
(

CEDAR LANGUAGE OVERVIEW

OverviewDoc.tioga
Last Edited by Horning on June 1, 19836:48 pm
Last Edited by Donahue on May 1, 19843: 28: 36 pm PDT
Last Edited by: 5ubhana, May 29,198412:02:07 pm PDT
Last Edited by: John Larson, June 20,19863:05:28 pm PDT

CEDAR LANGUAGE OVERVIEW

Cedar Language Overview

Version 5.2

Release as [Indigo] < Cedar5.2 > Documentation >OverviewDoc.tioga, .press
Came from [Indigo] < CedarDocs > Manual> Overview tioga, .press

C Copyright 1984 Xerox Corporatioll All rights reserved

Abstract: This Overview is intended to introduce you to the basic vocabulary and
concepts that you need before plunging mto sources of more detailed information about the
Cedar Language It assumes that you have already read the Briefing Blurb and the
Introduction to Cedar. If you haven't, read them first and return. It starts with a brief
review of the common concepts that Cedar shares with other members of the Pascal family,
then gives a somewhat less hasty tour of the more novel features of Mesa, followed by a
discussion of the additional changes that produced Cedar Finally, there is a guide to
sources of further information

Version 5.2 of the Cedar language documentation corresponds to Release 5.2 of the Cedar
system. It is intended to supersede all descriptions prior to June 1984. Previous documents
may be read for historical interest, but are believed only at the reader's peril.

[If you are reading this document on - line, I suggest that you use the Tioga Levels
and Lines menus to initially browse the top few levels of its structure before
reading it straight through]

XEROX Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

For Internal Xerox Use Only

(

(

CEDAR LANGUAGE: OVERVIEW

Cedar Language Overview: Contents

Introduction

Review of the Pascal - like features

Data and types

Statements

From Pascal to Mesa

Modules

Exceptions

Processes, monitors, and condition variables

Control constructs

Miscellaneous

From Mesa to Cedar

Garbage collection, collectible storage, and REFS

Safety

Delayed binding

Miscellaneous

Converting Mesa Programs to Cedar

Simple Programs

New language features

Restrictions of the safe language

For More Information.

CEDAR 52 I FOR INTERNAL XEROX USE ONLY

2

(

CEDAR LANGUAGE OVERVIEW

Introduction

The programming language of the Cedar Programming Environment (hereafter, Cedar
Language, or just Cedar) has resulted from an evolutionary process in PARC and SDD that
spanned morethan a decade. Understandingwhatthe language is,andwhyitisthatway, maybe
somewhat easier with a little historical background:

Mesa is a system implementation language inthe "Pascal family," with extensive facilities
for modularization and separate compilation, processes and monitors, exceptional- condition
handling, and control of low -level hardware functions It was initially designed and
implemented in the PARC Computer Science Laboratory, primarily by Butler Lampson,
Chuck Geschke, Jim Mitchell, Ed Satterthwaite, and Dick Sweet. Subsequently, the OSD
System Development Department assumed responsibility for development and
maintenance. It has gone through a series of releases.

When CSL launched the Cedar Project in 1979, it chose to use the Mesa language and
system asa starting point (Mesa 6,7, and 8 are its closest relatives) However, Mesadid not
have a few of the features that seemed to be important for an experimental programming
envi ronment, so some extensions and changes were designed. The major changes resulted
from adding automatic storage deallocation (garbage collection) and facilities for delaying

3

the bindi ng of type information, without sacrificing complete type - checking in either case.

This Overview is intended to introduce a competent programmertothe basic vocabulary and
concepts that are needed before plunging into sources of more detailed information about the
Cedar Language. It assumes that you know some other language in the Pascal family. It also
assumes that you have already read the Briefing Blurbandthe Introduction to Cedar. If you haven't,
read them first and return.

This Overview starts with a brief review of the common concepts that Cedarshares with other
members ofthe Pascal family, then gives a somewhat less hasty tour ofthe more novel features of
Mesa, followed by a discussion of the additional changes that produced Cedar. It ends with a
survey of sources for further information

This Overview does not provide the detail you need to actually write Cedar programs. (In
particular, the reference grammar is included but not discussed.) But when you finish reading it,
you should have a fair acquaintance with Cedar terminology and concepts, and you should havea
good idea of what you need to learn. Differentthings are discussed in varying depth; generally the
long discussions cover things that you should plan to study carefully.

Cedar documentation is still evolving. Comments and suggestions on how it can be made
more useful are welcome at any time. Although we plan a systematic attempt to assess the
effectiveness ofthe various kindsand pieces of documentation, you should not wait until asked to
let us know what you think about it

Vari ous proposals and descri pti ons of interi m i mplementatl ons from September 1979 onward
have been given labels such as 5C1, 5C2, 6C2, 6C5, 7T11, and Version 3. Version 5.2 ofthe Cedar
language documentation corresponds to Release 5.2 oftheCedarsystem It is intended tosupersede
all descriptions priorto June 1984 Previous documents may be read for historical interest, but are
believed only at the reader's peril. This Overview has been compiled by Jim Horning and Jim
Donahue; errors and sources of confusion should be reported to Jim Donahue. Most of the
contents have been abstracted from previous documents, with a small amount of editing and
validity checking.

CEDAR 52 I FOR I~JTER~JAI. XEROX USE ONl.Y

(

(

CEDAR LANGUAGE OVERVIEW

Review of the Pascal - like features

The following summarizes aspects of Cedar (and Mesa) that are basically similarto those of
other members ofthe "Pascal family" of languages (eg., Euclid, Modula, Ada) If there are any
concepts in this section that are not already familiar to you, you should probably find a Pascal
textbook and study it before proceeding to further material onCedar (You will findthatthe names
for these concepts vary somewhat from language to language)

An algorithm or computer program consists oftwo essential parts, a descriptionof actionsthat
are to be performed, and a desCflption ofthe data that are manipulated by these actions. Actions
are described by statements, and data are described by type definitions

Data and types

Data are represented by values. Values are immutable; they are not changed bycomputation.
A constant always denotes the same value within a scope. A variable is a value that may contain
another value; assignment changes the value contained by a variable, butnotthe valuethat)2 the
variable.

A val ue used ina program may be represented by a I iteral constant, the name of a constant or
variable, or by an expression, which will itself contai n other values. Every name occurring in the
program must be introduced by a declaration. A declaration associates with a name both a data
type and a constant value (which may itself be a variable, and contain different values at different
times)

A data type defi nes both a setofvaluesand the actions that may be performed on elementsof
that set. It may either be directly desCflbed in a declaration that uses it, or it may be referenced bya
type name, introduced ina type declaration. The type of every constant, variable, and expression
can be deduced from static analysis. This analysis is performed by the compiler to ensure that all
programs are type - correct; thus the language is said to be strongly typed.

An enumerated type definition indicates an ordered set of values, i.e., introduces names
standing for each value in the set. The simpletypesaretheenumeratedtypes, thesubrangetypes,
and the built - in types, including Baal, INT, REAL, and CHAR. There are standard denotations for
literal constantsofthe built - in types: TRUE and FAlsEfor Baal, numbers for INT and itssubranges
and for REAL, quotations for CHAR. Numbers and quotations are syntactically distinct from
nameslas are the" reserved words" of the language. The set of val ues of type CHAR is an 8 - bit
variant of the ASCII character codes.

A type may be defined as a subrange of a simple type by indicating the smallest and largest
value of the subrange

Structured types are defined by describi ng the types of thei r components, and indicating a
structuring method: ARRAY or RECORD. These differ in the mechanism for selecting a component
of a value.

