
. Using Collaborative Filtering to Weave an

. Information Tapestry

David Goldberg, David Nichols, Brian Oki, and Douglas
Terry

Using Collaborative Filtering to Weave an Information
Tapestry

David Goldberg, David Nichols, Brian Oki, and Douglas Terry

CSL-92-10 September 1992 [P92-00156]

@ Copyright 1992 Xerox Corporation. All rights reserved.

XEROX Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

Using Collaborative Filtering to Weave an
Information Tapestry

David Goldberg, David Nichols, Brian Oki, and Douglas Terry

CSL -92-1 0 September 1992

© Copyright 1992 Xerox Corporation. All rights reserved

Abstract: Tapestry is an experimental system that manages an incoming stream of electronic docu
ments, including electronic mail, news wire stories and NetNews articles. In common with some
recent mail systems, Tapestry uses filtering to cope with large volumes of incoming documents.
Where Tapestry differs from these systems is in its philosophy that humans provide the most reliable
evaluation of documents, and so it uses collaborative filtering, which it implements by having users
annotate documents, and then allowing filtering using those annotations. Because annotations are not
known at the time that documents arrive, Tapestry filters must not only test incoming documents, but
must also run repeatedly over the entire database of documents. This paper is a report on the Tapestry
design and the status of its implementation.

A version of this paper will appear in Communications of the ACM, December 1992.

CR Categories and Subject Descriptors: H.2.4 [Database Management]: Systems - Query pro
cessing; H.2.8 [Database Management]: Database Applications; H.3.4 [Information Storage and
Retrieval]: Systems and Software - Current awareness systems (selective dissemination of informa
tion-SDI).

Additional Keywords and Phrases: continuous query, infonnation filtering, active database, query
rewrite, bounding monotonic query, incremental query, query language

XEROX Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

Introduction 1

1.0 Introduction

Tapestry is an experimental mail system developed at the Xerox Palo Alto Research center. The
motivation for Tapestry comes from the increasing use of electronic mail, which is resulting in
users being inundated by a huge stream of incoming documents [2][7][12]. One way to handle
large volumes of mail is to provide mailing lists, enabling users to subscribe only to those lists of
interest to them. However, as illustrated in Figure 1, the set of documents of interest to a particular
user rarely map neatly to existing lists. A better solution is for a user to specify a filter that scans
all lists, selecting interesting documents no matter what list they are in. Several mail systems sup
port filtering based on a document's contents [3][5][6][8]. A basic tenet of the Tapestry work is
that more effective filtering can be done by involving humans in the filtering process.

In addition to content-based filtering, the Tapestry system was designed and built to support col
laborative filtering. Collaborative filtering simply means that people collaborate to help each
other perfonn filtering by recording their reactions to documents that they read, such as the fact
that a document was particularly interesting (or particularly uninteresting). These reactions, more
generally called annotations, can be accessed by others' filters. One application of annotations is
in support of moderated news groups. Currently, moderated groups have a single moderator, who
selects a subset of messages to be posted to the moderated group. With annotations, a group can
have many moderators. To see the newsgroup as it would be moderated by (say) Smith, simply fil
ter for those articles that Smith endorsed with an annotation.

Implicit feedback from users, such as the fact that some user sent a reply to a document, can also
be utilized in the filtering process. For example, suppose that you would like to receive "interest
ing" documents from the NetNews newsgroup comp.unix-wizards in the mail, but you don't
know how to write a search expression that characterizes them, and you don't have time to read
them all yourself. However, you do know that Smith, Jones and O'Brien read all of comp.unix
wizards, and reply to the more interesting documents. Tapestry allows you to filter on "documents
replied to by Smith, Jones or O'Brien."

Collaborative filtering is novel because it involves the relationship between two or more docu
ments, namely a message and its reply, or a document and its annotations. Unlike current filtering
systems, Tapestry filters cannot be computed by simply examining a document when it arrives,
but rather require (potentially) repeatedly issuing queries over the entire database of previously
received documents. This is because sometime after a document arrives, a human (say Smith)
may read that document and decide it is interesting. At the time he replies to it (or annotates it),
you want your filter to trigger and send you the original document.

Tapestry is more than a mail system, because it is designed to handle any incoming stream of elec
tronic documents. Electronic mail is only one example of such a stream: others are news wire sto
ries and NetNews [10] articles. Moreover, Tapestry is not only a mechanism for filtering mail, it is
also a repository of mail sent in the past Tapestry unifies ad hoc queries over this repository with
the filtering of incoming data.

