
Requirements for an
Experimental Programming Environment

by L. Peter Deutsch and Edward A. Taft

Requirements for an
Experimental Programming Environment

edited by L. Peter Deutsch and EdwardA. Taft

CSL·80-10 June 1980

@ Xerox Corporation 1980

Abstract: We define experimental programming to mean the production of moderate-size

software systems that are usable by moderate numbers of people in order to test ideas about

such systems. An experimental programming environment enables a small 'number of

programmers to construct such experimental systems efficiently and cheaply-an important

goa1 in view of the rising cost of . software.

In this report we present a catalog of programming environment capabilities and an

evaluation of their cost, value, and relative priority. Following this we discuss these

capabilities in the context of three existing programming environments: Lisp, Mesa, and

Smalltalk. We consider the importance of specific capabilities in environments that already

have them and the possibility of including them in environments that do not.

CR Categories: 4.20, 4.33, 4.34, 4.4

Key words and phrases: programming environment, experimental programming

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road I Palo Alto / California 94304

REQUIREMENI'SFOR AN ExPERIMENTAL PROGRAMMING ENvIRONMENT i

Preface

Computer software costs rise steadily. as we expand our ambitions to include ever more

complex s~stems using ever cheaper hardware. The software that we can produce, and the rate at

which we can produce it. are too often limiting factp~ in our research wjthin the Xerox Palo Alto

Research Centers Computer Science Laboratory (CSL). We believe that it is increasingly desirable,

feasible. and economic to use computers to directly assist the process of experimental programming.

This report was produced two years ago as the report of an ad hoc "Programming Environment

Working Group" that I chaired. It provided much of the initial impetus for Cedar. a major project

now underway in CSL. Cedar is developing an advanced programming environment for the Mesa

language as the basis for most of our programming during the next several years. We plan to

report in due course both on various novel aspects of the design of Cedar and on our experiences in

constructing and using it

Meanwhile. interest in the important properties of programming environments has been

growing. For example. the U. S. Department of Defense recently published "Requirements for Ada

Programming Support Environments." [Stoneman. 1980] Our situation has much in common with

that of other groups needing programming environments; hence we believe that others may be

interested in the requirements that we originally set for Cedar.

This report was originally edited by Peter Deutsch for consideration within CSL. Ed Taft has

edited it slightly to make it more comprehensible outside its original context. but has not attempted

to either update or generalize it Considering its age, and the speed with which it was prepared, I

believe that it stands up very well. However. -the reader should bear in mind that it was addressed

to the- problems of CSL as we saw them in mid-1978.

J. J. Horning

June 1980

1

1. Introduction

Charter and history

The purpose of this report is to collect and set down our experience and intentions. in the area
of programming environments. This material was prepared by a working group consisting of the

following members of the PARe Computer Science Laboratory:

L. Peter Deutsch
James 1. Horning
Butler W. Lampson
James H. Morris
Edwin H. Satterthwaite (Xerox SnD)
Warren Teitelman

with the occasional participation of Alan Perlis (Yale University).
We quickly decided that the right way to proceed was to address what we felt was the real

question requiring resolution, namely to produce a catalog of programming environment capabilities
which included justified value, cost, and priority evaluations.

The working group was given a one-month deadline and held eight two-hour meetings.
Needless to say. there were many areas we had to treat superficially because of the time constraint,

and some areas in which we realized we simply could not reach agreement We also realize that we

have undoubtedly overlooked some significant issues and viewpoints. However, we expected much
more in the way of intractable disagreement than we actually experienced. This suggests that we

were successful· at avoiding religious debates, and instead we concentrated on the technical issues.

How should we compare programming environments?

Before considering . particular features that we feel contribute to "good" programming

environments, it is important to consider how we can tell that one programming environment is

"better" than another.
Any evaluation must be in some context. There is no reason to believe that some one

programming environment could be optimal for all kinds of programming in all places at all times.

In our discussions, we have focussed our attention on the foreseeable needs within CSL in the next
few years, with particular attention to experimental programming. We have taken experimental

programming to mean the production of moderate~sized systems that are usable by moderate

numbers of people in order to test ideas about such systems. We believe that it will be important

to conduct future experiments more quickly and at lower cost than is possible at present

It is difficult to quantitatively compare programming environments, even in fixed contexts. A

large number of qualitative comparisons are possible. but the more convincing ones all seem to fall

into two categories, both. based on the premise that the purpose of a programming environment is,

above all, to facilitate programming.

2 REQUIREMENTS FOR AN ExPERIMENTAL PROGRAMMING ENvIRONMENT

First, a good programming environment will reduce the cost of solviDg a problem by software.

The cost will include the time of programmers and others in design, coding. testing. debugging.

system integration. documentati~ etc., as well as of any ~echanica1 support (computer time. etc.)

Since our human costs contin'".' to: lie dominant, one of the most convincing arguments in favor of

a particular programming environnnd:teature is that it speeds up some time-consuming task or

reduces the need for that task (e.g~.it might either speed up debugging or reduce the amount of

debugging needed). Bottleneck removal is the implicit argument in much that follows.

Second. a good programming environment will also improve the quality of solutions to

problems. Measures of quality include the time and space efficiency of the programs. as well as
their usability, reliability. maintainability. and generality. Arguments relevant to this category tend

to be of the form "this feature reduces the severity of a known source of problems:' or "this feature

makes it easier to improve an important aspect of programs." Thus a feature might be good

because it reduces the frequency of crashes in· programs or because it makes it convenient to

optimize programs' performance.

(These two categories could be reduced to one by noting that there is a tradeoff between cost

and qUality. Thus by fixing cost, we could compare only quality; by fixing quality, we could

compare only cost. This seems to complicate, rather than simplify. a qualitative evaluation of

features, so we will not seek to unify these two kinds of argument)

In the discussion that follows, we have attempted to relate our catalog of "important features"

to these more general concepts of what makes a "good environment" whenever the connection is

not obvious. In some cases, we have not been entirely successful, because our experience tells us

that somethlng is essential. but we haven't been able to analyze that experience to find out why. In
all cases, our arguments are more intuitive than logically rigorous. Strengthening these arguments

would be an interesting research topic.

We have been largely guided by experience with three current programming environments

available to the PARe community: Interlisp, Mesa, and Smalltalk rreitelman, 1978; Mitchell et a1.,
1979; Ingalls, 1978]. Both what we know about the strengths and what we know about the

limitations of these environments have been taken into consideration. It is of course dangerous to

generalize too boldly from the intuitions and preferences of users: it is virtually impossible to be

certain that the useful features have been clearly distinguished from those that are merely addictive.

3

2. Catalog of programming environment capabilities

We have divided the capabilities of a programming environment into four categories. Virtual
machine / programming language refers to those capabilities that are primitive concepts in the

programming language or in the virtual machine on which the programming language runs. Tools
refers to capabilities for operating on programs. Packages refers to readily available programs that

iniplement particular clearly defined higher-level concepts. Other includes documentation and non

technical considerations.

It is important to note that the division between tools and packages is a somewhat arbitrary

one: in a good environment. there is little distinction between the two, in that all the capability

provided by the tools is available to the programmer in the form of packages, and all the capability

of the language (including the packages, of course) is available to the human user to extend the

functions of the tools.

Additionally, it should be understood that we are discussing a programming environment for a

computationally rich environment: many of these capabilities are feasible only when each

programmer has substantial computing power available to him at all times. More specifically. we

expect our computing facilities to be dominated by high-performance personal computers such as

. the Dorado [Lampson & Pier, 1980], which is a successor to the now inadequate Alto computer

[Thacker. et al., 1979]. Our orientation toward single-user machines in a distributed environment

requires us to consider a number of "operating system" capabilities that might be taken for granted

in a time-sharing environment

2.1. SIIIDIIW'f

Here we enumerate the programming environment capabilities we have considered and place

each in one of the four categories. In subsequent sections we shall discuss each capability in
varying amounts of detail.

Virtual machine / programming language

(L1) Large virtual·address space Q 24 bits)

(L2) Direct addressing for files

(Ua) Segmenting

(L2b) An enormous virtual address space Q 48 bits)

(L3) Well-integrated access to large, robust data bases

(lA) Memory management-objecVpage swapping

(LS) Object management-garbage collection, reference counting

4 REQUIREMENTS FOR AN ExPERIMENTAL PROGRAMMING ENVIRONMENT

(1...6) Some support for interrupts

(L7) Adequate exceptional condition handling

(L8) User access to the machine's capability for packed data

(L9) Program-manipulable representation of programs

(LIO) Run-time availability of all infonnation derivable from source program (e.g., names, types.
scopes)

(Lll) Statically checked type system

(Ll2) Self-typing data (a fa Lisp and Smallta1k), run-time type system

(L13) Encapsulation/protection mechanisms (scopes, classes, import/export rules)

(L14) Abstraction mechanisms; explicit notion of "interface"

(LIS) Non-hierarchical control (coroutines, backtracking)

(Ll6) Adequate run-time efficiency

(Ll7) Inter-language communication

(LIS) Unifonn screen management

(L19) Inheritance/defaulting (e.g., Smallta1k subclassing; difficulty' depends a lot on how much it has
to do)

(L20) Ability to extend language (e.g., operator overloading)

(L21) Ability to create fully integrated local sublanguages

(L22) User access to the machine's capability for multi-precision arithmetic

(L23) Good facilities for processes, monitors, interrupts

(L24) Simple, unambiguous syntax (including infix notation)

(US) Control over importation of names

(L26) User packages as "first-class citizens"

