
ala Alto Research Center Palo Alto Research Center Palo Alto Rese
h Center Palo Alto Research Center Palo · Alto Research Center Pal(
Ito Research Center Palo Alto Research Center Palo Alto Research
nter Palo Alto Research Center Palo Alto Research Center Palo Alto
esearch Center Palo Alto Research Center Palo Arto Research Centf
Palo Alto Research Center Palo Alto Research Center Palo Alto ResE
rch Center Palo Alto Research Center Palo Alto Research Center Pal

Ito Research Center Palo Alto Research Center Palo Alto Research
nter Palo Alto Research Center Palo Alto Research Center Palo Alte
esearch Center Palo Alto Research Center Palo Alto Research Centf
Palo Alto Research Center Palo Alto Research Center Palo Alto ResE
ch Center Palo Alto Research Center Palo Alto Research Center Pal

Alto Research Center Palo Alto Research Center Palo Alto Research
nter Palo Alto Research Center Palo Alto Research Center Palo Alt,

esearch Center Palo Alto Research Center Palo Alto Research Cen1
Palo Alto Research Center Palo Alto Research Center Palo Alto Res
rch Center Palo Alto Research Center Palo Alto Research Center Pa
Alto Research Center Palo Alto Research Center Palo Alto Research
enter Palo Alto Research Center Palo Alto Research Center Palo Alt(
esearch Center Palo Alto Research Center Palo Alto Research Cent

Palo Alto Research Center Palo Alto Research Center Palo Alto ResE

Strategy Construction using a Synthesis of
Heuristic and Decision-Theoretic Method.s
by Robert F. Sproull

CSL-77-2 JULY 1977

This report describes a framework for constructing plans, or strategies, in which aspects of
mathematical decision theory are incorporated into symbolic problem-solving techniques
currently dominant in artificial intelligence. The utility function of decision theory is used
to reveal tradeoffs among competing strategies for achieving various goals, taking into
account reliability, the complexity of steps in the strategy, the value of the goal, and so forth.
The utility function aids searching for good strategies. acquiring a wOild model, allocating
planning effort, and organizaing a hierarchical problem-solving system.

A problem-solving system that prepares travel itineraries is presented as a case study in
integrating the techniques of decision theory and artificial intelligence. The system uses a
model of the traveler's utility to organize a search for good solutions. The hierarchical
siructure of the search narrows the search by finding crude plans and then further refining
them.

A central observation of this work is that locating an optimal strategy is not the proper
procedure when the costs of the planning itself are taken into account. . Instead, we desire to
engage in optimal planning. in which the total expenditure of effort to find and execute the
solution is in some sense optimal.

KEY WORDS AND PHRASES

Artificial intelligence, problem-solving. heuristics, hierarchical planning.

CR CATEGORIES

3.64, 3.66.

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

Acknowledgements

This report reproduces a dissertation submitted to the Stanford University, Computer Science
Department. Any clarity of expression or thinking that the reader finds among these pages is
predominantly the result of careful reading and criticisms of many people: Jerry Feldman,
Cordell Green, and Terry Winograd (the reading committee); also Ivan Sutherland, Dan
Bobrow, Jonathan King, and. Marty Epstein.

This dissertation is built upon the stimulation of various other efforts in AI. Earl
Sacerdoti's work on ABSTRIPS and especially on NOAH is inspirational. The work of
fellow students at the Stanford Artificial Intelligence Project, particularly Yoram
Yakimovsky, Russ Taylor and Bob Bolles, has also helped push this effort along. I am
grateful for the discussions and help of these individuals.

The institutions that have supported this work deserve special thanks. I am most grateful to
the people of the Xerox Palo Alto Research Center for their support and for their unexcelled
patience with my slow progress on this work. PARC is a wonderful place to learn much
about computing; its attractions are in part responsible for what follows. For support during
my early years of graduate study, I am grateful to the National Science FouJ)dation and to
the Advanced Research Projects Agency.

It is a pleasant custom in dissertation acknowledgements to repay in part the enormous debt
of student to teacher. I feel extremely fortunate in the schooling I have received, but
especially in the generosity of five individuals. My parents have been my best teachers: it
was my father who forced me to learn logarithms before the slide rule, calculus before
physics; it was the exercises he generated and the questions he asked that made me "get it
right." Ivan Sutherland. whose course in computer graphics I took almost by chance as an
undergraduate. irrevocably attracted me to computing; since then working with him has been
especially exciting, stimulating and gratifying. Jerry Feldman, in addition to advising me on
this dissertation, introduced me to the "restlt of computer science; his forte is goading me
into occasional action by pointing out my weaknesses. Lee Sonastine Sproull has offered me
much that will not submit to expression; she has also labored valiantly to help improve my
written expression!

Table of Contents

1. Introduction

2. Introduction to Decision Theory and AI Planning
2.1 Decision Theory in Symbolic Problem-Solving
2.2 Improving the Plan
2.3 World-Model Acquisition
2.4 The Trinity: Look. Think, Act
2.5 Summary

3. PEGASUS, The Travel Planner
3.1 Generating Travel Itineraries
3.2 A First Explanation
3.3 The Model
3.4 The Explanation in More Detail
3.5 Conclusion

4. Critique and Extensions
4.1 Models
4.2 Processing the Models
4.3 Control of Planning
4.4 Summary

5. Decision Theory and Current AI Work
5.1 The Origin of this Study
5.2 Planning and Problem-Solving
5.3 Decision Theory in Robotics
5.4 Potential Applications

6. Concl usions
6.1 Summary
6.2 Suggestions for Further Work
6.3 Decision Theory and Artificial Intelligence

Bibliography

Appendix: Trace of PEGASUS Execution

1

8
9
18
24
26
28

29
30
34
47
56
72

73
74
89
103
112

114
115
116
124
126

129
130
131
134

141

145

Chapter 1

Introduction

2

How can a computer be programmed to plan and execute strategies that achieve

some desired goal? Variants of this problem have nurtured efforts to develop

the necessary epistemology" and .computational techniques, as part of a" pursuit of

"artificial intelligence" (AI). The variant known as "robotics" has attempted not

only to plan strategies involving actions similar to those of humans in the real

world, but also to build electronic "eyes" to observe the world and computer

controlled arms and wheels to achieve motor activity.

A characteristic of most of these planning systems is that they generate

reasonable plans, but not "optimal" ones. In fact, the techniques used in AI

planning currently allow little discrimination of preference among reasonable

plans. A certain amount of tinkering and adjustment offer only limited ad hoc

relief.

What is needed is a combination of the powerful AI techniques for restricting

attention to those plans that are l'eas~nable, together with techniques for finding

good plans among the reasonable ones. A simple but wasteful formulation of

the combination might involve enumerating all reasonable plans and then

evaluating each one to identify the best plan. One of the questions addressed

in this dissertation is: how can a system benefit from a tighter integration of

the techniques?

The notion of optimality that we shall introduce into AI planning is borrowed

from mathematical decision theory. The central idea of the discipline is that a

numerical utility function can be used to evaluate decisions (see Chernoff and

Moses, 1959, or Raiffa, 1970, for introductions to decision theory). A single

numerical value summarizes the advantages of a set of actions, including effects

of uncertainty, risk, and value of outcomes. A typical utility function would be

the profits realized from a particular investment outcome.

\i.

The aim of this research is to conlbine decision theory and AI techniques so

that planning uses models of optimality that accompany a decision-theoretic

formulation, and also uses heuristic information to avoid the large searches

characteristic of problems cast solely in decision-theoretic terms. 'rhe basic

approach is to conduct an organized search of plan alternatives using the utility

function to measure the promise of partially-complete plans. Promising avenues

are explored incrementally to build and refine plans. Between each increment,

the promise of the plan is reassessed. As new information is gathered, the

3

pending plans are re-evaluated in light of the new information. Similarly, as

plan execution progresses and the state of the world changes, pending plans are

re-evaluated to take account of information acquired du.ring execution or are

discarded if they cease to apply to the case at hand.

Decision Theory

A dominant tenet of this work is that the utility function and the model of

costs and' outcomes accompanying it constitute a convenient way for representing

certain kinds of information used to solve a problem. Two perspectives on the

utility notions are important: what sorts of information are naturally represented

in this fashion, and what computational techniques can be applied to this

information in pursuit of problem solutions?

Many of the arguments for the utility function are the result of years of

development of mathematical decision theory and of various utility theories

(Fishburn, 1970). The justification of the utility function applies to many

problems attacked in AI; consider some introductory arguments:

• The first, and perhaps the best, argument for a numerical utility function

is that the choice between alternative courses of action is often inherently

numerical. One chooses the cheapest, or fastest, or strongest alternative.

Many problems in robot problem-solving are virtually inexpressible in non

numerical terms. Examples also abound in medicine: it is known only

that a certain fraction of schizophrenics respond to a certain drug, and

there is no way to determine in advance whether a given patient will

respond.

• Another main use of a utility function can be called "comparing the

incomparable." If flying is faster and safer than driving, but more

expensive and subject to delay, how can we choose which to do? What

change in price would cause us to choose otherwise? The expected utilities

of the alternative decisions answer these questions. By contrast, a heuristic

program capable of comparing differing strategies symbolically will have

rules covering many combinations of goals and circumstances, and the

addition of new entities may req~ire significant reprogramming. But if

utility information about trains were added to a representation of

transportation based on utilities, no further rules would be required to

4

relate trains to other modes of transportation. Decision theory provides a

uniform way of treating information related to choosing a course of

action, given the relevant. utility and probability values.

• Many of the properties of a plan that the planning system needs in

reasoning are revealed by the utility function. The numerical utility

measure permits two plans to be compared, permits the value of potential

improvements to plans to be assessed, permits the planning activity to

o.rganize an orderly search for the best plans, and permits the effective

allocation of resources to planning, acting and information-gathering.

This dissertation applies the utility function to reveal tradeoffs among competing

strategies for achieving various goals, taking into account reliability, the

complexity of steps in the strategy, the value of the goal, and so forth.

Techniques of decision theory can be applied to satisfy a number of objectives

when constructing and executing plans:

• Comparing alternative plans. Often these comparisons are made among

instances of a common plan outline or skeleton.

• Coping with uncertainty. The calculation of expected utility permits the

reliability of a plan to be considered when assessing its worth.

• Finding good plans. The' utility of partially-completed plans, together with

bounds on the utility of the completion required, can be used to organize

and guide a search for the best plan.

• Improving a plan. Failure paths in plans 'can be elaborated with recovery

plans. The increase in expected utility of the elaborated plan measures

the effect of generating a plan to cope with the failure path.

• Acquiring information. Utility measures can be used to' plan efficient

strategies for acquiring information needed for further planning.

• Allocating resources among planning, acting or information-gathering. The

utility measure can also be used to decide which activities are most

beneficial to the system.

The last observation, that a utility measure can assess the value of planning, is

particularly noteworthy. Knowledge of the performance behavior of the planning

5

system) however crude) is widely applicable. From an external viewpoint, it can

be used to choose among planning, executing and information-gathering activities.

Within the planning systelu,. it can be used to allocate resources among

competing planning techniques because the promise of a particular approach,

measured by an estimate of its utility, can be balanced by an estimate of the

planning effort required to complete the plan.

The objective of a problem-solver should be to maximize the utility of the

planning process and the execution process jointly. The effort expended to

develop a plan and the effort expended to execute the plan are equally

important to the objective. We shall be concerned with developing techniques for

such optimal planning. These methods will find P-optimal solutions. in contrast

to solutions that offer only optimal execution utilities.

Symbolic Pro"blem-Solving

The notions of optimality must be fused with planning techniques developed to

find reasonable plans from symbolic models of a problem. AI research in

general-purpose systems for planning and acting has drawn heavily on the closely

related task of problem-solving. 1 An early paradigm for problem-solving relied on

the techniques of predicate calculus and theorem-proving for representing the

model and reasoning processes: the model of the behavior of actions and of the

state of the world is expressed as axioms in predicate calculus; the problem

statement is expressed as a theorem to be proved; the sequence of actions that

will accomplish the desired result is extracted from a mechanical proof of the

theorem (Green) 1969)." This approach is limited by available theorem-proving

techniques: it is not possible to cope with models of much complexity.

These difficulties have led to emphasis on procedural embeddings of similar

models. often aided by one of a host of "AI programming languages" (Bobrow

and Raphael. 1974). These techniques admit larger models and allow

specification. in the form of a computer program. of solution methods that are

likely to be fruitful. This ability to direct the processing along preferred

avenues has been used in ad hoc ways to extract "good" solutions.

1We--shaii--use--the--term planning to mean the process of creating a plan. or
sequence of actions. which will achieve a given goal. Originally. planning was a
technical term in AI that referred to techniques of planning out problem
solutions before actually trying a detailed solution. Robotics work has typically
used the term in the looser sense we adopt here.

6

The use of both of these methods,however, has been largely devoted to

demonstrating the existence of one solution to the given problem, and not to

exploring multiple solutions in order to find the best one. This convenient

practice cannot suffice for our purposes: several alternative strategies must be

examined and the best one selected for execution.

Often, the alternative strategies that must be considered in order to find the

optimal solution are variants of a simple "skeleton." A real-world example of this

sort of strategy is the "wheelless student problem," buying a used automobile. A

typical procedure is first to read newspaper advertisements and bulletin boards

to assess the situation generally. Then, at relatively low cost, one can telephone

various purveyors of cars and inquire about' them. At some point, one must

,actually go to the effort of seeing and, driving certain of these. There are

professional diagnostic services that can be employed, at considerable cost, to

further test the car. In each of these steps, one must decide when to stop that

stage and go on to the next one. One does not, of course, proceed in strict

order; there will normally be alternatives at several different levels of

investigation. Notice that the "plan" itself is trivial: read, telephone, look, drive,

professionally test and buy. It is the application of this plan to the world

situation that is difficult. This behavior is typical: many planning activities are

characterized by complex applications of simple plans.

Reading this documen t

This dissertation uses two case studies to explore the synthesis of the AI and

decision-theoretic approaches. Chapter 2 is devoted to the first, which uses an

elaboration of the classical "monkey and bananas" problem to present a tutorial

on aspects of decision theory and introduces several specializations for our

purposes.

The second case study, described in Chapter 3, introduces additional specialized

techniques. The chief features are' a hierarchical structuring of symbolic and

decision-theoretic reasoning, arid an attention to the costs of planning activities.

The study itself is a computer program that plans travel itineraries. A user

states a problem such as "journey from Stanford to the University of Rochester,"

and gives some information about his utility function. The' problem is attacked

at several hierarchical levels of processing. giving rise to increasingly detailed

plans. Each level summarizes progress on a. plan by computing an upper bound

7

on the utility of the plan -at this and all subsequent levels of processing. A

promising partial plan is -subjected to more detailed processing that tries to

discover rapidly the Inajor difficulties with the plan, often by adding constraints

or complexities that cast increasing doubt on a previously good plan, and thereby

reducing the utility of executing the plan. This process can be summarized as

finding fault with crude plans by considering more details.

Chapter 4 explores SODle of the techniques used in the case studies in more

detail. It aims both to offer Inore elaboration of some of the techniques and to

suggest ways some may be generalized.

Chapter 5 is devoted to an analysis of the _ approach in light of previous and

current AI work. The techniques explored in the case studies can be applied in

a number of active areas. Chapter 6 recalls the main ideas of the dissertation

and relates the fields of AI and Decision 'rheory.

The following table n1ay help to point the reader to sections that describe points

of particular interest:

Topics from decision theory:
Utility functions:
Uncertainty:
Testing, value of information:

Integration into problem-solving:
Searching for good solutions:
Allocating planning effort:
Optimal planning:
Hierarchical organization:
Hierarchically consistent utility models:

Summaries:
Monkey and bananas case:
Travel planner case:
Full summary:

2.1.1
2.1.3
2.2, 2.3

2.1.4, 4.2
2.4, 3.2.3, 4.3
4.3.1
3.2, 3.4, 4.2.2
3.3, 4.1.9

2.5
3.1, 3.3.6, 3.5
6.1

Chapter 2

Introduction to Decision Theory and AI Planning

9

This chapter presents in a tutorial form the essential ingredients of the

synthetic approach: the concepts of mathematical decision theory and their

relation to conventional AI problem-solving techniques. The presentation uses

the "monkey and bananas" problem as an example, exposing a sequence of

techniques as the example is embellished. The description assumes familiarity

with AI problem-solving (see Fikes, 1976, for a summary); it assumes little

knowledge of decision theory (introductions can be found in Raiffa, 1970, or

Chernoff and Moses, 1959).

2.1 Decision Tlleory in Symbolic Problem-Solving

Decision theory helps a symbolic problem~solver search for the best plan to

achieve a given goal. A utility function on plans can govern a search strategy

that explores plans of high utility; the search terminates by announcing the plan

of highest utility.

We shall illustrate how symbolic problem-solving and decision analysis can be

combined with the classical example: A hungry monkey is in a room where a

bunch of bananas hangs from the ceiling. The monkey cannot reach the

bananas. There is, however, a movable box in the room; if the box is under the

bananas and the monkey stands on the box he can reach the bananas and eat.

The goal for a symbolic problem solver is to find a plan that will feed the

monkey.

A typical problem-solver is given a symbolic model of the problem and searches

for a combination of "actions" that achieves a given goal. A possible symbolic

model, specified in the style of a modern AI language, records information about

the position of objects with an "AT" relation that associates an object and its

Cartesian coordinate position. Additional relations declare boxes to be climbable

and pushable and bananas to be edible. An initial set of relations might be:

(AT MONKEY 9 9 0)
(AT BANANAS 0 0 5)
(AT BOX 2 2 0)
(HEIGHT BOX 5)
(CLIMBABLE BOX)
(PUSH ABLE BOX)
(EDIBLE BANANAS)

This set is a symbolic representation of a "state of nature," or simply a state.

10

The symbolic ~odel must also include a model of the actions that' are capable of

effecting transitions among states. The actions are specified below. If all

relations in the list of preconditions are in the set of relations describing the

current state,' then the operator can be applied. Application of an operator

causes a transition to a new state by deleting relations in the delete list from

the current set, and adding those in the add list. (The functions X, Y and Z

refer to the coordinate entries in the AT relation. The symbol $ will match any

value in the corresponding position in the relation.)

WALKTO(a)
Preconditions:(AT MONKEY $ $ 0)
Delete list: (AT MONKEY $ $ 0)
Add list: (AT MONKEY X(a) yea} 0)

PUSHTO(a,{J)

CLIMB(a)

Preconditions: (PUSHABLE a)
(AT MONKEY X(a) Yea) 0)
(AT a $ $ 0)

Delete list: (AT MONKEY $ $ 0)
(AT a $ $ 0)

Add list: (AT MONKEY XCP) YCft) 0)
(AT a X(fJ) YCft) 0)

Precondi tions: (CLIMBABLE a)
(AT MONKEY X(a) yea) 0)

Delete list: (AT MONKEY $ $ 0)
Add list: (AT MONKEY X(a) Yea) HEIGHT(a))

CONSUME(a)
Precondi tions: (EDIBLE a)

(AT MONKEY X(a) Yea) Zeal)
Delete list: (EDIBLE a)
Add list: (FED)

The problem-solver, given the goal (FED), tries to find a sequence of actions

leading from the initial state to one that includes the (FED) relation. It might

generate the sequence:

WALKTO(BOX) .
PUSHTO(BOX,BANANAS)
CLIMB(BOX)
CONSUME(BANANAS)

We shall refer to such a sequence as a plan to achieve the goal. In a robotics

experiment, the original relations and this plan can be used as a set of

commands to software and hardware subsystems that cause a robot to simulate

the actions of the monkey.

11

If the problem statement and the corresponding symbolic information given to

the problem-solver were expanded to include multiple tools, multiple sources of

food, or multiple goals, the problem-solver could generate other plans as well. If

the initial relations model several boxes, a plan for each box could be generated.

But if the number of alternative plans grows at all large, the combinatorial

explosion will overwhelm any present problem-solver.

2.1.1 Computing the Utility of a Plan

The utility of one of the W ALKTO, PUSHTO, CLIMB, CONSUME plans is derived

from a utility m'odel that accompanies the symbolic model. It is a measure of

the value of achieving the' goal, diminished by the cost of executing each of the

steps in the plan. We shall assume for now that this utility can be expressed

as a sum of contributions from individual steps and a contribution representing

the value of achieving the goal. (Note: This treatment omits important

considerations such as risk that are discussed in Chapter 4.)

For each goal, we assign a function that evaluates the utility of achieving the

goal. In our example, we shall assign U e=200 to the goal of eating, i.e., t.o

achieving a state in which the monkey is fed. Goals of less value to the

monkey are assigned correspondingly smaller utilities. For later reference, we

shall assume that the next most desirable goal is "don't bother trying to eat,"

which has utility Udb.

The utility associated with executing ea"ch step of the plan is often called the

"cost" of the step. A robotics experiment that simuiates each operator with a

collection of processes, including computation and, control of a robot vehicle or

manipUlator, might use cost assignments that express the consumption of

resources required to accomplish each step. The table below specifies an

assignment of negative-valued cost functions C that reflect the expenditure of

resources required for each step.

WALKTO(a). The monkey walks from its present location to (X(a),Y(a)).
The cost is Cw = -1 X the distance between the present position and the
destination.

PUSHTO(a,,B). The monkey pushes the object a to the location X(,B),Y(fJ). Cp
= -10 X the distance the object is pushed.

CLIMB(a). The monkey climbs the object a. Cb '" -20.

CONSUME(a). The monkey consumes the food a. Cc = -5. The cost' of the
CONSUME action does not include the utility Ue of achieving the goal
because, in general, an action may have several outcomes. The
contribution Ue is a property of the outcome, not of the action.

12

Using this model, the tolal utility of the symbolic plan W ALKTO, PUSHTO,

CLIMB, CONSUME is: Utotal=Cw+Cp+Cb+Cc+Ue. The utility of the next-best plan

is Udb.

2.1.2 Comparing Alternative Plans

The plan with greatest utility can be selected for execution: it is the "best" of

the plans generated by the symbolic problem-solver, as evaluated by the utility

model. To illustrate the power of comparing plans, consider generating plans

using each of the four boxes shown in the "map" of Figure 2-1. Table 1 shows

the total utilities of' the WALKTO. PUSHTO, CLIMB. CONSUME plans using the

different boxes. The plan to use box B h~ the greatest utility and is therefore

selected as the best plan.

Monkey

Bananas

Figure 2-1. Map showing a hypothetical location of the monkey, the
bananas, and four boxes. The axes indicate an (x,y) coordinate
system. Which box should the monkey push under the bananas and
mount to reach the food?

Table 1

Cw Cp Cb Cc Ue Utotal
Box A -3 -117 -20 -5 200 55
Box B -13 -36 -20 -5 200 126
Box C -6 -64 -20 -5· 200 105
Box D -13 -81 -20 -5 200 81

13

This simple utility model adds considerable capability to the problem-solver. The

location of the boxes and the cost functions determine which box is selected as

the best one to use. For example, if Cp = <;V, box C will be preferred rather

than B. If the initial position of the monkey changes, different boxes may be

preferred. Figure 2-2a shows a map of regions in which the monkey might start

out, together with the preferred box in each region.

Use B

.~

B

Figure 2-2. (a) Regions of box preference are shown based on the
initial location of the monkey. (b) The shaded region indicates where a
box preferred to B must lie. Both maps are made assuming
Cp=-2Xdistance.

The cost functions also provide answers to a number of questions that an

intelligent strategist must pose. For example, when should one try to find a box

of higher utility than any presently located, and where should one search? Figure

2-2b shows the region in which a box preferred to B would have to lie.

Another important class of strategic questions concerns what decision theorists

call "sensitivity analysis:" how much confidence can be placed in the

identification of the best plan? Is it substantially better than the next best, or

do the utilities show that the planner is nearly indifferent' to the choice? Do

slight inaccuracies in the map or model cause a substantial change in the choice

of best strategy? We shall later return to these inlportant questions.

14

2.1.3 Coping with Uncertain ty

Execution of a plan can go awry and produce outcomes considerably different

from the desired goal. Clearly the reliability of a plan must be incorporated into

the calculation of its utility. Decision theory shows how to weight the utility

of an outcome with its probability of occurrence and thus to calculate a total

utility that expresses the consequences of possible failures.

Let us augment the monkey and bananas problem by introducing a simple kind

of failure: There are two kinds of boxes in the room: wooden and cardboard.

Cardboard boxes' will not support the monkey; wooden ones will. When the plan

outline is applied to a box of u~known type, either the box is wood. and the

monkey succeeds in eating, or it is cardboard and he fails. This possibility is

modeled as an unreliable CLIMB step (see Figure 2-3). In the absence of more

precise information about the box to which the plan is applied, we shall use a

single probability Po to express the likelihood that the box is wooden. In

addition, we shall assign a utility to the failure outcome. A simple assignment is

simply Udb,' corresponding to abandoning the quest for food. However, failure

recovery plans of higher utility may exist: a plan to clear away the destroyed

cardboard box and to try using another box may have a higher utility than Udb.

Techniques for devising failure recoveries will be more fully developed below; we

shall temporarily assume the utility of the failure outcome to be Udb.

The utility of the plan is calculated as the mathematical expectation of the

utilities of the individual outcomes, i.e., Utotal = L ~i Ui. where Ui is the total

utility of a particular path in the "decision tree," and Pi is the probability of

taking the path (k Pi = 1). For Figure 2-3; the total utility Utotal is

po(Cw+Cp+Cb+Cc+Ue) + (l-Po)(Cw+Cp+Cb+Udb).

This technique allows the planner to trade off cost and reliability; classical AI

problem-solvers have no means of expressing these tradeoffs. For example, if we

use the costs of Table 1 and· assume an identical Po for all boxes, no change

occurs in the selection of the best plan. However, if the probabilities differ for

various boxes, a reliable plan may be preferred to a less-reliable one. For

example, if Poc is the probability that box C is wood, Pob that of ·box B, and

Poc > Pcb + .11, the expected utility of using box C will be greater than that

of using box B, even though a plan to use B is always preferred in the absence

of failure.

wood (po =.8)

Consume
C=-5

U t =87

WalkTo(B)

C=-13

PushTo

C=-36

Climb

C=-20

cardboard (1-p o=.2)

U
db

=0

Figure 2-3. A decision tree showing a plan in which the CLIMB step
fails with probability 1-po.

15

The expected utility is a numerical measure of the merits of the strategy

expressed by the plan. It does not predict that executing the plan will have an

outcome of comparable utility, but predicts only the average utility of outcomes

of many executions. Thus, if we use the expected utility as a measure when

searching for good plans, we do not guarantee good outcomes, only good

stra tegies.

2.1.4 Finding Good Plans

Because the utility of a plan can be used to compare the merits of competing

plans, it can be used to guide a search for good plans. The basic idea is to

search by expanding paths of greatest expected utility. A nUInber of algorithms

have been devised that can use numerical measures to guide such a search (see

surveys in Nilsson, 1971, and Lawler and Wood, 1966).

Using numerical measures to guide search is not new to AI. Many game-playing

progranls employ a numerical score to represent the desirability of a board

position and to guide a search. In fact, a game-playing program that uses a

16

plausible move" ~enerator and, a numerical evaluation of progress toward a win is

a simple example of a combination of symbolic and ad hoc utility models in

problem-solving. Robotics problem-solving programs (e.g., S,TRIPS in Fikes and

Nilsson, 1971) 'have also used simple numerical measures, such as the number of

opera tors in a plan, as a search guide.

Searching can be guided in several ways; we shall illustrate "progressive

deepening" and "pruning" as examples. The A * algorithm (Hart, . Nilsson, Raphael,

1968) is typical of a progressive-deepening approach: a non-terminal node, N, of

a search tree is expanded if it lies on the most promising path. The measure of

promise is an estimate of the utility of the complete plan, computed as the sum

of two terms: g,. a measure of the utility contributions ascribed to the nodes

already included in the path (i.e., the total cost 1 of the steps from the root

node to N), and ~ an upper bound estimate of the utility of a path from N to

the goal. These terms for the monkey and bananas example might be:

g(node) = ~ Ci from root to node
h(n od e) (upper-bound estimate of costs from node to the goal) + Ue

The calculation of g requires calculating the contribution to the utility of the

steps of the partially complete plan. It is for this reason that we have

formulated our utility model as a sum of terms attributable to individual steps

of the plan. The estimate used for h can be based on a simple "state

difference" approach. For example, if, at node N,' the monkey is not located at

the bananas, then an upper bound on h is the cost of moving the monkey to

the bananas.

Progressive deepening uses a running estimate of the path utility to guide

application of further planning effort. One advantage of this technique is that

it will automatically attenuate the processing of plans that loop: such plans are

abandoned because, as steps are added to the plan, g decreases continually

without an offsetting increase in h.

"Pruning" is characteristic of several kinds. of search algorithms that avoid

exploring portions of the tree because the optimal plan can be shown to lie

elsewhere. Many algorithms in use in operations research, known generically as

"branch and bound" algorithms, have this property. The basic idea is to ignore

1Note-"ihat--the--litiiity- contributions of steps that consume resources are negative.
Thus an upper bound on the' utility is one for which resource expenditure is
least.

17

paths that have an upper bound on their utility that is less than the utility

achievable by some other path. A similar technique for mini-max trees is called

"alpha-beta," and has been extended for use with decision trees. (Nilsson, 1971,

and Slagle and Lee, 1971).

The key information that guides pruning is the bounds information: the tighter

the bounds the more pruning. Bounding the utility of a plan such as that of

Figure 2-3 requires bounding the utility of the part of the plan that is

incomplete, the failure path. Bounding the failure path is equivalent to

bounding the utility of the possible recovery strategies. One way to do this is

as follows:

Lower bound: Don't bother with the current goal, and assign utility Udb to

the failure. Thus the lower bound of the entire plan is Ulower =

Cw+Cp+Cb +Po(Cc+ U e)+(I-Po)Udb ..

Upper bound: Assume that the failure caused no damage, and that there is

an alternative plan as good as the present one. (Note: Given that a good

plan fails, we do not have to assume that there exists a recovery p~an

better than the original one, because that will be covered by cases

involving other boxes.)

Uupper

Uupper

Cw+Cp+Cb+Po(Cc+Ue)+ (l-po)Uupper

= (Cw+Cp+Cb)/po +Cc+Ue

If we perform these calculations for all boxes, as in Table 1, we find:

Table 2

Box Ulower Uupper

A 16 20
B 87 109
C 66 82
D 42 52

This bounding scheme shows clearly that utilities of plans involving boxes A, C,

or D cannot exceed even the lower bound on using box B. Thus portions of the

tree that call for boxes A, C and D to be used are pruned.

The numerical utility model thus furnishes information that is useful in guiding

search. This information, whether encoded in cost functions or in bounding

schemes, can easily involve "domain-dependent" information, as exemplified by our

18

assignmen t of a function' of distance' to the cost of walking. The symbolic

model also constrains search: the symbolic preconditions are used to avoid

searching foolish plans, e.g., ones that require reaching for the bananas when the

monkey is not "AT" the bananas. These techniques can be implemented in the

new AI languages (see survey in Bobrow and Raphael, 1974) by instantiating

each subgoal pursuit as a separate process and including bounds estimates and

costs when proposing new subgoals. A branch and bound algorithm, such as A *.
can then schedule the processes (subgoals). always executing the most promising

subgoal. Such dynamic allocation of effort to problem-solving processes motivated

the design of the SAIL multiple process structure (Feldman, et a1, 1972).

2.2 Improving the Plan

In this section, we shall focus on improvements that can be made to a plan

prior to its execution. A plan outline often can be altered to yield a greater

expected utility by making detailed, ~ften local, improvements to the plan. The

measure of improvement in this plan elaboration process is the increase in

expected utility resulting from filling in details.

A plan can be improved by developing plans to recover from failures in the

original outline. The failure in Figure 2-3 can be elaborated with steps to clear

away the mess, choose an alternative box, and try to use it to reach the

bananas. Such an elaboration is shown in Figure 2-4; the expected utility of

the p~an has risen from 87 to 96 as a result of the elaboration. The increase

occurs because the plan to deal with' the failure of box B (i.e., to try again

'with box C) has a higher utility than that' of giving up (45 vs 0). This

process can be carried on indefinitely, but if the probability of failure is fairly

low, the cost of additional planning may exceed the slight improvement in

expected utility. (Generating plans for recovering from failures is similar to the

generation of the original plan: a symbolic problem-solver can provide plan

outlines; the alternative recovery strategies are compared with utility

measurements.)

Elaborating failures tightens the bounds on a plan. Figure 2-4 has a set of

bounds shown in brackets as a triple: lower bound, expected value, and upper

bound. Bounds are assessed from bottom to top; the triple, with a prime symbol

is calculat.ed using the Uupper formula, then the effects are propagated up

through the tree. This process yields a rather tig~t bound on the utility of

using box B (c.f. Table 2).

