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REIMPLEMENTING THE CEDAR FILE SYSTEM USING LOGGING AND GROUP COMMIT 

l. Introduction 

Workstation file systems ought to provide good performance, rapid crash recovery, and 

robustness. This paper will discuss four implementation approaches used to achieve these goals in the 

reimplemented Cedar workstation file system: 

1. log-based recovery for metadata, such as the file name table. 

2. use of group commit to avoid some disk writes, 

3. a design based on a simple performance model that captures the timing characteristics of 

disks. and 

4. techniques (e.g .. writing key system data in two places) to increase the robustness of the 

system. These techniques are well known. but they were implemented at little 

performance cost because of the use of the log and group commit. 

PARC has a history of building file systems that are quite robust. Cedar [Swin86] is the 

programming environment in use at Xerox PARC/CSL. To be accepted by the Cedar users. the new 

file system had to be at least as robust as the existing system. The new file system is part of the Cedar 

release of March 1987. which runs on present hardware. 

File systems have been studied extensively. For example. McKusick et al. reported on their 

improvements to the performance of the UNIX l file system [McKu84]. The work reported here has 

been done in the tradition of the Xerox workstation file systems: the Alto file system [Lamp79a]. the 

Pilot file system [Rede80], and the Cedar file system [Schr85]. 

What distinguishes this work from other file systems is that it incorporates some ideas from 

database systems. Logging is commonly used in these systems: see [Gray79] for a discussion of logging. 

Group commit is part of the lore of database systems; a reference to it is in [DeWi84]. 

2. History, Terminology and Background 

Cedar currently runs on the ""D-machine" architecture. exemplified by the Dorado [Lamp81] and 

Dandelion computers. These D-machines use the Trident disk interface that permits an 

implementation of ""labels" for every disk sector (see below for a discussion of labels). A new VLSI 

multiprocessor workstation. the Dragon [McCr84]. is under development and will conform to some 

standard 110 interface that will not support labels. Thus, to port the Cedar operating system to the 

Dragon. the existing file system required modification. This provided an opportunity to improve the 

performance and robustness of the file system. 

One of the features of the Alto [Thac79] and its successors has been their robust file system. A 

robust system is one that continues to operate (nearly) correctly in the presence of some class of errors. 

1 UNIX is a registered trademark of AT&T Bell Laboratories. 
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2 REIMPLEMENTING THE CEDAR FILE SYSTEM USING LOGGING AND GROUP COMMIT 

These file systems are robust against single page disk errors and memory smashes. 

In the Trident disk interface. each sector has an additional field. the label field. usually not found 

in other interfaces. PARC file systems for these disks use the label to mark each sector with 

information identifying the sector. In normal operation. before a sector's data is read or written. the 

label is verified against a label computed by the file system. If revolutions are not to be dropped. this 

check must be performed in microcode. The addition of the label field makes it possible to detect. in 

hardware and microcode. errors such as wild writes. File allocation. extension. contraction. and 

deletion operations write the labels. Also. it is possible to scavenge the file system: by reading the labels 

and interpreting some of the disk sectors. file system structural information. such as the free page map 

and the file name table. can be reconstructed. 

The Cedar File Package and File System. FS. together implement the abstraction of a named file 
[Schr85]. A file is a sequence of pages. logically numbered beginning with zero. The File Package is 

concerned with allocating and deleting files. opening them. reading and writing file pages. and keeping 

track of free pages. It specifically does not provide file names. This function is performed by FS. FS 

keeps the names of all the files in its file name table. which might be called a directory or catalog in 
other systems. For the rest of this paper we will call the previous version of the file system CFS (as in 

[Schr85]), and call the reimplementation FSD (FS for Dragon). 

In CFS, a file has two kinds of sectors: header sectors and data sectors. Header sectors contain file 

properties (e.g., the file's name. length and create date) and a run table describing the extents of the file. 

The header sectors serve about the same purpose as the inodes do in the UNIX file system [Bach86], 

but have a different implementation. Data sectors store the contents of the file. 

The Cedar File Package keeps a bit vector as a hint for which disk pages are free. This is called the 

Volume Allocation Map (VAM). There are no invariants associated with the VAM. Free pages may be 

lost and file creation may be somewhat slow. but these are judged to be acceptable performance 

problems and do not affect the integrity of the system. 