(L27) Qosures

(US) Full-scale inter-language communication

(U9) User microprogramming

(L30) Qean data and control trapping mechanisms

(L31) "Good" exceptional condition handling

Tools

(Tl) Fast turnaround for minor program changes (less than 5 seconds)

(T2) Compiler/interpreter available with low overhead at run time

(T3) Cross-reference/annotation capability

(T4) Prettyprinter

(TS) Consistent compilation

(T6) Version control

(1'7)

(f8)

(T9)

(TIO)
(TU)

CATALOG OF PROGRAMMING ENVIRONMENT CAPABILITIES

Librarian, program-oriented filing system (including Browser)
" Source-language debugger

Dynamic measurement facilities

Checkpoint, establishing a protected environment

History and undoing

(T12) Editor integrated with language system

(T13) More optimizing compiler ifuser willing to bind more tightly-with full compatibility

(T14) Aids for incremental development (stubs, outstanding task list)

(TIS) Regression testing system

(T16) Random testing aids

(T17) (high capability) Masterscope

(T18) Access to on-line documentation (Helpsys)

(TI9) Static analyzers: verifier, perfonnance predictor

Packages

(PI) Text objects and images

(P2) Line objects and images

(P3) Scanned (bitmap) objects and images

(P4) Fonnatted document files

(PS) More elaborate screen management

(P6) Remote file storage

(P7) Small data base manager

(P8) Message transmission system

(P9) Remote procedure call

(PIO) Event logging

(PU) Background processing

(PI2) Generalized cache

(p13) Document editing

(PI4) Fonns

(PIS) Menus and other standard user interfaces

(P16) History lists

(PI7) User access to full bandwidth of disk

(PI8) (English) dictionary service

(P19) Teleconferencing

(P20) Audio

S

6 REQUIREMENTS FOR AN ExPERIMENTAL PROGRAMMING ENVIRONMENT

(P21) User access to full bandwidth of networks
"

Other

(Xl) Adequate reference documentation
. (X2) "Efficient" interface. for experts

(X3) Unifonnity in command interface

(X4) "Self-teaching" interface for beginners

(XS) Good introductory documentation

2.2. Virtual machine / programming language

(U) Large virtual address space Q 24 bits)

(L2) Direct addressing/or files

(L2a) Segmenting

(L2b) An enormous virtual address space Q 48 bits)

(L3) Well-integrated access to large. robust data bases

The issue here is that things should scale smoothly as programs grow to encompass more

functions or larger data bases. As matters stand now, the time required tends to grow in predictable

ways, but when the space (addressing or memory) requirements· grow beyond a certain point, radical

redesign of the program is usually required. A secondary issue is the ability' to combine programs

without running into the same kind of hard constraint on the space taken up by the code.

An address space of, say, 224 items would be adequate to hold all the code actually being used.

even in a large system, but not adequate for all of its data (e.g., the American Heritage dictionary);

whereas an address space of, say, 248 items would be adequate for all the code and data of a very

large, even multi-machine system. We tend to favor the fonner, more conservative definition, since

we do not understand how to provide an efficient, robust implementation of the latter (more on the

robustness question below). However, we feel that it is essential that a transition across the 224-

object boundary not require the kind of wholesale reorganization of programs that such a transition

requires in current language systems.

System facilities for accessing large, external data bases are required for several reasons:

Many questions of organization and efficient implementation can be solved once, rather
than over and over again by applications.

The system itself needs data base facilities for tools like the program librarian.

Access to externally stored data objects needs to be smooth for the debugger and other
system facilities, not just the application programs.

CATALOG OF PROGRAMMING ENVIRONMENT CAPABIUIlES 7

Programs normally refer to internal objects with individual references, but to external data bases

with both individual references and mass queries. There are three basic techniques for speeding up

references to external data:

Caches (good for individual references);

Using sequentiality properties (good for searching);

Inversion (good for searching).

All of these techniques should be available in package form.

Integrity. A programming environment in which the file system is viewed as an extension of the
address space must be extremely robust-much more so than any programming system we now

have. Our current practice is to make the "truth" for a data base be a text file, and not to expend a

lot of effort on arrnoring the binary version against all imaginable errors. Notable exceptions are
the basic file facilities; we believe that a system that provides robustness facilities usable at higher

levels would have a lot. of advantages.

Long-term integrity seems to require some kind of history or redundancy information. To

protect against "cosmic rays." it is sufficient to record this information in a form that only the

implementing program understands. To provide Undo capability. the history must be in a form
that makes sense to clients.

Another kind of integrity has to do with not losing information. The following kinds of ideas

are important in this connection:

A computed object (e.g., a Mesa configuration) should keep track of how it got made, in
enough detail to make it again. The description of the putting-together process should be
program-manipulable.

Files should be self-identifying in a way that is not altered by their transfer between storage
media or locations.

It should not be possible to destroy all traces of a file containing input (as opposed to
purely computed) information. The space requirements can be kept under control by
storing descriptions of files (such as changes from other files) rather than all the bits.

Even the dangling reference problem and various garbage collection approaches can be viewed as

integrity questions to some extent

(IA) Memory management-object/page swapping

(LS) Object management-garbage collection. rejerence counting

These facilities are important for essentially the same reasons as (LI) through (L3), namely, to

free programmers from excessive concern for the size and location of their code and data, for both

explicitly named and dynamically constructed objects.

8 REQUIREMENTS FOR AN ExPERIMENTAL PROGRAMMING ENVIRONMENT

(L6) Some supportfor interrupts

The ability to interrupt program execution is essential, at least to gain control of runaway

programs, to allow interaction with long computations, and to provide local multiprocessing; "good"

facilities are less important. We have no strong religious feelings about the form of a process

mechanism.

(L7) Adequate exceptional condition handling

An integrated mechanism for handling exceptional conditions is required for clean debugging
and for the construction of robust programs; it helps clarify program structure by separating normal

and exceptional algorithms. Certain mechanisms are required in this area: some way to. unwind the

stack, some way of catching an unwind, and program control of error processing. What should be

provided beyond this is not agreed-the controversies raging around the Mesa "signal" facilities are

a reflection of our poor understanding of the problem.

•
(L8) User access to the machine's capability for packed data

The ability to pack data is essential to obtain acceptable storage efficiency for large data
structures. However, in a system without static (pre-runtime) type checking, the desire to access

packed structures efficiently (without checking or indirection through descriptors) conflicts with the
desire to prevent corruption of the storage management system.

There was a long discussion of why it is hard to add packed data to. Dorado lisp, which

centered around this protection question in the following guise: how carefully should the system
prevent the user from smashing its underlying data structures. There wasn't much agreement on

this point, but it does seem to have considerable practical importance, since a highly restrictive

attitude makes it difficult to code low-level parts of the system in itself.

(L9) Program-manipulable representation of programs

(LIO) Run-time availability of all iriformation derivable from source program (e.g., names, types, scopes)

These two issues are closely related: underlying them is our desire to make it easy to extend

the set of tools, to make communication between sublanguages easy, and to break down as many as

possible of the artificial distinctions between programs and their compilers, on one hand, and data

and their programs, on the other.

A long discussion led to the conclusion that all this information is currently available in Mesa,

modulo the question of how stable the compiler's internal representation of the program as a tree

should be expected to be. Straightforward methods (like the ones used in CLisp) will allow

compiled code to be attached to source in a user-created data structure, although it is certainly

easier to do this in Lisp, where interpretation is simple. Not explored was the usefulness of an

interpreter for a subset of the language, such as currently exists in the Mesa debugger.

CATALOG OF PROGRAMMING ENVIRONMENT CAPABILITIES 9

(Lll) Statically checked type system

(L12) Self-typing data (a la Lisp and Smalltalk). run-time type system

The primary value of type systems is descriptive and structural-specifying the intended

properties of one's data, and providing a mechanism for ensuring consistency between the suppliers

and clients of an interface. Enabling a compiler to generate better code is secondary. There are at

least two dimensions of variability in type systems:

-whether type information is bound early, as in Mesa, or late, as in Lisp and Smalltalk.
There is a need to provide the programmer a selection from a spectrum of
alternatives-Mesa provides variant records, which are a limited form of run-time binding,
and Lisp has DeclTran, which provides some compile-time binding.

-whether types form a strict partition of the data values, a coercion hierarchy. or some
even richer structure. We believe that a richer structure is desirable. It might include
provision for generic operators, for type-parameterized programs or schemes [Mitchell &
Wegbreit, 1977], for a more general notion of type as simply a partial specification of the
behavior of an object (perhaps like the Alphard "needs" list [Shaw, et aI., 1977]), and for
automatic pointwise extension of operators over collections.

It appears feasible to deduce much of the type information for a program automatically. starting

from the' assumption that each variable only takes on values of one type [Milner, 1978; Cousot &

Cousot, 1977]. This would alleviate some of the nuisance of having to write type declarations.
Name conventions (e.g., capitalization or standard prefixes), if interpreted by the compiler, would

also eliminate most of the need for separate specification of type information.

This is an area ripe for research. We believe that, at a minimum, both the eady-bound Mesa
type system and the late-bound Lisp/Smallta1k type system must be supported (as alternatives) by

an EPE.

(L13) Encapsulation/protection mechanisms (scopes. classes. import/export rules)

(L14) Abstraction mechanisms; explicit notion of "interface"

Abstraction mechanisms are important because they make explicit the logical dependencies of

one part of a program on another, while concealing implementation choices irrelevant to the

communication between such parts. Thus, these mechanisms enable the ability to factor the
development, debugging, testing, documentation, understanding, and maintenance of programs into

manageable pieces, while leaving individual programmers the appropriate freedom to design those

pieces.
The ability to specify interfaces in the abstract, and to conceal their implementation, is

important, but a difficult research area. It is possible to derive this information about implicit

interfaces after the fact using tools like Masterscope. The code produced by an optimizing compiler

need not reflect source-level modularization, if tighter binding improves efficiency and the user is

willing to pay the price of more compilations and possibly decreased debugging information.

