
Vi rtual Memory Replacement
. Using Historical Information

on Vi rtual Objects

Virtual Memory Replacement Using Historical
Information on Virtual Objects

Robert B. Hagmann
Xerox Palo Alto Research Center

CSl- 91-7 September 1991 [P91 - 00094]

(!) Copyright 1991 Xerox Corporation. All rights reserved.

Abstract: Most current virtual memory systems retain very little information about

page usage. Typically, only a single bit of history is used. The history is usually only

kept on pages currently resident in physical memory. With larger main memories,

changes in applications, and the increases in file system caching in memory, these

design decisions should be reviewed. If mUltiple bits of history are kept on virtual

objects, whether they are memory resident or not, then there is the potential to

improve memory replacement performance.

This paper describes a measurement technique that is used to monitor memory usage.

It then proposes a new virtual memory replacement algorithm that is partially based

on periodic, sequential, and transient behaviors. It also describes an approximation to

LRU, called cluster LRU, that performs better on the programs measured than the usual

clock algorithm. The performance of various algorithms is compared by trace driven

simulation. Finally, this paper shows how a Translation Lookaside Buffer can be

designed for a RISC machine to support both cluster lRU and detection of periodic,

sequential, and transient behaviors.

CR Categories and Subject Descriptors: 0.4.2 [Memory Structures]: Design Styles -

Virtual memory; 0.4.2 [Operating Systems]: Storage Management - Virtual memory

Additional Keywords and Phrases: Large Main Memories

XEROX Xerox Corporation

Pa 10 Alto Research Center

3333 Coyote Hill Road

Palo Alto, California 94304

1. Introduction 1

1. Introduction

Much has changed since most current virtual memory replacement algorithms

were designed over a decade ago. The amount of memory and the usage of memory

was different then. The characteristics of program behavior when using hundreds of

pages is different from using tens of thousands of pages of memory. Many machines

are now single user workstations rather than time - shared machines. On a single user

machine, the time for page fault is now directly visible to the interactive user,

particularly when pages are faulted over a network. In addition, some systems now do

not make major distinctions between pages for file system buffers and pages for

program execution (see [Nels88] for Sprite and [Gingell] for SunOS 4.0). Mapped files

further confuse the distinction between file system buffers and pages for program

execution. Excessive demand by one part of the system may have a bad performance

impact on the other.

Systems with vast amounts of memory are being constructed. Algorithms that

work well with hundreds of pages may not scale very well to a million pages.

Below are examples of real situations that may cause problems. The author

regularly experiences seven of these on his 48 MByte workstation.

transient access to a large amount of file data (e.g., grep through several

megabytes of source)

applications that are used every few minutes, but are inactive between uses

(e.g., spell checkers, compilers, loaders, debuggers, typesetters, calendars)

garbage collection

interactive and background use of a workstation, where the background

program will consume lots of memory so that the interactive pages tend

to get paged out if not frequently referenced; sometimes called the" cold

window problem ll

multi - media data that is transient (e.g., a single screen image is 4 MB [24 bits

per pixel, 1024 x 1280])

periodic use of large applications, where the total size is larger than memory

algorithms that cycle through phases, as in some scientific programs

sequential access to very large files

copy of lots offile data usingNFS from a clientworkstation

All of these examples show memory demands that are hard for most current

virtual memory replacement algorithms.

XEROX PARe, CSL - 91 -7, September 1991

2 Virtual Memory Replacement Using Historical Information on Virtual Objects

Many users never do anything similarto these examples and do not experience any

problems. If all you do is read your (text) mail, edit with vi, and run the C compiler,

then there won1t be a problem. Others buy so much memory that the problem is

manageable. Memory is still the dominant cost in many systems. Poor memory

management"can cause users to buy more memory than they really need.

Operating systems papers are about abstractions and implementations. This paper

is primarily about the abstraction of virtual memory replacement. It proposes a small

paradigm shift. Virtual memory replacement should be based on virtual object

histories. Most popular systems use a single bit of reference data, and the bit is only

kept for pages that are in physical memory. With virtual object histories, periodic,

sequential, and transient reference behavior (discussed more below) can be detected

or estimated. Based on histories and algorithms, substantial improvement in the

page - in behavior of a system can be made. This paper presents algorithms that have

significant performance improvements for a small set of traces. One algorithm is an

approximation of LRU that does substantially better than lIc10ckll for the traces. A

second algorithm divides pages into two pools: those pages that have a periodic,

sequential, and transient reference behavior and those pages that have an LRU

reference behavior, and then selects pages for replacement from these two pools.

The rest of this paper is organized as follows. Section 2 has a discussion of the

issues and history of memory replacement; Section 3 investigates the reference

patterns that are typical for problem appl ications; Section 4 describes the tracing

technique, the simulator that was built, and the algorithms that were simulated;

Section 5 reports on the measurement and simulation; Section 6 gives a straw man

design of hardware that can implement one of the proposed algorithms; Section 7 is

the conclusions and proposals for future work.

2. Discussion

Currently, it is typical that virtual memory systems are built for short term

demands. Until fairly ~ecently, paging was a major bottleneck in system performance.

