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Abstract: 

This document reprints four articles that describe PIE, an experimental personal 

information environment, from the vantage point of its application to software development. 

PIE employs a description language to support the interactive development of programs. PIE 

contains a network of nodes, each of which can be assigned several perspectives." Each 

perspective describes a different aspect of the program structure represented by the node, 

and provides specialized actions from that point of view. Contracts can be created that 

monitor nodes describing different parts of a program's description. Contractual agreements 

are expressible as formal constraints, or, to make the system failsoft, as English text 

interpretable by the user. Contexts and layers are used to represent alternative designs for 

programs described in the network. The layered network database also facilitates 

cooperative program design by a group, and coordinated, structured documentation. 

The first article, "Descriptions for a Programming Environment," provides an overview 

of PIE. The second article, "Extending Object Oriented Programming in Smalltalk," explores 

the generalizations made to the Smalltalk language in order to combine its strengths as an 

object language with capabilities usually found in AI description languages. This extended 

dialect is used to implement the PIE system. The third article, "Representing Design 

Alternatives," describes PIE's machinery for representing the evolution of a software design. 

This machinery is described in greater detail in a separate report, CSL-80-5. The fourth 

article, "Browsing in a Programming Environment," describes the user interface. 

PIE has also been employed to represent office related information such as mail, 

calendars, documents, lectures and expense reports. These capabilities will be described in 

CSL-81-4, PIE: An Experimental Personal Information Environment, to be published later in 

1981. 
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DESCRIPTIONS FOR A PROGRAMMING ENVIRONMENTl 

1. Introduction 

In most programming environments, there is support for the text editing of program 
specifications, and support for building the program in bits and pieces. However, there is usually 
no way of linking these interrelated descriptions into a single integrated structure. The English 
descriptions of the program, its rationale, general structure, and tradeoffs are second class citizens at 
best, kept in separate files, on scraps of paper next to the terminal, or, for a while, in the back of 
the implementor's head. 

Furthermore, as the software evolves. there is no way of noting the history of changes, except 
in some primitive fashion, such as the history list of Interlisp [Teitelman78]. A history list provides 
little support for recording the purpose of a change other than supplying a comment. But such 
comments are inadequate to describe the rationale for coordinated sets of changes that are part of 
some overall plan for modifying a system. Yet recording such rationales is necessary if a 
programmer is to be able to come to a system and understand the basis for its present form. 

Developing programs involves the exploration of alternative designs. But most programming 
environments provide little support for switching between alternative designs or comparing their 
similarities and differences. They do not allow alternative definitions of procedures and data 
structures to exist simultaneously in the programming environment; nor do they provide a 
representation for the evolution of a particular set of definitions across time. 

In this paper we argue that by making descriptions first class objects in a programming 
environment, one can make life easier for the programmer through the life cycle of a piece of 
software. Our argument is based on our experience with PIE, a description-based programming 
environment that supports the design, development, and documentation of Small talk programs. 

2. Networks 

The PIE environment is based on a network of nodes which describe different types of 
entities. We believe such networks provide a better basis for describing systems than files. Nodes 
provide a uniform way of describing entities of many sizes, from small pieces such as a single 
procedure to much larger conceptual entities. In our programming environment, nodes are used to 
describe code in individual methods, classes, categories of classes, and configurations of the system 
to do a particular job. Sharing structures betwccn configurations is made natural and efficient by 
sharing regions of the network. 

1 Published in the Proceedings of the First Annual Conference of the American Association for Artificial Intelligence, 
August 1980. pp. 187-194. 
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Nodes are also used to describe the specifications for different parts of the system. The 
programmer and designer work in the same environment, and the network links elements of the 
program to clements of the design and specification. The documentation on how to use the system 
is embedded in the network also. Using the network allows multiple views of the documentation. 
For example, a primer and a reference manual can share many of the same nodes while using 
different organizations suited to their different purposes. 

In applying networks to the description of software, we are following a tradition of employing 
semantic networks for knowledge representation. Nodes in our network have the usual 
characteristics that we have come to expect in a representation language--for example, defaults, 
constraints, multiple perspectives, and context-sensitive value assignments. 

There is one respect in which the representation machinery developed in PIE is novel: it is 
implemented in an object-oriented language. Most representation research has been done in Lisp. 
Two advantages derive from this change of soil. The first is that there is a smaller gap between the 
primitives of the representation language and the primitives of the implementation language. 
Objects are closer to nodes (frames, units) than lists. This simplifies the implementation and gains 
some advantages in space and time costs. The second is that the goal of representing software is 
simplified. Software is built of objects whose resemblance to frames makes them natural to describe 
in a frame-based knowledge representation. 

3. Perspectives 

Attributes of nodes are grouped into perspectives. Each perspective reflects a different view of 
the entity represented by the node. For example, one view of a Smalltalk class provides a 
definition of the structure of each instance, specifying the fields it must contain; another describes a 
hierarchical organization of the methods of the class; a third specifes various external methods 
called from the class; a fourth contains user documentation of the behavior of the class. 

The attribute names of each perspective are local to the perspective. Originally, this was not 
the case. Perspectives accessed a common pool of attributes attached to the node. However, this 
conflicted with an important property that design environments should have, namely, that different 
agents can create perspectives independently. Since one agent cannot know the names chosen by 
another, we were led to make the name space of each perspective on a node independent. 

Perspectives may provide partial views which are not necessarily independent. For example, 
the organization perspective that categorizes the methods of a class and the documentation 
perspective that describes the public messages of a class are interdependent. Attached procedures 
are used to maintain consistency between such perspectives. 

Each perspective supplies a set of specialized actions appropriate to its point of view. For 
example, the print action of the structure perspective of a class knows how to prettyprint its fields 
and class variables, whereas the organization perspective knows how to prettyprint the methods of 
the class. These actions are implemented directly through messages understood by the Smalltalk 
classes defining the perspective. 
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Messages understood by perspectives represent one of the advantages obtained from 
developing a knowledge representation language within an object-oriented environment. In most 
knowledge representation languages, procedures can be attached to attributes. Messages constitute a 
generalization: they are attached to the perspective as a whole. Furthermore, the machinery of the 
object language allows these messages to be defined locally for the perspective. Lisp would insist 
on global functions names. 

4. Context~ and Layers 

All values of attributes of a perspective are relative to a context. Context as we use the term 
derives from Conniver [SussmanMcDelmott72]. When onc retrieves the values of attributes of a 
node, one does so in a particular context, and only the values assigned in that context are visible. 
Therefore it is natural to create alternative contexts in which different values are stored for 
attributes in a number of nodes. The user can then examine these alternative designs, or compare 
them without leaving the design environment. Since there is an explicit model of the differences 
between contexts, PIE can highlight differences between designs. PIE also provides tools for the 
user to choose or create appropriate values for merging two designs. 

Design involves more than the consideration of alternatives. It also involves the incremental 
development of a single alternative. A context is structured as a sequence of layers. It is these 
layers that allow the state of a context to evolve. The assignment of a value to a property is done 
in a particular layer. Thus the assertion that a particular procedure has a certain source code 
definition is made in a layer. Retrieval from a context is done by looking up the value of an 
attribute, layer by layer. If a value is asserted for the attribute in the first layer of the context, then 
this value is returned. If not, the next layer is examined. This process is repeated until the layers 
are exhausted. 

Extending a context by creating a new layer is an operation that is sometimes done by the 
system, and sometimes by the user. The current PIE system adds a layer to a context the first time 
the context is modified in a new session. Thus, a user can easily back up to the state of a design 
during a previous working session. The user can create layers at will. This may be done when he 
or she feels that a given groups of changes should be coordinated. Typically, the user will group 
dependent changes in the same layer. 

Layers and contexts are themseI.ves nodes in the network. Describing layers in the network 
allows the user to build a description of the rationale for the set of coordinated changes stored in 
the layer in the same fashion as he builds descriptions for any other node in the network. Contexts 
provide a way of grouping the incremental changes, and describing the rationale for the group as a 
whole. Describing contexts in the network also allows the layers of a context to themselves be 
asserted in a context sensitive fashion (since all descriptions in the network are context-sensitive). 
As a result, super-contexts can be created that act as big switches for altering designs by altering the 
layers of many sub-contexts. 
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5. Contracts and Constraints 

In any system, there are dependencies between different clements of the system. If one 
changes, the other should change in some corresponding way. We employ contracts between nodes 
to describe these dependencies. Implementing contracts raises issues involving 1) the knowledge of 
which c1ements are dependent; 2) the way of specifying the agreement: 3) the method of 
enforcement of the agreement; 4) the time when the agrcclnent is to be enforced. 

PIE provides a number of different mechanisms for expressing and implementing contracts. 
At the implementation level, the user can attach a procedure to any attribute of a perspective, (see 
BobrowWinograd77 for a fuller discussion of attached procedures): this allows change of one 
attribute to update corresponding values of others. At a higher level, one can write simple 
constraints in the description language (e.g. two attributes should always have identical values), 
specifying the dependent attributes. The system creates attached procedures that maintain the 
constraint. 

There are constraints and contracts which cannot now be expressed in any formal language. 
Hence, we want to be able to express that a set of participants arc interdependent, but not be 
required to give a formal predicate specifying the contract. PIE allows us to do this. Attached 
procedures are created for such contracts that notify the user if any of the participants change, but 
which do not take any action on their own to maintain consistency. Text can be attached to such 
informal contracts that is displayed to the user when the contract is triggered. This provides a 
useful inter-programmer means of communication and preserves a failsoft quality of the 
environment when fOlma! descriptions are not available. 

Ordinarily such non-formal contracts would be of little interest in artificial intelligence. They 
are, after all, outside the comprehension of a reasoning program. However, our thrust has been to 
build towards an artificially intelligent system through succcessive stages of man-machine symbiosis. 
This approach has the advantage that it allows us to observe human reasoning in the controlled 
setting of interacting with the system. Furthermore, it allows us to investigate a direction generally 
not taken in AI applications: namely the design of memory-support rather than reasoning-support 
systems. 

An issue in contract maintenance is deciding when to allow a contract to interrupt the user or 
to propagate consistency modifications. We use the closure of a layer as the time when contracts 
are checked. The notion is that a layer is intended to contain a set of consistent values. While the 
user is working within a layer, the system is genera]]y in an inconsistent state. Closing a layer is an 
operation that declares that the layer is complete. After contracts are checked, a closed layer is 
imtnutable. Subsequent changes must be made in new layers appended to the appropraiate 
contexts. 

6. Coordinating designs 

So far we have emphasized that aspect of design which consists of a single individual 
manipulating a1ternatives. A complementary facet of the design process involves merging two 
partial designs. This task inevitably arises when the design process is undertaken by a team rather 
than an individual. To coordinate partial designs, one needs an environment in which potentially 
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overlapping partial designs can be examined without overwriting one another. This is accomplished 
by the convention that different designers place their contributions in separate layers. Thust where 
an overlap occurred. the divergent values for some cornmon attributes arc in distinct layers. 

