
Mesa Language Manual

by James G. Mitchell
William Maybury
Richard Sweet

Version 4.0
May 1978

Mesa is the language component of a programming system intended for developing and
maintaining a wide range of systems and applications programs. It includes facilities for
user-defined data types, strong compile-time type checking of both data types and program
interfaces, procedure and coroutine control mechanisms, control structures for dealing with
concurrency and exceptional conditions, and features designed to support the development of
systems composed of separate modules and to control information sharing among them.

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

SYSTEMS DEVELOPMENT DEPARTMENT
3408 Hillview Avenue / Palo Alto / California 94304

This document is for internal Xerox use only.

CHAPTER 1. INTRODUCTION
1.1. Syntax notation

CONTENTS

CHAPTER 2. BASIC DATA TYPES AND EXPRESSIONS
2.1. A slice of Mesa code

2.1.1. Basic lexical structure
2.2. Simple declarations
2.3. The fundamental operations, ... , =, and #
2.4. Basic types

2.4.1. T.he numeric types INTE.GER, LONG INTEGER and CARDINAL

2.4.1.1. Numeric literals
2.4.2. Type REAL

2.4.3. Type BOOLEAN

2.4.4. Type CHARACTER

2.4.5. Relations among basic types
2.5. Expressions

2.5.1. Numeric operators
2.5.1.1. The operator LONG

2.5.1.2. CHARACTER operators
2.5.2. Relational operators
2.5.3. BOOLEAN operators
2.5.4. Assignment expressions

2.6. Initializing variables in declarations
2.6.1. Compile-time constants

2.7. More general declarations

CHAPTER 3. COMMON CONSTRUCTED DATA TYPES
3.1. The element types

3.1.1. Enumerated types
3.1.2. Subrange types

3.1.2.1. Subranges of numeric types
3.1.2.2. Range Assertions

3.2. Arrays
3.2.1. Declaration of arrays
3.2.2. Constructors for arrays

3.3. Records
3.3.1. Field lists·
3.3.2. Declaration of records
3.3.3. Qualified references
3.3.4. Record Constructors
3.3.5. Extractors

3.4. Pointers
3.4.1. Constl'ucti ng pointer types

. 3.4.2. Pointer operations
3.4.3. Long Pointers
3.4.4. Automatic dereferencing

3.5. Type determination
3.5.1. Type conversion
3.5.2. Balancing

1
2

4
4
5
6
7
7
7
8
9
9

10
10
11
12
14
15
15
16
17
17
18
19

20
22
22
24
26
26
27
29
30
31
31
32
34
35
37
38
40
40
42
43
43
44
45

3.6. Determination of representation

CHAPTER 4. ORDINARY STATEMENTS
4.1. Assignment statements

4.1.1. Assignment expressions
4.2. IF statements

4.2.1. IF expressions
4.3. SELECT statcmcnts

4.3.1. Forms and options for SELECT
4.3.2. The NULL statement
4.3.3. SELECT expressions

4.4. Blocks
4.4.1. GOTO statements
4.4.2. OPEN clauses

4.5. Loop statements
4.5.1. Loop control
4.5.2. GOTOS, LOOPS, EXITS, and loops

CHAPTER 5. PROCEDURES
5.1. Procedure types
5.2. Procedure values and compatibility
5.3. Declaring actual procedures

5.3.1. RETURN statements
5.4. Procedure calls

5.4.1. The mechanics of procedure calls
5.4.2. Arguments and parameters
5.4.3. Termination and results

5.5. A package of procedures
5.5.1. The example
5.5.2. Invoking the example's procedures

5.6. Local procedures
5.6.1. Scopes defined by procedures

CHAPTER 6. STRINGS, ARRAY DESCRIPTORS, RELATIVE POINTERS,
AND VARIANT RECORDS

6.1. Strings
6.1.1. String literals and string expressions
6.1.2. Declaring strings
6.1.3. Long strings

6.2. Array. descriptors
6.2.1. Array descriptor types
6.2.2. Long descriptors

6.3. Base and relative 'pointers
6.3.1. Syntax for base and relative pointers
6.3.2. A relative pointer example
6.3.3. Relative pointer types
6.3.4. Relative array descriptors

6.4. Variant records
6.4.1. Declaring variant records
6.4.2. Bound variant types
6.4.3. Accessing entire variant parts, and variant constructors
6.4.4. Accessing components of variants .

it

46

49
49
50
51
52
52
53
54
54
55
56
58
60
61
64

67
68
69
70
71
71
73
73
73
75
77
79
79
82

84

84
85
86
87
87
87
89
90
90
91
92
93
94
95
97
99

100

CHAPTER 7. MODULES, PROGRAMS, AND CONFIGURATIONS 103
7.1. Interfaces 103
7.2. The fundamentals of Mesa modules 106

7.2.1. Including modules: the DIRECTORY clause 107
7.2.1.1. Enumerating items from an included module: the USING clause 108

7.2.2. Accessing items from an included module 108
7.2.2.1. Qualification 109
7.2.2.2. OPEN clauses 109
7.2.2.3. DEFINITIONS FROM 110

7.2.3. Scopes for identifiers in a module 111
7.2.4. Implications of recompiling included modules 112

7.3. DEFINITIONS modules 113
7.4. PROGRAM modules: IMPORTS and EXPORTS 114

7.4.1. IMPORTS, interface types, and interface records 114
7.4.2. Importing program modules 115
7.4.3. Exporting interfaces and program modules 116

7.5. Controlling module interfaces: PUBLIC and PRIVATE 116
7.5.1. Access attributes in declarations 116
7.5.2. Access attributes in TYPE definitions 118
7.5.3. Default global access 119
7.5.4. Accessing the PRIVATE predefined symbols of other modules 119

7.6. The Mesa configuration language, an introductory example 119
7.6.1. Lexicon: a module implementing LexiconDefs 120
7.6.2. LexiconClient: a client module 122
7.6.3. Binding, loading, and running a configuration: an overview 122
7.6.4. A configuration description for running LexiconClient 123

7.7. C/Mesa: syntax and semantics 124
7.7.1. IMPORTS, EXPORTS, and DIRECTORY in C/Mesa 125
7.7.2. Explicit naming, IMPORTS, and EXPORTS 126
7.7.3. Default names for interfaces and instances 127
7.7.4. Multiple exported interfaces from a single component 127
7.7.5. Multiple components implementing a single interface 128
7.7.6. Nested (local) configurations 129

7.8. Loading modules and configurations: NEW and START 130
7.8.1. The NEW operation for atomic modules 130
7.8.2. How the loader binds interfaces 131
7.8.3. STARTing, STopping, and RESTARTing module instances 131
7.8.4. NEW and START for configurations 132

CHAPTER 8. SIGNALLING AND SIGNAL DATA TYPES 134
8.1. Declaring and generating SIGNALS and ERRORS 134
8.2. Control of generated signals 136

8.2.1. Preparing to catch signals: catch phrases 136
8.2.2. The scope of variables in 'catch phrases 137
8.2.3. Catching signals 138
8.2.4. RETRY and CONTINUE in catch phrases 140
8.2.5. Resuming from a catch phrase: RESUME 140
8.2.6. Examples of CONTINUE, RETRY, and RESUME 141

8.3. Signals within signals 142

CHAPTER 9. PORTS AND CONTROL STRUCTURES 143
9.1. Syntax and an example of PORTS 144
9.2. Creating and starting coroutines 145

9.2.1. The CONNECT statement 146

iii

9.2.2. Low-level actions for a PORT call
9.2.3. Control faults and linkage faults
9.2.4. Saving arguments during faults

9.3. RESPONDING PORTS

CHAPTER 10. PROCESSES AND CONCURRENCY
10.1. Concurrent executioD, FORK and JOIN

10.1.1. A process example
10.1.2. Process language constructs

10.2. Monitors
10.2.1. An overview of monitors
1O.2.2.'Monitor locks
iO.2.3. Declaring monitor modules, ENTRY and INTERNAL procedures
10.2.4. Interfaces to monitors
10.2.5. Jnteractions of processes and monitors

10.3. Condition variables
10.3.1. Wait, notify, and broadcast
10.3.2. Timeouts

10.4. More about monitors
10.4.1. The LOCKS clause
10.4.2. Monitored records
10.4.3. Monitors and module instances
10.4.4. Multi-module monitors
10.4.5. Object monitors
10.4.6. Explicit declaration of monitor locks

10.5. Signals
10.5.1. Signals and processes
10.5.2. Signals and monitors

10.6. Initialization

APPENDICES
A. Pronouncing Mesa

n. Programming Conventions
8.1. Names

C. Alto/Mesa Machine Dependencies
C.1. Numeric linlits
C.2. AltoDefs
C.3. ASCII character set and ordering of character values
C.4. Alto/Mesa STRING procedures

D. Binder Extensions
0.1. Code packing

D.1.1. Syntax
D.l.2. Restrictions

0.2. External links
D.2.1. Syntax
D.2.2. Restrictions

E. Mesa Reserved Words

F. Collected Grammar

INDEX

iv

147
148
149
150

152
152
152
153
154
155
156
156
158
158
158
158
161
161
161
162
163
163
165
166
166
166
166
168

169

170
170

172
172
172
173
174

175
175
175
176
176
176
177
178

179

184

Preface

This document presents a tutorial approach to the Mesa Programming Language. It was
written by William Maybury and edited by James Mitchell and Richard Sweet. Its tutorial
approach means that it is intended to be read somewhat as a textbook. It is neither a user's
guide nor a reference manual.

It is suggested that the Elements of Mesa Style. by James Morris, be read in conjunction
with this manual. The style manual contains several additional examples of well-constructed
Mesa programs, with commentary on using the language properly. Its purpose is to help one
take advantage of the assistance Mesa can give in writing programs that work, are reliable,
and are maintainable.

Programmers should also read the Mesa System Documentation. It describes the facilities
available in the Alto implementation of the Mes~ Programming system.

Acknowledgements

The principal participants in the development of the Mesa language were James Mitchell,
Butler Lampson, Edwin Satterthwaite, and Charles Geschke. Early work on the language was
done by William Paxton, with help from Peter Deutsch, Charles Irby, and Charles Dornbush.
An implementation was done by Richard Sweet. James Frandeen was involved in thoroughly
testing initial versions of the compiler. Vicki Parish, Gail Pilkington, and Janet Farness
helped greatly with editing and formatting versions of this manual.

v

Forward to Version 1.1

This first revision contains numerous small changes to correct errors reported by the many
helpful and careful readers of version 1.0. As well, it contains some major changes, and you
are encouraged to read the following parts, even if you are an experienced Mesa programmer:

Chapter 2 has been largely rewritten and contains a detailed discussion of expressions in
general, and signed/unsigned arithmetic in particular. The first section of chapter 3 has
been reorganized to attempt to better introduce user-defined types.

Two new appendices have been added. Appendix C contains machine-dependent
information for Mesa on an Alto. [t is not intended to replace the (Preliminary) Mesa
System Documentation, only to gather such information as may be needed while reading
this manual. Appendix D contains a collected grammar for the language and fairly
accurately represents the explanatory grammar spread throughout the manual.

Lastly, there is an Index for the manual. This index was "hand-prepared", so no
guarantee is made as to its completeness despite the best efforts of myself and Gail
Pilkington.

As before, I urge you to notify me of any errors that you discover. Those who did so for the
first issue have helped greatly in removing many important errors and in improving the
exposition in a number of places. I would especially appreciate suggestions as to index
entries that you think should be added, both new items and new page references for already
present items. Thank you all.

Jim Mitchell
May 1977

Forward to Version 3.0

The main changes in this second revision of the manual are primarily concerned with
modules, programs, and configurations (chapter 7). Other new language features included in
Mesa 3.0 are packed arrays (chapter 3) and overlaid variant records (chapter 6). Lesser
changes concern arrays, strings, BOOLEAN, and the UNWIND signal.

Please address all comments to SWEET@MAXCI or by regular mail to

R. E. Sweet
Xerox Corporation
Systems Development Department
3408 Hillview Drive
Palo Alto, CA 94304

Your suggestions, corrections and criticism are encouraged.

vi

Jim Mitchell
Dick Sweet
October 1977.

Forward to Version 4.0

This revision of the manual reflects several significant extensions to the language along with
a few minor changes. The new major features are a process mechanism, enhanced arithmetic
capabilities, long and base-relative pointers, and more general block structure. Much of
chapter 10 (Processes) was written by David Redell. Edwin Satterthwaite, John Wick, and
Richard 10hnsson helped rewrite several chapters for this edition; Jim Sandman and
Barbara Koalkin helped with proofreading and indexing. My sincere thanks to all of them,
and to the readers who pointed out errors in version 3.0. Please direct comments and
suggestions about this edition to your support group; failing that, send them to me at the
address above.

vi i

Dick Sweet
May 1978.

1

CHAPTER 1.

INTRODUCTION

This manual concentrates on the Mesa programming language. Mesa is really a programming
system of which the language is but one part. However, issues concerning the actual
developing, compiling, debugging, and loading of Mesa programs will not be treated here;
other documents cover those aspects.

Each chapter of this manual discusses some aspect of the language, giving examples,
semantics, and syntax. The chapters emphasize different language features at varying levels
of detail, and more than one chapter may treat a single feature. Generally, earlier chapters
introduce topics, and later ones supply finer detail. Chapter, section, or subsection titles
indicate the language issues with which they deal.

Under a given title, discussion is presented at three levels:

(1) Ordinary usage is described (motives, forms, and semantics), frequently with
examples.

(2) Syntax equations are shown' (when appropriate).

(3) Fine points are covered (if applicable): restrictions, special cases, references to later
material, precise semantics, etc.

Level (1) is intended to offer a basic understanding of Mesa. Reading only first level
material should be adequate to begin programming in Mesa. Levels (2) and (3) provide
information regarding the full power and details of Mesa.

As a rule, these levels of discourse occur separately and in the indicated order. Occasionally,
fine points or syntactic details are presented within first-level material. The reader will be
able to distinguish between levels by their appearance. Fine points are written in a sroan font,
like this. Syntax equations and syntactic categories appear in the following font:
FontForSyntax.

Any word or phrase which is italicized is important. If a technical Mesa term is being
introduced, it will be in italics; if a term is used before being defined, it will be in italics to
warn the reader that it should not be taken lightly and that Mesa has a particular meaning
for it. Occurrences of a technical term, once defined, are not distinguished. Lastly, names
appearing in programs are italicized in both the program text itself and the surrounding
explanations.

Programming examples are indented relative to the surrounding text to distinguish them.

2 Chapter 1: Introduction

1.1. Syntax notation

Mesa's grammar is described using a variation of Backus-Naur Form (or BNF) syntax
equations. For those unfamiliar with BNF, an explanation follows: reading and
understanding it is imperative if you intend to use this manual fully; if you are interested in
reading it only at level one, it can safely be skipped. Those familiar with it should still scan
this section to see the particular modification of standard BNF used in this manual.

An individual syntax equation defines a portion of the Mesa grammar: it specifies a rule for
forming some class of phrases in the language. A phrase class has a name, e.g., Program, and
is defined by one or more syntax equations with the phrase name on the left, followed by the
operator ::= (which should be pronounced "is defined to be"), and is in turn followed by
formation rules for that phrase class. For example, an OctalDigit, which can be any of 0, I,
2, ... , 7, is defined by the equation:

OctalDigit ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7

Phrase names are always printed in the syntax font when their use is meant to be technically
accurate. Other names such as BEGIN may also appear in syntax equations. If entirely
composed of upper-case characters in the font shown, they are special, or key words of Mesa.
Special characters such as 0, I, 2, ... above, and others such as =, +, or +-, for instance, stand
for themselves in syntax equations; some special characters are formed from more than one
single character, e.g., =>. Spaces in syntax equations are used only to separate the items in
the rules and have no special significance.

The only other character with special meaning in syntax equations is the vertical bar, I, which
separates alternate meanings for the phrase class being defined. It is read as "or": for
example, the above equation for OctalDigit is read: "An OctalDigit is defined to be 0 or 1 or 2
or 3 or 4 or 5 or 6 or 7." The parts of the rule separated by I are called alternatives. Each
alternative may contain any intermixed sequence of phrase names, special characters, or
keywords.

The phrase name empty is often used as one of the alternatives in a formation rule. It
means that the rule permits an "empty" phrase as one of its alternatives (Le., an actual phrase
mayor may not occur when applying the formation rule -- it is optional).

Commentary material imbedded in syntax rules is preceded by a double dash, --, and lies to
the right. For example:

Digit ::= OctalDigit I 8 I 9 -- a decimal digit is an Octal Digit or
an 8 or a 9

Often, only part of the total definition of a phrase class is given at a time. In order to alert
the reader that there are other ways of forming phrases of that class, an ellipsis (...) is used as
a final alternative in the rule at that point. The definition of Statement is distributed
throughout much of the manual in this way. When a certain type of statement such as the
AssignmentStmt is being discussed, the following partial rule appears:

Statement ::= AssignmentStmt I ... -- This is just an example.

One can read this equation as, "A Statement is defined to be an AssignmentStmt, among
other things."

The parts of a single alternative are strictly ordered; i.e., the alternative acts as a "template"
for forming an actual phrase; literal names and literal characters are copied, while
substitutions are made for the phrase names. Consider the following example:

Mesa Language Manual 3

ReturnStmt ::= RETURN I
RETURN Constructor

("A ReturnStmt is defined to be RETURN or RETURN followed by a Constructor.") The second
alternative means that RETURN and some actual phrase defined by Constructor occur in
exactly that order.

Syntax equations can indicate recursive substitution. For example:
IdList ::= identifier I identifier , IdList

An identifier is basically a name in a Mesa program. This equation defines an IdList to be a
list of one or more names, with commas separating them if there is more than a single name
in the list.

This result is explained as follows. The formation rule for IdUst consists of two alternative rules:

Rule 1: (First alternative) "An IdList is defined to be an identifier.", i.e., you can substitute anyone name
for an IdUst.

Rule 2: (Second alternative) "An IdUst is defined to be an identifier followed by a comma followed by
another IdList.", i.e., you can substitute name, IdList for an IdLlst.

To derive a single name, just use Rule 1 as shown for the equation below. (Note: The substitutions
are emphasized by writing them in italics.)

IdList .. - name (by Rule 1)

To derive two names separated by a comma:

IdUst ::= name, IdList
name, name

(by Rule 2)
(by Rule 1)

To derive three names separated by commas:

IdUst name, IdUst
name, name, IdUst
name, name, name

(by Rule 2)
(by Rule 2)
(by Rule- 1)

To derive n names separated by commas, use Rule 2 n-1 times and then use Rule 1.

The following syntax equation also relies on recursion:
StmtSeries .. - empty I

Statement I
Statement ; StmtSeries

The equation is read as, "A StmtSeries is defined to be empty, or a single statement, or a
series of statements separated by semicolons; the last statement may be followed by a
semicolon." A trailing semicolon is possible because:

1) A StmtSeries may take the form specified by the third alternative, "Statement ;
StmtSeries" .

2) Its reference to StmtSeries, by recursive substitution, may then take the "empty"
form, i.e., "Statement ; empty"

Commas and semicolons are used as major separators for a variety of constructs in Mesa. To
distinguish between sllch constructs, a convention is adopted that the suffix "List" on a
phrase name implies a sequence separated by commas, while "Series" implies a sequence
separnted by semicolons. This convention carries over to phrase names such as IdList and
StmtSeries above. -

4

CHAPTER 2.

BASIC OAT A TYPES AND EXPRESSIONS

This chapter presents some of the fundamentals of Mesa. It discusses how to declare,
initialize, and assign values to variables. It also describes the basic data types INTEGER, LONG

INTEGER, CARDINAL, REAL, CHARACTER and BOOLEAN, as well as the operators used to construct
expressions having these types.

The Mesa language is strongly typed. The programmer is given a collection of predefined
types and the ability to construct new ones; it is encouraged to choose or invent suitable
types for each particular application. Every variable used in a legal Mesa program must be
declared to have one of these types; every constant has a type; and every expression has a
type derived from its components and context. All types can be deduced by static analysis of
the program, and the language requires that each value be used in a way consistent with its
type according.to rules specified here and in chapter 3. The information implied by a type
can include the following:

Value classification: integer, Boolean, character, etc.

Structure: scalar or an aggregate such as an array or record.

Symbolic representation for constants: numeric, character, string, etc.

Boundary indications: limits for subrange variables, indexing ranges for arrays, etc.

Storage occupancy: number of words, bytes, or bits needed for a value.

Access method: direct, indirect, indexed, etc.

2.1. A slice of Mesa code

The example below is a slice from a Mesa program. It finds the greatest common divisor
(GeD) of a pair of integers, m and n (where m and n are integer variables in the program
from which this slice was taken; we assume their values need not be preserved). The example
uses the Euclidean Algorithm for finding the GeD of two numbers, which works as follows:

If either or both of m or n are zero, then the GeD is 1.

Otherwise, find the remainder of dividing m by n; set m to the value of n, and then
set n to the remainder. If n is zero, we are finished, and the value in m is the GeD
of the original m and n, except that it may be negative. Taking the absolute value of
the last m gives us the GeD.

. .
Example. Slice of Mesa Code Using the Euclidean Algorithm

. -- Given are integers m and n, which can be altered. (1)

Mesa Language Manual

ged,' INTEGER;
ged ... 1; -- ged=1 if m=O or n=O
IF m#O THEN

UNTIL n=O
DO
ged ... n;
n ... m MOD n; - - n gets remainder of mIn
m'" ged;
ENDLOOP;

ged ... -- in case one of m or n was negative -- ABs[ged];

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

5

The example contains eleven lines of source code, including comments. The numbers in
parentheses at the right side are for reference only and are not part of the source code.
Comments begin with the symbol "--" and terminate at line endings. They may also be
completely embedded within lines, in which case they both begin and end with " __ ".

Line (2) declares a variable, ged, of type INTEGER. A semicolon separates the declaration
from the following statements. Line (3) contains an assignment statement (the character " ... "
is Mesa's assignment operator). This presets ged in case one of the given values is zero.

Line (4) begins an IF statement, testing for m not equal to zero (the character "#" is Mesa's
"unequal" operator). If m is not zero, the compound statement following THEN (lines (5)
through (10) inclusive) is executed; otherwise, that statement is skipped.

Iteration for the Euclidean Algorithm is performed in the loop (UNTIL n=O DO ... ENDLOOP),

which contains three embedded assignment statements. The loop repeats until n is equal to
zero. If it is zero at the outset, the embedded statements are not executed at all.

Notice that statements are separated by semicolons. A semicolon at the end of a statement
series that is embedded in another statement (such as the series in the loop) is harmless and
optional; you can save thought by writing a semicolon after every statement in the series.

Within the loo'p, line (7) saves the value of n in ged. Line (8) then updates n for the next
iteration, if any. It assigns to n the value of the expression "m MOD n," which gives the
remainder of dividing m by n. Line (9) updates m to contain the value that n had before line
(8) and which was saved in ged. Control then reaches the end of the loop, line (10), and
transfers back to line (5), where n is again tested against zero. If it is zero, the loop is not
entered again, and execution continues with the first statement past the loop, line (11).

In all cases, control eventually reaches the assignment statement in line (11). Either ged has
its initial value (Le., I), or it contains the value n had just before it became zero. The
expression "ABs[ged]" is the form for calling a function and passing it one or more
arguments; square brackets are used for this purpose. Normal parentheses, "(" and ")", are
used only for nested expressions, e.g., "a*(b+e/(d-e)*f)." The assignment places the absolute
value of gcd into ged; this is the correct result. At this point, the reader is urged to trace
through the example with initial values for m and n of 15 and 12, respectively; the result
should be ged=3.

2.1.1. Basie lexical structure

The names ged, m, and n in the example are called identifiers. The general form of an
identifier is given by the following (informal) syntax:

An identifier is a sequence consisting of any mixture of upper-case letters, lower-case
letters, or digits, the first of which is a letter. Upper and lower case letters are

6 Chapter 2: Basic Data Types and Expressions

different and do distinguish identifiers.

The following, valid identifiers are all distinct:

aBc Abc DiskCommandWord displayVector mach} x32y40

Identifiers consisting entirely of capital letters are reserved for use by the Mesa language.
Some are keywords, and others name built-in functions, such as ABS. All such words that
have special meaning and are not to be defined by the programmer are called reserved
words. It is legal for the programmer to use fully capitalized identifiers, but he risks hitting
a reserved word (possibly a new one in some future version of the language). To avoid this.
at least one digit or lower case letter should appear in any identifier.

Mesa uses the 1?lank (or space) charac;ter to separate basic lexical units of the language (such
as reserved words and identifiers). Blanks are significant separators of lexical units. They
may not be embedded in identifiers, composite symbols (such as >=), or numeric literals (such
as 1000). Blanks are meaningful in STRING constants (section 6.1.1), and there is a CHARACTER
constant for space (section 2.4.4). As a separator, any sequence of contiguous blanks is
equivalent to a single blank. A TAB character also behaves exactly like a blank when used as
a separator.

A carriage-return character (hereafter called a CR in this manual) behaves as a blank for
separating lexical units also, but it has one extra function: if the last part of a line is a
comment, CR acts as the terminator of that comment. Thus, multiline comments (those
containing CRs) must begin with " __ " on each new line. Line breaks have no significance as
statement separators. For example, the single loop statement in the example extends over a
number of lines, and a semicolon is used to separate two statements in a series.

Semicolons are used for separating declarations, for separating a series of declarations from
following statements, and for separating statements in a series from one another. They
cannot be used with abandon, however, and the user is warned to be careful when writing IF

statements (sec. 4.2.1) or SELECT statements (sec. 4.3.1). Multiple statements can be written
on a single line, separated by semicolons.

2.2. Simple declarations

The example (Euclidean Algorithm) contains the following declaration:
gcd: INTEGER;

This declares gcd to be "a variable of type INTEGER (sec. 2.4.1), one of Mesa's built-in types.
More than one variable can be declared at the same time. For instance.

x, y, divisor: INTEGER;

declares identifiers x, y, and divisor as variables of type INTEGER. These examples reflect the
two primary purposes of every declaration:

" to designate one or more identifiers as variables. and

to-specify their type.

A declaration always begins with a single identifier or a list of identifiers. Conventionally,
we lise "list" to denote a single item as well as multiple items separated by commas. An
identifier list (JdList) is defined as follows:

Mesa Language Manual 7

IdUst ::= identifier I
identifier , IdUst

A declaration begins with an 1dlist followed by a colon. The colon is followed by a type
specification (INTEGER, for instance, is a type specification).

2.3. The fundamental operations: assignment, equality and inequality

The example contains the following five assignment statements:

gcd +- 1;
gcd +- n;
n +- m MOD n;
m +- gcd;
gcd +- ABS[gcd];

An assignment statement has the following syntax:
AssignmentStmt .. - LeftSide +- RightSide I .
LeftSide ::= identifier I . -- plus forms for array indexing, etc.
RightSide ::= Expression

The RightSide may be any expression (section 2.5) provided that its type conforms to that of
the LeftSlde. "Conforms" is defined in section 2.4.5 and is discussed further in section 3.5;
for now, it can. be taken to mean: "is the same as." The LeftSide may be a situple variable or
a component of an aggregate variable (such as an element of an array). In any event, a
LeftSide denotes a variable, something capable of receiving values. A LeftSide cannot, for
example, be a constant, while a RightSide can.

The assignment operation (+-), the equality operation (=) and the inequality operation (#) are
called the fundamental operations. They can be applied to values of most types (including,
for instance, entire arrays). The rules governing which pairs of operands may be used in a
fundamental operation are detailed in section 3.5.

2.4. Basic types

The types of variables in a Mesa program fall into two broad classifications, built-in types
and user-defined types. Chapter 3 describes how a programmer can define new data types
using type constructors. This section discusses the basic, built-in types. These include
several numeric types (INTEGER, LONG INTEGER, CARDINAL and REAL), a type for logical values
(BOOLEAN), and a type for individual character values (CHARACTER). The built-in type STRING

(for sequences of characters) is described in chapter 6. .

2.4.1. The numeric types INTEGER, LONG INTEGER and CARDINAL

Normally a computer does not provide operations on the mathematical integers (denoted by
Z), but rather on a finite set of values restricted to a range determined by the properties of a
particular machine. Programmers often (usefully) ignore the distinction and write programs
as if they manipulate elements of Z. On a machine with a short word length (e.g., 16 bits or
less), the distinction is difficult to ignore. For this reason, Mesa provides three built-in
numeric types, with values that are restricted to different subranges of Z. The range of the
first type, INTEGER, is (approximately) symmetric about zero, and values of type INTEGER are

8 Chapter 2: Basic Data Types and Expressions

represented as signed numbers. The range of the second type, LONG INTEGER, is also
symmetric about zero but larger. The range of the final type, CARDINAL, is some finite
interval of the natural numbers N = {O, 1, 2, ... } that includes zero, and v'alues of type
CARDINAL are represented as unsigned numbers. "Signed" and "unsigned" are not types; rather,
they describe the machine representation of a numeric value.

In terms of an implementation, values of types INTEGER and CARDINAL are expected to be
represented by single machine words, while a value of type LONG INTEGER is expected to
occupy two words. For this reason, INTEGER and CARDINAL will be referred to as short numeric
types; LONG INTEGER, as a long numeric type. On a machine using two's complement
arithmetic and a word length of N bits, the following table indicates the range spanned by
each numeric type (Mesa uses " .. " in place of the mathematician's comma in its interval
notation):

INTEGER

CARDINAL

LONG INTEGER

[_2N- 1 .. 2N-1)

[0 .. 2N)

[_22N- 1 .. 22N-1)

The actual ranges for these types are given in appendix C, the machine dependencies
appendix.

The programmer must choose an appropriate type for each numeric variable. LONG INTEGERS

offer a greater range but occupy more storage and are generally more time-consuming to
manipulate. CARDINALS offer a somewhat greater positive range than INTEGERS, and this is
significant in a few applications, e,g., those that manipulate addresses that might be the same
size as the word size. More importantly, declaring a variable to have type CARDINAL asserts
that its value is always nonnegative; the compiler can use such assertions to perform more
checking and to generate better code. Programmers are encouraged to declare as much
information about each variable as possible; the ranges of numeric variables can be further
constrained by using subrange types (section 3.1.2) .

•
The types INTEGER, CARDINAL and LONG INTEGER are distinct and not interchangable. On the
other hand, it is clear that they are closely related. Mesa allows most combinations of these
types to occur within assignments, arithmetic expressions and relational expressions, but care
is necessary to avoid failures of representation, especially when values with different
representations are mixed. This is discussed further in sections 2.4.5 and 2.5.1.

2.4.1.1. Numeric literals

A numeric literal always denotes an element of N (I.e., -5 is considered to be an expression
in which the unary negation operator is applied to the literalS to produce an INTEGER value).
To be valid. a numeric literal must denote an acceptable (positive) LONG INTEGER value. If its
value lies in the range of CARDINAL n LONG INTEGER, Le., in [0 .. 2N), it may also be
considered a CARDINAL value in any context requiring a CARDINAL (section 2.5.1). Similarly, if
the value lies in the range of CARDINAL n INTEGER, i.e., in [0 .. 2N- 1), it may also be
considered an INTEGER.

Numeric literals are instances of the phrase class number:
A number is a sequence of digits. The digits may optionally be followed by the letter
B or D, which in turn may optionally be followed by another sequence of digits
representing a. scale factor. No spaces are allowed within numeric literals.

If D is specified explicitly, or if neither B nor D appears, the number is treated as decimal.

Mesa Language Manual 9

The letter B means the number is octal (radix 8). A scale factor indicates the number of
zeros to be appended to the first sequence of digits; the scale factor itself is always a
decimal number. The literals below all denote the same value:

6400 6400D 64D2 14400B 144B2

2.4.2. Type REAL (interim)

The values of Mesa's type REAL are approximations of mathematical real numbers. These
approximations are sometimes called floating-point numbers. The limitations of such
discrete approximations are many and well known; they are not discussed here. For the
current version of Mesa, a standard representation for floating-pOint values has not been
chosen. The language nevertheless provides some help with floating-point computation. It
allows declaration and assignment of. REAL values, and REAL expressions constructed using the
standard infix: operators are converted to sequences of procedure applications by the
compiler.

A REAL value is assumed to occupy the same amount of storage as a LONG INTEGER (Le., two
words). Beyond this, no assumptions are made about the representation of REALS. Users of I

real arithmetic must provide an appropriate set of procedures for performing the arithmetic
and relational operations.

The source language provides no denotations of REAL literals, since the compiler does not
know the internal representation expected by the user-supplied procedures. Mesa does
provide automatic conversion from INTEGER, LONG INTEGER or CARDINAL to REAL (section 2.4.5).
Thus numbers (numeric literals) can appear in REAL expressions and provide denotations of
certain REAL constants.

2.4.3 . Type BOOLEAN

A BOOLEAN value can be either TRUE or FALSE, and these are the only literals of type BOOLEAN;

i.e .•
Booleanliteral ::= FALSE I TRUE

BOOLEAN expressions are used in conditional statements (like IF) and in certain loop
constructs. For instance, the following statement appears in Example 1:

IF m#O THEN
UNTIL n=O

DO

ENDLOOP;

The expression "m#O" is a BOOLEAN expression; its value is FALSE if the value of m is zero
and TRUE otherwise. The expression "n=O" is just the opposite; its value is TRUE if n is zero
and is FALSE otherwise. The relational operators discussed in section 2.5.2 all yield BOOLEAN

values.

Variables of type BOOLEAN can be assigned values and appear as operands (although not of
arithmetic operators) just as any other Mesa variables. For instance, the above program
outline could validly be replaced by the following:

mNotZero, nlsZero: BOOLEAN;

mNotZero +- (m#O);

10 Chapter 2: Basic Data Types and Expressions

nI sZero ... n=O;
IF mNotZero=TRUE THEN

UNTIL nlsZero
DO

nIsZero ... n=O;
ENDLOOPj

compute whether n is zero
equivalent to just mNotZero by itself

-- recompute whether n is zero just before testing

2.4.4. Type CHARACTER

A value of type CHARACTER represents a single character of text. CHARACTER values are
considered to be ordered (according to the order specified in appendix C) and can be
compared using the normal arithmetic relations. CHARACTER values are distinct from
numbers, and they cannot be assigned to variables with numeric types. Limited arithmetic is,
however, allowed on characters (section 2.5.1.4).

A characterLiteral is written as an apostrophe (') immediately followed by a single character
(which can be a blank, carriage-return, semicolon, apostrophe, or any other character) or as
an octal number followed by C. For example:

lowerCaseA ... 'a;
mark'" I ;

endMarker ... '; ;
asciiCR ... 15C;

-- mark is set to be a blank. Here a blank is significant
-- endMarker is set to be a semicolon
-- an Ascii Carriage Return character;

2.4.5. Relations among basic types

If two types are completely interchangable, they are said to be equivalent. A value having a
given type is acceptable in any context requiring a value of any other type equivalent to it;
there is no operational difference between two equivalent types. None of the basic types
discussed in section 2.4 is equivalent to another basic type.

One type is said to conform to another if any value of the first type can be assigned to a
variable of the second type. A type trivially conforms to itself or to any type equivalent to
itself. In more interesting cases, an automatic application of a conversion function may be
required prior to the assignment. Conformance and its implications are discussed further in
section 3.5.

There are nontrivial conformance relations involving the types INTEGER, LONG INTEGER,

CARDINAL and REAL. These relations allow certain combinations of the numeric types to be
mixed, not only in assignments but also in arithmetic and relational operations (section 2.5).
They also permit these types to share denotations of constants (section 2.4.1.1). The
conformance relations can be summarized as follows: '

INTEGER and CARDINAL conform to CARDINAL.

INTEGER and CARDINAL conform to INTEGER.

INTEGER, LONG INTEGER and CARDINAL conform to LONG INTEGER.

INTEGER, LONG INTEGER, CARDINAL and REAL conform to REAL.

Pairs of numeric types not on this list do not conform; e.g., it is not possible to assign a LONG

INTEGER to an INTEGER or a REAL to a CARDINAL.

Mesa Language Manual 11

Particular care is required when short numeric types with different representations are
intermixed. Mathematically, Z ::::> N; however, it is not necessarily true that INTEGER ::::>
CARDINAL. For instance, with the assumptions above, the intersection of INTEGER and CARDINAL

is [O .. 2N-1). Within this interval, the signed and unsigned representations agree, and the
interpretation of a short numeric value is unambiguous. If a CARDINAL value lies in this
range, it can validly be assigned to an INTEGER variable, and vice-versa; outside this range,
the value represented by a given word depends upon whether it is viewed as a CARDINAL or as
an INTEGER.

Example:

With the assumptions above and N:16, the unsigned value 177777B and the signed
value -1 are encoded by the same bit pattern.

Assignment of an unsigned value to an INTEGER variable, or of a signed value to a CARDINAL
variable, implicitly invokes a conversion function, which is just an assertion that the value to
be assigned is an element of CARDINAL n INTEGER. In the current version of Mesa, the
conversion function is always compiled as the identity function (Le., it generates no code),
and no check is actually made. It is the responsibility of the programmer to determine that
the conversion is valid. In many cases this is not too difficult, but programmers are urged to
avoid mixing signed and unsigned representations when this is possible. It almost always is.

Mesa does guarantee that LONG INTEGER ::::> INTEGER and that LONG INTEGER :J CARDINAL; thus it
is always valid to assign a short numeric value to a LONG INTEGER variable. The properties of
conversion to type REAL are not specified by the language.

Some fine points:
A user supplied procedure FLOAT is automatically applied to convert a value from type LONG INTEGER
to REAL. Short numeric values are converted first to LONG INTEGER and then to REAL.

Conversion from a short numeric value to a LONG INTEGER (and thus to a REAL) is substantially more
efficient when the value has an unsigned representation.

The conversion of constants to type REAL is not done by the compiler but occurs every time the
containing expression is evaluated at run-time.

Neither BOOLEAN nor CHARACTER conforms to any other basic type.

Examples:

i: INTEGER; n: CARDINAL; Ii: LONG INTEGER; x: REAL;

(valid)

(invalid)

2.5. Expressions

i +- 0;
ii +- 0;
x +- n;
x +- U;

+- x;
n +- TRUE;

Expressions are constructs describing rules of computation for evaluating variables and for
generating new values by the application of operators. The overall syntactic rule for an
expression is given by

ExpreSSion '::= Disjunction I AssignmentExpr I IfExpr I SelectExpr I ...

The Disjunction form includes all the numeric operations, relational operations, and BOOLEAN

12 Chapter 2: Basic Data Types and Expressions

(logical) operations and is discussed in this section. An AssignmentExpr allows one to write
multiple assignments in a single statement and is discussed in section 2.5.4. The IfExpr and
SelectExpr forms are discussed in chapter 4.

The basic unit from which expressions are built is called a Primary. This syntactic class
includes references to variables, literals, function calls (chapter 5), and any arbitrary
expressions embedded in parentheses:

Primary ::= Variable I Literal I (Expression) I FunctionCall I ...
Variable ::= LeftSide -- same as what can receive values
Literal ::= number I BooleanLiteral I character Literal
FunctionCall ::= BuiltinCall I Call -- defined in chapter 5

Recall that ev.ery expression has a' well-defined type in Mesa. The general rules for
determining the type of an expression from the types of its constituent parts are given in
section 3.5. In this section, the types of the basic expression forms (as functions of the types
of their operands) will be outlined. For example, the type of a Primary is the type of the
Variable or Literal involved, or reduces to the type of the Expression within parentheses, or is
the type of the value returned by the BuiltinCall (some of which are defined below) or the
Call of a user-defined procedure (section 5.1).

A Primary can be of almost any type; this is not true of most of the expression forms built
up using Mesa's operators. Some operators are numeric and some are BOOLEAN. The next
sections discuss the numeric operations, the relational operations, and the operations
applicable only to BOOLEAN values. Considered together, the operators form a single
hierarchy with respect to their precedence, which is described with each operator class.

2.5.1. Numeric operators

The operations on numeric values are addition, subtraction, multiplication, division,
modulus, and arithmetic negation. The syntax for this group of operations is

Factor
Product

::= Primary I - Primary -- negation

MultiplyingOperator ::=

Sum .. -

.. - Factor I Product MultiplyingOperator Factor

* I I I MOD

Product I Sum AddingOperator Product
.. - + I -AddingOperator .. -

These operators have their usual mathematical meanings. The division operation on integers,
I, always truncates toward zero; thus -(i/j)=-ilj=iI-j. The MOD operator yields the
remainder of dividing one number by another (MOD is not applicable to REAL operands). MOD

is defined by the relation (ilj)*j+{i MOD j) = i, and the sign of the result of MOD is always the
sign of the dividend. (This is the reason that line 11 of Example 1 takes the absolute value
of the computed gcd; if m=-12 and n=8 initially, the gcd would be -4 if its absolute value
were not taken.)

.The built-in function MIN computes the minimum value in a list of expressions; similarly, the
MAX function, the maximum value. The built-in function ASS computes the absolute value of
its argument. The syntax for calls on the built-in functions is

BuiltinCall :: = MIN [ExpressionList]
MAX [ExpressionList]
ASS [Expression]

Mesa Language Manual

-- other built-in functions later
ExpressionList ::= Expression I ExpressionList • Expression

13

For the arithmetic operators and built-in functions, the order in which the operands are
evaluated is left undefined. but the syntax implies a precedence ordering that controls the
association of operators with their operands. In that ordering, unary negation precedes the
multiplying operators, which in turn precede the adding operators. Sequences of operators
of the same precedence associate from left to right (with the exception of the embedded
assignment operator, section 2.5.4). Thus, an expression such as a+b*-c does not specify the
order of evaluation of a, band c but does require that the operations be performed in the
following order:

negate c
multiply the result by b
add that result to the value of a

In principle. each arithmetic operator designates the corresponding mathematical function.
Unfortunately, the hardware underlying any implementation of Mesa does not provide this
function but only a set of related partial functions. For each operator, the compiler must
choose as appropriately as possible from this set. The choice is made by considering the
types of the operands.

Example:

With the usual assumptions, 177777B and -1 are represented by the same bit pattern.
The value. of 177777B > 0 is TRUE, but that of -1 > 0 is FALSE.

Mesa provides the operators +, -, "', I, MIN, MAX and ABS for all the numeric types. The
operation MOO is defined for all numeric types except REAL; the operation of unary negation,
for all but CARDINAL. For each of these operators, the type of the result is the same as the
type of the operands. In addition, the result of the operation is considered to have signed
representation if all the operands have signed repl"esentation, and to have unsigned
representation if all the operands have unsigned representation. Thus, adding two INTEGER
values yields an INTEGER result, and dividing one CARDINAL by another yields a CARDINAL result.

Some fine points:
Division and modulus operations on short numeric values are substantially more efficient- if their
operands are unsigned.
Addition, subtraction, and comparison of LONG INTEGERs is fast; multiplication and division are done
by software and are relatively slow.
Operations upon REAL values are implemented as calls on user-supplied procedures. These procedures
must be assignable to variables declared as follows (chapter 5):

FADD, FSUB. FMUL. FDIV: PROCEDURE [REAL. REAL] RETURNS [REAL];
FCOMP: PROCEDURE [REAL, REAL] RETURNS [INTEGER];

-- returns a value that is: 0 if equal, negative if the first is less. positive otherwise
FLOAT: PROCEDURE [LONG INTEGER] RETURNS [REAL];

All other REAL arithmetic operations are fabricated from these primitives.

Although the mathematical integers (~) and real numbers are closed under all these
operations (except division by zero), the sub ranges defining the types INTEGER, LONG INTEGER
and CARDINAL generally are not. When the result of an operation falls outside the range of its
assumed type, a representational failure called overflow or underflow occurs. The current
version of Mesa does not detect these failures; it is the programmer's responsibility to guard
against overflow and underflow conditions. .

14 Chapter 2: Basic Data Types and Expressions

The effects of Mesa's conventions with respect to subtraction are worth emphasizing. If both
operands have valid signed representations, the result is an INTEGER. If both have only
unsigned representations, the result is a CARDINAL and is considered to overflow if the first
operand is less than the second. .

Example:

i: INTEGER; m, n: CARDINAL;

i .. m-n; -- should be used only if it is known that m >= n

i .. IF m >= n THEN m-n ELSE -(n-m); -- a safer form (section 3.6)

The arithmetic operations are defined for operands that all have the same type, but it is
possible to mix numeric types (and thus representations) within an expression. In this case,
operands are converted as necessary to the "smallest" type to which all the operands conform,
the operation for that type is applied, and the result also has that type. The rules for
expressions involving types REAL and LONG INTEGER are .easy to state:

If any operand has type REAL, the REAL operation is used.
Otherwise, if any operand is LONG INTEGER, the LONG INTEGER operation is used.

The rules governing combination of short numeric operands with differing representations
involve some additional concepts and are stated in section 3.6. Again, the programmer
should try to avoid such combinations when possible. (Recall that literals in INTEGER n
CARDINAL have whatever representation is required by context.)

Examples:

i, j, k: INTEGER; m, n: CARDINAL;

Factors: n
15
(i+j+k)
-15
MIN[i, j, k, -15]

Products: m*n
ii-IS
n MOD 8
mln*10
-k*(i+l)12 MOD 3

Sums: i+1
-i+j
j-i
n-n MOD 8
m - mln*n

2.5.1.1. The operator LONG

-- same as (mln)*10 because of left-associativity
-- same as «(-k)*(i+l»I2) MOD 3

same as n-(n MOD 8) because of precedence
same as m MOD n

The built-in function LONG converts any value with a short numeric type to a LONG INTEGER.
The syntax is as follows:

BuiltinCall ::= ... I LONG [Expression]

This operation is necessary when the standard conversion rules do not give the desired result.
It can also be used to emphasize the conversion.

Example:

LONG[m"'n]
LONG[m]"'LONG[n]

Some fine points:

Mesa Language Manual

"short" multiplication. overflow lost
"long" multiplication

15

Lengthening a single-precision expression is substantially more efficient if that expression has an
unsigned representation.

The Mesa implementation provides standard procedures (not part of the language) for performing
certain multiplication and division operations in which the operands and results do not all have the
same length. These procedures provide less expensive equivalents of, e.g., LONG[m]·LONG[n].

2.5.1.2. CHARACTER operators

Limited CHARA:CTER arithmetic is possible and is sometimes useful for manipulating the
encodings of CHARACTER values. The following arithmetic operations are defined for
operands of type CHARACTER:

A CHARACTER value plus or minus a short numeric value yields a CHARACTER value.

Subtracting two CHARACTER values yields an INTEGER value.

No other arithmetic operations on characters are allowed. Since the results of character
arithmetic depend upon details of the character encoding, such arithmetic should be used
with discretion.

Examples:

c: CHARACTER; digit.' INTEGER;
digit .. c - '0;
c .. 'A + (c-'a) -- assumes c is lower case

2.5.2. Relational operators

The relational operators include = and #. <, <= (less than or equal). >= (greater than or
equal). >. and their negatives (e.g .• NOT< < >=. etc.). These operators always yield
BOOLEAN results, depending on the truth or non-truth of the relation expressed. The
operators = and # apply to most types; the others. to any ordered type (Le., to any type
whose values are considered to be ordered). Ordered types include INTEGER. LONG INTEGER.
CARDINAL, REAL, BOOLEAN, CHARACTER (with the ordering given in appendix C). enumerated
types (section 3.1), and subranges of ordered types (section 3.1).

The relational operators also include the composite operator IN, which takes a numeric value
as its left operand and an interval as its right operand. Its value is TRUE if the left value lies
in the interval and. FALSE otherwise. The syntax for relational operators is

Relation .. - Sum I Sum RelationTaii .. -
RelationTaii .. - RelationalOperator Sum I .. -

Not RelationalOperator Sum I
IN SubRange I
Not IN SubRange

RelationalOperator .. - < I <= I = I # I > I >= .. -
Not .. - I NOT .. -
Sub Range .. - SubRange TC I -- explained in chapter 3 .. - ...
SubRangeTC .. - Interval I ... -- explained in chapter 3 .. -
Interval .. - [ExpreSSion .. Expression) I .. -

16 Chapter 2: Basic Data Types and Expressions

(Expression .. Expression) I
(. Expression .. Expression] I
[Expression .. Expression]

The extra syntax for SubRange and SubRangeTC is placed here to be consistent with later
uses of the class Interval in chapter 3. The syntax for intervals follows mathematical
notation; a square bracket indicates the inclusion of the respective end point in the interval,
while a parenthesis indicates its exclusion. For example, the following intervals all designate
the range from -1 to 5 inclusive:

[-1 .. 5] [-1 .. 6) (-2 .. 6) (-2 .. 5]

In the above examples, -1 is the lower bound of each interval; the upper bound is 5. The
bounds of an interval are its end points, regardless of whether the interval is written as a
closed, half-open or open one. The bounds are not required to be constants. An interval
with an upper bound less than its lower is said to be empty; no values lie in such an interval.
For example, the following are all empty intervals:

[-1 .. -2] [-1 .. -1) (-2 .. -1) (-2 .. -2]

The relational operators, like the arithmetic operators, denote families of hardware
operations when they have numeric operands. Again, there is one operation for each
numeric type. If there is a unique "smallest" type to which all the operands conform, they
are converted to that type as necessary and then the comparison is performed. There is no
unambiguous choice of such a type for short numeric operands with different
representations; an attempt to compare two such values is an error. The precise rules can be
found in section 3.5.

Examples:

Relations: n = 15
m#n
i<=j
U<j) = U<k)
n IN [1 .. 5)
i NOT IN [-1 .. 5]

or m ""= n

= with two BOOLEAN operands
n)=1 and n<5
only legal if i is signed (because -1 is)

2.5.3. BOOLEAN operators

The next lowest precedence operators apply only to BOOLEAN values. They are NOT (logical
negation), AND and OR. The syntax is

Negation
Conjunction
Disjunction

:: = Relation I Not Relation
.. - Negation I Conjunction AND Negation
.. - Conjunction I Disjunction OR Conjunction

NOT negates the logical value of a BOOLEAN expression. p AND q has the value TRI.JE if and
only if both p and q are TRUE. p OR q is TRUE if at least one of p or q is TRUE.

When eva I uating a Boolean expression, evaluation of primaries is guaranteed to take place
from left to right. In the operation AND or OR, the second operand mayor may not be
evaluated, depending on the first operand's value.

A fine point:

"x AND y" is equivalent to the IfExpr "IF x THEN y ELSE FALSE"; i.e., when x is FALSE, y is not
evaluated.

Mesa Language Manual 17

"x OR y" is equivalent to the IfExpr "IF x THEN TRUE ELSE y"; i.e., when x is TRUE, y is not
evaluated.

It is therefore safe to have expressions of the form "x AND y", where y is defined only when x is
TRUE, e.g., "x·#O AND clx } 2", or "p=NIL OR p./=O".

Examples:

Negations: NOT i=15 same as NOT(i=15)
-q q must be of type BOOLEAN

""(p AND q)

Conjunctions: i<=j AND j<k
p AND Nq
i=5 AND j NOT IN ·[-1..1]

Disjunctions: m>n OR m=15
"'p OR ""q

2.5.4. Assignment expressions

The assignment operation can be embedded in other expression forms. When it is, the result
of the operation has the type of the LeftSide and the value received by the LeftSide in the
assignment. The "+-" operator has the lowest precedence of any operator. Its syntax is the
same as that for the AssignmentStmt:

AssignmentExpr ::= LeftSide +- RightSide

If this form is used to perform multiple assignments, it is important to note that "+-" is
right-associative. Thus, the assignment expression a+-b+-b+l first assigns the value of b+l to
b and then assigns b's new value to a.

Examples:

Assignment Expressions:
m+-15
m+-n+-15
m+-n+-n+l
;+-U+-U+l) MOD n)*2

-- same as m+-(n+-(n+1»
-- all these parentheses are necessary

Rules governing assignments of numeric values are summarized in section 2.4.5.

Fine point:

Because the order of evaluation of the primaries is not defined. expressons such as "(i .. j) + V"k)" have
unpredictable values and should not be used.

2.6. Initializing variables in declarations

A variable may be given an initial value in a declaration. For example, the Boolean variable
delimited could be set initially FALSE by using the declaration:

delimited: BOOLEAN +- FALSE;

Variables (of the same type) can be initialized collectively:
n. nO: INTEGER +- -7;

This declares two separate integer variables n and nO and initializes each to -7.

18 Chapter 2: Basic Data Types and Expressions

Any expression that could be used as the RightSide of an assignment can be used to initialize
a variable:

i: INTEGER +- ABs[n];
iSquared: INTEGER +- i*i;
j: INTEGER +- iSquared-i+1;

-- this will set i to 7
-- iSquared is initialized to 49
-- j is initialized to 49-7+1 = 43

All initializations shown so far have taken "assignment" (or "+-") form. There is another
form, the "fixed" (or ":") initialization. For example,

octalRadix: INTEGER: 8;

This means tq.at octalRadix is to have a fixed value. It is never valid as the LeftSide of an
assignment. We call octalRadix a constant because its value can never change after it is
initialized (recall that the number 8 is called a literal). Normally, the term "constant" will
include the t~rm "literal"; if the' distinction is important, then "literal" will be used.