Although paging is now not normally a bottleneck, systems are still plagued with

occasional, substantial delays due to poor paging decisions. Part of this can be easily

traced to the system making reasonable short - term decisions that have a bad

medium - term effect. Some of the cause of this is the algorithms in use today, as they

are just tuned versions of older algorithms. The older algorithms were concerned with

short - term memory demand because memory was too expensive to have enough to

XEROX PARC, CSL - 91 - 7, September 1991

2. Discussion 3

allow medium - term effects to be important. Even though they have been re - tuned

(hopefully), the basic assumptions of algorithms partially determine the results.

This is not a new observation. The book on the 4.3BSD UNIX Operating System

[Leff89] says:. "4.3BSO is not perfect. In particular, the virtual- memory system needs

to be completely replaced. The new virtual- memory system needs to provide

algorithms that are better suited to the large memories and slow disks currently

available, and needs to be less VAX architecture dependent."

For example, consider the global clock algorithm that was used in 4.3 BSO

([Baba81] and see discussion in [Leff89] Section 5.12). This algorithm is used in similar

systems such as SunOS and USL System V Release 4. Global clock is a commonly used

approximation of LRU. A variant of clock is also used in IBM's VM system [Tetz87].

Sprite uses clock for VM pages, but exact LRU for fi Ie system pages [Nels88]. Mach also

has a LRU approximation. It uses two queues of pages: active and inactive lists. FIFO

replaceme"nt is done on the inactive queue. Pages are moved from the active queue to

the inactive queue when the inactive queue is too small. Faults on inactive pages move

them back to the active queue [Youn89]. This is similar to clock in that it makes pages

vulnerable to page - out in a window, with a reference in the window preventing

page - out.

Basically as implemented in SunOS, the clock algorithm has two hands that move

together but are separated by some fixed number of pages. The anticipated need for

memory causes the hands to turn. The hands point to physical memory pages that are

conceptually arranged as a clock. Each physical page has a reference bit and a

modified bit. The front hand turns off the reference bit. A reference to a page causes

the hardware to turn on the reference bit. The back hand samples the reference bit. If

the reference bit has not been set, then the page is added to the "cached free" list. If

modified bit is set, the page must first must be cleaned by writing it to disk. Once the

page is added to the cached free list, its identity and contents are not lost. If the page

is needed (e.g., faulted) before it is used as a free page, it is removed from the cached

free list and used.

Note that this is an algorithm that is physical memory based: ~he only reference

data kept is for pages in physical memory. In addition, the amount of data is one bit or

less. When the page is not between the two hands, the value of the reference bit is

meaningless.

When everything fits, the clock does not turn. When the clock is not turning, no

sampling of memory usage is being done at all (almost). If there is sudden memory

XEROX PARC, CSL - 91 -7, September 1991

4 Virtual Memory Replacement Using Historical Information on Virtual Objects

demand, the system reacts by turning the clock. Extremely long - time - to - last

reference pages are not replaced if they are not near the clock hands. At high clock

turning rates, it takes only two seconds between the front and back hand examining a

page (using the SunOS 4.0 tuning parameters). If in this narrow window the page is

not touched, it is taken and made into a free page. At worst, this degenerates into

random replacement. In practice random replacement would not happen for all

pages, but it could happen for a good number of pages. In any event, the reference

history during the time when everything fit is lost.

Systems are tuned to make the clock turn slowly. For the DEC VAX (or at least for

the VAX - 11/780) this was important. There are no reference bits on the VAX. vmunix

(and the BSD UNIXes) simulates them by invalidating the page, taking a trap if the

page is referenced, and recording the reference [Baba81]. Using hardware with

reference bits, the cost of sampling pages is greatly reduced. On a SparcStation - 1,

turning the clock a few times faster than normal using SunOS 4.0 had a barely

noticeable change in system CPU time (as measured by vmstat). The default maximum

clock rate was tuned in SunOS 4.1 to be a factor of five faster than in SunOS 4.0.

Turning the clock "too fast" makes the system do page cleans (write of dirty pages to

the swap file) so it is not easy to get a good cost figure. The point is that turning the

clock quickly does not and should not cost t.oo much CPU time.

With larger memories and single user workstations, faults are by comparison much

worse now that 20 years ago. For a PDP - 10 . (late 1960's), it took about 30,000

instruction times to answer a fault. For a SparcStation - 2, a fault takes twenty times as

long, when measured in instruction times. Systems are getting more and more 1/0

~ound [Oust89]. On a time - shared PDP - 10, the time of a page fault was not lost:

other users would get the cpu. On a workstation, there are often multiple activities

running concurrently, but the interactive use of the machine determines how happy

the user is with it. A fault in the interactive software stops the machine as far as the

user is concerned. As our machines do not fault very much, a storm of faults is very

noticeable and very obnoxious. We tend to remember the storms and forget the

normally good performance. The variance is high and people do not like high

variance.

Systems are merging uses of physical memory [Abro89]. Before SunOS 4.0, the

SunOS virtual memory system and the file systems had separate, fixed - size pools of

physical memory to administer. For virtual memory bound or for file system bound

tasks, this was unfortunate since physical memory was not being used where it was

XEROX PARe, CSl- 91 -7, September 1991

3. Reference patterns 5

needed. SunOS 4.0 changes this by making one pool of physical memory from which

both the virtual memory system and the file system(s) compete [Moran]. (Some data

structures are allocated from kernel memory, but all buffer pool pages and virtual

memory pages are allocated from the same pooL) However, the clock algorithm is still

used to determine what page to evict when memory is needed. This means that

transient file system behavior that used to destroy the buffer pool but leave virtual

memory intact, now destroys buffering and caching of all physical memory. Typical

transient behavior that does this is by "greping" (searching for a pattern) a file that is

bigger than memory. SunOS 4.1 had some performance tuning so that some types of

clustering and sequential behavior can be told to the system as hints (madvise system

call) [McV091].

