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Abstract 

The experiences of Mesa's first users -- primarily its implementers -- are discussed, 
and some implications for Mesa and similar programming languages are suggested. 
The specific topics addressed are: 

-' module structure and its use in defining abstractions, 
- data-structuring facilities in Mesa, 
- equivalence algorithm for types and type coercions, 
- benefits of the type system and why it is breached occasionally, 
- difficulty of making the treatment of variant records safe. 
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1. Introduction 

What happens when professional programmers change over from an old-fashioned 
systems programming language to a new, modular, type-checked one like Mesa? 
Considering the large number of groups developing such languages, this is certainly a 
question of great interest. 

This paper focuses on our experiences with strict type checking and modularization 
within the Mesa programming system. Most of the local structure of Mesa was inspired 
by, and is similar to, that of PASCAL [14] or ALGOL 68 [12], while the global structure 
is more like that of SIMULA 67 [1]. We have chosen features from these and related 
languages selectively, have cast them in a different syntax, and have added a few new 
ideas of our own. All this has been constrained by our need for a language to be used 
for the production of real system software right now. \Ve believe that most of our 
observations are relevant to the languages mentioned above, and others like them, when 
used in a similar environment. We have therefore omitted a comprehensive description 
of Mesa and concentrated on annotated examples that should be intelligible to anyone 
familiar with a similar language. We hope that our experiences will help others who 
are creating or studying such languages. 

An interested reader can find more information about the details of Mesa elsewhere. A 
previous paper [7] addresses issues concerning transfer of control. Another paper [3] 
discusses some more advanced data-structuring ideas. A paper on schemes [8] suggests 
another possible direction of advance. In this paper we shall restrain our desires to 
redesign or extend Mesa and simply describe how we are using the language as currently 
implemented. 

The version of Mesa presented in this paper is one component of a continuing 
investigation into programming methodology and language design. Most major aspects 
of the language were frozen when implementation was begun in the autumn of 1974. 
Although we were dissatisfied with our understanding of certain design issues even 
then, we proceeded with implementation for the following reasons: 

We percei vcd a need for a "state of the art" implementation language within our 
laboratory. It seemed possible to combine some of our ideas into a design that was 
fairly conservative, but that would still dominate the existing and proposed 
alternatives. 

We wanted feedback from a community of users, both to evaluate those ideas that 
were ready for implementation and to focus subsequent research on problems 
actually encountered in building real systems. 
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We had accumulated a backlog of ideas about implementation techniques that we 
were anxious to try. 

It is important to understand that we have consciously decided to attempt a complete 
programming system for demanding and sophisticated users. Their own research 
!Jrojects were known to involve the construction of "state of the art" programs, many of 
which tax the limits of available computing resources. These users are well aware of 
the capabilities of the underlying hardware, and they have developed a wide range of 
programming styles that they have been loath to abandon. Working in this 
environment has had the following consequences: 

We could not afford to be too dogmatic. The language design is conservative and 
permissive; we have attempted to accommodate old methods of programming as well 
as new, even at some cost in elegance. 

Efficiency is important. Mesa reflects the general properties of existing machines 
and contains no features that cannot be implemented efficiently (perhaps with some 
microcode assistance); for example, there is no automatic garbage collection. 

A cross-compiler for Mesa became operational in the spring of 1975. We used it to 
build a small operating system and a display-oriented symbolic debugger. By earty 
1976, it was possible to run a system built entirely in Mesa on our target machine, and 
rewriting the compiler in its own language was completed in the summer of 1976. The 
basic system, debugger, and compiler consist of approximately 50,000 lines of Mesa 
code, the bulk of which was written by four people. Sincemid-1976, the community of 
users and scope of application of Mesa have been expanding rapidly, but its most 
experienced and demanding users are still its implementers. It is in this context that we 
will try to describe our experiences and to suggest some tentative conclusions. 
Naturally, we have discovered some bugs and omissions in the design, and the 
implemented version of the language is already several years from the frontiers of 
research. We have tried to restrain our desire to redesign, however, and we report on 
Mesa as it is, not as we now wish it were. 

The paper begins with a brief overview of Mesa's module structure. The uses of types 
and strict type checking in Mesa are then examined in some detail. The facilities for 
defining data structures are summarized, and an abstract description of the Mesa type 
calculus is presented. We discuss the rationale and methods for breaching the type 
system and illustrate them with a "type-strenuous" example that exploits several of the 
type system's interesting properties. A final section discusses the difficulties of 
handling variant records in a type-safe way. 

2. Modules 

Modules provide a capability for partItioning a large system into manageable units. 
They can be used to encapsulate abstractions and to provide a degree of protection. In 
the design of Mesa, we were particularly influenced by the work of Parnas [10]. who 
proposes information hiding as the appropriate criterion for modular decomposition, 
and by the concerns of Morris [9] regarding protection in programming languages. 
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Module Structure 

Viewed as a piece of source text, a module is similar to an ALGOL procedure declaration 
or a SIMULA class definition. It typically declares a collection of variables that provide 
a localized data base and a set of procedures performing operations upon that data 
base. Modules are designed to be compiled independently, but the declarations in one 
module can be made visible during the compilation of another by arranging to 
reference the first within the second by a mechanism called inclusion. To decouple the 
internal details of an implementation from its abstract behavior, Mesa provides two 
kinds of modules: definitions and programs. 

A definitions module defines the interface to an abstraction. It typically declares some 
shared types and useful constants, and it defines the interface by naming a set of 
procedures and specifying their input/output types. Definitions modules claim no 
storage and have no existence at run-time. Included modules are usually definitions 
modules, but they need not be. 

A program module provides the concrete implementation of an abstraction; it declares 
variables and specifies bodies of procedures. There can be a one-to-many relation 
between definitions modules and concrete implementations. At run-time, one or more 
instances of a module can be created, and a separate frame (activation record) is 
allocated for each. In this respect, module instances resemble SIMULA class objects. 
Unlike p.rocedure instances, the lifetimes of module instances are not constrained to 
follow any particular discipline. Communication paths among modules are established 
dynamically as described below and are not constrained by, e.g., compile-time or 
fun-time nesting relationships. Thus lifetimes and access paths are completely 
decoupled. 

The following skeletal Mesa modules suggest the general form of a definitions module 
and one of its implementers: 

Abstraction: DEFINITIONS = 
BEGIN 

it: TYPE = rt: TYPE = 
p: PROCEDURE; 
pI: PROCEDURE [INTEGER ]; 

pi: PROCEDURE [it] RETURNS [rt]; 

END 

Implementer: PROGRAM IMPLEMENTING -Abstraction = 
BEGIN OPEN Abstraction; 
x: INTEGER; 

p: PUBLIC PROCEDURE = <code for p>; 
pI: PUBLIC PROCEDURE [i: INTEGER] = <code for pI); 

pi: PUBLIC PROCEDURE [x: it] RETURNS [y: rt] = <code for pi>; 

END 
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Longer but more complete and realistic examples can be found in the discussion· of 
ArrayStore below; ArraySloreDe/s and ArraySlore correspond to Abstraction and 
I mplementer respectively. 