3. Requirements for FSD 

Five prime requirements for the file system are relevant here. Other requirements that are more 

system specific will not be covered in this paper. 

First, the system should be robust against a hardware sector error. An error on any sector on the 

disk should only affect the file that contains that sector. The failure model allows for one or two 

consecutive sectors to fail. but longer contiguous failures are considered to be a massive failure from 

which complete recovery may not be possible. A flaw on the disk or a failed write usually damages at 

most one sector. but occasionally two contiguous sectors are damaged. More stringent requirements 

(e.g., loss of a whole track) can be met within the framework of the design presented below. but it 

would complicate the algorithms and have a minor performance impact. Loss of any part of the file 

name table should never occur due to a single sector failure. Massive failures (e.g., a head crash) are 
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REIMPLEMENTING THE CEDAR FILE SYSTEM USING LOGGING AND GROUP COMMIT 3 

non-recoverable, except from backup. Mirrored hardware could be used to guard against massive 
failures [Lamp79b]. 

Second, the file system should be high performance. It must be designed so that the normal cases 

of read, write, create, and delete operate near ""hardware speed." 

Third, it should be robust against some software errors. FSD protects itself against two types of 

errors: memory smashes produced by other software and some classes of internal bugs. 

Fourth, it should have fast recovery. Loss of a sector should not force a time consuming operation 

such as scavenge, which scans the disk and rebuilds the file name table. This is particularly critical as 

disk capacity continues to grow. 

Finally, the system should use commercial disk hardware. A new, label-free design is required. 

4. Design Overview 

CFS and FSD differ in the location and contents of their disk resident data structures. Table 1 

shows a slightly simplified diagram of the location of file system metadata. There are three types of file 

CFS 

File Name Table 

text name 

version 

keep 

uid 

header page 0 disk address 

Headers 

run table 

byte size 

keep 

create time 

version 

text name 

Labels 

uid 

page number 

page type (header, free, data) 

FSD 

File Name Table 

text name 

version 
keep 

uid 

run table 
byte size 

create time 

Leaders 

uid 
preamble of run table 

checksum of run table 

Table 1. Disk Data Structures for Local Files in CFS and FSD 
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4 REIMPLEMENTING THE CEDAR FILE SYSTEM USING LOGGING AND GROUP COMMIT 

name table entries in CFS and FSD: local files. symbolic links to remote files. and cached copies of 

remote files. The table only compares local files. This is sufficient to give a sense of the differences 

and reduces complexity in the table. 

CFS splits the naming. property. and other information about files between three disk entities: the 

file name table. header sectors for files. and labels for every disk sector. To open a file from its name. 

the name is looked up in the file name table. The unique identifier (uid) and the "header page 0 disk 

address" are used to compute a label for the header of the file. The page at the disk address is read to 

get the file header. This gives CFS the run table and all the other properties for the file. A bug in the 

file system will often show up as an error in comparing the computed label with the disk label. 

Note that most of the data is replicated or can be recomputed. For example. the "text name" of a 

file is stored both in the file name table and the header for the file. Also. the run table can be 

recomputed by reading all of the labels. 

CFS creates a one byte file by finding three free pages from the YAM. reading their labels to 

check that they are really free. writing the labels to claim them for the file. writing the header. updating 

the file name table. writing the byte. and rewriting the header. Note that this is (at least) six 1I0·s. 

FSD moves all the header information from the file headers directly into the file name table. 

While CFS kept most critical information in two places. FSD keeps all its information in the file name 

table. This improves the locality of the file system. Redundancy is achieved in FSD by keeping two 

copies of the file name table; in CFS redundancy was achieved by keeping different data structures. 

FSD also has a leader page for each file. This page is used only for software checking (except for 

three files during the boot seq uence). It is not used for recovery. 

Changes to the file name table and leader pages are written to a log. The log is written such that 

there are two copies of all log records. Logging makes atomic update easy. delays some updates. and 

reduces the number of writes necessary for an update. Although logging may not be a cost-effective 

technique for the data of a file system. it is effective for the metadata [Need87]. 

Group commit batches a set of updates together for a log write. The log is written (if necessary) 

every halfsecond. Group commit reduces the number of writes to the log. 

