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1. Introduction 

In order for an interactive high-level debugger to function in a compiler-based programming 

environment, the compiler must provide mappings between source lines or statements and object 
code locations, and among variable names, types, and data locations. Program optimization can 
move or delete statements and eliminate or overlay variables. As a result, variables can be given 
values at different relative locations in the compiled code than in the source program. or the 
program's flow' of control can be altered. These transformations affect the debugging mappings in 
ways that have not previously been understood; hence, current optimizing compilers do not support 
interactive high-level program debugging. 

Nevertheless, the ability to apply an interactive high-level debugger to an optimized program is 

important Interactive high-level debuggers have long been recognized as useful program 
development tools [3], and compilers that perform some level of optimization are becoming 
increasingly common. Some reasons for this trend are the emphasis on portability and modularity 
in current compiler construction, the increased speed and reliability of optimizing transformations, 
and the continuing need for efficient use of a computer's time and space resources [5]. 

This paper describes efficient ways to provide high-level debugging capabilities in the presence 
of two simple but nontrivial optimizations: cross-jumping and inline procedure expansion. These 
optimizations are more frequently performed than many global optimizations, largely because they 
do not require global flow analysis and are therefore more widely implemented in current 
compilers. 

A prototype implementation of these methods, in a system called Navigator. has been 
developed in the Cedar programming environment at the Xerox Palo Alto Research Center. The 
Cedar language is an Algol-like language that is very closely related to Mesa [9]. One of the major 
differences between Cedar and Mesa is that Cedar provides safe automatic deallocation (garbage 
collection). The compiler modifications needed by Navigator apply to Cedar and Mesa programs. 
since the Cedar compiler is derived from the Mesa compiler. The approaches described here can 
assist with interactive high-level debugging of more heavily optimized programs. 

2. Interactive high-level debuggers 

An interactive high-level debugger helps a programmer examine and control the state of a 
program during its execution (7]. The user can specify points in the program. called breakpOints, at 
which execution of the program is to be suspended. If the program halts for any reason. whether at 
a breakpoint or because a runtime error is encountered (e.g .. division by zero or illegal memory 
reference). control is given to the debugger. Typically. the user can then enter commands to 
discover the current execution point. examine or modify values of variables. or execute new 
statements in the current context of the program. . A procedure traceback command is usually 
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2 AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 

available if the debugger operates on programs written in an Algol-like language. A procedure 

traceback is a list, in reverse order of invocation, of the currently active procedures and their points 

of suspension. The debugger may also allow the user to examine or modify the local variables 

(including parameters) of any active procedure. In a high-level debugger, the programmer 

communicates with the debugger in terms of the source text Breakpoint and runtime error 

locations are specified as positions in the source text Variables are referred to by their names; their 

values are displayed in the correct formats for their declared types. 

3. Control-flow optimizations 

The class of program optimizations considered in this paper are control-flow optimizations. 

These optimizations rearrange the object code for a program either by merging identical code 

sequences, making the program smaller, or by copying code sequences, making the program faster. 

Examples of merging optimizations include procedure discovery [4] and cross-jumping [15]. 

Procedure discovery locates identical sequences of instructions and forms a single new procedure 

that is called from each original location. Cross-jumping is a special case of procedure discovery 

that examines code paths that join. If the tail portions of any two of the paths are the same, cross

jumping moves the join point for those two paths from its original location backward to the earliest 

identical point and deletes one copy of the identical code. Cross-jumping is often performed as an 

object code optimization, but it can also be performed on intermediate representations of the 

program (e.g., flowgraphs or quads [2]). The cross-jumping optimization is illustrated in Figure l. 

Examples of copying optimizations include loop-unrolling and inline procedure expansion [1]. 

Loop-unrolling makes multiple copies of the statements inside a short loop in order to reduce the 

effects of loop overhead. Inline procedure expansion, also known as procedure integration, replaces 

a call to a procedure by an instance of the actual code of the procedure in order to save the 

execution time associated with procedure linkage (moving parameters, saving and restoring registers, 

etc.). Inline procedure expansion may also provide opportunities for further optimizations. Inline 

procedure expansion is illustrated in Figure 2. 

These optimizations create problems for interactive high-level debugging, even though they do 

not alter the order of execution of instructions that are meaningful to the programmer. The 

problems arise because 1) merging optimizations cause a many-to-one mapping from the source 

program to the object code, and 2) copying optimizations cause a one-to-many source-to-object 

mapping. In contrast, a nonoptimizing compiler produces only a one-to-one source-to-object 

mapping. 
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Source Program Fragment 

1 IF cond THEN 
2 {a +- 1 ; 
3 c +- 5} 

ELSE 
4 {a +- 2; 

5 c +- 5}; 

Unoptimized Object Code 

0 LOD cond 
2 BEZ L1 
4 LOD 1 • entrance to sequence I 

6 
S10] 8 LOD 5 toDelete sequence 

10 STO c (path determiner identifier = I) 

12 BR L2 
14 L1: LOD 2 • entrance to sequence 2 

16 
S10 ~ 18 LOD 5 toRemain sequence 

20 STO c (path determiner identifier = 2) 
22 L2: 

Unoptimized Debugger Table 

source (-) object 
1 0 
2 4 statement map 
3 8 
4 14 
5 18 

Debugger actions to set a breakpoint at statement 5: 

source 5 -) object 12 

=) set primary breakpoint at object 12 

object 12 -) source 31, 52 
=) activate determiner 1 

=) set determining breakpoint at object 4 
activate determiner 2 

=) set determining breakpoint at object 8 

Effective Fragment After Cross-jumping 

1 
2 

4 
2,4 L: 
3,5 

IF cOAd THEN 
{<load I); 

GO TO L} 
ELSE 

{<load 2); 
<store a); 
c +- 5}; 

Optimized Object Code 

o 
2 
4 

LOD cond 
BEZ L1 
LOD 1 .... ----- path determiner I 

6 BR L3 

8 L1: LOD 2 • path determiner 2 

10 L3: STO a 
12 LOD 5 
14 STO c 
16 

Optimized Debugger Tables 

source -) object 
1 0 
2 4 source table 
3 12 
4 8 
5 12 

object -) source 
0 1 
4 2 object table 
8 4 

10 21 , 42 
12 31 , 52 

determiner -) object 
1 4 
2 8 determiner table 

Figure 1. Simple cross-jumping example. Throughout this figure and other similar figures, unoptimized items appear on the 
left, while their optimized counterparts appear on the right. 

A) shows the effect of the cross-jumping transformation at the. source level. Since Navigator performs cross-jumping on the 
object code. the resulting program is not wholly expressible in the source language. Abstract stack machine instructions are 
shown in italics. Some "statements" in the optimized fragment have more than one statement number. Each time that such a 
"statement" executes, it executes on behalf of exactly one of the unoptimized statements whose number is listed. 