Initial values for fixed initialization can also be arbitrary expressions. Paraphrasing the
earlier example:

iO: INTEGER = ABS[-octaIRadixJ; iOSquared: INTEGER = iO*iO;
jO: INTEGER = iOSquared-iO+1;

The initializing expression can use values that are not known at compile time. In this
example, if octalRadix did not have fixed initialization, the values of iO, iOSquared, and jO
would be computed and assigned at run-time. Variables are initialized in the order of
appearance in a declaration, and later declarations can use variables initialized earlier, as
shown by the example.

If the compiler does know initial values (for variables declared with fixed form
initialization), it can use them wherever those variables are referenced. This knowledge can
be exploited when analyzing expressions, processing other declarations, or generating object
code.

2.6.1. Compile-time constants

Wherever possible, the Mesa compiler evaluates expressions containing only constants. If a
variable is initialized using the fixed form and the expression can be evaluated at compile
time, then that variable has a known value. Since it can never appear as the LeftSide of an
assignment operator, it too becomes a compile-time constant (the variables W, iOSquared,
and jO in the previous section are all compile-time constants).

Example:

beta: INTEGER = 3;
alpha: INTEGER = beta-l;

In this case, alpha is a compile-time constant (with the value 2), since the expression beta-l
involves only compile-time constants. Compile-time constants need not occupy memory at
run-time. The compiler replaces references to compile-time constants by their known values
whenever possible. In this case, alpha and beta would not require storage at run-time.

A side effect of this propagation of constants is that the representation of a numeric
constant is known at compile-time. For instance, alpha above is declared to be an INTEGER,

but because its value is 2, it may also be used as a CARDINAL. However, declaring the type of
alpha determines what kind of arithmetic (signed or unsigned) will be used to compute its
value, whether at compile-time or run-time (section 2.5.1).

Mesa Language Manual 19

A fine point:

In certain contexts, an expression is required to yield a compile-time constant. A (sub)expression
denotes such a constant if all the operands are compile-time constants and the operation is not one of
those listed below (current restrictions):

Conversion of a numeric value to type REAL.

Any arithmetic or relational operation with operands of type LONG INTEGER or REAL.

Any function (but not built-in function) application (chapter 5).

The @ operation (section 3.4).

The SELECT operation (section 4.3.3).

2.7. More general declarations

We have now introduced all the syntactic parts of a declaration, and can describe the general
form of a Declaration as

Declaration ::= IdList: TypeSpecification Initialization

For the moment, TypeSpecification is defined as one of the built-in types; chapter 3
describes other forms of TypeSpecifications.

TypeSpecification .. - PredefinedType I . . .
PredefinedType ::= INTEGER I CARDINAL I LONG INTEGER I REAL I

BOOLEAN I CHARACTER I
STRING I see chapter 6
WORD I see fine pOint below
UNSPECIFIED see fine point below

Also, 'we can formally define an Initialization as
Initialization .. - empty

Fine points:

+- Expression
= Expression

--other forms are given later

The built-in type WORD is provided to describe values on which bit-by-bit logical operations are to be
performed. Currently, it is a synonym for CARDINAL.

The built-in type UNSPECIFIED is a device for bypassing most type checking. It is a necessary evil.
An UNSPECIFIED value is a single machine word. and it matches the type of any object that occupies at
most a single machine word. including INTEGER. CARDINAL. CHARACTER, BOOLEAN, UNSPECIFIED,
(perhaps surprisingly) STRING, or any user-defined type (chapter 3) that fits in a single machine word.

For numeric operations, its representation is similarly fluid. If a CARDINAL and an UNSPECIFIED value
are the' operands of some arithmetic operation, then the compiler treats the UNSPECIFIED value as if it
were unsigned. If an UNSPECIFIED is combined wiLh a signed value, it is treated as if it were signed
too. If an UNSPECIFIED is combined with an UNSPECIFIED, they are both treated as signed.

Less type checking is sacrificed by using LOOPHOLE (section 3.5.1) than by declaring variables 'With
type UNSPECIFIED.

•

20

CHAPTER 3.

COMMON CONSTRUCTED DATA TYPES

Mesa encourages the programmer to augment the collection of predefined types by
constructing new types. Types can be defined to describe objects that are structured
collections of related values (e.g., a table of values, or a complex number consisting of real
and imaginary components). Mesa's type system has other, perhaps less obviolls applications.
These include expressing some of the programmer's knowledge about a class of variables (e.g.,
that all take on values restricted to some known interval), separating variables with different
semantics into different classes so that they cannot be confused (e.g., to avoid "comparing
apples and oranges"), and hiding implementation details of abstractions (e.g., to prevent the
user of a table-lookup package from depending on the internal organization of the table).

Programmer-created types have the same status as Mesa's built-in types. They can be used to
declare variables and to construct further new types. In addition, values of most constructed
types can be operands of the fundamental operations (f-, =, #).

A new type identifier is declared using the following syntax:
TypeDeclaration ::= idList : TYPE = TypeSpecification ;

Each identifier in the idList is thereby declared to name the type denoted by the
TypeSpecification. If this declaration form is compared to a normal declaration, i.e.,

Declaration ::= IdList : TypeSpecification Initialization;

it can be seen that "TYPE" fills the role of a TypeSpeci1ication, and ": TypeSpecification"
plays the role of Initialization. In fact, the newly declared iden tifier has type "TYPE" and a
value (which mllst be constant, hence the ":") which is a TypeSpecification.

Any predefined Mesa type (section 2.7) is a valid TypeSpecification; thus the following are
valid type declarations:

SignedNumber: TYPE : INTEGER;
UnsignedNumber: TYPE : CARDINAL;
TruthValue: TYPE = BOOLEAN;
Char: TYPE : CHARACTER;

.
These type identifiers are now valid type specifications and can be used to declare variables:

i, j: SignedNumber;
n: UnsignedNumber;
b: TruthValue;
c: Char;

After this series of declarations, i and j have type Signed Number. which is equivalent to
INTEGER; n has type UnsignedNumber, which is equivalent to CARDINAL; etc. This is a trivial

Mesa Language Manual 21

way of defining new types. A more interesting way uses a type constructor as the
TypeSpecification and generates a truly new type, not just an additional name for an existing
one. A TypeSpecification can be defined as

TypeSpecification :: = PredefinedType
Typeldentifier
TypeConstructor

(TYPE itself is not a TypeSpecification; it can be used only to declare types.)

There is an important point worth emphasizing here. A TypeSpecification that is a
PredefinedType or a Typeldentifier denotes an existing type and yields the same type every
time it is used. A declaration such as the one of SignedNumber introduces a synonym for
the name of an existing type. Synonyms can be more descriptive and thus improve
readability, but they do not partition the set of values. The types Signed Number and INTEGER

are fully equivalent, and values with these types can be used interchangably. On the other
hand, a TypeConstructor constructs a new type. The rules for equivalence and conformance
of constructed types depend upon the forms of their constructors and are discussed as the
constructors are introduced. In some cases, each appearance of a constructor generates a
unique type, i.e., writing the same sequence of symbols twice generates two distinct,
incompatible types. For this reason, programmers usually should name such a type, using a
TypeDeclaration, and thereafter use the type's identifier. Of course, introducing an identifier
for a constructed type can make a program easier to read and modify in any case.

The predefined types are described in chapter 2 (except for STRING in chapter 6). The
simplest form of a Typeldentifier is gi ven by

Typeldentifier ::= identifier I -- which is a declared type
-- other forms given in chapters 6 and 7

The rest of this chapter discusses the attributes and uses of some common constructed types:
enumerations, subranges, arrays, records, and pointers. The syntax for TypeConstructor is

TypeConstructor .. - EnumerationTC I -- for enumerations
SubrangeTC I -- for subranges
ArrayTC I -- for arrays
RecordTC I -- for records
PointerTC I -- for pointers to data objects
LongTC I -- for long pointers
ProcedureTC I -- see chapter 5
ArrayDescriptorTC I -- see chapter 6
RelativeTC I -- see chapter 6
SignalTC I -- see chapter 8
PortTC I -- see chapter 9
ProcessTC - - see chapter 10

(The suffix "TC" is to be understood as an abbreviation for "TypeConstructor".)

Enumerations define a set of values by giving a list of i dentijier s. These identifiers can be
viewed as members of an ordered set.

Subranges define types with values drawn from those of a larger, encompassing type but
restricted to lie in a specified interval. The subrange takes on the characteristics of the
enclosing type; for example, a subrange of INTEGER can be used to declare variables that
behave like INTEGERS but are constrained to take values within some interval.

Arrays are sequences of components that are homogeneous with respect to type and are

22 Chapter 3: Common Constructed Data Types

accessed by compu"ted indices ("subscripting"). Records are sequences of components that
have potentially different types and are accessed using fixed component names ("selection").
Records and arrays are Mesa's aggregate data types.

Pointers are scalar values used to access data objects indirectly. A pointer value is
represented by an address. Pointers can be used to build linked lists, tree structures, etc.
Long pointers are pointers capable of spanning a larger address space than ordinary pointers.

Chapter 3 concludes with a discussion of type determination, the process by which Mesa
decides whether an expression has an acceptable type for a given operation. This is closely
related to qu~stions of the equivalence and conformance of types.

3.1. The element types

This section describes a class of types called element types. Their common properties are the
following:

(1) They are ordered types; values of an element type can be operands of all the
relational operators (section 2.5.2).

(2) They are scalar types; a value with an element type does not have any visible or
directly accessible internal structure insofar as the language is concerned.

(3) They can be used to declare sub range types (section 3.1.2).

(4) They are the only types allowed as index types of arrays (section 3.2).

The element types are 1NTEGER, CARDINAL, CHARACTER, BOOLEAN, the types generated by
EnumerationTC, and the types generated by SubrangeTC. Because of (3) above, this
definition is recursive; subranges of subranges are allowed. The general definition of the
class ElementType is

ElementType ::= INTEGER I CARDINAL I CHARACTER I BOOLEAN I
EnumerationTC I
SubrangeTC

A fine point:

Note that LONG INTEGER is not an element type. It is not possible to declare subranges of LONG
INTEGER or to use LONG INTEGERs as array indices.

3.1.1 Enumerated types

Consider the following declarations and a typical assignment:

channelState: INTEGER;
disconnected: INTEGER = 0;
busy: INTEGER = 1;
available: INTEGER = 2;

channelState ~ busy;

Suppose channelState is a variable that is intended to range over a set of three "states"
named disconnected, busy, and available, which are represented by values 0, 1, and 2. These
values have no real significance; 5, 6, and 7 would serve equally well. Enumerated types are
ideally suited to this kind of application (where the underlying values are unimportant). The
above declarations could be replaced by a single declaration of a variable with an enumerated

Mesa Language Manual 23

range:

channelState: {disconnected, busy, available};

channelState ~ busy;

The effect is the same as before; channelState is a variable with values ranging over the same
"states", and similar assignment statements can be used.

The enumeration has some advantages over the original declarations:

It is more convenient; the programmer does not have to provide values for
disconnected, busy, and available.

It allows more type checking. In the INTEGER case, one could assign any short numeric
value to channelState.

It helps documentation; an enumeration shows all of its possible values.

An enumerated type is constructed by specifying a list of identifiers between braces, "{ ... }".
These identifiers are not variables, but constants of that enumeration called identifier
constants. They represent nothing more than their own names.

The type constructor EnumerationTC is defined as follows:
EnumerationTC ::= {ldList}

The IdList sup.plies all the identifier constants for the enumeration, and duplication of
identifiers is illegal. Separately specified enumeraticns are distinct. Every appearance of
an EnumerationTC generates a new type that is not equivalent to, and does not conform to,
any other enumeration. Thus the declarations

foreground: {red, orange, yellow, green, blue, violet};
background: {red, orange, yellow, green, blue, violet};

specify two different enumerations. It is illegal to assign background to foreground, despite
the fact that the same identifier list appears in each declaration. Occasionally, the inability
to declare any further variables with the same type can be used to advantage by the
programmer. Otherwise, the best way to avoid such problems is first to declare a type and
then to declare variables using the identifier of that type; for example:

Color: TYPE = {red, orange, yellow, green, blue, violet};
foreground: Color;
background: Color;

This allows the assignment of background to foreground as well as the declaration of further
variables with the same type (perhaps initialized differently).

The identifier constants in two different enumerated types have no association whatsoever
and do not need to be distinct from one another. To identify unambiguously the
enumeration from which a constant is taken, one can, and sometimes must, qualify the
identifier constant by the name of the enumerated type. For example, given the additional
declaration

Fruit: TYPE = {apple, orange};

Color[orange] denotes a color and Fruit[orange] denotes a kind of citrus. More generally,
the syntax used for this form of qualification is

Primary ::= ... I Typeldentifier [identifier]

24 Chapter 3: Common Constructed Data Types

(This adds a new case to the syntactic definition of Primary, which already allows an
identifier constant.)

Often qualification' is not necessary; for instance, the following is permitted:
hue: Color;
hue .. orange; -- the type of hue implies Color[orange]

In the following situations, an identifier constant need not be qualified, because the intended
enumerated type is established by the context:

as the RightSide of an assignment

as an initializing expreSSion

as a component in an array or record constructor (sections 3.2.2 and 3.3.4)

as an argument of a procedure (chapter 5)

as an array index (section 3.2)

as the right operand of a Relation, including that part of a Relation used to label an
arm in a discrimination (section 4.3)

as the bounds in a SubrangeTC (section 3.1.2)

The values of an enumeration are ordered. The ordering is given by the order of appearance
in the IdUst used to construct the enumerated type. The leftmost identifier has the smallest
value, and values increase from left to right. The following relations all have the value TRUE:

Color[red] (Color[orange]
Color[red] (violet
hue IN [red .. yellow] -- assuming hue = orange

There are two additional built-in functions that are applicable to enumerations:
FIRsT[TypeSpecification] yields the smallest value of the specified enumeration; e.g.,
FIRST[Color]=red. Similarly, LAsT[TypeSpecification] produces the greatest value in an
enumeration; e.g., LAST[Color]=violet. It is also possible to iterate over all values of an
enumeration (section 4.5).

The predefined type BOOLEAN is really an enumerated type, and its definition is

BOOLEAN: TYPE = {FALSE, TRUE};

Thus, FALSE(TRUE, FIRST[SOOLEAN]=FALSE, and LAST[SOOLEAN]=TRUE. Note, however, that the
BOOLEAN constants TRUE and FALSE may always be used without qualification.

3.1.2. Subrange types

In many cases, the values of a variable· are inherently range-limited. For instance, a value
for day (of the month) ties in the range [1..31]. In other cases, the range is limited by
design. For instance, a value for year might be limited to the range [1900 .. 1999]. Mesa
permits the user to declare such variables in the following way:

day: CARDINAL[l .. 31];
year: CARDINAL[1900 .. 1999];

Since these intervals cover a subrange of CARDINAL, the variables day and year are called
subrange variables. It is useful to think of day and year as having type CARDINAL with the
additional constraint that values are restricted to the specified intervals.

Mesa Language Manual 25

Subrange types have a number of advantages and uses. Subrange declarations unambiguously
document the range of values intended for a variable and thus aid software maintenance.
The compiler is able to optimize storage allocation when dealing with range-restricted
variables (for example, in arranging the fields of a record, section 3.3) and can take
advantage of subrange declarations to generate more efficient object code.

The general form of a SubrangeTC is
SubrangeTC ::= Typeldentifier Interval I

Interval

The Typelden~ifier must evaluate to an ElementType. Thus, one can declare types that are
sub ranges of INTEGER, CARDINAL, CHARACTER, BOOLEAN, enumerated types, and other subrange
types. For example, . .

SymmetricRange: TYPE = INTEGER[-1..1];
PositiveNumber: TYPE = CARDINAL[1..maxCARDINAL]; -- see appendix C
UpperCaseLetter: TYPE = CHARACTER['A . .'Z];
DegenerateLogic: TYPE = BOOLEAN[TRUE .. TRUE];
CoolColor: TYPE = Co!or(yellow .. LAST[Color]]; -- excludes red, orange, yellow
AthroughM: TYPE = UpperCaseLetter['A..'M]; -- subrange of a subrange

The base type for a subrange is that type of which it is a subrange and which is not itself a
subrange; e.g., the base type for both UpperCaseLetter and AthroughM is CHARACTER.

The Expressions that define the end points of an interval must have types that conform to
the type denoted by the Typeldentifier (or yield short numeric values if the identifier is
omitted). Also, for the purpose of defining a subrange type, the end points must be
compile-time constants.
A fine point:

It is permissable for the interval defining a subrange type to be empty. It is not legal to use a variable
of such a type, but an empty subrange is sometimes useful for specifying the bounds of an array
(section 3.2).

A subrange type conforms to its base type, and a base type conforms to any of its sub range
types. By extension, any two subrange types with the same base types are mutually
conforming (even if they do not overlap in any way). A more revealing point of view is that
the value of a subrange variable has the base type as its type, and an assignment of a value to
a subrange variable makes an associated assertion that the value is in the appropriate interval.
A violation of such an assertion is called a range error. The current version of Mesa
provides no range checking, and it is the programmer's responsibility to guard against range
errors. As implied by this viewpoint, appropriate literals of the base type serve as literals of
the subrange type, and any operations defined on the base type automatically extend to the
subrange type (but usually without closure).

Examples:

n: CARDINAL [0 .. 10]; m: INTEGER [-5 .. 5];

m +- 0; n +- 0;
n +- n+1;
n +- m;

-- inherited literals
-- not valid if n = 10
-- only valid if m IN [0 .. 5]

The preceding discussion implies that subrange restrictions can be ignored in answering many
type-related questions; in this sense, subrange types are "weak." Two subrange types are
equivalent if their base types are equivalent and if the corresponding bounds are equal. For

26 Chapter 3: Common Constructed Data Types

these types, equivalence is much stronger than conformance. Equivalence becomes important
when subrange types are used in the construction of other types.

FIRST and LAST are applicable to all subrange types and yield the corresponding bound. For
example, FIRST[COo/C%r]=green and LAsT[AthroughM]='M. It is also possible to iterate over
all values in a subrange (section 4.5).

3.1.2.1. Subranges of numeric types

The description above applies to subranges of both enumerated and numeric types. Numeric
subranges introduce one further complication, which is the question of representation.
Omission of the initial Typeldentifier in a SubrangeTC is permissable if and only if each
bound in the Interval specifies a short numeric value. In that case, INTEGER or CARDINAL is the
base type, and the choice depends upon the representations of the bounds.

A numeric sub range type has a signed representation if both bounds are elements of INTEGER
and at least one is not an element of INTEGER n CARDINAL. Similarly, it has an unsigned
representation if both bounds are elements of CARDINAL and at least one is not an element of
INTEGER n CARDINAL. If both bounds are elements of INTEGER n CARDINAL, values of that
subrange type are considered to have both representations. Any other combination of bounds
is illegal.

Examples:

sl: [-10 .. 19]; -- signed representation
s2: [100 .. 33000];
s3: [0 .. 10);

-- unsigned representation (if ~3000 is not an INTEGER)
-- both representations

With respect to the choice of signed or unsigned versions of arithmetic and relational
operators, a quantity with both representations is treated flexibly. When combined with an
unsigned value, it is considered to be unsigned; the unsigned operation and result are chosen.
When it is combined with a signed value, the operation and result are signed. The rules
governing combinations of values with both representations depend upon the context in
which the result is used; the default is to choose signed representation and INTEGER
operations. The precise rules are discussed in Section 3.6.

Examples:

i: INTEGER; n: CARDINAL; -- plus the declarations above

(signed). sl + 1
sl + s3
s3 - i

(unsigned) s2 + 1
s2 + s3
s3 * n

A fine point:

3.1.2.2.

The representation assumed for a literal also depends upon context. In fact, any constant c is treated as
if its type were [c .. c].

Range Assertions

Assignment fo a subrange variable implies an assertion about the range of the expression
being assigned. The programmer may make stich an assertion explicitly, for any expression,

Mesa Language Manual 27

by using a range assertion. If S is an identifier of a subrange type and e is an expression
with a type T conforming to S, the Primary See] has the same value as e and is additionally
an assertion that e IN [FIRST[SnT] .. LAST[SnT]] is TRUE. In addition to user defined types,
the basic types INTEGER and CARDINAL may be used in range assertions.

In the current version of Mesa, such assertions must be verified by the programmer. In
addition to providing documentation, the subrange assertion does affect the attributes
attached to the expression. For exam pie, an assertion of an INTEGER range (or a signed
sub range) forces the result to be treated as a value with signed representation. This is useful
for controlling the choice of operations when a unique representation cannot be inferred
from the operands (section 3.6).

Examples:

i: INTEGER;

CARDINAL[i]
Sen]

3.2. Arrays

n: CARDINAL; S: TYPE = [0 .. 10];

-- i is asserted to be nonnegative
-- asserts n IN [0 .. 10]

Arrays are indexable collections of homogeneous components. In other words, a given array's
components all have the same type, and each corresponds to one index value in a range of
indices associated with that array. The range of indices (which is actually a type called the
index type) and the component type determine the array type. For example:

earningsPerQuarter: ARRAY [1..4] OF INTEGER;

declares a variable with a constructed array type having an index type of [1..4] and a
component type of INTEGER. Thus, earningsPerQuarter is an array of four integer elements:
earningsPerQuarter[I], earningsPerQuarter[2], , earningsPerQuarter[4].
earningsPerQuarter by itself refers to the entire array variable. (Aggregate variables and
components of aggregates are generally called "variables". If a distinction is needed, the term
component is used and always means an item contained within an aggregate.)

An index type must be an element type (other than INTEGER or CARDINAL). A one-to-one
correspondence exists between the components of an array and the values of the index type.
This allows array elements to be accessed via "indexed references". An indexed reference is
the means by which one accesses the component corresponding to a particular index value.
In its simplest form, it consists of the name of an array followed by a bracketed Expression
with a type conforming to the array's index type.

An index type can be specified using a type identifier:

Quarter: TYPE = [1..4]; .
profit, loss, earnings: ARRAY Quarter OF INTEGER;
thisQuarter: Quarter;

earnings[thisQuarter] +- profit[thisQuarter] - loss[thisQuarter];

The arrays profit, loss, and earnings have Quarter as their index types, and thisQuarter is a
subrange variable with type Quarter.

28 Chapter 3: Common Constructed Data Types

Index types may also be enumerations or sub ranges thereof. For example.

CaliType: TYPE = {longDistance, tieLine, toll, local, inPlant};
c!oseCa[[s: ARRAY CallType[toll .. inPlant] OF CARDINAL;

closeCalls[local] +- closeCalls[local]+l;

Components may be of any desired type. In particular. the component type may itself ·be an
array type. This allows an approximation of multidimensional arrays, which are otherwise
absent in Mesa. For example, a two-dimensional data structure can be declared and used as
follows:

Matrix3by4: TYPE = ARRAY [1..3] OF ARRAY [1..4] OF INTEGER;
mxy: M atrix3by4;

mxy[3][4J: +- 0; -- clear la·st component.

In the assignment statement, mxy is an expression of array type (with index type [1..3] and
component type ARRAY [1..4] OF INTEGER). mxy[3] is an indexed reference to the third
component of mxy. This in turn yields an expression of array type (whose index type is
[1..4] and component type is INTEGER). Thus, mxy[3][4] is an indexed reference to the
fourth component of that sub-array. Because of left-associativity, mxy[3][4] is the same as
(mxy[3])[4].

An array constructor consists of an optional type identifier followed by a list of values
(syntactically, Expressions) enclosed in brackets. The list specifies values for components of
an array in index order. The declaration below uses an array constructor to initialize an
array that can be used as a translation table; i.e., octalChar[n] holds the character denoting
octal digit n:

octalChar: ARRAY [0 .. 7j OF CHARACTER = ['0. '1, '2, '3, '4, '5. '6. '7];

Note that the number of values in the list (eight) matches the number of indices in the index
type. This is required Jor array constructors.

Array variables may also be initialized using other array values. Consider the following
example:

JreshVector: ARRAY [0 .. 3) OF CARDINAL = [0, o. 0];
current Vector: ARRAY [0 .. 3) OF CARDINAL+- JreshVector;

In this case, currentVector is initialized with JreshVector's value, i.e., all three of
currentVector's elements are initially set to zero.

When the operands of any of the fundamental operations (+-,=,#) are arrays, the operation is
applied on a component-by-component basis. The initialization of currentVector above uses
assignment in this way. Similarly, the expression "currentVector = JreshVector" yields the
result TRUE if and only if all three components of each array are equal (as they are in the
above example). Because the declaration of JreshVector uses fixed initialization, assignment
either to the entire array or to one of its elements is illegal.

Mesa Language Manual 29

3.2.1. Declaration of arrays

Arrays are declared using the array type constructor, ArrayTC:
ArrayTC ::= Packing Option ARRAY IndexType OF ComponentType
PackingOption ::= empty I -- elements word aligned

PACKED -- elements potentially packed within words
IndexType ::= ElementType I Typeldentifier
CompolientType :: = TypeSpecification

Two array types are equivalent if both their index types and component types are equivalent
and if they are both packed or both unpacked (see below). An array type conforms to
another if and only if the two types are equivalent. Thus it is possible to assign or compare
array variables with separately constructed tYl'es, but those types must be structurally
identical (see the assignment to currentVector above).

Declarations of initialized array variables take the form

IdList : ArrayTC Initialization

The initializing expression must have an array type conforming to the one being declared.

The previous section describes indexed references to individual array components. A formal
definition follows:

Indexed Reference ::= Variable [Expression] I
(Expression) [Er.pression]

LeftSide .. - . . . I IndexedReference

The Variable or the parenthesized Expression must be of some array type, and the bracketed
Expression must conform to the index type for that array type. An IndexedReference is
itself part of the definition of a Leftside (and therefore of a Variable, section 2.5).

Some fine points:

Unless an array is packed, each component is "aligned", i.e., begins on a word boundary. Currently, a
byte is the smallest unit into which the elements are packed. Thus a packed array of CHARACTER
wastes no space, but a packed array of BOOLEAN has considerable overhead.

Since packed array elements are not necessarily word aligned, one cannot use the @ operator (section
3.4) to generate the address of an eltment.

The length of an array is the number of its elements. For variables with an array type, the length is
fixed and known at compile-time. (Dynamic arrays are possible in Mesa through the use of array
descriptors, discussed in section 6.2.1.)

The IndexType of an array may legally be an empty interval. In this case, no storage is allocated for
the array. This is useful when the array appears as the last component of a MACHINE DEPENDENT
RECORD (section 3.3) and the user will be obtaining storage for each record plus some number of array
elements from a free storage manager. Note that [0 .. 0) is 1I0t equivalent to [1..1), since the intervals
specify different initial indices for the array.

Three function-like operators are relevant to arrays (and more relevant to array descript01~s): LENGTH,
BASE, and DESCRIPTOR. These are discussed in section 6.2, but a brief summary is provided below.
For this summary, arg denotes an expression with sOllie array type.

LENGTH[arg]
BASE[arg]
DESCRIPTOR[arg]

-- yields the number of array elements.
-- yields a pointer value for locating the first array element.
-- yields arg's array descriptor value (consisting of base and length).

30 Chapter 3: Common Constructed Data Types

3.2.2. Constructors for arrays

In the preceding examples, array constructors are used only for initialization. Actually,
"constructors for arrays may be used in any RightSide context. An array constructor is
defined as follows:

Constructor ::= OptionalTypeld [ComponentList]
OptionalTypeld ::= Typeldentifier I empty
ComponentList .. - PositionalComponentList I

-- other forms for record constructors
PositionalComponentList .. - Component I

PositionalComponentList , Component
Component empty I -- elided component

Expression

The empty components in a constructor are said to be elided, and their values are undefined.
The number of Expressions plus elided components in an array constructor must match the
length implied by the array type. The type of each Expression must conform to the array's
component type. The expressions (and elided components) are taken in order to form a
sequence that is the constructed array value.

Consider the following example:

Triple: TYPE = ARRAY [1..3] OF CARDINAL;
triplet: Triple;
triplet .. Triple[H, 12, 13];

The final statement assigns the following values to the array components:

triplet[l] = 11
triplet[2] = 12
trip/et[3] = 13

When the array type is implied by context, the Typeldentifier may be omitted (see the
discussion of record constructors, section 3.3.4). Thus the assignment above could be written
as

triplet .. [H, 12, 13];

Taken out of context, the constructor [11, 12, 13] is ambiguous; it could be assigned to any
array of three numeric elements; for example:

trio: ARRAY {Patty, Laverne, Maxine} OF LONG INTEGER" [11, 12, 13];

Some fine points:

The value of an elided component of an array constructor is not defined. but it will have some value.
In particular. if the statement

triplet +- [1. • 3];

is executed after the previous assignment to triplet. the value of triplet[2] is undefined.

Any array constructor in which all componen"ts are compile-time constants is a compile-time constant.
Also. selection from an array that is a compile-time constant using a constant index yields a compile
time constant.

Mesa Language Manual 31

3.3. Records

A record is an aggregate that allows a group of related data items of different types to be
packaged together. To declare a record type, the type of each individual component must be
supplied, as in the following example:

MilitaryTime: TYPE = REcoRD[hrs: [0 .. 24), mins: [0 .. 60)];
oldTime, newTime: MilitaryTime;

Here, MilitaryTime is a newly defined type, and oldTime and newTime are record variables
of that type. MilitaryTime is a two-component record type, where the first record
component is named hrs and the second mins. Every MilitaryTime record contains both
components, but different record objects have their own values for these components.

The component names, hrs and mins, are called field names. They are used to refer to
components in'any MilitaryTime record. For instance, the first component of oldTime may
be selected using the qualified reference, "oldTime.hrs".

The Mesa compiler packs record components into machine words as efficiently as it can,
using information such as the number of elements in a subrange. The components may be
arranged in an "actual" order that differs from the component order given by their left-to
right order in the type constructor. All records of the same type always have the same
component arrangement.

A constructor of a record type contains a field list after the word RECORD. Each element in
the list specifies one (or more) components of the record. For MilitaryTime, the field list is
[hrs: [0 .. 24), mins: [0 .. 60)].

One can construct an entire record value using a record constructor. For instance, the
constructors below yield MilitaryTime values with hrs components that have the value 13
and mins components that have the value of the expression "y+1":

MilitaryTime[13, y+1]
MilitaryTime[hrs: 13, mins: y+1]

The second constructor is an example of a keyword constructor, since it specifies the name
of the component (e.g., as "hrs:") with which a value is to be associated.

The basic operations on (non-variant) record values include the fundamental operations (=,
#, ...), as well as qualification and extraction for accessing the record's components.

3.3.1. Field lists

There are two kinds of field lists, depending on whether the fields are "named" or
"unnamed". (Field lists used to construct mUlti-component record types are almost always
named).

Syntax equations:
FieldList .. - [UnnamedFieldList] I [NamedFieldUst]

UnnamedFieldList ::= TypeSpecification I
TypeSpecification , UnnamedFieldList

NamedFieldList .. - IdUst: FieldDescription I
NamedFieldList • IdUst : FieldDescription

FieldDescription :: = TypeSpecification

32 Chapter 3: Common Constructed Data Types

Examples:

[i: INTEGER, b: BOOLEAN, c: CHARACTER]
[INTEGER, BOOLEAN, CHARACTER]
Ul: CHARACTER, f2, f3: INTEGER]
Ul: CHARACTER, f2: INTEGER, f3: INTEGER] --

a named field list
a similar, but unnamed field list
components listed and declared together
equivalent to the above

Note that if one field is named, all must be named. Also, field names must be unique
within a given field list. (The same identifiers may be used as field names in other field
lists, however, or as names of declared variables.)

Field descriptions in a named field list contain a type specification, indicating the type of
the field. Any type may be specified, including an array type or (some other) record type.

Some fine points:

A field's type specification must not imply an infinite nesting of records. For instance, the following is
illegal:

A: TYPE = RECORD[b: BJ:
B: TYPE = RECORD[a: A];

Field lists occur in constructors of types other than records, such as PROCEDUREs, SIGNALs and
PORTs (chapters 8 and 9), and in "variant" record specifications (chapter 6).

Unnamed field lists are normally used when component names would be ignored if they were present.
This is common for functions that return single-component results. Unnamed field lists are sometimes
used in specifying the input parameters for procedure variables that are to be set to one of several
actual procedures. (However, an unnamed field list does not allow Calls using this procedure variable to
refer to the parameters by name.)

3.3.2. Declaration of records

The type constructor RecordTC is defined as follows:
RecordTC ::= RECORD FieldList I

. .. -- plus variant records (chapter 6)

where FieldList is as defined in the previous section. Separately declared record types are
unique, even if they look the same. Every appearance of a record constructor creates a new
type that is not equivalent to, and does not conform to, any other record type. In the
example:

RecTypel: TYPE = RECORD[a,b: INTEGER];
reel: ReeTypel;

ReeType2: TYPE = RECORD[a,b: INTEGER];
ree2: RecType2;

rec3: RECORD[a,b: INTEGER];
rec4: RECORD[a,b: INTEGER];

the record variables recl, ree2, red, and rec4 all have different, non-conforming types.
None of these can be assigned to any of the others (despite the similarity of their
components). It is, of course, perfectly legal to assign to a component any value with a
conforming type. For example:

ree l.a ... rec2.b ... rec3.a ... 5;
ree4.a ... reel.a; rec4.b'" recJ.b;

Any single-component record type conforms to the type of its single component, but not vice
versa. The automatic conversion in this case requires no computation.

Mesa Language Manual

Example:

Bundle: TYPE = RECORD[Value: INTEGER];
recVar: Bundle;
i ntV ar: INTEGER;

intVar +- recVar;
intVar +- recVar+l;
recVar +- Bundle[intVar];
recVar.value +- intVar;

means intVar +- recVar.value
operand conversion
a constructor

33

This conversion simplifies dealing with functions that return single-component records
(chapter 5). It also provides a way of partitioning a set of variables that can be checked by
the type system. In the example above, a direct assignment of intVar to recVar is invalid; the
record structure of recVar must be recognized (as in the last two assignments). In addition,
no other single-component record type, such as

Prime: TYPE = RECORD[value: INTEGER];

can be confused with Bundle; assignment of a Bundle value to a Prime, or a Prime to a
Bundle, is illegal. Either a Bundle or a Prime can, however, appear as a numeric operand.
Defining Bundle and Prime as synonyms for INTEGER would not provide this additional
checking.

Because of the uniqueness of constructed record types, record variables are typically declared
in two steps. First, the record type is defined. Second, variables are declared to be of that
type. The general form is:

identifier : TYPE = RecordTC ;
IdList : identifier Initialization ;

-- Define record type.
-- same identifier as just defined

Record variables can also be declared directly:
IdList : RecordTC Initialization ;

This form is not very useful because the (unnamable) record type is not available for
purposes such as declaring other records of the same type or writing constructors.

The Initialization shown in these general forms applies to the entire record variable, not to
individual components. Any Initialization must have the proper record type. In practice, an
initializing expression is typically a constructor, another declared record of the same type, or
a call on a function that returns a record value of the correct type.

Initialization of record variables is shown in the next example.

Time: TYPE = RECORD

[
hr: [1..12],
min. sec: [0 .. 60).
meridian: {am, pm}
];

noon: Time = [hr:12. min:O, sec:O, meridian:pm];
midnight: Time = [hr:12, min:O, sec:O, meridian:am];
time: Time +- midnight; -- Start time at midnight.

Some fine points:

Normally, the user is unconcerned with the actual arrangement of record components. When component
arrangement is important, the user may specify "MACHINE DEPENDENT" records. An example is:

34 Chapter 3: Common Constructed Data Types

InterruptWord: TYPE = MACHINE DEPENDENT RECORD

[
device: DeviceNumber,
channel: [0 .. 7],
stopCode: {!inishedOk, errorStop, powerO!f},
command: ChannelCommand
];

In this case, the user takes full responsibility for component arrangement. Mesa accepts components
exactly as given, positioning them left-to-right in machine words. In general, "fill" components are
needed to insure that no field crosses a word boundary (unless it starts on one). Of course, components
may themselves be aggregates occupying more than one word (ChannelCommand might be a record itself,
for instance). Fill components may also be needed prior to fields with types that are always aligned,
such as arrays and multi-word records.

It is also the user's responsibility to "fill out" the record to a full word if the record crosses a word
boundary. (Interrupt Word might be correct for a 16-bit machine, but not for a machine having a
larger wprd length). .

Except i1'1 MACHINE DEPENDENT records, components are packed for storage efficiency. Some fields
may be aligned (to the beginning of a machine-word boundary) and some may not. Components
occupying a full machine-word or more are always aligned: arrays, INTEGERs and pointers, for example.
Subrecords mayor may not be aligned, depending on their size. Packed arrays are always aligned, even
if there would have been space in the preceding word for a byte-sized element. This allows
DESCRIPTORs for packed arrays to contain only a word address for the base.

The function-like operator SIZE is often used to find the actual number of machine-words required by
a record of some type. The general form is: SIZE[TypeSpeclfication], where TypeSpeciflcatlon is the
name of a type. The result is a CARDINAL value, the number of words required by a data object with
the type specified by the argument. SIZE may be used to find the number of words required for any
type of data object.

3.3.3. Qualified references

Qualification is used to refer unambiguously to a named component of some record. The
general form (which extends the definition of a LeftSide) is

QualifiedReference .. - Variable. identifier I
(Expression) . identifier

LeftSide ::= ..• I QualifiedReference

The field name is said to be "qualified by" the record value (the Variable or Expression) to
the left of the dot. The operator associates from left-to-right in the case of multiple
qualification. For example:

LatType: TYPE = REcoRD[degs: [0 .. 360), mins, sees: [0 .. 60)];
LngType: TYPE = RECORD[degs: [-90 .. 90], mins, sees: [0 .. 60)];
PosType: TYPE = RECORD[latitude: LatType, longitude: LngType];
some Position: PosType;

Some of the possible qualified references to components of somePosition are listed below:

Qualified Reference

somePosition.1 atitud e
some Positi on. I ongitud e
somePosition.iatitude.degs
some Posit ion.! ongit ud e .secs

Refers To

1st sub-record
2nd sub-record
1st component of 1st sub-record
3rd component of 2nd sub-record

The association order for qualification means that names must occur in the proper sequence;
e.g., somePosifion.mins.longitude is incorrect. Also, a qualified reference must be complete,
i.e., names may not be skipped (as in somePosition.sees, which would be ambiguous in any
event).

Mesa Language Manual 35

Qualified references and indexed references have the same precedence (the highest possible)
and may be intermixed. For example:

recordO/Arrays: RECORD[a,b: ARRAY [0 .. 99] OF CARDINAL];
arrayO/Records: ARRAY [1..5] OF RECORD[il,i2,i3: CARDINAL];

arrayO/Records[5].i3 ... recordO/Arrays.a[O]; -- ("last" gets "first")

A fine point:

Qualification briefly opens up a given "name scope". For instance, in the record qualification, rec.x,
the qualified name, x, must name a field of rec and selects that field. Scope is treated more fully in
chapter 7.

3.3.4. Record Constructors

A record constructor assembles a record value from a set of component values. In the
following example, a constructor is used as a RightSide of an assignment.

MonthName: TYPE =
{Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec};

Date: TYPE = RECORD
[
day: [1 .. 31],
month: M onthN ame,
year: [1900 .. 2000)
];

birthDay: Date;
dd: [1..31]; mm: MonthName; yy: [1900 .. 2000); now: [1900 .. 2000) ... 1976;
birthDay 4- Date[25, Apr, now-33];

This constructor yields a record value with type Date. The record assigned to birthDay
contains the following component values:

Component

day
month
year

Value

25
Apr
now-33 (which is 1943)

A Constructor is a Primary and may only be used in a RightSide context (Le., not as the
LeftSide of an assignment).

Record constructors are of two kinds: keyword constructors and positional constructors.
Within both kinds, component values may either be supplied or be omitted for various
components of the record. If omitted, the values used are undefined.

Syntax equations:
Primary ::= ... I Constructor

.. - OptionalTypeld [ComponentList] Constructor
OptionalTypeld ::= Typeldentifier I empty
ComponentList ::= KeywordComponentList I

PositionalComponentList
KeywordComponentList .. - KeywordComponent I

PositionalComponentList .. -.. -
KeywordComponentList , KeywordComponent

Component I
PositionalComponentList , Component

36 Chapter 3: Common Constructed Data Types

KeywordComponent
Component .. -

identifier : Component
empty I -- elided component
Expression -- explicit component

This is a fairly complex set of syntax definitions. (Note that some of it is repeated from
section 3.2.2.) The following examples and explanations illustrate the options implied by the
equations.

The initial Typeldentifier, if present, must name the type of the record being constructed.

In keyword constructors, the correspondence between constructor components and record
components is strictly "by name". Keyword names may not be repeated in a constructor, and
all keywords must appear, but the order is irrelevant. For example, the following keyword
constructors are equivalent:

Date[day: 25, month: Apr, year: now-33]
Date[month: Apr, day: 25, year: now-33]

All of these keyword constructors specify values for all the components. The following
keyword constructor elides the month component (the place for the component value is
specified, but no value is given):

Date[day: 25, month: , year: now-33] -- month is elided

According to the declaration of Date, this constructs a record with a second component
having an undefined value. Elided components always have an undefined value.

In a positional constructor, the correspondence between constructor components and record
components is strictly "by position". The first constructor component corresponds to the
first record component, the second value to the second component, etc. Positional
constructors may be used for both records and arrays (section 3.2.2). It does not matter
whether or not fields are named in the definition of the record type. The following two
constructors are equivalent:

Date[day: 25, month: , year: now-33] -- value of month is undefined
Date[25, , now-33] -- value of 2nd component is undefined

Positional constructors may elide values, as shown above, but components not supplied at the
end of the list must be eLided by supplying a sufficient number of trailing commas.

Keyword and positional notations may not be mixed in a single constructor.

The initial Typeldentifier in a constructor may be omitted when the constructor is used as:

the RightSide of an assignment (unless the LeftSide is an extractor, section 3.3.5)

an expression in an Initialization

a component of an enclosing record or array constructor

an argument of a procedure

the right operand of a Relation.

In other cases, an initial Typeldentifier must appear. It is never incorrect to supply the
identifier, and sometimes doing so improves readability.

"
J

Mesa Language Manual 37

A fine point:

Any record constructor in which all components are compile-time constants is a compile-time constant.
Also, a field selected from a record that is a compile-time constant is itself a compile-time constant.

3.3.5. Extractors

Extractors are used to "explode" record objects and assign their components to individual
variables in a single statement. For example, the extractor below assigns the components of
birthDay (defined in the previous section) to the variables dd, mm, and yy, in that order:

[dd, mm,. yy] ... birthDay;

This has the same effect as the following three separate assignments, except that birthDay is
evaluated only: once:

dd ... birthDay.day; mm'" birthDay.month; yy'" birthDay.year;

An extractor roughly resembles a constructor in form, but there are some crucial differences:

An extractor may only be used as a LeftSide, never as an Expression.

The "components" of an extractor specify LeftSides, not Expressions.

Extractors always begin with a left bracket, never with a Typeldentifier.

The type of the record value assigned to an extractor must be known to the compiler. This
means that the following (rather useless) statement is invalid because the constructor's type
cannot be determined:

[dd, mmt yy] ... [25, Apr, 1943]; -- invalid

The statement should specify the type of the constructed value:
[dd, mm, yyJ ... Date[2S, Apr, 1943]; -- valid

Extractors, like constructors, may use keywords. This allows an extractor to be written
without regard to the record's component order. For instance, the following statements are
equivalent to the first one in this section:

[day: ddt month: mm, year: yy] ... birthDay;
[month: mm, day: dd, year: yy] ... birthDay;

Extractors may elide or omit any item, in which case the corresponding record component is
not assigned. The extractors shown below are equivalent:

[day: dd, month: , year: yy] ... birthDay; -- month elided
[day: dd, year: yy] ... birthDay; -- month omitted
[dd, , yy] ... birthDay; -- 2nd component elided

A positional extractor may elide trailing components without having to supply trailing
commas as required in a positional constructor. The year component of birthDay is elided
below.

[dd, mm] ... birthDay;

An extraction operation (unlike an ordinary assignment) yields no value. This means that an
extractor may not be embedded within an expression. For example, the first statement
following is illegal; the second is a 'valid alternative:

38

r +- [x, y, z] +- s;
[x, y, z] +- r +- s;

Chapter 3: Common Constructed Data Types

-- invalid
-- valid

Syntax equations:
AssignmentStmt
Extractor

.. -.. -

.. -
. . . I Extractor +- RightSide
[KeywordExtractList] I
[PositionalExtractList]

KeywordExtractList ::= KeywordExtract I
KeywordExtract , KeywordExtractList

KeywordExtract ::= identifier: Extractltem
Positional Extract List ::= Extractltem I

Extractltem , PositionalExtractList
Extractltem ::= empty I -- component is ignored

LeftSide -- component is assigned to LeftSide

The identifiers in a KeywordExtractList must be field names for the record type. Note that
Extractors cannot be nested.

Fine point:

An extractor can be empty. An empty extractor simply discards a record value. This can be useful
when a procedure is called for its side effects only but returns an (unwanted) value. For example:

[] .. CloseFile[inputFile]:

3.4. Pointers'

Pointers allow efficient indirect access to objects. A pointer may refer to only one specific
type of data. For instance, the following pointer provides access only to objects of type
CARDINAL:

intPtr: POINTER TO CARDINAL;

Another pointer might be specified to point only to BOOLEAN objects:
boolPtr: POINTER TO BOOLEAN;

These are different types of pointers since they have different reference types, CARDINAL and
BOOLEAN. Furthermore, since CARDINAL and BOOLEAN are incompatible types, these pointer
types are also incompatible; i.e., assignment of boolPIr to intPtr, or vice versa, is disallowed.

A pointer value is represented by the address of some data object. This object is called the
pointer's referent. The postfix operator t may be applied to a pointer value of any type to
yield that value's referent. The process of "following" a pointer to its referent is called
dereferencing.

A dereferenced pointer designates a variable and can be used as a LeftSide or RightSide.
Thus intPtrt and boolPtrt are variables of type CARDINAL and BOOLEAN respectively. The
statement

boolPtrt +- (intPtrt = 0); . •
is executed by following intPtr to obtain a CARDINAL value, testing that value, and assigning
the result to the BOOLEAN variable referenced by boolP!r.

Any type specification is permitted as the reference type of a pointer type. The pointers
declared below reference a named record type.

Mesa Language Manual

Person: TYPE = RECORD
[
age: [0 .. 200].
sex: {male. female}.
party: {Democratic. Republican}
];

candidatel, candidate2: Person;
winner, loser: POINTER TO Person;

39

Pointers to record objects may be used to qualify field names. If record candidatel is the
referent of winner, then qualifications such as

winner.age winner.sex wi nner .party

select the corresponding components of candidatel. However, if candidate2 were the
referent, these same qualifications would select components of candidate2. When applied to
a pointer, the operation of selection implies dereferencing. For example, winner .age specifies
dereferencing winner to obtain a record variable of type Person and then performing normal
field selection on that record. Thus winner.age is an abbreviation of winner't.age.

It is common to define a record type containing components that are pointers referencing
objects with the same record type. For example. the type declared as follows:

FamilyMember: TYPE = RECORD
[
someone: Person,
mother~ father: POINTER TO FamilyMember
];

might be used to create a tree of related persons in which the relations are expressed directly
by pointer linkages.

The fundamental operations (=. #, +-) applied to pointer values deal with the pointers
themselves, not with their referents. In the examples:

winner +- loser;
winner't +- loser't;

the first sets winner to point to the same Person as loser; the second assigns the referent of
loser to the referent of winner, and thus has a quite different effect. The full set of
relational operators can be applied to pointers declared to be ordered; for example:

orderedPtr: ORDERED POINTER TO Person;

The ordering is determined by the memory addresses that represent the pointers, not by the
properties of the referents. Pointers not declared to be ordered can be only be compared
using the operators = and #.

There is one pointer literal, NIl. It conforms to any unordered poinler type and denotes a
pointer value that has no valid referent. For example:

IF i nt Pt r = NIL THEN bO(JJl Ptr +- NIL;

A pointer with value NIL should not be dereferenced; the result is undefined.

Pointer values are most commonly obtained from allocators that provide and manage storage
for a class of objects. The unary prefix operator @ also generates pointers. When applied to
a variable with type T. it yields a pointer to that variable with type POINTER TO T; for
example:

40 Chapter 3: Common Constructed Data Types

winner ~ ~candidate1:

Pointer generation should be done with caution; it is possible to assign the resulting pointer
to a variable that lives longer than the referenced object. A non-NIL pointer value with no
valid referent is said to be a dangling reference. The Mesa language does not prevent
dereferencing such a pointer, but doing so produces an undefined result. It is the user's
responsibility to avoid dere/erencing a dangling (or uninitialized) reference.

3.4.1. Constructing pointer types

The type constructor for pointers is defined as follows:

PolnterTC .. - Ordered Base 'POINTER TO TypeSpecification I
Ordered Base POINTER Interval TO TypeSpecification

Ordered .. - empty ORDERED .. -
Base .. - empty BASE .. -

The TypeSpecification in a PointerTC specifies the reference type of the pointer type. Two
pointer types are equivalent if their reference types are equivalent and if the attribute
Ordered is specified identically. Thus equivalent pointer types can be constructed in separate
places, but they must have the same structure. One pointer type conforms to another if the
two reference types are equivalent and if either the Ordered attributes are identical or the
first is ORDERED and the second is not. The Base attribute is ignored in determining
conformance.

Fine points:

The second form of PointerTC constructs a sub range of a pointer type. Subranges of pointers have the
usual properties of subranges; e.g .• a pointer subrange type and its base type mutually conform. The
values of a subrange pointer are restricted to the given interval (and can potentially be stored in smaller
fields). Subrange pointer types are not recommended for general use. They are intended primarily for
constructing relative pointer types (section 6.3) which, unlike the subrange types, do not allow
dereferencing without relocation.

The attribute BASE specifies that values with that pointer type are to be used as base values for
relocating relative pointers (section 6.3). Such values may also be used as ordinary pointers.

3.4.2. Pointer operations

The general form of an indirect reference is:
Indirect Reference ::= Variable l' l

(Expression) l'

LeftSide ::= . . . I Indirect Reference

The postfix operator l' performs explicit dereferencing of the pointer expression it follows.
It precedence is the same as indexing and qualification (the highest possible), and these
operations can be intermixed. For example:

group: ARRAY [0.:10) OF POINTER TO FamilyMember;

group[i] l' .mothert .someone -- ((group[i])t).mother)t).someone

If p is an arbitrary pointer expression, then pt can be read as "p's referent" or "referent of
p". Application of the t operator produces a variable that may be used as a LeftSide or as a

Mesa Language Manual 41

RightSide •.

The syntax used for address generation is

Primary :: = . . . I @ LeftSide

The prefix operator @ produces the address of its operand. If x is a variable of type T, the
value of @x is a pointer to x, and its type is POINTER TO T. @x can be read as "address of
x". The operand for @ must be a valid LeftSide (it cannot be a constant or an arbitrary
expression, for instance). The operator's precedence is lower than that of t; e.g., @xt is
equivalent to @(xt) (or simply x).

Some fine points:

There are variables that cannot be the referents of pointers and thus cannot be the operands of @.
These include all "variables" with fixed initialization and components of such variables. In addition, a
pointer value is represented by a word address. Therefore, a referent must lie on a word boundary; an
object having this property is called aligned.

Elements of packed arrays are not aligned.

Any component of a record that occupies less than a single word may not be aligned (but arrays,
even if packed, are always aligned).

All other variables are aligned.

When pointing at a simple variable, one must carefully consider whether the pointer value will live
longer than the variable to which it points. (It is assumed here that the reader is familiar with
procedures, local variables, and global variables.) Consider the following procedure:

pointer1, pointer2: POINTER TO INTEGER; two global variables

Risk'yProc: PROCEDURE[i: INTEGER] = i is a local variable
BEGIN
myLocal: INTEGER;

pointer1 4- @i;
pointer2 4- @myLocal;

and so is myLocal

risky: i will die upon RETURN
also risky

RETURN;
END;

The "risky" pointers are valid up to this point, but
-- NOT after this statement is executed.

The problem here is that after the RETURN statement is executed, local storage is released for other
purposes; thus the pointers will reference unpredictable data when that storage is reused. One should
use pointers whose referents exist at least as long as the pointers.

Pointers that are declared to be ORDERED may be used as operands of all the relational
operators (section 2.5.1). For this purpose, they behave as unsigned numeric values. The
definition of conformance implies that an ordered pointer can be assigned to an unordered
pointer variable, but not vice versa. NIL is not a valid ordered pointer constant, and the
relation of its value to other pointer values is undefined. Also, the @ operator alway&
produces an unordered pointer value.

The following fine points cover pointer capabilities that should be used with caution (and avoided when
possible). Some of these capabilities circumvent normal type-checking, and may result in unpredictable results if
used.

The type POINTER TO UNSPECIFIED (or simply POINTER) can access actual data of any type. Pointers
of this type conform to any other pointer type, and vice-versa.

Limited arithmetic can be performed on pointers, but programmers are encouraged to use BASE and
RELATIVE pointers (chapter 6) if the purpose of the arithmetic is simple relocation. A short numeric
value added to, or subtracted from, a pointer produ.:es another pointer with the same type. Also, the
difference of two pointer values with equivalent types is a CARDINAL.

42 Chapter 3: Common Constructed Data Types

3.4.3. Long Pointers

~ong pointers provide indirect access to objects having memory addresses that cannot be
represented within a single machine word. Like LONG INTEGERS, they are essentially
concessions to the limitations of existing hardware. Again, the long variant provides
somewhat greater generality at somewhat greater cost.