FSD creates a one byte file by finding two free pages from the YAM. updating the file name table. 

and writing the leader and the data page. A file create typically does one 110 synchronously: the 

combination of the write of the leader and data pages. The create also dirties some file name table 

pages that are asynchronously logged and eventually written back to the file name table. 

5. Design Discussion 

The design described here met the file system requirements. performed the best of the designs 

considered (as predicted by the analysis). and scaled well to slow-seeking but high-transfer-rate disks. 

The principle design concept is locality on the disk. Information that is needed. generated. recovered. 

or retrieved together benefits from proximity on the disk. 
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REIMPLEMENTINGTHECEDAR FILE SYSTEM USING LOGGING ANDGROUPCOMMIT 5 

5.1 File name table 

The file name table maps a file name into a file. The file name tables in CFS and FSD are kept in 

a B-tree. The information about each file in CFS is split between the 8-tree and the file header. In 

FSD. the run tables and file properties. formerly stored in the file header. are kept in the file name 

table. 

Keeping the name and property information together is desirable for operations over many files 

such as "list" and ··open." There is no need for a disk read for the properties since they are already 

available in the file name table. The file name table is preallocated to sectors near the central cylinder 

of the logical volume. This reduces disk head motion. 

The unique identifier and the file's run table can be stored directly in the file name table since all 

files have (at most) one name. If files could have more than one name. such as with the multiple hard 

links in the UNIX file system. this optimization would be more difficult 

To improve robustness, the file name table is written twice: every page is written on two different 

sectors with independent failure modes. Due to the extensive buffering provided by the log (see 

below), the overhead for double writing is not excessive. When a page is read. both copies are read and 

checked. 

5.2 Leader pages 

Files in FSD consist of a single leader page and the data pages. The leader page doesn't contain 

any information needed for operation. but provides an optional check for the proper operation of the 

system. Leader pages and the file name table are different data structures that are mutually checking. 

Leader pages are a key element in the robustness of FSD (see section 5.8, Robustness. below). 

5.3 Log-based recovery 

Atomic update of metadata is a property required in file systems. However. CFS used a B-tree 

package that did not have atomic update. While complicated splits or joins were being done in the tree. 

the tree could be left in an inconsistent state by a crash. Consistency was reestablished by scavenging. 

although this was a slow operation (an hour or more on a 300 megabyte disk). Further, the name table 

pages spanned multiple disk pages and a partial write could corrupt a name table page. 

A lesson learned in building database systems is that performance can be gained and consistency 

achieved by writing updates to a log on stable storage. Data spread over the disk can be logically and 

atomically updated with a single disk write to the log. Updates are applied to buffered copies of pages. 

but the copies are not forced to disk - they are just written to the log. The writes of the buffers may be 

delayed (once logged) in anticipation of a further update to the page (a hot spot) or the writes may be 

done at a more convenient time. 

In comparison. some systems do synchronous writes for consistency (see [8ach86]. sections 5.16.1 

and 5.16.2. for a good discussion of the UNIX file system.) Synchronous writes require that the writes 
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6 REIMPLEMENTING THE CEDAR FILE SYSTEM USING LOGGING AND GROUP COMMIT 

be performed in a particular order before an operation can complete (e.g .. a file create in UNIX writes 

the inode to disk before returning). Synchronous writes tend to do more writes than logging and the 

writes are not localized. Logs have been used previously for file servers. Alpine [Brow85] logs updates 

to the file name table and file contents. but not to the allocated page map. DFS [Stur80] used a 

variation of logging called intention lists. 

A log in FSD is used only for changes to the file name table and to the leader pages. It logs 

physical pages and is a redo log [Gray79]. That is. it records images of changed pages that must be 

(re)written if the system crashes. Logging allows atomic update of the file name table and the leader 

pages. Like the file name table. the log is allocated to sectors near the central cylinder to minimize 

head motion. 

The log could also be used to record changes to the YAM and file data pages. The YAM is 

maintained in a volatile form (see section 5.5. Free Pages, below) so it does not have to be logged. 

Y AM logging would greatly decrease worst case crash recovery time from about twenty five seconds to 

about two seconds. YAM logging was not done since it was a complicated modification. worse case 

recovery is rare. and recovery was fast enough anyway. 

