
An Entity-Based Database Interface

By R. G. G. Cattell

An Entity-Based Database Interface

by R. G. G. Cattell1

CSL-79-9 August 1979

Abstract: A user interface to a database designed for casual, interactive use is presented. The
system is entity-based· the data display to the user is based upon entities (e.g., persons, documents,
organizations) that participate in relationships, rather than upon relations alone as in the relational
data model (Codd[1970)) .. Examples from an implementation of the system are shown, for a
prototype personal database (PDB), developed in connection with the ZOG system at Carnegie
Mellon University (Robertson et al[1977]). Some details of the interface and associated issues
concerning relational normal forms, views, and knowledge-based assistance are presented.
Experience with the prototype system suggests that the entity-based presentation is appropriate for
types of casual interactive use that existing database interfaces do not address, such as browsing. It
is proposed that such an interface could be used to supplement a query language or other interface
to allow users both kinds of views of the data.

IThis work was primarily performed while the author was employed at Carnegie-Mellon University and was sponsored by
the Office of Naval Research under contract NOOO14-76-0874. This paper was revised for publication as this report
at the author's present address, Xerox Palo Alto Research Center. Further work based on the entity-based idea is now in
progress. Comments on the ideas expressed herein arc solicited.

CR Categories: 3.79, 4.33

Key words and phrases: database interface, man-Inachine interface, semantic data model, entity
relationship data model

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

1

1. Introduction

Motivation und Goals

This paper presents a human interface to a database system with some desirable properties for

interactive usc. The central idea of the interface is based on viewing data as a graph network. The

graph used is analogous to some recent database models (e.g., Chen[1976]), as opposed to the strictly

tabular form of the relational data model (Codd[1970]). The nodes in the graph are objects in the

data base (referred to as items, or entities) such as a person, place, company, department, or

document. The edges in the graph are relationships (tuples) between these entities. (Unlike

ordinary graphs, the edges may relate more than two nodes, but the reader may ignore this for

now.) At any time, a particular entity and all the relationships (edges) in which it participates are

displayed on a user's CRT screen. The user may move to a related entity (adjacent node) in the

graph by selecting one of the relation instances shown on the screen in this menu. The related

entity then becomes the current one, with the relationships in which it participates again displayed

as a menu. This simple mechanism is the basic idea of the entity-based interface.

This mode of interaction is promising for a casual interface to a conventional data base because

completely naive users very quickly become accustomed to making selections to obtain the

information they want. This ease of use was observed in the PROMIS Problem-Oriented Medical

Information System (Schultz et al[1971]), that helped motivate the ZOG and PDB work. It is not

necessary to learn any sort of data base interaction language; the user is simply making choices,

whether browsing through the data base or looking for a specific piece of information. This

interface is a competitor for natural language interfaces to data bases, for SOlne applications.

The entity-based mode of interaction is promising for a personal data base for more subtle reasons.

The structure of the data base is very similar to that of the semantic net model of human memOJY,

in which long-term memory consists of a set of entities and relationships between them. The

experiences reponed here suggest that a "mirror" of the user's memory in this form has some

eksirable properties. For example, the user can very quickly find information in the data base,

because it is "indexed" in essentially the same way the uscr has assimilated the relationships. The

clata base can thus serve as a particularly efficient External N[emory (Newell & Slmon[1972]) for the

user. The prototype implementation of the entity-based data base was in fact tenned PDn

(Personal Data Base) because of its envisioned usefulness to a student, scientist, Inanager, etc., for

this purpose.

Developers of similar information systems for personal data base usc have observed that systems of

this sort can be very useful if a wide range of kinds of information people usc daily can be

represented and manipulated easily. Cashin et al[l973] and Reitman et al[1969] built systems with

2 An Entity-Based Database Interface

similar goals and mechanisms to this work. However, here a stnlctured database model is used as

the basis (rather than pure text plus cross-references), without sacrificing this utility for

"miscellaneous" information.