8) presents object code generated from the unoptimized source fragment and ilfustrates the application of the cross-jumping 
transformation. When label L2 (at object location 22) is seen, the code preceding the label and preceding the branch to it (at 
object location 12) are examined for identical sequences by the method of Section 8.3. The resulting object code is shown on 
the left. The italicized annotations refer to the compile-time path determination bookkeeping described in Section 8.5. 
C) shows debugger tables corresponding to the object code above. The unoptimized version is a one-to-one statement map; 
the optimized tables are more complex. In the source table. statements 3 and 5 both map to the same object location. In the 
object table, object locations 10 and 12 each have two possible source counterparts, distinguished by subscripted path 
determiners. The determiner table shows where determining breakpoints must be placed for each path determiner. 

The box at the lower left describes the steps the debugger takes to set a breakpoint at statement 5 if cross-jumping has been 
applied (see Section 7.2 for further details). 
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A) Source Program Fragment 

1 PROCEDURE Pl [i: INTEGER] INLINE 
2 {a +- i}; 

3 PROCEDURE P2 
4 {Pl[l]; 
5 b +- 2; 
6 Pl[5 - b]}; 

B) Unoptimized Object Code 

0 STO 
2 LOD i 
4 STO a 
6 RET 
8 LOD 1 

10 CAL Pl 
12 . LOD 2 
14 STO b 
16 LOD 5-
18 LOD b 
20 SUB 
22 CAL Pl 

C) Unoptimized Debugger Table 

source (-) 
1 

object 
o 

2 
3 
4 
5 
6 

2 statement map 
8 
8 

12 
16 

Debugger actions to set a breakpoint at statement 2: 

source 2 -) object O. 16 
=) set breakpoint 1 at object 0 

set breakpoint 2 at object 16 

Debugger actions to field breakpoint 1: 

object 0 -) source 21 
=) in line 1 -) call source 4. inline name PI 

Output to user: Breakpoint I at statement 2 inside PI 
called from statement 4 inside P2 

Figure 2. Inline procedure expansion example. 

EtTective Fragment After Intine Expansion 

3 PROCEDURE P2 
2,4 {a +- 1 ; 

5 b +- 2; 
2,6 i +- 5 - b; 
2,6 a +- i} ; 

Optimized Object Code 

0 LOD 1 
2 STO a 
4 LOD 2 
6 STO b 
8 LOD 5 

10 LOD b 
12 SUB 
14 STO 
16 LOD i 
18 STO a 

Optimized Debugger Tables 

source -) object 
1 0, 8 
2 0, 16 source table 
3 0 
4 0 
5 4 
6 8 

object -) source 
0 21 
4 5 object table 
8 22 

inline -) call source. inline name 
1 4 Pl 
2 6 Pl inline table 

A) shows the effect of the inUne procedure expansion transformation at the source level. In contrast with cross-jumping. the 
resulting program is always expressible in the source language. Statement 2 has two separate copies in the optimized fragment. 
corresponding to the two calls of Pl. The expanded statements can be considered to execute on behalf of a statement from 
the in line procedure's definition as well as on behalf of the inline procedure's call. In the first call to Pl. the parameter (1) is 
sufficiently simple that the compiler substitutes it directly for uses of i (subsumption). The debugger requires additional 
mechanisms to display the value of i in that region. 
B}presents the object code generated from the two source fragments. 
C) shows the corresponding debugger tables. In the source table. statements 1 and 2 each map to two object locations. The 
superscripts in the object table are references to inUne table entries. Each call on an inline procedure generates a separate 
inline table entry. The inline table records inline call nesting information for displaying a procedure traceback. 
The box at the lower left describes the steps the debugger takes to set a breakpoint at statement 2. as well as the steps 
required to field one of the resulting breakpoints. 
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4. Objective 

Navigator's primary objective is to provide a programming environment in which debugger 

responses to user requests concerning the execution of an optimized program are the same as the 

responses would be for an unoptimized version of the program. I call this property transparent 
behavior with respect to a given optimization. A less desirable but still acceptable alternative is to 

provide correct behavior with respect to an optimization. This means that the debugger can display, 

in source program terms, the relevant changes caused by the optimization at an execution point. 

A debugger that has neither transparent nor correct behavior is likely to give confusing 

responses to queries about an optimized program. For example, if a merging optimization has been 

applied, the debugger might report an incorrect source location when a breakpoint or error is 

encountered. If a copying optimization has been applied, the debugger might not place a copy of a 

breakpoint in each copy of the code. The unmodified Cedar debugger exhibits these problems. 

A practical implementation of a system for transparently debugging optimized programs must 

have two additional properties. First, an optimized program that is capable of being debugged 

should not be larger or slower than an un optimized version of the same program. Ideally. adding 

debugging capabilities for optimized programs will not cost any extra execution time or space unless 

the debugger is actively responding to a user request. Second, the modified compiler and debugger 

should still perform reasonably efficiently. 

5. Difficult situations for debugging control-flow optimized programs 

This section describes the information that a debugger must have to perform the following 

debugging actions in the presence of control-flow optimizations: setting and fielding breakpoints. 

reporting the current execution point. displaying values of variables. and providing a procedure 

traceback. 

Setting a breakpoint at a given source statement requires an accurate mapping from the 

beginning of each source statement to all object locations that represent the start of execution of an 

instance of the statement. If a single object location represents the beginning of multiple source 

statements (due to code merging). it must be possible to place multiple logical breakpoints at that 

location (possibly with different activation conditions). 

Reporting the current execution point of a suspended program requires an accurate mapping 

from each object location to all source statements on whose behalf it executes. This mapping alone 

provides only enough information for correct debugger behavior. not transparent behavior: when a 

single object location is a part of the code for multiple source statements. the mapping yields a list 

of source possibilities rather than just the right one. To achieve transparent behavior. additional 

work is necessary both during compilation and at runtime. How to accomplish this efficiently is the 

subject of most of the subsequent discussion. Admittedly. the user can often discover which 
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6 AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 

statement is really executing by using the debugger to examine values of variables. However, this 

process can be tedious. If the uninteresting cases occur much more frequently during execution 

than the desired case does, the user must laboriously check each time to see whether the desired 

case has finally been reached. (In desperation, the user could recompile with optimization 

disabled.) 

Fielding a breakpoint is my term for deciding whether the current object location corresponds 

to a source location at which the user has requested a breakpoint. Fielding a breakpoint requires an 

accurate mapping from each object location at which a breakpoint has been placed to the exact 

source statement on whose behalf it is executing this time. 

Finding the local variables of a suspended program can be reduced to discovering the exact 

source location for a given object location if the source language is lexically scoped. However, if 

the optimizer applies the subsumption optimization [8] to the formal parameters of an inline 

procedure, replacing the formal parameters of the expanded procedure by their actual parameter 

expressions for a given call, the values of the formal parameters may not be available. This 

problem is not caused by the application of the procedure expansion optimization itself, and hence 

is outside the scope of this paper. 

