
An Effective Test Strategy 

Howard Sturgis 



An Effective Test Strategy 

Howard Sturgis 

CSL·85·8 November 1985 [P85·00027] 

© Copyright 1985 Xerox Corporation. All rights reserved. 

Abstract: In this paper I describe a debugging strategy that I have successfully used for 

several years. The principal idea is to excise test subjects from large programs and test them in 

individually crafted test beds, where the test beds are constructed according to four principles: 

(1) provide an "encapsulation" of the test subject that presents deterministic behavior to the 

test driver. (2) write a program to simulate the behavior of the encapsulated test subject, (3) use 

a random-number generator to construct the test sequences and compare the resulting 

behavior of the encapsulated subject with that of the simulation, and (4) provide the ability to 

exactly repeat a test sequence so as to isolate a detected bug through "binary chop." 

While this strategy does not have the theoretical completeness provided by verification, I have 

found it to be easy to implement and considerably more effective than haphazard debugging. In 

all cases where I have used it, it has required much less time to construct the test beds than 

required for the original design and implementation of the program being tested. Further,.1 

generally find that the resulting program is about as bug-free as it would have been had formal 

verification been available and used. 

CR Categories and Subject Descriptors: 0.2.5 [Software Engineering]: Testing and 

Debugging. 

Additional Keywords and Phrases: testing, debugging aids, test data generator, 

programming research. 

XEROX Xerox Corporation 

Palo Alto Research Center 

3333 Coyote Hill Road 

Palo Alto, California 94304 





AI': EFFECTIVE TEST STRATEGY 1 

Introduction 

In this paper I describe a debugging strategy that I have successfully used for several years. The 

principal idea is to excise test subjects from large programs and test them in individually crafted test 

beds. where the test beds are constructed according to four principles: 

l. provide an "encapsulation" of the test subject that presents deterministic behavior to the 

test driver. 

2. write a program to simulate the behavior of the encapsulated test subject. 

3. use a random-number generator to construct the test sequences and compare the 

resulting behavior of the encapsulated subject with that of the simulation. and 

4. provide the ability to exactly repeat a test sequence so as to isolate a detected bug 

through "binary chop." 

While this strategy does not have the theoretical completeness provided by verification. I have 

found it to be easy' to implement and considerably more effective than haphazard debugging. In all 

cases where I have used it. it has required much less time to construct the test beds than required for 

the original design and implementation of the program being tested. Further, I generally find that the 

resulting program is about as bug-free as it would have been had formal verification been available and 

used. 

This strategy was developed in the Xerox Parc Computer Science Laboratory over a period of 

several years. It has been applied to a number of programs. including a prototype file server. C} B-tree 

package. microcode to implement a floating point package. and a microcode implementation of a 

reference count package supporting a garbage collecting allocator [Rovner84). 

During this same peri·od. the Computer Science Laboratory has developed a succession of 

symbolk debugging environments. such as that provided by the Cedar operating system [Swinehart85] 

n tJtclmanS4j. These debugging environments have made the analysis of program bugs particularly 

{':~SV IJrne.nilly reqllirifl~ small numbers of t11jn"h~" to <ie.te.rmine the circumstances of a particular bug. 

As a con seq uence. most of our programs are debugged in vivo. 

Debugging in vivo has two wel1 known limitations. First. many program errors are provoked 

infrequently, and may not show up during testing. or may show up only after seemingly minor changes 

to the program environment. Second. a program error may not be detected until long after the actual 

failure occurred. so that sufficient evidence may not remain to diagnose the fault; further. due to an 

asynchronous environment. it may not be possible to reliably repeat the error for analysis. 

A method frequently proposed for reducing these limitations is to break a large program up into 

components. and test each component in an individually tailored test bed, i.e .. in vitro. These test beds 

can be designed to provoke otherwise infrequent bugs. and to compare the behavior of the program 

with independently defined expected behavior. 

The strategy described in this paper is one method for constructing these test beds. It was 

developed by trial and error. as I attempted to apply the above advice. Rather than describe the 

XEROX PARCo CSL-S5-S. NOVEMBER 1985 



2 AN EFFECTIVE TEST STRATEGY 

individual problems. I describe the strategy as a whole. together with a rationale for its components. 

The first part of the paper is devoted to that description. The second part of the paper describes the 

application of this strategy to a particular example: 700 lines of microcode implementing a set of 

reference counting op-codes. This example is illustrative of my experiences with this strategy. both in 

tenns of ease of application and results. 

The Strategy 

Debugging 

The strategy should be considered in light of the typical debugging cycle. Finding and fixing a 

single bug has three conceptual steps: 

1. provoking the bug. 

