
\
\ \
\
\

THE IMPLEMENTATION OF
NLS ON A MINICOMPUTER
BY JAMES G. MITCHELL

CSL 73·3 AUGUST 1973 NIC #18941

This technical report covers the research performed at Xerox Palo Alto
Research Center (PARC) for the period June 30, 1972 to July I, 1973 under
Contract Number DAHCl5 72 C 0223 with the Advanced Research Projects
Agency, Information Processing Techniques Office. The research covers
initial studies and evaluation of transferring a large, display-oriented
documentation system (the NLS system developed at Stanford Research
Institute) to a minicomputer system and a protocol for accessing NLS over
the ARPANET.

The research reported herein was supported by the Advanced Research Projects Agency
under Contract No. DAHCI5 72 C 0223, ARPA Order No. 2151, Program Code No. 2PIO.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Advanced Research Projects Agency or the U.S. Government.

XEROX
PALO ALTO RESEARCH CENTER
3180 PORTER DRIVE/PALO ALTO/CALIFORNIA 94304

Xerox Palo Alto Research Center (PARC):

PARC is a research facility of the Xerox Corporation. It is involved in
research in the physical sciences, computer hardware and software systems
and the computer sciences in general. These latter include computer
architecture, interactive graphics, operating systems, programming
research, and natural language understanding systems. The Computer Science
Laboratory (CSL) of PARe currently numbers thirty technical and support
staff.

INTRODUCTION

The ARPA contract reported herein concerns the development of an NLS-I ike
[I] display-oriented text-editing system supporting multiple users on a
minicomputer configuration. The research also aims to use this development
as a source of suggestions and a gauge for a set of software engineering
techniques which are intended for large and complex software systems.

The originally proposed (two year) research plan included the following
major steps:

(1) A reimplementation (including redesign) of the TENEX-based NLS
system in the Modular Programming System (MPS)--HPS is an ongoing,
separate research program which has been developed collaboratively
by PARC and SRI-ARC.

(2) Bootstrapping of HPS to a suitable minicomputer;

(3) Development of a mini operating system (mini-OS) to support
multiple HPS programs, a file system and a virtual memory
(probably with little or no assistance from any memory mapping
hardware) ;

(4) Transfer of NLS (written in HPS) from a PDP-IO to a minicomputer
by recompilation--with as little rewriting as possible.

(5) "Tuning" of the experimental mini NLS (xNLS) to support as many
users as possible.

2

The first year of this plan has primarily dealt with the following specific
tasks:

(a) initial evaluations of the problems involved in putting a large
multi-user system like NLS on a small computer and specification
of suitable minicomputer hardware,

(b) redesign of NLS to

(1) take advantage of SRI-ARC's considerable experience with
the system;

(2) use and evaluate the features of MPS for large systems;
(3) provide for an NLS which would be amenable to being

distributed over the ARPANET (e.g., with display "front
ends" at remote locations),

(c) development of an ARPANET protocol for providing access to NLS
over the network from suitable display terminals.

3

SECTI ON ,

Large Systems on Small Machines:

Although the exact forms which computer hardware may take in the future are
hard to predict, there are a number of trends which are evident:

(I) processor speed on the order of I microsecond per instruction is a
fact;

(2) the cost of digital logic has dropped by a factor of two every
five years;

(3) memory determines the cost of a minicomputer to a much greater
extent than its CPU.

These trends must interact with some observed facts about large,
interactive systems such as NLS:

(1) The body of code for the system is large: NLS is composed of a
number of well-integrated, sophisticated facilities each of which
is in itself fairly complex;

(2) the large subsystems of NLS interact only infrequently (relative
to the interactions within a subsystem) and over fairly narrow
interfaces;

(3) when the user is specifying the next action to be performed by
NLS, very little state Information and processing are necessary to
respond to him, but that response must be Il1I11ediate. (Character
echoing or command recognition and feedback are examples.)

These two sets of observations have led to some design decisions for xNLS.
Since most minicomputers are about as fast at manipulating text as a POP-IO
(the machine on which NLS is currently implemented), the size of the xNLS
software and the size of the memory on the minicomputer will be the hardest
constraint on system performance. There are a number of means by which
this constraint can be eased:

(1) Implement only the most frequently used parts of NLS on the mini
(e.g. its text-editing facilities) and access other system
functions such as hard-copy output formatting, automatic document
distribution and classification by using the parent NLS over the
ARPANET;

(2) Provide for a virtual memory underlying MPS but lock the portion
of a user's process into memory which is required for quick

4

response during user input; this saves swapping overhead without
wasting much primary memory since the state needed is usual1y very
small (certainly less than 100 words). An underlying segmentation
scheme for automatic overlaying of running MPS programs is
described in [6].