Mesa allows specification of attributes that can be used'to control intermodular access 
to identifiers. In the definition of an abstraction, some types or record fields are of 
legitimate concern only to an implementer, but they involve or are components of other 
types that are parts of the advertised interface to the abstraction. Any identifier with 
the attribute PRIVATE is visible only in the module in which it is declared and in any 
module claiming to implement that module. Subject to the ordinary rules of scope, an 
identifier with the attribute PUBLIC is visible in any module that includes and opens the 
module in which it is declared. The PUBLIC attribute can be restricted by specifying the 
additional attribute READ-ONLY. By default, identifiers are PUBLIC in definitions 
modules and PRIVATE otherwise. 

In the example above, Abstraction contains definitions of shared types and enumerates 
the elements of a procedural interface. Implementer lIses those type definitions and 
provides the bodies of the procedures; the compiler will check that an actual procedure 
with the same name and type is supplied for each public procedure declared in 
Abstraction. 

A module that uses an abstraction is called a client of that abstraction. Interface 
definitions are obtained by including the Abstraction module. Any instance of a client 
must be connected to an instance of an appropriate implementer before the actual 
operations of the abstraction become available. This connection is called binding, and 
there are several ways to do it. 

Binding Mechanisms 

When a relatively static and purely procedural interface between modules is acceptable, 
the connection can be made in a conventional way_ Consider the following skeleton: 

Clientl: PROGRAM = 
BEGIN OPEN Abstraction; 

pX: EXTERNAL PROCEDURE; 

prJ; px[]; 

END. 

A client module can request a system facility called the binder to locate and assign 
appropriate values to all external procedure names, such as px. The binder follows a 
well-defined binding path from module instance to module instance. When the binder 
encounters an actual procedure with the same name as, and a type compatible with, an 
external procedure, it makes the linkage. The compiler automatically inserts an 
EXTERNAL procedure declaration for any procedure identifier, such as p, that is 
mentioned by a client but defined only in an included definitions module. The binder 
also checks that all identifiers from a single definitions module are bound consistently 
(Le. to a single implementer). 
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The observant reader will have noticed that this binding mechanism and the 
undisciplined lifetimes of module instances leave Mesa programs vulnerable to dangling 
reference problems. We are not happy about this, but so far we have not observed any 
serious bugs attributable to such references. 

As an alternate binding mechanism, Mesa supports the SIMULA paradigm as suggested 
by the following skeleton (which assumes that x is a public variable): 

Client2: PROGRAM = 
BEGIN OPEN Abstraction; 
frame: POINTER TO FRAME[lmplementer] ~ NEW Implementer; 

framet.x ~ 0; 
framet .p[]; 

END. 

Here, the client creates an instance of Implementer directly. Through a pointer to the 
frame of that instance, the cI ient can access any public variable or invoke any public 
procedure. Note that the relevant declarations are in I mplemenler; the Abstraction 
module is included only for type definitions. Some of the binding has been moved to 
compile-time. In return for a wider, not necessarily procedural interface (and 
potentially more efficient code), the client has committed himself to using a particular 
implementation of the abstraction. 

Because Mesa has procedure variables it is possible for a user to create any binding 
regime he wishes simply by writing a program that distributes procedures. Some users 
have created their own version OfSIMULA classes. They have not used the binding 
mechanism described above for a number of reasons. First, the actual implementation 
of an abstract object is sometimes unknown when a program is compiled or 
instantiated; there might be several coexisting implementations, or the actual 
implementation of a particular object might change dynamically. Their binding scheme 
deals with such situations by representing objects as record structures with 
procedure-valued fields. The basic idea was described in connection with the 
implementation of streams in OS6 [11]: some fields of each record contain the state 
information necessary to characterize the object, while others contain procedure values 
that implement the set of operations. If the number of objects is much larger than the 
number of implementations, it is space-efficient to replace the procedure fields in each 
object with a link to a separate record containing the set of values appropriate to a 
particular implementation. When this binding mechanism is used, interface 
specifications consist primarily of type definitions as suggested by the following 
skeleton: 



ObjectAbstraction: DEFINITIONS = 
BEGIN 
Handle: TYPE = POINTER TO Object; 
Object: TYPE = RECORD [ 

ops: POINTER TO Operations, 
state: POINTER TO Object Record, 
... J; 

Operations: TYPE = RECORD [pI: PROCEDURE [Handle, INTEGER], ••• J; 
END. 

6 

A client invokes a typical operation by writing handlet.opst.pl[handle, xJ where 
handle is of type Handle. 

Observations 

We believe that we could not have built the current Mesa system if we had been forced 
to work with large, logically monolithic programs. Assembly language programmers are 
well aware of the benefits of modularity, but many designers of high level 
programming languages pay little attention to the problems of independent compilation 
and instantiation. Since these capabilities will be grafted on anyway, they should be 
anticipated in the original design. We have more to say about interface control in our 
discussion of types, but it is hard to overestimate the value of articulating abstractions, 
centralizing their definitions, and propagating them through the inclusion mechanism. 
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3. The Mesa Type System 

Strict vs. non-strict type checking 

A widely held view is that the purpose of type declarations is to allow one to write 
m0re succinct programs. For example, the ALGOL 60 declarations 

real x,,; integer iJ; 

allow one to attach two different interpretations to the symbol "+" in the expressions 
x+y and i+j. Similarly, the declaration 

x: REcoRo[a: [0 .. 7], b: [0 .• 255]] 

permits one to write x.a and x.b in place of descriptions of the shifting and masking 
that must occur. Descriptive declarations also allow utility programs such as debuggers 
to display values of variables in a helpful way when the type is not encoded as part of 
the value. 

This view predominated in an earlier version of Mesa. Type declarations were used 
primarily as devices to improve the expressive power and readability of the language. 
Types were ignored by the compiler except to discover the number of bits involved in 
an operation. In contrast, the current version of Mesa checks type agreement as 
rigorously as languages such as PASCAL or ALGOL 68, potentially rendering compile-time 
complaints in great volume. This means in effect that the language is more redundant, 
since there are fewer programs acceptable to the compiler. 

What benefit do we hope to gain by stricter checking and the attendant obligations on 
the programmer? We expect that imposing additional structure on the data space of 
the program and checking it mechanically will make the modification and maintenance 
of programs easier. The type system allows us to write down certain design decisions. 
The type checker is a tool that is used to discover violations of the conventions implied 
by those decisions without a great expenditure of thought. 

Type Expressions 

Mesa provides a fairly conventional set of expressions for describing types; detailed 
discussions of the more important constructors are available elsewhere [3]. We shall 
attempt just enough of an introduction to help in reading the subsequent examples and 
concentrate upon the relations among types. 

There is a set of predefined basic types and a set of type operators which construct new 
types. The arguments of these operators may be other types, integer constants, or 
identifiers with no a priori meanings. Most of the operators are familiar from 
languages such as PASCAL or ALGOL 68, and the following summary emphasizes only the 
differences. 
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Basic Types 

The basic types are INTEGER, BOOLEAN, CHARACTER, and UNSPECIFIED, the last of which 
is a one-word, wild card type. 

Enumerated Types 

If aI' a2, ... , an are distinct identifiers, the form {aI' O2, ... , an} denotes an ordered 
type of which the identifiers constantly denote the allowed values. 

Unique Types 

If n is a manifest (compile-time) constant of type INTEGER, the form UNIQUE[n] 

denotes a type distinct from any other type. The value of n determines the amount 
of storage allocated for values of that type, which are otherwise uninterpreted. Its 
use is illustrated by the ArrayStore example in Section 4. 