Po =.8 /
Consume

C=-5

I
Ue =200

U t =96

I [9696 104] , ,

WalkTo(S)

C=-13

J
PushTo

C=-36

I
Climb

C=-20

"'" 1-
p
o =.2

Clear
C=-20

I
WalkTo(C)

C:-6

I
PushTo

C=-64

I
Climb

C=-20

Po =.8 /

Consume
C=-5

I

U
d

[66;66;105]'

=0
b

Figure 2-4. The failure of the CLiMS step is elaborated with a
recovery strategy. This has the effect of increasing the utility of the
plan to 96 (compared to 87 in Figure 2-3). The triples in brackets
represent the lower bound, expected value, and upper bound of the
plan.

19

Another kind of plan improvement can be achieved by introducing steps in the

plan to gather information, and thereby to reduce the uncertainty in the

outcome. A simple example is shown in Figure 2-5: a perfect and costless test

determines whether each box is wooden. If the test announces that a box is

wooden, which happens with probability Po, then the plan to use that box is

guaranteed to be successful. If the test announces that a box is cardboard, the

20

next best plan is tried, and so forth. Adding these tests causes Utotal to rise to

121.

Ue
Figure 2-5. Four perfect :and costless tests for wooden boxes are
inserted into the plan. This illustrates that case when we know only
that each box has an independent probability of .8 of being wooden.

A more realistic Inodel of such information' gathering accounts . for the

expenditure of resources required to perform t~e test and for, the possibility that

the test gives an incorrect answer. We shall define two such tests that can be

used to elaborate the monkey and bananas plan:

TEST-FAR: A visual test measures whether a box is - wooden. It does not
require that the monkey be located near the box. It has a cost Ctf. The
answer is characterized by two conditional probabilities Pfw and Pfc:

Pfw = Pr{tcst announces "wood" I box is wooden}
I-Pfw = Pr{test announces "cardboard" I box is wooden}

Pfc = Pr{test announces "wood" I box is cardboard}
I-Pfc = Pr{ test announces "cardboard" I box is cardboard}

If the test always yields correct answ~rs, Pfw=1 and Pfc=O.

TEST-NEAR: This test is analogous to TEST-FAR, but the monkey must be

21

at the same location as the box being tested. This test might involve
"thumping" the box. Cost Ctn. The behavior is characterized by:

Pnw :: Pr{test announGes "wood" I box is wooden}

Pnc = Pr{test announces "wood" I box is cardboard}

If the test always yields correct answers, Pnw=1 and Pnc=O.

Aa

cardboard

Sa

cardboard

cardboard

cardboard

Sp

Figure 2-6: Decision trees for the four possible strategies using TEST
NEAR and TEST-FAR.

22

Adding these ~ests to the ·plan outline produces the four strategies shown in

Figure 2-6. In order to calculate the expected utilities of these plans, and

thereby to choose the best one, we must describe· the consequences of performing

a test. We shall use a simple Bayesian model: a test causes a change in the

probability that the tested box is wooden, according to Bayes' rule:

Pr{box is wood I TEST-FAR announces "wood"} =
Pfw Pr{box is wood} I
[Pfw. Pr{box is wood} + Pfc (l-Pr{box is wood})]

Pr{box is wood I TEST-FAR announces "cardboard"} =
[(I-Pfw) Pr{box is wood}] I
[(I-Pfw) Pr{box is wood} + (I-Pfc) (I-Pr{box is wood})]

. .
In these equations, Pr{box is wood} is the estimate of. the probability that the

box is wooden before the test is performed (the a priori probability), and Pr{box

is woodiTEST-FAR announces ... } is the estimate derived from the answer to the

test (the a posteriori probability). Analogous relations hold for TEST-NEAR.

We also need to calculate the probabilities of taking each of the two paths that

emanate from the TEST operation:

Pr{test announces "wood"} = Pfw Pr{box is wood} + Pfc (l-Pr{box is wood})

Pr{test announces "cardboard"} = I - Pr{test announces "wood"}

As an example of these calculations, we shall evaluate the expected utility of

the Ba strategy of Figure 2-:6 applied to box B, with the prior probability of

finding a wooden box, Po, set to 0.8, the performance of TEST-FAR characterized

by Ctf=-20, Pfw=0.9 and Pfc=O.I, and the failure utilities UFI and UF2. set to O.

For each of the three paths through the tree, we must calculate the probability

the path is taken and the utility of the path:

Path

TEST-FAR, FI

TEST-FAR, WALKTO,
PUSHTO, CLIMB, F3

TEST-FAR, WALKTO,
PUSHTO, CLIMB,
CONSUME, Ue

. Ui Path probability

-20 Pr{ test announces "cardboard"} - .
1-(PfwPo + Pfc(l~po)) = .26

-89 Pr{box is cardboardltest announces "wood"} X
Pr{ test announces wood} =
[l-(PfwPo)/(PfwPo+Pfc(l-po))] X .74 = .02

106 Pr{box is woodltest announces "wood"} X
Pr{ test announces "woo~"} =
[(PfwPo)/(PfwPo+Pfc(l-po))] X .74 = .72

The expected utility is EU = ~ PiUi = 69. Similar calculations for all four

23

strategies, applied to box B, are recorded in Table 3. For the given set of costs,

utilities and probabilities, strategy AfJ is selected. The strategy can be improved

still further QY elaboration to cope with the failures F2 and Fa. as described

above. Using both methods, a strategy with expected utility 105 turns out to

be optimal.

Parameters:

Strategy

Aa
AfJ
Ba
BP'

Cw=-l X distance
Cp=-10 X distance
Cb=-20
Cc=-5
Ue=200
UFi=O

Table 3

Expected utility

87 (c.f. Figure 2-3)
88
69
63

Ctf=-20
Ctn=-10
Pfw=·9
Pfc=·l
Pnw=l
Pnc=O
Po=·8

Comparison of the four strategies shown in Figu.re 2-6,
showing that strategy AfJ has the greatest expected utility.

In addition to providing information, a test may also cause a change in state.

For example, a medical test may present some risk to the .patient: the outcome

may worsen the patient's condition in addition to providing diagnostic data. Or

it may have cumulative toxic effects, as in the case of tests that require X-ray

exposure.

The model of testing reveals tradeoffs among various information-gathering

strategies as differences in utility. If the insertion of tests in a plan causes

the expected utility of a plan to rise, the test is providing information that

helps reduce the uncertainty of the outcome. Decision theory calls this increase

in utility the "value of information."

If different strategies have nearly identical utilities, as do Aa and AfJ in Table

3, the planner might announce indifference between the strategies, and perhaps

use other methods to decide which one to pursue. Such small differences may be

insignificant when uncertainties in the probability or utility models are taken

into account. Although we nlay in princip~e reduce these errors by refining the

model, we shall always be faced with insignificantly. small differences.

24

Elaborations cause the search space to grow quite large because of the various

choices of inclusion and exclusion of tests, the increased number of failures that

require recovery strategies, etc. .The search would be wholly impractical without

a guide such as the branch and bound algorithm. We shall address below other

methods of combatting the "combinatorial explosion" during elaboration.

2.3 World Model Acquisition

The planning activities described in previous sections have assumed that the

planner begins :with a complete model of the world. Because acquiring such a

"world model" and locating all the boxes is a sizeable task, an efficient strategy

for feeding the monkey must make efficien~ allocation of resources to build the

model.

A decision-theoretic model of the acquisition process can express the cost and

reliability of an acquisition operator and the utility and probability of locating

an object in the world. Once again, the utility measure can be used to search

for an efficient strategy. A key cOllcept in this approach is that the expected

utility of a .plan that uses an object, as computed in section 2.1.1, can be used

to estimate the value of locating the object.

The vision strategy must decide where to look. For our example, we shall use a

grid to divide the world into regions and use a utility calculation to decide

which region should be scrutinized. We shall use a simple acquisition operator

LOOKAT:

LOOKAT(x,y). Examine the unit square at (x,y) with a VISIon system to
determine if a box lies in the square.· The cost of the operator is Cx,y.
The outcome of the operator could be characterized by the two
probabilities:

Plb = Pr{LOOKAT(x,y) announces "box"lbox at (x,y)}

PIn = Pr{LOOKAT(x,y) announces "box"lno box at (x,y)}

In the remainder of the example, we shall assume Plb=l and Pln=O.

In addition, we shall requ.ire a priori estimates of the probability that a box lies

in a square, Pr{box at (x,y)}. The utility of looking at a square is thus:

Ulook,x,y = Cx,y + Pr{box at (x,y)} Ubox,x,y + (1 - Pr{box at (x,y)}) UfaH

where Ubox,x,y is the utility of using a box found at square (x,y), which is

estimated by e~aluating the utility of a plan outline. (e.g., Figure 2-3) without

25

elaboration. Th~ Uloob,y values are calculated for all squares, and the square

with the largest value is chosen as the best place to look for a box. The

vision plan can also be elaborated. If the LOOKAT operator fails to locate a

box, we might apply the LOOKAT operator to another square, and so forth

(Figure 2-7). This is just like coping with failure in CLIMB -- we chose an

alternative.

U
box,x2'Y 2

Figure 2-7. Elaboration generates a sequence of LOOKAT operators
that examines additional squares until an object is located.

The results of the LOOKAT operation change information in the world model.

If a box is located, it is recorded in the model. In all cases, the probability

that a box is located in the scrutinized square, Pr{box at (x,y)}, is modified.

This is analogous to the treatment of TEST-NEAR and TEST-FAR: Bayes' rule is

used to update Pr{box at (x,y)} just as it is used to update Pr{box is wood} as

a result of the TESTs. This means that once a square is looked at and found

not to contain a box, it will probably not be tested again.

The a priori values for the Pr{box at (x,y)} are supplied by a function that can

contain considerable information about the world. If boxes are more common in

the garage than in the house, this can be expressed in the probability

assessmen ts.

Because acquisition operators change the world model, the results can cause

widespread changes to the utilities of current plans. We could, in principle,

model an acquisition operator with a large number of outcomes and generate

26

plans for each contingency although a large number of eventually useless plans

would result. A mechanism to control the amount of plannmg ahead and to'

permit periodic; re-evaluation of plans is clearly needed. The. next section

addresses this topic.

2.4 The Trinity: Look, Think, Act

At some point, the planning operations sketched in the previous sections must

be halted and the best plan actually executed. In fact, planning must be

severely limited, lest resourc~s be wasted in any of numerous ways such as

generating detailed plans for paths that are never· encountered or planning

without adequate world model information or pursuing complicated elaborations

that increase plan utilities only slightly. However, if planning is curtailed, we

must be able to resume planning later on.

What is needed is an efficient scheduling of planning, looking and acting. The

scheduler decides in some· way which activity is most beneficial at the moment,

grants it a resource quantum, and ~hen repeats. A natural quantum for looking

and acting is execution of one of the "operators" such as LOOKAT or W ALKrO.

A natural quantum for planning might be. one iteration of a branch and bound

algorithm, or the addition of one elaboration to a plan. Although allocating

effort to planning can at worst cause wasted effort, allocating effort to action

has considerably more import.

The decision to plan or to execute CaD be made with a utility measure. We

compare the utility of looking (i.e., executing. a step in the best information

acquisition plan), acting (i.e., executing a step. in the best action plan), or

additional planning (i.e., elaborating existing plans with branch and bound as a

guide, or deve~oping more symbolic plans). Unfortunately,' specifying a utility

function that reflects the· benefits of future planning is quite difficult.

Decision theorists have addressed a problem called "cost of analysis," which
is loosely related to the notion of planning cost used here (Matheson,
1968). In a practical analysis, the cost of building a model and assessing
probability and utility values is often large enough to invite the question:
what is the utility of developing a model with a certain amount of
detail? An estimate of this utility can be derived by modeling a set of
initial tests of varying cost that give different sorts of information about
prevailing probability distributions. The tests and their costs correspond
to the various analysis choices.

In our case, planning is the application of the model to a particular
situation, which may involve substantial symbolic reasoning, tree expansion,
etc. We desire simply to discount the value 'of a partial plan by the cost
of the processing required to generate the details needed for execution.

27

A simple ad hoc approach can be used to limit planning activities by specifying

a stopping' criterion. The difference between' the upper bound and expected

utilities of a plan for vision or action is a limit on the improvement in the

plan that infinite planning would achieve. We have the choice between

executing the plan as it stands, and receiving, on the average, the expected

utility, and spending more effort planning and receiving, at most, the upper

bound on the plan. Comparing the utilities of these two alternatives, we have:

Execute:

Plan with cost Cplan:

Uexecute = Uplan expectation

Uplan < Cplan + Uupper bound

If Uplan > Uexecute, we choose to plan. This requires that the planning effort

be constrained: Cplan > (Uplan expectation)-(Uupper bound). Thus the

additional planning effort is limited by the difference between the upper bound

and the expected utility. Obviously this is a crude approximation and could be

refined.

This approach essentially compares the risk of the current plan (as estimated by

the difference between the upper bound and the expectation) with the cost of

further planning. It does not attempt to predict the actual value of planning,

but rather measures the cost and maximum value of planning steps. It would

certainly be better to use the expected value of the benefits of planning if this

quantity could be computed; Chapters 3 and 4 take up this topic.

The main loop of the system plans until such a stopping criterion is reached,

and, then either looks or acts, whichever has the greater utility. Then the

process repeats. The outcomes of looking or acting are, of 'course, recorded and

cause adjustments in the utilities of various available plans. This mixing of

planning and acting is a uniform framework for providing "monitoring" and

"verificationfl functions in current robotics systems (Munson, 1971; Grape, 1973;

Bolles, 1976).

Techniques for control of planning activity such as those presented here cannot

be borrowed from decision theory. Conventional decision analysis is performed by

an individual, who uses human judgement in allocating effort to the analysis.

Formal techniques are used for modeling or for evaluating decision trees, but not

for controlling the planning process itself.
.'

28

2.5 Summ.ary

'fhis chapter has presented an introduction to decision theory in an AI problem

solving context. The utility calculations of decision theory have been applied to

a number of planning needs:

• Conlparing alternative plans. Often these comparisons are made among

instances of a common plan outline or skeleton.

• Coping with uncertainty. The calculation of expected utility permits the

reliability of a plan to be considered when assessing its worth.

• Finding good plans. The utility of partially'-completed plans, together with

bounds on the utility of the completion required, can be used to organize

and guide a search for the best plan.

• Improving a plan. Failure paths in plans can be elaborated with recovery

plans. The increase. in expected utility of the elaborated plan measures

the effect of generating a plan to cope with the failure path.

• Acquiring information. Utility measures can be used to plan efficient

strategies for acquiring information needed for further planning.

• Allocating resources among planning, acting or information-gathering

activities. The utility measure can also be used to decide which activities

are Inost beneficial to the system.

Many of these techniques will appear in the PEGASUS implementation described

In Chapter 3 and will be considered in more detail in Chapter 4.

Chapter 3

PEGASUS, The Travel Planner

.'

30

In order to explore the effectiveness of an approach combining decision theory

and symbolic planning, a computer program to formulate certain travel itineraries

has been developed. This chapter presents the external behavior and internal

operation of the program, PEGASUS, named after "surface" transportation that

flew. This chapter serves as a case study of the application of the techniques

sketched in Chapter 2. Further extensions of the techniques, based on the

experience of the PEGASUS program, are given in Chapter 4.

The chapter presents explanations of PEGASUS at several levels 'of detail.

Section 3.1 is devoted to examples intended to show PEGASUS's reasonably

realistic model of travel and the sorts of itineraries· generated. Section 3.2

provides a first. explanation of the program structure, and emphasizes the

hierarchical planning techniques incorporated in PEGASUS. The section includes

a discussion of the allocation of planning effort (section 3.2.3). The remainder

of the chapter is devoted to more detailed explanations of PEGASUS's model

(section 3.3) and the processing undertaken in the various levels of. abstraction

(section 3.4).

3.1 Generating Travel Itineraries

The problem statement consists of an origin location, a destination location, and

a collection of constraints that restrict the acceptable times of travel:

From:
To:
Constraint:

HOME (Palo Alto, California)
ROC (Rochester, N.Y. airport)
LEAVE HOME AFTER (JUL 13 8:00) timeDecay=10 value=100

A good deal of information is available to the program about geographical

locations (36 spots), scheduled conveyances (102 bus trips, 338 airplane trips, 30

train trips), and unscheduled conveyances (taxi, rental car, walking). Given the

problem statement and some computing effort, an itinerary is proposed:

-> Itinerary # 1. Utility: . 660.58
TAXI. From HOME to SFO. Departure JUL 13 9:38 transit time 0:22.
Layover at SFO starting JUL 13 10:00 lasting 0:05.
AA 182. From SFO to ORD. Departure JUL 13 10:05 transit time 3:44.
Layover at ORD starting JUL 13 15:49 lasting' 0:41.
AA 500. From ORD to ROC. Departure JUL 13 16:30 transit time 1:24.
Arriving at .destination JUL 13 18:54.

Listed with the itinerary is its utility, computed from the itinerary and an

internal utility model that expresses the value of the plan in terms of the

resources rCfluired to complete it:

31

• Time. The transit and layover times are considered to be "costs" of the

trip. Other things being equal, trips with shorter eiapsed times are

preferre4 to those with longer elapsed times.

• Money. Cash expenditures for fares on the various conveyances are also

considered to be costs of the trip. Other things being equal, inexpensive

trips are preferred to expensive ones.

• Stress. Various events in the course of a trip may contribute to the

traveler's stress. Examples are running to make a tight connection, having

to change planes in the middle of the night, or using a mode of

conveyance that, for whateyer reason, is abhorrent to the traveler. Other

things being equal, trips that impose low stress will be preferred to those

with higher stress.

• Miscellaneous. Contributions to the utility that do not fall into one of

the three categories above are included in this "resource."

The utility function aggregates these "resource requirements" for a trip into one

metric. Revealed in the function is the way that tradeoffs are made: how

should a plan that is inexpensive but slow be compared to one that is expensive

but fast? For present purposes, we shall assume that the function is linear:

u = - CtXTime - CmXMoney - CsXStress - CxXMiscellaneous + constant

Because the coefficients may vary among travelers, PEGASUS provides facilities

for altering them and reevaluating the plan.

-) Utility function modifications.
Coefficient for money: 1.0 -) OK
Coefficient for time: .33 -) .05
Coefficient for stress: .1 -) OK
-) Itinerary # 1. Utiliiy: 772.24
TAXI. From HOME to SFO. Departure JUL 13 9:38 transit time. 0:22.
Layover at SFO starting JUL 13 10:00 lasting 0:05.
AA 182. From SFO to ORD. Departure JUL 13 10:05 transit time 3:44.
Layover at ORD starting JUL 13 15:49 lasting 0:41.
AA 500. From aRD to ROC. Departure JUL 13 16:30 transit time 1:24.
Arriving at destination JUL 13 18:54.

Just as the utility function contains an assessment of certain of the traveler's

preferences, so must the specification of the time constraints. The constraint

"leave home after 8:00" might be an expression of mild objection to arising

32

absurdly early. However,' "leave Stanford after 15:00" might reflect required

attendance· a class that does not end until 15:00. Consequently, a constraint

requires two parameters in addition to the plan: first, how important is the

strict observance of the constraint (value); second, how firm is the time

(timeDecay).

Each itinerary also contains "backup" suggestions in case something goes wrong

with the planned itinerary. If a flight is cancelled, or if the traveler misses a

flight, the backup may be invoked. In any case, some estimate of the backup

alternatives is required to assess properly the utility of the main plan. The

itinerary mentioned above has two backups:

-) Itinerary # 1. Utility: 772.24
TAXI. From HOME to SFO. Departure JUL 13 9:38 transit time 0:22.
Layover at SFO starting JUL 13 10:00 lasting 0:05.
AA 182. From SFO to ORD. Departure JUL 13 10:05 transit time 3:44.
Layover at ORD starting JUL 13 15:49 lasting 0:41.
AA 500. From ORD to ROC. Departure JUL 13 16:30 transit time 1:24.
Arriving at destination JUL 13 18:54.

Backup at SFO (Utility: 787.9):
Layover at SFO starting JUL 13 10:00 lasting 0:15.
UA 126. From SFO to ORD. Departure JUL 13 10:15 transit time 3:55.
Layover at ORD starting JUL 13 16:10 lasting 1:30.
UA 794. From ORD to ROC. Departure JUL 13 17:40 transit time 1:30.
Arriving at destination JUL 13 20:10.

Backup at ORD (Utility: 789.5):
Layover at ORD starting JUL 13 15:49 lasting 1:51.
UA 794. From ORD to ROC. Departure JUL 13 17:40 transit time 1:30 ..
Arriving at destination JUL 13 20:10 .

. If the itinerary proposed by the system is unacceptable, .some aspect of the

problem statement or of PEGASUS's model of the traveler must be erroneous.

The user may alter the problem statement (e.g., by altering the statement of

constraints) or certain of the system parameters (e.g., the coefficients of the

utility function). After any such changes, the solution is reassessed. In the

following example, the traveler decides to place more emphasis on leaving early.

The solution utility falls:

-) Itinerary # 1. Utility: 772.24

-) Constraint editor:
--) Add a constraint: Leave HOME before JUL 13 9:00 timeDecay=.1 value=10
-) Itinerary # 1. Utility: 660.72

33

If the traveler adopts an itinerary, he may wish to make reservations on various

flights. He can record the success or. failure at making a reservation; the

system keeps abreast of progress:

-) Itinerary II 1. Utility: 660.72

-) Trip editor:
--) Modify AA 182. From SFO to ORD. Departure JUL 13 10:05,

to include reservation in class: Y
-) Itinerary II 1. Utility: 661.0

The utility of the final plan is increased somewhat because reservations increase

the probability that the traveler will be able to follow the plan successfully.

The utility would rise even more if a reservation on the second leg of the trip

were secured.

To this point, PEGASUS has demonstrated only the ability to formulate and

refine a plan, and to re-evaluate the plan if the user changes utility assessments

and the like. Of equal importance is the ability to act: to instruct the traveler

which flights to take, and to process new information as the trip proceeds.

Relevan t information concerns . cancelled trips, delayed trips, observations of

traffic delays, weather, and so forth. 1

-) Now is: JUL 13 9:00
-) Observations.

Property: WEATHER
Spot: ORD
New value: 4 (very bad)

-) Itinerary # 1. Utility: 750

As the traveler progresses to ORD, the plans are updated. The originally

planned leg becomes:

-) Itinerary II 1. Utility: 732
AA 500. From ORD to' ROC. Departure 16:30 transit time 1:24.
Arriving at destination 18:54.

There is, however, a plan with higher utility:

-) Itinerary # 6. Utility: 781
AA 524. From ORD to ROC. Departure 21:30 transit time 1:22.
Arriving at destination 23:52.

1Unfortun-;teii,--t"ilis--sort of information only su~tly affects common travel
itineraries. The examples I have chosen, therefore, are somewhat extreme.

34

The· reason that this flight has greater value is that the model of weather used

by PEGASUS expects the exceptional weather conditions to regress toward the

normal weather. for CRD at this time of year.

The system can assimilate several sorts of informatiol1 that concern the execution

of specific itineraries:

Departure delays
Arrival delays
VVeather reports
Traffic delays

Take-off delays due to traffic
Landing delays due to traffic

Load-factor information
Modifications to constraints
Modifications to the utility function

Acquiring information of this sort is not always easy--the traveler may have to

walk to information desks, make· telephone calls, etc. Ideally, the importance of

a piece of information and the expense of obtaining it should be considered

when deciding what information to gather. PEGASUS provides a simple form of

this calculation, and answers the question "What is it worth to inquire abo~t

Boston weather?" or "What is it worth to make a reservation?" A "value of

information calculation" can be made:

-) Itinerary # 1. Utility: 787.7
AA 500. From ORD to ROC. Departure JUL 13 16:30 transit time 1:24.
Arriving at destination JUL 13 18:54.
-) Itinerary # 2. Utility: 783.9
UA 794. From ORD to ROC. Departure JUL 13 17:40 transit time 1:30.
Arriving at destination JUL 13 20:10.
-> Value of weather at ROC measured on JUL 13 16:10 is .1.
(If ROC has bad weather, itinerary #2 will be selected because

the weather model expects the weather to be better later.)

Note that the value of weather information is very small, because the prevailing

weather in ROC in July favors successful completion of any flight. If the same

trip were attempted on January 13, the value of weather inforlnation rises to

11.9!

3.2 A First Explana tion

This section describes briefly the techniques used to implement the travel

itinerary planner. The behavior of this program, demonstrated in the previous

section, is achieved with a combination of heuristic and decision-theoretic

35

techniques. The important ingredient introduced in this section is the

hierarchical nature of the planning in PEGASUS, and the structure of the

symbolic and utility models that. make it possible.

3.2.1 Primi ti ves

The PEGASUS program constructs itineraries. An itinerary is a tree of steps

corresponding to the primitive "actions" that a traveler can be expected to

undertake (e.g., "Take United 424 from SFO to ORD."). Each step has certain

essential information with it:

• Origin and Destination (often referred to as "from" and "ton). These label

the segment of the trip represented by the step; both origin and

destination are spots. A spot may be a train station, bus depot, airport,

city, home, place of business, etc.

• Conveyance (often called the "step type"). This entry specifies the generic

class of conveyance used to achieve this step~ e.g., AIR, TRAIN, WALK.

• Resource Vector (often' called "factors"). This vector lists the quantities

of various resources that will be required in order to execute the step,

and is denoted by the boldface symbol r. The elements of the resource

vector are:

• Time. This is a measure (or estimate) of the elapsed time required to

complete the step, measured in minutes. In certain cases, it includes

an "interface" time required before the succeeding step may commence.

Money. This is a measure of cash expenditures required, usually for

fares.

Stress. This is a measure of a hypothetical human resource: the

reserves of an individual to cope with situations that strain the

person. The contribution of a step to this quantity may vary from

person to person, and includes such things as: stress caused by

hurrying to Inake a connection, by changing planes in the middle of

the night, by taking "red-eyen flights, etc. Another contribution is the

"stress of time," which expresses preferences for time spent in various

spots or on various conveyances. For example, waiting an hour at

36

HOME may have a· higher utility than waiting 30 minutes in a bus

terminal.

• Miscellaneous. This is a catchall for contributions to the utility of

the step that do not fit the three other factors. Contributions to this

factor will be explained as needed.

• Starting time, duration. If itinerary planning has progressed to the point

where departure and arrival times are chosen, these two entries record the

choices for this step. All times are recorded in minutes with respect to a

fixed reference time.

When other information needs to be associated with a step, it is placed on .a

property list attached to the step description. Examples of such information are

constraints and pointers to records that describe a particular trip in detail.

The utility of an itinerary is computed as a function of the resources required

to execute the itinerary. This involves computing the resources r required for

each step of the itinerary, summing the resources of the individual steps to

calculate the resources required for the entire itinerary, and finally applying the

utility function U(r) to the sum.

3.2.2 Program Structure at a Glance

The growth of good itineraries is managed by a progression of processing at

different levels of detail. The first level is used to make only very crude plans;

the last level molds an itinerary with the most detailed analysis of which

PEGASUS's model is capable.

A level can be visualized as a single routine and various subroutines for

performing the processing. The routine is responsible for creating a task to

solve a specific problem or subproblem, for executing the task to analyze and

solve the problem, for eventually returning oile or more solutions to the problem,

and for processing miscellaneous inquiries and imperatives relating to the task.

When a level is presented with a new problem, it creates a task to search for

solutions to the problem, and returns solutions as they are uncovered in the

course of the search. The search task itself proceeds incrementally, being

allocated computing time by a control program. A level is thus a program that

creates tasks, or coroutines, which are periodically allocated computing time to

solve their appointed problem.

37

The overall organization requires that each level must report solutions in "best

first" order, using an upper bound on the utility of the solution as a measure

of "best." We ,shall return later to examine the implications of this requirement.

A solution from one level is presented to the next level for analysis in more

detail. The lower level will use the solution from the higher level as a guide

in performing its search, but will be concerned chiefly with adding to the

planned itinerary new detail that was not considered at higher levels. As we

shall' see, a single "problem" often gives rise to several solutions. These

percolate through the levels· of processing, becoming alternative strategy choices

at each leve1.2

Before describing the control of tasks in more detail, w:e shall present a capsule

description of the processing at each level in PEGASUS.

1. TOP. The TOP level is given the problem presented by the user: the origin

and destination for the trip. The purpose of this level is to consider several

primary means of conveyance and to compute an upper bound on the utility of,

all itineraries that can be constructed using such a primary means. For example,

if the problem is to go from HOME (Palo Alto, California) to ROC (Rochester,

N.Y. airport), we might generate 5 answers:

Solution 1:
AIR U* =77 4.3 (!)

Solution 2:
RENTAL CAR U*=-592.4

Solution 3:
BUS U*=-667.4

Solution 4:
TAXI U*=-1969.6

Solution 5:
WALK U* =-29619.5

(The answer labeled (!) is passed to the next level in our example.)

The upper bound for AIR is calculated by assuming that both origin and

destination are on the transportation graph connected by AIR (i.e., that both are

airports), and that a direct flight is available that flies as fast as' the fastest

flight known in the data base, and is as cheap (per mile) as the cheapest flight

2TI;c--iiierar'Ciii'C;.-r-task-oriented design of PEGASUS is related to other AI
problem-solving systems, and was inspired in part by NOAH (Sacerdoti, 1975).
See section 5.2 for further discussion of the relation to other AI work.

38

known. Upper bounds for other conveyances are calculated using similar

reasoning.

Our initial presentation of PEGASUS will assume that the best answer at each

level is passed on to the next level for more detailed processing. The solution

thus promoted is labeled with (!) in the list above. In fact, PEGASUS uses a

more complicated control structure to pursue alternative solution paths.

2. SP. The SP level conducts a shortest-path search on the graph formed from

spots and known trips that use the specified conveyance. In our example, TOP

passed down the solution "Go from HOME to ROC by AIR." Since HOME is not

on the graph of spots connected by AIR (Le., it is not an airport), SP puts in a

dummy step, and assumes that there is a route from HOME to a nearby airport.

There are many possible routes that SP ultimately returns. The first few are:

Solution 1:
HOME-[assume]-SJC-ORD-ROC U* =700.6 (1)

Solution 2:
HOME-[assume]-SFO-DTW-ROC U*=699.5

Solution 3:
HOME-[assume]-SFO-ORD-ROC U*=698.4

Solution 4:
HOME-[assume]-OAK -ORD-ROC U*=696.7

Solution 5:
HOME-[assume]-SMF-ORD-ROC U*=657.0

The three-letter codes are standard abbreviations for airports: SJC is San Jose,

ORD is Chicago O'Hare, DTW is Detroit, SFO is San Francisco, OAK is Oakland,

SMF is Monterey.

The upper bound is calculated by assuming that each leg takes the minimum

time of all applicable trips in the data base, that the fare is the cheapest of all

possibilities, that the stress is the least, etc. Notice that the utility of the

best plan at this level is less than that of the answer at level TOP. Several

factors account for this: -(1) HOME is not an airport, which means slower and

more expensive means are required to journey from HOME to an airport; (2) No

non-stop trips are available, which means that minimum travel time is longer

than anticipated in TOP; (3) The cheapest available fare is not as cheap as

estimated in TOP, ana. (4) The "stress of time" contributions reduce the utilities

according to the traveler's relative preference for various airports and

conveyances.

.'

39

3. INSTANTIATE. This level is responsible for choosing specific instances of

trips described in the data base. In the example, specific flights from SJC to

ORD and from ORn to ROC must be selected. In addition to the route passed

from SP, the user's constraints are taken into account. For the first time,

"interface" steps (called WAIT steps) are inserted between legs of a trip to

represent time spent in layover waiting for a connection or waiting to embark,

etc. The most promising flight selections returned by INSTANTIATE are:

Solution 1:
HOME-SJC: [assume], departing 7:01
SJC: wait 30 minutes
SJC-ORD: UA 464, departing 7:45, arriving 13:30
ORD: wait 55 minutes
ORD-ROC: UA 362, departing 14:25, arriving 16:52 u* =687.9 (!)

Solution 2:
HOME-SJC: [assume], departing 12:21
SJC: wait 30 minutes
SJC-ORD: UA 356, departing 13:05, arriving 19:00
ORD: wait 150 minutes
ORD-ROC: AA 524, departing 21:30, arriving 23:52 U* =651.8

Solution 3:
HOME-SJC: [assume], departing 7:01
SJC: wait 30 minutes
SJC-ORD: UA 464, departing 7:45, arriving 13:30
ORD: wait 180 minutes
ORD-ROC: AA 500, departing 16:30, arriving 18:54 u* =644.0

Solution 4:
HOME-SJC: [assume], departing 7:01
SJC: wait 30 minutes
SJC-ORD: UA 464, departing 7:45, arriving 13:30
ORD: wait 250 minutes
ORD-ROC: UA 794, departing 17:40, arriving 20:10 u* =616.5

Again, the upper bounds at this level are less than in SP: (1) Waiting times

have increased the total time required to complete the trip; (2) Because specific

flights have been chosen, the cheapest fare is now the cheapest that Can be

arranged given the constraint that the pair of flights is used; (3) Various stress

contributions associated with scheduled times may have appeared; (4) The WAIT

nodes have introduced more "stress of time'" contributions due to relative

preference of the traveler for flying or waiting in an airport.