(3) Obtain minicomputer hardware which will help to implement a
virtual memory: this includes some memory mapping hardware and a
reasonably large, high-speed swapping device.

(4) Since computing speed is much less a constraint than memory, a
trade can be made: compile MPS programs into a very compact
interpretive code and run ·as much of NlS as possible in this way;
some recent work by Deutsh [2] indicates that such a technique
can compact programs by a factor of 2 to 5. This should lower the
swapping rate accordingly (unless the interpretive slowdown backs
up the system and artificially causes thrashing).

A Minicomputer Configuration for xNlS:

The above hardware and software considerations led to the selection of the
following minicomputer configuration:

A 16-blt, 800 nanosecond CPU

A64k 16-bit, 800 nanosecond memory

A simple mapping device for accessing memory in pages

A high speed, 1.25 Mword, fixed head disk (expandable to 2.5
Mwords); its transfer rate is 275,000 words/second and it operates
over a DMA channel

The original hardware mapping device design was a simple addition to a Data
General NOVA 800 with 4k memory boards and operated on 4k word pages. It
was designed by E. McCreight of PARC and required aboat 15 standard
integrated circuits. Since then, minicomputer manufacturers have provided
their ~n memory mapping hardware and main memories as large as 128k words.

The fixed head disk, main memory, and memory mapping device are all
attempts to overkill the memory constraint discussed earlier. Such a
system can be purchased commercially for approximately $50k. If it could
support ten NlS users, then the cost per user, including a reasona~le
terminal ($3000 to $5000) would be $8000 to $10000; if it could only
support five users, this range would be raised to $13000 to $15000 •. The
trends in hardware may very well indicate that it would be better to build

5

single user systems (one man, one computer) if the cost of the multi-user
system is this large.

What problems would go away if the system were to serve only a single user?
Hardly any. The size of NLS would diminish not at all. and although the
entire bandwidth of the swapping channel would. be available to a single
user. the size of main memory would have to be smaller (because of the
price ceiling of $IOk to $15k) and the swapping rate would therefore be
higher. Computing power, however, would be a freer resource than under a
multi-user system. Other than this, all the problems of a large system
still remain: a file system, memory management and a mini-OS would still
be necessary, and the system would still have to be maintained and changed
over time. Thus, the multi-user requirement for xNLS could be elided with
almost no alteration to the remainder of the project: the results pertinent
to large systems on small machines and to a redesign of NLS would not be
affected.

File Storage for xNLS:

Long term file storage in xNLS can be accomplished in a number of ways
without requiring a large disk system and its concomitant management
overhead. Frequently accessed, small to medium sized files (0 to 20 page
documents) can be kept on the swapping disk along with system programs and
working storage without exhausting the storage. Larger files which are
accessed often could be stored at some ARPANET site with a suitable file
facility. Such a file could either be transmitted in its entirety to the
xNLS site when needed or "paged" over the network. In the latter case,
xNLS would request a given page at most once, but might transmit "dirtied"
(altered) pages back to the file source many times. Lastly, files might be
kept on removable media (such as tape cassettes, tape cartridges, or floppy
disks) and transferred to the swapping disk when needed. This could be
especially useful in a single-user system. The network "paging" technique
can also be used with some removable media, both for speed and for
minimizing work loss resulting from xNLS system failures.

6

SECTION II

The NLS Protocol:

The NLS Display is divided into a number of rectangular display areas
(DAs). A DA may contain a number of STRINGS at a selected set of (X,V)
positions in the DA. A DA is named by a DAID, which is a 9-bit number.
The size of a DA is given by two parameters: NSTRS, the height (in units
of lines) and NCHARS, the maximum number of characters in a line in the
display area. Other attributes of a DA include the coordinates of its
lower left-hand corner, called (XBOT,YBOT), the separation between lines.,
called DY (the units of DV, X and Yare a function of a parficular display
device), and the width of a character, called HINC (also in the units of
the display device). Atypical DA as used on an IHLAC PDS-l display
computer [3] is illustrated in figure I with its DA parameters illustrated
(this NLS protocol has been implemented for IHLAC displays and is used at a
number of ARPA sites). Characters as used on the IHLAC are 7x9 points with
2 points of horizontal spacing between characters and 9 points between
lines. This DA may hold at most NSTRSxNCHARS=30x73=2190 characters.