Others have also developed interfaces to relational database systems taking advantage of the two

dimensional display and/or making selections on the screen (Zloofl1975], Senko[1977b]). These

interfaces are similar to the one presented here in that they take advantage of the fact that

recognition is easier than recall for the user: the system presents the choices which the user chooses

or fills in. These interfaces differ from the one presented here in that they present the user with the

data schema (the types of data and relation definitions) rather than the data themselves: the user

composes queries by selecting relations and typing in particular desired values rather than using

selection to move between particular data. The two kinds of interfaces are appropriate for mutually

exclusive kinds of use. Working at the level of the data themselves is useful for browsing through

information or answering simple single-tuple queries. Working at the higher level allows

manipulation of sets of items as in a query language but gives the user little assistance in exploring

the data directly. It is possible to allow both levels of interface in one system by representing the

high-level database schema as any other data in the database, as will be shown shortly. A database

system should of course provide various kinds of interfaces to the same data to best support a

variety of applications.

Relations and Entities

Each CRT display page, corresponding to an entity in the data base graph, is referred to as a frame.

The title of a frame for an entity is a print name for the concept it represents, and the relationships

(relation instances) in which it takes part are displayed as selections on the display. The user may

follow one of these relation-links (which in the simplest case are binary relationships between

concepts) to the other item(s) involved by making that selection.

Example

For example. a typical frame might be displayed as follows:

Don Knuth

A. type: person

n. member-of: Stanford CS Dept.

C. spouse: Jill Knuth

D. phone: 936-1212

E. author-of: Fundamental Algorithms

F. author-of: Structured Programming with Go tos

The selections labelled A through F represent relationships in which the entity "Don Knuth"

An Entity-Based Database Interface 3

participates. The frame for "Stanford CS DepL" would be displayed if the user made selection B:

Stanford CS Dept.

A. type: organization

B. psub-of: Stanford

C. phone: 497-2273

D. city: Palo Alto

E. member: Don Knuth

F. member: ...

The actual mechanism for making selections differs according to the hardware interface available.

Some terminals have touch-sensitive screens, and the user simply touches the text of the selection

on the screen. On conventional terminals, selections can be made by typing the character preceding

the selection.

Tn addition to simply moving to adjacent nodes in the data base, there are various commands which

the user may invoke. For example, the user may create and delete relationships, go directly to a

frame with a given name, or retUlTI to a previously displayed frame. The commands are listed in

the appendix.

Database Scope

It is difficult to communicate without on-line demonstration the "feel" of the entity-based interface

and the types of data to which it affords itself. In a typical interactive session with the PDB

prototype, for example, a user might arrive at a frame representing lhe subject area of Database

Models by wandering down a subject hierarchy network. Displayed on the screen now would be

other related subject areas as well as papers on that subject, projects in that area, etc. The user

could select a particular article, at which time its author, publisher, etc., would become visible. If

notes on the article have been entered, then one or more of the selections would be a notes

relationship, and these can be viewed. Furthennore, the notes can be broken up into individual

comments on the article, so that further comments and questions that arise (possibly entered by

different users) can be linked together in a network of related ideas. When examining anyone

idea, the related ideas are immediately available selections. The user can back up to previously

viewed entities, for example to look at other articles by the same author or to view organization(s)

to which the author belongs and examine other work at the same location. The total input from the

user to examine all of these data might be as little as a dozen single-fingerstroke selections.

In the prototype data base there are frames representing persons, places, projects, institutions,

documents, journals, subject areas, statements, questions, propositions, and special data (e.g., dates

and phone numbers). The relationships between these are used to represent a wide range of kinds

of information. These can include the kinds of information one might find in an address book, on

library index cards, employee records, inventories, and in general in any systematic set of data for

4 An Entity-Based Database Interface

which databases are conventionally used. In addition, relations were also used to embody less

structured information. Discussion of issues can be decomposed into questions and statements

through relations such as answer (to a question), evidence (for a statement), counterevidence,

implication, suggestion, proposition, and so on. Arbitrary relations can be invented by the user as

needed to encode infonnation, e.g., "Joe Smith is a friend of George Jones who attended conference

XYZ in 1978". The relation psub is used to indicate physical subparts of .geographical entities (e.g.,

USA and Massachusetts). The relation ssub is used similarly in a lattice of subject areas (e.g.,

Computer Science and Data Bases), for classification of articles, projects, and so on. Other relations

such as osub (organizational subpart) also create hierarchies. All relations are superimposed in the

user's window into the database as opposed to consulting a different source for each index or type

of information.

