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design decisions should be reviewed. If mUltiple bits of history are kept on virtual 

objects, whether they are memory resident or not, then there is the potential to 

improve memory replacement performance. 

This paper describes a measurement technique that is used to monitor memory usage. 

It then proposes a new virtual memory replacement algorithm that is partially based 

on periodic, sequential, and transient behaviors. It also describes an approximation to 

LRU, called cluster LRU, that performs better on the programs measured than the usual 

clock algorithm. The performance of various algorithms is compared by trace driven 

simulation. Finally, this paper shows how a Translation Lookaside Buffer can be 
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1. Introduction 1 

1. Introduction 

Much has changed since most current virtual memory replacement algorithms 

were designed over a decade ago. The amount of memory and the usage of memory 

was different then. The characteristics of program behavior when using hundreds of 

pages is different from using tens of thousands of pages of memory. Many machines 

are now single user workstations rather than time - shared machines. On a single user 

machine, the time for page fault is now directly visible to the interactive user, 

particularly when pages are faulted over a network. In addition, some systems now do 

not make major distinctions between pages for file system buffers and pages for 

program execution (see [Nels88] for Sprite and [Gingell] for SunOS 4.0). Mapped files 

further confuse the distinction between file system buffers and pages for program 

execution. Excessive demand by one part of the system may have a bad performance 

impact on the other. 

Systems with vast amounts of memory are being constructed. Algorithms that 

work well with hundreds of pages may not scale very well to a million pages. 

Below are examples of real situations that may cause problems. The author 

regularly experiences seven of these on his 48 MByte workstation. 

transient access to a large amount of file data (e.g., grep through several 

megabytes of source) 

applications that are used every few minutes, but are inactive between uses 

(e.g., spell checkers, compilers, loaders, debuggers, typesetters, calendars) 

garbage collection 

interactive and background use of a workstation, where the background 

program will consume lots of memory so that the interactive pages tend 

to get paged out if not frequently referenced; sometimes called the" cold 

window problem ll 

multi - media data that is transient (e.g., a single screen image is 4 MB [24 bits 

per pixel, 1024 x 1280]) 

periodic use of large applications, where the total size is larger than memory 

algorithms that cycle through phases, as in some scientific programs 

sequential access to very large files 

copy of lots offile data usingNFS from a clientworkstation 

All of these examples show memory demands that are hard for most current 

virtual memory replacement algorithms. 
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2 Virtual Memory Replacement Using Historical Information on Virtual Objects 

Many users never do anything similarto these examples and do not experience any 

problems. If all you do is read your (text) mail, edit with vi, and run the C compiler, 

then there won1t be a problem. Others buy so much memory that the problem is 

manageable. Memory is still the dominant cost in many systems. Poor memory 

management"can cause users to buy more memory than they really need. 

Operating systems papers are about abstractions and implementations. This paper 

is primarily about the abstraction of virtual memory replacement. It proposes a small 

paradigm shift. Virtual memory replacement should be based on virtual object 

histories. Most popular systems use a single bit of reference data, and the bit is only 

kept for pages that are in physical memory. With virtual object histories, periodic, 

sequential, and transient reference behavior (discussed more below) can be detected 

or estimated. Based on histories and algorithms, substantial improvement in the 

page - in behavior of a system can be made. This paper presents algorithms that have 

significant performance improvements for a small set of traces. One algorithm is an 

approximation of LRU that does substantially better than lIc10ckll for the traces. A 

second algorithm divides pages into two pools: those pages that have a periodic, 

sequential, and transient reference behavior and those pages that have an LRU 

reference behavior, and then selects pages for replacement from these two pools. 

The rest of this paper is organized as follows. Section 2 has a discussion of the 

issues and history of memory replacement; Section 3 investigates the reference 

patterns that are typical for problem appl ications; Section 4 describes the tracing 

technique, the simulator that was built, and the algorithms that were simulated; 

Section 5 reports on the measurement and simulation; Section 6 gives a straw man 

design of hardware that can implement one of the proposed algorithms; Section 7 is 

the conclusions and proposals for future work. 

2. Discussion 

Currently, it is typical that virtual memory systems are built for short term 

demands. Until fairly ~ecently, paging was a major bottleneck in system performance. 

