
An Interactive High-Level Debugger for
. Control-Flow Optimized Programs

Polle T. Zellweger

An Interactive High-Level Debugger for
Control-Flow Optimized Programs

Polle T. Zellweger

CSL-83-1 January 1983 [P83-00001]

© Copyright Xerox Corporation 1983. All rights reserved.

Abstract: The transformations performed by an optimizing compiler have traditionally

impeded interactive debugging in source language terms. A prototype system, called

Navigator, has been developed for debugging optimized programs written in Cedar, an Algol

like language. Navigator can be used to monitor program execution flow in the presence of

two optimizations: inline procedure expansion and cross-jumping (merging identical tails of

code paths that join). This paper describes the problems that these two optimizations create

for debugging and Navigator's solutions to these problems. The approach taken is to collect

extra information during the optimization phases of compilation. At runtime, Navigator uses

the additional information to hide the effects of the optimizations from the programmer.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and
Debugging-debugging aids; D.3.4 [Programming Languages]: Processors--code
generation; optimization

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Interactive debugging, high-level debugging, program
optimization

A version of this paper will appear in the Proceedings of the ACM SIGSOFT /SIGPLAN Software

Engineering Symposium on High-Level Debugging, March 1983.

This work was partially supported by Stanford University under a contract from the Lawrence Livermore National
Laboratory (LLNL Contract 9628303).

XEROX Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 1

1. Introduction

In order for an interactive high-level debugger to function in a compiler-based programming

environment, the compiler must provide mappings between source lines or statements and object
code locations, and among variable names, types, and data locations. Program optimization can
move or delete statements and eliminate or overlay variables. As a result, variables can be given
values at different relative locations in the compiled code than in the source program. or the
program's flow' of control can be altered. These transformations affect the debugging mappings in
ways that have not previously been understood; hence, current optimizing compilers do not support
interactive high-level program debugging.

Nevertheless, the ability to apply an interactive high-level debugger to an optimized program is

important Interactive high-level debuggers have long been recognized as useful program
development tools [3], and compilers that perform some level of optimization are becoming
increasingly common. Some reasons for this trend are the emphasis on portability and modularity
in current compiler construction, the increased speed and reliability of optimizing transformations,
and the continuing need for efficient use of a computer's time and space resources [5].

This paper describes efficient ways to provide high-level debugging capabilities in the presence
of two simple but nontrivial optimizations: cross-jumping and inline procedure expansion. These
optimizations are more frequently performed than many global optimizations, largely because they
do not require global flow analysis and are therefore more widely implemented in current
compilers.

A prototype implementation of these methods, in a system called Navigator. has been
developed in the Cedar programming environment at the Xerox Palo Alto Research Center. The
Cedar language is an Algol-like language that is very closely related to Mesa [9]. One of the major
differences between Cedar and Mesa is that Cedar provides safe automatic deallocation (garbage
collection). The compiler modifications needed by Navigator apply to Cedar and Mesa programs.
since the Cedar compiler is derived from the Mesa compiler. The approaches described here can
assist with interactive high-level debugging of more heavily optimized programs.

2. Interactive high-level debuggers

An interactive high-level debugger helps a programmer examine and control the state of a
program during its execution (7]. The user can specify points in the program. called breakpOints, at
which execution of the program is to be suspended. If the program halts for any reason. whether at
a breakpoint or because a runtime error is encountered (e.g .. division by zero or illegal memory
reference). control is given to the debugger. Typically. the user can then enter commands to
discover the current execution point. examine or modify values of variables. or execute new
statements in the current context of the program. . A procedure traceback command is usually

XEROX PARCo CSL 83-1. JANUARY 1983

2 AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS

available if the debugger operates on programs written in an Algol-like language. A procedure

traceback is a list, in reverse order of invocation, of the currently active procedures and their points

of suspension. The debugger may also allow the user to examine or modify the local variables

(including parameters) of any active procedure. In a high-level debugger, the programmer

communicates with the debugger in terms of the source text Breakpoint and runtime error

locations are specified as positions in the source text Variables are referred to by their names; their

values are displayed in the correct formats for their declared types.

3. Control-flow optimizations

The class of program optimizations considered in this paper are control-flow optimizations.

These optimizations rearrange the object code for a program either by merging identical code

sequences, making the program smaller, or by copying code sequences, making the program faster.

Examples of merging optimizations include procedure discovery [4] and cross-jumping [15].

Procedure discovery locates identical sequences of instructions and forms a single new procedure

that is called from each original location. Cross-jumping is a special case of procedure discovery

that examines code paths that join. If the tail portions of any two of the paths are the same, cross

jumping moves the join point for those two paths from its original location backward to the earliest

identical point and deletes one copy of the identical code. Cross-jumping is often performed as an

object code optimization, but it can also be performed on intermediate representations of the

program (e.g., flowgraphs or quads [2]). The cross-jumping optimization is illustrated in Figure l.

Examples of copying optimizations include loop-unrolling and inline procedure expansion [1].

Loop-unrolling makes multiple copies of the statements inside a short loop in order to reduce the

effects of loop overhead. Inline procedure expansion, also known as procedure integration, replaces

a call to a procedure by an instance of the actual code of the procedure in order to save the

execution time associated with procedure linkage (moving parameters, saving and restoring registers,

etc.). Inline procedure expansion may also provide opportunities for further optimizations. Inline

procedure expansion is illustrated in Figure 2.

These optimizations create problems for interactive high-level debugging, even though they do

not alter the order of execution of instructions that are meaningful to the programmer. The

problems arise because 1) merging optimizations cause a many-to-one mapping from the source

program to the object code, and 2) copying optimizations cause a one-to-many source-to-object

mapping. In contrast, a nonoptimizing compiler produces only a one-to-one source-to-object

mapping.

XEROX PARe. CSL 83·1. JANUARY 1983

A)

B)

C)

AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 3

Source Program Fragment

1 IF cond THEN
2 {a +- 1 ;
3 c +- 5}

ELSE
4 {a +- 2;

5 c +- 5};

Unoptimized Object Code

0 LOD cond
2 BEZ L1
4 LOD 1 • entrance to sequence I

6
S10] 8 LOD 5 toDelete sequence

10 STO c (path determiner identifier = I)

12 BR L2
14 L1: LOD 2 • entrance to sequence 2

16
S10 ~ 18 LOD 5 toRemain sequence

20 STO c (path determiner identifier = 2)
22 L2:

Unoptimized Debugger Table

source (-) object
1 0
2 4 statement map
3 8
4 14
5 18

Debugger actions to set a breakpoint at statement 5:

source 5 -) object 12

=) set primary breakpoint at object 12

object 12 -) source 31, 52
=) activate determiner 1

=) set determining breakpoint at object 4
activate determiner 2

=) set determining breakpoint at object 8

Effective Fragment After Cross-jumping

1
2

4
2,4 L:
3,5

IF cOAd THEN
{<load I);

GO TO L}
ELSE

{<load 2);
<store a);
c +- 5};

Optimized Object Code

o
2
4

LOD cond
BEZ L1
LOD 1 ----- path determiner I

6 BR L3

8 L1: LOD 2 • path determiner 2

10 L3: STO a
12 LOD 5
14 STO c
16

Optimized Debugger Tables

source -) object
1 0
2 4 source table
3 12
4 8
5 12

object -) source
0 1
4 2 object table
8 4

10 21 , 42
12 31 , 52

determiner -) object
1 4
2 8 determiner table

Figure 1. Simple cross-jumping example. Throughout this figure and other similar figures, unoptimized items appear on the
left, while their optimized counterparts appear on the right.

