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1. Introduction 1 

1. I ntrod uction 

Commit latency can be a performance problem in some database and file systems. 

Some of this latency in transaction commit is due to the rotational latency of the disk. 

This paper shows a design that gives excellent average latency while doing log based 

recovery. Sophisticated readers may wish to skip to sections 2.2 and 2.3 to see the trick. 

Many systems require that changes be done atomically to data kept on a disk. One 

of the common ways to implement atomicity and recovery is by using logging. Briefly, 

this means that changes made to the database are noted in log records which are 

written to disk before a transaction can commit. These records are read during 

recovery to restore the state of the disk. The log is an append - only file. The trick in 

this paper is how to append quickly. Logging is used in almost all database systems 

and in some file systems. 

One type of logging is "write - ahead 10gging.1I Here the new (and sometimes 

old) values for part of the disk are written to a log. The system maintains the invariant 

that log records are always written before changed sectors are written to disk. 

Conventional wisdom is that logging greatly increases the performance of 

databases. Since only a single write (to the log) is needed to logically update many 

physically separate places on the disk, a simple transaction can be committed using a 

single write. In high throughput systems, multiple transactions are committed by 

doing a single write (this is part of what is called IIgroup commit" [GawI85a] [HeIl88]). 

The modified data pages of the database can be held in memory. If they are again 

modified (a "hot spot"), then only a single write is needed to update the data page. 

When data pages are written, they can be done in an efficient order (e. g., by using the 

elevator algorithm). 

Logging is usually done to a disk. The disk write to do the logging can be a major 

part of the latency of doing simple update operations. 

For example, let's consider implementing the NFS [SUN86] IIwrite" RPC call using 

log based recovery. To do the log write, using typical disk specifications, might take: 

1 msec to set up I/O and later take an interrupt 

15 msec seek time (move the disk arm to the proper cylinder) 

8.3 msec rotational latency (wait forthe disk to turn) 

1 msec transfer time (actually write the data onto the disk) 

Higher and lower performing disks are available, but these are values that are 

typical of high quality, currently available disks. Systems will differ in their interrupt 

times and I/O setup, but it should be clear that the dominant times are for seek and 
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2 Low Latency Loggi ng 

rotational latency. 

So, there are two large components to doing the log write. The seek time and the 

rotational latency both require physical motion, and hence are slow as compared with 

electronic operation. The seek moves the disk head to the proper cylinder. The 

rotational latency is time spent waiting for the disk to turn so that the desired sector is 

under the disk head. Average rotational latency is half a revolution, so for disks 

turning at 3600 RPM that is 8.3 msec. 

For medium to large systems, logging is done on a dedicated device. Hence, the 

disk arm is correctly positioned (or nearly so) and no seek (or a one cylinder seek) is 

usually all that is required. In such a system, the dominant cost (in time) of doing 

loggi ng is the rotational latency. This paper presents a way to decrease this cost. 

Only some systems are concerned with latency. High throughput systems often 

trade a small amount of additional latency for higher throughput. Sometimes other 

operations swamp the time to do the log write, so low latency is not important (e. g., 

query optimization). Some high throughput systems have a bottleneck in the 

bandwidth of the log device. The technique in this paper can be used for those systems 

to increase the effective bandwidth (by increasing the fraction of time transfer actually 

occurs by decreasing the latency of the start of a write). 

However, in some systems it is important to do fast, commit. The total time for the 

NFS write call mentioned above is usually dominated by the disk 1/0 time. Naive NFS 

implementations do two, three, or even more write 1I0ls per "write U call. The network 

transfertime and RPC overhead are dominated by the disk 1/0 time. 

High performance systems sometimes use stable memory. Typically, this is battery 

backed up RAM or a RAM Disk. The stable memory serves as either a write buffer for 

the system (for NFS see Lyon and Sandberg [Lyon89]) or as a write buffer for the log 

tail. In both cases, stable memory decreases the commit latency by doing memory 

operations instead of disk 1/01s. However, only some computers support stable 

memory. The way it is integrated into the system varies. There is no common 

implementation of stable memory that database and file system software vendors can 

expect. If the software is to be portable, it has to deal with computers that do not have 

stable memory. 