Merging two designs is accomplished by creating a new layer into which are placed the desired 
values for attributes as selected from two or more competing contexts. For complex designs t the 
merge process is, of course, non-trivial. We do not, and indeed cannot, claim that PIE eliminates 
this complexity. What it does provides is a more finely grained descriptive structure than files in 
which to manipulate the pieces of the design. Layers created by a merger have associated 
descriptions in the network specifying the contexts participating in the merger and the basis for the 
merger. 

7. Meta-description 

Nodes can be assigned meta-nodes whose purpose is to describe defaults, constraints, and 
other information about their object node. Information in the meta-node is used to resolve 
ambiguities when a command is sent to a node having multiple perspectives. 

One situation in which ambiguity frequently arises is when the PIE interface is employed by a 
user to browse through the network. When the user selects a node for inspection, the interface 
examines the meta-node to determine which information should be automatically displayed for the 
user. By appropriate use of meta-information, we have made the default display of the PIE browser 
identical to one used in Small talk. (Small talk code is organized into a simple four-level heirarchy, 
and the Smalltalk browser allows examination and modification of Small talk code using this 
taxonomy.) As a result, a novice PIE user finds the environment similar to the standard Smalltalk 
programming environment which he has already learned. 

Simplifying the presentation and manipulation of the layered network underlying the PIE 
environment remains an important research goal, if the programming environment supported by 
PIE is to be useful as well as powerful. We have found use of a meta-level of descriptions to guide 
the presentation of the network to be - a powerful device to achieve this utility. 

8. Conclusion 

PIE has been used to describe itself, and to aid in its own development. Specialized 
perspectives have been developed to aid in the description of Small talk code t and for PIE 
perspectives themselves. On-line documentation is integrated into the descriptive network~ The 
implementors find this network-based approach to developing and documenting programs superior 
to the present Small talk programming environment. A -small number of other people have begun to 
use the system. 

This paper presents only a sketch of PIE from a single perspective. The PIE description 
language is the result of transplanting the ideas of KRL [BobrowWinograd77] and FRL 
[GoldsteinRoberts77] into the object oriented programming environment of Smalltalk 
[KayGoldberg77, Ingalls78]. A more extensive discussion of the system in terms of the design 
process can be found in BobrowGoldstein80, and GoldsteinBobrow80a. A view of the PIE 
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description language as an extension of the object oriented programming tnetaphor can be found in 
GoldsteinBobrow80b. Finally, the use of PIE as a prototype office information system is described 
in Goldstein80. 
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EXTENDING OBJECT ORIENTED PROGRAMMING IN SMALLTALKI 

Object oriented programming is a powerful computational framework for many 

applications. and Smalltalk [Kay72] is a good example of a language that embodies this framework. 

Smalltalk is especially excellent for simulation, as one would expect from the fact that Simula 

[Dah166] is part of its intellectual genealogy. Objects can represent the participants in a simulation; 

messages can represent their interactions. However, the 1976 implementation of Smalltalk 

[Ingalls76] lacks a number of capabilities that we believe can extend its power considerably, 

especially for applications (including simulation) that occur in the context of an overall design 

process. These capabilities arise from the assignment of different kinds of description to objects. 

(1) multiple perspectives: the assignment of more than one point of view that allows 
inheritance of behavior from independent superclasses. 

(2) metadescriplion: the assignment of constraints to attributes that allows the system to 
check new values and propagate their intended effects. 

(3) identification: the assignment of identifers, unique across an entire computing 
community that allow multiple users to manipulate a common set of objects. 

(4) context sensitive description: the assignment of a situation marker to values that allows 
alternative descriptions to coexist within a common workspace. 

Our overall goal is to crossbreed Smalltalk with recent AI representation languages in 

order to obtain a hybrid that exhibits the strengths of both lineages. We have pursued this 

crossbreeding with the help and cooperation of Smalltalk's originators, the Xerox PARe Learning 

Research Group. 

This paper first reviews Smalltalk, then discusses our implementation of each of the above 

capabilities within PIE, a Smalltalk system for representing and manipulating designs. We then 

describe our experience with PIE applied to software development and technical writing. Our 

conclusion is that the resulting hybrid is a viable offspring for exploring design problems. 

1. Current Smalltalk 

Smalltalk-76 is a programming language based on three metaphors: simulation, 

communication and classification. An atomic element of the language, termed an object, simulates 

a computer. It has internal state and responds to a set of instructions temled messages. An object 

1 Published in the Proceedings of the Lisp Conference. Stanford. California. August 1980. 
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responds to a message in one or all of the following ways: it changes its internal state; it transmits 

messages to other objects; it reads or writes an 1/0 channel such as the display. A sender need 

have no knowledge of the internal structure of a receiver: it need only know the receiver's message 

set. For example, there exist display objects such as rectangles that store their position and extent, 

and respond to messages to move, show and erase themselves. 

Each object is associated with a single class. The objects associated with a given class are 

called its instances. The class owns a dictionary that defines methods for a set of messages. When 

a message is sent to an instance, that instance in turn requests the appropriate method from its 

class. The method returned by the class is then applied to the argunlents of the message. 

Smalltalk has predefined classes for Rectangle and BitRect, the latter being a class that includes a 

state variable for storing the display state of the points enclosed by the rectangle. (Rectangle and 

BitRect define behavior for classes that interact with a BitMap display). 

Classes are hierarchical. A superclass is used to describe the behavior common to several 

classes. Given superclasses, the protocol for retrieving a method is extended as follows: when a 

message is sent to an instance, the instance asks its class for the method associated with the 

message. If the class knows this method directly, it supplies it. If it does not, the class asks its 

superclass. If the superclass responds with a method, this method is passed back to the object. 

For example, BitRect is defined as a subclass of Rectangle. A method like blink is defined only in 

Rectangle since its definition, a repetitive invocation of show and crase, applies to instances of 

both classes. When blink is sent to an instance of BitRect, BitRect finds no associated method, 

and hence passes the buck to Rectangle, which has the desired definition. 

The root of the class hierarchy tree is the class Object. If a request for a method 

associated with a message comes up to Object, and it does not know the definition of the message, 

an error occurs. 

Although one class may have a great deal in common with the behavior of another, they 

may still differ on some methods. For example, the show method of BitRect differs from the 

show method of Rectangle in that BitRect displays the contents of the rectangle while Rectangle 

only displays the outline. The desired behavior is achieved by redefining the show method in the 

subclass. Since method retrieval is bottom up, the redefinition in BitRect will dominate the 

definition in Rectangle for instances of BitRect, yet be invisible to instances of Rectangle. 

In addition to a method dictionary, each class also owns a list of variable names. The 

state of an instance is defined in terms of values for variables with these names as well as values 

for any variables whose names appear in the superc1ass chain. For example, instances of BitRect 

store state for contents, the instance variable defined in BitRect, as well as origin and extent, the 

instance variables defined in the superc1ass Rectangle. When any method of an instance is 
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activated by passing it a message, that activation can read and change the values of these instance 

variables. 

A message consists uf selectors and arguments. For example, the method with selector 

move: has an argument named distance. A particular call to this method might look like rect! 

move: 3, where rectI is an instance of class Rectangle and the argument distance is bound to 3. 

The three classes, Object, BitRect, and Rectangle, appear in Figure 1 with their associated 

instance variables and some of their messages. The syntax employed in this and other figures of 

this article is for didactic purposes only, and does not correspond to Smalltalk syntax for defining 

classes. 

The class Object with instance variables {} and methods {is: class, ..• } 

The class Rectangle, a subclass of Object, with instance variables {origin, extent} and 
methods {show, erase, move: distance, blink, ... } 

The class BitRcct, a subclass of Rectangle~ with instance variables {contents} and 
methods {show, erase, ... } 

Figure 1. A class hierarchy in Smalltalk. 

2. Multiple Inheritance 

Smalltalk-76 does not support multiple inheritance. Classes are organized into a strict 

hierarchy and an instance can be associated with only one class, at a single position in the 

hierarchy. However, there are situations in which one desires greater descriptive power. For 

example, consider an environment for hardware design. Objects in this environment represent 

circuit elements -- resistors, chips, wires, etc. There are at least two points of view from which one 

may wish to examine these objects. The first is as circuit elements with associated electrical 

behavior; the second is as display objects that know how to draw pictures of themselves. To 

choose one point of view as primary, i.e., as the class of the object, and copy methods of the other 

points of view into this class, is clearly unsatisfactory. Equally unsatisfactory is making one class, 

say DisplayObject, a subclass of another, say CircuitElement. Such subclassing would be erroneous 

for other display objects that are not circuit elements. One would really like to be able to have 

multiple superclasses. 

We have explored two designs for multiple inheritance. Both are based on the use of class 

Node, which defines the basic representational unit. An instance of Node represents some entity: 

a circuit part, a Small talk method, a paragraph of a document. Multiple inheritance is achieved by 

assigning perspectives to nodes. A perspective is an instance of a class that represents the node 
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from a particular point of view. For example, a node representing a part of a displayed circuit 

design might have a CircuitElement perspective and a DisplayObject perspective. Class Node 

defines an instance variable perspectives that stores each node's list of perspectives. 

In our first design for multiple inheritance, the state of the object was represented entirely 

in the node. Perspective classes carried no state: they supplied method definitions only. This 

required that perspectives have backpointers to their node, since their methods manipulated the 

state variables stored directly in this node. 

Smalltalk-76 constrains the number of named state variables to be fixed when the class is 

created. This is an efficiency constraint: it allows compiled code to reference instance variables by 

their position in a vector of fixed length rather than by their name. However, in our scheme, we 

prefer that it be possible to assert or delete perspectives at any time. Hence, an instance of Node 

cannot know all of its state variables at creation time. Our solution was to give class Node a 

second state variable whose value was a dictionary keyed by variable names. All variable access 

went through this dictionary and the dictionary could be modified at run time. Flexibility was 

obtained at increased computational cost. Figure 2 shows a node representing a resistor in a circuit 

simulation .. 

R17, an instance of Node, with 

state = {ohms = }OO; connection} = wire6; connectioll2::; wire8; location = (lOO,lOO)} 

and perspectives = {CircuitElement; DisplayObject} 

Figure 2. A Node with mUltiple perspecth'es and a common set of state variables. 

Our first design for multiple inheritance presumed that a state variable such as ohms had a 

meaning independent of the individual perspectives. Hence, it was sensible for it to be owned by 

the node itself. All perspectives would reference this single variable when referring to resistance. 

This proved adequate so long as the system designer knew all of the perspectives that might be 

associated with a given node, and could ensure this uniformity of intended reference. 

When we extended PIE from a single user to a multiple user system, we encountered the 

difficulty that two users might define perspectives that employed a variable of the same name, 

although they had different purposes in mind for the variable. For example, one user might 

define a perspective InventoryPart that used the variable location to point to the node representing 

the bin containing the part, while another user might define a perspective DisplayObject that used 

a variable of the same name to refer to the location of the part on the screen. The result would be 

an unintentional clash. In our first implementation, both perspectives would be erroneously 
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referencing the same variable in the common pool of node variables. 