Other systems have used large physical memories to improve file system

performance. In Sprite, very large client memories are used. There is a soft boundary

between the file system and virtual memory pages. File system pages are artificially

aged to make better VM performance.

3. Reference patterns

Individual, isolated page faults are usually not a problem. Except for single

threaded, real-time applications, they influence the latency or throughput of a

system in a minor way. But, page fault storms do effect the system. Why do page fault

storms occur? By looking at the reference patterns, three types of non - LRU reference

behaviors emerged. The patterns are:

Periodic: An object or a page is used infrequently, but is re - referenced. The

period mayor may not be fixed. Examples: calendars (the author just had a 15 second

page fault storm opening his calendar), garbage collection, and receiving mail.

Sequential: When an object is used, it is read from the beginning to the end. This

is typical for files. Examples: grep of a large file, loading an image file to a

workstation, and playing ~ video segment.

Transient: An object is referenced for a brief time, then not again for a very long

time. Examples: grep of many files in a directory and listening to voice mail.

Periodic behavior, where the period is longer than the sampling time of the virtual

memory replacement algorithm, is not handled well by algorithms that approximate

LRU. References are so far apart that they are not noticed by the algorithms. For

sequential references, the page referenced previously is the least likely to be

referenced next. Transient references also are not good predictors of future

XEROX PARC, CSL - 91 -7, September 1991

6 Virtual Memory Replacement Using Historical Information on Virtual Objects

references .

. For all of these cases, the LRU assumption is violated: all of these types of

references are not LRU. Pages that have references that are periodic, sequential, or

transient app.ear to be better served by algorithms that replace pages in a MRU -like

fashion, while other pages are replaced LRU. The challenge is to discover these types

of reference patterns and integrate this information into the resource management

for memory.

Of these three patterns, the one that is most commonly recognized in current

systems is sequential. With sequential access, pre - paging or file system read - ahead

can be used to stream data in more efficiently by overlapping processing with reading,

and by accessing secondary or network file storage in larger pieces. Also, post

flushing of pages once they are used can get high bandwidth access to data in a fixed

buffer size (as opposed to polluting memory with transient data).

If LRU or Global Clock replacement is done for transient pages, then the transient

pages will evict other pages and will be retained in memory for a long time (as long as

the clock or LRU replacement takes (e.g., minutes».

Other access is periodic. In fact, the first virtual memory system, Atlas [Kilb62], was

built to principally handle periodic behavior. Array references in small memory systems

often are periodic (e.g., matrix multiplication).

For a synthetic example of periodic behavior, suppose that there are four equal

sized tasks that the user does periodically, yet there is only enough memory for three.

The user might edit, compile, load, then execute/debug cyclically. LRU, or its

approximation Clock, carefully does the optimally worst. For example, in the

execute/debug phase, it takes pages from the editor. The editor then must page in its

pages when execute/debug is done. All phases start with nothing in memory. The

system runs the same as if it had only one third the memory.

In some cases, MRU replacement is optimal. This has been shown in databases for

certain types of access (e.g., sequential) [Chou85]. Post - flushing pages in sequential

access is another example of MRU behavior. In the example above, if MRU between

phases is done for the edit, compile, load, and execute/debug example, out of every

three phases two start pre - paged. (Startup by loading the edit, compile, and load

phases. Execute/debug steals pages from load, so edit and compile start pre - paged.

Load steals pages from compile. Execute/debug and edit start pre - paged, and

compile steals pages from edit.) Note that true MRU replacement is not proposed: it is

the phases of the example that are handled MRU, not the pages inside of a phase.

XEROX PARe, CSL - 91 -7, September 1991

4. How to proceed 7

Notice that there is an essential conflict in behavior. There are the LRU pages and

the MRU -like pages. Pages that are being used periodically, sequentially, and

transiently are MRU -like, while LRU works well for all other pages. While it is

reasonable to compare MRU -like pages with other MRU - like pages and LRU pages

with other LRU pages, it is unclear howto compare MRU -like pages with LRU pages.

4. How to proceed

One standard way to proceed it to measure existing systems, propose different

algorithms and build models, and simulate using trace driven simulation. Algorithms

should be proposed without regard for the execution cost. It is the abstraction that is

important, not implementation. Either hardware changes or clever implementations

might be found for algorithms of merit. Finally, proposals for good, efficient

implementations should be made.

4.1 Measurement

Briefly, the method of measurement is very simple. First, detune the operating

system so that it is forced to sample page references and modify data more often. For

SunOS, this was done by speeding up the clock and forcing it to turn (e.g., use adb to

patch the kernel IS constants). Second, periodically read the kernel data structures for

physical pages (or virtual pages if that is easier) from a user -level process. Record the

reference and modify bits to a disk file for all pages for all virtual objects. Write trace

data bitmaps for all active objects. For SunOS, the kernel was also recompiled with the

IITRACE II option. This allows the monitoring code to track the use of the swap area so

that faults can be distinguished from zero filled pages.