A procedure traceback should contain exactly the. procedural groupings that appear in the 

source program. Calls to expanded procedures should appear in the traceback as if they had 

occurred normally; calls to discovered procedures should be hidden. Providing a procedure 

traceback therefore requires a mapping from each object location to a list of descriptions of the 

procedures that were expanded to create that object code. Each description must contain the 

procedure name, the source location of its call, and possibly a symbol table pointer to allow 

accessing its variables. An inserted call to a discovered procedure must be marked in some way so 

that the debugger will not include that call in the traceback. 

6. Debugger implementation in a conventional setting 

In order to support interactive high-level debugging in a compilation environment, a 

conventional nonoptimizing compiler supplies the debugger with mappings between source 

statements and object code locations, and among variable names, types, and data locations. The 

mappings among variable names, types, and data locations are usually encoded in a symbol table. 

Two methods of mapping between source statements and object code locations are common. 

In one method, the generated code for each source statement begins with a call to the debugger, 

providing the number or some other identification of the source statement as an argument. This 

method is not very suitable for optimized programs because it can use a significant amount of 
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execution time and space. In a more efficient method, the compiler creates a separate table that 

shows the relative program offset of the start of the generated object code for each source statement. 

This table is called a statement map. 

A debugger uses a statement map in a straightforward manner. To set a breakpoint at a given 

source location, the debugger searches the map. finds the source location. and places the breakpoint 

at the corresponding object location by the usual method of replacing an existing instruction by a 

trap instruction. To report the current execution point. the debugger finds the nearest preceding 

object location in the map and reports that the corresponding source statement is executing. 

The information for a statement map is typically collected in two stages. First. at the beginning 

of object code generation for each source statement. the compiler generates a special source pseudo

instruction whose operand is the source statement's number. Second. while writing the object code 

to the output file. each time that the compiler encounters a source pseudo-instruction. it records the 

current relative program offset and the source pseudo-instruction's operand in the statement map. 

7. Overview of Navigator methods for improved debugger behavior 

Although the ideas behind the methods described in this paper are general. their 

implementation depends on the specific source language, compiler. and debugger to which they are 

applied. This section presents an overview of the compiler and debugger modifications needed to 

create the Navigator system. The basic idea is quite simple, but many details and complex 

interactions must be considered in order to provide correct or transparent debugging. The next 

section will explain many of the complications more fully. The Navigator system always provides 

correct debugger behavior and usually provides transparent debugger behavior. 

The Navigator compiler records and carefully maintains source-to-object correspondence 

information during its parsing. code generation, and optimization phases. This information is 

written to debugger tables. allowing the Navigator debugger to perform one-to-many and many-to

one mappings between source locations and object locations. I call the source-to-object map a 

source table. and the object-to-source map an object table. These tables replace the conventional 

statement map. 

7.1 Compiler modifications 

When the Navigator compiler expands a procedure call in line, it records inline call information 

in an inline procedure table and inline pointers in the object table. The inline call information 

includes the source location of the call and a symbol table pointer for the procedure. This 

information allows the debugger's procedure traceback command to display an elided call as if it 

had occurred normally. In the object table, each object location that is the result of an inline 

XEROX PARe. CSL 83-1. JANUARY 1983 



8 AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 

procedure expansion has an in line pointer indicating its appropriate inline call information. 

When the Navigator compiler merges program regions via cross-jumping, it records path 

determiner locations in a path determiner table and determiner pointers in the object table. Path 

determiner locations are object locations at which the debugger can optionally collect selective 

execution history information. In the object table, each source referent in the list of possible source 

referents for a merged object location has a determiner pointer. The determiner pointer indicates 

which path determiner must have been executed most recently if the object' location is currently 

executing on behalf of that source statement. 

7.2 Debugger modifications 

At runtime, the Navigator debugger easily handles a request to set a breakpoint at a statement 

that has been copied. It uses the source table to map the source location to its corresponding 

(several) object locations, and it places a breakpoint at each of these locations. When any of the 

breakpoints is reached. the debugger uses the object table to report the (single) current program 

location. 

A request to set a breakpoint at a statement in a merged region requires more complex 

processing. First. the Navigator debugger uses the source table to map the source location to its 

corresponding (single) object location x; it places a primary breakpoint at x. It then consults the 

object table to create a list L of source alternatives for x; it places a determining breakpoint at each 

path determiner associated with the source alternatives in L. It finds the object locations at which 

to put these breakpoints by looking in the path determiner table. The process of placing a 

determining breakpoint at each object location for a given path determiner identifier is called 

activating that determiner. 

When a determining breakpoint is reached, the debugger stores a timestamp in a determination 

cell associated with the determining breakpoint's object location. Determining breakpoints are 

invisible to the user. 

When a primary breakpoint at x is reached. the debugger examines the values of all of the 

determination cells associated with x. If control flow most recently came through the determiner 

associated with the source statement of the breakpoint request. this execution of x indeed 

corresponds to the desired breakpoint. and the debugger relinquishes control to the user. 

Otherwise. execution proceeds as if no breakpoint had been encountered. 
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8. Detailed description of path determination for merged regions 

This section explains the details of Navigator's path determination method for merged regions. 

The compile-time portions of the method are described in terms of modifications to the cross

jumping algorithm; procedure discovery can be handled similarly. After a few initial definitions, 

the cross-jumping algorithm is explained. The steps required to update the source and object 

mappings as a result of the optimization are presented. A simple version of the path determination 

algorithm is described, followed by a more complicated version that works correctly for repeated 

cross-jumping. The solutions to several difficulties that arise from interactions between different 

optimizing transformations are explained. Finally, a series of runtime problems are considered. 

8.1 Definitions 

In an object code stream, an instruction x is the immediate static predecessor of an instruction y 

if x is the instruction positioned before y in the stream. An instruction x is an immediate dynamic 

predecessor of an instruction y if x can execute immediately preceding y. That is, either x is a jump 

to y, or x is the immediate static predecessor of y (unless x is an unconditio"nal jump to some other 

instruction). An instruction has exactly one immediate static predecessor; it may have many 

immediate dynamic predecessors. A code sequence is one or more statically adjacent instructions. 

An entrance to a code sequence is any instruction outside the sequence that is an immediate 

dynamic predecessor of an instruction inside the sequence. 

8.2 Compiler organization and data structures 

The Cedar compiler generates object code for a fairly simple stack machine. The compiler 

performs inliile procedure expansion on the parse tree representation of the program. Later. it 

repeatedly performs several object code optimizations (including cross-jumping) on the generated 

object code stream until the optimizations are no longer applicable. The other optimizations in this 

iterative process are: replacing a conditional jump around an unconditional jump by an opposite

sense conditional jump. removing branch chains and jumps to the next location. and examining 

groups of adjacent instructions for opportunities to delete instructions (notably POPs) or to combine 

them into a more powerful single instruction. All of the optimizations preserve the actual ordering 

of computations along any execution path. although the control flow may be altered. 