4. DOLLARS. This level considers all possible fares that might be charged in

order to pursue the itinerary passed down fronl INSTANTIATE. In our example,

the cheapest fare is a coach through fare ($156). If, for some reason, a coach

40

seat . is unavailable on one leg, there are coach/first class combinations, and so

forth:

Solution 1:
SJC-ORD: UA 464, Coach
ORD-ROC: UA 362, Coach (through fare) U* =687.9 0)
Solution 2:
SJC-ORD: UA 464, Coach
ORD-ROC: UA 362, First (no through fare) U*=655.9

Solution 3:
SJC-ORD: UA 464, First
ORD-ROC: UA 362, First (through fare) U*=640.9

Solution 4:
SJC-ORD: UA 464" First
ORD-ROC: UA 362, Coach (no through fare) U*=631.9

5. FILLIN. This level fills in the details of any legs of the trip that still have

no executable plans, i.e., are marked as assuming the leg can be achieved. In

our example, the leg from HOME to SJC requires such work. The FILLIN

processing is accomplished by a recursive calion the entire planning system.

We get:

Solution 1:
HOME-SJC: TAXI, departing 7:01
SJC: wait 30 minutes
SJC-ORD: UA 464, departing 7:45, arriving 13:30
ORD: wait 55 minutes
ORD-ROC: UA 362, departing 14:25, arriving 16:52 U* =681.8 (!)

Solution 2:
HOME-SJC: RENTED-CAR, departing 6:46
SJC: wait 30 minutes
SJC-ORD: UA 464, departing 7:45, arriving 13:30
ORD: wait 55 minutes
ORD-ROC: UA 362, departing 14:25, arriving 16:52 U*=673.2

Again, the upper bound on utility has decreased because a taxi is not both the

cheapest and fastest ground transportation available.

6. PROB. This level interprets an itinerary in light of all probabilistic

information that is available. For example, the probabilities of missing a

connection, of cancelling a flight, and of airports closing due to bad weather are

all included in the assessment of the plan. PROB also optimizes the departure

times of unscheduled conveyances such as taxis to achieve the maximum utility.

HOME-SJC: TAXI, departing 7:16
SJC: wait 15 minutes
SJC-ORD: UA 464, departing 7:45, arriving 13:30
ORD: wait 55 minutes
ORD-ROC: UA 362, departing 14:25, arriving 16:52 U*=681.8

E U=650.9

41

Here, the upper bound, U*, remains undiminished compared to the answer

returned from FILLIN, because the plan does not differ from that returned by

FILLIN if all aspects of the plan proceed smoothly (the upper bound

assumption). However, the expected utility is somewhat "lower because the

failure paths in the itinerary will require additional resources to journey to the

destination.

Utility

780

740

700

660

620

Top SP Instantiate Dollars Fillin

Figure 3-1: Graph summarizing the progress of plans through the six
hierarchical levels of processing and the drop in utility that
accompanies more detailed analysis. Each dark square represents a
solution. In our overview, we have assumed that the best solution
within each level is passed on for more detailed processing at the
next level (arrows). The heavy dark line in the PROB level represents
the range between "the upper bound and the expected utility.

Prob

This completes the processing of the itinerary. The progress through the several

levels is summarized in Figure 3-1, which demonstrates the propagation of

solutions through the six levels of processing and the fall in utility as more

detailed planning is performed.

42

3.2.3 Control· of. Planning Effort

PEGASUS requires a scheme to allocate planning resources that goes beyond the

simple propagation of tibest" solutions demonstrated in the example. Although

this procedure will rapidly yield a complete plan, it is not guaranteed to be the

optimal one, or even a very good one. Figure 3-2 shows an example of the

propagation of plans in which a plan judged inferior by SP turns out to be the

best.

- t-. - V

... .t-
~ "

t-.
~ '" t~.

~ v
r· •. r·. - ~., ~

t·. "'_ • ~ ~., - 11 I -•
I I I (I f

Top SP Instantiate Dollars Fillin Prob

Figure·3-2: A collection of problems in various stages of processing in
PEGAS·US. Each square represents a solution; its propagation to the
next level is represented by an arrow. The two lines U1 and U2 show
two cuts of uniform utility through the processing. Notice that the
most attractive solution to the SP level does not in fact yield the best
detailed plan.

PEGASUS needs to propagate other solutions, in addition to the best at each

level, and needs to allocate planning resources to a number of tasks in various

stages of planning at various levels. This allocation is, of course, derived from

utility estimates of the partially-complete plans being examined by the various

tasks.

The upper bound on the utility of plans being generated by a particular

planning task is a measure of planning progress. In order to provide proper

43

controls over planning effort, each task is required to implement two primitive

opera tions:

• Return the upper bound U* on the utility of the plan (or partially

complete plan) being processed by the task.

• Apply planning effort on this task until the upper bound falls below a

parameter provided by the control routine. This primitive may terminate

before reaching the stated upper bound if a new solution is uncovered

during the processing.. The upper bound may only decrease as more

planning effort is applied: this stipulation represents a restriction on the

way the processing' within ~ level is organized (see section 4.3 for more

discussion).

For example, the problem "Go from HOME to ROC by AIR" presented to level

SP may require a good deal of computation to answer. We know, before any

computing is done, that solutions will have U<774.3, the bound established by

the TOP level. The routines associated with level SP can be directed to work

on the problem until either a solution is generated, or until the current U* .of

the problem falls below 760. The search for answers must of course be

organized so that answers of high utility are explored first, then answers of

lower utility, etc. The U* used to measure the progress of planning simJ?ly tracks

the falling hopes of the planning undertaken by a task. Figure 3-3 shows an

empirical plot of the fall of the utility in processing the SP level of our

example as a function of computing time.

Uniform planning. A simple utility-based allocati9n strategy is to run the task

that reports the largest upper bound. We periodically survey all tasks at all

levels; each reports its current U*, the upper bound on . itineraries that the

approach will yield. Suppose that task i has the largest value of U*, and task j

the next highest (If only one task exists, j is assigned to a dummy task that

. always has U* =-00). Effort is then allocated to i using the primitive described

above, until it returns an answer or U* i falls below U*} Then the survey and

allocation of effort is· repeated, etc. This technique has the effect of devoting

effort to an approach until it produces a solution or until it ceases to be better

than other approaches.

Another way to view this technique is that all tasks are actively competing· for

44

Utility

780

740

700

660

2 4 6 8 10 12 seconds

Figure 3-3: An empirical graph of the fall of the upper bound U· as
processing proceeds in the SP level. The times were measured for
the problem presented in section 3.2.2. Circles represent points at
which solutions to the problem are reported (there are four solutions
clustered near 7 seconds).

computation- resources. The utility measure corresponds to a priority in a

scheduling algorithm: resources are granted to the task of highest priority until

that priority falls below that of some other pending task, or the task blocks

waiting for results from some other process (e.g., an input/output process).3 The

key point is that the upper bound on the utility, a single numerical measure of

promise of a planning task, can be used to allocate planning resources.

The uniform' planning scheme finds the optimum plan. The, essentially breadth

first approach will pursue many alternative solutions in the crude levels of the

hierarchy before even a single plan is propagated to the final PROB level.

When the control strategy attempts to allocate resources to a task that can

perform no more planning because it represents a plan already developed in full

detail, the planner terminates and announces this plan as the "best" one. The

uniform strategy guarantees that there is no other plan with an upper bound

that exceeds that of this- "best" plan.

Depth-first planning. Although the uniform approach does arrive at the best

3T-h;-pres-e-nt'-implementation "polls" the tasks at various levels to decide which .'
has highest priority. Another design might implement each task as . an
independent process that is periodically checked by a scheduler. The scheduler
switches tasks whenever it discovers. that the upper bound of the running
process has fallen below that of some suspended process.

45

answer or set ~f answers according to the utility function on itineraries, these

answers may no longer be best when the cost of the computation required to

construct them is included in the utility assessment. If computing tim~ was

quite expensive, we might use a depth-first approach (used in the example of

section 3.2.2): whenever the first solution is produced when processing a task,

pass it to the next level, compute on the new task until the first solution

emerges, and so forth until a solution is delivered by the most detailed planning

level. Because of its depth-first character, this method yields a. completely

detailed plan quickly, although the plan is not necessarily optimal or even very

good (see Figure 3-2).

,l\
\I

J\

". I
I

6----------~- r----------t\
I tI I

~
I -

I (. I I

Figure 3-4: After the first solution to the entire problem is generated,
more planning may be indicated. In the illustration, the solid lines
represent the depth-first method, which yields a solution with utility
Ua. At this point, there remain other problems with higher upper
bour~ds; in particular, the second level has not been pursued enough to
discover solutions with utility less than Us. It may happen that such
pursuit would uncover a better plan (dashed lines). In any case, we
know that the best solution must lie between Ua and Us.

Hybrid planning. The information contained in the U* values for partial plans in

the suspended tasks at various levels is used to pursue a strategy intermediate

between the uniform approach and the depth-first approach. Suppose we apply

the depth-first approach until a detailed answer is generated; let this answer

have utility U* a (see Figure 3-4). Let U* s be the maximum of the U*'s of the

suspended tasks. The~ clearly, if U* 0 is the utility of the optimal plan,'

U* a~U* o<U* s. If the user is indifferent to small errors in utility, less than

* * U s-U a, then no more planning is required.

46

Otherwise, the difference between U* sand U* a bounds the amount of further

planning effort we should invest~ Let rc be the resource vector describing'

computing resQurces Tequired to complete the' planning of the, problem that

corresponds to U* s = UC r* s) Cr* s is the resource vector used to compute the

upper bound for problem s). We can compare the worth of the plan, t()gether

with ,the computing effort we devote to it, to the utility of our available plan:

as long, as U(r* s+rc) > U* a, we can continue planning. Eventually, increases in

,both resources r* sand rc will cause the inequality to fail; at this point,' we

have exceeded the planning bound.

A less crude approximatiol! to the cost of planning can be used more effectively.

If, for each partially-planned problem in the level structures, we can 'estimate

the processing ,resources needed to complete the planning, we can calculate a

modified upper 'bound U* c = U(r* + rc), where r* is the resource vector used to

calculate the upper bound on the problem in the structure (i.e., U*=U(r*)), and

rc is the computation resource estimate. For the one solution generated by the

depth-first approach, rc=O. This model is a first approximation: it assumes that

the investment of processing effort (rc) will simply add to the detail of the

plan without increasing the resources (r*) its execution requires, and thUs

decreasing the total U*. A more sophisticated attempt might involve modeling

the expected decrease in U*.

An estimate of rc is not hard to generate in this case: the initial processing

using the depth-first approach demonstrates the resource requirements of each

level while working on plan:ning tasks that are very similar to the tasks that

may need completing. We simply record the extent of this processing for each

level; rc is then the sunl of these requirements for all levels of detail yet to be

applied to the plan.

3.2.4 The Cen tral Theme

The preceding paragraphs have outlined the main theme of the PEGASUS

im plemen tat ion:

Problems move through several levels of processing, giving rise to

increasingly detailed plans. Each level summarizes progress on a

planning task by computing an upper bound, U*, on the utility of

the plan at this and all subsequent levels of processing. The upper

bound decreases monotonically as the solution methods available to

the routines in a level become exhausted. Among other implications

of this requirement' is that solutions to a problem are reported

best-first.

* The U bound also decreases as a plan en ters levels of more

detailed analysis. Detailed analysis often takes the form of added

constraints or complexities that cast increasing doubt on a

previously good plan. The optimistic upper bound is reported to

the task scheduler that controls allocation of computing resources to

the various competing tasks. However, the more rapidly the

(relative) disadvantages of a plan are uncovered by the processing,

the more rapidly it ceases to compete for computing resources, and

thus permits better plans to be examined more carefully.

This process can be summarized as finding fault with crude plans

by adding detail.

3.3 The Model

47

The model of travel used by PEGASUS must not only be realistic, but must also

be organized to ease the various kinds of utility and upper bound calculations

needed in the hierarchical planning organiza tion. In particular, the utility bounds

calculated at different levels of detail, and based on different plan features,

must all be consistent. This section describes features of the model not already

unveiled, as a preface to a more detailed examination of PEGASUS processing.

We shall occasionally point out details that the PEGASUS model does not

confront. Often in these cases the problem is one of implementation scope

rather than of limitations of the approach. That is, the decision-theoretic

framework for representing and processing information and for expressing

tradeoffs in travel planning has much more power than PEGASUS's model

actually exploits.

3.3.1 Utility Function

The utility function maps the resource vector (or factors), consisting of

measurements of time, money, stress and miscellaneous into a single utility.

This function has a linear form with four parameters that can be adjusted to

accomodate preferences of different travelers:

48

Let r = [Time Money Stress Miscellaneous]

U(r) = [Ct em Cs ex.] • r + constant

The evaluation of U(r) is accomplished by a single function in PEGASUS, so

that the form of the utility function can be changed easily. The planning

routines in PEGASUS strive to be independent of the form of the utility

function, in' order to ensure the planning techniques will work properly with

more elaborate functions ..

Although the operation of PEGASUS does not require that the utility function

be linear, it is essential that U(r) be monotonic. in the individual dimensions

Time, Money, Stress, and Miscellaneous, i.e.,

oU(r)/oTime < 0
oU(r)/oMoney < 0
oU(r)/oStress ~ 0
oU(r)/oMiscellaneous < 0

'tIr
'tIr
'tIr
'tIr

This property simplifies calculation of the upper bounds U*. To calculate the

upper bound for a trip, we ascribe to each step of the itinerary the minimum

resources required to accomplish the step, consistent with the constraints imposed

by the current level of planning detail. The minimum resources are computed

independently for each step:· the minimum time, minimum money, etc. Let

r* i = [min j(Timeij); min j(MoneYij);

. min j(StreSSij); min j(Miscellaneousij)]

where j indexes the. alternative ways of accomplishing the i th step; . thus Stressij

is the stress resource required to execute the ith step with the jth alternative

method. Then

U*(trip) = U(Ii r* 0"

where r* i is given above.

section 4.1.9.

3.3.2 Spots and Conveyances

More examples of bounds calculations are given in

In order to plan trips, a data base of geographical locations and available

conveyances is required. PEGASUS does not attempt to record exhaustively all

transportation available in the United States,. but rather includes examples.

49

Spots are geographical locations, with entries to specify latitude, longitude and

time zone.' At present, 36 spots are known to PEGASUS.

Conveyance information is entered into PEGASUS in a form as it might appear

in an airlines guide, and then indexed in several ways. For each path between

two spots connected by a particular conveyance, entries are associated with the

departure spot; in this way, spots are linked into graphs for each means of

transportation. Currently, 338 airplane flights (November, 1973 airlines guide)

among 25 cities, 102 bus trips on the San Francisco peninsula, and 30 train

trips are included in the data base.

3.3.3 Constrain ts

What does a traveler mean by the requirement: "I want to leave home after 6:00

on July 1?" PEGASUS adds two complexities to this seemingly simple statement.

First, the traveler has an implicit matching constraint: " ... but before 17:00." If

such a matching constraint is absent, there is an unbounded number of equally

good plans that satisfy the constraint. As a convenience, therefore, the system·

supplies a second constraint~ 8 hours later. (The number 8 is an arbitrary ch~ice

made by PEGASUS; the traveler could be required to make his wishes explicit.)

... Miscellaneous resource

.\-------(a)
o

o

time ~

Figure 3-5: Miscellaneous resource contributions of constraints that
express a desire to leave after to. Note that for t)to, there is no
contribution to the miscellaneous resource. (a) A strong constraint. (b)
A weaker constraint.

50

The other intricacy that PEGASUS attaches to the interpretation of a constraint

is a measure of its absoluteness .. For example, the traveler may really mean: "I

want to leave after 6:00,' but .if there is a trip that leaves at 5:58, I will,

consider it to be only a little poorer than one at 6:02." Once again, we can use

a utility model to express this preference: we express the effect of a constraint

as the contribution to the "miscellaneous" resource. The constraint function, of

which two samples are shown in Figure 3-5, is parameterized by severity of the

constraint (fl) and by a time constant (a):

A constraint is a triple (to, a, fJ)

Let Violated(t) = 0 if (t>to and P>O) or (t<to and fJ<O)
1 otherwise

Let Limit(t) = a (It-toD /20

Miscelianeousconstraint(t) = Violated(t) 1,81 [1 - e-a/t-tol + Limit(t)]

Here t is the departure (or arrival) time, to is the time mentioned in the

constraint, a and P are parameters (fl'>0 if the constraint reads " ... after ... "; p<O

if it reads " ... before ... "). The contributions of a "strong" constraint always exceed

those of a "weak" constraint. The function is always positive, with zero the

minimum value, which represents no degradation to the utility of a plan due to

constraints. Thus planning at high levels that does not include constraint

effects can calculate upper bounds U* by assuming a zero contribution to the

Miscellaneous factor from constraint effects.

To determine precisely the shape of the constraint preference function for a

traveler is a, complex problem in utility assessment. PEGASUS does not address

this problem, and simply lets the traveler specify values of p (a critical

constraint might use 100, a desirable one 50) and of a (a firm time estimate

might have a time constant of IO/minutes, a looser constraint .1/minutes). If

the traveler finds that utility assessments made' with these choices are not to

his liking, he can modify the constraint and re'-evaluate plans.

3.3.4 Stress of Time

If the PEGASUS utility model used only the components explained so far, a

large class of tradcoffs could not be made by the system. If, for example, two

alternative itineraries require the same elapsed time but use different

conveyances, the program's model will be unable to distinguish between them, or

to express preferences of the form "I prefer going by bus to driving because I

51

can get work done en route .. " Similarly, travelers may prefer to spend time in

some spots (e.g., waiting time at home between a departure time expressed in a

constraint -- leave HOME after 7:00 -- and the departure of an actual

conveyance) and not in others (e.g., waiting in the Chicago airport).

The stress of time model simply adds a contribution a*(elapsedTime)+b to the

Stress factor, where a and b are derived from information stored with spots and

conveyances. The contributions to stress of time must always be positive, for

the same reasons explained above for constraint contributions. In' order to

reflect the user's preferences, it may be necessary to cause a value of a or b to

become negative. In this case, it is necessary to add constant terms to a's and

b's of all spots and conveyances so that min(a)=O;' min(b)=O in order to preserve

the property that the minimum resource contribution is O. After such an

adjustment, the stress contributions for all steps in pending tasks must be

recomputed.4

This simple stress model is ,not intended to be accurate; its inclusion is essential

if the system is to exhibit reasonable problem~solving behavior in the travel

domain. If we were to construct a planner that attempted to organize all

personal activities, we would require a rather different utility model. For

example, "constraints" as used above are really expressions of the relative

preference for time spent traveling compared to time spent in other activities at

both ends of the trip.

3.3.5 Distributions

Probability density distributions are used to represent information of various

sorts in PEGASUS: departure, transit and arrival times of conveyances, weather,

load factors, etc. These all make use of a common representation for

distributions. The representation was chosen with the following criteria:

• All calculations required by the system must have closed forms.

• Skew distributions are needed: t.he probability that an airplane departs 5

minutes early is not the same as the probability that it departs 5

minutes 'late.

4ModifYi~g--;ff-;'s--ancf b's in a large system might be impractical. In this case,
we can define two global variables, ag and bg. and re-formulate the stress of
time contribution as (a+ag)*(elapsedTime)+(b+hg). The upper bound conditions
become min(a+ag)=O; min(b+bg)=O, and it suffices to modify ag or bg to meet
these constraints. -

52

• A continuous form is desirable, in order to permit incremental calculations

to be performed. Although discrete approximations might suffice for'

several 9f the quantities, a continuous form always admits a discrete

interpretation, and not vice-versa.

The following two-tailed exponential density function was chosen:

p(X;XO,Al,A2)= [AIA2/(Al +A2)] eAl(X-xO)

[AIA2/(Al+A2)] e-A2(x-XO)

Parameters: xo, Al)O, A2)O

for x<xO, or

for x)xo

Conceptually, this can be ,viewed as two different exponential distributions, one

for x<xO, one for x>xo; the first· has decay parameter A 1, the second' A2. . A

normalization constant is chosen so that the entire function integrates to 1. We

shall write X[XO,Al,A2] to indicate a random variable with such a density

function, i.e.,

·t
Pr{X[X(),Al,A2]<t} = S p(x;XO,Al,A2) dx

-00

The mean of the random variable X[XO,Al,A2] is xO-l/AI+l/A2; the variance is

I/AI2+I/A22. Consequently, we can think of translating the loose statement "the

value of x is a, with variation -b, +c" into the distribution X[a-b+c,l/b,l/c].5

We approximate the sum of two such distributions by summing the means and

individual variances. A random variable' can be multiplied by a scalar:

These distributions are used to model several quantities:

Weather. The weather condition at a spot is measured on a linear scale

from 0 to about 5. Roughly, 0 is the best weather there is, 3 starts to

affect driving a car, 4 is hazardous driving and airports beginning to close, 5

closes virtually all airports. Thus if W(XO.Al,A2] describes the distribution of

ORD weather, we might let

00

Pr{ORD closed} = S p(X;XO,Al,A2) dx

4.5

5The--a;~~ent--is--that I/AI is the standard deviation below the mean (i.e,
corresponds to c), and 1/A2 is the standard deviation above the mean (Le.,
corresponds to b).

Load Factors. The ratio of the number of seats filled on a flight to the

number' of seats on the empty aircraft is called the load factor. If we

augment this definition to .calculate the number of seats that could have

been. filled divided by the capacity, then load factors greater than 1 are

possible. Hence if F[xO,Al,A2] is the load factor distribution for a flight,

then

00

Pr{no space on flight without reservation} = S P(X;xo,Al,A2) dx

1

Departure and Arrival Times. Times are important quantities to model in

order to assess the probability of making a connection. Suppose D[XO,Al,A2]

represents the departure time of an airplane. The arrival time A at the

destination can be viewed as the sum of the random variable D with:

T

Adelay

Pdelay

Departure delay. After leaving the gate, how long is it until

you are airborne? This is really a quantity that absorbs all

components of delay due solely to conditions at the departure

spot.

Transit time. Variation here may be due to winds (airplanes) or

traffic delays (automobile). T is computed by multiplying the

nominal transit time by a random variable that describes

proportional delay.

Arrival delay. Delay components at the arrival spot, e.g., delay

in approach patterns, ground services, etc. are lumped in this

quantity.

Processing delay. This delay models the time spent between

arrival and the ability of the passenger to choose options freely.

If he has baggage, this time is longer than if he does not.

PEGASUS views all' these delays as independent, and simply sums the

distributions: A=D+ Dde lay+T*nominaITransi tTime+ Adelay+ P delay. The departure

distribution D is computed in one of two ways. If we are computing D for

an initial departure (e.g, the "origin of a flight"), we simply sum the nominal

departure time with a starting delay S[XO,A},A2]. If we are computing D for

54

a continuati?n leg ofa multi-stop trip (e.g., the IDW-ROC leg of a flight

that flies ORD-DTW-ROC), then the departure distribution must be affected

by the arrival time of the previous leg: we ·set D=A+B[xO,Al,A2], where B.

represents the distribution of time between arrival and actual departure. Note

that the distribution B usually depends on the difference between A and the

nominal departure time.

Armed with distributions of arrival and departure times of connecting

conveyances, we can compute the probability that the connection can be

completed successfully:6

A(XO,A 1,A2] ==> arrival of flight
D[XO',AI',A2'] ==> departure of connecting flight

00

Pr{make connection} = S Pr{A<t} p(t;XO',Al',A2') dt

-00

= I + (AI A2 AI' A2') X

{e-AI'(xO'-~O) /[(AI'+A2')AI'(AI'+Al)(AI'-A2)] +

e-A2(xO'-xO) /[(AI +A2)A2(A2+A2')(A2-Al')] }

These distributions are only useful to PEGASUS because they change, either

because different situations give rise to different a priori distributions or

because information from observations causes the distributions to change.

Whenever an observation is recorded, estimates of a distribution change.

Unfortunately, PEGASUS usually needs to compute distributions that apply some

time after the observation: PEGASUS thus needs a model of how these

quantities change with time. Because the quantities mentioned above often

change slowly and uniformly, we use an exponential decay to model the effect of

observation. If the random variable X is observed at to to be xO, we have at

some t>to,

Xt = e-a(t-tO) X[a,O,O] + (le-a(t-tO)) X[XO,Al,A2]

where X[xo,AI,A2] is the a priori distribution A that applies at time t; a is

typically .005/minute.? Thus, two-day old observations of SFO weather carry little

weight; two-hour old observations much more. The exponentials are, in effect,.

blending functions for distributions.

6Afthoug1--this~e~pr-ession appears to diverge as AI' approaches A2, it does not!

7In the expression, the observation X[a,O,O] could also be a distribution. Such a
distribution might result from applying Bayes' rule to model an imperfect test.

55

PEGASUS maintains a library of a priori and measured distributions that

describe the quantities mentioned above. The library is indexed by distribution·

name· (e.g., w~ather, load factor, Adelay) and by spot (e.g., ORD. SFO). and

optionally by means (e.g., AIR, TRAIN). by carrier (e.g, UA, AL), by weather

conditions, and by time pattern (e.g., day of the week, time of day). The index

thus permits us to say "United Airlines load factors between 13:00 and 23:00

Fridays are .8 -.3 +.1," or "Traffic delays leaving ORD from 15:30 Fridays to

18:00 are 15 -2 +5 minutes," or "The weather at JFK at 13:00 July 3 was 2."

The library is represented as property lists attached to spots, and is searched to

find a match in. distribution name, means, carrier, weather and time whenever a

distribution is needed. The search will retrieve all relevant information, whether

entered . initially or as a result of a measurement; if no probability information

is associated with a spot, the. special spot DEFAULTSPOT is interrogated.

3.3.6 Summary of the Model

This is a convenient point to summarize the components of PEGASUS's travel

model. The model is. basically dynamic, but is initialized by a static data base

consisting of a priori measurements and schedules. During planning and

execution, the model is altered to reflect the traveler's requirements (e.g., utility

function changes) and to reflect current observations.

Utility model: The utility of a .plan is computed by applying the utility function

(part of the model) to a resource vector that summarizes the requirements of

the plan. The contributions to the resource vector are:

Time:

Money:

Stress:

Miscellaneous:

Elapsed time in transi t

Layover time

Fares for transportation

Computer time for the cost-of-planning model

Contributions due to time of travel (e.g., night)

Stress of time contributions

(from spots or conveyances)

Contributions due to constraint evaluation

Probability model: The model permits calculation of the probability that a

connection fails because of timing, that a flight will be cancelled (either due to

weather problems or mechanical . failure), that a passenger will find a seat

available on a flight, that a flight will be able. to land successfully· at its

56

. \

destination, or that an airport is closed. The underlying quantities used· to

compute these probabilities are:'

Weather. (numerical approximation)

Load Factors

Departure delays

Arrival delays

Traffic delays

Processing delays

These quantities have a priori distributions recorded that may be altered by

observations given to the system.

3.4 The Explanation in More Detail

This section re-examines the level processing of PEGASUS,

understanding of the fundamental organization and of the model.

the descriptions are:

given an

The foci of

• How decision theory and symbolic techniques interact in the levels.

• How decisions made at one level constrain processing at subsequent levels.

• How the design is influenced by the necessity for working on a problem

incrementally (and quite frequently reporting' the U* of the best plan) and

for changing the structure incrementally when updates are made.

3.4.1 Implementation of Planning Tasks

The dominant organizational feature of PEGASUS is the collection of routines

associated with each level of processing. Additional modules control planning

effort, interact with the user, manage the model data base, and perform resource

calculations. The implementations of all the levels share a comnion protocol for

interacting with the module responsible for controlling the planning effo.rt. A

planning task is given control with one of the following messages:

PROBLEM. This rnessage invokes machinery to create a new task for

processing at the given level. Accompanying the message is a solution'

extracted from the next higher level of processing. The result is a list

structure that represents the new task; the message types listed below can

be applied to the new task structure.

57

UTILITY .. This message requests the task to return the resource vector

that gives rise to the upper bound on the plans that this task will

generate. It is by interrogating tasks 'with the RESOURCES message that

the scheduler identifies tasks that represent promising plans.

WORKON. This message instructs the task to continue planning. Along

with the message comes an argument that gives a cutoff utility: the task

should plan· until the upper bound of the plan falls below the cutoff.

SOLUTION. This message requests the task to return the next solution

itinerary, if one is available. Even after the planning controller extracts

a solution and passes it on to another. level, the original task is retained

in case additional solutions will be needed.

REEVALUATE. Whenever information in the model is changed, all tasks

are passed the REEVALUATE message, together with a list of changed

information, organized into several categories such as: utility function

changes, transportation grap~ changes, specific trip changes, constraint

changes, and so forth. It is. the job of each level's reevaluation processing

to modify the task representation incrementally to reflect the changed

situation.

ADVANCE. When a step of an itinerary is executed, and the traveler

"advances" to a new state, tasks are told to alter their structures

accordingly to reflect the new situation. In practice, this reduces to

stating a new starting spot and a new. constraint that requires departure

from the spot to be later than the "present" time. Consequently,

ADVANCE requires treatment similar to REEVALUATE. The tasks

representing paths not taken by the traveler remove themselves from

consideration by arranging to respond to the UTILITY query with an

eJ:'-tremely low utility.'

PRINT. The task is instructed to print its state for debugging purposes.

The representation of a task is a LISP record that contains, in effect, bindings

of variables that describe the state of the planning in the task. When a task,

is given control, additional bindings are of course made as functions are entered,

but the bindings in the instance record alone survive from one activation of the

task to the next. This theme represents a weak form of the ideas of Smalltalk

(Goldberg and Kay, 1976) ..

58

InterLisp-10 (Teitelman, 1975) was chosen for PEGASUS implementation, in part

because of excellent program-development facilities. At the outset, it was not'

clear whether ,one of the new AI languages would help or hinder combining AI

and decision theory ideas in one program. Most of these new languages have

sparse facilities for controlling search effort, a lack that I surmised to be ,crucial

when trying to use the utility function to guide search. The chief disadvantage,

of not ,using an underlying "language" is that the boundary between concepts of

general applicability and of specific application to the travel problem is obscUred.

3.4.2 Levels

1. TOP., When the TOP level is p'resented with a problem, it retrieves a list of

all conveyances known to PEGASUS and proceeds to calculate an upper bound on

using each conveyance as the principal conveyance to solve the problem. It does

so by building single-step itineraries using idealized conveyances as the means of

transportation. The idealized conveyance is a fictitious conveyance that is

similar in performance to' the real one, but without many of the constraints.

Thus AIR* (the final asterisk indicates an idealized conveyance) is a conveyance

that can fly non-stop from anywhere to anywhere; it is as fast and as cheap

(per mile) as any AIR flight known to PEGASUS, and departs whenever

necessary without delay.8 This "conveyance" thus has a resource vector that is

less (dimension by dimension) than the resource vector for any achievable

itinerary using AIR transport; 'hence the utility function applied to this vector

yields an upper bound on any AIR itinerary.

TOP makes a list of the steps using idealized conveyances and sorts it by U*.

TOP is always capable of returning a SOLUTION, the next entry on the sorted

list. Re-evaluating is merely a matter of applying the utili~y function again to

all elements of the list and re-sorting it.

2. SP. (Shortest Path) The SP level performs an A * search of the graph of

conveyances determined by TOP to be the principal conveyance: TOP thus

constrains the search space for SP. The measure of path length used to guide

the search is, of course. a utility measure.

8Afthough--va;"fo-uS'-'kfn-ds of transportation are used as examples for discussion,
the exalnples are typical of a wider class of transportation. In most processing
of itineraries, PEGASUS distinguishes only between scheduled and unscheduled
modes of transportation. Here, for example, AIR is' an exemplar of AIR, TRAIN,
mwa '

59

If the origin or destination are not on the conveyance graph, SP connects them

to the graph with ASSUME steps. ASSUME is hypothetical ground

transportation that achieves the best performance of any ground transportation

known to the system (i.e., has the highest utility, evaluated in the sense of the

TOP evaluations). Figure 3-6 shows a part of the search tree generated by SP

for our example problem (HOME to ROC).

AIR

SJC-ORD

AIR

ASSUME

HOME-SFO

AIR

SFO-ORD

Figure 3-6: A portion of the SP search tree to find a route from HOME
to ROC.

SP calculates the promise of each partial path as U* =U(Lrp + fh), where rp are

lower bounds on the resource vectors needed' for steps on the path, and fh is a

lower bound on the resources required to complete the path. U* is therefore an

upper bound on all itineraries that have prefixes equal to the part of the path

already planned. As a~ example, consider the path D,F in Figure 3-6. The

resource vector for D is computed by the. ASSUME hypothesis given above: rD =

[22.8; 1.46; 0; 0] (Recall that· the resource vector is [Time; Money; Stress;

Miscellaneous]). The resource vector for F is computed from the minimum fare

charged on an SFO-ORD air trip and the minimum time that any plane takes to

make the trip: rF = [250; 101; 0; 0]. The resource vector rh is just the lower

60

bound on an air route from· ORn to ROC t computed with the AIR* idealized

conveyance: 11l = [93.4; 28; 0; 0]. Finally we calculate the bound on the

utility of the partial plan by evaluating U(rD+lF+11l). This calculation is

simplified by storing, with node F, the vector sum of resources required by F

and its ancestors in the tree.