2. The Extended System

The next few subsections discuss ~ome issues which arose in the implementation of an entity-based

database interface.

Entity Display

The basic display of entity as frames in the prototype system has already been described: the print

name of the item is given, followed by all the relationships in which it participates. The

relationships are displayed as lines of text, which can be defined in BNF as <selection> :: =

<selection letter>. <relation><inverse indicator>: <other item>

where <inverse indicator> is either null or It-of' depending on the directionality of the relationship.

For example, note in the previous example that for Don Knuth we display

member-of: Stanford CS Dept ...

while for the Stanford CS Dept frame we see

member: Don Knuth ...

A more sophisticated convention for display of relationships is desirable, but this simple mechanism

worked adequately for the PDB application. We will discuss some more general mechanisms later.

Note that certain nodes in the data base graph are used only as text strings, and would normally

have only one edge emanating from them. For example, the phone number 936-1212 would have

the one selection "phone-of: Don Knuth". Such an item is referred to as a value item, as opposed

to an entity item which corresponds to something with independent existence in the real world (see

Wiederhold[1977] or Hall et al[1976] 'for a good discussion of this distinction). Value items need

An Entity-Based Database Interface 5

not be treated as full-fledged items, to improve time or space costs in the implementation. For

example, the values might be stored directly for value items, but a pointer of some form is desired

for entity items. There need only be displayable frames for entity items (thUS the tenn "entity

based interface"). We will use the term item to refer to both entity and value items, and frame to

refer to their display on the user's screen.

If an entity is involved in many relationships, there may be too many selections to display on the

CRT screen. In this case the frame is broken into multiple pages, or subframes, with a mechanism

to move forward/backward through the pages (see appendix).

Another feature provided in the prototype implementation proved valuable for some uses: it is

possible to associate an arbitrary piece of data (in this case, text) with an entity in addition to its

print name. The text, if it exists, is displayed when the entity is displayed. This might be used, for

example, for a further description of an entity, or for small documents (such as notes on an article

that the data base references). It should be noted here that print names and links take relatively

little space in storage, so that thousands of items can typically be cached in the physical primary

memory. In contrast, the text fields must normally be stored in secondary memory.

The I3NF for a frame is now

<frame> :: = <print name of item>

<supplementary tex t>

<selection>*

where <selection>* is 0 or more <selection>s as defined above (we are ignoring multiple pages here).

Note that the print names of items must be unique, since these are the sole way to refer to a frame.

If two objects in the real world actually have the same name, they are made unique by appending

a generated number to the name. For casual usc, some sort of string search mechanism is useful for

referring to items. For example, a wild card "?" may be used when an item is desired with a given

substring in its print name.

Item types

Items in the database belong to certain domains, and each relation specifies the domains (types) it

requires of its attributes (arguments). For example, the "author" relation requires a document as its

first attribute, and a persall as its second attribute. The system uses this information not only to

check that new relationships are valid, but also to automatically derive the types of items on the

basis of relationships that are input.

The type mechanism used is the conventional specification of relation attribute domains in the

relational database model (Codd [1970]). Relations are items, too: relations and the relationships in

which they participate arc stored and Inanipulated just as any other item. For example, the frame

6 An Entity-Based Database Interface

for spouse looks like this:

spouse

A. type: relation

B. prop: symmetric

C. dimension: 2

D. attr[l]: person

E. attr[2]: person

The frame indicates that "spouse" is a relation (this is required by the system for use as such), that

it is symmetric (this suppresses the "-of' extension for the inverse relation), and that it takes two

items as attributes, both of type person. Thus the schema of the data base, that defines and controls

the data base system, is represented in the data base itself, and thus can be examined and

manipulated just as any other data.