The input to the cross-jumping phase of the compiler is a stream of generated code for a single 

procedure. represented as a doubly-linked list of two types of cells: instruction cells and marker 

cells. Each instruction cell contains a complete description of one machine instruction (either a 

jump instruction or a code instruction). A marker cell does 'not correspond to any object code: it is 

either a label marker or an info marker. Each jump instruction has a pointer to its destination celL 

which is a label marker. Furthermore. air jumps to the same label are linked. This structure 
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{Sotrcelink: -) (1, TRUE, O)} 

~ 
LOD cond 

~BEZtL1 
{Sotrcelink: 

1 
LOD 1 

~ 
STO a 

{Sotrcelink: 
~. 

LOO

t
5 

STO c 

~ 
.-- tBR tL2 

~{label: Ll} 

{Sotrcelink: 

1 
LOD 2 

STO a 

{Sotrcelink: 

! 
LOD 5 

STO+C 

~ 
L --.. {l abel: L2} 

t 

-) (2, TRUE, O)} 

-) (3, TRUE, O)} 

-) (4, TRUE, O)} 

-) (5, TRUE, O)} 

sourcelink template: 
(stmtNum, isStart, pathDetld) 

{So!rcelink: -} (I, TRUE, OJ) 

. ~ 
LOD cond 

. ~ 
r+BEZ Ll 

I {~ l.k )( I sou rce 1 n : - 2, TRUE, O)} 

I {path determi ner: I, 0, O} 
I ~ 
I LOD 1 

I * ,-rBR L3 

I 
I 
I 
I 
I 
I 
I 
~{l abel: Ll} 

{Sotrcelink: -} (4, TRUE, OJ) 

* {path determiner: 2, 0, O} 

~ 
LOD 2 

~ L -+{l abel: L3} 

{Sotrcelink: -} (2, FALSE, 1) 

1 (4, FALSE, 2)} 

STO a 

{Sotrcelink: -} (3, TRUE, 1) t (5, TRUE, 2)} 

LOO

t
5 

STO c 

* {label: L2} 

t path determiner template: 
(id, trueDet, falseDet) 

Figure 3. Effects of cross"jumping on the object code stream for the program fragment shown in Figure 1. Marker cells are 
enclosed in braces {} to distinguish them from instruction cells. Static links between code stream cells are shown as solid 
lines. dynamic links are shown as broken lines. 
The cross-jumping transformation causes several differences between the unoptimized code stream. on the right. and the 
optimized code stream. on the left. The code between LOD 1 and Ll is replaced by BR L3. and L3 is inserted following 
LOD 2. The path determination algorithm is responsible for the remaining differences. Path determiners are inserted 
preceding LOD 1 and LOD 2. A new sourcelink cell is created following L3 to record the merging of a portion of statements 
2 and 4. In the sourcelink cell preceding LOD 5. sourcelists for statements 3 and 5 are concatenated to record the merging of 
those entire statements. 
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facilitates finding all jumps to a given label, as well as finding a given jump's destination label and 

all other jumps to that label. Info markers are used to generate statement maps and symbol table 

information. A sample code stream is shown in Figure 3. 

One type of info marker is the sourcelink cell. Every instruction between two sourcelink cells 

has the relationship to the source text that is described by the statically preceding sourcelink cell. A, 

sourcelink cell is a pointer to a list of records called a sourcelist Each sourcelist entry contains a 

source statement number stmtNum, a boolean variable i sStart that indicates whether the next 

instruction is the start of the object code for that source statement, and a path determiner identifier 

pathDetId. 

Sourcelink cells therefore contain sufficient information for the construction of both source and 

object tables. At the start of the object code optimization phase, all sourcelink cells have a single 

element in their sourcelist, with; sStart true. 

8.3 Cross-jumping optimization 

The Navigator compiler's version of the cross-jumping algorithm examines the object code 

stream sequentially. When it finds a label, each immediate dynamic predecessor of the label defines 

the end of a path to that label. The algorithm compares paths pairwise for identical tail code 

sequences. It finds identical code sequences by searching the static paths in reverse order until 

unequal instructions are encountered. 

When the algorithm finds identical code sequences, it designates one code 'sequence the 

toDelete sequence, and it designates the other the toRemain sequence. It inserts a jump from the 

beginning of the toDelete sequence to the beginning of the toRemain sequence, and then it deletes 

the toDelete sequence. 

If the toDelete code sequence has internal labels. the algorithm is slightly more complex. As 

the backward comparison scan crosses such a label. it redirects each jump to that label to the 

corresponding point in the toRemain code sequence (it inserts a new label there, if necessary). This 

allows longer code sequences to be found in a single application of cross-jumping. Figure. 4 

presents an example of Jump redirection. 

8.4 Mapping between many source statements and one object location 

Because the source table is only concerned with the object location for the start of a source 

statement retaining information for later construction of the source table is straightforward. When 

the compiler encounters a sourcelink cell in the toDelete code sequence during the backward scan. 

it need only move the sourcelink cell to the current position in the toRemain sequence (sourcelists 

of resulting adjacent sourcelink cells are merged). When statement boundaries are in different 

places in the two sequences. or if cross-jumping merges only a portion of the object code for a 

statement retaining information for the object table is more complicated. 
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A) Source Program Fragment 

1 
2 
3 

4 

5 

6 

IF condl THEN 
{IF cond2 THEN 

a .. 1; 

c .. 5} 
ELSE 
{a .. 2; 

c .. 5}; 

B) Unoptimized Object Code 

o 
2 
4 
6 
8 

10 
12 L2: 
14 

16 
18 Ll: 

20 
22 
24 
26 L3: 

LOD condl 
BEl Ll 
LOD cond2 
BEl L2 ~IIII---r-- entrances to sequence J 
LOD 1 4l1li----1 

~~gTl 
SToiJ 

toDelete sequence 
(path determiner identifier = J) 

BR L3 
LOD 2 "'1111~-- entrance to sequence 2 

~~gTl 
STO .iJ toRemain sequence 

(path determiner identifier = 2) 

C) Unoptimized Debugger Table 

source <-) 
1 

object 
o 

2 
3 
4 
5 
6 

4 statement map 
8 

12 
18 
22 

Debugger actions to set a breakpoint at statement 4: 

source 4 -) object 16 
= ) set primary breakpoint at object 16 

object 16 -) source 41, 62 
= ) activate determiner 1 

=) set determining breakpoints at objects 6 & 8 
activate determiner 2 

=) set determining breakpoint at object 12 

Figure 4. Cross-jumping example with multiple entrances. 