2. detecting the resulting erroneous behavior. and 

3. isolating the detected bug. 

The four test bed design principles described above support these three steps in various ways. The 

encapsulation and randomly generated test sequences bear the responsibility for provoking bugs. A 

correct simulation supports detection of the bug through an eventual difference in the behavior of the 

simulation and the encapsulated subject. An ability to exactly repeat a failed test sequence supports the 

isolation of the detected bug through binary chop. 

Test Subjects 

Before getting into the details of the test beds. we consider some possible test subjects that may be 

encountered. These vary from simple to complex. 

The simplest fonn of test subject is a pure function. e.g .• a floating point function. This is a single 

procedure. taking one or more floating point arguments. and returning a single result; its behavior on 

each call is completely independent from previous calls. depending only on the arguments to the 

particular call. and calls on the square root routine affect no other system activity. 

A slightly more complicated form of test subject is a package of one or more procedures that 

together manage some piece of internal state; an example is the ever-popular "stack." The internal 

state of a stack is a sequence of values. and the procedures include Push and Pop. The behavior of a 

single procedure call on one of these test subjects is dependent only on the internal state value and the 

actual parameters to the procedure call. That is. the returned values and the final internal state value 

are functionally determined by the initial internal state value and the actual parameters to the 

procedure call. In other words. a call on a package procedure performs an atomic update to the 

XEROX PARCo CSL-85-8. NOVEMBER 1985 



AN EFFECTIVE TEST STRATEGY 3 

internal state. Such packages are frequently called abstract datatypes [Shaw84]. 

One could treat these abstract datatype test subjects as examples of the previous case, where the 

current value of the stack is passed as one of the arguments, and the new value is one of the results. 

However, because the internal state may get very complicated and require large amounts of storage for 

representation, programming systems frequently provide special mechanisms for representing the 

internal value. An extreme case is a file system implemented on a disk~ the internal state representation 

includes the physical contents of the disk. 

The above two classes of test subject can be characterized as interacting with their external 

environments purely through the initial procedure call and the subsequent return, so long as their 

internal state is not considered as part of their environment. Thus their behavior is totally determined 

by their initial internal state and actual parameters~ any activity concurrent with their execution cannot 

affect their behavior. However, there are examples of test subjects that do not satisfy these conditions. 

A simple example of such a subject is a package implementing some form of remote procedure call 

(RPC) [BirreIl84], to be tested in isolation from the underlying primitive communication machinery. In 

normal usage, a single call on the RPC package is a succession of events: (1) the initial procedure call 

from the client code to the RPC package (divorced from the subsequent return of this procedure call), 

(2) an exchange of messages between the RPC package and a remote computer, and (3) the return of 

the initial procedure call to the client. Figure 1 shows the RPC package in normal use. The returned 

values depend on the specific interchange of messages and, hence, on the initial state of the remote 

computer, as well as chance events in the underlying communication mechanism. One could treat the 

triad (RPC package, communication mechanism, and remote computer) as a single entity. In this case, 

one might obtain behavior much like that described above for abstract datatypes. However, if one 

wants to test the RPC implementation independently, there is more to consider. 

Client 

Figure 1. A test subject in normal use. 

One way to think about such a package is to draw an imaginary line around it, and ask what 

interactions cross that line and affect either the package's subsequent behavior or the subsequent 

XEROX PARC, CSL-85-8, NOVEMBER 1985 



4 AN EFFECTIVE TEST STRATEGY 

behavior of the environment If we perform this exercise on the stack example, we see just the initial 

procedure call and the subsequent return. When we do this for the RPC package, we see the initial 

procedure call and the subsequent return; but we also see calls on the underlying communication 

mechanism, their subsequent return, as well as possible error indications. Other test subjects may 

interact with their environment by reading and writing global data structures accessible by other 

concurrent programs. The microcode to be described below contains this last sort of interaction. 

Once we have drawn a line around the package and determined the significant interactions with 

the environment, then we can describe the package as having an internal state. In each internal state. 

the package is permitted to have only certain interactions with the environment Each of these 

interactions is "atomic," resulting in some infonnation transfer into and out of the subject. followed by • 
a new internal state. 

For example, the RPC package may have an idle state in which the allowed interactions are 

incoming procedure calls requesting a remote interaction. -The procedure call results in a new state in 

which t~e only allowed interaction is the sending of a message to the remote machine. (The 

representation of this internal state includes the "frame" of the called RPC implementation procedure.) 

Sending this message results in an internal state in which only two interactions are possible, the receipt 

of a message from the remote machine or a timer interrupt After receipt of a message from the remote 

machine. the next state will contain information from the received message. and will only allow a single 

interaction, the final return to the original caller. Following this final return. the package is in its 

original idle state. A timer interrupt is likewise followed by a single interaction. the final return to the 

original caller, indicating an error. (Of course, real RPC packages allow for far more interactions.) 

