
WFS: A Simple Shared File System
for a Distributed Environment

By Daniel Swinehart, Gene McDaniel,
and David Boggs

WFS: A Simple Shared File System for a
Dist ributed Envi ronment

by Daniel Swinehart, Gene McDaniel, and David Boggs

CSL·79·13 October 1979

Abstract: WFS is a shared file server available to a large network community. WFS responds

to a carefully limited repertoire of commands transmited through a network by client

programs, and can be viewed as a remote intellegent disk controller. The system does not

utilize network connections, but instead services independent page· level requests, one per

per packet. The design emphasizes reliance upon client programs to implement the

traditional facilities (stream 110, a directory system, etc.) of a file system. The use of atomic

file commands and connectionless network protocols nearly eliminates the need for WFS to

maintain state information from request to request. Various uses of the system are discussed

and extensions are proposed to provide security and protection without violating the design

principles.

A version of this paper will appear in Operating Systems Review, vol. 13 no. 5, Nov. 1979.

Key words and phrases: file systems, computer networks

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

WFS: A Simple Shared File System for a Distributed Environment 1

1. Introduction

Existing fue systems implement different levels of service for their clients, and correspondingly

leave different amounts of work for the clients to do. Traditionally, file systems have evolved to

provide more and more functionality from simple file. access to complicated arrangements which

provide sharing, security, and distributed data storage.

This paper describes WFS, a file system that provides a concise set of file operations for use in a

distributed computing environment Designed by the authors in 1975, and built by one of us

(Boggs) in under two months, WFS has successfully supported a number of interactive applications.

The filing needs of Woodstock, an early office system prototype, dictated the functional and

performance criteria of WFS. Woodstock provided facilities for creating, filing, and retrieving simple

office documents, and a rudimentary facility for exchanging these documents as electronic messages.

Woodstock's hardware environment was a network of minicomputers, each providing

specialized functions (terminal control, editing, filing, message services, etc.) in support of the

overall application. WFS was designed as the shared filing component, storing Woodstock

documents on high-capacity disks attached to one of these processors.

During development, Woodstock used small local disks on each editing processor. The

software that supported the editing application provided the facilities for transforming access to

physical disk pages into higher-level functions. These included character and word 110, file

positioning, and functions for opening and closing files. The application also implemented its own

hierarchical document directory structure.

WFS was designed after the rest of the system was operational. Consequently, it was easy to

define its functional specification. File access to the local disk was to be replaced by network access

to a shared file system running on another machine. A file system based upon page-level access to

randomly addressable files would be adequate, and a small amount of file sharing needed by the

application could be accommodated by a simple locking mechanism at the file level. A two month

limit on implementation time, combined with a conviction that a very simple file system

organization could achieve the same purposes as existing more complex designs, led to the system

described here.

2. System Description

2.1 The Client's File System Model

In this paper, a server is a program that supplies a well-defined service over a computer

network to client programs, which use the service to implement some application. A client program

mayor may not be operating in direct response to the actions of a human user.

2 WFS: A Simple Shared File System for a Distributed Environment

WFS is a server that provides its clients with a collection of files. It is currently implemented

on a dedicated Xerox Alto minicomputer [Thacker et al., 1979] augmented by one or more high

performance disk drives. A WFS file contains up to 60,516 data pages, each 246 16-bit words long.

Clients may write pages in any order, and WFS waits to allocate space for a page until it is first

written. A file is denoted by a 32-bit unsigned integer, its file identifier (FID). WFS allocates FlDS

for new files, on request, from a single name space. There is no additional naming or directory

structure within the system. For this reason, and because of the carefully limited repertoire of

operations, an application programmer might well choose to view each FlO as a handle on a "virtual

disk", interfaced through a moderately intelligent controller.

2.2 WFS Operations

The complete set of WFS operations is shown in Table 1. Each operation involves an exchange

of network packets using the protocol described in section 2.5.