Long pointer types are constructed as follows:

LongTC ::= LONG TypeSpecificatlon

The type constructor LONG can be applied to INTEGER (chapter 2), any pointer type, or any
array descriptor type (chapter 6). No other type can be lengthened.

Long pointers are typically created by lengthening (short) pointers as described below. In
particular, NIL is automatically lengthened to provide a null long pointer when required by
context. The standard operations on pointers (dereferencing, assignment, testing equality.
comparing ordered pointers) all extend to long pointers.

Both automatic and explicit lengthening (using the operator LONG) are provided for pointer
types, and the type POINTER TO T conforms to (but is not equivalent to) the type LONG
POINTER TO T. Lengthening an expression with the first of these types produces a value with
the second; i.e., only the length attribute is changed.

The operator @ applied to a variable of type T produces a pointer of type LONG POINTER TO
T if the access path to that variable itself involves a long pointer and of type POINTER TO T
otherwise.

Some fine points:

NIL is lengthened in a standard way and has a universal representation. All other pointers are
lengthened in a hardware dependent way. There is no normalization prior to operations on long
pointers, and such pointers constructed other than by lengthening may give anomalous results (e.g., in
comparisons).

If either operand in a pointer addition or subtraction is long, all operands are lengthened and the result
is long.

Examples:

R: TYPE = RECORD [I: T, ...];
p, q: POINTER TO R;
pp, qq: LONG POINTER TO R;
pT: POINTER TO T;
ppT: LONG POINTER TO T;

-- the following are valid.

pp +- qq; pp +- NIL; pp +- p;
pp = qq, pp = NIL, pp = q; long comparisons
pT +- @p.f; ppT +- @pp.f;
ppT +- @pJ; pointer lengthened

-- the following are not valid.

pp = ppT; incompatible types
p +- pp; pT +- @PpJ; no automatic shortening

Mesa Language Manual 43

3.4.4. Automatic derejerencing

Automatic dereferencing converts a pointer RightSide of type POINTER TO T into one of type
T in the context of a dot qualification (section 3.3.3), a procedure argument list, or an array
indexing operation (the last two are syntactically identical). For example, in the following
two statements, the LeftSides are equivalent (and the RightSides nearly so):

winner.party +- Democratic;
winnert.party +- Republican;

Multilevel dereferencing is possible. Given the following declarations, the three final
assignment statements have the same effect:

actualArray: ARRAY [0 .. 20) OF INTEGER;
arrayPtr: P.OINTER TO ARRAY [0 .. 20) OF INTEGER +- @actuaIArray;
arrayFinge:r: POINTER TO POINTER TO ARRAY [0 .. 20) OF INTEGER +- @arrayPtr;
actuaIArray[l] +- 3;
arrayPtr[l] +- 3;
arrayFinger[l] +- 3;

-- arrayPtrt[1] +- 3
-- arrayFingertt[l] +- 3

A fine point:

The pointer attribute BASE inhibits automatic dereferencing in the context of subscript or argument
brackets. See section 6.3.

3.5. Type determination

Every expression in a Mesa program has a type that can be deduced by static analysis of the
program text. Such analysis is called type determination. The language imposes constraints
on the type of each expression according to the context in which it is used. A program that
does not violate any of these constraints is type-correct; every valid Mesa program must be
type-correct.

In principle, every variable and every expression has an inherent type derived from its
structure. The inherent type of a variable is established by declaration; the form of a literal
implies its type, and each operator produces a result with a type that is a function of the
types of the operands. Inherent types of some expression forms are listed below:

Expression

34
NIL
x<y
X
array[l]
@X
(X +- e)

Inherent Type of Expression

[34 .. 34]
POINTER TO UNSPECIFIED
BOOLEAN
Type declared for X
Type specified for array's components
POINTER TO x's type
x's type

Mesa's type rules take two general forms, which are the following:

The exact type required by the context is known, and a gi ven type must conform to it.
The required type is called the target type.

The exact type required is not implied by context, but a relation that must be
satisfied by a set of types is known. The process of satisfying that relation is called
balancing.

44 Chapter 3: Common Constructed Data Types

Situations in which the target type is known are simpler and more common; they will be
discussed first.

All assignment-like contexts establish a target type for the RightSide expression. These
contexts include not only assignment itself (where the target type is the type of the LeftSide)
but also initialization, record construction (where the target type for each component
expression is the declared type of the corresponding field), array construction, parameter list
construction, and the like.

Example:

LType: TYPE = RECORD[C: CType];
IVar: LType;

IV ar +- anyExp;
IVar ~ LType[c: someExp];
IVar.c +- someExp;

anyExp's target type is LType
someExp's target type is CType
... which is more obvious here

The following rule applies to assignments:

There is never any automatic dereferencing or type conversion of any kind for the
LeftSide of an assignment, and the inherent type of the LeftSide is the target type of
the RightSide. (Of course, a LeftSide may contain RightSide expressions, such as
array subscripts, that might be coerced.)

Certain other contexts imply a target type. For example, the target type for an array
subscript is the. array's index type. Also, the target type of the expression following IF, WHILE,
etc., is BOOLEAN.

If the inherent type of an expression is equivalent to the target type, the use of that
expression is type-correct. If it is not equivalent, it may still be possible to obtain
conformance by applying various type conversions, which are sometimes called coercions. In
Mesa, there is at most one sequence of conversions that can be applied automatically to
convert a value from one type to another. When implicit conversion from the inherent type
to the target type is impossible, the program is in error; e.g., assigning a BOOLEAN value to an
INTEGER variable is never valid.

Some fine points:

When the target type is well defined. certain expression forms may be abbreviated. Identifier constants
need not be qualified. and explicit identification of the type of a constructor is optional. The
abbreviated constructs have no inherent type when viewed Ollt of context. and they cannot be used in
situati01:s requiring implicit conversion. For example.

R: TYPE = RECORD [i: INTEGER];
v: R .. [R[3]]; -- the second R cannot be omitted

An Extractor never has an inherent type; the extraction is controlled by the inherent type of the
RightSide, which therefore cannot be abbreviated or converted. For example.

r: RECORD [inner: RECORD[ji. f2: INTEGER]];
[i. j] .. r.inner; -- the field sdection cannot be omitted

3.5.1. Type conversion

There are four automatic type conversions that can be applied to establish type conformance.
All have been discussed in preceding sections. They are the following:

(1) A value with a subrange type may be converted to a value with its base type, and
vice versa (section 3.1.2).

Mesa Language Manual 45

(2) A value with a single-component record type may be converted to a value with
the type of that component (section 3.3.2).

(3) A value with a short numeric, pointer or array descriptor type may be lengthened
to a value with the corresponding long type (section 2.4.5).

(4) A value with any numeric type may be converted to type REAL (section 2.4.5).

The first of these is a somewhat special case; as mentioned in section 3.1.2, it is more
accurate to view this as a pair of conversions that are applied unconditionally when
evaluating, and assigning to, a subrange variable.

Examples:

r: RECORD[j: INTEGER];
i: INTEGER;
ii: LONG INTEGER;

i ... r;
ii f- r;

Some fine points:

i ... r,f
ii ... LONG[r.j]

A number of the conversions used to achieve conformance require computation and cannot be applied
recursively to the constituents of constructed types. For example, INTEGER conforms to LONG
INTEGER, but ARRAY IndexType OF INTEGER does not conform to ARRAY IndexType OF LONG
INTEGER. Mesa is defined so that conformance is generally not recursive, even when no computation is
required for conversion. Thus ARRAY IndexType OF RECORD[INTEGER] does not conform to either
of the above types.

There is one other automatic conversion, dereferencing, that is applied only in special circumstances
(section 3.4.4). It is never applied automatically to achieve type conformance.

Sometimes it is necessary to subvert Mesa's type checking, particularly in programs that manipulate low-
level representations of objects. A Primary with the form

LOOPHOLE [Expression , TypeSpecification]

has the same value as the Expression (viewed as a sequence of bits) and the type denoted by
TypeSpecification. This "conversion" never requires any computation. The only restriction is that
values with the inherent type of Expression must be represented in the same number of machine words
as values of the type TypeSpecification. When the target type is well-defined, the TypeSpecification
may be omitted. For example:

b: BOOLEAN; n: CARDINAL;
n ... LOOPHOLE[b, CARDINAL]; -- to discover the representation
n ... LOOPHOLE[b]; -- also acceptable

Since LOOPHOLE bypasses most checking, its use should be limited as much as possible.

3.5.2. BalanCing

Many of Mesa's operators are generic; Le., the operation performed depends upon the types
of the operands. Examples are the fundamental operators :: and #, which accept two
operands with arbitrary (but compatible) types and produce a BOOLEAN result. In this case,
neither operand has a defined target type. Instead, it is necessary to find some type to which
the inherent type of each operand conforms; any automatic type conversions are applied to
the operands as necessary to produce values of that type; and the operation is then
performed. The common type is the "least upper bound", i.e., the one requiring the fewest
con versions.

46 Chapter 3: Common Constructed Data Types

Examples:

R: TYPE = RECORDU: INTEGER];
RR: TYPE = RECORDUf: LONG INTEGER]:
i: INTEGER;
ii: LONG INTEGER;
r1, r2: R;
rr: RR;

i = ii
r1 = r2
r1 = i
r1 = rr

LONG[i] = it
compared as records
r1.f = i
LONG[r1.!] = rr.f

Balancing is also applied to IF expressions (section 4.2.1), SELECT expressions (section 4.3.3),
and the arithinetic and relational operators.

Fine points:

Many generic operators do not propagate the target type of the expression in which they appear; instead,
the operands are balanced and combined to produce a result that is converted further if necessary. For
example,

ii .. i + r; -- ii .. LONG[i + r.j]
ii .. LONG[I] + r; -- it .. LONG[i] + LONG[r.j]

The current version of Mesa does not fully implement balancing when lengthening (or conversion to
REAL) is required. The restrictions are:

Operands of MIN and MAX and the alternatives of conditional expressions are lengthened to match
the expression's target type, if any, and otherwise to match the type of the first operand.

The endpoints of an interval in the right operand of IN are lengthened to match the type of the
left operand. but the left operand is never lengthened.

The expressions selecting the arms of a selection (section 4.3) are lengthened to match the type of
the selecting expression, but that expression is never lengthened.

3.6. Determination of representation

This section discusses the rules used by Mesa for choosing between signed and unsigned
versions of operations on single-precision numbers. These rules assume that there are
conversion functions (taking the form of range assertions, section 3.1.2.2) that convert values
from CARDINAL to INTEGER and vice versa. In both directions, the "conversion" amounts to an
assertion that the value is an element of INTEGER n CARDINAL. Currently, such assertions
must be verified by the programmer.

For any arithmetic expression, the inherent representations of the operands and the target
representation of the result are used to choose between the signed and unsigned versions of
the arithmetic and relational operators.

The target type determines the target representation. The preceding section describes the
derivation of target types; in addition, a range assertion establishes the asserted type as the
target type of its operand. If all valid values of the target type are nonnegative, the target
representation is unsigned; otherwise, it- is signed. The arithmetic operators propagate target
representations unchanged to their operands, but the target representation of an operand of a
relational operator is undefined. The target representation is also undefined in all other

Mesa Language Manual 47

cases in which the target type is undefined. Thus each (sub)expression has at most one target
representation.

The inherent representation of a Primary is determined by its type (if a variable, function
call, etc.), by its value (if a compile-time constant), or explicitly (if a range assertion).
Possible inherent representations are signed and unsigned; in addition, a compile-time
constant in INTEGER n CARDINAL or a Primary with an inherent type that is a subrange of
INTEGER n CARDINAL is considered to have both inherent representations. Inherent
representations of operands are propagated to results as described below.

The operation denoted by a generic operator is chosen by considering first the inherent
representations of its operands, next the target representation, and finally a preferred default.
If the operation cannot be disambiguated in any of these ways, the expression is considered
to be in error. The exact rules follow:

If the operands have exactly one common inherent representation, the operation
defined for that representation is selected (and the target representation is ignored).

If the operands have no common inherent representation but the target representation
is well-defined, the operation yielding that representation is chosen, and each
operand is "converted" to that representation (in the weak sense discussed above).

If the operands have both inherent representations in common, then
if the target representation is well-defined it selects the operation;
otherwise the signed operation is chosen.

If the .operands have no representation in common and the target representation is
ill-defined, the expression is in error.

In all cases, the inherent representation of the result is determined by the selected operation.

The unary operators require special mention. Unary minus converts its argument to a signed
representation if necessary and produces a signed result.

Example:

If m and n have unsigned representation, both the following are legal and assign the same
bit pattern to i, but the first overflows if m < n.
i ... m-n; i'" IF m >= n THEN m-n ELSE -(n-m);

ABS is a null operation on an operand with an unsigned representation; it always yields a
value with unsigned representation. The target representation for the operand of LONG (or of
an implied lengthening operation) is unsigned.

Examples:

i, j: INTEGER; m, n: CARDINAL; S, t: [O .. 77777B]; b: BOOLEAN

-- the statements on each of the following lines are equivalent.

i ... m+n; i'" INTEGER[m+n] unsigned addition
i ... j+n; i'" n+j; i'" j+INTEGER[n] signed addition

•

i ... s+t; i'" INTEGER[S]+INTEGER[f] signed (overflow possible)
n ... s+t; n'" CARDINAL[S]+CARDINAL[t] unsigned (overflow impossible)
s ... s-t; s ... CARDINAL[S]-CARDINAL[t] unsigned (overflow possible)
b ... s-f) 0; b'" INTEGER[S]-INTEGER[t]) 0 signed (overflow impossible)

i ... -m; i'" -INTEGER[m]

48 Chapter 3: Common Constructed Data Types

i ... m+n*(j+n); i'" INTEGER[m] + (lNTEGER[n]*(j+INTEGER[n]»
n ... m+n*(j+n); n'" m + (n*(CARDINAL[j]+n»
i ... m+n*(s+n); i'" INTEGER[m+(n*(CARDINAL[S]+n»]

b ... s IN [t-1 .. t+ 1]; b'" INTEGER[S] IN [INTEGER[t-1] .. INTEGER[t+ 1]]
FOR S IN [t-1 .. t+1] ... ; FOR S IN [CARDINAL[t-l] .. CARDINAL[t+l]] ...

The following statements are incorrect because of representational ambiguities.

b ... i > n; b'" i +n IN [s .. j]

SELECT i FROM m = > ... ; t = > ... ; ENDCASE

49

CHAPTER 4.

ORDINARY STATEMENTS

Statements control the flow of execution and the disposition of data. This chapter treats
ordinary statements: those statements having wide applicability (such as assignment
statements); later chapters cover the remaining statements. The following syntax lists the
phrase names of all the statement forms covered in this chapter:

Statement .. - AssignmentStmt I IfStmt I SelectStmt I NullStmt I
Block I GotoStmt I LoopStmt I ExitStmt I ...

Some statements have expression counterparts, with the same general purposes, but with
slightly different constraints. For instance, assignment can be performed by an expression as
well as a statement. Those covered in this chapter are

Expression ::= ... I AssignmentExpr I IfExpr I SelectExpr

In Mesa, certain statement forms such as the IF statement contain other statements. These
statements in turn may contain still other statements, and so forth. Consequently, the term
"statement" should be understood to encompass the large and small alike.

A statement normally runs to completion, although it could be purposefully aborted for some
reason. The discussion of execution control assumes normal statement completion unless
otherwise stated.

Where does execution continue after a given statement? This is not obvious, in general, since
that statement may be contained in some other statement. For simplicity, the discussion
assumes that most statements occur in the middle of a hypothetical series of statements.
Execution paths out of this series are described for each control statement, and resumption is
then discussed in terms of a mythical "Next-Statement". Next-Statement represents nothing
more than completion of a given statement; a statement mayor may not exist at that point
in actual practice.

The discussion of execution control is further simplified by denoting arbitrary statements by
Stmt-O. Stmt-i, Stmt-2, etc. When shown in examples, these stand for statements whose
exact nature is irrelevant.

4.1. Assignment statements

Syntax:
AssignmentStmt ::= LeftSide ~ RightSide I

Extractor ~ RightSide

The RightSide must be an expression conforming to the left-hand side's type. The left-hand

50 Chapter 4: Ordinary Statements

side must be a valid recipient of data such as a declared variable or a component. For
assignment statements, a left-hand side item may also be an extractor (section 3.4.5).

Examples:

i +- 3; a +- b+c;
oirthDay.month +- Apr;
[mm, dd, yy] +- birthDay;

birthTable[Tom].year +- 1955;
-- an extractor as the LeftSide

4.1.1. Assignment expressions

Assignment operations may be carried out by expressions, as well as by assignment
statements. The syntax for an assignment expression is

AssignmentExpr .. - LeftSide +- RightSide

Assignment expressions can be used for performing multiple assignments in a single
statement, and for saving the value of an intermediate expression without having to write it
as a separate statement:

x2 +- xl +- xO +- v;
array[j +- j+1] +- xCi];

set xO, xl, and x2 to the value in v
-- j is changed while changing the array component

Evaluation of the first statement proceeds as if it were written:

x2 +- (xl +- (xO +- v»;

Note that x2 +- (•••) is an assignment statement. The a&signment expression, xO +- v, yields the
value actually assigned to xO, and this becomes the RightSide value for the other assignment
expression, and so on.

There are two differences between an assignment expression and an assignment statement:

The expression yields a value (in addition to performing assignment).

The LeftSide of an assignment expression cannot be an extractor.

An AssignmentExpr is an expression. Its type is the type of the LeftSide, and its value is the
value actually assigned (possibly after value conversion) of the RightSide. An assignment
operator has the lowest possible precedence. As a rule, therefore, when an assignment
expression is embedded in another expression, enclose the assignment in parentheses.

Fine point:

In an embedded assignment sllch as the following:

a[k+-k+l] +- b[k];

Mesa may evaluate the embedded assignment before tlsing k on the right side. Such use of embedded
assignments should be avoided.

The type of an assignment expression is actually that of the RightSide, when the RightSide is evaluated
looking for a type assignable to that of the LeftSido. For example, in the case of variant records
(section 6.4), the type of the assignment expression may be a bound variant while the LeftSide is not.

Mesa Language Manual

4.2. IF statements

An IF statement is a control statement that functions as a two-way switch:
IfStmt .. - IF Predicate ThenClause ElseClause
Predicate
ThenClause
ElseClause

.. - Expression

.. - THEN Statement

.. - empty I ELSE Statement

A simple IF statement is shown below.

IF v = 0 THEN WriteString["Done."] ELSE v ... v-I;
Next-Statement

51

The BOOLEAN expression (v = 0) is called the Predicate for the IF statement. . The Predicate is
evaluated first, and if TRUE, the Statement in the ThenClause is executed (in this case a call
on the procedure WriteString). Upon its completion, execution continues at Next-Statement.
If the Predicate value is FALSE, the Statement in the ElseClause, "V +- v-I", is executed; if
there is no ElseClause control goes directly to Next-Statement.

Other examples:

IF (flag = on) AND i IN [m .. n] THEN i +- i + iDelta ELSE i ... m;

IF winner "'= NIL THEN

BEGIN -- this Statement is a block (sec. 4.4)
averageAge +- averageAge + winner.age;
IF winner.party = Democratic THEN demoScore +- demoScore+l
ELSE gopScore +- gopScore+l;
END; -- end of the ThenClause

Next-Statement

Note that a ThenClause is not terminated by a semicolon when an ElseClause is present.

If the Statement in a ThenClause is a second IF statement, then the outer IF may only have an
ElseClause when the inner one does: I.e., an ElseClause "belongs" to the innermost possible
IF. For example:

IF a >= 0 THEN

IF a> 0 THEN b ... I
ELSE b +- 0

ELSE b ... -1;

-- a > 0 means set b to 1
a = 0 means set b to 0
a < 0 means set b to -1

It is recommended that "IF ... THEN IF" combinations be avoided entirely unless the second IF has
an ElseClause. Often, a single IF statement is sufficient. For example, let pJ and p2 be
arbitrary predicates, and let Stmt- J and Stmt-2 represent arbitrary statements. Then the first
statement following is executed as if it were written as the second:

IF pI AND p2 THEN Stmt-J; recommended form (see sec. 2.5.3)
Next-Statement
IF pi THEN IF p2 THEN Sfmt- J; longer form
Next-Statement

Fine point:

If the Predicate is a compile-time constant, the compiler does not produce object code for the text that
would never be executed. This also holds for IF expressions.

52 Chapter 4: Ordinary Statements

4.2.1. IF expressions

The IF statement has a counterpart which is an expression. Its syntax is similar to an IfStmt:

IfExpr ::= IF Predicate THEN expression ELSE expression

There are two differences between an IfExpr and an IfStmt:

The clauses of an IF expression contain expressions, not statements;
An IF expression must have an ELsE-clause.

Examples:

slope +- IF Y : 0 THEN max ELSE x/y; -- avoid division by zero.
b +- IF a >::: 0 THEN (IF a > 0 THEN 1 ELSE 0) ELSE -1;

When the first IF expression is evaluated, the Predicate (y : 0) is first evaluated. If TRUE, the
expression in the ThenClause (Le., max) is evaluated, and its value becomes the IF
expression's value. If the predicate is FALSE, the ElseClause expression (Le., x/y) is evaluated,
and its value becomes the IF expression's value. The second example, like its counterpart in
section 4.2, sets the value of b to -1, 0, or +1, depending on whether a is negative, zero, or
positive, respectively.

The ThenClause and ElseClause expressions must conform as to type (possibly after type
conversion, as outlined in section 3.6.2). The type to which they conform is the IF
expression's inherent type.

An IF operator has the same precedence as an assignment operator, i.e., the lowest possible
precedence. IF expressions should be enclosed in parentheses when embedded in other
expressions.

4.3. SELECT statements

The SELECT statement chooses from a set of statements, one (or, possibly none) to execute,
based on the relation between a given expression and expressions associated with each
selectable statement. Thus, it permits multi-way control switching, as opposed to the two
way switching of an IF statement.

A SELECT statement is shown below. The separator ":>" should be read as "chooses." The
entire statement may be read as follows: "Select, using XiS value, from the comparisons
preceding the substatements. First, (x's value) 'equal to zero' chooses Stmt-I. Second, 'in
sub range m through n' chooses Stmt-2. Third, 'less than m' chooses Stmt-3. Otherwise,
choose nothing."

SELECT x FROM
= 0 => Stmt-I;
IN [m .. n] => Stmt-2;

-< m => Stmt-3;
ENDCASE;

Next-Statement

The next four sections cover various forms for SELECT, precise syntax, and the expression
counterpart of the SELECT statement. . The term "SELECT", used by itself, includes both
statement and expression forms.

Mesa Language Manual

4.3.1. Forms and options for SELECT

Syntax equations:

SelectStmt .. - SELECT Leftltem FROM
StmtChoiceSeries
END CASE FinalStmtChoice
I .. ·

Leftltem ::= Expression

-- (the head)
-- (the arms)
-- (the foot)

StmtChoiceSeries ::= TestUst => Statement; I
StmtChoiceSeries TestUst = > Statement ;

FinalStrntChoice :: = empty I
=> Statement

TestUst ::= Test I TestUst , Test

Test

Example:

i: [0 .. 5];

SELECT 1 FROM

o => 1 +- 1+1;

:: = Expression
RelationTaii

<3 => BEGIN j +- I; i +- i-I; END; -
=5 = > 'i +- 0;
END CASE = > i +- 2;

Next-Statement

-- no operator means equality

-- i=O
i=1 or 1=2

1=5
-- 1=3 or 1=4 (none of the above)

53

The Leftltem for an ordinary SELECT statement is evaluated when the statement is first
executed. A sequence of comparisons then follows. Each arm of the SELECT statement
designates one or more Tests for the Leftltem's value. They are tested (Le., they are
evaluated, and then compared with the Leftltem value), in order from left to right, until a
Test succeeds, or the TestUst for that particular statement is exhausted. If a test succeeds,
control is given immediately to the statement following that TestUst (no further Tests are
evaluated, even in that same list). If all Tests in a given arm fail, the next arm is tried.
When a test succeeds, and its associated statement is executed, control then passes to N ext
Statement: thus, at most one statement can be chosen in a given execution of a SELECT

statement.

The type of the Expression in a Test must conform to the Leftltem's type. If a Test uses "IN

Subrange", the subrange (which, recall is really a type constructor) must conform to the
Leftltem's type:

i: [0 .. 5];

SELECT i FROM
o => i +- 1+1;
IN [L2] =) BEGINj+-'; l+-j-l;END;

IN [3 .. 4] => 1 +- 2;
ENDCASE = > 1 +- 0;

Next-Statement

i=O
1=1 or 1=2
1=3 or 1=4
i=5 (i.e., none of the above)

54 Chapter 4: Ordinary Statements

A single SELECT arm may also specify more than one test:

SELECT i*j+k FROM
1, IN [7 .. 10] =) Stmt-l;
2, 5,) 10 => Stmt-2;
ENDCASE;

Next-Statement

values: 1, 7, 8, 9, 10
values: 2, 5, 11, 12, ...

A final choice may be appended at the end of a SELECT to handle all remaining cases; it
follows ENDCASE. For example:

PriorityState: TYPE = RECORD[iO, il, i2, i3, i4, i5: BOOLEAN];
oldState, newState: PriorityState;

SELECT TRUE FROM -- picks the first TRUE state:
oldState.iO =) Stmt-O;
oldState.il, newState.iO =) Stmt-l;
oldState.i2, newState.i 1 =) Stmt-2;
oldState.i3,oldState.i4 => Stmt-3;
END CASE =) Stmt-99;

Next-Statement

If this SELECT statement does not choose one of the first four choice statements, th~ final
statement (Stmt-99) is chosen.

Fine points:

If the Leftltem expression has a sufficiently small subrange type and the SELECT arms specify constant
values for comparison, the compiler can produce code using a "jump table" to efficiently choose one
arm of the SELECT statement to execute. Actually, it is capable of doing this even if two or more
short tables would be required because a large, complete table would have many components choosing
the same statement.

If the left item and the first j right items are compile-time constants such that the j-th choice is always
taken, then the compiler will not produce object code for the unused text of a SELECT.

The other alternatives for Select5tmt apply to variant records and are discussed in Chapter 6.

4.3.2. The NULL statement

The NULL statement, which serves only as a placeholder, is often useful as the statement in an
arm of a SELECT statement:

NullStmt

For example:

.. - NULL

SELECT currentChar FROM
IN ['0 . .'9] => Stmt-l;
IN ['A . .'Z] => Stmt-2;
IN ['a . .'z] =) Stmt-3;
SP => NULL;
ENDCASE => Stmt-99;

Next-Statement

4.3.3. SELECT expressions

--Handle digits.
--Handle capital letters.
--Handle small letters.
--Ignore blanks.
--Handle all other chars.

The SELECT statement has an expression counterpart. There are three differences between the
expression and statement forms of SELECT:

(1) The choices in each arm must be expressions, not statements.
(2) The arms are terminated by commas, not semicolons.

Mesa Language Manual

(3) ENDCASE must be followed by "=>" and a final (expression) choice.

Its syntax is defined

SelectExpr

ExprChoiceList

Leftltem and· TestList

For example: .

pt: INTEGER:

by

.. -.. -

.. -.. -

are

SELECT Leftltem FROM (the head)
ExprChoiceList (the arms)
ENDCASE = > Expression (the foot)
I
TestList => Expression, I
ExprChoiceList TestList = > Expression ,

defined in section 4.3.1.

-- Point on a line.

55

10, hi: INTEGER" 0; -- Bounds for a line segment, initially a null segment

Point Position: TYPE = {lejtMargin, rightMargin, inside, outside, degenerate};
point/sAt: PointPosition;

point/sAt ..
IF 10 > hi THEN degenerate ELSE

(
SELECT pt FROM

IN (lo .. hi) => inside,
NOT IN [lo .. hi] => outside,
< hi => lejtMargin,
> 10 => rightMargin,
ENDCASE => degenerate

);
Next-Statement

-- =10 but #hi
-- =hi but #10
-- =10 and =hi

A SELECT expression is executed just as a SELECT statement, except that a selected arm yields a
value, which is then taken as the value of the SELECT expression as a whole. The inherent
type of a SELECT expression is the one to which all the expressions in the arms conform (sec.
3.6.2).

A SELECT operator has the same precedence as an assignment operator, i.e., the lowest
possible precedence. SELECT expressions should be enclosed in parentheses when embedded
in other expressions.

Fine point:

The other alternatives for SelectExpr apply to variant records and are discussed in chapter 6.

4.4. Blocks

A block is a way of packaging a series of statements so that they can be used where normally
only a single statement would be syntactically correct. In ils simplest form a block is a pair
of "brackets", BEGIN and END, with a series of statements (of any form) between them. The
general syntax is

Block ::= BEGIN
OpenClause
EnableClause
DeclarationSeries

-- optional; sec. 4.4.2
-- optional; sec. 8.2.1
-- optional; sec. 5.3

56 Chapter 4: Ordinary Statements

StatementSeries -- the important part of the Block
ExitsClause -- optional; sec. 4.4.1
END

StatementSeries •. - empty I
Statement I
Statement ; StatementSeries

DeclarationSeries ::= empty I DeclarationSeries declaration

A fine point:

A semicolon terminates every declaration and therefore is not mentioned as a separator here.

A block takes the place of the single Statement normally allowed in a ThenClause in the
following IF statement:

IF 10 > hi THEN
BEGIN -- Exchange 10 and hi.
temp .. 10;
10 .. hi;
hi .. temp;
END;

Next-Statement

Note: A semicolon follows each statement in the StatementS eries, but is optional after the
last one.

A block can introduce new identifiers with scope smaller than an entire procedure (or
module) body, .but there are several subtleties to consider. During the execution of a Mesa
program, frames are allocated at the procedure and mcdule level only. Any storage required
by variables declared in an internal Block (one used as a Statement) is allocated in the
frame of the smallest enclosing procedure or module. When such internal blocks are
disjoint, the areas of the frame used for their variables overlay one another.

Ordinarilyl, when a block is executed, every statement in its StatementSeries is executed. It is
possible, however, to jump out of a block, as described in the next section on GOTOS.

4.4.1. GOTO statements

A more general form of a block allows a series of labelled statements to be written
immediately preceding its END. One can jump to anyone of these statements from within the
block only, using a GOTO statement. There are two consequences of this way of constraining
the GOTO:

A GOTO may only jump forward in the program, never backward.

A GOTO may only jump out of a block, never into one.

The syntax for the

ExitsClause

ExitSeries

Label List

Label

GotoStmt

ExitsClause of a block, and for the GOTO statement is

.. - empty I
EXITS ExitSeries I
EXITS ExitSeries ;

::= LabelList => Statement I
-- optional final semicolon

ExitSeries ; LabelList = > Statement

::= Label I LabelList , Label

::= identifier

::= GOTO Label I GO TO Label

A simple example:

IF input.status # open niEN

BEGIN

,"esa- Language Manual

IF input./ileHandle = dejaultInput THEN GOTO useDefault;
-- processing for non-default file

IF input./ileNumber = ttyNumber THEN GOTO alsoUseDefault;
IF input.length = 0 THEN GOTO newFile;

-- compute number of pages in the file
EXITS

useDefault, alsoUseDefault => -- multiple labels are allowed
BEGIN input .. ttylnput; pages" maxPages END;

newFile => pages" 0;

57

END; -- end of the ThenClause and the IF statement
Next-Statement

The Labels in this example are useDefault, alsoUseDefault, and newFile (it is helpful to
view the labels as the names of conditions or reasons for which the block is being left). If
anyone of the GOTOS is executed, control goes immediately to the statement labelled with the
identifier used in the GOTO. As soon as the labelled statement completes, control goes to
Next-Statement (unless a labelled statement itself contains a GOTO, which is possible -- see
below). If control is not interrupted by a GOTO, it will pass naturally to Next-Statement
after the last statement in the main body of the block (Le., the one just before EXITS) is
finished.

Since one block can appear within the body of another, a GOTO is allowed to jump directly
out of one (or more) blocks to the ExitsClause of an enclosing one. For example,

BEGIN outer block

BEGIN

IF i = iMax THEN GO TO endOfArray;

END;

i .. i+1;
EXITS

endOfArray =>
END;
Next-Statement

+- 0;

inner block

jump to end of outer compound

end of inner

-- end of outer

If the GOTO statement is executed, control jumps to the exit labeled endOfArray. The chosen
statement (i+-O) is executed and control then goes to Next-Statement. The identifiers used as
Labels are only known inside the block in which they appear, and it is possible to use the
same label in a number of blocks. If,this is done in nested blocks, a GOTO naming that
identifier will always go to the closest statement with that label. Generally, using the same
label in nested blocks is a bad idea.

Since Mesa allows declarations in any block, it is possible to have a nested procedure (section
5.6) declared syntactically within the scope of the Labels of an outer block. The exection of
a GOTO with one of these outer labels as a target would require unwinding the stack some
arbitrary nllmber of levels. For this reason, jumping out of a procedure into a surrounding
block is disallowed. Such a result may be obtained, however, by use of the SIGNAL machinery
(see chapter 8). For example, the following is illegal:

58

BEGIN

p: PROCEDURE =
BEGIN

GOTO panicExit;

END;

p[];

EXITS
panz'cExit => ...

END;

Chapter 4: Ordinary Statements

-- Illegal GOTO

•

The desired result of the above illegal program could be achieved with the following program
(see chapter 8 for a description of signals and catchphrases):

BEGIN
Panic: SIGNAL = CODE;

p: PROCEDURE =
BEGIN

SiGNAL Panz'c;

END;

p[!Panic => GOTO panicExit];

EXITS
panicExit => ...

END;

A statement in an ExitsClause may contain a GOTO, but the label in the GOTO can only refer
to labels in surrounding blocks, not to labels in the same ExitsClause as the GOTO. For
example, the following is legal:

BEGIN

BEGIN

EXITS
endO/FileRe'ached => GOTO DutO/Data;

END;

EXITS
outO/Data => Stmt-99;

END;
Next-Statement

4.4.2. OPEN clauses

-- outer

-- inner

-- end of inner

-- end of outer

An OPEN clause allows one to abbreviate references to a record object that would normally
require many characters to name (e.g., candidateList[tableO/Objects[i]]). It does this by
giving short names as synonyms for more complex names. The scope of an OPEN clause (the
portion of the program over which the synoriym can be used) is the body of a block, a

Mesa Language Manual 59

procedure body, or a loop body, including the optional exits clause (sec. 4.5). Its syntax is

Open Clause .. - empty I OPEN Open List ; -- note the terminal semicolon
• OpenList ::= Openltem I OpenList • Openltem

Open Item ::= AlternateName : Expression I
Expression

AlternateName ::= identifier

The Openltem which uses an AlternateName allows one to use a simple identifier in place of
an expression to designate some record object. For example, the two blocks after the
following declaration are equivalent:

PersonChain: TYPE = RECORD [p:POINTER TO Person, next: POINTER TO PersonChain]
candidateList: POINTER TO PersonChain; -- Person is defined in sec. 3.5

BEGIN OPEN c: candidateList.p;
IF c.party = Republican AND c.age < 30 THEN youngRepublicans .. youngRepublicans+l;
IF c.sex = Female THEN women" women+l;

END

BEGIN
IF candidateList.p.party = Republican AND candidateList.p.age < 30 THEN

youngRepublicans .. youngRepub/icans+l;
IF candidateList.p.sex = Female THEN women" women+l;

END

When the AlternateName form is used, the alternate identifier is always a record type, even
if the object that it renames is a pointer to a record, or an array component.

The form of Open Clause without an AlternateName allows one to access the fields of a
record object (the expression must conform to a record type in this case) as though they were
simple variables. For example, using this feature in the above example allows us to elide
even the "c."s in it:

BEGIN OPEN candidateList.p;
IF party = Republican AND age < 30 THEN youngRepublicans .. youngRepub/icans+l;
IF sex = Female THEN women" women+l;

END

Note, if the AlternateName form is used, qualification by the name is mandatory.

Besides record objects, one can open a module (chapter 7) to simplify access to the identifi~rs
available from the module.

If an OpenClause contains multiple Openltems, the opened expressions might refer to records
having some selector names the same. In the example below, x is a selector name for two
records, myRecord and myRecord.subRecord. An unqualified occurrence of x is taken to be
the x component of the rightmost opened record (myRecord.subRecord). To refer to an
earlier opened record, explicit qualification is necessary (the AlternateName form should be
used).

i. j: INTEGER;
RecordType: TYPE = RECORD

[

60 Chapter 4: Ordinary Statements

a, b, x: INTEGER,
sub Record: RECORD[X, y: INTEGER]
]; .

myRecord: RecordType;

BEGIN OPEN r1: myRecord, myRecord.subRecord;
i ... r1.a + r1.b ... rl.x;
j ... x-y;
END;
Next-Statement

The above block is equivalent to:

BEGIN
i ... myRecord.a + myRecord.b ... myRecord.x;
r'" myRecord.subRecord.x - myRecord.subRecord.y;
END;
Next-Statement

Fine points:

The range of text affected by an Openltem actually starts after that item (but stops before the
ExltsClause if there is one). The OpenClause itself may use implied qualification or alternate names
(from earlier Openltems).

Open Items are essential when dealing with variant records, discussed in chapter 6.

Opened expressions are evaluated at each use, whether used implicitly or explicitly under an alternate
name. This can be helpful when the opened expression involves a pointer or an array index that is
periodically updated -- the latest value will be used for qualification.

To avoid confusion, however, it is recommended that such pointers be updated before entering the
statement sequence headed by an OpenClause. In that way, names in the statement sequence will remain
consistent, i.e., apply to the same data objects throughout these statements.

4.5. Loop statements

Loops make the world go 'round. In Mesa, a loop is a statement containing a series of
statements which are to be executed repeatedly. All the ways of controlling how many times
a loop should be repeated include the ability to repeat it zero times: i.e., to bypass it
entirely. Example 1 in section 2.1 contained the following loop statement:

UNTIL n = 0
DO
gcd ... n;
n ... m MOD n; -- n gets remainder of "min"
m ... gcd;
ENDLOOP;

Next-Statement

"UNTIL n=O" is the loop control for this loop. A variety of loop controls are offered in Mesa:
they include control by a Boolean expression, as above, and control by iteration over a
subrange, as in the following example:

FOR i IN [1..10)
DO
Stmt-1;
Stmt-2;

ENDLOOP;

Next-Statement

Mesa Language Manual 61

This will execute 9 times, with i starting at 1, then becoming 2, and so on, until (but not
including when) i is 10. The portion between DO and ENDLOOP is the body of a loop, and is
very similar to the body of a block.

The formal syntax

LoopStmt

for loops is

:: = LoopControl
DO
Open Clause
EnableClause
StatementSeries
LoopExitsClause
ENDLOOP

-- optional; may be empty

-- optional (sec. 4.4.2)
-- optional (sec. 8.2.1)

-- optional; may be empty

The body of a :loop may contain an Open Clause and an EnableClause just as in a block. The
next section discusses the various forms of LoopControl, and the one after that, the
LoopExitsClause and GOTOS in loops.

4.5.1. Loop control

The syntax for LoopControl is

LoopControl ::= IterativeControl ConditionTest -- either may be empty

ConditionTest ::= empty I WHILE Expression I UNTIL Expression

If both the IterativeControl and the ConditionTest are missing from a loop, it will repeat
forever. A GOTO may be used to terminate any loop from within, however, so this degenerate
form does have some uses. Nevertheless, the shortest infinitely running Mesa program needs
only the single statement:

DO ENDLOOP; -- empty body and LoopControi

We deal with Iterative Controls below, but since any loop may also be controlled by a
ConditionTest (either together with an IterativeControl, or by itself), we treat it separately
first.

All LoopControls run before each execution of the body to avoid entering the loop even once
if it should not be. If a loop uses a ConditionTest, the Boolean expression in the test is
completely reevaluated each time before entering the loop body. If the ConditionTest
succeeds, the body of the loop is entered; if it fails, the loop is finished (we say:
"terminates conditionally") and control continues at the Next-Statement. A WHILE test
succeeds if the value of the expression is TRUE, as in the following example (it might be
useful to read WHILE as "As long as"):

i ... 1; -- this statement is not part of the loop
WHILE i < 10

DO

. i ... i+1;

END LOOP;
Next-Statement

-- increment i

In this example, i will have the values 1, 2, 3, ... , 9 in successive executions of the body of the
loop, and the value 10 when Next-Statement is reached, assuming that only the statement
shown changes the value of i. An UNTIL test succeeds if the value of its expression is FALSE:

62 Chapter 4: Ordinary Statements

i.e., it is the opposite of WHILE. The following loop is equivalent to the one using WHILE:

i .. 1;
UNTIL i >= 10

DO

i .. i+l;

ENDLOOP;
Next-Statement

-- this statement is not part of the loop

-- increment i

An IterativeControl, which may be followed by a ConditionTest, specifies a way of counting
the repetitions of a loop and of terminating the loop should the counting reach a specified,
final value. It may also assign the current count value to a ControlVariable so that statements
in the body may use the count value for computation. A loop which finishes by satisfying
the implicit test associated with an Iteration or a Repetition is said to have terminated
normally.

IterativeControl .. - empty I Repetition I Iteration I Assignation

Repetition .. - THROUGH LoopRange .. -
Iteration .. - FOR ControlVariable Direction IN LoopRange .. -
LoopRange .. - SubrangeTC I Typeldentifier I

BOOLEAN I CHARACTER

Direction .. - empty I INCREASING I DECREASING .. -
Assignation .. - FOR ControlVariable .. InitialExpr , NextExpr .. -
ControlVariable .. - identifier .. -
InitialExpr .. - Expression .. -
NextExpr .. - Expression

The only form of IterativeControl which does not include a ControlVariable, the Repetition,
allows a program to specify how many times a loop body should be repeated by specifying a
LoopRange. For example,

THROUGH [1..100] DO body ENDLOOP

Will execute the body 100 times, and the count value will run' through the range I, 2, 3, ... ,
99, 100. If the interval used had been [1..100) instead, the body would only have been
repeated 99 times. The bounds of intervals in a loop range can be general expressions and do
not have to 'be compile-time constants (as they do in a normal SubrangeTC).

An subrange of an enumerated type may also be used as the LoopRange in a Repetition. Its
type should be self-evident. This requirement may be met by qualifying the type constructor,
as in the example following:

THROUGH MonthName[Jun .. Aug] DO .•• ENDLOOP
•

The body of this loop would be repeated 3 times because the sub range covered by bounds Jun
and Aug in type MonthName contains 3 values: JUIl, Jul, and Aug.

A Repetition and a ConditionTest may be combined in a single loop control. For example,
THROUGH [low .. high] WHILE line! sConnected DO ••. ENDLOOP

Normal termination occurs after high-low+l passes or conditional termination occurs before
any pass where line! sConnected proves FALSE, whichever comes first. Note that if low >

Mesa Language Manual 63

high, the interval [low .. high] is empty and no passes occur.

Iteration and Assignation, the two forms of IterativeControl which include a ControlVariable,
begin with the keyword FOR. The ControlVariable must be a variable declared separately in
the program. Its type will be the target type for the various expressions whose values may be
assigned to it in the course of executing the loop.

An Iteration steps through a subrange much as a Repetition, which is described above. In
addition, it may specify a Direction: whether to begin at the lower bound of the range and
step up (empty or INCREASING) or at the upper bound and step down (DECREASING). In any
case, the size of the step is always one; for (a subrange of) an enumerated type, this really
means stepping from an element to its successor (if the direction is INCREASING) or to its
predecessor (if the direction is DECREASING). The ControlVariable is assigned the current
count value each time around the loop, and also before the loop terminates.

If the LoopRange specifies an empty interval, the loop body is not executed at all, the
ControlVariable is not assigned to, and therefore retains whatever value it had before the
loop. If the LoopRange is not empty, the body will be executed. When a loop terminates
normally, the ControlVariable's final value is not defined. The only way to ensure that the
ControlVariable's final value is the last one it had when the loop body executed is to
terminate the loop conditionally (e.g., using EXIT or GOTO--sec. 4.5.2). The following example
of an Iteration control shifts the components of an array left one position, leaving the
rightmost element unchanged:

FOR i IN [O .. LENGTH[vec]-l) -- assume that LENGTH[vec]) 0
DO
vec[i] .. vec[i+l]; -- "Left-shift" vee's elements.
ENDLOOP;

Next-Statement

The above loop control increases the control variable's value in the specified subrange. It
could have been written equivalently as:

FOR i INCREASING IN [O .. LENGTH[vec]-l) DO vec[i] .. vec[i+l]; ENDLOOP;

There is also a DECREASING form for shifting vee's components one place to the right:
FOR i DECREASING IN [O .. LENGTH[vec]-l)

DO
vec[i+l] .. vec[i]; -- "Right-shift" vee's elements.
ENDLOOP;

In this ·case i is set to the value LENGTH[vec]-2 the first time through the loop and
decremented by one for each subsequent pass. The last time around this loop, i will have the
value O.

Note: Bounds expressions for a controlling subrange are evaluated exactly once, at the
beginning of a loop statement's execution. Consequently, if variables used in the bounds
expressions are altered during a pass, this does not affect the number of passes. When an
Iteration is combined with a ConditionalTest in a single loop control, the ControlVariable is
updated and tested before the ConditionTest is evaluated and tested.

In an ASSignation, the InitialExpr's value is assigned to the ControlVariable for the first pass.
On each subsequent pass, the NextExpr is reevaluated and assigned to it. There is no implicit
test associated with an ASSignation as there is for an Iteration; thus, the user must either use a
GOTO (sec. 4.5.2) to terminate the loop or include a ConditionTest in the LoopControl with
the ASSignation. This form is useful for scanning down a list structure, as in the following

64 Chapter 4: Ordinary Statements

example (note, as with an Iteration, the ControlVariable is updated before the ConditionTest is
evaluated and tested each time around the loop):

ListPtrType: TYPE = POINTER TO ListType;
listPtr, headOfList: ListPtrType;
ListType: TYPE = RECORD

[
listValue: SomeType,
next: ListPtrType -- either NIL (end of list) or pointer to next element
];

FOR listPtr .. headOfList, listPtr.next UNTIL listPtr=NIL
DO .

ENDLOQP;

Next-Statement

Fine points:

A control variable can be altered within the loop, but this is not recommended. An iterative loop
control updates the variable according to its current value. If the statement sequence assigns a new
value to the control variable, the expected series of values may be disrupted (by omission or
duplication). This undermines the credibility of the loop control.

4.5.2. GOTOS, LOOPS, EXITS, and loops

A loop may be forcibly terminated by a GOTO (or an EXIT, see below) from within it to its
LoopExitsClause. This clause serves the same purpose as the ExitsClause in a Block; there
are just four differences:

(1) The LoopExitsClause is bracketted by REPEAT on the top and ENDLOOP on the bottom
instead of EXITS and END;

(2) The LoopExitsClause may contain a final statement labelled with the keyword
FINISHED; this statement is executed if the loop terminates normally or conditionally,
but not if it is forcibly terminated.

(3) There is a special case of the more general GOTO, called LOOP, which causes the
remaining statements in the Statement Series to be skipped, and the control variable,
if any, to be updated and tested. In other words, it is equivalent to a GOTO the
bottom of the loop.

(4) There is a special case of the more general GOTO, called EXIT, which simply terminates
a loop forcibly without giving control to any statement in the LoopExitsClause.

Syntax equations:

LoopExitsClause

LoopExits

FinishedExit

.. - empty I REPEAT LoopExits

.. - ExitSeries I
ExitSeries ;
FinishedExit I
ExitSeries ; FinishedExit

•• - FINISHED = > Statement
FINISHED = > Statement ;

LoopCloseStatement ::= LOOP-

ExitStmt .. - EXIT

Mesa Language Manual 65

The LOOP statement is used when there is nothing more to do in the current time around the
loop, and the programmer wishes to go to the next repetition, if any. For example,

stu!!: ARRAY [0 .. 100) OF PotentiallyInterestingData;
Interesting: PROCEDURE [PotentiallyInterestingData] RETURNS [BOOLEAN];
i: CARDINAL;

FOR i IN [0 .. 100) DO

some processing for each value of i

IF Interesting[stu!f(i]] THEN LOOP;

process stu!f(i]

ENDLOOP;

Saying LOOP is equivalent to a GOTO with a target just before the LoopExitsClause (if any).

The loop example from the previous section used to illustrate ConditlonTests may be
rewritten using a GOTO and a LoopExitsClause as:

i .. 1;
DO
IF i >= 10 THEN GOTO quit;

i .. i+l;

REPEAT

quit => NULL;
ENDLOOP;

Next-Statement

-- first statement in the body

-- increment i

-- do nothin~; just get out of the loop

Forcible loop termination in which the statement in the exits clause is NULL is common. The
EXIT statement simplifies this case by not requiring a labelled statement in the
LoopExitsClause. In fact, no LoopExitsClause need be present at all. The above example,
using EXIT instead of GOTO, looks like this:

i .. 1;
DO
IF i >= 10 THEN EXIT;

i .. i 1;

ENDLOOP;

Next-Statement

-- first statement in the body

-- increment i

..

An EXIT is a little less powerful than the more general GOTO, however. For instance, if one
had loops nested within one another and wanted to exit from both, EXIT could not be used
because it would only terminate the inner loop. A GOTO could be used because it may
completely abandon the inner loop and jump to the ExitsClause of any enclosing loop or
block. The ExitsClause of either a block or a loop is considered to be outside of the block or
loop. Thus, an EXIT could appear in any ExitsClause (provided there was an outer loop) and
would calise forcible termination of the closesl surrounding I~op.

The example below shows an Assignation form of Iterative Control which is not combined
with a ConditionTest. Instead, the loop is forcibly terminated by an EXIT statement.

/

66 Chapter 4: Ordinary Statements

BujlndexType: TYPE = [1 .. max];
buj: ARRAY BujlndexType OF INTEGER;
i, x: BujlndexType;

FOR i ... X, (IF i = max THEN 1 ELSE i+l)
DO
Stmt-I;
IF buj[i] = 0 THEN EXIT;
buj[i] ... 0;
ENDLOOP;

Next-Statement

-- Starting at point x,

-- do something and then
-- quit on a "clear" entry, or
-- clear until one is found.

The NextExpr, "IF i = max THEN 1 ELSE i+l", makes buj behave as a ring buffer.

Sometimes one must detect normal (vs. abnormal) completion, perhaps to take some
"finishing" action. A final labelled statement with the label FINISHED (which may not appear
as the identifier in a GOTO) provides this facility. For example,

UNTIL currentChar=blank DO

IF currentChar NOT IN ['A . .'Z] THEN EXIT;

IF charCount > limitForReservedWords THEN GOTO syntaxError;

REPEAT

syntaxError
FINISHED

ENDLOOP;

Next-Statement

=> Stmt-99;
=> currentChar+-GetNB[]; -- Get next non-blank character.

The FINISHED exit is taken if and only if the loop terminates normally or conditionally (Le.,
when currentChar is blank. in the case above). Note that if the EXIT statement is executed,
the FINISHED statement is not executed.

67

CHAPTER 5.

PROCEDURES

A procedure is a means of packaging code so that it can be used (called) by other parts of a
program. A caller can communicate with a procedure by passing arguments to it when
calling it. Similarly, when a called procedure finishes, it can return results to its caller.
Then the caller resumes execution from the place that the call was made.

The parameters of a procedure may have different types. In fact, they constitute a parameter
record type for the procedure. When calling the procedure, the arguments are assembled into
an input record using a constructor (sec. 3.3.4.). Consider the following procedure call:

Pxy[23, FALSE]; -- naming a procedure is all that is needed to call it

This constructs an input record with two arguments and then calls procedure Pxy, passing it
the input record.

A procedure may return values to the point of its call. These results actually constitute a
result record type. There may be any number of results, and their types may differ. Results
are assembled into an output record by the procedure as it RETURNS control to its caller.

Procedures are declared very much like other data types. The type of any procedure depends
upon the types of its parameter and result records. We say these are "empty" records if a
procedure has no parameters or no results. A few of the possible procedure types are shown
below:

PROCEDURE -- takes no arguments; returns no results
PROCEDURE[X: INTEGER, flag: BOOLEAN] -- takes two arguments
PROCEDURE RETURNS[i: INTEGER] -- returns a single value
PROCEDURE RETURNS[i: INTEGER, b: BOOLEAN] -- returns two results
PROCEDURE[X: INTEGER] RETURNS[y: INTEGER] -- takes and returns one value

These are all different procedure types. This enables the compiler to check that a proper
input record is given for each procedure call (Le., arguments conform to matching
parameters) and that the output record is used correctly (in the text surrounding the
procedure call).

The declaration of an actual procedure has a fixed form Initialization which gives the source
code for that procedure. For example,

SetAllSwitches: PROCEDURE[setting: SwitchSettingType] =
BEGIN -- this is the source code for the procedure
i: Switch Range; -- declares loop control variable i
FOR i IN Switch Range DO switch[i] +- setting ENDLOOP; .
END;

68 Chapter 5: Procedures

This closely parallels the declaration of an ordinary variable with = initialization (e.g.,
octalRadix: CARDINAL = 8;). Of course, the initializing "Expression" is special (Le., everything
from BEGIN to END); it is called the body of the actual procedure. The other forms of
initialization may also be used, and this allows one to have procedure variables which may be
changed by the program to access different actual procedures. Procedures are data objects
just like any other piece of Mesa data. It is not the code for a procedure that is data, but
rather the information about where that code resides, which allows it to be invoked.