In an array structure, all components are of the same type A component is selected by a
computable selector, or index The index type, which must besimple, is indicated in the array type
definition. It is usually a programmer - defined enumerated type, or a subrange of INT. Given a

4

value of the index type, an array selector yields a value of the component type. Every array
structure value can therefore be regarded as a mapping of the index type into the component type.

In a record structure, the components (called fields) are not necessarily ofthe same type. In
order that the type of a selected component be evident from the program text (without executi ng

CEDAR 5.2 I FOR INTERNAL XEROX USE ONLY

(

CWAR LANGUAGE OVERVIEW

the program), a record selector is not a computable value, but must instead be a name uniquely
denoting the component to be selected.

A record type may be specified as consisting of several van ants. This allows different record
values ofthe same type to have structures that differ in the number of components, theirtypes, or
their names. The variant describi ng a particular value is indicated bya special field, called its tag
Variants of a type may also share fields in addition to the tag.

An explicit variable declaration associates a name and a static variable; the name is used to
denote the variable in expressions. Dynamic variables are generated bya special procedure(NEw)
that yields a pointer or reference value that subsequently serves in place of a name to refertothe
variable. Finite graphs in their full generality may be represented using pointers or references.

Statements

The si mpl est statement is the assignment statement. It specifies that a newly computed value
be assigned to a variable (or a component of a variable) The val ue is obtained by evaluating an
expression Expressions consist of variables, constants, operators, and procedure values operati ng
on argu ments to prod uce new val ues. Constants are literal or declared; variables and procedures
are built - in ordeclared; the set of operators is defined within the language, and includesoperators
for arithmetic, comparison, and logical operations.

The procedure statement causes the application (invocation, call) of a designated procedure
value to the values of its arguments (actual parameters)

Basic statements are the components of structured statements, which specify sequential,
selective, or repeated execution of their components. Sequential execution of a sequence of
statements isspecified byseparatingthem by semicolons; conditional orselective execution by the
if statement and the select statement; and repeated execution by loop statements.

A block can be used to associate declarations with statements. The names so declared have
significance only within the block Hence, the block is the scope ofthese names, and they are said
to be local to the block. Since a block may appear as a statement, scopes may be nested.

A block can be the body of a procedure value. A procedure hasa fixed number of parameters,
each of which is denoted within the procedure by a name called the formal parameter. Actual
argument values are supplied for parameters at each application.

Procedures may also have results; applications of such procedures may appear within
expressions.

From Pascal to Mesa

Mesa extended Pascal in a number of directions Intended to make it more effective forthe
development of large systems. Students of programming languages will discern influences from
Algol 68, BCPL, and several other system implementation languages.ltisa larger language, and is
rather more difficult to master in its entirety, than Pascal. It is intended for professional
programmers, not for beginning students.

Mesa modules are separately compiled program units, with type - checking preserved across
mod u I e bou ndari es. Mesa provi des mechanisms for systematic handl i ng of exceptions, processes
and monitors, proceduresas first - class valuesthatcan be assigned to variables, and afairnumberof

CEDAR S 2. I FOR INTERNAL XEROX USE ONLY

5

CEDAR LANGUAGE OVERVIEW

syntactic and semantic amenities intended to make programming more convenient.

The followi ng sections introduce each of the major conceptual extensions, but do not explai n
them in great depth. See [Geschke, et al.l for a more extensive rationale, and CSL - 79 - 3 forfull
details.

Modules

Mesa modules are a "programming in the large" mechanism for partitioning a system into
manageable units. Theycan be used toencapsulate abstractions, toprovide a degree of protection,
and to enforce "information hiding." They are also the units of separate compilation.

There are two kinds of modules: DEFINITIONS modules, which define interfaces, and
PROGRAM modules, which contain the executable code to implement these interfaces.

Definitions (or defs) modules define interfaces to abstractions. They typically declare some
shared types, useful constants, and the domains and ranges of a set of procedure names. They
compile into symbol tables, which are shared by both clients and implementations. Checks are
performed when modulesare bound into a configuration to ensure that separately compiled pieces
have used consistent versi ons of the shared defi nitions. Interfaces produce no executable code;
they manifest themselves at runti me pri marily as symbol tables that are accessible for debugging
and similar purposes.

Program modules provide implementations of abstractions. Theytypically declare collections
of variables thatdefinetheirstate and provide bodies forthe proceduresoftheirinterfaces. Viewed
as source text, they are similar to Pascal procedures and Simula class definitions. They can be
loaded and interconnected to form complete systems.

At runtime, one or more instancesof an implementation may be created. A separate global
frame (activation record) is allocated for each, containing storage for its global variables (those
which are declared outside its procedures), which persist between applications of its procedures.
The lifetimes of implementation instances (unlike those of procedure applications) are not
restricted tofollow any particular discipline. Communication paths among implementations are
establ ished dynamically and are not constrai ned by any (static or dynamic) nesting relationships;
I ifeti mes and access paths are completelydecoupled. The module body itself generally contains the
code to initialize the global variables and establish any necessary invariants. It will be executed
when the module is started, or upon application of one ofthe module's procuedures, whichever
comes fi rst.

A module that accesses (relies on declarations from) other modules must include DIRECTORY
statements, so the necessary symbol tables can be acquired. If it uses only a subset of the
declarations, it is good practice to indicate which ones with a USING list. Declarations in an
interface are public unless declared to be PRIVATE. Normally the importing module accesses only
the public names; private declarations may be accessed by implementing modules that indicate
they SHARE the interface. Adirectory statement may listthe name of a file containingthesymbol
tableto be used, but ifthe file name is the same as the module name (exceptforthe extension .bcd)
it is omitted

A module that uses non - constant declarations (e.g., exported types and procedures) from
another module mustexplicitly import it. If a module implements any partof an interface (e.g., by
supplying the value of a procedure or type that it declares), it must explicitly export it The
compiler will check that its PUBLIC declarations are type - consistent with the corresponding
declarations in the exported interface(s)

CEDAR 52. FOR INTERNAL XEROX USE ONLY

6

(

(

CEDAR LANGUAGE OVERVIEW

Each module is effectively parameterIZed by a set of interface records, oneforeach interface it
imports, and supplies a set of export records, oneforeach interface it exports. Notethat interfaces
and implementations need not be in one - to - one correspondence Binding a group of modules
together into a configuration involves assigning values from the export records to the
correspondi ng fields in the interface records There is a special sublanguage, GMesa, to control
this process.

Accessing other modules introduces compilation order dependencies. Each module must be
compiled after the modules it accesses (and recompiled ifthey change), since the compiler needs
their symbol tables But information does not flow in the other direction. Modules that are not
accessed by others (virtually all implementations) may be freely recompiled without invalidating
previous compilation and checking of any other modules

Types, as well as procedures, can be declared opaquely in interfaces and subsequently bound
to concrete values supplied by Implementations This makes the internal structure of the type
invisible to clients of the interface, and ensures that there can be no compilation dependencies
between the defi nition of the concrete type and the interface module. The definition of the type
can be changed at anytime without requi ring recompilation ofthe interface or any clientsofthe
interface.

Effective use of Mesa requires a thorough understanding of modulesandtheir use They have
significantly influenced our program design and construction techniques.

Programs are almost never self - contained modules; the importation and re - use of eXisting
code has all the advantages of theft over honest toillwithout the moral stigma. Considerable
emphasis is laid on the careful design of interfaces, and on their documentation. Since it is only
interface changes that force recompi lation (or perhaps even rewriting) of client programs, it is
important that interfaces remain stable for substantial periods, even while their implementations
are undergoing change

A recommended approach is to define, comment, and circulateforreview, all ofthe interfaces
in a (sub)system before writi ng any ofthe implementations. Interfaces play muchthesame roleas
"program design languages" in other environments, with the additional advantages of being
precisely defined and mechanically enforced

The Mesa language definition omits many of the features commonly expected in
programming languages, such as input/output and string - manipulation operations. Of course,
these faci I ities are avai lable to Mesa program mers, but they are provided by packages written in
the language itself. The descriptions of standard packages in the Mesa Programmer's Manual,
Version 8.0, run to more than 300 pages.