Thus. we have three distinct varieties of test subject: pure functions. abstract datatypes. and 

complex packages. 

Encapsulation 

Encapsulation isolates a test subject from extraneous influences. provides a clean procedural 

interface to be called by the test driver. and provides for additional access by the test driver to its 

internal state. Isolating a complex package makes it behave as ifit were an abstract datatype. We now 

consider the three varieties of test subject 

We begin with pure functions. as represented by floating point procedures. It would seem that 

these are already _ in the appropriate form. so that the test driver need only generate a sequence of 

floating point numbers. call the floating point procedure with each one. and compare the actual result 

with the expected result Sometimes. however. the procedure may not return in a normal manner. For 

example. when presented with a negative argument. a square root routine may "trap." or invoke some 

other "exception" mechanism. The purpose of this trap is to relieve the client from having to check an 

error flag after each call. 

-In this situation. we -can design the encapsulation to "catch" the exception. and convert the 

XEROX PARC.CSL-85-8. NOVEMBER 1985 



AN EFFECfIVE TEST STRATEGY 5 

exception into an ordinary return to the caller. Such an encapsulation supplies a procedure to the test 

program. This procedure accepts a floating point number as an argument and returns a two element 

record: a Boolean flag to indicate whether a trap occurred and a floating point result. With this 

encapsulation of the square root routine, the test program can always expect an ordinary procedure 

return, and can test the resulting flag and value as appropriate to the arguments of the call. 

An encapsulation may hide details that are not being tested. For example, we may only be 

interested in learning if the floating point routine can "crash" the system. (This would be interesting if 

the floating point routine were implemented in microcode.) In this case, the entry procedure in the 

encapsulation need not retu~n any results at all, an error is indicated by the crash of the system. 

Encapsulation for abstract datatypes is almost the same as for pure functions; the only difference is 

that it is frequently useful to add procedures to inspect the internal state of the subject. An 

initialization procedure may also be needed. Inspection procedures need -not return specific 

information, but may simply perform a consistency check. During a binary search to isolate a bug, 

these inspection procedures can be invoked between successive tests to look for failures that have not as 

yet affected external behavior. One can also perform minor surgery on the test subject to initiate calls 

on the check procedures from time to time during complex operations, further isolating a bug. 

Complex test subjects require encapsulation in order to attain reproducible behavior. 

Encapsulation supplies a simulated external environment for the test subject. The goal is for the test 

subject together with its simulated environment to behave just like an abstract datatype. That is, each 

procedure call from the test driver causes a deterministic change in the combined internal states of the 

test subject and the encapsulation, followed by a procedure return to the test driver. However, 

arranging for abstract datatype behavior is not enough; the simulated environment must provide 

sufficiently varied behavior so as to provoke latent bugs in the subject. 

Considering the previously described RPC package will make this clear. Assume that the RPC 

package transmits messages by calling a procedure normally supplied by the operating system. As part 

of the simulated environment, the encapsulation provides a replacement "transmit" procedure. When 

this replacement procedure is called, the encapsulation can decide whether to return with a normal 

response, or generate an exception representing a time out. The encapsulation also supplies a 

procedure to be called by the test driver to initiate a single test. Parameters to this call control the 

response by the substitute procedure to transmission requests from the RPC package. Upon being 

called by the test driver, the encapsulation calls the RPC package with appropriate parameters. Figure 

2 shows the RPC package encapsulated for testing purposes. 

A test subject may involve multiple concurrent processes interacting through some data private to 

the subject. In this case, the encapsulation must control the relative order of execution of the 

individual processes whenever there is more then one ready to run at a time (the process scheduler is 

part of the simulated environment). Further. the encapsulation must be prepared to shift execution 

from one process to another following each atomic interaction between a process and the subject's 

private data. A similar situation arises when the test subject is a collection of programs running on 

XEROX PARCo CSL-85-8. NOVEMBER 1985 



6 AN EFFECTIVE TEST STRATEGY 

different machines, using some form of asynchronous communication. In this case, the encapsulation 

must somehow control the order in which messages arrive at the individual machines, and the 

occurrence of lost messages and repeated messages, so as to simulate asynchronous behavior of the 

machines in a reproducible way. This form of encapsulation converts each client call on the test subject 

into a single atomic act acting upon the combined internal state of the subject and the encapsulation. 

which is a succession of individual interactions between the subject and the encapsulation. The 

microcode package described below is an example of one of these complex subjects. 

Test Driver 

Figure 2. An encapsulated test subject. 