SP maintains a listt L, of nodes that are incompletely expanded, sorted so that

the partial path with largest ,U* is first on the list. When the control program

requests work on SP, the following steps take place (simplified):

Let N(conveyance,from,to) be the first node on L. L is initialized with a
dummy node N(dummy,goalfrom,goalfrom), where goalfrom is the
traveler's starting point.

If N's U* is less than the U limit allocated to the task, return;

else if to is the goal, remove N froni L and return the answer;

else if to is not on the graph of conveyances requested, find
nearby spots that are, add them as successors
N'(ASSUME, to,newspot), and remove N from L;

several
to N:

else find a path fron;t to by AIR that has, not yet been considered t say
from to to newto, and add as successor to N: N'(AIR,to,newto).
Sort this new path into L by its U* calculation. If no such paths
from to by AIR remain, add a successor to N: N'(ASSUME,to,goalto),
and remove N from L.

Repeat the entire process.

This loop permits planning to be suspended after each new node is added in the

search. At any time, the U* of the first node on' L is the measure of planning

progress on the problem.

Re-evaluation is a straightforward matter of updating the tree and L. It will

be required if the utility function changes,' if stresses of time change, or if arcs

of the conveyance graph are added or deleted. Re-evaluation also causes all

solutions previously returned to be re-evaluated. If a solution depends upon an

arc in a transportation grap~ that 'has been deleted, it is marked invalid. An

invalid solution behaves as if it was never generated: tasks at lower levels that

depend on it are ignored. When the traveler advances on his trip, all paths but

one leaving node A are pruned and cQrresponding 'nodes are removed from 1..1.

The new constraints imposed by SP are the symbolic requirements that cause,

steps of an itinerary to be chosen from a set of existing transportation paths

and to be joined consistently (i.e., the origin of a step is the same as the

destin a tion of the preceding st~p).

61

3. INSTANTIATE.· The INSTANTIATE level chooses particular airplane flights (or

bus trips, train trips, etc.) for steps in the route returned by SP. The·

constraints stipulated by the user, as well as a· data base of scheduled trips, are

used to formulate the new itinerary.

The route computed by SP is used as a template by INSTANTIATE. The

"strongest" constraint is identified, and used to establish departure time

estimates, using the minimum transit times computed by SP. These guesses,

whiqh will aid computing upper· bounds during the INSTANTIATE search, are

almost certainly unachievable, as they assume that planes fly arbitrarily

frequently. The first step of the template that can be scheduled (e.g., SJC to

ORn by· AIR) is called the template pivot.

The search proceeds along two dimensions: the choice of a flight ·to use for the

pivot step, and the choice of flights after the pivot (given the pivot choice).

The situation for our examples is shown schematically in Figure 3-7. Because

the strongest constraint reads " ... after ... ," pivots are chosen with increasingly later

departures (increasingly earlier dep~tures are chosen if the strongest constraint

is " ... before ... "). Given the pivot choice, the remaining steps of the itinerary are

filled in by a search through successively later connecting trips, as ,shown by

dashed lines in the figure.9 The remainder of our discussion of INSTANTIATE

explains how this search is controlled and limited.

Upper bounds on partial plans must be calculated· to guide the searching. A

partial plan is scored by referring to the template: .the portion of the itinerary

not yet planned is assumed to proceed smoothly, without time delays. For

example, suppose node AO had just been generated (i.e., A1 and A2 do not yet

exist). Since AO has us arriving in ORn at 13:30, 61 minutes later than the

template guess, the part of the template corresponding to the unplanned part of

the itinerary, i.e., T2, is evaluated with aU times 61 minutes later than in the

original template. If, for example, T2 has a constraint associated with it of the

form "arrive in ROC before 18:00," this evaluation will penalize later choices of

the pivot. After nodes Al and A2 have been generated, AO must still be scored

eTIlii-search-may--app-ear to be of little use: once a good connecting flight is
found, why look for others? But it may be that the traveler is very cost
conscious, and the cheapest fare may be available only on the later plane (e.g.,
night coach). Working against this preference may be constraints on travel
time, stress considerations, etc. However, the alternatives must be considered in
order to bring these preferences to light and to locate backup flights should the
ideal plan fail.· .

62 .

Template: l2 TO T2

0 0 0
ASSUME:HOME"SJC AIR:SJC-ORD AJR:ORD-ROC

"leave after 6:00"

Est. depart: 6:00 6:44 12:59
Est. arrival: 6:14 12:29 15:22

~2
~1 UA 464

A1
UA 362

7:01 "'-
Wait

I-- 7:45 I--
Wait

I-- 14:25
0:30 0:55

7:15 13:30 16:52

\
r-\.

B
-1 UA 356

12:21 r-- Wait
I-- 13:05 -

12:35
0:30

19:00

Figure 3-7: A portion of the 'structure used by INSTANTIATE to choose
actual flights. The template is shown at the top; estimated departure
and arrival times are made based on the constraint and minimum transit
times. A pivot choice (AO) is made, based on the estimated departure
time of 6:44. We briefly work backwards to fill in A-1 and A-2, and
then forward to propose A2 and therefore the interface WAIT step. A
second pivot choice (B) is shown; it has not been expanded because
the estimated termination time (using template estimates for the ORD
ROC leg) yields too Iowa utility.

(because it is capable of supporting further, later, connections such as the

example shown with dashed lines in the figure). But now, further expansions

will require that we leave ORD later than the departure time of A2, i.e., after

14:25, so AO's evaluation is now calculated by assuming ternplate times are 86

minutes later than given. Hence, as a node is expanded with later and later

connections, its utility falls.

......

63

These upper. b~unds are used to guide searching. For a given pivot choice, a

list is retained containing all expandable nodes (e.g., AO, A2) sorted by upper

bound. Whenever an incremental search step is performed on ·a particular pivot,

the first element of the list is expanded, or, if it corresponds to the last

template node, it is returned as a solution. Along the other dimension, each

pivot's score is computed as the largest upper bound within that pivot. Thus

the best pivot to work on is the one with the largest value of its best upper

bound.

u

Time df pivot choice

Figure 3-8: Illustration of the effect on utility of departure time of the
pivot choice. Too early departures violate the departure constraint;
too late departures begin to violate the matching constraint.

But when 'should new pivot choices be generated? The scheme used by

PEGASUS to make this decision is based on the behavior of constraints.

Suppose the strongest constraint is "leave ... after ... " We start out with a good

guess at a pivot (e.g., node AO in the figure). Earlier pivot choices will have

lower upper bounds because the constraint effect is felt by the upper bound

calculation. Later pivots will eventually have decreasing upper bounds' because

the effect of the m.atching constraint is felt (see Figure 3-8). Thus, whenever

INSTANTIATE finds that the "best" pivot to augment with new expansions is

the earliest (latest) of the pivots so far examined, a new, earlier (later) pivot is

created. The constraints thus limit, by virtue of their utility model, the choice

of pivots.

One of the functions, therefore, of the utility model for constraints (section

3.3.3), is to limit this search. Unless the constraints are formulated so that the

64

utility contribution of a constraint always decreases as the constraint, is

increasingly violated, the limiting effect will not occur.10 It is for this reason'

that the constraint utility model has two terms: (1) a term that, corresponds to

the traveler's preferences in the region of times where good solutions will lie,

and (2) a term that provides proper asymptotic properties to limit the se~ch for

instan tiations.

Re-evaluation of the structures created by INSTANTIATE is quite tricky, not. due

to fundamental problems, but simply because there is a lot of structure to be

updated. In addition to changes in utility function, stress of time, and so forth,

INSTANTIATE must consider planes that are cancelled, changes in departure

times or delays en route, new flights created (extra sections), etc.

When the traveler advances during execution of a planned itinerary, the

structure can be modified accordingly, including a possible change of pivot step,

or it can simply be pruned to discard paths not taken. The present

implementation uses the second approach.

The new constraints imposed by INSTANTIATE are the constraints specified .by

the user and the requirement that trip ,instances be selected from scheduled

offerings of commercial transportation services. Unscheduled conveyances (taxi,

rental car, etc.) are hand,led by INSTANTIATE as well, but complete ~cheduling

freedom for these means that ~o new constraints are added by these choices.

4. DOLLARS. This level might be dubbed "the fare specialist." It is responsible

for enumerating all fares 'for the itinerary proposed by INSTANTIATE, and

returning them best-first. Because standard tra~sportation mechanisms offer so

few fare alternatives, DOLLARS makes a list of all possibilities, sorts it by U*

and returns solutions on demand.

An annoyance that DOLLARS must cope with is the chaotic nature of airline

fares in the United States., Rules for computing through fares involve

distinctions about on- and off-line connections, trunk to feeder connections,

layover time, connecting one fare class to another, etc. DOLLARS handles

£2!!~~!~_~P.]Y __ l?~!!!.~_2f_ this complexity.
10If the magnitude of the constraint contribution is too small, the' creation of
new pivots will not be adequately constrained, and will not terminate. This
situation arises if the decrease in utility due to layover times for the best
possible trip exceeds the decrease caused by the constraint violations. Such a
situation may arise for itineraries with' steps on which airplanes fly very
infrequently. The behavior of constraint contributions at times far from the
constraint time (Figure 3-8) is intended to reduce the liklihood of such looping.

65

5. FILLIN. The FILLIN level elaborates' any ASSUME steps in plans by calling

the TOP, SP, INSTANTIATE and FILLIN levels recursively on a new problem: the

origin and destination are' those of the ASSUME step, and a new constraint is

added to insure that the itinerary generated will dovetail with time choices

already made and to prevent planning the ASSUME step with the same

conveyance already used for the remainder of the plan. The recursive nature

permits fairly interesting plans. For example, HOME [assume] SFO [air] ORD

might be elaborated to HOME [walk] CALIFORNIA-ST-STATION [train]

BURLINGAME-STATION [taxi] SFO [air] ORD.

The recursive call in FILLIN is the closest analog in PEGASUS to a subgoal

that must be planned, and it causes 'a fundamental problem, the subgoal

problem. Thp. subgoal problem derives from the fact that

if the utility function is non-linear. . The precise impact of the non-linearity on

FILLIN can be demonstrated as follows: let rl be the sum of the factors for the

steps of the trip already planned out; let r2 be the factors required by plans to

fill in the ASSUME path. The recursive call will generate plans in best-first

order, i.e., sorted by U(r2). But FILLIN is required to return answers best-first

as well, i.e., sorted by UCrl +r2). Thus if the utility function is non-linear,

FILLIN cannot simply seize each solution returned by the recursive search,

append the steps already planned (corresponding to rl) and return the result.

(Solutions to this problem are explored in section 4.2.1) Because PEGASUS's

. utility function is presently linear, the equality holds, and the technique

described here is valid.

If two steps of a plan are ASSUME steps (e.g., the first and last steps), FILLIN

manages two searches, and ultimately generates all possible combinations of

solutions, but returns the best first. Because we desire to return the best

solutions first, and because each of the two subgoal searches also return their

best solutions first, we can avoid engaging in the subgoal searches unless they

are needed. This technique depends on the fact that PEGASUS's utility function

is K-linear. (See section 4.2.1 for further discussion of this problem.)

The recursive calls on the entire searching mechanism mean that a "problem"

may be presented to a level that is identical to a problem presented earlier, on

which progress may have already been made. To permit "problem" processing to

66

be shared, each' level keeps two kinds of information: problems, and ,task

instances. An instance simply records the. parent problem and a list of solutions

generated by the problem that have also been returned by the task. Thus,when

a new. solution is requested from a task, it first checks to see if the problem

has uncovered a solution as yet unnoticed by the task. If so, it is added to

the list and returned. If not, then the problem is called to work on generating

the next solution. The effect is that a task will first return solutions that the

problem has already generated; only then will new search effort be ~ndertaken

by the problem.

Re-evaluating FILL IN tasks is a matter of re-evaluating the planned 'steps and

passing the re-evaluation instructions down to' the . recursive searches. Advancing

due to execution is also a matter of passing the advancement .to the relevant

lower search or of terminating the search altogether.

6. PROB. The PROB level introduces all aspects of the probability model and

calculates the expected utili~y of a plan from a decision tree. Figure 3-9 shows

the tree built for our example. The new piece of structure is the ENODE, or

expectation . node, that represents' possible outcomes and probabilities. The

following description of ENODE interpretation refers to the figure:

SUCCESS: The success entry A represents the successful completion of the

HOME-SJC step, and, the successful embarc;ltion on UA 464. The WAfT

steps are clearly seen to be interface steps. These steps are included in

plans because they contribute to the utility, but they confuse thinking

about travel itineraries as sequences of motion actions.

MISSED: For some reason, the connection failed. This may be a

consequence of the arrival distribution of the taxi and the departure

distribution of the airplane. For example, traffic along the way may have

delayed the taxi. This term also includes the probability that the flight

will be cancelled and the probability that no space is available on the

flight.

CLOSED: This outcome, node C, represents the closing of the San Jose

airport. Thus not only will UA 464 not take off, but no other aircraft'

will for a while.

ASTRAY: The taxi never got to SJC. 'This might be due to an accident.

TAXI
HOME-

SJC

I A B C D

Success Missed Closed Astray
.91 .08 .01 .00

1 ~-,
(5:20 waiting time) Wait

5i~ T
UA 464

SJC-

ORO

I
Success Missed Closed Astray

.84 .14 .01 .01

I
Wait

I
UA 362

ORD-

ROC

Figure 3-9: Part ot" the deci$ion tree built by PROS for the sample
problem. The horizontal boxes show a classification of outcomes of
the connection between the steps above and below the box: The
dashed box shows an example of a simple bound estimate: if the
traveler misses UA 464, he can resume progress along the same route
after waiting 5:20. Of course, this may not represent the best strategy
in this case.

67

In the case of ai~planes, it might be that the destination airport was

closed or had landing delays so long that the airplane had to divert its

landing to another airport to avoid running short of fuel.

The probabilities associated with these outcomes are calculated from the model of .'

distributions described above. Whenever the quantities underlying the probability

68

model change, the probabilities are re-computed, and the decision tree is re

evaluated ..

The interesting issue associated with the PROB level is: what should we do

about planning for the various unsuccessful outcomes? Because of the way

PEGASUS is structured, it is not necessary to generate actual plans, because

such plans will emerge from the planning structure when the traveler "advances"

to the actual situation:' the advancing mechanism ensures that PEGASUS is

always working on the problem of getting from where the traveler is at present

to the ultimate destination. What is important to PROB. is a good utility

estimate for these outcomes, because the differences in backup possibilities for

various plans is what will make certain plans demonstrably different from others

(e.g., if our plan used the last flight of the night from ORD to ROC, the

consequences of missing the plane are quite undesirable). Section 2.2 proposed

two options:

• Compute upper bounds. Exact emulation of the approach of section 2.2 is

of little use. The upper bound viewed from, say, node B can be

characterized by the hope that there is another plane that flies to ORD,

just ready to go, with space available, etc. But this will have a utility.

identical to the "successful" plan! Thus, using the upper bound would not

adequately represent the consequences of missing the flight.

• Compute lower bounds. Unlike the monkey and bananas example, our

travel model rules out lower bounds. The taxi may have gone ASTRAY

because it crashed and killed the traveler, a consequence with a uselessly

low utility. Even if we could bound the utility, this would not express

the probable consequences of, say, missing the flight.'

What we need to do is to compute an upper bound, but to include enough

constraints so that there is information in the modified bound:

1. A crude estimate. Assume that there is as good a continuation plan, but

that there will be' some delay involved before you can embark on it. For

example, at node B we remark that the next SJC-ORD plane leaves at

13:05, which will involve a wait of .about 320 minutes. So we estimate

the utility of this plan as shown by dotted lines in the figure. This can .'

be viewed as a "low" bound, because options 2 and 3 may yield higher

utilities.

69

2. A better estimate. The crude estimate does not consider alternative

routes. If the first plane of an SJC-ORD-CMH route is missed, an SJC

DAL-CMH route may be a good alternative (DAL is Dallas, CMH

Columbus). Somewhere in the collection of tasks in PEGASUS is the

germ of such a plan. We can find it, and use the current U*

measurement, together with a wait estimate, to estimate the utility of the

recovery plan. This will be a "high" bound because the U* we extract

from the task will be itself an upper bound.11

3. An expensive· estimate. We can call the PEGASUS planner recursively to

plan an itinerary with a new time constraint~ This is computationally

expensive, but yields a good estimate.

How good an estimate do we need? The answer depends on how much error can

be tolerated in the calculation of the expected utility of the entire plan. If the

error can be E, then the error in a (single) failure estimate can be Elp, where p

is the failure probability. Thus if the failure probabilities are low, extremely

crude estimates suffice.

Another way to view this decision is to look at the cost of computation. If we

can model the computation needed to calculate each of the three modified

bounds, the model can be used to determine whether the calculation is

worthwhile. The upper bound on the original. plan, UO, and on the crude

estimate, U 1, bound the range of expected utility for our plan. The maximum

improvement that scheme 2 can make is P(UO-Ul), where p is the failure

probability. This can be compared with the expense of the computation. At

present, PEGASUS simply uses scheme 1.

3.4.3 He-evaluation and Execution Monitoring

Re-evaluating plans in the. light of fresh information and after planned steps

have been executed is a key function of an AI planning program. One way to

model the desired effect is to view the new information as an augmentation or

replacement of, corresponding information in the system's model of the world,

followed by a complete re-planning effort. But if the changes are small, an

incremental approach is clearly preferable.

------------------------- * 11Some care must be exercised, because the U found in the structure may
exceed the utility of the original strategy.. This is because the problem we
found had not yet been subjected to sufficient proce~sing, thereby decreasing its
U*.

70

In PEGASUS, the mechanisms for handling re-evaluation and execution

monitoring are closely related .. To re-evaluate all plans according to new'

information, a, structure describing changes is passed to each problem at each

level. If any of the changed information affects the problem (i.e., if it was

used in order to make decisions about or evaluations of the problem), the

current state of the problem is modified to reflect the changes.

This process emphasizes the changes that have taken place, in order to avoid

needless re-evaluation of all plans, including those with unchanged prerequisites.

The data structures used to represent planning states must be designed to admit

with facility the incremen~al modifications required by 'these changes.

During the execution of a plan, when the traveler progresses along a planned

itinerary, all plans are incrementally updated to reflect the change. Thus, in the

example above, if the traveler successfully gets from HOME to SJC, plans will

be updated so that they are solutions (or partial solutions) to the problem: "Go

from SJC to ROC, leaving' SJC after now." This is a special case of re-evaluating

plans in the' light of new information, i.e., an observed change of state in the

world. Although this appears to be a more drastic change. and may alter plan

structures in more fundamental ways than,' say, a re-evaluation resulting from a

5-minute change in a departure time, the effects of the two sorts of updates on

a plan are large or small .independen t of this distinction.

To a purely symbolic planner, changing the problem from "Go from HOME to

ROC ... " to "Go from SJC to ROC ... " is a chang~ in the symbolic problem

statement or in the symbolic world-model. The update might involve re

organizing the symbolic structure .of the plan, or re-organizing preconditions to

some steps, etc. Many of these aspects are present in the ~EGASUS system: an

update because of progress in executing a plan requires predominantly symbolic,

rather than numerical, processes.

The re-evaluation and monitoring schemes are thus a brief glimpse at an area

where symbolic and decision-theoretic aspects of planning enjoy analogous

treatments. Keeping plans abreast of all changes in ava.ilable information

requires a combination of techniques, largely because the information. itself is of

varying character.

71

3.4.4 Calculating the Value of Information

In PEGASUS, the re-evaluation mechanism is used to help calculate the value of

the information that may be gained from an observation of some quantity.

PEGASUS generates some hypotheses about the outcome of the test, given the a

priori information about the quantity, and re-evaluates the plans for each

hypothetical outcome. The utility of plans, given that the measurement is made,

is therefore the expectation of the utilities of the best plans in those situations:

Uwith info = ~i Pi maxj {U(tripj!measurement is i)}

In other words, for each value of the measurement, we calculate the utility of

the best plan, and then sum these utilities, weighted by the probability that the

measurement will in fact have that value. For example, in the case of the

weather, we might try four cases: w~l, w=2, w=3, and w>4.

We now must decide whether to make the test. If we choose to do so, we

receive utility Uwith info + Utest + Ureevaluate, where Utest represents the

"cost" of the test, and Ureevaluate represents the cost of incorporating the test

results into PEGASUS's plans and of performing the value-of-information

calculation itself. If we don't make the measurement, we just have the current

best trip, with utility Ubest. The value of information is thus

Uwith info - Ubest + CUtest + Ureevaluate)

If this quantity is positive, the test should be performed. Note that bounds

arguments can be used to rule out many tests: Ubest is known; an upper bound

on Uwith info can be estimated by finding in the levels an' ancestor of the plan

corresponding to Ubest that does not include the effects of the information

being tested; Utest is presumably known; and Ureevaluate can be provided by

the cost-of-planning model.

It may happen that no value of the measurement changes the identity of the

best plan. If so, there 'is certainly no point to making the measurement.

PEGASUS tests for this case first by choosing the first two hypotheses at

extremes of the range of measured values. If the best plan is the same at both

extremes, no more tests are made.12,13

12Thii-is--a--filinear'-;--assumption: if plan A is "best" for extremely bad weather
and for extremely good weather, then it will be "best" for all sorts of weather.
We could, of course, keep track symbolically of the quantities on which the
utility depends, and use symbolic techniques to determine whether this
assumption is valid.

72

The main point. of this section· is that the incremental update and re-evaluation

mechanisms installed in PEGASUS for updating plans during execution or when

the traveler changes a parameter are useful for other purposes.

3.5 Conclusion

The organization of PEGASUS's search into levels serves effectively to limit

searching required. The policies chosen at each level are such that a large

number of different travel. itineraries are feasible: because different instances

may be chosen, the actual number is unbounded. On the other hand, it seems

that the constraints inherent in the problem narrow searching considerably:

people cope with this problem daily without recourse to extraordinary intelligence

~r training.

PEGASUS demonstrates the value of utility estimates for a number of planning

purposes: The estimates control planning effort. Utility and symbolic templates

transmit guidance generated by cruder levels of processing to searches in more

detailed levels. Bounds are used to help estimate the value of information.

PEGASUS shows that many of the. tradeoffs involved in planning and executing

travel itineraries have natural and cOlnputable representations in decision

theoretic terms. The travel planner is a fine example of how complications arise

when applying to real situations a simple scenario: go to the airport, take an

airplane to an airport near the destination, ...

13Decision--theory--t-exts are replete with descriptions of the "value of perfect
information," and how to calculate it. In PEGASUS t the re-evaluation mechanism
is powerful enough to evaluate the effect of imperfect information, because the
model can represent it (e.g. t observations only alter: distributionst and do not
collapse them to discrete measurements).

Chapter 4

Critique and Extensions

74

The combinations of decision· theory and artificial intelligence exemplified in the

case stu,dies of Chapters 2 and 3.can be broadened. This chapter touches on the

issues that concern these studies, and seeks to depict the limitations of the two

examples and . the power of the general approach. The issues can be divided,

perhaps too neatly, into two categories: the construction of the models of the

domain used by a problem-solver, and the problem-solution and processing

techniques used to formulate solutions.

4.1 Models

A problem-solving system that undertakes problems in a certain domain works

with an abstract model of the domain. The abstract character of the model is

necessary because not every detail of the real domain can be considered in the

planning system. The design of the abstracted model of the world is a key to

the performance of the system. On the one hand, a repertoire of symbolic

operators alone, as used in many robotics systems, generates plans that are

blatantly wasteful of resources. The augmented operators described in the monkey

and bananas example, which include cost and reliability measures, still fall far

short of a complete model of "reality." Yet if the model gets too complicated,

with many possible elaborations. outcomes and failures, the search may grow

unmanageably large.

The model can be said to be the knowledge of the domain encompassed by the

system. The techniques for designing, representing and manipulating this

knowledge are a central topic in AI (Bobrow, 1975). This thesis is an

investigation of interactions that arise when some knowledge is encoded in

utility and probability functions and some in symbolic processing techniques or

rules.

The knowledge spans a wide range of applicability. Some is specific to a

particular invocation of the planner, such as the locations of the monkey and

bananas, or the announced destination of a traveler. Some is applicable to all

probleIDs in the domain, such as the basic behavior of boxes or the ways in

which legs of a trip can be concatenated to form itineraries. And some is more

general still, such as the A * algorithm or techniques for contr~lling a planning

hierarchy. But these are merely extremes of a continuum: the probability of the

monkey's successfully testing a box may grow slowly with time as he learns to

test well; or a priori values of traffic and weather conditions change slowly, but

must be combined with any more recent values available.

75

Along another dimension, we can characterize the domain knowledge in the

examples as symbolic or decision-theoretic. These' categories are also extreme,

but offer convenient headings for describing the models.

4.1.1 Symbolic Models

The symbolic model of a problem drives a process that generates alternative

feasible plans in much the same way a plausible move generator finds feasible

moves in a game-playing program. The model thus contains knowledge about

symbolic constraints, which limit the points in the state space that can be

reached to those that can be derived from the initial, state by applying actions.

The representation of the' actions contains much of the constraint information.

Section 2.1 shows such a model for the monkey and bananas example.

The symbolic model for PEGASUS is represented in several ways. There is

substantial data describing the constraints of the transportation system: several

transportation graphs, the compendium of scheduled conveyances, and so forth.

The knowledge used to build itineraries is represented entirely as procedures for

processing at the various' levels of detail. For example. the rules (or

concatenating individual trips into plan sequences exercise symbolic constraint on

the sorts of plans considered.

Care is required to be sure that the symbolic constraints do not prevent some

reasonable plans from being generated. Consider two examples of such errors in

PEGASUS:

• The itinerary ROC [air] LGA [bus] JFK [air]' ... cannot be generated: the
SP search examines only the graph of the "principal conveyance" suggested
by TOP. Clearly the model could be altered to permit PEGASUS to search
a larger graph for routing solutions, or even to recognize that such
"changes of airport" are a common strategy when traveling on the AIR
graph.

• The symbolic model builds itineraries that require the nominal departure
time of connecting transportation to be later than the nominal arrival
time at the point of connection. However, because departures may be
delayed (a property taken into consideration at the PROB level), there is
some probability that such a plan will succeed.

The second case is mitigated during execution by the arrival of information: if

the earlier flight 'is known to be delayed, PEGASUS will generate a plan to use

it.

If symbolic constraints reject feasible plans, the planning system can' become

76

inadmissible with respect 'to the goal of maximizing the utility of' the plan. 1

However, to relax the symbolic constraints might widen the search' considerably,

and require a great deal 'more . computation to find any solution. As we shall

see, a system that takes account of the cost of planning may tolerate

inadmissible symbolic processing.

4.1.2 Utility Models

The utility model must reveal the tradeoffs a planning system makes among

alternative plans. A requirement, therefore, of the utility model is that it give

rise to proper performance of the problem-solver. The central role of the utility

function places additional requirements o~ its formulation: information in the

utility model is used to constrain searches by reasoning with utility bounds and

to limit planning activities by estimating the value of planning. The

cost/outcome model of system operators strives to summarize, in a few functions,

the behavior of large, complicated ~ystems. Surely the complexity cannot be

captured in a few simple functions. On the other hand, an excessively precise

model of the operation of the subsystems would paralyze planning, turning it

into a huge simulation.

This section addresses two topics: ways to formulate the utility function to

express the necessary tradeoffs, and the requirements placed on the utility

function by the computational and problem-solving setting.

4.1.3 Formulating Utility Functions

This section treats utility theories only briefly in order to establish notation and

terminology for what follows and to expand somewhat on the simple utility

formulations used in Chapters 2 and 3. A lucid survey of utility theories can

be found in (Fishburn, 1970).

An informal utility model is implicit in any notion of "best" or "good" solutions

to a problem. Such a model need not be expressed in numerical terms.

However, if alternative solutions can be ordered by preference, a trivial ordinal

utility function can be formed (assign utility n to the "best" solution of n,

utility n-1 to the next best, etc.). It is common for heuristic techniques that

1The--ter"ills---adffiissibk and complete are closely related. A complete procedure
for proving theorems is one that will eventually find a proof, if a proof exists.
An admissible procedure is one that finds an optimal solution, if there is a
solution.

"

77

express preference in conventional AI systems to be isomorphic to ordinal utility

functions. Decision theories based on ordinal utility theories are severely limited:

they cannot cope with uncertainty; no help is provided in calculating bounds;

and as the number of alternatives grows, so does the task of associating or

"looking up" utility values given states of nature. Arrow's paradox (Arrow, 1951)

shows that ordinal theories cannot handle multiple goals properly, a consideration

relevant to robot problem-solving.

Cardinal utility functions are, by contrast, very useful indeed, and have received

the most attention. They usually take the form of a mapping from a vector of

abstract features characterizing the state of nature to a single real number. The

feature' vector (or "resource vector," as we called it in Chapter 3) includes what

,might be loosely termed "measurables," e.g., time, money, computer cycles, watt

hours. Although the measurements may include errors of various· sorts, different

individuals would not hotly dispute the results of the measurements. However,

individuals will differ in their choice of mapping function; it is here that the

relative importances or values of the measurements are combined.

Although many functions could be used to express the same preferences among

states, various additional restrictions are imposed on the utility function. The

most common set of restrictions arises from the need to handle uncertainty. It

is convenient to have the utility of a gamble be expressed as the expectation of

the utilities of the two outcomes, i.e., the utility of a gamble that results in

outcome 01 with probability PI and in outcome 02 with probability P2 is

PI U(01)+P2U(02). (The restrictions on the utility function are often expressed

as a set of axioms for the utility theory. See Fishburn, 1970.) The ability of a

utility theory to deal with gambles enables, of course, a corresponding decision

theory to cope with uncertainty in the outcomes of various decisions.

4.1.4 Notation

We shall often refer to the utility models used in the Monkey and Bananas and

PEGASUS examples in this section, and will introduce a notation that subsumes

both models:

Define an abstraction of a state of nature with a symbol s. An action in
a plan is denoted by ai, and has the effect of changing the state of
nature from si-l to si.

Define a resource assignmen t function R that maps s ~ r, a resource
vector. The resource assignment for a step of a plan is denoted ri =
R(si)-R(si-l) We sometimes refer to the utility of an entire plan as rp =

78

R(Sf)-R(sO), where sO and sf are the initial and final states of the plan.
Individual elements of the resource vector are referred to- using brackets:
riEl].

The utility functionU maps resource vectors to real numbers, thereby
assigning a value to a particular vector of measurables. We speak of "the
utility of plan p," or U(p), and mean U(rp). This is simply the utility of
the resources consumed in executing the plan; the advantages of reaching
the goal are reflected in the resources rp. Note that we are calculating
the utility of a single outcome; to obtain the expected utility of a
strategy, we must sum the utilities of all outcomes, weighted by their
pro ba bili ties.

Define the class of functions L as linear mappings from vectors to the
real numbers. That is, 'L(r) = lmer + lc, a simple vector dot product.

Define a function to be K-linear if it is of the form K(L(r)), where K is
an arbitrary positive' monoto~ic function.

Now the two examples can be expressed in these terms:

Monkey and Bananas: riEl] = -Ci, where Ci (as used in Chapter 2) is the
cost of the ith step. ri[2] = 0 if the ith step is CONSUME, otherwise 1.
ri[3] = -1. U(r)=[-1 "'Ufed-Ufed]·C:~:ri). The utility function i.s therefore
linear, of the form U(rp) = L(rp)

PEGASUS: ri is the four-dimensional vector [Time; Money; Stress;
Miscellaneous]. U(r)=[a b c d]e(~riJ + constant; a,b,c,d ~ O. The utility
function is linear, of the form U(rp) = L(rp)

These models calculate utilities in two stages: first, a solution or partial solution

is given a resource assignment; second, the utility function is applied to the

resource assignment to yield the utility. In a hierarchical planner, either or

both of these steps can vary frorn level to level.

4.1.5 Additivity

Because planning activities focus on building a sequence of individual steps to

form complete plans, they need ways of calculating incremental changes to plan

utilities. This need arises when adding steps to a partially complete plan, wh.en

adding detail to an existing step, or when considering alternatives for a

particular step of the plan. In each case, the planner needs to compute the

change in total utility as a consequence of an incremental change in the

structure of the plan .. It is advantageous to keep this calculation simple, as it

will be performed repeatedly while planning.

The formulation of the basic state space as a vector space of measurable

resources insures the incremental additivity ~roperty.2 Thus we can characterize a

2Th;-term--;'iddli"ivfii' is used differently in some discussions of utility theories
(e.g., Fishburn, 1970). It is used there to mean that U(r) can be expressed as a

79

plan or partial plan by the sum of the resources it requires, rp. Adding step j

and updating the utility requires: (a) setting rp~rp+rj and (b) calculating the

utility of the plan up = U(rp). If we restrict the utility function to be linear,

we need only calculate up~up+U(rj).

