
• ~
\ \

\ \
\
\

Early Experience With Mesa
Charles M. Geschke, James H. Morris, Jr., Edwin H. Satterthwaite

CSL-76-6 October 1976

Abstract

The experiences of Mesa's first users -- primarily its implementers -- are discussed,
and some implications for Mesa and similar programming languages are suggested.
The specific topics addressed are:

-' module structure and its use in defining abstractions,
- data-structuring facilities in Mesa,
- equivalence algorithm for types and type coercions,
- benefits of the type system and why it is breached occasionally,
- difficulty of making the treatment of variant records safe.

Key Words and Phrases

Programming languages, types, modules. data structures, systems programming

CR Categories: 4.22

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

Table of contents

1. Introduction

2. Modules
Module Structure
Binding Mechanisms
Observations

3. The Mesa Type System
Strict vs. Non-strict Type Checking
Type Expressions
Declarations and Definitions
Equivalence of Type Expressions.
Coercions

4. Experiences With Strict Type Checking
A Testi mon i'al
An Anecdote
A Shortcoming
Violating the Type System
The Skeleton Type System
Example -- A Compacting Storage Allocator

5. Variant Records
The Mutable Variant Record Problem

6. Conclusions

7 . References

Acknowledgements

PAGE

1

2
3
4
6

7
7
7
10
10
12

16
16
16
16
17
18
19

25
27

29

30

The principal designers of Mesa, in addition to the authors, have been Butler Lampson
and Jim Mitchell. The major portion of the Mesa operating system was programmed
by Richard Johnsson and John Wick of the System Developement division of Xerox.
In addition to those mentioned above, Douglas Clark, Howard Sturgis, and Niklaus
Wirth have made helpful comments on earlier versions of this paper.

1

1. Introduction

What happens when professional programmers change over from an old-fashioned
systems programming language to a new, modular, type-checked one like Mesa?
Considering the large number of groups developing such languages, this is certainly a
question of great interest.

This paper focuses on our experiences with strict type checking and modularization
within the Mesa programming system. Most of the local structure of Mesa was inspired
by, and is similar to, that of PASCAL [14] or ALGOL 68 [12], while the global structure
is more like that of SIMULA 67 [1]. We have chosen features from these and related
languages selectively, have cast them in a different syntax, and have added a few new
ideas of our own. All this has been constrained by our need for a language to be used
for the production of real system software right now. \Ve believe that most of our
observations are relevant to the languages mentioned above, and others like them, when
used in a similar environment. We have therefore omitted a comprehensive description
of Mesa and concentrated on annotated examples that should be intelligible to anyone
familiar with a similar language. We hope that our experiences will help others who
are creating or studying such languages.

An interested reader can find more information about the details of Mesa elsewhere. A
previous paper [7] addresses issues concerning transfer of control. Another paper [3]
discusses some more advanced data-structuring ideas. A paper on schemes [8] suggests
another possible direction of advance. In this paper we shall restrain our desires to
redesign or extend Mesa and simply describe how we are using the language as currently
implemented.

The version of Mesa presented in this paper is one component of a continuing
investigation into programming methodology and language design. Most major aspects
of the language were frozen when implementation was begun in the autumn of 1974.
Although we were dissatisfied with our understanding of certain design issues even
then, we proceeded with implementation for the following reasons:

We percei vcd a need for a "state of the art" implementation language within our
laboratory. It seemed possible to combine some of our ideas into a design that was
fairly conservative, but that would still dominate the existing and proposed
alternatives.

We wanted feedback from a community of users, both to evaluate those ideas that
were ready for implementation and to focus subsequent research on problems
actually encountered in building real systems.

2

We had accumulated a backlog of ideas about implementation techniques that we
were anxious to try.

It is important to understand that we have consciously decided to attempt a complete
programming system for demanding and sophisticated users. Their own research
!Jrojects were known to involve the construction of "state of the art" programs, many of
which tax the limits of available computing resources. These users are well aware of
the capabilities of the underlying hardware, and they have developed a wide range of
programming styles that they have been loath to abandon. Working in this
environment has had the following consequences:

We could not afford to be too dogmatic. The language design is conservative and
permissive; we have attempted to accommodate old methods of programming as well
as new, even at some cost in elegance.

Efficiency is important. Mesa reflects the general properties of existing machines
and contains no features that cannot be implemented efficiently (perhaps with some
microcode assistance); for example, there is no automatic garbage collection.

A cross-compiler for Mesa became operational in the spring of 1975. We used it to
build a small operating system and a display-oriented symbolic debugger. By earty
1976, it was possible to run a system built entirely in Mesa on our target machine, and
rewriting the compiler in its own language was completed in the summer of 1976. The
basic system, debugger, and compiler consist of approximately 50,000 lines of Mesa
code, the bulk of which was written by four people. Sincemid-1976, the community of
users and scope of application of Mesa have been expanding rapidly, but its most
experienced and demanding users are still its implementers. It is in this context that we
will try to describe our experiences and to suggest some tentative conclusions.
Naturally, we have discovered some bugs and omissions in the design, and the
implemented version of the language is already several years from the frontiers of
research. We have tried to restrain our desire to redesign, however, and we report on
Mesa as it is, not as we now wish it were.

The paper begins with a brief overview of Mesa's module structure. The uses of types
and strict type checking in Mesa are then examined in some detail. The facilities for
defining data structures are summarized, and an abstract description of the Mesa type
calculus is presented. We discuss the rationale and methods for breaching the type
system and illustrate them with a "type-strenuous" example that exploits several of the
type system's interesting properties. A final section discusses the difficulties of
handling variant records in a type-safe way.

2. Modules

Modules provide a capability for partItioning a large system into manageable units.
They can be used to encapsulate abstractions and to provide a degree of protection. In
the design of Mesa, we were particularly influenced by the work of Parnas [10]. who
proposes information hiding as the appropriate criterion for modular decomposition,
and by the concerns of Morris [9] regarding protection in programming languages.

3

Module Structure

Viewed as a piece of source text, a module is similar to an ALGOL procedure declaration
or a SIMULA class definition. It typically declares a collection of variables that provide
a localized data base and a set of procedures performing operations upon that data
base. Modules are designed to be compiled independently, but the declarations in one
module can be made visible during the compilation of another by arranging to
reference the first within the second by a mechanism called inclusion. To decouple the
internal details of an implementation from its abstract behavior, Mesa provides two
kinds of modules: definitions and programs.

A definitions module defines the interface to an abstraction. It typically declares some
shared types and useful constants, and it defines the interface by naming a set of
procedures and specifying their input/output types. Definitions modules claim no
storage and have no existence at run-time. Included modules are usually definitions
modules, but they need not be.

A program module provides the concrete implementation of an abstraction; it declares
variables and specifies bodies of procedures. There can be a one-to-many relation
between definitions modules and concrete implementations. At run-time, one or more
instances of a module can be created, and a separate frame (activation record) is
allocated for each. In this respect, module instances resemble SIMULA class objects.
Unlike p.rocedure instances, the lifetimes of module instances are not constrained to
follow any particular discipline. Communication paths among modules are established
dynamically as described below and are not constrained by, e.g., compile-time or
fun-time nesting relationships. Thus lifetimes and access paths are completely
decoupled.