height=DY*NSTRS

-18*30

"540points

I-E<------- 1I0IARS=73 ________ ...;)I=JI
=73x9 points

r-;-....."r-.,.--..-....,--;;---:;--::r-~_;__;_-_---,=:i(656 ,539)
1 2 3 4 5 6 7 8 !) 1 1. " ••• 7777

abcde~·
ghijk I

o 1

0123

(X3or,YBOT)-(O,O) (656,0)

Figure Parameters for a Typical DA

7

DAs may be created and destroyed dynamically. When one is created, it is
given an integer "name" called a DAID by the host computer (i.e. not by the
display processor which is obeying the protocol) which is used in-arl
operations relevant to DAs. Those operations are:

Create DA
Destroy DA
Suppress DA (stop displaying all strings therein)
Suppress and clear DA
Restore DA (cause strings in it to be displayed)

DAs may overlap. subject to some rules about which strings will show in the
regions of overlap. A feasible layout of DAs on a display screen is shown
in figure 2. Note that DAs may overlap to any extent, and that there is no
requirement that the entire display screen be covered by DAs.

2

3

I' I

Figure 2 Sample Layout of DAis on a Display Screen

8

The only entities which may be put into a DA are strings: a string is a
sequence of 7-bit ASCII bytes. A string has a name called an STRID (a
number in the range [0,177B] -- "B" suffixed to a number indicates octal
notation) which is local to the DA in which it lives. This name is
assigned by the host computer when the string is initially transmitted.

The manipulations which may be done to strings are

(a) New string to position (X,V) in DAID with given STRID
(b) Suppress display of a string in a DA
(c) Restore display of a string in a DA
(d) Suppress displaying of a string and delete it from the DA

Command (a) may also be used to move a string from one position to another
without retransmitting the entire string: this is a great economizer of
bandwidth.

If two DAs overlap, the strings in both will be displayed unless either one
or the other DA is suppressed or strings in the overlap areas of the DAs
are selectively suppressed. Overlapping DAiS are used by NLS for
displaying user-requested status information by selectively suppressing the
strings in one DA in order to display the necessary information in an
pverlylng DA. When the user no longer needs the information, the overlying
DA is completely deleted and the suppressed strings in the underlying one
are restored. This is especially important for fully utilizing the display
surface area without permanently allocating DAs for infrequently required
information.

Sequential Display Areas:

The NLS protocol allows the display processor to act as a simple teletype
so that the normal typewr iter convnun i catl ons methods in many sys terns may be
used without change. A DA which can accept s,uch cOll'munication is called a
seiuenttal dlsflay !!!!. (SDA), arid there Is assumed to be one distinguished
SD whIch slmu ates normal typewriter output for the system which supports
NLS (e.g. the TENEX system used at SRI-ARC). This SDA, hereafter called
the TTYSDA must be the initial, "current" DA when convnunlcation between the
NLS host and the display is initiated.

The distinguishing features of an SDA (as contrasted with a DA) are as
follows:

(a) The last character in a line may be deleted; In a
normal DA the minimum entity which can be
manipulated is an entire string; thus, to delete
the last character in a line in a DA, the entire
line minus its last character must be transmitted
to replace itself.

9

(b) The lines in an SDA are automatically scrolled up
one line when the SDA is full and a new line is
added at the bottom

(c) An SDA is specified just like a DA. The display
processor, however, interprets some characters
whose destination is an SDA in a special way:
carriage-return (OI5S) and line-feed (OI2S) cause
actions comparable to those evoked on a typewriter
terminal. Carriage-return means that the next
character to the SDAwi11 be "written" at the
beginning of the current line; line-feed increments
the pointer to the current line or causes the lines
in the SDA to "scro 1111 up one line (i n the case
that the SDA is full when the line-feed character
is received).

(d) When an lIunescorted character" is received by the
display processor, it is always placed In the
TTYSDA. It may also be written Into one or two
extra "default" SDAs if they have been so enabled.

There are a number of protocol commands which are applicable to the TTYSDA:

(a) Enable TTYSDA and suppress the display of all other
DAs. (the display Is then said to be in "TTY
mode")

(b) Suppress TTYSDA and restore the display of any DAs
that were suppressed by the last "Enable TTYSDA".
(the display is then in flDisplay mode")

(c) Unescortedcharacters always go to the TTYSOA and
any associated default SDAs even If the TTYSDA Is
not enabled. Moreover, if the TTYSDA Is
suppressed, the default SDAs need not be. This is
useful for provid ing a small ''TTY wIndow" even when
the TTYSDA is suppressed.