Like a block, a procedure body may contain declarations (they must precede the first
statement in the body). These declare local variables for that procedure, variables which are
created when the procedure is called, which may be directly accessed only from within it, and
which are destroyed when the procedure returns. (Thus, i and setting are both local to
SetAl/Switches.) This way of allocating variables for procedures makes any Mesa procedure
capable of being called recursively and its code capable of being used in a reentrant fashion.

A procedure body may also access variables declared outside of the actual procedure (e.g.,
switch in this case). These are non-local variables in this procedure: they exist longer than
any single invocation of the procedure and are defined in the program around it.

Mesa also has extensive facilities for supporting the separate compilation of packages of
procedures and data; these packages are called modules (chapter 7). Some of these facilities
allow one module to name and use the procedures in another and still check for valid
parameter and return record use at compile time.

The foregoing discussion is only an introduction to procedures. The rest of chapter 5 covers
this topic more completely.

5.1. Procedure types

Procedure types are specified by the type constructor, ProcedureTC, following:
ProcedureTC .. - PROCEDURE ParameterList ReturnsClause

Parameter List .. - empty I FieldList
ReturnsClause .. - empty I RETURNS ResultList

ResultList .. - FieldUst

This type constructor is used when declaring actual procedures or procedure variables, but it
may also be used wherever Mesa allows a TypeSpecification. This means that procedure
types can be employed in constructs such as:

A defined type:

ListProc: TYPE = PROCEDURE[in: List] RETURNS[out: List];
GoForth, GoBack, AddNewNode; RemoveNode: ListProc;

A field list (notice parameter GetNewPage below):

AllocateBlklnPage: PROCEDURE

[
blkSize: [O .. pageSize), currentPage: POINTER TO Page,
GetNewPage: PROCEDURE RETURNS[POINTER TO Page]
]

RETURr-.;S[blk: POINTER TO Elk, page: POINTER TO Page];

Mesa Language Manual 69

A pointer declaration:

stdError: POINTER TO PROCEDURE[error: ErrorType];

The Parameter List and the ResultList define unique record types: if either is missing, its
record type is "empty". A procedure type is fully determined by its input and output record
types. These records, unlike regular records, are not packed: i.e., every component is aligned
(begins on a word boundary) in order to allow efficient passing of arguments and results.

Parameter Lists and ResultLists are FieldLists (sec. 3.4.1). When a call is made on a
procedure, the arguments are packaged in a record. Therefore, a procedure call may use all
the syntax for record constructors in passing arguments, including specifying components
(arguments) by keyword or by position.

If the ReturnsClause in a ProcedureTC is not empty, then its ResultList specifies the number
and types of the results returned by a procedure of that type. It may be a named or an
unnamed FieldList (sec. 5.3.1 on the RETURN statement discusses how it is used). Here are
some examples of ProcedureTCs:

Square: PROCEDURE[i: INTEGER] RETURNS [CARDINAL]

InitBuffer: PROCEDURE[buf: Buffer, from: CARDINAL, to: CARDINAL, value: CARDINAL]

Direction: TYPE = {up, down}; -- a type used in the following type constructor
Sort: PROCEDURE[a: DESCRIPTOR FOR ARRAY OF INTEGER --(sec. 6.2)--, order: Direction]

5.2. Procedure values and compatibility

Values of a procedure type are possible in Mesa: one may have procedure variables, arrays of
procedures, records with components which are procedure values, and procedures with
procedure parameters or results. A procedure value is really a complex pointer which can be
used to call the procedure it represents.

The fundamental operations, +-, =, and # may be applied to two conforming procedure values.
Procedure types conform if their ParameterLists and their ResultLists are compatible, which
means that their respective components must have equivalent (not just conforming) types.
Moreover, if both Parameter Lists (or ResultLists) are named, then the names must match (if
one or both are unnamed, no such requirement applies, of course). Thus, the two following
procedures are compatible:

Atype: TYPE = INTEGER; Btype: TYPE = INTEGER; -- two compatible types

ActualProc: PROCEDURE[P: Atype] RETURNS[INTEGER] =
BEGIN -- this is the body of this actual procedure (next section)
RETURN[P];
END;

BPrac: PROCEDURE[P: Btype] RETURNS[INTEGER];

Mesa allows the assignment, BProc+-ActualProc (we then say that BProc is bound to
ActualProc) because their Parameter List and ResultList types have equivalent component
types (INTEGER - recall that equivalence ignores type identifiers).

Fine points:

Consider the following declaration:

lntegerProc: PROCEDURE[i: INTEGER] RETURNS[INTEGER];

The assignment "lntegerProc .. ActualProc" is also legal because the name of the component in a
single-element record is ignored when checking for type compatibility.

70 Chapter 5: Procedures

A procedure variable may be declared with = initialization. For the example below, assume
largeM emory is a compile-time constant whose value is TRUE:

ProcVar: PROCEDURE = IF largeMemory THEN FastProc ELSE SmaliButSlowProc;

If FastProc is the identifier of an actual procedure, then ProcVar is indistinguishable from that actual
procedure. In this case, we call ProcVar a "procedure constant", using "actual procedure" only when a
procedure body is specified.

5,3. Declaring actual procedures

An actual procedure declaration looks like the declaration of a procedure variable followed
by a special kind of = initialization, a ProcedureBody. The ProcedureTC determines the
procedure's type, as covered in the previous section (actually, any TypeSpecification
equivalent to a ProcedureTC may be used). Procedure Body is a special form of initialization
defined as follows:

Initialization
Procedure Body
Block

DeclarationSeries

.. - . . . I = Procedure Body I +- ProcedureBody
::= Block -- see sec. 4.4
::= BEGIN'

Open Clause
EnableClause
DeclarationSeries
StatementSeries
ExitsClause
END

.. - empty I DeclarationSeries declaration
Note: a semicolon terminates every declaration and therefore is not mentioned as
a separator here.

Only a procedure initialized with = to a Procedure Body is called an actual procedure: its
meaning cannot change because it cannot be assigned to. If, however, it is initialized with a
ProcedureBody but with +- initialization, its value can be changed by assignment, and it is
considered a procedure variable.

Besides ordinary statements, a procedure body can contain RETURN statements (described in
the next section). Here are some simple examples of actual procedures:

Square: PROCEDURE[i: INTEGER] RETURNS [CARDINAL] =
BEGIN RETURN [i"'] END;

SumArray: PROCEDURE[a: DESCRIPTOR FOR ARRAY OF INTEGER] RETURNS [sum: INTEGER] =
BEGIN' -- returns the value of a[O]+a[l]+ ... +a[LENGTH[a]-l] (sec. 6.2)
i: CARDINAL; -- a single local variable declaration
sum +- 0; -- first stalement in Statement Series
FOR i IN [O .. LENGTH[a]) DO sum +- sum+a[i] END LOOP;
END; -- there is an implicit RETURN at the END if one is not given

A Procedure Body defines a scope for declarations: i.e., identifiers declared in it ar~ local to
the procedure and are unknown outside it. There must be no duplicates among the names in
a procedure's ParameterList, ResultList, or local variables. Names in the Parameter List can be
used to write a keyword constructor (sec. 3.3.4) when calling a procedure. Similarly, names
in the ResultList can be used in keyword extractors (sec. 3.3.5) and as qualifiers (sec. 3.3.3) to
access the results relllrned by a procedure. When called, the values of parameters and named
results act just like local variables within the scope of the procedure. A ParameterList for an
actual procedure should be a named field list so that the procedure body can reference the
parameters.

Mesa Language Manual 71

5.3.1. RETURN statements

There are two basic forms of RETURN statements: RETURN and RETURN followed by a
constructor. When either form is executed, control transfers back to the point at which the
procedure was called. In addition, the RETURN can supply results in the form of a constructor
conforming to the procedure's ResultList type:

ReturnStmt ::= RETURN I RETURN [ComponentList]

There may be any number of RETURN statements in an actual procedure. The form of a
RETURN statement depends upon the ReturnsClause. There are three cases:

no ReturnsClause (empty output record)
an unnamed field list as the ResultList
a named field list as the ResultList

If no ReturnsClause is given, then the RETURN statements must consist of RETURN (alone). An
explicit RETURN statement can be omitted at the end of the procedure; Mesa will provide an
implicit RETURN there.

If an unnamed field list is used for the ResultList, then the RETURN statements must include a
positional constructor. This constructor must match the field list perfectly, with one
Expression component for every field (omissions or elisions are not allowed). In this case,
Mesa will not supply an implicit RETURN at the end of the procedure, so the user must supply
at least one in the ProcedureBody; if not, it is an error.

Fine point:

In this case, the compiler will insert code that raises the unnamed ERROR (see sec. 8.1) if control
reaches the end of the procedure.

If the ResultList is a named field list, then the user may employ RETURN statements with or
without constructors, using either positional or keyword notation. If no constructor is used,
the current values of the named result variables will be used as the return values. A RETURN
statement is optional at the end of the procedure; if omitted, Mesa will provide an implicit
RETURN, and use the result variables to construct the output record. An example is shown
below:

ReturnExample: PROCEDURE[option: [1..4]] RETuRNs[a, b, c: INTEGER] =
BEGIN
a+-b+-c+-O;
SELECT option FROM

1 => RETuRN[a: 1, b: 2, c: 3];
2 => RETURN[l, 2, 3];
3 => RETURN;
END CASE =) b+-4;

c+-9;
END;

5.4. Procedure calls

-- keyword parameter list
-- positional version of option 1
-- a=b=c=O

-- implicit RETuRN[a: 0, b: 4, c: 9]

Procedures that return results must be called from within Expressions which use the results
in some way. Such a function reference is a valid Expression. Procedures that do not return
results are used in call slatements. The syntax for calling a procedure is

CallStmt ::= Variable I Call
Call ::= Variable [ComponentList] I ..

where the Variable has some procedure type. Other forms of Can are discussed in chapter 8. These
specify "catch phrases" for dealing with signals (or errors) that may be generated because of the call.

72 Chapter 5: Procedures

A procedure that does not return results is called by simply writing a CallStmt as a statement
by itself. For example,

SocSecNums: ARRAY [1..100] OF SocialSecurityNumber;

Sort[DEscRIPTOR[SocSecNums], up]; -- DESCRIPTOR defined in sec. 6.2

A call statement is ordinarily used to obtain side effects. Most often, these take the form of
changes to data that are not merely local to the invoked procedure, but they may also take
the form of input or output for some device such as a display or a disk. A function may
also have side effects, as well as returning results. On occasion, only the side effects are
important, and the user wishes to ignore the returned results. An easy way to do this is to
assign the output record to an empty extractor:

[] +- F[xf -- Call F and discard its output record.

There are two ways to write a call that supplies no arguments: without a constructor or with
an empty one "[]". Generally, these are equivalent, but you must use the bracketed form for
function references. This will force the call to occur. Without the brackets, type
determination may, in rare cases, cause the procedure type rather than the output record type
to be used and therefore not actually call the procedure. For example, consider the two
procedure variables in the following:

DoYourThing: PROCEDURE RETURNS[PROCEDURE];
DoMyThing: PROCEDURE RETURNS[PROCEDURE];

-- here the program assigns values to the procedure variables
IF DoYourThing=DoMyThing THEN. • • -- compare the procedure variables

IF DoYourThing[]=DoMyThing[] THEN ••• -- compare their results

At the time a call is executed, a specific activation is executing, the caller's activation. (A
new activation is created when invoking the actual procedure, the call ee' s activation. This is
discussed in the next section.) The caller's activation consists of:

a code body: The body of object code containing the code for the caller. A code body
is constant data; it doesn't change during the course of execution.

a frame: A record containing all data local to this activation.

an execution state: The values in machine registers pertaining to the caller (for
instance, the program counter).

Initially, the caller's activation is running, i.e., currently executing instructions on the
machine. Only one activation can be running at anyone time. Since a new activation (the
callee's) will soon be running, the caller's activation is suspended by storing the machine's
execution state in its frame.

An important consequence of this structuring of procedure control is that all Mesa
procedures are inherently capable of being recursive and reentrant. The following recursive
procedure could be used inside the BinaryTree module example (sec. 5.6.1):

Count Nodes: PUBLIC PROCEDURE[here: Node] RETURNs[n: INTEGER] =
BEGIN
n +- IF here=NIL THEN 0 ELSE 1 + CountNodes[here.left] + CountNodes[here.right];
END; -- implicit RETuRN[n] here

Mesa Language Manual

A call on this procedure is shown below:

totalNumberOfNodes ... CountNodes[TheRoot[]];

5.4.1. The mechanics of procedure calls

73

Invoking a procedure causes the following sequence of low-level events to occur (of course,
most of these actions merge in the actual implementation; many fewer machine cycles are
actually required to call a procedure than may seem apparent from this description):

The caller prepares an argument record to pass to the procedure.

The caller gives up control (after preparing to resume execution when the called
proced ure returns).

A frame is allocated and initialized for the new activation (this includes storing in
the new frame a return link, a pointer to the caller's frame for returning to later).

The code for the procedure begins executing and immediately stores the component
values of the argument record into local variables corresponding to its named
parameters. Next, any initialization of local variables is done, including those with
":" initialization in which the Expressions were not compile-time constants. Then the
first executable statement begins.

The new frame contains all data local to this actual procedure: the parameters, the
procedure's local variables. and its result variables. if any.

5.4.2.. Arguments and parameters

Arguments are values supplied at call-time; parameters are variables that are local to a given
activation. The association of arguments with their parameters amounts to assignment. much
as if the following were written:

InRec: REcoRD[arg1: Type}. arg2: Type2, ...];
param}: Type};
param2: Type2;

[param1, param2, ...] ... InRec[arg1: vall, arg2: val2, ...];

This is not just an idle analogy: the semantics of assignment accurately describe how
arguments are associated with parameters. The following are direct consequences of this:

An argument to a procedure need only conform to its parameter, just as for
assignment.

Arguments are passed by value in Mesa: i.e., the value of an argument, not'its
address, is assigned to the parameter. Of course, this value itself can be an address
(e.g., if Type} were POINTER TO TypeX).

5.4.3. Termination and results

Procedures terminate by executing a RETURN (perhaps an implicit RETURN inserted by the
compiler just before the END of a procedure body). The sequence of low-level events
involved in a procedure returning control and possibly returning results back to its caller are
as follows (the sequence for a call is described in sec. 5A1):

The procedure prepares a result record to pass to its caller, if it gives results.

74 Chapter 5: Procedures

The return link (which points to the caller's frame) is saved, the procedure is
deactivated, and the storage for its frame is reclaimed.

Using the saved return link, the caller is resumed by loading the machine state from
its frame (including the program counter). Code at the call point uses the result
record in whatever way is necessary, and then releases it.

The results of a procedure may be assigned to variables, either by simple assignment or by
using an extractor for multiple-component result records, or the result may be used as part
of an enclosing Expression. The following example uses the result of G as the argument for
a call on F (note that this would not be legal if G returned a two-component result):

F: PROcEDuRE[in: SomeType];
G: PROCEDURE[Y: OtherType] RETURNS[out: SomeType];

F[G[x]]; -- the single component in G's output record becomes the single
element in F's input record

If a procedure returns a single-component output record. the component may be accessed
directly because of the automatic coercion from single-component record to its single
component:

SimpleResult: PROCEDURE RETURNs[result: INTEGER] =
BEGIN
x. y: INTEGER;
RETURN[X+Y];
END;

j ... SimpleResu[t[].result; -- (selection)
[i] ... SimpleResult[]; -- (extraction)
i ... SimpleResu[t[]+64; -- (access component directly)

In the above example, RETURNS[resu[t: INTEGER] defines a unique record type for the output
record. You could not assign the output record. as such, to a variable whose type was
compatible; assignment demands conformance, and between two record types the only
conformance is complete equivalence (section 3.6.2). If you need to return a record value
(which is perfectly legal), have the procedure return a single-component output record where
that component is a record of that type.

Since the result of a procedure is a record, it may be assigned to an extractor. The following
procedure returns three results and may be used as indicated in the statements following it:

ComputeDate: PROCEDURE[i: INTEGER]
RETURNs[mm: MonthName, dd: [1..31], yy: [1900 .. 2000]] =

BEGIN

RETURN [Sep, 22, 1976];

END;
aDay. nextDay: [1..31]; aMonth: MonthName; aYear: [1900 .. 2000]; I

aDay ... ComputeDate[1900].dd; -- get day part only ;
[mm: aMonth. dd: aDay] ... ComputeDate[1900]; -- assign results by extractor
nextDay ... (ComputeDate[1900].dd+1) MOD 32; -- select one component

Mesa Language Manual 75

5.5. A package of procedures

This section contains an example of a simple module, BinaryTree, which is designed to create
and manage a simple data base structured as a binary tree. It is typical of the ways in which
related procedures are packaged together. The example gives a broad view of procedure
syntax and semantics, touching only lightly on specific issues.

The binary tree implemented by the example is a data structure containing nodes linked by
pointers. Any node points to at most two others (its sons), and a node is pointed to by
exactly one other node (its parent). A special root node exists and is referenced by a pointer
not in the tree. Every node also contains a value, which for simplicity in the example is just
an INTEGER; a sophisticated data base would surely contain more complex objects. When the
program is first loaded, the tree is empty, and any calls to SeekValue to see if a value is in
the tree will :result in a count of zero being returned.

The nodes in this particular binary tree are records with four components:

value an integer value (whose purpose we will ignore),
count the number of duplications of the value in the data base,
left pointer to a "left" node (or NIL), and
right pointer to a "right" node (or NIL).

There are rules of association between the values and the nodes:

The first supplied value is entered into the root node.

A given value may exist in only one node; duplications are counted.
If node E points to "left" node L, then all the values in the subtree rooted at L are
less than the value in E. If node E points to "right" node G, then the values in the
subtree rooted at G are greater than the value in E.

When the module is started, the tree is initialized to be empty. Thereafter, the module itself
executes no code, but its procedures can be called to alter the tree that it manages. For
instance, as other modules obtain new values to be inserted in the tree, they call
PutNewValue.

PutNewValue calls another of BinaryTree's procedures, FindValue, which tracks through the
tree looking for a node that already has a given value. FindValue may find such a node, or
it may be stymied -- reaching a higher-valued node with a NIL Jeft node pointer or a lower
valued node with a NIL right node pointer. If FindValue finds a node with the given value,
PutNewValue increments that node's count. Otherwise, PutNewValue sets up a new node and
attaches it to the node ~t which FindValue was stymied.

This strategy is chosen for simplicity, but it is a poor way to construct a binary tree. For
instance, if the values were entered in strictly decreasi ng order, the tree would be a linear list
of left nodes. To find the lowest-valued node, every node would have to be examined.

It is recommended that the reader skip to the explanation following the example rather than
read it first. .

76 Chapter 5: Procedures

Example 2. A Package of Procedures

1: DIRECTORY
2: ExampleDefs: FROM "exampledefs" USING [AllocateBlk],
3: OrderedTableDefs: FROM "orderedtabledefs" USING [UserProc];
4:
5: BinaryTree: PROGRAM IMPORTS ExampleDefs EXPORTS OrderedTableDefs =
6: BEGIN
7:
8: -- type definitions and compile-time constants
9: Node: TYPE = POINTER TO BinaryNode;

10: BinaryNode: TYPE = RECORD[value: INTEGER, count: CARDINAL, left, right: Node];
11: nodeSize: CARDINAL = SlzE[BinaryNode]; -- a compile-time constant
12:
13: -- a global variable
14: root: Node;
15:
16: -- public actual procedures:
17: Seek Value: PUBLIC PROCEDURE[val: INTEGER] RETURNS[count: CARDINAL] =
18: BEGIN
19: node: Node;
20: found: BOOLEAN;
21: Uound, node] ... FindValue[val]; -- see if it is in the tree
22: RETURN[IF found THEN node.count ELSE 0];
23: END;
24:
25: PutNewValue: PUBLIC PROCEDURE[val: INTEGER] =
26: BEGIN.
27: node, nextNode: Node;
28: alreadylnTree: BOOLEAN;
29: -- Use FindValue to find where to put val:
30: [alreadylnTree, node] ... FindValue[val];
31: IF alreadylnTree THEN node.count ... node.count+l
32: ELSE BEGIN -- name "external" procedure AllocateBlk by qualification
33: nextNode ... ExampleDefs.AllocateBlk[nodeSize];
34: nextNodet ... BinaryNode[val, 1, NIL, NIL]; -- initialize the new node
35: IF root=NIL THEN root ... nextNode
36: ELSE IF val<node.value THEN node.left ... nextNode ELSE node.right ... nextNode;
37: END;
38: END;
39:
40: EnumerateValues: PUBLIC PROCEDURE[userProc: OrderedTableDefs.userProc] =
41: BEGIN
42: keepGoing: BOOLEAN ... TRUE;
43: Walk: PROCEDURE [node: Node] = -- a local procedure (sec. 5.6)
44: BEGIN -- walk through the tree in order by increasing value usi ng recursion
45: IF node = NIL OR NOT keepGoing THEN RETURN; -- don't follow empty (sub)trees
46: Walk[node.left]; -- enumerate the lesser-valued nodes first
47: keepGoing +- userProc[node.value, node.count]; -- enumerate myself
48: Walk[node.right]; -- then enumerate the greater-valued nodes
49: END; -- of Walk -
50: Walk[rootJ; -- just start enumerating at the root
51: END;

Mesa Language Manual 77

52: -- a procedure that is private to this module
53: FindValue: PROCEDURE[val: INTEGER] RETURNS[inTree: BOOLEAN. node: Node] =
54: BEGIN
55: nextNode: Node'" root; -- always start at the root
56: IF root=NIL THEN RETURN [FALSE. NIL];
57: UNTIL nextNode=NIL
58: DO
59: node'" nextNode;
60: nextNode ... SELECT val FROM
61: < node.value => node.left.
62: > node. value => node.right.
63: END CASE => NIL;
64: END LOOP;
65: RETuRN[val=node.value. node];
66: END;
67:
68: -- mainline statements
69: root ... NIL; -- make tree initially empty
70: END.

5.5.1. The example

Each line of the source code for Example 2 is numbered for convenience; other than that.
the code could be compiled as it stands.

The DIRECTORY section at the beginning maps identifiers acceptable to Mesa into file names
(which are. in general, not simple identifiers). The identifier ExampleDefs must be the
name of the (DEFINITIONS) module that is stored on the file named "exampledefs". This allows
the definitions in that module to be shared among a number of modules and further allows
those definitions to be compiled separately from modules like BinaryTree here.
ExampleDefs and OrderedTableDefs are said to be included by the module BinaryTree
here. The USING clause provides compiler checked documentation of exactly which identifiers
are used in this program whose definitions come from the given included module (sec. 7.2.1).

Following that DIRECTORY section is the header of the BinaryTree PROGRAM module:

5: BinaryTree: PROGRAM IMPORTS ExampleDefs EXPORTS OrderedTableDefs =

The IMPORTS list (sec. 7.4.1) on line 5 allows BinaryTree to have access to procedures defined
in the DEFINITIONS module ExampleDeJs (AllocateBlk is the only procedure of that interface
used here - details below). The EXPORTS list (sec. 7.4.3) contains only the single name
OrderedTableDefs: this module provides actual, PUBLIC procedures corresponding to those
defined by OrderedTableDeJs as an interface (see below). Here is the DEFINITIONS module
OrderedTableDeJs:

OrderedTableDefs: DEFINITIONS = .
BEGIN

-- Types and compile-time constants
UserProc: TYPE =

PROCEDURE [val: INTEGER, count: CARDINAL] RETURNs[continue: BOOLEAN];

-- The interface
SeekValue: PROCEDURE[val: INTEGER] RETURNs[count: CARDINAL];

PutNewValue: PROCEDURE[val: INTEGER];

EnumerateValues: PROCEDURE[userProc: UserProc];
END.

78 Chapter 5: Procedures

The ExampleDefs DEFINITIONS module has the following (skeletal) form:

ExampleDefs: DEFINITIONS =
BEGIN

AllocateBlk: PROCEDURE[size: CARDINAL] RETURNS[theStorage: POINTER];

END.

The interface defined by this set of definitions consists of the three procedure definitions
for SeekValue, PutNewValue, and EnumerateValues. UserProc is the only type definition (it
is in the DEFINITIONS module because any program that uses BinaryTree needs it to define a
procedure that could be passed as a parameter to EnumerateValues).

The body of a :PROGRAM module resembles a procedure body: BEGIN, followed by declarations,
then some statements, and finally END (which, it should be noted, is followed by a period,
unlike other ENDS in Mesa). The declarations and statements are both optional, but it would
be unusual to omit the declarations. The statements are called the module's mainline
statements and are executed by sTARTing it (sec. 7.8).

BinaryTree declares four actual procedures: SeekValue (lines 17-23), PutNewVa[ue (lines 25-
38), EnumerateValues (lines 40-51), and FindValue (lines 53-66). It also declares two types
(Node and BinaryNode), a compile-time constant (nodeSize), and a single global variable
(root).

After the declarations, there is a single program statement (line 69), which simply initializes
root to be NIL to make the tree initially empty.

An inspection of the actual procedure, SeekValue, will help to explain some things
(Seek Value exists to allow other modules to determine whether a given value is in the tree):

17: SeekValue: PUBLIC PROCEDURE[val: INTEGER] RETURNs[count: CARDINAL] =
18: BEGIN
19: node: Node;
20: found: BOOLEAN;
21: Uound, node] .. FindValue[val]; see if it is in the tree
22: RETURN[IF found THEN node.count ELSE 0];
23: END;

PUBLIC indicates that this procedure is publicly available and can therefore be part of the
interface OrderedTableDefs.

SeekValue and PutNewValue use variables named val (a parameter in both cases) and node
(a local variable declared by both procedures). Remember that these are distinct variables,
local to each procedure, and only exist in activations of the procedure in which they appear.

The procedure FindValue is PRIVATE to BinaryTree (because it is not declared PUBLIC), so it is
only called from within the module (from lines 21 and 30).

The procedure EnumerateValues has two major distinguishing features: it takes a procedure
value as a parameter, and it contains a local procedure (Walk). For each node in the tree,
EnumerateValues will call the procedure value userProc that it received as an argument,
passing it the value in that node and its replication count. If userProc returns TRUE, the
enumeration of the values'continues; if it returns FALSE, EnumerateValues will complete and
return to its caller. The values are produced in order from least to greatest.

Mesa Language Manual 79

The local procedure Walk is recursive and walks around the tree by first walking over the
left subtree, then the root, and finally the right tree. This delivers the values in increasing
order (convince yourself that it does). Section 5.6 treats local procedures in more detail.

5.5.2. Invoking the example's procedures

FindValue must be called as a function because it returns a result:

30: [alreadyInTree, node] +- FindValue[val];

Procedures that do not return values are called by writing the call as a statement in its own
right: there is no special keyword required. For example:

PutNewValue[ww];

A function cannot be called using a statement, and a procedure (which does not return a
result) cannot be called in an Expression. You cannot call PutNewValue in an Expression
such as

huh +- PutNewValue[ww]; -- WRONG! (no result is available)

and you cannot call SeekValue using a statement form such as

SeekValue[val: 5]; -- WRONG! (something must be done with the result)

The actual procedures in BinaryTree become available for use when the module is
instantiated. Each procedure is inactive until it is invoked. An inactive procedure is
represented only by a code body -- part of the object code for the entire module. The code
body never changes.

When PutNewValue is invoked, control transfers to the procedure's code, which allocates a
frame, stores control data, assigns the argument to parameter val, and then continues with its
first statement. PutN ewValue calls FindValue (line 30). Before invoking it, Mesa saves the
current value of the "program counter" in PutNewValue's frame (in preparation for resuming
execution after FindValue returns).

Invocation of FindValue ensues as described for PutNewValue, and a pointer to
PutNewValue's frame is saved in FindValue frame for the subsequent return. Execution runs
its course, and FindValue returns (line 56 or 65). The output record (for FindValue) is
generated in order to pass it back to PutNewValue. Then FindValue's frame is deallocated.
The activation of PutNewValue is restored to running status, and PUINewValue resumes
execution. Eventually, it too returns (line 37) and its activation frame is deallocated.

5.6. Local procedures

Actual procedures may be declared within actual procedures. These are local procedures
nested in (and local to) an outer procedure. An example containing local procedures follows
and is discussed below. The example comes in two parts: first a DEFINITIONS module to define
some TYPES (including procedure types which are not part of the interface because they are
types) that would be needed by a program which wanted to lise this game-playing program.
The procedure NewGame is also defined in the DEFINITIONS module as the only procedure in
its interface. 'fhe second part is the program module containing a single PUBLIC procedure
NewGame, which in turn contains four local procedures, FreshDeck, Deal, WhereIam, and
Peek. These two parts are separately compiled and mllst exist in separate files.

80 Chapter 5: Procedures

DealerDefs: DEFINITIONS =
BEGIN -- type definitions
Card: TYPE = REcoRD[value: Value, suit: Suit];
Value: TYPE =

{two, three, four, five, six, seven, eight, nine, ten, jack, queen, king, ace, joker};
Suit: TYPE = {clubs, diamonds, hearts, spades, none};
Shuffle: TYPE = PROCEDURE;
DealCard: TYPE = PROCEDURE RETURNs[Card];
Top! s: TYPE = PROCEDURE RETURNS[top: INTEGER];
YouScan: TYPE = PROCEDURE

[DoYourThing: PROCEDURE[with: Card] RETURNs[again: BOOLEAN], startAt: [1..52]];

-- the interface
NewGame: PROCEDURE[PlayGames: PROCEDURE [Shuffle, DealCard, Top/s, YouScan]];
END.

The PROGRAM module:

DIRECTORY DealerDefs: FROM "DealerDefsFile" USING [
Card, DealCard, Shuffle, TopEs, YouScan];

TheDealer: PROGRAM EXPORTS DealerDefs =
BEGIN
NewGame: PUBLIC PROCEDURE

[PlayGames: PROCEDURE [Shuffle, DealCard, Top/s, YouScan]] =
BEGIN
deck: ARRAY [1..52] OF Card;
n: INTEGER;
-- local procedures for NewGame:
FreshDeck: Shuffle =

BEGIN n +- 0; END;
Deal: DealCard = \

BEGIN RETURN[IF (n+-n+1)<53 THEN deck[n] ELSE Card [joker, none]]; END;
Where/am: Top/s = BEGIN RETURN[IF n<52 THEN n+1 ELSE 53]; END;
Peek: YouScan =

BEGIN
i: [1..52];
onward: BOOLEAN +- TRUE;
FOR i IN [startAt .. 52] WHILE onward

DO onward +- DoYourThing[with: deck[i]]; ENDLOOP;
END;

-- statements for NewGame:
FreshDeck[];
PlayGames[FreshDeck, Deal, Where/am, Peek];
END;

END.

TheDealer is a module designed to support an abstract data structure, a card deck, and a set
of operations on it, the only operations· which can alter the deck. It does not know or care
about the card games played by those using the data structure. The Dealer protects its decks
of cards from outside intervention through the usc of local procedures.

NewGame is the outer procedure for local procedures FreshDeck, Deal, Wherelam, and Peek.
When invoked it prepares a fresh deck and calls PlayGames (a procedure that the calling
program provides as an argument), passing arguments that are also procedure values (for the
local procedures). In effect then, NewGame provides two facilities to PlayGames:

(1) The ability to invoke certain local procedures which perform "card-handling"
services.

Mesa Language Manual 81

(2) A specific "deck of cards" for those local procedures to use (Le., the current
values of local variables deck and n).

For instance, PlayGames may invoke Deal to receive the top card from the deck. If it
invokes Deal again, the next card is obtained, and so forth. PlayGames is the only procedure
that "deals" from the given deck; no one else is able to deal from this deck.

Of course, PlayGames may choose to pass that local procedure value to some other
procedure, PlayDrawPoker for instance. This would allow it to invoke Deal, and it in turn
could pass that value to still other procedures, say DrawNewCards. The set of procedures
(NewGame, PlayGames, PlayDrawPoker, DrawNewCards, etc.) that have access to the
original local' procedure values form a "complex", all working with the same deck.

Eventually, thts complex concludes 'its work, and PlayGames returns to NewGame. Since
NewGame has 'nothing left to do, its activation terminates and the frame disappears. This
means that all of NewGame's local variables cease to exist -- including the local procedures!
(Anyone still holding procedure values for the original local procedures is in a precarious position. If those
val ues are called, the consequences are undefined: "All bets are off. ")

Let's go back to the complex and suppose NewGame is invoked again, from somewhere
within that complex (i.e., NewGame is called recursively). Then an entirely new game
begins -- with a second deck and different local procedure values. (When these values are
called, they invoke local procedures that can operate only on the second deck.) As this game
progresses, a second complex is formed, does its work, and eventually concludes as described
before.

Note that the second complex cannot directly access the original deck. (For example, no
procedure in the second complex could assign a value to n in the first complex.) The second
complex may only affect the original deck by calling the original local procedure values. It
can't even do that unless the first complex made those values accessible to the second one.
Notice that the first complex exercises full control here; it may choose to allow access to all,
none, or just some of those procedure values.

Peek is an interesting procedure: It permits another (arbitrary) procedure to peek at the
cards, one at a time, without "disturbing" the deck. Peek is an example of a procedure
sometimes called an enumerator of a data structure. Look at Peek in the example while
reading the following explanation:

Suppose a game is in progress and Peek is invoked. It repeatedly calls DoYourThing, passing
it the value of each card in the deck (starting at position startAt). In effect, Peek "walks
through" the deck calling some unknown procedure to process the card values. That
procedure may stop Peek by returning the result FALSE; otherwise Peek "walks" to the end of
the deck.

Peek neither knows nor cares what actual procedure is invoked when DoYourThing is called.
(That's the point of this exercise.) Separate invocations of Peek may use different procedure
values. for parameter DoYourThing. A few of the possibilities would be:

A procedure that looks at cards yet to be dealt in order to optimize some game
playing strategy [a high -sounding way of saying it cheats].

A procedure that peeks at the deck before cards are dealt [and asks for a fresh deck
if it thinks it may lose].

A procedure that looks at cards already dealt [trying to figure out how you managed

82 Chapter 5: Procedures

to win the last game].

A procedure that displays the hands dealt for a game it found interesting [it finally
won and wants to gloat].

TheDealer module shows two levels of nesting: NewGame is nested within the module, and
FreshDeck, Deal, etc. are nested within NewGame. Further levels are possible; for example,
FreshDeck might declare its own actual procedures. It would then be the outer procedure for
these new local procedures.

In a sense, all procedures are "local" procedures. They are either local to some outer
procedure or local to some module (recall that static variables are local to the module
declaring them). Therefore, Mesa treats all local procedures the same regardless of their level
of nesting. (The level is important only to the extent that it influences name scopes, a topic
covered in the next section.) The important issues in the general case are outlined below:

1. A local procedure is a local variable and represents an actual procedure declared by
some outer procedure. Like all local variables, it does not exist until its host (Le., the
outer procedure) is invoked. In other words, an activation of its host is required.
(Note that a local procedure cannot be invoked until that "outer" activation does
exist.)

2. When the host is invoked, a procedure value (for the local procedure in this "outer"
activation) becomes available. If the host is invoked again, a different procedure
value (for the local procedure in that "outer" activation) becomes available.

3. A procedure value has two parts. One part contains data for invoking the procedure
(indicating the location of the code body). The second part specifies which
activation contains the local procedure (this data provides a link to the host's frame
for accessing non-local variables).

4. Whenever a given procedure value is called, Mesa invokes that local procedure and
"ties" the new frame to its host's frame (using the second part of the procedure
value).

5. Subject to the rules of scope, a local procedure may access variables in these specific
frames:

Its own frame -- thus, a local procedure may access its own locals.
The frame to which its own frame is "tied" -- it may then access the host's locals.
The frame to which that frame is "tied" -- it may also access locals of the next
outer procedure, if there is one.

This sequence ends with the (module) frame to which the outermost procedure's
frame is "tied" -- it may access the module's static variables. A frame for the
module is generated when that module is instantiated by a NEW operation (sec.
7.6.1).

5.6.1. Scopes defined by procedures

Each actual procedure defines a new scope for names declared in that procedure. Such
names represt:lll variables that are local to the actual procedure. The scope for a local
variable is such that:

(1) the local variable is unknown outside of that actual procedure, and

(2) a non-local variable is unknown inside the actual procedure if its name matches
some local variable's name.

Mesa Language Manual

In the following example. scopes for the procedures are indicated by comments:

SomeModule: PROGRAM =
BEGIN
var: INTEGER;

-- the var of INTEGER type is used here
Ou(erProc: PROCEDURE =

BEGIN
var: BOOLEAN;

LocalProc:' PROCEDURE =
BEGIN
var: CHARACTER;

END;

END;

-- the var of BOOLEAN type is used here

-- the var of CHARACTER type is used here

-- the var of BOOLEAN type is used here

-- the var of INTEGER type is used here
END.

83

84

CHAPTER 6.

STRINGS, ARRAY DESCRIPTORS,
RELATIVE POINTERS, AND VARIANT RECORDS

This chapter introduces two new data types, strings and array descriptors, discusses relative
pointers, and also extends the definition of record types to include variant records.

In Mesa, the type STRING is really "POINTER TO StringBody"; a StringBody contains a length
field indicating how long the string currently is, a maxlength field giving the length of that
array, and a packed array of characters.

An array descriptor describes the location and length of an array. For ordinary arrays, these
are fixed at compile-time. Values of array descriptor type, however, have location and length
items that can vary. These array descriptors may represent arrays that are dynamic, but they
may also represent ordinary arrays. For efficiency, users often pass array descriptors to
procedures instead of passing the entire arrays themselves.

Relative pointers require the addition of a base pointer to obtain an absolute pointer. This
allows data structures with internal references that are independent of memory location.

Variant records contain a set of common fields and a variant portion with a specified set of
different possible interpretations.

• 6.1. Strings

In Mesa, a string represents a finite, possibly empty, sequence of characters. Associated with
a string are the following:

length the number of characters represented. The length may vary at run-time
(except for constant strings).

maxlength the maximum length. This guarantees that the string is finite. A string's
length may vary from zero up to its maximum length.

text an indexable sequence of characters.

STRING is a predefined type in Mesa. Each program contains the following relevent pre
declarations:

STRING: TYPE = POINTER TO StringBody;
String/Jody: TYPE = MACHINE DEPENDENT RECORD [

length: CARDINAL,
maxlength: --read only-- CARDINAL,
text: PACKED ARRAY [0 .. 0) OF CHARACTER];

Mesa Language Manual 85

Suppose s is a STRING variable. Then s.length and s.maxlength refer to the first two
components of the string structure currently pointed to by s. The STRING type is "built into"
the Mesa language so that the ith character of the text array, s.text[i], may be abbreviated
sCi]. The index type of text in the declaration is used only to specify a starting index of O.
It is better to think of a particular STRING as having an index type [O .. s.maxlength).

The value of s.maxlength is assigned when a string structure is created and is a constant: it
may not appear as a LeftSide in the user's program. However, s.length can be used as a
LeftSide. In fact, the user is responsible for setting and changing the length when
appropriate (i.e., s.length is meant to reflect the "meaningful" length of the character
sequence). Suppose, for instance, that s initially points to an empty string. Then the user
might append characters as follows:

s[s.lengthJ. +- anotherChar; s.le.ngth +- s.length+l;

Actually, characters are seldom appended in this manner. The recommended practice is to
use string-handling procedures provided by the Mesa system. These are documented in the
Mesa System Documentation and in appendix C of this manual.

Since strings in Mesa are actually pointers to string bodies, several strings may refer to the
same body. Therefore, a change to that structure would manifest itself in all such strings.
Keep the following in mind:

When an item has type STRING, think "string-pointer".

6.1.1. String literals and string Expressions

String literals are written by enclosing the desired sequence of characters in quotation marks,
" " A quotation mark within a string constant is represented by a pair of quotation marks
(""). Here are some examples of string literals:

liThe first example contains
some embedded
carriage-returns."
"A quote mark C) isn't a quotation mark(ffll) ... "

"!"
tlU -- an empty string

A string literal is an Expression of type STRING. Its value is a constant pointer to a constant
StringBody in which:

length = number of characters given, and
maxlength = length

The fundamental operations are defined for string Expressions. They deal with them as
pointer values; e.g., +- assigns one string pointer to another string pointer, = compares two
strings for the same pointer value, and # compares two strings for different pointer values.

If exp is a string ExpreSSion, then exp.length and exp.maxlength are Expressions of type
CARDINAL, exp.text is an Expression of type PACKED ARRAY [0 .. 0) OF CHARACTER, and exp[i] is
an Expression of CHARACTER type. The two forms exp[i] and exp.text[i] are equivalent.

A fine point:

The body of a string literal is ordinarily placed in the global frame of the module in which the literal
appears (it is copied from the code when the module is STARTed). Pointers to that body (the actual
STRING values) can then be used freely with little danger that the body will move or be destroyed.

86 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

Unfortunately, this scheme can consume substantial amounts of space in the (permanent and unmovable)
global frame area.

If a string literal is followed by 'L (e.g., "abc"L), a copy of the string body is moved from the code to
the local frame of the smallest enclosing procedure whenever an instance of that procedure is created.
As a coro\1ary, the space is freed and the string body disappears when the procedure returns. This
allows smaller global frames, but it is important to insure that pointers to local string literals are not
assigned to STRING variables with lifetimes longer than that of the procedure. Programmers should
avoid using local string literals until performance tuning is necessary (except perhaps in calls of
straightforward output procedures).

6.1.2. Declaring strings

String variables are declared like ordinary variables, but there is one additional form of
initialization (for strings only):

Initialization ::= ... +- [Expression] I = [Expression]

The Expression must be a compile-time constant Expression of type CARDINAL. At run -time,
Mesa creates a string structure with maxlength equal to this Expression's value, length equal
to zero, and text un initialized. The declared string variable is then set to point to this string
structure. If an IdUst is declared with this form of initialization, all of the listed variables
initially point to the same string structure. It is recommended that this "feature" be
avoided.

Some examples:

currentLine: STRING +- [256];
str!ngBuffer: STRING +- [stringMax+someExtra];

This would cause allocation of two string structures. The string current Line would point to
one whose maxlength is 256. The string stringBuffer points to the other string structure.
(Note that stringMax and someExtra must be compile-time constants.) It is legal to assign
new pointer values to these string variables; this is not fixed form initialization.

The following are examples of fixed form string initialization:

whatWasThat: STRING = "Eh?";
goofed: STRING = whatWasThat;

In this case, Mesa would allocate and fill in a string structure for string constant "Eh?".
whatWasThat and goofed, would be compile-time constants having the same string value: i.e.,
they would bQth point to the same string structure. In fact, any other references to the same
string literal will point to the same string structure. For example:

huh: STRING = "Eh?";

String variables can be declared with +- initialization or without any initialization:

stdErrorM sg: STRING +- "It seems that you have made a mistake."
firstReply, reply: STRING +- "Yes";
old Buffer, newBuffer: STRING;

IF quickDialog THEN stdErrorMsg +- whatWasThat;

IF reply[O]='? THEN
IF firstReply[O]='? THEN HelpaLot
ELSE HelpaLitlle;

•

Mesa Language Manual 87

oldBu//er .. newBu//er .. stringBu//er1;

IF stringBu//erl#stringBu//er2 THEN newBu//er .. stringBu//er2;

A fine point:

The Mesa system contains procedures you should use when allocating blocks of data. These procedures
are helpful for applications involving an arbitrary number of strings or strings of arbitrary length. The
procedures are documented in the Mesa System Documentation.

6.1.3. Long strings

A STRING is just a pointer, so LONG STRING is also a predefined type:

LONG STRING: TYPE = LONG POINTER TO StringBody;

It is perhaps curious to note that declaring a LONG string says nothing about its actual or
potential length.

6.2. Array descriptors

A full description of an array contains several items of information. Consider a typical
array declaration:

schedule: ARRAY [1..999] OF Date;

The following things are known about schedule:

base = @schedule[l],
index type = INTEGER,
minlndex = I,
length = 999,
component type = Date

All of these items except base are compile time constants, and the value of base is the
address of a fixed place in the frame, chosen by the compiler. Mesa provides a mechanism
for dynamic arrays, where the base and length can vary at run-time. The implementation
does not allow for a variable minlndex. Dynamic arrays are implemented by means of Array
descriptors.

6.2.1. Array descriptor types

An array descriptor type is constructed much like an array type:

ArrayDescriptorTC ::= DESCRIPTOR FOR ArrayTC I
DESCRIPTOR FOR PackingOption ARRAY OF

TypeSpecification

PackingOption ::= empty I PACKED

For example,

events: DESCRIPTOR FOR ARRAY [1..999] OF Date;

If the second form, where no IndexType is given, the index type is an integer sub range
starting at zero.

88 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

A value for events is an array descriptor (a record -like object containing items similar to
those described previously for schedule except that the base is not fixed). The next
declaration specifies an array descriptor in which the base and the length are variable:

history: DESCRIPTOR FOR ARRAY OF Date;

Indexing can be used to access components of events and history as if they were actual arrays
instead of array descriptors (see sec. 3.2.1). Since no index type is specified for history, it
has an indefinite index type starting at zero with no specified upper bound.

Two array descriptor types are equivalent if they specify equivalent types for their array
elements and if they have equivalent index-sets (or if both index-sets are unspecified). Note
that DESCRIPTOR FOR ARRAY [0 .. 2] OF T and DESCRIPTOR FOR ARRAY [1..3] OF T are different
types, even thqugh the lengths and ~lement types are the same. Expressions of equivalent
descriptor types may be compared for equality (= or #).

The rules for assignment are somewhat more relaxed. If al has type DESCRIPTOR FOR ARRAY

OF T, and a2 has type DESCRIPTOR FOR ARRAY [0 .. 10) OF T, then the assignment al +- a2 is
legal, but the assignment a2 +- al is not.

In any case, for assignments and comparisons, both operands must be array descriptors, and
it is the descriptors themselves, not the arrays that they describe which are the values
operated on. It would be an error to attempt to assign events to schedule because the first is
a descriptor and the second is an actual array.

There are three function -like operators relevant to array descriptors: DESCRIPTOR, BASE, and
LENGTH. DESCRIPTOR returns an array descriptor result and has three distinct forms which are
treated syntactically as built in functions:

BuiltinCall .. - ... I
DESCRIPTOR [Expression] I
DESCRIPTOR [Expression , Expression] I
DESCRIPTOR [Expression , Expression , TypeSpecification] I
BASE [Expression] I
LENGTH [Expression]

The first form takes an argument of some array type; e.g.,

events +- DESCRIPTOR[schedule];

The result is an array descriptor for schedule. The second form needs two arguments:

base: POINTER TO UNSPECIFIED
length: CARDINAL

-- address of the minlndex component
-- number of components

This form may only be assigned to an array descriptor variable which was declared without
an explicit index type.

In those rare situations where the compiler cannot deduce the component type of the
descriptor from context, a form of the DESCRIPTOR construct is provided which takes three
arguments. The third one is a TypeSpecification, the component type.

The following example provides a fresh array of 64 Dates:

Allocate: PROCEDURE[BlkSize] RETURNS[POINTER TO UNSPECIFIED];

history +- DESCRIPTOR[Allocate[64*slzE[Date]], 64];

Mesa Language Manual 89

The expressions BASE[] and LENGTH[] take one argument (of array descriptor or array type).
BASE yields the base of the described array, and LENGTH yields its length. For example:

events +- DESCRIPToR[schedule]; -- describe the entire array
events +- DESCRIPTOR[BAsE[schedule], 5]; -- describe the first 5 elements

There is no special form for constructing DESCRIPTORS for packed arrays. The PACKED

attribute is deduced from context. In the two or three argument form of DESCRIPTOR for
packed arrays, the second argument (the LENGTH) is the number of elements.

It is usually more efficient to pass array descriptors as arguments, rather than arrays. Since
arguments are passed by value, an array argument causes a copy of the entire array to be
made twice (once to put it into an argument record, and once to copy it into a local variable
in the called procedure). The next example shows a case in which array descriptors must be
used, since passing by value would not work:

SortlnPlace: PROCEDuRE[Table]; -- sorts in situ
Table: TYPE = DESCRIPTOR FOR ARRAY OF INTEGER;
thisArray: ARRAY [O •. this) OF INTEGER;
thatArray: ARRAY [O .. that) OF INTEGER;
anyTable: Table +- DESCRIPTOR[thisArray];

SortlnPlace[anyTable]; -- sorts thisArray

SortlnPlace[DEscRIPToR[thatArray]]; -- sorts thatArray

A StringBody (sec. 6.1) contains an array, text, of characters. One must be careful when
constructing a DESCRIPTOR for this array. Recall thaL the bounds of text are [0 .. 0). This
declaration is used since the actual length of text varies from STRING to STRING. For this
reason, the "one argument" form should not be used to construct a DESCRIPTOR for text.

textarray: DESCRIPTOR FOR PACKED ARRAY OF CHARACTER;
s: STRING;

textarray +- DESCRIPTOR[s.text]; -- LENGTH[textarray] is incorrect
textarray +- DESCRIPTOR[BASE[s.text],s.length]; -- correct

6.2.2. Long descriptors

The BASE portion of an array descriptor is essentially a pointer. Just as the language allows
the type LONG POINTER, it also allows the type LONG DESCRIPTOR. The syntax is
straightforward:

TypeConstructor

LongTC

TypeSpecification

I LongTC

•. - LONG TypeSpecification

::= ... I ArrayDescriptorTC

All the standard operations on array desciptors (indexing, assignments, testing -equality,
LENGTH, etc.) extend to long array descriptors. The type of BAsE[desc] is long if the type of
desc is long. The LENGTH of an array descriptor is a CARDINAL, whether it is LONG or short.

Long array descriptors are created by applying DESCRIPTOR[] to an array that is only
accessible through a long pointer, or by applying DESCRIPTOR[,] or DESCRIPTOR[,,] to
operands the first of which is long. Alternatively, when a short array descriptor is assigned
to a long one, the pointer portion is automatically lengthened. Consider the following
examples:

90 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

d: DESCRIPTOR FOR ARRAY OF T;
dd: LONG DESCRIPTOR FOR ARRAY OF T,'
i, n: CARDINAL; .
pp: LONG POINTER TO ARRAY [0 .. 10) OF T;

dd +- DESCRIPTOR[ppt];
dd +- DESCRIPTOR[pp, 5];
dd +- d;
pp +- BASE[dd];
n +- LENGTH[dd];

6.3. Base and relative pointers

-- descriptor for the entire array
-- descriptor for half of the array
-- automatic lengthening
-- BASE of long is long
-- LENGTH is always a CARDINAL

Mesa 4.0 provides relative pointers, i.e., pointers that are relocated by adding some base
value before they are dereferenced. Relocation has the further effect of mapping a value
with some pointer type into a value with a possibly different pointer type. Relative pointers
are expected to be useful in such applications as the following:

Conserving Storage. Relative pointers can adequately identify objects stored within a
zone of storage if the base of that zone is known from context. If the zone is of
known and relatively small maximum size, fewer bits are needed to encode the.
relative pointers. Since a relative pointer and the corresponding base value can have
different lengths, relative pointers can be shorter than absolute pointers to the same
objects. Overall storage savings are possible when all the base values can be contained
in a small number of variables shared among many different object references.

Providing Movable Storage Zones. If all interobject references within a storage zone
are encoded as zone-relative pointers, the zone itself can be organized to contain only
location-independent values. Moving the zone, possibly via external storage, requires
only that a set of base pointers be updated.

Designating Record Extensions. Sometimes it is convenient to extend a record by
appending information (especially variable-length information) to it. Pointers stored
in, and relative to the base of, the extended record provide type-safe access to the
extensions.

6.3.1. Syntax for base and relative pointers

The syntax for BASE and RELATIVE pointer type constructors is as follows:
PointerTC ::= Ordered BaseOption POINTER Optionallnterval PointerTaii

BaseOption ::= empty II?ASE

TypeConstructor ::= ... I RelativeTC

RelativeTC ::= Typeldentifier RELATIVE TypeSpecification

In a PointerTC, a non empty Optionallnterval declares a subrange of a pointer type, the values
of which are restricted to the indicated interval (and can potentially be stored in smaller
fields). Normally, such a subrange type should be used only in constructing a relative
pointer type as described below, since its values cannot span all of memory.

The BaseOption BASE indicates that pointer values of that type can be used to relocate
relative pointers. Such values behave as ordinary pointers in all other respects with one

Mesa Language Manual 91

exception: subscript brackets never force implicit dereferencing (see below). The attribute
BASE is ignored in determining the assignability of pointer types.

A RelativeTC constructs a relative pointer or relative array descriptor type. The
Typeldentifier must evaluate to some (possibly long) pointer type which is the type of the
base, and the TypeSpecification must evaluate to a (possibly long) pointer or array descriptor
type.

Relocation of a relative pointer is specified by using subscript-like notation in which the
type of the "array" is the base type and that of the "index" is the relative pointer type. Thus
if base is a. base pointer and offset is a relative pointer (to Tr), the form

base[offset]

denotes a pointer (to Tr), and the value of that pointer is LOOPHoLE[base]+offset.