Operation Oesc ription

Page Transfer

ReadPage(fid,pageNum,lock) Read or write page properties and page data
WritePage(fid,pageNum,lock,page)

File Management

AllocateFIDO A"ocate a new file and return its FlO
ExpungeFID(fid ,lock) If fid has no pages allocated, deletes the FlO entry
DeallocatePage(fid,pageNum,lock) Removes page from page map and releases storage

Status Query IModification

GetFI DStatus(fid) Return file status values
SetFI DStatus(fid ,Iock,mask, value) Set client status values
ReadPageMap(fid,lock,pageMapNum) Return page map showing which pages are allocated
Lock(fid) Return key, required in all subsequent operations
UnLock(fid) Unlock file (set lock to zero)

Maintenance

RealiocateFID(fid) These operations permit examination of the system at
ResetLastFID(newFid) the logical disk and physical page level. The FlO
ReadRealPage(realAddress) commands permit restoration of files from backup.
GetVMapO

WFSPingO WFS merely acknowledges this noop. This permits
one to check the basic communication path.

Table 1. WFS Operations

WFS: A Simple Shared File System fora Distributed Environment 3

The most commonly executed operations are those used for reading and writing a selected file
page, given its FlO and page number. A number of page properties are kept with each page, and a

client may request WFS to check or modify some of them (see section 2.3).

The second 'group of operations allows one to create a file (with no assigned pages) and obtain
its FlO, to expunge a FlO (illegal if any . pages remain), and to deallocate the storage for a page. In

addition, there is an operation that allows a client to create a file with an explicitly specified FlO

value. WFS reserves a range of FlO values for this purpose when it creates a new file system.
The third group allows the client to find out what, file pages are allocated, and to examine a

FlO'S current file properties. One of the operations allows the client to modify those file properties
that are under its control.

The fourth group provides maintenance facilities. Utility client programs use them to copy WFS

files to a backup store, restore selected files or whole volumes from backup, and repair client-level

file structures.

2.3 Properties

WFS associates with each data page a set of page properties, some of which are of interest to the
client (see Figure 1). WFS reads and writes the page properties along with the data. The first few

fields provide a safety check since they duplicate the FlO and page number, and the system checks
them on each page access. They may also be used by low-level crash recovery routines to

reconstruct damaged file structures. The client fields are assigned and interpreted by the client. A
client may ask WFS to compare a page's client properties against the ones supplied in a command,

and to abort the command if they fail to match. This allows the system to validate client assertions

about the page in question.

Page Identification
(FlO, pageNum)

Write Date 10 words

, System Private

Client Private

Page Data 246 words

Figure 1. WFS disk page format

4 WFS: A Simple Shared File System for a Distributed Environment

Similarly, each FIo has a set of jile properties (see Figure 2). The system uses some of this

space to record the status of the file directory entry (free, allocated, deleted, expunged); the client

cannot change these. Other properties are cooperatively maintained by the system and its clients.

Whenever a file is dirtied, WFS sets the .file's dirty bit. A client that desires higher reliability may

backup dirty files and then clear this bit. Finally, some space is reserved for client·private uses;

WFS does not touch these properties.

FlO

File Location
Page map disk address

FlO Properties
System private

Client/System shared
Client Private

Figure 2. WFS directory entry

2.4 File locks

A client may lock a file, preventing access by anyone without the proper key. The lock

operation returns a key that must be supplied with all subsequent operations on theflle, until either

the client issues an unlock operation or the lock breaks. WFS will break a .file's lock if no operation

has been performed on the file for a minute or so. A system restart breaks all locks. A key of zero

fits an unlocked .file. A client can detect a broken lock because the non-zero key will not fit the

lock on an unlocked file.

key lock access jile state

0 0 allowed unlocked
0 X denied locked
X X allowed locked
X y denied locked
X 0 denied unlocked

These locking operations provide primitives that are adequate to implement completely safe sharing

mechanisms (see section 4.2).

WFS:A Simple Shared File System for a Distributed Environment 5

2.5 Communications Protocol

. Within the Xerox research· community, the foundation for process-to-process communication is

an internetwork packet (or datagram), as opposed to a stream (or virtual circuit) [Boggs et al., 1980].
Many applications that use the Xerox internet choose to present a perfectly reliable stream interface

~onstructed from the raw, unreliable packets. A stream requires a connection-based protocol: a

substantial amount of state must be correctly- maintained· at both ends for the duration of the

connection.

TheWFS protocol, on the other hand, is based on the transmission of bare internetwork

packets, and does not assume that every packet will be reliably delivered. WFS is an example of a

connectionless protocol: the server maintains no state between packets, and the client maintains very

little-often none.