Although paging is now not normally a bottleneck, systems are still plagued with 

occasional, substantial delays due to poor paging decisions. Part of this can be easily 

traced to the system making reasonable short - term decisions that have a bad 

medium - term effect. Some of the cause of this is the algorithms in use today, as they 

are just tuned versions of older algorithms. The older algorithms were concerned with 

short - term memory demand because memory was too expensive to have enough to 
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allow medium - term effects to be important. Even though they have been re - tuned 

(hopefully), the basic assumptions of algorithms partially determine the results. 

This is not a new observation. The book on the 4.3BSD UNIX Operating System 

[Leff89] says:. "4.3BSO is not perfect. In particular, the virtual- memory system needs 

to be completely replaced. The new virtual- memory system needs to provide 

algorithms that are better suited to the large memories and slow disks currently 

available, and needs to be less VAX architecture dependent." 

For example, consider the global clock algorithm that was used in 4.3 BSO 

([Baba81] and see discussion in [Leff89] Section 5.12). This algorithm is used in similar 

systems such as SunOS and USL System V Release 4. Global clock is a commonly used 

approximation of LRU. A variant of clock is also used in IBM's VM system [Tetz87]. 

Sprite uses clock for VM pages, but exact LRU for fi Ie system pages [Nels88]. Mach also 

has a LRU approximation. It uses two queues of pages: active and inactive lists. FIFO 

replaceme"nt is done on the inactive queue. Pages are moved from the active queue to 

the inactive queue when the inactive queue is too small. Faults on inactive pages move 

them back to the active queue [Youn89]. This is similar to clock in that it makes pages 

vulnerable to page - out in a window, with a reference in the window preventing 

page - out. 

Basically as implemented in SunOS, the clock algorithm has two hands that move 

together but are separated by some fixed number of pages. The anticipated need for 

memory causes the hands to turn. The hands point to physical memory pages that are 

conceptually arranged as a clock. Each physical page has a reference bit and a 

modified bit. The front hand turns off the reference bit. A reference to a page causes 

the hardware to turn on the reference bit. The back hand samples the reference bit. If 

the reference bit has not been set, then the page is added to the "cached free" list. If 

modified bit is set, the page must first must be cleaned by writing it to disk. Once the 

page is added to the cached free list, its identity and contents are not lost. If the page 

is needed (e.g., faulted) before it is used as a free page, it is removed from the cached 

free list and used. 

Note that this is an algorithm that is physical memory based: ~he only reference 

data kept is for pages in physical memory. In addition, the amount of data is one bit or 

less. When the page is not between the two hands, the value of the reference bit is 

meaningless. 

When everything fits, the clock does not turn. When the clock is not turning, no 

sampling of memory usage is being done at all (almost). If there is sudden memory 
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demand, the system reacts by turning the clock. Extremely long - time - to - last

reference pages are not replaced if they are not near the clock hands. At high clock 

turning rates, it takes only two seconds between the front and back hand examining a 

page (using the SunOS 4.0 tuning parameters). If in this narrow window the page is 

not touched, it is taken and made into a free page. At worst, this degenerates into 

random replacement. In practice random replacement would not happen for all 

pages, but it could happen for a good number of pages. In any event, the reference 

history during the time when everything fit is lost. 

Systems are tuned to make the clock turn slowly. For the DEC VAX (or at least for 

the VAX - 11/780) this was important. There are no reference bits on the VAX. vmunix 

(and the BSD UNIXes) simulates them by invalidating the page, taking a trap if the 

page is referenced, and recording the reference [Baba81]. Using hardware with 

reference bits, the cost of sampling pages is greatly reduced. On a SparcStation - 1, 

turning the clock a few times faster than normal using SunOS 4.0 had a barely 

noticeable change in system CPU time (as measured by vmstat). The default maximum 

clock rate was tuned in SunOS 4.1 to be a factor of five faster than in SunOS 4.0. 

Turning the clock "too fast" makes the system do page cleans (write of dirty pages to 

the swap file) so it is not easy to get a good cost figure. The point is that turning the 

clock quickly does not and should not cost t.oo much CPU time. 