6.3.2. A relative pointer example

Consider the BinaryTree example from section 5.5. In this program, an ordered table is
stored as a binary tree. The tree is stored in the following Mesa data structure:

Node: TYPE = POINTER TO BinaryNode;
BinaryNode: TYPE = RECORD[value: INTEGER, count: CARDINAL, left, right: Node];

Suppose that the BinaryNode's are allocated from a contiguous region of memory. If the
programmer now wishes to put the current state of the ordered table on secondary storage, it
is not sufficient to simply write out the region of memory containing the BinaryNodes's.
This is because the data would make sense only if read back into exactly the same place in
memory, a restriction that is difficult to live with. The difficulty stems from the absolute
pointers used in the nodes. The problem can be solved by changing the definition of Node.
If the BinaryNode's are allocated from a region .of type TreeZone, let

TZHandle: TYPE = BASE POINTER TO TreeZone;
Node: TYPE = TZHandle RELATIVE POINTER TO BinaryNode;

The procedure FindValue would be written as follows:

Null Node: Node = <some value never allocated>;
tb: TZHandle;
root: Node +- NullNode; -- list is initially empty

FindValue: PROCEDURE[val: INTEGER] RETURNS[inTree: BOOLEAN. node: Node] =
BEGIN
nextNode: Node +- root;
IF root=NullNode THEN RETURN [FALSE. Nul/Node];
UNTIL nextNode=NullNode DO

node +- nextNode;
nextNode +- SELECT val FROM

< tb[node].value => tb[node].left,
> tb[node].value => tb[node].right.
ENDCASE => Nul/Node;

END LOOP;
RETURN[val=tb[node]. value, node];
END;

92 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

The other procedures of BinaryTree can easily be rewritten to use the new definition of
Node. The compiler would aid in the translation, since any unrelocated dereferencing of a
Node would be a compile-time error.

This new implementation of BinaryTree has the feature that the TreeZone could be moved
around in memory, or written and read on secondary storage, and only the base pointer tb
need be updated to reflect the new position of the TreeZone.

6.3.3. Relative pointer types

An important topic to consider is the interaction of the relative pointer constructs with the
type machinery of Mesa.

A RelativeTC constructs a relative pointer type whenever both the Typeldentifier and the
TypeSpecification evaluate to pointer types. Let a RelativeTC be

Typeldentifier RELATIVE TypeSpecification,

where

Typeldentifier is of type

[LONG] BASE POINTER [SubRangeb] TO T b '

TypeSpecification is of type

[LONG] [ORDERED] [BASE] POINTER [SubRanger] TO Tr '

and the brackets indicate optional attributes. Relative pointer values must be relocated
before, they are dereferenced. The relocation yidds an absolute pointer with type

[LONG] [ORDERED] [BASE] POINTER TO Tr '

where the result is LONG if either component is, any sub range restrictions are dropped, and
the basing and ordering attributes are inherited from the TypeSpecification. In essence, the
relocation takes a POINTER TO Tb and a RELATIVE POINTER TO Tr and produces a POINTER TO Tr,
perhaps with some modification of range-related attributes also.

The base type must be designated by an identifier (rather than a TypeSpecification)
to avoid syntactic ambiguities. Note that the form

LONG Typeldentifier RELATIVE TypeSpecification

does not have the effect of lengthening the base type and furthermore is always in
error, since LONG cannot be applied to a relative type. The type designated by the
TypeSpecification can be lengthened (to give a relative long pointer) using the form

Typeldentifier RELATIVE LONG TypeSpecification .
~

If base and offset are base and relative pointers respectively, note that base[offset] is not a
variable; typical variable designators are base[offset]t or base[offset].field. (Tn addition,
the usual rules for implicit dereferencing apply in, for example, an Open Item). R.elocation
prior to dereferencing is mandatory; offsett, offset.field, etc. are compiler-time errors.

Relative pointers are never widened automatically. With respect to other operations
(assignment, testing equality, comparison if ordered, etc.), relative pointers behave like
ordinary pointers. In particular, the amount of storage required to store such a pointer is
determined by the TypeSpecification. '

Mesa Language Manual 93

Some fine points:

In some applications, there is no obvious type for the base pointer, i.e., it might not be possible or
desirable to de'scribe a storage zone using a Mesa type declaration. In such cases, a declaration such as

BaseType: TYPE = BASE POINTER TO RECORD [UNSPECIFIED]

generates a unique type that will not be confused with other base types.

The declaration of a relative pointer does not associate a particular base value with that pointer, only a
basing type. Thus some care is necessary if multiple base values are in use. Note that the final type of
the relocated pointer is largely independent of the type of the base pointer. Sometimes this observation
can be used to help distinguish different classes of base values without producing relocated pointers with
incompatible types. Consider the following declarations:

baseA: BaseA;
baseB: BaseB;
Of/setA: TYPE = BaseA RELATIVE POINTER TO T;
O//setB: TYPE = BaseB RELATIVE POINTER TO T;
of/setA: Of/setA;
o//setR: O//seIB .

If RaseA and RaseR are distinct types (see the preceding point), so are Of/setA and O//setR.
Expressions such as baseA[o//setR] and of/setA 4- o//setR are thcn errors, but baseA[o//setA]t and
baseR[o//setB]t have the same type (T).

The base type must have the attribute BASE. Conversely, the attribute BASE always takes precedence in
the interpretation of brackets following a pointer expression. Consider the following declarations:

p: POINTER TO ARRAY IndexType OF ... ;
q: BASE POINTER TO ARRAY IndexType OF ...

The expression pee] will cause implicit dereferencing of p and is equivalent to pt[e]. On the other
hand. q[e] is taken to specify relocation of a pointer, even if the type of e is IndexType and not an
appropriate relative pointer type. In such cases, the array must (and always can) be accessed by adding
sufficient qualification, e.g., qt[e]; nevertheless, users should exercise caution in using pointers to arrays
as base pointers.

Mesa currently supplies no special mechanisms for constructing relative pointers. It is
expe..-:ted that such values will be created by user-supplied allocators that pass their results
through a LOOPHOLE or from pointer arithmetic involving LOOPHOLES.

6.3.4. Relative array descriptors

A RelativeTC constructs a relative array descriptor type whenever the Typeldentifier evaluates
to a pointer type and the TypeSpecification evaluates to an array descriptor type. Let a
RelativeTC be

Typeldentifier RELATIVE TypeSpecification.

where

Typeldentifier is of type

[LONG] BASE POINTER [SubRangeb] TO T b •

TypeSpecification is of type

[LONG] DESCRIPTOR FOR ARRAY T. OF T
t c •

and the brackets indicate optional attributes. Relative array descriptor: values must be
relocated before they are indexed. The relocation yields an absolute ~escriptol' with type

[LONG] DESCRIPTOR FOR ARRAY Ti OF Tc •

94 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

where the result is LONG if either component is.

Relative array descriptor types are entirely analogous to relative pointer types; indeed, values
of such types can be viewed as array descriptors in which the base components are relative
pointers. Note the following:

In the constructor of a relative array descriptor type, the TypeSpecification must
evaluate to a (possibly long) array descriptor type.

In the notation introduced above, a reference to an element of the described array has
the form

base[offset][i]

where i is the index of the element.

Currently, relative array descriptors must be constructed using LOOPHOLES.

6.4. Variant records

Section 3.4 discussed "ordinary" record types, where every record object of a single type has
the same number and types of components. Such records are not always adequate for
programming applications. For example, in the symbol table for a compiler, all the records
could have certain components in common: some standard linkage, a string representing the
symbol, and a category field indicating whether the symbol stands for an operator, constant,
variable, label, etc. Different categories of symbols would then need further components that
were not the same in all the records.

Variant records are designed for such applications: a variant record consists of an optional
common part followed by a variant part. The common part contains components that are
common to all records of this type. The variant part contains components that apply to
particular variants of the record. The types of these components are specified for each
possible variant when declaring the record type.

The specification of a variant record type has the outward appearance of an ordinary record
specification: REcoRo[field list]. If the record has any common components, these are
specified first; then the variant part is specified. (The next section shows how this is done.)

The variant part really represents a set of alternative extensions to the common part. The
record type as a whole can be viewed as follows:

Common Part Variant Part

Field list for the common part ---- 1---- field list for variant 1
1---- field list for variant 2
1_--- ...
1---- field list for variant n

Each individual variant is identified by one (or more) adjectives. Suppose defined record
type DeRec is declared to have a set of variants named class I, class2, and class3. Then
variables could be declared as follows:

someClass: DeRec; -- sometimes one class, sometimes another
firstClass: class] DeRec; -- strictly a class] DeRec
secondClass: class2 DeRec; -- strictly a class2 DeRec
thirdClass: class3 DeRec; -- strictly a class3 DeRec

Mesa Language Manual 95

Types like class3 DeRec are bound variant types. DeRec and class3 DeRec are both type
specifications, but the latter is bound to a particular variant. A variable which is declared as
a bound variant contains a definite variant; these components can be accessed as if they were
common components.

The field list for any variant may, itself, have a variant part (and a variant in that part may
have its own variant part, etc.). It is possible to have a type like small class3 DeRec (Le., the
field list for the class3 variant has a variant part which, in turn, has a small variant).

The record, someClass, presents a problem. During the course of execution, someClass
might contain a class!, class2, or class3 variant record. (Mesa allocates enough storage to
hold the largest variant specified for DeRec type records.) The problem is to determine
which variant applies at a given time.

To decide which kind of variant a record object contains, some form of tag is needed. This
tag can be specified as part of the record, in which case every such record object will contain
an "actual tag" denoting the variant it represents. Instead of storing a simple tag, it may be
possible to "compute" the tag value whenever it is needed (possibly by inspecting some values
in the common part). Such computed tags are much less safe than explicit ones. For
instance, you could refer incorrectly to a "class2" component of someClass when it held a
class! variant record. The result would be undefined.

It is possible to construct an entire variant for the variant part (sec. 6.4.3) by qualifying a
constructor (for that variant) with the variant's name (an adjective, in other words). Suppose
for example that DeRec has common components cl and c2 followed by a variant part
named vp, and that the class! variant has components x and y. Then the record constructor
below constructs an entire class! variant:

DeRec[cl: vall, c2: val2, vp: class![x: val3, y: vaI4]]

Components of an unbound variant can be accessed using the record's tag value (whether
actual or computed). A variation of SELECT beginning with the keyword WITH is used for this
purpose (sec. 6.4.4). An example follows (given that DeRec has a computed tag):

WITH someC/ass SELECT currentTag FROM

classl => Stmt-l; -- someClass is a bound classl variant here
class2 => Slmt-2; -- someClass is a bound class2 variant here
class3 => Stmt-3; -- someClass is a bound class3 variant here
ENDCASE.;

6.4.1. Declaring variant records

Variant records, like ordinary records, are usually declared in two steps:

identifier: TYPE = RecordTC ; define record type

IdUst : Typeldentifier Initialization ; declare the records

Initialization for variant records (sec. 6.4.3) is similar to that for ordinary records. The (now
complete) definition of RecordTC follows. 1L subsumes the partial definition given in
section 3.4.2 and includes machine-dependent record types:

96 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

RecordTC .. - MachineDependent RECORD [VariantFieldList]

MachineDependent .. - empty I MACHINE DEPENDENT .. -
VariantFieldList .. - Common Part identifier : VariantPart I .. -

VariantPart I
NamedFieldList
UnnamedFieldList

CommonPart .. - empty I .. -
NamedFieldList •

VariantPart .. - SELECT Tag FROM .. -
VariantList
ENDCASE

Tag .. - identifier : TagType I .. -
COMPUTED TagType I
OVERLAID TagType

TagType .. - TypeSpecification I • .. -
VariantList .. - Variant I VariantList Variant
Variant .. - IdList => [VariantFieldList] • I

IdList = > NULL ,

Notes: The TypeSpecification in TagType must be equivalent to some enumeration or
enumerated subrange type. In the equations shown above for VariantFieldList and Tag.
"identifier :" may be followed by an Access (e.g., PUBLIC or PRIVATE), discussed in sec. 7.4. The
only kind of CommonPart which can precede a VariantPart is a NamedFieldList. If there is no
Common Part, ~he Variant Part itself need not be named. ,

The following example is more baroque than anything likely to appear in real programs. Its
only virtue is that it shows many of the possible variations resulting from the above syntax
definitions. In fact, it would be worthwhile parsing it yourself using the definitions. The
example might be used to describe the various "accounts" in a bank; there would supposedly
be a table of such entries:

Service: TYPE = {savings, checking, depositBox};
41ccount: TYPE = RECORD

[
number: CARDINAL,
specifics: SELECT type: Service FROM

savings => [term: [30 .. 365], intRate: PerCent, balance: Money],
checking =>

[
. balance: Money,
monthlyFee: SELECT COMPUTED {free, notfree} FROM

notfree => [monthlyFee: Money].
free => NULL.
ENDCASE

].
depositBox => Uee: Money, dueDate: Date, paid: BOOLEAN].
ENDCASE -- no variant can be attached to the ENDCASE

];

..

Each arm of a Variant Part specifies a single variant, even if a list of adjectives precedes the
"= >". An arm may specify NULL (as in the case of a free checking Account) if that variant
needs no components of its own. Note that all the arms, including the final one, must end
with a comma.

Mesa Language Manual 97

The adjectives are identifier constants from some enumeration. Their type can be given
explicitly, or implicitly as an enumeration whose members are the adjectives used in the
variant part. In any case, the enumerated type is the "tag's" type for a variant part. There
are three possible forms for the tag, and they represent:

an actual tag with an explicit enumerated type (e.g., type in Account),
an actual tag implicitly defined (e.g., easyTag in NoCommoll below), or
a computed tag (e.g., the monthly Fee for a checking Account).

If an actual tag is used, it is allocated in the common part of the record and may be accessed
and used like any other common component, but it may not appear as a LeftSide, since that
would compromise the type-safeness of such variant records. Not all possible values from

. the tag's enumeration type have to be used in a variant part; some may be omitted.

"*" is used to indicate that the type of an actual tag is being defined implicitly by the set of
adjectives naming the variants in that tag's variant part. For example,

NoCommon: TYPE = RECORD

[-- no common part
variantPart: SELECT easyTag: * FROM

=> [campI: INTEGER],
j, k => [x,. campI: STRING],
ENDCASE

];

The implicit type of easyTag is {iJ,k}; note: you can't declare variables of the same type as
easyTag.

Computed tags are always unnamed. In fact, they are not really tags at all: when one needs
to know which variant a record with a computed tag contains, some computation must be
done. Exactly how the variant "tag" is computed is strictly up to the program using it. For
instance, to determine whether a checking Account was free or not, the program might look
at some property of the Account number (such as whether it was odd or even).

An OVERLAID tag is a special case of a computed tag. The differences occur in the ways in
which fields of the record are accessed. See section 6.4.
Some fine points:

Special care must be exercised when declaring a MACHINE DEPENDENT variant record. Recall that
MACHINE DEPENDENT records can contain no "holes" between fields. For variant records, this leads to
the following rules:

If the minimum amount of storage required for each variant is a word or less, each variant
must be "padded" to occupy the same number of bits as the longest.

Otherwise, each variant mllst occupy an integral number of words.

6.4.2. Bound variant types

The declaration of a variant record specifies a type, as usual. This is the type of the whole
record. The variant record type, itself, defines some other types: one for each variant in the
record. Consider the following example: .

98 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

StreamType: TYPE = {disk, display, keyboard};
StreamHandle: TYPE = POINTER TO Stream;
Stream: TYPE = RECORD

[
Get: PROCEDURE[StreamH andl e] RETURNS[I tem],
Put: PROCEDuRE[StreamHandle, Item],
body: SELECT type: StreamType FROM

disk =>
[
file: FilePointer,
position: Position,
SelPosition: PROCEDURE[POINTER TO disk Stream, Position],
buffer: SELECT size: ... FROM

].

short => [b: ShortArray].
:long => [b: LongArray],
'ENDCASE

display =>
[
first: DisplayControlBlock.
last: DisplayControlBlock,
height: ScreenPosition,
nLines: [0 .. 100]
],

keyboard = > NULL,
ENDCASE
];

The record type has three main variants: disk. display, and keyboard. Furthermore, the disk
variant has two variants of its own: short and long. The total number of type variations is
therefore six, and they are used in the following declarations:

r: Stream;
rDisk: disk Stream;
rDisplay: display Stream;
rKeyb: keyboard Stream;
rShort: short disk Stream;
rLong: long disk Stream;

The last five types are called bound variant types, The rightmost name must be the type
identifier for a variant record. The other names are Adjectives modifying the type identified
to their right. Thus, disk modifies the type Stream and identifies a new type. Further, short
modifies the type disk Stream and identifies still another type. Names must occur in order
and may not be skipped. (For instance, short Stream would be wrong since short does not
identify a Stream variant.)

The formal definition of Typeldentifier can now be completed (it is only partially defined in
Section 2.6.1):

. Typeldentifier ::= ... I Adjective Typeldentifier

Adjective ::= identifier

• where Adjective is an adjective of the variant part in the type specified by Typeldentifier.
Note that the recursive use of Typeldentifier in the first line allows a sequence of adjectives.

Mesa Language Manual 99

6.4.3. Accessing entire variant parts, and variant constructors

This section considers accesses to: entire variant records (e.g., for initialization), common
components of the record (including an actual tag, if present), and the variant part of the
record as a whole. The next section covers accesses to individual components in a variant
part.

The common parts of each of the variations of a Stream declared in the previous section can
be accessed by the normal means (qualification and extraction):

rDisk +- rLong;
rDisk.Get +- rShort.Get;
r.body +- rDisplay.body;
[rDisk.Get, , rDisk.body] +- rLong;

-- aggregate access
-- selector access
-- selector access
-- extractor access

The actual tag, type, in the body variant part may also be accessed by qualification:

IF r.type=StreamType[keyboard] THEN Stmt-l;

It is also possible to construct values of a variant record type. The syntax of a constructor
for a variant part is no different than a normal constructor except that the identifier
preceding the "[" must be present and must be one of the adjectives used in defining the
variant. For example, some of the following declarations use constructors to initialize the
variables (others use different forms of initialization):

myDisplay: display Stream +- [myGet, myPut, display[dl,d,h,8]];
yourDisplay: display Stream +- myDisplay;
currentStream: Stream +- myDisplay;
s: Stream +- [SysGet,SysPut, diskUp, 0, SysSetPos, long[al]]];

The keyboard variant of Stream is a NULL variant; so there are no components for that
variant in a keyboard constructor:

rKeyb +- Stream[Get: Kget, Put: Kput, body: keyboard[]];

A side effect of assigning a bound variant value to a variable is that the actual tag of the
record is also changed. This is the only way to change the variant contained in a variable
(except in the case of a COMPUTED tag) -- it ensures type-safeness. For example, both the
following assignments change the type tag for r :

r.body +- keyboard[];
r.body +- rKeyb.body; -- always a keyboard variant

If one is assigning a completely bound variant value, bv, say (which could be a constructor,
of course) in an AssignmentExpr (section 2.5.4.), then the type of the AssignmentExpr is the
type of bv, not the type of the LeftSide, which might not be a bound variant. •

A fine point:
•

The Mesa compiler does not currently allow an entire variant part to occur on the right of an
assignment as in the fragment above. Thus, the only way to assign to an entire variant part is via a
constrw:tor, lIot by copying the variant part of an alrt!ady initialized record. This restriction should be
lifted in a later release of Mesa.

100 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

6.4.4. Accessing components of variants

When a record is a bound variant, the components of its variant part may be accessed as if
they wer'e common components. For example, the following assignments are' legal:

rDisplay.last +- rDisplay.first;
rDisk.position +- rShort.position;

If a record is not a bound variant (e.g., r in the previous section), the program needs a way to
decide which variant it is before accessing variant components. More importantly, however,
this must be type-safe. For this reason, the process of discriminating among possible
variants and then accessing within a variant part is combined in one syntactic form, called a
discrimination, which is a generalization of SELECT.

A discrimination closely mirrors the form of SELECT used to declare a variant part.
However, the arms in a discriminating SEl.ECT contain statements or Expressions, and, within
a given arm, the discriminated record value is viewed as a bound variant. Therefore, within
that arm, its variant components may be accessed. The following syntax equations complete
the earlier partial definitions given in sections 4.3.1 and 4.3.3:

SelectVariant .. - WITH Openltem SEL.ECT Tagltem FROM

Choice Series

Tagltem

FinalStmtChoice

Choice Series
ENDCASE FinalStmtChoice
I ...

:: = AdjectiveList = > Statement ; I
Choice Series AdjectiveList = > Statement ;

.. - empty I -- the actual tag is used
Expression -- compute the tag value

.. - empty I = > Statement
SelectExprVariant .. - WITH Open Item SELECT Tagltem FROM

ChoiceList

ChoiceList

ChoiceList

Open Item

ENDCASE = > Expression
I .. ·

::= AdjectiveList => Expression, I
AdjectiveList = > Expression , Choice List

::= AdjectiveList => Expression, I
ChoiceList AdjectiveList = > Expression ,

.. - Expression I AlternateName : Expression -- from sec. 4.4.2

The value discriminated is the one given in the WITH clause, which behaves just like an OPEN

clause (sec. 4.4.2) to simplify naming the record value in the arms of the SELECT. The
following example discriminates on r:

WITH strm: r SELECT FROM

display =>
BEGIN
strm.first+-sf rm.l ast;
sf rm.height+-7 3;
strm.nLines+-4;
END;

disk => WITH s/rm SELECT FROM

short =>,b[O]+-lO;
long => b[O]+-lOO;
ENDCASE;

ENDCASE => strm.body +- disk[GetFp["Alpha"], 0, SysSetPos, short[]];

Mesa Language Manual 101

In the first example, suppose r contains a variant record of display Stream type. Then the
first arm is chosen by this SELECT. Within it, strm (but not r) is considered a record of
display Stream type; so all components of the display variant may be accessed in the
statement chosen by that arm (as they are in the example).

Suppose r contains a variant record of disk Stream type. Then the actual tag has the value
disk, and the second arm is chosen. In this example, only one of the disk components is
accessed, its variant part. The inner SELECT uses variant record strm. Within the outer arm,
Mesa knows that strm is a record of disk Stream type. Consequently, the tag implicitly used
for this SELECT is the tag specified for that type (namely, size).

If the tag value is short, then the chosen arm accesses component b in the short disk Stream
variant record; if it is long, then the chosen arm accesses component b in the long disk
Stream variant record.

However, the ENDCASE for the inner SELECT could have accessed components that are
common to a disk Stream (file, position, Set Position, variant part buffer, and actual tag
size; plus all the original common components: Get, Put, variant part body, and actual tag
type).

Suppose, lastly, that r does not contain a variant record of display Stream or disk Stream
type. Then the outer ENDCASE statement is chosen. This statement accesses the common
component body (the entire variant part is considered a common component), and gives the
record a specific variant type (short disk Stream) by wholesale assignment. An ENDCASE

may only access common components; it may not access components of variants in the given
type.

If the labels on an arm of a descrimination identify more than one variant structure, the
record is not considered to be discriminated within that arm and only the common fields are
accessible (cf. ENDCASE).

Since the outer variant part of Stream was declared using an actual tag, the tag's value is
obtained from the record itself, and no Expression follows the keyword SELECT (both SELECTS

above have this form).

The Expression in the WITH clause (actually in the Openltem) must represent either a variant
record or a pointer to a variant record (e.g., r in the above). The alternate name is essentially
a synonym for that Expression (e.g., strm in the above). If it is a pointer, however, the
alternate name designates a record value, not a pointer value in each arm of the SELECT. In
the following example, the display arm is correct, and the disk arm is in error:

rp: StreamHandle;
proc: PROCEDURE [StreamHandle];
WITH sRec: rp SELECT FROM

display => proc [@sRec];
disk => proc [sRec];
ENDCASE;

CORRECT
WRONG

An open item with no alternative name opens a name scope so that components can be
accessed with implicit qualification (as in the inner SELECT of the first example), but then no
further levels of WITH ... SELECT using the same record can be done within such a
WITH ... SELECT. The type of the open item's Expression indicates the nature of the record's
variant part, including whether the tag is an actual or computed tag, its enumerated type, and
the names of each variant (Le., the adjectives) in the variant part.

102 Chapter 6: Strings, Array Descriptors, Relative Pointers, and Variant Records

If a computed tag had been used, the program would have to supply an Expression following
SELECT to determine the variant. This Expression's value would have to be an adjective in
the applicable variant part. For example, assume that tbl[i] in the following has type
checking Account (sec. 6.4.1); then this is a legal (if not very sophisticated) discrimination for
it:

WITH this: tbl[i] SELECT (IF (this. number MOD 2) = 0 THEN free ELSE notfree) FROM

free = > NULL;

notfree => AddToBill[this.monthlyFee];
END CASE;

If a given arm of a discrimination is labelled by indentifier constants corresponding to more
than one variant of the record, only the common fields of the record are accessible within
that arm.

The record value in a WITH clause must not represent a completely bound variant (which is
really not a variant at all). For example, a valid discrimination for a disk Stream record,
aDiskStream, follows:

WITH aDiskStream SELECT FROM

short => b[O]~lO;
long => b[O]~ 100;
ENDCASE;

It would be illegal to rewrite this as follows:

WITH alt: aDiskStream SELECT FROM -- WRONG!
disk => WITH alt SELECT FROM

short => b[O]~lO;
long => b[O]~100;
'ENDCASE;

ENDCASE;

An OVERLAID record is a special case of a co'mputed variant record in that there is no explicit
tag field in the record. The fields of the individual variants may be accessed using a
"computed" WITH construct in the same manner as a COMPUTED record. In addition, any field
name of a variant that is unambiguous (i.e. it appears in only one variant) can be referenced
without descrimination. In essence, the programmer is telling the compiler "When I use a
field name, you can trust me that the record has the proper variant." Consider the following
example:

TrustM e: TYPE = RECORD[
SELECT OVERLAID * FROM

one => [c: CHARACTER, i: CARDINAL, next: POINTER TO TrustMe],
two => [b: BOOLEAN, next: POINTER TO TrustMe],
three => [s: STRING],
ENDCASE];

t: TrustMe;

t.c
t.b
t.next

Fine points:

-- legal
-- legal
-- illegal, both variants one and two contain such a field.

•

•

In the declaration of TrustMe above, the two next fields were of the same type. but occuppicd different
positions within the record. Even if they did occupy the same position. one could still lIot refer to
t.next. The ambiguity is one of variant. not of value.

103

CHAPTER 7.

MODULES, PROGRAMS, AND CONFIGURATIONS

Large programs in Mesa are constructed by linking or binding together individual modules.
A module is the basic unit of compilation and also the smallest, self-contained, executable
program unit. Most of this chapter deals with how separate modules are put together to
build large systems; i.e., it deals with programming in the large as opposed to programming in
the small (which is what this manual has discussed so far).

There are two fairly distinct kinds of modules. Definitions modules serve primarily as
"blueprints" or specifications for how the parts of a system will fit together. During
compilation they provide a common (and therefore consistent) set of definitions which can
be referenced by other modules being compiled. The second kind of modules, called
programs, contain actual data and executable code. Program modules can be loaded and
interconnected to form complete systems.

Mesa compiles a program module's source code (which is just a text file) into an object
module. An object module is a binary file containing object code, symbol table information,
and data structures to be used in connecting (also called binding) this module together with
others. Compiling a definitions module produces symbol table information only, which may
then be used in compiling other modules (either definitions or program modules).

7.1. Interfaces

The notion of an interface is central to building systems in Mesa. An interface is the list of
procedure, signal (chapter 8) and program (sec. 7.2) types defined in a single definitions
module. For example, an interface for an allocator might consist of the names and types of
the procedures for allocating and freeing blocks of storage. The data types required by these
procedure types (for parameters and return values) are usually defined in the same
definitions module. Such non-inter face types are available for reference when compiling
other modules, but are not considered part of the interface specified by that definitions
module.

At compile time, a program module containing calls on procedures defined by some interface
must import the definitions module which specifies that interface. This enables the compiler
to check the agreement of types of parameters and return values on calls from that module
wilh their counterparts in the definitions module (i.e., as defined in the interface).
Importing the interface at compile lime does not, however, link the procedure references in
the program module to actual procedures in some other module(s). That actual binding
occurs later when the compiled module is linked with other compiled program modules to
make a system (sec. 7.7).

104 Chapter 7: Modules, Programs, and Configurations

The actual implementation of an interface is usually provided by a single program module,
although it may be realized by a group of modules, each supplying a part. In any case, if a
program module implements (all or part of) the interface specified by a definitions module,
it is said to export that interface. The procedures in that program corresponding to the ones
in the exported interface must be type-compatible with them (sec. 5.2). The compiler checks
that this is so.

After compilation, a program module contains a set of virtual interface records, one for
each imported interface, and a set of export records, one for each exported interface (a
single program module can implement more than one interface). Binding a group of
modules together into a system then involves associating virtual interface records with
exported interfaces for all the modules in the group.

The following definitions module, IODefs, provides a minimal (and unrealistic) interface to
a computer terminal:

IODefs: DEFINITIONS =
BEGIN

-- Interface definitions
ReadChar: PROCEDURE RETURNS [CHARACTER];
Read Line: PROCEDURE [input: STRING]; -- reads from terminal into input

WriteChar: PROCEDURE [ouput: CHARACTER];
WriteLine: PROCEDURE [output: STRING];

-- Non-interface definitions
CR: CHARACTER = 015C; -- an ASCII Carriage- Return character

END. -- IODefs

The interface record for IODefs is imported by the following Xerox program module. The
program reads lines from the terminal and retypes them. When the user types a line
beginning with a period, it writes a parting message and stops:

DIRECTORY

IODefs: FROM "IODefs";

Xerox: PROGRAM IMPORTS IODefs =
BEGIN OPEN IODefs; -- allows simple references to items from IODefs
input: STRING" [256]; -- 256-character string to hold input lines typed by user
-- the mainline part of the program starts here:

DO -- infinite loop; only left by EXIT
ReadLine[input]; -- read a line into input
IF input[O] = t. THEN EXIT; -- quit if first character is a period
WriteLine[input]; -- otherwise copy it back to the user
ENDLOOP;

WriteLine["End of example."]; -- final output
WriteChar[CR]; -- leave terminal on a new line
END. -- Xerox

Mesa Language Manual 105

The skeleton of a module that implements the IODefs interface follows. It EXPORTS IODefs
and IMPORTS nothing:

DIRECTORY

IODefs: FROM "IODefs";

IOPkg: PROGRAM EXPORTS JODefs =
-- this module contains the actual procedures for the interface specified by IODefs.
BEGIN
termina/State: {off, on, hung} +- off; -- initial state of the terminal
ReadChar: PUBLIC PROCEDURE RETURNS [CHARACTER] = BEGIN ••• END;

ReadLine: PUBLIC PROCEDURE [input: STRING] = BEGIN ••• END;

WriteChar: PUBLIC PROCEDURE [ouput: CHARACTER] = BEGIN ••. END;

WriteLine: PUBLIC PROCEDURE [output: STRING] = BEGIN ••• END;
END. -- IOPkg

The next step towards running the above modules as a system requires binding them together.
Binding is the process of matching up virtual import records with real export records.

A separate language, C/Mesa, is used to describe binding. This language has a syntax similar
to Mesa's, but is much smaller. C/Mesa "programs" are compiled ("processed" might be more
accurate) by a program called the Binder. The C/Mesa source code is called a Configuration
Description (CD), and compiling one results in a Binary Configuration Description (BCD)
file. An object file produced by the Mesa compiler is actually a very simple BCD containing
just one module's object code and binding information.

BCD files can be loaded and run. (Actually, it is the individual modules in the BCD that are
loaded). This loading also alters all the BCD's virtual import records to hold real procedure
descriptors (sec. 5.2), signals, and pointers to program frames. Then the modules comprising
the BCD can all be started (details in sec. 7.8). The following CD describes a system of three
modules: Xerox, IOPkg, and Driver.

M akeX eroxSystem: CONFIGURATION
CONTROL Driver =

BEGIN Xerox; IOPkg; Driver; END.

This configuration specifies how the Xerox, IOPkg, and Driver object modules are to be
bound together. Simply listing their names is all that is usually required in a CD. Now the
Mesa loader could load the complete program using the BCD file for M akeX eroxSystem.
Driver is named as the CONTROL module for the BCD, so starting the loaded BCD would
actually result in starting Driver, which follows:

DIRECTORY

IOPkg: FROM "IOPkg",
Xerox: FROM "Xerox";

Driver: PROGRAM IMPORTS Xerox, IOPkg =
BEGIN
START IOPkg; -- so its variables (e.g., terminalState) are initialized
START Xerox; -- to initialize its variables and run its mainline code
END.

This example is simple, but MakeXeroxSystem and Driver would still be simple even if the
system had 50 modules instead of just two. For this example, they seem like excess baggage,
but for a larger system, they are invaluable because:

106 Chapter 7: Modules, Programs, and Configurations

(a) they describe exactly how the various modules are bound together and initialized;

(b) C/Mesa allows Mesa's compile-time checks on types to extend to binding time;

(c) loading and linking with this scheme can be very efficient.

We can now give the details of Mesa DEFINITIONS and PROGRAM modules. Section 7.7 discusses
C/Mesa and how it is used.

7.2. The fundamentals of Mesa modules

The complete' syntax for a module is the following:

CompiiationUnit ::= Directory -- optional

Access

DefinitionsFrom

Directory

ExportsList

FileName

GlobalAccess

ImportsList

Includeltem

IncludeList

ModuleBody

ModuleHead

Interfaceltem

Interf ace List

LocksClause

ModuleName

ProgramTC

ShareList

00-.. -
00-.. -
.. -.. -.. -.. -
.. -.. -
00-.. -
.. -.. -
00-.. -

DefinitionsFrom -- optional
ModuleName : ModuleHead = GlobalAccess
ModuleBody

empty I PUBLIC I PRIVATE

empty I DEFINITIONS FROM IdList ;

empty I DIRECTORY IncludeList ;

empty I EXPORTS IdList -- sec. 7.4.6

stringLiteral -- sec. 6.1.1

Access -- sec. 7.4.3

empty I IMPORTS InterfaceList -- sec. 7.4.6

identifier : FROM FileName I
identifier : FROM FileName USING [IdList]

::= Includeltem I Include Item , IncludeList

::= Block • -- sec. 4.4
-- note the terminating period

.. - DEFINITIONS ShareList I
ProgramTC ImportsList ExportsList ShareList

:: = identifier I identifier : identifier

::= Interfaceltem I Interface List , Interface Item

::= empty I -- sec. 10.4.1
LOCKS Expression I
LOCKS Expression USING identifier : TypeSpecificatlon

:: = identifier

.. - PROGRAM ParameterList ReturnsClause I
MONITOR Parameter List ReturnsClause LocksClause

::= empty I SHARES IdList -- sec. 7.4.6

A DEFINITIONS module contains declarations of constants and types, and definitions of the
names and parameter types of procedures, signals, and programs. The sequence of definitions
(i.e., all except types and constants) defines an interface rype. This type is much like a
record type, with a component for each item of the interface. A program may not declare
variables of an interface type, but instances of it appear in program modules in which it is
imported. These interface records are the connective tissue in a system of Mesa modules.

The text of a program module X implicitly defines a frame type, FRAME[X]. Values of this
type are created dynamically by loading X and can only be accessed indirectly; i.e., a program

Mesa Language Manual 107

may have variables of type POINTER. TO FRAME[X], but never of type FRAME[X]. A module's
frame contains storage for its variables. The interface records that it uses to call procedures
in imported interfaces may be either in the frame or in the code.

We will first deal with the initial syntactic units which are common to all modules (the
Directory and OefinitionsFrom clauses), then with DEFINITIONS modules as a whole. After these
sections there is a complete example including

a DEFINITIONS module,
a PROGRAM module that implements it.
a client program that uses it, and
a configuration that binds the programs together into a system.

7.2.1. Including modules: the DIRECTORY clause

The source code for a given module may tell the compiler to include previously compiled
modules for one or more of the following reasons:

It might need to use some of the symbols defined by those modules.

It may need to import the interfaces defined by those modules.

It might refer to instances of such modules after they are loaded in order to START
them, or to access their data.

Suppose module A is included in module B. This means that when compiling B, the compiler
must have access to A's object file (Le., A must have been compiled previously) in order to
access its symbol table to obtain information needed by B. Warning: including a module is
not simply an insertion of text from one module into another - it is important to read these
sections carefully to use this capability correctly.

The following is a simple, but complete DEFINITIONS module:

SimpleDefs: DEFINITIONS =
BEGIN
limit: INTEGER = 86;
Range: TYPE = [-limit .. limit];
Pair: TYPE = REcoRDUirst, second: Range];
PairPtr: TYPE = POINTER TO Pair;
END.

Notice that aU values expressed here are known at compile-time; this is a requirement for
DEFINITIONS modules.

Suppose that the above source code is contained in a file named "SimpleDefs.mesa". After
compilation, anyone who has a copy of the object file for SimpleDefs (which will be named
"SimpJeDefs.bcd" by the compiler), may then include it in other modules. The ".bcd" portion
of the file name stands for Binary Configuration Description (sec. 7.6.3) of, which a
compiled module is the simplest example. The ".bcd" part of the name need not be specified
in the directory section (see below).

A module that includes other modules begins with a Directory, which performs two
functions:

(1) It associates a Mesa identifier with the name of an object module (which does not
necessarily look like a Mesa identifier).

108 Chapter 7: Modules, Programs, and Configurations

(2) It checks that the given identifier matches the ModuleName in the module whose
object file is named.

Here is an example of a DIRECTORY:

DIRECTORY

SimpleDefs: FROM "simpledefs",
StringDefs: FROM "stringdefs";

When a module includes some other module, it does not automatically gain the other's
symbol definitions. (It might not need them; perhaps it just wants to load that module.) If
it needs such symbols, the module must specify this in one of the ways discussed later.

7.2.1.1. Enumerating items from an included module: the USING clause

A module may list the symbols it expects to access from an included module in the USING

clause of an Includeltem. If a USING clause is present, it must list all of the symbols to be
included; the compiler will not allow access to any symbol not in the list. Warnings will be
issued for symbols appearing in the list which are not referenced in the module. In this way,
the USING clause accurately documents which symbols are defined in each included module.

Here is an example of a DIRECTORY with a USING clause:

DIRECTORY

SimpleDefs: FROM "simpledefs" USING [Range, Pair],
StringDefs: FROM "stringdefs";

A module with this DIRECTORY statement would be allowed to use the symbols Range and
Pair defined in SimpleDefs, but would not be allowed to use any other symbols defined in
SimpleDefs. Access to symbols defined in StringDefs is not restricted.

The USING clause only allows and restricts access to symbols. Actual references to the
symbols must be made in one of the ways described below.

7.2.2. Accessing items from an included module

This section describes the ways of accessing symbols defined in an included module:

An identifier, p, defined in a definitions module, Defs, can be named in an including
module, User, in one of three ways.

Explicit qualification: p can be named as Defs.p in User.

OPEN clauses: In the scope of an OPEN clause of the form "OPEN Defs" , the simple name
p suffices. .

DEFINITIONS FROM: User's DEFINITIONS FROM clause is an OPEN clause encompassing the
entire module. If Defs is named in it, then p suffices throughout User.

The remainder of this seclion gives more detail on these three methods.

Mesa Language Manual

7.2.2.1. Quali/ication

In the following example. qualification is the only access method used:

DIRECTORY
SimpleDe/s: FROM "SimpleDefs";

TableDe/s: DEFINITIONS =
BEGIN
limit: INTEGER = 256; -- this has no connection with SimpleDe/s.limit
Index: TYPE = [O .. limit);
StringTable: TYPE = ARRAY Index OF STRING;
PairTable~ TYPE = ARRAY Index OF SimpleDe/s.Pair;
END.

109

SimpieDe/s.Palr means "the item riamed Pair in SimpleDe/s." As a rule. qualification
provides more readable code than do the other methods for specifying the use of predefined
symbols. However. it can be inconvenient if there are many such occurrences because two
identifiers have to be written instead of one.

No names are included automatically when only explicit qualification is used. For example.
if TableDe/s had not declared limit, Mesa would not have used the one in SimpleDe/s. An
error would then result when TableDe/s was compiled (because limit is needed in the
declaration of the type Index).

Any module that includes TableDe/s may use only the symbols defined by it, but to use
Pair, that module would have to include SimpleDe/s (as in the next section's example).
Declared symbols in the included module do not include record component names: they are
part of a record's type specification and can be used wherever the record type is known.

A qualified name may denote a type defined in an included module (e.g., the type
SimpieDe/s.Pair in the example in the previous section). Thus the syntax for Typeldentifier
includes the case

Typeldentifier .. - ... I identifier . identifier

7.2.2.2. OPEN clauses

The following program,· TableUser, includes both SimpleDe/s and TableDefs. It accesses
names from SimpleDefs by qualification, but uses an OPEN clause to access items from
TableDe/s:

DIRECTORY
SimpleDefs: FROM "simpledefs" USING [Pair].
Tabl eDefs: FROM "tab\edefs";

TableUser: PROGRAM =
BEGIN OPEN TableDe/s;
vIndex: INTEGER'" limit;
vString: StringTable;
vPair: PairTable;

-- (Notice the OPEN-clause.)
-- this is TableDefs.limit because of the OPEN

StoreString: PUBLIC PROCEDURE[S: STRING. v: Index] =
BEGIN
vString[v] ... s;
vPair[vl ndex ... v] ... NIL;
END;

110 Chapter 7: Modules, Programs, and Configurations

Store Pair: PUBLIC PROCEDURE[t: SimpleDefs.Pair] RETURNS[ok: BOOLEAN] =
BEGIN
ok ... vIndex <= limit;
IF ok THEN vPair[vIndex] ... t;
END;

END.

In the scope of the OPEN clause, the names limit, StringTable, PairTable, and Index are
those in TableDefs.

TableDefs could have been in an OPEN clause anywhere that one is permitted. This feature
can be used to help the readers of a program. For example, if the names from TableDefs
were only needed in the procedure StoreString, we could put an "OPEN TableDefs" on its
BEGIN rather than on the BEGIN for the whole module. This would localize the region of the
program where a reader would have to consider whether an identifier is from an included
module or not.

Fine point:

Note that qualification is still required to reference SimpieDejs.Pair even though Pair appears in the
USING clause.

7.2.2.3. DEFINITIONS FROM

In most respects, DEFINITIONS FROM is equivalent to an OPEN clause following the ModuleBody's
BEGIN. For instance, the previous example could be rewritten as follows:

DIR:::CTORY
SimpleDefs: FROM "simpledefs",
TableDefs: FROM "tabledefs";

DEFINITIONS FROM TableDefs;
TableUser: PROGRAM =
BEGIN -- No OPEN-clause is needed now.

In either case, TableUser makes use of symbol definitions from TableDefs throughout its
module body. DEFINITIONS FROM is only useful because it allows the use of unqualified
predefined symbols in the module parameter list. In the following example, the header uses
the unqualified name, J ndex:

DIRECTORY
SifnpleDefs: FROM "simpledefs",
TableDefs: FROM "tabledefs";

DEFINITIONS FROM SimpleDefs, TableDefs;
AnotherTableUser: PROGRAM[maxSize: Index] =
BEGIN
x: Pair; -- this is SimpleDefs.Pair

Both of the included modules define a symbol named Index. Which one applies in the
above parameter list? The symbol defined by TableDefs is the one because of the ordering
of the names listed after DEFINITIONS FROM -- the rightmost named module defining the
symbol of interest "wins", just as for an OPEN-clause.

Mesa Language Manual 111

7.2.3. Scopes for identifiers in a module

The use of identifiers appearing in modules falls into two broad categories, defining
occurrences (e.g., to the left of the ":" in a declaration), and name references (such as the
appearance of a name in an Expression). Scope rules determine which defining occurrence
goes with a given reference. In Mesa, these rules are lexical, i.e., they depend only on the
textual structure of the module at compile-time.

A name scope is always a contiguous region of a module (e.g., everything between a
BEGIN ... END pair, or between a [... J pair) and may contain other scopes nested within it. The
first scope rule is the following:

Within a single scope (excluding scopes nested within it), there can be at most one
defining occurrence of a given identifier.

An important corollary of this rule is that a given identifier is either undefined in a scope or
it has exactly one meaning.

A qualified name reference demands an exact context for its qualified identifier. For
example,

SimpleDefs.Pair -- (sec. 7.1.1) qualification by module name; context is
SimpleDefs

rDisk.Get -- (sec. 6.3.3) record qualification; context is disk Stream, the
type of rDisk

winner.party -- (sec. 3.4) pointer qualification; context is Person, the
reference type of winner

The rule of scope is simple, for a qualified reference:

The qualified identifier is associated with its symbol definition in the specified scope
(if there is no such defined name, the qualified identifier is undefined and there is
an error).

An unqualified name reference occurs within a sequence of nested scopes (as indicated
below). The rule of scope is

Use the innermost scope which defines the referenced identifier (if none of the
scopes do so, the identifier is undefined and there is an error).

New name scopes are created by the following:

DEFINITIONS FROM

OPEN clauses
Blocks with declarations
enumerated types and their subrange types
record types that use named field lists
procedure types that use named parameters or results
actual procedures
exit regions for loops and compound statements
the heads and arms of discriminating SELECT statements

DEFINITIONS FROM and OPEN clauses may introduce multiple name scopes, which are nested
(inner-to-outer) in order from right to left. Consider the following revision of the earlier
TableUser module:

112 . Chapter 7: Modules, Programs, and Configurations

DIRECTORY

SimpleDefs: FROM "simpledefs",
TableDefs: FROM "tabledefs";

DEFINITIONS FROM SimpleDefs, TableDefs;
TableUser: PROGRAM = •••
StorePair: PUBLIC PROCEDURE[t: Pair] RETURNS[ok: BOOLEAN] =

Notice that we no longer need qualification for the parameter type of procedure StorePair.
When the compiler encounters identifier Pair, it finds the needed symbol definition in the
symbol table for included module SimpleDefs. The path by which it found this is the
following: it looked for such a definition in the current module, but failed there; it then
tried the next outer scope, which according to the DEFINITIONS FROM was TableDefs; not
finding Pair there either, it went 'on to the next (and outermost) scope given by the
DEFINITIONS FROM, namely, SimpleDefs, at which point a defining occurrence was found.

Localizing the scope of identifiers from included modules is so important that we
recommend the following naming guidelines:

(1) Place a USING clause on items in the DIRECTORY. This collects in one place a list of all
symbols referenced from each included module. The list is always accurate because
the compiler checks it on each compilation.

(2) Use explicit qualification as the normal way of naming an external item.

(3) Use an OPEN clause on the smallest possible scope when explicit qualification becomes
too verbose. It is unusual for items from an included module to be accessed with
high frequency everywhere in a module; most often, there are clusters of references to
them. An OPEN clause takes advantage of this clustering and alerts a reader to it.

(4) Name an included module in a DEFINITIONS FROM clause only if it is needed for a
number of references in the formal parameter and returns list of the program's
module header.

7.2.4. Implications of recompiling included modules

Consider a set of modules Adefs, Userl, and User2 where Adefs is included in Userl and
User2. (For simplicity, assume Userl and User2 include only module Adefs.) Suppose
Adefs and Userl have already been compiled, but before User2 is compiled, Adefs is
recompiled for some reason. Then User 1 must also be recompiled.

In general, recompiling Adefs will invalidate the current version of Userl. This is obvious
when Adefs undergoes significant change between compilations, but it may also be true when
seemingly innocuous changes are made. Tn fact, if Userl uses record or enumeration types
defined by Adefs, the current version of User! is invalidated when Adefs is recompiled, even
if no changes are made to its source code!

For example, suppose Adefs defines RECORD type Account which is used by Userl as the type
of r1 and by User2 for r2. Normally, one would expect these records to have the same type.
If events occur as follows, however, they will not:

Adefs is compiled.
User 1 is compiled including (old) Adefs.
Adefs is recompiled.
User2 is compiled including (new) Adefs.

The record types for r1 and r2 will differ because of the way Mesa guarantees uniqueness for

Mesa Language Manual 113

record types. The compiler associates a "time stamp" (e.g., time of definition) with each
record type. Old Ade/s defined Account at one time and new Ade/s defined it a later time;
this makes them different (non-equivalent) record types which only "look" the same.

Consider the case where De/sl is included in De/s2, and De/s2 is included in Userl. (For
simplicity, assume that De/s2 includes only De/sl and Userl only De/s2.) Suppose that
De/s1 is recompiled and then De/s2 is recompiled. Then Userl should also be recompiled.
The reason for this is the uniqueness of record types defined in De/s2 and used by Userl.

The (re)compilations of De/s1, De/s2, and Userl must occur in a specific order: first De/sl,
then De/s2, and finally Userl. Suppose, however, that Userl included De/s2 plus another
module De/s3, and suppose De/s3 included De/s1. The following diagram illustrates these
dependencies. Modules which are included are above modules which include them. The rule
for avoiding errors due to incorrect compilation order is the following: a module may not be
(re)compiled until all the modules above it have been.

De/sl
I

I I
I I

De/s2 De/s3
I I
I I

I
User 1

Thus, User 1 should be recompiled after De/s2 and De/s3 have both been (re)compiled. The
order in which De/s2 and De/s3 are compiled is unimportant, however. Moral: There is an
important partial order defined on modules by their inclusion relations.

7.3. DEFINITIONS modules

Generally, a DEFINITIONS module contains a set of related definitions, i.e., compile-time
constants, types, and procedure and signal definitions. These definitions are used by the
program(s) that implement those procedures, and they are used by programs that only wish to
call on those procedures. Separating definitions from implementations allows programs that
only want to call on those procedures to be independent of changes in implementation. The
definitions in a DEFINITIONS module fall into two . classes:

Inter/ace elements: definitions for interfaces (procedures and signals), and

Non-inter/ace elements: compile-time constants (this includes TYPE definitions)

There are no special rules about which valid compile-time constants may be used other than
the issues surrounding compilation order (sec. 7.1.2). External interface definitions,.however,
are different. Normally, a declaration such as

SampleProc: PROCEDURE [i: INTEGER]; -- (A)

declares a procedure variable. In a DEFINITIONS module, however, its effect is to define the
type and name of a procedure component of the interface specified by that definitions
module. Section 7.6 contains an example of a DEFINITIONS module that defines procedure
interfaces.

114 Chapter 7: Modules, Programs, and Configurations

In the same manner, signals, errors, and programs can be declared in a DEFINITIONS module as
elements of its interface type. A signal or error declaration is treated iust like a procedure as
an interface element. A program definition as an interface element is discussed in the next
section.

7.4. PROGRAM modules: IMPORTS and EXPORTS

A PROGRAM module may contain

definitions of constants and types Gust like a DEFINITIONS module),

declarations of variables,

actual procedures and signals (chapter 8), and

executable statements of its own (Le., not part of procedure bodies within it).

At run time, a loaded module (also called an instance of the module - sec. 7.6.3) has a frame
which provides storage for its declared variables and for connections to other modules'
procedures and signals.

These connections are called interface records, and there is one for each interface imported
by the module. The Mesa binding process fills in these interface records with procedure
descriptors, signal codes, and pointers to program frames in other modules.

7.4.1. IMPORTS, interface types, and interface records

The IMPORTS list for a program declares which interface records the program needs and
associates them with DEFINITIONS modules (called interface types). Interface records and
interface types are different! A program may only access non-interface elements using an
interface type, but can access all elements (both interface and non-interface) when using an
interface record.

The names of interface records are declared in a PROGRAM module's IMPORTS list. The
identifier preceding a n:" in the list names an interface record, while the name following that
same ":n must name an interface type. In the following example, names ending with Rec
specify interface records. and names ending in Defs specify interface types: .

DIRECTORY Defsl: FROM "defs!", Defs2: FROM "defs2";

Prog: PROGRAM IMPORTS fRec: Defsl, I2Rec: Defs2 =
BEGIN ••• END.

Within the body of Prog, references like Defs}.x are only valid if x is a non-interface
element of Defsl. However, fRec.x can refer to any element x of Defs} , whether interface
or non-intelface. This distinction is necessary because a call on a procedure, proc, defined
in Defsl, must refer to the actual descriptor in the interface record fRee at run time, not just
to its compile-time definition.

Omitting the name of an interface record in an IMPORTS list and giving only the name of an
interface type means that the record's name should be the same as the type's. For example,
writing

Prog: PROGRAM IMPORTS fRee: Defsl, Defs2 = ...
is the same as writing

Mesa Language Manual 115

Prog: PROGRAM IMPORTS IRee: Defsl, Defs2: Defs2 =

Then, within the body of Prog, Defs2 refers to an interface record. In fact, it is impossible
thereafter to refer to the interface type Defs2, although one can still refer to the interface
type Defs I because its name has not been reused.

Sometimes one needs to have access to more than one instance of an interface record at run
time. For example, the Mesa compiler needs to access one instance of a symbol table package
for the program that it is compiling, and at least one for the symbol tables for modules
included by that program. This can be done by defining a number of interface records for a
single interfa?e type, as in the following:

DIRECTORY SymDefs: FROM "SymDefs";

PartOfCom,piler: PROGRAM IMPORTS mainSym: SymDefs, auxSym: SymDefs =
BEGIN. ' •• END.

Within the body of PartOfCompiler, one would access an interface element of SymDefs
named LookUp for the main symbol table as mainSym.LookUp, and for the auxiliary symbol
table as auxSym.LookUp.

