH NIL)
NIL

184«

18a¢ (SHOWGRAPH MY.GRAPH "My Graph® NIL NIL NIL
T)

{#INDOW}#376, 2554

185«

185«

1y Sragh

Figure 21-3. My Graph

You will be prompted to create a small window as in Figure 21-3. This graph has the title
My Graph. Hold down the right mouse button in the window. A menu of graph editing
operations will appear as in Figure 21-4.

Move Node »
Add Node
Delete Node
Add Link
Delete Link
Change label
label smaller
label larger
{.> Directed
<.> Sides
<.> Borcder
{.> Shade
STOP

Figure 21-4. Menu of Graph Editing Operations

Here's how to use this menu. The commands in this menu are easy to learn. Experiment
with them!

Add a Node

Start by selecting Add Node. Grapher will prompt you for the name of the node (see
Figure 21-5.) and then its position.

Mode lakel?

LAy Graph

Figure 21-5. Grapher Prompts for Name of Node to Add After Add Node is Chosen From
Graph Editing Menu.

Position the node by moving the mouse cursor to the desired location and clicking a
mouse button. Figure 21-6 shows the graph with two nodes added using this menu.

An introduction to Medley, Release 2.0 21-3

21. THE GRAPHER

first-node

Figure 21-6. Two Nodes Added toMY GRAPE Using Graph Editing Menu
Add a Link

Select Add Link from the Graph Edltmg Menu. The Prompt window will prompt you to
select the two nodes to be linked. (See Figure 21-7.) Do this, and the link will be added.

N\

second-node

Figure 21-7. Prompt Window Requesting Selection of Two Nodes to Link, and Result

Delete a Link

Select Delete Link from the Graph Editing Menu. The Prompt Window will prompt
you to select the two nodes that should no longer be linked. (See Figure 21-8.) Do this, and
the link will be deleted.

o TTen Tae T RCdde,

first-node
second-node

Figure 21-8. Prompt Window Requesting Selection of Link to Delete, and Result

Delete a Node

Select Delete Node from the Graph Editing Menu. The Prompt window will prompt you
to select the node to be deleted. (See Figure 21-9.) Do this, and the node will be deleted.

214 An Introduction to Medley, Release 2.0

21. THE GRAPHER

Move a Node

Select Delete Node from the Graph Editng Menu. Choose a node by pointing to it with
the mouse cursor, and pressing and holding the left mouse button. When you move the
mouse cursor, the node will be dragged along. When the node is at the new position,
release the mouse button to deposit the node.

Making a Graph from a List

Typically, a graph is used to display one of your program's data structures. Here is how
that is done.

LAYOUTSEXPR takes a list and returns a GRAPH record. The syntax of the function is
(LAYOUTSEXPR sexpr format boxing font motherd personald famlyd)

For example:

(SETQ ANIMAL.TREE '(ANIMAL (MAMMAL DOG CAT) BIRD FISH))
(SETQ ANIMAL.GRAPH

(LAYOUTSEXPR ANIMAL.TREE "HORIZONTAL))
(SHOWGRAPH ANIMAL.GRAPH "My Graph" NIL NIL NIL T)

This is how Figure 21.1 was produced.

Incorporating Grapher into Your Program

The Grapher is designed to be built into other programs. It can call functions when, for
example, a mouse button is clicked on a node. The function SHOWGRAPH does this:

(SHOWGRAPH graph window leftbuttonfn middlebuttonfn
topjustifyflg alloweditflg copybuttoneventfn)

For example, the third argument to SEOWGRAPE, leftbutionfn, is a function that is called
when the left mouse button is pressed in the graph window. Try this:

(DEFINEQ (MY.LEFT.BUTTON.FUNCTION
(THE.GRAPHNODE THE.GRAPH.WINDOW)
(INSPECT THE.GRAPHNODE)))

(SBOWGRAPH FAMILY.GRAPH "Inspectable family"
(FUNCTION MY.LEFT.BUTTON.FUNCTION)
NIL NIL T)

In the example above, MY. LEFT . BUTTON . FUNCTION simply calls the inspector. The
function should be written assuming it will be passed a graphnode and the window that
holds the graph. Try adding a function of your own.

More of Grapher

Some other Library packages make use of the Grapher. (Grapher needs to be loaded with
the packages to use these functions.)

An Introduction to Medley, Release 2.0 21-5

21. THE GRAPHER

® MASTERSCOPE: The Browser package modifies the Masterscope command, . SHOW
PATHS, so that its output is displayed as a graph (using Grapher) instead of simply
printed.

o GRAPHZOOM: allows a graph to be redisplayed larger or smaller automatically.

21-6 An Introduction to Medley, Reiease 2.0

22. RESOURCE MANAGEMENT

Naming Variables and Records

You will find times when one environment simultaneously hosts a number of different
programs. Running a demo of several programs, or reloading the entire Medley
environment from floppies when it contains several different programs, are two examples
that could, if you aren't careful, provide a few problems. Here are a few tips on how to
prevent problems: .

e Ifyou change the value of a system variable, MENUEELDWAIT for example, or connect to
a directory other than { DSK}<LISPFILES>, write a function to reset the variable or
directory to its original value. Run this function when you are finished working. This
is especially important if you change any of the system menus.

e Do not redefine Medley functions or CLISP words. Remember, if you reset an atom's
value or function definition at the top level (in the Executive Window), the message
(Some.Crucial. Function.Or. Variable redefined), appears. If this is not what you
wanted, type UNDO immediately!