A) shows the effect of the cross-jumping transformation at the. source level. Since Navigator performs cross-jumping on the
object code. the resulting program is not wholly expressible in the source language. Abstract stack machine instructions are
shown in italics. Some "statements" in the optimized fragment have more than one statement number. Each time that such a
"statement" executes, it executes on behalf of exactly one of the unoptimized statements whose number is listed.

8) presents object code generated from the unoptimized source fragment and ilfustrates the application of the cross-jumping
transformation. When label L2 (at object location 22) is seen, the code preceding the label and preceding the branch to it (at
object location 12) are examined for identical sequences by the method of Section 8.3. The resulting object code is shown on
the left. The italicized annotations refer to the compile-time path determination bookkeeping described in Section 8.5.
C) shows debugger tables corresponding to the object code above. The unoptimized version is a one-to-one statement map;
the optimized tables are more complex. In the source table. statements 3 and 5 both map to the same object location. In the
object table, object locations 10 and 12 each have two possible source counterparts, distinguished by subscripted path
determiners. The determiner table shows where determining breakpoints must be placed for each path determiner.

The box at the lower left describes the steps the debugger takes to set a breakpoint at statement 5 if cross-jumping has been
applied (see Section 7.2 for further details).

XEROX PARe. CSL 83-1. JANUAR Y 1983

4 AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS

A) Source Program Fragment

1 PROCEDURE Pl [i: INTEGER] INLINE
2 {a +- i};

3 PROCEDURE P2
4 {Pl[l];
5 b +- 2;
6 Pl[5 - b]};

B) Unoptimized Object Code

0 STO
2 LOD i
4 STO a
6 RET
8 LOD 1

10 CAL Pl
12 . LOD 2
14 STO b
16 LOD 5-
18 LOD b
20 SUB
22 CAL Pl

C) Unoptimized Debugger Table

source (-)
1

object
o

2
3
4
5
6

2 statement map
8
8

12
16

Debugger actions to set a breakpoint at statement 2:

source 2 -) object O. 16
=) set breakpoint 1 at object 0

set breakpoint 2 at object 16

Debugger actions to field breakpoint 1:

object 0 -) source 21
=) in line 1 -) call source 4. inline name PI

Output to user: Breakpoint I at statement 2 inside PI
called from statement 4 inside P2

Figure 2. Inline procedure expansion example.

EtTective Fragment After Intine Expansion

3 PROCEDURE P2
2,4 {a +- 1 ;

5 b +- 2;
2,6 i +- 5 - b;
2,6 a +- i} ;

Optimized Object Code

0 LOD 1
2 STO a
4 LOD 2
6 STO b
8 LOD 5

10 LOD b
12 SUB
14 STO
16 LOD i
18 STO a

Optimized Debugger Tables

source -) object
1 0, 8
2 0, 16 source table
3 0
4 0
5 4
6 8

object -) source
0 21
4 5 object table
8 22

inline -) call source. inline name
1 4 Pl
2 6 Pl inline table

A) shows the effect of the inUne procedure expansion transformation at the source level. In contrast with cross-jumping. the
resulting program is always expressible in the source language. Statement 2 has two separate copies in the optimized fragment.
corresponding to the two calls of Pl. The expanded statements can be considered to execute on behalf of a statement from
the in line procedure's definition as well as on behalf of the inline procedure's call. In the first call to Pl. the parameter (1) is
sufficiently simple that the compiler substitutes it directly for uses of i (subsumption). The debugger requires additional
mechanisms to display the value of i in that region.
B}presents the object code generated from the two source fragments.
C) shows the corresponding debugger tables. In the source table. statements 1 and 2 each map to two object locations. The
superscripts in the object table are references to inUne table entries. Each call on an inline procedure generates a separate
inline table entry. The inline table records inline call nesting information for displaying a procedure traceback.
The box at the lower left describes the steps the debugger takes to set a breakpoint at statement 2. as well as the steps
required to field one of the resulting breakpoints.

XEROX PARCo CSL 83-1. JANUARY 1983

AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 5

4. Objective

Navigator's primary objective is to provide a programming environment in which debugger

responses to user requests concerning the execution of an optimized program are the same as the

responses would be for an unoptimized version of the program. I call this property transparent
behavior with respect to a given optimization. A less desirable but still acceptable alternative is to

provide correct behavior with respect to an optimization. This means that the debugger can display,

in source program terms, the relevant changes caused by the optimization at an execution point.

A debugger that has neither transparent nor correct behavior is likely to give confusing

responses to queries about an optimized program. For example, if a merging optimization has been

applied, the debugger might report an incorrect source location when a breakpoint or error is

encountered. If a copying optimization has been applied, the debugger might not place a copy of a

breakpoint in each copy of the code. The unmodified Cedar debugger exhibits these problems.

A practical implementation of a system for transparently debugging optimized programs must

have two additional properties. First, an optimized program that is capable of being debugged

should not be larger or slower than an un optimized version of the same program. Ideally. adding

debugging capabilities for optimized programs will not cost any extra execution time or space unless

the debugger is actively responding to a user request. Second, the modified compiler and debugger

should still perform reasonably efficiently.

5. Difficult situations for debugging control-flow optimized programs

This section describes the information that a debugger must have to perform the following

debugging actions in the presence of control-flow optimizations: setting and fielding breakpoints.

reporting the current execution point. displaying values of variables. and providing a procedure

traceback.

Setting a breakpoint at a given source statement requires an accurate mapping from the

beginning of each source statement to all object locations that represent the start of execution of an

instance of the statement. If a single object location represents the beginning of multiple source

statements (due to code merging). it must be possible to place multiple logical breakpoints at that

location (possibly with different activation conditions).

Reporting the current execution point of a suspended program requires an accurate mapping

from each object location to all source statements on whose behalf it executes. This mapping alone

provides only enough information for correct debugger behavior. not transparent behavior: when a

single object location is a part of the code for multiple source statements. the mapping yields a list

of source possibilities rather than just the right one. To achieve transparent behavior. additional

work is necessary both during compilation and at runtime. How to accomplish this efficiently is the

subject of most of the subsequent discussion. Admittedly. the user can often discover which

XEROX PARe. CSL 83-1. JANUARY 1983

6 AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS

statement is really executing by using the debugger to examine values of variables. However, this

process can be tedious. If the uninteresting cases occur much more frequently during execution

than the desired case does, the user must laboriously check each time to see whether the desired

case has finally been reached. (In desperation, the user could recompile with optimization

disabled.)

Fielding a breakpoint is my term for deciding whether the current object location corresponds

to a source location at which the user has requested a breakpoint. Fielding a breakpoint requires an

accurate mapping from each object location at which a breakpoint has been placed to the exact

source statement on whose behalf it is executing this time.

Finding the local variables of a suspended program can be reduced to discovering the exact

source location for a given object location if the source language is lexically scoped. However, if

the optimizer applies the subsumption optimization [8] to the formal parameters of an inline

procedure, replacing the formal parameters of the expanded procedure by their actual parameter

expressions for a given call, the values of the formal parameters may not be available. This

problem is not caused by the application of the procedure expansion optimization itself, and hence

is outside the scope of this paper.