The period between samples was set at five seconds. Each interval is called an

epoch. Combined with the clock turning rate, this leads to a granularity of 5 - 10

seconds in the trace data. But it takes minutes of inactivity to evict a page using LRU

for memory sizes that are common today using the traces obtained. Hence, the

coarseness of the 5 second sample ti me is not very important.

4.2 Simulation

A simulator for mUltiple virtual memory algorithms and for this trace data has

been constructed. Global Clock, LRU, Atlas, Random, and MIN were all programmed,

as were two new algorithms that will be described in section 4.3

For each epoch, the normal way to simulate was to pretend that the references

XEROX PARC, CSL - 91 -7, September 1991

8 Virtual Memory Replacement Using Historical Information on Virtual Objects

occurred in the order that they showed up on the trace. To verify that this ordering did

not have a great impact, randomization of the ordering was also done. This did not

produce any significantly different values from the simulation.

The Glo~al Clock algorithm was discussed before. The simulation for it collects all

the references for a 5 second epoch. It then proceeds in 1110 of a second subintervals.

In each subinterval it applies 1/50 of the references of the interval. Based on the

references, it may decide to turn the clock. The rate of turning is computed by the

clock algorithm.

Atlas is the algorithm used in the Atlas computer [Kilb62]. This was the first virtual

memory machine. It is primarily concerned with periodic behavior.

LRU is Least Recently Used. The granularity of LRU is the epoch size.

Random selects a page to replace at II random."

MIN is minimum number of faults possible [Bela66]. It requires knowledge of the

future. Thus it is not a practical algorithm, but useful for reference. It is optimal.

4.3 Proposed Algorithms

4.3.1 SPT

The first new algorithm attempts to detect periodic, sequential, and transient

behavior (SPT). Every epoch, SPT builds two heaps. SPT detects sequential, periodic,

and transient behavior by processing historical reference data for pages of virtual

objects. For periodic and transient detection, the reference string of a page is broken

in II reference runs" and II unreferenced runs". A reference run starts with a page

reference and continues until the page is not reference for six epochs. The first page of

the six becomes the first.page of the unreferenced run. The period is computed as the

number of epochs between the last two reference runs. Pages from this detection are

put into a heap that is ordered by the absolute value of the expected time to next

reuse (the next - time heap). Pages with the longest time to reuse are taken first. Note

that this achieves MIN paging behavior provided that sequential, periodic, and

transient behavior are correctly recognized. All other pages are added to a different

heap (the LRU heap). These pages are ordered by the last touch time where pages that

have not touched longest are taken first (LRU). Various ways to choose between the

two heaps have been tried. The current algorithm is:

take very, very old LRU pages first (30 epochs)

take pages alternately from the two heaps while there are somewhat old pages

in the LRU heap (15 epochs)

XEROX PARC, CSL - 91 - 7, September 1991

5. Measurement and Simulation

take all the pages from the next - time heap until it is empty

take pages from the LRU heap

9

No claim is made that this is the best that can be done! Of a dozen or so alternatives, it

did the best an the trace data. Various setting for the constants in the algorithm were

explored, with the values reported here (6, 30, and 15) working well together. Much

more extensive work is needed to fi nd better algorithms.

4.3.2 Cluster LRU

The second algorithm was to approximate LRU over clusters of memory (Cluster

LRU). Simulation showed substantial differences between Clock and LRU. Differences

of 10 - 40% were common. We speculate that the causes for these differences have

always been present between clock and LRU, but were secondary effects. With large

memoriesthe secondary effects are becoming noticeable.

Cluster LRU works as follows. A somewhat detailed history of usage is kept per

page. It is assumed that acquiring this data is very cheap (e.g., block move of the

reference bits from the TLB). When a page is needed, a set of pages (a cluster) is

examined. The clusters are fixed in size and are a contiguous run of physical pages.

The page that is least recently used in the cluster is the victim.

Rather than building a heap for all memory as in LRU, only a restricted subset of

memory (a cluster) is examined. Usage data per cluster is examined only when a page

is needed. This avoids the cost of maintaining a global heap for all of memory. Also,

only when pages are actually needed does any significant processing need to be done.

Good results were obtained with a cluster size of 16.

Simulations indicate that cluster LRU closes the gap between global clock and LRU.

While not quite as good as LRU, it is much better than clock. It also has the potential

for a reasonably fast implementation.

5. Measurement and Simulation

Several traces were taken of workstations where users were trying to use their

machines aggressively. That is, the traces were not of people reading their mail, but

rather of situations where the user was trying to push the system. All of the traces

were taken under SunOS 4.1. The three traces are designated "A," IIB,II and IIC"

below. These traces used window systems, editors, compilers, linkage editors, grep,

large "ls" and IIfind" commands, and simulation executions.

Traces were then run through the simulator. Figure 1 shows the number of

XEROX PARC, CSL - 91 -7, September 1991

10 Virtual Memory Replacement Using Historical Information on Virtual Objects

simulated faults for Trace A. LRU - 16 is Cluster LRU with a cluster size of 16. Random

does random replacement of memory. Atlas is the algorithm from the Atlas system

[Kilb62] and is included since it only cares about periodic behavior. All of the traces are

on SUN Sparcstation - 1's which have 4K pages.