If, however, you reset the value or function definition of an atom inside your program,
a warning message will not be printed.

e Make the atom names in your programs as unique as possible. To do this without
filling your program with unreadable names that no one, including you, can
remember, prefix your variable names with the initials of your program. Even then,
check to see that they are not already being used with the function BOUNDP. For
example, type:

(BOUNDP 'BackgroundMenu)

This atom is bound to the menu that appears when you press the left mouse button
when the mouse cursor is not in any window. BOUNDP returns T. BOUNDP returns NIL
if its argument does not currently have a value.

o Make your function names as unique as possible. Once again, prefixing function
names with the initials of your program can be helpful in making them unique, but
even so, check to see that they are not already being used. GETD is the Interlisp
function that returns the function definition of an atom, if it has one. If an atom has no
function definition, GETD returns NIL. For example, type:

(GETD 'CAR)
A non-N1L value is returned. The atom CAR already has a function definition.

o Use complete record field names in record FETCHes and REPLACEs when your code is
not compiled. A complete record field name is a list consisting of the record declaration
name and the field name. Consider the following example:

(RECORD NAME (FIRST LAST))
(SETQ MyName (create Name FIRST «'John LAST «'Smith))
(FETCH (NAME FIRST) OF MyName)

o Avoid reusing names that are field names of Lisp system records. A few examples of
system records follow. Do not reuse these names.

(RECORD REGION (LEFT BOTTOM WIDTH HEIGHT))
(RECORD POSITION (XCOORD YCOORD))
(RECORD IMAGEOBJ (- BITMAP -))

An introduction to Mediey, Release 2.0 20.1

22.

RESOURCE MANAGEMENT

e When you select a record name and field names for a new record, check to see whether
those names have already been used.

Call the function RECLOOK, with your record name as an argument, in the Executive
Window (see Figure 22-1). If your record name is already a record, the record definition
will be returned; otherwise the function will return NIL.

Exec 2 {MTERLIZP

NIL
2/170> (RECLOOK °*POSITION)
(RECORD POSITION (XCOORD . YCOORD)
[TYPE? (AND (LISTP DATUM)
{NUMBERP (CAR DATUM))
(NUMBERP (CDR DATUM]
(SYSTEM))

2/171> (RECLOOK ’NewPos)
NIL
27172>

Figure 22-1. Response to RECLOOK

~ Call the function FIELDLOOK with your new field name (see Figure 22-2). If your field
name is already a field name in another record, the record definition will be returned;
otherwise the function will return NIL.

Exen 2 {(IMNTERLIZF)

NIL
2/172> (FIELDLOOK °XCOORD)

((RECORD POSITION (XCOORD . YCOORD)
[TYPE? (AND (LISTP DATUM)
{NUMBERP (CAR DATUM))
(NUMBERP (CDR DaTUM]

(SYSTEM))
2/173> (FIELDLOOK ’XPos)
NIL
27174

Figure 22-2. Response to FIELDLOOK

Some Space and Time Considerations

In order for your program to run at maximum speed, you must efficiently use the space
available on the system. The following section points out areas that you may not know
are wasting valuable space, and tips on how to prevent this waste.

Often programs are written so that new data structures are created each time the
program is run. This is wasteful. Write your programs so that they only create new
variables and other data structures conditionally. If a structure has already been created,
use it instead of creating a new one.

Some time and space can be saved by changing your RECORD and TYPERECORD
declarations to DATATYPE. DATATYPE is used the same way as the functions RECORD and
TYPERECORD. In addition, the same FETCE and REPLACE commands can be used with the
data structure DATATYPE creates. The difference is that the data structure DATATYPE
creates cannot be treated as a list the way RECORDs and TYPERECORDS can.

22-2

An Introduction to Medley, Release 2.0

22. RESOURCE MANAGEMENT

Global Variables

Once defined, global variables remain until Lisp is reloaded. Avoid using global variables
if at all possible! One specific problem arises when programs use the function GENSYM. In
program development, many atoms are created that may no longer be useful. Hints:

e Use
(DELDEF atomname ' PROP)
to delete property lists, and
{ DELDEF atomname 'VARS)
to have the atom act like it is not defined.

These not only remove the definition from memory, but also change the appropriate
£ileCOMS that the deleted object was associated with so that the file package will not
attempt to save the object (function, variable, record definition, and so forth) the next
time the file is made. Just doing something like

(SETQ (argatomname) 'NOBIND)

looks like it will have the same effect as the second DELDEF above, but the SETQ does
not update the file package.

e Ifyou are generating atom names with GENSYM, try to keep a list of the atom names
that are no longer needed. Reuse these atom names, before generating new ones. There
is a (fairly large) maximum to the number of atoms you can have, but things slow
down considerably when you create lots of atoms.

® When possible, use a data structure such as a list or an array, instead of many
individual atoms. Such a structure has only one pointer to it. Once this pointer is
removed, the whole structure will be garbage-collected and space will be reclaimed.

Circular Lists

If your program is creating circular lists, a lot of space may be wasted. (Many crosslinked
data structures end up having circularities.) Hints when using circular lists:

e Write a function to remove pointers that make lists circular when you are through
with the circular list.

e Ifyou are working with circular lists of windows, bind your main window to a unique
global variable. Write window creation conditionally so that if the binding of that
variable is already a window, use it, and only create a new window if that variable is
unbound or NIL.

Here is an example that illustrates the problem. When several auxiliary windows are
built, pointers to these windows are usually kept on the main window's property list.
Each auxiliary window also typically keeps a pointer to the main window on its property
list. If the top level function creates windows rather than reusing existing ones, there
will be many lists of useless windows cluttering the work space. Or, if such a main
window is closed and will not be used again, you will have to break the links by deleting
the relevant properties from the main window and all of the auxiliary windows first. This
is usually done by putting a special CLOSEFN on the main window and all of its auxiliary
windows.