In CFS and FSD. data hot spots are rare. Both systems support versions for files. Most files are 

written exactly once. Hence. the logging of the data pages is not very attractive: logging data pages 

would come close to doubling the number of pages written for file data. 

The log is kept as a circular disk file. New log records are appended to the log by synchronously 

writing the new record to the file. Since the file is circular. there are potential problems in overwriting 

data while it is still needed. and coordinating the writing of file name table pages and leader pages. 

Database systems typically use complicated algorithms to make use of almost all of the log. FSD uses a 

simple algorithm. 

First consider just the file name table pages. FSD maintains a cache for pages of the file name 

table. Updates are applied to pages in the cache and then logged. The log is divided into thirds. FSD 

records in the cache the identity of the third where the page was last logged. When the current log 

write is about to enter a new third. there may be data logged in this new third that must be rewritten to 

disk. The only disk resident copy of the data is in the log and it will be overwritten soon. Any pages 

logged in this new third. but not logged in a later third. are written to the file name table by the logging 

code. The pages to be written are discovered by scanning the cache looking for pages that were most 

recently written into this new third. The cache is maintained such that the "'dirty but logged" pages are 

kept in the cache; the write of the pages to the file name table on the disk is directly from the cache. 

Due to high locality in the file name table. the number of name table pages normally written is 

nearly zero. It is usually the case that a dirty name table page will have been recorded in a newer third. 

and thus no write will be required. Leader pages are also logged. Leader pages for a file create are 

normally written by piggybacking the write on the next operation to the file thereby avoiding a write by 

the logging code. Otherwise. they are written during entry into the third where they were logged. The 

only times pages are written to the file name table are during entry into a new third and during crash 
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REIMPLEMENTING THE CEDAR FILE SYSTEM USING LOGGING AND GROUP COMMIT 7 

recovery. This simple algorithm averages 5/6ths of the log in use. 

Log records that are nearly the size of the log file call for drastic measures that will not be covered 

here. but which are handled in the system. A log entry that is longer than the log file will cause a crash. 

but the log is forced long before this should occur. 

Any system that keeps its permanent data on disk must be concerned with disk errors. The model 

of disk errors used in FSD is that only one error will occur at a time and it will damage one or two 

consecutive sectors. With this failure model. multisector writes may be only partly done. When writing 

the last two pages. either both are transferred successfully. the last page is detectably damaged but the 

next to last is transferred successfully, or both pages are detectably damaged (note similarities with the 

weak atomic property in [SturSO]). Hence. it is only necessary to avoid writing replicated copies of a 

page into adjacent sectors. No single disk write can damage both copies. 

With this in mind. the details of the log format can be described. A pointer to the start of the first 

valid record in the oldest third is kept in page zero (replicated in page two) of the log. The pointer is 

updated whenever a new third of the log is entered. after the pages in the to-be-overwritten third are 

written to disk. Each log entry is comprised of a header page, a blank page, a copy of the header page, 

the data pages being logged. an end page, copies of the data pages being logged, and a copy of the end 

page. The same data is never written to adjacent pages. Failure of the write at any point can be 

detected when the log is read by matching the start and end page copies. Single or double page errors 

can be corrected from the other copy. The end of the log is detected by reading a header page pair and 

checking log record numbers. boot count. end pages. and special bit patterns in the header page. 

5.4 Group commit 

The system also implements a variant of group commit [DeWiS4]: a set of updates are grouped 

together in one log write to amortize the cost of the log write disk 110 over several updates. Where 

databases group the updates of independent users, FSD groups some updates of the workstation 

owner. FSD forces its log twice a second. This induces a certain degree of uncertainty about when 

some modifications to the file system are permanent, but the uncertainty is only half a second. Clients 

may force the log. 

In the event of a crash. any workstation user must determine the state of the system anyway. Loss 

of up to a half a second is not significant since it is regained in increased performance of a few seconds 

of normal operations. The last-used-time for cached copies of remote files is an excellent example of 

data that does not require exact update. Although uncertainty cannot be tolerated in a database or a 

transaction system, it is already tolerated in workstations with existing file systems. 

The use of group commit also helps with hot spots. Bulk updates are often done to the file name 

table [SchmS2]. These updates are normally localized to a subdirectory. which fits on a few pages. 