This design is not part of any file system or database. Hence, this paper cannot 

report on the operational performance of the technique proposed here. 
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2. Design Overview 3 

2. Design Overview 

2.1 Normal system operation for a typical system 

A system using logging uses a (logically) append only log. New sectors are added 

to the end of the log to indicate changes in the state of the system. Items are added to 

the end of log buffer in memory either with or without force. Force means that the 

call is blocked until the disk write for the log with the item returns (and all previous log 

writes have returned too). Without force means that the i'tem is just buffered and the 

call is returned from immediately. Transaction commit records are done with force. 

Write ahead logging causes logical updates to the disk to be made first in the log. 

Once the log write has occurred, the system may then write the data pages in the 

database or file system. The system is not required to write the pages immediately. 

Depending on the checkpoint and recovery invariants of the system, these writes may 

be substantially delayed. Gray and Putzolu [Gray87] estimated in 1987 that the delay 

should be 5 minutes for a database. By delaying the write, further updates to the same 

pages avoid t~e initial write. Various optimizations can be performed, such as using 

the elevator algorithm, to minimize seek and latency. Particularly in the case of UNIX 

file systems, many files have a very short lifetime [Oust85]. The file bytes for these files 

never have to be written to disk, except initially to the log. 

Some logging designs write a header on every log page to identify it. This is 

commonly done in database systems since modern disk controllers with track buffers 

wi II write sectors out of order and recovery has to have some means to detect these 

partial writes. Other designs only write headers on the first page of a contiguous 

write. The log is usually initialized to a known state (e. g., filled with "noop" records). 

2.2 Changes to normal operations (this section and the next has the trick in it) 

Typical systems always append to the end of the log. This is done to make the log 

linear. The physical position of the records in the log corresponds to the time order 

that the log records were created. This paper proposes a way to properly order the log 

records without using physical position. 

First of all, the system has to know (approximately) the rotational position of the 

disk for the log and the physical layout of the sectors. This information may be 

available from the disk controller. Otherwise, the rotational position can be 

approximated by knowing or computing the disk1s rotational speed (assuming 

constant angular velocity, CAV, disks) and when the done interrupt occurs for disk 
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4 Low Latency Logging 

read/write operations. Other systems have used this approximation in the past. The 

physical layout of the sectors may require some (substantial!) reverse engineering of 

the disk controller and disk drive. Bad sector forwarding and bad track forwarding 

may also complicate this. For this paper, we will assume that the physical layout of the 

sectors is easy to compute and not worry about bad sectors and tracks. 

This design requires that a header is on every log page for identification. The 

header contains a new field, the page sequence number, that is incremented for each 

logical page written to the log. (If the log records already have log sequence numbers, 

they can be used instead.) 

When starting to write on a new cylinder in the log, no pages of the log have yet 

been written on any disk head. When a request for a log write is issued, the system 

examines the size of the write, the rotational position of the disk head, and a map of 

which pages have been written. It finds a (set of) runes) of pages that minimizes 

latency using first fit. For the first log write on a new cylinder, that would be the next 

sector to come under the disk head for disk head o. This computation has to account 

for I/O startup time. 

As more log writes occur for this cylinder, more pages are written. The system 

. selects the lowest latency set of sectors, possibly using multiple heads that can do the 

write (e. g., write using head 1 for awhile then switch to head 3). Once the cylinder 

reaches some threshold of occupancy (e. g., 90%), or reaches some minimum latency 

guarantee, then the next cylinder is started. Pages on this cylinder that have not yet 

been written are not updated. 

2.3 Changes to log reading 

Logs are read in one of two ways. First, during normal operations or during 

recovery, the log is read by backchaining to abort a particular transaction or set of 

transactions. Second, during recovery the log is read linearly in ascending or 

descending order. 

If backchaining of log records is needed, then both the log sequence number (LSN) 

and some way to find the sector address for the record are needed. For log records in 

the same log write, an offset physical disk sector can be used, while for log records in 

previous writes, a physical disk sector can be used. Backchaining can then read the 

proper sector and find the record of interest via the LSN. 