An Introduction to Mediey, Release 2.0 ’ 22-3

22. RESOURCE MANAGEMENT

When You Run Out of Space

Typically, if you generate a lot of structures that won't get garbage collected, you will
eventually run out of space. The solution is to track down the code for the structures and
change it so it is more space efficient.

Use the Lisp Library Package GCHAX . DCOM to track down pointers to data structures.
The basic idea is that GCHAX will return the number of references to a particular data
structure.

A special function exists that allows you to get a little extra space so that you can try to
save your work when you get toward the edge (usually noted by a message indicating
that you should save your work and load a new Medley environment). The GAINSPACE
function allows you to delete non-essential data structures. To use it, type:

(GAINSPACE)
Answer N to all questions except the followi ng.
o Delete edit history
o Delete history list.
e Delete values of old variables.
o Delete your MASTERSCOPE database
o Delete information for undoing your greeting.

Save your work and reload Lisp as soon as possible.

22-4

An Introduction to Medley, Release 2.0

23. SIMPLE INTERACTIONS WITH THE CURSOR, A
BITMAP, AND A WINDOW

The purpose of this chapter is to show you how to build a moderately tricky interactive
interface with the various Medley display facilities. In particular how to move a large
bitmap (larger than 16 x 16 pixels) around inside a window. To do this, you will change
the CURSORINFN and CURSOROUTFN properties of the window. If you would also like to
then set the bitmap in place in the window, you must reset the BUTTONEVENTFN.

GETMOUSESTATE Example Function

One function that you will use to "trace the cursor” (have a bitmap follow the cursor
around in a window) is GETMOUSESTATE. This function finds the current state of the
mouse, and resets global system variables, such as LASTMOUSEX and LASTMOUSEY.

As an example of how this function works, create a window by typing

(SETQ EXAMPLE.WINDOW (CREATEW))

and sweeping out a window. Now, type in the function

(DEFINEQ (PRINTCOORDS (W) : :
(PROMPTPRINT " (" LASTMOUSEX ", "LASTMOUSEY ")")
(GETMOUSESTATE)))

This function calls GETMOUSESTATE and then prints the new values of LASTMOUSEX and
LASTMOUSEY in the promptwindow. To use it, type
(WINDOWPROP EXAMPLE.WINDOW 'CURSORMOVEDFN 'PRINTCOORDS)

The window property CURSORMOVEDFN, used in this example, will evaluate the function
PRINTCOORDS each time the cursor is moved when it is inside the window. The position
coordinates of the mouse cursor will appear in the prompt window. (See Figure 23-1.)

Exec (INTERLIZF)

NIL .

1a7« (WINDOWPROP EXAMPLE.WINDOW *CURSORMOVEDFN
’PRINTCOORDS)

NIL

1a8¢

Figure 23-1. Current Position Coordinates of Mouse Cursor in Prompt Window

An Introduction to Mediey, Release 2.0 23.1

23. SIMPLE INTERACTIONS WITH CURSOR, BITMAP, AND WINDOW

Advising GETMOUSESTATE

For the bitmap to follow the moving mouse cursor, the function GETMOUSESTATE is
ADVISEd. When you advise a function, you can add new commands to the function
without knowing how it is actually implemented. The syntax for advise is

(ADVISE fn when where what)

fn is the name of the function to be augmented.

when specifies whether the change should be made BEFORE, AFTER, or AROUND the body
of the function and is optional.

where specifies where in the list of advice the new advice is to be placed, e.g., FIRST,
LAST, BOTTOM, END, or some other user-defined place. Whereis an optional argument.

what specifies the additional code.

In the example, the additional code, what, moves the bitmap to the position of the mouse
cursor. The function GETMOUSESTATE will be ADVISEd when the mouse moves into the
window. This will cause the bitmap to follow the mouse cursor. ADVISE will be undone
when the mouse leaves the window or when a mouse button is pushed. The ADVISEing
will be done and undone by changing the CURSORINFN, CURSOROUTFN, and
BUTTONEVENTFN for the window.

Changing the Cursor

One last part of the example, to give the impression that a bitmap is dragged around a
window, the original cursor should disappear. Try typing:

(CURSOR (CURSbRCREATE (BITMAPCREATE 1 1) 1 1)
This causes the original cursor to disappear. It reappears when you type
(CURSOR T)

When the cursor is invisible, and the bitmap moves as the cursor moves, the illusion is
given that the bitmap is dragged around the window.

Functions for Tracing the Cursor

To actually have a bitmap trace (follow) the cursor, the environment must be set up so
that when the cursor enters the tracing region the trace is turned on, and when the cursor
leaves the tracing region the trace is turned off. The function Establish/Trace/Data
will do this. Type it in as it appears (include comments that will help you remember what
the function does).

(DEFINEQ (Establish/Trace/Data :
[LAMBDA (wnd tracebitmap cursor/rightoffset cursor/heightoffset
GCGAGP)

(* * "This function is called to establish the data to trace
the desired bitmap. 'wnd' is the window in which the tracing
is to take place, 'tracebitmap' is the tracing bitmap,
'cursor/rightoffset' and 'cursor/heightoffset' are integers
which detemine the hotspot of the tracing bitmap.