Of course, MIN is the best. Note that SPT, LRU, and Cluster LRU all perform much

better than Clock. Clock is much better than Random. Also note that Atlas has very

bad performance, particularly for large memories. Probably the reason for this is that

Atlas was built to react to periodic behavior in the reference string, and this did not

work well for large memories.

SPT, LRU, and Cluster LRU are all betterthan Clock, but how much better? The raw

number of faults does not tell the story. MIN is the best one can do. How much does

SPT or LRU close the gap from Clock to MIN? Figure 2 shows the percentage of faults

SPT, LRU, and Clock takes over those of MIN (MIN would have a table entry of all

zero's). Small numbers are good. Figure 3 shows the decrease in the number of faults

by SPT and LRU from Cloc.k, expressed as a percentage of the number of MIN faults. At

first this may seem like a strange statistic, but it is a very fair way to show how much

better SPT is. MIN is the best you could do with knowledge of the future, and SPT

covers 20% to 50% of the gap from Clock to MIN. Although SPT is consistently better

than LRU, the difference is small compared to how much better either is compared to

MIN.

One interesting observation is that the most useful improvement occurs at

moderate memory sizes. One possible reason for this is that small memories will force

the clock to turn quickly. Short - term demand is still very important, and Clock does

fine for short term demand. On the other end of the graphs, with very large memories

the traces did not stress much of the system. The fault rates are so low that

improvement is hard and not too beneficial.

Figures 4, 5, and 6 present the results Trace B. Note that the axis of the graphs are

sometimes different. The traces used different total number of pages, so that the

interesting parts of the curves are at slightly different values. MIN achieved a stable

value over 6,000 pages for Trace B, so it was questionable to simulate much higher

memory sizes. Also, the maximum number of referenced pages per interval is

different, so different minimum number of pages are used.

Trace B shows the same basic pattern: SPT, LRU, and Cluster LRU are all better than

Clock. The results are mixed about whether LRU or SPT does better. It's a tossup.

Trace C (Figures 7, 8, and 9) used even fewer pages. But again, SPT, LRU, and
'"'

XEROX PARC, CSL - 91 -7, September 1991

6. Implementation of Cluster LRU 11

Cluster LRU are all better than Clock. However, the gap between them is smaller than

in the other traces.

Measurements of a user's perception of a system are harder to make than simply

counting fal:Jlts. To approximate the "variance" that a user would see, the five

intervals with the highest number of faults were computed for Trace A for MIN, Clock,

SPT, and LRU. These are scaled to MIN and presented in Figure 10. The results are

about the same: SPT does a little better than MIN, and both do significantly better

than Clock.

While it is impossible to make general statements based on trace data, the

following conclusions are supported by the traces and simulations:

SPT, lRU, and Cluster LRU are all better than Clock

Cluster lRU with cluster size 16 is close to LRU. The difference between Cluster

lRU -16 and LRU is many times smaller than the difference from lRU to

Clock.

SPT sometimes achieves a few extra percent improvement over LRU, but this

improvement is not always apparent.

Clock does much better than Random.

Atlas does not perform well.

Given the potential for improvement, how can this be realized? The next section

shows how hardware and software can cooperate to implement Cluster LRU.

6. Implementation of Cluster LRU

There are two parts to the implementation. First, the system has to be monitored

so that historical information about page references is kept. Second, based on this

data both SPT and cluster LRU have to be implemented. Of these, cluster lRU seems to

be the harder and will discussed here. SPT can use page faults to detect sequential

behavior and can do periodic and transient detection based on the historical

information about page references.

In this section, the system of choice is loosely based on the SparcStation - 1. This

system .takes the RISC idea to the extreme with its Translation lookaside Buffer (TlB)

design, which they call Hardware Address Translation (HAT). A TLB is a cache that

maps virtual addresses to physical addresses when the processor takes an instruction or

data cache miss. Details of the HAT are SUN proprietary, so this discussion is based on

what is non - proprietary (for example, from [lrla90].) The features of interest of the

XEROX PARe, CSl- 91 - 7, September 1991

12 Virtual Memory Replacement Using Historical Information on Virtual Objects

HAT are:

probes that miss the HAT cause a trap to the operating system (in true Rise

fashion)

on a trap, the operating system fixes up the HAT, possibly including flushing a

line to mak~ room for a new entry, then restarts the instruction

entries in the HAT are lots of pages wide, each with a valid bit

pages in the HAT have reference bits; the hardware sets these bits without

trapping

With this design, one thing that is desirable is a fast way to get a copy of all the

reference bits and to clear all the reference bits. This possibly can be done by use of

video RAM. The HAT is so large (thousands of page entries) that executing even a

modest number of instructions per entry every five seconds would have a high

overhead. A hardware implementation of a TLB would have to provide similar

features.

Suppose that the kernel read and saved a copy of the bitmap of references from

the HAT. While a line stayed in the HAT, the only overhead for sampling would be the

interrupt every five seconds to get a copy of the reference bits and clear the reference

bits. An interrupt every five seconds plus just a bit of processing is nearly free.