A procedure traceback should contain exactly the. procedural groupings that appear in the

source program. Calls to expanded procedures should appear in the traceback as if they had

occurred normally; calls to discovered procedures should be hidden. Providing a procedure

traceback therefore requires a mapping from each object location to a list of descriptions of the

procedures that were expanded to create that object code. Each description must contain the

procedure name, the source location of its call, and possibly a symbol table pointer to allow

accessing its variables. An inserted call to a discovered procedure must be marked in some way so

that the debugger will not include that call in the traceback.

6. Debugger implementation in a conventional setting

In order to support interactive high-level debugging in a compilation environment, a

conventional nonoptimizing compiler supplies the debugger with mappings between source

statements and object code locations, and among variable names, types, and data locations. The

mappings among variable names, types, and data locations are usually encoded in a symbol table.

Two methods of mapping between source statements and object code locations are common.

In one method, the generated code for each source statement begins with a call to the debugger,

providing the number or some other identification of the source statement as an argument. This

method is not very suitable for optimized programs because it can use a significant amount of

XEROX PARC, CSL 83-1, JANUARY 1983

AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 7

execution time and space. In a more efficient method, the compiler creates a separate table that

shows the relative program offset of the start of the generated object code for each source statement.

This table is called a statement map.

A debugger uses a statement map in a straightforward manner. To set a breakpoint at a given

source location, the debugger searches the map. finds the source location. and places the breakpoint

at the corresponding object location by the usual method of replacing an existing instruction by a

trap instruction. To report the current execution point. the debugger finds the nearest preceding

object location in the map and reports that the corresponding source statement is executing.

The information for a statement map is typically collected in two stages. First. at the beginning

of object code generation for each source statement. the compiler generates a special source pseudo

instruction whose operand is the source statement's number. Second. while writing the object code

to the output file. each time that the compiler encounters a source pseudo-instruction. it records the

current relative program offset and the source pseudo-instruction's operand in the statement map.

7. Overview of Navigator methods for improved debugger behavior

Although the ideas behind the methods described in this paper are general. their

implementation depends on the specific source language, compiler. and debugger to which they are

applied. This section presents an overview of the compiler and debugger modifications needed to

create the Navigator system. The basic idea is quite simple, but many details and complex

interactions must be considered in order to provide correct or transparent debugging. The next

section will explain many of the complications more fully. The Navigator system always provides

correct debugger behavior and usually provides transparent debugger behavior.

The Navigator compiler records and carefully maintains source-to-object correspondence

information during its parsing. code generation, and optimization phases. This information is

written to debugger tables. allowing the Navigator debugger to perform one-to-many and many-to

one mappings between source locations and object locations. I call the source-to-object map a

source table. and the object-to-source map an object table. These tables replace the conventional

statement map.

7.1 Compiler modifications

When the Navigator compiler expands a procedure call in line, it records inline call information

in an inline procedure table and inline pointers in the object table. The inline call information

includes the source location of the call and a symbol table pointer for the procedure. This

information allows the debugger's procedure traceback command to display an elided call as if it

had occurred normally. In the object table, each object location that is the result of an inline

XEROX PARe. CSL 83-1. JANUARY 1983

8 AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS

procedure expansion has an in line pointer indicating its appropriate inline call information.

When the Navigator compiler merges program regions via cross-jumping, it records path

determiner locations in a path determiner table and determiner pointers in the object table. Path

determiner locations are object locations at which the debugger can optionally collect selective

execution history information. In the object table, each source referent in the list of possible source

referents for a merged object location has a determiner pointer. The determiner pointer indicates

which path determiner must have been executed most recently if the object' location is currently

executing on behalf of that source statement.

7.2 Debugger modifications

At runtime, the Navigator debugger easily handles a request to set a breakpoint at a statement

that has been copied. It uses the source table to map the source location to its corresponding

(several) object locations, and it places a breakpoint at each of these locations. When any of the

breakpoints is reached. the debugger uses the object table to report the (single) current program

location.

A request to set a breakpoint at a statement in a merged region requires more complex

processing. First. the Navigator debugger uses the source table to map the source location to its

corresponding (single) object location x; it places a primary breakpoint at x. It then consults the

object table to create a list L of source alternatives for x; it places a determining breakpoint at each

path determiner associated with the source alternatives in L. It finds the object locations at which

to put these breakpoints by looking in the path determiner table. The process of placing a

determining breakpoint at each object location for a given path determiner identifier is called

activating that determiner.

When a determining breakpoint is reached, the debugger stores a timestamp in a determination

cell associated with the determining breakpoint's object location. Determining breakpoints are

invisible to the user.

When a primary breakpoint at x is reached. the debugger examines the values of all of the

determination cells associated with x. If control flow most recently came through the determiner

associated with the source statement of the breakpoint request. this execution of x indeed

corresponds to the desired breakpoint. and the debugger relinquishes control to the user.

Otherwise. execution proceeds as if no breakpoint had been encountered.

XEROX PARe. CSL 83-1. JANUARY 1983

AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 9

8. Detailed description of path determination for merged regions

This section explains the details of Navigator's path determination method for merged regions.

The compile-time portions of the method are described in terms of modifications to the cross

jumping algorithm; procedure discovery can be handled similarly. After a few initial definitions,

the cross-jumping algorithm is explained. The steps required to update the source and object

mappings as a result of the optimization are presented. A simple version of the path determination

algorithm is described, followed by a more complicated version that works correctly for repeated

cross-jumping. The solutions to several difficulties that arise from interactions between different

optimizing transformations are explained. Finally, a series of runtime problems are considered.

8.1 Definitions

In an object code stream, an instruction x is the immediate static predecessor of an instruction y

if x is the instruction positioned before y in the stream. An instruction x is an immediate dynamic

predecessor of an instruction y if x can execute immediately preceding y. That is, either x is a jump

to y, or x is the immediate static predecessor of y (unless x is an unconditio"nal jump to some other

instruction). An instruction has exactly one immediate static predecessor; it may have many

immediate dynamic predecessors. A code sequence is one or more statically adjacent instructions.

An entrance to a code sequence is any instruction outside the sequence that is an immediate

dynamic predecessor of an instruction inside the sequence.

8.2 Compiler organization and data structures

The Cedar compiler generates object code for a fairly simple stack machine. The compiler

performs inliile procedure expansion on the parse tree representation of the program. Later. it

repeatedly performs several object code optimizations (including cross-jumping) on the generated

object code stream until the optimizations are no longer applicable. The other optimizations in this

iterative process are: replacing a conditional jump around an unconditional jump by an opposite

sense conditional jump. removing branch chains and jumps to the next location. and examining

groups of adjacent instructions for opportunities to delete instructions (notably POPs) or to combine

them into a more powerful single instruction. All of the optimizations preserve the actual ordering

of computations along any execution path. although the control flow may be altered.

The input to the cross-jumping phase of the compiler is a stream of generated code for a single

procedure. represented as a doubly-linked list of two types of cells: instruction cells and marker

cells. Each instruction cell contains a complete description of one machine instruction (either a

jump instruction or a code instruction). A marker cell does 'not correspond to any object code: it is

either a label marker or an info marker. Each jump instruction has a pointer to its destination celL

which is a label marker. Furthermore. air jumps to the same label are linked. This structure

XEROX PARe. CSL 83-1. JANUARY 1983

10 AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CON.TROL-FLOW OPTIMIZED PROGRAMS

{Sotrcelink: -) (1, TRUE, O)}

~
LOD cond

~BEZtL1
{Sotrcelink:

1
LOD 1

~
STO a

{Sotrcelink:
~.