As 'cursor/heightoffset' and 'cursor/rightoffset' increase

v23.2 An Introduction to Medley, Release 2.0

23. SIMPLE INTERACTIONS WITH CURSOR, BITMAP. AND WINDOW

the cursor hotspot moves up and to the right.
If GCGAGP is non-NIL, GCGAG will be disabled.")

(PROG NIL

(if (OR (NULL wnd)
(NULL tracebitmap))
then (PLAYTUNE (LIST (CONS 1000 4000)))
(RETURN))
(if GCGAGP
then (GCGAG))

(* * "Create a blank cursor.")

(SETQ *BLANKCURSOR* (BITMAPCREATE 16 16))
(SETQ *BLANKTRACECURSOR* (CURSORCREATE *BLANKCURSOR*))

(* * "Set the CURSOR IN and OUT FNS for wnd to the
following:")

(WINDOWPROP wnd (QUOTE CURSORINFN)
(FUNCTION SETUP/TRACE))

(WINDOWPROP wnd (QUOTE CURSOROUTFN)
(FUNCTION UNTRACE/CURSOR))

(* * "To allow the bitmap to be set down in the window by
pressing a mouse button, include this line.
Otherwise, it is not needed") :

(WINDOWPROP wnd (QUOTE BUTTONEVENTFN).
(FUNCTION PLACE/BITMAP/IN/WINDOW))

(* * "Set up Global Variables for the tracing operation")

(SETQ *TRACEBITMAP* tracebitmap)
(SETQ *RIGHTTRACE/OFFSET*(OR cursor/rightoffset 0))
(SETQ *HEIGHTTRACE/OFFSET*(OR cursor/heightoffset 0))
(SETQ *OLDBITMAPPOSITION* (BITMAPCREATE (BITMAPWIDTH
tracebitmap)
(BITMAPHEIGHT
tracebitmap)))
(SETQ *TRACEWINDOW* wnd]))

When the function Establish/Trace/Data is called, the functions SETUP/TRACE and
UNTRACE/CURSOR will be installed as the values of the window's WINDOWPROPS, and will
be used to turn the trace on and off. Those functions should be typed in.

(DEFINEQ (SETUP/TRACE
[LAMBDA (wnd)

(* * "This function is wnd's CURSORINFN.

It simply resets the last trace position and the current
tracing region. It also readvises GETMOUSESTATE to perform
the trace function after each call.")

(if *TRACEBITMAP*
then (SETQ *LAST-TRACE-XPOS* -2000)
(SETQ *LAST-TRACE-YPOS* -2000)
(SETQ *WNDREGION* (WINDOWPROP wnd (QUOTE REGION)))
(WINDOWPROP wnd (QUOTE TRACING)
T)

(* * "Make the cursor disappear")

An Introduction to Mediey, Release 2.0 23-3

23. SIMPLE INTERACTIONS WITH CURSOR. BITMAP, AND WINDOW

(CURSOR *BLANKTRACECURSOR?*)
(ADVISE (QUOTE GETMOUSESTATE)
. (QUOTE AFTER)
NIL
(QUOTE (TRACE/CURSOR]))

(DEFINEQ (UNTRACE/CURSOR
[LAMBDA (wnd)

(* * "This function is wnd's CURSOROUTFN. The function first
checks if the cursor is currently being traced; if so, it
replaces the tracing bitmap with what is under it and then
turns tracing off by unadvising GETMOUSESTATE and setting the
TRACING window property of *TRACEWINDOW* to NIL.")

(if (WINDOWPROP *TRACEWINDOW* (QUOTE TRACING))
then (BITBLT *OLDBITMAPPOSITION* 0 0 (SCREENBITMAP)
(IPLUS (CAR *WNDREGION*)*LAST-TRACE-XPOS%*\)
(IPLUS (CADR *WNDREGION*)*LAST-TRACE-YPOS*))
(WINDOWPROP *TRACEWINDOW* (QUOTE TRACING)
NIL))

(* * "Replace the original cursor shape")

(CURSOR T)
(* * "Unadvise GETMOUSESTATE")
(UNADVISE (QUOTE GETMOUSESTATE]))

The function SETUP/TRACE has a helper function that you must also type in. It is
TRACE/CURSOR:

(DEFINEQ (TRACE/CURSOR
[LAMBDA NIL

(* * "This function does the actual BITBLTing of the tracing

bitmap. This function is called after a GETMOUSESTATE, while
tracing.")

(PROG ((xpos (IDIFFERENCE (LASTMOUSEX *TRACEWINDOW*)
RIGHTTRACE/OFFSET))

(ypos (IDIFFERENCE (LASTMOUSEY *TRACEWINDOW*)
HEIGHTTRACE/OFFSET)))

(* * "If there is an error in the function, press the right
button to unadvise the function. This will keep the machine
from locking up.")

(if (LASTMOUSESTATE RIGHT)
then (UNADVISE (QUOTE GETMOUSESTATE)))
(if (AND (NEQ xpos *LAST-TRACE-XPOS*)
(NEQ ypos *LAST-TRACE-YPOS*))
then

(* * "Restore what was under the old position of the trace
bitmap")

(BITBLT *OLDBITMAPPOSITION* 0 0 (SCREENBITMAP)
(IPLUS (CAR *WNDREGION*)*LAST-TRACE-XPOS*)
(IPLUS (CADR *WNDREGION*)*LAST-TRACE-YPOS*))

(* * "save what will be under the position of the new trace
bitmap")

(BITBLT (SCREENBITMAP)
(IPLUS (CAR *WNDREGION*)
xpos)

234 | » An Introduction to Medley, Release 2.0

23. SIMPLE INTERACTIONS WITH CURSOR. BITMAP, AND WINDOW

(IPLUS (CADR *WNDREGION*)
ypos) *OLDBITMAPPOSITION* 0 0)

(* * "BITBLT the trace bitmap onto the new position of the
mouse")

(BITBLT *TRACEBITMAP* 0 0 (SCREENBITMAP)
(IPLUS (CAR *WNDREGION*)
xpos)
(IPLUS (CADR *WNDREGION*)

ypos)
NIL NIL (QUOTE INPUT)
(QUOTE PAINT))

(* * "Save the current position as the last trace position.")

