
(

('

AN INTRODUCTION TOTHE DATOOLS: SCHEMATICS AND EXTRACfION DURING YOUR fiRST WEEK

D A Toolsl ntroductionDoc. tioga
Bland. May 12. 1987 J 1:51:25 am PDT

An Introduction to the DATools:

Schematics, Extraction and Simulation During Your First

Week in CSL

Lissy Bland

© Copyright 1987 Xerox Corporation. All rights reserved.

Abstract: This is an introduction to the design definition, simulation and layout tools
available in CSl. The purpose is to give new members of the Design and Architecture
Group a guided tour of tlie most central tools. The tour includes: ChipNDale, a graphical
editor for VLSI layout and schematics, the Standard Cell Library, Extract (the layout and
schematics extractor), Rosemary (a logic simulator), Thyme and SPICE (timing simulators),
and the generation of layout by Patch"YorkCore (PWCore). .

Created by: Lissy Bland

Maintained by: Lissy Bland

Keywords: schematics, extraction, simulation, standard cells, design automation,
ChipNDale, Sisyph, DATools, Rosemary, Thyme, Oracle, layout, VLSI, CMOSB

XEROX

For Internal Xerox Use Only

1

Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

AN INTRODUCTION TO THE DATOOLS: SCHEMATICS AND EXTRACnON DURING YOUR fiRST WEEK 2

" ..

1.0 Introduction

This is an introduction to the design definition. simulation and layout tools available in CSL. Its
purpose is to give new members Design and Architecture Group a guided tour of the most central
tools. It does not intend to be comprehensive. When there are several ways to achieve the same
result. one good way will be presented.

This document assumes a functional knowledge of the Cedar environment You should get
someone to give you a couple lessons or read enough from the following three documents to be
able to get around in the Cedar world. (You'lI get up to speed faster with private lessons.)

1. [CedarJ<Cedar7 .O)Documentation)TiogaDoc. tioga

This explains how to to use the tioga text editor and get around tioga documents.

2. [Cedar]<CedarChest7.0)Documentation)lntroduction.tioga

This is a kind-of operator's manual for acquiring and using Cedar.

3. [Cedar]<CedarChest7 .0) Documen tation)BriefingBI u rb. tioga

This is a general introduction to the computing environment at PARC slanted
towards the needs and interests of newcomers to the Computer Science Laboratory.
It's aging but still quite helpful.

2.0 Getting Started

The very first time the datools are started on a particular machine the following sequence of
commands must be executed in a CommandTool:

cd / / /users/yourSurname.pa/aSubdirectory/
Using a subdirectory is useful when changing versions. All the files in that

subdirectory can be deleted without disturbing files in other directories.
Bringover -p /DATools/DA Tools7.0/Top/BringDATools.df

Using the -p switch retrieves only the public files.
BringDA Tools
DAUser

Executing the above sequence of commands takes a while. Go get a cup of coffee or read your
mail. About mail. most users of the DATools find that they do not have enough GFrs (Global
Frame Indices) to use the DATools and the Walnut mail system. Users that want to be able to read
new mail throughout the day while using the DATools should probably run the no-frills mail
system which is called Peanut. (c.f. [Cedar]<CedarChest7.0)Documentation>PeanutDoc.tioga.)

Watch your mail for changes to the DATools. You should re-execute BringDATools every time
there is a significant change.

CEDAR 7.0 - fOR INTERNAL XEROX l;SE ONLY

(

(

AN INTRODUCTION TO nlE DAIOOLS: SCIIEMATICS AND EXTRACTION DURING YOUR FIRST WEEK 3

For more information about the bringDA T,ools command see.
[DATools]< DATools7.0> BringDATools> BringDAToofsDoc. tioga. See
[DATools]<DATools7.0>DAUser>DAUserDoc.ti~ga for additional information about the DAUser
subdirectory. This subdirectory is used for commands. programs and documentation that are at the
crossroads of different tools.

2.1 Using this Document

The first three sections of this document present basic material about getting started. using the
Standard Cell Library. and drawing schematics. Section 4.0 begins with a discussion of extraction.
and introduces the most basic vocabulary of Core. the data structure used by all of the DATools to
describe electrical circuits. In Section 4.2 a four-bit adder is drawn to demonstrate some of the
more advanced features available for schematic entry. These first four sections should be read in
numerical order. The last four sections. covering analysis. simulation and layout can be read in
any order without sacrificing coherence.

3.0 Logic: The Standard Cell Library

The Logic library is a set of icons representing the most common Small Scale Integrated (SSI) and
Medium Scale Integrated (MSI) circuits. including simple gates. adders. mutiplexers. register files.
etc. Each icon is associated with a behavioral model (a Rosemary simulation procedure) and at
least one layout generation procedure. either through a standard cell representation or standard
generator.

Information about timing and size is provided for every cell and macro. All cells have a fixed
-height of 104/-L. The width is a multiple of 10/-L which is called a track. _Input loads are counted- in
standard loads (= 0.2pF) and output drives in standard drives (= drive of an inverter. i.e. a 2120
n-device and a 2/50 p-device). All these numbers are subject to change. For more information
about the logic library see: [OA Tools]<OA Tools7 .0>Cell libraries24) Logic Doc. tioga.

3.1 Navigating in the Logic Library

Open the logic library on your color screen by doing the following:

1. Select the Color Display button which is left-most button in the static column of your
screen (top right comer). A pull-down menu will appear. Choose the 8 bit CMos-B entry.

2. In your datools subdirectory. execute the command.
% cdread logic.dale

The logic library should appear on your color terminal. A control panel for the logic library with
the banner. Logic C M osB top level. will appear in the right column of your black -and-white
terminal.

The scale for logic is small enough that the items appear mostly as boxes. Here are five keyboard
mouse combinations that will allow you to see things and get around:

First. a word of warning to left-handed-mouse users: ChipNDale. the graphical editor for VLSI
layout and schematics. is very finely tuned for right-handed-mousers. Consequently. these
instructions specify the left hand for the keyboard and the right hand for the mouse. Try it that

CEDAR 7.0 . FOR INTERNAL XEROX L:SE ONL Y

AN INTRODUCTION TO THE DAfOOLS: SCHEMATICS AND EXTRACnON DURING YOUR FIRST WEEK 4

way. some ofthe chording combinations are reall~ ,difficult to reverse.

•
1. Centering selected objects (CtrISpace)

LeftClick on one of the white rectangular boxes. Note that the terminal viewer on
the right-hand column of your screen has told you what you have selected. Now
center that selection on your screen by pressing the CfRL key and the space bar at
the same time (CtrISpace).

2. Zooming out (TabSpace)

Zoom out to the original magnification by pressing the tab and space keys at the
same time (TabSpace).

3. Finding things in a large space: Search Object (DSpace. a case sensitive search)

To list the contents of logic. call up the Directory Menu by pressing the D key and
the space_bar at the same time (DSpace). Choose the second option. list directory.
The directory of logic will appear on your screen. Now select the Search -Object
entry. Look over to the tenninal viewer. -You are being prompted for a cell name.
Find the nand3.icon in the Directory of Logic: shift-select it. then hit the carriage
return (Return). The nand3.icon is selected and fills the screen.