Record Types 

If T l' T 2' ... Tn are types and 11' ... , In are distinct identifiers, then the form 
RECORD[/1: T l' 12: T 2' .•• , In: Tn] denotes a record type. The fi are called field 
sele·ctors. As usual, the field selectors are used to access individual components; in 
addition, linguistic forms called constructors and extractors are available for 
synthesizing and decomposing entire records. The latter forms allow either keyword 
notation, using the field names, or positional notation. Intermodule access to 
individual fields can be controlled by specifying the attributes PUBLIC, PRIVATE, or 
READ-ONLY; if no such attributes appear, they are inherited from the enclosing 
declaration. Some examples: 

Thing: TYPE = RECORD [n: INTEGER, p: BOOLEAN]; 

v: Thing; i: INTEGER; b: BOOLEAN; 

IF v.p THEN v.n +- v.n + 1; -- field selection 
v +- [100, TRUE]; -- a positional constructor 
v +- [p: b, n: i]; -- a keyword constructor 
[n:i, p:b] +- v; -- the inverse extractor. 

Pointer Types 

If T is a type, the form POINTER TO_ T denotes a ,pointer type. If x is a variable of 
that type, then xt dereferences the pointer and designates the object pointed to, as 
in PASCAL. If v is of type T then @v is its address with type POINTER TO T. The 
form POINTER TO READ-ONLY T denotes a similar type; however, values of this type 
cannot be used to change the indirectly referenced object. Such pointer types were 
introduced so that objects could be passed by reference across module interfaces 
with assurance that their values would not be modified. 
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Array Types 

If T j and Tc are types. the form ARRAY T j OF Tc denotes an array type. T j must be a 
finite ordered type. An array a maps an index i from the index type T j into a value 
a[;] of the component type Tc. If a is a variable. the mapping can be changed by 
ass ign men t to a[ i]. 

Array Descriptor Types 

If T j and Tc are types. the form DESCRIPTOR FOR ARRAY T j OF Tc denotes an array 
descriptor type. T j must be an ordered type. An array descriptor value provides 
indirect access to an array and contains enough auxiliary information to determine 
the allowable indices as a subrange of T i . 

Set Types 

If T is a type, the form SET OF T denotes a type. values of which are the subsets of 

the set of values of T. T must evaluate to an enumerated type. 

Transfer Types 

If ~ l' ... T j , Tj , •.. Tn are types and fl' ...• fit fj, ...• fn are distinct identifiers, then the 
form PROCEDURE [f1: T l' .•. , fi: T j ] RETURNS [fj: Tj , ... f n: Tn] denotes a procedure 
type. Each non-local control transfer passes an argument record; the field 1ists 
enclosed by the paired brackets, if not empty, implicitly declare the types of the 
records' accepted and returned by the procedure [7]. If x has some transfer type, a 
control transfer is invoked by the evaluation of x[ e1 • ••. , ej ]. where the bracketed 
expressions are used to construct the input record,and the value is the record 
constructed in preparation for the transfer that returns control. 

The symbol PROCEDURE can be replaced by several alternatives that specify different 
transfer disciplines with respect to name binding. storage allocation, etc .• but the 
argument transmission mechanism is uniform. Transfer types are full-fledged 
types; it is possible to declare procedure variables and otherwise to manipulate 
procedure values, which are represented by procedure descriptors. Indeed, some of 
the intermodule binding mechanisms described previously depend crucially upon the 
assignment of values to procedure variables. ' 

Subrange Types 

If T is INTEGER or an enumerated type, and m and n are manifest constants of that 
type, the form T[m .. n] denotes a finite, ordered subrange type for which any legal 
value x satisfies m < x <n. If T is INTEGER, the abbreviated form [m .. n] is 
accepted. These types are especially useful as the index types of arrays. Other 
notational forms. e.g. [m .. n), allow intervals to be open or closed at either endpoint. 

Finally, Mesa has adapted PASCAL's variant record concept to provide values whose 
complete type can only be known after a run-time discrimination. Because they are of 
more than passing interest. variant records are discussed separately in Section 5. 
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Declarations and Definitions 

The form 

v: Thing +- e 

declares a variable v of type Thing and initializes it to the value of e; the form 

v: Thing = e 

is similar except that v cannot be assigned to subsequently. When e itself is a manifest 
constant, this form makes v into such a constant also. 

This syntax is used for the introduction of new type names, using the special type 
TYPE. Thus 

Thing: TYPE Type Express;on 

introduces Thing. This approach came from ECL [13], in which a type is a value that 
can be computed by a running program and then used to declare variables. In Mesa, 
however, TypeExpression must be constant. 

Recursive type declarations are essential for describing most list structures and are 
allowed more generally whenever they make sense. To accommodate mutually recursive 
list structure, forward references to type identifiers are allowed and do not yield 
"uninitialized" values. (This is to be contrasted with forward references to ordinary 
variables.) In effect, all type expressions within a scope are evaluated simultaneollsly. 
Meaningful recursion in a type declaration usually involves the type constructor 
POINTER; in corresponding values, the recursion involves a level of indirection and can 
be terminated by the empty pointer value NIL. Recursion that is patently meaningless is 
rejected by the ,compiler; for example 

r: TYPE = RECORD [left, right: r] . 

a: TYPE = ARRAY [0 .. 10) OF s; 
not permitted 

s: TYPE = RECORD [i: INTEGER, m: a] -- not permitted. 

Similar pathological types have been noted and prohibited in ALGOL 68 [6]. 

Equivalence of Type Expressions 

One might expect that two identical type expressions appearing in different places in 
the program text would always stand for the same type. In ALGOL 68 they do. In Mesa 
(and certain implementations of PASCAL) they do not. Specifically, the type operators 
RECORD, UNIQUE, and { ... } generate new types whenever they appear in the text. 

The original reasons for this choice are not very important, but we have not regretted 
the following consequences· for records: 
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All modules wishing to communicate using a shared record type mllst obtain the 
definition of that type from the same source. In practice, this means that all 
definitions of an abstraction tend to come from a single module; there is less 
temptation to declare scattered, partial interface definitions. 

Tests for record type equivalence are cheap. In our experience, most record types 
contain references to other record types, and this linking continues to a considerable 
depth. A recursive definition of equivalence would, in the worst case, require 
examining many modules unknown and perhaps unavailable to the casual user of a 
-record type or, alternatively, copying all type definitions supporting a particular 
type into the symbol table of any module mentioning that type. 

The rule for record equivalence provides a mechanism for sealing values that are 
distributed to clients as passkeys for later transactions with an implementer. 
Suppose that the following declaration occurs in a definitions module: 

Handle: PUBLIC TYPE = RECORD [value: PRIVATE Thing]. 

The PRIVATE attribute of value is overridden in any implementer of Handle. A 
client of that implementer can dedare variables of type Handle and can store or 
duplicate values of that type. However, there is no way for the client to construct a 
counterfeit Handle without violating the type system. Such sealed types appear to 
provide a basis for a compile-time capability scheme [2]. 

Finally, this choice has not caused discomfort because programmers are naturally 
inclined to introduce names for record types anyway. 

The case for distinctness of enumerated types is much weaker; we solved the problem 
of the exact relationships among such types as {a, b, e}, {e, b, a}, {a, e}, {aa, b, ee}, 
etc., by specifying that all these types are distinct. In this case, we are less happy that 
identical sequences of symbols construct different enumerated types. 