A typical scenario of Tapestry system usage is as follows. A user decides she is interested in "mail
filtering." To find documents on this topic, she issues an ad hoc query, perhaps by searching for
the keyword "filtering". This returns too many documents. She eventually discovers that search-

XEROX P ARC, CSL-92-10, SEPTEMBER 1992

2 Using Collaborative Filtering to Weave an Infonnation Tapestry

Figure 1.
(a) electronic mall overload
(b) using distribution lists
(c) conventional filtering
(d) collaborative filtering

(d)

XEROX PARC, CSL-92-10, SEPfEMBER 1992

Architecture 3

ing, either for documents containing both "infonnation" and "filtering", or for documents contain
ing "filtering" that received at least three endrsements, works much better. Having tested this out,
she now installs this search as a query filter, and from now on, all new documents satisfying this
filter will be delivered to her mailbox.

The rest of this paper discusses the design and implementation of Tapestry. Section 2.0 gives an
overview of the Tapestry architecture; section 3.0 discusses TQL, the Tapestry query language
used for specifying filters; and section 4.0 gives the details of the repeated execution of filter que
ries. Then section 5.0 details the existing Tapestry implementation.

2.0 Architecture

Figure 2 shows the flow of documents through the major architectural components of Tapestry.
These components are:

• Indexer. Reads documents from external sources such as electronic mail, NetNews, or news
wires and adds them to the document store. The indexer is responsible for parsing documents
into a set of indexed fields that can be referenced in queries.

• Docunzent store. Provides long tenn storage for all Tapestry documents. Also maintains indices
on the stored documents so that queries over the document database can be efficiently exe
cuted. The document store is append-only.

• Annotation store. Provides storage of annotations associated with documents. The annotation
store is also append-only.

• Fitterer. Repeatedly runs a batch of user-provided queries over the set of documents. Those
documents matching a query are placed in the little box of the query's owner.

• Little box. Queues up documents of interest to a particular user. Each user has a little box,
where documents are deposited by the filterer and removed by a user's document reader.

• Remaiter. Periodically sends the contents of a users's little box to the user via electronic mail.
This is intended for users who which to access Tapestry with their current mail reader.

• Appraiser. Applies personalized classification to a user's documents, i.e. to those documents in
the user's little box. This function can automatically prioritize and categorize documents.

• Reader/Browser. Provides the user interface for accessing Tapestry services. This includes
facilities for adding/deleting/editing filters, retrieving new documents, displaying documents,
organizing documents into folders, supplying annotations, running ad hoc queries, etc.

Tapestry uses a client/server mode1. Two styles of interaction with the server are envisioned. The
preferred mode of interaction is via a reader/browser which provides users with easy access to the
full range of filtering and annotation functions. Users that do not want to, or are not able to, use
the Tapestry browser can access Tapestry services from a conventional mail reader by having a
remailer daemon send documents that match a user's filters to the user via electronic mail. Users
can also send mail documents to the Tapestry server to invoke any of its operations, such as add
ing filters, adding annotations, and even running ad hoc queries. The Tapestry architecture is flex
ible about the location of the client/server split. Figure 2 illustrates one possible division.

XEROX P ARC, CSL-92-10, SEPTEMBER 1992

4 Using Collaborative Filtering to Weave an Information Tapestry

Figure 2. The flow of documents through Tapestry

Documents

Indexer

1
f Annotatio~ ~
~+",---.....,

~ ~
I Filterer

~

f ~:!e L-I R=ruler I
Server ~. .

u''-----:-------'' .. ---''''--'' .. '''.w,--'--'····'--''l·-··'·-----···'''··-··,····,--,·---······--,··,--··,,··,······-.---··t'··-.···,··,· -. "N-.-. ."N •. ,...... w.·.·.·.·-.--.-.·.·.·

Oient ..
Appraiser Appraiser

Tapestry Mail Reader
Browser

"'---

I

Most of the Tapestry architecture follows naturally from the goal of providing collaborative filter
ing. For example, to support filters involving relationships between documents, there must be a
document store. In order for users to communicate their ratings of documents, annotations are
provided. The following subsections provide a more detailed rationale for some of the architec
tural components.

2.1 Document And Annotation Stores

Ideally, the Tapestry store will save documents forever. With the decreasing price of disk storage,
this is becoming increasingly practical. As will be explained in section 4.0, documents as seen by

XEROX P ARC, CSL-92-10, SEPTEMBER 1992

Architecture 5

the filter query language must be immutable. This means that once a document arrives in the doc
ument store, it is never modified. Thus Tapestry documents can be conveniently stored using
newer technologies such as WORM (write-once, read-many) disks.

Annotations are stored separately from documents, with links connecting each annotation to its
associated document. It might seem more natural to combine documents and annotations into a
single store, with the annotations to a document appended as additional fields. There are several
reasons why this was not done. First, since annotations for a document arrive after the document
itself, appending annotations as additional fields would violate the immutability requirement. Sec
ond, some annotations are themselves complex objects, and those annotations are more simply
stored as separate records with pointers back to the document they annotate. The issue of complex
annotations also arises in the Tapestry query language (see section 3.2).