The harder case is linear access during crash recovery. An entire cylinder is read 

into memory. Sectors with headers that are clearly old are discarded. These are easy to 
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determine since all sectors have page sequence numbers and the next page sequence 

number is known (either from a checkpoint or from processing the preceding or 

succeeding cylinder). All of the rest of the sectors are of interest. They are sorted by 

page sequence number and then processed in page sequence number order. 

Hence, the log can be read either by backchaining or by sequential scan. 

3. Comparison with Other Work 

3.1IMSWADS 

After this paper was written, Jim Gray pointed out that this technique is similar to 

the way IBM's IMS can log its data. This technique is covered by a U.S. patent 

[GawI85b]. In IMS it called the Write Ahead Data Set or WADS. Since WADS does not 

seem to be available in the open literature, a brief description of the relevant parts of 

WADS follows. 

Many IBM disks have (or had) a fixed head surface as well as having several moving 

head surfaces. The disks are "count - key - data II architecture disks. 1/0 is done by 

searching sectors until one with a matching key is found, then the 1/0 operation (read 

or write) is appl ied to the sector. 

Each track in the fixed head surface is initialized with fixed size sectors with every 

sector having the same key. A write to a fixed head track with the proper key will have 

very little latency: any sector will match the key. The latency is certainly less than a 

sector time, once the search for the key has started. Only one log data write is 

performed to a fixed head track, and then the next track is used. Once all tracks are 

used, all the log data written to all the fixed head sectors is rewritten to the log tail. 

With proper buffering, no reads are necessary (the log data is still buffered in 

memory). 

When recovering from a crash, the fixed head disk surface must be examined to 

find records that were not copied to the log tail. Between writes to the log, a different 

fixed head track is used for every log write, so no log data is ever overwritten. 

There are two major differences between this technique and the one proposed in 

this paper. First, all of the space on the cylinder is used, where in WADS only one write 

per track was done. Second, the WADS technique only works for count - key - data 

disks, while the proposal in this paper works with any fixed sector size architecture 

(e.g., IPI, SCSI, or SMD). 
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6 Low Latency Loggi ng 

3.2 Ping - pong log writes to the log tail 

Jim Gray also pointed out another unpublished trick for writing the end of a log 

for low volume systems with simplex disks. The log tail has a partially filled log sector 

already written on disk. We would like to rewrite this sector with a new sector with 

even more log data in it. The problem is that when writing to the log tail, one must 

not clobber the good data already written. If a partly filled log sector at the log tail is 

overwritten, a crash may leave the sector with a bad checksum. We have then lost the 

previous contents of the sector. For empty pages, simply write blindly. For non

empty pages, write to the next page. Continue to alternate between these two pages 

until the page fills up. Duplicate data can easily be eliminated during recovery. 

4. Performance Considerations 

In this section, a typical disk drive [NECS7] is assumed with the following 

characteristics: 

3600 RPM 

16.7 msec rotation 

8.3 msec average latency 

15 msec average seek time 

2.4 megabytes/second transfer rate 

Also, the system is assumed to add 1 msec of combined setup and interrupt time. 

4.1 Performance duri ng write for zero latency 

This section estimates the gain possible if the latency can be made zero. Note that 

the technique proposed in this paper will not attain zero latency. This section is an 

estimate of the upper bound on the performance improvement. 

4.1.1 Performance during write - dedicated log device 

For an 8K log write, the transfer takes 3.4 msec. The total ti me is 3.4 + 1 + 8.3 = 
12.7 msec. Eliminating the latency gives 4.4 msec. If latency could be set to zero, then 

the latency could be reduced 'by a factor of 2.9. The factor is about 6.S for 1 K log 

writes. 

This analysis ignores the probability of a one cylinder seek before writing. Forthe 

NEe disk described below in section 4.6 and with SK log writes, the probability of a 

seek is 1 %. One cylinder seeks are about 5 msec, so the error in ignoring the seeks is 
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4. Performance considerations 7 

only 0.05 msec. 

