
Secu re and Efficient Implementation 
. of A bst ract Data Types fo r Data bases 

Robert B. Hagmann 



Secure and Efficient Implementation of Abstract 
Data Types for Databases 

Robert B. Hagmann 
Xerox Palo Alto Research Center 

CSL - 91 - 5 June 1991 [P91 - 00092] 

© Copyright 1991 Xerox Corporation. All rights reserved. 

Abstract: One of the challenges for Object - Oriented Databases, Extensible Databases, 

and Third Generation Data Base systems is the secure and efficient implementation of 

Abstract Data Types (ADT). In the past, ADT's could either be implemented efficiently 

by binding the code into the address space of the database, which provided no security 

against such problems as wild stores or arbitrary branches. Or ADT's could be run in a 

separate process that provided good security, but poor efficiency. Security is used here 

in the sense of database integrity. Such activities as wild stores, looping, and arbitrary 

system calls are prevented, but not the full range of security (e.g, Trojan horses and 

compartments). The proposal in this paper is to combine the concepts of Lightweight 

Remote Procedure Call (LRPC) with limited address space sharing. Using LRPC, the 

combined call and return time between protected domains is 100 - 200 instructions, 

depending on the CPU architecture. 

This paper concludes with a discussion of the implications of this design on Comput~r 

Architecture, Operating Systems, and Databases. 

CR Categories and Subject Descriptors: 0.4.2 [Memory Structures]: Design Styles -

Virtual memory; 0.4.2 [Operating Systems]: Storage Management - Virtual memory; 

H.2.4 [Database Management]: Systems- Query processing 

Additional Keywords and Phrases: Abstract Data Types, Object - Oriented Databases, 

Third Generation Data Base system, Extensible Databases 

XEROX Xerox Corporation 

Pa 10 Alto Research Center 

3333 Coyote Hill,Road 

Palo Alto, California 94304 





1. Introduction 

1. Introduction 

Performance and security: what could be more important to a database? This 

paper will show how databases can achieve good performance and good security 

when i mplementi ng Object - Oriented program mi ng [Atki90], Abstract Data Types 

(ADT), Extensible Databases [Lind87], or a Third Generation Data Base system [Ston90]. 

The focus of the discussion in this paper is on Abstract Data Types (ADTs), since the 

abstract data type implementation is the key technology enabling the larger 

abstractions such as Object - Oriented programming. 

All of these databases have a need for a good ADT/Object - Oriented 

implementation. A direction that is common to all of these systems is to allow user 

supplied code to run as part of the database. While the systems may differ in how to 

select what code to run for an operation (e.g., multiple inheritance), once the code has 

been selected it has to be run efficiently and securely. 

Throughout this paper the term security is used. It is used in the sense that the 

system is not compromised by wild stores, arbitrary branches, looping forever, huge 

memory allocations, and other such problems. Security is used in the sense of 

maintaining integrity. The techniques here do not prevent Trojan Horses, statistical 

attack, or other means of acquiring data that should be protected. 

Some kinds of user code has been run as part of the database for many years. SQL 

queries are usually run in the main database. Security was not a real problem because 

SQL is a restrictive programming language. Using SQL, it is not possible to crash the 

database, to put the database into an infinite loop, or to snoop in the buffer pool. 

Many systems wish to provide a more complete and hence more dangerous database 

programming language. Often this is an existing language such as C, C++, or Ada. 

An early ADT system for relational databases [Ong84] implemented ADT's written 

in C by binding their code into the address space of the database. This method was 

flawed since it had no security. Alternative1y, ADT's could be run in a separate process 

that provided good security, but this method had poor efficiency. It was not possible 

to get both security and good performance. 