Why did we not choose a similar policy for other types? It would mean that a new 
type identifier would have to be introduced for virtually every type expression, and we 
found it to be too tedious. In the case of procedures we went even further in 
liberalizing the notion of equivalence. Even though the formal argument and result 
lists are considered to be record declarations, we not only permit recursive matching 
but also ignore the field selectors in doing the match. We were unwilling to abandon 
the idea that procedures are mappings in which the identifiers of bound variables are 
irrelevant. We also had a pragmatic motivation. In contrast to records, where the type 
definitions cross interface boundaries, procedural communication among modules is 
based upon procedure values, not procedure types. Declaring named types for all 
interface procedures seemed tiresome. Fortunately, all argument records are constructed 
in a standard way, so this view causes no implementation problems. 

To summarize, we state an informal algorithm for testing for type equivalence. Given 
one or more program texts and two particular type expressions in them: 

1. Tag each occurrence of RECORD, UNIQUE, and { ... } with a distinct number. 
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2. Erase all the variable names in formal parameter and result I ists of procedures. 

3. Proceed to compare the two expressions. replacing type identifiers with their 
defining expressions whenever they are encountered. If a difference (possibly in 
a tag attached in step 1) is ever encountered. the two type expressions are not 
equivalent. Otherwise they are equivalent. 

The final step appears to be a semi-decision procedure since the existence of recursive 
types makes it impossible to eliminate all the identifiers. In fact, it is always possible 
to tell when one has explored enough (cf. [5], Section 2.3.5, Exercise 11). 

Coercions 

To increase the flexibility of the type system Mesa permits a variety of implicit type 
conversions beyond those implied by type equivalence. They fall into two categories: 
free coercions and computed coercions. 

Free Coercions 

Free coercions involve no computation whatsoever. For two types T and S we write T 
k S if any value of type T can be stored into a variable of type S without checking, 
change· of representation, or other computation. (By "store" we mean to encompass 
assignment, parameter, passing, result passing, and all other value transmission.) The 
following recursive rules show how to compute the relation ~, assuming that 
equivalence has already been accounted for. 

1. T ~ T. 

In the following assume that T k S. 

2. T[i .. j] ~ S if i is the minimum value of type S. 
The restriction is necessary because we chose to represent values of a subrange 
type relative to its minimum value. Coercions in other cases require 
computation. Similarly, 

1. T[i .. j] k S[i .. k] iff j < k. 

4. V-llr T k S if var is a variant of T(cf. Section 5). 

5. RECORO[/: T] ~ S for any fiel_d name / unless / has the PRIVATE attribute. 

6. P01NTER TO T k POINTER TO REAO-ONl Y S. 
In other words, one can always treat a pointer as a read-only pointer~ but not 
vice versa. 
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7. POINTER TO READ-ONLY T S POINTER TO READ-ONLY S. 
The relation POINTER TO T S POINTER TO S is not true because it would allow 

ps: POINTER TO S; 
pI: POINTER TO T = @t; 
ps +- pt; 
pst +- s; 

which is a sneaky way of accomplishing tIt ~ s," which is not allowed unless S ~ 
T. 

8. ARRAY I OF T ~ ARRAY I OF S. 
Note that the index sets must be the same. 

9. PROCEDURE [S'] RETURNS [T] ~ PROCEDURE [T'] RETURNS [S] if T' ~ S' as well. 
Here the relation between the input types is the reverse of what one might 
expect. 

Subrange Coercions 

Coercions between subranges require further comment. As others have noted [4], 
associating range restrictions with types instead of specific variables leads to certain 
conceptual problems; however, we wanted to be able to fold range restrictions into more 
complex constructed types. We were somewhat surprised by the subtlety of this 
problem, and OUf initial solutions allowed several unintended breaches of the type 
system. 

Values of an ordered type and all its subranges are interassignable even if they do not 
satisfy case (2) or (3) from above, and this is an example of a computed coercion. 
Code is generated to check that the value is in the proper subrange and to convert its 
representation if necessary. It is important to realize that the relation of computed 
coercability cannot be extended recursively as was done above. Consider the 
declarations 

x: [0 .. 100] +- 15; 

y: [10 .. 20]; 

px: POINTER TO READ-ONLY [0 .. 100] +- @X; 

Py: POINTER TO READ-ONLY [10 .. 20]; 

The assignment y f- X is permitted because x is 15; 5 is stored in y since is value its 
represented relative to 10. However, the assignment py f- px, which rule 7 might 
suggest, is not permitted because the value of x can change and there is no reasonable 
way to generate checking code. Even if the value of x cannot change, we could not 
perform any change in representation because the value 15 is shared. Similar problems 
arise when one considers rules 6, 8, and 9. 
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Other Computed Coercions 

Research in programming language design has continued in paranel with our 
implementation work, and some proposals for dealing with uniform references [3] and 
generalizations of classes [8] suggested adding the following computed coercions to the 
!anguage: 

Dereferencing: POINTER TO T ~ T 

Deproceduring: PROCEDURE RETURNS T -+ T 

Referencing: T -+ POINTER TO T . 

Initially we had intended to support contextually implied application of these coercions 
much as does ALGOL 68. Reactions of Mesa's early users to this proposal ranged from 
lukewarm to strongly negative. In addition, the data structures and accounting 
algorithms necessary to deduce the required coercions and detect pathological types 
substantially complicated the compiler. We therefore decided to reconsider our 
decision even after the design and some of the implementation had been done. The 
current language allows subrange coercion as described above. There is no uniform 
support for other computed coercions, but automatic dereferencing is invoked by the 
operators for field extraction and array indexing. Thus such forms as pt.! and att[i], 
which are common when indirection is used extensively, may be written as p.! and a[i]. 

There are hints of a significant problem for language designers here. Competent and 
experienced programmers seem to believe that coercion rules make their programs less 
understandable and thus less reliable and efficient. On the other hand, techniques 
being developed with the goal of decreasing the cost of creating and changing programs 
seem to build heavily upon coercion. Our experience suggests that such work should 
proceed with caution. 

Why is coercion distrusted? Our discllssions with programmers suggest that the reasons 
include the following: 

Mesa programmers are familiar with the underlying hardware and want to be 
aware of the exact consequences of what they write. 

Many of them have been burned by forgotten indirect bits and the like in 
previous programming and are suspicious of any unexpected potential for side 
effects. 

To some extent, coercion negates the advantages of type checking. One view of 
coercion is that it corrects -common type errors, and some of the detection 
capability is sacrificed to obtain the correction. 

We conjecture that the first two objections win dimjnish as programmers learn to think 
in terms of higher-level abstractions and to use the type checking to advantage. 