Based on HAT addres,s, a history of reference is kept by the above. Note that the

kernel can have full knowledge of what is in the HAT since it put it there; the HAT is a

software maintained cache used by the hardware. With a properly sized HAT, lines

remain in the HAT for extended periods. A steal has to happen when a line is needed

and there are none free. If the HAT line size is a simple mUltiple of the word size (e.g.,

32 or 64 entries per line), then the reference data from the HAT has to be copied to a

data structure associated with the virtual pages correspond ing to the HAT Ii ne. If this is

word aligned, does not have too deep a history, and is an integral number of words,

copying the reference data should present no major performance problem. After

some number of 5 second samples, a set of them should be compressed to a single

sample (say to make 2 minute samples). Only a few hours of history are needed, so the

storage cost of this is reasonable.

Consider how cluster LRU would work. A cluster size would be chosen, say 16

pages. When a page is needed, the current cluster is examined. For each page, the

reference data is kept with the HAT reference data (if the page is currently in a

mapped line) and/or with the virtual page data. Physical pages with multiple virtual

mappings would have to interrogate all mappings to find the least recent one. While

XEROX PARC, CSL - 91 - 7, September 1991

7. Conclusions 13

this does take some time, the time is only when a page is needed. Normal system

operation when everything fits is nearly unaffected. When a page is needed,

examining bitmaps for 16 pages does take sometime, but it is not all that long. A mask

has to be constructed and probed against a bitmap. Only a few instructions are

needed per probe and only a few tens of probes are needed per page. Suppose that

the averages were 3 instructions per probe and 15 probes, then 45 instructions would

be needed for the loop. Adding a few instructions for the mask generation gives 50

instructions per page. With 16 pages per cluster, that is 800 instructions. On a 12 MIP

machine, that is 60 microseconds. Note that this is nearly three orders of magnitude

faster than a page fault time. 800 instructions is also comparable with the number of

instructions to issue an I/O on many systems (and a small fraction of the number of

instructions to issue an I/O on some systems). 800 instructions is an acceptable

overhead.

This section has shown that straightforward TLB design can lead to low cost

reference data collection. With this data, cluster LRU is strai.ghtforward to implement

at reasonable performance.

7. Conclusions

Large memories require new strategies for page replacement. Both large memory

personal workstations and very large memory server and time - shared machines

should not run Global Clock. Better memory resource management is possible based

on histories of reference data.

Our measurements show that existing memory management does not perform

acceptably on sequential, perrodic, and transient references. These types of references

are MRU -like in nature, not LRU. They can cause page fault storms. This leads to high

variance in the performance of the system or to consistently poor performance.

This paper presented two new algorithms for memory management. The

algorithms seem to provide significant improvement over existing approaches. Faults

decrease approximately 10 - 40% in the range of interest for the memory traces.

About one third of the gap between Global Clock and MIN is closed by the new

algorithms.

We believe that our designs are practical and feasible. With small hardware

changes from an existing product, the hardware and operating system can cooperate

to obtain historical reference information. The overhead for obtaining the reference

data is low. The cost of victim selection is reasonable.

XEROX PARC, CSL-91-7, September 1991

14 Virtual Memory Replacement Using Historical Information on Virtual Objects

This work has focused on a single operating system and hardware base. To

validate this work, other operating systems, other benchmarks, and other hardware

must be studied. The algorithms proposed in this paper are only two of a large class of

algorithms. Other algorithms should be studied.

Nevertheless, we feel that our results are broadly relevant across architectures.

With the continued, projected growth of memory sizes, the problems addressed in this

paper will likely become the dominant problems in memory management.

References

[Abro89] V. Abrossimov, M. Rozier, and M. Shapiro, Generic Virtual Memory

Management for Operating System Kernels. Proceedings of the Twelfth Symposium

on Operating Systems Principles. Litchfield Park, Arizona. Dec. 1989 (Operating

Systems Review, Vol. 23, No.5).

[Baba81] O. Babaoglu and W. N. Joy, Converting a Swap - Based System to do Paging

in an Architecture Lacking Page - Reference Bits. Proceedings of the Eighth

Symposium on Operating Systems Principles. Pacific Grove, California. Dec. 1981

(Operating Systems Review, Vol. 15, No.5).

[Bela66] L. Belady, A study of replacement algorithms for a virtual- storage

computer. IBM Systems Journal. Vol. 5, No.2, 1966.

[Chou85] H. Chou and D. DeWitt, An Evaluation of Buffer Management Strategi.es

For Relational Database Systems. Proceedings of the Eleventh International

Conference on Very Large Data Bases. Stockholm. August, 1985.

[Gingell] R. Gingell, J. Moran, and W. Shannon, Virtual Memory Architecture in SunOS.

. SUN White paper.

[Irla90] G. Irlam, A Guide to Sun - 4 Virtual Memory Performance. SUN - Spots Digest

(an electronic mail digest). Vol. 9, Issue 257 (July 12,1990)

[Kilb62] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner, One- Level

Storage System. IRE Transactions on Electronic Computers. Vol. EC -11, NO.2.

(April, 1962)

[Leff89] S. J. Leffler, M. K. McKusick, M. Karels, and J. Quarterman, The Design and

Implementation of the 4.3BSD UNIX Operating System. Addision - Wesley, May,

1989.