Effective Fragment After Cross-jumping 

1 
2 
3 

4 

5 
3,5 Ll: 
4,6 L4: 

IF condl THEN 
{IF cond2 THEN 

{<load J); 
GO TO Ll}; 

GO TO L4} 
ELSE 
{<load 2); 

<store a) ; 
c .. 5}; 

Optimized Object Code 

o 
2 
4 
6 
8 

10 

12 Ll: 

14 L5: 
16 L4: 
18 
20 

LOD condl 
BEl L1 
LOD cond2 
BEl L4 4l1li--- branch redirected 
LOD 1 

BR L5 

LOD 2 

STO a 
LOD 5 
STO c 

Optimized Debugger Tables 

source 
1 
2 
3 
4 
5 
6 

-) 

object -) 
o 
4 
8 

12 
14 

16 

determiner -) 
1 
2 

object 
o 
4 source table 
8 

16 
12 
16 

source 
1 
2 object table 
3 
5 
31 , 52 
41 , 62 

object 
6, 8 
12 determiner table 

A) shows the effect of the cross-jumping transformation at the source level. 
B) demonstrates the application of the cross-jumping transformation. In this example. the toDelete sequence contains a label 
(L2. at object location 12). The cross-jumping algorithm inserts a new label L4 at the corresponding location in the toRemain 
sequence. and redirects the branch to L2 (BEl L2. at object location 6) to L4. 
C) presents the debugger tables corresponding to the object code above. In the determiner table. note that determiner 1 has 
two associated object locations. 
The box at the lower left describes the steps necessary inside the debugger to set a breakpoint at statement 4 if cross-jumping 
has been applied. A total of four breakpoints are required. 
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The compiler retains sufficient information in the sourcelink cells to create both the source 

table and the object table. The following cases specify the bookkeeping necessary when the 

backward scan encounters a sourcelink cell in either code sequence. 

1. If a sourcelink cell is encountered in the toRemain code sequence, the toDelete code 

sequence is searched for the nearest sourcelink cell preceding the current point. The 

sourcelist from the toDelete code sequence is appended to the sourcelist from the 

toRemain code sequence. If the search crossed an instruction cell, the i sSta rt field of 

each element of the toDelete code sequence sourcelist is set to false as it is appended. 

2. If a sourcelink cell is encountered on the toDelete code sequence only, the toRemain 

code sequence is searched for the nearest preceding sourcelink cell. That cell is copied 

to the current point in the toRemain code sequence, setting i sStart to false for each 

element of the sourcelist The sourcelist from the toDelete code sequence is then 

appended to that sourcelist. 

In order to fully reflect the relationship between the source text and the newly merged object 

code, there must be sourcelink cells that correctly describe the first piece of object code in the new 

merged sequence, the first piece of object code following the toRemain sequence, and the first piece 

of object code following the toDelete sequence. If these locations do not already have sourcelink 

cells, appropriate sourcelink cells must be created. 

8.5 Simple path determination 

To permit the debugger to choose the correct source location when fielding a breakpoint at a 

merged location, the compiler must record not only that a given section of object code now 

corresponds to multiple source statements, but how control could pass into that code section. Path 

determiners supply the necessary extra in formation. 

For each identical sequence, the compiler creates a unique path determiner identifier. When it 

encounters a sourcelink cell. it sets its pat h De tId field to the path determiner identifier for that 

sequence. Furthermore. it marks each entrance to the sequence with the same path determiner 

identifier by inserting a new type of info cell. called a path determiner cell. in the code stream 

immediately preceding each entrance to the sequence. 

As the compiler emits object code., it records an (object location. path determiner identifier) 

pair in a path determiner table for each instruction that is marked with a path determiner identifier. 

The set of all object locations that have the same path determiner identifier is called a path 

determiner. 
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Source Program Fragment 

1 IF cond1 THEN 
2 {x +- 1; 
3 a +- 2; 
4 IF cond2 THEN 
5 {b +- 3; 
6 d +- 4} 

ELSE 
7 d +- 4; 
8 e +- 6} 

ELSE 
9 {y +- 8; 

10 a +- 2; 
11 IF cond2 THEN 
12 {b +- 3; 
13 d +- 4} 

ELSE 
14 d +- 4; 
15 e +- 6}; 
16 f +- 7; 

Intermediate Step 

1 IF cond1 THEN 
2 {x +- 1; 
3 a +- 2; 
4 IF cond2 THEN 
5 {b +- 3; 

GO TO L1} 
ELSE 

6,7 L1: d +- 4; 
8 e +- 6} 

ELSE 
9 {y +- 8; 

10 a +- 2; 
11 IF cond2 THEN 
12 {b +- 3; 

GO TO L2} 
ELSE 

Effective Fragment After Cross-jumping 

1 IF cond1 THEN 
2 {x +- 1; 

GO TO L3 

ELSE 
9 {y +- 8; 

3,10 L3: a +- 2; 
4,11 IF cond2 THEN 
5,12 {b +- 3; 

GO TO L2} 
ELSE 

13,14 L2: d +- 4; 6,7,13,14 L2: d +- 4; 
15 e +- 6}; 8,15 e +- 6}; 
16 f +- 7; 16 f +- 7; 

B) Annotated Flowgraphs 

! 
/ondl~ 

x~1 y~8 ! 2 j 9 

a~2 a~2 

13 110 
pd2 pd4 

IF cond2 THEN IF cond2 THEN 

/
4/ 11 

pd1 pd3 
b~3 b~3 

. ~ .. . . . . . . :~.. ..... . 
: • )~4 :. d~4 • : ... 1 ~! .. 7.2 ... : : ... !. ~3.3:~4.4.: 

• e~6 • : t 8 5 • 15 6 : ............................. 
f~7 

1 16 

Figure 5. A complicated case of repeated merging. 
A) shows the effect of repeated application of the cross-jumping transformation on a source fragment. The first step merges 
statement 6 with statement 7 and statement 13 with statement 14. while the second step merges statements 3 through 8 with 
statements 10 through 15. This mUltiple merging can be performed during a single sequential pass through the object code. A 
fine point: when L2 is seen during the final merge. a copy of determiner 6 is inserted before GO TO L2 (similarly. Ll causes a 
copy of determiner 5 before GO TO Ll). When GO TO L2 (GO TO Ll) is discovered to be part of the merging sequence 
determined by 6 (5). those determiners are removed because they do not represent entrances to the merging sequences. 
B) illustrates the same transformations on flowgraphs. Merged regions are enclosed in dotted lines. A statement's sourcelink 
cell is shown at its lower right (subscripts are pathDetlds). Path determiners marking a statement are shown at its upper left 
(subscripts denote trueDet, fal seDet). Consider the statement'd+-4. It executes on behalf of statement 7 if determiner 2 
has a later timestamp than determiners 1. 3. and 4. However. determiners 2 and 4 always have the same timestamp value. as 
do 1 and 3. This ambiguity is resolved by examining the trueDet and falseDet determiners: if determiner 5 has a later 
timestamp than determiner 6. path determiner 2 is considered true: otherwise determiner 4 is true. Therefore. statement d+-4 
executes on behalf of statement 7 if the sequence of execution is x+-l; a+-2; IF cond2 THEN; d+-4. 
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8.6 Full path determination 

If cross-jumped regions were never considered for further application of the cross-jumping 

algorithm, the path determination procedure described in the previous section would be adequate. 

However, not only can a single pass through the generated object code create multiply merged 

regions, but the compiler applies the cross-jumping algorithm and other object code optimizations to 

the code stream repeatedly, until no changes occur. These iterated optimizations cause additional 

compile-time complications. 

The problems arise if a candidate sequence for a new merge (either the toDelete sequence or 

the toRemain sequence) contains either a portion of a previously merged region or an entrance to a 

previously merged region. Figure 5 shows an instance of repetitive merging. 