The following skeletal Mesa modules suggest the general form of a definitions module
and one of its implementers:

Abstraction: DEFINITIONS =
BEGIN

it: TYPE = rt: TYPE =
p: PROCEDURE;
pI: PROCEDURE [INTEGER];

pi: PROCEDURE [it] RETURNS [rt];

END

Implementer: PROGRAM IMPLEMENTING -Abstraction =
BEGIN OPEN Abstraction;
x: INTEGER;

p: PUBLIC PROCEDURE = <code for p>;
pI: PUBLIC PROCEDURE [i: INTEGER] = <code for pI);

pi: PUBLIC PROCEDURE [x: it] RETURNS [y: rt] = <code for pi>;

END

4

Longer but more complete and realistic examples can be found in the discussion· of
ArrayStore below; ArraySloreDe/s and ArraySlore correspond to Abstraction and
I mplementer respectively.

Mesa allows specification of attributes that can be used'to control intermodular access
to identifiers. In the definition of an abstraction, some types or record fields are of
legitimate concern only to an implementer, but they involve or are components of other
types that are parts of the advertised interface to the abstraction. Any identifier with
the attribute PRIVATE is visible only in the module in which it is declared and in any
module claiming to implement that module. Subject to the ordinary rules of scope, an
identifier with the attribute PUBLIC is visible in any module that includes and opens the
module in which it is declared. The PUBLIC attribute can be restricted by specifying the
additional attribute READ-ONLY. By default, identifiers are PUBLIC in definitions
modules and PRIVATE otherwise.

In the example above, Abstraction contains definitions of shared types and enumerates
the elements of a procedural interface. Implementer lIses those type definitions and
provides the bodies of the procedures; the compiler will check that an actual procedure
with the same name and type is supplied for each public procedure declared in
Abstraction.

A module that uses an abstraction is called a client of that abstraction. Interface
definitions are obtained by including the Abstraction module. Any instance of a client
must be connected to an instance of an appropriate implementer before the actual
operations of the abstraction become available. This connection is called binding, and
there are several ways to do it.

Binding Mechanisms

When a relatively static and purely procedural interface between modules is acceptable,
the connection can be made in a conventional way_ Consider the following skeleton:

Clientl: PROGRAM =
BEGIN OPEN Abstraction;

pX: EXTERNAL PROCEDURE;

prJ; px[];

END.

A client module can request a system facility called the binder to locate and assign
appropriate values to all external procedure names, such as px. The binder follows a
well-defined binding path from module instance to module instance. When the binder
encounters an actual procedure with the same name as, and a type compatible with, an
external procedure, it makes the linkage. The compiler automatically inserts an
EXTERNAL procedure declaration for any procedure identifier, such as p, that is
mentioned by a client but defined only in an included definitions module. The binder
also checks that all identifiers from a single definitions module are bound consistently
(Le. to a single implementer).

5

The observant reader will have noticed that this binding mechanism and the
undisciplined lifetimes of module instances leave Mesa programs vulnerable to dangling
reference problems. We are not happy about this, but so far we have not observed any
serious bugs attributable to such references.

As an alternate binding mechanism, Mesa supports the SIMULA paradigm as suggested
by the following skeleton (which assumes that x is a public variable):

Client2: PROGRAM =
BEGIN OPEN Abstraction;
frame: POINTER TO FRAME[lmplementer] ~ NEW Implementer;

framet.x ~ 0;
framet .p[];

END.

Here, the client creates an instance of Implementer directly. Through a pointer to the
frame of that instance, the cI ient can access any public variable or invoke any public
procedure. Note that the relevant declarations are in I mplemenler; the Abstraction
module is included only for type definitions. Some of the binding has been moved to
compile-time. In return for a wider, not necessarily procedural interface (and
potentially more efficient code), the client has committed himself to using a particular
implementation of the abstraction.

Because Mesa has procedure variables it is possible for a user to create any binding
regime he wishes simply by writing a program that distributes procedures. Some users
have created their own version OfSIMULA classes. They have not used the binding
mechanism described above for a number of reasons. First, the actual implementation
of an abstract object is sometimes unknown when a program is compiled or
instantiated; there might be several coexisting implementations, or the actual
implementation of a particular object might change dynamically. Their binding scheme
deals with such situations by representing objects as record structures with
procedure-valued fields. The basic idea was described in connection with the
implementation of streams in OS6 [11]: some fields of each record contain the state
information necessary to characterize the object, while others contain procedure values
that implement the set of operations. If the number of objects is much larger than the
number of implementations, it is space-efficient to replace the procedure fields in each
object with a link to a separate record containing the set of values appropriate to a
particular implementation. When this binding mechanism is used, interface
specifications consist primarily of type definitions as suggested by the following
skeleton:

ObjectAbstraction: DEFINITIONS =
BEGIN
Handle: TYPE = POINTER TO Object;
Object: TYPE = RECORD [

ops: POINTER TO Operations,
state: POINTER TO Object Record,
... J;

Operations: TYPE = RECORD [pI: PROCEDURE [Handle, INTEGER], ••• J;
END.

6

A client invokes a typical operation by writing handlet.opst.pl[handle, xJ where
handle is of type Handle.

Observations

We believe that we could not have built the current Mesa system if we had been forced
to work with large, logically monolithic programs. Assembly language programmers are
well aware of the benefits of modularity, but many designers of high level
programming languages pay little attention to the problems of independent compilation
and instantiation. Since these capabilities will be grafted on anyway, they should be
anticipated in the original design. We have more to say about interface control in our
discussion of types, but it is hard to overestimate the value of articulating abstractions,
centralizing their definitions, and propagating them through the inclusion mechanism.

7

3. The Mesa Type System

Strict vs. non-strict type checking

A widely held view is that the purpose of type declarations is to allow one to write
m0re succinct programs. For example, the ALGOL 60 declarations

real x,,; integer iJ;

allow one to attach two different interpretations to the symbol "+" in the expressions
x+y and i+j. Similarly, the declaration

x: REcoRo[a: [0 .. 7], b: [0 .• 255]]

permits one to write x.a and x.b in place of descriptions of the shifting and masking
that must occur. Descriptive declarations also allow utility programs such as debuggers
to display values of variables in a helpful way when the type is not encoded as part of
the value.

This view predominated in an earlier version of Mesa. Type declarations were used
primarily as devices to improve the expressive power and readability of the language.
Types were ignored by the compiler except to discover the number of bits involved in
an operation. In contrast, the current version of Mesa checks type agreement as
rigorously as languages such as PASCAL or ALGOL 68, potentially rendering compile-time
complaints in great volume. This means in effect that the language is more redundant,
since there are fewer programs acceptable to the compiler.

What benefit do we hope to gain by stricter checking and the attendant obligations on
the programmer? We expect that imposing additional structure on the data space of
the program and checking it mechanically will make the modification and maintenance
of programs easier. The type system allows us to write down certain design decisions.
The type checker is a tool that is used to discover violations of the conventions implied
by those decisions without a great expenditure of thought.

Type Expressions

Mesa provides a fairly conventional set of expressions for describing types; detailed
discussions of the more important constructors are available elsewhere [3]. We shall
attempt just enough of an introduction to help in reading the subsequent examples and
concentrate upon the relations among types.

There is a set of predefined basic types and a set of type operators which construct new
types. The arguments of these operators may be other types, integer constants, or
identifiers with no a priori meanings. Most of the operators are familiar from
languages such as PASCAL or ALGOL 68, and the following summary emphasizes only the
differences.

8

Basic Types

The basic types are INTEGER, BOOLEAN, CHARACTER, and UNSPECIFIED, the last of which
is a one-word, wild card type.