These pages are rapidly dirtied by the bulk updates. By doing group commit. the log is consumed more 

slowly and written less often. Moreover. the name table itself is written infrequently. One benchmark 

measured the combination of logging and group commit as reducing the number of 1I0's for metadata 
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8 REIMPLEMENTING THE CEDAR FILE SYSTEM USING LOGGING AND GROUP COMMIT 

by a factor of 2.98 during these bulk operations: the total reduction was a factor of 2.34 for all 1I0·s. 

These factors may be improved somewhat by using a bigger log and lengthening the time between 

commits. 

Log records vary in size depending on activity. Records have five pages of overhead and write 

twice the data to be logged. An open of a cached file from a file server changes the last-used-time in 

the file properties. I f this were the only update during a group commit period. then it would be 

recorded as a one data page record. This is logged in seven 512 byte sectors. The longest log record 

observed is 83 sectors long. Under high load. a typical log record has 14 pages logged. for a log record 

size of 33 sectors. 

5.5 Free pages 

The free page information is kept in a bitmap called the V AM. Updates to the V AM could be 

made by synchronous disk writes. FSD avoids all disk writes during normal operations by keeping the 

V AM in volatile memory. During a controlled shutdown and idle periods. the V AM is written to disk. 

During a boot, the VAM is read from disk if it has been properly saved~ If not, it is reconstructed from 

the file name table. Since the file name table is a compact structure with a great deal of locality, it can 

be processed quickly. The time to reconstruct the VAM on a Dorado with a 300 Megabyte file system 

is typically twenty seconds. 

One complication in maintaining free pages is that the pages are not really free until the delete is 

committed. They cannot be allocated to a new file since they might then be written. Pages in deleted 

files are kept in a shadow bitmap. When a commit occurs, the pages marked free in the shadow bitmap 

are marked free in the V AM. 

5.6 Page allocator 

The File Package in Cedar allocates pages in runs (often called extents). The allocator in CFS 

performed adequately, except that it tended to fragment the free space. Large free blocks of space were 

broken up by small files. A large fraction of files are small. A measurement of one system shows 50% 

of files are less that 4,000 bytes but use only 8% of the sectors. 

FSD partitions the disk into big and small file areas to curtail fragmentation. The areas are only 

hints: a big file may have pages in the little file area. This is similar to many memory allocators: 

dynamic storage is grown starting from small addresses, while the stack is grown from the end of 

memory towards small addresses. 

This allocator should work very well in FSD. Most of the small files are cached copies of files 

stored on file servers. The size of these files are known when they are fetched and the sizes never 

change. New versions of files may be cached. but old versions are immutable (except that they may be 

flushed). 
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5.7 File open 

Opening a file does not usually require an I/O. The leader page is nonnally verified on the first 

access to a file by piggybacking its read with the access. The first data access is almost always to the 

first data page. and the leader page is the previous physical page on the disk. Hence. it usually costs 

only the transfer time for a page to read the leader page. 

5.8 Robustness 

Using different data structures and algorithms is a well known method to detect bugs: both CFS 

and FSD use this technique. Leader pages have detected many bugs in FSD. However. leader pages 

are not as effective as the headers and labels of CFS. Labels checked nearly every file system 110. In 

FSD. bugs in the page allocator. logging. or crash recovery cannot be detected when they occur. The 

bugs are detected later. but they are harder to track down and may have done damage to the file 

system. FSD keeps pages cached from the file name table as read-only except when they are being 

updated. This is to catch wild stores. but this has never occurred. 

CFS rarely took label errors that were due to incorrect software. The scavenge program did not 

read the labels to verify the run tables stored in the headers. Hence, the header and label redundancy 

was not fully exploited. The amount of code that must be correct to maintain minimal system 
consistency has been increased from about four pages to ten pages. From analyzing system failures and 

measuring the system. it was estimated that elimination of the header and label redundancy would have 

few adverse effects. 

FSD when compared to CFS is robust against six additional types of errors. First. multi-page 8-

tree updates were not atomic. Second, a partial write of the file name table could produce an 

inconsistent page. Logging prevents both of these. Note also that the log writes two copies of all pages. 