There is another form of encapsulation which I have not tried - to convert each interaction with 

the simulated environment into a single atomic action of the combined subject and encapsulation. In 

this form, whenever the test subject would initiate an interaction with its environment. its current state 

would be frozen, and the encapsulated subject would make a procedure return to the test driver. Such 

an encapsulation would require a sophisticated operating system environment (concurrent processes 

and monitors, for example). Further, if the test subject interacts with its environment by means of 

reads and writes of global data (in addition to procedure calls), then surgery on the test subject would 

be required to freeze it before each read and after each write. This would enable the encapsulation to 

gain control and make the required procedure return to the test driver. 

In brief, the purpose of encapsulation is (1) to provide a simple procedural interface. including 

inspection procedures providing access to the internal state of subjects. (2) to convert complex subjects 

into apparent abstract datatypes, and (3) to provide a sufficiently rich environment for the complex 

subjects so as to provoke latent bugs. 

Simulation 

The primary purpose of simulation is to exactly mimic the desired behavior of the encapsulated 

test subject. In addition. the simulation can provide useful information for the test generator. 

XEROX PARC, CSL-85-8. NOVEMBER 1985 



AN EFFECTIVE TEST STRATEGY 7 

Two things are required to detect a bug in the test subject. One is to provoke it. which is the 

responsibility of the test generator and the encapSUlation. and the other is to detect it. which is the 

responsibility of the simulation which needs to provide detectably different behavior. Once this 

difference in behavior is detected. then it is the job of the human programmer to track down the 

ultimate cause: a fault in the test subject. encapsulation. or simulation. 

During testing. we expect to see a series of detected errors. each resulting in a correction to the test 

subject. the encapsulation. or the simulation. Ultimately. no differences in behavior will be detected. 

Of course. an initial attempt to write a simulation will probably contain errors. i.e .. it won't 

describe exactly what is desired from the test subject. This happens because the simulation is just 

another program. and programs contain bugs. However. the situation is not as bad as it seems. since 

most bugs in the simulation are unlikely to mask bugs in the test subject. All that is required is that 

whenever there is a bug in the encapsulated subject. the simulation should behave differently from the 

encapsulated subject. 

I f the simulation misbehaves in the same way as the test subject. this is usually due to an incorrect 

informal specification. correctly implemented in both the test.subject and the simulation. On the other 

hand. I have only rarely experienced situations where a correct specification was incorrectly 

implemented. in both the simulation and the test subject. leading to the same incorrect behavior. 

Usually a simulation is much simpler to write than the actual test subject. as there is little need to 

use sophisticated algorithms to attain efficiency. Further. a complex test subject may be needed to 

handle asynchronous environments. but we need only simulate the deterministic behavior of the 

encapsulated test subject (of course. some of the detection responsibility has now moved to the design 

and implementation of the encapsulation). Being simpler t() ,write. and using different algorithms. leads 

to different errors of implementation. 

In addition to providing a standard of comparison for the test subject. the simulation can provide 

useful information for test generation. For example. if the test subject is a symbol table. then the 

simulation can provide procedures to select a suitable symbol for a subsequent test. This might be a 

symbol known to be in the table. or one known to have once been in the table and subsequently 
deleted. 

Test Generation 

The task of test generation is to provoke any errors in the test subject; for complex test subjects, 

this responsibility is shared with the encapsulation. There have been many proposals in the literature 

for generating comprehensive test sequences. or testing the completeness of a specific test sequence; 

e.g., see [Budd78] and [Goodenough7S]. These tend to be difficult to implement. require a fairly 

rigorous understanding of the test subject. and frequently require an implementation specific to the 

programming language. Instead. I have had good success from generating test sequences using a 

pseudorandom-number generator applied with "seat of the pants" reasoning. Of course, these tests are 

XEROX PARCo CSL-85-8. NOVEMBER 1985 



8 A:--; EFFECTI\'E TEST STRATEGY 

not necessarily complete. In the microcode example I discuss later. I observe that the number of faults 

remaining due to incomplete testing was roughly comparable to the number remaining due to incorrect 

specification: thus there would have been little practical benefit from an exhaustive test. It is very 

important. hov,'ever. to apply the pseudorandom-number sequences judiciously. 

For test subjects that contain no internal state. i.e .. functions. test construction is relatively easy. 

One simple method is to generate arguments from a uniform distribution over the argument space. A 

short examination of the function implementation usua))y leads to a considerable improvement over 

this simple sequence. 

As an example. consider the fo))owing generator for a test sequence for a floating point add 

routine. First. choose whether to generate the two arguments independently or not. Next. choose for 

each field in an argument (sign. exponent. fraction). a density of one bits: high. medium. or low. 