4.1.2 Performance during write - non - dedicated log device 

For an 8K log write, the total time is 3.4 + 1 + 8.3 + 15 = 27.7 msec. Eliminating 

the latency gives 19.4 msec. If latency could be set to zero, then the latency could be 

reduced by 30%. 

4.2 Sensitivity to errors in rotational position estimate 

A systematic error in estimating the rotational position can greatly impact 

performance. If the estimate is wrong such that the write just misses the sector, then a 

whole rotation must be paid. In fact, the latency function is a saw tooth function of 

the error. The period is the time for a rotation. The maximum is the time for a rotation 

and the minimum is zero. 

The selection of the sectors to write and the I/O is a real time operation. Non

predictability in the time to get an I/O started can cause high variance in the latency. 

4.3 Performance during transaction abort 

Log records are backchained by both the log sequence number (LSN) and the 

physical sector address. For log records in the same log write, the physical disk sector 

can be expressed as an offset. For log records in previous log write, the physical disk 

sector is known. 

While reading the log for transaction abort, backchaining reads exactly the same 

number of sectors from approximately the same number of cylinders. As cylinders of 

the log are not completely filled, a few more or a few less cylinders will have to be 

accessed. 

In any case, the performance is very close to the performance of a traditional 

system. 

4.4 Performance during recovery 

During recovery, the only difference from normal recovery is doing scans. 

If the bottleneck for recovery is log reading, then additional buffering and a brief 

sort is needed before processing a cylinder of log data. If the log is only 90% full, 

reading takes a bit longer. 

Usually the recovery bottleneck is the reads and writes to the database or file 

system. The number and timing of these are the same using the modified scheme or 
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8 Low Latency Logging 

the traditional scheme. Again, additional buffering and a brief sort is all that is added. 

Hence, there is little performance impact for recovery. 

4.5 Extra disk storage 

Once a cylinder in the log reaches a threshold, a new cylinder is started. Thus, 

more disk storage is needed for the log. Various techniques can be used to address 

this. First of all, the easiest solution is to simply buy a bit more disk storage. Disks are 

not that expensive. 

Another way to address this is to compress the log during tape write [Kaun84]. Or 

the log can be compressed when changing extents. The log can also be staged from 

the non -linear form to a linear and compacted form. 

4.6 Write times for a page of a large NFS file 

The NFS protocol, Version 2 [SUN86], has a maximum 8K per write. The NFS 

specification states that the write is atomic. Hence, the write must be committed to 

disk. This means that for a traditional UNIX file system, the data page, the inode 

(contains the file byte size), and the indirect blocks (contains what pages belong to the 

file) all must be updated. This assumes a file big enough to need indirect blocks. 

Timing estimates are given for two different networks. Table 1 is for Ethernet, a 

standard LAN that has a clock rate of 10 megabits per second. Table 2 is for FOOl, an 

impending standard LAN that has a clock rate of 100 megabits per second. 

Performance is related to the transfer rate to stable memory or disk. One product 

stable memory is PrestoServe for SUN's made by Legato. While accurate measurements 

of its transfer rate are not available, it can be approximated from the data in paper 

about SPARCserver 490 tuning [Meht91]. Figure 2 shows that a server running 275 

NFSops per second uses about 20% more of the CPU with PrestoServe than without 

PrestoServe. Scaling data from Table 2 that shows 34.6 disk writes/second at 521 

NFSops/second, gives 18.3 writes per second. Assuming 8K pages, this is about 

150KB/second. As this consumes about 20% of the CPU, the CPU saturates at about 

750KB/second. In the following, the rate of 1 MB/second will be used to account for 

the errors in this estimate. 
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4. Performance considerations 9 

Timing estimates are broken down into the following categories. This assumes an 

otherwise idle client and server. 