Terminal Input:

The input devices for NLS include a typewriter keyboard, a pointing device
called a mouse (with three push buttons B2, Bl and S' on it) and a device
called a keyset (or, more descriptively, a "five-finger chord keyset").
These are all described fully in [1]. The display processor must
"continuously" display a string on the screen at the position determined by
(x,y) coordinates read from the mouse. This string (usually a single·
character) is called the cursor and "tracks" the mouse. The five-finger
keyset acts like a replacement for the keyboard, but in order to key more

10

than 31 possible characters, two of the three buttons on the mouse (82 and
81) are used as "case-shift" buttons in conjunction with it. Appendix 8
gives the keyset/ASCl1 correspondences for (82, Bl)=(O,O), (0,1) and (1,0).

In TTY mode the display will send a single ASCII character per keystroke
(keyboard or keyset Hchord") to the NLS host; this is called "short
character mode" (SC-mode). . ..

The display processor can also operate in a IIlong character mode" (lC
mode): this provides mouse coordinates to the NlS host when necessary.
Short, unescorted ASCII characters are still sent to the NlS host when the
display is in lC-mode under the following circumstances:

(51) the user input is a character from the keyboard and is not an
ASCII control character (i.e. is not in the range [O,37B]);

(52) the input is a single character "chord" from the five-finger
keyset.

Some translation is done on keyset characters. If k is the 5-bit number
corresponding to a keyset chord then the character sent to the NlS host is

(a) (k+140B) if k is in the range [1,32B] (i .e. lowercase alphabetic)

(b) otherwise, a chord in the range [338,37B] is translated according
to the following table:

k Character Sent Printed form

33B 54B ,
34B 56B •
35B 738 · • 36B 778 ?
378 40B SPACE

long characters are sent to the NlS host In the following circumstances:

(ll) the state of one or more mouse buttons changes (either because one
or more are depressed or released);

(l2) an ASCII control character Is typed on the keyboard.

The formats of long characters are

(a) in case (ll), a seven byte string is sent to the NLS host:

BMSG 45B (buttons+IOOB) XX yy

(Where BMSG • 034B).

11

The state of the buttons B2, Bl and BO are encoded into a single
octal digit with B2 as its most significant bit. XX and YY are
each two bytes long; they represent 12-bit numbers (6 bits in each
8-bit byte) and are the coordinates of the mouse at the time the
mouse buttonb changed.

(b) case (L2) has two subcases. If the control character is one of
the NLS special control characters (tB [Center Dot], to (Command
Accept), or tX [Command Delete),character sent Is

BMSG 45B (character+140B) XX YY

which is similar to that sent for case (Ll). Otherwise, the long
character has the form

BMSG 41B (character+140B)

Thus, mouse coordinates only accompany mouse button changes or NLS
control characters: their presence is indicated by the 45B
following the ESC character.

In order to provide a reasonable interface between the characters sent by
the display and the NLS system, the current NLS host. TENEX, performs some
transformations on the characters received by it before they are made
available to NLS. These basically make coordinates available lion request"
to NLS and-integrate sequential mouse button changes (so that simultaneous
actuations are not necessary) before presenting the changed state to NLS.
Also, mouse button states and characters are only obtained by direct
request from NLS (and therefore, not asynchronously).

This way of sending mouse coordinates to the NLS host may seem somewhat
wasteful of bandwidth; however, it guarantees that the coordinates for a
pointing operation by the user will be the ones he specified when he
pressed button BO (called the select button or "Command Accept") on the
mouse. If this were not done, and NLS had to request mouse coordinates
after deciding that it needed them, (random) delays in NLS's response time
would cause it to acquire coordinates corresponding to where the user was
pointing when NLS made the request rather than the ones available when he
made the pointing selection; this would be a totally unacceptable
situation. Short character or long character mode is set by the NLS host's
sending a suitable command to the display; it is not automatically
associated with TTY mode or display mode, which have to do with the
messages sent to the display from NLS.

12

The cursor string which is displayed as the mouse is tracked is specified
by the NLS host and can be dynamically changed: NLS uses this feature to
indicate when the mouse can be used to select something on the screen (the
cursor is displayed as a "til) and when it cannot (a "+" is displayed).