10 REQUIREMENTS FOR AN EXPERIMENTAL PROGRAMMING ENVIRONMENT

We believe one facility in this area is absolutely essential: it must be possible for a programmer

to control which names get exported from a package. In addition, it is important for the system to

conceal the distinction between user-defined packages and system-provided primitives (types,

operations, etc.) at least as well as Mesa does.

(US) Non-hierarchical control (corou tin es, backtracking)

Coroutines and generators are essential: they provide a natural way to write transducers

(programs that consume a data stream and produce another), which in tum are often the best way

to modularize a data transformation algorithm. Lisp has backtracking, a control discipline

sometimes used to explore alternatives in goal-directed searching, but there is considerable

disagreement over the mechanism used to provide it, and its uses can probably be covered by more

restricted coroutine and Undo mechanisms. Closures are a method of providing a wide variety of

interesting control and binding environments, but we are not sure whether they can be implemented

efficiently enough, or are structured enough, to replace the more specialized coroutine constructs.

(L16) Adequate run-time efficiency

The ultimate efficiency criterion is whether a system can meet its external specifications and

constraints (responsiveness to human users or program clients). Computational efficiency equivalent

to Mesa as implemented on the Alto, coupled with the larger real memory and faster disk of the

Dorado, is adequate for many projects; for Lisp and Smalltalk, we think we can attain this through

internal re-engineering. For other, more computation-intensive systems, at least another factor of S

is attainable (based on raw hardware speed).

(L17) Inter-language communication

We believe the best way to attain the benefits of uniform methods for accessing the machine's

facilities at the lowest level is for all language systems to run under a single operating system that is

carefully constructed not to impose unnecessary space or time penalties on its clients. For the

Dorado, we believe that the Pilot operating system satisfies this criterion [Redell, .et aI., 1979].
Inter-language communication at a higher level helps reduce duplication of effort and also

provides one way of attaining extra efficiency for particular functions. Calling Mesa subroutines

from Lisp or Small talk will probably be adequate. Communication through the network or file

system interface requires very little work, but is too inefficient. The general problem seems difficult

and less important.

CATALOG OF PROGRAMMING ENVIRONMENT CAPABIUTIES 11

(L18) Uniform screen management

Use of the display is pervasive in our interactive systems. Lack of uniformity leads to

duplicated effort, often of low quality since an individual builder cannot easily draw on all past

experience or devote the time to taking advantage of it. On the other hand, too much central

control over screen management may frustrate the desire to experiment with new paradigms for

interaction.

We believe that it is possible to "virtualize" the screen and the user input devices-that is.

require people to write programs on the assumption that they will only have access to a subpart of

the screen and to a slightly filtered stream of input events-in a way that will not markedly impede

our ability to experiment, and that will have a large payoff in terms of the user's ability to construct

a screen environment containing multiple windows on different programs. At a minimum. the user

must have direct access to all the capabilities of RasterOp [Newman & Sproull. 1979]. appropriately

mapped or confined to work on a virtual screen.

(L19) Inheritance/de/aulting(e.g., Smalltalk subclassing)

Languages that provide for programmer-controlled defaulting or inheritance reduce the time

and chance for error in the programming process by makins it unnecessary to write the same code

or parameter values over and over· again. The basic idea iR that one should be able to write

programs in a way that only specifies how they differ from some previously written program.

Examples include default standard values for procedure arguments (how does this call differ from a

"standard" call?). variant records (how does this particular record distinguish itself from the

invariant part?). and the Smallta1k subclass concept (how does this class of objects differ from some

more general class?)

We did not discuss this area beyond observing that it is somewhat related to the schemes

question discussed under (LU), and that Sma1lta1k seems to derive considerable benefit from it

(UO) Ability to extend language (e.g.. operator overloading)

Languages may be extended by users in a variety of ways. Data structure extension, through

user-defined data types and associated operations. makes it possible to write programs in terms of

concept-oriented rather than implementation-oriented data objects. Syntax extension, through user

definition of new language constructs. allows the user to define specialized notations that may be

valuable for particular tasks: this is discussed in detail in (L21). Operator extension, the ability to

define meanings for basic language constructs such as arithmetic or iteration when applied to user

defined objects, brings some of the benefits of notational extension with less drastic consequences in

program readability.

Data structure extension is accepted as an important part of all modem programming

languages. Syntax extension has fallen into disfavor because of a lot of bad experience; we believe

12 REQUIREMENfS FOR AN ExPERIMENfAL PROGRAMMING ENVIRONMENf

this happened partly because the tools did not support extensions as well as they did the base

language. Operator extension is already present in a number of languages such as Algol 68: we did

not discuss its merits. It is interesting to note that Small talk is founded on the notions of. data

structure and operator extension, but that the syntax extension facilities present in the 1972 version

of the language have been removed.

(L21) Ability to createfully integrated local suhlanguages

AU language systems actually have many small sublanguages for special purposes. For

example, Mesa has not only the Mesa language, but the C/Mesa configuration language, the

debugger command language, the programming language subset acceptable to the debugger's

interpreter, and the very small languages used to control the compiler and binder from the

Executive command line. "Fully integrated," as an ideal, means that control and data should be

able to pass freely between sublanguages, and that the facilities (editor, prettyprinter, I/O system,

etc.) applicable to the primary programming language should also be applicable to the other

sUblanguages.

Lisp is unique in that its dozen or so sublanguages all provide the ability to embed arbitrary

Lisp computations in them. For example, in the middle of the editor one can compute (by calling

an arbitrary program) data to be inserted. possibly as a function of the thing being edited, or even a

sequence of edit commands to execute. The following features of Lisp seem to have made the

creation of integrated sublanguages easier:

S-expressions are a simple, standard internal representation of parse trees for all
sublanguages.

Lisp provides a standard method of sharing names and passing environments, namely a
single, very simple name environment (atoms) that all sublanguages share. (This has both
advantages and drawbacks: it leads to the "FLG" phenomenon, for example.)

Many internal system "hooks" are available to the sublanguage implementor. (This too has
its drawbacks: it tends to make sublanguages more fragile.)

The standard system contains packages (prettyprinter, table-driven lexical scanner and
parenthesis parser) which make 110 of program-like structures easy.

The sublanguages that don't take advantage of these characteristics, such as CLisp, QLisp, and

KRL, find their lives a lot more difficult. If we were willing to limit the complexity of

sublanguages to that of S-expressions, i.e., procedures and conditionals, then we could devise an S

expression-like representation for Mesa also. (Extending this to, say, arithmetic expressions not only

involves a complex parser and prettyprinter, but in a statically typed language like Mesa also

requires taking type declarations into account to decide what the operators in the source text

actually mean. Admittedly, the S-expression-like approach doesn't allow embedding of a reasonable

subset of Mesa itself in a sub language, and it doesn't address the point that some of the highest

payoff comes from the integration of languages, like KRL, that don't look like S-expressions.)

CA,TALOG OF PROGRAMMING ENVIRONMENT CAPABILITIES 13

We also noted that no matter what features the language and environment provided, proper

proceduralization of facilities was essential: even Lisp has sublanguages-in particular, the compiler

control sublanguage-that are implemented so as to interact with the user directly, and that

therefore cannot be considered integrated.

To sharpen our ideas about what integration means, we considered a "straw man": a system in

which all languages (editor, interpreter, etc.) shared a screen interface (window manager) but were

otherwise entirely separate. This led us to the following observations:

This model was proposed as one that imposed minimal requirements on the individual
subsystems, at least if they only dealt with the screen as a sequential character I/O device.
This may not be a proper assumption, however: despite numerous attempts, no such
package has ever been developed for the Alto, and this may be because nobody has been
able to develop a satisfactory model for the interface. We agreed that things become more
complex as the subsystem's view of the display becomes more sophisticated (e.g., an
editable document, a bitmap).

While this model allowed for considerable communication (by human transfer of characters
from output in one window to input in another), it had two serious deficiencies: it made no
provisions for communication under program, rather than manual, control, and it required
that all transmitted information be in text form. (Note that even transmission of file names
requires integration in the sense of sharing a common file system.)

While we did not reach any clear conclusions, we were able to agree on the following:

This is an important area for discussion, but it needs more time than we had available to
us.

Integration really means a common model for communication.

The one catalog entry we have now should be broken down into multiple features of
differing priorities.

If all the other Priority A features in the catalog were provided, Mesa could readily support
sublanguages of the complexity of S-expressions.

Adequate proceduralization is necessary for a package implementing a sublanguage to be
usable.

A major source of difficulty is the sharing or passing of environment information between
sUblanguages. One part of this difficulty is simply addressing or naming objects to be
shared. Another part is making sure that shared objects are interpreted the same way (in
Mesa, making sure the communicants share the same declarations for the objects). One
way around this is to have a limited number of globally agreed-upon structures, such as
strings or S-expressions, and then encoding more specialized languages within them and
interpreting them by convention or agreement (as Lisp does).

We also do not agree on the importance of fully integrated sublanguages: a number of Lisp users

feel this item should have very high priority.

14 REQUIREMENTS FOR AN EXPERIMENTAL PROGRAMMING ENVIRONMENT

(L22) User access to the machine's capability for multi-precision arithmetic

Many language systems, though implemented on machines in which multi-precision arithmetic

in assembly language is relatively straightforward, make it impossible for the user to get at these

facilities (such as the carry from single-precision addition, or the double-by-single division that most

machines provide in hardware). There is no excuse for this, especially on machines with relatively

short (16-bit) words.