To perform a WFS operation, a client constructs a request packet containing the operation code

and any necessary parameters, and sends it to the selected WFS host (see Figure 3). WFS processes

commands in the order in which they arrive and then returns a response packet to the sender. The

response contains the requested data or a failure code. The server is entirely passive: it never

initiates activity, but only responds to requests.

Packet Header
Length, Addresses, etc.

WFS Operation
ReadPage, ExpFid, etc.

Request/Reply
Parameters

FlO, lock, pageNum, etc.

WFS disk page
Page Data

if required (246 words)

Packet Checksum

Figure 3. Request! Acknowledgement packets

Since the reliable delivery of. request .. packets and their responses is not guaranteed, the client

must take the appropriate steps to assure robust performance. It usually suffices to retransmit a

request if a reasonable interval has elapsed without receiving its response. The operations are

designed so that any write action will have the same effect if it is repeated. In addition, it must not

be possible for packets to be delayed for so long that write and read operations can occur out of

order without detection. This behavior is not difficult to arrange in our environment, but would

have to be dealt with if the methods were generalized.

6 WFS: A Simple Shared File System for a Distributed Environment

2.6 File System Implementation

WFS is written in BCPL [Richards, 1969], supported by a simple custom-tailored operating

system and communications package.

For each file, WFS maintains a page map that translates client page numbers into physical disk

addresses and identifies unallocated pages. Depending on the current length of the file, the page

map is either one or two levels deep (see Figure 4).

"" ,. Data
Page

0

'" -,. Leaf ... Data r

Page Page
Map
~

1

• FlO ... f-- • ,.
•

'" r Data
FID Page

Directory 245

a small file (up to 484 + kilobytes)

- '" "" ,. Leaf ,. Data
Map Page

0 0

"" ,. Data
... Page r Root I

Page 245

Map • r-- • •
"" "" ,. Leaf ,. Data

Map Page
1 246

• • • • • • ... '" r Leaf r Data
Map Page
245 - 246~1

a large file (up to 119 + megabytes)

Figure 4. WFS file structure

WFS: A Simple Shared File System for a Distributed Environment 7

The FID directory is a hash table implemented as a contiguous, fixed-size file at a known disk

address. Entries in the directory associate FIDS with their corresponding file properties and top-level

page map locations.

A single process interprets client operations in the WFS server. This process sequentially

extracts request packets from the network input queue, checks them for validity, and dispatches to

the indicated operation. When the operation completes, the process returns a response packet to

the requesting client. By using this simple, sequential scheme, lockup behavior is impossible, and

starvation (unfair treatment of a particular client) is very unlikely.

During a write operation, WFS reads the specified data page (and in some cases auxiliary pages)

before writing it, in order to validate its FID, page number, and other page properties. If a

discrepancy is found, the operation is rejected (see section 2.3). The system writes the data into its

assigned disk page immediately, before returning the acknowledgment packet.

Although a WFS application will occasionally make closely spaced references to the same data

page, such references are not frequent enough to warrant special .. treatment. However, multiple

references to auxiliary disk pages (page maps, directories, and allocation bit tables) predorpinate.

For this reason, WFS uses a substantial percentage of main memory as a write-through cache of

recently referenced disk pages. Discarding the least recently referenced page whenever cache space

is needed favors retention of the auxiliary pages, while accommodating the infrequent case of

closely spaced accesses to the same data page.

Since pages to be changed are always written immediately, the cache is entirely redundant and

is maintained for efficiency only; any page of it, or all of it, can be discarded for any reason

(including a system crash) without affecting the integrity of the file system.

2.7 Performance

WFS has never been used in an environment subject to a high volume of concurrent accesses by

a large number of hosts. However, we did measure its perfonnance under a heavy load generated

by hosts running the Woodstock application. Table 2 provides the perfonnance figures obtained

from these tests (see [McDaniel, 1977] regarding the network-based instrumentation tool). The table

compares both reading and writing times of WFS with times obtained by performing the same

activities using the application's local disk. The WFS times include the cost of the client's service

routines that provide packet composition, transmission and response interpretation activities as well

as the actual WFS software and disk access times. In each case, one or more Woodstock users

perfonned editing operations that produced a very high request rate. While the table doesn't detail

this, the network transmission times through the high-bandwidth Ethernet local network [Metcalfe &

Boggs, 1976] accounted for only a few milliseconds.· Measurements of subsequent server/client

configurations have produced comparable results.