If a candidate sequence contains a portion of a previously merged region, the candidate 

sequence contains at least one sourcelink cell with more than one element in its sourcelist. Each 

element of such a sourcelist mentions a path determiner identifier for a previously merged sequence 

in its pathDetld field. The algorithm does not mark these sourcelink cells with the new path 

determiner identifier for the candidate sequence. Instead, the debugger will rely upon the path 

determiners specified in the unmodified candidate sequence's sourcelist to distinguish among all of 

the candidate sequence's source possibilities. As before, the compiler merges the candidate 

sequence sourcelist with the sourcelist (which mayor may not have multiple elements) from an 

appropriate sourcelink cell in the other sequence participating in the new merge. 

Now consider the case in which a candidate sequence contains an entrance to a previously 

merged region, i.e .. the candidate sequence contains a path determiner cell. It is tempting to 

suppose that the compiler could delete the path determiner cell from its current location and insert 

a copy of it at each entrance to the candidate sequence. Unfortunately, there are programs for 

which this strategy fails to provide full path determination. These programs are characterized by 

multiple control-flow paths that are wholly contained in a merged region. Such a program is shown 

in Figure 5. Suppose that the second cross-jumping step in that figure were to move determiners 1 

and 2 up to the location of determiner 5 (and similarly move determiners 3 and 4 up to the location 

of determiner 6). It would then be impossible to distinguish between the execution of statements 6 

and 7. or between statements 13 and 14. 

The concept of merging path determiners from two identical sequences is similar to merging 

sourcelink cells from two identical sequences: a marker logically belongs to one of the two 

sequences. and this fact must continue to be represented in the new merged region to be created. 

(The two situations differ in that a path determiner actively gathers runtime information. while a 

source marker becomes a passive table entry.) As described above, the solution for the sourcelink 

cell is to mark it with the appropriate path determiner identifier. This solution works for path 

determiners also. but with a different marking method: the algorithm marks the path determiner 

cell with the path determiner identifier of the candidate sequence by setting the trueDet field of 

the path determiner cell to that path determiner identifier. Since the debugger must be able to tell 

whether execution came to the path determiner along the candidate sequence or along the other 
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sequence participating in the new merge, a path determiner cell also has a fa 1 seD e t field in 

which the path determiner identifier of the other sequence is recorded. Finally. if the candidate 

sequence is the toDelete sequence of this merge, the algorithm moves the path determiner cell to 

the current point in the toRemain sequence. 

To see that this algorithm works, suppose that an object location x has a possible path 

determiner p2 whose trueDet field is pI. At runtime, the execution of x corresponds to an 

entrance p2 to an inner merged region if and only if the most recent entry' to the outer merged 

region came through an entrance whose path determiner is pI. 
Dealing with the added complexity of repeated cross-jumping requires some runtime 

modifications. The following path determiners are activated as a result of a breakpoint request: 

first, all path determiners that mark a source alternative, and second, (recursively) any path 

determiner that is a trueDet or a falseDet of a previously noted determiner. Timestamp 

checking 'at a primary breakpoint also reflects determiner nesting: a timestamp value in a 

determination cell is valid only if the timestamp value of its t rueDet determiner is not earlier than 

the timestamp value of its fa 1 seDet determiner. 

Timestamps also figure in another complication. Suppose that the user requests a breakpoint in 

a merged region after control has already entered that region. This situation might occur when 

single-stepping. for example. Since path determiners can cover the final merged region in a fairly 

baroque way, a breakpoint can activate determiners for part of a region without activating 

determiners for some other part of the region. Therefore, the debugger must record the time that 

each determining breakpoint is set. At each primary breakpoint. the debugger checks the 

timestamps and the set times to ensure that all necessary determining breakpoints were set early 

enough. If the set time for a determining breakpoint x is later than the latest timestamp for the 

remaining determining breakpoints. the debugger includes the source statement corresponding to x 

in the list of source possibilities. 

Each iteration of the cross-jumping algorithm is a transformation from one correct 

representation of the program to another~ the described modifications correctly reflect the effects of 

that transformation on the mappings between source statements and object locations. Because the 

transformation is applied repeatedly. the number of path determiner cells inserted in the program is 

not minimal. If the cross-jumping algorithm could merge multiple paths at once. or if the order of 

merges could be optimally arranged, fewer path determiner cells might result. It is possible that a 

post-optimization pass over the code stream and the path determiner table could coalesce multiple 

path determiners and achieve the minimal number. This minimization step could also create 

equivalence classes of path determiners for each final merged region. eliminating the need to record 

the time that each determining breakpoint is set. 

Analysis of the current cross-jumping algorithm shows that the number of inserted path 

determiners is linear in the number of merging paths. Proofs that correct path determination can 

always be performed using these algorithms are presented in [16]. 
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8.7 Interactions with other optimizations 

Because inline procedure expansion occurs earlier in the compilation process than the object 

code optimizations, an expanded in line procedure can be cross-jumped with statements outside that 

inline procedure (but inside the calling procedure). Even in these cases, Navigator's mechanisms for 

handling code merging allow setting and fielding breakpoints and reporting the current program 

location. However, the possibility that a program region can be copied and then merged constrains 

the solution for providing a procedure traceback; each sourcelink cell must have a separate inline 

table pointer, since that statement may be moved away from the other statements resulting from the 

same expansion. 

A more serious problem is that other control-flow optimizations can occur after cross-jumping. 

Path determiner cells are intended to be ignored by compiler routines (including other 

optimizations) that operate on the object code stream. The difficulty arises when one of these later 

optimizations alters the code stream so that path determiner cells no longer mark each of the ways 

to enter the merged region. One solution to this problem would be to check for the presence of 

path determiner cells and inhibit the detection of further optimizing patterns. However, this is not 

sufficient for optimizations such as branch-chain removal, in which lexically surrounding instructions 

are not examined. A better (although ad hoc) solution involves ascertaining how each optimization 

affects the placement of path determiner cells and individually inhibiting unanalyzed or troublesome 

optimizations. 

8.8 Debugger diffiCUlties 

Runtime complications are not limited to the problems caused by iterated optimization. For 

example, two paths that contain a directly or indirectly recursive call can be cross-jumped. Hence 

determination cells must refer to a particular invocation of a procedure. This also takes care of 

multiple processes executing a cross-jumped procedure. 

The allocation of determination cells presents another problem. If the compiler were to 

allocate any necessary determination cells in the procedure's local frame, the association between 

determination cells and a particular procedure invocation would be implicit However, this strategy 

would be quite expensive. as runtime space would be consumed even for procedures in which no 

breakpoints had been set Therefore, when a breakpoint is placed in a merged region. the debugger 

allocates determination cells in a memory region of its own. The timestamp value in each 

determination cell is associated with a single procedure invocation by having a pointer to the 

activation frame for that procedure invocation. 
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9. Features and drawbacks of path determination 

The path determination method usually provides transparent debugging capabilities for control

flow optimized programs. In addition, it has the practical properties that we desire. Runtime path 

determination costs execution time or space (excluding space for the tables, which need not reside 

in main memory) only if a breakpoint has been placed in a merged region. The cost is proportional 

to the number and merging complexity of merged regions that .have breakpoi.nts set inside them. 