Then. generate the field. bit by bit using an appropriate probability for a one bit. Fina))y. if the two 

arguments are to be related. construct a random bit pattern to xor with one argument to produce the 

other. The point here is that this is not a rigorous design intended to test each possible path through 

the add routine. but rather these possibilities were selected from a knowledge of the sorts of errors one 

might encounter in a floating point package. Further. we needn't do an exhaustive analysis of the 

routine to find exactly the right test arguments. We can rely on the random-number sequence to 

eventually produce the right ones. given that we have directed the exploration into the right area. e.g .. 

lots of one bits in the exponent frequently produces large exponents. 

Test subjects that contain internal state (abstract datatypes) are more difficult. Here it is not only 

necessary to provide the arguments that provoke a bug. but also to drive the internal state to 

appropriate values. This may require designing the test to run in phases. driving the internal state to 

different regions during the different phases. For example. consider a B-Tree implementation 

[Bayer72]. It is we)) known that B-Tree implementations are prone to errors when increasing or 

decreasing the depth of the tree. This suggests a test design with two phases. In one phase. there are 

more additions than deletions. so that the tree gradually grows. In the other phase. there are more 

deletions than additions. so that the tree gradually shrinks. By supplying appropriate inspection 

routines. either in the encapsulation or in the simulation. the test generator can choose when to switch 

from one phase to the other. 

Complex test subjects add little difficulty to test generation. except noting that part of the 

responsibility for provoking bugs now resides in the encapsulation. For example. when testing a 

communications package. the encapsulation will present the behavior of a communications channel. 

As such. it must provide all of the possible behavior in such a channel: lost messages. garbled 

messages. and messages arriving out of order. A simple way to provide this behavior is to allow the 

encapsulation to call on the random-number generator when deciding how to respond to a particular 

request from the test subject. 

XEROX PARe. CSL-8S-8. NOVEMBER 1985 



AN EFFECTIVE TEST STRATEGY 9 

Test Control 

The overall meta-program for testing is to search for discrepancies in the behavior of the 

encapsulated subject and the simulation. isolate the discrepancy to its "root" cause. repair the fault. and 

then begin searching anew. Since it is at best difficult. and usually impossible, to discover the cause of 

a discrepancy from the observed behavior. it is essential to be able to repeat exactly the sequence of test 

stimuli that led to the discrepancy. This permits a "binary chop" approach to isolating the fault. 

Two factors in this test design permit exact repetition of a test sequence: designing the 

encapsulation so that the encapsulated subject behaves deterministically. including its succession of 

internal states. and using a pseudorandom-number generator. started from a known "seed," to generat~ 

test seq uences. 

In addition, since some subjects with complicated internal state may require a long period of time 

to randomly walk into "interesting" corners of their state space. facilities are needed to save 

intermediate states. and to replay from such saved states. 

Summary of important points 

1. The goal of testing is to provoke and detect all errors in the subject. The goal of 

debugging is to localize and repair the errors. 

2. The behavior of the simulation must differ from that of the subject whenever the subject 

is incorrect: the simulation need not be completely free of bugs. 

3. We "encapsulate" the subject program to provide a "cleaner" interface to be emulated by 

the simulation. and to provide repeatable behavior. 

4. Test sequences are generated from pseudorandom-numbers. Their distribution must be 

chosen with the knowledge of the subject's implementation. 

5. The tests must be exactly reproducible, so as to allow fault isolation by binary chop. 

A Case Study of Reference Counting Op-Codes in Cedar 

As an example of the application of this testing strategy. I describe my experiences in testing and 

debugging a set of microcoded op-codes for the Cedar programming language. a research prototype 

language in use in the Computer Science Laboratory at Xerox PARCo 

The Project 

The Cedar language is an extension of the Mesa programming language [Mitche1l79]. One of the 

extensions is an automatic garbage collected storage allocator [Rovner84]. based on a reference 

counting mechanism. This mechanism is implemented through a suite of special op-codes that 

XEROX PARe. CSL-85-8. NOVEMBER 1985 



10 A~ EFFECTIVE TEST STRATEGY 

implement the counts and inspect them during garbage collection. 

At the beginning of this project. version 4.0 of the Cedar language had already been implemented 

on two different processors. the Dorado [Xerox 1132] and the Dolphin [Xerox 1100]: and it was desired 

to provide an implementation for the Dandelion [Xerox 1108]. On each of these processors. the 
language is provided through a collection of pseudo-op-codes. implemented by an interpreter written 

in the microprocessor language of the specific machine. As there was already an existing 

implementation of the Mesa language on the Dandelion. we needed an implementation of the 

additional op-codes required for Cedar 4.0. including the 11 reference counting op-codes. 