Two ways of having both security and performance have been proposed. One is 

the IBM Enterprise Systems Architecture/370 "program call" [ScaI89]. Another is the 

Protected Invocation of Psyche [Scot89, Scot90]. This paper proposes a third way to 

achieve similar security and performance, and, in addition, this proposal is closer to the 

structure of current operating systems (as opposed to Psyche's more radical approach) 

and without special processor instructions (as in ESAl370). However, all three methods 

XEROX PARC, CSL - 91 - 5, June 1991 



2 Secure and Efficient Impiementation of Abstract Data Types for Databases 

share the basic idea of lots of address spaces, each holding an ADT implementation, 

and fast call/return between the address spaces. One of the purposes of this paper is to 

show the similarity of these concepts so that database systems can be constructed to 

use the similarities, and so that the databases can be simply ported between the 

various inter- domain invocation mechanism when changing machines and operating 

systems. . 

The proposal in this paper is to combine the concepts of Lightweight Remote 

Procedure Call (LRPC) [Bers89] with limited address space sharing. The basic outline for 

how this is done follows. The main database spawns process{es) for each protection 

domain (see below for a discussion of protection domains). Each process has restricted 

access to parts of the address space of the main database process. A process can read 

some of the data of the main database and it can execute the code for the methods. 

To invoke a method (or procedure), an inter- process procedure call is done (an LRPC) 

to a process in the proper protection domain. LRPC eliminates nearly all the overhead 

of a traditional local RPC call (see Section 3). The combined call and return time for a 

null call using LRPC between protected domains is 100 - 200 instructions (depending 

on the CPU architecture). By using limited address space sharing, much or all of the 

copy time can be eliminated. Hence, the null call/return time is the true overhead for 

doing a method invocation or procedure call. The method runs in the protected 

environment of the process at full speed, except that further message sends to 

different protection domains require additional LRPC1s. The process is incapable of 

doing any damage to the main database since its memory protection prevents this. In 

many operating systems, it is also possible to control child processes so that they do not 

loop forever or issue unexpected system calls. 

This proposal has three prime requirements for the operating system: flexible 

memory sharing, system call encapsulation and resource limits, and LRPC. Many 

operating systems have flexible memory sharing, encapsulation, and resource limits. 

However, LRPC is not available commercially. Hence, the proposal in this paper cannot 

be used immediately in commercial databases. Several research operating systems can 

or will have facilities that admit an efficient LRPC -like implementation [Bers89, 

Mass89, Scot89]. In addition, databases are a major customer of operating systems. 

While it is inaccurate to say that databases control the features provided by operating 

systems, databases do exhibit a strong influence. Since the technology is available, the 

customer is large, and the need is strong, operating systems will eventually provide 

LRPC -like implementations. The database community has to recognize the 

XEROX PARC, CSL- 91 - 5, June 1991 



2. Problem Motivation 3 

importance of these issues and translate this into pressure on the operating systems 

vendors. 

In addition, a database that runs in the manner proposed here needs lots of 

address spaces. The Memory Management Unit and/or Translation Look aside Buffer 

(TLB), or their equivalents, must be constructed to allow efficient and low cost 

switching between lots of address spaces. In particular, there are too few user 

"contexts" of the SUN SparcStation -1. TLB's and caches must be constructed that are 

not flushed on context switch. 

2. Problem Motivation 

In the previous section, it was shown that many database systems need ADTs. In 

this section, some of the problems with ADT implementation will be discussed. 

Database systems must have good performance, with strong security and excellent 

reliability. 

One way to implement ADT's is to bind the object code into the database. For an 

unsafe language like (, this means that arbitrary code can be loaded into the database. 

Providing the database with source code and having it do the compile does not solve 

the problem: the code can still do arbitrary things. Nor does restricting the procedures 

that the code can call solve the problem. This code can snoop in memory, possibly issue 

arbitrary system calls or procedure calls (e.g., send electronic mail), rewrite itself, or 

insert a trojan horse. Security of the system is easy to com prom ise. Also, the coherence 

and reliability of the system are easy to destroy. This can be donoe maliciously or simply 

by having a bug. 

Loading code destroys security for all users of the database. The common shared 

database processes are compromised. For databases that are private or shared among 

only one security domain, then security (as being defined in this paper) is not an issue. 

However in this case, no sharing is possible with other security domains, and coherence 

and reliability are still compromised. 

Putting code into a separate process has been an inefficient way to fix these 

problems. A full heavyweight context switch with data transmission is necessary. This 

can easily take thousands of instructions. The cost of the context switch can dominate 

the cost of running the ADT code. 