Enumerated Types

If aI' a2, ... , an are distinct identifiers, the form {aI' O2, ... , an} denotes an ordered
type of which the identifiers constantly denote the allowed values.

Unique Types

If n is a manifest (compile-time) constant of type INTEGER, the form UNIQUE[n]

denotes a type distinct from any other type. The value of n determines the amount
of storage allocated for values of that type, which are otherwise uninterpreted. Its
use is illustrated by the ArrayStore example in Section 4.

Record Types

If T l' T 2' ... Tn are types and 11' ... , In are distinct identifiers, then the form
RECORD[/1: T l' 12: T 2' .•• , In: Tn] denotes a record type. The fi are called field
sele·ctors. As usual, the field selectors are used to access individual components; in
addition, linguistic forms called constructors and extractors are available for
synthesizing and decomposing entire records. The latter forms allow either keyword
notation, using the field names, or positional notation. Intermodule access to
individual fields can be controlled by specifying the attributes PUBLIC, PRIVATE, or
READ-ONLY; if no such attributes appear, they are inherited from the enclosing
declaration. Some examples:

Thing: TYPE = RECORD [n: INTEGER, p: BOOLEAN];

v: Thing; i: INTEGER; b: BOOLEAN;

IF v.p THEN v.n +- v.n + 1; -- field selection
v +- [100, TRUE]; -- a positional constructor
v +- [p: b, n: i]; -- a keyword constructor
[n:i, p:b] +- v; -- the inverse extractor.

Pointer Types

If T is a type, the form POINTER TO_ T denotes a ,pointer type. If x is a variable of
that type, then xt dereferences the pointer and designates the object pointed to, as
in PASCAL. If v is of type T then @v is its address with type POINTER TO T. The
form POINTER TO READ-ONLY T denotes a similar type; however, values of this type
cannot be used to change the indirectly referenced object. Such pointer types were
introduced so that objects could be passed by reference across module interfaces
with assurance that their values would not be modified.

9

Array Types

If T j and Tc are types. the form ARRAY T j OF Tc denotes an array type. T j must be a
finite ordered type. An array a maps an index i from the index type T j into a value
a[;] of the component type Tc. If a is a variable. the mapping can be changed by
ass ign men t to a[i].

Array Descriptor Types

If T j and Tc are types. the form DESCRIPTOR FOR ARRAY T j OF Tc denotes an array
descriptor type. T j must be an ordered type. An array descriptor value provides
indirect access to an array and contains enough auxiliary information to determine
the allowable indices as a subrange of T i .

Set Types

If T is a type, the form SET OF T denotes a type. values of which are the subsets of

the set of values of T. T must evaluate to an enumerated type.

Transfer Types

If ~ l' ... T j , Tj , •.. Tn are types and fl' ...• fit fj, ...• fn are distinct identifiers, then the
form PROCEDURE [f1: T l' .•. , fi: T j] RETURNS [fj: Tj , ... f n: Tn] denotes a procedure
type. Each non-local control transfer passes an argument record; the field 1ists
enclosed by the paired brackets, if not empty, implicitly declare the types of the
records' accepted and returned by the procedure [7]. If x has some transfer type, a
control transfer is invoked by the evaluation of x[e1 • ••. , ej]. where the bracketed
expressions are used to construct the input record,and the value is the record
constructed in preparation for the transfer that returns control.

The symbol PROCEDURE can be replaced by several alternatives that specify different
transfer disciplines with respect to name binding. storage allocation, etc .• but the
argument transmission mechanism is uniform. Transfer types are full-fledged
types; it is possible to declare procedure variables and otherwise to manipulate
procedure values, which are represented by procedure descriptors. Indeed, some of
the intermodule binding mechanisms described previously depend crucially upon the
assignment of values to procedure variables. '

Subrange Types

If T is INTEGER or an enumerated type, and m and n are manifest constants of that
type, the form T[m .. n] denotes a finite, ordered subrange type for which any legal
value x satisfies m < x <n. If T is INTEGER, the abbreviated form [m .. n] is
accepted. These types are especially useful as the index types of arrays. Other
notational forms. e.g. [m .. n), allow intervals to be open or closed at either endpoint.

Finally, Mesa has adapted PASCAL's variant record concept to provide values whose
complete type can only be known after a run-time discrimination. Because they are of
more than passing interest. variant records are discussed separately in Section 5.

10

Declarations and Definitions

The form

v: Thing +- e

declares a variable v of type Thing and initializes it to the value of e; the form

v: Thing = e

is similar except that v cannot be assigned to subsequently. When e itself is a manifest
constant, this form makes v into such a constant also.

This syntax is used for the introduction of new type names, using the special type
TYPE. Thus

Thing: TYPE Type Express;on

introduces Thing. This approach came from ECL [13], in which a type is a value that
can be computed by a running program and then used to declare variables. In Mesa,
however, TypeExpression must be constant.

Recursive type declarations are essential for describing most list structures and are
allowed more generally whenever they make sense. To accommodate mutually recursive
list structure, forward references to type identifiers are allowed and do not yield
"uninitialized" values. (This is to be contrasted with forward references to ordinary
variables.) In effect, all type expressions within a scope are evaluated simultaneollsly.
Meaningful recursion in a type declaration usually involves the type constructor
POINTER; in corresponding values, the recursion involves a level of indirection and can
be terminated by the empty pointer value NIL. Recursion that is patently meaningless is
rejected by the ,compiler; for example

r: TYPE = RECORD [left, right: r] .

a: TYPE = ARRAY [0 .. 10) OF s;
not permitted

s: TYPE = RECORD [i: INTEGER, m: a] -- not permitted.

Similar pathological types have been noted and prohibited in ALGOL 68 [6].

Equivalence of Type Expressions

One might expect that two identical type expressions appearing in different places in
the program text would always stand for the same type. In ALGOL 68 they do. In Mesa
(and certain implementations of PASCAL) they do not. Specifically, the type operators
RECORD, UNIQUE, and { ... } generate new types whenever they appear in the text.

The original reasons for this choice are not very important, but we have not regretted
the following consequences· for records:

11

All modules wishing to communicate using a shared record type mllst obtain the
definition of that type from the same source. In practice, this means that all
definitions of an abstraction tend to come from a single module; there is less
temptation to declare scattered, partial interface definitions.

Tests for record type equivalence are cheap. In our experience, most record types
contain references to other record types, and this linking continues to a considerable
depth. A recursive definition of equivalence would, in the worst case, require
examining many modules unknown and perhaps unavailable to the casual user of a
-record type or, alternatively, copying all type definitions supporting a particular
type into the symbol table of any module mentioning that type.

The rule for record equivalence provides a mechanism for sealing values that are
distributed to clients as passkeys for later transactions with an implementer.
Suppose that the following declaration occurs in a definitions module:

Handle: PUBLIC TYPE = RECORD [value: PRIVATE Thing].

The PRIVATE attribute of value is overridden in any implementer of Handle. A
client of that implementer can dedare variables of type Handle and can store or
duplicate values of that type. However, there is no way for the client to construct a
counterfeit Handle without violating the type system. Such sealed types appear to
provide a basis for a compile-time capability scheme [2].

Finally, this choice has not caused discomfort because programmers are naturally
inclined to introduce names for record types anyway.

The case for distinctness of enumerated types is much weaker; we solved the problem
of the exact relationships among such types as {a, b, e}, {e, b, a}, {a, e}, {aa, b, ee},
etc., by specifying that all these types are distinct. In this case, we are less happy that
identical sequences of symbols construct different enumerated types.