When I began the project. there was no formal description of these op-codes: instead I was offered 

the existing implementations on the Dorado and the Dolphin. together with a prose description of the 

op-codes intended to guide the design of a new processor. Because of its clarity. I chose to use the 

prose description as the single basis of my implementation. 

Cedar Reference Counting Op-Codes 

The eleven Cedar reference counting op-codes. hereafter referred to as "ref-counting" op-codes. 

support the counting mechanism and are invoked when references are created and destroyed. as we]) as 

during a garbage collection. The reference counts are not maintained in storage directly associated with 

the a])ocated record. but rather in a chained hash table. whose keys are the addresses of the allocated 

records. Not all allocated records are in this table. as those with reference counts equal to one are not 

included. The assumption is that most allocated records have a reference count of one. so that this 

table records only the exceptions. 

These op-codes are an example of a complex test subject. First. the ref-counting op-codes are 

implemented in microcode as part of the op-code interpreter. and thus manipulate the representation 

of the Cedar internal machine state (e.g .. local and global frame pointers and the expression evaluation 

stack). Errors in the implementation of these op-codes have the capacity to destroy the Cedar machine 
abstraction. upon which the test code is itself running. These effects can be quite subtle. and may not 

show up for a long time after the op-code has completed execution. As an example. if an op-code 

leaves an extra value on the interpreter evaluation stack. this may cause a subsequent interpreted 
Monitor Entry op-code to behave erratically. without affecting the behavior of any intermediate op

code. 

Second. these ref-counting op-codes manipulate a data structure holding the global reference 

counts. as well as the representation of the Cedar internal machine state. This data structure is 
represented in the address space of the running Cedar program. and is also manipulated by system 
software using non ref-counting op-codes. 

Third. some ref-counting op-codes are not defined as atomic actions. but rather are defined as 
executing in successive stages. These stages manipulate all components of the represented machine 

state. including the expression evaluation stack and the reference counts. During normal operation. a 

multiple stage op-code may complete one or more stages and then interrupt execution. These 

XEROX PARe. CSL-85-8. NOVEMBER 1985 



AN EFFECTIVE TEST STRATEGY 11 

interruptions can be due to page faults or higher priority process interrupts. While interrupted, op

codes from other processes are allowed to execute, including ref-counting op-codes which may 

themselves modify the reference counts. Following the interruption, the op-code is restarted beginning 

with its first stage. This loop may occur several times before the op-code finally completes and 

execution moves to the next op-code in the program sequence. 

It is the responsibility of the implementor of the op-code to be sure that interruptions only occur 

between stages; a typical implementation error is to encounter a page fault after some global changes 

have been made, but before all of the changes defined for a particular stage. 

Fourth, not all of the components of the processor state that affect or are affected by the operation 

are accessible to the test code. For example, page faults and higher priority process interrupts. Thus, 

successive invocations of the same op-code may result in different behavior. 

Finally, these ref-counting op-codes constitute part of the Cedar machine abstraction on which the 

test code runs. The test code will itself invoke these op-codes. This is a difficulty, both because the op

codes initially might have bugs, and because their execution will disturb the reference counts on which 

the subject op-codes depend. 

Ref-Counting Op-Codes Encapsulation 

I was unable to completely encapsulate the ref-counting op-codes following the principles 

described above because they are embedded in an already existing implementation and manipulate 

components of underlying machine-state. Furthermore, when exceptional conditions occur, a ref

counting op-code may jump directly into existing code. Also, the ref-counting op-codes are being 

called as part of normal Cedar execution. This inability to completely encapsulate is a common 

occurence when debugging complicated code. In view of this incomplete encapsulation, I took a 

number of additional precautions. 

I constructed two sets of entry points for the implementation, assigning distinct op-code numbers 

to each. This way, the test package could explicitly call on individual ref-counting op-codes, while they 

were also being called as part of normal Cedar execution. I allocated a private instance of the reference 

counts. When entered at the test entry points, the microcode would use the private instance rather than 

the global instance. Once called, the subject microcode was allowed to run until it either interrupted or 

completed. If it interrupted, it was repeatedly restarted in the normal manner until it eventually 

completed (of course, other processes ran in between the restarts). 

The ref-counting op-codes may terminate by calling exception handlers in the non-microcode 

portion of the ref-counting package. For the test entry points, I replaced these with calls on exception 

handlers embedded in the encapsulation. 