When managing large collections of modules (and in systems like the Mesa Development
Envi ronment and Cedar they run into the thousands), module names become very important. The
use of cryptic or acronymic names is discouraged By convention, source file names have the
extension .mesa, and object file names have the extensionbcd (for Binary Configuration
Description) The definitions module for an interface X is customarily named X; if it is
implemented by a single program module, that is customarily named Xlmpl.

Exceptions

Mesa provides a way to indicate when exceptional conditions arise inthecourse of execution
and an orderly means for dealing with them that is inexpensive ifthey do not arise Exceptions
cause a transfer of control from the statement that raises them to adynamically - selected part of the
program intended to handle the situation. They may be raised in response to the detection of

CEDAR 52 I FOR INTERNAL XEROX USE ONLY

7

(

(

(

CEDAR LANGUAGE OVERVIEW

"i m possi bl e" situations, i nval id inputs, the i nabi lity of an abstraction tosupply its specified service,
or simply unusual events.

Mesa exceptions are conceptuallysimilarto procedures, exceptthatthe bindingtothehandler
isdetermined by searching the catch phrases inthe call stack ofthe process in which the exception
is raised; the dynamically innermost handler that accepts the condition is applied. Like normal
procedures, handlers can take parameters and return values They are written in a distinctive
syntax that clearly identifies them as code for the exceptional case.

Catch phrases are syntactically and semantically si milarto SELECT statements, with test items
indicatl ng the exceptions forwhich the associated handler should beapplied Therearespecial test
items to catch arbitrary exceptions and to catch an attempt to unwind the application stack in
response to an exception. A series of catch phrases may be associated with a procedure application,
or enabled throughout a block.

A handler is I ike a procedure body, but when it completes, there are a number of additional
control options: GOTO, EXIT, LOOP, RETRY, CONTINUE, REJECT, and RESUME. Resumption is
analogous to returning from a procedure, possibly with a result. Exceptions are divided into
SIGNALS, which may be resumed, and ERRORS, which may not; in common parlance they are
generally all called signals

si nce handlers may take parameters and return results, each exception name must bedeclared

8

in a scope that includes all the points where it is raised as well as all the catch phrases that accept it

The cost of raisi ng an exception is significantly higher than the cost of procedure application,
but it should n' t happen very often The system guarantees that all exceptions are handled at some
level; those that the program fai Is to catch are accepted by the debugger, keepi ng i ntactthe state of
the program that raised it.

Exceptions can be used In very intricate ways toachievesubtle effects(e.g., byraising another
exception within a handler) Experience hasshownthatthisisalmostalwaysa mistake. Some call it
elegance, others call it incomprehensible:

"Forthe programmer, the main import of nested signals is that one needs to consider, when
writing a routine, not only what signals can be generated, directly or indirectly, bythecalled
proced u res, but a I so those whi ch can be generated by catch phrases in that procedure or even
the catch phrases of any calling procedures, also both directly and indirectly" [Mesa
Language Manual]

Although his language proposals have not been implemented, The discussion in the working
paper [Indigo] < Cedar5.2 > Documentation >signallingGuidelines.press isthe bestsourceofguidance
on tasteful and appropri ate uses of exceptions The most important point is that the exceptions a
procedure may raise must be considered part of its interface, and documented as such.
Unfortu nately, the com pi ler currently doesn't enforce this, and many otherwise excellent interfaces
do not comply

Processes, monitors, and condition variables

Mesa provides efficient mechanisms for concurrent execution of multiple processes within a
single system. This makes it natural to structure programs to reflect their inherent concurrency.
Mesa also provides facilities for mutuallyexclusiveaccessto resources and process synchronization
by means of entry to monitors and waiting on condition variables

FORK makes it possible to start the execution of another procedure concurrently with the
program that applies it. It returns a process, which may either be detached to proceed

CEDA.R 5 ;:> I FOR INTERNAL XEROX USE ONLY

(

(.

CEDAR LANGUAGE OVERVIEW

independently, or saved for a future JOIN. There is no rule against multiple coexisting instances of
a procedure, eitherforked or applied, although care must betaken to ensure mutual exclusion on
accesses to shared global data.

JOINtakesa single process argument. When the forked procedure has executed aRETURN and
the JOIN has been executed (in either order), the returning process is deleted, and the joining
process receives its results and continues execution. A process type is declared similarly to a
procedure type, except that only the type of the result is specified.

All processes execute in the same address space. This means that they are not protected from
each other, which is presumably acceptable in a single - user system. It also means that process
creation and switching between processes is cheap (not much more time - consuming than a
procedure call).

Generall y, two or more cooperati ng processes need to interact in more complicated ways than
simply forking and joining. The interprocess synchronization mechanism provided in Mesa is a
variant of "monitors" adapted from the work of Hoare, Brinch Hansen, and Dijkstra. The
underlying view is that interaction among processes is always based on access to shared resources
(e.g., data) and that a proper vehicle for this interaction mustunifythesynchronization, the shared
data, and the procedures that perform the accesses.

A monitor is typically a module instance, with shared data in its global frame, and its own
procedures for accessing them. Some of the procedures are public, allowing applications of
monitor procedures from outside. Obviously, conflicts could arise if two processes were executing
inthesame monitor at the same time. To preventthis, a monitor lock isused for mutual exclusion.
Application of one of a monitor's ENTRY procedures automatically acquires its lock (waiting if
necessary), and a return releases it. An integrity constraintthatthe programmer imposeson the
monitor's data is called a monitor invariant. The lock makes it possible for the programmer to
ensure that this invariant will betrue whenever an entry procedure beginsexecutionlregardlessof
what is happening in various processes1simply by making sure that it is true initially and that
every entry procedure restores it before returning

Of course, a process may enter the monitor and find that the monitor data is ina good state
but indicates that the process may not proceed until some other process enters the monitor and
changes the situation. ThewAIT operation allows a processto releasethemonitor lock temporarily
(and suspend execution)withoutreturning. Thewaitis performed ona condition variable, which is
associated by agreement with the actual condition needed. After making a change that may have
changed the condition, some other process must perform a BROADCAST or NOTIFY onthe condition
variable; this allows a waiting process to reacquire the lock, retest the condition, and resume
execution if it is true. Note that since a wait releases the lock, the monitor invariants must be
restored before waiting.

The procedures of a monitor are classified as entry, internal, and external. Internal procedures
may only be applied by entry or internal procedures ofthe same monitor, sincethey are intended
to be executed within the monitor's mutual exclusion, but do not acquire the monitor lock.
External proceduresare logically outside the monitor, butare declared withinthesame module for
reasons of logical packagi ng. Being outside, they must not reference any monitor data nor apply
any internal procedu res; they are often used to provide a convenient interface that" hides" one or
more applications of entry procedures.