LOO

t
5

STO c

~
.-- tBR tL2

~{label: Ll}

{Sotrcelink:

1
LOD 2

STO a

{Sotrcelink:

!
LOD 5

STO+C

~
L --.. {l abel: L2}

t

-) (2, TRUE, O)}

-) (3, TRUE, O)}

-) (4, TRUE, O)}

-) (5, TRUE, O)}

sourcelink template:
(stmtNum, isStart, pathDetld)

{So!rcelink: -} (I, TRUE, OJ)

. ~
LOD cond

. ~
r+BEZ Ll

I {~ l.k)(I sou rce 1 n : - 2, TRUE, O)}

I {path determi ner: I, 0, O}
I ~
I LOD 1

I * ,-rBR L3

I
I
I
I
I
I
I
~{l abel: Ll}

{Sotrcelink: -} (4, TRUE, OJ)

* {path determiner: 2, 0, O}

~
LOD 2

~ L -+{l abel: L3}

{Sotrcelink: -} (2, FALSE, 1)

1 (4, FALSE, 2)}

STO a

{Sotrcelink: -} (3, TRUE, 1) t (5, TRUE, 2)}

LOO

t
5

STO c

* {label: L2}

t path determiner template:
(id, trueDet, falseDet)

Figure 3. Effects of cross"jumping on the object code stream for the program fragment shown in Figure 1. Marker cells are
enclosed in braces {} to distinguish them from instruction cells. Static links between code stream cells are shown as solid
lines. dynamic links are shown as broken lines.
The cross-jumping transformation causes several differences between the unoptimized code stream. on the right. and the
optimized code stream. on the left. The code between LOD 1 and Ll is replaced by BR L3. and L3 is inserted following
LOD 2. The path determination algorithm is responsible for the remaining differences. Path determiners are inserted
preceding LOD 1 and LOD 2. A new sourcelink cell is created following L3 to record the merging of a portion of statements
2 and 4. In the sourcelink cell preceding LOD 5. sourcelists for statements 3 and 5 are concatenated to record the merging of
those entire statements.

XEROX PARe. CSL 83-1. JANUARY 1983

AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 11

facilitates finding all jumps to a given label, as well as finding a given jump's destination label and

all other jumps to that label. Info markers are used to generate statement maps and symbol table

information. A sample code stream is shown in Figure 3.

One type of info marker is the sourcelink cell. Every instruction between two sourcelink cells

has the relationship to the source text that is described by the statically preceding sourcelink cell. A,

sourcelink cell is a pointer to a list of records called a sourcelist Each sourcelist entry contains a

source statement number stmtNum, a boolean variable i sStart that indicates whether the next

instruction is the start of the object code for that source statement, and a path determiner identifier

pathDetId.

Sourcelink cells therefore contain sufficient information for the construction of both source and

object tables. At the start of the object code optimization phase, all sourcelink cells have a single

element in their sourcelist, with; sStart true.

8.3 Cross-jumping optimization

The Navigator compiler's version of the cross-jumping algorithm examines the object code

stream sequentially. When it finds a label, each immediate dynamic predecessor of the label defines

the end of a path to that label. The algorithm compares paths pairwise for identical tail code

sequences. It finds identical code sequences by searching the static paths in reverse order until

unequal instructions are encountered.

When the algorithm finds identical code sequences, it designates one code 'sequence the

toDelete sequence, and it designates the other the toRemain sequence. It inserts a jump from the

beginning of the toDelete sequence to the beginning of the toRemain sequence, and then it deletes

the toDelete sequence.

If the toDelete code sequence has internal labels. the algorithm is slightly more complex. As

the backward comparison scan crosses such a label. it redirects each jump to that label to the

corresponding point in the toRemain code sequence (it inserts a new label there, if necessary). This

allows longer code sequences to be found in a single application of cross-jumping. Figure. 4

presents an example of Jump redirection.

8.4 Mapping between many source statements and one object location

Because the source table is only concerned with the object location for the start of a source

statement retaining information for later construction of the source table is straightforward. When

the compiler encounters a sourcelink cell in the toDelete code sequence during the backward scan.

it need only move the sourcelink cell to the current position in the toRemain sequence (sourcelists

of resulting adjacent sourcelink cells are merged). When statement boundaries are in different

places in the two sequences. or if cross-jumping merges only a portion of the object code for a

statement retaining information for the object table is more complicated.

XEROX PARCo CSL 83-1. JANUARY 1983

12 AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS

A) Source Program Fragment

1
2
3

4

5

6

IF condl THEN
{IF cond2 THEN

a .. 1;

c .. 5}
ELSE
{a .. 2;

c .. 5};

B) Unoptimized Object Code

o
2
4
6
8

10
12 L2:
14

16
18 Ll:

20
22
24
26 L3:

LOD condl
BEl Ll
LOD cond2
BEl L2 ~IIII---r-- entrances to sequence J
LOD 1 4l1li----1

~~gTl
SToiJ

toDelete sequence
(path determiner identifier = J)

BR L3
LOD 2 "'1111~-- entrance to sequence 2

~~gTl
STO .iJ toRemain sequence

(path determiner identifier = 2)

C) Unoptimized Debugger Table

source <-)
1

object
o

2
3
4
5
6

4 statement map
8

12
18
22

Debugger actions to set a breakpoint at statement 4:

source 4 -) object 16
=) set primary breakpoint at object 16

object 16 -) source 41, 62
=) activate determiner 1

=) set determining breakpoints at objects 6 & 8
activate determiner 2

=) set determining breakpoint at object 12

Figure 4. Cross-jumping example with multiple entrances.

Effective Fragment After Cross-jumping

1
2
3

4

5
3,5 Ll:
4,6 L4:

IF condl THEN
{IF cond2 THEN

{<load J);
GO TO Ll};

GO TO L4}
ELSE
{<load 2);

<store a) ;
c .. 5};

Optimized Object Code

o
2
4
6
8

10

12 Ll:

14 L5:
16 L4:
18
20

LOD condl
BEl L1
LOD cond2
BEl L4 4l1li--- branch redirected
LOD 1

BR L5

LOD 2

STO a
LOD 5
STO c

Optimized Debugger Tables

source
1
2
3
4
5
6

-)

object -)
o
4
8

12
14

16

determiner -)
1
2

object
o
4 source table
8

16
12
16

source
1
2 object table
3
5
31 , 52
41 , 62

object
6, 8
12 determiner table

A) shows the effect of the cross-jumping transformation at the source level.
B) demonstrates the application of the cross-jumping transformation. In this example. the toDelete sequence contains a label
(L2. at object location 12). The cross-jumping algorithm inserts a new label L4 at the corresponding location in the toRemain
sequence. and redirects the branch to L2 (BEl L2. at object location 6) to L4.
C) presents the debugger tables corresponding to the object code above. In the determiner table. note that determiner 1 has
two associated object locations.
The box at the lower left describes the steps necessary inside the debugger to set a breakpoint at statement 4 if cross-jumping
has been applied. A total of four breakpoints are required.

XEROX PARe. CSL 83-1. JANUARY 1983

AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 13

The compiler retains sufficient information in the sourcelink cells to create both the source

table and the object table. The following cases specify the bookkeeping necessary when the

backward scan encounters a sourcelink cell in either code sequence.