Our solution was to eliminate the central database owned by the node in favor of local 

databases owned by each perspective. This new design achieved privacy at the cost of additional 

space. Furthennore, it required the user to supply functions for coordinating state variables in 

different perspectives that represented the same data. However, this seemed unavoidable if we 

were to open the process of perspective creation to multiple users. Figure 3 illustrates our 

representation for R17 using this second design. There is no longer a common pool of state 

variables. 

R17, an instance of Node, with perspectives = 

{A CircuitElcment with ohms = 100, connection} = wire6, and connection2 = wireS; 

A DisplayObject with location = (100, 100); 

An InventoryPart with location = binlOl}. 

Figure 3. A node with state distributed among the perspectives. 

In both implementations. a message sent to a node consists of the message pattern and the 

class of the intended perspective. Thus, to obtain the resistance, one would execute the following 

statement: (R17 as: Resistor) ohms. The as: message to R17 causes R17 to return the perspective 

of the desired class, in this case perspective 1. Perspective 1 is then sent the message ohms. 

An alternative to passing the perspective to the node is to require that the node poll its 

perspectives for any that understand the message. This approach has the advantage that the source 

code is more concise, but introduces the necessity to resolve cases in which more than one 

perspective responds to the message. This resolution could be based on a predefined ordering of 

the perspectives. We have not adopted this approach for two reasons: (1) In most cases, we have 

found that the sender knows the point of view that the recipient should employ to understand the 

message. (2) There is generally no good criterion for declaring that one perspective should 

dominate another. In those few cases where the intended perspective is not known, we have 

adopted the procedure that the node polls its perspectives for any that understand the message. If 

an ambiguity exists, a user interrupt occurs. 

The use of perspectives for multiple inheritance is not new. FRL [GoldsteinRoberts77] 

had a scheme very much like our first implementation; KRL [BobrowWinograd77] has mUltiple 

perspectives like those of our second implementation. Both of these implementations were based 

on the assumption that one wants to make it easy to add a new perspective to an existing instance 

at any time. \Ve have adopted this assumption in PIE. 
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An alternative approach is available if one allows multiple inheritance for classes, but not 

for instances; that is, an instance can be associated with one, and only one, class but a class can 

have more than one supcrclass. In this case, it is only in the construction of a class that clashes 

must be resolved between variable names occurring in more than one superc1ass. This is the 

approach employed by Thinglab [Borning77], a multiple inheritance, constraint satisfaction system. 

To summarize, perspectives differ from ordinary Smalltalk objects in four respects: 

• They expect to be part of a closely interacting system consisting of other perspectives and a 

central node; hence they come with a back pointer to their node. 

• They share some of their state with other perspectives in this system, but maintain a private 

variable pool for their own purposes. 

• They are intended to represent a point of view on an entity, rather than the entity itself. 

• They can be attached at any time to a node. It is not necessary to assign all perspectives 

when the node is created. 

3. Metadescription 

Perspectives express different descriptions of the entity represented by the node. Changing 

these descriptions can lead to inconsistencies. We handle this problem by providing the node with 

various kinds of information about itself. We term this information metadescription to distinguish 

it from the primary description implicit in the node regarding the entity in the world that it 

represents. For a general discussion of metadescription see [BobrowWinograd77J. 

The first kind of metadescription we supply is knowledge of the expected type of an 

attribute. This information is supplied in a constraint dictionary. For each attribute, the constraint 

dictionary supplies an expression that describes the class of the expected value. For example, a 

value for the ohms attribute of the resistor perspective is expected to be of class Integer, while the 

value of connection] is expected to be a node with an associated Wire perspective. This 

mechanism takes care of simple unary constraints. 

Secondly, we Supply procedures that are triggered by the retrieval or storage of a value. 

These procedures typically serve to maintain consistency between dependent attributes. For 

example, if a change is made by the user in the connectivity of the displayed schematic, then 

procedures attached to the instance variables being altered can update the circuit element 

perspectives to correspond to the new display linkages. Similarly, attached procedures can update 

the inventory perspective as parts are added or deleted from the design. 
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To take care of less formal cases in which only the user knows· what to do, we have 

dependency notification. A dependency list can be added to the metadescriptions of a node. The 

user supplies this list for a node or attribute, but does not inform the system of what actions to 

take if a change is made. Consequently, when the node is altered, the user is reminded of these 

dependencies by attached procedures, but no automatic actions are taken. For example, the user 

might place a dependency link between a capacitor and an inductor to serve as a reminder that the 

two elements are intended to operate together as a tuned circuit. 

A more powerful dependency model replaces the dependency list with a pointer to a node 

with a contract perspective. The contract perspective contains a list of participants and, at a 

minimum, an English statement of the contract. We plan to formalize this contract progressively. 

For the electrical world, contracts might include the mathematical formulae that describe the 

circuit. For the programming domain, contracts would include the expected type of a variable. 

See [Borning77] for a general study of constraints as the basis of a Smalltalk system and 

[SussmanStallman77] for a more detailed study of dependency relations in circuits. 

4. Unique Identification 

The object metaphor suggests that each user of Small talk has his or her own unique set of 

objects. I run on my computer; you on yours. But the description metaphor suggests that you 

and I may well be working on the same set of descriptions. Hence, we need a way to separate my 

contributions from yours but, at the same time, to clearly identify that they are being generated to 

describe the same topic. To solve the first problem, we employ machinery to separate descriptions 

into contexts. This is discussed in the next section. To solve the second problem, we employ 

unique identifiers. 

Consider the following scenario: I create a set of nodes representing a design and deliver 

these nodes to your environment for subsequent development. To accomplish this delivery, I 

generate a set of descriptions that can be used to recreate a set of Smalltalk objects with the same 

state. This was our first implementation. 

However, the following difficulty arises with this scheme. You modify and supplement 

these nodes, and then generate a new set of descriptions. But when I reread them into my 

environment, how can I determine which of these descriptions should be added to existing nodes, 

rather than used to create a new collection of nodes? 

Recognizing that two sets of descriptions describe the same intended object is a difficult 

problem. However, in this special case, the problem can be solved easily. A node is assigned a 

unique identifier when created. This identifier travels to the consumer when descriptions are 
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generated. The consumer checks to see if a node already exists with the identifer. If so. the 
descriptions of this node are appended to those already there. If no such node exists, a new node 

with this unique identifier is created. 

The computational cost of this scheme is not excessive, since the consuming environment 

can maintain a table that associates identifiers with existing nodes within that environment. Hence, 

in consuming a set of descriptions, it is necessary only to check this table to find the preexisting 

node, if any. l11is is similar to the way Lisp atoms, or Smalltalk unique identifiers are 

implemented, with the important difference that the identifers are generated by the machine in 

such a way that two users can never create identical identifers. In fact, the identifiers consist of an 

encoding of the time and machine of creation. 

5. Contextualization 

From a design standpoint, it is important that alternative descriptions be able to coexist in 

the same environment at one time .. Alternatives arise from a designer exploring different plans to 

achieve his goals; or from the interactions of several designers on a joint project. For example, 

one designer may propose a particular circuit to realize the specifications of a module; while 

another designer may propose an entirely different circuit to (iccomplish the same goals. In a 

design environment, descriptions are sensitive to who has created them and for what purpose. A 

user must be able to examine and manipulate such descriptions from different points of view. 

To implement context sensitive descriptions, we have altered the behavior of the 

dictionaries that store the attribute/value pairs of perspectives. In Smalltalk-76, a dictionary is a 

list of attributes and an associated list of values. We have replaced the value associated with the 

attribute with another level of dictionary. This level of dictionary associates a layer marker with 

different values. The layer marker is a tag for the situation in which the value was supplied. 

Figure 4 shows a partial view of a layer structured description of R17. 

R17, an instance of Node, with perspectives = 

{ACircuitElement with ohms = [<layer! 100», connection} = [<layer! wire6», and 

connection2 = [<layer! wireS> <layer2 wire13); 

A DisplayObject with location = [<layer! (100,100» <layer2 (300, 300)]} 

Figure 4 A partial view of the node R17 with layers indicated. Layer1 stores the original design. 
Layer2 stores a change in the display location of the resistor and an associated change in the 
circuit connectivity. 
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Storage and retrieval is therefore situation dependent. Storage is done with respect to a 

layer. Retrieval is done with respect to a sequence of layers. The retrieval algorithm checks the 

layers in order for a value. returning the first value in the layer sequence. This layer sequence is 

called a context. T'hese notions of layer and context are derived from Conniver [Sussman72). 

There are minor differences in the implementation, and major differences in the use of the 

mechanism. This is discussed in more detail in [llobrowGoldstein80). 

Values stored in a layer represent a coordinated set of values. Suppose the connectivity of 

R17 in a circuit is changed as a display object. An attached procedure (or the user) might make 

the corresponding change in the circuit simulation. These two changes are meant to be 

coordinated, and are therefore placed in the same layer. By "coordinated", we mean that one sees 

either both changes or neither in any view of the circuit. All retrievals in a context will get either 

both these values (if the layer is included in the context) or neither. 

The flexibility to represent alternative descriptions in layers comes at the cost of increased 

complexity. We have designed several display interfaces to explore different mechanisms for 

simplifying the presentation of this inherently more complex database. For example, one interface 

provides a way for a user to view two different contexts simultaneously with differences between 

the two highlighted. We have also explored the use of metadescription to default some of the 

contextual choices that would otherwise fall on the user, e.g., selecting the default layer for 

assertions and the default context for retrieval. Finally, we have supplied commands that suppress 

the context machinery. The user stores and retrieves state in a context free fashion. This is faster, 

occupies less space, and has no cognitive overhead for remembering alternative contexts. But the 

user no longer can explore alternatives or separate his contributions from those of a codesigner. 

All three of these strategies have proved useful in some circumstances, but it remains an important 

research goal to make the context machinery available to the user in a convenient fashion. 

6. Use of PIE 

The PIE system provides an environment for doing software development. Perspectives 

are provided for representing Smalltalk classes and methods. A user of PIE is therefore able to 

build a collection of nodes that represent a software system. Unique identifers and contexts allow 

users to engage in cooperative design and to explore alternatives. When a design is complete, it 

can be installed in Small talk by generating executable code from the node descriptions. Other 

designs described in separate contexts remain unaffected by this installation. Metadescription is 

used to express type knowledge regarding method variables, thereby obtaining the strengths of a 

typed language while still preserving the underlying flexibility of an untyped interpreter. 

The utility of this descriptive base for developing software is illustrated by tlle following 
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experiments: (1) We have successfully redesigned PIE's user interface within PIE. Ordinarily, such 

redesigns would clobber the coding environment itself, but the separation between description and 

installed code prevents such conflict. (2) We are able to describe a method as belonging to 

multiple classes, despite the fact that the Smalltalk kernel does not allow this. At the descriptive 

level, a node representing a method may be linked to more than one class. Within Smalltalk itself, 

a method is local to a class. For compatibility, all that is necessary is that installation of the 

description involves placing copies of the compiled code in each class. However. at the descriptive 

level, the designer can treat the method as a single integral entity; editing it affects its occurrence 

in all of its classes. (3) Multiple perspectives and metadescription support improved browsing and 

prettyprinting of code, thereby improving the user's ability to examine his designs. (4) Unique 

identifiers and contexts provide a tnechanism for generating an incremental system release. The 

new system is created by transmitting a layer with the changes to a consumer and then asking the 

consumer to do a reinstallation. Separating release changes into layers allows the consumer to 

examine the alterations of the release and exercise some choice regarding which parts he wishes to 

accept, before performing the reinstallation. 