The third objection appears to have some merit. We know of no system of coercions in 
which strict type check i-ng can 'be trusted to flag all coercion errors, and such errors are 
likely to be especially subtle and persistent. The difficulties seem to arise from the 
interactions of coercion with generic operators. In ALGOL 68, there are rules about 
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Itloosely related" types that are intended to avoid this problem, but the identity 
operators still suffer. With the coercion rules that had been proposed for Mesa, the 
following trap occurs. Given the declaration p, q: POINTER TO INTEGER, the Mesa 
expressions pt = qt and 2* p = 2* q would compare integers and give identical results; 
on the other hand, the expression p = q would compare pointers and could give a quite 
different answer. In the presence of such traps, we believe that most programmers 
would resolve to supply the 1t1''' always. If this is their philosophY,coercions can only 
hide errors. Even if such potentially ambiguous expressions as p = q were disallowed, 
this example suggests that using coercion to achieve representational independence can 
easily destroy referential transparency instead. 
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4. Experiences with strict type checking 

It is hard to give objective evidence that increasing compile-time checking has 
materially helped the programming process. We believe that it will take more effort to 
get one's program to compile and that some of the effort eliminates errors that would 
have shown up during testing or later, but the magnitude of these ~ffects is hard to 
measure. All we can present at the moment are testimonials and anecdotes. 

A testimonial 

Programmers whose previous experience was with unchecked languages report that the 
usual fear and trepidation that accompanied making modifications to programs has 
substantially diminished. Under previous regimes they would never change the number 
or types of arguments that a procedure took for fear that they would forget to fix all of 
the calls on that procedure. Now they know that all references will be checked before 
they try to run the program. 

An anecdote 

The following kind of record is used extensively in the compiler 

RelativePtr: TYPE = [0 .. 377778]; 

TaggedPtr: TYPE = RECORD[tag: {to,tl ,t2,t}}, ptr: RelativePtr]. 

This record consists of a two-bit tag and a 14-bit pointer. As an accident of the 
compiler's choice of representation, the expressions x and Tagged Ptr[to'x] generated 
the same internal value. The non-strict type checker considered these types equivalent, 
and unwittingly we used TaggedPtrs in many places actually requiring RelativePtrs. As 
it happened, the tag in these contexts was always to. 

The compiler was working well, but one day we made the unfortunate decision to 
redefine TaggedPtr to be 

This caused a complete breakdown, and we hastily unmade that decision because we 
were unsure about what parts of the code were unintentionally depending upon the old 
representation. Later, when we submitted a transliteration of the compiler to the strict 
type checker we found ~Il the places where this error had been committed. Nowadays~ 

making such a change is routine. In general, we believe that the benefits of static 
checking are significant and cost-effective once the programmer learns how to use the 
type system effectively. 

A shortcoming 

The type system is very good at detecting the difference in usage between T and 
POINTER TO T; however, programmers often use array indices as pointers, especially 
when they want to perform arithmetic on them. The difference between an integer 
used as a pointer and an integer llsed otherwise is invisible to the type checker. For 
example, the declaration 
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map: ARRAY [i .. j] OF INTEGER[m •• n]; 

defines a variable map with the property that compile-time type checking cannot 
distinguish between legitimate uses of k and map[k]. Furthermore, if m S i and j < 
n, even a run-time bounds check could never detect a use of k when map[k] was 
intended. We have observed several troublesome bugs of this nature and would like to 
change the language so that indiGes of different arrays can be made into distinct types. 

Violating the type system 

One of the questions often asked about languages with compile-time type checking is 
whether it is possible to write real programs without violating the type system. It goes 
without saying that one can bring virtually any program within the confines of a type 
system by methods analogous to the silly methods for eliminating goto's; e.g., simulate 
things with integers. However, our experience has been that it is not always desirable 
to remain within the system, given the realities of programming and the restrictiveness 
of the current language. There are three reasons for which we found it desirable to 
evade the current type system. 

Sometimes the violation is logically necessary. Fairly often one chooses to 
implement part of a language's run-time system in the language itself. There are 
certain things of this nature that cannot be done in a type-safe way in Mesa, or any 
other'strictly type-checked language we know. For example, the part of the system 
that takes the compiler's output and creates values of type PROCEDURE must exercise 
a rather profound loophole in turning data into program. Another example, 
discussed in detail below, is a storage allocator. Most languages with compile-time 
checking submerge these activities into the implementation and thereby avoid the 
need for type breaches. 

Sometimes efficiency is more important than type safety. In many cases the way to 
avoid a type breach is to redesign a data structure in a way that takes more space, 
usually by introducing extra levels of pointers. The section on variant records gives 
an example. 

Sometimes a breach is advisable to increase type checking elsewhere. Occasionally 
a breach could be avoided by declaring two distinct types to be the same but 
merging them would reduce a great deal of checking elsewhere. The ArrayStore 
example below illustrates this point. 

Given these considerations, we chose to allow occasional breaches of the type system, 
making them as explicit as possible. Th~ advantages of doing this are two-fold. First, 
making breaches explicit makes them less dangerous since they are clearer to the 
reader. Second, their occurrences provide valuable hints to a language designer about 
where the type system needs improvement.' 

One of the simplest ways to breach the Mesa type system is to declare something to be 
UNSPECIFiED. The type checking algorithm regards this as a one-word, don't-care type 
that matches any other one word type. This is similar to PL/l'S UNSPEC. We have come 
to the conclusion that lIsing UNSPECIFIED is too drastic in most cases .. One lIsuaJ1y wants 
to turn off type checking in only a few places involvi ng a particular variable, not 
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everywhere. In practice there is a tendency to use UNSPECIFIED in the worst possible 
way: at the interfaces of modules. The effect is to turn off type checking in other 
peoples' modules without their knowing it! 

As an alternative, Mesa provides a general type transfer function, RECAST, that (without 
rerforming any computation) converts between any two types of equal size: It can 
often be used instead of UNSPECIFIED. In cases where we had declared a particular 
variable UNSPECIFIED, we now prefer to give it some specific type and to use RECAST 

whenever it is being treated in a way that violates the assumptions about that type. 

The existence of RECAST makes many decisions much less painful. Consider the type 
CHARACTER. On the one hand we would like it to be disjoint from INTEGER so that 
simple mistakes would be caught by the type checker. On the other hand, one 
occasionally needs to do arithmetic on characters. We chose to make CHARACTER a 
distinct type and use RECAST in those places where character arithmetic is needed. Why 
reduce the quality of type checking everywhere just to accommodate a rare case? 

Pointer arithmetic is a popular pastime for system programmers. Rather than 
outlawing it, or even requiring a RECAST, Mesa permits it in a restricted form. One can 
add or subtract an integer from a pointer to produce a pointer of the same type. One 
can subtract two pointers of the same type to produce an integer. The need for more 
exotic arithmetic has not been observed. 

Here is a typical example: it is common to use a large contiguous area of memory to 
hold a data structure consisting of many records; e.g., a parse tree. To conserve space 
one would like to make all pointers relative to the start of the area, thus reducing the 
size of pointers that are internal to the structure. Furthermore, one might like to move 
the entire area, possibly via secondary storage. These needs would be met by an 
unimplemented feature called the tied pointer. The idea is that a certain type of 
pointer would be made relative to a designated base value and this value would be 
added just before dereferencing the pointer. In other words, if ptr were declared to be 
tied to base then plrt actually would mean (base+ptr)t. Since tied pointers have not 
yet been implemented, this notation is in fact used extensively within the Mesa 
compiler. Subsequent versions of Mesa will include tied pointers, and this temporary 
loophole will be reconsidered. 