It is clear that there are cross-jumped regions for which exact path determination is not 

possible. If an entire path generates the same object code as some other joining path, both path 

determiner cells will be placed at the same place. Figure 6 illustrates this situation. These 

programs are probably not very interesting in practice, but if they occur, the path determination 

algorithm can correctly identify the source alternatives. Since path determiners are identified during 

the optimization process, the lack of distinct places to put them could be used to inhibit complete 

merging of two paths by cross-jumping. 

The method has another drawback. Since path determiners generate no code, they must be 

activated in order to provide exact path determination. Thus, if a runtime error or interrupt is 

encountered inside a merged region. Navigator can only list the source alternatives. Similarly, if a 

merged region contains a procedure call, procedure tracebacks that include that area can only list 

the source alternatives. In some cases, the user can inspect the values of variables to determine the 

exact path. If this is not sufficient, the user need only restart the execution with a breakpoint at the 

offending location, rather than recompile the program with cross-jumping disabled. It might be 

useful in such instances to decouple path determiner activation from breakpoint insertion. A 

proposed new Navigator command would explicitly activate all path determiners within a suspect 

procedure. 

Source Program Fragment 

1 b +- 5; 
2 IF cond THEN 
3 a +- 1 

ELSE 
4 a +- 1 ; 

Effective Fragment 
After Cross-jumping 

1 b +- 5; 

2,3,4 a +- 1; 

Figure 6. Program fragment with undeterminable paths. 

XEROX PARe. CSL 83-1. JANUARY 1983 



AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 19 

10. A different runtime path determination algorithm 

A debugger can use the path determiners identified in Section 8 in a different way to 

distinguish among source alternatives in a merged region at runtime. The compiler could generate 

code at each determiner to load some cell with an indication that control flow came that way. This 

method would always provide transparent debugging, but it would increase object code size by at 

least n stores for every n-way merge, and it would also increase data space. Unfortunately, this 

would probably consume more space than the cross-jumping algorithm saved. Moreover, the 

optimized program would run more slowly than the unoptimized version. These space and speed 

penalties could be largely avoided if hardware for execution tracing were available. The 

information gathered by the execution tracing hardware could be searched for the most recent 

appearance of a path determiner location. However, any execution history recording mechanism 

that uses a fixed-size storage area could fail to distinguish among multiple paths in a merged region. 

As an example, consider the program in Figure 7, and suppose that the statements inside P roc 
generate a large amount of history information. 

Source Program Fragment 

1 IF cond THEN 
2 {Proc[a]; 
3 Write["hi"]} 

ELSE 
4 {Proc[b]; 

5 Write["hi"]} 

Effective Fragment 
After Cross-jumping 

1 IF cond THEN 
2 {<load a>; 

GO TO L 
ELSE 

4 {<load b>; 
2,4 L: <call Proc>; 
3,5 Write["hitt]} 

Figure 7. Difficult case for hardware-supported execution-history mechanism. 
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-- Polle2, July 29, 1982 6:21 pm 

PT2Test14: PROGRAM = 

BEGIN 

-~ type definitions 

- ~ global variables 
i: INTEGER +- 100; 
a: INTEGER +- 200; 
b: INTEGER +- 300; 
c: INTEGER +- 400; 

even: PROCEDURE [k: INTEGER] RETURNS [BOOLEAN] = INLINE 
BEGIN 
a +- k; -- to see whether we get a source lac for t,his 
RETURN [k MOD 2 = 0]; 
END; 

Tail: PROCEDURE [il, i2: INTEGER] = INLINE 
BEGIN 

Ib +- il; 
~+-i2.; 
END; 

TestInlineProcedure: PROCEDURE [j1, j2: INTEGER] = INLINE 
BEGIN 
temp: INTEGER; 
FOR j: CARDINAL IN [1 .. 3] DO ~- to give a context to jump out of 

IF j = 3 THEN GO TO Ll; 
temp +- j2 * 2.; 
Tail[a*2, c-5]; 
REPEAT 

Ll => j2 +- 3; 
ENDLOOP; 

END; 

Procl: PROC = 
BEGIN 
TestInlineProcedure[a,b]; 

FOR i IN [1..5] DO 
IF even[i] THEN 

BEGIN 
a+- 11; 
Tail[4,5]; 
END 

ELSE 
BEGIN 
a+- 2; 
b +- 4; 
c +- 5; 
END; 

ENDLOOP; 

Figure 8. Navigator Operation. 
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Cedar Executive 29-Apr~82. 13:54:19, Type? for Commands, 

& 1 CreateExee 
&2. old tests,em 
Created Viewer: tests,em 
&3 run NavBBV 
Loaded and started: navbbv,bcd 
&4 run PT2Test14 
Loaded and started: ptztest14,bed 
&S old PT2Test14 
Created Viewer: ptztest14,mesa 
&6 II 3 or 4 seconds after clicking Set Break 
&1 +- PTZTest14,Proc1[] 

**** Action #3 (kind: break, process: 22.5B) 
Break #1 in PT2Test14,Proc1(lf: 2662.0B, pc: 14B) 

&8 II Top Frame clicked 
Tail at source: 402 (expanded inline) 

TestInlineProcedure at source: 648 (expanded inline) 
PT2Test14,Proc1(lf: 26620B, pc: 14B) at source: 152 

Args --> 
Vars --) [i1: 400, i2: 395] 
&9 +- j 
1 
& 10 II BugBane Source clicked 
& 11 II Navigator Source clicked 

Show <:'tack Walk Stack Control OJ Breaks Display Optimization 

Top Frame Restart Source Set Help Next Source 

Whole stack Next Frame Proceed Clear Breaks Next Inline 

+ Args + Args Abort Clear * ACTions 

+ Vars + Vars Next Action Signal 
nested mImes - cl1ck Next Inl1ne 
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11. Current state of the implementation 

Navigator has a running prototype. The compiler modifications for Navigator comprise 

approximately 1500 lines of Cedar source code. or about 3% of the size of the original Cedar 

compiler. Navigator's runtime routines add about 1000 lines of source code to the debugger. 

Preliminary evaluation of the untuned completed system shows that extra compilation and execution 

costs of using Navigator are small: the compiler is roughly 15% slower, and debugger responses are 

not noticeably altered. 

Figure 8 shows an optimized Cedar program being debugged using Navigator. The display is 

used in conjunction with a mouse (a pointing device) [10]. The area (window) of the screen labelled 

Navigator Commands contains a command menu for the Navigator debugger. Commands are 

organized into related command columns; this paragraph refers to a command by COnutlllnd 

co/umn/conutlllnd Mme. A limited amount of user feedback appears in the Navigator Commands 

window. User programs are invoked from the User Executive window; debugger commands like 

Display/Breaks or Show StacklTop Frame print their results there. The source text of the program 

being debugged is also on the screen in the ptztestl4.mesa window. The user sets a breakpoint by 

selecting one or more source characters and clicking a mouse button over the Breaks/Set command 

area; the current program location is displayed by a highlighted area in the source text when the 

Control/Source area is clicked. The commands in the Optimization column (an additional 

nontransparency of the Navigator debugger) are necessary because the window system can only 

highlight one contiguous screen region at a time. 