The attributes ENTRY and INTERNAL are associated with a procedure's body, not with its type;
thus they do not appear in interfaces. From the client side of an interface, a monitor appears like
any other module

CEDAR 52 I FOR INTERNAL XEROX USE ONLY

9

(

CEDAR LANGUAGE OVERVIEW

In simple cases, a monitor's data comprises its global variables, protected by an implicit lock
that is automatically allocated in its global frame. However, many applications deal with multiple
objects, represented, say, as records accessed through pointers. It may be necessary to ensure that
operations on these objects are atomic, i.e., once the operation has begun, the object will not be
otherwise referenced until the operation is finished. It is possibletoassociatea lock withtheobject,
rather than with the module's global frame, by declaring the data as a MONITORED RECORD. A
single module instance can then implement each operationasanentry procedure, taking the object
as a parameter. Locking is specified in the module heading by a LOCKS clause.

A somewhat subtle source of dead locks occurs if controlleavesan entry procedure by means
of an uncaught exception. Unless it is certain that all exceptions(including those raised by invoked
procedures) are handled, each entry procedure should includean UNWIND catch phrase, whichwill
implicitly release the monitor lock

Control constructs

Mesa's facilities for ordinary sequential" programming inthesmall" are extensive, but fairly
conventional. The syntax is not exactly I ike that of any other language, but forthe most part itcan
be picked up easily with a few minutes study ofthegrammar. (In fact, since most program text is
produced either by editing existing programs or by the useofthe Tioga editortoexpand syntactic
templates, you may be able to just "fake it. ") Thissection mentions a number of areas where Mesa
provides "convenience" extensions or conceptually small changes.

SELECT statements general i ze Pascal's" case" construct by allowi ng several ways to specify
how one statement is to be chosen for execution from an ordered I ist. The most common form is
based on the relation between the value of a given expression and those of expressions associated
with each selectable statement. The relation may be equality (the default), any relational operator
appropriate to the types ofthe values involved, or containment in a subrange. A single selection
may be prefixed byseveral selectors, and an optional ENDCASE statementisselectedonlyifnone of
the others are. Discriminating selection is used to branch onthetypeof avariantrecord value(and
in Cedar, on the current type referred to by a REF ANY). SELECT expressions are analogous. but
choose from an ordered list of expressions.

Iteration is provided by loop statements in which several different kinds of control can be
freely intermixed. A loop has a control clause and a body. The control clause may specify a logical
condition for normal termination, possibly combined with a range or a sequence of assignments for
a controlled variable. In addition to ordinary statements, the body may contain EXIT or GOTO
statements to explicitly terminate its execution, and may be followed bya REPEAT clause that acts
like a selection on the GOTO used to terminate the loop. (GOTO cannot be used to synthesize
arbitrary control structures. It is much more like a "local" exception.)

In Pascal, procedure execution must proceed somehow to the end of the body before
terminating; in Mesa, it can be terminated anywhere by executing a RETURN statement. If the
procedure's type includes results, the return statement may supply the values to be
returnedlotherwise they are taken from the result variables named inthe type. Each procedure
body is followed by an implicit return.

Pascal procedures are not values that may be assigned to variables; Mesa procedures are. In
most cases, the programmer sti II thi nks of a constant association between a procedure name and its
body, but to tru I y understand wha tis goi ng on when i nterf ace records are bou nd, it helps to real ize
that procedure values from the export records are being assigned to appropriate fields ofthe
interface records. This same power is available to the Mesa programmer; one popular form of
"object - oriented programming" is based on the creation of an explicit record of procedures for

CEDAR 5.2 I FOR INTERNAL XEROX USE ONL Y

10

(

ClOAR LANGUAGE OVEKVIEVV

each kind of object, and passi ng around together a pai r of pointers, one to the procedure record,
and another to the object instance data.

INLINE procedure constants may be declared in interfaces or locally This is an instruction to
the compilerto expand the procedure body inlineforeachapplication, ratherthancompiling acall
to out - of - line code. It is intended to improve the speed without changing the semantics of the
procedure1inlines are not macros. INLINE should be considered a form of tight binding best
reserved for late stages of system tuni ng; among other things, it can cause the compilerto run out
of resources, even when compiling what appear to be small modules.

In addition to proceduresand exceptions, Mesa hasathird mechanism for transfer of control,
called a PORT. When used in pairs, ports can provide a very general form of coroutine
implementation In some circumstances, coroutlnes have advantagessimilarto processes, atslightly
lower cost, but they are not used much in Mesa or Cedar

CED:;P 5 2 I FOR INTERNAL XEROX USE ONLY

11

(

CEDAR LMJGUAGE O'JERVIEW

Miscellaneous

Everyexpression ina Mesa program has a syntactic type that can bededuced from its structure
by static analysIs ofthe program text, a process called type determination The language imposes
constraints on the type of each expression according to the context in which it is used, even in
separately compiled modules

The syntactic type of a name is established by declaration

The form of a literal Implies its type.

12

Each operator produces a result with a type that is a function of the types of the operands

The type rules in Mesa take two general forms:

The type required by the context is known exactly, and agivenexpression musthave it The
requi red type is called the target type Examples occur in assignment, initialization,
record construction, array construction, argument list construction, and array
subscripting Several coercions (e.g, pointer dereferencing, base/subrange
conversion, single - component record to field) will beapplied if needed toconverta
val ue whose syntacti c type is not its target type to one that is.

The exact type is not i mpl i ed by context, but a relati on that must be satis fi ed by a set of
types is known. The process of finding types to satisfy that relation is called
balancing Examples include generic operators (such as relationals) that require two
operands of the same type, conditional expressions, and select expressions. The
common type selected will be the one requiring the fewest coercions

A sequence in Mesa is an i ndexable collection of items, all of which havethesametype In this
respect, a sequence resembles an array; however, the length ofthe sequence is not part of its type.
The (maximum) length of a sequence is specified when the object containing that sequence is
created, and it cannot subsequently be changed It is the responsibility ofthe programmer to keep
track of the number of items in the sequence at any time.

Mesa allows a default initial value to be associated with a type. If a type is constructed from
other types using one of Mesa's structures, such as RECORD, an implicit default value for the
constructed type is derived from the default values of the component types, but it can be
overridden with an explicit default value Default values for arguments can simplify procedure
appl ications; default fields of records make the corresponding constructors more concise and more
convenient; initial valuesare useful to ensure thatthe correspond ing storage isalwayswell - formed,
even before the variable has been used by the program.

Dynamic variables in Mesa are allocated in zones These are not necessarily associated with
fixed areas of storage; rather, they are objects characterized by procedures for allocation and
deallocation. There is a standard system zone, but programs that allocate substantial numbers of
similar dynamic variables can often improve performance by segregating each kind into its own
zone. The operator NEW is used to create a dynamic variable in a zone, and FREE to release it.

The MACHINE DEPENDENT attribute allows precise control of the representation of values at
the bit level

From Mesa to Cedar

The Cedar Language is very closely related to Mesa. The most radical change is the provision
of automatic deallocation of dynamic storage, or garbage collection. Several other changes extend

CEDAR 52 I FOR INTERNAL XEROX USE ONLY

(

(

CED,'l,R LANGUAGE OVERVIEW

the range of binding times available for such important attributes as the types of variables.

It is intended that most Cedar programs will be written in the safe subset, which imposes a
nu mber of restri ctions not present in Mesa to ensure the safe operation of the garbage collector,
and introduces some new (safe) features to make these restrictions tolerable. The full (unsafe)
language is generally "upward compatible" with Mesa.