With larger memories and single user workstations, faults are by comparison much 

worse now that 20 years ago. For a PDP - 10 . (late 1960's), it took about 30,000 

instruction times to answer a fault. For a SparcStation - 2, a fault takes twenty times as 

long, when measured in instruction times. Systems are getting more and more 1/0 

~ound [Oust89]. On a time - shared PDP - 10, the time of a page fault was not lost: 

other users would get the cpu. On a workstation, there are often multiple activities 

running concurrently, but the interactive use of the machine determines how happy 

the user is with it. A fault in the interactive software stops the machine as far as the 

user is concerned. As our machines do not fault very much, a storm of faults is very 

noticeable and very obnoxious. We tend to remember the storms and forget the 

normally good performance. The variance is high and people do not like high 

variance. 

Systems are merging uses of physical memory [Abro89]. Before SunOS 4.0, the 

SunOS virtual memory system and the file systems had separate, fixed - size pools of 

physical memory to administer. For virtual memory bound or for file system bound 

tasks, this was unfortunate since physical memory was not being used where it was 
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needed. SunOS 4.0 changes this by making one pool of physical memory from which 

both the virtual memory system and the file system(s) compete [Moran]. (Some data 

structures are allocated from kernel memory, but all buffer pool pages and virtual 

memory pages are allocated from the same pooL) However, the clock algorithm is still 

used to determine what page to evict when memory is needed. This means that 

transient file system behavior that used to destroy the buffer pool but leave virtual 

memory intact, now destroys buffering and caching of all physical memory. Typical 

transient behavior that does this is by "greping" (searching for a pattern) a file that is 

bigger than memory. SunOS 4.1 had some performance tuning so that some types of 

clustering and sequential behavior can be told to the system as hints (madvise system 

call) [McV091]. 

Other systems have used large physical memories to improve file system 

performance. In Sprite, very large client memories are used. There is a soft boundary 

between the file system and virtual memory pages. File system pages are artificially 

aged to make better VM performance. 

3. Reference patterns 

Individual, isolated page faults are usually not a problem. Except for single 

threaded, real-time applications, they influence the latency or throughput of a 

system in a minor way. But, page fault storms do effect the system. Why do page fault 

storms occur? By looking at the reference patterns, three types of non - LRU reference 

behaviors emerged. The patterns are: 

Periodic: An object or a page is used infrequently, but is re - referenced. The 

period mayor may not be fixed. Examples: calendars (the author just had a 15 second 

page fault storm opening his calendar), garbage collection, and receiving mail. 

Sequential: When an object is used, it is read from the beginning to the end. This 

is typical for files. Examples: grep of a large file, loading an image file to a 

workstation, and playing ~ video segment. 

Transient: An object is referenced for a brief time, then not again for a very long 

time. Examples: grep of many files in a directory and listening to voice mail. 

Periodic behavior, where the period is longer than the sampling time of the virtual 

memory replacement algorithm, is not handled well by algorithms that approximate 

LRU. References are so far apart that they are not noticed by the algorithms. For 

sequential references, the page referenced previously is the least likely to be 

referenced next. Transient references also are not good predictors of future 
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references . 

. For all of these cases, the LRU assumption is violated: all of these types of 

references are not LRU. Pages that have references that are periodic, sequential, or 

transient app.ear to be better served by algorithms that replace pages in a MRU -like 

fashion, while other pages are replaced LRU. The challenge is to discover these types 

of reference patterns and integrate this information into the resource management 

for memory. 

Of these three patterns, the one that is most commonly recognized in current 

systems is sequential. With sequential access, pre - paging or file system read - ahead 

can be used to stream data in more efficiently by overlapping processing with reading, 

and by accessing secondary or network file storage in larger pieces. Also, post

flushing of pages once they are used can get high bandwidth access to data in a fixed 

buffer size (as opposed to polluting memory with transient data). 

If LRU or Global Clock replacement is done for transient pages, then the transient 

pages will evict other pages and will be retained in memory for a long time (as long as 

the clock or LRU replacement takes (e.g., minutes». 

Other access is periodic. In fact, the first virtual memory system, Atlas [Kilb62], was 

built to principally handle periodic behavior. Array references in small memory systems 

often are periodic (e.g., matrix multiplication). 

For a synthetic example of periodic behavior, suppose that there are four equal 

sized tasks that the user does periodically, yet there is only enough memory for three. 