2.2 Appraisers

Tapestry users want more than a binary sieve that can only accept or reject a document. For exam
ple, a user might want to assign priorities to messages, giving messages that announce meetings a
higher priority than messages that announce promotions. And it would be handy to be able to
change priorities. For example, the arrival of a message containing an update about a meeting
(perhaps announcing a new meeting room) might cause the previous announcement to be given a
lower priority, but probably not deleted, since it may contain details not repeated in the updating
message.

To support classification of documents, Tapestry provides appraiser functions. Fitting appraisers
into the overall architecture is not completely straightforward. At first it would seem simplest to
run each user's appraiser on the server as documents arrive. However, this has a potentially seri
ous drawback. Filtering on incoming documents is a very computationally intensive task. Imagine
a Tapestry system with hundreds of users, each with dozens of filter queries, running on a docu
ment stream of tens of documents per minute. Running appraisers directly on the incoming docu
ment stream would put them on the critical performance path. To avoid this, the Tapestry
architecture performs filtering in two steps. The first level of filtering is performed by filter que
ries, which are binary: they either accept or reject a document. The accepted documents for a user
are then placed into that user's little box. The second level of filtering is done by appraiser func
tions that run only over the contents of the little box. Unlike the "big box" (the global Tapestry
database), the little box will have few enough messages to allow them to be copied to the worksta
tion. This allows the users's mail reading program or browser to provide more complex appraiser
functions than could be supported in the server.

2.3 Browsers

The Tapestry architecture supports browsers that combine the functions of a mail reader and a tra
ditional document browser. Corresponding to the role of mail reader, such a browser should sup
ply "new mail" functionality. The server supports this by delivering the results of filter queries
(new mail) to the little box, leaving it up to the client to remove the results. Browsers periodically
run the appraiser over the documents in the little box, record their document identifiers, and then
delete them from the little box. Ad hoc queries are another way to get documents into the browser.

XEROX PARC, CSL-92-10, SEPTEMBER 1992

6 Using Collaborative Filtering to Weave an Information Tapestry

Ad hoc queries are made to the server in the same query language as filter queries and may return
documents that were not previously in the browser.

In traditional mail systems, each mail reader obtains and stores its own copy of each message.
Thus messages sent to a large mailing list are stored many times. Since Tapestry provides an
immutable document store, Tapestry browsers need only keep a document identifier (i.e. pointer).
When a user deletes a message from the browser, the document still exists and can be recovered
using an ad hoc query.

Users of a browser would like to be able to issue queries that involve both document fields and
private fields. Private fields store information such as whether a document has been read yet,
which folders it is in, etc. A browser can store private fields along with other document fields,
making them easily available for ad hoc queries. However, since documents must appear immuta
ble to filter queries, and private fields are mutable, private fields can only be referenced by ad hoc
queries, not filter queries.

3.0 Tapestry Query Language (TQL)

A key part of Tapestry is filtering documents, with the filters specified as queries. Hence, choosing
the language in which filter queries are written was one of the important design decisions. One
obvious choice was to use SQL[l], the widely-used standard query language for relational data
bases. Adopting it as the Tapestry query language would have had the additional advantage of
simplifying the implementation, because Tapestry is implemented on top of a commercial data
base which supports SQL.

We rejected using SQL as our query language for two reasons. First, there is a serious mismatch
between the relational model and the Tapestry model of documents. The set of fields in a docu
ment is extensible, whereas SQL schemas have a fixed set of fields. Also, SQL does not directly
support sets, whereas many document fields are set-valued. Examples are the ''To:'' field of mail
messages, and the "Newsgroups:" field of netnews articles. Second, we wanted to make it easy for
users to ?'Pe in ad hoc filter queries, and we felt that the amount of boiler plate in SQL made that
difficult

Thus Tapestry has its own query language TQL (for Tapestry Query Language). The next two
subsections describe TQL informally by the use of examples. Even though TQL is easier to use
than SQL, we expect most users will not use TQL directly, but instead will issue queries from a
browser using predefined (but possibly parametrized) queries.

3.1 Basic Examples

A TQL query is a boolean expression. It select those documents that satisfy the expression. The
set of allowable TQL expressions are similar to statements in first order predicate calculus. They

1. This is not meant as a criticism of SQL. Tapestry filter queries are much more specialized than general SQL que
ries, which is why they can be written with less boiler plate.

XEROX PARC, CSL-92-10, SEPTEMBER 1992

Tapestry Query Language (TQL)

Table 1. Common Fields and Their Types

to
date
sender
cc
subject
newsgroups
in-reply-to
words

set of strings
date
string
set of strings
string
set of strings
set of documents
set of strings

7

combine "atomic fonnulas" with boolean operators, and they can have free variables quantified
by EXISTS or FORALL. However, unlike predicate calculus, TQL supports sets.

The simplest Tapestry queries are atomic fonnulas, which involve relational operators like = and
< as well as the wildcard matching operator LIKE. An example is

m.subject = "Next Tapestry Meeting"

which selects exactly those documents (or messages) m whose subject field m.subject is "Next
Tapestry Meeting."