8 WFS: A Simple Shared File System for a Distributed Environment

Read Page Avg Min Max

Using Local Disk 60 30 90

WFS with one user 48 20 260
with two users 76 20 330

with three users 100 20 330
All times in milliseconds

Write Page Avg Min Max

Using Local Disk 47 10 110
WFS with one user 73 30 260

with two users 109 30 350
with three users 150 40 420

Table 2. WFS performance observations

Write operations yielded poorer results than read operations in the tests because WFS reads data

pages to validate them before writing new contents (see section 2.6).

In the single-user (lightly loaded) case, WFS improved Woodstock's average input response time

over the local disk's time for several reasons: WFS'S disks were faster than Woodstock's local disks,

requested pages were sometimes still in the WFS main memory cache, and the amount of arm

motion on the local disk was reduced because it no longer had to seek between a code swap-area

and the user data area.

In general, performance has been adequate for a number of nontrivial applications. Notice that

the measurements exhibit nearly linear degradation with increasing load. A system implementing

more sophisticated scheduling methods could improve this performance.

3. Design Philosophy

The principle theme of the WFS design is that client programs must provide the higher-level

abstractions usually associated with fue systems, while WFS implements- a simple, low-level

abstraction with relatively few operations and with high reliability. Low-level, reliable file service in

WFS stems from its passive, atomic operations which are characterized by the following properties:

• Each operation rnay access at most one data page, and no more than a few auxiliary
disk pages.

• Each operation runs to completion before WFS acknowledges it. A write operation is
not complete until the data is on the disk. Between operations, WFS retains no state
informatlOn that cannot be regenerated from the contents of the disk.

WFS: A Simple Shared File System for a Distributed Environment

• Command and protocol boundaries are the same-each command and each response
comprises a single internet packet

• Clients access the server through connectionless protocols-each packet proceeds
independently over the network.

9

The receipt of a command acknowledgment is an assurance that the overall integrity of the file

system is correct at the "virtual disk" leve1. This means that a subsequent crash recovery or other

reinitialization in either the client or the server will be invisible except for a possible time delay.

Although this approach places additional burdens on the client and ultimately limits the efficiency

of deletion and copy operations, it simplifies the protocol design by limiting requests and responses

to single packets. It also improves the ease with which a reasonable and fair response to client

requests can be guaranteed. We believe this property was crucial to meeting our time constraints

for implementing WFS.

The connectionless protocol frees WFS from the requirements of maintaining communication

state information during client interactions, and reduces the work clients must do to communicate

with WFS. Since we have found that the code size and computing overhead of high-level

communication protocols often exceeds that needed to provde the higher-level abstractions resting

on top of them, this reduction becomes important, especially when client programs are implemented

on relatively light-weight personal computers.

If the client receives an acknowledgment for a write request, then the write operation has

clearly occurred. The write algorithms are also constructed to reduce the possibility that the state of

the file system can become inconsistent at the file and page leve1. Therefore, our atomic propeny

provides a high probability, but not an absolute guarantee, that an unacknowledged write request

has been performed either in its entirety or not at al1. The WFS system and protocol have no

facilities for assuring that higher-level transactions involving changes to multiple data pages have

this property, although a client-based algorithm can achieve this goal [paxton, 1979].

4. Functional Capabilities and Implications

This section examines the extent to which the WFS design can support generally useful file

system activities. We first look at uses that do not involve the sharing of files, then extend the

discussion to shared applications. Finally, we consider the comparative cost to the client of using

WFS instead of a more functionally rich system.

4.1 Single User Applications

We contend that, for uses that do not involve sharing, WFS is functionally sufficient, since a

more traditional system (e.g., character-level 110 and directory functions) can be built using the

"virtual disk" provided by the page access operations. A single implementation of these facilities

10 WFS: A Simple Shared File System for a Distributed Environment

might well satisfy the needs of a number of applications. Our application, the original justification

for WFS, was Woodstock; other applications, described elsewhere [paxton, 1979; Shoch & Weyer,

1979], soon emerged.

Qients must provide their own naming and file directory structures. If an application creates a

file and forgets the FID returned by WFS, the file is lost, although client programs can be written to

scan the FID directory and find it again. The· Woodstock application implements a directory by

keeping FIDS "hidden" behind human usable document names in text files. Since the FID is a

sufficient handle to access the file, Woodstock can easily and efficiently find a. file regardless of the

context of its reference. Other applications have made quite different arrangements, all of which

are of no concern to WFS.