The user might edit, compile, load, then execute/debug cyclically. LRU, or its 

approximation Clock, carefully does the optimally worst. For example, in the 

execute/debug phase, it takes pages from the editor. The editor then must page in its 

pages when execute/debug is done. All phases start with nothing in memory. The 

system runs the same as if it had only one third the memory. 

In some cases, MRU replacement is optimal. This has been shown in databases for 

certain types of access (e.g., sequential) [Chou85]. Post - flushing pages in sequential 

access is another example of MRU behavior. In the example above, if MRU between 

phases is done for the edit, compile, load, and execute/debug example, out of every 

three phases two start pre - paged. (Startup by loading the edit, compile, and load 

phases. Execute/debug steals pages from load, so edit and compile start pre - paged. 

Load steals pages from compile. Execute/debug and edit start pre - paged, and 

compile steals pages from edit.) Note that true MRU replacement is not proposed: it is 

the phases of the example that are handled MRU, not the pages inside of a phase. 
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4. How to proceed 7 

Notice that there is an essential conflict in behavior. There are the LRU pages and 

the MRU -like pages. Pages that are being used periodically, sequentially, and 

transiently are MRU -like, while LRU works well for all other pages. While it is 

reasonable to compare MRU -like pages with other MRU - like pages and LRU pages 

with other LRU pages, it is unclear howto compare MRU -like pages with LRU pages. 

4. How to proceed 

One standard way to proceed it to measure existing systems, propose different 

algorithms and build models, and simulate using trace driven simulation. Algorithms 

should be proposed without regard for the execution cost. It is the abstraction that is 

important, not implementation. Either hardware changes or clever implementations 

might be found for algorithms of merit. Finally, proposals for good, efficient 

implementations should be made. 

4.1 Measurement 

Briefly, the method of measurement is very simple. First, detune the operating 

system so that it is forced to sample page references and modify data more often. For 

SunOS, this was done by speeding up the clock and forcing it to turn (e.g., use adb to 

patch the kernel IS constants). Second, periodically read the kernel data structures for 

physical pages (or virtual pages if that is easier) from a user -level process. Record the 

reference and modify bits to a disk file for all pages for all virtual objects. Write trace 

data bitmaps for all active objects. For SunOS, the kernel was also recompiled with the 

IITRACE II option. This allows the monitoring code to track the use of the swap area so 

that faults can be distinguished from zero filled pages. 

The period between samples was set at five seconds. Each interval is called an 

epoch. Combined with the clock turning rate, this leads to a granularity of 5 - 10 

seconds in the trace data. But it takes minutes of inactivity to evict a page using LRU 

for memory sizes that are common today using the traces obtained. Hence, the 

coarseness of the 5 second sample ti me is not very important. 

4.2 Simulation 

A simulator for mUltiple virtual memory algorithms and for this trace data has 

been constructed. Global Clock, LRU, Atlas, Random, and MIN were all programmed, 

as were two new algorithms that will be described in section 4.3 

For each epoch, the normal way to simulate was to pretend that the references 
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occurred in the order that they showed up on the trace. To verify that this ordering did 

not have a great impact, randomization of the ordering was also done. This did not 

produce any significantly different values from the simulation. 

The Glo~al Clock algorithm was discussed before. The simulation for it collects all 

the references for a 5 second epoch. It then proceeds in 1110 of a second subintervals. 

In each subinterval it applies 1/50 of the references of the interval. Based on the 

references, it may decide to turn the clock. The rate of turning is computed by the 

clock algorithm. 

Atlas is the algorithm used in the Atlas computer [Kilb62]. This was the first virtual 

memory machine. It is primarily concerned with periodic behavior. 

LRU is Least Recently Used. The granularity of LRU is the epoch size. 

Random selects a page to replace at II random." 

MIN is minimum number of faults possible [Bela66]. It requires knowledge of the 

future. Thus it is not a practical algorithm, but useful for reference. It is optimal. 