Note the use of mnemonics in selecting the letters for menus: D stands for Directory.
Menus are generally invoked by pressing a letter and either the spacebar (Space) or
the middleMouseButton (Middle).

Most of the time. it is possible to get additional documentation explaining either:
1) what the entries in a menu mean. or

·2) a keyboard equivalent for the menu item.

by moving the mouse above the above the title Bar of the pop-up menu and then
moving it back. into the menu item area. Try it on the Cell Menu (CSpace).

4. Changing Magnification <>

To get a view of something besides the nand3.icon. find the < and> keys. The looks
of these keys express their functions. The < key makes objects bigger. The> makes
objects smaller. Hit the> key 5 times. You should now see most of the released
section of logic.

Icons in the released box are public. The name. size and shape of the icon. the
position of the pins. and their general semantics are fairly stable. Any changes to
these icons will be done with profuse apologies and a lot of advance notice. These
are the icons to use for standard cell layouts.

5. Scrolling (SpaceMiddle)

Center the word Released at the top of your screen by executing SpaceMiddle.
SpaceMiddle must be executed in exactly the following order:

1. Left hand on spacebar

2. Right hand on middleMouseButton

3. Move the mouse to draw a vector from your current position to the new
position desired. In this example. this means you should draw vector from the
word Released to just below the word CMosB in the terminal banner.

CEDAR 7.0 - FOR INTERNAL XEROX LSE O~l y

(

\" /'

(

AN INTRODUCTION ro filE DATOOLS: SCHEMATICS AND EXTRACTION DURING YOUR FIRST WEEK 5

4. Take your right hand offthe.middleMouseButton . . , . ..
S. Take your left hand off the spacebar.

The released section of the logic library should now be centered on your screen. To
make the entire released section visible hit) one more time.

Note: Many users may find scrolling hard because the wrong timing of the left and
right hands produces either stray wires or no action.

1. If Middle proceeds Space. Middle draws a wire and Space flips its
orientation.

2. If Space proceeds Middle. but the left hand is taken off Space before the
right hand comes off Middle. nothing happens.

The 5 keyboard combinations listed above should be enough to navigate in logic. At this
point it is probably a good idea to practice a little. Move around. Push into and Pop out of a
few of the other icon_s listed in the Directory.

Additional information _ about using ChipNDale can be found in the following
documen tation:

1. [DATools]<DATools7.0)CDDoc25)ChipNDaleDoc.tioga

This is the comprehensive reference guide for ChipNDale. the graphical
editor for VLSI layout and schematics that you have been exercising.

2. [DATools]<DATools7.0)CDDoc25)ChipNDaleIntroduction.tioga

This is an introduction to ChipNDale to be used in the first hour of
interactive usage.

3. lOA Tools]<DA Tools7.0)CDDoc25)CDCrib.tioga

This is a 4-page crib sheet that experienced users of Chip NO ale find very handy.

All of this documentation is listed in [DA Tools]<DATools7.0)Top>CDDoc25.df. Get in
the habit of opening the df file pertaining to the package of interest. It's the most
convenient way to find all the files on a particular subject.

3.1.1 Printing

Nectarine creates Interpress masters from schematics and layout. Interpress masters can be printed
on black-and-white and color print servers or stuffed into tioga documents. Execute the command.
~ectarineSchematics in YOllr DATools subdirectory. A new Nectarine line will appear at the
bottom of each ChipNDale Control Panel. To print the entire Logic Library on Sleepy. the color
Versatic printer. click on top of the Where button until it says ColorVersatec. (Note: The What
buttons flips through the options the same way. The Copies button can be edited.) 'J'ow click the
Nectarine button. Nectarine creates an Interpress master and. if the selected printer cannot
interpret the Interpress file format. Nectarine also creates a printer-dependent (.pd) version of the
specified design. The default filename for these files is O<)Temp)Nectarine)fileName.tileType.
After creating the required file or files. 'J'ectarine sends it to the print server specified. Sleepy has a
very short queue for print jobs. I f Sleepy times out before it accepts file. you can try again later by
executing the Chat command. For more complete information on printing see
[OAT ools]<DAT 00ls7 .0) 'J'ectarine)NectarineDoc.tioga which is quite complete and doesn't need
to be repeated here.

CED\R '.0 FOR I \j rER\jAL XEROX LSE O!\LY

AN INTRODUCTION TO TilE DATOOlS: SCI1EMATICS AND EXTRACTION DURING YOUR FIRST WEEK 6

A second printing facility is available through the I:fard Copy menu of ChipNDale. This menu is
accessed by the pressing the H key and the Midd~MoDSeButton at the same time (HMiddle). After
selecting type of file desired from the first HMiddle menu. a series of additional pop-up menus
further refine the file specification. The HMiddle printing facility is preferable for very large
chips. You might try both facilities to see which one you prefer.

3.2 Creating a New Design Using Standard Cells

Our first project will be to recreate the schematic for the oneBitAdder that is included in Logic
using standard cells. Find the oneBitAdder.sch included in Logic using the search object entry
from the DSpace menu.

Create a new viewer for a design by executing the command. cdNewCmosB your DA Tools
Subdirectory. This should create a new. ChipNDale Viewer and a Control Panel for that
ChipNDale Viewer. The Control Panel appears in the right-hand column of your black-and-whit~
terminal. If the ChipNDale Viewer appears on your black-and-white terminal. move it to the
color display by selecting the color button in its banner (and add a userProfile option which says:
ChipNDale.FirstViewerOnColor: TRUE.)

There are two mechanisms for using objects from the Standard Cell Libraries to create new
designs. Include actually copies the designated object from the Standard Cell Library into the new
design. Import establishes a reference between an object in the new design and its referent in the
cell library. In general. the second method is preferable because changes made to the referent are
propagated to objects in the referencing design. In this example. we will import objects from Logic.

Before we can do the import. you need to know one more thing: ChipNDale distinguishes between
design names and file names. -A Design is the- object created by- the user. It-may represent one Or
many circuits. A design is in a particular technology for example. CMos-B or NMos and consists
of some geometry and a Directory. A File is is the storage unit for a design.

Now. back to our first project. To make things easier. first import the oneBitAdder to be copied by
executing the following sequence of commands:

1. Left-click the mouse in the new. ChipNDale Viewer. [n ChipNDale terminology.
this is called placing the input focus.

2. Now hold down the X. Z. and middleMouseButton at the same time (X-Z-Middle).
Look over to the Terminal Viewer it has printed out the command you have
executed: "draw object of imported design." It is prompting for a "DESIG'J name."
Enter the name of the name design. Logic (the capital L is mandatory).
Now look back to your ChipNDale Viewer. A pop-up menu is prompting for the
name of the file that contains the Logic design. In this case the filename and design
name are the same. Select the Logic entry that ChipNDale has provided.
Look back to the Terminal Viewer it is now asking for the name of the object from
Logic that you want to import. Type in its name. oneBitAdder.sch.
Note: These interactions are case-sensitive so. when it is possible. it is safest to copy
names out of the Directory of Logic.