Overhead: 1 msec per packet on either end, 1 msec per I/O 

Net transfer: ti me to send 8K over the net 

Seek: total seek time (12 msec per seek) 

Latency: total disk latency; assume 1 msec for LLL 

Disk transfer: total time actually transferring to disk 

Total (% net busy): total time (percentage of net busy) 

The designs considered, both for Ethernet and FOOl, are: 

Naive: "synchronously force data, inode and indirect block pages" 

Log: straight forward logging to a non - dedicated disk 

LLL: low latency logging to a non - dedicated disk 

Oed. log: straight forward logging to a dedicated disk 

Oed. LLL: low latency logging to a dedicated disk 

SRAM: logging to fast stable memory (10MB/second bandwidth) 

SBoard: logging to stable memory with a 1 MB/second bandwidth 

Total 

Design Overhead Net xfer Seek Latency Disk xfer (% net busy) 

Naive 5 6.6 36 25 3.1 75.7 (9%) 

Log 3 6.6 12 8.3 2.9 32.8(20%) 

LLL 3 6.6 12 1 2.9 25.5 (25%) 

Oed. log 3 6.6 0 8.3 2.9 20.8 (32%) 

Oed. LLL 3 6.6 0 1 2.9 13.5 (49%) 

SRAM 2 6.6 0 0 1 9.6 (69%) 

SBoard 2 6.6 0 0 10 18.6 (35%) 

Table 1: Write times for a page of a large NFS file using Ethernet 
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10 low latency logging 

Total 

Design Overhead Net xfer Seek latency Disk xfer (% net busy) 

Naive 5 0.7 36 25 3.1 69.S (1 %) 

log 3 0.7 12 S.3 2.9 26.9 (2.6%) 

III 3 0.7 12 1 2.9 19.6 (3.5%) 

Oed. log 3 0.7 0 S.3 2.9 14.9 (4.7%) 

Ded.lll 3 0.7 0 1 2.9 7.S(9%) 

SRAM 2 0.7 0 0 1 3.7 (26%) 

SBoard 2 0.7 0 0 10 12.7(5%) 

Table 2: Write times for a page of a large NFS file using FOOl 

Note that the 1 msec estimates for packet overhead become the dominant time for 

the Dedicated logging FDDI, SRAM Ethernet, and SRAM FDDI designs. Trimming this 

overhead exposes the disk transfer time as the bottleneck. 

The dedicated low latency logging using Ethernet delivers performance of one 

half of the LAN. This is extraordinary single - client service for a file server. Compare 

this to the 9% delivered by the naive (and the most common!) implementations. 

However, when the FOOl network is used, the transfer rate difference between the 

disk and the network is a mismatch. The 2.4 megabyte per second transfer rate of the 

disk, the bottleneck, is about a fifth of the rate of the network. Disk bandwidth can be 

increased if necessary by a variety of techniques [KimS6] [PattSS] [SaleS6]. Higher 

tra.nsfer rate disks are available, but costly. 

Also note the importance of good transfer rate to the stable memory. Where the 

stable memory is slow as in SBoard, Dedicated logging has similar performance. 

Dedicated low latency logging out performs SBoard. 

A simple simulator was written to determine the expected latencies. A few values 

computed by the simulator follow in Table 3. The simulations were for disks turning at 

3600 RPM and a sector size of 512 bytes. SK log records were written. Clocking stands 

for a fixed deterministic time between write requests (typical of a fast producer 

situation). log % full is the threshold for when to move the log to the next cylinder. 

Sectors is the number of sectors in a track (32 for 1 megabyte per second disks, SO for 

the NEC disk, and 100 for 3 megabyte per second disks). Tracks is the number of logical 

readlwrite heads. latency % of disk 1/0 is the percent for the average disk I/O that is 

latency. A dedicated log device was assumed. 
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% log Latency % latency 

Clocking full Sectors Tracks msec of disk 1/0 

Yes 70 32 5 .11 1.3% 

Yes 80 32 5 .24 2.9% 

Yes 90 32 5 .92 11% 

No 70 32 5 .47 5.7% 

No SO 32 5 .S2 9.9% 

Yes 70 SO 27 .11 3.3% 

Yes SO SO 27 .11 3.3% 

Yes 90 SO 27 .11 3.3% 

No 70 SO 27 .11 3.4% 

No SO SO 27 .15 4.5% 

No 90 SO 27 .30 9.0% 

No 95 SO 27 .52 15.7% 

Yes 70 100 5 .13 4.S% 

Yes SO· 100 5 .29 11% 

Yes 90 100 5 1.1 42% 

Yes 60 100 1.0 37% 

Yes SO 100 1 1.3 50% 

No 50 100 5 .17 6.4% 

No 70 100 5 .36 14% 

No 75 100 5 .49 19% 

No SO 100 5 .59 22% 

No 60 100 1 1.4 52% 

No SO 100 1 2.2 S3% 

Table 3: Latency Si mulations 

Note that the expected value for latency for normal logging for 32 sectors is 100% 