1. If a sourcelink cell is encountered in the toRemain code sequence, the toDelete code

sequence is searched for the nearest sourcelink cell preceding the current point. The

sourcelist from the toDelete code sequence is appended to the sourcelist from the

toRemain code sequence. If the search crossed an instruction cell, the i sSta rt field of

each element of the toDelete code sequence sourcelist is set to false as it is appended.

2. If a sourcelink cell is encountered on the toDelete code sequence only, the toRemain

code sequence is searched for the nearest preceding sourcelink cell. That cell is copied

to the current point in the toRemain code sequence, setting i sStart to false for each

element of the sourcelist The sourcelist from the toDelete code sequence is then

appended to that sourcelist.

In order to fully reflect the relationship between the source text and the newly merged object

code, there must be sourcelink cells that correctly describe the first piece of object code in the new

merged sequence, the first piece of object code following the toRemain sequence, and the first piece

of object code following the toDelete sequence. If these locations do not already have sourcelink

cells, appropriate sourcelink cells must be created.

8.5 Simple path determination

To permit the debugger to choose the correct source location when fielding a breakpoint at a

merged location, the compiler must record not only that a given section of object code now

corresponds to multiple source statements, but how control could pass into that code section. Path

determiners supply the necessary extra in formation.

For each identical sequence, the compiler creates a unique path determiner identifier. When it

encounters a sourcelink cell. it sets its pat h De tId field to the path determiner identifier for that

sequence. Furthermore. it marks each entrance to the sequence with the same path determiner

identifier by inserting a new type of info cell. called a path determiner cell. in the code stream

immediately preceding each entrance to the sequence.

As the compiler emits object code., it records an (object location. path determiner identifier)

pair in a path determiner table for each instruction that is marked with a path determiner identifier.

The set of all object locations that have the same path determiner identifier is called a path

determiner.

XEROX PARe. CSL 83-1. JANUARY 1983

A)

14 AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS

Source Program Fragment

1 IF cond1 THEN
2 {x +- 1;
3 a +- 2;
4 IF cond2 THEN
5 {b +- 3;
6 d +- 4}

ELSE
7 d +- 4;
8 e +- 6}

ELSE
9 {y +- 8;

10 a +- 2;
11 IF cond2 THEN
12 {b +- 3;
13 d +- 4}

ELSE
14 d +- 4;
15 e +- 6};
16 f +- 7;

Intermediate Step

1 IF cond1 THEN
2 {x +- 1;
3 a +- 2;
4 IF cond2 THEN
5 {b +- 3;

GO TO L1}
ELSE

6,7 L1: d +- 4;
8 e +- 6}

ELSE
9 {y +- 8;

10 a +- 2;
11 IF cond2 THEN
12 {b +- 3;

GO TO L2}
ELSE

Effective Fragment After Cross-jumping

1 IF cond1 THEN
2 {x +- 1;

GO TO L3

ELSE
9 {y +- 8;

3,10 L3: a +- 2;
4,11 IF cond2 THEN
5,12 {b +- 3;

GO TO L2}
ELSE

13,14 L2: d +- 4; 6,7,13,14 L2: d +- 4;
15 e +- 6}; 8,15 e +- 6};
16 f +- 7; 16 f +- 7;

B) Annotated Flowgraphs

!
/ondl~

x~1 y~8 ! 2 j 9

a~2 a~2

13 110
pd2 pd4

IF cond2 THEN IF cond2 THEN

/
4/ 11

pd1 pd3
b~3 b~3

. ~ :~..
: •)~4 :. d~4 • : ... 1 ~! .. 7.2 ... : : ... !. ~3.3:~4.4.:

• e~6 • : t 8 5 • 15 6 :
f~7

1 16

Figure 5. A complicated case of repeated merging.
A) shows the effect of repeated application of the cross-jumping transformation on a source fragment. The first step merges
statement 6 with statement 7 and statement 13 with statement 14. while the second step merges statements 3 through 8 with
statements 10 through 15. This mUltiple merging can be performed during a single sequential pass through the object code. A
fine point: when L2 is seen during the final merge. a copy of determiner 6 is inserted before GO TO L2 (similarly. Ll causes a
copy of determiner 5 before GO TO Ll). When GO TO L2 (GO TO Ll) is discovered to be part of the merging sequence
determined by 6 (5). those determiners are removed because they do not represent entrances to the merging sequences.
B) illustrates the same transformations on flowgraphs. Merged regions are enclosed in dotted lines. A statement's sourcelink
cell is shown at its lower right (subscripts are pathDetlds). Path determiners marking a statement are shown at its upper left
(subscripts denote trueDet, fal seDet). Consider the statement'd+-4. It executes on behalf of statement 7 if determiner 2
has a later timestamp than determiners 1. 3. and 4. However. determiners 2 and 4 always have the same timestamp value. as
do 1 and 3. This ambiguity is resolved by examining the trueDet and falseDet determiners: if determiner 5 has a later
timestamp than determiner 6. path determiner 2 is considered true: otherwise determiner 4 is true. Therefore. statement d+-4
executes on behalf of statement 7 if the sequence of execution is x+-l; a+-2; IF cond2 THEN; d+-4.

XEROX PARC. CSL 83-1. JANUARY 1983

AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 15

8.6 Full path determination

If cross-jumped regions were never considered for further application of the cross-jumping

algorithm, the path determination procedure described in the previous section would be adequate.

However, not only can a single pass through the generated object code create multiply merged

regions, but the compiler applies the cross-jumping algorithm and other object code optimizations to

the code stream repeatedly, until no changes occur. These iterated optimizations cause additional

compile-time complications.

The problems arise if a candidate sequence for a new merge (either the toDelete sequence or

the toRemain sequence) contains either a portion of a previously merged region or an entrance to a

previously merged region. Figure 5 shows an instance of repetitive merging.

If a candidate sequence contains a portion of a previously merged region, the candidate

sequence contains at least one sourcelink cell with more than one element in its sourcelist. Each

element of such a sourcelist mentions a path determiner identifier for a previously merged sequence

in its pathDetld field. The algorithm does not mark these sourcelink cells with the new path

determiner identifier for the candidate sequence. Instead, the debugger will rely upon the path

determiners specified in the unmodified candidate sequence's sourcelist to distinguish among all of

the candidate sequence's source possibilities. As before, the compiler merges the candidate

sequence sourcelist with the sourcelist (which mayor may not have multiple elements) from an

appropriate sourcelink cell in the other sequence participating in the new merge.

Now consider the case in which a candidate sequence contains an entrance to a previously

merged region, i.e .. the candidate sequence contains a path determiner cell. It is tempting to

suppose that the compiler could delete the path determiner cell from its current location and insert

a copy of it at each entrance to the candidate sequence. Unfortunately, there are programs for

which this strategy fails to provide full path determination. These programs are characterized by

multiple control-flow paths that are wholly contained in a merged region. Such a program is shown

in Figure 5. Suppose that the second cross-jumping step in that figure were to move determiners 1

and 2 up to the location of determiner 5 (and similarly move determiners 3 and 4 up to the location

of determiner 6). It would then be impossible to distinguish between the execution of statements 6

and 7. or between statements 13 and 14.

The concept of merging path determiners from two identical sequences is similar to merging

sourcelink cells from two identical sequences: a marker logically belongs to one of the two

sequences. and this fact must continue to be represented in the new merged region to be created.