4.3 Proposed Algorithms 

4.3.1 SPT 

The first new algorithm attempts to detect periodic, sequential, and transient 

behavior (SPT). Every epoch, SPT builds two heaps. SPT detects sequential, periodic, 

and transient behavior by processing historical reference data for pages of virtual 

objects. For periodic and transient detection, the reference string of a page is broken 

in II reference runs" and II unreferenced runs". A reference run starts with a page 

reference and continues until the page is not reference for six epochs. The first page of 

the six becomes the first.page of the unreferenced run. The period is computed as the 

number of epochs between the last two reference runs. Pages from this detection are 

put into a heap that is ordered by the absolute value of the expected time to next 

reuse (the next - time heap). Pages with the longest time to reuse are taken first. Note 

that this achieves MIN paging behavior provided that sequential, periodic, and 

transient behavior are correctly recognized. All other pages are added to a different 

heap (the LRU heap). These pages are ordered by the last touch time where pages that 

have not touched longest are taken first (LRU). Various ways to choose between the 

two heaps have been tried. The current algorithm is: 

take very, very old LRU pages first (30 epochs) 

take pages alternately from the two heaps while there are somewhat old pages 

in the LRU heap (15 epochs) 
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take all the pages from the next - time heap until it is empty 

take pages from the LRU heap 

9 

No claim is made that this is the best that can be done! Of a dozen or so alternatives, it 

did the best an the trace data. Various setting for the constants in the algorithm were 

explored, with the values reported here (6, 30, and 15) working well together. Much 

more extensive work is needed to fi nd better algorithms. 

4.3.2 Cluster LRU 

The second algorithm was to approximate LRU over clusters of memory (Cluster 

LRU). Simulation showed substantial differences between Clock and LRU. Differences 

of 10 - 40% were common. We speculate that the causes for these differences have 

always been present between clock and LRU, but were secondary effects. With large 

memoriesthe secondary effects are becoming noticeable. 

Cluster LRU works as follows. A somewhat detailed history of usage is kept per 

page. It is assumed that acquiring this data is very cheap (e.g., block move of the 

reference bits from the TLB). When a page is needed, a set of pages (a cluster) is 

examined. The clusters are fixed in size and are a contiguous run of physical pages. 

The page that is least recently used in the cluster is the victim. 

Rather than building a heap for all memory as in LRU, only a restricted subset of 

memory (a cluster) is examined. Usage data per cluster is examined only when a page 

is needed. This avoids the cost of maintaining a global heap for all of memory. Also, 

only when pages are actually needed does any significant processing need to be done. 

Good results were obtained with a cluster size of 16. 

Simulations indicate that cluster LRU closes the gap between global clock and LRU. 

While not quite as good as LRU, it is much better than clock. It also has the potential 

for a reasonably fast implementation. 

5. Measurement and Simulation 

Several traces were taken of workstations where users were trying to use their 

machines aggressively. That is, the traces were not of people reading their mail, but 

rather of situations where the user was trying to push the system. All of the traces 

were taken under SunOS 4.1. The three traces are designated "A," IIB,II and IIC" 

below. These traces used window systems, editors, compilers, linkage editors, grep, 

large "ls" and IIfind" commands, and simulation executions. 

Traces were then run through the simulator. Figure 1 shows the number of 
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simulated faults for Trace A. LRU - 16 is Cluster LRU with a cluster size of 16. Random 

does random replacement of memory. Atlas is the algorithm from the Atlas system 

[Kilb62] and is included since it only cares about periodic behavior. All of the traces are 

on SUN Sparcstation - 1's which have 4K pages. 

Of course, MIN is the best. Note that SPT, LRU, and Cluster LRU all perform much 

better than Clock. Clock is much better than Random. Also note that Atlas has very 

bad performance, particularly for large memories. Probably the reason for this is that 

Atlas was built to react to periodic behavior in the reference string, and this did not 

work well for large memories. 

SPT, LRU, and Cluster LRU are all betterthan Clock, but how much better? The raw 

number of faults does not tell the story. MIN is the best one can do. How much does 

SPT or LRU close the gap from Clock to MIN? Figure 2 shows the percentage of faults 

SPT, LRU, and Clock takes over those of MIN (MIN would have a table entry of all 

zero's). Small numbers are good. Figure 3 shows the decrease in the number of faults 

by SPT and LRU from Cloc.k, expressed as a percentage of the number of MIN faults. At 

first this may seem like a strange statistic, but it is a very fair way to show how much 

better SPT is. MIN is the best you could do with knowledge of the future, and SPT 

covers 20% to 50% of the gap from Clock to MIN. Although SPT is consistently better 

than LRU, the difference is small compared to how much better either is compared to 

MIN. 