The same machinery has also been used to support a document design environment 

Nodes are used to represent the structure of the document; i.e., the document is a tree of nodes 

whose root represents the document as a whole and whose terminals are the individual paragraphs. 

The nonterminals of the tree are chapters, sections and sub-sections. Again, contexts and identifers 

facilitate coauthoring and exploring alternative organizations, two capabilities not well supported by 

present text editing environments. Metadescription can be used to express formatting constraints. 

Multiple perspectives allow a paper to appear as either an abstract, a citation. a bibliographic 

reference. the outline for a lecture, or a formatted document, depending on the desired point of 

view. 

The PIE system code occupies approximately 200 kilobytes and 100 pages of listing in a 

Smalltalk system of approximately 1 megabyte and 1000 pages of listing. Storage space for nodes 

grows as layers increase, and previous or alternative values for attributes of nodes are stored. 

Retrieval time increases with the number of layers in the retrieval context. However, neither price 

has proved exorbitant since PIE has been used largely as an interactive design tool. In this 

application, time is primarily limited by the responses of the user, i.e. there is more thinking than 

computing. Space is released when the design is complete and an installed package of code is 

created. 
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7. Conclusion 

We conclude by reconsidering Smalltalk's upderlying metaphors of simulation, 

communication and classification in the light of our addition of descriptive machinery to the 

language. 

In Smalltalk-76, objects simulate computers and therefore have a fixed identity. Theyuse 

a predetermined set of state variables and respond to a fixed set of messages. In PIE, nodes have 

a flexible set of state variables which can grow or shrink as the attributes of individual perspectives 

are changed. Furthermore, the message set can change as new perspectives are supplied or old 

perspectives deleted. Nodes are more analogous to an evolving biologica1 species than to an 

inanimate computer. At any moment in time, a member of the species has a fixed anatomy and 

physiology. Over time, however, both the anatomy and physiology evolve. 

In Smalltalk-76, objects have an unambiguous message semantics. A message is sent to an 

object and that object, in turn, requests the appropriate method from its class. In PIE, nodes have 

multiple perspectives and more than one perspective may supply a method for a given message. 

The user must specify the perspective, or allow the node to decide. Communication is still an 

applicable metaphor, but the complexity of communication has increased as the underlying objects 

have moved from a monolithic to a pluralistic society. 

In Smalltalk-76, objects participate in a simple, hierarchical classification scheme. In PIE, 

nodes are the locus of a set of descriptions and behaviors, each generated from a different point of 

view. Classification, with its implication of simple hierarchy, has been replaced by description, 

with its more open-ended connotation. 

Thus, the evolution from Smalltalk to PIE has produced a change in the behavior of the 

basic computing element. In Small talk, objects have a fixed structure and engage in 

communication based on a simple classification scheme. In PIE, nodes have an evolving structure 

and engage in a more complex communication based on the use of descriptions. We believe that 

this evolution yields a more flexible environment for exploring design problems. 
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REPRESENTING DESIGN ALTERNATIVESl 

1. Introduction 

A major activity in artificial intelligence research is the design of complex systems. 

Yet most software environments do not support this activity well. They do not allow within the 

system description of different properties of a design nor the flexible examination of alternative 

designs. All designers create alternative solutions, develop them to various degrees, compare 

their properties, then choose among them. Yet most software environments do not allow 

alternative definitions of procedures and data structures to exist simultaneously; nor do they 

provide a representation for the evolution of a particular set of definitions across time. It is our 

hypothesis that a context-structured database can substantially improve the programmer's ability 

to manage the evolution of his software designs. 

Present computing environments support the creation of alternative designs only with 

file services. Typically users record significant alternatives in files of different names; the 

evolution of a given alternative is recorded in files of the same name with different version 

numbers. We contend that this use of files provides both an impoverished structure as well as 

an inflexible one. The poverty is a result of the fact that file names are simply a limited length 

sequence of characters, hardly an adequate scheme to describe the purpose and contents of a 

file, and its relation to other files. It can be an adequate reminder to the originator of the 

natne, but is often opaque to a new reader. The rigidity is a reflection of the fact that one 

typically cannot use parts of files as part of a new composite design, except by tedious text 

editing. Finally, the most serious limitation is that files are "off-line" in the sense that the 

alternative designs are not stored within the computing environment in a form that can be easily 

manipulated by the programmer. Although Interlisp [Teitelman, 78] provides some facilities for 

manipulating pieces of a· file (e.g. individual function definitions), it still suffers from the "off

line" limitation. 

To ameliorate this software bottleneck, we have constructed a computing environment 

in which "on-line" descriptions of alternative software designs can be readily created and 

manipulated. We use a context-structured description-centered database to describe code. Such 

databases have been explored in artificial intelligence research for over a decade as a 

mechanism to represent alternative world views. [e.g. Hewitt, 71; Sussman & McDermott, 72]. 

1 Published in the Proceedings of the Conference on Artificial Intelligence and the Simulation of Behavior, 

Amsterdam, July 1980. 
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Our application of this machinery is novel in several respects. (1) Previous 

applications have focussed on the use of such databases by mechanical problem solvers. We are 

exploring the use of such databases in a mixed-initiative fashion with the user primarily 

responsible for their creation and maintenance. (2) Previous applications have always demanded 

a uniform overhead in space and time for adopting the context machinery . We are exploring 

configurations for a design environment that allow the programmer to trade flexibility for 

efficiency, decreasing the system's investment in tracking the evolution of particular parts· of a 

design at the price of not being able to represent alternatives simultaneously in primary 

memory. Thus, employing the design environment is not an all or nothing choice for the user. 

(3) Previous applications have been to problems of limited complexity. In our application of 

context structured databases to software design, we are exploring their utility in a world several 

orders of magnitude more complex. 

To understand the pros and cons of context structured environments for software 

design, we have implemented a prototype environment and conducted several experiments. 

The environment is called PIE, an acronym for personal information environment. PIE allows 

the user to build context sensitive descriptions of code, documents, and, indeed, any object for 

which a machine representation exists. PIE has been employed (1) to allow a programmer to 

create alternative software designs, examine their properties, then choose one as the production 

version, (2) to coordinate the interactive design of two programmers, and (3) to coordinate the 

documentation and definitions of an evolving package of code. 

2. The Smalltalk Environment 

To describe PIE further, we must first introduce Smalltalk [Ingalls, 78; Kay, 74], the 

programming environment in which it has been implemented. Smalltalk is an object-oriented 

programming language. (Sec Dahl & Nygaard [66] on Simula and Hewitt et al [73] on "actors" 

for related work on such programming languages). Behavior arises from the transmission of 

messages between objects. Each object is, in essence, a simulation of a computer. It can 

respond to some number of messages and it maintains its own state between message 

in vocations. 

The message set of an object is specified by Smalltalk's class structure. Each object is 

an instance of a class. When a message is sent to the object, it asks its class for the method 

associated with that message. The class either contains the definition directly, or if not, passes 

the request to its superclass. For the object to understand the message, its definition must occur 

somewhere in this superc1ass chain. Thus, objects of the same class arc analogous to computer 

products of the same model. 
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Figure 1 shows a fragment of the definition of a Stnalltalk class for Spaceship. The 

fragment shown indicates that instances of Spaceship understand messages that simulate motion 

and collision and that each instance carries its own private state regarding its position and 

velocity. 

Class new title: Spaceship 
superClass: Object "class Object is the root of the superClass hierarchy." 
declare: '~lIlSp,lccships' "a class J'ariable --shared by all instances" 
fields: 'position velocity' "instance variables -- each instance has private versions of these" 

Moving "methods are divided into 'protocols' -- this one is called Moving" 

accelerate: dv "dv is the argument of the method with selector accelerate" 
[velocity+-velocity+dv] 

move [position +-position + velocity. ''points understand the message +" 

#I 

self crashes =) "self refers to this instance. = > indicates a conditional expression" 
[t self explode] "if condition is true, move returns with value of self explode" 

self display. "done if condition is false -- display is a message this instance understands'1 

Collisions "another protocol" 

crashes I ship "ship is a local variable for the activiation" 
"This assumes that all ships are of unit size. and collide only when at the same point" 
[for: ship from: allSpaceships do: [ ship collideAt: position = )[t true]].t false) 

collideAt: place 
rIa method to test if I collide with another object at place." 

[position = place = )[ttrue] tfaIse] 

Figure 1: Partial Definition of a Smalltalkclass 

We chose Smalltalk over Lisp, the usual vehicle for AI research, because Smalltalk has 

a superior set of interactive display facilities. DLISP [Teitelman, 77] provides enough 

capabilities we believe, but was not available on the same fast hardware. These interactive 

display facilities were of critical importance to allow the functionality of the design environment 

to be delivered to a user. No matter how powerful the design tools, no experitnents would 

have been possible with an interface based on an inadequate communication channel. Using 

Small talk, however, has required that we reimplement machinery common to such AI languages 

as FRL [Goldstein & Roberts, 77] and KRL [Bobrow et al~ 77]. This has proved 

straightforward because the object oriented structure of Small talk is congenial to the frame

based viewpoint of a AI representation languages. 

21 
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3. The PIE Environment 

To describe Smalltalk code, we created a class of Smalltalk objects called nodes. 
Nodes are analogous to KRL units, or FRL frames: they consist of a set of attribute value pairs 

with support for attached procedures, the use of defaults, meta-descriptions and inheritance. 

PIE provides convenient ways of viewing relationships between nodes, and viewing 

and changing the properties of nodes. One can automatically create nodes which describe 

existing pieces of the Smalltalk sy.stem, and conversely, make the system congruent with a 

description of it. Node23 in Figure 2 is a description that might have been been computed 

from one method of the Small talk code shown in Figure 1. 

Node23 
class Nodel7 "Nodel7 is the node describing the class Spaceship" 
selector 'crashes "This is a unique string -- like a Lisp Atom" 
localVariables ('ship) "This is a set of unique strings" 
variablesUsed ('ship ~allSpaceships 'position 'mySize) 
methodBody "This is an editable paragraph" 

[for: ship from: allSpaceships 
do: [ ship collideAt: position = )[ttrue]].tfalse] 

comment 
'This assumes that all ships are of unit size, and collide 
only when at the same point' 

Figure 2. A node describing the method for crashes 

In PIE, changing the values of any of these attributes does not automatically change 

the object being described by the node. The node describes an intended object in the system, 

not necessarily the version that exists in the system. This is worth emphasizing as one of the 

principles characterizing our point of view towards the design process. 

* The Description Principle: In a system there should exist a descriptive level at 

which objects can be described without actually affecting the objects themselves. 

4. Representing Alternative Designs 

Using node structure, there are two distinct ways to have alternative descriptions of 

the same object: coreference and context. We have explored both, with our current preference 

being for the use of contexts. 