NLS allows two separate displays to share a common view so that two people
may view the same information even if they are remote from one another.
This includes displaying each person1s mouse cursor on the other person1s
screen so that they can each refer to objects on the other1s display. To
accomplish this, the NLS host can request that the display processor send
mouse coordinates "continuously" so that they may be displayed on the
remote screen. Actually, the NLS host may only request that the mouse
coordinates be sent every DT milliseconds if either coordinate has changed
by an amount greater than DXY (the absolute minimum DT is 6/b where
b=bandwidth of transmission line in bytes/sec, the value "6" comes from the
fact that the coordinates are sent as the six byte stream

BHSG 44B X X Y Y,

which is analogous to long characters as described above. For the ARPANET,
this minimum is 20 milliseconds because all messages shorter than 1000 bits
use 1000 bits and the network (burst) bandwidth is 50000 bits/second).
Thus, DT=20msec and DXY=l, is the finest grain allowed for continuous
tracking of the remote cursor by the NLS host. The host can, of course,
also request that the continuous transmission of mouse coordinates be
turned off. The specific formats of the commands for doing this are given
in detail in Appendix A.

13

SECTION III

The NLS Redesign

A redesign of NLS has begun under the auspices of SRI-ARC with
participation by Xerox PARCo The motivations for this effort have been
outl ined earl ier in this report; they are also given in detai I in "A Look
at the MPS Conversion" [4] which describes the areas of NLS requiring
redesign and the problems of the current NLS implementation. Thus far. the
design has concentrated on the parts of NLS which are associated with the
user interface: display control and feedback, user command specification
and the command language facilities themselves.

The system components which deal with the hardware realities of a given
display have been segregated from the "ideal" (or at least, normal ized)
display to which NLS interfaces. This has used the NLS protocol described
in Section I I as a starting point and the design adopts the view that the
display is always accessed via an interface like the ARPANET protocol.
Indeed, one of the design "meta-decisions" for the redesigned NLS (NLS*)
has been that the system should be severable at a number of places in order
to facilitate a distributed implementation, with as much (or as little)
front-end processing done remotely as is desirable. This aims partly at
the parent NLS to xNLS relationship discussed in Section I, and partly at
cleanliness and modularity within NLS itself. The issue of distributive
modularity has also influenced the control structures of MPS in that it
demonstrated that some form of parallel control mechanism was essential if
NLS* were to be implemented in this way. The capability for parallel
control in turn suggested that "display correction" (the problem of
guaranteeing that what is displayed reflects accurately changes which occur
in the document being edited) might best be handled as a pseudo-parallel
process which reacts to "alteration events" which may affect the validity
of the display contents. Since the contents of an NLS display include such
disparate items as the status of the current command specification, the
time and date, various parameters indicating the "view" of the document as
specified by the user and a portion of the document itself, this approach
nicely eliminates the very complex scheduling of display alterations
resulting from such "unconnected" events. A primary result of this view is
that the rapidly changing command status indications, ,the displayed time,
and the doc~ment display are all seen as display feedback and may be
handled in one consistent manner.

Experience with NLS in the ARPANET community has spotlighted the need for a
flexible command language facility for accommodating everyone from the
occasional user to the hard-core sophisticate and for allowing users to
tailor the system to their individual tastes and tasks. NLS* will replace
the rather built-in command recognizer of NLS with a more flexible system
facility consisting of a data structure which describes a command language

14

and a number of modules which use that specification. The modules perform
the following duties:

(1) Interpretation of a complete command to invoke the facilities of
NLS: separating this function out provides part of the framework
for a user-programmable NLS.

(2) Recognition and feedback during user command specification: this
helps accommodate various classes of users; beginners can get
maximal feedback about commands and their options and even be
protected from "accidentally encountering" overly-complex
commands; sophisticated users can choose a recognition algorithm
which minimizes keypushes and still specify a feedback regime
which gives adequate Information about their interactions with the
system.

(3) Language definition and alteration: new commands can be added
easily or a user can tailor a command language to his requirements
by macro definition or by altering the data structure which
defines the language.

The need for many of these facilities has been so keenly felt that they are
being added to the current NLS; they are described in [5].