To recreate the oneBitAdder. five gates must be imported: nand2.icon. nand3.icon. nor2.icon.
nor3.icon. and nor4.icon. Since Logic has been established as the file from which cells are being
imported. it is only necessary to do the following:

CEDAR 7.0 ~ FOR I" TER\;AlXt::RO\ LSE O!\L Y

/

AN IN IROOUCnON ro rm: OA IOOlS: SCHEMATICS AND EXTRA<...IION DURING YOUR FIRST WEEK 7

1.
2.

X-Z-Middle in your ChipNDale Vie~er.

Select Logic as the Design for impo[ts. ...

3. In response to the Tenninal Viewer prompt, type the name of the object to be
imported, or better yet, shift-select the name from the Directory of Logic,

Note: Gates are imported to the position of the mouse when the X-Z-Middle
command is executed. After importing the five gates, your no name viewer should
look. like this:

ABC
Cout

Sum

oneBitAdder

Figure I: The screen after having imported the oneBitAdder and the five logic gates.

It's time to save your work. The 10 menu is used for saving designs to a file. Invoke it with
ISpace. Select the save option. This first time you will be prompted for a file name. Type in
adderExample.dale then hit the return key (Return). Close the logic library to give your
adderExample the whole screen.

Here are some additional commands to complete the oneBitAdder:

1. Get comfortable by selecting everything, centering and increasing the magnification

To select everything hold down the space bar and the rightMouseButton at the same
time (SpaceRight). Center your selection (CTRLSpace). Increase the magnification
«). Scroll your design to the right so that all the gates for the new oneBitAdder are
visible (SpaceMiddle).

2. Moving individual objects

CEDAR '.()- FOR 11'. fER'\Al XEROX CSEONlY

AN INTRODUCTION TO TItE DATOOLS: SCHEMATICS AND EXTRAcrlON DURING YOUR FIRST WEEK 8

Bya Vector:
" " Left hand on control. Holding thetright hand down on the leftMouseButton select

the object you want to move. then move the mouse in the desired direction. A vector
will indicate the extent of the move. Take your right hand off the mouse when the
vector looks right.

By an Incremental step:

The control key and the A. W. S. and Z keys are used together to move objects in
incremental steps as follows:

ControlA ::: left

ControlW = up
ControlS = right
ControlZ ::: down

Look at the keyboard; this makes visual sense.

3. Copying

Make two more copies of the nand2.icon by doing the following:

Left hand on shift Holding the right hand down on the leftMouseButton select the
object you want to copy. then move the mouse to the point where the copy should
appear. Take your right hand off the mouse. You should have another copy of
nand2.icon. Ifit's not positioned quite right. use the incremental move command to
scoot it around

Now make another copy of nand2.icon and two copies of nor2.icon. Your screen
should look like this:

CED'\R '.0 - FOR I"TER"IAlXEROX LSEO'\iLY

,,, "

\~J

«

0
O
O
C -

AN INTRODUCTION TO THI::: DAHX)L.'i: SCHEMA lies AND EXTRACTION DURING YOUR fiRST WEEK 9

" "0-•

D-
D- D-
D- -

D-
Figure 2: The color screen

Save again (ISpace). This is the last reminder about saving often.

4. Deleting (CTRL-D)

A B C

-

To delete an object. first select it then (IeftClick) and then hit the control key
followed by the dkey (CTRL-D).

As objects are created they are added to the Directory of the design: however. when
an object is deleted it is not removed from the design's Directory. To get unwanted
objects out of the Directory. they must be deleted explicitly using the prune complete
dir entry on the Directory (DSpace) menu. This process is not commutative.
Objects must be deleted from the screen before they can be deleted from the
Directory.

5. Un-Deleting (ESC-D)

To restore an object that was deleted by mistake. hit the escape key followed by the
d key (ESC-D).

6. Stopping a command while it is in progress (DEL)

CEDAR 7,0 FOR I~TER:'-JAL XEROX LSE O~L'

D
D
D

AN INTRODUCTION TOTUE DATOOLS: SCHEMATICS AND EXTRACTION DURING YOUR FIRST WEEK 10

Here's the scenario: while your Ic:ft hand is on the spacebar you press the
middleMouseButton instead of the leftMouseButton. thus drawing a wire instead of
scrolling the screen. You can negate the action in progress by keeping your left hand
on the space bar and hitting the DEL key. Try it

7. Ticks (periodSpace)

Call up the ticks menu by pressing the period key and the spacebar (periodSpace).
(Note that periods look like ticks.) Select the four entry from the menu. If you think
it will be easier to draw wires with ticks on. leave the ticks on. Otherwise tum them
off.

3.2.1 Drawing wires

For schematics. wires are drawn in black using a width of 4/8. that is 112 A. (The reason that the
Control Panel says 4/8, not 112 A. is to make it explicit the fact that A can be subdivided into 8ths.)

Look. at the Control Panel for the adderExample. The top-left entry gives the current layer. If the
current layer is not black. find the "lack button in the next row and middleClick on it. The
current layer should now be black.

To draw a wire. hold down the middleMouseButton as you move the mouse. To draw a
continuous wire that incorporates 90 degree angles. hit the spacebar as you move the mouse in a
new direction. Try drawing some wires that bend. Try a square.

3.2.2 Connected vs crossing wires

When selected wires are shown at a very high level of magnification. they appear outlined in white .
. as Figure 3 illustrates. By selecting a wire segment and extending that selection to other wire
segments. it is possible to determine exactly how a wire is composed.

Try the following introductory exercise:

Push into the oneBitAdder (push in picture. CSpace). Center the top left nand gate on your
screen. Increase the magnification until the A. B. C inputs and top four gates of the oneBitAdder
fill the screen. Select (\eftClick) the vertical portion of the A wire. The vertical portion of A
should now be outlined in white. Extend the selection to the horizontal portion of the A wire by
clicking the rightMouseButton (rightClick). Both sections of the A wire are now outlined in white.
Note that the outlined horizontal portion of the wire includes the vertical portion as Figure 3
illustrates. Using the spacebar to create 900 angles in wires results in this configuration.

Figure 3: A continuous wire that was drawn lIsing the spacebar to create a 900 angle. The white
outline indicates that both sections of the wire are selected.

CEDAR 7.0 FOR 1 TER "l.\ERO\ liSE O L 'r

,f"
{,.

'~ "/

AN IN I'RODUCTION 10 filE DATOOLS: SCHEMA ncs AND EX J'RACTION DURING YOUR FIRST WEEK 11

3.2.3 Connected vs crossing wires: The Rules
...

•
1. Two wires that are colinear and whose endpoints abut or overlap are connected.

Figure 4a illustrates two wires whose endpoints abut. Figure 4b illustrates colinear
wire segments that overlap. In both cases a connection exists.

2. Two wires that a/most touch are not connected (Figure 4b).

3. Wires that cross without an explicit contact at their point of intersection are not
connected (Figure 4c).

4. Crossing wires with a contact at their point of intersection are connected. There is a
contact in the released portion Logic. Its name is cticon.