My encapsulation provided procedures for inspecting and modifying the private copy of the 

reference counts. I included procedures for forcing the "swap out" of pages of the reference count data 

structure. I could therefore consistently force the ref-counting op-code implementations to interrupt 

execution due to page faults even though I could not consistently prevent them from interrupting 

XEROX PARe, CSL-85-8. NOVEMBER 1985 



12 AN EFFECTIVE TEST STRATEGY 

execution. I also installed consistency checking microcode that could detect some instances of an 

interruption in an unclean state. 

The resulting encapsulation produced code that was repeatable so long as it encountered no faults. 

Even then, it was repeatable unless the fault involved an interruption in an "unclean state" that was not 

a result of my forcing out a page of the reference count data structure. I hoped that such faults would 

eventually occur as a result of my forcing out a page, and would therefore be repeatable for isolation by 

"binary chop." 

The existing Cedar implementation had provisions for using software implementation rather than 

microcode implementation of the ref-counting op-codes. During initial debugging, I used this software 

implementation rather than my microcode implementation. 

Debugging was greatly facilitated by a symbolic microcode debugger that allowed planting 

breakpoints and inspection of the internal microcode registers. So, even though a bug could 

catastrophically destroy the microcode state, and many did, it was possible to replay the events leading 

up to the destruction. 

A History of Debugging the Cedar Ref-Counting Op-Codes 

It required about 700 Dand~lion micro instructions, written over a period of three months, to 

implement the ref-counting op-codes. Debugging proceeded in two periods. During the first 

period - 4 weeks - I debugged using only the test environment, while duri~g the second period - 2 

weeks - I used a combination of the test environment and live execution in the Cedar system. During 

the first period I detected and repaired 38 microcode bugs, along with a similar number of bugs in the 

test code. During the second period I detected and repaired five microcode bugs. 

Following the completion of the second debugging period, the microcode was used for six months 

in several personal workstations,-including mine. No bugs were noticed involving this microcode. At 

the end of the six month period, the microcode was replaced by an entirely new implementation of the 

Cedar garbage collector, using different algorithms and data structures. 

During the first four weeks, I combined debugging activities with programming the test 

environment. I would frequently write a simulation of an op-code, only to discover that I did not 

completely understand its intended behavior. These situations would generally involve rare events. 

For example, exactly how do we test for the end of the chain of free overflow cells? There were less 

than ten microcode errors discovered this way, and I did not count any of these among the 38 errors 

mentioned above. 

Individual bugs were generally quite easy to understand and repair-in most cases, a half hour per 

bug. One exceptional bug took an hour to track down: it was the only bug that manifested itself as 

random behavior during testing. (The implementation was incorrectly cleaning up after itself, leaving 

the microcode registers in an inconsistent state.) During this period, my records show that I fixed an 

average of two microcode bugs a day, wrote test code, and repaired about two microcode bugs a day in 

this test code. I actually worked in two modes. In one mode I wrote new test code, and in the other I 

XEROX PARCo CSL-85-8. NOVEMBER 1985 



AN EFFECfIVE TEST STRATEGY 13 

used that code to find and fix bugs. When in the bug-finding and fixing mode, I detected and repaired 

five to ten bugs per day. 

On the final run of this first period, the test ran 22 hours, performing 150,000 individual tests. with 

1000 tests between each re-initialization of the global state. In all test runs, no bug occurred after the 

first 4000 tests. Most bugs were detected within the first 200 tests of a run. One op-code was not under 

test because at the time I did not see how to test it without destroying the test environment. It turned 

out that I did not correctly understand how it was supposed to function. 

As I could not think of any obvious way to increase the power of the test, and since I had become 

very curious, I decided to run my microcode implementation in a live Cedar system. During the next 

tw.o weeks I tracked down and repaired five additional microcode bugs (a rate less than the previous 

two per day). These bugs were more difficult to fix because they were initially only observable in the 

live system, and were generally not repeatable. I was eventually able to reproduce each of them in the 

test environment, where they behaved in a repeatable fashion. Of these five bugs. two could have been 

discovered by the original test, but had not been provoked. and three could not have been discovered. 

because the same misconceptions were programmed into the simulation as were in the subject 
microcode. 

The two bugs that were not provoked occurred in a section of microcode that was not even entered 

during the initial testing. I f the microcode debugging environment had some mechanism for 

determining branches of microcode that had been executed. then these bugs would not have survived 

the initial testing. 

Discussion 

It is frequently argued that because testing can only show the presence of bugs. not their absence. 

that one should concentrate on providing full verification. rather than constructing fancy debugging 

environments. Consider how verification would have fared for this microcode. 

First we must assume that whoever writes the formal specification for the microcode has available 

no more information than I did. Hence. the specification would probably include the same 

misconceptions as were included in my simulation. (In fact. two of the three misconceptions were 

clearly included in the original prose document.) Thus. while the microcode contained five bugs after 

testing. it would have contained three after full verification. In this case. the result of testing (five bugs) 

is little worse than the probable result of verification (three bugs). 