Another solution is to trust the ADT writers. This is a common in Extensible 

Database systems. This is undesirable since ideally any programmer or user should be 

able to build ADT's for systems that they work on or use. While some trusted and fast 

XEROX PARC, CSL - 91 - 5, June 1991 



4 Secure and Efficient implementation of Abstract Data Types for Databases 

ADT's can be provided in the system, performance and security for untrusted code is 

needed too. 

3. LRPC 

Lightweight Remote Procedure Call (LRPC) is described in [Bers89]. This 

technology is the key to this paper. To make this paper more self contained, a very 

brief description of it is provided here. The reader is encouraged to read the original 

paper for a more complete understanding of LRPC. 

Remote Procedure Call (RPC) allows the programming primitive of procedure call 

to be performed remotely, with several constraints. This has proven to be one of the 

key building blocks of distributed systems programming. However, only a small 

fraction of RPC calls actually go to a different machine. For three systems measured in 

[Bers89], the highest percentage of RPC's that went remote was 5.3%. A RPC protocol 

that operates very efficiently in the local case is a clear optimization candidate. 

The overheads in doing a local RPC are in stub overhead, message buffer 

overhead, access validation, message transfer, scheduling, context switch, and 

dispatch. The theoretical minimum round trip is a pair of traps and context switches. 

LRPC attacked these overheads. Arguments and results are exchanged in shared 

memory between the caller and callee threads. Virtual memory sharing is constructed 

at bind time, so the calls go fast. Using shared memory saves copying, allocation, 

deallocation, flow control, and concurrency control of arguments and results that are 

normally problems for the operating system kernel. The arguments are built into 

something that looks like an argument vector, so no manipulation on the callee side is 

needed, except for some validation checking. LRPC does a call to a particular thread. 

The general scheduler and dispatch of the operating system is avoided. Registers must 

be saved and the virtual memory adjusted, but the main code of the scheduler and 

dispatcher does not run. 

LRPC nearly achieves its goal of a local RPC in the time of a pair of traps and 

context switchs. The theoretical minimum time is 109 microseconds on a C - VAX, 

while LRPC achieves 157 microseconds. The additional 1/ overhead 1/ goes mostly to 

validation, linkages, TLB flushes, and stack allocation. 

4. Protection Domains 

A protection domain is a set of access rights. Individuals are granted access to a 

protection domain. An example of a protection domain is 1/ coding for all of the CAD 

XEROXPARC,CSL-91-5,June 1991 



5. Impiementation 5 

ADT's in the database ll

• All CAD programmers would be granted access to this 

protection domain. This means that they can add, modify, and delete methods for the 

CAD ADT's. 

The database has to model protection in some way. For example, SQL has the 

GRANT primitive. The protection domain may be explicit or implicit (as in SQL). The 

host operating system also must have a model of protection domains. These must 

mesh together. 

s. Implementation 

If security can be checked at compile time, then the best performance is obtained 

by loading the code into the database. This is true for SQL and other restricted 

programming languages. Here we are concerned with general purpose programming 

languages. 

The way ADT's work is that only the AOT implementation is permitted to access 

the internals of an instance of the data type (e.g., to the fields or slots of the instance). 

This is a general property of ADT implementations, not just for databases. What it is 

important to understand is that the implementor of the abstract data type has full and 

complete knowledge of the internals of an object, while other abstract data types and 

other implementors have no knowledge whatsoever of the internals. 

Thus, there is a protection domain associated with an implementor. Implementors 

would belong to several domains possibly consisting of multiple individuals. Note that 

protection is being enforced on the implementors, not on the clients! The 

implementors have full and complete knowledge of the internals of the objects 

anyway, so there is no way that the system could enforce protecting the objects from 

the implementors! 

The feature of modern hardware and operating systems that enforces protection 

is the virtual memory system. The challenge is to configure the use of memory to 

conform to the protection and sharing needs of the database. An outlin'e for how this 

works is presented below. 