Why did we not choose a similar policy for other types? It would mean that a new
type identifier would have to be introduced for virtually every type expression, and we
found it to be too tedious. In the case of procedures we went even further in
liberalizing the notion of equivalence. Even though the formal argument and result
lists are considered to be record declarations, we not only permit recursive matching
but also ignore the field selectors in doing the match. We were unwilling to abandon
the idea that procedures are mappings in which the identifiers of bound variables are
irrelevant. We also had a pragmatic motivation. In contrast to records, where the type
definitions cross interface boundaries, procedural communication among modules is
based upon procedure values, not procedure types. Declaring named types for all
interface procedures seemed tiresome. Fortunately, all argument records are constructed
in a standard way, so this view causes no implementation problems.

To summarize, we state an informal algorithm for testing for type equivalence. Given
one or more program texts and two particular type expressions in them:

1. Tag each occurrence of RECORD, UNIQUE, and { ... } with a distinct number.

12

2. Erase all the variable names in formal parameter and result I ists of procedures.

3. Proceed to compare the two expressions. replacing type identifiers with their
defining expressions whenever they are encountered. If a difference (possibly in
a tag attached in step 1) is ever encountered. the two type expressions are not
equivalent. Otherwise they are equivalent.

The final step appears to be a semi-decision procedure since the existence of recursive
types makes it impossible to eliminate all the identifiers. In fact, it is always possible
to tell when one has explored enough (cf. [5], Section 2.3.5, Exercise 11).

Coercions

To increase the flexibility of the type system Mesa permits a variety of implicit type
conversions beyond those implied by type equivalence. They fall into two categories:
free coercions and computed coercions.

Free Coercions

Free coercions involve no computation whatsoever. For two types T and S we write T
k S if any value of type T can be stored into a variable of type S without checking,
change· of representation, or other computation. (By "store" we mean to encompass
assignment, parameter, passing, result passing, and all other value transmission.) The
following recursive rules show how to compute the relation ~, assuming that
equivalence has already been accounted for.

1. T ~ T.

In the following assume that T k S.

2. T[i .. j] ~ S if i is the minimum value of type S.
The restriction is necessary because we chose to represent values of a subrange
type relative to its minimum value. Coercions in other cases require
computation. Similarly,

1. T[i .. j] k S[i .. k] iff j < k.

4. V-llr T k S if var is a variant of T(cf. Section 5).

5. RECORO[/: T] ~ S for any fiel_d name / unless / has the PRIVATE attribute.

6. P01NTER TO T k POINTER TO REAO-ONl Y S.
In other words, one can always treat a pointer as a read-only pointer~ but not
vice versa.

13

7. POINTER TO READ-ONLY T S POINTER TO READ-ONLY S.
The relation POINTER TO T S POINTER TO S is not true because it would allow

ps: POINTER TO S;
pI: POINTER TO T = @t;
ps +- pt;
pst +- s;

which is a sneaky way of accomplishing tIt ~ s," which is not allowed unless S ~
T.

8. ARRAY I OF T ~ ARRAY I OF S.
Note that the index sets must be the same.

9. PROCEDURE [S'] RETURNS [T] ~ PROCEDURE [T'] RETURNS [S] if T' ~ S' as well.
Here the relation between the input types is the reverse of what one might
expect.

Subrange Coercions

Coercions between subranges require further comment. As others have noted [4],
associating range restrictions with types instead of specific variables leads to certain
conceptual problems; however, we wanted to be able to fold range restrictions into more
complex constructed types. We were somewhat surprised by the subtlety of this
problem, and OUf initial solutions allowed several unintended breaches of the type
system.

Values of an ordered type and all its subranges are interassignable even if they do not
satisfy case (2) or (3) from above, and this is an example of a computed coercion.
Code is generated to check that the value is in the proper subrange and to convert its
representation if necessary. It is important to realize that the relation of computed
coercability cannot be extended recursively as was done above. Consider the
declarations

x: [0 .. 100] +- 15;

y: [10 .. 20];

px: POINTER TO READ-ONLY [0 .. 100] +- @X;

Py: POINTER TO READ-ONLY [10 .. 20];

The assignment y f- X is permitted because x is 15; 5 is stored in y since is value its
represented relative to 10. However, the assignment py f- px, which rule 7 might
suggest, is not permitted because the value of x can change and there is no reasonable
way to generate checking code. Even if the value of x cannot change, we could not
perform any change in representation because the value 15 is shared. Similar problems
arise when one considers rules 6, 8, and 9.

14

Other Computed Coercions

Research in programming language design has continued in paranel with our
implementation work, and some proposals for dealing with uniform references [3] and
generalizations of classes [8] suggested adding the following computed coercions to the
!anguage:

Dereferencing: POINTER TO T ~ T

Deproceduring: PROCEDURE RETURNS T -+ T

Referencing: T -+ POINTER TO T .

Initially we had intended to support contextually implied application of these coercions
much as does ALGOL 68. Reactions of Mesa's early users to this proposal ranged from
lukewarm to strongly negative. In addition, the data structures and accounting
algorithms necessary to deduce the required coercions and detect pathological types
substantially complicated the compiler. We therefore decided to reconsider our
decision even after the design and some of the implementation had been done. The
current language allows subrange coercion as described above. There is no uniform
support for other computed coercions, but automatic dereferencing is invoked by the
operators for field extraction and array indexing. Thus such forms as pt.! and att[i],
which are common when indirection is used extensively, may be written as p.! and a[i].

There are hints of a significant problem for language designers here. Competent and
experienced programmers seem to believe that coercion rules make their programs less
understandable and thus less reliable and efficient. On the other hand, techniques
being developed with the goal of decreasing the cost of creating and changing programs
seem to build heavily upon coercion. Our experience suggests that such work should
proceed with caution.

Why is coercion distrusted? Our discllssions with programmers suggest that the reasons
include the following:

Mesa programmers are familiar with the underlying hardware and want to be
aware of the exact consequences of what they write.

Many of them have been burned by forgotten indirect bits and the like in
previous programming and are suspicious of any unexpected potential for side
effects.

To some extent, coercion negates the advantages of type checking. One view of
coercion is that it corrects -common type errors, and some of the detection
capability is sacrificed to obtain the correction.

We conjecture that the first two objections win dimjnish as programmers learn to think
in terms of higher-level abstractions and to use the type checking to advantage.

The third objection appears to have some merit. We know of no system of coercions in
which strict type check i-ng can 'be trusted to flag all coercion errors, and such errors are
likely to be especially subtle and persistent. The difficulties seem to arise from the
interactions of coercion with generic operators. In ALGOL 68, there are rules about

15

Itloosely related" types that are intended to avoid this problem, but the identity
operators still suffer. With the coercion rules that had been proposed for Mesa, the
following trap occurs. Given the declaration p, q: POINTER TO INTEGER, the Mesa
expressions pt = qt and 2* p = 2* q would compare integers and give identical results;
on the other hand, the expression p = q would compare pointers and could give a quite
different answer. In the presence of such traps, we believe that most programmers
would resolve to supply the 1t1''' always. If this is their philosophY,coercions can only
hide errors. Even if such potentially ambiguous expressions as p = q were disallowed,
this example suggests that using coercion to achieve representational independence can
easily destroy referential transparency instead.