(L23) Goodfacilitiesfor processes, monitors, interrupts

Synchronization between logically asynchronous processes is necessary in many programs, either

for functional reasons (a system should be able to listen for incoming mail, send a file to be printed,

and carry out interactive editing simultaneously) or for efficiency (overlapping computation with

disk transfers). The language system, through an underlying operating system if necessary, should

provide mechanisms that help the programmer write programs that involve multiple processes.

There are a number of adequate, though conflicting, models of these mechanisms available, such as

the Mesa and Pilot facilities [Lampson & Redell, 1980] and the Smalltalk scheduler. We did not

discuss this area at all.

(L24) Simple. unambiguous syntax (including infix notation)

While CLisp leaves a very large gap between what can be precisely defined and what the user

can reasonably do, and while Mesa syntax is regrettably complex (5 closely-spaced pages), we are

willing to tolerate problems of this sort under the assumption that the primary users of the system

will be experts, and that novices will be able to learn a useful subset easily.

(L25) Control over importation of names

As discussed under (Ll3) and (Ll4), import control seems less important than export control.

The reason is that the implicit use of an interface can be deduced locally by noting what names are

used; for export, the issue is global and not under control of the provider of the package without

some explicit specification.

(L26) User packages as "first-class citizens"

We would like user-defined packages to function as "first-class citizens" on a par with built-in

primitives (types, operations, etc.) However, the Euclid experience seems to indicate that this is

very difficult [Popek, et aI., 1977]. In Small talk, this goal has been achieved except for some 1/0

issues, at the expense of not having static type structure in the language at al1.

CATALOG OF PROGRAMMING ENVIRONMENT CAPABILITIES

(L27) Closures

See (LIS) for discussion.

(L28) Full-scale inter-language communication

(L29) User microprogramming

IS

The ability to share data and pass control freely between programs written in any of the major

languages depends on carefully coordinated use of certain basic resources such as the peripheral

devices and the machine's address space. We think this is less urgent than the more restricted

facilities of (L17): the primary motivation for changing languages in mid-program is increased

efficiency, and dropping into Mesa from lisp or Smalltalk provides this, although it does not

address the secondary motivation, which is the ability to take advantage of work already done (or

more conveniently done) in another language.

In cases requiring extreme speed, it may be necessary to give the programmer a way to write

application-dependent microcode and link it to the system in a way that provides at least some

checking that it will not destroy the rest of the system. We did not discuss this.

(L30) Clean data and control trapping mechanisms

There was a long and inconclusive discussion. Apparently we don't really know what this point

is about At one extreme of "data trapping" there is a simple address trap, as on early machines.

At the other extreme is KRL. No one was willing to espouse either extreme. We noted that:

Programming with data abstractions can help with this problem, since there is then a better
handle on when data is being changed.

Checking some predicate at periodic intervals (e.g., on every control transfer) may be quite
adequate when data trapping is being used to catch "core smashing" types of bugs. MeSa
already has this facility.

Many interesting cases can probably be handled by using the primitive trapping facilities of
the mapping hardware.

(L31) "Good" exceptional condition handling

As discussed above, we really don't know what this would mean. Roy Levin's thesis, among

other published papers, may be relevant [Levin, 1977].

16 REQUIREMENTS FOR AN ExPERIMENTAL PROGRAMMING ENVIRONMENT

2.3. Tools

(Tl) Fast turnaroundfor minor program changes (less than 5 seconds)

Our concern with fast turnaround comes from the observation that programming should be

think bound, not compute bound. There are several "knees" (points of substantial non-linearity) in

one's perception of response delays. One such knee is in the vicinity of 3 to 5 seconds. We believe

that it is essential to reduce the system time for minor program changes to below this point

(T2) Compiler/interpreter available with low overhead at run time

The issues here are similar to those in (L9-1O), namely, to reduce the mental and execution

"gear-shifting" overhead caused by artificial divisions between compilation and execution

environments. A sufficiently fast compiler is just as good as an interpreter for executing typed-in

programs or programs constructed on-the-fly by other programs. However, it is essential that one

be able to save some fonn of compiled code, for applications that embed procedures in data

structures.

(T3) Cross-reference/annotation capability

(T4) Pretty printer

These capabilities contribute substantially to the readability of programs, which in tum has a

large effect on the ease of maintenance. A simple "batch" cross-reference facility is essential; more

sophisticated facilities, such as those of Masterscope, are less urgent

(TS) Consistent compilation

(T6) Version control

Consistent compilation is an efficiency issue: to get the right thing to happen without blindly

recompiling and reloading everything. Version control is more fundamental. It has two major

aspects: history and parameterization.

Under history, we want to be able to tell exactly how a particular system or component was

constructed, and what it depends on (e.g., microcode version, interface definition or whatever).

Furthennore, we want to be able to reconstruct a component automatically. This requires that

every computation involved in its original construction must record all its inputs, and be prepared

to repeat itself from this record. Since the inputs may be (references to) files, it is also necessary to

have a naming scheme for files that is unique over the whole universe, and a guarantee that no file

will ever be destroyed (unless the rule for reconstructing it is saved, together with all the required

inputs).

Under parameterization, we want a systematic way of specifying the construction of a system

that never existed before (e.g., it is for a new microcode version, or different implementations of the

CATALOG OF PROGRAMMING ENVIRONMENT CAPABIUTIES 17

same interfaces are combined in a new way}. We agreed that we don't aspire to solve this problem

in the full generality required by IBM.

Replacing code in an existing system is in principle a special case of consistent

compilation-the general question is when a complete but expensive procedure (recompilation,

reloading, etc.) can be bypassed. We note that replacing code is in practice not just an efficiency

issue, since getting the system back to the exact current state is not possible in general. The reason

is that the current state depends on user program execution, and the user program cannot be

counted on to follow the rules mentioned under history, which we impose on the system programs

that make up the environment

(T7) Librarian, program-orientedjiling system (including Browser)

Coordinating access by multiple maintainers to a program made up of many packages requires

some automation to avoid loss of consistency or even valuable information. For example, a
librarian allows programmers to "check out" (in the sense of a library book) a module for

modification; other tools can assist in re-integrating versions of modules that have been modified

separately. A system richly endowed with packages also needs some automation to catalog them

and their documentation in a way that actively aids users in finding what they need.

(T8) Source-language debugger

It is essential that the programmer be able to debug using the same language constructs and

concepts used in writing the original program. This is facilitated by a minimum of distinctions
between compile-time and run-time environments-see also (LIO) and ('1'2).

(1'9) Dynamic measurement facilities

These facilities are necessary to understand the behavior of complex programs under conditions

of actual use. Smalltalk and Mesa have a "Spy," which works by sampling the program counter,

and Lisp has Breakdown. The Smalltalk and Mesa facilities are relatively little used: the Mesa

facilities are poorly documented and supported, and the nature of Smalltalk is such that there is

often little meaningful tuning one can do. Available for Mesa programs are

a facility for counting frequency and time between any pair of breakpoints;

a facility for writing an event in a log, either by procedure calls, or by action to be taken at
a breakpoint; and

a "transfer trap" mechanism that logs data at every control transfer, together with some
standard ways of reducing this data to produce the same kind of information that a Spy
produces.

18 REQUIREMENTS FOR AN ExPERIMENTAL PROGRAMMING ENVIRONMENT

We agree that something as good as Breakdown is good enough.

(TIO) Checkpoint, establishing a protected environment

Checkpointing is needed to be able to protect oneself against unexpected machine or system
failures. The weakness of the facilities in all three current systems was noted: file state is not saved.

nor is there any check that it hasn't changed on a restart. Protected environment means the ability

to install a new version of something in a system and still be able to revert to the old version very
cheaply; cheap checkpoints can provide this. Cheap checkpoints can be done in a paged system

with copy-on-write techniques.

(fIl) History and undoing

History refers to the system keeping a typescript file, the ability to feed information from the

typescript back to the system, and the ability to have a handle on the values returned as well. This

is an attribute of the interactive interface: its value comes· from the observation that the operations
one performs often are similar to, or use the results of, the operations one has recently performed.

An undoing mechanism should cover both system-implemented actions such as edits, and a way
for users to supply a procedure that will undo the effects of another specified procedure. This can

be a very inexpensive alternative to checkpointing as a way to give the user the ability to

experiment with alternatives without imposing the burden of manually saving and restoring the

relevant state.

(Tl2) Editor integrated with language system

Editing is just one function of a langUage system, carried out using a particular sublanguage.

(In fact, we believe it may be the appropriate model for the major sublanguage presented to the
user at the terminal.) As such, it should be integrated with the rest of the language system in that

the user doing editing can call on arbitrary programs to compute commands or data needed
for the editing process, including the ability to pass selections from the thing being edited
to the computation as arguments;

any program can calIon the editor as a package.

The latter seems very useful and relatively easy to achieve. We agree the former is also valuable,

but there is disagreement over whether it is merely valuable or extremely important

(T13) More optimizing compiler ifuserwilling to bind more tightly-with./itll compatibility

A recurring source of difficulty in programming is the generality/efficiency tradeoff: when it is

time to tune a system for better performance, it is traditionally necessary to make major logic

changes as well. An alternative is to keep the logical structure of the program the same, but have a

CATALOG OF PROGRAMMING ENVIRONMENT CAPABILITIES 19

compiler that can do the necessary rearrangements as part of the compilation process: the

programmer instructs it as to what kinds of flexibility or modularity should be sacrificed. and the

critical choices to be made in the representation of data structures. . The Lisp "block compiler" is

one example of this idea; the Mesa inline procedure is another. We did not discuss this area except

in passing.