Third. the file name table could have bad pages; it now is replicated. Fourth. the V AM can have disk 

errors; these are recovered by reconstructing the YAM. Finally. two kinds of pages needed in booting 

could become bad: they are now replicated. 

5.9 Recovery 

Recovery is fast and easy. There are two types of recovery. First. the YAM can be reconstructed 

using the name table (see section 5.5. Free Pages. above). 

Second. the file name table and labels are recovered from the log. The log is a physical redo log 

and the algorithm to perfonn recovery is simple. Log records are read and the copies of pages in the 

log are written to disk. Recovery rarely takes more than two seconds on the current hardware. 

Scavenge in CFS was infrequent but very time consuming. Users do not like their machines being 

unavailable for an hour or more. Although in principle the replication and recovery in CFS protects 

the file system. the lack of locality of the data structure makes recovery too expensive. 

XEROX PARC, CSL-87-7. AUGUST 1987 



10 REIMPLEMENTING THE CEDAR FILE SYSTEM USING LOGGING AND GROUP COMMIT 

6. Performance Analysis 

Why choose one design instead of another? How much performance does a feature deliver? How 

much does replication cost? How do existing systems perform? One way to answer questions like these 

is to construct a model. 

The model used in the design of FSD computes the expected average case times for typical file 

operations. These operations included create, delete, list, open (without data I/O), and recovery from a 

disk error. All models used caches for all disk resident data. The caches were assumed to hit if the 

in formation is small (e.g., in the V AM), and to hit except for the leaf nodes for large structures such as 

the file name table. Hits for leaf nodes were modeled by simple probability distributions. 

In the design of file systems. it is common to use the estimated number of I/O operations as the 

performance metric. Unfortunately. this metric does not capture the rotational and radial position of 

the disk heads. In particular, lost revolutions. sector clustering by cylinder. read then immediate 

rewrite of sectors. and short seeks are not adequately modeled. 

Each design alternative for FSD was analyzed in terms of its effect upon each operation. The 

numbers of seeks. short seeks (a few cylinders). latencies (half a revolution). lost revolutions. and 

transfer time were estimated by analyzing and scripting the necessary operations. The scripts 

incorporated any known locality. both rotational and radial (e g., dropped revolutions and same 

cylinder seeks). It was assumed that there would be no interference in using the disk. Estimates were 

made for both hitting in the file name table cache and for missing. 

The idea is quite simple. Based on the code or documentation, analyze the algorithm to find out 

where it will do I/O's. Ifan I/O will be on the same (or nearby) cylinder or if the rotational position of 

the disk is known, then take this rotational and radial position into account in computing the time for 

the I/O. Compute both the cache hit and cache miss cases, and compute a weighted average. 

By way of explaining the script method, here is an example of the first three entries in a script that 
creates a one sector file in CFS: 

1) Verify free pages: 1 seek, 1 latency, 3 page transfers 

2) Write header labels: (revolution· 3 page transfers), 2 page transfers 

3) Write data labels: revolution,1 page transfer 

4) ... 

The file needs three pages: two for the header and one for data. Free pages are found in the 

VAM without incurring an 1/0. The pages have to be verified as free, so a seek, latency, and a three 

page transfer to read labels is performed (1). Assuming the pages are really free, then the labels on the 

header are written (2). The time for the write starts from the end of (1) and is the time of a disk 

revolution less the time for a three page transfer, and it takes two transfer times. The two sectors are 

the first two verified in (1) and they have just gone past the disk head. Finally, write the label for the 

data sector (3). 

This model was validated by estimating and measuring performance of CFS, 4.3 BSD UN IX, and 
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two types of file servers. For the simple operations benchmarked. the model almost always predicted 

performance to within five percent of measured performance. 

Many alternatives were examined using the model. The poorer alternatives were quickly 

discarded. The model allowed estimation of the effects of logging. group commit, redundancy. and 

central placement of certain files. 
A problem with this model is that it ignores CPU time. As a result, the design selected was very 

stingy with disk 1I0·s. but the CPU was sometimes a slight bottleneck. The Dorado is a high 

performance workstation with somewhat slow. older technology disks. Cedar is a system that uses 
lightweight processes. single virtual memory. low overhead monitors. and is quite efficient in the use of 

the CPU. Faster CPU's such as the Dragon will be common in workstations as will slower disks (e.g., 
optical disks). The combination of these factors led the author to ignore the CPU in the modeling, 

although this may not be a proper assumption for all environments. 