16

4. Experiences with strict type checking

It is hard to give objective evidence that increasing compile-time checking has
materially helped the programming process. We believe that it will take more effort to
get one's program to compile and that some of the effort eliminates errors that would
have shown up during testing or later, but the magnitude of these ~ffects is hard to
measure. All we can present at the moment are testimonials and anecdotes.

A testimonial

Programmers whose previous experience was with unchecked languages report that the
usual fear and trepidation that accompanied making modifications to programs has
substantially diminished. Under previous regimes they would never change the number
or types of arguments that a procedure took for fear that they would forget to fix all of
the calls on that procedure. Now they know that all references will be checked before
they try to run the program.

An anecdote

The following kind of record is used extensively in the compiler

RelativePtr: TYPE = [0 .. 377778];

TaggedPtr: TYPE = RECORD[tag: {to,tl ,t2,t}}, ptr: RelativePtr].

This record consists of a two-bit tag and a 14-bit pointer. As an accident of the
compiler's choice of representation, the expressions x and Tagged Ptr[to'x] generated
the same internal value. The non-strict type checker considered these types equivalent,
and unwittingly we used TaggedPtrs in many places actually requiring RelativePtrs. As
it happened, the tag in these contexts was always to.

The compiler was working well, but one day we made the unfortunate decision to
redefine TaggedPtr to be

This caused a complete breakdown, and we hastily unmade that decision because we
were unsure about what parts of the code were unintentionally depending upon the old
representation. Later, when we submitted a transliteration of the compiler to the strict
type checker we found ~Il the places where this error had been committed. Nowadays~

making such a change is routine. In general, we believe that the benefits of static
checking are significant and cost-effective once the programmer learns how to use the
type system effectively.

A shortcoming

The type system is very good at detecting the difference in usage between T and
POINTER TO T; however, programmers often use array indices as pointers, especially
when they want to perform arithmetic on them. The difference between an integer
used as a pointer and an integer llsed otherwise is invisible to the type checker. For
example, the declaration

17

map: ARRAY [i .. j] OF INTEGER[m •• n];

defines a variable map with the property that compile-time type checking cannot
distinguish between legitimate uses of k and map[k]. Furthermore, if m S i and j <
n, even a run-time bounds check could never detect a use of k when map[k] was
intended. We have observed several troublesome bugs of this nature and would like to
change the language so that indiGes of different arrays can be made into distinct types.

Violating the type system

One of the questions often asked about languages with compile-time type checking is
whether it is possible to write real programs without violating the type system. It goes
without saying that one can bring virtually any program within the confines of a type
system by methods analogous to the silly methods for eliminating goto's; e.g., simulate
things with integers. However, our experience has been that it is not always desirable
to remain within the system, given the realities of programming and the restrictiveness
of the current language. There are three reasons for which we found it desirable to
evade the current type system.

Sometimes the violation is logically necessary. Fairly often one chooses to
implement part of a language's run-time system in the language itself. There are
certain things of this nature that cannot be done in a type-safe way in Mesa, or any
other'strictly type-checked language we know. For example, the part of the system
that takes the compiler's output and creates values of type PROCEDURE must exercise
a rather profound loophole in turning data into program. Another example,
discussed in detail below, is a storage allocator. Most languages with compile-time
checking submerge these activities into the implementation and thereby avoid the
need for type breaches.

Sometimes efficiency is more important than type safety. In many cases the way to
avoid a type breach is to redesign a data structure in a way that takes more space,
usually by introducing extra levels of pointers. The section on variant records gives
an example.

Sometimes a breach is advisable to increase type checking elsewhere. Occasionally
a breach could be avoided by declaring two distinct types to be the same but
merging them would reduce a great deal of checking elsewhere. The ArrayStore
example below illustrates this point.

Given these considerations, we chose to allow occasional breaches of the type system,
making them as explicit as possible. Th~ advantages of doing this are two-fold. First,
making breaches explicit makes them less dangerous since they are clearer to the
reader. Second, their occurrences provide valuable hints to a language designer about
where the type system needs improvement.'

One of the simplest ways to breach the Mesa type system is to declare something to be
UNSPECIFiED. The type checking algorithm regards this as a one-word, don't-care type
that matches any other one word type. This is similar to PL/l'S UNSPEC. We have come
to the conclusion that lIsing UNSPECIFIED is too drastic in most cases .. One lIsuaJ1y wants
to turn off type checking in only a few places involvi ng a particular variable, not

18

everywhere. In practice there is a tendency to use UNSPECIFIED in the worst possible
way: at the interfaces of modules. The effect is to turn off type checking in other
peoples' modules without their knowing it!

As an alternative, Mesa provides a general type transfer function, RECAST, that (without
rerforming any computation) converts between any two types of equal size: It can
often be used instead of UNSPECIFIED. In cases where we had declared a particular
variable UNSPECIFIED, we now prefer to give it some specific type and to use RECAST

whenever it is being treated in a way that violates the assumptions about that type.

The existence of RECAST makes many decisions much less painful. Consider the type
CHARACTER. On the one hand we would like it to be disjoint from INTEGER so that
simple mistakes would be caught by the type checker. On the other hand, one
occasionally needs to do arithmetic on characters. We chose to make CHARACTER a
distinct type and use RECAST in those places where character arithmetic is needed. Why
reduce the quality of type checking everywhere just to accommodate a rare case?

Pointer arithmetic is a popular pastime for system programmers. Rather than
outlawing it, or even requiring a RECAST, Mesa permits it in a restricted form. One can
add or subtract an integer from a pointer to produce a pointer of the same type. One
can subtract two pointers of the same type to produce an integer. The need for more
exotic arithmetic has not been observed.

Here is a typical example: it is common to use a large contiguous area of memory to
hold a data structure consisting of many records; e.g., a parse tree. To conserve space
one would like to make all pointers relative to the start of the area, thus reducing the
size of pointers that are internal to the structure. Furthermore, one might like to move
the entire area, possibly via secondary storage. These needs would be met by an
unimplemented feature called the tied pointer. The idea is that a certain type of
pointer would be made relative to a designated base value and this value would be
added just before dereferencing the pointer. In other words, if ptr were declared to be
tied to base then plrt actually would mean (base+ptr)t. Since tied pointers have not
yet been implemented, this notation is in fact used extensively within the Mesa
compiler. Subsequent versions of Mesa will include tied pointers, and this temporary
loophole will be reconsidered.

The Skeleton Type System

Once we provided the opportunity for evading the official type system, we had to ask
ourselves just why we thought certain breaches were safe while others were not.
Ultimately, we came to the conclusion .that the only really dangerous breaches of the
type system were those that require detailed knowledge of the run-time environment.
First and foremost, fabricating a procedure value requires a detailed understanding of
how various structures in memory are arranged. Second, pointer types also depend on
various memory structures being set up properly and should not be passed through
loopholes without some care. In contrast, the distinction between the two types RECORD

[a,b: INTEGER] and RECORD[C,d: INTEGER] is not vital to the run-time system's integrity.
To be sure, the user might wish to keep them distinct, but using a loophole to store one
into the other would go entirely unnoticed by the system.

19

The present scheme that is used to judge the appropriateness of RECAST transformations
merely checks to ensure that the source and destination types occupy the same number
of bits. Since most of the code invoking RECAST has been written by Mesa
implementers, this simplified check has proved to be sufficient. However. as the
community of users has grown, we have observed a justifiable anxiety over the use of
RECAST. Users fear that unchecked use of this escape will cause a violation of some
system convention unknown to them.