(T14) Aids/or incremental development (stubs, outstanding task list)

Top-down programming, or independent development of modules in a system, often benefits

from the ability to replace as yet unavailable modules with stubs which have the same functional
behavior but simpler (and presumably less efficient) implementation. This and other aids for
keeping track of the status of parts of a large project have been used successfully in many system

development efforts.

(TIS) Regression testing system

(T16) Random testing aids

Both regression testing-keeping a record of standard tests and results with a program module.
and automatically checking them after a change to the module-and testing with random data have
proven to be worthwhile methods for checking programs too large or complex to verify or describe
analytically.

(f17) (high capability) Masterscope

Any facility like Masterscope, which maintains an up-to-date data base of relations among parts

of a program, must be integrated into the system at a fundamental level. Our discussion revealed
that the fundamental aspect is the need for a single funnel for changes to the system (Mesa pretty

much has this now, but Lisp does not). Relation to the file system was discussed, and it was agreed

that manual use of the file system should be outlawed. A consequence is that the programming
environment must do recovery at least as well as the file system does. Of course, having a reliable

file system underneath makes this much easier. A variety of techniques are possible, which we did

not explore in detail.

(f18) Access to on-line documentation (Helpsys)

Good on-line documentation, both for reference and for learning, can greatly reduce the need

for time spent studying an enormous manual, can provide instant cross-linking of related subjects in
a way that hardcopy cannot, and can use one's current context to implicitly locate relevant

material-Lisp's Helpsys facility is unique in these respects. However, creating and maintaining

such ·documentation is a tremendous amount of work, even if the process is partly automated.

20 REQUIREMENTS FOR AN EXPERIMENTAL PROGRAMMING ENVIRONMENT

(f19) Static analyzers: verifier. performance predictor

We agree that, especially for programs used by many people in low-tolerance environments, an

ounce of prevention is worth a pound of cure: effort expended on eliminating bugs or bottlenecks

beforehand can save a lot of time and trouble locating them afterward. Unfortunately, verification

technology is still unable to accommodate programs of significant size written in languages of

realistic complexity, and very little has been done on deriving performance information from the

program text (in contrast to analytic models of systems at a gross level, of which there are many).

2.4. Packages

Beyond the virtual machine and programming language, which are forced on all users, and the

tools, which should be applicable to all users, the quality of a programming environment is largely

determined by the presence of packages that provide functional capabilities useful to many

applications. We cannot stress too strongly that, from our experience, the only way to ensure the

necessary high quality for such packages is to have a very small group (one to four people) with the

final authority and responsibility for deciding which packages are to be incorporated in the system

in a way that makes them readily available to all.

(PI) Text objects and images

(P2) Line objects and images

(P3) Scanned (bitmap) objects and images

(P4) Formatted document files

The manipulation of images is of primary concern to us in our experimental systems. We can

divide these manipulations into two categories:

Manipulation of abstract objects such as formatted documents, forms, line drawings, and
continuous-tone images. The operations on these objects are defined by the semantics of
the objects, not by their representation on a medium.

Manipulation of the images of these objects on displays or printers. These operations must
take the nature of the medium into account

In the first category we might find editing operations on document files such as insert, replace,

search; on drawings and pictures such as scale, rotate, reflect, clip, shade, connect points with a

spline curve. In the second we find operations for mapping objects onto media in a variety of ways,

some of which must be reversible (e.g., when a user makes a selection in the displayed image of a

document, that selection really refers to the data in the document itself).

We believe that enough experience has been gained in these areas that it is possible to

construct packages that will be useful in a wide range of programs, and that will markedly decrease

CATALOG OF PROGRAMMING ENVIRONMENT CAPABILITIES 21

the effort required to write programs that use them.

An interesting area that we have not discussed per se is the general notion of annotation of

documents (or data structures): formatting information can be considered an annotation to the text,

comments to a program, meta-descriptions in the KRL sense to a slot or another description. Pilot,

for example, provides a notion of subsequences of a byte stream, which can easily be used to

represent formatting information in a way that uninterested programs can ignore.

(PS) More elaborate screen management

In addition to the basic screen management capabilities mentioned under (L18), there are some

additional facilities (scrollable windows, for example) that many programs will want to share.

Again, we believe there will be a payoff from the presence of some carefully designed packages in

the environment

(P6) Remote file storage

The manual transfer of files between machines is a significant source of errors and wasted time.

Such transfers are necessary either because of space problems or because one machine has a

capability (such as a printer or high-performance display) not possessed by all.

(P7) Small data base manager

As a goal, we believe that the well-integrated access to large data bases mentioned under (L3)

has a potentially enormous payoff, since many tools as well as experimental programs will benefit

from it. However, if it turns out that we can't figure out how to provide this, then we will need a

well-designed data base package for managing locally stored data.

(P8) Message transmission system

Message transmission is a useful paradigm for many kinds of inter-machine communication.

(P9) Remote procedure call

The ability to caU a procedure on another machine as though it were on one's local machine is

a different, less well understood communication paradigm.

(P1O) Event logging

Event logging is a useful technique for redundancy and crash protection, for gathering statistics,

and for reducing the cost of updating a data base in response to events affecting it

22 . REQUIREMENTS FOR AN ExPERIMENTAL PROGRAMMING ENVIRONMENT

(PH) Background processing

In an interactive system with enough real memory, both external communication (sending and

receiving mail, printing) and computation (recompilation, Masterscope data base maintenance) can

make effective use of time when the user is thinking.

(P12) Generalized cache

Many applications can benefit from a cache mechanism that provides local copies of more

remote data, e.g., copies in memory of data from the disk, or copies on a local machine of files

stored remotely. A package could keep track of which items had been used least recently, schedule

rewriting of changed items, and deal with locks and timeouts.

(p13) Document editing

Underlying document editing and manipulation facilities have been re-implemented time after

time, because insufficient thought was given to organizing them as a general-purpose package.

There is no good technical reason for this.

(P14) Forms

(PIS) Menus and other standard user interfaces

Packages that provide standard user interface tools such as forms, menus, selection, etc. are

desirable both in the interests of uniformity and simply to save work.

(P16) History lists

Programs should be able to take advantage of the same mechanisms used by the system to

provide the history and undoing capabilities discussed in ([11).

(P17) User access tofull bandwidth o/disk

Data base manipulations and code overlaying require brief bursts of high-bandwidth disk

activity. The system should not prevent the programmer from using the disk's full bandwidth, and

a package should make it easy.

(PIS) (English) dictionary service

Office applications involving documents can benefit from easy access to an English dictionary

(for spelling correction, hyphenation, and thesaurus applications, for example).

CATALOG OF PROGRAMMING ENVIRONMENT CAPABIUTIES 23

(P19) Teleconferencing

Inter-person communcation should play more of a role in our future experiments; we need a

package to handle the mechanics of keeping several users' views of the screen. cursor, etc .•
consistent

(P20) Audio

We have hardware support for capturing and playing back audio information, but hardly any

software support. Something like the current audio message system ought to be a very small
project.

(P21) User access to full bandwidth o/networks

As in (P17), the system should not obstruct the programmer's access to the machine's full 110

bandwidth in experimental situations.

2.5. Other

(Xl) Adequate reference documentation

Reference documentation must be complete and reasonably well organized and indexed. The

Interlisp manual is a shining example of how well an entire environment can be documented. It
also demonstrates that keeping this documentation up to date is a lot of work.

(X2) "Efficient"" interface/or experts

For experts, the desire for common operations to require a minimum of human effort often

rightly takes precedence over the desire for the greatest possible uniformity or simplicity in the

human interface. However, such interfaces are too often constructed without paying any attention

to the few principles of interface design that we do know. We believe it is important to consider

consciously the design of certain key command interfaces (editing, debugging, screen management).

(X3) Uniformity in command interface

In the process of using interactive programs, such as the tools listed in the previous major

section, the user will inevitably accumulate perceptions, opinions, and models of the programs, and

conjectures as to their workings. The net effect of these perceptions is referred to as the user
illusion. The intent is to allow the user to see the programs only in relation to his own needs and

purposes, and. not have to concern himself with the internal workings of the programs. What. is
important about a standard user interface package is that the user be able to confidently predict the

24 REQUIREMENTS FOR AN ExPERIMENTAL PROGRAMMING ENVIRONMENT

general manner of interaction with a program that uses the package, even though he hasn't

experienced it yet; and that, by and large, the user will be right. This has been called the Law of

Least Astonishment

The concept of a consistent user interface also simplifies the design and coding of any program

that interacts with the user. By adopting the conventions and making usc of the facilities, it is a

relatively simple matter to create useful interactive programs, because the programmer can concern

himself with the algorithm rather than with creating his own user interface.

We believe that, in addition to consistency, another important goal to pursue in the design of

the user interface might be called the Principle of Non-Preemption. Individual interactive programs

should operate in a non-intrusive manner with respect to the user's activities. The system does not

usurp the attention and prerogatives of the user. A program responds to the user's stimuli, but then

quietly retains its context and logical state until the user elects to interact with the program again,

not (for example) monopolizing the resources of the computer.

(X4) "Self-teaching" interface/or beginners

(X5) Good introductory documentation

Since we are concerned with a programming environment primarily for CSL, and secondarily

for the rest of the local research community, we feel that concern for novices should have low

priority, since the rate at which new people join the community is low and most of them are

already sophisticated

2S

3. Priority ranking and interrelation of capabilities

We arrived at a priority ranking for capabilities by giving each member of the working group

100 votes to be divided among the capabilities on the list. The vote total below is simply the sum
of the votes of the 5 members who actually voted, identified by their initials: Deutsch, Horning,

Lampson. Morris, and Satterthwaite. (As a check, we also ranked the capabilities according to the

median rather than the total. and the results were essentially the same.) We found that a natural

division into 5 priority groups emerged from the ranking. The reader should be aware that we· were

ranking capabilities on their utility if present in some reasonable form, not on the value of doing

research into how to improve what we now know about providing them..