The main database process (MOP) has full read - write - execute access to its 

address space. For each protection domain needed at run - time, the MOP spawns a 

process (or processes) that has restricted access to the address space of the main 

database. While this process may be multi - threaded or multiple processes may be 

created per protection domain, for simplicity this discussion will assume that there is a 

single process per protection domain. The process for the protection domain has 

XEROX PARC, CSL - 91 - 5, June 1991 



6 Secure and Efficient impiementation of Abstract Data Types for Databases 

"execute" enabled for the virtual memory pages that corresponds to the code for its 

protection domain. A process may also read - only share the buffer pool and/or read -

write share pages for a volatile object pool forthe data types in the protection domain. 

See below for a further discussion of memory sharing. 

So, what can an AOT process address? It can execute the code for any ADT in the 

protection domain. The system may either allow direct reference to the buffer pool, or 

it may convert between stable, disk based objects and volatile, memory based objects. 

With the buffer pool option, this assumes that all objects on a page are in the same 

protection domain and that the buffer pool is partitioned by protection domain. The 

pages a process can read correspond to the processes protection domain. 

The prpcess can also access a pool of volatile instances of objects from its 

corresponding protection domain. The pool is shared with the MOP. When objects are 

converted from a stable, disk based form into a volatile, memory resident form, the 

objects are placed in a volati.le object pool that contains only objects from one 

protection domain by the MOP. 

Many operating systems provide address space sharing. In Mach, the MOP would 

create a new task inheriting memory as appropriate. In UNIX System V, the MDP would 

use shared memory (e.g., using shmat, shmget, and shmctl) with appropriate 

protections on the shared memory segments. UNIX groups would be used as 

protection domains. 

The UNIX Operating System has are the notion users and groups. The database 

system must be provided with a large number of user accounts for the use of the 

database. One account is the main database account. The rest of the accounts have 

nearly no privileges. Their "login shell" returns an error. They own no files and belong 

to no interesting groups. To share memory, a System V shared memory segment is 

created for each protection domain with the owner as one of the accounts. It is 

created in the group that is made up of only the main database account. The access 

bits are set to allow the proper access by both the main database account and the 

other account. Note that these can be different since one is using the owner bits and 

the other is usi ng the group bits. 

The process has limited rights. For example, it should not be able to spawn 

processes. All of its system calls should be trapped to the MDP (e.g., by using ptrace or 

/proc in the UNIX Operating System) . 

. To do a method send (an object - oriented procedure call is called a send), the 

proper method is selected in the MOP by the database via its inheritance mechanism. If 

XEROX PARC, CSL - 91 - 5, June 1991 



6. Different ieveis of security 7 

the send is to an untrusted protection domain, then a LRPC to a process in the proper 

protection domain is needed. If necessary, a process is constructed. LRPC is used to the 

spawned process. The process can execute the method code, since it has execute 

enabled for the code. The parameters, located in a shared read/write segment, are 

passed by reference. Parameters to objects that match the protection domain reside in 

the shared read - only part of the address space. Parameters to objects that do not 

match the protection domain are opaque: a reference through these pointers will give 

invalid address exceptions. Object Identifiers (OlD's) and Tuple Identifiers (TID's) are 

mapped to buffer pool or volatile instance pool pointers when the parameters match 

the type of the ADT. 

Update cannot be done directly, but has to be done via a reverse direction LRPC. 

Compiler support is probably needed to efficiently convert stores into LRPC's. Direct 

update probably is impossible due to crash recovery requirements: all writes have to be 

logged and the untrusted ADT's are not trusted to do proper logging. OlD's, TID's, or 

pointers to objects not in the protection domain can be passed as part of the call. But 

these arguments are not directly used by the ADT code since the corresponding data is 

opaque and inaccessible. 

Method sends to other methods inside the protection domain do not require the 

intervention of the MOP nor do they require a LRPC. To do a method send to a 

different protection domain from the process, a reverse direction LRPC is performed to 

the MOP. OlD's and TID's are mapped for the new ADT. The send then proceeds as 

before. As an optimization, the return can bypass the MOP if the returned OlD's and 

TID's (if any) don't have to be mapped. 