Garbage collection, collectible storage, and REFS

13

Although Mesa poi nters are typed, they provide a rich source of opportunities for creation of
safety problems, including the classical dangling pointer problem, wherea pointer is used after the
storage it refers to has been deallocated, and the opposite storage leak problem, where storage
becomes inaccessible without being deallocated for reuse Freeing the programmer from
responsibility for deallocating storage at just the right ti me was a major goal of Cedar It addsa
new class of REF types that are just like the corresponding pointer types exceptthatthe system is
responsible for freeing the dynamic variables they refer to after they have become inaccessible

Cedar provides three types of storage:

Frame: This is storage that is Implicitly allocated by a procedure application or an
implementation instantiation to hold variables declared in the corresponding scope.
It is also implicitly deallocated, upon exit from the scope (e.g, return from the
procedure)

Collectible: This is storage that is explicitly allocated by NEW, and implicitly deallocated
after there are no more accessible REFS to it. FREE applied to a REF variable will
cause it (and REF fields in the dynamic variable it refers to) to be "NILed out," but
the dynamic variable will only be freed when no other REFS to it remain.

Heap: This is storage that is ex pi icitly allocated by NEW, and deallocated by (unsafe) FREE
statements, as in Mesa. Heap storage is referenced by pointers, which may not be
dereferenced in checked regions, and should not refer to dynamic variables
containing REFS.

The introductIOn of collectible storage has substantially revised programming style and
interface design in Cedar When the project was being contemplated, some Mesa programmers
indicated that as much as 40% of their time went into designing and checking the codeto avoid
dangling pointersand storage leaks, totracking errors in this code, and towasting time in tracking
other errors by suspecting storage deallocation problems With REFS and a reliable garbage
collector that all goes away.

Frame (static) variables are sti II less expensi ve than dynamic variables, si nce enti re frames are
allocated and freed on procedu re entry and exit (and the mechanism for doing it has been rather
carefully tu ned) However, it is entirely reasonable to use dynamic variables fordatawhose I ifeti me
is not closely connected to a particular procedure application or module instance Objects of large
or varying size are almost always passed across Interfaces by reference Definitive measurementson
the cost of garbage collection have not yet been made, but preliminary data indicates that it is
generally less than 20% Only in very special circumstances is heap storage worth the added
program complexity and potential for errors.

Safety

A desirable property of a high -level language system is implementation independence This
means that the effects of (even erroneous) programs can be understood in terms of the
language1ratherthan requiring an understanding of the particular implementation Mesa comes

CEDAr,5.2 I FOR INTERN,'l,L XEROX USE ONLY

(

Ci:DAR LANGUAGE OVERVIEW

rather close to meeting this goal (as evidenced by the factthat most Mesa debugging can bedone
"atthe Mesa level," without ever worrying about the format of frames orthe details of storage
management), but it does contain some unsafe features whose use can lead to messy
implementation dependencies.

It was desirable on general grounds to reduce implementation - dependence in Cedar.
However, the decision to incl ude facilities for garbage collection made it imperative A collector
can cause storage to be deallocated (permitting itssubsequent reallocation and re - use) attimesthat
are completely unpredictable from examination of the source program. A single programming
error that smashes a REF used by the collector can destroy data structures in ways that make it
difficult to reconstruct any evidence of the original cause of the crash.

A major goal forthe Cedar Language was thatitcontain a useful subset for which garbage
collection would be safe The safe subset of Cedar is basically that partofthe language where even
incorrect programs cannot tnterfere with the reliable operation ofthe collector. The vast majority
of Cedar programs should be written primarily (or entirely) inthesafesubset Safe Cedar does not
provide acceptably efficient substitutes for every use of Mesa's unsafe features, so Cedar provides a
means for indicating that some regions of a program are trusted. This inhibits compiler
enforcement of the safety restrICtions and indicates that the programmer has assumed the
additional responsibility of ensuring thatthese regions ofthe program do not violatethe integrity
of the system.

Invulnerability, safety, and checking

14

It is an obViously desirable propertyof a programming system that no user programming error
can "break" its abstract machine and reduce its world to a rubble of bits. We call this property
invulnerability In general, it can be ensured only by maintaining the integrity of certain data
structures known to the runtime system. Collectively, the properties that must be maintained to
ensure i nvul nerabi I ity are called the safety invariants; each part of the system is responsible for
ensuri ng that they are not destroyed, and must assume that the rest of the system does likewise

Unfortunately, invulnerability is not a local property. If any part of the system fails to
maintain the invariants, the entire system (including programs that are themselves correct) is
potentially vulnerable. We use the term safety for the property that the invariants cannot be
invalidated locally, even by incorrect programs Cedar operations, both built - in and programmer
defined, are classified as safe or unsafe. Most of the Cedar Language is safe.

Unsafe constructs Include LOOPHOLE, dereferencrng POINTERs (but REFs are safe), JOIN, @ (address of),
computed variant records, and non - copying variant discrimination

A region of program text, bracketted to form a block, may be prefixed with CHECKED,

TRUSTED, or UNCHECKED.

In checked program regions, language - enforced restrictions guarantee safety If a block is
checked, then within that block only safe operations may be used, the block itself
implements a safe operation, and procedures declared in the block are treated as
safe.

Even unchecked regions are supposed to maintain the safety invariants, but the guarantee
must be by the programmer, ratherthan the system. If a block is unchecked, unsafe
operations may be used internally, the block itself is considered to implement an
unsafe operation, and procedures declared in the block are treated as unsafe
Generally even unchecked regions can be composed primarily ofsafe operations;
unsafe operations should be used only for good reasons and with due caution.

A trusted block may also Invoke unsafe operations, but it is assumed to implement an

CED;\R 5) I FOR iNTERNAL XEROX USE ONLY

(

(

CEDAR LAr,GUAGE OVERVIEW

operation that is safe by programmer guarantee. TRUSTED isa programmer assertion
that cannot be checked by the compiler, and therefore represents a special kind of
loophole.

For easy upward compatibility from Mesa, the following defaults have been adopted: If a
module is prefixed with CEDAR, then the outermost block is CHECKED and all interfaces are
assumed to be safe; otherwise, the outermost block is UNCHECKED and all interfaces are assumed
to be unsafe The checking attribute is inherited; unless a nested block is explicitly prefixed, it is
checked or unchecked like the textually enclosing block.

If a system consists entirely of safe regions (and the Invanants hold initially)' then by
induction the system is invulnerable. However, an error inan unchecked region can make even the
checked regions vulnerable. Thus the CHECKED/UNCHECKED boundary limits responsibility, but
not vulnerability. Confidence that errors in checked regions will not cause system crashes is based
onthethe automatic enforcement of safety restrictions. Confidence that unchecked regionswill not
cause system crashes is based on trust that they are free from errors that violate the safety
invariants

Caveat: The conversion of the Cedar system to safe interfaces is presently underway. The
unsafe interfaces are beginni ng to disappear You should program assafely as you can, but do not
be surprised by the initial density of safety complai nts from the compiler A good rule istoprefix
each module with CEDAR, and then to put TRUSTED on each block about which the compiler
compl ai ns, after convinci ng you rself that the complaint is not your fault, because it results from a
necessary use of an unsafe system interface The reason for each TRUSTED should be documented
in an accompanying comment.

Type confusion

Mesa is a strongly typed language, which means thatthetypes of names are declared, and that
the language imposes restrictions to keepvaluesofone type from being accidentally interpreted as
val ues of another. Because knowl edge ofthe type structure of values in memory isso essential to
the garbage collector (it must locate and follow REFsin order to determine current storage usage),
it is particul arly vul nerableto any operations thatcausedata in memory to be interpreted ashaving
other than their true types. Thus, much of the effort in designing the safe subset went into
identifying all the features in Mesa that allowtype - checking to be circumvented (accidentally or
deliberately) and designing safe replacements for the important uses of those features.