TQL queries reference the fields of documents using m.field, where field is the name of a docu
ment field. Each field has a type. Some common fields and their types are listed in Table 1. Most
correspond to fields of mail messages and newsgroup articles. One exception is "words", which is
the set of all words occurring in the body of the document.

More complex TQL queries are built up by combining atomic fonnulas with boolean operators as
in the following query:

(m.sender = "Smith" OR m.date < "April 15, 1991")
AND m.subject LIKE "% Tape stry % ".

This query selects messages that were either from "Smith" or else sent before April 15, and whose
subject field included the word ''Tapestry''. As in SQL, % is a wild card symbol that matches any
number of characters.

The major difference between TQL and predicate calculus is TQL's support for sets. A simple
example of a Tapestry query using set-valued fields is the atomic fonnula

m.to = {"Joe", ''Tom''}

which matches documents whose m.to fields include "Joe" and ''Tom'' (and possibly others). Sets
can involve operations other than =, such as the query

m.to = { "Joe", LIKE "%Bill%"}

which asks for an m.to field containing at least 'Joe' and a name containing 'Bill'.

XEROX PARC, CSL-92-10, SEPfEMBER 1992

8 Using Collaborative Filtering to Weave an Infonnation Tapestry

Quantified variables are needed for collaborative queries. An example is

EXISTS (mI: mI.sender = "Joe" AND mI.in-reply-to = {m})

which selects all documents m that Joe has replied to.

Finally, a user's filter queries can reference the queries of another user. For example, the TQL
query

mIN Terry.Baseball AND m.words = { "Dodgers" }

returns all the messages selected by Terry's 'Baseball' query that contain the word 'Dodgers'.

3.2 Annotations

The design of TQL presented so far follows rather naturally once the decision is made to have the
query language match the form of electronic documents such as mail messages and NetNews arti
cles. It is not so straightforward to decide how to handle annotations. As explained in section 2.1,
annotations are not stored as fields of the document they annotate. However, this does not pre
clude TQL treating them as additional document fields, and indeed this is the most natural repre
sentation for annotations such as priority. A notation like "m.a.priority" could be used to access
the priority of a document, the 'a' serving to map out a separate name space for annotations. Sim
ilarly, the folders to which a document belongs could be a set valued field, "m.a.folders".

Things do not work smoothly for the more complex annotations used to support collaborative fil
tering. Consider trying to implement voting using additional document fields. If vote is to be an
annotation field, then "m.a. vote" would have to be a set of votes, each of which has a structure of
its own, such as who the voter was, and the value of his vote. So a query such as "messages voted
for by weiser" would be expressed as something like "the set m.a. vote must have a member v with
v.owner = weiser", and this would require extending the set notation of the previous section.

The way this query is written in TQL is

a.type = "vote" AND a.owner = "weiser" AND a.msg = m

By introducing an annotation object, which always has a field msg that links it to a document, the
kind of queries that support collaborative filters become simpler. We mentioned earlier that col
laborative queries use EXISTS. The query above has an implicit EXISTS, and can also be written as

EXISTS (a: a.type = "vote" AND a.owner = "weiser" AND a.msg = m)

The cost introducing separate annotation objects is that simple queries like "documents of priority
10" become slightly more complex

a. type = "priority" AND a. value = 10 AND a.msg = m

Since one of the major design goals of Tapestry was to support collaborative filtering, we felt that
the design with separate annotation objects was preferable.

XEROX PARe, CSL-92-10, SEPfEMBER 1992

Filter Queries

Figure 3. Nondeterministic Behavior of Filters

document arrives

reply arrives

No No No

(a) -----+-1 --...:....-.+-1 ----+---+ 1 ~

No

1 10:00 ~

Yes

(b)----~8:00~~I--~9~:00~--~~~-+

4.0 Filter Queries

Match
Filter?

9

The heart of the Tapestry server is the Filterer, which executes users' filter queries. A straightfor
ward method of implementing a filter query is to periodically execute it, say once every hour. This
approach has the problem of returning all the old messages that matched the query the last time it
ran, so something must be done to suppress these messages. Moreover, there is another more seri
ous problem, namely that periodic execution can exhibit unpredictable behavior.

Consider the query: "select documents to which nobody has sent a reply." When a document is
added to the database, it matches the query. However, once a reply document arrives, the docu
ment being replied to no longer matches the query. If a particular document were to arrive in the
database at 8:15 and a reply to it arrived at 8:45, then the document would not be returned by a
system that simply ran the filter query every hour on the hour [Figure 3(a)], but would be returned
by a system that ran it every hour on the half hour (b), since the document would match at 8:30.
This raises the general question: What are reasonable semantics for a filter query that executes
repeatedly?" In other words: What guarantees can be provided to users about the set of documents
returned by a filter query?