(SETQ *LAST-TRACE-XPOS* xpos)
(SETQ *LAST-TRACE-YPOS* ypos]))

The helper function for UNTRACE/CURSOR, called UNDO/TRACE/DATA, must also be added
to the environment:

(DEFINEQ (UNDO/TRACE/DATA

[LAMBDA NIL
(* * "The purpose of this function is to turn tracing
off
and to free up the global variables used to trace the
bitmap so that they can be garbage collected.")
(* * "Check if the cursor is currently being traced.
It so, turn it off.")
(UNTRACE/CURSOR)
(WINDOWPROP *TRACEWINDOW* (QUOTE CURSORINFN)
NIL)
(WINDOWPROP *TRACEWINDOW* (QUOTE CURSOROUTFN)
NIL)

(SETQ *TRACEBITMAP* NIL)
(SETQ *RIGHTTRACE/OFFSET* NIL)
(SETQ *HEIGHTTRACE/OFFSET* NIL)
(SETQ *OLDBITMAPPOSITION* NIL)
(SETQ *TRACEWINDOW* NIL)

(* * "Turn GCGAG on")

(GCGAG T]))

Finally, if you included the WINDOWPROP to allow the user to place the bitmap in the
window by pressing a mouse button, you must also type this function:

(DEFINEQ (PLACE/BITMAP/IN/WINDOW
[LAMBDA (wnd)

(UNADVISE (GETMOUSESTATE))
(BITBLT *TRACEBITMAP* 0 0 (SCREENBITMAP)
(IPLUS (CAR *WNDREGION*)
LAST-TRACE-XPOS)
(IPLUS (CADR *WNDREGION*)
LAST-TRACE-YPOS)
NIL NIL (QUOTE INPUT)
(QUOTE PAINT]))

An Introduction to Medley, Release 2.0 23-5

23. SIMPLE INTERACTIONS WITH CURSOR, BITMAP, AND WINDOW

That's all the functions!

Running the Functions

To run the functions you just typed in, first set a variable to a.window by typing:
(SETQ EXAMPLE.WINDOW (CREATEW))
and sweeping out a new window. Now, set a variable to a bitmap, by typing:
(SETQ EXAMPLE.BTM (EDITBM))
Now, type: '
(Establish/Trace/Data EXAMPLE.WINDOW EXAMPLE.BTM))
When you move the cursor into the window, the cursor will drag the bitmap.

(If you want to be able to make menu selections while tracing the cursor, make sure that
the hotspot of the cursor is set to the extreme right of the bitmap. Otherwise, the menu
will'be destroyed by the BITBLTs of the trace functions.)

To stop tracing, do one of the following:
o Move the mouse cursor out of the window
o Pressthe right mouse button

o Call the function UNTRACE/CURSOR

236 An Introduction to Medley, Release 2.0

24. GLOSSARY OF GLOBAL SYSTEM VARIABLES

As you can tell by now, there are many system variables in Medley that are useful to know. The
following sections gather many of the important variables together into groups relating to directory
searching, system flags, history lists, system menus, windows, and, of course, the catchall
miscellaneous category.

Directories

DISPLAYFONTDIRECTORIES

Its value is a list of directories to search for the bitmap files for display fonts. Usually, it
contains the names of the file directories where you copied the bitmap files (see Chapter 16).

You can also ask Medley to search your current connected directory by putting the atom
NIL in the list.

Here is an example value of DISPLAYFONTDIRECTORIES.

Exec {(INTERLISP)

4ass¢ DISPLAYFONTDIRECTORIES

{(“{dsk}/users/turpin/sd/® “{dsk}/usr/local/lde/Lispcore
>XeroxPrivate>Fonts>* "{Pallas:mv:envos}<Fonts>display>
presentation>® "{Pallas:mv:envos}{Fonts>displayd>publish
ing>" "{Pallas:mv:envos}<Fonts>display>printwvheel>" "{P
allas:mv:envos}<Fonts>display>miscellaneous>" "{Pallas:
mv:envos}<Fontsd>display>JISid* "{Pallas:mv:envos}<Fonts
Edi§p1ay>3182>' *{Pallas:mv:envos}{Fonts>display>CHINES
)-

486+«

Figure 24-1. Value for the Atom DISPLAYFONTDIRECTORIES
INTERPRESSFONTDIRECTORIES
Is set to a list of directories to search for the font width files for InterPress fonts.
DIRECTORIES

This variable is bound to a list of the directories you will be using (see Figure 24-2). The
system uses this variable when it is trying to find a file to load. It checks each directory in
the list, until the file is found. NIL in the list means to check the current connected
directory.

LISPUSERSDIRECTORIES

Its value is a list of directories to search for library package files.