The primary data domain for NLS is text; simple graphics, mixed text and
graphics and other structures would be extremely useful. In order to
facilitate the addition of new types of data to the NLS world, NLS* will
provide a single interfacing method for all data types. A datum which is
to be manipulated by NLS will carry a tag specifying its type. This tag is
used to select a specific action from an action class for a given
operation. For instance, if the datum is to be displayed, the display
action for that data type is invoked with a suitable handle on the datum
and information about a display area In which It should be formatted. If
the datum has the type tag "mixed text and graphics" (HTG) then the MTG
display routine is invoked for it. Because of this approach, this routine
can act as overlord for the text and graphics display routines and
subdivide the virtual display area given to hJm among the components of the
HTG datum. This approach appears very promising for combining primitive
data types into more complex structures without duplicating the facilities
for each subtype simply because they are being used in combination.

15

~pendix A: NLS Protocol Command Formats

This Appendix gives the protocol specifications in detail. Each cOMmand is
headed by a phrase which identifies it, and the command is defined in a
BNF-like notation; square brackets denote optional items, slashes divide
alternatives, and parentheses are used to group alternatives. A "$"
preceding an element of a rule means "zero or more occurrences of".
Numbers which are suffixed with a "B" represent octal numbers and occupy no
more than seven bits, i.e. they fit in one transmitted byte. Any variables
which can only be 0 or I occupy one bit and are usually packed together
into a single byte.

Each command arrives as a string of characters at the display, which must
interpret the first two characters of the command in real time. The
remaining characters in a message may be buffered until the entire message
is received and then interpreted. There Is, however, no requirement in the
protocol that the entire message may not be interpreted as it arrives.
There is no checksum or other error check as part of the command stream.

command ::= UnescortedChar/ESC CNT CommandTail;
ESC ::= 33B; -- the ESC or ALTMODE (ASCII) character identifies a

command
UnescortedChar ::= -- any 7-bit character except ESC --;

Unescorted characters are placed sequentially in the TTVSDA and in any
default SDAs.

CNT ::= a number in the range [408, 177B] --
CNT is the (count of the number of bytes which are to follow in the
message)+40B; this offset notation guarantees that the count cannot
look like 33B (ESC) or any control character; hence commands and
unescorted characters are readily distinguishable.

Command ta i 1

ada I
dda I
sdda I
rdda I

strdal
ssda I
rsda I
apsdal
echdal

tsndal
tsfdal

.. -.. -
Allocate a Display Area
Deallocate a Display Area
Suppress Display of a Display Area
Restore Display of a Display Area

STRing to a DA
Suppress String in DA
Restore String in DA
Append String to Sequential DA (SDA)
Specify SDA(s) for Unescorted Characters

Teletype Simulation ON
Teletype Simulation OFF

16

scm /
lcm /

scsr /
ccnda/
ccfda;

Short Character Mode
Long Character Mode

Specify Cursor String
Continuous Coordinate Transmission ON
Continuous Coordinate Transmission OFF

Allocate a Display Area:

ada ::= 16B DAID NSTRS NCHARS ATXY DY CSIZE HINC FONT;
DAID ::= LONGNUMBER; -- a DAID is a 9-bit number which names aDA.

A LONGNUMBER is sent as two 8 bit bytes; if Bl and BO are the high and low
order bytes (they arrive in the order Bl, B~) then the value v of a
LONGNUMBER is

v= 2+6 *«Bl mod 2+6)-40B) + «BO mod 2+6)-408)
thus, a LONGNUMBER is limited to the range [0,4095].

NSTRS ::= SHORTNUMBE R;

A short number occupies the low order 7 bits of a bit and is therefore
restricted to the range [0, 177B]. NSTRS defines the number of lines in
the display area (i.e. its height).

NCHARS ::= SHORTNUMBER; -- ltnes sent to this DA which contain more
than NCHARS characters are to be broken into
multiple lines.

ATXY ::= XBOT YBOT; -- the coordinates of the lower left-hand corner of

XBOT ::= LONGNUMBER;
YBOT ::= LONGNUMBERi

the DA.

DY ::= LONGNUMBERi this is the height of a line in terms of basic

CSIZE ::= 0/1/2/3;

display increments, and includes any blank space
between lines.

Specifies the default character size for the DA. CSIZE is a
mapping value and all that is required is that characters of size i be
greater than j-sized characters (i,j=O,l,2,3) for I>j.

HINC ::= SHORTNUMBER; -- specifies the width of characters in terms of
basic display increments. Hence, fixed pitch fonts
(all characters occupying equal width areas) are
assumed. This includes the space between
characters.