Users should not need to understand the implementation of the system in order to know what
results to expect as the result of a filter query. The semantics should be independent of how the
system operates internally and when it chooses to perform various operations such as executing
queries. Two users with the same filter query should see the same result data. This implies that the
semantics of filter queries should be time-independent.

XEROX PARC, CSL-92-10, SEPTEMBER 1992

10 Using Collaborative Filtering to Weave an Information Tapestry

4.1 Continuous Semantics

Tapestry gives filter queries continuous semantics, which is defined as follows:

The results of a filter query are the set of data that would be returned if the query were executed
at every instant in time.

That is, the system guarantees to show the user any document that would be selected by the query
at any time. The system may implement this behavior in any number of ways, such as collecting
results and presenting them to the user periodically, but the actual set of results eventually seen by
the user is well-defined and time-independent.

Rewriting the above in symbols, let Q(t) denote the set of documents that would be returned by
the execution of query Q over the database that existed at time t. That is, Q(t) is the result of run
ning Q at time t. When a query Q is executed with continuous semantics, it returns not Q(t), but
rather:

UQ(s)
8<5,t

Filter queries are qualitatively different from one-time queries. Consider the user who wants to
see all the documents that do not receive replies. The obvious fonnulation: "select documents to
which nobody has sent a reply," when executed as a filter query, would return every document to
the user, since every document has no replies when it first arrives. This is undoubtedly not what
the user intended. The problem does not lie with continuous semantics, but rather with the user's
imprecise specification of his filter query. Finding the documents that never receive a reply would
require waiting forever, but in practice a short wait will return a good approximation, since most
messages are replied to quickly. Thus a more precise query would be something like: "select doc
uments that are more than two weeks old and to which nobody has sent a reply." This illustrates
the point that some queries only make ,sense when executed on a one-time basis, and are not suit
able as filter queries that are repeatedly executed.

4.2 Implementation

How can continuous semantics be realized in a practical system? Certainly, running a query at
every instant in time is not possible, and if it were possible, would not be practical. This rest of
this section gives an overview of techniques for providing continuous semantics in an effective
and efficient manner. An earlier paper gives full details of how this is done [13].

The key to providing efficient continuous semantics is the following observation: Given a query
whose result set is non-decreasing over time, the simple technique of periodically executing the
query and returning the new results yields continuous semantics. Such a query is said to be mono
tone. The frequency with which a monotone query is executed simply affects the size of each
batch of results, not the collective set of results.

Tapestry implements filter queries with continuous semantics in two stages. First a query is
rewritten as a monotone query that returns at least all documents that currently match the original
query or else matched it at some time in the past If the rewritten query is Q, and Tapestry has pre-

XEROX PARC, CSL-92-10, SEPI'EMBER 1992

Filter Queries

Figure 4. Filter Query Execution

Set 't = -00

FOREVER DO
set t := current time
Execute query d('t, t)
Return result to user
set t := t
Sleep for some period of time

ENDLOOP

11

viously evaluated Q at time 't, then at time t Tapestry can implement continuous semantics by
returning Q(t) - Q('t) to the user, where "-" stands for set difference.

In general, the sets Q(t) and Q('t) are almost the same, and contain mostly documents that have
already been returned to the user. Computing Q(t) - Q('t) is very inefficient, since Q(t) and Q('t)
both return large sets, but then most of these documents 'cancel' when Q(t) - Q('t) is computed.
So Tapestry has a second stage, in which the monotone query Q is rewritten as an incremental
query, f7('t, t), that can quickly compute an approximation to Q(t) - Q('t).

To summarize the discussion so far, when a filter query is submitted to Tapestry, it is first rewritten
to a monotone query Q, and then Q is further rewritten to an incremental (i. This incremental
query is what is used by the Tapestry filterer. The filterer repeatedly runs the incremental query,
queues up the selected documents for delivery to users, records the time at which each query was
run, waits some period of time, and then repeats this process using the recorded times as parame
ters to the incremental queries. This algorithm is shown in Figure 4.

We can now explain why Tapestry does not allow documents to be deleted (that is, uses an
append-only document store). Because the filterer runs at discrete times, if documents could be
removed, then different users could receive different results from the same filter, depending on
when the filter ran relative to document deletion. This would be a violation of continuous seman
tics.

4.3 Examples

A couple of examples should give the flavor of the query transformations. Consider the query
"show messages sent by Joe," which can be expressed in TQL as

m.sender = "Joe"

This query is already monotone since the set of messages sent by Joe is strictly non-decreasing
over time., Therefore. '. the quer,Y simply needs to be converted into an incremental form. Recall
that the incremental query (l ('t, t) should return messages that began matching the original
between times 't and t. For the above example, the incremental query considers all messages that
arrived in this time range:

m.sender = "Joe" AND ('t < m. ts AND m.ts ::; t)

XEROX P ARC, CSL-92-10, SEPTEMBER 1992

12 Using Collaborative Filtering to Weave an Infonnation Tapestry

The "ts" field is a timestamp added by Tapestry when the message arrives in the document store.