Coreference uses separate nodes to describe separate alternatives. In Figure 3, Node25 

is a description of an alternative version of crashes. The intended identity of the Nodc23 and 

Nodc25 (they are both are describing the same object) is made explicit with the coreferentNodes 



attribute. 

Node25 
class Node18 
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"Node18 is the node describing the class Spaceship which differs 
from Nodell in having an additional instance variable -- mySize" 

selector 'crashes 
local Varia bles ('ship) 
variablesUsed ('ship 'allSpaceships 'position 'mySize) 
method Body Ita different method body" 

[for: ship from: allSpaceships 
do: [ ship col1ideAt: position of: mySize = )[ttrue]].tfalse] 

comment 'Uses mySize for each ship to determine overlap' 
coreferentNodes (Node23) 

Figure 3. An alternative method for crashes 

However, coreference has certain difficulties. The first is that it does not represent the 

manner in which two descriptions may differ on some attributes but otherwise be identical. 

The second is that the coordination of the choice of Node23 vs. Node25 and other choices in 

the system for consistency is not expressed. For this reason we have chosen to explore another 

way of expressing alternatives. 

In this second method, all descriptions (values of attributes) of any node are relative to 

a context. Context as we use the term extends the notion of context as used in Conniver 

[Sussman & McDermott, 72], and has certain similarities to the vistas of partitioned semantic 

nets [Hendrix, 75]. 

.. The Context Principle: All attribute-values in the system are relative to a 

context, and alternatives in a system are expressed by alternative contexts. 

When one retrieves the values of attributes of a node, one docs so in a particular 

context, and only the values assigned in that context are visible. 

5. Increnlental Design 

Design involves more than the consideration of alternatives. It also involves the 

incremental development of a single alternative. Every programmer is aware that software has a 

life cycle: following its birth, it undergoes progressive refinement in response to changing 

external requirements. PIE supports the incremental modification of a design by providing a 

fine struc~ure to contexts that we have not, as yet, discussed. 

A context is structured as a sequence of layers. It is these layers that allow the state 

of a context to evolve. The assignment of a value to a property is done in a particular layer. 

23 



24 REPRESENTING DESIGN ALTERNATIVF.s 

Thus the assertion that a particular procedure has a certain source code definition is made in a 

layer. Retrieval from a context is done by looking up the value of an attribute, layer by layer. 

If a value is asserted for the attribute in the first layer of the context, then this value is 

returned. If not, the next layer is examined. This process is repeated until the layers are 

exhausted. 

Figure 4 shows a layer C containing some coordinated changes to the spaceship class 

of Figure l. This layer contains those changes necessary to allow the class to use size 

information in determining collisions. In a context which contained this layer dominating those 

containing the information imp1icit in Figure 1, the changes would be visible. Those attribute

values such as the superclass of Spaceship that are not contained in layer C would be found in 

less dominant layers. 

Node17 "the node/orthec/assSpaceship" 
fields: (,position 'velocity 'mySize) Ita change in a declaration" 
methods ( ... Node23 Node27 ... ) 

Node23 "the node/or the method crashes" 
methodBody 

[for: ship from: allSpaceships 
do: [ ship collideAt position of: mySize = )[ttrue]].tfalse] 

Node27 "the node/or the method that tests/ora collision" 
selector 'collideAtof: 
method Body 

[(position + mySize)place-size)and:(position-mySize(place + size) = >[ttrue] 
tfalse] 

Figure 4. Layer C, containing coordinated changes to use mySize 

Figure 5 shows several spaceship nodes in which the values of attributes have not 

been filtered by a context sensitive lookup. Instead, we see the underlying data structure, which 

is an association list of layers and values. Layer B is the base layer in which all the nodes were 

presumed to have been originally defined for this example. 
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Node 17 "the node/or the class Spaceship" 
fields: LayerB (,position tvelocity) 

LayerC ('position 'velocity 'mySize) 
Node23 "the node/or the method crashes" 

methodHody 
LayerB 

[for: ship from: allSpaceships 
do: [ship collideAt: position =)[ttrue]].tfalse] 

LayerC 
[for: ship from: allSpaceships 
do: [ship c011ideAt: position of: mySize = )[ttrue]].tfalse] 

Figure 5. An unlayered view of node structure 

Extending a context by creating a new layer is an operation that is sometimes done by 

the system, and sometimes by the user. The current PIE system adds a layer to a context each 

time the context is modified in a new session. Thust a user can easily back up to the state of a 

design during a previous working session. The user can create layers at will.lbis may be done 

when he or she feels that a given groups of changes should be coordiriated. Typically, the user 

will group dependent changes in the same layer. 

Given the existence of layers, a complex design developed over many stages can be 

summarized into a single new layer. The old layers, reflecting past choices. can then be deleted. 

Thus, the designer, if he wishes, can compress the past, achieving a more compact 

representation at the price of no longer representing the dynamics of the design. 

6. Coordinating Designs 

So far we have emphasized that aspect of design which consists of a single individual 

manipulating alternatives. A complementary facet of the design process involves merging two 

partial designs. This task inevitably arises when the design process is undertaken by a team 

rather than an individual. To coordinate partial designst one needs an environment with these 

properties: (1) non-interference. Two designs may overlap. It must be possible to examine the 

overlap without the designs overwriting one another. (2) incompleteness. It must not be 

necessary for a design to be complete before it is examined. (3) merging. It must be 

convenient to create a common design from the individual contributions. It was encouraging 

for us to learn that the context/layer machinery created to manage alternatives lent itself well to 

meeting these requirements for coordinating partial designs. 

25 
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Non-interference between the overlap of two partial designs was accomplished by 

adopting the convention that different designers place their contributions in separate layers. 

Thust where an overlap occurred. the divergent values for some common attributes were 

separated by distinct layers. Handling incomplete designs of software was facilitated by the 

distinction between intensional node descriptions and the actual code definitions. Since the 

node descriptions were not installed code, they could be partial and hence non-executable with 

no difficulty. 

Merging two designs can be viewed as a process that creates a new layer into which 

are placed the desired values for attributes as selected from two or more competing contexts. It 

is hence very much like the summarization process described earlier, but it is relative to lnore 

than one context and requires user interaction. For complex designs, the merge process iSt of 

course, non-trivial. We do not, and indeed cannot, claim that P]E eliminates this complexity. 

What it does provides is a more finely grained descriptive structure than files in which to 

manipulate the pieces of the design. 

Understanding how to merge two designs is facilitated by exammmg commentary 

supplied by the designers regarding the rationale of their choices. But this raises the classic 

software problem of coordinating documentation with design. Fortunately no additional 

machinery is required in PIE to address this problem. Commentary such as the rationale of a 

procedure, or its dependencies on other procedures, can be stored as attribute value pairs within 

the node describing the procedure in question. A request to be informed of the rationale of 

some change is answered by fetching this information from the same layer as the one which 

records the change, thus keeping them coordinated. Figure 4 shows how the rationales of 

various method definitions are recorded in the layer along with the altered definitions. 

7. Complexity. 

We claimed in the introduction that PIE copes with problems several orders of 

magnitude more complex than those previously represented in AI systems such as Conniver. 

By complexity we mean both the size of the data base in the system, and the variety of 

operations done on contexts. The Conniver database was never efficient enough to implement 

any useable subsystems. McDermott's [McDermott, 74] examination of the Monkey and 

Bananas problem within Conniver exercised it to its limit. 

PIE is able to build a context sensitive description of any class within Small talk. 

Thus, it can be applied to any programming problem that a Small talk programmer undertakes. 

This is analogous to using Conniver to build a programmer's interface to Lisp. Attacking 

problems of this size is, in part, possible because we have more computational resources than 

were available in the early 70's. PIE runs as a stand alone job on a processor with. at least the 
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power of a KAlO. However, it is also possible because we have lmplementcd machinery to 

allow the programmer to move between context sensitive and context free descriptions at will. 

Thus, there is a more congenial marriage between PIE and Smalltalk than there was between 

Lisp and Conniver. This· is discussed in the next section. 

An interesting side effect of PIE's ability to describe any code within Smalltalk is that 

it can and has been used to describe itself. Thus, PIE's present capabilities have passed the test 

of being sufficiently powerful to support its own development, for example, by allowing us to 

examine alternative implementations of the PIE user interface within PIE. 

8. Efficiency versus Flexibility 

PIE allows the user to trade flexibility for efficiency. At one extreme, the user can 

employ standard Small talk mechanisms for defining new code. If this route is chosen, then no 

evolutionary history is maintained, and no context overhead is paid. However, if the user 

wishes to pay the price of some decrease in efficiency of storage and retrieval time, then he can 

first build a set of nodes describing Smalltalk code, then continue his development in a context 

structured fashion. From this point forward, the evolutionary history is maintained. If the user 

reaches the point where he once again prefers efficiency to flexibility, the context definitions 

can be converted to pure Smalltalk and the layers deleted. If desired,the user can first store 

the layers remotely, preserving the ability to recreate the context description later. All these 

facilities are curently implemented. 

This discussion suggests how a central design facility can serve as the nucleus of a 

network of remote servers that provide current pack,ages to users. Periodically, the design server 

can release new layers to these servers with updates to particular designs. ~fhe servers can then 

generate new Small talk versions and release these designs to clients. Clients who wish to know 

what has changed, can get a description from the new layer. 

9. Interaction 

PIE's ability to represent non-trivial alternative designs raises deep problems related to 

the user interface. How can we make available this power in a useable form? What are the 

cognitive· requirements of the prcgrammer? Presently we are employing an interface modelled 

on the standard Smalltalk interface for examining and altering code. This interface, called the 

browser, displays a hierarchy of descriptions of Smalltalk code to the user. The user can 

examine any method by a process of selection that specifies first a category of classes, then a 

particular class, then a protocol of methods within the class, and finally a particular method. 

This scheme of organizing code into a four-level taxonomy has been adopted in PIE to 

mininlize the overhead for a Snlalltalk user learning to employ the PIE environment. However, 
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PIE makes this classification contcxt depcndent. As with the standard Smalltalk browser, the 

user can alter the definitions of any object viewed. But these alterations are made in the 

dominant layer of the associated context, and do not affect the Smalltalk kernel itself, whereas 

making changes with the standard Snla11talk browser forces immediate incorporation of any 

changes. 

Research is needed to explore whether this interface is adequate given the increased 

complexity of a context structured environment. In Small talk, the hierarchy of code definitions 

is the primary structural organization. In PIE, this hierarchy is now context dependent. Has 

this additional complexity made the Smalltalk organization inadequate? Will we need a 

classification scheme with more levels of division, or will some other kind of organization be 

appropriate? Just one of the problems that we will have to consider is that in a design 

environment, there is no need for a particular method description to be associated with only a 

single class, even tho~gh the actual Smalltalk system requires that the method be separately 

compiled for each class to which it belongs. Hence, a strict hierarchy is obviously inadequate. 