CEDAR "'.0 FOR I\.;TER,\AL XEROX lSE O,\LY

AN INTROOUCfION TO THE OATOOlS: SCHEMATICS AND EXTRACTION DURING YOUR FIRST WEEK 12

..
Figure 4: Crossing and connected wires. All wit\! segments are selected to illustrate the internal

structure of the wires.

In Figure 4f the vertical wire and the left-hand horizontal wires are connected. The right-hand
horizontal portion is not connected.

Figure 5 illustrates one difficulty that can arise when drawing wires. In 5a. the input wire to the
inverter was drawn in two short segments instead of one long segment. This in itself presents no
problem. because the two wire segments touch. they are considered connected. And unless the
wires are selected. the designer will undoubtedly forget that A was drawn as two segements instead
of one. But suppose at a later time. a second wire. B is drawn which is supposed to cross A without
intersecting it. Unfortunately. B happens to cross A just where one of the two segments of A ends.
A and B are now shorted together. Moral: always draw wires using long strokes. Check your
drawings for unintended short wire segments.

Figure 5: Unintentional shorting of two wires.

Always draw at a high level of magnification. rn this example. an appropriate level of
magnification will force the oneBitAdder you are copying out of view. There is a copy of it in
Figure 1 above. To find it. first split this viewer then search the word. Figure 1. The oneBitAdder
should be visible.

CEDAR 7.0 - fOR I" TERNAl XEROX LSE ONl Y

(.

AN INTRODUCnON TO nIE DA roOlS: SCHEMATICS AND EXTRACTION DURING YOUR FIRST WEEK 13

To draw the wires in the oneBitAdder. first draw tt}e long "L" portion of the A wire from the top
left comer to the bottom nor3.icon. using the shift key to create the 90° angle. Then draw the
horizontal portions of A. Continue in this fashibn for the B. C and internal wires. Extend the
length of the output wires from the nand3 and nor4 icons.

3.2.4 Attaching names: Satellites and Expressions

Satellites provide a way to associate arbitrary textual information including names and expressions
with ChipN Dale entities. There are two kinds of satellites:

A. Instance Satellites: An instance satellite is a Chipndale text instance that has been
associated explicitly with another graphical Chipndale instance called the satellite's master.
a master along with its satellites is called an instance group.

B. Object Satellites: An object satellite is a text instance that has been associated with the
containing cell or design.

Both instance and object satellites can be made comments in the programming sense of that
word. Comment satellites are used when a piece information should be included in a
design. but this information should not be interpreted by programs that analyze the design.
Comments remember their masters.

Expressions also come in the instance and object varieties. The only difference between Satellites
and Expressions is that Satellites are visible and Expressions are not. Expressions are provided for
those occasions where placing satellites would clutter up the entity on which they are being placed.
Expressions are generally used on icons. To illustrate this point. push into one of the nor or nand
icons and select its top input wire. Call up the satellites menu (LSpace). Select the Show Instance
Expressions entry. The Terminal Viewer should say. "name ... "I-A"."

Because tlie names associated with the input and output wires in the oneBitAdder should be
visible. they will be stored as satellites. Select the wire that is called A in the oneBitAdder. Call up
the satellites menu (lSpace). Select the draw instance satellite entry. The Terminal Viewer will
prompt for a text string. Type in the appropriate text string (CR). The text string should appear
about where you want it. Select it. then scoot it around using the Incremental Move command.
Name the three input and two output wires for the one BitAdder.

In the terminology of Core. the five wires that have just been named are public wires. These are
the wires that connect to other cells. They are at the interface of the oneBitAdder. Wires that are
not at the interface of a cell are called private.

3.2.5 Creating Cells

Cells associate entities and give that association a name. A cell is created by drawing its bounding
box and using the Cell-Menu to create and label the association. To make the oneBitAdder a cell.
it must be selected. This selection is done with an Area Select.

1. Area Select

Area Select is accomplished by holding down the leftMouseButton and moving the mOllse to
sweep out the rectangular area to be included in the cell. The area selected does not have to be a
precise bounding box for the cell.

"low call up the cell menu (CSpace). Select the create cell entry. The Terminal Viewer is

CEDAR 7.0 FOR j\, IER\,AL .\EROX LSE ONLY

AN INTRODUCTION TO rtlE DATCX)lS: SCHEMATICS AND EXTRACilON DURING YOUR FIRST WEEK 14

prompting for a name. Enter the name. "oneBitAddtr" (CR).
" - ...

The cell just defined is a ChipNDale object Becluse an object has been defined. it is possible to
attach satellites to it. While pushed into the oneBitAdder. call up the LSpace menu and select the
draw object satellite entry. Give the cell a name by typing in the name. oneBitAdder. in response to

. the Tenninal Viewer's prompt. Make that name a comment (CTRL-\.) Pop out. ChipNDale
provides several options when popping out of a cell: To store the changes made. select the replace
entry in the pop-up menu that appears. The flush entry throws out changes. The new cell entry is
used when the current cell is a modification of an earlier cell that should remain unchanged; if the
replace option had been selected. changes made to the new cell would be propagated to all other
copies of that cell.

4.0 Extraction

Sisyph is a schematics extractor that produces a structural description of a circuit from schematics
drawn jn ChipNDale. Sisyph processes the geometry contained in ChipNDale and uses this
geometrical infonnation to define the connectivity of the circuit. The circuit description that
Sisyph creates is called Core. Core exisls in main memory. This Core structural description does
not actually include geometrical from ChipNDale; instead. it includes pointers to that geometrical
infonnation in its property list.

4.1 Sisyph: Extract

To extract the oneBitAdder call up the OSpace menu and select the Sisyph: Extract entry. The
results of the-extraction will be printed in the Tenninal Viewer.

4.1.1 Sisyph Some Important Terms from the Extraction

The Sisyph extraction has created a oneBitAdder eel/Type from the oneBitAdder schematic. The
Public wire sequence of the oneBitAdder CeliType contains the seven elements: A. B. C. Couto
Sum. Vdd and Gnd. The Internal wire sequence of the one BitAdder includes all of its public and
private wires; it contains fourteen wires. The nine logic gates that make up the oneBitAdder are
Celllnstances in the Core data structure. These CellInstances are contained in a RecordCellType
which is a sequence of CellInstances. Each of the nine Celllnstances has an Actual wire sequence.
The Actual wire sequence of the individual gates points into the Internal wire sequence of the
oneBitAdder. For example. looking at the nand3 Celllnstance. the I-A input corresponds to [12] in
the internal wire sequence. The output. X. corresponds to Cout in the internal wire sequence. It is
by enumerating the actual wire sequence of each Celllnstance that all the connections in the
oneBitAdder become known. For more information about the Core data structure. see.
[DATools]<DATools7.0)Core)CoreDescription.tioga.

4.2 Sisyph: Make Icons

An icon is a schematic that represents another schematic. Its purpose is to simplify the pictorial
representation of the schematic being represented. The looks of many icons have meaning for
designers. For example. a triangle with a bubble on its output is universally recognized as an icon
for an inverter. The same inverter might be represented by a stick diagram of a pull-up and a pull
down transistors. As circuit diagrams become more complex. icons are used to represent more

CEDAR 7.0 - FOR Ii'<TER'JAL .\EROX LSEO'\jl Y

(

(

AN INTRODUCTION TOTHE DATOOLS: SClII:::MATICS ANDI:::XTRACTION DURING YOUR FIRST WEEK 15

complex circuit components. thus maintaining readc,bility.
"

"-
Icons can be associated with schematics that JIIave actually been drawn as well as fictitious
schematics whose Core structural descriptions are computed directly by the code attached to the
icon. This attachment of code to icons is part of a general mechanism that permits arbitrary CEDAR

. expressions to be attached to geometric objects to control their extraction.