As a more complicated example, consider the query "show bug reports that are more than 2 weeks
old and have not been answered". In TQL, this can be written as

m.to = "BugReports" AND m.ts + [2 weeks] < nowO
AND NOT EXISTS (mreply: mreply.in_reply _to = {m})

This query is not monotone since it may select a message after the message becomes two weeks
old and stop selecting the message when a reply arrives. Tapestry converts it into the following
monotone query:

m.to = "BugReports" AND m.ts + [2 weeks] < nowO
AND NOT EXISTS (mreply: mreply.in_reply_to = {m} AND mreply.ts < m.ts + [2 weeks])

This monotone query has a slightly different meaning than the original query, but one that is con
sistent with continuous semantics. Specifically, it says "show bug reports that are not answered
within 2 weeks".

The incremental version of this query considers all messages that became two weeks old in the
time between t and t:

m.to = "BugReports" AND m.ts + [2 weeks] < nowO
AND (t < m.ts + [2 weeks] ANDm.ts + [2 weeks] ~ t) AND

NOT EXISTS (mreply: mreply.in_reply_to = {m} AND mreply.ts < m.ts + [2 weeks])

Because t and nowO are the same time in practice, this query can be simplified a bit by removing
the "AND m.ts + [2 weeks] < nowO" clause.

5.0 The Current System

A system that embodies the architecture presented in section 2.0 is currently in use by a small
number of researchers. This section describes the implementation of various components of the
current Tapestry system.

5.1 Database manager

Tapestry stores documents, annotations, and filter queries in a commercial relational database
management system provided by Sybase[ll]. Information about messages is stored in a set of
relational tables. A single table does not suffice since this information does not fit cleanly into the
relational model. In particular, there is no single collection of attributes that apply to all messages,
and some of the attributes, such as the set of recipients or newsgroups for a message, are set-val
ued. Information that is common to all messages, and is not set-valued, is stored in a table that has
one entry per message. Other information that varies from message to message is stored in an aux
iliary table. Each message may occupy one or more rows in this table. Similarly, set-valued
attributes are stored in a special table in which each value of a set occupies a single row. Annota
tions, which, like messages, have an extensible set of attributes, are stored in several tables as

XEROX PARC, CSL-92-10, SEPfEMBER 1992

The Current System 13

well. As stated earlier, one of the principal motivations behind the design of TQL was to hide this
complex database schema from Tapestry users.

5.2 Indexer

The indexing program is responsible for understanding a given document format, extracting
attributes from the document, and storing these in the database. Logically, a separate indexing
program exists for each type of document that is added to the Tapestry system. For example, the
format of NetNews articles and mail messages is very different than that of New York Times arti
cles. Fortunately, the indexer is the only part of the Tapestry system that is sensitive to the format
of a document. New sources of documents can be added simply by writing new indexing pro
grams.

For NetNews, the indexer takes all the header fields in the message and translates them into tapes
try message fields. In addition, the words in the body of the message are added to a set-valued
Tapestry field named "words." Words on a stop list of common English words are not added, and
each word is stemmed to eliminate inflected forms (e.g. "ran" is indexed as "run"). No proximity
of frequency information is kept for words in the body.

As of this w!iting, we are indexing a subset of NetNews (the "comp" subtree), keeping the last
100 MB of data around at any given time. This is about 12 days worth of data, or 43000 messages.
Our Sybase tables and indices occupy an additional 300 MB of storage.

5.3 TQL-to-SQL translator

Before a TQL query can be executed over the Tapestry database, it must be converted to SQL, the
query language used by the Sybase database manager. The Tapestry system compiles (or trans
lates) each TQL query into an equivalent SQL query. For ad hoc queries, this translation is done
directly on the query provided by the Tapestry user. For filter queries, the TQL statement is first
converted into its bounding monotone query and incrementalized, as described in section 4.0, and
then translated into SQL. The SQL query for a filter is then maintained in the Sybase database as
a stored procedure. A stored procedure is more efficient than an ad hoc query since the query opti
mization overhead is amortized over the many executions of the query.

Because information about messages and annotations is distributed throughout several tables in
the Tapestry database, the SQL equivalents of most TQL queries involve one or more database
join operations. Hence, the SQL queries can be quite complicated. Figure 5 shows a sample TQL
query along with the resulting SQL query. Studies have shown that a good query optimizer, pro
vided with suitable database indices, can produce query plans that allow these complex queries to
run efficiently. In particular, the execution cost of an incremental query produced by our translator
is proportional to the number of messages added to the database since the query last ran and not
dependent on the overall size of the database. See our paper on continuous queries for more
details [13].