LOOPHOLE is a "type converter" In Mesa that allows any value to be treated as having any
specified type; it is the most obvious breach oftype security It causes a safety problem only if it
allows mistyped data to be stored into memory (I.e, ifthetargettype containsan address, such asa
pointer or procedure value); other uses will introduce implementation dependencies, but not
threaten safety. Within checked regions, LOOPHOLE is not allowed to produce a value of a
reference - containing (RC) type

Narrowing and type discrimination

Cedar introduces a number of new type distinctions, frequently leading to a number of
separate, butclosely related types. It is often desirableto coerceavalueofoneofthesetypesintoa
value of a related type. Where the types are such that it can be statically guaranteed that no
information will ever be lost by the coercion, itiscalledawidening, and is performed automatically
whenever demanded by context (e g., assigning a bound variant valuetoa variant record variable)
In general, conversion in the other direction requiresaruntimecheck toensurethat information is

CED.'I.R 5 2 I FOR INTERNAL XEROX USE ONLY

15

(

CEDAR LANGUAGE OVERVIEW

not being lost To make the possibility of such failure explicit in the program text, the NARROW
type converter may be applied (and may include a catch phrase to handle the NarrowFault
exception).

The buil t - intest ISTYPE can be applied toa valuetodetermmewhetheritcan be narrowed toa
specified type without error. If so, it is said to satisfy the type's predicate.

If the target type of a narrowing is uniquely determined by context, it need not be an explicit
argument to NARROW.

Delayed binding

A desirable property of a high -level programming language is that isallow a wide range of
binding times: that is, itshould allowthe programmer maximal control overwhentheattributesof
a particular variable are determined, with di fferentchoices not requiring changes in all expressions
containing the variable. Examples of such attributes are its type, storage allocation method,
implementation (for abstract objects), and actual value; examples of binding times include
program - writing time, compilation, configuration binding, program initialization, block entry, and
statement execution. Generally speaking, deferring the binding of an attribute leads to greater
generality in the program at the cost of decreased static checkability and (often) lower runtime
efficiency.

Experience with languages like LISP and Smalltalk, in which most binding is done
dynamically, shows that it is much easier to write certain kinds of programs, if type and/or
implementation binding can be deferred Programming tools (debuggers, performance monitors)
and knowledge representation systems aretypical examples. But few programs take full advantage
of this flexibility very often. Cedar was designed totake advantage of early binding, as Mesa does,
but to allow certain bindings to be explicitly deferred.

CEDAR 5 2 I FOR INTERNAL XEROX USE ONL Y

16

(

(

(

CWAR LANGUAGE: OVERVIEW 17

Dynamic typing, REF ANY, and dynamically typed procedure variables

Mesa provides very limited variability in the binding timeof an object'stype. Variant records
allow a deferred choice between specific enumerated alternatives, and sequences allow deferri ng
the specification of an object's length until it isallocated. Otherwise, all types must be static. This
makes it virtually impossibleto avoid LOOPHoLEsand ad hoc type tagging schemes when writing
schedulers, sorters, output formatters, etc. that must operate on objects of unpredictable type.

Cedar's solution tothis problem requires two new mechanisms: a runtime representation for
types, and a way to associate a type with an objectat runtime that isguaranteed consistent with the
type system and static checking (Note that Cedar adopts the viewthatan object's type is inherent
in the object itself, rather than in the way the object is referred to.)

TYPE is a type in the Cedar Language. The "structuring methods" (e.g., ARRAY, RECORD, and
REF) are viewed as operators that take type arguments and return type values as results. In the
current language, the arguments to such operators must be static (compile - time) constants.

ANY is nota type in Cedar, but can stand in place of atype inthe argumentstotwooperators:
REF and PROC.

A REF ANY val ue may refer to a dynamic variable of any type whatsoever. Thus a REF T val ue,
for any T, can be widened to a REF ANY value. But a REF ANY value cannot be directly
dereferenced, because the type of the result is not static. The discri mi nati ng selection statement has
been generalized to allow discrimination on the referenttypeof a REF ANY; within each selectable
statement, the type is (statically) known to bethetype specified in its test item. NARROW can also
be used to safely convert a REF ANY value back to a REF T value; ISTYPE can be used to check
whether NARROW will succeed

A PROC type may also have ANY in place of the type of its formal parameter record type
and/or result record type PROC values with specific domai ns and ranges may be widened to these
dynamic types, and later tested and narrowed analogously to REF ANYS. They must be narrowed
before being applied.

In principle, each value in Cedar carries its syntactic type with it at all times. In practice,
almost all analysis and checking of types is done by the compiler, and both space and time
efficiency are gained by not storing constant types with values. However, the symbol tables
produced by the compiler contain enough information to recover any type on demand, made
available through a standard package. AMTypes provides type - conversion routines in both
di rections between typed val ues (with type SafeStorage. Type) and ordinary Cedar values, and
numerous operations on typed values to examine the type and structure of atyped value, to change
its attributes, etc. Thus it is possible towrite a program that deals with any given Cedar value or
type withoutantici pati ng the specific type when the program iswritten. Programs such as Bug Bane
(the Cedar debugger) absolutely require such flexibility.

The current implementation is too slow to be used effectively by client programs as a
substitute for true polymorphism in the language, but is suitable for examining and changing
variables interactively with the Cedar debugger.

CEDAR 52 I FOR INTERNAL XEROX USE ONL Y

(

CEDAR LANGUAGE OVERVIEW

Miscellaneous

Although Cedar was not Intended as a research project in programming languages, its
developers were not i m m u ne to the temptation to make Mesa better in ways that were not strictly
required to enable the new programming environment. This section discusses a fewofthese new
features.

Types as clusters of operations

Each type has an associated cluster of operations. The main purpose of this association is to
support a style of" object oriented" notation. Using a record - I ike notation, a procedure "field" will
be looked up in the cluster of the object's type, and then applied to the object and the other
arguments.

It is preferred style in Cedarto use this object notation in invoking operations of interfaces
designed to support it. Consult the relevant package documentation if in doubt.

Each built - in type and type constructor in Cedar implicitly supplies a standard cluster. The
cluster extension mechanism is that each opaque or record typedefined ina interface acquiresall
procedures declared in the same module as parts of its cluster.

ROPES and 10

Mesa STRINGS are rather awkward objects, having been tuned for efficiency in a small -
machine (Alto) world, rather than for flexibility and convenience They are POINTERS to fixed
length sequences of characters. Considerable care is required to avoid surprising results, even for
rather straightforward string - processing applications. Cedar ROPES, on the other hand, are
somewhat heavier - weight, more convenient to use, and less prone tosurprises Several different
implementations of ropes, efficient for different purposes, provide the same interface.

Rope isa Cedar package that supports the creation and manipulation of immutable reference
counted sequences of characters. Procedures are provided for concatenation, taking substrings,
sca nn i ng, and other operati ons. A cI i ent can provide speci al i zed i m pi ementati ons for rope obj ects.
The standard implementation attempts to avoid copying when performing Substr, Concat and
Replace operations. The Rope package is the standard support for sequences of characters in
Cedar,.

Most of the common operations on i nputJoutput streams, pi us stri ng conversions that are
commonly used in dealingwith input or formatting o.utput, have been collected inthelo interface.
Implementations are availableforstream interfaces to all common devices, and toallow ropes and
streams to be readily interconverted.

LISTS and ATOMS

Cedar includes LIST O~ as a new type constructor for singly -linked (by REFS) lists, and a
constructor for list values that mimics that of LISP, avoiding the need for a lot of NEWS or CONSS.
The analog of LISP's CAR and CDR are provided by the standard fields first and rest. Unlike liSP,
Cedar lists are statically typed (although the element type may be REF ANY).

Cedar also has a built - in type ATOM, which can be used for values that are uniquely
determined by their print names. Any rope can be converted to an atom and conversely; the
advantage of atoms is that, unlike ropes, itisverycheapto compare them forequality; atoms may
also have property lists. Atom literals are just names prefixed by 0.