We were able to reach a consensus about how fundamental each capability was, in the sense of

how difficult it would be to add that capability if it were not allowed for in the initial system

design. In doing this we drew heavily on the experience gained from the three existing language

systems. This cQnsensus is expressed below according to the following code:

F-Fundamental, much harder if not allowed for originally

I-Intermediate, somewhat harder if not allowed for

A-Add-on, difficulty does not depend significantly on pre-planning (although it may be
intrinsically hard anyway)

We identified an enabling relation between certain pairs of capabilities, in the sense that capability x
is almost certainly required to provide capability y. So many things depend on item (LI) that we

have omitted mention of this.
Finally, we estimated . the difficulty of providing each capability in each. of the three presently

existing environments (Lisp, Mesa, and smaUtalk). Each capability has a 3-digit difficulty code
referring to the effort required to provide the capability in Lisp, Mesa. and smaUtalk in that order.

The difficulty codes have the following meanings:

o-available
l-easy
2-straightforward but takes time
3-hard
4-impossible (we found we didn't need to use this)

3.1. Priority ranking

In the tabulation of votes, "x" means zero votes, while means tha~ the person gave no votes

to this item because he assumed it would be provided anyway. Votes of the form "3/4" mean 3

votes if we are, primarily· interested in B(PE), i.e., investigation of programming environments per se,

but· 4 votes if we are concentrating on (EP)E. i.e., production of experimental programs.

26 REQUIREMENTS FOR AN ExPERIMENTAL PROGRAMMING ENVIRONMENT

Priority A.

D H L M S Total

(LS) F 030 6 x 10 20 4 40 Object management-garbage collection/reference counting

30 Statically. checked type system (Lll) F 203 3 6 9

(IA) I 000 6 7 •

(LI4) F 302 2 4 5

(Tl) I 020 3 x 8

(LI6) F 701 3/4 6 2

enabled by (LI7)

(Ll) F 002 6 7 •

.,;

PriorityB

7 5

10 4

10 4

5

4

4

3

27 Memory management-objectlpage swapping

25 Abstraction mechanisms; explicit notion of "interface"

20 Fast turnaround for minor program changes «5 sec)

18/19 Adequate runtime efficiency

Inter-language communication

x 5 18 Large virtual address space ~ 24 bits)

(L13) F 302 3 5 2 4 3 17 Encapsulation/protection mechanisms (scopes, classes,
import/export rules)

(L3) F 333 3

(L12) I 020 4

A 203 3

4

3

2

8

3

3

x x

x 5

5 2

15 Well-integrated access to large, robust data bases

15 Self-typing data (a la Lisp and Smalltalk), run-time type
system

15 Consistent compilation (TS)

(T6)

(T8)

I 323 2 x 8 3 2 15 Version control

F 000 4 1 • 5 5 15 Source-language debugger

enabled by (L9) Program-manipulable representation of programs
enabled by (LI0) Run-time availability of source program infonnation

(PI) A 121 2 3 3 4 3 15 Text objects and images

(L18) I 021 2 4 2 4 3 15 Uniform screen management

(L8) A 202 214 3 2 4 3 14116 User access to the machine's capability for packed data

(LI0) F 111 3/2 3 4 x 4 14/13 Run-time availability of all information derivable from
source program (e.g., names, types, scopes)

PriorityC

(L2) A 102 x 6 x x 4 10 Direct addressing for files (segmenting)

(L6) I 000 2 5 x 2 1 10 Some support for interrupts

(T2) I 021 312 1 1 2 2 9/8 Compiler/interpreter available with low overhead at run
time

(Xl) I 012 2 4 x x 3 9 Adequate reference documentation

(TI) A2222 1 1 2 2 8 Librarian, program-oriented filing system (incl. Browser)

(L9) I 012 311 3 x x 2 8/6 Program-manipulable representation of programs

PRIORITY RANKING AND INTERRELA nON OF CAPABILmES

(T9) I 011 213 1 x 2 2 7/8 Dynamic measurement facilities

(P3) A 222 2 2 1 2 x 7 Scanned (bitmap) objects and images

(P4) A 120 1

(X2) F 0l0? 2

(P2) A 222 1

(P6) A 001 1

Priority D

2

1

2

x

1

3

2

3

x

x

x

x

(L17) I 202 1 4 x x

(T11) F 122 x 2 3 x

(US) F 000 2 x x x

3 7

1 7

1 6

2 6

Formatted document files

"Efficient" interface for experts

Line objects and images

Remote file storage

x S Inter-language communication

x S History and undoing

2 4 Non-hierarchical control (coroutines, backtracking)

27

(L20) F 220 x x 4 x x 4 Ability to extend language (e.g., operator overloading)

(L21) I 333 211 x x x 2 4/3 Ability to create fully integrated local sublanguages

enabled by (L9) Program-manipulable representation of programs
enabled by (LlO) Run-time availability of source program information
enabled by (L12) Self-typing data

(L27) F 121 1 x x 3 x 4 Oosures

(TlO) I 000 1 x 2 x 1 4 Checkpoint, establishing a protected environment

(L19) F 321 x x 3 x x 3 Inheritance/defaulting (e.g., Smallta1k subc1assing; difficulty

(T3)

(T4)

enabled by (L13)

A 111 2 x x

A 011 1 x 2

depends a lot on how much it has to do)

Encapsulation/protection mechanisms

x 1 3 Cross-reference/annotation capability

x x 3 Prettyprinter

enabled by (L9) Program-manipulable representation of programs

(PlS) A 111 2 x x x 1 3 Menus and other standard user interfaces

(p13) A 020 2 x x x 1 3 Document editing

(L7) F 112 x x x x 2 2 Adequate exceptional condition handling

(T12) I 021 2 x x x x 2 Editor integrated with language system

(P9) I 222 1 x x x 1 2 Remote procedure call'

(Tl3) F 003 x x x xlI More optimizing compiler if user willing to bind more
tightly-with full compatibility

(T18) A 011 1 x x x x 1 Access to on-line documentation (Helpsys)

(P8) A 212 x x x xlI Message transmission system

(P10) I 111 x x x xlI Event logging

(P12) A 222 x x x xlI Generalized cache

(P14) A 222 1 x x x x 1 Forms

28 REQUIREMENfS FOR AN ExPERIMENTAL PROGRAMMING ENVIRONMENT

(X4) F 222 1 x x x x 1 Unifonnity in command interface

Priority E (no votes at all)

VIRTUAL MACHINE I PROGRAMMING LANGUAGE

(L2b) ? 222 An enonnous virtual address space Q 48 bits)

(L22) A 100 User access to the machine's capability for multi-precision arithmetic

(L23) I 202 Good facilities for processes, monitors, interrupts

enabled by (L6) Some support for interrupts
enabled by (A1S) Abstraction mechanisms

(L24) F 120 Simple, unambiguous syntax (including infix notation)

(L2S) F 302 Control over importation of names

enabled by (A1S) Abstraction mechanisms

(L26) F 331 User packages as "first-class citizens"

(L28) F 333 Full-scale inter-language communication

enabled by (L17) Inter-language communication

(L29) A 222 User microprogramming

(L30) ? 333 Clean data and control trapping mechanisms

enabled by (L6) Some support for interrupts
enabled by (L23) Good facilities for processes, monitors, interrupts
enabled by (L31) "Good" exceptional condition handling

(L31) ? 333 "Good" exceptional condition handling

TOOLS

enabled by (L7) Adequate exceptional condition handling
enabled by (L13) Encapsulation/protection mechanisms
enabled by (LI4) Abstraction mechanisms
enabled by (LIS) Non-hierarchical control structures

(T14) A 222 Aids for incremental development (stubs, outstanding task list)

enabled by (L9) Program-manipulable representation of programs

(TIS) A 2221 Regression testing system

enabled by (L9) Program-manipulable representation of programs

(T16) A 3331 Random testing aids

(TI7) F 022 (High capability) Masterscope

(TI9) A 333 Static analyzers: verifier, perfonnance predictor

enabled by (L9) Program-manipulable representation of programs

PACKAGES

(PS) A 022 More elaborate screen management

PRIORITY RANKING AND INTERRELATION OF CAPABILITIES 29

(P7) A 221 Small data base manager

(P11) F 323 Background processing

(P16) A 011 History lists

(P17) I 111 User access to full bandwidth of disk

(PIS) A 222 (English) dictionary service

(P19) A 222 Teleconferencing

(P20) A 222 Audio

(P21) A 111 User access to full bandwidth of networks

OrHER

(X4) F 222 "Self-teaching" interface for beginners

(X5) I 222 "Good" introductory documentation

3.2 Discussion of difficulty estimates

In this section we discuss the difficulty estimates for the highest-priority features. Nearly all

these features fall into one of three difficulty patterns:

Considerably easier in Mesa than in either Lisp or Smalltalk (e.g., Lll, L13, TS).

Considerably easier in either Lisp or Smallta1k than in Mesa (e.g., LS, Tl, LU).

Comparable in difficulty in all three systems (e.g., U, L3, 1'8).

This is not terribly surprising, given the underlying philosophical similarities between Lisp and

Smalltalk..

Priority A.