of the 1/0 time (there is as much latency as transfer, since the transfer takes half a 

track). The worst value above for 5 heads is 11 % (90% full). For 100 sectors, the 

expected value for latency grows to about 300% (transfer is a sixth of a track and 

latency takes half a track). The worst value above for 5 heads is 42% (90% full). At 

SO% full for 5 head disks, logging latency is reduced by about a factor of 30. The disks 

with 27 heads are the NEC disks [NECS7]. Note that the latency only starts to climb at 

about 90% log full forthese disks. 

The surprise may be how high latency is for one head. In the simulation, with five 
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12 Low Latency Logging 

heads and 80% full, it was very rare that a delay of more than two sector times was 

required. Runs from various heads could be pieced together with minimal missed 

sectors. With only one head, when a run had to be broken, at least the next 16 sectors 

were already taken. 

The simulations assume a particular diskls characteristics. The number of heads is 

the logical number of heads (some disks do parallel transfers using multiple heads). 

Disks that have a better seek time, a much higher transfer rate, and that turn 

somewhat faster are under development and/or are used in high performance systems. 

One of the components of disk performance that is improving the most is transfer rate, 

which makes this technique more important. 

5. Extensions 

Throughout this paper, it has been assumed that the log is not replicated and that 

it resides on a single drive. That drive may be dedicated to logging to save disk seek 

time. 

The log is key to recovery. Loss of the log would make contents of the database or 

file system unpredictable. Even though many file systems do have unpredictable 

contents after a crash, this is not a desirable feature. 

By keeping two copies of the log, the reliability of the system is greatly enhanced. 

By preallocating the logs to the physical middle cylinders on a disk, average seek time 

can be decreased. A disk head should be seeked to the log tail during periods of 

inactivity (after a suitable delay). As suggested by a referee, by using more than one 

area of a disk for logging and selecting which area to use based on head position, seek 

time can be decreased. 

To write a log record, choose disks that, have minimum 1/0 time. I/O time is 

computed as th~ time to finish existing 1I0Is for this disk (if any), do a seek, and 

perform the log transfer using the algorithm above. Note that log sectors are written 

onto any disk log. The backchaining now has to also have a drive number, and may 

have multiple chain addresses for the copies. Log records may be split and parts 

written to different disks. 

For recovery, log records are recovered from any log. To start with for each disk, a 

cylinder of log records is read. All of the cylinders are sorted by page sequence 

number. The log records are processed in ascending page sequence number order, 

regardless of which disk they came from. When all of the records have been used from 

a cylinder for a disk, a new cylinder is read, sorted, and added to the list of records to 
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6. Conclusions 13 

be processed. Of course, this read can be done ahead of time. Duplicates are 

eliminated. If more than one copy of the log record is read, the copies are checked 

against each other. This is good for detection of certain classes of errors. (There should 

be checksums or a third copy to resolve which copy was good.) 

If a drive is underutilized, it will tend to become the logging device (or one of the 

logging devices). As seek times will often be zero, the system will perform like it has a 

dedicated logging device. 

6. Conclusions 

This paper proposes a method to do low latency logging for file systems and 

databases. It greatly improves the latency for log writing. It is particularly effective 

with a dedicated log device. Multiple disk heads and higher transfer rates are 

exploited by this technique. The only technique that performs better is to use stable 

memory. The primary reason for this is the higher bandwidth to stable memory than 

to disk. 

This technique can also be used in high throughput systems where the log device's 

effective bandwidth is a bottleneck. II Dropped revolutions ll are nearly eliminated. 

Not all systems are tuned for low latency. For systems requiring low latency for 

logging and where the transfer rate of the disk for logging is not the bottleneck, then 

this technique can deliver a dramatic latency improvement. 
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