We are in the process of investigating a more complete and formal skeletal type system
that will reduce the hazards of the present RECAST mechanism. Its aim is to ensure that
although a RECAST may do great violence to user-defi ned type conventions, the system's
type integrity will not be violated.

Example -- A compacting storage allocator

A module that provides many arrays of various sizes by parceling out pieces of one
large array is an interesting benchmark for a systems programming language for a
n urn ber of reasons:

a. It taxes the type system severely. We must deal with an array containing variable
length, heterogeneous objects, something one can't declare in Mesa.

b. The clients of the allocator wish to use it for arrays of differing types. This is a
familiar polymorphism problem.

c. As a programming exercise, the module can involve intricate pointer
manipulations. We would like help to prevent programming errors such as the
ubiqui tous address/contents confusion.

d. A nasty kind of bug associated with the use of such packages is the so-called
dangling reference problem: someone might' use some space after he has
reI inquished it.

e. Another usage bug, peculiar to compacting allocators, is that a client might retain
a pointer to storage that the compacter might move.

The first two problems make it impossible to stay entirely within the type system.
One's first impulse is to declare everything unspecified and proceed to program as in
days of yore. The remaining problems are real ones, however, and we are reluctant to
turn off the entire type system just when we need it most. The following is a
com prom ise sol ution:

To deal with problem (a) we shall have two different ways of talking about the array to
be parceled out, which we shall call Storage. From a client's point of view the storage
is accessible through the definitions shown in the module ArrayStoreDefs. (cf. Figure 1)

Arra),StoreDe/s. DEFINITIONS =
BEGIN

ArrayPrr: TYPE = POINTER TO PR;
PR: TYPE = POINTER TO R;
R: TYPE = RECORD [p: Prefix.

a: ARRAY [O .. OJ OF Thing J;
Prefix: TYPE = RECORD [backp: PRIVATE ArrayPrr,

length: READ-ONLY INTEGER];

Thing: TYPE = UNIQUE[16];

AllocArray: PROCEDURE [length: INTEGER]

RETURNS [new: ArrayPtrJ;
FreeArray: PROCEDURE [dying: ArrayPtr];
END

Figure I. Definitions Module

20

These definitions suggest that the client can get ArrayPtrs (Le. pointers to pointers' to
array records) by calling AllocArray and can relinquish them by calling PreeArray. The
PRIVATE attribute on backp means that he cannot access that field at all. The READ-ONLY

attribute on length means that he cannot change it. Of course these restrictions do not
apply to the implementing module. The type Thing occupies 16 bits of storage (one
word) and matches no other type. Intuitively, it is our way of faking a type variable.
The implementing module ArrayStore is shown in Figure 2. It declares the array
Storage to create the raw material for allocation. We chose to declare its element type
UNSPECIFIED. This means that every transaction involving Storage is an implicit
invocation of a loophole. Specifically the initializations of beginSlorage and
endStorage store pointers to UNSPECIFIED into variables declared as pointers to R.

The general representation scheme is as follows: the storage area [beginStorage •. nexlR)
consists of zero or more Rs, each with the form < backp, length, eo' ... , e(lenglh-l» '
where length varies from sequence to sequence. The array represented by the record is
<eo' ... , e(lengLh-l»' If backp is not NIL then backp is an address in Table and backpt is
the address of backp itself. If Table[i] is not NIL, it is the address of one of these
records. (cf. Figure 3)

After the initialization, Storage is not mentioned again. All the subsequent type
breaches in ArrayStore are of the pointer arithmetic variety. The expression
endStorage-nextR in AllocArray subtracts two PR's to produce an integer. The type
checker is not entirely asleep here: if we slipped up and wrote

IF n+ovh > endStorage-n

there would be a complaint, because the left hand side of the comparison is an integer
and the right is a PR. The assignment

nexlR +- nextR+(n+ovh)

at the end of AllocArray also uses the pointer arithmetic breach. The rule PR+INTEGER

= PR makes sense here because n+ov/z is just the right amount to add to nextR to
produce the next place where an R can go.

DIRECTOHY ArrayStoreDefs: FROM "ArrayStoreDefs";
DEFINITIONS FROM ArrayStoreDe!s.

ArrayStore: PROGRAM IMPLEMENTING ArrayStoreDefs =
BEGIN

Storage: ARRAY [O .. StorageSize) OF UNSPECIFIED;

StorageSize : INTEGER = 2000;
Table: ARRAY Tablelndex OF PR;
Tablelndex: TYPE = [O .• TableSize);
TableSize: INTEGER = 500;
beginStorage: PR = @Storage[O];

-- the address of Slorage[O]
endStorage: PR = @SlOrage[SlOrageSizc];
nextR: PR f- beginS/Drage; -- next space to put an R
beginTable: ArrayPtr = @Table[O];
endTable: ArrayPtr = @Table[TableSize];
ovh: INTEGER = SlzE[Pre!ix]; -- overhead

AllocArray: PUBLIC PROCEDURE [n: INTEGER]

RETURNS [new: ArrayPtr] =
BEGIN i:Tablelndex;
IF n(O OR n)77777B-ov/z THEN ERROR;

IF n+ol'h) endStorage.:.nextR THEN

BEGIN

Compact[];
IF 'n+ovh) endStorage- nextR THEN ERROR;

END;

-- Find a table entry
FOR i IN Tablelndex DO

IF Table[;]=NIL THEN GOTO found
REPEAT

found =) new f- @Table[i]:
FINISHED =) ERROR

ENDLOOP;

newt f- nextR;
-- initialize the array storage
newt t .p.backp f- new;
newt t .p.lellgth f- n;
nextR+-llextR+(n+ovh);
END;

Compact: PROCEDURE = (omitted)

FreeArray: PUBLIC PROCEDURE [dead: ArrayPtr] =
BEGIN IF deadt=NIL THEN ERROR; -- array already free
deadt t .p.backp f- NIL;

deadt ~ NIL;

END;

Initialization
i: Table! ndex;
FOR i IN Tablelndex DO Table[i] +- NIL ENDLOOP;

END.

Figure 2. Implementation of a compacting storage allocator

21

22

Stora e

Table

T
n

1

FREE

Figure 3. ArrayStor.'s data structure

Despite all these breaches we are still getting a good deal of checking. The checker
would point out (or correct) any address/contents confusions we had, manifested by the
omission of t's or their unnecessary appearance. We can be sure that integers and PKs
are not being mixed up. In the (unlikely) event that we wrote something like

newt .p.length +- newt .a[k]

we would be warned because the value on the left is an integer and the value on the
right is a Thing. Notice that none of this checking would occur if Thing were replaced
by UNSPECIFIED. Thus even though the type system is not airtight we are better off than
we would be in a completely unchecked language (unless, perhaps, we get a false sense
of security).

Now let us consider how this module is to be used by a client who wants to manipulate
two different kinds of arrays: arrays of integers and arrays of strings. At first it looks
as if his code is going to have a very high density of RECAST'S. For example, to create
an array and store an integer in it he will have to say

fA: ArrayPtr = AlIocArray[lOO];

fAtt.a[2] +- RECAST[6]

because the type of fAt t .a[2] is Thing, which doesn't match anything. Writing a
loophole every time is intolerable, so we are tempted to replace Thing by UNSPECIFIED,

thereby losing a certain amount of type checking elsewhere.