(The two situations differ in that a path determiner actively gathers runtime information. while a

source marker becomes a passive table entry.) As described above, the solution for the sourcelink

cell is to mark it with the appropriate path determiner identifier. This solution works for path

determiners also. but with a different marking method: the algorithm marks the path determiner

cell with the path determiner identifier of the candidate sequence by setting the trueDet field of

the path determiner cell to that path determiner identifier. Since the debugger must be able to tell

whether execution came to the path determiner along the candidate sequence or along the other

XEROX PARe. CSL 83-1. JANUARY 1983

16 AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS

sequence participating in the new merge, a path determiner cell also has a fa 1 seD e t field in

which the path determiner identifier of the other sequence is recorded. Finally. if the candidate

sequence is the toDelete sequence of this merge, the algorithm moves the path determiner cell to

the current point in the toRemain sequence.

To see that this algorithm works, suppose that an object location x has a possible path

determiner p2 whose trueDet field is pI. At runtime, the execution of x corresponds to an

entrance p2 to an inner merged region if and only if the most recent entry' to the outer merged

region came through an entrance whose path determiner is pI.
Dealing with the added complexity of repeated cross-jumping requires some runtime

modifications. The following path determiners are activated as a result of a breakpoint request:

first, all path determiners that mark a source alternative, and second, (recursively) any path

determiner that is a trueDet or a falseDet of a previously noted determiner. Timestamp

checking 'at a primary breakpoint also reflects determiner nesting: a timestamp value in a

determination cell is valid only if the timestamp value of its t rueDet determiner is not earlier than

the timestamp value of its fa 1 seDet determiner.

Timestamps also figure in another complication. Suppose that the user requests a breakpoint in

a merged region after control has already entered that region. This situation might occur when

single-stepping. for example. Since path determiners can cover the final merged region in a fairly

baroque way, a breakpoint can activate determiners for part of a region without activating

determiners for some other part of the region. Therefore, the debugger must record the time that

each determining breakpoint is set. At each primary breakpoint. the debugger checks the

timestamps and the set times to ensure that all necessary determining breakpoints were set early

enough. If the set time for a determining breakpoint x is later than the latest timestamp for the

remaining determining breakpoints. the debugger includes the source statement corresponding to x

in the list of source possibilities.

Each iteration of the cross-jumping algorithm is a transformation from one correct

representation of the program to another~ the described modifications correctly reflect the effects of

that transformation on the mappings between source statements and object locations. Because the

transformation is applied repeatedly. the number of path determiner cells inserted in the program is

not minimal. If the cross-jumping algorithm could merge multiple paths at once. or if the order of

merges could be optimally arranged, fewer path determiner cells might result. It is possible that a

post-optimization pass over the code stream and the path determiner table could coalesce multiple

path determiners and achieve the minimal number. This minimization step could also create

equivalence classes of path determiners for each final merged region. eliminating the need to record

the time that each determining breakpoint is set.

Analysis of the current cross-jumping algorithm shows that the number of inserted path

determiners is linear in the number of merging paths. Proofs that correct path determination can

always be performed using these algorithms are presented in [16].

XEROX PARe. CSL 83-1. JANUARY 1983

AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 17

8.7 Interactions with other optimizations

Because inline procedure expansion occurs earlier in the compilation process than the object

code optimizations, an expanded in line procedure can be cross-jumped with statements outside that

inline procedure (but inside the calling procedure). Even in these cases, Navigator's mechanisms for

handling code merging allow setting and fielding breakpoints and reporting the current program

location. However, the possibility that a program region can be copied and then merged constrains

the solution for providing a procedure traceback; each sourcelink cell must have a separate inline

table pointer, since that statement may be moved away from the other statements resulting from the

same expansion.

A more serious problem is that other control-flow optimizations can occur after cross-jumping.

Path determiner cells are intended to be ignored by compiler routines (including other

optimizations) that operate on the object code stream. The difficulty arises when one of these later

optimizations alters the code stream so that path determiner cells no longer mark each of the ways

to enter the merged region. One solution to this problem would be to check for the presence of

path determiner cells and inhibit the detection of further optimizing patterns. However, this is not

sufficient for optimizations such as branch-chain removal, in which lexically surrounding instructions

are not examined. A better (although ad hoc) solution involves ascertaining how each optimization

affects the placement of path determiner cells and individually inhibiting unanalyzed or troublesome

optimizations.

8.8 Debugger diffiCUlties

Runtime complications are not limited to the problems caused by iterated optimization. For

example, two paths that contain a directly or indirectly recursive call can be cross-jumped. Hence

determination cells must refer to a particular invocation of a procedure. This also takes care of

multiple processes executing a cross-jumped procedure.

The allocation of determination cells presents another problem. If the compiler were to

allocate any necessary determination cells in the procedure's local frame, the association between

determination cells and a particular procedure invocation would be implicit However, this strategy

would be quite expensive. as runtime space would be consumed even for procedures in which no

breakpoints had been set Therefore, when a breakpoint is placed in a merged region. the debugger

allocates determination cells in a memory region of its own. The timestamp value in each

determination cell is associated with a single procedure invocation by having a pointer to the

activation frame for that procedure invocation.

XEROX PARe. CSL 83-1. JANUARY 1983

18 AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS

9. Features and drawbacks of path determination

The path determination method usually provides transparent debugging capabilities for control

flow optimized programs. In addition, it has the practical properties that we desire. Runtime path

determination costs execution time or space (excluding space for the tables, which need not reside

in main memory) only if a breakpoint has been placed in a merged region. The cost is proportional

to the number and merging complexity of merged regions that .have breakpoi.nts set inside them.

It is clear that there are cross-jumped regions for which exact path determination is not

possible. If an entire path generates the same object code as some other joining path, both path

determiner cells will be placed at the same place. Figure 6 illustrates this situation. These

programs are probably not very interesting in practice, but if they occur, the path determination

algorithm can correctly identify the source alternatives. Since path determiners are identified during

the optimization process, the lack of distinct places to put them could be used to inhibit complete

merging of two paths by cross-jumping.

The method has another drawback. Since path determiners generate no code, they must be

activated in order to provide exact path determination. Thus, if a runtime error or interrupt is

encountered inside a merged region. Navigator can only list the source alternatives. Similarly, if a

merged region contains a procedure call, procedure tracebacks that include that area can only list

the source alternatives. In some cases, the user can inspect the values of variables to determine the

exact path. If this is not sufficient, the user need only restart the execution with a breakpoint at the

offending location, rather than recompile the program with cross-jumping disabled. It might be

useful in such instances to decouple path determiner activation from breakpoint insertion. A

proposed new Navigator command would explicitly activate all path determiners within a suspect

procedure.

Source Program Fragment

1 b +- 5;
2 IF cond THEN
3 a +- 1

ELSE
4 a +- 1 ;

Effective Fragment
After Cross-jumping

1 b +- 5;

2,3,4 a +- 1;

Figure 6. Program fragment with undeterminable paths.

XEROX PARe. CSL 83-1. JANUARY 1983

AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 19

10. A different runtime path determination algorithm

A debugger can use the path determiners identified in Section 8 in a different way to

distinguish among source alternatives in a merged region at runtime. The compiler could generate

code at each determiner to load some cell with an indication that control flow came that way. This

method would always provide transparent debugging, but it would increase object code size by at

least n stores for every n-way merge, and it would also increase data space. Unfortunately, this

would probably consume more space than the cross-jumping algorithm saved. Moreover, the

optimized program would run more slowly than the unoptimized version. These space and speed

penalties could be largely avoided if hardware for execution tracing were available. The

information gathered by the execution tracing hardware could be searched for the most recent

appearance of a path determiner location. However, any execution history recording mechanism

that uses a fixed-size storage area could fail to distinguish among multiple paths in a merged region.