It is possible to go still one step further, and allow a hierarchy of types. For example, a subtype of

type "animal" might be type "person", "elephant", "cat", etc. Type "person" might be subdivided

into "male person" and "female person", as well as in other dimensions ("faculty", "staff',

"student"). What this hierarchy of types gains us is a more precise specification of relation

domains. For example, the second attribute of the "father" relation must be a "male person", not

just a "person". The idea of a hierarchy of types is not new; these have been used extensively in

Artificial Intelligence (Quillian[1970], Fahlman[1978]). Other ideas are also suggested by the

analogy of the data base to semantic nets, such as the inheritance of properties to subtypes (this will

be discussed shortly).

N-ary relations and Normal Forms

Thus far, we have dealt only with binary relations. We now introduce the more general mechanism.

Relations with one attribute are termed properties. "Symmetric" in the frame for "spouse" is an

example of a property.

Relations with more than two attributes are represented in the current implementation by COil texts.

Two attributes of the relation must be thought of as distinguished from the others; the remaining

attributes comprise the context. Syntactically, contexts are displayed in brackets. For example,

member[professor]: John Smith

indicates that John Smith is a member of an organization, and in particular that John Smith is a

professor there. A special mechanism to nlake selections is of course necessary now: for a touch

screen, the fields of the selection must be independently selectable; for conventional terminals, the

typed selection letter must be preceded by a digit indicating the attribute position desired (this

defaults to the other primary attribute if no digit is given, giving the convenient effect we had

An Entity-Based Database Interface 7

previously for binary relations). J\ more general mechanism to represent relationships with more

than two attributes is desirable, but again, this was found to be adequate in the prototype.

Relations of order higher than three may similarly be expressed, with multiple attributes as contexts.

Real-world relationships which require many attributes have been difficult to find in this work,

however. Relations whose third or fourth attribute is not semantically subordinate to the other two

(e.g., the "role" of the membership, "professor", in the above example) are even more unusual; the

author has not encountered a realistic one.

In contrast to this, examples in the relational data base literature are frequently relations of higher

order. J\ typical example is one whose primary key is some entity domain such as persons in some

role (e.g., employees). A series of successively more restrictive normal forms are introduced (INF,

2NF, 3NF by Codd[1970], 4NF by Fagin[1976D to avoid semantic update anomalies which

essentially are the result of too many "real-world" relations represented by a single database

relation. These real-world simplest form relations are teoned functional dependencies (FDs). The

normalizations reduce the order of relations by introducing new relations to separate these undesired

FDs.

'The nIle used in the PDB data base is relations of minimum possible order. Specifically, the data

base is in what we will telm Functionally Decomposed Normal Fonn (FDNF), in which the relations

are exactly the FDs defined over the real world represented. FDNF is more restrictive than 4NF:

not only do update anomalies due to non-orthogonality not occur, but in fact no further

nonnalization could possibly be perfonned in the sense of breaking out ilnplicit dependencies.

A further interesting difference of FDNF over the conventional relational representation is that it is

canonical: there is only one fully decomposed form to represent any given set of facts in a model of

the real world, while there arc many equivalent but different sets of rclations in 4NF. There is

some discussion of FDNF by Swenson & Schmid[1975], who refer to FDs between an entity and

value as characlerislics, and between entities and entities as as associations (they apparently

overlooked FOs of order greater than two). As Senko[1977a] puts it,

"If followed to its apparent conclusion, the [current trend of! work will result in the

definition of a basic data structure component for representing a single fact in the real

world, rather than a complex structure [hierarchy or n-ary relation] containing many facts."

Hall et al [1976], who refer to entities as surrogates, recommend the equivalent of FDNF as more

understandable but also for better properties with respect to update anomalies on primary keys.

Recently, a large family of semantic data models have been proposed (e.g., Chen[1976], Benci et

a1[1976], Smith & Smith[1977], Kerschberg et al[1976], Hammer & McLeod [1978], Rissancn[1977])

which now recognize entities and irreducible relational form (FDNF) as desirable extensions to the

relational model. A discussion of these data models is beyond the scope of this paper.

Keep in mind that the logical model which the user sees is independent of the physical model

8 An Entity-Based Database Interface

(which could join several functional dependencies into a single relation); most of the arguments

mentioned in the literature are concerned with the logical model.