One interesting observation is that the most useful improvement occurs at 

moderate memory sizes. One possible reason for this is that small memories will force 

the clock to turn quickly. Short - term demand is still very important, and Clock does 

fine for short term demand. On the other end of the graphs, with very large memories 

the traces did not stress much of the system. The fault rates are so low that 

improvement is hard and not too beneficial. 

Figures 4, 5, and 6 present the results Trace B. Note that the axis of the graphs are 

sometimes different. The traces used different total number of pages, so that the 

interesting parts of the curves are at slightly different values. MIN achieved a stable 

value over 6,000 pages for Trace B, so it was questionable to simulate much higher 

memory sizes. Also, the maximum number of referenced pages per interval is 

different, so different minimum number of pages are used. 

Trace B shows the same basic pattern: SPT, LRU, and Cluster LRU are all better than 

Clock. The results are mixed about whether LRU or SPT does better. It's a tossup. 

Trace C (Figures 7, 8, and 9) used even fewer pages. But again, SPT, LRU, and 
'"' 
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Cluster LRU are all better than Clock. However, the gap between them is smaller than 

in the other traces. 

Measurements of a user's perception of a system are harder to make than simply 

counting fal:Jlts. To approximate the "variance" that a user would see, the five 

intervals with the highest number of faults were computed for Trace A for MIN, Clock, 

SPT, and LRU. These are scaled to MIN and presented in Figure 10. The results are 

about the same: SPT does a little better than MIN, and both do significantly better 

than Clock. 

While it is impossible to make general statements based on trace data, the 

following conclusions are supported by the traces and simulations: 

SPT, lRU, and Cluster LRU are all better than Clock 

Cluster lRU with cluster size 16 is close to LRU. The difference between Cluster 

lRU -16 and LRU is many times smaller than the difference from lRU to 

Clock. 

SPT sometimes achieves a few extra percent improvement over LRU, but this 

improvement is not always apparent. 

Clock does much better than Random. 

Atlas does not perform well. 

Given the potential for improvement, how can this be realized? The next section 

shows how hardware and software can cooperate to implement Cluster LRU. 

6. Implementation of Cluster LRU 

There are two parts to the implementation. First, the system has to be monitored 

so that historical information about page references is kept. Second, based on this 

data both SPT and cluster LRU have to be implemented. Of these, cluster lRU seems to 

be the harder and will discussed here. SPT can use page faults to detect sequential 

behavior and can do periodic and transient detection based on the historical 

information about page references. 

In this section, the system of choice is loosely based on the SparcStation - 1. This 

system .takes the RISC idea to the extreme with its Translation lookaside Buffer (TlB) 

design, which they call Hardware Address Translation (HAT). A TLB is a cache that 

maps virtual addresses to physical addresses when the processor takes an instruction or 

data cache miss. Details of the HAT are SUN proprietary, so this discussion is based on 

what is non - proprietary (for example, from [lrla90].) The features of interest of the 
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HAT are: 

probes that miss the HAT cause a trap to the operating system (in true Rise 

fashion) 

on a trap, the operating system fixes up the HAT, possibly including flushing a 

line to mak~ room for a new entry, then restarts the instruction 

entries in the HAT are lots of pages wide, each with a valid bit 

pages in the HAT have reference bits; the hardware sets these bits without 

trapping 

With this design, one thing that is desirable is a fast way to get a copy of all the 

reference bits and to clear all the reference bits. This possibly can be done by use of 

video RAM. The HAT is so large (thousands of page entries) that executing even a 

modest number of instructions per entry every five seconds would have a high 

overhead. A hardware implementation of a TLB would have to provide similar 

features. 

Suppose that the kernel read and saved a copy of the bitmap of references from 

the HAT. While a line stayed in the HAT, the only overhead for sampling would be the 

interrupt every five seconds to get a copy of the reference bits and clear the reference 

bits. An interrupt every five seconds plus just a bit of processing is nearly free. 