The chief implication of the additivity property is that we can associate rp with

every plan, even if the plan is incomplete.

4.1.6 Risk

One appeal of the utility function is the ability to express aversion to risk

observed in many human, professional (e.g., medical) and corporate decisions. To

express risk aversion, we define a utility function that is a convex monotonically

increasing function of the original (non risk-averse) utility. Figure 4-1 shows

two gambles to illustrate the point. If we choose p=.95, the two bets have

identical expectations, $950. However many people would vastly prefer owning

bet A rather than B because they are averse to the risk of B. We can express

the risk aversion by choosing the utility function for money, U, so that p

U($1000) = (l-p) U($19000) where p is altered until individuals believe that bets

A and B are equally desirable. Note that p will be less than .95, so U($19000)

< 19 U($1000): this effect can be achieved with a suitable convex function.

Receive

$1000

A

Receive

$0

Receive

$0

B

Receive

$19000

Figure 4-1: Two gambles with equal expected value in dollars ($950).
Most people will prefer gamble A because they are averse to risk: the
utility of $19000 is less than 19 times the utility of $1000.

The utility functions of the examples in Chapters 2 and 3 can be extended to

handle risk by simply applying such a convex function, i.e., define the new

utility U' to. be U'(e)=K(UCe)), where K is a positive convex monotonically

increasing function. Thus, a K-linear utility function can express risks.

~

sum--Yti"iC"ii:iJ)--u~i~g--a separate utility function Ui for each dimension of the
resource vector space.

80

Although the implications for problem-solving with arbitrary non-linearities in

the utility function are severe, the special case of K-linear functions remains

tractable. These issues are discussed in the next section.

4.1.7 Monotonicity

Calculating upper bounds on plans is greatly simplified if the utility function

has a monotonic property:

oU(r) / or[i] < 0 V i, r

This expression translates to "as a resource requirement of a plan increases, the

utility always decreases." Thus an upper bound .can be calculated by simple

.reasoning that determines the minimum values of the individual resources.

U(r[1])

a

r[1]

Figure 4-2: A utility function that is not monotonic in a single resource
r[1].

If the monotonic property does not hold, it is mathematically possible to

reformulate the utility function to restore monotonicity. Suppose a person's

utility for the resource "minutes of exercise" looked like Figure 4-2; the resource

vector here is simply [exerciseTime]. We can always make a new problem

with an additional dimension in the resource vector that records the negative of

the troublesome resource: for the example, we devise a two-dimensional resource

vector [exerciseTime -exerciseTime]. Now set U(r) = ul(r[l]) + u2Cr[2]), where

Ul and u2 are shown in Figure 4-3; this utility function satisfies the

monotonicity property. This formulation somewhat complicates the calculation of

upper bounds: the upper. bound for plan p requires finding a resource vector of

minima, i.e., minC exerciseTime) and mine -exerciseTime) = -max(exerciseTime). For

81

example, if we wish to calculate an upper bound for a plan in which the time

devoted to exercise is unknown, we find r = [0 -00], which gives U(r) = UI(O)

+ u2(-OO) = a, as it should.

U
1

(r[1])

a --------.......

o r[1] ~ r[2] ~

Figure 4-3: Two monotonic utility functions on two resources that sum
to the utility function of Figure 4-2.

o

o

This formulation. is more than a mathematical trick: two separate, nameable

effects correspond to the two resources. In our example, r[l] might be called

"time fatigued," and r[2] might be called "time sedentary." Now the shapes of

the utility functions in Figure 4~3 correspond to intuition. Another example can

be found in drug doses: there are often separate therapeutic effects for· moderate

doses (u2) and toxic effects for· extreme doses (uI).

4.1.8 Resource Assignmen ts

The link between a symbolic plan, or partial p1!ln, and the utility function is

the scheme of resource assign men ts. This scheme maps plans in to resource

vectors: r RjCs), where s represents the steps of the plan and r its assigned

resources. The function R can take several forms; hence its subscript.

A hierarchical planning organization such as PEGASUS will use a different R for

each level of analysis. This is the mechanism whereby the problem space is

progressively explored: coarse analysis employs an R that expresses only some of

the constraints on the solution. Finer analysis will use a more sophisticated R.

However, the R's used at different levels must remain consistent in order that

the upper bound calculations be correct.

Another reason that R takes on different forms is that the particular kind of

82

resource assignment we require may vary. For example, if we wish to calculate

an upper bound on the utility of a plan p, we will want R to reveal the

minimum resources required to· execute p. These upper bound assignments' are

explored in . the next section.

4.1.9 Upper Bound Calculations

As we demonstrated in Chapters 2 and 3, the upper bound on the utility of

plans and partial plans is used to guide search. The bounds of the examples

are generated by the following general reasoning:

An upper bound on a step of a plan results from considering all possible

alternative ways of executing the step, and bounding the utility of these

alternatives. The power of bounding depends on the fact that most

bounds can be calculated without explicitly enumerating the alternatives.

The monotonicity property of the utility function simplifies these calculations: an

upper bound on utility is generated by an "upper-·bound resource assignment"

(UBRA, denoted r*), values of resources that give rise to the highest possible

utility.3

1. Dimension-by-dimension UBRA. One method for calculating the UBRA is

demonstrated in Chapter 3:

] (4-1a)

where fi * is the UBRA of the ith step of the plan and rij is the resource

vector of the jth alternative method for achieving the step. These can be

summed to get the upper bound on the utility of the entire plan:

U*(r) = U(~rt) (4-1b)

Note that the determination of the UBRA for the entire plan (4-1b) does not

depend on the details of the utility function, and requires only that the utility

function have the monotonicity property.

2. Utility-based UBRA. We could identify rt by looking for the alternative that

gives rise to the highest utility:

___________ llf!ij_ > _ .!:!(!ij) V j (4-2a) .'
3Calculating upper bounds in this fashion assumes that no elaboration of the
plan can move "backward" in resource space, i.e., diminish the resources required
for any step. This is analogous to the consistency property required of shortest
path algorithms (Hart, Nilsson, Raphael, 1968).

83

If the utility function is linear or K-linear, we are justified in computing the

bound:

U*(r) = U(l:rt) (4-2b)

This bound is tighter than that of ,(4-1b) because of the way in which ri* was

identified. This technique suffers in a system in which the utility function may

change, because computing an updated upper bound will require enumerating

anew all the alternatives (j) for each step. By contrast, the first, technique

eases re-evaluation: we save l:ri*, the UBRA for the entire plan, and simply

apply the new utility function to it.

We can see these two techniques in use in the following examples:

1. .Treatment of (for example) AIR. When PEGASUS is planning in the SP

level, it must compute an upper bound on a path without regard to

particular flights chosen. It computes the UBRA as follows:

When the data base for the AIR transportation graph is built, all flights

that traffic on each arc are examined, and a minimum resource vector ra is

associated with each arc a. Only the resources for elapsed time and money

are considered:

ra[i] minf raf[i]

where raf is the resource vector for flight f on arc a. This is the

dimension-by-dimension minimum of the resource vectors (eq. 4-1). This

bound may. not be achievable: for example, the flight with the cheapest fare

(e.g., night coach) may require more time (e.g., use slower aircraft). PEGASUS

uses this method.

We might be tempted to calculate a tighter bound by applying the utility

function to the raf's and finding the maximum:

ra = raF where U(faF) 2:: U(raf) 'tIf

This method (similar to eq. 4-2) is awkward if the utility function can

change after ra is selected: keeping fa current requires accessing all raf in

the data base each time a new traveler with a new' utility function is

presen ted to the system.

84

There is no intrinsic reason fOf choosing among the two methods .. The choice

will depend on the anticipated, use of the system: how frequently will the

utility func'~ion change? Once again, the decision is related, to costs of

planning: the second method reduces planning time by providing tighter

bounds, but will substantially increase planning time if the utility function

changes.

2. Treatment of idealized conveyances. In order to compute an upper bound

on the utility of an idealized conveyance, we need a UBRA in which the

minimum is calculated dimension-by-dimension. For example, we calculate a

resource vector for AIR~ as rEi] = max(d rd[i], rm[i]) where d is the distance

to be traveled; fd is a vector of minimum rates of resource expenditure (per

mile); and rm is a vector of minimum resources possible for this conveyance.

Both fd and fm are calculated as the AIR graph data base is built, by

computing minimum resource rates along all arcs of the graph:

where fa is the "upper bOWld" for arc a described in the previous example,

and da is the physical distance represented by arc a. Similarly,

The role of this fm[i] is to prevent certain conveyances from dominating. For

example, no actual AIR transportation in the PEGASUS data base costs less

than $8 or takes less than 25 minutes. If these minima are not taken into

account, AIR* is an overly optimistic upper bound 'on very short trips (e.g., 1

mile!) and wastefully permits more detailed cOJ)sideration of airline travel on

such trips.

3. Treatment of ASSUME. The PEGASUS shortest-path search of the

transportation graph inserts steps using ASSUMEd ground transportation if

necessary to get the traveler ini tially to a node of the graph (e.g., in

searching the AIR graph, we assume a traveler could get to a nearby airport).

An upper bound for the ASSUME conveyance could be computed by setting

the resource vector so that rEi] = max(d 8d[i], am[i]), where 8d and am are

found by taking the minima, dimension-by-dimension, of the rd and fm for

all idealized ground conveyances. This bound turns out to be too optimistic;

it fails to constrain search adequately. By way of illustration, consider:

85

Suppose TOP returns a solution TRAIN* for a very short trip. When

this is processed by the SP level. an ASSUME step is found to be the

best way to accomplish. the entire trip. The ASSUME resources involve.

no money (the cheapest ground transportation is walking) and very

little time (fastest is by train); it therefore dominates TRAIN* over

any route. What this means, in effect. is that we are using in SP

assumptions that do not reflect the constraints imposed by TOP (i.e.,

exclusion of trains from ASSUME steps).

A solution to this problem is to calculate explicitly the resource vector

generated by the relevant idealized conveyances (WALK, RENTED-CAR, TAXI,

etc.) and to choose the one that· maximizes utility (equation 4-2). This

therefore represents a tighter bound. However, it places an additional burden

on updating: if the utility function changes in any way, the alternative

idealized conveyances must again be evaluated to find the one with greatest

utility. In PEGASUS, this is a ·small burden because there are only 6

idealized conveyances.

All of these bounds examples involve some form of "enumerating the

alternatives": sometimes the enumeration is done once when a data base is

constructed; sometimes it is done during planning in order to get tighter bounds.

In som.e cases we have simply saved a UBRA in the data base (as for all flights

on a given arc); sometimes we have saved a computation formula that· will

generate the UBRA (as for idealized conveyances).

·The powerful use of bounds in PEGASUS occurs because. utility calculations

applied for reasoning at coarse levels of detail generate upper bounds on the

constraints that may be introduced at lower levels. Although this sort of bound

can also be viewed as "enumerating the alternatives" (Le., all possible effects of

constraints). we are never tempted to use explicit enumeration because the upper

bound, or minimum resource. is usually readily apparent from simple reasoning.

For example, waiting times between connecting trips are not considered when

finding a route in SP. However, because au / aTime < 0, we can derive an upper

bound by assuming the waiting times will be O. This general technique is used

to handle all constraints: the upper bound results from a resource vector that

includes the minimum contribution from these constraints. If, in addition, these

minima are all designed to be 0, the upper bound is especially easy to calculate

-- simply ignore the effects of the constraint.

86

One . of the prime considerations in choosing bounding techniques is the desire to

get adequately tight upper bounds. The third example above shows that' the

search-limiting nature of bounds may make more expensive bound calculations

worthwhile. 1f resources are allocated to the planning system with regard to

cost of computation, looser bounds simply give license for unrealistic expectations

of the results additional planning may bring.

4.1.10 Adjusting Model Parameters

Both the utility and probability models contain numerous parameters that must

be adjusted to achieve proper performance of the planning system. It is

relevant to distinguish between two approaches to adjusting the models: (1) an

. empirical approach, in which physical quantities are measured to some precision

and delivered to the planner, and (2) a subjective approach, in which a designer

or skilled individual is asked to estimate "proper performance" or rationales for

the system.

The bulk of the models used in the two examples can be adjusted empirically.

The "Airlines Guide" and similar schedules supply nominal values for transit

times and fares. They could, but unfortunately do not, provide other

information for the model: distributions for delays, effects of weather, etc. Any

serious attempt to build a useful travel planner would need to secure these

numbers or to measure the quantities directly.

However, not all parameters of the models are subject to direct empirical

verification. The utility model is the most obvious example; in PEGASUS this

includes a utility function, the stress of time model, and the model of

constraints. Only if the objective of the planner is particularly simple (e.g.,

artificial robotics problems), is it possible to derive these models analytically. If

not, utility information must be extracted from a human; this is a complicated

process. and is likely to elicit inconsistent judgements (Tversky and Kahneman,

1974).

Although the general problem is quite complex,' some simple adjustments can be

made based on human reactions to proposed plans. If a user prefers plan A to

plan B "because it is less expensive," this suggests increasing the weight given

to the money factor in the resource vector until the utility of A exceeds that

of B. The' trick is feasible because the user has identified the trouble. Other

87

causes might be traced to stress of time parameters: "because I dislike waiting

in New York," or "I'm scared to land in Chicago during rUsh hour." This

technique essentially asks a client to sort emerging plans by preference.

Presenting alternative plans for comparison is not trivial. Although PEGASUS

can easily generate plans of decreasing utility, they are often minor variants of

each other (e.g., using slightly different transportation to an airport, but using

the same selection of flights), and do not differ enough to extract determined

preferences. A selection of cases designed to elicit preferences might better

explore more coarsley the space of alternatives, and generate plans with

substantial variations in the resource requirements.

PEGASUS probability information is stored in a data base partitioned by certain

retrieval keys: in each partition lies an applicable probability distribution. The

probability model embodies certain dependencies that we anticipated were

necessary, e.g., arrival delays depend on weather conditions and on the airline.

A simple retrieval system locates the proper probability distribution given

retrieval keys (location, time of day, weather, carrier, means of conveyance).

Some of these keys match "ranges" of values in the data base (e.g., a time of

day can lie in the range 4-8 PM weekdays; a location can lie in the midwest; a

carrier can be a trunk airline).

One advantage of partitioned models is that the partition can be refined to

divide the parameter space more ~inely, and thereby to increase the precision of

the model. As an aid to refinement, we can record empirical observations with

each cell of the partition. For example, we record the actual observed departure

delays in a cell of the partition -- a given airline from a given airport, within

a certain range of times -- and periodically verify that the observations that

fall within the cell are properly characterized by the distribution associated with

the cell. This process can be automated (and would probably be dubbed

"learning") or carried out manually (Yakimovsky and Feldman, 1974).

How accurate must the model be? Because an exact model may be difficult or

expensive to acquire, it would be useful to anticipate how the perfonnance of

the system changes due to errors. If errors in the resource assignment and

utility functions can be estimated, the simple form of the utility function and

of the calculation of expectations allows us to compute the effect of errors on

the final utility value; this process is called "sensitivity analysis" by decision

theorists. It has the effect, for example, of requiring only crude utility

estimates for outcomes of low probability.

88

In principle, we' could acknowledge errors explicitly, propagate distributions of

utilities up' the planning tree, and apply statistical tests to the distributions of

alternative plans to determine whether one is significantly better than another.

This is not a practical process, in part because it places extra burdens on the

representation of plan utilities, and in part because we must calculate utilities

for a conceptually infinite number of outcomes represented by a particular

probability distribution (e.g., we have a probability distribution of waiting times,

and must calculate a corresponding distribution of utility values).

The planning process itself is capable of reducing certain kinds of errors in the

utility of a plan. This is precisely what more detailed analysis will bring. The

elaboration process of Chapter 2 reduces errors in this fashion by introducing

tests that may reduce errors in the model; it is advantageous to ~mploy them if

the more exact model gives rise to plans of higher utility. Consider too a

hierarchical planner such as PEGASUS. The final level of detail, PROB, does not

supply details necessary to execution of the plan, but is included only to reduce

the error in the plan's utility estimate.

There are s~veral more subtle implications of model errors. The first might be

called "indifference to small differences in utility." Suppose that calculated

utilities Uc differ by up to 20 units from the exact utility function that

captures a client's "true" preferences Ut. If a problem-solver finds a "best" plan

with utility Uc=304, generating alternative plans with utilities in the range· 284-

304 is of dubious value; some of these plans will have Ut >Uc, and some

.Ut < Uc, but even if these actual preferences are elicited and the model is

altered, the precision of the model may not be increased.4 If errors of this sort

are significant, a utility-driven planning system may want to include some

hysteresis: in our example there is no point in abandoning pursuit of a plan

with U=295 until its utility drops below 284; even if there are partially-planned

alternatives with U=290.

Finally, the costs of planning interact with model errors. As we mentioned

above, additional planning may reduce the utility error in a plan. But the cost

of planning itself represents an "error" to the client. Why should we struggle

to calculate an exact utility value for the plan, when the cost of planning will

distort the plan's value to the client?

4jf--tiie--~odel--does--not consider an effect that is important to the client,
fluctuations in the property among plans will appear as noise in the utility
calculation. If the noise is uncorrelated with the properties that are considered
by the model, no adjustment of model parameters will decrease the noise.

.'

89

These observati?ns may be summarized by noting that careful sorting of plan

alternatives by utility is not worthwhile in the presence of noise in the utility

evaluation. Instead, we want to generate alternatives with differences· that are

significant compared to the noise level.

4.2 Processing the Models

In this section we examine computational methods for extracting problem

solutions from the symbolic and decision-theoretic models. The discussion centers

on basic problem-so~ving techniques, on hierarchical planning, and on the cost of

planning. Although the methods themselves are not all new, new problems

appear when they are combined.

4.2.1 Problem-Solving Techniques

We shall summarize the individual techniques discussed in Chapters 2 and 3, and

point out several interesting problems associated with them.

Search

A fundamental problem-solving technique involves searching a graph for plans of

highest utility, subject to symbolic constraints. A broad class of search

techniques has been studied extensively by operations researchers; general ideas

such as branch and bound (Lawler and Wood, 1966) and dynamic programming

(Bellman, 1957) have been developed for this purpose.

The symbolic constraints on a search arise in varied forms. In some cases, an

explicit graph must be searched; or a graph is implicit in that arcs correspond

to satisfied preconditions; or the possibilities are limited by some deduction (e.g.,

the search for elaborations need not consider TEST steps that alter model

parameters that do not enter into the calculation of the utility of the plan).

Search is not necessarily a dumb, torpor-laden process: the constraints and the

power of the search technique may combine to make search a very attractive

solution mechanism. Binary division algorithms used in most computer hardware

are in fact search algorithms: to generate a bit of the quotient, the alternatives

(0 and 1) are considered -- at each stage, half the search tree is pruned by·

testing the sign of a single subtraction!

The case studies use a number of different search techniques, each appropriate

for a particular purpose. We can arrange the techniques into four classes:

90

1 .. Enumeration. If' the search space is known to be small,. enumerate all

feasible solutions (Le., those that meet symbolic constraints); 'apply the utility

analysis to. each solution; sort the solutions by the resulting utility value.

Examples: TOP, DOLLARS. This technique req~ires no assumptions about the

form of the utility function and no model for calculating upper bounds on

partial plans.

2. Shortest path graph search. This very familiar search technique builds

optimal plans incrementally, using the utility function and an upper bound on

the unexplored part of the plan as a search guide. Examples: SP, monkey

and bananas (section . 2.1). A large collection of work has been done

concerning shortest path searches; see Pohl (1969) for a nice summary.

Many shortest-path algorithms use "heuristic" information to guide the search,

but still return optimal solutions. A * is such an algorithm. Pohl's bi

directional extensions also use heuristic guides (Pohl 1969, also 1973).

Not all shortest-path algorithms make easy the reporting of upper bounds on

the search as it progresses. A * reports upper bounds in a straightforw~d

way (hence its use in. SP). However, Pohl's weighted version does not lnake

upper bound calculation easy.

u u

........ , ..
. ,

(a) ta tb td ~ (b) ta tb

Figure 4-4: Bounded enumeration. Shown are answers (labeled F) as
a function of a departure time. Increasingly later departure times (td)
are considered until the upper bound U* falls below the utility of the
best solution (F 1) at time tb. Consequently, a wider range of times (ta
to tb) must be considered in (a) than in (b) because F1's utility in (a)
is considerably below the upper bound.

91

3. Bounded enumeration. This technique is similar to enumeration in that a

collection of solutions is generated and evaluated, but it differs in one

respect: the search has the .potential to generate a large number of solutions,

but the enumeration is arrested by a bound calculation. Example of bounded

enumeration: INSTANTIATE. The INSTANTIATE search was designed to

enumerate trips with departure times within certain limits; the limits are

widened until the upper bound on all possible trip departures outside the

limits is below the calculated utility of a chosen trip. Figure 4-4a shows

the situation schematically: td is the range of possible departure times at a

connecting point;. td cannot be earlier than t a, for that represents the time

of arrival at the point. The solid line represents the upper bound U* on all

trips departing after the corresponding time, and shows an early effect due to

stress of waiting time and a later effect due to violation of an arrival

constraint. F1 represents the utility of an actual connection; it is less than

U* because the cheapest fare is not available on Fl. (The fare is available on

F4, which accounts for a utility greater than that of its neighbors.) We see

from the illustration that we need not consider connections with td>tb, for

their utilities are guaranteed to be less than Fl. We can continue this

search by lowering the cutoff Uc, thereby increasing tb and enume.rating more

connections.

Figure 4-4b shows a similar situation in which the cheapest fare is available

on all flights. Because the upper bound is tighter, i.e., the difference

between it and the utilities of feasible plans is less, the search is narrowed.

This is just another example of search limiting by information available in

the bounds.

4. Subgoals. Decomposing a goal into subgoals whose solution will achieve

the original goal is a corrlIDon problem-solving technique. Sub goal pursuit is

often a feature of searching; AND-OR trees are one example, in which

disjunctive subgoals are sprouted at odd levels in a search tree, and

conjunctive subgoals at even levels. The techniques mentioned above

(enumeration, shortest path, bounded enumeration) were all used in PEGASUS

to generate alternatives, that is, to search inlplicit disjunctive subgoals: the

whole program is organized to foster alternatives.

Dealing with conjunctive sub goals is somewhat more difficult, and interacts

with the choice of utility function. This interaction arises because we wish

92

to explore the conjunction in such a way that solutions of high utility are

generated first. Our discussion will use an example from PEGASUS: the

FILLIN level is responsible for elaborating the ASSUME steps, and must

build solutions of the form ((solution to ASSUMEd step) AND (existing

itinerary)). For example, FILLIN might be given a plan ASSUME (HOME to

SJC), then WAIT (at SJC), then AIR UA 356 (SJC to ORD), etc. We can

characterize this plan as ASSUME AND p, where p represents the portion of

the itinerary that, within FILLIN, requires no subgoal expansions.

In order to generate solutions to ASSUME AND P in order of decreasing

utility, we might at first assume we need only generate solutions to ASSUME

with decreasing utilities and append p to each solution. This does not work

in all cases, because the utility function can be non-linear.

Counter-example: Let rp be the resource vector for part p of the

plan; let ri (or rj) be the resource vector for the ith solution to

ASSUME. We want to find j that maximizes total utility:

(a)

Suppose we do this by finding the j that maximizes the utility of

the ASSUME step, i.e.,

(b)

Let U(r)=lrI2=(r[I])2 + (r[2])2, choose rp=[4 1], r1=[O 1.1], r2=[1 0].

By (a), j=2; by (b), j=1.

For an intuitive example of this effect, consider a data-structure selection

application (Low, 1974; Rovner, 1976). Suppose the utility function is -st,

the familiar space-time product used in charging for computer services. If

we choose one data-structure to maximize -Sltl, and a second to maximize

-s2t2, the conjunction of the two choices, -(SI+s2)(tl+t2), may not be the

optimal combination.

We can constrain the utility function so that maximizing the utility of the

subgoal search also maximizes the utility of the total plan. For example, if

the utility function is K-linear, i.e., of the form U(rJ=K(L(r)) (notation of

section 4.1.4; L is a linear dot product; K is an arbitrary monotonic function

that allows expression of risk), it has the desired property.

93

Proof: We need to show (b) implies (a). (b) implies L(rj) >
L(ri) 'Vi because K is monotonic. Hence L(rp+rj) > L(rp+ri) 'Vi

because L is linear. Therefore U(rp+rj) > U(rp+ri) 'Vi because

K is monotonic. This calculation works because· the in teraction

among the elements of the resource vector is linear.

This idea can be extended easily to handle more than one subgoal search,

such as ASSU1fEl AND P AND ASSUME2. Let the sequence aI, a2, ...

represent the solutions returned from the first search (U(a1» U(a2» ...),

and bl, b2. ... from the other (U(b1» U(b2) > "')'. Solutions to the full

probleln are represente~ by the sequence Cl, C2, ... where ci = c(j,k) = [aj p

bk J, where ci is the plan formed by concatenating the plan aj, the fixed

(already planned) part p, and the plan bk. Because we require U(C1» U(c2»

... , the choices of j and k are constrained. Furthermore, we want to devote

effort to the subgoal searches only when necessary. The algorithm to achieve

this, used in FILLIN, is:

. O. Set jMax to jReturned to O. Set kMax to kReturned to O. Set S to

null.

1. If jReturned '* jMax then go to step 2. jMaxtojMax+ 1. Generate

the new solution ajMax. Add c(jMax,k) to S for 1 <k<kMax.

2. If kReturned '* kMax then go to step 2. kMaxtokMax+1. Generate

the new solution bkMax. Add c(j,kMax) to S for l~j<jMax.

3. Remove from S the plan with greatest utility, say c(x,y), and

declare it the next solution to the conjunction. Set jReturnedtox,

kReturned~y, and go to step 1.

The idea behind this algorithm is that whenever c(j,k) is returned as best,

we must be sure that c(j+l,k) and c(j,ktl) become available for comparison

before returning the next solution.

A general solution that avoids the dependency on K-linearity might be to

pass rp to the procedures for solving the ASSUME step; they can simply add

rp to all resource vectors before calculating the utility. Unfortunately, this

technique will fail if more than one subgoal is involved, e.g., ASSUME1 AND

P AND ASSUME2· It is irnpossible to 'pass to ASSUME 1 a resource vector

94

U of a.
J

4 (1) 1 1 1 ?
3 8 208 158 1
2 9 209 159 1
1 10 210 160 1

200 150 (?) U of b k
1 2 3 k

Figure 4-5: Pursuit of conjunctive subgoals. The situation depicted
has jMax=3, kMax=2, and c(3,1) with a utility of 208 will be returned as
the next solution. Before another solution can be returned, it will be
necessary to generate a4 so that c(4,1) can be constructed.

that does not depend on the results of search in ASSUME2 and vice-versa.5

Knowledge of the utility function may allow a bounds calculation that can be

used (as in bounded enumeration) to calculate cutoff utilities for the

ASSUME 1 and ASSUME2 searches· such that the optimal solution to the

entire problem cannot involve solutions to ASSUMEl below its cutoff or

solutions to ASSUME2 below its cutoff.

Heuristics

Heuristic techniques can be used to circumvent exhaustive searches, often by

applying specialized knowledge of the problem domain. A common consequence

of the~e techniques is that solutions are not guaranteed to have the highest

utility of all possible solutions. We shall see that hierarchical planning and

'cost-of-plannfng techniques can be used to apply heuristic techniques sensibly.

As an example of a heuristic method, PEGASUS include.s special scripts for

comnlon itineraries for connecting airline flights: west coast and east coast cities

not linked by direct routes are often linked by connections in Chicago or Dallas.

Although solutions to SP problems to which this heuristic applies are generated'

without search, they are not optimal:

5This--Is-~-kill--to-tl;e-'" shortcomings of the linear theory of conjunctions: satisfy
each subgoal independently. Sussman, 1973, explores this problem in the
symbolic domain.

Solutions generated by SP in order (without heuristic):
SJC-ORD-ROC· U=694.7
SFO-DTW-ROC U=693.6
SFO-ORD-ROC U =692.4
OAK-ORD-ROC U=690.7

Heuristic solution:
SFO-ORD-ROC U=692.4

95

SP combines these nlethods: first, it returns heuristic solutions if it has

applicable scripts. If the planning algorithm requests further solutions, SP

reverts to its shortest path search. Note that generating a heuristic solution

will not decrease the upper bound; only the shortest path search offers proof

that all remaining solutions lie below some bound. In the example, the upper

bound remains at 774 even though a heuristic solution with utility 692 has been

generated.

This use of "heuristic solutions" is similar to the current thrust in -AI work to

use modest amounts of reasoning to devise very good solutions to goals or

subgoals, and to do the reasoning in advance of proposing the solution. This

reduces search to a minimum, and places less reliance on backtrack techniques to

resolve difficulties encountered deep in the search tree. The approach generates

solutions without exhaustive search, but the process is insensitive to optimality.

Because these methods have been explored in other AI ventures, their use was

deemphasized in PEGASUS.

Solution Lookup

In some cases, it may be feasible to retrieve a solution from a data base. The

cross-country heuristic of the previous section is an example. Another instance of

this technique occurs in INSTANTIATE: a simple problem of the form "what is

the next airplane flying from ORn to ROC leaving soon after July 14 16:001't is

answered by referring to a data base similar to the airlines guide. This

retrieval does not guarantee optimality, because no knowledge of the utility

function is involved.

We may even. be able to retrieve optimal solutions by considering all the

relevant parameters. Ideally, a strategy could be labeled with a set of conditions

under which it is optimal; the optimal strategy can be later retrieved by

examining the necessary conditions. Such conditions might take the form of

96

rules. For example, a decision rule for the monkey and bananas problem with

one box is (see Figure 2-6 to identify the strategies Aa, AP, and Ba):

if dm < 50' then (if db < 3 then Aa else AP)
else (if db < 8 - dm/tO then Aa else Ba)

Parameters: Cw, Cp, Cb, Cc, Ctf,Ctn, Ue, UFi'
Pfw, Pfc, Pnw, Pnc, Po·

The variables in the rule are dm, the distance from the monkey to the box, and

db, the distance from the box to the bananas; all other parameters of' the

problem constitute conditions under which this rule applies (e.g., costs, utility

function). The rule does not attempt to compare eating strategies to plans for

pursuing other goals. Rather, it is a convenient way to retrieve a good strategy

based on a small number of symbolic requirements and some parameters. After

retrieving the best eating strategy, its utility can be compared with that of

other plans.

Unfortunately, generating concise rules to cover a wide variety of situations 'is

not a trivial task. We can, of course, always resort to planning and searching

decision trees if a pre-computed strategy is lacking. Furthermore, the results of

each search could be stored for ready reference in the future. But a deeper

problem makes this hard: if small changes to any parameter result iIi different

strategies, the number of rules could grow unreasonably large. Alternatively, we

can use a partitioning technique such as the one described above for probability

models.

Different forms of solution, lookup can cover a wide range of capabilities. A

single proper action can be extracted from a data base, using relevant con~traints

as the keys. Alternatively an entire sequence of actions, or script, can be

retrieved.6 The script may not offer a final' solution, but rather a template for

further processing. It might require elaboration, or it might simply be an upper

bound for a plan alternative: Chapter 2 presents an instance of this technique.

I.Jocal Calculations

Various kinds of local calculations can sometimes be used to avoid the

combinatorial explosion that a search technique would experience.

Often the optimal value of a numerical parameter can be found by closed form

6Scllank--i'i'1-d--Abclson~- 1977, describe an entire framework based on scripts for
processing cognitive information,

97

calculations or by limited' search. The PROB level in PEGASUS uses such a

technique to compute the best departure time for an unscheduled first step of a

trip (e'-g., a TAXI or RENTED-CAR goiilg to an airport). PEGASUS does this by,

reevaluating the plan with a succession of departure times, using a hill-climbing

procedure to locate the departure time that maximizes utility. Although the

form of the utility function is known, this optinlization is not expressed in

closed form because the evaluation of failure probabilities is so complicated. In

any case, a variety of numerical optimization procedures (e.g., dynamic

programming) are available to generate local solutions.

LOOKAT
Cost C1

LOOKAT
Cost C2

Figure 4-6: Example of closed-form calculation of the expected utility
of a sequence of LOOKAT operators.

Another example arises from Chapte'r 2: how to determine where to look for a

box (section 2.3; Figure 2-7). We are asked to find an appropriate ordering of

LOOKAT operators that ,maximizes, utility; a, search of all possible orderings of

hundreds of (x,y) locations is out of the question. But we note that if the a

priori Pr{box at (x,y)} values are independent, we simply sort the LOOKAT(x,y)

operators by the value of Ubox,x,y+Cx,y/Pr{box at (x,y)}.