[McVo91] L. McVoy and S. Kleiman, Extent -like P.erformance from a UNIX File

System. Proceedings of the Winter 1991 USENIX Conference. Dallas, Jan. 1991.

XEROX PARC, CSL - 91 -7, September 1991

References 15

[Moran] J. Moran, SunOS Virtual Memory Implementation. SUN White paper.

[Nels88] M. Nelson, Physical Memory Management in a Network Operating System.

PhD thesis, University of California, Berkeley, Report Number UCB/CSD 88/471, Nov.

1988.

[Oust89] J. Ousterhout and F. Douglis, Beating the I/O Bottleneck: A Case for Log -

Structured File Systems. Operating Systems Review. Vol. 23, No.1. (January, 1989)

[Tetz87] W. Tetzlaff, T. Beretvas, W. Buco, J. Greenberg, D. Patterson, and G. Spivak, A

page - swapping prototype for VM/HPO. IBM Systems Journal. Vol. 26, No.2, 1987.

[Youn89] M. Young, Exporting a User Interface to Memory Management from a

Communication - Oriented Operating System. PhD thesis, Carnegie Mellon

University, Report Number CMU - CS - 89 - 202, Nov. 1989

XEROX PARC, CSL - 91 -7, September 1991

Figure 1: Trace A: Simulated Number of Faults
Simulated faults x 103

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

~ \

" \ ,

\ \

'. \
\ .•..•

,. \ '. , \
~"..... \
~, '. \
,~.... "
"\ ".

" '. , ,:\. ,
" ,

" ,
' ... -, , '" .••••. " ..

~ .. ~ " -.. " ... " , ,
.. ~

.... ~ .. ,

'"
...

~
" ~

.........

\

"' , ,
..... ,
~ ,

......., ..
....

.........
'. '. '.

~ '. '. ~ ...
' .. ~ " ~~

~

" " ,
" " " .•...

......•

~ .. " .. ~••........

"
"

....

......
......

"

.......

~~ .,
.... ~

- -

MIN
cioci(····
SW---
LRU- -
LRU=i6
Random
Atlas -

3.00 4.00 5.00 6.00
PhYSICal Memory Pages x 103

7.00

Percent Over MIN

130.00

120.00

110.00

100.00

Figure 2: Trace A: Percent Over MIN

~~
I{

\ /
/ \
~ ---r----,--

/' , ,

Clock
SFf-·-'·
LR((-

90.00

80.00 /,-
' , , ,.

...~, ' .' , .. ' . ,..- .- ,
"."" .. ioo" ,. ,

" ". ,

70.00

60.00

V
, , ,

" , , .. , ,.

"
.' .. '

, .' , .' , .' , ,. , .. -, .' , . .' .. '
50.00

40.00

30.00

I
20.00

10.00

0.00

I
3.00 4.00

, .. , '

5.00 6.00

... ,
" .. , -.. " .. , -.. ' •• ,. -. -. -.

-~

\,
"\

\

PhYSICal Memory Pages x 103

7.00

Figure 3: Trace A: Percent Better Than Clock Scaled To MIN
Percent Better Than CIQCk Scaled To MIN

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

/
r-\ /

/ r'-'" ,~ V
~

II \\ I
~

I
. · · · . . .

./" 1/
/ "'-1/
..... 10.···········

3.00 4.00 5.00

'V
.. : . .
" ..

6.00
PhYSICal Memory Pages x 103

7.00

Figure 4: Trace B: Simulated Number of Faults
Simulated faults x 103

\ MIN
75.00 ------'.f-----f------+------+---- Ciock····

'. 1\ s'PT---
70.00 -~.\ ----++\------..-----+-----+--- LRU --

65.00 ----1.<-. --~\..-----+----___t-----+---- LRU=i6
~ \ \ Random

~.OO--~~~·~--+--~\,----~--------~--------~--~--Atlas -
"\ \ \
~ \ \ 55.00 - \~.--+---\-, ---+------!-----+----

" \ \ " ~ \ 50.00 ---r..'~-+.-+------l.k----+-----+------I-----, . , .. \
'\ .
,_\ ... \ 45.00 --...."tft\~"~ .. -+---+--,-+------~----+----
\~\\ \
';l. .. \ 40.00 ----..:;;,~"T"' \"~' -----\--+-----~----+----4-

'\ ,1\ "
\\ ~\ " 35.00 ----T1\'~~':-.... -----~-\------+------+-----

\ ":, ". \
30.00 -,.\----+...-"l''''r\-;.~~--+---\---+-----+-----

'" 'o"
',\.. \. ' 25.00 --+\-_+--.u,'&-~-:.:-... S\r,,-+------*r-'--~----+----,,'. ,

'\. •.... '
20.00 ---~~-+---~,~ ~ .. -... -. ~--=-_-.. t--... ,-,-_--+----

~ r~·····.. ,- __
15.00 ___ --+-~~----+--s~'.,""'=" .. -... -... -+---.....,'-..... -+---'""'o-

10 00
~ -:::............. ~ - -. ----+----~~~~----~~-~.~~~ .. ~ .. ~ .. -... -.. ~---
~ ----=.:::::.

5.00 ----+--------I-----~----+-----

0.00 ----+-------+-----4-----+------

3.00 4.00 5.00
PhYSICal Memory Pages x 103

6.00

Figure 5: Trace B: Percent Over MIN
Percent Over MIN

130.00

120.00

110.00

~
~

~
..