Based on HAT addres,s, a history of reference is kept by the above. Note that the 

kernel can have full knowledge of what is in the HAT since it put it there; the HAT is a 

software maintained cache used by the hardware. With a properly sized HAT, lines 

remain in the HAT for extended periods. A steal has to happen when a line is needed 

and there are none free. If the HAT line size is a simple mUltiple of the word size (e.g., 

32 or 64 entries per line), then the reference data from the HAT has to be copied to a 

data structure associated with the virtual pages correspond ing to the HAT Ii ne. If this is 

word aligned, does not have too deep a history, and is an integral number of words, 

copying the reference data should present no major performance problem. After 

some number of 5 second samples, a set of them should be compressed to a single 

sample (say to make 2 minute samples). Only a few hours of history are needed, so the 

storage cost of this is reasonable. 

Consider how cluster LRU would work. A cluster size would be chosen, say 16 

pages. When a page is needed, the current cluster is examined. For each page, the 

reference data is kept with the HAT reference data (if the page is currently in a 

mapped line) and/or with the virtual page data. Physical pages with multiple virtual 

mappings would have to interrogate all mappings to find the least recent one. While 
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7. Conclusions 13 

this does take some time, the time is only when a page is needed. Normal system 

operation when everything fits is nearly unaffected. When a page is needed, 

examining bitmaps for 16 pages does take sometime, but it is not all that long. A mask 

has to be constructed and probed against a bitmap. Only a few instructions are 

needed per probe and only a few tens of probes are needed per page. Suppose that 

the averages were 3 instructions per probe and 15 probes, then 45 instructions would 

be needed for the loop. Adding a few instructions for the mask generation gives 50 

instructions per page. With 16 pages per cluster, that is 800 instructions. On a 12 MIP 

machine, that is 60 microseconds. Note that this is nearly three orders of magnitude 

faster than a page fault time. 800 instructions is also comparable with the number of 

instructions to issue an I/O on many systems (and a small fraction of the number of 

instructions to issue an I/O on some systems). 800 instructions is an acceptable 

overhead. 

This section has shown that straightforward TLB design can lead to low cost 

reference data collection. With this data, cluster LRU is strai.ghtforward to implement 

at reasonable performance. 

7. Conclusions 

Large memories require new strategies for page replacement. Both large memory 

personal workstations and very large memory server and time - shared machines 

should not run Global Clock. Better memory resource management is possible based 

on histories of reference data. 

Our measurements show that existing memory management does not perform 

acceptably on sequential, perrodic, and transient references. These types of references 

are MRU -like in nature, not LRU. They can cause page fault storms. This leads to high 

variance in the performance of the system or to consistently poor performance. 

This paper presented two new algorithms for memory management. The 

algorithms seem to provide significant improvement over existing approaches. Faults 

decrease approximately 10 - 40% in the range of interest for the memory traces. 

About one third of the gap between Global Clock and MIN is closed by the new 

algorithms. 

We believe that our designs are practical and feasible. With small hardware 

changes from an existing product, the hardware and operating system can cooperate 

to obtain historical reference information. The overhead for obtaining the reference 

data is low. The cost of victim selection is reasonable. 
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This work has focused on a single operating system and hardware base. To 

validate this work, other operating systems, other benchmarks, and other hardware 

must be studied. The algorithms proposed in this paper are only two of a large class of 

algorithms. Other algorithms should be studied. 

Nevertheless, we feel that our results are broadly relevant across architectures. 

With the continued, projected growth of memory sizes, the problems addressed in this 

paper will likely become the dominant problems in memory management. 
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Figure 1: Trace A: Simulated Number of Faults 
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Figure 3: Trace A: Percent Better Than Clock Scaled To MIN 
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Figure 4: Trace B: Simulated Number of Faults 
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Figure 5: Trace B: Percent Over MIN 
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Figure 6: Trace B: Percent Better Than Clock Scaled To MIN 
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Figure 7: Trace C: Simulated Number of Faults 
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Figure 8: Trace C: Percent Over MIN 
Percent Over MIN 
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Figure 9: Trace C: Percent Better Than Clock Scaled To MIN 
Percent Better Than Clc;>ck Scaled To MIN 
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Figure 10: Trace A Average For Worst 5 Intervals Percent Over MIN 
Percent Above MIN 
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