Proof: Consider two LOOKAT operators (Figure 4-6) and a

common failure outcome. We have two possible orderings: (a)

Utility Ua received from the plan LOOKATl; LOOKAT2; FAIL or

(b) Ub received from the' plan LOOKAT2; LOOKATl; FAIL. Now

Ua~Ub implies

Cl +Pl U 1 +(1-Pl)[C2+P2U2+(1-P2)UF] ~

C2+P2U2+(1-P2)[Cl +Pl U 1 +(l-Pl)UF]

98

.which, after some manipulation, comes to Ul+C1/Pl ~ U2+C2/P2.

This simple. case can be extended by induction to show that we

simply sort the operators by Ui+Ci/Pi. We can also "sort in"

alternatives besides LOOKAT's (e.g., giving up, Udb) by assuming

C=O, P=l, and theretun: just sorting based on their utility! This

cost/probability ratio is sometimes used as an ad hoc figure of

merit (Slagle, 1971 p. 99, and Garvey 1976); but as we see, it

derives very easily from simple decision-theoretic considerations.

Elaboration

Elaboration techniques transfornl crude plans. into more detailed ones, using

utility measures as a guide. PEGASUS performs most elaborations as a

consequence of its hierarchical planning discipline, which is considered in the

next section.

The monkey and bananas example, however, suggests a different· model of

elaboration: the probleln-solver has a number of plan-improving techniques it can

apply. Hypothesized improvements .are accepted if they cause the plan's utility

to rise. Following are examples of elaboration:

1. Fixing failures. Paths in the plan outline that end in failure are

expanded to recover. Often, this involves pursuing another top-level

alternative plan. In this case, an estimate of the utility of fixing up the

failure.is the current utility assessment of the top-level alternative. This

is, of course, not completely correct, because the state of the world used

to compute the top-level utility is not the same as that after a failure.

For example, in the monkey and bananas problem, failure F3 (Figure 2-6)

leaves the monkey under the bananas, and the ruins of a cardboard box

under the monkey. Later, if the search for good strategies indicates

effort should be devoted to this plan, the failure elaboration may be

improved from an estimate to an explicit plan.

2. Inserting steps. The insertion of tests was considered in Chapter 2; the

location of such insertions is governed by preconditions on the test and

state information prov~ded in the plan outline. The· elaboration process'

considers inserting only those tests that will affect the outcome of

subsequent steps, i.e~, tests that nlOdify a parameter that is used to

99

calculate the cost or outcome probabilities of a subsequent step.

Determining how to insert tests that change the basic' plan outline by

changinK the state of the world (e.g., tests that require the monkey to

make additional moves for a better view) is very hard.

3. Changing operators. The model may provide several operators that

accomplish the same operation (from the standpoint of the symbolic

model) but with different costs, or different reliabilities, etc. Thus. we

might have two operators: WALKTO and WALKTO-AVOIDING-OBSTACLES.

The choice of operator' (or sub-graph of the plan outline) is controlled by

utility appraisals.

4~ Moving operators. If a plan outline is a sequential union of several

outlines (e.g., stacking two blocks, the QA4 "buy groceries and mail a

letter" problem (Rulifson, Derksen and Waldinger, 1972), or certain

assembly problems (Taylor, 1976))~ it may be advantageous to re-order

some of the steps. 'A simple case, the grouping of vision operations, was

discussed above. In general, however, this is a very hard problem. The

decision-theory techniques provide a useful way to decide if progress' is

being made, but they do not obviate a considerable amount of. symbolic

reasoning to decide whether the plan outline remains legal.

The elaboration process has a strong parallel with trial evaluation: a plan

modification is tentatively made, the utility of the new plan is computed, and

the modification is saved if the utility rises. Thus a test will be inserted if its

"value of information" is greater than its cost because the recalculation of the

utility automatically incorporates both of these influences.

Elaboration should not be confused with a general plan-construction task. It is

a local technique, and assumes that the utility space is well behaved: elaboration

is a hill-climbing technique. It is a mechanism for improving, a plan

incrementally, and can be likened to debugging almost-correct programs (Sussman,

1973).

4.2.2 lIierarchical Planning

The organizing concept of pr~GASUS,and a source of considerable power for its

problem-solving, is the hierarchical planning, discipline. The prilne motivation for

hierarchy is to prevent ilblind" one-step-at-a-time planning that is likely to

100

explore many solution paths that are dead ends; they do not lead to solutions.

This awesome possibility should be particularly evident in the travel domain: to

mount a depth-first search in. which the initial actions are specified in great.

detail, such as "Walk from HOME to the California Street train station, leaving

at 7:10," is to disappear into a combinatorial jungle.

The key to efficient hierarchical processing is to make use of increasingly

detailed constraints as the detail of the solution alternatives increases. In

PEGASUS, we introduce the time constraints when the flexibilities of scheduling

are introduced (INSTANTIATE). We introduce the stress of -time model as soon

as alternative transportation modes are being considered.

Although hierarchical planning using symbolic techniques alone is quite powerful,

the additional information provided by the utility function ·adds considerable

power to the method. A purely symbolic approach depends on each level to

select a good solution according to criteria available to it, and then to hope that

the plan will survive scrutiny at more detailed levels. The utility function

represents one criterion that will be applied consistently at all levels of detail,

and thus directs high-level planning toward plans that are likely to receive

favorable treatment when analyzed in detail.

We shall see that the utility function has additional uses in a hierarchical

organization: allocating planning resources.

Hi erarchical Constrain ts

A solution at one level of detail constrains pursuit of solutions at the next

more detailed level in several ways:

1. Symbolic constraint. A solution is, in effect, a symbolic template for a

more detailed solution. TOP reports AIR*, SP searches the AIR graph.

SP reports a particular route; INSTANTIATE finds pertinent transportation

along the route.

2. Utility constraint. A solution _ can also act as a utility template.

When a lower level works on a task and needs to bound the utility

contributions of a part of the itinerary not yet subjected to the additional

detail, the resource estilnates generated at the previous level of detail can

be used.

101

An interesting relationship between the levels is revealed in the correspondence

between the answer from one level and the search in the next. For example,

SP useS the "idealized conveyance" to bound unplanned parts of partial paths.

This is precisely the same analysis used to solve the TOP level. Similarly,

INSTANTIATE uses the route parameters calculated by SP as a bound on

unplanned parts of the instantiated itinerary. Thus the criteria used to evaluate

a plan at one level are the search guides, the heuristic, at the next level.

As plans are propagated into levels of increasing detail, conflicts with the

original, top-level decisions may arise. In a purely symbolic setting, the detailed

analysis nluy impose constraints that violate constraints at higher levels. This

simply means that the abstract solution did not lead to a valid detailed solution.

The planner can backtrack (as in GPS. (see Newell and Simon, 1971) or

ABSTRIPS (Sacerdoti, 1974)) or can attempt to repair the derivation tree of

plans (as in NOAH (Sacerdoti, 1975)).

The constraints added by ~EGASUS levels are rarely of this sort, but instead

represent gradual lessening of the utility calculated at higher levels. Thus as

constraints are added, a plan may cease to appear as attractive a solution as it

once did, but it is not usually demonstrated to be simply inlpossible.

However, it occasionally happens that the choice of best solution at one level

may present the next or subsequent levels wj.th a problem that has no

reasonable solution. For example, the crude reasoning in TOP may suggest

taking a train from home to work; the SP level will discover that no train

transportation goes near these places. This situation is detected when SP finds

that the ASSUMEd ground transportation to get to the goal is preferable to

taking a train headed toward the goal. This means that some other planning

task elsewhere in PEGASUS dominates all plans using a train--in particular,

there is somewhere a plan worked out in some detail that specifies the very

ground transportation shown to dominate. The inferior plan is marked as

"dominated" so that further planning will not be attempted. If the utility

function or some other piece of the model is altered, the mark is removed; "the

changes nlay have caused the dOIninance to disappear.7

71;-hc-I;Y~~--belie~~d--t-o-dominate may also encounter a similar domination when it
is considered in detail, and so forth. If this happens, the original domination
"proof" is of course no longer v<:, lid. For this reason, the domination marks are
used only when doing depth-first planning, in order to assure that the depth
first search will generate a feasible plan.

102

Ordering of the Hierarchical Levels

Why are the levels ordered as they are? What are the criteria for ordering?

In some sense. any order would do,· for all details and constraints would

eventually be considered. The key to making the program efficient, however, is

to perform first the planning that most firmly constrains· further processing.

The order of processing in PEGASUS was chosen by arguments based on this

principle: "Instantiation will be more tightly constrained when a route .has

already been chosen," and so forth. Unfortunately, the best order may vary from

problem to problem. If, for example, the hard problem is to find a way to the

airport, then delaying th~ FILLIN processing is unattractive. In some cases,

exceptional information (e.g., that ORD airport is closed due to snow) is a strong

indication of the sort of analysis that should be used to constrain the search.

Because the U* measure is used to constrain searches from exploring clearly

inferior areas, it is a key measure of how effectively the problem is being

constrained as it is processed. Consequently, the best processing strategy is one

that causes the U* measure to decrease as rapidly as possible.

The ingredients of a good high-level technique are therefore the combination of

low cOInputation cost and quick discovery of flaws. Reasoning based on. both of

these properties led to doing probability-related processing last (PROB level in

. PEGASUS). More powerful methods are available for searching deterministic

graphs than decision trees (Hart~ 1969), and can therefore be applied first.8 Also,

it can be argued that probability will. have a small effect on most plans, as

travel is fairly reliable--the processing at higher levels has been induced to find

reasonable plans, and not to generate proposals that have low probabil~ty of

success. This design requires that· only the PROB level need deal with· decision

trees; all other levels deal with sequential plans.

Although the PEGASUS fixed ordering works satisfactorily in most cases, it is

appallingly inefficient in certain situations. Suppose we know that the 'weather

in Chicago is poor. PEGASUS's upper bound calculations do not use this

knowledge; only when expectations arc calculated in PROB is the difficulty

revealed. All planning tasks in progress that have not yet been analyzed by

PROB will continue to attract planning attention because they have high upper

8(fne-must-be-so~e-;;iiat careful about this argument. The deterministic graph
we are searching is an upper bound on tlie probabilistic graph. Consequently,
although it can be searched efficiently, it yields only limited information about
the true (probabilistic) graph.

103

bounds. All sorts of plans involving Chicago may tumble down to PROB for

processing, 'only to have their prospects diminish. In such cases, it may be

possible to calculate an adjustment to the resource assignments of all high-level.

plans than anticipate using Chicago that will not exceed the change in resource

assignment that such plans would experience in the PROB level. This is an

example of how a piece of exceptional information thwarts the pre-established

hierarchy, but can be included in the more abstract levels simply because much

of its eff act can be expressed numerically.

A pre-esta blished hierarchy is certainly not necessary: we could mass all planning

tasks in a single heap, and try to apply to the task with highest current utility

precisely the right planning step. This step would deftly identify the proper

constraint argument to apply in order to further lessen the upper bound on the

utility of the plan or find the proper expansion of the plan \vith more detail.

The most effective argument would vary from problem to problem, and would of

course change as plans become more· fully analyzed. The difficulty with this

approach, however, is to design representations for plans that indeed make the

application of constraints in arbitrary orders practical.

4.3 Control of Planning

We have repeatedly cla.imed that the utility information can be used to control

planning effort. The simplest forms of control are exactly analogous to the

control, over a search exerted by a numerical evaluation function:

Breadth-first (uniform) planning: Find the task in the labyrinth of levels

that reports the greatest upper' bound on utility.

this task until its bound is no longer the highest.

Apply planning effort to

Rep~at until the problem

with the highest utility is one that has undergone all levels of processing.

This method reveals the optimal solution.

The uniform planning approach demonstrates the main idea of the planning

algorithm: the job of a planning routine is to find constraints on a plan that

cause its utility bound to fall sharply and consequently to inhibit further

planning effort on this plan. Uniform planning is a search process: we are

looking for the plan of highest utility, and are improving the utility estimate

as we go along. This perspective is most readily seen if we arrange all .'

problenls in a single list, sorted by plan upper bounds. These bounds

104

calculations have varying, precislons: plans in which only crude analysis· has

been done have correspondingly crude. utility estimates--only the first few

bits· of the bound value are significant. When· planning effort is devoted to

a problem, 'a more precise utility estimate is developed; and the altered plan

is re-sorted into the list. This is similar to a digital search for the largest

value in which only certain digits of the keys need to be examined (Knuth,

1973, section 6.3). In our case, the digits are not generated unless and until

they are needed by the search.

Depth-first planning: When the first solution emerges from a level, planning

at that level is suspended. The solution spawns a new problem at a new

level, adding more detail. Effort is now devoted to the new level. Repeat

until a plan is processed at the finest .level of detail. If, during the search,

a case of utility dominance (described above) is encountered, the problem is

marked as dominated, and a new solution is sought from the next higher

level. This method does not guarantee finding the optimal plan.

Depth-first planning is powerful because each level of analysis can propose

the "best" solution it is capable of devising. If, by good fortune, the "best"

solution proposed by a level remains the absolutely best (in the utility sense)

solution after analysis by more detailed levels, depth-first planning would be

infallible. This approach is increasingly practiced in AI: "smart" analysis is

used to develop good solutions that will not· cause a depth-first search of

alternatives to backtrack. Such a principle may, however, devote more

computing resources to deriving the "best" answer to a level than are really

worthwhile.

Both of these planning techniques seem to call for solution methods within the

hierarchical levels that return the "best" solution first. This is an unnecessary

restriction: levels can have the freedom to use other criteria for returning

solutions; A level might attempt to return first a solution that it expects will

be globally best. For example, if ORD is known to be closed, the SP level

might report a route SJC-DAL-CMH rather ths;ln SJC-ORD-CMH even though

SJC-ORD-CMH has a higher utilIty measured by SP criteria. Or a level might

try to report 'a first solution that requires little computin~--the SP heuristics.

for cross-country flights are an example of this strategy. In either case because

the solution is not the "best," there remain solutions that are locally better (i.e.,

according to the evaluation at this level) and the emergence of this solution

u
8

A •
•

Planning resources ~

Figure 4-7: Profile of a typical planning process. Early solutions (A
and 8) are heuristic solutions generated with little processing, and do
not cause the upper bound· to fall. Later answers are emitted in the
presence of a falling upper bound.

105

does not cause the upper bound for th~ entire task to fall. This property is

shown schematically in Figure 4-7. This sort of behavior is advantageous for

depth-first planning--the whole idea is to promote a plan that has global

promise.

The uniform planning approach is still valid in this situation, although 'it cannot

take advantage of these early solutions. The reason is that the problem with

largest upper bound gets 'resources; the task shown in Figure 4-7 will' therefore

be given resources until solution C emerges and is passed on to a lower level.

Solution A (or B) will be ignored until upper bounds at all levels have fallen

below the utility recorded for A (or B).

The relaxation of the "best-first" requirement shows how heuristic techniques can

be applied in our framework. Solutions A and B might have been generated by

heuristics--they require relatively little computation to derive, but do not reduce

the upper bound. These inexpensive solutions are available for, processing at

lower levels, but the undiminished upper bound of the original problem will

invite more processing to be applied to the task should the heuristic solutions

prove poor.

Clearly, neither the uniform approach nor the depth-first approach is adequate

by itself: the depth-first approach cannot guarantee a good plan; the uniform

approach uses too much planning. tirne. What we need is a way to pursue a

planning strategy in termedia te between these extremes: analyzing the "'cost of

planning" reveals a solution.

106

4.3.1 The Cost of Planning'

Planning is not free. If resources cOllsumed in problem-solving were of no

concern, we could build a perfect chess-playing program: it could examine all

possible future games derivable from a given board position (- 10160 nodes) and

choose a best move. Both PEGASUS and the Monkey and Bananas example

could be formulated as dynamic programming problems; the exploration of the

huge state space would reveal the optimal solution.

But these large problems are not solved with exhaustive techniques: we implicitly

acknowledge that pIa'nning is not free, and formulate solution techniques that

attenuate the processing required.

A consequence of including costs of planning in the derivation of the, "optimal"

solution is that the performance of the problem-solver is included in the

assessment of optimality. In order to differentiate between optimal plans and

optimal planning, we shall introduce two terms:

• S-optimal. The §olution itself is optimal, as defined by the various utility

and probability models.

• P-optimal. The Elanning is optimal, in the sense that utility of the plan

and the planning together is optimal.

The economics of planning are just as important as the economics of the

solution itself. Thus, a P-optimal solution may be a barely adequate solution to

'the problem,' provided r~latively few planning resources are. consumed. Or the

solution may be itself S-optimal, even though more planning resources were used.

There are, of course, applications in which either the cost of planning or the

cost of the plan dominates the total. If· the cost of planning is large, as

exemplified by chess-playing programs, solutions of widely varying utility may all

have nearly identical total ~osts. In the extreme, planning techniques need not

search for the best solut~on, but must be efficient. If the cost of executing the

plan is large, as exemplified by optimization problems on a huge scale (how to

refine $100,000,000 of oil), we need techniques that find the S-optimunl.

Notions of the cost of planning have application in problem-solving at many,'

levels. The discussion above centers on an external description of the entire

107

problem-solving ,process: what, planning resources are invested, and what sorts of

solutions result?' But this same question 'arises repeatedly in any search: if the

search proceeds along a particular path, how much· processing will be required to

find a solution, and how good will that solution be? The second question is

answered by the utility model of the problem, as explained in earlier sections.

The first question is the province of a cost-of-planning model.

We can distinguish two sorts of cost-of-planning models: a recording model and

a predictive model. The" recording model simply measures expenditure of

resources as planning actually progresses, and charges the appropriate plan with

the expenditure. A predictive model must compute, ori the basis of a partially

complete plan and possibly additional information (e.g., a data base that

characterizes problem-solving performance .in the past), the cost of planning

required to complete the plan.

PEGASUS incorporates the cost of planning in its control of the hierarchical

planning tasks. The next ~hree sections describe two con trol models and the

PEGASUS implementation that uses both models.

The Search Model

The direction of a problem-solver is controlled, jointly by the utility of the

solution approach and the utility of the planning. Let us couch this control in

the form of an optimal search, algorithm. We shall need some notation: consider

a plan p that is not yet completely finished. First, we consider resources

already assigned to p:

* r g Upper bound resource assignment to p given current detail of

processing. The subscript g is intended to evoke the function

g(n) in the discussion of A * (section 2.1.4).

rpg Planning resources already consumed to generate p. A nasty

problem arises in computing this number. In any search, the

developmen t of solutions shares .a good deal of the processing.

Properly assessing' each solution for the resources it consumed

. may require re-assessment when more solutions arise.

Second, we consider upper bound resource assignments to the effects of further

processing on p:

108

r*h Upper bound resource assignment on the effects that will arise

as p is refined to become a complete plan. That is, if r is the .

. resource assignment of the complete plan, derived .. from p, then

U(r) <U(r* g + r*w.

* r ph Upper bound resource assignment for processing required to

finish the planning of p. Estimating this quantity requires a

predictive cost-of-planning model.

Using these estimates, we c~ntrol planning with an A * algorithm using the

evaluation function U(r* g + r* pg + r*h + r* ph). By contrast, what we have

called "breadth-first" planning is .dri.ven by U(r* g). In both cases, planning

terminates when the plan selected to work on is already complete to the finest

level of detail. .

If A * is to be admissible, i.e., if it i~ to find the optimal solution, it is

essential that the second. two resource assignments be upper bounds. If we

disregard this requirement, we can include more heuristic information that

increases the selectivity of the search, at the expense of missing the P-optim~l

solution.

The Cutoff Model

Depth-first planning suggests a rather different use of the cost of planning: !the
!

cutoff model (first mentioned in section. 2.4). Consider the picture of a complete

problem-solver shown in Figu.re 4-8. A plan Pi is presented to the "black box"

for processing. The box consumes resources: at time t>O, it has consumed .rpCt).

The box keeps an upper bound resource assignment for the task given it in

ruCt). At integer' times, a plan "solution" emerges: PoCl) emerges at t=l, Po(2)

at t=2, etc. Let R be a resource assignment function that characterizes as much

detail of plans as the problem-solver is capable. Then we can . calculate the

utilities of the emerging solutions: UCR(Po(j))). These plans do not necessarily

emerge in order of decreasing utility.

Let us suppose that we have, by some mechanisln, determined to allocate

planning resources to this problem-solver. When should we stop· allocating

resources? Clearly, if

U(ru(t)) < maXj::l,2, ... t U(R(poO))) .

•• Pi -
Input plan

PLANNER ~ po(1)

~ po(2)

Upper bound = ru(t) ~ po(3)

.4~

r (t)
p

Planning resources

Figure 4-8: A model of a single level of a hierarchical planning
process. It is presented with an input plan (Pi), and some planning
resources that total rp(t) at time t. Answers Po(i) are generated.

109

the problem-solver has already generated the best solution according to its

criteria, and can stop. We can also write down the condition for cutting off

planning effort at time t:

U(ru(t) + rp(t) - rp(j)) ~ U(R(Po(j)))

The right-hand side is the utility of executing the plan that was generated at

time j. The left-hand side represents the current upper-bound, diminished by

the planning resources consumed since time j. This inequality, which subsumes

the earlier one, curtails planning when more resources have been expended than

the difference between the upper bound and the utility of the. plan generated.

There are several such equations, one for each solution already generated. If the

utility function is K-linear, we may write the condition for cutoff:

U(ru(t) + rp(t)) ~ maxi=l,2, ... LtJ U(R(Po(i)) + rp(i))

Implementing this cutoff requires only a recording cost-of-planning model.

However, if an anticipating cost-or-planning model may be able to determine at

time t that rp(Lt+lJ) is so large (i.e., that so many resources will be required

to generate the next solution) that the inequality can be demonstrated to hold

before actually expending the resources.

Note that this method continues to work during execution of a plan, provided

we assume that all planning tasks are "advanced" and updated to reflect the

new situation. If execution has gone awry, the updates will lower SUbstantially

the utilities of existing plans, thus allowing execution of some planning tasks

previously cutoff. This is a consistent way that re-planning is accomplished.

110

Now let us a~k. whether any resources should be devoted to this problem-solver

at all, even before Po(l) is generated. In order to answer this question, we

assume the existence of a currently "best" plan- Pb. already available--if no

planning has been done at all. this is simply the "do nothing" plan. ·with an

appropriate low utility. . What information do we have?

* r ph

We know the resource assignment for Pi, the crude plan

presented to our problem-solver. U(R(Pi)) is' an upper bound

on max:(U(R(po(j))) if we were to actually generate the po(j).

Lower bound on the amount of planning resources known to be

needed by this problem-solver.. The anticipating cost-of

planning model is used to 'compute this, and it can use any

relevant information about Pi. Of course, the computation

itself should consume much less resources than r* ph.

r*h Lower bound on the growth of plan resources as a result of

constraints imposed by. this problem-solver.

. .

The problem-solver should not be used at all if

Here again, we could disregard the upper bounds requirement, and obtain greater

selectivity (i.e., fewer competing problem-solvers will allow resources to be

devoted to them) at the expense of admissibility.

These two cutoff criteria can be applied recursively to a problem-solving

framework such as used in PEGASUS (see Figure 4-9). Note that the recursion

is from the right--i.e., the outputs of all nested models are the same, not the

inputs. Consequently, the 'Po are always completed plans, and are evaluated with

R, the most detailed resource assignment available in the problem-solver. This·

is an essential feature: if, in level 1,. we use a corresponding resource assignment

RI in the cutoff equations (Figure 4-10), the equations will usually stop the

planner too early. If this level generates answers best-first (by its own

evaluation, RI), only one answer will be generated. because thereafter the upper

bound ru(t) will represent plans strictly poorer than the first· answer: U(ru(t)) <.
U(R(Po(l))) for all t>1. This error is sometimes called "the one-step planning

pitfall:" local optima, viewed under a subset of all problem constraints. do not

always turn out to be global solutions as well.

. Level 0 'Level 1 Level 2

Figure· 4-9: Recursive application of the cutoff criterion to a
hierarchical planning system. The thinnest lines show boundaries
around systems of the form of Figure 4-8. Note that the recursion is
from the right, i.e., the Po answers must have had all possible detailed
processing applied to them.

An implementation

111

PEGASUS makes use of both models. The search model is helpful in deciding

which of the many competing tasks should get resources. A siInpIified form of

the cutoff model, applied only to PEGASUS as a whole, is used to curtail

planning.

In PEGASUS, the control of the various tasks assumes r*h=O. This is largely

because we express the upper bound on more detailed planning as carefully as'

possible in the upper bound resource assignment for r* g. For r* ph~ we measure

* the best planning performance of each level, and compute r ph as. the sum of

the minimum requirem'ents for all levels to which p has not yet been subjected.

However, rpg is assulned to be zero, because of the difficulty in computing it

properly. rrhis is a serious fault that must be addressed in future systems.

By way of example, consider the following table summarizing the performance of

112

Level 0 Level 1 Level 2

Figure 4-10: Incorrect application of the cutoff criterion. The further
drop in utility that level 2 can cause may have the effect of allowing
more planning within the level 1 process identified.

PEGASUS on a typical run, using three different planning strategies: uniform,

depth-first, and CofP (planning controlled by the cost-of-planning techniques):

Technique

Uniform
CofP
CofP
CofP
Depth First

Number'
of

solutions

16
4
1
2
1

Utility
of best
solution

649
649
633
633
633

Planni.ng Planning
time cost
(sec) (utility units/sec)

672 0
242 -.3
101 -1

59 -3
42

For this problem, uniform planning found the S-optimum solution, but so did P- "

optimal planning using ,all but the highest costs of computer time.

4.4 Summary

Although this chapter has attempted to review many of the aspects of our

problem-solving formulation, two points stand out:

• Heuristic Inethods have a place in problem-solvers that find optimal

solutions. Maintaining upper bounds on all, solution paths by uniform

113

application of resource assignments and the utility function permits the

value of heuristic solutions to be compared with the potential of more

exhaustive techniques. As a consequence, the heuristic solution will be

used when it appears good, but may be supplanted with a more exhaustive

technique when an upper bound indicates the solution is poor.

• The cost of planning rnust be viewed as a resource requirement, just as

are the resources required to execute a plan. A cost of planning model

can be used to help control planning by discoun~ing the ut'nity of a

partial plan by the amount of resources required to complete the planning.

Consequently, an exhaustive search may, simply because it is

computationally expensive, be dominated "by a" heuristic solution.

Chapter 5

Decision Theory and Current AI Work

115

This chapter relates the work presented in this dissertation to other work in AI.

There are three primary relations: What other work or problems motivated this

study? What ~echniques have been borrowed from previous work? And what

contributions can this work make to present or future endeavors?

5.1 The Origin of This Study

The motivation for an exploration of ways to find good solutions to symbolic

problems and to control allocation of planning resources emerged from

shortcomings of a large AI system, an "Instant Insanity" puzzle solver (Feldman,

et 81, 1971). This system, constructed at the Stanford Artificial Intelligence

Project in 1970, was desiglled to l?uild, using a computer-controlled manipulator,

a tower of four blocks that was a correct solution to the puzzle (each "side" of

the tower must present an example of each of four colors). The blocks were

initially scattered on a work table; the computer was expected to derive position

and color information from images of the table measured by a vidicon equipped

with color filters.

The final system was extremely large, consisting of 8 time-sharing jobs th~t

communicated through shared memory and interprocess communication--altogether

more than 300K words of program. The system consisted of a monitor job and

seven "specialist" jobs:

• Control and Planning

• TV Camera Mod~l

• Edge Follower (image gathering and analysis)

• Simple Body Recognizer

• Color Finder

• Manipulator trajectory calculator

. Manipulator servo

Each of these programs save the first was the pride of a different graduate

student, eager to see his program exploited fully. But the size and complexity

of the system immediately generated questions that required comprehensive

strategic control of the whole process. For example: .

116.

How much effort 'should be devoted to analyzing a scene for edges?

When can the analysis stop? The answers depend on the quality of

information needed 'by the body finder, and how it fares in its task.

How is information about the arm tt:ajectory to be used properly? Some

tasks given to the trajectory planner require an intermediate step, to

deposit and re-grasp the block, a rather expensive and somewhat unreliable

operation. If a particular trajectory request requires such an intermediate

step, is there an alternative that is less costly? Perhaps the blocks can

be stacked in another order to avoid the extra step. Or perhaps there is

an "extra" block on the table whose use would avoid the intermediate

step. But maybe it is obscured, and will be hard to recognize with the

body-finder.

Clearly, what is needed is a method for assessing the relative advantages of

different sequences of actions to build the tower. These sequences need to

contain primitives that correspond to the controllable aspects of the specialists,

such as which solution methods to try. The controller needs to monitor the

execution of these sequences because actual execution costs and outcomes differ

from estimates used during planning.

These problems were barely new at the time the Instant Insanity demonstration

was being fashioned. Indeed, the problem of overall control was rapidly ,being

identified as an area of weakness in robot problem-solvers' at the time (Munson,

1971; Fikes, Hart and Nilsson, 1972;' Winston, 1972). These issues stimulated

this work and also influenced subsequent Stanford efforts (Bolles, 1976; Taylor,

1976).

5.2 Planning and Problem-Solving

PEGASUS is related in diverse ways to previous efforts in problem-solving, and

offers a new perspective in some areas. This section examines briefly these

relationships by exploring a few selected facets of problem-solving. More

complete surveys of modern problem-solving appear in Bobrow (1975) and Fikes

(1976).

Mechanisms for exploring alternatives. A key issue throughout the history of

problem-solving has been the manner in which alternative solution possibilities

are generated and pursued. For example, the renowned "hypothesize and test"

117

paradigm is one structure for sifting through alternatives. We have seen in

both case studies involving decision-theoretic notions a requirement that we

explore enough alternative solutions (or partial solutions) to verify that we are

pursuing a good one. Because we desire a good solution, it is reasonable to

generate more alternatives than if we seek only a feasible solution.

A classical method for exploring alternatives is heuristic search (Newell and

Simon, 1971, offer an excellent formulation of these techniques). The

representation for an alternative is a node in a search tree. A node can be

expanded into one or more successor nodes that can in turn be considered. For

example, a noae of a gam~ tree is usually a state of the game, such as a board

position, and the successors are tha collection of legal moves from that position.

A resolution theorem-prover might consider a node to be a clause; successors are

generated by resolving two -existing clauses. These progranls struggle to find the

best node to expand next to lead to a quick solution, but are usually confronted

with large lists of unexpanded nodes among which to choose. The expansion

process is very local: virtually no information about the goal is used in the

expansion itself.

Frustrations with node-searching techniques led to a competing paradigm for

problenl-solving, using "procedural embedding" of knowledge (MicroPlanner:

Sussman, Winograd and Charniak, 1970; Conniver: McDermott and Sussman, 1972).

The basic idea is to use knowledge about kinds of goals and classes of solutions,

represented as fragments of computer programs, to constrain the exploration of
(

state-space. A program, in. principle embodying arbitrary computation, can be

used to choose among the various successor operators applicable in a given state.

Once a choice is made, the consequences are typically explored in a depth-first

fashion, counting on the excellence of the choice. If, as the solution is explored,

a symbolic constraint cannot be satisfied, control is caused to backtrack to one

of the choices, and a new alternative is tried. It was soon realized that as

much care and computation wanted to be devoted to backtrack choices as to

(forward) solution choices (Sussman and McDermott, 1972).

This tcehnique makes it hard to apply uniform problem-solving processes, such as

utility evaluation. The decision processes are embedded in computer routines,

largely inaccessible to external inquiry. More importantly, the decision

consequences are disguised in bindings in a control stack that is an inconvenient

representation for the current plan.

The poor accessibility of plan knowledge in part motivated a softening of the

procedural embedding, shown in the NOAH system (Sacerdoti, 1975)' and in KRL'

(Bobrow and Winograd, 1977). These systems retain the power of. careful. choice

by using programs as the representation for considerable domain knowledge, but

rely on separate, accessible representations for plan knowledge: the procedural net

in NOAH, the description in KRL. The division also enables other processing, in

addition to the application of certain uniform problem-solving procedures. In

NOAH, for example, it permits plan steps to be re-ordered to construct linear

plans from "non-linear" symbolic constraints; by contrast, reordering a call-stack

representation of. a plan is unthinkable.

Despite withdrawal from control' structures as plan representations,' current

problem-solving systems are not intended to consider a large number of

alternatives. Rather, they assume that the specificity of heuristics of choice will

be matched to the size of the problem space in such a way that the problem

solving system can be expected to explore twos, not hundreds, of partial

solutions. That choice algorithms can be made to improve as fast as the

problem space expands, both by formalizing problems with greater detail and by

toughening solution criteria to include objectives such as optimality, is extremely

questionable.

The most recent effort in AI languages (KRL) emphasizes flexibility, so that

systems could perhaps be tailored to explore a variable number of alternatives.

In KRL, the designer is provided with a framework in which problems of

representation. control and processing can be resolved· in a variety of ways. The

handling of alternatives must be just as flexible as the representation of plan or

domain knowledge: the extent of exploration of alternatives is decided by the

designer of the particular problem solution.

Processes in planning. It would seem that an obvious way to provide flexibility

for the handling of alternatives is to use the techniques of multiprogramming:

each alternative pursuit is represented as a process that owns state information

relevant to its task and is allocated computing resources in some way. We can

examine an AI problem-solving system for opportunities to split computation into

parallel or quasi-parallel tasks, perhaps to take advantage of several processors.