The combined call and return time for a null call using LRPC between protected 

domains is 100 - 200 instructions (depending on the CPU architecture). By using 

limited address space sharing, much or all of the copy time can be eliminated. Hence, 

the null call/return time is the true overhead for doing a method invocation or 

procedure call. This is about an order of-magnitude more efficient than previous 

database ADT proposals with security. 

6. Different I evels of secu rity 

The thing that is important to understand about ADT implementations is that the 

protection domains are built around the programmer, not the user. Reca" that the 

implementor of the abstract data type has full and complete knowledge of the 

internals. 

XEROX PARC, CSL - 91 - 5, June 1991 



8 Secure and Efficient Impiementation of Abstract Data Types for Databases 

Processes are constructed to provide the virtual memory firewalls. What can fit in 

a single process? If it is just one type, then the number of processes needed would be 

exorbitant. Instead, protection domains corresponding to the protection domains 

used in the organization should be established. Provided that all methods can be 

considered safe from each other in a protection domain, then process(es) can be 

spawned for the entire protection domain. Hence the number of processes should be 

modest. Note that the processes should be created on demand with additional 

processes created forthe same domain if necessary. 

Trusted programmers still can write trusted code that runs in the MOP. The 

overh~ad to invoke these methods is nearly zero inside of the MOP. 

There are three ways to pass arguments and do sharing. The first is the way LRPC 

works. LRPC constructs a shared segment between the caller and callee. Arguments 

are marshalled (copied) into this segment. 

The second way to pass arguments is to read - only share the volatile object pool 

between the MOP and the processes. A set of pool pages are dedicated to a protection 

domain. A protection domain can have mUltiple pool pages, but the number of shared 

pages should change slowly since it will require remapping the address spaces of the 

processes. Volatile copies of objects are made in the pool pages. Each process only 

shares those pages with the proper protection domain. A method send then only has 

to send a pointer to the process for those arguments whose types match the ADT. All 

other types should be opaque and are passed by 010 or TID. Note that copying is done 

to·create the volatile object pool, but no copying is done during a send. 

The third and final way to pass arguments is to pass them directly in the buffer 

pool. If the database can operate directly on data coming from the buffer pool, then 

this does no copying whatsoever. However, it may not be secure. ADT's are free to 

snoop in the buffer pool. If the database is constructed so that only objects of a given 

type or protection domain are kept on a secondary storage page, then the buffer pool 

can be sub - divided by protection domain. Threads can only access pages with 

instances of data types from their protection domain. If any object can be on any page, 

then the whole buffer pool has to be read - only shared. The processes cannot corrupt 

the buffer pool, but they can snoop on data outside of their protection domain. 

The database may wish to protect itself against synthetic identifiers (OlD's or 

TID's). By using encryption or check bits on identifiers, synthetic values cannot be 

created easily. Hence, it is safe to pass identifiers to methods of ADT's from different 

protection domains. 

XEROX PARC, CSL - 91 - 5, June 1991 



8. Conciusions 9 

7. Performance 

LRPC on a C - VAX FireFly takes 120 instructions round trip for null RPC. This is 157 

microseconds. However, the C - VAX FireFly flushes the TLB on context switch. This 

costs 25% of the CPU time, but costs no instructions. For a reasonable machine that did 

not flush, this 25% could be saved. 

For round numbers in this paper, the number of instructions necessary for a LRPC 

round trip is estimated as 100 - 200. The variability here is meant to reflect the 

variability in the instruction power of various architectures. LRPC optimizes the local 

RPC overhead, but still allows for remote calls. With the sharing of virtual memory, 

remote calls are almost impractical (although there is ongoing research in this area). 

Only local calls are considered here. Hence, some modest savings in call/return time 

can be obtained. 

All of the calls and returns pass very little data. The marshalling time for pointers 

and OIDls orTIDlsshould be miniscule. 

8. Conclusions 

8.1 Conclusions for Operating Systems 

An operating system should provide for fast inter - protection domain call and 

return. Either LRPC, or the techniques of ESAl370, Psychels protected invocation, or 

something similar should be supported. LRPC is a better "fit" for most current 

operating systems, but all of these facilities provide similar functionality, protection, 

and performance for databases. The operating system must support a large number of 

protection domain (address spaces). 