7. Performance 

CFS and FSD were benchmarked. Table 2 shows the timing and speed up of some common 
operations. All creates. opens. and deletes are for different files in the same directory. Note that the 

""read page" time is identical in both systems: the disk hardware is the same, so a simple file read takes 
the same amount of time, once the file is open. Typically, programs that are file system intensive have 
improvements from 25 to 50% in running time, but some operations have improved by a factor of 5 or 

even 100. Table 3 compares the disk I/O's of CFS and FSD. The MakeDo program used as a 
benchmark is typical of clients that intensively use the file system. '"Crash recovery" is the time it takes 

to recover from a major crash on a moderately full 300 megabyte file system. 

CFS FSD Speed up 

Small create 264 70 3.77 
Large create 7674 2730 2.81 
Open 51.2 11.7 4.38 
Open + Read 68.5 35.4 1.94 
Small delete 214 15 14.5 
Large delete 2692 118 22.8 
Read page 41 41 1.0 
Crash recovery 3600+ sec 25 sec 100+ 

Table 2. CFS to FSD Performance Measured in Wall Clock (times in msec) 
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CFS FSD Ratio 

100 small creates 874 149 5.87 

list 100 files 146 3 48.7 

read 100 small files 262 101 2.69 

MakeDo 1975 1299 1.52 

Table 3. CFS to FSD Performance Measured in Disk I/O's 

Table 4 attempts to compare FSD and a 4.3 BSD UNIX system running on a VAX -11/785. The 

""time" command measured the number of disk 1I0's for the 4.3 BSD UNIX file system. Note that 4.3 

BSD does not double write the directories or the in odes. so it is doing less work for a create than FSD. 

Table 5 compares the CPU and disk bandwidths that can be delivered by 4.2 BSD (taken from 
[McKu84]) and the same values for FSD. One further point of comparison is crash recovery. PARC's 

VAX-11/785 recovers in about seven minutes (using fsck) while FSD takes 1 to 25 seconds. Both 
systems have 300 megabyte file systems that are moderately full. 

100 small creates 
list 100 files 
read 100 small files 

FSD 

149 

3 

101 

4.3 BSD 

308 

9 

106 

Ratio 

2.07 

3 
1.05 

Table 4. FSD and 4.3 BSD Performance Measured in Disk I/O's 

FSD 4.2 BSD 

% CPU % Bandwidth % CPU % Bandwidth 

read 27 79 54 47 
write 28 80 95 47 

Table" 5. FSD and 4.2 BSD Performance Measured in Percent of CPU and Disk Bandwidth 

The implementors of CFS knew how to build a faster system. but their goals were to investigate 

other ideas. Hence. the comparisons in Tables 2 and 3 are somewhat exaggerated. Table 4 shows that 

creates in FSD use about half of the I/O's used by 4.3 BSD. Inodes in 4.3 BSD are located on the same 

cylinder group as their directory (when possible). A disk read fetches several inodes. The benchmark 

favors 4.3 BSD since all the files were in the same directory. Hence. the disk traffic for inodes is fairly 

small for listing and reading 100 files. 
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8. Conclusion 

FSD meets its design goals. It is robust. yet it does not use labels. It is high performance. rarely 

doing unneeded disk 1I0·s. In operations on the structure of the file system (open. delete. extend. 

contract. and list). it rarely does any disk 1I0's: it is mostly CPU bound. It has fast recovery. 

In addition. it has four atypical aspects. First. it was designed using a performance model that 

captures most of the timing characteristics of disks. Second. it uses log-based recovery. Third. group 

commit is used to decrease disk traffic. The combination of these last two allows for delayed write of 

many pages. so the 110 to many hot spots can be reduced. Finally. the system performs double writes 
of key system structures. The performance penalty for these writes is not large. due to the decrease in 
traffic from logging and group commit. 

Workstation file systems can be built using some. techniques from database systems. Although 
these techniques may not be cost-effective for the data of a file system. they are effective for the 
metadata. These systems can be robust. have high performance. and recover rapidly from a crash. 
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