Standard Database Functions

As mentioned previously, the entity-based interface is an extension rather than replacement for

other interfaces. Searches and modifications of the data base can be made either through a

programming language or a command/query language (these were provided only in a nldimentary

form in the current implementation). The significance of the system described here is the human

interface rather than the underlying storage mechanism: the system would probably best be

implemented on top of a standard relational or other data base system. (However, reasonably fast

access to all relationships in which an entity participates is needed in the underlying system to do

this.)

The example of a personal data base has been used in this work. However, there is considerable

profit in a shared data base when a large network of items is commonly used by multiple persons.

The same issues arise here as in any system with multiple users modifying a data base, of course.

Locks must be made upon items/relations modified, records kept of originator and time for

changes. When it is intended that the system be used as a shared data base as well as a personal

one, we need also consider:

1. The user may wish to mark certain items as private, Le., not visible to other users (this is

done with the rclation "private").

2. The user may wish to have views of the data base other than the common view. This

question is addressed in the next section.

Extensions to the Interface

i\ few extensions of the interface thus far described should be mentioned here, although only

briefly since these are hypothetical and have not yet been implemented.

One valuable extension would be views, Le., showing the user relations other than those explicitly

stored in the data base. Relations may be added or deleted from what the user sees, respectively,

through:

1. Inferred Relations: A relation may be displayed which is not explicitly in the data base, but

redundant and derivable from the relations present. For example, if X is the area code of

Y, and Z is a geographical subset of Y, then X is the area code of Z. Thus an area code

can be stored once but be displayed for all cities, companies, and persons in the area

implicitly. The inheritance-of-properties inference used in semantic nets suggests defining

defaults through inferred relations. A set of ntles would be used to· define inferred

An Entity-Based Datahase Interface 9

relations in terms of existing ones. Inferred relations may either be stored or computed at

display time. Some research work has been done on dealing with views and inferred

relations (e.g., Minkcr[1976]).

2. Filters: If the user is interested in only onc dimension of the data base, or some subset of

dimensions, then display can be limited to a specific set of relations. This can be done on a

permanent or temporary basis, and can be used in conjunction with a type hierarchy to

view entities in particular roles (e.g., as a "professor" as opposed to the more general

catcgory "person").

Given a CRT display with graphics capability, another extension of the interface should be

considered. The entity-based interface is based upon giving the user a window into the database

through which a single' graph node and relations emanating therefrom may be viewed. I\. natural

extension of this is multiple windows into the database, so that many nodes may simultaneously be

viewed. This changes the character of the interface for output to the user, but also for input: a user

may point to an existing entity rather than type its name in creating new relationships.

Another area for future work is in encoding procedural knowledge to produce an "intelligent" user

interface (Goldstein[1979]). As discussed earlier, a window must be truncated upon display if there

are too many relationships to display. Knowledge about the semantics of the data, the user's

interests, and the "conversational" context (previous nodes viewed) could be used to decide which

relationships to display first. The fonn in which the relationships are displayed may also be varied

according to this knowledge, for example by automatically abbreviating names of well-known items.

3. Conclusions

A psychological evaluation of the relative effectiveness of the entity-based interface is beyond the

scope of this paper. However, some statistics on the use of the prototype system should be useful

in getting an idea of the properties of the interface. Also, the reader can find a more involved

discussion of the issues in a psychological study of the entity-based interface, Mantei &

Cattell[1979].

Some Results

The idea of the entity-based interface is a marriage of the ideas of selection- based interface in the

ZOG system and the structure provided by a more sophisticated data model. The PDn prototype

system was implemented using the LEAP facilities of the SAIL programming language

(Feldman[1969], Reiser[1976]) on the DEC PDP-lO.

For a rough idea of the use of PDB, consider the author's current personal data base. The data

base consists of 1700 items, consisting of approximately 1300 entities and 400 values. The data base

grew over a period of about 6 months, in sessions ranging from 20 seconds (typical for a single

10 An Entity· Based Database Interface

retrieval or entry) to an hour (for extensive browsing and updates). About an hour a week is spent

using the system. Browsing is not useful until the data base becomes large enough so that the user

cannot keep the vast majority of the data in his own long term memory; there is of course no fixed

point at which this occurs, but the current size is sufficient. A simple one writer / multiple reader

locking mechanism allowed some limited experience with multiple users of the system; browsing

was found to be especially useful in examining information entered by other users.