To create a fourBitAdder from the oneBitAdder, the oneBitAdder should first be represented as an
icon.

Call up the OSpace menu, and select the Sisyph: make icons, entry. (n the second pop-up menu
that appears select the first entry, Create icons from schematic. Sisyph will extract the schematic
and return a vanilla icon. The looks of this icon can be altered. Move the carry-in to the left side
of the rectangle, the carry-out to the right. and the sum to the bottom. To demonstrate that the
oneBitAdder icon has been associated with the correct schematic, first select it then call up the Cell
(CSpace) Menu. Select the push in schematic entry. You should be pushed into the oneBitAdder
schematic.

-1. Repetition

A repetition places a set of objects at regular intervals along a drawn vector a
specified number of times. Groups of objects and repetitions themselves can be
used as the basis for repetitions. The repetition feature is used to create uniform
structures quickly and easily. Experienced designers generally use the repetition
feature to draw 5 or more copies of an object and choose the copy command for
fewer copies. The repetitions will be used here to illustrate its utility.

To make 3 additional copies of the oneBitAdder icon do the following:

1. Select the oneBitAdder icon.

2. Hold down the "=" key and draw a vector from the top left-corner of the adder
icon to a point comfortably beyond the top-right corner, as Figure 6 illustrates.

3. Answer the Terminal Viewer prompt for the number of repetitions you want, "4"
(CR). ChipNDale creates a new cell which contains the four instances of the
oneBitAdder icon. Logically, these four oneBitAdders are at the same descriptive
level. The gray rectangle enclosing the four instances in Figure 6b indicates this.
Any additions would be at the next higher level of the cell hierarchy: however, the
connections between the carry bits of the individual should be at the same level of
the hierarchy as the adder icons. To flatten the hierarchy. push into the cell and
select the expand option. This flattens the cell, leaving four instances of the original
oneBitAdder icon. (See Figure 6c.)

C Cout

Sum

Figure 6a: Draw a vector that specifies the spacing between objects of a repetition.

CEDAR i.O FOR !.\TER \ir\L XEROX LSE O"L Y

AN INTRODUCTION TOTHE DATOOUi: SCHEMATICS AND EXTRACTION DURING YOUR FIRST WEEK 16

C

..

I

l> CD l>CD l>(D l>CD

Cout Cout - ·C Cout C

Sum Sum Sum Sum

Figure 6 b: A new fourBitAdder cell. All four of the adder icons are contained in
one rectangle.

Figure ~6c: The-expanded fourBitAdder -- four-copies ofthe one BitAdder with no
additional hierarchical semantics.

Connect the carry bits. Name the low-order carry by selecting it. calling the Satellites
Menu (LSpace). and choosing the draw instance satelliles entry (I-Middle) to attach
the name CIN.

To draw the A inputs as a 4-bit bus. first draw the long horizontal portion of the
wire. then call up the Programs on Rectangles menu with PMiddleMouseButton
(PMiddle). Select the PatchWork generator entry. In the next menu select the
Parameterized Bus. The Tenninal Viewer is prompting for the size of the
parameterized bus. Answer 4 (CR). To extract the low order wire from the bus. call
up the PMiddle menu again and select the PatchWork generator entry. Then select
the Parameterized Extractor entry. Follow the Cedar and Dragon conventions for
numbering bits by answering the Terminal Viewer prompt. "Parametrized index of
the extracted wire?" with the number 3. Answer the next Terminal Viewer prompt.
"Size of the parametrized bus?". with the number 4. Place the 4/3 icon and connect
it to the A input of the tlrst icon. In drawing the connection make sure the
connecting wire does not short to the 4-bit bus. Figure 7a illustrates a proper
connection. Figure 7b illustrates a wire that is shorted to the bus.

CEDAR 7.0 FOR I" fER 'iAL ,(EROX LSE O'\iL Y

Cout r-

(

AN INTRODUCTION IOTItE DATOOLS: SCHEMATICS AND EXTRALIION DURING YOUR FIRST WEEK 17

Figure 7a: Input A is correctly extracted from the bus.

Figure 7b: Input A is shorted to the bus.

Icons produced by the PatchWork generator can be copied but NEVER edit them. They
are full of magic and guaranteed not to work if they are not produced by the PatchWork
generator. Finish drawing the A bus using the Patchwork generator to create icons for the
412. 411 and 4/0 extractions. The icons created for the A bus can be copied for B. ;\lame
both busses by attaching instance satellites.

2. Mirroring - The Transformation Menu (TSpace)

To create the extractions for the Sum, it is necessary to mirror the icons used for A
and B. Look at Figures 8a and 8b to convince yourself ofthis. '\lame the 4-bit slim.
SUM.

CEDAR 7.0 fOR [~fER \t\L XEROX LJSE O'<L Y

CIN
C

AN INTRODUCTION TO THE DATOOLS: SCHEMA Tlt.'S AND EXTRACIION DURING YOUR FIRST WEEK 18

Figure 8a Figure 8b

Figures 8a and 8b: Figure 8a should be used for the A and B inputs. Figure 7b should be
used for the Sum.

The Transformation Menu can be used to mirror and rotate the extraction icons. To
mirror each icon. first select it. then call up the Transformation Menu (TSpace).
Select the mirror y entry. Now finish drawing the sum line. (Patchwork is smart
enough to figure out that the Sum wire is a bus of size 4 without explicitly adding
this information.)

Name the public wires by attaching instance satellites to them. To make the fourBitAdder
into a cell. draw its bounding box and select the create cell entry from the ~Cell Menu
(CSpace). Name the cell fourBitAdder. To add two object satellites to the fourBitAdder.
push into it then call up the Satellites Menu (LSpace). Select the draw object satellite entry
(O-Middle) and enter the cell name as a satellite. Make it a comment. (Control\). Pop out.
selecting the replace option. Your fou rBitAdder shou Id look like this.

Cout C Cout C Cout C

Sum Sum Sum Sum

Layout: $SC fourBitAdder

Figure 9: Th.e completed fourBitAdder.

CEDAR 7.0 - FOR I\TER;\iAL XEROX LSE OiliLY

Cout

SUM

(

(

AN INTROOUCIION TO HIE OATOOLS: SCIIEMATICS AND EXTRACTION DURING YOUR FIRST WEEK 19

To create a fourBitAdder CellType. call up the OSpac~ menu and select the Sisyph: extract entry.
The fourBitAdder CellType contains four Celllnstances of the oneBitAdder CellType. Note that
the public wire contains 5 elements: Vdd. Gnd. A. B. and Sum. A. B. and Sum are. in turn.
composed of 4 elements. Each Celllnstance has an actual wire sequence that points into the
internal wire sequence of the fourBitAdder CellType. The actual wire of each oneBitAdder
CellI nstance specifies to which of the four elements of the structured wires it is connected.