We have found that it is straightforward to rewrite device drivers to use network

communications rather than driving the disk directly. Since WFS makes no assumptions about the

structure of client files except that they are a sequence of pages, specific file structures are

conventions enforced only by applications. For example, the conversion of Woodstock from a local

disk to WFS required no file structure modifications.

As indicated in section 2.5, some network configurations can lead to the arrival of so-caIled

delayed duplicate packets, which can cause write and read operations to occur out of" order. The

rather primitive communication protocols in WFS would need to be augmented for the system be be

usable in an environment where this behavior was possible. One approach would be to retain

sufficient mutual state information between client and server hosts (i.e .. , a simple connection) that

packets arriving out of order could be detected and discarded. The packet sequence numbers us~d

to detect delayed or fraudulent packets would be allowed to repeat only over extremely long

intervals (months or years). See [Lampson & Sturgis, 1980] for an example of this approach.

4.2 Shared Applications

In examining WFS'S ability to support shared access to files, it is useful to consider the

following three categories of file system state:

Long-term information endures throughout a file's lifetime or longer. Examples are the data

files themselves,. the system allocation· tables, and the FID directory.

Medium-term information is retained across more than one atomic operation. The timeout

lock that enables sharing of data is the only medium-term state WFS keeps, whereas

traditional file servers also maintain medium-term information associated with

communication connections, open files, and the like.

Short-term information is the state that must be kept during the execution of a single atomic

operation. In WFS, though there may be large amounts of such information, all of that state

may be discarded after an operation completes without sacrificing the integrity of the file

system.

WFS: A Simple Shared File System for a Distributed Environment 11

Clearly, the maintenance of medium-term information is necessary for any reasonable set of file

system facilities. We believe that the client can maintain all such information, except for that

required to enable the locking of data when shared access is possible. The goal is an overall
improvement in the size and cleanliness of the total system.

WFS'S medium-term lock information must also be augmented by client activities to obtain file

sharing with behavior that can be guaranteed. While Woodstock's approach to sharing was quite

primitive, Paxton discusses the design of a file system that uses WFS as its base and that provides

reliable shared access to user files [paxton, 1979]. Clark describes time limit locks in a shared

resource system. I~ his system, 1/0 device routines built on top of a virtual memory facility must

implement reliable service in the presence of memory locks which will break after their time limits

expire [Clark, 1974]. The Distributed File System (DFS) [Israel et aI., 1978] uses time limit locks as

part of its approach to sharing, although DFS itself handles lock timeouts.

4.3 Cost Considerations

Implementing the higher abstractions on client machines costs them code space and execution

time, although much of this expense is recovered because the interface to the server is simpler.

Correspondingly, WFS saves code space which it may use for disk buffers, and saves execution time

which it may provide to more users.

Our insistence upon the atomic operations property has led to some objectionable inefficiencies.

An obvious example is the requirement that clients deallocate files, one page at a time, in order to

delete them. Another drawback is that there is no provision for high-speed access to consecutive

pages. In section 5.2 we suggest some simple extensions to handle these kinds of operations.

5. Possible Extensions

5.1 Privacy and Security

Any host that can communicate with WFS has full access to all operations on all WFS files.

Thus, security cannot be guaranteed, and privacy can be guaranteed only if the application encrypts

everything. In this area alone WFS is not adequate to meet the functional needs of a generally

useful file server (see [Birrell & Needham, 1980] for a discussion about the attributes of a universal

file server).

For our experimental applications, the absence of server-enforced security was reasonable,

because security and privacy were supplied by application programs. Again, we were willing to

impose more responsibility on the client, in return for the flexibility to experiment with different

user-level protection schemes, or to defer protection issues altogether.

12 . WFS: A Simple Shared File System for a Distributed Environment

Methods for communications privacy and for access control would have to be added to WFS to

achieve acceptable security in' a more hostile environment. By applying recent work in both'these

areas, this could be accomplished without affecting the simplicity or robustness of the current

design.

Communications privacy (see [Kent, 1976] for a general discussion) can be supplied' by a

number of encryption approaches, and can be compatible with the atomic, connectionless design of

WFS. The methods developed in [Needham & Schroeder, 1978] are particularly relevant.