The cost of constructing this test bed was relatively small. The total debugging time for these 700 

lines of microcode was 6 weeks. less than the 12 weeks spent writing them. Of this 6 weeks. at most two 

were spent implementing the test enviroriment. including the encapsulation. simulation and test 
generation. 

Unfortunately. the encapsulation did not provide complete isolation for the test subject. However. 

this affected only one bug detected running in vitro. all the rest behaved in a deterministic fashion. 

Thus. even though this was a fairly complex test subject. it was effectively isolated. 

XEROX PARe. CSl-85-8. NOVEMBER 1985 



14 AN EFFECfIVE TEST STRATEGY 

Conclusion 

This paper has described a strategy that can be implemented by an ordinary programmer. There 

are two major advantages that this strategy gains over normal debugging practices: (1) its power is 

roughly comparable to that of verification, while considerably easier to implement; and (2) once a bug 

has been detected, repeatability makes it easy to find and repair. 

The case study of reference counting op-codes in Cedar supports these points. A complete 

verification would have discovered 40 errors (plus perhaps some additional bugs that caused no 

difficulty in the installed system) and would probably have missed the 3 additional errors that could be 

attributed to inadequate specification. The actual testing found 38 of the 40. Further, it took 12 weeks 

to write the microcode and 6 weeks to debug it. It is unlikely that verification could have been 

performed in the 6 weeks required to debug the code, assuming the technology even existed to verify 

this kind of microcode. 

A comparison of my experiences with the first 38 bugs and the subsequent 5 bugs supports my 

second point. None of the 38 bugs took long to isolate once they had been detected; the most difficult 

taking one hour. The next 5 bugs took two weeks to isolate, even though they were "detected" 

instantly; i.e., the system crashed as soon as the microcode was installed. One might argue that these 

bugs were inherently difficult to isolate; that is, even if the test had provoked and detected them, they 

still would have required a long time to isolate. However, after examining each of them, I believe that I 

could have localized them as quickly as I localized the other 38; they had nothing to particularly 

distinguish them from the other bugs. 

Acknowledgments 

Two former members of the Xerox Palo Research Center staff contributed to the development of 

the techniques described in this paper. Jim Mitchell and Jim Morris were fellow members of a File 

Server project, and constructed several test packages for components of the server. Jim Morris, in 

particular, supplied the initial spark for the development of these ideas; after I had spent several days 

constructing a complete test for a certain file server interface, he showed me an equally effective test 

based on random-number generation that he had constructed in a much shorter period. Finally, I 

thank Robert Ritchie, who supplied needed encouragement while reading several drafts of this paper. 

References 

[Bayer72] R. Bayer and E. McCreight. Organization and Maintenance of Large Ordered Indexes.· Acta 

Informatica 1, 1972, pp. 173-189. 

[Birre1l84] A. Birrell and B. Nelson. Implementing Remote Procedure Calls. ACM TOCS (2)1, 

Febuary 1984. 

[Budd78] T. Budd, R. Lipton, F. Sayward, and R. DeMilIo. The Design of a Prototype Mutation 

XEROX PARC, CSL-85-8, NOVEMBER 1985 



AN EFFECTIVE TEST STRATEGY 15 

System/or Program Testing. AFIPS 1978 National Computer Conf.. Anaheim. CA. June 5-8.1978: 
pp. 623-628. 

[Goodenough75] J. Goodenough and S. Gerhart. Toward a theory o/test data selection. IEEE Trans. 

Softw. Eng. SE 1-3. June 1975. pp.156-173. 

[MitcheIl79] J. Mitchell. W. Maybury. and R. Sweet The Mesa Langauge Manual. Xerox PARC 

Technical Report CSL-79-3; 1979. 

[Rovner84] P. Rovner. On Adding Garbage Collection and Runtime Types to a Strongly-Typed. 
Statically-Checked. Concurrent Language. Xerox PARC Technical Report CSL-84-7.1984. 

[Shaw84] M. Shaw. Abstraction Techniques in Modern Programming Languages. IEEE Software. 

October 1984. pp.l0-26. 

[Swinehart85] D. Swinehart. P. Zellweger. and R. Hagmann. The Structure 0/ Cedar. ACM 

SIGPLAN 85 Symposium on Language Issues in Programming Environ~ents. Seattle. 

Washington. June 25-28.1985. pp. 230-244. 

[Teitelman84] W. Teitelman. A Tour Through Cedar. IEEE Software. April 1984. pp. 44-73. 

XEROX PARCo CSL-85-8. NOVEMBER 1985 