5.0 Sisyph Extract and Static

Static is a static electrical analyzer that detects logical errors in a schematic. The errors are printed
in the Terminal Viewer. For example. Static would flag a node that can never be set to 0 or 1. a
degraded input that is used to control a pass transistor. a node with only one electrical connection.
See [DATools]<DATools7.0>Static>StaticDoc.tioga for a little more information on what Static
does.

To demonstrate that Static works. delete a bit of the Cout wire so that it no longer touches the
edge of the oneBitAdder's bounding box. Now select the Sisyph Extract and Static entry from the
OS pace menu. Note that the Terminal Viewer prints the message. "Cout in cell oneBitAdder has
only one connection."

6.0 Sisyph and Rosemary

Rosemary simulates the behavior of integrated circuits. It performs a cycle by cycle simulation of a
circuit and determines the value. either 0 or 1. for each .input and output at each clock cycle ..
Rosemary performs no analysis of timing. For example. it does not consider the propagation time
of the basic logic gates. Its focus is circuit logic. Timing issues are covered by two other simulators.
Thyme and Spice. A third tool. Mint. performs both simulation and analysis.

The user must provide Rosemary with a test procedure. For simple cells. the test procedure takes
the form of clocks specifying wave forms attached to each input wire. For complex circuits. the test
procedure is a Cedar Program. For circuits where a reasonably small number of test vectors are
needed to verify correct functioning. a file containing test vectors can be supplied to Rosemary by
using the Oracle.

In addition to a test procedure which the user must provide. the user may provide models for
abstract blocks that are connected to the CellType that is being simulated: A state initialization
procedure may be written to allocate state storage of abstract blocks. And. evaluation procedures
may be written to model behavior.

7.0 Rosemary: Simulating the OneBitAdder Using RoseClocks

The oneBitAdder will be used to illustrate the creation of a test procedure from roseClocks. (Refer
to Figure 10 to see what things should look like.) Do the following:

1. Copy the one BitAdder.
2. Import roseClock.icon from Logic.
3. Connect a roseClock to each input wire.
4. Change the wave form of the A input by:

a. selecting it

CEDAR 7.0 - FOR 1,\ rER\AlXERO.\ LSE O,\LY

AN I~TRODUCTION TOTHE DATOOLS: SCHEMATICS AND EXTRACfION DURING YOUR FIRST WEEK 21

stop the test. Note that the values for Sum and Cqut are being displayed. To see the wave forms
for Sum and Cout open the oscilloscope icon. P'rbceed will continue the test. Abort ends it Now
try the Single Eva/ button in the adder.sim viewer~

The typescript viewer was originally designed for communication with Rosemary; however. the
, two most heavily used typescript commands. the value and add commands. have been superceded
by interactive equivalents. Here are their interactive versions:

1. Value (V-leftClick)

Value prints the current value of the selected wire in the Terminal Viewer. To
determine the value of a given wire. hold down the v key then select the wire whose
value you want to know. If the v key is kept depressed. it is possible to continue
selecting wires and have their values printed in the Terminal Viewer.

2. Add (OSpace. Schematic Simulation Add To Plot)

Add _ adds the selected wire to the to the wires displayed in the plot viewer. First
select the wire you want to add. then select the Schematic Simulation Add To Plot
entry from the OSpace menu.

To learn about the other typescript commands
[OATools]<OA Tools7 .O)Rosemary)Rosemary Doc. tioga.

6.2 Rosemary: Using the Oracle To Provide Test Vectors

see:

For circuits where a reasonably small number of test vectors are needed to verify correct
functioning. the Oracle may be used to provide test vectors to Rosemary: -The Oracle'has three
required parameters, an input bus (in), an output bus (out), and the name of the file containing test
vectors (id). The Oracle's default behavior is to stop the first time it finds an error; however. if a
fourth optional parameter (log) is used. the Oracle records errors and continues. -

The fourBitAdder will be to illustrate the use of the Oracle. Do the following:

1. Create an icon to represent the fourBitAdder (Sisyph: make icons). Name it
4BitAdder.

2. Import oracle.icon and roseClock.icon from Logic.

3. Connect the inputs and outputs of 4BitAdder to the Oracle's input and output
busses. To do this. think of things from the Oracle's point of view: the circuit's
inputs (A, Band CIN) are the Oracle's outputs; that is the Oracle drives its outputs
and compares them to its inputs (Cout and SUM). Because the Oracle accepts only 1
input and 1 output bus. the multiple inputs and outputs of any circuit must be
combined into a single input and a single output bus by using composers.

4. Using Figure 11 as a model. get a composer of size 3 by calling the PatchWork
Generator (PMiddleMouseButton). Connect A. B, and CIN to the left side of the
Oracle (the output side). Get a composer of size 2 and connect Cout and SUM to
connect the right side of the Oracle (the input side). Connect a roseClock.icon to the
bottom of the Oracle.

CEDAR 7,0 - FOR INTERNAL XEROX LSE ONLy

('
''Il.,.)

(

I

(

(

AN INTRODUCTION TO [lIE DA roOlS: SCIIEMA nt's AND EXTRAcnON DURING YOUR FIRST WEEK 22

A

B

CIN

-

5.

., ...

Cout ~
4BitAdder • SUM -

id 4- "Adder4TestVecs.tioga"
out+- "440"

in+- "40"

log 4- FALSE

Oracle /\.

- 51

Figure It: Using the Oracle to provide test vectors to Rosemary.

Now create a file of test vectors. Test vectors are written in hex. There's a column
for each input and output. Inputs and ouputs are separated by a vertical bar. A
period at the end of the test file will cause the test vectors to be run 1 time. Without
a period, the simulation will cycle through the test vectors repeatedly. Here are 2
sample entries for a test file:

A B CIN/SUM Coat

880}01

230150

6. Add an instance satellite to the Oracle that assigns the name of the file containing
test vectors to id. Add 2 more instance satellites for in and out. The thicker stub that
distinguishes the bottom connection on the composer indicates that it is the Oth wire
of a wire sequence. Out is described by the string. "440" because A and Bare 4-bit
busses and CIN is an atomic wire. The statement. "in ~ .. 40 means that Sum is a
4-bit bus and Cout is an atomic wire. If you want to understand why atomic wires
have a size of 0 (not I), see Section 3.0 of
[DA Tools]<DA Tools7 .0)Core)CoreDescription.tioga.

7. Make this schematic into a cell. Call it 4BitAdderTest.sch. Select Sisyph Extract
and Rosemary from the OSpace menu to get the Rosemary test viewers. Start the
test. If the test compretes successfully. a debugger will appear with the
RosemaryImpl.Stop signal showing the message. "Oracle completed successfully." If
there is a disagreement between the test vectors and the Rosemary simulation, a
debugger will state the disagreement and the test vector file will be opened with the
selection positioned at the offending vector.

6.3 Rosemary: ~aming Conventions for Wires

The precise syntax for wire names is quite complex. It is described in the Theory section of
[DA Toolsl<DA Tools7 .O>Core>CoreFlat.mesa. This section gives a general overview of the naming
syntax.