(L5) 030 Object management-garbage collection, reference counting

Reference counting, which relies almost entirely on local information, and garbage collection,

which needs a. global map of all potentially traceable data, present quite different problems for

Mesa. For reference counting, it might be adequate to add an attribute to the Mesa type system so

that reference counting or transaction queuing can occur when the program stores into a pointer

that might point to an automatically managed object, and arrange for a user-supplied finalization

procedure to be called when a count becomes zero. A further refinement might be automatic

generation of the procedure by the compiler based on declarations. All this would be difficulty

level 2.

Garbage collection in Mesa is more difficult, for two reasons:

30 REQUIREMENTS FOR AN ExPERIMENTAL PROGRAMMING ENVIRONMENT

The type infonnation needed to locate all pointers is not present in the actual data, but
must be derived from the symbol table produced by the compiler.

The presence of LOOPHOLES, pointer arithmetic, overlaid variants, and relative pointers
makes it impossible for a garbage collector to find or trace all pointers to structure to be
saved.

The fonner problem is only one of efficiency: one way around it might be to arrange for the

compiler to generate a tracing procedure for each structure that might participate in garbage

collection. The latter, however, is a fundamental difficulty. We believe that the proper approach to

overcoming it is to discover a subset of the Mesa language that does not use any of the LoOPHOLE

like features mentioned above, and find a way to draw a protection boundary around a program

written in this subset so that it can have automatically managed data. This is a hard problem.

(LlI) 203 Statically checked type system

The basic problem with static type checking in both Lisp and Smalltalk is that very little is

known at compile time about the referents of names.

Lisp currently has a facility called DeclTran, which uses embedded declarations (both of types

and of arbitrary predicates) to check the types of operands at runtime and to generate more efficient

code within an individual function. This facility applies to both interpreted and compiled code, but

is somewhat machine-dependent and does not exist for the Alto/Dorado Lisp system. Also, it has

no ability to deal with static checking of interfaces between user-defined functions (as opposed to

the interface from user-defined functions to built-in operations like arithmetic). If mechanisms,

such as those of (Ll3) and (LI4), were added to Lisp to control exporting and linkage of names, it

is likely that Dec1Tran could be extended to inter-function type checking. We are inclined to think

that this is not a good approach in the long run and that the type system should be more tightly

integrated with the underlying language system, but it seems like a workable way to obtain the

desired result

Small talk has no facilities at all for static declaration of types. Furthermore, because every

operation is decoded at execution time by the object that is its first operand (even elementary

operations such as "+ "), there is in principle no way of knowing what code will actually get

executed in advance of execution time without some combination of type declarations and searching

the entire system to discover what classes implement what operations. The situation is complicated

by Smalltalk's subclass structure, which makes it very desirable that, for example, a method

requiring an argument of type Number should accept values of type Integer (a subclass of Number).

Smalltalk has a fairly simple compiler and name structure, but a lot of new machinery would have

to be built, some of which would require careful thought about what "type" means in the Smalltalk

environment.

PRIORITY RANKING AND INTERRELA nON OF CAPABILITIES 31

(lA) 000 Memory management-object/page swapping

Lisp and Mesa already use a straightforward paging scheme, and Smalltalk an object-swapping

scheme.

(L14) 302 Abstraction mechanisms: explicit notion of "interface"

As discussed under (L13) below, Lisp currently has only a very weak mechanism for explicitly

dealing with interfaces between a package and its clients. In addition, Lisp has no mechanism for

taking a group of functions and controlling how its imported names are to be linked: such a facility

is necessary if interfaces are to be separated from their implementations.

Smalltalk is somewhat better off since its invocation mechanism does hide the implementation

from the caller. A type system for Smalltalk, as discussed under (Lll) above, would also go far

towards providing an explicit notion of interface, since the current Smalltalk notion of "abstract

class" can be viewed as either a type or an interface description.

(Tl) 020 Fast turnaround for minor program changes (less than 5 seconds)

Lisp has an interpreter, and a fully integrated editor. (We have discussed replacing the

interpreter with a high-speed, low-code-quality compiler, which already exists for the Alto.)

Smalltalk has a compiler which we believe will run fast enough on the Dorado, and an integrated

editor.

Mesa offers several medium-size obstacles to fast turnaround for changes:

Since the present editor is not integrated or even properly packaged, considerable machine
and human overhead is involved in getting in and out of it. We recommend replacing it by
a packaged editor available in the programming environment.

The compiler is not designed to compile anything smaller than an entire module. We
recommend some work to modularize the compiler (it is already broken up quite well) and
to make sure enough information is available for it to be able to compile single procedures.

The current Mesa system does not provide for safe, incremental replacement of modules or
procedures by new versions without losing execution state. This feature must be provided.

(L16) ?O? Adequate runtime efficiency

The Lisp instruction set is actually quite similar to that of Mesa: for example, it can use the

Dorado instruction fetch unit. Sources of additional overhead include the fact that all data are

doublewords, and considerable runtime type-checking is required. We believe that even the present

Lisp system will perform adequately on the Dorado. Further significant gains in efficiency would

be possible with some redesign that would use the Dorado processor stack, and with the extensions

required for (Lll), static type checking.

32 REQUIREMENTS FOR AN ExPERIMENTAL PROGRAMMING ENVIRONMENT .

The Smalltalk instruction set, in principle, is also similar to that of Lisp and Mesa. In addition

to doubleword data and runtime type-checking, Small talk also suffers somewhat from substantially

less ability to compile things like arithmetic and structure access in-line, and the requirement for

doing some kind of hash lookup on each invocation. We believe that Smalltalk could also be

brought up to acceptable efficiency through a high-perfonnance design.

(Ll) 002 Large virtual address space Q 24 bits)

Lisp and Mesa already provide 24-bit address spaces. The difficulty code for Smalltalk reflects

Dan Ingalls' estimate .that the current system could be modified (without changing its basic

structure) in 3 to 6 months.

Priority B

(L13) 302 Encapsulation/protection mechanisms-export control

Lisp already has one mechanism for controlling the export of names from a group of functions:

the block compiler. However, this mechanism has many disadvantages:

Using it requires giving up a good deal of debugging capability, since non-exported
function and variable names are completely lost

It is not compatible with either the interpreter or the normal compiler.

Its application is limited to a single level, e.g., a package cannot use this mechanism to have
sub functions local to an individual interior function or group of functions.

We believe that adding export control to Lisp would require introducing notions of nested or

otherwise controlled lexical name scopes similar to those of Mesa; we would expect this to have

ramifications throughout the system, and some impact on user programs that take advantage of the

fact that there is a single space of names that encompasses both all of the system, their own

programs, and their own data. (We note that in the past, the lack of export control has often been

seen as an advantage, since it made it easy for a somewhat knowledgeable user to extend or modify

the system as desired, but we believe this is outweighed by the problems it causes.)

Smalltalk has two different export control mechanisms. For variables, there is a duallexica1

hierarchy based on lifetime (method variables, instance variables, and static class variables) and on

specialization (subclassing). For operations, each class defines the names of operations it will accept

However, Smallta1k is deficient in several respects:

There is a loophole, fairly easy to use, that allows access from outside to any variable of
any object.

A class cannot restrict purely internal operations to internal use-all operations within the
class are accessible to all clients.

PRIORIlY RANKING AND INTERRELATION OF CAPABILITIES 33

Subclasses have access to all operations and data of their superclass.

We believe that remedying these defects would require significant additions to Smalltalk but no

. changes in its basic structure.

(L3) 333 Well-integrated access to large, robust data bases

This is an area requiring considerable thought. No general-purpose programming language

currently offers this capability as we intend it to be interpreted. We have no a priori reason to

think it would be harder to implement in one language than in another-it will be a challenge in

any of them.

(L12) 020 Self-typing data (a la Lisp and Smalltalk), run-time type system

Mesa, unlike Lisp and Smalltalk, segregates type infonnation from data at runtime by

relegating the fonner to symbol table structures"put out by the compiler, which are normally not

part of the runtime environment. Extending the type system into the runtime environment in a

reasonable way seems to require adding types as a type in the language, and arranging things so

that the runtime representation of types can match up properly with the information in the symbol

table. Some of the design for this already exists, since the debugger must manipulate types

internally. It is worth noting that Mesa's facilities for variant records already address a small part of

this problem.

([5) 203 Consistent compilation

Mesa ensures consistent compilation by placing time stamps on source and object files, and by

recording in each object file the complete list of time stamps for the files that produced it. For

Lisp and Smallta1k, the basic problem is that identified in (L13) and (L14) above, namely, lack of

mechanisms for identifying the dependencies between modules.

(T6) 323 Version control

Mesa contains most of the mechanisms for the history part of version control (knowing exactly

how to reconstruct any object file). Some things are missing, such as a record of the compiler

switches, and also the Binder does not provide this information in the files it constructs. For Lisp

and Smalltalk, the problem is that objects do not carry any kind of identifying stamp, nor do

compilation processes record the infonnation they used. In the present Lisp system, the problem is

almost insoluble, because compilation takes place in the context of whatever random collection of

macros, flags, and other declarations happens to be lying around at the time of compilation. (The

34 REQUIREMENTS FOR AN ExPERIMENTAL PROGRAMMING ENVIRONMENT

problem is not the large amount of state on which compilation depends, but the fact that there is no

mechanism for recording the relevant parts of it with the compiled file.)

Aside from C/Mesa and the Binder, none of the three systems has any mechanism for

describing how parts are put together to fonn a whole. C/Mesa fails to cover certain crucial aspects

of initialization and parametrization-there is no way to pass parameters from a C/Mesa program to

initialization code, for example, in lieu of supplying them directly when the program initializes

itself. Lisp allows programs to load other programs as part of their initialization, and several large

systems have more elaborate mechanisms of their own for doing this, but there is no system-wide

machinery of this kind.