7.4.2. Importing program modules

Any module can include a program module X by naming X in its directory. By analogy with
interface types we call X a program prototype. One can use X to declare program variables
of type POINTER TO FRAME[X], and one can create instances of it using "NEW X", as discussed
in section 7.8.1 (It is not possible to declare variables of type FRAME[X] because frames
cannot be embedded in other structures.)

A program module could also import X by naming it in its IMPORTS list. For example,

DIRECTORY XProgl: FROM "XProg1", XProg2: FROM "XProg2";

Prog: PROGRAM IMPORTS framel: XProgl, XProg2 =
BEGIN ••• END.

This has an effect similar to declaring

frame!: POINTER TO FRAME[XProgJ] =
XProg2: POINTER TO FRAME[XProg2] =

except that these constant frame pointers will be filled by the Mesa binder. (However, the
declaration for XProg2 could not actually be written as a valid Mesa statement because of the
ambiguity inherent in the two occurrences of XProg2 in it.)

Such imported program constants are the analogs of interface records. More can be done
with them than with program types (just as one can access more with an interface record
than with an interface type). In particular, one can access actual variables and procedures
with a frame pointer (as well as the compile-time constants to which a program type
provides access). Also, one can execute the module instance corresponding to a frame
pointer using START and RESTART (sec. 7.8.2) and create ins Lances of it using NEW (sec. 7.8.1).

Accessing values in a program frame as described above treats the frame as a record with its
variables and its actual procedures as its components. The price paid for such close coupling
with a program is that the program accessing its frame must be recompiled whenever it is.

116 Chapter 7: Modules, Programs, and Configurations

7.4.3. Exporting interfaces and program modules

A module can export an interface if it provides actual PUBLIC procedures, signals, or errors
whose names and types match those of interface elements in a DEFINITIONS module. In
addition, the program can export itself as part of an interface if its name appears there with
an appropriate PROGRAM type. In all these cases, the compiler checks that the type of each
exported element is assignment compatible (sec. 2.3) with the type of the corresponding
interface element.

A single program module need not provide actual elements for all the elements in an
interface. This allows two or more modules to cooperate in completely defining an interface.
In such a case, it is common for each of the cooperating modules to use interfaces elements
provided by the others. It can do so by importing and exporting the same interface.

To gain access to the PRIVATE elements of an interface, a module must use a SHARES clause
(sec. 7.5.4), even if it also EXPORTS that interface.

7.5. Controlling module interfaces: PUBLIC and PRIVATE

Every name defined in a module possesses an Access attribute, either PUBLIC or PRIVATE (the
module in which a name is defined is called its home module). These are used to determine
whether a name may be referenced when its home module is included by some other module.
A PUBLIC nam~ can always be used; a PRIVATE name cannot generally be used, except by
modules which specify that they SHARE the included (PROGRAM or DEFINITIONS) module. The
former modules are called non-privileged modules, and the latter are called privileged
modules.

Generally speaking, an Access may be specified

(a) anywhere a name can be declared. This includes normal declarations, named field
lists (for records or parameter lists), preceding SELECT in a record's variant part, and
the declaration for an actual tag in a variant part.

(b) preceding the TypeSpecification in a type definition.

In addition, an Access may be specified

(c) at the beginning of a module (the GlobaIAccess), to provide a default Access for any
identi{ier in that module when one is not given explicitly for the identifier.

The syntax in the following section is intended to supersede earlier definitions of the same
constructs only by showing where attributes may be inserted. Otherwise, the earlier versions
are correct. Each syntax definition is followed by examples of its lise.

7.5.1. Access attributes in declarations •

0) Declared names

The form of Declaration specifying an Access for its declared names is as follows:
Declaration .. - IdList: Access TypeSpecification Initialization;

Mesa Language Manual 117

Examples:
q 1, q 2: PUBLIC INTEGER .. 0;
Mine: PRIVATE TYPE = {yes, no, maybe};

Mine can only be used in (Le., seen from) privileged modules. To non-priviliged modules it
is not visible at all.

(ii} Names specified in field lists

The forms for specifying Access in a NamedFieldList (sec. 3.4.1) are as follows:
NamedFieldLlst ::= IdList: Access FieldDescription I

NamedFieldList , IdList : Access FieldDescription

FieldDescription ::= TypeSpeci1ication I
TypeSpeci1ication .. Expression

Example:
bl k: PUBLIC RECORD

[
a: INTEGER.
b: PRIVATE INTEGER" 1234,
c, d: BOOLEAN,
e: PRIVATE BOOLEAN
];

A non-privileged module could only access components a, c, and d in this case, and then
only using qualified references such as blk.a. Within a non-privileged module, extractors
and constructors cannot be employed for a record type with any PRIVATE components.

(iii) Names for variant parts and for tags in variant records

The forms for specifying Access in a VariantFieldList or Tag (sec. 6.3.1) are as follows:
VariantFieldList ::= Common Part identifier: Access VariantPart I

VariantPart I

CommonPart .. -.. -
VariantPart .. -.. -

Tag .. -
TagType .. -.. -

NamedFieldList I
UnnamedFieldList

empty I
NamedFieldList ,

SELECT Tag FROM
VariantList -- same as in sec. 6.3.1
ENDCASE

identifier : Access TagType I
COMPUTED TagType

TypeSpeci1ication I *

118 Chapter 7: Modules, Programs, and Configurations

Example:

V ar Rec: PUBLIC TYPE = RECORD

[
link: POINTER TO VarRec, -- public common component
vpl: SELECT tgl: PRIVATE Etype FROM -- public variant, private tag

];

adjl =>
[
yauGet: This/tem,
Wet: PRIVATE SELECT tg2: ... FROM -- a private variant part

END CASE

]
adj2 => ...
ENIfCASE

Suppose a non-privileged module has a record of type VarRec. Then it could access variant
part vpJ bu~ neither tag tgJ nor variant part Wet. This only prevents it from referring to tgl
by qualification; it may still use a discriminating SELECT (which implicitly accesses tgJ) for
records of type VarRec. Thus, an adjJ arm of such a WITH ... SELECT could access component
yauGet. However, it would be unable to access component Wet in any case.

Notice that the only way that the actual tag of a variant can be changed is by writing a
variant constructor (sec. 6.3.3).

7.5.2 Access attributes in TYPE definitions

The form for specifying a Typeldentifier whose defined type has an explicit Access is as
follows:

Declaration ::= ... I IdList : TYPE = Access TypeSpecification ;

Example:
OurType: PUBLIC TYPE = PRIVATE RECORD[compJ: INTEGER, comp2: BOOLEAN];

A non-privileged module could declare records of type OurType, but it could not access the
record components. The module could, however, pass values of type OurType as parameters,
receive them as results from procedures, and use them as operands of a fundamental
operation (+-, =, #).

The Access in this form could be specified as PUBLIC, but this would be -pointless (if OurType
is PUBLIC then its type would be PUBLIC by default; if OurType is PRIVATE then its type
attribute is irrelevant). Note: Only names specified within the defined type are affected by
this form of attribute specification. Consequently, it is intended for use only when defining
record types and is just a factorization: the PRIVATE could have been written after each inner
colon; also, specific fields can be made accessible by writing PUBLIC internally, as shown
below;

AlmastPrivateType: PUBLIC TYPE = PRIVATE RECORD

[
campl: PUBLIC INTEGER, -- overrides outer PRIVATE
camp2: BOOLEAN
];

Mesa Language Manual 119

7.5.3,. Default global access

If, as in section 7.4.1, a declaration specifies an Access for a name, then that unilaterally
determines its Access. If not, the given item receives a default Access. The default may be
specified by the programmer in the GlobalAccess for a module; otherwise one is assumed
(for a program module, the normal default is PRIVATE, for a DEFINITIONS module, it is PUBLIC).
For example,

M 1: PROGRAM = PUBLIC
BEGIN

END.

M 3: PROGRAM =
BEGIN

END.

-- specified GlobalAccess

-- PRIVATE (by default)

7.5.4. Accessing the PRIVATE predefined symbols of other modules

A module may be prjvileged to use PRIVATE items in an included module by using a Shares
clause: this contains a list of the (included) module names whose PRIVATE symbols it needs to
access. Consider the Friendly module below:

DIRECTORY
SpecialDefs: FROM "specialdefs",
StandardDefs: FROM "standarddefs",
PrivateDefs: FROM "private";

Friendly: PROGRAM SHARES PrivateDefs, SpecialDefs =
BEGIN

END.

In this case, Friendly can use PRIVATE symbols defined by PrivateDefs and SpecialDefs but
not the PRIVATE symbols of StandardDefs. There is no particular significance to the
ordering of module names listed after SHARES. Any kind of module may use SHARES (but it
ought to be one that is "friendly", to say the least).

7.6. The Mesa configuration language, an introductory example

This section discusses C/Mesa, the Mesa configuration language, first by example, and then
more rigorously by syntactic definition and detailed semantics. It ends with a number of
detailed examples which explore some of the more intricate parts of C/Mesa.

We first present an example consisting of three Mesa modules:

An interface (a DEFINITIONS module),

an implementor for it (a PROGRAM module),

and a client for the implementation (also a PROGRAM module). '

The example is presented here to show the relationships among definitions, implementors,
and clients. Following it will be a sequence of example configurations for systems
constructed from this implementor and client. The line numbers in the left margin are
provided for ease of reference and are not part of the source code. First the interface:

120 Chapter 7: Modules, Programs, and Configurations

dl: LexiconDe/s: DEFINITIONS =
d2: BEGIN
d3: FindString: PROCEDURE [STRING] RETURNS [BOOLEAN];
d4: AddString: PROCEDURE [STRING];
d5: PrintLexicon: PROCEDURE;
d6: END.

7.6.1. Lexicon: a module implementing LexiconDefs

The following module (Lexicon) implements the LexiconDe/s interface. That is,

(a) Lexicon declares actual PUBLIC procedures FindString, AddString, and PrintLexicon,
which have procedure types conforming to their counterparts in the DEFINITIONS
module;

(b) Lexicon EXPORTS the interface LexiconDe/s.

Lexicon IMPORTS three interfaces: FspDe/s, IODe/s, and StringDe/s. We will not reproduce
those definitions modules here; instead, the USING clauses of the DIRECTORY note which
procedures are defined in FspDe/s (Fsp stands for Free Storage Package and is an allocation
package), IODe/s, and StringDe/s. Section 7.1 contains a more complete definition of
lODe/so

Details on these and other Mesa system interfaces are contained in the Mesa System
Documentation.

The code for Lexicon follows. For reading convenience, any references to procedures from
imported interfaces are in boldface.

il:
i2:
i3:
i4:
i5:
i6:

DIRECTORY
FspDe/s: FROM "fspdefs" USING [AliocateHeapNode, AllocateHeapString],
IODe/s: FROM "iodefs" USING [ReadChar, WriteChar, ReadLine, WriteLine],
LexiconDe/s: FROM "lexicondefs",
StringDe/s: FROM "stringdefs" USING [AppendString];

i7: Lexicon: PROGRAM IMPORTS FspDe/s, IODe/s, StringDe/s
i8: EXPORTS LexiconDe/s =
i9: BEGIN
uo:
ill:
il2:
i13:
il4:
U5:
il6:
117:
U8:
il9:
i20:
i2l:
i22:
i23:
i24:
i25:
i26:
i27:
i28:

Node: TYPE = RECORD[llink, rlink: NodePtr, string: STRING];
N ad e PI r: TYPE = POINTER TO Nod e;
Comparative: TYPE = {iessThan, equalTo, greaterThan};

root: NodePtr +- NIL;

FindString: PUBLIC PROCEDURE[S: STRING] RETURNS[BOOLEAN] =
BEGIN RETURN[SearchForSlring[raot, s]]; END;

. SearchForString: PROCEDURE[n: NodePtr, s: STRING]
RETURNsUollnd: BOOLEAN] =

BEGIN
IF n = NIL THEN RETURN[FALSE];
SELECT LexicalCompare[s, n.string] FROM

lessThan => found +- SearchForString[n.llink, s];
equalTo => found +- TRUE;
greaterThan => found +- SearchForString[n.rlink, s];
END CASe;

Mesa Language Manual 121

i29: RETURNUOund];
i30: END;

i31:
i32: AddString: PUBLIC PROCEDURE[S: STRING] =
i33: BEGIN InsertString[root, S]; END;
i34:
i35: InsertString: PROCEDURE[n: NodePtr, S: STRING] =
i36: BEGIN
i37: NewNode: PROCEDURE RETURNS[n: NoclePtr] = -- a local procedure
i38: BEGIN OPEN FspDe!s;
i39: n +- AllocateHeapNode[SIZE[Nocle]];
i40: nt +- Nocle[string: AllocateHeapString[s.length], !link: NIL, rlink: NIL];
i41: StringDe!s.AppendString[n.string, s];
i42: RETURN;
i43: END;

i44:
i45: IF n = NIL THEN root +- NewNocle[] -- then just return
i46: ELSE
i47: SELECT LexicalCompare[s, n.string] FROM
i48: le.ssThan => IF n.llink # NIL THEN InsertString[n.llink, s]
i49: ELSE n.llink +- NewNocle[];
i50: equalTo => NULL; -- already there; just return
i51: greaterThan => IF n.rlink # NIL THEN InsertSlring[n.rlink, s]
i52: ELSE n.rlink +- NewNocle[];
i53: ENDCASE;
i54: END;
i55:
i56: LexicalCompare: PROCEDURE[sl, s2: STRING] RETURNS[C: Comparative] =
i57: BEGIN
i58: n: CARDINAL = MIN[sl.length, s2.length];
i59: i: CARDINAL;
i60:
i61: FOR i IN [O .. n)
i62: DO
i63: SELECT LowerCase[sl[i]] FROM
i64: <LowerCase[s2[i]] => RETuRN[lessThan];
i65: >LowerCase[s2[i]] => RETURN[greaterThan];
i66: ENDCASE;
i67: ENDLOOP;

i68: -- Characters match; so result depends on how the strings compare in length:
i69: c +- SELECT sl.length FROM
i70: <s2.length => lessThan, -- sl is shorter than s2
i71: >s2.length => greaterThan, -- sl is longer than s2
i72: ENDCASE => equalTo; -- lengths are the same
i73: RETURN[C];
i74: END;

i75:
i76: lower: PACKED ARRAY CHARACTER['A .. 'Z] OF CHARACTER =
i 77: ['a, 'b, 'e,' d, 'e, 'f, 'g, 'h, 'i, 'j, 'k, 'I,' m, 'n, '0, 'p, 'q,' r, 's,' t,' u, 'y, 'w,' x, 'y, 'z];
i78:
i79: LowerCase: PROCEDURE[C: CHARACTER] RETURNS[CHARACTER] =
i80: BEGIN RETURN[IF C IN ['A .. 'Z] THEN lower[c] ELSE C]; END;

i81:
i82: Print Lexicon: PUBLIC PROCEDURE = BEGIN PrintNode[root] END;
i83:
i84: Print Node: PROCEDuRE[n: NodePtr] =
i85: BEGIN
i86: IF n = NIL THEN RETURN;

122 Chapter 7: Modules, Programs, and Configurations

i87: PrintNode[n.llink];
i88: IODefs.WriteLinc[n.string];
i89: PrintNode[n.rlink];
i90: END;
i9l: END.

7.6.2. LexiconClient: a client module

The module, LexiconClient, below is a client for Lexicon and IMPORTS LexiconDefs. It is
also a client for the interface IODefs (and also uses the constant CR defined in IODefs in
section 7.1). The program provides a simple terminal interface to a user for testing Lexicon.

cl: DIRECTORY
c2: IODe/s: FROM "iodefs" USING [CR, ReadChar. ReadLine. WriteChar, WriteLine].
c3: LexiconDe/s: FROM "lexicondefs" USING [AddString, FindString. PrintLexicon];
c4:
c5:
c6:
c7:
c8:
c9:
clO:
ell:
c12:
c13:
c14:
c15:
c16:
c17:
c18:
c19:
c20:
c2l:
c22:
c23:
c24:
c25:
c26:
c27:
c28:
c29:
c30:
c3l:
c32:
c33:
c34:
c35:
c36:
c37:
c38:

LexiconClient: PROGRAM IMPORTS IODefs, LexiconDefs =
BEGIN OPEN lODe/s, LexiconDefs;
s: STRING +- [80];
ch: CHARACTER;

DO -- loop until stopped by user typing q or Q (last case below).
WriteChar[CR]; WritcLine["Lexicon Command: "];
ch +- ReadChar[]; WriteChar[ch];-- Echo the character (ReadChar doesn't).
SELECT ch FROM

'f, 'F =)
BEGIN
WritcLine["ind: "]; -- terminal will read: "find: II

RcadLine[s]; -- s will contain the string read from the terminal
IF FindString[s] THEN WriteLine[" -- found"]
ELSE WriteLinc[" -- not found"];
END;

'a, 'A =)
BEGIN
WriteLine["dd: "];
RcadLine[s];
AddString[s];
END;

'P. 'P =)
BEGIN

-- terminal will read: "add: "

WritcLine["rint lexicon"];
WriteChar[CR]; PrintLcxicon[];
END;

-- terminal will read: "print lexicon"

'q, 'Q =)

BEGIN
WriteLine["uit"]; WriteChar[CR]; -- terminal will read: "quit"
STOP;
END;

END CASE = > WriteLine[" is not a command character"];
ENDLOOP;

END.

7.6.3. Binding, loading, and running a configuration: an overview

A configuration description, a "program" written in C/Mesa, describes how a set of Mesa
modules are to be bound together to form a configuration. This binding is accomplished by
"compiling" the configuration description (or, configuration for short) and results in a
binary configuration description (a BCD).

Mesa Language Manual 123

The simplest (or atomic) BCD is the object module for a Mesa program module. Thus, the
Mesa compiler produces the simplest BCDs, and the C/Mesa compiler (also called the Mesa
Binder) produces complex BCDs from simpler ones. Indeed, a configuration may combine
both atomic and non-atomic BCDs together into a single, new BCD. For these reasons, the
object modules produced by the Mesa compiler have the same form of names as the output
of the Binder, i.e., names of the form "Basic Name. bed".

Once a BCD has been created, it can be loaded and run.

Loading is a sequence of two actions. The first makes an instance of the configuration by
allocating a frame for each atomic module in the BCD. Each frame has space for the
module's static variables (those declared in the main body of the module) and some extra
space for information used by the Mesa system. Space for the procedure descriptors for
imported procedures used by the module may be allocated either in the frame or in the code
of the module.

The second part of loading completes the binding process by filling in the procedure
descriptors in all the static frames of the configuration instance. Some of these procedure
descriptors will "point to" procedures in the same configuration. Others will "point to"
procedures in the running system in which the configuration is being loaded.

Once a configuration is loaded, each module instance in it has all its interfaces bound.
However, no code has been executed in the instances, so global variables are not initialized,
and no mainline statements have executed. STARTing (sec. 7.8.2) an instance executes any
code for initializing static variables and also executes its mainline code. For correct
operation, this must occur before any of its procedures are used or before any of its global
variables are referenced. If a module is not explicitly STARTed before one of its procedures is
called, then a trap occurs, and it is automatically started. Once it STOPS (sec. 7.8.2), the
procedure call is allowed to proceed. Subsequent procedure calls will not repeat this trap and
auto-initialization sequence. Section 7.8 details how these mechanisms generalize for
configura tions.

7.6.4. A configuration description for running LexiconClient

The following configuration will bind Lexicon, LexiconClient, and other necessary modules
and can be used to start the client program running. The comments to the right of each
module name indicate which interfaces are imported and exported by that particular module;
they are not part of Configl. This configuration is completely self-contained: all the needed
imports are satisfied by interfaces exported from modules which are part of the
configuration.

Config I: CONFIGURATION
CONTROL LexiconClient =

BEGIN
Fsp;
IOPkg;
Strings;

EXPORTS
EXPORTS
EXPORTS

Lexicon; IMPORTS FspDefs, IODefs, SfringDefs EXPORTS
LexiconClient; -- IMPORTS JODefs, LexiconDefs
END;

FspDefs
IODefs
StringDefs
LexiconDefs

To see that this configuration is completely self -contained, notice that LexiconClient imports
IODefs, which is exported by rOPkg, and imports LexiconDefs, which is exported by the
instance of Lexicon. Similarly, the other instances' import requirements are satisfied by

124 Chapter 7: Modules, Programs, and Configurations

some exported interface in Configl.

7.7 C/Mesa: syntax and semantics

The following is the complete syntax for C/Mesa. It bears strong resemblance to Mesa itself,
but this grammar describes a completely separate language. A phrase class beginning with a
C indicates a syntactic unit that is unique to C/Mesa. All the other units have the same
syntax (but not necessarily exactly the same semantics) as they do in Mesa itself.

ConfigDescription

Configuration .. -
CExports .. -.. -
CExpression .. -.. -
CLeftSide .. -.. -
CBody -
CHead .. -.. -
Control Clause .. -.. -
Clinks .. -.. -
CPacking -
CPackList .. -.. -
CPackSeries .. -
CPrimary .. -.. -
CRightSide .. -.. -
CStatement -

::= Directory
CPacking
Configuration .

identifier : CHead =
CBody

empty I EXPORTS Item List

-- optional; same as for Mesa

-- note the final period

CPrimary I CExpression THEN CRightSide

Item I [Item List]

BEGIN CStatementSeries END

CONFIGURATION Clinks Imports CExports Control Clause

CONTROL identifier I empty

empty I LINKS : CODE I LINKS : FRAME

empty I CPackSeries j

PACK IdList

CPackList I CPackSeries ; CPackList

CRightSide I CPrimary PLUS CRightSide

Item I Item [] Clinks I Item [IdList] CLinks

CLeftSide ... CExpression I
CRightSide I
Configuration

CStatementSeries .. - CStatement I

Imports .. -.. -
Item .. -
ItemList .. -.. -

CStatementSeries ; I
CStatementSeries ; CStatement

empty I IMPORTS Item List

identifier I identifier: identifier

Item I ltemList , Item

We will use the term "component" to refer to the parts of a configuration; i.e., for both
atomic modules and configurations containing several modules. When necessary, the kind of
component will be expressly given.

Similarly, we will use the term "interface" to stand for an interface record or a module
instance (if used in discussing imports or exports), and we will distinguish as necessary.
However, "interface" will never include or imply the term "interface type" (sec. 7.4.1).

Lastly, we will need to distinguish between instances of components and their prototypes (the
BCD files) from which such instances are made. Hence, a program prototype is the BCD file
for a Mesa program module, and a configuration prototype is the analog for configurations.
If the term prototype is used by itself, it includes both cases.

Mesa Language Manual 125

The CPacking and Clinks clauses in the syntax are directives to the Mesa Binder. CPacklng
identifies modules whose code should be packed together for swapping purposes. Clinks
specifies. for a module or a configuration whether links to imported interfaces should be
stored in the frame or in the code. The use and implications of these optional clauses is
described in separate documentation of the Binder. They will not be further discussed here.

7.7.1. IMPORTS, EXPORTS, and DIRECTORY in C/Mesa

For completely self-contained, simple configurations like Configl, a configuration
description is primarily just a list of component names. An instance of each named
component will be part of the configuration, and if a component imports any interfaces, they
will be supplied by those exported from other components of the configuration.

Configurations need not be self-contained, however, and may themselves import interfaces to
be further imported by their components. In this way, subsystems can be constructed with
some imported interfaces unbound. Loading such a configuration or naming it as a
component in another configuration will supply the necessary interfaces. Furthermore, a
configuration can make exported interfaces available for importation by other modules and
configurations. For example, the interfaces FspDefs, IODefs, and StringDefs needed by
Configl would normally be supplied by a pre-existing Mesa system configuration.
Therefore, it is really not necessary to include instances of Fsp, IOPkg, and Strings in
Configl. Instead, it can just import them:

c2.1: Config2: CONFIGURATION
c2.2: IMPORTS FspDefs, IODefs, StringDefs
c2.3: CONTROL Lexicol1Client =
c2.4: BEGIN
c2.5: Lexicon;
c2.6: LexiconClient;
c2.7: END

The imports clause in a configuration serves the same purpose as in a program module. The
rule for importing is: If some component named in a configuration imports SomeDefs, and
SomeDefs is not exported by a component in the configuration, then it must be imported.
For example, FspDefs did not have to be imported into Configl, but it did have to be
imported into Config2.

The rule for exports is simpler: If a component in a configuration exports an interface, that
interface may also be exported another level from the configuration. It is not required that
it be exported, however. This important feature enables one to control what is exported
from a configuration and what is to be hidden from external view.

None of the example configurations given so far have had a DIRECTORY section. This is
because the default association of a component named Prog is to a file named "Prog.bcd" in
which the ModuleName is also Prog. Since this is often the case, the programmer normally
does not need to supply one. A DIRECTORY part would be needed if the file did not have such
a defaultable name. For example:

DIRECTORY
Prog: FROM "OldProgFile";

could not be omitted if the component named Prog is contained in the file
"OldProgFile.bcd", rather than in "Prog.bcd".

126 Chapter 7: Modules, Programs, and Configurations

7.7.2 Explicit naming, IMPORTS, and EXPORTS

In Mesa, names may be given to the interface records in an IMPORTS list (sec. 7.4.1); the same
is true in a configuration description. These names can then be used to supply the interfaces
needed by component instances in the configuration. The notation for explicitly supplying
interfaces to a component is similar to that for parameter lists in Mesa (except that there is
no keyword notation for explicit imports parameter lists). For example, lines c2.1 through
c2.5 above could have been written as

c2a.1: Config2A: CONFIGURATION
c2a.2: IMPORTS alloc: FspDefs, io: IODefs, str: StringDefs
c2a.3: . CONTROL LexiconClient =
c2a.4: BEGIN
c2a.5: Lexicon[alloc, io, str];

The interfaces listed after Lexicon must correspond in order and (interface) type with the
IMPORTS list for Lexicon (look at Lexicon in sec. 7.6.1 to check this).

A name may also be given to each component instance in a configuration by preceding the
instance with "identifier :". This facility is necessary to distinguish multiple instances of the
same prototype from one another. For example, we could name the Lexicon instance in line
c2a.5 as follows:

alex: Lexicon[alloc, io, str];

Lexicon exports an interface whose type is LexiconDefs, and that interface record can also be
named. The following further modification to line c2a.5 names it lexRec:

lexRec: LexiconDefs +- alex: Lexicon[alloc, 10, str];

Here, as in Mesa, the type of lexRec follows the colon in the declaration, and lexRec is
assigned the (single) interface exported by Lexicon. However, the type LexiconDefs is not
actually necessary (it is inferred from Lexicon's EXPORTS list), and the line could have been
shortened to

lexRec +- alex: Lexicon[al!oc, io, str];

Using all these explicit naming capabilities, we can now write a new version of the
configuration in which none of the C/Mesa default naming is used:

c3.1: Config3: CONFIGURATION
c3.2: IMPORTS alloc: FspDefs, io: IODefs, str: StringDefs
c3.3: CONTROL lexClient ;:
c3.4: BEGIN
c3.5: lexRec: LexlconDefs +- alex: Lexlcon[alloc, 10, str];
c3.6: lexClient: LexiconClient[lo, lexRec];
c3.7: END.

An exported interface like lexRec need not always be set as the result of including a
compo·nent instance like alex in the configuration. One can also assign interface records to
one another as in the following two (equivalent) lines:

anotherLexRec: LexlconDefs +- lexRec;
another LexRec +- I exRec;

The form of CRightSide in these two statements only copies lexRec, whereas ones like line
c3.5 ab~ve involve a "call" on a component prototype. The result of that "call" is an instance

Mesa Language Manual 127

of the component, and a set of results, the interface records exported by it.

7.7.3. Default names for interfaces and instances

A component instance that is not explicitly given a name is given a default name equal to the
name of the component prototype. Thus, the body of Config2 is treated as if the
programmer had written:

BEGIN
Lexicon: Lexicon;
LexiconClient: LexiconClient;
END.

Similarly, an unnamed interface is given a default name equal to the name of its interface
type. So, another equivalent body' for Config2 is

BEGIN
LexiconDefs: LexiconDefs ... Lexicon: Lexicon[];
LexiconClient: LexiconClient;
END.

The empty imports parameter list in "Lexicon[]'" specifies that a new instance of the
prototype Lexicon is to be created. If the empty imports list were not there, the binder
would interpret the appearance of Lexicon (the one after the colon) as the name of an
already existing interface (not of an already existing module instance). When no assignment
is specified, the empty imports parameter list is not necessary, as shown in' the earlier
examples. .

Normally, omitting an imports parameter list (or, equivalently, specifying an empty list)
means that the binder should use the default-named interfaces needed by that component
instance. Thus, we could rewrite a completely explicit (and very wordy, but equivalent)
version of Config2:

c2x.l: Config2X: CONFIGURATION
c2x.2: IMPORTS FspDefs: FspDefs, lODefs: lODefs, StringDefs: StringDefs
c2x.3: CONTROL LexiconClient =
c2x.4: BEGIN
c2x.5: LexiconDefs: LexiconDefs ... Lexicon: Lexicon[FspDefs, lODefs, StringDefs];
c2x.6: LexiconClient: LexiconClient[IODefs, LexiconDefs];
c2x.7: END.

Notice that the defaults greatly simplify a configuration, but that they also obscure a great
deal of machinery concerned with naming things. It is important that the programmer not
completely forget these details. Otherwise one could commit errors by not distinguishing
between interface records and interface types, or between component instances and
prototypes. For instance, this could be a problem if there are multiple component instances.
Therefore, one is well advised to assign unique names to the instances.

7.7.4. Multiple exported interfaces from a single component

A component can export more than a single interface. Assigning these exported interfaces to
interface records is done using a Mesa-like extractor (sec. 3.4.5). For example, if we had a
program module SfringsAndlO that exported both StringDefs and IODefs, we could use it in
a modified Config2 as follows:

c4.1: Config4: CONFIGURATION

128 Chapter 7: Modules, Programs, and Configurations

c4.2: IMPORTS alloc: FspDefs
c4.3: CONTROL LexiconClient =
c4.4: BEGIN
c4.5: [str: St;'ingDefs, io: IODefs] +- StringsAndIO[];
c4.6: Lexicon[alloc, io, str];
c4.7: LexiconClient[io, LexiconDefs];
c4.8: END.

Line c4.5 assigns the exported interfaces obtained by instantiating StringsAndIO (that is why
it has an explicit, although empty imports parameter list following it) and declares their
types as well. It would be equally correct to write instead

[str, io] +- StringsAndIO[];

In this case the types for 10 and str would be inferred from the types of the interface records
exported by StringsAndIO. However, if the programmer had written instead,

[io, str] ... StringsAndIO[];

with the positions of io and str reversed, that would have been accepted, but would have
caused errors in both lines c4.6 and c4.7 because their inferred types would not match those
explicit imports parameter lists. Be cautious when doing this.

Default names could also have been used for the exported interfaces in line c4.5, and Config4
could simply have been written as

c4a.l: Config4A: CONFIGURATION
c4a.2: IMPORTS FspDefs
c4a.3: CONTROL LexiconClient =
c4a.4: BEGIN
c4a.5: StringsAndlO;
c4a.6: Lexicon;
c4a.7: LexiconClient;
c4a.8: END.

This would assign the exported interfaces to the default-named records StringDefs and
IODefs and would use them in the defaulted import parameter lists for Lexicon and
LexiconClient. Line c4a.5 could also show what StringsAndlO exports using the default
names for its exported records. This would give rise to the statement:

[StrlngDe/s, IODe/s] ... StringsAndIO[];

Cases like this require that the user be aware of the distinction between interface records and
interface types: StringDe/s names an interface record here, but in line c4.5, it names an
interface type.

7.7.5. Multiple components implementi'ng a single inter/ace

An exported interface can be the result of contributions by a number of components. Think
of the interface as a logical unit that may be implemented by a number of cooperating
physical units (i.e., modules and configurations). For example, asslIme that Lexicon is
divided into two modules LexiconFA and LexiconP, with LexiconFA providing the
procedures FindString and AddString, and LexiconP providing PrintLexicon. Each exports
LexiconDe/s, but neither fully implements that interface. StilI, LexiconC/ient will see a
single interface in the following:

c5.1: Conflg5: CONFIGURATION
c5.2: IMPORTS FspDefs, IODe/s, StrlngDefs

cS.3:
cS.4:
cS.S:
cS.6:
cS.7:
cS.8:

Mesa Language Manual

CONTROL LexiconClient =
BEGIN
lexRec: LexiconDefs ... LexiconFA[];
lexRec ... LexiconP[];
LexiconClient[IODefs, lexRec];
END.

use default imports
merge interface contributions

129

The two separate assignments to lexRec above actually merge the interface elements exported
by the two modules. This merging does not allow any duplication of elements, and if both
modules exported PrintLexicon, for example, an error would be generated during processing
of Config5 by the Binder.

The user may control the merging of interfaces himself using the PLUS operator. To obtain
the same effeFt as above (but by. explicit specification), one could write

lexRecFA +- LexiconFA[]; one part
lexRecP ... LexiconP[]; the other part
lexRec ... lexRecFA PLUS lexRecP; the merge
LexiconClient[lODefs, lexRec]; same as line cS.7

If the programmer wanted to use the original Lexicon, but use LexiconP's PrintLexicon in
the interface instead of Lexicon's, he could use the THEN operator:

lexRec ... LexicontJ; defines a complete interface
lexRecP ... LexiconP[]; defines one procedure
lexRecNew ... lexRecP THEN lexRec; this order is important
LexiconClient[lODefs, lexRecNew];

The THEN operator makes an interface that includes all the elements defined by lexRecP (the
left operand) together with those from lexRec (the right operand) that do not duplicate any
in lexRecP. This could be useful if one simply wanted to test a new version of PrintLexicon
procedure without altering Lexicon itself during the debugging period. Also, one could use
THEN to provide a number of alternative PrintLexicon procedures, with the standard one
incorporated in Lexicon.

7.7.6. Nested (local) configurations

Configurations may be defined within configurations, much like local procedures (sec. S.7)
may be defined within other procedures in Mesa. They can then be instantiated and
parametrized, and they can export interfaces Uust like any configuration).

Nested configurations can be used to hide some of the interfaces exported by components in
a configuration. For example, suppose that multiple instances of some component ProgMod
were needed in a configuration, and further suppose that ProgM od exports the interface
ProgDefs. Even if none of the exported ProgDefs interface records are needed in the
configuration, they would each have to be given a unique name to avoid an interface merging
error (sec. 7.7.S).

This could be avoided by defining the following nested configuration:

NonexportingPM: CONFIGURATION = BEGIN ProgMod END.

Using NonexporlingPM in place of ProgMod avoids the duplicate interface problem because
the local configuratiQn does not export the interface ProgDefs produced by instantiating
ProgMod within it.

130 Chapter 7: Modules, Programs, and Configurations

Nested configurations can also be used to avoid writing sequences of C/Mesa statements
more than once. By collecting such a sequence in a nested configuration, one can get the
effect of writing the whole sequence simply by instantiating the configuration.

The scope rules for names in C/Mesa allows a nested configuration to access interfaces and
other (also nested) configurations outside it. So, one configuration can make instances of
others. However, in its IMPORTS list, a nested configuration must name any interfaces that its
components import but which are not satisfied within it. That is, interfaces are never
automatically imported into a nested configuration.

7.8. Loading modules and configurations: NEW and START

This section describes how configurations are loaded and run. Simple, atomic modules are
discussed first, and then more general configurations.

Loading and running an atomic module is a sequence of four actions:

(1) loading its object code (from the .BCD file),

(2) allocating a frame for its static variables,

(3) filling in procedure descriptors for imported procedures and frame pointers for
imported modules,

(4) initializing the module's variables and executing its mainline code.

Actions (1), (2), and (3) are acomplished using a single Mesa operator, NEW. Action (4) can
be accomplished by explicitly starting the instance or by means of a trap on the first call to
any of its procedures (both these methods are described below).

7.B.1. The NEW operation for atomic modules

The syntax for the NEW operation is
Expression ::= ... I NEW Variable

The Variable may be the name of a program prototype, an imported frame pointer, a pointer
to the frame for a program module, or a program variable defined in an interface. Each of
these cases is described below.

A program prototype is named by including it in the DIRECTORY section of a module. Thus,
if the DIRECTORY section contains

Prog: FROM "ProgFile"

then Prog is the name of a prototype. The expression "NEW Prog" loads an instance of Prog
and yields a pointer to its frame. So, if a program that includes Prog contains a declaration
and a statement such as •

progI nst: POINTER TO FRAME[Prog];

progJ nst +- NEW Prog;

then progJ nst will point to its frame.

NEW can also be used to make a copy of a program instance. The instance is only a copy of

Mesa Language Manual 131

the frame insofar as its interface records are concerned. In all other respects it is
uninitialized, just like a new instance. In particular, it must be started to supply its program
parameters (if any) and to initialize its global variables. At the time the copy is made, it will
have exactly the same bindings as the original. If some of the globally available interface
records maintained by the loader (sec. 7.8.2) later change, the copy may be bound differently
than the original.

A copy is made (as opposed to a new instance) whenever the Variable following NEW does not
name a prototype. Thus, "NEW proglnst" would copy proglnst, while "NEW Prog" would make
an entirely new instance from the prototype Prog. Similarly, if a module imports a program
Pimp (sec. 7.4.2), the operation "NEW Pimp" copies Pimp rather than making a brand new
instance.

A program module's type may be declared in a definitions module in the same way as a
procedure's type is. Such a defined program is part of the interface defined by that
definitions module and may, therefore, be imported by another module as part of that
interface. Then, copies of that module can be made using the NEW operation. They will all
be copies, and not new instances. For example, assume that the following declaration appears
in the definitions module, Defs:

ExportedProg: PROGRAM [i: INTEGER];

Any program that imports Defs will then have access to a value named ExportedProg which
will have been bound (in step (3) of the loading process) to an instance of a program whose
parameter types conform with those of ExportedProg. The only operation that a program
can perform using this value is to START it, RESTART it, or make a copy of it using "NEW

ExportedProg". In summary, a program imported as part of an interface behaves like a
value that is a pointer to a frame, and not like a program prototype.

7.B.2. How the loader binds interfaces

Each instance of an atomic module or of a configuration may export some interfaces. To
make these exported interfaces available for importation by other instances, the loader
maintains a single, simple global table of all the exported interfaces. If any duplicates are
created as the result of a NEW, they are merged into the already existing interface records as
if a THEN (sec. 7.7.5) had been done. •

The moral here is that complicated binding to hide interfaces, etc. must be done using the
binder, and only the simplest, most straightforward forms should be used at loading time.

7.B.3. STARTing, STOPping, and RESTARTing module instances

The START operation suspends the execution of the program or procedure executing it and
transfers control to a new, un initialized instance of an aLomic module. For example, if the
program instance being started requires parameters, they are supplied as part of the START.

Similarly, if the program being started is specified to return results' (more details below),
then the START operation may appear in a RightSide context, and the returned value is the
value of the operation. Its syntax is .

StartStmt ::= START Call I ...

The variable following the word START must represent a global frame pointer or program
variable; i.e., its type must conform to some POINTER TO FRAME type or PROGRAM type. Here
are some examples of its use:

132 Chapter 7: Modules, Programs, and Configurations

START proglnst;
START ExportedProg[5+j];
x +- START progWithResu[tUirstArg: a, secondArg: b]; --keyword parameter list

When a program is started, it first executes code to initialize any static variables that were
declared with initialization expressions. The initializations are done in the order in which
the variables were declared in the program. Also, they may call both local and imported
procedures (since descriptors for all imported procedures are filled in as part of the NEW
operation - sec. 7.7.1).

After all initialization expressions are complete, the mainline statements of the program
commence executing. Control can then return to the caller (the program or procedure which
initiated the START) in one of two ways: the started program may STOP or it may RETURN with
results (howeyer, it cannot use both).

A program which executes a STOP can be RESTARTed later. RESTART is distinct from START
primarily because it cannot pass parameters as START can. If a program does not return
results, it can only stop either by an explicit use of STOP or by running off the end of the
program. At the end, the compiler places an implicit RETURN (sec. 5.3.1).

A program which declares (in its ModuleHeader) that it returns results uses RETURN statements
just as does a procedure (and it cannot use STOP). A RETURN from a program does not
deallocate its frame as a RETURN from a procedure does. The syntax for RESTART and STOP is

RestartStmt ::= RESTART Variable I ...
StopStmt ::= STOP I ...

The Variable following RESTART must be a pointer to the frame for a program instance or a
program variable, just as for START. A program which RETURNS results or has run off the end
cannot be RESTARTed. Attempting to do so will result in a run time error.

A module instance can also be STARTed "automatically". If a call is made on a procedure in
an instance that has not yet been started, a start trap occurs. If the module does not take
parameters when started, then it is started by the Mesa start-trap handler. When it STOPS or
RETURNS, the trap handler completes the procedure call that was in progress when the trap
occurred. (See the next section for further discussion of the start trap for configurations.)

Warning: A module must be STARTed either explicitly or implicitly before any attempt is
made to access its variables through a POINTER TO FRAME.

7.8.4. NEW and START for configurations

NEW can also make instances of configurations which are more than simple, atomic modules.
To do this, one must include the configuration in the DIRECTORY section of a program (let's
call it LoadProg). Then, one makes a new instance (never a copy, for a configuration) of the
BCD (call it Config) by the operation "NEW Con/ig". The result returned by NEW in this case
is either a valid frame pointer to the configuration's CONTROL module, if it has one, or a null
frame pointer. A null frame pointer is not the same as the value NIL. Rather, it is a value
that can cause a trap if a program uses it in a START or RESTART operation.

The pointer to a control module's frame can only be assigned to a suitable variable. To
delcare a program variable suitable for assigning the value returned by "NEW Con/ig",
LoadProg would have to do one of the following:

(a) include con/ig's control module (call it Control) in its DIRECTORY section, or

Mesa Language Manual 133

(b) declare itself a suitable program type for Control.

A configuration instance itself cannot be sTARTed, but its CONTROL module can (if it has
one). Basically, the CONTROL module acts as the representative for the whole configuration
(since a C/Mesa configuration description does not contain executable Mesa statements).
Thus, a program that STARTS the CONTROL module for a configuration has essentially sTARTed
the configuration. If the order of starting some of the instances in a configuration is
important or if they take arguments when started, its CONTROL module should START them
explicitly.

The start trap works for configurations as well as for atomic modules. If a start trap occurs
for a module M in configuration C with control module eM, then the trap handler
automatically' starts eM rather than M. If the handler discovers, however, that eM has
already been started, it will start M (since eM would have started M if it had intended to).
In fact, if the handler starts eM but still finds M unstarted when eM STOPS, it will start M
itself before finally returning from the trap. Then the procedure call that caused the trap
will be allowed to go through.
Fine points:

If an attempt is made to RESTART a program which has not been started, a START trap will occur and
then the REST ART will proceed.

Other forms of START and STOP statements are used to catch signals. This is discussed in Chapter 8,
but the forms look roughly as follows:

START somelnstance [ComponentList ! CatchPhrase]
STOP [! CatchPhrase]

•

•

134

CHAPTER 8.

SIGNALLING AND SIGNAL DATA TYPES

Signals are used to indicate when exceptional conditions arise in the course of execution, and
they provide an orderly means of dealing with those conditions, at low cost if none are
generated (and they almost never are). For example, it is common in most languages to write
a storage allocator so that, if asked for a block whose size is too large, it returns a null (or
otherwise invalid) pointer value. Any program which calls the allocator then embeds the call
in an IF statement, and checks the return value to make sure that the request was satisfied.
What that procedure then does is a very local decision.

In Mesa, one would write the allocator as if it always returned a valid pointer to an allocated
block, and calls to it would simply assign the returned value to a suitable pointer, without
checking whether or not the allocation worked. If the caller needs to gain control when the
allocator fails, the programmer attaches a CatchPhrase to the call; then if the allocator
generates the signal BlockTooLarge, and the caller has indicated that it wants to catch that
signal, it will.

This way of handling exceptions has two important properties, one for the human reader of
the program, and one for its execution efficiency:

Anyone reading a program with a call on the allocator can see immediately that an
exceptional condition can arise (by the catch phrase on the call or nearby); he then
knows that this is an unusual event and can read on with the normal program flow: IF

statements do not have this characteristic of distinguishing one branch from the
other.

When the program is executing, the code to check the value returned by the allocator
on every call is not present and therefore takes no space or execution time. Instead,
if a signal is generated, there is more overhead to get to the catch phrase than a
simple transfer; but since it happens infrequently, the overall efficiency is much
higher than checking each call with an IF statement.

Signals work over many levels of procedure call, and it is possible for a signal to be
generated by one procedure and be handled by another procedure much higher up in the call
chain. We later discliss the mechanisms by which this is done; until then, examples show
signals being caught by the caller of the procedure which generated the signal.

8.1. Declaring and generating SIGNALS and ERRORS

In its simplest form, a signal is just a name for some exceptional condition. Often,
parameters are passed along with the signal to help a catch phrase which handles it in
determining what went wrong. It is also possible to recover from a signal and allow the·

Mesa Language Manual 135

routine which generated it to continue on its merry way. This is don~ by a catch phrase
returning a result; the program which generated the signal receives this result as if it had
called a normal procedure instead of a signal. Therefore, from the type viewpoint, signals
correspond very· closely to procedures; in fact, the type constructor for declaring signals is
just a variation of the one for procedures:

SignalTC .. - SignalOrError ParameterList RETURNS ResultList
SignalOrError ParameterList I
SignalOrError RETURNS ResultList I
SignalOrError

SignalOrError ::= SIGNAL I ERROR

For example, the signal BlockTooLarge might be defined to carry along with it two
parameters, a ~one within which the. allocator was trying to get a block, and the number of
words needed to fill the current request. The catch phrase that handles the signal is expected
to send back (Le., return) an array descriptor for a block of storage to be added to the zone.
The declaration of BlockTooLarge would look like

BlockTooLarge: SIGNAL[Z: Zone, needed: CARDINAL]
RETURNs[newStorage: DESCRIPTOR FOR ARRAY OF CARDINAL];

A signal variable contains a unique name at run time, which is a code identifying an actual
signal, just as a procedure variable must be assigned an actual procedure before it can be
used. If a procedure is imported from an interface (sec. 7.4), any signals that it generates
directly are probably contained in the same interface. Imported signals are bound by the
same mechanisms as procedures. In addition, one may have signal variables which can be
assigned any signal value of a compatible type.

The signal analog of an actual procedure is obtained by initializing a signal variable using
the syntax ": CODE" in place of ": BEGIN ... END" for procedures. This causes the signal to be
initialized to contain a unique value. The following syntax describes the initialization for an
actual signal:

Initialization •. - : CODE I

A signal is generated by using it in a SignalCall as shown in the syntax below:

Statement :: = SignalCall I ...

SignalCall

ErrorCall

.. - SIGNAL Call I ErrorCall

.. - RETURN WITH ERROR Call
ERROR Call I
ERROR -- special error

Call is defined in section 5.4, and the called Expression must have some signal type in this
case. A SignalCall can pe used as an Expression as well as a Statement. For example,

newblock +- SIGNAL BlockTooLarge[zone, n];

Thus, generating a signal or error looks just like a procedure call, except for the additional
word, ERROR or SIGNAL.

Fine point;

Although it is not recommended, the keywords SIGNAL and ERROR may be omitted (except in the
RETURN WITH ERROR construct). This makes the signal look exactly like a procedure call.

136 Chapter 8: Signalling and SIGNAL Data Types

If a signal is declared as an ERROR, it must be generated by an ErrorCall. If, however, it is
declared as a SIGNAL, it can be generated by any SignalCall, including an ErrorCall. The
difference between the two is that a catch phrase may not RESUME a signal generated by an
ErrorCt,'Ili (sec. 8.2.5).

Except for a slight difference in the way the error is started (sec. 8.2.3), the RETURN WITH

ERROR construct behaves like the ERROR statement. Its primary use is jn monitor ENTRY

procedures (chapter 10).

The "special error" in the above syntax is used to indicate that something has gone wrong,
without giving any indication of the cause; the statement

ERROR;

generates a system -defined error. It is provided to cover those "impossible" cases which
should never occur in correct programs but which it is always best to check for (such as
falling out of a loop that should never terminate normally, or arriving at the ENDCASE of a
SELECT statement that claims to handle all the cases). It can only be caught using the ANY

option in a catch phrase (sec. 8.2.3). It is customarily handled by the debugger.

8.2. Control of generated signals

Any program which needs to handle signals must anticipate that need by providing catch
phrases for the various signals that might be generated. During execution, certain of these
catch phrases will be enabled at different times to handle signals. Loosely speaking, when a
signal S is generated, the procedures in the call hierarchy at that time will be given a chance
to catch the signal, in a last-in -first-out order. Each such procedure P, if it has an enabled
catch phrase, is given the signal S in turn, until one of them stops the signal from
propagating any further (by mechanisms which are explained below). P may decide to reject
S (in which case the next procedure in the call hierarchy will be considered), or P may
decide to handle S by taking control and attempting to recover from the signal.

8.2.1. Preparing to catch signals: catch phrases

A catch phrase has the following form:

Catchltem .. - Catch I

Catch

CatchSeries

ANY = > Statement
.. - ExpressionList = > Statement

:: = Catchltem I
Catch ; CatchSeries

The expressions in the ExpressionList (semantically restricted to a list of variables) must
evaluate to the names of signals (unless otherwise stated, we lise Signal to stand for both
ERROR and SIGNAL). The special identifier ANY will match any signal (sec. ~.2.3).

A catch phrase is written as part of an argument list, justl after the last argument and before
the right bracket. Catch phrases may appear in a procedure call, Signal Call, NEW, START,

RESTART, STOP, JOIN, FORK, or WAIT (but not in a RESUME or RETURN). A catch phrase may also
be appended to the BEGIN of a block or the DO of a loop statement by means of an
EnableClause. The applicable syntax for a call and for a block or loop statement is

Mesa Language Manual

Call ::= Variable [ComponentList ! CatchSeries]
Variable [! Catch Series] I

Block .. - BEGIN -- (from Section 4.4)
OpenClause
EnableClause
Declar ationSeries
StatementSeries
ExitsClause
END

EnableClause :: = empty I
ENABLE Catch Item ; I
ENABLE BEGIN CatchSeries END ; I
ENABLE BEGIN CatchSeries ; END ;

137

Note that the EnableClause is always followed by a semi-colon, and BEGIN ... END must be used
if there is more than one Catch in an EnableClause.

The main difference between the two kinds of catch phrases (ENABLE and !) is the scope of
their influence. A catch phrase on a Call is only enabled during that call. A catch phrase at
the beginning of a compound or loop statement is enabled as long as control is in that block;
it can catch a signal resulting from any call in the block (or generated in the block).

Fine points:

For a Block with an ExltsClause (see sec. 4.4.1), the catch phrases enabled at the beginning of the body
are not in force in the statements of the ExitSeries.

Procedures declared in the DeclarationSeries (of any enclosed Block) do not inherit the catch pharses in
the EnableClause.

8.2.2. The scope of variables in catch phrases

Catd! phrases are called to handle signals (the exact mechanisms are discussed in the next
section). The naming environment that exists when a catch phrase is called (in order of
innermost to outermost scope) includes any parameters passed with that signal (these are
declared as part of a signal's definition), and any variables to which the procedure or
program activation containing the catch phrase has access.

If a Catch" has more than one label (or (he label ANY), where the types of those labels are
not identical, then the signal's arguments are not accessible in the Statement chosen by that
Catch.

If, however, there is exactly one type for the signals named in a Catch's ExpressionList, then
the signal's arguments are accessible in the statement following "=>". The names used are the
parameters given in the signal's declaration, just as for procedures. For example, a catch
phrase for signal BlockTooLarge (defined earlier) might be used in a section of cod~ such as:

-- in StorageDefs
BlockTooLarge: SIGNAL [z: Zone, needed: CARDINAL]

RETURNS[newStorage: DESCRIPTOR FOR ARRAY OF CARDINAL];
GetMoreStorage: PROCEDURE [z: Zone, n: CARDINAL]

RETURNS [DESCRIPTOR FOR ARRAY OF CARDINAL];

138 Chapter 8: Signalling and SIGNAL Data Types

-- in a user program
p: POINTER TO Account;

p 4- Allocate[slzE[Account] !
BlockTooLarge => REsuME[GetMoreStorage[z, needed]]];

The names z and needed in the catch phrase refer to the parameters passed along with the
signal from Allocate (see sec. 8.2.5 for a discussion of RESUME).

8.2.3. Catching signals

When a signal is generated. what really llappens is that the signal code. and a descriptor for
the actual arguments of the signal. are passed to a Mesa run-time procedure named Signaller.
Signaller'S definition is .

Signaller: PROCEDURE[S: SignalCode. m: Message];

Here s identifies the signal being generated. and m contains its arguments. (Actually.
different procedures are used to distinguish between SIGNAL. ERROR, and RETURN WITH ERROR.)

Signaller proceeds to pass the signal and its argument record from one enabled catch phrase
to the next in an orderly fashion. The order, at the procedure level, follows the current call
hierarchy, from the most recently called procedure to least recently called, beginning with the
procedure which generated the signal itself. If the caller of a procedure is the outermost
block of code for a program, the Signaller will follow its return link to continue
propagating the signal (the return link points to the frame which last STARTed the module
(sec. 7.8».