9. Conclusions 

This paper presents only a sketch of the PIE system; our research is reported in 

greater detail in Goldstein & Bobrow [80]. We have not discussed here issues in the design of 

the user interface, although a successful interface is critical to delivery of these capabilities to 

the user. We only suggest here that layered networks are applicable to more than software: an 

extended example in cooperative writing of a document is given in the larger work. Finally, the 

system has as yet had only limited use. We do not know which features will be used most, 

which need to be automated to be helpful, and which may prove to be too complex to be 

useful. Recording and analyzing this experience is an important part of our research program. 

A major theme of Artificial Intelligence research has been . the development of 

languages to describe complex evolving structures. In general, these structures have been the 

belief structures of an artificial being about some subject matter (e.g., the SRI consultant's 

[Hart, 75] beliefs about the state of a water pump being constructed, or SAM's [Schank et aI, 

75] beliefs about what went on in a story it just read). We have been exploring the premise 

that these techniques can be used to describe the complex evolving structure of a software 

system, and as such can provide aids to the designer of such a system. One use of artificial 

intelligence is to amplify human intelligence. We suggest that the (recursive) application of AI 

techniques to AI can have a powerful effect on the development· of the field. 
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BROWSING IN A PROGRAMMING ENVIRONMENI'l 

1. Introduction 

A browser is a software development tool that supports the incremental examination of a 

system by accessing some kind of information network. A user starts at a canonical place in this 

network, and selects entities that represent parts of the system. This causes the browser to display 

the substructure of the system connected to the selected entity, and some infonnation about that 

entity. In this manner, a browser can be employed to engage in a hierarchical examination of a 

system by proceeding level by level from subsystem to module to sub-module, until the terminal 

structure-possibly individual procedure definitions-is reached. In addition, the browser allows a 

user to add or alter structure at any point in this examination process. 

Most programming environments allow a user to retrieve and manipulate different parts of a 

software system, if the programmer knows their exact name and location; but do not support well 

the examination of structure whose exact description the programmer does not know. In such 

situations, the programmer will frequently be reduced to examining file directories, hoping that the 

file names reveal the contents of the file. A browser seeks to ameliorate this difficulty by allowing a 

user to examine different regions of a software system based on their general classification. Thus, 

the underlying database imposes an organization on the software system analogous to the 

organization imposed on a library by the Dewey decimal system. The browser provides an 

electronic analog of moving from a general classification to the stacks, and then subsequently 

browsing there. 

Browsers were intr~duced into Smalltalk by Larry Tesler in 1977, and have since become a 

mainstay of the Small talk programming environment. (The general nature and goals of Small talk 

are described in Kay [77]; the 1976 implementation in Ingalls [78]; and the Smalltalk browser in 

Goldberg and Robson [79].) In recent research, we have extended the simple, hierarchical system 

rnode! provided by Smalltalk and developed a generalization of the Small talk browser to manipulate 

these richer descriptions [GoldsteinBobrow80a,b,c; BobrowGoldstein80]. We have dubbed this 

extended environment PIE, an acronym for Personal Information Environment. 

In the next two sections, we describe the Slualltalk system model and its associated browser. 

This is followed by two sections that describe the PIE system model and its browser. The following 

nine questions arc used as a framework for comparing the functionality of these two browsers. 

1 Published in the Proceedings of the 14th Hawaii Conference on System Science, January 1981. 
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I} Overview: How much of the information network can the user see at one time? 

2) Path: What part of his path to the current position is visible to the user? 

3) Presentation: What should be displayed on the screen for each selection? 

4} Operations: What operations can be performed on the view for each selection? 

5) Multiple Views: Can more than one view of the network be seen? Are they all of the 

same form? 

6) Consistency: What guarantees of consistency are there between multiple views? 

7} Alternative Access: Can the user find a known entity in the system without tracking 

through the network? 

8} Integration: Is the data environment integrated with the operational environment of the 

underlying system? 

9) Changeability: Can the user change the format in which information is displayed? 

2. The Smalltalk System Model 

Small talk is an object oriented programming system, where behavior arises from the 

transmission of messages between objects. Objects are grouped into classes, all of which have 

identical internal stnlcture, and respond to the same set of messages. An object is like a simulation 

of a computer; it can respond to set of instructions, maintaining its state between invocations. 

Small talk generalizes Simula67 [Birtwistle73] and is related to the Actor languages developed by C. 

Hewitt [Hewitt73]. 

The Small talk information network partitions all classes into categories for ease of access. 

These categories are not mutually exclusive, although multiple category membership is generally 

avoided. (Since classes are stored in files corresponding to their category, multiple category 

membership gives rise to redundant storage and possible inconsistencies between versions.) A 

method is the code which implements the class specific response to a message. The set of methods 

of each class is partitioned into mutually exclusive groups called protocols. Neither categories nor 

protocols has any significance for the Small talk interpreter; rather they are artifacts of the desire to 

browse through the system. 

There is a subclass hierarchy in the Small talk system that does have semantic significance. A 

class can inherit behavior and structural description from another class called its superclass. All 

instances of a particular class contain the fields specified in the superclass. If the subclass has no 

specialized behavior (method) for responding to a particular message, it will request that its 

superclass respond to the message. This inheritance is a very powerful way of sharing behavior. 
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3. The Smalltalk Browser 

Figure 1 shows a sequence of views of a Smal1talk browser as a user selects a path through the 

network. The browser is a rectangular region on the display screen called a window and is built 

from 6 sub-windows called panes. The top pane is the title pane and shows the label 'Smalltalk 

Browser'. Below it is a row of four list panes that display, from left to right, categories, classes, 

protocols and methods. The lower pane is a text pane that displays text associated with the. most 

recently selected item. 

Figure la shows the browser in its initial state with the leftmost list pane displaying part of the 

list of categories defining the Small talk system. The pane can be scrolled to view other categories in 

the list. The browser enters the state shown in Figure lb in response to the user selecting the 

category Data Structures. A selection is made by moving a cursor over the item to be selected and 

depressing a button on the device controlling the cursor. Selections appear in inverted video in the 

actual system, but are shown in boldface in the figures. The most recent selection is in bold italics. 

The selection of Data Structures causes the classes of this category to be displayed in the second list 

pane and a template for defining a new class to appear in the text pane. In Figure lc, the user 

selects Set, a class whose instances provide the behavior of sets by appropriately manipulating an 

array. This selection causes the class' protocols to be displayed in the third list pane and the 

definition of the class to appear in the text pane. The user can edit this definition to modify the 

title, superclass, or fields of the class. In Figure Id, the user selects the Access protocol, causing its 

methods to appear in the last list pane and a template for defining new methods to appear below. 

In Figure Ie, the user selects the has: clement method and its definition appears in the text pane. 

Figure 2 shows the path that the user has traversed in the system taxonomy. (This particular 

graphic view is not generated by Smalltalk.) 

The organization entries under categories and protocols are not actually items of that type, but 

rather data structures that can be edited to alter the taxonomy. For this reason, the organization 

entries are not shown in Figure 2. Changing the category organization by selecting it and editing 

the text that appears below can move existing classes to different categories. The protocol 

organization serves a similar function for its class. 

3.1 Overview 

The browser shows a slice of the four level system taxonomy that extends through all four 

levels but is of limited breadth. Figure 2 shows this slice relative to a graphic view of the 

taxonomy. At his discretion, the user can select any element in the displayed slice of the taxonomy. 

To see other elements on a given level, the user must scroll that pane, thereby changing the slice of 

the tree seen in the pane. 
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3.2 Path 

Since the hierarchy is only four deep, the user can see the entire path from the root. The user 

cannot sec, and the brows0r docs not maintain, a history of other nodes that have been selected 

before, but arc not on the path. 

3.3 Presentation 

Selection causes text and sub-stlucture to be displayed. Sub-structure is displayed in the list 

pane to the right. Text consisting of either templates or definitions is displayed below. For 

categories and protocols, a template is shown for defining new classes and methods respectively; for 

classes and methods, their definition appears. The reason for this difference is that categories and 

protocols have no semantic significance other than grouping a set of subordinate elements. 

3.4 Operations 

For each of the list panes, operations are defined for deleting, printing and filing the selected 

clement. These commands arc available from a menu that is not shown. 

Insertion is not an explicit menu command. Instead, it occurs in two different ways. New 

classes and methods are inserted in their respective categories or protocols as a side effect of 

compiling their definitions. Old classes and methods can be rearranged by manipulating the table 

that the browser presents when the organization entry is selected in the category Of protocol pane. 

Manipulating this table is also the mechanism for creating new categorics and protocols. 

A limitation is that the browser does not permit the crcation of partially defined classes or 

methods. A class or method must be compilable to be successfully included in a category or 

protocol; this is a result of the browser assumption that the data structure it is viewing is the one 

currently installed in the system. This has undesirable consequences for program design when the 

designer wishes to delay certain decisions. In this respect, the marriage betwecn the browser and 

the software environment is too intimate. 

3.5 Multiple Views 

Several browsers can be brought to the screen at once and can overlap. Commands are 

provided to move a browser to a new region of the screen and to view an obscured browser. The 

result is that the display screen is like a desktop with multiple browsers representing different pieces 

of paper. 

This browser provides a command to spawn additional text windows that display the selected 

method. These windows maintain a constant view of the method, allowing the user to browse to 

other regions of the network. They arc incomplete views of the method, however, in that they do 

not display its class or protocol, and hence these attributes of the method cannot be altered through 

this window. 
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The hardcopy format of Smalltalk code represents a third view of the system. This- view is a 

depth first listing of the tree. Users occasionally prefer this view to the browser in order to obtain a 

perspective on a segment of code. rl11C hardcopy format cannot be manipulated within the system. 

The browser does not support other taxonomic views of the system such as an cxamination of 

the class/subclass hierarchy. 

3.6 Consistency 

The view seen on one browser is almost completely independent of that seen on a secondt 

even if they are both looking at the same method or class definition.· This means that if a method is 

changed using one browser, the definition seen on the screen for the other is not altered because 

that browser is unaware that the underlying model it is viewing has changed since it fetched the 

definition. Only if an explicit request is made to fetch the definition again is the underlying model 

queried, thereby ensuring that the view is consistent. 

• The exception is that browsers do check whether the list of classes has changed whenever they are 
reactivated. If a class has been added or deleted from this list, the browsers reenters its initial state. 
No check is made for changes to the definitions of existing classes, protocols, or methods. 

The reason for the inconsistency is two-fold. First, the view in the browser is just thatt a 

computed view, and changes to that view are not reflected iInmediately in the model. Only when 

the method is compiled is the underlying system model altered. This is desirable since the user 

should be able to complete a set of changes to a procedure before it is altered permanently. 

Otherwise compilation might be attempted on an inconsistent state. Second, when a change does 

occur to some software object, there is no way for that object to inform the appropriate views since 

the underlying system model has no knowledge of existing views. 

There are at least two solutions to this problem. One is to give each object responsibility for 

updating views of itself. using a "notification protocol": for example, a class whose method changes 

would notify all browsers which have informed it of their current interest. A second solution is to 

give each view the responsibility for keeping itself updated, and to provide a way for it to check 

what the last time an object it is viewing changed. Then any time a viewer becomes active, it can 

compare its last update time with this list to see if updating is required. 