Flexible use of a file server causes more problems than an encryption system can handle easily,

but they are problems that a capability-based access mechanism can solve [Birrell & Needham,

1980]. One'reasonable approach for WFS would adapt a method, described in [Needham, 1979], for

adding capability, access to a conventional file server that has login authentication. To perform an

operation, a client would present an unforgeable capability for a file instead of the file's FID. The

file system would create and return such a capability in response to a file creation request from an

authenticated user. This initial capability would allow the possessor arbitrary access to the file.

Additional operations would allow the client to request different capabilities for the same file, with

restricted access rights (e.g., read-only). Such capabilities could be passed safely to other users.

Qients would use these capability facilities to produce applications exhibiting the desired user-level

protection.

WFS would implement these capabilities as records encrypted with a private key. The records

would include the FID and the file access rights associated with the capability. The capability

generated at file creation time would grant full rights to the creator. This approach would allow

WFS to locate the relevant FID, check access, etc., by merely decrypting the incoming capability,

without the need for additional information. The required user authentication could be handled by

supplying an operation that would return a "user identification capability" when presented with a

user name and correct password.

In this section we have discussed minor extensions to WFS that would increase the, privacy and

security of its transactions without sacrificing the partitioning of client and server responsibilities.

However, to build into the server the additional transaction-based interface that Paxton produced in

the client [paxton, 1979] would require a fundamental redesign. Systems that provide capability or

transaction-based facilities at the server level are reported in [Needham & Birrell, 1977; Israel et aL,

1978; and Birrell & Needham, 1980].'

5.2 Changes for Efficiency

The performance of WFS is ultimately limited by one of its strengths: the independence of each

page-level request When it is known that an application will require the successive use of a

substantial number of consecutive file pages, much better performance would be possible if this

knowledge could be used to optimize their transfer to and from the disk. One way to do this would

involve extending the command set to include an· explicit statement that a range of pages will be

WFS: A Simple Shared File System for a Distributed Environment 13

needed, counting on the server's page caching methods to transfer them efficiently into its main

memory in advance of their use. Another method would not involve any new commands, but

would require the elaboration of the command interpreter to allow the processing of more than one

incoming operation at a time. Infonnation about sequential disk access could be passed on to the

disk-management level, where the same efficient transfer scheduling decisions could be made.

Although the network software and hardware delays are smaller than disk access time, they are

not negligible. The latter method above, allowing multiple outstanding requests, could also result in

an average increase in network throughput.

If the basic page transfer perfonnance were improved, one major source of inefficiency would

remain: the absence of operations for deleting entire files, copying their contents, etc. These

operations were omitted in order to guarantee the client response times and file integrity properties

discussed at length above. It would be straightforward to spawn a process within WFS to submit

successive page-level requests (at the same priority as client requests) until the task was complete.

System integrity at the virtual disk level would not be impaired, although a server crash could

prevent the file-level task from completing (see [Lampson & Sturgis, 1980] for a more robust

approach to the system crash problem). The server could acknowledge the operation either on

receipt of the request or on final tennination; both approaches are problematical, since· they violate

the atomic property in one way or another. An alternative would be for the client to retain the

burden of sequencing these activities, but to speed them up using one of the bulk-transfer methods

proposed above.

While none of the methods discussed in this section have been tried, we are confident that their

application would result in a shared page-level file system with very impressive overall perfonnance.

6. WFS Applications

In addition to the Woodstock application, now defunct, whose requirements drove the

development of WFS, a number of applications have been built that continue to use WFS for their

files. Two of them are described in [paxton, 1979 and Shoch & Weyer, 1979].

A final example of an application with a set of higher-level characteristics different from

Woodstock is an implementation of an experimental telephone directory data base. This application

uses entirely different naming structures and access methods than Woodstock did, but can coexist

with other WFS-based applications.

The telephone directory application runs on Altos in the Xerox internet, and provides access to

approximately 40,000 entries. Each entry associates a name with a telephone number and other

public information. All of the entries are stored in a single WFS file with a fixed, known FID. The

user supplies a key, and the application responds with one or more entries whose names match the

key (the key is an initial substring). A typical single-entry query can be completed in approximately

one-half second, reading an average of three WFS data pages.

14 WFS:A Simple Shared File System for a Distributed Environment

For this simple application. a data base method using B-Trees [McCreight, 1977] was an

obvious candidate. An available B-Tree package (which runs in the client machine) and WFS made

an ideal combination: the former implements a particular high-level data structure, given operations

'that can read and write numbered data pages of any fIXed size; the latter implements just these

operations without in any way interpreting the contents of the pages.