12. Relationship to other work 

The cross-jumping algorithm was inspired by a method sketched by Teeple and Anderson in an 

unpublished manuscript [12]. In their approach. determining breakpoints are placed at those n-i 

entrances to an n-way merged region from which code was deleted: their determining breakpoints 

are also invisible to the user. When control reaches a determining breakpoint. the debugger single

steps the program until the primary breakpoint is reached. at which time it is known that control 

flow came through that piece of deleted code. If the primary breakpoint is reached when not 

single-stepping, control flow must have passed through the path without the determining breakpoint. 

Since Teeple and Anderson's technique was never fully designed or implemented [11]. its 

description is incomplete. Among other things. they failed to realize that merging less than an 

entire statement still requires path determination, and they did not discover that repeated cross

jumping can cause nested determiners. 

The use of single-stepping as a path determination mechanism is not very satisfactory. It can 

be difficult to determine when normal execution can be resumed in cases in which control can pass 

either from the determining breakpoint into the merged region (and hence to the primary 
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breakpoint), or from the determining breakpoint to some other portion of the program. Single

stepping can also be very slow, particularly in cases where a cross-jumped region consists of a 

procedure call followed by a statement on which a breakpoint is to be placed. Finally, single

stepping from the determining breakpoint is only applicable to control-flow optimizations, whereas 

doing something at an invisible breakpoint and then continuing can be used to deal with other 

classes of optimization. 

Hennessy [6] addresses the problem of transparently displaying values of variables in the 

presence of selected local and global code reordering optimizations. The local optimizations include 

common subexpression elimination, redundant store elimination, and code reordering. The global 

optimizations include code motion, induction variable elimination, and dead store elimination. With 

the assumption that the global flowgraph used during the optimization process is available to the 

debugger at runtime, Hennessy has developed algorithms that can usually detect when a variable 

has an incorrect value (in terms of the source program) and can sometimes correct this value. The 

algorithms were implemented and tested on a small group of programs to demonstrate their 

correctness and feasibility, but they have not yet been incorporated into any program development 

system. 

The Firmware Development System (FDS) project at IBM Yorktown [14] planned to construct 

a programming environment with extensive optimization capabilities as well as an interactive high

level debugger that was aware of the optimizations. Unfortunately, the project lasted only long 

enough to produce a design document, so no information is available regarding its performance or 

utility [13]. The FDS system was intended to furnish two modes of compiler/debugger operation. 

In "full optimization" mode, the proposed debugging system would have tersely explained the ways 

in which optimizations had affected the program. For a sophisticated user, FDS operation in this 

mode could almost have been called correct. In "source-unchanged" mode, optimizations could 

involve only compiler-introduced temporaries, or could occur only within a statement. 

Optimizations would have thus been restricted in such a way that the mappings between the source 

text and the object code remained straightforward. Of course. recompilation would have been 

necessary to invoke "source-unchanged" mode if an error were encountered during a "full 

optimization" execution. 

13. Conclusions and future work 

To my knowledge, Navigator is the only working system for debugging optimized programs in 

a production environment In most cases, Navigator can provide transparent debugging for control

flow optimized programs, in which the ordering of computations along any execution path is 

preserved. When transparent performance cannot be achieved. Navigator provides correct 

debugging. Navigator sacrifices transparent performance for runtime errors. interrupts. and 

XEROX PARe. CSL 83-1. JANUARY 1983 



AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 23 

procedure calls inside merged regions in order to preserve the efficiency needed for routine use. 

The invisible breakpoint technique can be used to augment Hennessy's algorithms for 

discovering the correct value of a variable. For example, an invisible breakpoint can store a final 

value for an eliminated store that reaches a breakpoint location, or it can save an old value of a 

variable when a breakpoint comes between a store moved earlier in the program and its original 

location. This use of invisible breakpoints to repair places where optimization removes information 

is currently under investigation. 

Much work remains to. be done in the area of debugging optimized programs. Code reordering 

optimizations create additional statement mapping problems, making it more . difficult to avoid 

anomalous debugger behavior. In particular, expressing the new (optimized) relationship between a 

given computation and other computations is an open research area. 
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Erratum 

There is a small flaw in the compiletime cross-jumping and path determination algorithms 

described in Section 8. Under rare circumstances, the resulting set of path determiners will be 

unable to distinguish between two regions with different preceding control-flow that have been 

cross-jumped. The flaw compromises only transparent behavior, not correct behavior; programs 

that demonstrate the flaw are oddly structured and are unlikely to occur in practice. 

In order to provide complete and correct path determination, the cross-jumping algorithm must 

mesh properly with the path determination algorithm. In this case, small changes to one or both 

algorithms can eliminate the problem. The final object code for programs need not be changed. 

The problematical feature in the cross-jumping algorithm is that either merging code sequence 

is allowed to contain embedded labels, provided that all jumps to labels in the toDelete sequence 

are redirected to corresponding locations in the toRemain sequence. Allowing embedded labels is 

desirable because it permits longer code sequences to be merged in a single application of cross

jumping, thereby reducing the number of path determiners. 

The unnecessary ambiguities can arise in two different ways: either from a single application of 

cross-jumping or from repeated applications. In the first kind, cross-jumping merges two code 

sequences whose object code is identical, but whose label structure (and thus whose control flow) is 

not. The two sequences have a common entrance that precedes two non-identical instructions, 

causing the common entrance to be marked with determiners for both sequences. Therefore, the 

two original sequences are undistinguishable whenever the merged region is entered through that 

entrance. If more determiners were inserted, the differing control flow could be used to avoid the 

ambiguity. In the second kind, a merging sequence contains two or more subsequences that could 

be merged via cross-jumping, but that have not yet been. In the current path determination 

algorithm, a sourcelist entry is always distinguished by the determiner for the first sequence it was a 

part of. Subsequent repeated cross-jumping within the sequence creates two or more source 

alternatives that are marked with the same determiner, and that therefore cannot be told apart. 

A safe solution is to disallow embedded labels in sequences that are candidates for cross

jumping. For complicated cases, this alternative requires more cross-jumping iterations, resulting in 

more path determiners. The additional path determiners use more table space, and cause more 

determining breakpoints for a given primary breakpoint. The determiner minimization phase 

proposed in Section 8.6 would remove excess determiners. but compilation time would increase. 

Two other solutions are currently being investigated. The first would allow embedded labels, 

but avoid the special cases in which they create ambiguity. The second would alter the path 

determination algorithm: for example, a sourcelist entry could contain a list of determiners rather 

than containing a single determiner and possibly some enclosing nested determiners. 

Further details can be found in [16]. 
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