Summary

The entity-based approach looks more attractive than was originally anticipated. It is mechanically

simple and consequently easy to lise, yet fast for experts because of the small number of keystrokes

or selections required to reach a particular piece of data. It provides a view of data qualitatively .
different from conventional interfaces in that relationships can be viewed and followed directly.

'Inc prototype implementation provides a demonstration that the entity-based database interface can

be used for a personal data archive. Some extensions and simplifications of the interface presented

here look promising for future research, and the author is now engaged in some further experiments

in this regard.

An Entity· Based Database Interface 11

Bibliography

Benci, E., Bodart, F., Bogaert, H, & Cabanes, A. Concepts for the Design of a Conceptual Schema,
Proceedings of the IFIP TC-2 Working Conference Oil A40delling ill Data lJase Iv!anagement Systems,
1976.

Cashin, P., Robinson, M., Yates, D. Experience with SCRAPBOOK, A Non-formatted Data Base
System, Proceedings I PIPS' Congress, 1973.

Chen, P. The Entity-Relationship Model - Towards a Unified View of Data, AClv! Transactions on
Dala Base Systems 1,1 (1976).

Codd, E. F. A Relational Model of Data for Large Shared Data Banks, CACAI13, 6 (June 1970).

Codd, E. F. Seven Steps to Rendezvous with the Casual User, in Data Base Management, 1. W.
Klimbie and K. L. Koffeman, (l~ds.), North-Holland Publishing Co., Amsterdam, 1974.

Fagin, R. Multivalued Dependencies and a New NOimal Form for Relational Databases, ACA!
TO DS 2,3 (September) 1973.

Fahlman, S. A System for Representing and Using Real-World Knowledge, Ph.D. thesis, MIT AI
lab, 1977.

Feldman, 1., & Rovner, P. /\n Algol-based Associative Language, CACM 12, 8 (August) 1969.

Goldstein, I. Personal Communication, 1979.

Hall, P., Oulett, 1., & Todd, S. Relations and Entities, Proceedings of the IFIP TC-2 Working
Conference on f!.;!odelling in Data Base 1YJanagement Systems, 1976.

Kerschberg, L., Klug, A., Tsichritzis, D. A Taxonomy of Data Models, Systems for Large Data
Bases, P. Lockemann & F. Neuhold (cds), North-Holland, 1976.

Hammer, tv!. & McLeod, D. The Semantic Data Model: A Modelling Nlechanism for Data Base
Applications, Proceedings ACAI SIGlvlOD 1978.

Hill, R. LUSH Resolution and its Completeness, (CS memo), University of Edinburgh.

Mantei, M., and Cattell, R. A Study of Entity-based Database Interfaces, unpublished experimental
summary, 1979. .

Minker, J. Search Strategy and Selection Function for an Inferential Relational System,
Transactions 01/ Dala Base Systems 3, l.

Newell, A., and Simon, H. Human Problem Solving, Prentice-Hall, Englewood Cliffs, New Jersey,
1972.

Pirotte, A. "The Entity-Property-Association Model: An Information-Oriented Data Base Model",
MDLE Report R343, (March) 1977.

Quillian, M. R. Semantic Memory, in M. Minsky, (cd.), Semantic lllfonnatioll Processing, MIT
Press, 1968.

Reiser, 1. (Ed.), SAIL, Stanford CS Report, (August) 1976.

Reitman, W., Roberts, R., Sauvain, R., Wheeler, D., & Lynn, W. AUTONOTE· A Personal

12 An Entity· Based Database Interface

Information Storage and Retrieval System, Proceedings of the 24th National Conference of Lhe ACAf
(1969).

Rissanen, 1. Independent Components of Relations, ACA1 rODS 2, 4 (December) 1977.

Robertson, G., Newell, A., Ramakrishna, K. ZOG: A Man-machine Communication Philosophy,
Carnegie-Mellon CS technical report (1977).