7. Conclusion

We have demonstrated empirically that a very simple shared file server, teamed with

appropriate· fue system elaborations in the client host, can meet or exceed many of the capabilities

of more comprehensive facilities at acceptable cost to the client. Clients benefit from the flexibility

and file system robustness resulting from this approach. Extensions to meet more stringent

performance requirements and to provide adequate security seem possible. without major

modification to the design. Although this approach has been quite successful, it remains to be seen

which of the possible partitionings of server-client functions will prove to be the most powerful and

convenient.

WFS: A Simple Shared File System for a Distributed Environment 15

References

[Birrell & Needham, 1980]
A. Birrell and R. Needham, A Universal File Server, to appear in Communications of the ACM.

[Boggs et al., 1980]
D. Boggs, 1. Shoch, E. Taft, and R. Metcalfe, Pup: An Internetwork Architecture, to appear in
IEEE Transactions on Communication; also available as CSL-79-10, Xerox Palo Alto Research
Center.

[Clark, 1974]
D. Clark, An Input/Output Architecture for Virtual Memory Computer Systems, MIT MAC TR-
117, January 1974.

[Israel et al., 1978]
1. Israel, 1. Mitchell, and H. Sturgis, Separating Data from Function in a Distributed File
System, Proc. Second International Symposium on Operating Systems, IRIA, Rocquencourt,
France, October 1978; to appear in D. Lanciaux, ed., Operating Systems, North Holland.

[Kent, 1976]
S. Kent, Encryption-based Protection. for Interactive User-Computer Communication, MIT MAC
TR-162, May 1976.

[Lampson & Sturgis, 1980]
B. Lampson and H. Sturgis, Crash Recovery in a Distributed Data Storage System, to appear in
Communications of the ACM.

[McCreight, 1977]
E. McCreight, Pagination of B*-Trees with Variable.;Length Records, Communications of the
ACM, 20(9):670-674, September 1977.

[McDaniel, 1977]
G. McDaniel, Metric: A Kernel Instrumentation System for Distributed Environments,
Operating Systems Review 11(5):93-99, November 1977.

[Metcalfe & Boggs, 1976]
R. Metcalfe and D. Boggs, Ethernet: Distributed Packet Switching for Local Computer
Networks, Communications of the ACM, 19(7):395-404, July 1976; also available as cSL-75-7,
Xerox Palo Alto Research Center.

[Needham, 1979]
R. Needham, Adding Capability Access to Conventional File Servers, Operating Systems Review,
13(1):3-4, January 1979.

[N eedham & Birrell, 1977]
R. Needham and A. Birrell, The CAP Filing System, Operating Systems Review 11(5):11-16,
November 1977.

[Needham & Schroeder, 1978]
R. Needham and M. Schroeder, Using Encryption for Authentication in Large Networks of
Computers, Communications of the ACM, 21(12):993-999, December 1978; also available as CSL-
78-4, Xerox Palo Alto Research Center.

[paxton, 1979]
W. Paxton, Client-Based Transactions to Maintain Data Integrity, to appear in Operating
Systems Review, 13(5), November 1979.

[Richards, 1969]
M. Richards, BCPL: A Tool for Compiler Writing and System Programming, AFIPS Conference
Proceedings (SJcc) 35:557-566, 1969.

16 . WFS: A Simple Shared File System for a Distributed Environment

[Shoch & Weyer, 1979]
1. Shoch and S. Weyer, Page Level Access to a Network File Server from Smalltalk, to appear.

[Thacker et a/.. 1979]
C. Thacker, E.· McCreight, B. Lampson, R. Sproull, and D. Boggs, Alto: A Personal Computer,
Computer Structures: Readings and Examples (Siewiorek, Bell, and Newell, eds.), 1979, to
appear; also available as CSL-79-11, Xerox Palo Alto Research Center.

O'~
.... "T1

'" en 9.;
'" en
5: 3'
c:'O -
CI> CI>
a. en
m:r
:::J '" <
~. ~
g "T1

3 ;:
CI> en
~<

'"
CI>

3

'" " '" ~
n
C
III

" j!:
OJ

" a.
C
OJ
< c:
til o
'" '61