FONT ::= 0 0 FOV FUL FBO FIT FBL; this is one byte composed of the
one-bit switches given. FONT, CSIZE and HINC specify default values for
strings displayed In the DA.

17

The switches for FONT are defined as

FOV ::= 0/1;
FUL ::= 0/1;
FBO ::= 0/1;
FIT ::= 0/1;
FBL ::= 0/1;

1=> overline displayed characters
1=> underl ine displayed characters
1=> display characters in boldface type
1=> display characters in italic type
1=> blink displayed characters on and off

Deallocate a Display Area:

dda ::- 2 DAID;

The DA identified by DAID is deleted; it need not be empty when this
command is sent: any strings in it will automatically be deleted first.

Suppress Display of aDA:

sdda ::- 6 DAID KILLFLAG;

The identified DA is turned off (none of its contents are displayed).
Additionally, if KILLFLAG =1, its contents are destroyed.

KILLFLAG- 0/1;--1=> delete; 0=> don't delete.

Restore Display of aDA:

rdda ::= 7 DAIO;

The contents of a previously suppressed DA are displayed (unless the
previous sdda also deleted them, of course).

String Manipulation in aDA:

strda ::= 20B DAID STRID SLNGTH FRHT [ATXY] [HINe] [FONT] STRING;

This command is used to introduce a new string, replace an existing string,
or move an existing string from one position in a DA to another.

STRID ::= SHORTNUMBER;

STRID identifies the string; if it is a new string, it is given the value
of STRID as its name; otherwise STRID is used to identify which string in
the DA is to be manipulated. The value of STRID is independent of the
(X,Y) position of the string.

SLNGTH ::= SHORTNUMBER;

18

SLNGTH=O means operate on the current string with name STRIO; the actual
string, STRING, is not present in the command. SLNGTH=I means "pretend
STRING is the null string"; STRING is not present in this case either.
SLNGTH>l means "make the string STRING which is appended to this command be
the one with name STRID". If there already is a string with name STRID, it
will be replaced by the STRING in the command.

FRMT ::= FORMATS + 40B; -- a single byte
FORMATS ::= FDS FOO IDS 100 SOS SOD XYOS;

FORMATS is a string of 7 bit switches which is sent in a single byte
(offset by 40B).

FDS ::= 0/1; -- 1=> use the value of FONT switches from the previous
instance of STRID for the new instance;

FOO ::= 0/1; -- 1=> use the OA default value for FONT switch values.

FOS=FDO=O means that FONT is present in the command.

IDS
100

.. -.. -
: : =

0/1 ;
0/1;

IDS and 100 behave for "INC as FDS and FOO do for FONT

SOS ::= 0/1;
SOD ::= a/I;

SDS and SOD behave for CSIZE as FDS and FOO do for FONT.

XYOS ::= 0/1; -- 1=> use STRIO's current coordinates.

XYDS=O means ATXY is present in the command.

STRING ::= $(SHORTNUMBER); -- 0 or more 7-bit bytes (ASCII) which are the
contents of the string if SLNGTH>l.

Suppress String in OA:

ssda ::= lOB OAIO STRIO KILLFLAG;

Suppress the display of the named string in the given OA; if KILLFLAG=I,
also delete the string from the OA. Altering the display status of
individual strings is overridden by the display status of the OA; if the OA
is suppressed, any displayed strings in it are suppressed also until the OA
is again turned on: i.e., the display status of each string is remembered
independently of whether the DA is suppressed.

19

Restore String in DA:

rsda ::= lIB DAID STRID;

Restore the named string in the given DA; whenever the DA is displayed, the
string will be displayed.

Append String to Sequential DA:

apsda ::= 17B DAID STRING

The initial CNT field in the command header contains LENGTH(STRING)+3 to
account for the characters 17B and the DAID (which is a LONGNUMBER). The
string supplied is appended to the sequential display area.
Carriage-return and linefeed must be simulated by the display to behave as
they do for a teletype. Strings longer than the ~CHARS parameter for the
DA (see the "ada" cOl'fllTland) are broken into an appropriate number of lines.
A received +A (OOlB) 'or tH (OlOB) character causes the last character in
the SDA to be deleted (it should disappear from the screen so that the next
character sent to the SDA will occupy the same screen position as the
character just deleted. +W (027B) must delete any invisible characters
from the current SDA position to the left until a visible character is
encountered and then all the visibles from there up to (but not including)
the next invisible character. The set of invisible characters are
carriage-return (+M=015B), space (040B), and tab (+I=OIIB); visible
characters are all the normal, printable ASCI I characters exclusive of
these invisibles. tG (007B) should simulate the bell on a standard TTY; if
there is no "aural" indicator, the display should produce a bell symbol
(e.g. the word "BELL!") which is overwritten by the next character
displayed.