XEROX P ARC, CSL-92-10, SEPIEMBER 1992

14 Using Collaborative Filtering to Weave an Information Tapestry

Figure 5. Example' of translation from TQL to SQL

EXISTS(ml:«-r < m.ts AND m.ts:::; NowO) OR (-r < m1.ts AND m1.ts:::; NowO))
ANDm1.sender = "Joe" ANDm1.in_reply_to = {m})

SELECT m.id FROM msgs m WHERE

EXISTS(SELECT * FROM msgs ml WHERE

«@tau < m.ts AND m.ts <= getdateO) OR

TQl

SQl

(@tau < m1.ts OR m1.ts <= getdateO)) AND (m1.sender = "joe") AND
EXISTS (

SELECT * FROM reply_to tl, msgs tml WHERE

t1.id = m1.id AND t1.reply _ref = 1 AND
t1.msg_id = tm1.ms~id AND tm1.id = m.id))

5.4 Remailer

Messages that are selected by a user's filter queries are queued up for delivery to that user. These
queues, which constitute the users' "little boxes", are also stored in the Tapestry database. Eventu
ally, we plan to build Tapestry clients that access these queues directly, including a Tapestry
browser. In the meantime, we have built a remailing agent that periodically retrieves all of the
messages that have been selected for a user and sends each message to that user via electronic
mail. Each message is modified to include an extra header field that indicates which filter(s)
selected the messages. This is used as input to the appraiser, permits a user to understand why the
message was selected and provides valuable feedback for debugging or refining a filter query.

5.5 Mail readers

Having the Tapestry server send selected messages to users electronically eliminates the need to
build special clients. Importantly, users can continue to use their favorite mail readers to manage
both their private mail and the Tapestry documents selected by their filter queries. While we do
not believe this to be the ideal means of interacting with the Tapestry service, it has allowed us to
quickly make use of the filtering capabilities.

Some Tapestry clients use the Andrew Messages reader developed at Carnegie Mellon University
[9]. Like most modem mail readers, it provides a nice user interface for reading messages and
moving them into mail folders. Moreover, it supports the "FLAMES" language, which allows
users to write a simple fonn of "appraisers" that automatically move messages matching a given

XEROX PARC, CSL-92-10, SEPTEMBER 1992

The Current System 15

predicate or rule into a given folder. In particular, users can write FLAMES rules to identify and
process messages that were sent by the Tapestry service and selected by a certain filter query.

To experiment with a different type of appraiser function, we added prioritizing queries to the
Cedar-based mail reader developed at Xerox PARC called Walnut [4]. Users can supply a set of
queries that can be applied to all incoming messages. As with the FLAMES rules, these queries
can look for the special header field indicating that a message is from the Tapestry service. Each
query assigns a numerical priority to messages that match the query. If a message matches several
queries, then it is assigned the maximum of the priorities. Walnut will display messages within a
folder in various orders including priority order. This allows users to quickly see the high-priority
messages (and ignore the low priority ones). To date, our experience with prioritizing queries has
been quite positive. They have convinced us of the value of having appraisers that further classify
and organize messages selected by filter queries.

5.6 Name canonicalizer

It is very common for queries to involve the names of mail senders and receivers. There are two
problems with these names. First, a given person usually has multiple electronic names. Second,
if a name has any chance of being unique, it must be highly qualified, and that works against our
goal having making it easy to type an ad hoc query. This subsection presents our design (not yet
implemented) for dealing with naming.

The second problem is the easiest to solve. In the "official" TQL query language, names are fully
qualified. However, users will nonnally enter queries via a browser. Thus, the browser can offer
an expand command, which takes a shorthand and expands it to be fully qualified. This not only
saves typing, but also serves to verify that the name was expanded as expected.

The first problem is more difficult, because there is not a 1-1 mapping between names and people.
Suppose we simplify the problem by assuming that each person referenced in a query can be
uniquely named with an internet name of the fonn name@site, where name and site each are of
the fonn partLpart2 There is still a problem because both names and sites can have many
aliases, and so the mapping is many-to-L In other words, although a person can be specified
unambiguously, it is difficult find all documents involving a given person, because of all the
aliases.

Our solution involves creating a canonical fonn for each name, which is a fully qualified internet
name, along with a program that converts names to canonical fonn. For the "From" field of mail
originating within PARC, the canonicalizcr can do a perfect job. For other names, it must use heu
ristics.

Once such a canonicalizer exists, it can be used when executing a query such as

m.sender = "weiser"

It would be too expensive to perfonn the three steps of examining the Sender field of each docu
ment, canonicalizing it, and then comparing that with canonical fonn of "weiser" every time an
incremental query was executed. Tnstead the raw names in documents are processed as they arrive

XEROX PARC, CSL-92-10, SEPTEMBER 1992

16 Using Collaborative Filtering to Weave an Infonnation Tapestry

in Tapestry. Although the names could simply be replaced with their canonical forms, that isn't
done because the canonicalizer is imperfect, and we· ,vant to make it easy to update its translations
when an error is discovered.1

Our solution is that as documents arrive in Tapestry, for each raw name in the document, if it has
not been seen before, it is run through the canonicalizer, and added to a table that contains [raw
name, canonical name] pairs.