The Skeleton Type System 

Once we provided the opportunity for evading the official type system, we had to ask 
ourselves just why we thought certain breaches were safe while others were not. 
Ultimately, we came to the conclusion .that the only really dangerous breaches of the 
type system were those that require detailed knowledge of the run-time environment. 
First and foremost, fabricating a procedure value requires a detailed understanding of 
how various structures in memory are arranged. Second, pointer types also depend on 
various memory structures being set up properly and should not be passed through 
loopholes without some care. In contrast, the distinction between the two types RECORD 

[a,b: INTEGER] and RECORD[C,d: INTEGER] is not vital to the run-time system's integrity. 
To be sure, the user might wish to keep them distinct, but using a loophole to store one 
into the other would go entirely unnoticed by the system. 
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The present scheme that is used to judge the appropriateness of RECAST transformations 
merely checks to ensure that the source and destination types occupy the same number 
of bits. Since most of the code invoking RECAST has been written by Mesa 
implementers, this simplified check has proved to be sufficient. However. as the 
community of users has grown, we have observed a justifiable anxiety over the use of 
RECAST. Users fear that unchecked use of this escape will cause a violation of some 
system convention unknown to them. 

We are in the process of investigating a more complete and formal skeletal type system 
that will reduce the hazards of the present RECAST mechanism. Its aim is to ensure that 
although a RECAST may do great violence to user-defi ned type conventions, the system's 
type integrity will not be violated. 

Example -- A compacting storage allocator 

A module that provides many arrays of various sizes by parceling out pieces of one 
large array is an interesting benchmark for a systems programming language for a 
n urn ber of reasons: 

a. It taxes the type system severely. We must deal with an array containing variable 
length, heterogeneous objects, something one can't declare in Mesa. 

b. The clients of the allocator wish to use it for arrays of differing types. This is a 
familiar polymorphism problem. 

c. As a programming exercise, the module can involve intricate pointer 
manipulations. We would like help to prevent programming errors such as the 
ubiqui tous address/contents confusion. 

d. A nasty kind of bug associated with the use of such packages is the so-called 
dangling reference problem: someone might' use some space after he has 
reI inquished it. 

e. Another usage bug, peculiar to compacting allocators, is that a client might retain 
a pointer to storage that the compacter might move. 

The first two problems make it impossible to stay entirely within the type system. 
One's first impulse is to declare everything unspecified and proceed to program as in 
days of yore. The remaining problems are real ones, however, and we are reluctant to 
turn off the entire type system just when we need it most. The following is a 
com prom ise sol ution: 

To deal with problem (a) we shall have two different ways of talking about the array to 
be parceled out, which we shall call Storage. From a client's point of view the storage 
is accessible through the definitions shown in the module ArrayStoreDefs. (cf. Figure 1) 



Arra),StoreDe/s. DEFINITIONS = 
BEGIN 

ArrayPrr: TYPE = POINTER TO PR; 
PR: TYPE = POINTER TO R; 
R: TYPE = RECORD [ p: Prefix. 

a: ARRAY [O .. OJ OF Thing J; 
Prefix: TYPE = RECORD [ backp: PRIVATE ArrayPrr, 

length: READ-ONLY INTEGER ]; 

Thing: TYPE = UNIQUE[16]; 

AllocArray: PROCEDURE [length: INTEGER] 

RETURNS [new: ArrayPtrJ; 
FreeArray: PROCEDURE [dying: ArrayPtr]; 
END 

Figure I. Definitions Module 
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These definitions suggest that the client can get ArrayPtrs (Le. pointers to pointers' to 
array records) by calling AllocArray and can relinquish them by calling PreeArray. The 
PRIVATE attribute on backp means that he cannot access that field at all. The READ-ONLY 

attribute on length means that he cannot change it. Of course these restrictions do not 
apply to the implementing module. The type Thing occupies 16 bits of storage (one 
word) and matches no other type. Intuitively, it is our way of faking a type variable. 
The implementing module ArrayStore is shown in Figure 2. It declares the array 
Storage to create the raw material for allocation. We chose to declare its element type 
UNSPECIFIED. This means that every transaction involving Storage is an implicit 
invocation of a loophole. Specifically the initializations of beginSlorage and 
endStorage store pointers to UNSPECIFIED into variables declared as pointers to R. 

The general representation scheme is as follows: the storage area [beginStorage •. nexlR) 
consists of zero or more Rs, each with the form < backp, length, eo' ... , e(lenglh-l» ' 
where length varies from sequence to sequence. The array represented by the record is 
<eo' ... , e(lengLh-l»' If backp is not NIL then backp is an address in Table and backpt is 
the address of backp itself. If Table[i] is not NIL, it is the address of one of these 
records. (cf. Figure 3) 

After the initialization, Storage is not mentioned again. All the subsequent type 
breaches in ArrayStore are of the pointer arithmetic variety. The expression 
endStorage-nextR in AllocArray subtracts two PR's to produce an integer. The type 
checker is not entirely asleep here: if we slipped up and wrote 

IF n+ovh > endStorage-n 

there would be a complaint, because the left hand side of the comparison is an integer 
and the right is a PR. The assignment 

nexlR +- nextR+(n+ovh) 

at the end of AllocArray also uses the pointer arithmetic breach. The rule PR+INTEGER 

= PR makes sense here because n+ov/z is just the right amount to add to nextR to 
produce the next place where an R can go. 



DIRECTOHY ArrayStoreDefs: FROM "ArrayStoreDefs"; 
DEFINITIONS FROM ArrayStoreDe!s. 

ArrayStore: PROGRAM IMPLEMENTING ArrayStoreDefs = 
BEGIN 

Storage: ARRAY [O .. StorageSize) OF UNSPECIFIED; 

StorageSize : INTEGER = 2000; 
Table: ARRAY Tablelndex OF PR; 
Tablelndex: TYPE = [O .• TableSize); 
TableSize: INTEGER = 500; 
beginStorage: PR = @Storage[O]; 

-- the address of Slorage[O] 
endStorage: PR = @SlOrage[SlOrageSizc]; 
nextR: PR f- beginS/Drage; -- next space to put an R 
beginTable: ArrayPtr = @Table[O]; 
endTable: ArrayPtr = @Table[TableSize]; 
ovh: INTEGER = SlzE[Pre!ix]; -- overhead 

AllocArray: PUBLIC PROCEDURE [n: INTEGER] 

RETURNS [new: ArrayPtr] = 
BEGIN i:Tablelndex; 
IF n(O OR n)77777B-ov/z THEN ERROR; 

IF n+ol'h ) endStorage.:.nextR THEN 

BEGIN 

Compact[]; 
IF 'n+ovh ) endStorage- nextR THEN ERROR; 

END; 

-- Find a table entry 
FOR i IN Tablelndex DO 

IF Table[;]=NIL THEN GOTO found 
REPEAT 

found =) new f- @Table[i]: 
FINISHED =) ERROR 

ENDLOOP; 

newt f- nextR; 
-- initialize the array storage 
newt t .p.backp f- new; 
newt t .p.lellgth f- n; 
nextR+-llextR+(n+ovh); 
END; 

Compact: PROCEDURE = (omitted) 

FreeArray: PUBLIC PROCEDURE [dead: ArrayPtr] = 
BEGIN IF deadt=NIL THEN ERROR; -- array already free 
deadt t .p.backp f- NIL; 

deadt ~ NIL; 

END; 

Initialization 
i: Table! ndex; 
FOR i IN Tablelndex DO Table[i] +- NIL ENDLOOP; 

END. 