8.2 Conclusions for Computer Architecture 

The MMU, TLB, and caches of a computer must be constructed to support fast 

inter-protection domain call and return. Assuming just a few "processes" will be 

active is wrong {e.g., 8 or 16 contexts on SUNls are too few). Flushing TLBls and caches 

on context switch cannot occur (e.g., TLB flush on the Firefly). Many LRPC calls will be 

short (1 OOIS or 1 OOOIS 'of instructions), so the TLB and cache should be left "warm". 

The size of the virtual memory page is a problem. Pages provide both protection 

and clustering. Databases care about both clustering and protection. While 4 KB 

pages or larger make sense for disk based operations and for the granularity of 

physical memory allocation by the kernel, the virtual memory system should provide 

XEROX PARC, CSL - 91 - 5, June 1991 



10 Secure and Efficient Impiementation of Abstract Data Types for Databases 

finer grain protection than whole pages. This would make it possible for objects from 

multiple protection domains to be kept on the same virtual memory page, but still 

have the proper access rights in the running processes. 

For example, if the page size is be 4 KB, then 4 KB is the minimum amount that is 

read or written to the disk, and physical memory is allocated in 4 KB chunks. But each 4 

KB page might have four protection regions of 1 KB each. Each sub - page could have 

different protection domains and rights. 

8.3 Conclusions for Databases 

The combination of LRPC and flexible memory sharing can give good performance 

ADT's to Object - Oriented Databases, Extensible Databases, or Third Generation Data 

Base systems. Many of the security problems are solved. 

Please lobby your operating system and hardware vendors to provide the 

necessary faci I ities. 

XEROX PARC, CSL - 91 - 5, June 1991 



References 11 

References 

[Atki90] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. 

"The Object - Oriented Database System Manifesto," copies of this were available 

at SIGMOD 90. 

[Bers89] B. Bershad, T. Anderson, E. Lazowska, and H. Levy. "Lightweight remote 

Procedure Call," Twelfth ACM Symposium on Operating Systems Principles, Litchfield 

Park, Arizona, Dec 1989, 102 - 113. Printed in Operating Systems Review, 23, 5. 

[Lind87] B. Lindsay, J. McPherson, and H. Pirahesh. "A Data Management Extension 

Architecture," Proceedings of SIGMOD 1987, San Francisco, Cal., May 1987, 220 - 226. 

Printed in Operating Systems Review, 23, 5. 

[Mass89] H. Massalin and C. Pu. "Threads and Input/Output in the Synthesis Kernel," 

Twelfth ACM Symposium on Operating Systems Principles, Litchfield Park, Arizona, 

Dec 1989, 191 - 201. Printed in Operating Systems Review, 23,5. 

[Ong84] J. Ong et. al. "Implementation of Data Abstraction in the Relation System 

INGRES," ACM SIGMOD Record, March 1984. 

[ScaI89] C. Scalzi, A. Ganek, and R. Schmalz. "Enterprise Systems Architecture/370: 

An architecture for multiple virtual address space access and authorization," IBM 

Systems Journal, 28, 1, 1989. 

[Scot89] M. Scott, T. LeBlanc, and B. Marsh. "A Multi - User multi - Language Open 

Operating System," Proceedings of the Second Workshop on Workstation Operating 

Systems, IEEE Computer Society, Pacific Grove, California, Sept. 1989, 125 - 129. 

[Scot90] M. Scott, T. LeBlanc, B. Marsh, T. Becker, C. Dubnicki, E. Markatos, and N. 

Smithline. Implementation Issues for the Psyche Multiprocessor Operating System, 

University of Rochester Technical Report. 

[Ston90] M. Stonebraker, B. Lindsay, J. Gray, M. Carey, M. Brodie, P. Bernstein, D. 

Beech. Third - Generation Data Base System Manifesto, U. C. Berkeley Electronics 

Research Laboratory Memorandum UCB/ERL M90/28. 

XEROX PARC, CSL - 91 - 5, June 1991 





Secure and Efficient Implementation of Abstract Data Types for Databases Robert B. Hagmann 