Such an approach has seen some use in AI (Fennel, 1975; Taylor 1976).

However, experimentation with proc~sses ha~ been hampered by the poor support

provided by most programming languages. Only recently has there been progress

119

in this area (Feldman, et a1, 1972; McDermott and Sussman, 1972; Bobrow and

Wegbreit, , 1973).

The real payoff from multiprogramming would seem to appear when the process

structure is derived from the need to explore various alternative solution

possibilities. This is the approach used in PEGASUS, GUS (Bobrow, et aL 1977),

Hearsay II (Lesser, et aL 1975), and SNIFFER (Fikes and Hendrix, 1977). But a

conventional process approach may bundle up too much of its state in a control

stack, and make it all but impossible to pass into that context various global

changes that must affect the processing.

A tool to attack this problem can be found in the class/instance model derived

from SIMULA and Smalltalk (Goldberg and Kay, 1976), and evidenced in a crude

form in PEGASUS. The idea is to fix on the "instance data," the data structure

that must be owned by a particular process. Other data is not of such vital

concern: the class itself is usual~y defined as a collection of procedures;

individual activations of an instance indeed require a control and binding context

for local variables, but it is fleeting and can be destroyed aft.er, each operation

on the instance is complete. Thus the crucial item is the instance data

structure, which can be viewed during instance processing as a collection of

bindings. PEGASUS uses this idea in a primitive form, without proper

supporting language primitives. This style will be more ably supported in Plits

(Feldman, 1976).

To proper access to processes must be added proper control and allocation of

resources. Generally, the few uses of process structures in AI have scheduled

processes with the objective of achieving desirable performance from the problem

solver. Ad hoc priority schemes that have little or no relation to the problem

domain are used to drive the scheduler. At most, the costs of planning are

loosely incorporated into the developer's notion of desirable performance.'

Generally, the uses of numerical models in problem-solving have atrophied as the

flexibility of symbolic techniques has increased.

Numerical guides to problem-solving. Numerical guides to problem-solving are as

old as AI itself; indeed AI was born of a split with the numerically-oriented

worlds of optimization and "signal processors." The uses of numerical measures in

AI can usefully be divided into two classes:
......

120

Objectivity., The objective of the problem-solver is stated in part

numerically, and depends on a numerical model of the domain. Examples

are:' to solve a puzzle in the minimum number of moves or' to plan an

optimum travel itinerary, based on a model of the traveler's utility.

• Selectivity. A numerical method of some form is used to steer problem

solving in a direction where solutions are thought to lie. Numerical

controls are attractive for several reasons:

• The numerical function provides a convenient way to aggregate

different sorts of heuristic information, to "weight" information, etc.

• The tractability of simple mathematical functions (e.g., polynomials)

often suggests techniques. For example, differentiation might be used

in a hill-climbing procedure. 1

• Finally, of course, search techniques are available that use numerical

information fully.' A numerical score allows the "best" node of a

search tree to be expanded, or the "best" problem-solving pro~ess to

be executed.

Numerical objective functions are not in wide use in problem-solving, although

they are attractive in signal-rich applications (e.g., speech and vision). Indeed,

one of the aims of this work is to argue that some problem-solving objectives

are best stated numerically, and that use of numerical objectives should be

encouraged. As we have seen, even if "heuristic" problem-solving techniques are

used, a numerical objective function helps determine whether an acceptable

solution has been found, or whether additional processing is warranted.

By contrast, numerical fun,ctions to provide selectivity have been, and continue

to be, widely used in AI (various books provide ample surveys: Nilsson, 1971;

Newell and Simon, 1971; Slagle, 1971). A selectivity function is used to imprint

a topography onto the solution space that is believed (by the designer of the

function) to elevate solution locations so that. they may be found by an

1Unfortu~ateiY,-:-the'i-e--is a converse to this advantage. The reverse problem is
enticing: what results will a particular neat mathematical function have on a
problem-solver? Samuel, for instance, tried briefly an evaluation function for
playing checkers that involved the first and higher moments of the white and
black pieces about various axes on the board. The results were predictably
disappointing: the abstractions of mechanics and of c;heckers arc not likely to
have much overlap (Samuel, 1967).

121

altitude-sensitive search. But such a design may emphasize selectivity rather
\ .

than precision, and may render a numerically-controlled search incomplete: an

erroneously low. upper bound on the value of a partial path can irremediably

prevent further exploration of that path. Consequently, the designer worries

about the magnitude of the error (Pohl, 1973). A common hedge against error

in a game-playing evaluation function is to search ahead several moves, and then

"back up" the scores: the (static) score of a particular next move is thereby

buttressed by a small amount of searching (Slagle, 1971, presents many

variations on this theme). Distressingly little work has been done to determine

experimentally the precision of a heuristic or' evaluation function, although this

is feasible only when a large number of points in the space can be examined

and evaluated. There are exceptioD;s: Paxton (1977) has explored the performance

of various speech-processing techniques over a sample of 11 input utterances.

Samuel (1967) used a learning scheme that is at heart an error detector that

provides a feedback signal to adjust the evaluation polynomial.

Hierarchies. 2 Hierarchical representations are one method of organizing the

application of constraints to the solution space, shrinking it until no more

constraints remain, and (one can hope!) leaving a non-empty portion of the

space: the solution. By contrast, a single search makes tentative explorations of

the solution space in different directions, evaluates them in the light of all

constraints, and pursues paths according to the results of the evaluation. Early

problem-solvers (e.g., STRIPS in Fikes and Nilsson, 1971) used this second

approach.

Hierarchies for problem-solving developed in an attempt to reap more substantial

search reduction by using constraints cleverly. The first application of this idea

is found in GPS, and is called "planning."3 For example, as an aid to proving

theorems in propositional calculus, solutions are first sought to a more abstract

problem that retains only certain aspects of t.he real problem (differences in

connectives, signs and order of symbols are ignored). This solution limits the

choice of operators. to apply in the search for a solution in the original space.

2Thi;-section--uses-the word "hierarchy" in a loose way to mean a succession of
increasingly detailed abstract representations of a problem. The sequence need
not represent a strict containment tree or domination of detailed levels by more
abstract levels. I have no desire to take up the hierarchy/heterarchy debate.

3GPS thrust a technical definition upon this abstract noun. The emergence of
robot problem-solving systems inevitably caused the term to be used in a looser
sense to describe the generation of action sequences. .

122

If no solution results, a different solution to the abstract problem is sought, and

the process repeated (Newell and Simon, 1971, p. 428).

The next work that strongly evokes hierarchies is the ABSTRIPS problem-solver

(Sacerdoti, 1974). This technique, born of the quasi-formal theorem-proving in

STRIPS, seeks solutions first to simplified for1;D.s of the problem and uses these

to guide a means-end analysis solution to the original problem. The simpler

problems are constructed by dropping many of the antecedent conditions that

must be satisfied in order that an operator may be applied. When a solution to

the simpler problem is found, some of the dropped constraints are restored, and

a solution to the more constrained problem is sought. constrained to visit the

same solution-space points as the simple solution. ABSTRIPS uses a clever, but

restricted, method to construct the abstract problems: 'why shou~d the abstract

problem definitions be so closely related to the detailed ones? (See Amarel, 1968,

for a beautiful description of alternative non-intuitive abstractions of the

missionary and cannibals problem.) Additionally, ABSTRIPS borrowed from STRIPS

the limitations of an inaccessible planning control structure.

Sacerdoti remedied both of these difficulties in NOAH (Sacerdoti, 1975)' The

abstract versions of a problem are "programmed up" in a language called SOUP,

similar in many ways to other AI languages. Rather than directly executing all

SOUP code, however, the system partly executes code and partly examines, in a

global fashion, the interactions among the constraints of the several GOALS

attempted in ·the SOUP code. This analysis often establishes constraints on the

order of application of the operators--all this is without intervention by the

SOUP code. When the· problem is satisfactorily "solved" at' one level of detail,

NOAH expands the steps of the plan in more detail by invoking SOUP code

specified for each step. Thus, the selectivity in choosing planning paths is much

the same as, say, MicroPlanner, but the control is entirely different: Sacerdoti

saw that a breadth-first approach permits many problems of global constraint to

be resolved before detailed analysis is attempted.

Execution monitoring. ·The need for execution monitoring arises because the

states of the world induced during execution of a plan may differ from the

states hypothesized during planning, consequently causing further execution to

run amok. Generally, execution monitoring is accomplished by endowing the

computer system with a complete world model, and by updating that model after

every action is performed. Then the actual state of the world, as reflected in

.'

123

the model, can be compared with the state anticipated by the planning system.

Various kinds of processing can take care of· differences between reality and

anticipation: to detect failures ·and replan. to recover; or to detect surprises that

unexpectedly ease the problem solution~

The most renowned example of execution monitoring is the STRIPS PLANEX

system (Fikes and Nilsson, 1971), which uses a representation of the plan called

a "triangle table." The table records, for each action in the plan, a syrqbolic

"kernel" that is compared with the world model to decide which step' to execute

next. If all goes "according to plan," these comparisons result in a simple

sequential execution of the planned steps. If something goes seriously awry, no

kernel will be satisfied, and replanning is indicated.

Hayes, in a travel planning program, also makes use of a perfect world model to

invoke appropriate replanning when something is wrong (Hayes, 1975). The

replanning effort is limited by redoing only those sections of a plan that have

become invalid. The idea, is to keep a data structure that records decisions

made during. the planning _ process, together with their dependency on other

decisions and their relation to planning subgoals. When execution of a subgoal

fails, it is therefore possible to identify and remove decisions that are

inappropriate to the new situation, and to eliminate from the plan those steps

that depend on the invalidated decisions. In a rather different way, this same

idea is used in PEGASUS: when new information is available, replanning is

limited to those subplans that are directly affected by the information. A

dependency structure such as used by Hayes is not kept: it would be massively

cumbersome in PEGASUS--consider the dependency of decisions on the numerical

values in the utility function!4

NOAH begins to relax the requirement for a perfect world model, updated after

every step. If a particular action fails, NOAH probes around for the discrepancy

in the world model, and replans, often by patching an existing plan, using

domain semantics (SOUP code) tailored for this kind of error. An interesting

aspect of this treatment is that the discrepancy between reality and the

execution simulation of reality is allowed to grow quite large; consequently the

4Haycs--;ctualfY--deaf(-only with pos.itive decision premises becoming invalid, e.g.,
cancellation of conveyances upon which the itinerary depends. A more difficult
problem is dealing with negative premises: a decision to take a particular train
depends on the non-existence of trains with better connections as well as on the
existence of the chosen train. The PEGASUS updating scheme, although slower,
is able to make such adjustments.'

124

world model need not be constantly updated.5

An execution monitor may choose to limit its information-gathering requirement

by updating certain parts of the world model very frequently, and ignoring the

majority of the model. A simple example of such a technique is a servo control,

as might be used to effect the positioning of a mechanical arm. A more

complex example is the use of feedback around simple assembly strategies such

as a spiral search for a hole using axial position feedback (Finkel, et a1, 1975;

Taylor, 1976). Bolles has investigated numerous ways of limiting vision

processing required to close such feedback loops (Bolles, 1976).

5.3 Decision Theory in Robotics

This dissertation is by no means the first work that observes the problems of

incorporating cost and reliability into planning systems and seeks relief using

ideas from decision theory. Munson (1971), in a speCUlative paper on robot

problem-solving, thought that utility would be a powerful aid in developing

strategies, but the ideas were never put into practice. Piper (1972) experimented

with searching a homogeneous probabilistic graph (decision tree) to find plans ~f

action. This work was an outgrowth of experiments with the Graph Traverser,

itself an experiment in general-purpose problem-solving. Hart (1969) has pointed

out, however, that searches of probabilistic trees have rather poor performance

properties (admissible searches, guaranteed to find the optimum path, are nearly

exhaustive). This is one of the reasons PEGASUS uses a hierarchical

organization to search deterministic graphs first, thus bounding search in a

probabilistic space.

The most effective uses of decision theory in robotics have all appeared in

recent vision systems. It is not surprising that decision theory has been applied

to these problems, partly because vision problems are often attacked with

numerical techniques, partly because of similarities between vision and statistical

decision problems, and partly because of the appeal of allocating sensibly the

large amount of computation these systems require. Three vision developments

~!~ __ e_s~~~~~Y __ ~2!~~~!~hy:
5NOAH's actions are intended to be interpreted and executed by a human. To
an action that he believes he has executed successfully, the operator responds
"OK." To one that has failed, he responds "CAN'T." Of course, the "OK" answers
have the effect of updating the model so that the following step is executed
next, but the right way to look at these answers is as shorthand for "I was
able to carry out the command you gave ine, as I understood it," not "I have
verified that all consequences of my action match the expectations of the
planner."

125

• Yakimovsky (Yakimovsky and. Feldman, 1974) developed a system for

region-growing that works from a ·model of the class of images presented

to the system. The model provides estimates of the liklihood of

competing region-growing decisions. The system searches the space of

possible region shapes and interpretations by trying to maximize the

liklihood that a particular solution is the proper one. The key to this

system is that the model could express "semantic" relationships, e.g., "a

region labeled sky is most likely to be above a region labeled grass."

• Garvey and Tenenbaum (1974) expanded these ideas to apply to -scene

analysis and to the reduction of effort· in locating specific objects in a

scene. Likely positions of objects (e.g., pictures are high on walls;

telephones are on tables) are used, together with estimates of the cost of

making certain visual discriminations (e.g., color, orientation of a surface),

to plan a sequence of vision operators to find the requested object.

• Bolles (1976), in a most ambitious system for "verification vision," has

made extensive use of statistical detection criteria. His job is to reduce

to a given level the uncertainty of some crude measurement; he selects

vision operators based on their cost and their empirically observed power

to reduce uncertainty. He specifically copes with the powerful geometric

constraints available in most verification: the number of degrees of

freedom is usually much smaller than would be computed assuming all

features and objects are independent. This system is a fine example of

the combination of symbolic (geometric) constraints with decision-theoretic

criteria.

5.4 Potential Applications

It is worthwhile to speculate briefly on how some of the techniques presented in

this dissertation might benefit current AI systems. The observations divide into

two main categories: better allocation of planning effort, with attention to the

cost of planning, and mo~e use of utility or other objective functions.

• Hearsay II (Lesser, et a1, 1975). The Carnegie-Mellon speech understanding

system drives a search to analyze a speech wave with a partially

numerical process. Hypotheses from various sources are recorded in a

global "blackboard," linked together by dependency relations, and tagged

126

with "at,tention' focussing" numbers. A uniform procedure propagates focus

information among the hypotheses,. according to dependencies. Processing

of the hypotheses is scheduled by a multi-process scheduler, driven by the

attention-focussing tags and capable of allocating one of several processors

to a task. The attention-focussing markers are apparently used both to

express the validity of a hypothesis and to direct processing effort. No

attempt is made to combine the cost of processing with the validity, but

simply to use validity as a way of imposing selectivity in the search.

• SRI/SDC speech system (Paxton~ 1977). Paxton has made several empirical

studies of the effectiveness of different heuristics for controlling the

effort in this speech analysis system. 'He Was concerned with issues such

as: Should processing be focussed ,by inhibiting alternative choices? The

answer turns out be depend on the false-alarm rate of acoustic matching

processes. These measurements contain the germ of a cost-of-planning

model for the system that could apply the information uniformly: should

effort be put in reducing false alarms to permit focus? Because of the

large variance in input utterances, it is unwise to encode the results of

these studies as heuristics that say. in effect, "in situation a use method

b;" the characterization of situations is too coarse to permit unequivocal

decisions. Once again, we find an application for numerical tradeoff

among several approaches.

• MYCIN (Shortliffe, 1974). MYCIN is a decision-making 'framework applied

to diagnosing bacteremia. Semantics of the domain, painstakingly acquired

from physicians, are encoded in a data base and used to form implications

(e.g., if a and b then c), with a numerical qualification on the

confidence of the implication (a "certainty factor," CF). The confidence

measure, only loosely related to probability, is used as the basis for

comparing two or more implications of the available evidence, and

consequently for suggesting the "best" diagnosis and treatment. The CF

attempts to combine several effects (e.g., empirical probability, expressions

of caution by physicians because of the" severity of a missed diagnosis,

etc.). What is entirely absent from MYCIN is any notion of value: the

relative consequences, to the patient, of various diagnoses, the costs of

laboratory tests, etc. Ginsberg (1969) investigated a utility function that

reflects patient's preferences in similar situations.

127

• NOAH (Sacerdoti, '1975). The NOAH framework offers an excellent

opportunity to experiment with some of the ideas presented here in a

general-purpose setting.. NOAH has well-developed structures for

hierarchical planning and for invoking procedures that expand crude plans

into more detailed ones. Adding a mechanism to report resource

assignments and therefore to calculate utility information would be

straightforward. A more substantial modification will be needed to permit

concurrent exploration of a number of alternative plans.

Other applications in Computer Science

Computer systems are getting bigger. This is true not only of AI programs,but

also of such apparently trivial applications as text editors. Some of the growth

can be ascribed to growing requirements: an AI program may attempt to solve

an intricate problem; a text editor may acquire complexity because it attempts to

offer a very pleasant experience to i~s user; or a command and control system

may grow as requirements increasingly integrate diverse aspects of the problem

into one system.

But an additional generator of growth is particularly interesting: as the

repertoire of computer solution techniques grows, designers attempt to devise

general-purpose programs that can cope efficiently with ever broader classes of

input problems. For example:

• "Hidden surface elinlination" is a problem in computational geometry often

associated with computer graphics (Sutherland, et al, 1974)., There is no

solution that is "best" for all geometrical and topological situations that

may arise. Even the details of the solution techniques, par~icularly the

selection of certain sorting and computational geOlnetry algorithms, may

depend on the statistics of the problem presented for solution and on the

exact form of output desired.

• Computer-controlled manipulators require an intricate program of control

signals to accomplIsh an assembly task. Many aspects of the task can be

planned in advance, given specifications of the assembly and of the

geometry of the pieces. Some aspects of planning must await more

precise information about locations of the parts. Some of the procedures

cannot be planned in detail at all, because of cumulative manipulator

128

errors; local iterative procedures, such as a search to insert a screw in a

hole, must be used (Taylor, 1976).

• How should a function be integrated. numerically? There are many

techniques, of varying applicability, speed, and precision.

• The range of computer language translators, extending from interpreters to

compilers to very sophisticated optimizers, encompasses a myriad of

techniques. Much is known about optimization tricks, but an optimizing

compiler may be expensive. At the other end, an interactive user

demands flexibility, but expects adequate efficiency.

The interesting aspect of these examples is that solution techniques abound; the

problem is to build systems that plan a proper application of the techniques to

achieve an efficient solution. All of the considerations explored in this

dissertation are relevant: We need to plan in the presence of uncertainty about'

many of the problem details. We need to assess tradeoffs among. different

techniques with differing reliabilities and costs. We need to balance the effort

invested in planning with that devoted to achieving the solution itself. We

need to devote a judicious amount of effort to monitoring execution progress and

to replanning if necessary. As we learn more about the individual solution

techniques and about planning techniques, we can expect to build computer

systems that plan the proper combination of techniques to solve classes of

problems.

Chapter 6

Conclusions

130

6.1 Summary

This dissertation has explored a conjunction of AI and decision-theoretic

techniques, especially as applied to two' case studies. Our aim has been to use a

judicious amount of mechanism to achieve good solutions to problems. The

utility function proves useful for:

• Comparing the value of alternative plans, including expressing tradeoffs

among multiple goals. The plans may be plans of action, plans to acquire

information, or plans to engage in planning activities.

• Expressing the effects of uncertainty and risk consistently for all plans, so

that plan evaluation includes these effects.

• Exposing to the designer or user crucial parameters 'that affect the

system's decisions.

The utility functions we devised in the two case studies exhibit certain

properties tailor for application in a problem-solver:

• Additivity of a "resource vector" that represents the plan-specific

parameters for the utility calculation permits inexpensive incremental

updates to the utility as a plan is built and modified.

• Monotonicity simplifies arguments used to construct resource vectors 'that

give rise to upper bounds on the. utility of partially complete plans.

Used in a problem-solver, the utility function on plans and' partial plans helps

apply various solution techniques: '

• Search. The utility function provides a numerical guide to control search.

Calculation of upper bounds on partial plans is important for this use.

• Elaboration. The utility of a plan can be used to assess the benefits of

modifications or ex~ensions to a plan that are thought to improve it.

• Hierarchies. The utility function provides a way to organize a hierarchy.

Solutions at one level of detail furnish symbolic and utility "templates" to

work on more detailed solutions. The utility of a solution at one level .'

becomes the guide at the next level, used to bound incomplete plans and

to control search.

131

• Heuristics and specialists. The utility function allows the peaceful

cooperation of different solution techniques by subjecting the efforts of all

to a uniform evaluation. A low value of the utility of a plan generated

by a heuristic that "is not good enough" will suggest invoking another

available solution technique.

The utility function also helps to allocate resources to planning, acting and

information-gathering. In particular, a model of the cost of planning is used to:

• Allocate planning resources to alternative processing techniques with regard

for their efficiency: their ability to generate high-utility solutions with

low expenditures of planning resources.

• Engage in only enough planning to' find the P-optimal solution, i.e., the

optimal solution to the problem, given that planning costs must be

charged against the final solution.

If we characterize problem-solving as a massive topo~ogical sort through a

problem-space, the utility evaluation emerges as one technique for computing the

sorting order. Symbolic constraints will cause great sections of the space to be

excised from further consideration. Extremely low utility bounds will similarly

discard other areas. In the remaining regions, the utility and symbolic "sorting

keys" are developed to greater and greater precision as attention focusses on the

solution.

6.2 Suggestions for Further Work'

Systems. The approach presented in this work could influence the design of

problem-solving systems able to use utility information. Current AI practice

would encourage these techniques to be designed into a language. As mentioned

in Chapter 5, a receptive host language might be Sacerdoti's NOAH. If this is to

be attempted, a number of needs revealed by PEGASUS must be addressed; not

all require innovation:

1. Many individual problems are being pursued at once. As increasing

attention has been placed on procedural methods for reducing search, or

for representing search implicitly in a control, s'tack, facilities for

conventional searching have atrophied. The whole thrust of attempts to

optimize requires examining several solutions; these arc often alternative

132

instantiations of plan outlines. The need to keep several solution tasks in

progress is also responsible for several other requirements in this list.

2. Means must be provided to allocate computing resources to the various

plans being pursued. Each plan could be represented. as a process; a

scheduler could be used to control the planning.

3. Access to the plan processes is needed for various purposes. A task

scheduler will ask for current upper bound evaluations in order to allocate

effort. Re-evaluation requires enumerating plans and applying a plan

specific p'rocedure to effect updates. Some planning techniques may

require access to current pl~ns in order to locate an alternative (e.g., for

a fail ure recovery).

4. The massaging of plans as a consequence of execution is especially

taxing. Regardless of the suspended state of planning on each problem,

the problem itself must be transformed into a new one, in which the

first, now executed, step is discarded (or, at more abstract levels, simply

altered). As initial parts of plans are removed, it is possible th~t

remaining tails of two or more plans become identical: duplicate plans

must be removed from the processing schedule. The exact notion of

"identical" will vary from abstraction to abstraction--plans are identical at

level SP if they use the same route; at level INSTANTIATE the same trip

choices are required as well.

5. Incremental changes. One lesson of the PEGASUS experiment is the

chaos that results when clean mechanisnls for effecting incremental

changes are absent. Whereas most AI planning progranls have limited the

"changeable" parts of the state of nature to the direct effects of planned

actions, PEGASUS attempts to withstand changes in utility model (i.e.,

goal structure), in available conveyances, in weather conditions, etc. This

problem is so widespread that the "demons" of AI languages or

"continuously evaluating expressions" offer solutions that are too bulky.

Part of the answer lies in designing searching and planning procedures

that can cope reasonably with new data (e.g., "an extra section of flight

103 is being added"), regardless of the progress of the search, and then

expressing these with uniform conventions, such as the class/instance

paradigm.

133

6. Sharing. PEGASUS uses fairly crude and replicative data structures for

describing plans that often have common sub-pieces. Although a good

deal of sharing is practical within levels (e.g., SP), as plans are packaged

for shipment to other levels, they are copied. It is tempting to design a

canonical plan representation to achieve more sharing (as in, for example,

QA4, Rulifson, et al, 1972)' There are at least two problems with such a

design: the equality checks mentioned above are not made significantly

easier, and, more importantly, there is no canonical plan-building direction

(unlike the building of lists by CONS) -- some solution techniques work

forward, some backward, some in both directions.

Cost of Planning. PEGASUS makes only beginning attempts to model planning

costs. One class of extensions is trivial: adding to the repertoire of planning

resources measurect computer time, access to data bases (suppose each access to a

travel guide cost $.10), storage utilization, etc. Refinements here can lead to

more precise models of the cost of computation, but not to more effective uses

of the information.

However, power lies in being able to estimate future effects of planning. This

information was used in PEGASUS to curtail planning, but not to choose among

alternative problem-solving techniques. More effective predictive cost-of-planning

models can certainly be built. Generally, these are statistical models that map

certain features of the plan and problem-solving system into estimated costs.

The features may include aspects of the plan (e.g., number of steps, current level

of detail) and aspects of the planner (e.g., estimated branching factors in

searches, enumeration of as yet untried specialized planning tricks, etc.)

Admissibility. The framework we have developed here requires a notion of

admissibility that is broader than normally given: it must include the effects of

the cost of planning. Corresponding to searches for P-optimal plans, there is a

criterion of P-admissibility. A solution technique will be P-admissible if it finds

a solution with maximum utility of execution and planning combined. This

criterion permits more than purely numerical tradeoff of solution and planning

costs: in cases of large planning costs, we can even use incomplete symbolic

methods. Allowing incomplete methods may permit approximate solutions to

some of the "very hard" problems (e.g., NP-complete problems) to be P-optimal.

Of course, computers generate only approximate solutions to many problems

presented to them (e.g., finite precision arithmetic represents an approximation in

134

many cases),. ~ut the notion of P-admissibility will determine what sorts of

a pproxima tions are sa tisf actory.

P-admissibility may yield solutions at varying levels of detail. A P-optimal

solution from a hierarchy of abstractions might not necessarily . have completed

processing at the most detailed level. This is another sort of approximation: in

some cases we will obtain more abstract solutions than in others.

The problem, of course, is that we have no techniques for making effective use

of the P-admissibility notion in the most general sense: to justify approximate

symbolic or abstract solution techniques in the presence of planning costs. P

admissibility has some non-intuitive implications: Should a technique that. is

executed on a faster or less expensive computer be required to find a better

solution?

In many ways, P-admissibility is what AI is all about. It recognizes that

optimal solutions to computationally outrageous problems are not useful. AI has,

in effect, loosely defined P-admissibility by using techniques that attempt to get

good solutions most of the time for modest computational investments. AI is

concerned with the design of methods to achieve these solutions: heuristics,

hierarchies, bounds arguments, and so forth.

6.3 Decision Theory and Artificial In telligence

Some readers will have already objected that our suggestions do not increase the

range of problems solvable by decision theory or symbolic processing, that each is

a powerful and complete paradigm, and that our remarks bear on efficiency

considerations alone. The pure symbolic processor claims that he can achieve

optimization effects by dividing numeric ranges into a small number of "symbolic

values" (e.g., temperature into COLD, COOL, WARM and HOT) that suffice for a

given problem. Information about tradeoffs can be encoded as a set of symbolic

preferences; (FED and \VALKED-A-LONG-DISTANCE) is preferred to ((not FED)

and W ALKED-A -SHORT-DISTANCE). Or he will assess tradeoffs numerically by

instantiating theorems of number theory, analysis' and algebra. This gives rise to

crude and awkward models in cases where a small amount of numerical

processing is more natural and accurate.

The pure mathenlatical programmer, on the other hand, will mathematize all

constraints or move complexity into value or reward functions. He will

135

formulate any search as a shortest path problem with appropriate arc weights

and propose dynamic programming to calculate a solution. The result is often a

huge state space for very simple problems, making numerical solution simply

infeasible.

Practitioners of either field adopt more moderate approaches: the AI designer

finds many problems suited to partially-numerical approaches. Similarly, the

decision theorist engages in a substantial amount !)f sYInbolic reasoning to

formulate his model and to apply it intelligently to the situation; he may also

use "heuristic" solution techniques on large problems. A human analyst will

perform the reasoning req~ired to build a decision tree intelligently, one that

represents sensible plans. From the point of view of AI, this construction

process is itself an endeavor of interest.

From the point of view of decision theory, our formulation aims to permit a

computer program to emulate a good decision analyst. Such an analyst combines

formulating plans and searching decision trees to arrive at a solution. A good

analyst will monitor the implementation of the decisions, keeping abreast of

exogenous changes in the utilities on which his solution was based, formulating

additional plans, etc. This is in contrast to conventional computer programs used

to search one static tree exhaustively.

From the point of view of AI, the advantage of decision theory is the ability to

find solutions that are "optimal" in some model. Although the approach requires

a certain amount of search to find solutions, we have shown several powerful

methods to limi t the search:

• The symbolic problem solver constrains the search later undertaken to

perfect a strategy. A rough plan generated in sinlplified, abstract space,

can be used to constrain the more careful planning. These are basic

search-limiting methods of AI not practiced in decision analysis programs.

• A number of decision-theoretic techniques limit search. Branch-and-bound

methods limit search based on bounds derived from the utility models. In

addition, one can prove that the failure Fl in Figure 2-6 should not

include paths that persist in using the sanle box (i.e .. paths that disregard

the outcome of the test): every such strategy is d01ninated by one that

simply does not perform the test at all. Such "utility theorems" limit

search.

136

Another example of search limiting occurs when' the plan outline specifies

a loop. Any paths that involve loops continue to incur increased costs as

they are expanded,' but. the ultimate utility is fixed. 1'he loop thus

expends effort without approaching the goal; such paths will be cut off by

the branch-and-bound algorithm.

• Domain-independent heuristics can be applied to limit search. One such

heuristic is to explore paths of high probability first, and perhaps be

willing to bound pessimistically those paths of low probability. Although

pure decision theory looks dimly on this technique because even paths of

low probability may have unbounded utilities, in many cases we can

meaningfully assign bounds to the utilities.

Certain of the recovery mechanisms, e.g., using another' top-level

alternative, are domain-independent, as is the method of approximating the

utility of such an alternative p~an.

• Domain-dependent heuristics can limit search. Although these techniques

may require a certain amount of reprogramming for each new domain,

they are probably far more powerflll than domain-independent methods.

The current AI trend toward knowledge-based systems (Nilsson, 1974;

Bobrow and Collins, 1975; Fikes, 1976) is due in part to benefits of

distributing domain knowledge throughout systems.

Search-limiting heuristics are not without drawback -- the resulting search may

not guarantee finding the optimal solution, i.e., it is not admissible. However,

the utility measure still allows us to extract the best plan among those

developed in the search.

The Combina tion

What the two fields of decision theory and artificial intelligence offer is a

collection of techniques that can be applied judiciously to solve problems. There

are cases when decision . theory applied to the problem domain adds little to AI

techniques, but may still offer help in allocating planning resources:

• Insignificant Costs. The benefit of optimal planning may simply be too

low if the costs of the planning and execution are themselves insignificant

or if the planning costs greatly exceed the exccu lion costs.

137

Identical Values. A ·problem may give rise to solutions of identical

preference. A theorem-proving program may not be at all concerned with

finding the shortest proof or with the expense of the search. A program

that attempts to "understand" a paragraph of natural language in order to

answer questions about it is likewise not concerned with optimization but

with capturing a conceptual structure. In these cases, the utility function

on outcomes is nearly constant, and gives no information to the search.

Both of these examples are characterized by the intuition that the domain

is inherently symbolic: the understanding problem is to build a conceptual

structure that is communicated as a string of words; the theorem-proving

task, even as practiced by humans, is primarily symbolic manipulation.

There are notions of "best" solutions in both cases, but they are second

order considerations.

However, these examples are confronted with problems in allocating

solution effort, and we can still hope to find the "best derivation" of the

solution. Humans too may find processing resources limited when

performing these chores, and must settle for approximate solutions

(Norman and Bobrow, 1974).

• Modeling Difficulties. It may be very difficult to construct a utility and

probability model that applies to the problem. Although the central

theorem of decision theory shows that any choice of a "best" plan is an

implied assessment of utilities and probabilities, it still may be difficult

to cast the model in numerical terms.

A particularly painful aspect of this problem is presented by Bayes' rule:

if we use the rule to calculate the probability distribution resulting from

a sequence of tests, a potentially huge number of conditional probabilities

(or probability distributions) is required. This difficulty, coupled with

that of extracting probability information from humans, has led to several

alternative "rules of inference" for computing likelihood information based

on test outconles (e.g., Shortliffe, 1974). This is an important current

research topic.