Figure 2. Implementation of a compacting storage allocator 
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Stora e 

Table 

T 
n 

1 

FREE 

Figure 3. ArrayStor.'s data structure 

Despite all these breaches we are still getting a good deal of checking. The checker 
would point out (or correct) any address/contents confusions we had, manifested by the 
omission of t's or their unnecessary appearance. We can be sure that integers and PKs 
are not being mixed up. In the (unlikely) event that we wrote something like 

newt .p.length +- newt .a[k] 

we would be warned because the value on the left is an integer and the value on the 
right is a Thing. Notice that none of this checking would occur if Thing were replaced 
by UNSPECIFIED. Thus even though the type system is not airtight we are better off than 
we would be in a completely unchecked language (unless, perhaps, we get a false sense 
of security). 

Now let us consider how this module is to be used by a client who wants to manipulate 
two different kinds of arrays: arrays of integers and arrays of strings. At first it looks 
as if his code is going to have a very high density of RECAST'S. For example, to create 
an array and store an integer in it he will have to say 

fA: ArrayPtr = AlIocArray[lOO]; 

fAtt.a[2] +- RECAST[6] 

because the type of fAt t .a[2] is Thing, which doesn't match anything. Writing a 
loophole every time is intolerable, so we are tempted to replace Thing by UNSPECIFIED, 

thereby losing a certain amount of type checking elsewhere. 

There are much nicer ways out of this problem. Rather than passing every array 
element through a loophole, one can pass the procedures AlIocArray and FreeArray 
through loopholes (once, during initialization). The module ArrayClient (Cf. Figure 4) 
shows how this is done. Not only does this save our having to make Thing UNSPECIFIED, 

it allows us to use the type checker to insure that integer arrays contain only integers, 
and that string arrays contain only strings. More precisely, the type checker guarantees 
that every store into fA stores an integer. We must depend upon the correctness of the 
code in ArrayStore, particularly the compactor, to make sure that things stay 
well-formed. 



DIRECTORY ArrayStoreDefs: FROM" ArrayStoreDefs"; 
DEFINITIONS FROM ArrayStoreDefs; 

ArrayClient: PROGRAM = 
BEGIN 

-- Integer array primitives 
IntArray: TYPE = POINTER TO POINTER TO 

RECORD[p: Prefix, a: ARRAY [ 0 .. 0 ] OF INTEGER]; 

AlloclntArray: PROCEDURE [INTEGER] RETURNS [lntArray] 
= RECAST[AllocArray]; 

FreelntArray: PROCEDURE [lntArray] 
=. RECAST[FreeArray]; 

-- String array primitives 
StrArray: TYPE = POINTER TO POINTER TO 

RECORD[p: Prefix, a: ARRAY [0 .. 0] OF STRING]; 

AllocStrArray: PROCEDURE [INTEGER] RETURNS [StrArray] 
= RECAST[AllocArray]; 

FreeStrArray: PROCEDURE [StrArray] 
= RECAST[FreeArray]; 

Gedanken~' PROCEDURE = 
-- This procedure's only role in life is to fail to 
compile if ArrayStore does't have the right sort of 
proced ures. 
BEGIN 

uAII ocA r ray: 
PROCEDURE [INTEGER] RETURNS [UNSPECIFIED] 

= AlIocArray, 
uFreeArray: PROCEDURE [UNSPECIFIED] = FreeArray, 
END; 

-- no type breaches below here 

IA: IntArray = AlloclntArray[lOO]; 
SA: StrArray = AlIocStrArray[lO]; 
i: INTEGER; 

FOR i IN [O . .IAt .p.length) DO IAt .a[i] +- -;/3 ENDLOOP; 

SAt .a[O] +- "zero"; SAt .a[l] +- "one"; SAt .a[2] +

"two"; SAt .a[3] +- "surprise"; SAt .a[ 4] +- "four"; 

FreelntArray[IA]; 
FreeStr Ar ray[ SA]; 
END. 

Figure 4. The client of a compacting allocator 
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This scheme does not have any provIsIons for coping with problem (d), dangling 
reference errors. However, somewhat surprisingly. problem (e) -- saving a raw pointer 
-- cannot happen as long as the client does not commit any further breaches of the 
type system. The trick is in the way we declared f ntArray -- all in one mouthful. That 
makes it impossible for anyone to declare a variable to hold a raw pointer. This is 
because (as mentioned before) every occurrence of the type constructor RECORD 

generates a new type, distinct from all other types. Therefore, even if we should declare 

rawPointer: POINTER TO RECORD [p: Prefix, a: ARRAY[O •• O] OF INTEGER ]; 

we could not perform the assignment rawpointer ... fAt because fAt has a different 
type, even though it looks th~ same. If one cannot declare the type of fAt, it is rather 
difficult to hang onto it for very long. In fact, the compiler has been careful1y 
designed to ensure that no type-checked program can hold such a pointer across a 
procedure call. 

Passing procedure values through loopholes is a rather frightening thing to do. What 
if, by some mischance, AllocArray doesn't have the number of parameters ascribed to it 
by the client? Since we have waved off the type checker to do the assignment of 
AllocArray to AllocfntArray and AllocStrArray, it would not complain. and some 
hard-to-diagnose disaster would occur at run-time. To compensate for this we 
introduce the curious procedure Gedanken, whose only purpose is to fail to compile if 
the number or size of AllocArray's parameters change. The skeleton type system, 
discussed earlier in this section, would obviate the need for this foolishness. 

We would like to emphasize that, although our examples focus on controlled breaches 
of the type system, many rea) Mesa programs do not violate the type system at all. We 
also expect the density of breaches to decrease as the descriptive powers of the type 
system increase. 
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5. Variant records 

Mesa, like PASCAL, has variant records. The descriptive aspects of the two languages' 
notion of variant records are very similar. Mesa, however, also requires strict type 
checking for accessing the components of variant records: To illustrate the Mesa 
variant record facility, consider the following example of the declaration for an 1/0 
stream: 

StreamHandle: TYPE = POINTER TO Stream; 
StreamType: TYPE = {disk, display, keyboard}; 
Stream: TYPE = RECORD [ 

Get: PROCEDURE[StreamHandle] RETURNs[ltem], 

Put: PROCEDuRE[StreamHandle. Item], 
body: SELECT type: StreamType FROM 

disk =) [ 

file: FilePointer, 
position: Position, 
Set Position: PROCEDURE[POINTER TO disk Stream, Position], 
buffer: SELECT size: * FROM 

short = > [b: ShortArray], 
long => rb: LongArray], 
ENDCASE ], 

display => [ 
first: DisplayControlBlock, 
last: DisplayControlBlock, 
position: ScreenPosition, 
nLines: [O.~lOO]], 

keyboard => NULL, 

ENDCASE]; 

The record type has three main variants: disk, display, and keyboard. Furthermore, 
the disk variant has two variants of its own: short and long. Note that the field names 
used in variant subparts need not be unique. The asterisk used in declaring the 
subvariant of disk is a shorthand mechanism for generating an enumerated type for 
tagging variant subparts. 

The declaration of a variant record specifies a type, as usual; it is the type of the whole 
record. The declaration itself defines some other types: one for each variant in the 
record. In the above example. the total number of type variations is six, and they are 
used in the following declarations: 

r: Stream; 
rDisk: disk Stream; 
rDisplay: display Stream; 
rKeyb: keyboard Stream; 
rShort: short disk Stream; 
rLong: long disk Stream; 
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The last five types are called bound variant types. The rightmost name must be the 
type identifier for a variantrecord. The other names are adjectives modifying the type 
identified to their right. Thus, disk modifies the type Stream and identifies a new· 
type. Further, short modifies the type disk Stream and identifies still another type. 
Names must occur in order and may not be skipped. (For instance, short Stream 
would be incorrect since short does not identify a Stream variant.) 