CEDAR 7.0 FOR I,-<TER\Al.\EROX l.JSEONl Y

?

?

?
~

AN INTROOUCnON TOTHE DATOOL.o;;: SCHEMATICS AND EXTRACTION DURING YOUR FIRST WEEK 23

Here is the name of an atomic wire in th~ oneBitAdder that is referenced by the
4BitAdderTest.sch. ", ..

• 12(fourBitAdderLayout)/O(fourBitAdder)/O(oneBitAdder)*l.[ll].

The use of slashes in this name is analogous to the use of slashes in filenames. with each additional
,slash describing the next lower level in the CellType hierarchy. Each level of the CellType
hierarchy may be described by either the name of the CellType or a number indicating its instance
number. or both. For example. typing a c in the Rosemary Script viewer describes the default (top
level) CellType which is the 4BitAdderTest.sch. The 4BitAdderTest has 4 CellInstances:

CelJ(nstance: ClockGen
Actual wire: Clock: [3](2428550t): Rosemary LogicTime:

Rosemary LogicTime:
Celllnstance : Oracle

Actual wire: CK: [3](2428550t): In: In: Out: Out:
CelJ(nstance: fourBitAdderLayout

Actual wire: Vdd: Vdd: CIN: Out.CIN: SUM: In.SUM: B: Out.B: A:
OulA: Cout: [n.Cout: Gnd: Gnd:

And. typing either tic II" or tic IOrade" or "c/l(Oracle)"wili produce the core structural
description of the Orade which is one of the CellInstances that makes up the 4BitAdderTest.sch.

A wire path is terminated by a period. and the number or name of the wire is given. For example:
12(fourBitAdderLayout)/O(fourBitAdder)/O(oneBitAdder)*1.Sum.

Although the description of the syntax in CoreFlat.mesa says that wire numbers must appear in
brackets. this is incorrect; wire numbers may be unbracketed.

7.0 Sisyph Extract and Thyme

Thyme. SPICE (Simulation Program Integrated Circuit Emphasis) and Mint are tools for verifying
the timing of integrated circuits. Thyme. written in CSL. and SPICE. developed at UC Berkeley.
are quite similar. Both use a highly detailed electrical model: as a result. they can only handle a
small number of transistors in a reasonable amount of time. For example. SPICE handles 4 to 10
transistors well. and becomes impossible with over 100 transistors (an hour to simulate for 1
nanosecond). .

In contrast to Thyme and SPICE. Mint has a simplified electrical model that includes only
transistors and capacitors. It was developed to provide fast verification of logic and timing features
and can handle a fairly large number of transistors (10.000) in a reasonable amount of time. If a
chip is constructed entirely of standard cells. Mint simulations should be adequate. (It is saf~ to
assume that the standard cells have been simulated by Thyme.)

7.1 Thyme: Simulating the OneBitAdder Using Icons from the Electrical Core Classes

Thyme and Mint simulations are performed by drawing a schematic and then adding a Control
Panel and icons to represent circuit components. probes. and signal generators. The original
schematic. the added electrical icons. and control panel are encapsulated in a new cell for the
simulation.

To simulate the oneBitAdder using Thyme. do the following:

1. Make a copy of the oneBitAdder.

CEDAR :.0 - FOR '''TER''AL XEROX l'SE ONLY

\"""-. .-/

(

(

AN IN rRODUCTION ro !lIE DAT<X)LS: SCHEMATICS AND EX TRACTION DURING YOUR FIRST WEEK 24

2. Using Figure 12 as a model. extend the lengths of the public wires. A. B. C. Cout and
Sum. '. " ,

3. Read in the electrical icons by executing. cd read ee.dale in the appropriate Command
Tool. (For a complete explanation of the electrical icons. see.
[DA Tools]<DATools7.0)ElectricaICoreClasses)ElectricaICoreClassesDoc.tioga.)

4. Designate ee.dale as the design for imports: X-Z-Left.

5. Import the Voltage. Pulse, RectWave and VProbe icons.

A. The Voltage signal generator provides a source of DC voltage. Its units are
Volts. and its default value is 5.0. Demonstrate this to yourself by selecting it and
listing its object expressions (LO-Left). Attach voltage.icon to the A wire.

B. The Pulse signal generator creates a signal pulse on the wire to which it is
attached. Attach pulse.icon to the B wire. The pulse's object expressions include
variables for onLeveL offleveL period. width, tRise. tFall. tDelay. Change tDelay
from the default of 10 nanoseconds to 15 nanoseconds by adding an instance satellite
to the selected pulse.icon (I-Middle). Change the font size of this expression by
selecting the font entryin the control panel and selecting Helvetica82/8. Then. with
tDelay ""15 selected, typeCTRL-F. (Fstands for font.)_

C. The RectWave signal generator provides a periodic rectangular wave. Attach
it to the C wire. Note that RectWave signal generator has the same variables to
control its shape as the Pulse signal generator. Change tRise to 8 nanoseconds and
tFall to 3. Now change the default font back to Helvetica8 4/8.

D. The VProbe is a one terminal device whose active terminal is attached to the
node whose voltage is to be plotted. To have the simulation plot all public wires,
attach a VProbe to each of them.

-
6. Now import the Control Panel and position it below the schematic. Note that the panel

has three columns. The first column states the parameters for the simulation. The
second gives default values for the simulation. And, the third provides a space to
override the defaults. You may want to override tMax +- 100.0 because a 100 ns
simulation of this adder will take about 45 minutes. Do this by attaching an instance
satellite to the panel. Add a simulation title. (The tStep value is for SPICE
simulations.)

7. Names propagate up the CellType hierarchy iff there is no conflict. In the example being
created, the VProbe and Voltage icons attached to the A wire create a naming
conflict, so to have the public wires named for this simulation. each must be
renamed at the higher level. Do this.

8. Create a new cell that includes the electrical icons. Call it adderTest.

9. Run the thyme simulation by executing the following commands in the appropriate
Command Tool:

A. install Thyme

B. run ElectricalCoreClasseslmpl

C. LoadStdCellsCmosB

10. Select the Sisyph Extract and Thyme entry from the OSpace menu. Two new viewers
are created:

The first. a Thyme viewer. appears in iconic form. The use of this viewer is explained in
[DATools]<DATools7.0)NewThyme)ThymeDoc.tioga: however. that
documentation is out-of-date. The important things to know are:

A. The SlOp button aborts the simulation without saving anything.

CEDAR 7.0 FOR I' rt::R'\;AL Xt::ROX. LSE O~LY

AN INTRODUCTION ToniE DA rOOlS: SCHEMATICS AND EXTRACTION DURING YOUR FIRST WEEK 25

B. The Dump button aborts th.e simulation but also saves the calculation that
has been done so far. to be used as tHe initial condition offuture simulations . • C. The details switch supplies time/step information. [1's default value is on.
It can be turned off by clicking over it. (This changes the background of the button
to White.)

D. The Echolnput switch echos the input statements that Thyme is reading.
Its default value is off. You can tum it on by clicking on it. (ThymeDoc is about
this!)