Specify DA(s) for Receiving Unescorted Characters:

echda ::= 3 FLAGS [DAIDI] [DAI02];

FLAGS ::= 0 AD SO Al Sl A2 S2; seven one-bit fields in a
single byte.

AD=1 means unescorted characters go to TTYSDA; if SO=I, they will not.

AI=I means unescorted characters should go to the DA identified by
DAI01; Sl means they should not; AI=Sl=O means DAIOI is not present.

A2 and 52 mean the same for DAI02 as Al and 51 do for DAIOI.

Unescorted characters, therefore, can go to three SOAs simultaneously if
AD=Al=A2=I. Copies of the characters are made by the display and placed in
each 5DA.

20

Teletype Simulation On:

tsnda ::= 126;

Turn on the current TTYSOA and suppress any other DAs which are currently
on.

Teletype Simulation Off:

tsfda ::= 136;

Suppress the current TTYSOA and restore the OAs suppressed by the most
recent tsnda command.

Short Character Hode:

scm ::= 15B

Send only short characters to the NlS host (characters like tX, to, etc.
will be sent just as they would from a teletype).

long Character Mode:

lem ::= 146;

Send long characters to the NLS host when appropriate. (See the
description of long characters in Section II liThe NLS Protocol".)

Specify Cursor String for Tracking the Mouse:

scsr ::= 056 SLNGTH CSIZE HINC FONT STRING

The given string is to be displayed as the cursor which tracks the mouse
(or other pointing device) on the screen. A detailed description of the
parameters SLNGTH, CSIZE, HINC and FONT are given under the commands ada
(Allocate Display Area) and strda (String to DA). For the scsr command,
SLNGTH (=LENGTH(STRING)+l) must be greater than 1.

Continuous Coordinate Transmission On:

ccnda ::= 21B OT DXY;

1·10use coord i nates are to be sent to the NLS hos t every OT m i 11 i seconds, if
either its x or its y coordinate has changed by more than OXY

21

OT ::= lONGlmMBERj
OXY ::= lONGNUMBER;

Mouse coordinates, as sent to the NlS host. have the form

coord ::= BMSG 44B ATXY;
BMSG = 34B;
ATXY ::= XCOORO YCOOROj
XCOORO ::= LONGNUMBER;
YCOORO ::= LONGNUMBER;

Continuous Coordinate Transmission Off:

ccfda ::= 22B;

Stop sending mouse coordinates continuously.

22

Appendix B: Keyset Chord/Character Correspondences

The mouse buttons are given as B2, Bl, BO and a
"1" indicates the corresponding button is depressed.

House and Keyset, Codes and Cases

~1ouse Buttons: 000 010 100

Keyset Chord
00001 a A
00010 b B II

00011 c C #
00100 d 0 $
00101 e E %
00110 f F &
00 111 g G
01000 h H (
01001 I)
01010 j J @
01011 k K +
01100 1 l
01101 m M *
01110 n N /
01111 0 0 t
10000 p P 0
10001 q Q 1
10010 r R 2
10011 s S 3
10100 t T 4
10101 u U 5
10110 v v 6
10111 w W 7
11000 x x 8
11001 y y 9
11010 z Z =
11011 < [
11100 >]
11 101 . , ..-
11110 1 " ESC
11111 SP TAB CR

23

References

[1] "Online Team Environment - Network Information Center and Computer
Augmented Team Interactions", Augmentation Research Center.
Stanford Research Institute, NIC #13041.

[2] Deutsch, L. P., "A LISP Machine with Very Compact Programs", in
Proceedings of the Third International Joint Conference on
Artificial Intel I igence, Aug. 1973, pp. 697-703.

[3] "User's Reference Manual, IMLAC PDS-I Programmable Display
System", IMLAC Corp., 1970.

[4] Dornbush, C. F., Irby, C. H., Mitchell, J. G., "A Look at the MPS
Conversion", NIC #15376.

[5] Irby, C. H., "Proposed Changes in the NLS Command Language",
August, 1973, NIC #18408.

[6] Mitchell, J.G., liMPS Segmentation System", MPS Group internal
document, Jan. 1972, available currently as NIC #19734.

24