If, in place of SIGNAL or ERROR, a RETURN WITH ERROR is used, the procedure which generated
the error is first deleted (after releasing the monitor lock, if it is an ENTRY procedure), and
propagation of the error begins with its caller.

As Signaller considers each frame, it looks to see whether that frame has any enabled catch
phrases; if so, Signaller calls the innermost catch phrase as if it were a procedure, passing it
the SignalCode and Message. The innermost catch phrase is 'defined ·to be

either the one after "!" attached to the currently incomplete procedure call for that
frame, or .

the one following an ENABLE in the innermost enclosing block which contains that
call.

Because signals can be propagated right through the call hierarchy, the programmer must
consider catching not only signals generated directly within aJ)y procedure that is called, but
also any generated indirectly as a result of calling that procedure. Indirect signals are those
generated by procedures called from within a procedure which' you cal1, unless they are
stopped before reaching yOll.

When 'a catch phrase is called, it behaves like a SELECT statement: it compares the signal code
passed to it with each signal value in the ExpressionList of each Catch in the catch phrase.
If the signal code matches one of the signal values, control enters the statement following the
"=>" for that Catch; if not, the next Catch is tried. A Catch consisting of "ANY =>
statement" alllomatically matches any signal code (and is the only way to catch the unnamed
ERROR generated by the standalone ERROR statement discussed in section 8.1).

Mesa Language Manual 139

Fine point:

The ANY catchall is intended primarily for use by the debugger, and should generally be avoided. It
matches any signal, including UNWIND and all system -defined signals that might indicate some
catastrophic condition (a double memory parity error, for example).

When a match is found, that Catch is said to have caught or accepted the signal. If no
alternative in a catch phrase accepts the signal, there may be another enabled catch phrase in
some surrounding block. If so, the first catch phrase sends control to the second one so that
it can inspect the signal, and so on until the last enabled catch phrase in that routine has had
a chance at the signal. If no catch phrase in the routine accepts the signal, control returns to
Signaller with a value indicating that the signal was rejected, and Signaller propagates the
signal to the n~xt level in the c:a.ll hierarchy. In fact, all catch phrases are called by Signaller
as if they were procedures of the following type:

CatchPhrase: PROCEDlH[S: SignalCode, m: Message]
RETURNS[{Reject, Unwind, Resume}];

The SELECT-like statement associated with each Catch has an implicit Reject return as its
ENDCASE; hence, if control simply falls out of the statement, the signal is rejected.

Fine point:

If the same signal, foo. is enabled in several nested catch phrases in a procedure, each is given a chance
to handle foo if the inner ones reject the signal.

Signaller continues propagating the signal up the call chain until it is exhausted, i.e., until
the root of the process has considered and rejected the signal. At that point, an uncaught
Signal has been generated. and drastic action must be taken.

Mesa guarantees that all signals will ultimately be caught and reported by the Debugger to
the user. This is helpfUl in debugging because all the control context which existed when
the Signal was generated is still around and can be inspected to investigate the problem.

The declaration of CatchPhrase above indicates three reasons for returning to Signaller.
The first, Reject, has already been discussed. The third, Resume, is discussed in section 8.2.5.

The second reason, Unwind, is used when a catch phrase has accepted a signal and is about to
do some form of unconditional jump into the body of the routine containing it (this is the
only form of "non-local goto" in Mesa). The jump may be generated by a GOTO statement
(sec. 4.4), an EXIT or LOOP (sec. 4.5), or a RETRY or CONTINUE (see below). Immediately
preceding such a jump, the catch phrase returns to Signaller with result Unwind; it also
indicates the frame containing the catch phrase and the location for the jump. This causes
Signaller to perform the following sequence of actions:

(1) Beginning at the frame in which the original signal was generated (or its caUer,.if
a RETURN WITH ERROR was executed), it passes the signal UNWIND to each frame. This
signal tells that activation that it is about to be destroyed and gives it a chance to
clean up before dying. Signaller then deallocates the frame and follows the same
path as it did for the original signal to continue unwinding control. When-it comes
to the frame containing the catch phrase, it stops.

(2) Signaller then arranges for the jump to take place, and simply does a return to
that frame, destroying itself in the process.

Every Mesa program contains the pre-declared value_

UNWIND: ERROR = CODE;

140 Chapter 8: Signalling and SIGNAL Data Types

Fine point:

The UNWIND sequence gives each activation which is to lose control a chance to make consistent any
data structures for which it is responsible. There are no constraints on the kinds of statements that it
can lise to do this: procedure calls, loops, or whatever are all legal. If, however, a catch for the
UNWIND signal, such as,

START NextPhase [! UNWIND => GOTO BailOut]:

decides itself to perform a control transfer that would also initiate an UNWIND, this will override the
original UNWIND, and Signaller will stop right there, as if the second UNWIND catch had been the
originator of the UNWIND.

8.2.4. RETRY and CONTINUE in catch phrases

Besides GOTO, EXIT, and LOOP, there are two other statements, RETRY and CONTINUE, which
initiate an UNWIND. These can only be used within catch phrases.

RETRY means "go back to the beginning of the statement to which this catch phrase belongs";
CONTINUE means "go to the statement following the one to which this catch phrase belongs"
(what is called Next-Statement in chapter 4).

For a catch phrase in a Call, the catch phrase "belongs" to the statement containing that Call.
Thus, if the signal NoAnswer is generated for the call below, the assignment statement is
retried:

answer +- GetReply[Send["What next?"] ! NoAnswer = > RETRY];

On the other hand, if CONTINUE had been used instead, the statement after the assignment
would be executed next (and the assignment would not be performed).

For a catch phrase after ENABLE, there are two cases to consider, blocks and loops. In a block,
the catch phrase "belongs" to that statement; the next section shows an example. In a loop,
the catch phrase "belongs" to the body of the loop, and CONTINUE really means "go around the
loop again." The following two examples are equivalent:

UNTIL p=NIL

DO ENABLE TryList2 => BEGIN p+-list2; CONTINUE END;

ENDLOOP;

UNTIL p=NIL

DO

BEGIN ENABLE TryList2 => BEGIN p+-list2; CONTINUE; END;

END;

ENDLOOP;

In any case, 'recall that an Unwind is initiated prior to completion of a ,RETRY or CONTINUE.

8.2.5. Resuming from a catch phrase: RESUME

The third alternative available to a catch phrase, after Reject and Unwind, is Resume. This
option is invoked by using the RESUME statement to return values (or perhaps just control)
from a catch phrase t.o the routine which generated the signal. To that routine, it appears as
if the signal call were a procedure call that returns some results. The syntax for RESUME is
just like that for RETURN:

Statement
ResumeStmt

Mesa Language Manual

::= ResumeStmt I RETRY I CONTINUE I
::= RESUME I

RESUME [Component List]

141

When Signaller receives a Resume from a catch phrase, it simply returns and passes the
accompanying results to the routine that originally called it (i.e., that generated the signal).
If the signal was generated by an ErrorCall and a catch phrase requests a Resume, Signaller
simply generates a signal itself (which results in a recursive call on Signaller); its declaration
is

ResumeError: PUBLIC ERROR;

Since it is an ERROR, one cannot legally RESUME it.

8.2.6. Examples of CONTINUE, RETRY, and RESUME

The following example illustrates the use of CONTINUE, RETRY, and RESUME. The procedure
Getltem reads characters from some source (using the procedure ReadChar) and collects a
single item, which it puts into the string s. An item is a string of characters ending with a
CR, SP, or TAB. On rare occasions, a terminating character may be included in an item; this
is done by preceding it with an "escape" character. If two escape characters occur together,
the current item is forgotten, and Getltem essentially starts over.

If an escape character is followed by any character other than a terminator or itself, scanning
stops and that character is returned instead of the usual CR, SP, or TAB. If the string is
filled before a terminating character is encountered, the error StringBoundsFault is
generated.

gl: -- StringBoundsFau[t: SIGNAL[STRING] RETURNS[STRING]; (in StringDefs)
g2: -- ReadChar: PROCEDURE RETURNS[CHARACTER]; (in IODefs)
g3: Get/tern: PUBLIC PROCEDURE[S: STRING] RETURNS[Z: CHARACTER] =
g4:
g5:
g6:
g7:
g8:
g9:
g10:
gIl:
g12:
g13:
g14:
g15:
g16:
g17:
g18:
g19:
g20:
g21:
g22:
g23:
g24:
g25:
g26:
g27:

BEGIN
i: CARDINAL;
Escape: SIGNAL = CODE;

BEGIN ENABLE Escape =>
SELECT Z ... IODefs.ReadChar FROM

CR, SP, TAB => RESUME;
escMark => RETRY;
ENDCASE = > CONTINUE;

FOR i IN [O .. s.maxlength)
DO
SELECT Z ... IODefs.ReadChar FROM

CR, SP, TAB => EXIT;
escMark => SIGNAL Escape;
ENDCASE;

s[i] ... z;
s.length ... i+l;
REPEAT

-- (at g20)
-- (at g9)
-- (at g26)

FINISHED => [] ... ERROR StringDe/s.SlringBoundsFault[s];
ENDLOOP;

END;
RETURN[Z];
END;

142 Chapter 8: Signalling and SIGNAL Data Types

This example is used only for illustration; generally, signals like Escape which are intended
to be caught only in the procedure in which they are generated are a bad idea; they are
inefficient compared with conditional statements and normal transfers of control, and a
programming error may cause them to propagate beyond the procedure defining them.

8.3. Signals within signals

What happens if, in the course of handling a signal, firstSignal, a catch phrase (or some
procedure called by it) generates another signal, secondSignal? Handling nested signal
generation is almost exactly like non-nested signal propagation. Generating the signal will
call Signaller. (recursively, since the instance of Signaller responsible for the first signal is
still around), and it propagates the new signal back through the call hierarchy by calling a
second activation of Signaller, say "Signaller2". When in the course of doing this it
encounters the previous activation of Signaller ("Signaller 1"), then something different must
be done.

If firstSignal is not the same as secondSignal, Signaller2 propagates it right through
Signallerl, and all the activations beyond it are also given a chance to catch secondSignal.

On the other hand, if secondSignal = firstSignat, then all of the routines whose frames lie
beyond Signallerl, up to the frame containing the catch phrase called by Signallerl, have
already had a chance to handle jirstSignal, so they are not given it again. In order to skip
around that section of the call hierarchy, Signaller2 simply copies the appropriate state
variables from. Signallerl. Next, Signaller2 skips over the frame containing the catch phrase
(by following its return link), and continues propagating secondSignal normally.

For the programmer, the main import of nested signals is that one needs to consider, when
writing a routine, not only what signals can be generated, directly or indirectly, by the called
procedures, but also those which can be generated by catch phrases in that procedure or even
the catch phrases of any calling procedures, also both directly or indirectly.

•

•

143

CHAPTER g.

PORTS AND CONTROL STRUCTURES

Mesa has, in addition to procedures, another mechanism by which programs may transfer
control. This mechanism is called a PORT; PORTS allow separate modules or procedures to act
as coroutines. When one calls a procedure and it returns, the procedure is finished; if the
same operation is needed again, another call will create a new activation of it to perform that
action. However, when a coroutine returns control, it does not finish and disappear.
Calling it again only resumes it from where it left off. The advantage of a this scheme is
that the coroutine may keep some of its state from call to call encoded in its program
counter: i.e., if it is at a certain place in its code, then that place does not need to be encoded
somehow and saved as a variable in order to decide how to proceed when next called.

Actually, as described later, PORTS are normally used in pairs, just like electrical plugs and
sockets, one for each side of the connection. If two coroutines A and B are connected, what
is seen by A as a call to B appears to B as a return froin A, and vice-versa. Thus, both A and
B regard the other as a facility to be called to accomplish some processing task. For instance,
jf ReadFil e is a coroutine for reading characters from a file which are then given, one at a
time, to another coroutine, its view is that it reads characters from the file and calls the
other coroutine to process them (in some unspecified way). WriteFile, on the other hand, a
coroutine for writing characters into a file, would call a coroutine to get the next character to
be written. Together these two coroutines could make a file copying program.

A coroutine needs to be able to send arguments and to receive results. The language facilities
for doing this closely mirror procedure parameter and result lists. For example, a PORT over
which ReadFile could send a character would be declared by ReadFile as

Out: PORT[ch: CHARACTER];

The port over which WriteFile receives a character, and which could be connected to
ReadFile's Out PORT, is declared as

In: PORT RETURNS[CHARACTER];

There is only one other consequential difference between procedures and coroutines. A
procedure can be called at any time because a new activation is created, which will always
consume the arguments sent to it as soon as it begins. However, if two coromines like
Read File and WriteFile communicate, in order for the transfer of control and arguments to
go smoothly, WriteFile mUSl be prepared to receive a character when ReadFile sends it.
Coroutines are not parallel processes, and one has to be started before the other, so it is
guaranteed that the first attempt at transferring control between ReadFile and WriteFile
will not work smoothly. Fortunately, Mesa provides a simple mechanism for starting a whole
set of interconnected coroutines to get them past this start-up transient (sec. 9.2). The most
important property of the mechanism is that the coroutines themselves need never be
concerned about the startup transient -- they are written as if it never happens.

144 Chapter 9: Ports and Control Structures

9.1. Syntax and an example of PORTS

The syntax for declaring a port is the following:

PortTC .. - PORT Parameter List ReturnsClause I
RESPONDING PORT ParameterList ReturnsClause

The Parameter List and ReturnsClause may both be empty, just as for procedures. RESPONDING

PORTS are covered in section 9.3. The syntax for making a call on a port is exactly the same
as for calls on procedures (both as statements and functions).

The following pair of program modules implement the coroutines ReadFile and WriteFile
described earlier; they use the ports Out and In, respectively:

DIRECTORY
FileDefs: FROM "filedefs" USING [

NUL, FileHandle, Fi!eAccess, OpenFile, ReadChar, EndOfFile, CloseFile];

ReadFile: PROGRAM[name: STRING] IMPORTS FileDefs =
BEGIN OPEN Fi! eDefs;
Out: PORT[ch: CHARACTER];
input: Fi!eHandle;
input +- OpenFile[name: name, access: FileAccess[Read]];
STOP;
UNTIL EndOfFile[input]

DO
Out[ReadChar[input]]; -- PORT call: send a character from the file
ENDLOOP;

CloseFile[input];
Out[NUL]; -- send a null character to indicate end-of-file
END.

DIRECTORY
FileDefs: FROM "filedefs" USING [

NUL, FileHandle, FileAccess, OpenFile, WriteChar, CloseFi/e];

WrifeFile: PROGRAM[name: STRING] IMPORTS FileDefs =
BEGIN OPEN Fil eDefs;
In: PORT RETURNS[ch: CHARACTER];
char: CHARACTER;
output: FileHandle;
output +- OpenFile[name: name, access: FileAccess[New]];
STOP;
DO -- until In sends a NUL

char +- In[];
IF char = NUL THEN EXIT;
WriteChar[output, char];
END LOOP;

Cl oseFi I e[oulput];
END.

-- PORT call: get a character
-- check for end of stream
-_. write the character into the file

ReadFile first initializes its variables and opens the input file (with Read access). When it
is restarted, it loops, reading characters from the file and sending them over its Out PORT

until it reaches the end of the input file; then it sends a single NUL character. If it regains
control, it simply rrturns.

Mesa Language Manual 145

WriteFile, after creating and opening a new output file, loops, reading characters from the
port In and writing them to the output. If it receives a NUL character, it closes the output
file and returns. Thus, if ReadFile and WriteFile's ports were connected so that they were
working together as coroutines, ReadFile would never regain control after sending the NUL
character.

9.2. Creating and starting coroutines

To set up the above two programs as coroutines, they must both be instantiated and
initialized, their respective ports must be connected, and then they must be started
individually, with the start-up transient handled. This is usually done by another,
controlling program like the following:

DIRECTORY'
TrapDefs: FROM "trapdefs" USING [PortFault],
IODefs: FROM "iodefs" USING [ReadLine, WriteString],
ReadFile: FROM "readfile",
WriteFile: FROM "writefile";

CopyM aker: PROGRAM IMPORTS IODefs, ReadFile, WriteFile =
BEGIN OPEN lODefs;
input: STRING ... [256];
output: STRING ... [256];
reader: POINTER TO FRAME[ReadFile];
writer: POINTER TO FRAME[WriteFile];
-- first ask the user for the names of the input and output files
WriteString["Name of input file: "]; ReadLine[input];
WriteString["Name of output file: "]; ReadLine[output];
-- create and initialize instances of ReadFile and WriteFile;
reader'" NEW ReadFile; START reader[input];
writer ... NEW WriteFile; START writer[output];
-- connect their ports and then restart them to get them synchronized
CONNECT writer.ln TO reader.Out;
CONNECT reader.Out TO writer.In;
RESTART writer[! TrapDefs.PortFault => CONTINUE];
RESTART reader[! TrapDefs.PortFault => ERROR];
END.

Logically, CopyMaker is a very simple program. However, it must know how to start
ReadFile and WriteFile and how to connect their ports (and it must handle the signal
PortFault -- see below). This is typical of the use of PORTS: the coroutines themselves do
not know (nor should they care) exactly which other program(s) they are connected to; each
PORT is viewed as a virtual facility to be called to perform some task, such as providing the
next input or taking an output.

CopyM aker first requests the names for the input file to be copied and the output file to
which it should be copied. The names are read into the string variables input and output.
Then an instance of ReadFile is made and initialized. Similarly. an instance of Write File is
created and STARTed. When the NEWS are performed. pointers to the instances are stored
(into reader and writer above).

After both instances have been created and initialized, CopyMaker performs the operations
to get them past the startup transient. First it connects writer.ln (i.e., WrileFile's En PORT)
to reader.Out: this simply amounts to storing a pointer in writer.In to the PORT reader.Out.
Then it connects reader. Out to writer.In.

146 Chapter 9: Ports and Control Structures

Fine point:

The STARTs must be performed before the ports are connected. In general, it is not legal to access a
module's variables before it has been started (and the variables have been initialized). Calls to
procedures are allowed, however; they are handled by the StartTrap mechanism (sec. 7.8.3).

Once the CONNECTS are done, all that remains is to get the two coroutines synchronized.
First, WriteFile is RESTARTed; it makes a port call on In to get the first character to be
written into the file.

The port call almost works because In is connected to another port. But, since Read Fit e is
not waiting for control to return over its Out port, it doesn't quite work. This fact is
detected because a part of the underlying representation of Out indicates that no instance is
pending on it (Le .• waiting to receive control via Out). This results in a trap, which is
quickly conve'rted into the ERROR PortFault. CopyMaker clearly anticipated this as part of
the normal startup transient (as evidenced by the presence of the catch phrase on the START
statement). The CONTINUE in that catch phrase means: "forget about this signal and continue
execution at the next statement in CopyMaker."

The next action taken by CopyM aker is to RESTART ReadFile. ReadFile reads the first
character from the input file and attempts a port call on Out, passing the character as its
argument. This is the end of startup transients: this port call works. It works because
WriteFile was left pending on In when it attempted to call it, even though that call did not
go through completely. Since WriteFile is pending on In, it resumes, stores the argument in
char, and proceeds. From now on, port calls between ReadFile and WriteFile will go
smoothly, with no further intervention by CopyM aker. (Moreover, a port call is more
efficient than' a procedure call because no frames are allocated and deallocated in the
process).

When there are no more characters in the input file, ReadFile sends a final NUL character
which causes WriteFile to close the output file and to return. This returns control to
CopyM aker, who, in this example, also returns.

The above description skipped one or two important details of the startup process and port
calls. The next section corrects those omissions and discusses the underlying representation
of ports.

9.2.1. The CONNECT statement

The first CONNECT statement in CopyMaker is equivalent to the following (illegal)
assignment:

writer.ln.link 4- @reader.Out;

This assignment is illegal because, at the language level, a PORT does not look like a record
with a link component. Nevertheless, the code produced by the compiler for the CONNECT
statement in CopyMaker performs exactly this assignment (the compiler is allowed to treat
PORTS in terms of their underlying representations, without regard to type - it implements
type checking). Note that CONNECT is not a symmetric operation: it only connects in one
direction.

The syntax for CONNECT is the following:
ConnectStmt .. - CONNECT expression TO expression

Mesa Language Manual 147

These expressions must both be valid leftSides. The first expression must conform to some
PORT type, and the second may conform to either a PORT or a PROCEDURE type (see sec. 9.2.2
for a discussion of ports connected to procedures).

The types of the two expressions must be port-compatible. To be port-compatible, the
result list of one must be compatible (see definition in sec. 5.2) with the parameter list of the
other, and vice versa. This basically says that the first port sends what the second expects to
receive, and the second sends what the first expects to receive.

9.2.2. Low-level actions during a PORT call

A PORT is represented as a record with two components, one of which is a pointer to another
PORT, and one of which points to a frame (the frame which is pending on that PORT). Its
definition is:

Port: TYPE = MACHINE DEPENDENT RECORD

[
frame: POINTER TO Frame, -- internal view of a frame
link: SELECT OVERLAID '" FROM

];

null => [value: NullControILink],
port => [portDesc: POINTER TO Port],
procedure =) [procDesc: ProcedureDescriptor],
ENDCASE

We will not discuss the internal format of the types Frame, ProcedureDescriptor, or
NullControlLink here. The first two are the underlying representations for a frame and a
procedure value, respectively. The last is just a special value which is used to initiate a trap
if the port is used without having been connected first.

The variant part of a Port distinguishes three cases (how these cases are identified is a
function of the underlying implementation). The null case is how a Port which has not been
connected is represented; it is what causes a trap if a call on the port is made before it is
connected (this is called a linkage fault). If the Port is connected to another Port (the
normal case), then the port variant holds.

Procedure calls, port calls, and returns are all examples of control transfers: each suspends
the execution of one activation and transfers control to another. They also perform other
actions, such as creating or destroying frames, etc. Every control transfer from one
activation to another has a source control link and a destination control link. By control
link we mean a procedure value, a pointer to a port, or a pointer to a frame.

All the high level control transfers in Mesa are built from one common, low-level
mechanism called XFER, which effects the transfer from a source to a destination. In fact, it
is possible to bind any form of control link to any other; thus, if the program uses a port, it
could be bound to a procedure, and calls on the port would actually result in calls on the
procedure. A RETURN from the procedure would cause control to come back in through the
port. Similarly, a procedure value could contain a pointer to a port, in which case calls on
that "procedure" would actually result in a port transfer via the destination port to the
coroutine pending on it.

The common part of a Port record is used when control is returning over a PORT. When a
coroutine does a port call and is sllspended, a pointer to its frame is assigned to the frame
component of that port. Then, when control returns over that port (usually because of a port

148 Chapter 9: Ports and Control Structures

call on the port to which it is connected), the frame field is used to locate the instance which
is to be resumed.

The value contained in the frame component may indicate that it is null. If so, a control
• fault trap will be generated should a transfer using that port ever occur. This condition can

arise for two different reasons:

(1) Due to startup transients, the instance which would normally be pending on that port
is not.

(2) There is a genuine error in the way that a configuration of coroutines has been
constructed, and control is attempting to "loop back" into a coroutine. The simplest
example of this situation is the following: consider a coroutine A with two ports, pJ
and p2. If pJ were connected to p2, then a port call on pJ would clearly result in a
control: fault when p2 was reached in the call, since A cannot be pending on both pJ
and p2 simultaneously.

The action taken on a control fault during a port call is described in the next section.

There is one last important detail about a port call: as part of the action of returning to a
port, its link is set to point at the source port if the return is actually part of a port call.
This constitutes an indirect return link. However, if the return is from a procedure to which
the port is bound, then the link field is not changed. This is so that the procedure value in
the port is not destroyed; thus, future calls on that port will always result in new activations
of that procedure.

Storing an indirect return link in the link field of a destination port means that the next
port call on it will cause control to return via the port from which control most recently
arrived. Using this, one can write coroutines that may be invoked by more than one
coroutine connected to a given port: control will always return to the last coroutine which
sent control over that port. For instance, the coroutine WriteFile above could be given its
input stream of characters from many sources. If the system procedures ReadLine and
WriteString both had ports connected to the port In in an instance of WriteFile, then
everything typed to the user and typed by him would be recorded in a typescript of his
interactions with the system.

9.2.3. Control faults and linkage faults

When a control or a linkage fault occurs, Mesa changes the trap into the ERROR PortFault or
LinkageFault, respectively. These signals are part of a Mesa system interface TrapDefs and
should be imported from there by any program, such as CopyM aker, which configures
coroutines. In TrapDefs they are defined as follows:

PortFault, LinkageFault: ERROR;

Generally, programs should not handle the LinkageFault signal; ports should be properly
connected before they are used. We include it here only for. completeness (the fine point at
the end of this section discusses LinkageFaults further).

These signals, unlike most other signals, are not passed initially to the instance which caused
the fault (call him the culprit), but rather are given first to its owner: the frame to which the
culprit's return link points. This is so that the owner may catch the signal and cause an
UNWIND without the culprit's frame being destroyed as it would normally be. In the previous
example, CopyMaker is the owner and ReadFile and WriteFile are possible culprits.

Mesa Language Manual 149

Note: if the owner does not catch the PortFault or the LinkageFault signal, it may possibly
be unwound itself. This would leave the culprit's return link pointing to an invalid address,
because the owner's frame would have been freed.

The standard action taken by the owner when receiving a PortFault while starting a
coroutine is to press on and start the other members of the configuration. CopyMaker
follows this pattern; when it starts the instance of WriteFile and a control fault is generated,
it simply exits the catch phrase for PortFault and starts the instance of ReadFile. This is
the recommended way to start configurations of coroutines.

Fine point:

If the source port in a port call is unbound (Le., not connected), a LinkageFault ERROR is generated.
This cannot be handled in the same manner as a control fault. If the catcher of this signal causes an
UNWIND, there will be no way to restart the activation which caused the linkage fault; it will be pending
on a port, and RESTARTing it will cause an error. This difficulty makes starting corol1tines before
connecting their ports an ill-advised thing to do. It is much better to do the CONNECTs first, and then
start each activation.

9.2.4. Saving arguments during faults

When a port call faults, the instance which attempted the call is left pending on the source
port before the trap is changed into the PortFault or LinkageFault signal. This is done by a
Mesa procedure called the FaultHandler, which is called in response to the trap. In the case
of starting writer above, this procedure did the following:

(1) It set the instance of WriteFile to be pending on its In port (the trap process provides
information about which instance caused the trap, and what the source port was);

(2) By some low-level control mechanisms, it invoked the Signaller (sec. 8.2) as if from
the owner of writer and simultaneously did a RETURN. Thus, that activation of
FaultHandler disappeared and the Signaller was invoked as a single action.

Later, when reader called Out, control returned to writer via In, which continued normally
because it was pending on In. To writer it appeared as if the first port call worked correctly.

Reader's call on Out passed an argument along with control. If CopyMaker had started
reader first, what would have happened to that argument? Given the above description of
FauItHandler, the argument would have been lost: there were no provisions for buffering or
saving arguments.

To handle this, the FaultHandler buffers any arguments passed over a port on which a fault
occurs. Instead of performing action (2) above, it actually does the following:

(2') It buffers the arguments for the port call, makes it appear that it (the FaultHandler
itself) is pending on the source port, and then calls Signaller, but without destroying
itself in doing so.

For the following discussion, assume lhat the startup sequence in CopyMaker had been
written as follows (the order of starting reader and writer has been inverted):

-- connect their ports and then restart them to get them synchronized
CONNECT reader.Out TO writer.ln;
CONNECT writer.ln TO reader.Out;
RESTART reader[! TrapDefs.PortFault => CONTINUE];
RESTART writer[! TrapDefs.PortFault => ERROR];
END.

150 Chapter 9: Ports and Control Structures

The revised version of FaultHandler would then do the following when writer was
REsTARTed and tried its first call on In:

The instance of FaultHandler which had left itself pending on Out would have been
resumed instead of reader. FaultHandler would then have set reader.Out.frame so
that reader was again pending on it. Finally, it would have transferred control back
through writer.In along with the arguments which it had saved from the original call,
destroying itself in the process.

The only remaining question is: "How does the FaultHandler know whether or not
arguments should be buffered?" This question is not trivial: for example. if every instance
of FaultHandler buffered arguments for every trapped port call, including those for ports
like In, extra "ghost" port calls would occur during startup. FaultHandler determines
whether or not to save arguments by inspecting information left by the compiler in the
object code of every port call. This decision is made by the compiler on the following basis:

Arguments should only be buffered for a port which is not a RESPONDING PORT and
which does have a non-empty ParameterList.

The next section discusses RESPONDING PORTS.

9.3. RESPONDING PORTs

The normal analogy between a port and a procedure in terms of' passing arguments and
receiving results breaks down in one case. If a port is used both for sending arguments and
for receiving results, it might do so for either of the following two reasons:

It sends arguments to be processed. and the returned results of the port call indicate
how they were handled (this closely mirrors procedures).

It receives data to be processed. and. having done so responds by sending results of
the processing back over the same port (there is no procedure analog of this).

The second case can not be distinguished from the first by usage in a program because the
actions of sending and receiving over a port are intrinsically intertwined with the notation
for a Call. Thus, it would not be possible to determine whether BothWays was a normal or a
responding port by looking at the following (partial) module:

BothWays: PORT[S: STRING] RETURNS[t: STRING];
aString: STRING;
bString: STRING;

aString ... BothWays[bString];

To resolve this difficulty, the programmer may declare a port to be RESPONDING. For
example,

InOut: RESPONDING PORT[response: {okay, error}] RETURNs[inpUf: STRING]:

The module using InOut responds with either okay or notOkay to each string it has received.

Mesa Language Manual 151

If InOut faults the first time it is used, the FaultHandler will not buffer the response value
for that call. Since InOut must, for type conformance, be connected to a port such as

OutI n: PORT[output: STRING] RETURNs[response: {okay, error}],

both initial argument lists (the response for the first call on InOut, and the output of the
first call on Outln) cannot be buffered. The keyword RESPONDING indicates which initial
argument list should be discarded (/nOut's initial response, in this case). For similar reasons,
a responding port may not be connected to a procedure, and two responding ports may not
be connected together.

152

'CHAPTER 1 O.

PROCESSES AND CONCURRENCY

Mesa provides language support for concurrent execution of multiple processes. This allows
programs that are inherently parallel in nature to be clearly expressed. The language also
provides facilities for synchronizing such processes by means of entry to monitors and
waiting on condition variables.

The next section discusses the forking and joining of concurrent process. Later sections deal
with monitors, how their locks are specified, and how they are entered and exited. Condition
variables are discussed, along with their associated operations.

10.1. Concurrent execution, FORK and JOIN.

The FORK and JOIN statements allow parallel execution of two procedures. Their use also
requires the new data type PROCESS. Since the Mesa process facilities provide considerable
flexibility, it is easiest to understand them by first looking at a simple example.

10.1.1. A process example

Consider an application with a front-end routine providing interactive composition and
editing of input lines:

ReadLine: PROCEDURE [s: STRING] RETURNS [CARDINAL] =
BEGIN
c: CHARACTER;

s.length +- 0;
DO

c +- ReadChar[];
IF ControICharacter[c] THEN DoAction[c]
ELSE AppendChar[s,c];
IF c = CR THEN RETURN [s.length];
ENDLOOP;

END;

The call

n +- ReadLine[buffer];

will collect a line of user type-in up to a CR and put it in some string named buffer. Of
course, the caller cannot get anything else accomplished during the type-in of the line. If
there is anything else that needs doing, it can be done concurrently with the type-in by
forking to Read Line instead of calling it:

Mesa Language Manual 153

P ... FORK ReadLine[buffer];

<concurrent computation)

n ... JOIN p;

This allows the statements labeled <concurrent computation) to proceed in parallel with
user typing (clearly, the concurrent computation should not reference the string buffer).
The FORK construct spawns a new process whose result type matches that of ReadLine.
(ReadLine is. referred to as the "root procedure" of the new process.)

p: PROCESS RETURNS [CARDINAL];

. .
Later, the results are retrieved by the JOIN statement, which also deletes the spawned process.
Obviously, this must not occur until both processes are ready (Le. have reached the JOIN and
the RETURN, respectively); this rendevous is synchronized automatically by the process
facility.

Note that the types 'of the arguments and results of ReadLine are always checked at compile
time, whether it is called or forked.

The one major difference between calling a procedure and forking to it is in the handling of
signals; see section 10.5.1 for details.

10.1.2. Process language constructs

The declaration of a PROCESS is similar to the declaration of a PROCEDURE, except that only
the return record is specified. The syntax is formally specified as follows:

TypeConstructor ::=... I ProcessTC

ProcessTC

ReturnsClause

ResultList

::= PROCESS ReturnsClause

::= empty I RETURNS ResultList -- from sec. 5.1.

.. - FieldList -- from sec. 5.1.

Suppose that f is a procedure and p a process. In order to fork f and assign the resulting
process to p, the ReturnClause of f and that of p must be compatible, as described in sec 5.2.

The syntax for the

Statement

Expression

ForkCall

JoinCall

Call

FORK and JOIN statements is straightforward:

::= ... I JoinCall

::= ... I ForkCall I JoinCall

.. - FORK Call

.. - JOIN Call

.. - (see sections 5.4 and 8.2.1)

The ForkCall always returns a value (of type PROCESS) and thus a FORK cannot stand alone as
a statement. Unlike a procedure call, which returns a RECORD, the value of the FORK cannot
be discarded by writing an empty extractor. The action specified by the FORK is to spawn a
process parallel to the current one, and to begin it executing the named procedure.

154 Chapter 10: Processes and Concurrency

The JoinCall appears as either a statement or an expression, depending upon whether or not
the process being joined has an empty ReturnsClause. It has the following meaning: When
the forked procedure has executed a RETURN and the JOIN is executed (in either order),

the returning process is deleted, and

the joining process receives the results, and continues execution.

A catchphrase can be attached to either a FORK or JOIN by specifying it in the Call. Note,
nowever, that such a catchphrase does not catch signals incurred during the execution of the
procedure; see section 10.5.1 for further details.

There are several other important similarities with normal procedure calls which are worth
noting:

The types of all arguments and results are checked at compile time.

There is no intrinsic rule against multiple activations (calls and/or forks) of the
same procedure coexisting at once. Of course, it is always possible to write
procedures which will work incorrectly if used in this way, but the mechanism itself
does not prohibit such use.

One expected pattern of usage of the above mechanism is to place a matching FORK/JOIN pair
at the beginning and end of a single textual unit (i.e. procedure, compound statement, etc.) so
that the computation within the textual unit occurs in parallel with that of the spawned
process. This style is encouraged, but is not mandatory; in fact, the matching FORK and JOIN

need not even .be done by the same process. Care must be taken, of course, to insure that
each spawned process is joined only once, since the result of joining an already deleted
process is undefined. Note that the spawned process always begins and ends its life in the
same textual unit (i.e. the target procedure of the FORK).

While many processes will tend to follow the FORK/JOIN paradigm, there will be others whose
role is better cast as continuing provision of services, rather than one-time calculation of
results. Such a "detached" process is never joined. If its lifetime is bounded at all, its
deletion is a private matter, since it involves neither synchronization nor delivery of results.
No language features are required for this operation; see the runtime documentation for the
description of the system procedure provided for detaching a process.

10.2. Monitors

Generally, when two or more processes are cooperating, they need to interact in more
complicated ways than simply forking and joining. Some more general mechanism is needed
to allow orderly, synchronized interaction among processes. The interprocess synchronization
mechanism provided in Mesa is a variant of monitors adapted from the work of Hoare,
Brinch Hansen, and Dijkstra. The underlying view is that interaction among processes always
reduces to carefully synchronized access to shared data, and that a proper vehicle for this
interaction is one which unifies:

- the synchronization

- the shared data

- the body of code which performs the accesses

The Mesa monitor facility allows considerable flexibility in its use: Before getting into the
details, let us first look at a slightly over-simplified description of the mechanism and a

Mesa Language Manual 155

simple example. The remainder of this section deals with the basics of monitors (more
complex uses are described in section 10.4); WAIT and NOTIFY are described in section 10.3.

10.2.1. An overview of monitors

A monitor is a module instance. It thus has its own data in its global frame, and its own
procedures for accessing that data. Some of the procedures are public, allowing calts into the
monitor from outside. Obviously, conflicts could arise if two processes were executing in the
same monitor at the same time. To prevent this, a monitor lock is used for mutual exclusion
(Le. to insure that only one process may be in each monitor at anyone time). A call into a
monitor (to an entry procedure) implicitly acquires its lock (waiting if necessary), and
returning from the monitor releases it. The monitor lock serves to guarantee the integrity of
the global data, which is expressed as the monitor invariant -- i.e an assertion defining what
constitutes a "good state" of the data for that particular monitor. It is the responsibility of
every entry procedure to restore the monitor invariant before returning, for the benefit of
the next process entering the monitor.

Things are complicated slightly by the possibility that one process may enter the monitor and
find that the monitor data, while in a good state, nevertheless indicates that that process
cannot continue until some other process enters the monitor and improves the situation. The
WAIT operation allows the first process to release the monitor lock and await the desired
condition. The WAIT is performed on a condition variable, which is associated by agreement
with the actual condition needed. When another process makes that condition true, it will
perform a NOTIFY on the condition variable, and the waiting process will continue from
where it left off (after reacquiring the lock, of course.)

For example, consider a fixed block storage allocator providing two entry procedures:
Allocate and Free. A caller of Allocate may find the free storage exhausted and be obliged
to wait until some caller of Free returns a block of storage.

StorageAllocator: MONITOR =
BEGIN
StorageAvailable: CONDITlON;
FreeList: POINTER;

Allocate: ENTRY PROCEDURE RETURNS [p: POINTER] =
BEGIN
WHILE FreeList = NIL DO

WAIT StorageAvaifable
ENDLOOP;

p +- FreeList; FreeList +- p.next;
END;

Free: ENTRY PROCEDURE [p: POINTER] =
BEGIN
p.next +- FreeList; FreeList ... p;
NOTIFY StorageAvailable
END;

END.

Note that it is clearly undesirable for two asynchonous processes to be executing in the
StorageAllocator at the same time. The use of entry procedures for Allocate and Free
assures mutual exclusion. The monitor lock is released while WAITing in Allocate in order to

156 Chapter 10: Processes and Concurrency

allow Free to be called (this also allows other processes to call Allocate as well, leading to
several processes waiting on the queue for StorageAvailable).

10.2.2. Monitor locks

The most basic component of a monitor is its monitor lock. A monitor lock is a predefined
type, which can be thought of as a small record:

MONITORLOCK: TYPE = PRIVATE RECORD [locked: BOOLEAN, queue: Queue];

The monitor lock is private; its fields are never accessed explicitly by the Mesa programmer.
Instead, it is used implicitly to synchronize entry into the monitor code, thereby authorizing
access to the m,onitor data (and in some cases, other resources, such as 110 devices, etc.) The
next section describes several kinds of monitors which can be constructed from this basic
mechanism. In all of these, the idea is the same: during entry to a monitor, it is necessary to
acquire the monitor lock by:

1. waiting (in the queue) until: locked = FALSE,

2. setting: locked'" TRUE.

10.2.3. Declaring monitor modules, ENTRY and INTERNAL procedures

In addition to a collection of data and an associated lock, a monitor contains a set of
procedure that do operations on the data. Monitor modules are declared much like program
or definitions modules; for example:

M: MONITOR [arguments] =
BEGIN

END.

The procedures in a monitor module are of three kinds:

Entry procedures

Internal procedures

External procedures

Every monitor has one or more entry procedures; these acquire the monitor lock when catted,
and are declared as:

P: ENTRY PROCEDURE [arguments] = .•.

The entry procedures will usually comprise the set of public procedures visible to clients of
the monitor module. (There are some situations in which this is not the case; see external
procedures, below). The usual Mesa default rules for PUBLIC and PRIVATE procedures apply.

Many monitors will also have infernal procedures: common routines shared among the
several entry procedures. These execute with the monitor lock held, and may thus freely
access the monitor data (including condition variables) as necessary. Internal procedures
should be private, since direct calls to them from outside the monitor would bypass the

Mesa Language Manual 157

acquisition of the lock (for monitors implemented as multiple modules, this is not quite
right; see section 10.4, below). internal procedures can be called only from an entry
procedure or another internal procedure. They are declared as follows:

Q: INTERNAL PROCEDURE [arguments] = ••.

The attributes ENTRY or INTERNAL may be specified on a procedure only in a monitor module.
Section 10.2.4 describes how one declares an interface for a monitor.

Some monitor modules may wish to have external procedures. These are declared as normal
non-monitor procedures:

R: PROCEDURE [arguments] = •••

Such procedures are logically outside the monitor, but are declared within the same module
for reasons of logical packaging. For example, a public external procedure might do some
preliminary processing and then make repeated calls into the monitor proper (via a private
entry procedure) before returning to its client. Being outside the monitor, an external
procedure must not reference any monitor data (including condition variables), nor call any
internal procedures. The compiler checks for calls to internal procedures and usage of the
condition variable operations (WAIT, NOTIFY, etc.) within external procedures, but does not
check for accesses to monitor data.

A fine point:

Actually,.unchanging read-only global variables may be accessed by external procedures; it is changeable
monitor data that is strictly off-limits.

Generally speaking, a chain of procedure calls involving a monitor module has the general
form:

Client procedure -- outside module

"-
External procedure(s) -- inside module but outside monitor

"-
Entry procedure -- inside monitor

"-
Internal procedure(s) -- inside monitor

Any deviation from this pattern is likely to be a mistake. A useful technique to avoid bugs
and increase the readibility of a monitor module is to structure the source text in the
corresponding order:

M: MONITOR =
BEGIN
<External procedures>
<Entry procedures>
<Internal procedures>
<Initialization (main-body) code>
END.

•

158 Chapter 10: Processes and Concurrency

10.2.4. Interfaces to monitors

In Mesa, the attributes ENTRY and INTERNAL are associated with a procedure's body, not with
its type. Thus they cannot be specified in a DEFINITIONS module. Typically, internal
procedures are not exported anyway, although they may be for a multi-module monitor (see
section 10.4.4). In fact, the compiler will issue a warning when the combination PUBLIC

INTERNAL occurs.

From the client side of an interface, a monitor appears to be a normal program module,
hence the keywords MONITOR and ENTRY do not appear. For example, a monitor M with entry
procedures P and Q might appear as:

M Defs: DEFINITIONS =
BEGIN

M: PROGRAM [arguments];
P, Q: PROCEDURE [arguments] RETURNS [results];

END.

10.2.5. Interactions of processes and monitors

One interaction should be noted between the process spawning and monitor mechanisms as
defined so far. If a process executing within a monitor forked to an internal procedure of
the same monitor, the result would be two processes inside the monitor at the same time,
which is the exact situation that monitors are supposed to avoid. The following rule is
therefore enforced:

A FORK may have as its target any procedure except an internal procedure of a
monitor.

A fine point:

Tn the case of a multi-module monitor (see section 10.4.4) calls to other monitor procedures through an
interface cannot be checked for the INTERNAL attribute. since this information is not available in the
interface (see section 10.2.4).

10.3. Condition Varinbles

Condition variables are declared as:

c: CONDITION;

The content of a condition variable is private to the process mechanism; condition variables
may be accessed only via the operations defined below. It is important to note that it is the
condition variable which is the basic construct; a condition (i.e. the contents of a condition
variable) should not itself be thought of as a meaningful object; it may not be assigned to a
condition variable, passed as a parameter, etc.

10.3.1. Wait, notify, and broadcast

A process executing in a monitor may find some condition of the monitor data which forces
it to wait until another process enters the monitor and improves the situation. This can be
accomplished using a condition variable, and the three basic operations: WAIT, NOTIFY, and

Mesa Language Manual

BROADCAST, defined by the following syntax:

Statement

WaitStmt

NotifyStmt

::= ... I WaitStmt I NotifyStmt

::= WAIT Variable OptCatchPhrase

::= NOTIFY Variable I BROADCAST Variable

159

A condition variable c is always associated with some Boolean expression describing a desired
state of the monitor data, yielding the general pattern:

Process waiting for condition:

WHILE BooleanExpression DO

WAIT c
~NDLOOP;

Process making condition true:

make BooleanExpression true;
NOTIFY c;

i.e. as side effect of modifying global data

Consider the storage allocator example from section 10.2.1. In this case, the desired
BooleanExpression is "FreeList # NIL". There are several important points regarding WAIT

and NOTIFY, some of which are illustrated by that example:

WAIT always releases the lock while waiting, in order to allow entry by other processes,
including the process which will do the NOTIFY (e.g. Allocate must not lock out the
caller of Free while waiting, or a deadlock will reSUlt). Thus, the programmer is
always obliged to restore the monitor invariant (return the monitor data to a "good
state") before doing a WAIT.

NOTIFY, on tlle other hand, retains the lock, and may thus be invoked without restoring
the invariant; the monitor data may be left in in an arbitrary state, so long as the
invariant is restored before the next time the lock is released (by exiting an entry
procedure, for example).

A NOTIFY directed to a condition variable on which no one is waiting is simply
discarded. Moreover, the built-in test for this case is more efficient than any explicit
test that the programmer could make to avoid doing the extra NOTIFY. (Thus, in the
example above, Free always does a NOTIFY, without attempting to determine if it was
actually needed.)

Each WAIT must be embedded in a loop checking the corresponding condition. (E.g.
Allocate, upon being notified of the StorageAvailable condition, still loops back and
tests again to insure that the freelist is actually non-empty.) This rechecking is
necessary because the condition, even if true when the NOTIFY is done, may become
false again by the time the awakened process gets to run. (Even though the freelist is
always non-empty when Free does its NOTIFY, a third process could have called
Allocate and emptied the freelist before the waiting process got a chance to inspect
it.)

Given that a process awakening from a WAIT must be careful to recheck its desired
condition, the process doing the NOTIFY can be somewhat more casual about insuring
that the condition is actually true when it does the NOTIFY. This leads to the notion

160 Chapter 10: Processes and Concurrency

of a covering condition variable, which is notified whenever the condition desired by
the waiting process is likely to be true; this approach is useful if the expected cost of
false alarms (Le. extra wakeups that test the condition and wait again) is lower than
the cost of having the notifier always know precisely what the waiter is waiting for.

The last two points are somewhat subtle, but quite important; condition variables in Mesa act
as suggestions that their associated Boolean expressions are likely to be true and should
therefore be rechecked. They do not guarantee that a process, upon awakening from a WAIT,

will necessarily find the condition it expects. The programmer should never write code
which implicitly assumes the truth of some condition simply because a NOTIFY has occurred.

It is often the case that the user will wish to notify all processes waiting on a condition
variable. This can be done using:

BROADCAST c;

This operation can be used when several of the waiting processes should run, or when some
waiting process should run, but not necessarily the head of the queue.

Consider a variation of the StorageAll ocator example:

StorageAllocator: MONITOR =
BEGIN

StorageAvailable: CONDITION;

Allocate: ENTRY PROCEDURE [size: CARDINAL] RETURNS [p: POINTER] =
BEGIN

UNTIL <storage chunk of size words is available> DO

WAIT StorageAvailable
END LOOP;

p +- <remove chunk of size words>;
END;

Free: ENTRY PROCEDURE [p: POINTER, size: CARDINAL] =
BEGIN

<put back storage chunk of size words>

BROADCAST StorageAvailable
END;

END.

Tn this example, there may be several processes waiting on the queue of StorageAvailable,
each with a different size requirement. It is not sufficient to simply NOTIFY the head of the
queue, since that process may not be satisfied with the newly available storage while another
waiting process might be. This is a case in which BROADCAST is needed instead of NOTIFY.

An important rule of thumb: it is always correct to use a BROADCAST. NOTIFY should be used
instead of BROADCAST if both of the following conditions hold:

It is expected that there will typically be several processes waiting in the condition
variable queue (making it expensive to notify all of them with a BROADCAST), and

Mesa Language Manual 161

It is known that the process at the head of the condition variable queue will always
be the right one to respond to the situation (making the multiple notification
unnecessary);

If both of these conditions are met, a NOTIFY is sufficient, and may represent a significant
efficiency improvement over a BROADCAST. The allocator example in section 10.2.1 is a
situation in which NOTIFY is preferrable to BROADCAST.

As described above, the condition variable mechanism, and the programs using it, are
intended to be robust in the face of "extra" NOTIFYS. The next section explores the opposite
problem: "missing" NOTIFYS.

10.3.2. Timeouts

One potential problem with waiting on a condition variable is the possibility that one may
wait "too long." There are several ways this could happen, including:

- Hardware error (e.g. "lost interrupt")

- Software error (e.g. failure to do a NOTIFY)

- Communication error (e.g. lost packet)

To handle such situations, waits on condition variables are allowed to time out. This is done
by associating a timeout interval with each condition variable, which limits the delay that a
process can experience on a given WAIT operation. If no NOTIFY has arrived within this time
interval, one will be generated automatically. The Mesa language does not currently have a
facility for setting the timeout field of a CONDITION variable. See the runtime documentation
for the description of the system procedure provided for this operation.

The waiting process will perceive this event as a normal NOTIFY. (Some programs may wish to
distinguish timeouts from normal NOTIFYS; this requires checking the time as well as the
desired condition on each iteration of the loop.)

No facility is provided to time out waits for monitor locks. This is because there would be,
in general, no way to recover from such a timeout.

10.4. More about Monitors

The next few sections deal with the full generality of monitor locks and monitors.

10.4.1. The LOCKS clause

Normally, a monitor's data comprises its global variables. protected by the special global
variable LOCK:

LOCK: MONITORLOCK;

This implicit variable is declared automatically in the global frame of any module whose
heading is of the f9rm:

162 Chapter 10: Processes and Concurrency

M: MONITOR [arguments]
IMPORTS •••
EXPORTS ••• =

In such a monitor it is generally not necessary to mention LOCK explicitly at all. For more
general use of the monitor mechanism, it is necessary to declare at the beginning of the
monitor module exactly which MONITORLOCK is to be acquired by entry procedures. This
declaration appears as part of the program type constructor that is at the head of the module.
The syntax is as follows:

ProgramTC ::=... I MONITOR ParameterList ReturnsClause LocksClause

LocksClause ::= empty I LOCKS Expression I
LOCKS Expression USING identifier : TypeSpecification . .

If the LocksClause is empty, entry to the monitor is controlled by the distinguished variable
LOCK (automatically supplied by the compiler). Otherwise, the LocksClause must designate
a variable of type MONITORLOCK, a record containing a distinguished lock field (see section
10.4.2), or a pointer that can be dereferenced (perhaps several times) to yield one of the
preceding. If a LocksClause is present, the compiler does not generate the variable LOCK.

If the USING clause is absent, the lock is located by evaluating the LOCKS expression in the
context of the monitor's main body; i.e., the monitor's parameters, imports, and global
variables are visible, as are any identifiers made accessible by a global OPEN. Evaluation
occurs upon entry to, and again upon exit from, the entry procedures (and for any WAITS in
entry or internal procedures). The location of the designated lock can thus be affected by
assignments within the procedure to variables in the LOCKS expression. To avoid disaster, it
is essential that each reevaluation yield a designator of the same MONITORLOCK. This case is
described further in section 10.4.4.

If the USING clause is present, the lock is located in the following way: every entry or internal
procedure must have a parameter with the same identifier and a compatible type as that
specified in the USING clause. The occurl'ences of that identifier in the LOCKS clause are
bound to that procedure parameter in every entry procedure (and internal procedure doing a
WAIT). The same care is necessary with respect to reevaluation; to emphasize this, the
distinguished argument is treated as a read-only value within the body of the procedure. See
section 10.4.5 for further details.

1004.2. Monitored records

For situations in which the monitor data cannot simply be the global variables of the
monitor module, a monitored record can be used:

r: MONITORED RECORD [x: INTEGER, •••];

A monitored record is a normal Mesa record, except that it contains an automatically
declared field of type MONITORLOCK. As usual, the monitor lock is used implicitly to
synchronize entry into the monitor code, which may then access the other fields in the
monitored record. The fields of the monitored record must nol be accessed except from
within a monitor which first acquires its lock. In analogy with the global variable case, the
monitor lock field in a monitored record is given the special name LOCK; generally, it need
not be referred to explicitly (except during initialization; see section 10.6).

A fine point:

A more general form of monitor lock declaration is discussed in section lO.4.6

Mesa Language Manual 163

CAUTION: If a monitored record is to be passed around (e.g. as an argument to a procedure)
this should always be done by reference using a POINTER TO MONITORED RECORD. Copying a
monitored record (e.g. passing it by value) will generally lead to chaos.

10.4.3. Monitors and module instances

Even when all the procedures of a monitor are in one module, it is not quite correct to think
of the module and the monitor as identical. For one thing, a monitor module, like an
ordinary program module, may have several instances. In the most straightforward case, each
instance constitutes a separate monitor. More generally, through the use of monitored
records, the number of monitors may be larger or smaller than the number of instances of
the corresponding module(s). The crucial observation is that in all cases:

There is a one-to-one correspondence between monitors and monitor locks.

The generalization of monitors through the use of monitored records tends to follow one of
two patterns:

Multi-module monitors, in which several module instances implement a single
monitor.

Object monitors, in which a single module instance implements several monitors.

A fine point:

These tw'o patterns are not mutually exclusive; multi-module object monitors are possible, and may
. occaSionally prove necessary.