There are much nicer ways out of this problem. Rather than passing every array
element through a loophole, one can pass the procedures AlIocArray and FreeArray
through loopholes (once, during initialization). The module ArrayClient (Cf. Figure 4)
shows how this is done. Not only does this save our having to make Thing UNSPECIFIED,

it allows us to use the type checker to insure that integer arrays contain only integers,
and that string arrays contain only strings. More precisely, the type checker guarantees
that every store into fA stores an integer. We must depend upon the correctness of the
code in ArrayStore, particularly the compactor, to make sure that things stay
well-formed.

DIRECTORY ArrayStoreDefs: FROM" ArrayStoreDefs";
DEFINITIONS FROM ArrayStoreDefs;

ArrayClient: PROGRAM =
BEGIN

-- Integer array primitives
IntArray: TYPE = POINTER TO POINTER TO

RECORD[p: Prefix, a: ARRAY [0 .. 0] OF INTEGER];

AlloclntArray: PROCEDURE [INTEGER] RETURNS [lntArray]
= RECAST[AllocArray];

FreelntArray: PROCEDURE [lntArray]
=. RECAST[FreeArray];

-- String array primitives
StrArray: TYPE = POINTER TO POINTER TO

RECORD[p: Prefix, a: ARRAY [0 .. 0] OF STRING];

AllocStrArray: PROCEDURE [INTEGER] RETURNS [StrArray]
= RECAST[AllocArray];

FreeStrArray: PROCEDURE [StrArray]
= RECAST[FreeArray];

Gedanken~' PROCEDURE =
-- This procedure's only role in life is to fail to
compile if ArrayStore does't have the right sort of
proced ures.
BEGIN

uAII ocA r ray:
PROCEDURE [INTEGER] RETURNS [UNSPECIFIED]

= AlIocArray,
uFreeArray: PROCEDURE [UNSPECIFIED] = FreeArray,
END;

-- no type breaches below here

IA: IntArray = AlloclntArray[lOO];
SA: StrArray = AlIocStrArray[lO];
i: INTEGER;

FOR i IN [O . .IAt .p.length) DO IAt .a[i] +- -;/3 ENDLOOP;

SAt .a[O] +- "zero"; SAt .a[l] +- "one"; SAt .a[2] +

"two"; SAt .a[3] +- "surprise"; SAt .a[4] +- "four";

FreelntArray[IA];
FreeStr Ar ray[SA];
END.

Figure 4. The client of a compacting allocator

23

24

This scheme does not have any provIsIons for coping with problem (d), dangling
reference errors. However, somewhat surprisingly. problem (e) -- saving a raw pointer
-- cannot happen as long as the client does not commit any further breaches of the
type system. The trick is in the way we declared f ntArray -- all in one mouthful. That
makes it impossible for anyone to declare a variable to hold a raw pointer. This is
because (as mentioned before) every occurrence of the type constructor RECORD

generates a new type, distinct from all other types. Therefore, even if we should declare

rawPointer: POINTER TO RECORD [p: Prefix, a: ARRAY[O •• O] OF INTEGER];

we could not perform the assignment rawpointer ... fAt because fAt has a different
type, even though it looks th~ same. If one cannot declare the type of fAt, it is rather
difficult to hang onto it for very long. In fact, the compiler has been careful1y
designed to ensure that no type-checked program can hold such a pointer across a
procedure call.

Passing procedure values through loopholes is a rather frightening thing to do. What
if, by some mischance, AllocArray doesn't have the number of parameters ascribed to it
by the client? Since we have waved off the type checker to do the assignment of
AllocArray to AllocfntArray and AllocStrArray, it would not complain. and some
hard-to-diagnose disaster would occur at run-time. To compensate for this we
introduce the curious procedure Gedanken, whose only purpose is to fail to compile if
the number or size of AllocArray's parameters change. The skeleton type system,
discussed earlier in this section, would obviate the need for this foolishness.

We would like to emphasize that, although our examples focus on controlled breaches
of the type system, many rea) Mesa programs do not violate the type system at all. We
also expect the density of breaches to decrease as the descriptive powers of the type
system increase.

25

5. Variant records

Mesa, like PASCAL, has variant records. The descriptive aspects of the two languages'
notion of variant records are very similar. Mesa, however, also requires strict type
checking for accessing the components of variant records: To illustrate the Mesa
variant record facility, consider the following example of the declaration for an 1/0
stream:

StreamHandle: TYPE = POINTER TO Stream;
StreamType: TYPE = {disk, display, keyboard};
Stream: TYPE = RECORD [

Get: PROCEDURE[StreamHandle] RETURNs[ltem],

Put: PROCEDuRE[StreamHandle. Item],
body: SELECT type: StreamType FROM

disk =) [

file: FilePointer,
position: Position,
Set Position: PROCEDURE[POINTER TO disk Stream, Position],
buffer: SELECT size: * FROM

short = > [b: ShortArray],
long => rb: LongArray],
ENDCASE],

display => [
first: DisplayControlBlock,
last: DisplayControlBlock,
position: ScreenPosition,
nLines: [O.~lOO]],

keyboard => NULL,

ENDCASE];

The record type has three main variants: disk, display, and keyboard. Furthermore,
the disk variant has two variants of its own: short and long. Note that the field names
used in variant subparts need not be unique. The asterisk used in declaring the
subvariant of disk is a shorthand mechanism for generating an enumerated type for
tagging variant subparts.

The declaration of a variant record specifies a type, as usual; it is the type of the whole
record. The declaration itself defines some other types: one for each variant in the
record. In the above example. the total number of type variations is six, and they are
used in the following declarations:

r: Stream;
rDisk: disk Stream;
rDisplay: display Stream;
rKeyb: keyboard Stream;
rShort: short disk Stream;
rLong: long disk Stream;

26

The last five types are called bound variant types. The rightmost name must be the
type identifier for a variantrecord. The other names are adjectives modifying the type
identified to their right. Thus, disk modifies the type Stream and identifies a new·
type. Further, short modifies the type disk Stream and identifies still another type.
Names must occur in order and may not be skipped. (For instance, short Stream
would be incorrect since short does not identify a Stream variant.)

When a record is a bound variant, the components of its variant part may be accessed
without a preliminary test. For example, the following assignments are legal:

rDisplay.last +- rDisplay.first;
rDisk.position +- rShort.position;

If a record is not a bound variant (e.g., r in the previous section), the program needs a
way to decide which variant it is before accessing variant components. More
importantly, the testing of the variant must be done in a formal way so that the type
checker can verify that the programmer is not making unwarranted assumptions about
which variant is in hand. For this purpose, Mesa uses a discrimination statement which
resembles the declaration of the variant part. However, the arms in a discriminating
SELECT contain statements; and, within a given arm, the discriminated record value is
viewed as a bound variant. Therefore, within that arm, its variant components may be
accessed using normal qualification. The following example discriminates on r:

WITH streamRec: r SELECT FROM
display =>

BEGIN streamRec.first +- streamRec.last; streamRec.position +- 73;
streamRec.nLines +- 4;
END;

disk =>
WITH diskRec: streamRec SELECT FROM

short => diskRec.b[O] +- 10;
long => diskRec.b[O] +- 100;
ENDCASE;

ENDCASE => streamrec.put +- slreamrec.newput;

The expression in the WITH clause must represent either a variant record (e.g. r) or a
pointer to a variant record. The identifier preceding the colon in the WITH clause is a
synonym for the record. Within each selection, the type of the identifier is the selected
bound variant type, and fields specific to the particular variant can be mentioned.