An Introduction to Medley, Release 2.0 24-1

24. GLOSSARY OF GLOBAL SYSTEM VARIABLES

NIL

as7+ DIRECTORIES

{"{dsk}/users/turpin/* "{pele:}<lispcore>sources>" “{pe
le:}<V1ispcored library>* "{pele:}<1ispcoredinternal>libr
ary>" "{pele:}<1ispusersd lispcore>" "{pele:}<{lispusers>
mediey>" "{POGO:}<{ROOMS>MEDLEY>USERS>" "{dsk}/usr/local
/1de/1ispcore/sources/* "{dsk}/usr/local/lde/1ispcore/]
ibrary/* "{dsk}/usr/local/lde/lispcore/internal/library
/* "{Pele:mv:envos}<LispLibrary>MEDLEY>" "{Pele:mv:envo
s}KLispOMEDLEY>Library>® *{Pele:mv:envos}<Lisp>MEDLEY>I
nternal>Library>" "{Pele:mv:envos}{LispUsers>MEDLEY>" "
{Pele:mv:envos}<Lisp>MEDLEY>LispUsers>* "{Pele:mv:envos
}<Lisp>MEDLEY>Sources>")

488+

Figure 24-2, List of Directories in the Current Connected Directory

Flags

DWIMIFYCOMPFLG

This flag, if set to T, will cause all expressions to be completely dwimified before the
expression is compiled (see Chapter 9). In this state, when the system does not recognize
the function of a keyword, it will compare the word to a system maintained list to determine
whether the word is a macro, CLISP word, or misspelled user-defined variable.

An example of dwimifying before compilation is to convert an IF call to a COND.
Undwimified expressions can cause inaccurate compilation. This flag is set by the system to
NIL. Normally, you want this set to T. For more information on DWIM, refer to the JRM.

SYSPRETTYFLAG

‘When set to T, all lists returned to the executive window are pretty printed. This flag is
originally set by the system to NIL.

CLISPIFTRANFLG
When set to T, keeps the IF expression, rather than the COND translation in your code.
PRETTYTABFLG

When set to T, the pretty printer puts out a tab character rather than several spaces to try to
align code. If NIL, it uses space characters.

FONTCHANGEFLG

If NI L, when pretty printing no font changes will happen (e.g., 2 smaller font for comments,
bold for CLISP words, and so forth). The defanlt is the atom ALL, so different fonts are
used where appropriate.

AUTOBACKTRACEFLG

There are many possible values for this variable. They affect when the back trace window
appears with the break window, and how much detail is included in it. . The values of this
variable include:

24-2 An Introduction to Mediey, Release 2.0

24. GLOSSARY OF GLOBAL SYSTYEM VARIABLES

® NIL,its initial value. The back trace window is not brought up when an error is
generated, until you open it yourself.

¢ T, which means that the back trace BT window is opened for error breaks
* BT! brings up a back trace window, BT!, with more detail

* ALWAYS brings up a backtrace BT window for both error breaks and breaks caused by
calling the function BREAK

* ALWAYS! brings up a backtrace window, BT!, with more detail, for both error breaks
and breaks caused by calling the function BREAK

NOSPELLFLG

Is initially bound to NIL, so that DWIM tries to correct all spelling errors, whether they are in
a form you just typed in or within a function being run. If the variable is T, then no spelling
correction is performed. This variable is automatically reset to T when you are compiling a
file. If it has some other non-NIL value, then spelling correction is only performed on
type-in.

History Lists

LISPXHISTORY

Originally set to the list (NIL 0 30 100), with the following argument interpretation.
NIL is the list (implemented as a circular queue) to which the top level commands append.
0 is the current prompt number. 30 is the maximum length of the history list. 100 is the
highest number used as a prompt. This is a system maintained list used by the
programmer’s assistant commands REDO, UNDO, FIX, and ?? to retrieve past function
calls.

To delete the history list, reset the variable LISPXHISTORY to its original value of (NIL
0 30 100).

Setting this variable to NIL disables all the programmer’s assistant features.
EDITHISTORY

This is also set to (NIL 0 30 100), and has the same description as LI SPXHISTORY.
This list allows you to UNDO edits. You reset this the same way as LISPXHISTORY.

System Menus

System menus are all bound to global variables and are easy to modify. If the menu name is set to
NIL, the menu will be recreated using an items list bound to a global variable.

To change a system menu, edit the items list bound to the appropriate global variable (system menus
use this items list with the default WHENSELECTEDFN), then set the value of the name to NIL. The

next time you need the menu, it will be created from the items list you just edited. The names of
system menus and the items lists are:

BACKGROUNDMENU

An Introduction to Medley, Release 2.0 24-3

24. GLOSSARY OF GLOBAL SYSTEM VARIABLES

This is the variable bound to the men displayed when you press the right button in the
background area of the screen.

BACKGROUNDMENUCOMMANDS
This list is used for the list of I TEMS for the background menu when it is created.
WINDOWMENU

This is the variable bound to the default window menu displayed when the right mouse
button is pressed inside of a window.

WINDOWMENUCOMMANDS

This is the list of ITEMS for the WINDOWMENU.
BREAKMENU

The menu displayed when the middle mouse button is pressed in a break window.
BREAKMENUCOMMANDS

The list of ITEMS for the BREAKMENU.

Windows

PROMPTWINDOW

Global name of the prompt window.

Although the value T has several meanings (such as universal TRUE), it also stands for the
standard output stream. As this is usually the executive window, it may be used as the name
for the TTY Window at the top level. Mouse processes have their own TTY Windows. A
reference to the window T in a mouse driven function (e.g., a WHENSELECTEFN, Chapter
12) will open a window titled TTY Window for Mouse.

Miscellaneous

CLEANUPOPTION

This is a list of options that you set to automate clean-up after a work session. Example
options are listing files, or recompilation. You will want to keep this set to NIL until you
become comfortable with the machine.