When a record is a bound variant, the components of its variant part may be accessed 
without a preliminary test. For example, the following assignments are legal: 

rDisplay.last +- rDisplay.first; 
rDisk.position +- rShort.position; 

If a record is not a bound variant (e.g., r in the previous section), the program needs a 
way to decide which variant it is before accessing variant components. More 
importantly, the testing of the variant must be done in a formal way so that the type 
checker can verify that the programmer is not making unwarranted assumptions about 
which variant is in hand. For this purpose, Mesa uses a discrimination statement which 
resembles the declaration of the variant part. However, the arms in a discriminating 
SELECT contain statements; and, within a given arm, the discriminated record value is 
viewed as a bound variant. Therefore, within that arm, its variant components may be 
accessed using normal qualification. The following example discriminates on r: 

WITH streamRec: r SELECT FROM 
display => 

BEGIN streamRec.first +- streamRec.last; streamRec.position +- 73; 
streamRec.nLines +- 4; 
END; 

disk => 
WITH diskRec: streamRec SELECT FROM 

short => diskRec.b[O] +- 10; 
long => diskRec.b[O] +- 100; 
ENDCASE; 

ENDCASE => streamrec.put +- slreamrec.newput; 

The expression in the WITH clause must represent either a variant record (e.g. r) or a 
pointer to a variant record. The identifier preceding the colon in the WITH clause is a 
synonym for the record. Within each selection, the type of the identifier is the selected 
bound variant type, and fields specific to the particular variant can be mentioned. 

In addition to the descriptive advantages of bound variant types, the Mesa compiler 
also exploits the more precise declaration of a particular variant to allocate the minimal 
amount of storage for variables declared to be of a bound variant type. For example, 
the storage for r above must be sufficient to contain anyone of the five possible 
variants. The storage for rKeyb, on the other hand, need only be sufficient for storing 
a keyboard Stream. 
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The mutable variant record problem 

The names streamRec and diskRec in the example above are really synonyms in the· 
sense that they name the same storage as r; no copying is done by the discrimination 
operation. This decision opens a loophole in the type system. Given the declaration 

Splodge: TYPE = RECORD [ 
refcount: INTEGER; 
vp: SELECT t: * FROM 

blue => [x: ARRAy[O •• lOOO) OF CHARACTER], 
-red => [item: INTEGER, left, right: POINTER TO Splodge], 
green => [item: INTEGER, next: POINTER TO green Splodge], 
ENDCASE]; 

One can wri te the code 

t: Splodge; 
P: PROCEDURE = BEGIN t +- Sp/odge[O,green[lO, NIL]] END; 

WITH s: t SELECT FROM 

red => BEGIN ••• P[] .... s./eft +- s.right END; 

The procedure P overwrites t, and therefore s, with a green Splodge. The subsequent 
references to s.left and s.right are invalid and will cause great mischief. 

Closing this breach is simple enough: we could have simply followed ALGOL 68 and 
combined the discrimination with a copying operation that places the entire Splodge in 
a new location (s) which is fixed to be red. We chose not to do so for three reasons: 

1. Making copies can be expensive. 

2. Making a copy destroys useful sharing relations. 

3. Th is loophole has yet to cause a problem. 

Consider the following procedure, which is representative of those found throughout 
the Mesa compiler's symbol table processor. 

Add5: PROCEDURE[ x: POINTER TO Sp/odge ] = 

BEGIN y: POINTER TO green Splodge; 
IF X=NIL THEN RETURN; 

WITH s: xt SELECT FROM 

END 

blue => RETURN; 

red => BEGIN s.item +- s.itefh+5; Add5[s.left]; Add5[s.right] END; 

green => 

BEGIN Y +- @s; -- means y +- x 
UNTIL Y = NIL DO 

END 

yt .item +- yt .item + 5; y +- yt .next; 
ENDLOOP; 

END CASE; 
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As it stands, this procedure runs through a Splodge adding 5 to all the integers in it. 
Suppose we chose to copy while discriminating: i.e., suppose xt were copied into some 
new storage named s. In the blue arm a lot of space and time would be wasted copying 
a 1000 character array into s, even though it was never used. In the red arm the 
assignment to SIS item field is useless since it doesn't affect the original structure. 

The green arm illustrates the usefulness of declaring bound variant types like green 
Splodge explicitly. If we had to declare yand the next field of a green Splodge to be 
simply Splodges, even though we knew they were always green, the loop in that arm 
would have to be rewritten to contain a useless discrimination. 

To achieve the effect we desire under a copy-while-discriminating regime we would 
have to redesign our data structure to include another level of pointers: 

Splodge: TYPE = RECORD [ 

refcount: INTEGER; 

vp: SELECT t: * FROM 

blue =) [POINTER TO Blu eSplodge] , 
red =) [POINTER TO RedSplodge], 
green ~) [POINTER TO GreenSplodge] , 
ENDCASE]; 

BlueSplodge: TYPE = RECORO[X: ARRAy[O .. lOOO) OF CHARACTER]; 

RedSplodge: TYPE = RECORo[item: INTEGER, left, right: POINTER TO Splodge]; 
GreenSplodge: TYPE = RECORo[item: INTEGER, next: POINTER TO GreenSplodge]; 

Now we don't mind copying because it doesn't consume much time or space, and it 
doesn't destroy the sharing relations. Unfortunately, we mllst pay for the storage 
occupied by the extra pointers, and this might be intolerable if we have a large 
collection of Splodges. 

How have we lived with this loophole so far without getting burnt? It seems that we 
hardly ever change the variant of a record once it has been initialized. Therefore the 
possible confusions never occur because the variant never changes after being 
discriminated. In light of this observation, our suggestion for getting rid of the breach 
is simply to invent an attribute IMMUTABLE whose attachment to a variant record 
declaration guarantees that changing the variant is impossible after initialization. This 
means that special syntax must be invented for the initialization step; but that is all to 
the good since it provides an opportunity for a storage allocator to allocate precisely 
the right amount of space. 
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6. Conclusions 

In this paper, we have discussed our experiences with program modularization and· 
strict type checking. It is hard to resist drawing parallels between the disciplines 
introduced by these features on the one hand and those introduced by programming 
without golO's on the other. In view of the great golO debates of recent memory, we 
would like to summarize our experiences with the following observations and cautions: 

1. The benefits from these linguistic mechanisms, large though they might be, do 
not come automatically. A programmer must learn to use them effectively. We 
are just beginning to learn how to do so. 

2. Just as the absence of goto's does not always make a program better, the absence 
of type errors does not make it better if their absence is purchased by sacrificing 
clarity, efficiency, or type articulation. 

3. Most good programmers lise many of the techniques implied by these disciplines, 
often subconsciously, and can do so in any reasonable language. Language 
design can help by making the discipline more convenient and systematic, and by 
catching blunders or other unintended violations of conventions. Acquiring a 
particular programming style seems to depend on having a language that supports 
or requires it; once assimilated, however, that style can be applied in many other 
languages. 
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