In addition to the descriptive advantages of bound variant types, the Mesa compiler
also exploits the more precise declaration of a particular variant to allocate the minimal
amount of storage for variables declared to be of a bound variant type. For example,
the storage for r above must be sufficient to contain anyone of the five possible
variants. The storage for rKeyb, on the other hand, need only be sufficient for storing
a keyboard Stream.

27

The mutable variant record problem

The names streamRec and diskRec in the example above are really synonyms in the·
sense that they name the same storage as r; no copying is done by the discrimination
operation. This decision opens a loophole in the type system. Given the declaration

Splodge: TYPE = RECORD [
refcount: INTEGER;
vp: SELECT t: * FROM

blue => [x: ARRAy[O •• lOOO) OF CHARACTER],
-red => [item: INTEGER, left, right: POINTER TO Splodge],
green => [item: INTEGER, next: POINTER TO green Splodge],
ENDCASE];

One can wri te the code

t: Splodge;
P: PROCEDURE = BEGIN t +- Sp/odge[O,green[lO, NIL]] END;

WITH s: t SELECT FROM

red => BEGIN ••• P[] s./eft +- s.right END;

The procedure P overwrites t, and therefore s, with a green Splodge. The subsequent
references to s.left and s.right are invalid and will cause great mischief.

Closing this breach is simple enough: we could have simply followed ALGOL 68 and
combined the discrimination with a copying operation that places the entire Splodge in
a new location (s) which is fixed to be red. We chose not to do so for three reasons:

1. Making copies can be expensive.

2. Making a copy destroys useful sharing relations.

3. Th is loophole has yet to cause a problem.

Consider the following procedure, which is representative of those found throughout
the Mesa compiler's symbol table processor.

Add5: PROCEDURE[x: POINTER TO Sp/odge] =

BEGIN y: POINTER TO green Splodge;
IF X=NIL THEN RETURN;

WITH s: xt SELECT FROM

END

blue => RETURN;

red => BEGIN s.item +- s.itefh+5; Add5[s.left]; Add5[s.right] END;

green =>

BEGIN Y +- @s; -- means y +- x
UNTIL Y = NIL DO

END

yt .item +- yt .item + 5; y +- yt .next;
ENDLOOP;

END CASE;

28

As it stands, this procedure runs through a Splodge adding 5 to all the integers in it.
Suppose we chose to copy while discriminating: i.e., suppose xt were copied into some
new storage named s. In the blue arm a lot of space and time would be wasted copying
a 1000 character array into s, even though it was never used. In the red arm the
assignment to SIS item field is useless since it doesn't affect the original structure.

The green arm illustrates the usefulness of declaring bound variant types like green
Splodge explicitly. If we had to declare yand the next field of a green Splodge to be
simply Splodges, even though we knew they were always green, the loop in that arm
would have to be rewritten to contain a useless discrimination.

To achieve the effect we desire under a copy-while-discriminating regime we would
have to redesign our data structure to include another level of pointers:

Splodge: TYPE = RECORD [

refcount: INTEGER;

vp: SELECT t: * FROM

blue =) [POINTER TO Blu eSplodge] ,
red =) [POINTER TO RedSplodge],
green ~) [POINTER TO GreenSplodge] ,
ENDCASE];

BlueSplodge: TYPE = RECORO[X: ARRAy[O .. lOOO) OF CHARACTER];

RedSplodge: TYPE = RECORo[item: INTEGER, left, right: POINTER TO Splodge];
GreenSplodge: TYPE = RECORo[item: INTEGER, next: POINTER TO GreenSplodge];

Now we don't mind copying because it doesn't consume much time or space, and it
doesn't destroy the sharing relations. Unfortunately, we mllst pay for the storage
occupied by the extra pointers, and this might be intolerable if we have a large
collection of Splodges.

How have we lived with this loophole so far without getting burnt? It seems that we
hardly ever change the variant of a record once it has been initialized. Therefore the
possible confusions never occur because the variant never changes after being
discriminated. In light of this observation, our suggestion for getting rid of the breach
is simply to invent an attribute IMMUTABLE whose attachment to a variant record
declaration guarantees that changing the variant is impossible after initialization. This
means that special syntax must be invented for the initialization step; but that is all to
the good since it provides an opportunity for a storage allocator to allocate precisely
the right amount of space.

29

6. Conclusions

In this paper, we have discussed our experiences with program modularization and·
strict type checking. It is hard to resist drawing parallels between the disciplines
introduced by these features on the one hand and those introduced by programming
without golO's on the other. In view of the great golO debates of recent memory, we
would like to summarize our experiences with the following observations and cautions:

1. The benefits from these linguistic mechanisms, large though they might be, do
not come automatically. A programmer must learn to use them effectively. We
are just beginning to learn how to do so.

2. Just as the absence of goto's does not always make a program better, the absence
of type errors does not make it better if their absence is purchased by sacrificing
clarity, efficiency, or type articulation.

3. Most good programmers lise many of the techniques implied by these disciplines,
often subconsciously, and can do so in any reasonable language. Language
design can help by making the discipline more convenient and systematic, and by
catching blunders or other unintended violations of conventions. Acquiring a
particular programming style seems to depend on having a language that supports
or requires it; once assimilated, however, that style can be applied in many other
languages.

References

1. Dahl, O.-J., Myhrhaug, B., and Nygaard, K., The SIMULA 67 common base
language. Pub1. No. S-2, Norwegian Computing Centre,Oslo, May 1968

2. Dennis, J.B. and Van Horn, E., Programming semantics for multiprogrammed
computations. Comm. ACM 9, 3 (Mar. 1966), 143-155.

3. Geschke, C. and Mitchell, J., On the problem of uniform references to data
structures. IEEE Trans, SE-1, 2 (June 1975), 207-219.

4. Habermann, A.N. Critical comments on the programming language PASCAL. Acta
Informatica 3 (1973), 47-57.

5. Knuth, D., The Art of Computer Programming, Vol. I: Fundamental Algorithms.,
Addison-Wesley, Reading, Mass.

6. Koster, C.H.A., On infinite modes. ALGOL Bulletin, AB 30.3.3, (Feb. 1969).

30

7. Lampson, B., Mitchetl, J., and Satterthwaite, E., On the transfer of control between
contexts. in Lecture Notes in Computer Science 19, Goos and Hartmanis, ed.,
Springer Verlag, New York. (1974), 181-203. -

8. Mitchell, J. and Wegbreit, B., Schemes: a high level data structuringconcepl to
appear in Current Trends in Programming Methodologies, R. Yeh, ed .•
Prentice- Hall, Englewood Cliffs, N.J.

9. Morris, J., Protection in programming languages. Comm. ACM 16, 1 (Jan. 1973),
15-2l.

10. Parnas, D., A technique for software module specification. Comm. ACM 15, 5
(May 1972), 330-336.

11. Stoy, J.E. and Strachey, C., OS6 -- an experimental operating system for a sman
computer. part 2: input/output and filing system. The Computer Journal 15,3
(Aug. 1972), 195-203.

12. van Wijngaarden. A. (Ed.), A report on the algorithmic language ALGOL 68,
Numerische Mathematik 14, 2 (1969), 79-218.

13. Wegbreit,B., The treatment of data types in ELI. Comm. ACM 17, 5 (May 1974),
251-264.

14. Wirth, N. The programming language PASCAL. Acta Informatica 1 (1971), 35-63.