FILELST
The list of all the files you loaded.
SYSFILES
The list of all the files you loaded for the SYSOUT file.

INITIALS

24-4 ‘ An Introduction to Medley, Release 2.0

24. GLOSSARY OF GLOBAL SYSTYEM VARIABLES

An atom you can bind to your name. If bound, the editor will add your name, in addition to
the date, in the editor comment at the beginning of each function.

FIRSTNAME

If this variable is set, the system will use it to greet you personally when you log on to your
machine.

INITIALSLST

A list of elements of the form (USERNAME . INITIALS) or (USERNAME FIRSTNAME
INITIALS). This list is used by the function GREET to set your INITIALS, and your
FIRSTNAME when you log in.

#CAREFULCOLUMNS

An integer. For efficiency, PRETTYPRINT estimates the number of characters in an atom,
instead of computing it. Unfortunately, for very long atom names, errors can occur.
#CAREFULCOLUMNS is the number of columns from the right within which
PRETTYPRINT should compute the number of characters in each atom. Initially this is set
to zero. PRETTYPRINT never computes the number of characters in an atom. If you set it
to 20 or 30, when PRETTYPRINT comes within 20 or 30 columns of the right of the
window, it will begin computing exactly how many characters are in each atom. This will
prevent errors.

DWIMWAIT

Bound to the number of seconds DWIM should wait before it uses the default response,
FIXSPELLDEFAULT, to answer its question.

FIXSPELLDEFAULT

Bound to either ¥ or N. Its value is used as the default answer to questions asked by DWIM
that you don’t answer in DWIMWAIT seconds. It is initially bound to Y, but is rebound to N
when dwimifying.

\TimeZoneComp

This is the global variable set to the absolute value of the time offset from Greenwich. For
EST,\TimeZoneComp should be setto 5.

An Introduction to Medliey, Release 2.0 24-5

24. GLOSSARY OF GLOBAL SYSTEM VARIABLES

[This page intentionally left blank]

24-6 An Introduction to Medley, Release 2.0

25. OTHER USEFUL REFERENCES

Here are some references to works that will be useful to you in addition to this primer. Some of these
you have already been referred to, such as:

» The Interlisp-D Reference Manual (IRM)
e The Library Packages Manual
» The User’s Guide to SKETCH

In addition, you can learn more about Lisp with the books:

 Interlisp-D: The languago and its usage by Steven H. Kaisler. This book was published in 1986
by John Wiley and Sons, NY.

» Essential LISP by John Anderson, Albert Corbett, and Brian Reiser. This book was published in
1986 by Addison Wesley Publishing Company, Reading, MA. It was informed by research on
how beginners learn LISP.

« The Little Lisper by Daniel P. Friedman and Matthias Felleisen. The second edition of this book
was published in 1986 by SRA Associates, Chicago. This book is a deceptively simple
introduction to recursive programming and the flexible data structures provided by LISP.

« LISP by Patrick Winston and Berthold Horn. The second edition of this book was published in
1985 by the Addison Wesley Publishing Company, Reading, MA.

« LISP: A Gentle Introduction to Symbolic Computation by David S. Touretzky. This book was
published in 1984 by the Harper and Row Publishing Company, NY.

Finally, there are three articles about the Interlisp Programming environment:

« Power Tools For Programmers byBean Sheil. It appwed in Datamation in February, 1983 Pages
131 - 144,

* The Interlisp Programming Environment by Warren Teitelman and Larry Masinter. It appeared in
April, 1981, in IEEE Computer, Volume 14:1, Pages 25 - 34.

* Programming In an Interactive Environment, the LISP Experience by Erik Sandewall. It appeared
in March, 1978, in the ACM Computing Surveys, Volume 10:1, pages 35 - 71.

Each of these articles was reprinted in the book Interactive Programming Environments by David
R. Barstow, Howard E. Shrobe, and Erik Sandewail. This book was published in 1984 by McGraw
Hill, NY. The first article can be found on pages 19 - 30, the second on pages 83 - 96, and the third
on pages 31 - 80.

An Introduction to Medley, Release 2.0

25-1

25. OTHER USEFUL REFERENCES

[This page intentionally left blank]

25-2 An Introduction to Medley, Release 2.0

A
ADDNENU (Function) 13-1
AUTOBACKTRACEFLG (Flag) 24-2

B
Background Menu 3-1
BITBLT (Function) 14-3
Bitmap 14-1
drawing 14-1
ending a session 14-2
erasing 14-1
working in different section
BITMAPCREATE (Function) 14-1
Break Menu 10-3
Break Package 10-1
example 10-1

C
Case sensitivity 2-1
Circular lists 22-3
CLISPIFTRANFLG (Flag) 24-2
Compile (Command) 5-4
COMS (Variable) 8-2
Control-B 10-3 '
Control-D 10-4; 11-1
Control-E 11-2
Control-G 10-3
Control-T 11-2
Control-X 7-4
Copy (Command) 5-3
COPYFILE (Function) 4-3
CREATEW (Function) 12-1
Cursor
changing 23-2
setting the hotspot 23-6
tracing 23-2
CURSORMOVEDFN (Property) 23-1

D
DEFUN (Function) 7-1
Delete (Command) 5-3
DELFILE (Function) 4-3
.DFASL (File Name Extension) 4-1
Directories 4-1
DIRECTORIES (Variable) 24-1
Directory
connectingto 4-4
Display fonts 16-2