Schultz, J., Cantrill, S., and Morgan, K. An Initial Operational Problem Oriented Medical Record
System - for Storage, Manipulation, and Retrieval of Medical Data, AI'IPS Proceedings, vol. 38,
1971, pp. 239-264.

Senko, M.E. Data Structures and Data Accessing in Data Base Systems Past, Present, Future, IBM
Systems Journal 16, 3 (1977a).

Senko, M. E. FORAL LP - Making Pointed Queries with a Light Pen, Proceedings of IFIPS
Congress, Toronto; 1977b.

Smith, J.M., and Smith, D.C. Data Base Abstractions: Aggregation and Generalization, ACM
TOD5' 2, 2 (June) 1977.

Swenson, 1. R. On the Semantics of the Relational Data Model, in King, F. (ed.), Proceedings
ACM SIGA,fOD Conference, San Jose, 1975.

Waltz, D. L. Natural Language Interfaces, SIGART newsletter #61, February 1977.

Wiederhold, G. Data Base Design, McGraw-Hill, New York, 1977.

Zloof, M. M. Query by Example, Proceedings AFIPS 1975 NCC, Vol. 44, pp. 431-437.

An Entity-Bnsed Database Interface 13

Appendix: PDB System Commands

"13" Go Back and redisplay the last frame (item) displayed.
"D" Re-Display the current frame. Useful when modifications have destroyed or invalidated the

current screen copy.
"E" Erases the current frame and all relations between it and other frames. Asks" Are you sure?".
"F" Executes special Function. Prompts for the function, e.g., "I" to print isolated frames (no

relations), "P" to print relations satisfying a given triple, "M" to lnodify relations satisfying a
given triple.

"G" Prompts for the name of a frame and Goes there (Le., displays the frame and makes it the
current frame).

"I" Prompts for the name of a text file and Inputs frames from it. Update switch after file name
causes the addition of relations (and related frames) only for frames which already exist.
Several different input formats are permitted, with a default standard.

"L" Prompts for a string and Lists the names of all frames whose name contains the string as a
substring.

"N" Prompts for a new Name for the current frame. Note that all references to this frame in
relations are thereby changed.

"0" Prompts for a text file name and Outputs all frames and relations to that file. Several output
formats arc available.

"P" Causes terminal output to be Printed on a file, as well as the terminal (useful for recording
interaction). Typing "P" a second time turns printing off again.

"R" Creates a new Relationship involving the current frame. Prompts for the relation name
(CRLF causes last relation created to be used again) and the object of the relation.

"s" Saves the core image, which can later be rcstarted (fastcr than using text files.)
"T" Prompts for Text to be associated with the current frame. This is printed out after the title

whencver the frame is displayed.
"u" Undoes a rclationhip involving this frame; prompts for selection character of relationhip to be

delcted.
"X" Exits to the monitor (doesn't do a Save).
LF (Line Feed) Causes the next subframe of this frame to be displayed (when there are too many

relations for one screenful).
ESC (Escape) Causes the previous sub frame of this frame to be displayed.
"?" Gives a list of commands

Type-in not preceded by "/" is interpreted as a selection, i.e., the other item related through the
relation labelled by the typed character will become the current frame and be displayed. If the
selection letter is preceded by a digit then: (1) if the digit is 0, the relation itself becomes the
current frame, (2) if the digit is 1 or 2, the first or second attribute (argument) of the relation
becomes the current frame, respectively, (3) if the digit is in the range 3-9 then the corresponding
attribute (in the context brackets [...]) becomes the current frame.

Frame Names:
On all commands, the name of an item may be preceded by"?" and the item with the given name
as a substring of its name will be used (gives error if ambiguous or no match). 1\ lternate names for
items may be established using the "alias" relation. On all commands except Input, the system
prompts before creating a new frame when given a new item name. Type checking is performed on
creation of new relations; the conventions for this, and the relation-naming conventions ("was-"
prefix, "-of' postfix, and N-ary relations) arc not described here. Frame names may not contain the
character" + "; this is used as a delimiter in the Ascii files. All other non-control characters are
lcgal and significant, including blanks, except "?" can't be used as the first or last character (due to
above feature) and tI." can't be used in the names of relations.