CEDAR 5.21 FOR INTERNAL XEROX USE ONLY

18

(

f

(

CEDAR LANGUAGE OVERVIEW 19

Converting Mesa Programs to Cedar I Jim Morris

This section assumes you already know how to program in Mesa (or that you have a Mesa
program to be converted), and is intended to explain the differences for programming in Cedar

Simple programs

Let's suppose you want to run a simple program in Cedar If an existing Mesa 5 or 6 program
uses fairly vanilla stuff, it's easy to convert:

The names of most I nterfaces and some procedures have changed, but the functionality is
basically the same

The most obvIous differences wi II be with stri ngs and I/O You should only need to know
about two interfaces for these: Rope and 10, respectively.

In general, the Cedar community has dropped the use of" Defs" as a suffix for definition
file names, and introduced the suffix "Impl" for implementation files; e.g.
"lnlineDefs" became "Inline"

Here's what you need to do to your Mesa 5 or 6 program:

Change all STRINGs to ROPb (actually Rope.RoPE). Remove all allocations and deal locations
of strings. Change all references to StringDefs routines to use Rope or 10 routines.
Rope provides procedures to parse and manipulate ropes. 10 provides procedures to
convert ROPEs to numbers and back as noted below One can now put special
characters in rope literals by usi ng the escape character" \". " ... \n ... " I nserts a
carriage return (newl Ine), " . \t ... " a lab, " ... \\ ... " a backslash, and". \123 ..
" the character whose octal code is 123 Note a ROPE is immutable, unli ke a string.

Appending a character creates a new ROPE

You should use specific subranges for numeric variables whenever possible. If you don't
know the range, use INT (32 - bit integer). unlessyou knowyou don't need that big a
number and know you need efficiency. In those cases use INTEGER or NAT =
[0777778] Avoid using CARDINALs or LONG CARDINAls; their main use is in
dealing with STRINGs. The compiler recognizes the abbreviation INT for LONG
INTEGER, BOOl for BOOLEAN, CHAR for CHARACTER. and PROC for PROCEDURE

Change all references to I/O packages of all ki nds(streams, fi les, TTY) to use equivalent 10

routi nes. 10 is the only interface you should need to know about for I/O of al most
any type of variable or constant (ROPE, INT, etc.) to almost any type of device
(keyboard, display, files, temporary buffer etc) 10 contains:

A set of CreateX routines for each kind of stream Xlfile, display, etc.

A set of GetX routines for each type X (integers, ropes, etc.)

A PutF routine that can be used with any type (Integers, ropes, etc) viaasetofinline
procedures (int, rope, etc.) which are used totag thetypeofthearguments It
also provides a format argument which may beusedtogetFORTRAN - style
formatting of output. For example, the format" % g" pri nts al most anythi ng in
default free - format:

streamPutF["The sum of %g and %g is %g.\n", int[xL int[yL int[x + y]]

A PutFR routi nethat is identical to PutF except it produces a rope as output instead
of putting its result on a stream, and a RS routi ne that makes a rope look like
a stream so that the GetX procedures can be used Thus one can convert
various types to and from ropes, eg the following code which converts an
integer to a rope and back:

CEDAR 5 2 I FOR INHRNAL XEROX USE ONLY

(

(

CEDAR LANGUAGE OVeRVIEW

r: ROPE_ PutFR[, int[i]L
j: INT __ Getlnt[RS[r]L

Make use of LISTs and SEQlIENCE> instead of ARRAYs and DESCRIPTORs for ARRAYs. The
interface List contains some useful routines.

New language features

The changes in the Cedar language from Mesa 6 are fairly easy to understand for simple
programs:

(a) REFs provide automatic deal location and easier allocation:
Node: TYPE = KEf Rec;

Rec: TYPE = RECORDlfirst: INTEGER, rest: Node];

x: Node NEwlRec [5, NILI];

(b) Runtime types via REF ANY give looser binding:
TNode: REF BIRec;

Node: RI:F B2Rec;
x: Node
t: TNode
q: REFANY,

q t; q x; - - both of these are legal
t NARRowlq]; - - raises NarrowRefFault if q is not a TNode
- - q E is always illegal You cannot update through a REFANY

- - type can also be checked explicitly:

- - or

WITH q Sf:l.ECT FROM
m: TNode = > {t
n: Node = > {x
ELSE ERROR,

m; q mlson};
n; q n.rest};

IF ISTYPElq, TNode] ThEN {t NARROWlq]; q tlson}
ELSI: IF 151 Yf)tlq, Node] THEN {x NARROWlq]; q x.rest}
ELSE ERROR

REF ANY is preferred to the use of variant records.

(c) Lists are built into the language:
Node: TYPE = L1S1 Of- IN1

x: Node CONSIS, NIL I;
y: Node L1STIS,6]; - - same as CONSI5, CONSI6, NILI]
i: INT_ yllrst, - - i is 5
z: Node y.rest; - - z is CONSI6, NIL!
FOR I: Node y, I rest UNTIL I = NIL DO

(d) ROPES, ATOMS, SE'QlJENCES, and INTS are also built - in.

(e) To protect you rsel f and the ga rbage collector from obscure errors you should program in
the safe subsetofthe language To geta program into the safe subset prefix each
module (PROGRAM MONITOR, or DEFINITIONS) with the word CEDAR The compiler
will then tell you when you are strayi ng outside the sa fe subset You can wave the
compiler off any block by placing the word TRUSTED before it. If you call a
procedure declared in an unsafe interface (i.e., one that doesn't start with CEDAR

CEDAR S 2 I FOR INTtRNAL XEROX USE ONLY

20

(

CEDAR LANGUAGE OVERVIEW

DEFINITIONS}, the compiler will complain unless the call is in a TRUSTED block Most
of the high -level interfaces in the Cedar system are now safe.

Restrictions of the safe language

The @ operator is not permitted. There are three general ways to cope with this restriction:
specializing, copying, and indirecting. For example, suppose you have a program that says

W: ARRAY [O .. 100)OFZ;
P[@W];

FOR i IN [0.100) D(). . Q[@W[ill ... ENDI.OOP;

To eliminate the first @ by specializing wewould makea copyofthe procedurePthatdealtwith
theW directlylnot very satisfactory. To eliminatethe first@bycopyingwewould pass the array
W in by value and back by resultlalso not very satisfactory. It is best to deal with the first @ by
indirecting; just allocate W from collectable storage, writing

W: REFARRAY[O .. 100)OFZ = NEWIARRAy[O.100)OFZj;

P[Wj;
Eliminating the second @byspecialization is plausible if Q knowsit is always dealing with array
elements: pass a reference to W along with an index. Otherwise, deciding between copying and
indirecting depends upon the size of a Z. If it issmall copy it, writing "W[i] Q[W[i]j". If it is big
create references to it and pass those, writing

W: REF ARRAY [0.100) OF REFZ;

P[Wj;

FOR i IN [0 .. 100) DO. . Q[W[ij] ... ENDLOOP;

The form of vari ant record d i scri m i nati on that does not copy the val ue to a new location cannot
be used. Suppose you have a variant - record data structure like

T: TYPE = REF TR;

TR: TYPE = RECORDISELECT t:* FROM

name, string = > [x: ROPEI;

link = > [i: INT. r: Tj;
ENDCASE];

and are accustomed to performing discriminations like
e: T;

WITH x: e" SELECT FROM

name, string = > "Statements using x";

link = > {S 1 [xi]; S2[@x]};

ENDCASE;
You should declare a set of REFs to bound variant types like

Name: TYPE = REF name TR;

String: TYPE = REF string TR;
Link: TYPE = REF link TR;

and rewrite the discrimination to be
WITH e SELECT FROM

x: Name = > "Statements using x";
x: String = > "Statements using x";

x: Link = > {Sl[x.i]; S2[x]};
ENDCASE;

Thetype of x is now a REF type, not a TR, so various other types need to be adjusted and the@in
S2 is no longer needed. If "Statements using x" is a large block, you will probably want to
introduce a procedure to avoid copying it.