(1'8) 000 Source-language debugger

All three systems have adequate source-language debuggers. All of them could profit from

additional work, since there are ideas in each one that are not present in the others: for example,

the REVERT feature in Lisp, the ability to point girectly to the source text on the screen in Mesa,

and the Smallta1k method for displaying local variables.

(PI) 121 Text objects and images

Lisp already has a package (TXDT) for manipulating documents with formatting on individual

characters (font, bold/italic, etc.). However, TXDT has no provisions for paragraph-level fonnatting

or tables or for conversion to or from standard document file fonnats. These defects are minor.

Facilities for manipulating text images as images are provided within DLisp. Documentation for the

fonnatting aspects of TXDT, and for all of DLisp, does not currently exist, although the latter is

being worked on.

No comparable package exists in Mesa, although several application systems have had to

provide some of these functions.

Smalltalk provides the notion of a fonnatted paragraph, and facilities for editing, displaying,

and selecting within it, in the standard system. Smalltalk also provides conversion to and from

document file formats. Smalltalk does not provide paragraph-level fonnatting or tables, and its

facilities for handling text images in any but the most straightforward way are poor. Again, these

defects are relatively minor.

(LI8) 021 Unifonn screen management

Lisp already possesses an elaborate and functionally rich screen management package, DLisp.

As noted above, DLisp is still being documented. It does seem to satisfy our principal desire,

namely that programs access the display only through an interface that makes sharing and allocation

of the physical screen invisible to them; we are not certain whether it imposes too much structure

PRIORITY RANKING AND INTERRELATION OF CAPABILmES 35

on the user's view of the display, to the extent that some kinds of experiments might be difficult or

impossible (no such difficulties have arisen in the few applications attempted thus far).

Several attempts have been made at creating a screen management package in Mesa; all have

failed to gain acceptance, for a variety of reasons. We believe that it will be necessary to start from

scratch, taking into account the experience with the failed models and with the more successful ones

of Lisp and Smallta1k.

Small talk has the opposite problem: accessing the screen in an anarchic way has been too easy.

Some moderately successful interfaces have emerged-one for windows, one for documents, and one

under development for graphics-but there is still a substantial need for unification of what has

been learned.

(L8) 202 User access to the machine's capability for packed data

Lisp and Smalltalk, unlike Mesa, take the view that all data accessible to the programmer are

pointers. Intrinsically non-pointer data, such as string characters, are handlea with various

subterfuges. To obtain the benefits of packed data within these two systems would require

extending the storage management system to be able to allocate and deallocate such objects, and

extending the compiler to generate instructions to access them under safe conditions. The Lisp

"record package" accomplishes some of this, but in a way that is poorly integrated with the rest of

the storage management system and makes use of what we consider impermissible loopholes in the

compiler. Smalltalk has no such facility at all, although the Smalltalk implementors have discussed

it and believe they understand in principle how to do it without structual changes in the system.

(UO) 111 Run-time availability of all information derivable from source program (e.g., names, types,

scopes)

All three systems make most of the source information available in some form at runtime. In
Lisp, the facilities for retrieving source information are very good, but they do not handle

declarations and variables with the same ease as functions. In Mesa, the relevant data structures (in

the symbol tables produced by the compiler) are not currently documented for public use. In
Smallta1k, the information required to correlate the dynamic environment with the names used in

the program exists but not in convenient form. Mesa's facilities for correlating the program counter

with a point in the source program are much better than either Lisp's or Smallta1k.'s.

37

4. Conclusions

We are somewhat surprised at how little disagreement remains in our rather mixed group. Our

priority ranking of PE features is numerical evidence of this, and the minutes of our discussions

provide further, qualitative support for the same point. There are, of course, differences about the

relative importance of many features, but hardly. any about the five-level priority assigned to each

feature, or about how hard things are to do. We therefore urge that discussion should focus on the

value of an EPE and how it is to be achieved, rather than on detailed argument about individual

features.
As we said initially, the purpose of a PE is to improve the productivity of programmers or the

quality of programs. We don't know how to quantify quality, but we did think about how much
more productivity we might expect for sizable projects, as compared to the current state of affairs in

either Lisp or Mesa. We guess that a factor of four is possible, about half from relaxing current

space and time constraints by moving to the Dorado, and half from a PE which has our A, B, and

C priority features and a respectable sprinkling of the others.
How will all this productivity be applied? We anticipate three major effects.

First, many more interesting things will be within the scope of a single person's efforts. Hence,

the number of ambitious one-person projects can be expected to increase dramatically; not only are

they much less work to do, but it is much easier to organize a one-person than a four-person

project
Second, much more elaborate things will be feasible, and hence will be attempted.
Third, the evolution of good packages which can be easily used without disastrous time, space,

or naming conflicts will cause a qualitative change in the nature of system-building: the current

Interlisp system gives us our few hints of what this change will be like.

39

References
[Bobrow & Winograd, 1977]

Daniel G. Bobrow and Terry Winograd, "An Overview of KRL, a Knowledge Representation
Language," Cognitive Science, vol. 1 no. 1, 1977.

[Cousot & Cousot, 1977]
Patric Cousot and Radhia Cousot, "Static Determination of Dynamic Properties of Generalized
Type Unions," Sigplan Notices, vol. 12 no. 3, March 1977.

[Geschke, et al., 1977]
Charles M. Geschke, James H. Morris, Jr., and Edwin H. Satterthwaite, "Early experience with
Mesa," Communications of the ACM, vol. 20 no. 8, pp. 540-553, August 1977.

[Ingalls, 1978]
D. H. Ingalls, "The Smalltalk-76 Programming System: Design and Implementation,"
Proceedings of the 5th Annual ACM Symposium on Principles of Programming Languages, 1978.

[Kay, 1977]
Alan C. Kay, "Microelectronics and the Personal Computer," Scientific American, vol. 237 no.
3, pp. 231-244, March 1977.

[Lampson & Pier, 1980]
Butler W. Lampson and Kenneth A. Pier, "A Processor for a High-Performance Personal
Computer," Proceedings of the 7th International Symposium on Computer Architecture, May
1980.

[Lampson & Redell, 1980]
Butler W. Lampson and David D. Redell, "Experience with Processes and Monitors in Mesa,"
Communications of the ACM, vol. 23 no. 2, pp. 105-n7, February 1980.

[Lauer & Satterthwaite, 1979]
Hugh C. Lauer and Edwin H. Satterthwaite, "The Impact of Mesa on System Design,"
Proceedings of the 4th International Conference on Software Engineering, 174-182, 1979.

[Levin, 1977]
Roy Levin, "Program Structures for Exceptional Condition Handling," Carnegie-Mellon
University technical report, June 1977.

[Milner, 1978]
Robin Milner, "A Theory of Type Polymorphism in Programming," Journal of Computer and
System Sciences, vol. 17, 348-375, 1978.

[Mitchell, et aI., 1979]
James G. Mitchell, William Maybury, and Richard Sweet, "Mesa Language Manual, version
5.0," Xerox PARe technical report CSL-79-3, April 1979.

[Mitchell & Wegbreit, 1978]
James G. Mitchell and Ben Wegbreit, "Schemes: a High Level Data Structuring Concept,"
Cu"ent Trends in Programming Methodology (Raymond T. Yeh, ed.), vol. 4, Prentice-Hall,
1978.

[Newman & Sproull, 1979]
William M. Newman and Robert F. Sproull, Principles of Interactive Computer Graphics,
second edition, McGraw-Hill, 1979.

40 REQUIREMENTS FORAN ExPERIMENTAL PROGRAMMING ENVIRONMENT

[popek, et aI., 1977]
O. 1. Popek, 1. 1. Horning, B. W. Lampson, 1. O. Mitchell, and R. L. London, "Notes on the
Design of Euclid," Sigplan Notices, vol. 12 no. -3, March 1977.

[Redell, et aI., 1979]
D. Redell, Y. Dalal, T. Horsley, H. Lauer, W. Lynch, P. McJones, H. Murray, and S. Purcell.
"Pilot: an Operating System ror a Personal Computer," Proceedings of the Seventh Symposium
on Operating System Principles, December 1979.

[Shaw, et al., 1977]
Mary Shaw. William A. Wulf, and Ralph L. London, "Abstraction and Verification in Alphard:
Defining and Specifying Iteration and Generators," Communications of the ACM, vol. 20 no. 8,
August 1977.

[Stoneman, 1980]
"Stoneman: Requirements for Ada Programming Support Environments" (John N. Buxton,
ed.), U. S. Department of Defense, February 1980.

[feitelman, 1977]
Warren Teitelman, "A Display-oriented Programmer's Assistant," Proceedings of the 5th
International Joint CQnjerence on Artificial Intelligence, pp. 905-915, August 1977.

[feitelman, 1978]
Warren Teitelman, et aL, "Interlisp Reference Manual," Bolt, Beranek & Newman and Xerox
Palo Alto Research Center, 1978.

[Thacker, et aL, 1979]
C. P. Thacker, E. M. McCreight, B. W. Lampson, R. F. Sproull, and D. R. Boggs. "Alto: a
Personal Computer," Computer StrUctures: Readings and Examples (Siewiorek, Bell, and
Newell, eds.), 1979.

-":Il
... (I)

o .Q
~ c: II> _ .

3 (;
3 3 _ . (I)

::::I ::::I
IQ ...

'" m
::::I 0
< ...
:;' Q)

o ::::I
::::I m
3 x
(I) "0
::::I (I) ... ~

3'
(I)

::::I ...
!!!.