The second viewer creates a graph of the designated wires. A lot can be done with the
graph. For example. it's possible to get a file of the values used in constructing the
graph by: typing a filename. selecting the filename. and then selecting the list button.
The file will open on your black-and-white terminal. For additional information
see. [DATools]<DATools7.0)Graph>GraphDoc.tioga.

CEDAR '.0 fOR I '\I rER"AL XEROX CSE Ol\L Y

/" -

(

AN INTRODUCnON lOTUE:: DA roOlS: SCIIEMATICS AND EXTRMTION DURING YOUR FIRST WEEK 26

A

ABC

Simul~tlon ,:;t.art tune

SlmlJl~ltlon ~OD tune

Simulation step fane

Graoh Hie
Vertical JXISo Infr1 (vo'tsl

Vertical J.XIS max I \loils I

"'or1lcntal .lX'S lime ~cille

Pf)Wer Supply C:.Jrrent scale

...
B

Simulation Parameters
Detilwts

tMIl' "0.0

tMal(" '00.0

fSteo'" 3.5

title

yMln" -l.v
yMax" 6.0

tScul~" 1 :)

SCJle" ··0

C

tF<tIl" J

Cout

Sum

oneBitAdder

Figure l2: Simulating the oneBitAdder using electri<,:al icons from
[OAT ools]<DA Tools7.0>ElectricaICoreClasses>EE.dale.

CEDAR 7.0 FOR l'iTER\JAlXEROX LSEONlY

COUT

v

SlJM

v

A/'IiINTRODUL'TION TO THE DATOOLS: SCHEMATICS AND EXTRACnON DURING YOUR FIRST WEEK 27

...
9.0 I I I I I

8.0 t-

7.0 t-

6.0 t-

1.0

r--.;----- ir2'.-;r:.::t-o:::-------------..,......fl-, ~.-. -"/ ----------
I I' \' I
I " , I', I 1! I' ,

~,l If· J~I\ i
- .. , I

: J, ~d

Ii'. {\ \ 1
'i ! i ~ .~
". I .. , /1.

5.0

3.0

2~0

I
IJI ~.

0.0 \ .
./

\ '~li ~~
I :r· t \

\.\..._._._._._._._._._._._._.1 ~~-J'...'-:.....'...:..----------

\ "~

~""",,,.f'"

-

-
-

-

-

-

-

-

-
''1.\,...,

-1.0 ~----------~I----------~I~----------~I----------~I----------~----------~
I - [nS]

0.0 20.0

Voltage at COUT
Voltage at C
Voltage at B
Voltage at SUM
Voltage at A

40.0

("'''TT .. nt thrnlloh nll"'f'r""nnlv /-0 nOI

60.0 80.0

Figure 13: Thyme plot of the public wires for the one BitAdder.

8.0 Sisyph Extract and Layout

100.0

Layout procedures are stored as values in a table composed ofkey/value pairs. The key is a layout
atom. To create layout for the fourBitAdder that uses standard cells exclusively. the layout atom,
$SC (Standard Cell) must be specified as an object satellite of the design. If the layout for a
schematic is composed entirely of standard cells. the layout program generates layout by examining
the layout atom stored at the highest level in the CellType hierarchy. To be sure that the layout
atom is at the top leveL many designers add another level to the CellType hierarchy and put only
the layout atom in this highest level. Try this doing the following:

L Select the fourBitAdder.

CEDAR 7.0 - FOR I~ fER"AL XEROX LSE O'L Y

120.0

AN INTRODUnlON TO HIE OATOOLS: SCHEMA flCS AND EXTRACTION DURING YOUR FIRST WEEK 28

2. Select the create cell
fourBitAdderLayout

entry from the Cell Menu. Name the new cell
" ...

3. Call up the Satellites Menu (LSpace) and select the draw object satellites entry (0-
Middle). Answer the terminal prompt: Layout: SSe.

4. Pop out. selecting the replace option.

To generate the layout do the following: Check if Install SCworks
1. Install the Standard Cell Library by executing the command. Install SC in your

datools su bdirectory.
2. Call up the OS pace menu and select the Sisyph Extract and Layout option.

The Terminal Viewer displays messages that indicating the progress of layout generation. The
effective standard cell area including routing will be roughly 2.5 to 3 times the area of the
individual standard cells in the design. The completed layout will appear in a new ChipNDale
Viewer. To find out more about generation of layout see,
[DATools]<DATools7.0>Top>PWCore.df which lists all the files that are involved in the
generation of layout.

8.1 Layout: For Custom Designs

Custom designs are designs that combine standard cell layout with other methods for generating
layout. When specifying layout for custom designs. each area of the schematic must include its
own layout atom. Here is a simple example:

Layout: $SC

RAM

Layout: $Get

RAM

Layout: $Get

RAM

Layout: $Get

Layout: $Abut

Layout: $CR

Figure 14: Specification oflayout atoms for a cell that uses multiple layout procedures.

Here are definitions for the layout atoms used in this example:
SGet

The $Get layout atom is used whenever the layout procedure for a cell is explicitly
specified. This means that $Get is the correct atom for use in the Logic Library itself
and for custom layout.

CEDAI{ 7.0 FOR INTERNAL XERO.\ L;SE O:\jL Y

AN INTROOUCTIONTOTHEDAIOOlS: SCHEMATICS AND EXTRACnON DURING YOUR·FfRSrwEEK 29

SAbut

$CR

$SC

. "

TlJ(r$AbUt'1ayoufatOrn is used when- subblocks of the circuit are to be concatenated.
'The . layout procedure. PWCore. is smart enough to figure out whether the
'concatenation should be in the x or y direction. At the present time, diagonal
. concatenation, as indicated in Figure 15. is not possible.

D

Figure 15: Diagonal concatenation of blocks, This configuration is NOT currently
supported by PWCore.

The Channellayoutprocedure connects exactly two subcells by either a horizontal or
a.vertical channel.

This is the 'I~you;t atOO1 ~sedf~r standard cells. This atom should only be 'stored one
time for a given design. at the highest level of the CeliType hierarchy.

To find out more about~ifying "Iayout for schematics see,
lOA Tools]<OA T 00ls7 .0> PWCore:>PWCore Doc. tioga.

9.0 Condusion

This document has provided an introduction to the OA Tools. At this point. the paths of those who
write design automation tools and those who use these tools diverge.

Tool writers might want to take a look elt
[DATools]<OA TooIs7 .O>OA User>ExampleCedarProgram.Mesa and
[DAToOls]<OATools7.0>OAUser>ExampleCedarProgramimpI.Mesa. This is a simple CEDAR
program that uses a number of the impor~nt interfaces from the OATools world. It adds a·final
~ntry to the OSpace menu which reads "Sisyph -> Example." When this entry is selected. Sisyph
writes the results of the extraction, that is the core data structure. to a file,

Designers are ready to begin worldngon a real circuit. You win undoubtedly run into problems.
When you do, start by referring to the documentation. From there. ask for help. Unfortnately.
most detailed information resid~sin a few experts heads and is not available 011 paper.

CEDAR 7.0 ... FOR INTER:'I.AL .xEROX LSE OI\iLY