CEDAR 52 I FOR INTERNAL XEROX USE ONL Y

21

(

(

CEDAR LANGUAGE OVERVIEW

Variant records cannot be overwritten 5imillartechniquescan be usedforsanitizinga program
that overwrites variant records Assu m i ng the declarati ons 0 fT and TR from above, suppose you
wanted to write

x: T NEWITR [name["END"]];

x [link[S, xl];

The specialization/coPYing technique is to simply update the thing that points at the record,
writi ng "x NEW!TR [link[S, xlll" However, if you don't know all the places that point at the
record, youmust Introduce another level of indirection, writing

T: TYPE = REF REF TR;

x: T NEW!REFTR Ntw!TR [rope["END"]]]:

x NEW!TR [link[S, xlll;

Unsafe procedures cannot be passed as arguments to safe ones The symptom of a violation of
this rule IS generally a message complai nlng aboutan incorrecttypewhenthere is no obvioustype
mismatch All proceduretypes in an interface prefixed by CEDAR are implicitly prefixedwith SAFE.
The simplest thing to do is to put SAFE in front of PROC in the argument procedure declaration,

22

and put TRUSTED In front of Its body. As with all uses of TRUSTED, you should verify that the
safety invariants are actually maintained, and document the reason for the TRUSTED in a comment.

For More Information . ..

Cedar Language Syntax

This isa one - page reference grammardescrtbing the complete syntaxofthe Cedar Language,
in a compact variation on BNF developed by Butler Lampson. Keep it handy as you write
programs. It provides a relatively compact source of information on the exact form of constructs
accepted by the compiler It will also alert you to much of the available variety in the
language1but of course, not every syntactically valid program makes semantic sense.

The parsing grammar used by the compi ler is somewhat larger and more complex than the
Reference Grammar. Some ofthls is for technical reasons associated with LALR(1) parsing, and
some of it to enable the compiler to make certain semantic distinctions while parsing The
differences should be inVisible when dealing with correct programs, but may affect the error
messages given for incorrect ones

Annotated Cedar Examples

This document contains four complete, runnable Cedar programs chosen to illustrate the use
of most of the major features of the language, and to provide an introduction to the style of
programming that is preferred in Cedar You should certainly investtime instudying them before
attempting to write Cedar programs. If you are one ofthose who learns best from examples, you
may find them virtually the only tutorial information you need to learn the language

These exam pies have been chosen so that they are also useful prototypes of kinds of programs
you may wantto write in Cedar If you are like most Cedar programmers, youwill probably find it
easier to start from such a prototype, and change it to do what you want, than to enter a whole
program "from scratch."

CE:[)AI~ 5 2 I FOR INTERNA.1 XEROX liSE c)~JLY

c

(

CEDAR LANGUAGE OVERVIEVv

Stylizing Cedar Programs

Because Cedar programmers so frequently read each other's code. it is considered good
citizenship to adhere to certain stylistic conventions. Stylizing Cedar Programs discusses the
generally agreed conventions.

You can save yourself a lot of typing. and produce nicely formatted codeatthesametime. by
using Tioga's abbreviation expansion mechanism to generate all the high - level structure of your
program (at least. all the bits that aren't simply copied) The file Cedar abbreviations lists the
available macros and their expansions; you can add your own favorites.

Cedar Program Style Sheet

This is an annotated prototype that you wi II probably want to keep closeto hand. because it
compactly illustrates the most important principles from the previous document

Cedar Language Reference Manual

Eventually. this is intended to be a precise definition ofthe complete syntax and semanticsof
the Cedar Language. It is still incomplete

The formal definition of the language is given in terms of a kernel language. into which all
Cedar constructs can be desugared to determi ne thei r precise semantics. The Reference Manual
contai ns both the defi nition ofthe kernel. and an explanation ofthe desugarings It also contains
several tables that collect important information about the primitivetypesand type constructors of
Cedar

Cedar Language Reference Summary Sheets

This is intended to be the essence of the entire Cedar Language carefully condensed into two
pages for ready reference It covers both syntax and semantics. with examples and notes. It is
definitely not for those with weak eyes. and should probably not even be read until you have
studied the Reference Manual proper But it should be very helpful in checking details that you
may have forgotten Keep it handy.

Cedar Catalog

Sinceso much Cedar programming isdone" atthecomponentlevel." you needto know what
packages and tools are avai lable and what they do. In general. full documentation (or at leastthe
best available approximation thereto) for each component is stored on
[Indigo] < Cedar52 > Documentation>. or is referenced in the component's DF file. stored on
[Indigo] <Cedar52 > Top>

The problem is finding out which components you should be interested in That's where the
Cedar Catalog comes in handy. It contai ns a somewhat structured I ist of all the com ponents in
Cedar considered "interesting" by their maintainers. A component may be interesting

because of what it provides (your program may become a client).

because of what it does (you personally may become a user). or

because of how it does it (you may study it or copy some part of it in your program).

For each entry. the Catalog Indicates why it is considered interesting. and how to acquire
documentation and the component itself It also identifies the maintainer, who is the ultimate

CEDAR 52 I FOR !N1 ERr"AL XEROX USE ONLY

23

(

(

CEDAR LANGUAGE OVERVIEW

source of advice and help.

Mesa 5.0 Manual

The Mesa Language Manual, Version 5.0, PARC Technical Report CSL - 79 - 3, is the most
recent self - contai ned manual on the Mesa Language. It falls somewhere between a tutorial and a
reference manual, and many users have complained that it isn't entirely satisfactory for either
purpose. But if you need more mformationaboutthe Mesa -likepartsofCedar, itmaybeyourbest
source.

Chapter 4 gives the detai Is of Mesa's basic control constructs.

Chapter 5 tells all about procedures.

Chapter7 goes into more detail than you probably want aboutthe fine points of modules,
programs, and configurations. You may be better off extrapolating from the
Annotated Cedar Examples.

Chapter 8 gives some ofthe gory details of exceptions and exception handling. It iseasyto
get in trouble unless you use them in straightforward ways.

Chapter 1 ° provides a pretty reasonable discussion of how to make effective use of
processes, monitors, condition variables, etc.

Who to see

If you haven't managed to fi nd i nformati on that you want after you have looked in what you
consi der to be the obvi ous places (or if you don't understand what you have found), don't hesitate
to ask. Almost anyone in CSL is a fount of wisdom, willing to be asked almost any question on
almost any subJect. (Of course, the answers aren't equally reliable, but you can't have everything.)
Ifthe first person you ask doesn't know the answer, chances are good that you'll get a pointerto
either a person or document that will have the answer. More specifically here are some good
people to ask:

Russ Atkinson BugBane, runtime system, general questions
Bob Hagmann VM, Alpine, general questions
Rick Cattell Cypress, Squirrel, Walnut
Willie - Sue Orr Dorado microcode, Walnut, device heads
Jim Donahue Walnut, Squirrel, Cypress, Alpine
Doug Wyatt Viewers, Tioga, Graphics
Mike Plass Viewers, Tioga, TSetter
Howard Sturgis Cedar on DLions

CEDAR 52' FOR INTERNAl XEROX USE ONLY

24