Then the query

m.sender = "Weiser:PARC:Xerox"

is converted to

m.sender = names.canonname AND names.rawname = "Weiser:PARC:Xerox"

The advantage of having the level of indirection is that we can easily compensate for incorrect
heuristics in the canonicalizer by changing entries in the names table.

6.0 Summary and Future Work

Tapestry is an experimental system designed to receive, filter, file and browse electronic docu
ments that arrive in a continuous stream. Because this class of documents includes electronic
mail, Tapestry is intended to be used as a replacement for current electronic mail systems.

The novelty of Tapestry lies in its support for collaborative filtering. Users are encouraged to
annotate documents, and these annotations can then be used for filtering. We envision two types
of readers for various classes of documents. Eager readers will read all the documents in the class
in order to get immediate access. More casual readers will wait for the eager readers to annotate,
and read documents based on those reviews. Experience with NetNews suggests that there will
not be a lack of readers willing to be 'eager' annotators.

When a Tapestry user installs a filter that uses annotations, documents matching that filter are
returned as soon as the document receives the specified annotations. Thus Tapestry filters can be
thought of as running continuously. The primary technical innovation in Tapestry is an efficient
algorithm for implementing filter queries that have predictable semantics.

Future work falls into two categories. First, we need to accumulate more user experience with
Tapestry so that we can better analyze how well the design actually works in practice. Second, the
Tapestry design presented in this paper is missing a few important pieces. One of them is security:
the integration of private mail with public information such as NetNews is unlikely to be widely
accepted without a strong security scheme. Another missing piece is the browser. We have not yet
done a detailed design of a browser. The integration of different information streams provided by
Tapestry may enable some interesting new browser techniques.

1. This has the unfortunate side effect of destroying append-only semantics, but there doesn't seem to be anyway
around this problem.

XEROX P ARC, CSL-92-10, SEPfEMBER 1992

Acknowledgments 17

7.0 Acknowledgments

We would like to thank Pavel Curtis, Doug Cutting and Maria Okasaki for carefully reading a
draft of this paper.

8.0 References

1] DIS 9075:199x(E).
Database Language SQL
ANSI, April 1991.

2] P. J. Denning.
Electronic Junk.
Communications of the ACM 25(3): 163-165, March 1982.

3] D. K. Gifford, R. W. Baldwin, S. T. Berlin, and 1. M. Lucassen.
An architecture for large scale infonnation systems.
Proceedings Tenth Symposium on Operating Systems Principles, Orcas Island, Washington,
December 1985, pages 161-170.

4] Jack Kent, Doug Terry, and Wtllie-Sue Orr
Browsing electronic mail: Experiences interfacing a mail system to a DBMS. Proceedings
14th International Conference on Very Large Databases (VLDB), Los Angeles, California,
August 1988, pp 112-123.

5] E. Lutz, H. v. Kleist-Retzow, and K. Hoernig.
MAFIA-An active mail-filter-agent for an intelligent document processing support.
Multi-User Interfaces and Applications, S. Gibbs and A. A. Verrijn-Stuart (editors), North
Holland, 1990, pages 16-32.

6] T. W. Malone, K. R. Grant, F. A. Turbak, S. A. Brobst, and M. D. Cohen.
Intelligent infonnation sharing systems.
Communications of the ACM 30(5):390-402, May 1987.

7] J. Palme.
You have 134 unread mail! Do you want to read them now?
Proceedings IFIP WG 6.5 Working Conference on Computer-based document Services, Not
tingham, England May 1984, pp 175-184.

8] S. Pollock.
A rule-based message filtering system.
ACM Transactions on Office Information Systems 6(3):232-254, July 1988.

9] J. Rosenberg, C. F. Everhart, and N. S. Borenstein.
An overview of the Andrew Message System.
Proceedings SIGCOMM '87 Workshop on Frontiers in Computer Communications Technol
ogy, Stowe, Vennont, August 1987, pp 99-108.

XEROX PARC, CSL-92-10, SEPIEMBER 1992

18 Using Collaborative Filtering to Weave an Information Tapestry

10] Ben Smith.
The Unix Connection.
Byte, 14(5):245-251, May 1989.

11] Sybase.
Transact-SQL user's guide.
Sybase, Inc., October 1989.

12] D. B. Terry.
7 steps to a better mail system.
Message Handling Systems and Application Layer Communication Protocols, P. Schicker
and E. Stefferud (editors), North Holland, 1991, pages 23-33.

13] D. B. Terry, D. Goldberg, D. Nichols and B. Oki.
Continuous Queries Over Append-Only Databases.
Proceedings ACM-SIGMOD Symposium on the Management of Data, San Diego, June
1992.

XEROX P ARC, CSL-92-10, SEPI'EMBER 1992

Using Collaborative Filtering to Weave an
Information Tapestry

Goldberg, Nichols, Oki, Terry