As an example, consider the program in Figure 7, and suppose that the statements inside P roc
generate a large amount of history information.

Source Program Fragment

1 IF cond THEN
2 {Proc[a];
3 Write["hi"]}

ELSE
4 {Proc[b];

5 Write["hi"]}

Effective Fragment
After Cross-jumping

1 IF cond THEN
2 {<load a>;

GO TO L
ELSE

4 {<load b>;
2,4 L: <call Proc>;
3,5 Write["hitt]}

Figure 7. Difficult case for hardware-supported execution-history mechanism.

XEROX PARe. CSL 83-1. JANUARY 1983

20 AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS

-- Polle2, July 29, 1982 6:21 pm

PT2Test14: PROGRAM =

BEGIN

-~ type definitions

- ~ global variables
i: INTEGER +- 100;
a: INTEGER +- 200;
b: INTEGER +- 300;
c: INTEGER +- 400;

even: PROCEDURE [k: INTEGER] RETURNS [BOOLEAN] = INLINE
BEGIN
a +- k; -- to see whether we get a source lac for t,his
RETURN [k MOD 2 = 0];
END;

Tail: PROCEDURE [il, i2: INTEGER] = INLINE
BEGIN

Ib +- il;
~+-i2.;
END;

TestInlineProcedure: PROCEDURE [j1, j2: INTEGER] = INLINE
BEGIN
temp: INTEGER;
FOR j: CARDINAL IN [1 .. 3] DO ~- to give a context to jump out of

IF j = 3 THEN GO TO Ll;
temp +- j2 * 2.;
Tail[a*2, c-5];
REPEAT

Ll => j2 +- 3;
ENDLOOP;

END;

Procl: PROC =
BEGIN
TestInlineProcedure[a,b];

FOR i IN [1..5] DO
IF even[i] THEN

BEGIN
a+- 11;
Tail[4,5];
END

ELSE
BEGIN
a+- 2;
b +- 4;
c +- 5;
END;

ENDLOOP;

Figure 8. Navigator Operation.

XEROX PARe. CSL 83-1. JANUARY 1983

Cedar Executive 29-Apr~82. 13:54:19, Type? for Commands,

& 1 CreateExee
&2. old tests,em
Created Viewer: tests,em
&3 run NavBBV
Loaded and started: navbbv,bcd
&4 run PT2Test14
Loaded and started: ptztest14,bed
&S old PT2Test14
Created Viewer: ptztest14,mesa
&6 II 3 or 4 seconds after clicking Set Break
&1 +- PTZTest14,Proc1[]

**** Action #3 (kind: break, process: 22.5B)
Break #1 in PT2Test14,Proc1(lf: 2662.0B, pc: 14B)

&8 II Top Frame clicked
Tail at source: 402 (expanded inline)

TestInlineProcedure at source: 648 (expanded inline)
PT2Test14,Proc1(lf: 26620B, pc: 14B) at source: 152

Args -->
Vars --) [i1: 400, i2: 395]
&9 +- j
1
& 10 II BugBane Source clicked
& 11 II Navigator Source clicked

Show <:'tack Walk Stack Control OJ Breaks Display Optimization

Top Frame Restart Source Set Help Next Source

Whole stack Next Frame Proceed Clear Breaks Next Inline

+ Args + Args Abort Clear * ACTions

+ Vars + Vars Next Action Signal
nested mImes - cl1ck Next Inl1ne

I
I

AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 21

11. Current state of the implementation

Navigator has a running prototype. The compiler modifications for Navigator comprise

approximately 1500 lines of Cedar source code. or about 3% of the size of the original Cedar

compiler. Navigator's runtime routines add about 1000 lines of source code to the debugger.

Preliminary evaluation of the untuned completed system shows that extra compilation and execution

costs of using Navigator are small: the compiler is roughly 15% slower, and debugger responses are

not noticeably altered.

Figure 8 shows an optimized Cedar program being debugged using Navigator. The display is

used in conjunction with a mouse (a pointing device) [10]. The area (window) of the screen labelled

Navigator Commands contains a command menu for the Navigator debugger. Commands are

organized into related command columns; this paragraph refers to a command by COnutlllnd

co/umn/conutlllnd Mme. A limited amount of user feedback appears in the Navigator Commands

window. User programs are invoked from the User Executive window; debugger commands like

Display/Breaks or Show StacklTop Frame print their results there. The source text of the program

being debugged is also on the screen in the ptztestl4.mesa window. The user sets a breakpoint by

selecting one or more source characters and clicking a mouse button over the Breaks/Set command

area; the current program location is displayed by a highlighted area in the source text when the

Control/Source area is clicked. The commands in the Optimization column (an additional

nontransparency of the Navigator debugger) are necessary because the window system can only

highlight one contiguous screen region at a time.

12. Relationship to other work

The cross-jumping algorithm was inspired by a method sketched by Teeple and Anderson in an

unpublished manuscript [12]. In their approach. determining breakpoints are placed at those n-i

entrances to an n-way merged region from which code was deleted: their determining breakpoints

are also invisible to the user. When control reaches a determining breakpoint. the debugger single

steps the program until the primary breakpoint is reached. at which time it is known that control

flow came through that piece of deleted code. If the primary breakpoint is reached when not

single-stepping, control flow must have passed through the path without the determining breakpoint.

Since Teeple and Anderson's technique was never fully designed or implemented [11]. its

description is incomplete. Among other things. they failed to realize that merging less than an

entire statement still requires path determination, and they did not discover that repeated cross

jumping can cause nested determiners.

The use of single-stepping as a path determination mechanism is not very satisfactory. It can

be difficult to determine when normal execution can be resumed in cases in which control can pass

either from the determining breakpoint into the merged region (and hence to the primary

XEROX PARe. CSL 83-1. JANUARY 1983

22 AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS

breakpoint), or from the determining breakpoint to some other portion of the program. Single

stepping can also be very slow, particularly in cases where a cross-jumped region consists of a

procedure call followed by a statement on which a breakpoint is to be placed. Finally, single

stepping from the determining breakpoint is only applicable to control-flow optimizations, whereas

doing something at an invisible breakpoint and then continuing can be used to deal with other

classes of optimization.

Hennessy [6] addresses the problem of transparently displaying values of variables in the

presence of selected local and global code reordering optimizations. The local optimizations include

common subexpression elimination, redundant store elimination, and code reordering. The global

optimizations include code motion, induction variable elimination, and dead store elimination. With

the assumption that the global flowgraph used during the optimization process is available to the

debugger at runtime, Hennessy has developed algorithms that can usually detect when a variable

has an incorrect value (in terms of the source program) and can sometimes correct this value. The

algorithms were implemented and tested on a small group of programs to demonstrate their

correctness and feasibility, but they have not yet been incorporated into any program development

system.

The Firmware Development System (FDS) project at IBM Yorktown [14] planned to construct

a programming environment with extensive optimization capabilities as well as an interactive high

level debugger that was aware of the optimizations. Unfortunately, the project lasted only long

enough to produce a design document, so no information is available regarding its performance or

utility [13]. The FDS system was intended to furnish two modes of compiler/debugger operation.