100.00
.. ..

90.00

80.00

.. -~ .. '. ..
".

..
................ :"

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

3.00

\
\

\
\

.';-~

\
'

'
". "'-.. -. \ --. ,

' ... -.. ' .. \ -., .. ~ -,
.~"

~
\

1\ \
~
~

"-
"-

"-,
'" ,

' ...

1\
'\ ,

"

"""

Clock
SPT-_·_·
Lii'O--

4.00 5.00
PhYSICal Memory Pages x 103

6.00

Figure 6: Trace B: Percent Better Than Clock Scaled To MIN
Percent Better Than Clqck Scaled To MIN

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

/ \

I \
/ .' '. \ ... - "" . - " . . "

.•. '

3.00

'. .~

1\
~ -'.

........ ~
........... V \

\
~

'"

4.00 5.00
PhYSICal Memory Pages x 103

6.00

Figure 7: Trace C: Simulated Number of Faults
Simulated faults x 103

" \ ~
10.00 -.----t----,,~---f__--_+_---+__--_+_- Ciock····
9.50 .. r'\ ~ sW---

.. "\ " ... LRU--
9.00 --.:.j-----I-~~,~---f-----+----+---

\ - \ '-. [Ifu=16
8 · " ' .50 -\r-~--+ -•• ---+--~:-\--+-_"r--,---+----+__--~- Random
8.00 \"\ .. \" Atlas -

\, \ \" \" 7.50 -~\""'I'r-----'-r.-. ---I-----j-1-\----+-~---+----~-
\1'\ \. .. " ...

7.00--~~,~\-~ .. ~---~~\--~--~\---+---
\\ .. \

6.50 ---+-~,"'-'" .. ~-~---=l'E-... -•• ---+---.-\ -~--~--=-\--+---
", ••..•. " " 6.00 ---+---,-,;:w--":t~-~ ~.:--... -•. --+---~,~---+--~,--+--

...... ~ ". \ 5.50 -"""",-=---+----+--~, ~~ .. ---i---,:----+---~~-''-. ... '--..... \
500 ' !~, , . --~~~---+----t--~_~~~ .. -i--... -... ~ .. ~_~~~ --~\+---

~ .. -:,: ;.---.... "~''''''
4.50 --T--IF=::::=F===t==:-:: $~~.-;;-~ .. ~:$.~~
4.00---+------I~---+----i----~---+---

3.50 ---+------I~--_+_---i__--__+_---+__-

3.00 ---+-------i----f---__ f__----+----+__-

2.50 ---t------I-----+----t----~---+__-

2.00---t------I-----+-----t-----r---+---

1.50 ---t------I-----+----t----~---+__-

1.00--~------i----+----f-----+----+---

0.50 ---t------I----+----i__---r---+__-

O.OO----+-------I-------+----f------+----+-----

2.50 3.00 3.50 4.00 4.50
Physical Memory Pages x 103

5.00

Figure 8: Trace C: Percent Over MIN
Percent Over MIN

60.00

55.00

50.00

\
\
\

\ \ \
\

\
\

45.00

40.00

35.00

30.00

\ \
\

\
,

\ , \ ... \ .
\

\ ",
\
\
\ ... , ,

o. ,

\~, ... ;.. , .
" ••.. ; , .

\ °

" ' '. , '.

25.00

20.00

15.00

10.00

5.00

0.00

, '0
r\ ' ° ,\ ,0,

, '.

.\ , .. ,0. ,0.
"

\~ / \ 1\ ,
' \,~ ~

\ '" '.' '.' '.' .. ~.~
'0' \ '.~., -.' -.. . ,. -,.

.~ \
~,

~
~'1 ---

Ph ysical
2.50 3.00 3.50 4.00 4.50 5.00

Clock
SPT----·
L"R((-·

Memory Pages x 103

Figure 9: Trace C: Percent Better Than Clock Scaled To MIN
Percent Better Than Clc;>ck Scaled To MIN

30.00

28.00

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

\
\

... \ '
"\\

~

\\
\
\
\:
V" J ~
\ .•.. \ / \ \. '.

\\, / \
~\ I \

~" I \ ".
\ Ii \ /

\J
,
~ ..
\ . , .

Ph ysical Memory Pages x 103

2.50 3.00 3.50 4.00 4.50 5.00

Figure 10: Trace A Average For Worst 5 Intervals Percent Over MIN
Percent Above MIN

150.00

140.00

130.00

120.00

110.00

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

I
I

I
. , . . .

I . . · · · ·
/ ,

, . , ,
t'

" 0'

I
... / I,

I'
.... I,'

I
/ .,

I,
.t I' , ,

..•........... I' -, --- - , , I , , , , , , , , , , ,

~---------'
,

I

I

:~ ... -- , .
I , ,

.... ' ''' .. .
"w·· . . , ,

' ... :-
''':

I~"- ----I' i .. ~ "' --- , , , ..
.. " ""

I

, , ,
, ,

, ,
, . . , . ,

.... ""

,
MIN

Ciock"
sPf--
Lita-

3.00 4.00 5.00 6.00
PhYSICal Memory Pages x 103

7.00

JJ
o
CT

~
~
:I:
III
(Q

3
III
~
~