10.4.4. Multi-module monitors

In implementing a monitor, the most obvious approach is to package all the data and
procedures of the monitor within a single module instance (if there are multiple instances of
such a module, they constitute separate monitors and share nothing except code.) While this
will doubtless be the most common technique, the monitor may grow too large to be treated
as a single module.

Typically. this leads to multiple modules. In this case the mechanics of constructing the
monitor are changed somewhat. There must be a central location that contains the monitor
lock for the monitor implemented by the multiple modules. This can be done either by
using a MONITORED RECORD or by choosing one of the modules to be the "root" of the
monitor. Consider the following example:

BigM onRoot: MONITOR IMPORTS ••• EXPORTS ••• =
BEGIN

monitor Datum1: .. .
monitorDatum2: .. .

pI: PUBLIC ENTRY PROCEDURE •••

END.

BigM onA: MONITOR

LOCKS root -- could equivalently say root.LOCK
IMPORTS root: BigM onRoot ... EXPORTS ••• =

..

•

164 Chapter 10: Processes and Concurrency

BEGIN

p2: PUBLIC ENTRY PROCEDURE •••

x ... root.monitorDatuml; -- access the protected data of the monitor

END.

BigMonB: MONITOR

LOCKS root
IMPORTS root: BigM onRoot ... EXPORTS ••• =
BEGIN OPEN root;

p3: PUBLIC ENTRY PROCEDURE •••

monitorDatum2 ; -- access the protected data via an OPEN

END.

The monitor BigMon is implemented by three modules. The modules BigMonA and
BigMonB have a LOCKS clause to specify the location of the monitor lock: in this case, the
distinguished variable LOCK in BigMonRoot. When any of the entry procedures pI, p2, or p3
is called, this lock is acquired (waiting if necessary), and is released upon returning. The
reader can verify that· no two independent processes can be in the monitor at the same time.

Another means of implementing multi-module monitors is by means of a MONITORED

RECORD. Use of OPEN allows the fields of the record to be referenced without qualification.
Such a monitor is written as:

MonitorData: TYPE = MONITORED RECORD [x: INTEGER, ••.];

MonA: MONITOR [pm: POINTER TO MonitorData]
LOCKS pm
IMPORTS •••

EXPORTS ••• =
BEGIN OPEN pm;
P: ENTRY PROCEDURE [•••] =

BEGIN

x ... x+l; -- access to a monitor variable

END;

END.

The LOCKS clause in the heading of this module (and each other module of this monitor)
leads to a MONITORED RECORD. Of course, in all such multi-module monitors, the LOCKS

clause will involve one or more levels of indirection (POI,NTER TO MONITORED RECORD, etc.)
since passing a monitor lock by value is not meaningful. As usual, Mesa will provide one or
more levels of automatic dereferencing as needed.

More generally, the target of the LOCKS clause can evaluate to a MONITORLOCK (Le. the
example above is equivalent to writing "LOCKS pm.LOCK").

CAUTION: The meaning of the target expression of the LOCKS clause must not change between
the call to the entry procedure and the subsequent return (Le. in the above example, changing

Mesa Language Manual 165

pm would invariably be an error) since this would lead to a different monitor lock being
released than was acquired, resulting in total chaos.

There are a few other issues regarding multi-module monitors which arise any time a tightly
coupled piece of Mesa code must be split into multiple module instances and then spliced
back together. For example:

If the lock is in a MONITORED RECORD, the monitor data will probably need to be in
the record also. While the global variables of such a multi-module monitor are
covered by the monitor lock, they do not constitute monitor data in the normal sense
of the term, since they are not uniformly visible to all the module instances.

Making the internal procedures of a multi-module monitor PRIVATE will not work if
one instance wishes to call an internal procedure in another instance. (Such a call is
perfectly acceptable so long as the caller already holds the monitor lock). Instead, a
second interface (hidden from the clients) is needed as part of the "glue" holding the
monitor together. Note however, that Mesa cannot currently check that the procedure
being called through the interface is an internal one (see section 10.2.4).

A fine point:

The compiler will complain about the PUBLIC INTERNAL procedures, but this is just a warning.

10.4.5. Object monitors

Some applications deal with objects, implemented, say, as records named by pointers. Often
it is necessary to insure that operations on these objects are atomic, i.e., once the operation
has begun, the object will not be otherwise referenced until the operation is finished. If a
module instance provides operations on some class of objects, the simplest way of
guaranteeing such atomicity is to make the module instance a monitor. This is logically
correct, but if a high degree of concurrency is expected, it may create a bottleneck; it will
serialize the operations on all objects in the class, rather than on each of them individually.
If this problem is deemed serious, it can be solved by implementing the objects as monitored
records, thus effectively creating a separate monitor for each object. A single module
instance can implement the operations on all the objects as entry procedures, each taking as a
parameter the object to be locked. The locking of the parameter is specified in the module
heading via a LocksClause with a USING clause. For example:

ObjectRecord: TYPE = MONITORED RECORD [.];

ObjectHandle: TYPE = POINTER TO ObjectRecord;

ObjectManager: MONITOR [arguments]
LOCKS object USING object: ObjectHandle
IMPORTS.

EXPORTS ••• -
. BEGIN

Operation: PUBLIC ENTRY PROCEDURE [object: ObjeclHandle, ...] =
BEGIN

END;

END.

166 Chapter 10: Processes and Concurrency

Note that the argument of USING is evaluated in the scope of the arguments to the entry
procedures, rather than the global scope of the module. In order for this to make sense, each
entry.procedure, and each internal procedure that does a WAIT, must have an argument which
matches exactly the name and type specified in the USING subclause. All other components of
the argument of LOCKS are evaluated in the global scope, as usual.

As with the simpler form of LOCKS clause, the target may be a more complicated expression
and/or may evaluate to a monitor lock rather than a monitored record. For example:

LOCKS p.q.LOCK USING p: POINTER TO ComplexRecord ...

CAUTION: Again, the meaning of the target expression of the LOCKS clause must not change
between the call to the entry procedure and the subsequent return. (I.e. in the above example,
changing p or p.q would almost surely be an error.)

CAUTION: It is important to note that global variables of object monitors are very dangerous;
they are not covered by a monitor lock, and thus do not constitute monitor data. If used at
all, they must be set only at module initialization time and must be read-only thereafter.

10.4.6. Explicit declaration of monitor locks

It is possible to declare monitor locks explicitly:

myLock: MONITORLOCKj

The normal cases of monitors and monitored records are essentially stylized uses of this
facility via the automatic declaration of LOCK, and should cover all but the most obscure
situations. For example, explicit delarations are useful in defining MACHINE DEPENDENT

monitored records. (Note that the LOCKS clause becomes mandatory when an explicitly
declared monitor lock is used.) More generally, explicit declarations allow the programmer
to declare records with several monitor locks, declare locks in local frames, and so on; this
flexibility can lead to a wide variety of subtle bugs, hence use of the standard constructs
whenever possible is strongly advised.

10.5. Signals

10.5.1. Signals and processes

Each process has its own call stack, down which signals propagate. If the signaller scans to
the bottom of the stack and finds no catch phrase, the signal is propagated to the debugger.
The important point to note is that forking to a procedure is different from calling it, 'in
that the forking creates a gap across which signals cannot propagate. This implies that in
practice, one cannot casually fork to any arbitrary procedure. The only suitable targets for
forks are procedures which catch any signals they incur, and which never generate ar\y signals
of their own.

10.5.2. Signals and monitors

Signals require special attention within the body of an entry procedure. A signal raised with
the monitor lock held will propagate without releasing the lock and possibly invoke arbitrary
computations. For errors, this can be avoided by using the RETURN WITH ERROR construct.

Mesa Language Manual 167

RETURN WITH ERROR NoSuchObject;

Recall from Chapter 8 that this statement has the effect of removing the currently executing
. frame from the call chain before issuing the ERROR. If the statement appears within an entry
procedure, the monitor lock is released before the error is started as well. Naturally, the
monitor invariant must be restored before this operation is performed.

For example, consider the following program segment:

Failure: ERROR [kind: CARDINAL] = CODE;

Proc: ENTRY PROCEDURE [•••] RETURNS [el, c2: CHARACTER] =
BEGIN

ENABLE UNWIND => .

IF condl THEN ERROR Fai/ure[l];
IF cond2 THEN RETURN WITH ERROR Failure[2];

END;

Execution of the construct ERROR Failure[l] raises a signal that propagates until some catch
phrase specifies an exit. At that time, unwinding begins; the catch phrase for UNWIND in Proc
is executed and then Proc's frame is destroyed. Within an entry procedure such as Proc, the
lock is held until the unwind (and thus through unpredictable computation performed by
catch phrases).

Execution of the construct RETURN WITH ERROR Failure[2] releases the monitor lock and
destroys the frame of Proc before propagation of the signal begins. Note that the argument
list in this construct is determined by the declaration of Failure (not by Proc's RETURNS
clause). The catch phrase for UNWIND is not executed in this case. The signal Failure is
actually raised by the system, after which Failure propagates as an ordinary error (beginning
with Proc's caller).

When the RETURN WITH ERROR construct is used from within an internal procedure, the
monitor lock is not released; RETURN WITH ERROR will release the monitor lock in precisely
those cases that RETURN will.

Another important issue regarding signals is the handling of UNWINDS; any entry procedure
that may experience an UNWIND must catch it and clean up the monitor data (restore the
monitor invariant):

P: ENTRY PROCEDURE [...] =
BEGIN ENABLE UNWIND => BEGIN <restore invariant> END;

END;

At the end of the UNWIND catchphrase, the compiler will append code to re~ease the monitor
lock before the frame is unwound. It is important to note that a monitor always has at least
one cleanup task to perform when catching an UNWIND signal: the monitor lock must be
released. To this end l the programmer should be sure to place an enable-clause on the body
of every entry procedure that might evoke an UNWIND (directly or indirectly). If the monitor
invariant is already satisfied, no further cleanup need be specified, but the null catch-phrase
must be written so that the compiler will generate the code to unlock the monitor:

168 Chapter 10: Processes and Concurrency

BEGIN ENABLE UNWIND = > NULL;

This should be omitted only when it is certain that no UNWINDS can occur.

Another point is that signals caught by the OptCatchPhrase of a WAIT operation should be
thought of as occurring after reacquisition of the monitor lock. Thus, like all other monitor
code, catch phrases within a monitor are always executed with the monitor lock held.

10.6. Initialization

When a new monitor comes into existence, its monitor data will generally need to be set to
some appropriate initial values; in particular, the monitor lock and any condition variables
must be initia:lized. As usual, Mesa' takes responsibility for initializing the simple common
cases; for the 'cases not handled automatically, it is the responsibility of the programmer to
provide appropriate initialization code, and to arrange that it be executed at the proper time.
The two types of initialization apply in the following situations:

-

Monitor data in global variables can be initialized using the normal Mesa initial
value constructs in declarations. Monitor locks and condition variables in the global
frame will also be initialized automatically (although in this case, the programmer
does not write any explicit initial value in the declaration).

Monitor data in records must be initialized by the programmer. System procedures
must be used to initialize the monitor lock and condition variables. See the runtime
documentation for the descriptions of appropriate procedures.

A fine point:

If a variable containing a record is declared in a frame. it is normally possible to initialize it
in the declaration (i.e. using a constructor as the initial value); however. this does not apply if
the record contains monitor locks or condition variables, which must be initialized via calls to
system procedures.

Since initialization code modifies the monitor data, it must have exclusive access to it. The
programmer should insure this by arranging that the monitor not be called by its client
processes until it is ready for use.

APPENDIX A. Pronouncing Mesa

The following suggestions may be helpful in reading Mesa programs:

For

=>

n: T
m.field
pt
@x

[a .. b]
[a .. b)
(a •. b]
(a .. b)

FOR i"'j, k ...
j[x, y, z]

Read

chooses
gets
n is a T
m's field
p'S referent
address of x
(the interval) a through b
(the interval) a up to b

(the interval) above a through b
(the interval) above a up to b

for i getting first j. thereafter k ...
f of x, y and z
enabling

169

170

APPENDIX B. Programming Conventions

The Mesa compiler .only uses blanks, TABS, and carriage returns as separators for basic lexical
units such as identifiers; extra ones do not hurt. Furthermore, it allows you to write
identifiers in any combination of upper and lower case letters: the identifiers Alpha,
ALPHA, alpha and AlphA are all legal (but different) Mesa identifiers. It is recommended
that you adhere to a standard set of conventions for constructing identifiers and laying out
programs. The recommended conventions are summarized below.

B.l. Names

Most identifiers should be written in lower case, except that the first letter of each new
"word" in the identifier should be capitalized. Thus,

line
firstLine
firstLinePos

This convention makes it easy to read identifiers which are made up of several words. (Note
that Mesa does not allow spaces in identifiers.)

Capitalize the first letter of type identifiers, procedure names, signal names, and module
names.

The following convention for constructing names has been used successfully to reflect their types:

Layout

Choose a short (2-3 character) tag for each "basic type" you use: e.g., In for Line and co for
Coordinate. You can use the tag as the type name, or not, as you prefer. If you do, capitalize it.

Use the foHowing prefixes to construct tags for "derived" types (most of them reflect the intended use
of some underlying type).

p - pointer; pLn = pointer to a line

i-index; iLn = index in an array of lines.

I - length

n - number of items (total or count)

Whether to use a prefix or to invent a new type tag, is a matter of judgment; depending on whether it
is better to emphasize the relationship of this type to another, or to emphasize its individuality.

If you need only one name of a given type in a scope, use the tag as its name:

In : Ln;
pLn : POINTER TO Ln.

If you need several names, append modifiers to the tag (avoid simple numbers like I, 2, etc.):

InOld, InNew, InBuffer: Ln.

The advantages of this scheme are three-fold:

the reader spends less time looking up the types of identifiersj

the writer spends less time thinking up names;

if you have forgotten a name, there is a good chance you will be able to guess it correctly if
you know the tag vocabulary.

Write statements' one per line. unless several simple statements which together perform a
single function will fit on one line.

Indent the labels of a SELECT (including the ENDCASE) one level, and the statements a second

Appendix B: Programming Conventions 171

level (unless a statement will fit on the same line with the label).

Indent one level for the statement following a THEN or ELSE (unless it fits on the same line).
Put THEN on the same line with IF, and don't indent ELSE with respect to IF. If the statement
following ELSE is another IF, write both on the same line.

Indent one level for each compound BEGIN-END, DO-ENDLOOP, or bracket pair in a record
declaration.

When the rules for IF and SELECT call for indenting a statement, do not indent an extra level
for a BEGIN.

It is fine to put a compound statement or loop on a single line if it will fit.

If a statement won't fit on a single line, indent the continuation line(s) by two spaces.

Among other things, these rules have the property that they allow a program to be easily
converted to a form in which the bracketing is implied by the indentation.

Spaces

The following rules for spaces should be broken when necessary, but are a good general
guide:

A space after a comma, semicolon, or colon, and none before

No spaces inside brackets or parentheses

No spaces around single-character operations: ... - etc., except for +-.

172

APPENDIX C. Alto/Mesa Machine Dependencies

This appendix contains a number of machine-dependent constants and definitions for the
Alto implementation of Mesa.

C.l. Numeric limits

On the Alto, the numeric limits are the following:

minINTEGER = -32768 = -215 and has internal representation 100000B
maxINTEGER = 32767 = 215_1 and has internal representation 077777B
maxCARDINAL = 65535 = 216_1 and has internal representation 077777B
minLONGINTEGER = -2147483648 = _231

maxLONGINTEGER = 2147483647 = 231_1

C.2. AltoDefs

A module similar to the one below is a part of the Alto/Mesa system and defines several
useful constants.

AltoDefs: DEFINITIONS =
BEGIN

wordlength: INTEGER = 16; -- Alto word length (bits)
maxword: CARDINAL = 177777B; -- N.B. negative as 16 bit integer
maxinteger: INTEGER = 077777B; -- maximum positive number

charlength: INTEGER = 8; -- Alto character size (bits)
maxcharcode: INTEGER = 377B;
BYTE: TYPE = [O .. maxcharcode];
BytesPerWord, CharsPerWord: INTEGER = wordlengthlcharlength;
LogBytesPerWord, LogCharsPerWord: INTEGER = 1 ;

PageSize: INTEGER = 256; -- Alto page size (words)
LogPageSize: INTEGER = 8;
BytesPerPage, CharsPerPage: INTEGER = PageSize*CharsPerWord;
LogBytesPerPage, LogCharsPerPage: INTEGER = LogPageSize+LogCharsPerWord;

VMLimit: CARDINAL = 177777B; -- maximum Alto VM address
Address: TYPE = [O .. VMLimit];

MaxVMPage: INTEGER = 255; -- maximum Alto VM page number
MaxFilePage: CARDINAL = 077777B;

PageNumber: TYPE = [O .. MaxFilePage];
PageCount: TYPE = [O .. MaxVMPage+1];

END.

Appendix C: Alto/Mesa Machine Dependencies 173

C.3. ASCII character set and ordering of character values

The following list gives the characters of the ASCII character set in increasing order.
accompanied by their literal representations, Control characters are represented as t a. In
addition. a number of special characters such as SP (space). DEL (rubout) are denoted by
their generally accepted names.

Octal Character Octal Character
Value Neme(8) Value Neme(8)

OOOC NUL lOOC '@
OOIC 1'A IOIC 'A
002C 1'B 102C 'B
003C 1'C I03C 'C
004C 'I'D I04C '0
OOSC 1'E lOSC 'E
006C 1'F I06C 'F
007C 1'0, BELL I07C '0
OlOC 1'H, BS 110C 'H
onc 1'1 11lC 'I
Ol2C ~k LF 112C 'J
Ol3C 113C 'K
Ol4C 1'L 114C 'L
OISC 'I'M, CR 115C 'M
Ol6C 1'N 116C 'N
Ol7C 1'0 117C '0
020C 1'P 120C 'P
02lC ~~ 12lC :~ 022C 122C
023C 1'S 123C 'S
024C 1'T 124C 'T
02SC 1'U 125C 'U
026C 1'V 126C 'V
027C 1'W 127C 'W
030C 1'X l30C 'X

• 03lC 1'Y 13IC 'Y
032C 1'Z 132C 'Z
033C ESC 133C :\ 034C 134C
035C 13SC ']
036C 136C ''I'
037C 137C 'to

040C
,
,I SPace 140C

041C 141C 'a
042C ,i, 142C 'b
043C '# 143C 'e
044C '$ 144C 'd
04SC '% 14SC 'e
046C '& 146C 'f
047C :(a single quote I47C :t OSOC IS0C
OSlC :2 ISIC 'i
052C IS2C :k OS3C '+ 153C
OS4C ,

I54C '\ ,
OS5C

, - 155C 'm
056C

'i
156C 'n

OS7C lS7C '0
060C '0 160C 'p
061C '1 161C 'q •
062C '2 162C 'r
063C '3 163C 's
064C '4 164C 't
06SC '5 165C 'u
066C '6 166C 'v •
067C '7 167C 'w
070C '8 l70C 'x
07lC '9 I71C 'y
onc " InC 'z .
073C '. 17'3C '{
074C ,< 174C :~ 075C ,

= 175C
076C ') 176C ' ...
one '1 177C DEL,

174 Appendix C: Alto/Mesa Machine Dependencies

C.4. Alto/Mesa STRING procedures

A module similar to the one below is a part of the Alto/Mesa system and defines useful
procedures provided by the system for operating on strings.

DIRECTORY AltoDefs: FROM "altodafs";

DEFINITIONS FROM AltoDefs;

StringDefs: DEFINITIONS =
BEGIN

-- COM P I L E - TIM E CON S TAN T SAN 0 T Y PES

SubStringDescriptor: TYPE = RECORD
[
base: STRING,
offset, length: CARDINAL
];

SubString: TYPE = POINTER TO SubStringDescriptorj

-- I N T E R F ACE I T EMS

Overflow: SIGNALj
InvalidNumber: SIGNAL:
StringBoundsFault: SIGNAL [s: STRING] RETURNS Ens: STRING]j

WordsForString: PROCEDURE [nchars: INTEGER] RETURNS [INTEGER]:

AppendChar: PROCEDURE [5: STRING, c: CHARACTER]:
AppendString: PROCEDURE [to,from: STRING]:
EqualString, EqualStrings: PROCEDURE [51, s2: STRING] RETURNS [BOOLEAN];
EquivalentString, EquivalentStrings: PROCEDURE [s1, s2: STRING] RETURNS [BOOLEAN];

AppendSubString: PROCEDURE[to: STRING, from: SubString];
EqualSubString, EqualSubStrings: PROCEDURE [51, s2: SubString] RETURNS [BOOLEAN];
EquivalentSubString, EquivalentSubStrings: PROCEDURE [s1, s2: SubString] RETURNS [BOOLEAN];
DeleteSubString: PROCEDURE [s: SubString];
StringToDecimal: PROCEDURE [STRING] RETURNS [INTEGER];
StringToOctal: PROCEDURE [STRING] RETURNS [UNSPECIFIED];
StringToNumber: PROCEDURE [STRING, CARDINAL] RETURNS [UNSPECIFIED];
StringToLongNumber: PROCEDURE [STRING, CARDINAL] RETURNS [LONG INTEGER];
AppendDecimal: PROCEDURE [STRING, INTEGER];
AppendOctal: PROCEDURE [STRING, UNSPECIFIED];
AppendNumber: PROCEDURE [STRING, UNSPECIFIED, CARDINAL]j
AppendLongNumber: PROCEDURE [STRING, LONG INTEGER, CARDINAL];

END.

175

APPENDIX D. Binder Extensions

The Alto implementation of the Mesa binder provides two extensions for controlling the
space occupied by Mesa programs at runtime. These are specified with the CPacking and
Clinks clauses (section 7.7).

D.l. Code packing

It is possible to pack together the code for several modules into a single segment. This is
useful for two reasons:

Since the code is allocated an integral number of pages, there is some wasted space in
the last page ("breakage"). If several modules are combined into a single segment, the
breakage is amortized over all the modules, and there is less waste on the average.

All the modules will be brought into and out of memory together, as a unit; a
reference to any module in the pack will cause all the code to be brought in.
Modules which are tightly coupled dynamically are good candidates for packing (for
example, resident code should probably always be packed).

Of course, it is possible to "over pack" a configuration; the segments might become so large
that there will never be room in memory for more than one of them at a time (this should
remind you of an overlay system). Packing is a tradeoff, and should be used with caution.

D.l.l. Syntax

The segments are specified at the beginning of the configuration by giving a list of the
modules which comprise each one. Any number of PACK statements may appear. The scope
of the packing specification is the whole configuration, and not subconfigurations or
individual module instances, because there is at most one copy of a module's code in any
configuration.

ConfigDescription ::= Directory CPacking Configuration.

CPacking ::= empty I CPackSeries ;

CPackList .. - PACK IdList
CPackSeries .. - CPackList I CPackSeries ; CPackList

Each PackList defines a single segment; the code for all the modules in the IdList will be
packed into it. The identifiers in the IdList must refer to modules in the configuration, and
not to module instances; it is the code and not the global frames that are being packed (the
frames are always packed when they are allocated by the loader).

It is illegal to specify the same module 'in more than one PackList. Even though there may
be multiple instances of the module (i.e., multiple global frames) in the configuration, the
code is shared by all of them, and therefore can only appear in one pack.

Finally, it is perfectly fine to reach inside a previously bound configuration that is being
instantiated and single out some or all of its modules for packing. Of course, you must know
something about the structure of that configuration in order to do this.

176 Appendix D: Binder Extensions

D.i.2. Restrictions

Obviously, the PACK statements apply only if the code is being moved to the output file;
otherwise, the pack lists are ignored (and no warning message is given). This allows the
programmer to debug the configuration without shuffling the code from file to file, thereby
saving time. When making the final version, the packing can be effected with a binder
switch, without having to modify the source of the configuration description.

Once some modules have been packed together, they cannot be taken apart and repacked with
other modules later on, when they are bound into some other configuration.

Fine point:

If a previously bound configuration contains a pack. referencing any module of the pack gets the whole
thing. So it is possible to pack a "module and a pack together, or even to pack two packs. It is never
possible" to unpack a pack.

In general, code packing should be specified only to the extent that no unpacking will ever be
desired. Once the packing is done, it can't be undone, unless you start over with the
individual modules.

D.2. External links

In previous Mesa systems, links to the externals referenced by a program (imported
procedures, signals, errors, frames, and programs) were always stored in the module's global
frame. This allows each instance of a module to be bound differently, and it allows binding
to be done at runtime without modification of the module's code segment. However, it has
two drawbacks:

The links are only referenced by the module's code, and are therefore not needed
when the code is swapped out. Hence, the links logically belong in the code segment.

If two instances of a module are bound iden tically (the usual case), the links must be
stored twice.

Fine Point:

To determine the amount of space required for external links, see the compiler's typescript file.
Each link. occupies one word.

The Mesa binder optionally places links in the code segment. This option is enabled by
constructs in the configuration language, and is further controlled by binder and loader
switches.

D.2.i. Syntax

For each component of a configuration, the link location is specified using the LINKS

construct defined below. The default is frame links.
Clinks .. - empty I LINKS : CODE I LINKS : FRAME

A link specification can optionally be attached to each instantiation of a module, overriding
the current default, so' that the link location can be different for each instance.

CRightSide .. - Item I Item [] Clinks I Item [IdList] Clinks

Appendix D: Binder Extensions 177

Alternately. the link option can be specified in the configuration header. This merely
changes the default option for the configuration; it will apply to all components (including
nested configurations) unless it is explicitly overridden.

CHead ::= CONFIGURATION Clinks Imports CExports Control Clause

This construction works much like the PUBLIC / PRIVATE options in Mesa, and it nests in the
same way. A link option attached to a configuration changes the default for all components
within it, but that ·default can be overriden for a particular module (or nested configuration)
by specifying a different link option.

D.2.2. Restriqtions

This scheme has the consequence that. if a module with code links has mUltiple instances,
each instance must be bound the same.

As with code packing, the code links option takes effect only when the code is being moved
to the output file. At this point. the binder will make room for the links as it copies the
code if any module sharing that code has requested code links. Again, this allows a
programmer to debug without the expense of moving the code (using frame links), and then
to effect the code links option with a binder switch. without changing the source of the
configuration description.

Fine point:

Once sp!lce for code links has been added to a configuration, it cannot be undone by a later binding.
On the other hand, space for code links can always be added to a (previously bound) configuration,
even if it did not specify code links in its description.

Using code links has one drawback: it slows down the binding and loading process, as the
code must be swapped in and rewritten. The binder must make room in the code segment
for the links, as described above. And because the loader resolves imports of previously
loaded modules, as well as the imports of the module being loaded, it may have to swap in
(and perhaps update and swap out) the code segment for every module in the system.

Because of the overhead involved, the loader will not automatically attempt to use code links.
even if the space is available in the code segment. A loader switch must be used to effect
this option.

Documentation of binder and loader switches in in the Mesa User's Handbook.

•

•

178

APPENDIX E. Mesa Reserved Words

Listed below are all of the Mesa reserved words. Words marked with an astrisk are
predeclared rather than reserved. Predeclared identifiers can be redefined (leading almost
certainly to utter confusion).

ABS
AND
ANY
ARRAY
BASE
BEGIN
BOOLEAN
BROADCAST
CARDINAL
CHARACTER
CODE
COMPUTED
CONDITION·
CONTINUE
DECREASING
DEFINITIONS
DEPENDENT
DESCRIPTOR
DIRECTORY
DO
ELSE
ENABLE
END
END CASE
ENDLOOP
ENTRY
ERROR
EXIT
EXITS
EXPORTS
FALSe
FINISHED
FIRST
FOR
FORK
FRAME
FROM
GO
GOTO
IF
IMPORTS
IN
INCREASING
INTEGER
INTERNAL
JOIN
LAST
LENGTH
LOCKS
LONG
LOOP
LOOPHOLE
MACHINE
MAX
MEMORY
MIN
MOD
MONITOR
MONITORED
MONITORLOCK·

NEW
NIL"
NOT
NOTIFY
NULL
OF
OPEN
OR
ORDERED
OVERLAID
PACKED
POINTER
PORT
PRIVATE
PROCEDURE
PROCESS
PROGRAM
PUBLIC
REAL"
RECORD
REGISTER
RELATIVE
REPEAT
RESTART
RESUME
RETRY
RETURN
RETURNS
SELECT
SHARES
SIGNAL
SIZE
START
STATE
STOP
STRING
String Body'
THEN
THROUGH
TO
TRANSFER
TRUE·
TYPE
UNSPECIFIED"
UNTIL
UNWIND"
USING
WAIT
WHILE
WITH
WORD"

•

•

179

APPENDIX F. Collected Grammar

The Mesa grammar in this section is a collected version of the grammar distributed
throughout the body of the Manual. There are some differences, primarily due to the
Manual's grammar being distorted for purposes of exposition. This one is intended to be
internally consistent.

The grammar is divided into four parts, corresponding to the syntax for CompiiationUnit,
TypeSpecification, Statement, and Expression. These four parts refer to each other and
occasionally use syntax rules from other parts (such as LeftSide which is used in an
assignment statement but defined under Expression). Where such cross references occur, a
comment has been added to indicate which part to refer to. Other than this, each part is
self -contained, and the productions within a part have been ordered alphabetically by their
names -- except that the productions for Compilation Unit, TypeSpecification, etc. each head
their respective sections.

CompiiationUnit .. -.. -

Directory
DefinitionsFrom
ExportsList
FileName
GlobalAccess

IdList

ImportsList
IncludeList

Directory
DefinitionsFrom
identifier : ModuleHead = GlobalAccess
ModuleBody

::= empty I DIRECTORY IncludeList ;
::= empty I DEFINITIONS FROM IdList ;
::= empty I EXPORTS IdList
::= stringLiteral
::= Access

::= identifier I IdUst J identifier

::= empty I IMPORTS InterfaceList
::" identifier: FROM FileName I

IncludeList , identifier: FROM FileName

::= Identifier I Identifier: identifier

::= Interfaceltem IlnterfaceList , Interfaceltem

-- in TypeSpecification

Interfaceltem

InterfaceList

ModuleBody

ModuleHead

.. - Block. -- in Statement

ModuleParams
ShareList

::= ProgramTC ImportsList ExportsList Share List I
DEFINITIONS ShareList

::= empty I [NamedFieldList] -- in TypeSpecification
::= empty I SHARES IdList

TypeSpecification :: =
PredefinedType I
Typeldentifier I
TypeConstructor

Access ::= empty I PUBLIC I PRIVATE
Adjective ::= identifier
ArrayDescriptorTC ::= DESCRIPTOR FOR TypeSpecification I

ArrayTC
8aseOption
8yteList

Common Part

ConstantList

ElementType

DESCRIPTOR FOR PackingOption ARRAY OF TypeSpecification
:: = Packing Option ARRAY IndexType OF TypeSpecification
::= empty I BASE
::= Expression I 8yteList , Expression

::= empty I NamedFieldList ,

::= Expression I ConstantList , Expression

::= INTEGER I CARDINAL I CHARACTER I BOOLEAN I
EnumerationTC I SubrangeTC

EnumerationTC ::= { IdList }
FieldList ::= [UnnamedFleldList] I [NamedFieldList]
IndexType ::= ElementType I Typeldentlfler
InstructionSeries ::= empty I ByteList I

180

Interval

LocksClause

Appendix F: Collected Grammar

ByteLlst j InstructionSerles

.. - [Expression .. Expression] I
[Expression •• Expression) I
(Ex'pression .. Expression] I
(Expression •• Expression)

::= empty I
LOCKS Expression L
LOCKS Expression SING identifier : TypeSpecificatlon

LongTC .• - LONG TypeSpeclflcatlon
MachineCode .. - MACHINE CODE BEGIN InstructlonSerles END -- not described in this manual
MachlneDependent ::= empty I MACHINE DEPENDENT
MonltoredOption ::= empty I MONITORED
NamedFleldList ::= IdUst : Access TypeSpecltlcation I

Optionallnterval
Ordered
Packing Option
ParameterList
PointerTall

PolnterTC
PortTC

NamedFieldList , IdList : Access TypeSpeclflcation

::= empty I Interval
::= empty I ORDERED
::= empty I PACKED
::= empty I FieldUst
::= empty I

TO TypeSpeclfication I
TO FRAME [Identifier]

::= Ordered BaseOption POINTER Optlonallnterval PolnterTall
.. - PORT ParameterList ReturnsClause I

RESPONDING PORT ParameterList ReturnsClause
PredefinedType .. - INTEGER I CARDINAL I LONG INTEGER I

REAL I BOOLEAN I CHARACTER I STRING I
MONITORLOCK I CONDITION I

ProcedureBody
ProcedureTC
ProcessTC
ProgramTC

RecordTC
RelativeTC

UNSPECIFIED I WORD
::= Block -- In Statement
.. - PROCEDURE ParameterList ReturnsClause
.. - PROCESS ReturnsClause
.. - PROGRAM ParameterList ReturnsClause I

MONITOR ParameterList ReturnsClause LocksClause
::= MonitoredOption MachlneDependent RECORD [VarlantFleldLlst]
::= Typeldentifier RELATIVE TypeSpeclfication I

Typeldentifier RELATIVE LONG TypeSpecification
ReturnsClause .. - empty I RETURNS FleldList
SignalOrError
SignalTC
SubrangeTC
Tag

.. - SIGNAL I ERROR

.. - SignalOrError ParameterList ReturnsClause

.. - Interval I Typeldentifier Interval

.. - identifier: Access TagType I
COMPUTED TagType I
OVERLAID TagType

TagType ::= TypeSpecification I •
TypeConstructor ::= ArrayDeScrirtorTC I ArrayTC I EnumerationTC I LongTC I

PolnterTC PortTC I ProcedureTC I ProcessTC I
RecordTC I RelativeTC I SignalTC I SubrangeTC

Typeldentlfier .. - Identifier I
identifier • Identifier I
Adjective Typeldentlfier

UnnamedFieldList ::= TypeSpeclfication I
UnnamedFieldList , TypeSpeclfication

Variant .. - IdList :) [VariantFieldList] , I
IdList :) NULL,

VariantFieldList .. - CommonPart identifier: Access VarlantPart 1
VariantPart I

VarlantLlst
VariantPart

NamedFicldList I
UnnamedFieldList I
empty

::= Variant I VariantList Variant
::= SELECT Tag FROM

VariantList .
ENDCASE

Appendix F: Collected Grammar

Statement .. -.. -

AdJectivellst

, Assignation

AssignmentStmt

Block

Call

Catch
Catchltem
Catch Series
ChoiceSeries

CompoundStmt

AssignmentStmt I Block I Call I
ContinucStmt I ExitStmt I GotoStmt I IfStmt I
JoinCall I LoopCloseStmt I -- JolnCall in Expression
LoopStmt I Notify I NullStmt I
ResumeStmt I RetryStmt I ReiurnStmt I SelectStmt I
SignalCali I StartStmt I RestartStmt I
StopStmt I WaitStmt

.. - Adjective I Adjectlvellot , Adjective -- in TypeSpeciflcation

::= FOR identifier .. Expression, Expression

.. - LeftSide .. RlghtSide I
Extractor .. RightSide

.. - BEGiN
OpenClause
DeciarationSerles
EnableClause
StatementSerles
ExitsClause

.. -

.. -

.. -

.. -

.. -
::=

END

Variable ~
Variable ComponentList 1 I
Variable ComponentList r CatchSeries]
Variable I CatchSeries]
IdUst => Statement
Catch I ANY = > Statement
Catchltem I Catch j Catch Series
AdjectiveUst = > Statement j I
ChoiceSeries AdjectiveUst => Statement;
BEGIN
Body
ExltsClause
END

-- LeftSide, RightSlde in Expression

-- in Expression
-- Componentllst in Expression

-- IdUst in CompiiationUnit

ConditionTest .. - empty I WHILE Expression I UNTIL Expression
ContinueStmt .. - CONTINUE

181

Declaration .. - IdUst : Access EntryOption TypeSpecification Initialization j
IdUst : Access TYPE = Access TypeSpecification j

I -- Access in TypeSpecification

DeclarationSeries
Direction
ElseClause
EnableClause

EntryOption
ErrorCall
ExitsClause
ExitSeries

ExitStmt
Extractltem
Extractor

FinalStmtChoice
FinishedExit

GotoStmt
IfStmt
InltExpr

Initialization
Iteration
IterativeControl
KeywordExtract

::= empty I DeclarationSeries Declaration
.. - empty I INCREASING I DECREASiNG
.. - empty I ELSE Statement
.. - ENAI3LE Catchltem j I

ENABLE BEGIN CatchSeries END ; I
ENABLE BEGIN CatchSeries j END j
empty

.. - empty I ENTRY

.. - ERROR Call \ ERROR
::= empty I EXITS I EXITS ExitSeries I EXITS ExitSeries j

.. - LabelList = > Statement \
ExitSeries j LabelList = > Statement

.. - EXIT

.. - empty I LeftSide

.. - [KeywordExtmctList 1\
[PositionalExtractUst]

.. -

.. -

.. -

.. -

.. -

empty I => Statement
FINISHED =) Statement I
FINISHED =) Statement j

GOTO Label I GO TO Label
IF Expression THEN Statement ElseClause
Expression I
ProccdureBody I
MachineCode j
r Expression] I
CODE

.. - empty I .. InitExpr I = InitExpr
::= FOR identifier Direction IN LoopRange
.. ~ empty I Repetition I Iteration I Assignation
::= identifier: Extractltem

-- in TypeSpecification
-- in TypeSpecification
-- for STRING initialization
-- for SIGNAL initialization

182 Appendix F: Collected Grammar

KeywordExtractUst ::= KeywordExtract I
KeywordExtractUst , KeywordExtract

Label ::= Identifier

LabelUst ::= Label I LabelUst , Label

Leftltem ::= expression
LoopCloseStmt ::= LOOP
LoopContrOI ::= lterativeControl CondltlonTest
loopExlts ::= Exlt$erles I ExltSerles ; I FinishedExlt I ExltSerles j FlnlshedExlt
loopExitsClause ::= empty J REPEAT LoopExlts
LoopRange ::= SubrangeTC I Typeldentlfler I BOOLEAN I CHARACTER
loopStmt ::= loopControl

DO
OpenClause
DeclarationSerles
EnableClause
StatementSerles
LoopExitsClause
ENDLOOP

NotlfyStmt ::= NOTIFY Variable I
BROADCAST Variable

NullStmt ::= NULL
OpenClause ::= empty I OPEN OpenLlst ;
Open Item ::= Expression J Identifier: Expression

OpenUst ::= Openltem I OpenList , Openltem

OptCatchPhrase ::= empty J [I CatchSerles]
PosltionalExtractList ::= Extractltem I

Repetition
RestartStmt
ResumeStmt

RetryStmt
ReturnStmt

SelectStmt
Select

SelectVariant

SlgnalCal1
StartStmt

PositionalExtractList I Extractltem

::= THROUGH Subrange
::= RESTART Variable OptCatchPhrase
::= RESUME L

RESUME [ComponentUst]
::= RETRY
::= RETURN L

RETURN [ComponentList 1 I
RETURN WITH ERROR Calf

::= Select J SelectVarlant
::= SELECT leftltem FROM

StmtChoiceSeries
END CASE FinalStmtCholce

::= WITH Openltem SELECT Tagltem FROM
ChoiceSeries
END CASE FinalStmtChoice

::= SIGNAL Call I ErrorCali
::= START Call

StatementSeries ::= empty I Statement I
Statement j Statement Series

-- in Expression
-- Variable in Expression

-- Componentllst in Expression

-- Componentlist in Expression

StmtCholceSeries ::= TestUst => Statement j I
StmtChoiceSerles TestUst => Statement;

StopStmt
Tagltem
Test

Testllst

WaitStmt

::= STOP OptCatchPhrase
::= empty I Expression
::= Expression I RclationTali

::= Test J TestUst , Test

::= WAIT Variable OptCatchPhrase

--RelatlonTall in Expression

Expression:: =
AsslgnmentExpr J DisJunction I Fork Call I IfExpr I
JoinCall I NewExpr I SelectExpr I SlgnalCall

AddlngOp ::= + J -
AssignmentExpr
BuiltinCall

::= leftSlde to RightSide
::= MIN r EresslonUst] J MAX [ExpresslonUst] lABS ["Expression] I

LENGTH Expression] I BASE [Expression] I
TypeOp TypeSpeclficat on] I

•

· CholceList

Component
Componentllst
Conjunction
Constructor
Disjunction

Appendix F: Collected Grammar

DESCRIPTOR [Expression] I
DESCRIPTOR [Expression , Expression] I
DESCRIPTOR [Expression , Expression , TypeSpeclflcatlon]

::= AdJectiveList => Expression , I -- AdJectlveList in Statement
CholceList AdJective List = > Expression ,

::= empty I Expression
::= KeywordCornponentList I PosltlonalComponentUst
::= Negation I Conjunction AND Negation
::= OptionalTypeld [ComponentList]
::= Conjunction I Disjunction OR Conjunction

ExprChoicellst ::= TestList => Expression, I
ExprCholceList TestList => Expression,

-- Testllst in Statement

ExpresslonList

Factor

ForkCall
FunctlonCall
IfExpr
Indexed Access
IndlrectAccess
JolnCall

::= expression I ExpressionList , Expression

•• - - Primary I Primary

•• - FORK Call
•• - BulitinCall I Call -- Call in Statement
•. - IF Expression THEN Expression ELSE Expression
.• - (Expression) [Expression] I Variable [Expression]
.. - (Expression) t I Variable t

.. - JOIN Call
KeywordComponent ::= identifier: Component
KeywordComponentList ::= KeywordComponent I

KeywordComponentList , KeywordComponent

LeftSlde ::= Identifier I Call I -- Call in Statement
IndexedAccess I QualifiedAccess I Indirect Access I
LOOPHOLE [Expression] I
LOOPHOLE [Expression , TypeSpecificatlon] I
MEMORY [Expression] I REGISTER [Expression] -- not In this Manual

literal ::= numericLiteral I -- all defined outside the grammar
stringLiteral I
characterLiteral

MultiplylngOp ::=. I / I MOD

Negation ::= Relation I Not Relation
NewExpr ::= NEW Variable OptCatchPhrase
Not ::= N I NOT
Optior.alTypeld ::= empty I Typeldentlfier -- in TypeSpecificatlon
PositionalComponentList ::= Component I

PosltionalComponentList , Component

Primary ::= Variable I Literal I (Expression) I FunctionCall I
Constructor I @ LeftSide I identifier [Expression]

Product ::= Factor I Product MultiplyingOp Factor
QualifiedAccess ::= (Expression) • identifier I Variable • identifier

Relation ::= Sum I Sum RelatlonTaii
RelationalOp
RelationTail

RlghtSide
SelectExpr
SelectExprSlmple

::= # I = I < I <= I > I >=
::= RelationalOp Sum I Not RelationalOp Sum I

IN SubRange I Not IN Subrange
::= Expression
.. - SelectExprSlmple I SelectExprVariant

::= SELECT leftltem FROM
ExprChoiceList
END CASE = > Expression

-- leftltem in Statement '

SelectExprVariant ::= WITH Openltem SELECT Tagltem FROM -- Openltem, Tagltem in Statement
ChoiceList
ENDCASE => Expression

183

Subrange

Sum
TypeOp
Variable

.. - SubrangeTC I Typeldentifier -- SubrangeTC, Typeldentifier in TypeSpecification

::= Product I Sum AddingOp Product
::= SIZE I FIRST I LAST
::= leftSlde

184

INDEX

In this index, bold face page numbers
indicate where the primary, defining
information can be found; plain page
numbers designate further examples.

137, 138, 140
" 85

10
... 97,98

2,5,6
34, 78, 106, 109

2 :
136-7, 70 .

=> 52, 96, 136, 140, 54, 98, 138
@ 41, 29, 42, 146
[] 124, 129
t 40
.. 17, 5, 62, 76, 129
ABS 12, 5
abstract data structure 80
Access 106, 96, 116-7, 119
activation 72, 82, 137
actual procedure 67, 70, 70, 79, 82
actual tag 97, 99, 101
AddingOperator 12
adjective 94, 98-9
aggregate type 22
aligned 29, 41, 69
AlternateName 59, 100
ANY 136, 138-9
argument 67, 72-3, 143
arguments buffered 149
array 27, 21

constructor 28, 30
descriptor 87, 89

ARRAY 29
Assignation 62, 63
assignment 49, 7

expression 50
AssignmentExpr 17, 12
AssignmentStmt 7, 49
automatic dereferencing 43
B 9
balancing 45, 43
BASE 40, 88, 90, 29, 41, 43, 89, 92-3
base type 25
BEGIN 55, 70, 136
l)inary configuration description 105,

122
binding 103, 105, 122
blank 6
block 55

Block 55, 56, 70, 137, 140
BNF 2
body 68
BOOLEAN 9, 24, 4, 16, 22, 51
bound variant 99
bound variant type 95, 97, 98
bounds 63
BROADCAST
BuildinCall
built-in type
C 10

159, 160-1
12,12
7

C/Mesa 105, 124, 119
Call 71, 137, 12, 140
CallStmt 71
CARDINAL 7, 4, 8-10, 22, 26-7, 46
Catch 136, 134, 137-9
catch phrase 136, 139, 149, 154
CHARACTER 10, 4, 15, 22
characterLiteral 10
client 119
client module 122
CODE 135, 124, 141
code body 72
coercion 44, 74
colon 7
comma 54, 96
comment 5
common part 94
CommonPart 117
compilation order 113
Compilation Unit 106
compile-time 106, 86, 107

constant 18, 30, 51
completely bound variant 102
component 27, 124, 31, 99
component type 27
ComponentType 29
COMPUTED 96, 102
computed tag 95, 97, 99, 102
CONDITION 158, 155, 161
condition variable 155
ConditionTest 60, 62
configuration 122
Configuration 124
CONFIGURATION 124, 125
configuration description 105, 122-3
configuration prototype 124
conform 10, 7, 73, 69
Conjuction 16
CONNECT 146, 145, 149
constant 18
constructed data type 20
constructor 35, 95
Constructor 30, 35

CONTINUE 140, 141, 145, 149
CONTROL 105, 124
control

fault 148
link 147
transfer 147
variable 64

ControlVariable 62, 63
coroutine 143
covering condition variable 160
CR 6, 141
D 8
Debugger 136, 139
declaration 68
Declaration 19
DeclarationSeries 55
DECREASING 62-3
default Access 119, 116
default-named interfaces 127
defining occurance 111
DEFINITIONS 113, 77, 106, 106-9, 116,

119
FROM 110, 111

definitions module 103
DESCRIPTOR 87-8, 29, 89, 93
detached proce'ss 154
determination of representation 46
Digit 2
~RECTORY 107, 125, 77, 106, 108-9,

125
discrimination 100, 102
Disjunction 16, 11
DO 60, 5, 136
element type 22
ElementType 22, 25
elided 30, 36
elided component 36
ELSE 51, 76
empty

extractor 38, 72
interval" 16, 29

empty 3, 30
ENABLE 137, 138, 140-1
EnableClause 55
END 55, 70, 73, 76
ENDCASE 53, 55, 77, 96, 101
ENDLOOP 60, 5, 64
ENTRY 156, 155
entry procedure 155
enumerated type 22
enumeration 21, 97
enumerator 81
equality 7
equivalent 10

Index

ERROR 135, 71, 136, 141, 148
ERROR, unnamed 136
ErrorCall 135
exceptional conditions 134
execution state 72
EXIT 65, 64, 66, 139, 141
ExitsClause 56, 55, 137
explicit

component 36
naming 126
qualification 112

export 104, 116
record 104

exports 125

185

EXPORTS 125, 77, 80, 105-6, 116, 120,
124, 126

Expression 11, 49
ExpressionList 13
external procedure 157
extractor 37, 127
Factor 12
FALSE 9, 24
FaultHandler 149, 150-1
field list 32
FieldDescription 117
FieldList 31, 32
FINISHED 64, 66, 141
FIRST 24, 26
fonts 1
FOR 62, 63
forcible termination 64, 65
FORK 153, 136, 152-4
formation rules 2
frame 56, 72, 82, 147
FRAME 115, 124, 131, 145
FROM 106, 145
function reference 71
FunctionCali 12
fundamental operation 7, 20, 39, 69
OCD 4
GlobalAccess 116
GOTO 56, 57-8, 63, 65-6, 139
identifier 6, 21

constant 23, 97
list 6

identifier 5, 126
IdUst 7
IF 5, 51, 76

expression 52
statement ,51

IfStmt 51
implementing 120
implementor 119
implicit qualification 101

186

import 103, 125
IMPORTS 125, 77, 104-6, 114, 124, 126
IN IS, 46, 53, 62 .
Include 107
IncludeList 106
INCREASING 62-3
index type 27

indefinite 88
indexed reference 27
IndexedReference 29
IndexType 29, 87
inequality 7
inherent

representation 46, 47
type 43

initialization 18, 68, 86, 135, 168
Initialization 19, 33
input record 67
instance 114, 123
INTEGER 7, 4-5, 8-10, 26-7, 46
interface 103, 124, 119, 135, 158

element 113
record 114, 115, 126
type 114, 115

INTERNAL 157, 165
internal procedure 158
interval IS, 62
Interval 16
INTGER 22
Iteration 62, 63
IterativeControl 62
JOIN 153, 136, 152-4
jump table 54
keyword 2, 37, 69

constructor 35, 31, 36, 70
extractor 70
name 36

Label 56
Labels 57
LAST 24, 26
LeftSide 7, 29, 37, 40, 44
length 84
LENGTH 88, 29, 89
lengthening 42
lexical units 6
LinkageFault 148, 147, 149
LINKS 124
List 3
literal 18
Literal 12
loading 122
local .

procedure 79, 81-2
string literal 86
variable 68, 82

Index

LOCK 161
LOCKS 162, 164, 166
LocksClause 162, 165
LONG 14, 42, 89, 94

long

INTEGER 7, 8-10
STRING 87

numeric type 8
pointer 42

LOOP 64, 139
loop

control 60
statement 60

LoopCloseStatement 64
LoopControl 60
LoopExitsClause 64
LOOPHOLE 45
LoopRange 62, 63
lower bound 16
lower-case 5
MACHINE DEPENDENT 33, 96, 97, 166

RECORD 29
MAX 12,46
maxlength 84, 85
MIN 12, 46
MOD 5
module 103, 59, 68
ModuleBody 106
monitor 154, 155

lock 155
MONITOR 156, 162
MONITORED RECORD 162, 163-4
MONITORLOCK 156, 162, 166
Multi-module monitor 163
multiple statements 6
MultiplyingOperator 12
name

reference 111
scope 35, 111

NamedFieldList 31, 117
Negation 16
nested

configurations 129
signals 142

NEW 130, 115, 131-2, 136, 145
Next-Statement 49, 53, 6p
NIL 41, 42, 76
non -interface

element 113
type 103

non-local variable 68, 82
non-privileged 116.
NOTIFY 159, ISS, 157, 160-1
NULL 54,96
number 8

numeric
literal 8
type 7, 26

object 165
file 105
module 103
monitor 165

Octal Digit 2
OPEN 58, 108, 111
open

clause 109, 100
item . 101

OpenClause 59, 55
operators 12.
ORDERED 40,: 41
ordered type 22
output record 67, 74
OVERLAID 96, 102, 147
overlaid tag 97
packed 69
PACKED 29, 87, 89
parameter 134

record 67
pending 146, 148-9
period 78
phrase class 2
PLUS 129, 124
pointer 38, 22

arithmetic 41
POINTER 40, 42-3, 90
PORT 143-4, 145, 147, 150
port-compatible 147
PortFault 148, 146, 149
positional constructor 35
precedence 13, 50, 52
PredefinedType 19
Primary 12
PRIVATE 106, 116, 118-9
privileged 116
procedure 67

descriptor 147
type 68
value 69, 82, 147
variable 70, 113

PROCEDURE 68, 76, 147
ProcedureBody 70
process 166
PROCESS 153, 153
Product 12
program 103

prototype 115, 124, 130
variable 115

PROGRAM 114, 80, 106, 116, 119, 131,'
144-5

PUBLIC 116, 76, 105-6, 116, 118, 120

Index

qualification 34, 109, 59
qualified reference 31, 111
qualifier 70
Queue 156
range

assertion 26
error 25

REAL 9, 4, 10, 45
recompiling 112
record 31

constructor 35, 31
RECORD 96, 32, 76, 97
recursive 72

substitution 3
reentrant 72
reference type 38
Reject 139
relational operators 15
relative

array descriptor 91, 93-4
pointer 90, 91

RELATIVE 90, 41, 92-3
relocation 90
REPEAT 64, 141
Repetition 62
reserved words 6
RESPONDING 150, 144

187

RESTART 132, 115, 131, 133, 136, 145-6,
149

results 67, 135, 143
Resume 139
RESUME 140, 136, 136, 138, 141
ResumeError 141
RETRY 140, 141
RETURN 71, 69-70, 73, 136, 147

WITH ERROR 138, 135, 139, 166-7
return link 74, 73, 138, 148
RETURNS 68, 76
RightSide 7, 44
scalar type 22
scale factor 9
scope 82, 111, 70, 101, 110, 137
SELECT 52, 100, 53, 55, 77, 95-8, 101-

2, 116, 141, 147
expressions 54

SelectExpr 55
SelectStmt 53
self-contained 123
semicolon 5-6, 51, 56
Series 3
SHARES 119, 106, 116
short numeric type 8
SIGNAL 135, 58, 136, 141
Signal Call 135