3.7 Alternative Access 

The only means to move through the network is by progressive selection of displayed objects. 

No browser commands exist to select an object via a partial description or even by specifying its 

name. 

3.8 Integration 

The browser does not support access to other kinds of data such as manuals, primers, and 

system specifications nor does it support examination and manipulation of instances of classes. 
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The browser is integrated in a limited fashion with a history list of changes in the sense that 

defining or redefining methods affects this list. However, deleting a method has no effect on the 

history nor can the history list be examined through the browser. No distinction is made between 

different kinds of modifications such as the difference between adding a breakpoint and making a 

permanent change made to the code. 

3.9 Changeability 

The user can change the size, number and posItIOn of browsers on the display screen by 

invoking commands supplied by the browser, but no commands are supplied to alter the relative 

widths of various panes. 

The user can alter the behavior of the browser in two ways. He can redefine methods in the 

browser (using the browser itself), although bugs in these changes could make the interface 

inoperative. Or he can subclass the classes used to define the browser and make whatever changes 

he wishes in these subclasses. This is a safer strategy, since old style browsers are unaffected, but all 

behavioral changes must be programmed in Smalltalk itself. It is equally parsimonious in that 

subclasses inherit all of the behavior of their superclasses,except for messages that they define 

directly. 

The browser does not support idiosyncratic behavior for particular objects of a given type: all 

classes, for example, are treated identically. 

4. Summary of Smalltalk Browser Strengths and Weaknesses 

4.1 Strengths 

The Small talk browser provides an excellent way of examining and editing the Smalltalk 

system code as evidenced by its universal adoption within the Smalltalk community and relative 

stability. Its browsing capabilities and the associated system architecture of a taxonomy of 

constructs serve a useful documentation role. Users often familiarize themselves with new software 

by browsing through new categories in a system release. The browser provides a uniform way to 

examine and manipulate the software, and guides novices with templates for creating new entities. 

4.2 Weaknesses 

The Smalltalk browser keeps no history of its interactions except for the names of methods 

that have been changed. It only reflects the current state of the world; there is no way to go back 

and forth between different consistent states. The system does not help a user to maintain any 

design constraints other than the ones implicit in the programming language. For example, a 

programmer cannot indicate that two lnethods in a class are dependent, and that subsequent 

modifications to one should be checked for compatibility with the other. There is no incremental 



BRO\VSING IN A PROGRAMMING ENVIRONMENT 37 

way of modifying the behavior of the browser by attaching your own procedure to provide a 

specialized function in the interface; for example, one cannot provide specialized templates for new 

methods of a particular class. 

The SmaUtalk browser also reflects deficiencies in the underlying system model. Smalltalk 

provides for commentc) for classes and Inethods but not for categories of classes or protocols of 

methods. Class comments are separately manipulable from the class definition; method COtnlnents 

are not. Storing a method comment requires that the procedure be recompiled. 

5. The PIE System Model 

PIE was motivated, in part, by the goal of providing a more complete and more integrated 

representation for Smalltalk systems. It provides a network structured database whose nodes 

describe all the entities in the system and employs techniques developed for describing entities in 

knowledge representation languages like KRL [BobrowWinograd77]. 

Nodes provide a uniform way of describing entities of many sizes, from a small piece such as 

a single procedure to a much larger conceptual entity. For example, nodes are lIsed to describe 

code in individual methods, classes, categories of classes, and configurations of the system to do a 

particular job. Sharing structures between configurations is made natural and efficient by sharing 

regions of the network. 

The uniform use of node structure extends to software documentation. Manuals and 

specifications can be embedded in the network using nodes representing the chapters, sections and 

paragraphs of the material and can be cross-linked to the relevant software. Because software and 

documentation coexist in the same environment, it is easier to develop them in a coordinated 

manner. 

Nodes are distinct from the system objects that they represent. Changing a node does not 

immediately alter its corresponding software object. For example, the node representing a class can 

be created and a partial definition supplied. This node can be stored, examined and edited. It does 

not affect the underlying Smalltalk environment, however, until its description is compiled. 

Attributes of nodes are grouped into perspectives. Each perspective reflects a different view of 

the entity represented by the node. For example, the structuralSpec of a Smalltalk class defines the 

structure of each instance by specifying the fields it must contain; the procedumlSpec defines the 

protocols; the interfaceS pee defines the set of messages required by external clients, and the 

documentSpec describes the implementation and its use. 

Perspectives may provide partial views which are not necessarily independent. For example, 

the proceduralSpec and the interfnceSpec both describe certain methods of the class. Attached 

procedures arc used to maintain consistency between such perspectives. 
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Each perspective supplies a set of specialized actions appropriate to, its point of view. For 

example, the print action of the structuralSpcc perspective of a class knows how to prettyprint its 

fields and class variables, whereas the j)roccdumlSpec perspective knows how to prettyprint the 

methods of the class. These actions are implemented directly through messages understood by the 

Smalltalk classes defining the perspective. 

All values of attributes of a perspective are relative to a context. Context as we use the term 

derives from Conniver [SussmanMcDermott72]. When one retrieves the values of attributes of a 

node, one does so in a particular context, and only the values assigned in that context are visible. 

Therefore it is possible to create alternative contexts in which different values are stored for 

attributes of various nodes. For nodes representing software, these contexts typically describe 

alternative designs. One can compare and test alternatives without leaving the design environment. 

Contexts are themselves nodes in the network. This allows a description of the rationale for 

the set of changes to be stored in the context node in the network, in the same way that 

descriptions for for a method node contain comments on their purpose. 

In any, system, there are dependencies between different elements of the system. If one 

changes, the other should change in some corresponding way. We employ contracts between nodes 

to describe these dependencies. These contracts are thelnselves nodes with specialized behaviors. 

These behaviors include inst;tllation of procedures to' maintain consistency of simple constraints 

expressed in a formal language, and notification to the user when changes have been made to 

contract participants. Use of contracts raises a number of questions which we have just begun to 

explore; e.g. when should one check agreements and still avoid seeing temporary states of 

inconsistency during the process of change. 

Finally, the PIE system provides perspectives which allow the system to describe itself. 

Perspectives themselves are described in the system, and small modifications to the behavior of a 

particular perspective can be made by manipulation of the network structure. Nodes can be 

assigned meta-nodes whose purpose is to describe defaults, constraints, and other infOlmation about 

'their object node. Information in the meta-node is used to resolve ambiguities when a message is 

sent to a node having multiple perspectives. 

6. The PIE Browser 

The PIE browser was constructed as a generalization of the Small talk browser, in order to 

minimize the overhead of Smalltalk users immigrating into the PIE environment. It is shown hi 

Figure 3a. Two additional panes have been added in the middle of the browser. The left pane lists 

the perspectives of the most recently selected node while the right pane lists the attributes of the 

selected perspective. The title pane shows the node at which the browsing begins and the. context 

from which the network is being viewed. 
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In Figure 3b, the user has selected the node representing the Dahl Structures category. This 

causes the two perspectives of this node to be displayed. The first is the perspective describing 

categories: it includes a classes attribute and additional attributes describing the most recent tile and 

modification dates to classes in the category. The second is the description perspective, common to 

many nodes, that specifies a title and optional text for the node. In this case, tile text attribute is 

employed to store a comment regarding the category, and this comment is displayed in the text 

pane. 

In Figure 3c, the user has selected the category perspective and itc;; attributes appear in the 

attribute pane. In Figure 3d, the classes attribute is selected and its value, a list of nodes 

representing the classes of this category, appears in the second list pane. The attribute is used as a 

label for the pane. In Figure 3e, the user has selected the Set node, and its perspectives appear 

below. Thus, lnoving from one node to the next in the network requires selection of a node, then a 

perspective, then an attribute. Figure 4 shows a graphic representation of the PIE network and the 

path traversed by the user. 

6.1 Overview 

As with the Small talk browser, the user can see a slice of the network. In addition to nodes 

surrounding previous selections, tllis slice includes the perspectives and attributes of the current 

selection. We have explored browsers that show the perspectives and attributes of every node in the 

path, but these trade breadth of view for increasing complexity on the screen. 

The labels on the four upper list panes are dynamic and computed from the selection. The 

Small talk browser employed static labels since the same attribute was always displayed in a given 

list pane. 

6.2 Path 

The PIE network is not restricted to a depth of four. However, the PIE browser contains only 

four list panes, a constraint derived from the size of the screen. To go deeper into the network, the 

user can shift the view to the left. In Figure 5, the user has moved the view one to the left. The 

origin of the browser is now the Data Structures category and the rightmost pane is available to 

show subordinate nodes linked to the has: element method. In this case, the user is examining 

nodes representing constraints on the definition of the method. If the user tried to see substructure 

which would· logically be to the right of the fourth pane, PIE blinks the browser to indicate that it 

cannot show the requested information in the current browser configuration. The user can then 

shift the view as described, or spawn a new browser rooted further down the tree, and continue. 

The PIE browser does not maintain a chronological history of selections. Hence, it is limitedt 

like the Smalltalk browser, to displaying only four steps in the path to the current selection. An 

unfortunate consequence of this lack of historical information is that while the view can be shifted 

to any node in the network, the browser cannot recreate selections made from that node. Hence, a 
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shift to the right, for example, from the Data Structures node back to the Code node, would require 

that the user remake his selection choices to again be examining the has: clement method. 

6.3 Presentation 

To minimize the interactions required by the user, the browser can operate in a mode in 

which it lnakes various default decisions on its own initiative. These decisions are based on 

additional descriptions provided in the network. For example, the network contains descriptions 

that specify that the category perspective should be selected by default over the description 

perspective and that its classes attribute should be displayed. As a result of these default 

specifications, the selections of Figures 3c and 3d are made by the system and selecting the data 

structures category in Figure 3b produces the display of Figure 3e imlnediately. Hence, the user 

need not engage in any more interaction with the PIE browser than with the Smalltalk browser to 

conduct similar actions. The user can override these defaults by making explicit perspective or 

attribute selections. 

111e specification of the default display behavior of a node is described in meta-nodes linked to 

perspective types and to particular nodes. In the former case, the meta-node applies to all instances 

of the perspective. In the latter case, its advice is idiosyncratic to a particular node. These meta

nodes can be examined and edited from the browser. 

Templates for creating new nodes of a particular type are available upon request and are 

stored in the meta-node of the· perspective. They are shown automatically only if they are specified 

to be the default display information. Many perspectives, not just those for classes and methods, 

have templates. 

6.4 Operations 

The PIE browser supplies four standard operations: insertion, deletion, filing and printing. 

Insertion consists of adding a node to the list and assigning it a perspective. Default knowledge is 

employed to supply a particular perspective when the list is constrained to be a set of nodes of a 

particular kind. For example, the classes attribute of the category perspective has the default 

description that all of its elements have a class perspective assigned. Descriptions of nodes can be 

stored without having to compile them. Therefore partial descriptions of methods can be left in the 

network and returned to later. 

Insertion of nodes of arbitrary type eliminates the need for an organization entry. Categories 

and protocols are created by adding nodes with those perspectives. Rearranging an old organization 

is accomplished by moving nodes from one attribute set to another. 