In "full optimization" mode, the proposed debugging system would have tersely explained the ways

in which optimizations had affected the program. For a sophisticated user, FDS operation in this

mode could almost have been called correct. In "source-unchanged" mode, optimizations could

involve only compiler-introduced temporaries, or could occur only within a statement.

Optimizations would have thus been restricted in such a way that the mappings between the source

text and the object code remained straightforward. Of course. recompilation would have been

necessary to invoke "source-unchanged" mode if an error were encountered during a "full

optimization" execution.

13. Conclusions and future work

To my knowledge, Navigator is the only working system for debugging optimized programs in

a production environment In most cases, Navigator can provide transparent debugging for control

flow optimized programs, in which the ordering of computations along any execution path is

preserved. When transparent performance cannot be achieved. Navigator provides correct

debugging. Navigator sacrifices transparent performance for runtime errors. interrupts. and

XEROX PARe. CSL 83-1. JANUARY 1983

AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 23

procedure calls inside merged regions in order to preserve the efficiency needed for routine use.

The invisible breakpoint technique can be used to augment Hennessy's algorithms for

discovering the correct value of a variable. For example, an invisible breakpoint can store a final

value for an eliminated store that reaches a breakpoint location, or it can save an old value of a

variable when a breakpoint comes between a store moved earlier in the program and its original

location. This use of invisible breakpoints to repair places where optimization removes information

is currently under investigation.

Much work remains to. be done in the area of debugging optimized programs. Code reordering

optimizations create additional statement mapping problems, making it more . difficult to avoid

anomalous debugger behavior. In particular, expressing the new (optimized) relationship between a

given computation and other computations is an open research area.

Acknowledgments

Sue Graham, John Hennessy, and Dan Swinehart participated in many long discussions about

debugging optimized code. Ed Satterthwaite and Dick Sweet answered numerous questions

regarding the internals of the Cedar compiler. Russ Atkinson was a valuable resource concerning

the Cedar debugger. The counterexample to performing full path determination via the simple path

determination algorithm, shown in Figure 5, resulted from an insight by Ron Goldman. Doug

Brotz, Peter Kessler, Jock Mackinlay, Larry Stewart, and Dan Swinehart provided helpful comments

on drafts of this paper.

References

1. Allen, F. E., and Cocke. 1. A catalogue of optimizing transformations. In Design and

Optimization o/Compilers. Rustin. R. (Ed.), Prentice-Hall. Englewood Cliffs, NJ, 1972. 1-30.

2. Aho. A. V .. and Ullman. 1. D. Principles of Compiler Design, Addison-Wesley. Reading. M.

1977.

3. Evans. T. G .. and Darley, D. L. On-line debugging techniques: A survey. AFIPS FlCC

Proceedings Vol. 29. 1966. 37-50.

4. Geschke. C. M. Global program optimizations. Ph.D. Dissertation. Computer Science

Department. Carnegie-Mellon University, 1972.

XEROX PARe. CSL 83-l. JANUAR Y 1983

24 AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS

5. Harrison, W. H. Position paper on optimizing compilers. Proceedings of the Eighth Annual
ACM Symposium on the Principles of Programming Languages, January 1981, 88-89.

6. Hennessy, J~ L. Symbolic debugging of optimized code. ACM Transactions on Programming
Languages and Systems 5, 3 (July 1982), 323-344.

7.· Johnson, M. S. A software debugging glossary. SIGPLAN Notices (ACM) 17, 2 (February

1982), 53-70.

8. Loveman, D .. B. Program improvement by source-to-source transformation. Journal of the
ACM 24, 1 (January 1977), 121-145.

9. Mitchell, J. G., Maybury, W., and Sweet, R. Mesa language manual. version 5.0. Report

CSL-79-3, Xerox PARC, Palo Alto, CA, April 1979.

10. Myers, B. A. Displaying data structures for interactive debugging. Report CSL-80-7, Xerox

PARC, Palo Alto, CA, June 1980.

11 .. Teeple, D. W. L. Personal communication. November 26, 1981.

12. Teeple, D. W. L.. and Anderson, 1. C. The debugging of optimized code. Unpublished

manuscript, MacDonald, Dettwiler & Associates Ltd., Richmond, B.C., Canada, March 1980.

13. Warren, H. S., Jr. Personal communication. March 3, 1982.

14. Warren, H. S .. Jr .• and Schlaeppi, H. P. Design of the FDS interactive debugging system.

Report RC7214, IBM T. J. Watson Research Center. Yorktown. NY, June 1978.

15. Wulf. W .. Johnsson. R. K .. Weinstock. C. B .. Hobbs. S. 0 .. and Geschke. C. M. The Design
of an Optimizing Compiler. Elsevier North-Holland, New York, 1975.

16. Zellweger, P. T. Interactions between high-level debugging and optimized code. Ph.D.

Dissertation. Computer Science Division-EECS. University of California. Berkeley. to appear

in 1983.

XEROX PARCo CSL 83-1. JANUARY 1983

AN INTERACTIVE HIGH-LEVEL DEBUGGER FOR CONTROL-FLOW OPTIMIZED PROGRAMS 25

Erratum

There is a small flaw in the compiletime cross-jumping and path determination algorithms

described in Section 8. Under rare circumstances, the resulting set of path determiners will be

unable to distinguish between two regions with different preceding control-flow that have been

cross-jumped. The flaw compromises only transparent behavior, not correct behavior; programs

that demonstrate the flaw are oddly structured and are unlikely to occur in practice.

In order to provide complete and correct path determination, the cross-jumping algorithm must

mesh properly with the path determination algorithm. In this case, small changes to one or both

algorithms can eliminate the problem. The final object code for programs need not be changed.

The problematical feature in the cross-jumping algorithm is that either merging code sequence

is allowed to contain embedded labels, provided that all jumps to labels in the toDelete sequence

are redirected to corresponding locations in the toRemain sequence. Allowing embedded labels is

desirable because it permits longer code sequences to be merged in a single application of cross

jumping, thereby reducing the number of path determiners.

The unnecessary ambiguities can arise in two different ways: either from a single application of

cross-jumping or from repeated applications. In the first kind, cross-jumping merges two code

sequences whose object code is identical, but whose label structure (and thus whose control flow) is

not. The two sequences have a common entrance that precedes two non-identical instructions,

causing the common entrance to be marked with determiners for both sequences. Therefore, the

two original sequences are undistinguishable whenever the merged region is entered through that

entrance. If more determiners were inserted, the differing control flow could be used to avoid the

ambiguity. In the second kind, a merging sequence contains two or more subsequences that could

be merged via cross-jumping, but that have not yet been. In the current path determination

algorithm, a sourcelist entry is always distinguished by the determiner for the first sequence it was a

part of. Subsequent repeated cross-jumping within the sequence creates two or more source

alternatives that are marked with the same determiner, and that therefore cannot be told apart.

A safe solution is to disallow embedded labels in sequences that are candidates for cross

jumping. For complicated cases, this alternative requires more cross-jumping iterations, resulting in

more path determiners. The additional path determiners use more table space, and cause more

determining breakpoints for a given primary breakpoint. The determiner minimization phase

proposed in Section 8.6 would remove excess determiners. but compilation time would increase.

Two other solutions are currently being investigated. The first would allow embedded labels,

but avoid the special cases in which they create ambiguity. The second would alter the path

determination algorithm: for example, a sourcelist entry could contain a list of determiners rather

than containing a single determiner and possibly some enclosing nested determiners.

Further details can be found in [16].

XEROX PARe. CSL 83-1. JANUARY 1983