But there are also ways in which decision theory adds considerable power:

• Convenient Representation. Utility and probability models are often

138

convenient ways of representing parameters of a problem; they thereby

ease parameter modification by a designer or by a user with a slightly

different problem. For example, if a vision operator is modified to use a

faster algorithm and therefore less computer time, a small modification to

the utility model will suffice to alter the performance of an entire vision

system correctly. It would be less obvious how to modify a set of

symbolic heuristics that governs the application of the operator.

A simple utility function may express the tradeoffs among the various

resources the system consumes (money, elapsed time, etc.). The

information that g~verns the tradeoffs the system actually makes is thus

localized and easily modifiable. Some such modifications can be made by

the system itself in reaction to complaints about its behavior; the changes

could require only simple numerical calculations to compute new

parameters for the utility model. It is less obvious how a program should

itself "learn" heuristics.

Finally, because decision theory is continually being applied to real-world

problems, new models are built, refined and used. For example, efforts

are underway to provide doctors with decision-theory models to help plan

the diagnosis and treatment of various diseases (Pauker and Kassirer,

1975; Ginsberg, 1969). Computer aids to such decision-making can take

advantage of the models.:

• Ubiquity of Planning. Such models are not limited to application in

traditional "AI" domains. For example, an optimizing compiler embarks

upon substantial symbolic reasoning to plan efficient object code for a

program; sophisticated optimizers measure or estimate how often a section

of code is executed and use this as an estimate of the utility of an

optimization. An extended utility structure would permit trading off

different forms of optimization and including the 'user's utility 'function.

Automatic programming, and in particular automatic coding (Low, 1974;

Rovner, 1976), seem to involve the same kinds of planning and elaboration

mechanisms presented here.

• Optimal Planning. A decision-theoretic model of a planning process itself

can be used to make planning decisions and thus to control allocation of

effort to planning tasks. Many AI' progralns such as planners, problem-

139

solvers, parsers, and "understanders" require such guidance in the

application of available methods: Is it more important to plan further

ahead or to investigate detail of the current plan? (Sacerdoti. 1974) How

far should consequences of a situation be investigated? (Rieger, 1975)

Increasingly, this problem becomes one of controlling a number of

processes, which are "triggered" by various changes in the world model,

and which are responsible for exploring consequences of the change

(Bobrow and Winograd. 1977). If two alternative parsings of a sentence

appear similar in a crude analysis. should one be examined in detail. or

should both be explored uniformly? (Paxton and Robinson, 1973) How are

alternative hypotheses pursued? (Woods, 1974)

Even if the plans themselves have nearly constant utility, optimal

planning is useful. For example, in a theorem prover, we are given a set

of clauses and must decide which of several resolutions to make; if we

can calculate the cost of planning a solution from a given set of clauses,

we choose the resolution that gives rise to the lowest planning cost.

Thus although the space of outcome utilities is constant, the utilities of

various alternative planning approaches are not. This second space has

been important to the development of search programs; it corresponds for

example to the evaluation functions in game-playing programs.

When the costs, uncertainties. and outcomes of the planning process itself

are considered in controlling a planning and execution system. the system

does "optimal planning." Although the plans generated may not be optimal.

the entire process, including planning. is optimal. This suggests an

extended notion of admissibility that includes consideration of planning

costs.

• Detection Problems. AI has embraced a number of problems that have

. significant detection components: speech understanding and machine vision

are the most obvious examples. The problems of efficient detection, and

especially of uncertainty in the results, are at the heart of decision

theory. In an AI setting, the knowledge gained from detection operations

must be incorporated into higher-level reasoning that has significant

sy-Inbolic components. It is perhaps in these problems that the approach

we propose is most advantageous, for it unifies inherently numerical

computation (detection) with sYlnbolic reasoning (understanding). Indeed it

140

is thes~ areas that gave rise to the approach and saw early applications

(Yakimovsky and Feldman. 1974; Garvey and Tenenbaum. 1974; Tenenbaum,

1973; Bolles. 1976).

As computer systenls generally, and AI programs particularly, become larger and

more complex, they make more internal choices among available methods to

attack the stated problem. This is a natural consequence of increased

understanding of computer algorithms and of desires to make programs more

general in purpose. Even if we are reluctant to impose numerical models on the

solution space, we cannot neglect opportunities to measure and guide the choices

these systems make to generate solutions to the problem.

Bibliography

Abbreviations'

IJCAE International Joint Conference on Artificial Intelligence.

FJCC: Fall Joint Computer Conference.

141

Amarel, S., "On Representations of Problems of Reasoning About Actions,"
Machine Intelligence 3, American Elsevier, New York, 1968.

Arrow, K. J., Social Choice and Individual Value, Wiley, New York, 1951.

Bellman, R., Dynamic Programming, Princeton Univ.' Press, Princeton, N.J., 1957.

Bobrow, D. G., "Dimensions of Representation," Xerox Palo Alto Research Center,
in Bobrow and Collins, 1975.

Bobrow, D. G. and Collins, A. (eds) Representation and Understanding, Academic
Press, New York, 1975.

Bobrow, D. G., Kaplan, R. M., Kay, M., Norman, D. A., Thompson, H., and
Winograd, T., "GUS, a Frame-Driven Dialog System," Artificial Intelligence, Vol. 8,
No.1, Spring 1977.

Bobrow, D. G. and Raphael, B., "New programming languages for AI research,"
Computing Surveys, Vol. 6, No. 3 (September 1974).

Bobrow, D. G., and Wegbreit, B., "A Model and Stack Implementation for
Multiple Environments, "Communications of the ACM, Vol. 16, No. 10, October
1973.

Bobrow, D. G. and Winograd, T., "An overview of KRL, a Knowledge
Representation Language," Cognitive Science, Vol. 1, No.1, 1977.

Bolles, R., "Verification Vision with a Programmable Asselnbly System," Computer
Science Dept., Stanford University, 1976.

Buchanan, B. G., Sutherland, G., and Feigenbaun, E. A., "Heuristic DENDRAL: A
Program for Generating Explanatory Hypotheses in Organic Chemistry," Machine
Intelligence 4, American Elsevier, New York, 1969.

Chernoff, H. and Moses, L., Elementary Decision Theory, Wiley, N.Y., 1959.

Cozzolino, J. M., "Search for an unknown number of objects of nonuniform size,"
Operations Researc1l, Vol. 20, No. 2 (March-April 1972), p. 293.

Fahlman, S., "A planning system for robot construction tasks," Artificial
Intelligence, Vol. 5, No. 1 (Spring 1974).

Feldman, J, A., "A Programming Methodology for Distributed Computing (among
other things)," Computer Science Dept., University of Rochester, TR-9, 1976.

Feldman, J. A., Pingle, K., Binford, T., Falk, G., Kay, A., Paul, R., Sproull, R., and
Tenenbaum, J., "The Use of Vision and lVlanipulation to Solve the Instant
Insanity Puzzle," Proceedings Second IJCAL 1971.

Feldman, J. A., Low, J., Taylor, R., and Swinehart, D., "Recent developments in
SAIL -- An ALGOL-based language for artificial intelligence," Proceedings FJCC,
1972.

142

Feldman, J. A. and Sproull, R. F., "System Support for the Stanford Hand-Eye
Project," Proceedings Second IJCAI, 1971.

Feldman, J. A. and Sproull, R. F., "Decision Theory in Artificial Intelligence II:
The Hungry Monkey," Computer Science Department, University of Rochester, TR-
2, 1974. To appear in Cognitive Science.

Fennel, R. D., "Multiprocess Software Architecture for AI Problem-Solving," Dept.
of Computer Science, Carnegie-Mellon University, 1975.

Fikes, R. E., "Knowledge Representation in Automatic Planning Systems," Tech.
Node 119, Artificial Intelligence Center, Stanford Research Institute, Menlo Park,
California, 1976.

Fikes, R. E., Hart, P. E., and Nilsson, N. J., "Some New Directions in Robot
Problem-Solving," Machine Intelligence 7, Edinburgh, University Press, 1972.

Fikes, R. E., and Hendrix, G., "A Network-Based Knowledge Representation and
its Natural Deduction Syst'em," to ~ppear in Proceedings Fifth IJCAL

Fikes, R. E. and Nilsson, N. J., "STRIPS: A new approach to the application of
theorem proving in problem solving," Artificial Intelligence, Vol. 2 (1971), p. 189.
Use of A * was revealed in a private communication.

Finkel, R., Taylor~ R., Bolles, R., Paul, R., and Feldman, J., "An Overview of AL,
A Programming System for Automation," Proceedings Fourth IJCAL 1975.

Fishburn, P. C., "Modern Utility Theory: 1940-1970," Research Analysis
Corporation, 1970. Also CFSTI AD 625047.

Garvey, T., "Perceptual Strategies for Purposive Vision," Stanford Reseat:ch
Institute, Technical Note 117, September 1976.

Garvey, T. and Tenenbaum, J. M., "On the automatic generation of programs for
locating objects in office scenes," Proceedings Second Intern. Joint Conf. on
Pattern Recognition, IEEE 74-CH0885-4C (August 1974), p. 162.

Ginsberg, A. S., "Decision analysis in clinical patient management· with an
application to the pleural effusion problem. PhD Thesis, Stanford University,
1969.

Goldberg, A. and Kay, A., "Smalltalk-72 Instruction Manual," Xerox Palo Alto
Research Center, Report SSL 76-6, 1976.

Grape, G., "Model based (intermediate level) computer vision," PhD Thesis,
Computer Science Dept., Stanford University, Stanford, California, 1973.

Green, C. C., "The Application of Theorem Proving to Question-Answering
Systems," Computer Science Dept., Stanford University, AIM-96, Stanford,
California, 1969.

Hart, P. E., "Searching Probabilistic Decision Trees," Tech. Note 2, AI Group,
Stanford Research Institute, Menlo Park, California, 1969.

Hart, P., Nilsson, N. J. and Raphael, B., "A formal basis for the heuristic
determination of minimum cost paths," IEEE Trans. Sys. Sci. Cybernetics, Vol.
SSC-4, No. 2 (July 1968), p. 100.

Hayes, P., itA Representation for Robot Plans," Proceedings Fourth IJCAI, 1975.

Knuth, D. E., The Art of Computer Programming; Sorting and Searching, Vol. 3,
Addison-Wesley, 1973.

Lawler, E. and Wood, D., "Branch and b'ound methods: a survey," Operations
Research, Vol. 14, No. 4 (July 1966), p. 699.

143

Lesser,. V. R., Fennel, R. D., Erman, L. D., and Reddy, D. R., "Organization of the
Hearsay II Speech Understanding System," IEEE Transactions on Acoustics,
Speech, and Signal Processing, 1975, ASSP-23.

Low, J. R., "Automatic coding: choice of data structures," Stanford Artificial
Intelligence Project, AIM 242, Stanford, California, 1974.

Matheson, J. E., "The Economic Value of Analysis and Computation," IEEE
Transactions on Systems Science and Cybernetics, SSC-4, 3, 325 (September 1968).

McDermott, D. V., and Sussman, G. J., "The Conniver Reference Manual," AI
. Memo 259, MIT Project MAC, 1972.

Minsky, M., "Steps Toward Artificial Intelligence," 1961. Reprinted in Feigenbaum,
E. and Feldman, J. (Eds.) Computers and Thought, McGraw-Hill, N.Y., 1963.

Munson, J. H., "Robot planning, execution and monitoring in an uncertain
environment," Proceedings Second IJCAI (September 1971), p. 338.

Newell, A. and Simon, H., Human Problem-Solving, Prentice-Hall, Englewood
Cliffs, 1971.

Newell, A. Shaw, J. and Simon, H., "Chess playing programs and the problem of
complexity," IBM J. Res. and Develop., Vol. 2 (October 1958), p. 320. Reprinted
in Feigenbaum, E. and Feldman, J. (Eds.) Computers and Thought, McGraw-Hill,
N.Y., 1963.

Nilsson, N. J., "Artificial Intelligence," Proceedings IFIP Congress 1974, p. 778.

Nilsson, N. J. Problem-Solving Methods in Artificial Intelligence, McGraw-Hill,
N.Y., 1971.

Norman, D. A., and Bobrow, D. G., "On Data-Limited and Resource-Limited
Processes," Xerox Palo Alto Research Center, Report CSL 74-2, Palo Alto,
California, 1974.

Pauker, S. G. and Kassirer, J. P., "Therapeutic Decision Making: A Cost-Benefit
Analysis," N Engl J Med, 239:229-234, 1975.

Paxton, W. H., forthcoming PhD thesis, Stanford University, 1977.

Paxton, W. H. and Robinson, A. E., "A Parser for a Speech Understanding
System," Proceedings Third IJCAI (August 1973), p. 216.

Piper, J., "Integrated planning and acting in a stochastic environment," MIP-R-94,
School of AI, Univ. of Edinburgh, 1972.

Pohl, I., "Bi-directional and Heuristic Search in Path Problems," SLAC Report
104, Stanford University, Stanford, California, 1969.

Pohl, I., "The avoidance of (relative) catastrophe, heuristic competence, genuine
dynamic weighting and computational issues in heuristic problem solving,"
Proceedings Third IJCAI (August 1973), p. 12.

Raiffa, H., Decision Analysis, Introductory Lectures on Choices under Uncertainty,
Addison Wesley, Reading,- 1970.

Rieger, C. J., "Conceptual Memory," in R. Schank (ed) Conceptual Information
Processing, North-Holland, Amsterdam, 1975.

Rovner, P. D., "Automatic Representation Selection for Associative Data
Structures," TRIO, Univ. of Rochester, Computer Science Dept., September 1976.

Rulifson, J. F. Derksen, J. A. and Waldinger, R. J., "QA4: A procedural calculus
for intuitive reasoning," Tech. Note 73, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California, 1972.

144

Sacerdoti, E., IT/lanning in a hierarchy of abstraction spaces," Artificial
Intelligence, Vol. 5, No. 2 (Summer 1974), 115-135.

Sacerdoti, E., "A Structure for Plans and Behavior," Tech. Note 109, Artificial
Intelligence Center, Stanford Research Institute, Menlo Park, California, 1975.

Samuel, A.L., "Some Studies in Machine Learning Using the Game of Checkers,
II, Recent Progress," IBM J. Res. Develop., vol. XI, no. 6, November, 1967.

Schank, R. C., and Abelson, R. P., Scripts, Plans, Goals and Understanding: An
Inquiry into Human Knowledge Structures, Erlbaum Associates, Hillsdale, New
Jersey, 1977 (in press).

Shortliffe, E. H., "fvIYCIN: A rule-based computer program for advising physicians
regarding anti-microbial therapy selection," AI Memo 251, Stanford Artificial
Intelligence Project,· Stanford, Calif. (October 1974).

Slagle, J. R., Artificial Intelligence: The Heuristic Programming Approacll,
McGraw-Hill, New York, 1971.

Slagle, J. R. and Lee, R. C. T. Application of game tree searching techniques to
. sequential pattern recognition. Communications of the ACA(Vol. 14, No. 2
(February 1971), p. 103.

Sussman, G. J., "A Computation Model of Skill Acquisition," AI TR-297,
Massachusetts Institute of Technology, AI Lab, 1973.

Sussman, G. J., and McDermott, D. V., "From PLANNER to CONNIVER--a genetic
approach," Proceedings FJCC, AFIPS ,Press, Montvale, 1972.

Sussman, G~ J., and Winograd, T., and Charniak, E., "MicroPlanner Reference
Manual," AI Memo 203, MIT Project MAC, 1970.

Sutherland, I. E., Sproull, R. F., and Schumacker, R. A., "A Characterization of
Ten Hidden-Surface Algorithms," Computing Surveys, Vol. 6, No.1, April 1974.

Taylor, R. H., "A Synthesis of Manipulator Control Programs from Task-Level
Specifications/'. AIM -282, Computer Science Dept., Stanford University, 1976.

Teitelman, W., "InterLisp Reference Manual," Xerox Palo Alto Research Center.
Palo Alto, California, 1975.

Tenenbaum, J. M., "On locating objects by their distinguishing features in
multisensory images," Computer Graphics and Image Processing, Vol. 2, No. 3/4
(December 1973).

Tversky, A. and Kahneman, D., "Judgement under uncertainty: heuristics and
biases," Science, Vol. 185, No. 4157 (27 September 1974), p. 1124.

Winograd, T., Understanding Natural Language, Academic Press, New York, 1972.

Winston, P. H., "The MIT· Robot," Machine Intelligence 7, Edinburgh, University
Press, 1972.

'Voods, W. A., "Motivation and overview of BBN Speechlis; An experimental
prototype for speech understanding research.~ IEEE Symposium on Speech
Recognition, IEEE 74-CH0878-9 AE (April 1974).

Yakimovsky, Y. and Feldman, J., "Decision Theory and Artificial Intelligence: I. A
Semantics-based Region Analyzer," Artificial Intelligence, Vol.· 5, 349-371 (1974).

145

Appendix

Trace of PEGASUS Execution

This appendix presents a trace of the execution of PEGASUS on a simple

problem. The trace is intended to elucidate several points about the operation

of the planner:

• How the utility measures applied to all levels are used to control the

planning.

• How the cost of planning changes the outcome of the planner, and how

the information is used.

• How many alternatives are considered, at least in part.

PEGASUS is given the problem of designing an itinerary to travel from HOME

(Palo Alto, California) to UR (University of Rochester, Rochester, N.Y.), given the

constraint to leave home after 7:00 June 14. The salient features of the model

of the client are:

Utility functicn = 1000 - Money -.33 Time -.1 Stress - Misc

Cost of planning = -.3 • ComputcrTime (measured in seconds)

Quality of time contributions to stress:

Home: 0

all other spots: .03/minute

Air: .05/minute

Train: .1/minute

Bus: .1 /minute

~

The itineraries planned by PEGASUS are:

Itinerary 1. (Tasks 0.1,2.3.4.5.6) Utility: 633.2546

Main path: probability=.5939, U=676.16

TAXI·. From f-IOME to SFO. Departure JUN 14 8:13 transit time 0:22 (512.96).

Layover at SFO starting JUN 14 8:35 lasting 0: 10.

AA 92. From SFO to DTW. Depmture JUN 14 8:45 transit time 4:03 (5139.0).

Layover at DTW starting JUN 14 15:48 lasting 1 :02.

AA 92. From DTW to ROC. Departure JUN 14 16:50 transit time 0:57 ($17.0).

Layover at ROC starting JUN 14 17:47 lasting 0: 15.

TAXI". From ROC to UR.'Departure JUN 14 18:02 transit time 0:01 ($1.42).

Arriving at destination JUN 14 18:03.

Backup: probability = .1684, U=616.07

Layover at SFO starting JUN 14 8:35 lasting 3:25.

UA 86. Fran) SFO to DTW. Departure JUN 14 12:00 transit time 4:03 ($139.0).

Layover at DTW starting JUN 14 19:03 lasting 0:02.

AL 736. From DTW to ROC. Departure JUN 14 19:05 transit time 1:10 (517.0).

Layover at ROC starting JUN 14 20: 15 lasting 0: 15.

TAXI-. From ROC to UR. Departure JUN 14 20:30 transit time 0:01 (51.42).

Arriving at destination JUN 14 20:31.

.

146

Backup: probability = .2498. U=623.27
Layover at DTW starting JUN 14 15:48 lasting 3:17.
AL 736. From DTW to ROC. Departure JUN 1419:05 transit time 1:10 ($17.0).
Layover at ROC starting JUN14 20: 15 lasting 0: 15.
TAXI-. From ROC to UR. Departure JUN 14 20:30 transit time 0:01 ($1.42).
Arriving at'destination JUN 14 20:31-

Itinerary 2. (Tasks 0.1,8,14.15.16,17) Utility: 638.697
Main path: probability = .7391, U=679.81
TAXI·. From HOME to SJC. Departure JUN 14 7:16 transit time 0:14 (58.28).
Layover at SJC starting JUN 14 7:30 lasting 0:15.
UA 464. From SJC to ORD. Departure JUN 14 7:45 transit time 3:45 ($126.0).
Layover at ORD starting JUN 14 13:30 lasting 0:55.
UA 362. From ORO to ROC. Departure JUN 14 14:25 transit time 1 :27 ($30.0).
Layover at ROC starting JUN 14 16:52 lasting 0: 15.
TAXI". From ROC to UR. Departure JUN 14 17:07 transit time 0:01 ($1.42).
Arriving at destination JUN 14 17:08.

Backup: probability = .1032, U=565.57
Layover at SJC starting JUN 14 7:30 lasting 5:35.
UA 356. From SJC to ORD. Departure JUN 14 1.3:05 transit time 3:55 ($126.0).
Layover at ORD starting JUN 14 19:00 lasting 0:30.
AA 214. From ORO to ROC. Departure JUN 14 19:30 transit time 1 :25 (S30.0).
Layover at ROC starting JUN 14 21 :55 lasting 0: 15.
TAXI·. From ROC to UR. Departure JUN 14 22: 1 0 transit time 0:01 ($1.42).
Arriving at destination JUN 14 22: 11.

Backup: probability = .1381,' U=635.80
Layover at ORD starting JUN 14 13:30 lasting 3:00.
AA 500. From ORO to ROC. Departure JUN 14 16:30 transit time 1 :24 ($30.0).
Layover at ROC starting JUN 14 18:54 lasting 0:15.
TAXI'. From ROC to UR. Departure JUN 14 19:09 transit time 0:01 ($1.42).
Arriving at destination JUN 14 19: 10.

Itinerary 3. (Tasks 0,1,7,10,12.20.21) Utility: 649.1374
Main path: probability = .6101, U=682.48
TAXI·. From HOME to SFO. Departure JUN 14 9:38 transit time 0:22 ($12.96).
Layover at SFO starting .JUN 14 10:00 lasting 0:05.
AA 182. From SFO to ORO. Departure JUN 14 10:05 transit time 3:44 (S126.0).
Layover at ORO starting JUN 14 15:49 lasting 0:41.
AA 500. From ORO to ROC. Departure JUN 14 16:30 transit time 1 :24 ($30.0).
Layover at ROC starting JUN 14 18:54 lasting 0: 15.
TAXI'. From ROC to UR. Departure JUN 14 19:09 transit tirne 0:01 ($1.42).
Arriving at destination JUN 14 19: 10.

Backup: probability = .1852, U=646.63
Layover at SFO starting JUN 14 10:00 lasting 0: 15.
UA 126. From SFO to ORD. Departure JUN 14 10: 15 transit time 3:55 (8126.0).
Layover at ORD starting JUN 14 16: 1 0 lasting 1 :30.
UA 794. From ORD to ROC. Departure JUN 14 17:40 transit time 1 :30 ($30.0).
Layover at ROC starting JUN 14 20: 10 lasting 0: 15.
TAXI". From ROC to UR. Departure JUN 14 20:25 transit time 0:01 ($1.42).
Arriving at destination JUN 14 20:26.

Backup: probability = .2142. U=655.30
Layover at ORO starting JUN 14 15':49 lasting 1 :51.
UA 794. Fr9m ORO to ROC. Departure JUN 14 17:40 transit time 1 :30 ($30.0).
Layover at ROC starting ,JUN 14 20: 10 lasting 0: 15.
TAXI-. From ROC to UR. Departure JUN 14 20:25 transit time 0:01 ($1.42).
Arriving at destination JUN 14 20:26.

Itinerary 4. (Tasks 0.1.7.11.13.2~~.23) Utility: 595.3527
Main patl): probability = .6(393, U=675.94
TAXI·. From I-lOME to SFO. Departure .JUN 14 14:18 transit time 0:22 ($12.96).
Layover at SFO stmting JUN 14 14:40 lasting 0:20.

AA 222. From SFO to ORO. Departure JUN 14 15:00 transit time 3:49 ($126.0).

Layover at ORO starting JUN 14 20:49 lasting 0:41.

AA 524. From ORO to ROC. Departure JUN 14 21 :30 transit time 1 :22 ($30.0).
Layover at ROC starting JUN 14 23:52 lasting 0: 15.

TAXI·. From ROC to UR. Departure JUN 15 0:07 transit time 0:01 ($1.42).

Arriving at destination JUN 15 0:08.

Backup: probability = .0779. U=467.32

Layover at SFO starting JUN 14 14:40 lasting 0:50.
UA 130. From SFO to ORO. Departure JUN 14 15:30 transit time 3:55 ($126.0).

Layover at ORO starting JUN 14 21 :25 lasting 9:35.

AA 196. From ORO to ROC. Departure JUN 15 7:00 transit time 1 :22 ($30.0).

Layover at ROC starting JUN 15 9:22 lasting 0:15.
TAXI·. From ROC to UR. Departure JUN 15 9:37 transit time 0:01 ($1.42).
Arriving at destination JUN 15 9:38.

Backup: probability = .2166. U=470.74
Layover at ORO starting JUN 14 20:49 lasting 10:11.
AA 196. From ORO to ROC. Departure JUN 15 7:00 transit time 1 :22 ($30.0).
Layover at ROC starting JUN 15 9:22 lasting 0: 15.

TAXI·. From ROC to UR. Departure JUN 15 9:37 transit time 0:01 ($1.42).
Arriving at destination JUN 15 9:38.

147

A chart of the tasks undertaken is. presented in Figure A-I. Each task is

identified by a number that describes the order in which the tasks were started.

Task 0 is created when the problem statement is ingested. The first solution to

this task initiates task 1, which later produced solutions numbered 2, 7, 8, and

9. The arrows symbolize the passing of a solution to a new level; in

parentheses near each arrow is a pair: the utility of the solution generated, and

the time (in seconds) since the previous solution to the task was generated.

It is instructive to make a table showing where each solution path "lost" its

utility:

Itinerary SP INST ANTIA TE DOLLARS FILLIN PROB

-81 -14 -0 -11 -35

2 -80 -13 -0 -7 -36

3 -82 -9 -0 -10 -24

4 -82 -10 -0 -10 -79

We notice that the differences among the plans are largely "explained" by the

analysis done in the PROB level. Itinerary 4 is poor because there is very poor

backup at ORD--AA 524 is the last flight of the day. Itinerary 3, on the other

hand, has exceptionally good backup (short waiting times before the next flight

on the same route). Itineraries 1 and 2 have intermediate appeal. It will not

always be the case that PROB processing is the most significant. In this case,

because transportation to the airports is similar and because planes fly often

148

enough on the route to make scheduling easy, the INSTANTIATE and FILLIN

contributions are almost identical.

Let us examine the processing' of PEGASUS in somewhat more detail. Until the

time task 6 is generated, PEGASUS is using its depth-first approach, and is

simply allocating effort to the most recently initiated task. Thereafter, however,

the processing skips around, governed by the upper bounds (and discounted by

the cost of planning). Here is a sample (note that when a solution is

generated, its true utility is cited, whereas control of. planning is based on Up,

the upper bound of the task, discounted by the expected costs of completing a

solution that would emerge from the task):

Work on task 7 (INSTANTIATE) until Up drops below 679.4.
This generates a new solution of U=684,O, and spawns task 10.

Work on task 7 (INSTANTIATE) until Up drops below 679.4.
This generates a new solution of U=682.8, and spawns task 11.

Work on task 10 (DOLLARS) until Up drops below 679.0.
This generates a new solution' of U=684.0, and spawns task 12.

Work on task 12 (FILlIN) until Up drops below 679.0.
Work on task 1 (SP) until Up drops below 679.4.
Work on task 7 (INSTANTIATE) until Up drops below 678.3.
Work on task 11 (DOLLARS) until Up drops below 677.8.
This generates a new solution of U=682.8, and spawns task 13.

Work on task 13 (FILlIN) until Up drops below 677.8.
Work on task 8 (INSTANTIATE) until Up drops below 677.0.
This generates a new solution of U=681.5, and spawns task 14.

Each FILLIN process sets up a recursive call on the entire system in order to

flesh out the ASSUMEd steps of the original plan. Here is a sample sequence

from task 4:

Work on task a (TOP; HOME-SFO) until Up drops below -10E10.
This generates a new solution (TRAIN·) of U=988, and spawns task b.

Work on task b (SP) until Up drops below 983.
This generates a "utility dominance," and causes b to bo suspended.

Work on task a (TOP) until Up drops below -1 OE 1 O.
This generates a new solution (BUS·) of U=988, and spawns task c.

Work on task c (SP) until Up drops below 979.
This generates a "utility dominance," and causes c to be suspended.

Work on task a (TOP) until Up drops below -1 OE 1 O.
This generates a new solution (TAXI·) of U=979, and spawns task d.
(Note: TAXI has no transportation graph, and proceeds to INSTANTIATE)

Work on task d (INSTANTIATE) until Up drops below 974.
This generates a new solution ...

... TAXI from HOME to SFO continues through the proctlssing.

Work on task i (TOP; ROC-UR) until Up drops below -1 OE1 O.
This generates a new solution (TRAIN·) of U=999, and spawns task j.

Work on task j (SP) until Up drops below 994.
This generates a "utility dominance," and causes j to be suspended.

Work on task i (TOP) until Up drops below -1 OE1 O.
This generates a new solution (TAX'·) of U=998, and spawns task k .

... TAXI from ROC to UR continues through Ihe processing.

149

FILLIN (task 4) returns a joint solution of U=668.

Figures A-2 through A-4 illustrate various aspects of the· progress of the

solution in the presence of cost of planning. They plot the lessening in utility

as planni~g proceeds; the numbers indicate the point at which the task of that

number was started. For example, Figure A-2 shows only task 1: it was

spawned with a solution that had U=774; the task itself generated solutions that

spawned tasks 2, 7, 8 and 9. Figure A-3 overlays all possible solution paths in

an attempt to compare the various different possibilities; note that this is not

the order in which PEGASUS actually pursued alternatives. The sequence 1-2-3-

4-5-6, the depth-first solution, is shown darkened. Notice that the optim&l

solution (task 21) would have actually required slightly less computing than did

the depth-first solution. Figure A-4 shows the actual planning sequence used by

PEGASUS. The numbers near the vectors label the task whose execution

resumed at this point; the numbers in a straight row indicate the points at

which new tasks were started. Overlaid on the drawing is a line whose slope

represen ts the cost of planning.

PEGASUS eventually stopped planning when the planning resources consumed

since the emergence of the depth-first solution exceeded the cutoff (U=59 in this

case). When PEGASUS suspended execution, the tasks were in the following

states:

Task Excess U Up, with cost of planning
number time

TOP
0 0 -593.2 -600.2

SP
4.0 656.1 652.3

INST ANTIATE
2 .6 666.8 663.6

7 0 666.2 663.2

8 .4 655.3 649.8

9 1.7 658.5 652.8

DOLLARS

3 0 654.4 649.2

10 0 652.0 646.7

11 0 650.8 645.6

14 0 649.5 644.3

18 0 644.0 639.8

24 0 647.2 644.3

26 0 638.8 635.8

27 0 665.8 662.9

FILLIN

4 .9 663.6 663.6

12 2.2 663.0 663.0

13 1.9 661.9 661.9

150

PROS

'1 ,
...

\
\

15 2.2
19 2.5
25 . 2.5
28 2.4

(no residuals here)

660.4 660.4
666.6 663.1
662.8 660.7
661.3 659.2

\
II

\.
\

'2 8 .. J..-----.-------------_-......9
..... ,
.~ ",. ",

,.'-..
"

.........

Figure A-2: History of solutions to task 1, as more planning resources'
are applied. Solutions started tasks 2, 7, 8 and 9. Notice that
solutions 2 and 7 were generated with a heuristic method, as they
have slightly lower utility than solution 8, which emerged later.

SP

SFO-DTW-ROC

(693; 2.76)

2 INSTANTIATE

tJ

SFO-ORD-ROC

(692; .1)

Fiqure A-I: Sf)arch tree undp.rtaken by PfGASUS in ttw example. Each
hnx corrF)<;pon(Js to ;] <;inqlr? plilllmng t~l:.;k: 111<) nllrnt)l'r~ 1fl';lcle Ihe
bOXl!"! IIldlcate Ihe order in wlllch the task was startell. Solutions exit
Ille uuttom of a box, amI are labf:lell with a [J.lIr (uillily; processing
tlilltl in seconds since the prevlou!. solution enmrqed from Ihe task).

I-"
C11
I-"-

152

\

------------...........

--------"-..

t .
~'--..---\ .-.. \ .. ------..

\. -------
'\ -------------- .

Figure A-3: Overlay of all possible solution trajectories. This plot
attempts to compare the depth-first path actually taken first (shown
darker) with other possibilities. Note that the depth-first path
terminates at a point labeled 6; the optirnum solution is labeled 2'1. An
enlargement of the center area is also shown.

m"" \1

\8 '3
'l..""-.1 V \

'- \ \\t

1 2 ::A 5, • 13 '3 1W

CDtr' cr "pt,A,.,.,.AlG.

13 145 16 • 171a9 20

Fiqure A-4: Actual planninq trilJl:!ctory 01 PEGASUS. The sequence 01
snlution uliliti.,s is shown an <J fUllction 01 timfl. Numbers near the
vectors label the ta';k resumed at th.lt point. Numbers in a roVi
indicate p0int') at which new ta~ks WP.rQ started.

\.

\13 "4(r \~1(.'\
23 ~ L

~
C1l
~