DISPLAYFONTDIRECTORIES (Variable) 16-3; 24-1

Displaystream 15-1
DRAWCIRCLE (Function) 15-3
DRAWLINE (Function) 15-1
DRAWTO (Function) 15-2
DSPFONT (Function) 16-5
DSPXPOSITION (Function) 15-5
DSPYPOSITION (Function) 15-5
DWIMIFYCOMPFLG (Flag) 24-2
DWIM 941

E

Edit (Command) 5-3

EDITBM (Function) 14-1
EDITHISTORY (Variable) 24-3
EXAMPLE-ADDER (Function) 7-1
Executive Window 6-1
Expunge (Command) 5-4

F
FIELDLOOK (Function) 22-2
File Variables 7-5
FileBrowser 5-1
calling '5-1
commands 5-3
Filebrowser Menu 3-1
Files
commands to manipulate 4-3
loaded 4-3
naming conventions 4-1
program 4-1
TEdit f4-1
typesof 4-1
version numbers 4-4
FILLCIRCLE (Function) 15-4
FIX (Command) 2-1
FONTCHANGEFLG (Flag) 24—
FONTCREATE (Function) 16-2; 8-2
Fontdescriptors 16-2
FONTPROP (Function) 16-4
Fonts 16-1 -
changing in one window 16-5
display 16-2
expansion 16-1
family 16-1
properties
ASCENT 16-4
DESCENT 16-5
FACE 16-5
FAMILY 16-4
HEIGHT 16-5
SIZE 16-4
slope 16-1
weight 16-1
Free Menu 20-1
FREEMENU 20-1
Functions
defining 7-1

G
GAINSPACE (Function) 22-4
GCHAX.DCOM (Package) 22-4
GENSYM (Function) 22-3
GETMOUSESTATE (Function) 23-1
Global variables 22-3
Grapher
adding links 21-4
adding nodes 21-3
deleting links 21-4

INDEX

deleting nodes 21-4
displaying program data structure 21-5
incorporating into programs 21-5
moving nodes 21-5

GREET (Function) 8-1

H
Hardcopy (Command) 5-3

]
INIT file 8-1

making 8-1
INITCOMS (Variable) 8-2
INSPECT (Function) 13-5
Inspector 17-1

calling 17-1

using 17-2
Interface

building 23-1

INTERPRESSFONTDIRECTORIES (Variable) 16-3;

24-1

L

LASTMOUSEX (Variable) 23-1
LASTMOUSEY (Variable) 23-1
LAYOUTGRAPH (Function) 21-2
LAYOUTSEXPR (Function) 21-2
.LCOM (File Name Extension) 4-1
.LISP (File Name Extension) 4-1
LISPUSERSDIRECTORIES (Variable) 24-1
LISPXHISTORY (Variable) 24-3
List Structure Editor 7-3

Load (Command) 5-3

LOAD (Function) 4-3

M
Masterscope 18-1
MASTERSCOPE.DFASL 18-1
MENU (Function) 13-1
MENUHELDWAIT (Variable) 22-1
Menus 3-1
displaying 13-1
items, explanation of 3-2
making it useful 13-2
selecting from 3-1
submenus 3-2
MOVETO (Function) 15-5

N
NODECREATES (Function) 21-2
NOSPELLFLG (Flag) 24-3

P

PRETTYTABFLG (Flag) 24-2
PRINTCOORDS (Function) 23-1
Program file 4-1
Programmer’s assistant 2-1
Prompt Window 6-1
PROMPTPRINT (Function) 6-5

R
Read-eval-print loop 2-1
RECLOOK (Function) 22-2
Recompute (Command) 5-4
Records

naming 22-1

REDO (Command) 2-1
Regions 12-5

Rename (Command) 5-3
RENAMEFILE (Function) 4-3

S
See (Command) 5-3
SEE (Function) 4-3
SETUP/TRACE (Function) 23-3
SHOWGRAPH (Function) 21-2
SHOWPATHS (Command) 18-2
.SKETCH (File Name Extension) 4-1
Space
running outof 22-4
saving 22-2
SPY 19-1
howtouse 19-2
interpretingresults 19-2
SPY Window 19-1
SPY.BUTTON (Function) 19-1
SPY.TREE (Function) 19-2
STRINGWIDTH (Function) 16-5
Submenus 3-2
Sudirectories 4-2
SYSPRETTYFLAG (Flag) 24-2
System menus 24-3
Background Menu 24-3
Break Menu 24-4
Window Menu 24-4

T
.TEDIT (File Name Extension) 4-1
TEdit files 4-1
Time
saving 22-2

U

Undelete (Command) 5-3

UNDO (Command) 2-1
UNTRACE/CURSOR (Function) 23-3
USERGREETFILES (Variable) 8-1

'

Variables
global 22-3
naming 22-1

Version Numbers 4-4

w .
WHENHELD (Function) 13-3
WHENSELECTED (Function) 13-3
WHICHW (Function) 6-6
Windows 12-1; 6-1
break 10-1
Executive Window 6-1
Prompt Window 6-1 .
properties, lookingat 12-5
right button default menu 6-2
scrollable 6-4
WITH.SPY (Function) 19-2
WINDOWPROP (Function) 12-2

.DFASL (File Name Extension) 4-1
.LCOM (File Name Extension) 4-1
LISP (File Name Extension) 4-1
SKETCH (File Name Extension) 4-1

	000
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	08-01
	08-02
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	17-01
	17-02
	17-03
	17-04
	18-01
	18-02
	18-03
	18-04
	19-01
	19-02
	19-03
	20-01
	20-02
	20-03
	20-04
	20-05
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	22-01
	22-02
	22-03
	22-04
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	25-01
	25-02
	I-01
	I-02