The PIE browser also differs from the Small talk browser in that special actions specific to 

perspectives at a node can be invoked by the user through a special menu. This menu is computed 

frOln the selected node, using default description that specifies a subset of the messages of a 
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perspective to be user commands. The PIE browser can view nodes with arbitrary perspectives in 

any pane. Hence, the ability to interrogate the perspective for its associated commands was 

necessary. Since the Smalltalk browser views only four kinds of objects and these objects are tied to 

particular panes, this generality was not included. 

f 6.5 Multiple views 

There are three different senses in which multiple views are available to the user of PIE. The 

first is similar to that of the Small talk browser. 'rhere can be more than one instance of a browser 

on the screen at a time, viewing different parts of the Smalltalk system. 

A second kind of multiple view comes from the notions of context embodied in the PIE 

network. The value of any attribute is context dependent. The user can change the view seen in 

the browser by changing the context associated with that particular browser. This causes the 

browser to recompute all fields seen. 

The third arises from the fact that the user can request an outline view to be generated of the 

substructure of the selected node. A portion of the subtree descending from the selected node is 

shown in an indented outline fonnat. The default perspective and attribute of each node is used to 

determine which part of the subtree to display. For class Set, this outline would include the Set 

node, the protocol nodes of its structuralSpec perspective, and the method nodes of each protocol. 

This outline is very close to the standard hardcopy view of Smalltalk codc-a fact that is not 

accidental. The defaults have been chosen to make this view the preferred one. 

6.6 Consistency 

As with the Small talk browser, there are no' backpointers from nodes to views. This means 

that a change made to the network through one browser is not reflected in another browser's view 

computed earlier. One approach to solving this problem is presently being .introduced into 

Smalltalk by providing backpointers from software objects to their views. A separate control 

process is assigned responsibility for maintaining consistency. Another approach that we are 

considering is to describe the browser itself in the PIE network in order to take advantage of the 

contract machinery provided by PIE to maintain consistency between descriptions. However, this is 

still an unexplored area. 

6.7 Alternative Access 

A browser provides one way to get access to a node in an information network. Sometimes it 

is useful to shift the point of view of the system to a node which matches a given description 

without having to browse through one level at a time. This is provided in PIE. A user can specify 

the perspective type and some distinguishing features of a node. For example, he can search for 

classes entitled Set, any class that is a subclass of these classes, or even any class whose comment 

includes the substring 'set'. PIE engages in a a search and causes the view to be shifted to the 
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selected node. If more than one node matches the description, PIE offers the user all matches. 

Selection of a match causes the view to be shifted to the selected node. 

Some indexing facilities are provided to limit the potential candidates for a match: each 

perspective maintains a list of the nodes to which it has been assigned. This is a very simple 

scheme, but the present size of the Slnalltalk systetn-consisting of several hundred classes owning 

several thousand methods-does not require anything more elaborate. 

One novelty of our searching machinery with respect to traditional database design is that no 

general set of indices are maintained. Rather, each perspective has its own matching protocol. 

Thus, if a perspective receives a description like 'set' without a specification of the attribute of the 

perspective to which this description must match, the perspective itself decides which attributes can 

be used as the basis of a match. For example, the structuralSpec perspective checks the title and 

supercIass attributes, but not the field variable or class variable declarations. This is in contrast to 

most data base environments where entities are matched against a pattern by a standard algorithm 

which matches the values of attributes, perhaps using range test'). Because PIE is integrated in the 

Smalltalk system, each entity can run its own idiosyncratic program to test whether it matches a 

description. 

6.8 Integration 

The PIE browser integrates the eX,amination of data, code, documentation, and system 

description since all of this information is uniformly described in the network. The browser also 

integrates the computation of views of the database with the underlying programming language. In 

most data bases, "views" are supported which compute virtual relations from real ones that exist in 

the data base. However, the programming language to compute these views is impoverisheq. 

usually being restricted to expressions in the relational calculus. 1be advantage of this language is 

that it makes the update problem easier by providing an expression calculus with no side effects for 

specifying how to compute a view each time. In PIE, the full power of the Smalltalk language is 

available, but we must provide notification and time stamp mechanisms to help with the update 

problems. 

6.9 Changeability 

In addition to the ways that the Smalltalk browser can be altered, the behavior of the PIE 

browser is affected by changes to the information network. A user can alter the default display 

behavior of perspectives by editing the meta-nodes involved. For example, the user can change the 

meta-node to cause t.~e default text displayed when a class is selected to be the comment describing 

the class rather than the class definition. 
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7. SUlnmary of PIE Browser Strengths and Costs 

7.1 Strengths 

Some strengths of the PIE browser arise from the improvements in the PIE system model over 

the standard Smalltalk model. The network database that the browser manipulates is arbitrarily 

deep, allows multiple perspectives and context-sensitive description, integrates the representation of 

text and software, and supports search and matching behavior. Other strengths arise from the 

availability in the network of interface-specific description. This includes description of default 

perspectives and attributes for display, and idiosyncratic behavior of particular entities. This self

description minimizes the user's workload for expected actions. 

7.2 Weaknesses 

The PIE browser shares a number of weaknesses with the Smalltalk browser. For example, it 

does not maintain a history of user interactions and it does not provide any means to maintain 

consistency between multiple views. However, the PIE model provides a possible solution to both 

of these weaknesses. Nodes can be employed to represent the history of a design and to represent 

contracts between multiple views. This solution has the ()ppeal of building upon existing machinery 

and maintaining a highly integrated system model. These are current research issues for us. 

Another potential weakness common to both the Small talk and the PIE browsers is that they 

do not present the network in a two dimensional graphical notation such as the one shown in 

Figures 2 and 4. Indeed, since those figures were used to elucidate the network structure being 

examined by the browsers, one might very well ask why it is not the format actually generated by 

the interfaces. The answer, of course, is that the pane-oriented structure of both browsers is simpler 

to implement than a general two-dimensional layout program. However, a research issue is whether 

this implementation simplicity comes at a serious cost in comprehensibility to the user. Experiments 

need to be perfOlmed with users of different levels of expertise to investigate which graphical 

metaphors are most useful in clarifying the presentation of a network description of software. 

8. Conclusions 

PIE reflects a natural evolution of the Small talk system model to provide a more extensive 

description of an evolving software design. The PIE browser has evolved in parallel. An 

unexpected result is that the boundaries between the two have become fuzzy as the network 

describing the software system is employed to describe the desired display behavior. Specifications 

of system semantics do not usually include such descriptions. However, the availability of more 

powerful machines, coupled to the increasing complexity of software, makes their inclusion both 

possible and necessary. 
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The PIE system and its associated browser is largely independent of the semantic details of 

Smalltalk. It is based on the existence of a network description of a software system. It could be 

the basis for programming environments for other software languages. to the extent that those 

languages supported display facilities and a network database .which can hold representations of 

code easily accessible by the language processors. Experiments reported in [Cattc1180] are planned 

for exploring these ideas in a programming environment for Mesa, a PASCAL-derived systems 

programming language. 
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Data Structures 
Windows 

Fig .. 1 a.. The browser is in its initial state, ,UspLaying a List of categories. 
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CLass new title: , Name Of Class' 
subcLassof: Object 
fields: 'names Of instance variables' 
aecLare: 'names Of class variables' 

""'PROTOCOLS""' 
""'PROTOCOLS""' 

Fig. 1 b.. The user has selected, the Data Structures category. 
The classes Of this category appear in the classes pane 

""'METHODS""' 
""'METHODS""' 

ana a tempLate for aefining new classes appears in the text pane. 
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smaUtatk Browser 

"'CA TEGORIES'" 
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WirutDws 
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Class new title: 'Set' 
subcLassof: Object 

"'PRO T OCOLS'" 
Organization 
Initialization 
Access 

"'METHODS'" 
"'METHODS'" 

fields: 'array n "The set is storeci in the first n elements of 
the array." , 

Fig. 1 c. The user MS selected the class Set. 
Th.e protocols of Utis class appear in the Protocols pane 
and th.e definition Of th.e class appears in the text pane. 
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[Methoci body] 

Fig. 1 d. Th.e user MS selectecithe Access protocol. 

"'METHODS'" 
delete: element 
MS: element 
insert: element 

Th.e methods Of th.is protocol appear in th.e Methocis pane 
anct a template for defining new methods appears in the text pane. 
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S~t~ BroYVser 

"'CA TEGORIES'" 
Organization 
Data Structu.res 
Winaoyvs 

has: element 

"'CLASSES'" 
Array 
DictioMry 
Set 

"'PROTOCOLS'" 
Organization 
Initialization 
Access 

"'METHODS'" 
delete: element 
has: element 
insert: element 

"Use sequential access to determine if element is in the set" 
[forg i from: 1 to: n aog' 

[ifg (element = (array Lool(up: i» th.eng [return: true]]. 
return: false] 

Figure 1 e. The user h.as seLectea the has: element methoa. ana. its definition 
appears in the text pane. 
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. Printing 
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Vector size 

Filing 

String 

Categories Classes Protocols Meth.ods 

Fig. 2. A tree representation of the S~tal,k taxonomy. The path. selected. 
in the browser is sMwn in boldface. The slice of the taxonomy 
visible in the broYVser is SMYVn in italics. 
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PIE Browser. Origin: Code. Context: Set Redesign. 

~CA T[GORI[S~ 

Data Structures 
Windows 
Numbers 

~PERSPECTIVES~ 

~PERSPECTIVES~ 

~ A TTRIBUTES~ 
~ A TTRIBUTES~ 

Fig. 3a. PIE browser viewing netwom with- origin at COM. 

PIE Browser. Origin: Code. Context: Set Redesign. 
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Category 
Description 
~PERSPECTIVES~ 

'" A TTRIBUTES~ 
~ATTRIBUTES~ 

Th-is category contains cLasses tJtat define abstract 
ctata types .. 

Fig. 3b. TJte Data Structure node is sel€cted ana its perspectives appear. 
TJte comment is the text attrwute Of tJte descriptLon perspective ana is 
displayed by default. 
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PIE Browser. OrUjin: COM. Context: SetRectesign. 
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,.., ATTRIBUTES"" 
classes 
fU£ 
moa.ifiea. 

This ca,tegory conta,ins classes th,a,t a.efine abstract 
aa,ta types. 

Fig. 3C. Th.e category perspective is selectea. ana. its a,ttrwutes appear. 
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aa,ta types. 

Fig. 3d. The cLasses a,ttrwute is selected anti the list of classes a,ppears. 
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Fig. 3e. The Set noae is seLectea a,M its perspectives a,ppea,T .. 
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in the browser is sh.own in bold, the visible slice of the netwom in italics. 



PIE Browser. Origin: COM. Context: Set Red.esign. 
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hAs: element 
"Use sequential access to determine if element is in the set" 

[forg i from: 1 to: n ctog 
[ifg (element = (array Lookup: i» theng [return: true]]. 

return: false] 

Fig. Sa. Th.e user is four Levels d.eep in the PIE network. 
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Fig. 5b. The origin has been shifted to the Data Structures node, alLowing 
the user to view th.e network one Level deeper. 
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